
 1

CHAPTER 17 
VIBRATING SYSTEMS 

 
17.1   Introduction 
 
A mass m is attached to an elastic spring of force constant k, the other end of which is 
attached to a fixed point.  The spring is supposed to obey Hooke’s law, namely that, 
when it is extended (or compressed) by a distance x from its natural length, the tension 
(or thrust) in the spring is kx, and the equation of motion is .kxxm −=&&   This is simple 
harmonic motion of period 2π/ω, where ω2 = k/m.  Most readers will have no difficulty 
with that problem.  But now suppose that, instead of one end of the spring being attached 
to a fixed point, we have two masses, m1 and m2, one at either end of the spring.  A 
diatomic molecule is much the same thing.  Can you calculate the period of simple 
harmonic oscillations?  It looks like an easy problem, but it somehow seems difficult to 
get a hand on it by conventional newtonian methods.  In fact it can be done quite readily 
by newtonian methods, but this problem, as well as more complicated problems where 
you have several masses connected by several springs and several possible modes of 
vibration, is particularly suitable by lagrangian methods, and this chapter will give 
several examples of vibrating systems tackled by lagrangian methods. 
 
 
17.2  The Diatomic Molecule 
 
Two particles, of masses m1 and m2 are connected by an elastic spring of force constant k.  
What is the period of oscillation? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let’s suppose that the equilibrium separation of the masses – i.e. the natural, unstretched, 
uncompressed length of the spring – is a.  At some time suppose that the x-coordinates of 
the two masses are x1 and x2.  The extension q of the spring from its natural length at that 
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moment is .12 axxq −−=   We’ll also suppose that the velocities of the two masses at 
that instant are 1x&   and  .2x&   We know from chapter 13 how to start any calculation in 
lagrangian mechanics.  We don’t have to think about it.  We always start with T = ...  and 
V  =  ...: 
 
    ,2

222
12

112
1 xmxmT && +=     17.2.1 

 
    .2

2
1 kqV =       17.2.2 

 
We want to be able to express the equations in terms of the internal coordinate q.  V is 
already expressed in terms of q.  Now we need to express T (and therefore 1x&   and  2x& ) 
in terms of q.  Since ,12 axxq −−=  we have, by differentiation with respect to time, 
 
    .12 xxq &&& −=       17.2.3 
 
We need one more equation.  The linear momentum is constant and there is no loss in 
generality in choosing a coordinate system such that the linear momentum is zero: 
 
    .0 2211 xmxm && +=      17.2.4 
 
From these two equations, we find that 
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Thus we obtain   2

2
1 qmT &=      17.2.6 
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Now apply Lagrange’s equation 
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to the single coordinate q in the fashion to which we became accustomed in Chapter 13, 
and the equation of motion becomes 
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     ,kqqm −=&&      17.2.8 
 
which is simple harmonic motion of period ,/2 kmπ  where m is given by equation 
17.2.7.  The frequency is the reciprocal of this, and the “angular frequency” ω, also 
sometimes called the “pulsatance”, is 2π times the frequency, or ./ mk  
 
The quantity )/( 2121 mmmm + is usually called the “reduced mass” and one may wonder is what sense it 
is “reduced”.  I believe the origin of this term may come from an elementary treatment of the Bohr atom of 
hydrogen, in which one at first assumes that there is an electron moving around an immovable nucleus – 
i.e. a nucleus of “infinite mass”.   One develops formulas for various properties of the atom, such as, for 
example, the Rydberg constant, which is the energy required to ionize the atom from its ground state.  This 
and similar formulas include the mass m of the electron.  Later, in a more sophisticated model, one takes 
account of the finite mass of the nucleus, with nucleus and electron moving around their mutual centre of 
mass.  One arrives at the same formula, except that m is replaced by mM/(m + M), where M is the mass of 
the nucleus.  This is slightly less (by about 0.05%) than the mass of the electron, and the idea is that you 
can do the calculation with a fixed nucleus provided that you use this “reduced mass of the electron” rather 
than its true mass.  Whether this is the appropriate term to use in our present context is debatable, but in 
practice it is the term almost universally used. 
 
It may also be remarked upon by readers with some familiarity with quantum mechanics that I have named 
this section “The Diatomic Molecule” – yet I have ignored the quantum mechanical aspects of molecular 
vibration.  This is true – in this series of notes on Classical Mechanics I have adopted an entirely classical 
treatment.  It would be wrong, however, to assume that classical mechanics does not apply to a molecule, 
or that quantum mechanics would not apply to a system consisting of a cricket ball and a baseball 
connected by a metal spring.  In fact both classical mechanics and quantum mechanics apply to both.  The 
formula derived for the frequency of vibration in terms of the reduced mass and the force constant (“bond 
strength”) applies as accurately for the molecule as for the cricket ball and baseball.  Quantum mechanics, 
however, predicts that the total energy (the eigenvalue of the hamiltonian operator) can take only certain 
discrete values, and also that the lowest possible value is not zero.  It predicts this not only for the 
molecule, but also for the cricket ball and baseball – although in the latter case the energy levels are so 
closely spaced together as to form a quasi continuum, and the zero point vibrational energy is so close to 
zero as to be unmeasurable.  Quantum mechanics makes its effects evident at the molecular level, but this 
does not mean that it does not apply at macroscopic levels.  One might also take note that one is not likely 
to understand why wave mechanics predicts only discrete energy levels unless one has had a good 
background in the classical mechanics of waves.  In other words, one must not assume that classical 
mechanics does not apply to microscopic systems, or that quantum mechanics does not apply to 
macroscopic systems. 
 
Below leaving this section, in case you tried solving this problem by newtonian methods 
and ran into difficulties, here’s a hint.  Keep the centre of mass fixed.  When the length of 
the spring is x, the lengths of the portions on either side of the centre of mass are 
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mm
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++
  The force constants of the two portions of the spring are 

inversely proportional to their lengths.  Take it from there. 
 
 
17.3   Two Masses, Two Springs and a Brick Wall 
 
The system is illustrated in figure XVII.2, first in its equilibrium (unstretched) position, 
and then at some instant when it is not in equilibrium and the springs are stretched.  You 
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can imagine that the masses are resting upon and can slide upon a smooth, horizontal 
table. I could also have them hanging under gravity, but this would introduce a distracting 
complication without illustrating any further principles.  I also want to assume that all the 
motion is linear, so we could have them sliding on a smooth horizontal rail, or have them 
confined in the inside of a smooth, fixed drinking-straw.  For the present, I don’t want the 
system to bend.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The displacements from the equilibrium positions are x1 and x2, so that the two springs 
are stretched by x1 and  x2 − x1 respectively.  The velocities of the two masses are 1x&  and 

.2x&   We now start the lagrangian calculation in the usual manner: 
 
    ,2

222
12

112
1 xmxmT && +=     17.3.1 

 
    .)( 2

1222
12

112
1 xxkxkV −+=    17.3.2 

 
Apply Lagrange’s equation to each coordinate in turn, to obtain the following equations 
of motion: 
 
   2212111 )( xkxkkxm ++−=&&     17.3.3 
 
and   .221222 xkxkxm −=&&      17.3.4 
 
Now we seek solutions in which the system is vibrating in simple harmonic motion at 
angular frequency ω; that is, we seek solutions of the form .and 2

2
21

2
1 xxxx ω−=ω−= &&&&  

When we substitute these in equations 17.3.3 and 4, we obtain 
 
   0)( 221

2
121 =−ω−+ xkxmkk     17.3.5 

 
and       .0)( 2

2
2212 =ω−− xmkxk     17.3.6 

 

Equilibrium: 
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Either of these gives us the displacement ratio x2/x1 (and hence amplitude ratio).  The first 
gives us 
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and the second gives us .
2
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x
x      17.3.8 

 
These are equal, and, by equating the right hand sides, we obtain the following equation 
for the angular frequencies of the normal modes: 
 
  .0)( 21

2
211221

4
21 =+ω++−ω kkkkkmkmmm    17.3.9 

 
This equation can also be derived by noting, from the theory of equations, that equations 
17.3.5 and 6 are consistent only if the determinant of the coefficients is zero. 
 
The meaning of these equations and of the expression “normal modes” can perhaps be 
best illustrated with a numerical example.  Let us suppose, for example, that k1  =  k2  =  1 
and m1  =  3  and m2  =  2.  In that case equation 17.3.9 is .0176 24 =+ω−ω   This is a 
quartic equation in ω, but it is also a quadratic equation in ω2, and there are just two 
positive solutions for ω.  These are 4082.06/1 =  (slow, low frequency) and 1 (fast, 
high frequency).  If you put the high frequency ω into either of equations 17.3.7 or 8 (or 
in both, to check for arithmetic or algebraic mistakes) you find a displacement ratio of 
+1.5; but if you put the low frequency ω into either equation, you find a displacement 
ratio of −1.0   The first of these normal modes is a low-frequency slow oscillation in 
which the two masses oscillate in phase, with m2 having an amplitude 50% larger than 
m1.  The second normal mode is a high-frequency fast oscillation in which the two 
masses oscillate out of phase but with equal amplitudes. 
 
So, how does the system actually oscillate?  This depends on the initial conditions.  For 
example, if you stretch the first spring by one inch and the second spring by 1.5 inches, 
and then let go, the system will oscillate in the slow, in-phase mode.  But if you start by 
stretching the first spring by one inch and compressing the second by one inch, the 
system will oscillate in the fast, out-of-phase mode.  For other initial conditions, the 
system will oscillate in a linear combination of the normal modes. 
 
Thus, m1 might oscillate with an amplitude A in the slow mode, and an amplitude B in the 
fast mode: 
   ,)cos()cos( 22111 α+ω+α+ω= tBtAx    17.3.10 
 
in which case the oscillation of m2 is given by 
 
   .)cos()cos(5.1 22112 α+ω−α+ω= tBtAx   17.3.11 
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In our example, ω1 and ω2 are 6/1 and 1 respectively. 
 
Let’s suppose that the initial conditions are that, at t = 0,  21 and xx && are both zero.  This 
means that α1 and α2 are both zero or π (I’ll take them to be zero), so that 
 
   tBtAx 211 coscos ω+ω=      17.3.12 
 
and   .coscos5.1 212 tBtAx ω−ω=     17.3.13 
 
Suppose further that at t = 0,  x1and x2 are both +1, which means that we start by 
stretching both springs equally.  Equations 17.3.12 and 13 then become 1  =  A  +  B and  
1  =  1.5A  −  B.  That is,  A = 0.8 and B = 0.2.  I’ll leave you to draw graphs of x1 and x2 
versus time. 
 
 
17.4   Double Torsion Pendulum 
 
    
  
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here we have two cylinders of rotational inertias I1 and I2 hanging from two wires of 
torsion constants c1 and c2.  At any instant, the top cylinder is turned through an angle θ1 
from its equilibrium position and the lower cylinder by an (additional) angle θ2.  The 
equations and the description of the motion are just the same as in the previous example, 
except that x1, x2, m1, m2, k1, k2 are replaced by θ1, θ2, I1, I2, c1, c2.  The kinetic and 
potential energies are   
 
    ,2

222
12

112
1 θ+θ= && IIT     17.4.1 
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    .)( 2
1222

12
112

1 θ−θ+θ= ccV    17.4.2  
 
The equations for ω and the displacement  ratios are just the same, and there is an in-
phase and an out-of-phase mode. 
 
 
17.5   Double Pendulum 
 
This is another similar problem, though, instead of assuming Hooke’s law, we shall 
assume that angles are small (sin θ j θ , cos θ j 2

2
11 θ− ).  For clarity of drawing, 

however, I have drawn large angles in figure XVIII.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Because I am going to use the lagrangian equations of motion, I have not marked in the 
forces and accelerations; rather, I have marked in the velocities.  I hope that the two 
components of the velocity of m2 that I have marked are self-explanatory; the speed of m2 
is given by .)cos(2 122121

2
2

2
2

2
1

2
1

2
2 θ−θθθ+θ+θ= &&&& llllv   The kinetic and potential energies 

are 
 
  ,])cos(2[ 122121

2
2

2
2

2
1

2
122

12
1

2
112

1 θ−θθθ+θ+θ+θ= &&&&& llllmlmT  17.5.1 
 
  .)coscos(cosconstant 22112111 θ+θ−θ−= llgmglmV   17.5.2 
 
If we now make the small angle approximation, these become 
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  2
221122

12
1

2
112

1 )( θ+θ+θ= &&& llmlmT      17.5.3 
 
and .)(constant 221211

2
22

2
1122

12
1112

1 glmglmglmllgmglmV −−−θ+θ+θ+=  17.5.4 
 
Apply the lagrangian equation in turn to θ1 and θ2: 
 
  112122121

2
121 )()( θ+−=θ+θ+ glmmllmlmm &&&&    17.5.5 

 
and   .2222

2
221212 θ−=θ+θ glmlmllm &&&&     17.5.6  

 
Seek solutions of the form 2

2
21

2
1 and θω−=θθω−=θ &&&& .     

 
Then  0))(( 2

2
221

2
221 =θω+θ−ω+ lmglmm     17.5.7 

 
and   .0)( 2

2
21

2
1 =θ−ω+θω gll      17.5.8 

 
Either of these gives the displacement ratio θ2/θ1.  Equating the two expressions for the 
ratio θ2/θ1, or putting the determinant of the coefficients to zero, gives the following 
equation for the frequencies of the normal modes: 
 
  .0)()()( 2

21
2

2121
4

211 =++ω++−ω gmmllgmmllm   17.5.9 
 
As in the previous examples, there is a slow in-phase mode, and fast out-of-phase mode. 
 
For example, suppose  m1 = 0.01 kg,  m2 = 0.02 kg,  l1  =  0.3 m,  l2  =  0.6 m,  g = 9.8 m 
s−2. 
 
Then .08812.22646.00018.0 24 =+ω−ω   The slow solution is ω  =  3.441 rad s−1  (P  
=  1.826 s), and the fast solution is ω  =  11.626 rad s−1  (P  =0.540 s).  If we put the first 
of these (the slow solution) in either of equations 17.5.7 or 8 (or both, as a check against 
mistakes) we obtain the displacement ratio θ2/θ1  =   1.319, which is an in-phase mode.  If 
we put the second (the fast solution) in either equation, we obtain θ2/θ1  =   −0.5689 , 
which is an out-of-phase mode.  If you were to start with θ2/θ1  =   1.319 and let go, the 
pendulum would swing in the slow in-phase mode.  .  If you were to start with θ2/θ1  =   
−0.5689 and let go, the pendulum would swing in the fast out-of-phase mode.  Otherwise 
the motion would be a linear combination of the normal modes, with the fraction of each 
determined by the initial conditions, as in the example in section 17.3. 
 
 
17.6    Linear Triatomic Molecule 
 
In Chapter 2, Section 2.9, we discussed a rigid triatomic molecule.  Now we are going to 
discuss three masses held together by springs, of force constants k1 and k2.  We are going 
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to allow it to vibrate, but not to rotate.  Also, for the time being, I don’t want the 
molecule to bend, so we’ll put it inside a drinking straw to that all the vibrations are 
linear.  By the way, for real triatomic molecules, the force constants and rotational 
inertias are such that molecules vibrate much faster than they rotate.  To see their 
vibrations you look in the near infra-red spectrum; to see their rotation, you have to go to 
the far infrared or the microwave spectrum. 
 
 
  
 
 
 
 
 
 
Suppose that the equilibrium separations of the atoms are a1 and a2.  Suppose that at 
some instant of time, the x-coordinates (distances from the left hand edge of the page) of 
the three atoms are x1, x2 , x3.  The extensions from the equilibrium distances are then  

., 22321121 axxqaxxq −−=−−=   We are now ready to start: 
 
   ,2

332
12

222
12

112
1 xmxmxmT &&& ++=     17.6.1 

 
    .2

222
12

112
1 qkqkV +=      17.6.2 

 
We need to express the kinetic energy in terms of the internal coordinates, and, just as for 
the diatomic molecule (Section 17.2), the relevant equations are 
 
    ,121 xxq &&& −=       17.6.3 
  
    232 xxq &&& −=       17.6.4 
 
and    .0 332211 xmxmxm &&& ++=     17.6.5 
 
These can conveniently be written 
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By one dexterous flick of the fingers (!) we invert the matrix to obtain 
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k1 k2 
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where .321 mmmM ++=   On putting these into equation 17.6.1, we now have 

 
  )2( 2

221
2
12

1 qbqqhqaT &&&& ++=     17.6.8 
 

and   ,2
222

12
112

1 qkqkV +=       17.6.2 
 

where   ,/)( 321 Mmmma +=       17.6.9 
  ,/13 Mmmh =       17.6.10 
  Mmmmb /)( 213 +=       17.6.11 

and, for future reference, 
   ./ 2221

2 hmMmmmhab ==−      17.6.12 
 

On application of Lagrange’s equation in turn to the two internal coordinates we obtain 
 
   01121 =++ qkqhqa &&&&      17.6.13 
 
and   .02212 =++ qkqhqb &&&&      17.6.14 
 
Seek solutions of the form 1

2
1 qq ω−=&& and 2

2
2 qq ω−=&&  and we obtain the following two 

expressions for the extension ratios: 
 

   .
2

2
2

2
1

2

2

1

ω
ω−

=
ω−

ω
=

h
bk

ak
h

q
q      17.6.15 

 
Equating them gives the equation for the normal mode frequencies: 
 
     .0)()( 21

2
12

42 =+ω+−ω− kkbkakhab     17.6.16 
 
For example, if ,and 32121 mmmkkk ====  we obtain, for the slow symmetric 
(“breathing”) mode, 1/ 21 +=qq   and ./2 mk=ω   For the fast asymmetric mode, 

1/ 21 −=qq  and ./32 mk=ω  
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Example. 
 
Consider the linear OCS molecule whose atoms have masses 16, 12 and 32.  Suppose that 
the angular frequencies of the normal modes, as determined from infrared spectroscopy, 
are 0.900 934 905  and 0.413 148 033.  (I just made these numbers up, in unstated units, 
just for the purpose of illustrating the calculation.  Without searching the literature, I 
can’t say what they are in the real OCS molecule.)  Determine the force constants. 
 
The key to doing it is equation 17.6.16.  You know the constants a, b and c (they are just 
functions of the masses), so just put in the value of ω and solve for k1 and k2. It is 
immediately obvious that you cannot do this – you have one equation in two unknowns.  
So – what to do?  Recall what we did in Section 2.9.  We made an isotopic substitution -  
18O for 16O.  This presumably doesn’t change either the bond lengths or their strengths, so 
we obtain a second equation.   
 
Here, then, is a table in which I have listed for 16OCS and for 18OCS, the several 
functions of the masses, and I have also added supposed frequencies for the heavier 
isotopomer (which are slower than for the lighter isotopomer). 

 
   16OCS           18OCS 
 
Fast ω      0.900 934 905   0.896 513 236 
Slow ω      0.413 148 033       0.397 911 376 
m1   m2    m3      16   12   32    18   12   32 
M      60     62 
a     37.11 &     12.774 193 55 
h                         35.8 &      9.290 322 581 
b     39.14 &     15.483 870 97 
ab − h2       102.4    111.483 871 0 
 
 

From the theory of quadratic equations, the sum of the solutions for ω2 for the quadratic 

equation 17.6.16 is  ,
2

12

hab
bkak

−
+  and the product is .

2
21

hab
kk
−

  Thus we can calculate 

12 bkak +  and k1k2 for each isotopomer: 
 

12 bkak +  = 100.5952         107.255 225 8 
k1k2         = 14.187 248 03           14.187 248 01 
 
 

For each isotopomer, then, we have two simultaneous equations for k1 and k2 – but one of 
these equations is quadratic, so we get two possibilities for the force constants.  Thus for 
16OCS the solutions are 

 
  k1 = 3.812 286    k2  =  3.721 454 



 12

 
or  k1 = 2.924 000    k2  =  4.852 000 
 

So, which one is right? 
 
For 18OCS the solutions are 

 
  k1 = 4.002 900    k2  =  3.544 242 
 
or  k1 = 2.924 000    k2  =  4.852 000 
 

Only the latter solution is common to both isotopomers, so this is the correct one. 
 
Note that in this section we considered a linear triatomic molecule that was not allowed 
either to rotate or to bend, whereas in Chapter 2 we considered a rigid triatomic molecule 
that was not allowed either to vibrate or to bend.  If all of these restrictions are removed, 
the situation becomes rather more complicated.  If a rotating molecule vibrates, the 
moving atoms, in a co-rotating reference frame, are subject to the Coriolis force, and 
hence they do not move in a straight line.  Further, as it vibrates, the rotational inertia 
changes periodically, so the rotation is not uniform.  If we allow the molecule to bend, 
the middle atom can oscillate up and down in the plane of the paper (so to speak) or back 
and forth at right angles to the plane of the paper.  These two motions will not necessarily 
have either the same amplitude or the same phase.  Consequently the middle atom will 
whirl around in a Lissajous ellipse, giving rise to what has been called “vibrational 
angular momentum”.  In a real triatomic molecule, the vibrations are usually much faster 
than the relatively slow, ponderous rotation, so that vibration-rotation interaction is small 
– but is by no means negligible and is readily observed in the spectrum of the molecule. 

 
 
 

17.7 Two Masses, Three Springs, Two brick Walls 
 

The three masses are equal, and the two outer springs are identical.  Figure XVII.6 shows 
the equilibrium position. 

 
 
 
 
 
 
 
 
Suppose that at some instant the first mass is displaced a distance x to the right and the 
second mass is displaced a distance y to the right.  The extensions of the first two springs 
are x and y − x respectively, and the compression of the third spring is y.  If the speeds of 
the masses are x& and y& , we have for the kinetic and potential energies: 

k1 k2 
m m k1 

FIGURE XVII.6 

x y 
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    2

2
12

2
1 ymxmT && +=      17.7.1 

 
and    .)( 2

12
12

22
12

12
1 ykxykxkV +−+=    17.7.2 

 
Apply Lagrange’s equation in turn to x and to y. 
 
    0)( 221 =−++ ykxkkxm &&     17.7.3 
 
and    .0)( 221 =−++ xkykkym &&    17.7.4 
 
Seek solutions of the form .and 22 yyxx ω−=ω−= &&&&  
 
   0)( 221

2 =−++ω− ykxkkm     17.7.5 
 
and   .0)( 21

2
2 =++ω−+− ykkmxk     17.7.6 

 
On putting the determinant of the coefficients to zero, we find for the frequencies of the 
normal modes 
 

   ,2and 21212

m
kk

m
k +

=ω=ω           17.7.7a,b 

 
corresponding to displacement ratios 
 

   1=
y
x     and  .1−=

y
x           17.7.8a,b  

 
In the first, slow, mode, the masses move in phase and there is no extension or 
compression of the connecting spring.  In the second, fast, mode the masses move in 
antiphase and the compressions or extension of the coupling spring is twice the 
extensions or compressions of the outer springs.   
 
The general motion is a linear combination of the normal modes: 
 
  ,)cos()cos( 2211 α+ω+α+ω= tBtAx    17.7.9 
   
  ,)cos()cos( 2211 α+ω−α+ω= tBtAy    17.7.10 
 
  ,)sin()sin( 222111 α+ωω−α+ωω−= tBtAx&    17.7.11 
 
  .)sin()sin( 222111 α+ωω+α+ωω−= tBtAy&    17.7.12 
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Suppose that the initial condition is at t = 0,  .0,,0 0 ==== xxxyy && That is, we pull 
the first mass a little to the right (keeping the second mass fixed) and then we let go.  The 
second two equations establish that α1 = α2  =  0, and the first two equations tell us that A  
=  B   =  x0/2.  The displacements are then given by 
 
 ttxttxx )(cos)(cos)cos(cos 212

1
212

1
02102

1 ω+ωω−ω=ω+ω=  17.7.13 
 
and .)(sin)(sin)cos(cos 212

1
212

1
02102

1 ttxttxy ω+ωω−ω−=ω−ω=  17.7.14 
 
Let us imagine, for example, that k2 is much less than k1 (but not negligible), so that we 
have two weakly-coupled oscillators.  In that case equations17.7.7 tell us that the 
frequencies of the two normal modes are nearly equal.  What equation 17.7.13 describes, 
then, is a rapid oscillation of the first mass with angular frequency )( 212

1 ω+ω whose 
amplitude is modulated with a slow angular frequency .)( 212

1 ω−ω   Equation 17.7.14 
describes the same sort of motion for the second mass, except that the modulation is out 
of phase by 90o with the modulation of the motion of the first mass.  For a while the first 
mass will oscillate with a large amplitude.  This will gradually decreases, while the 
amplitude pf the motion of the second mass increases until the motion of the first mass 
momentarily ceases.  After that, the amplitude of the motion of the second mass starts to 
decrease, while the first mass starts up again.  And so the motion continues, with the first 
mass and the second mass alternately taking up the motion. 
 
  
17.8     Transverse Oscillations of Masses on a Taut String 
 
  
 
 
 
 
 
 
 
A light string of length 4a is held taut, under tension F between two fixed points.  Three 
equal masses m are attached at equidistant points along the string.  They are set into 
transverse oscillation of small amplitudes, the transverse displacements of the three 
masses at some time being y1, y2 and y3.   
 
The kinetic energy is easy.  It is just 
 
    .)( 2

3
2
2

2
12

1 yyymT &&& ++=     17.8.1 
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The downward component of the force on the first mass is ,cosθF  where 

,cos
2
1

2
1

ya
y
+

=θ which, to first order of small quantities, is just y1/a.  The potential 

energy of this mass (i.e. the work required to bring it to this position from its equilibrium 

position) is therefore .
2

2
1

12
11

a
Fyy

a
Fy

=×   Similarly, the potential energy of the third 

mass is  .
2

2
3

a
Fy    The downward component of the two forces on the second mass, 

similarly, is .
2

)(
2

)( 2
32

2
12

a
yyF

a
yyF −

+
−    Thus the potential energy of the system is 

 

( ) .)()()(
2

2
332

2
221

2
1

2
3

2
32

2
12

2
1 yyyyyyy

a
Fyyyyyy

a
FV +−+−=+−+−+= 17.8.2 

 
Apply Lagrange’s equation in turn to the three coordinates: 
 
   ,0)2( 211 =−+ yyFyam &&     17.8.3 
 
   ,0)2( 3212 =−+−+ yyyFyam &&     17.8.4 
 
   .0)2( 323 =+−+ yyFyam &&     17.8.5 
 
Seek solutions of the form .,, 3

2
32

2
21

2
1 yyyyyy ω−=ω−=ω−= &&&&&&  

 
Then   ,0)2( 21

2 =−ω− FyyamF     17.8.6 
 
  ,0)2( 32

2
1 =−ω−+− FyyamFFy    17.8.7 

 
   .0)2( 3

2
2 =ω−+− yamFFy    17.8.8 

 
Putting the determinant of the coefficients to zero gives an equation for the frequencies of 
the normal modes.  The solutions are: 
 
            Slow   Medium       Fast 
 

 
am

F)22(2
1

−
=ω           

am
F22

1 =ω                 
am

F)22(2
1

+
=ω  

 
Substitution of these into equations 17.8.6 to 8 gives the following displacement ratios: 
 
y1 : y2 : y3  =    1 : √2  : 1          1  :  0  :  −1  1 : −√2  : 1 
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These are illustrated in figure XVII.8. 
   
As usual, the general motion is a linear combination of the normal modes, the relative 
amplitudes and phases of the modes depending upon the initial conditions. 
  
If the motion of the first mass is a combination of the three modes with relative 
amplitudes in the proportion ,ˆ:ˆ:ˆ 321 qqq  and with initial phases ,,, 321 ααα  its motion is 
described by 
 
  .)sin(ˆ)sin(ˆ)sin(ˆ 3332221111 α+ω+α+ω+α+ω= tqtqtqy   17.8.9 
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The motions of the second and third masses are then described by 
 
  )sin(ˆ2)sin(ˆ2 3331112 α+ω−α+ω= tqtqy    17.8.10 
 
and  .)sin(ˆ)sin(ˆ)sin(ˆ 3332221113 α+ω+α+ω−α+ω= tqtqtqy   17.8.11 
 
These can be written 
 
    ,3211 qqqy ++=      17.8.12 
 
    312 22 qqy −=     17.8.13 
 
and    ,3211 qqqy +−=      17.8.14 
 
where the qi , like the yi , are time-dependent coordinates. 
 
We could, if we wish, express the qi in terms of the yi, by solving these equations: 
 
    ,)2( 3214

1
1 yyyq ++=     17.8.15 

 
    )( 312

1
2 yyq −=      17.8.16 

 
and    .)2( 3214

1
1 yyyq +−=     17.8.17 

 
We have hitherto described the state of the system as a function of time by giving the 
values of the coordinates y1 , y2 and y3.  We could equally well, if we wished, describe the 
state of the system by giving, instead, the values of the coordinates q1 , q2 and q3.  Indeed 
it turns out that it is very useful to do so, and these coordinates are called the normal 
coordinates, and we shall see that they have some special properties.  Thus, if you 
express the kinetic and potential energies in terms of the normal coordinates, you get 
 
    )424( 2

3
2
2

2
12

1 qqqmT &&& ++=    17.8.18 
 

and   ( ) ( )[ ].22222 2
1

2
2

2
1 qqq

a
FV +++−=    17.8.19 

 
Note that there are no cross terms.  When you apply Lagrange’s equation in turn to the 
three normal coordinates, you obtain 
 
    ( ) ,22 11 Fqqam −−=&&     17.8.20 
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    22 2Fqqam −=&&     17.8.21 
 
and    ( ) .22 33 Fqqam +−=&&    17.8.22 
 
Notice that the normal coordinates have become completely separated into three 
independent equations and that each is of the form qq 2ω−=&& and that each of the normal 
coordinates oscillates with one of the frequencies of the normal modes.  Much of the art 
of solving problems involving vibrating systems concerns identifying the normal 
coordinates. 
 
 
17.9   Vibrating String 
 
It is possible that the three modes of vibration of the three masses in section 17.8 
reminded you of the fundamental and first two harmonic vibrations of a stretched string – 
and it is quite proper that it did.  If you were to imagine ten masses attached to a stretched 
string and to carry out the same sort of analysis, you would find ten normal modes, of 
which one would be quite like the fundamental mode of a stretched string, and the 
remainder would remind you of the first nine harmonics.  You could continue with the 
same analysis but with a very large number of masses, and eventually you would be 
analysing the vibrations of a continuous heavy string.  We do that now, and we assume 
that we have a heavy, taut string of mass µ per unit length, and under a tension F.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I show in figure XVII.9 a portion of length δx of a vibrating rope, represented by A0B0 in 
its equilibrium position and by AB in a displaced position.  The rope makes an angle ψA 

FIGURE XVII.9 
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with the horizontal at A and an angle ψB with the horizontal at B.  The tension in the rope 
is F.  The vertical equation of motion is  
 

   .)sin(sin 2

2

t
yxF AB ∂

∂
δµ=ψ−ψ     17.9.1 

 

If the angles are small, then ,sin
x
y

∂
∂

≅ψ  so the expression in parenthesis is .2

2

x
x
y

δ
∂
∂   The 

equation of motion is therefore 
 

   .where,
2

2

2

2
2

µ
=

∂
∂

=
∂
∂ Tc

t
y

x
yc            17.9.2,a,b 

 
As can be verified by substitution, the general solution to this is of the form 
 
   .)()( ctxgctxfy ++−=     17.9.3  
 
This represents a function that can travel in either direction along the rope at a speed c 
given by equation 17.9.2b.  Should the disturbance be a periodic disturbance, then a wave 
will travel along the rope at that speed.  Further analysis of waves in ropes and strings is 
generally done in chapters concerned with wave motion.  This section, however, at least 
establishes the speed at which a disturbance (periodic or otherwise) travels along a 
stretched strong or rope. 
 
 
 
17.10   Water 
 
Water consists of a mass M (“oxygen”) connected to two smaller equal masses m 
(“hydrogen”) by two equal springs of force constants k, the angle between the springs 
being 2θ. The equilibrium length of each spring is r.  The torque needed to increase the 
angle between the springs by 2δθ is 2cδθ.  See figure XVII.10. 
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At any time, let the coordinates of the three masses (from left to right) be  
 
 ),(,),(,),( 332211 yxyxyx  
 
and let the equilibrium positions be 
 
 ,),(,),(,),( 303020201010 yxyxyx    where y30  =  y10 . 
 
We suppose that these coordinates are referred to a frame in which the centre of mass of 
the system is stationary. 
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Let us try and imagine, in figure XVII.11, the vibrational modes.  We can easily imagine 
a mode in which the angle opens and closes symmetrically.  Let is resolve this mode into 
an x-component and a y-component.   In the x-component of this motion, one hydrogen 
atom moves to the right by a distance q1 while the other moves to the left by and equal 
distance q1.  In the y-component of this symmetric motion, both hydrogens move 
upwards by a distance q2, while, in order to keep the centre of mass of the system 
unmoved, the oxygen necessarily moves down by a distance 2mq2/M.  We can also 
imagine an asymmetric mode in which one spring expands while the other contracts.  
One hydrogen moves down to the left by a distance q3, while the other moves up to the 
left by the same distance.  In the meantime, the oxygen must move to the right by a 
distance (2mq3 sin θ)/M, in order to keep the centre of mass unmoved.   
 
We are going to try to write down the kinetic and potential energies in terms of the 
internal coordinates q1, q2 and q3. 
 
It is easy to write down the kinetic energy in terms of the (x , y) coordinates: 
 
  .)()()( 2

3
2
32

12
2

2
22

12
1

2
12

1 yxmyxMyxmT &&&&&& +++++=   17.10.1 
 
From geometry, we have: 
 
  θ−=θ−= cossin 311311 qqyqqx &&&&&&           17.10.2a,b 
 

  
M

qmy
M

qmx 2
2

3
2

2sin2 &
&

&
& −=

θ
=           17.10.3a,b 

   
  θ+=θ−−= cossin 313313 qqyqqx &&&&&&          17.10.4a,b 
 
On putting these into equation 17.9.1 we obtain 
 
 ( ) ./)sin2(1)/21( 2

3
22

2
2
1 qMmmqMmmqmT &&& θ++++=              17.10.5 

 
For short, I am going to write this as 
 
  .2

333
2
222

2
111 qaqaqaT &&& ++=       17.10.6 

 
 
Now for the potential energy.  
 
The extension of the left hand spring is 
 

 
( )./)cossin2(1cos)/21(sin

cossin2cos2cossin

321

3
3

2
211

MmqMmqq
M

mqq
M

mqqqr

θθ++θ+−θ−=

θθ
++

θ
−θ−θ−=δ

 17.10.7 
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The extension of the right hand spring is 

  
( )./)sin2(1cos)/21(sin

sin2cos2cossin

2
321

2
3

3
2

212

MmqMmqq
M

mqq
M

mqqqr

θ+−θ+−θ−=

θ
−−

θ
−θ−θ−=δ

 17.10.8 

 
The increase in the angle between the springs is 
 

 .sin)/21(2cos22 21

r
qMm

r
q θ+

+
θ

−=δθ     17.10.9 

 
The potential energy (above the equilibrium position) is  
 
  .)2()()( 2

2
12

22
12

12
1 δθ+δ+δ= crkrkV              17.10.10 

 
On substituting equations 17.10.7,8 and 9 into this, we obtain an equation of the form 
 
  ,2 2

333
2
2222112

2
111 qbqbqqbqbV +++=              17.10.11 

 
where I leave it to the reader, if s/he wishes, to work out the detailed expressions for the 
coefficients.  We still have a cross term, so we can’t completely separate the coordinates, 
but we can easily apply Lagrange’s equation to equations 17.10.6 and 11, and then seek 
simple harmonic solutions in the usual way.  Setting the determinant of the coefficients to 
zero leads to the following equation for the angular frequencies of the normal modes: 
 

   .0
00

0

0

11
2

11

11
2

1112

1211
2

11

=

ω−

ω−

ω−

ab
abb

bab

            17.10.12 

 
Thus, given the masses and r, θ, k and c, one can predict the frequencies of the normal 
modes.  Can one calculate k and c given the frequencies?  I don’t know, to tell the truth.  
Can I leave it to the reader to investigate further? 
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17.11    A General Vibrating System 
 
In a more general system, one with n degrees of freedom and hence described by n 
generalized coordinates, the expressions for the kinetic and potential energies will be of 
the form 
 

 

2

223223
2
222

112112
2
111

...............................................
......................................................

22

222

nnn

nn

nn

qa

qqaqqaqa

qqaqqaqaT

&

&&K&&&

&&K&&&

+

+
+

++++

+++=

  17.11.1 

 
 
and .....................................................2 22

111 nnnqbqbV ++=   17.11.2 
 
On applying Lagrange’s equation to q1, we obtain 
 

.12121111212111 nnnn qbqbqbqaqaqa +++++++ KK&&KK&&&&  17.11.3 
 
On seeking a simple harmonic solution, we obtain 
 
 .)()()( 2

112
2

12121
2

1111 nnn qabqabqab ω−++ω−+ω− KK  17.11.4 
 
We obtain equations similar to equation 17.11.3 when applying Lagrange’s equations to 
the other coordinates.  Thus, for example, if there were three coordinates, the differential 
equations would be 
 

 .0

3

2

1

333231

232221

131211

3

2

1

333231

232221

131211
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q
q
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q
q
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aaa
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&&

&&

&&

    17.11.5 

 
This can be written for short (and for n coordinates, not just three) 
 
   ,0=+ •• qq ba &&       17.11.6 
 
where a and  b are tensors are n × n second-rank tensors. 
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17.12    A Driven System 
 
It would probably be useful before reading this and the next section to review Chapters 
11 and 12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure XVII.12 shows the same system as figure XVII.2, except that, instead of being left 
to vibrate on its own, the second mass is subject to a periodic force tFF ω= sinˆ .  For 
the time being, we’ll suppose that there is no damping.  Either way, it is not a 
conservative force, and Lagrange’s equation will be used in the form of equation 13.4.12.  
As in section 17.2, the kinetic energy is 
 
    .2

222
12

112
1 xmxmT && +=     17.12.1 

 
Lagrange’s equations are 
 

    1
11

P
x
T

x
T

dt
d

=
∂
∂

−
∂
∂
&

     17.12.2 

 

and    .2
22

P
x
T

x
T

dt
d

=
∂
∂

−
∂
∂
&

     17.12.3 

 
We have to identify the generalized forces P1 and P2. 
 
In the nonequilibrium position, the extension of the left hand spring is x1 and so the 
tension in that spring is .111 xkf =   The extension of the right hand spring is 22 xx − and 
so the tension in that spring is .)( 1222 xxkf −=   If x1 were to increase by δx1, the work 
done would be ,)( 112 xff δ− and therefore the generalized force associated with the 
coordinate x1 is .)( 111221 xkxxkP −−=    If  x2 were to increase by δx2, the work done 
would be ,)( 22 xfF δ−  and therefore the generalized force associated with the coordinate 
x2 is ).(sinˆ

1222 xxktFP −−ω=   The lagrangian equations of motion therefore become 
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   0)( 2212111 =−++ xkxkkxm &&     17.12.4 
 
and   .sinˆ)( 12222 tFxxkxm ω=−+&&     17.12.5 
 
Seek solutions of the form .and 2

2
21

2
1 xxxx ω−=ω−= &&&&   The equations become 

 
   0)( 221

2
121 =−ω−+ xkxmkk     17.12.6 

 
and   .sinˆ)( 2

2
2212 tFxmkxk ω=ω−+−    17.12.7 

 
We do not, of course, now equate the determinants of the coefficients to zero (why not?!), 
but we can solve these equations to obtain 
 

   2
2

2
22

2
121

2
1 ))((

sinˆ

kmkmkk
tFkx

−ω−ω−+
ω

=     17.12.8 

 
 

and   .
))((

sinˆ)(
2
2

2
22

2
21

2
121

2 kmkmkk
tFmkkx

−ω−ω−+
ωω−+

=    17.12.9 

 
The amplitudes of these motions (and how they vary with the forcing frequency ω) are 
 

   
21

2
221221

4
21

2
1 )(

ˆ
ˆ

kkkmkmkmmm
Fkx

+ω++−ω
=            17.12.10 

 
 

and             ,
)(

ˆ)(ˆ
21

2
221221

4
21

2
121

2 kkkmkmkmmm
Fmkkx

+ω++−ω
ω−+

=            17.12.11 

 
 
where I have re-written the denominators in the form of a quadratic expression in ω2. 
 
For illustration I draw, in figure XVII.13, the amplitudes of the motion of m1(continuous 
curve, in black) and of  m2 (dashed curve, in blue) for the following data:   
 
   ,2,3,1,1ˆ

2121 ===== mmkkF  
 
when the equations become 

   
)1)(16(

1
176

1ˆ 22241 −ω−ω
=

+ω−ω
=x                 17.12.12 
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and   .
)1)(16(

32
176

32ˆ 22

2

24

2

2 −ω−ω
ω−

=
+ω−ω

ω−
=x        17.12.13 
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Where the amplitude is negative, the oscillations are out of phase with the force F.  The 
amplitudes go to infinity (remember we are assuming here zero damping) at the two 
frequencies were the denominators of equations 17.12.10 and11 are zero.  The amplitude 
of the motion of m2 is zero when the numerator of equation 17.12.11 is zero.  This is at an 
angular frequency of ,/)( 121 mkk +  which is just the angular frequency of the motion of 
m1 held by the two springs between two fixed points.   
 
  
17.13   A Damped Driven System 
 
I’ll leave the reader to add some damping to the system described in section 17.12.  Let 
us here try it with the system described in section 17.7.    We’ll apply a periodic force to 
the left hand mass, and we’ll suppose that the damping constant for each mass is 

./ mb=γ    We could write the periodic force as tFF ω= sinˆ , but the algebra will be 
easier if we write it as .ˆ tieFF ω=   If the initial condition is such that F = 0 when t = 0, 
then we choose just the imaginary part of this and subsequent expressions. 
 
The equations of motion are 

FIGURE XVII.13 



 27

   =xm && − the damping force xb&  
              − the tension in the left hand spring k1x 
              + the force F 
              + the tension in the middle spring k2(y − x) 
     (this last is a thrust whenever y < x) 
 
and   =ym && − the damping force yb&  
              − the thrust in the right hand spring k1x 
              + the tension in the middle spring k2(y − x) 
 
 
 
 
 
 
 
 
 
 
 
That is, 
   tieFykxkkxxm ω=−++γ+ ˆ)( 221&&&     17.13.1 
 
and   .0)( 221 =−++γ+ xkykkyym &&&     17.13.2 
 
 
For the steady-state motion, seek solutions of the form 
 
   .andthatso,, 22 yiyxixyyxx ω=ω=ω−=ω−= &&&&&&  
 
The equations then become 
 
   tieFykxibmkk ω=−ω+ω−+ ˆ)( 2

2
21    17.13.3 

 
and   .0)( 2

212 =ω+ω−++− yibmkkxk    17.13.4 
 
There is now a little algebra to be carried out.  Solve these equations for x and y, and 
when, in doing so, there is a complex number in the denominator, multiply top and 
bottom by the conjugate in the usual way, so as to get x and y in the forms 

."'and"' iyyixx ++   Then find expressions for the amplitudes x̂ and ŷ .  After some 
algebra, the amount of which depends on one’s skill, experience and luck  (it is not 
always obvious how to gather terms in the most economical way, and you need some 
luck in this) you eventually get, for the amplitudes of the motion 
 

k1 k2 
m m k1 

FIGURE XVII.14 

x y 

tFF ω= sinˆ



 28

   ( )
( )( )2222

21
2222

1

22222
212

)2()(

ˆ)(ˆ
ω+ω−+ω+ω−

ω+ω−+
=

bmkkbmk
Fbmkkx  17.13.5 

 
 

and   ( )( ) .
)2()(

ˆ
ˆ 2222

21
2222

1

22
22

ω+ω−+ω+ω−
=

bmkkbmk
Fky     17.13.6 

 
There are many variables in these expressions, but in order to see qualitatively what the 
steady state motion is like, I’m going to put F̂ , m and k1 = 1.  I think if I also put b = 1, 
this will give light damping in the sense described in Chapter 11.  As for k2, I am going to 

introduce a coupling coefficient α defined by .
1

or 12
21

2 kk
kk

k








α−

α
=

+
=α   This 

coupling constant will be close to zero if the middle spring is very weak, and 1 if the 
middle connector is a rigid rod.  The equations now become 
 

   
( )

( ) ( )( ) .
)1(

ˆ
222

1
1222

222
1

1
2

ω+ω−ω+ω−

ω+ω−
=

α−
α+

α−x    17.13.7 

 
 

and   ( ) ( )( ) .
)1(

)1/(ˆ
222

1
1222

2

ω+ω−ω+ω−

α−α
=

α−
α+

y    17.13.8 

 
I dare say these expressions can be simplified, but it is late and my energy is flagging, 
and in any case I am not at all sure that “simplifying” them will much increase the 
computational efficiency.  Figure XVII.15 shows the amplitudes of the motions of the 
two masses as a function of frequency, for α  =  0.1, 0.5 and 0.9.  The continuous black 
curves are for the left hand mass; the dashed blue curve is for the right hand mass. 
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