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CHAPTER 7 

PROJECTILES 
 

      1.  No Air Resistance 
 

We suppose that a particle is projected from a point O at the origin of a coordinate system, 
the y-axis being vertical and the x-axis directed along the ground.  The particle is projected in 
the xy-plane, with initial speed V0 at an angle α to the horizon.  At any subsequent time in its 
motion its speed is V and the angle that its motion makes with the horizontal is ψ. 
 
The initial horizontal component if the velocity is V0 cos α, and, in the absence of air 
resistance, this horizontal component remains constant throughout the motion.  I shall also 
refer to this constant horizontal component of the velocity as u.  I.e. u = V0 cos α  =  constant 
throughout the motion. 
 
The initial vertical component of the velocity is V0 sin α, but the vertical component of the 
motion is decelerated at a constant rate g.   At a later time during the motion, the vertical 
component of the velocity is V sin ψ, which I shall also refer to as v. 
 
In the following, I write in the left hand column the horizontal component of the equation of 
motion and the first and second time integrals; in the right hand column I do the same for the 
vertical component. 
 
 
  Horizontal.     Vertical 
 
  0=x&&       gy −=&&                       7.1.1a,b 
 
  α== cos0Vux&     gtVy −α== sin0v&              7.1.2a,b 
 
  x V t= 0 cosα      y V t gt= −0

1
2

2sinα           7.1.3a,b 
 
The two equations 7.1.3a,b are the parametric equations to the trajectory. In vector form, 
these two equations could be written as a single vector equation: 
 
     r V g0= +t t1

2
2 .     7.1.4 

 
Note the + sign on the right hand side of equation 7.1.4.  The vector g is directed downwards. 
 
The xy-equation to the trajectory is found by eliminating t between equations 7.1.3a and 
7.1.3b to yield: 
 

     y x gx
V

= −tan
cos

.α
α

2

0
2 22

    7.1.5 
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Now, re-write this in the form 
 
     ( ) ( ) .2 yxx −=−  
 
Add to each side (half the coefficient of x)2 in order to "complete the square" on the left hand 
side, and, after some algebra, it will be found that the equation to the trajectory can be written 
as: 
 
     ( ) ( ),42 ByaAx −−=−     7.1.6 
 

where    A V
g

V
g

= =0
2

0
2 2

2
sin cos sin ,α α α    7.1.7 

 
 

     B V
g

= 0
2 2

2
sin ,α      7.1.8 

 
 

and     a V
g

= 0
2 2

2
cos .α      7.1.9   

 
Having re-arranged equation 7.1.5 in the form 7.1.6, we see that the trajectory is a parabola 

whose vertex is at (A , B).  The range on the horizontal plane is 2A, or V
g

0
2 2sin .α    The 

greatest range on the horizontal plane is obtained when sin 2α = 1, or α = 45o.  The greatest 
range on the horizontal plane is therefore V g0

2/ .  The maximum height reached is B, or 
V

g
0
2 2

2
sin .α    The distance between vertex and focus is a, or V

g
0
2 2

2
cos .α   The focus is above 

ground if this is less than the maximum height, and below ground if it is greater than the 
maximum height.   That is, the focus is above ground if cos sin .2 2α α<   That is to say, the 
focus is above ground if α > 45o and below ground if α < 45o. 
 
The radius of curvature ρ anywhere along the trajectory can be found using the usual formula 

( ) .
"
'1 2

3
2

y
y+

=ρ   At the top of the trajectory, y' = 0, so that ρ = 1/y'.  Alternatively (in case one 

has forgotten or is unfamiliar with the "usual formula"), we note that the speed at the top of 
the path is just equal to the (constant) horizontal component of the velocity Vo cos α.  We can 
then equate the centripetal acceleration ( ) gV to/cos22

0 ρα  and hence obtain:  
 

     ρ
α

=
V

g
0
2 2cos .      7.1.10 
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By subtracting this from our expression for the maximum height of the projectile, we find 

that the height of the centre of curvature above the ground is 
( ).

2
cos31 22

0

g
V α−

  The centre of 

curvature is above ground if α > 54o 44'. 
 
The range r on a plane inclined at an angle θ to the horizontal can be found by substituting 
x r= cosθ  and y r= sinθ  in the equation 7.1.5 to the trajectory.  This results, after some 
algebra, in 
 

     ( )[ ].sin2sin
cos2

2
0 θ−θ−α

θ
=

g
Vr    7.1.11 

 
This is greatest when 2α − θ = 90o;  i.e. when the angle of projection bisects the angle 
between the inclined plane and the vertical.  The maximum range is 
 

     ( )
.

sin1

2
0

θ+
=

g
Vr      7.1.12 

 
This is the equation, in polar coordinates, of a parabola, and this parabola, when rotated 
about its vertical axis, describes a paraboloid, known as the paraboloid of safety.  It is the 
envelope of all possible trajectories with an initial speed V0.  If a gun is firing shells with 
initial speed V0 , or a lawn sprinkler is ejecting water at initial speed V0, you are safe as long 
as you are outside the paraboloid of safety.   Figure VII.1 shows trajectories for α = 20, 40, 
60, 80, 100, 120, 140 and 160 degrees, and, as a dashed line, the paraboloid of safety.  Notice 
how the range changes with α and that it is greatest for α = 45o. 
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Problem. 
 
A gun projects a shell, in the absence of air resistance, at a initial angle α to the horizontal. 
The speed of projection varies with angle of projection and is given by 
 
    Initial speed = V0

1
2cos .α  

 
Show that, in order to achieve the greatest range on the horizontal plane, the shell should be 
projected at an angle to the horizontal whose cosine c is given by the solution of the equation 
 
    3 2 2 1 03 2c c c+ − − = . 
 
Find the optimum angle to a precision of one arcminute. 
 
     

2.   Air resistance proportional to the speed. 
 
As in the previous section, I shall write the x-component of the equation of motion, and of the 
first and second time integrals,  in the left hand column, and the y-component in the right-hand 
column.  The x-component of the air resistance per unit mass is x&γ  and the y-component is .y&γ   
Here γ is the damping constant, defined in Chapter 6, section 3.   The x-  and y-components of 
the initial velocity are, respectively, V0 cos α and V0 sin α.  It should be readily seen that the 
equations of motion and their time integrals are as follows:      

 
  Horizontal    Vertical 
 
  xx &&& γ−=     ygy &&& γ−−=               7.2.1a,b 
 

  teVux γ−α== .cos0&    ( )tt eeVy γ−γ− −−α== 1ˆ.sin0 vv&         7.2.2a,b         
         where γ= /ˆ gv  
 

( )texx γ−
∞ −= 1     ( )( ) teVy t vv ˆ1ˆsin1

0 −−+α
γ

= γ−        7.2.3a,b    

  where x V
∞ = 0 cosα

γ
 

 
(In case it is not "readily seen", for the horizontal motion refer to Chapter 6, section 3, 
especially equations 6.3.2, 6.3.3 and 6.3.5, and for the vertical motion refer to Chapter 6, 
section 3b, especially equations 6.3.24, 6.3.25 and 6.3.27.)  It will be seen that, as t → ∞,  

.,ˆ0, ∞→→→ xxu v-v    The xy-equation to the trajectory is the t-eliminant of equations 
6.2.3a and 6.2.3b.  After a small amount of algebra this is found to be: 
 



 5

    
( )

.1ln
ˆ

cos
ˆsin

0

0








−

γ
+

α
+α

=
∞x
x

V
Vx

y vv
    7.2.4 

 
This is illustrated in figure VII.2.   
 

 
The range on a horizontal plane is found by setting x = 0, to obtain either 
 
    ( )∞−−= xxAx /1ln       7.2.5 
 
or    ( ),1 / Axexx −

∞ −=       7.2.6 
 

where   ( )
.

ˆsin
cosˆ

0

0

v
v

+αγ
α

=
V

V
A  
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Example.   Suppose     V0 = 20 m s-1 
 

α  = 50o 
 
            g   = 9.8 m s-2 

 
   γ   = 1.96 s-1    ( )1sm5ˆ −=∴v  
 

Then       A   = 1.613 870 65  m 
 
and       x∞ = 6 559 05724. m. 

 
    

Try to find the range on the horizontal plane, using either equation 7.2.5 or 7.2.6, to nine 
significant figures.  Which equation works best?  Newton-Raphson may fail with a stupid first 
guess - but it should not be difficult to make a fairly intelligent first guess.  I should not tell you, 
but figure VII.2 was calculated using the data of this example. 
 
 
3. Air resistance proportional to the square of the speed. 
 
Notation:   V is the velocity, V is the speed.  The horizontal and vertical components of the 
velocity are, respectively, .sinandcos ψ==ψ== VyVxu && v   Here ψ is the angle that the 
instantaneous velocity V makes with the horizontal.   The resistive force per unit mass is kV2.  
The horizontal and vertical components of the resistive force are kV2 cos ψ and kV2 sin ψ 
respectively.  The launch speed is V0 and the launch angle (i.e. the initial value of ψ) is α.  
Distance travelled from the launch point, measured along the trajectory, is s, and speed  .sV &=   
The equations of motion are: 

          
Horizontal:   ψ−= cos2kVx&&      7.3.1 
 
Vertical:    .sin2 ψ−−= kVgy&&      7.3.2 
 

These cannot be integrated as conveniently as in the previous cases, but we can get a simple 
relation between the horizontal component u of the speed and the intrinsic coordinate s.  Thus, 
when we make use of  ,cosand, uVsVux =ψ== &&&&  equation 7.3.1 takes the form 
 

.skuu && −=       7.3.3 
 

Integration, with initial condition u V= 0 cosθ , yields 
 
     u V e k s= −

0 cos . .α      7.3.4 
 
 



 7
We can also obtain an exact explicit intrinsic equation to the trajectory by consideration of the 
normal equation of motion. 
 
The intrinsic equation to any curve is a relation between the intrinsic coordinates (s , ψ).   The 
rate at which the slope angle ψ changes as you move along the curve, i.e. dψ/ds, is called the 
curvature at a point along the curve.  If the slope is increasing with s, the curvature is positive.  
The reciprocal of the curvature at a point,  ds/dψ, is the radius of curvature at the point, denoted 
here by ρ. 
 
The normal equation of motion is the equation F = ma applied in a direction normal to the curve.  
The acceleration appropriate here is the centripetal acceleration V2/ρ or V2dψ/ds. 
 
In a direction normal to the motion, the air resistance has no component, and gravity has a 
component −g cos θ.  (It is minus because the curvature is clearly negative.)  The normal 
equation of motion is therefore 
 
       

     V d
ds

g2 ψ
θ= − cos .     7.3.5 

 

But    
ψ

α
=

ψ
=

−

cos
.cos

cos
0

skeVuV      7.3.6 

 

Therefore   V e d
ds

gk s
0
2 2 2 3cos . cos .α

ψ
ψ− = −     7.3.7 

 
Separate the variables, and integrate, with appropriate initial conditions: 
 

    .
cos

sec
0

2
22

0

3 dse
V

gd
s sk∫∫

ψ

α α
−=ψψ     7.3.8 

 
From here it is good integration practice to show that the intrinsic equation is 
 

( ).1
costansec

tanseclntansectansec 2
22

0

ske
kV

g
−

α
=








α+α
ψ+ψ

+αα−ψψ   7.3.9 

 
 

Problem.   If I asked you to program a computer to draw the path of a projectile in the absence of 
air resistance, there would be no difficulty - you would just use equation 7.1.5.  And if I asked 
you to do the same in the case in which the resistance is proportional to the speed, you would just 
use equation 7.2.4.  But instead, I am going to ask you to draw the path in the case in which the 
resistance is proportional to the square of the speed.  We do not have a simple equation of the 
form y = f(x); we have instead the intrinsic equation 7.3.9, and this is not so easy.  I have not 
done it, but it ought to be possible. .   For example, if we assume α = 45o,  that k = 1 m-1, and that 
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the initial speed is such that g kV/( ) ,0

2 1=   I think, if I have done my arithmetic correctly, that 
equation 7.3.9 becomes: 
 
   ( )[ ],tanseclntansec575793147.2 2

12 ψ+ψ+ψψ−=− se   7.3.10 
 
and this is the graph that has to be drawn.  The graph that has to be drawn, of course, is not s 
versus ψ - that’s easy.  You have to plot y versus x – that’s more difficult!   Have a go at it, and, 
if you manage to do it and to draw the path, accurately by computer, let me know 
(universe@uvvm.uvic.ca), and how you did it, and we'll see if we can incorporate your graph - 
with due acknowledgments, of course - in these notes.  I don't think there is a finite x∞, but see if 
you can find the range on the horizontal plane, and let me know if you can. 

 
       
 
      
  
 
   
 
   


