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Preface

This is a book about ocean waves, their evolution and their interaction with

the environment. It presents a summary and unification of my knowledge of

wave growth, nonlinear interactions and dissipation of surface gravity waves,

and this knowledge is applied to the problem of the two-way interaction of

wind and waves, with consequences for atmosphere and ocean circulation.

The material of this book is, apart from my own contributions, based on

a number of sources, ranging from the works of Whitham and Phillips to

the most recent authorative overview in the field of ocean waves, namely the

work written by the WAM group, Dynamics and Modelling of Ocean Waves.

Nevertheless, this book is limited in its scope because it will hardly address

interesting issues such as the assimilation of observations, the interpreta-

tion of satellite measurements from for example the Radar Altimeter, the

Scatterometer and the Synthetic Aperture Radar, nor will it address shallow

water effects. These are important issues but I felt that the reader would be

served more adequately by concentrating on a limited amount of subjects,

emphasizing the role of ocean waves in practical applications such as wave

forecasting and illuminating their role in the air-sea momentum exchange.

I started working on this book some 8 years ago. It would never have been

finished were it not for the continuous support of my wife Danielle Mérelle.

Her confidence in my ability of completing this work far exceeded my own.

I thank my parents, Aloysius Janssen and Rosa Burggrave, for supporting

me to follow a university education. I am indebted to my Ph.D. advisor

Martin Weenink and L.J.F. Broer for their introduction into the field of

nonlinear physics. Also, it is a pleasure to acknowledge the contributions of

P.G. Saffman and G.B. Whitham to my education in ocean waves. Things

started really to happen when I joined the WAve Modelling (WAM) group.

Most of the members of the WAM group thought that this was a unique

opportunity for collaboration, and we thought we had the time of our life.
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1. Introduction

The subject of ocean waves and its generation by wind has fascinated me

greatly since I started to work in the department of Oceanography at the

Royal Netherlands Meteorological Institute (KNMI) at the end of 1979. The

growth of water waves by wind on a pond or a canal is a daily experience for a

person who lives in the lowlands, yet, it appeared that this process was hardly

understood. Gerbrand Komen, who arrived two years earlier at KNMI and

who introduced me into this field, pointed out that the most prominent theory

to explain wave growth by wind was the Miles (1957) theory which relied on

a resonant interaction between wind and waves. Since I did my Ph. D. in

plasma physics, I noticed immediately an analogy with the problem of the

interaction of plasma waves and electrons which has been studied extensively

both experimentally and theoretically. The plasma waves problem has its own

history. It was Landau (1946), who discovered that depending on the slope of

the particle distribution function at the location where the phase velocity of

the plasma wave equals the particle velocity, the plasma wave would either

grow or damp. Because of momentum and energy conservation this would

result in a modification of the particle velocity distribution. For a spectrum

of growing plasma waves with random phase, this problem was addressed in

the beginning of the 1960’s by Vedenov et al (1962) and by Drummond and

Pines (1962). The principle result these authors found was that because of the

growth of the plasma waves the velocity distribution would change in such

a way that for large times its slope vanishes in the resonant region, thereby

removing the cause of the instability. Thus, a new state emerges consisting

of a mixture of stable, finite amplitude plasma waves and a modified particle

velocity distribution.

Based on this analogy, I realised that the approach by Miles (1957) which

relied on linear theory could not be complete, because energy and momentum

were not conserved. Taking nonlinear effects into account would enable me
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to determine how much momentum transfer there is from the wind to the

waves, which would give rise to a wave-induced stress on the airflow. This

resulted then in a slowing down of the airflow, hence in a modified wind

profile. Considering, for simplicity, the two-dimensional problem only (hence

wave propagation in one direction) I performed the necessary calculations

which were similar in spirit to the ones of the plasma problem. They indeed

confirmed my expectation that in the presence of growing water waves the

wind profile would change. The role of the particle velocity distribution in

this problem was played by the vorticity of the mean flow, hence, in the

absence of all kinds of other effects (e.g. turbulence) a new state would emerge

consisting of stable, finite amplitude water waves and a mean flow of which

the gradient of the mean vorticity would vanish in the resonant region. It

should be remarked that a number of years earlier Fabrikant (1976) reached

a similar conclusion while also Miles (1965) adressed certain aspects of this

problem. This theory has become known as the quasi-linear theory of wind-

wave generation.

A number of collegues at KNMI pointed out to me, however, that my

treatment was far from complete in order to be of practical value. And,

indeed, I neglected lots of complicating factors such as nonlinear wave-wave

interactions, dissipation due to white capping, flow separation, air turbulence,

water turbulence, etc. For example, it is hard to imagine that in the presence

of air-turbulence the mean airflow would have a linear dependence on height

(corresponding to the vanishing of the gradient of its vorticity) since the

turbulent eddies would try to maintain a logarithmic profile. Thus, in general,

a competition between the effect of ocean waves through the wave-induced

stress and turbulence is expected, and, presumably, the wave effect will be

larger the steeper the waves are. Nevertheless, it was evident that knowledge

of the momentum transfer from air to sea required knowledge of the evolution

of ocean waves, which apart from wind input is determined by nonlinear wave-
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wave interactions and dissipation due to white capping. In short, in order to

show the practical value of the idea of the wave effect on the airflow, the

running of a wave model was required.

In the beginning of the 1980’s a spectral ocean wave model, including

wave-wave interactions, was not considered to be a viable option. The reason

for this was that there was not enough computer power available to deter-

mine the nonlinear transfer in a short enough time to be of practical value for

wave forecasting. This picture changed with the introduction of the first su-

percomputers and with the work of Hasselmann and Hasselmann (1985) who

proposed an efficient parametrisation of the nonlinear transfer. Combined

with the promise of the wealth of data on the ocean surface from remote

sensing instruments on board of new satellites such as ERS-1, ERS-2 and

Topex-Poseidon, this provided sufficient stimulus to start a group of mainly

European wave modellers who called themselves the WAve Model (WAM)

group. Apart from a keen interest in advancing our knowledge regarding the

physics of ocean waves and assimilation of wave observations, the main goal

was to develop a spectral wave model based on the so-called energy balance

equation which included the physics of the generation of ocean waves by

wind, dissipation due to white capping and, of course, nonlinear interactions.

I joined the WAM group in 1985 because of my interest in wave prediction

and, in the back of my mind, with the hope that perhaps I could study now

the consequences of the slowing down of the airflow in the presence of ocean

waves.

The interests and background of the members of the WAM group varied

greatly. It brought together experimentalists, theorists, wave forecasters and

people with a commercial interest. Nevertheless, owing to the great enthousi-

asm of the group, owing to the tremendous efforts by Susanne Hasselmann to

develop a first version of the WAM model, and not in the least, owing to the

computer facilities generously provided by the European Centre for Medium-
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Range Weather Forecasts (ECMWF) developments progressed rapidly. After

a number of studies on the limited area of the North Sea and the North-east

Atlantic with promising results, a global version of the WAM model was run-

ning quasi-operationally at ECMWF by March 1987. Surface windfields were

obtained from the ECMWF atmospheric model. The reason for the choice of

this date was that by mid-March a large experimental campaign, measuring

two-dimensional wave spectra, started in the Labrador sea (LEWEX). Re-

sults of the comparison between observed and modelled spectra were later

reported at the final LEWEX meeting by Zambresky (1991). By August 1987

already a first version of an Altimeter wave height data assimilation system

had been tested by Piero Lionello while a number of verification studies on

wave model performance were well underway by the end of 1987. Zambresky

(1989) compared one year of WAM model results with conventional buoy ob-

servations, while Janssen et al (1989) and Bauer et al (1992) compared with

Altimeter wave height data from the SEASAT mission and Romeiser (1993)

compared with Geosat Altimeter data. Meanwhile the WAM model, which

orginially was a deep water model with some simple shallow water effects,

was generalised extensively to include bottom and current refraction effects,

while the problem of too strong swell dissipation (as was evident from the

comparison studies with Altimeter data) was alleviated by modifying the dis-

sipation source term. Finally, extensive efforts were devoted to beautify the

wave model code and to make it more efficient and in July 1992 the WAM

model became operational at ECMWF. By the end of 1994 the WAM model

was distributed to more than 75 institutes, reflecting the success of the WAM

group. A more detailed, scientific account of all this may be found in Komen

et al (1994).

In the meantime, while taking part in the WAM group, I tried to assess the

relevance of my findings on the slowing down of airflow by ocean waves. First

of all, observational evidence suggested that the drag coefficient CD increases
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with wind speed U10. Here the drag coefficient CD follows from the kinematic

stress τ and the wind speed at 10m height according to CD = τ/U2
10. The

increase of CD with U10 for airflow over ocean waves is in contrast with the

classical results of airflow over a smooth, flat plate. For such a surface, the

slowing down of the airflow is caused by viscous dissipation. As a result, since

for larger windspeed, hence larger Reynolds number, the effect of viscosity

becomes less important, the drag coefficient decreases with wind speed. Ap-

parently, in the presence of ocean waves there are additional ways to transfer

air-momentum, and an obvious candidate for such a process is the genera-

tion of surface waves by wind. This was realized by Charnock (1955) and

he suggested that the roughness length of airflow over ocean waves should

therefore depend on two parameters, namely acceleration of gravity g and

the friction velocity u∗ = τ
1
2 . Dimensional considerations then gave rise to

the celebrated Charnock relation for the roughness length, and, although in

the mid-fifties there was hardly any observational evidence, a realistic esti-

mate for the Charnock parameter was given as well. In Charnock’s analysis

it was tacitly assumed that the sea state was completely determined by the

local friction velocity u∗. However, observations of the windsea state obtained

during the Joint North Sea Wave (JONSWAP, 1973) project suggested that

the shape of the ocean wave spectrum depends on the stage of development

of the sea state or the so-called wave age. In the early stages of develop-

ment, called ’young’ windsea, the wave spectrum showed a very sharp peak

while the high frequency waves were steep. On the other hand, when the sea

state approaches equilibrium the wind waves were less steep and the spec-

tral peak was less pronounced. This led Stewart (1974) to suggest that the

Charnock parameter is not really a constant, but should depend on the stage

of development of wind waves.

Thus, the work of Charnock and Stewart suggested that wind-generated

gravity waves, which receive energy and momentum from the airflow, should



6 PETER A.E.M. JANSSEN

contribute to the slowing down of the airflow. In other words, ocean waves and

their associated momentum flux may be important in controlling the shape

of the wind profile over the oceans. However, the common belief in the field

was that air turbulence was dominant in shaping the wind profile while the

effect of surface gravity waves was considered to be small (Phillips, 1977). On

the other hand, Snyder et al (1981) found that the momentum transfer from

wind to waves might be considerable, therefore, the related wave-induced

stress may be a substantial fraction of the total stress in the surface layer.

This turned out to be the case, in particular, for ’young’ windseas, which

are steep. The consequence is that the momentum transfer from air to ocean

and therefore the drag coefficient at 10 m height depends on the sea state.

First experimental evidence for this was found by Donelan (1982), which was

confirmed by Smith et al (1992) during the Humidity Exchange of the Sea

(HEXOS) experiment.

It therefore seemed natural to combine results of the quasi-linear theory

of wind-wave generation with knowledge on the evolution of wind waves in

order to be able to determine the sea-state dependence of air-sea momen-

tum transfer. Of course, it should be realized that the quasi-linear theory is

strictly speaking not valid because, for example, effects of air turbulence on

the wave-induced motion are disregarded, and also effects of flow separation

are ignored. Nevertheless, I thought it worthwhile to study whether it was

posssible to obtain in the context of this theory realistic estimates of the

air-sea momentum transfer. This turned out to be the case. However, results

were found to depend in a sensitive manner on the state of the high-frequency

waves because these are the fastest growing waves and therefore carry most

of the wave-induced stress. The close relation between aerodynamic drag and

the sea state implied that an accurate knowledge of momentum transfer re-

quired a reliable determination of the high-frequency part of the spectrum.

It turned out that this could be provided by the WAM model.
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The consequence was that a reliable knowledge of momentum transfer

required the running of a wave model because of the two-way interaction

between wind and waves. I therefore started wondering whether the sea state

dependence of the drag would be relevant in other areas of geophysics such as

in storm-surge modelling, weather prediction, the atmospheric climate and

gas transfer. Although observations (Donelan, 1982) and theory (Janssen,

1989) did suggest an enhancement of drag by a factor of two for young wind-

sea, which is quite significant, it appears that the relevance of this wave effect

can only be assessed after doing some numerical experiments. One of the rea-

sons for this is that when a change is being made in one part of a complicated

system, (unexpected) compensations may occur induced by other parts of the

system. Consider as an example the impact of the sea state on the evolution

of a depression. When the wind starts blowing the young sea state will give

an increased roughness which on the one hand may result in an enhanced

filling up of the pressure low, but on the other hand the enhanced roughness

may lead to an increased heat flux which, through vortex stretching, results

in a deeper depression. The final outcome can, therefore, only be determined

in the context of a coupled ocean-wave, atmosphere model.

Presently, a number of studies have shown the relevance of the sea-state de-

pendent momentum transfer for storm-surge modelling (Mastenbroek et al.,

1993), weather prediction (Doyle, 1995; Janssen et al., 2002), the atmospheric

climate ( Janssen and Viterbo, 1996) and the ocean circulation (Burgers et

al., 1995). These studies suggest that the modelling of momentum transfer

(and also of heat and moisture) can only be done adequately in the context

of a coupled model. Ideally, one would therefore imagine one grand model of

our geosphere, consisting of an atmospheric and an ocean circulation model,

where the necessary interface between ocean and atmosphere is provided by

an ocean wave model.

This book is devoted to the problem of two-way interaction of wind and
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waves and the possible consequences for air-sea interaction. I therefore start

with an introduction into the subject of ocean waves. First important con-

cepts and tools such as dynamical equations, the dispersion relation, the role

of the group velocity and the Hamiltonian and the Lagrangian for ocean

waves are introduced. This is followed by an emphasis on the need for a

statistical description of ocean waves by means of the wave spectrum. The

evolution equation for the wave spectrum, called the energy balance equa-

tion, is derived from Whitham’s averaged Lagrangian approach. The energy

balance equation describes the rate of change of the wave spectrum due to

advection and refraction on the one hand and, on the other hand, due to

physical processes such as wind input, nonlinear interactions and dissipation

by white capping. After a brief discussion of advection and refraction I will

give a thorough discussion of the energy transfer from wind to ocean waves,

the consequent slowing down of the airflow and of nonlinear interactions.

This is followed by a brief discussion of the least understood aspect of wave

dynamics, namely dissipation due to white capping.

Next, the role of the various source terms in shaping the wave spectrum

is studied resulting in an understanding of the evolution of the windsea spec-

trum. At the same time the sea state dependence of the air-sea momentum

transfer is treated and its sensitive dependence on the high-frequency part of

the wave spectrum is emphasized.

Because air-sea interaction depends in a sensitive way on the quality of the

sea state, the present status of ocean wave forecasting needs to be addressed.

This is done by presenting a validation of ECMWF wave forecast and analysis

results against conventional buoy data and against Altimeter wave height

data obtained from the ERS-2 satellite.

Having established the role of ocean waves in the field of air-sea interac-

tion, it is suggested that the standard model of the geosphere, which usually

consists of an atmospheric and ocean circulation model, should be extended



THE INTERACTION OF OCEAN WAVES AND WIND 9

by means of an ocean-wave model that provides the necessary interface be-

tween the two. The role of ocean waves in air-sea interaction is then illus-

trated by studying the impact of the sea-state dependent momentum transfer

on storm surges, and by showing that ocean waves also affect the evolution

of weather systems such as a depression. Finally, ocean waves are also shown

to affect in a systematic manner the atmospheric climate on a seasonal time

scale.
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2. The energy balance of deep-water ocean waves.

In this Chapter we shall try to derive, from first principles, the basic evo-

lution equation for ocean wave modelling which has become known as the

energy balance equation. The starting point is the Navier-Stokes equations

for air and water. The problem of wind-generated ocean waves is, however,

a formidable one, and several approximations and assumptions are required

to arrive at the desired result. Fortunately, there are two small parameters

in the problem, namely the steepness of the waves and the ratio of air to

water density. As a result of the relatively small air density the momentum

and energy transfer from air to water is relatively small so that, because of

wind input, it will take many wave periods to have an appreciable change of

wave energy. In addition, the steepness of the waves is expected to be rela-

tively small. In fact, the assumption of small wave steepness may be justified

a posteriori. Hence, because of these two small parameters one may distin-

guish two scales in the time-space domain, namely a short scale related to

the period and wave length of the ocean waves and a much longer time and

length scale related to changes due to small effects of non-linearity and the

growth of waves by wind.

Using perturbation methods an approximate evolution equation for the

amplitude and the phase of the deep-water gravity waves may be obtained.

Formally, in lowest order one then deals with free surface gravity waves while

higher order terms represent the effects of wind input, non-linear (four) wave

interactions and dissipation. In this manner the problem of wind-generated

surface gravity waves (a schematic is given in Fig. 2.1) may be solved.

After Fourier transformation a set of ordinary differential equations for

amplitude and phase of the waves is obtained which may be solved on the

computer. This approach is followed in meteorology. The reason for its success

is that the integration period (between 5-10 days) is comparable to the period

of the long atmospheric waves. For water waves this approach is not feasible,
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Fig. 2.1. Schematic of the problem in two dimensions.

however, because of the disparity between a typical wave length of ocean

waves (in the range of 1-1000 m) and the size of a typical ocean basin (of

the order of 10,000 km). A way of circumventing this problem is to employ

a multiple scale approach. Since there are two scales in the problem at hand,

and since the solution for the free gravity waves is known, we only have to

consider the evolution of the wave field on the long time and space scale, thus

making the wave forecasting problem on a global scale a tractable one.

Furthermore, in practice there is no need for detailed information regard-

ing the phase of the ocean waves. In fact, there are no observations of the

phase of ocean waves on a global scale. Usually, we can content ourselves

with knowledge about the distribution of wave energy over wavenumber k.

In other words, only knowledge of the wave spectrum F (k) is required. A

statistical description of the sea state, giving the wave spectrum averaged

over a finite area, seems therefore the most promising way to proceed. From

the slow time evolution of the wave field it follows that the wave spectrum

F is a slowly varying function of time as well. Its evolution equation, called

the energy balance equation, is the final result of this Chapter. We conclude

the Chapter by giving a brief overview of our knowledge on observations of
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wave evolution. This will be accompanied by an introduction of number of

relevant physical parameters, all derived from the wavenumber spectrum F ,

which are frequently used in the remainder of this work.

2.1. Preliminaries.

Referring to Fig.2.1 for the geometry, our starting point is the usual evolution

equation for an incompressible, two-layer fluid, consisting of air and water.

Consider a fluid with density ρ which flows with a velocity u. In general

density and velocity depend on position x = (x, y, z) and time t. A right-

handed coordinate system is chosen in such a way that the coordinate z

points upwards while the acceleration of gravity g points in the negative z-

direction. The rate of change of the velocity is caused by the Coriolis force,

by the pressure (p) gradient, by acceleration of gravity and by the divergence

of the stress tensor τ . Denoting the interface between air and water by η(x, t)

we then have

∇.u = 0,

(
∂

∂t
+ u.∇)u + f × u = −1

ρ
∇p+ g + ∇.τ, (2.1)

where

ρ =

⎧⎨
⎩ ρa, z > η,

ρw, z < η.

For surface gravity waves, the Coriolis acceleration may be ignored because

the frequency of the waves is much higher than the Coriolis parameter f.

Velocities and forces, such as the normal and tangential stress are continuous

at the interface. A particle on either side of the surface, described by z =

η(x, t) will move in a time ∆t from (x, z = η) to (x + ∆x, z + ∆z = η(x +

∆x, t + ∆t)) with ∆x = u∆t and ∆z = w∆t. Thus, by Taylor expansion of

z + ∆z and by taking the limit ∆t→ 0 one obtains the kinematic boundary

condition
∂η

∂t
+ u.∇.η = w. (2.2)
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Here, u is the horizontal velovity at the interface while w is its vertical ve-

locity. In order to complete the set of equations, one has to express the stress

tensor τ in terms of properties of the mean flow. The stress contains the

viscous stress and in addition may contain contributions from unresolved

turbulent fluctuations (the Reynolds stress).

Finally, boundary conditions have to be specified. In deep water one im-

poses the condition that for z → ±∞ the wave motion should vanish. How-

ever, for finite depth water waves the normal component of the water velocity

should vanish at the bottom.

In order to derive the energy balance equation we shall discuss the prop-

erties of pure gravity waves. Thus the following approximations are being

made:

− Neglect viscosity and stresses. This gives the Euler Equations. Continuity

of the stress at the interface of air and water is no longer required. The

parallel velocity at the interface may now be discontinuous.

− We disregard the air motion altogether because ρa/ρw � 1. In our dis-

cussion on wave growth effects of finite air-water density ratio are, of

course, retained.

− We assume that the water velocity is irrotational. This is a reasonable

assumption for water waves. In the framework of the Euler equations,

it can, in fact, be shown that the vorticity remains zero when it is zero

initially.

The condition of zero vorticity is automatically satisfied for velocity fields

that are derived from a velocity potential φ. Hence,

u = ∇φ (2.3)
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and since the flow is divergence free the velocity potential satisfies Laplace’s

equation inside the fluid

∇2φ+
∂2φ

∂z2
= 0 (2.4)

with two conditions at the surface z = η(x, y, t)

z = η,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂η
∂t + ∇φ.∇η = ∂φ

∂z ,

∂φ
∂t + 1

2(∇φ)2 + 1
2(∂φ

∂z )2 + gη = 0 (Bernoulli),

(2.5)

and a condition at the bottom z = −D, which is assumed to be flat,

z = −D, ∇φ = 0, (2.6)

We remark that the Bernoulli equation in (2.5) follows immediately from

the Euler equations with zero vorticity, combined with the boundary condi-

tion of zero pressure at the surface.

The set of equations (2.4-2.6) determines the evolution of free gravity

waves. At first sight this appears to be a relatively simple problem, because

the relevant differential equation is Laplaces’s equation which may be solved

in a straightforward manner. The important point to note is, however, that

Laplace’s equation needs to be solved in a domain which is not known before

hand, but is part of the problem. This is what makes the problem of free

surface waves such a difficult, but also such an interesting one as the non-

linearity enters our problem through the boundary conditions at the surface

z = η(x, t).

In order to make progress we need to introduce two additional tools which

will facilitate the further development of the theory of surface gravity waves.

The system of equations (2.4-2.6) has the elegant property that it conserves

the total energy which is a necessary requirement for the existence of a Hamil-

tonian and a Lagrangian. The Hamiltonian for water waves, first discovered

by Zakharov (1968), is useful in deriving the nonlinear wave-wave interactions
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in a systematic way, while the Lagrangian, first obtained by Luke (1967),

plays a key role in obtaining the energy balance equation.

It is well-known that Eqns. (2.4-2.6) conserve the total energy E of the

fluid,

E =
1
2
ρg

∫
dxη2 +

1
2
ρ

∫
dx

∫ η

−D
dz

(
(∇φ)2 + (

∂φ

∂z
)2
)
. (2.7)

Here, the first term is the potential energy of the fluid while the second term

is its kinetic energy.

By choosing appropriate canonical variables Zakharov (1968), Broer (1974)

and Miles (1977) independently found that E may be used as a Hamiltonian.

The proper canonical variables are

η, and, ψ(x, t) = φ(x, z = η, t). (2.8)

The boundary conditions at the interface are then equivalent to Hamilton’s

equations

∂η

∂t
=
δE

δψ
,
∂ψ

∂t
= −δE

δη
, (2.9)

where δE/δψ and δE/δη are functional derivatives.

The formulation of the water wave problem in terms of a Hamiltonian has

certain advantages. If one is able to solve the potential equation

∇2φ+
∂2φ

∂z2
= 0

with boundary conditions

φ(x, z = η) = ψ,
∂

∂z
φ(x, z = −D) = 0

thereby expressing φ in terms of the canonical variables η and ψ, then the

energy E can be evaluated in terms of these canonical variables and the

evolution in time of η and ψ follows at once from the Hamilton equations

(2.9).
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There is also a Lagrangian formulation of the water wave problem. Luke

(1967) found that the variational principle

δ

∫
dxdtL = 0 (2.10)

with

L = −ρ
∫ η

−D
dz{∂φ

∂t
+

1
2
(∇φ)2 +

1
2
(
∂φ

∂z
)2 + gz},

gives Laplace’s equation and the appropriate boundary conditions.

One would expect that the Lagrangian and Hamiltonian description of sur-

face waves is equivalent. Indeed, Miles (1977) was able to derive the Hamilton

equations (2.9) from Luke’s variational principle.

INTERMEZZO Readers, not familiar with Hamiltonians and Lagrangians,

are advised to study the following brief account on the fundamentals of clas-

sical mechanics. We first discuss Hamilton’s equations. Consider a particle

with momentum p and position q in a potential well V . The total energy of

the particle, with mass m, is then given by the sum of kinetic and potential

energy, or,

E =
1
2
p2

m
+ V (q). (2.11)

Regard p and q as canonical variables. Then, with q̇ = ∂q/∂t etc., Hamilton’s

equations become

q̇ =
∂E

∂p
=

p

m
, (2.12a)

ṗ = −∂E
∂q

= −∂V
∂q

. (2.12b)

Eliminating momentum p we obtain with v = q̇,

mv̇ = −∂V
∂q

= Force, (2.13)
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which we recognize as Newton’s law where the Force is derived from the

potential V .

In classical mechanics, the Hamiltonian formulation follows from the prin-

ciple of ”least” action. In order to see this consider the Lagrangian

L = T − V =
1
2
mq̇2 − V (q) = L(q, q̇). (2.14)

Newton’s law then follows from the condition that the action A be extremal,

where

A =
∫ t2

t1
dt L(q, q̇). (2.15)

The action is now extremal if δA = 0, which is equivalent to the requirement

that over an arbitrarily chosen time interval (t1, t2) the difference between

kinetic and potential energy is minimised. Here,

δA =
∫ t2

t1
dt [L(q + δq, q̇ + δq̇) − L(q, q̇)]

Taylor expansion of the first term, and disregarding terms of higher order in

δq and δq̇ gives

δA =
∫ t2

t1
dt

[
δq

∂

∂q
L + δq̇

∂

∂q̇
L
]

=
∫ t2

t1
dt

[
∂

∂q
L − ∂

∂t

∂

∂q̇
L
]
δq,

where the last equality follows from a partial integration of the second in-

tegral. As the vanishing of the first variation of the action should hold for

arbitrary δq one finds that the action is extremal if q satisfies the Euler-

Lagrange equations

Lq − ∂

∂t
Lq̇ = 0 ⇔ mq̈ = −∂V

∂q
. (2.16)

Defining the momentum p as

p ≡ Lq̇
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one may eliminate q̇ in favour of p, q̇ = q̇(p). Then, regarding from now on p

and q as independent variables, the Hamiltonian H = H(p, q) is given by

H(p, q) = q̇Lq̇ − L =
1
2
p2

m
+ V (q) (2.17)

and Hamilton’s equation (2.12a-2.12b) now follow by differentiating H with

respect to q and p.

All this is, however, less straightforward to do for a continuum such as the

one we are dealing with. Nevertheless, Miles (1977) was able to derive from

Luke’s variational principle the Hamilton equations (2.9)

2.2. Linear Theory.

We have now paid sufficient attention to the basics and it is now high time

to derive the dispersion relation for surface gravity waves. In linear theory

all nonlinear terms are disregarded because of the assumption of small wave

steepness and the evolution equations (2.4-2.6) for potential flow become

∇2φ+
∂2φ

∂z2
= 0 (2.18a)

z = 0,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂η
∂t = ∂φ

∂z ,

∂φ
∂t + gη = 0 (Bernoulli),

(2.18b)

z = −D, ∂φ
∂z

= 0, (2.18c)

We are interested in gravity waves which propagate along the surface and

which have maximum amplitude at the surface. The elementary sinusoidal

solutions take the form

η = aeiθ, φ = Z(z)eiθ, (2.19)

where the phase θ is given as

θ = k.x − ωt,
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with k the wavenumber and ω the angular frequency. Wave number and

angular frequency are related to the wave length λ and the frequency f of

the wave according to k = 2π/λ and ω = 2πf . From Laplace’s equation the

chosen form of φ is a solution provided Z satisfies the ordinary differential

equation

Z ′′ − k2Z = 0, k =| k |=
√
k2

x + k2
y. (2.20)

The boundary condition on z = −D requires Z ′(−D) = 0. For water of

constant depth D the problem (2.20) may be solved in terms of exponential

functions, hence

Z ∼ cosh k(z +D).

Using the second equation of (2.18b) we find

η = eiθ,

φ = −iη g
ω cosh k(z +D)/ cosh kD.

(2.21)

However, the first equation of (2.18b) has still to be satisfied. This is only

possible when the angular frequency obeys the linear dispersion relation:

ω2 = gk tanh kD. (2.22)

This is the dispersion relation of surface gravity waves on still water. It is

straightforward to extend this result to the case of gravity waves on a current

U0. In the dispersion relation the angular frequency ω is then replaced by

the Doppler shifted frequency ω − k.U0. For a given wavenumber Eq.(2.22)

has in general two solutions, which represents the case of waves propagating

to the right and waves propagating to the left. In addition, it is important to

distinguish between deep water and shallow water waves.

In deep water we have D → ∞ and therefore Eq.(2.22) becomes

ω2 = gk. (2.23)
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The phase speed of the waves, defined as c = ω/k, is then given as

c =
√
g/k = g/ω. (2.24)

Therefore, the high-frequency waves have the lowest phase speed. The energy

of the waves is, as will be seen shortly, advected by the group velocity ∂ω/∂k.

In deep water the group velocity vg becomes

vg =
∂ω

∂k
=

1
2
g

ω
, (2.25)

hence, the group velocity is exactly half the phase speed. Furthermore, given

the solution (2.21), it is straightforward to obtain the energy of the waves.

Using Eq.(2.7) we find for the wave energy density E ,

E = 2ρg | a |2 . (2.26)

In the case of shallow water we take the limit of small depth and therefore

(2.22) becomes

ω = ±k√gD. (2.27)

The phase speed of shallow water waves is given by

c =
ω

k
=
√
gD, (2.28)

which is independent of wavenumber, hence there is no dispersion. As a con-

sequence, the group velocity equals the phase speed,

vg =
∂ω

∂k
=
√
gD. (2.29)

The energy of shallow water waves is given by the same expression as the one

for deep water waves, viz. Eq.(2.26). The most extreme example of shallow

water waves are called Tsunami’s. These are generated by earth quakes in

for example the Gulf of Alaska. The resulting surface elevation, although of

small amplitude, has a large extent, thus the relevant wave length may be of

the order of a few tenths of kilometres. These are truly shallow water waves
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as the average depth of the North Pacific is of the order of five kilometres. As

a consequence, the phase speed of these long waves may become quite large,

of the order of 800 km/h.

Comparing deep and shallow water waves we note that there is an impor-

tant difference between the two cases. Deep water waves are highly dispersive

whereas truly shallow water waves are not because they have the same phase

speed. Later, it will be seen that this has important consequences for the non-

linear evolution of surface gravity waves. In fact, when dispersive waves are

interacting with each other then the interaction time will be finite because

each wave propagates with a different phase speed. If there is on the other

hand no dispersion then waves will stick together for a long time with the

result that even for small steepnes the effect of nonlinearity may become very

strong. Consequently, this may give rise to a considerable steepening of the

surface elevation producing in the case of no dispersion shock waves, while for

weak dispersion solitary wave solutions occur. Although the theory of solitary

waves and shock waves is a fascinating subject (an elegant account of this is

given by Whitham (1974)) we shall not treat this topic here. The reason is

that we would like to develop the theory of random, weakly nonlinear waves

which simply cannot deal with the strong nonlinear case. Therefore, only dis-

persive waves are considered, which implies in practice that our results are

only valid for waves with kD = O(1 ) or larger.

2.3. Wave groups.

In the previous Section we have discussed some of the properties of a single

wave. In practice we know, however, that waves come in groups (cf. Fig.2.2).

Everyone who has done some sunbathing on the beach and has listened to

the breaking ocean waves knows that the seventh wave is the biggest. Even

songs are devoted to this subject (”Love is the seventh wave” by Sting on

the album entitled ”the Dream of the blue Turtles”).

If the wave groups are sufficiently long, we can give a reasonably accurate
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Fig. 2.2. Waves come in groups.

description of their evolution by using a plane wave solution with slowly vary-

ing phase and amplitude. Thus, similar to geometrical optics, wave groups

may be described by

η = a(x, t)eiθ(x,t) + c.c., (2.30)

where c.c. denotes the complex conjugate and both amplitude a and phase

θ are slowly varying functions of space and time. Here slow has a relative

meaning; it refers to the basic length and time scale imposed by the wave,

namely its wave length and period. Thus, we require

1
a
∇a� k,

1
a

∂a

∂t
� ω, etc. (2.31)

Since also the phase is slowly varying we may define a local angular frequency

and wavenumber according to

ω = −∂θ
∂t
, k = ∇θ. (2.32)

Assuming that the phase function θ is at least twice differentiable (e.g.

∂2θ/∂x∂t = ∂2θ/∂t∂x), Eq.(2.32) implies the following consistency relation,

known as the equation of conservation of the number of wave crests:

∂k
∂t

+ ∇ω = 0. (2.33)

This equation tells us that, if the frequency of the wave depends on posi-

tion x (because of, for example, a slowly varying current and/or depth), the

wavenumber changes in time. Eq.(2.33) therefore provides one of the key

elements in the energy balance equation, namely refraction.
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The evolution of amplitude a and frequency ω is not arbitrary either. To

obtain these evolution equations one could, in principle, substitute the Ansatz

(2.30), together with a similar Ansatz for the potential φ, into the basic

equations (2.5-2.7). Then by means of a perturbation analysis the appropriate

evolution equations for amplitude a and the dispersion relation for ω may be

obtained. This perturbation analysis is, however, not a straightforward one,

because in higher order so-called secular terms will arise which make the

perturbation series invalid after a finite time. A uniformly valid perturbation

series is obtained by introducing multiple scales in space and time. Removal

of secular terms then will give rise to the slow time and space evolution

equation for amplitude and angular frequency.

We shall not follow this approach here. In its stead we prefer to give a

derivation which starts from the Lagrangian (2.10). This approach, intro-

duced by G.B. Whitham (1974), is much more instructive. It gives a better

insight into the underlying structure of wave evolution and it applies to any

wave system that has a Lagrangian.

To that end, we simply substitute the expansion

η = aeiθ + a2e
2iθ + ....+ c.c, (2.34)

and the corresponding series for the potential into the Lagrangian density

(2.10) and we average the Lagrangian over the rapidly varying phase θ. The

resulting average Lagrangian

〈L〉 =
1
2π

∫ 2π

0
dθ L (2.35)

depends on the unknown amplitudes of the potential series and the ampli-

tudes a, a2, a3, ... of the series for the surface elevation. In addition, 〈L〉 de-

pends on angular frequency ω and wave number k. The appropriate evolution

equations follow from the variational principle

δ

∫
dxdt 〈L〉 = 0. (2.36)
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A considerable simplification of the Lagrangian density may be achieved by

eliminating the higher order amplitudes a2, a3, ... and the amplitudes of the

potential series through the variational principle (2.36). For example, varia-

tion with respect to the amplitudes a2, a3, ... gives

〈L〉ai
= 0, i ≥ 2

and this relation enables one to express a2, a3, ... in terms of a, while making

use of a similar relation for the amplitudes of the potential series.

Neglecting wave-induced currents1 and discarding terms that involve deriva-

tives of ω and k with respect to time and position, the average Lagrangian

〈L〉 becomes

〈L〉 =
1
2
E
{

(ω − k.U0)2

gkT
− 1

}
− 1

2
k2E2

ρg

{
9T 4 − 10T 2 + 9

8T 4

}
+ O(E3),

(2.37)

where E = 2ρg | a |2 is the wave energy density, U0 is the mean water current

and T = tanh(kD). In passing, it should be remarked that we shall discuss

the role of the terms involving derivatives of ω and k in the Chapter on four-

wave interactions when discussing the nonlinear Schrödinger equation. Here,

we simply assume that their contribution to wave evolution can be ignored.

The key result now is that we have obtained an average Lagrangian L
(from now on we omit the angular brackets) which only depends on ω, k and

amplitude a:

L = L(ω,k, a), (2.38)

where ω = −∂θ/∂t and k = ∇θ. Hence, the evolution equations of a wave

group follow from the variational principle

δ

∫
dxdt L(ω,k, a) = 0. (2.39)

1 wave-induced currents are of considerable interest in ocean circulation, see § 5.4.1 for

a discussion
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Variation with respect to the amplitude a then gives the dispersion relation

∂

∂a
L = 0, (2.40a)

while variation with respect to the phase θ (note that θ appears in L only

through derivatives) gives the evolution equation for the amplitude

∂

∂t
Lω −∇.Lk = 0, (2.40b)

while a third equation follows from consistency (cf. Eq.(2.33)

∂

∂t
k + ∇ω = 0. (2.40c)

The set of equations (2.40a-2.40c) describes the evolution of a slowly varying

wave group. We remark that the above set is quite general as it is valid for

any wave system that has a Lagrangian!

Before we return to our problem of surface gravity waves, we introduce a

transport velocity

u = −Lk/Lω (2.41)

so that Eq.(2.40b) becomes

∂

∂t
N + ∇.(uN ) = 0, (2.42)

where we have introduced the notation N = Lω for the action density. This

equation describes the evolution of the action density N and it will turn

out that in linear theory the transport velocity u is just equal to the group

velocity of the waves.

We now apply our results to the Lagrangian (2.37) in the linear approx-

imation, i.e. we disregard terms nonlinear in E . The Lagrangian (2.37) may

then be written in the following convenient form

L =
1
2
D(ω,k) E , (2.43)

where

D(ω,k) = (ω − k.U0)2/gkT − 1.
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The dispersion relation then immediately follows from Eq.(2.40a), or,

D(ω,k) = 0, (2.44)

hence, with the introduction of the so-called intrinsic frequency σ =
√
gkT ,

we have

ω = k.U0 ± σ. (2.45)

Thus, in the presence of a current the angular frequency of the waves has

a Doppler shift k.U0. We remark that the current U0 and the depth D are

allowed to be slowly varying functions of space and time. Also, note that the

vanishing ofD implies that in the extremum L = 0. Since it can be shown that

the Lagrangian is just the difference between kinetic and potential energy,

this means the usual result that for linear waves kinetic and potential energy

are equal.

Finally, differentiating L of Eq.(2.43) with respect to ω the action density

N becomes

N =
E
σ

(2.46)

which obeys the balance equation

∂

∂t
N + ∇.(vgN ) = 0, (2.47)

where vg is the group velocity ∂ω/∂k. Here, it is remarked that the group

velocity follows directly from the relation (2.41), or,

vg = −Dk/Dω.

The importance of the action balance equation cannot be overemphasized.

Equation (2.47) has the form of a conservation law in which the rate of change

in time of a density, ie N , is determined by a flux of that density, ie, vgN .

In fact, if one has zero flux at the boundaries of the ocean basin, one finds

that the integral

Ntot =
∫
D
dx N
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over the domain D is conserved. We emphasize that in case of slowly varying

bottom and currents, it is not the wave energy E =
∫
dx E which is conserved,

but it is the total action Ntot!

This conclusion may come as a surprise because we started from evolution

equations which conserve energy (cf. Eq.(2.8). However, in this context we

would like to refer to the well-known example of a pendulum in which its

length is slowly varied in time. In that case energy E and frequency ω change

when the pendulum length is varied but the so-called ’adiabatic’ invariant

A =
E

ω

is constant. An illuminating discussion on adiabatic invariants may be found

in Whitham (1974).

Therefore, in slowly varying circumstances the wave energy E is not con-

served, but the total energy of the system which includes a contribution from

the current is certainly conserved. Conservation of the total energy of the

system follows from invariance in time of the Lagrangian (Whitham, 1974).

Once more denoting the energy of the system by E one finds

E = ωLω − L, (2.48)

and, using (2.43-2.44), this becomes

E = ω N =
1
2
ωDωE . (2.49)

Clearly for finite current the energy of the system E differs from the wave en-

ergy E = σN . The energy flux equals −ωLk, and in linear theory this equals

vgE. Hence, the energy E of the system obeys the conservation equation

∂

∂t
E + ∇.(vgE) = 0. (2.50)

This may be verified directly by using the evolution equation for action den-

sity (2.47), the dispersion relation (2.44) and the equation for the number of

wave crests (2.40c). For zero energy flux at the boundaries of the ocean basin
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one then finds that the integral

Etot =
∫
D
dx E (2.51)

is conserved. Another conserved quantity is wave momentum P , because the

Lagrangian (2.43) is also invariant in space. The appropriate expression for

the wave momentum becomes

P = kLω = kN , (2.52)

and the corresponding conservation relation is

∂

∂t
P + ∇.(vgP ) = 0. (2.53)

Therefore, for zero momentum flux at the boundaries momentum P is con-

served as well.

We close our discussion on some properties of wave groups by the following

remarks. Comparing (2.46) and (2.52) a well-known relation between wave

momentum and wave energy is obtained, namely

P = E/c0 (2.54)

where c0 is the phase speed of the waves referring to the intrinsic frequency,

c0 = σ/k. Remarkably, in the linear approximation with L = 0 a similarly

looking relation exists between wave momentum and the total energy. Using

(2.49) and (2.52) one finds

P = E/c (2.55)

where now c is the phase speed of the waves, c = ω/k. Nevertheless, it

is emphasized that the relation between wave energy and wave momentum,

Eq.(2.54), is more fundamental because it holds for any nonlinear Lagrangian,

while Eq.(2.55) is only relevant in the linear approximation.

Furthermore, (2.46) and (2.52) stress the fundamental role that is played

by the action density N , being similar to the role of the particle distribu-

tion function. If the action density is known, wave momentum is obtained
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as k times the action density while wave energy follows as σ times the ac-

tion density. This suggests a parallel with Quantum Mechanics where similar

relations apply for momentum and energy of particles (with the constant

of proportionality being Planck’s constant h̄). In fact, Tsytovich (1970) has

developed the nonlinear theory of wave-wave interactions along these lines.

Finally, since wave momentum will play a crucial role in the discussion

of wind-wave interaction we give an explicit expression of P in terms of the

amplitude of the waves. Using (2.54) and the expression for wave energy

below (2.37) one finds for deep water gravity waves

P = 2 ρ σ | a |2 (2.56)

This relation even holds when effects of capillarity are taken into account,

but it is not valid for shallow water waves.

2.4. The energy balance equation.

The purpose of this Section is to outline a derivation of the basic evolution

equation for an ensemble of random, weakly nonlinear water waves. This

equation is called the action balance equation, but one frequently refers to it

as the energy balance equation.

In the previous Section we have seen how free wave packets evolve on

varying currents in ocean basins with variable depth. There are, however,

many other causes why wave packets may change with time. For example,

waves grow because of the energy and momentum input by wind and they

loose energy because of white capping. In addition, finite steepness waves

may interact nonlinearly with other waves in such a way that energy and

momentum is conserved. As long as the perturbations are small they can be

added and the action balance equation becomes

∂

∂t
N + ∇.(vgN ) = S = Sin + Snl + Sds, (2.57)

where the source terms on the right-hand side represent effects of wind input

(Sin), nonlinear interactions (Snl) and dissipation due to white capping (Sds).
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Even interactions between physical processes are allowed as long as the time

scale of such a process is much longer than the ’typical’ frequency of the

waves, in order words the slowly varying assumption must hold.

In the next Chapters we shall show how to derive the wind input term and

the nonlinear interactions while we use simple scaling arguments to choose

the dissipation term. In this Section we discuss in some detail the properties

of the left-hand side of the action balance equation, which is called the adi-

abatic part. However, before we start this discussion we need to introduce

the concept of the wave spectrum. As already pointed out, solving the deter-

ministic action balance equation (2.57) is not practical because knowledge of

the phase of the waves is required as well. In order to avoid this problem we

concentrate on a statistical description of the ocean surface.

We therefore introduce the homogeneous and stationary theory of a ran-

dom wave field. In such a theory wave components are assumed to be indepen-

dent and have random phase. As a consequence, the probability distribution

of the ocean surface elevation is approximately Gaussian. The (near) Gaus-

sian property of the ocean surface follows in principle from the Central Limit

Theorem which tells us that if the waves have random and independent phase

than the probability distribution is Gaussian. The waves are to a good ap-

proximation independent because they have propagated into a given area of

the ocean from different distant regions. Even if initially one would start with

a highly correlated state then, because of dispersion, waves become separated

thereby decreasing the correlation. In fact, for dispersive waves the loss of

correlation is exponentially fast. On the other hand, finite steepness waves

may give rise to correlations between the different wave components because

of (resonant) wave-wave interactions. However, the effect is small for small

steepness. Therefore, in practice one nearly always finds that for dispersive

ocean waves the Gaussian property holds in good approximation.

In the remainder we content ourselves with knowledge about average quan-
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tities such as the moments

〈η(x1)〉, 〈η(x1)η(x2)〉, etc,

where the brackets denote an ensemble average and x1 and x2 denote two

positions on the ocean surface. In most practical situations it turns out that

we then have sufficient information about the ocean surface. Since it is as-

sumed that the mean of the surface elevation vanishes, only the so-called two

point correlation function

〈η(x1)η(x2)〉 (2.58)

needs to be considered. Because of the assumed small wave steepness all

higher order correlations may be expressed in terms of the two-point correla-

tion function. In addition, it is assumed that on the scale of the wave length

the wave field is homogeneous, i.e. the two-point correaltion function depends

on the distance ξ = x1 − x2 only. We therefore have to study the properties

of the following two-point correlation function,

R(ξ) = 〈η(x + ξ)η(x)〉. (2.59)

The (frozen) wavenumber spectrum F (k) is now defined as the Fourier trans-

form of the correlation function R:

F (k) =
1

(2π)2

∫
dξ eik.ξR(ξ). (2.60)

It is fairly straightforward to establish a relation between the wavenumber

spectrum and the complex amplitudes of the surface elevation. Realizing

that there are two possible wave modes (a positive frequency and a negative

frequency mode) the general solution of the linear wave problem discussed in

Section 2.2 may be written as

η(x, t) =
∫ ∞

−∞
dk η̂+(k) ei(k.x−ω+t) +

∫ ∞

−∞
dk η̂−(k) ei(k.x−ω−t) (2.61)

where according to (2.45) ω± = k.U0 ± σ. Since η is supposed to be real we

have

η̂−(k) = η̂∗+(−k)
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and therefore

η(x, t) =
∫ ∞

−∞
dk η̂(k) ei(k.x−ωt) + c.c, (2.62)

where we have omitted the subscript + on η̂ and ω = ω+. Substituting (2.62)

into (2.59) and requiring a homogeneous, stationary two-point correlation

function, i.e. one that only depends on the distance ξ, and is independent of

time t, the complex amplitude η̂ should satisfy

〈η̂(k1)η̂(k2)〉 = 0,

〈η̂(k1)η̂∗(k2)〉 = | η̂(k1) |2 δ(k1 − k2), (2.63)

where k1 and k2 are arbitrary wavenumber vectors. Because of (2.63) the

two-point correlation becomes

R(ξ) =
∫ ∞

−∞
dk | η̂(k) |2 ei(k.ξ) + c.c. (2.64)

In view of (2.60) the wavenumber spectrum is therefore given by

F (k) = 2 | η̂(k) |2 . (2.65)

Setting ξ to zero in (2.64) and using (2.65) we have

〈η2〉 = R(0) =
∫ ∞

−∞
dk F (k) (2.66)

and, as expected, the integral over the wavenumber spectrum equals the

wave variance 〈η2〉. Realizing that for propagating linear waves potential and

kinetic energy are equal ( because the Lagrangian vanishes), we find that

the ensemble average of the wave energy 〈E〉 is related to the wavenumber

spectrum in the following manner

〈E〉 = ρg〈η2〉 = ρg

∫ ∞

−∞
dk F (k), (2.67)

thus the wavenumber spectrum indeed gives the distribution of wave energy

over wavenumber.

The wavenumber spectrum we have introduced is independent of space

and time. Formally, we have taken a Fourier transform over the whole ocean
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domain. In order to allow for spatial dependence of the wavenumber spectrum

we simply adopt the procedure of taking the Fourier transform over a domain

with such an extent that the two-point correlation function may still be

regarded as homogeneous. On the other hand, the domain should be large

enough that it contains a sufficient number of ocean waves, say of the order

of one hundred, in order that the spectrum gives a valid representation of

the sea state. With a typical wave length of about 100 m the extent of such

a domain is therefore of the order of 10 km.

We are now finally in a position to derive the action balance equation for

a continuous spectrum from the action balance equation (2.57) for a single

wave group. By analogy with the discrete case we introduce the action density

spectrum N(k) as

N(k) =
gF (k)
σ

(2.68)

where, as before, σ =
√
gk tanh(kD). It is tempting now to use the action

balance equation (2.57) for the discrete case to obtain the action balance

equation for the continuous case. There is one pitfall, however. The action

density spectrum N(k,x, t) has as independent variables wavenumber k, po-

sition x and time t, while in the discrete case the wavenumber is a local

variable that depends on position and time.

The most convenient way to proceed is therefore to establish the following

connection between the continuous action density spectrum and the discrete

analogy E/σ of Eq.(2.46). We are interested in the action density contained in

modes with wavenumbers in an interval ∆k around k. Introduce, therefore,

a function ε(k) such that

ε(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, for − 1
2∆k < k < 1

2∆k,

0, otherwise.

(2.69)

Thus, ε(k) is a filter that selects modes in the interval ∆k around wavenumber
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k. Denoting the action density of a wave group with wavenumber k′ by Nk′ ,

the appropriate connection between the discrete and continuous case is

N(k)∆k =
∑
k′

Nk′ε(k′ − k), (2.70)

where Nk′ = 2g|ak′ |2/σ. Hence, the sum in Eq.(2.70) is over al wave groups

with name number in the interval ∆k around k. It is emphasized that the ’lo-

cal’ wave number k′ depends on position and time, and therefore the number

of wave groups in a particular interval may vary from time to time.

The evolution equation for N(k) may now readily be obtained by evalu-

ating

∂N

∂t
|x,k,

i.e. the rate of change of N in time, keeping x and k fixed, by using (2.70)

and the action balance equation (2.57). The result is

∂N

∂t
+ ∇x.(∇kΩN) −∇k.(∇xΩ N) = S. (2.71)

Here, Ω represents the dispersion relation

Ω = k.U + σ, σ =
√
gk tanh(kD). (2.72)

Eq.(2.71) tells us that the rate of change in time of the action density spec-

trum is determined by advection with the group velocity vg = ∇kΩ, by

refraction (the third term stems from the time and space dependence of the

local wavenumber of a wave group) and by physical processes such as the

generation of ocean waves by wind, nonlinear interactions and dissipation by

white capping. The latter processes are all contained in the source term S,

which is just the ensemble mean of the right-hand side of Eq.(2.59).

Eq.(2.71) is called the action balance equation and is the basic evolution

equation for the continuous wave spectrum. Nowadays it is regarded as the

starting point of modern wave models. The idea of a spectral transport equa-

tion was first suggested by Gelci et al (1957), while the derivation as given
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here closely follows the work of Willebrand (1975). In fact, Willebrand’s work

is more general in the sense that the starting point is a nonlinear wave system,

rather then the simple linear approach we have followed here. As a conse-

quence, nonlinear corrections to the group velocity appear. These nonlinear

corrections are thought to be small, however, at least in deep water.

At this point it is good to emphasize the relevance of the action balance

equation by putting matters into a historical perspective. Interest in wave

prediction started during the Second World War because of the practical

need for knowledge of the sea state during landing operations. The first op-

erational predictions were based on the work of Sverdrup and Munk (1947),

who introduced a parametrical description of the sea state and who used

empirical windsea and swell laws. Examples of these will be given later in

this Chapter. Manual techniques based on this approach have been used by

operational forecasters for many years and these techniques turned out to

be a convenient means to obtain for a given wind field a short term forecast

(Groen and Dorrestein, 1976). In the mean time, an important advance was

the introduction of the concept of a wave spectrum (Pierson et al, 1955), while

the corresponding dynamical evolution equation was proposed by Gelci et al

(1957). The source term at that time was purely empirical. This changed after

the new theories of wave generation by Phillips (1957) and Miles (1957) had

been published and the source function for the nonlinear transfer had been

derived (Hasselmann, 1962). As a result, it was concluded that the source

function consists of three terms representing the input of wind, the nonlin-

ear transfer and the dissipation by whitecapping (and in shallow waters by

bottom friction). This form is still in use today, in particular in the context

of wave prediction models.

The reason that the effects of wind, nonlinear transfer and dissipation can

simply be added is that compared to a typical wave period the corresponding

rates of change of the spectrum are small. In other words these effects are
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small, and can therefore be obtained by means of perturbation expansions

as discussed in the next Chapters. Because of the smallness of these terms,

products of effects of wind and nonlinear transfer, for example, can safely

be ignored. However, before we close this Chapter we would like to discuss

some properties of the action balance equation in the absence of sources and

sinks. This is then followed by a Section on empirical growth laws for wave

height and the frequency spectrum in fetch and duration limited cases. At

the same time this presents us with an opportunity to introduce an number

of important quantities relevant for wave prediction.

2.5. Kinematic part of the energy balance equation.

In this Section we shall briefly discuss some properties of the kinematic part of

the energy balance equation, in particular shoaling and refraction- by bottom

topography and ocean currents-are investigated in the context of a statistical

description of gravity waves. But first we generalise the form of the energy

balance equation allowing us to write down this fundamental law of wave

prediction in any coordinate system, in particular for spherical coordinates.

Let x1 and x2 be the spatial coordinates and k1, k2 the wave coordinates,

and let

z = (x1, x2, k1, k2) (2.73)

be their combined four-dimensional vector. The most elegant formulation of

the ”energy” balance equation is in terms of the action density spectrum N

which is the energy spectrum divided by the so-called intrinsic frequency σ.

The action density plays the same role as the particle density in quantum

mechanics. Hence there is an analogy between wave groups and particles,

because wave groups with action N have energy σN and momentum kN .

Thus, the most fundamental form of the transport equation for the action

density spectrum N(k,x, t) without the source term can be written in the
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flux form

∂

∂t
N +

∂

∂zi
(żiN) = 0, (2.74)

where ż denotes the propagation velocity of a wave group in the four-dimen-

sional phase space of x and k. This equation holds for any field ż, and also for

velocity fields which are not divergence-free in four-dimensional phase space.

In the special case when x and k represent a canonical vector pair – this is

the case, for example, when they are the usual Cartesian coordinates – the

propagation equations for a wave group (also known as the Hamilton-Jacobi

propagation equations) read:

ẋi =
∂

∂ki
Ω, (2.75a)

k̇i = − ∂

∂xi
Ω, (2.75b)

where Ω denotes the dispersion relation Eq.(2.72).

The Hamilton-Jacobi equations have some intriguing consequences be-

cause the field ż for a continuous ensemble of wave groups is divergence free

in four dimensional phase space,

∂

∂zi
żi = 0. (2.76)

Firstly, the transport equation for the action density may be expressed in the

advection form

d
dt
N =

∂N

∂t
+ żi

∂

∂zi
N = 0, (2.77)

Thus, along a path in four-dimensional phase space defined by the Hamilton-

Jacobi equations (2.75a-2.75b), the action density N is conserved. This prop-

erty only holds for canonical coordinates for which the flow divergence van-

ishes (Liouville’s theorem – first applied by Dorrestein (1960) to wave spec-

tra).

Secondly, the analogy between Hamilton’s formalism of particles with

Hamiltonian H and wave groups obeying the Hamilton-Jacobi equations
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should be pointed out. Indeed, wave groups may be regarded as particles

in this respect and the Hamiltonian H and angular frequency Ω play similar

roles. Because of this similarity Ω is expected to be conserved as well (under

the restriction that Ω does not depend on time). This can be verified by di-

rect calculation of the rate of change of Ω following the path of a wave group

in phase space,

d
dt

Ω = żi
∂

∂zi
Ω = ẋi

∂

∂xi
Ω + k̇i

∂

∂ki
Ω = 0. (2.78)

The vanishing of dΩ/dt follows at once upon using the Hamilton-Jacobi equa-

tions (2.75a-2.75b). Note that the restriction of no time dependence of Ω is

essential for the validity of (2.78), just as the Hamiltonian H is only con-

served when it does not depend explicitely on time t. Thus, (2.78) gives

the important message that angular frequency is conserved when following a

wave group and this property will play an important role in our discussion

of refraction.

We now turn to the form of the action density balance equation in the flux

form, Eq.(2.74). This formulation is more general and has certain advantages.

When one transforms from one set of coordinates to another there is no guar-

antee that the flow remains divergence-free and therefore the flux form of the

action balance equation is the preferred starting point. The transformation of

the standard Cartesian geometry transport equation to spherical geometry is

then fairly straightforward (see also Groves and Melcer, 1961, WAMDI, 1988

and Komen et al, 1994). Let us therefore consider the spectral action density

N̂(ω, θ, φ, λ, t) with respect to angular frequency ω and direction θ (measured

clockwise relative to true north) as a function of latitude φ and longitude λ.

The reason for the choice of angular frequency as the independent variable

(instead of, for example, the wavenumber k) is that for a fixed topography

and current the frequency Ω is conserved when following a wave group, there-

fore the transport equation simplifies. In general, the conservation equation
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for N̂ thus reads

∂

∂t
N̂ +

∂

∂φ
(φ̇N̂) +

∂

∂λ
(λ̇N̂) +

∂

∂ω
(ω̇N̂) +

∂

∂θ
(θ̇N̂) = 0, (2.79)

and since ω̇ = ∂Ω/∂t the term involving the derivative with respect to ω

drops out in case of time-independent current and bottom. Finally, the action

density N̂ is related to the normal spectral density N with respect to a local

Cartesian frame (x, y) through N̂dωdθdφdλ = Ndωdθdxdy, or

N̂ = NR2 cosφ, (2.80)

where R is the radius of the earth. Substitution of (2.80) into (2.79) yields

the transport equation

∂

∂t
N+(cosφ)−1 ∂

∂φ
(φ̇ cosφN)+

∂

∂λ
(λ̇N)+

∂

∂ω
(ω̇N)+

∂

∂θ
(θ̇N) = 0,(2.81)

where, with vg the magnitude of the group velocity,

φ̇ = (vg cos θ + U0)/R, (2.82a)

λ̇ = (vg sin θ + V0)/(R cosφ), (2.82b)

θ̇ = vg sin θ tanφ/R+ (k̇ × k)/k2, (2.82c)

ω̇ = ∂Ω/∂t (2.82d)

represent the rates of change of the position and propagation direction of a

wave packet. Here, U0 and V0 are the components of the current in northerly

and easterly direction. Equation (2.81) is the basic transport equation which

is used in numerical wave prediction. The remainder of this section is devoted

to a discussion of some of the properties of (2.81). We first discuss some

peculiarities of (2.81) for the infinite depth case in the absence of currents

and next we discuss the special cases of shoaling and refraction due to bottom

topography and currents.
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Great circle propagation on the globe

A wave group propagates along a great circle on the globe. The proof of this

is rather tedious (cf. Komen et al, 1994, p 210-211). This property is related

to the presence of refraction on the globe, even in the absence of depth and

current refraction (k̇ = 0). From (2.82c) we see that there is then a rate of

change of direction according to

θ̇ = vg sin θ tanφ/R. (2.83)

This refraction is entirely due to the change in time of the local northward

pointing vector, and is therefore apparant because it is only related to the

choice of coordinate system. Nevertheless it is important to realize that this

effect exists. Because of this property, southwards propagating swells gen-

erated in the Gulf of Alaska will, after a few weeks, arrive in the Indian

Ocean!

Shoaling

Consider now finite depth effects in the absence of currents. Shoaling of waves

already occurs for wave propagation parallel to the direction of the depth

gradient. In this case there is no depth refraction because k̇ × k = 0. In

addition, we take the wave direction θ to be zero (northerly propagation)

so that the longitude is constant (λ̇ = 0) and θ̇ = 0. For time-independent

topography (hence ∂Ω/∂t = 0) the transport equation becomes

∂

∂t
N + (cosφ)−1 ∂

∂φ
(φ̇ cosφN) = 0, (2.84)

where φ̇ = vg cos θ/R = vg/R and the group speed only depends on latitude

φ. Restricting our attention to steady waves we immediately find conservation

of the action density flux in the latitude direction, or,

vg cosφ
R

N = const.

If, in addition, it is assumed that the variation of depth with latitude occurs

on a much shorter scale than the variation of cosφ, the latter term may be
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taken constant for present purposes. It is then found that the action den-

sity is inversely proportional to the group speed vg or when the group speed

decreases the action density will increase and vice versa. The normal wis-

dom now is that the group speed decreases for decreasing depth. Therefore,

when waves are approaching shallow waters, conservation of flux requires an

increase of the action density. However, this is not entirely correct. Using

the dispersion relation (2.72) and starting in deep water, hence kD → ∞,

one finds that up to a value of kD of around 1.5 the group velocity is an

increasing function of depth D while for smaller kD the group velocity in-

deed decreases with depth. As a consequence, when waves approach shallow

waters the action density will first decrease with depth up to kD ≈ 1.5. If

the depth continuous to decrease this is then followed by an increase of the

action density. The latter aspect of this phenomenon is called shoaling. Al-

though this is outside the scope of a statistical, weakly nonlinear description

of dispersive waves, it should be mentioned that the most dramatic conse-

quences of shoaling may be seen when tidal waves, generated by earthquakes

approach the coast resulting in Tsunamis.

Refraction

The second example of finite depth effects that we discuss is refraction. As

a general principle it may be stated then that wave rays (the path of a wave

group in x-space) will bend towards shallower water resulting in, for example,

focussing phenomena and caustics. In this way a sea mountain plays a similar

role for gravity waves as a lens for light waves. Furthermore, according to this

general principle, close to the coast waves will always propagate towards the

coast, even if far away from the coast they propagate parallel to it. All these

examples of this general principle may be explained in terms of refraction.

The refraction is given by the rate of change of wave direction, θ̇. Writing
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(2.82c) in a more explicit form we have

θ̇ =
(

sin θ
∂

∂φ
Ω − cos θ

cosφ
∂

∂λ
Ω
)
/(kR). (2.85)

Consider then again as an example wave propagation to the north (θ=0)

parallel to the coast. Suppose now that depth only depends on longitude

such that it decreases towards the coast. Thus, the rate of change of wave

direction is then positive as

θ̇ = − 1
kR cosφ

∂

∂λ
Ω > 0,

since ∂Ω/∂λ < 0. Therefore, the wave ray will bend towards the coast.

Current effects

Currents may give rise to similar effects as found with depth refraction. How-

ever, the most dramatic effects may be found when the waves propagate

against the current. For sufficiently large current and high frequency, wave

propagation is prohibited and wave breaking and wave reflection occurs. The

most prominent example of this is found in the Agulhas current, east of South

Africa.

The property of wave reflection really follows from the dispersion relation

which, for one-dimensional propagation against a current U0, reads

Ω =
√
gk − kU0,

where we took the deep water limit. Then, the group velocity ∂Ω/∂k vanishes

for k = g/4U2
0 and wave propagation is not possible anymore.

2.6. Empirical laws for wave growth.

In this Section a brief overview is given of a number of important empirical

facts about the evolution of ocean waves. We will mainly concentrate on the

properties of wind waves, and we will discuss extensively so-called fetch laws

for wave variance, peak frequency and the high-frequency energy level. This

is then followed by a presentation on the parametrization of the frequency
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spectrum and angular distribution of windsea. We close this Section by a

discussion of the sea state dependence of the air-sea momentum transfer.

Note that here windsea is loosely defined as those components of the two-

dimensional wave spectrum that are directly subject to the influence of the

local wind. In contrast, swell is defined as that part of the wave spectrum

that has been generated by nonlocal winds and that may have propagated

from remote areas towards the point of interest. Hence, the sea state consists

of a combination of locally and nonlocally generated components which may

interact in a nonlinear way.

Before we discuss examples of empirical growth laws it is noted that there

is a direct connection between what has been developed in the previous Sec-

tions and experimental practice. We have obtained the evolution equation

for the action density N(k) which, according to (2.68), is related to the

wavenumber spectrum F (k) through

F (k) = σ(k)N(k)/g. (2.86)

Here, the wavenumber spectrum is normalized with the wave variance 〈η2〉,
where η is the surface elevation,

m0 =
∫
dkF (k) = 〈η2〉, (2.87)

with m0 the so-called zero order moment of the spectrum. Obviously, the

integral over the wave spectrum has the dimension of a length square and

therefore a measure for wave height, called the significant wave height HS ,

can be introduced according to

HS = 4
√
m0. (2.88)

The reason for this definition is historical. In the early days the sea state was

observed visually. This resulted in a measure of wave height H1/3 defined

as the average height of the highest 1/3 waves and it can be shown that

for narrow spectra HS ≈ H1/3 (Phillips, 1977). The significant wave height
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is but one example of an integrated parameter. There is a long list of such

parameters, and they can all be determined once the wavenumber spectrum

is known. Examples are, several forms of the mean period, the mean wave

direction, and the width of the spectrum

In situ observations of the two-dimensional spectrum are rare; it requires

rather sophisticated instrumentation to observe the spatial correlation func-

tion. However, during dedicated field campaigns wavenumber spectra have

been observed succesfully (cf. Donelan et al, 1985). In contrast many ob-

servations of the wavenumber spectrum have been obtained through remote

sensing techniques. The long-wave part of the wavenumber spectrum may

be observed from space by means of a so-called Synthetic Aperture Radar

(SAR’s on board of ESA’s satellites ERS-1, ERS-2 and ENVISAT)(cf. Komen

et al, 1994).

It is much easier to obtain the frequency spectrum because this just re-

quires the analysis of time series at a certain location. The two dimensional

frequency spectrum is defined as

F2(ω, θ)dωdθ = F (k)dk = F (k, θ)kdkdθ,

hence

F2(ω, θ) =
k

vg
F (k, θ) (2.89)

with vg = ∂ω/∂k is the group velocity. Regarding the directional distribution

of waves conventional buoys provide only limited information. It is more

common to observe the one-dimensional spectrum defined as

F1(ω) =
∫
dθF2(ω, θ) (2.90)

The frequency spectrum is obtained by means of a straightforward Fourier

transformation of the time series for the surface elevation η. As far as nota-

tion is concerned we will use the same symbol for the various forms of the

spectrum, namely F ; the distinction should be clear from their arguments,

F (k), F (ω, θ) and F (ω).
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After we have given the connection between theory and practice of waves it

is now high time to give a brief summary of what is empirically known about

wave evolution. This knowledge is mainly derived from a number of field

campaigns, the most important one of which is no doubt the Joint North Sea

WAve Project, abbreviated as JONSWAP. This field campaign was devoted

to an understanding of the evolution of the wave spectrum. The measure-

ments were obtained along an array located to the west of the isle of Sylt in

the German bight of the North Sea. In the summer time easterly winds oc-

cur frequently and therefore this location provided an unique opportunity to

study fetch-limited wave evolution, where the fetch is defined as the distance

to shore.

Empirical data on ocean waves have been collected for at least a century,

and in particular in the early days most observations on the sea state were

collected on ships by means of visual inspection. These observations were

summarized in terms of empirical scaling laws but had a defect that they were

not dimensionally consistent. For example, Stevenson (1874) suggested the

following relation between wave height H in metres and fetch F in nautical

miles,

H = 0.45
√
F ,

which is independent of wind speed. Others such as Larisch (1925) and Cor-

nish (1934) suggested that wave height would depend linearly on wind speed,

e.g,

H = 0.48W,

where W is the wind speed at about 8m height. However, the above scaling

laws are not dimensionally correct as can be easily verified. To my knowledge,

the first dimensionally correct attempt to find an expression for the satura-

tion wave height was given by Rossby and Montgomery (1935) and later by

Sverdrup et al (1946), while empirical scaling laws for fetch and duration
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limited cases were obtained by Sverdrup and Munk (1947) and in essence

these scaling laws are still in use today!

As already mentioned, interest in wave prediction grew rapidly during the

Second World War because of the need for knowledge of the sea state during

landing operations. These predictions were based on the empirical growth

laws of Sverdrup and Munk (1947). All this was formalised by Kitaigorodskii

(1962, 1970) who proposed similarity laws based on dimensional consider-

ations and some rudimentary knowledge on the evolution of gravity waves

by wind. These similarity laws have been extremely useful in analysing wave

observations.

In principle a large number of variables may control wave growth. For

example, in the idealised situation of duration-limited waves (when a uniform

and steady wind has blown over an unlimited ocean for time t after a sudden

onset and starting from a flat, calm sea) the following variables may be

relevant: angular frequency ω, acceleration of gravity g, viscosity, surface

tension, air and water density, Coriolis parameter f and a wind speed scale

U . Regarding the choice of wind speed scale there is still an ongoing debate.

In practice it is most convenient to choose as wind speed scale the wind

speed at a height of 10 metres as this is nowadays the most common height

at which the wind velocity is measured. However, this choice of wind speed

scale introduces a height scale, namely 10 m, which has no relevance to the

problem of the generation of waves by wind and therefore another wind speed

scale, namely one based on the friction velocity u∗, may be more appropriate,

as this scale is related to the momentum transfer from air to water. We will

take up a more complete discussion of this point in Chapter 3. In this section

we will start with using U10 as wind speed scale, because most data sets have

been analyzed in terms of this wind speed scale. But in the discussion on the

shape of the high-frequency spectra the friction velocity u∗ will emerge in a

quite natural way.
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Under the assumptions of the nature of wave motion and the mechanism

of wave growth the energy containing part of the spectrum is mainly deter-

mined by the variables ω,U, g and t. Dimensional considerations then give the

following similarity laws for the frequency spectrum F (ω), the total variance

m0 and the peak frequency ωp of the spectrum:

g3F/U5 = f(Uω/g, gt/U),

g2m0/U
4 = f(gt/U),

Uωp/g = f(gt/U).

(2.91)

Here, f denotes a general function, and to be definite this function differs for

different dimensionless parameters on the left-hand side of Eq.(2.91).

Conditions of duration-limited growth are difficult to fulfill in practice (for

an exception see Sanders (1976)), and, from the point of view of the analysis

of experimental data, two other idealized cases are more important. One is

the case of fully-developed waves when a uniform and steady wind has blown

over an unlimited ocean long enough for the wave field to become independent

of time. This situation may occur in the Trade Winds area. The other, more

frequently occuring case is the so-called fetch-limited case, when a uniform

and steady wind has blown from a straight coast line long enough for the wave

field at distance (fetch) X from the upwind coast to become independent of

time. For fetch-limited growth the similarity relations become

g3F/U5 = f(Uω/g, gX/U2),

g2m0/U
4 = f(gX/U2),

Uωp/g = f(gX/U2).

(2.92)

The case of fully-developed windsea now follows from either (2.91) or (2.92)

by taking the limit of infinite duration or fetch. The result is

g3F/U5 = f(Uω/g),

g2m0/U
4 = constant,

Uωp/g = constant.

(2.93)
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Fig. 2.3. Dimensionless energy ε10 and peak frequency ν from the Bothnian Sea data and

the Lake Ontario data in unstable stratification.

In particular, the equation for the wave variance is important because it shows

the sensitive dependence of wave prediction on the wind speed scale, stressing

the need of high quality winds for accurate wave prediction. Furthermore, the

equation on the equilibrium value of the peak frequency suggests (recalling

that for deep-water gravity waves the phase speed is g/ω) that in equilibrium

the peak phase speed is proportional to the wind speed scale. In practice,

the constant in the last equation of (2.93) is found to be 0.83 so that for

fully-developed windsea the peak phase speed is about 20% larger than the

10-metre wind speed. Hence, ocean waves propagate considerably faster than

the 10-metre wind speed. This unexpected result can only be explained when

the role of the nonlinear interactions (cf section 3) is understood. But note

that the use of the 10-metre wind speed as the wind speed scale is to some

extent arbitrary.

2.6.1. Windspeed Scaling.

A good summary of the state of the art of empirical scaling laws is given by

Kahma and Calkoen (1992) (cf. also Komen et al, 1994). They analyzed re-

sults from a number a field campaigns and devoted a lot of attention to clean

these data sets. As an example we show in Fig 2.3 growth laws for the dimen-
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Fig. 2.4. Dimensionless energy in unstable and stable stratification: a) scaling wind U10;

b) scaling wind u∗ using a wave-dependent roughness z0.

sionless energy and peak frequency obtained from the Bothnian Sea data and

the Lake Ontario data. Although the cleaning operation removed a number of

outliers, even then Kahma and Calkoen noted that there were considerable

differences between growth laws from different campaigns. They could ex-

plain these differences by pointing out that there may be another parameter

relevant in wind-wave generation, namely one related to stratification effects.

When cold air is blowing over a warmer ocean surface, buoyancy effects will

give rise to a more effective mixing of momentum in the surface layer, hence

more momentum and energy is transferred to the ocean waves giving larger

wave growth and therefore higher wave energy compared to the case of neu-

tral stratification. In addition, in those circumstances there is an increase of

gustiness which may enhance wave growth as well, as discussed in the next

Chapter.

By grouping the observations in two classes, namely stable and unsta-

ble stratification, Kahma and Calkoen (1992) found two distinctly different

growth laws. When using U10 as wind speed scale the difference in wave

energy between the unstable and stable stratification groups is as much as

70%, as illustrated in Fig. 2.4a, but this difference is considerably reduced

when using friction velocity scaling, as shown in Fig. 2.4b. This point will be
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discussed in more detail in the Intermezzo of §2.6.2.

Here we only quote results from the complete data set, comprising both

stable and unstable cases. For the composite data set the following fetch laws

are found:

ε10 = 5.2 × 10−7 ×X+0.9
10 ,

ν10 = 13.7 ×X−0.27
10 .

(2.94)

Here X10 = gX/U2
10 is the dimensionless fetch, ε10 = g2m0/U

4
10 is the di-

mensionless energy per unit area, and ν10 = U10ωp/g is the dimensionless

peak frequency. All quantities are scaled here with the wind speed at 10 me-

tre height. These fetch laws are valid for steady winds which are blowing

orthogonal from the shore line. They describe properties of wind-generated

wind waves, which is called windsea for short. These laws are in agreement

with the expectation that the longer the fetch the more energy the waves

will have, and at the same time the peak frequency of the wave spectrum de-

creases, hence for longer fetch the typical wave length of the waves becomes

longer. This continues to hold until a fetch X10 of about 5 × 103 − 104. For

even larger fetch wave energy is believed to saturate. Pierson and Moskovitz

(1964) found a saturation value εPM = 0.00364 from infinite fetch cases in

the Trade Winds. Most likely this saturation value depends on stratification

as well.

The dimensionless energy and peak frequency have played an important

role in the modelling of the windsea state, because each of these parameters

characterizes the stage of development of windsea. In fact, if one of these

parameters is known then a complete reconstruction of the frequency spec-

trum of windsea is possible. The so-called second generation models utilized

this universality property of windsea. For example, the Dutch wave predic-

tion scheme GONO ( Sanders, 1976; Janssen et al, 1984) used essentially the

dimensionless energy as stage of development parameter, while the German

wave model HYPA (Hasselmann et al, 1976) used the dimensionless peak
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frequency to characterize the windsea state. But it should be clear that these

approaches are equivalent because by elimination of the fetch in Eq.(2.94) it

follows that there is a direct relation between the two. This relation is given

below, but rather than using the dimensionless peak frequency, we use its

inverse which is termed the wave age χ10. Hence, we define the wave age as

χ10 = cp/U10, (2.95)

where cp = g/ωp is the phase speed of the peak of the spectrum. Now,

young windseas have a wave age which at sea is typically of O(1/3) while

old windsea has a wave age of O(1). Elimination of the fetch in Eq.(2.94)

and making use of the definition (2.95) gives the following relation for the

dimensionless energy

ε10 = 0.0032 χ+10/3
10 . (2.96)

Parameters such as the wave age have a certain advantage because they are

in fact a generalization of the concept of fetch. Namely, by using the wave

age, fetch and duration limited windseas are treated on an equal footing.

In order that the concept of wave age works one should show that the spec-

tral shape is universal. For large fetches this issue was addressed by Pierson

and Moskovitz (1964) who showed that the scaling laws (2.93) make sense.

For example, the scaling relation for the wave spectrum was found to work

reasonably well. They inferred from their observed wave spectra a univer-

sal shape which has become known as the Pierson-Moskovitz spectrum. The

high-frequency part of the Pierson-Moskovitz spectrum follows from Phillips

(1958). He had argued that the high-frequency part of the spectrum is gov-

erned by wave breaking and had found on dimensional grounds that the spec-

trum follows an ω−5 law. The relevant constant of proportionality is usually

denoted by αp. This idea on the high-frequency tail of the spectrum was in

those days regarded as a well-established result and therefore the spectra



52 PETER A.E.M. JANSSEN

were fitted to Phillips’ power law at high frequencies. The Pierson-Moskovitz

spectrum reads

FPM (ω, ωp, αp) = αpg
2ω−5 exp

{
−5

4

(
ωp

ω

)4
}
, (2.97)

where the Phillips parameter αp was found to be about 0.0083.

For short fetches an important contribution was provided by the JON-

SWAP group (Hasselmann et al, 1973). It was found that in the initial stages

of wave growth spectra have a sharper peak than according to the Pierson-

Moskovitz spectrum, in other words there is a considerable overshoot (Bar-

nett, 1968). The development of the spectrum in an offshore wind is illus-

trated by Fig. 2.5 (from Hasselmann et al, 1973). The spectral peak moves

towards lower frequencies as fetch increases from 9.5 to 80 km, leaving behind

a quasi-saturated high-frequency tail. The spectral peak rises well above the

extrapolated tail so that the energy at a particular frequency increases to a

maximum as fetch increases and reduces again as the peak frequency reduces

further. The peak enhancement plays an important role in wave evolution,

0.7
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Fig. 2.5. Evolution of wave spectra with fetch for offshore winds (11-12 h, Sept. 15, 1968).

The spectra are labelled with the fetch in kilometres. (From Hasselmann et al, 1973.)
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because in the early stages of wave growth the waves near the peak are sub-

stantially steeper than for saturated conditions. Therefore, for young wind

waves nonlinear effects play an important role.

The fully developed Pierson-Moskovitz spectrum contained two parame-

ters, namely the peak frequency and the Phillips parameter αp, which de-

scribes the spectral level on the high-frequency tail. Hasselmann et al (1973)

introduced three new parameters to describe the height γ and width σa, σb

of the enhanced peak. The parameters σa and σb refer to the width of the

asymmetrical peak below and above the peak frequency respectively. An im-

portant discovery was that the Phillips’ parameter αp depends on fetch and

is therefore not a constant as expected from Phillips (1958). For these short

fetches no consistent dependence of γ, σa and σb on nondimensional fetch was

found, although, to be consistent with the results of Pierson and Moskovitz

(1964) for infinite fetch, one would expect that the overshoot disappears, i.e.

γ → 1 for X10 → ∞.

The JONSWAP group therefore proposed the following parametrization

of the frequency spectrum of fetch-limited wind-generated wind waves:

F (ω) = FPM (ω, ωp, αp) × γΓ(ω,ωp,σ), (2.98)

where FPM is the Pierson-Moskovitz spectrum (2.97), and

Γ(ω, ωp, σ) = exp
{
−(ω − ωp)2/2σ2ω2

p

}
. (2.99)

Here, the peak frequency ωp follows from the JONSWAP fetch law

ν10 = 22X−0.33
10 , (2.100)

while the Phillips’ parameter follows from

αp = 0.076X−0.22
10 . (2.101)

Finally, the remaining parameters are constants

γ = 3.3, σa = 0.07, σb = 0.09. (2.102)
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This result marks one of the most important advances in the field of ocean

waves. Nevertheless, even nowadays, there is still some discussion on some of

its details and interpretation.

A point of concern is that the JONSWAP parametrization for the fre-

quency spectrum imposes a restriction on the choice of fetch laws. In fact,

the parametrization as given in (2.98-2.102) implies a fetch law for the dimen-

sionless wave variance ε10. In order to see this, one simply determines from

Eq.(2.98) the wave variance by integration over angular frequency. Scaling

angular frequency by the peak frequency ωp, i.e. introducing x = ω/ωp, and

some rearrangement then gives in terms of dimensionless parameters

ν4
10ε10
αp

= λ, (2.103)

where the so-called shape parameter λ represents the dimensionless integral

over the JONSWAP spectrum,

λ =
∫ ∞

0
dx f(x), (2.104)

and f(x) is the JONSWAP spectrum in dimensionless form,

f(x) = x−5e−
5
4
x−4

γΓ. (2.105)

Since the spectral parameters γ and σ are independent of fetch it immediately

follows that the shape parameter is independent of fetch as well. For the

choice of parameters given in Eq.(2.102) one finds

λ = 0.3. (2.106)

Direct observations from JONSWAP give as mean value λ = 0.25. As a

consequence, the consistency condition (2.103) implies, for given fetch laws

for ν10 and αp, a fetch law for the dimensionless variance ε10. The wave

variance fetch law thus found is not in agreement with the empirical fetch

law for the wave variance obtained by fitting observed dimensionless variance
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against dimensionless fetch. Based on the cleaned data set of JONSWAP

Kahma and Calkoen (1992) find as empirical fetch law

ε10 = 2.1 × 10−7 ×X10, (2.107)

with observed dimensionless fetch in the range of 100− 5000, while from the

consistency relation (2.103) a more sensitive dependence on dimensionless

fetch is found, ε10 ∼ X1.1
10 . The reason for this discrepancy may be that

the fetch law for the Phillips’ parameter αp was originally obtained from a

fit to both laboratory data and field data. However, Donelan et al (1985)

have shown that results from the field and the laboratory belong to different

families (This is also evident from Fig. 2.6). Therefore, a fit to field data

alone is more appropriate. The fetch law for αp, appropriate for field data,

may be obtained from the consistency relation (2.103), the fetch law for ν10

and the empirical fetch law for ε10. Using the observed value of the shape

parameter λ = 0.25 one finds

αp = 0.2X−1/3
10 , (2.108)

hence, compared to the original JONSWAP law (2.101), the consistency con-

dition gives a more sensitive dependence of αp on fetch. According to Fig 2.6,

the fetch law (2.108) is in fair agreement with the JONSWAP observations for

αp, while this fetch law is almost identical to the one obtained by Günther

(1981) who made a fit using the JONSWAP field data only. In terms of

the wave age parameter χ10 the modified JONSWAP laws for dimensionless

energy and Phillips’ parameter become

ε10 = 0.00224χ3
10,

αp = 0.0093χ−1
10 .

(2.109)

Remark that compared to (2.96) the above fetch law for the dimensionless

wave variance shows a somewhat weaker dependence on wave age, but it is in

good agreement with the so-called three seconds power law of Toba (1972).

Also, combining two data sets, namely the one from JONSWAP and one
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called KNMI (Sanders, 1976) Janssen et al (1987) found that the dimension-

less energy is proportional to the third power of the wave age, but one needs

to scale the relevant parameters with the friction velocity and not with the

wind speed.

2.6.2. Toba’s Spectrum and friction velocity Scaling.

Another point of discussion regarding the JONSWAP parametrization of

fetch-limited windsea spectra is the assumed Phillips’ power law for the high

frequency part of the spectrum. As already mentioned, Phillips had argued

that in the so-called saturation range (typically between 1.5×ωp − 3.5×ωp)

the spectral density F (ω) is saturated at a level determined by wave break-
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Fig. 2.6. Observed Phillips’ parameter versus dimensionless fetch from a number of Field

experiments. The fetch laws (2.101) and (2.108) are shown as well (From Hasselmann et

al, 1973)
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ing. As a consequence, the saturation level is exclusively determined by the

frequency ω and acceleration of gravity g. The resulting spectral shape be-

comes

F (ω) = αpg
2ω−5, (2.110)

but from JONSWAP it was found that αp varied with fetch instead of being

a constant.

An alternative approach to the notion of the saturation range is due to

Toba (1972,1973). It is based on his three seconds power law for the significant

wave height HS and the significant period. In terms of wave variance ε and

peak frequency ωp, Toba found from laboratory data

ε ∼ gu∗ω−3
p , (2.111)

where u∗ is the friction velocity of wind over the water surface. On similarity

grounds Toba (1973) deduced that the saturation spectral density becomes

F (ω) = αT gu∗ω−4, (2.112)

where αT is called the Toba constant. Initially, empirical support for the Toba

spectrum (2.112) was obtained in laboratory experiments (Toba, 1973) and

in field experiments (Kawai et al, 1977). However, Toba’s work received only

recognition in the mid 1980’s with the presentation of further empirical evi-

dence supporting (2.112) by Mitsuyasu et al. (1980), Kahma (1981), Forristall

(1981) and Donelan et al. (1985) and with theoretical work of Kitaigorodskii

(1983) and Phillips (1985).

Toba’s proposal for the spectrum in the saturation range has considerable

implications for wave prediction. Apart from the obvious implication on the

spectral shape, his work also implied that the appropriate velocity scale is

not the wind speed at an arbitrarily chosen height of 10m, but the friction

velocity u∗ defined as

u∗ =
√
τ . (2.113)
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Here, τ = −〈u′w′〉 is the kinematic stress in the surface layer above the waves,

while u′ and w′ denote the horizontal and vertical velocity fluctuations around

the average plane parallel flow. These fluctuations are associated with both

air turbulence and wave-induced motion.

INTERMEZZO The kinematic stress plays a prominent role in the surface

layer above the ocean waves. Close to the surface, the mean flow is to a good

approximation a plane parallel flow for which vertical gradients are far more

important than horizontal gradients. Scaling considerations applied to the

Navier-Stokes equation show then that the friction term is dominant near

the surface, so that Eq.(2.1) reduces to

∂U

∂t
=
∂τx
∂z

,

∂V

∂t
=
∂τy
∂z

, (2.114)

where the mean flow is denoted by U. In steady state circumstances the

(kinematic) stress is therefore independent of height z, and is therefore a

good candidate for the wind speed scale in growth laws.

In the atmosphere, it is often assumed that the stress is proportional to

the vertical gradient of the horizontal velocity, i.e.

τ = νT
∂U
∂z

, (2.115)

in analogy with the expression for the viscous stress. However, there is also

an important difference with the case of viscosity where ν is usually taken

constant. In the turbulent surface layer, eddies are taking care of the mo-

mentum transport and the size of the eddies increases with the distance from

the surface. As a consequence, the eddy-viscosity νT increases with height.

General ideas from turbulence theory (Tennekes and Lumley, 1974) suggest

that

νT = l2 | ∂U
∂z

|, (2.116)
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with l the so-called mixing length. This approach was first put forward by

Prandtl in 1925. In practice, near the surface l is usually taken as

l = κz, (2.117)

where κ = 0.4 is the von Kármán constant. This expression for the mixing

length vanishes when the surface is approached and causes a singularity in

the mean velocity profile as will be seen in a moment. This singularity may

be removed by introducing additional physics. In a very thin layer above

the surface, with a height proportional to the molecular viscosity of air, νa,

viscous processes play an important role (for an account of the interaction

of turbulence and viscous processes above a flat plate see van Driest, 1951).

In addition, for airflow over the ocean surface, short gravity waves are able

to extract considerable amounts of momentum from the air because these

waves grow the fastest. These waves may become steep so that ’micro scale’

breaking and flow separation may be important as well. These processes,

the list of which is by no means complete, are no doubt very complicated.

If one, however, is only interested in the mean flow away from the surface

then these processes may be represented by introducing a height scale z0,

called the roughness length, at which the mean flow velocity vanishes. The

boundary condition therefore becomes

U(z0) = 0. (2.118)

Considering now the case of air flowing in the x-direction, the steady state

solution of the system of equations (2.114-2.118) becomes

U(z) =
u∗
κ

ln(z/z0), z > z0, (2.119)

giving the well-known logarithmic wind profile in the constant stress layer

above the surface. The big unknown in the wind profile equation is the

roughness length z0, and in the past this quantity has been determined ex-

perimentally from profile measurements or from a combination of measuring
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the surface stress through eddy correlation techniques ànd of measuring wind

speed at a certain height. Errors in z0 are large, however, because the rough-

ness length depends in an exponential way on wind speed and the friction

velocity. Nevertheless, as already mentioned in the introduction, Charnock

(1955) was able to propose on dimensional grounds a parametrization of the

roughness length which is still in use today. He argued that the short gravity

waves are mainly responsible for the momentum transfer from air to ocean,

and therefore the scaling parameters are acceleration of gravity g and the

friction velocity u∗. As a result, the expression for the roughness length over

ocean waves becomes

z0 = αcu
2
∗/g, (2.120)

and profile measurements resulted in an estimate of the Charnock constant

αc = 0.0112.

Alternatively, the roughness length z0 may be obtained by means of a

detailed study of the processes that extract momentum from the airflow.

An example of this is presented in Chapter 3 where the consequences of

the growth of surface gravity waves on the mean airflow are studied. The

roughness length turns out to be similar to the one proposed by Charnock,

except that, in agreement with Stewart (1974), the Charnock parameter αc

is found to depend on the stage of development of windsea, i.e. the wave age

χ.

Before closing this intermezzo, it should be mentioned that in practice the

drag coefficient CD is frequently used to relate the surface stress to the wind

speed at a given height. It is defined by

τ = CDU
2(z), (2.121)

and for a logarithmic wind profile of the form (2.119) it immediately follows

that

CD =
κ2

ln2(z/z0)
. (2.122)
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Its value clearly depends on the choice of z0 and on the observation height z.

Using Charnock’s relation, the drag coefficient is found to increase (al-

most) linearly with wind speed. Since CD depends on wind speed it makes

a difference whether one uses wind speed or friction velocity as wind speed

scale in the growth laws for windsea. For example, the saturation wave height

scales, using (2.88) and (2.93), with the square of the wind speed scale. There-

fore, adopting U10 scaling, the significant wave height scales with U2
10 for large

duration and fetch, whilst, adopting friction velocity scaling, the saturation

wave height scales with u2∗. This would give a more sensitive dependence on

wind speed U10 as CD increases with wind speed. Blake (1993) reanalyzed

a data set collected by Ewing and Laing (1986) and found indeed a more

sensitive dependence of the saturation wave height on wind speed.

Finally, another argument in favour of friction velocity scaling can be

inferred from Fig. 2.4b. This plot shows the wave variance fetch law using

u∗ scaling for stable and unstable stratification. Evidently, the differences

between stable and unstable cases are much smaller than for U10 scaling.

It is conjectured in Chapter 3 and 5 that the remaining differences may be

explained by considering effects of gustiness, which occur in particular for

unstable stratification.

Let us now return to Toba’s proposal for the high-frequency part of the

wave spectrum. In order to investigate whether the Toba spectrum fits the

high-frequency part of the spectrum better Battjes et al (1987) decided to re-

analyze the original JONSWAP data set. In stead of the JONSWAP spectral

shape (2.98) these authors fitted the spectra by means of the expression

F (ω) = FT (ω, ωp, αT ) × γΓ(ω,ωp,σ), (2.123)

where

FT (ω, ωp, αT ) = αT gu∗ω−4 exp

{
−
(
ωp

ω

)4
}
, (2.124)
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while the expression for Γ was identical to the original JONSWAP proposal

(2.99). The Toba spectrum FT depends explicitely on the friction velocity, and

since no observed data on the in-situ stress was available, Charnock’s relation

(2.120) with Charnock parameter αc = 0.0144 was used to determine the

friction velocity from the surface wind speed at 10m height. A detailed error

analysis showed convincingly that the Toba spectrum fitted the observed

spectra better than when the Phillips spectrum was used. Moreover, the Toba

parameter αT showed a much weaker dependence on the wave age than the

Phillips parameter αp. In fact, Battjes et al (1987) found from their so-called

full-frequency range analysis for αp

αp = 0.0057χ−1.24
10 , (2.125)

in close agreement with the result we found using invariance of spectral shape

(cf. Eq.(2.109)), while for αT they found

αT = 0.127, (2.126)

i.e. the Toba parameter is a constant. However, it should be remarked that

when the Toba parameter was obtained from the high-frequency part of the

spectrum (ω > 1.5ωp) a weak dependence on wave age with power −0.23 was

obtained. Finally, the remaining parameters of the proposed spectral shape

(2.124) are practically constant

γ = 3.64, σa = 0.12, σb = 0.17. (2.127)

The reanalysis of the JONSWAP data set by Battjes et al (1987) therefore

indicates that the high-frequency part of the wave spectrum can be better

approximated with an ω−4 tail than with an ω−5 tail. The Toba parameter αT

is found to be virtually independent of the wave age. This finding is consistent

with Toba’s hypothesis that αT should be a universal constant. However, it

differs from the data of Donelan et al (1985) whose results indicate a noticable
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increase of αT with wave age. The expression for the high-frequency spectrum

given by these authors can be written as

FD(ω, ωp, αD) = αDg
2ωpω

−4. (2.128)

Comparison with Toba’s formulation (2.124) shows that

αT = CD
− 1

2χ10αD,

where CD is the drag coefficient. When the direction of wave propagation at

the spectral peak is in the wind direction, Donelan et al give the following

parametrization of αD:

αD = 0.006χ−0.55
10 , 0.2 < χ10 < 1.2,

and, as a consequence, the Toba parameter would increase with wave age

according to

αT = 0.006CD
− 1

2χ0.45
10 , (2.129)

ignoring a possible dependence of the drag coefficient on the wave age.

The reason for this different behaviour of the Toba parameter on wave age

(cf. 2.126 and 2.129) is not clear. It has been suggested, however, that there is

a remarkable geographical dependence in these results. Phillips (1985) points

out that data from the Pacific give considerably lower Toba parameter than

the non-Pacific data. A similar remark may apply to the JONSWAP data

(North Sea) and the Donelan et al (1985) data which are taken from Lake

Ontario. In order to investigate a possible regional dependence of the results,

Bidlot (private communication, 2002) determined from an NDBC data set

the Toba parameter by averaging the quantity

αT = ω4Fobs(ω)/gu∗,

with Fobs the observed spectrum, between the angular frequencies 1.3ωp and

2.5ωp. The mean value of the Toba parameter was close to Eq.(2.126) while
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in agreement with Battjes et al (1987) αT showed hardly no dependence on

wave age. The study by Bidlot is quite extensive. It consists of the order of

150,000 spectra from different regions of the Northern Hemisphere, i.e. the

North Pacific, the Great Lakes and the east coast of the USA. There are

certainly differences per region, but these differences can also be explained

by the different types of buoys being employed which may, because of their

different sizes, have a different high-frequency response. Also air-sea stability

effects may play a role.

Therefore, in view of the overwhelming evidence for the constancy of the

Toba parameter it is concluded that a description of fetch limited spectra by

means of the Toba formulation (2.123-2.124) is to be preferred. This descrip-

tion of the wind wave spectrum is only valid for the low-frequency part of the

spectrum; as argued below it only holds for angular frequencies below 3ωp.

For given frequency spectrum and the usual dispersion relation it is straight-

forward to obtain, by means of Eq. (2.89), the wavenumber spectrum. In

wavenumber space the Toba spectrum is found to be proportional to k−2.5.

However, as pointed out by Banner (1990b), for short waves the linear dis-

persion relation may not be applied, because these waves, which are riding

on top of the long waves, experience a Doppler shift caused by the orbital

motion of the long waves. According to Banner (1990b) this affects the high-

frequency spectrum in the range ω > 3ωp. For short waves there is therefore

a preference to determine wavenumber spectra. But this is a very hard task,

and usually requires unconventional measurement techniques such as from

optics. For frequencies above 3ωp there is therefore little direct evidence of

the wavenumber spectrum but it cannot continue with a slope of −2.5 for this

would imply short wave spectral levels far higher than those observed even in

very strong forcing in laboratory tanks. Furthermore, the mean square slope

would greatly exceed optical and radar estimates (Cox and Munk, 1954, Jack-

son et al, 1992). Kitaigorodskii (1983) has postulated a gradual transition in
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the spectral slope from quasi-saturated (k−2.5) to fully saturated (k−3). In

other words, for a k−2.5 spectrum the local wave slope would increase with

wavenumber until the waves become unstable and break. For larger frequency

the spectral shape would be determined by wave breaking giving Phillips’ k−3

spectrum. Nowadays there is a considerable amount of experimental evidence

(e.g. Forristall, 1981; Birch and Ewing, 1986; Banner, 1990b; Hwang et al,

1996; Hwang, 1997; Hara and Karachintsev, 2003) that such a transition

indeed occurs.

2.6.3. The angular distribution of windsea.

The directional properties of ocean waves in open sea have mostly been stud-

ied with heave, pitch and roll buoys. These can be used to estimate integral

directional parameters (Longuet-Higgins et al, 1963 and Kuik et al, 1988)

or the buoy data may be used to reconstruct a low-resolution image of the

directional energy distribution (see, for example, Longuet-Higgins et al, 1963

and Krogstad et al, 1988). Imaging techniques and array techniques provide

high-resolution estimates of the two-dimensional spectrum (e.g. Synthetic

Aperture Radar (SAR), Brüning et al, 1988, the Airborne Topographic Map-

per (ATM), Hwang et al (2000a and 2000b), or wave gauge arrays, Donelan

et al, 1985).

In a pioneering study of the directional properties of ocean waves Longuet-

Higgins et al (1963) found that the width of the angular distribution of wind

waves was most narrow near the peak of the wave spectrum and that away

from the peak the directional spread increases. Subsequent studies (Hassel-

mann et al, 1973, Mitsuyasu et al, 1975, D.E. Hasselmann et al, 1980, and

Donelan et al, 1985) confirm this universal characteristic of developing wind

waves. Most parametrizations of directional spread are nowadays in terms of

the frequency normalised with the peak frequency, i.e. ω/ωp, suggesting that

the directional distribution is predominatly controlled by nonlinear wave-

wave interactions (D.E. Hasselmann et al, 1980). As an example we quote the
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parametrization of Donelan et al (1985). In this approach the two-dimensional

frequency spectrum F (ω, θ) becomes

F (ω, θ) =
1
2
F (ω) cosh−2[β(θ − θ(ω))], (2.130)

where θ is the mean wave direction and

β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2.61(ω/ωp)+1.3, 0.56 < ω/ωp < 0.95,

2.28(ω/ωp)−1.3, 0.95 < ω/ωp < 1.6,

1.24, ω/ωp > 1.6.

(2.131)

The Donelan et al (1985) dataset only extended to ω/ωp = 1.6, thus for

frequencies larger than 1.6 a constant value of β = 1.24 was assumed. Based

on high-frequency stereo photography, Banner (1990b) found that β was not

a constant for these higher frequencies as specified by Donelan et al (1985)

and he proposed

β = 10(−0.4+0.8393 exp[−0.567log(ω/ωp)2]), ω/ωp > 1.6. (2.132)

All early parametrizations of the directional distribution shared the prop-

erty that for high frequencies there is a single maximum in the wind direction,

i.e. the distribution is unimodal (see for example Eq.(2.130)). A numerical

study of the energy balance equation (Banner and Young, 1994)) suggested,

however, that for high frequencies there is a bimodal angular distribution

which is caused by non-linear four-wave interactions. This result prompted a

renewed interest in directional aspects.

The early investigations into the directional distribution of ocean waves

were based on the analysis of temporal measurements and did not find any

indication of bimodality. Bimodal features have been extracted from these

data only recently, using a Maximum Entropy Method (MEM) or a Max-

imum Likelihood Method (MLM) (Young et al (1995) and Ewans (1998)).

These results highlight a major difficulty in resolving directional properties

from a small number of sensor elements. Depending on the analysis method

significant quantitative differences occur. For example, Ewans (1998) shows a
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comparison of the bimodal analysis using MLM and MEM, and MEM shows

a much more pronounced bimodality than MLM.

Bimodal directional distributions have been observed from spatial mea-

surements using an aerial stereo photographic technique (Phillips, 1958), an

airborne radar system (Jackson et al, 1985), and land-based imaging radar

(Wyatt, 1995). In contrast to the analysis of temporal measurements from

wave gauge arrays or buoys, a standard two-dimensional Fourier transforma-

tion is sufficient to reveal the bimodal nature of the direction distribution.

In addition, present day technology has advanced considerably resulting in a

much more accurate determination of the sea surface topography and hence

giving a confident estimate of bimodality. Therefore, Hwang et al (2000b)

were able to study in great detail the directional properties of wind-generated

ocean waves and they were able to obtain a reliable parametrization of bi-

modality. A fair agreement with the theoretical results of Banner and Young

(1994) was found.

2.6.4. Sea state dependence of surface stress.

As explained in the Intermezzo the key parameter that determines the surface

stress for given wind is the Charnock parameter αc. Hence, many researchers

have made attempts to measure surface stress and wind speed in order to

obtain, using (2.122), the Charnock parameter. But since z0 depends in an

exponential way on these parameters, there are very high demands on the

measurement accuracy of U10 and u∗. In addition, wind speed and friction

velocity are normally measured in the vicinity of large bodies such as mea-

surement platforms and ships. The presence of such large bodies inevitably

leads to flow distortion with the consequence that corrections are needed for

flow direction, wind speed and the friction velocity. These corrections are

not easy to obtain and are of a considerable size so that observations from

a well-exposed anemometer (such as employed by Donelan, 1982 or Smith et

al, 1992) are preferred. Ship observations normally suffer from flow distortion
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(Yelland and Taylor, 1996; Eymard et al, 1999).

Furthermore, the roughness over the oceans is very small (z0 ∼ 0.1mm)

compared with that over land (z0 ∼ 10cm). As a consequence, the constant

stress layer over the oceans is thin and Donelan (1990) finds that the as-

sumption that the measured stress (at an observation height of 10m) is the

surface stress always introduces a systematic and wind speed dependent un-

derestimation of the surface stress, which in some cases is in excess of 30%.

Finally, the preferred method for measuring the surface stress is the Eddy-

Correlation technique. This method measures all components of the velocity,

substracts the mean flow and the kinematic stress follows then from the

correlations between the components of the (turbulent) fluctuations. Here

the kinematic stress tensor is defined as

ταβ = −〈u′αw′
β〉, (2.133)

where uα is the velocity component in the α direction and a prime refers to the

fluctations around the mean. The angle brackets refer to an averaging over a

time interval, which is usually about 20 minutes long. This method works well

on stationary platforms but it presents problems on board of a ship because

the ship motion needs to be eliminated (Nowadays this is indeed possible but

it requires some sophisticated hardware). Therefore, some researchers prefer

to use a measurement technique which is not sensitive to these low frequency

motions, for example the so-called Inertial-Dissipation technique. The latter

technique is based on the assumption of an inertial subrange in the spec-

trum of the turbulent velocity fluctuations so that there is a balance between

production of turbulent kinetic energy and dissipation. However, in the pres-

ence of swells outrunning relatively weak winds the velocity spectra no longer

have universal shapes, so the classical Monin-Obukhov similarity theory is no

longer valid (Drennan et al, 1999). Also, Janssen (1999) has pointed out that

growing wind waves may play a role in the turbulent kinetic energy budget

through the divergence of the pressure-velocity correlation, giving for large
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winds an increase in stress of the order of 20%. Results obtained with the

Inertial-Dissipation method are therefore uncertain, because this method is

based on a number of assumptions which are not always satisfied.

Because of all these complications it should be clear that the sea state de-

pendence of the surface stress is a controversial issue. Furthermore, there is

the additional problem of what parameter gives an appropriate characteriza-

tion of the sea state. Wind waves presumably cause most of the aerodynamic

drag over the oceans. In particular the short waves mainly contribute because

they have the largest wind-induced growth. Therefore it may be argued that

the surface stress depends on the steepness of the short waves, which to a

good approximation is given by the mean square slope. However, the latter

parameter is not easy to measure. Now, for the case of windsea a proxy to

the state of the high-frequency waves is provided by the wave age parame-

ter. As we have adopted Toba’s formulation for the windsea spectrum, which

depends on the friction velocity, it makes sense to use from now on the wave

age χ∗, defined as

χ∗ = cp/u∗. (2.134)

For young wind waves (χ∗  10) waves are steep, while more gentle waves

are found for old windsea (χ∗  30). Since steeper waves are associated with

a rougher surface, it is expected that the Charnock parameter will decrease

with increasing wave age.

Despite all the aforementioned complications, this was indeed found by

Donelan (1982) and Donelan et al (1993) for the short fetches that occur on

Lake Ontario and by the HEXOS group (Smith et al, 1992) in the North

Sea. In the case of HEXOS only windsea cases were selected. Stresses were

obtained by means of the Eddy-Correlation technique. There exists a close

agreement between the two data sets, resulting in similar relations between

the Charnock parameter and the wave age. This is remarkable because the

Lake Ontario data has a typical phase speed of the order of 3− 4ms−1 while
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the North Sea data has phase speeds of around 10ms−1. For reference, only

the HEXOS fit is quoted, which reads

αc = 0.48χ−1
∗ , 5 < χ∗ < 25, (2.135)

supporting the notion that indeed the airflow becomes smoother for older

windsea.

The result (2.135) marks another important advance in the field of ocean

waves, and in particular regarding our understanding of small-scale air-sea

interaction for the case of windsea. The early field experiments of Donelan

(1982) and HEXOS (Smith et al, 1992) consisted of a small number of ob-

servations. In view of the large scatter in the Charnock parameter the sig-

nificance of the result (2.135) was questioned. However, additional field cam-

paigns, such as WAVES87 and SWADE (cf e.g. Drennan et al, 1999) and

ASGAMAGE (Oost et al, 2002) have confirmed that indeed the airflow be-

comes smoother for older windsea. The more recent data sets show, however,

a more sensitive dependence of the Charnock parameter on the wave age

Eq. (2.136)

z 0
/ε

1 /
2

u
*
/cp

(Drennan et al, 1999)
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Fig. 2.7. Dimensionless roughness z0/ε
1
2 versus inverse wave age 1/χ∗ for WAVES87 short

fetch (open circle) and long fetch (full circle), and SWADE data (asteriks)- all pure windsea

data. (From Drennan et al, 1999)
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than found by Eq.(2.135). As an illustration of the sea state dependence of

the roughness we show in Fig. 2.7 results of Drennan et al (1999). These au-

thors have the plausible view that the roughness parameter z0 is a fraction of

significant wave height and therefore they plot the roughness scaled with the

standard deviation of the surface elevation, z0/ε
1
2 , as function of the inverse

of the wave age 1/χ∗. Donelan (1990) was able to obtain high correlations

between these two parameters for his 1970’s Lake of Ontario data set. In fact,

z0/ε
1
2 = 1.84χ−2.53

∗ . (2.136)

Note that Eq.(2.136) is directly related to Eq.(2.135). In order to see this, one

starts from the left hand side of (2.136) and one uses Charnock’s relation and

the expression for the Charnock parameter (2.135) to eliminate z0. The wave

variance ε is then eliminated using Toba’s three second power law (2.111).

As a consequence, one finds that

z0/ε
1
2 ∼ χ

− 5
2∗ ,

in very good agreement with Donelan’s result (2.136). This last fit is plotted

in Fig. 2.7 as well and shows a good agreement with the more recent data

from the WAVES87 and the SWADE campaigns, except for relatively old

windsea (χ∗  50) when the observed roughness is much smaller than the

parametrization (2.136). However, Drennan et al (1999) have shown that in

those circumstances the Monin-Obukhov similarity theory does not apply,

e.g. the logarithmic wind profile (2.119) does not hold anymore.

In order to conclude our discussion on the sea state dependence of the

roughness over windsea, we emphasize that Eq.(2.135) has a restricted valid-

ity, ie. it does not hold for extremely young sea states with χ∗ < 5. This is

discussed more extensively by Donelan et al (1993) and Komen et al (1998).

In fact, if the wind starts blowing over a flat surface, there are no gravity

waves present. Hence, initially the roughness of the ocean surface is expected

to be small. As soon as short waves are generated (which happens very quickly
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in less than a minute), they have extracted momentum from the air flow, and

therefore the airflow experiences a more rough surface. In other words, for

extremely young wave ages the Charnock parameter is expected to increase

with wave age (cf. the discussion in Nordeng, 1991). However, the extreme

young windsea state disappears very quickly, in a matter of 10 minutes, and

is therefore not relevant for the relatively large scale applications we have in

mind.

On the other hand, in the case of mixed sea states, consisting of windsea

and one or more swells, it is not at all evident that the wave age parameter

is an appropriate measure for the state of the high-frequency waves. Swells

propagate over large distances, they are therefore nonlocal in the sense that

they do not depend on the local friction velocity, and may interact with

the windsea in such a way that the high-frequency waves are damped or in

case of opposing swell get larger steepness. On the open ocean, where mixed

sea states are frequently occurring, a simple relation between the Charnock

parameter and the wave age is therefore not expected, unless wind waves

are dominating the sea state. This usually happens for fairly strong winds.

Thus, although Yelland and Taylor (1996) where unable to find a sea state

dependence of the Charnock parameter from their open ocean data in the

Southern Atlantic, by restricting to wind speeds above 10 m/s Janssen (2001)

did find a similar relationship as found by Donelan et al (1993) and the

HEXOS group.

2.7. Summary of Results.

Starting from the Lagrangian of linear deep water waves we have obtained

the appropriate evolution equations for wave groups in slowly varying cir-

cumstances caused by slowly varying currents or water depth. There are,

however, other causes for evolution of wave groups. Waves may grow because

of the action of wind and they may loose energy because of dissipation due

to e.g. white capping. Furthermore, finite amplitude ocean waves are subject
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to four-wave interactions. As long as these perturbations are small they can

be added and in the context of a statistical description of ocean waves, the

action density N obeys the action balance equation

d

dt
N = Sin + Snl + Sds, (2.137)

where in the case of spherical coordinates the operator d/dt is given by

Eq.(2.81), while the source terms on the right-hand side represent the physics

of wind input (Sin), nonlinear four wave interactions (Snl) and dissipation

(Sds). In the next two Chapters these source terms will be discussed in some

detail.
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3. On the generation of ocean waves by wind.

In this Chapter the theory of the generation of ocean waves by wind will be

developed resulting in an expression for the wind input source function Sin of

the action balance equation. As will be seen from the subsequent discussion

this problem has led to many debates and controversy. There may be several

reasons for this. On the one hand, from the theoretical point of view it should

be realized that one is dealing with an extremely difficult problem because

it involves the modelling of a turbulent airflow over a surface that varies in

space and time. Although there has been much progress in understanding

turbulence over a flat plate in steady state conditions, modelling attempts

of turbulent flow over (nonlinear) gravity waves are only beginning and, as

will be seen, there is still a considerable uncertainty regarding the validity of

these models.

On the other hand, from an experimental point of view it should be pointed

out that it is not an easy task to measure growth rates of waves by wind.

First of all, one cannot simply measure growth rates by studying time series

of the surface elevation since the time evolution of ocean waves is determined

by a number of processes such as wind input, nonlinear interactions and

dissipation. In order to measure the growth of waves by wind one therefore

has to make certain assumptions regarding the process that causes wave

growth. The commonly adopted cause of wave growth is the work done by

the pressure on the surface. This assumption seems plausible in view of the

work by Miles (1957). Secondly, because of the small air-water density ratio

the growth rates are small which means that a very accurate determination

of amplitude and phase of the wave-induced pressure fluctuations is required.

Nevertheless, considerable progress has been made over the past forty

years or so and therefore a brief review of the main achievements will be

given now. The history of the subject of wind-wave generation started in the

beginning of the 20th century when Jeffreys (1924, 1925) assumed that air
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flowing over the ocean surface was sheltered by the waves on their lee side.

This would give a pressure difference, so that work could be done by the

wind. Subsequent laboratory measurements on solid waves showed that the

pressure difference was much too small to account for the observed growth

rates. As a consequence, the sheltering hypothesis was abandoned, and one’s

everyday experience of the amplification of water waves by wind remained

poorly understood. This changed in the mid-1950’s, when Phillips (1957) and

Miles (1957) published their contributions to the theory of wave generation

by wind. Both theories had in common that waves were generated by a reso-

nance phenomenon: Phillips considered the resonant forcing of surface waves

by turbulent pressure fluctuations, while Miles considered the resonant inter-

action between the wave-induced pressure fluctuations and the free surface

waves. Phillips’ mechanism gives rise to a linear growth of the spectrum in

time, but it turned out to be ineffective. This is because the effect is pro-

portional to the variance spectrum of the turbulent pressure fluctuations at

the resonant frequency, independent of the wave spectrum, and this is of the

order of the square of the air-water density ratio. Miles’ mechanism looked

more promising. It is proportional to the wave spectrum itself, which implies

exponential growth, and it is of the order of the density ratio of air and water.

Although Miles’ work aroused a renewed interest in the problem, there

was also a considerable confusion and controversy. One of the main reasons

for the controversy was that Miles’ theory oversimplified the problem by

following the quasi-laminar approach. This approach assumes that the airflow

is inviscid and that air turbulence does not play a role except in maintaining

the shear flow. Another reason is that Miles neglected nonlinear effects such as

wave-mean flow interaction, which are expected to be important at the height

where the phase speed of the surface waves matches the wind speed (the so-

called critical height). Also, early field experiments, in particular by Dobson

(1971), gave rates of energy transfer from wind to waves that were an order
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of magnitude larger than predicted by Miles (1957). As already pointed out,

the measurement of the energy transfer from wind to waves is a difficult task

as it involves the determination of a small difference between wave-induced

pressure fluctuation and the time derivative of the surface elevation signal.

More recent field experiments (Snyder, 1974; Snyder et al, 1981; Hasselmann

and Bösenberg, 1991) show order of magnitude agreement with Miles’ theory,

although the theory still predicts energy transfer rates that are smaller than

the measured values, especially for relatively low-frequency waves with a

phase speed that is close to the wind speed at 10 m height.

The state of affairs regarding the theory of wind-wave generation re-

mained, however, unsatisfactory. The quasi-laminar approach was criticized

because the effect of turbulence on the wave-induced motion was neglected,

and nonlinear effects such as wave-mean flow interaction were not considered.

There have been several attempts to overcome these shortcomings by

means of numerical modelling of the turbulent boundary layer flow over a

moving water surface. With suitable turbulence closure assumptions the in-

teraction of the wave-induced flow with the mean flow and the boundary-layer

turbulence can then be simulated explicitely. One such approach (see, for ex-

ample, Gent and Taylor, 1976; Makin and Chalikov, 1979; Riley et al, 1982;

Al-Zanaidi and Hui, 1984; Jacobs, 1987; and Chalikov and Makin, 1991)

considers the direct effects of small scale turbulence on wave growth. Mixing

length modelling or turbulent energy closure is then assumed to calculate the

turbulent Reynolds stresses. The resulting diffusion of momentum is then so

large that essentially Miles’ critical mechanism becomes ineffective, but, sur-

prisingly, the results for growing waves are not very different from the ones

obtained in quasi-laminar theory. Hence, small-scale eddies and finite wave

steepness have only a small direct effect on wave growth. On the other hand,

in adverse winds or when waves are propagating faster than the wind speed

these theories give a considerable wave damping, which contrasts with Miles’
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theory.

Observations give a somewhat conflicting picture. For waves that propa-

gate faster than the wind Snyder et al (1981) and Hasselmann and Bösenberg

(1991) report insignificant damping rates. In adverse winds, Dobson (1971)

observed damping rates that were an order of magnitude smaller than growth

rates under corresponding conditions. Stewart and Teague (1980) observed

the decay of swell and found damping rates of about 15% of the corresponding

growth rates. In the laboratory, Young and Sobey (1985) found for adverse

winds only a weak attenuation. However, Mizuno (1976) and Donelan (1983)

found, on the other hand, damping rates that were comparable with corre-

sponding growth rates.

The above turbulence models rely on the analogy with molecular pro-

cesses. Van Duin and Janssen (1992) pointed out that this approach fails for

low-frequency waves. Mixing length modelling assumes that the momentum

transport caused by turbulence is the fastest process in the fluid. This is

not justified for low-frequency waves which interact with large eddies whose

eddy-turnover time may become larger than the period of the waves. In other

words, during a wave period there is not sufficient time for the eddies to

transport momentum. For these large eddies (which are identified here with

gustiness) another approach is needed. Nikolayeva and Tsimring (1986) con-

sidered the effect of gustiness on wave growth, and a considerable enhance-

ment of energy transfer was found, especially for long waves with a phase

speed comparable to the wind speed at 10 m height.

Belcher and Hunt (1993) have pointed out that mixing length modelling

is even inadequate for slowly propagating waves. They argue that far away

from the water surface turbulence is slow with respect to the waves so that

again large eddies do not have sufficient time to transport momentum. This

results then in a severe truncation of the mixing length in the so-called outer

layer of the flow. In fact, the greater part of the flow may now be regarded
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as approximately inviscid and the energy transfer from wind to slow waves

only occurs in a thin layer above the surface. However, because of the severe

truncation in mixing length the growth rate for the slow waves is consider-

ably smaller than obtained with the usual mixing length model. Note that

the main mechanism for wave growth in the Belcher and Hunt model is the

so-called non-separated sheltering: the Reynolds stresses close to the surface

cause a thickening of the boundary layer on the leeside of the waves which

would result in flow separation when the slope is large enough. This mecha-

nism is akin to Jeffreys’ sheltering hypothesis, which was originally developed

for separated flows over moving waves of large slope.

In short, the developments over the past 40 years may be summarized as

follows. Miles’ quasi-laminar theory was the first model to give an explanation

of the growth of waves by wind. Because of the neglect of turbulence on the

wave-induced motion the quasi-laminar model has been criticized as being

unrealistic, therefore questioning the relevance of the critical layer mechanism

for wind-wave growth. First attempts to describe the effects of turbulence by

means of a mixing length model have been criticized as well, however, mainly

because the eddies in the outer layer in the air are too slow to transfer a sig-

nificant amount of momentum on the time scale of the wave motion. However,

according to rapid distortion models such as the one of Belcher and Hunt the

critical layer mechanism is only relevant for very fast moving ocean waves

with a dimensionless phase speed, defined as c/u∗, of the order of 30. But

models are based on assumptions and may not necessarily represent real-

ity. Recently, Sullivan et al (2000) studied the growth of waves by wind in

the context of an eddy-resolving numerical model. Although the Reynolds

number was, compared to nature, too small by an order of magnitude, clear

evidence for the existence of a critical layer was found for a wide range of

dimensionless phase speeds. As expected from the Miles mechanism, a rapid

fall-off of the wave-induced stress was seen at the critical layer. Furthermore,
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nowadays, there is even direct evidence of the existence and relevance of the

critical layer mechanism from in-situ observations (Hristov et al, 2003) ob-

tained from FLIP (a Floating Instrument PLatform created by two Scripps

scientists some 40 years ago). This is quite a challenge because one has to ex-

tract a relatively small wave-coherent signal from a noisy signal. Nevertheless,

for the range 16 < c/u∗ < 40, Hristov et al (2003) could see a pronounced

cat’s-eye pattern around the critical height where the wave-induced stress

showed a jump. There was good agreement between observed and modelled

wave-induced profiles. Note that it is not clear from observations whether

there is a critical layer for dimensionless phase speeds less than 16. These

conditions can only be observed when measurements are taken close enough

to the ocean surface, in between the ocean waves.

Hence, after all, there is some justification for the validity of Miles’critical

layer mechanism. For this reason, I therefore concentrate on this approach,

which allows, at least partly, for an anlytical treatment. It has the additional

advantage that it can easily be extended to include effects of gustiness, which

is known to be important for low-frequency waves.

For a given wind profile quasi-laminar theory is fairly succesful in predict-

ing growth rates and wave-induced profiles. It ignores, however, a possible

change of wind profile while the ocean waves are evolving. The momentum

transfer from wind to waves may be so large that the associated wave-induced

stress becomes a substantial fraction of the turbulent stress (Snyder, 1974,

Snyder et al, 1981). The velocity profile over sea waves is controlled by both

turbulent and wave-induced momentum flux. Therefore, deviations from the

profile of turbulent airflow over a flat plate are to be expected. In addition,

the energy transfer from the air to the waves may be affected by the sea state,

so that one expects a strong coupling between the turbulent boundary layer

and the surface waves.

Observations confirm this expectation. The most direct evidence for the
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dependence of airflow on the sea state comes from the observed dependence of

the drag coefficient on the wave age. Measurements by, for example, Donelan

(1982) and Smith et al (1992) have confirmed the dependence of the drag

coefficient on wave age. For a fixed wind speed at 10 m height Donelan found

that, depending on the sea state, the drag coefficient may vary by a factor of

two.

The theory of the interaction of wind and waves was elaborated by Fab-

rikant (1976) and Janssen (1982). The so-called quasi-linear theory of wind-

wave generation keeps track of the slow evolution of the sea state and its

effects on the wind profile. At each particular time the wave growth follows

from Miles’ theory. It turns out that quasi-linear theory permits an explana-

tion of the observed dependence of the airflow on the sea state.

The structure of this Chapter is as follows. First, we discuss the linear,

quasi-laminar theory of wind-wave generation, based on Miles’ shear flow

mechanism. Basically, this mechanism of the generation of waves by wind is a

resonant interaction of the gravity waves with a plane parallel flow. Resonance

occurs at a critical height zc which follows from U(zc) = c(k). Here, U is the

air velocity and c(k) the phase velocity of a wave with wavenumber k. Only

those waves grow for which the curvature of the velocity profile at the critical

height is negative. Results of this theory are compared with available field

and laboratory measurements.

After the discussion of the quasi-laminar approach a brief account of the

effects of turbulence is given. First, a brief discussion of the effects of small-

scale turbulence is given, followed by the Belcher and Hunt criticism why

mixing length modelling is not appropriate in rapidly varying circumstances

such as occur for airflow over growing wind-waves. The approach of Belcher

and Hunt allows for a determination of the range of validity of Miles’ theory.

Depending on the assumption regarding how rapid eddies transfer momen-

tum, Miles’ approach may be justified for typical ocean conditions. Second, a
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treatment of the effects of gusts on wave growth is presented. This treatment

assumes that the period of the waves is shorter than a relevant time scale of

gustiness. Then, if the probability distribution of the fluctuations in stress

due to the gusts is known, an appropriate averaging of the Miles’ results will

immediately give the effect of gusts on wave growth. In particular, the growth

rate of low-frequency waves will be affected to a considerable extent.

Next, we proceed with a discussion of the quasi-linear theory of wind-

wave generation, which culminates in a derivation of the relation between

drag coefficient and the sea state. This relation is then validated against

existing field data.

3.1. Linear theory of wind-wave generation.

A treatment of Miles’ theory is given in which it is emphasized that wind-

wave generation is closely related to the instability of a plane parallel shear

flow. The principle difference with shear flow over a flat plate (Drazin and

Reid, 1981) is that the lower boundary (the air-sea interface) is allowed to

evolve in time and space.

Our starting point is the set of equations for an adiabatic fluid with an

infinite sound speed. Hence

∇.u = 0,
d

dt
u = −1

ρ
∇p+ g, (3.1)

d

dt
ρ = 0,

where all symbols have their usual meaning. We would like to study the stabil-

ity of the equilibrium solution (see Fig. 3.1) of Eq. (3.1) which corresponds

to a flat air-sea interface. Hence, the solution is independent of horizontal

position and only depends on height z.

The equilibrium of interest is

u0 = U0(z)ex, g = −gez,
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ρ0 = ρ(z), p0(z) = g

∫
dz ρ0(z), (3.2)

where ex and ez are unit vectors in the x- and z-direction. Thus, we deal with

a plane parallel flow whose speed and density only depend on height z. The

equations for an adiabatic fluid do not explain the height dependence of wind

speed and density because effects of small-scale turbulence are not taken into

account. In addition, effects of turbulence on the wave-induced motion in the

air are not considered. This is a weak point of the present approach, but in

§ 3.3 it is argued that this may be justified.

In order to investigate stability, the steady state (3.2) is perturbed by

writing ρ = ρ0+ρ1, etc. with ρ1 � ρ0. Linear equations for the perturbations

are then obtained by Taylor expanding (3.1) around the equilibrium. The

steady state is regarded to be stable when the perturbations remain small

for all times. Otherwise, the steady state is unstable and as a result gravity

waves will be generated at the air-sea interface. The evolution in time of

the perturbations is obtained by taking normal mode solutions of the form

ρ1 ∼ exp i(kx−ωt), where k is the wavenumber and ω the angular frequency

of the wave. The steady state (3.2) is unstable when �(ω) > 0, because the

perturbations then grow exponentially in time.

We shall only consider propagation in one direction. Using Squire’s the-

orem (Drazin and Reid, 1981) results may be generalized immediately to

a

w

Air

Water
z=0

z

x

U0(z)

Fig. 3.1. Equilibrium profiles of density and velocity.
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propagation in two dimensions. For waves propagating at an angle with re-

spect to the wind not the wind itself but the effective wind k.U0/k is then

seen by the waves. Linearization of Eq.(3.1) then gives for normal modes

iku+ ∂w/∂z = 0,

ikWu+ wW ′ = −ikp1/ρ0, (3.3)

ikWw = ρ1p
′
0/ρ

2
0 − (∂p1/∂z)/ρ0,

ikWρ1 + wρ′0 = 0,

where u1 = (u, 0, w),W = U0 − c, c = ω/k and the prime denotes differentia-

tion of an equilibrium quantity with respect to height z. The prominent role

of the critical layer is evident through the Doppler-shifted velocity W . After

some algebra one then arrives at the following Sturm-Liouville differential

equation for the displacement of the streamlines ψ = w/W ,

d

dz

(
ρ0W

2 d

dz
ψ

)
−
(
k2ρ0W

2 + gρ′0
)
ψ = 0, (3.4)

which is subject to the boundary condition of vanishing displacement at

infinite height or depth,

ψ → 0, |z| → ∞. (3.5)

The boundary value problem (3.4)-(3.5) determines, in principle, the real and

imaginary part of the complex phase speed c = ω/k, giving the growth rate

γ = �(ω) of the waves.

The (unstable) waves resulting from the above boundary value problem

are called internal gravity waves. By application of the Miles’ theorem (Miles,

1961) one immediately infers the possibility of instability of the equilibrium

given in Fig 3.1. This theorem states that a sufficient condition for stability

is that dU0/dz �= 0 and that the Richardson number Ri = gρ′/(ρW 2) is

smaller than −1/4 everywhere. The latter condition is clearly violated in air

(because ρ′  0) so there is a possibility of instability, that is there is possibly

an energy transfer from the shear flow U0(z) to the gravity waves.
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Whether there is instability or not can only be decided by solving the

boundary value problem. This will only be done for the special case of surface

gravity waves and not for the more general case of internal waves. Surface

gravity waves are obtained by choosing an appropriate density profile. To

that end (cf. Fig 3.1) the density profile is chosen to be constant in air and

water with a jump at the interface at z = 0. Because the air density ρa

is much smaller than the water density ρw, there is a small parameter ε =

ρa/ρw ∼ 10−3 in the problem, and therefore it will be possible to construct

an approximate solution of the eigenvalue problem (3.4)-(3.5).

In water (no current, a constant density) the eigenvalue problem simplifies

considerably. We have for z < 0

d2

dz2
ψw = k2ψw, (3.6)

which gives, using the boundary condition at infinity, the solution

ψw = Aekz. (3.7)

The boundary condition at the interface between air and water is derived

from an integration of Eq.(3.4) from just below (−0) to just above (+0) the

water surface. Note that at z = 0 the density profile shows a jump so that

ρ′0 = (ρa−ρw)δ(z) where δ(z) is the Dirac delta function. Requiring now that

the displacement ψ of the streamlines be continuous across the interface at

z = 0, we obtain from (3.4)

ρ0W
2 d

dz
ψ

∣∣∣∣
+0

−0
=
∫ +0

−0
dz

[
ρ0k

2W 2 + gρ′0
]
ψ. (3.8)

Since in the limit only the integral involving ρ′0 gives a contribution, we

obtain, using (3.7), the following dispersion relation for the phase speed of

the waves

c2 =
g(1 − ε)
k − εψ′

a(0)
, ε =

ρa

ρw
, (3.9)

where, without loss of generality, we have taken the amplitude A = 1 as we

deal with a linear problem. In air we take a constant density so that the
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eigenvalue problem (3.4)-(3.5) simplifies to

d

dz

(
W 2 d

dz
ψa

)
= k2W 2ψa,

ψa(0) = 1; c2 =
g(1 − ε)
k − εψ′

a(0)
, (3.10)

ψa → 0, z → ∞.

Note that the air-water density ratio only occurs in the dispersion relation.

In the absence of air we obtain the usual dispersion relation for deep water

gravity waves, that is c2 = g/k. The effect of air on the surface waves is small

since ε � 1. We therefore solve the dispersion relation in an approximate

manner with the result

c = c0 + εc1 + ...., (3.11)

where c0 =
√
g/k and c1 = 1

2c0(ψ
′
a/k − 1). As a result, the problem (3.10)

now reduces to

d

dz

(
W 2

0

d

dz
ψa

)
= k2W 2

0ψa,

ψa(0) = 1, (3.12)

ψa → 0, z → ∞.

where W0 = U0 − c0 is now known. As c0 is known already, the solution of

the differential equation is simplified considerably. In addition, we now have

an explicit expression for the growth rate γa of the amplitude of the waves

γa

ω0
= ε�

(
c1
c0

)
=

ε

2k
�(ψ′

a) =
ε

4k
W(ψa, ψ

∗
a)
∣∣∣∣
z=0

(3.13)

where the Wronskian W is given as

W(ψa, ψ
∗
a) = −i (ψ′

aψ
∗
a − ψaψ

′∗
a

)
. (3.14)

and � stands for imaginary part.

Finally, before we give some interpretation of the result (3.13), we remark

that it is rather common to use the vertical component of the wave-induced
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velocity instead of the displacement of the streamlines ψ ∼ w/W . In terms of

the normalised vertical velocity χ = w/w(0), the eigenvalue problem (3.12)

becomes

W0

(
d2

dz2
− k2

)
χ = W ′′

0 χ,

χ(0) = 1, (3.15)

χ→ 0, z → ∞.

and the growth rate of the wave is given by

γa

εω0
=

1
4k

W(χ, χ∗)
∣∣∣∣
z=0

, (3.16)

where the Wronskian is now given by W = −i(χ′χ∗ − χχ′∗).

Regarding (3.15) we remark that the differential equation, known as the

Rayleigh equation, has a singularity at W0 = U0 − c0 = 0. Since W0 = 0

defines the critical height zc (i.e. the height where the phase speed of the

wave matches the wind speed) it is now clear that the resonance at the

critical height plays a special role in the problem of wind-wave generation.

Furthermore, we remark that the Wronskian W is related to a physical

quantity, known as the wave-induced stress τw = −〈u1w1〉. In order to see

this it is recalled that we are dealing with normal modes of the type u1 =

u exp(iθ) + c.c, so that

τw = −〈(u exp(iθ) + c.c)(w exp(iθ) + c.c)〉 = −uw∗ + c.c.

Using ∇.u = 0 to eliminate u we thus have

τw = − i

k

[
w∗w′ − ww′∗] , (3.17)

and this indeed corresponds to the Wronskian of Eq. (3.16). Therefore, the

result (3.16) is an elegant one as it relates the growth of the waves to the

wave-induced stress.

Another reason why the result (3.16) is an elegant one is that the Wron-

skian W plays a special role in the theory of second-order differential equa-

tions. Namely, by means of the Rayleigh equation (3.15) it may be shown
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that the Wronskian is independent of height except at the critical height,

where it may show a jump (See Fig 3.2).

We can check this by calculating the derivative of W with respect to z,

d

dz
W = −i(χ∗χ′′ − χχ′′∗).

Using the Rayleigh equation to eliminate the second derivatives this becomes

d

dz
W = −i

(
k2 | χ |2 +

W ′′
0

W0
| χ |2 −c.c.

)
(3.18)

Now, for z �= zc (W0 �= 0) we immediately find that the right-hand side of

(3.18) vanishes. Hence, W and the wave-induced stress are independent of

height. Since the wave-induced velocity vanishes for large height, we conclude

that W vanishes for z > zc, but it still may have a finite value below the

critical height because at the surface the vertical velocity is finite. In fact,

the jump at z = zc may be obtained from (3.18) by a proper treatment of

the singularity at the critical height.

To that end we consider the singular function

1
W0

→ 1
W0 − i∆

,

and we take the limit for positive vanishing ∆. Then,

1
W0

→ P
W0

+ πiδ(W0),

w

zcz

Fig. 3.2. Wave-induced stress shows a jump at critical height.
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where the symbol P denotes the Principle Value of the singular function.

Eq.(3.18) now becomes

d

dz
W = 2πW ′′

0c | χc |2 δ(W0) (3.19)

where the subcript c refers to evaluation at the critical height zc (W0 = 0).

Integration of (3.19), using the boundary condition that W vanishes for

z > zc, gives

W = −2π
W ′′

0c

|W ′
0c |

| χc |2, for z < zc, (3.20)

and therefore the growth rate of the waves becomes

γa

εω0
= − π

2k
W ′′

0c

|W ′
0c |

| χc |2 . (3.21)

This is Miles’ classical result for the growth of surface gravity waves due

to shear flow. From (3.21) we obtain the well-known result that only those

waves are unstable for which the curvature W ′′
0 = U ′′

0 of the wind profile at

the critical height is negative. This is the case, for example, for a logarithmic

profile.

Before we proceed, a few remarks need to be made. The first one is of

a somewhat technical nature and is related to the choice of sign of the pa-

rameter ∆ in the singular function 1/W0. It should be pointed out that it is

important to make a proper choice for the sign of ∆ since the final results

regarding the stability or instability of the flow will depend on it. Hence, a

special care regarding the treatment of the poles is needed. The right choice of

the sign of ∆ follows from the solution of the initial value problem by means

of Laplace transformation and by applying asymptotic techniques to find the

large-time behaviour of the solution. In case of instability the large-time solu-

tion is determined by the most unstable normal mode, and a prescription of

how to treat the singularity may be inferred: one simply treats the singularity

in the limit of vanishing positive imaginary part of the phase speed c (as we

have done). More details may be found in Drazin and Reid (1981) while in

the plasma physics context a detailed account is given by Davidson (1972).



THE INTERACTION OF OCEAN WAVES AND WIND 89

A second remark concerns the relation between Miles’ instability and the

possible instability of a shear flow in a pipe or over a flat plat. In the inviscid

context (Drazin and Reid, 1981) a necessary condition for instability to occur

is that there is a point of inflexion (i.e. a point where the mean flow curvature

vanishes). Such a condition is not immediately apparent in the instability

of shear flow over water waves (cf. Eq.(3.21). However, if air and water is

regarded as one flow then it is clear that there is at least one inflexion point

located at the air-sea interface (because there is no water current) hence there

is no conflict with the above necessary condition for instability.

Furthermore, note that there is an important consequence of the insta-

bility of surface waves. While the waves are growing and therefore receive

momentum and energy from the airflow, a slowing down of the airflow by the

gravity waves will result. The waves will therefore give rise to a force which is

the gradient of the wave-induced stress τw. Since the wave-induced stress is

proportional to the Wronskian W, which has a step function discontinuity at

the critical height, the force is a delta function. This suggests an important

limitation of linear theory because a considerable wave-mean flow interaction

would result, giving rise to a modified mean flow. More details of this wave-

mean flow interaction, which is a key issue of this book, will be discussed in

a short while.

In order to solve the boundary value problem (3.15), we finally have to

specify the shape of the wind profile. In case of neutrally stable conditions (no

density stratification by heat and moisture) the wind profile has a logarithmic

height dependence. See for this the discussion in Chapter 2 on momentum

transport by turbulence (cf. Eq. (2.119)). Hence,

U0(z) =
u∗
κ

log(1 + z/z0), (3.22)

which follows from the condition that the momentum flux in the surface

layer is a constant for steady conditions. Recall that κ  0.40 is the von

Kármán constant which is supposed to be a universal constant, the friction
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velocity u∗ is a measure for the momentum flux in the surface layer and the

roughness length z0 is a parameter which reflects the momentum loss at the

sea surface. It is given by the Charnock relation (2.120). We repeat it here

for convenience,

z0 = αcu
2
∗/g, (3.23)

with αc the Charnock parameter. Although in the present linear treatment

it is assumed that the Charnock parameter αc is a constant (we take αc =

0.0144), there are arguments why αc is not a constant but depends on the

sea state. This issue will be discussed in great detail when wave-mean flow

interaction is discussed.

For given wind profile (3.22) the boundary value problem (3.15) may now

be solved. Originally, Miles (1957) applied a variational approach to obtain

an approximate solution. However, when compared to the numerical results

of Conte and Miles (1959) this approximation gave growth rates which were

too large by a factor of three. Prompted by asymptotic matching results of

van Duin and Janssen (1992), Miles (1993) revisited this problem and realized

that the overestimation was caused by the neglect of some higher order terms.

The improved approximation gave good agreement with Conte and Miles

(1959). Since, however, the approximation of Miles (1993) is formally valid for

’slow’ waves, only the numerical results will be compared with observations.

3.2. Numerical solution and comparison with observations.

The numerical solution of (3.15) seems to be complicated because of the

presence of the singularity at the critical height. However, Conte and Miles

(1959) and Miles (1959a) have shown how this singularity may be treated

and they found a very efficient method to solve the boundary value problem

(3.15) avoiding relatively expensive shooting techniques which are required

for regular boundary value problems. In this approach one writes

χ = ρeiθ, (3.24)
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and one finds that ρ and the gradient of θ, θ′, are related to the Wronskian

W in the following manner

W = 2ρ2θ.′ (3.25)

Using (3.25) to eliminate θ′ one obtains the amplitude ρ from the real part

of the Rayleigh equation of (3.15),

ρ′′ − ρ θ′2 = ρ

[
k2 +W ′′

0

P
W0

]
, (3.26)

where again P denotes the principle value. The integration of (3.26) is per-

formed by means of a fourth-order Runge-Kutta method, except for the region

in the neighbourhood of the critical height where the solution is continued

analytically using the so-called Frobenius solutions. Defining the distance

from the critical layer by y = z − zc one obtains from the Rayleigh equation

two independent solutions

χ1 = C0y

(
1 +

1
2
C0y + ....

)
(3.27)

χ2 = 1 + C0y log y + ...,

where C0 = W ′′
0c/W

′
0c. Clearly, χ1 is an entire function of y whereas χ2 is a

multi-valued function of y. Thus, a branch cut in the complex y plane has to

be introduced in order to make χ2 single-valued.

The choice of the proper branch cut is determined by the same rule as

applied to the treatment of the singular function 1/W0, namely the limit of

vanishing positive imaginary part of the phase speed c is taken. Hence, we

study the root of

W0 = U0 − c0 − ic1(c1 ↓ 0). (3.28)

Expanding the wind speed around the critical height zc, U0 = U0c + yU ′
0c,

where of course U0c = c, we obtain y = ic1/U
′
0c. Hence in the limit c1 ↓ 0, y

approaches the real axis from above (below) for positive (negative) U ′
0c. With

this convention χ2 is uniquely determined.
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In the neighbourhood of the critical height the general solution of (3.15)

is given by a linear combination of the two Frobenius solutions (3.27),

χ = A (χ2 +Bχ1) (3.29)

and with this solution the Wronskian W(z = zc) may be evaluated given the

same result as found in (3.20). Note that for y > 0 χ1 and χ2 are real, hence

the gradient in the phase, θ′, vanishes. This is consistent with the vanishing

of the Wronskian, and hence the wave-induced stress, for z > zc.

The general solution (3.29) may be used as a starting point for the numeri-

cal method. Above the critical height two independent solutions are generated

by integrating the Rayleigh equation (3.26) from z = zc + δ, with δ � 1, to

large heights using the value and the derivative of χ1 and χ2 at zc +δ. Impos-

ing the boundary conditions at ”infinity” then gives the unknown coefficient

B. Similarly, A may be determined by integrating (3.26) from zc − δ to the

surface, using the value and the first derivative of (3.29) at zc − δ (respecting

the branch cut). Imposing the boundary condition at z = 0 then yields A

and hence the growth rate of the ocean waves by wind.

Before we compare the numerical results with observations of the growth

rate, dimensionless quantities are introduced in order to see which dimen-

sionless parameters determine the problem. Since we are dealing with grav-

ity waves it is natural to use the acceleration of gravity g as a basic scaling

quantity. On the other hand, since we are dealing with wind-generated waves

another basic scaling quantity must be some measure of the strength of the

airflow. Considering airflows which are steady with respect to the typical pe-

riod of the waves, we choose as scaling quantity the friction velocity because

this is the only relevant airflow quantity which is independent of height z. As

we have already discussed in Chapter 2 the growth of waves by wind has fre-

quently been analyzed in terms of the wind speed U10 at the standard height

of 10 m. The reason for this usage was a practical one since it is not easy

to measure the surface stress. In general, however, the use of U10 does not
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seem appropriate because implicitely a rather arbitrary height scale, namely

10 m, is introduced which bears no relation to any relevant length scale in the

physical problem (see also Kitaigorodskii, 1962). From now on we therefore

adopt friction velocity scaling.

Thus, we scale velocities with u∗ and in agreement with the Charnock

relation (3.23) lengths scale with u2∗/g, hence

z∗ = gz/u2
∗, z0∗ = gz0/u

2
∗,

(3.30a)

c∗ = c/u∗, U0∗ = U0/u∗,

while the dimensionless wavenumber becomes

k∗ = ku2
∗/g. (3.30b)

As a consequence, the boundary value problem (3.15) has in terms of these

dimensionless quantities the same form, while from (3.22)- (3.23) the dimen-

sionless wind profile becomes

U0∗ =
1
κ

log(1 +
z∗
z0∗

). (3.31)

For a given wave characterized by its dimensionless phase speed c∗ we can

solve for the dimensionless growth rate γ/ω0 of the energy of the waves, which

is twice the growth rate of the amplitude of the waves,

γ/ω0 = 2γa/ω0. (3.32)

The dimensionless growth rate depends in general on the dimensionless rough-

ness length z0∗. However, remarkably, with Charnock’s relation we have

z0∗ = αc which for the moment is regarded as a constant, independent of

u∗. Therefore, for a neutrally stable airflow with a logarithmic wind profile,

the growth rate γ/ω0 only depends on c∗.

The numerical results for the dimensionless growth rate γ/f are plotted as

a function of the inverse of the dimensionless phase speed u∗/c in Fig. 3.3. For
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comparison, we have also shown measurements, compiled by Plant (1982), of

wave growth from the field (Snyder et al, 1981) and the laboratory (Plant

and Wright, 1977). These observations show a considerable scatter but in

the mean there is a fair agreement between Miles’ quasi-laminar theory and

observations. This remark applies to both the laboratory data (u∗/c > 0.2)

and the field data (u∗/c < 0.2).

The profiles for the wave-induced velocities from the solution from the

Rayleigh equation have been compared with observations by Hristov et al

(2003) and a good agreement is obtained. This also applies to the gradient

of the phase θ′ which shows according to the observations a rapid variation

at the critical height in agreement with Miles’ theory. Hence, according to

10–1

1

10–2

10–3

10–2 10–1
u
*
/c

/f

1 10

Fig. 3.3. Comparison of growth rates according to Miles’ theory with observations compiled

by Plant (1982). Full line: Miles’theory; open symbols: field data; full symbols and ×:

laboratory data.
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the observations the wave-induced stress shows a jump at the critical layer.

A similar conclusion also follows from the work of Sullivan et al (2000) who

studied wave growth in the context of an eddy-resolving model.

The results obtained for wind-wave growth may be summarized as follows:

The combination of Miles quasi-laminar theory and the Charnock relation

has resulted in a linear growth rate of ocean waves which is within a factor

of two in fair agreement with observations. We have presented theoretical

arguments why the dimensionless growth rate should only depend on the

dimensionless phase speed c∗. Although the compilation of results in Fig.(3.3)

does suggest that u∗ scaling seems to be valid, the large scatter in the data

does not allow to obtain definite conclusions. However, Mitsuyasu and Honda

(1982) have performed an interesting wave tank experiment which may shed

some light on the issue of u∗ scaling. They measured wave growth by wind

in case of a clean water surface and compared results with the case of a

water surface contaminated with a surfactant. In the latter event it is well-

known that the surfactant supresses the short waves thus one deals with a

smoother airflow. For the same wind speed at a certain reference height it was

found that in case of a clean surface the growth rate was higher than in case

of a contaminated surface. Mitsuyasu and Honda explained this difference

in terms of the difference in stress in the two cases. In other words, when

results of the relative growth rate were plotted as function of the inverse of

the dimensionless phase speed c∗, the observed growth rates collapsed to one

curve, while in terms of wind speed scaling a considerable scatter was found.

These results (see also the discussion in § 2.6) support scaling in terms of the

friction velocity, but more evidence on this issue is clearly desirable.

A valid question to ask is what happens in case the ocean waves are

travelling faster than the ’wind’ or when ocean waves are propagating against

the wind. Miles’ quasi-laminar theory gives in the first case a vanishingly

small growth rate while in the case of an adverse wind there is no wave growth
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because of the absence of a critical layer. However, on intuitive grounds one

would expect a damping of the ocean waves. For example, when waves are

faster than the wind one could imagine that there is a transfer of momentum

from waves to wind, accelerating the airflow. By the way, for an adverse wind,

the momentum transfer from waves to airflow would result in a slowing down

of the airflow. Clearly, the damping of ocean waves is not modelled by Miles’

mechanism but the question is whether the damping is important. Hence, the

need to discuss possible observational evidence of wave damping by wind.

Is there observational evidence of the damping of waves that propagate

faster than the wind? The Bight of Abaco results (Snyder et al, 1981) and a

similar experiment performed in the North Sea (Hasselmann and Bösenberg,

1991) report insignificant damping rates in these circumstances. What about

evidence for wave damping in an adverse wind? Observational evidence on

this subject is scant. Dobson (1971) observed the pressure on the surface of

a group of waves advancing against a light wind, and found damping rates

that were an order of magnitude smaller than growth rates under correspond-

ing conditions. Stewart and Teague (1980) observed the decay of swell with

decameter radar and found rates of about 15% of the corresponding growth

rates. Their measurements do not yield the wind input direcly, but rather

the overall balance including nonlinear interactions and dissipation.

The laboratory measurements of Young and Sobey (1985) showed no sig-

nificant surface pressure-wave slope correlation in an adverse wind and the

weak attenuation they found was attributed to the wave-coherent tangential

stress. On the other hand, Mizuno (1976) and Donelan (1983) from similar

laboratory measurements found damping rates that were comparable with

the corresponding growth rates. Several researchers have studied the propa-

gation of ocean waves into an area of calm or light wind. The direct loss of

momentum from the waves to the air above it must lead to acceleration of

the airflow in the direction of the waves. Such a ’wave-driven’ wind has been
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reported by Harris (1966), Davidson and Frank (1973) and Holland (1981).

More details of this interesting phenomena are discussed in Donelan (1990).

It is not clear, however, whether this momentum transfer from water to air is

caused by a damping of the water waves. Currents caused by wave-induced

motions and other causes may give rise to a tangential stress on the air result-

ing in wind. In addition, as follows from the observations of Holland (1981),

the wave-driven wind only occurs in a thin layer above the water surface,

so that this phenomena has presumably no impact on the dynamics of the

atmosphere.

Thus, in conclusion, one could summarize that observational evidence for

wave damping when waves propagate faster than the wind is inconclusive.

Evidence of damping of waves travelling against the wind is also conflicting.

Nevertheless, the evidence of a wave-driven wind seems intriguing indeed.

These examples serve to illustrate that Miles’ theory is, of course an ideal-

ization of reality. It is a linear theory that disregards effects of turbulence

on the wave-induced motion. These effects will be discussed in the following

sections. However, Miles’ theory seems to give reasonable results for the ma-

jor problem of the generation of ocean waves by wind. The possible damping

in case of waves travelling faster than the wind appears to be small, while

it may be doubted whether wave-driven winds are relevant for ocean wave

prediction and air-sea interaction.

3.3. Effects of turbulence.

In our discussion on the effects of turbulence we shall make a fairly loose

distinction using the scale of turbulence, namely we shall discuss effects of

small-scale, high-frequency turbulence separately from the effects of large

scale turbulence which has a typical timescale which is much longer than the

period of the ocean waves. This distinction in turbulence with respect to the

period of the ocean waves seems to be useful, because it has implications for

the modelling of turbulence. For example, high-frequency, small-scale turbu-
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lence is so fast with respect to the waves that it is always in equilibrium

with the shear flow. In that event, some form of mixing-length modelling

of the effect of turbulent eddies on the wave-induced motion seems appro-

priate, because, in analogy with molecular viscosity, the small scale eddies

are the ’fastest’ process in the system. In that event, the turbulent transfer

of momentum depends on the size of the eddies. On the other hand, this is

certainly not the case for large-scale turbulence, because these eddies simply

do not have the time to transport a significant amount of momentum. The

large-scale turbulence will, from now on, be called gustiness. Gusts in the

wind require a different treatment.

3.3.1. Effects of small-scale turbulence.

Many authors have devoted their attention to the study of the effect of small-

scale turbulence on wave growth. This line of research was started in the

mid-1970’s by Chalikov (1976) and Gent and Taylor (1976), when it was felt

that the approach of Miles (1957) was inadequate because the effect of eddies

on the wave-induced motion was disregarded. Chalikov and Makin produced

a series of papers in which they addressed the growth of a single wave and

effects of nonlinearity, the structure of airflow over a spectrum of waves and

effects of atmospheric stability. Their work culminated in a determination of

the drag coefficient over sea waves (Chalikov and Makin, 1991). Although

more sophisticated turbulence closures were considered, they concluded that

a simple mixing length model gave sufficiently reliable results.

More complicated turbulence models were advocated by Gent and Taylor

(1976) and Al-Zanaidi and Hui (1984). The former used a one-equation model

whereas the latter used a two-equation model of Saffman and Wilcox (1974).

Results for wave growth do not seem to differ much from those of Chalikov

and Makin so that their conclusion on the choice of turbulence model may

be justified.

Thus far we have discussed results of numerical calculations of wave growth
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by wind. However, there have also been a few attempts to obtain an analytical

expression for the growth rate. Using a simple eddy-viscosity model Jacobs

(1987) obtained a very elegant expression for the growth rate by means of

matched asymptotic expansions, where the small parameter is the drag coef-

ficient. Van Duin and Janssen (1992) realized that Jacob’s approach was not

quite consistent. They noted that at least three layers (a viscous layer, an

intermediate layer and an outer layer) were needed to obtain a valid asymp-

totic expansion. The end result was, however, identical to the one obtained

by Jacobs. We shall discuss some of the details of the analytical approach

because the result for the growth rate is similar in flavour as the numerical

approaches. In addition, the result is almost identical to an expression for

the growth rate suggested by Stewart (1974) on semi-intuitive grounds.

The governing equations for air were taken as

(
∂

∂t
+ u.∇)u = − 1

ρa
∇p+ ∇.ν

{
∇u + (∇u)T

}
, (3.33)

where all symbols have been defined before, except for the superscript T

which denotes the transpose and ν which is the kinematic viscosity. It is

emphasized that the last term in the Reynolds equations (3.33) attempts to

model the effects of turbulent eddies in terms of a stress tensor which depends

on the local gradient of the flow. This model of turbulence is, however, only

valid when eddies are in equilibrium with the shear flow which consists of

a mean flow and a wave-induced motion. In other words, this model is only

valid for small scale eddies with a much shorter eddy-turnover time than the

typical period of the waves.

The combined effects of molecular viscosity and turbulence are thus taken

into account by assuming that the kinematic viscosity is given by

ν = νa + νe, (3.34)

where νa is the constant molecular viscosity and νe is the eddy viscosity which

may be time- and space-dependent. The turbulence was modelled using the
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eddy viscosity

νe = lu∗, (3.35)

where the mixing length l is given as

l = κ(z − η), (3.36)

with η the displacement of the air-water interface.

After a lengthy analysis, details of which can be found in van Duin and

Janssen (1992), the growth rate of the waves is found to depend on the wind

speed at height 1/k (see also Al-Zanaidi and Hui, 1984) and the friction

velocity. The relative growth rate becomes

γε

ω
= 2κε

u∗
c

[
V

c
cos(θ) − 1

]
, (3.37)

where θ is the angle between wind and wave propagation direction and V =

U0(1/k). Although (3.37) has been derived under a number of restrictive

assumptions from an asymptotic analysis, the result itself, in particular the

functional form, is very appealing. Recalling that wave growth is related to

the wave-induced stress −〈u′w′〉, it is intuitively clear that u′ scales with the

wind speed at height 1/k (U0(1/k)), while w′ scales with the friction velocity

u∗ (Stewart, 1974), suggesting the above expression for wave growth.

Formally, the results only apply for slowly moving ocean waves, c/V < 1,

while also the drag coefficient CD(k) = (u∗/V )2 at height 1/k should be

much smaller than 1. Jenkins (1992) has shown that in particular the second

condition is restrictive. By decreasing the roughness in his numerical model

of airflow over gravity waves that includes small scale turbulence he found

agreement between (3.37) and his results for the growth rate. However, a good

agreement was only obtained for roughness lengths that are much smaller

than observed over the oceans. For realistic roughness lengths (3.37) is found

to underestimate wave growth by at least a factor of two. Nevertheless, (3.37)

captures the essentials of the growth rate of waves by wind from models
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that include effects of small scale turbulence. For high-frequency waves this

expression shows, apart from a logarithmic dependence, a similar scaling with

friction velocity as found in Miles’ theory. For low-frequency waves that are

propagating faster than the wind (c/V > 1 for θ = 0) the present results

show a considerable damping of the waves.

In particular, a problem with the result (3.37) is that around the transition

point of growth to damping, γ/ω depends linearly on u∗/c. Hence, damping

rates are of a similar magnitude as corresponding growth rates. As mentioned

earlier, observations from major field campaigns do not seem to support this

as insignificant damping rates were found. It is, however, important to realize

that mixing length models may only have a restricted validity. Van Duin and

Janssen (1992) pointed out that such models do not adequately describe

the growth of low-frequency waves because the eddy-turnover time becomes

larger than the wave period.

The following discussion is of a rather qualitative nature, but the essential

message is in good agreement with detailed numerical simulations of turbu-

lent airflow over a single gravity wave using a second-order turbulence scheme

(Mastenbroek, 1996). The first systematic criticism on the application of a

mixing length model on the problem of airflow over water waves was given

by Belcher and Hunt (1993). This followed earlier work on flows over hills by,

for example, Jackson and Hunt (1977) since there are certain similarities be-

tween the ’hill’ problem and the water wave problem. In these circumstances

mixing length modelling has a restricted validity because the closure scheme

(3.34)- (3.36) assumes that the turbulence is so fast that the eddies have suf-

ficient time to transfer an appreciable amount of momentum on the relevant

macroscopic time and length scales as imposed by the gravity waves. In that

event the turbulence is in equilibrium with the flow (which also includes the

gravity waves) and the turbulent stress then depends on the local velocity

gradient. In the presence of surface gravity waves this equilibrium condition
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Fig. 3.4. Dimensionless thickness kzt of inner region as function of dimensionless phase

speed c/u∗, according to Belcher and Hunt (1993), and according to modified distortion

theory (indicated by shading). For comparison the dimensionless critical height kzc is shown

as well. The Charnock parameter is 0.0144.

is only satisfied in a relatively thin layer above the water surface. In order

to see this one introduces the advection time scale TA, which is basically the

travel time of an eddy over a gravity wave. Hence,

TA =
1

k | U0(z) − c | , (3.38)

which involves the difference between the speed U0(z) of an eddy and the

phase speed c of the gravity wave. Secondly, an eddy-turnover time scale TL

is defined which measures, according to Belcher and Hunt (1993), the time it

takes for eddies to decorrelate and interact with each other. Thus TL is the

time scale for the turbulence to come into equilibrium with the surrounding

flow. In a constant stress surface layer, the length scale of the largest eddies

is κz while the motion in the eddies has a speed that scales with the friction

velocity. The eddy-turnover time scale therefore becomes

TL =
κz

u∗
. (3.39)

Belcher and Hunt then argue that the eddies are in equilibrium with the

waves when the eddy-turnover time scale TL is smaller than the advection
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time scale TA, or TL < TA. This implies that the eddies are in local equilib-

rium with the flow in a layer above the waves with thickness zt given by

kzt =
2κu∗

| U0(zt) − c | . (3.40)

Here, the O(1) proportionality constant has been chosen in an appropriate

fashion. Except for very slow waves (c/u∗  1) it is seen that mixing length

modelling is only valid in a relatively thin layer above the water surface, with

a thickness of O(CD(zt)) where CD(zt) is the drag coefficient at height zt.

On the other hand, for heights larger than zt the eddies do not have sufficient

time to transport a significant amount of momentum on the wave time scale.

Therefore, following work on flows over hills, Belcher and Hunt suggest the

use of a truncated mixing length model, which in practice means that above

z = zt effects of turbulence on the wave-induced motion are disregarded,

hence the airflow is treated as being inviscid. The layer with z < zt will

henceforth be called the turbulent surface layer or the inner layer.

Note that in case of ocean waves the equation for the inner layer depth

reveals some interesting structure (Belcher and Hunt, 1998). The solutions

to Eq.(3.40) are plotted in Fig 3.4 which shows the dependence of the di-

mensionless thickness kzt on the dimensionless phase speed c/u∗. When

kzc < 2κ2e there is just one solution. For small critical height, corresponding

to c/u∗ < 15, one then finds approximately

kzt =
2κ2

log(2κ2/(kzc))
. (3.41)

In this case the structure of the airflow is then similar to flow over hills,

namely a local-equilibrium inner region near the surface, z < zt, which con-

tains the critical height, and a rapid distortion outer region with z > zt. The

difference with flow over hills is that the roughness length z0 is replaced by

the critical height zc. As the dimensionless phase speed increases, the critical

height moves away from the surface resulting in a thicker inner region. This

continues to hold until kzc reaches the critical point. For kzc > 2κ2e there
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are three solutions, but the flow can again be considered to have a two layer

structure with an inner region, z < zt, whose depth is given by the smallest

solution to Eq.(3.40), and an outer region, z > zt, which now contains the

critical height surrounded by the other two solutions of Eq.(3.40). Turbu-

lence modelling follows as for slow waves, with the additional observation

that fluid elements do not spend long enough in the critical layer to come in

local equilibrium so that rapid distortion effects need to be accounted for as

well.

Belcher and Hunt (1993) determined the growth rate for slowly moving

waves and from an asymptotic analysis it follows that their result is formally

smaller than the mixing length result (3.37). The mixing length result (3.37)

is formally of the order ∆, where ∆ is a small parameter defined as ∆(z =

1/k) = C
1/2
D (k) = u∗/V . This is immediately seen by scaling all velocities in

(3.37) with V . Furthermore, from the analysis of van Duin and Janssen(1992)

it follows that the growth rate of the waves is proportional to the gradient

of the mixing length l (3.36). Now, in the truncated mixing length model of

Belcher and Hunt the eddy viscosity is only finite in a thin layer of order ∆,

and therefore in such a model the growth rate is expected to be of the order

∆2. Indeed, the growth rate obtained by Belcher and Hunt scales as (u∗/c)2,

rather than u∗V/c2 as found from (3.37). In other words, the growth rate of

the wave energy becomes

γε/ω = εβ

(
u∗
c

)2

, (3.42)

and from the numerical work of Mastenbroek (1996) it follows that for slow

waves the growth parameter β is O(15). For comparison, the observations

compiled by Plant (1982) give β  32, while Miles’ theory (cf. Fig 3.3) gives

good agreement with observations.

Mastenbroek (1996) also determined from his numerical model the growth

parameter for waves with a phase speed of the order of the wind speed. For

these fast moving waves the truncation of the mixing length results in a large
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reduction of the damping rate, compared to the standard mixing length result

(3.37). Numerically, it is found that β = O(−4), while a mixing length model

gives β = O(−15).

The truncation of the mixing length has important consequences for the

height profile of the (wave-induced) Reynolds stress. Thus, according to the

truncated mixing length model of Belcher and Hunt the wave-induced stress

is only finite in the inner region of O(∆), while it becomes vanishingly small

in the outer region. Observations of the Reynolds stress of flow over a hill

indeed show that this quantity is only finite in the inner region. The standard

mixing length model disagrees with these observations because this model

shows considerable Reynolds stresses far away from the surface (cf. Belcher

and Hunt, 1993). The profile of the wave-induced stress was also measured for

airflow over moving water waves in an experiment performed in the Marseille

wave tank by Mastenbroek et al (1996). In this case the wave-induced stress

was also found to be vanishingly small over a large part of the airflow giving

some support, but not in a convincing way, that ordinary mixing length

models are not adequate over water waves.

An important question to ask now is what is the role of the critical layer

in the context of the Belcher and Hunt model for turbulent flow over gravity

waves? Returning to Fig. 3.4, in addition to the curve that gives the depen-

dence on the dimensionless depth of the inner layer kzt as function of the

dimensionless phase speed c/u∗, also the dimensionless critical height kzc is

shown. For a wide range of phase speeds, 1 < c/u∗ < 25, the critical layer

is inside the inner region z < zt. This implies that effects of turbulence are

expected to be important near the critical layer, except for the fast moving

waves with dimensionless phase speeds larger than 25. Supported by the nu-

merical work of Mastenbroek (1996), Belcher and Hunt (1998) claim that the

turbulence gives rise to such a large momentum diffusion across the critical

layer that the critical height plays no significant dynamical role. Therefore,
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the wave-induced stress should vanish at the inner layer depth zt and not at

the critical height zc as predicted by Miles’ theory. However, this prediction

of the Belcher and Hunt model seems to be at variance with the direct nu-

merical simulations of Sullivan et al (2000) and with the in-situ observations

of Hristov et al (2003).

The simulations by Sullivan et al (2000) give convincing evidence that

around the critical height a region of closed streamlines (or cat’s-eye pat-

tern) exists. This region was found to be dynamically important, even at low

to moderate values of dimensionless phase speed, 4 < c/u∗ < 12. More im-

portantly, the wave-induced stress showed a dramatic reduction in magnitude

near the critical height. Similarly, for the range 16 < c/u∗ < 40, Hristov et

al (2003) observed a pronounced cat’s-eye pattern around the critical height

where the wave-induced stress showed a jump. These studies seem to suggest

that the critical layer plays an essential role in understanding wave growth

by wind.

It is of some interest to try to understand why results from the Belcher

and Hunt approach are in contrast with the above recent findings on wave

growth. There may be two reasons for this. One point is related to the ef-

fect of turbulence on the critical layer, and the second concerns the relevant

timescale of momentum transport by eddies.

Effects of viscosity (as well as nonlinearity and unsteadiness) on the critical

layer dynamics have been studied in great detail. We concentrate here on

linear theory only. A good overview of effects of molecular viscosity is found in

Drazin and Reid (1981). The relevant evolution equation in case of turbulent

viscosity is given in van Duin and Janssen (1992). It reads in terms of the

stream function Ψ, implicitely defined by u = ∂Ψ/∂z, and v = −∂Ψ/∂x,(
∂

∂t
+ U0

∂

∂x

)
∇2Ψ − d2U0

dz2

∂Ψ
∂x

= ν∇4Ψ + ...... . (3.43)

The left-hand side of this equation is, for normal modes, identical to the

Rayleigh equation (3.15), while in the right-hand side only the most domi-
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nant ’viscous’ term near the critical height has been retained. Hence, when

momentum transport by eddies is important the Rayleigh equation (3.15)

is replaced by a fourth-order Orr-Sommerfeld equation and for finite viscos-

ity the singularity at the critical height is removed. Viscosity then gives rise

to a broadening of the critical layer and the wave-induced stress profile be-

comes smooth across the critical height, rather than showing a sudden jump

as in inviscid theory. However, if the width of the critical layer is small still

considerable variations in wave-induced stress occur near the critical height.

Now, the extent of the broadening of the critical layer can be estimated by

balancing the advective term with the dominant term due to eddy viscos-

ity, assuming that the relevant length scale for estimating gradients is the

distance to the critical height, δ = z − zc. Expanding the mean velocity U0

around the critical height zc, one finds

δ3 =
ν

kU ′
c

(3.44)

which is in accord with the usual scaling that the thickness of the critical

layer is proportional to R−1/3, with R = LU/ν the Reynolds number (Drazin

and Reid, 1981). The difference is, however, that the molecular viscosity is

replaced by the eddy viscosity. For the most important case when the critical

layer is inside the inner layer the eddy viscosity is given by (3.35). For a

logarithmic wind profile one therefore finds

kδ = (κ kzc)
2/3 , (3.45)

which for small critical heights (ie, slow waves) results in much smaller broad-

ening of the critical layer than would result from an estimate using the inner

layer depth. In other words, although the wave-induced stress does not show

a jump at the critical height, the above discussion suggests that even in the

presence of eddies a considerable variation in wave-induced stress is expected

near a height which is tied in with the critical height. For slow waves the

wave-induced stress is expected to vanish at heights much smaller than the

inner-layer depth.
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A second point of concern regarding the Belcher and Hunt approach is

related to the estimation of the time scale of momentum transport by eddies.

In the truncated mixing length modelling discussed so far the turbulent time

scale is taken to be equal to the eddy-turnover time scale given in (3.39).

However, in the context of flow over hills the truncated mixing length mod-

els of Jackson and Hunt (1975) (and as a consequence the one suggested

by Belcher and Hunt (1993)) have been criticized because observations at

Askervein top do suggest a much thinner inner region layer than would fol-

low from Eq. (3.40) (see Beljaars and Taylor, 1989 and Walmsley and Taylor,

1996). The point is that the use of the eddy-turnover time as the time scale

for momentum transport by eddies may give a too short momentum transfer

time scale by an order of magnitude. In order to understand this point, let

us consider the solution of the initial value problem

∂

∂t
U0 =

∂

∂z
ν
∂

∂z
U0

ν
∂

∂z
U0 = u2

∗, z = 1/k, (3.46)

U0(z0) = 0,

with z0 the roughness length and ν = κu∗z, while the initial value follows

from

U0(z, t = 0) = g(z),

where g(z) is arbitrary except that it satisfies the no slip condition at z = z0.

The eddy-turnover time scale (3.39) may be obtained by estimating the

gradient of the wind profile as ∂U0/∂z  U0/z. It should be noted, however,

that for a logarithmic wind profile the gradient is overestimated by an order

of magnitude since for U0 = (u∗/κ) log(z/z0) we have ∂U0/∂z = u∗/κz. As a

consequence, the time scale for momentum transport would become

TM =
κz

∆(z)u∗
, (3.47)
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where now the small parameter ∆(z) = u∗/U0(z). The timescale TM would

only be of comparable magnitude to TL for heights very close to the water

surface, but away from the surface TM >> TL.

The above estimation of the time scale TM is based on a fairly loose

argument. In order to get more confidence in (3.47) we discuss the actual

solution of the initial value problem (3.46). The initial value problem may

be solved by means of the method of separation of variables, and a solution

is found in terms of Bessel functions. The resulting eigenvalue problem gives

rise to two types of modes. The first kind is damped with a time scale that

corresponds to the usual eddy-turnover time (3.39). For large times these

modes are heavily damped and therefore do not contribute to the solution.

Note that for small roughness the damping rate of these modes does not

depend on the roughness length, and therefore, these modes do also exist

in homogeneous flows. The second kind of mode only arises in flows with a

boundary layer and therefore depends on the surface roughness. For small

roughness (i.e. small compared to the wave length) the damping rate of these

modes corresponds to the time scale TM of Eq.(3.47) and are therefore weakly

damped. Hence, for large times the modes of the second kind will dominate

the solution of the initial value problem (3.46). In other words, the time scale

for momentum transfer is indeed given by Eq.(3.47).

Now using TM as a measure for the momentum transfer time scale by

eddies, it is suggested that mixing length modelling is valid if TM < TA. This

condition is satisfied in a thin layer above the water surface with thickness

zt given by

kzt =
2κu∗∆(zt)
| U0(zt) − c | . (3.48)

Hence, with the use of TM , the inner region becomes much thinner. This is

illustrated by Fig 3.4 where we have shown the thickness of the inner layer

according to the estimate (3.48), which can be compared with the proposal of

Belcher and Hunt, Eq.(3.40). From Fig 3.4 it is clear that according to (3.48)
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the critical layer plays a more prominent role in the problem of the growth

of waves by wind. For c/u∗ > 5 − 10 the wave-induced stress will show a

jump near the critical layer as the inner layer depth follows the critical layer

closely.

We conclude from the above discussion that in particular the issue of

the momentum transport time scale may bridge the gap between the results

found by Belcher and Hunt (1993, 1998) and the recent findings by Sullivan

et al (2000) and Hristov et al (2003). The implication is that for dimension-

less phase speeds c/u∗ larger than 10 the critical layer mechanism plays a

prominent role in understanding the growth of waves by wind. Note that

this conclusion can also be reached by applying the scaling relation (3.48) to

the Reynolds equation (3.33) and to lowest significant order the boundary

value problem (3.15) involving the singular Rayleigh equation will be recov-

ered. Finally, it is of interest to study what happens for really slow waves,

1 < c/u∗ < 5. In those circumstances the critical layer is well inside the inner

region so one would expect that effects of turbulence are relevant. However,

for slow waves there are considerable complications regarding the physics of

wind-wave generation. For example, effects of molecular viscosity in the air

may be relevant, as follows for instance from the work of Brooke Benjamin

(1959), Valenzuela (1976), Kawai (1979) and van Gastel et al (1985). In addi-

tion, short gravity waves extract a considerable amount of momentum from

the air just above the surface, and hence the presence of these short waves

may have a considerable impact on the production of air turbulence and

hence on the size of the eddies. In analogy with the damping effect of viscos-

ity on the turbulent eddies (van Driest, 1951) this may result in a reduced

mixing length. Close to the surface the mixing length could therefore have

been overestimated considerably resulting in even larger momentum transfer

time scales and an even thinner inner region.

Although the quasi-laminar approach of Miles has been severely criticized
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in the past, the present results seem to indicate that in a large domain above

the water surface the wave-induced air motion may indeed be regarded as

approximately inviscid. Hence, for c/u∗ > 10 Miles’ mechanism seems to

provide an adequate model. For small dimensionless phase speed the situation

is less clear. The inviscid Miles model, although perhaps formally not valid

for slow waves, gives good agreement, regarding the growth rate of waves

by wind, with the observations shown in Fig 3.3. From a pragmatic point of

view it is therefore tempting to apply the critical layer model even for slow

waves. Although these slow waves are not relevant for wave prediction, they

are important for estimating the slowing down of the wind by growing waves

because these waves have the largest growth rate. An accurate estimation of

wave growth of the slow waves is important and Miles critical layer model

seems to do an adequate job.

3.3.2. Effects of gustiness on wave growth.

In section 3.2 we have seen that within a factor of two there is a fair agreement

between Miles’ quasi-laminar theory and field observations of Snyder et al

(1981) and Hasselmann and Bösenberg (1991). However, in the low-frequency

range with waves having a phase speed that is about the same as the wind

speed at 10 m height, theory predicts energy transfer rates that are smaller

than measured values.

As we have seen in the previous subsection, attempts to include small-

scale turbulence have not resulted in increased energy transfer rates. On the

other hand, as will be seen in a moment, large scale turbulence (or gustiness)

may have a considerable impact on wave growth. Gustiness requires, however,

a different treatment than small scale turbulence since the gusts have time

scales that are much longer than the typical wave time scale or the momentum

transfer time scale TM of Eq.(3.47).

Let us first describe what is meant by gustiness in the context of wind-

wave growth. The atmosphere shows variability basically at all scales, rang-
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ing from micro scale turbulence to synoptic scales. Numerical models of the

atmosphere model synoptic variability well, but because of finite spatial res-

olution there is a lack of variability at the small scales. Likewise, when doing

observations of winds and waves we tend to characterize the atmospheric

state by average quantities such as a 20 min average wind speed, but from

experimental practice we know that there may be considerable fluctuations

around the mean wind speed. The size of these fluctuations depends on the

air-sea temperature difference, and we will refer to the unresolved part of the

atmospheric variability as gustiness.

In order to investigate the impact of gustiness on wave growth it is assumed

that the gustiness time scales are much longer than the wave time scale, 1/ω,

or the momentum transfer time scale TM . As a consequence, the surface

wind is in quasi-equilibrium and the fluctuations are so slow that in good

approximation the wind profile is logarithmic. The gustiness is then reflected

by means of the variability in the surface stress or friction velocity.

Note that the present approach differs from the attempt made by Niko-

layeva and Tsimring (1986) to study effects of gustiness on wave growth.

These authors applied a so-called kinetic model for fluid turbulence, pro-

posed by Lundgren (1967), to the problem of wind-generated water waves

and a substantial enhancement of energy transfer due to gustiness was found,

in particular for the low-frequency waves. Gustiness was modelled by means

of a height-independent perturbation of the wind profile. Therefore, in partic-

ular near the surface this will result in large deviations from the equilibrium,

logarithmic profile. This seems unlikely because the small-scale turbulence

has ample time to restore the equilibrium profile.

In order to appreciate the effects of gusts on wave growth, the Miles theory

of wind-wave generation is extended by allowing the mean air velocity profile

to be a slowly varying function of time. By means of an elaborate analysis

it can be shown that Miles’ expression for growth of waves by wind still
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holds. Details of this analysis, which relies on the use of the multiple time

scale method, are given in Janssen (1986). The rate of change of the wave

spectrum F due to wind is then

∂

∂t
F (ω) = γF (ω), (3.49)

where we recall that γ, the growth rate of the wave energy, is twice the growth

rate of the amplitude:

γ = −πεc W ′′
0c

|W ′
0c |

| χc |2 . (3.50)

The dimensional considerations of § 3.2 (see also Miles, 1957) have shown that

the growth rate of gravity waves due to wind only depends on two parameters,

namely the dimensionless phase speed c/u∗ and the Charnock parameter αc,

or alternatively, the profile parameter Ωm = κ2gz0/u
2∗ as introduced by Miles

(1957). Therefore,

γ = γ(u∗/c,Ωm).

In the context of our model, gusts correspond to variability in u∗. Hence, one

may regard the friction velocity as a stochastic variable with a steady part

ū∗ and a fluctuating part δu∗. Thus,

u∗ = ū∗ + δu∗ (3.51)

so that

γ = γ̄ + δγ. (3.52)

Note that the assumed vanishing of the ensemble average of the fluctuations

in the friction velocity does not imply that the ensemble average 〈δγ〉 is zero.

The reason for this is that the growth rate γ is always positive. This is,

in particular, relevant for those low-frequency waves whose phase speed is

close to the wind speed. For these long waves a positive fluctuation in u∗
will result in enhanced wave growth but a negative fluctuation will not give
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rise to diminished growth. The growing waves act as a rectifier and therefore

gustiness may have a considerable impact on wave growth.

Consider now the solution of the stochastic equation

∂

∂t
F = (γ̄ + δγ)F. (3.53)

When the correlation time τc of the random process δγ is small compared to

the relevant time scale of spectral change, the evolution equation of the en-

semble average of the wave spectrum 〈F 〉 may be readily obtained. Normally,

that is when the random process depends in a smooth way on the random

variable, the effect of the random fluctuations on the mean spectrum is only

quadratic in the amplitude of the fluctuations. However, growing waves act

as a rectifier hence already an effect linear in δγ is found. Thus, in lowest

order one finds

∂

∂t
〈F 〉 = 〈γ̄ + δγ〉〈F 〉, (3.54)

Therefore, to a good approximation the effect of gusty winds on wave evo-

lution can be taken into account by determining the average of the growth

rate where the weight is given by the probability distribution function of

the gusts. There is ample evidence (see for example Smith et al, 1990) that

fluctuations of wind speed U10 and direction around an average value are

well represented by a Gaussian distribution. Not much is known about the

distribution function for the friction velocity, but it can be shown that, if the

fluctuation levels are small, the probability distribution function (pdf) for u∗
is close to a Gaussian as well. Hence, introducing the gustiness level σu, the

pdf for the friction velocity becomes

pu∗(x) =
1

σu

√
2π

exp

{
−(x− ū∗)2

2σ2
u

}
, (3.55)

so that the average of the growth rate becomes

〈γ〉 = 〈γ̄ + δγ〉 =
∫ +∞

−∞
dx γ(x/c,Ωm) pu∗(x). (3.56)
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To quantify the effects of gusts we shall use a relatively simple fit of the

growth rate, valid for ocean waves. To that end we take the empirical fit by

Snyder et al (1981) which was adapted by Komen et al (1981) to accomodate

friction velocity scaling. It reads

γ

ω
= max

{
0.2ε

(
28
u∗
c

− 1
)
, 0
}
.

It is important to note that the empirical fit has a positive growth rate for

28u∗/c > 1, while the growth rate vanishes in the opposite case. As seen in

Fig. 3.5 the growth rate shows a kink at 28u∗/c = 1.

Substitution of the above expression for the growth rate into (3.56) results

in the average growth rate

〈γ〉
εω

= 0.2
∫ ∞

x0

dx pu∗(x)
[
28
x

c
− 1

]
,

where x0 = c/28. Evaluation of the integral gives the final result

〈γ〉
εω

= 0.2
[

28σu

c
√

2π
exp

{
− 1

2σ2
u

(ū∗ − c/28)2
}

+

1
2

(
28ū∗
c

− 1
)(

1 − erf
(
c/28 − ū∗
σu

√
2

))]
, (3.57)

where

erf(z) =
2√
π

∫ z

0
dt e−t2

is the error function. Eq.(3.57) shows that, as expected, the effect of gustiness

on wave growth is proportional to the standard deviation σu of the friction

velocity. It is therefore rather large, especially for the low-frequency waves

with u∗/c around 1/28. This is illustrated in Fig. 3.5 where we have plotted

the growth rate as function of ū∗/c for a fluctuation level σu/ū∗ of 0.2 while

as a reference also the growth rate in the absence of gustiness is shown. It is

clear from the figure that in particular the low-frequency waves are affected

by the variability in the wind. Hence, in the later stages of wave growth, which

is determined by the growth of the low-frequency waves, wave evolution is

expected to be affected by gustiness.
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Fig. 3.5. Growth rate for a gustiness level σu/ū∗ = 0.2 (dashed line). The thick solid line

describes wave growth in the absence of gustiness while the thin line corresponds to the

approximation (3.58).

In general, it is not straightforward to obtain a simple expression for the

effect of gusts on wave growth. A possible line of attack is to start from

(3.55) and (3.56) and to derive an expansion for small gustiness levels σu.

This requires differentiation of the growth rate γ(u∗/c) with respect to u∗.

As shown by Miles (1997) this can be avoided by evaluating the exponential

integral using Gauss-Hermite quadrature. One obtains (n=2 in Abramowitz

and Stegun, 1964, § 25.4.46) the extremely simple form

〈γ〉 =
1
2
{γ(ū∗ + σu) + γ(ū∗ − σu)} , (3.58)

in other words, gustiness effects follow by taking the average of the growth

rate at ū∗+σu and at ū∗−σu. It can be checked, as illustrated in Fig. 3.5, that

the approximation (3.58) already gives the essential effect. If higher accuracy

is needed one may use an approximation involving three zeros of the Hermite

polynomials (Miles, 1997).

Note that with this approach it is also in principle possible to take the

mesoscale variability of the wind field into account. Therefore, both the tem-

poral and spatial variability of the wind field can and should be treated,
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since wave height results may be affected significantly by taking effects of

gusts into account. However, this assumes a good knowledge of the variabil-

ity of the wind field which to a large extent depends on synoptic conditions.

An easy way out of this is to increase the spatial resolution of a wave predic-

tion system and its forcing wind field, because in this way wind variability is

automatically included. But this is an expensive solution which presently is

not feasible in the context of global modelling, so it is expected that for the

near future one has to rely on a parametrisation of gustiness.

A recent account of the impact of wind variability on wave prediction

results was given by Abdalla and Cavaleri (2002). They followed a somewhat

different approach to study effects of gustiness. Wind variability was modelled

in a realistic manner by adding to the mean wind speed every time step

of 15 min a perturbation which was randomly drawn from the Gaussian

distribution of the wind. Correlations in time were introduced to ensure the

right temporal coherence so that the frequency spectrum of the perturbations

agrees with observations. No correlation in space was introduced because the

spatial resolution of the numerical wave prediction model was in the range of

25 − 50 km. The gustiness level was obtained from an observed correlation

between the standard deviation of the wind and the air-sea temperature

difference. Simulations with a single grid point model showed a large, realistic

variability in the growth curves for significant wave height (cf. also § 5.3).

Simulations for the North Atlantic area showed considerable impact on wave

height in particular regarding the extreme wave height statistics.

Finally, effects of gusts on wave growth are in particular relevant in the

later stages of wave growth. Therefore, it seems to be important to analyze

observations of, for example, fetch-limited wave growth in terms of the gusti-

ness level. We recall Fig. 2.4b which shows fetch-limited wave variance data

stratified against stability. In particular for large fetches there is a discrepancy

between stable and unstable groups. It is expected that the introduction of a
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gustiness level parameter into the analysis of wave observations may explain

to a large extent this discrepancy.

3.4. Quasi-linear theory of wind-wave generation.

In the previous sections we have explored some of the linear theories of wind-

wave generation. Normally, linearisation is a good approximation in ocean

wave dynamics. In case of Miles’ theory we encounter, however, a complica-

tion because the dynamics inside the critical layer is not described by linear

theory. This follows from the δ-function behaviour of the vortex force dτw/dz

which implies that in linear theory the critical layer is regarded to be in-

finitesimal, although in practice the width of this layer will be finite. Inside

the critical layer a patttern of closed streamlines will form, the so-called

Kelvin’s ’cats-eyes’ pattern (cf. Lighthill, 1962, or Phillips, 1977). Neglecting

turbulence for the moment, the closed streamline pattern will give rise to

a smoothing of the vorticity distribution inside the critical layer in such a

way that for large times the curvature of the wind profile vanishes. Hence,

in an inviscid fluid, stabilisation of a single wave results and the momentum

transfer from air to the gravity wave would be quenched. In the context of

the generation of a single wave by wind this important result was obtained by

Reutov (1980) who exploited an analogue with the problem of the resonant

interaction of plasma waves and electrons. The nonlinear evolution equation

for the amplitude of the water wave was solved numerically and showed the

usual exponential growth for small times followed by a damped oscillation

around the saturation level. This example of the evolution of a single wave

in an inviscid fluid illustrates that it is important to investigate the possible

consequences of wave-mean flow interaction on the evolution of surface waves.

In this section we will present some of the results for a continuous spectrum of

surface gravity waves. It is emphasized, however, that for a sufficiently broad

spectrum, wave-mean flow interaction is of a different nature because we are

dealing with a continuum of critical layers with random phase. Because of
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the random phase approximation, neighbouring critical layers will counteract

each other so there will be a considerable reduction of the impact of critical

layer dynamics on the evolution of the mean wind and surface waves. The

resulting effect will be determined in § 3.4.2. First we will discuss the critical

layer dynamics for the case of an inviscid fluid, at the same time providing a

physical picture of Miles’ instability mechanism.

3.4.1. Critical layer dynamics.

Let us discuss in some detail what is happening near a critical layer in an

inviscid fluid, confining ourselves to the case of the propagation (in one di-

mension only) and growth of a single gravity wave. For a more detailed math-

ematical discussion we refer to the original paper by Reutov (1980).

The equations of motion of a two-dimensional inviscid incompressible fluid

may be written in the following concise manner:

d

dt
ζ = 0, ζ =

(
∂2

∂x2
+

∂2

∂z2

)
Ψ, (3.59)

where Ψ is the stream function, defined in such a way that u = ∂Ψ/∂z,

and w = −∂Ψ/∂x, and ζ is the vorticity. Furthermore, d/dt denotes the

rate of change moving with the fluid, d/dt = ∂/∂t + u.∇. Therefore, in

two dimensions vorticity is conserved when following a fluid element. Hence,

vorticity may be used to label such a fluid element.

As remarked already, the flow inside the critical layer forms a pattern

of closed streamlines, the Kelvin’s ’cats-eyes’ pattern. This pattern may be

obtained as follows. In a frame moving with the speed c of the gravity wave,

the stream function Ψ may be written as

Ψ =
∫ z

zc

dz (U0 − c) +A(z) cos(kx), (3.60)

where the first term corresponds to the equilibrium flow and the second term

denotes the perturbation by the (unstable) gravity wave. Close to the critical
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Fig. 3.6. Sketch of Kelvin’s ’cat’s-eye’ pattern, giving lines of constant stream function

around the critical height. The thick line denotes the separatrix between critical layer

(trapped) fluid elements and outer layer (untrapped) fluid elements.

height zc one may perform a Taylor expansion with the result

Ψ =
1
2
y2U ′

0c +Ac cos(kx), (3.61)

where y = z − zc and Ac is the value of the amplitude at the critical height.

The streamlines now follow from the condition that Ψ = Ψ0 (=constant), or,

y = ±
√

2
U ′

0c

(Ψ0 −Ac cos(kx)), (3.62)

and the resulting streamline pattern, the ’cats-eyes’, is given in Fig. 3.6.

In an inviscid fluid, the fluid elements follow the streamlines and, since we

have restricted ourselves to the two dimensional case, vorticity is conserved

for every fluid element. It is thus of interest to determine their trajectories.

These follow from Hamilton’s equations

dx

dt
= u =

∂

∂z
Ψ;

dz

dt
= w = − ∂

∂x
Ψ. (3.63)

Using the approximate expression for the stream function (3.61) and elimi-

nation of z gives an evolution equation for x

d2x

dt2
= kU ′

0cAc sin(kx), (3.64)
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which may be solved exactly in terms of elliptic functions, hence the time

evolution of the fluid elements for a steady gravity wave may be determined.

Two cases are of special interest to discuss, namely the case of fluid elements

at the centre of the cat’s-eye, kx = π, ànd the case of fluid elements close to

the separatrix. Close to the centre of the cat’s-eye the sine-function in (3.64)

may be linearized and one finds

d2x

dt2
= −kU ′

0cAc(kx− π), (3.65)

hence the fluid elements oscillate with angular frequency

ωB = k
√
U ′

0cAc, (3.66)

where it was tacitly assumed that the shear in the mean velocity at the critical

height is positive. Note that in plasma physic ωB is usually called the bounce

frequency or the trapping time, that is the time it takes to capture a particle

in a potential well. Hence, near the centre of the cat’s-eye, fluid elements

execute an oscillation with a frequency that depends on the amplitude of the

surface waves. In contrast, close to the separatrix it takes an infinitely long

time for the fluid elements to cross the cat’s-eye, as one would expect from a

resonance phenomenon. In order to see this, Eq.(3.64) is multiplied by dx/dt

and integrated with respect to time to obtain the conservation law

1
2

(
dx

dt

)2

+ V(x) = const, (3.67)

where the ’potential’ V(x) = AcU
′
0c cos kx. We remark that with dx/dt 

yU ′
0c, (3.67) is identical to (3.61). The shape of the potential is given in Fig

3.7 and we note that fluid elements at the centre of the cat’s-eye correspond

with particles at the bottom of the potential well, whilst the fluid elements

near the separatrix of Fig 3.6 correspond to the particles at the top of the

potential well, and it is well-known that it takes a very long time for these

particles to travel from one top to the next one. Therefore, the oscillation

frequency of the fluid elements inside the cat’s-eye depends on the position

in the cat’s-eye.
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This property furnishes an efficient mechanism of the stabilization of a

water wave which grows due to shear flow instability. We have seen in section

3.1 that the growth rate of Miles’ instability is proportional to the curvature

in the equilibrium wind profile, which is just the gradient of the equilibrium

vorticity with respect to height. At the initial stage of the instability, the

width of the cat’s-eye, being proportional to the square root of the amplitude,

will be small and therefore the evolution in time of the amplitude of the

gravity wave will be determined by the fluid elements just outside the cat’s-

eye region. The reason for this is that these are the fluid elements that are in

resonance with the wave because their travel time across the cat’s-eye is very

long, and for this reason these fluid elements take care of the momentum

transfer from mean flow to the gravity wave. In order to understand this

better we follow Lighthill (1962) by calculating the momentum transfer in

the following manner. The momentum equations for an inviscid fluid may be

written as

∂

∂t
u = −ζ × u −∇

(
p

ρ
+

u.u
2

)
, (3.68)

where ζ = ∇ × u is the vorticity and ζ × u is the vortex force. In order

to determine how much momentum the mean airflow might possibly loose

Fig. 3.7. Sketch of the potential function of (3.67) corresponding to the Kelvin’s ’cats-eye’

pattern of Fig. 3.6.



THE INTERACTION OF OCEAN WAVES AND WIND 123

(3.68) is averaged over a wave length to obtain for the rate of change of the

mean air speed U0

∂

∂t
U0 = −ζw,

hence the mean momentum loss is determined by the average vortex force.

Since ζ consists of a mean part ζ0 and a fluctuation ζ1 and since for a parallel

flow w only has a fluctuating part we find

∂

∂t
U0 = −ζ1w.

and ζ1 may be obtained from conservation of vorticity in a two-dimensional

flow, cf. Eq.(3.59). Separating in mean and fluctuating parts we find from

(3.59) in the linear approximation

ζ1 = − w

ikW

∂

∂z
ζ0, (3.69)

where, as before, W = U0 − c is the Doppler shifted air velocity. The mean

vortex force now becomes

ζ1w =
i

k
| w |2 ∂

∂z
ζ0

(
1
W

− 1
W ∗

)
, (3.70)

and with the calculus for the singular function 1/W , developed in section

3.1, we have

ζ1w = −2π
k

| w |2 δ(W )
∂

∂z
ζ0, (3.71)

and, because of the appearence of the δ-function, only the resonant fluid

elements take part in the momentum transfer from mean flow to gravity

waves.

In passing, it is remarked that the mean vortex force is proportional to the

gradient of the mean vorticity, that is to the curvature of the wind profile. As

a consequence, the rate of change of the mean air flow is proportional to the

curvature of the wind as well. In the context of a spectrum of gravity waves,

this result will be discussed in somewhat more detail in the next subsection.
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Thus far we have made plausible that in the initial stages of wave growth

the evolution in time of the wave energy is determined by the resonant fluid

elements just outside the cat’s-eye. However, in the course of time the width

of the cat’s-eye will grow trapping more and more resonant fluid elements.

This trapping mechanism will eventually lead to stabilization of the insta-

bility because fluid elements, having their own vorticity, will oscillate more

rapidly near the centre of the cat’s-eye than at the border. Hence, after a

sufficiently long time, a vigorous mixing of the vorticity will occur in such

a way that the vorticity becomes an erratic function of position. In a coarse

grain sense vorticity may then be regarded a constant in the cat’s-eye region,

and since a constant vorticity means zero curvature of the wind profile, the

momentum transfer from mean flow to the wave is quenched. The mixing

of vorticity inside the cat’s-eye occurs on the time scale of the inverse of

the bounce frequency ωB (Eq.(3.66)) and when the waves are infinitessimally

small the mixing is not effective. However, in the course of time the waves

grow exponentially resulting in an increasing bounce frequency. Stabilization

now occurs when the bounce frequency matches the linear growth rate γ,

which is proportional to the density ratio ε, or,

ωB ∼ γ = O(ε). (3.72)

As the bounce frequency depends on the square root of the amplitude of the

waves, the consequence is that the saturation amplitude of the water waves

scales with the square of the density ratio, and is therefore quite small.

Using matched asymptotic expansion techniques, Reutov(1980), was able

to give a detailed mathematical description of the mixing of vorticity inside

the critical layer and he found the saturation level given in (3.72). The work

of Reutov has resulted in a considerable step forwards in the understanding

of the critical layer dynamics in growing water waves and it is a pity that this

work is hardly known in the wave community. Unfortunately, the resulting

saturation level of the water waves is very small, and therefore the question
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is whether the mixing of vorticity is relevant for ocean wave growth. As

already pointed out before hand, in practice we deal with a spectrum of

waves with random phase and therefore we have a continuum of critical layers

with random phase which will tend to counteract each other. In that event a

considerable reduction of the effect of critical layer dynamics on the evolution

of surface gravity waves is expected. The resulting effect will be determined

in the following subsection.

3.4.2. Quasi-linear theory; many waves.

Gravity waves receive energy and momentum from the airflow and one should

expect that this results in a slowing down of the airflow. In other words,

surface gravity waves and their associated momentum flux may contribute in

controlling the shape of the wind profile over the oceans. The common belief

in the field was (Phillips, 1977) that air turbulence was dominant in shaping

the wind profile and the effect of surface gravity waves was considered to

be small. However, Snyder et al (1981) found that the momentum transfer

from wind to waves might be considerable, in particular for young windseas,

because the related wave-induced stress is a substantial fraction of the total

stress in the surface layer. There may, therefore, be considerable deviations in

the velocity profile over sea waves from the usual profile of turbulent airflow

over a flat plate. One of the consequences is that the drag coefficient at 10 m

height should depend on the sea state. Experimental evidence for this was

found by Donelan (1982) and later confirmed by Maat et al (1991) and Smith

et al (1992) during the HEXOS campaign.

The implication is that a theory had to be developed that takes the con-

sequences of growing waves on the mean flow into account. This theory was

independently obtained by Fabrikant (1976) and Janssen (1982), while also

Miles (1967) studied in this context wave-mean flow interaction. The first two

authors utilized an analogy that exists between resonant wave-mean flow in-

teraction in a fluid and the interaction of plasma waves and particles.
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The linear interaction of plasma waves with particles was first succesfully

investigated by Landau (1946). The rate of change of the energy of the parti-

cles was found to be proportional to the derivative of the particle distribution

function at the point of resonance, that is where the particle velocity matches

the phase velocity of the plasma wave. For a plane parallel flow, the energy

increment is, as we have seen, proportional to the derivative of the vortic-

ity at the critical height. Also, in a plane parallel flow, a pattern of closed

streamlines is found near the point of resonance, Kelvin’s ’cat’s-eye’ pattern,

and the same feature is found in the phase space orbits of trapped particles

in a given monochromatic wave.

The linear theories of resonant interaction of gravity waves with a flow

and plasma waves with particles are only valid on a short time scale. Be-

cause of the exponential growth of the waves, nonlinear effects may become

important in the course of time. The study of nonlinear effects on the in-

teraction of plasma waves and particles was started by Vedenov et al (1961)

and Drummond and Pines (1962). One of the main results of these investi-

gations was that the plasma waves modify the particle distribution function

in such a way that the complete system, that is waves and modified parti-

cle distribution, stabilizes for large times. Later these results were extended

to include three-wave interactions and nonlinear wave-particle interactions

(see, e.g., Davidson, 1972). The plasma waves were assumed to have a suffi-

ciently broad spectrum such that the random phase approximation applies.

This formalized the picture of a spectrum determined by an energy balance

equation, where the shape of the wave spectrum is determined by several

processes such as a generation term, a nonlinear interaction term, and a dis-

sipation term. Incidentally, in the field of surface gravity waves development

of the nonlinear theory took place in reversed order. Phillips (1960) and Has-

selmann (1960, 1962) initiated the theory of resonant four-wave interactions,

while much later the possible relevance of wave, mean-flow interactions was
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recognized by Fabrikant and Janssen.

Let us now return to the problem of the effect of water waves on the mean

flow. A multiple time scale technique is used to obtain dynamical equations

for the slowly varying energy density of the water waves and the air velocity.

The growth of the water waves due to the atmospheric input occurs on a long

time scale since this energy transfer is proportional to the ratio of air density

to water density, which is small. Hence, there are at least two time scales,

namely one related to the relatively rapid water wave oscillations and one

of the order of the energy transfer time to the water waves. Another reason

for the use of the multiple time scale method is that an iterative solution of

a set of nonlinear equations (in this case the Euler equations plus boundary

conditions) usually gives rise to secular terms in time. The introduction of

different time scales then provides freedom to prevent secularity. In fact,

the condition resulting from the elimination of secularity gives rise to the

evolution equations for the slow time dependence of the wave energy and

the air velocity. For a lucid account of the multiple time scale method please

consult Whitham (1974) or Davidson (1972). In addition, we are concerned

with a statistical description of the interaction of air and water waves, that is

we consider the evolution in time of ensemble averages of quantities such as

the energy density. To this end, the nonlinear set of equations (3.1) is solved

iteratively by means of a systematic expansion of the relevant quantities in

powers of a small parameter. Finally, averaging is applied to obtain equations

for the averaged quantities. Thus a weakly nonlinear system is considered for

which the random-phase approximation is assumed to be valid (Hasselmann,

1967, Davidson, 1972). Note that the random-phase approximation implies

that the wave spectrum should be sufficiently broad, a condition which can

be understood on intuitive grounds. Another reason for a sufficiently broad

spectrum is to avoid the trapping phenomenon discussed in the previous

subsection. Trapping of fluid elements requires a more complex treatment.
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It is expected that there are at least two time scales in the problem de-

termined by the ratio of air to water density ε. In order to proceed we also

need to choose the order of magnitude of the amplitude of the oscillations.

A convenient choice would be ε
1
2 . This choice follows from Stewart (1967),

who observed that a substantial amount of energy is contained in the water

waves, or

ρw〈w2〉 = O(ρaU
2
10).

Here, the angle brackets denote as usual an ensemble average. Consequently,

〈w2〉 = O(εU2
10), suggesting that the amplitude of the waves is O(ε

1
2 ). This

choice of small amplitude parameter is, however, not entirely appropriate,

because the consequence is that formally effects of nonlinear wave-wave in-

teractions can be ignored. Anticipating the main result of the next Chapter,

namely that the nonlinear four-wave interactions are O(N3) one finds that if

the wave variance (and hence the action density N) is O(ε), then the nonlin-

ear transfer is found to be O(ε3) while the wind input is O(εN) = O(ε2). In

stead, insisting on a balance between wind input and nonlinear interactions

a more appropriate order of magnitude for the amplitude of the waves is ε
1
4 .

This is formally substantially larger than suggested by Stewart (1967), but

results regarding wave, mean-flow interaction are not really different from

the ones obtained by Janssen (1982) who used ε
1
2 as a small amplitude pa-

rameter. The scaling relation is only relevant when one is interested in the

dependence of the wave spectrum on the air-sea density ratio. Hence, we

anticipate that

〈w2〉 ∼ ε
1
2 , (3.73)

and it is, therefore tempting to expand the surface elevation, the velocity and

the pressure in powers of ∆ = ε
1
4 . Thus,

η =
∑
l=1

∆lηl, uw =
∑
l=1

∆luw,l, pw =
∑
l=1

∆lpw,l,



THE INTERACTION OF OCEAN WAVES AND WIND 129

(3.74)

ua = U0 +
∑
l=1

∆lua,l, pa = ε
∑
l=1

∆lpa,l.

We remark that the series for the air pressure starts with a term O(ε) since

pa = O(ρaU
2
a ). (3.75)

Furthermore, we note that we anticipate much larger amplitude waves in case

of a continuous wave spectrum compared to the single wave case (cf. section

3.4.1).

A straightforward iterative solution of a set of equations may, as already

pointed out, give rise to secular terms in time in the series solution (Davidson,

1972) so that small terms grow indefinitely and may become as large as the

lowest order solution. This is clearly not desirable, and for this reason we

introduce different time scales such that there is sufficient freedom to prevent

secularity. To that end it is sufficient to assume that average quantities such

as 〈w2〉, are allowed to depend on the time scales τ0 = t, τ2 = ∆2t, ... . Hence,
∂

∂t
〈w2〉 =

∑
l=0

∆2l ∂

∂τ2l
〈w2〉. (3.76)

The τ0 time scale takes account of the relatively rapid wave oscillations,

while growth of the waves due to the atmospheric input occurs on the τ4

scale, since the energy input is proportional to ε = ∆4. By construction,

four wave nonlinear transfer occurs on the τ4 scale as well. The intermediate

time scale is needed to accomodate for the fairly rapid nonresonant three

wave interactions and to accomodate for the feedback of the growing ocean

waves on the wind profile. We emphasize that it is the condition resulting

from the elimination of secular behaviour on the short time scale τ0 that

gives us the slow time dependence of the wave spectrum and the consequent

feedback on the mean air velocity U0. This then assures momentum and

energy conservation at the air-sea interface.

The discussion of the effect of gravity waves on the mean flow is limited

to the case of constant density in air and water. Extension to the case of
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stratification in the atmosphere is, in principle feasible, but has not been

done yet. Likewise, only one-dimensional propagation will be studied, and

therefore, possible interesting couplings between wave growth and vortex

stretching will not be explored here.

Neglecting currents in the water, the water motion is assumed to be ir-

rotational. For simplicity, we only consider the deep water case so that the

water velocity vanishes at z → −∞. The basic equations for air and water

become

air : ∇.u = 0,
d
dt

u = − 1
ρa

∇p + g, (z > η(x, t))

(3.77)

water : ∇2φ = 0, (z < η(x, t))

where we note that the water velocity may be derived from a potential φ,

uw = ∇φ, since the water is irrotational. For a divergence free flow this then

results in Laplaces’s equation for the potential.

The motion of the interface is given by the kinematic condition(
∂

∂t
+ u.

∂

∂x

)
η = w, z < η(x, t), (3.78)

while at the interface we have continuity of the pressure

pa = pw, z = η(x, t). (3.79)

For an irrotational flow the pressure may be obtained from Bernoulli’s law,

which follows from an integration of the Euler equations over depth. Thus

the water pressure pw at the surface is given by

pw = −ρw

(
∂

∂t
φ+

1
2
(∇φ)2 + gη

)
, z = η(x, t). (3.80)

The potential equation for water may be solved relatively easily by means of

Fourier transformation. With the boundary condition that φ → 0, z → −∞,

we have

φ =
∫
dk φ̂(k, t) exp(ikx+ | k | z). (3.81)
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In addition writing for η and pa

η =
∫
dk η̂(k, t) exp(ikx),

(3.82)

pa =
∫
dk p̂a(k, t) exp(ikx),

we obtain from (3.78)-(3.80) the following equation for the Fourier transform

of η:

∂2

∂t2
η̂ + σ2η̂ = − | k | p̂a/ρw +NL, z = 0, (3.83)

where σ2 = g | k | and NL represents all nonlinear terms, including three

and four wave interactions, which will be discussed in the next Chapter. Since

only the lowest significant order of the physical processes, such as wind input,

nonlinear transfer and wave dissipation needs to be considered we can study

them in isolation. In the present context the term NL will be dropped. Using

the series given in (3.74) and the multiple time scale expansion (3.76) we

obtain from (3.83) to lowest significant order in ∆

∂2

∂τ2
0

η̂1 + σ2η̂1 = 0, (3.84)

i.e. on the fast time scale we deal with free gravity waves because the air

pressure term is, as already noted in (3.75), of O(ε). One may proceed in

this fashion to obtain the effect of nonlinearity and the atmospheric input

on the evolution in time of η̂. However, we are not interested in the detailed

evolution of the amplitudes and phases of the surface waves. In practice,

a statistical description of the sea surface suffices since, at best, the wave

spectrum is needed. Noting that the energy of a harmonic oscillator is given

by

F =
1
2
ρw

k

(
| ∂η̂
∂t

|2 +σ2 | η̂ |2
)
, (3.85)

we obtain from Eq.(3.83) the energy balance equation

∂

∂t
F = −1

2
(p̂∗a∂η̂/∂t+ c.c.) , (3.86)
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where, as usual, the asterix and c.c. denote complex conjugation. In lowest

order we deal with free gravity waves and the energy density of the waves

may be simplified considerably. Thus,

F = ∆2F2 + ∆4F4 + ... , (3.87)

where

F2 = ρwg | η1 |2 . (3.88)

Of course, on the fast time scale τ0 the energy density of the waves is con-

served, i.e. ∂F2/∂τ0 = 0, and the slow time dependence of F2 follows from

the requirement that there be no secularity in F4 on the τ0 scale, hence

∂

∂τ4
F2 = −1

2

(
p̂∗a,1∂η̂1/∂τ0 + c.c.

)
. (3.89)

According to (3.89) the energy density F2 changes in time owing to linear

effects only, because , as it will turn out, its right-hand side is proportional to

the wave spectrum multiplied by twice the growth rate (for the amplitude)

of linear theory (cf. 3.13, 3.21 and 3.32). However, owing to the resulting

energy transfer from wind to waves, the wind profile (and hence the growth

rate) may change in the course of time and it is therefore common to use the

term quasi-linear approximation (Drummond and Pines, 1962; Bernstein and

Engelmann, 1966; Davidson, 1972). Here, we shall only discuss the change of

the wave spectrum owing to the resonant interaction of a single wave with

the mean flow. Multiple wave and mean flow interactions ( e.g. between wave

groups and the wind) will be disregarded as formally their effect is of higher

order in ∆ (Tsimring, 1989).

The next step we have to deal with is to relate the pressure term to the

surface elevation. Since we disregard effects of turbulence for the moment,

the dynamical equations for air read

∇.u = 0,
d

dt
u = − 1

ρa
∇p+ g, (z > η(x, t)), (3.90)
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and for simplicity we write

ua = U + δu, pa = Pa + δpa, (3.91)

where δu and δpa represent the fluctuating parts of the series given in (3.74)

(hence 〈δu〉 = 〈δpa〉 = 0), while U and Pa denote the ”steady-state” parts.

By means of the decomposition (3.91) and ensemble averaging we then obtain

from (3.90) an equation for U

∂

∂t
Uβ +

∂

∂xα
〈δuαδuβ〉 = − 1

ρa

∂

∂xβ
〈Pa〉 + gβ, (3.92)

while for the fluctuation we have

∂

∂t
δuβ +

∂

∂xα
(Uαδuβ + δuαUβ) = − 1

ρa

∂

∂xβ
δpa +

∂

∂xα
Tαβ , (3.93)

where Tαβ = δuαδuβ − 〈δuαδuβ〉. Here the subscripts α and β denote the

various components of the vector quantities U, δu and g, and the summation

convention is assumed. Finally,

∂

∂xα
δuα = 0. (3.94)

Elimination of the pressure fluctuation δpa from (3.92),(3.93), and (3.94)

gives an equation for the vertical displacement of the perturbed velocity, δw:[(
∂

∂t
+ U

∂

∂x

)
∆ − U ′′ ∂

∂x

]
δw =

∂

∂x
(∇ × ∇.T) , (3.95)

where the prime denotes again differentiation with respect to z. In obtaining

(3.95) we have assumed that U points in the x-direction and is a function of

z and t only. Note that the left-hand side operator of (3.95) is nothing but

the Fourier transform of the Rayleigh equation (3.15).

Let us concentrate now on the set of equations (3.92), (3.94) and (3.95).

Eq.(3.92) describes the rate of change of the steady-state velocity U due to

the wave-induced stresses 〈δuαδuβ〉 as the pressure 〈P 〉 follows the hydro-

static law, given by the last equation of (3.2). In order to determine these

stresses we need to solve (3.95). This will be done in an iterative fashion

because the amplitude of the fluctuations is assumed to be small.
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In agreement with (3.74) we expand 〈δuαδuβ〉 in powers of ∆,

〈δuαδuβ〉 = ∆2〈δuαδuβ〉2 + .... , (3.96)

while we also expand the mean velocity U according to

U = U0 + ∆2U2 + .... . (3.97)

Substitution of (3.76),(3.96) and (3.97) in the x-component of (3.92) then

gives the hierarchy of equations

∂

∂τ0
U0 = 0,

∂

∂τ0
U2 = − ∂

∂τ2
U0 − ∂

∂xα
〈δuαδu〉2. (3.98)

The first equation tells us that U0 is independent of the fast time scale τ0.

Integration of the second equation of (3.98) with respect to the fast time

scale τ0 gives

U2(τ0) − U2(0) = −τ0
[
∂

∂τ2
U0 +

∂

∂xα
〈δuαδu〉2

]
, (3.99)

where, as will be shown, 〈δuαδu〉2 is independent of τ0. In order to avoid

secularity of U2 on the τ0 time scale the right-hand side of (3.99) should

vanish, hence

∂

∂τ2
U0 = − ∂

∂xα
〈δuαδu〉2, (3.100)

resulting in an equation for the slow time evolution of the mean flow U0. We

emphasize that in order to obtain the τ2 dependence of U0 we only need the

wave-induced stress to lowest significant order. Now, the crucial point is that

in contrast with the usual fluid turbulence problem an explicit expression

of the wave-induced stress may be given. In fact, for a single wave we have

given the appropriate expression for the wave stress already in Eq.(3.17).

Here, we shall derive the wave stress for a continuous wave spectrum. In

contrast to the case of a single wave, where the wave stress shows a jump at

the critical height, we shall find that for a spectrum of waves the wave stress

is a continuous function of height z.
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Note that because of our choice of amplitude scaling, cf. Eq.(3.74), the

wind profile adjusts itself, compared to the time scale of wave evolution

(which is τ4), very rapidly to the given sea state, namely on the τ2 time

scale. Strictly speaking, to be consistent with the wave evolution time scale,

one should therefore continue the analysis of the mean flow equation up to

the next order, i.e. on the τ4 time scale. Here, we shall not be concerned with

this because our main interest is in lowest order significant results.

In order to calculate 〈δuαδu〉2 we solve Eq.(3.95). To lowest order we find(
∂

∂t
+ U

∂

∂x

)
∆δw1 = U ′′ ∂

∂x
δw1, (3.101)

i.e. δw1 satisfies the well-known Rayleigh equation.

The boundary conditions for δw1 follow from the usual requirements that

the interface shall remain a streamline and that the fluctuation δw1 vanishes

at infinity. To lowest order we therefore obtain

δw1(z = 0) =
∂

∂z
φ(0); δw1 → 0, z → ∞. (3.102)

By means of the lowest-order solution of the surface gravity waves (Eq.(3.81)),

the first boundary condition can be written as a linear combination of waves

propagating to the right (θ+ = kx−στ0) and to the left (θ− = kx+στ0), or,

δw1(z = 0) = −i
∫ ∞

0
dk σ(k)

{
η̂+ expiθ+ +η̂− expiθ−

}
+ c.c, (3.103)

hence, the air at z = 0 is forced to oscillate in the manner prescribed by

(3.103). As suggested by this boundary condition we therefore try the solution

δw1 = −i
∫ ∞

0
dk σ(k)

{
η̂+χ+ expiθ+ +η̂−χ− expiθ−

}
+ c.c, (3.104)

to obtain the following problem for χ+:

(
W∆ −W ′′)χ+ = 0, χ+(0) = 1, χ+(∞) = 0, (3.105)

where W = U0 − c0 and ∆ = ∂2/∂z2 − k2. Since c0 = σ/k as well as U0 are

positive, resonance of the wave with the airflow is only possible for the χ1
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component of δw1. From now on, we therefore omit the contribution of the

waves propagating to the left, and we drop the subscripts +, and −.

From incompressibility we have

δu1 =
∫ ∞

0
dk

{
c0η̂

∂

∂z
χ expiθ +c.c.

}
(3.106)

to obtain, using homogeneity of the ensemble of waves, for the wave stress

〈δuδw〉2 = −i
∫ ∞

0
dk

F2

ρw

(
χ
∂

∂z
χ∗ − χ∗ ∂

∂z
χ

)
. (3.107)

Now, because of homogeneity in the x-direction, we have

∂

∂xα
〈δuαδu〉2 =

∂

∂z
〈δuδw〉2

hence (3.100) may be written as

∂

∂τ2
U0 = i

∫ ∞

0
dk

F2(k)
ρw

(
χ
∂2

∂z2
χ∗ − χ∗ ∂2

∂z2
χ

)
. (3.108)

Finally, by means of the Rayleigh equation (3.95) the term between the brack-

ets may be simplified to obtain the main result of this subsection

∂

∂τ2
U0 = 2π

∫ ∞

0
dk

F2(k)
ρw

| χ |2 W ′′δ(W ), (3.109)

where δ(W ) is the usual delta function. Note that (3.109), which gives the

rate of change of the mean flow due to the growth of a continuous spectrum,

generalizes the single-wave result from the average vortex force calculation

(cf. (3.71)). Performing the integration over k, we obtain an equation of the

diffusion type:

∂

∂τ2
U0 = DW

∂2

∂z2
U0, (3.110)

where the wave diffusion coefficient DW is proportional to the surface eleva-

tion spectrum F (k),

DW =
πc2k2 | χ |2
| c− vg |

F2(k)
ρwg

. (3.111)

Here, the wavenumber k has to be expressed as a function of height through

the resonance condition W = 0 and vg is the group velocity ∂σ/∂k.
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Eq.(3.111) tells us that the airflow at a certain height z changes with time

owing to resonant interaction of a water wave with frequency σ = g/U0(z).

Hence, in this fashion there is possibly an energy transfer from the airflow

U0 to the water waves, thus giving a rate of change of the spectrum as in

(3.89). Using now the z-component of (3.93), we can write the air pressure

fluctuation p̂a,1 in terms of the wave-induced velocity,

p̂a,1 = −iρwk

∫ ∞

0
dz Wŵ, (3.112)

hence, with ŵ = −iση̂1χ we obtain from (3.89)

∂

∂τ4
F2(k) =

1
2
k2F2(k)

[
i

∫ ∞

0
dz Wχ+ c.c

]
. (3.113)

Then, by means of the Rayleigh equation we obtain the well-known result

(Miles, 1957)

∂

∂τ4
F2(k) = −πσ

k
| χ |2 W ′′

c

|W ′
c |
F2(k), (3.114)

where again the subscript c refers to evaluation at the critical height. To

summarize our results, we obtain the following quasi-linear equations for the

generation of water waves by wind:

∂

∂t
F (k) = −επc | χ |2 W ′′

c

|W ′
c |
F (k),

∂

∂t
U0 = DW

∂2

∂z2
U0, DW =

πc2k2 | χ |2
| c− vg |

F (k)
ρwg

, (3.115)

W∇2χ = W ′′χ, χ(0) = 1, χ(∞) = 0,

where we returned to the original variables (τ2 = ∆2t, τ4 = ∆4t, F2 = F/∆2).

From the first equation of (3.115) we obtain the well-known result that

only those waves are unstable for which the curvature U ′′
0 of the wind profile

at the critical height is negative. The growth rate of the waves is, however,

a function of time, as the wind profile depends on time according to the

diffusion equation for U0, possibly quenching the instability for large time t.

Quasi-linear theory therefore emphasizes that there is a mutual interaction
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between wind and waves. Waves which are generated by the wind will affect

the wind profile in particular when the waves are steep enough (since DW

depends on the wave spectrum F ). In fact, with the present choice of the

order of magnitude of the wave spectrum, F = O(ε1/2), it is found that the

waves are so steep that the wind profile adjust itself to the given sea state

more rapidly than then the slow time scale induced by wave growth. In other

words, if one is interested in evolution on the long time scale of spectral

evolution, the wind profile is always in equilibrium with the given sea state.

Before we proceed some historical remarks are in order. First, it should

be emphasized that the derivation of the wave-induced stress and hence the

effect of waves on the wind is only possible because gravity waves have a

strong dispersion, that is the phase speed c is not equal to the group speed

vg. This is also clear from the expression of DW which becomes unbounded

for c → vg. Thus, for turbulent airflow, where the fluctuations are thought

to have hardly no dispersion, such a quasi-linear approach is probably not

possible. Second, it is noted that previous authors have obtained similar

results. Lighthill (1962), who discussed the physical interpretation of Miles’

theory of wave generation by wind, obtained a similar result regarding the

effect of a single wave on the wind profile (the essence of this derivation, using

the vortex force, is given in subsection 3.4.1). He did not realize, however,

that the wind profile U0 may be a slowly varying function of time. In addition,

Fabrikant (1976) obtained a similar set of equations, although along different

lines, while also Miles (1965) discussed the possible interaction between wind

profile and waves.

Furthermore, we should address to some extent the objection that the ef-

fect of turbulent Reynolds stresses on the wind profile and the growth of the

waves has not been included. Keeping in the spirit of Miles’ quasi-laminar

approach, we only consider the effect of turbulence on the mean flow, dis-

regarding possible interactions between the wave-induced oscillations and
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turbulence (in agreement with our discussion in 3.3.1). Thus, the mean flow

equation becomes

∂

∂t
U0 = DW

∂2

∂z2
U0 +

∂

∂z
K(z)

∂

∂z
U0, (3.116)

where DW is the wave diffusion coefficient (3.111), while K(z) is the eddy

viscosity of air, which may be modelled as K(z) = κu∗z. It is emphasized

that we have not given a real justification for (3.116). However, we will see

in a while that results compare remarkably well with quasi-linear models

including the effects of turbulence on the mean flow and on wave-induced

oscillations.

The effect of momentum transport by turbulent eddies is clear. If no water

waves are present the well-known logarithmic wind profile is obtained in the

steady state as K ∼ z. In the presence of water waves the eddies will maintain

a logarithmic profile if DW � K, but if the waves are steep enough the effect

of the waves on the wind profile may overcome the effects of turbulence; this

may especially occur in the layer just above the water waves because in that

layer the size of the eddies is small.

In order to be able to appreciate the effect of waves on the wind let us

first disregard the effects of turbulence altogether, and investigate some of

the properties of the quasi-linear theory of wind-wave generation. First, we

question whether or not the set of equations (3.115) admits a steady state.

This question is of interest in the context of stability theory. Assuming that

initially we have a wind profile with negative curvature, then according to

Miles theory gravity waves will be generated at an exponential rate. The

question one may ask then is whether the growth of the gravity waves will be

arrested by nonlinear effects (because the waves extract momentum from the

airflow which may lead to a reduction of the curvature of the wind profile,

hence a reduced wave growth, etc.), or whether a nonlinear instability will

develop which leads to explosive growth. It will be argued here that the

latter possibility of explosive growth seems unlikely. In order to see this we
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derive a balance equation for the enstrophy of the mean flow. We differentiate

the diffusion equation for U0 with respect to height z to obtain a diffusion

equation for the mean vorticity ζ0 = ∂U0/∂z,

∂

∂t
ζ0 =

∂

∂z
DW

∂

∂z
ζ0, (3.117)

where we note that DW is always positive. We next multiply (3.117) by ζ0

and integrate over height with the result

d

dt

∫ ∞

0
dz ζ2

0 = 2
∫ ∞

0
dz

[
∂

∂z

(
DW ζ0

∂

∂z
ζ0

)
−DW

(
∂

∂z
ζ0

)2
]
. (3.118)

For appropriate boundary conditions (e.g. by realizing that the wave diffusion

coefficient should disappear at 0 and ∞) the perfect derivative on the right

above integrates to zero, hence

d

dt

1
2

∫ ∞

0
dz ζ2

0 = −
∫ ∞

0
dz DW

(
∂

∂z
ζ0

)2

. (3.119)

This equation states that the time derivative of the mean flow enstrophy,

which is a positive quantity, is non-positive. Hence, the mean airflow tends

toward a condition where the right-hand side disappears, which requires in

the region where DW �= 0 that

∂

∂z
ζ0 =

∂2

∂z2
U0 → 0, as t→ ∞. (3.120)

Thus, for large times the wind profile becomes linear, implying that accord-

ing to the first equation of (3.115) the growth rate of the waves vanishes.

Apparently, quasi-linear theory predicts, for large times, a limitation of the

amplitude of the initially unstable water waves, i.e. the energy transfer from

the airflow to the water waves is quenched. In passing it should be pointed

out that (3.120) holds for a layer above the waves. As a consequence the

critical layers move up in the coarse of time. This is discussed in more detail

in Janssen (1982). In practice, which means when air turbulence is taken

into account as well, the reduction of the curvature of the wind profile is

only expected to occur just above the water surface where the wave effect
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may overcome the effects of turbulent eddies. In other words, the reduction

of momentum transfer from air to gravity waves is expected to occur for

the high-frequency waves which have their critical layer just above the water

surface.

Secondly, we note that the set of quasi-linear equations (3.115) admits an

infinite set of balance equations, notably

d

dt

[
ρa

∫ ∞

0
f(U0) dz +

∫ ∞

0
f ′(U0)

F

c
dk

]
= 0, (3.121)

where f(U0) is an arbitrary function of U0, the prime denotes differentiation

with respect to U0 and in the second term of the left- hand side we apply the

resonance condition U0 = c to map the height coordinate z to wavenumber

space. Eq.(3.121) may be obtained by multiplication of the diffusion equation

for U0 by f ′(U0); then integration with respect to z gives

d

dt

∫ ∞

0
f(U0) dz =

∫ ∞

0
f ′(U0)DW

∂2U0

∂z2
dz. (3.122)

In the integral on the right hand side we next convert to an integration over

k via the resonance condition U0 = c(k), then using the expression for DW

and the evolution equation for the wave spectrum, we finally arrive at the

conservation law (3.121).

By an appropriate choice of f ′(U0) we are able to express all moments of

the spectrum in terms of an integral of f(U0) in k-space. In particular, we

obtain for f ′(U0) = 1, conservation of momentum,

d

dt

[
ρa

∫ ∞

0
U0 dz +

∫ ∞

0

F

c
dk

]
= 0, (3.123)

and for f ′(U0) = U0 conservation of mechanical energy,

d

dt

[
1
2
ρa

∫ ∞

0
U2

0 dz +
∫ ∞

0
F dk

]
= 0. (3.124)

From the conservation laws we see once more that for growing waves the

wind profile changes in time.

The property of having an infinite set of conservation laws suggests that

the quasi-linear set of equations admits exact solutions. This turns out to be
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not quite the case, but the time-asymptotic form of the wave spectrum may be

obtained (Janssen, 1982). As a result the high-frequency part of the spectrum

has an f−4 power law, and closely resembles Toba’s law, Eq.(2.112). We shall

not give the details of this calculation as the quasi-linear theory (3.115) only

represents one aspect of the physics of wave evolution. Processes such as

wave breaking and nonlinear interactions are relevant too, and it is expected

that the subtle balance between these processes determines spectral shape.

However, the process of quenching of the Miles’ instability is most certainly

relevant, as will be seen in the next subsection. In general, the growth rate

of the waves and the related momentum transfer from air to waves will be

sea-state dependent. As a consequence, the drag of airflow over sea waves

depends on the state of the waves.

3.4.3. Wave-induced stress and the drag of airflow over sea waves.

We have seen that the growth of the waves depends on the sea state as the

wind profile is affected by the presence of the surface gravity waves. In this

subsection we shall ask ourselves the question to what extent the wind profile

depends on the sea state.

To be sure, careful observations from the field (Donelan, 1982; Smith et

al, 1992; Oost et al, 2002) do indicate that the roughness length and the drag

coefficient depend on the sea state. These experimentalists observed wind and

waves from a fixed platform in lake Ontario and the North Sea respectively.

Here, the surface stress was determined by means of the Eddy-Correlation

technique, while the state of the ocean waves was inferred from observed

wavenumber or frequency spectra. The sea state was in essence characterized

by the wave age parameter (see the discussion in 2.6.4), although theoret-

ically it seems more natural to choose as measure of sea state the ratio of

wave-induced stress to the total surface stress. Experimentally, this is how-

ever a nearly impossible task. In a short while we will see that this involves

the determination of the growth rate of the waves by wind ànd the deter-
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mination of the two-dimensional wavenumber spectrum up to wavenumbers

in the gravity-capillary range. Therefore, we shall only study the wave age

dependence of, for example, the drag of airflow over ocean waves. However,

it is emphasized that the characterization of the sea state by the wave age

parameter has a limited validity; strictly speaking it is only valid for windseas.

Before we solve the quasi-linear equations it seems a good idea to get a

feeling for the order of magnitude of the effect of waves on the wind. Hence,

the wave-induced stress is determined using a simple model for the growth of

waves by wind and of the high frequency part of the wave spectrum. The wave

stress is found to be a substantial fraction of the total stress in the surface

layer. In particular, we are interested in the dependence of the wave stress

on the level of the high-frequency waves and on the directional distribution

of the waves.

From the momentum balance (3.123) we infer that the wave momentum

spectrum P is, as expected, given by

P =
F

c
, (3.125)

and since the wave stress is given by the rate of change in time of the wave

momentum due to wind, we have

τw =
∫
dkdθ

∂

∂t
P

∣∣∣∣
wind

. (3.126)

The main contribution to the wave stress is determined by the medium to

high-frequency gravity waves with dimensionless phase speed c/u∗ in the

range of 1−10, as these are the waves with the highest growth rate. The rate

of change due to wind of this part of the wave spectrum is fairly well-known

and can be described by the empirical expression proposed by Plant (1982)

which was based on the observations displayed in Fig. 3.3. Hence, writing

∂P/∂t = γP we take for the growth rate γ,

γ = εβω

(
u∗
c

)2

cos2 θ, c/u∗ < 25, |θ| < π/2, (3.127)
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while γ vanishes for c/u∗ > 25 or |θ| > π/2. Here, the constant β  30

and all other symbols have their usual meaning. Note that at c/u∗ = 25 the

growthrate shows a jump, but, as this occurs for low-frequency waves which

have a small growth rate, this is not important for estimation purposes.

Since we are only interested in orders of magnitude anyway, a very simple

two-dimensional spectral shape will be adopted:

F (k, θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2ρwgαpk

−3Φ(k, θ), k > kp

0, k < kp

(3.128)

where kp is the wavenumber of the peak of the spectrum while we adopt the

very simple directional distribution (cf. the discussion in 2.6.3)

Φ(k, θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2∆(k) , |θ| ≤ ∆(k)

0, |θ| ≥ ∆(k)

(3.129)

Here, ∆(k) is the width of the directional distribution which depends ac-

cording to Donelan et al (1985) on the ratio k/kp in such a way that near

the peak the spectrum is narrow while the spectrum broadens for increasing

wavenumber. The following simple form for ∆(k) is chosen:

∆(k) = min

⎡
⎣π/2, α

(
k

kp

)m/2
⎤
⎦ , α and m constants, (3.130)

with a maximum value of π/2. The ratio of the wave-induced stress τw to the

total stress τ = ρau
2∗ is now obtained by substituting (3.125), (3.127), (3.128),

(3.129) in (3.126). Performing the integration over the angle θ and introducing

the integration variable y = k/kp we find for windsea with kp > g/(25u2∗)

τw
τ

=
1
4
βαp

∫ χ2

1

dy

y

[
1 +

sin 2∆(k)
2∆(k)

]
, (3.131)

where, again, χ = cp/u∗ is the wave age. It is clear that the integration over

wavenumber may give rise to a logarithmic singularity and thus an appro-

priate high wavenumber cut-off kc should be chosen. For present purposes
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we take as upper limit c/u∗ = 1 which in terms of the integration variable

y translates into an upper bound yc = χ2. When discussing the feedback of

the waves on the wind profile and the consequences on the growth rate of the

high-frequency waves this choice of cut-off value will become clearer.

In order to study the dependence of the wave stress on the sea state

consider first the case of a wavenumber independent width ∆(k) = ∆0. In

that event (3.131) may be integrated immediately with the result
τw
τ

=
1
2
βαp logχ

[
1 +

sin 2∆0

2∆0

]
, (3.132)

and it is immediately noted that a narrow angular distribution (∆0 → 0)

results in a higher wavestress than a broad distribution (∆0 → π/2) by a

factor of two. Furthermore, for older windsea, i.e. increasing χ, more waves

will contribute to the wave stress which is reflected by the logχ factor. On

the other hand, since the JONSWAP study (cf. § 2.6.1) it is known that the

Phillips parameter αp decreases with increasing wave age. Therefore, whether

the wave stress will decrease or increase with wave age depends to some extent

on how rapid the Phillips parameter varies with wave age.

In § 2.6 an extensive discussion of the dependence of the Phillips parameter

on wave age was given. The reanalysis of Battjes et al (1987) and Günther

(1981) of the JONSWAP data set and the so-called KNMI data set (Janssen

et al, 1984) all suggest a fairly sensitive dependence on wave age. We therefore

choose the law as found by Battjes et al (1987) and given in Eq.(2.125), which

shows the following dependence on wave age,

αp ∼ χ−1.24. (3.133)

Combined with the wavenumber dependent width of the directional spec-

trum Eq.(3.131) then results, as can be seen in Fig. 3.8, in a very sensitive

sea state dependence of the normalized wave stress. The importance of the

wavenumber dependent width is shown by plotting in Fig. 3.8 the case of a

constant width ∆ = π/2. Comparing the two cases, it is seen that in par-

ticularly for young windseas, having a more narrow angular distribution in



146 PETER A.E.M. JANSSEN

the range c/u∗ > 1, a considerable enhancement of the wave stress is found.

Finally, the importance of the sea state dependence of the Phillips parameter

is illustrated by plotting the case of the original JONSWAP parametrization

of the Phillips parameter,

αp ∼ χ−2/3. (3.134)

The result is a wave-induced stress which is virtually independent of the wave

age.

It is clear from the present discussion that there are two aspects of the

wave spectrum that determine the wave age dependence of the wave-induced

stress. The first factor is the sea state dependence of the high-wavenumber

part of the spectrum, while the second factor is the wavenumber dependence

of the angular width of the spectrum. However, uncertainties remain to what

extent the wave stress depends on the sea state. The reason for this is that

relations for the spectral width ∆(k) and for αp have only been validated for

relatively low-frequency waves in the range of 1 to 2.5 times the peak fre-
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Fig. 3.8. Normalized wave stress versus wave age for different choices of directional distri-

bution and sea state dependence of the Phillips parameter αp: full line refers to Eq.(2.125)

and wavenumber dependent width; dashed line refers to Eq.(2.125) and constant width;

dashed-dotted line refers to Eq.(3.134) and a constant width of π/2.
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quency. But a considerable part of the waves stress, typically 50% is carried

by the high-frequency waves. It is only very recently that Donelan (private

communication, 2003) has found that the high-wavenumber part of the spec-

trum is indeed steeper for young windseas. Nevertheless, we favour the the

power law (3.133) for the Phillips parameter because on the one hand it is

at least in agreement with the field data for relatively low-frequency waves

and, on the other hand, the wave stress is large for young windsea while it is

small for old windsea. This behaviour of the wave stress is in agreement with

one’s intuition that airflow over young windsea is rougher than over young

windsea. Evidence for this may be found from the work of Donelan (1982),

Smith et al (1992) and Oost et al (2002).

Returning now to Fig. 3.8 it is finally noted that the chosen model for

wave growth (3.127) has evidently limitations, because for young windsea

the wave stress is larger than the total stress. In steady state circumstances

the total stress in the surface layer should be at least as large as the wave

stress since other processes, e.g. viscosity, will also diffuse momentum. With

the results of the previous subsection in mind we now realize the importance

of the quasi-linear effect. It provides us with a consistent picture of the air

momentum balance over sea waves. For young windsea, having a large wave

steepness, the wave diffusion coefficient DW will be significant resulting in a

considerable reduction of the curvature in the wind profile. Hence, the growth

rate of the waves will be reduced in such a way that in the steady state the

wave stress is less than the total stress in the surface layer.

Let us therefore discuss again the quasi-linear set of equations (3.115),

but now including effects of turbulence on the mean flow (3.116). For ease of

reference, we reproduce these equations here:

∂

∂t
U0 = ν

∂2

∂z2
U0 +

1
ρa

∂

∂z
τturb, ν = νa +DW , (3.135)
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where

DW =
πc2k2 | χ |2
| c− vg |

F (k)
ρwg

. (3.136)

The rate of change of the wave spectrum is given by

∂

∂t
F (k)

∣∣∣∣
wind

= γF (k), (3.137)

where

γ = −επc | χ |2 W ′′
c

|W ′
c |
. (3.138)

The wave-induced vertical velocity χ satisfies the Rayleigh Equation

W∇2χ = W ′′χ, χ(0) = 1, χ(∞) = 0. (3.139)

Finally, the turbulent stress τturb is modelled by means of a mixing length

model

τturb = ρal
2

∣∣∣∣ ∂∂zU0

∣∣∣∣ ∂∂zU0, (3.140)

with mixing length given by l = κz (where κ is the von Kármán constant).

In order to be able to solve our problem we still have to specify two

boundary conditions for the mean flow. For large heights the condition of

constant stress is imposed and it is assumed that the waves have no direct

impact on the wind profile at those heights, hence,

τturb = ρau
2
∗, z → ∞. (3.141)

At the lower boundary we choose

U0(z) = 0, z = z0, (3.142)

where following Charnock (1955), we take as roughness length

z0 = αCHu
2
∗/g, (3.143)

with αCH = 0.0144. This choice of boundary condition requires justification.

From observations at sea (Large and Pond, 1982; Garrat, 1977; Smith, 1980
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and Wu, 1982) it is known that even for old windsea the aerodynamic drag

increases with wind speed. This increase in drag must for the greater part be

caused by the momentum loss to the short waves such as gravity-capillary

waves as the longer waves have such a small steepness (because the Phillips

parameter αp is small for old windsea) that their wave stress is small. It

is, therefore, important to take the momentum loss to the short waves into

account. However, even nowadays we have no firm knowledge about the spec-

tral shape of the gravity-capillary waves nor about the energy and momentum

transfer to these waves, at least in field conditions. It is not even firmly es-

tablished whether gravity-capillary waves contribute at all to the stress in

the atmospheric surface layer. For example, Makin et al (1995) found that

gravity-capillary waves only support a small fraction of the surface stress.

These authors used a spectral form for these waves proposed by Donelan and

Pierson (1987). This model of the short wave spectrum has a k−3 power law,

while effects of viscosity result in a viscous cut-off, beyond which there is no

wave energy. Such a spectral shape would indeed result in a relatively small

contribution to the surface stress. However, the laboratory observations of

Jähne and Riemer (1990) do not show evidence for a viscous cut-off, while

the gravity-capillary waves are steeper because the observed spectra decay

over a large range as k−5/2. The work of Janssen et al (1998) suggests that

the k−5/2 behaviour of the spectrum is caused by three-wave interactions.

Using the empirical expression for the growthrate suggested by Plant (1982)

(Eq.(3.42) with β = 32), the Jähne and Riemer (1990) spectra suggest that

the gravity capilary waves support about 30% of the total stress.

Although presently we have no firm information on wind input to the

gravity capillary waves and their spectral shape, it is believed that they

contribute to some extent to the surface stress. In addition, there are other

processes that transfer momentum from air to the water surface which are not

described by Miles’ shear flow mechanism. For example, flow separation over
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small scale breaking waves (Banner and Melville, 1976) may be important

while also wave-current interactions may play a role in extracting momentum

from the airflow. Because of all these complications, we rely on a simple

parametrization. Since the phase speed of these short waves is much smaller

than, say, the wind speed at 10 m height, the airflow encounters a water

surface with more or less stationary perturbations, that is the airflow ’feels’

a water surface with a certain roughness. The choice of roughness length

(3.143) is in agreement with the observed increase of drag coefficient with

wind speed.

The parametrization of unresolved scales and processes has been further

discussed by Chalikov and Makin (1991), Chalikov and Belevich (1993) and

Makin et al (1995). For example, the use of the ’background’ roughness

(3.143), in particular its dependence on u∗ and g suggests that here also

gravity waves play an important role, which appears to be inconsistent with

the assumption that the gravity waves are already accounted for in the wave

stress τw. However, it is common practice to assume that the background

roughness is proportional to the height of the short gravity waves, which

scales with u2∗/g. An attempt to obtain a consistent theory to calculate the

drag over sea waves, avoiding the use of the Charnock type relation (3.143)

for the background roughness, was introduced by Makin et al (1995).

The set of equations (3.135)-3.143) describes the effect of gravity waves

on the airflow. To close this set of equations we need to specify the gravity

wave spectrum F since the wave diffusion coefficient DW depends on spectral

shape. Clearly, the evolution of the wave spectrum and the wind speed are

coupled and, in principle, one should solve the energy balance equation for the

waves together with the momentum equations for wind. This approach will

not be pursued here, however, because according to the multiple time scale

analysis the wind profile changes so rapidly that it is always in equilibrium

with the sea state. Hence, we assume that the wave spectrum is given by an
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empirical relation (the JONSWAP shape, Eq.(2.97)) and we concentrate on

the effect of waves on the wind profile. For simplicity, we give the overshoot

parameter γ and the width parameter σ the constant values 3.3 and 0.1

respectively. Furthermore, for the Phillips parameter αp we use a relation

proposed by Snyder (1974), namely,

αp = 0.57χ−3/2, (3.144)

which shows a more sensitive dependence on wave age χ as the relation (3.133)

suggested by Battjes et al (1987) or Günther (1981). Note that the present

quasi-linear set of equations only considers one-dimensional propagation but,

as we have seen, directional effects may give rise to a sea-state dependence of

the wave stress as well. Therefore, in order to mimic effects of the directional

distribution, (3.144) for αp is chosen rather than (3.133).

Given the spectral shape we shall search for steady-state solutions of the

airflow over sea waves by means of an iteration method which initially takes

DW = 0, then calculates the wind profile to obtain the growth rate γ and the

diffusion coefficient DW and so on. The rate of convergence of this procedure

was judged by calculating the total stress

τtot = ρa

[
νa

∂

∂z
U0 + l2

∣∣∣∣ ∂∂zU0

∣∣∣∣ ∂∂zU0

]
+ τw, (3.145)

as in the steady state this is given by its asymptotic value for large z, τtot =

ρau
2∗. Here, τw is given by (3.126).

Details of the numerical procedure may be found in Janssen (1989). Here,

only some of the results are discussed. The effect of gravity waves on the

wind profile is illustrated in Fig 3.9, where we have plotted the dimensionless

wind speed U0/u∗ as a function of dimensionless height gz/u2∗ for young and

old windsea (χ = 5 and χ = 25 respectively). Since the dimensionless height

is plotted on a logarithmic scale, a straight line corresponds to a logarithmic

wind profile. Thus, the wind profile is found to be approximately logarithmic

except in a region close to the water surface (gz/u2∗ < 1), where considerable
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Fig. 3.9. Effect of waves on wind profile for old and young windsea, shown by plot-

ting dimensionless wind speed U0/u∗ as a function of dimensionless height gz/u2
∗. The

parametrization (3.147) for young windsea is denoted by a �.

deviations from the logarithmic profile are found. Even for the large friction

velocity used (u∗ = 0.7m/s) this region corresponds to only a few centimetres

above the sea surface. Now, by extrapolating the straight lines for young

and old windsea towards the surface, the intersection with the x-axis gives

the Charnock parameter. It is therefore clear from Fig. 3.9 that the gravity

waves extract a significant amount of momentum from the airflow, but young

windsea appears to be rougher than old windsea. The reason for this is that

the steepness of the young wind waves is so much larger than for old waves.

Furthermore, it is of interest to study the distribution of the stress in the

surface layer over turbulence, the wave effect and viscosity. This is shown

in Fig. 3.10, where we have plotted the turbulent stress τturb and the wave

stress τw as a function of dimensionless height for young and old windsea. The

viscous stress is not plotted because it is usually quite small, the reason is that

by our choice of Charnock relation (3.143) the water surface is already rough

for u∗ > 0.1 m/s. For young windsea it is observed that around gz/u2∗  1

the wave-induced stress becomes a considerable fraction of the total stress
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Fig. 3.10. Turbulent stress τturb and wave stress τw as a function of dimensionless height

gz/u2
∗ for young and old windsea.

corresponding to the deviations from the logarithmic wind profile shown in

Fig 3.9. On the other hand, for old windsea, the stress going into the long

waves is only 35% of the total stress so that most of the stress is supplied to

the very short gravity and capillary waves.

Referring again to Fig. 3.8 we have seen that the wave-induced stress ob-

tained from parametric relations may be a considerable fraction of the total

3
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w___
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uncoupled
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Fig. 3.11. Reduction of the wave-induced stress due to the quasi-linear effect.
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stress or even larger. In Fig. 3.11 it is shown what happens according to

quasi-linear theory of wind-wave generation. Here, crosses denote the wave-

induced stress calculated according to linear theory and diamonds show the

results according to quasi-linear theory. We infer from Fig. 3.11 that accord-

ing to quasi-linear theory the ratio τw/τ is reduced considerably for young

windsea whereas for old windsea this ratio hardly changes. Apparently, in

equilibrium the curvature of the wind profile is reduced for young windsea

in such a way that the ratio remains less than unity. This must then be ac-

companied by a reduction of the growth rate of the waves. This is illustrated

in Fig. 3.12 where the normalized growth rate γ/ω of the waves versus the

inverse of the dimensionless phase speed c/u∗ is plotted. Clearly, for fixed

phase speed, the growth rate of the waves is larger for old windsea than for

10–4

0.20.1

10–3

u*/c

cp/u*=25
cp/u*=5
u*=0.7m/s

/

Fig. 3.12. Normalized growth rate γ/ω of the waves versus the inverse of the dimensionless

phase speed c/u∗ for young and old windsea.
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young windsea. This reduction of the growth rate for young windsea may be

understood by realizing that for rough airflow and fixed dimensionless phase

speed, the resonance between wave and airflow occurs at a larger height than

for smooth airflow (see Fig. 3.9 using the resonance condition U0/u∗ = c/u∗).

Consequently, using the logarithmic wind profile as a first approximation, for

fixed phase speed the quantity W ′′
c /|W ′

c|  1/zc (with zc the critical height) is

smaller for young windsea than for old windsea. This is, however, only a par-

tial explanation because an excessive reduction of the dimensionless growth

rate γ/ω would result. By means of Fig. 3.9 one infers that at c/u∗ = 10 this

would give a reduction of a factor of 6, whereas according to Fig. 3.12 there

is only a reduction of a factor of 2. It turns out that the decrease in curvature

of U0 is accompanied by an increase of the wave-induced velocity in air, χc,

such that the aforementioned reduction is partly compensated.

It is concluded that for young windsea there is a strong two-way interaction

between wind and waves. This is, on the one hand, reflected by an airflow

which is rougher that would be expected from Charnock’s relation for the

roughness alone, and, on the other hand, a strong reduction of the growth

3
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Fig. 3.13. The wave age dependence of the drag coefficient for two different friction

velocities.
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of waves by wind. However, for old windsea the coupling between wind and

waves is weak. It is emphasized that the reason for this is the choice of the

wave age dependence of the Phillips’ parameter. In other words, for young

windsea the high-frequency waves are much steeper than for old windsea.

To conclude our discussion of results, we show the wave age dependence of

the drag coefficient for two different friction velocities in Fig. 3.13. A sensitive

dependence on wave age may be noted and it implies that we may now suggest

an explanation for the large scatter found in the field data for the drag

coefficient as function of the wind speed at 10 m height. The combination of

Snyder’s suggestion for wave age dependence of the Phillips parameter with

quasi-linear theory implies a variability of the drag coefficient by a factor of

two, which agrees with results found by Donelan (1982) for the field data

from Lake Ontario, or results given by Drennan et al (1999). In other words,

the scatter in the field data may be related to a sea state dependence of the

drag.

We have seen that quasi-linear theory of wind-wave generation gives a

realistic description of air-sea momentum transfer since it gives a sea state

dependent drag coefficient. Linear theory cannot account this. It is reassuring

that we can give a description of the momentum transfer that is consistent

with observations. Waves play an important role in this process. It seems,

therefore, to be a good idea to include this effect in applications such as

storm-surge modelling, weather prediction and climate modelling. A more

detailed discussion of this will follow in Chapter 5. However, it should be

emphasized that theory is still weak on a number of points. We have to

parametrize effects of gravity-capillary waves, flow separation and current

instabilities on the mean flow by means of a roughness length and we dis-

regarded the effects of turbulence on the wave-induced flow. Concerning the

last point, Jenkins (1992) included the effects of small scale turbulence and

found very similar results for the drag coefficient as found here by means
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of quasi-linear theory. Also, when allowing for a sensitive wave age depen-

dence of the Phillips parameter, Makin et al (1995) reach similar conclusions.

As already mentioned, by resolving even smaller scales, Makin et al (1995)

were able to study the role of gravity-capillary waves. Even more recently,

Makin and Kudryatsev (2002) proposed a model of wind-wave interaction

that takes effects of flow separation into account. According to these authors

flow separation plays an important role (of the order of 50%) in the air-sea

momentum transfer and could provide an alternative explanation of the sea

state dependence of the drag, because this process is most important for

waves around 2 to 3 times the peak frequency. Although flow separation no

doubt will play a role, others (Banner, private communication, 2002) ques-

tion whether this process plays such an important role. Usually it is thought

that flow separation only accounts for at most 20% of the drag.

Finally, it is stressed that a rather strong wave age dependence of the

Phillips parameter αp is needed to explain within the framework of one-

dimensional quasi-linear theory the sea state dependence of the surface stress

over the oceans. However, as already discussed, the highly directional charac-

ter of the wavenumber spectrum combined with the directional dependence of

the growth rate of waves by wind results in an additional sea state dependence

of the wave stress. Additional support for the present theoretical framework

is presented in the next subsection. It is shown that a parametrization of

quasi-linear theory (using as input the measured wind speed and observed

in situ frequency spectra) gives surface stresses that are in good agreement

with observed stresses during HEXOS.

As a last remark, it should be pointed out that according to our results a

smoother airflow is found for increasing wave age. This inverse dependence of

the drag coefficient on wave age has, however, a restricted range of validity.

For extreme young windsea (χ < 5, a situation that seldom occurs in nature,

but is frequently encountered in the laboratory) the opposite trend is to be
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expected, as suggested by Nordeng (1991). The reason for this is that under

these extreme conditions the scaling laws for the Phillips parameter (e.g.

(3.144)) are not valid. In fact, for zero wave age the Phillips parameter is

seen to become infinite. In its stead, a limitation of αp is to be expected.

As a result, for extreme young windseas the wave stress and therefore the

drag coefficient is expected to increase with increasing wave age until the

waves reach a wave age of the order 5 − 10 after which the drag coefficient

starts to decrease again. This picture is confirmed by means of results from

a simulation of extreme young windsea with the energy balance equation

(Komen et al, 1998).

3.5. Parametrization of Quasi-linear Theory.

For applications such as wave modelling, details of which will be discussed in

Chapter 5, there is an evident need for parametrization of the source terms

in the energy balance equation (2.86). This is so because, for example, the

wind input term requires per grid point a considerable amount of cpu time.

The same remark applies to the nonlinear source term to be discussed in

the next Chapter. In practice, a typical one day, global wave forecast should

be completed in a time span of the order of a few minutes, so it should be

clear that compromises have to be made regarding the functional form of

the source terms in the action balance equation. We therefore discuss now a

parametrization of the wind input source term and we discuss the adequacy

of this approximation.

In the previous section we have presented results of the the numerical

solution of the momentum balance of airflow over growing surface gravity

waves, summarizing a series of studies by Janssen (1982, 1989). The main

conclusion was that the growth rate of the wind-generated waves depends

on the friction velocity divided by the phase speed of the waves and on a

number of additional factors such as wind gustiness and wave age. Although

this was not discussed in detail, for light winds the growth rate may even
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depend on atmospheric stability (Janssen and Komen, 1985). In this section

we focus on the dependence of wave growth on friction velocity and wave age,

and the related dependence of the aerodynamic drag on the sea state. It is

also briefly indicated how to extend the present parametrization to include

effects of gustiness.

A realistic parametrization of the interaction between wind and waves was

given by Janssen (1991), and we will follow this approach closely. The starting

point was the assumption (corroborated by the numerical results shown in

Fig 3.9) that even for young windsea the windprofile has a logarithmic shape,

though with a roughness length that depends on the wave-induced stress. Just

as in the previous subsection we introduce a background roughness length

z0 = α̂u2
∗/g, α̂ = const, (3.146)

which reflects the momentum loss by air due to processes not considered (e.g.

flow separation). The constant α̂ will be fixed at a later stage. Furthermore,

the effect of the (short) gravity waves on the wind profile will be modelled

by a roughness length z1. Then, the wind profile that satisfies the boundary

condition U0(z0) = 0 is assumed to be given by

U0(z) =
u∗
κ

log
(
z + z1
z0 + z1

)
. (3.147)

Determining the roughness length z1 from the drag coefficient shown in Fig

3.13 gives good agreement between (3.147) and the numerical results for

the wind profile as may be inferred from Fig 3.9. It is remarked that also

Jacobs (1989) found that the effect of waves on a turbulent airflow may be

represented by an effective roughness length.

The observation that the wind profile may be described by the logarithmic

profile (3.147) considerably simplifies the problem of the parametrization of

the growth rate of ocean waves by wind. Following scaling arguments by

Miles (1957), the growth rate then only depends on two parameters, namely,

x = (u∗/c) cos(θ − φ), and Ωm = gκ2(z0 + z1)/u2
∗. (3.148)
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As usual u∗ denotes the friction velocity, c is the phase speed of the waves,

φ the wind direction and θ the direction in which the waves propagate. Note

that we have introduced a slight generalisation by allowing ocean waves to

propagate under an angle with the wind. In that event the waves only interact

with the so-called effective component U0 cos(θ − φ). In other words, the

growth of a wave propagating at an angle θ−φ with respect to the wind can

be obtained by replacing U0 by U0 cos(θ−φ) (see the discussion near Eq.(3.4),

Squire’s theorem). Furthermore, the profile parameter Ωm, which apart from

a constant is nothing but Charnock’s parameter αCH , characterizes the state

of the mean flow through its dependence on the roughness length z0 + z1.

Thus, through Ωm the growth rate depends on the roughness of the airflow,

which, in its turn, depends on the sea state. Following scaling arguments by

Miles (1957), the growth rate of the waves by wind can then be written as

γ = εωβx2, (3.149)

where γ is the growth rate of the energy of the waves, ω the angular frequency,

ε the air-water density ratio and β the so-called Miles parameter. In terms of

the dimensionless critical height µ = kzc (where k is the wavenumber and zc

the critical height defined by U0(z = zc) = c) Miles obtained for a logarithmic

profile in the limit of small µ

β =
βm

κ2
µ log4(µ), µ < 1, (3.150)

where βm is a constant. In terms of wind and wave quantities µ is given by

µ =
(
u∗
κc

)2

Ωm exp(κ/x), (3.151)

and the wind input source function Sin is given by

Sin = γN (3.152)

where γ follows from (3.149) and N is the action density spectrum.

Clearly, in order to obtain a definite answer for the growth of the waves

we need to determine the roughness of the airflow. This will follow from a
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consideration of the stress balance of airflow over ocean waves. In the steady

state, the momentum balance (3.135) may be integrated once with respect

to height to obtain

τw + τturb + τvisc = τ. (3.153)

here, τvisc = νa∂U0/∂z is the stress caused by molecular viscosity, τturb is

the turbulent stress (as given in Eq.(3.140)) whilst the wave-induced stress

equals

τw(z) = −
∫ ∞

z
dzDW

∂2

∂z2
U0. (3.154)

In the previous section we have seen how τw depends on height. In addition,

it was shown that the viscous stress only plays a minor role in the stress

balance. Neglecting the viscous stress, and application of (3.153) at height

z = z0 gives

τw(z0) + τturb(z0) = τ. (3.155)

With τturb given by Eq.(3.140) and making use of the logarithmic profile

(3.147), the turbulent stress at z = z0 is found to be

τturb(z0) = τ

(
z0

z0 + z1

)2

. (3.156)

The combination of (3.155) and (3.156) then gives for z2 = z0 + z1

z2 =
z0√
1 − x

, x =
τw
τ
, (3.157)

where τw = τw(z0). For large height L, L � z1, the drag coefficient, defined

as CD = (u∗/U0(L))2 becomes

CD(z = L) =
(

κ

log(L/z2)

)2

. (3.158)

Since the total stress τ = CD(L)U2
0 (L), the total stress in the surface layer

is obtained from an iterative solution of

τ =
{
κU0(L)

log(L/z2)

}2

. (3.159)
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Therefore, for given wave stress τw and wind speed U0(L) we can determine

the total stress τ and the roughness length z2. What remains is a determi-

nation of the wave-induced stress τw.

Using conservation of momentum, the wave-induced stress τw(z = 0) may

be related to the rate of change of wave momentum due to wind (Janssen,

1989). Here, the wave momentum is given by

P = kN (3.160)

and thus the wave-induced stress τw(z = 0) is

τw(z = 0) =
∫
dωdθ k

∂

∂t
N

∣∣∣∣
wind

(3.161)

where the rate of change of the action density due to wind is given by

Eq.(3.152). Note that the frequency integral extends to infinity. A practi-

cal wave model only solves the energy balance equation in a finite frequency

range. However, waves with a frequency higher than the cut-off value ωc also

contribute to the stress on the airflow. A parametrization of the unresolved

part of the the frequency spectrum is therefore required. Because observa-

tions seem to favour a ω−5 power law for high frequencies (Birch and Ewing,

1986; Forristal, 1981; Banner, 1990; Hara and Karachintsev, 2003) we use this

power law for the unresolved, high-frequency part of the spectrum, where the

directional distribution is determined by the spectral density at the highest

resolved frequency ω = ωc. Hence, for ω > ωc we have

N(ω, θ) =
(
ωc

ω

)5

N(ωc, θ). (3.162)

In addition, we assume that the wave stress points in the wind direction as

it is mainly determined by the high-frequency waves which respond quickly

to changes in the wind direction. This assumption and the simple power law

(3.162) allows one to simplify the high-frequency contribution to the wave-

induced stress.

This completes the parametrization of quasi-linear theory. It is emphasized

that in this parametrization a key role is played by Eq.(3.157). It shows
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that the roughness length is given by a Charnock relation (Charnock, 1955).

Combined with Eq.(3.146) one finds

z2 = αu2
∗/g. (3.163)

However, the dimensionless Charnock parameter α is not constant but de-

pends on the sea state through the wave-induced stress since

α = α̂/

√
1 − τw

τ
. (3.164)

Evidently, whenever τw becomes of the order of the total stress in the surface

layer (this happens, for example, for young windsea which may be quite steep)

a considerable enhancement of the Charnock parameter is found, giving an

efficient momentum transfer from air to water. The possible consequences of

this sea-state dependent momentum transfer will be discussed in Chapter 5.

This finally leaves us with the choice of two unknowns namely α̂ from

(3.146) and βm from (3.150). The constant α̂ was chosen in such a way

that for old windsea the Charnock parameter α has the value of 0.0185 in

agreement with observations collected by Wu (1982) on the drag over sea

waves. It should be realized, though, that the determination of α̂ is not a

trivial task, as beforehand the ratio of wave-induced stress to total stress is

simply not known. It requires the running of a wave model. By trial and error

the constant α̂ was found to be α̂ = 0.01.

The constant βm was chosen in such a way that the growth rate γ in (3.149)

is in agreement with the numerical results obtained from Miles’ theory. For

βm = 1.2 and α = 0.0144 we have shown in Fig 3.14 the comparison between

Miles’ theory and (3.149). In addition, observations as compiled by Plant

(1982) are shown. Realizing that the relative growth rate γ/f varies by four

orders of magnitude it is concluded that there is a fair agreement between

the fit (3.149), Miles’ theory and observations.

The next issue to be considered is how well the approximation of the

surface stress compares with observed surface stress at sea. Fortunately, dur-

ing HEXOS (Katsaros et al, 1987) wind speed at 10 m height, U10, surface
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stress τ and the one-dimensional frequency spectrum were measured simul-

taneously so that the parametrization of the surface stress may be verified

experimentally.

A first attempt towards verification of some of the consequences of the

quasi-linear theory of wind-wave generation was made by Maat et al (1991)

using HEXOS data. They used measured spectra and the observed friction

velocity u∗ to determine the wave age parameter χ = cp/u∗. Only for windsea

the wave age is expected to be a good measure of the sea state. For this reason

Maat et al selected carefully windsea cases by only considering single peaked

spectra and by studying the appropriate weather maps to assure that the

10–2
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10–1

1

u*/c
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Fig. 3.14. Dimensionless growth rate γ/f as a function of u∗/c according to the observa-

tions compiled by Plant (1982). Full line: Miles’theory with αCH = 0.0144. The symbol � is

(3.149) with αCH = 0.0144,, and ∗ is (3.149) with a ten times larger Charnock parameter,

αCH = 0.144.
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selected cases were indeed windsea. In this fashion they were able to relate

the drag coefficient CD to the wave age. It was confirmed that, indeed, the

drag of airflow over sea waves is sea-state dependent in agreement with the

results from quasi-linear theory as presented in section 3.4.3. The number of

cases studied by Maat et al (1991) were small, and questions on the statistical

significance of the results were raised. The recent work of Oost et al (2002)

involved an order of magnitude more cases and confirmed the earlier findings,

see also the discussion in section 2.6.4.

Let us now discuss a direct comparison between observations and the

parametrized quasi-linear theory by using the observed wave spectrum for

the determination of the wave-induced stress (Janssen, 1992). For a given

observed wind speed and wave spectrum, the surface stress is obtained by

solving (3.159) for the stress in an iterative fashion as the roughness length z2

depends, in a complicated manner on the stress. Since the surface stress was

measured by means of the eddy correlation technique, a direct comparison

between observed and modelled stress is possible.

There are, however, two restrictions regarding observed wave spectra from

a wave rider. Waverider spectra are only reliable up to a frequency of 0.5 Hz.

Since the wave-induced stress is mainly determined by the medium-to-high

frequency range of the wave spectrum we extended the spectra beyond 0.5 Hz

by means of an f−5-tail, where the Phillips parameter was obtained from the

spectral values of the last three frequency bins (a similar procedure is applied

to the model spectra, see (3.162)). In addition, conventional wave riders only

observe the one-dimensional frequency spectrum, hence in order to progress

assumptions regarding the directional distribution of the waves have to be

made. Following the discussion in section 2.6.3 we take the Donelan et al

distribution (2.130), where for the HEXOS data the mean wave direction was

assumed to coincide with the local wind direction, a reasonable assumption

for pure windsea cases.



166 PETER A.E.M. JANSSEN

0.6

10.4 0.6 0.80.2

0.4

1

0.8

0.2

0

observed u
*

quasi-linear
perfect match
regression line
Wu

m
od

el
le

d 
u *

Fig. 3.15. Comparison of modelled and observed friction velocity.

In Fig 3.15 modelled and observed friction velocities are plotted. Fitting

the squares with a linear regression line a slope of 0.96 and an intercept of

0.05 is obtained indicating that there is a good agreement between observed

and modelled stress. For comparison purposes we have also plotted results for

friction velocity with a sea-state independent roughness length, the Charnock

relation. As suggested by Wu (1982) we took as Charnock parameter αCH =

0.0185. The resulting regression line is given in Fig. 3.15 as well, giving a

considerable underestimation of friction velocity of about 20%.

It is emphasized that Fig. 3.15 also illustrates in an elegant way the no-

tion of a sea-state dependent roughness. Far away from coasts and in steady

circumstances a description of momentum transfer in terms of a constant

Charnock parameter is likely to be appropriate. Open ocean observations

of Smith (1980) and Yelland and Taylor (1996) seem to give values for the

Charnock parameter as low as 0.01. In coastal areas, such as the North Sea
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where HEXOS took place, or in rapidly varying circumstances on the open

ocean, young windseas seem to prevail giving much larger Charnock param-

eter (even up to 0.1). This large variation of the Charnock parameter is

captured by quasi-linear theory in a realistic manner. It is of interest to

study the consequences of the sea-state dependent roughness on the mod-

elling of the weather over the oceans, storm surges and the ocean circulation

since all these subjects depend on an accurate description of the momentum

transfer at the ocean surface. However, first we need to discuss in the next

Chapter two other important source terms of the energy balance equation,

namely nonlinear transfer and dissipation of wave energy by, for example,

white capping.

3.6. Summary of Conclusions.

In this Chapter we have given an overview of the problem of wind-wave gen-

eration, with emphasis on the Miles instability. Miles’ theory was extended

by including wave-mean flow interactions which results in a sea-state depen-

dence of the momentum transfer from air to water, while also the role of

gusts in the process of the generation of waves by wind was discussed. Al-

though this has not been addressed here Miles theory can also be extended

by including effects of atmospheric stratification (Janssen and Komen, 1986).

We also discussed in some detail results from numerical models that in-

clude effects of small-scale turbulence. Results from these models regarding

the growth rate of gravity waves agree with Miles’ theory for phase speeds

smaller than the wind speed, but predict in contrast to Miles’ theory, wave

damping when the phase speed is larger than the wind speed. As already

discussed these damping rates are expected to be much smaller than the

corresponding growth rates because otherwise swells from the extra tropics

would never arrive in the tropics. It was pointed out that the usual mixing

length model for turbulence may not be adequate for these long waves as the

dominant eddies do not have sufficient time to transport a significant amount
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of momentum during a wave period. Presumably, mixing length modelling

therefore overestimates the impact of turbulence on growth and damping of

the long waves. And indeed, in the context of rapid distortion theory Belcher

and Hunt(1993) and Mastenbroek (1996) have found reduced damping rates.

Based on the above turbulence models it has been suggested that Miles

critical layer mechanism does not play a role in the problem of wind-wave

generation, even in the context of rapid distortion theory. However, turbu-

lent relaxation time scale may be considerably longer than suggested by the

scaling arguments of Belcher and Hunt (1993) reducing the role of turbulent

fluctuations. Anyway, recent work with direct numerical simulations of wave

growth by wind (Sullivan et al, 2000) and detailed observations of Hristov et

al (2003) suggest that, at least for the longer waves, a critical layer mechanism

seems to operate.

The process of the generation of ocean waves by wind is an example of

two-way interaction, because as soon as the waves become sufficiently steep

the associated wave-induced stress gives rise to a slowing down of the airflow.

Thus, this should result in a sea-state dependence of air-sea momentum trans-

fer. The possible consequences of this sea-state dependence will be discussed

in Chapter 5.
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4. Non-linear wave-wave interactions and wave-dissipation.

In this Chapter we study the effects of nonlinearity on the evolution of deep-

water gravity waves. Eventually this will result in an expression for the source

function for nonlinear wave-wave interactions and dissipation (presumably by

white capping), which finalizes the description of the energy balance equation.

We shall begin with a fairly extensive discussion of nonlinear wave-wave

interactions, which is followed by a brief treatment of dissipation of wave en-

ergy by white capping. The latter treatment is only very schematic, however,

because this process involves steep waves which only occur sporadically. At

best the choice of the white capping source function can be made plausible.

It turns out that the overall dissipation rate is in agreement with observed

dissipation rates. Much more is known regarding nonlinear wave-wave inter-

actions. An important reason for this is that ocean waves may be regarded

most of the time as weakly nonlinear, dispersive waves. Because of this there

is a small parameter present which permits to study the effect of nonlinearity

on wave evolution by means of a perturbation expansion with starting point

linear, freely propagating ocean waves. In addition, it should be pointed out

that the subject of nonlinear ocean waves has conceptually much in common

with nonlinear wave phenomena arising in diverse fields such as optics and

plasma physics. In particular, since the beginning of the 1960’s many people

have contributed to a better understanding of the properties of nonlinear

waves, and because of the common denominater we have seen a relatively

rapid progress in the field of nonlinear ocean waves.

Nonlinear waves is a vast field and it should be clear, therefore, that only

a glimpse can be presented of what has been going on in the field. Still, an

attempt will be given to summarize the progress in our knowledge of nonlinear

effects. In this summary a key role will be played by the Hamiltonian for water

waves. Once the Hamiltonian (presented in Chapter 2) is found it is relatively

straightforward to develop the theory of deep-water waves, including the
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effect of nonlinearity.

We start with a discussion of nonlinear effects on a single, deterministic

wave train. In fact, the study of nonlinear effects on deep-water gravity waves

started in the 19th century with the important contribution of Stokes (1847).

He considered a single wave of permanent shape and was able to find the

effects of finite amplitude on the dispersion relation by means of a so-called

singular perturbation technique. In hindsight, he may be regarded as the

’father’ of the renormalization technique - nowadays so popular in particle

physics - because he found the dispersion relation of finite amplitude gravity

waves by renormalization of the acceleration of gravity g. Later, Levi-Civita

(1925) proved the convergence of the Stokes series solution.

In 1965 Lighthill discovered, using Whitham’s variational approach, that

a nonlinear, deep-water gravity wave train is unstable to modulational per-

turbations, giving rise to a deeply modulated wave train, hence focussing

wave energy in space and time, and as a consequence the growth of side-

bands in the corresponding spectrum. This instability may be regarded as a

special case of a four-wave interaction process, which, as we will see, plays an

important role in the physics of ocean waves. In the field of fluid dynamics

this instability is nowadays known as the Benjamin-Feir instability, because

Benjamin and Feir (1967) were the first to give experimental evidence of its

existence. In other fields it is referred to as the modulational instability or

sideband instability.

An interesting question one may then ask is what will happen to this

unstable wave train. The answer is somewhat surprising and was given by

Lake et al (1977). It turned out that the wave train did not desintegrate but

instead it recurred after a finite time [Fermi-Pasta-Ulam recurrence] to an

almost uniform wave train. This feature also follows from a simplified de-

scription of wave dynamics in the limit of a narrow band, weakly nonlinear

wave train. In that event the envelope of the wave train is determined by the
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so-called nonlinear Schrödinger equation. We will discuss some of the prop-

erties of this classical evolution equation because it arises in many different

applications, although it only has a restricted validity.

Finally, to close the discussion of deterministic aspects of nonlinear waves

we give results on the instability of a nonlinear wave to three-dimensional

perturbations. This instability is related to a five-wave interaction process

(Mclean, 1982; Mclean et al, 1982) and there is experimental evidence for

the existence of this process (Ming Su, 1982). In the context of ocean wave

forecasting this process is usually ignored because it is of higher order in

action density than four-wave interactions.

After having discussed some effects of nonlinearity on the evolution of de-

terministic, deep-water waves we proceed with the study of nonlinear transfer

in a stochastic sea and we derive the nonlinear source function of the energy

balance equation. Some consequences of nonlinear transfer are briefly dis-

cussed, in particular the role played by nonlinear interactions in shaping the

high-frequency part of the spectrum and in shifting the peak of the spectrum

towards lower frequencies. Nonlinear interactions also have a pronounced

impact on the probability distribution of the surface elevation; because in

deep-water nonlinearity results in focussing there is a tendency to have an

increased probability of extreme events, signalling the increased probability

of freak wave events. Finally, we also devote some attention to the relation

between the statistical theory of four-wave processes and the Benjamin-Feir

instability from deterministic theory.

4.1. Evolution equation for deep-water waves derived from a

Hamiltonian.

We recall from Chapter 2 that there are two equivalent variational formu-

lations for the evolution of deep water gravity waves, namely by means of

a Hamiltonian (2.8) and by means of a Lagrangian (2.10). The equivalence

between the two formulations was discussed as well. Starting from the La-
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grangian formulation we obtained the basic evolution equation for waves,

namely the energy balance equation (2.71) which, for a random sea, describes

the rate of change of the action density as caused by advection, refraction

and physical processes. In this Chapter, the main goal is to derive the rate

of change of the spectrum owing to nonlinear interactions. This is done in

two steps. First, we obtain the deterministic evolution equation for surface

gravity waves in deep water. It is called the Zakharov equation and it is ob-

tained from the Hamiltonian of water waves first found by Zakharov (1968).

In the next step, equations for the moments of the probability distribution

function (pdf) of the waves are obtained from the Zakharov equation. This

infinite hierarchy of equations will be closed by applying the Random Phase

Approximation to the sixth moment and the resulting system of equations is

solved by means of the multiple time scale technique (Davidson, 1972).

Consider the potential flow of an ideal fluid of infinite depth. Coordinates

are chosen in such a way that the undisturbed surface of the fluid coincides

with the x-y plane. The z-axis is pointed upward, and the acceleration of

gravity g is pointed in the negative z-direction. Let η be the shape of the

surface of the fluid, and let φ be the potential of the flow. Hence, the velocity

of the flow follows from u = −∇φ.

By choosing as canonical variables

η, and, ψ(x, t) = φ(x, z = η, t), (4.1)

Zakharov (1968) showed that the total energy E of the fluid may be used as

a Hamiltonian. Apart from the constant water density ρw the energy is

E =
1
2

∫
dx

∫ η

−∞
dz

(
(∇φ)2 + (

∂φ

∂z
)2
)

+
g

2

∫
dx η2. (4.2)

The x-integrals extend over the total basin considered. If an infinite basin

is considered the resulting total energy is infinite, unless the wave motion is

localized within a finite region. This problem may be avoided by introducing

the energy per unit area by dividing (4.2) by the total surface L× L, where
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L is the length of the basin, and taking the limit of L→ ∞ afterwards. As a

consequence, integrals over wavenumber k are replaced by summations while

δ-functions are replaced by Kronecker δ’s. For a more complete discussion cf.

Komen et al (1994). We will adopt this approach implicitely in the remainder

of this text.

The boundary conditions at the surface, namely the kinematic boundary

condition and Bernoulli’s equation, are then equivalent to Hamilton’s equa-

tions,

∂η

∂t
=
δE

δψ
,
∂ψ

∂t
= −δE

δη
, (4.3)

where δE/δψ is the functional derivative of E with respect to ψ, etc. Inside

the fluid the potential φ satisfies Laplace’s equation,

∇2φ+
∂2φ

∂z2
= 0

with boundary conditions

φ(x, z = η) = ψ

and

∂φ(x, z)
∂z

= 0, z → ∞.

If one is able to solve the potential problem, then φ may be expressed in term

of the canonical variables η and ψ. Then the energy E may be evaluated in

terms of the canonical variables, and the evolution in time of η and ψ follows

at once from Hamilton’s equations (4.3). This was done by Zakharov (1968),

who obtained the deterministic evolution equations for deep water waves by

solving the potential problem in an iterative fashion for small steepness ε.

In order to make progress, it is most convenient to introduce the Fourier

transform of φ, denoted by φ̂,

φ =
∫

dk φ̂ eik.x. (4.4)
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The potential problem for φ then becomes an ordinary differential equation

for φ̂. The relevant solution which satisfies the boundary condition at z = −∞
reads

φ̂ = φ̂(t) ekz,

where k = |k|. The difficult part is now to try to satisfy the boundary con-

dition at z = η. Explicitely we then have

φ(x, z = η) = ψ(x, t) =
∫

dk ψ̂ eik.x (4.5)

and progress can only be made by means of a Taylor expansion of φ around

z = 0. Thus,

φ(x, z = η) = φ(x, 0) + η
∂

∂z
φ+

1
2
η2 ∂

2

∂z2
φ+ ..... = ψ (4.6)

and introducing the Fourier transform of η

η =
∫

dk η̂ eik.x

Eq.(4.6) is solved for φ by means of iteration with the result

φ̂0 = ψ̂0 −
∫

dk1,2 k1 ψ̂1η̂2 δ0−1−2

−
∫

dk1,2,3 k1D0,1,2,3 ψ̂1η̂2η̂3 δ0−1−2−3 + ..... (4.7)

where we have introduced the short hand notation dk1,2 = dk1dk2, ψ̂1 =

ψ̂(k1), δ0−1−2 = δ(k0 − k1 − k2), etc., and

D0,1,2,3 =
1
4
{2|k1| − |k0 − k1| − |k0 − k2| − |k1 + k2| − |k1 + k3|} .

Eq.(4.7) expresses φ̂ in terms of the Fourier transforms of the canonical vari-

ables η and ψ and is formally correct up to third order in amplitude ( this is

what is needed in order to describe four-wave processes). It should be pointed

out that the solution (4.7) has a restricted validity because of two reasons.

First, the steepness of the dominant waves should be small. In addition, there

may be a restriction on the wavenumber range to which (4.7) is applied. For
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example, consider the case of short waves riding on a long wave. This case

is not well described by the solution (4.7) because in that event the Tay-

lor expansion around the mean sea level, as given in (4.6) may, in principle,

become invalid.

A great simplification is achieved by introducing the complex variable

A(k) through

η̂(k) =
(
k

2ω

)1/2

[A(k) +A∗(−k)]

(4.8)

ψ̂(k) = −i
(
ω

2k

)1/2

[A(k) −A∗(−k)]

where ω is just given by the dispersion law for gravity waves

ω =
√
gk. (4.9)

The advantage of the use of the action variable A will become clear in the

moment. Using (4.8) and substitution of (4.7) into the energy E of the surface

waves (4.2) then gives up to fourth order in amplitude

E =
∫

dk1ω1A1A
∗
1 +

∫
dk1,2,3δ1−2−3V

(−)
1,2,3 [A∗

1A2A3 + c.c.]

+
1
3

∫
dk1,2,3δ1+2+3V

(+)
1,2,3 [A1A2A3 + c.c.]

+
∫

dk1,2,3,4δ1−2−3−4W
(1)
1,2,3,4 [A∗

1A2A3A4 + c.c.] (4.10)

+
1
2

∫
dk1,2,3,4δ1+2−3−4W

(2)
1,2,3,4A

∗
1A

∗
2A3A4

+
1
4

∫
dk1,2,3,4δ1+2+3+4W

(4)
1,2,3,4 [A∗

1A
∗
2A

∗
3A

∗
4 + c.c]

Here, V () and W () are complicated expressions of ω and k which are given

by Krasitskii (1994). For convenience all relevant interaction coefficients are

also recorded in the Appendix.

The introduction of the action variable A has the advantage that the

second order expression for the energy,

E2 =
∫

dk1ω1|A1|2 (4.11)
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assumes a very simple form, much simpler then in terms of the original vari-

ables η̂ and ψ̂. When comparing (4.11) with (2.46) it is recognized that |A1|2is
nothing but the action density. Another advantage of the introduction of the

complex variable A is that the Hamilton equations (4.3) become the single

equation

∂A

∂t
= −i δE

δA∗ . (4.12)

In the linear approximation, i.e. using the lowest order expression for the

energy in (4.11), the evolution equation of the action variable assumes the

simple form

∂A

∂t
= −iω A. (4.13)

Normally, in terms of the Fourier transform of the surface elevation, gravity

waves are determined by a second order differential equation (cf. Eq. (3.83)),

reflecting the property that for a given wavenumber there are two modes,

namely one with positive frequency and one with negative frequency. The

transformation (4.8) allows one to obtain a first order evolution equation for

the action variable A which simplifies the subsequent nonlinear development

considerably, but still incorporates the property that there are two modes,

because A is essentially complex. For example, while because of reality of the

surface elevation its Fourier transform enjoys the property η̂∗(−k) = η̂(k),

such a relation does not apply to the action variable A.

Evaluating now the functional derivative of the full expression for E with

respect to A∗ we find as evolution equation for A,

∂

∂t
A1 + iω1A1 = −i

∫
dk2,3

{
V

(−)
1,2,3A2A3δ1−2−3 + 2V (−)

2,1,3A2A
∗
3δ1−2+3

+V (+)
1,2,3A

∗
2A

∗
3δ1+2+3

}
− i

∫
dk2,3,4

{
W

(1)
1,2,3,4A2A3A4δ1−2−3−4

+W (2)
1,2,3,4A

∗
2A3A4δ1+2−3−4 + 3W (1)

4,3,2,1A
∗
2A

∗
3A4δ1+2+3−4

+W (4)
1,2,3,4A

∗
2A

∗
3A

∗
4δ1+2+3+4

}
. (4.14)
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Eq. (4.14) is the basic evolution equation of weakly nonlinear gravity waves

and it includes the relevant amplitude effects up to third order. Admittedly,

this might not look an easy way to obtain the fundamental evolution equation

but it is the most transparent route I could find. The key is that once an

approximate solution to the potential problem is found the energy may be

determined to any required order. The time-evolution of A(k) then follows

at once from Hamilton’s equation (4.12). This elegant derivation is due to

Zakharov (1968).

The nonlinear evolution equation (4.14) both contains the effects of three

and four-wave interactions. In order to see this it must be remembered that

(4.14) was obtained under the assumption of small wave steepness so that

in lowest order we are dealing with a linear oscillation and the right-hand

side of (4.14) gives small (but nevertheless important) corrections to this

linear oscillation. Consider now the quadratic terms on the right-hand side

of (4.14). They oscillate with frequencies −(ω2 + ω3), −ω2 + ω3 and ω2 + ω3

respectively. If they match the oscillation frequency −ω1 of the linear system,

a resonant energy transfer between the modes with wavenumber k1, k2 and

k3 is possible. In a similar vein, one of the cubic term oscillates with frequency

ω2 −ω3 −ω4 and if this frequency equals −ω1 of the linear system a resonant

interaction between four modes is possible (Note, however, that also the

quadratic terms may contribute to four wave processes, cf. the discussion

in a short while).

To sum up, the evolution equation (4.14) allows, in principle, three and

four wave interactions. Three wave processes are very effective when the

resonance conditions

ω1 ± ω2 ± ω3 = 0, k1 ± k2 ± k3 = 0 (4.15)

are satisfied. Similarly, four-wave processes are expected to affect the evolu-

tion of the linear waves in an appreciable manner when resonance conditions
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1, k1

2, k2

k

Fig. 4.1. For gravity waves resonant three wave interactions are impossible.

of the type

ω1 + ω2 = ω3 + ω4, k1 + k2 = k3 + k4 (4.16)

can be met. However, it should be emphasized that the resonance conditions

(4.15-4.16) cannot always be satisfied. The occurrence of these resonant pro-

cesses depends on the type of dispersion relation, ω = ω(k). For example,

for deep-water gravity waves the dispersion relation reads ω =
√
gk, which

as shown in Fig. 4.1 is convex. From the graphical construction, given in the

Figure, it is immediately concluded that resonant three wave processes are

impossible.

Phillips (1960) has shown, however, that resonant four-wave interactions

are permitted by the dispersion relation for deep-water gravity waves. The

possible solutions are sketched in Fig 4.2, which has become known as Phillips’

figure of eight. Note, however, that gravity waves only enjoy resonant four-

wave transfer for the resonance conditions, given in (4.16); for example, there

are no resonant four-wave interactions of the type k1 + k2 + k3 = k4, nor of

the type k1 + k2 + k3 + k4 = 0.

As deep-water waves only allow resonant four-wave interactions of the

type (4.16), a considerable simplification of the nonlinear evolution equa-
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k2
k3

k1
k4

Fig. 4.2. Phillips’ figure of eight: resonant four-wave interactions are possible.

tion results. The distinction between resonant and non-resonant interactions

has important consequences. Namely, non-resonant interactions, resulting in,

for example, bound harmonics may be eliminated by means of a canonical

transformation. Let us return now to the amplitude expansion of the wave

energy given in (4.10). In fact, Krasitskii (1990, 1994) has shown that in the

absence of resonant three-wave interactions there is a nonsingular, canonical

transformation from the action variable A to a new variable a that allows

elimination of the nonresonant third- and fourth-order contributions to the

wave energy E. Note that by definition a canonical transformation has the

property that also in terms of the new variables the system is Hamiltonian.

The transformation A = A(a, a∗) is only explicitely known in terms of an

amplitude expansion. The first few terms are given by

A1 = a1 +
∫

dk2,3

{
A

(1)
1,2,3a2a3δ1−2−3 +A

(2)
1,2,3a

∗
2a3δ1+2−3

+A(3)
1,2,3a

∗
2a

∗
3δ1+2+3

}
+
∫

dk2,3,4

{
B

(1)
1,2,3,4a2a3a4δ1−2−3−4 (4.17)

+B(2)
1,2,3,4a

∗
2a3a4δ1+2−3−4 +B

(3)
1,2,3,4a

∗
2a

∗
3a4δ1+2+3−4

+B(4)
1,2,3,4a

∗
2a

∗
3a

∗
4δ1+2+3+4

}
+ ...... .
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The unknowns A() and B() are obtained by systematically removing the

non-resonant third- and fourth-order contributions to the wave energy, and

insisting that the form of the energy remains symmetric. These expressions

are quite involved and have been given by Krasitskii (1990, 1994) for example.

We only give the transfer coefficient for the quadratic terms explicitely. They

read

A
(1)
1,2,3 = − V

(−)
1,2,3

ω1 − ω2 − ω3

A
(2)
1,2,3 = −2

V
(−)
2,1,3

ω1 + ω2 − ω3

A
(3)
1,2,3 = − V

(+)
1,2,3

ω1 + ω2 + ω3

and they show that in the absence of resonant three wave interactions of the

type (4.15) the transformation A = A(a, a∗) is indeed nonsingular. Neverthe-

less it is emphasized that when three waves are close to resonance, as may

happen for shallow water waves (because they are almost non-dispersive),

the canonical transformation is almost singular. This, in fact, is a signal that

the perturbation expansion is not convergent, and a different approach is

required leading to a variant of the Boussinesq equations.

Elimination of the variable A in favour of the new action variable a results

in a great simplification of the wave energy E (4.10). It becomes

E =
∫

dk1ω1a
∗
1a1 +

1
2

∫
dk1,2,3,4T1,2,3,4a

∗
1a

∗
2a3a4δ1+2−3−4, (4.18)

where the interaction coefficient T1,2,3,4 is given by Krasitskii (1990, 1994)and

in the Appendix. The interaction coefficient enjoys a number of symmetry

conditions, of which the most important one is T1,2,3,4 = T3,4,1,2, because this

condition implies that E is conserved. In terms of the new action variable a,

Hamilton’s equation becomes ∂a/∂t = δE/δa∗, or,

∂a1

∂t
+ iω1a1 = −i

∫
dk2,3,4T1,2,3,4a

∗
2a3a4δ1+2−3−4, (4.19)
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which is known as the Zakharov Equation. Clearly, by removing the non-

resonant terms, a considerable simplification of the evolution equation de-

scribing four-wave processes has been achieved (cf. with (4.14)).

It is emphasized that the transfer function T1,2,3,4 contains two types of

contributions, one directly from the cubic terms of (4.14) and a number of

terms related to the interaction of the bound waves, given by the quadratic

terms in the canonical transformation (4.17)), with two free waves that satisfy

the dispersion relation. For this reason one may distinguish two types of

resonant four-wave interactions, the first one is called a direct interaction

and the second one is called a virtual state interaction. Here, the direct

interaction only involves interaction between free waves, while in the virtual

state interaction two free waves generate a virtual state consisting of bound

waves which then decays into a different set of free waves.

Before we investigate in the next section a number of properties of the

Zakharov equation we have to make two remarks. First, it is noted that once

the solution to the Zakharov equation (4.19) is known for a one still needs to

apply the canonical transformation (4.17) to recover the actual action vari-

able A. Although the difference between the two action variables is only of

the order of the wave steepness, there are a number of applications where one

is interested in effects of bound waves. If one then needs to obtain the second

order corrections to the wave spectrum, knowledge of the canonical trans-

formation up to third order in amplitude is required. This will be discussed

further in § 4.7.3 when we study the high-frequency part of the spectrum.

The second remark is of historical nature and concerns the Hamiltonian

character of Eq.(4.19). As was shown by Caponi et al (1982) the original

Zakharov equation was not Hamiltonian; by numerical means it was found

that the energy of the waves was not conserved. The reason for this is that in

Zakharov (1968) a transformation was used that was not canonical. This was
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pointed out by Krasitskii (1990), 2 who found the proper transformation from

A to a, i.e. Eq.(4.17), which up to second order in amplitude is identical to

original transformation of Zakharov (1968). However, Krasitskii found that

additional terms of order a3 are needed to preserve the Hamiltonian nature

of the problem. As a result, the transfer function enjoys the symmetry

T1,2,3,4 = T3,4,1,2 (4.20)

and this condition is sufficient for conservation of the wave energy E from

(4.18). Note, however, that for resonant 4 wave processes (obeying the reso-

nance conditions in (4.16)) the two forms of T are identical.

Many results regarding the stability properties of deep-water gravity waves

have been obtained with the original form of the transfer function T (for a re-

view cf. Yuen and Lake, 1982). Krasitskii and Kalmykov (1993) reported for

large steepness quantitative (but no qualitative) differences between stability

results obtained with the original form of T and the symmetrical form of

T . Remark, however, that the use of different transformations A = A(a, a∗)

will affect results for a, because a will obey different evolution equations,

but, of course, the results for the original action variable A are not affected.

In terms of A, the results reported in Yuen and Lake (1982) are, therefore,

expected to be correct, even for large wave steepness. Thus, the discrep-

ancies found by Krasitskii and Kalmykov (1993) are not understood. Note,

however, that there are subtle differences between the two approaches. For

example, stability results are usually presented as function of the physical

wave steepness (the one based on A). Using the Zakharov transformation the

steepness obtained from a is indeed identical to the physical wave steepness.

But, the Krasitskii transformation contains cubic terms in a, and therefore

in those circumstances the steepness based on A and a is different. This is

an important difference for large values of the wave steepness.
2 But Zakharov was aware of this problem as well and sketched in a review of the Russian

translation of Yuen and Lake (1982) its solution
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4.2. Finite amplitude effects on dispersion relation and the in-

stability of finite amplitude deep-water waves.

A finite amplitude wave has a dispersion relation which depends on the am-

plitude. This was already recognized by Stokes in the 19th century. Although

the effect of the amplitude on the frequency is quite small (for example, a

steepness of 10% only gives a .5% effect on frequency), nonlinearity still has

a tremendous impact on the evolution of a wave train. This follows from the

work of Lighthill, Whitham and Benjamin and Feir who discovered that a

uniform wave train may be unstable to sideband perturbations. This insta-

bility, which is called the Benjamin-Feir instability (in other fields it is known

as the modulational instability or sideband instability), is just an example of

a four-wave interaction.

In this section and the following one we shall explore some of the conse-

quences of nonlinearity on wave evolution in a deterministic context. This

is then followed by a discussion of the effects of nonlinearity in a statistical

framework, which is more appropriate for actual wave forecasting. It will be

seen that the deterministic and standard, statistical approach results in ap-

parently conflicting conclusions. These apparent conflicts may be resolved,

however, by a slightly more general statistical approach which includes both

resonant and non-resonant interactions.

The nonlinear dispersion relation for deep-water gravity waves is obtained

immediately from the Zakharov equation (4.19). Consider the case of a single

wave, e.g.

a(k) = â δ(k − k0) (4.21)

Then, substitution of (4.21) into (4.19) gives

∂

∂t
â = −iT0|â|2â, (4.22)

where it may be verified that T0 = T0,0,0,0 = k3
0. Eq. (4.22) may be solved at



184 PETER A.E.M. JANSSEN

once by writing

â = a0e
−iΩt

where Ω denotes the correction of the dispersion relation due to nonlinearity.

It is given by

Ω = T0|a0|2 (4.23)

Therefore, the dispersion relation of a weakly nonlinear gravity wave is given

by

ω = ω0(1 +
1
2
s2), ω0 =

√
g|k0|, (4.24)

and s is the wave steepness, defined as wavenumber times surface elevation

amplitude, hence wave steepness is related to the action density variable

in the following way: s = k0a0

√
2k0/ω0. The result (4.24) was obtained by

Stokes (1847) using a singular perturbation method.

The dependence of the dispersion relation on the wave steepness will have

a profound impact on the time evolution of a weakly nonlinear wave train.

This will be discussed in the next section, but let us first discuss the short time

behaviour of a nonlinear wave train by means of a linear stability analysis.

Therefore, let us now address the question whether a weakly nonlinear

wave train is stable or not. To test the stability of a uniform wave train

we perturb it by a pair of sidebands with wavenumber k± = k0 ± K and

amplitude A±(t), e.g.,

a = A0δ(k − k0) +A+δ(k − k+) +A−δ(k − k−).

Assuming that the sideband amplitudes are small compared to the amplitude

A0 of the carrier wave and neglecting the square of small quantities, the

following evolution equations for A± are found from the Zakharov equation

(4.19),

i
d

dt
A± = T±,∓a2

0A
∗
∓ exp[−i(∆ω + 2T0a

2
0)t] + 2T±,±a2

0A± (4.25)
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where

T±,± = T (k0 ±K, k0, k0, k0 ±K)

T±,∓ = T (k0 ±K, k0 ∓K, k0, k0)

T0 = T (k0, k0, k0, k0)

∆ = 2ω(k0) − ω(k0 +K) − ω(k0 −K)

and a0 is the same quantity as given in Eq. (4.23).

By means of the substitution

A+ = Â+ exp[−i(1
2
∆ω + T0a

2
0)t− iΩt],

A∗
− = Â∗

− exp[+i(
1
2
∆ω + T0a

2
0)t− iΩt],

where Ω is still unknown, a set of differential equations is obtained that

contains no explicit time dependence. A nontrivial solution is then found

provided Ω satisfies the dispersion relation

Ω = (T+,+ − T−,−)a2
0

±
{
−T+,−T−,+a

4
0 +

[
−1

2
∆ω + a2

0(T+,+ + T−,− − T0)
]2
} 1

2

(4.26)

We have instability provided that the term under the square root is negative.

This result, including the discussion that follows, is due to Crawford et al

(1981) ( see also Yuen and Lake (1982) and Krasitskii and Kalmykov (1993)).

A considerable simplification of the dispersion relation is found when close

sidebands are considered. In order to see this one introduces the dimensionless

perturbation wavenumber

κ = K/k0 (4.27)

and one considers κ � 1. The frequency mismatch is then approximately

given by

∆ω  1
4
ω0κ

2.
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Expanding then the expressions for T in powers of κ and retaining only

terms quadratic in the steepness s and modulation wavenumber κ, one finds

Ω = ω0

(
−κ

2

8
s2 +

κ4

64

) 1
2

. (4.28)

This is the classical result of Benjamin and Feir (1967). Instability is found

for sufficiently steep waves, or, in other words, for sufficiently long wavelength

perturbations:

κ2 ≤ 8s2. (4.29)

Note that Lighthill (1965) only discussed very long wavelength modulations

and therefore did not find the above threshold for instability.

In Fig. 4.3 the normalized growth rate �(Ω)/1
2ω0s

2, obtained from Eq.

(4.26), is plotted as function of the normalized sideband wave number ∆ =

κ/2s. Here, we have used the wave steepness s as a label and the results

of Benjamin and Feir corresponds to the limit s → 0. As can be seen from

Fig. 4.3, small but finite amplitude gives considerable deviations from their

1

0.5

Ιm
(Ω

)/
1 /

2ω
0s
2

∆

Benjamin and Feir (1967)

0.1

0.2

0.3

0.35

0.39

0.4 0.42 0.44
0.46
0.48

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4

k0a0=0.01

Fig. 4.3. Two-dimensional instability growth rates as a function of perturbation wavenum-

ber for various values of wave steepness. The Benjamin-Feir result is recovered by taking

the limit as wave steepness approaches zero.
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Fig. 4.4. Stability diagram for two-dimensional perturbations on a uniform wave train

from the Zakharov equation and comparison with results from Longuet-Higgins (1978).

classical result. For s = 0.2 Eq.(4.26) gives a maximum growth rate which

disagrees with (4.28) by about 40%. Furthermore from (4.26) it is found that

the very long waves (∆ → 0) become stable again for a steepness s which is

larger than 0.39. This restabilization of the very long waves is in qualitative

agreement with results from Whitham’s average Lagrangian approach which

yields restabilization for s = 0.34. The quantitative discrepancy of only 14%

is better than expected since the present theory is formally accurate to O(s2).

Finally, Fig 4.3 shows restabilization for all modulation wavenumbers for suf-

ficiently large steepness (s  0.5). This property is in qualitative agreement

with numerical results of Longuet-Higgins (1978). This is shown more clearly

in Fig 4.4 where the marginal stability boundary is plotted in the κ−s plane.

The agreement of the results from the Zakharov equation and experiment

is also very encouraging. This is shown in Fig. 4.5 where normalized growth

rate as function of wave steepness is presented. The experimental results

are from Benjamin (1967) and Lake et al (1977). For reference, also the
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Fig. 4.5. Comparison of calculated instability growth rate with experimental results

as a function of wave steepness for two values of perturbation wavenumber. Symbols:

(◦) : κ = 0.4, (•) : κ = 0.2 (Lake et al, 1977); (�): data from Benjamin (1967).

theoretical result of Benjamin and Feir (4.28) is shown.

To summarize, we have seen that a weakly nonlinear wave train is unstable

to sideband perturbations. An energy transfer occurs from the basic wave to

the sidebands through a four-wave interaction process. The results from the

Zakharov equation compare favourable with exact computations and exper-

iment. This theoretical approach has a surprisingly large range of validity,

considering that it is formally only valid up to O(s2).

The present discussion so far was confined to the case of sidebands that

propagate in the same direction as the basic wave (2-D modulations). The

present theory is also applicable to three dimensional modulations. Let the

basic wave propagate in the x-direction and let

∆x = κx/2s, ∆y = κy/2s,

where κx = Kx/k0 and κy = Ky/k0 are the x- and y-component of the

normalized sideband wavenumber vector. Returning to Eq. (4.26) we again
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∆x
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Fig. 4.6. Three-dimensional stability boundary from Zakharov equation in strained coor-

dinates ∆x and ∆y. —, k0a0 = 0.01; -x-x-, k0a0 = 0.1;-.-.-, k0a0 = 0.4;...., k0a0 = 0.48.

expand the frequency mismatch ∆ω for very long modulation wavelength

∆ω =
1
4
ω0κ

2
x − 1

2
ω0κ

2
y.

Also, expanding T and retaining terms to O(s2) and O(|κ|2) one finds from

(4.26)

Ω =
(
−1

2
∆ωs2ω0 +

1
4
(∆ω)2

)1/2

. (4.30)

The stability boundary is then defined by the curves ∆ω = 0 and ∆ω = 2s2ω0

and they are sketched in the ∆x,∆y plane in Fig 4.6. In the long wavelength

approximation the instability region is infinite of extend and as a result one

would have an energy cascade from low modulation wavenumbers to high

modulation wavenumbers. However, the long wavelength approximation ob-

viously becomes invalid for large ∆x and ∆y. Results from the Zakharov

equation (Eq. (4.26)) with the full expression for ∆ω and T ) show that the

instability region is finite in extent and therefore a qualitative different pic-

ture emerges. For small steepness s the instability region is very close to the

Phillips’ figure of eight, but this should be no surprise as the figure of eight
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was obtained from the four-wave resonance conditions using the linear dis-

persion relation. For larger steepness, the wavenumbers near the outer edges

of the figure of eight stabilize and the diagram resembles that of a pair of

touching horse shoes. For even larger steepness also the longer waves begin to

stabilize and the two horse shoes split. Just before the system stabilizes the

instability is concentrated at K = ±0.78k0 and is strongly two-dimensional.

4.3. Nonlinear Schrödinger Equation and long-time behaviour of

the Benjamin-Feir Instability.

According to the Zakharov equation a nonlinear wave train is unstable to

sideband perturbations. It is of interest to point out that this is not just a

property of gravity waves but that this instability may happen for any non-

linear, dispersive wave with a nonlinear dispersion relation provided certain

conditions of nonlinear focusing are met. Starting from a general dispersion

relation a heuristic derivation is given of the evolution equation of the enve-

lope of a narrow-band wave train: the Nonlinear Schrödinger Equation, ab-

breviated as the NLS equation. In the gravity-wave context the NLS equation

was first derived by Zakharov (1968). This equation gives a correct descrip-

tion of the case of very long wavelength modulation. The linear instability

results are identical to the results from Benjamin and Feir. However, the NLS

equation will not give the restabilization of the sideband instability for large

steepness, as follows, for example, from the Zakharov equation.

Still, it is interesting enough to discuss this classical evolution equation

because of its simplicity and generality. Also, it is of interest to know what

will happen to an unstable wave train. As a first guess one might speculate

that such a wave train will be completely destroyed by the instability, which

is usually called the desintegration of a wave train. However, the experimental

results of Lake et al (1977) suggest that the wave train regains its identity.

The NLS equation will be used to give an explanation of the robustness of a

wave train.
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Let us attempt to derive the NLS equation. Consider a spectrum of waves

with a small band width δk0 centered around the carrier wavenumber k0. In

a good approximation, the surface elevation for a narrow-band wave train is

given by

η = � (A(x, t) exp i(k0x− ω0t)) + O(A2), (4.31)

where ω0 and k0 are angular frequency and wavenumber of the carrier wave,

while, in agreement with the narrow spectrum assumption, A is the slowly

varying, complex envelope of the wave. For constant amplitude |A| the non-

linear dispersion relation is given by

ω = ω(k, |A|2). (4.32)

For a narrow-band, weakly nonlinear waves one may expand the dispersion

relation around the carrier frequency ω0 and carrier wavenumber k0, and

around zero amplitude. The result is

ω − ω0 =
∂ω

∂k0
(k − k0) +

1
2!
∂2ω

∂k2
0

(k − k0)2 +
∂ω

∂|A|2 |A|
2 + ..... , (4.33)

where all partial derivatives are evaluated at k = k0 and A = 0.

In a linear wave system there is a direct correspondence between the dis-

persion relation and the governing partial differential equations. This corre-

spondence states that

−i(ω − ω0) → ∂

∂t
, i(k − k0) → ∂

∂x
. (4.34)

This correspondence can be generalized in a straightforward manner to weakly

nonlinear systems where the nonlinear term does not depend on the mod-

ulation wavenumber k − k0, e.g. as in case of Eq. (4.33). Invoking (4.34)

we obtain from (4.33) a differential operator which is to be applied to the

envelope A. The result is the nonlinear Schrödinger equation

i

(
∂

∂t
+
∂ω

∂k0

∂

∂x

)
A+

1
2
∂2ω

∂k2
0

∂2

∂x2
A− ∂ω

∂|A|2 |A|
2A = 0, (4.35)
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which governs the evolution of the envelope of a weakly nonlinear wave train

in the narrow band approximation. It is emphasized that (4.35) only holds

for slowly varying envelopes, i.e.

∂

∂t
� ω0,

∂

∂x
� k0.

Then, to lowest order the envelope (and hence the wave energy) is advected by

the group velocity ∂ω/∂k0 while dispersion and nonlinearity give nontrivial

corrections to the dynamics of the wave train, in particular for large times.

Clearly, this heuristic derivation suggests that the NLS equation arises

in a variety of applications where nonlinear effects and dispersive waves are

relevant. For this reason it has been obtained in a number of fields, notably

in plasma physics, nonlinear optics and hydrodynamics. The concept of a

nonlinear dispersion relation is the link between these fields. In this context

it is worthwhile to point out an important connection with Whitham’s aver-

age Lagrangian method presented in Chapter 2. Whitham’s approach is valid

for weakly nonlinear, narrow-band wave trains (cf. the condition (2.31) and

the consequent mathematical development). The resulting evolution equa-

tions (2.40a-2.40c) may be applied immediately to the stability of a weakly

nonlinear wave train and there is always instability when nonlinear focussing

counteracts linear dispersion, independent of the modulation wavenumber

(Whitham, 1974; Lighthill, 1965). Whitham (1974; p. 522-526) has pointed

out that when higher order dispersion is allowed for, a threshold of instability

arises when the modulation wavenumber is increased, in agreement with the

results of Benjamin and Feir (1967), cf. Eq. (4.29). Therefore, if a nonlinear

wave system has a Lagrangian then Whitham’s average Lagrangian method

(including higher order dispersion) results in the NLS equation (4.35).

Let us now consider the stability of a uniform wave train. For convenience

we transform to a frame moving with the group velocity,

τ = t, ξ = x− ∂ω0

∂k
τ,
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then (4.35) becomes

i
∂

∂τ
A+

1
2
ω′′ ∂2

∂ξ2
A− ωA2 |A|2A = 0, (4.36)

where ω′′ = ∂2ω0/∂k
2 and ωA2 = ∂ω/∂|A|2.

A special solution of (4.36) is the uniform wave train

A = A0e
−iδωτ , (4.37)

Substitution of (4.37) in (4.36) gives

δω = ωA2A2
0 (4.38)

which represents the usual nonlinear Stokes correction to the frequency of

gravity waves, hence (4.38) agrees with (4.23-4.24). In order to study the

stability of this solution it is most convenient to apply the transformation

A = Â(ξ, τ) exp i(−iωA2A2
0τ) (4.39)

with the result

i
∂

∂τ
Â+

1
2
ω′′ ∂2

∂ξ2
Â− ωA2(|Â|2 −A2

0)Â = 0, (4.40)

and the steady state is now given by Â = A0. Perturbing this steady state

Â = A0 +A1, A1 � A0, (4.41)

and linearizing in A1 we have

i
∂

∂τ
A1 +

1
2
ω′′ ∂2

∂ξ2
A1 − ωA2A2

0(A1 +A∗
1) = 0. (4.42)

Since A1 is complex we write

A1 = u+ iv

to obtain for the real part of A1

∂

∂τ
u+

1
2
ω′′ ∂2

∂ξ2
v = 0,
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while the equation for the imaginary part becomes

∂

∂τ
v − 1

2
ω′′ ∂2

∂ξ2
u+ 2ωA2A2

0u = 0.

For normal modes (u, v ∼ exp i(kξ + Ωτ)) one obtains

iΩu− 1
2
ω′′k2v = 0,

iΩv +
1
2
ω′′k2u+ 2ωA2A2

0u = 0.

This system has a nontrivial solution provided Ω satisfies the dispersion re-

lation

Ω2 =
1
4
k2

[
(ω′′)2k2 + 4ω′′ωA2A2

0

]
(4.43)

and instability is found when Ω2 < 0, hence a necessary condition for insta-

bility is

ω′′ωA2 < 0. (4.44)

This is indeed the case for gravity waves as ωA2 = ω0k
2
0/2 > 0 while ω′′ =

−g1/2k
−3/2
0 /4 < 0. Substitution of the expressions for ωA2 and ω′′ results in

Eq. (4.28) which is the narrow-band limit of the dispersion relation obtained

from the Zakharov equation.

Eq. (4.44) shows an important result for nonlinear wave trains as we have

only modulational instability provided dispersion and nonlinear dispersion

(ωA2) counteract. Note that when there is a balance between nonlinearity and

dispersion, solutions of permanent shape are possible. These are called enve-

lope solitary waves. This is very similar to the occurrence of solitary waves

in the Korteweg-de Vries (KdV) equation (Whitham, 1974). These solutions

play an important role in the large time behaviour of the exact solution to the

one-dimensional NLS equation for the case of vanishing boundary conditions.

(Zakharov and Shabat, 1972).

Let us now discuss the physical interpretation of the Benjamin-Feir insta-

bility. As already noted, this instability is an example of a four-wave inter-

action process. To see this in more detail, let us perturb the spectrum with
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peak at k = k0 with two sidebands at k0 ± κ. Since the carrier wave has

finite amplitude, there is a second harmonic with wavenumber k0 +k0 = 2k0.

Hence, there is a degenerate four-wave interaction possible between the two

sidebands and the second harmonic as

2k0 = k0 + k0 = k0 + κ+ k0 − κ. (4.45)

A resonant transfer between second harmonic and sidebands is then possible

provided the frequency mismatch ∆σ vanishes, where

∆σ = 2σ(k0) − σ(k0 + κ) − σ(k0 − κ). (4.46)

For definiteness, we have denoted the frequency of a wave, including nonlinear

effects, by σ.

The process just described is an example of a virtual interaction as dis-

cussed in section 4.1 This is, however, not the whole story as there is also

a direct interaction possible between the carrier wave, counted twice, and

the two sidebands. In the narrow-band approximation these two types of in-

teraction, virtual and direct, have the same weight in the magnitude of the

nonlinear coupling coefficient T0 (see Eq. 4.23)).

The virtual and the direct interaction give rise to the same resonance

conditions (4.45-4.46). The frequency resonance condition, however, cannot

always be satisfied. The frequency of the carrier wave is, of course, given by

the well-known nonlinear dispersion relation

σ(k0) = ω0

(
1 +

1
2
s2
)
, ω0 =

√
gk0,

see Eq. (4.24). The dispersion relation of the sidebands is less trivial to un-

derstand. It should be realized that the small amplitude sidebands are riding

on a finite-amplitude carrier wave. Because of the finite amplitude carrier a

current, the Stokes drift, u is set up. Thus, the frequency of the sidebands

will get a Doppler shift equal to (k0 ± κ)u, where u = cs2 and c = ω0/k0.

Therefore,

σ(k ± κ) = ω0(k0 ± κ) + (k0 ± κ)ω0(k0)s2/k0.
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This result is in agreement with the evolution equation for one sideband,

Eq. (4.25), in the absence of the other. Expanding the dispersion relation

to second order in the modulation wavenumber κ, the frequency mismatch

becomes

∆σ = −s2ω0 − κ2ω′′
0 .

For gravity waves, the frequency mismatch vanishes for the wavenumber given

by the condition κ2 = −s2ω0/ω
′′
0 , or using the dispersion relation,(

k

k0

)2

= 4s2, (4.47)

and for this wavenumber the growth rate of the Benjamin-Feir instability

attains a maximum (cf. Fig 4.3 and Eq. (4.28)). This makes sense as the

energy transfer is the most efficient for perfect matching of the frequencies

of the waves involved. A frequency mismatch obviously reduces the efficiency

of the energy transfer, until the mismatch becomes so large that no energy

transfer is possible. Referring again to Fig. 4.3 this seems to occur for a

dimensionless modulation wavenumber ∆ = κ/(2s) =
√

2.

We have seen that a nonlinear gravity wave is unstable to sideband per-

turbations. It is of interest to speculate about the subsequent evolution in

time of this instability. In the past several proposals have been made regard-

ing the end-state of the Benjamin-Feir instability, ranging from a complete

disintegration of the wave train to and end-state involving cnoidal waves (the

periodic equivalent of envelope solitary waves) (see, for example, Benjamin

(1967), Hasselmann (1967) and Hasimoto and Ono (1972)). It should be noted

that the proposal of an end-state consisting of envelope cnoidal waves is cer-

tainly not a wild guess. Namely, Zakharov and Shabat (1972) applied the

inverse scattering technique to the initial value problem of the NLS equation

where the initial state was of compact support. They found that the end-

state usually consisted of a number of envelope solitons. Whitham (1974)

then conjectured that the Benjamin-Feir instability (an initial value prob-
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lem with periodic boundary conditions) would have as its end-state cnoidal

waves.

Surprisingly, none of the above mentioned end-states were found in the

experiment of Lake et al (1977) who studied the long-time behaviour of the

Benjamin-Feir instability. This experiment was performed in a wave tank

with a programmable wave maker so that a control of the size of the side-

a)

b)

c)

d)

e)

f)

Fig. 4.7. Example of the long-time evolution of an initially uniform nonlinear wave train,

showing onset of modulational instability and subsequent demodulations: (a) x = 5 ft, (b)

x = 10 ft, (c) x = 15 ft, (d) x = 20 ft, (e) x = 25 ft, (f) x = 30 ft. Note that this example

does not show full recurrence because of frequency downshifting.
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band perturbations on the carrier wave is possible. The resulting evolution of

the wave train as a function of fetch (ie. the distance from the wave maker) is

displayed in Fig. 4.7. It is found that after the wave train reaches a strongly

modulated state (which indeed resembles cnoidal envelope waves) the wave

train nearly returns to its initial state, although there is clear evidence of a

frequency downshift because the frequency of the wave train at the end of

the wave tank is smaller than at the beginning. In this particular case the

frequency downshift was thought to be caused by wave breaking. Recently,

Tulin and Waseda (1999) investigated in the laboratory the relationship be-

tween the occurrence of wave breaking and the frequency down shift. In a

clean experimental set up they also showed that in the absence of breaking

no down shifting occurred. In other words, in the absence of dissipation, the

long-time evolution of the unstable wave train would show recurrence, which

is known as the Fermi-Pasta-Ulam recurrence. Fermi et al (1955) showed its

existence when studying oscillations of an anharmonic lattice.

And indeed, numerical solution of the NLS equation showed a perfect

recurrence of the Benjamin-Feir instability. This recurrence was also found

by means of an approximate solution of the NLS equation in the limit of

small growth rate. The Benjamin-Feir instability has as, shown in Fig. 4.8, a

threshold for instability. Therefore, the magnitude of the growth rate may be

∆

k/(2k0s) threshold

Im
(Ω

)/
1 /

2ω
0s

2

Fig. 4.8. Growth rate of Benjamin-Feir instability and the definition of the distance ∆ to

the threshold for instability.
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V(Γ)

Γ

Fig. 4.9. The potential V(Γ) as function of the amplitude |Γ|.

controlled by an appropriate choice of the modulation wavenumber. In addi-

tion, if the distance ∆ to the threshold is not too large, the higher harmonics

are in the stable region which simplifies the problem considerably. Assum-

ing ∆ � 1, application of the method of multiple time scales results in the

following evolution equation for the amplitude Γ of the unstable sideband

(Janssen, 1981)

d2

dt2
Γ = γ2Γ − β2|Γ|2Γ, (4.48)

where γ is the growth rate according to linear theory and β measures the

strength of nonlinearity. Eq. (4.48) has periodic solutions in time since the

evolution equation is just equivalent to the motion of a particle in a potential

well V, displayed in Fig. 4.9. In order to see this equivalence, multiply (4.48)

by dΓ∗/dt and add the complex conjugate to the result. Integration with

respect to time gives the conservation law

1
2

∣∣∣∣dΓ
dt

∣∣∣∣
2

+ V(Γ) = const

where the potential is given by

V(Γ) = −1
2
γ|Γ|2 +

1
4
|Γ|4.

It is evident from Fig. 4.9 and the expression for the potential V that for

small amplitude there is instability because then the potential is convex. On
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t

a0

Fig. 4.10. Benjamin-Feir Instability and the Fermi-Pasta Ulam recurrence. Note the in-

terplay between carrier wave (a0) and sideband (Γ).

the other hand, for large amplitude nonlinearity is stabilizing as the potential

is concave.

The evolution of the amplitude Γ in time and the corresponding effect of

the instability on the amplitude of the carrier wave is displayed in Fig. (4.10).

Clearly, the sideband is growing at the expense of the carrier wave and this is

at the same time the main reason for quenching the energy transfer from the

carrier wave to the sideband. To be more precise, while the amplitude of the

carrier wave decreases the threshold for instability will move to lower values

of the dimensionless modulation wavenumber until the sideband enters the

stable regime. In other words, the unstable sideband extracts energy from

the carrier wave, thereby modifying the nonlinear wave in such a way that it

becomes stable to the very same sideband perturbation. Finally, in Fig. 4.11

a comparison is given between the approximate solution of the NLS equation

and the numerical result. It shows the maximum of the modulation amplitude

as a function of the distance ∆ to the threshold. For small ∆ the agreement

is good. The numerical result was obtained by means of a straightforward
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Fig. 4.11. Modulation depth as function of ∆1/2 for analytical and numerical solution of

the NLS equation.

numerical solver of the NLS equation. To that end a Fourier expansion of

the envelope A is performed resulting in a coupled set of ordinary differential

equations for the Fourier amplitudes. The set of ordinary differential equa-

tions is solved with a Runge-Kutta method with variable time step. For a

similar approach see Yuen and Ferguson (1978).

The existence of the Fermi-Pasta-Ulam recurrence illustrates the fact that

nonlinear systems may have a long memory of the initial condition. For peri-

odic boundary conditions, the one-dimensional NLS equation (4.36) provides

us with a nice example of this. The NLS is an integrable system and there

is even Fermi-Pasta-Ulam recurrence when two or more modes are unstable

(Osborne et al, 2000). However, it should be remarked that the simple pic-

ture of the Fermi-Pasta-Ulam recurrence is, probably, not universally valid.

For more complicated evolution equations analytical approaches fail and one

has to rely on computer simulations. The first numerical solutions of the Za-

kharov equation were given by Caponi et al (1982) (see also Krasitskii and
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Kalmykov (1993)), but for a rather coarse spatial resolution. No recurrence

was found and, in fact, the solution appears to be rather chaotic.

Second, the interesting work of Dold and Peregrine (1986) should be men-

tioned in this context. In case of deep modulation the amplitude of the carrier

wave may become so large that its steepness exceeds locally the maximum

steepness of gravity waves, signalling the onset of wave breaking. Such a non-

linear process cannot be described in the context of the Zakharov equation,

which follows from a weakly nonlinear expansion. Therefore, Dold and Pere-

grine (1986) numerically solved the problem for potential flow including the

nonlinear boundary conditions (Eqns. (2.5)-(2.7)) for one-dimensional prop-

agation. When there is Benjamin-Feir instability (cf. Eq. (4.29) or (4.44))

these authors found that for short times the unstable sidebands evolved ac-

cording to theory. However, for large times the modulation may become so

deep that the carrier wave breaks. Clearly, no perfect reccurence is then possi-

ble anymore. Dold and Peregrine (1986) established an interesting connection

between a weakly nonlinear four-wave interaction process and a truly nonlin-

ear phenomenon such as wave breaking. This line of thought has been taken

up recently by, for example, Song and Banner (2002) and Banner and Song

(2002) who inferred a robust threshold variable for wave breaking.

Finally, it is emphasized that narrow-band approximations resulting in

the one- and two-dimensional NLS equation have a restricted validity. This

is evident clearly for the two-dimensional version of NLS. In that case the

instability region is not finite in extent (cf. Eq. (4.30) and Fig. (4.6) so that

energy leakage to high modulation wavenumbers is possible. As a result, after

a finite time the wave energy is not confined to a narrow band in wavenumber

space, therefore violating the assumptions of the narrow band approximation.

From the Zakharov equation we know that the instability region is finite in

extent, however, even for two-dimensional perturbations (cf. Eq. (4.26) and

Fig. (4.4). Hence, this suggests that the two-dimensional NLS equation does
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not provide an appropriate description of the envelope of surface gravity

waves for large times. Nevertheless, studies of the properties of the NLS

equation have been vital in understanding nonlinear wave-wave interactions

and in understanding the conditions under which freak waves, for example,

may occur. For a more complete discussion on the issue of freak waves and

nonlinear focussing consult Trulsen and Dysthe (1997), Osborne et al (2000)

and Trulsen and Stansberg (2001).

4.4. Beyond the Zakharov Equation: five-wave interactions.

We have discussed in some detail four-wave interactions of deep-water grav-

ity waves. One may wonder whether higher order resonant interactions are

possible, and whether they may be observed for nonlinear gravity waves. The

answer to both these questions is affirmative. In the 1980’s there has been

much interest in five-wave interactions. The resonance conditions are given

by

k1 + k2 = k3 + k4 + k5, ω1 + ω2 = ω3 + ω4 + ω5. (4.49)

A description of this interaction cannot be given in the framework of the Za-

kharov equation (4.19) because fourth order terms need to be included. This

means one has to go back to the Hamiltonian of water waves and one has to

derive an approximate Hamiltonian correct to fifth order in amplitude. This

has been accomplished by Krasitskii (1994), but details will not be discussed

because they are too involved. Stiassnie and Shemer (1984) obtained a fourth

order evolution equation as well and studied in detail five-wave interactions

(but their evolution equation was not in Hamiltonian form, for the same rea-

son as the original Zakharov equation). Five wave interactions give rise to an

interesting surface pattern, resembling a horse shoe. An interesting study on

this subject was reported by Annenkov and Shrira (1999).

Earlier, Longuet-Higgins (1978), McLean (1982) and McLean et al (1982)

discussed the five-wave interaction process using numerical computations of
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the exact water wave equations. The surface displacement of a finite ampli-

tude wave train of wavelength 2π/k was represented as a Stokes expansion

η =
∞∑

n=0

An cosn(x− ct),

with normalised x, t coordinates and with known Fourier coefficients An and

with phase speed c which depends on wave steepness s = ka. This nonlinear

wave is perturbed by an infinitesimal three-dimensional disturbance

η′ = exp i [p(x− ct) + qy − Ωt]
∞∑

n=−∞
an exp in(x− ct) + c.c.,

where Ω = Ω(p, q, s) is an eigenvalue to be found. Instability arises when

�(Ω) �= 0, with roots occurring in complex-conjugate pairs, because the sys-

tem is Hamiltonian.

McLean’s computations were accomplished by truncating the expansions

at high order. He found two distinct instability regions in the p− q plane for

various values of steepness s. Examples are given in Fig. (4.12).

The type I instability which is found near the origin reduces to that for

the Benjamin-Feir instability of the two-dimensional NLS equation when p,

q and s are sufficiently small. For larger p and q but steepness still small it

coincides with Phillips’ figure of eight (note that only 1/4 of the figure eight

is shown). For larger steepness the type I instability disappears, in agreement

with the results found with the Zakharov equation in Section 4.2.

The outer region of the type II instability may, for small steepness, be

interpreted as a degenerate five-wave resonant interaction (4.49) where, in

normalized form

k3 = k4 = k5 = (1, 0), ω3 = ω4 = ω5 = c = 1

represents the fundamental wave train while

k1 = (1 + p, q), k2 = (2 − p,−q),

represents the perturbation. Using the linear dispersion relation (with g = 1)

ω = g1/2(k2 + l2)1/4, k = (k, l),
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Fig. 4.12. Type I and Type II instability of finite-amplitude gravity waves in deep water

(from McLean et al., 1981) for increasing values of the steepness. Cases (a)-(d) correspond

to s = 0.064π, s = 0.095π, s = 0.111π, s = 0.127π respectively.

and the frequency matching condition of (4.49) the result is[
(p+ 1)2 + q2

]1/4
+
[
(2 − p)2 + q2

]1/4
= 3 (4.50)

The thin line, labeled II, in case a) of Fig. (4.12) corresponds to Eq. (4.50).

The type II instability has maximum growth rate with p = 1/2, when k1 and

k2 have the same k-component, k = 3/2; their phase speed then equals c.

Experimental evidence of the type II instability is reported by Melville

(1982) and Su (1982). At relatively small slopes, s < 0.3, the Benjamin-Feir

instability is stronger than type II, and the most dominant instability is one-

dimensional. But oblique Type II instability is dominant for 0.3 < s < 0.44.

The latter lead to three-dimensional waves as shown in Fig. (4.13), from

Su (1982), which resembles a horse-shoe pattern. In other words, the type

II instability dominates the behaviour of a nonlinear wave train for large

steepness. For a steepness of .33 the maximum growth rate of the type II

instability is found for p = 1/2 and q = 1.2. As these length scales are in

agreement with the observed scales in Fig. (4.13), there is reason to believe
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Fig. 4.13. Three-dimensional wave configuration resulting from oblique Type II instability,

for s = 0.33 (from Su, 1982).

that the type II instability triggers the three-dimensional waves found in

experiment.

The two types of instability discussed so far are probably the first two

members of an infinite class of higher-order interactions among three distinct

wave modes, as suggested by Zakharov (1968). These satisfy

k1 + k2 = Nk0, ω1 + ω2 = Nω0

where k0 = (1, 0), ω0 = 1 denotes the fundamental wave train and N > 1.

Since the characteristic growth rates of the k1 and the k2 perturbation are

O(sN ), these higher order resonances are only expected to be relevant for

very steep waves. It may very well be that they play a role in the wave

breaking process. On the other hand, it should be emphasized that for small

wave steepness (s < .25) the four-wave interaction process is most dominant.

4.5. Statistical approach to nonlinear interactions.

In the previous sections we have discussed in some detail effects of nonlinear-

ity on the evolution of deep water waves. The key result was that a nonlinear
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gravity wave is unstable to sideband perturbations, in agreement with exper-

imental results from the laboratory. It was emphasized that this instability

was a special case of a four-wave interaction process. Clearly, thus far we

have been engaged with a deterministic description of the water surface.

Let us ask ourselves now how our insights may be used in a practical

application, such as wave prediction on a global scale. In that event, as already

discussed in Chapter 2, one is interested in a statistical description of the sea

surface, which means one is concerned with the evolution of the energy of

an ensemble of waves. Although for extreme events, such as occur in the

presence of freak waves, there is a need for information on the phases of the

waves it is noted that the prediction of the phase of the individual waves is a

hopeless adventure. First, we have no observations of the initial phases of the

waves, and, second, long-time integrations of the Zakharov equation exhibit

features of chaotic behaviour (Annenkov and Shrira, 2001). In other words,

at finite time the phases of the waves will show a sensitive dependence on

the initial conditions, and therefore in practice they are not predictable.

Therefore, at best one can hope to predict average quantities such as the

second moment

〈a1a
∗
2〉, (4.51)

where the angle brackets denote an ensemble average. In most practical ap-

plications this turns out to be sufficient.

Here, we sketch the derivation of the evolution equation for the second

moment from the Zakharov equation (Eq. (4.19)), assuming a zero mean

value of the amplitude a1, 〈a1〉 = 0. It is known, however, that because of

nonlinearity, the evolution of the second moment is determined by the fourth

moment, and so on, resulting in an infinite hierarchy of equations (Davidson,

1972). The question then is how to obtain a meaningful truncation of this

hierarchy. Historically, this truncation of the hierarchy is obtained by making

two assumptions, namely it is assumed that the ensemble of waves is spatially
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homogeneous and stationary, ànd, that the probability distribution for the

complex amplitude of the waves a1 is close to a Gaussian. Later, it will be

discussed that the assumption of spatial homogeneity is not really necessary

(Alber, 1978) but for sufficiently broad spectra it turns out to be a valid

assumption.

Let us discuss these assumptions in more detail first. A wave field is con-

sidered to be homogeneous if the two-point correlation function 〈η(x1)η(x2)〉
depends only on the distance x1 − x2. Using the expression for the surface

elevation, Eq.(4.8), it is then straightforward to verify that a wave field is

homogeneous provided that the second moment satisfies

〈aia
∗
j 〉 = Niδ(ki − kj), (4.52)

where Ni is the spectral action density, which is equivalent to a number

density because ωiNi is the spectral energy density, while kiNi is the spectral

momentum density (apart from a factor ρw).

The complex amplitude a1 is regarded as a stochastic variable with a cer-

tain probability distribution. One of the main problems is now to determine

the probability distribution function (pdf). It is common practice (cf. Cook,

1974) to introduce the characteristic functional of the probability distribu-

tion. It is defined as

G({µk}, t) = 〈exp i
∑

µkak〉 (4.53)

where {µk} denotes all the variables µk. G contains all the statistical informa-

tion, e.g. the moments of the distribution function are related to derivatives

of G with respect to µk. Hence,

∂G

∂µk

∣∣∣∣{µk=0}
= i〈ak〉 = 0;

∂2G

∂µk∂µl

∣∣∣∣∣
0

= −〈akaj〉; .... (4.54)

Therefore, the moments are related to the coefficients of the Taylor expansion

of G about the origin. This expansion is, however, not very useful because

it does not bring out the significance of a special characteristic function-that
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of a Gaussian distribution-which is expected to be of great importance, as

explained shortly. Here, the Gaussian characteristic function is given by

G0 = exp−1
2

∑
µkµjBk,j (4.55)

and by making an expansion around G0 the so-called cumulants of the dis-

tribution function are introduced. These are the coefficients of the Taylor

expansion of the logarithm of G,

G = exp
[
i
∑

µkAk − 1
2!

∑
µkµjBk,j − i

1
3!

∑
µkµjµlCk,j,l

+
1
4!

∑
µkµjµlµmDk,j,l,m + ....

]
. (4.56)

By differentiation of G the following relation between the moments and the

cumulants is found

〈ak〉 = Ak = 0

〈akaj〉 = Bkj

〈akajal〉 = Ckjl (4.57)

〈akajalam〉 = BkjBlm +BklBjm +BkmBjl +Dkjlm

etc.

Evidently, for a Gaussian distribution with zero mean all cumulants except

the second order one, Bkj , vanish. The finiteness of the other cumulants is

therefore a measure for the deviation from normality. From (4.57) it is clear,

however, that for a Gaussian the moments do not vanish.

In the statistical theory of the evolution of a random wave field the Gaus-

sian distribution plays a central role. Mathematically, this follows from the

central limit theorem, which tells us that if the amplitudes have random and

independent phase than the probability distribution is Gaussian (for this rea-

son one frequently uses the term Random Phase Approximation). If the waves

are non-interacting then the phases remain uncorrelated. However, nonlinear

interactions tend to create correlations (higher cumulants) but if the waves
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have a small steepness this effect is expected to be weak. Hence, for weakly

nonlinear waves one may expect that the wave field is near Normality so that

the rate of change of the wave spectrum (or second moment) is expected

to be small; for large times this small effect may have, however, significant

consequences regarding the evolution of the wave spectrum.

Let us now sketch the derivation of the evolution equation for the second

moment 〈aia
∗
j 〉 from the Zakharov equation (4.19). To that end, we multiply

Eq.(4.19) for ai by a∗j , add the complex conjugate with i and j interchanged,

and take the ensemble average:[
∂

∂t
+ i(ωi − ωj)

]
〈aia

∗
j 〉 =

− i

∫
dk2,3,4[Ti,2,3,4〈a∗ja∗2a3a4〉δi+2−3−4 − c.c.(i↔ j)], (4.58)

where c.c. denotes complex conjugate, and i ↔ j denotes the operation of

interchanging indices i and j in the previous term. Because of nonlinearity

the equation for the second moment involves the fourth moment. Similarly,

the equation for the fourth moment involves the sixth moment. It becomes[
∂

∂t
+ i(ωi + ωj − ωk − ωl)

]
〈aiaja

∗
ka

∗
l 〉 =

− i

∫
dk2,3,4[Ti,2,3,4〈a∗2a∗ka∗l a3a4aj〉δi+2−3−4 + (i↔ j)]

+ i

∫
dk2,3,4[Tk,2,3,4〈a∗3a∗4a∗l a2aiaj〉δk+2−3−4 + (k ↔ l)]. (4.59)

We see from this that an infinite hierarchy of equations is found, known

as the BBGKY hierarchy (after Bogoliuboff, Born, Green, Kirkwood and

Yvon). To close this hierarchy we will use the assumptions of a near-Gaussian,

homogeneous wave field.

Specifically, we proceed as follows:

1. For weakly nonlinear waves we assume that the cumulants, denoted

from now on by gn (n ≥ 2) obey the following ordering

gn = O(εn−1), (4.60)
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where ε is a small parameter, reflecting our assumption that we deal with the

case of weakly nonlinear waves. Here, in the spirit of Eq. (4.57), we write

g2(i, j) = 〈aia
∗
j 〉,

〈aiaja
∗
ka

∗
l 〉 = g2(i, k)g2(j, l) + g2(i, l)g2(j, k) + g4(i, j, k, l), (4.61)

and (Crawford et al, 1980),

〈aiajaka
∗
l a

∗
ma

∗
n〉 = 2g2(i, l)g2(j,m)g2(k, n) + 2g2(i,m)g2(j, n)g2(k, l)

+ 2g2(i,m)g2(j, l)g2(k, n) +R6(i, j, k, l,m, n).

Here, the remainder term R6 contains the sixth cumulant g6 and products

of the fourth and the second cumulant and, therefore, applying the ordering

(4.60) the remainder term is O(ε4) which is small compared to the terms

involving the second cumulant. Hence, the ordering (4.60) implies that the

wave field is close to the Gaussian state. In addition, according to (4.58) g2

varies slowly in time for a homogeneous sea.

2. At first sight one would think that a meaningful truncation of this

BBGKY hierarchy may be achieved by neglecting the fourth cumulant in

the evolution equation (4.58) for g2. The combination with homogeneity of

the wave field results, however, in constancy of g2 so that one needs to go

to higher order, i.e. g4 needs to be determined. It turns then out that the

neglect of the sixth cumulant is a meaningful closure hypothesis.

3. As already noted, for homogeneous sea g2 is a slowly varying function of

time. Apparently, there are several time scales in the problem as, for example,

g4 does vary on a faster time scale. It is therefore assumed that the cumulants

depend on many time scales, e.g.,

g2 = g2(τ0, τ1, τ2, ...), τn = εnt

so that

∂

∂t
g2 =

∂

∂τ0
g2 + ε

∂

∂τ1
g2 + ε2

∂

∂τ2
g2 + .... (4.62)
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Likewise, the cumulants are expanded themselves in the small parameter ε,

i.e.,

g2 = εg
(1)
2 + ε2g

(2)
2 + ......

g4 = ε3g
(3)
4 + ε4g

(4)
4 + ...... (4.63)

Therefore, we obtain an approximate solution from the BBGKY hierarchy

(4.58-4.59), utilizing the assumptions of near-Gaussianity and homogeneity

and using the multiple time scale method.

INTERMEZZO Let us illustrate the usefulness of the multiple time scale

method by applying it to a simple problem, namely the solution of the ordi-

nary differential equation

d2x

dt2
+ 2ε

dx

dt
+ x = 0, ε� 1,

which models a slightly damped oscillation. The exact solution is

x = ae−εt sin
[
t(1 − ε2)1/2 + φ

]
,

where amplitude a and phase φ are constants.

Using a naive perturbation technique,

x = x0 + εx1 + ε2x2 + ...

one finds

x = a
[
sin(t+ φ) − εt sin(t+ φ) + O(εt)2

]
,

which is an inadequate approximation of the exact solution for large times.

The second term is called a secular term.

A uniform valid solution, valid up to t = O(1/ε), may be obtained with the

multiple time scale method. As may be inferred from the exact solution and

from the differential equation there are several time scales in the problem.

We therefore pose

x = x(τ0, τ1, ...), τ0 = t, τ1 = εt, ....,
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where the time scales are considered to be independent. Thus

d

dt
x =

∂x

∂τ0

dτ0
dt

+
∂x

∂τ1

dτ1
dt

+ ... =
[
∂

∂τ0
+ ε

∂

∂τ1
....

]
x.

Likewise,

d2

dt2
=

∂2

∂τ2
0

+ 2ε
∂2

∂τ0∂τ1
+ O(ε2).

In addition, we expand x in a power series of ε,

x = x0 + εx1 + ...

to obtain(
∂2

∂τ2
0

+ 2ε
∂2

∂τ0∂τ1
+ 2ε

(
∂

∂τ0
+ ε

∂

∂τ1

)
+ 1

)
(x0 + εx1) = O(ε2).

Equating like powers of ε we obtain a hierarchy of equations. In lowest order

we find

Lx0
.=

(
∂2

∂τ2
0

+ 1

)
x0 = 0

with general solution

x0 = a(τ1) sin (τ0 + φ(τ1)) ,

where the integration constants a and φ are independent of the fast time

scale but are allowed to depend on the slow time scale τ1. In first order we

find

Lx1 = −2
∂x0

∂τ0
− 2

∂2x0

∂τ0∂τ1
= −2

[
a cos(τ0 + φ) +

∂

∂τ1
(a cos(τ0 + φ))

]
.

The source term in this equation oscillates with the eigenfrequency of the

homogeneous equation and produces therefore resonance. The particular so-

lution

x1 = −τ0
[(
a+

∂a

∂τ1

)
sin(τ0 + φ) +

∂φ

∂τ1
cos(τ0 + φ)

]

shows that secular behaviour occurs. However, the introduction of the slow

time scale τ1 gives us the freedom to prevent this undesirable behaviour (as
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we insist on having x1 � x0 for all time). Removal of secular behaviour thus

results in

∂φ

∂τ1
= 0 and

∂a

∂τ1
+ a = 0.

Hence

x = a0e
−εt sin (t+ φ0) + O(ε2),

giving a uniform valid approximation to the solution of the ordinary differ-

ential equation.

The multiple time scale method proves to be very powerful and it has been

applied to a variety of singular perturbation problems. For a more complete

account of this method see Davidson (1972). In the context of systems having

a Lagrangian, an elegant and systematic approach to two-timing has been

presented by Whitham (1974). His approach has been presented in some

detail in Chapter 2 when we discussed the dynamics of wave groups. The

problem of the FPU recurrence in solutions of the NLS equation (see § 4.3)

was treated by means of the multiple time scale method by Janssen (1981).

We have now introduced all the tools needed for giving an approximate solu-

tion to the BBGKY hierarchy (4.58-4.59). Thus, we use the expansion (4.62-

4.63) in (4.58) to obtain in lowest order

∂

∂τ0
g
(1)
2 (i, j) = −i (ωi − ωj) g

(1)
2 (i, j)

and for homogeneous sea

g
(1)
2 (i, j) = Niδ(i− j) (4.64)

we find the usual result that the action density Ni does not depend on the

fast time scale τ0. Note that strictly speaking we should use the notation

N
(1)
i for the action density to lowest significant order, but as long as there is

no confusion we simply write Ni. In second order we find[
∂

∂τ0
+ i (ωi − ωj)

]
g
(2)
2 (i, j) = − ∂

∂τ1
g
(1)
2 (4.65)
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− i

∫
dk2,3,4Ti,2,3,4δi+2−3−4N3N4 [δ3−jδ4−2 + δ3−2δ4−j ] + c.c(i→ j)

For homogeneous sea the nonlinear term vanishes so that removal of secularity

results in the condition ∂g(1)
2 /∂τ1 = 0. In third order we then find[

∂

∂τ0
+ i (ωi − ωj)

]
g
(3)
2 (i, j) = − ∂

∂τ2
g
(1)
2

− i

∫
dk2,3,4Ti,2,3,4δi+2−3−4 g

(3)
4 (3, 4, j, 2) + c.c(i→ j) (4.66)

hence we need to know the fourth cumulant g4. Its evolution follows from

(4.59). Using the assumption that the pdf of the surface elevation is close to

a Gaussian, hence, neglecting the effect of the sixth cumulant g6, we obtain

in lowest order from (4.59)[
∂

∂τ0
+ i (ωi + ωj − ωk − ωl)

]
g
(3)
4 (i, j, k, l) =

2iTi,j,k,lδi+j−k−l [NiNj(Nk +Nl) − (Ni +Nj)NkNl] (4.67)

In order to obtain this result extensive use has been made of the symmetry

properties of the nonlinear transfer coefficient T , in particular the Hamilto-

nian symmetry. This equation may be solved by means of Laplace transfor-

mation with respect to the fast time scale τ0, where it is noted that N may

be regarded as a constant as it only depends on the slow time scale τ2. For

the initial condition of vanishing fourth cumulant, i.e. g(3)
4 (t = 0) = 0, the

solution becomes

g
(3)
4 (i, j, k, l) = 2Ti,j,k,lδi+j−k−lG(∆ω, t) [NiNj(Nk +Nl)

−(Ni +Nj)NkNl] (4.68)

where ∆ω is short hand for ωi + ωj − ωk − ωl. The function G is defined as

G(∆ω, t) = i

∫ t

0
dτei∆ω(τ−t) = Rr(∆ω, t) + iRi(∆ω, t), (4.69)

where

Rr(∆ω, t) =
1 − cos(∆ωt)

∆ω
, (4.70)
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while

Ri(∆ω, t) =
sin(∆ωt)

∆ω
. (4.71)

For large time t, G develops into the usual generalised functions P/∆ω (where

P means the Cauchy Principal Value), and δ(∆ω), since,

lim
t→∞G(∆ω, t) =

P

∆ω
+ πiδ(∆ω). (4.72)

The limit in Eq.(4.72) is a limit in the sense of generalized functions and

is, strictly speaking, only meaningful inside integrals over wavenumber when

multiplied by a smooth function.

Eq. (4.68) shows that starting from an ensemble of waves that has ini-

tially Gaussian statistics, hence g(3)
4 (t = 0) = 0, nonlinearity will give rise to

deviations from Normality. Although for large times the deviations are the

largest for resonant four-wave interactions - as is evident from the δ-function

with argument ∆ω in (4.72) - in general both resonant and nonresonant in-

teractions will contribute to deviations of the probability distribution from

the Gaussian distribution.

Finally, substitution of (4.68) into (4.66) gives
[
∂

∂τ0
+ i (ωi − ωj)

]
g
(3)
2 (i, j) = − ∂

∂τ2
g
(1)
2 + 4δ(i− j)

∫
dk2,3,4|Ti,2,3,4|2×

δi+2−3−4 Ri(∆ω, t) [N3N4(Ni +N2) −NiN2(N3 +N4)] . (4.73)

In order to remove secular behaviour, the normal procedure is now to study

the right-hand side of (4.73) for large times τ0. Using the limiting behaviour of

G = Rr+iRi given in Eq. (4.72) it is immediately evident that the integral on

the right hand side of Eq. (4.73) becomes independent of τ0 for large times

and will therefore produce secular behaviour of g(3)
2 on the time scale τ0.

Because of the introduction of many time scales, secularity from g
(3)
2 may be

removed by demanding that for large times τ0 the right-hand side of (4.73)

vanishes. The result is that the action density evolves on the slow time scale
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τ2 according to

∂

∂τ2
N1 = 4π

∫
dk2,3,4|T1,2,3,4|2δ1+2−3−4δ(ω1 + ω2 − ω3 − ω4)×

[N3N4(N1 +N2) −N1N2(N3 +N4)] . (4.74)

For gravity waves this evolution equation was first obtained by Hasselmann

(1962). Eq. (4.74) tells us that the action density evolves on the long τ2 time

scale owing to resonant four-wave interactions only.

In practical application, such as in wave prediction, resonant interactions

dominate the nonlinear evolution of gravity waves. However, the result (4.74),

obtained from the condition that the series expansion for the second moment

g2 is regular, does not imply that non-resonant interactions are not relevant

for wave evolution. On the contrary. Eq. (4.73) also tells us that the second

order correction to the action density g
(3)
2 evolves on the short time scale.

Using (4.73), the evolution of the action density on the short and the long

time scale can be combined by imposing the condition of a homogeneous

wave field and by writing

∂

∂t
Ni = ε3

(
∂

∂τ2
N

(1)
i +

∂

∂τ0
N

(3)
i

)
.

Then, replacing N (1)
i in the nonlinear term by Ni and putting ε = 1 one finds

∂

∂t
N1 = 4

∫
dk2,3,4|T1,2,3,4|2δ1+2−3−4Ri(∆ω, t)

[N3N4(N1 +N2) −N1N2(N3 +N4)] . (4.75)

where now ∆ω = ω1 +ω2−ω3−ω4. This evolution equation will be called the

Boltzmann equation and was first obtained by Janssen (2003). It is empha-

sized that Eq. (4.75) is slightly more general than the Hasselmann equation

(4.74) because both resonant and non-resonant wave-wave interactions are

included. Although the inclusion of the non-resonant interactions is probably

not important for practical applications, it is nevertheless helpful to include

them here in order to try to resolve a number of objections that have been

raised against the idea of nonlinear transfer in the past.
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In order to stress that Eq. (4.75) contains both non-resonant and resonant

transfer, the resonance function Ri(∆ω, t) is studied. Two limits of Ri are of

interest to mention. For small times we have

lim
t→0

Ri(∆ω, t) = t (4.76)

while for large times we have

lim
t→∞Ri(∆ω, t) = πδ(∆ω). (4.77)

Hence, according to Eq.(4.75), for short times the evolution of the action

density N is caused by both resonant and nonresonant four-wave interac-

tions, while for large times, when the resonance function evolves towards a

δ-function, only resonant interactions contribute to spectral change.

In the standard treatment of resonant wave wave interactions (cf., for ex-

ample Hasselmann (1962) and Davidson (1972)) it is implicitely argued that

the resonance function Ri(∆ω, t) may be replaced by its time-asymptotic

value (Eq.(4.77)), because the action density spectrum is a slowly varying

function of time. However, the time required for the resonance function to

evolve towards a delta function may be so large that in the mean time con-

siderable changes in the action density may have occurred. For this reason

the full expression for the resonance function kept.

An important consequence of this choice concerns the estimation of a

typical time scale TNL for the nonlinear wave-wave interactions in a homo-

geneous wave field. With ε the square of a typical wave steepness and ω0 a

typical angular frequency of the wave field, one finds from the Boltzmann

equation (4.75) that for short times TNL = O(1/εω0), while for large times

TNL = O(1/ε2ω0). Hence, although the standard nonlinear transfer, which

uses as resonance function Eq.(4.77), does not capture the physics of the

modulational instability (which operates on the fast time scale 1/εω0), the

full resonance function does not suffer from this defect.

It is also important to note that according to the standard theory there

is only nonlinear transfer for two-dimensional wave propagation. In the one-
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dimensional case there is no nonlinear transfer in a homogeneous wave field.

The reason for this has to do with some special properties of the resonance

conditions and the nonlinear transfer function T . In one dimension there are

two different solutions to the resonance conditions, k1 + k2 = k3 + k4 and

ω1 +ω2 = ω3 +ω4, namely a trivial one and a non-trivial one. The trivial one

occurs for the combinations k1 = k3,k2 = k4 or k1 = k4,k2 = k3. Then, the

rate of change of the action density, as given by Eq. (4.74), vanishes identically

because of the symmetry properties of the term involving the action densities.

The nontrivial one has the special property that for those waves the nonlinear

transfer coefficient T vanishes (Dyachenko and Zakharov, 1994). Hence, in

one dimension there is no resonant transfer which is in sharp contrast with

the Benjamin-Feir instability that has its largest growth rates for waves in

one dimension. On the other hand, using the complete expression for the

resonance function, there is always an irreversible nonlinear transfer even in

the case of one-dimensional propagation.

Before we discuss limitations of the present approach followed by a study

of the properties of four-wave nonlinear transfer we make an important re-

mark regarding deviations from the Gaussian distribution. We have studied

the statistical aspects of random, weakly nonlinear waves in the context of the

Zakharov equation. In particular the relation between the deviations from the

Gaussian distribution and four-wave interactions is then of interest. Because

of the symmetries of the Zakharov equation, the first moment of interest is

then the fourth moment and the related kurtosis. The third moment and its

related skewness vanishes: information on the odd moments can only be ob-

tained by making explicit use of Krasitskii’s (1994) canonical transformation.

Now, the fourth moment 〈η4〉 may be obtained in a straightforward manner

from Eq.(4.61) and the expression for the fourth cumulant Eq.(4.68) as

〈η4〉 =
3

4g2

∫
dk1,2,3,4(ω1ω2ω3ω4)

1
2 〈a1a2a

∗
3a

∗
4〉 + c.c (4.78)

Denoting the second moment 〈η2〉 by m0, deviations from Normality are then



220 PETER A.E.M. JANSSEN

most conveniently established by calculating the kurtosis

C4 = 〈η4〉/3m2
0 − 1,

since for a Gaussian pdf C4 vanishes. The result for C4 is

C4 =
4

g2m2
0

∫
dk1,2,3,4 T1,2,3,4δ1+2−3−4 (ω1ω2ω3ω4)

1
2

×Rr(∆ω, t)N1N2N3, (4.79)

where Rr is defined by Eq.(4.70), while the integral should be interpretated

as a Principal Value integral. For large times, unlike the evolution of the

action density, the kurtosis does not involve a Dirac δ-function but rather

depends on P/∆ω. Therefore, the kurtosis is determined by the resonant and

non-resonant interactions. It is instructive to apply Eq.(4.79) to the case of a

narrow band wave spectrum in one dimension. Hence, performing the usual

Taylor expansions around the carrier wavenumber k0 to lowest significant

order, one finds for large times

C4 =
8ω2

0

g2m2
0

T0

ω′′
0

∫
dp1,2,3,4

δ1+2−3−4

p2
1 + p2

2 − p2
3 − p2

4

N1N2N3, (4.80)

where p = k−k0 is the wavenumber with respect to the carrier. It is seen that

the sign of the kurtosis is determined by the ratio T0/ω
′′
0 , which is the same

parameter that determines whether a wave train is stable or not to sideband

perturbations (cf. Eq. (4.44)). Remark that numerically the integral is found

to be negative, at least for bell-shaped spectra. Hence, from Eq.(4.80) it is

immediately plausible that for an unstable wave system which has negative

T0/ω
′′
0 the kurtosis will be positive and thus will result in an increased prob-

ability of extreme events. On the other hand for a stable wave system there

will a reduction in the probability of extreme events.

Finally, a further simplification of the expression for the kurtosis may be

achieved if it is assumed that the wavenumber spectrum F (p) = ω0N(p)/g

only depends on two parameters namely, the variance m0 and the spectral
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width σk. Introduce the scaled wavenumber x = p/σk and the correspond-

ingly scaled spectrum m0H(x)dx = F (p)dp. Then, using the deep-water dis-

persion relation and T0 = k3
0, Eq.(4.80) becomes

C4 = −8k2
0m0

σ′2ω
J, (4.81)

where k0m
1
2
0 is the significant steepness while σ′ω is the relative width in

angular frequency space σω/ω0 = 0.5σk/k0. The parameter J is given by the

expression

J =
∫

dx1,2,3,4
δ1+2−3−4

x2
1 + x2

2 − x2
3 − x2

4

H1H2H3,

and is independent of the spectral parametersm0 and σk. Therefore, Eq.(4.81)

suggests a simple dependence of the kurtosis on spectral parameters. In fact,

the kurtosis depends on the same parameter that determines the stability

of a uniform wave train. For a spectrum of waves, Janssen (2003) has in-

troduced the so-called Benjamin-Feir Index (BFI) which compares effects of

nonlinearity and linear dispersion. It is defined as

BFI =
√

2k2
0m0/σ

′
ω. (4.82)

The BF Index turns out to be very useful in ordering the theoretical and

numerical results presented in the following sections. For simple initial wave

spectra (defined in terms of the modulation wavenumber p) that only depend

on the variance and on the spectral width, it can be shown that for the

NLS equation the large time solution is completely characterized by the BF

Index. For the Zakharov equation this is not the case, but the BF Index is

still expected to be a useful parameter for narrow-band wave trains. The BF

Index plays a key role in the inhomogeneous theory of wave-wave interactions

(Alber, 1978), while a similar parameter has been introduced and discussed

in the context of freak waves in random sea states by Onorato et al. (2001).

In summary, for narrow-band waves the kurtosis depends on the square

of the BFI, while the sign of the kurtosis parameter (note that with our
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definition the kurtosis vanishes for a Gaussian sea state) is determined by

the stability properties of a uniform wave train. In case of Benjamin-Feir

Instability there will be an increased probability of extreme events, while

in case of stability there is, compared to the normal distribution a reduced

probability of extreme events.

4.6. Discussion of the assumptions underlying the statistical ap-

proach.

Before we discuss the important consequences of the Boltzman equation

(4.75) for the evolution of ocean waves it is relevant to explore the limi-

tations of the approach that has been followed. This implies a discussion of

the consequences of the assumption of the homogeneity of the ensemble of

waves and the assumption of near-Gaussian statistics ( frequently referred

to as the Random Phase approximation). Related to these assumptions it is

fair to ask the question what is the relation between the statistical theory

of four-wave interactions and the Benjamin-Feir instability from determinis-

tic theory. Furthermore, the starting point of the statistical analysis is the

Zakharov equation. This equation is reversible because it is invariant with

respect to reversals of the time and the horizontal coordinate axis. However,

for large times Eq. (4.75) is not reversible. Clearly, some explanation of this

apparent contradiction is required.

Apart from the qualitative arguments on the range of validity of the sta-

tistical approach, one may wonder whether it is not possible to give direct

evidence of range of validity of four-wave interaction approach. The idea is

to start from a realistic set of deterministic evolution equations for the am-

plitude and phase of deep water gravity waves and to do a Monte Carlo

simulation for an ensemble of ocean waves. The time evolution of the ensem-

ble mean of the wave spectrum is than compared with the predicted evolution

by the Boltzmann equation, and if there is sufficient close agreement between

the two a direct proof for the existence of resonant and non-resonant four-
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wave interactions is given. At the same time this then provides information

on the statistical approach. Following Janssen (2003) a first attempt for the

case of one-dimensional wave propagation will be presented. Surprisingly, for

deep-water waves the homogeneity condition and the Random Phase approx-

imation are not very restrictive, and a good agreement between results from

the Monte Carlo simulations and from the Boltzmann equation is found, even

for narrow-band, strongly nonlinear waves.

4.6.1. Homogeneity.

Let us first discuss in some detail the assumption of the homogeneity of the

ensemble of ocean waves, which at the same time will shed some light on the

relation between the statistical approach and the Benjamin-Feir Instability.

Alber and Saffman (1978) (see also Alber (1978) and Janssen (1983))

have studied some aspects of the evolution of an inhomogeneous, random

wave field. These authors concentrated on the case of narrow-band waves

and therefore the starting point was the NLS equation (4.35). In order to

simplify the discussion which follows, we introduce a frame moving with the

group velocity ∂ω/∂k0 and dimensionless units t̃ = ω0t/2, x̃ = 2k0x and

Ã = k0A are introduced. Dropping the tildes, the equation for A (which is

twice the steepness for a uniform wave train) reads

i
∂A

∂t
− ∂2A

∂x2
− |A|2A = 0. (4.83)

In order to study effects of inhomogeneity of the wave field, one introduces

the two-point correlation function ρ(x1, x2, t) as

ρ(x, r, t) = 〈A(x1, t)A∗(x2, t)〉, (4.84)

where the average coordinate x is defined by x = (x1 +x2)/2 while the sepa-

ration coordinate is r = x2 − x1. For an inhomogeneous wave field the corre-

lation function ρ depends on both r and x. Multiplying (4.83) by A∗(x2, t),

adding the complex conjugate expression with x1 and x2 interchanged and
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averaging gives the following transport equation for ρ(x, r, t):

i
∂

∂t
ρ−

(
∂2

∂x2
1

− ∂2

∂x2
2

)
ρ− 〈A2(x1)A∗(x1)A∗(x2)〉

+〈A2(x2)A∗(x2)A∗(x1)〉 = 0, (4.85)

and, as usual, the rate of change of the two-point correlation function is

related to the four-point correlation function. Closure is now achieved by

assuming the Random Phase approximation, e.g.

〈A2(x1)A∗(x1)A∗(x2)〉  2〈A(x1)A∗(x1)〉〈A(x1)A∗(x2)〉 (4.86)

In addition, performing a transformation to the averaged coordinate x and

the separation coordinate r results in the following difference-differential

equation for ρ

i
∂

∂t
ρ(x, r) − 2

∂2

∂x∂r
ρ(x, r) − 2ρ(x, r)

[
ρ(x+

1
2
r, 0) − ρ(x− 1

2
r, 0)

]
= 0.

(4.87)

Eq. (4.87) describes the evolution of an inhomogeneous ensemble of narrow-

band wave trains. The timescale for nonlinear transfer can easily be estimated

from (4.87) with the result

∂

∂t
ρ = O(ρ) = O(ε), (4.88)

(with ε again the square of the significant steepness) which coincides with the

Benjamin-Feir timescale. In agreement with the discussion of the previous

section there is, however, only energy transfer possible for an inhomogeneous

system. In other words, assuming spatial homogeneity, hence ignoring the

x-dependence in (4.87), it is seen that ρ does not change with time. For a

homogeneous system there is only energy transfer if one includes deviations

from Gaussian statistics. These are generated because nonlinearity gives rise

to correlations between the different components of the wave spectrum. Craw-

ford et al (1980) have shown that deviations from Normality associated with

resonant nonlinear interactions result in a higher order effect because the
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energy transfer occurs on the much longer time scale τ = O(ε−2). In fact, for

homogeneous sea one then rediscovers the resonant irreversible energy trans-

fer found by Hasselmann (1962), which was discussed in the previous section.

However, we have also seen that nonresonant interactions cause deviations

from Normality as well, and these interactions act on the same time scale (cf.

Eq. (4.88)) as the effects of inhomogeneity. Therefore, strictly speaking devi-

ations resulting from nonresonant interactions should be included as well in

the present treatment, but for the moment we shall ignore this complication.

Using the evolution equation (4.87), Alber and Saffman (1978) discovered

the random version of the Benjamin-Feir instability. The key result was that a

homogeneous ensemble of waves is unstable to long wavelength perturbations

provided the width of the spectrum is sufficiently small. In other words,

introduce the wave spectrum W (x, p) according to

W (x, p) =
1
2π

∫
dreipr ρ(x, r), (4.89)

where, in general, W depends on the averaged coordinate x while p may be

regarded as the usual wavenumber. Then, Alber and Saffman (1978) found

the remarkable result that a homogeneous wave field, described by a homo-

geneous spectrum

W (x, p) = W0(p),

is unstable to modulations in x-space provided the spectrum W0(p) is suffi-

ciently narrow. The resulting dispersion relation is hard to analyze, but for

the Lorentz spectrum

W0(p) =
〈A2

0〉σ
π(p2 + σ2)

, (4.90)

where σ denotes the width of the spectrum and 〈A2
0〉 is twice the mean square

slope, Crawford et al (1980) found that the perturbations with wavenumber

k and angular frequency ω obey the simple dispersion relation

ω = 2k

[
−iσ ±

(
1
4
k2 − 〈A2

0〉
)1/2

]
(4.91)
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There is instability for �(ω) > 0. Note that in the limit of vanishing band-

width σ the growth rate (4.91) reduces to the result of Benjamin and Feir

(cf. Eq. (4.43)) if one makes the identification 2〈A2
0〉 (Gaussian − random) =

A2
0 (deterministic). We also remark that finite bandwidth gives a reduction

of the growth rate and that when

σ ≥ 〈A2
0〉1/2 (4.92)

the instability disappears. Returning to dimensional quantities the stability

condition (4.92) boils down to

BFI ≤ 1, (4.93)

where BFI is the Benjamin-Feir Index introduced in Eq. (4.82).

The question of the nature of the stabilizing effect of finite bandwidth is

important, but it is not easy to provide a simple explanation of this important

result. Loosely speaking it may perhaps be argued that the waves in question

have random phase which upsets the coherence between the four interacting

waves thereby reducing the efficiency of the (resonant) energy transfer. A

more precise explanation was provided by Janssen (1983) who studied the

stability of a homogeneous wave spectrum in terms of normal modes of the

linear problem. Although each mode is undamped, a smooth perturbation

will always excite a continuum of these normal modes. In the course of time

the perturbation to the wave spectrum evolves into an erratic function (or

has an nonresolvable fine structure) because of phase mixing in such a way

that all its moments vanish rapidly with time (van Kampen, 1955).

The inhomogeneous theory of wave evolution has provided us, therefore,

with an important restriction on the validity of the Boltzman equation (4.75).

Apart from the already mentioned condition that the wave steepness should

be sufficiently small in order that the near-Gaussian assumption may be jus-

tified, there is an additional restriction on the width of the spectrum. The

wave spectrum should be sufficiently broad (BFI ≤ 1, or Eq. (4.92)) in order



THE INTERACTION OF OCEAN WAVES AND WIND 227

that effects of inhomogeneities in the wave field may be disregarded. In the

opposite case of narrow-band waves (BFI > 1) the Benjmin-Feir instability

would occur, resulting in a rapid growth of sidebands, at the expense of the

main peak of the spectrum. Because of the energy transfer from the main

peak of the spectrum to the sidebands there is a considerable broadening

of the spectral shape, hence the growthrate of the instability reduces until

for a sufficiently broad spectrum (of the order given in Eq. 4.92) the ran-

dom version of the Benjamin-Feir instability is quenched. This broadening

of the spectrum is an irreversible process because of phase mixing (Janssen,

1983). According to the present approach the broadening of the spectrum is

associated with the generation of inhomogeneities in the wave field.

In order to summarize the present discussion we remark that the central

role of the BF Index is immediately evident in the context of the lowest-order

inhomogeneous theory of wave-wave interactions. According to the stability

criterion (4.92) there is change of stability for BFI = 1. In other words, BFI

is a bifurcation parameter: on the short time scale spectra will be stable and

therefore do not change if BFI < 1 while in the opposite case inhomogeneities

will be generated giving rise to a broadening of the spectrum. However, this

prediction follows from an approximate theory that neglects deviations from

Normality. In general, considerable deviations from Normality are to be ex-

pected, in particular in case of Benjamin-Feir Instability. It is therefore of

interest to explore the consequences of non-Normality. This will be done in

§ 4.6.3 by means of a numerical simulation of an ensemble of surface gravity

waves.

4.6.2. Gaussian assumption, non-resonant interactions and irreversibility.

In the past there has been a considerable debate about the question of the ir-

reversibility of the evolution equation for wave-wave interactions. However, it

should be emphasized that the Boltzmann equation (4.75), which accounts for

both resonant and non-resonant interactions, has the time reversal symmetry
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of the original Zakharov equation, since the resonance function changes sign

when time t changes sign. Also, as Ri vanishes for t = 0, the time derivative

of the action density spectrum is continuous around t = 0 and does not show

a cusp. (cf. Komen et al, 1994). Nevertheless, despite the fact that there is

time reversal, Eq.(4.75) has the irreversibility property: the memory of the

inital conditions gets lost in the course of time owing to phase mixing.

Therefore, by retaining the effects of the non-resonant interactions, the

evolution equation for four-wave interactions shares the time reversal prop-

erty of the Zakharov equation. In contrast, by taking the limit of large times

in the resonance function Ri from the outset one obtains the Hasselmann

equation (4.74) and this equation clearly no longer has the time reversal

symmetry; the left-hand side of the equation changes sign with a change

in sign of time, while the right-hand side remains unchanged provided the

spectrum is not modified. Komen et al (1994) concluded that an additional

assumption must have been introduced that destroys this symmetry. And

this assumption is the Gaussian hypothesis. It is emphasized, however, that

in obtaining (4.74) we have made one additional step, namely, we have only

used the solution for the fourth cumulant g(3)
4 in the limit of large times. In

the limit of large times it may be argued (cf. Davidson, 1972) that all the

transients phase mix to zero and therefore can be ignored when one is inter-

ested in the large time behaviour of the action density. This type of argument

has been used widely with success in many applications, but it is evident that

it implies an ’arrow of time’. In other words, when invoking the argument

of phase mixing, thereby ignoring transient effects for large positive times it

should be clear that it is not formally allowed to consider the limit of small

times, let alone to reverse time.

In this context it is noted that the breaking of time reversal occurs fre-

quently in asymptotic analysis. A well-known example is discussed in detail

by Whitham (1974). He considered the problem of the large time behaviour
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of a continuous spectrum of linear (gravity) waves. The exact solution to

this problem is readily written down, however, to investigate its large time

behaviour an asymptotic analysis is required. Fortunately, because of the dis-

persive nature of the gravity waves one may apply the method of stationary

phase to obtain the well-known result that wave energy propagates with the

group velocity and that the amplitude of the waves decays as t−1/2. Clearly,

the answer carries all the properties of an irreversible solution, but it is of

course not allowed to take the limit of small time.

Regarding the role of the nonresonant interactions we conclude with the

following remark. The extended version of the homogeneous four-wave theory

has two time scales, a fast one on which the nonresonant interactions take

place and a long time scale on which the resonant interactions occur. The

nonresonant interactions play a similar role as transients in the solution of

an initial value problem. They are simply generated because initially there is

a mismatch between the choice of the probability distribution of the waves,

a Gaussian, and between the initial choice of the wave spectrum, represent-

ing a sea state with narrow-band, steep nonlinear waves. For example, if one

could choose a probability distribution function which is in equilibrium with

the nonlinear sea state (theoretically one can, by the way), then nonresonant

interactions would not contribute. Only resonant wave-wave interactions will

then give rise to nonlinear transfer. In the general case for which there is a fi-

nite mismatch between pdf and wave spectrum, the nonresonant contribution

will die out very quickly owing to phase mixing, but will, nevertheless, as we

will see in §4.6.3, result in considerable changes in the wave spectrum. The

question therefore is whether there is a need to include effects of nonresonant

interactions. This depends on the application. In wave tank experiments,

where one can program a wave maker to produce the initial conditions used

here, it seems that effects of nonresonant transfer need to be taken account

for. For the open ocean case this is not clear. The point is that in nature
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the combination of steep waves and a strictly Gaussian distribution most

likely does not occur. Changes in nature are expected to be more gradual so

that the mismatch between pdf and wave spectrum is small. Only when a

wind starts blowing suddenly, hence for short fetches and duration, effects of

nonresonant interactions are expected to be relevant. More research in this

direction is, however, required.

4.6.3. Numerical Simulation of an Ensemble of Waves.

It is important to determine the range of validity of the theory of resonant and

non-resonant four wave interactions. For example this theory assumes that

the wave steepness is sufficiently small and the pdf of the surface elevation

is close to a Gaussian. In order to address these questions we simulate the

evolution of an ensemble of waves by running a deterministic model with

random initial conditions. Only wave propagation in one dimension will be

considered from now on.

For given wavenumber spectrum F (k), which is related to the action den-

sity spectrum through F = ωN/g, initial conditions for the amplitude and

phase of the waves are drawn from a Gaussian probability distribution of the

surface elevation. The phase of the wave components is then random between

0 and 2π while the amplitude is taken as deterministic, hence,

a(k) =
√
N(k)∆k eiθ(k), (4.94)

where θ(k) is a random phase = 2πxr, xr is a random number between 0 and

1, and ∆k the resolution in wavenumber space.

Each member of the ensemble is integrated for a long enough time to reach

equilibrium conditions, typically of the order of 60 dominant wave periods.

At every time step of interest the ensemble average of quantities such as

the two-point correlation function g2, the pdf of the surface elevation and

integral parameters such as wave height, spectral width and kurtosis is taken.

Typically, the size of the ensembleNens is 500 members. This choice was made
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to ensure that quantities such as the wave spectrum were sufficiently smooth

and that the statistical scatter in the spectra, which is inversely proportional

to
√
Nens, is small enough to give statistically significant results. In Janssen

(2003) the Monte Carlo approach was applied to both the NLS equation and

to the Zakharov equation. Here, only the results obtained with the Zakharov

equation are briefly reported.

As a starting point we choose the Zakharov equation (4.19). The action

variable is written as a sum of δ-functions,

a(k) =
i=N∑

i=−N

ai δ(k − i∆k), (4.95)

where ∆k is the resolution in wavenumber space and 2N + 1 is the total

number of modes. Substitution of Eq.(4.95) into Eq.(4.19) gives the following

set of ordinary differential equations for the amplitude a1,

d

dt
a1 + iω1a1 = −i

∑
1+2−3−4=0

T1,2,3,4 a
∗
2a3a4 (4.96)

We have solved this set of differential equations with a Runge-Kutta method

with variable time step. Relative and absolute error of the solution have

been chosen in such a way that conserved quantities such as action, wave

momentum and wave energy are conserved to at least five significant digits.

Amplitude and phase needed for the initial condition for Eq.(4.96) are gen-

erated by Eq.(4.94) where the wavenumber spectrum is given by a Gaussian

shape,

F (p) =
〈η2〉
σk

√
2π
exp(− p2

2σ2
k

), (4.97)

where p = k − k0, k0 is the peak wavenumber and σk is the width of the

wavenumber spectrum.

The nonlinear transfer coefficient was from Krasitskii (1994), while the

exact dispersion relation for deep water gravity waves was taken. Because

the Zakharov equation contains all higher-order terms in the modulation

wavenumber p = k−k0 it is not possible to prove that the large time solution
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Fig. 4.14. Initial and final time wavenumber spectrum according to Monte Carlo Fore-

casting of Waves (MCFW) using the Zakharov equation. Error bars give 95% confidence

limits. Results from theory are shown as well.

of the initial value problem is determined solely by the BF Index, but in good

approximation the BF Index can still be used for this purpose as long as the

spectra are narrow-banded.

In Janssen (2003) an extensive set of experiments has been performed

by increasing the initial value of the BF Index in small steps from 0 to 2.

Even for small values of the BF Index the wave spectrum changes in time

in such a way that the spectrum broadens and as a consequence the final

time value of the BF index is smaller than its initial value. In fact, the

final time value is at most of the order of 1. It is remarkable that these

experiments show that the solution depends in a continuous manner on the

initial value of the BF Index (see also Dysthe et al, 2003). There is no evidence

of a bifurcation which according to the inhomogeneous approach of Alber

(1978) should occur at a finite value of the BFI (for the NLS equation

one finds change of stability of a uniform wave spectrum at BFI = 1).
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Furthermore, Janssen (2003) measured from the Monte Carlo simulations the

inhomogeneity of the wave field. Although, in agreement with Alber (1978)

inhomogeneity grows rapidly in the course of time, the level of inhomogeneity

saturates at an extremely small level and it cannot explain the large changes

in the wavenumber spectrum seen in the numerical simulations. Most likely,

these spectral changes are related to deviations from the Normal distribution

and not by effects of inhomogeneity. Indeed, nonresonant interactions act on

the same, fast time scale as inhomogeneities and they result in deviations

from Normality.

In Fig. 4.14 we have plotted the ensemble averaged wavenumber spectrum

for BFI = 1.4, which may be regarded as an extreme case. It shows a clear

down-shift of the peak of the spectrum while also considerable amounts of

energy have been pumped into the high-wavenumber part of the spectrum.

The wavenumber down-shift is caused by the asymmetries in the nonlinear

transfer coefficient and to the same extent by the asymmetries in the angu-

lar frequency with respect to the carrier wavenumber. This was checked by

running Eq.(4.96) with constant nonlinear transfer coefficient, and similarly

looking ensemble mean spectra, but with half the wavenumber down-shift,

were obtained. There is also a noticable broadening of the spectrum.

The most important results are shown in Fig. 4.15 and Fig. 4.16. In Fig.

4.15 a comparison of the simulated pdf for the surface elevation and the

Gaussian distribution is given for BFI = 1.4. Note that the Zakharov equa-

tion describes the evolution of the free waves and therefore the pdf is sym-

metrical. Skewness is only introduced when employing Krasitskii’s canonical

transformation. Considerable deviations from Normality are seen, both for

intermediate and extreme wave height. Fig. 4.16 shows a summary of our

results on the deviations from Normality by plotting the final time value of

the kurtosis C4 = 〈η4〉/3m2
0 − 1 as function of the the final time BF Index.

Here, the fourth moment 〈η4〉 was determined from the pdf of the surface
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Fig. 4.15. Probability distribution function for surface elevation as function of normal-

ized height η/
√

m0. Results from numerical simulations with the Zakharov equation and

homogeneous theory in case of focussing (BF Index of 1.4). For reference the Gaussian

distribution is shown as well. Freak waves correspond to a normalized height of 4.4 or

larger.

elevation which was obtained by sampling the second half of the time se-

ries for the surface elevation at an arbitrarily chosen location. Results from

the Zakharov equation are in qualitative agreement with the ones from the

NLS equation, which are also shown for comparison purposes in Fig. 4.16.

For small nonlinearity one would expect a Normal distribution and hence a

vanishing kurtosis, but the simulation underestimates the kurtosis by a small

amount of 2%. This underestimation is caused by the relatively low number

of modes used in the simulations (typically, 41 modes were taken). The kur-

tosis depends almost quadratically on the Benjamin-Feir Index up to a value

close to 1. Near BFI = 1, on the other hand, the kurtosis behaves in a more



THE INTERACTION OF OCEAN WAVES AND WIND 235

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
BFI(t=15)

–0.2

0.0

0.2

0.4

0.6

0.8

C
4

Kurtosis versus final time BF Index
n_modes = 41  (focussing)

MCFW (NLS)
Theory(NLS)
MCFW(Zakh Eq)
Theory (Zakh Eq)

Fig. 4.16. Normalized Kurtosis as function of the BF Index. Shown are results for focussing

from simulations with the nonlinear Schrödinger equation and with the Zakharov equation.

The corresponding theoretical results are shown as well.

singular fashion, which is explained in Janssen (2003).

To summarize, we have discussed results from the Monte Carlo simula-

tion of the Zakharov equation. These results show that on average there is

a considerable broadening and down-shift of the wave spectrum, while non-

linearity gives rise to large deviations from Gaussian statistics. The question

now is whether the average of the Monte Carlo results may be obtained in

the framework of a simple theoretical description, namely by the standard

theory of wave-wave interactions, extended with the effects of non-resonant

four wave interactions. This approach assumes a homogeneous wave field but

allows for deviations from the Gaussian sea state.

Therefore, we used the Boltzmann equation (4.75) to evolve the action

density N(k) for the same cases. The differential equation was solved with

a Runge-Kutta method with variable time step, and the continuous problem
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was discretized in the same way as was done in case of the solution of the

Zakharov equation. Run times using the homogeneous theory are typically

two orders of magnitudes faster than when following the ensemble approach.

A example of the comparison between theoretical and simulated spectrum

is given in Fig. 4.14. There is a fair agreement between the two. However,

it should be mentioned that typically the simulated spectrum shows a some-

what smaller down-shift in peak wavenumber than the theoretical one. Al-

though this is not shown in detail here (see for this Janssen, 2003) there is

a clear trend towards a steady state in the case of one-dimensional propa-

gation. This can be understood as follows: First, it should be noted that for

one-dimensional propagation there is no nonlinear transfer due to resonant

nonlinear interactions. Now, initially the resonance function Ri(∆ω, t) will be

wide so that non-resonant wave-wave interactions are allowed to modify the

action density spectrum. But after about 5-10 wave periods the resonance

function becomes progressively narrower until it becomes approximately a

δ-function, hence only resonant waves are selected. In that event there is no

change of the action density spectrum possible anymore so that for large

times a steady state is achieved. In contrast, we remark that in the case of

two-dimensional propagation no steady state will be achieved. After the non-

resonant interactions have done their work what remains are the effects of the

resonant interactions. These will result in a continued down-shifting of the

spectrum, although at the much longer time scale TNL = O(1/ε2ω0) (Recall

that in the present context the second moment is thought to be of the order

ε (cf. Eq. (4.63)), hence ε is of the order of the square of the wave steep-

ness). Recent two-dimensional simulations by Dysthe et al (2003) confirm

this transition towards a slower evolution for large times.

As discussed in Section 4.5 nonlinearity gives rise to deviations from the

normal distribution. We determined the normalised kurtosis using Eq.(4.79),

which is obtained from the fourth cumulant g4. Introducing the normalized
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height x = η/
√
m0, the pdf of the normalized surface elevation x is then

given by (see also Mori and Yasuda, 2002)

p(x) =

(
1 +

1
8
C4

d4

dx4

)
f0, (4.98)

where f0 is given by the normal distribution

f0(x) =
1√
2π

exp(−x
2

2
). (4.99)

Eq.(4.98) follows from an expansion of the pdf p in terms of orthogonal func-

tions (d/dx)nf0. Here, n is even because of the symmetry of the Zakharov

equation. The expansion coefficients are then obtained by determining the

first, second and fourth moment. For the range of BFI studied here it was

verified that higher moments only gave a small contribution to the shape

of the pdf p(x). The pdf according to theory is compared in Fig. 4.15 with

the simulated one, and a good agreement is obtained, even for extreme sea

state conditions. Clearly in the case of nonlinear focussing, the probability

of extreme states is, as expected, larger when compared to the normal dis-

tribution. Finally, in Fig. 4.16 theoretical and simulated final time kurtosis

is plotted as function of the final time BFI. A good agreement between the

two results is obtained even close to the limiting value of the final time BFI.

For BFI < 1 both simulated and theoretical kurtosis depend in an almost

quadratic fashion on BFI, in agreement with the simple estimates of C4

given in § 4.5 (cf. Eq.(4.81)).

4.7. Consequences of four-wave interactions.

In this section we discuss some important consequences of the four-wave

interactions on the evolution of a random, homogeneous wave field and we

discuss the key role played by these nonlinear interactions in modern wave

prediction models. The need of parametrisation of the nonlinear transfer is

elucidated and some well-known examples of parametrisation are presented.

In the previous section we have already seen one important property of

nonlinear transfer, namely it gives rise to a down-shift of the wavenumber
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spectrum while, in order to conserve energy and action, considerable amounts

of energy are transferred from the region just beyond the location of the spec-

tral peak to the high-wavenumber part of the spectrum. As a consequence,

the rate of change of the wavenumber spectrum due to nonlinear interactions

shows the typical three lobe structure, being positive for low-wavenumbers,

negative in the intermediate range, and positive for high wavenumbers. Be-

cause of the down-shift towards lower wavenumbers the phase speed of the

waves near the peak of the equilibrium windsea spectrum will be 20%− 30%

larger than the wind speed at 10 m height.

In the case of one-dimensional propagation, the predictions from the Boltz-

mann equation (4.75) were compared with Monte Carlo simulations using

the Zakharov equation and a good agreement was obtained, even for steep

waves with a narrow spectrum. For one-dimensional propagation resonant

four-wave interactions are absent and only non-resonant interactions will

give rise to spectral change, and to deviations from the Normal distribu-

tion. The timescale on which these non-resonant interactions operate is very

short, typically of the order of 10−20 wave periods. For practical applications

such as wave prediction on a global scale there is only interest in the slow

time evolution of the wave spectrum. Therefore, one only deals in practice

with the effects of resonant four-wave interactions because for large times the

resonance function Ri has evolved into a δ-function (cf. Eq. (4.77)). In the

remainder we therefore only consider the Boltzmann equation (4.75)) in the

limit of large times, and we refer to the large time limit of this equation as

the Hasselmann equation.

4.7.1. Properties.

The Hasselmann equation has the desirable property that if the action density

N(k) is positive initially than this feature is preserved during the course of

time. In other words if N1 ≥ 0 at t = 0 than N1 does not become negative at

subsequent times. The following argument demonstrates this to be the case.



THE INTERACTION OF OCEAN WAVES AND WIND 239

Assume that the action density becomes negative at a certain instant and

that this occurs for a wavenumber k1 = k0. Thus at that instant N(k0) = 0.

Consequently, at this instant Eq. (4.75) becomes

∂

∂t
N0 = 4π

∫
dk2,3,4|T0,2,3,4|2δ0+2−3−4δ(∆ω)N2N3N4 ≥ 0.

Since the right hand side of the above equation is nonnegative, this contra-

dicts our original hypothesis of N1 becoming negative.

The property of the action density being always positive is very reassuring

as previous statistical treatments of wave wave interactions failed at this

point; the result was that the action density became negative at a certain

instant, which is of course not a desirable property.

The Hasselmann equation permits three conservation laws. These are

a) conservation of action, i.e.

d

dt

∫
dk N(k) = 0, (4.100)

b) conservation of momentum, i.e.

d

dt

∫
dk kN(k) = 0, (4.101)

c) and conservation of wave energy

d

dt

∫
dk ωN(k) = 0. (4.102)

The conservation of energy and momentum applies for all resonant wave-

wave interaction processes and follows generally from the invariance of the

Lagrangian or the Hamiltonian with respect to time and space translations.

Conservation of action, however, only holds for interaction processes in which

an equal number of waves is created or annihilated. It follows from the in-

variance of the Lagrangian with respect to phase shifts (cf. Eq. (2.40b)) of

the wave components. This is valid for four-wave interactions but not, for

example, for three wave interactions.

The conservation of two scalar quantities, energy and action, implies an

important property of the nonlinear energy transfer. A similar relation holds
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Fig. 4.17. One-dimensional energy transfer caused by resonant four-wave interactions.

for the energy transfer in a two-dimensional turbulence spectrum in the at-

mosphere, which also conserves two scalar quantities, namely energy and

enstrophy. The argument for this is obtained from Komen et al (1994) and

goes as follows:

Consider the one-dimensional energy transfer dN(ω)/dt obtained by in-

tegrating the Hasselmann equation over wave propagating direction. The

one-dimensional transfer must have at least three lobes of different sign (see

Fig. (4.17)) It cannot have a two lobe structure representing, for example

an energy cascade from low to high frequencies, as in three-dimensional tur-

bulence. The ratio energy/action=ω increases monotonically with frequency.

Thus, if the net action lost in the negative low-frequency lobe balances the

action gained in the high-frequency lobe, the energy loss in the low-frequency

lobe must necessarily be smaller than the energy gained in the high-frequency

lobe, therefore energy is not conserved. Numerical computations of the reso-

nant energy transfer (and also the Monte Carlo simulations of the previous

section) indeed give the three lobe structure. Again, it is pointed out that the

positive lobe at low frequencies has important consequences for the evolution
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of the wave spectrum as it shifts the spectrum towards lower frequencies.

Without proof it is mentioned that action, momentum and energy are

conserved for each resonant interaction quadruplet separately. This is plau-

sible because the integral conservation laws hold for an arbitrary spectrum

(see for a more detailed discussion Komen et al, 1994). There is, therefore, a

detailed balance. The principle of detailed balance is very useful for numeri-

cal computations. It was applied by Hasselmann and Hasselmann (1985) and

Snyder et al (1993) in developing a symmetrized method for integration of

the Hasselmann equation, leading to improved conservation properties and a

considerable saving in computer time.

The final important property of nonlinear transfer concerns the nonequilib-

rium entropy. The appropriate entropy associated with the long-time version

of Eq. (4.75) is

S =
∫
dk lnN(k). (4.103)

From the evolution equation (4.75) it follows that S(t) is a monotonic in-

creasing function of time

d

dt
S ≥ 0 (4.104)

with the equality sign only holding when

1
N1

+
1
N2

=
1
N3

+
1
N4

(4.105)

for each set of waves satifying the resonance conditions

k1 + k2 = k3 + k4, ω1 + ω2 = ω3 + ω4,

In other words, in the absence of input and dissipation the Hasselmann equa-

tion tells us that a homogeneous, random wave field will evolve in an irre-

versible manner towards the equilibrium spectrum determined by condition

(4.105).

The general solution of (4.105) is

N(k) = (a+ b.k + cω)−1
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where a, b and c are constants. A positive N(k) requires b = 0. For a = 0,

one obtains a uniform energy spectrum ωN in wavenumber space, while for

c = 0 one obtains a constant number densityN , which is a well-known equilib-

rium solution of the Liouville equation for a system governed by Hamiltonian

equations.

The search for thermal equilibrium solutions and the study of spectral

evolution based on nonlinear interactions alone (ie. (4.75)) are only relevant

for closed systems in which the energy is conserved. They are not applicable

to numerical wave prediction because ocean waves are not a closed system,

since they gain energy from the atmospheric flow and loose energy to the

underlying ocean. For growing wind waves the resulting spectra are typically

non-equilibrium spectra, and only in the absence of wind, ocean waves may be

regarded as an approximate closed system. However, in that case the (swell)

waves have such a small steepness that the nonlinear transfer time scale is

large compared to the travel time of the waves across a typical ocean.

4.7.2. The equilibrium energy cascade.

An equilibrium solution to the Hasselmann equation is in practice not rele-

vant because it concerns the solution of a closed system in which for large

times there are no energy fluxes within the system. A statistical equilibrium

in which a constant flux is maintained through the system comes closer to

the real situation. This was first proposed by Zakharov and Filonenko (1967),

using arguments similar to the familiar Kolmogorov inertial energy cascade

concept of isotropic turbulence. It was shown that for a wind input to the

waves that is mainly concentrated at low wavenumbers and an isotropic dis-

sipation term at high wavenumbers, the nonlinear interactions would adjust

the spectrum F (k) in the region between the spectral source and sink to a

constant-flux equilibrium form ∼ k−7/2. In practice, wind input and dissipa-

tion are not sufficiently separated in the wavenumber domain to apply the

Zakharov and Filonenko argument rigorously, and an isotropic spectrum is
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also not observed. Nevertheless, numerical experiments using the exact non-

linear transfer function (Komen et al, 1984) suggest that the spectra tend

to adjust in such a way that the directionally averaged spectra are close to

k−5/2 (corresponding to a k−7/2 two-dimensional spectrum), with a rather

constant energy flux towards higher wavenumbers. However, the directional

distribution remains anisotropic. In addition, it is found that the nonlinear

flux is generally rather strong so that small changes from the k−5/2 form are

sufficient to generate divergent fluxes which can balance nonzero input and

dissipation source functions in the energy cascade region.

Thus, although the conditions for a constant nonlinear energy flux are not

satisfied formally, the concepts appears as a first approximation quite useful

and it explains why the one-dimensional spectra tend to be fairly close to a

k−5/2 power law.

Strictly speaking, the original Zakharov and Filonenko argument can only

be applied to the angular average of the wavenumber spectrum. Recently,

Zakharov and Zaslavskii (1982) have extended the approach and they have

found the following general form of the frequency spectrum

F (ω, θ) =
g4/3P 1/3

ω4
F
(
ωQ

P
,
M

ωP
, cos θ

)

where P and M are energy and momentum flux to the high-frequency do-

main, while Q is the action flux to small wavenumbers. Here, information on

the general function F can only be obtained by numerical means. In other

words, in order to obtain the angular distribution of the waves one needs to

determine numerically the evolution of the wave spectrum according to the

Hasselmann equation. In this context it is important to note that Banner

and Young (1994) found that for high frequencies the nonlinear transfer has

a bimodal distribution. This finding makes perfectly sense when we return

to the stability diagram of Fig. 4.6 which shows that the nonlinear transfer

indeed has the tendency to transport wave energy under an angle from the

main propagation direction.
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As remarked in § 2.6.3 the observed angular distribution of the high-

frequency part of the windsea spectrum shows a pronounced bimodality. Ban-

ner and Young (1994) have suggested that this bimodality is caused by the

action of the nonlinear transfer. However, as pointed out by Morland (1996),

the critical layer mechanism results for sufficiently high wind speed in a bi-

modal distribution of the growth rate by wind. Alves and Banner (2003) have

confirmed Morland’s (1996) conjecture that not only nonlinear transfer but

also the wind input term is important in determining the bimodal angular

distribution of the windsea spectrum.

Another illuminating application of the ideas of Kolmogorov was given by

Kitaigorodskii (1983). He used a local approximation (in wavenumber space)

of the nonlinear transfer (4.75) and he found that the nonlinear energy flux

Φ scales with the action density (hence, the wavenumber spectrum) to the

third power, or,

Φ = α4ρwc
3B3, (4.106)

where B = k4F is the so-called angular average of the degree of saturation

(Phillips, 1985), F is the angular average of the two-dimensional spectrum, c

is the phase speed, α4 a constant and ρw the water density. The form (4.106)

may be obtained using scaling arguments. The rate of change of the energy

of the waves, as follows from multiplication of (4.75) by ρwω, is equal to the

divergence of the energy flux in wavenumber space, or,

1
k

∂

∂k
Φ(k) = ρwω

∂

∂t
N

∣∣∣∣
nl
. (4.107)

Introducing now the characeristic time τnl of the nonlinear transfer one finds

(note: ωN = gF )

Φ(k) ∼ ρwg
k2F

τnl
(4.108)

and the time scale τnl may be obtained from (4.75) as

1
τnl

∼ g1/2k17/2F 2 (4.109)
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where we used the scaling behaviour of the interaction coefficient T 2
0 ∼ k6.

Combination of (4.108) and (4.109) then results in (4.106).

The inertial subrange is now defined by that wavenumber range where

the nonlinear interactions dominate. As a consequence, the divergence of the

energy flux Φ vanishes and, hence, Φ is a constant= Φ0. Therefore, in the

inertial subrange the wave spectrum becomes

F (k) =
(

Φ0

α4ρw

)1/3

g−1/2k−7/2. (4.110)

Kitaigorodskii (1983) argued that the constant Φ0 is determined by the en-

ergy flux per unit area from wind to waves, denoted by Φw, which he es-

timated to be proportional to ρau
3∗. As a consequence, F would scale with

(ρa/ρw)1/3. However, the energy flux to the waves depends on the sea state

and nowadays a somewhat sharper estimate of Φw may be provided using

the wind input source function of the energy balance equation (2.86). From

§ 3.5, the rate of change of wave energy by wind is given by

ρwg
∂

∂t
F

∣∣∣∣
wind

= ρwgγF (4.111)

with γ = εωβ(u∗/c)2 and ε = ρa/ρw. The energy flux Φw then becomes

Φw = ρwg

∫
kdkγF (4.112)

and, in agreement with Kitaigorodskii (1983), the condition Φ0 = Φw is

imposed. Note that, as expected, Φ0 depends on the wave spectrum. Using

the scaling law (4.110) in (4.112) one then finds

Φ0 ∼ ε1/2ρau
3
∗

and, as a consequence, the inertial subrange spectrum becomes

F (k) = Aε1/2u∗g−1/2k−7/2. (4.113)

Therefore, the equilibrium spectrum in the inertial subrange depends on the

friction velocity and the square root of the air-water density ratio. In the
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angular frequency domain one then obtains, using E(ω)dω = F (k)kdk,

E(ω) = αTu∗gω−4, (4.114)

where αT = 2Aε1/2 is called Toba’s constant, because Toba (1973) was one

of the first who strongly advocated the ω−4 power law. He obtained (4.114)

from observations and on dimensional grounds arguing that there should be

a strong coupling between wind and waves.

Nowadays, there is ample evidence for the ω−4 power law. However, there

is still debate regarding the dependence on windspeed scale, and what wind-

speed scale to take. However, following the discussion in Section 2.6.2 and the

theoretical treatment in Chapter 3 (in particular Section 3.2) it is concluded

that there is a preference to choose as wind scale the friction velocity u∗ and

that the equilibrium spectrum scales linearly with u∗.

Observations of the ω−4 power law have been typically in the range be-

tween 1.3 × ωp and 3 × ωp where ωp is the peak frequency of the waves.

For frequencies above 3 × ωp there may still be little direct evidence of the

wavenumber spectrum or the frequency spectrum but it cannot continue with

a slope of −7/2 or −4, respectively. For example, the mean square slope would

greatly exceed optical (Cox and Munck, 1954) and radar estimates of mean

square slope (Jackson et al, 1992). In fact use of (4.113) would give rise to an

unbounded mean square slope. In order to see this it is noted that the wave

slope is basically ∂η/∂x and therefore the slope spectrum S becomes

S = k2F,

hence the mean square slope mss, which is the integral over S,

mss =
∫
kdk S =

∫
dk k3F,

is seen to become unbounded when (4.113) is used since the integrand behaves

as k−1/2.

Clearly, the wavenumber spectrum cannot continue with a −7/2 power

law for increasing wavenumber. Kitaigorodskii (1983) has postulated such a
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break in the spectral slope from k−7/2 to k−4 (fully saturated). He argues

that for increasing wavenumber the downward acceleration will increase and

according to Phillips (1958) wave breaking occurs when the acceleration of

the fluid exceeds the acceleration of gravity g. The wavenumber where wave

breaking starts to occur scales as

kg ∼ g/(Φ0/ρw)2/3.

For wavenumbers much larger than kg the spectral shape is determined by

wave breaking, which, to first approximation, is a process that is completely

determined by the dynamics of waves. Therefore, only acceleration of gravity

g, angular frequency ω or wavenumber k are the relevant parameters that

specify the spectral shape. This was first suggested by Phillips (1958) who

found that

F (k) = Bk−4 (4.115)

while

E(ω) = αpg
2ω−5, αp = 2B, (4.116)

where αp is the Phillips’ parameter. Nevertheless, even the power law (4.115)

does not prevent the divergence of the mean square slope. Hence, the high-

wavenumber catastrophe is not completely resolved by Kitaigorodskii’s ar-

gument. Experimental evidence for the transition of Toba’s to Phillips’ spec-

trum has been discussed already in § 2.6.2. Although the amount of evidence

is fairly limited there are indications that for the frequency spectrum such a

transition indeed occurs at about three times the peak frequency.

It is remarked that there are alternative explanations for the transition of

an ω−4 to ω−5 power law. Hara and Belcher (2002) have elaborated the idea

that when waves become steep, wind input to the waves gets reduced (These

authors call this the sheltering effect and its effect is similar to the quasi-

linear effect discussed in Chapter 3). Therefore rather than using the process
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of wave breaking, as Kitaigorodskii did, Hara and Belcher use the idea of

sheltering. They argue that Toba’s spectrum (4.114) is based on a balance

of wind input and nonlinear transfer. If Toba’s law would hold the waves get

steeper and steeper for increasing angular frequency and wavenumber, and

sheltering becomes more important. For wavenumbers larger then a sheltering

wavenumber ks, the wind input to the waves is so much reduced that it starts

to affect the balance with the nonlinear transfer, hence a different spectral

shape emerges. However, in practice, sheltering only occurs for very high

wavenumbers, and as a consequence the sheltering wavenumber ks gives a

break in spectral slope at much higher frequencies than observed.

4.7.3. Concluding remarks on the short wave spectrum.

We conclude our discussion of the equilibrium energy cascade by pointing

out a number of important corrections to be made to the present equilibrium

ideas. Let us return to the expressions for the short-wave spectrum, Eqns.

(4.115)-(4.116). As pointed out the shape of the high-wavenumber is still not

satisfactory, because the mean square slope diverges. It is well-known, how-

ever, that the dispersion relation for the short waves is affected by the orbital

motion of the long waves (see for recent experimental evidence Donelan et al,

1999). Rather than the usual linear dispersion relation, it is more appropriate

to use for the short waves

ω(k) = k.ud +
√
g|k|, (4.117)

where ud is a surface drift seen by the short waves which is caused by the

long waves. This surface drift is typically of the order of the friction velocity

u∗. In order to show the effect of the Doppler shift on spectral shape, it is

assumed that the frequency spectrum is invariant. An argument in favour of

the invariance of the frequency spectrum is that for a Hamiltonian system the

total frequency ω is conserved when following a wave group (cf. Eq. (2.78)),

hence any function of ω is invariant. Thus, the spectral form (4.114) is taken
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Fig. 4.18. Impact of surface drift on the wavenumber spectrum F(k): Full line, no surface

drift; Dashed line, surface drift ud = u∗; the thin line corresponds to the empirical relation

F (k) = 0.01k−5 of Donelan et al (1999).

for ω ≤ 3ωp while for ω > 3ωp the Phillips’ spectrum (4.116) is chosen. The

two spectral shapes are joined together at ω = 3ωp by choosing the Phillips

parameter appropriately, while the Toba parameter is taken to be αT = 0.13.

The friction velocity was chosen to be u∗ = 0.6 m/s. In Fig. (4.18) the

impact of the surface drift on the wavenumber spectrum F (k) = vgE(ω)/k

is shown. While in the absence of the drift the wavenumber spectrum obeys

for high wavenumbers the usual k−4 power law, in the presence of such a

drift spectral levels are much reduced. In fact, as shown in the Fig. (4.18)

one finds in that case an approximate k−5 power law, in agreement with the

observations of Donelan et al (1999). On the other hand, for low wavenumbers

the spectrum is hardly affected by the presence of the surface drift, because

these waves propagate much faster than the surface drift. Interestingly, with

a k−5 power law the mean square slope remains finite. Evidently, the surface

drift plays an important role in shaping the high-wavenumber part of the

spectrum. However, the consequences for air-sea interaction, for example,

have not been studied yet.
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The final remark concerns the convergence of the perturbation expan-

sion we have employed in this Chapter and possible consequences for the

high-wavenumber part of the spectrum. Recall that in order to simplify the

Hamiltonian of water waves, non-resonant interactions were eliminated as

much as possible by means of the canonical transformation A = A(a, a∗),

(4.17). This transformation introduces the reduced action variable a which is

used to define the action density spectrum N(k) of the Boltzmann equation

(4.75). Clearly N is just an approximation to the action density spectrum,

and in order to obtain the total action density spectrum, say n, one has to

employ Krasitskii’s transformation (4.17) for the case of a random wave field.

This is fairly straightforward to do and as a result one finds (Zakharov, 1992;

Krasitskii, 1994)

n0 = N0 + 2
∫
dk1,2

⎡
⎣ |V (−)

0,1,2|2
(ω0 − ω1 − ω2)2

(N1N2 −N0N1 −N0N2) δ0−1−2

+
|V (−)

1,0,2|2
(ω0 − ω1 + ω2)2

(N1N2 +N0N1 −N0N2) δ0−1+2

+
|V (−)

2,0,1|2
(ω0 + ω1 − ω2)2

(N1N2 −N0N1 +N0N2) δ0+1−2

+
|V (+)

0,1,2|2
(ω0 + ω1 + ω2)2

(N1N2 +N0N1 +N0N2) δ0+1+2

⎤
⎦ + O(N3).

Note that the above expression for the complete action density contains two

groups of terms, namely terms of the type N1N2 which give a fully nonlin-

ear correction to the lowest order expression for the action density, N0, ànd

terms involving N0 which are termed quasi-linear because they are propor-

tional to N0 itself. The quasilinear terms stem from the third-order term of

the canonical transformation (4.17) and their effect is usually neglected in

discussions on the so-called second-order wave spectrum (Barrick and Weber,

1977). They give nevertheless an important contribution to the second order

correction of the surface wave spectrum.

In order to illustrate the importance of the quasi-linear term we have
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Fig. 4.19. Second-order effects on the surface wave height spectrum, illustrating the

importance of the quasi-linear term.

evaluated for one-dimensional propagation the correction to the wave height

spectrum. The result for the wavenumber spectrum F (k) is (see also Creamer

et al, 1989)

F (k) = F1(k) +
1
2
k2

∫ ∞

k/2
dk′F1(k′)F1(|k − k′|) − k2F1(k)

∫ ∞

0
dk′F1(k′),

(4.118)

where F1(k) is the first-order spectrum, while the last two terms represent

the second-order spectrum. The full nonlinear term was already found by

Barrick and Weber (1977), but the last, quasilinear term is missing. This was

explained by Creamer et al (1989) who noted that Barrick and Weber (1977)

evaluated the wave spectrum from the surface elevation correct to second

order only, but to be consistent third-order corrections are required as well.

As shown in Fig. (4.19), which gives the first-order spectrum F1(k) ∼ k−3 and

the contribution of the second-order spectrum, the quasi-linear term plays a

vital role. When only the full nonlinear term of Barrick and Weber (1977)

is taken into account, the second-order spectrum is, as expected, small for

low wavenumbers, but for high wavenumbers it is far more important than
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the first-order contribution to the spectrum. In fact, for a k−3 power law it

can be shown analytically that the second-order spectrum behaves like k−1.

This would suggest that perturbation theory is divergent. However, it can be

shown analytically that the quasi-linear term cancels the singular behaviour

of the full nonlinear term, and as a result the second-order spectrum only

gives a small correction to the first-order spectrum. It is therefore of vital

importance to include the quasi-linear term because one may now conclude

that the perturbation approach of this Chapter appears to be convergent.

This conclusion is confirmed by recent direct numerical simulations of the

Euler equations by Onorato et al (2002). The total one-dimensional spectrum

F (k) was found to follow closely a k−5/2 law, suggesting that the contribution

of the second-order spectrum is relatively small.

Finally, it is remarked that also for low wavenumbers the quasi-linear term

has a marked impact on the result for the second-order spectrum. This may

have consequences for instruments that measure the second-order spectrum

using HF radar and that invert Eq. (4.118) to obtain the first-order spectrum.

Presently, only the full nonlinear term is used in the inversion (Wyatt, 2000).

4.8. Parametrization of nonlinear transfer.

In Section 4.5 we have derived the source function Snl, describing the nonlin-

ear energy transfer, from first principles. The end result is given in Eq. (4.75)

and again it is pointed out that effects of nonresonant interactions will be dis-

regarded from now on so that the resonance function is simply Ri = πδ(∆ω).

Inspection of the form of (4.75) reveals that the evaluation of Snl requires

an enormous amount of computation. Even with the present-day computing

power a wave prediction model based on the exact presentation of the non-

linear interactions is not feasible. Therefore, some form of parametrization of

Snl is required.

In the past several attempts have been made to address this problem. For

example, the approach used by Barnett (1968) and Ewing (1971) replaced the
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nonlinear transfer of any given spectrum by the transfer of a scaled reference

spectrum of presribed (Pierson-Moskovitz) shape. Hasselmann et al (1985)

extended this approach by enlarging the set of reference spectra. These ap-

proaches are not very succesful, however, mainly because the reference set of

spectra is not representative for all possibilities that may occur (similar ex-

periences are found with the use of neural networks). There is the additional

problem that a small change in the wave spectrum results in a significant

change in the nonlinear transfer. In the initial stages of wave growth, the

spectral shape differs from the Pierson-Moskovitz shape which holds for old

windsea. Typically, the spectral peak is more narrow and enhanced compared

with the one for old windsea. As a consequence, for young windsea the nonlin-

ear transfer is an order of magnitude larger than for old windsea. Therefore,

alternative parametrizations of the nonlinear transfer had to be developed,

which have the same number of degrees of freedom as the spectrum itself.

Accordingly, one needs to consider approaches in which the nonlinear

transfer is approximated by general nonlinear operator expressions. In the

first operator parametrization, which is called the diffusion approximation or

local interaction approximation, the nonlinear transfer is fiven by a fourth

order, cubic diffusion operator (Hasselmann and Hasselmann, 1981). In this

parametrization the nonlinear interaction coefficient |T |2 is assumed to be

strongly peaked near the central interaction point k1 = k2 = k3 = k4 = k

and that by comparison the action density spectrum is slowly varying. Nev-

ertheless, the resulting expression for the nonlinear transfer is fairly cum-

bersome, and Zakharov and Pushkarev (1999) have recently introduced a

simplified nonlinear differential operator. The differential operator was con-

structed in such a way that the basic conservation laws and Boltzmann’s H

theorem were satisfied. The diffusion operator gives a good approximation to

the contributions in the vicinity of the central interaction point, but contri-

butions further away from the central interaction point cannot be neglected.
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In fact, significant contributions to the nonlinear transfer come from the in-

termediate quadruplets whose separations are probably slightly too large to

be adequately represented by a local approximation.

Hence, Hasselmann et al (1985) introduced a second operator parametriza-

tion, called the discrete interaction approximation (DIA) which is similar in

spirit to the diffusion approximation but overcomes the shortcomings of this

approach. A nonlinear interaction operator was constructed by considering

only a small number of interaction configurations consisting of neighbouring

and finite distance interactions. In fact, it was found that the nonlinear trans-

fer could be well simulated by just one mirror-pair of intermediate range in-

teraction configurations. In each configuration, two wavenumbers were taken

as identical k1 = k2 = k0. The wavenumbers k3 and k4 are of different

magnitude and lie at an angle to the wavenumber k0, as required by the

resonance conditions. The second configuration is obtained from the first by

reflecting the wavenumbers k3 and k4 with respect to the k0-axis. The scale

and direction of the reference wavenumber are allowed to vary continuously

in wavenumber space.

The simplified nonlinear operator is computed by applying the same sym-

metrical integration method as is used to integrate the exact transfer in-

tegral (see also Hasselmann and Hasselmann, 1985). However DIA is much

more economical because the integration is taken over a two-dimensional con-

tinuum and two discrete interactions instead of five-dimensional interaction

phase space. Just as in the exact case DIA conserves energy, momentum and

action. For the configurations

ω1 = ω2 = ω0,

ω3 = ω0(1 + λ) = ω+, (4.119)

ω4 = ω0(1 − λ) = ω−,

where λ = 0.25, satisfactory agreement with the exact computations was

achieved. From the resonance conditions the angles θ3, θ4 of the wavenumbers
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k3(k+) and k4(k−) relative to k0 are found to be θ3 = 11.5◦, θ4 = −33.6◦.

In agreement with the principle of detailed balance (cf. § 4.7.1), one finds

∂

∂t

⎛
⎜⎜⎜⎝
N0

N+

N−

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−2

+1

+1

⎞
⎟⎟⎟⎠Cg−8f19

0 [N2
0 (N+ +N−) − 2N0N+N−]|Js|, (4.120)

where ∂N0/∂t, ∂N+/∂t, ∂N−/∂t are the rates of change in action density

at wavenumbers k0,k+,k− owing to the discrete interactions within the in-

finitesimal interaction phase-space element ∆k0, C is a numerical constant,

and f0 = ω0/2π. Furthermore, the Jacobian Js = ∆k0/∆ks (with s having

the values 0, + or −) only differs from 1 when the wavenumber increment

depends on wavenumber itself. The net source function Snl is obtained by

summing Eq. (4.120) over all wavenumbers, directions and interaction con-

figurations.

As discussed in Hasselmann and Hasselmann (1985) the usefulness of DIA

follows in particular from its correct reproduction of the growth curves for

growing windsea. However, the DIA has a tendency to give, compared to

the exact calculations, a stronger negative lobe with the consequence that

the high-frequency part of the spectrum is somewhat lower. However, the big

advantage of DIA is its satisfactory reproduction of the low-frequency positive

lobe which controls the down shift of the spectral peak. Both aspects of DIA

are illustrated in Fig. (4.20) for young windsea.

Despite the success of the DIA a number of authors (Polnikov, 1991; Za-

kharov and Pushkarev, 1999; Lin and Perry, 1999; van Vledder et al, 2000)

have felt the need for improvement because the accuracy of the DIA was not

regarded sufficient for the JONSWAP spectrum. For example, Hashimoto and

Kawagushi (2001) and van Vledder (2001) have tried to improve on the DIA

by introducing additional quadruplets. However, these efforts have not sig-

nificantly changed the situation. Recently, Polnikov and Farina (2002) have

performed a ’beauty’ contest between different approximations of the nonlin-
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ear transfer. The quality of any approximation was judged by a combination

of a measure for relative error and efficiency. In this context it turned out

that DIA performed very well, which was quite surprising considering that

DIA was developed more than 15 years ago.

Before we close this Section it is mentioned for completeness that for one

quadruplet in isolation an exact solution to Eq. (4.120) may be obtained. We

give here the solution for a fixed increment ∆k, hence Js = 1. It is readily

seen that by construction the action of the quadruplet, N = N0 +N+ +N−,

is conserved. Also, because of the resonance conditions 2ω0 = ω+ + ω− and

2k0 = k+ + k−, energy E = ω0N0 + ω+N+ + ω−N− and momentum P =

k0N0 + k+N+ + k−N− of the quadruplet are conserved as well. Since there

are so many conserved quantities in this problem it should not come as a
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Fig. 4.20. Comparison of directionally averaged nonlinear transfer obtained from exact

calculation (full line) and the DIA approximation (dashed line) for a JONSWAP spectrum

with overshoot parameter γ = 3.3.
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big surprise that an exact solution to the time evolution of one quadruplet

exists. From (4.120) one has

∂

∂t
N+ =

∂

∂t
N−,

and

∂

∂t
N0 = −2

∂

∂t
N+.

Integration of these two equations allows to eliminate N+ and N− from the

first equation of (4.120), with the result

∂

∂t
N0 = 3αN0

[
aN2

0 + bN0 + c
]
, (4.121)

where α = Cg−8f19
0 , a = 1 while b and c depend on N and on the initial

values of N+, and N− through β = N+(0) − N−(0): b = −4/3N and c =

1/3(N 2 − β2). Note that for positive inital conditions |β| ≤ N hence c ≥ 0.

This equation is a special case of Abel’s equation and the exact solution may

readily be obtained. By solving for time as function of action density one

finds

N2
0 (N0 −N1)

s−1

(N0 −N2)
s+1 = Ke6αct (4.122)

where N1 and N2 are the roots of aN2
0 + bN0 + c = 0 giving N1,2 = 2/3N ±

1/3(N 2 + 3β2)1/2, hence N1 > N2 ≥ 0. Furthermore s = (N1 + N2)/(N1 −
N2) > 0, while the constant K follows from evaluating (4.122) at initial time.

As expected the relevant nonlinear timescale, αct, depends on the square

of the action density. It should be clear, however, that this solution is not

interesting because the asymptotic state is given by N0 → N2(t → ∞) and

is therefore completely determined by the initial conditions.

But as already mentioned, ocean waves are not a closed system, hence it

would be more relevant tot try to seek a solution of the system (4.120) by

adding wind input and dissipation. Denoting the sum of growth and damping

by γ0N0, the evolution equation for N0 becomes

∂

∂t
N0 = γ0N0 − 2αN0 [N0(N+ +N−) − 2N+N−]
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while for N+ we have

∂

∂t
N+ = γ+N+ + αN0 [N0(N+ +N−) − 2N+N−]

and a similar equation for N− (obtained by interchanging the indices + and

−). Although the case of equal growth rates γ = γ+ = γ− may be solved

exactly, this is, as far as I know, not possible for the more interesting case

of γ > 0 and γ+, γ− < 0, which mimicks an energy cascade. Also, the more

realistic case should deal with a large number of gravity waves and therefore

a numerical solution of the energy balance equation is required. This will be

discussed in the next Chapter.

4.9. Wave dissipation.

The least understood aspect of the physics of wave evolution is the dissipation

source function. Waves may loose energy continuously by viscous dissipation

and by the highly intermittant process of wave breaking. In addition, the

(small-scale) breaking waves generate eddies in the surface layer of the ocean.

These eddies may give rise to damping of the longer ocean waves. Further-

more, ocean waves may loose energy because of the generation of organized

motions in the ocean such as Langmuir circulations and in the presence of

a vertical shear in the current. Dissipation of wave energy by molecular vis-

cosity is well understood and can easily be calculated. However, it is only an

important sink for the short gravity-capillary waves, which have wavelengths

of the order of 1 cm. For the longer gravity waves viscous dissipation is not

important. Dissipation of long gravity waves by ocean surface turbulence may

be determined as well (Jenkins, 1987) and we briefly discuss the consequences

of this approach. Finally, the understanding of energy loss by means of the

generation of Langmuir circulation is only beginning and will therefore not

be discussed in this context (but see the interesting work of Teixeira and

Belcher, 2002).

Understanding and modelling of the wave breaking process is of impor-
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tance in achieving an accurate representation of the principle sink in the

action balance equation. Unfortunately, even nowadays there has not been

much progress in obtaining a convincing model of dissipation caused by wave

breaking or white capping. This should not come as a surprise, because wave

breaking is a truly nonlinear phenomenon that cannot be captured by the

perturbation techniques that have been discussed in this Chapter. A straight-

forward theoretical approach seems therefore not possible. Although there has

been considerable progress in the numerical modelling of breaking of individ-

ual waves, it is hard to see how these results may be extended to the general

case of a random wave field.

Nevertheless, there has been progress in modelling dissipation by white-

caps in a semi-empirical manner. Basically, three approaches may be distin-

guished, namely one that assumes that white capping is the main cause for

the dissipation process which is regarded as local in space. This approach

has been put forward by Hasselmann (1974). Alternatively, Phillips (1985)

started from the completely opposite assumption that wave dissipation is lo-

cal in wavenumber space. Third, Jenkins (1987) advocated the picture that

breaking waves will generate ocean eddies which on its turn will damp the

waves.

4.9.1. White cap model.

The assumptions behind Hasselmann’s white cap model are that the white

caps can be treated as a random distribution of perturbations, which are

formally equivalent to pressure pulses, and that the scales of the white caps

in space and time are small compared to the scales of the associated wave.

The theoretical development consists of two steps. First, it is shown that

all processes that are weak-in-the-mean, even if they are strongly nonlinear

locally, yield source functions which are quasi-linear in lowest approximation.

The source function consists of the spectrum at the wavenumber considered

multiplied by a factor which is a functional of the entire wave spectrum. A
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derivation in the general context of wave processes is given in Komen et al

(1994, § I.2.8). The second step consists of the determination of the factor for

the special case of white capping. This involves a number of fairly complex

approximations based on the assumed scales of the white caps. The details

are discussed by Hasselmann (1974).

Introducing the mean frequency 〈ω〉 by means of the inverse mean fre-

quency,

〈ω〉 =
∫
dk F (k)/

∫
dk F (k)/ω (4.123)

with F the wavenumber spectrum, and a similar relation for the mean wavenum-

ber 〈k〉, the final result is the following dissipation source function

Sds = −γdN, (4.124)

with

γd = β〈ω〉
(
〈k〉2m0

)m
[
k

〈k〉 + a

(
k

〈k〉
)2

+ ...

]
. (4.125)

Here, β, a and m are constants which still need to be determined. It is

remarked that in the original work of Hasselmann (1974) the second term in

the square bracket is absent. The reason for this is that Hasselmann assumed

a large separation between the length scale of the waves and the white caps,

giving a power 1 for the wavenumber in the dissipation term. For the high-

frequency part of the wave spectrum, however, such a large gap between

waves and white caps may not exist, therefore allowing the possibility of a

different dependence of dissipation on wavenumber.

The first rationale attempt to determine the unknown coefficients in the

dissipation source function was reported by Komen et al (1984). In passing,

note that this work showed for the first time that a numerical solution of the

energy balance equation gave a realistic equilibrium solution for the wave

spectrum, thereby paving the way for the development of numerical wave

prediction models that solve the energy balance equation from first principles.
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Komen et al (1984) started from the empirical expression for wind input

of Snyder et al (1981), which was adapted to accomodate friction velocity

scaling, whilst the exact form of Hasselmann’s nonlinear transfer was taken.

For a constant wind speed, the energy balance equation was integrated un-

til stationary conditions were reached, and the unknown coefficients m and

β were chosen in such a way that the equilibrium spectrum resembled the

Pierson-Moskovitz (1964) spectrum as closely as possible (Note that in their

work a was put to zero from the outset). The power m was found to be equal

to 2 while the coefficient β was of the order of 3.

4.9.2. Quasi-saturated model.

Phillips (1985) and Donelan and Pierson (1987) have followed a different

approach. While formally their model is still basically consistent with the

quasi-linear form (4.124) for a process that is weak-in-the-mean, the damp-

ing factor γd is estimated differently from Hasselmann (1974). Rather than

assuming that the space and time scales of the white capping process are

small compared to the characteristic wavelength and periods of the waves

for which the dissipation is being determined -i.e. white caps are highly lo-

cal in space and time- they make the complementary assumption that white

capping is essentially local in wavenumber space.

The wave breaking process is pictured as highly nonlinear in wave steep-

ness, having no effect until some limiting steepness is reached when the wave

becomes unstable and spills or plunges forward, producing white caps at large

scales or a micro breaker at small scales. At the end of the breaking event a

substantial energy loss may occur. This is illustrated by Rapp and Melville

(1990) who studied the interaction and breaking of waves in a wave packet

where losses of up to 30% of the momentum per breaker were found. Wave

breaking is thought to occur mainly in wave groups and the onset of breaking

is caused by nonlinear focussing. Owing to focussing a uniform wave train be-

comes strongly modulated (Benjamin-Feir instability) and it becomes much
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more likely that the biggest wave in the group exceeds the limiting steepness,

hence breaks. This approach has been elaborated recently by, for example,

Song and Banner (2002) and Banner and Song (2002) who inferred a robust

threshold variable for wave breaking.

Phillips (1985) has argued that in the equilibrium range the wind input,

nonlinear transfer and dissipation are roughly of equal importance, and as

there is no internal wavenumber scale, the ratio of the three terms must

be constant. Balancing dissipation with the nonlinear transfer and assuming

that the four-wave interactions may be estimated by means of a local-in-

wavenumber expression he finds that the dissipation rate is cubic in the

degree of saturation B(k), thus

Sds = −Cωk−4B3(k) (4.126)

where (cf. Eq.(4.106)) B = k4F (k) and C is a constant. In order to compare

with Hasselmann’s white cap model we write the dissipation source function

in the form (4.124) where for the Phillips’ model γd is given by

γd = CωB2(k) (4.127)

Therefore, the damping rate in Phillips’ model is determined by the local

spectrum and not, as seen in the white cap model, by the integral properties

of the wave field.

Remark: There are some interesting differences between the approach taken

by Kitaigorodskii (1983) (cf. § 4.7.2) and Phillips (1985) to understand the

equilibrium range of the spectrum. Kitaigorodskii (1983) writes the nonlinear

transfer as a divergence of an energy flux, and obtains the equilibrium range

from the condition that nonlinear transfer dominates, hence the divergence

of the energy flux vanishes. Phillips’ obtains the same expression for the equi-

librium range by balancing Plant’s (1982) wind input term with the nonlin-

ear dissipation source function (4.126). However, numerical simulations with
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the energy balance equation suggest, in agreement with Kitaigorodskii(1983)

and Zakharov and Filonenko (1967), that nonlinear transfer dominates in the

equilibrium range.

Recently, there have been some interesting new developments in this con-

text. By assuming a balance between wind input and dissipation Donelan

(2001) determined from observations of spectral shape and wind input an

optimal form of Eq. (4.127). However, because the state of the short gravity

waves is affected by the longer waves, there is a need to introduce a depen-

dence on the mean square slope of the long waves. The problem with this

approach is that the important effects of nonlinear four-wave interactions

have not been accounted for. Furthermore, following the work of Song and

Banner (2002) and Banner and Song (2002), Alves and Banner (2003) have

studied the advantages of a relative of the parametrisation (4.127), by re-

placing the degree of saturation B by its angular average. The dependence

on the angular degree of saturation is only switched on when the degree

of saturation exceeds an empirically determined threshold. The result is a

fairly complicated expression for dissipation but simulations with the exact

nonlinear transfer and various forms of wind input look reasonable.

4.9.3. Eddy-viscosity model.

When waves are breaking considerable amounts of energy and momentum are

transferred to the ocean column thereby feeding the large scale ocean motions

and generating ocean turbulence. The eddies will give rise to energy and

momentum transport, and Jenkins (1987) assumed that the eddy transport

can be modelled in a similar way as the momentum transport by molecular

viscosity, except that the eddy viscosity ν may depend on depth. It is then

straightforward to obtain the wave dissipation source function. It has the
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same form as (4.124), where γd is given by

γd = 8k3
∫ 0

−∞
dz ν(z)e2kz. (4.128)

Hence, the wavenumber dependence of the dissipation source function de-

pends on the depth dependence of the eddy viscosity ν. For a constant eddy

viscosity, ν = ν0, the damping rate becomes γd = 4ν0k
2 which corresponds

to the familiar expression for wave damping owing to viscosity (Lamb, 1932).

However, if ν increases linearly with depth the damping rate is found to

increase linearly with wavenumber. But near the ocean surface the eddy vis-

cosity cannot vanish and a more appropriate model is (Terray et al., 1999)

ν = κw∗(|z| + z0)

where w∗ is the friction velocity in water and the roughness z0 is of the order

of the significant wave height (reflecting the vigorous action of wave breaking

on the ocean surface layer). Such a model for eddy viscosity is qualitatively

in close agreement with the Hasselmann’s white cap model (4.125), because

the wave damping depends on a linear combination of a k term and a k2

term.

Unfortunately, although this model gives attractive results, in practice

damping rates are larger than growth rates by wind (Belcher et al, 1994).

The reason is simply that the eddy-turnover times in the ocean are much

longer than the wave periods, hence most of the eddies do not have sufficient

time to transport wave momentum. A straightforward application of rapid-

distortion ideas (see § 3.3.1) reveals that wave dissipation would scale in a

similar manner as the wind input term, namely as ω (w∗/c)2.

4.9.4. Discussion.

Whether the wave dissipation process is local in ordinary space or in wavenum-

ber space is hard to decide, also from observations. For example, from the

work of Pierson et al (1992), who examined the spectral changes of highly
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nonlinear gravity waves in a wave tank, one may find support for the con-

tention that the wave breaking process is local in wavenumber space. This is

so because most of the energy loss is seen to occur at the peak if the spectrum.

However, this experimental evidence is not entirely convincing because also

the quasi-linear white cap model will give rise to an energy loss that is mostly

concentrated near the peak of the spectrum. Furthermore, experiments such

as the Pierson et al (1992) one involve steep waves, and therefore four-wave

interactions are expected to be important as well, and they also will give rise

to similar changes in the spectrum as observed.

An argument in favour of a quasi-linear form of wave breaking follows

from the work of Donelan et al (1972) who observed that wave breaking

occurs as a wave passes through the peak of a wave group, suggesting that

wave breaking does not only depend on the state of the individual wave but

rather on the occurrence of the wave group and nonlinear focussing. As wave

groups are formed by the superposition of at least two waves with different

wavenumbers, this suggests that wave damping depends on some integral

properties of the wave field.

Another argument in favour of the quasi-linear formulation concerns the

behaviour in the limit of a narrow spectrum. Thus,

F = E0δ(k − kp)

and the damping rate from the quasilinear model (4.125) becomes

γd = βωp

(
k2

pE0

)m
(1 + a)

which is well-behaved. Accordingly, the rate of change of the energy E0 of

a single wave due to white capping depends, as expected, nonlinearly on its

energy. However, for the quasi-saturated model (4.127) the limit for a narrow

spectrum is not defined.

The above two arguments give a slight preference for the white cap model

(4.125) which in the remainder will be adopted as the model for dissipation
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of wave energy. Although the above arguments are to a large extent of a

formal nature, this is probably the best that can be done under the present

circumstances. Observational studies have, so far, not been able to discrim-

inate between the two proposed models for wave dissipation. For example,

Felizardo and Melville (1995) correlated ambient noise as produced by break-

ing waves with the total dissipation from Hasselmann’s and Phillips’ model

but similar (high) correlations were found. Hence, presently, one can only

utilize formal arguments to distinguish between the two. However, the recent

work by Melville and Matusov (2002) may shed further light on this issue

because they obtained the frequency distribution of dissipation by studying

white cap coverage from Video pictures of the sea surface.

4.10. Summary of Conclusions.

In this Chapter we have studied effects of nonlinearity on the evolution of

deep-water gravity waves. Our starting point was the Hamiltonian for water

waves which plays a central role in the development of the nonlinear the-

ory. Using Hamilton’s equations, the complex amplitude equations for finite

amplitude may be obtained in a systematic way.

As a first example we have discussed effects of finite amplitude on the

dispersion relation of a single gravity wave. Finite amplitude gravity waves

are, however, unstable to sideband perturbations. This instability is known

as the Benjamin-Feir instability or the modulational instability and may be

regarded as an example of a four-wave interaction process. In the context

of the evolution of a random wave field, four-wave interactions are of prime

importance in understanding the development of the wave spectrum with

time.

We have therefore discussed in great detail the derivation of the nonlin-

ear source function for a continuous spectrum of waves. In particular we

have stressed the underlying assumptions, such as a finite but small wave

steepness with the consequence that the probability distribution is close to a
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Gaussian, and the assumption of a homogeneous wave field. In addition, also

the assumption of a limited wavenumber range has been made (the problem

of short waves riding on a long wave).

It is important to ask the question how restrictive these assumptions are.

In other words, can one safely apply the Boltzmann equation (4.75) which

describes both resonant and non-resonant four-wave processes to the practi-

cal case of wave prediction? Monte Carlo simulations of the Zakharov equa-

tion for the case of one-dimensional propagation suggest that even for steep

deep-water waves and narrow spectra the Boltzmann equation is giving a

fair description of spectral evolution and also of the probability distribution

(e.g. kurtosis) of the surface elevation. Non-resonant interactions do occur

on a very short time scale but they are probably not relevant for practical

wave prediction because the main interest is in large time evolution. The non-

resonant interactions play a role similar to that of transients in the solution of

an initial-value problem. They die out very quickly because of phase mixing

and as a consequence for large times only resonant interactions contribute to

spectral change. We also discussed the consequences of the assumption of a

homogeneous wave field. If inhomogeneities in the wave field are allowed for,

a rapid nonlinear energy transfer is found, provided that the wave spectrum

is sufficiently narrow. Energy transfer is caused by non-resonant four-wave

interactions associated with the random version of the Benjamin-Feir insta-

bility. This rapid energy transfer tends to broaden the spectrum thereby

removing the cause of the instability. After a while what is left is the rela-

tively slow nonlinear energy transfer of a homogeneous wave field. Therefore,

for large scale applications the assumption of a homogeneous wave field is

well-satisfied.

From the Monte Carlo simulations we have also learned that the statis-

tical approach gives accurate estimates of the deviations of the probability

distribution from the Normal distribution. Parameters such as the kurtosis
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provide valuable information on extreme wave conditions which occur, for

example, when freak waves are present. However, validation of the results

of the present approach with observations of extremes collected over a long

period is clearly desirable.

It may be argued that wave dissipation has been treated as the Cinderella

of the source functions. To a large extent this is true because this process is

really nonlinear and straightforward perturbation techniques are inadequate.

Nevertheless, Hasselmann (1974) was able to impose a number of constraints

on the general form of the dissipation source function, assuming that the

main source of dissipation is white capping. By insisting that in equilibrium

conditions the wave spectrum resembles the Pierson-Moskovitz spectrum as

closely as possible, Komen et al (1994) were able to determine a number of

unknown constants in the dissipation term. A crucial step in this approach

was the use of the empirical wind input term of Snyder et al (1981). Since

the nonlinear interactions conserve momentum and energy, this implies that

the overal level of dissipation is fairly well established because it almost

balances the gain by wind (effects of advection are normally quite small).

However, presently uncertainty remains regarding the spectral distribution

of the dissipation, but it is expected that in the near future observations from

field campaigns will shed further light on this issue.

4.11. Appendix: Nonlinear transfer coefficients.

The correct version of the interaction coefficient T (k1,k2,k3,k4) was first

given by Krasitskii (1990, 1994) and Zakharov (1992). It is recorded here for

reference. Adopting the simplified notation introduced in § 4.1 we write

T1,2,3,4 = T (k1,k2,k3,k4).

We have

T1,2,3,4 = W1,2,3,4

− V
(−)
1,3,1−3V

(−)
4,2,4−2

[
1

ω3 + ω1−3 − ω1
+

1
ω2 + ω4−2 − ω4

]
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− V
(−)
2,3,2−3V

(−)
4,1,4−1

[
1

ω3 + ω2−3 − ω2
+

1
ω1 + ω4−1 − ω4

]

− V
(−)
1,4,1−4V

(−)
3,2,3−2

[
1

ω4 + ω1−4 − ω1
+

1
ω2 + ω3−2 − ω3

]

− V
(−)
2,4,2−4V

(−)
3,1,3−1

[
1

ω4 + ω2−4 − ω2
+

1
ω1 + ω3−1 − ω3

]

− V
(−)
1+2,1,2V

(−)
3+4,3,4

[
1

ω1+2 − ω1 − ω2
+

1
ω3+4 − ω3 − ω4

]

− V
(+)
−1−2,1,2V

(+)
−3−4,3,4

[
1

ω1+2 + ω1 + ω2
+

1
ω3+4 + ω3 + ω4

]

where the second-order coefficients V (±) are defined as

V
(±)
1,2,3 =

1
4
√

2

{
[k1.k2 ± k1k2]

(
ω1ω2

ω3

k3

k1k2

)1/2

+

[k1.k3 ± k1k3]
(
ω1ω3

ω2

k2

k1k3

)1/2

+ [k2.k3 + k2k3]
(
ω2ω3

ω1

k1

k2k3

)1/2
}
.

with ki = |ki|, ωi = ω(ki). The third-order coefficient is defined as

W1,2,3,4 = U−1,−2,3,4 + U3,4,−1,−2 − U3,−2,−1,4 − U−1,3,−2,4

− U−1,4,3,−2 − U4,−2,3,−1

with

U1,2,3,4 =
1
16

(
ω1ω2

ω3ω4
k1k2k3k4

)1/2

[2(k1 + k2) − k2+4 − k2+3 − k1+4 − k1+3] ,

and ki±j = |ki ± kj |; ωi±j = ω(ki±j). Note that I have used a Fourier

transform without the factor of 2π. As a consequence, compared to Krasitskii

(1994) and Zakharov (1992) the second-order coefficient is larger by a factor

2π, while the third-order coefficient is larger by a factor of 4π2. The advantage

of this is that the narrow-band limit of T1,2,3,4 simply becomes T1,1,1,1 = k3
1

while the second moment simply becomes 〈aia
∗
j 〉 = Niδ(ki − kj).

Finally, in order to evaluate the second-order correction to the action den-

sity spectrum the coefficient B(2)
1,2,3,4 of the Krasitskii transformation (4.17)

is required. It reads

B
(2)
1,2,3,4 = Γ(−)

2,3,2−3Γ
(−)
4,1,4−1 + Γ(−)

2,4,2−4Γ
(−)
3,1,3−1 − Γ(−)

1,3,1−3Γ
(−)
4,2,4−2

− Γ(−)
1,4,1−4Γ

(−)
3,2,3−2 − Γ(−)

1+2,1,2Γ
(−)
3+4,3,4 + Γ(+)

−1−2,1,2Γ
(+)
−3−4,3,4
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where

Γ(−)
1,2,3 = − V

(−)
1,2,3

ω1 − ω2 − ω3
,

while

Γ(+)
1,2,3 = − V

(+)
1,2,3

ω1 + ω2 + ω3
.

The coefficients Γ(−) and Γ(+) are identical to the coefficients A(1) and A(3)

of the canonical transformation (4.17).
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5. Wave forecasting and wind-wave interaction.

This Chapter is devoted to a synthesis of what we have previously learned

about the physics of wind-wave interaction, culminating in a numerical wave

prediction system. After a brief discussion of the numerics of such a model,

we illustrate the combined effects of wind input, nonlinear interactions and

dissipation on the simple case of the growth of surface gravity waves by wind

for an infinite ocean. The resulting growth laws for parameters such as wave

height, peak frequency and Phillips parameter are compared with empirical

growth laws. Also, the simulated wave age dependence of ocean roughness

is compared with a number of empirical fits. In addition, we discuss effects

of gustiness on wave evolution and roughness of the sea surface which gives

an indication of the well-known sensitive dependence of wave results on the

forcing wind field.

The resulting wave prediction system turns out to be a promising tool for

forecasting purposes and in the remainder of this Chapter we discuss a num-

ber of applications of the wave forecasting system as it has been implemented

at the European Centre for Medium-Range Weather Forecasts (ECMWF).

Historically, ECMWF played an important role in the development of the

third-generation wave prediction system, called WAveModel (WAM). They

provided the necessary infrastructure (such as supercomputers and data han-

dling), high-quality surface wind fields and support. The combination with

the promise of the wealth of global wave height and spectral data from the

ERS-1 and ERS-2 satellites- launched by the European Space Agency (ESA)

- resulted in a rapid development of the WAM model. The global version

of the WAM model became operational at ECMWF in July 1992. Although

the WAM model code was a beautiful and efficient piece of software, the

ever-changing operational environment required further developments. For

example, the original version of the WAM model was running on one pro-

cessor. Demands such as increases in spatial resolution and in spectral reso-
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lution implied that the model had to be able to run on memory-shared and

distributed memory multiple processors. Furthermore, there were numerical

improvements in the advection scheme and in the time-integration scheme

and in interpolation of the wave stress. Because of these differences I will call

therefore the ECMWF version of the WAM model ECWAM. It is emphasized,

however, that the heart of ECWAM, namely the physical source functions,

is identical to WAM (except for the introduction of effects of gustiness and

variable air-sea density ratio).

Traditionally, many weather centres have applied their weather forecasts

to activities associated with the marine environment. Shipping, fisheries, off-

shore operations and coastal protection are all strongly dependent on weather

and require marine weather forecasting extending to the limit of the medium-

range forecasting period (typically, in the range of 5-10 days). An important

component of the marine weather forecast is the sea state and, therefore,

wave forecasting using forecast low-level winds from an atmospheric model is

of prime importance. Hence, it is of paramount interest to discuss the quality

of present-day wave forecasts. As an example, progress in wave forecasting

at ECMWF during the period 1995-2000 is discussed. Here, the quality of

the forecast will be judged by a comparison with buoy observations, global

Altimeter wave height data and by a comparison with the verifying analysis.

If these verification results are put into a historical context, it is seen that

the quality of the wave forecasts has improved considerably. Hence, the use-

ful forecast range has increased. In addition, the verification results suggest

that an important error source in forecast wave height is the wind speed

error, in agreement with the practical experience of many wave modellers

and forecasters (of course, this is immediately evident from the scaling rela-

tions for fully-developed windsea, cf. (2.93)). It is therefore understandable

that people from the wave modelling community have been critical regarding

the quality of the surface wind field, sometimes resulting in suggestions for
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improvement.

Because of the sensitive dependence of wave results on the quality of the

surface wind field, ocean wave information can give benefits for atmospheric

modelling and data assimilation. Wave results have already been used to

diagnose planetary boundary problems and overactivity of the atmospheric

model. This has resulted in an improved integration scheme for vertical dif-

fusion (Janssen et al, 1992), while the diagnosis of overactivity, reflected by

a rapid systematic error growth in forecast wave height, provided ECMWF

with a guideline to what extent overactivity near the surface needed to be

reduced (Janssen et al, 2000).

However, there are additional benefits from wave forecasting. In agreement

with the arguments presented in this book, wave results may be used to obtain

a consistent momentum balance at the ocean surface and they may be of help

in the interpretation of satellite data. First, the momentum exchange between

atmosphere and the ocean surface could be treated more accurately if the

wave-induced drag is taken into account in a two-way interaction (Janssen,

1989); at present most atmospheric models assume that the drag over the

sea is a function of instantaneous wind speed only. Second, the utilization of

satellite data from the Scatterometer, Synthetic Aperture Radar (SAR) and

Altimeter (e.g. winds and mean sea level) will benefit from the use of sea

state information for an optimal assimilation (Stoffelen and Anderson, 1995;

Janssen et al, 1998; Hasselmann and Hasselmann, 1991; Janssen, 2000). In

fact, any instrument that involves specular reflection at the sea surface would

benefit from knowledge of the sea state (Cox and Munck, 1954). Furthermore,

because of the strong interaction between wind and waves, observed wave

information may be beneficial for the atmospheric state when assimilated

into a coupled ocean-wave, atmosphere model.

Finally, two-way interaction of wind and waves may also be relevant for

a more accurate prediction of storm surges and even the ocean circulation.
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In particular, the sea state dependent drag may affect the wind-driven ocean

circulation, and the surface current. But, clearly there is a mutual interaction

as currents in turn may affect to some extent the evolution of the wave field.

On the other hand, waves and winds enjoy a mutual interaction as well, which

suggests to study the evolution of winds, waves and the wind-driven ocean

circulation in the context of a coupled atmosphere-ocean circulation system

where the ocean waves are the agent that transfers energy and momentum

across the air-sea interface in accordance with the energy balance equation.

Ocean waves play an important role in the interaction of the atmosphere

and ocean. On the one hand, ocean waves receive energy and momentum from

the atmosphere through wind input (hence, the ocean waves control to a large

extent the drag of airflow over the oceans) while, on the other hand, through

the process of white capping, the ocean waves transfer energy and momentum

to the ocean, thereby feeding the turbulent and large scale motions of the

oceans. The energy conserving nonlinear transfer plays no direct role in this

interaction process, although it determines to a large extent the shape of

the wave spectrum, and therefore controls energy and momentum fluxes in

an indirect way. In equilibrium conditions, the fluxes received by the ocean

waves from the atmosphere through the wind input term would balance the

fluxes from ocean waves to ocean via wave breaking. However, ocean waves

are in general not in an equilibrium state determined by the balance of the

three source functions, because advection and unsteadiness are important as

well. As a rule of thumb, of the amount of energy gained by wind, about 95%

is lost locally to the ocean by wave breaking, while the remaining 5% is either

advected away or is spent in local growth. Therefore, for young windseas a

considerable imbalance may exist, in particular for the low-frequency waves.

On the other hand, when wind waves leave a storm area the magnitude of the

wind input source function decreases dramatically, while the waves are still

sufficiently steep so that white capping is still important. Since dissipation
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dominates, wave energy will decay and as a consequence momentum and

energy flux to the ocean may be larger than the amounts received by the

waves from the atmosphere.

It would be of considerable interest to develop a coupled atmosphere-

ocean circulation system where the ocean waves are the agent that transfers

energy and momentum across the air-sea interface. A first attempt towards

this goal was reported by Bao et al (2000) who studied in the context of a

fully coupled model the development of hurricanes in the Gulf of Mexico.

Here, we mainly concentrate on one aspect of the overall problem, namely

the mutual interaction between wind and waves. The reason for this is that

in the last decade a considerable amount of research has been devoted to this

subject, and there is now ample evidence that two-way interaction between

wind and waves matters for both prediction of wind and waves. The study of

the impact of surface waves on the ocean circulation is only beginning, and

presently there is discussion on the proper primitive equations for ocean circu-

lation including the effects of ocean waves. Nevertheless, the two-dimensional

equations, obtained by an integration of the momentum equations over the

vertical, are well-established (Phillips, 1977) and have been applied to the

modelling of storm-surges in shallow water. Therefore, first results on the

sensitivity of storm surges to a sea-state dependent drag will be reported.

This Chapter is organized as follows. In § 5.1 we discuss details of the

numerical implementation of the ECWAM prediction system. This is followed

in § 5.2 by a presentation of results from the single grid point version of the

model. In § 5.3 we discuss our experience with two-way interaction, when

applied to medium-range forecasting and forecasting on the seasonal time-

scale, while in § 5.4 the impact of sea-state dependent drag on storm-surges is

treated. Finally, in § 5.5 an overview of applications of ECWAM at ECMWF

is given, and the verification results of analysis and forecast are presented

and discussed.
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5.1. Numerics of the wave prediction model.

In this Section numerical aspects of the action balance equation are discussed

as they are implemented in the ECWAM model.

Although from a theoretical point of view it is most natural to discuss

the evolution of gravity waves in terms of the action density, in practice

one deals with the surface elevation spectrum F (f, θ). The relation between

action density and frequency spectrum is straightforward, since

F (f, θ) = σN(f, θ)/g, (5.1)

with σ the intrinsic frequency (cf. Eq. (2.68)) and the action densityN(f, θ) =

2πN(ω, θ), where the evolution ofN(ω, θ) follows from Eq. (2.137). Therefore,

wave models such as the ECWAM model, are formulated in terms of the

frequency-direction spectrum F (f, θ).

In a numerical model, the continuous spectrum is approximated by step

functions which are constant in a frequency-direction bin. It is important

to make a distinction between a prognostic part and a diagnostic part of

the spectrum. The prognostic part of the spectrum has NANG directions

and NFRE frequencies. These frequencies are on a logarithmic scale, with

∆f/f = 0.1, spanning a frequency range fmax/fmin = (1.1)NFRE−1. The

logarithmic scale has been chosen to have a uniform relative resolution so that

the relevant low frequencies are well represented. Also, the nonlinear transfer

scales with frequency. The starting frequency may be selected arbitrarily.

A decade ago, most global studies used a starting frequency f0 of 0.042

Hz, the number of frequencies NFRE was 25 and the number of directions

NANG was 12 (30◦ resolution). However, by comparing modelled WAM

spectra with observations from SAR it became evident that modelled spectra

had a too broad directional distribution. This was caused by a too crude

angular resolution. In addition, low-frequency swells in the Pacific were not

always well captured because the starting frequency was too high. Therefore,

nowadays most third generation wave prediction models have 24 directions
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(15◦ resolution) while at ECMWF the starting frequency is 0.031 Hz with

30 frequencies. For closed basins, such as the Mediteranean Sea or the Baltic

where low-frequency swell is absent, a choice of a starting frequency f0 of

0.05 Hz is sufficient.

Beyond the high-frequency limit fhf of the prognostic region of the spec-

trum an f−5 tail is added with the same directional distribution as the last

band of the prognostic region. This choice was made because observations

seem to favour an f−5 power law (see § 2.6.2). The diagnostic part of the

spectrum is therefore given by

F (f, θ) = F (fhf , θ)

(
f

fhf

)−5

for f ≥ fhf . (5.2)

The high-frequency limit is set as

fhf = min{fmax, 2.5〈f〉}, (5.3)

where 〈f〉 is the mean frequency. A dynamic high-frequency cut-off fhf rather

than a fixed one at fmax is necessary to avoid excessive disparities in the

response time scales within the spectrum. In the original WAM model the

lower limit max(2.5〈f〉, 4fPM ), with fPM the Pierson-Moskovitz frequency,

was used in stead of 2.5〈f〉. This choice was made in order to ensure that

even for low wind speed the spectrum was determined by the energy balance

and not treated as a diagnostic tail. In the ECWAM model the latter choice

was abandoned because it resulted in unrealistically high mean square slopes

in cases of a sudden decrease in wind speed.

A diagnostic tail is added for f ≥ fhf in order to compute the nonlinear

energy transfer in the high-frequency part of the prognostic range and also to

compute a number of integral quantities such as occur in the dissipation and

wind input source function. Note that the contribution from the diagnostic

tail to the total energy is normally small, but quantities such as the mean

square slope and the wave-induced stress depend in a sensitive manner on

the spectral tail.
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The prognostic part of the spectrum is now obtained by numerically solv-

ing the energy balance equation. Let us now discuss the different numerical

schemes that are used to integrate the source functions and the advective

terms of the transport equation.

5.1.1. Implicit scheme for the source functions.

The energy balance equation for the wave spectrum is evaluated in detail up

to a high frequency cut-off fhf . The high-frequency relaxation time scales

are considerably shorter than the time scales of the energy-containing low-

frequency waves, which are of main interest in practical applications. Hence,

in the high-frequency region it is sufficient to determine the equilibrium

level to which the spectrum adjusts in response to the slowly changing low-

frequency waves. Implicit integration schemes whose time step are matched

to the evolution of the low-frequency waves meet this requirement automat-

ically: for the low-frequency waves the integration scheme yields the same

results as a simple forward integration scheme, while for the high-frequencies

the method gives the slowly varying equilibrium spectrum (WAMDI, 1988;

Komen et al, 1994).

The implicit difference equations (leaving out the advection terms) are

given by

Fn+1 = Fn + ∆t (αSn+1 + (1 − α)Sn) (5.4)

where ∆t is the time step and the index n refers to the time level. The

parameter α is a constant. If the source terms depend linearly on F then for

a stable numerical scheme α should be at least 1/2. For a linear source term

it is straightforward to solve Eq. (5.4) directly for the spectrum Fn+1.

However, none of the source terms are linear. Therefore, a Taylor expan-

sion

Sn+1 = Sn +
∂Sn

∂F
∆F (5.5)
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is introduced. The functional derivative in (5.5) can be divided into a diagonal

matrix Λn and a nondiagonal remainder Rn,

∂Sn

∂F
= Λn +Rn. (5.6)

Trial computations (cf. Komen et al, 1994; WAMDI, 1988) indicated that the

off-diagonal contributions were generally small for not too large time step.

Disregarding these contributions and substitution of (5.6) and (5.5) into (5.4)

gives realizing that S may depend on the friction velocity at time level n+1,
[
1 − α∆tΛn(un+1

∗ )
]
∆F = ∆t

[
(1 − α)Sn(un

∗ ) + αSn(un+1
∗ )

]
, (5.7)

where ∆F = Fn+1−Fn is the increment in the spectrum owing to the physics.

As a consequence, the increment ∆F becomes

∆F =
∆t

[
(1 − α)Sn(un∗ ) + αSn(un+1∗ )

][
1 − α∆tΛn(un+1∗ )

] , (5.8)

The original WAM model had α = 1/2, however, Hersbach and Janssen

(1999) noted the occurrence of numerical noise and therefore suggested the

use of a fully-implicit scheme with α = 1. The generation of noise should not

come as a surprise, since even in the case of a linear source term the choice of

α = 1/2 is only marginally stable. Although numerical noise is not amplified

for α = 1/2, it is also not damped and therefore it is safer to choose α > 1/2.

For α = 1 Eq. (5.8) becomes

∆F =
∆tSn(un+1∗ )

1 − ∆tΛn(un+1∗ )
, (5.9)

which gives a considerable simplification because only the source term with

u∗ = un+1∗ needs to be evaluated in addition to the diagonal part of its

functional derivative.

Nevertheless, in practice, numerical instability is found in the early stages

of wave growth. This is either caused by the neglect of the off-diagonal con-

tributions of the functional derivative or more likely by the fact that the

solution may not always be close to the attractor of the complete source
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function. Therefore, a limitation on spectral change needs to be imposed. In

ECWAM one of the variants of the growth limiter of Hersbach and Janssen

(1999) is used; the maximum increment in the spectrum, |F |max, is given by

|F |max = 5 × 10−7gu∗f−4〈f〉∆t. (5.10)

The limiter expresses that the change in the spectrum should not exceed a

certain fraction of Toba’s law (4.114), which is the spectral shape that is

found in the energy containing, equilibrium range of the spectrum. The time

step dependence of the limiter was introduced in order to ensure that results

for initial wave growth become insensitive of the time step. The consequence

of making the limiter proportional to the time step is that it will remain active

even when the limit ∆t→ 0 is taken. Therefore, the limiter (5.10) is not just

a numerical feature; it becomes part of the physics. Usually it is effective only

for initial wave growth, in which the energy containing part of the spectrum

extends into the diagnostic high frequency tail of the model spectrum, beyond

the cut-off limiting the prognostic range of the model spectrum. Therefore,

for initial growth, the limiter compensates for the lack of physics in the

diagnostic part of the spectrum.

The big advantage of the present limiter over an earlier version in the

WAM model is that (5.10) has the correct scaling behaviour with the friction

velocity u∗ (Hersbach and Janssen, 1999). As a consequence, both global

implementations of ECWAM on a coarse resolution of 55 km and fine mesh

version with a resolution of 1 km of the ECWAM model give similar growth

curves for significant wave height. In addition, for a typical test case good

agreement was obtained between an explicit integration with a time step of

1 minute and the implicit scheme with only diagonal terms for time steps up

to 20 minutes.

Nevertheless, Hargreaves and Annan (2001) have expressed serious con-

cerns about the introduction of the limiter (5.10), and these authors seem

to favour alternative methods such as a variable time step method. In their
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reply, Hersbach and Janssen (2001) show by means of the simple example,

provided by Hargreaves and Annan (2001), that the limiter (5.10) is ideally

suited for its purpose and that the variable time step method will result in

such small time steps that it cannot reach beyond a certain finite simulated

time and therefore this approach is not very practical in terms of an opera-

tional implementation. Furthermore, choosing a lower bound to the time step

implies a limiter of the type (5.10).

5.1.2. Advective terms.

The advective terms in the energy balance equation have been written in the

flux form. As an illustration we shall consider the one-dimensional advection

equation

∂F

∂t
= −∂Φ

∂x
, (5.11)

with flux Φ = vgF , since the generalization to four dimensions λ, φ, θ

and ω is obvious. A number of alternative propagation schemes have been

tested by different groups in the past decade. Examples are first-order up-

winding schemes, a second order leap frog scheme, semi-Lagrangian schemes,

third-order schemes, etc., therefore there exists a considerable amount of ex-

perience with discretization of the advection equation. However, none of the

schemes give satisfactory results unless special measures are taken. In fact, a

propagation scheme with vanishingly small errors would give poor results for

sufficiently large propagation times since it would not account for the disper-

sion associated with the finite resolution of the wave spectrum in frequency

and direction (the so-called Garden-Sprinkler effect).

In order to explain the Garden-Sprinkler effect, let us study the evolution

in space and time of one spectral bin having a width ∆f, ∆θ,

∂F

∂t
+ vg

∂F

∂x
= 0, (5.12)

where we have taken a group speed which is independent of the spatial coor-
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dinate x. For the initial condition

F (x, 0) = f(x) (5.13)

it is straightforward to solve for the evolution of the wave spectrum. The

solution becomes

F (x, t) = f(x− vgt) (5.14)

hence the waves with group speed vg propagate over the surface with a spatial

distribution that does not change its shape. Since this is a linear problem, the

solution for an arbitrary number of spectral bins is obtained by summation

of the solution (5.13) for different group velocity. Consider the solution for

two neighbouring frequency bins and suppose that the two bins have equal

spatial distribution of the box type with width ∆x, where ∆x is the spatial

resolution. Clearly, after a finite time τs there is a separation of the two

pulses which is determined by the difference in group velocity and the spatial

width. Assuming that the frequency increment ∆f is small, one may use a

Taylor expansion of the difference in group velocity and the separation time

τs becomes

τs =
∆x
vg

f

∆f
(5.15)

For larger time droplets are formed on the surface, hence the name Garden

Sprinkler effect. In a similar vein, it can be shown that a finite directional

resolution ∆θ will give rise to the Garden Sprinkler effect as well. Finite

directional resolution gives in practice a much shorter separation time since

τs =
∆x
vg

1
∆θ

(5.16)

and 1/∆θ < f/∆f . It is emphasized that for a continuous spectrum the Gar-

den Sprinkler effect will not occur and therefore in a discrete model measures

have to be taken to avoid it.

In the past inaccurate numerical schemes with relatively high numeri-

cal diffusion have been used which are smoothing so much that the Garden



THE INTERACTION OF OCEAN WAVES AND WIND 283

Sprinkler effect is prevented from occurring. This explains why a first-order

upwinding scheme is so succesful, despite the fact that it is only first or-

der accurate and is highly diffusive having a numerical diffusion coefficient

D  ∆x2/∆t (with ∆t the time step). However, it is of course preferable

to have some control over the amount of horizontal diffusion. This led the

WAMDI group (1988) to study the benefits of a second order leap frog

scheme. The advection term of the second order scheme is second order

accurate and has a smaller, inherent, numerical diffusion. The second or-

der scheme suffers, however, from the drawback that it generates unphysical

negative energy in regions of sharp gradients. This can be alleviated by in-

cluding explicit diffusion terms. In practice, the explicit diffusion required

to remove the negative side lobes in the second order scheme is of the same

order as the implicit numerical diffusion of the first order scheme so that the

effective diffusion is comparable in both schemes.

As shown in WAMDI (1988) both schemes have similar propagation and

diffusion properties. An advantage of the second order scheme is that the lat-

eral diffusion is less dependent on the propagation direction than in the first

order scheme, which shows significant differences in the diffusion characteris-

tics for waves traveling along the coordinate axes compared with directions in

between. However, this undesirable feature of the first order scheme may be

alleviated by rotating the spectrum by half its angular resolution. In general,

the differences between the model results using the first and second order

propagation schemes were found to be small. Apparently, the additional dif-

fusion introduced in the potentially more accurate second order scheme to

alleviate the problem of negative energy implies loss of accuracy. Thus, there

is a preference for the first order scheme because of its efficiency and simplic-

ity.

Remark that the main reason for considering a second order scheme was

not to reduce diffusion, but to be able to control it in such a way as to avoid
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the Garden Sprinkler effect. In other words, one tried to match numerical

diffusion to the finite dispersion associated with the finite frequency-direction

spectral resolution of the model. But this dispersion increases linearly with

respect to propagation time or distance, while standard propagation schemes

yield a spreading of the wave groups which increases with the square root

of time or space. Linear spreading rates may be achieved by introducing a

variable diffusion coefficient proportional to the age of the wave packets (Booij

and Holthuijsen, 1987). In its ultimate form this requires the determination

and storage of a wave age parameter for every frequency and direction, which

may not be practical. The essence of this idea has been tested with some

succes in the context of a third generation wave model by Chi Wai Li (1992)

and Tolman (2001) who used a third order scheme in combination with an

average age of the wave packets per ocean basin.

To summarize the discussion, we have chosen the first order upwinding

scheme because of its simplicity, because it requires less memory and com-

puter time and because in practice it gives reasonable results. Remark that

there are other error sources, e.g. the quality of the forcing wind fields, which

are dominating the error budget of a wave prediction system (for a more

detailed discussion of this see § 5.5).

Applied to the simple advection scheme in flux form (5.11) one obtains

the following discretization, where for the definition of grid points we refer

to Fig. 5.1. The rate of change of the spectrum ∆Fj in the jth grid point is

j–1 j+1j

j–1/2 j+1/2

∆x

Fig. 5.1. Definition of grid points for first-order upwinding scheme.
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given by

∆Fj = − ∆t
∆x

(Φj+1/2 − Φj−1/2), (5.17)

where ∆x is the grid spacing and ∆t the propagation time step, and

Φj+1/2 =
1
2
[uj + |uj |]Fj +

1
2
[uj − |uj |]Fj+1, (5.18)

where uj = 0.5(vg,j +vg,j+1) is the mean group velocity and the flux at j−1/2

is obtained from (5.18) by replacing j+1/2 with j−1/2. The absolute values

of the mean speeds arise because of the upwinding scheme. For example,

for flow going from the left to the right the speeds are positive and, as a

consequence, the evaluation of the gradient of the flux involves the spectra

at grid points j − 1 and j.

It is important to remark that the first-order upwinding scheme suffers

from numerical instabilities when the time step is so large that the so-called

Courant-Friedrichs-Levy (CFL) criterion is violated. The upwinding scheme

is stable provided

vg <
∆x
∆t

, (5.19)

in other words, wave groups are only allowed to travel during one time step

at most one grid length. The CFL criterion may become critical in particular

near the poles when spherical coordinates are used: When moving towards

the poles, the actual distance in the latitudinal direction decreases. Clearly,

the closer one moves to the poles the more likely it becomes that the CFL

criterion is violated. In ECWAM this problem is solved by choosing an ir-

regular spherical grid in such a way that the latitudinal distance is more

or less fixed to its value at the equator. An example of such a grid from

the present operational ECWAM model is shown in Fig. 5.2. The advection

scheme is still formulated in terms of normal spherical coordinates but the

gradient in the longitudinal fluxes is evaluated by linear interpolation of the

fluxes from the closest neighbours.The additional advantage of the use of an
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Fig. 5.2. Irregular grid for the North Atlantic Area on a polar-stereo graphic projection.

irregular spherical grid is a reduction in the total number of grid points by

30%, giving a substantial reduction in the number of computations.

Furthermore, it is remarked that there are several alternative advection

schemes that avoid the CFL criterion (5.19). One could follow a fully implicit

treatment of the advective terms, but the drawback of such an approach is

excessive smoothing. Another alternative is a semi-Lagrangian scheme which

has been succesfully implemented in the ECMWF atmospheric model. How-

ever, a carefully tuned interpolation scheme is needed to avoid the Garden-

Sprinkler effect.

5.1.3. Software aspects of ECWAM.

The WAM model development was finished in the early 1990’s. Since then

there has been continuous effort at ECMWF to streamline the software in

areas such as IO, archiving, vectorization and to adapt the code to the new

massive parallel (vector) machines. Nevertheless, many of the original fea-

tures of the WAM model have been retained. These are described in Komen
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et al (1994). We only give a description of the additional features that have

been introduced at ECMWF.

The ECWAM model software that has been developed over a period of

ten years (1992-2002) is fairly general. The software is based on Fortran 90

which allows to have one executable for all the applications that are run-

ning at ECMWF because the size of the problem is determined at run-

time. Thus, maintenance of the model software is reduced to a minimum.

A full description of the model software may be found on ECMWF’s website

www.ecmwf.int. Here, only a few design choices are discussed.

The model has been developed with an important application in mind,

namely for predicting operationally waves over the whole globe. Even with a

modest spatial resolution of 3◦ (resulting in approximately 4000 grid points)

and 25 frequencies and 12 directions, it follows that about 1.2 million equa-

tions have to be solved. Since the most expensive part of the numerical code,

the nonlinear source term, cannot be vectorized, vectorization is achieved over

the grid points, which are placed in the innermost loop. In order to make this

loop as long as possible, a mapping from the two-dimensional spherical grid

to a one-dimensional array is performed. If there are no limitations to the

amount of internal memory of the computer, the most efficient procedure is

to convert the entire global grid to a single one-dimensional array. In the

early days of the wave model development, there were serious restrictions on

the amount of memory available. It was, therefore, decided to split up the

problem in blocks of a fixed size, and to load in memory one block at the time

on which to perform the computations. The draw back of this approach was

that extensive input-output operations were needed, but it was the only ap-

proach that allowed to run large wave prediction systems on computers with

only small amounts of memory. The later generation of computers, such as

the CRAY-YMP, allowed the whole problem to be loaded into the core of the

computer, and nowadays the blocking option as it was originally introduced



288 PETER A.E.M. JANSSEN

has become obsolete.

Later generation of computers were based on the concept of massive par-

allel computing. In this context it is important to distinguish between mem-

ory shared and memory distributed machines. Machines such as the CRAY-

YMP and the CRAY-C90 are examples of shared memory machines. By

using Macrotasking it was relatively straightforward to develop a version of

the ECWAM model that utilised more processors in an efficient way. Note

that there are limits to the number of processors to be used, because each

processor requires a sufficient amount of work. Therefore, a low resolution

version of the ECWAM model, such as the 1.5◦ model, could only perform

efficiently on about 4 processors, while the high resolution, 55km, version ran

still efficiently on 16 processors.

The present generation of computers either are memory distributed ma-

chines or have memory distribution over nodes while per node the processors

share the memory. In general, a memory distributed machine requires a dif-

ferent approach which is described in the next subsection.

Massive Parallel Computing. Memory distributed machines such as the Fu-

jitsu vpp series require the introduction of message passing between proces-

sors (known as processing elements (PE’s)). Therefore, one PE can send a

message which is received by one or more other PE’s. In its very basic im-

plementation, the message is nothing more than a one-dimensional array of

a given type containing values that are needed by the other PE(s) plus the

necessary information about the sender and receiver. For a succesful message

exchange both send and receive should be completed.

Message passing in the ECWAM model was introduced in 1996 based on

the message passing library MPILIB. This newly developed code can also run

on non-distributed memory machines and on a single PE.

In the present setting the number of processors is determined at run time.

Once the message passing program starts simultaneously on all assigned PE’s,
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Fig. 5.3. Domain Decomposition.

the parallel environment and the message passing protocol is initialised. Also,

the total number of PE’s is determined as well as the logical PE on which

the code is run.

When running in parallel it is important to have an even distribution

of work over the PE’s in order to avoid load unbalance. In the case of the

ECWAM model it comes down to splitting the global computation domain

into regions of equal size, keeping in mind that information is only locally
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known on each PE and can only be exchanged with the other PE’s via message

passing (which is a slower process than computing).

Once the total number of PE’s is known, an even decomposition of the to-

tal grid into one sub domain per PE is set up. Since the global grid is mapped

onto a one-dimensional sea point array following increasing latitude lines, the

sub domains are chosen to be consecutive segments of the full sea point array

(cf. Fig. 5.3). The length of each segment is determined by the requirement

that the work is distributed in an even manner over the given number of

PE’s. Thus, each PE will only perform the integration of the source func-

tions of the energy balance equation of one subdomain. However, the upwind

scheme which solves the advection term, uses neighbouring grid points in the

2-D grid that might belong to another subdomain. The necessary information

from the other PE’s needed to evaluate the spatial derivatives of the energy

flux are obtained through message passing. Here, the message is constructed

using the geometrical rules displayed in Fig. 5.3, and is similar in spirit as the

method that was developed for the multi-block version of the WAM model.

An important difference is, however, that the domain composition is done at

run time, allowing more flexibility.

The advantage of the above decomposition procedure is that one PE is only

communicating with two other PE’s. However, the decomposition requires a

relatively large amount of message passing. This is because the domain does

not have an optimal shape so that a large number of grid points inside the

domain require information from neighbouring PE’s to evaluate the gradient

of the energy flux. A more optimal shape is a rectangular and this has been

introduced in the ECWAM model as an alternative way of decomposition.

By staggering the rectangulars one PE only communicates with 6 others. No

real advantages of this alternative decomposition procedure have been found,

however, except for very large applications.

Finally, to allow even more flexibility and to accomodate the modern ar-
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chitecture of having memory distribution over nodes while in each node the

processors share the memory, the Macrotasking option used on the Cray

machines has been replaced by OpenMP directives.

This completes our discussion regarding the design of the ECWAM model.

A more detailed description of this may be found on the ECMWF website

www.ecmwf.int while a description of the WAM model is given in the manual

wamodel cycle 4 by Günther et al (1991).

5.2. Simulation of simple cases.

After having described some of the details of the numerical implementation

of the energy balance equation, and the parametrization of the source func-

tions we will now discuss some of the results obtained with the ECWAM

model. The discussion of results from realistic cases will be postponed until

the § 5.5. Here, we will be concerned with the results of some simple, perhaps

somewhat artificial cases. However, these simple cases give insight into the

realism of the model and they allow to make a comparison with simple em-

pirical growth laws. We first describe results with the ECWAM model for the

case of duration-limited growth, thereby concentrating on the source terms

of the energy balance equation. This is followed by a discussion of results

for fetch-limited growth and model results are compared with observations

from JONSWAP. We also briefly study effects of gustiness on wave growth by

means of Monte Carlo simulations of the one-grid point version of the model.

5.2.1. Duration-and fetch-limited growth.

The duration limited results were obtained with a single-grid point version

of the ECWAM model. Since there is no advection such a simulation is for

an infinite ocean, and in deep water only duration and wind speed control

the growth of windsea.

The initial condition was a JONSWAP spectrum with peak frequency



292 PETER A.E.M. JANSSEN

0 0.2 0.4
f (Hz)

0

50

100

150

F
(f

) 
 (

m
2 /

H
z)

T = 2h 
T = 4h 
T = 8h 
T = 12h 
T = 24h 

Fig. 5.4. Evolution in time of the one-dimensional frequency spectrum according to the

ECWAM model.

fp = 0.34 Hz, Phillips parameter αp = 0.025, overshoot parameter γ = 3 and

spectral width σ = 0.10. The directional spreading was given by the usual cos2

distribution. The energy balance equation was integrated for 24 directions

and 30 frequencies (on a logarithmic scale with a starting frequency of 0.0418

Hz with a fractional increase of 10%), using the fully implicit scheme. The

integration step was 15 min, while wind and waves were coupled every time

step. The wind speed was chosen to be 18.45 m/s.

In Fig. 5.4 we show the evolution in time of the one-dimensional frequency

spectrum F (f) over the first 24 hours of the simulation. The evolution of

the simulated frequency spectrum is in accord with the results found during

the JONSWAP campaign, which are displayed in Fig. 2.5. In particular, a

pronounced overshoot of the peak of the spectrum is noted.

It is also of interest to note that the spectral shape is quasi-universal.

In order to make this plausible, frequency is normalized with the peak fre-

quency fp, and the spectrum F is regarded as function of x = f/fp. Hence,
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F (f)df = E(x)dx⇒ E = fpF (f). Also, the high-frequency part of the spec-

trum follows in practice closely Toba’s law (2.112), because nonlinear transfer

dominates in the equilibrium range. Hence, in agreement with Toba’s law, the

normalized spectrum f3
pF (f/fp)/gu∗) is expected to be quasi-universal when
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Fig. 5.6. The energy balance for young windsea at a duration of 4 h.
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plotted as function of f/fp. According to the simulations with the ECWAM

model, shown in Fig. 5.5, this is indeed the case. Therefore, if the peak fre-

quency (or the wave variance as we will see in a moment) and the friction

velocity is known, it is possible to reconstruct the wind sea spectrum. The

quasi-universality of the windsea spectrum explains, as already discussed in

§ 2.6.1 the relative success of second generation wave predictions systems

(Hasselmann et al, 1976; Sanders, 1976; Janssen et al, 1984).

The energy balance for young windsea (duration is 4 h) is shown in Fig.

5.6, by plotting the directional averages of Sin, Snl, and Sds as function

of frequency. As expected from the previous discussions the wind input is

always positive, and the dissipation is always negative, while the nonlinear

interactions show a three lobe structure of different signs. Therefore, the

intermediate frequencies receive energy from the airflow which is transported

by the nonlinear interactions towards the high and low frequencies. In the

high frequency range the nonlinear energy flux maintains an f−4 spectrum

(cf. the discussion in § 4.7.2), while in the low-frequency range the nonlinear

interactions maintain an ’inverse’ energy cascade transferring energy towards

the region just below the spectral peak, thereby shifting the peak of the

spectrum towards lower frequencies. This frequency downshift is to a large

extent determined by the shape and the magnitude of the spectral peak

itself. For young windsea, having a narrow peak with a considerable peak

enhancement, the rate of downshifting is considerable, while for gentle, old

windsea this is much less so. In the course of time the peak of the spectrum

gradually shifts towards lower frequencies (as may be seen from Fig. 5.4) until

the peak of the spectrum no longer receives input from the wind because

these waves are running faster than the wind. Under these circumstances the

waves around the spectral peak are subject to a considerable dissipation so

that their steepness reduces. Consequently, because the nonlinear interactions

depend on the steepness, the nonlinear transfer is reduced as well, with the
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a logarithmic scale. The empirical growth law, labelled JKdV, from Sanders (1976) (see

also Janssen et al, 1987) is shown for comparison.

result that slowly a quasi-equilibrium spectrum emerges. For old windsea the

timescale of downshifting becomes larger than the typical duration of a storm

so that for all practical purposes the wind-generated waves evolve towards a

steady state.
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Fig. 5.8. Dimensionless wave variance as function of wave age: ε∗ = g2m0/u4
∗ versus

χ∗ = cp/u∗. The empirical fit from Janssen et al, 1987 is shown as well.
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From the spectrum one may immediately obtain integrated parameters

such as the wave variance m0, the significant wave height HS , the peak fre-

quency fp, the wave age χ∗ = cp/u∗, etc. In Fig. 5.7 we have plotted the

dimensionless energy ε∗ = g2m0/u
4∗ versus duration gT/u∗. The compari-

son with empirical data for duration-limited data from the North Sea looks

favourable. Note that according to ECWAM the Pierson-Moskovitz limit of

the dimensionless energy ε∗ = O(1500) and is therefore considerably larger

than the limit values found with the original WAM model. The reason for this

difference is that for old windsea the airflow is much smoother in ECWAM

than in WAM (the reason for this is the different choice for the definition of

the prognostic range, cf Eq. (5.3)). Hence, for old windsea friction velocities

are smaller by about 5−10%, and since the dimensionless energy scales with

the fourth power of the friction velocity the result is a considerable increase

in its limiting value. The actual wave heights of both models are very similar,

however.

A consequence of the close agreement of modelled spectra with Toba’s

law is that the dimensionless wave variance should be proportional to the

third power of the wave age χ∗ (see (2.111) and (2.134)). This follows at once

from the results of the numerical simulation with the ECWAM model, shown

in Fig. 5.8. For comparison, we show as well the empirical fit of Janssen et

al (1987) which is based on two North Sea data sets obtained during the

summer and winter months.

In order to conclude the discussion of the duration limited results we

show in Fig. 5.9 the dependence of the Phillips parameter αp on wave age χ∗.

According to the numerical simulation the Phillips parameter has an inverse,

linear dependence on wave age, hence is linearly proportional to the friction

velocity. This should not come as a big surprise as the high-frequency part

of the ECWAM model follows Toba’s law. The inverse linear dependence of

the Phillips parameter on wave age is confirmed by the comparison with the
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Fig. 5.9. Dependence of Phillips parameter on wave age.

empirical relation (2.109).

It is emphasized that in the present discussion we have assumed friction

velocity scaling and not 10 m wind speed scaling. This makes considerable

differences especially for young windseas, because the ratio of friction velocity

to 10 m wind speed is not fixed but depends on wave age. For example, while

according to the simulation the Phillips parameter is proportional to the in-

verse of the wave age χ∗ it turns out that there is a more sensitive dependence

of αp on the wave age based on the 10 m wind speed. In fact, it is found that

αp ∼ χ−1.35
10 , giving a close agreement with the results found by Battjes et al

(1987) (cf Eq. (2.125)), but the simulated values are systematically somewhat

higher.

We conclude the discussion by showing just one result from the case of

fetch-limited wave growth, namely the fetch dependence of the dimensionless

energy (cf. Fig. 5.10). There is no need to discuss other results for wind-

sea because this sea state is fully characterized by the wave age, hence the

duration-limited results give sufficient insight in the workings of the model.

Close inspection of the wave variance fetch law shows that results close to

the coast line (hence for small fetch) depend somewhat on the chosen resolu-
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Fig. 5.10. Fetch dependence of wave variance: ε∗ = g2m0/u4
∗ versus gX/u2

∗ for two different

spatial resolutions, namely ∆x = 2km, and ∆x = 50km. The JONSWAP fetch law for a

drag coefficient of 0.001 is shown as well.

tion. For example, for a resolution of 50 km the wave energy shows a slightly

weaker dependence on fetch than the corresponding results from the high

resolution run at 2 km. However, overall, there is a fair agreement with the

JONSWAP fetch law, which is converted from U10 scaling to u∗ scaling by

using a constant drag coefficient of 0.001.

Regarding the dependence on the combination of time step and spatial

resolution, it is emphasized that the ECWAM model performs well, even in

cases of very short fetch. As discussed by Hersbach and Janssen (1999), the

reason for this is the more ’liberal’ limiter (5.10) which has proper scaling

behaviour.

5.2.2. Monte Carlo simulation of the effect of gustiness.

In § 3.3.2 we have discussed effects of gustiness on the growth rate of waves by

wind, and a simple model (3.58) was proposed to take gustiness into account

in numerical wave prediction systems. Here, we would like to validate this

parametrization in the context of Monte Carlo simulations with the ECWAM

model.
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For a more detailed discussion of Monte Carlo simulations and the effect of

gustiness see Komen et al (1994; § IV.5.2) and Abdalla and Cavaleri (2002).

We take the single gridpoint version of the ECWAM model with the same

settings as given in the previous Section, and the idea is to perturb every time

step of 15 min the wind speed by means of a random draw from a Gaussian

distribution with a width σ which is the relative gustiness level. This results

in perturbations that are uncorrelated in time. However, observations show

a fairly large correlation α in time and therefore wind speed is perturbed in

the following manner:

δun = αδun−1 + δuR, (5.20)

where δun is the perturbation at time step n, and δuR is a random pertur-

bation drawn from a Gaussian, which because of the time correlation has a

reduced width σ
√

1 − α2 (the need for the reduction in width of the Gaus-

sian can easily be seen by squaring Eq. (5.20), taking the ensemble average,

assuming stationarity in time and no correlation between δuR and δun−1). In

the following simulations the correlation α was taken to be 0.9. Each mem-

ber of the ensemble was generated by taking a different random draw of the

perturbation δuR. The ensemble consists of 100 members.

In Fig. 5.11 we show for a mean wind speed of 18.45 m/s the evolution

in time of significant wave height for the case without gustiness. In addition,

for a quite small gustiness level of 7% the ensemble mean of wave height and

the mean evolution according to the parametrization (3.58) is shown. The

parametrization requires the relative gustiness level in the friction velocity.

This was obtained by linearizing the relation between friction velocity and

wind speed, while taking a wind speed dependent drag coefficient. There is

a fair agreement between parametrization and ensemble mean evolution.

In order to get an idea of the variability in the results, the wave height

evolution according to the first 25 members is shown as well. Even for the

small level of gustiness chosen here there is a considerable variability in wave
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Fig. 5.11. Monte Carlo simulation of duration-limited wave growth with a relative gustiness

level of 7%. Shown is evolution of significant wave height for the case of no gusts, the

ensemble mean evolution (based on 100 members) and the evolution according to (3.58).

Results from the first 25 members of the ensemble are shown as well.

height. As in unstable conditions usually a large variability in wind speed

is found, one would expect that gustiness should play an important role in

the reanalysis of fetch-limited wave height observations discussed in § 2.6.1,

in particular for large fetches. This might explain some of the differences

between wave growth in stable and unstable stratification, but a detailed

analysis of this has not been done so far.

Finally, it is of interest to study effects of wind variability on other quan-

tities of interest such as the roughness of airflow over wind-generated wind

waves. In Fig. 5.12 we show the wave age dependence of the Charnock pa-

rameter according to the deterministic version of the ECWAM model. For

comparison, some recent empirical fits are shown as well, suggesting that

the ECWAM model gives a realistic simulation of surface roughness over

the oceans. For a more complete discussion, in particular of the wind speed

dependence of the Charnock paratmeter, see Bonekamp et al (2002).
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Fig. 5.12. Wave age dependence of the Charnock parameter α according to the determin-

istic version of the ECWAM model (shown on a logarithmic scale). For comparison, some

recent empirical fits are shown as well. Finally, for a gustiness level of 7% results from a

number of ensemble members are plotted as dots.

Results from Monte Carlo simulations with a gustiness level of 7% are

also plotted. Realizing that this is a plot on a logarithmic scale, it is clear

that for young windseas small levels of gustiness may give rise to a quite

large variability in the results for the Charnock parameter. If this variability

is real, then it is plausible why it is so difficult to find in nature a definite

relation between quantities such as the Charnock parameter and the wave

age.

5.3. Impact of sea state on the atmosphere.

In this section a brief description of the impact of sea-state dependent drag on

the atmospheric circulation is given. The basic idea is described in Chapter 3

which also gives a parametrization of the sea-state dependent roughness. For

the orginal papers consult Janssen (1982, 1989, 1991a). This parametrization

is included in WAMCy4 (Komen et al, 1994) and in ECWAM. A review of the
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impact on atmospheric circulation is given in Janssen et al (2002). For ease

of discussion the basic results for two way interaction of winds and waves,

already discussed in the previous Chapters, will be summarized first.

The basic idea is that momentum transfer from air to sea depends on

the sea state because steep waves extract more momentum from the airflow

than gentle, smooth waves. Steep waves typically occur in the early stages of

wind-wave generation and when a frontal system passes, hence momentum

transfer depends on the sea state. In order to account for this effect one

needs to calculate the wave-induced stress τw which depends on the two-

dimensional wave spectrum. This requires the solution of the energy balance

equation, which follows from the action balance equation (2.137) by utilizing

the relation F = gN/ω. For deep water and no currents one finds

∂

∂t
F +

∂

∂x
. (vgF ) = Ŝin + Ŝnl + Ŝds, (5.21)

where F = F (ω, θ) is the two-dimensional wave spectrum which gives the

energy distribution of the ocean waves over angular frequency ω and prop-

agation direction θ. Furthermore, vg is the group velocity and on the right

hand side there are the well-known source terms for wind input, nonlinear

transfer and dissipation (but note that Ŝin = gSin/ω, etc, because we trans-

formed from action density to wave variance spectrum).

In the wind-wave interaction problem we only need to know the wave-

induced stress τw which follows from an integration of the input source func-

tion of the energy balance equation (5.21)

τw = ρwg

∫
dωdθ Ŝin/c, (5.22)

where c is the phase speed of the gravity waves and ρw the water density.

Here, it should be realized that wave momentum P and energy density F of

the waves are related by P = F/c and the wave stress is the rate of change

of total wave momentum by wind input. Because waves grow exponentially

fast the source function Ŝin is proportional to the wave spectrum itself. The
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wave-induced stress is mainly determined by the high-frequency part of the

wave spectrum because these are the waves that have the largest growth rate

due to wind. Since it is known that the high-frequency spectrum depends on

the stage of development of the windsea (for example, young wind waves are

steeper than old wind waves) it follows that the wave-induced stress depends

on the sea state. Therefore, young wind waves represent a rougher surface

than gentle old windsea. The roughness z0 therefore depends on the sea state

and from (3.164) the roughness length obeys a Charnock relation,

z0 = αu2
∗/g, (5.23)

where the Charnock parameter α depends on the sea state according to

α =
α̂√

1 − τw/τ
, α̂ = 0.01, (5.24)

with τ = ρau
2∗ the surface stress and u∗ the friction velocity.

In the middle of the 1990’s ECMWF has developed a coupled ocean-

wave, atmospheric model using the parametrization for the roughness (5.23)-

(5.24) In order to be able to have two-way interaction every time step, the

wave model is called as a subroutine from the ECMWF’s atmospheric model

which is called the Integrated Forecasting System (IFS). The coupled model

was introduced in operations on the 29th of June 1998. Presently, every at-

mospheric time step wind fields, air density fields and a gustiness factor are

passed from the atmospheric model to the wave model. Then the wave model

integrates one time step and determines the two-dimensional wave spectrum.

The wave-induced stress is obtained from Eq. (5.22) which is followed by a

determination of the Charnock parameter field. The loop is closed by passing

the Charnock field to the atmospheric model which then continues with the

next time step by using the updated Charnock field in the surface drag over

the oceans.

Meteorological models. Weather forecasting is basically an initial value prob-

lem and meteorological models integrate numerically a set of equations that
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describe the evolution of the state of the atmosphere. The equations concern

momentum, thermodynamics of the system, conservation of mass and hu-

midity, and the hydrostatic equilibrium (see, among others Pedlosky (1987)

and Holton (1992) for a thorough discussion of the subject). A predictive

equation for pressure is obtained by integrating the equation for mass along

the vertical. The general formulation is done in three-dimensional space using

spherical coordinates.

The classical method for the integration of geophysical differential equa-

tions is by finite differences. For the whole globe this requires a proper treat-

ment of the singularity at the poles. An alternative to the classical method

is provided by the spectral technique (Orszag, 1970). In a spectral model

the horizontal distribution of the physical quantities is represented by means

of truncated spherical harmonics. Originally, the linear terms are calculated

in spectral form, while the nonlinear terms and the forcing are evaluated

in the grid-point domain. This has changed since the introduction of semi-

Lagrangian advection schemes; now only the pressure equation and the hori-

zontal diffusion are treated in spectral space. This requires the use of efficient

spectral transforms as the model has to switch back and forth between the

two representations at each integration step. Aliasing is avoided by use of a

special distribution of the grid points which is called the linear grid (Hortal,

1999)

ECMWF runs a spectral version of the atmospheric model. Presently, the

IFS has M = 60 layers distributed in a nonuniform manner over the vertical,

extending up to 60 − 65 km. The horizontal distribution is represented by

N = 511 modes corresponding to a spatial resolution of 40, 000/(2 × 511) 
39.1 km. In general, a special choice of horizontal and vertical resolution is

denoted by TlN/L M , where Tl means truncation on a linear grid. Hence,

the present version of the IFS is called the Tl511/L60 model. When coupling

the IFS with the ECWAM model we have to characterize the wave system
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as well. Hence, we introduce the following notation: TlN/L M − D◦ refers

to the coupling of an atmospheric model, having a triangular resolution of

N modes and M vertical levels, with a wave model which has a horizontal

resolution of D◦.

Because of the sensitive dependence on the initial conditions, a major task

in weather forecasting is to construct an analysis of the inital weather from

observations of the atmospheric state. This analysis should be optimal in the

sense that it is consistent with the evolution of the atmosphere, and with the

(known) model errors and observation errors. ECMWF introduced for that

purpose a four-dimensional variational approach, called 4DVAR, by the end

of 1997. The variational approach is very well suited to deal with the enor-

mous amount of indirect observations obtained from instruments on board

of Satellites. As a consequence, a major improvement in weather forecast-

ing has been achieved in the past five years (Simmons and Hollingsworth,

2001). Since ocean waves are so sensitive to the forcing wind fields, we will

see the consequences for surface wind and wave forecasting when we discuss

verification in § 5.5.

A detailed description of the forecasting system may be found on the

ECMWF website www.ecmwf.int

With this system we have performed a number of impact studies the results

of which will be briefly described in the following sections. But before we

embark on this study we mention that in weather forecasting it is usually

assumed that the Charnock parameter α is a constant. As a result, the drag

coefficient, defined as

CD = (κ/ ln(L/z0))
2 , (5.25)

with L = 10 the observation height of the wind speed, becomes by virtue

of (5.23) a unique function of surface wind speed. Observations (from the
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HEXOS campaign and the Lake Ontario data, for example) and the theoret-

ical considerations of Chapter 3 have suggested, however, that the Charnock

parameter depends on the sea state. Because of the short fetches, these data

sets consist of relatively young windsea which have steep waves and thus a

high wave-induced stress. As a consequence relatively high Charnock param-

eters are observed. On the open ocean, however, windseas have long fetch

and/or duration and they interact with swells generated by winds in remote

areas. Under those circumstances, ocean waves are expected to be less steep

with relatively low values of the wave-induced stress and therefore low values

of the Charnock parameter. This is shown in Fig. 5.13 where for two areas,

namely the North Sea and the western Atlantic area, the relation between

the mean Charnock parameter α (averaged over 0.5 m/s wind speed bins)

and 10 m wind speed for the first 10 days of November 2000 is presented.

The Charnock parameter was obtained from the coupled ECWAM-ECMWF

model. It is clear from Fig. 5.13a that the relation between Charnock param-

eter and wind speed depends on the geographical location. In the western At-

lantic the Charnock parameter is systematically lower compared to the North

Sea, presumably because of the relative abundance of swell in the western

Atlantic which through nonlinear transfer and the quasi-linear damping has a

calming effect on the wind-generated waves that determine the wave-induced

stress.

Fig. 5.13a suggests, therefore, that there is no unique relation between

Charnock parameter and the surface wind speed. Since we know that in

practice the sea state is well characterized by its stage of development pa-

rameter, the wave age χ = cp/u∗, it is expected that the wave age is a more

appropriate parameter to characterize the roughness of the ocean. This is

indeed confirmed by Fig. 5.13b and by the findings of, for example, Donelan

(1982) and HEXOS (Smith et al, 1992).
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Fig. 5.13. Charnock parameter as function of a) surface wind and b) wave age χ = cp/u∗

for the North Sea and the western Atlantic over a 10-day period in Novenber 2000. The

Charnock parameter is averaged over .5 m/s wind speed bins.

5.3.1. Impact studies: medium-range forecasting.

First we describe results from impact studies on the evolution of a single

depression, which is followed by a discussion of the impact on weather fore-

casting. The main thread through this discussion is the role of horizontal

resolution in representating the delicate interaction between wind and waves

which takes place predominatly on scales of 200 km and smaller.

Before we discuss results from the impact studies we should first like to
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give a simple theoretical picture of the interaction of ocean waves with the

large scale atmosphere. To a first approximation the atmospheric flow over

the oceans is determined by the balance between the pressure gradient and

the coriolis force. This is called the geostrophic approximation. Hence from

Eq. (2.1) it follows that f×u = −∇p/ρ, or, u = f×∇(p)/ρf2. Thus, isobars

(lines of constant pressure) are streamlines and therefore the airflow is along

isobars. In the geostrophic approximation a pressure low would not change in

time. However, there are important deviations from geostrophy caused by, for

example, the inertial terms and the friction terms in the momentum equation

(this is called the quasi-geostrophic approximation, cf. Pedlosky, 1987). Thus,

close to the surface, friction becomes increasingly important which gives rise

to considerable deviations from geostrophy. In fact, friction results in a cross-

isobar flow which tends to fill a pressure low. The higher the friction the less

deep a low becomes, therefore, in particular for young sea states which are

associated with a rough airflow and thus a high friction, an enhanced filling

up of a pressure low is to be expected. Following this approach, the timescale

of impact of waves on the atmospheric circulation was estimated to be of

the order of five days (Janssen and Viterbo, 1996) while due to the two-way

interaction the central pressure of the low would change by at most 5 mb.

Because of the long timescale it should be noted that this simple picture of

the impact of surface friction on the decay of a depression may be obscured

by other effects, such as wave-mean flow interactions in the atmosphere.

In addition, it should be realized that enhanced surface roughness will not

always lead to a decay of a depression, because heat fluxes are enhanced as

well, resulting in vortex stretching and therefore in a deepening of the low.

Thus, whether due to the enhanced roughness, as caused by the ocean waves,

there is a filling up or a deepening of the low depends on whether momentum

or heat fluxes determine the evolution of that particular low. Nevertheless,

this picture of the interaction of ocean waves and large scale atmosphere
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cannot be complete, because in the coupled ECWAM-IFS system we have

observed in the medium range time scale impacts on depressions of the order

of 20 mb or more.

Impact on a single depression. The impact of two-way interaction on the

evolution of a single depression was studied by Doyle (1995). The atmospheric

model used in this study was the U.S. Navy’s Coupled Ocean Atmospheric

Mesoscale Prediction System (COAMPS) and the wave model was the WAM

model coupled through Eq. (5.24). The three-dimensional model solves the

compressible equations of motion. The model was used in a channel mode

with the f-plane approximation. In the vertical the model has 32 layers with

greater resolution in the lower troposphere to enable a good representation

of the interaction of the wave-induced stress with the marine boundary layer.

For both atmospheric and wave model the horizontal resolution was 30 km

with periodic boundary conditions in the zonal direction. A time step of 90

s was used in the atmospheric model and 6 min for the ocean wave model.

The simulation was integrated to 96 hrs which enabled the study of the rapid

development and early decay phases of an idealized cyclone. Initial conditions

were based on mean winter conditions, while the sea surface temperature

pattern resembled the Gulf Stream pattern.

Results of two-way interaction (called coupled) were compared with a

control run which used a constant Charnock parameter α = 0.0185, rather

than Eq. (5.24). Doyle’s results clearly indicated that after 60 hrs into the

forecast the increased roughness in the coupled run gave, compared to the

control run, an increase in central pressure of the low by 6 mb. The sensible

heat flux was increased by 20%, the rainfall maximum increased by 34%, while

the kinetic energy at the surface decreased by 20%. These results suggest that

frictional effects of wind-generated ocean waves may influence the boundary

layer structure in the vicinity of a marine cyclone.

Hence, Doyle’s results suggest that the sea state dependent roughness
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makes a difference for the evolution of a low. On the other hand, Lionello

et al (1998) and Lalbeharry et al (2000) found a reduced sensitivity of the

development of (synthetic) lows on the sea state, while Bao et al (2000) found

in contrast to the previous works a deepening of a Gulf of Mexico hurricane by

6 mb. There may be several reasons for these discrepancies. First the Lionello

et al (1998) and Lalbeharry et al (2000) atmospheric simulations had a coarse

resolution, which limits the intensity of the low and therefore reduces the

coupling between the ocean waves and the atmosphere. In addition, while

all these authors used the same wave prediction system, the atmospheric

models were clearly different. A different treatment of the physical processes

in the boundary layer will undoubtedly lead to differences in sensitivity to

the sea state. Moreover, most atmospheric models have horizontal diffusion

in order to ensure numerical stability for feasible integration time steps. A

side effect of horizontal diffusion is, however, a reduced level of activity in

scales, say of the order of 200 km, that are relevant for the interaction of

wind and waves. Finally, in the Bao et al (2000) experiment, and also in

that of Lalbeharry et al (2000), sensible and latent heat fluxes have the same

sensitivity to the sea state as the momentum flux. Although normally (cf.

Janssen and Viterbo, 1996; Lionello et al, 1998) the dependence of the heat

flux on the sea state plays a relatively minor role in the development of a low,

under conditions where hurricanes develop air-sea temperature differences

may be large. In that event increased roughness of the waves may result in

enhanced heat fluxes giving vortex stretching and therefore a deeper low.

However, it should be noted that field observations from HEXOS (DeCosmo,

1991) do not support the sensitive dependence of heat fluxes on the sea state

and/or wind speed as chosen by Bao et al (2000) or Lalbeharry et al (2000).

Following Beljaars (1995), in the IFS model neutral exchange coefficients

for momentum, heat and moisture differ from each other. This means that

compared to momentum transfer, heat and moisture transfer have a reduced
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MSL Pressure (analysis) 97021912 MSL Pressure Diff. coupled - ctrl

Fig. 5.14. Comparison of 4-day forecast of surface pressure over the North Atlantic,

valid for 19 February 1997. Top left panel: control, top right panel: coupled, bottom left

panel: operational analysis, bottom right panel: the difference between coupled and control.

Version of coupled model is T213/L31 − 0.5◦.

sensitivity to the sea state because they depend on the square root of the

drag coefficient.

In order to illustrate the sensitive dependence of two-way interaction on

horizontal resolution, we study one particular case, namely the 4-day fore-

cast from 15 February 1997, shown in Fig. 5.14. The initial data for the

atmospheric fields were taken from the operational ECMWF analysis. Ini-

tial data for the wave model were generated by using as initial condition a

JONSWAP spectrum 10 days before the starting date of the forecast and by

running the wave model until the starting date of the experiment with anal-

ysed winds from the ECMWF archive. The version of the coupled model was

T213/L31− 0.5◦, corresponding to an atmospheric resolution of 95 km while
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the wave model resolution was only 55 km. The low shown in Fig. 5.14 was

observed during FASTEX (Fronts and Atlantic Storm-Track EXperiment)

and was called IOP 17. The left top panel of Fig. 5.14 shows the surface pres-

sure over the North Atlantic for the control run, the top right panel shows

the coupled results, the bottom right panel shows the operational verifying

analysis, while the bottom right panel shows the difference between coupled

and control run. The control day 4 forecast has a good quality, as may be

judged from the comparison with the analysis, although the fast-moving low

west of Scotland is misplaced and too deep by about 9 mb. A measure for

the quality of the forecast is the so-called anomaly correlation. It is defined

as the correlation between forecast anomaly and the analysis anomaly (both

measured with respect to the climate). For this case the anomaly correlation

over the North Atlantic area was greater than 90%. In the coupled run it is

MSL Pressure (ctrl) 97021512 +96 MSL Pressure (coupled) 97021512 +96

MSL Pressure (analysis) 97021912 MSL Pressure Diff. coupled - ctrl

Fig. 5.15. Idem as Fig. 5.14 but now for T106/L31 − 1.5◦ version.
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seen that the low near Scotland is less deep by 8 mb so that in this respect

there is better agreement between the coupled run and the verifying analysis.

However, because the differences are small scale and the scores are evaluated

om a coarse grid with a resolution of 2.5◦, there is hardly any difference in

anomaly correlation between coupled and control run.

It is noted that these results depend in a sensitive manner on the resolution

of the coupled system. To appreciate this point we show in Fig. 5.15 results

of the T106/L31−1.5◦ model for the same case. While in the high resolution

run we notice differences of up to 15 mb, the low resolution results show

differences of at most 2 mb. A similar sensitive dependence was also noticed

in other extreme events.

Operational weather forecasting. Trials before the introduction of the cou-

pled ocean-wave, atmosphere prediction system showed a modest impact of

sea-state dependent roughness on atmospheric forecast scores such as the rms

error or the anomaly correlation of the 1000 and 500 mb geopotential for the

large domains of the Northern or Southern Hemisphere.

The improvements were more substantial for surface parameters such as

the 10 m wind speed or the significant wave height. When the two-way in-

teraction of winds and waves was introduced in operations on the 29th of

June 1998 there was a pronounced improvement of the quality of the surface

wind field. Routinely, first-guess (FG) winds are compared with scatterom-

eter winds (from ERS-2 in this case). As shown in Fig. 5.16 which displays

timeseries of bias (ERS-2-FG) and the rms difference, there is a consider-

able reduction of 10% in the rms error after the introduction of two-way

interaction.

However, currently the impact of two-way interaction of wind and waves

is more substantial. The main reason for this is an increase of atmospheric
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Fig. 5.17. Comparison of surface kinetic energy spectrum as function of total wave
number for Tl511 (blue) and Tl319 (red).

conclusions on the size of the impact, but nevertheless the impact is consider-

able. Also note, that as a rule of thumb usually larger impact in the summer

time is found, presumably because physical processes near the surface play a

more important role in the evolution of the weather. In winter time the atmo-

spheric circulation is dominated by baroclinic activity, and physical processes

such as surface friction play a relatively minor role, although, there may be

a considerable small scale impact in cases of rapidly developing lows (Doyle,

1995; Janssen et al, 2002).
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Fig. 5.18. Anomaly correlation of 500 mb geopotential height for the Northern and
the Southern Hemisphere for the last 24 days in August 2000. Here, the impact of
increased angular resolution on the forecast performance of the Tl511 IFS forecast
system is shown.

5.3.2. Impact studies: seasonal integrations.

Janssen and Viterbo (1996) studied the impact of two-way interaction on the

seasonal time scale. In order to obtain reliable information on the impact of

waves on the atmospheric circulation there is a need for ensemble forecasting,
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because the variability of the weather, especially over the oceans is high.

Therefore 15 coupled and control runs were performed for the winter season

of 1990 starting from the analysis of 15 consecutive days. The atmospheric

resolution was T63, and the wave model had a resolution of 3◦, while the

length of the runs was 120 days. By taking a time average over the last 90

days, followed by an ensemble average a reliable estimate of the mean state of

one season could be provided. At the same time, information on the variability

may be inferred from the scatter around the mean, and thus a student t-test

may be applied to test statistical significance of the mean difference between

coupled and control run. As an illustration of the impact, we have plotted in

Fig. 5.19 the ensemble mean of the 500 mb height field and their differences

for the Northern Hemisphere, while for comparison purposes we also display

the 90-day mean of the corresponding ECMWF analysis. Contours for the

mean are plotted every 60 m, while in the difference plot we have indicated by

heavy shading the probability of 95% (or more) that the two fields in question

are not equal. Significant differences are noted in the storm track areas of the

Northern Hemisphere (and, not shown, also for the Southern Hemisphere).

We note differences over the Northern Pacific, Europe and Siberia. In the

last two areas the coupled climate shows, when compared to the analysis,

a considerable improvement. There are also improvements in low-frequency

variability over the North Atlantic (not shown).

As far as impact of ocean waves on the atmospheric climate is concerned

it should be emphasized that also here resolution of the atmospheric model

plays a crucial role. Following Weber et al (1993), Janssen and Viterbo (1996)

also performed seasonal forecasts with the T21 version of the coupled system

and particularly in the Southern Hemisphere a much reduced impact of the

sea-state dependent drag on the atmospheric circulation was found. This

should not come as a surprise when it is realized that with T21 the mean

wind speeds are reduced by as much as 50%, therefore giving a much weaker
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Fig. 5.19. Ensemble mean of coupled and control run and their differences. For
comparison the analysed climate is also shown. Period is winter 1990 and area is
Northern Hemisphere. The shading indicates a measure of significance. Heavy shad-
ing means that there is a probability of 95% that the difference is significant.

coupling between wind and waves.

5.4. Impact of sea state on the ocean circulation.

In the literature a relatively little amount of attention has been paid to the

study of the impact of ocean waves on the ocean circulation and the mean

surface elevation. Only recently there is an increased activity to be noted,

presumably triggered by the thought-provoking work of McWilliams and Re-

strepo (1999) on the wave-driven ocean circulation. Nevertheless, following

the work of Longuet-Higgins and Stewart (1961), Whitham (1962), Hassel-
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mann (1970, 1971b) and Phillips (1977), the basic two-dimensional equations,

obtained by an integration of the momentum equations over the vertical, were

already established in the 1960’s. There is still discussion about the appropri-

ate form of the three-dimensional equations, despite the early work by Weber

(1983) and Jenkins (1987).

Here, we limit ourselves to the simpler problem of the depth-integrated

equations, which will be derived in § 5.4.1, and we discuss in some detail its

application to storm-surge modelling in § 5.4.2. The coupling between the

atmospheric boundary layer and the wind waves leads to an increase of the

drag coefficient in the early stages of a storm. This effects the wind waves

but also phenomena such as the current and the surge. Apart from this,

waves may also affect the surge through the radiation stress. According to

Mastenbroek et al (1993), the main impact of waves on the surge is through

the sea state dependent drag, however.

Furthermore, the study by Janssen and Viterbo (1996) also revealed that

there were quite large changes in the surface stress in the warm pool area

east of Indonesia. Therefore, results on the impact of the sea-state dependent

drag on the Tropical ocean circulation are discussed in § 5.4.3.

5.4.1. Conservation of total mass and momentum.

Here, we summarize the derivation of the conservation of total mass and

momentum, starting from the basic equations already given in Eqns. (2.1)

and (2.2). For ease of reference we repeat them here, but written in a slightly

different form.

Consider an incompressible fluid (water) in a constant gravitational field

on a rotating earth. Let the body of water with air above it be of infinite

extent in the horizontal while in the vertical it extends from z = −D (with

D the water depth) to z = η, with η(x, y, t) the unknown surface elevation.
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Let us assume that the water motion is governed by the continuity equation

∂

∂t
ρ+ ∇.ρu = 0. (5.26)

and the momentum equation

∂

∂t
ρu + ∇.ρuu = −∇p+ ρg + ρu × f + ∇.τ. (5.27)

These equations apply to the domain −D < z < η and the boundary condi-

tions are

z = η(x, y, t) :
∂

∂t
η + u.∇hη = w, p = pa, (5.28)

where pa is the given air pressure at the sea surface and ∇h = (∂/∂x, ∂/∂y)

is the horizontal gradient operator. At the flat bottom D = D0 we impose

the condition that no fluid penetrates the bottom

z = −D : w = 0. (5.29)

According to Longuet-Higgins and Stewart (1961), Whitham (1962), and

Phillips (1977) conservation laws for the mean surface elevation ζ and the

mean horizontal velocity U may now be obtained by integration of the conti-

nuity equation and the momentum equation over the depth of the water, fol-

lowed by a suitable ensemble averaging. The ensemble average 〈.〉 is supposed

to filter the linear gravity wave motion. Here, the mean surface elevation ζ

is defined as

ζ = 〈η〉, (5.30)

while the mean horizontal velocity U follows from

U =
P
ρh
, (5.31)

with h = D+ζ the slowly varying water depth. Note that P is the total mass

flux

P = 〈
∫ η

−D
dz ρu〉, (5.32)
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i.e., it consists of the sum of the water column mean Pm and the surface

layer mean Pw, defined as (Hasselmann, 1971b)

Pm = 〈
∫ ζ

−D
dz ρu〉, Pw = 〈

∫ η

ζ
dz ρu〉. (5.33)

In the linear approximation the surface layer mean mass flux may be ex-

pressed in terms of the wave momentum

Pw = ρg

∫
dk l F/c, (5.34)

where c is the phase speed of the gravity waves and l = k/k is a unit vector

pointing in the direction of the wave propagation. As a consequence, the

mean horizontal velocity U is the sum of the ocean circulation velocity Uc

and the wave-induced drift Usurf ,

U = Uc + Usurf . (5.35)

Note that the momentum in the mean surface drift equals the one of the

Stokes drift (Phillips, 1977).

The conservation laws become (Mastenbroek et al, 1993)

∂

∂t
ζ + ∇h. (hU) = 0, (5.36)

and (
∂

∂t
+ U.∇h

)
U + g∇hζ +

1
ρ
∇hpa = U × f +

τ a − τ b

ρh
− 1
ρh

∇h.S,(5.37)

where τ a and τ b represent the atmospheric surface stress and the bottom

stress. The radiation stress tensor S represents the contribution of the wave

motions to the mean horizontal flux of horizontal momentum. In terms of

the wave spectrum it is given by

Sij = ρg

∫
dk

{
vg

c
lilj +

(
vg

c
− 1

2

)
δij

}
F (k). (5.38)

Note that the first term corresponds to advection of wave momentum, while

the second term consists of a combination of contributions from the wave-

induced pressure and the wave-induced stress (Phillips, 1977).
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As pointed out by Whitham (1974) the momentum conservation law (5.37)

assumes its most simple form when the mass transport velocity including

the wave momentum is used. In this formulation of the conservation laws,

ocean waves only appear explicitely through the radiation stress tensor S.

Implicitely it also appears through parametrizations of the stress. For exam-

ple, in case the bottom stress τ b is assumed to depend on the current velocity

Uc only rather than the total velocity U. Mastenbroek et al (1993) assumed

that the bottom stress is given in terms of the total velocity and used the

above depth-averaged equations in a study of the impact of sea-state depen-

dent atmospheric stress on a number of storm surges in the North Sea (see

§ 5.4.2).

Although the depth-averaged continuity and momentum equations show

their simplest form in terms of the total velocity, it is nevertheless instruc-

tive to study the evolution equations for the ocean circulation velocity Uc,

because they reveal some important physics. Following Hasselmann (1971b)

one eliminates from (5.37) the rate of change in time of the wave momentum

by means of the energy balance equation (5.21). Eq. (5.21) is valid for deep

water gravity waves only, but the extension to shallow water is straightfor-

ward by adding an additional source function Sbot, representing energy loss

of ocean waves by bottom friction. Dividing the energy balance equation by

the phase speed and integration over wavenumber k gives
∂

∂t
Pw = −ρg∇.

∫
dk

lvg

c
F + ρg

∫
dk
c

(Sin + Snl + Sds + Sbot) . (5.39)

Substitution of (5.39) into (5.37) gives the following evolution equation for

the ocean circulation velocity Uc(
∂

∂t
+ Uc.∇h

)
Uc + g∇hζ +

1
ρ
∇hpa =

Uc × f + Usurf × f +
τ oc,a − τ oc,b

ρh
− 1
ρh

∇h.T. (5.40)

and it is straightforward to rewrite the continuity equation:
∂

∂t
ζ + ∇h. (hUc) = −∇h. (hUsurf ) . (5.41)



THE INTERACTION OF OCEAN WAVES AND WIND 323

The conservation laws for the mean ocean circulation differ in a number of

respects from the laws for the total current. First, the continuity equation

now shows an explicit dependence on the mass flux related to the ocean

waves. Second, in the momentum equation effects of the advection of wave

momentum have been eliminated, therefore, T becomes

Tij = ρg

∫
dk

(
vg

c
− 1

2

)
δijF (k). (5.42)

Note that for deep water waves the group speed is half the phase speed of the

waves, and therefore T vanishes in deep water. Third, the surface stress and

bottom stress are modified accordingly. The surface stress felt by the mean

circulation is the total stress minus the net stress going into the waves, or,

τ oc,a = τ a − ρg

∫
dk
c

(Sin + Snl + Sds) , (5.43)

and the bottom stress becomes

τ oc,b = τ b + ρg

∫
dk
c
Sbot, (5.44)

For deep water waves the bottom stress is unaffected. Fourth, the wave mo-

mentum equation (5.39) does not involve an explicit Coriolis term, and there-

fore the mean circulation experiences an additional force given by ρUsurf × f.

It is this additional force, which recently has been given considerable atten-

tion. The additional contribution of the waves to the Coriolis force gives rise

to the excitation of inertial oscillations (Hasselmann, 1970) and it affects the

Ekman spiral in the ocean, in particular in the deeper parts of the ocean

(Jenkins, 1989).

Jenkins (1987) proposed a three-dimensional equivalent of (5.40)- (5.41),

by extending the dissipation source function Sds and the wave momentum

into the vertical assuming essentially potential theory. Hence, they decay like

exp(−2k|z|). However, in a Eulerian frame, wave momentum is concentrated

at the surface (Phillips, 1977), while most of the wave energy dissipation is

thought to be concentrated in a surface layer with thickness of the order
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of the significant wave height. The three-dimensional extension of (5.40) is

therefore still a subject of further investigation, but it is clear that this is a

complex issue. As a compromise, one might contemplate to introduce wave

effects into an ocean circulation model by having a surface layer which is so

thick that at the bottom of the layer effects of ocean waves are vanishingly

small. In that event one could apply (5.40) to the surface layer.

Nevertheless, it is expected that the study of the effect of ocean waves on

the ocean circulation will give rise to some interesting new results in the near

future. Although we have not discussed the turbulent kinetic energy budget in

this context, it is mentioned that breaking waves are also thought to play an

important role in determining the thickness of the mixed layer. This may have

important consequences for large scale air-sea interaction processes related

to the prediction of El Nino.

Clearly, the study of the impact of ocean waves on ocean circulation is only

beginning and presently no complete picture can be given. In the remainder

of this Section we therefore only discuss the impact of the sea-state dependent

drag on storm surges and Tropical ocean circulation.

5.4.2. Impact on storm surges.

The wave age dependence of the surface drag coefficient CD with higher values

in the early stages of a storm, leads to different effects at the different stages of

development. It is instructive to study the hindcast of two storms of opposite

characteristics, present in the North Sea in February 1989 and December

1990 (Mastenbroek et al, 1993). Both storms resulted in a considerable surge

and high waves off the coast of the Netherlands, but while the first was

characterized by a fast passage across the North Sea and therefore relatively

young wind waves, the second storm moved slowly producing almost fully

developed conditions.

The surges were simulated with the barotropic equations (5.36)- (5.37).

In the control run effects of the radiation stress tensor S were ignored, and
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surface stresses were obtained from 10 m winds U10 from a Limited Area

Model using the empirical Smith and Banke (1975) formulation for the drag

coefficient,

CD = (0.63 + 0.066U10)10−3. (5.45)

In order to assess the importance of the sea-state dependent drag coeffi-

cient and the radiation stress, two coupled runs were performed, one using

the sea-state dependent drag formulation (5.23)-(5.25) and radiation stresses

switched off, and a second one with radiation stresses included.

From the last two experiments it was found that in one case the water

levels showed an increase of 10−15 cm when the radiation stress was included

in the calculation, while in two other cases the impact was less than 5 cm. The

effect of the radiation stress, therefore, cannot always be neglected, especially

when shallow water effects are important.

The surge results for the 1989 storm at eight stations along the North

Sea coast are shown in Fig. 5.20. There is a systematic underestimation of

the surge when the uncoupled model is used, while, with the exception of

the Wick and North Shields stations, the coupled model performs rather

satisfactorily, its average error on the peak values being less than 0.11 metres.

Similar results hold for the second storm. The coupling of wind and waves

is more important, however, for the first storm since the mean difference in

surge between coupled and control surge is 0.45 metres while for the second

storm the mean differences is only 0.28 metres.

The above results have been obtained without additional tuning of the

coupled wave-surge model. This therefore gives indirect further evidence for

the effect of waves on the momentum flux. Finally, the impact of waves on

storm surges in the Irish Sea and the Yellow and East China Sea have been

studied by Wu and Flather (1992) and Zhang and Li (1996, 1997), respec-

tively.
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Fig. 5.20. Surge at eight stations along the North Sea coast. Start time is 00 UTC 11

February 1989. The results marked − − − are obtained by taking into account the effect

of waves on the wind stress.
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5.4.3. Impact on ocean circulation.

As already mentioned, the climate study by Janssen and Viterbo (1996) also

revealed that there were quite large changes in the surface stress in the warm

pool area east of Indonesia. Because this area plays a prominent role in

understanding certain issues in El Nino prediction, it was thought to be of

interest to generate stresses over a one year period in order to investigate the

impact of the sea-state dependent momentum transfer on ocean circulation.

The long period of one year was thought to be necessary because of the long

response times of the ocean circulation.

The stress fields were supplied to Dave Anderson (then at Oxford Univer-

sity) and Gerrit Burgers (KNMI) who forced their tropical ocean model with

the coupled and control fluxes. Both models gave considerable differences in

the temperature distribution of the surface layer of the ocean (Burgers et al,

1995). An integration period of 6 months gave already a good idea of the kind

of impact, which was typically of the order of 1◦K. However, the difference

patterns of the two models were surprisingly different. One model showed

differences with fairly small spatial scale of the order of 2000 km, while the

difference pattern in the other model covered the whole tropical Pacific.

Note that such experiments most likely exaggerate the size of the im-

pact, because there may be an important feedback from the ocean to the

atmosphere. The present ECMWF seasonal forecasting system consists of a

coupled atmosphere, ocean circulation model. The atmospheric model is cou-

pled to the ocean wave model in two-way interaction mode. Coupling of wind

and waves gave a beneficial reduction in the drift in the mean temperature,

but the size of the reduction was relatively modest (0.2◦K out of a drift of

about 1◦K in 6 months) (T. Stockdale, private communication 2003).

5.5. Verification of analysis and forecast.

In the final Section of this book we shall discuss the performance of the

operational ECMWF wave analysis and forecasting system against observa-
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tions and against the verifying analysis. Currently, the coupled IFS-ECWAM

system is used in many applications. For example, in

1) 10-day deterministic forecasts. Spatial resolution of the atmospheric

model is 40 km, while the wave model resolution is 55 km. Initial conditions

for ocean waves are generated by means of the assimilation of Altimeter wave

height data and SAR 2-D spectra from ERS-2. No in-situ buoy observations

are assimilated.

2) Ensemble prediction needed to estimate forecast uncertainty in wind

and waves. Spatial resolution of atmospheric model is 80 km, while the wave

model resolution is 110 km. Initial conditions for waves are obtained by means

of interpolation of the high-resolution wave analysis.

3) Monthly and Seasonal forecasting. This is a fairly recent activity at

ECMWF. The IFS-ECWAM model is coupled to the HOPE model in order

to take advantage of the predictive skill of the ocean over a timescale of a

couple of months. The atmospheric component of the monthly forecast has

a spatial resolution of 125 km while for the seasonal forecast the resolution

is 210 km.

4) ERA40: a forty year reanalysis effort. This is an extensive effort to

obtain the best estimate of the weather over the period September 1957

until August 2002. The analysis is produced with the coupled IFS-ECWAM

model, using 3DVAR. Atmospheric resolution is 125 km while the wave model

resolution is 1.5◦.

An important element of any operational forecasting system is its verifi-

cation against observations. The main verification activities are concentrated

on the deterministic medium-range forecast. Analyzed and forecast param-

eters such as significant wave height and mean period are routinely verified

against independent buoy data. A number of operational centers involved in

ocean-wave forecasting take part in a project to assess forecast performance

against buoy data (Bidlot et al, 2002). However, buoy data are usually only
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available near coastal areas in the Northern Hemisphere. In order to assess

the global performance of the wave prediction system we compare first-guess

wave heights against Altimeter wave heights, and we compare forecast wave

height against the verifying analysis. Furthermore, the quality of the wave

forecast depends to a considerable extent on the quality of the forcing wind

fields. For this reason, analysed surface winds are validated against indepen-

dent Altimeter wind speed observations while forecast wind speed is vali-

dated against the verifying analysis. An overview of these activities is given

in Janssen et al (1997a) and in Janssen et al (2000).

Although we do not discuss this here, it is mentioned that recently also an

extensive validation of products of the wind-wave ensemble prediction system

has been performed (Saetra et al, 2002a, Saetra et al, 2002b).

In the following sections, these validation efforts are briefly discussed,

while more details may be found in the already referenced literature. Be-

fore we present the results of these validation studies we first review what is

already known about wave height errors and their relation to, for example,

errors in the forcing wind field. In the past there have been extensive efforts to

evaluate the quality of analyzed wave results by comparison with buoy obser-

vations, particularly in the 1970’s and the 1980’s when the usefulness of wave

prediction first became apparent for the now traditional applications such

as ship routing, coastal defence construction work, and offshore operations.

The typical performance of early global wave models has been summarized

by Cardone (1987), Zambresky (1987), and Clancy et al. (1986). Using op-

erationally available winds, these authors found that the Scatter Index (SI)

for the analyzed wave height (the ratio of the standard deviation of error to

the mean of the observed wave height) ranged from 25% to 40%, while the

Scatter Index for analyzed surface wind speed was of the order of 30% or

more. Similar results were obtained for limited area models in shallow water

(see, e.g., Janssen et al, 1984).
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The first wave model that attempted to give an explicit solution of the en-

ergy balance equation was the WAM model. This model has been extensively

validated in realistic circumstances against for example buoy data (Zam-

bresky, 1989, Khandekar and Lalbeharry, 1996, Wittman et al, 1995, and

Janssen et al, 1997a) and Altimeter wave height data from Seasat and Geosat

(cf. for example Komen et al, 1994) and ERS-1/2 (cf. for example Janssen

et al, 1997a, 1997b). Although the overall performance of the WAM model

was regarded satisfactory, underestimation of wave height during extreme

events was noted. There may be several reasons for the underestimation of

wave height. One reason could be related to problems with the physics of

the WAM model, but the major cause of the underestimation of wave height

turned out to be the quality of the driving wind field. This was illustrated by

the work of Cardone et al (1995) who performed simulations with the WAM

model during the SWADE experiment using two different wind fields. The

first simulation used operational wind products from ECMWF, while the sec-

ond simulation used manually analysed winds produced by Ocean Weather

and the Atmospheric Environment Service (OW/AES). The latter winds are

the result of a man-machine mix procedure that takes maximum advantage of

all available products from numerical modelling, the know-how of the experi-

enced meteorologist and all available observations made during the SWADE

campaign. Considerable differences between ECMWF and OW/AES winds

were found that resulted in large differences in simulated wave height. Com-

pared to buoy data modelled wave heights based on the ECMWF winds were

seriously underestimated while wave heights simulated with the OW/AES

winds were in good agreement with the observations.

The SWADE campaign took place from October 1990 until March 1991,

but even in 1995 the quality of operational ECMWF wind fields during ex-

treme events was not always optimal. We have illustrated this in Fig. 5.21

which shows the 36 hour surface pressure and wave height forecast for hurri-
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MSL Pressure 36h forecast from 95090912 T639 exp: 36h forecast from 95090912

Wave height (1) 36h forecast from 95090912 T639 exp: 36h forecast from 95090912

Fig. 5.21. Progress in extreme sea state forecasting due to increase in spatial resolution

as illustrated by the 36 hour forecast of Hurricane Luis. The top left panel shows the

operational forecast mean sea level pressure of 1995090912 UT with T213 resolution while

the top right panel shows the 36 hr forecast with Tl639 resolution. The bottom panels show

the corresponding 36hr wave height forecast forced by low(left) and high(right) resolution

winds.

cane Luis in its extra-tropical phase. The two left hand side panels show the

operational forecast of that time and compared to observed minimum surface

pressure (965 mb) and observed maximum wave height (17m) it is clear that

the model simulations perform poorly. The operational model of that time

had a spatial resolution of 94 km (T213). The impact of a large increase in

resolution, from T213 to Tl639, is shown in the two right hand side panels.

The increase in horizontal resolution nearly doubles the peak wave height
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from 9.8 tp 16.7 m and is in good agreement with the observed wave height

of about 17 m.

Hence, the findings from the past suggest that the quality of the wave

forecast is to a large extent determined by the quality of the driving wind

field. For example, when using manually analyzed winds (with much smaller

rms errors than the operational winds of that time) Cardone et al (1995)

found that on average the Scatter Index was around 20% or even lower. Also,

the simulation results of hurricane Luis serve to illustrate that in extreme

events the resolution of the forcing wind field plays a key role in an accurate

wave height forecast. The role of the resolution of the wind field plays an

even more pronounced role in enclosed basins such as the Mediterranean Sea

or the Baltic sea, as has been discussed in extenso by Cavaleri and Bertotti

(1997, 2003). In particular, effects of orography are not well-represented in

low-resolution weather forecasting systems. Further support for the sensitive

dependence of wave results on the forcing wind field will be provided by the

following validation studies.

5.5.1. Verification against buoy data.

At ECMWF, systematic verification of the wave height analysis against buoy

data began in 1993 (see for more detail Janssen et al, 1997a). The buoy data

are obtained through the Global Telecommunication System (GTS) and are

on purpose not used in the wave analysis, so that the comparison of analysis

and buoy data provides an independent test of the quality of the analyzed

wave height. The modelled result is obtained by linear interpolation in space

towards the buoy location and is compared with the adequate observed value

at one of the synoptic times (00, 06, 12, 18 UTC). Buoy observations and

the model represent different scales. Buoys exhibit high-frequency variability

on a timescale of 1 h, which is absent in the model because the model value

does represent a mean value over a box of size 55km × 55km. Averaging of

the observed wave height is therefore preferable where the averaging period
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should match the scales still represented by the model. With a mean group

velocity of 5 m/s an averaging time of the order of 4 h thus seems appropriate

to represent a spatial scale of 55 km.

Most buoy data are reported every hour via the GTS and are archived in

the ECMWF data base, provided they arrive in time. It is a simple matter to

use monthly time series to perform a quality check on the data. This quality

check will only keep values that are within an acceptable physical range.

It will try to detect faulty instruments by removing all constant records of

over 1 day long, and it will remove outliers by looking at the deviations

from the mean of each monthly data record and from the deviation from

one hourly value to the next. Furthermore, only buoys are selected that have

fairly continuous data records, which are sufficiently far away from the coast

and which are located in deep water.

In order to have an indication of the progress that has been made over

the past 10 years we show in Fig. 5.22 a monthly time series of the Scat-

ter Index (SI) of significant wave height. The SI is defined as the ratio of

the standard deviation error of the difference between model and observa-

tion, normalised with the mean observed value. The plot shows clearly that

significant progress has been made over the past decade. Since 2000 the Scat-

ter Index is below 20% in the Northern Hemisphere summer time, while in

the winter time it is even as low as 15− 16%. This suggests that most likely

the present operational ECMWF winds have a similar, or perhaps even better

quality than the manually analyzed winds from OW/AES. Note, that quite

remarkably, the SI shows a significant increase in the Summer of 2003. This

was caused by the failing temporary archiving system on board of the ERS-2

satellite. Only data can be disseminated now when the satellite is in sight of

a ground station. This has resulted in a dramatic reduction in the amount of

Altimeter wave height data to be used in the wave analysis. Hence, Fig. 5.22

also illustrates the value of the assimilation of Altimeter data, but it may
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Verification against GTS wave data from January1993 to July 2003

months (3 month running average)

14

16

18

20

22

24

26

28

30

S
.I.

 (
%

)

J
93

J
94

J
95

J
96

J
97

J
98

J
99

J
00

J
01

J
02

J
03

Fig. 5.22. Scatter Index (SI) of analyzed wave height error against buoy observations over

the period January 1993 until July 2003. Shown is the SI averaged over 3 months.

also indicate that there are problems with the wave model. We will discuss

this issue in § 5.5.4 more thoroughly.

As an example of forecast verification we have taken results from the

second half of the year 1995. The evolution of root mean square (rms) error of

significant wave height and surface wind speed with forecast time is shown in

Fig. 5.23. It is seen that while the rms wind speed error grows almost linearly

with time up to day 4, error growth in significant wave height is slower, at

least for the first two days of the forecast. Beyond day 2 of the forecast wave

height error grows linearly with time as well. This different behaviour of error

growth in wave height and wind speed requires an explanation.

An attempt to explain the relation between wave height and wind speed

error starts from the following empirical relation for the significant wave

height HS of equilibrium wind waves (cf. Eq. (2.93)),

HS = βU2
10/g, β = 0.22, (5.46)
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Fig. 5.23. RMS error growth in wave and wind forecast during the period June-September

1995.

where U10 is the surface wind speed at 10 m height and g is the acceleration

of gravity. First, let us assume that wave height errors are just caused by local

wind speed errors. The simplicity of this assumption should be emphasized,

because there may be many other causes for wave height error, e.g., wave

model errors and errors in the nonlocal part of the sea state, namely swell.

Nevertheless, making this simple assumption and using Eq. (5.46), the rms
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wave height error σws follows at once,

σws =
√
〈δH2

S〉 ≈ 2βU10/g
√
〈δU2

10〉. (5.47)

Then, using as wind speed the average wind speed over the validation period

in question and the rms errors in wind speed, the rms error in wave height

may be obtained and is plotted in Fig. 5.23. By comparing with the actual

rms errors in wave height it is seen that the simple model (5.47) explains a

considerable part of the error in wave height except for the analysis and the

day 1 forecast.

This discrepancy may be attributed to (1) nonlocal errors (e.g. swell is an

important component of the sea state, certainly in the open ocean) and (2)

wave model errors. Let us denote this second error by σsw, then the total

wave height rms error becomes

σhs =
√
σ2

ws + σ2
sw, (5.48)

and for the choice of σsw = 20 cm we have plotted the total wave height

error in Fig. 5.23 as well. Compared to the actual error growth curve a good

agreement is obtained. Since at day 0 (the analysis) σhs = 45 cm while

σsw = 20 cm, the wind speed errors are seen to dominate. This just supports

the common belief in the ocean wave community that a considerable part of

the wave height error is caused by errors in the wind field.

5.5.2. Verification against analysis.

A problem with verification of model products against buoy data is the lim-

ited coverage over the globe. Typically, most buoys are located in the North-

ern Hemisphere storm tracks near the coasts so that from the forecast veri-

fication against buoys no information is available on the quality of the wave

forecast in the Tropics and in the Southern Hemisphere, and even on the

open oceans of the Northern Hemisphere. A way out of the problem posed

by the limited coverage of the buoy observations is to validate the wave fore-
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cast against the analysis. However, this is only meaningful when the wave

analysis is of sufficient quality.

The wave height analysis is obtained through the method of Optimum

Interpolation (Lionello et al, 1992), in which equal weight is given to the

first-guess model wave height and the wave height observations from the

ERS-1/ERS-2 Altimeters. Thus, (systematic) errors in the Altimeter wave

height will induce an analysed wave height error but with a weight of 50%.

The quality of the Altimeter wave heights from ERS-1 and ERS-2 has been

studied extensively. Janssen et al (1997b) compared ERS-1 and ERS-2 Al-

timeter wave heights to buoy data over the period of June 1995 to May 1996.

The verification was restricted to cases with wave heights larger than 1.5

m, because of known Altimeter problems at low wave height. The standard

deviation of error (the random error for short) was 35 and 30 cm for re-

spectively ERS-1 and ERS-2 while there was a systematic underestimation

of wave height by respectively 15% and 8% (Janssen et al, 1997b). Later,

the ERS-2 Altimeter wave height verification was extended to a period of

four years and an even lower systematic error of only 5% was found. We will

return to the issue of the quality of Altimeter observations in §5.5.4.

Therefore, the quality of the wave analysis is expected to be good, even

in the Tropical and Southern Oceans. However, up to May 1996 (before that

time ERS-1 data were used in the wave analysis) it seems plausible that the

analysis underestimates wave height by about 8% (which implies with an

average global wave height of 2.5 m a systematic error of about 20 cm), while

after May 1996, when the switch was made from ERS-1 data to ERS-2 data,

the underestimation of wave height is about 4%.

In the Figs. 5.24, 5.25, and 5.26 we show for Northern Hemisphere, Tropics

and Southern Hemisphere the monthly mean of the random error of signifi-

cant wave height HS and surface wind speed U10 for different forecast times.

The period is August 1994 until August 2003. Over this 9 year period con-
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Fig. 5.24. Standard deviation of forecast wind speed and wave height error against analysis

for Northern Hemisphere over the period of August 1994 until August 2003. Forecast ranges

are T+24, T+72, T+120 and T+168. The 12 month moving average is shown as well.
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siderable improvements in the skill of the ECMWF wave forecasting system

may be noted. For example, in the Northern Hemisphere the day 1 wave

height random error is reduced by 35%, while the day 1 wind speed error

is reduced by 40%. Similar reductions in random error are also noted in the

Southern Hemisphere. However, since 2001, there is a saturation in the time

series for the 1-day forecast error in the Southern Hemisphere, although re-

markably the 3-day forecast error continues to decrease. This improvement in

the short term forecast scores for Northern and Southern Hemisphere seems

to be related to a reduction of the seasonal cycle in the random error, sug-

gesting that most of the improvements have been achieved in Northern and

Southern winter time. The most prominent change in skill scores occurred,

by the way, in the Tropics when in May 1997 a new formulation of the back-

ground cost function Jb was introduced in the atmospheric analysis (Derber

and Bouttier, 1999).

Thus, the time series of random error in wave height and surface wind are

a useful tool to diagnose changes in the ECMWF wind and wave forecasting

system. However, the interesting question of what has caused the improved

skill requires additional information. In this context, it should be noted that

at ECMWF there is a continuous program for improvement. Three times per

year changes are introduced in the operational ECMWF system after exten-

sive experimentation and a parallel suite which may last from several weeks

to a few months. During the parallel runs a comparison between wave and

wind scores of the old and new forecasting system is made and therefore the

impact of the changes on forecast skill are in principle known. Over the past

nine years we have made several major changes to the ocean wave forecasting

model. For example, spatial resolution was increased twice, namely in July

1994 (from 3◦ to 1.5◦) and in December 1996 (from 1.5 to 0.5◦), the advec-

tion scheme was modified in May 1997 in order to alleviate problems with

shadow effects behind islands. Furthermore, the limiter in the integration
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scheme was changed, while also the definition of the prognostic range was

modified. Also, in April 2002 effects of gustiness were introduced. Finally, we

switched from ERS-1 Altimeter data to ERS-2 Altimeter data in May 1996.

None of these changes in the wave model and wave analysis resulted in large

reductions in the random wave height error, except the modification of the

advection scheme and the doubling of angular resolution of the wave spec-

trum in November 2000. We have tested most of these wave model changes

separately and by comparison with buoy data it was found that the wave

model error has reduced by about 15%. Hence, the overall impact of changes

in the wave model is too small to account for the improvements found in

the operational scores of Figs. 5.24, 5.25, and 5.26. Thus, the additional im-

provements in wave scores can only come from changes in the atmospheric

model which have led to an improved specification of the surface wind fields.

This is indeed found upon inspection of the skill scores from a number of

atmospheric parallel suites, notably testing

− cycle 13R4, introduced in April 1995 (which included a number of physics

changes such as the reintroduction of mean orography),

− 3DVAR (including the use of Scatterometer data) introduced in January

1996,

− the formulation of the new Jb introduced in May 1997,

− 4DVAR introduced in December 1997

− the coupling between wind and waves introduced in June 1998 and

− the introduction of the high-resolution Tl511 atmospheric model, com-

bined with the doubling of angular resolution in the wave model, in

November 2000.

All these changes combined have led to the considerable reduction of the

day 1 random wave height error of about 35%. This once more supports the

contention that the main contribution to the wave height error comes from
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actual forecast error from the ECMWF archives for the Atlantic and the North Pacific.

errors in the driving wind fields.

Using the scores given in Figs. 5.24, 5.25, and 5.26 the validity of the

model for HS error growth given in Eq. (5.48) has been tested. The result is

presented in Fig. 5.27 where on the y-axis we have plotted the random wave

height error according to (5.48) using the monthly mean wind and random

wind error from the 12 hour forecast until day 10 of the forecast, while on

the x-axis we have plotted the corresponding random wave height error from

the verification of the wave forecast against the analysis. We have chosen two

areas namely the North Atlantic and the North Pacific. It is evident that

there is a close relation between random wave height and wind speed error.

A more detailed discussion of the relation between wave height and wind

speed error is given by Janssen (1998). According to the ECWAM model

the waves are driven by the friction velocity rather than the wind speed.

Therefore, a growth relation for wave height based on friction velocity scaling

would be more appropriate than Eq. (5.48). Since in the later stages of the
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forecast the relative wave height errors become large (as is also evident from

Fig. 5.27), even higher moments of the wind speed error distribution should

be taken into account. Nevertheless, as seen from Fig. 5.27, a simple relation

such as given in Eq. (5.48) seems to work in practice relatively well.

As the wave height error is dominated by the wind speed error, one may

turn things around so that wave model results may be used as a diagnostic

tool for the detection of possible errors or problems in the atmospheric model.

A number of examples of this approach have been discussed by Janssen et al

(2000).

5.5.3. Verification against Altimeter observations.

The radar altimeter is a nadir looking instrument. This instrument emits

pulses, and by measuring the travel time of the return pulse, after extensive

corrections for atmospheric delays, for example, information on the mean sea

level may be obtained. To a good approximation the backscattered return

may be described by specular reflection. Therefore, the wind speed may be

obtained by measuring the total back scattered energy. The backscatter de-

pends on the mean square slope of the sea surface, which according to Cox

and Munk (1954) is related to the surface wind speed. Finally, the radar al-

timeter also provides a measure of the significant wave height through the

distortion of the mean shape of the return pulse. The earlier return from the

wave crests and the retarded return from the wave troughs leads to a defor-

mation of the return pulse which can directly be related to the significant

wave height. To determine the mean pulse shape, in the order of one hunderd

pulses need to be averaged, yielding one significant wave height measurement

about every 7 km along the satellite track. For a Gaussian sea surface, the

relation between pulse shape and the rms sea surface displacement can be

determined theoretically (although there are corrections needed caused by

deviations from Normality). This model has been confirmed by numerous

comparisons with in situ measurements. The typical accuracy of radar al-
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timeter wave height measurements is of the order of 10% in the range of 1 to

20 m.

The validation of wave model results against Altimeter data started rela-

tively recently, at least compared to the verification against buoy data. The

first validation studies used altimeter wave height data obtained during the

Seasat mission in 1978 (Janssen et al, 1989; Francis and Stratton, 1990; Bauer

et al, 1992). The Scatter Index for significant wave height was typically be-

tween 30% and 40%. The poor performance during the Seasat period may be

attributed to the poor quality of the driving wind field. This follows from the

study by Romeiser (1993) who compared WAM-modelled wave height with

Geosat data during the year 1988. The mean Scatter Index was found to

be around 25%, a number that is consistent with the findings of Zambresky

(1989) who verified modelled WAM wave height against buoy data.

In July 1991, the European Space Agency (ESA) launched the ERS-1

satellite. ECMWF was involved in the validation of a number of instruments

on board of ERS-1, for example, the Radar altimeter, the scatterometer and

the Synthetic Aperture Radar (SAR). The comparison of Altimeter wave

height and wind speed with the corresponding modelled ECMWF parameters

showed the high quality of the Altimeter measurements. As a consequence,

since August 1993 ERS-1 Altimeter wave height data have been used to give

an improved specification of the initial conditions for the wave forecast, while

Altimeter wind speeds have been used to provide an independent validation

of the ECMWF analyzed surface wind speed. Therefore, after August 1993

it is only meaningful to compare first-guess wave heights with the Altimeter

data, which are formally independent, because they have not been used in the

analysis yet. In 1995 the mean Scatter Index obtained from the comparison

of first-guess wave height and ERS-1 altimeter wave height data was found

to be of the order of 18% (Janssen et al, 1997a).

Just as the buoy data, the ERS altimeter data are received in real time
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Fig. 5.28. Standard deviation of first-guess wave height error as obtained from the com-

parison between first-guess wave height field and ERS-2 altimeter wave height over the

period May 1995 to October 2000. Area is the whole Globe. The closed circles are monthly

data while the full line is a 6 month running average.

from ESA through the GTS. The along-track resolution is 7 km, correspond-

ing to approximately one measurement per second. In order to obtain obser-

vations that represent similar spatial and temporal scales as resolved by the

wave model, the altimeter time series are smoothed to a resolution of 200 km.

Unrealistic, rapid changes in the signal were filtered out by applying quality

control in a similar manner to that of Janssen et al (1989) and Bauer et al

(1992). Altimeter data and model data are routinely compared in this fash-

ion. For ERS-2 data, results of this comparison are presented for wave height

in Fig. 5.28, while those for wind speed are presented in Fig. 5.29. These

plots show time series of the standard deviation of error of first-guess wave

height and analyzed wind speed over the period May 1995 (the beginning

of the ERS-2 mission) to August 2000 for the whole globe. Note that at the
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Fig. 5.29. Idem as Fig. 5.28 but now for analyzed wind speed.

end of the period the quality of the Altimeter wind speed worsened because

of problems with the gyros on board of ERS-2, which help to determine the

orientation of the satellite (The Radar backscatter is sensitive to errors in

the azimuth angle). This is illustrated in Fig. 5.29 by the significant outlier

in wind speed error in January 2000.

With a global mean wave height of about 2.5 m the Scatter Index for wave

height in the beginning of the period is seen to be of the order of 18% while

at the end of the period the Scatter Index is about 12%. Therefore, it is seen

that over this period a considerable reduction in wave height error (and also

in wind speed error) has been achieved. The reasons for this reduction have

already been discussed in § 5.5.2, and, clearly, the results from the comparison

of model data and altimeter measurements are consistent with those obtained

from the comparison with buoy observations and the verifying analysis.
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5.5.4. Triple collocations and concluding remarks.

In the validation studies discussed so far we have made the implicit assump-

tion that the observations or the analysis represent the truth. This is not

necessarily the case and therefore this assumption needs to be checked.

The observation error consists of several components. The instrumental,

measurement error usually only gives a small contribution to the total error.

More significant are representativeness errors and errors caused by the finite

distance and time between two observations.

When comparing several types of data it is desirable to have an idea about

the size of the errors. For example, when calibrating one instrument against

another it is important to know their error because the calibration constants

depend on them. The example of linear regression is discussed by Mars-

den (1999), see also Tolman (1998). Furthermore, data assimilation requires

knowledge of the weights given to the data and to the first-guess field. These

weights depend on the ratio of the first-guess error and the observation error.

In wave forecasting these errors are usually not known, and one assumes, as

is done in the Optimum Interpolation (OI) scheme of the ECMWF wave fore-

casting system, that the errors are equal. Hence first-guess and observations

get equal weight during the analysis.

The need for estimates of errors of different data sources was realized

by Stoffelen (1998). He proposed to use a triple collocation method to cal-

ibrate observations of winds from a Scatterometer using winds from buoys,

a model analysis and the ERS-1 Scatterometer. In his approach it was as-

sumed that error and truth were not correlated. In a similar vein, Caires and

Sterl (2003) applied a triple collocation method to estimate and calibrate

analysed winds and wave heights from the ERA-40 analysis effort. Quilfen

et al (2001) followed a different approach proposed by Freilich and Vanhoff

(1999) to estimate and calibrate ERS Scatterometer wind measurements over

the period 1992 to 1998. However, in this methodology the true wind speed
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was assumed to be Weibull distributed and the data sets were not indepen-

dent because, through the data assimilation, the analysed wind depends on

both buoy winds and Scatterometer winds. In a somewhat different context,

Tokmakian and Challenor (1999) estimated errors in model and ERS-2 and

Topex/Poseidon satellite mean sea level anomalies using a method that only

assumes that there is no correlation between the respective errors. However,

a calibration is then not possible.

The method suggested by Stoffelen (1998) is quite elegant and it is straight-

forward to show that if one has at least three data sets, which have uncor-

related errors, then the error of each data type can be estimated from the

variances and covariances of the data sets. Suppose we have three estimates

of the truth, denoted by X, Y , and Z, obtained from observations or from

simulations of the truth by means of a forecasting system. In the following

all these estimates of the truth will be referred to as measurements. Further-

more, it is assumed that the measurements depend on the truth T in a linear

fashion

X = βXT + eX ,

Y = βY T + eY , (5.49)

Z = βZT + eZ ,

where eX , eY , and eZ denote the errors in the measurements X, Y , and Z,

while βX , βY , and βZ are the calibration constants. Since we are estimating

wave height, which is a quantity that is positive definite, no intercept is

included in the model for the measurements. A finite intercept (such as used

by Caires and Sterl, 2003) gives rise to negative values of either the mean

value of the truth or of the measurement, which physically does not make

sense.

It is emphasized that the linear dependence of the measurement on the

truth is an assumption which needs not to be true and, therefore, one can-

not assume that the errors are random. For example, if actually there is a
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nonlinear relation between measurement and truth but one would take the

linear model (5.49) instead, the error will have a random ànd a systematic

component. Furthermore, if two types of measurements have a similar non-

linear relation with the truth, then in the context of the linear model (5.49)

there is now the possibility of correlated errors. This may be the case when

intercomparing two Altimeters which share the same measurement principle.

Let us now assume that the linear model (5.49) is valid and that the

measurement results X, Y , and Z have uncorrelated errors,

〈eXeY 〉 = 〈eXeZ〉 = 〈eY eZ〉 = 0, (5.50)

where the angle brackets denote the average over a sufficiently large sample.

In order to eliminate the calibration constants we introduce the new variables

X ′ = X/βX , e
′
X = eX/βX , etc so that

X ′ = T + eX′ ,

Y ′ = T + eY ′ , (5.51)

Z ′ = T + eZ′ ,

and the primed observations have uncorrelated errors as well. We eliminate

now the truth to obtain

X ′ − Y ′ = eX′ − eY ′ ,

X ′ − Z ′ = eX′ − eZ′ , (5.52)

Y ′ − Z ′ = eY ′ − eZ′ ,

Then, multiplying the first with the second equation of (5.52) and utilizing

the assumption of independent errors (5.50) one immediately obtains the

variance of error in X ′ in terms of the variance of X ′ and the covariances of

X ′ and Y ′, X ′ and Z ′, and Y ′ and Z ′. In a similar manner, by multiplying

the first with the third equation of (5.52) one obtains the variance of error in

Y ′, whilst the variance of error in Z ′ is obtained by multiplying the second
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and the third equation. Hence,

〈e2X′〉 = 〈(X ′ − Y ′)(X ′ − Z ′)〉,
〈e2Y ′〉 = 〈(Y ′ −X ′)(Y ′ − Z ′)〉, (5.53)

〈e2Z′〉 = 〈(Z ′ −X ′)(Z ′ − Y ′)〉.

Therefore, if errors are uncorrelated only three collocated data sets are needed

to estimate the variance of the error in each of them.

The next step is to perform a calibration of the measurements. Since

the truth is not known, only two of the three calibration constants can be

obtained. Therefore, we arbitrarily choose X as the reference. Since the errors

in the measurements are now known the calibration constants for Y and Z

may be obtained using neutral regression (Marsden, 1999).

Having performed the calibration of Y and Z it is clear that the work

is not finished yet because this calibration will affect the estimation of the

errors in X, Y and Z and hence the calibration constants, etc. An iteration

procedure is then started until convergence is achieved (Janssen et al, 2003).

This approach can be extended to more than 3 data sets in a straightforward

manner.

Janssen et al (2003) have applied this approach to a collocated data set

over a two year period starting in January 2000, which consisted of collocated

buoy, ERS-2 altimeter, first-guess and analyzed wave height data. Formally,

buoy, altimeter and first-guess data are independent, but it was found that

there are small but significant correlations between altimeter and first-guess

wave height data during the Northern Hemisphere summer time. Most likely

the reason for this is that the ERS-2 altimeter has problems at low wave

heights because it cannot measure significant wave height below 60 cm. This

systematic error is then passed on to the analyzed wave field and hence to the

first-guess field, resulting in a correlation between first-guess and altimeter

data. Therefore, a fifth, independent data set was generated by running the

ECWAM model in stand-alone mode forced by operational analyzed winds
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but without using ERS-2 altimeter data in the analysis step.

Results for first-guess, analyzed, ERS-2 altimeter and buoy wave height

Scatter Index over the period January 2000 until December 2001 are dis-

played in Fig. 5.30. It is striking that these errors are relatively small, with

the buoy errors the largests while the analysis errors are the smallest. The

reason of the high quality analysis is a consequence of the properties of the

Optimum Interpolation (OI) scheme used to produce the wave analysis. This

is explained in more detail in Janssen et al (2003). The reason for the rela-

tively high errors in buoy wave height is probably that, despite the averaging

over a 4 h period, the buoy data do not represent the scales of the model field.

Remark that Stoffelen (1998), who studied errors in buoy, scatterometer and

first-guess model winds, obtained a similar ordering of the errors as found in

the present study.

The statistical analysis also allowed an estimation of the regression con-

stant β. As a reference the in-situ buoy wave height data were chosen, and
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Fig. 5.30. Monthly Scatter Index of First-Guess(FG), Analyzed(AN), ERS-2 Altime-

ter(Alt) and Buoy wave height. Maximum Relative Collocation Difference is 5%. For com-

parison the Analysis error according to a local Optimum Interpolation(OI) Scheme is shown

as well.
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it was found that on average, altimeter data were too low by 3%, while the

analyzed wave height was too low by 4 − 5%.

Combining now the results of the verification studies, it is concluded that

the quality of present day wave forecasting systems is high. From Fig. 5.30 it

is inferred that the Scatter Index for analyzed wave height is only of the order

of 6%. Recalling that two decades ago the typical value of the wave height

Scatter Index was 25% or more, it is evident that considerable progress has

been achieved. Because wave results are so sensitive to the quality of the

forcing wind fields, a considerable part of the progress may be attributed to

the increased quality of the atmospheric analysis and forecast. However, wave

model improvements have, no doubt, contributed as well.
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Fig. 5.31. Period Spectral bias (model-buoy) at all US and Canadian buoy locations for

the period December 2000 until August 2003.
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We close the discussion on verification by presenting a new diagnostic tool

which enables one to study problems in the modelled spectral shape. This

is now opportune because a consequence of the large improvements in the

forcing wind fields is that it is nowadays more straightforward to identify

(systematic) errors in the wave model. This tool was first introduced by

Voorrips et al (2002) in a study to validate SAR and WAM model frequency

spectra against buoy spectra. One simply determines for each period the wave

variance from the modelled and observed frequency spectra in a period bin

of, say, two seconds and one obtains the ’equivalent’ wave height by the usual

definition. The resulting period dependent bias is then plotted as a function of

time. In Fig. 5.31 (obtained from Jean Bidlot, private communication, 2003)

an example is given involving all American and Canadian one-dimensional

frequency spectra over the period of December 2000 until August 2003. In

the range of 10 to 15 seconds there is a clear seasonal dependence of the

’equivalent’ wave height bias, being large in the summer time and vanishingly

small in the winter time.

It turns out that these large positive biases are related to swell events

generated by the storms in the Southern Hemisphere winter time. It would

be tempting to speculate on the causes of the overestimate by the ECWAM

model. An obvious candidate would be the dissipation source function, be-

cause this source term is the least well-understood. However, a closer inspec-

tion of these results reveals that the main problem occurs in the Pacific ocean

and not in the Atlantic (not shown). Increasing the dissipation source term

would therefore have a detrimental impact on results in the Atlantic. Hence,

it was decided to look for an explanation that takes properties of a particular

ocean basin into account. An important difference between the Pacific and the

Atlantic ocean is that in the equatorial region of the Pacific there are a vast

number of small islands and atols which are not resolved by the present op-

erational resolution of the ECWAM model. Although these islands are small,
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they nevertheless block considerable amounts of low-frequency wave energy

(Tolman, 2002). Therefore, using a high resolution global topography of 2

minutes, Bidlot (private communication, 2003) determined a wavenumber

dependent blocking factor and he could show that the bias problem disap-

peared to a large extent. Considerable improvements in wave forecasting skill

in the Tropics were found as well. This important change will be introduced

shortly at ECMWF.

5.6. Summary of conclusions.

In the last Chapter of this book we have applied our basic knowledge on the

physics and dynamics of ocean waves on numerical wave prediction. Apart

from the ’traditional’ applications we have discussed a number of new appli-

cations of wave prediction systems, namely in the areas of air-sea interaction

and impact on the atmospheric and ocean circulation. Unfortunately, many

interesting and promising results in areas such as satellite remote sensing or

ensemble prediction of ocean waves have hardly not been discussed.

We have presented evidence of large progress in atmospheric analysis and

forecasting resulting in high quality surface wind fields. Although two decades

ago the wind speed error dominated the error budget of significant wave

height, this problem is vanishing rapidly. The implication is that now it will

be easier to identify and resolve wave model errors. Considerable progress in

wave modelling is therefore expected in the near future.
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Epilogue

In this book we have given an overview of the role ocean waves play in

the problem of the interaction of atmosphere and ocean. But in order to

appreciate this role we had to elaborate on how ocean waves evolve in space

and time. It was found that ocean waves evolve according to the well-known

energy balance equation which states that the wave spectrum changes due

to advection with the group velocity, and due to physical processes such

as the generation by wind, nonlinear transfer by four-wave interactions and

dissipation by e.g. white capping. A detailed exposition of the derivation of

the physical source functions was given, which was followed by a study of

the impact of ocean waves on the atmospheric circulation and one aspect of

the ocean circulation, namely storm surges. It was also pointed out that the

study of ocean waves on the ocean circulation is only beginning, but that

promising improvements on its wind driven part are expected in the near

future.

This book was concluded by an extensive discussion of the verification of

the ECMWF forecast of wave parameters, such as significant wave height.

The impression from this verification study is that the quality of the ECMWF

wave analysis and wave forecast is high, certainly if the results are put in a

historical perspective.

This impressive improvement in wave forecasting is to a large extent re-

lated to the significant improvements seen in the last decade in forecasting of

the forcing wind fields, caused by improvements in the numerical treatment

of the atmospheric equations, the better representation of physical processes,

the introduction of the 4DVAR assimilation and the consequent more effi-

cient utilization of satellite observations. An important contribution to the

improved forecast skill is also given by a better numerical treatment of the

energy balance equation, the introduction of processes such as the two-way

interaction of wind and waves and processes such as gustiness in wind-wave
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growth, and the improved quality of the Altimeter wave height data.

Despite these impressive improvements, it cannot be concluded that the

physics of waves is entirely understood. Far from it! Regarding wind input

and dissipation one may argue that perhaps we know what the most im-

portant parameters are that govern these source functions, but, to be really

convincing, more work is needed in understanding the role of air-turbulence

and of air-flow separation in wind-wave growth. The dissipation of ocean

waves is attributed to a number of processes such as white capping and the

generation of Langmuir circulation, for example. Work is needed to be able

to assess the relative importance of these two processes in order to estimate

the amount of wave energy dissipation in a convincing way. The recent obser-

vational evidence of the spectral distribution of dissipation caused by white

capping will most certainly play an important role in resolving this issue.

Furthermore, more research is needed in a better numerical treatment of

four-wave interactions, advection of wave energy and refraction by bottom

topography and currents. Although recent attempts to improve on this have

not been very succesful, it cannot be denied that these improvements have

been masked by the relative large uncertainties in the forcing wind field.

With the rapid improvements in the quality of the winds, seen in the past

5-10 years and ongoing, it seems now opportune to pay more attention to

these issues.

Finally, it is justified to ask the question whether there is still a need

for further wave development. There are most certainly definite reasons for

further development and they derive, as it should, from a number of applica-

tions in which the wave spectrum plays an important role. Just recently we

have seen rapid progress in the understanding of the mechanisms behind the

generation of extreme sea states such as freak waves. Prediction of enhanced

probabilities of extreme events would be of tremendous benefit to the marine

world, but clearly an accurate prediction of the detailed low frequency part
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of the wave spectrum is of utmost importance. This capability of wind-wave

forecasting systems is, as yet, unproven. Furthermore, more research into the

relation between spectral shape and the occurrence of extreme states is highly

desirable.

On the other hand, knowledge of the high-frequency part of the wave spec-

trum is important in all remote sensing applications that depend to some

extent on properties of the sea surface. We mention instruments such as the

Altimeter, the Scatterometer, SSM/I, ATOVS, in short, any instrument that

involves aspects of specular reflection. In fact, the ocean surface albedo de-

pends in a straightforward manner on properties of the slope spectrum. Also,

we have seen that knowledge of the high-frequency spectrum is important in

order to determine the air-sea momentum exchange, and as a consequence it

is also important for the exchange of ’passive’ scalars such as CO2. In this

book we have introduced a parametrization of the high-frequency spectrum

which may be regarded as a good first-guess. Nevertheless, the actual spectral

shape is not well-understood and a significant amount of experimental and

theoretical work is still needed to obtain a convincing and working model for

the high-frequencies.

Combined with the prospects of the impact of ocean waves on ocean cir-

culation, very exciting times in the field of ocean waves are indeed expected

to lie ahead of us.
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