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CHAPTER 3 
DIPOLE AND QUADRUPOLE MOMENTS 

 
 

3.1   Introduction 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider a body which is on the whole electrically neutral, but in which there is a 
separation of charge such that there is more positive charge at one end and more negative 
charge at the other.  Such a body is an electric dipole. 
 
Provided that the body as a whole is electrically neutral, it will experience no force if it is 
placed in an external electric field, but it will (unless very fortuitously oriented) 
experience a torque.   The magnitude of the torque depends on its orientation with respect 
to the field, and there will be two (opposite) directions in which the torque is a maximum. 
 
The maximum torque that the dipole experiences when placed in an external electric field 
is its dipole moment.  This is a vector quantity, and the torque is a maximum when the 
dipole moment is at right angles to the electric field.  At a general angle, the torque τ, the 
dipole moment p and the electric field E are related by 
 
    .Ep ×τ =         3.1.1 
 
The SI units of dipole moment can be expressed as N m (V/m)−1.   However, work out the 
dimensions of p and you will find that its dimensions are Q L.   Therefore it is simpler to 
express the dipole monent in SI units as coulomb metre, or C m. 
 
Other units that may be encountered for expressing dipole moment are cgs esu, debye, 
and atomic unit.  I have also heard the dipole moment of thundercouds expressed in 
kilometre coulombs!   A cgs esu is a centimetre-gram-second electrostatic unit.  I shall 
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describe the cgs esu system in a later chapter;  suffice it here to say that a cgs esu of 
dipole moment is about 3.336 × 10−12 C m, and a debye (D) is 10−18 cgs esu.  An atomic 
unit of electric dipole moment is a0e, where a0 is the radius of the first Bohr orbit for 
hydrogen and e is the magnitude of the electronic charge.  An atomic unit of dipole 
moment is about 8.478 × 10−29 C m. 
 
I remark in passing that I have heard, distressingly often, some such remark as “The molecule has a 
dipole”.  Since this sentence is not English, I do not know what it is intended to mean.  It would be English 
to say that a molecule is a dipole or that is has a dipole moment. 
 
 
3.2  Mathematical Definition of Dipole Moment 
 
In the introductory section 3.1 we gave a physical definition of dipole moment.  I am now 
about to give a mathematical definition.  I stress, however, that, although a methematical 
definition may look more impressive and more formal than the simple physical picture, 
the physical concept described in section 3.1 is no less important than the mathematical. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider a set of charges Q1, Q2, Q3 ...  whose position vectors with respect to a point O 
are r1, r2, r3 ... with respect to some point O.  The vector sum 
 
    ∑= irp iQ       3.2.1 
 
is the dipole moment of the system of charges with respect to the point O. 
 
 
Exercise.  Convince yourself that if the system as a whole is electrically neutral, so that 
there is as much positive an negative charge, the dipole moment so defined is 
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independent of the position of the point O.  One can then talk of “the dipole moment of 
the system” without adding the rider “with respect to the point O”. 
 
Exercise.   Convince yourself that if any electrically neutral system is placed in an 
external electric field E, it will experience a torque given by Ep ×τ = , and so the two 
definitions of dipole moment – the physical and the mathematical − are equivalent.  
 
Exercise.    While thinking about these two, also convince yourself (from mathematics or 
from physics, or both) that the magnitude of a simple dipole consisting of two charges, 
+Q and −Q separated by a distance l is Ql. We have already noted that C m is an 
acceptable SI unit for dipole moment.  
 
 
 
 
 
3.3   Oscillation of a Dipole in an Electric Field 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider a dipole oscillating in an electric field (figure III.3).  When it is at an angle θ to 
the field, the magnitude of the restoring torque on it is pE sin θ, and therefore its equation 
of motion is ,sin θ−=θ pEI &&  where I is its rotational inertia.  For small angles, this is 
approximately ,θ−=θ pEI &&  and so the period of small oscillations is  
 

    .2
pE
IP π=      3.3.1 

 
Would you expect the period to be long if the rotational inertia were large?  Would you 
expect the vibrations to be rapid if p and E were large?  Is the above expression 
dimensionally correct? 
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3.4   Potential Energy of a Dipole in an Electric Field 
 
Refer again to figure III.3.  There is a torque on the dipole of magnitude pE sin θ.  In 
order to increase θ by δθ you would have to do an amount of work pE sin θ δθ .  The 
amount of work you would have to do to increase the angle between p and E from 0 to θ 
would be the integral of this from 0 to θ, which is pE(1  −  cos θ), and this is the potential 
energy of the dipole, provided one takes the potential energy to be zero when p and E are 
parallel.  In many applications, writers find it convenient to take the potential energy  
(P.E.) to be zero when p and E perpendicular.  In that case, the potential energy is 
 
   .cosP.E. Ep •−=θ−= pE      3.4.1 
 
This is negative when θ is acute and positive when θ is obtuse.  You should verify that 
the product of p and E does have the dimensions of energy. 
 
 
3.5   Force on a Dipole in an Inhomogeneous Electric Field 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
Consider a simple dipole consisting of two charges +Q and −Q separated by a distance 
δx, so that its dipole moment is p = Q δx.  Imagine that it is situated in an inhomogeneous 
electrical field as shown ins figure III.4.   We have already noted that a dipole in a 
homogeneous field experiences no net force, but we can see that it does experience a net 
force in an inhomogeneous field.   Let the field at −Q be E and the field at +Q be 

.EE δ+   The force on −Q is QE  to the left, and the force on +Q is Q(E + δE) to the 
right.  Thus there is a net force to the right of Q δE, or: 
 

    Force =  .
dx
dEp        3.5.1 
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Equation 3.6.1 describes the situation where the dipole, the electric field and the gradient 
are all parallel to the x-axis.  In a more general situation, all three of these are in different 
directions.   Recall that electric field is minus potential gradient.  Potential is a scalar 
function, whereas electric field is a vector function with three component, of which the x-

component, for example is .
x
VEx ∂

∂
−=   Field gradient is a symmetric tensor having 

nine components (of which, however, only six are distinct), such as ,,
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Thus in general equation 3.6.1 would have to be written as  
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    3.5.2 

 
in which the double subscripts in the potential gradient tensor denote the second partial 
derivatives.   
 
3.6   Induced Dipoles and Polarizability 
 
We noted in section 1.3 that a charged rod will attract an uncharged pith ball, and at that 
time we left this as a little unsolved mystery.  What happens is that the rod induces a 
dipole moment in the uncharged pith ball, and the pith ball, which now has a dipole 
moment, is attracted in the inhomogeneous field surrounding the charged rod. 
 
How may a dipole moment be induced in an uncharged body?  Well, if the uncharged 
body is metallic (as in the gold leaf electroscope), it is quite easy.   In a metal, there are 
numerous free electrons, not attached to any particular atoms, and they are free to wander 
about inside the metal.  If a metal is placed in an electric field, the free electrons are 
attracted to one end of the metal, leaving an excess of positive charge at the other end.  
Thus a dipole moment is induced. 
 
What about a nonmetal, which doesn’t have free electrons unattached to atoms?  It may 
be that the individual molecules in the material have permanent dipole moments.  In that 
case, the imposition of an external electric field will exert a torque on the molecules, and 
will cause all their dipole moments to line up in the same direction, and thus the bulk 
material will acquire a dipole moment.  The water molecule, for example, has a 
permanent dipole moment, and these dipoles will align in an external field.  This is why 
pure water has such a large dielectric constant. 
 
But what if the molecules do not have a permanent dipole moment, or what if they do, 
but they cannot easily rotate (as may well be the case in a solid material)?  The bulk 
material can still become polarized, because a dipole moment is induced in the individual 
molecules, the electrons inside the molecule tending to be pushed towards one end of the 
molecule.   
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Thus, one way or another, the imposition of an electric field may induce a dipole moment 
in most material, whether they are conductors of electricity or not, or whether or not their 
molecules have permanent dipole moments. 
 
If two molecules approach each other in a gas, the electrons in one molecule repel the 
electrons in the other, so that each molecule induces a dipole moment in the other.  The 
two molecules then attract each other, because each dipolar molecule finds itself in the 
inhomogeneous electric field of the other.  This is the origin of the van der Waals forces. 
 
Some bodies (I am thinking about individual molecules in particular, but this is not 
necessary) are more easily polarized that others by the imposition of an external field.  
The ratio of the induced dipole moment to the applied field is called the polarizability 
α of the molecule (or whatever body we have in mind).   Thus 
 
     .Eα=p        3.6.1 
 
The SI unit for α is C m (V m−1) −1 and the dimensions are M−1T2Q3. 
 
This brief account, and the general appearance of equation 3.6.1, suggests that p and E 
are in the same direction – but this is so only if the electrical properties of the molecule 
are isotropic.  Perhaps most molecules – and, especially, long organic molecules − have 
anisotropic polarizability.   Thus a molecule may be easy to polarize with a field in the x- 
direction, and much less easy in the y- or z-directions.  Thus, in equation 3.6.1, the 
polarizability is really a symmetric tensor, p and E are not in general parallel, and the 
equation, written out in full, is  
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(Unlike in equation 3.5.2, the double subscripts are not intended to indicate second partial 
derivatives; rather they are just the components of the polarizability tensor.)  As in 
several analogous situations in various branches of physics (see, for example, section 
2.17 of Classical Mechanics and the inertia tensor) there are three mutually orthogonal 
directions (the eigenvectors of the polarizability tensor) for which p and E will be 
parallel. 
 
 
3.7    The Simple Dipole 
 
As you may expect from the title of this section, this will be the most difficult and 
complicated section of this chapter so far.  Our aim will be to calculate the field and 
potential surrounding a simple dipole.   
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A simple dipole is a system consisting of two charges, +Q and −Q, separated by a 
distance 2L.  The dipole moment of this system is just p = 2QL.  We’ll suppose that the 
dipole lies along the x-axis, with the negative charge at x = −L and the positive charge at 
x = +L .   See figure III.5. 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let us first calculate the electric field at a point P at a distance y along the y-axis.  It will 
be agreed, I think, that it is directed towards the left and is equal to ,coscos 21 θ+θ EE  

where .
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)(4 2/12222

0
21 yL

L
yL

QEE
+

=θ
+πε

==  

 
 

Therefore  .
)(4)(4

2
2/322

0
2/322

0 yL
p

yL
QLE

+πε
=

+πε
=   3.7.1 

 
 
For large y this becomes 
 

   .
4 3

0 y
pE

πε
=       3.7.2 

 
That is, the field falls off as the cube of the distance. 
 
To find the field on the x-axis, refer to figure III.6. 
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It will be agreed, I think, that the field is directed towards the right and is equal to  
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This can be written ,
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Q  and on expansion of this by 

the binomial theorem, neglecting terms of order L/x and smaller, we see that at large x the 
field is 
 

   .
4

2
3

0x
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=       3.7.4 

 
 
Now for the field at a point P that is neither on the axis (x-axis) nor the equator (y-axis) of 
the dipole.  See figure III.7. 
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It will probably be agreed that it would not be particularly difficult to write down 
expressions for the contributions to the field at P from each of the two charges in turn.  
The difficult part then begins; the two contributions to the field are in different and 
awkward directions, and adding them vectorially is going to be a bit of a headache. 
 
It is mush easier to calculate the potential at P, since the two contributions to the potential 
can be added as scalars.  Then we can find the x- and y-components of the field by 
calculating xV ∂∂ /  and ./ yV ∂∂  
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To start with I am going to investigate the potential and the field at a large distance from 
the dipole – though I shall return later to the near vicinity of it. 
 
At large distances from a small dipole (see figure III.8), we can write ,222 yxr +=  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and, with L2 << r2, the expression 3.7.5 for the potential at P becomes 
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When this is expanded by the binomial theorem we find, to order L/r , that the potential 
can be written in any of the follwing equivalent ways: 
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Thus the equipotentials are of the form 
 
   ,cos2 θ= cr           3.7.7 
 

where   .
4 0V

pc
πε

=           3.7.8 

 

Now, bearing in mind that ,222 yxr +=  we can differentiate 3
04 r

pxV
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= with 

respect to x and y to find the x- and y-components of the field. 
 
Thus we find that 
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We can also use polar coordinates find the radial and transverse components from 
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For those who enjoy vector calculus, we can also say ,
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after a little algebra and quite a lot of vector calculus, we find 
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This equation contains all the information that we are likely to want, but I expect most 
readers will prefer the more explicit rectangular and polar forms of equations 3.7.9 and 
3.7.10. 
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Equation 3.7.7 gives the equation to the equipotentials.  The equation to the lines of force 
can be found as follows.  Referring to figure III.9, we see that the differential equation to 
the lines of force is 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   ,tan
cos2
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1 θ=
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θ

==
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rE
E

dr
dr     3.7.12 

 
which, upon integration, becomes 
 
    .sin2 θ= ar       3.7.13 
 
Note that the equations θ= cos2 cr (for the equipotentials) and θ= 2sinar (for the 
lines of force) are orthogonal trajectories, and either can be derived from the other.  Thus, 

given that the differential equation to the lines of force is θ=
θ tan2

1

dr
dr with solution 

,sin2 θ= ar  the differential equation to the orthogonal trajectories (i.e. the 

equipotentials) is ,tan1
2
1 θ=

θ
−

d
dr

r
 with solution .cos2 θ= cr  

 
  
In figure III.10, there is supposed to be a tiny dipole situated at the origin.  The unit of 
length is L, half the length of the dipole.  I have drawn eight electric field lines 
(continuous), corresponding to a = 25, 50, 100, 200, 400, 800, 1600, 3200.  If r is 

expressed in units of L, and if V is expressed in unts of ,
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3.7.8 for the equipotentials can be written ,cos
V

r θ
=  and I have drawn seven 

equipotentials (dashed) for V   =   0.00005,  0.00010,  0.00020,  0.00040,  0.00080,  
0.00160,  0.00320.    It will be noticed from equation 3.7.9a, and is also evident from 
figure III.10, that Ex is zero for .'4454o=θ  
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These, then, are the field lines and equipotentials at a large distance from the dipole.  We 
arrived at these equations and graphs by expanding equation 3.7.5 binomially, and 
neglecting terms of higher order than L/r.  We now look close to the dipole, where we 
cannot make such an approximation. 
 
We can write 3.7.5 as 
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   ,11),(
12 RR
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where .)1(and)1( 222

2
222

1 yxRyxR +−=++=  
 
One way to plot the equipotentials would be to calculate V for a whole grid of (x , y) 
values and then use a contour plotting routine to draw the equipotentials.  My computing 
skills are not up to this, so I’m going to see if I can calculate y explicitly in terms of V and 
x. 
 
To anticipate, I am going to need the following: 
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where               24xA =         3.7.19 
 
and   .122 ++= yxB        3.7.20 
 
Now equation 3.7.15 is .2121 RRVRR −=   In order to extract y it is necessary to square 
this twice, so that R1 and R2 appear only as .and 2

2
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1 RR   After some algebra, we obtain 
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Upon substitution of equations 3.7.16,17,18, for which we are well prepared, we find for 
the equation to the equipotentials an equation which, after some algebra, can be written as 
a quartic equation in B: 
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and  .4
4 Va =         3.7.27 

 
 
The algorithm will be as follows:  For a given V and x, calculate the quartic coefficients 
from equations 3.7.23-27.   Solve the quartic equation 3.7.22 for B.   Calculate y from 
equation 3.7.20.   My attempt to do this is shown in figure III.11.  The dipole is supposed 
to have a negative charge at (−1 , 0) and a positive charge at (+1 , 0).  The equipotentials 
are drawn for V  =  0.05, 0.10, 0.20, 0.40, 0.80.   My computing skills, or my energy, or 
both, expired without drawing the field lines.  They will at first diverge radially from the 
positive charge at (+1 , 0) and will subsequently be orthogonal to the equipotentials.  
Help from any reader in completing the drawing will be welcome. 
 

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

x/L

y/
L

FIGURE III.11

V = 0.05

0.10

0.20

0.40
0.80

 
 
3.8   Quadrupole Moment 
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Consider the sytem of charges shown in figure III.12.  It has no net charge and no net 
dipole moment.  It will experience neither a net force nor a net torque in a uniform field, 
nor will it experience a net force even in a nonuniform field.  If, however, it is in a 
nonuniform field, increasing, say, to the right, the upper pair will experience a force to 
the right and the lower pair will experience a force to the left; thus the system will 
experience a net torque in an inhomogeneous field. 
 
The sytem possess what is known as a quadrupole moment.   While a single charge is a 
scalar quantity, and a dipole moment is a vector quantity, the quadrupole moment is a 
second order symmetric tensor. 
 
The dipole moment of a system of charges is a vector with three components given by  

.,, iiziiyiix zQpyQpxQp ∑∑∑ ===  The quadrupole moment q has nine 

components (of which six are distinct) defined by ,,2
iiixyiixx yxQqxQq ∑∑ ==  etc., 

and its matrix representation is 
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qqq
qqq
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q      3.8.1 

 
For a continuous charge distribution with charge density ρ coulombs per square metre, 
the components will be given by ,2 τρ= ∫ dxqxx  etc., where dτ is a volume element, 
given in rectangular coordinates by dxdydz and in spherical coordinates by 

.sin2 φθθ ddrdr   The SI unit of quadrupole moment is C m2, and the dimensions are L2Q, 
 
By suitable rotation of axes, in the usual way (see for example section 2.17 of Classical 
Mechanics), the matrix can be diagonalized, and the diagonal elements are then the 
eigenvalues of the quadrupole moment, and the trace of the matrix is unaltered by the 
rotation. 
 
 
3.9    Potential at a Large Distance from a Charged Body 
 
We wish to find the potential at a point P at a large distance R from a charged body, in 
terms of its total charge and its dipole, quadrupole, and possibly higher-order moments.   
There will be no loss of generality if we choose a set of axes such that P is on the z-axis. 
 
We refer to figure III.13, and we consider a volume element δτ at a distance r from some 
origin.   The point P is at a distance r from the origin and a distance ∆ from δτ.   The 
potential at P from the charge in the element δτ is given by 
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and so the potential from the charge on the whole body is given by 
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On expanding the parentheses by the binomial theorem, we find, after a little trouble, that 
this becomes 
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where the polynomials P are the Legendre polynomials given by 
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   ,)1cos3()(cos 2
2
1

2 −θ=θP      3.9.5 
 
and   .)cos3cos5()(cos 3

2
1

3 θ−θ=θP     3.9.6 
 
We see from the forms of these integrals and the definitions of the components of the 
dipole and quadrupole moments that this can now be written: 
 

  ,)Tr3(
2

14 320 K+−++=πε qzzq
RR

p
R
QV    3.9.7 

 
Here Tr q is the trace of the quadrupole moment matrix, or the (invariant) sum of its 
diagonal elements.  Equation 3.9.7 can also be written 
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The quantity )(2 yyxxzz qqq +− of the diagonalized matrix is often referred to as “the” 
quadrupole moment.   It is zero if all three diagonal components are zero or if 

.)(2
1

yyxxzz qqq +=   If the body has cylindrical symmetry about the z-axis, this becomes 
.)(2 xxzz qq −  

 
Exercise. 
 
Show that the potential at (r , θ) in the vicinity of the linear quadrupole of figure III.14 is 
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