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CHAPTER 3 
SYSTEMS OF PARTICLES 

 
3.1   Introduction 
 
By systems of particles I mean such things as a swarm of bees, a star cluster, a cloud of 
gas, an atom, a brick.  A brick is indeed composed of a system of particles – atoms − 
which are constrained so that there is very little motion (apart from small amplitude 
vibrations) of the particles relative to each other.  In a system of particles there may be 
very little or no interaction between the particles (as in a loose association of stars 
separated from each other by large distances) or there may be (as in the brick) strong 
forces between the particles.  Most (perhaps all) of the results to be derived in this 
chapter for a system of particles apply equally to an apparently solid body such as a 
brick.  Even if scientists are wrong and a brick is not composed of atoms but is a genuine 
continuous solid, we can in our imagination suppose the brick to be made up of an 
infinite number of infinitesimal mass and volume elements, and the same results will 
apply. 
 
What sort of properties shall we be discussing?  Perhaps the simplest one is this:  The 
total linear momentum of a system of particles is equal to the total mass times the velocity 
of the center of mass.  This is true, and it may be “obvious” − but it still requires proof.  It 
may be equally “obvious” to some that “the total kinetic energy of a system of particles is 
equal to ,2

2
1 vM  where M is the total mass and v  is the velocity of the center of mass”  − 

but this one, however “obvious”, is not true! 
 
Before we get round to properties of systems of particles, I want to clarify what I mean 
by the moment of a vector such as a force or momentum.  You are already familiar, from 
Chapters 1 and 2, with the moments of mass, which is a scalar quantity. 
 
 
3.2   Moment of a Force 
 
First, let’s look at a familiar two-dimensional situation.   In figure III.1 I draw a force F 
and a point O.  The moment of the force with respect to O can be defined as 
Force times perpendicular distance from O to the line of action of F. 
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Alternatively, (figure III.2) the moment can be defined equally well by 
Transverse component of force times distance from O to the point of application of the 
force. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Either way, the magnitude of the moment of the force, also known as the torque, is 

.sin θrF   We can regard it as a vector, τ, perpendicular to the plane of the paper: 
 
     .Fr ×=τ      3.2.1 
 
Now let me ask a question.  Is it correct to say the moment of a force with respect to (or 
“about”) a point or with respect to (or “about”) an axis? 
 
In the above two-dimensional example, it does not matter,  but now let me move on to 
three dimensions, and I shall try to clarify. 
 
In figure III.3, I draw a set of rectangular axes, and a force F, whose position vector with 
respect to the origin is r. 
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The moment, or torque, of F with respect to the origin is the vector 
   
     .Fr ×=τ      3.2.2 
 
The x-, y- and z-components of τ are the moments of  F with respect to the x-, y- and z-
axes.  You can easily find the components of τ by expanding the cross product 3.2.2: 
 
  ( ) ( ) ( ),ˆˆˆ xyzxyz yFxFxFzFzFyF −+−+−=τ zyx    3.2.3 
 
where z,y,x ˆˆˆ are the unit vectors along the x, y, z axes.  In figure III.4, we are looking 
down the x-axis, and I have drawn the components Fy and Fz, and you can see that, 
indeed, τx  =  yz zFyF − . 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The dimensions of moment of a force, or torque, are ML2T−2, and the SI units are N m.  
(It is best to leave the units as N m rather than to express torque in joules.) 
 
 
3.3   Moment of Momentum 
 
In a similar way, if a particle at position r has linear momentum p  =  mv, its moment of 
momentum with respect to the origin is the vector l defined by 
 
     ,prl ×=      3.3.1 
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and its components are the moments of momentum with respect to the axes.  Moment of 
momentum plays a role in rotational motion analogous to the role played by linear 
momentum in linear motion, and is also called angular momentum.   The dimensions of 
angular momentum are ML2T−1.  Several choices for expressing angular momentum in SI 
units are possible; the usual choice is J s (joule seconds). 
 
 
3.4   Notation 
 
I am going to establish the following notation for the purposes of this chapter, with 
respect to a system of particles.  I shall suppose that we have n particles, and that the 
mass and position vector with respect to some origin of the ith particle are mi and ri.  The 
total mass is ,∑= imM  where the sum is understood to be over all particles – that is, i 
goes from 1 to n. 
 
A given particle may have an external force Fi acting upon it.  (It may, of course, have 
several external forces acting on it, but I mean by Fi the vector sum of all the external 
forces acting on the ith particle.)  It may also interact with the other particles in the 
system, and consequently it may have internal forces Fij acting upon it, where j goes 
from 1 to n except for i.  I define the vector sum ∑= iFF  as the total external force 
acting upon the system.  The external torque with respect to the origin of the external 
force Fi on the ith particle is . Fr iii ×=τ  
 
I establish the following notation: 
 
Total external torque on the system with respect to the origin: 
 
    .iii Frττ ×== ∑∑      3.4.1 
 
The linear momentum of the ith particle is pi = mivi and the total linear momentum of the 
system is  
 
    .iii m vp ∑∑ ==P     3.4.2 
 
The total angular momentum of the system is 
 
    .iii prlL ×== ∑∑     3.4.3 
 
The total kinetic energy of the system is  
 
    .2

2
1 ∑= imT v      3.4.4 
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(We are dealing in this chapter with “particles”, whose kinetic energy is entirely 
translational, and does not include kinetic energy of rotation or of vibration.  The symbol 
T, rather than K, is traditionally used for kinetic energy in advanced works on mechanics.   
I am not sure why this is; perhaps it is because U or V are used for potential energy.  By 
all means use K if you prefer.) 
 
Position vector of centre of mass (see Chapter 1, especially equation 1.1.3): 
     

   .ˆˆˆ  zx
r

r zyx
M
m ii ++== ∑ y     3.4.5 

 
Here the bar denotes centre of mass, and the “hats” denote unit vectors. 
 
For the velocity of the centre of mass I may use either .or vr&  
 
O is an arbitrary origin of coordinates.  C is the centre of mass.   
 
For position vectors, unprimed single-subscript symbols will refer to O.  Primed single-
subscript symbols will refer to C.  This will be clear, I hope, from figure III.5, which will 
also explain the symbols with two subscripts.   In the figure I have drawn just two of the 
n particles – the ith and the jth. 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that    ii rrr ′+=      3.4.6  
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and therefore     ii rrr &&& ′+=  ;     3.4.7 
 
that is to say    ii vvv ′+= .     3.4.8 
 
Note also that    .0=′∑ iim r      3.4.9 
 
Note further that 
 
 ( ) .MMmmmm iiiiiii 0=−=−=−=′ ∑∑∑∑ vvvvvvv   3.4.10 
 
That is, the total linear momentum with respect to the centre of mass is zero. 
 
Having established our notation, we now move on to some theorems concerning systems 
of particles.  It may be more useful for you to conjure up a physical picture in your mind 
what the following theorems mean than to memorize the details of the derivations. 
 
 
3.5   Linear Momentum 
 
Theorem:  The total momentum of a system of particles equals the total mass times the 
velocity of the centre of mass. 
 
Thus:            ( ) .0+=′+== ∑∑ vvvvP Mmm iiii    3.5.1 
 
 
3.6   Force and Rate of Change of Momentum 
 
Theorem:  The rate of change of the total momentum of a system of particles is equal to 
the sum of the external forces on the system. 
 
Thus, consider a single particle.  By Newton’s second law of motion, the rate of change 
of momentum of the particle is equal to the sum of the forces acting upon it: 
 
    .∑+=

j
jiii FFp&    (j  g i)  3.6.1 

 
Now sum over all the particles: 
 
   ∑∑∑ +=

i j
ji

i
i FFP&    (j  g i) 

 
        ∑∑∑∑ ++=

j i
ij

i j
ji FFF 2

1
2
1  



 7

 
        ( ).2

1 ∑∑ ++=
i j

ijji FF F      3.6.2 

 
But, by Newton’s third law of motion, ijji FF +  = 0, so the theorem is proved. 
    
Corollary:  If the sum of the external forces on a system is zero, the linear momentum is 
constant.  (Law of Conservation of Linear Momentum.) 
 
 
3.7   Angular Momentum 
 
Notation:   CL = angular momentum of system with respect to centre of mass C. 
        L  = angular momentum of system relative to some other origin O. 
        r  =  position vector of C with respect to O. 
        P  = linear momentum of system with respect to O. 
                   (The linear momentum with respect to C is, of course, zero.) 
 
Theorem:   .C PrLL ×+=      3.7.1 
 
Thus:  ( ) ( ) ( )iiiiiiii mm v'vr'rvrprL +×+=×=×= ∑∑∑  
 
       ( ) ( ) iiiiiii mmm p'r'vr'v'rvr ×+×+×+×= ∑∑∑∑  
 
       ( ) .00 C Lvrvr +×+×+×= M  
 
â    .C PrLL ×+=  
 
Example.    A hoop of radius a rolling along the ground (figure III.6): 
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The angular momentum with respect to C is LC = ICω, where IC is the rotational inertia 
about C.  The angular momentum about O is therefore 
 
 L  =  ICω   +  Mva   =  ICω   +  Ma2ω  =  ( IC +  Ma2 )  =  Iω,  
 
where I =  IC +  Ma2 is the rotational inertia about O. 
 
 
3.8    Torque 
 
Notation:    Cτ  =  vector sum of all the torques about C. 
                    τ   =  vector sum of all the torques about the origin O. 
         F   =  vector sum of all the external forces. 
 
Theorem:       τ   =   Cτ   +   .Fr ×      3.8.1 
 
Thus:  ( ) iiiiii mm vrr'vrτ && ×+=×= ∑∑    
 
      .∑∑ ×+×= iiiii mm vrvr' &&  
 
â       τ   =   Cτ   +   .Fr ×  
 
 
3.9   Comparison 
 
At this stage I compare some somewhat similar formulas. 
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3.10   Kinetic energy 
 
We remind ourselves that we are discussing particles, and that all kinetic energy is 
translational kinetic energy. 
 
Notation:    CΤ  =  kinetic with respect to the centre of mass C. 
                    T   =  kinetic with respect to the origin O. 
  
Theorem:   .2

2
1

C vMTT +=      3.10.1 
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Thus:   
( ) ( )

.''

''
2

2
12

2
1

2
12

2
1

∑∑∑
∑∑

++=

++==

•

•

iiiii

iiiii

mmm

mmT

vv

v

vv

vvvv
 

 
â   .2

2
1

C vMTT +=  
 
Corollary: If  0=v ,   CTT = .   (Think about what this means.) 
 
Corollary:        For a non-rotating rigid body, CT  = 0, and therefore .2

2
1 vMT =  

                        (Think about what this means.) 
 
 
3.11   Torque and Rate of Change of Angular Momentum 
 
Theorem:  The rate of change of the total angular momentum of a system of particles is 
equal to the sum of the external torques on the system. 
 
Thus:    ∑ ×=

i
ii prL      3.11.1 

 
â   .i

i
ii

i
i prprL &&& ×+×= ∑∑      3.11.2 

 
But the first term is zero, because  ir&  and ip are parallel. 
 
Also    .∑+=

j
jiii FFp&      3.11.3 

 

â   
.ji

i j
ii

i
i

j
ji

i
ii

i
i

j
jii

i
i

FrFr

FrFrFFrL

∑∑∑

∑∑∑∑∑

×+×=

×+×=







+×=&

 

 
But ∑∑ =

i j
ji 0F by Newton’s third law of motion, and so ji

i j
i Fr∑∑ × i also zero.  

 
Also,  τ=×∑ i

i
i Fr , and so we arrive at  

 
    τ=L& ,      3.11.4 
 
which was to be demonstrated. 
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Corollary:  If the sum of the external torques on a system is zero, the angular momentum 
is constant.  (Law of Conservation of Angular Momentum.) 
 
 
3.12    Torque, Angular Momentum and a Moving Point 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
In figure III.7 I draw the particle mi, which is just one of n particles, n − 1 of which I 
haven’t drawn and are scattered around in 3-space.  I draw an arbitrary origin O, the 
centre of mass C of the system, and another point Q, which may (or may not) be moving 
with respect to O.  The question I am going to ask is:  Does the equation τ=L&  apply to 
the point Q?  It obviously does if Q is stationary, just as it applies to O.  But what if Q is 
moving?  If it does not apply, just what is the appropriate relation?    
 
The theorem that we shall prove – and interpret − is 
 
    .' QQQQ rrL &&×+= Mτ     3.12.1 
 
We start:  ( ) ( )[ ].QQQ vvrrL −×−= ∑ iii m     3.12.2 
 
â .)()()()( QQQQQ vvrrvvrrL −×−+−×−= ∑∑ iiiiii mm &&&&&    3.12.3 
 
The second term is zero, because vr =& . 

' 

&Q 

* mi 

C 

r  

Qr

rrr −= QQ'

Qrr −i

ir

i'r

III.7 FIGURE
O 
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Continue: 
 
 .)( QQQQQ ∑∑∑ ×+×−×−= vrvrvrrL &&&&

iiiiii mmm    3.12.4 
 
Now ,iiim Fv =&  so that the first term is just τQ. 
 
Continue: 
 

                        

.(Q

QQ

QQQQ

QQ

QQ

ii

M
MM

Mm

r)rr
rrrr

vrvrL

&&

&&&&

&&&

×−+=

×+×−=

×+×−= ∑

τ

τ

τ Q

      

 

â                                   .' QQQQ rrL &&×+= Mτ                            Q.E.D.  3.12.5 
 
Thus in general, QQQQ but, ττ =≠ LL &&  under any of the following three circumstances: 
 
   i.   0'Q =r   -  that is, Q coincides with C. 
 
  ii.    0Q =r&&  -  that is, Q is not accelerating. 
 
 iii.    Qr&&  and  Q'r are parallel, which would happen, for example, if O were a   
          centre of attraction or repulsion and Q were accelerating towards or away                            
          from O. 
 
 
3.13    The Virial Theorem 
 
First, let me say that I am not sure how this theorem got its name, other than that my 
Latin dictionary tells me that vis, viris means force, and its plural form, vires, virium is 
generally translated as strength. The term was apparently introduced by Rudolph 
Clausius of thermodynamics fame. We do not use the word strength in any particular 
technical sense in classical mechanics.  We use the word energy to mean the ability to do 
work; perhaps we could use the word strength to mean the ability to exert a force.  But 
enough of these idle speculations. 
 
Before proceeding, I define the quantity 
 
    2I i

i
irm∑=       3.13.1 

 
as the second moment of mass of a system of particles with respect to the origin.  As 
discussed in Chapter 2, mass is (apart from some niceties in general relativity) 
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synonymous with inertia, and the second moment of mass is used so often that it is nearly 
always called simply “the” moment of inertia, as though there were only one moment, the 
second, worth considering.  Note carefully, however, that you are probably much more 
used to thinking about the moment of inertia with respect to an axis rather than with 
respect to a point.  This distinction is discussed in Chapter 2, section 19.  Note also that, 
since the symbol I tends to be heavily used in any discussion of moments of inertia, for 
moment of inertia with respect to a point I am using the symbol I not in italics. 
 
I can also write equation 3.13.1 as  
 
    )(I . i

i
iim rr∑=      3.13.2 

 
Differentiate twice with respect to time: 
 
    ,)(2I ii

i
im rr &&

•∑=      3.13.3 

 
and    )(2I 2

iii
i

i rm rr &&&&&
•+= ∑     3.13.4 

 
or    ii

i
i mT rr &&&&

•∑+= 24I ,    3.13.5  

 
where T is the kinetic energy of the system of particles.  The sums are understood to be 
over all particles - i.e. i from 1 to n. 
 

iim r&&  is the force on the ith particle.  I am now going to suppose that there are no external 
forces on any of the particles in the system, but the particles interact with each other with 
conservative forces, Fij being the force exerted on particle i by particle j.  I am also going 
to introduce the notation ijji rrr −= , which is a vector directed from particle i to 
particle j.  The relation between these three vectors in shown in figure III.8. 
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I have not drawn the force Fij, but it will be in the opposite direction to rji if it is a 
repulsive force and in the same direction as rji if it is an attractive force. 
 
The total force on particle i is ,∑

≠ij
ijF  and this is equal to .iim r&&   Therefore, equation 

3.13.5 becomes 
 
    .24I ∑∑

≠

•+=
ij

ij
i

iT Fr&&     3.13.6 

 
Now it is clear that 
 
 
    .ij

i ij
ij

ij
ij

i
i FrFr •• ∑∑∑∑

<

=
≠

    3.13.7 

 
However, in case, like me, you find double subscripts and summations confusing and you 
have really no idea what equation 3.13.7 means, and it by no means at all clear, I write it 
out in full in the case where there are five particles.  Thus: 
 

   

.)(
)(
)(
)(

)(

545352515

454342414

353432313

252423212

151413121

FFFFr
FFFFr
FFFFr
FFFF

FFFFrFr

++++
++++
++++
++++

+++=

•

•

•

•

•• ∑∑
≠

r
ij

ij
i

i

 

 
Now apply Newton’s third law of motion: 
               

   

.)(
)(
)(
)(

)(

545352515

544342414

534332313

524232212

514131211

FFFFr
FFFFr
FFFFr
FFFF

FFFFrFr

++++
−+++
−−++
−−−+

−−−−=

•

•

•

•

•• ∑∑
≠

r
ij

ij
i

i

 

 
Now bear in mind that 2112 rrr =− , and we see that this becomes 
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5454

53354343

525242423232

5151414131312121

rF

rFrF
rFrFrF

rFrFrFrFFr

•

••

•••

••••

≠

+

++
+++

+++=∑∑ •

ij
iji

i

   

and we have arrived at equation 3.13.7.  Equation 3.13.6 then becomes  
 
    .24I ij

i ij
ijT Fr •

<
∑∑+=&&     3.13.8 

 
I now suppose that the forces between the particles are gravitational forces, such that 
 

    .3 ij
ij

ji
ij r

mGm
rF −=      3.13.9 

 
Now  
 

   ,
3

ij

ji
ijij

ij

ji
ijij r

mGm
r

mGm
−=−= •• rrFr    3.13.10 

 
which is the mutual potential energy of particles i and j.  In the summation of equation 
3.13.6, each pair has been counted once, and so the double summation is the total 
gravitational potential energy of the system of particles.  Thus equation 3.13.6 becomes 
 
    ,24I UT +=&&      3.13.11 
 
where T and U are the kinetic and potential energies of the system.  This is one statement 
of the virial theorem for a system of gravitating particles. 
 
Of course, as the individual particles move around in the system, I, T and U are all 
changing from moment to moment, but always in such a manner that equation 3.13.11 is 
satisfied. 
 
In a stable, bound system, by which I mean that, over a long period of time, there is no 
long-term change in the moment of inertia of the system, and the system is neither 
irreversibly dispersing or contracting, that is to say in a system in which the average 
value of I&&  over a long period of time is zero (I’ll define “long” soon), the virial theorem 
for a stable, bound system of gravitating particles takes the form 
 
     .02 =+ UT     3.13.12 
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Here the angular brackets are understood to mean the average values of the kinetic and 
potential energies over a long period of time.  By a “long” period we mean, for example, 
long compared with the time that a particle takes to cross from one side of the system to 
the other, or long compared with the time that a particle takes to move in an orbit around 
the centre of mass of the system.  (In the absence of external forces, of course, the centre 
of mass does not move, or it moves with a constant velocity.) 
 
For example, if a bound cluster of stars occupies a spherical volume of uniform density, 

the potential energy is 
a

GM
5

3 2

−   (see equation 5.9.1 of Celestial Mechanics), so the virial 

theorem (equation 3.13.7) will enable you to work out the mean kinetic energy and hence 
speed of the stars.   A globular cluster has roughly spherical symmetry, but it is not of 
uniform density, being centrally condensed.  If you assume some functional form for the 
density distribution, this will give a slightly different formula for the potential energy, 
and you can then still use the virial theorem to calculate the mean kinetic energy. 
 
A trivial example is to consider a planet of mass m moving in a circular orbit of radius a 
around a Sun of mass M, such that m<<M and the Sun does not move.  The potential 

energy of the system is U = −GMm/a.  The speed of the planet is given by equating 
a

m 2v  

to 2a
GMm , from which T = GMm/(2a), so we easily see in this case that 2T + U = 0. 

 
Problem.  Show that if the force between the particles is an attractive force proportional 
to the nth power of the distance between the particles, the virial theorem for a stable, 
bound system takes the form 
 
            .0)1(2 =+− UnT  
 
For gravitating particles, n = −2, so that, in that case, this equation reduces to equation 
3.13.12.  To make a start with this problem, you can start with equation 3.13.8.  Assume 
that ij

n
ijij kr rF 1−−=  and work out what is the mutual potential energy of two particles a 

distance rij apart. 
 


