
APPENDIX B 
Solutions to Miscellaneous Problems 
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Therefore by Pythagoras:    
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Everything but x is known in this equation, which can therefore be solved for x.  There 
are several ways of solving it;  here’s a suggestion.  If we put in the numbers, the 
equation becomes 
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Put X  =  100 −  x2, and the equation becomes 
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This can be written   ,01)(3)( =−+= BAXf  where A and B are obvious functions of  
X.  Differentiation with respect to X gives )()(' 33

2
3 BAXf +−=  and Newton-Raphson 

iteration  (X  =  X − f/f') soon gives X, from which it is then found that x =  6.326 182 m. 
 
 
 
2.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the corotating frame the bob is in equilibrium under the action of three forces – its 
weight,  the tension in the string and the centrifugal force.  (If you don’t like rotating 
reference frames and centrifugal force, it will be easy for you to do it “properly”.)  
Resolve the forces perpendicular to the string:  ,sincos..sin 2

0 α=αΩα mgml and the 
problem is finished. 
  
 
3. (a) Raising or lowering the board doesn’t apply any torques to the system, so the 
angular momentum L is conserved.  That is, 
 
    ωθ= .sin22mlL    is constant.   (1) 
 
We also have that  ..cos ωθ= lg      (2) 
 
i.  Eliminate ω from these equations.  This gives: 
 

    ,tansin 2

2
33

gm
Ll =θθ     (3) 

 
which is constant. 

* *
Ω

α

l0 

T 

ml0sinα.Ω2 

mg 



ii.  Eliminate l from equations (1) and (2).  This gives: 
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which is constant. 
 
 
iii.  Eliminate θ from equations (1) and (2).  This gives: 
 

    .223 g
m
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(Check the dimensions of all the equations.)  Then we can get L/m from equation (1) and 
hence   
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0
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which is constant. 
 
 
(b)  i.          .m675023.0tansintansin 333

0
33 =αα=θθ ll  

 
Although we are asked to plot θ vertically versus l horizontally, it is easier, when 
working out numerical values, to calculate l as a function of θ.   That is, 
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(The number in the numerator is the cube root of 0.023675.) 

   
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

90

Length of string, metres

Se
m

ive
rti

ca
l a

ng
le

, d
eg

re
es

 



For l = 40 cm = 0.4 m, the semivertical angle is given by 
 
   .923369.0tansin3 =θθ  
 
The solution to this is          .'3145o=θ  
 
(See section 1.4 of Celestial Mechanics if you need to know how to solve the equation 
f(x) = 0.) 
 
 
(b)  ii.   .cotcot 2323 αΩ=θω  
 
With the given data, this is .tan385.199 23 θ=ω  
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(b)  iii.  ( ) ( ) .cossinsin 22
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23 αΩ=αΩ−ΩΩ=αΩ−ωω lllll  
 
That is, ( ) ,223 gal =−ωω  where, with the given initial data,  
 
  a  =  0.48168 m2 s−1  and  g2  =  96.04  m2 s−4 . 
 



Although we are asked to plot ω vertically versus l horizontally, it is easier, when 
working out numerical values, to calculate l as a function of ω.   That is, 
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To solve the above equation for ω might be slightly easier with the substitution of  u for 
1/ω: 
 
    .0242 =−+ lauug  
 
With l = 0.6 m, this gives u = 0.226121 rad−1 s, and hence ω =  4.422 rad s−1.  As in part 
(b) i, it is necessary to know how to solve the equation f(x) = 0.  See section 1.4 of 
Celestial Mechanics if you need to know how. 
 
 
 
 
 
 



4.   There are no horizontal forces, because the table is smooth.  Therefore the centre of 
mass of the rod falls vertically. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From energy considerations 
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But θ= cosly   and therefore ..sin θθ−= && ly  
 
â   .cos6)1sin3( 22 Cgl =θ+θ+θ &     (2) 
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Also, since ,cosandsin 22222222 θθ=θθ= &&&& lxly  
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and   .
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Of course y&& andθ  increase monotonically with θ; but x& starts and finishes at zero, and 
must go through a maximum.  With c  =   cos θ, equation (5) can be written 
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and by differentiating 2x&  with respect to c, we see that 2x&  is greatest at an angle θ given 
by 
 
   ,08123 3 =+− cc       (7) 
 
the solution of which is  .'5037o=θ  
 
If the length of the rod is 1 m (l = 0.5 m) and x&  = 1 m s−1, equation (6) becomes 
 
   ,044.294.26 2 =+− cc      (8) 
 
and the two solutions are  .'5280and'1517 oo=θ  
 
The reader who has done all the problems so far will be aware of the importance of being 
able instantly to solve the equation f(x) = 0.  If you have not already done so, you should 
write a computer or calculator program that enables you to do this instantly and at a 
moment’s notice.  See section 1.4 of Celestial Mechanics if you need to know how. 
 
If you want to find the normal reaction N of the table on the lower end of the rod, you 
could maybe start with the vertical equation of motion  .mgNym −=&&   Differentiate 
equation (4):  =yy &&&2 whatever, and the use equation (4) again for y& .  This looks like 
rather heavy and uninteresting algebra to me, so I shan’t pursue it.  There may be a better 
way... 
 
 
 
 
 
 
 
 
 



 
5.   In the figure below I have marked in red the forces on the rod, namely its weight mg 
and the horizontal and vertical components X and Y of the reaction of the hinge on the 
rod.  I have also marked, in green, the transverse and radial components of the 
acceleration of the centre of mass.  The transverse component is θ&&l  and the radial 
component is the centripetal acceleration .2θ&l  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From consideration of the moment of the force mg about the lower end of the rod, it is 
evident that the angular acceleration is 
 

    ,
4
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g θ
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and by writing θθθθ dd /as &&&&  and integrating (with initial conditions 0=θ=θ & ), or from 
energy considerations, we obtain the angular speed: 
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The horizontal and vertical equations of motion are: 
 
   )sincos( 2 θθ−θθ= &&&mlX      (3) 
 
and   ).cossin( 2 θθ+θθ=− &&&mlYmg     (4) 
 
(As ever, check the dimensions - and count the dots!) 
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After substitution for 2and θθ &&&  we find 
 
    )2cos3(sin4

3 −θθ= mgX     (5) 
 
and    .)cos31( 2

4
1 θ−= mgY     (6) 

 
The results follow immediately. 
 
 
6.   Call the length of the rod 2l.  Initially the height above the table of its centre of mass 
is l cos 40ο, and its gravitational potential energy is mg l cos 40ο.   When it hits the table 
at angular speed ω, its kinetic energy is ( ) .22
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To find the time taken, you can use equation 9.2.10: 
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The magnitude of the quantity before the integral sign is 0.184428 s.  To find the value of 
the integral requires either that you be an expert in elliptic integrals or (more likely and 
more useful) that you know how to integrate numerically (see Celestial Mechanics 1.2.)   
I make the value of the integral 2.187314, so that the time taken is 0.4034 seconds.  
When integrating, note that the value of the integrand is infinite at the lower limit.  How 
to deal with this difficulty is dealt with in Celestial Mechanics 1.2.  It cannot be glossed 
over. 
 
 
 
 
 
 
 
 



7.   Here is the diagram.  The forces are the weight mg of the rod, and the force of the 
table on the rod.  However, I have resolved the latter into two components – the normal 
reaction N of the table on the rod, and the frictional force F, which may be either to the 
left or the right, depending on whether rod is tending to slip towards the right or the left.  
The magnitude of F is less than µN as long as the rod is not jus about the slip.  When the 
rod is just about to slip, F = µN,  µ being the coefficient of limiting static friction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Just as in Problem 5, the equations of motion, as long as the rod does not slip, are 
 
    )2cos3(sin4

3 −θθ= mgF     (1) 
 
and     .)cos31( 2
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The figure below shows F/N as a function of θ.  One sees that, as the rod falls over, F/N 
increases, and, as soon as it attains a value of µ, the rod will slip.  We see, however, that 
F/N reaches a maximum value, and by calculus we can determine that it reaches a 
maximum value of  3706.0128/1015 =  when '.0535)(cos o

9
11 ==θ −   If  µ <  0.3706, 

the bottom of the rod will slip before '.0535o=θ   If, however, µ > 0.3706, the rod will 
not have slipped by the time ,'0535o=θ  and it is safe for a while as F/N starts to 
decrease.  When θ reaches '1148)(cos o

3
21 =− , the frictional force changes sign and 

thereafter acts to the left.  (The frictional force of the table on the rod acts to the left;  the 
frictional force of the rod on the table acts to the right.)  We know by now (since the rod 
survived slipping before ,'0535o=θ  that the magnitude of F/N can be at least as large  
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as 0.3706, and it doesn’t reach this until '.1551o=θ   Therefore, if the rod hasn’t slipped 
by ,'0535o=θ  it won’t slip  before '.1551o=θ   But after that it is in danger again of 
slipping.  F/N becomes infinite (N = 0) when ,'3170)(cos o

3
11 ==θ −  so it will certainly 

slip (to the right) before then. 
 
If  µ  =  0.25, the rod will slip to the left when   
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If  µ  =  0.75, the rod will slip to the right when   
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Again, it is very necessary that you prepare for yourself a program that will instantly 
solve the equation f(x) = 0. 
 
 
 
 
 



8.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let the length of the ladder be 2l.  By geometry, the distance OC remains equal to l 
throughout the motion;  therefore C describes a circle of radius l, centre O.  I have 
marked in, in green, the radial and transverse components of the acceleration of C, 
namely .and2 θθ &&& ll   The angular speed of the ladder is θ&  and the linear speed of the 
centre of mass C is .θ&l    I have also marked, in red the three forces acting on the ladder, 
namely its weight and the reactions of the floor and the wall on the ladder. 
 
The angular speed θ&  can be obtained from energy considerations.  That is, the loss of 
potential energy in going from angle α to the vertical to angle θ is equal to the gain in 
translational and kinetic energies: 
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The angular acceleration θ&&  can be obtained by considering that the total moment of all 
forces about P is mgl sin θ ,  and the rotational inertia is :2
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The vertical and horizontal equations of motion are: 
 
   )sincos( 2

2 θθ−θθ= &&& llmN      (3) 
 
and   ,)cossin( 2

1 θθ+θθ=− &&& llmNmg     (4) 
 
although we need only the first of these, because we wish to find out when N2  =  0. 
 
On substitution for 2and θθ &&&  we find that 
 
   )cos2cos3(sin4

3
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We need only the first of these to see that N2 becomes zero (and hence the upper end 
loses contact with the wall) .coscos 3

2 α=θ  
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It will, I think, be agreed that the point O remains fixed in space as long as the 
semicylinder remains in contact with wall and floor.  Therefore the centre of mass C 
moves in a circle around O.  We’ll call the radius of the circle, which is the distance 
between O and C, b, which, for a semicylinder, equals 4a/(3π) (see Chapter 1), where a is 
the radius of the semicylinder.  I have marked, in red, the three forces on the 
semicylinder, and also, in green, the radial and transverse components of the acceleration. 
 
The angular speed θ&  can be obtained from energy considerations.   The gain in kinetic 
energy in going from rest to an angular speed θ&  is ,)( 22

2
1 θ&mk  and the gain in potential 

energy when the centre of mass drops through a vertical distance b sin θ is .sin θmgb   
Here k is the radius of gyration about O, which, for a semicylinder, is given by 

.2
2
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[I have left b  and k as they are in the equations, so that the analysis could easily be 
adapted, if needed, for a hollow semicylinder, or a solid hemisphere, or a hollow 
hemisphere.  From Chapters 1 and 2 we recall: 
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On equating the gain in kinetic energy to the loss in potential energy, we obtain 
   

          .sin2
2

2 θ=θ
k
bg&      (1) 

 
The angular acceleration θ&&  can be obtained from applying θ=τ &&I about O: 
 
    ,cos 2θ=θ &&mkmgb   
 

from which    .cos2 θ=θ
k
bg&&       (2) 

  
The horizontal and vertical equations of motion are 



 
   )sincos( 2

2 θθ+θθ= &&&mbN      (3) 
 
and   .)cossin( 2

1 θθ−θθ=− &&&mbmgN     (4) 
 
We don’t really need equation (4), because we are trying to determine when N2 = 0. 
 
On substitution from equations (1) and (2), equation (3) becomes 
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This is zero when θ  =  0o  (which was the initial condition) or when θ = 90o, at which 
point contact with the wall is lost, which it was required to show. 
 

At this instant, the rotational velocity  is 2

2
k
bg counterclockwise. 

 

and the linear velocity of C is b 2

2
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bg  horizontally to the right. 

 

The rotational kinetic energy is ,2
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The translational kinetic energy is ,2
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The sum of these is mbg ,  which is just equal to the loss of the original potential energy, 
which serves as a check on the correctness of our algebra. 
 
There are now no horizontal forces, so the horizontal component of the velocity of C 
remains constant. The semicylinder continues to rotate, however, until the rotational 
kinetic energy is converted to potential energy and C rises to its maximum height.  If the 
base then makes an angle φ with the vertical, the gain in potential energy is mbg sin 
φ, and equating this to the rotational kinetic energy gives 



   ./1sin 22 kb−=φ  
 
This gives the following results: 
 
 Solid semicylinder:  φ  =   39o  46'  
 
 Hollow semicylinder:  φ  =   36o  30' 
 
 Solid hemisphere:  φ  =   40o  25' 
 
 Hollow hemisphere:  φ  =   38o  41' 
 
 
 
 
 
10.    
 
  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
It is well known that if µ>α −1tan the particle will slide down the plane unless helped by 
an extra force. I have drawn the three forces acting on the particle.  Its weight mg.  The 
reaction R of the plane on the particle; if the particle is in limiting static equilibrium, this 
reaction will make an angle λ (“the angle of friction”) with the plane such that tan λ  =  µ.  
It therefore makes an angle α − θ with the vertical.  Finally, the additional force P 
needed; we do not initially know the direction of this force. 
 
When three (or more) coplanar forces are in equilibrium and are drawn head-to-tail, they 
form a closed triangle (polygon). I draw the triangle of forces below. 
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It will be clear from the triangle that P is least when the angle between P and R is 90o: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The least value of P is therefore .)sincoscos(sin λα−λαmg   But µ=λtan  and 
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11.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As the cylinder rolls down the plane, the wedge, because its base is smooth, will slide 
towards the left.  Since there are no external horizontal forces on the system, the centre of 
mass of the system will not move horizontally (or, rather, it won’t accelerate 
horizontally.) 
 
As usual, we draw a large diagram, using a ruler , and we mark in the forces in red and 
the accelerations in green, after which we’ll apply F = ma to the cylinder, or to the 
wedge, or to the system as a whole, in two directions.  It should be easy and 
straightforward. 
 
I have drawn the linear acceleration s&&  of the cylinder down the slope, and its angular 
acceleration θ&& .  I have drawn the linear acceleration x&&  of the wedge, which is also 
shared with the cylinder.   I have drawn the gravitational force mg on the cylinder.  There 
is one more force on the cylinder, namely the reaction of the wedge on the cylinder.  But 
I’m not sure in which direction to draw it.  Is it normal to the plane?  That would mean   
there is no frictional force between the cylinder and the plane.  Is that correct 
(remembering that both the cylinder and the wedge are accelerating?  Of course I could 
calculate the moment of the force mg about the point of contact of the cylinder with the 
plane, and then I wouldn’t need to concern myself with any forces at that point of contact.  
But then that point of contact is not fixed.  Oh, dear, I’m getting rather muddled and 
unsure of  myself.  
 
This problem, in fact, is ideally suited to a lagrangian rather than a newtonian treatment, 
and that is what we shall do.  Lagrange proudly asserted that it was not necessary to draw 
any diagrams in mechanics, because it could all be done analytically.   We are not quite 
so talented a Lagrange, however, so we still need a large diagram drawn with a ruler.  
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But, instead of marking in the forces and accelerations in red and green, we mark in the 
velocities in blue. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
No frictional or other nonconservative forces do any work, so we can use Lagrange’s 

equations of motion for a conservative holonomic system;  .
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The speed of the wedge is x&  and the speed of the centre of mass of the cylinder is 

,cos222 α−+ xsxs &&&&  and the angular speed of the cylinder is ./as&  
 
The kinetic energy of the system is 
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and the potential energy is 
 
  .sinconstant α−= mgsV  
 
Application of Lagrange’s equation to the coordinate x gives us 
 
 

x 

s 
    m,  a 

2mkI =  

M 

mg 

s&

x&

x&

as /&& =θ



xMmsm &&&& )(cos +=α  
 
and application of Lagrange’s equation to the coordinate s gives us 
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Elimination of s&&  from these two equations gives us 
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You can also easily find an expression for s&&  is you wish. 
 
If the wedge had been fixed and immovable, and not free to slide on a smooth table, you 
would easily have been able to obtain s&&  by newtonian methods.  If you put M = ∞ in the 
expression for s&&  for the smooth table, do you get the same as you do for the immovable 
wedge?  (You should do.) 
 
Now that you have found x&& , you can also find s&&  and θ&& .  You therefore now know the 
magnitude and direction of the velocity of the centre of mass of the cylinder.  From this 
you should be able to find the net force and torque on the cylinder, and from these, you 
should be able to find the magnitude and direction of the reaction of the wedge on the 
cylinder.  I have not pursued this.  If anyone succeeds in doing so, and would like his/her 
solution poster here, with acknowledgment, let me know. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There is no acceleration normal to the plane, and therefore  .cosα= mgN   The frictional 
force F acts along the tangent to the path and is equal to µN, or µmg cos α, where µ is the 
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coefficient of moving friction.  We are told to ignore the difference between the 
coefficients of moving and limiting static friction.  Since the particle was originally at 
rest in limiting static friction, we must have µ  =  tan α.  Therefore F  =  mgsin α . The 
tangential equation of motion is 
 

+−= Fsm &&   whatever the component of mg  is in the tangential direction in the sloping               
plane.  
 
The component of mg down the plane would be (look at the left hand drawing) mg sin 
α, and so its tangential component (look at the right hand drawing) is .sinsin ψαmg   So 
we have, for the tangential equation of motion, 
 
   ,sinsinsin ψα+α−= mgmgsm &&  
 
or   ).sin1(sin ψ−α−= gs&&   
 
We are seeking a relation between V and ψ, so, in the now familiar fashion, we write 

s
ds
VdV &&for  , so the tangential equation of motion is 

 

   ).sin1(sin ψ−α−= g
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dVV      (1) 

 
We also need the equation of motion normal to the trajectory.  The component of mg in 
that direction is ψα cossinmg , and so the normal equation of motion is 
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Here ρ is the radius of curvature of the path, which is the reciprocal of the curvature 

./ ψdds   The normal equation of motion is therefore 
 

   .cossin2 ψα=
ψ g
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Divide equation (1) by equation (2) to eliminate s and thus get a desired differential 
equation between V and ψ: 
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This is easily integrated; a convenient (not the only) way is to multiply top and bottom by 
1 + sin ψ.  In any case we soon arrive at  



   ,constant )sin1ln(ln +ψ+−=V     (4) 
 
and with the initial condition V  =  V0 when ψ  =  0, this becomes 
 

   .
sin1

0

ψ+
=

VV       (5) 

 
In the limit, as ψ  →  90ο,  .02

1 VV →   The particle is then moving at constant velocity 
and is in equilibrium under the forces acting upon it just when it was initially at rest. 
 
 
 
13.   M1  =  mass of complete sphere of radius a. 
       M2    =   mass of missing inner sphere of radius xa. 
       M    =    mass of given hollow sphere. 
 
We have           ,/and 3

1212 xMMMMM =−=       and therefore  
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1
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1 3
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231 x
MxM

x
MM

−
=

−
=   

 
Also   ).( 2

21
2

5
222

25
22

15
2 xMMaaxMaMI −=−=  

 

Hence  .
1
1

3

5
2

5
2

x
xMaI

−
−

×=         

        
 
If x =  0, I  =  ,2

5
2 Ma  as expected.  If  x →  1, you may have to use de l’Hôpital’s rule to 

show that I  →  ,2
3
2 Ma  as expected. 

 
 
14.   M1  =   mass of mantle. 
       M2    =   mass of core 
         M    =   mass of entire planet. 
 

We have  ,)1(and 3

3

2

1
21 x

xs
M
MMMM −

=+=  and therefore 
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)1( 33

3

133

3

2 xsx
xsMM

xsx
xMM

−+
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Also  ,
1
1
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5
2

15
222

25
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mantlecore x
xaMaxMIII

−
−

×+=+=  

 
where I have made use of the result from the previous problem.  On substitution of the 
expressions for M1 and M2, we quickly obtain 
    

   .
)1(
)1(

3

5
2

5
2

xss
xssMaI

−+
−+

×=      (1) 

 
A hollow planet would correspond to 1/s = 0.  Divide top and bottom by s and it is 
immediately seen that the expression for a hollow planet would be identical to the 
expression obtained for the previous problem. 
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Note that both x = 0  and x = 1 correspond to a uniform sphere, so that in either case, 

;2
5
2 MaI =  for all other cases, the moment of inertia is less than .2

5
2 Ma  

 
The core size for minimum moment of inertia is easily found by differentiation of the 
above expression for I, and the required expression follows after some algebra.  For s = 
0.6, the equation becomes ,04159 52 =−− xx  of which the only positive real root is 

,382736.0=x  which corresponds to a moment of inertia of 0.90376 % .2
5
2 Ma   Note 

that. for s = 0.6, the moment of inertia, expressed in units of  ,2
5
2 Ma   varies very little as 



the core size goes from 0 to 1, so that measurement of the moment of inertia places very 
little restriction on the possible core size. 
 
The inverse of equation (1) is 
 
   ,0)1()1()1( 35 =−+−−− sIxsIxs    (2) 
 
where I is expressed in units of  .2

5
2 Ma   For I  =   0.911, there are two positive real roots 

(look at the graph); they are x =  0.64753  and 0.81523.  For I  =  0.929, the roots are 
0.55589 and 0.87863.  Thus the core size could be anything between 0.55589 and 
0.64753 or between 0.81523 and 0.87863 a rather large range of uncertainty.  Even if I 
were known exactly (which does not happen in science), there would be two solutions for 
x. 
 
 
15.  This is just a matter of geometry.  If, when you make a small angular displacement, 
you raise the centre of mass of the brick the equilibrium is stable.  For, while the brick is 
in its vertical position, it is evidently at a potential minimum, and you have to do work to 
raise the centre of mass.  If, on the other hand, your action in making a small angular 
displacement results in a lowering of the centre of mass, the equilibrium is unstable. 
 
When the brick is in its vertical position, the height h0 of its centre of mass above the 
base of the semicylinder is just 
 
     .0 lRh +=  
 
When it is displaced from the vertical by an angle θ, the point of contact between brick 
and semicylinder is displaced by a distance Rθ, and, by inspection of the drawing, the 
new height h is 
 
   .cossincos θ+θθ+θ= lRRh      
 
â   .)cos1)((sin0 θ−+−θθ=− lRRhh  
 
If you Maclaurin expand this as far as θ2, you arrive at 
 
   .)( 2

2
1

0 θ−≈− lRhh  
 
This is positive, and therefore the equilibrium is stable, if l  <  R , or 2l  <  2R , i.e. if the 
length of the brick is less than the diameter of the semicylinder. 
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16.   As in the previous question, it is just a matter of geometry.  If rolling the Thing 
results in raising its centre of mass, the equilibrium is stable.  Initially, the height of the 
centre of mass is h0  =  b +  l. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
After rolling, the dashed line, which joins the centres and is of length a + b, makes an 
angle θ with the vertical.  The short line joining the centre of mass of the Thing to the 
centre of curvature of its bottom is of length l − a and it makes an angle θ + φ with the 
vertical.  The height of the centre of mass is therefore now 
 
    .)cos()(cos)( φ+θ−+θ+= albah  
 
The centre of mass has therefore rise through a height 
 
   .)cos()(cos)(0 lbalbahh −−φ+θ−+θ+=−  
 
Also, the two angles are related by aφ  =  bθ,  so that 
 
    

l 

b 

θ

φ
a 



  .])}/(1cos[{)(cos)(0 lbabalbahh −−θ+−+θ+=−  
 
Maclaurin expand the cosines to θ2 and you should get 
 
  .])/1)(([ 22

2
1

0 abalbahh +−++θ−=−  
 

For stability this must be positive, and hence .111
bal

+>  

 
 
 
If a = b, this becomes .2

1 al <  
 
For a hollow semicylinder, .363.0)/21( aal =π−=       â Stable 
 
For a hollow hemisphere,   .5.0 al =            â  Borderline stable 
 
For a solid semicylinder,    .576.0)]3(/41[ aal =π−=   â  Unstable 
 
For a solid hemisphere,      .625.08

5 aal ==          â  Unstable 
  
 
 
 
17.  We need to find the height h of the centre of mass above the level of the pegs as a 
function of θ .  See drawing on next page. 
 
Angles: BAC  =   45o −  θ 
  ΑΒΧ  =   45o +  θ   
 
Distances: AB  =  2ac 
  AC  =  2ac cos (45o −  θ) 
  EF   =  2ac cos (45o −  θ) cos (45o +  θ)  =  ac cos 2θ 
  DC  =  2a  
  DF  =  θcos2a   
  h  =   DF  −  EF   =   )2coscos2( θ−θ ca  
                        h0 = height of centre of mass above pegs when θ  =  0o  =  )2( ca −  

  
c

c
h
hy

−
θ−θ

==
2

2coscos2

0

 

 
dy/dθ will show that maxima and minima of y ( and of the potential energy), and hence 
equilibria, occur for θ = 0o and for ,)8/(1cos c=θ  which is possible only if .8/1>c  



A second differentiation will show which extrema are maxima and which are minima.  In 
particular the second derivative at θ  =  0o is zero for .8/1=c  I draw graphs of  y : θ for 
several c below.   
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18.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

θ 

N 
P aµ O C 

a 

R 
λ

mg 



There are three forces acting on the hemisphere:  Its weight mg.  The reaction N of the 
wall, which is perpendicular to the wall since the wall is smooth.  The reaction R of the 
floor, which acts at an angle λ to the floor, where µ  =  tan λ.  Three forces in equilibrium 
must act through a point; therefore all three forces act through the point P.  It is thus clear 
that 

    .
3

8
OC
OPsin

8
3

µ
=

µ
==θ

a
a  

 
If '.4841, o

4
1 =θ=µ   If .90, o

8
3 =θ=µ    If ,

8
3>µ the hemisphere can rest in any 

position, the equilibrium not being limiting static equilibrium. 
 
 
19. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When the rod makes an angle θ to the horizontal, the distance from its centre of mass C 
to the point of contact P is aθ.  The moment of inertia about P is ( ) .22

3
1 almml +   The 

torque about P is mgaθ cos θ.   The equation of motion is 
 
         .cos)( 222

3
1 θθ−=θθ+ mgaalm &&  

 
To first order in θ, 1cos ≈θ  and .2

3
122 la <<θ   Therefore, to first order, the equation of 

motion is 
 
    θ−=θ gal &&2

3
1  

aθ
P 

mg 

θ

C 



and so the period is  .
3
2

ga
lP π

=  

      
 
 
20. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I have drawn only one force.  I am going to consider the rotational equation of motion 
about A, so I shan’t be concerned with the force at A.  The equation of motion about A is 
 
    ,mgxI −=φ&&  
 
where I is the moment of inertia about A.  The moments of inertia about O, C and A, 
respectively: 
 
  ( ) ( ) ,,, 22

8
32

5
22

8
32

5
22

5
2 mbammaammama +−−   

 
where I have made good use of the parallel axes theorem.  The distance b is given by the 
cosine rule to triangle OCA, and hence we find, after a little algebra, for the moment of 
inertia about A: 
 
    .)cos( 4

3
5
72 θ−= maI  

 
We also need 
 

O 

A 
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x 

θ

φ

a8
3

C 

mg 



    ,
8
sin3 θ

=
ax  

 
and hence we obtain for the equation of motion 
 
   .sin15)cos3056( θ−=φθ− ga &&  
 
For small angles, this becomes 
 
        .1526 θ−=φ ga &&  
 
From the sine rule we have 
 

    
aa

)sin(sin

8
3

φ+θ
=

φ , 

and replacing the sines by the angles, for small angles, we find that .5
3 θ≈φ   Thus the 

equation of motion becomes 
 
    θ−=θ ga 2526 &&  
 

and so the period is    .
25
262

g
aP π=  

      
 
 
 
         The (second) moment of inertia with respect to the centre (see chapter 2.19 of 
chapter 2) is 

          .)/(4I 5
015

25

0

4
0centre adrarr

a
ρπ=−ρπ= ∫  

  
         The moment of inertia with respect to an axis through the centre is 2/3 of this: 
 
             .5
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4

axis aI πρ=  
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22.                                             
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1 )cos(
NF

mgN
µ=

θ−α=
                                                                              

22

2 )cos(
NF

mgN
µ=

θ+α=
 

 
 
 
 
 
 
 
 
 
 
 

Left-hand particle:    .)]sin()cos([ θ−α+θ−αµ= mgT  
 
Right-hand particle:  .)]cos()[sin( θ+αµ−θ+α= mgT  
 
â ),sin()sin()]cos()[cos( θ−α−θ+α=θ+α+θ−αµ   
 
and, by the “sum and difference” trigonometrical formulae, we obtain 
 
   ,sincos2coscos2 θα=θαµ  
 
from which   .tan µ=θ  
 
 
 
23.      
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Consider a portion of the rope between θ and δθ.  There are four forces on this portion.  
The tension T at θ.  The tension T  +  δT  at θ  +  δθ  (δT is negative).  The normal 
reaction δN of the cylinder on the rope.  The frictional force µδN of the cylinder on the 
rope.  Note that the rope is about to slip downwards, so the friction force is upwards as 
shown.  
 
We have   )sin()2( 2

1 θδ+=δ TTN  
 
and   .)cos()cos()( 2

1
2
1 δθ=δµ+δθδ+ TNTT  

 
To first order, these become 
 
    δθ=δ TN  
 
and    .NT δµ−=δ  
 
â    δθµ−=δ TT  
 
and hence by integration   .µα−= eMgF  
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.  Area of square  =    24a  
       Area of rectangle  =    )1(4 2 xa −   
       Area of triangle   =    )1(2 2 −+ yxa  
       Area of trapezoid  =    )1(2 2 yxa +−  
 
 

The weight of the cube is 8a3ρsg, and it acts downward through C, the centre of 
mass.  The hydrostatic upthrust is 4a3(1 − x + y)ρg and it acts upward through the 
centre of buoyancy H.  Here ρ is the density of the fluid, and ρs is the density of 
the wood.  We evidently must find the X'- coordinate of C and of H.  Let’s first of 
all find the X- and Y- coordinates (see the next figure). 
 
The X- and Y- coordinates of C are trivial and quite easy respectively:   
 
   )21(CC xaYaX −==  
 
You are going to have to work quite hard at it to find the X- and Y- coordinates of 
H, the centre of buoyancy, which is the centroid of the trapezoid.  “After some 
algebra” you should find 
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To find the X '- coordinates of C and of H, we use the usual formulas for rotation 
of axes, being sure to get it the right way round: 
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cossin
sincos
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θθ
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together with   .1tan −+=θ yx  
 
Take moments about the axle (origin): 
 
   ).1(4'8 33 yxgasgXa C +−ρ=ρ   
 
After a little more algebra, you should eventually arrive at 
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25.          
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Let the radii of the cylinder and sphere be a and b respectively, and the mass of the 
sphere be M.  The angles θ and φ are related by aθ  =  bφ.  I have drawn the three forces 
on the sphere, namely its weight, the normal reaction of the cylinder on the sphere, and 
the frictional force on the sphere.  The transverse acceleration of the centre of the sphere 
is θ+ &&)( ba  and the centripetal acceleration is .)( 2θ+ &ba   The equations of motion are: 
 
   θ+=−θ &&)(sin baMFMg     (1) 
 
and   .)(cos 2θ+=−θ &baMNMg     (2) 
 
The angular acceleration of the sphere about its centre is ,)/1( θ+=φ+θ &&&&&& ba and its 
rotational inertia is 2Mb2/5.  The torque that is causing this angular acceleration is Fb, 
and therefore the rotational equation of motion is 
 
   .)/1(2

5
2 θ+= &&baMbFb      (3) 

 
Elimination of F between equations (1) and (3) yields 
 

    .sin
)(7

5
θ

+
=θ

ba
g&&      (4) 

 
Write θθθθ dd /as &&&&  in the usual way and integrate with initial conditions ,0=θ=θ &  or 
from energy considerations: 
 

    .)cos1(
)(7

102 θ−
+

=θ
ba

g&     (5) 

 
Substitute for 2and θθ &&&  into equation (2) to obtain 
 
    .)10cos17( −θ= MgN     (6) 
 
This is zero, and the sphere leaves the cylinder, when cos θ  = 10/17,  θ  =   53o 58' . 
 
 
 
 
 
 
 
 
 
 



 
26.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Surface density =  σ   g cm−2 

 
Original sandwich: 
 
Mass = 54σ  g 
 
x-coordinate of centre of mass = 3  cm 
 
y-coordinate of centre of mass = 4 cm 
 
 
Bite: 
 
Mass = σπ 2

2
1 3 =14.137 166 94σ   g 

 

Distance of centre of mass from hypotenuse = 
π

=×
π

43
3
4   =  1.273 239 545  cm 

 

x-coordinate of centre of mass = 
π

−=θ
π

−
5
165.4sin45.4   =  3.481 408 364  cm 

 

9 cm 

12 cm 

θ

• 



y-coordinate of centre of mass =   
π

−=θ
π

−
5
126cos46    =   5.236 056 273  cm 

 
 
Remainder: 
 
Mass  =  (54  −  14.137 166 94)σ   =   39.862 833 06σ   g 
 
x-coordinate of centre of mass =  x  
 
y-coordinate of centre of mass =   y  
 
 
Moments: 
 
39.862 833 06 x   +  14.137 166 94 × 3.481 408 364   =  54 × 3.    x  = 2.829 270 780 cm 
 
39.862 833 06 y   +  14.137 166 94 × 5.236 056 273   =  53 × 4.    y  = 3.561 638 436 cm  
 
This point is very close to the edge of the bite.  The centre of the bite is at (4.5, 6), and its 
radius is 3.  Its equation is therefore  
 
   .025.47129or,9)6()5.4( 2222 =+−−+=−+− yxyxyx  
 
The line x = 2.829 270 780 cuts the circle where .013336791.29122 =+− yy   The 
lower of the two points of intersection is at y = 3.508 280 941 cm.  The centre of mass is 
slightly higher than this and is therefore just inside the bite. 
 
 
27.     
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Consider a portion of the band within the angle δθ.  Its mass is .
2π
δθm   When the band is 

spinning at angular speed ω and its radius is r, the centrifugal force on that portion is 

.
2

2

π
δθω

=δ
mrF   (I leave it to the philosophers and the schoolteachers to debate as to 

whether there “really” is “such thing” as centrifugal force – I want to get this problem 
done, and I’m referring to a co-rotating frame.)  The y-component of this force is 

.
2
cos2

π
δθθωmr   Also, the tension in the band when its radius is r is T  =  2πk(r − a). 

 
Consider the equilibrium of half of the band.  The y-component of the centrifugal force 

on it is .cos
2

22
2

2 π
ω

=θθ
π
ω

∫
π

π

+

−

mrdmr    The opposing force is 2T  =  4πk(r − a).  Equating 

these gives .)(4 2
2

mr
ark −π

=ω  

 
 
 
 
28.        Let the distance AB be l and the distance AC be c.  Let the mass of the rod be m. 
 
 
 
 
 
 
 
 
 
 
 
Consider an elemental portion  δx of the rod at P at a distance x from A.  Its weight is 

.
l

xm δ   When the rod is about to move, it will experience a frictional force 

,
l

xmgf δµ
=δ  which will be in the direction shown if P is to the left of C, and in the 

opposite direction if P is to the right of C. When the rod is just about to move (but has not 
yet done so) it is still in equilibrium.  Consider the moment about A of the frictional 
forces on the rod.  The clockwise moment of the frictional forces on AC must equal the 
counterclockwise moment of the frictional forces on CB.  Thus 
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l
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â        .2/lc =  
 
The net force on the rod is 
 

   ,
0 ∫∫

µ
+

µ
−

l

c

c
dx

l
mgdx

l
mgF  

and this is zero, and therefore  
 

   ( ) .12)2( mg
l

lcmgF µ−=
−µ

=  

 
 
 
29.  The cone slips when tan θ  >  µ. 
  
It tips when C (the centre of mass) is to the left of M.   
 
The distance OC is h/4. (See Chapter 1, section 1.7). Therefore it tips when ./4tan ha>θ  
 
Thus it slips if ha /4<µ  and it tips if ./4 ha>µ  
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30.    
 
 
 
 
 
 
 
 
 
 
 
 
When the block is just about to tip, the reaction of the table on the block acts at A and it 
is directed towards the point K, because, when three coplanar forces are in equilibrium 
they must act through a single point.   The angle λ is given by tan λ  =  a/x.  However, by 
the usual laws of friction, the block will slip as soon as tan λ  =  µ.  Thus the block will 
slip if µ  <  a/x, and it will tip if µ  >  a/x.  Expressed otherwise, it will slip if x  <  a/µ and 
it will tip if x  >  a/µ.  The greatest possible value of x is 2a;  therefore the block will 
inevitably slip if µ  <  ½. 
 
 
31.      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When or if the cylinder is just about to tip, it is about to lose contact with the left hand 
peg.  The only forces on the cylinder are the torque, the weight, and the reaction R of the 
right hand peg on the cylinder, which must be vertical and equal to mg.  But the greatest 
possible angle that the reaction R can make with the surface of the cylinder is the angle of 
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R θ

θ



friction λ given by tan λ  =  µ.  From geometry, we see that sin θ = k, or 
.1/tan 2kk −=θ   Thus the cylinder will slip before it tips if 21/ kk −<µ and it 

will tip before it slips if .1/ 2kk −>µ  
 
If the cylinder tips (which it will do if 21/ kk −>µ ), the clockwise torque τ at that 
moment will equal the counterclockwise torque of the couple (R and mg), which is mgka.  
Thus the torque when the cylinder tips is 
 
TIP:     .mgak=τ      (1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When or if the cylinder is just about to slip, the forces are as shown above, in which I 
have resolved the reactions of the pegs on the cylinder into a normal reaction (towards 
the axis of the cylinder) and a frictional force, which, when slipping is about to occur, is 
equal to µ times the normal reaction.   The equilibrium conditions are 
 
   ,0sin)(cos)( 2121 =θ−+θ+µ NNNN  
 
   0cos)(sin)( 2121 =+θ+−θ−µ mgNNNN  
 
and    .)( 21 τ=+µ aNN  
 
We can find N1 + N2 by eliminating N1 − N2 from the first two equations, and then, 
writing 21 k− for cos θ, we find that, when slipping is about to occur, 

2ka 

τ

mg µN2 N1 

µN1 

N2 
θ 



 

SLIP    .
1

1
1 22 k

mga
−

×
µ+

µ
×=τ    (2) 

 
I have drawn below the functions 
 

  k
mga

=
τ  (tip)    and   

22 1
1

1 kmga −
×

µ+
µ

=
τ (slip) 

 
for k = 0.1, 0.3, 0.5, 2/1 and 0.9.  The horizontal lines are the tip functions, and the 

curves are the slip functions.  As long as 21/ kk −<µ the cylinder will slip.  As soon 

as 21/ kk −>µ the cylinder will tip. 
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32.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We’ll leave to the philosophers the question as to whether centrifugal force “really 
exists”, and we’ll work in a co-rotating reference frame, so that the car, when referred to 
that frame, is in static equilibrium under the six forces shown.  Clearly, N1 and N2  =  mg  
and F1 + F2 =  mv2/R. 
 
The car slips when F1 + F2  =  µ(N1 + N2);  that is, when .gRµ=v  
 
The car tips when ;/2 mgdRhm =v that is, when ./ hdgR=v  
 
That is, it will slip or tip according as to whether µ  <  d/h  or >  d/h. 
 
For example suppose d = 60 cm,  h = 80 cm,  g =  9.8 m s−2,  R = 30 m,  µ = 0.8. 
 
In that case, d/h = 0.75, so it will tip at v  =  14.8 m s−1  =  53.5 km hr−1. 
 
But if it rains, reducing µ to 0.7, it will slip at v  =  14.3 m s−1  =  51.6 km hr−1 . 
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33. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     I have drawn in green the radial and transverse components of the acceleration of the 
centre of mass 2θ&a  and θ&&a  respectively.  I have drawn in red the weight of the rod and 
the normal and frictional components of the force of the table on the rod at A, N and F 
respectively. 
                       
   The following are the equations of motion: 
 
Normal:   .cos Nmgma −θ=θ&&     (1) 
 
Lengthwise:   .sin2 Fmgma +θ−=θ&     (2) 
 
Rotation:      .cos2 θ=θ gak &&      (3) 
 
Here k is the radius of gyration about A, given by 
 
    .22

3
12 alk +=      (4) 

 
From equations (1), (3) and (4), we obtain 
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+

θ=
al

lmgN     (5) 

 
The space integral (see Chapter 6, section 6.2) of equation (3), with initial condition 

0=θ& when θ = 0, results in 
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Combining this with equations (2) and (4) leads to 
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θ=
al
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At the instant of slipping, F  =  µN, and hence, from equations (5) and (7) we find 
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34.   I derive 22 x
l
ggx +=v  by two different methods – one from energy 

considerations, the other from angular momentum considerations.  First, energy. 
 
If the table top is taken to be the zero level for potential energy, the initial potential 
energy was ... 8

1
4
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2
1 mgllgm −=−  

 
When the length of the dangling portion is ,2

1 xl + the potential energy is  
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The loss of potential energy is therefore .
2

2

2
1

l
mgxmgx +  

This is equal to the gain in kinetic energy ,2
2
1 vm  and therefore  

 

    .22 x
l
ggx +=v  

 
Another method: 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider a point A.  Anywhere will do, but I have chosen it to be a distance l below the 
level of the table and l to the left of the table edge.  The moment of momentum (= angular 
momentum) of the chain about this point is ,xmlml &=v  and its rate of change is 
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therefore .xml &&  The torque about A is .)( 2
12

1

mgxlmgl
l

xl
+=






 +   These are equal, and 

so .)( 2
1 xlgxl +=&&    Write 

dx
dx vv=&&  in the usual way, and integrate (with v = 0 when x 

= 0) and the result 22 x
l
ggx +=v  follows. 

 
 
To find the relation between x and t we can use the energy equation 9.2.9 for conservative 
systems 
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Here x0 = 0 and we have already seen that .
22

)( 2 mgxx
l

mgxVE +=−   Upon integrating 

this expression, we obtain, after a little algebra and calculus, 
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The converse of this is the required expression 
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Differentiation of this with respect to time produces the third required expression: 
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You may verify from these last two equations, if you wish, that .22 x
l
ggx +=v  

 
 
 
 
 
 
 
 
 



35.   (a) 
  
 
 
 
 
 
 
 
The maximum overhang of book 1 is d1 = w.   
 
The centre mass of 1+ 2 is at 3w/2 from the left hand side (LHS) of 2, so d2 = w/2.          
 
The distance of the centre of mass of  1+2+3 is at 5w/2  from the LHS of  3, so d3 = w/3. 
 
Thus .38.1)1( 3

1
2
1

321 wwdddD &=++=++=         
 
 
      (b)    In a similar manner we find that, given n + 1 books, the maximum overhang is  
 
   .)1( 1

3
1

2
1 wD n++++= KK   

 
I don’t know if there is a simple expression for the sum to n terms of this harmonic series.  
Please let me know if you know of one or can find one.  Therefore I used a computer to 
solve 
 
   101 1

3
1

2
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by brute force.  I got n = 12367, so you would need 12368 books. 
 
        (c)   The harmonic series is divergent and has no finite limit, so there is no finite 
limit to the possible overhang. 
 
       You might wish to speculate on any practical limitations on constructing such a pile 
of books.  For example, we have been assuming a uniform gravitational field – but this 
will no longer be valid once the overhang becomes comparable to the radius of Earth.  
This will, however, need quite a large number of books. 
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