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CHAPTER 13 
LAGRANGIAN MECHANICS 

 
 

13.1   Introduction 
 
The usual way of using newtonian mechanics to solve a problem in dynamics is first of 
all to draw a large, clear diagram of the system, using a ruler and a compass.  Then mark 
in the forces on the various parts of the system with red arrows and the accelerations of 
the various parts with green arrows.  Then apply the equation F = ma in two different 
directions if it is a two-dimensional problem or in three directions if it is a three-
dimensional problem, or θ=τ &&I  if torques are involved.  More correctly, if a mass or a 
moment of inertia is not constant, the equations are pF &= and .L&=τ   In any case, we 
arrive at one or more equations of motion, which are differential equations which we 
integrate with respect to space or time to find the desired solution.  Most of us will have 
done many, many problems of that sort. 
 
Sometimes it is not all that easy to find the equations of motion as described above.  
There is an alternative approach known as lagrangian mechanics which enables us to find 
the equations of motion when the newtonian method is proving difficult.  In lagrangian 
mechanics we start, as usual, by drawing a large, clear diagram of the system, using a 
ruler and a compass.  But, rather than drawing the forces and accelerations with red and 
green arrows, we draw the velocity vectors (including angular velocities) with blue 
arrows, and, from these we write down the kinetic energy of the system.  If the forces are 
conservative forces (gravity, springs and stretched strings), we write down also the 
potential energy.  That done, the next step is to write down the lagrangian equations of 
motion for each coordinate.  These equations involve the kinetic and potential energies, 
and are a little bit more involved than F = ma, though they do arrive at the same results. 
 
I shall derive the lagrangian equations of motion, and while I am doing so, you will think 
that the going is very heavy, and you will be discouraged.  At the end of the derivation 
you will see that the lagrangian equations of motion are indeed rather more involved than 
F = ma, and you will begin to despair – but do not do so!  In a very short time after that 
you will be able to solve difficult problems in mechanics that you would not be able to 
start using the familiar newtonian methods, and the speed at which you do so will be 
limited solely by the speed at which you can write.  Indeed, you scarcely have to stop and 
think.  You know straight away what you have to do.  Draw the diagram.  Mark the 
velocity vectors.  Write down expressions for the kinetic and potential energies, and 
apply the lagrangian equations.   It is automatic, fast, and enjoyable. 
 
Incidentally, when Lagrange first published his great work La méchanique analytique 
(the modern French spelling would be mécanique), he pointed out with some pride in his 
introduction that there were no drawings or diagrams in the book – because all of 
mechanics could be done analytically – i.e. with algebra and calculus.  Not all of us, 
however, are as gifted as Lagrange, and we cannot omit the first and very important step 
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of drawing a large and clear diagram with ruler and compass and marking all the velocity 
vectors.    
 
 
13.2   Generalized Coordinates and Generalized Forces 
 
In two-dimensions the positions of a point can be specified either by its rectangular 
coordinates (x, y) or by its polar coordinates.  There are other possibilities such as 
confocal conical coordinates that might be less familiar.  In three dimensions there are the 
options of rectangular coordinates (x, y, z), or cylindrical coordinates (ρ, φ, z) or 
spherical coordinates (r, θ , φ) – or again there may be others that may be of use for 
specialized purposes (inclined coordinates in crystallography, for example, come to 
mind).  The state of a molecule might be described by a number of parameters, such as 
the bond lengths and the angles between the bonds, and these may be varying 
periodically with time as the molecule vibrates and twists, and these bonds lengths and 
bond angles constitute a set of coordinates which describe the molecule.  We are not 
going to think about any particular sort of coordinate system or set of coordinates.  
Rather, we are going to think about generalized coordinates, which may be lengths or 
angles or various combinations of them.  We shall call these coordinates (q1 , q2 , q3 ,...).  
If we are thinking of a single particle in three-dimensional space, there will be three of 
them, which could be rectangular, or cylindrical, or spherical.  If there were N particles, 
we would need 3N coordinates to describe the system – unless there were some 
constraints on the system. 
 
With each generalized coordinate qi is associated a generalized force Pi, which is defined 
as follows.  If the work required to increase the coordinate qi by δqi is Pi δqi, then Pi is 
the generalized force associated with the coordinate qi. 
 
It will be noted that a generalized force need not always be dimensionally equivalent to a 
force.  For example, if a generalized coordinate is an angle, the corresponding 
generalized force will be a torque. 
 
One of the things that we shall be wanting to do is to identify the generalized force 
associated with a given generalized coordinate. 
 
 
13.3   Holonomic constraints 
 
The complete description of a system of N unconstrained particles requires 3N 
coordinates.  You can think of the state of the system at any time as being represented by 
a single point in 3N-dimensional space.  If the system consists of molecules in a gas, or a 
cluster of stars, or a swarm of bees, the coordinates will be continually changing, and the 
point that describes the system will be moving, perhaps completely unconstrained, in its 
3N-dimensional space. 
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However, in many systems, the particles may not be free to wander anywhere at will; 
they may be subject to various constraints.  A constraint that can be described by an 
equation relating the coordinates (and perhaps also the time) is called a holonomic 
constraint, and the equation that describes the constraint is a holonomic equation.  If a 
system of N particles is subject to k holonomic constraints, the point in 3N-dimensional 
space that describes the system at any time is not free to move anywhere in 3N-
dimensional space, but it is constrained to move over a surface of dimension 3N − k.  In 
effect only 3N − k coordinates are needed to describe the system, given that the 
coordinates are connected by k holonomic equations. 
 
Incidentally, I looked up the word “holonomic” in The Oxford English Dictionary and it 
said that the word was from the Greek  őλος, meaning “whole” or “entire” and νóµ-ος, 
meaning “law”.  It also said “applied to a constrained system in which the equations 
defining the constraints are integrable or already free of differentials, so that each 
equation effectively reduces the number of coordinates by one; also applied to the 
constraints themselves.” 
 
As an example, consider a bar of wet soap slithering around in a hemispherical basin of 
radius a.  You can describe its position in the basin by means of the usual two spherical 
angles (θ , φ);  the motion is otherwise constrained by its remaining in contact with the 
basin; that is to say it is subject to the holonomic constraint r = a.  Thus instead of 
needing three coordinates to describe the position of a totally unconstrained particle, we 
need only two coordinates. 
 
Or again, consider the double pendulum shown in figure XIII.1, and suppose that the 
pendulum is constrained to swing only in the plane of the paper – or of the screen of your 
computer monitor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Two unconstrained particles would require six coordinates to specify their positions but 
this system is subject to four holonomic constraints.   The holonomic equations z1  =  0 

l1 

l2 
• 

•

x 

y FIGURE XIII.1 

(x1 , y1) 

(x2 , y2) 
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and z2  =  0 constrain the particles to be moving in a plane, and, if the strings are kept 
taut, we have the additional holonomic constraints 2

1
2
1

2
1 lyx =+  

and .)()( 2
2

2
12

2
12 lyyxx =−+−   Thus only two coordinates are needed to describe the 

system, and they could conveniently be the angles that the two strings make with the 
vertical. 
 
 
13.4   The Lagrangian Equations of Motion 
 
This section might be tough – but don’t be put off by it.  I promise that, after we have got 
over this section, things will be easy.  But in this section I don’t like all these summations 
and subscripts any more than you do. 
 
Suppose that we have a system of N particles, and that the force on the ith particle (i = 1 
to N) is Fi.  If the ith particle undergoes a displacement δri, the total work done on the 
system is .i

i
i rF δ⋅∑   The position vector r of a particle can be written as a function of its 

generalized coordinates; and a change in r can be expressed in term of the changes in the 
generalized coordinates.  Thus the total work done on the system is 
 

    ,j
j j

i

i
i q

q
δ

∂
∂∑∑ ⋅ rF      13.4.1 

 
 

which can be written  .∑∑ δ
∂
∂⋅

j
j

j

i

i
i q

q
rF      13.4.2 

 
But by definition of the generalized force, the work done on the system is also 
 
    .j

j
j qP δ⋅∑       13.4.3 

 
Thus the generalized force Pi associated with generalized coordinate qi is given by 
 

    .
j

i

i
ij q

P
∂
∂

= ⋅∑ rF      13.4.4 

 
Now iii m rF &&= , so that  
 

    .
j

i
i

i
ij q

mP
∂
∂

= ⋅∑ rr&&      13.4.5 
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Also  .










∂
∂

+
∂
∂
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




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



∂
∂ ⋅⋅⋅

j

i
i
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i
i

j

i
i qdt

d
qqdt

d rrrrrr &&&&     13.4.6 

 

Substitute for 
j

i

q∂
∂⋅ rr&&  from equation 13.4.6 into equation13.4.5 to obtain 

 
 

  .
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

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∂
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∂
∂
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j

i
i

j

i
i

i
ij qdt

d
qdt

dmP rrrr &&     13.4.7 

 
 

That is, .



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
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∂
∂
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i
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i
ij qqdt

dmP rrrr
&

&&     13.4.8 

 
_______________________ 

 
This very last step might not be obvious, so let me illustrate it by an example.  Consider 
the relation between rectangular and spherical coordinates 
 
    .cossin φθ= rx  
 

Then  .sinsincoscosandcossin φφθ−φθθ=
∂
∂

φθ=
∂
∂ &&

r
x

dt
d

r
x  

 
Also  .sinsincoscoscossin φφθ−φθθ+φθ= &&&& rrrx  
 
 

Therefore  ,sinsincoscos φφθ−φθθ=
∂
∂ &&&

r
x  

 

and so we see that  .
r
x

r
x

dt
d

∂
∂

=
∂
∂ &

 

   
_______________________ 

 
 
We continue.   
 
The kinetic energy T is  
 
   .2

12
2
1

i
i

ii
i

ii mrmT rr &&& ⋅∑∑ ==     13.4.9 
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Therefore   
j

i
i

i
i

j q
m

q
T

∂
∂

=
∂
∂ ⋅∑ rr

&
&      13.4.10 

 

and    .
j

i
i

i
i

j q
m

q
T

&

&
&

& ∂
∂

=
∂
∂ ⋅∑ rr      13.4.11 

 
On substituting these in equation 13.4.8 we obtain 
 

    
.

jj
j q

T
q
T

dt
dP

∂
∂

−
∂
∂

=
&    13.4.12 

 
 
This is one form of Lagrange’s equation of motion, and it often helps us to answer the 
question posed in the past sentence of section 13.2 – namely to determine the generalized 
force associated with a given generalized coordinate.   
 
If the various forces in a particular problem are conservative (gravity, springs and 
stretched strings, including valence bonds in a molecule) then the generalized force can 
be obtained by the negative of the gradient of a potential energy function – i.e. 

.
j

j q
VP

∂
∂

−=   In that case, Lagrange’s equation takes the form 

 

            
.

jjj q
V

q
T

q
T

dt
d

∂
∂

−=
∂
∂

−
∂
∂
&    13.4.13 

 
 
In my experience this is the most useful and most often encountered version of 
Lagrange’s equation. 
 
The quantity L   =   T   −   V is known as the lagrangian for the system, and Lagrange’s 
equation can then be written 
 

    
.0=

∂
∂

−
∂
∂

jj q
L

q
L

dt
d

&     13.4.14 

 
 
It is my understanding that this last version is of deep theoretical significance, although I 
don’t recall my ever having used it in solving any actual problem.  Equation 13.4.13 is 
my favorite, provided the forces are conservative.  (For conservative forces, see Chapter 
9, though in practice it means gravity, springs and strings.) 
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In each of equations 13.4.12, 13 and 14 one of the qs has a dot over it.  You can see 
which one it is by thinking about the dimensions of the various terms.  Dot has dimension 
T−1. 
 
So, we have now derived Lagrange’s equation of motion.  It was a hard struggle, and in 
the end we obtained three versions of an equation which at present look quite useless.  
But from this point, things become easier and we rapidly see how to use the equations 
and find that they are indeed very useful. 
 
 
13.5   Acceleration Components 
 
In section 3.4 of chapter 3 of the Celestial Mechanics “book”, I derived the radial and 
transverse components of velocity and acceleration in two-dimensional coordinates.  The 
radial and transverse velocity components are fairly obvious and scarcely need 
derivation;  they are just ρ&  and .φρ &   For the acceleration components I reproduce here 
an extract from that chapter: 
 
“The radial and transverse components of acceleration are therefore )( 2φρ−ρ &&&  and 

)2( φρ+φρ &&&&  respectively.” 
 
I also derived the radial, meridional and azimuthal components of velocity and 
acceleration in three-dimensional spherical coordinates.  Again the velocity components 
are rather obvious; they are ,sinand, φθθ &&& rrr  while for the acceleration components I 
reproduce here the relevant extract from that chapter. 
 
“On gathering together the coefficients of ,ˆ,ˆ,ˆ φθr   we find that the components of 
acceleration are:  
 
 Radial:    222 sin φθ−θ− &&&& rrr  
 
Meridional: 2cossin2 φθθ−θ+θ &&&&& rrr  
 
Azimuthal: φθ+θφθ+θφ &&&&&& sincos2sin2 rrr .        ” 
 
 
You might like to look back at these derivations now.  However, I am now going to 
derive them by a different method, using Lagrange’s equation of motion.  You can decide 
for yourself which you prefer.   
 
We’ll start in two dimensions.  Let R and S be the radial and transverse components of a 
force acting on a particle.  (“Radial” means in the direction of increasing ρ; “transverse” 
means in the direction of increasing φ.)  If the radial coordinate were to increase by δρ, 
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the work done by the force would be just R δρ.  Thus the generalized force associated 
with the coordinate ρ is just Pρ  =  R.  If the azimuthal angle were to increase by δφ, the 
work done by the force would be Sρ δφ.  Thus the generalized force associated with the 
coordinate φ is Pφ  =  Sρ.   Now we don’t have to think about how to start; in Lagrangian 
mechanics, the first line is always “T = ...”, and I hope you’ll agree that 
 
    .)( 222

2
1 φρ+ρ= &&mT      13.5.1 

 
If you now apply equation 13.4.12 in turn to the coordinates ρ and φ, you obtain 
 
  ,)2(and)( 2 φρ+φρρ=φρ−ρ= φρ

&&&&&&& mPmP          13.5.2a,b 
 
and so  .)2(and)( 2 φρ+φρ=φρ−ρ= &&&&&&& mSmR           13.5.3a,b 
 
Therefore the radial and transverse components of the acceleration are )( 2φρ−ρ &&&  and 

)2( φρ+φρ &&&&  respectively. 
 
 
We can do exactly the same thing to find the acceleration components in three-
dimensional spherical coordinates.   Let R , S and F be the radial, meridional and 
azimuthal  (i.e. in direction of increasing r, θ and φ) components of a force on a particle. 
 
If  r increases by δr, the work done is R δr. 
If  θ increases by δθ, the work done is Sr δθ. 
If  φ increases by δφ, the work done is Fr sinθ δφ. 
 
Therefore   .sinand, θ=== φθ FrPSrPRPr  
 
Start:    ).sin( 222222

2
1 φθ+θ+= &&& rrrmT    13.5.4 

 
If you now apply equation 13.4.12 in turn to the coordinates r, θ and φ, you obtain 
 
   ,)sin( 22 φθ−θ−= &&&& rrrmPr     13.5.5 
 
   )cossin2( 222 φθθ−θ+θ=θ

&&&&& rrrrmP    13.5.6 
 
and   .)sin2cossin2sin( 2222 θφ+θθφθ+φθ=φ

&&&&&& rrrrmP  13.5.7 
 
Therefore   ,)sin( 22 φθ−θ−= &&&& rrrmR     13.5.8 
 
   )cossin2( 2φθθ−θ+θ= &&&&& rrrmS     13.5.9 
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and   .)sin2cos2sin( θφ+θφθ+φθ= &&&&&& rrrmF    13.5.10 
 
Thus the acceleration components are 
 
Radial:    222 sin φθ−θ− &&&& rrr  
 
Meridional: 2cossin2 φθθ−θ+θ &&&&& rrr  
 
Azimuthal: φθ+θφθ+θφ &&&&&& sincos2sin2 rrr .          
 
Be sure to check the dimensions.    Since dot has dimension T−1, and these expressions 
must have the dimensions of acceleration, there must be an r and two dots in each term. 
 
 
13.6   Slithering Soap in Conical Basin 
 
We imagine a slippery (no friction) bar of soap slithering around in a conical basin.  An 
isolated bar of soap in intergalactic space would require three coordinates to specify its 
position at any time, but, if it is subject to the holonomic constraint that it is to be in 
contact at all times with a conical basin, its position at any time can be specified with just 
two coordinates.  I shall, first of all, analyse the problem with a newtonian approach, and 
then, for comparison, I shall analyse it using lagrangian methods.  Either way, we start 
with a large diagram.  In the newtonian approach we mark in the forces in red and the 
accelerations in green.  See figure XIII.2.  The semi vertical angle of the cone is α. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• 

α

R 

mg 

r&&

2sin φα &r

FIGURE XIII.2 

r 
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The two coordinates that we need are r, the distance from the vertex, and the azimuthal 
angle φ, which I’ll ask you to imagine, measured around the vertical axis from some 
arbitrary origin.  The two forces are the weight mg and the normal reaction R of the basin 
on the soap.  The accelerations are r&&  and the centripetal acceleration as the soap moves at 
angular speed φ&  in a circle of radius r sin α is 2sin φα &r  . 
 
We can write the newtonian equation of motion is various directions: 
 
Horizontal:     )sinsin(cos 2 α−φα=α rrmR &&&   
 
 i.e.   .)(tan 2 rrmR &&& −φα=     13.6.1 
 
 
Vertical:        .cossin α=−α rmmgR &&     13.6.2 
 
 
Perpendicular  
to surface:   .cossinsin 2φαα=α− &mrmgR    13.6.3 
 
Parallel 
to surface:   .sincos 22 rrg &&& −φα=α     13.6.4 
 
 
Only two of these are independent, and we can choose to use whichever two we want to 
at our convenience.  There are, however, three quantities that we may wish to determine, 
namely the two coordinates r and φ, and the normal reaction R.  Thus we need another 
equation.  We note that, since there are no azimuthal forces, the angular momentum per 
unit mass, which is ,sin22 φα &r  is conserved, and therefore φ&2r  is constant and equal to 
its initial value, which I’ll call l2Ω.  That is, we start off at a distance l from the vertex 
with an initial angular speed Ω.  Thus we have as our third independent equation 
 
     .22 Ω=φ lr &      13.6.5 
 
 
This last equation shows that ∞→φ&  as .0→r  
 
One possible type of motion is circular motion at constant height  (put 0=r&& ).  From 
equations 13.6.1 and 2 it is easily found that the condition for this is that  
 

    .
tansin

2

αα
=φ

gr &      13.6.6 
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In other words, if the particle is projected initially horizontally ( 0=r& ) at r = l and 
Ω=φ& , it will describe a horizontal circle (for ever) if 

 

    .say,
tansin C

2/1

Ω=







αα

=Ω
l

g    13.6.7 

 
If the initial speed is less than this, the particle will describe an elliptical orbit with a 
minimum r < l;  if the initial speed is greater than this, the particle will describe an 
elliptical orbit with a maximum r > l. 
 
     
Now let’s do the same problem in a lagrangian formulation.  This time we draw the same 
diagram, but we mark in the velocity components in blue.  See figure XIII.3.  We are 
dealing with conservative forces, so we are going to use equation 13.4.13, the most useful 
form of Lagrange’s equation.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We need not spend time wondering what to do next.  The first and second things we 
always have to do are to find the kinetic energy T and the potential energy V, in order that 
we can use equation 13.4.13. 
 
    )sin( 2222

2
1 φα+= && rrmT     13.6.8 

 

φα &sinr

α

r&

FIGURE XIII.3 

r 

⊗ 
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and    constant.cos +α= mgrV     13.6.9 
 
Now go to equation 13.4.13, with qi = r, and work out all the derivatives, and you should 
get, when you apply the lagrangian equation to the coordinate r: 
 
    .cossin 22 α−=φα− grr &&&    13.6.10 
 

Now do the same thing with the coordinate φ.  You see immediately that 
φ∂

∂
φ∂

∂ VT and  

are both zero.  Therefore 
φ∂

∂
&
T

dt
d  is zero and therefore 

φ∂
∂
&
T  is constant.  That is, 

φα &22 sinmr  is constant and so φ&2r  is constant and equal to its initial value l2Ω.  Thus 
the second lagrangian equation is 
 
     .22 Ω=φ lr &      13.6.11 
 
Since the lagrangian is independent of  φ, φ is called, in this connection, an “ignorable 
coordinate” – and the momentum associated with it, namely ,2φ&mr  is constant. 
 
Now it is true that we arrived at both of these equations also by the newtonian method, 
and you may not feel we have gained much.  But this is a simple, introductory example, 
and we shall soon appreciate the power of the lagrangian method, 
 
Having got these two equations, whether by newtonian or lagrangian methods, let’s 
explore them further.  For example, let’s eliminate φ&  between them and hence get a 
single equation in r: 
 

    .cossin
3

224

α−=
αΩ

− g
r

lr&&    13.6.12 

 

We know enough by now (see Chapter 6) to write r
dr
dr &&& =vvv where,as , and if we 

let the constants αΩ 224 sinl  and g cos α equal A and B respectively, equation 13.6.12 
becomes 
 

         .3 B
r
A

dr
d

−=
vv      13.6.13 

 
 
(It may just be useful to note that the dimensions of A and B are L4T−2 and LT−2 
respectively.  This will enable us to keep track of dimensional analysis as we go.) 
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If we start the soap moving horizontally (v =  0) when r = l, this integrates, with these 
initial conditions, to 
 

    .)(211
22

2 rlB
rl

A −+





 −=v    13.6.14 

 

Again, so that we can see what we are doing, let CBl
l
A

=+ 22   (note that [C] = L2T−2), 

and equation13.6.14 becomes 
 

    .22
2 Br

r
AC −−=v     13.6.15 

 
This gives )( r&=v  as a function of r.  The particle reaches is maximum or minimum 
height when v  =  0; that is where 
 
    .02 23 =+− ACrBr     13.6.16 
 
We already know one root of this cubic equation, namely r = l, because we our initial 
condition was that v = 0 at r = l, and, with A, B and C all positive, from the theory of 
equations, there are no more than two positive real roots. 
 
Example.  With initial conditions ,2and CΩ=Ω=φ= &lr  we obtain 

.cos6cos,cos4 3 α=α=α= glCandgBglA   With ,/' lrr =  the equation 
becomes 
 
    .02'3' 23 =+− rr      13.6.17 
 
The two positive real roots are r' =  1 (which we already know) and 31 + .  (The 
negative real root is .)31 −  
 
 
Exercise.   Show that if the initial condition is C2

1 Ω=φ& the low point is reached at r = 
0.4215l. 
 
Exercise.    Show that if the initial condition is  CΩ=φ c& the low or high point is reached 
at the positive root of the equation .0'''2 222 =−− crcr   Show that this agrees with the 
two previous examples.  What is the root if c = 1?   What if c is very small – say 0.01?  
What if it is zero? 
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13.7   Slithering Soap in Hemispherical Basin 
 
Suppose that the basin is of radius a and the soap is subject to the holonomic constraint r 
= a   - i.e. that it remains in contact with the basin at all times.  Note also that this is just 
the same constraint of a pendulum free to swing in three-dimensional space except that it 
is subject to the holonomic constraint that the string be taut at all times.  Thus any 
conclusions that we reach about our soap will also be valid for a pendulum. 
 
We’ll start with the newtonian approach, and I’ll draw in red the two forces on the soap, 
namely its weight and the normal reaction of the basin on the soap.  Figure XIII.4 
 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We’ll make use of the expressions for the radial, meridional and azimuthal accelerations 
from section 13.5 and we’ll write down the equations of motion in these directions: 
     
Radial:   mg cos θ  −  R   =   m( 222 sin φθ−θ− &&&& rrr ),   13.7.1 
 
Meridional:                       −mg sin θ    =   m( 2cossin2 φθθ−θ+θ &&&&& rrr ),  13.7.2 
 
Azimuthal:           0   =   m( φθ+θφθ+θφ &&&&&& sincos2sin2 rrr ).   13.7.3 
 
 
We also have the constraint that r = a and hence that ,0== rr &&&   after which these 
equations become 
 
   ,)sin(cos 222 φθ+θ−=−θ &&maRmg    13.7.4 
 

FIGURE XIII.4 

• 

mg 

R 

θ
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         ,)cossin(sin 2φθθ−θ=θ− &&&ag    13.7.5 
 
        .cos2sin0 θφθ+φθ= &&&&     13.7.6 
 
These, then, are the newtonian equations of motion.  If you still prefer the newtonian 
method to the lagrangian method, and you wish to integrate these and find expressions 
θ, φ and R separately, by all means go ahead and do so – but I’m now going to try the 
lagrangian approach. 
 
 
Although Lagrange himself would not have drawn a diagram, we shall not omit that step 
– but instead of marking in the forces, we’ll mark in the velocity components, and then 
we’ll immediately write down expressions for the kinetic and potential energies.  Indeed 
the first line of a lagrangian calculation is always “T = ...”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   .)sin( 2222

2
1 φθ+θ= &&maT      13.7.7 

 
   .constantcos +θ−= mgaV     13.7.8 
 
Now apply equation 13.4.13 in turn t the coordinates θ and φ. 
 
θ:   .sincossin 2 θ−=φθθ−θ gaa &&&     13.7.9 
 

FIGURE XIII.5 

θ

⊗ 

θ&a  

φθ &sina  
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φ:   As for the conical basin, we see that 
φ∂

∂
φ∂

∂ VT and  are both zero (φ is an "ignorable 

coordinate") and therefore 
φ∂

∂
&
T is constant and equal to its initial value.  If the initial 

values of φ&  and θ are Ω and α respectively, then  
 
    .sinsin 22 Ωα=φθ &      13.7.10 
 
This is merely stating that angular momentum is conserved. 
 
We can easily eliminate φ&  from equations 13.4.9 and 10 to obtain 
 

        ,sincsccot 2

a
gk θ

−θθ=θ&&     13.7.11 

 
where          .sin 24 Ωα=k      13.7.12 
 

Write 
θ
θ

θθ
d
d&&& as  in the usual way and integrate to obtain the first space integral: 

 

   ).csc(csc)cos(cos2 222 α−θ−α−θ=θ k
a
g&   13.7.13 

 
The upper and lower bounds for θ occur when .0=θ&    
 
Example.  Suppose that the initial value of θ is α = 45o and that we start by pushing the 
soap horizontally ( 0=θ& ) at an initial angular speed Ω  =  3 rad s−1, so that k = 2.25 rad2 
s−2. Suppose that the radius of the basin is a = 1.96 m and that g = 9.8 m s−2.  You can 
then solve equation for 0=θ& .  One solution, of course, is θ = α.  We could find the other 
solution by Newton-Raphson iteration, or by putting )cos1/(1csc 22 θ−=θ  and solving 
it as a cubic equation in cos θ.  .  Alternatively, try this: 
 

Let  ,cos,cos,
2

,cos)sin(,/2 2 cxn
g

akmllag =α=θ==α−αΩ=  

 
so that  .)1/(1cscand)1/(1csc 2222 cx −=α−=θ  
 
The equation then becomes (work through the algebra – don’t just take my word for it) 
 
   .0)](1)1)[(( 22 =+−+−−− cmcnxxccx  
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One solution is obviously θ  =  α.  In our example the quadratic part if the equation 
becomes 
    .0974900340.0225.05.0 2 =+−− xx  
 
The only real solution for θ is 50o 53'. 
 
 
13.8   More Examples 
 
i.    
               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The kinetic energy is       .)()( 2

22
12

12
12

2
1 yxmyxmxMT &&&&& ++−+=                13.8.1 

 
The potential energy is            .constant)]()([ 21 ++−−−= yxmyxmMxgV      13.8.2 
 
Apply Lagrange’s equation (13.4.13) in turn to the coordinates x and y: 

yx && −  

yx && +

x&  

M 

m1 • 

• m2 

FIGURE XIII.6 

The upper pulley is fixed in position. Both 
pulleys rotate freely without friction about their 
axles. Both pulleys are “light” in the sense that 
their rotational inertias are small and their 
rotation contributes negligibly to the kinetic 
energy of the system. The rims of the pulleys 
are rough, and the ropes do not slip on the 
pulleys.  The gravitational acceleration is g. 
The mass M accelerates upwards at a rate x&  
with respect to the upper, fixed, pulley, and the 
smaller pulley accelerates downwards at the 
same rate.  The mass m1 accelerates upwards at 
a rate y& with respect to the small pulley, and 
consequently its acceleration in laboratory 
space is yx && − .  The acceleration of the mass 
m2 is therefore yx && + in laboratory space.  The 
object is to find x&  and y& in terms of g. 
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x:   .)()()( 2121 mmMgyxmyxmxM −−−=++−+ &&&&&&&&&&                13.8.3 
 
y:         .)()()( 2121 mmgyxmyxm −−=++−− &&&&&&&&                      13.8.4 
 
These two equations can be solved at one’s leisure for x&&  and .y&&  
 
ii.   A hoop of mass M  and radius a rolls without slipping on a horizontal plane.  A bead 
of mass m slides smoothly around the rim of the hoop.  Describe the motion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I have marked in the several velocity vectors.   The hoop is rolling at angular speed .φ&   
Consequently the linear speed of the centre of mass of the hoop is ,φ&a and the bead also 
shares this velocity.  In addition, the bead is sliding relative to the hoop at an angular 
speed θ&  and consequently has a component to its velocity of θ&a tangential to the hoop.  
We are now ready to start. 
 
The kinetic energy of the hoop is the sum of its translational and rotational kinetic 
energies: 
 

.)()( 2222
2
12

2
1 φ=φ+φ &&& MaMaaM  

 
The kinetic energy of the bead is 

• 

θ

φ&a

φ&  

θ&a  

φ&a

FIGURE XIII.7 
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            .)cos2( 222

2
1 θφθ−φ+θ &&&&ma  

 
Therefore  .)cos2( 222

2
122 θφθ−φ+θ+φ= &&&&& maMaT    13.8.5 

 
The potential energy is 
 
   V   =   constant   −   mga cos θ .    13.8.6 
 
 
The lagrangian equation in θ becomes 
 
   .0sin)cos( =θ+θφ−θ ga &&&&      13.8.7 
 
The lagrangian equation in φ becomes 
 
   .)sincos()2( 2 θθ−θθ=φ+ &&&&& mmM     13.8.8 
 
(Some algebra was needed to arrive at these.  If you need help, let me know.) 
 
These, then, are two differential  equations in the two variables.  The lagrangian part of 
the analysis is over; we now have to see if we can do anything with these equations.   
 
It is easy to eliminate φ&&  and hence get a single differential equation in θ: 
 
 0sin)2(cossin)sin2( 22 =θ++θθθ+θθ+ gmMmaamM &&& .                13.8.9 
 
If you are good at differential equations, you might be able to do something with this, and 
get θ as a function of the time.  In the meantime, I think I can get the “first space 
integral” (see Chapter 6) – i.e. θ&  as a function of θ.  Thus, the total energy is constant: 
 
  .cos)cos2( 222

2
122 EmgamaMa =θ−θφθ−φ+θ+φ &&&&&   13.8.10 

 
Here I am measuring the potential energy from the centre of the circle.  Also, if we 
assume that the initial condition is that at time t = 0 the kinetic energy was zero and  θ = 
α, then .cos α−= mgaE  
 
Equation 13.8.8 can easily be integrated once with respect to time, since 

,)cos(sincos 2 θθ=θθ−θθ &&&&
dt
d  as would have been apparent during the derivation of 

equation 13.8.8.  With the condition that the kinetic energy was initially zero, integration 
of equation13.8.8 gives 
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    .cos)2( θθ=φ+ && mmM     13.8.11 
 
Noiw we can easily eliminate φ&  between equations 13.8.10 and 11, to obtain a single 
equation relating θ&  and θ: 
 
   ,01cos)sin1( 22 =−θ−θ+θ dcb&     13.8.12 
 

where  .sec,
2

,
)2(

α−===
+

=
E

mgad
M
mc

EmM
Mmab      13.8.13a,b,c 

 
 
 
iii. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As in example ii, we have a hoop of radius a and mass M, and a ring of mass m which 
can slide freely and without friction around the hoop.  This time, however, the hoop is not 
rolling along the table, but is spinning about a vertical axis at an angular speed φ& .  The 
ring has a velocity component θ&a  because it is sliding around the hoop, and a component 

φθ &sina  because the hoop is spinning.  The resultant speed is the orthogonal sum of 

θ

φ&

θ&a  

φθ &sina  

FIGURE XIII.8 

⊗ 
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these.  The kinetic energy of the system is the sum of the translational kinetic energy of 
the ring and the rotational kinetic energy of the hoop: 
 
       .)()sin( 22

2
1

2
12222

2
1 φ+φθ+θ= &&& MamaT   13.8.14 

 
If we refer potential energy to the centre of the hoop: 
 
       .cos θ= mgaV       13.8.15 
 
The lagrangian equations with respect to the two variables are 
 
θ:   .0sin)cossin( 2 =θ−φθθ−θ ga &&&     13.8.16 
 
φ:   .constantsin 2

12 =φ+φθ && Mm     13.8.17 
 
The constant is equal to whatever the initial value of the left hand side was.  E.g., maybe 
the initial values of  θ and φ&  were α and ω.   This finishes the lagrangian part of the 
analysis.  The rest is up to you.  For example, it would be easy to eliminate φ& between 
these two equations to obtain a differential equation between θ and the time.  If you then 
write θθθθ dd /as &&&& in the usual way, I think it wouldn’t be too difficult to obtain the first 
space integral and hence get θ& as a function of θ.  I haven’t tried it, but I’m sure it’ll 
work. 
 
 
iv.   
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

θ+ &)( rl

θ

l 

r 

•

r&

FIGURE XIII.9 
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Figure XIII.10 shows a pendulum.  The mass at the end is m.  It is at the end not of the 
usual inflexible string, but of an elastic spring obeying Hooke’s law, of force constant k.  
The spring is sufficiently stiff at right angles to its length that it remains straight during 
the motion, and all the motion is restricted to a plane.  The unstretched natural length of 
the spring is l, and, as shown, its extension is r.  The spring itself is “light” in the sense 
that it does not contribute the the kinetic or potential energies.  (You can give the spring a 
finite mass if you want to make the problem more difficult.)  The kinetic and potential 
energies are 
 
    ( )22

2
1 )( θ++= && rlrmT     13.8.18 

 
and    .cos)(constant 2

2
1 krrlmgV +θ+−=   13.8.19 

 
Apply Lagrange’s equation in turn to r and to θ and see where it leads you. 
 
 
v.   Another example suitable for lagrangian methods is given as problem number 11 in 
Appendix A of these notes. 
 
 
Lagrangian methods are particularly applicable to vibrating systems, and examples of 
these will be discussed in a later chapter.  Since these chapters are being written in more 
or less random order as the spirit moves me, rather than in logical order, present 
indications are that it is likely to be chapter 17 - after the unlikely sequence of relativity 
and hydrostatics. 
 
 
13.9   Hamilton’s Variational Principle 
 
Hamilton’s variational principle in dynamics is slightly reminiscent of the principle of 
virtual work in statics, discussed in section 9.4 of Chapter 9. When using the principle of 
virtual work in statics we imagine starting from an equilibrium position, and then 
increasing one of the coordinates infinitesimally.  We calculate the virtual work done and 
set it to zero.  I am slightly reminded of this when discussing Hamilton’s principle in 
dynamics 
 
Imagine some mechanical system – some contraption including in its construction 
various wheels, jointed rods, springs, elastic strings, pendulums, inclined planes, 
hemispherical bowls, and ladders leaning against smooth vertical walls and smooth 
horizontal floors.  It may require N generalized coordinates to describe its configuration 
at any time.  Its configuration could be described by the position of a point in N-
dimensional space.  Or perhaps it is subject to k holonomic constraints – in which case 
the point that describes its configuration in N-dimensional space is not free to move 
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anywhere in that space, but is constrained to slither around on a surface of dimension 
.kN −   

 
The system is not static, but it is evolving.  It is changing from some initial state at time t1 
to some final state at time t2.  The generalized coordinates that describe it are changing 
with time – and the point in N-space is slithering round on its surface of dimension N − k.  
One can imagine that at any instant of time one can calculate its kinetic energy T and its 
potential energy V, and hence its lagrangian L = T − V.  You can multiply L at some 
moment by a small time interval δt and then add up all of these products between t1 and t2 
to form the integral 

      ∫
2

1

.
t

t
dtL  

 
This quantity – of dimension ML2T−1 and SI unit J s – is sometimes called the “action”.  
There are many different ways in which we can imagine the system to evolve from its 
initial state to its final state – and there are many different routes that we can imagine 
might be taken by our point in N-space as its moves from its initial position to its final 
position, as long as it moves over its surface of dimension N − k.  But, although we can 
imagine many such routes, the manner in which the system will actually evolve, and the 
route that the point will actually take is determined by Hamilton’s principle; and the 

route, according to this principle, is such that the integral ∫
2

1

t

t
dtL is a minimum, or a 

maximum, or an inflection point, when compared with other imaginable routes.  Stated 

otherwise, let us suppose that we calculate ∫
2

1

t

t
dtL over the actual route taken and then 

calculate the variation in ∫
2

1

t

t
dtL if the system were to move over a slightly different 

adjacent path.  Then (and here is the analogy with the principle of virtual work in a statics 
problem) this variation 
 

     ∫δ 2

1

t

t
dtL  

 

from what ∫
2

1

t

t
dtL would have been over the actual route is zero.  And this is Hamilton’s 

variational principle. 
 
 
The next questions will surely be:  Can I use this principle for solving problems in 
mechanics?  Can I prove this bald assertion?   
 
Let me try to use the principle to solve two simple and familiar problems, and then move 
on to a more general problem.  
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The first problem will be this.  Imagine that we have a particle than can move in one 
dimension (i.e. one coordinate – for example its height y above a table − suffices to 
describe its position), and that when its coordinate is y its potential energy is  
 
     V  =  mgy.     13.9.1 
 
Its kinetic energy is, of course, 
 
     .2

2
1 ymT &=      13.9.2 

 
We are going to use the variational principle to find the equation of motion – i.e we are 
going to find an expression for its acceleration.  I imagine at the moment you have no 
idea what its acceleration could possibly be – but don’t worry, for we know that the 
lagrangian is 
     ,2

2
1 mgyymL −= &     13.9.3 

 
and we’ll make short of it with Hamilton’s variational principle and soon find the 
acceleration.  According to this principle, y must vary with t in such a manner that 
 

    ∫ =−δ 2

1

.0)( 2
2
1

t

t
dtgyym &     13.9.4 

 
Let us vary ,byandby yyyy δδ&& and see how the integral varies. 
 

The integral is then  ∫ δ−δ2

1

,)(
t

t
dtygyym &&      13.9.5 

 
which I’ll call I1  −  I2. 
 

Now ,
dt
dyy =&  and if y varies by δy, the resulting variation in y& will be 

., yddtyory
dt
dy δ=δδ=δ &&  

 

Therefore        ∫ δ= 2

1

.1

t

t
ydymI &      13.9.6. 

 

(If unconvinced of this, consider .sinsincos tdedtt
dt
dedtte ttt ∫==∫ ∫ )  

 

By integration by parts:    ∫ δ−δ= 2

1

2

1
.][1

t

t

t
t ydymyymI &&    13.9.10 
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The first term is zero because the variation is zero at the beginning and end points.  In the 
second term, ,dtyyd &&& =  and therefore 
 

    ∫ δ−= 2

1

.1

t

t
dtyymI &&      13.9.11 

 

â           ∫∫ δ+−=δ 2

1

2

1

,)(
t

t

t

t
dtygymdtL &&     13.9.12 

 
and, for this to be zero, we must have 
 
         .gy −=&&       13.9.13 
 
This is the equation of motion that we sought.  You would never have guessed this, 
would you? 
 
 
Now let’s do another one-dimensional problem.  Only one coordinate, x, describes the 
particle’s position, and, when its coordinate is x we’ll suppose that its potential energy is 

,22
2
1 xmV ω=  and its kinetic energy is, of course, .2

2
1 xmT &=   The equation of motion, 

or the way in which the accelration varies with position, must be such as to satisfy 
 

    .0)(2

1

222
2
1 =ω−δ∫ dtxxm

t

t
&     13.9.14 

 
If we vary ,byandby xxxx δδ&& the variation in the integral will be 
 

         ,)( 21
222

1

IIdtxxxxm
t

t
−=δω−δδ∫ &&  say.   13.9.15 

 

By precisely the same argument as before, the first integral is found to be ∫ δ− 2

1

.
t

t
dtxxm &&  

Therefore  ∫ ∫∫ δω−δ−=δ 2

1

2

1

2

1

,2t

t

t

t

t

t
dtxxmdtxxmdtL &&    13.9.16 

 
and, for this to be zero, we must have 
 
     .2xx ω−=&&      13.9.17 
 
 
These two examples must have given the impression that we are doing something very 
difficult in order to derive something that is immediately obvious – but the examples 
were just intended to show the direction of a more general argument we are about to 
make. 
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This time, we’ll consider a very general system, in which we write the lagrangian as a 
function of the (several) generalized coordinates and their time rates of change - i.e. 

),( ii qqLL &=  - without specifying any particular form of the function – and we’ll carry 
out the same sort of argument to derive a very general equation of motion. 
 

We have ∫ ∑∫∫ =δ







δ

∂
∂

+δ
∂
∂

=δ=δ 2

1

2

1

2

1

.0
t

t
i

i
i

i
i

t

t

t

t
tq

q
Lq

q
LdtLdtL &

&
  13.9.18 

 

As before, ,ii q
dt
dq δ=δ &  so that 

   

.2

1

2
2

1

2

1

2

1

dt
q
L

dt
dqq

q
Lqd

q
Ldtq

dt
d

q
Ldtq

q
L

i

t

t i

t

t
i

i
i

t

t
i

i

t

t
i

i

t

t
i

i
&&&&

&
& ∂

∂
δ−








δ

∂
∂

=δ
∂
∂

=δ
∂
∂

=δ
∂
∂

∫∫∫∫  13.9.19 

 

â   .02

1

=δ







∂
∂

−
∂
∂

=δ ∑∫ dtq
q
L

dt
d

q
LdtL i

i ii

t

t &
   13.9.20 

 
Thus we arrive at the general equation of motion 
 

    .0=







∂
∂

−
∂
∂

ii q
L

dt
d

q
L

&
    13.9.21 

 
Thus we have derived Lagrange’s equation of motion from Hamilton’s variational 
principle, and this is indeed the way it is often derived.  However, in the chapter, I 
derived Lagrange’s equation quite independently, and hence I would regard this 
derivation not so much as a proof of Lagrange’s equation but as a vindication of the 
correctness of Hamilton’s variational principle. 
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