
 1

CHAPTER 2 
ELECTROSTATIC POTENTIAL 

 
 
2.1   Introduction 
 
Imagine that some region of space, such as the room you are sitting in, is permeated by 
an electric field.  (Perhaps there are all sorts of electrically charged bodies outside the 
room.)  If you place a small positive test charge somewhere in the room, it will 
experience a force F  =  QE.  If you try to move the charge from point A to point B 
against the direction of the electric field, you will have to do work.  If work is required to 
move a positive charge from point A to point B, there is said to be an electrical potential 
difference between A and B, with point A being at the lower potential.  If one joule of 
work is required to move one coulomb of charge from A to B, the potential difference 
between A and B is one volt (V). 
 
The dimensions of potential difference are ML2T−2Q−1.    
 
All we have done so far is to define the potential difference between two points.  We 
cannot define “the” potential at a point unless we arbitrarily assign some reference point 
as having a defined potential.  It is not always necessary to do this, since we are often 
interested only in the potential differences between point, but in many circumstances it is 
customary to define the potential to be zero at an infinite distance from any charges of 
interest.  We can then say what “the” potential is at some nearby point.   Potential and 
potential difference are scalar quantities. 
 
Suppose we have an electric field E in the positive x-direction (towards the right).  This 
means that potential is decreasing to the right.  You would have to do work to move a 
positive test charge Q to the left, so that potential is increasing towards the left.  The 
force on Q  is QE, so the work you would have to do to move it a distance dx to the right 
is −QE dx, but by definition this is also equal to Q dV, where dV is the potential 
difference between x and x + dx.   
 

Therefore     .
dx
dVE −=           2.1.1 

 
In a more general three-dimensional situation, this is written 
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We see that, as an alternative to expressing electric field strength in newtons per 
coulomb, we can equally well express it is volts per metre (V m−1). 
 
The inverse of equation 2.1.1 is, of course, 
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    .constant+−= ∫ dxEV        2.1.3 
 
 
 
2.2   Potential Near Various Charged Bodies 
 
 
  2.2.1   Point Charge 
 
Let us arbitrarily assign the value zero to the potential at an infinite distance from a point 
charge Q.  “The” potential at a distance r from this charge is then the work required to 
move a unit positive charge from infinity to a distance r. 
 

At a distance x from the charge, the field strength is .
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  The mutual potential energy of two charges Q1 and Q2 separated by a distance r is the 
work required to bring them to this distance apart from an original infinite separation.  
This is 
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Before proceeding, a little review is in order. 
 
Field at a distance r from a charge Q: 
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or, in vector form,         .
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Force between two charges, Q1 and Q2: 
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Potential at a distance r from a charge Q: 
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Mutual potential energy between two charges: 
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We couldn’t possibly go wrong with any of these, could we? 
 
 
 
  2.2.2    Spherical Charge Distributions 
 
Outside any spherically-symmetric charge distribution, the field is the same as if all the 
charge were concentrated at a point in the centre, and so, then, is the potential.  Thus 
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Inside a hollow spherical shell of radius a and carrying a charge Q the field is zero, and 
therefore the potential is uniform throughout the interior, and equal to the potential on the 
surface, which is 
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A solid sphere of radius a bearing a charge Q that is uniformly distributed throughout the 
sphere is easier to imagine than to achieve in practice, but, for all we know, a proton 
might be like this (it might be – but it isn’t!), so let’s calculate the field at a point P inside 
the sphere at a distance r  (< a) from the centre.   See figure II.1  
 
We can do this in two parts.  First the potential from the part of the sphere “below” P.  If 

the charge is uniformly distributed throughout the sphere, this is just .
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the charge contained within radius r, which, if the charge is uniformly distributed 

throughout the sphere, is .)/( 33 arQ  Thus, that part of the potential is .
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Next, we calculate the contribution to the potential from the charge “above” P.   Consider 
an elemental shell of radii x ,  x + δx.  The charge held by it is 
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FIGURE II.1 
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  2.2.3   Long Charged Rod 
 
The field at a distance r from a long charged rod carrying a charge λ coulombs per metre 

is .
2 0 rπε

λ    Therefore the potential difference between two points at distances a and b 

from the rod  (a  <  b) is 
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  2.2.4   Large Plane Charged Sheet 
 
The field at a distance r from a large charged sheet carrying a charge σ coulombs per 

square metre is .
2 0ε
σ    Therefore the potential difference between two points at distances 

a and b from the sheet  (a  <  b) is 
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   2.2.5  Axis of a Charged Ring 
 
The field on the axis of a charged ring is given in section 1.6.4.  The reader is invited to 
show that the potential on the axis of the ring is  
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You can do this either by integrating the expression for the field or just by thinking about 
it for a few seconds and realizing that potential is a scalar quantity. 
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  2.2.6  Axis of a Charged Disc 
 
The field on the axis of a charged disc is given in section 1.6.5.  The reader is invited to 
show that the potential on the axis of the ring is  
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2.3   Electron-volts 
 
The electron-volt is a unit of energy or work.  An electron-volt (eV) is the work required 
to move an electron through a potential difference of one volt.  Alternatively, an electron-
volt is equal to the kinetic energy acquired by an electron when it is accelerated through a 
potential difference of one volt.  Since the magnitude of the charge of an electron is about 
1.602 × 10−19 C, it follows that an electron-volt is about 1.602 × 10−19 J.  Note also that, 
because the charge on an electron is negative, it requires work to move an electron from a 
point of high potential to a point of low potential. 
 
Exercise.   If an electron is accelerated through a potential difference of a million volts, 
its kinetic energy is, of course, 1 MeV.  At what speed is it then moving? 
 
First attempt.                        .2

2
1 eVm =v  

 
(Here eV, written in italics, is not intended to mean the unit electron-volt, but e is the 
magnitude of the electron charge, and V is the potential difference (106 volts) through 
which it is accelerated.)   Thus ./2 meV=v    With m = 9.109 × 10−31 kg, this comes 
to v  =  5.9 × 108 m s−1.  Oops!   That looks awfully fast!   We’d better do it properly this 
time. 
 
Second attempt.  .)1( 2 eVmc =−γ   
 
Some readers will know exactly what we are doing here, without explanation.  Others 
may be completely mystified.   For the latter, the difficulty is that the speed that we had 
calculated was even greater than the speed of light.  To do this properly we have to use 
the formulas of special relativity.  See, for example, Chapter 15 of the Classical 
Mechanics section of these notes. 
 
At any rate, this results in  γ  =  2.958, whence β =  0.9411  and v  = 2.82 × 108 m s−1. 
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2.4  A Point Charge and an Infinite Conducting Plane 
 
 
An infinite plane metal plate is in the xy-plane.  A point charge +Q is placed on the z-axis 
at a height h above the plate.  Consequently, electrons will be attracted to the part of the 
plate immediately below the charge, so that the plate will carry a negative charge density 
σ which is greatest at the origin and which falls off with distance ρ from the origin.  Can 
we determine σ(ρ)?  See figure II.2 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First, note that the metal surface, being a conductor, is an equipotential surface, as is any 
metal surface.  The potential is uniform anywhere on the surface.  Now suppose that, 
instead of the metal surface, we had (in addition to the charge +Q at a height h above the 
xy-plane), a second point charge, −Q, at a distance h below the xy-plane.  The potential in 
the xy-plane would, by symmetry, be uniform everywhere.  That is to say that the 
potential in the xy-plane is the same as it was in the case of the single point charge and 
the metal plate, and indeed the potential at any point above the plane is the same in both 
cases.  For the purpose of calculating the potential, we can replace the metal plate by an 
image of the point charge.  It is easy to calculate the potential at a point (z , ρ).  If we 
suppose that the permiittivity above the plate is ε0, the potential at (z , ρ) is 
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The field strength E in the xy-plane is −∂ ∂V z/  evaluated at z = 0, and this is 
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The D-field is ε0 times this, and since all the lines of force are above the metal plate, 
Gauss's theorem provides that the charge density is σ = D, and hence the charge density 
is 
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This can also be written σ
π ξ

= −
Q h
2 3

. ,     2.4.4 

 
where ξ ρ2 2 2= + h , with obvious geometric interpretation. 
 
Exercise:  How much charge is there on the surface of the plate within an annulus 
bounded by radii ρ  and ρ +  dρ?  Integrate this from zero to infinity to show that the 
total charge induced on the plate is −Q. 
 
 
2.5  A Point Charge and a Conducting Sphere 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A point charge +Q is at a distance R from a metal sphere of radius a.  We are going to try 
to calculate the surface charge density induced on the surface of the sphere, as a function 
of position on the surface.  We shall bear in mind that the surface of the sphere is an 
equipotential surface, and we shall take the potential on the surface to be zero. 
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FIGURE II.3 
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Let us first construct a point I such that the triangles OPI and PQO are similar, with the 
lengths shown in figure II.3.   The length OI is a2/R.     Then R a/ / ,ξ ζ=  or 
 

     1 0
ξ ζ

− =
a R/ .    2.5.1 

 
This relation between the variables ξ and ζ is in effect the equation to the sphere 
expressed in these variables. 
 
Now suppose that, instead of the metal sphere, we had (in addition to the charge +Q at a 
distance R from O), a second point charge −(a/R)Q at I.   The locus of points where the 
potential is zero is where 
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That is, the surface of our sphere.  Thus, for purposes of calculating the potential, we can 
replace the metal sphere by an image of Q at I, this image carrying a charge of −(a/R)Q. 
 
Let us take the line OQ as the z-axis of a coordinate system.  Let X be some point such 
that OX = r and the angle XOQ = θ.  The potential at P from a charge +Q at Q and a 
charge −(a/R)Q at I is (see figure II.4) 
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The E field on the surface of the sphere is −∂ ∂V r/  evaluated at r  =  a.  The D field is ε0 
times this, and the surface charge density is equal to D.   After some patience and algebra, 
we obtain, for a point X on the surface of the sphere 
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2.6   Two Semicylindrical Electrodes 
 
This section requires that the reader should be familiar with functions of a complex 
variable and conformal transformations.  For readers not familiar with these, this section 
can be skipped without prejudice to understanding following chapters.  For readers who 
are familiar, this is a nice example of conformal transformations to solve a physical 
problem. 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We have two semicylindrical electrodes as shown in figure II.5.  The potential of the 
upper one is 0 and the potential of the lower one is V0.  We'll suppose the radius of the 
curcle is 1; or, what amounts to the same thing, we'll express coordinates x and y in units 
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y 
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of the radius.  Let us represent the position of any point whose coordinates are (x , y) by a 
complex number z = x + iy. 
 

Now let w = u + iv be a complex number related to z by ;
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In that case, the upper semicircle (V  =  0) in the xy-plane maps on to the positive u-axis 
in the uv-plane, and the lower semicircle (V  =  V0) in the xy-plane maps on to the 
negative u-axis in the uv-plane.  (Figure II.6.)  Points inside the circle bounded by the 
electrodes in the xy-plane map on to points above the u-axis in the uv-plane. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the uv-plane, the lines of force are semicircles, such as the one shown.  The potential 
goes from 0 at one end of the semicircle to V0 at the other, and so equation to the 
semicircular line of force is 
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or     V V u= −0 1

π
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The equipotentials  (V = constant) are straight lines in the uv-plane of the form 
 
     v  =  fu.     2.6.5 
    
 
(You would prefer me to use the symbol m for the slope of the equipotentials, but in a 
moment you will be glad that I chose the symbol f.) 
 
If we now transform back to the xy-plane, we see that the equation to the lines of force is 
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and the equation to the equipotentials is 
 
    1 22 2− − =x y fy ,     2.6.7 

or    x y fy2 2 2 1 0+ + − = .    2.6.8  

Now aren't you glad that I chose f ?  Those who are handy with conic sections (see 
Chapter 2 of Celestial Mechanics) will understand that the equipotentials in the xy-plane 
are circles of radii f 2 1+ , whose centres are at (0 , ! f ), and which all pass through the 
points (!1 , 0).  They are drawn as blue lines in figure II.7.    The lines of force are the 
orthogonal trajectories to these, and are of the form 
 
    x y gy2 2 2 1 0+ + + = .    2.6.9  
 
These are circles of radii g2 1−  and have their centres at (0 , ! g).  They are shown as 
dashed red lines in figure II.7. 
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FIGURE II.7 


