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CHAPTER 15 
SPECIAL RELATIVITY 

 
15.1.  Introduction 
 
Why a chapter on relativity in a book on “classical mechanics”?   A first excuse might be 
that the phrase “classical mechanics” is used by different authors to mean different 
things.  To some, it means “pre-relativity”; to others it means “pre-quantum mechanics”.  
For the purposes of this chapter, then, I mean the latter, so that special relativity may 
fairly be included in “classical” mechanics.   A second excuse is that, apart from one brief 
foray into an electromagnetic problem, this chapter deals only with mechanical, 
kinematic and dynamical problems, and therefore deals with only a rather restricted part 
of relativity that can be dealt with conveniently in a single chapter of classical mechanics 
rather than in a separate book.  This is in fact a quite substantial restriction, because 
electromagnetic theory plays a major role in special relativity.  It was in fact difficulties 
with electromagnetic theory that led Einstein to the special theory of relativity.  Indeed, 
Einstein’s theory of relativity was introduced to the world in a paper with the title Zur 
Elektrodynamik bewegter Körper (On the Electrodynamics of Moving Bodies), Annalen 
der Physik, 17, 891 (1905). 
 
The phrase “special” relativity deals with the transformations between reference frames 
that are moving with respect to each other at constant relative velocities.  Reference 
frames that are accelerating or rotating or moving in any manner other than at constant 
speed in a straight line are included as part of general relativity and are not considered in 
this chapter. 
 
 
15.2.   The Speed of Light 
 
The speed of light is, by definition, exactly 2.997 924 58 % 108 m s−1, and is the same 
relative to all observers. 
 
This seemingly simple sentence invites several comments.     
 
First:  Note that I have used the word “speed”.   Some writers use the word “velocity” as 
if it were merely a more impressive and scientific-sounding synonym for “speed”.  I trust 
that all readers of these notes know the difference and will use the word “speed” when 
they mean “speed”, and the word “velocity” when they mean “velocity – surely not an 
unreasonable demand.   To say that the “velocity” of light is the same for all observers 
means that the direction of travel of light is the same relative to all observers.  This is 
doubtless not at all what a writer who uses the word “velocity” intends to convey – but it 
is the literal (and of course quite erroneous) meaning of the assertion. 
 
Second:  How can we possibly define the speed of light to have a certain exact value?  
Surely the speed of light is what we find it to be, and we are not free to define its value.  
But in fact we are allowed to do this, and the explanation, briefly, is as follows. 
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Over the course of history, the metre has been defined in several different ways.  At one 
time it was a specified fraction of the circumference of Earth.  Later, it was the distance 
between two scratches on a bar of platinum-iridium alloy held in Paris.  Later still it was 
a specified number of wavelengths of a particular line in the spectrum of mercury, or 
cadmium, or argon or krypton.  In our present state of technology it is far easier to 
measure and reproduce precise standards of frequency than it is to measure and reproduce 
standards of length.  Because of that, the current SI (Système International) unit of time is 
the SI second, which is based on the frequency of a particular transition in the spectrum 
of caesium, and from there, the metre is defined as the distance travelled by light in vacuo 
in a defined fraction of an SI second, the speed of light being assigned the exact value 
quoted above. 
 
Detailed discussion of the exact definitions of the units of time, distance and speed is part 
of the subject of metrology.  That is an important and interesting subject, but it is only 
marginally relevant to the topic of relativity, and consequently, having quoted the exact 
value of the speed of light, we leave further discussion of metrology here. 
 
Third:  How can the speed of light be the same relative to all observers?   This assertion 
is absolutely central to the theory of special relativity, and it may be regarded as its 
fundamental and most important principle.  We shall discuss it further in the remainder of 
the chapter. 
 
 
 15.3.   Preparation 
 
The ratio of the speed v of a body (or a particle, or a reference frame) is often given the 
symbol β: 
     β  =  v / c.     15.3.1  
 
For reasons that will become apparent (I hope!) later, the range of β is usually restricted 
to between 0 and 1.   In our study of special relativity, we shall find that we have to make 
frequent use of a number of functions of β.  The most common of these are 
 
    ,)1( 2/12 −β−=γ       15.3.2 
 
    ,)1)(1( β−β+=k      15.3.3 
 
    z  =  k  −  1  ,      15.3.4 
 
              K  =  γ  −  1  ,      15.3.5 
 
  .lntanh)]1)(1ln[( 1

2
1 k=β=β−β+=φ −     15.3.6 
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   ).(sincos 11 βγ=γ=θ −− i      15.3.7 
 
 
In figures XV.1-3 I draw γ, k and φ as functions of  β .  The functions γ and k go from 1 
to ∞ as β goes from 0 to 1;  z, K and φ go from 0 to ∞.  The function θ is imaginary. 
 
Many – one might even say most – problems in special relativity (including examination 
and homework questions!) amount, when stripped of their verbiage, to the following:  
 
“Given one of the quantities β , γ , k , z , K , φ, θ , calculate one of the others.”   Thus I 
would suggest that, even before you have any idea what these quantities mean, you might 
write a program for your computer (or programmable calculator) such that, when you 
enter any one of the real quantities, the computer will instantly return all six of them.  
This will save you, on future occasions, from having to remember the exact formulas or 
having to bother with tedious arithmetic, so that you can concentrate your mind on 
understanding the relativity. 
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Just for future reference, I tabulate here the relations between these various quantities.  
This has involved some algebra and typesetting; I don’t think there are any mistakes, but 
I hope some reader might check through them all carefully and will let me know 
(universe@uvvm.uvic.ca) if he or she finds any.   
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15.4.   Speed is Relative.  The Fundamental Postulate of Special Relativity. 
 
You are sitting in a railway carriage (or a railroad car, if you prefer the term).  The 
windows and curtains are closed and you cannot see outside.  You are asked to measure 
the constant speed of the carriage along its tracks.  You try a number of experiments.  
You measure the period of a simple pendulum.  You slide a puck and roll a ball down an 
inclined plane.  You throw a ball vertically up in the air and catch it as it comes down.  
You throw it up at an angle and you watch it describe a graceful parabola.  You cause 
billiard balls to collide on the billiards table thoughtfully provided in your carriage.  You 
experiment with a torsion pendulum.  You stand a pencil on its end and you watch it as it 
falls to a horizontal position. 
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All your careful work is to no avail.  None of them tells you what speed you are moving 
at, or even if you are moving at all.  After exhausting all mechanical experiments you can 
think of, you are led to the conclusion: 
 
It is impossible to determine the speed of motion of a uniformly-moving reference 
frame by means of any mechanical experiment performed within that frame. 
 
Frustrated, you open a curtain on one side of the carriage.  You look out and you see that 
there is another train on the line next to you.  It appears to be moving backwards.  Or are 
you moving forwards?  Or are you both moving in the same direction but at different 
speeds?  You still can’t tell. 
 
You move to the other side of the carriage and open the curtain there.  This time you see 
the station platform, and the station platform is moving backwards.  Or are you moving 
forwards?  (Those of you who have not done much travel by train may not appreciate just 
how very strong the impression can be that the platform is moving.)  What does it mean, 
anyway, to say that it is you that is moving rather than the platform?  
 
The following story is not true, but it ought to be.  (It is an “apocryphal” story.)  Einstein 
was travelling by train across Canada.  Halfway across the Prairies he leant across and 
tapped on the knee of his fellow passenger and asked: “Excuse me, mein Herr, bitte, but 
does Regina stop at this train?” 
 
You are about to conclude that it is not possible by any means, whether by experiment or 
by observation, to determine the speed of your reference frame, or even whether it is 
moving or stationary. 
 
But not so hasty!  I am about to invent a speedometer, which I intend to patent and to use 
to make myself rich.  I am going to use my invention to measure the speed of our train – 
without even looking out of the window! 
 
We shall set up two long parallel glass rods in the middle of the corridor, parallel to the 
railway lines and to the velocity of the train.  We shall suspend the rods horizontally, side 
by side from a common support, and we shall rub each of them with a silken 
handkerchief, so that each of them bears an electrostatic charge of λ C m−1.  They will 
repel each other with an electrostatic force per unit length of 
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F     15.4.1 

 
where r is their distance apart, and consequently they will hang out of the vertical – see 
figure XV.4.  
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Now see what happens when the train moves forward at speed v .  Each rod, bearing a 
charge λ per unit length, is now moving forward at speed v, and therefore each rod 
constitutes an electric current λv A.  Therefore, by Ampère’s law, in addition to the 
Coulomb repulsion, they will experience a magnetic attraction per unit length equal to 
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The net repulsive force per unit length is now   
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    15.4.3 

 
 
This is a little less than it was when the train was stationary, so the angle between the 
suspending strings is a little less, as shown in figure XV.5.  It might be noted that the 
force between the strings is reduced to zero (and the angle also becomes zero) when the 
train is travelling at a speed ./1 00 εµ   We remember from electromagnetic theory that 
the permeability of free space is µ0 = 4π % 10−7 H m−1 and that the permittivity ε0 is 
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8.8542 % 10−12  F m−1; consequently the force and the angle drop to zero and the strings 
hang vertically, when the train is moving at a speed of 2.998 % 108 m s−1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To complete my invention, I am now going to attach a protractor to the instrument, but 
instead of marking the protractor in degrees, I am going to calibrate it in miles per hour, 
and my speedometer is now ready for use (figure XV.6). 
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You now have a choice.  Either: 
 
i.  You can choose to believe that the speedometer will work and you can accompany me 
to the patent office to see if they will grant a patent for this invention, which will measure 
the speed of a train without reference to any external reference frame.  If you choose to 
believe this, there is no need for you to read the remainder of the chapter on special 
relativity. 
 
Or: 
 
ii.  You can say that it defies common sense to believe that it is possible to determine 
whether a given reference frame is moving or stationary, let alone to determine its speed.  
Common sense dictates that  
 
It is impossible to determine the speed of motion of a uniformly-moving reference 
frame by any means whatever, whether by a mechanical or electrical or indeed any 
experiment performed entirely or partially within that frame, or even by reference to 
another frame. 
 
Your common sense, then, leads you – as it should – to the fundamental principle of 
special relativity.  Whereas some people protest that relativity “defies common sense”, in 
fact relativity is common sense, and its predictions (such as your prediction that my 
speedometer will not work) are exactly what common sense would lead you to expect. 
 
 
 
 
15.5.   The Lorentz Transformations 
 
For the remainder of this chapter I am taking, as a fundamental postulate, that 
 
It is impossible to determine the speed of motion of a uniformly-moving reference 
frame by any means whatever, whether by a mechanical or electrical or indeed any 
experiment performed entirely or partially within that frame, or even by reference to 
another frame 
 
and consequently am I choosing to believe that my speedometer will not work.  If it is 
impossible by any electrical experiment to determine our speed, we must assume that all 
the electromagnetic equations that we know, not just the ones that we have quoted, but 
indeed Maxwell’s equations, which embrace all electromagnetic phenomena, are the 
same in all uniformly-moving reference frames.   
 
One of the many predictions of Maxwell’s equations is that electromagnetic radiation 
(which includes light) travels at a speed  
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    ./1 00εµ=c       15.5.1 
 
Presumably neither the permeability nor the permittivity of space changes merely 
because we believe that we are travelling through space – indeed it would defy common 
sense to suppose that they would.  Consequently, our acceptance of the fundamental 
principle of special relativity is equivalent to accepting as a fundamental postulate that 
the speed of light in vacuo is the same for all observers in uniform relative motion.  We 
shall take anything other than this to be an outrage against common sense – though 
acceptance of the principle will require a careful examination of our ideas concerning the 
relations between time and space.  
 
Let us imagine two reference frames, Σ and Σ'.  Σ' is moving to the right (positive x-
direction) at speed v relative to Σ.  (For brevity, I shall from time to time refer to Σ as the 
“stationary” frame, in the hope that this liberty will not lead to misunderstanding.)  At 
time t  =  t'  =  0 the two frames coincide, and at that instant someone strikes a match at 
the common origin of the two frames.  At a later time, which I shall call t if referred to 
the frame Σ, and t' if referred to Σ', the light from the match forms a spherical wavefront 
travelling radially outward at speed c from the origin O of Σ, and the equation to this 
wavefront, when referred to the frame Σ, is 
 
    .022222 =−++ tczyx     15.5.2 
 
Referred to Σ', it also travels outward at speed c from the origin O' of Σ', and the equation 
to this wavefront, when referred to the frame Σ', is 
 
    .0'''' 22222 =−++ tczyx     15.5.3 
 
Most readers will accept, I think, that y  =  y' and z =  z'.  Some formal algebra may be 
needed for a rigorous proof, but that would distract from our main purpose of finding a 
transformation between the primed and unprimed coordinates such that 
 
    .'' 222222 tcxtcx −=−     15.5.4 
 
It is easy to show that the “Galilean” transformation x'  =  x  −  ct,  t'  =  t does not satisfy 
this equality, so we shall have to try harder. 
 
Let us seek linear transformations of the form 
 
    ,' BtAxx +=      15.5.5 
 
    ,' DtCxt +=      15.5.6 
 
which satisfy equation 15.5.4. 
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We have   ,
'
'

DtCx
BtAx

t
x

+
+

=      15.5.7 

 

and, by inversion,  .
''
''

CtAx
CtDx

t
x

−
−

=      15.5.8 

 
Consider the motion of O' relative to Σ  and to Σ'.  We have x/t = v  and x'  =  0. 
  
â    ./AB−=v       15.5.9 
 
Consider the motion of O relative to Σ' and to Σ.  We have x'/t' = −v  and x  =  0. 
 
 
â    ./DB=−v       15.5.10 
 
From these we find that D = A and B  =  −Av, so we arrive at 
 
    )(' txAx v−=      15.5.11 
 
and    .' AtCxt +=       15.5.12 
 
On substitution of equations 15.5.11 and 15.5.12 into equation 15.5.4, we obtain 
 
  .)()( 222222 tcxAtCxctxA −=−−− v     15.5.13 
 
Equate powers of t2 to obtain 
 

   .
/1

1
22

γ=
−

=
c

A
v

     15.5.14 

 
Equate powers of xt to obtain 
 

    .
c

C γ
−=

v       15.5.15 

 
Equating powers of x2 produces no new information. 
 
We have now determined A, B, C and D, and we can substitute them into equations 
15.5.5 and 15.5.6, and hence we arrive at 
 
    )(' txx v−γ=      15.5.16 
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and    .)/(' 2cxtt v−γ=      15.5.17 
 
These, together with y  =  y' and z =  z', constitute the Lorentz transformations, which, by 
suitable choice of axes, guarantee the invariance of the speed of light in all reference 
frames moving at constant velocities relative to one another. 
 
To express x and t in terms of x' and t', you may, if you are good at algebra, solve 
equations 15.5.16 and 15.5.17 simultaneously for x' and t', or, if instead, you have good 
physical insight, you will merely reverse the sign of v and interchange the primed and 
unprimed quantities.  Either way, you should obtain 
 
    )''( txx v+γ=      15.5.18 
 
and    .)/''( 2cxtt v+γ=      15.5.19 
 
 
 
15.6.    But This Defies Common Sense 
 
At this stage one may hear the protest: “But this defies common sense!”.  One may hear it 
again as we encounter several predictions of the invariance of the speed of light and of 
the Lorentz transformations.  But, if you have read this far, it is too late to make such 
protest.  You have already, at the end of Section 15.4, made your choice, and you then 
decided that it defies common sense to suppose that one can somehow determine the 
speed of a reference frame by some experiment or observation.  You rejected that notion, 
and it was the application of common sense, not its abandonment, that led us into the 
Lorentz transformations and the invariance of the speed of light.  
 
There may be other occasions when we are tempted to protest “But this defies common 
sense!”, and it is therefore always salutary to recall this.  For example, we shall later learn 
that if a train is moving at speed V relative to the station platform, and a passenger is 
walking towards the front of the train at a speed v relative to the train, then, relative to the 
platform, he is moving at a speed just a little bit less that V  +  v.  When we protest, we 
are often presented with an “explanation” along the following lines: 
 
In every day life, trains do not move at speeds comparable to the speed of light, nor do 
walking passengers.  Therefore, we do not notice that the combined speed is a little bit 
less than V  +  v.  After all, if V  = 60 mph and v  = 4 mph, the combined speed is 
0.999 999 999 999 999 5 %  64 mph.  The formula V  +  v is just an approximation, we 
are told, and we have the erroneous impression that the combined speed is exactly V  +  v 
only because we are accustomed, in daily life, to experiencing speeds that are small 
compared with the speed of light. 
 
This explanation somehow does not seem to be satisfactory – and nor should it, for it is 
not a correct explanation.  It seems to be an explanation invented for the benefit of the 
nonscientific layman – but nothing is ever made easy to understand by giving an incorrect 
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explanation under the pretence of “simplifying” something. It is not correct merely to say 
that the Galilean transformations are just an “approximation” to the “real” 
transformations. 
 
The problem is that it is exceedingly difficult – perhaps impossible – to describe exactly 
what is meant by “distance” and “time interval”.  It is almost as difficult as describing 
colours to a blind person, or even describing your sensation of the colour red to another 
seeing person.  We have no guarantee that every person’s perception of colour is the 
same.  The best that can be done to describe what we mean by distance and time interval 
is to define how distances and times transform between reference frames.  The Lorentz 
transformations, which we have adopted in order to make it meaningless to discuss the 
absolute velocity of a reference frame, amount to a useful working definition of the 
meanings of space and time.  Once we have adopted this definition, “common sense” no 
longer comes into the matter.  There is no longer a mystery which our minds cannot quite 
grasp; from this point on it merely becomes a matter of algebra as to how a measurement 
of length or of time interval, or of speed, or of mass, as appropriately defined, transforms 
when referred to one reference or to another.  There is no impossible feat of imagination 
to be done. 
 
 
15.7   The Lorentz Transformation as a Rotation 
 
The Lorentz transformation can be written 
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where x1 = x ,   x2 = y ,  x3  =  z and x4  =  −ict, and similarly for primed quantities.  Please 
don’t just take my word for this; multiply the matrices, and verify that this equation does 
indeed represent the Lorentz transformation.  You could, if you wish, also write this for 
short: 
 
       x'  =  λx .      15.7.2 
 
Another way of writing the Lorentz transformation is 
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    15.7.3 

 
where x1 = x ,   x2 = y ,  x3  =  z and x0  =  ct, and similarly for primed quantities.    
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Some people prefer one version; others prefer the other.  In any case, a set of four 
quantities that transforms like this is called a 4-vector.  Those who dislike version 15.7.1 
dislike it because of the introduction of imaginary quantities.  Those who like version 
15.7.1  point out that the expression 2/12

4
2

3
2

2
2

1 ])()()()[( xxxx ∆+∆+∆+∆   (the 
“interval” between two events) is invariant in four-space – that is, it has the same value in 
all uniformly-moving reference frames, just as the distance between two points in three-
space,  2/1222 ])()()[( zyx ∆+∆+∆ , is independent of the position or orientation of any 
reference frame.  In version 15.7.3, the invariant interval is 

.])()()()[( 2/12
0

2
3

2
2

2
1 xxxx ∆−∆+∆+∆   Those who prefer version 15.7.1 dislike the 

minus sign in the expression for the interval.  Those who prefer version 15.7.3 dislike the 
imaginary quantities of version 15.7.1.   
 
For the time being, I am going to omit y and z, so that I can concentrate my attention on 
the relations between x and t.  Thus I am going to write 15.7.1 as 
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and equation15.7.3 as 
 

   















γβγ
βγγ

=







ct
x

ct
x

'
'

     15.7.5 

 
Readers may notice how closely equation 15.7.4 resembles the equation for the 
transformation of coordinates between two reference frames that are inclined to each 
other at an angle. (See Celestial Mechanics Section 3.6.) Indeed, if we let cos θ  =  γ   and   
sin θ  =  iβγ, equation 15.7.4 becomes 
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    15.7.6 

 
The matrices in equations 15.7.1, 15.7.4 and 15.7.6 are orthogonal matrices and they 
satisfy each of the criteria for orthogonality described, for example, in Celestial 
Mechanics Section 3.7.  We can obtain the converse relations (i.e. we can express x and t 
in terms of  x' and t') by interchanging the primed and unprimed quantities and either 
reversing the sign of β or of θ or by interchanging the rows and columns of the matrix. 
 
There is a difficulty in making the analogy between the Lorentz transformation as 
expressed by equation 15.7.4 and rotation of axes as expressed by equation 15.7.6 in that, 
since γ > 1, θ is an imaginary angle.  (At this point you may want to reach for your 
ancient, brittle, yellowed notes on complex numbers and hyperbolic functions.)  Thus 

,cos 1 γ=θ −   and for γ > 1, this means that ( ).1lncosh 21 −γ+γ=γ=θ − ii   And 
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( ).1ln)(sinh)(sin 2211 +γβ+βγ=βγ=βγ=θ −− iii   Either of these expressions reduces to 
.)]1(ln[ β+γ=θ i   Perhaps a yet more convenient way of expressing this is 
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For example, if β = 0.8, θ  =  1.0986i, which might be written (not necessarily 
particularly usefully) as i % 62o 57'. 
 
At this stage, you are probably thinking that you much prefer the version of equation 
15.7.5, in which all quantities are real, and the expression for the interval between two 
events is .])()()()[( 2/12
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1 xxxx ∆−∆+∆+∆   The minus sign in the expression is a 
small price to pay for the realness of all quantities.  Equation  15.7.5 can be written 
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   15.7.8  

 
where .tanh,sinh,cosh β=φβγ=φγ=φ On the face of it, this looks much simpler. 
No messing around with imaginary angles.  Yet this formulation is not without its own 
set of difficulties.  For example, neither the matrix of equation 15.7.5 nor the matrix of 
equation 15.7.8 is orthogonal.  You cannot invert the equation to find x and t in terms of  
x' and t'  merely by interchanging the primed and unprimed symbols and interchanging 
the rows and columns.  The converse of equation 15.7.8 is in fact 
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which can also (understandably!) be written 
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which demands as much skill in handling hyperbolic functions as the other formulation 
did in handling complex numbers.  A further problem is that the formulation 15.7.5 does 
not allow the analogy between the Lorenz transformation and the rotation of axes. You 
take your choice.   
 
It may be noticed that the determinants of the matrices of equations 15.7.5 and 15.7.8 are 
each unity, and it may therefore be thought that each matrix is orthogonal and that its 
reciprocal is its transpose.  But this is not the case, for the condition that the determinant 
is zero is not a sufficient condition for a matrix to be orthogonal.  The necessary tests are 
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summarized in Celestial Mechanics, Section 3.7, and it will be found that several of the 
conditions are not satisfied. 
 
 
15.8    Timelike and Spacelike 4-Vectors 
 
I am going to refer some events to a coordinate system whose origin is here and now and 
which is moving at the same velocity as you happen to be moving.  In other words, you 
are sitting at the origin of the coordinate system, and you are stationary with respect to it.  
Let us suppose that an event A occurs at the following coordinates referred to this 
reference frame, in which the distances x1 ,  y1 , z1 are expressed in light-years (lyr) the 
time t1 is expressed in years (yr).    
 
  x1  =  2  y1  =  3  z1  =  7  t1  =  −1 
 
A “light-year” is a unit of distance used when describing astronomical distances to the 
layperson, and it is also useful in describing some aspects of relativity theory.  It is the 
distance travelled by light in a year, and is approximately 9.46 % 1015 m or 0.307 parsec 
(pc).  Event A, then, occurred a year ago at a distance of 87.762 =  lyr, when referred 
to this reference frame.  Note that, if referred to a reference frame that coincides with this 
one at t = 0, but is moving with respect to it, all four coordinates might be different, and 
the distance 222 zyx ++ and the time of occurrence would be different, but, 
according to the way in which we have defined space and time by the Lorentz 
transformation, the quantity 22222 tczyx −++  would be the same. 
 
Imagine now a second event, B, which occurs at the following coordinates: 
 
  x2  =  5  y2  =  8  z2  =  10 t2  =  +2 
 
That is to say, when referred to the same reference frame, it will occur in two years’ time 
at a distance of 75.13189 =  lyr. 
 
The 4-vector  s  =  B  −  A connects these two events, and the magnitude s of s is the 
interval between the two events.  Note that the distance between the two events, when 
referred to our reference frame, is 56.6)710()38()25( 222 =−+−+−  lyr.  The 

interval between the two events is 83.5)12()710()38()25( 2222 =+−−+−+−  lyr, 
and this is independent of the velocity of the reference frame.  That is, if we “rotate” the 
reference frame, it obviously makes no difference to the interval between the two events, 
which is invariant. 
 
As another example, consider two events A and B whose coordinates are 
 
  x1  =  2  y1  =  5  z1  =  3  t1  =  −2 
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  x2  =  3  y2  =  7  z2  =  4  t2  =  +6 
 
with distances, as before, expressed in lyr, and times in yr.  Calculate the interval 
between these two events – i.e. the magnitude of the 4-vector connecting them.  If you 
carry out this calculation, you will find that s 2  =  −58, so that the interval s is imaginary 
and equal to 7.62i. 
 
So we see that some pairs of events are connected by a 4-vector whose magnitude is real, 
and other pairs are connected by a 4-vector whose magnitude is imaginary.  There are 
differences in character between real and imaginary intervals, but, in order to strip away 
distractions, I am going to consider events for which y  =  z  =  0.  We can now 
concentrate on the essentials without being distracted by unimportant details. 
 
Let us therefore consider two events A and B whose coordinates are 
 
   x1  =  2  lyr  t1  =  −2  yr 
 
   x2  =  3  lyr  t2  =  +6  yr 
 
These events and the 4-vector connecting them are shown in figure XV.7.Event A 
happened two years ago (referred to our reference frame); event B will occur (also 
referred to our reference frame) in six years’ time.  The square of the interval between the 
two events (which is invariant) is −63 lyr2, and the interval is imaginary.  If someone 
wanted to experience both events, he would have to travel only 1 lyr (referred to our 
reference frame), and he could take his time, for he would have eight years (referred to 
our reference frame) in which to make the journey to get to event B in time.  He couldn’t 
totally dawdle, however;  he would have to travel at a speed of at least 8

1  times the speed 
of light, but that’s not extremely fast for anyone well versed in relativity. 
 
 
 
 
 
 
 
 
 
 
 
 
Let’s look at it another way.  Let’s suppose that event A is the cause of event B.  This 
means that some agent must be capable of conveying some information from A to B at a 
speed at least equal to 8

1  times the speed of light.  That may present some technical 
problems, but it presents no problems to our imagination. 
 

B 

x 

t 

FIGURE XV.7 

A 

s 



 18

You’ll notice that, in this case, the interval between the two events – i.e. the magnitude of 
the 4-vector connecting them − is imaginary.  A 4-vector whose magnitude is imaginary 
is called a timelike 4-vector.   There is quite a long time between events A and B, but not 
much distance.  
 
Now consider two events A and B whose coordinates are 
 
   x1  =  2  lyr  t1  =  −1  yr 
 
   x2  =  7  lyr  t2  =  +3  yr 
 
The square of the magnitude of the interval between these two events is +9 lyr2, and the 
interval is real.  A 4-vector whose magnitude is real is called a spacelike 4-vector.  It is 
shown in figure XV.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Perhaps I could now ask how fast you would have to travel if you wanted to experience 
both events.  They are quite a long way apart, and you haven’t much time to get from one 
to the other.  Or, if event A is the cause of event B, how fast would an information-
carrying agent have to move to convey the necessary information from A in order to 
instigate event B?  Maybe you have already worked it out, but I’m not going to ask the 
question, because in a later section we’ll find that two events A and B cannot be mutually 
causally connected if the interval between them is real.  Note that I have said “mutually”;  
this means that A cannot cause B, and B cannot cause A.  A and B must be quite 
independent events; there simply is too much space in the interval between them for one 
to be the cause of the other.  It does not mean that the two events cannot have a common 
cause.  Thus, figure XV.9 shows two events A and B with a spacelike interval between 
them (very steep) and a third event C such the intervals CA and CB (very shallow) are 
timelike.  C could easily be the cause of both A and B; that is, A and B could have a 
common cause.   But there can be no mutual causal connection between A and B.  (It 
might be noted parenthetically that Charles Dickens temporarily nodded when he chose 

x 

s 

A 

B 

t 

FIGURE XV.8 
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the title of his novel Our Mutual Friend.  He really meant our common friend.  C was a 
friend common to A and to B.  A and B were friends mutually to each other.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exercise.  The distance of the Sun from Earth  is 1.496 % 1011 m.  The speed of light is 
2.998 % 108 m s−1.  How long does it take for a photon to reach Earth from the Sun?  
Event A:  A photon leaves the Sun on its way to Earth.  Event B: The photon arrives at 
Earth.  What is the interval (i.e. s in 4-space) between these two events? 
 
 
15.9   The FitzGerald-Lorentz Contraction 
 
This is sometimes described in words something like the following:  
 
If a measuring-rod is moving with respect to a “stationary” observer, it “appears” to be 
shorter than it “really” is. 
 
This is not a very precise statement, and the words that I have placed in inverted commas 
call for some clarification. 
 
We have seen that, while the interval between two events is invariant between reference 
frames, the distance between two points (and hence the length of a rod) depends on the 
coordinate frame to which the points are referred.  Let us now define what we mean by 
the length of a rod.  Figure XV.10 shows a reference frame, and a rod lying parallel to the 
x-axis.  For the moment I am not specifying whether the rod is moving with respect to the 
reference frame, or whether it is stationary.    
 
 

Distance 

C 

A 

B 

Time 
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Let us suppose that the x-coordinate of the left-hand end of the rod is x1, and that, at the 
same time referred to this reference frame, the x-coordinate of the right-hand end is x2.  
The length l of the rod is defined as l = x2 − x1.  That could scarcely be a simpler 
statement – but note the little phrase “at the same time referred to this reference frame”.  
That simple phrase is important. 
 
Now let’s look at the FitzGerald-Lorentz contraction.  See figure XV.11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The are two reference frames, Σ and Σ'.  The frame Σ' is moving to the right with respect 
to Σ with speed v.  A rod is at rest with respect to the frame Σ', and is therefore moving to 
the right with respect to Σ at speed v.   
 
In my younger days I often used to travel by train, and I still like to think of railway trains 
whenever I discuss relativity.  Modern students usually like to think of spacecraft, 
presumably because they are more accustomed to this mode of travel.  In the very early 
days of railways, it was customary for the stationmaster to wear top hat and tails.  Those 
days are long gone, but, when thinking about the FitzGerald-Lorentz contraction, I like to 
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think of Σ as being a railway station in which there resides a stationmaster in top hat and 
tails, while Σ' is a railway train.  
 
The length of the rod, referred to the frame Σ', is l '  =  x'2 − x'1, in what I hope is obvious 
notation, and of course these two coordinates are determined at the same time referred to 
Σ'. 
 
The length of the rod referred to a frame in which it is at rest is called its proper length. 
Thus l ' is the proper length of the rod. 
 
Now it should be noted that, according to the way in which we have defined distance and 
time by means of the Lorentz transformation, although x'2 and x'1 are measured 
simultaneously with respect to Σ', these two events (the determination of the coordinates 
of the two ends of the rod) are not simultaneous when referred to the frame Σ (a point to 
which we shall return in a later section dealing with simultaneity).  The length of the rod 
referred to the frame Σ is given by  l  =  x2 − x1, where these two coordinates are to be 
determined at the same time when referred to Σ.  Now equation 15.5.16 tells us that 

./'/' 1122 txxandtxx vv +γ=+γ=  (Readers should note this derivation very 
carefully, for it is easy to go wrong.  In particular, be very clear what is meant in these 
two equations by the symbol t.  It is the single instant of time, referred to Σ, when the 
coordinates of the two ends are determined simultaneously with respect to Σ.)  From 
these we reach the result: 
 
     l  =  l '/γ .     15.9.1 
 
This is the FitzGerald-Lorentz contraction. 
 
It is sometimes described thus:  A railway train of proper length 100 yards is moving past 
a railway station at 95% of the speed of light (γ  =  3.2026.)  To the stationmaster the 
train “appears” to be of length 31.22 yards; or the stationmaster “thinks” the length of the 
train is 31.22 yards; or, “according to” the stationmaster the length of the train is 31.22 
yards.  This gives a false impression, as though the stationmaster is under some sort of 
misapprehension concerning the length of the train, or as if he is labouring under some 
sort of illusion, and it introduces some sort of unnecessary “mystery” into what is nothing 
more than simple algebra.   In fact what the stationmaster “thinks” or “asserts” is entirely 
irrelevant.  Two correct statements are:  1.  The length of the train, referred to a reference 
frame in which it is at rest – i.e. the proper length of the train – is 100 yards.  2.  The 
length of the train when referred to a frame with respect to which it is moving at a speed 
of 0.95c is 31.22 yards. And that is all there is to it.  Any phrase such as “this observer 
thinks that” or “according to this observer” should always be interpreted in this manner.  
It is not a matter of what an observer “thinks”.  It is a matter of which frame a 
measurement is referred to.  Nothing more, nothing less. 
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It is possible to describe the Lorentz-FitzGerald contraction by interpreting the Lorentz 
transformations as a rotation in 4-space.  Whether it is helpful to do so only you can 
decide.  Thus figure XV.12 shows Σ and Σ' related by a rotation in the manner described 
in section 15.7.   The thick continuous line shows a rod oriented so that its two ends are 
drawn at the same time with respect to Σ'.  Its length is, referred to Σ', l', and this is its 
proper length.  The thick dotted line shows  the two ends at the same time with respect to 
Σ.  Its length referred to Σ is l  =  l'/cosθ.  And, since cos θ = γ, which is greater than 1,, 
this means that, in spite of appearances in the figure, l < l'.  The figure is deceptive 
because, as discussed in section 15.7, θ is imaginary.  As I say, only you can decide 
whether this way of looking at the contraction is helpful or merely confusing.  It is, 
however, at least worth looking at, because I shall be using this concept of rotation in a 
forthcoming section on simultaneity and order of events.  Illustrating the Lorentz 
transformations as a rotation like this is called a Minkowski diagram. 
 
 
15.10    Time Dilation 
 
We imagine the same railway train Σ' and the same railway station Σ as in the previous 
section except that, rather than measuring a length referred to the two reference frames, 
we measure the time interval between two events.  We’ll suppose that a passenger in the 
railway train Σ' claps his hands twice.  These are two events which, when referred to the 
reference frame Σ', take place at the same place when referred to this reference frame. 
Let the instants of time when the two events occur, referred to  Σ', be .'and' 21 tt   The 
time interval 'T is defined as .'' 12 tt −  But the Lorentz transformation is )/''( 2cxtt v+γ= , 
and so the time interval when referred to Σ is 
 
     '.TT γ=       15.10.1 
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l

FIGURE XV.12 

x

Σ 

Σ' 

θ

ict'
ict 

x'



 23

 
This is the dilation of time.  The situation is illustrated by a Minkowski diagram in figure 
XV.13.  While it is clear from the figure that θ= cos'TT  and therefore that ,'TT γ= it is 
not so clear from the figure that this means that T is greater than T ' – because cos θ > 1 
and θ is imaginary. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus, let us suppose that a passenger on the train holds a 1-metre measuring rod (its 
length in the direction of motion of the train) and he claps his hands at an interval of one 
second apart.  Let’s suppose that the train is moving at 98% of the speed of light (γ =  
5.025).  In that case the stationmaster thinks that the length of the rod is only 19.9 cm and 
that the time interval between the claps is 5.025 seconds. 
 
I deliberately did not word that last sentence very well.  It is not a matter of what the 
stationmaster or anyone else “thinks” or “asserts”.  It is not a matter that the stationmaster 
is somehow deceived into erroneously believing that the rod is 19.9 cm long and the claps 
5.025 seconds apart, whereas they are “really” 1 metre long and 1 second apart.  It is a 
matter of how length and time are defined (by subtracting two space coordinates 
determined at the same time, or two time coordinates at the same place)  and how space-
time coordinates are defined by means of the Lorentz transformations.  The length is 19.9 
cm, and the time interval is 5.025 seconds when referred to the frame Σ.  It is true that 
the proper length and the proper time interval are the length and the time interval 
referred to a frame in which the rod and the clapper are at rest.  In that sense one could 
loosely say that they are “really” 1 metre long and 1 second apart.  But the Lorentz 
contraction and the time dilation are not determined by what the stationmaster or anyone 
else “thinks”. 
 
Another way of looking at it is this.  The interval s between two events is clearly 
independent of the orientation any reference frames, and is the same when referred to two 
reference frames that may be inclined to each other.  But the components of the vector 
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joining two events, or their projections on to the time axis or a space axis are not at all 
expected to be equal. 
 
By the way, in section 15.3 I urged you to write a computer or calculator programme for 
the instant conversion between the several factors commonly encountered in relativity.  I 
still urge it.  As soon as I typed that the train was travelling at 98% of the speed of light, I 
was instantly able to generate γ.  You need to be able to do that, too. 
 
 
15.11   The Twins Paradox 
 
During the late 1950s and early 1960s there was great controversy over a problem known 
as the “Twins Paradox”.  The controversy was not confined to within scientific circles, 
but was argued, by scientists and others, in the newspapers, magazines and many serious 
journals.  It goes something like this: 
 
There are two 20-year-old twins, Albert and Betty.  Albert is a sedentary type who likes 
nothing better than to stay at home tending the family vineyards.  His twin sister Betty is 
a more adventurous type, and has trained to become an astronaut.  On their twentieth 
birthday, Betty waves a cheery au revoir to her brother and takes off on what she intends 
to be a brief spaceflight, at which she travels at 99.98 % of the speed of light (γ = 50).  
After six months by her calendar she turns back and on her 21st birthday she arrives back 
home to greet her brother, only to find that he is now old and sere and has laboured, by 
his calendar for 50 years and is now an aged man of 71 years.  If we accept what we have 
derived in the previous section about the dilation of time, there would seem to be no 
particular problem with that.   It has even been argued that travel between the stars may 
not be an impossibility.  Whereas to an Earthbound observer it may take many decades 
for a spacecraft to travel to a star and back, for the astronauts on board much less time 
has elapsed. 
 
And yet a paradox was pointed out.  According to the principles of the relativity of 
motion, it was argued, one could refer everything to Betty’s reference frame, and from 
that point of view one could regard Betty as being the stationary twin and Albert as the 
one who travelled off into the distance and returned later.  Thus, it could be argued, it 
would be Albert who had aged only one year, while Betty would have aged fifty years. 
Thus we have a paradox, which is a problem which apparently gives rise to opposite 
conclusion depending on how it is argued.  And the only way that the paradox could be 
resolved was to suppose that both twins were the same age when they were re-united.   
 
A second argument in favour of this interpretation that the twins were the same age when 
re-united points out that dilation of time arises because two events that may occur in the 
same place when referred to one reference frame do not occur in the same place when 
referred to another.  But in this case, the two events (Betty’s departure and re-arrival) 
occur at the same place when referred to both reference frames. 
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The argument over this point raged quite furiously for some years, and a particularly 
plausible tool that was used was something referred to as the “k-calculus” – an argument 
that is, however, fatally flawed because the “rules” of the k-calculus inherently 
incorporate the desired conclusion.  Two of the principal leaders of the very public 
scientific debate were Professors Fred Hoyle and Herbert Dingle, and this inspired the 
following letter to a weekly magazine, The Listener, in 1960: 
 
Sir: 
 

The ears of a Hoyle may tingle; 
    The blood of a Hoyle may boil 
   When Hoyle pours hot oil upon Dingle,  
   And Dingle cold water on Hoyle. 
 
   But the dust of the wrangle will settle. 
   Old stars will look down on new soil. 
   The pot will lie down with the kettle, 
   And Dingle will mingle with Hoyle. 
 
 
So what are you, the reader expected to believe?  Let us say this:  If you are a student 
who has examinations to pass, or if you are an untenured professor who has to hold on to 
a job, be in no doubt whatever:  The original conclusion is the canonically-accepted 
correct conclusion, namely that Albert has aged 50 years while his astronaut sister has 
aged but one.  This is now firmly accepted truth.  Indeed it has even been claimed that it 
has been “proved” experimentally by a scientist who took a clock on commercial airline 
flights around the world, and compared it on his return with a stay-at-home clock.  For 
myself I have neither examinations to pass nor, alas, a job to hold on to, so I am not 
bound to believe one thing or the other, and I elect to hold my piece.   
 
I do say this, however – that what anyone “believes” is not an essential point.  It is not a 
matter of what Albert or Betty or Hoyle or Dingle or your professor or your employer 
“believes”.  The real question is this:  What is it that is predicted by the special theory of 
relativity?  From this point of view it does not matter whether the theory of relativity is 
“true” or not, or whether it represents a correct description of the real physical world.  
Starting from the basic precepts of relativity, whether “true” not, it must be only a matter 
of algebra (and simple algebra at that) to decide what is predicted by relativity. 
 
A difficulty with this is that it is not, strictly speaking, a problem in special relativity, for 
special relativity deals with transformations between reference frames that are in uniform 
motion relative to one another.  It is pointed out that Albert and Betty are not in uniform 
motion relative to one another, since one or the other of them has to change the direction 
of motion – i.e. has to accelerate.  It could still be argued that, since motion is relative, 
one can regard either Albert or Betty as the one who accelerates – but the response to this 
is that only uniform motion is relative.  Thus there is no symmetry between Albert and 
Betty.  Betty either accelerates or experiences a gravitational field (depending on whether 
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her experience is referred to Albert’s or her own reference frame).  And, since there is no 
symmetry, there is no paradox.  This argument, however, admits that the age difference 
between Albert and Betty on Betty’s return is not an effect of special relativity, but of 
general relativity, and is an effect caused by the acceleration (or gravitational field) 
experienced by Betty.    
 
If this is so, there are some severe difficulties is describing the effect under general 
relativity.  For example, whether the general theory allows for an instantaneous change in 
direction by Betty (and infinite deceleration), or whether the final result depends on how 
she decelerates – at what rate and for how long – must be determined by those who 
would tackle this problem.  Further, the alleged age difference is supposed to depend 
upon the time during which Betty has been travelling and the length of her journey – yet 
the portion of her journey during which she is accelerating or decelerating can be made 
arbitrarily short compared with the time during which she is travelling at constant speed. 
If the effect were to occur solely during the time when she was accelerating or 
decelerating, then the total length and duration of the constant speed part of her journey 
should not affect the age difference at all.  
 
Since this chapter deals only with special relativity, and this is evidently not a problem 
restricted to special relativity, I leave the problem, as originally stated, here, without 
resolution, for readers to argue over as they will 
  
 
15.12    A, B and C 
 
A, B and C were three characters in the Canadian humorist Stephen Leacock’s essay on 
The Human Element in Mathematics.  “A, B and C are employed to dig a ditch.  A can 
dig as much in one hour as B can dig in two...” 
 
We can ask A, B and C to come to our aid in a modified version of the twins’ problem, 
for we can arrange all three of them to be moving with constant velocities relative to each 
other.  It goes like this  (figure XV.14): 
 
 
 
    
 
   
 
The scenario is probably obvious from the figure.  There are three events:  
 

1. B passes A 
2. B meets C 
3. C passes A 
 

*   
A 

*   
B *   

C FIGURE XV.14 
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At event 1, B and A synchronize their watches so that each reads zero.  At event 2, C sets 
his watch so that it reads the same as B’s.  At event 3, C and A compare watches.  I shall 
leave the reader to cogitate over this. The only thing I shall point out is that this problem 
differs from the problem described as the Twins Paradox in two ways.  In the first place, 
unlike in the Twins Paradox, all three characters, A, B and C are moving at constant 
velocities with respect to each other.  Also, the first and third events occur at the same 
place relative to A but at different places referred to B or to C.  In the twin paradox 
problem, the two events occur at the same place relative to both frames.   
 
 
15.13    Simultaneity 
 
If the time interval referred to one reference frame can be different when referred to 
another reference frame (and since time interval is merely one component of a four-
vector, the magnitude of the component surely depends on the orientation in four space of 
the four axes) this raises the possibility that there might be a time interval of zero relative 
to one frame (i.e. two events are simultaneous) but are not simultaneous relative to 
another.  This is indeed the case, provided that the two events do not occur in the same 
place as well as at the same time.  Look at figure XV.15. 
 
 
 
 
 
      
 
 
      
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
I have drawn two reference frames at an (imaginary) angle θ to each other.  Think of Σ as 
the railway station and of Σ' as the railway train, and that the speed of the railway train is 

.tan θc  (You may have to go back to section 15.3 or 15.7 to recall the relation of θ to the 
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speed.)  The thick line represents the interval between two events that are simultaneous 
when referred to Σ', but are separated in space (one occurs near the front of the train; the 
other occurs near the rear).  (Note also in this text that I am using the phrase “time 
interval” to denote the time-component of the “interval”.  For two simultaneous events, 
the time interval is zero, and the interval is then merely the distance between the two 
events.) 
 
While the thick line has zero component along the ict' axis, its component along the ict 
axis is l ' sin θ.  That is, .'sin')( 12 βγ×=θ=− illttic  
 

Hence:    .'12 c
ltt γβ

=−      15.13.1 

 
For example, if the events took place simultaneously 100,000 km apart in the train (it is a 
long train) and if the train were travelling at 95% of the speed of light  (γ  =  3.203; it is a 
fast train), the two events would be separated when referred to the railway station by 1.01 
seconds.  The event near the rear of the train occurred first. 
 
 
15.14   Order of Events, Causality and the Transmission of Information 
 
Maybe it is even possible that if one event precedes another in one reference frame, in 
another reference frame the other precedes the one.  In other words, the order of 
occurrence of events may be different in two frames.  This indeed can be the case, and 
Minkowski diagrams (figure XV.16) can help us to see why and in what circumstances. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In part (a), of the two events 1 and 2, 1 occurs before 2 in either Σ or Σ'.  (from this point 
on I shall use a short phrase such as “in Σ” rather than the more cumbersome “when 
referred to the reference frame Σ”.  But in part (b), event 1 occurs before event 2 in Σ, but 
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after event 2 in Σ'.  One can see that there is reversal of order of events if the slope of the 
line joining to two events is less than the angle θ.  The angle θ, it may be recalled, is an 
imaginary angle such than tan θ  =  iβ  =  iv /c, where v is the relative speed of the two 
frames.  In figure XV.17, for simplicity I am going to suppose that event 1 occurs at the 
origin of both frames, and that event 2 occurs at coordinates (v t , ict) in Σ.  The condition 
for no reversal of events is then evidently 
 

    ;tan
c
ii

t
ict v
v

=β=θ≥  

 
or     .c≤v       15.14.1 
 
Now suppose that events 1 and 2 are causally connected in the sense that event 1 is the 
cause of event 2.  For this to be the case, some signal carrying information must travel 
from 1 to 2.  However, if event 1 is the cause of event 2, event 1 must precede event 2 in 
all reference frames.  Thus it follows that no signal carrying information that could cause 
an event to occur can travel faster than the speed of light.   
 
This means, in effect, that neither mass nor energy can be transmitted faster than the 
speed of light.  That is not quite the same thing as saying that “nothing” can be 
transmitted faster than the speed of light.  For example a Moiré pattern formed by two 
combs with slightly different tooth spacings can move faster than light if one of the 
combs is moved relative to the other; but then I suppose it has to be admitted that in that 
case “nothing” is actually being transmitted – and certainly nothing that can transmit 
information or that can cause an event.  An almost identical example would be the 
modulation envelope of the sum of two waves of slightly different frequencies.  A well-
known example from wave mechanics is that of the wave representation of a moving 
particle.  The wave group (which is the integral of a continuous distribution of 
wavelengths whose extent is governed by Heisenberg’s principle) moves with the particle 
at a sub-luminal speed, but there is nothing to prevent the wavelets within the group 
moving through the group at any speed.  These wavelets may start at the beginning of the 
group and rapidly move through the group and extinguish themselves at the end.  No 
“information” is transmitted from A to B at a speed any faster than the particle itself is 
moving.   
 
 
 
15.15     Derivatives 
 
We’ll pause here and establish a few derivatives just for reference and in case we need 
them later.   
 
We recall that the Lorentz relations are 
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and    .'' 
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From these we immediately find that 
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We shall need these in future sections. 
 
Caution:   It is not impossible to make a mistake with some of these derivatives if one 
allows one’s attention to wander.   For example, one might suppose that, since 

,'/ γ=∂∂ xx  then “obviously” γ=∂∂ /1/' xx  - and indeed this is correct if t' is being held 
constant. However, we have to be sure that this is really what we want.  The difficulty is 
likely to arise if, when writing a partial derivative, we neglect to specify what variables 
are being held constant, and no great harm would be done by insisting that these always 
be specified when writing a partial derivative.  If you want the inverses rather than the 
reciprocals of equations 15.15.3a,b,c,d, the rule, as ever, is:  Interchange the primed and 
unprimed symbols and change the sign of v or β.  For example, the reciprocal of 
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write down all the possibilities: 
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Now let’s suppose that ,),( txψ=ψ  where x and t are in turn functions 
(equations15.15.1 and 15.1.5.2) of x' and t'.    Then 
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The reader will doubtless notice that I have here ignored my own advice and I have not 
indicated which variables are to be held constant.  It would be worth spending a moment 
here thinking about this. 
 
We can write equations 15.15.4 and 15.15.5 as equivalent operators: 
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We can also, if we wish, find the second derivatives.  Thus 
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from which we find 
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In a similar manner we obtain 
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The inverses of all of these relations are to be found by interchanging the primed 
and unprimed coordinates and changing the signs of v and β. 
 
 
 
15.16    Addition of velocities 
 
A railway train trundles towards the east at speed v1, and a passenger strolls towards the 
front at speed v2.  What is the speed of the passenger relative to the railway station?  We 
might at first be tempted to reply: “Why, ,21 vv +  of course.”  In this section we shall 
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show that the answer as predicted from the Lorentz transformations is a little less than 
this, and we shall develop a formula for calculating it.  We have already discussed (in 
section 15.6) our answer to the objection that this defies common sense.  We pointed out 
there that the answer (to the perfectly reasonable objection) that “at the speeds we are 
accustomed to we would hardly notice the difference” is not a satisfactory response.  The 
reason that the resultant speed is a little less than 21 vv + results from the way in which 
we have defined the Lorentz transformations between references frames and the way in 
which distances and time intervals are defined with reference to reference frames in 
uniform relative motion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure XV.17 shows two references frames, Σ and Σ', the latter moving at speed v with 
respect to the former.  A particle is moving with velocity u' in Σ', with components u'x'  
and u'y'.  (“ in Σ' ” = “referred to the reference frame Σ' ”.)   
 
What is the velocity of the particle in Σ? 
 
Let us start with the x-component. 
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We take the derivatives from equations 15.15.3a-d, and, writing v /c for β, we obtain 
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The inverse is obtained by interchanging the primed and unprimed symbols and reversing 
the sign of  v. 
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The y-component is found in an exactly similar manner, and I leave its derivation to the 
reader.  The result is 
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Special cases: 
 
I.     If u'x' = u' and u'y' = 0, then    
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II.   If  u'x' = 0 and u'y' = u', then 
 
        ./' γ== uuandu yx v            15.16.5a,b 
 
Equations 15.16.4a as written is not easy to commit to memory, though it is rather easier 
if we write ./and/',/ 21 cucuc x=β=β=β v    Then the equation becomes 
 

    .
1 21

21

ββ+
β+β

=β      15.16.6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Σ 

Σ' 

β1 
β2 

FIGURE XV.18 

FIGURE XV.19 

β1 β2 



 34

In figure XV.18, a train Σ' is trundling with speed β1 (times the speed of light) towards 
the right, and a passenger is strolling towards the front at speed β2.  The speed β of the 
passenger relative to the station Σ is then given by equation 15.16.6.   In figure XV.19, 
two trains, one moving at speed β1 and the other moving at speed β2, are moving towards 
each other.  (If you prefer to think of protons rather than trains, that is fine.)  Again, the 
relative speed β of one train relative to the other is given by equation 15.16.6. 
 
Example.  A train trundles to the right at 90% of the speed of light relative to Σ, and a 
passenger strolls to the right at 15% of the speed of light relative to Σ'.  The speed of the 
passenger relative to Σ is 92.5% of the speed of light.  
 
The relation between β1 , β2 and β is shown graphically in figure XV.20. 
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If I use the notation β1/β2 to mean “combining β1 with β2”, I can write equation 15.16.6 
as 
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β+β
=β⊕β      15.16.7 
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You may notice the similarity of equation 15.16.6 
21

21

1 ββ+
β+β

=β to the hyperbolic 

function identity 
 

   .
tanhtanh1

tanhtanh)tanh(
21

21
21 φφ+

φ+φ
=φ+φ    15.16.8 

 
Thus I can represent the speed of an object by giving the value of φ, where 
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The factor φ combines simply as 
 
         φ2/φ2  =  φ1  +  φ2.             15.16.11 
 
If you did what I suggested in section 15.3 and programmed your calculator or computer 
to convert instantly from one relativity factor to another, you now have a quick way of 
adding speeds. 
 
Example.  A train trundles to the right at 90% of the speed of light (φ1 = 1.47222) relative 
to Σ, and a passenger strolls to the right at 15% of the speed of light (φ2 = 0.15114)  
relative to Σ'.  The speed of the passenger relative to Σ is φ = 1.62336, or 92.5% of the 
speed of light.  
 
 
Example. 
 
 
 
 
 
 
 
 
 
 
  FIGURE XV.22 
 
(Sorry – there is no figure XV.21.) 
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An ocean liner Σ' sails serenely eastwards at a speed β1 = 0.9c (γ1 = 2.29416) relative to 
the ocean Σ.  A passenger ambles athwartships at a speed β2 = 0.5c relative to the ship.  
What is the velocity of the passenger relative to the ocean? 
 
The northerly component of her velocity is given by equation 15.16.5b, and is 0.21794c.  
Her easterly component is just 0.9c.  Her velocity relative to the ocean is therefore 
0.92601c in a direction 13o 37' north of east. 
 
 
Exercise.  Show that, if the speed of the ocean liner is β1 and the athwartships speed of 
the passenger is β2, the resultant speed β of the passenger relative to the ocean is given by 
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and that her velocity makes and angle α with the velocity of the ship given by 
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Example. 
 
A railway train Σ' of proper length L0 = 100 yards thunders past a railway station Σ at 
such a speed that the stationmaster thinks its length is only 40 yards.  (Correction:  It is 
not a matter of what he “thinks”.  What I should have said is that the length of the train, 
referred to a reference frame Σ in which the stationmaster is at rest, is 40 yards.)  A 
dachshund waddles along the corridor towards the front of the train.  (A dachshund, or 
badger hound, is a cylindrical dog whose proper length is normally several times its 
diameter.)  The proper length l0 of the dachshund is 24 inches, but to a seated passenger, 
it appears to be...  no, sorry, I mean that its length, referred to the reference frame Σ', is 15 
inches.  What is the length of the dachshund referred to the reference frame Σ in which 
the stationmaster is at rest? 
 
We are told, in effect, that the speed of the train relative to the station is given by γ1 = 2.5, 
and that the speed of the dachshund relative to the train is given by γ2 = 1.6.  So how do 
these two gammas combine to make the factor γ for the dachshund relative to the station? 
 
There are several ways in which you could do this problem.  One is to develop a general 
algebraic method of combining two gamma factors.  Thus: 
 
Exercise.  Show that two gamma factors combine according to 
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I’ll leave you to try that.  The other way is to take advantage of the programme you wrote 
when you read section 15.3, by which you can instantaneously convert one relativity 
factor to another.  Thus you instantly convert the gammas to phis.    
 
Thus 56680.15.2 11 =φ⇒=γ  
and   04697.16.1 11 =φ⇒=γ  
â         .86182.661377.2 =γ⇒=φ   
 
Is this what equation 15.16.14 gets? 
 
Therefore, referred to the railway station, the length of the dachshund is 24/γ  = 3.5 
inches. 
 
 
15.17   Aberration of Light 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The direction of Earth’s velocity on any particular date is called the Apex of the Earth’s 
Way.  In part (a) of figure XV.23  I show Earth moving towards the apex at speed v, and 
light coming from a star at speed c from an angle χ from the apex.  The x- and y- 
components of the velocity of light are respectively χ−χ− sinandcos cc .  Relative to 
Earth (part (b)), the x'- and y'-components are, by equations 15.16.2 and 15.16.3  (or 
rather their inverses) 
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You can verify that the orthogonal sum of these two components is c, as it should be 
according to our fundamental assumption that the speed of light is the same referred to all 
reference frames in uniform relative motion.  
 
The apparent direction of the star is therefore given by 
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It is left as an exercise to show that, for small v/c, this becomes 

    .sin'
c

χ
=χ−χ

v      15.17.2 

 
with v  =  29.8 km s−1, v/c is about 20".5.  More details about aberration of light, 
including the derivation of equation 15.17.2, can be found in Celestial Mechanics, 
Section 11.3. 
 
 
15.18    Doppler Effect 
 
It is well known that the formula for the Doppler effect in sound is different according to 
whether it is the source or the observer that is in motion.  An answer to the question 
“Why should this be?” to the effect that “Oh, that’s just the way the algebra works out” is 
obviously unsatisfactory, so I shall try to explain why, physically, there is a difference.  
Then, when you have thoroughly understood that observer in motion is an entirely 
different situation from source in motion, and the formulas must be different, we shall 
look at the Doppler effect in light, and we’ll return to square one when we find that the 
formulas for source in motion and observer in motion are the same!   
 
This section on the Doppler effect will probably be rather longer than it need be, just 
because some aspects interested me – but if you find it too long, just skip the parts that 
aren’t of special interest to you.  These will quite likely include the parts on the ballistic 
Doppler effect. 
 
First, we’ll deal with the Doppler effect in sound.  All speeds are supposed to be very 
small compared with the speed of light, so that we need not trouble ourselves with 
Lorentz transformations.  First, let’s deal with observer in motion (figure XV. 24). 
 
When the source is at rest, it emits concentric equally-spaced spherical wavefronts at 
some frequency.  When an observer moves towards the source, he will pass these 
wavefronts at a higher frequency that the frequency at which they were emitted, and that 
is the cause of the Doppler effect with a stationary source and moving observer. 
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Now, we’ll look at the source-in-motion situation.  (Figure XV.25). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here we see that the wavefronts are not equally spaced, but are compressed ahead of the 
motion of the source, and for that reason they will pass a stationary observer at a higher 
frequency than the frequency at which they were emitted.  Thus the nature of the effect is 
a little different according to whether it is the source or the observer that is in motion, and 
thus one would not expect identical equations to describe the two situations. 
 
We shall move on shortly to discuss the effect quantitatively and develop the relevant 
equations.  I shall assume that the reader is familiar with the usual relation connecting 

* v 

FIGURE XV.24 

* 

FIGURE XV.25 
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wavelength, frequency and speed of a wave.  Nevertheless I shall write down the relation 
in large print, three times, just to make sure: 
 

SPEED   =   FREQUENCY   %   WAVELENGTH 
 

FREQUENCY   =   SPEED  ÷   WAVELENGTH 
 

WAVELENGTH   =   SPEED  ÷  FREQUENCY 
 

I am going to start with the Doppler effect in sound, where the speed of the signal is 
constant with respect to the medium than transmits the sound – usually air.  I shall give 
the necessary formulas for source and observer each in motion.  If you want the formulas 
for one or the other stationary, you just put one of the speeds equal to zero. The speeds of 
the source S and of the observer O relative to the air will be denoted respectively by v1 
and v2 and the speed of sound in air will be denoted by c.  The situation is shown in 
figure XV.26. 
 
 
 
 
 
 
 
 
The relevant formulas are shown below: 
  
     Source   Observer 

Frequency       ν0    
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−ν
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2
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v
c
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Speed    c − v1      c − v2  
 
 
 
Wavelength        (c − v1)/ν0   (c − v1)/ν0 

 
The way we work this table is just to follow the arrows.  Starting at the top left, we 
suppose that the source emits a signal of frequency ν0.   The speed of the signal relative 
to the source is c − v1, and so the wavelength is (c − v1)/ν0.  The wavelength is the same 

* * 
v2 v1 c 
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for the observer (we are supposing that all speeds are very much less than the speed of 
light, so the Lorentz factor is effectively 1.)  The speed of sound relative to the observer 
is   c − v2, and so the frequency heard by the observer is the last (upper right) entry of the 
table. 
 
Two special cases:  
 a.  Observer in motion and approaching a stationary source at speed v.    v1 = 0 and v2 = 
−v.  In that case the frequency heard by the observer is 
 
    .)/1(0 cv+ν=ν      15.18.1 
 
b.  Source in motion and approaching a stationary observer at speed v.     v1 = v  and v2 = 
0.  In that case the frequency heard by the observer is 
 
   ( ).)/()/(1)/1/( 2

00 K+++ν≈−ν=ν ccc vvv   15.18.2 
 
Thus the formulas for source in motion and observer in motion differ in the second order 
of )/( cv . 
 
We might now consider reflection.  Thus, suppose you approach a brick wall at speed v 
while whistling a note of frequency ν0.  What will be the frequency of the echo that you 
hear?  Let’s make the question a little more general.  A source S, emitting a whistle of 
frequency ν0, approaches a brick wall M at speed v1.  A separate observer O approaches 
the wall (from the same side) at speed v2.  And, for good measure, let’s have the brick 
wall moving at speed v3.  (The reader may notice at this point that theoretical physics is 
rather easier than experimental physics.) The situation is shown in figure XV.27. 
 
 
 
 
 
 
 
 
 
We construct a table similar to the previous one.  
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         Source        Mirror  Mirror  Observer 
                      before reflection    after reflection 
 

Frequency        ν0      
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At all times, the speed relative to the air is c. 
 
The answer to our initial question, in which the source and the observer were one and the same, 
and the mirror (wall) was stationary is found by putting v1  =  v2  =  v   and v3  =  0 in the last (top 
right) formula in the table.  This results in 
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So much for the Doppler effect in sound.  Before moving on to light, I want to look at what I shall 
call the Doppler effect in ballistics, or “cops and robbers”.  An impatient reader may safely skip 
this discussion of ballistic Doppler effect.   A police (“cop”) car is chasing a stolen car driven by 
robbers.  The cop car is the “source” and the robber’s car (or, rather the car that they have stolen, 
for it is not theirs) are the “observers”.  The cop car (“source”) is travelling at speed v1 and the 
robbers (“observer”) is travelling at speed v2.  The cops are firing bullets (the “signal”) towards the 
robbers.  (No one gets hurt in this thought experiment, which is all make-believe.)  The bullets 
leave the muzzle of the revolver at speed c (that is the speed of the bullets, and is nothing to do 
with light) relative to the revolver, and hence they travel (relative to the lamp-posts at the side of 
the road) at speed c + v1 and relative to the robbers at speed c + v1 − v2.  The cops fire bullets at 
frequency ν0, and our task is to find the frequency with which the bullets are “received” by the 
robbers.  The distance between the bullets is the “wavelength”.   
 
This may not be a very important exercise, but it is not entirely pointless, for fairness dictates that, 
when we are considering (even if only to discard) possible plausible mechanisms for the 
propagation of light, we might consider, at least briefly, the so-called “ballistic” theory of light 
propagation, in which the speed of light through space is equal to the speed at which it leaves the 
source plus the speed of the source.  Some readers may be aware of the Michelson-Morley 
experiment. That experiment demonstrated that light was not propagated at a speed that was 
constant with respect to some all-pervading “luminiferous aether” – but it must be noted that it did 
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nothing to prove or disprove the “ballistic” theory of light propagation, since it did not measure the 
speed of light from moving sources.  In the intervening years, some attempts have indeed been 
made to measure the speed of light from moving sources, though their interpretation has not been 
free from ambiguity.   
 
 
I now construct a table showing the “frequency”, “speed” and “wavelength” for ballistic 
propagation in exactly the same way as I did for sound. 
 
 
     Source   Observer 
 

Frequency       ν0      
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vv
  

  
 
Speed        c         c  +  v1  − v2  
 
 
 
Wavelength    c/ν0        c/ν0 
 
 
In order not to spend longer on “ballistic” propagation than is warranted by its 
importance, I’ll just let the reader spend as much or as little time pondering over this 
table as he or she wishes.  Just one small point might be noted, namely that the formulas 
for “observer in motion” and “source in motion” are the same.  
 
For completeness rather than for any important application, I shall also construct here the 
table for “reflection”.  A source of bullets is approaching a mirror at speed v1.  An 
observer is also approaching the mirror, from the same side, at speed v2.  And the mirror 
is moving at speed v3, and reflection is elastic (the coefficient of restitution is 1.)  You 
are free to put as many of these speeds equal to zero as you wish. 
 
The entries for “speed” give the speed relative to the source or mirror or observer.  The speed 
relative to stationary lampposts at the side of the road is c + v1 before reflection and c + v1 − 2v3 
after reflection. 
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        Source     Mirror   Mirror      Observer  
                             before reflection       after reflection 
 

Frequency       ν0            
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Speed        c       c + v1 − v3            c + v1 − v3     c + v1 + v2 − 2v3 
 
 
Wavelength   
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We now move on to the only aspect of the Doppler effect that is really relevant to this chapter, 
namely the Doppler effect in light.  In the previous two situations I have been able to assume that 
all speeds wee negligible compared with the speed of light, and we have not had to concern 
ourselves with relativistic effects.  Here, however, the signal is light and is propagated at the speed 
of light, and this speed is the same whether referred to the reference frame in which the source is 
stationary or the observer is stationary.  Further, the Doppler effect is noticeable only if source or 
observer are moving at speeds comparable to that of light.   We shall see that the difference 
between the frequency of a signal relative to an observer and the frequency relative to the source is 
the result of two effects, which, while they may be treated separately, are both operative and in that 
sense inseparable.  These two effects are the Doppler effect proper, which is a result of the 
changing distance between source and observer, and the relativistic dilation of time. 
 
I am going to use the symbol T to denote the time interval between passage of consecutive crests 
of an electromagnetic wave.  I’ll call this the period.  This is merely the reciprocal of the frequency 
ν.  I am going to start by considering a situation in which a source and an observer a receding from 
each other at a speed v.  I have drawn this in figure XV.27, which is referred to a frame in which 
the observer is at rest. The speed of light is c. 
 
 
 
 
 
 
 
Let us suppose that S emits an electromagnetic wave of period T0 = 1/ν0 referred to the frame in 
which S is at rest.  We are going to have to think about four distinct period of frequencies: 
 

c v 
O S 

* * 
FIGURE XV.27 
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   1.  The time interval between the emission of consecutive crests by S referred to the reference 
frame in which S is at rest.  This is the period T0 and the frequency ν0 that we have just mentioned. 
 
    2.  The time interval between the emission of consecutive crests by S referred to the reference 
frame in which O is at rest.  By the relativistic formula for the dilation of time this is 
 

    .
/1 22

0
0

c
TorT
v−

γ       15.18.4 

 
     3.  The time interval between the reception of consecutive crests by O as a result of the 
increasing distance between O and S (the “true” Doppler effect, as distinct from time dilation) 
referred to the reference frame in which S is at rest.  This is 
 
     .)/1(0 cT v+       15.18.5 
 
4     The time interval between the reception of consecutive crests by O as a result of the increasing 
distance between O and S (the “true” Doppler effect, as distinct from time dilation) referred to the 
reference frame in which O is at rest.  This is 
 
     
     γ  times  .)/1(0 cT v+      15.18.6 
 
This, of course, is what O “observes”, and, when you do the trivial algebra, you find that this is 
 

      ,
/1
/1

0 c
cTT

v
v

−
+

=      15.18.7

    
     

or, in terms of frequency,            .
/1
/1

0 c
c

v
v

+
−

ν=ν         15.18.8 

 
If source and observer approach each other at speed v, the result is   
 

     .
/1
/1

0 c
c

v
v

−
+

ν=ν      15.18.9 

 

The factor 
c
c

/1
/1

v
v

−
+ is often denoted by the symbol k, and indeed that was the symbol I used in 

section 15.3 (see equation 15.3.3). 
 
Exercise.  Expand equation 15.18.9 by the binomial theorem as far as 2)/( cv  and compare the 
result with equations 15.8.1 and 15.8.2. 
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 I make it   ( ).2

2
1

0 )/()/(1 Kcc vv ++ν=ν     15.18.10 
 
 
 
Question. 
 
 
 
 
An observer O sends an electromagnetic signal of frequency ν0 at speed c to a mirror that is 
receding at speed v.  When the reflected signal arrives back at the observer, what is its frequency 
(to first order in v/c)?  Is it ( )c/1o v−ν  or is it ( )c/21o v−ν ?  I can think offhand of two 
applications of this.  If you examine the solar Fraunhofer spectrum reflected of the equatorial limb 
of a rotating planet, and you observe the fractional change ∆ν/ν0 in the frequency of a spectrum 
line, will this tell you v/c or 2v/c, where v is the equatorial speed of the planet’s surface?  And if a 
policeman directs a radar beam at your car, does the frequency of the returning beam tell him the 
speed of your car, or twice its speed?  You could try arguing this case in court – or, better, stick to 
the speed limit so there is no need to do so.  The answer, by the way, is ( )c/21o v−ν . 
 
Redshift.   When a galaxy is moving away from us, a spectrum line of laboratory wavelength λ0 
will appear to have a frequency for the observer of  λ  =  kλ0.  The fractional increase in 

wavelength 
0

0

λ
λ−λ is generally given the symbol z, which is evidently equal to k − 1.  (Only to 

first order in β is it approximately equal to β.  It is important to note that the definition of z is 

0

0

λ
λ−λ , and not v/c. 

 
A note on terminology:   If a source is receding from the observer the light is observed to be 
shifted towards longer wavelengths, and if it is approaching the observer the light is shifted 
towards shorter wavelengths.  Traditionally a shift to longer wavelengths is called a “redshift”, and 
a shift towards shorter wavelengths is called a “blueshift”.  Note, however, that if an infrared 
source is approaching an observer, its light is shifted towards the red, and if an ultraviolet source is 
receding from an observer, its light is shifted towards the blue!  Nevertheless I shall continue in 
this chapter to refer to shifts to longer and shorter wavelengths as redshifts and blueshifts 
respectively. 
 
Example.  
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c 

c 
v 
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FIGURE XV.28 
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A red galaxy R of wavelength 680.0 nm and a green galaxy G of wavelength 520.0 nm are on 
opposite sides of an observer X, both receding from him/her.  To the observer, the wavelength of 
the red galaxy appears to be 820.0 nm, and the wavelength of the green galaxy appears to be 640.0 
nm.  What is the wavelength of the green galaxy as seen from the red galaxy? 
 
Solution.  We are told that k for the red galaxy is 82/68 = 1.20588, or z  =  0.20588, and that  k for 
the green galaxy k is 64/52 = 1.23077, or z  =  0.23077.  Because of the preparation we did in 
section 15.3, we can instantly convert these to φ.  Thus for the red galaxy φ = 0.187212 and for the 
green galaxy φ = 0.207639.  The sum of these is 0.394851.  We can instantly convert this to 

.48416.0or48416.1 == zk    Thus, as seen from R, the wavelength of G is 771.8 nm. 
 
Alternatively.  Show that the factor k combines as 
 
     2121 kkkk =⊕       15.18.11 
 
and verify that .48416.152

64
68
82 =×    Show also that the redshift factor z combines as 

 
    .212121 zzzzzz ++=⊕      15.18.12 
 
 
 
15.19   The Transverse and Oblique Doppler Effects 
 
I pointed out in section 15.18 that the observed Doppler effect, when the transmitted signal is 
electromagnetic radiation and observer or source or both are travelling at speed comparable to that 
of light, is a combination of two effects – the “true” Doppler effect, caused by the changing 
distance between source and observer, and the effect of time dilation.  This raises the following 
question: 
 
If a source of light is moving at right angles to (transverse to) the line joining observer to source, 
will the observer see a change in frequency or wavelength, even though the distance between 
observer and source at that instant is not changing?  The answer is yes, certainly, and the effect is 
sometimes called the “transverse Doppler effect”, although it is the effect of relativistic time 
dilation rather than of a true Doppler effect. 
 
Thus let us suppose that a source is moving transverse to the line of sight at a speed described by 
its parameter β or γ, and that the period of the radiation referred to the reference frame in which the 
source is at rest is T0 and the frequency is ν0.  The time interval between emission of consecutive 
wavecrests when referred to the frame in which the observer is at rest is longer by the gamma-
factor, and the frequency is correspondingly less.  That is, the frequency, referred to the observer’s 
reference frame, is 
 
    .1/ 2

00 β−ν=γν=ν      15.19.1 
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The light from the source is therefore seen by the observer to be redshifted, even though there is no 
radial velocity component. 
 
This raises a further question.  Suppose a source is moving almost but not quite at right angles to 
the line of sight, so that it has a large transverse velocity component, and a small velocity 
component towards the observer.  In that case, its “redshift” resulting from the time dilation might 
be appreciable, while its “blueshift” resulting from “true” Doppler effect (the decreasing distance 
between source and observer) is still very small.  Therefore, even though the distance between 
source and observer is slightly decreasing, there is a net redshift of the spectrum.  This is in fact 
correct, and is the “oblique Doppler effect”. 
 
In figure XV.30,  a source S is moving at speed β times the speed of light in a direction that makes 
an angle θ with the line of sight.  It is emitting a signal of frequency ν0 in S.  (I am here using the 
frame “in S” as earlier in the chapter to mean “referred to a reference frame in which S is at rest.)  
The signal arrives at the observer O at a slightly greater frequency as a result of the decreasing 
distance of S from O, and at a slightly lesser frequency as a result of the time dilation, the two 
effects opposing each other. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The frequency of the received signal at O, in O, is 
 

    .
cos1

1 2
0

θβ−
β−ν

=ν      15.19.2 

 
For a given angle θ the redshift is zero for a speed of 
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=β 2cos1

cos2      15.19.3 
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or, for a given speed, the direction of motion resulting in a zero redshift is given by 
 
       .0cos2cos2 =β+θ−θβ      15.19.4 
 
This relation is shown in figure XV.30. (Although equation 15.19.4 is quadratic in cos θ, there is 
only one real solution θ for β between 0 and 1.  Prove this assertion.) It might be noted that if the 
speed of the source is 99.99% of the speed of light the observer will see a redshift unless the 
direction of motion of S is no further than 9o 36' from the line from S to O.  That is worth 
repeating:  S is moving very close to the speed of light in a direction that is close to being directly 
towards the observer; the observer will see a redshift. 
 
Equation 15.19.2, which gives ν as a function of θ for a given β, will readily be recognized at the 
equation of an ellipse of eccentricity β, semi minor axis ν0 and semi major axis γν0.  This relation 
is shown in figure XV.31 for several β.  The curves are red where there is a redshift and blue 
where there is a blueshift. There is no redshift or blueshift for β = 0, and the ellipse for that case is 
a circle and is drawn in black.   
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An alternative and perhaps more useful way of looking at equation 15.19.2 is to regard it as an 
equation that gives β as a function of θ for a given Doppler ratio 0/ νν .  For example, if the 
Doppler ratio of a galaxy is observed to be 0.75, the velocity vector of the galaxy could be any 
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arrow starting at the black dot and ending on the curve marked 0.75.  The curves are ellipses with 
semi major axis equal to 2

0 )/(1/1 νν−  and semi minor axis ( ).)/(1/1 2
0νν−  
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15.20    Acceleration 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE XV.32 
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Figure XV.33 shows two references frames, Σ and Σ', the latter moving at speed v with respect to 
the former.  A particle is moving with acceleration a' in Σ'.   (“ in Σ' ” = “referred to the reference 
frame Σ' ”.)  The velocity is not necessarily, of course, in the same direction as the acceleration, 
and we’ll suppose that its velocity in Σ' is u'.  The acceleration and velocity components in Σ' are 

.',',',' '''' yxyx uuaa  
 
What is the acceleration of the particle in Σ?  We shall start with the x- component.   
 
The x-component of its acceleration in Σ is given by 
 

     ,
dt

dua x
x =       15.20.1 

 

where          2/'1
'

cu
uu

x

x
x v

v
+

+
=      15.16.2 

 
and         .)/''( 2cutt xv+γ=      15.5.19 
 
Equations 15.16.2 and 15.5.19 give us 
 

       222 )/'1(
''

' cu
dudu

du
dudu

x

x
x

x

x
x v+γ

==     15.20.2 

 

and   '.''
'

'
' 2 dx

c
dtdx

x
tdt

t
tdt vγ

+γ=
∂
∂

+
∂
∂

=     15.20.3 

 
On substitution of these into equation 15.20.1 and a very little algebra, we obtain  
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'
323 cu
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x

x v+γ
=                             15.20.4

   
   The y-component of its acceleration in Σ is given by 
                                          

     ,
dt

du
a y

y =        15.20.5 

 
We have already worked out the denominator dt (equation 15.20.3).   We know that 
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from which 
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           15.20.6 
Divide equation 15.20.6 by equation 15.20.3 to obtain 
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21.    Mass 
 
It is well known that “in relativity” the mass of an object increases as its speed increases.  
This may be well known, but I am not certain that it is a very precise statement of the true 
situation.  Or at least it is no more precise than to say that the length of a rod decreases as 
its speed increases.  The length of a rod when referred to a frame in which it is at rest is 
called its proper length l0, and the mass of a body when referred to a frame in which it is 
at rest is called its rest mass m0, and both of these things are invariant.  The length of a 
rod when referred to a reference frame that is moving with respect to it (i.e., in 
Minkowski language, its component along an inclined axis) and the mass of a body 
referred to a frame that is moving with respect to it may indeed be different from the 
proper length of the rod or the rest mass of the body. 
 
In order to derive the FitzGerald-Lorentz contraction, we had to think about what we 
mean by “length” and how to measure it.  Likewise, in order to derive the “relativistic 
increase of mass” (which may be a misnomer) we have to think about what we mean by 
mass and how to measure it. 
 
The fundamental unit of mass used at present in science is the International Prototype 
Kilogram, a platinum-iridium alloy, held in Sèvres, Paris, France.  On order to determine 
the mass, or inertia, of another body, we need to carry out an experiment to compare its 
reluctance to accelerate when a force is applied to it with the reluctance of the standard 
kilogram when the same force is applied.  We might, for example, attach the body to a 
spring, stretch the spring, let go, and see how fast the body accelerates.  Then we carry 
out the same experiment with the International Prototype Kilogram.  Or we might apply 
an impulse ( Idt∫  - see Chapter 8) to the body and to the Kilogram, and measure the 
speed immediately after applying the impulse.  This might be done, for example, but 
striking the body and the Kilogram with a golf club, or, for a more controlled experiment, 
one could press each body up against a compressed spring, release the spring, and 
measure the resulting speed imparted to the body and to the Kilogram.  (It is probable 
that the International Prototype Kilogram) is kept under some sort of guard, and its 
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curators may not altogether appreciate such experiments, so perhaps these experiment has 
better remain Thought Experiments.)  Yet another method would be to cause the body 
and the Kilogram to collide with each other, and to assume that the collision is elastic (no 
internal degrees of freedom) and that momentum (defined as the product of mass and 
velocity) are conserved. 
 
All of these experiments measure the reluctance to accelerate under a force; in other 
words the inertia or the inertial mass or just the  mass of the body. 
 
Another possible experiment to determine the mass of the body would be to place it and 
the Kilogram at a measured distance from another mass (such as the Earth) and measure 
the gravitational force (weight) of each.  One has an uneasy feeling that this sort of 
measurement is somehow a little different from the others, in that it isn’t a measure of 
inertia.  Some indeed would differentiate between the inertial mass and the gravitational 
mass of a body, although the two are in fact observed to be strictly proportional to one 
another.  Some would not find the proportionality between inertial and gravitational mass 
particularly remarkable; to others, the proportionality is a surprising fact of the 
profoundest significance. 
 
In this chapter we do not deal with general relativity or with gravity, so we shall think of 
mass in terms of its inertia.  I am going to measure the ratio of two masses (one of which 
might be the International Prototype Kilogram) by allowing them to collide, and their 
masses are to be defined by assuming that the momentum of the system is conserved in 
all uniformly moving reference frames. 
 
Figure XV.34 shows two references frames, Σ and Σ', the latter moving to the right at 
speed v relative to the former.  Two bodies, of identical masses in Σ' (i.e. referred to the 
frame Σ'), are moving at speed u' in Σ', one of them to the right, the other to the left.  
Their mutual centre of mass is stationary in Σ'. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now let us refer the situation to the frame Σ (see figure XV.35). 
 

FIGURE XV.34 
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The total momentum of the system in Σ is m1u1  +  m2u2.  But the centre of mass (which is 
stationary in Σ') is moving to the right in Σ with speed v. Therefore the momentum is also 

v)( 21 mm + .   If they stick together upon collision, we are left with a single particle of 
mass 21 mm + moving at speed v, and, because there are no external forces, the 
momentum is conserved.  In any case, whether the collision is elastic or not, we have 
 
   m1u1  +  m2u2   =   v)( 21 mm + .    15.21.1 
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=             15.21.2a,b  

 
Our aim is to try to find a relation between the masses and speeds referred to Σ.  
Therefore we must eliminate v and u' from equations 15.21.1, 15.21.2a and 15.21.2b.  
This can be a bit fiddly, but the algebra is straightforward, and I leave it to the reader to 
show that the result is 
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This tells us that the mass m of a body referred to Σ is proportional to 

,/1/1 22 cu− where u is its speed referred to Σ.    If we call the proportionality constant 
m0, then 
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    .
/1 22
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cu
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−
=                                     15.21.4 

 
If u = 0, then m = m0, and  m0 is called the rest mass, and it is the mass when referred to a 
frame in which the body is at rest.  The mass m is generally called the relativistic mass, 
and it is the mass when referred to a frame in which the speed of the body is u.       
 
Equation 15.21.4 gives the mass referred to Σ assuming that the mass is at rest in Σ'.  But 
what if the mass is not at rest in Σ'? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In figure XV.36 we see a mass m' moving with velocity u' in Σ'.  Referred to Σ its mass 
will be m, where 
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=      15.21.5 

 
Its velocity u will be in a different direction (referred to Σ) from the direction of u' in Σ', 
and the speed will be given by 
 
    ,222

yx uuu +=      15.21.6 
 
where ux and uy are given by equations 15.16.2 and 15.16.3.  Substitute equations 
15.21.6, 15.16.2 and15.16.3 into equation 15.21.5.  The objective is to replace u entirely 
by primed quantities.  The algebra is slightly boring, but it is worth persisting.  You will 
find that 2

''yu  appears when you use equation 15.16.3.  Replace that by 2
'

2 '' xuu − .  Also 

write )/1/(1 22 cv− for γ2.  After a little while you should arrive at 
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The transformation for mass between the two frames depends only on the x' component 
of its velocity in Σ'.  It would have made no difference, other than to increase the tedium 
of the algebra, if I had added 2

zu+   to the right hand side of equation 15.21.6. 
 
The inverse of equation 15.21.7 is found in the usual way by interchanging the primed 
and unprimed quantities and changing the sign of  v : 
 

    .1'
2 






 −γ=

c
u

m
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Example.  Let’s return to the problem of the dachshund that we met in section 15.16.  A 
railway train Σ' is trundling along at a speed v/c = 0.9  (γ  =   2.294).  The dachshund is 
waddling towards the front of the train at a speed .8.0/' ' =cu x   In the reference frame of 
the train Σ' the mass of the dog is m'  =  8 kg.  In the reference frame of the railway 
station, the mass of the dog is given by equation 15.21.7  and is 31.6 kg.  (Its length is 
also much compressed, so it is very dense when referred to Σ and is disc-shaped.)  I leave 
it to the reader to show that the rest mass of the dog is 4.8 kg. 
   
 
15.22   Momentum 
 
The linear momentum p of a body, referred to a frame Σ, is defined as 
 
            .up m=       15.22.1 
 
Here m and u are its mass and velocity referred to Σ.  Note that m is not the rest mass. 
 
Example.  The rest mass of a proton is 1.67 %  10−27 kg.  What is its momentum referred 
to a frame in which it is moving at 99% of the speed of light?  Answer = 3.51 %  10−18 kg 
m s−1. 
 
 
 
15.23    Some Mathematical Results 
 
Before proceeding with the next section, I just want to establish few mathematical results, 
so that we don’t get bogged down in heavy algebra later on when we should be 
concentrating on understanding physics. 
 
First, if    ,)/1( 22 cu−=γ      15.23.1 
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Then, by trivial differentiation,  
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From this, we quickly find that 
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     15.23.5 

 
Now for a small result concerning a scalar (dot) product. 
 
Let A be a vector such that  A * A  =  A2 .    

Then    AAAA && •• == 2)(2)( 2

dt
dandAAA

dt
d  

 
â    .AA && =• AA       15.23.6 
 
We can now safely proceed to the next section. 
 
  
 
15.24   Kinetic Energy 
 
If a force F acts on a particle moving with velocity u, the rate of doing work – i.e. the rate 
of increase of kinetic energy T is uF •=T& .  But ,pF &= where .0 uup mm γ==  
(A point about notation may be in order here.  I have been using the symbol v and v for 
the velocity and speed of a frame Σ' relative to a frame Σ, and my choice of axes without 
significant loss of generality has been such that v has been directed parallel to the x-axis.  
I have been using the symbol u for the velocity (speed = u) of a particle relative to the 
frame Σ.  Usually the symbol γ has meant ,)/1( 2/122 −− cv  but here I am using it to mean 

.)/1( 2/122 −− cu   I hope that this does not cause too much confusion and that the context 
will make it clear.  I toyed with the idea of using a different symbol, but I thought that 
this might make matters worse. Just be on your guard, anyway.)  
 
We have, then 
    )(0 uuF && γ+γ= m      15.24.1 
 
and therefore   .)( 2

0 uu •γ+γ= &&& umT     15.24.2 
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Making use of equations 15.23.5 and 15.23.6 we obtain 
 
    .2

0 cmT γ= &&        15.24.3 
 
Integrate with respect to time, with the condition that when γ = 1, T = 0, and we obtain 
the following expression for the kinetic energy: 
 
    .)1( 2

0cmT −γ=      15.24.4 
 
Exercise.   Expand γ by the binomial theorem as far as u2/c2, and show that, to this order, 

.2
2
1 muT =  

 
I here introduce the dimensionless symbol  
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TK      15.24.5 

 
to mean the kinetic energy in units of m0c2.  The second half of this was already given as 
equation 15.3.5. 
 
 
15.25   Addition of Kinetic Energies 
    
I want now to consider two particles moving at nonrelativistic speeds – by which I mean 
that the kinetic energy is given to a sufficient approximation by the expression 2

2
1 mu  and 

so that parallel velocities add linearly. 
 
Consider the particles in figure XV.37, in which the velocities are shown relative to 
laboratory space. 
 
 
 
 
 
 
Referred to laboratory space, the kinetic energy is  .2
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On the other hand, if we refer the situation to a frame in which m1 is at rest, the kinetic 
energy is ,)( 2

2122
1 uum +  and, if we refer the situation to a frame in which m2 is at rest, 

the kinetic energy is .)( 2
2112

1 uum +  
 

m1 m2 

u2 u1 

FIGURE XV.37 
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All we are saying is that the kinetic energy depends on the frame to which speed are 
referred – and this is not something that crops up only for relativistic speeds.   
 
Let us put some numbers in.  Let us suppose, for example that 
 
   m1  =  3 kg  u1  =  4 m s−1 

 

   m2  =  2 kg  u3  =  4 m s−1 

 
so that        V  =   1.2 m s−1.    
 
In that case, the kinetic energy 
 
referred to laboratory space is   33 J,  
referred to centre of mass space is   29.4 J, 
referred to m1 is    49 J, 
referred to m2 is     73.5 J. 
 
In this case the kinetic energy is least when referred to centre of mass space, and is greatest when 
referred to the lesser mass. 
 
Exercise.  Is this always so, whatever the values of m1, m2 , u1 and u2? 
 
It may be worthwhile to look at the special case in which the two masses are equal  (m) and the 
two speeds(whether in laboratory or centre of mass space) are equal (u).   
 
In that case the kinetic energy in laboratory or centre of mass space is mu2, while referred to either 
of the masses it is 2mu2. 
 
We shall now look at the same problem for particles travelling at relativistic speeds, and we shall 
see that the kinetic energy referred to a frame in which one of the particles is at rest is very much 
greater than (not merely twice) the energy referred to a centre of mass frame. 
 
If two particles are moving towards each other with “speeds” given by γ1 and γ2 in centre of mass 
space, the γ of one relative to the other is given by equation 15.16.14, and, since K = γ − 1, it 
follows that if the two particles have kinetic energies K1 and K2 in centre of mass space (in units of 
the m0c2 of each), then the kinetic energy of one relative to the other is 
 
  .)2)(2( 2121212121 +++++=⊕= KKKKKKKKKKK    15.25.1 
  
If two identical particles, each of kinetic energy K1 times m0c2, approach each other, the kinetic 
energy of one relative to the other is 
 
    .)2(2 11 += KKK       15.25.2 
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For nonrelativistic speeds as K1 → 0, this tends to K = 4K1, as expected. 
 
Let us suppose that two protons are approaching each other at 99% of the speed of light in centre 
of mass space (K1 = 6.08881).  Referred to a frame in which one proton is at rest, the kinetic 
energy of the other will be K = 98.5025, the relative speeds being 0.99995 times the speed of light. 
Thus 116KK =  rather than merely 4K1 as in the nonrelativistic calculation.  For more energetic 
particles, the ratio K/K1 is even more. These calculations are greatly facilitated if you wrote, as 
suggested in section 15.3, a program that instantly connects all the relativity factors given there.   
 
Exercise.  Two protons approach each other, each having a kinetic energy of 500 GeV in 
laboratory or centre of mass space.  (Since the two rest masses are equal, these tWO spaces are 
identical.)  What is the kinetic energy of one proton in a frame in which the other is at rest?   
(Answer:  I make it 535 TeV.) 
 
The factor K (the kinetic energy in units of m0c2) is the last of several factors used in this chapter to 
describe the speed at which a particle is moving, and I take the opportunity here of summarising 
the formulas that have been derived in the chapter for combining these several measures of speed.  
These are 
 

     .
1 21

21
21 ββ+

β+β
=β⊕β      15.16.7 

 
    .)1)(1( 2

2
2
12121 −γ−γ+γγ=γ⊕γ               15.16.14 

 
     2121 kkkk =⊕       15.18.11 
 
    .212121 zzzzzz ++=⊕      15.18.12 
 
  .)2)(2( 2121212121 +++++=⊕= KKKKKKKKKKK    15.25.1 
 
        φ2/φ2  =  φ1  +  φ2.                15.16.11 
 
If the two speeds to be combined are equal, these become 
 

     .
1

2
2
1

1
11 β+

β
=β⊕β      15.25.3 

     12 2
111 −γ=γ⊕γ      15.25.4 

 
                 k1/k1  =  k1

2      15.25.5 
 
             )2( 1111 +=⊕ zzzz      15.25.6 
 
                    .)2(2 1111 +=⊕ KKKK      15.25.7 
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     .211 φ=φ⊕φ       15.25.8 
 
These formulas are useful, but for numerical examples, if you already have a program for 
interconverting between all of these factors, the easiest and quickest way of combinng two 
“speeds” is to convert them to φ.  We have seen examples of how this works in sections 15.16 and 
15.18.  We can do the same thing with our example from the present section when combining two 
kinetic energies.  Thus we were combining two kinetic energies in laboratory space, each of 
magnitude K1  =  6.08881  (φ1  =   2.64665).  From this, φ  =  5.29330, which corresponds to K  =  
98.5025. 
      
 
   
15.26   Energy and mass 
 
The nonrelativistic expression for kinetic energy 2

2
1 muT = has just one term in it, a term which 

depends on the speed.  The relativistic expression which approximates to the nonrelativistic 
expression at low speeds) can be written ;2

0
2 cmmcT −=  that is, a speed-dependent term minus 

a constant term.  The kinetic energy can be thought of as the excess over the energy over the 
constant term m0c2.   The expression m0c2 is known as the rest-mass energy.  The sum of the 
kinetic energy and the rest-mass energy is the “total energy”, or just the “energy” E: 
 
    .22

0 mccmTE =+=      15.26.1 
 
This means that, if the kinetic energy of a particle is zero, the total energy of the particle is not zero 
– it still has its rest-mass energy m0c2. 
 
Of course, giving the name “rest-mass energy” to the constant term m0c2, and calling the speed-
dependent term mc2 the “total energy” and writing the famous equation E = mc2, does not by itself 
immediately and directly tell us that “matter” can be converted to “energy” or the other way round.  
Whether such conversion can in fact take place is a matter for experiment and observation to 
determine.  The equation by itself merely tells us how much mass is held by a given quantity of 
energy, or how much energy is held by a given quantity of mass.  That entities that we traditionally 
think of as “matter” can be converted into entities that we traditionally think of as “energy” is well 
established with, for example, the “annihilation” of an electron and a positron (“matter” and 
“antimatter”) to form photons (“energy”) as is the inverse process of pair production (production 
of an electron-positron pair from a gamma ray in the presence of a third body).  
 
It is unfortunate that the main (almost the only) example of application of the equation E = mc2 
persistently presented to the nonscientific public is the atom bomb, whose operation actually has 
nothing at all to do with the equation E = mc2, nor, contrary to the popular mind, is any “matter” 
converted to energy.   
 
I have heard it said that you can find out on the Web how to build an atom bomb, so here goes – 
here is how an atom bomb works.   A uranium-235 nucleus is held together by strong attractive 
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forces between the nucleons, which, at short femtometre ranges are much stronger than the 
Coulomb repulsive forces between the protons.  When the nucleus absorbs an additional neutron, 
the resulting 236U nucleus is unstable and breaks up into two intermediate-mass nuclei plus two or 
three neutrons.  The two intermediate-mass nuclei are generally not of exactly equal mass; one is 
usually a bit less than half of the uranium nucleus and the other a bit more than half, but that’s a 
detail.  The potential energy required to bind the nucleons together in the uranium nucleus is rather 
greater than the binding energy of the two resulting intermediate-mass nuclei; the difference is of 
order 200 MeV, and that potential energy is converted into kinetic energy of the two resulting 
nuclei and, to a lesser extent, the two or three neutrons released.  That is all.  It is merely the 
familiar conversion of potential binding energy (admittedly a great deal of energy) into kinetic 
energy.  No matter, no protons, no neutrons, are “destroyed” or “converted into energy”, and E = 
mc2 simply doesn’t enter into it anywhere!  The rest-mass energy of a proton or a neutron is about 
1 GeV, and that much energy would be released if a proton were miraculously and for no cause 
converted into energy.  Let us hope that no one invents a bomb that will do that – though we may 
rest assured that that is rather unlikely. 
 
Where the equation E = mc2 does come in is in the familiar observation that the mass of any 
nucleus other than hydrogen is a little less than the sum of the masses of the constituent nucleons.  
It is for that reason that nuclear masses, even for pure isotopes, are not integral.  The mass of a 
nucleus is equal to the sum of the masses of the constituent nuclei plus the mass of the binding 
energy, the latter being a negative quantity since the inter-nucleon forces are attractive forces.  The 
equation E = mc2 tells us that energy (such as, for example, the binding energy between nucleons) 
has mass. 
 
 
15.27    Energy and Momentum 
 
A moving particle has energy arising from its momentum and also from its rest mass, and we need 
to find an expression relating energy to rest mass and momentum.  It is fairly easy and it goes like 
this: 
 
  ])([)( 222222222222422 pucmcumumcmccmE +−=+−==  
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Thus we obtain for the energy in terms of rest mass and momentum 
 
         .)()( 222

0
2 pccmE +=       15.27.1 

 
If the speed (and hence momentum) is zero, the energy is merely m0c2.  If the rest mass is zero (as, 
for example, a photon) and the energy is not zero, then E  =  pc  =  muc.  But also E = mc2, so that, 
if the rest mass of a particle is zero and the energy is not, the particle must be moving at the speed 
of light.  This could be regarded as the reason why photons, which have zero rest mass, travel at 
the speed of photons.  If neutrinos have zero rest mass, they, too, will travel at the speed of light; if 
they are not massless, they won’t. 



 64

 
In addition to equation 15.27.1, which relates the energy to the magnitude of the momentum, it 
will be of interest to see how the components of momentum transform between reference frames.  
As usual, we are considering frame Σ' to be moving with respect to Σ at a speed v with respect to 
Σ.  There is no difficulty with the y- and z- components.  We have merely p'y'  =  py and p'z'  =  pz .  
However: 
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After a little algebra, we obtain 
 

   .
)/1()/1(

)(
2/1222/122

0

ccu
ump x

x v
v

−−
−

=  

 
And this is 
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The inverse is found in the usual way: 
 
   )./''( 2

' cEpp xx v+γ=       15.27.3 
 
 
 
 
 

If we eliminate ''xp from equations 15.27.2 and 15.27.3, we’ll find E' in terms of E and px: 
 
   .)(' xpEE v−γ=        15.27.4 
 
Thus the transformations between energy and the three spatial components of momentum is similar 
to the transformation between time and the three space coordinates, and are described by a similar 
4-vector: 
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The reader should multiply this out to verify that it does reproduce equations 15.27.3 and  
15.27.4. 
 
 
15.28   Units 
 
It is customary in the field of particle physics to express energy (whether total, kinetic or 
rest-mass energy) in electron volts (eV) or in keV, MeV, GeV or TeV (103, 106, 109, or 
1012 eV respectively). A electron volt is the kinetic energy gained by an electron if it is 
accelerated through an electrical potential of 1 volt; alternatively it is the work required to 
move an electron through one volt.  Either way, since the charge on an electron is 1.602 % 
10−19) C, 1eV = 1.602 % 10−19 J. 
 
The use of such a unit may understandably dismay those who would insist always on 
expressing any physical quantity in SI units, and I am much in sympathy with this view.  
Yet, to those who deal daily with particles whose charge is equal to or is a small multiple 
or rational fraction of the electronic charge, the eV has its attractions.  Thi if you 
accelerate a particle through so many volts, you don’t have to remember the exact value 
of the electronic charge or carry out a long multiplication every time you do so.  One 
might also think of a hypothetical question such as:  An electron is accelerated through 
3426.7189628471 volts.  What is its gain in kinetic energy?  You cannot answer this in 
joules unless you know the value of the electronic charge to a comparable precision; but 
of course you do know the answer in eV. 
 
One situation that does require care is this.  An α-particle is accelerated through 1000 V.  
What is the gain in kinetic energy?  Because the charge on an α-particle is twice that of 
an electron, the answer is 2000 eV. 
 
Very often you know the energy of a  particle (because you have accelerated it through so 
many volts) and you want to know its momentum; or you know its momentum (because 
you have measured the curvature of its path in a magnetic field) and you want to know its 
energy.  Thus you will frequent occasion to make use of equation 15.27.1: 
 
    .)()( 222

0
2 pccmE +=  

 
You have to be careful to remember how many cs there are, and what is the exact value 
of c.  Particle physicists prefer to make life easier for themselves (not necessarily for the 
rest of us!) by preferring not to state what the momentum of a particle is, or its rest mass, 
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but rather to give the values of pc  or of m0c2 – and to express E, pc and m0c2 all in eV (or 
keV, MeV or GeV).  Thus one may hear that 
 

pc  =   6.2 GeV 
m0c2  =  0.938 GeV. 

 
More often this is expressed, somewhat idiosyncratically and in somewhat doubtful use 
of English, as 
 
     p   =   6.2  GeV/c 

m0  =  0.938 GeV/c2 

 

or in informal casual conversation (one hopes not for publication) merely as 
 

p  =   6.2 GeV 
m0  =  0.938 GeV. 

 
While this may puzzle some and raise the ire of others, it is not entirely without merit, 
because, provided one uses these units, the relation between energy, momentum and rest 
mass is then simply 
 
     .22

0
2 pmE +=  

 
The practice is not confined to energy, momentum and rest mass.  For example, the SI 
unit of magnetic dipole moment is N m T−1 (newton metre per tesla).  Now N m (unit of 
torque) is not quite the same as a joule (unit of energy), although dimensionally similar.  
Yet it is common practice to express the magnetic moments of subatomic particles in eV 
T−1.  Thus the Bohr magneton is a unit of magnetic dipole moment equal to 9.27 %  10−24 
N m T−1, and this may be expressed as 5.77 %  10−5 eV T−1. 
 
One small detail to be on guard for is this.  One may hear talk of “a 500 MeV proton”.  
Does this mean that the kinetic energy is 500 MeV or that its total energy isn500 MeV?  
In this case the answer is fairly clear (although it would have been completely clear if the 
speaker had been explicit).  The rest-mass energy of a proton is 938 MeV, so he must 
have been referring to the kinetic energy.  If, however, he had said “a 3 GeV proton”, 
there would be no way of deducing whether he was referring to the kinetic or the total 
energy.  And if he had said “a 3 GeV particle”, there would be no way of telling whether 
he was referring to its total energy, its kinetic energy or its rest-mass energy.  It is 
incumbent on all of us – or at least those of us who wish to be understood by others – 
always to make ourselves explicitly clear and not to suppose that others will correctly 
guess what we mean. 
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15.29   Force 
 
Force is defined as rate of change of momentum, and we wish to find the transformation 
between forces referred to frames in uniform relative motion such that this relation holds 
on all such frames. 
 
Suppose that, in Σ', a mass has instantaneous mass m' and velocity whose instantaneous 
components are .'' '' yx uandu   If a force acts on it, then the velocity and hence also the 
mass are functions of time.  The x-component of the force is given by 
 

    ( ).''
'

' '' xx um
dt
dF =      15.29.1 

 
We want to express everything on the right hand side in terms of unprimed quantities.  
Thus from equation 15.21.8 and the inverse of equation 15.16.2, we obtain 
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Let us first evaluate .)( vγ−γ mum
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x   In this expression, v and γ are independent of 

time (the frame Σ' is moving at constant velocity relative to Σ), and 
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d  of xmu is the x-
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Now we need to evaluate 
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we’ll just get more primed quantities.  What we’ll do instead is to start with 
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 and we’ll evaluate ,'
dt
dt  which, being a total derivative, is the reciprocal of 

'dt
dt .  The 

partial derivatives are given by equations 15.15.3k and l, while .xu
dt
dx

=   Hence we 

obtain 
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Thus we arrive at 
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The mass is not constant (i.e. dm/dt is not zero) because there is a force acting on the 
body, and we have to relate the term dm/dt to the force.  At some instant when the force 
and velocity (in Σ) are F and u, the rate at which F is doing work on the body is F * u  

zzyyxx uFuFuF ++=  and this is equal to the rate of increase of energy of the body, 

which is 2cm& .   (In section 15.24, in deriving the expression for kinetic energy, I wrote 
that the rate of doing work was equal to the rate of increase of kinetic energy.  Now I 
have just written that it is equal to the rate of increase of (total) energy.  Which is right?)  
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Substitute this into equation 15.29.8 and, after a very little more algebra, we finally 
obtain the transformation for F'x' :  
 

          .)(' 2' zzyy
x

xx FuFu
uc

FF +
−

−=
v

v              15.29.10 

 
The y'-  and z'- components are a little easier, and I leave it as an exercise to show that 
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As usual, the inverse transformations are found by interchanging the primed and 
unprimed quantities and changing the sign of v. 
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The force on a particle and its resultant acceleration are not in general in the same 
direction, because the mass is not constant. (Newton’s second law is not F = ma; it is 

.pF &=  Thus 
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15.30    Electromagnetism 
 
These notes are intended to cover only mechanics, and therefore I resist the temptation to 
cover here special relativity and electromagnetism.  I point out only that in many ways 
this misses many of the most exciting parts of special relativity, and indeed it was some 
puzzles with electromagnetism that led Einstein to formulate the theory of special 
relativity.  One proceeds as we have done with mechanical quantities; that is, we have to 
define carefully what is meant by each quantity and how in principle it is possible to 
measure it, and then see how it transforms between frames in such a manner that the laws 
of physics – in particular Maxwell’s equations - are the same in each.  One such 
transformation that is found, for example, is ),(' BuEE ×+γ=  so that what appears in 
one frame as an electric field appears in another at least in part as a magnetic field.  The 
Coulomb force transforms to a Lorentz force; Coulomb’s law transforms to Ampères law. 
 
Although I do no more than mention this topic here, I owe it to the reader to say just a 
little bit more about the speedometer that I designed in section 15.4.  It is indeed true that, 
as the train moves forward, the net repulsive force between the two rods does diminish, 
although not quite as I have indicated, for one has to make the correct transformations 
between frames for force, current, electric field, magnetic field, and so on.  But it turns 
out that the weights of the rods – i.e. the downward forces on them – also diminish in 
exactly the same ratio, and the angle between the strings remains stubbornly the same.  
Our trip to the patent office will be in vain.  The speedometer will not work, and it 
remains impossible to determine the absolute motion of the train. 
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