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CHAPTER 2 
PARTIAL DERIVATIVES 

 
 

2.1   Introduction 
 
Any text on thermodynamics is sure to be liberally sprinkled with partial derivatives on 
almost every page, so it may be helpful here to give a brief summary of some of the more 
useful formulas involving partial derivatives that we are likely to use in subsequent 
chapters. 
 
 
2.2   Partial Derivatives 
 
The equation    ),( yxzz =          2.2.1 
 
represents a two-dimensional surface in three-dimensional space.  The surface intersects 
the plane y = constant in a plane curve in which z is a function of x.  One can then easily 
imagine calculating the slope or gradient of this curve in the plane y = constant.  This 

slope is 
yx

z







∂
∂ - the partial derivative of z with respect to x,  with y being held constant.  

For example, if  
 
     ,ln xyz =          2.2.2 
 

then             ,
x
y

x
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y
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∂
∂          2.2.3 

 
y being treated as though it were a constant, which, in the plane y = constant, it is.  In a 
similar manner the partial derivative of z with respect to y,  with x being held constant, is 
 

             .ln x
y
z

x
=








∂
∂          2.2.4 

      
 
When you have only three variables – as in this example – it is usually obvious which of 
them is being held constant.  Thus yz ∂∂ / can hardly mean anything other than at constant 
x.  For that reason, the subscript is often omitted.  In thermodynamics, there are often 
more than three variables, and it is usually (I would say always) essential to indicate by a 
subscript which quantities are being held constant. 
 
In the matter of pronunciation, various attempts are sometimes made to give a special 
pronunciation to the symbol ∂.  (I have heard “day”.)  My own preference is just to say 
“partial dz by dy”. 
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Let us suppose that we have evaluated z at (x , y).  Now if you increase x by δx, what will 

the resulting increase in z be?  Obviously, to first order, it is .x
x
z
δ

∂
∂   And if y increases by 

δy, the increase in z will be .y
y
z
δ

∂
∂   And if both x and y increase, the corresponding 

increase in z, to first order, will be 
 

    .y
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=δ         2.2.5 

 
No great and difficult mathematical proof is needed to “derive” this; it is just a plain 
English statement of an obvious truism.  The increase in z is equal to the rate of increase 
of z with respect to x times the increase in x plus the rate of increase of z with respect to y 
times the increase in y. 
 

Likewise if x and y are increasing with time at rates ,and
dt
dy

dt
dx  the rate of increase of z 

with respect to time is 
 

    .
dt
dy

y
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3.  Implicit Differentiation 
 
Equation 2.2.5 can be used to solve the problem of differentiation of an implicit function.  
Consider, for example, the unlikely equation 
 
    .)ln( 32 yxxy =          2.3.1 
 
Calculate the derivative dy/dx. 
 
It would be easy if only one could write this in the form y = something; but it is difficult 
(impossible as far as I know) to write y explicitly as a function of x.  Equation 2.3.1 
implicitly relates y to x.  How are we going to calculate dy/dx? 
 
The curve f(x, y) = 0 might be considered as being the intersection of the surface 

),( yxfz =  with the plane z = 0.  Seen thus, the derivative dy/dx can be thought of as the 
limit as δx and δy approach zero of the ratio xy δδ / within the plane z = 0; that is, keeping 
z constant and hence δz equal to zero.  Thus equation 2.2.5  gives us that 
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For example, show that, for equation 2.3.1,   
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2.4   Product of Three Partial Derivatives 
 
Suppose x, y and z are related by some equation and that, by suitable algebraic 
manipulation, we can write any one of the variables explicitly in terms of the other two.  
That is, we can write 
 
    ,),( zyxx =           2.4.1 
 
or    ,),( xzyy =           2.4.2 
 
or    .),( yxzz =           2.4.3 
 

Then         ,z
z
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Eliminate δy from equations 2.4.4 and 2.4.5: 
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and δz from equations 2.4.4 and 2.4.6: 
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Since z and x can be varied independently, and x and y can be varied independently, the 
only way in which equations 2.4.7 and 2.4.8 can always be true is for all of the 
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expressions in parentheses to be zero.  Equating the left-hand parentheses to zero shows 
that 
 

    
z
y

y
z

∂
∂

=
∂
∂ /1           2.4.9 

 

and    .1/ x
z

z
x

∂
∂

=
∂
∂         2.4.10 

 
These results may seem to be trivial and “obvious” – and so they are, provided that the 
same quantity is being kept constant in the derivatives of both sides of each equation.  In 
thermodynamics we are often dealing with more variables than just x, y and z, and we 
must be careful to specify which quantities are being held constant.  If, for example, we 
are dealing with several variables, such as u, v, w, x, y, z, it is not in general true that  

,1/ u
y

y
u

∂
∂

=
∂
∂  unless the same variables are being held constant on both sides of the 

equation. 
 
Return now to equation 2.4.7.  The right hand parenthesis is zero, and this, together with 
equation 2.4.10, results in the important relation: 
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2.5   Second Derivatives and Exact Differentials 
 

If ,),( yxzz = we can go through the motions of calculating 
x
z
∂
∂ and ,

y
z
∂
∂  and we can 

then further calculate the second derivatives 2

2

x
z

∂
∂ , 2

2
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z

∂
∂ ,  
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z
∂∂

∂2

and  .
2

xy
z
∂∂

∂ .  It will 

usually be found that the last two, the mixed second derivatives, are equal; that is, it 
doesn’t matter in which order we perform the differentiations.   Example:  Let z = x sin y.  

Show that 
yx
z
∂∂

∂2

=  
xy
z
∂∂

∂2

=  cos y. 

 
We examine in this section what conditions must be satisfied if the mixed derivatives are 
to be equal.  
 
Figure II.1 depicts z as a “well-behaved” function of x and y.  By “well-behaved” in this 
context I mean that z is single valued (that is, given x and y there is just one value of z) 
and that the function and its derivatives are continuous (that is, no sudden discontinuities 
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in either the function itself or its slope).  “Good behaviour” in this sense is the sufficient 
condition that the mixed second derivatives are equal. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let us calculate the difference δz in the heights of A and C.  We can go from A to C via 
B or via D, and δz is route-independent.  That is, to first order, 
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Here the superscript (A) means “evaluated at A”. 
 
Divide both sides by δx δy: 
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If we now go to the limit as δx and δy approach zero (the equation now becomes exact 
rather than merely “to first order”), this becomes: 
 

    .
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A further property of a function that is well-behaved in the sense described is that if the 
differential dz can be written in the form 
 
   ,),(),( dyyxBdxyxAdz +=         2.5.4 
 
then equation 2.5.3 implies that 
 

    .
x
B

y
A

∂
∂

=
∂
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A differential dz is said to be exact if the following conditions are satisfied:  The integral 
of dz between two points is route-independent, and the integral around a closed path (i.e. 
you end up where you started) is zero, and if equations 2.5.3 and 2.5.5 are satisfied. 
 
To anticipate – what has this to do with thermodynamics?   To give an example, the state 
of many simple thermodynamical systems can be specified by giving the values of three 
variables, P, V and T, the pressure, volume and temperature.  That is, the state of the 
system can be represented by a point in PVT space.  Often, there will be a known relation 
(known as the equation of state) between the variables; for example, if the substance 
involved is an ideal gas, the variables will be related by PV = RT, which is the equation 
of state for an ideal gas; and the point representing the state of the system will then be 
represented by a point that is constrained to lie on the two-dimensional surface PV = RT 
in three-dimensional PVT space.  In that case it will be necessary to specify only two of 
the three variables.  On the other hand, if the equation of state of a particular substance is 
unknown, you will have to give the values of all three variables. 
 
Now there are certain quantities that one meets in thermodynamics that are functions of 
state.  Two that come to mind are entropy S and internal energy U.  By function of state 
is meant that S and U are uniquely determined by the state (i.e. by P, V and T).  If you 
know P, V and T, you can calculate S and U or any other function of state.  In that case, 
the differentials dS and dU are exact differentials. 
 
The internal energy U of a system is defined in such a manner that when you add a 
quantity dq of heat to a system and also do an amount of work on the system, the 
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increase dU of the system is given by dU = dq + dw.  Here dU is an exact differential, 
but dq and dw are clearly not.  You can achieve the same increase in internal energy by 
any combination of heat and work, and the heat you add to the system and the work you 
do on it are clearly not functions of the state of the system. 
 
Some authors like to use a special symbol, such as đ, to denote an inexact differential (but 
beware, I have seen this symbol used to denote an exact differential!). I shall not in 
general do this, because there are many contexts in which the distinction is not important, 
or, if it is, it is obvious from the context whether a given differential is exact or not.  If, 
however, there is some context in which the distinction is important (and there are many) 
and in which it may not be obvious which is which, I may, with advance warning, use a 
special đ for an inexact differential. 
 
 
2.6  Dee and Delta 
 
We have discussed the special meanings of the symbols ∂ and đ, but we also need to be 
clear about the meanings of the more familiar differential symbols ∆, δ and d.  It is often 
convenient to use the symbol ∆ to indicate an increment (not necessarily a particularly 
small increment) in some quantity.  We can then use the symbol δ to mean a small 
increment.  We can then say that if, for example, y = x2, and if x were to increase by a 
small amount δx, the corresponding increment in y would be given approximately by 
 
     ,2 xxy δ≅δ      2.6.1 
 

That is,    .2x
x
y
≅

δ
δ      2.6.2 

 
This doesn’t become exact until we take the limit as δx and δy approach zero.  We write 

this limit as ,
dx
dy  and then it is exactly true that  

 

     .2x
dx
dy

=      2.6.3 

 
There is a valid point of view that would argue that you cannot write dx or dy alone, since 

both are zero; you can write only the ratio .
dx
dy   It would be wrong, for example, to write 

 
     dy  =  2x dx,     2.6.4 
 
or at best it is tantamount to writing 0 = 0.   I am not going to contradict that argument, 
but, at the risk of incurring the wrath of some readers, I am often going to write equations 
such as equation 2.6.4, or, more likely, in a thermodynamical context, equations such as 

,dVPdSTdU −=  even though you may prefer me to say that, for small increments, 
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.VPSTU δ−δ≅δ   I am going to argue that, in the limit of infinitesimal increments, it 
is exactly true that .dVPdSTdU −=   After all, the smaller the increments, the closer 
it becomes to being true, and, in the limit when the increments are infinitesimally small, it 
is exactly true, even if it does just mean that zero equals zero. I hope this does not cause 
too many conceptual problems. 
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