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CHAPTER 1 
CENTRES OF MASS 

 
1.1 Introduction, and some definitions. 
 
This chapter deals with the calculation of the positions of the centres of mass of various bodies.  
We start with a brief explanation of the meaning of centre of mass, centre of gravity and 
centroid, and a very few brief sentences on their physical significance.  Many students will have 
seen the use of calculus in calculating the positions of centres of mass, and we do this for 
  
        Plane areas 
  i  for which the equation is given in x-y coordinates; 
            ii  for which the equation is given in polar coordinates. 
 
        Plane curves 
  i  for which the equation is given in x-y coordinates; 
            ii  for which the equation is given in polar coordinates. 
 
        Three dimensional figures such as solid and hollow hemispheres 
        and cones. 
 
 
There are some figures for which interesting geometric derivations can be done without calculus;  
for example, triangular laminas, and solid tetrahedra, pyramids and cones.  And the theorems of 
Pappus allow you to find the centres of mass of semicircular laminas and arcs in your head with 
no calculus. 
 
First, some definitions. 
 
Consider several point masses in the x-y plane: 
 
     m1 at (x1 , y1) 
 
     m2  at  (x2 , y2) 
 
             etc. 
 
 
The centre of mass is a point ( )yx, whose coordinates are defined by 
 

   
M

xm
x ii∑=   

M
ym

y ii∑=      1.1.1 

 
where M is the total mass  Σ mi .  The sum   m xi i∑   is the first moment of mass with respect to 
the y axis.  The sum m yi i∑  is the first moment of mass with respect to the x axis. 
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If the masses are distributed in three dimensional space, with m1 at (x1, y1, z1 ), etc,. the centre of 
mass is a point ( , , )x y z such that  
 

 
M

xm
x ii∑=   

M
ym

y ii∑=   
M

zm
z ii∑=     1.1.2 

   
    
In this case, m x m y m zi i i i i i∑ ∑ ∑, , are the first moments of mass with respect to the y-z, z-x and 
x-y planes respectively.  
 
In either case we can use vector notation and suppose that r1, r2, r3 are the position vectors of m1, 
m2 , m3 with respect to the origin, and the centre of mass is a point whose position vector r  is 
defined by 
 
        

         .
M
m ii∑=

r
r       1.1.3 

 
 
In this case the sum is a vector sum and mi i∑ r ,  a vector quantity, is the first moment of mass 
with respect to the origin.  Its scalar components in the two dimensional case are the moments 
with respect to the axes; in the three dimensional case they are the moments with respect to the 
planes. 
 
Many early books, and some contemporary ones, use the term "centre of gravity".  Strictly the 
centre of gravity is a point whose position is defined by the ratio of the first moment of weight to 
the total weight.  This will be identical to the centre of mass provided that the strength of the 
gravitational field g (or gravitational acceleration) is the same throughout the space in which the 
masses are situated.  This is usually the case, though it need not necessarily be so in some 
contexts. 
  
For a plane geometrical figure, the centroid or centre of area, is a point whose position is defined 
as the ratio of the first moment of area to the total area.  This will be the same as the position of 
the centre of mass of a plane lamina of the same size and shape provided that the lamina is of 
uniform surface density. 
 
 
Calculating the position of the centre of mass of various figures could be considered as merely a 
make-work mathematical exercise.  However, the centres of gravity, mass and area have 
important applications in the study of mechanics. 
 
For example, most students at one time or another have done problems in static equilibrium, such 
as a ladder leaning against a wall. They will have dutifully drawn vectors indicating the forces on 
the ladder at the ground and at the wall, and a vector indicating the weight of the ladder.  They 
will have drawn this as a single arrow at the centre of gravity of the ladder as if the entire weight 
of the ladder could be "considered to act" at the centre of gravity.  In what sense can we take this 
liberty and "consider all the weight as if it were concentrated at the centre of gravity"?  In fact 
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the ladder consists of many point masses (atoms) all along its length. One of the equilibrium 
conditions is that there is no net torque on the ladder. The definition of the centre of gravity is 
such that the sum of the moments of the weights of all the atoms about the base of the ladder is 
equal to the total weight times the horizontal distance to the centre of gravity, and it is in that 
sense that all the weight "can be considered to act" there.   Incidentally, in this example, "centre 
of gravity" is the correct term to use.  The distinction would be important if the ladder were in a 
nonuniform gravitational field. 
 
In dynamics, the total linear momentum of a system of particles is equal to the total mass times 
the velocity of the centre of mass.  This may be "obvious", but it requires formal proof, albeit 
one that follows very quickly from the definition of the centre of mass. 
 
Likewise the kinetic energy of a rigid body in two dimensions equals ,2

2
12

2
1 ω+ IMV  where M 

is the total mass, V the speed of the centre of mass, I the rotational inertia and ω the angular 
speed, both around the centre of mass.  Again it requires formal proof, but in any case it 
furnishes us with another example to show that the calculation of the positions of centres of mass 
is more than merely a make-work mathematical exercise and that it has some physical 
significance. 
 
If a vertical surface is immersed under water (e.g. a dam wall) it can be shown that the total 
hydrostatic force on the vertical surface is equal to the area times the pressure at the centroid. 
This requires proof (readily deduced from the definition of the centroid and elementary 
hydrostatic principles), but it is another example of a physical application of knowing the 
position of the centroid.   
 
 
1.2   Plane triangular lamina 
 
Definition:  A median of a triangle is a line from a vertex to the mid point of the opposite side. 
  
 
Theorem I.  The three medians of a triangle are concurrent (meet at a single, unique point) at a 
point that is two-thirds of the distance from a vertex to the mid point of the opposite side. 
 
Theorem II.  The centre of mass of a uniform triangular lamina  (or the centroid of a triangle) is 
at the meet of the medians. 
 
The proof of I can be done with a nice vector argument (figure I.1): 
 
Let A, B be the vectors  OA, OB.  Then A + B is the diagonal of the parallelogram of which OA 
and OB are two sides, and the  position vector of the point C1   is   1

3 (A + B). 
 
To get C2  , we see that 
 
 C2  =  A +  2

3 (AM2 )  =  A +  2
3 (M2  − A)  =  A +  2

3 ( 1
2 B − A)  =  1

3 (A + B) 
  

 
 



 4

FIGURE I.1 

FIGURE 1.2 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus the points C1  and C2 are identical, and the same would be true for the third median, so 
Theorem I is proved. 
 
Now consider an elemental slice as in figure I.2.  The centre of mass of the slice is at its mid-
point. The same is true of any similar slices parallel to it.  Therefore the centre of mass is on the 
locus of the mid-points - i.e. on a median. Similarly it is on each of the other medians, and 
Theorem II is proved. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
That needed only some vector geometry.  We now move on to some calculus. 
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1.3 Plane areas. 
 

Plane areas in which the equation is given in x-y coordinates 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We have a curve y  =  y(x) (figure I.3) and we wish to find the position  of the centroid of the 
area under the curve between x = a and  x = b.   We consider an elemental slice of width δx at a 
distance x from the y axis.  Its area is yδx, and so the total area is 
 
    
     ∫=

b

a
ydxA       1.3.1 

 
The first moment of area of the slice with respect to the  y axis is xyδx, and so the first moment 

of the entire area is  ∫
b

a
 xydx. 

 
 

Therefore   
A

xydx

ydx

xydx
x

b

a
b

a

b

a ∫
∫
∫ ==      1.3.2  

          
 
 

FIGURE I.3 
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For y  we notice that the distance of the centroid of the slice from the x axis is   1

2  y, and 
therefore the first moment of the area about the x axis is  1

2  y.yδx. 
 

Therefore   
A

dxy
y

b

a

2

2∫=        1.3.3 

 
 
Example.  Consider a semicircular lamina, 0,222 >=+ xayx , see figure I.4: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We are dealing with the parts both above and below the x axis, so the area of the semicircle is 

∫=
a

ydxA
0

2  and the first moment of area is 2 ∫
a
xydx

0
.  You should find 

.4244.0)3/(4 aax =π=  
 
Now consider the lamina 0,222 >=+ yayx  (figure I.5):  
 
 
 
 
 
 
 

FIGURE I.4 

FIGURE I.5 
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The area of the elemental slice this time is yδx (not 2yδx), and the integration limits are from -a 
to +a.   To find y , use equation 1.3.3, and you should get y = 0.4244a. 
 
 
 
      Plane areas in which the equation is given in polar coordinates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We consider an elemental triangular sector (figure I.6) between θ  and θ  + δθ .  The "height" of 
the triangle is r and the "base" is rδθ .  The area of the triangle is .2

2
1 δθr  

 
Therefore the whole area  =  .2

2
1 θ∫

β

α
dr      1.3.4 

   
 
The horizontal distance of the centroid of the elemental sector from the origin  (more correctly, 
from the "pole" of the polar coordinate system) is 2

3 r cosθ .  The first moment of area of the 
sector with respect to the y axis is 
 
   θδθ=δθ×θ coscos 3

3
12

2
1

3
2 rrr  

 
so the first moment of area of the entire figure between θ  = α and θ  = β  is 
  

FIGURE I.6 
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       ∫
β

α
θθ .cos3

3
1 dr  

 

Therefore      .
3

cos2
2

3

∫
∫

β

α

β

α

θ

θθ
=

dr

dr
x       1.3.5  

      
 

Similarly   .
3

sin2
2

3

∫
∫

β

α

β

α

θ

θθ
=

dr

dr
y       1.3.6  

 
 
Example:  Consider the semicircle r = a,  θ  = −π/2 to +π/2.  
 
    

                     .
3
4cos

3
2cos

3
2 2/

2/2/

2/

2/

2/ ∫
∫

∫ π+

π−π+

π−

π+

π−

π
=θθ

π
=

θ

θθ
=

ada

d

dax    1.3.7 

     
The reader should now try to find the position of the centroid of a circular sector (slice of pizza!) 
of angle 2α.  The integration limits will be −α to +α.   When you arrive at a formula (which you 
should keep in a notebook for future reference), check that it goes to 4a/(3π ) if  α  = π/2, and to 
2a/3 if  α = 0. 
 
 
1.4 Plane curves 
             Plane curves in which the equation is given in x-y coordinates 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 
I.7 
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Figure I.7 shows how an elemental length δs is related to the corresponding increments in x and 
y: 
 
  ( ) ( )[ ] ( )[ ] .1//1

2/122/122/122 ydydxxdxdyyxs δ+=δ+=δ+δ=δ    1.4.1 
 
Consider a wire of mass per unit length (linear density) λ  bent into the shape y y x= ( ) between 
x = a and x = b.  The mass of an element ds is  λ δs, so the total mass is 
 

   ( )[ ] ./1
2/1

2 dxdxdyds
b

a∫ ∫ +λ=λ      1.4.2 

 
The first moments of mass about the y- and x-axes are respectively 
 

  ( )[ ]∫ +λ
b

a
dxdxdyx

2/12/1    and     ( )[ ] .)/1
2/1

2 dxdxdyy
b

a∫ +λ     1.4.3  
 
If the wire is uniform and λ is therefore not a function of x or y, λ can come outside the integral 
signs in equations 1.12 and 1.13, and we hence obtain 
 
 
          

  
( )[ ]

( )[ ]
( )[ ]

( )[ ] ,
/1

/1
,

/1

/1
2/12

2/12

2/12

2/12

∫
∫

∫
∫

+

+
=

+

+
= b

a

b

a
b

a

b

a

dxdy

dxdyy
y

dxdxdy

dxdxdyx
x   1.4.4 

 
 
the denominator in each of these expressions merely being the total length of the wire. 
 
 
 
Example:  Consider a uniform wire bent into the shape of the semicircle  x2 + y2  = a2 ,   x > 0. 
 
First, it might be noted that one would expect x  > 0.4244a (the value for a plane semicircular 
lamina). 
 
The length (i.e. the denominator in equation 1.4.4) is just πa. Since there are, between x and x + 
δx, two elemental lengths to account for, one above and one below the x axis, the numerator of 
the first of equation 1.4.4 must be 
 

     ( )[ ] ./12
2/1

0

2 dxdxdyx
a

∫ +  
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In this case   ( ) ( ) ., 2/122

2/122

xa
x

dx
dyxay

−

−
=−=  

 
The first moment of length of the entire semicircle is 
 
 

      
( )

.212
0 2/122

2/1

0 22

2

∫∫
−

=







−

+
aa

xa
xdxadx

xa
xx    

 
 
From this point the student is left to his or her own devices to derive  .6333.0/2 aax =π=  
 
 
 
 
 
 
 
        Plane curves in which the equation is given in polar coordinates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure I.8  shows how an elemental length δs is related to the corresponding increments in r and  
θ  : 
 
 

FIGURE I.8 
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  ( ) ( )[ ] ( )[ ] ( )[ ] .1
2/122/1222/122 rrrrrs dr

d
d
dr δ+=δθ+=δθ+δ=δ θ
θ   1.4.5 

   
 
The mass of the curve (between  θ  = α  and θ  = β) is 
 
 

    ( )[ ] θ+λ∫
β

α θ drd
dr

2/1
22 . 

 
 
The first moments about the y- and x-axes are (recalling that x = r cosθ   and y =  rsinθ  ) 
 
 

   ( )[ ]∫
β

α θ +θλ
2/122cos rr d

dr and    ( )[ ] .sin
2/1

22 θ+θλ∫
β

α θ drr d
dr  

 
 
If λ is not a function of  r or θ, we obtain 
 
 

  ( )[ ] ( )[ ] θ+θ=θ+θ= ∫∫
β

α θ

β

α θ drrydrrx d
dr

Ld
dr

L

2/1
221

2/1221 sin,cos   1.4.6  
 
 
 
where L is the length of the wire. 
 
Example:  Again consider the uniform wire of figure I.8 bent into the shape of a semicircle.  The 
equation in polar coordinates is simply r = a, and the integration limits are  θ π= − / 2 to 

.2/π+=θ  The length is  πa. 
 

Thus    [ ] .20cos1 2/12/

2/

2

π
=θ+θ

π
= ∫

π+

π−

adaa
a

x  

 
 
The reader should now find the position of the centre of mass of a wire bent into the arc of a 
circle of angle 2α.  The expression obtained should go to  2a/π as α  goes to  π/2, and to  a as  α  
goes to zero. 
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1.5   Summary of the formulas for plane laminas and curves 
 
 

              
 
 

    
 
 
 
    ( )xyy =   ( )θ= rr  
 
  

        ∫=
b

aA xydxx 1   
θ

θθ
=

∫
∫

β

α

β

α

dr

dr
x

2

3

3

cos2
 

  
   

    ∫=
b

aA dxyy 2
2
1   

∫
∫

β

α

β

α

θ

θθ
=

dr

dr
y

2

3

3

sin2
 

 
 
 
 
 
 
 
     
 
   ( )xyy =          ( )θ= rr  
 
 

  ( )[ ] dxxx
b

a dx
dy

L

2/121 1∫ +=     ( )[ ] θ+θ= ∫
β

α θ drrx d
dr

L

2/1
221 cos  

 
 

  ( )[ ] dxyy
b

a dx
dy

L

2/121 1∫ +=      ( )[ ] θ+θ= ∫
β

α θ drry d
dr

L

2/1
221 sin  

 
 
 
 

Uniform Plane Lamina

SUMMARY 

Uniform Plane Curve 
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1.6   The Theorems of Pappus.   
 (Pappus Alexandrinus, Greek mathematician, approximately 3rd or 4th century AD.) 
 
            I.  If a plane area is rotated about an axis in its plane, but  which 
                does not cross the area, the volume swept out  equals 
     the area times the distance moved by the centroid. 
. 
 
 II. If a plane curve is rotated about an axis in its plane, but which 
                does not cross the curve, the area swept out equals 
     the length times the distance moved by the centroid. 
      
 
 
These theorems enable us to work out the volume of a solid of revolution if we know the position 
of the centroid of a plane area, or vice versa;  or to work out the area of a surface of revolution if 
we know the position of the centroid of a plane curve or vice versa.  It is not necessary that the 
plane or the curve be rotated through a full 360o. 
 
 
We prove the theorems first.  We then follow with some examples. 
 
 
 
 
 

 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
  

y 

z 

δA 

x 

φ 

x 

FIGURE I.9 

A 
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Consider an area A in the zx plane (figure I.9), and an element  δA within the area at a distance x 
from the z axis.  Rotate the area through an angle φ  about the z axis. The length of the arc traced 
by the element δA in moving through an angle φ is xφ , so the volume swept out by δA is xφδA.  
The volume swept out by the entire area is ∫φ xdA .  But the definition of the centroid of A is such 

that its distance from the z axis is given by ∫= xdAAx .  Therefore the volume swept out by the 
area is φx A.  But φx is the distance moved by the centroid, so the first theorem of Pappus is 
proved. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider a curve of length L in the zx plane (figure I.10), and an  element δs of the curve at a 
distance x from the z axis.  Rotate  the curve through an angle φ  about the z axis.  The length of 
the arc traced by the element ds in moving through an angle φ  is xφ , so the area swept out by δs 
is xφδs.  The area swept out by the entire curve is ∫φ xds .  But the definition of the centroid is 

such that its distance from the z axis is given by ∫= xdsLx .  Therefore the area swept out by the 
curve is φx L .  But xφ is the distance moved by the centroid, so the second theorem of Pappus is 
proved.  
 
 
 

 

 

z 

y 

x 

δs 

x 

φ 

FIGURE I.10 
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Applications of the Theorems of Pappus. 
  
Rotate a plane semicircular figure of area 1

2
2πa through 360o about its diameter.  The volume 

swept out is 4
3

3πa , and the distance moved by the centroid is 2πx .  Therefore by the theorem of 
Pappus,  ( ).3/4 πax =  
 
Rotate a plane semicircular arc of length aπ  through 360o about its diameter.  Use a similar 
argument to show that x a= 2 / .π  
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
Consider a right-angled triangle, height h, base a (figure I.11). Its centroid is at a distance a/3 
from the height h.  The area of the triangle is ah/2.  Rotate the triangle through 360o about h.  
The distance moved by the centroid is 2πa/3. The volume of the cone swept out is ah/2  times 
2πa/3, equals  πa2h/3. 
 
 
Now consider a line of length l inclined at an angle α to the y axis (figure I.12).  Its centroid is at 
a distance αsin2

1 l  from the y axis.  Rotate the line through 360o about the y axis. The distance 
moved by the centroid is .sinsin2 2

1 απ=α×π ll   The surface area of the cone swept out is 
.sinsin 2 απ=απ× lll  

 

FIGURE I.11 
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The centre of a circle of radius b is at a distance a from the y axis.  It is rotated through 360o  
about the y axis to form a torus ( figure I.13).  Use the theorems of Pappus to show that the 
volume and surface area of the torus are, respectively, .4and2 222 abab ππ  
 
     V ab= 2 2 2π  
 
     .4 2abA π=  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

l 

α

FIGURE I.12 

FIGURE I.13 
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FIGURE I.14 

 
 
 
 
1.7 Uniform solid tetrahedron, pyramid and cone. 
 
 Definition.  A median of a tetrahedron is a line from a vertex 
 to the centroid of the opposite face. 
 
 Theorem I.  The four medians of a tetrahedron are concurrent 
 at a point 3/4 of the way from a vertex to the centroid of 
 the opposite face. 
 
 Theorm II.  The centre of mass of a uniform solid tetrahedron 
 is at the meet of the medians. 
  
Theorem I can be derived by a similar vector geometric argument used for the plane triangle.  It 
is slightly more challenging than for the plane triangle, and it is left as an exercise for the reader.  
I draw two diagrams (figure I.14). One shows the point C1  that is 3/4 of the way from the vertex 
A to the centroid of the opposite face.  The other shows the point C2  that is 3/4 of the way from 
the vertex B to the centroid of its opposite face.  .  You should be able to show that 

 
C1  =   (A + B + D)/4. 
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In fact this suffices to prove Theorem I, because, from the symmetry between A, B and D, one is 
bound to arrive at the same expression for the three-quarter way mark on any of the four 
medians.  But for reassurance you should try to show, from the second figure, that 
 

C2  =   (A + B + D)/4. 
   
The argument for Theorem II is easy, and is similar to the corresponding argument for plane 
triangles. 
    
   Pyramid. 
 
A right pyramid whose base is a regular polygon (for example, a square) can be considered to be 
made up of several tetrahedra stuck together.  Therefore the centre of mass is 3/4 of the way 
from the vertex to the mid point of the base. 
 
   Cone. 
 
A right circular cone is just a special case of a regular pyramid in which the base is a polygon 
with an infinite number of infinitesimal sides.  Therefore the centre of mass of a uniform right 
circular cone is 3/4 of the way from the vertex to the centre of the base. 
 
We can also find the position of the centre of mass of a solid right circular cone by calculus.  We 
can find its volume by calculus, too, but we'll suppose that we already know, from the theorem 
of Pappus, that the volume is 1

3 × base × height. 
 
 
 
 
 
 
 
 
 
 
 
 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 FIGURE I.15 
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Consider the cone in figure I.15, generated by rotating the line y = ax/h (between x = 0 and x = h) 
through 360o  about the x axis.  The radius of the elemental slice of thickness δx at x is ax/h.   Its 
volume is ./ 222 hxxa δπ  
   
Since the volume of the entire cone is πa2h/3, the mass of the slice is 
 

    ,3
3 3

22

2

22

h
xMxha

h
xxaM δ

=
π

÷
δπ

×                
 
where M is the total mass of the cone.  The first moment of mass of the elemental slice with 
respect to the y axis is 3Mx3δx/h3.       
  
The position of the centre of mass is therefore 
 

     .3
0 4

33
3 hdxx

h
x

h

∫ ==  
 
1.8   Hollow cone.     
 
The surface of a hollow cone can be considered to be made up of an infinite number of 
infinitesimally slender isosceles triangles, and therefore the centre of mass of a hollow cone 
(without base) is 2/3 of the way from the vertex to the midpoint of the base. 
 
 
1.9    Hemispheres. 
 
   Uniform solid hemisphere 
 
Figure I.4 will serve.  The argument is exactly the same as for the cone. The volume of the 
elemental slice is ( ) ,222 xxaxy δ−π=δπ   and the volume of the hemisphere is  2πa3/3, so the 
mass of the slice is 
 

  ( ) ( ) ,
2

3)3/2( 3

22
22

a
xxaMaxxaM δ−

=π÷δ−π×  
 
where M is the mass of the hemisphere.  The first moment of mass of the elemental slice is x 
times this, so the position of the centre of mass is 
 
  

        ( ) .
8

3
2
3

0

22
3

adxxax
a

x
a

=−= ∫  
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   Hollow hemispherical shell. 
 
We may note to begin with that we would expect the centre of mass to be further from the base 
than for a uniform solid hemisphere. 
 
 
Again, figure I.4 will serve. The area of the elemental annulus is 2πaδx (NOT 2πyδx!) and the 
area of the hemisphere is 2πa2.  Therefore the mass of the elemental annulus is 
 
    ./)2(2 2 axMaxaM δ=π÷δπ×  
 
The first moment of mass of the annulus is x times this, so the position of the centre of mass is 
 
 

    .
20

a
a

xdxx
a

== ∫   
   
 
 

 
1.10   Summary. 
     

SUMMARY 
 
 
 
 Triangular lamina:       2/3 of way from vertex to midpoint of opposite side 
 
 Solid Tetrahedron, Pyramid, Cone:     3/4 of way from vertex to midpoint of  
            opposite face. 
 
 Hollow cone:    2/3 of way from vertex to midpoint of base. 
 
 Semicircular lamina:   4a/(3π ) 
 
 Lamina in form of a sector of a circle, angle 2α :   ( 2a sinα )/(3α) 
 
 Semicircular wire:    2a/π 
 
 Wire in form of an arc of a circle, angle   2α:   ( a sin α) /α 
 
 Solid hemisphere:     3a/8 
 
      Hollow hemisphere:    a/2  
       
 


