
CHAPTER 16 
HYDROSTATICS 

 
1.  Introduction 
 
This relatively short chapter deals with the pressure under the surface of an 
incompressible fluid, which in practice means a liquid, which, compared with a gas, is 
nearly, if not quite, incompressible.  It also deals with Archimedes’ principle and the 
equilibrium of floating bodies.  The chapter is perhaps a little less demanding than some 
of the other chapters, though it will assume a familiarity with the concepts of centroids 
and radius of gyration, which are dealt with in chapters 1 and 2. 
 
 
2.  Density 
 
There is little to be said about density other than to define it as mass per unit volume.  
However, this expression does not literally mean the mass of a cubic metre, for after all a 
cubic metre is a large volume, and the density may well vary from point to point 
throughout the volume.  Density is an intensive quantity in the thermodynamical sense, 
and is defined at every point.  A more exact definition of density, for which I shall 
usually use the symbol ρ, is 
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The awful term “specific gravity” was formerly used, and is still regrettably often heard, 
as either a synonym for density, or the dimensionless ratio of the density of a substance to 
the density of water.  It should be avoided.   The only concession I shall make is that I 
shall use the symbol s to mean the ratio of the density of a body to the density of a fluid 
in which is may be immersed on or which it may be floating, 
 
The density of water varies with temperature, but is approximately 1 g cm−3 or 1000 kg 
m−3. 
 
 
3.  Pressure 
 
Pressure is force per unit area, or, more precisely, 
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There is no particular direction associated with pressure – it acts in all directions – and it 
is a scalar quantity.  The SI unit is the pascal  (Pa), which is a pressure of one newton per 
square metre (N m−2).  Blaise Pascal (1623-1662) was a French mathematician and 
philosopher who contributed greatly to the theory of conic sections and to hydrostatics.  



He showed that the barometric pressure decreases with height – hence the famous 
examination question: “Explain how you would use a barometer to measure the height of 
a tall building” – to which the most accurate answer is said to be: “I would drop it out of 
the window and time how long it took to reach the ground.” 
 
The CGS unit of pressure is dyne cm−2, and 1 Pa = 10 dyne cm−2. 
 
Some other silly units for pressure are often seen, such as psi, bar, Torr or mm Hg, and 
atm. 
 
A psi or “pound per square inch” is all right for those who define a “pound” as a unit of 
force (US usage) but is less so for those who define a pound as a unit of mass (UK 
usage).  A psi is about 6894.76 Pa. 
 
[The “British Engineering System”, as far as I know, is used exclusively in the U.S. and is not and never 
has been used in Britain, where it would probably be unrecognized.  In the “British” Engineering System, 
the pound is defined as a unit of force, whereas in Britain a pound is a unit of mass.]  
 
A bar is 105 Pa or 100 kPa. 
 
A Torr is a pressure under a column of mercury 760 mm high.  This may be convenient 
for casual conversational use where extreme precision is not expected in laboratory 
experiments in which pressure is actually indicated by a mercury barometer or 
manometer.  To find out exactly what the pressure in Pa under 760 mm Hg is, one would 
have to know the exact value of the local gravitational acceleration and also the exact 
density of mercury, which varies with temperature and with isotopic constitution.  A Torr 
is usually given as 133.322 Pa.   Evangelista Torricelli (1608 – 1647) is regarded as the 
inventor of the mercury barometer.  He succeeded Galileo as professor of mathematics at 
the University of Florence. 
 
An atm is 760 torr or about 14.7 psi or 101 325 Pa.  That is to say, 1.013 25 bar 
 
As usual, the use of a variety of different units, and knowing the exact definitions and 
conversion factors between all of them and carrying out all the tedious multiplications, is 
an unnecessary chore that is inflicted upon all of us in all branches of physics.   
 
 
4.   Pressure on a Horizontal Surface.   Pressure at Depth z 
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Figure XVI.1 shows a horizontal surface of area A immersed at a depth z under the 
surface of a fluid at depth z.  The force F on the area A is equal to the weight of the 
superincumbent fluid.  This gives us occasion to use a gloriously pompous word.  
“Incumbent” means “lying down”, so that “superincumbent” is lying down above the 
area.  It is incumbent upon all of us to understand this.  The weight of the superincumbent 
fluid is evidently its volume Az times its density ρ times the gravitational acceleration g.  
Thus 
 
     ,gzAF ρ=      16.4.1 
 
and, since pressure is force per unit area, we find that the pressure at a depth z is 
 
     .gzP ρ=      16.4.2 
 
This is, of course, in addition to the atmospheric pressure that may exist above the 
surface of the liquid. 
 
The pressure is the same at all points at the same horizontal level within a homogeneous  
incompressible fluid.  This seemingly trivial statement may sometimes be worth 
remembering under the stress of examination conditions.  Thus, let’s look at an example. 
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In figure XVI.2, the vessel at the left is partly filled with a liquid of density 0.8 g cm−3, 
the upper part of the vessel being filled with air.  The liquid also fills the tube along to the 
point C.  From C to B, the tube is filled with mercury of density 13.6 g cm−3.  Above that, 
from B to A, is water of density 1.0 g cm−3, and above that is the atmospheric pressure of 
101 kPa.  The height of the four interfaces above the thick black line are   
  
  A 200 cm 
  B 160 cm 
  C  140 cm 
  D 155 cm 
 
With g = 9.8 m s−2, what is the pressure of the air in the closed vessel? 
 
I’ll do the calculation in SI units. 
 
Pressure at A = 101000  Pa 
 
Pressure at B =  101000    +    1000 %  9.8  %  0.4   =  104920 Pa 
 
Pressure at C =  104920    +    13600  %  9.8  %  0.20   =   131576  Pa 
 
Pressure at D =  131576    −    800  %  9.8  %  0.15   =    130400  Pa, 
 
and this is the pressure of the air in the vessel. 
 
Rather boring so far, and the next problem will also be boring, but the problem after that 
should keep you occupied arguing about it over lunch. 
 
Problem.   This problem is purely geometrical and nothing to do with hydrostatics – but 
the result will help you with the next problem after this.  If you don’t want to do it, just 
use the result in the next problem. 
 
 
 
 
 
 
 
 
 
 
 
 
Show that the volume of the frustrum of a cone, whose upper and lower circular faces are 
of radii r1 and r2, and whose height is h, is ).( 2
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Problem.  (Pascal’s Paradox) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure XVI.4 shows four vessels.  The base of each is circular with the same radius, 

π/10  cm, so the area is 100 cm2.  Each is filled with water (density = 1 g cm−3) to a 
depth of 15 cm. 
 
Calculate   1.  The mass of water in each. 
                  2.  The pressure at the bottom of each vessel. 
       3.  The force on the bottom of each vessel. 
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If the bottom of each vessel were made of glass, which cracked under a certain pressure, 
which would crack first if the vessels were slowly filled up?   If the bottom of each vessel 
were welded to the scale of a weighing machine, what weight would be recorded? 
 
I’ll leave you to argue about this as long as you wish. 
 
 
5.   Pressure on a Vertical Surface     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure XVI.5 shows a vertical surface from the side and face-on.  The pressure increases 
at greater depths.  I show a strip of the surface at depth z.  Suppose the area of that strip is 
dA.  The pressure at depth z is ρgz, so the force on the strip is ρgzdA.  The force on the 
entire area is dAzg ∫ρ , and that, by definition of the centroid (see chapter 1), is 

,Azgρ where z is the depth of the centroid.  The same result will be obtained for an 
inclined surface.  Therefore: 
 
The total force on a submerged vertical or inclined plane surface is equal to the area of 
the surface times the depth of the centroid. 
 
Example.  Figure XVI.6 shows a triangular area.  The uppermost side of the triangle is 
parallel to the surface at a depth z.   The depth of the centroid is hz 3

1+ , so the pressure 
at the centroid is ).( 3
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6.   Centre of Pressure   
 
“The centre of pressure is the point at which the pressure may be considered to act.”  This 
is a fairly meaningless sentence, yet it is not entirely devoid of all meaning.  If you refer 
to the left hand side of figure XVI.5, you will see an infinite number (I’ve drawn only 
eight) of forces.  If you were to replace all of these forces by a single force, where would 
you put it?  Or, more precisely, if you were to replace all of these forces by a single force 
such that the (first) moment of this force about a line through the surface of the fluid is the 
same as the (first) moment of all the actual forces, where would you place this single 
force?  You would place it at the centre of pressure.  The depth of the centre of pressure 
is a depth such that the moment of the total force on a vertical surface about a line in the 
surface of the fluid is the same as the moment of all the hydrostatic forces about a line in 
the surface of the fluid.  I shall use the Greek letter ζ to indicate the depth of the centre of 
pressure.  We can continue to use figure XVI.5. 
 
The force on the strip of area dA at depth z is, as we have seen, ρgzdA, so the first 
moment of that force is ρgz2dA. The total moment is therefore ,2dAzg ∫ρ  which is, by 
definition of radius of gyration k, (see chapter 2),  .2 Agkρ  The total force, as we have 
seen, is ,Azgρ  and the total moment is to be this times ζ.  Thus the depth of the centre of 
pressure is 
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Example. 
 
 
 
 
 
 
 
 
 
 
 
 
 
A semicircular trough of radius a is filled with water, density ρ.  One semicircular end of 
the trough is freely hinged at its diameter (the thick line in the figure).  What force must 
be exerted at the bottom of the trough to prevent the end from swinging open? 
 

The area of the semicircle is .2
2
1 aπ   The depth of the centroid is 

π3
4a  so the total 

hydrostatic force is .2
3
2 gaρ   The square of the radius of gyration is ,2

4
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the centre of pressure is .
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16.7    Archimedes’ Principle 
 
The most important thing about Archimedes’ principle is to get the apostrophe in the 
right place and to spell principle correctly. 
 
Archimedes was a Greek scientist who lived in Syracuse, Sicily.  He was born about 287 
BC and died about 212 BC.  He made many contributions to mechanics.  He invented the 
Archimedean screw, he is reputed to have said “Give me a fulcrum and I shall move the 
world”, and he probably did not set the Roman invading fleet on fire by focussing 
sunlight on them with concave mirrors – though it makes a good story.  The most famous 
story about him is that he was commissioned by King Hiero of Sicily to determine 
whether the king’s crown was contaminated with base metal.  Archimedes realized that 
he would need to know the density of the crown.  Measuring its weight was no problem, 
but – how to measure the volume of such an irregularly-shaped object?   One day, he 
went to take a bath, and he had filled the bath full right to the rim.  When he stepped into 
the bath he was much surprised that some of the water slopped over the edge of the bath 
on to the floor.  Suddenly, he realized that he had the solution to his problem, so 
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straightway he raced out of the house and ran absolutely starkers through the streets of 
Syracuse shouting “Ευρηκα!  Ευρηκα!”, which is Greek for: 
 
When a body is totally or partially immersed in a fluid, it experiences a 
hydrostatic upthrust equal to the weight of fluid displaced. 
 
Figure XVI.8 is a drawing of some water or other fluid.  I have outlined with a dashed 
curve an arbitrary portion of the fluid.  It is subject to hydrostatic pressure from the rest 
of the fluid.  The small pressure of the fluid above it is pushing it down;  the larger 
pressure of the fluid below it is pushing it up.  Therefore there is a net upthrust.  The 
portion of the fluid outlined is in equilibrium between its own weight and the hydrostatic 
upthrust.  If we were to replace this portion of the fluid with a lump of iron, we wouldn’t 
have changed the hydrostatic forces.  Therefore the upthrust is equal to the weight of 
fluid displaced. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If a body is floating on the surface, the hydrostatic upthrust, as well as being equal to the 
weight of fluid displaced, is also equal to the weight of the body. 
 
 
 
16.8   Some Simple Examples 
 
As we pointed out in the introduction to this chapter, this chapter is less demanding than 
some of the others, and indeed it has been quite trivial so far.  Just to show how easy the 
topic is, here are a few quick examples. 
 
1.  A cylindrical vessel of cross-sectional area A is partially filled with water.  A mass m 
of ice floats on the surface.  The density of water is ρ0 and the density of ice is ρ.  
Calculate the change in the level of the water when the ice melts, and state whether the 
water level rises or falls. 
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2.  A cork of mass m, density ρ, is held under water (density ρ0) by a string.  Calculate 
the tension in the string.  Calculate the initial acceleration if the string is cut.  
 
 
 
 
 
 
 
 
3.  A lump of lead (mass m, density ρ) is held hanging in water (density ρ0) by two 
strings as shown.  Calculate the tension in the strings. 
 
 
 
 
 
 
 
 
4.   A hydrometer (for our purposes a hydrometer is a wooden rod weighted at the bottom 
for stability when it floats vertically) floats in equilibrium to a depth z1 in water of density 
ρ1.  If salt is added to the water so that the new density is ρ2, what is the new depth z2? 
 
 
 
 
 
 
 
 
 
5.  A mass m, density ρ, hangs in a fluid of density ρ0 from the ceiling of an elevator 
(lift).  The elevator accelerates upwards at a rate a.  Calculate the tension in the string. 
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6.   A hydrometer of mass m and cross-sectional area A floats in equilibrium do a depth h 
in a liquid of density ρ.  The hydrometer is then gently pushed down and released.  
Determine the period of oscillation. 
 
7.  A rod of length l and density sρ  (s < 1) floats in a liquid of density ρ.  One end of the 
rod is lifted up through a height yl so that a length xl remains immersed.  I have drawn it 
with the rope vertical.  Must it be?) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 i.   Find x as a function of s. 
 
           ii.   Find θ as a function of y and s. 
 
          iii.   Find the tension T in the rope as a function of m, g and s. 
 
Draw the following graphs: 
 
 a.  x  and T/(mg) versus s. 
 
 b. θ  versus y for several s. 
 
 c. θ  versus s for several y. 
 
 d. x versus y for several s. 
 
 e. T/(mg) versus y for several s. 
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Answers 

 
 
1.   No, it doesn’t. 
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16.9     Floating Bodies 
 
This is the most grisly topic in hydrostatics. 
 
We can start with an observation that we have already made is section 16,7, namely that, 
if a body is freely floating, the hydrostatic upthrust is equal to the weight of the body. 
 
I also introduce here the term centre of buoyancy, which is the centre of mass of the 
displaced fluid.  In a freely-floating body in equilibrium, the centre of buoyancy is 
vertically below the centre of mass of the floating body.  As far as calculating the moment 
about some axis of the hydrostatic upthrust is concerned, the upthrust can be considered 
to act through the centre of buoyancy, just as the weight of an object can be considered to 
act through its centre of mass.  See section 1.1 of chapter 1, for example, for a discussion 
of this point. 
 
Also, before we get going, here is another small problem. 
 



 
 8.   The drawing shows a body, whose relative density (i.e. relative to the fluid 
that it is floating in) is s.   The dashed line is the water-line section. 
 
 
 
 
 
 
 
 
Now, in the next drawing, a body of exactly the same size and shape (but not necessarily 
the same density) is floating upside down, with the same water-line section. 
 
 
 
 
 
 
 
 
What is the relative density of this second body? 
 
 
I want to look now at the stability of equilibrium of a freely-floating body.  While at first 
sight this may not be a very interesting topic, if you ever happen to be a passenger on an 
ocean liner, you might then find it to be quite interesting, for you will be interested to 
know, if the liner is given a small angular displacement from the vertical position, 
whether it will capsize and throw you into the sea, or whether it will right itself.  Under 
such circumstances it becomes a very interesting subject indeed. 
 
Before I start, I just want to establish one small geometric result. 
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Figure XVI.9 shows a plane bilaterally-symmetric area.  I have drawn a dashed line 
through the centroid of the area.  The areas to the left and right of this line are A1 and A2, 
and I have indicated the positions of the centroids of these two areas.  (I haven’t 
calculated the positions of the three centroids accurately – I just drew them 
approximately where I thought they would be.)  Note that, since the dashed line goes 
through the centroid of the whole area, .2211 xAxA =  Now rotate the area about the 
dashed line through an angle θ.  By the theorem of Pappus (see chapter 1, section 1.6), 
the volume swept out by A1 is θ× 11 xA  and the volume swept out by A2 is .22 θ× xA   Thus 
we have established the geometrical result that I wanted, namely, that when a bilaterally 
symmetric area is rotated about an axis perpendicular to its axis of symmetry and passing 
through its centroid, the areas to left and right of the axis of rotation sweep out equal 
volumes. 
 
We can now return to floating bodies, and I am going to consider the stability of 
equilibrium of a bilaterally symmetric floating body to a rotational displacement about an 
axis lying in the water line section and perpendicular to the axis of symmetry.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I have drawn in figure XVI.10 the centre of mass C of the whole body, the centre of 
buoyancy H, and the centroid of the water-line section.  The body is bilaterally symmetric 
about the plane of the paper, and we are going to rotate the body about an axis through O 
perpendicular to the plane of the paper, and we want to know whether the equilibrium is 
stable against such an angular displacement.  We are going to rotate it in such a manner 
that the volume submerged is unaltered by the rotation – which means that the hydrostatic 
upthrust will remain equal to the weight of the body, and there will be no vertical 
acceleration.  The geometrical theorem that we have just established shows that, if we 

* 

* 

* 
C 

H 

O 

FIGURE XVI.10 



rotate the body about an axis through the centroid of the water-line section, the volume 
submerged will be constant; conversely, our condition that the volume submerged is 
constant implies that the rotation is about an axis through the centroid of the water-line 
section. 
 
I am going to establish a set of rectangular axes, origin O, with the x-axis to the right, the 
y-axis towards you, and the z-axis downwards.  I’m going to call the depth of the centre 
H of buoyancy z .  Now let’s carry out the rotation about O through an angle θ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I have drawn the position of the new centre of buoyancy H' and I wish to find its 
coordinates )','( zx  relative to O.  We shall find that it has moved a little horizontally  
compared with the original position of H, but its depth is almost unchanged.  Indeed, for 
small θ, we shall find that zz −'  is of order θ2, while xx −'  is of order θ.  Thus, to first 
order in θ, I shall assume that the depth of the centre of buoyancy has remained 
unchanged. 
 
However, the coordinate 'x  of the new centre of buoyancy will be of interest for the 
following reason.  The weight of the body acts at its centre of mass C while the 
hydrostatic upthrust acts at the new centre of buoyancy H' and these two forces form a 
couple and exert a torque.  You will understand from figure XVI.11 that if H' is to the left 
of C, the torque will topple the body over, whereas if H' is to the right of C, the torque 
will stabilize the body.  Indeed, the horizontal distance between C and H' is known as the 
righting lever.  The point on the line COH vertically above H' is called the metacentre.  I 
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haven’t drawn it on the diagram, in order to minimise clutter, but I shall use the symbol 
M to indicate the metacentre.  We can see that the condition for stability of equilibrium is 
that HM > HC.  This is why we are interested in finding the exact position of the new 
centre of buoyancy H'. 
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In the upper part of figure XVI.12 I have drawn the old and new water-line sections as 
seen from the side, and in the lower part I have drawn the new water-line section seen 
from above.  I have indicated an elemental volume of width δx of the displaced fluid at a 
distance x from the centroid O of the water-line section.  For small θ the depth of this 
element is xθ.  Let’s call its area in the water-line section δA, so that the volume element 
is xθδA.  We’ll call the total volume of the displaced fluid (which is unaltered by the 
rotation) V.   
 
Consider the moments of volume about the x-axis.  We have 
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Thus, as previously asserted, the vertical displacement of the centre of buoyancy is of 
order θ2, and, to first order in θ may be neglected. 
 
Now consider the moments of volume about the y-axis.  We have 
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But the integral on the right hand side of equation 16.9.2 is Ak2, where A is the area of the 
water-line section, and k is its radius of gyration. 
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Now HH'  =  HM sin θ, where M is the metacentre, or, to first order in 
θ, ΗΗ'  =  ΗΜ % θ. 
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Therefore the condition for stability of equilibrium is that 
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Here, A and k2 refer to the water-line section, V is the volume submerged, and HC is the 
distance between centre of mass and centre of buoyancy. 
 



Example.  Suppose that the body is a cube of side 2a and of relative density s.  The water-
line section is a square, and A = 4a2 and k2  =  a2/3. The volume submerged is 8a3s.  The 
distance between the centres of mass and buoyancy is a(1 −  s), and so the condition for 
stability is 
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The equilibrium is unstable if  
 
    .0166 2 <+− ss      16.9.7 
 
That is, the equilibrium is unstable if s is between 0.2113 and 0.7887.  The cube will float 
vertically only if the density is less than 0.2113 or if it is greater than 0.7887. 
 
Here in British Columbia there is a large logging industry, and many logs float 
horizontally in the water.  They gradually become waterlogged, and, when the density of 
a log is nearly as dense as the water, the vertical position become stable and the log tips 
to the vertical position, nearly all of it submerged, with only an inch or so above the 
surface. It then becomes a danger to boats.  If the length of the log is 2l and its radius is a, 
what is the least relative density for which the vertical position is stable? 
 
    
 


