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CHAPTER 13 

ALTERNATING CURRENTS 
 
13.1 Alternating current in an inductance 
 
   
 
 
 
 
 
 
In figure XIII.1 we see a current increasing to the right and passing through an inductor.  As a 
consequence of the inductance, a back EMF will be induced, with the signs as indicated.  I denote 
the back EMF by V  =  VA − VB.  The back EMF is given by .ILV &=  
 
Now suppose that the current is an alternating current given by 
 
     .sinˆ tII ω=       13.1.1 
 
In that case  ,cosˆ tII ωω=& and therefore the back EMF is 
 
          ,cosˆ tLIV ωω=          13.1.2 
  
which can be written   ,cosˆ tVV ω=      13.1.3 
 
where the peak voltage is    ILV ˆˆ ω=       13.1.4 
 
and, of course V L IRMS RMS= ω . 
 
The quantity Lω is called the inductive reactance XL.  It is expressed in ohms (check the 
dimensions), and, the higher the frequency, the greater the reactance.  (The frequency ν is ω/(2π).) 
 
Comparison of equations 13.1.1 and 13.1.3 shows that the current and voltage are out of phase, and 
that V leads on I by 90o, as shown in figure XIII.2. 
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13.2   Alternating Voltage across a Capacitor 
 
 
      
     
 
At any time, the charge Q on the capacitor is related to the potential difference V across it by 
Q CV= .   If there is a current in the circuit, then Q is changing, and .VCI &=  
 
Now suppose that an alternating voltage given by 
 
     tVV ω= sinˆ       13.2.1 
 
is applied across the capacitor. 
 
In that case the current is  ,cosˆ tVCI ωω=      13.2.2 
                 
which can be written   ,cosˆ tII ω=       13.2.3 
 
where the peak current is              VCI ˆˆ ω=       13.2.4 
 
and, of course I C VRMS RMS= ω . 
 
The quantity 1/(Cω) is called the capacitive reactance XC.  It is expressed in ohms (check the 
dimensions), and, the higher the frequency, the smaller the reactance.  (The frequency ν is ω/(2π).) 
 
Comparison of equations 13.2.1 and 13.2.3 shows that the current and voltage are out of phase, and 
that V lags behind I by 90o, as shown in figure XIII.4. 
 
 

  
         
 
 
13.3  Complex Numbers 
 
I am now going to repeat the analyses of Sections 13.1 and 13.2 using the notation of complex 
numbers.   In the context of alternating current theory, the imaginary unit is customarily given the 
symbol j rather than i, so that the symbol i is available, if need be, for electric currents.  I am 
making the assumption that the reader is familiar with the basics of complex numbers; without that 
background, the reader may have difficulty with much of this chapter. 
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We start with the inductance.   If the current is changing, there will be a back EMF given by 

.ILV &=    If the current is changing as 
 
     ,ˆ tjeII ω=       13.3.1 
 
then  .ˆ IjejII tj ω=ω= ω&  Therefore the voltage is given by 
 
     V jL I= ω .      13.3.2 
 
The quantity jLω is called the impedance of the inductor, and is j times its reactance.  Equation 
13.3.2  (in particular the operator j on the right hand side) tells us that V leads on I by 90o. 
 
Now suppose that an alternating voltage is applied across a capacitor.  The charge on the capacitor 
at any time is Q  =  CV, and the current is  .VCI &=  If the voltage is changing as 
 
     ,ˆ tjeVV ω=       13.3.3 
        
then .ˆ VjejVV tj ω=ω= ω&  Therefore the current is given by 
 
 
     I jC V= ω .      13.3.4 
 

That is to say    V j
C

I= −
ω

.      13.3.5 
 
The quantity − j C/ ( )ω is called the impedance of the capacitor, and is −j times its reactance.  
Equation 13.3.5  (in particular the operator −j on the right hand side) tells us that V lags behind I by 
90o. 
 
In summary: 
 
 Inductor:    Reactance = Lω.       Impedance = jLω.          V  leads on I. 
 
 Capacitor:   Reactance = 1/(Cω).   Impedance = −j/(Cω).    V lags behind I. 
 
It may be that at this stage you haven't got a very clear idea of the distinction between reactance 
(symbol X) and impedance (symbol Z) other than that one seems to be j or −j times the other.  The 
next section deals with a slightly more complicated situation, namely a resistor and an inductor in 
series.  (In practice, it may be one piece of equipment, such as a solenoid, that has both resistance 
and inductance.)  Paradoxically, you may find it easier to understand the distinction between 
impedance and reactance from this more complicated situation. 
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13.4 Resistance and Inductance in Series 
 
The impedance is just the sum of the resistance of the resistor and the impedance of the inductor: 
 
     Z R jL= + ω.     13.4.1 
 
Thus the impedance is a complex number, whose real part R is the resistance and whose imaginary 
part Lω is the reactance.  For a pure resistance, the impedance is real, and V and I are in phase.  For 
a pure inductance, the impedance is imaginary (reactive), and there is a 90o phase difference 
between V and I. 
 
The voltage and current are related by 
  
         V IZ R jL I= = +( ) .ω      13.4.2 
 
Those who are familiar with complex numbers will see that this means that V leads on I , not by 
90o, but by the argument of the complex impedance, namely tan ( / ).−1 L Rω   Further the ratio of the 
peak (or RMS) voltage to the peak (or RMS) current is equal to the modulus of the impedance, 
namely R L2 2 2+ ω . 
 
 
 
13.5 Resistance and Capacitance in Series 
 
Likewise the impedance of a resistance and a capacitance in series is 
 
     Z R j C= − / ( ) .ω      13.5.1 
 
The voltage and current are related, as usual, by V = IZ.   Equation 13.5.1 shows that the voltage 
lags behind the current by tan [ / ( )],−1 1 RCω  and that .)/(1ˆ/ˆ 22 ω+= CRIV  
 
 
13.6 Admittance 
 
In general, the impedance of a circuit is partly resistive and partly reactive: 
 
     Z R jX= + .     13.6.2 
 
The real part is the resistance, and the imaginary part is the reactance.  The relation between V and I 
is V  =  IZ.  If the circuit is purely resistive, V and I are in phase.  If is it purely reactive, V and I 
differ in phase by 90o. The reactance may be partly inductive and partly capacitive, so that 
 
          Z R j X X= + −( ).L C      13.6.3 
 
Indeed we shall describe such a system in detail in the next section.   
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The reciprocal of the impedance Z is the admittance, Y. 
 

Thus     Y
Z R jX

= =
+

1 1 .     13.6.4 

 
And of course, since V = IZ,  I  =  VY. 
 
Whenever we see a complex (or a purely imaginary) number in the denominator of an expression, 
we always immediately multiply top and bottom by the complex conjugate, so equation 13.6.4 
becomes 

     .
||
*

222 XR
jXR

Z
ZY

+
−

==     13.6.5 

 
This can be written 
 
     Y G jB= + ,     13.6.6 
 
where the real part, G, is the conductance: 
 

     G R
R X

=
+2 2

,     13.6.7 

 
and the imaginary part, B, is the susceptance: 
 

     B X
R X

= −
+2 2

.     13.6.8 

 
The SI unit for admittance, conductance and susceptance is the siemens (or the "mho" in informal 
talk). 
 
I leave it to the reader to show that 
 

     R G
G B

=
+2 2      13.6.9 

 

and     X B
G B

= −
+2 2

.     13.6.10

   
   
13.7   The RLC Series Acceptor Circuit 
 
A resistance, inductance and a capacitance in series is called an "acceptor" circuit. presumably 
because, for some combination of the parameters, the magnitude of the inductance is a minimum, 
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and so current is accepted most readily.  We see in figure XIII.5 an alternating voltage 

tjeVV ω= ˆ applied across such an R, L and C.  
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
The impedance is 
 

     .1








ω
−ω+=

C
LjRZ     13.7.1 

 
We can see that the voltage leads on the current if the reactance is positive;  that is, if the inductive 
reactance is greater than the capacitive reactance;  that is, if ω > 1/ .LC   (Recall that the 
frequency, ν, is ω/(2π)).  If ω < 1/ ,LC  the voltage lags behind the current.  And if 
ω = 1/ ,LC  the circuit is purely resistive, and voltage and current are in phase. 
 
The magnitude of the impedance (which is equal to IV ˆ/ˆ ) is 
 

           ( ) ,)/(1|| 22 ω−ω+= CLRZ     13.7.2 
 
and this is least (and hence the current is greatest) when ω = 1/ ,LC  the resonant frequency, 
which I shall denote by ω0. 
 
It is of interest to draw a graph of how the magnitude of the impedance varies with frequency for 
various values of the circuit parameters.  I can reduce the number of parameters by defining the 
dimensionless quantities 
 
     Ω = ω ω/ 0       13.7.3 
 

     Q
R

L
C

=
1       13.7.4 

 

tjeVV ω= ˆ

FIGURE XIII.5 

C L R 



 7

and      z Z
R

=
| | .      13.7.4 

 
You should verify that Q is indeed dimensionless.   We shall see that the sharpness of the resonance 
depends on Q, which is known as the quality factor (hence the symbol Q).  In terms of the 
dimensionless parameters, equation 13.7.2 becomes 
 
    z Q= + −1 12 2( / ) .Ω Ω      13.7.5 
 
This is shown in figure XIII.6, in which it can be seen that the higher the quality factor, the sharper 
the resonance.   
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In particular, it is easy to show that the frequencies at which the impedance is twice its minimum 
value are given by the positive solutions of 
 

    .0132 2
2

4 =+Ω







+−Ω

Q
    13.7.6 

 
If I denote the smaller and larger of these solutions by Ω− and Ω+, then Ω+ − Ω− will serve as a 
useful description of the width of the resonance, and this is shown as a function of quality factor in 
figure XIII.7. 
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13.8   The RLC Parallel Rejector Circuit 
 
In the circuit below, the magnitude of the admittance is least for certain values of the parameters.  
When you tune a radio set, you are changing the overlap area (and hence the capacitance) of the 
plates of a variable air-spaced capacitor so that the admittance is a minimum for a given frequency, 
so as to ensure the highest potential difference across the circuit.  This resonance, as we shall see, 
does not occur for an angular frequency of exactly 1/ ,LC  but at an angular frequency that is 
approximately this if the resistance is small. 
 
The admittance is 
 

     Y jC
R jL

= +
+

ω
ω

1 .    13.8.1 

 
After some routine algebra  (multiply top and bottom by the conjugate; then collect real and 
imaginary parts), this becomes 
 

    Y R j L C R C L
R L

=
+ + −

+
ω ω

ω
( ) .

2 2 2

2 2 2    13.8.2 
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The magnitude of the admittance is least when the susceptance is zero, which occurs at an angular 
frequency of 
 

     ω0
2

2

2

1
= −

LC
R
L

.     13.8.3 

 
If  R L C<< / ,  this is approximately 1/ .LC  
 
 
13.9   AC Bridges 
 
 
We  have already met, in Chapter 4, Section 4.11, the Wheatstone bridge, which is a DC (direct 
current) bridge for comparing resistances, or for "measuring" an unknown resistance if it is 
compared with a known resistance.  In the Wheatstone bridge (figure IV.9), balance is achieved 

when R
R

R
R

1

2

3

4

= .  Likewise in a AC (alternating current) bridge, in which the power supply is an 

AC generator, and there are impedances (combinations of R, L and C ) in each arm (figure XIII.8), 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
balance is achieved when 
 

Z1 Z2 

Z3 
Z4 

FIGURE XIII.8 
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      Z
Z

Z
Z

1

2

3

4

=      13.9.1 

 

or, of course, Z
Z

Z
Z

1

3

2

4

= .  This means not only that the RMS potentials on both sides of the detector 

must be equal, but they must be in phase, so that the potentials are the same at all times.  (I have 
drawn the "detector" as though it were a galvanometer, simply because that is easiest for me to 
draw.  In practice, it might be a pair of earphones or an oscilloscope.)  Each side of equation 13.9.1 
is a complex number, and two complex numbers are equal if and only if their real and imaginary 
parts are separately equal.  Thus equation 13.9.1 really represents two equations – which are 
necessary in order to satisfy the two conditions that the potentials on either side of the detector are 
equal in magnitude and in phase. 
 
We shall look at three examples of AC bridges.  It is not recommended that these be committed to 
memory.  They are described only as examples of how to do the calculation. 
 
    13 9.1   The Owen Bridge 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This bridge can be used for measuring inductance.  Note that the unknown inductance is the only 
inductance in the bridge.   Reactance is supplied by the capacitors. 
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Equation 13.9.1 in this case becomes 
 

     R
R jL

j C
R j C

1

2 2

3

4 4+
=

−
−ω

ω
ω

/ ( )
/ ( )

.   13.9.2 

 

That is,    R R j R
C

L
C

j R
C1 4

1

4

2

3

2

3

− = −
ω ω

.   13.9.3 

 
On equating real and imaginary parts separately, we obtain 
 
     L R R C2 1 4 3=       13.9.4 
 

and     R
R

C
C

1

2

4

3

= .      13.9.5 

 
 
   13 9.2   The Schering Bridge 
 
This bridge can be used for measuring capacitance. 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

i
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The admittance of the fourth arm is 1

4
4R

jC+ ω , and its impedance is the reciprocal of this. I leave 

the reader to balance the bridge and to show that 
 

     R
R

C
C

1

2

4

3

=       13.9.6 

 

and     C C R
R1
3 4

2

= .      13.9.7 

 
     13 9.3   The Wien Bridge 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This bridge can be used for measuring frequency. 
 
The reader will, I think, be able to show that 
 

     R
R

C
C

R
R

4

3

3

4

2

1

+ =      13.9.8 
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and     ω2

3 4 3 4

1
=

R R C C
.     13.9.10 

 
 
13.10   The Transformer 
 
We met the transformer briefly in Section 10.9.  There we pointed out that the EMF induced in the 
secondary coil is equal to the number of turns in the secondary coil times the rate of change of 
magnetic flux; and the flux is proportional to the EMF applied to the primary times the number of 
turns in the primary. Hence we deduced the well known relation 
 

      V
V

N
N

2

1

2

1

=      13.10.1 

 
relating the primary and secondary voltages to the number of turns in each.  We now look at the 
transformer in more detail; in particular, we look at what happens when we connect the secondary 
coil to a circuit and take power from it. 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In figure XIII.12, we apply an AC EMF tjeVV ω= ˆ  to the primary circuit.  The self inductance of 
the primary coil is Ll, and an alternating current I1 flows in the primary circuit. The self inductance 
of the secondary coil is L2, and the mutual inductance of the two coils is M.  If the coupling 
between the two coils is very tight, then M L L= 1 2 ;  otherwise it is less than this.  I am supposing 
that the resistance of the primary circuit is much smaller than the reactance, so I am going to 
neglect it.  
 
The secondary coil is connected to a resistance R.  An alternating current I2 flows in the secondary 
circuit. 
 
Let us apply Ohm's law (or Kirchhoff's second rule) to each of the two circuits. 

i 
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In the primary circuit, the applied EMF V is opposed by two back EMF's:   
 
     .211 IMILV && +=      13.10.2 
 
That is to say    V j L I j MI= +ω ω1 1 2 .    13.10.3 
 
Similarly for the secondary circuit: 
 
     0 1 2 2 2= + +j MI j L I RIω ω .   13.10.4 
 
These are two simultaneous equations for the currents, and we can (with a small effort) solve them 
for I1 and I2: 
 

   V
M
Rj

M
LIM

M
LLj

M
RL









ω
−=














 ω−

ω
+ 2

1
211   13.10.5 

 

and    .
1

2
1

2

2 L
MVI

L
MLjR −=















 ω
−ω+    13.10.6 

 
This would be easier to understand if we were to do the necessary algebra to write these in the 
forms I a jb V I c jd V1 2= + = +( ) ( ) .and   We could then easily see the phase relationships 
between the current and V as well as the peak values of the currents.  There is no reason why we 
should not try this, but I am going to be a bit lazy before I do it, and I am going to assume that we 
have a well designed transformer in which the secondary coil is really tightly wound around the 
primary, and M L L= 1 2 .  If you wish, you may carry on with a less efficient transformer, with 
M k L L= 1 2 ,  where k is a coupling coefficient less than 1, but I'm going to stick with 
M L L= 1 2 .  In that case, equations 13.10.5 and 6 eventually take the forms 
 

         V
L

j
RN

NV
L

j
RL

LI 







ω

−=







ω

−=
1

2
1

2
2

11

2
1

11    13.10.7 

 

and    I
R

L
L

V N
N R

V2
2

1

2

1

1
= − = − .    13.10.8

    
These equations will tell us, on examination, the magnitudes of the currents, and their phases 
relative to V. 
 
Now look at the circuit shown in figure XIII.13.  
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In figure XIII.13 we have a resistance R N N( / )1 2

2 in parallel with an inductance L1.  The 
admittances of these two elements are, respectively, ( / ) /N N R2 1

2  and − j L/ ( )1ω , so the total 

admittance is N
N R

j
L

2
2

1
2

1

1
−

ω
.  Thus, as far as the relationship between current and voltage is 

concerned, the primary circuit of the transformer is precisely equivalent to the circuit drawn in 
figure XIII.13.  To see the relationship between I1 and V, we need look no further than figure 
XIII.13. 
 
Likewise, equation 13.10.8 shows us that the relationship between I2 and V is exactly as if we had 
an AC generator of EMF N E N2 1/  connected across R, as in figure XIII.14. 
 
    
 
 
 
 
 
 
 
 
 
 
Note that, if the secondary is short-circuited (i.e. if  R = 0 and if the resistance of the secondary coil 
is literally zero) both the primary and secondary current become infinite.  If the secondary circuit is 
left open (i.e. R  =  ∞), the secondary current is zero (as expected), and the primary current, also as 
expected, is not zero but is − jV L/ ( ) ;1ω   That is to say, the current is of magnitude V L/ ( )1ω and it 
lags behind the voltage by 90o, just as if the secondary circuit were not there. 
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