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CHAPTER 2 

MOMENT OF INERTIA 
 

 
 
 
2.1   Definition of Moment of Inertia 
  
   Consider a straight line (the "axis") and a set of point masses K,,, 321 mmm  such that the 
distance of the mass mi  from the axis is ri .  The quantity 2

ii rm is the second moment of the i th 
mass with  respect to (or "about") the axis, and the sum 2

ii rm∑ is the second moment of mass of 
all the masses with respect to the axis.  
 
   Apart from some subtleties encountered in general relativity, the word "inertia" is synonymous 
with mass - the inertia of a body is merely the ratio of an applied force to the resulting 
acceleration. Thus 2

ii rm∑  can also be called the second moment of inertia.  The second moment 
of inertia is discussed so much in mechanics that it is usually referred to as just "the" moment of 
inertia. 
 
   In this chapter we shall consider how to calculate the (second) moment of inertia for different 
sizes and shapes of body, as well as certain associated theorems.  But the question should be 
asked:  "What is the purpose of calculating the squares of the distances of lots of particles from 
an axis, multiplying these squares by the mass of each, and adding them all together?  Is this 
merely a pointless make-work exercise in arithmetic? Might one just as well, for all the good it 
does, calculate the sum ii rm∑ 2 ?   Does 2

ii rm∑  have any physical significance?"  
  
 
 
2.2   Meaning of Rotational Inertia. 
 
   If a force acts of a body, the body will accelerate.  The ratio of the applied force to the resulting 
acceleration is the inertia (or mass) of the body.   
 
   If a torque acts on a body that can rotate freely about some axis, the body will undergo an 
angular acceleration.  The ratio of the applied torque to the resulting angular acceleration is the 
rotational inertia of the body.  It depends not only on the mass of the body, but also on how that 
mass is distributed with respect to the axis. 
 
   Consider the system shown in figure II.1. 
 
 
 
 
 
 
 
 

FIGURE II.1 
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 A particle of mass m is attached by a light (i.e. zero or negligible mass) arm of length r to a 
point at O, about which it can freely rotate. A force F is applied, and the mass consequently 
undergoes a linear acceleration F/m.  The angular acceleration is then F/(mr).  Also, the torque is 
Fr.  The ratio of the applied torque to the angular acceleration is therefore  mr2 .  Thus the 
rotational inertia is the second moment of inertia.  Rotational inertia and (second) moment of 
inertia are one and the same thing, except that rotational inertia is a physical concept and 
moment of inertia is its mathematical representation.   
 
 
2.3  Moments of inertia of some simple shapes. 
 
  A student may well ask:  "For how many different shapes of body must I commit to memory 
the formulas for their moments of inertia?"  I would be tempted to say: "None".  However, if any 
are to be committed to memory, I would suggest that the list to be memorized should be limited 
to those few bodies that are likely to be encountered very often (particularly if they can be used 
to determine quickly the moments of inertia of other bodies) and for which it is easier to 
remember the formulas than to derive them.  With that in mind I would recommend learning no 
more than five.  In the following, each body is supposed to be of mass m and rotational inertia I. 
 
   1.  A rod of length 2l about an axis through the middle, and at right angles to the rod: 
 
     I ml= 1

3
2      2.3.1 

 
 
   2.  A uniform circular disc of radius a about an axis through the centre and perpendicular to the                
        plane of the disc: 
     
     I ma= 1

2
2      2.3.2 

 
   3. A uniform right-angled triangular lamina about one of its shorter  sides - i.e. not the  
    hypotenuse.  The other not-hypotenuse side is of length a: 
       
     I ma= 1

6
2      2.3.3 

 
 
    4. A uniform solid sphere of radius a about an axis through the centre. 
 
      I ma= 2

5
2      2.3.4 

 
   5. A uniform spherical shell of radius a about 
 

    I ma= 2
3

2      2.3.5 
    
 
I shall now derive the first three of these by calculus.  The derivations for the spheres will be left 
until later. 
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1. Rod, length 2l  (Figure II.2)  
 
 
 
 
   
 
 
 
  The mass of an element  δx  at a distance x  from the middle of the rod is 
 
     m x

l
δ

2
     

 

and its second moment of inertia is    mx x
l

2

2
δ . 

     
The moment of inertia of the entire rod is      
 
 

   .
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2.   Disc, radius a.  (Figure II.3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The area of an elemental annulus, radii r r r, + δ  is 2π δr r. 
 

x δx FIGURE II.2 

r 

a 
FIGURE II.3 
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The area of the entire disc is πa2. 

Therefore the mass of the annulus is .22
22 a

rmr
a

mrr δ
=

π
δπ      

 

and its second moment of inertia is  2 3

2

mr r
a

δ .        
              
 

The moment of inertia of the entire disc is .2
0

2
2
13

2 ∫ =
a

madrr
a
m              

 
 
 

3.  Right-angled triangular lamina.  (Figure II.4)   
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
The equation to the hypotenuse is y b x a= −( / ).1  
 
The area of the elemental strip is y x b x a xδ δ= −( / )1  and the area of the entire triangle is ab/2. 
 

Therefore the mass of the elemental strip is 2
2

m a x x
a

( )− δ          

 

and its second moment of inertia is        2 2

2

mx a x x
a
( ) .− δ  

 
The second moment of inertia of the entire triangle is the integral of this from x = 0 to  x = a, 
which is ma2 /6.    
 
 
 
 
 

 
 

b 

a 

x δx 

)/1( axby −=  
FIGURE II.4 



 5
 
Uniform circular lamina about a diameter.  
 
For the sake of one more bit of integration practice, we shall now use the same argument to show 
that the moment of inertia of a uniform circular disc about a diameter is ma2/4.  However, we 
shall see later that it is not necessary to resort to integral calculus to arrive at this result, nor is it 
necessary to commit the result to memory.  In a little while it will become immediately apparent 
and patently obvious, with no calculation, that the moment of inertia must be ma2/4.  However, 
for the time being, let us have some more calculus practice.  See figure II.5. 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The disc is of radius a, and the area of the elemental strip is 2yδx. But y and x are related through 
the equation to the circle, which is ( ) 2/122 xay −= .  Therefore the area of the strip is 

( ) .2 2/122 xxa δ−  The second moment of inertia about the y-axis is ( ) ,2 2/1222 xxax δ−σ  where σ is 
the surface density  )./( 2am π For the entire disc, we integrate from x = −a to x = +a, or, if you 
prefer, from x = 0 to x = a and then double it.  The result ma2 /4 should follow. If you need a hint 
about how to do the integration, let x = a cosθ   (which it is, anyway), and be sure to get the 
limits of integration with respect to θ  right. 
 
The moment of inertia of a uniform semicircular lamina of mass m and radius a about its base, or 
diameter, is also ma2/4, since the mass distribution with respect to rotation about the diameter is 
the same.   

FIGURE II.5 
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2.4   Radius of gyration. 
 
The second moment of inertia of any body can be written in the form mk2.  Thus, for the rod, the 
disc (about an axis perpendicular to its plane), the triangle and the disc (about a diameter), k has 
the values 

aaaaaall 500.0
2

,408.0
6

,707.0
2

,866.0
3

====  

 
respectively. 
 
k is called the radius of gyration.  If you were to concentrate all the mass of a body at its radius 
of gyration, its moment of inertia would remain the same. 
 
 
2.5   Plane Laminas, and Mass Points Distributed in a Plane. 
 
I start by considering two very important theorems, namely, the Parallel Axes Theorem and the 
Perpendicular Axes Theorem.  The former can also be used with solid bodies and mass 
distributions in three-dimensional space, but it is important to understand that the latter is 
applicable only to plane laminas and masses distributed in a plane. 
 
 
   Parallel axes theorem 
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FIGURE II.6 
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In figure II.6, K321 ,, mmm are several point masses distributed in a plane.  I have drawn two sets 
of coordinate axes.  The origin of one of them is at the centre of mass C.  The other axes are 
parallel to the first, but they have their origin at a point P.     
        
 
The coordinates of mi with respect to the axes through C are (xi , yi ). 
The coordinates of P with respect to the axes through C are ( , )x y  
The coordinates of mi with respect to the axes through P are ( , ).x x y yi i− −   
 
 
Let    2

C ii xmB ∑=        2.5.1 
 
and    ( )2xxmB ii −= ∑ .      2.5.2 
 
Then     .2 22 ∑∑∑ +−= iiiii mxxmxxmB     2.5.3 
 
 
The first term on the right hand side is  BC.  The expression m xi i∑  is the first moment of mass 
about the centre of mass and is zero.  The sum mi∑ is the total mass M. 
 
Therefore    .2

C xMBB +=        2.5.4 
 
Similarly with respect to the moments about the horizontal axes: 
 
                  A A My= +C

2 . 
 
This is the Parallel Axes Theorem.  In words, the moment of inertia about an arbitrary axis is 
equal to the moment of inertia about a parallel axis through the centre of mass plus the total mass 
times the square of the distance between the parallel axes.  As mentioned  above, the theorem 
holds also for masses distributed in  three-dimensional space. 
 
 
  Perpendicular Axes Theorem. 
 
 
 
 
     
 
 
 
 
 
 
  
 
 
           

·
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FIGURE II.7 
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Figure II.7 shows some point masses distributed in the xy plane, the z axis being perpendicular to 
the plane of the paper.  The moments of inertia about the x, y and z axes are denoted respectively 
by A, B and C.  The distance of mi from the z axis is ( ) .2/122

ii yx +   Therefore the moment of 
inertia of the masses about the z axis is 
 
     ( ).22

iii yxmC += ∑      2.5.5 
 
That is to say:    C =  A  +  B.      2.5.6 
     
This is the Perpendicular Axes Theorem.  Note very carefully that, unlike the parallel axes 
theorem, this theorem applies only to plane laminas and to point masses distributed in a plane. 
   
 
Examples of the Use of  the Parallel and Perpendicular Axes Theorems. 
 
From section 2.3 we know the moments of inertia of discs, rods and triangular laminas.  We can 
make use of the parallel and perpendicular axes theorems to write down the moments of inertia 
of most of the following examples almost by sight, with no calculus.     
 
 
Hoop and discs, radius a. 
 
 
                                                                                                                                
                                                    
 
 
 
 
 
 
 
 
             
 
 
 
 
 
 
Rods, length 2l. 
 
 
  
 
 
 
 

· · 

· · 

2ma  22ma 2
2
1 ma 2

2
3 ma

2
2
1 ma  2

2
3 ma 2

4
1 ma 2

4
5 ma

2
3
1 ml  2

3
4 ml
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 Rectangular laminas, sides 2a  and  2b;  a > b.                                                
 
 
 
 
                                               
 
 
 
 
 
Square laminas, side 2a.  
 
 
 
 
 
                                        
 
 
 
 
 
 
Triangular laminas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                            
 
 
 
 
 
 

·
2

3
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3
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3
1 bam +  

·
2
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2.6 Three-dimensional solid figures.  Spheres, cylinders, cones 
 

Sphere, mass m, radius a. 
 
 
 
 
 
 
 
             
 
 
 
 
 
 
 

 
  The volume of an elemental cylinder of radii x x x, + δ , height 2y is 

( ) .44 2/122 xxxaxyx δ−π=δπ   Its mass is  ( ) ( ) .34 2/122
33

3
4

2/122

xxxa
a
m

a
xxxam δ−×=

π
δ−π

×   Its  

second moment of inertia is ( ) .3 32/122
3 xxxa

a
m

δ−×   The second moment of inertia of the entire 

sphere is 

a 

b c 

θ 
·

x 

y 
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    ( ) .3 2
5
23

2/1

0

22
3 madxxxa

a
m a

=−× ∫  

 
The moment of inertia of a uniform solid hemisphere of mass m and radius a about a diameter of 
its base is also ,2

5
2 ma  because the distribution of mass around the axis is the same as for a 

complete sphere.   
 
 
Problem:  A hollow sphere is of mass M, external radius a and internal radius xa. Its rotational 
inertia is 0.5 Ma2.  Show that x is given by the solution of 
 
    1 − 5x 3 + 4x 5 = 0   
 
and calculate x to four significant figures. (Answer = 0.6836.) 
 
 
 
 
 
   Solid cylinder, mass m, radius a, length 2l 
 
 
 
 
 
 
   
 
 
 
 

The mass of an elemental disc of thickness δx is m x
l
δ

2
.  Its moment of inertia about its diameter 

is 1
4 2 8

2
2m x

l
a ma x

l
δ δ

= .  Its moment of inertia about the dashed axis through the centre of the 

cylinder is ( ) .
8

4
28

22
2

2

l
xxamx

l
xm

l
xma δ+

=
δ

+
δ   The moment of inertia of the entire cylinder 

about the dashed axis is ( ) ( ).
8

42 2
3
12

4
1

0

22

lam
l

dxxaml

+=
+

∫  

 
In a similar manner it can be shown that the moment of inertia of a uniform solid triangular 
prism of mass m, length 2l, cross section an equilateral triangle of side 2a about an axis through 
its centre and perpendicular to its length is ( ).2

3
12

6
1 lam +   

 

x δx 

2a 

l l 
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Solid cone, mass m, height h, base radius a. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The mass of the elemental disc of thickness δx  is   
 
 

   m y x
a h

my x
a h

× =
π δ

π
δ2

1
3

2

2

2

3 . 

 
Its second moment of inertia about the axis of the cone is 
 

   1
2

3 3
2

2

2
2

4

2× × =
my x
a h

y my x
a h

δ δ . 

 

But y and x are related through y ax
h

= , so the moment of inertia of the elemental disk is 

 

    3
2

2 4

5

ma x x
h

δ .  

 
The moment of inertia of the entire cone is 
 

x 

y 
a 

h 

h
axy =  
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    .
10

3
2

3 2

0

4
5

2 madxx
h

ma h

=∫  

 
The following, for a solid cone of mass m, height h, base radius a, are left as an exercise: 
 
 

      
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.7   Three-dimensional hollow figures.  Spheres, cylinders, cones. 
 
Hollow spherical shell, mass m, radius a.         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

θ

θsina
θδ← a

( )22 4
20
3 ham

+  ( )22 23
20

ham
+  
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The area of the elemental zone is 2 2π θδθa sin .  Its mass is 
 

 .sin
4

sin2
2
1

2

2

θδθ=
π

θδθπ
× m

a
am  

 
Its moment of inertia is  .sinsinsin 32

2
122

2
1 θδθ=θ×θδθ maam  

The moment of inertia of the entire spherical shell is 
 

    .sin 2
3
2

0

32
2
1 madma =θθ∫

π

 

 
This result can be used to calculate, by integration, the moment of inertia of a solid sphere.  It is 
left as an exercise to show that for a uniform solid sphere, the result is .2

5
2 ma  

 
Using methods similar to that given for a solid cylinder, it is left as an exercise to show that the 
moment of inertia of an open hollow cylinder about an axis perpendicular to its length passing 
through its centre of mass is ( ),2

3
12

2
1 lam +  where a is the radius and 2l is the length.   

 
The moment of inertia of a baseless hollow cone of mass m, base radius a, about the axis of the 
cone could be found by integration.  However, those who have an understanding of the way in 
which the moment of inertia depends on the distribution of mass should readily see, without 
further ado, that the moment of inertia is 1

2
2ma . 

 
 
2.8   Torus 
 
The rotational inertias of solid and hollow toruses (large radius a, small radius b) are given 
below for reference and without derivation.  They can be derived by integral calculus, and their 
derivation is recommended as a challenge to the reader. 
 
Solid torus: 
 
 
 
 
         
 
 
 
 
 
 
 

( )22
4
1 34 bam +  ( )22

8
1 54 bam +  
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Hollow torus: 
 
                      
             
             
             
         
 
 
 
 
 
 
 
2.9    Linear triatomic molecule                                        
 
 
 
 
 
 
Here is an interesting problem.  It should be straightforward to calculate the rotational inertia of 
the above molecule with respect to an axis perpendicular to the molecule and passing through the 
centre of mass.  In practice it is quite easy to measure the rotational inertia very precisely from 
the spacing between the lines in a molecular band in the infrared region of the spectrum.  If you 
know the three masses (which you do if you know the atoms that make up the molecule) can you 
calculate the two interatomic spacings x and y ?   That would require determining two unknown 
quantities, x and y, from a single measurement of the rotational inertia, I.  Evidently that cannot 
be done; a second measurement is required.  Can you suggest what might be done?  We shall 
answer that shortly.  In the meantime, it is an exercise to show that the rotational inertia is given 
by 
    ax hxy by c2 22 0+ + + = ,      2.9.1 
 
where    ( ) Mmmma /321 +=        2.9.2 
 
    h m m M= 1 2 /         2.9.3 
 
    ( ) Mmmmb /213 +=        2.9.4 
 
    M m m m= + +1 2 3        2.9.5 
 

m1 m2 m3 

x y 

( )22
2
1 32 bam +   

( )22
4
1 52 bam +  
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    c I= −          2.9.6 
 
For example, suppose the molecule is the linear molecule OCS, and the three masses are 16, 12 
and 32 respectively, and, from infrared spectroscopy, it is determined that the moment of inertia 
is 20.  (For this hypothetical illustrative example, I am not concerning myself with units).  In that 
case, equation 2.9.1 becomes 
 
   .02039.1460.1737.11 22 =−++ yxyx &&&      2.9.7 
 
We need another equation to solve for x and y.  What can be done chemically is to prepare an 
isotopically-substituted molecule (isotopomer) such as 18OCS, and measure its moment of inertia 
from its spectrum, making the probably very justified assumption that the interatomic distances 
are unaffected by the isotopic substitution.  This results in a second equation: 
 
    a x h xy b y c' ' ' ' .2 22 0+ + + =      2.9.8 
 
Let's suppose that I = 21, and I leave it to the reader to work out the numerical values of a', h' 
and b' with the stern caution to retain all the decimal places on your calculator.  That is, do not 
round off the numbers until the very end of the calculation. 
 
You now have two equations, 2.9.1 and 2.9.8, to solve for x and y.  These are two simultaneous 
quadratic equations, and it may be that some guidance in solving them would be helpful.  I have 
three suggestions. 
 

1. Treat equation 2.9.1 as a quadratic equation in x and solve it for x in terms of y.  Then 
substitute this in equation 2.9.8.  I expect you will very soon become bored with this 
method and will want to try something a little less tedious. 

 
2. You have two equations of the form S x y S x y( , ) , ' ( , )= =0 0.  There are standard ways 

of solving these iteratively by an extension of the Newton-Raphson process.  This is 
described, for example, in section 1.9 of Chapter 1 of my Celestial Mechanics notes, 
and this general method for two or more nonlinear equations should be known by anyone 
who expects to engage in much numerical calculation. 

 
For this particular case, the detailed procedure would be as follows.  This is an iterative method, 
and it is first necessary to make a guess at the solutions for x and y.  The guesses need not be 
particularly good.  That done,  compute the following six quantities: 

 
    S x( ax 2hy ) by c2= + + +  
 
    '')'2'(' 2 cybyhxaxS +++=  
 
    S ax hyx = +2( )  
 
    S hx byy = +2( )  
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    S a x h yx' ( ' ' )= +2  
 
    S h x b yy' ( ' ' )= +2  
 

Here the subscripts denote the partial derivatives.  Now if 
 
    x(true)  =  x(guess)   +  ε  
and    y(true)  =  y(guess)   +  η   

 
the errors ε and η  can be found from the solution of 
 
    S S Sx yε η+ + = 0 
and    S S Sx y' ' 'ε η+ + = 0 

If we calculate   F
S S S Sy x x y

=
−
1

' '
 

 
The solutions for the errors are 
 
    ε = −F S S S Sy y( ' ') 
 
    η = −F S S S Sx x( ' ' )  
 
This will enable a better guess to be made, and the procedure can be repeated until the errors are 
as small as desired.  Generally only a very few iterations are required.  If this is not the case, a 
programming mistake is indicated.  

 
 

3. While method 2 can be used for any nonlinear simultaneous equations, in this particular 
case we have two simultaneous quadratic equations, and a little familiarity with conic 
sections provides a rather nice method. 

 
Thus, if S = 0 and S' = 0 are equations 2.9.1 and 2.9.8 respectively.   Each of these 
equations represents a conic section, and they intersect at four points.  We wish to find the 
point of intersection that lies in the all-positive quadrant - i.e. with x and y both positive.  
Since the two conic sections are very similar, in order  to calculate where they intersect it 
is necessary to calculate with great accuracy.  Therefore, do not round off the numbers 
until the very end of the calculation.  Form the equation c S cS' ' .− = 0   This is also a 
quadratic equation representing a conic section passing through the four points.  
Furthermore, it has no constant term, and it therefore represents the two straight lines that 
pass through the four points.  The equation can be factorized into two linear terms, αβ = 0, 
where α = 0 and β = 0 are the two straight lines.  Choose the one with positive slope and 
solve it with S = 0 or with S'  = 0 (or with both, as a check against arithmetic mistakes) to 
find x and y.  In this case, the solutions are x = 0.2529,  y = 1.000. 
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2.10 Pendulums 
 
In section 2.2, we discussed the physical meaning of the rotational inertia as being the ratio of 
the applied torque to the resulting angular acceleration.  In linear motion, we are familiar with 
the equation F = ma.  The corresponding equation when dealing with torques and angular 
acceleration is θ=τ &&I .    We are also familiar with the equation of motion for a mass vibrating at 
the end of a spring of force constant .: kxxmk −=&&    This is simple harmonic motion of period 
2π m k/ .  The mechanics of the torsion pendulum is similar.  The torsion constant c of a wire is 
the torque required to twist it through unit angle.  If a mass is suspended from a torsion wire, and 
the wire is twisted through an angle θ , the restoring torque will be cθ , and the equation of 
motion is ,θ−=θ cI &&   which is simple harmonic motion of period 2π I c/ .   The torsion 
constant of a wire of circular cross-section, by the way, is proportional to its shear modulus, the 
fourth power of its radius, and inversely as its length.  The derivation of this takes a little trouble, 
but it can be verified by dimensional analysis.    Thus a thick wire is very much harder to twist 
than a thin one.  A wire of  narrow rectangular cross-section, such as a strip or a ribbon has a 
relatively small torsion constant. 

 
Now let's look not at a torsion pendulum, but at a pendulum swinging about an axis under 
gravity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
We suppose the pendulum, of mass m, is swinging about a point O, which is at a distance h  from 
the centre of mass C.  The rotational inertia about O is I.  The line OC makes an angle θ  with the 

·

· 

O 

C 

h 

mg 
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vertical, so that the horizontal distance between O and C is h sin θ.   The torque about O is 
mgh sin ,θ  so that the equation of motion is 
 
     .sin θ−=θ mghI &&      2.10.1 
 
For small angles, this is 
 
     .θ−=θ mghI &&       2.10.2 
 
This is simple harmonic motion of period 
 

       P I
mgh

= 2π .     2.10.3 

 
 
We'll look at two examples - a uniform rod, and an arc of a circle. 
First, a uniform rod. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The centre of mass is C.  The rotational inertia about C is 1

3
2ml , so the rotational inertia about O 

is I ml mh= +1
3

2 2 .  If we substitute this in equation 2.10.3, we find for the period of small 
oscillations  

 

     P l h
gh

=
+2 3
3

2 2

π .     2.10.4 

 
This can be written 
 

 

·

·O 

C 

h 
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     ( ) ,
/

/31.
3

2
2

lh
lh

g
lP +

π=     2.10.5 

 

or, if we write  

g
l

P

3
2π

=P   and  h  =  h/l : 

 
 

     .31 2

h
hP +

=      2.10.6  

 
 
The figure shows a graph of  P versus h. 
 

 
 

Equation 2.10.6 can be written 
 

     h
h

P 312 +=      2.10.7 

 
 
and, by differentiation of P2 with respect to h, we find that the period is least when .3/1=h    
This least period is given by ,122 =P  or P = 1.861. 
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Equation 2.10.7 can also be written 
 
     .013 22 =+− hPh      2.10.8 
 
This quadratic equation shows that there are two positions of the support O that give rise to the 
same period of small oscillations.  The period is least when the two solutions of equation 2.10.8 
are equal, and by the theory of quadratic equations, then, the least period is given by ,122 =P  
as we also deduced by differentiation of equation 2.10.7, and this occurs when .3/1=h  
 
For periods longer than this, there are two solutions for h.  Let h1  be the smaller of these, and let 
h2 be the larger.  By the theory of quadratic equations, we have 

 
     2

3
1

21 Phh =+      2.10.9 
          

and          .3/121 =hh                  2.10.10 
           

Let 12 hhH −=   be the distance between two points O that give the same period of oscillation.  
Then 
    

   ( ) ( ) .
9

124
4

21
2

12
2

12
2 −

=−+=−=
PhhhhhhH              2.10.11

            
 
If we measure H for a given period P and recall the definition of P we see that this provides a 
method for determining g.   Although this is a common undergraduate laboratory exercise, the 
graph shows that the minimum is very shallow and consequently H and hence g are very difficult 
to measure with any precision. 
 
 
For another example, let us look at a wire bent into the arc of a circle of radius a  oscillating in a 
vertical plane about its mid-point.  In the figure, C is the centre of mass. 
 
 
 

 
 
 

    
 
 
 
 

·

·C h 

a-h
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The rotational inertia about the centre of the circle is ma2.  By two applications of the parallel 
axes theorem, we see that the rotational inertia about the point of oscillation is 

( ) .2222 mahmhhammaI =+−−=   Thus, from equation 2.10.3 we find 

     P a
g

= 2 2
π ,      2.10.12 

 
and the period is independent of the length of the arc. 
 
 

 
2.11.   Plane Laminas.  Product moment.  Translation of Axes (Parallel Axes Theorem). 
 
We consider a set of point masses distributed in a plane, or a plane lamina.  We have hitherto 
met three second moments of inertia: 
 
     A m yi i= ∑ 2 ,       2.11.1 
 
     B m xi i= ∑ 2 ,      2.11.2 
 
                 ( ).22∑ += iii yxmC      2.11.3 
 
These are respectively the moments of inertia about the x- and y-axes (assumed to be in the plane 
of the masses or the lamina) and the z-axis (normal to the plane).  Clearly, C = A + B, which is 
the perpendicular axes theorem for a plane lamina. 
 
We now introduce another quantity, H, called the product moment of inertia with respect to the 
x- and y-axes, defined by 
 
     H m x yi i i= ∑ .      2.11.4 
 
We'll need sometime to ask ourselves whether this has any particular physical significance, or 
whether it is merely something to calculate for the sake of passing the time of day.  In the 
meantime, the reader should recall the parallel axes theorems (Section 2.5) and, using arguments 
similar to those given in that section, should derive 
 
     H H M x yC= + .     2.11.5 
 
It may also be noted that equation 2.11.4 does not contain any squared terms and therefore the 
product moment of inertia, depending on the distribution of masses, is just as likely to be a 
negative quantity as a positive one. 
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We shall defer discussing the physical significance, if any, of the product moment until section 
12.  In the meantime let us try to calculate the product moment for a plane right triangular 
lamina: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The area of the triangle is 1

2 ab and so the mass of the element δxδy is ,2
ab

yxM δδ  where M is 

  
 the mass of the complete triangle.  The product moment of the element with respect to the sides 

OA, OB is 
ab

yxMxy δδ2  and so the product moment of the entire triangle is ∫∫ .2 xydxdy
ab
M   We 

have to consider carefully the limits of integration.   We'll integrate first with respect to x ;  that 
is to say we integrate along the horizontal (y constant) strip from the side OB to the side AB.  

That is to say we integrate xδx  from where x = 0 to where .1 





 −=

b
yax   The product moment is 

therefore 
 

     ( ) .1.2 22
2
1 dyay

ab
M

b
y∫ −  

 
We now have to add up all the horizontal strips from the side OA, where y = 0, to B, where y = b.  
Thus 
 

     ( )∫ −=
b

b
y dyy

b
MaH

0

2
1 , 

 
which, after some algebra, comes to  H Mab= 1

12 .   
 

O 

B 

A 

x 
y 

a 

b 
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The coordinates of the centre of mass with respect to the sides OA, OB are ( )ba 3

1
3
1 , , so that, 

from equation 2.11.5, we find that the product moment with respect to axes parallel to OA, OB 
and passing through the centre of mass is − 1

36 Mab. 
 
 
 
2.12   Rotation of Axes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
We start by recalling a result from elementary geometry.  Consider two sets of axes Oxy and 
Ox1y1, the latter being inclined at an angle θ  to the former.  Any point in the plane can be 
described by the coordinates (x , y) or by (x1 , y1).  These coordinates are related by a rotation 
matrix: 

    ,
cossin
sincos

1

1
















θθ−
θθ

=







y
x

y
x

     2.12.1 

 
 

    .
cossin
sincos

1

1
















θθ
θ−θ

=







y
x

y
x

     2.12.2 

 
 
The rotation matrix is orthogonal; one of the several properties of an orthogonal matrix is that its 
reciprocal is its transpose. 
 
Now let us apply this to the moments of inertia of a plane lamina.  Let us suppose that the axes 
are in the plane of the lamina and that O is the centre of mass of the lamina.  A, B and H are the 
moments of inertia with respect to the axes Oxy, and A1 , B1 and H1 are the moments of inertia 
with respect to Ox1y1.   Strictly speaking a lamina implies a continuous distribution of matter in a 
plane, but, since matter, we are told, is composed of discrete atoms, there is little difficulty in 
justifying treating a lamina as though it we a distribution of point masses in the plane.  In any 
case the results that follow are valid either for a collection of point masses in a plane or for a 
genuine continuous lamina. 
 

x 

x1 

y1 

y 

θ
O 
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We have, by definition: 
 
    A my1 1

2= ∑        2.12.3 
 
    B mx1 1

2= ∑        2.12.4 
 
    H mx y1 1 1= ∑        2.12.5 
 
Now let us apply equation 2.12.1 to equation 2.12.3: 
 
 ( ) .coscossin2sincossin 22222

1 ∑∑ ∑∑ θ+θθ−θ=θ+θ−= mymxymxyxmA  
 
That is to say  (writing the third term first, and the first term last) 
 
   A A H B1

2 22= − +cos sin cos sin .θ θ θ θ     2.12.6 
 
In a similar fashion, we obtain for the other two moments 
 
   B A H B1

2 22= + +sin sin cos cosθ θ θ θ     2.12.7 
 
and   ( ) .cossinsincoscossin 22

1 θθ−θ−θ+θθ= BHAH    2.12.8 
 
It is usually more convenient to make use of trigonometric identities to write these as 
 
   ( ) ( ) ,2sin2cos2

1
2
1

1 θ−θ−++= HBABAA     2.12.9 
 
   ( ) ( ) ,2sin2cos2

1
2
1

1 θ+θ−−+= HBABAB     2.12.10 
 
   ( ) .2cos2sin2

1
1 θ+θ−= HBAH      2.12.11 

 
These equations enable us to calculate the moments of inertia with respect to the axes Ox1y1 if 
we know the moments with respect to the axes Oxy.   
 
Further, a matter of importance, we see, from equation 2.12.11, that if 
 

     tan ,2 2
θ =

−
H

B A
     2.12.12 

 
the product moment H1 with respect to the axes Oxy is zero.  This gives some physical meaning 
to the product moment, namely: If we can find some axes (which we can, by means of equation 
2.12.12) with respect to which the product moment is zero, these axes are called the principal 
axes of the lamina, and the moments of inertia with respect to the principal axes are called the 
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principal moments of inertia.  I shall use the symbols A0 and B0 for the principal moments of 
inertia, and I shall adopt the convention that .00 BA ≤  
 
 
 
 
 
 
Example:  Consider three point masses at the coordinates given below: 
 
   Mass   Coordinates 
 

5 (1 , 1) 
3 (4 , 2) 
2 (3 , 4) 

 
The moments of inertia are  A = 49,    B = 71,   C  = 53.   The coordinates of the centre of mass 
are (2.3 , 1.9).  If we use the parallel axes theorem, we can find the moments of inertia with 
respect to axes parallel to the original ones but with origin at the centre of mass.  With respect to 
these axes we find A  =  12.9,   B  = 18.1,   H   =  +9.3.   The principal axes are therefore inclined 
at angles θ  to the x-axis given (equation 2.13.12) by tan 2θ  = 3.57669;  That is θ  =  37o  11'   
and 127o  11'.  On using equation 2.12.9 or 10 with these two angles, together with the 
convention that A B0 0≤ , we obtain for the principal moments of inertia A0  =  5.84 and B0  = 
25.16. 
 
Example.   Consider the right-angled triangular lamina of section 11.  The moments of inertia 
with respect to axes passing through the centre of mass and parallel to the orthogonal sides of the 
triangle are  A Mb B Ma H Mab= = = −1

18
2 1

18
2 1

36, , .  The angles that the principal axes make 

with the a - side are given by .2tan 22 ab
ab
−

=θ   The interested reader will be able to work out 

expressions, in terms of M, a, b, for the principal moments.  
 
 
 
2.13   Momental Ellipse  
                                                                                                                                           
      
 
 
 
 
 
 
 
 

P

θ
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Consider a plane lamina such that its radius of gyration about some axis through the centre of 
mass is k.  Let P be a vector in the direction of that axis, originating at the centre of mass, given 
by 
 

     rP ˆ
2

k
a

=       2.13.1 

 
Here r̂  is a unit vector in the direction of interest;  k is the radius of gyration, and a  is an 
arbitrary length introduced so that the dimensions of  P are those of length, and the length of the 
vector P is inversely proportional to the radius of gyration.  The moment of inertia is 
Mk Ma P2 4 2= / .  That is to say 
 

   Ma
P

A H B
4

2
2 22= − +cos sin cos sin ,θ θ θ θ    2.13.2 

 
where A, H and B are the moments with respect to the x- and y-axes.  Let (x , y) be the 
coordinates of the tip of the vector P,  so that x P= cosθ   and  y P= sin .θ Then 
 
    .2 224 ByHxyAxMa +−=      2.13.3 
 
Thus, no matter what the shape of the lamina, however irregular and asymmetric, the tip of  the 

vector P traces out an ellipse, whose axes are inclined at angles 







−
−

AB
H2tan 1

2
1  to the x-axis.  

This is the momental ellipse, and the axes of the momental ellipse are the principal axes of the 
lamina. 
 
Example.  Consider a regular n-gon.  By symmetry the moment of inertia is the same about any 
two axes in the plane inclined at 2π/n to each other.  This is possible only if the momental ellipse 
is a circle.  It follows that the moment of inertia of a uniform polygonal plane lamina is the same 
about any axis in its plane and passing through its centroid. 
 
Exercise.  Show that the moment of inertia of a uniform plane n-gon of side 2a about any axis in 
its plane and passing through its centroid is ( )( )./cot31 22

12
1 nma π+   What is this for a square? 

For an equilateral triangle? 
 
 
2.14.   Eigenvectors and eigenvalues. 
 
In sections 11-13, we have been considering some aspects of the moments of inertia of plane 
laminas, and we have discussed such matters as rotation of axes, and such concepts as product 
moments of inertia, principal axes, principal moments of inertia and the momental ellipse.  We 
next need to develop the same concepts with respect to three-dimensional solid bodies. In doing 
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so, we shall need to make use of the algebraic concepts of eigenvectors and eigenvalues.  If you 
are already familiar with such matters, you may want to skip this section and move on to the 
next.  If the ideas of eigenvalues and eigenvectors  are new to you, or if you are a bit rusty with 
them, this section may be helpful.  I do assume that the reader is at least familiar with the 
elementary rules of matrix multiplication. 
 

Consider what happens when you multiply a vector, for example the vector ,
1
0









  by a square 

matrix, for example the matrix  ,
12
14







 −
  We obtain: 

 
 

    .
1
1

1
0

12
14








−
=















 −
  

 
 
The result of the operation is another vector that is in quite a different direction from the original 
one. 
 

However, now let us multiply the vector 







1
1

 by the same matrix.  The result is .
3
3









  The result 

of the multiplication is merely to multiply the vector by 3 without changing its direction.  The 

vector 







1
1

 is a very special one, and it is called an eigenvector of the matrix, and the multiplier 3 

is called the corresponding eigenvalue.  "Eigen" is German for "own" in the sense of "my own 

book".  There is one other eigenvector of the matrix;  it is the vector .
2
1









  Try it; you should find 

that the corresponding eigenvalue is 2. 
 
In short, given a square matrix A, if you can find a vector a such that Aa  =  λa, where λ is 
merely a scalar multiplier that does not change the direction of the vector a, then a is an 
eigenvector and λ is the corresponding eigenvalue.  
 
In the above, I told you what the two eigenvectors were, and you were able to verify that they 
were indeed eigenvectors and you were able to find their eigenvalues by straightforward 
arithmetic.  But, what if I hadn't told you the eigenvectors?  How would you find them? 
 

Let  







=

2221

1211

AA
AA

A  and let 







=

2

1

x
x

x  be an eigenvector with corresponding eigenvalue λ.   Then 

we must have 
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    .
2

1

2

1

2221

1211








λ
λ

=















x
x

x
x

AA
AA

 

 
That is, 
 
    ( ) 0212111 =+λ− xAxA   
 
and    ( ) .0222121 =λ−+ xAxA  
 
These two equations are consistent only if the determinant of the coefficients is zero.  That is, 
 

    
A A

A A
11 12

21 22

0
−

−
=

λ
λ

. 

 
This equation is a quadratic equation in λ, known as the characteristic equation, and its two 
roots, the characteristic or latent roots are the eigenvalues of the matrix.  Once the eigenvalues 
are found the ratio of x1 to x2 is easily found, and hence the eigenvectors. 
 
Similarly, if A is a 3 × 3 matrix, the characteristic equation is 
 
 

    
A A A

A A A
A A A

11 12 13

21 22 23

31 32 33

0
−

−
−

=
λ

λ
λ

. 

 
 
This is a cubic equation in λ, the three roots being the eigenvalues.  For each eigenvalue, the 
ratio x1 : x2 : x3 can easily be found and hence the eigenvectors.  The characteristic equation is a 
cubic equation, and is best solved numerically, not by algebraic formula.  The cubic equation can 
be written in the form 
 
    λ λ λ3

2
2

1 0 0+ + + =a a a , 
 
and the solutions can be checked from the following results from the theory of equations: 
 
    λ λ λ1 2 3 2+ + = − a , 
 
    λ λ λ λ λ λ2 3 3 1 1 2 1+ + = a ,  
 
     λ λ λ1 2 3 0= − a . 
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2.15.    Solid body. 
 
The moments of inertia of a collection of point masses distributed in three-dimensional space (or 
of a solid three-dimensional body, which, after all, is a collection of point masses (atoms)) with 
respect to axes Oxyz are: 
 

( ) ∑∑ =+= myzFzymA 22  
 

( ) ∑∑ =+= mzxGxzmB 22  
 

( )∑ ∑=+= mxyHyxmC 22  
 
 

Suppose that A,  B,  C,  F,  G,  H, are the moments and products of inertia with respect to axes 
whose origin is at the centre of mass.  The parallel axes theorems (which the reader should 
prove) are as follows:  Let P be some point not at the centre of mass, such that the coordinates of 
the centre of mass with respect to axes parallel to the axes Oxyz but with origin at P are ( )zyx ,, .  
Then the moments and products of inertia with respect to the axes through P are 
 

    
( )
( )
( ) yxMHyxMC

xzMGxzMB
zyMFzyMA

+++

+++

+++

22

22

22

 

 
where M is the total mass.    
 
Unless stated otherwise, in what follows we shall suppose that the moments and products of 
inertia under discussion are referred to a set of axes with the centre of mass as origin.  
 
 
2.16   Rotation of axes - three dimensions. 
 
Let Oxyz be one set of mutually orthogonal axes, and let Ox1y1z1 be another set of axes inclined 
to the first.  The coordinates (x1 , y1 , z1 )  of a point with respect to the second basis set are 
related to the coordinates (x, y, z )  with respect to the first by 
     

    .

333231

232221

131211

1

1

1

































=
















z
y
x

ccc

ccc
ccc

z
y
x

    2.16.1 

 
Here the cij are the cosines of the angles between the axes of one basis set with respect to the 
axes of the other.  For example,  c12  is the cosine of the angle between Ox1 and Oy.   c23 is the 
cosine of the angles between Oy1 and Oz. 
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Some readers may know how to express these cosines in terms of complicated expressions 
involving the Eulerian angles.  While these are important, they are not essential for following the 
present development, so we shall not make use of the Eulerian angles just here. 
 
The matrix of direction cosines is orthogonal.  Among the several properties of an orthogonal 
matrix is the fact that its reciprocal (inverse) is equal to its transpose - i.e. the reciprocal of an 
orthogonal matrix is found merely my interchanging the rows and columns.  This enables us 
easily to find (x , y , z )  in terms of (x1 , y1 , z1 ). 
 
A number of other properties of an orthogonal matrix are useful in detecting, locating and even 
correcting arithmetic mistakes in computing the elements.  These properties are 
 

1. The sum of the squares of the elements in any row or column is unity.  This merely 
expresses the fact that the magnitude of a unit vector along any of the six axes is indeed 
unity. 

 
2. The sum of the products of corresponding elements of any two rows or of any two columns 

is zero.  This merely expresses the fact that the scalar product of any two orthogonal 
vectors is zero.  It will be noted that checking for property 1 will not detect any mistakes in 
sign of the elements, whereas checking for property 2 will do so. 

 
3. Every element is equal to ± its own cofactor.  This expresses the fact that the cross product 

of two unit orthogonal vectors is equal to the third. 
 

4. The determinant of the matrix is ± 1.  If the sign is negative, it means that the chiralities 
(handedness) of the two basis sets of axes are opposite; i.e. one of them is a right-handed 
set and the other is a left-handed set.  It is usually convenient to choose both sets as right-
handed.   

 
If it is possible to find a set of axes with respect to which the product moments F, G and H are all 
zero, these axes are called the principal axes of the body, and the moments of inertia with respect 
to these axes are the principal moments of inertia, for which we shall use the notation A0 , B0 , 
C0, with the convention A B C0 0 0≤ ≤ .  We shall see shortly that it is indeed possible, and we 
shall show how to do it.  A vector whose length is inversely proportional to the radius of gyration 
traces out in space an ellipsoid, known as the momental ellipsoid. 
 
In the study of solid body rotation (whether by astronomers studying the rotation of asteroids or 
by chemists studying the rotation of molecules) bodies are classified as follows. 
 

1. A B C0 0 0≠ ≠     The ellipsoid is a triaxial ellipsoid, and the body is an asymmetric top. 
2. A B C0 0 0< =      The ellipsoid is a prolate spheroid and the body is a prolate symmetric top. 
3. A B C0 0 0= <      The ellipsoid is an oblate spheroid and the body is an oblate symmetric top. 
4. A B C0 0 0= =       The ellipsoid is a sphere and the body is a spherical top. 
5. One moment is zero.  The ellipsoid is an infinite elliptical cylinder, and the body is a linear 

top. 
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Example.   We know from section 2.5 that the moment of inertia of a plane square lamina of side 
2a about an axis through its centroid and perpendicular to its area is 2

3
2ma , and it will hence be 

obvious that the moment of inertia of a uniform solid cube of side 2a about an axis passing 
through the mid-points of opposite sides is also 2

3
2ma .  It will clearly be the same about an axis 

passing through the mid-points of any pairs of opposite sides.  Therefore the cube is a spherical 
top and the momental ellipse is a sphere.  Therefore the moment of inertia of a uniform solid 
cube about any axis through its centre (including, for example, a diagonal) is also 2

3
2ma . 

 
Example.   What is the ratio of the length to the diameter of a uniform solid cylinder such that it 
is a spherical top?  [Answer:  I make it 3 2 0 866/ . .]=  

 
Let us note in passing that 
 
   ( ) ,22 2222 ∑∑ =++=++ mrzyxmCBA    2.16.2 
 
which is independent of the orientation of the basis axes    In other words, regardless of how A, 
B and C may depend on the orientation of the axes with respect to the body, the sum A B C+ +  
is invariant under a rotation of axes. 
 
  We shall deal with the determination of the principal axes in section 2.18 - but don't skip 
section 2.17. 
 
 
2.17  Solid Body Rotation.  The Inertia Tensor. 
 
    It is intended that this chapter should be limited to the calculation of the moments of inertia of 
bodies of various shapes, and not with the huge subject of the rotational dynamics of solid 
bodies, which requires a chapter on its own.  In this section I mention merely for interest two 
small topics involving the principal axes, and a third topic in a bit more detail as necessary 
before proceeding to section 2.18. 
 
  Everyone knows that the relation between translational kinetic energy and linear momentum is 

( ).2/2 mpE =   Similarly rotational kinetic energy is related to angular momentum L by 
( ),2/2 ILE =  where I is the moment of inertia.  If an isolated body (such as an asteroid) is 

rotating about a non-principal axis, it will be subject to internal stresses.  If the body is nonrigid 
this will result in distortions (strains) which may cause the body to vibrate.  If in addition the 
body is inelastic the vibrations will rapidly die out (if the damping is greater than critical 
damping, indeed, the body will not even vibrate).   Energy that was originally rotational kinetic 
energy will be converted to heat (which will be radiated away.)  The body loses rotational kinetic 
energy.  In the absence of external torques, however, L remains constant.  Therefore, while E  
diminishes, I increases.  The body adjusts its rotation until it is rotating around its axis of 
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maximum moment of inertia, at which time there are no further stresses, and the situation 
remains stable. 
 
  In general the rotational motion of a solid body whose momental ellipse is triaxial is quite 
complicated and chaotic, with the body tumbling over and over in apparently random fashion. 
However, if the body is nonrigid and inelastic (as all real bodies are in practice), it will 
eventually end up rotating about its axis of maximum moment of inertia.   The time taken for a 
body, initially tumbling chaotically over and over, until it reaches its final blissful state of 
rotation about its axis of maximum moment of inertia, depends on how fast it is rotating.  For 
most irregular small asteroids the time taken is comparable to or longer than the age of formation 
of the solar system, so that it is not surprising to find some asteroids with non-principal axis 
(NPA) rotation.  However, a few rapidly-rotating NPA asteroids have been discovered, and, for 
rapid rotators, one would expect PA rotation to have been reached a long time ago.  It is thought 
that something (such as a collision) must have happened to these rapidly-rotating NPA asteroids 
relatively recently in the history of the solar system. 
 
  Another interesting topic is that of the stability of a rigid rotator that is rotating about a 
principal axis, against small perturbations from its rotational state.   Although I do not prove it 
here  (the proof can be done either mathematically, or by a qualitative argument) rotation about 
either of the axes of maximum or of minimum moment of inertia is stable, whereas rotation 
about the intermediate axis is unstable.   The reader can observe this for him- or herself.  Find 
anything that is triaxial - such as a small block of wood shaped as a rectangular parallelepiped 
with unequal sides.  Identify the axes of greatest, least and intermediate moment of inertia.  Toss 
the body up in the air at the same time setting it rotating about one or the other of these axes, and 
you will be able to see for yourself that the rotation is stable in two cases but unstable in the 
third. 
 
    I now deal with a third topic in rather more detail, namely the relation between angular 
momentum L and angular velocity ω.  The reader will be familiar from elementary (and two-
dimensional) mechanics with the relation L I= ω.  What we are going to find in the three-
dimensional solid-body case is that the relation is L = Iω.  Here L and ω are, of course, vectors, 
but they are not necessarily parallel to each other.  They are parallel only if the body is rotating 
about a principal axis of rotation.  The quantity I is a tensor known as the inertia tensor.  Readers 
will be familiar with the equation  F = ma.  Here the two vectors are in the same direction, and 
m is a scalar quantity that does not change the direction of the vector that it multiplies.   A tensor 
usually (unless its matrix representation is diagonal) changes the direction as well as the 
magnitude of the vector that it multiplies.   The reader might like to think of other examples of 
tensors in physics.  There are several.  One that comes to mind is the permittivity of an 
anisotropic crystal;  in the equation D = εE,  D and E are not parallel unless they are both 
directed along one of the crystallographic axes. 
 
   If there are no external torques acting on a body, L is constant in both magnitude and direction.  
The instantaneous angular velocity vector, however, is not fixed either in space or with respect to 
the body - unless the body is rotating about a principal axis and the inertia tensor is diagonal. 
 
  So much for a preview and a qualitative description.  Now down to work. 
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  I am going to have to assume familiarity with the equation for the components of the cross 
product of two vectors: 
 
   A × B  =  ( ) ( ) ( ) .ˆˆˆ zyx xyyxzxxzyzzy BABABABABABA −+−+−  2.17.1 
 
 
  I am also going to assume that the reader knows that the angular momentum of a particle of 
mass m  at position vector r (components ( )zyx ,, ) and moving with velocity v (components 
( )zyx &&& ,, ) is mr×v.  For a collection of particles, (or an extended solid body, which, I'm told, 
consists of a collection of particles called atoms), the angular momentum is 
 
 L r v= ×∑m  
 
     = ( ) ( ) ( )[ ]∑ −+−+− zyx ˆˆˆ xyyxmzxxzmyzzym &&&&&&  
 
I also assume that the relation between linear velocity  v ( )zyx &&& ,,  and angular velocity 
ω ( )zyx ωωω ,,  is understood to be v = ω × r, so that, for example, xyz yx ω−ω=& .  Then 
 
 L = ( ) ( )( ) ( ) ( )[ ]∑ ++ω−ω−ω−ω zyx ˆ.etcˆ.etcˆzxzxyym xzyx  
 
     = ( ) .etcˆ22 +ω+ω−ω−ω ∑ ∑ ∑ ∑ xmzmzxmxymy xzyx  
 
     = ( ) ( ) ( )zyx ˆˆˆ ++ω−ω−ω zyx GHA . 
Finally, we obtain 
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This is the equation L = Iω referred to above.   The inertia tensor is sometimes written in the 
form  
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so that, for example, .HI xy −=   It is a symmetric matrix (but it is not an orthogonal matrix). 
 
 
 
 
2.18.   Determination of the Principal Axes. 
 
  We now need to address ourselves to the determination of the principal axes.  Unlike the two-
dimensional case, we do not have a nice, simple explicit expression similar to equation 2.12.12 
to calculate the orientations of the principal axes.  The determination is best done through a 
numerical example. 
 
  Consider four masses whose positions and coordinates are as follows: 
 
   M  x y  z 
 
   1  3 1 4 
   2  1 5 9 
   3  2 6 5 
   4  3 5 9 
 
Relative to the first particle, the coordinates are 
 
   1  0 0 0 
   2           −2 4 5 
   3           −1 5 1 
   4  0 4 5 
 
From this, it is easily found that the coordinates of the centre of mass relative to the first particle 
are  ( −0.7 , 3.9 , 3.3),  and the moments of inertia with respect to axes through the first particle 
are 
 

     

A
B
C
F
G
H

=
=
=
=
= −
= −

324
164
182
135

23
31

  

 
From the parallel axes theorems we can find the moments of inertia with respect to axes passing 
through the centre of mass: 
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A
B
C
F
G
H

=
=
=
=
=
= −

63 0
50 2
25 0

6 3
0 1
3 7

.

.

.

.

.
.

 

 
The inertia tensor is therefore 
 

    
















−−
−
−

0.253.61.0
3.62.507.3
1.07.30.63

 

 
We understand from what has been written previously that if ω, the instantaneous angular 
velocity vector,  is along any of the principal axes, then Iω will be in the same direction as ω.  In 
other words, if  ( )nml ,,  are the direction cosines of a principal axis, then 
 

    ,















λ=

































−−
−−
−−

n
m
l

n
m
l

CFG
FBH
GHA

 

 
where λ is a scalar quantity.  In other words, a vector with components l, m, n  (direction cosines 
of a principal axis) is an eigenvector of the inertia tensor, and λ is the corresponding principal 
moment of inertia.  There will be three eigenvectors (at right angles to each other) and three 
corresponding eigenvalues, which we’ll initially call λ1, λ2, λ3, though, as soon as we know 
which is the largest and which the smallest, we'll call A B C0 0 0, , ,  according to our convention 
A B C0 0 0≤ ≤ . 
 
The characteristic equation is 
 

    .0=
λ−−−

−λ−−
−−λ−

CFG
FBH
GHA

 

 
 
In this case, this results in the cubic equation 
 
    a a a0 1 2

2 3 0+ + − =λ λ λ , 
 
where      
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a
a
a

0

1

2

76226 44
5939 21

138 20

=
= −
=

.
.
.

 

 
The three solutions for λ, which we shall call A0 , B0 , C0 in order of increasing size are 
 

    
A
B
C

0

0

0

23 498256
50 627521
64 074223

=
=
=

.

.

.
 

 
and these are the principal moments of inertia.  From the theory of equations, we note that the 
sum of the roots is exactly equal to a2, and we also note that it is equal to A + B + C, consistent 
with what we wrote in section 2.16. (See equation 2.16.2)  The sum of the diagonal elements of a 
matrix is known as the trace of the matrix.  Mathematically we say that "the trace of a symmetric 
matrix is invariant under an orthogonal transformation".     
 
Two other relations from the theory of equations may be used as a check on the correctness of 
the arithmetic.   The product of the solutions equals a0 , which is also equal to the determinant of 
the inertia tensor, and the sum of the products taken two at a time equals −a1 . 
 
We have now found the magnitudes of the principal moments of inertia; we have yet to find the 
direction cosines of the three principal axes.  Let's start with the axis of least moment of inertia, 
for which the moment of inertia is A0  =  23.498 256.  Let the direction cosines of this axis be 
( )111 ,, nml .  Since this is an eigenvector with eigenvalue 23.498 256 we must have 
 

    















=

































−−
−
−

1

1

1

1

1

1

498256.23
0.253.61.0
3.62.507.3
1.07.30.63

n
m
l

n
m
l

 

 
These are three linear equations in l1 m1, n1, with no constant term.   Because of the lack of a 
constant term, the theory of equations tells us that the third equation, if it is consistent with the 
other two, must be a linear combination of the first two.  We have, in effect, only two 
independent equations, and we are going to need a third, independent equation if we are to solve 
for the three direction cosines.  If we let l l n m m n' / ' /= =1 1 1 1and , then the first two equations 
become  
 

    
.03.6'744701.26'7.3

01.0'7.3'744501.39
=−+
=−+

ml
ml

 

 
The solutions are  

l
m
' .
' . .
= −
= +

0 019825485
0 238686617
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The correctness of the arithmetic can and should be checked by verifying that these solutions 
also satisfy the third equation. 
 
The additional equation that we need is provided by Pythagoras's theorem, which gives for the 
relation between three direction cosines 
 

,12
1

2
1

2
1 =++ nml  

 
 

or    ,
1''

1
22

2
1 ++

=
ml

n  

 
whence   n1  =   ! 0.972495608. 
 
Thus we have, for the direction cosines of the axis corresponding to the moment of inertia A0, 
 

    
608495972.0
881121232.0
197280019.0

1

1

1

±=
±=

=

n
m
l m

 

 
(Check that l m n1

2
1
2

1
2 1+ + = . ) 

 
It does not matter which sign you choose - after all, the principal axis goes both ways. 
 
 
 
Similar calculations for B0 yield 
 

    
774094228.0
706312932.0
440652280.0

2

2

2

±=
=

±=

n
m
l

m  

 
and for C0 

    
415170047.0
987330277.0
796615959.0

3

3

3

m=
±=
±=

n
m
l

 

 
For the first two axes, it does not matter whether you choose the upper or the lower sign.  For the 
third axes, however, in order to ensure that the principal axes form a right-handed set, choose the 
sign such that the determinant of the matrix of direction cosines is +1.  
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We have just seen that, if we know the moments and products of inertia A, B, C, F, G, H with 
respect to some axes (i.e. if we know the elements of the inertia tensor) we can find the principal 
moments of inertia A0 , B0  , C0  by diagonalizing the inertia tensor, or finding its eigenvalues.  If, 
on the other hand, we know the principal moments of inertia of a system of particles (or of a 
solid body, which is a collection of particles), how can we find the moment of inertia I about an 
axis whose direction cosines with respect to the principal axes are (l , m , n)? 
 
First, some geometry. 
 
Let Oxyz be a coordinate system, and let P (x , y , z ) be a point whose position vector is 
 
     r i j k= + +x y z . 
 
Let L be a straight line passing through the origin, and let the direction cosines of this line be  
(l , m , n ).  A unit vector e directed along L is represented by  
 
     e i j k= + +l m n . 
 
The angle θ   between r and e is found from the scalar product r • e,  given by 
 
     r cos θ  = r • e. 
 
I.e.        ( ) .cos2

1
222 nzmylxzyx ++=θ++  

 
The perpendicular distance p from P to L is 
 

    ( ) .sinsin 2
1

222 θ++=θ= zyxrp  
 

If we write ( ) ,cos1sin 2
1

2 θ−=θ   we soon obtain 
 
    ( ) .22222 znymxlzyxp ++−++=  
 
Noting that  ,1,1,1 222222222 mlnlnmnml −−=−−=−−=   we find, after further 
manipulation: 
 
  ( ) ( ) ( ) ( ).22222222222 lmxynlzxmnyzyxnxzmzylp ++−+++++=  
 
Now return to our collection of particles, and let Oxyz be the principal axes of the system.  The 
moment of inertia of the system with respect to the line L is 
 
     ,2∑= MpI  
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where I have omitted a subscript i  on each symbol.  Making use of the expression for p and 
noting that the product moments of the system with respect to Oxyz are all zero, we obtain 
 
    I l A m B n C= + +2

0
2

0
2

0 .     2.18.1 
 
Also, let A, B, C, F, G, H be the moments and products of inertia with respect to a set of 
nonprincipal orthogonal axes; then the moment of inertia about some other axis with direction 
cosines l, m, n with respect to these nonprincipal axes is 
 
   .222222 lmHnlGmnFCnBmAlI −−−++=   2.18.2 
 
Example.  A Brick. 
 
We saw in section 16 that the moment of inertia of a uniform solid cube of mass M and side 2a  
about a body diagonal is 2

3
2Ma ,  and we saw how very easy this was.   At that time the problem 

of finding the moment of inertia of a uniform solid rectangular parallelepiped of sides 2a, 2b, 2c 
must have seemed intractable, but by now it is not at all hard. 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 

Thus we have:      

( )
( )
( )

( )

( )

( )
.

2
1

2
1

2
1

222

222

222

22
3
1

0

22
3
1

0

22
3
1

0

cba

cn

cba

bm

cba

al

baMC

acMB

cbMA

++
=

++
=

++
=

+=

+=

+=
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We obtain:  ( )
( )

.
3

2
222

222222

cba
baaccbMI

++
++

=  

 
 
 
We note: 
 

i. This is dimensionally correct; 
ii. It is symmetric in a, b, c; 
iii. If a = b = c, it reduces to 2

3
2Ma . 

 
 
2.19   Moment of Inertia with Respect to a Point. 
 
By “moment of inertia” we have hitherto meant the second moment of mass with respect to an 
axis.  We were easily able to identify it with the rotational inertia with respect to the axis, 
namely the ratio of an applied torque to the resulting angular acceleration. 
 
I am now going to define the (second) moment of inertia with respect to a point, which I shall 
take unless otherwise specified to mean the origin of coordinates.  If we have a collection of 
mass points mi at distances ri from the origin, I define 
 
     ( )2222I iii

i
ii

i
i zyxmrm ++== ∑∑     2.19.1 

as the (second) moment of inertia with respect to the origin, also sometimes called the 
“geometric moment of inertia”.  I cannot relate it in an obvious way to a simple dynamical 
concept in the same way that I related moment of inertia with respect to an axis to rotational 
inertia, but we shall see that it is by no means merely a tedious exercise in arithmetic, and it does 
have its uses.  The symbol I has probably been used rather a lot in this chapter; so to describe the 
geometric moment of inertia I am going to use the symbol I not in italics. 
 
The moment of inertia with respect to the origin is clearly something that does not depend on the 
orientation of any particular basis set of orthogonal axes, since it depends only on the distances 
of the particles from the origin.   
 
If you recall the definitions of A, B and C from section 2.15, you will easily see that  
   
     ( ).I 2

1 CBA ++=      2.19.2 
 
and we already noted (see equation 2.16.2) that CBA ++  is invariant under rotation of axes.  In 
section 2.18 we expressed it slightly more generally by saying "the trace of a symmetric matrix is 
invariant under an orthogonal transformation".  By now it probably seems slightly less 
mysterious. 
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Let us now calculate the geometric moment of inertia of a uniform solid sphere of radius a, mass 
m, density ρ with respect to the centre of the sphere.  It is  
 
    .I 2dmr

sphere
∫=        2.19.3 

 
The element of mass, dm, here is the mass of a shell of radii r,  r + dr;  that is 4πρr2dr.  Thus 
 
 

     .4I 5
5
4

0

4 adrr
a

πρ=πρ= ∫      2.19.4 

 
With ,3

3
4 ρπ= am  this becomes 

 
    .I 2

5
3 ma=        2.19.5 

 
Indeed, for any spherically symmetric distribution of matter, since A = B = C, it will be clear 
from equation 2.19.2, that the moment of inertia with respect to the centre is 3/2 times the 
moment of inertia with respect to an axis through the centre.  For example, it is obvious from the 
definition of moment of inertia with respect to the centre that for a hollow spherical shell it is just 
Ma2, and therefore the moment of inertia with respect to an axis through the centre is .2

3
2 ma   In 

other words, you can work out that the moment of inertia of a hollow spherical shell with respect 
to an axis through its centre is 2

3
2 ma  in your head without any of the integration that we did in 

section 2.7!   
 
By way of illustration, consider three spheres, each of radius a and mass M, but the density 
between centre and surface varies as  
 

  2

2

02

2

00 1,1,1
a
kr

a
kr

a
kr

−ρ=ρ







−ρ=ρ






 −ρ=ρ  

 
for the three spheres.  Calculate for each the moment of inertia about an axis through the centre 
of the sphere.  Express the answer in the form ).(2

5
2 kfMa ×  

 
Solution.   The mass of a sphere is 
 

    drrrM
a

∫ ρπ=
0

2)(4  

 

and so    .)(
5

8
0

2
2

2
5
2 drrraMa

a

∫ ρ
π

=  
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The moment of inertia about the centre is 
 

    drrr
a

∫ ρπ=
0

4)(4I  

 
and so the moment of inertia about an axis through the centre is 
 

    .)(
3

8
0

4 drrrI
a

∫ ρ
π

=  

 
 

Therefore   .
)(

)(

3
5

0

2

0

4

22
5
2

∫
∫

ρ

ρ
= a

a

drrr

drrr

aMa
I  

 
For the first two spheres the integrations are straightforward.  I make it 
 

    
k
k

Ma
I

912
1012

2
5
2 −

−
=  

 
for the first sphere, and 
 

    
k
k

Ma
I

2135
2535

2
5
2 −

−
=  

 
for the second sphere.    The integrations for the third sphere need a little more patience, but I 
make the answer 
 

   ,
)4sin4(sin18

)6sin4sin32sin312(5
22

5
2 α−αα

α+α−α−α
=

Ma
I  

 
where .sin k=α  
   
This should be enough to convince that the concept of I is useful – but it is not its only use.  We 
shall meet it again in Chapter 3 on the dynamics of systems of particles;  in particular, it will play 
a role in what we shall become familiar with as the virial theorem.  
 
 
2.20     Ellipses and Ellipsoids 
 
Here are some problems concerning ellipses and ellipsoids that might be of interest. 
 
1.  Determine the principal moments of inertia of the following:  
 



 44
i. A uniform plane lamina of mass m in the form of an ellipse of semi axes a and b. 
ii. A uniform plane ring of mass m in the form of an ellipse of semi axes a and b. 
iii. A uniform solid triaxial ellipsoid of mass m and semi axes a, b and c. 
iv. A uniform hollow triaxial ellipsoid of mass m and semi axes a, b and c. 
 

By integration these are slightly difficult, but by physical insight they are very easy! 
 
2.   i.  A uniform plane lamina is an ellipse of eccentricity e.  What is the eccentricity of its      
momental ellipse? 
 
      ii.  A uniform plane ring is an ellipse of eccentricity e.  What is the eccentricity of its 
momental ellipse? 
 
     iii.     The ratios of the semi axes of a uniform solid triaxial ellipsoid are a : b : c .   What are 
the ratios of the semi axes of the corresponding momental ellipsoid? 
 
     iv.     The ratios of the semi axes of a uniform hollow triaxial ellipsoid are a : b : c .   What are 
the ratios of the semi axes of the corresponding momental ellipsoid? 
 
 
 
I make the answers as follows.  Let me know if you disagree. 
 
1.  i.  )( 22

4
12

4
12

4
1 bamCmaBmbA +===  

 
    ii.  )( 22

2
12

2
12

2
1 bamCmaBmbA +===  

 
   iii.   )()()( 22

5
122

5
122

5
1 bamCacmBcbmA +=+=+=  

 
    iv.    )()()( 22

3
122

3
122

3
1 bamCacmBcbmA +=+=+=  

 
 
2.  i and ii.   e.  In other words, for both the lamina and the ring, the momental ellipse is the same 
shape as the original body. 
 
     iii and iv.  The same is not true, however, of the three-dimensional figures.  For both the solid 
and the hollow hemisphere, I make the axial ratios of the corresponding momental ellipsoid 
 
 

    .::1 22

22

22

22

ba
cb

ac
cb

+
+

+
+  

 
For example, if the axial ratios of the original ellipsoid (whether solid or hollow) are 1 : 2 : 3, the 
axial ratios of the corresponding momental ellipsoid is .612.1:140.1:1::1 5

13
10
13 =  
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In other words, it looks as though the momental ellipsoid of an ellipsoidal body is more nearly 
spherical than the body itself, whereas for plane elliptical figures the body and the momental 
ellipse are the same shape. 


