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CHAPTER 15 

MAXWELL'S EQUATIONS 
 

 
15.1 Introduction 
 
One of Newton's great achievements was to show that all of the phenomena of classical mechanics 
can be deduced as consequences of three basic, fundamental laws, namely Newton's laws of 
motion.  It was likewise one of Maxwell's great achievements to show that all of the phenomena of 
classical electricity and magnetism – all of the phenomena discovered by Oersted, Ampère, Henry, 
Faraday and others whose names are commemorated in several electrical units – can be deduced as 
consequences of four basic, fundamental equations.   We describe these four equations in this 
chapter, and, in passing, we also mention Poisson's and Laplace's equations.  We also show how 
Maxwell's equations predict the existence of electromagnetic waves that travel at a speed of 3 % 108 
m s−1.  This is the speed at which light is measured to move, and one of the most important bases of 
our belief that light is an electromagnetic wave. 
 
Before embarking upon this, we may need a reminder of two mathematical theorems, as well as a 
reminder of the differential equation that describes wave motion. 
 
The two mathematical theorems that we need to remind ourselves of are: 
 
The surface integral of a vector field over a closed surface is equal to the volume integral of its 
divergence. 
 
The line integral of a vector field around a closed plane curve is equal to the surface integral of its 
curl. 
 
A function f x t( )− v represents a function that is moving with speed v in the positive x-direction, 
and a function g x t( )+ v  represents a function that is moving with speed v in the negative x-
direction.   It is easy to verify by substitution that y Af Gy= +  is a solution of the differential 
equation 
 

      d y
dt

d y
dt

2

2
2
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2= v .    15.1.1 

 
 
Indeed it is the most general solution, since f and g are quite general functions, and the function y 
already contains the only two arbitrary integration constants to be expected from a second order 
differential equation.   Equation 15.1.1 is, then, the differential equation for a wave in one 
dimension.  For a function ψ( , , )x y z  in three dimensions, the corresponding wave equation is 
 
      .22 ψ∇=ψ v&&      15.1.2 
 
It is easy to remember which side of the equation v2 is on from dimensional considerations. 
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One last small point before proceeding – I may be running out of symbols!  I may need to refer to 
surface charge density, a scalar quantity for which the usual symbol is σ.  I shall also need to refer 
to magnetic vector potential, for which the usual symbol is A.  And I shall need to refer to area, for 
which either of the symbols A or σ are commonly used – or, if the vector nature of area is to be 
emphasized, A or σ.  What I shall try to do, then, to avoid this difficulty, is to use A for magnetic 
vector potential, and σ for area, and I shall try to avoid using surface charge density in any 
equation.  However, the reader is warned to be on the lookout and to be sure what each symbol 
means in a particular context.   
 
 
15.2 Maxwell's First Equation 
 
Maxwell's first equation, which describes the electrostatic field, is derived immediately from 
Gauss's theorem, which in turn is a consequence of Coulomb's inverse square law.  Gauss's theorem 
states that the surface integral of the electrostatic field D over a closed surface is equal to the charge 
enclosed by that surface.  That is 
 
     .

volumesurface ∫∫ ρ=• vdσdD     15.2.1 

 
Here ρ is the charge per unit volume.  
 
But the surface integral of a vector field over a closed surface is equal to the volume integral of its 
divergence, and therefore 
 
     .div

volume volume∫ ∫ ρ= vv ddD     15.2.2 

      
Therefore     div D  =  ρ ,     15.2.3 
 
or, in the nabla notation,   ∇ • =D ρ.     15.2.4 
 
This is the first of Maxwell's equations. 
 
 
15.3 Poisson's and Laplace's Equations  
 
Equation 15.2.4 can be written ∇ • =E ρ ε/ . where ε is the permittivity.  But E is minus the 
potential gradient; i.e. E = − ∇V .  Therefore, 
 
      ∇ = −2 V ρ ε/ .    15.3.1 
 
This is Poisson's equation.  At a point in space where the charge density is zero, it becomes 
 
      ∇ =2 0V ,      15.3.2 
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which is generally known as Laplace's equation.  Thus, regardless of how many charged bodies 
there may be an a place of interest, and regardless of their shape or size, the potential at any point 
can be calculated from Poisson's or Laplace's equations.  Courses in differential equations 
commonly discuss how to solve these equations for a variety of boundary conditions – by which is 
meant the size, shape and location of the various charged bodies and the charge carried by each. It 
perhaps just needs to be emphasized that Poisson’s and Laplace’s equations apply only for static 
fields. 
 
 
15.4 Maxwell's Second Equation 
 
Unlike the electrostatic field, magnetic fields have no sources or sinks, and the magnetic lines of 
force are closed curves.  Consequently the surface integral of the magnetic field over a closed 
surface is zero, and therefore 
   
      div B  =  0 ,     15.4.1 
 
or, in the nabla notation   ∇ • =B 0.      15.4.2 
 
This is the second of Maxwell's equations. 
 
 
15.5 Maxwell's Third Equation 
 
This is derived from Ampère's theorem, which is that the line integral of the magnetic field H 
around a closed circuit is equal to the enclosed current. 
 
Now there are two possible components to the "enclosed" current, one of which is obvious, and the 
other, I suppose, could also be said to be "obvious" once it has been pointed out!  Let's deal with 
the immediately obvious one first, and look at figure XV.1. 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 

J

FIGURE XV.1 
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In figure XV.1, I am imagining a metal cylinder with current flowing from top to bottom (i.e. 
electrons flowing from bottom to top.  It needn't be a metal cylinder, though.  It could just be a 
volume of space with a stream of protons moving from top to bottom.  In any case, the current 
density (which may vary with distance from the axis of the cylinder) is J, and the total current 
enclosed by the dashed circle is the integral of J throughout the cylinder.  In a more general 
geometry, in which J is not necessarily perpendicular to the area of interest, and indeed in  which 
the area need not be planar, this would be ∫ • .σdJ  
 
Now for the less obvious component to the "enclosed current".  See figure XV.2. 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In figure XV.2, I imagine two capacitor plates in the process of being charged.  There is 
undoubtedly a current flowing in the connecting wires.  There is a magnetic field at A, and the line 
integral of the field around the upper dotted curve is undoubtedly equal to the enclosed current.  
The current is equal to the rate at which charge is being built up on the plates.  Electrons are being 
deposited on the lower plate and are leaving the upper plate.  There is also a magnetic field at B (it 
doesn't suddenly stop!), and the field at B is just the same as the field at A, which is equal to the 
rate at which charge is being built up on the plates.  The charge on the plates  (which may not be 
uniform, and indeed won't be while the current is still flowing or if the plates are not infinite in 
extent) is equal to the integral of the charge density times the area.  And the charge density on the 
plates, by Gauss's theorem, is equal to the electric field D between the plates.  Thus the current is 
equal to the integral of D&  over the surface of the plates.  Thus the line integral of H around either 
of the dashed closed loops is equal to .∫ • σdD& . 

A 

B 

FIGURE XV.2 
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In general, both types of current (the obvious one in which there is an obvious flow of charge, and 
the less obvious one, where the electric field is varying because of a real flow of charge elsewhere) 
contributes to the magnetic field, and so Ampère's theorem in general must read 
       
    .)(

arealoop
σdJDdsH   •• ∫∫ += &      15.5.1 

 
But the line integral of a vector field around a closed plane curve is equal to the surface integral of 
its curl, and therefore 
 
     .)(

areaarea
σσ dJDdH curl •• ∫∫ += &     15.5.2 

 
Thus we arrive at: 
     ,JDH curl += &      15.5.3 
 
or, in the nabla notation,  .JDH += &×∇      15.5.4 
 
This is the third of Maxwell's equations. 
 
 
15.6 The Magnetic Equivalent of Poisson's Equation 
 
This deals with a static magnetic field, where there is no electrostatic field or at least any 
electrostatic field is indeed static – i.e. not changing.  In that case curl H J= .   Now the magnetic 
field can be derived from the curl of the magnetic vector potential, defined by the two equations 
 
     B   =  curl A      15.6.1 
 
and     div A  =  0.      15.6.2 
 
(See Chapter 9 for a reminder of this.)   Together with H  =  B/µ   (µ  = permeability), this gives us 
 
     curl curl A J= µ .     15.6.3 
 
If we now remind ourselves of the jabberwockian-sounding vector differential operator equivalence 
 
    curl curl   ≡   grad div −  nabla-squared ,   15.6.4 
      
together with equation 15.6.2, this gives us 
 
     ∇ = −2A Jµ .      15.6.5 
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I don't know if this equation has any particular name, but it plays the same role for static magnetic 
fields that Poisson's equation plays for electrostatic fields.  No matter what the distribution of 
currents, the magnetic vector potential at any point must obey equation 15.6.5 
 
      
15.7 Maxwell's Fourth Equation 
 
This is derived from the laws of electromagnetic induction. 
 
Faraday's and Lenz's laws of electromagnetic induction tell us that the E.M.F. induced in a closed 
circuit is equal to minus the rate of change of B-flux through the circuit.  The E.M.F. around a 
closed circuit is the line integral of E .ds around the circuit, where E is the electric field. The line 
integral of E around the closed circuit is equal to the surface integral of its curl. The rate of change 
of B-flux through a circuit is the surface integral of .B&   Therefore 
 
      ,BEcurl &−=      15.7.1 
 
or, in the nabla notation,  .BE &−=×∇       15.7.2 
 
This is the fourth of Maxwell's equations. 
 
 
15.8 Summary of Maxwell's and Poisson's Equations 
 

Maxwell's equations: 
 
∇• =D ρ.      15.8.1 
 
∇• =B 0.      15.8.2 
 

.JDH += &×∇      15.8.3 
 

.BE &−=×∇       15.8.4 
 

Sometimes you may see versions of these equations with factors such as 4π or c scattered liberally 
throughout them.  If you do, my best advice is to white them out with a bottle of erasing fluid, or 
otherwise ignore them.  I shall try to explain in Chapter 16 where they come from.  They serve no 
scientific purpose, and are merely conversion factors between the many different systems of units 
that have been used in the past. 
 
Poisson's equation for the potential in an electrostatic field: 
 
     ∇ = −2V ρ ε/ .      15.8.5 
 
The equivalent of Poisson's equation for the magnetic vector potential on a static magnetic field: 
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     ∇ = −2A Jµ .      15.8.6 
 
 
15.9 Electromagnetic Waves 
 
Maxwell predicted the existence of electromagnetic waves, and these were generated 
experimentally by Hertz shortly afterwards.  In addition, the predicted speed of the waves was 
3 108×  m s−1, the same as the measured speed of light, showing that light is an electromagnetic 
wave. 
 
In an isotropic, homogeneous, nonconducting, uncharged medium, where the permittivity and 
permeability are scalar quantities, Maxwell's equations can be written 
 

∇• =E 0.      15.9.1 
 
∇• =H 0.      15.9.2 
 

.EH &ε=×∇       15.9.3 
 

.HE &µ−=×∇      15.9.4 
 
 
Take the curl of equation 15.9.3, and make use of equation 15.6.4: 
 

    grad H H curl Ediv
t

− ∇ =2 ε
∂
∂

.    15.9.5 

 
Substitute for div H  and curl E from equations 15.9.2 and 15.9.4 to obtain 
 
     .2 HH &&εµ=∇       15.9.6 
 
Comparison with equation 15.1.2 shows that this is a wave of speed 1/ .εµ    (Verify that this has 
the dimensions of speed.) 
 
In a similar manner the reader should easily be able to derive the equation 
 

.2 EE &&εµ=∇       15.9.7 
 

In a vacuum, the speed is 1 0 0/ .ε µ    With µ0 = 4π  % 10−7 H m−1  and  ε0 = 8.854  % 10−12 F m−1, 
this comes to 2.998 % 108 m s−1. 

 
    


