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CHAPTER 1 
REFLECTION AND REFRACTION 

 
 
 
1.1   Introduction 
 
This “book” is not intended to be a vast, definitive treatment of everything that is known 
about geometric optics.  It covers, rather, the geometric optics of first-year students, 
whom it will either help or confuse yet further, though I hope the former.  The part of 
geometric optics that often causes the most difficulty, particularly in getting the right 
answer for homework or examination problems, is the vexing matter of sign conventions 
in lens and mirror calculations.  It seems that no matter how hard we try, we always get 
the sign wrong!  This aspect will be dealt with in Chapter 2.  The present chapter deals 
with simpler matters, namely reflection and refraction at a plane surface, except for a 
brief foray into the geometry of the rainbow.  The rainbow, of course, involves refraction 
by a spherical drop.  For the calculation of the radius of the bow, only Snell’s law is 
needed, but some knowledge of physical optics will be needed for a fuller understanding 
of some of the material in section 1.7, which is a little more demanding than the rest of 
the chapter. 
 
 
1.2   Reflection at a Plane Surface 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      
 
The law of reflection of light is merely that the angle of reflection r is equal to the angle 
of incidence r.  There is really very little that can be said about this, but I’ll try and say 
what little need be said. 

 
 

   i.   It is customary to measure the angles of incidence and reflection from the normal to 
the reflecting surface rather than from the surface itself. 

i r 
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  ii.   Some curmudgeonly professors may ask for the lawS of reflection, and will give you 
only half marks if you neglect to add that the incident ray, the reflected ray and the 
normal are coplanar. 
 
   iii.   A plane mirror forms a virtual image of a real object: 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
or a real image of a virtual object: 
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   iv.  It is usually said that the image is as far behind the mirror as the object is in front of 
it.  In the case of a virtual object (i.e. light converging on the mirror, presumably from 
some large lens somewhere to the left) you’d have to say that the image is as far in front 
of the mirror as the object is behind it! 
 
   v.   If the mirror were to move at speed v away from a real object, the virtual image 
would move at speed 2v.  I’ll leave you to think about what happens in the case of a 
virtual object. 
 
  vi.   If the mirror were to rotate through an angle θ (or were to rotate at an angular speed 
ω), the reflected ray would rotate through an angle 2θ (or at an angular speed 2ω). 
 
 
  vii.  Only smooth, shiny surfaces reflect light as described above.  Most surfaces, such 
as paper, have minute irregularities on them, which results in light being scattered in 
many directions.  Various equations have been proposed to describe this sort of 
scattering.  If the reflecting surface looks equally bright when viewed from all directions, 
the surface is said to be a perfectly diffusing Lambert’s law surface.  Reflection 
according to the r = i law of reflection, with the incident ray, the reflected ray and the 
normal being coplanar, is called specular reflection (Latin:  speculum, a mirror).  Most 
surfaces are intermediate between specular reflectors and perfectly diffusing surfaces.  
This chapter deals exclusively with specular reflection. 
 
viii.   The image in a mirror is reversed from left to right, and from back to front, but is 
not reversed up and down.  Discuss. 
 
ix.  If you haven’t read Through the Looking-glass and What Alice Found There, you are 
missing something. 
 
 
1.3   Refraction at a Plane Surface 
 
     I was taught Snell’s Law of Refraction thus: 
 
     When a ray of light enters a denser medium it is refracted towards the normal in such 
a manner than the ratio of the sine of the angle of incidence to the sine of the angle of 
refraction is constant, this constant being called the refractive index n. 
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This is all right as far as it goes, but we may be able to do better. 
 
  i.  Remember the curmudgeonly professor who will give you only half marks unless you 
also say that the incident ray, the refracted ray and the normal are coplanar. 
 
  ii.  The equation  
 

     ,
sin
sin n

r
i

=      1.3.1 

 
where n is the refractive index of the medium, is all right as long as the light enters the 
medium from a vacuum.  The refractive index of air is very little different from unity.  
Details on the refractive index of air may be found in my notes on Stellar Atmospheres 
(chapter 7, section 7.1) and Celestial Mechanics (subsection11.3.3). 
 
If light is moving from one medium to another, the law of refraction takes the form 
 
    .sinsin 2211 θ=θ nn      1.3.2 
 
 
 
 
 
 
 
 
 
 
iii.  The statement of Snell’s law as given above implies, if taken literally, that there is a 
one-to-one relation between refractive index and density.  There must be a formula 
relating refractive index and density.  If I tell you the density, you should be able to tell 
me the refractive index.  And if I tell you the refractive index, you should be able to tell 
me the density.  If you arrange substances in order of increasing density, this will also be 
their order of increasing refractive index. 
 
This is not quite true, and, if you spend a little while looking up densities and refractive 
indices of substances in, for example, the CRC Handbook of Physics and Chemistry, you 
will find many examples of less dense substances having a higher refractive index than 
more dense substances.  It is true in a general sense usually that denser substances have 
higher indices, but there is no one-to-one correspondence. 
 
In fact light is bent towards the normal in a “denser” medium as a result of its slower 
speed in that medium, and indeed the speed v of light in a medium of refractive index n 
is given by 
  
     ,/vcn =      1.3.3 

θ1 

n2 
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where c is the speed of light in vacuo.  Now the speed of light in a medium is a function 
of the electrical permittivity ε and the magnetic permeability µ: 
 
     ./1 εµ=v      1.3.4 
 
The permeability of most nonferromagnetic media is very little different from that of a 
vacuum, so the refractive index of a medium is given approximately by 
 

     .
0ε

ε
≈n      1.3.5 

 
Thus there is a much closer correlation between refractive index and relative permittivity 
(dielectric constant) than between refractive index and density.  Note, however, that this 
is only an approximate relation.  In the detailed theory there is a small dependence of the 
speed of light and hence refractive index on the frequency (hence wavelength) of the 
light.  Thus the refractive index is greater for violet light than for red light (violet light is 
refracted more violently).  The splitting up of white light into its constituent colours by 
refraction is called dispersion. 
 
 
 
 
1.4     Real and Apparent Depth 
 
When we look down into a pool of water from above, the pool looks less deep than it 
really is.  Figure I.6 shows the formation of a virtual image of a point on the bottom of 
the pool by refraction at the surface. 
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The diameter of the pupil of the human eye is in the range 4 to 7 mm, so, when we are 
looking down into a pool (or indeed looking at anything that is not very close to our 
eyes), he angles involved are small.  Thus in figure I.6 you are asked to imagine that all 
the angles are small; actually to draw them small would make for a very cramped 
drawing.  Since angles are small, I can approximate Snell’s law by 
 

     
θ
θ

≈
tan

'tann      1.4.1 

 
and hence  
 

   .
tan

'tan
'depthapparent

depthreal n
h
h

=
θ
θ

==    1.4.2 

 
 
For water, n is about 3

4 , so that the apparent depth is about ¾ of the real depth. 
 
Exercise.  An astronomer places a photographic film, or a CCD, at the primary focus of a 
telescope.  He then decides to insert a glass filter, of refractive index n and thickness t, in 
front of the film (or CCD).  In which direction should he move the film or CCD, and by 
how much, so that the image remains in focus? 
 
 
Now if Snell’s law really were given by equation 1.4.1, all refracted rays from the object 
would, when produced backwards, appear to diverge from a single point, namely the 

virtual image.  But Snell’s law is really ,
sin

'sin
θ
θ

=n  so what happens if we do not make 

the small angle approximation? 
 

We have 
θ
θ

=
tan

'tan
'h

h and, if we apply the trigonometric identity 
θ−

θ
=θ

2sin1
sintan  

and apply Snell’s law, we find that 
 

      .
sin1

cos
' 22 θ−

θ
=

n
n

h
h     1.4.3 

 
Exercise.   Show that, to first order in θ this becomes h/h' = n. 
 
Equation 1.4.3 shows h' is a function of θ  −  that the refracted rays, when projected 
backwards, do not all appear to come from a single point.  In other words, a point object 
does not result in a point image.  Figure I.7 shows (for n = 1.5 – i.e. glass rather than 
water) the backward projections of the refracted rays for θ' = 15, 30, 45, 60 and 75 
degrees, together with their envelope or “caustic curve”.  The “object” is at the bottom 
left corner of the frame, and the surface is the upper side of the frame. 
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Exercise (for the mathematically comfortable).  Show that the parametric equations for 
the caustic curve are 
 
    0tan'tan =θ−θ− hyx     1.4.4 
 
and    .0sec'sec 23 =θ+θ hny     1.4.5 
 
Here,  y = 0 is taken to be the refractive surface, and θ and θ' are related by Snell’s law. 
   
 
Thus refraction at a plane interface produces an aberration in the sense that light from a 
point object does not diverge from a point image.  This type of aberration is somewhat 
similar to the type of aberration produced by reflection from a spherical mirror, and to 
that extent the aberration could be referred to as “spherical aberration”.  If a point at the 
bottom of a pond is viewed at an angle to the surface, rather than perpendicular to it, a 
further aberration called “astigmatism” is produced.  If I write a chapter on aberrations, 
this will be included there. 
 
 
 
 
 

I,7
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1.5    Reflection and Refraction 
 
We have described reflection and refraction, but of course when a ray of light encounters 
an interface between two transparent media, a portion of it is reflected and a portion is 
refracted, and it is natural to ask, even during an early introduction to the subject, just 
what fraction is reflected and what fraction is refracted.  The answer to this is quite 
complicated, for it takes depends not only on the angle of incidence and on the two 
refractive indices, but also on the initial state of polarization of the incident light; it takes 
us quite far into electromagnetic theory and is beyond the scope of this chapter, which is 
intended to deal largely with just the geometry of reflection and refraction.  However, 
since it is a natural question to ask, I can give explicit formulas for the fractions that are 
reflected and refracted in the case where the incident light in unpolarized. 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure I.8 shows an incident ray of energy flux density (W m−2 normal to the direction of 
propagation) FI arriving at an interface between media of indices n1 and n2.  It is 
subsequently divided into a reflected ray of flux density FR and a transmitted ray of flux 
density FT.  The fractions transmitted and reflected (t and r) are 
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and 
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Here the angles and indices are related through Snell’s law, equation 1.3.2.   If you have 
the energy, show that the sum of these is 1. 
 
Both the transmitted and the reflected rays are partially plane polarized.  If the angle of 
incidence and the refractive index are such that the transmitted and reflected rays are 
perpendicular to each other, the reflected ray is completely plane polarized – but such 
details need not trouble us in this chapter. 
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Figure I.9 shows the reflection coefficient as a function of angle of incidence for 
unpolarized incident light with n1 = 1.0  and n2 = 1.5 (e.g. glass).  Since n2 > n1, we have 
external reflection.  We  see that for angles of incidence less than about 45 degrees, very 
little of the light is reflected, but after this the reflection coefficient increases rapidly with 
angle of incidence, approaching unity as θ1 → 90o (grazing incidence). 
 
If n1 = 1.5 and n2 = 1.0, we have internal reflection, and the reflection coefficient for this 
case is shown in figure I.10.  For internal angles of incidence less than about 35o, little 

I.9 
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light is reflected, the rest being transmitted.  After this, the reflection coefficient increases 
rapidly, until the internal angle of incidence θ1 approaches a critical angle C, given by 
 

    ,sin
1

2

n
nC =       1.5.3 

 
This corresponds to an angle of emergence of 90o.  For angles of incidence greater than 
this, the light is totally internally reflected.   For glass of refractive index 1.5, the critical 
angle is 41o.2, so that light is totally internally reflected inside a 45o prism such as is used 
in binoculars. 
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1.6   Refraction by a Prism 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure I.11 shows an isosceles prism of angle α,  and a ray of light passing through it.  I 
have drawn just one ray of a single colour.  For white light, the colours will be dispersed, 
the violet light being deviated by the prism more than the red light.  We’ll choose a 
wavelength such that the refractive index of the prism is n.  The deviation D of the light 
from its original direction is θ1 − φ1  +  θ2 − φ2 .   I want to imagine, now, if we keep the 
incident ray fixed and rotate the prism, how does the deviation vary with angle of 
incidence θ1?  By geometry, φ2 =  α − φ1, so that the deviation is    
 
    .21 α−θ+θ=D      1.6.1 
 
Apply Snell’s law at each of the two refracting surfaces: 
 

   ,
)sin(

sinand
sin
sin

1

2

1

1 nn =
φ−α

θ
=

φ
θ            1.6.2a,b 

 
and eliminate φ1: 
 
      .sincossinsinsin 11

22
2 θα−θ−α=θ n    1.6.3. 

 
Equations 1.6.1 and 1.6.3 enable us to calculate the deviation as a function of the angle of 
incidence θ1.  The deviation is least when the light traverses the prism symmetrically, 
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n 
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with θ1 =  θ2, the light inside the prism then being parallel to the base.  Putting θ1 =  θ2 in 
equation shows that minimum deviation occurs for an angle of incidence given by 
 

       .sin
)cos1(2

sinsin 2
1

1 α=
α+

α
=θ nn    1.6.4 

 
The angle of minimum deviation Dmin is 2θ1 − α, where θ1 is given by equation 1.6.4, and 
this leads to the following relation between the refractive index and the angle of 
minimum deviation: 
 

    .
sin

)(sin

2
1

min2
1

α

α+
=

D
n     1.6.5 

 
 
Of particular interest are prisms with α  =  60o and α  =  90o.  I have drawn, in figure I.12 
the deviation versus angle of incidence for 60- and 90-degree prisms, using (for reasons I 
shall explain) n = 1.31, which is approximately the refractive index of ice.  For the 60o ice 
prism, the angle of minimum deviation is 21o.8, and for the 90o ice prism it is 45o.7. 
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The geometry of refraction by a regular hexagonal prism is similar to refraction by an 
equilateral (60o) triangular prism (figure I.13): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When hexagonal ice crystals are present in the atmosphere, sunlight is scattered in all 
directions, according to the angles of incidence on the various ice crystals (which may or 
may not be oriented randomly).  However, the rate of change of the deviation with angle 
of incidence is least near minimum deviation;  consequently much more light is deviated 
by 21o.8 than through other angles.  Consequently we see a halo of radius about 22o 
around the Sun. 
 
Seen sideways on, a hexagonal crystal is rectangular, and consequently refraction is as if  
through a 90o prism (figure I.14): 
 
 
 
 
 
 
 
 
 
 
Again, the rate of change of deviation with angle of incidence is least near minimum 
deviation, and consequently we may see another halo, or radius about 46o.  For both 

FIGURE I.13 

FIGURE I.14
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haloes, the violet is deviated more than the red, and therefore both haloes are tinged 
violet on the outside and red on the inside. 
 
 
1.7    The Rainbow 
 
I do not know the exact shape of a raindrop, but I doubt very much if it is drop-shaped!  
Most raindrops will be more or less spherical, especially small drops, because of surface 
tension.  If large, falling drops are distorted from an exact spherical shape, I imagine that 
they are more likely to be flattened to a sort of horizontal pancake shape rather than drop-
shaped.  Regardless, in the analysis in this section, I shall assume drops are spherical, as I 
am sure small drops will be. 
 
We wish to follow a light ray as it enters a spherical drop, is internally reflected, and 
finally emerges.  See figure I.15. 
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We see a ray of light headed for the drop, which I take to have unit radius, at impact 
parameter y.  The deviation of the direction of the emergent ray from the direction of the 
incident ray is 
 
  .'42''2' θ−θ+π=θ−θ+θ−π+θ−θ=D   1.7.1 
 
However, we shall be more interested in the angle r  =  π  −  D.  A ray of light that has 
been deviated by D will approach the observer from a direction that makes an angle r 
from the centre of the rainbow, which is at the anti-solar point (figure I.16): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We would like to find the deviation D as a function of impact parameter.  The angles of 
incidence and refraction are related to the impact parameter as follows: 
 
    ,sin y=θ       1.7.2 
 
    ,1cos 2y−=θ      1.7.3 
 
    ,/'sin ny=θ      1.7.4 
 

and    ./1cos 22 ny−=θ      1.7.5 
 
These, together with equation 1.7.1, give us the deviation as a function of impact 
parameter.  The deviation goes through a minimum – and r goes through a maximum.  
The deviation for a light ray of impact parameter y is 

D 
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raindrop 
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   )./(sin4sin2 11 nyyD −− −+π=    1.7.6 
 
This is shown in figure I.17 for n = 1.3439 (blue -   λ = 400 nm) and n = 1.3316 (red -   λ 
= 650 nm). 
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 The angular distance r from the centre of the bow is r =  π − D, so that 
 
   .sin2)/(sin4 11 ynyr −− −=     1.7.7 
 
Differentiation gives the maximum value, R,  of r  - i.e. the radius of the bow – or the 
minimum deviation Dmin.  We obtain for the radius of the bow 
 

   .
3

4sin2
3

4sin4
2

1
2

2
1 n

n
nR −

−
−

= −−    1.7.8 

 
For n = 1.3439 (blue) this is 40o 31' and for n =  1.3316 (red) this is 42o 17'.  Thus the 
blue is on the inside of the bow, and red on the outside. 
 
For grazing incidence (impact parameter = 1), the deviation is ),/1(sin42 1 n−−π or 

'40167o  for blue or 165o 18' for red.  This corresponds to a distance from the center of 
the bow ,)/1(sin4 1 π−= − nr  which is '2012o  for blue and 14o 42' for red.   It will be 

I.17 
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seen from figure I.17 that for deviations between Dmin and about 166o there are two 
impact parameters that result in the same deviation.  The paths of two rays with the same 
deviation are shown in figure I.18.  One ray is drawn as a full line, the other as a dashed 
line.  They start with different impact parameters, and take different paths through the 
drop, but finish in the same direction.  The drawing is done for a deviation of 145o, or 35o 
from the bow centre.  The two impact parameters are 0.969 and 0.636.  When these two 
rays are recombined by being brought to a focus on the retina of the eye, they have 
satisfied all the conditions for interference, and the result will be brightness or darkness 
according as to whether the path difference is an even or an odd number of half 
wavelengths. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE I.18 
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If you look just inside the inner (blue) margin of the bow, you can often clearly see the 
interference fringes produced by two rays with the same deviation.  I haven’t tried, but if 
you were to look through a filter that transmits just one colour, these fringes (if they are 
bright enough to see) should be well defined.  The optical path difference for a given 
deviation, or given r, depends on the radius of the drop (and on its refractive index).  For 
a drop of radius a it is easy to see that the optical path difference is 
 
   ,)'cos'(cos4)cos(cos2 1212 θ−θ−θ−θ na  
 
where θ1 is the larger of the two angles of incidence.  Presumably if you were to measure 
the fringe spacing, you could determine the size of the drops.  Or, if you were to conduct 
a Fourier analysis of the visibility of the fringes, you could determine, at least in 
principle, the size distribution of the drops.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Some distance outside the primary rainbow, there is a secondary rainbow, with colours 
reversed – i.e. red on the inside, blue on the outside.  This is formed by two internal 
reflections inside the drop (figure I.19).  The deviation of the final emergent ray from the 
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direction of the incident ray is (θ  −  θ')  +  (π  − 2θ')  +  (π  − 2θ')  +  (θ  −  θ'), or 
2π  + 2θ  −  6θ' counterclockwise, which amounts to D = 6θ'  −  2θ clockwise.  That is, 
 
    ( ) .sin2/sin6 11 ynyD −− −=    1.7.9 
 
clockwise, and, as before, this corresponds to an angular distance from the centre of the 
bow r  =  π  −  D.  I show in figure I.20 the deviation as a function of impact parameter y.  
Notice that D goes through a maximum (and hence r has a minimum value).  There is no 
light scattered outside the primary bow, and no light scattered inside the secondary bow.  
When the full glory of a primary bow and a secondary bow is observed, it will be seen 
that the space between the two bows is relatively dark, whereas it is brighter inside the 
primary bow and outside the secondary bow. 
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Differentiation shows that the least value of  r, (greatest deviation) corresponding to the 
radius of the secondary bow is 
 

    .
2

3sin2
2

3sin6
2

1
2

2
1 n

n
nR −

−
−

= −−   1.7.10 

 
For n = 1.3439 (blue) this is 53o 42' and for n =  1.3316 (red) this is 50o 31'.  Thus the red 
is on the inside of the bow, and blue on the outside. 
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Problem.  In principle a tertiary bow is possible, involving three internal reflections.  I 
don’t know if anyone has observed a tertiary bow, but I am told that the primary bow is 
blue on the inside, the secondary bow is red on the inside, and “therefore” the tertiary 
bow would be blue on the inside.  On the contrary, I assert that the tertiary bow would be 
red on the inside.  Why is this? 
 
Let us return to the primary bow.  The deviation is (equation 1.7.1) D  =  π  +   2θ  −  4θ'.  
Let’s take n = 4/3, which it will be for somewhere in the middle of the spectrum.  
According to equation 1.7.8, the radius of the bow (R  =  π −  Dmin) is then about 42o.  
That is, 2θ'  −  θ  =  21o.  If we combine this with Snell’s law, 'sin4sin3 θ=θ , we find 
that, at minimum deviation (i.e. where the primary bow is),  θ  = 60o.5  and θ'  =  40o.8.  
Now, at the point of internal reflection, not all of the light is reflected (because θ' is less 
than the critical angle of 36o.9), and it will be seen that the angle between the reflected 
ands refracted rays is (180 − 60.6  −  40.8) degrees = 78o.6.  Those readers who are 
familiar with Brewster’s law will understand that when the reflected and transmitted rays 
are at right angles to each other, the reflected ray is completely plane polarized.  The 
angle, as we have seen, is not 90o, but is 78o.6, but this is sufficiently close to the 
Brewster condition that the reflected light, while not completely plane polarized, is 
strongly polarized.  Thus, as can be verified with a polarizing filter, the rainbow is 
strongly plane polarized. 
 
I now want to address the question as to how the brightness of the bow varies from centre 
to circumference.  It is brightest where the slope of the deviation versus impact parameter 
curve is least – i.e. at minimum deviation (for the primary bow) or maximum deviation 
(for the secondary bow).  Indeed the radiance (surface brightness) at a given distance 
from the centre of the bow is (among other things) inversely proportional to the slope of  
that curve.  The situation is complicated a little in that, for deviations between Dmin and  

),/1(sin42 1 n−−π  (this latter being the deviation for grazing incidence), there are two 
impact parameters giving rise to the same deviation, but for deviations greater than that 
(i.e. closer to the centre of the bow) only one impact parameter corresponds to a given 
deviation.   
 
Let us ask ourselves, for example, how bright is the bow at 35o from the centre (deviation 
145o)?  The deviation is related to impact parameter by equation 1.7.6.  For n  =  4/3, we 
find that the impact parameters for deviations of 144, 145 and 146 degrees are as follows: 
 
    Do             y 
 
             144  0.6583    and   0.9623  
             145  0.6366    and   0.9693 
             146                    0.6157    and   0.9736 
 
 
 
Figure I.21 shows a raindrop seen from the direction of the approaching photons.   
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Any photons with impact parameters within the two dark annuli will be deviated between 
144o and 146o, and will ultimately approach the observer at angular distances between 
36o and 34o from the centre.  The radiance at a distance of 35o from the centre will be 
proportional, among other things, to the sum of the areas of these two annuli. 
 
I have said “among other things”.  Let us now think about other things.  I have drawn 
figure I.15 as if all of the light is transmitted as it enters the drop, and then all of it is 
internally reflected within the drop, and finally all of it emerges when it leaves the drop.  
This is not so, of course.  At entrance, at internal reflection and at emergence, some of the 
light is reflected and some is transmitted.  The fractions that are reflected or transmitted 
depend on the angle of incidence, but, for minimum deviation, about 94% is transmitted 
on entry to and again at exit from the drop, but only about 6% is internally reflected.  
Also, after entry, internal reflection and exit, the percentage of polarization of the ray 
increases.  The formulas for the reflection and transmission coefficients (Fresnel’s 
equations) are somewhat complicated (equations 1.5.1 and 1.5.2 are for unpolarized 
incident light), but I have followed them through as a function of impact parameter, and 
have also taken account of the sizes of the one or two annuli involved for each impact 
parameter, and I have consequently calculated the variation of surface brightness for one 
colour (n = 4/3) from the centre to the circumference of the bow.  I omit the details of the 

FIGURE I.21 
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calculations, since this chapter was originally planned as an elementary account of 
reflection and transmission, and we seem to have gone a little beyond that, but I show the 
results of the calculation in figure I.22.  I have not, however, taken account of the 
interference phenomena, which can often be clearly seen just within the primary bow. 
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1.8     Problem 
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See figure I.23.  A ray of light is directed at a glass cube of side a, refractive index n, 
eventually to form a spot on a screen beyond the cube.  The cube is rotating at an angular 
speed ω.  Show that, when the angle of incidence is θ, the speed of the spot on the screen 
is  
 

   







θ−

θ+θ
−θω= 2/322

42

)sin(
sin2coscos

n
nav  

 
and that the greatest displacement of the spot on the screen from the undisplaced ray is 
    

        .
sin

11
2 22 














θ−
−=

n
aD  

 
 
I refrain from asking what is the maximum speed and for what value of θ does it occur.  
However, I ran the equation for the speed on the computer, with n = 1.5, and, if the 
formula is right, the speed is ωa3

1  when θ  =  0, and it increases monotonically up to 
θ  =  45o, which is as far as we can go for a cube.  However, if we have a rectangular 
glass block, we can increase θ to 90o, at which time the speed is 0.8944 aω.  The speed 
goes through a maximum of about 0.9843aω when θ =  79o.3.  I’d be interested if anyone 
can confirm this, and do it analytically. 
 
 
1.9   Differential Form of Snell’s Law 
 
Snell’s law in the form n sin θ = constant is useful in calculating how a light ray is bent in 
travelling from one medium to another where there is a discrete change of refractive 
index.  If there is a medium in which the refractive index is changing continuously, a 
differential form of Snell’s law may be useful.  This is obtained simply by differentiation 
of n sin θ = constant, to obtain the differential form of Snell’s law: 
 

    .cot
n

dnd −=θθ      1.9.1 

 
Let us see how this might be used.  Let us suppose, for example, that we have some 
medium in which the refractive index diminishes with height y according to 
 

    .
ya

an
−

=       1.9.2 
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Here a is an arbitrary distance, and I am going to restrict our interest only to heights less 
than a – so that n doesn’t become infinite!  I have chosen equation 1.9.2 only because it 
happens to lead to a rather simple result.  Let us suppose that we direct a light ray 
upwards from the origin in a direction making an angle α with the horizontal, and we 
wish to trace the ray through the medium as the refractive index continuously changes.  
See figure I.24.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When the height is y, the angle of incidence is θ, and the slope ,tan/ ψ=dxdy where 

.2/ θ−π=ψ   With this and equation 1.9.2, Snell’s law takes the form 
 

    .tan
ya

dyd
−

=ψψ      1.9.3 

 
On integration, this becomes 
 
   .secconstantsec)( α==ψ− aya     1.9.4 
 
Let .secand caya =αη=−  Equation 1.9.4 then becomes 

α 

θ
ψ

FIGURE I.24 
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    ./sec η=ψ c       1.9.5 
 
But ,//1sectan 2 dxddxdy η−==−ψ=ψ so we obtain 
 

    .
22

η
η−

−=
η c

dx
d      1.9.6 

 
On integration, this becomes 
 
    .22 Ccx +η−=      1.9.7 
 
We recall that ,secand caya =αη=−  from which equation 1.9.7 becomes 
 
   .2tan 222 Cyayax +−+α=     1.9.8 
 
Since the ray starts at the origin, it follows that .tan α−= aC    The path of the ray, 
therefore, is found, after some algebra, to be 
 
   ,sec)()tan( 2222 α=−+α+ aayax    1.9.9 
 
which is a circle, centre ,),tan( aa α− radius .secαa  
 
    


