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CHAPTER 5 
CAPACITORS 

 
 
5.1    Introduction 
 
A capacitor consists of two metal plates separated by a nonconducting medium (known 
as the dielectric medium or simply the dielectric, or by a vacuum.   It is represented by 
the electrical symbol 
                                                                  
                                        . 
 
 
Capacitors of one sort or another are included in almost any electronic device.  
Physically, there is a vast variety of shapes, sizes and construction, depending upon their 
particular application.  This chapter, however, is not primarily concerned with real, 
practical capacitors and how they are made and what they are used for, although a brief 
section at the end of the chapter will discuss this.  In addition to their practical uses in 
electronic circuits, capacitors are very useful to professors for torturing students during 
exams, and, more importantly, for helping students to understand the concepts of and the 
relationships between electric fields E and D, potential difference, permittivity, energy, 
and so on.  The capacitors in this chapter are, for the most part, imaginary academic 
concepts useful largely for pedagogical purposes.  Need the electronics technician or 
electronics engineer spend time on these academic capacitors, apparently so far removed 
from the real devices to be found in electronic equipment?   The answer is surely and 
decidedly yes – more than anyone else, the practical technician or engineer must 
thoroughly understand the basic concepts of electricity before even starting with real 
electronic devices. 
 
If a potential difference is maintained across the two plates of a capacitor (for example, 
by connecting the plates across the poles of a battery) a charge +Q will be stored on one 
plate and −Q on the other.  The ratio of the charge stored on the plates to the potential 
difference V across them is called the capacitance C of the capacitor.  Thus: 
 
     .CVQ =      5.1.1 
 
If, when the potential difference is one volt, the charge stored is one coulomb, the 
capacitance is one farad, F.  Thus, a farad is a coulomb per volt.  It should be mentioned 
here that, in practical terms, a farad is a very large unit of capacitance, and most 
capacitors have capacitances of the order of microfarads, µF. 
 

The dimensions of capacitance are .QTLM
QTML
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It might be remarked that, in older books, a capacitor was called a “condenser”, and its capacitance was 
called its “capacity”.  Thus what we would now call the “capacitance of a capacitor” was formerly called 
the “capacity of a condenser”. 
 
In the highly idealized capacitors of this chapter, the linear dimensions of the plates 
(length and breadth, or diameter) are supposed to be very much larger than the separation 
between them.  This in fact is nearly always the case in real capacitors, too, though 
perhaps not necessarily for the same reason.  In real capacitors, the distance between the 
plates is small so that the capacitance is as large as possible.  In the imaginary capacitors 
of this chapter, I want the separation to be small so that the electric field between the 
plates is uniform.  Thus the capacitors I shall be discussing are mostly like figure V.1, 
where I have indicated, in blue, the electric field between the plates:   
 
 
 
 
 
 
 
 
 
However, I shall not always draw them like this, because it is rather difficult to see what 
is going on inside the capacitor.  I shall usually much exaggerate the scale in one 
direction, so that my drawings will look more like this: 
 
  
 
 
 
 
 
 
 
 
 
 
If the separation were really as large as this, the field would not be nearly as uniform as 
indicated; the electric field lines would greatly bulge outwards near the edges of the 
plates.   
 
In the next few sections we are going to derive formulas for the capacitances of various 
capacitors of simple geometric shapes. 
 
 
 
 
 

FIGURE V.1 

FIGURE V.2 
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5.2   Plane Parallel Capacitor 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We have a capacitor whose plates are each of area A, separation d, and the medium 
between the plate has permittivity ε.   It is connected to a battery of EMF V, so the 
potential difference across the plates is V.  The electric field between the plates is E  =  
V/d, and therefore D  =  εE/d.   The total D-flux arising from the positive plate is DA, and, 
by Gauss’s law, this must equal Q, the charge on the plate.     
 
Thus ,/dAVQ ε=  and therefore the capacitance is 
 

    .
d
AC ε

=       5.2.1 

 
Verify that this is dimensionally correct, and note how the capacitance depends upon ε, A 
and d. 
 
In Section 1.5 we gave the SI units of permittivity as C2 N−1 m−2.  Equation 5.2.1 shows 
that a more convenient SI unit for permittivity is F m−1, or farads per metre. 
 
Question:  If the separation of the plates is not small, so that the electric field is not 
uniform, and the field lines bulge outwards at the edge, will the capacitance be less than 
or greater than εA/d? 
 
 
 
 
 
 

FIGURE V.3 V 
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5.3   Coaxial Cylindrical Capacitor 
   
 
 
 
 
 
 
 
 
The radii of the inner and outer cylinders are a and b, and the permittivity between them 
is ε.  Suppose that the two cylinders are connected to a battery so that the potential 
difference between them is V, and the charge per unit length on the inner cylinder is +λ C 
m−1, and on the outer cylinder is −λ C m−1.  We have seen (Subsection 2.2.3) that the 

potential difference between the cylinders under such circumstances is .)/ln(
2

ab
πε
λ   

Therefore the capacitance per unit length, 'C , is 
 

    .
)/ln(

2'
ab

C πε
=      5.3.1 

 
This is by no means solely of academic interest.  The capacitance per unit length of 
coaxial cable (“coax”) is an important property of the cable, and this is the formula used 
to calculate it. 
 
 
 
5.4   Concentric Spherical Capacitor 
  
Unlike the coaxial cylindrical capacitor, I don’t know of any very obvious practical 
application, nor quite how you would construct one and connect the two spheres to a 
battery, but let’s go ahead all the same.  Figure V.4 will do just as well for this one. 
 
The two spheres are of inner and outer radii a and b, with a potential difference V 
between them, with charges +Q and −Q on the inner and outer spheres respectively.  The 

potential difference between the two spheres is then ,11
4







 −

πε ba
Q  and so the 

capacitance is 
 

    .
11

4

ba

C
−

πε
=       5.4.1 

 

a 

ε

b 

FIGURE V.4
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If ,∞→b  we obtain for the capacitance of an isolated sphere of radius a: 
 
 
    .4 aC πε=       5.4.2 
 
 
Exercise:  Calculate the capacitance of planet Earth, of diameter 6.371 × 103 km, 
suspended in free space.  I make it 709 µF -  which may be a bit smaller than you were 
expecting. 
 
 
5.5   Capacitors in Parallel 
 
  
 
 
 
 
 
 
 
 
 
The potential difference is the same across each, and the total charge is the sum of the 
charges on the individual capacitor.  Therefore: 
 
    .321 CCCC ++=      5.5.1 
 
 
5.6   Capacitors in Series 
 
 
 
 
 
 
 
 
 
The charge is the same on each, and the potential difference across the system is the sum 
of the potential differences across the individual capacitances.  Hence 
 

    .1111

321 CCCC
++=     5.6.1 

 

C1 C3 

C2 
FIGURE V.5 

C1 C2 C3 

+Q +Q +Q −Q −Q −Q 

FIGURE V.6 
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5.7   Delta-Star Transform 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As we did with resistors in Section 4.12, we can make a delta-star transform with 
capacitors.  I leave it to the reader to show that the capacitance between any two 
terminals in the left hand box is the same as the capacitance between the corresponding 
two terminals in the right hand box provided that 
 

   ,
1

211332
1 C

CCCCCCc ++
=     5.7.1 

 

   
2

211332
2 C

CCCCCCc ++
=      5.7.2 

 

and   .
3

211332
3 C

CCCCCCc ++
=      5.7.3 

 
The converse relations are 
 

   ,
321

32
1 ccc

ccC
++

=       5.7.4 

 

   
321

13
2 ccc

ccC
++

=       5.7.5 

 

and   .
321

21
3 ccc

ccC
++

=       5.7.6 

Z 

X 

Z 
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• 

Y 

c1 c2 

c3 
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For example, just for fun, what is the capacitance between points A and B in figure V.8, 
in which I have marked the individual capacitances in microfarads?   
  
 
 
 
 
 
 
 
 
 
 
The first three capacitors are connected in delta.  Replace them by their equivalent star 
configuration.  After that it should be straightforward.  I make the answer 0.402 µF. 
 
 
5.8   Kirchhoff’s Rules 
 
We can even adapt Kirchhoff’s rules to deal with capacitors.  Thus, connect a 24 V 
battery across the circuit of figure V.8 – see figure V.9   
  
 
      
 
 
 
 
 
 
 
 
 
 
 
 
Calculate the charge held in each capacitor.  We can proceed in a manner very similar to 
how we did it in Chapter 4, applying the capacitance equivalent of Kirchhoff’s second 
rule to three closed circuits, and then making up the five necessary equations by applying 
“Kirchhoff’s first rule” to two points.  Thus: 
 

   ,0
23

24 32 =−−
QQ      5.8.1 

 

•B A• 

FIGURE V.8 
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   ,0
8

24 4
2 =−−

QQ      5.8.2 

 

   ,0
43

5
2

1 =+−
QQQ      5.8.3 

    
   ,531 QQQ +=       5.8.4 
 
and   .524 QQQ +=       5.8.5 
 
I make the solutions 
 

.C91.20,C92.39,C44.20,C01.19,C35.41 54321 µ+=µ+=µ+=µ+=µ+= QQQQQ
 
 
5.9   Problem for a Rainy Day 
 
Another problem to while away a rainy Sunday afternoon would be to replace each of the 
resistors in the cube of subsection 4.14.1 with capacitors each of capacitance c.  What is 
the total capacitance across opposite corners of the cube?  I would start by supposing that 
the cube holds a net charge of 6Q, and I would then ask myself what is the charge held in 
each of the individual capacitors.  And I would then follow the potential drop from one 
corner of the cube to the opposite corner.  I make the answer for the effective capacitance 
of the entire cube 1.2c.  
 
 
5.10   Energy Stored in a Capacitor 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+q 

+δq 

−q 

FIGURE V.10 
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Let us imagine (figure V.10) that we have a capacitor of capacitance C which, at some 
time, has a charge of +q on one plate and a charge of −q on the other plate.  The potential 
difference across the plates is then q/C.  Let us now take a charge of +δq from the bottom 
plate (the negative one) and move it up to the top plate.  We evidently have to do work to 

do this, in the amount of .q
C
q

δ   The total work required, then, starting with the plates 

completely uncharged until we have transferred a charge Q from one plate to the other is 

).2/(1 2

0
CQdqq

C
Q

=∫   This is, then, the energy E stored in the capacitor, and, by 

application of Q  = CV it can also be written ,2
1 QV=E or, more usually, 

 
     .2

2
1 CV=E      5.10.1 

 
Verify that this has the correct dimensions for energy.  Also, think about how many 
expressions for energy you know that are of the form .2

2
1 ab   There are more to come. 

 
The symbol E is becoming rather over-worked.  At present I am using the  following: 
 
   E  =  magnitude of the electric field 
   E  =  electric field as a vector 
   E  = electromotive force 
   E  =  energy 
 
Sorry about that! 
 
 
5.11    Energy Stored in an Electric Field 
 
Recall that we are assuming that the separation between the plates is small compared with 
their linear dimensions and that therefore the electric field is uniform between the plates. 
 
The capacitance is dAC /ε= , and the potential differnece between the plates is Ed, 
where E is the electric field and d is the distance between the plates.  Thus the energy 
stored in the capacitor is .2

2
1 AdEε   The volume of the dielectric (insulating) material 

between the plates is Ad, and therefore we find the following expression for the energy 
stored per unit volume in a dielectric material in which there is an electric field: 
 
     .2

2
1 Eε  

 
Verify that this has the correct dimensions for energy per unit volume. 
 
If the space between the plates is a vacuum, we have the following expression for the 
enrgy stored ber unit volume in the electric field 
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     2
02

1 Eε  
 
- even though there is absolutely nothing other than energy in the space.  Think about 
that! 
 
I mentioned in Section 1.7 that in an anisotropic medium D and E are not parallel, the permittivity then 
being a tensor quantity.  In that case the correct expression for the energy per unit volume in an electric 

field is .2
1 ED •  

 
 
5.12  Force Between the Plates of a Plane Parallel Plate Capacitor 
 
We imagine a capacitor with a charge +Q on one plate and −Q on the other, and initially 
the plates are almost, but not quite, touching.  There is a force F between the plates.  Now 
we gradually pull the plates apart (but the separation remains small enough that it is still 
small compared with the linear dimensions of the plates and we can maintain our 
approximation of a uniform field between the plates, and so the force remains F as we 
separate them).   The work done in separating the plates from near zero to d is Fd, and 
this must then equal the energy stored in the capacitor, .2

1 QV   The electric field between 
the plates is E = V/d, so we find for the force between the plates 
 
     .2

1 QEF =      5.12.1 
 
 
We can now do an interesting imaginary experiment, just to see that we understand the 
various concepts.  Let us imagine that we have a capacitor in which the plates are 
horizontal; the lower plate is fixed, while the upper plate is suspended above it from a 
spring of force constant k.  We connect a battery across the plates, so the plates will 
attract each other.  The upper plate will move down, but only so far, because the 
electrical attraction between the plates is countered by the tension in the spring.  
Calculate the equilibrium separation x between the plates as a function of the applied 
voltage V. (Horrid word!  We don’t say “metreage” for length, “kilogrammage” for mass 
or “secondage” for time – so why do we say “voltage” for potential difference and 
“acreage” for area?  Ugh!)  We should be able to use our invention as a voltmeter – it 
even has an infinite resistance! 
 
Refer to figure V.11. 
 
 
  
 
 
 
 
 

k 

x 

a - x 

FIGURE V.11 
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We’ll suppose that the separation when the potential difference is zero is a, and the 
separation when the potential difference is V is x, at which time the spring has been 
extended by a length a − x. 

The electrical force between the plates is QE2
1 .  Now ,and0

x
VE

x
AVCVQ =

ε
==  

so the force between the plates is .
2

2
0

x
AVε   Here A is the area of each plate and it is 

assumed that the experiment is done in air, whose permittivity is very close to ε0.  The 
tension in the stretched spring is k(a − x), so equating the two forces gives us 
 
 

    .)(2

0

2
2

A
xakxV

ε
−

=      5.12.2 

 
Calculus shows [do it! – just differentiate x2(1  -  x)] that V has a maximum value of 

A
kaV

0

3

max 27
8

ε
=  for a separation .3

2 ax =   If we express the potential difference in units 

of maxV  and the separation in units of a, equation 5.12.2 becomes  
 

    .
4

)1(27 2
2 xxV −

=      5.12.3 

 
In figure V.12 I have plotted the separation as a function of the potential difference. 
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As expected, the potential difference is zero when the separation is 0 or 1 (and therefore 
you would expect it to go through a maximum for some intermediate separation). 
 
We see that for maxVV < there are two equilibrium positions.  For example, if V = 0.8, 
show that x = 0.396 305 or 0.876 617.  The question also arises – what happens if you 
apply across the plates a potential difference that is greater than Vmax? 
 
Further insight can be obtained from energy considerations.  The potential energy of the 
system is the work done in moving the upper plate from x = a to x = x while the potential 
difference is V: 
 

   .)(
22

2
2
1

2
0

2
0 xak

x
AV

a
AV

−+
ε

−
ε

=E    5.12.4 

 
If we express V in units of Vmax , x in units of a and E  in units of  ,2

2
1 kx  this becomes 

 
   .)1()/11( 2

2
12

27
4 xxV −+−=E     5.12.5 

 
In figure V.13 I have plotted the energy versus separation for three values of potential 
difference, 90% of Vmax, Vmax and 110% of Vmax.    
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We see that for V < Vmax, there are two equilibrium positions, of which the lower one 
(smaller x) is unstable, and we see exactly what will happen if the upper plate is 
displaced slightly upwards (larger x) from the unstable equilibrium position or if it is 
displaced slightly downwards (smaller x).  The upper equilibrium position is stable. 
 
If  V > Vmax, there is no equilibrium position, and x goes down to zero – i.e. the plates 
clamp together. 
 
 
5.13   Sharing a Charge Between Two Capacitors 
 
  
 
 
 
 
 
 
 
We have two capacitors.  C2 is initially uncharged.  Initially,C1 bears a charge Q0 and the 
potential difference across its plates is V0, such that 
 
    ,010 VCQ =        5.13.1 
 
and the energy of the system is 
 
    .2

012
1 VC=E       5.13.2 

 
We now close the switches, so that the charge is shared between the two capacitors: 
 
     
  
 
 
 
 
 
 
 
The capacitors C1 and C2 now bear charges Q1 and Q2 such that Q  =  Q1 + Q2 and 
 

  0
21

1
1 Q

CC
CQ
+

=              and           .0
21

2
2 Q

CC
CQ
+

=           5.13.3a,b 

Q0 
C1 
V0 

FIGURE V.14 
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Q1 
C1 
V 
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The potential difference across the plates of either capacitor is, of course, the same, so we 
can call it V without a subscript, and it is easily seen, by applying Q = CV to either 
capacitor, that  
 

        .0
21

1 V
CC

CV
+

=      5.13.4 

 
We can now apply 2

2
1 CV=E to each capacitor in turn to find the energy stored in each.  

We find for the energies stored in the two capacitors: 
 

  2
21

2
0

3
1

1 )(2 CC
VC
+

=E       and       .
)(2 2

21

2
0

2
12

2 CC
VCC

+
=E           5.13.5a,b 

 
The total energy stored in the two capacitors is the sum of these, which is 
 

    ,
)(2 21

2
0

2
1

CC
VC
+

=E      5.13.6 

 
which can also be written 
 

    .0
21

1 EE
CC

C
+

=      5.13.7 

 
Surprise, surprise!   The energy stored in the two capacitors is less then the energy that 
was originally stored in C1.  What has happened to the lost energy? 
 
A perfectly reasonable and not incorrect answer is that it has been dissipated as heat in 
the connecting wires as current flowed from one capacitor to the other.  However, it has 
been found in low temperature physics that if you immerse certain metals in liquid 
helium they lose all electrical resistance and they become superconductive.  So, let us 
connect the capacitors with superconducting wires.  Then there is no dissipation of 
energy as heat in the wires – so the question remains: where has the missing energy 
gone? 
 
Well, perhaps the dielectric medium in the capacitors is heated?  Again this seems like a 
perfectly reasonable and probably not entirely incorrect answer.  However, my capacitors 
have a vacuum between the plates, and are connected by superconducting wires, so that 
no heat is generated either in the dielectric or in the wires.  Where has that energy gone? 
 
This will have to remain a mystery for the time being, and a topic for lunchtime 
conversation.  In a later chapter I shall suggest another explanation. 
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5.14   Mixed Dielectrics 
 
This section addresses the question:  If there are two or more dielectric media between 
the plates of a capacitor, with different permittivities, are the electric fields in the two 
media different, or are they the same?  The answer depends on 
 
 1.  Whether by “electric field” you mean E or D; 
 
 2.  The disposition of the media between the plates – i.e. whether the two 
dielectrics are in series or in parallel. 
 
Let us first suppose that two media are in series (figure V.16). 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
Our capacitor has two dielectrics in series, the first one of thickness d1 and permittivity ε1 
and the second one of thickness d2 and permittivity ε2.    As always, the thicknesses of the 
dielectrics are supposed to be small so that the fields within them are uniform. This is 
effectively two capacitors in series, of capacitances ./and/ 2211 dAdA εε   The total 
capacitance is therefore 
 

    .
2112

21

dd
A

C
ε+ε

εε
=      5.14.1 

 
Let us imagine that the potential difference across the plates is V0. Specifically, we’ll 
suppose the potential of the lower plate is zero and the potential of the upper plate is V0.  
The charge Q held by the capacitor (positive on one plate, negative on the other) is just 
given by Q = CV0, and hence the surface charge density σ is CV0/A.  Gauss’s law is that 
the total D-flux arising from a charge is equal to the charge, so that in this geometry D = 
σ, and this is not altered by the nature of the dielectric materials between the plates.  
Thus, in this capacitor, D = CV0/A = Q/A in both media.  Thus D is continuous across the 
boundary. 
 

FIGURE V.16 
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Then by application of D = εE to each of the media, we find that the E-fields in the two 
media are ,)/(and)/( 2211 AQEAQE ε=ε=  the E-field (and hence the potential 
gradient) being larger in the medium with the smaller permittivity. 
 
The potential V at the media boundary is given by ./ 22 EdV =   Combining this with our 
expression for E2, and Q  =  CV and equation 5.14.1, we find for the boundary potential: 
 
     

    .
0

2112

21 V
dd

d
V

ε+ε

ε
=      5.14.2 

 
 
Let us now suppose that two media are in parallel (figure V.17). 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This time, we have two dielectrics, each of thickness d, but one has area A1 and 
permittivity ε1 while the other has area A2 and permittivity ε2.  This is just two capacitors 
in parallel, and the total capacitance is 
 

    .2211

d
A

d
AC ε

+
ε

=        5.14.3 

 
The E-field is just the potential gradient, and this is independent of any medium between 
the plates, so that E = V/d. in each of the two dielectrics. After that, we have simply that 

.and 2211 EDED ε=ε=   The charge density on the plates is given by Gauss’s law as σ 
= D, so that, if ε1 < ε2, the charge density on the left hand portion of each plate is less 
than on the right hand portion – although the potential is the same throughout each plate. 
(The surface of a metal is always an equipotential surface.)  The two different charge 
densities on each plate is a result of the different polarizations of the two dielectrics – 
something that will be more readily understood a little later in this chapter when we deal 
with media polarization. 
 

0 

d 

E D1 

ε2 ε1 

FIGURE V.17 
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We have established that: 
 
     1.  The component of D perpendicular to a boundary is continuous; 
  
     2.  The component of E parallel to a boundary is continuous. 
 
In figure V.18 we are looking at the D-field and at the E-field as it crosses a boundary in 
which ε1 < ε2.  Note that Dy and Ex are the same on either side of the boundary.  This 
results in: 
 

    .
tan
tan

2

1

2

1

ε
ε

=
θ
θ       5.14.4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.15   Changing the Distance Between the Plates of a Capacitor 
 
If you gradually increase the distance between the plates of a capacitor (although always 
keeping it sufficiently small so that the field is uniform) does the intensity of the field 
change or does it stay the same?  If the former, does it increase or decrease? 
 
The answer to these questions depends 
 
     1.  on whether, by the field, you are referring to the E-field or the D-field; 
 
     2.  on whether the plates are isolated or if they are connected to the poles of a battery. 
 
 
We shall start by supposing that the plates are isolated. 

ε1 

ε2 

ε1Ey/ε2

Dx 

Dy 

θ1 

θ2 

Dy 

ε2Dx/ε1

Ex

Ey

θ1

θ2

Ex 

FIGURE V.18
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In this case the charge on the plates is constant, and so is the charge density.  Gauss’s law 
requires that D = σ, so that D remains constant.  And, since the permittivity hasn’t 
changed, E also remains constant.   
 
The potential difference across the plates is Ed, so, as you increase the plate separation, 
so the potential difference across the plates in increased.   The capacitance decreases 
from εA/d1 to εA/d2 and the energy stored in the capacitor increases from 

.
2

to
2

2
1

2
1

ε
σ

ε
σ AdAd   This energy derives from the work done in separating the plates. 

 
 
Now let’s suppose that the plates are connected to a battery of EMF V, with air or a 
vacuum between the plates.  At first, the separation is d1.  The magnitudes of E and D are, 
respectively, V/d1 and ε0V/d1.  When we have increased the separation to d2, the potential 
difference across the plates has not changed; it is still the EMF V of the battery.  The 
electric field, however, is now only E = V/d2 and D = ε0V/d2.  But Gauss’s law still 
dictates that D = σ, and therefore the charge density, and the total charge on the plates, is 
less than it was before.  It has gone into the battery.  In other words, in doing work by 
separating the plates we have recharged the battery.  The energy stored in the capacitor 

was originally ;
2 1

2
0

d
AVε  it is now only .

2 2

2
0

d
AVε   Thus the energy held in the capacitor has 

been reduced by .11

21

2
02

1








−ε

dd
AV  

 

The charge originally held by the capacitor was .
1

0

d
AVε   After the plate separation has 

been increased to d2 the charge held is .
2

0

d
AVε   The difference, 








−ε

21
0

11
dd

AV , is the 

charge that has gone into the battery.  The energy, or work, required to force this amount 

of charge into the battery against its EMF V is .11

21

2
0 








−ε

dd
AV   Half of this came from 

the loss in energy held by the capacitor (see above). The other half presumably came 
from the mechanical work you did in separating the plates.  Let’s see if we can verify 
this. 
 
When the plate separation is x, the force between the plates is ,2

1 QE  which is 

.
2

or.
2

2
00

2
1

x
AV

x
V

x
AV εε    The work required to increase x from d1 to d2 is 

,
2

2

1
2

2
0 ∫

ε d

d x
dxAV   which is indeed .11
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2
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1




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


−ε

dd
AV   Thus this amount of mechanical 
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work, plus an equal amount of energy from the capacitor, has gone into recharging the 
battery.  Expressed otherwise, the work done in separating the plates equals the work 
required to charge the battery minus the decrease in energy stored by the capacitor. 
 
 
 
Perhaps we have invented a battery charger (figure V.19)! 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When the plate separation is x, the charge stored in the capacitor is .0

x
AVQ ε

=   If x is 

increased at a rate x& , Q will increase at a rate .2
0

x
xAVQ
&& ε

−=   That is, the capacitor will 

discharge (because Q& is negative), and a current 2
0

x
xAVI
&ε

= will flow counterclockwise 

in the circuit.  (Verify that this expression is dimensionally correct for current.) 
 
 
 
5.16   Inserting a Dielectric into a Capacitor 
 
Suppose you start with two plates separated by a vacuum or by air, with a potential 
difference across the plates, and you then insert a dielectric material of permittivity ε0  
between the plates.  Does the intensity of the field change or does it stay the same?  If the 
former, does it increase or decrease? 
 
The answer to these questions depends 
     1.  on whether, by the field, you are referring to the E-field or the D-field; 
 
 

x 

I 

FIGURE V.19 

x&
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     2.  on whether the plates are isolated or if they are connected to the poles of a battery. 
 
 
 
 
 
We shall start by supposing that the plates are isolated.   See figure V.20.   
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
Let Q be the charge on the plates, and σ the surface charge density.  These are unaltered 
by the introduction of the dielectric.  Gauss’s law provides that D = σ, so this, too, is 
unaltered by the introduction of the dielectric.  The electric field was, initially, 

./ 01 ε= DE   After introduction of the dielectric, it is a little less, namely ./1 ε= DE  
 
Let us take the potential of the lower plate to be zero.  Before introduction of the 
dielectric, the potential of the upper plate was ./ 01 εσ= dV  After introduction of the 
dielectric, it is a little less, namely ./1 εσ= dV  
 
Why is the electric field E less after introduction of the dielectric material?  It is because 
the dielectric material becomes polarized.  We saw in Section 3.6 how matter may 
become polarized.  Either molecules with pre-existing dipole moments align themselves 
with the imposed electric field, or, if they have no permanent dipole moment or if they 
cannot rotate, a dipole moment can be induced in the individual molecules.  In any case, 
the effect of the alignment of all these molecular dipoles is that there is a slight surplus of 
positive charge on the surface of the dielectric material next to the negative plate, and a 
slight surplus of negative charge on the surface of the dielectric material next to the 
positive plate.  This produces an electric field opposite to the direction of the imposed 
field, and thus the total electric field is somewhat reduced. 
 
Before introduction of the dielectric material, the energy stored in the capacitor was 

12
1 QV .  After introduction of the material, it is ,22

1 QV  which is a little bit less.  Thus it 
will require work to remove the material from between the plates.  The empty capacitor 

V1  =  σd/ε0 

FIGURE V.20 

− − − − − − − − − − −− − − − − − − − − − −

+ + + + + + + + + + + + + + + + + + + + + +

0 

ε ε0 

σ Q = σA Q = σA σ 

V2  =  σd/ε 

0 
D = σ E2 = D/ε D = σE1 = D/ε0 

−      −      −      −      −      −      −

+      +             +      +             +   
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will tend to suck the material in, just as the charged rod in Chapter 1 attracted an 
uncharged pith ball. 
 
 
Now let us suppose that the plates are connected to a battery.   (Figure V.21) 
 
   
 
 
 
 
 
 
 
   
 
 
 
 
 
 
This time the potential difference remains constant, and therefore so does the E-field, 
which is just V/d.  But the D-field increases from ε0E to εE, and so, therefore, does the 
surface charge density on the plates.  This extra charge comes from the battery. 
 

The capacitance increases from 
d
A

d
A εε to0  and the charge stored on the plates increases 

from .to 2
0

1 d
AVQ

d
AVQ ε

=
ε

=   The energy stored in the capacitor increases from 

.to 22
1

12
1 VQVQ    
 
The energy supplied by the battery = the energy dumped into the capacitor + the energy 
required to suck the dielectric material into the capacitor: 
 
  .)()()( 122

1
122

1
12 VQQVQQVQQ −+−=−  

 
You would have to do work to remove the material from the capacitor;  half of the work 
you do would be the mechanical work performed in pulling the material out; the other 
half would be used in charging the battery. 
 
In Section 5.15 I invented one type of battery charger.  I am now going to make my 
fortune by inventing another type of battery charger. 
 
 
 

V 

FIGURE V.21 

− − − − − − − − − − − − −− − − − − − − − − − −

+ + + + + + + + + + + + + + + + + + + + + + + +

0 

ε ε0 

V 

0 

D2 = εE E = V/d D1 = ε0E

−      −      −      −      −      −      −

+      +      +      +      +      +     + 
E = V/d 

+      +      +      +      +      +     + 

−      −      −      −      −      −      −
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Example 1.    
 
 
 
 
 
 
 
 
 
 
 
 
A capacitor is formed of two square plates, each of dimensions a × a, separation d, 
connected to a battery.  There is a dielectric medium of permittivity ε between the plates.  
I pull the dielectric medium out at speed x& .  Calculate the current in the circuit as the 
battery is recharged. 
 
Solution. 
 
When I have moved a distance x, the capacitance is  
 

   .)()( 0
2

0

d
axa

d
ax

d
xaa ε−ε−ε

=
ε

+
−ε  

 
The charge held by the capacitor is then 
 

   .)( 0
2

V
d

axaQ 






 ε−ε−ε
=  

 
If the dielectric is moved out at speed x& , the charge held by the capacitor will increase at 
a rate 
 

   .)( 0

d
VxaQ
&& ε−ε−

=  

 
(That’s negative, so Q decreases.)   A current of this magnitude therefore flows clockwise 
around the circuit, into the battery.  You should verify that the expression has the correct 
dimensions for current. 
 
 
 
 
 
 

ε ε0 x&  

x 
a − x 

d 

FIGURE V.22 

V 
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Example 2. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A capacitor consists of two plates, each of area A, spearated by a distance x, connected to 
a battery of EMF V.  A cup rests on the lower plate.  The cup is gradually filled with a 
nonconducting liquid of permittivity ε, the surface rising at a speed x& .  Calculate the 
magnitude and direction of the current in the circuit. 
 
It is easy to calculate that, when the liquid has a depth x, the capacitance of the capacitor 
is 

    
xd

AC
)( 0

0

ε−ε−ε
εε

=  

 
and the charge held by the capacitor is then 
 

    .
)( 0

0

xd
AVQ

ε−ε−ε
εε

=  

 
If x is increasing at a rate x& , the rate at which Q, the charge on the capacitor, is increasing 
is 
 

    .
])([

)(
2

0

00

xd
xAVQ

ε−ε−ε
ε−εεε

=
&&  

 

FIGURE V.23 
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A current of this magnitude therefore flows in the circuit counterclockwise, draining the 

battery.   This current increases monotonically from zero to .)(
2

0

0

d
xAV

ε
ε−εε &

 

 
 
 
 
5.17   Polarization and Susceptibility 
 
When an insulating material is placed in an electric field, it becomes polarized, either by 
rotation of molecules with pre-existing dipole moments or by induction of dipole 
moments in the individual molecules.  Inside the material, D is then greater than ε0E.  
Indeed, 
 
    .0 PED +ε=      5.17.1 
 
The excess, P, of D over ε0E is called the polarization of the medium.  It is dimensionally 
similar to, and expressed in the same units as, D;  that is to say C m−2.  Another way of 
looking at the polarization of a medium is that it is the dipole moment per unit volume. 
 
In vector form, the relation is 
 
    .0 PED +ε=      5.17.2 
 
If the medium is isotropic, all three vectors are parallel.    
 
Some media are more susceptible to becoming polarized in a polarizing field than others, 
and the ratio of P to ε0E is called the electric susceptibility χe of the medium: 
 
    .0e EP εχ=       5.17.3 
 
This implies that P is linearly proportional to E but only if χe is independent of E, which 
is by no means always the case, but is good for small polarizations. 
 
When we combine equations 5.17.1 and 5.17.3 with D = εE and with ,/ 0r εε=ε the 
relative permittivity or dielectric constant, we obtain 
 
    .1re −ε=χ       5.17.4 
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5.18    Discharging a Capacitor Through a Resistor 
 
     
 
     
 
 
 
 
 
 
 
What you have to be sure of in this section and the following section is to get the signs 
right.  For example, if the charge held in the capacitor at some time is Q, then the symbol 

,/or, dtdQQ&  means the rate of increase of Q with respect to time.  If the capacitor is 
discharging, Q&  is negative.  Expressed otherwise, the symbol to be used for the rate at 
which a capacitor is losing charge is Q&− . 
 
In figure V.24 a capacitor is discharging through a resistor, and the current as drawn is 
given by .QI &−=   The potential difference across the plates of the capacitor is Q/C, and 
the potential difference across the resistor is .RQIR &−=  
 

Thus:                                   .0=+=− RQ
C
QIR

C
Q &     5.18.1 

 
On separating the variables (Q and t) and integrating we obtain 
 
 

    ,1
00

∫∫ −=
tQ

Q
dt

RCQ
dQ     5.18.2 

 
where Q0 is the charge in the capacitor at t  =  0. 
 
Hence    .)/(

0
RCteQQ −=      5.18.3 

 
Here RC is the time constant.  (Verify that it has the dimensions of time.)  It is the time 
for the charge to be reduced to 1/e  = 36.8% of the initial charge.  The half life of the 
charge is .6931.02ln RCRC =    
 
 
 
 
 
 

FIGURE V.24 

R 

+ −

QI &−=  
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5.19    Charging a Capacitor Through a Resistor 
   
 
 
 
 
 
 
 
 
 
 
 
This time, the charge on the capacitor is increasing, so the current, as drawn, is .Q&+  
Thus 

   .0=−−
C
QRQ&E      5.19.1 

 

Whence:  ∫∫ =
−

tQ
dt

RCQC
dQ

00
.1

E     5.19.2 

 
 

[Note:  Don’t be tempted to write this as ∫∫ −=
−

tQ
dt

RCCQ
dQ

00
.1

E   Remember that, 

at any finite t, Q is less than its asymptotic value CE , and you want to keep the 
denominator of the left hand integral positive.] 
 
Upon integrating, we obtain 
 
   ( ) .1 )/(RCteCEQ −−=     5.19.3 
 
Thus the charge on the capacitor asymptotically approaches its final value CE , reaching 
63%  (1 − e−1) of the final value in time RC and half of the final value in time RC ln 2  =  
0.6931 RC. 
 
The potential difference across the plates increases at the same rate.  Potential difference 
cannot change instantaneously in any circuit containing capacitance. 
 
Here’s a way of making a neon lamp flash periodically.   
 
In figure V. 2

125 (sorry about the fraction – I slipped the figure in as an afterthought!), the 
things that looks something like a happy face on the right is a discharge tube; the dot 
inside it indicates that it’s not a complete vacuum inside, but it has a little bit of gas  

QI &=  

FIGURE V.25 
C 

E
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inside.  It will discharge when the potential difference across the electrodes is higher than 
a certain threshold.  When an electric field is applied across the tube, electrons and 
positive ions accelerate, but are soon slowed by collisions.  But, if the field is sufficiently 
high, the electrons and ions will have enough energy on collision to ionize the atoms they 
collide with, so a cascading discharge will occur.  The potential difference rises 
exponentially on an RC time-scale until it reaches the threshold value, and the neon tube 
suddenly discharges.  Then it starts all over again. 
 
 
5.20   Real Capacitors 
 
Real capacitors can vary from huge metal plates suspended in oil to the tiny cylindrical 
components seen inside a radio.  A great deal of information about them is available on 
the Web and from manufacturers’ catalogues, and I only make the briefest remarks here. 
  
A typical inexpensive capacity seen inside a radio is nothing much more than two strips 
of metal foil separated by a strip of plastic or even paper, rolled up into a cylinder much 
like a Swiss roll.  Thus the separation of the “plates” is small, and the area of the plates is 
as much as can be conveniently rolled into a tiny radio component.   
 
In most applications it doesn’t matter which way round the capacitor is connected.  
However, with some capacitors it is intended that the outermost of the two metal strips be 
grounded (“earthed” in UK terminology), and the inner one is shielded by the outer one 
from stray electric fields.  In that case the symbol used to represent the capacitor is 
 
 
 
The curved line is the outer strip, and is the one that is intended to be grounded.  It should 
be noted, however, that not everyone appears to be aware of this convention or adheres to 
it, and some people will use this symbol to denote any capacitor.  Therefore care must be 
taken in reading the literature to be sure that you know what the writer intended, and, if 
you are describing a circuit yourself, you must make very clear the intended meaning of 
your symbols.  
 
There is a type of capacitor known as an electrolytic capacitor.  The two “plates” are 
strips of aluminium foil separated by a conducting paste, or electrolyte.  One of the foils 
is covered by an extremely thin layer of aluminium oxide, which has been electrolytically 
deposited, and it is this layer than forms the dielectric medium, not the paste that 

FIGURE V. 2
125  
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separates the two foils.   Because of the extreme thinness of the oxide layer, the 
capacitance is relatively high, although it may not be possible to control the actual 
thickness with great precision and consequently the actual value of the capacitance may 
not be known with great precision.  It is very important that an electrolytic capacitor be 
corrected the right way round in a circuit, otherwise electrolysis will start to remove the 
oxide layer from one foil and deposit it on the other, that greatly changing the 
capacitance.  Also, when this happens, a current may pass through the electrolyte and 
heat it up so much that the capacitor may burst open with consequent danger to the eyes.  
The symbol used to indicate an electrolytic capacitor is: 
 
 
 
The side indicated with the plus sign (which is often omitted from the symbol) is to be 
connected to the positive side of the circuit.    
 
When you tune your radio, you will usually find that, as you turn the knob that changes 
the wavelength that you want to receive, you are changing the capacitance of a variable 
air-spaced capacitor just behind the knob.  A variable capacitor can be represented by the 
symbol 
 
   
 
 
 
Such a capacitor often consists of two sets of interleaved partiallyoverlapping plates, one 
set of which can be rotated with respect to the other, thus changing the overlap area and 
hence the capacitance. 
 
Thinking about this suggests to me a couple of small problems for you to amuse yourself 
with. 
 
Problem 1.    
 
 
 
 
 
 
 
 
A capacitor (figure V.26) is made from two sets of four plates.  The area of each plate is 
A and the spacing between the plates in each set is 2d.  The two sets of plates are 
interleaved, so that the distance between the plates of one set and the plates of the other is 
d.  What is the capacitance of the system? 
 
 

+

FIGURE V.26 
2d
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Problem 2 
 
 
 
 
 
 
 
This is just like Problem 1, except that one set has four plates and the other has three.  
What is the capacitance now?    
 
Answers on the next page. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE V.27 2d
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Solutions.    The answer to the first problem is 7ε0A/d and the answer to the second 
probolem is 6ε0A/d – but it isn’t good enough just to assert that this is the case.  We must 
give some reasons. 
 
Let us suppose that the potential of the left-hand (blue) plates is zero and the potential of 
the right-hand (blue) plates is V.  The electric field in each space is V/d and D = ε0V/d.  
The surface charge density on each plate, by Gauss’s theorem, is therefore 2ε0V/d except 
for the two end plates, for which the charge density is just ε0V/d. The total charge held in 
the capacitor of Problem 1 is therefore ε0AV/d  + 3 × 2ε0AV/d =  7ε0AV/d, and the 
capacitance is therefore 7ε0A/d.  For Problem 2, the blue set has two end-plates and two 
middle-plates, so the charge held is 2 × ε0AV/d  +  2  ×  2 ε0AV/d  =  6ε0AV/d.  The red set 
has three middle- plates and no end-plates, so the charge held is 3 × 2ε0AV/d =  6ε0AV/d.  
The capacitance is therefore 6ε0A/d.   
 
 
 
 
 
  
 
 
 
 
 
 
 


