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Preface
Why a New Physics Textbook?

We assume that our economic system will always scamper to provide us with the products we want. Special
orders don’t upset us! I want my MTV! The truth is more complicated, especially in our education system, which
is paid for by the students but controlled by the professoriate. Witness the perverse success of the bloated science
textbook. The newspapers continue to compare our system unfavorably to Japanese and European education,
where depth is emphasized over breadth, but we can’t seem to create a physics textbook that covers a manageable
number of topics for a one-year course and gives honest explanations of everything it touches on.

The publishers try to please everybody by including every imaginable topic in the book, but end up pleasing
nobody. There is wide agreement among physics teachers that the traditional one-year introductory textbooks
cannot in fact be taught in one year. One cannot surgically remove enough material and still gracefully navigate
the rest of one of these kitchen-sink textbooks. What is far worse is that the books are so crammed with topics that
nearly all the explanation is cut out in order to keep the page count below 1100. Vital concepts like energy are
introduced abruptly with an equation, like a first-date kiss that comes before “hello.”

The movement to reform physics texts is steaming ahead, but despite excellent books such as Hewitt’s Concep-
tual Physics for non-science majors and Knight’s Physics: A Contemporary Perspective for students who know
calculus, there has been a gap in physics books for life-science majors who haven't learned calculus or are learning
it concurrently with physics. This book is meant to fill that gap.

Learning to Hate Physics?
When you read a mystery novel, you know in advance what structure to expect: a crime, some detective work,

and finally the unmasking of the evildoer. When Charlie Parker plays a blues, your ear expects to hear certain
landmarks of the form regardless of how wild some of his notes are. Surveys of physics students usually show that
they have worse attitudes about the subject after instruction than before, and their comments often boil down to a
complaint that the person who strung the topics together had not learned what Agatha Christie and Charlie Parker
knew intuitively about form and structure: students become bored and demoralized because the “march through
the topics” lacks a coherent story line. You are reading the first volume of the Light and Matter series of introduc-
tory physics textbooks, and as implied by its title, the story line of the series is built around light and matter: how
they behave, how they are different from each other, and, at the end of the story, how they turn out to be similar
in some very bizarre ways. Here is a guide to the structure of the one-year course presented in this series:

1 Newtonian Physics Matter moves at constant speed in a straight line unless a force acts on it. (This seems
intuitively wrong only because we tend to forget the role of friction forces.) Material objects can exert forces on
each other, each changing the other’s motion. A more massive object changes its motion more slowly in re-
sponse to a given force.

2 Conservation Laws Newton’s matter-and-forces picture of the universe is fine as far as it goes, but it doesn’t
apply to light, which is a form of pure energy without mass. A more powerful world-view, applying equally well
to both light and matter, is provided by the conservation laws, for instance the law of conservation of energy,
which states that energy can never be destroyed or created but only changed from one form into another.

3 Vibrations and Waves Light is a wave. We learn how waves travel through space, pass through each other,
speed up, slow down, and are reflected.

4 Electricity and Magnetism Matter is made out of particles such as electrons and protons, which are held
together by electrical forces. Light is a wave that is made out of patterns of electric and magnetic force.

5 Optics Devices such as eyeglasses and searchlights use matter (lenses and mirrors) to manipulate light.

6 The Modern Revolution in Physics Until the twentieth century, physicists thought that matter was made
out of particles and light was purely a wave phenomenon. We now know that both light and matter are made of
building blocks that have both particle and wave properties. In the process of understanding this apparent
contradiction, we find that the universe is a much stranger place than Newton had ever imagined, and also learn
the basis for such devices as lasers and computer chips.
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A Note to the Student Taking Calculus
Concurrently

Learning calculus and physics concurrently is an excellent idea — it’s not a coincidence that the inventor of
calculus, Isaac Newton, also discovered the laws of motion! If you are worried about taking these two demanding
courses at the same time, let me reassure you. I think you will find that physics helps you with calculus while
calculus deepens and enhances your experience of physics. This book is designed to be used in either an algebra-
based physics course or a calculus-based physics course that has calculus as a corequisite. This note is addressed to
students in the latter type of course.

It has been said that critics discuss art with each other, but artists talk about brushes. Art needs both a “why”
and a “how,” concepts as well as technique. Just as it is easier to enjoy an oil painting than to produce one, it is
easier to understand the concepts of calculus than to learn the techniques of calculus. This book will generally
teach you the concepts of calculus a few weeks before you learn them in your math class, but it does not discuss the
techniques of calculus at all. There will thus be a delay of a few weeks between the time when a calculus application
is first pointed out in this book and the first occurrence of a homework problem that requires the relevant tech-
nique. The following outline shows a typical first-semester calculus curriculum side-by-side with the list of topics
covered in this book, to give you a rough idea of what calculus your physics instructor might expect you to know
at a given point in the semester. The sequence of the calculus topics is the one followed by Calculus of a Single
Variable, 2nd ed., by Swokowski, Olinick, and Pence.
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0 Introduction and Review
If you drop your shoe and a coin side by side, they hit the ground at the

same time. Why doesn’t the shoe get there first, since gravity is pulling
harder on it? How does the lens of your eye work, and why do your eye’s
muscles need to squash its lens into different shapes in order to focus on
objects nearby or far away? These are the kinds of questions that physics
tries to answer about the behavior of light and matter, the two things that
the universe is made of.

0.1 The Scientific Method
Until very recently in history, no progress was made in answering

questions like these. Worse than that, the wrong answers written by thinkers
like the ancient Greek physicist Aristotle were accepted without question for
thousands of years. Why is it that scientific knowledge has progressed more
since the Renaissance than it had in all the preceding millennia since the
beginning of recorded history? Undoubtedly the industrial revolution is part
of the answer. Building its centerpiece, the steam engine, required improved
techniques for precise construction and measurement. (Early on, it was
considered a major advance when English machine shops learned to build
pistons and cylinders that fit together with a gap narrower than the thick-
ness of a penny.) But even before the industrial revolution, the pace of
discovery had picked up, mainly because of the introduction of the modern
scientific method. Although it evolved over time, most scientists today
would agree on something like the following list of the basic principles of
the scientific method:

(1)Science is a cycle of theory and experiment. Scientific theories are
created to explain the results of experiments that were created under certain
conditions. A successful theory will also make new predictions about new
experiments under new conditions. Eventually, though, it always seems to
happen that a new experiment comes along, showing that under certain

theory

experiment

The Mars Climate Orbiter is prepared for its mission.
The laws of physics are the same everywhere, even
on Mars, so the probe could be designed based on
the laws of physics as discovered on earth.

There is unfortunately another reason why this
spacecraft is relevant to the topics of this chapter: it
was destroyed attempting to enter Mars’ atmosphere
because engineers at Lockheed Martin forgot to
convert data on engine thrusts from pounds into the
metric unit of force (newtons) before giving the
information to NASA. Conversions are important!
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conditions the theory is not a good approximation or is not valid at all. The
ball is then back in the theorists’ court. If an experiment disagrees with the
current theory, the theory has to be changed, not the experiment.

(2)Theories should both predict and explain. The requirement of predic-
tive power means that a theory is only meaningful if it predicts something
that can be checked against experimental measurements that the theorist
did not already have at hand. That is, a theory should be testable. Explana-
tory value means that many phenomena should be accounted for with few
basic principles. If you answer every “why” question with “because that’s the
way it is,” then your theory has no explanatory value. Collecting lots of data
without being able to find any basic underlying principles is not science.

(3)Experiments should be reproducible. An experiment should be treated
with suspicion if it only works for one person, or only in one part of the
world. Anyone with the necessary skills and equipment should be able to
get the same results from the same experiment. This implies that science
transcends national and ethnic boundaries; you can be sure that nobody is
doing actual science who claims that their work is “Aryan, not Jewish,”
“Marxist, not bourgeois,” or “Christian, not atheistic.” An experiment
cannot be reproduced if it is secret, so science is necessarily a public enter-
prise.

As an example of the cycle of theory and experiment, a vital step toward
modern chemistry was the experimental observation that the chemical
elements could not be transformed into each other, e.g. lead could not be
turned into gold. This led to the theory that chemical reactions consisted of
rearrangements of the elements in different combinations, without any
change in the identities of the elements themselves. The theory worked for
hundreds of years, and was confirmed experimentally over a wide range of
pressures and temperatures and with many combinations of elements. Only
in the twentieth century did we learn that one element could be trans-
formed into one another under the conditions of extremely high pressure
and temperature existing in a nuclear bomb or inside a star. That observa-
tion didn’t completely invalidate the original theory of the immutability of
the elements, but it showed that it was only an approximation, valid at
ordinary temperatures and pressures.

Self-Check
A psychic conducts seances in which the spirits of the dead speak to the
participants. He says he has special psychic powers not possessed by other
people, which allow him to “channel” the communications with the spirits.
What part of the scientific method is being violated here? [Answer below.]

 The scientific method as described here is an idealization, and should
not be understood as a set procedure for doing science. Scientists have as
many weaknesses and character flaws as any other group, and it is very
common for scientists to try to discredit other people’s experiments when
the results run contrary to their own favored point of view. Successful
science also has more to do with luck, intuition, and creativity than most
people realize, and the restrictions of the scientific method do not stifle
individuality and self-expression any more than the fugue and sonata forms

A satirical drawing of an alchemist’s
laboratory. H. Cock, after a drawing
by Peter Brueghel the Elder (16th
century).

If only he has the special powers, then his results can never be reproduced.

Chapter 0 Introduction and Review
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stifled Bach and Haydn. There is a recent tendency among social scientists
to go even further and to deny that the scientific method even exists,
claiming that science is no more than an arbitrary social system that
determines what ideas to accept based on an in-group’s criteria. I think
that’s going too far. If science is an arbitrary social ritual, it would seem
difficult to explain its effectiveness in building such useful items as air-
planes, CD players and sewers. If alchemy and astrology were no less
scientific in their methods than chemistry and astronomy, what was it that
kept them from producing anything useful?

Discussion Questions
Consider whether or not the scientific method is being applied in the following
examples. If the scientific method is not being applied, are the people whose
actions are being described performing a useful human activity, albeit an
unscientific one?

A. Acupuncture is a traditional medical technique of Asian origin in which small
needles are inserted in the patient’s body to relieve pain. Many doctors trained
in the west consider acupuncture unworthy of experimental study because if it
had therapeutic effects, such effects could not be explained by their theories of
the nervous system. Who is being more scientific, the western or eastern
practitioners?

B. Goethe, a famous German poet, is less well known for his theory of color.
He published a book on the subject, in which he argued that scientific
apparatus for measuring and quantifying color, such as prisms, lenses and
colored filters, could not give us full insight into the ultimate meaning of color,
for instance the cold feeling evoked by blue and green or the heroic sentiments
inspired by red. Was his work scientific?

C. A child asks why things fall down, and an adult answers “because of
gravity.” The ancient Greek philosopher Aristotle explained that rocks fell
because it was their nature to seek out their natural place, in contact with the
earth. Are these explanations scientific?

D. Buddhism is partly a psychological explanation of human suffering, and
psychology is of course a science.  The Buddha could be said to have
engaged in a cycle of theory and experiment, since he worked by trial and
error, and even late in his life he asked his followers to challenge his ideas.
Buddhism could also be considered reproducible, since the Buddha told his
followers they could find enlightenment for themselves if they followed a
certain course of study and discipline.  Is Buddhism a scientific pursuit?

0.2 What Is Physics?
Given for one instant an intelligence which could comprehend all the forces
by which nature is animated and the respective positions of the things which
compose it...nothing would be uncertain, and the future as the past would
be laid out before its eyes.

Pierre Simon de Laplace
Physics is the use of the scientific method to find out the basic prin-

ciples governing light and matter, and to discover the implications of those
laws. Part of what distinguishes the modern outlook from the ancient mind-
set is the assumption that there are rules by which the universe functions,
and that those laws can be at least partially understood by humans. From
the Age of Reason through the nineteenth century, many scientists began to
be convinced that the laws of nature not only could be known but, as
claimed by Laplace, those laws could in principle be used to predict every-

Physics is the study
of light and matter.

Science is creative.

Section 0.2 What Is Physics?
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thing about the universe’s future if complete information was available
about the present state of all light and matter. In subsequent sections, I’ll
describe two general types of limitations on prediction using the laws of
physics, which were only recognized in the twentieth century.

Matter can be defined as anything that is affected by gravity, i.e. that
has weight or would have weight if it was near the Earth or another star or
planet massive enough to produce measurable gravity. Light can be defined
as anything that can travel from one place to another through empty space
and can influence matter, but has no weight. For example, sunlight can
influence your body by heating it or by damaging your DNA and giving
you skin cancer. The physicist’s definition of light includes a variety of
phenomena that are not visible to the eye, including radio waves, micro-
waves, x-rays, and gamma rays. These are the “colors” of light that do not
happen to fall within the narrow violet-to-red range of the rainbow that we
can see.

Self-check
At the turn of the 20th century, a strange new phenomenon was discovered in
vacuum tubes: mysterious rays of unknown origin and nature.  These rays are
the same as the ones that shoot from the back of your TV’s picture tube and hit
the front to make the picture.  Physicists in 1895 didn’t have the faintest idea
what the rays were, so they simply named them “cathode rays,” after the name
for the electrical contact from which they sprang.  A fierce debate raged,
complete with nationalistic overtones, over whether the rays were a form of
light or of matter.  What would they have had to do in order to settle the issue?

Many physical phenomena are not themselves light or matter, but are
properties of light or matter or interactions between light and matter. For
instance, motion is a property of all light and some matter, but it is not
itself light or matter. The pressure that keeps a bicycle tire blown up is an
interaction between the air and the tire. Pressure is not a form of matter in
and of itself. It is as much a property of the tire as of the air. Analogously,
sisterhood and employment are relationships among people but are not
people themselves.

Some things that appear weightless actually do have weight, and so
qualify as matter. Air has weight, and is thus a form of matter even though a
cubic inch of air weighs less than a grain of sand. A helium balloon has
weight, but is kept from falling by the force of the surrounding more dense
air, which pushes up on it. Astronauts in orbit around the Earth have
weight, and are falling along a curved arc, but they are moving so fast that
the curved arc of their fall is broad enough to carry them all the way around
the Earth in a circle. They perceive themselves as being weightless because
their space capsule is falling along with them, and the floor therefore does
not push up on their feet.

Optional Topic
Einstein predicted as a consequence of his theory of relativity that
light would after all be affected by gravity, although the effect would
be extremely weak under normal conditions. His prediction was
borne out by observations of the bending of light rays from stars as
they passed close to the sun on their way to the Earth. Einstein also

They would have had to weigh the rays, or check for a loss of weight  in the object from which they were have
emitted.  (For technical reasons, this was not a measurement they could actually do, hence the opportunity for
disagreement.)

This telescope picture shows two
images of the same distant object, an
exotic, very luminous object called a
quasar. This is interpreted as evidence
that a massive, dark object, possibly
a black hole, happens to be between
us and it. Light rays that would
otherwise have missed the earth on
either side have been bent by the dark
object’s gravity so that they reach us.
The actual direction to the quasar is
presumably in the center of the image,
but the light along that central line
doesn’t get to us because it is
absorbed by the dark object. The
quasar is known by its catalog number,
MG1131+0456, or more informally as
Einstein’s Ring.

Weight is what
distinguishes

light from matter.

Chapter 0 Introduction and Review
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predicted the existence of black holes, stars so massive and
compact that their intense gravity would not even allow light to
escape. (These days there is strong evidence that black holes
exist.)

Einstein’s interpretation was that light doesn’t really have mass, but
that energy is affected by gravity just like mass is. The energy in a
light beam is equivalent to a certain amount of mass, given by the
famous equation E=mc2, where c is the speed of light. Because the
speed of light is such a big number, a large amount of energy is
equivalent to only a very small amount of mass, so the gravitational
force on a light ray can be ignored for most practical purposes.

There is however a more satisfactory and fundamental distinction
between light and matter, which should be understandable to you if
you have had a chemistry course. In chemistry, one learns that
electrons obey the Pauli exclusion principle, which forbids more than
one electron from occupying the same orbital if they have the same
spin. The Pauli exclusion principle is obeyed by the subatomic
particles of which matter is composed, but disobeyed by the
particles, called photons, of which a beam of light is made.

Einstein’s theory of relativity is discussed more fully in book 6 of this
series.

The boundary between physics and the other sciences is not always
clear. For instance, chemists study atoms and molecules, which are what
matter is built from, and there are some scientists who would be equally
willing to call themselves physical chemists or chemical physicists. It might
seem that the distinction between physics and biology would be clearer,
since physics seems to deal with inanimate objects. In fact, almost all
physicists would agree that the basic laws of physics that apply to molecules
in a test tube work equally well for the combination of molecules that
constitutes a bacterium. (Some might believe that something more happens
in the minds of humans, or even those of cats and dogs.) What differenti-
ates physics from biology is that many of the scientific theories that describe
living things, while ultimately resulting from the fundamental laws of
physics, cannot be rigorously derived from physical principles.

Isolated systems and reductionism
To avoid having to study everything at once, scientists isolate the things

they are trying to study. For instance, a physicist who wants to study the
motion of a rotating gyroscope would probably prefer that it be isolated
from vibrations and air currents. Even in biology, where field work is
indispensable for understanding how living things relate to their entire
environment, it is interesting to note the vital historical role played by
Darwin’s study of the Galápagos Islands, which were conveniently isolated
from the rest of the world. Any part of the universe that is considered apart
from the rest can be called a “system.”

Physics has had some of its greatest successes by carrying this process of
isolation to extremes, subdividing the universe into smaller and smaller
parts. Matter can be divided into atoms, and the behavior of individual
atoms can be studied. Atoms can be split apart into their constituent
neutrons, protons and electrons. Protons and neutrons appear to be made
out of even smaller particles called quarks, and there have even been some
claims of experimental evidence that quarks have smaller parts inside them.

virus

molecule

quarks

?

atom

neutrons
and protons

Section 0.2 What Is Physics?
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This method of splitting things into smaller and smaller parts and studying
how those parts influence each other is called reductionism. The hope is
that the seemingly complex rules governing the larger units can be better
understood in terms of simpler rules governing the smaller units. To
appreciate what reductionism has done for science, it is only necessary to
examine a 19th-century chemistry textbook. At that time, the existence of
atoms was still doubted by some, electrons were not even suspected to exist,
and almost nothing was understood of what basic rules governed the way
atoms interacted with each other in chemical reactions. Students had to
memorize long lists of chemicals and their reactions, and there was no way
to understand any of it systematically. Today, the student only needs to
remember a small set of rules about how atoms interact, for instance that
atoms of one element cannot be converted into another via chemical
reactions, or that atoms from the right side of the periodic table tend to
form strong bonds with atoms from the left side.

Discussion Questions
A. I’ve suggested replacing the ordinary dictionary definition of light with a
more technical, more precise one that involves weightlessness. It’s still
possible, though, that the stuff a lightbulb makes, ordinarily called “light,” does
have some small amount of weight. Suggest an experiment to attempt to
measure whether it does.

B. Heat is weightless (i.e. an object becomes no heavier when heated), and
can travel across an empty room from the fireplace to your skin, where it
influences you by heating you. Should heat therefore be considered a form of
light by our definition? Why or why not?

C. Similarly, should sound be considered a form of light?

0.3 How to Learn Physics
For as knowledges are now delivered, there is a kind of contract of error
between the deliverer and the receiver; for he that delivereth knowledge
desireth to deliver it in such a form as may be best believed, and not as may
be best examined; and he that receiveth knowledge desireth rather present
satisfaction than expectant inquiry.

Sir Francis Bacon
Many students approach a science course with the idea that they can

succeed by memorizing the formulas, so that when a problem is assigned on
the homework or an exam, they will be able to plug numbers in to the
formula and get a numerical result on their calculator. Wrong! That’s not
what learning science is about! There is a big difference between memoriz-
ing formulas and understanding concepts. To start with, different formulas
may apply in different situations. One equation might represent a defini-
tion, which is always true. Another might be a very specific equation for the
speed of an object sliding down an inclined plane, which would not be true
if the object was a rock drifting down to the bottom of the ocean. If you
don’t work to understand physics on a conceptual level, you won’t know
which formulas can be used when.

Science is not
about plugging
into formulas.

Chapter 0 Introduction and Review
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Most students taking college science courses for the first time also have
very little experience with interpreting the meaning of an equation. Con-
sider the equation w=A/h relating the width of a rectangle to its height and
area. A student who has not developed skill at interpretation might view
this as yet another equation to memorize and plug in to when needed. A
slightly more savvy student might realize that it is simply the familiar
formula A=wh in a different form. When asked whether a rectangle would
have a greater or smaller width than another with the same area but a
smaller height, the unsophisticated student might be at a loss, not having
any numbers to plug in on a calculator. The more experienced student
would know how to reason about an equation involving division — if h is
smaller, and A stays the same, then w must be bigger. Often, students fail to
recognize a sequence of equations as a derivation leading to a final result, so
they think all the intermediate steps are equally important formulas that
they should memorize.

When learning any subject at all, it is important to become as actively
involved as possible, rather than trying to read through all the information
quickly without thinking about it. It is a good idea to read and think about
the questions posed at the end of each section of these notes as you encoun-
ter them, so that you know you have understood what you were reading.

Many students’ difficulties in physics boil down mainly to difficulties
with math. Suppose you feel confident that you have enough mathematical
preparation to succeed in this course, but you are having trouble with a few
specific things. In some areas, the brief review given in this chapter may be
sufficient, but in other areas it probably will not. Once you identify the
areas of math in which you are having problems, get help in those areas.
Don’t limp along through the whole course with a vague feeling of dread
about something like scientific notation. The problem will not go away if
you ignore it. The same applies to essential mathematical skills that you are
learning in this course for the first time, such as vector addition.

Sometimes students tell me they keep trying to understand a certain
topic in the book, and it just doesn’t make sense. The worst thing you can
possibly do in that situation is to keep on staring at the same page. Every
textbook explains certain things badly — even mine! — so the best thing to
do in this situation is to look at a different book. Instead of college text-
books aimed at the same mathematical level as the course you’re taking, you
may in some cases find that high school books or books at a lower math
level give clearer explanations. The three books listed on the left are, in my
opinion, the best introductory physics books available, although they would
not be appropriate as the primary textbook for a college-level course for
science majors.

 Finally, when reviewing for an exam, don’t simply read back over the
text and your lecture notes. Instead, try to use an active method of review-
ing, for instance by discussing some of the discussion questions with
another student, or doing homework problems you hadn’t done the first
time.

interpreting
an equation
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Other Books
PSSC Physics, Haber-Schaim et
al., 7th ed., 1986. Kendall/Hunt,
Dubuque, Iowa.

A high-school textbook at the
algebra-based level. This book
distinguishes itself by giving a
clear, careful, and honest
explanation of every topic, while
avoiding unnecessary details.

Physics for Poets, Robert H.
March, 4th ed., 1996. McGraw-
Hill, New York.

As the name implies, this book’s
intended audience is liberal arts
students who want to under-
stand science in a broader
cultural and historical context.
Not much math is used, and the
page count of this little paper-
back is about five times less than
that of the typical “kitchen sink”
textbook, but the intellectual
level is actually pretty challeng-
ing.

Conceptual Physics, Paul Hewitt.
Scott Foresman, Glenview, Ill.

This is the excellent book used
for Physics 130 here at Fullerton
College. Only simple algebra is
used.
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0.4 Self-Evaluation
The introductory part of a book like this is hard to write, because every

student arrives at this starting point with a different preparation. One
student may have grown up in another country and so may be completely
comfortable with the metric system, but may have had an algebra course in
which the instructor passed too quickly over scientific notation. Another
student may have already taken calculus, but may have never learned the
metric system. The following self-evaluation is a checklist to help you figure
out what you need to study to be prepared for the rest of the course.

If you disagree with this statement... you should study this section:

I am familiar with the basic metric units of meters,
kilograms, and seconds, and the most common metric
prefixes: milli- (m), kilo- (k), and centi- (c).

0.5 Basics of the Metric System

I know about the Newton, a unit of force 0.6 The Newton, the Metric Unit of Force

I am familiar with these less common metric prefixes:
mega- (M), micro- (µ), and nano- (n). 0.7 Less Common Metric Prefixes

I am comfortable with scientific notation. 0.8 Scientific Notation

I can confidently do metric conversions. 0.9 Conversions

I understand the purpose and use of significant figures. 0.10 Significant Figures

It wouldn’t hurt you to skim the sections you think you already know
about, and to do the self-checks in those sections.

0.5 Basics of the Metric System
The metric system

Units were not standardized until fairly recently in history, so when the
physicist Isaac Newton gave the result of an experiment with a pendulum,
he had to specify not just that the string was 37 7/

8
 inches long but that it

was “37 7/
8
 London inches long.” The inch as defined in Yorkshire would

have been different. Even after the British Empire standardized its units, it
was still very inconvenient to do calculations involving money, volume,
distance, time, or weight, because of all the odd conversion factors, like 16
ounces in a pound, and 5280 feet in a mile. Through the nineteenth
century, schoolchildren squandered most of their mathematical education
in preparing to do calculations such as making change when a customer in a
shop offered a one-crown note for a book costing two pounds, thirteen
shillings and tuppence. The dollar has always been decimal, and British
money went decimal decades ago, but the United States is still saddled with
the antiquated system of feet, inches, pounds, ounces and so on.

Every country in the world besides the U.S. has adopted a system of
units known in English as the “metric system.” This system is entirely

Chapter 0 Introduction and Review
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decimal, thanks to the same eminently logical people who brought about
the French Revolution. In deference to France, the system’s official name is
the Système International, or SI, meaning International System. (The
phrase “SI system” is therefore redundant.)

The wonderful thing about the SI is that people who live in countries
more modern than ours do not need to memorize how many ounces there
are in a pound, how many cups in a pint, how many feet in a mile, etc. The
whole system works with a single, consistent set of prefixes (derived from
Greek) that modify the basic units. Each prefix stands for a power of ten,
and has an abbreviation that can be combined with the symbol for the unit.
For instance, the meter is a unit of distance. The prefix kilo- stands for 103,
so a kilometer, 1 km, is a thousand meters.

The basic units of the metric system are the meter for distance, the
second for time, and the gram for mass.

The following are the most common metric prefixes. You should
memorize them.

prefix meaning example

kilo- k 103 60 kg = a person’s mass

centi- c 10-2 28 cm = height of a piece of paper

milli- m 10-3 1 ms = time for one vibration of a
guitar string playing the
note D

The prefix centi-, meaning 10-2, is only used in the centimeter; a
hundredth of a gram would not be written as 1 cg but as 10 mg. The centi-
prefix can be easily remembered because a cent is 10-2 dollars. The official SI
abbreviation for seconds is “s” (not “sec”) and grams are “g” (not “gm”).

The second
The sun stood still and the moon halted until the nation had taken ven-
geance on its enemies...

Joshua 10:12-14
Absolute, true, and mathematical time, of itself, and from its own nature,
flows equably without relation to anything external...

Isaac Newton
When I stated briefly above that the second was a unit of time, it may

not have occurred to you that this was not really much of a definition. The
two quotes above are meant to demonstrate how much room for confusion
exists among people who seem to mean the same thing by a word such as
“time.” The first quote has been interpreted by some biblical scholars as
indicating an ancient belief that the motion of the sun across the sky was
not just something that occurred with the passage of time but that the sun
actually caused time to pass by its motion, so that freezing it in the sky

Section 0.5 Basic of the Metric System
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would have some kind of a supernatural decelerating effect on everyone
except the Hebrew soldiers. Many ancient cultures also conceived of time as
cyclical, rather than proceeding along a straight line as in 1998, 1999,
2000, 2001,... The second quote, from a relatively modern physicist, may
sound a lot more scientific, but most physicists today would consider it
useless as a definition of time. Today, the physical sciences are based on
operational definitions, which means definitions that spell out the actual
steps (operations) required to measure something numerically.

Now in an era when our toasters, pens, and coffee pots tell us the time,
it is far from obvious to most people what is the fundamental operational
definition of time. Until recently, the hour, minute, and second were
defined operationally in terms of the time required for the earth to rotate
about its axis. Unfortunately, the Earth’s rotation is slowing down slightly,
and by 1967 this was becoming an issue in scientific experiments requiring
precise time measurements. The second was therefore redefined as the time
required for a certain number of vibrations of the light waves emitted by a
cesium atoms in a lamp constructed like a familiar neon sign but with the
neon replaced by cesium. The new definition not only promises to stay
constant indefinitely, but for scientists is a more convenient way of calibrat-
ing a clock than having to carry out astronomical measurements.

Self-Check

What is a possible operational definition of how strong a person is?

The meter
The French originally defined the meter as 10-7 times the distance from

the equator to the north pole, as measured through Paris (of course). Even if
the definition was operational, the operation of traveling to the north pole
and laying a surveying chain behind you was not one that most working
scientists wanted to carry out. Fairly soon, a standard was created in the
form of a metal bar with two scratches on it. This definition persisted until
1960, when the meter was redefined as the distance traveled by light in a
vacuum over a period of (1/299792458) seconds.

Pope Gregory created our modern
“Gregorian” calendar, with its system
of leap years, to make the length of
the calendar year match the length of
the cycle of seasons. Not until1752 did
Protestant England switched to the
new calendar. Some less educated
citizens believed that the shortening
of the month by eleven days would
shorten their lives by the same interval.
In this illustration by William Hogarth,
the leaflet lying on the ground reads,
“Give us our eleven days.”

A dictionary might define “strong” as “posessing powerful muscles,” but that’s not an operational definition, because
it doesn’t say how to measure strength numerically.  One possible operational definition would be the number of
pounds a person can bench press.

107 m
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The Time Without
Underwear

Unfortunately, the French
Revolutionary calendar never
caught on. Each of its twelve
months was 30 days long, with
names like Thermidor (the month
of heat) and Germinal (the month
of budding). To round out the year
to 365 days, a five-day period was
added on the end of the calendar,
and named the sans culottides. In
modern French, sans culottides
means “time without underwear,”
but in the 18th century, it was a way
to honor the workers and peasants,
who wore simple clothing instead
of the fancy pants (culottes) of the
aristocracy.
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The kilogram
The third base unit of the SI is the kilogram, a unit of mass.  Mass is

intended to be a measure of the amount of a substance, but that is not an
operational definition. Bathroom scales work by measuring our planet’s
gravitational attraction for the object being weighed, but using that type of
scale to define mass operationally would be undesirable because gravity
varies in strength from place to place on the earth.

There’s a surprising amount of disagreement among physics textbooks
about how mass should be defined, but here’s how it’s actually handled by
the few working physicists who specialize in ultra-high-precision measure-
ments. They maintain a physical object in Paris, which is the standard
kilogram, a cylinder made of platinum-iridium alloy. Duplicates are
checked against this mother of all kilograms by putting the original and the
copy on the two opposite pans of a balance. Although this method of
comparison depends on gravity, the problems associated with differences in
gravity in different geographical locations are bypassed, because the two
objects are being compared in the same place. The duplicates can then be
removed from the Parisian kilogram shrine and transported elsewhere in the
world.

Combinations of metric units
Just about anything you want to measure can be measured with some

combination of meters, kilograms, and seconds.  Speed can be measured in
m/s, volume in m3, and density in kg/m3. Part of what makes the SI great is
this basic simplicity. No more funny units like a cord of wood, a bolt of
cloth, or a jigger of whiskey. No more liquid and dry measure. Just a simple,
consistent set of units. The SI measures put together from meters, kilo-
grams, and seconds make up the mks system. For example, the mks unit of
speed is m/s, not km/hr.

Discussion question
Isaac Newton wrote,  “...the natural days are truly unequal, though they are
commonly considered as equal, and used for a measure of time... It may be
that there is no such thing as an equable motion, whereby time may be
accurately measured. All motions may be accelerated or retarded...” Newton
was right. Even the modern definition of the second in terms of light emitted by
cesium atoms is subject to variation. For instance, magnetic fields could cause
the cesium atoms to emit light with a slightly different rate of vibration. What
makes us think, though, that a pendulum clock is more accurate than a
sundial, or that a cesium atom is a more accurate timekeeper than a pendulum
clock? That is, how can one test experimentally how the accuracies of different
time standards compare?

0.6 The Newton, the Metric Unit of Force
A force is a push or a pull, or more generally anything that can change

an object’s speed or direction of motion. A force is required to start a car
moving, to slow down a baseball player sliding in to home base, or to make
an airplane turn. (Forces may fail to change an object’s motion if they are
canceled by other forces, e.g. the force of gravity pulling you down right
now is being canceled by the force of the chair pushing up on you.) The
metric unit of force is the Newton, defined as the force which, if applied for
one second, will cause a 1-kilogram object starting from rest to reach a

Section 0.6 The Newton, the Metric Unit of Force
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speed of 1 m/s. Later chapters will discuss the force concept in more detail.
In fact, this entire book is about the relationship between force and motion.

In the previous section, I gave a gravitational definition of mass, but by
defining a numerical scale of force, we can also turn around and define a
scale of mass without reference to gravity. For instance, if a force of two
Newtons is required to accelerate a certain object from rest to 1 m/s in 1 s,
then that object must have a mass of 2 kg. From this point of view, mass
characterizes an object’s resistance to a change in its motion, which we call
inertia or inertial mass. Although there is no fundamental reason why an
object’s resistance to a change in its motion must be related to how strongly
gravity affects it, careful and precise experiments have shown that the
inertial definition and the gravitational definition of mass are highly
consistent for a variety of objects. It therefore doesn’t really matter for any
practical purpose which definition one adopts.

Discussion Question
Spending a long time in weightlessness is unhealthy. One of the most
important negative effects experienced by astronauts is a loss of muscle and
bone mass. Since an ordinary scale won’t work for an astronaut in orbit, what
is a possible way of monitoring this change in mass? (Measuring the
astronaut’s waist or biceps with a measuring tape is not good enough, because
it doesn’t tell anything about bone mass, or about the replacement of muscle
with fat.)

0.7 Less Common Metric Prefixes
The following are three metric prefixes which, while less common than

the ones discussed previously, are well worth memorizing.

prefix meaning example

mega- M 106 6.4 Mm = radius of the earth

micro- µ 10-6 1 µm = diameter of a human hair

nano- n 10-9 0.154 nm = distance between carbon
nuclei in an ethane molecule

Note that the abbreviation for micro is the Greek letter mu, µ — a
common mistake is to confuse it with m (milli) or M (mega).

There are other prefixes even less common, used for extremely large and
small quantities.  For instance, 1 femtometer=10-15 m is a convenient unit
of distance in nuclear physics, and 1 gigabyte=109 bytes is used for comput-
ers’ hard disks.  The international committee that makes decisions about the
SI has recently even added some new prefixes that sound like jokes, e.g. 1
yoctogram = 10-24 g is about half the mass of a proton.  In the immediate
future, however, you’re unlikely to see prefixes like “yocto-” and “zepto-”
used except perhaps in trivia contests at science-fiction conventions or other
geekfests.

10-9

10-6

10-3

103

106

Nine little

nano

micro

milli

kilo

mega

nuns

mix

milky

mugs.

This is a mnemonic to help you
remember the most important
metric prefixes. The word "little"
is to remind you that the list starts
with the prefixes used for small
quantities and builds upward. The
exponent changes by 3 with each
step, except that of course we do
not need a special prefix for 100,
which equals one.
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Self-Check
Suppose you could slow down time so that according to your perception, a
beam of light would move across a room at the speed of a slow walk.  If you
perceived a nanosecond as if it was a second, how would you perceive a
microsecond?

0.8 Scientific Notation
Most of the interesting phenomena our universe has to offer are not on

the human scale. It would take about 1,000,000,000,000,000,000,000
bacteria to equal the mass of a human body. When the physicist Thomas
Young discovered that light was a wave, it was back in the bad old days
before scientific notation, and he was obliged to write that the time required
for one vibration of the wave was 1/500 of a millionth of a millionth of a
second. Scientific notation is a less awkward way to write very large and
very small numbers such as these.  Here’s a quick review.

Scientific notation means writing a number in terms of a product of
something from 1 to 10 and something else that is a power of ten. For
instance,

32 = 3.2 x 101

320 = 3.2 x 102

3200 = 3.2 x 103 ...
Each number is ten times bigger than the previous one.

Since 101 is ten times smaller than 102, it makes sense to use the
notation 100 to stand for one, the number that is in turn ten times smaller
than 101. Continuing on, we can write 10-1 to stand for 0.1, the number
ten times smaller than 100. Negative exponents are used for small numbers:

3.2 = 3.2 x 100

0.32 = 3.2 x 10-1

0.032 = 3.2 x 10-2 ...
A common source of confusion is the notation used on the displays of

many calculators. Examples:

3.2 x 106 (written notation)

3.2E+6 (notation on some calculators)

3.26 (notation on some other calculators)

The last example is particularly unfortunate, because 3.26 really stands
for the number 3.2x3.2x3.2x3.2x3.2x3.2 = 1074, a totally different number
from 3.2 x 106 = 3200000. The calculator notation should never be used in
writing. It’s just a way for the manufacturer to save money by making a
simpler display.

A microsecond is 1000 times longer than a nanosecond, so it would seem like 1000 seconds, or about 20 minutes.

Section 0.8 Scientific Notation



28

Self-Check
A student learns that 104 bacteria, standing in line to register for classes at
Paramecium Community College, would form a queue of this size:

The student concludes that 102 bacteria would form a line of this length:

Why is the student incorrect?

0.9 Conversions
I suggest you avoid memorizing lots of conversion factors between SI

units and U.S. units. Suppose the United Nations sends its black helicopters
to invade California (after all who wouldn’t rather live here than in New
York City?), and institutes water fluoridation and the SI, making the use of
inches and pounds into a crime punishable by death. I think you could get
by with only two mental conversion factors:

1 inch = 2.54 cm
An object with a weight on Earth of 2.2 lb has a mass of 1 kg.

The first one is the present definition of the inch, so it’s exact. The
second one is not exact, but is good enough for most purposes. The pound
is a unit of gravitational force, while the kg is a unit of mass, which mea-
sures how hard it is to accelerate an object, not how hard gravity pulls on it.
Therefore it would be incorrect to say that 2.2 lb literally equaled 1 kg, even
approximately.

More important than memorizing conversion factors is understanding
the right method for doing conversions. Even within the SI, you may need
to convert, say, from grams to kilograms. Different people have different
ways of thinking about conversions, but the method I’ll describe here is
systematic and easy to understand. The idea is that if 1 kg and 1000 g
represent the same mass, then we can consider a fraction like

 103 g
1 kg

to be a way of expressing the number one. This may bother you. For
instance, if you type 1000/1 into your calculator, you will get 1000, not
one. Again, different people have different ways of thinking about it, but
the justification is that it helps us to do conversions, and it works! Now if
we want to convert 0.7 kg to units of grams, we can multiply 0.7 kg by the
number one:

  
0.7 kg ×

103 g
1 kg

If you’re willing to treat symbols such as “kg” as if they were variables as
used in algebra (which they’re really not), you can then cancel the kg on top
with the kg on the bottom, resulting in
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0.7 kg/ ×
103 g

1 kg/
= 700 g .

To convert grams to kilograms, you would simply flip the fraction upside
down.

One advantage of this method is that it can easily be applied to a series
of conversions. For instance, to convert one year to units of seconds,

  
1 year/ ×

365 days/
1 year/

×
24 hours/

1 day/
×

60 min/
1 hour/

× 60 s

1 min/
= 3.15 x 107 s .

Should that exponent be positive or negative?
A common mistake is to write the conversion fraction incorrectly. For

instance the fraction

 103 kg
1 g

(incorrect)

does not equal one, because 103 kg is the mass of a car, and 1 g is the mass
of a raisin. One correct way of setting up the conversion factor would be

 10– 3 kg
1 g

   . (correct)

You can usually detect such a mistake if you take the time to check your
answer and see if it is reasonable.

If common sense doesn’t rule out either a positive or a negative expo-
nent, here’s another way to make sure you get it right. There are big prefixes
and small prefixes:

big prefixes: k M
small prefixes: m µ n

(It’s not hard to keep straight which are which, since “mega” and “micro” are
evocative, and it’s easy to remember that a kilometer is bigger than a meter
and a millimeter is smaller.) In the example above, we want the top of the
fraction to be the same as the bottom. Since k is a big prefix, we need to
compensate by putting a small number like 10-3 in front of it, not a big
number like 103.

Discussion Question
Each of the following conversions contains an error.  In each case, explain
what the error is.

(a) 1000 kg x  1 kg
1000 g  = 1 g (b) 50 m x  1 cm

100 m  = 0.5 cm

(c) "Nano" is 10-9, so there are 10-9 nm in a meter.
(d) "Micro" is 10-6, so 1 kg is 106 µg.

checking conversions
using common sense

checking conversions using
the idea of “compensating”

Section 0.9 Conversions
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0.10 Significant Figures
An engineer is designing a car engine, and has been told that the

diameter of the pistons (which are being designed by someone else) is 5 cm.
He knows that 0.02 cm of clearance is required for a piston of this size, so
he designs the cylinder to have an inside diameter of 5.04 cm. Luckily, his
supervisor catches his mistake before the car goes into production. She
explains his error to him, and mentally puts him in the “do not promote”
category.

What was his mistake? The person who told him the pistons were 5 cm
in diameter was wise to the ways of significant figures, as was his boss, who
explained to him that he needed to go back and get a more accurate num-
ber for the diameter of the pistons. That person said “5 cm” rather than
“5.00 cm” specifically to avoid creating the impression that the number was
extremely accurate. In reality, the pistons’ diameter was 5.13 cm. They
would never have fit in the 5.04-cm cylinders.

The number of digits of accuracy in a number is referred to as the
number of significant figures, or “sig figs” for short. As in the example
above, sig figs provide a way of showing the accuracy of a number. In most
cases, the result of a calculation involving several pieces of data can be no
more accurate than the least accurate piece of data. In other words, “garbage
in, garbage out.” Since the 5 cm diameter of the pistons was not very
accurate, the result of the engineer’s calculation, 5.04 cm, was really not as
accurate as he thought. In general, your result should not have more than
the number of sig figs in the least accurate piece of data you started with.
The calculation above should have been done as follows:

5 cm (1 sig fig)
+ 0.04 cm (1 sig fig)
= 5 cm (rounded off to 1 sig fig)

The fact that the final result only has one significant figure then alerts you
to the fact that the result is not very accurate, and would not be appropriate
for use in designing the engine.

Note that the leading zeroes in the number 0.04 do not count as
significant figures, because they are only placeholders. On the other hand, a
number such as 50 cm is ambiguous — the zero could be intended as a
significant figure, or it might just be there as a placeholder. The ambiguity
involving trailing zeroes can be avoided by using scientific notation, in
which 5 x 101 cm would imply one sig fig of accuracy, while 5.0 x 101 cm
would imply two sig figs.

Self-Check
(a) The following quote is taken from an editorial by Norimitsu Onishi in the
New York Times, August 18, 2002.

Consider Nigeria. Everyone agrees it is Africa’s most populous nation.
But what is its population? The United Nations says 114 million; the
State Department, 120 million. The World Bank says 126.9 million, while
the Central Intelligence Agency puts it at 126,635,626.

What should bother you about this?

Significant figures
communicate the

accuracy of a number.
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Dealing correctly with significant figures can save you time! Often,
students copy down numbers from their calculators with eight significant
figures of precision, then type them back in for a later calculation. That’s a
waste of time, unless your original data had that kind of incredible preci-
sion.

The rules about significant figures are only rules of thumb, and are not
a substitute for careful thinking. For instance, $20.00 + $0.05 is $20.05. It
need not and should not be rounded off to $20. In general, the sig fig rules
work best for multiplication and division, and we also apply them when
doing a complicated calculation that involves many types of operations. For
simple addition and subtraction, it makes more sense to maintain a fixed
number of digits after the decimal point.

When in doubt, don’t use the sig fig rules at all. Instead, intentionally
change one piece of your initial data by the maximum amount by which
you think it could have been off, and recalculate the final result. The digits
on the end that arecompletely reshuffled are the ones that are meaningless,
and should be omitted.

How many significant figures are there in each of the following measurements?
(a) 9.937 m
(b) 4.0 s
(c) 0.0000037 kg

(a)  (b) 4; (c) 2; (d) 2

Section 0.10 Significant Figures
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Summary
Selected Vocabulary

matter ............................... Anything that is affected by gravity.
light................................... Anything that can travel from one place to another through empty space

and can influence matter, but is not affected by gravity.
operational definition ........ A definition that states what operations should be carried out to measure

the thing being defined.
Système International ........ A fancy name for the metric system.
mks system ........................ The use of metric units based on the meter, kilogram, and second. Ex-

ample: meters per second is the mks unit of speed, not cm/s or km/hr.
mass .................................. A numerical measure of how difficult it is to change an object’s motion.
significant figures .............. Digits that contribute to the accuracy of a measurement.

Notation
m ...................................... symbol for mass, or the meter, the metric distance unit
kg ...................................... kilogram, the metric unit of mass
s ........................................ second, the metric unit of time
M- ..................................... the metric prefix mega-, 106

k- ...................................... the metric prefix kilo-, 103

m- ..................................... the metric prefix milli-, 10-3

µ- ...................................... the metric prefix micro-, 10-6

n- ...................................... the metric prefix nano-, 10-9

Summary
Physics is the use of the scientific method to study the behavior of light and matter. The scientific method

requires a cycle of theory and experiment, theories with both predictive and explanatory value, and
reproducible experiments.

The metric system is a simple, consistent framework for measurement built out of the meter, the kilogram,
and the second plus a set of prefixes denoting powers of ten. The most systematic method for doing
conversions is shown in the following example:

  370 ms × 10– 3 s
1 ms = 0.37 s

Mass is a measure of the amount of a substance. Mass can be defined gravitationally, by comparing an
object to a standard mass on a double-pan balance, or in terms of inertia, by comparing the effect of a force
on an object to the effect of the same force on a standard mass. The two definitions are found experimentally
to be proportional to each other to a high degree of precision, so we usually refer simply to “mass,” without
bothering to specify which type.

A force is that which can change the motion of an object. The metric unit of force is the Newton, defined as
the force required to accelerate a standard 1-kg mass from rest to a speed of 1 m/s in 1 s.

Scientific notation means, for example, writing 3.2x105 rather than 320000.

Writing numbers with the correct number of significant figures correctly communicates how accurate they
are. As a rule of thumb, the final result of a calculation is no more accurate than, and should have no more
significant figures than, the least accurate piece of data.
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Homework Problems

1. Correct use of a calculator: (a✓) Calculate  74658
53222 + 97554

on a calcula-

tor.

[Self-check: The most common mistake results in 97555.40.]

(b) Which would be more like the price of a TV, and which would be more
like the price of a house, $ 3.5x105 or $ 3.55?

2. Compute the following things. If they don't make sense because of units,
say so.

(a) 3 cm + 5 cm (b) 1.11 m + 22 cm

(c) 120 miles + 2.0 hours (d) 120 miles / 2.0 hours

3. Your backyard has brick walls on both ends. You measure a distance of
23.4 m from the inside of one wall to the inside of the other. Each wall is
29.4 cm thick. How far is it from the outside of one wall to the outside of
the other? Pay attention to significant figures.

4 ✓. The speed of light is 3.0x108 m/s. Convert this to furlongs per fort-
night.  A furlong is 220 yards, and a fortnight is 14 days.  An inch is 2.54
cm.

5 ✓. Express each of the following quantities in micrograms: (a) 10 mg, (b)
104 g, (c) 10 kg, (d) 100x103 g, (e) 1000 ng.

6 S. Convert 134 mg to units of kg, writing your answer in scientific
notation.

7✓. In the last century, the average age of the onset of puberty for girls has
decreased by several years. Urban folklore has it that this is because of
hormones fed to beef cattle, but it is more likely to be because modern girls
have more body fat on the average and possibly because of estrogen-
mimicking chemicals in the environment from the breakdown of pesticides.
A hamburger from a hormone-implanted steer has about 0.2 ng of estrogen
(about double the amount of natural beef ). A serving of peas contains about
300 ng of estrogen. An adult woman produces about 0.5 mg of estrogen per
day (note the different unit!). (a) How many hamburgers would a girl have
to eat in one day to consume as much estrogen as an adult woman’s daily
production? (b) How many servings of peas?

8 S. The usual definition of the mean (average) of two numbers a and b is
(a+b)/2. This is called the arithmetic mean. The geometric mean, however,
is defined as (ab)1/2. For the sake of definiteness, let’s say both numbers have
units of mass. (a) Compute the arithmetic mean of two numbers that have
units of grams. Then convert the numbers to units of kilograms and
recompute their mean. Is the answer consistent? (b) Do the same for the
geometric mean. (c) If a and b both have units of grams, what should we
call the units of ab? Does your answer make sense when you take the square
root? (d) Suppose someone proposes to you a third kind of mean, called the
superduper mean, defined as (ab)1/3. Is this reasonable?

S A  solution is given in the back of the book. « A difficult problem.
✓ A computerized answer check is available. ∫ A problem that requires calculus.

Homework Problems
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1 Scaling and Order-of-
Magnitude Estimates

1.1 Introduction
Why can’t an insect be the size of a dog? Some skinny stretched-out cells

in your spinal cord are a meter tall — why does nature display no single
cells that are not just a meter tall, but a meter wide, and a meter thick as
well? Believe it or not, these are questions that can be answered fairly easily
without knowing much more about physics than you already do. The only
mathematical technique you really need is the humble conversion, applied
to area and volume.

Area and volume
Area can be defined by saying that we can copy the shape of interest

onto graph paper with 1 cm x 1 cm squares and count the number of
squares inside. Fractions of squares can be estimated by eye. We then say the
area equals the number of squares, in units of square cm. Although this
might seem less “pure” than computing areas using formulae like A=πr2 for
a circle or A=wh/2 for a triangle, those formulae are not useful as definitions
of area because they cannot be applied to irregularly shaped areas.

Units of square cm are more commonly written as cm2 in science. Of
course, the unit of measurement symbolized by “cm” is not an algebra
symbol standing for a number that can be literally multiplied by itself. But
it is advantageous to write the units of area that way and treat the units as if
they were algebra symbols. For instance, if you have a rectangle with an area
of 6 m2 and a width of 2 m, then calculating its length as (6 m2)/(2 m)=3 m
gives a result that makes sense both numerically and in terms of units. This
algebra-style treatment of the units also ensures that our methods of

Amoebas this size are seldom
encountered.

Life would be very different if
you were the size of an insect.
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1 yd2x(3 ft/1 yd)2=9 ft2. 1 yd3x(3 ft/1 yd)3=27 ft3.

converting units work out correctly. For instance, if we accept the fraction

 100 cm
1 m

as a valid way of writing the number one, then one times one equals one, so
we should also say that one can be represented by

  100 cm
1 m

× 100 cm
1 m

which is the same as

  10000 cm2

1 m2 .

That means the conversion factor from square meters to square centi-
meters is a factor of  104, i.e. a square meter has 104 square centimeters in
it.

All of the above can be easily applied to volume as well, using one-
cubic-centimeter blocks instead of squares on graph paper.

To many people, it seems hard to believe that a square meter equals
10000 square centimeters, or that a cubic meter equals a million cubic
centimeters — they think it would make more sense if there were 100 cm2

in 1 m2, and 100 cm3 in 1 m3, but that would be incorrect. The examples
shown in the figure below aim to make the correct answer more believable,
using the traditional U.S. units of feet and yards. (One foot is 12 inches,
and one yard is three feet.)

1 ft 1 yd = 3 ft

1 ft2 1 yd2 = 9 ft2 1 ft3

1 yd3 = 27 ft3

Self-Check
Based on the figure, convince yourself that there are 9 ft2 in a square yard ,
and 27 ft3 in a cubic yard, then demonstrate the same thing symbolically (i.e.
with the method using fractions that equal one).

Discussion question

A. How many square centimeters are there in a square inch? (1 inch=2.54 cm)
First find an approximate answer by making a drawing, then derive the
conversion factor more accurately using the symbolic method.

Chapter 1 Scaling and Order-of-Magnitude Estimates
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1.2 Scaling of Area and Volume
Great fleas have lesser fleas
Upon their backs to bite ‘em.
And lesser fleas have lesser still,
And so ad infinitum.

Jonathan Swift
Now how do these conversions of area and volume relate to the ques-

tions I posed about sizes of living things? Well, imagine that you are shrunk
like Alice in Wonderland to the size of an insect. One way of thinking
about the change of scale is that what used to look like a centimeter now
looks like perhaps a meter to you, because you’re so much smaller. If area
and volume scaled according to most people’s intuitive, incorrect expecta-
tions, with 1 m2 being the same as 100 cm2, then there would be no
particular reason why nature should behave any differently on your new,
reduced scale. But nature does behave differently now that you’re small. For
instance, you will find that you can walk on water, and jump to many times
your own height. The physicist Galileo Galilei had the basic insight that the
scaling of area and volume determines how natural phenomena behave
differently on different scales. He first reasoned about mechanical struc-
tures, but later extended his insights to living things, taking the then-radical
point of view that at the fundamental level, a living organism should follow
the same laws of nature as a machine. We will follow his lead by first
discussing machines and then living things.

Galileo on the behavior of nature on large and small scales
One of the world’s most famous pieces of scientific writing is Galileo’s

Dialogues Concerning the Two New Sciences. Galileo was an entertaining
writer who wanted to explain things clearly to laypeople, and he livened up
his work by casting it in the form of a dialogue among three people. Salviati
is really Galileo’s alter ego. Simplicio is the stupid character, and one of the
reasons Galileo got in trouble with the Church was that there were rumors
that Simplicio represented the Pope. Sagredo is the earnest and intelligent
student, with whom the reader is supposed to identify. (The following
excerpts are from the 1914 translation by Crew and de Salvio.)

A boat this large needs to have timbers
that are thicker compared to its size.

The small boat holds up just fine.

A larger boat built with the same
proportions as the small one will
collapse under its own weight.

Galileo Galilei (1564-1642) was a Renaissance Italian who brought the scientific
method to bear on physics, creating the modern version of the science. Coming
from a noble but very poor family, Galileo had to drop out of medical school at
the University of Pisa when he ran out of money. Eventually becoming a lecturer
in mathematics at the same school, he began a career as a notorious
troublemaker by writing a burlesque ridiculing the university’s regulations — he
was forced to resign, but found a new teaching position at Padua. He invented
the pendulum clock, investigated the motion of falling bodies, and discovered
the moons of Jupiter. The thrust of his life’s work was to discredit Aristotle’s
physics by confronting it with contradictory experiments, a program which paved
the way for Newton’s discovery of the relationship between force and motion. In
Chapter 3 we’ll come to the story of Galileo’s ultimate fate at the hands of the
Church.

Section 1.2 Scaling of Area and Volume
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SALVIATI: ...we asked the reason why [shipbuilders] employed stocks,
scaffolding, and bracing of larger dimensions for launching a big vessel than
they do for a small one; and [an old man] answered that they did this in order
to avoid the danger of the ship parting under its own heavy weight, a danger to
which small boats are not subject?
SAGREDO: Yes, that is what I mean; and I refer especially to his last assertion
which I have always regarded as false...; namely, that in speaking of these and
other similar machines one cannot argue from the small to the large, because
many devices which succeed on a small scale do not work on a large scale.
Now, since mechanics has its foundations in geometry, where mere size [ is
unimportant], I do not see that the properties of circles, triangles, cylinders,
cones and other solid figures will change with their size. If, therefore, a large
machine be constructed in such a way that its parts bear to one another the
same ratio as in a smaller one, and if the smaller is sufficiently strong for the
purpose for which it is designed, I do not see why the larger should not be able
to withstand any severe and destructive tests to which it may be subjected.

Salviati contradicts Sagredo:

SALVIATI: ...Please observe, gentlemen, how facts which at first seem
improbable will, even on scant explanation, drop the cloak which has hidden
them and stand forth in naked and simple beauty. Who does not know that a
horse falling from a height of three or four cubits will break his bones, while a
dog falling from the same height or a cat from a height of eight or ten cubits will
suffer no injury? Equally harmless would be the fall of a grasshopper from a
tower or the fall of an ant from the distance of the moon.

The point Galileo is making here is that small things are sturdier in
proportion to their size. There are a lot of objections that could be raised,
however. After all, what does it really mean for something to be “strong”, to
be “strong in proportion to its size,” or to be strong “out of proportion to its
size?” Galileo hasn’t spelled out operational definitions of things like
“strength,” i.e. definitions that spell out how to measure them numerically.

Also, a cat is shaped differently from a horse — an enlarged photograph
of a cat would not be mistaken for a horse, even if the photo-doctoring
experts at the National Inquirer made it look like a person was riding on its
back. A grasshopper is not even a mammal, and it has an exoskeleton
instead of an internal skeleton. The whole argument would be a lot more
convincing if we could do some isolation of variables, a scientific term that
means to change only one thing at a time, isolating it from the other
variables that might have an effect. If size is the variable whose effect we’re

Chapter 1 Scaling and Order-of-Magnitude Estimates

This plank is the longest it 
can be without collapsing 
under its own weight.  If it 
was a hundredth of an inch 
longer, it would collapse.

This plank is made out of the 
same kind of wood.  It is twice 
as thick, twice as long, and 
twice as wide.  It will collapse 
under its own weight.

(After Galileo's original drawing.)
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interested in seeing, then we don’t really want to compare things that are
different in size but also different in other ways.

Also, Galileo is doing something that would be frowned on in modern
science: he is mixing experiments whose results he has actually observed
(building boats of different sizes), with experiments that he could not
possibly have done (dropping an ant from the height of the moon).

After this entertaining but not scientifically rigorous beginning, Galileo
starts to do something worthwhile by modern standards. He simplifies
everything by considering the strength of a wooden plank. The variables
involved can then be narrowed down to the type of wood, the width, the
thickness, and the length. He also gives an operational definition of what it
means for the plank to have a certain strength “in proportion to its size,” by
introducing the concept of a plank that is the longest one that would not
snap under its own weight if supported at one end. If you increased its
length by the slightest amount, without increasing its width or thickness, it
would break. He says that if one plank is the same shape as another but a
different size, appearing like a reduced or enlarged photograph of the other,
then the planks would be strong “in proportion to their sizes” if both were
just barely able to support their own weight.

He now relates how he has done actual experiments with such planks,
and found that, according to this operational definition, they are not strong
in proportion to their sizes. The larger one breaks. He makes sure to tell the
reader how important the result is, via Sagredo’s astonished response:

SAGREDO: My brain already reels. My mind, like a cloud momentarily illuminated
by a lightning flash, is for an instant filled with an unusual light, which now
beckons to me and which now suddenly mingles and obscures strange, crude
ideas. From what you have said it appears to me impossible to build two
similar structures of the same material, but of different sizes and have them
proportionately strong.

In other words, this specific experiment, using things like wooden
planks that have no intrinsic scientific interest, has very wide implications
because it points out a general principle, that nature acts differently on
different scales.

To finish the discussion, Galileo gives an explanation. He says that the
strength of a plank (defined as, say, the weight of the heaviest boulder you
could put on the end without breaking it) is proportional to its cross-
sectional area, that is, the surface area of the fresh wood that would be
exposed if you sawed through it in the middle. Its weight, however, is
proportional to its volume.

How do the volume and cross-sectional area of the longer plank
compare with those of the shorter plank? We have already seen, while
discussing conversions of the units of area and volume, that these quantities
don’t act the way most people naively expect. You might think that the
volume and area of the longer plank would both be doubled compared to
the shorter plank, so they would increase in proportion to each other, and
the longer plank would be equally able to support its weight. You would be
wrong, but Galileo knows that this is a common misconception, so he has

Section 1.2 Scaling of Area and Volume

Galileo discusses planks made of
wood, but the concept may be easier
to imagine with clay. All three clay rods
in the figure were originally the same
shape. The medium-sized one was
twice the height, twice the length, and
twice the width of the small one, and
similarly the large one was twice as
big as the medium one in all its linear
dimensions. The big one has four
times the linear dimensions of the
small one, 16 times the cross-sectional
area when cut perpendicular to the
page, and 64 times the volume. That
means that the big one has 64 times
the weight to support, but only 16 times
the strength compared to the smallest
one.
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Salviati address the point specifically:

SALVIATI: ...Take, for example, a cube two inches on a side so that each face
has an area of four square inches and the total area, i.e., the sum of the six
faces, amounts to twenty-four square inches; now imagine this cube to be
sawed through three times [with cuts in three perpendicular planes] so as to
divide it into eight smaller cubes, each one inch on the side, each face one
inch square, and the total surface of each cube six square inches instead of
twenty-four in the case of the larger cube. It is evident therefore, that the
surface of the little cube is only one-fourth that of the larger, namely, the ratio
of six to twenty-four; but the volume of the solid cube itself is only one-eighth;
the volume, and hence also the weight, diminishes therefore much more
rapidly than the surface... You see, therefore, Simplicio, that I was not mistaken
when ... I said that the surface of a small solid is comparatively greater than
that of a large one.

The same reasoning applies to the planks. Even though they are not
cubes, the large one could be sawed into eight small ones, each with half the
length, half the thickness, and half the width. The small plank, therefore,
has more surface area in proportion to its weight, and is therefore able to
support its own weight while the large one breaks.

Scaling of area and volume for irregularly shaped objects
You probably are not going to believe Galileo’s claim that this has deep

implications for all of nature unless you can be convinced that the same is
true for any shape. Every drawing you’ve seen so far has been of squares,
rectangles, and rectangular solids. Clearly the reasoning about sawing things
up into smaller pieces would not prove anything about, say, an egg, which
cannot be cut up into eight smaller egg-shaped objects with half the length.

Is it always true that something half the size has one quarter the surface
area and one eighth the volume, even if it has an irregular shape? Take the
example of a child’s violin. Violins are made for small children in lengths
that are either half or 3/4 of the normal length, accommodating their small
hands. Let’s study the surface area of the front panels of the three violins.

Consider the square in the interior of the panel of the full-size violin. In
the 3/4-size violin, its height and width are both smaller by a factor of 3/4,
so the area of the corresponding, smaller square becomes 3/4x3/4=9/16 of
the original area, not 3/4 of the original area. Similarly, the corresponding
square on the smallest violin has half the height and half the width of the
original one, so its area is 1/4 the original area, not half.

The same reasoning works for parts of the panel near the edge, such as
the part that only partially fills in the other square. The entire square scales
down the same as a square in the interior, and in each violin the same
fraction (about 70%) of the square is full, so the contribution of this part to
the total area scales down just the same.

Since any small square region or any small region covering part of a
square scales down like a square object, the entire surface area of an irregu-
larly shaped object changes in the same manner as the surface area of a
square: scaling it down by 3/4 reduces the area by a factor of 9/16, and so
on.

In general, we can see that any time there are two objects with the same
shape, but different linear dimensions (i.e. one looks like a reduced photo of
the other), the ratio of their areas equals the ratio of the squares of their
linear dimensions:

full size

3/4 size

half size

Chapter 1 Scaling and Order-of-Magnitude Estimates
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  A 1

A 2
=

L 1

L 2

2

.

Note that it doesn’t matter where we choose to measure the linear size, L, of
an object. In the case of the violins, for instance, it could have been mea-
sured vertically, horizontally, diagonally, or even from the bottom of the left
f-hole to the middle of the right f-hole. We just have to measure it in a
consistent way on each violin. Since all the parts are assumed to shrink or
expand in the same manner, the ratio L1/L2 is independent of the choice of
measurement.

It is also important to realize that it is completely unnecessary to have a
formula for the area of a violin. It is only possible to derive simple formulas
for the areas of certain shapes like circles, rectangles, triangles and so on, but
that is no impediment to the type of reasoning we are using.

Sometimes it is inconvenient to write all the equations in terms of
ratios, especially when more than two objects are being compared. A more
compact way of rewriting the previous equation is

   A∝L 2
.

The symbol “∝” means “is proportional to.” Scientists and engineers often
speak about such relationships verbally using the phrases “scales like” or
“goes like,” for instance “area goes like length squared.”

All of the above reasoning works just as well in the case of volume.
Volume goes like length cubed:

V ∝ L3 .
If different objects are made of the same material with the same density,
ρ=m/V, then their masses, m=ρV, are proportional to L3, and so are their
weights. (The symbol for density is ρ, the lower-case Greek letter “rho”.)

An important point is that all of the above reasoning about scaling only
applies to objects that are the same shape. For instance, a piece of paper is
larger than a pencil, but has a much greater surface-to-volume ratio.

One of the first things I learned as a teacher was that students were not
very original about their mistakes. Every group of students tends to come
up with the same goofs as the previous class. The following are some
examples of correct and incorrect reasoning about proportionality.

Section 1.2 Scaling of Area and Volume
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Example: scaling of the area of a triangle
Question: In fig. (a), the larger triangle has sides twice as long.
How many times greater is its area?
Correct solution #1: Area scales in proportion to the square of the
linear dimensions, so the larger triangle has four times more area
(22=4).
Correct solution #2: You could cut the larger triangle into four of
the smaller size, as shown in fig. (b), so its area is four times greater.
(This solution is correct, but it would not work for a shape like a
circle, which can’t be cut up into smaller circles.)
Correct solution #3: The area of a triangle is given by

A = 1
2 bh, where b is the base and h is the height. The areas of the

triangles are

A1 = 1
2 b1h1

A2 = 1
2 b2h2

= 1
2 (2b1)(2h1)

= 2b1h1

A2/A1 = (2b1h1)/(
1
2 b1h1)

= 4
(Although this solution is correct, it is a lot more work than
solution #1, and it can only be used in this case because a triangle is
a simple geometric shape, and we happen to know a formula for its
area.)

Correct solution #4: The area of a triangle is A = 1
2 bh. The

comparison of the areas will come out the same as long as the ratios
of the linear sizes of the triangles is as specified, so let’s just say
b1=1.00 m and b2=2.00 m. The heights are then also h1=1.00 m
and h2=2.00 m, giving areas A1=0.50 m2 and A2=2.00 m2, so A2/
A1=4.00.
(The solution is correct, but it wouldn’t work with a shape for
whose area we don’t have a formula. Also, the numerical calculation
might make the answer of 4.00 appear inexact, whereas solution #1
makes it clear that it is exactly 4.)

Incorrect solution: The area of a triangle is A = 1
2 bh, and if you

plug in b=2.00 m and h=2.00 m, you get A=2.00 m2, so the bigger
triangle has 2.00 times more area. (This solution is incorrect
because no comparison has been made with the smaller triangle.)

The big triangle has four times more
area than the little one.

(a)

(b)

Chapter 1 Scaling and Order-of-Magnitude Estimates



43

Example: scaling of the volume of a sphere
Question: In figure (c), the larger sphere has a radius that is five
times greater. How many times greater is its volume?
Correct solution #1: Volume scales like the third power of the
linear size, so the larger sphere has a volume that is 125 times
greater (53=125).

Correct solution #2: The volume of a sphere is V=4
3 πr3, so

V1 =    4
3

πr 1
3

V2 =    4
3

πr 2
3

=    4
3

π(5r 1)
3

=    500
3

πr 1
3

V2/V1 =    500
3

πr 1
3 / 4

3
πr 1

3

= 125

Incorrect solution: The volume of a sphere is V=4
3 πr3, so

V1 =    4
3

πr 1
3

V2 =    4
3

πr 2
3

=    4
3

π ⋅ 5r 1
3

=    20
3

πr 1
3

V2/V1=(    20
3

πr 1
3 )/(    4

3
πr 1

3 )

=5

(The solution is incorrect because (5r1)
3 is not the same as   5r 1

3 .)

Example: scaling of a more complex shape
Question: The first letter “S” in fig. (d) is in a 36-point font, the
second in 48-point. How many times more ink is required to make
the larger “S”?
Correct solution: The amount of ink depends on the area to be
covered with ink, and area is proportional to the square of the linear
dimensions, so the amount of ink required for the second “S” is
greater by a factor of (48/36)2=1.78.
Incorrect solution: The length of the curve of the second “S” is
longer by a factor of 48/36=1.33, so 1.33 times more ink is
required.
(The solution is wrong because it assumes incorrectly that the width
of the curve is the same in both cases. Actually both the width and
the length of the curve are greater by a factor of 48/36, so the area is
greater by a factor of (48/36)2=1.78.)

 S S
(d) The 48-point “S” has 1.78 times
more area than the 36-point “S.”

(c)

The big sphere has 125 times more
volume than the little one.

Section 1.2 Scaling of Area and Volume



44

Discussion questions
A. A toy fire engine is 1/30 the size of the real one, but is constructed from the
same metal with the same proportions. How many times smaller is its weight?
How many times less red paint would be needed to paint it?
B. Galileo spends a lot of time in his dialog discussing what really happens
when things break. He discusses everything in terms of Aristotle’s now-
discredited explanation that things are hard to break, because if something
breaks, there has to be a gap between the two halves with nothing in between,
at least initially. Nature, according to Aristotle, “abhors a vacuum,” i.e. nature
doesn’t “like” empty space to exist. Of course, air will rush into the gap
immediately, but at the very moment of breaking, Aristotle imagined a vacuum
in the gap. Is Aristotle’s explanation of why it is hard to break things an
experimentally testable statement? If so, how could it be tested
experimentally?

1.3 Scaling Applied to Biology

Organisms of different sizes with the same shape
The first of the following graphs shows the approximate validity of the

proportionality m∝L3 for cockroaches (redrawn from McMahon and
Bonner).  The scatter of the points around the curve indicates that some
cockroaches are proportioned slightly differently from others, but in general
the data seem well described by m∝L3. That means that the largest cock-
roaches the experimenter could raise (is there a 4-H prize?) had roughly the
same shape as the smallest ones.

Another relationship that should exist for animals of different sizes
shaped in the same way is that between surface area and body mass. If all
the animals have the same average density, then body mass should be
proportional to the cube of the animal’s linear size, m∝L3, while surface
area should vary proportionately to L2. Therefore, the animals’ surface areas
should be proportional to m2/3. As shown in the second graph, this relation-
ship appears to hold quite well for the dwarf siren, a type of salamander.
Notice how the curve bends over, meaning that the surface area does not
increase as quickly as body mass, e.g. a salamander with eight times more
body mass will have only four times more surface area.

This behavior of the ratio of surface area to mass (or, equivalently, the
ratio of surface area to volume) has important consequences for mammals,
which must maintain a constant body temperature. It would make sense for
the rate of heat loss through the animal’s skin to be proportional to its
surface area, so we should expect small animals, having large ratios of
surface area to volume, to need to produce a great deal of heat in compari-
son to their size to avoid dying from low body temperature. This expecta-
tion is borne out by the data of the third graph, showing the rate of oxygen
consumption of guinea pigs as a function of their body mass. Neither an
animal’s heat production nor its surface area is convenient to measure, but
in order to produce heat, the animal must metabolize oxygen, so oxygen
consumption is a good indicator of the rate of heat production. Since
surface area is proportional to m2/3, the proportionality of the rate of oxygen
consumption to m2/3 is consistent with the idea that the animal needs to
produce heat at a rate in proportion to its surface area. Although the smaller
animals metabolize less oxygen and produce less heat in absolute terms, the
amount of food and oxygen they must consume is greater in proportion to
their own mass. The Etruscan pigmy shrew, weighing in at 2 grams as an

Chapter 1 Scaling and Order-of-Magnitude Estimates
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adult, is at about the lower size limit for mammals. It must eat continually,
consuming many times its body weight each day to survive.

Changes in shape to accommodate changes in size
Large mammals, such as elephants, have a small ratio of surface area to

volume, and have problems getting rid of their heat fast enough. An
elephant cannot simply eat small enough amounts to keep from producing
excessive heat, because cells need to have a certain minimum metabolic rate
to run their internal machinery. Hence the elephant’s large ears, which add
to its surface area and help it to cool itself. Previously, we have seen several
examples of data within a given species that were consistent with a fixed
shape, scaled up and down in the cases of individual specimens. The
elephant’s ears are an example of a change in shape necessitated by a change
in scale.

Large animals also must be able to support their own weight. Returning
to the example of the strengths of planks of different sizes, we can see that if
the strength of the plank depends on area while its weight depends on
volume, then the ratio of strength to weight goes as follows:

strength/weight ∝ A/V ∝ 1/L .

Thus, the ability of objects to support their own weights decreases
inversely in proportion to their linear dimensions. If an object is to be just
barely able to support its own weight, then a larger version will have to be
proportioned differently, with a different shape.

Since the data on the cockroaches seemed to be consistent with roughly
similar shapes within the species, it appears that the ability to support its
own weight was not the tightest design constraint that Nature was working
under when she designed them. For large animals, structural strength is
important. Galileo was the first to quantify this reasoning and to explain
why, for instance, a large animal must have bones that are thicker in
proportion to their length. Consider a roughly cylindrical bone such as a leg
bone or a vertebra. The length of the bone, L, is dictated by the overall
linear size of the animal, since the animal’s skeleton must reach the animal’s
whole length. We expect the animal’s mass to scale as L3, so the strength of
the bone must also scale as L3. Strength is proportional to cross-sectional
area, as with the wooden planks, so if the diameter of the bone is d, then

   d 2 ∝ L 3

or

   d ∝ L 3 / 2
.

If the shape stayed the same regardless of size, then all linear dimensions,
including d and L, would be proportional to one another. If our reasoning
holds, then the fact that d is proportional to L3/2, not L, implies a change in
proportions of the bone. As shown in the graph on the previous page, the
vertebrae of African Bovidae follow the rule d ∝ L3/2 fairly well. The
vertebrae of the giant eland are as chunky as a coffee mug, while those of a
Gunther’s dik-dik are as slender as the cap of a pen.

Galileo’s original drawing, showing
how larger animals’ bones must be
greater in diameter compared to their
lengths.
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Discussion questions
A. Single-celled animals must passively absorb nutrients and oxygen from their
surroundings, unlike humans who have lungs to pump air in and out and a
heart to distribute the oxygenated blood throughout their bodies. Even the cells
composing the bodies of multicellular animals must absorb oxygen from a
nearby capillary through their surfaces. Based on these facts, explain why cells
are always microscopic in size.
B. The reasoning of the previous question would seem to be contradicted by
the fact that human nerve cells in the spinal cord can be as much as a meter
long, although their widths are still very small. Why is this possible?

1.4 Order-of-Magnitude Estimates
It is the mark of an instructed mind to rest satisfied with the degree of preci-
sion that the nature of the subject permits and not to seek an exactness
where only an approximation of the truth is possible.

Aristotle
It is a common misconception that science must be exact. For instance,

in the Star Trek TV series, it would often happen that Captain Kirk would
ask Mr. Spock, “Spock, we’re in a pretty bad situation. What do you think
are our chances of getting out of here?” The scientific Mr. Spock would
answer with something like, “Captain, I estimate the odds as 237.345 to
one.” In reality, he could not have estimated the odds with six significant
figures of accuracy, but nevertheless one of the hallmarks of a person with a
good education in science is the ability to make estimates that are likely to
be at least somewhere in the right ballpark. In many such situations, it is
often only necessary to get an answer that is off by no more than a factor of
ten in either direction. Since things that differ by a factor of ten are said to
differ by one order of magnitude, such an estimate is called an order-of-
magnitude estimate. The tilde, ~, is used to indicate that things are only of
the same order of magnitude, but not exactly equal, as in

odds of survival ~ 100 to one .

The tilde can also be used in front of an individual number to emphasize
that the number is only of the right order of magnitude.

Although making order-of-magnitude estimates seems simple and
natural to experienced scientists, it’s a mode of reasoning that is completely
unfamiliar to most college students. Some of the typical mental steps can be
illustrated in the following example.

Section 1.4 Order-of-Magnitude Estimates
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Example: Cost of transporting tomatoes
Question: Roughly what percentage of the price of a tomato comes
from the cost of transporting it in a truck?

The following incorrect solution illustrates one of the main ways you can go
wrong in order-of-magnitude estimates.

Incorrect solution: Let’s say the trucker needs to make a $400
profit on the trip. Taking into account her benefits, the cost of gas,
and maintenance and payments on the truck, let’s say the total cost
is more like $2000. I’d guess about 5000 tomatoes would fit in the
back of the truck, so the extra cost per tomato is 40 cents. That
means the cost of transporting one tomato is comparable to the cost
of the tomato itself. Transportation really adds a lot to the cost of
produce, I guess.

The problem is that the human brain is not very good at estimating
area or volume, so it turns out the estimate of 5000 tomatoes fitting in the
truck is way off. That’s why people have a hard time at those contests where
you are supposed to estimate the number of jellybeans in a big jar. Another
example is that most people think their families use about 10 gallons of
water per day, but in reality the average is about 300 gallons per day. When
estimating area or volume, you are much better off estimating linear
dimensions, and computing volume from the linear dimensions. Here’s a
better solution:

Better solution: As in the previous solution, say the cost of the trip
is $2000. The dimensions of the bin are probably 4 m x 2 m x 1 m,
for a volume of 8 m3. Since the whole thing is just an order-of-
magnitude estimate, let’s round that off to the nearest power of ten,
10 m3. The shape of a tomato is complicated, and I don’t know any
formula for the volume of a tomato shape, but since this is just an
estimate, let’s pretend that a tomato is a cube, 0.05 m x 0.05 m x
0.05, for a volume of 1.25x10-4 m3. Since this is just a rough
estimate, let’s round that to 10-4 m3. We can find the total number
of tomatoes by dividing the volume of the bin by the volume of one
tomato: 10 m3 / 10-4 m3 = 105 tomatoes. The transportation cost
per tomato is $2000/105 tomatoes=$0.02/tomato. That means that
transportation really doesn’t contribute very much to the cost of a
tomato.

Approximating the shape of a tomato as a cube is an example of another
general strategy for making order-of-magnitude estimates. A similar situa-
tion would occur if you were trying to estimate how many m2 of leather
could be produced from a herd of ten thousand cattle. There is no point in
trying to take into account the shape of the cows’ bodies. A reasonable plan
of attack might be to consider a spherical cow. Probably a cow has roughly
the same surface area as a sphere with a radius of about 1 m, which would
be 4π(1 m)2. Using the well-known facts that pi equals three, and four
times three equals about ten, we can guess that a cow has a surface area of
about 10 m2, so the herd as a whole might yield 105 m2 of leather.

1 m
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The following list summarizes the strategies for getting a good order-of-
magnitude estimate.

(1) Don’t even attempt more than one significant figure of precision.
(2) Don’t guess area or volume directly. Guess linear dimensions and

get area or volume from them.
(3) When dealing with areas or volumes of objects with complex

shapes, idealize them as if they were some simpler shape, a cube or a
sphere, for example.

(4) Check your final answer to see if it is reasonable. If you estimate
that a herd of ten thousand cattle would yield 0.01 m2 of leather,
then you have probably made a mistake with conversion factors
somewhere.

Section 1.4 Order-of-Magnitude Estimates



50

Summary
Notation

∝ ....................................... is proportional to
~ ........................................ on the order of, is on the order of

Summary
Nature behaves differently on large and small scales. Galileo showed that this results fundamentally from

the way area and volume scale. Area scales as the second power of length, A∝L2, while volume scales as
length to the third power, V∝L3.

An order of magnitude estimate is one in which we do not attempt or expect an exact answer. The main
reason why the uninitiated have trouble with order-of-magnitude estimates is that the human brain does not
intuitively make accurate estimates of area and volume. Estimates of area and volume should be approached
by first estimating linear dimensions, which one’s brain has a feel for.

Homework Problems
1 ✓. How many cubic inches are there in a cubic foot? The answer is not
12.

2. Assume a dog's brain is twice is great in diameter as a cat's, but each
animal's brain cells are the same size and their brains are the same shape. In
addition to being a far better companion and much nicer to come home to,
how many times more brain cells does a dog have than a cat? The answer is
not 2.

3 ✓. The population density of Los Angeles is about 4000 people/km2.
That of San Francisco is about 6000 people/km2. How many times farther
away is the average person's nearest neighbor in LA than in San Francisco?
The answer is not 1.5.

4. A hunting dog's nose has about 10 square inches of active surface. How
is this possible, since the dog's nose is only about 1 in x 1 in x 1 in = 1 in3?
After all, 10 is greater than 1, so how can it fit?

5. Estimate the number of blades of grass on a football field.

6. In a computer memory chip, each bit of information (a 0 or a 1) is stored
in a single tiny circuit etched onto the surface of a silicon chip. A typical
chip stores 64 Mb (megabytes) of data, where a byte is 8 bits. Estimate (a)
the area of each circuit, and (b) its linear size.

7. Suppose someone built a gigantic apartment building, measuring 10 km
x 10 km at the base. Estimate how tall the building would have to be to
have space in it for the entire world's population to live.

8. A hamburger chain advertises that it has sold 10 billion Bongo Burgers.
Estimate the total mass of feed required to raise the cows used to make the
burgers.

9. Estimate the volume of a human body, in cm3.

10 S. How many cm2 is 1 mm2?

11 S. Compare the light-gathering powers of a 3-cm-diameter telescope and
a 30-cm telescope.

S A  solution is given in the back of the book. « A difficult problem.
✓ A computerized answer check is available. ∫ A problem that requires calculus.
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12. S. One step on the Richter scale corresponds to a factor of 100 in terms
of the energy absorbed by something on the surface of the Earth, e.g. a
house. For instance, a 9.3-magnitude quake would release 100 times more
energy than an 8.3. The energy spreads out from the epicenter as a wave,
and for the sake of this problem we’ll assume we’re dealing with seismic
waves that spread out in three dimensions, so that we can visualize them as
hemispheres spreading out under the surface of the earth. If a certain 7.6-
magnitude earthquake and a certain 5.6-magnitude earthquake produce the
same amount of vibration where I live, compare the distances from my
house to the two epicenters.

13✓. In Europe, a piece of paper of the standard size, called A4, is a little
narrower and taller than its American counterpart. The ratio of the height
to the width is the square root of 2, and this has some useful properties. For
instance, if you cut an A4 sheet from left to right, you get two smaller sheets
that have the same proportions. You can even buy sheets of this smaller size,
and they’re called A5. There is a whole series of sizes related in this way, all
with the same proportions. (a) Compare an A5 sheet to an A4 in terms of
area and linear size. (b) The series of paper sizes starts from an A0 sheet,
which has an area of one square meter. Suppose we had a series of boxes
defined in a similar way: the B0 box has a volume of one cubic meter, two
B1 boxes fit exactly inside an B0 box, and so on. What would be the
dimensions of a B0 box?
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Motion in One
Dimension

I didn’t learn until I was nearly through with college that I could understand a book much better if I
mentally outlined it for myself before I actually began reading. It’s a technique that warns my
brain to get little cerebral file folders ready for the different topics I’m going to learn, and as I’m
reading it allows me to say to myself, “Oh, the reason they’re talking about this now is because
they’re preparing for this other thing that comes later,” or “I don’t need to sweat the details of this
idea now, because they’re going to explain it in more detail later on.”

At this point, you’re about to dive in to the main subjects of this book, which are force and motion.
The concepts you’re going to learn break down into the following three areas:

kinematics — how to describe motion numerically
dynamics — how force affects motion
vectors — a mathematical way of handling the three-dimensional nature of force and motion

Roughly speaking, that’s the order in which we’ll cover these three areas, but the earlier chapters
do contain quite a bit of preparation for the later topics. For instance, even before the present
point in the book you’ve learned about the Newton, a unit of force. The discussion of force
properly belongs to dynamics, which we aren’t tackling head-on for a few more chapters, but I’ve
found that when I teach kinematics it helps to be able to refer to forces now and then to show
why it makes sense to define certain kinematical concepts. And although I don’t explicitly
introduce vectors until ch. 8, the groundwork is being laid for them in earlier chapters.

Here’s a roadmap to the rest of the book:

preliminaries
chapters 0-1

motion in one
dimension

chapters 2-6

motion in three
dimensions

chapters 7-9

gravity:
chapter 10

kinematics dynamics vectors
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Rotation.

Simultaneous rotation and
motion through space.

One person might say that the
tipping chair was only rotating
in a circle about its point of
contact with the floor, but
another could describe it as
having both rotation and
motion through space.

2 Velocity and Relative
Motion

2.1 Types of Motion
If you had to think consciously in order to move your body, you would

be severely disabled.  Even walking, which we consider to be no great feat,
requires an intricate series of motions that your cerebrum would be utterly
incapable of coordinating.  The task of putting one foot in front of the
other is controlled  by the more primitive parts of your brain, the ones that
have not changed much since the mammals and reptiles went their separate
evolutionary ways.  The thinking part of your brain limits itself to general
directives such as “walk faster,” or “don’t step on her toes,” rather than
micromanaging every contraction and relaxation of the hundred or so
muscles of your hips, legs, and feet.

Physics is all about the conscious understanding of motion, but we’re
obviously not immediately prepared to understand the most complicated
types of motion.  Instead, we’ll use the divide-and-conquer technique.
We’ll first classify the various types of motion, and then begin our campaign
with an attack on the simplest cases.  To make it clear what we are and are
not ready to consider, we need to examine and define carefully what types
of motion can exist.

Rigid-body motion distinguished from motion that changes
an object’s shape

Nobody, with the possible exception of Fred Astaire, can simply glide
forward without bending their joints.  Walking is thus an example in which
there is both a general motion of the whole object and a change in the shape
of the object.  Another example is the motion of a jiggling water balloon as
it flies through the air.  We are not presently attempting a mathematical
description of the way in which the shape of an object changes.  Motion
without a change in shape is called rigid-body motion.  (The word “body”
is often used in physics as a synonym for “object.”)

Center-of-mass motion as opposed to rotation
A ballerina leaps into the air and spins around once before landing.  We

feel intuitively that her rigid-body motion while her feet are off the ground
consists of two kinds of motion going on simultaneously: a rotation and a
motion of her body as a whole through space, along an arc.  It is not
immediately obvious, however, what is the most useful way to define the
distinction between rotation and motion through space.  Imagine that you
attempt to balance a chair and it falls over.  One person might say that the
only motion was a rotation about the chair’s point of contact with the floor,
but another might say that there was both rotation and motion down and
to the side.

Chapter 2 Velocity and Relative Motion
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It turns out that there is one particularly natural and useful way to make
a clear definition, but it requires a brief digression.  Every object has a
balance point, referred to in physics as the center of mass.  For a two-
dimensional object such as a cardboard cutout, the center of mass is the
point at which you could hang the object from a string and make it balance.
In the case of the ballerina (who is likely to be three-dimensional unless her
diet is particularly severe), it might be a point either inside or outside her
body, depending on how she holds her arms.  Even if it is not practical to
attach a string to the balance point itself, the center of mass can be defined
as shown in the figure on the left.

Why is the center of mass concept relevant to the question of classifying
rotational motion as opposed to motion through space?  As illustrated in
the figure above, it turns out that the motion of an object’s center of mass is
nearly always far simpler than the motion of any other part of the object.
The ballerina’s body is a large object with a complex shape. We might
expect that her motion would be much more complicated that the motion
of a small, simply-shaped object, say a marble, thrown up at the same angle
as the angle at which she leapt.  But it turns out that the motion of the
ballerina’s center of mass is exactly the same as the motion of the marble.
That is, the motion of the center of mass is the same as the motion the
ballerina would have if all her mass was concentrated at a point.  By restrict-
ing our attention to the motion of the center of mass, we can therefore
simplify things greatly.

The motion of an object’s center of
mass is usually much simpler than the

motion of any other point on it.

No matter what point you hang the
pear from, the string lines up with the
pear’s center of mass. The center of
mass can therefore be defined as the
intersection of all the lines made by
hanging the pear in this way.  Note that
the X in the figure should not be
interpreted as implying that the center
of mass is on the surface — it is
actually inside the pear.

We can now replace the ambiguous idea of “motion as a whole through
space” with the more useful and better defined concept of “center-of-mass
motion.”  The motion of any rigid body can be cleanly split into rotation
and center-of-mass motion.  By this definition, the tipping chair does have
both rotational and center-of-mass motion. Concentrating on the center of

center of mass

The leaping dancer’s motion is
complicated, but the motion of her
center of mass is simple.

The same leaping dancer, viewed from
above.  Her center of mass traces a
straight line, but a point away from her
center of mass, such as her elbow,
traces the much more  complicated
path shown by the dots.
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mass motion allows us to make a simplified model of the motion, as if a
complicated object like a human body was just a marble or a point-like
particle. Science really never deals with reality; it deals with models of
reality.

Note that the word “center” in “center of mass” is not meant to imply
that the center of mass must lie at the geometrical center of an object.  A car
wheel that has not been balanced properly has a center of mass that does
not coincide with its geometrical center.  An object such as the human body
does not even have an obvious geometrical center.

It can be helpful to think of the center of mass as the average location of
all the mass in the object. With this interpretation, we can see for example
that raising your arms above your head raises your center of mass, since the

fixed point on dancer's body

center of mass

A fixed point on the dancer’s body
follows a trajectory that is flatter than
what we expect, creating an illusion
of flight.

center of mass

geometrical
center

An improperly balanced wheel has a
center of mass that is not at its
geometric center. When you get a new
tire, the mechanic clamps little weights
to the rim to balance the wheel.

higher position of the arms’ mass raises the average.

Ballerinas and professional basketball players can create an illusion of
flying horizontally through the air because our brains intuitively expect
them to have rigid-body motion, but the body does not stay rigid while
executing a grand jete or a slam dunk.  The legs are low at the beginning
and end of the jump, but come up higher at the middle.  Regardless of what
the limbs do, the center of mass will follow the same arc, but the low
position of the legs at the beginning and end means that the torso is higher
compared to the center of mass, while in the middle of the jump it is lower
compared to the center of mass.  Our eye follows the motion of the torso
and tries to interpret it as the center-of-mass motion of a rigid body.  But
since the torso follows a path that is flatter than we expect, this attempted
interpretation fails, and we experience an illusion that the person is flying
horizontally.  Another interesting example from the sports world is the high
jump, in which the jumper’s curved body passes over the bar, but the center
of mass passes under the bar!  Here the jumper lowers his legs and upper
body at the peak of the jump in order to bring his waist higher compared to
the center of mass.

Later in this course, we’ll find that there are more fundamental reasons
(based on Newton’s laws of motion) why the center of mass behaves in such
a simple way compared to the other parts of an object.  We’re also postpon-
ing any discussion of numerical methods for finding an object’s center of
mass. Until later in the course, we will only deal with the motion of objects’

The high-jumper’s body passes over
the bar, but his center of mass passes
under it.
Photo by Dunia Young.

center
of mass
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centers of mass.

Center-of-mass motion in one dimension
In addition to restricting our study of motion to center-of-mass motion,

we will begin by considering only cases in which the center of mass moves
along a straight line.  This will include cases such as objects falling straight
down, or a car that speeds up and slows down but does not turn.

Note that even though we are not explicitly studying the more complex
aspects of motion, we can still analyze the center-of-mass motion while
ignoring other types of motion that might be occurring simultaneously .
For instance, if a cat is falling out of a tree and is initially upside-down, it
goes through a series of contortions that bring its feet under it.  This is
definitely not an example of rigid-body motion, but we can still analyze the
motion of the cat’s center of mass just as we would for a dropping rock.

Self-Check
Consider a person running, a person pedaling on a bicycle, a person coasting
on a bicycle, and a person coasting on ice skates.  In which cases is the
center-of-mass motion one-dimensional?  Which cases are examples of rigid-
body motion?

2.2 Describing Distance and Time
Center-of-mass motion in one dimension is particularly easy to deal

with because all the information about it can be encapsulated in two
variables: x, the position of the center of mass relative to the origin, and t,
which measures a point in time. For instance, if someone supplied you with
a sufficiently detailed table of x and t values, you would know pretty much
all there was to know about the motion of the object’s center of mass.

A point in time as opposed to duration
In ordinary speech, we use the word “time” in two different senses,

which are to be distinguished in physics. It can be used, as in “a short time”
or “our time here on earth,” to mean a length or duration of time, or it can
be used to indicate a clock reading, as in “I didn’t know what time it was,”
or “now’s the time.” In symbols, t is ordinarily used to mean a point in
time, while ∆t signifies an interval or duration in time. The capital Greek
letter delta, ∆, means “the change in...,” i.e. a duration in time is the change
or difference between one clock reading and another. The notation ∆t does
not signify the product of two numbers, ∆ and t, but rather one single
number, ∆t. If a matinee begins at a point in time t=1 o’clock and ends at
t=3 o’clock, the duration of the movie was the change in t,

 ∆t = 3 hours - 1 hour = 2 hours   .

To avoid the use of negative numbers for ∆t, we write the clock reading
“after” to the left of the minus sign, and the clock reading “before” to the
right of the minus sign. A more specific definition of the delta notation is
therefore that delta stands for “after minus before.”

Even though our definition of the delta notation guarantees that ∆t is
positive, there is no reason why t can’t be negative. If t could not be nega-
tive, what would have happened one second before t=0? That doesn’t mean

Coasting on a bike and coasting on skates give one-dimensional center-of-mass motion, but running and pedaling
require moving body parts up and down, which makes the center of mass move up and down. The only example of
rigid-body motion is coasting on skates. (Coasting on a bike is not rigid-body motion, because the wheels twist.)

Section 2.2 Describing Distance and Time
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that time “goes backward” in the sense that adults can shrink into infants
and retreat into the womb. It just means that we have to pick a reference
point and call it t=0, and then times before that are represented by negative
values of t.

Although a point in time can be thought of as a clock reading, it is
usually a good idea to avoid doing computations with expressions such as
“2:35” that are combinations of hours and minutes. Times can instead be
expressed entirely in terms of a single unit, such as hours. Fractions of an
hour can be represented by decimals rather than minutes, and similarly if a
problem is being worked in terms of minutes, decimals can be used instead
of seconds.

 Self-Check

Of the following phrases, which refer to points in time, which refer to time
intervals, and which refer to time in the abstract rather than as a measurable
number?

(a) “The time has come.”
(b) “Time waits for no man.”
(c) “The whole time, he had spit on his chin.”

Position as opposed to change in position
As with time, a distinction should be made between a point in space,

symbolized as a coordinate x, and a change in position, symbolized as ∆x.

As with t, x can be negative. If a train is moving down the tracks, not
only do you have the freedom to choose any point along the tracks and call
it x=0, but it’s also up to you to decide which side of the x=0 point is
positive x and which side is negative x.

Since we’ve defined the delta notation to mean “after minus before,” it
is possible that ∆x will be negative, unlike ∆t which is guaranteed to be
positive. Suppose we are describing the motion of a train on tracks linking
Tucson and Chicago. As shown in the figure, it is entirely up to you to
decide which way is positive.

Enid

x=0

Chicago

Tucson

x>0

x<0

∆x>0

Joplin

Enid

x=0

Chicago

Tucson

x<0

x>0

∆x<0

Joplin

Two equally valid ways of describing the motion of a train from Tucson to
Chicago. In the first example, the train has a positive ∆x as it goes from Enid to
Joplin. In the second example, the same train going forward in the same
direction has a negative ∆x.

(a) a point in time; (b) time in the abstract sense; (c) a time interval
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Note that in addition to x and ∆x, there is a third quantity we could
define, which would be like an odometer reading, or actual distance
traveled. If you drive 10 miles, make a U-turn, and drive back 10 miles,
then your ∆x is zero, but your car’s odometer reading has increased by 20
miles. However important the odometer reading is to car owners and used
car dealers, it is not very important in physics, and there is not even a
standard name or notation for it. The change in position, ∆x, is more useful
because it is so much easier to calculate: to compute ∆x, we only need to
know the beginning and ending positions of the object, not all the informa-
tion about how it got from one position to the other.

Self-Check

A ball hits the floor, bounces to a height of one meter, falls, and hits the floor
again. Is the ∆x between the two impacts equal to zero, one, or two meters?

Frames of reference
The example above shows that there are two arbitrary choices you have

to make in order to define a position variable, x. You have to decide where
to put x=0, and also which direction will be positive. This is referred to as
choosing a coordinate system or choosing a frame of reference. (The two terms
are nearly synonymous, but the first focuses more on the actual x variable,
while the second is more of a general way of referring to one’s point of
view.) As long as you are consistent, any frame is equally valid. You just
don’t want to change coordinate systems in the middle of a calculation.

Have you ever been sitting in a train in a station when suddenly you
notice that the station is moving backward? Most people would describe the
situation by saying that you just failed to notice that the train was moving
— it only seemed like the station was moving. But this shows that there is
yet a third arbitrary choice that goes into choosing a coordinate system:
valid frames of reference can differ from each other by moving relative to
one another. It might seem strange that anyone would bother with a
coordinate system that was moving relative to the earth, but for instance the
frame of reference moving along with a train might be far more convenient
for describing things happening inside the train.

Zero, because the “after” and “before” values of x are the same.

Section 2.2 Describing Distance and Time



60

2.3 Graphs of Motion; Velocity.
Motion with constant velocity

In example (a), an object is moving at constant speed in one direction.
We can tell this because every two seconds, its position changes by five
meters.

In algebra notation, we’d say that the graph of x vs. t shows the same
change in position, ∆x=5.0 m, over each interval of ∆t=2.0 s.  The object’s
velocity or speed is obtained by calculating v=∆x/∆t=(5.0 m)/(2.0 s)=2.5 m/
s.  In graphical terms, the velocity can be interpreted as the slope of the line.
Since the graph is a straight line, it wouldn’t have mattered if we’d taken a
longer time interval and calculated v=∆x/∆t=(10.0 m)/(4.0 s).  The answer
would still have been the same, 2.5 m/s.

Note that when we divide a number that has units of meters by another
number that has units of seconds, we get units of meters per second, which
can be written m/s.  This is another case where we treat units as if they were
algebra symbols, even though they’re not.

In example (b), the object is moving in the opposite direction: as time
progresses, its x coordinate decreases.  Recalling the definition of the ∆
notation as “after minus before,” we find that ∆t is still positive, but ∆x
must be negative.  The slope of the line is therefore negative, and we say
that the object has a negative velocity, v=∆x/∆t=(-5.0 m)/(2.0 s)=-2.5 m/s.
We’ve already seen that the plus and minus signs of ∆x values have the
interpretation of telling us which direction the object moved.  Since ∆t is
always positive, dividing by ∆t doesn’t change the plus or minus sign, and
the plus and minus signs of velocities are to be interpreted in the same way.
In graphical terms, a positive slope characterizes a line that goes up as we go
to the right, and a negative slope tells us that the line went down as we went
to the right.

Motion with changing velocity
Now what about a graph like example (c)?  This might be a graph of a

car’s motion as the driver cruises down the freeway, then slows down to look
at a car crash by the side of the road, and then speeds up again, disap-
pointed that there is nothing dramatic going on such as flames or babies
trapped in their car seats.  (Note that we are still talking about one-dimen-
sional motion.  Just because the graph is curvy doesn’t mean that the car’s
path is curvy.  The graph is not like a map, and the horizontal direction of
the graph represents the passing of time, not distance.)

Example (c) is similar to example (a) in that the object moves a total of
25.0 m in a period of 10.0 s, but it is no longer true that it makes the same
amount of progress every second.  There is no way to characterize the entire
graph by a certain velocity or slope, because the velocity is different at every
moment.  It would be incorrect to say that because the car covered 25.0 m
in 10.0 s, its velocity was 2.5 m/s .  It moved faster than that at the begin-
ning and end, but slower in the middle.  There may have been certain
instants at which the car was indeed going 2.5 m/s, but the speedometer
swept past that value without “sticking,” just as it swung through various
other values of speed.  (I definitely want my next car to have a speedometer
calibrated in m/s and showing both negative and positive values.)
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(a) Motion with constant velocity.
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We assume that our speedometer tells us what is happening to the speed
of our car at every instant, but how can we define speed mathematically in a
case like this?  We can’t just define it as the slope of the curvy graph, because
a curve doesn’t have a single well-defined slope as does a line.  A mathemati-
cal definition that corresponded to the speedometer reading would have to
be one that attached a different velocity value to a single point on the curve,
i.e. a single instant in time, rather than to the entire graph.  If we wish to
define the speed at one instant such as the one marked with a dot, the best
way to proceed is illustrated in (d), where we have drawn the line through
that point called the tangent line, the line that “hugs the curve.” We can
then adopt the following definition of velocity:

definition of velocity
The velocity of an object at any given moment is the slope of
the tangent line through the relevant point on its x-t graph.

One interpretation of this definition is that the velocity tells us how many
meters the object would have traveled in one second, if it had continued
moving at the same speed for at least one second. To some people the
graphical nature of this definition seems “inaccurate” or “not mathemati-

cal.” The equation    v=∆x/∆t  by itself, however, is only valid if the velocity is
constant, and so cannot serve as a general definition.

Example
Question : What is the velocity at the point shown with a dot on
the graph?
Solution : First we draw the tangent line through that point. To
find the slope of the tangent line, we need to pick two points on
it. Theoretically, the slope should come out the same regardless
of which two points we picked, but in practical terms we’ll be able
to measure more accurately if we pick two points fairly far apart,
such as the two white diamonds. To save work, we pick points
that are directly above labeled points on the t axis, so that ∆t=4.0
s is easy to read off. One diamond lines up with x≈17.5 m, the
other with x≈26.5 m, so ∆x=9.0 m. The velocity is ∆x/∆t=2.2 m/s.

Conventions about graphing
The placement of t on the horizontal axis and x on the upright axis may

seem like an arbitrary convention, or may even have disturbed you, since
your algebra teacher always told you that x goes on the horizontal axis and y
goes on the upright axis.  There is a reason for doing it this way, however.
In example (e), we have an object that reverses its direction of motion twice.
It can only be in one place at any given time, but there can be more than
one time when it is at a given place.  For instance, this object passed
through x=17 m on three separate occasions, but there is no way it could
have been in more than one place at t=5.0 s.  Resurrecting some terminol-
ogy you learned in your trigonometry course, we say that x is a function of
t, but t is not a function of x.  In situations such as this, there is a useful
convention that the graph should be oriented so that any vertical line passes
through the curve at only one point.  Putting the x axis across the page and
t upright would have violated this convention.  To people who are used to
interpreting graphs, a graph that violates this convention is as annoying as
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is defined as the slope of the tangent
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fingernails scratching on a chalkboard.  We say that this is a graph of “x
versus t.”  If the axes were the other way around, it would be a graph of “t
versus x.”   I remember the “versus” terminology by visualizing the labels on
the x and t axes and remembering that when you read, you go from left to
right and from top to bottom.

Discussion questions

A. An ant walks forward, pauses, then runs quickly ahead. It then suddenly
reverses direction and walks slowly back the way it came. Which graph could
represent its motion?

x x x

x x x

t t t

t t t

1 2 3

4 5 6

B. The figure shows a sequence of positions for two racing tractors. Compare
the tractors’ velocities as the race progresses. When do they have the same
velocity?

t=0 s t=1 s t=2 s t=3 s t=4 s t=5 s t=6 s t=7 s

t=0 s t=1 s t=2 s t=3 s t=4 s t=5 s t=6 s t=7 s

C. If an object had a straight-line motion graph with ∆x=0 and ∆t≠0, what would
be true about its velocity?  What would this look like on a graph? What about
∆t=0 and ∆x≠0?
D. If an object has a wavy motion graph like the one in example (e) on the
previous page, which are the points at which the object reverses its direction?
What is true about the object’s velocity at these points?
E. Discuss anything unusual about the following three graphs.
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F. I have been using the term “velocity” and avoiding the more common
English word “speed,” because some introductory physics texts define them to
mean different things.  They use the word “speed,” and the symbol “s” to mean
the absolute value of the velocity, s=|v|.  Although I have thrown in my lot with
the minority of books that don’t emphasize this distinction in technical
vocabulary, there are clearly two different concepts here.  Can you think of an
example of a graph of x vs. t in which the object has constant speed, but not
constant velocity?
G. In the graph on the left, describe how the object’s velocity changes.
H. Two physicists duck out of a boring scientific conference to go get beer.  On
the way to the bar, they witness an accident in which a pedestrian is injured by
a hit-and-run driver.  A criminal trial results, and they must testify.  In her
testimony, Dr. Transverz Waive says, “The car was moving along pretty fast, I’d
say the velocity was +40 mi/hr.  They saw the old lady too late, and even
though they slammed on the brakes they still hit her before they stopped.
Then they made a U turn and headed off at a velocity of about -20 mi/hr, I’d
say.”  Dr. Longitud N.L. Vibrasheun says, “He was really going too fast, maybe
his velocity was -35 or -40 mi/hr.  After he hit Mrs. Hapless, he turned around
and left at a velocity of, oh, I’d guess maybe +20 or +25 mi/hr.”  Is their
testimony contradictory?  Explain.

Discussion question G.

x

t
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2.4 The Principle of Inertia
Physical effects relate only to a change in velocity

Consider two statements that were at one time made with the utmost
seriousness:

People like Galileo and Copernicus who say the earth is rotating must be
crazy.  We know the earth can’t be moving.  Why, if the earth was really
turning once every day, then our whole city would have to be moving
hundreds of leagues in an hour.  That’s impossible!  Buildings would shake
on their foundations.  Gale-force winds would knock us over.  Trees would fall
down.  The Mediterranean would come sweeping across the east coasts of
Spain and Italy.  And furthermore, what force would be making the world
turn?

All this talk of passenger trains moving at forty miles an hour is sheer
hogwash!  At that speed, the air in a passenger compartment would all be
forced against the back wall.  People in the front of the car would suffocate,
and people at the back would die because in such concentrated air, they
wouldn’t be able to expel a breath.

Some of the effects predicted in the first quote are clearly just based on
a lack of experience with rapid motion that is smooth and free of vibration.
But there is a deeper principle involved.  In each case, the speaker is assum-
ing that the mere fact of motion must have dramatic physical effects.  More
subtly, they also believe that a force is needed to keep an object in motion:
the first person thinks a force would be needed to maintain the earth’s
rotation, and the second apparently thinks of the rear wall as pushing on
the air to keep it moving.

Common modern knowledge and experience tell us that these people’s
predictions must have somehow been based on incorrect reasoning, but it is
not immediately obvious where the fundamental flaw lies.  It’s one of those
things a four-year-old could infuriate you by demanding a clear explanation
of.  One way of getting at the fundamental principle involved is to consider
how the modern concept of the universe differs from the popular concep-
tion at the time of the Italian Renaissance.  To us, the word “earth” implies a
planet, one of the nine planets of our solar system, a small ball of rock and
dirt that is of no significance to anyone in the universe except for members
of our species, who happen to live on it.  To Galileo’s contemporaries,
however, the earth was the biggest, most solid, most important thing in all
of creation, not to be compared with the wandering lights in the sky known
as planets.  To us, the earth is just another object, and when we talk loosely
about “how fast” an object such as a car “is going,” we really mean the car-
object’s velocity relative to the earth-object.

Motion is relative
According to our modern world-view, it really isn’t that reasonable to

expect that a special force should be required to make the air in the train
have a certain velocity relative to our planet.  After all, the “moving” air in
the “moving” train might just happen to have zero velocity relative to some
other planet we don’t even know about.  Aristotle claimed that things
“naturally” wanted to be at rest, lying on the surface of the earth.  But
experiment after experiment has shown that there is really nothing so

There is nothing special about motion
or lack of motion relative to the planet

earth.
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special about being at rest relative to the earth.  For instance, if a mattress
falls out of the back of a truck on the freeway, the reason it rapidly comes to
rest with respect to the planet is simply because of friction forces exerted by
the asphalt, which happens to be attached to the planet.

Galileo’s insights are summarized as follows:

The Principle of Inertia
No force is required to maintain motion with constant velocity
in a straight line, and absolute motion does not cause any
observable physical effects.

There are many examples of situations that seem to disprove the
principle of inertia, but these all result from forgetting that friction is a
force. For instance, it seems that a force is needed to keep a sailboat in
motion. If the wind stops, the sailboat stops too. But the wind’s force is not
the only force on the boat; there is also a frictional force from the water. If
the sailboat is cruising and the wind suddenly disappears, the backward
frictional force still exists, and since it is no longer being counteracted by
the wind’s forward force, the boat stops. To disprove the principle of inertia,
we would have to find an example where a moving object slowed down
even though no forces whatsoever were acting on it.

(a) (b) (c)

(d) (e) (f)

This Air Force doctor volunteered to ride a rocket sled as a medical experiment. The obvious effects on
his head and face are not because of the sled's speed but because of its rapid changes in speed: increasing
in (b) and (c), and decreasing in (e) and (f).In (d) his speed is greatest, but because his speed is not
increasing or decreasing very much at this moment, there is little effect on him.

Section 2.4 The Principle of Inertia
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Self-Check
What is incorrect about the following supposed counterexamples to the
principle of inertia?

(1) When astronauts blast off in a rocket, their huge velocity does cause
a physical effect on their bodies — they get pressed back into their
seats, the flesh on their faces gets distorted, and they have a hard time
lifting their arms.
(2) When you’re driving in a convertible with the top down, the wind in
your face is an observable physical effect of your absolute motion.

Discussion questions
A. A passenger on a cruise ship finds, while the ship is docked, that he can
leap off of the upper deck and just barely make it into the pool on the lower
deck.  If the ship leaves dock and is cruising rapidly, will this adrenaline junkie
still be able to make it?
B. You are a passenger in the open basket hanging under a helium balloon.
The balloon is being carried along by the wind at a constant velocity. If you are
holding a flag in your hand, will the flag wave? If so, which way? [Based on a
question from PSSC Physics.]

pool

ship's direction
of motion

Discussion question A. Discussion question B.

(1) The effect only occurs during blastoff, when their velocity is changing. Once the rocket engines stop firing, their
velocity stops changing, and they no longer feel any effect. (2) It is only an observable effect of your motion relative
to the air.

Discussion question D.

C. Aristotle stated that all objects naturally wanted to come to rest, with the
unspoken implication that “rest” would be interpreted relative to the surface of
the earth. Suppose we go back in time and transport Aristotle to the moon.
Aristotle knew, as we do, that the moon circles the earth; he said it didn’t fall
down because, like everything else in the heavens, it was made out of some
special substance whose “natural” behavior was to go in circles around the
earth. We land, put him in a space suit, and kick him out the door. What would
he expect his fate to be in this situation? If intelligent creatures inhabited the
moon, and one of them independently came up with the equivalent of
Aristotelian physics, what would they think about objects coming to rest?
D. The bottle is sitting on a level table in a train’s dining car, but the surface of
the beer is tilted. What can you infer about the motion of the train?

Chapter 2 Velocity and Relative Motion
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2.5 Addition of Velocities
Addition of velocities to describe relative motion

Since absolute motion cannot be unambiguously measured, the only
way to describe motion unambiguously is to describe the motion of one
object relative to another. Symbolically, we can write vPQ for the velocity of
object P relative to object Q.

Velocities measured with respect to different reference points can be
compared by addition. In the figure below, the ball’s velocity relative to the
couch equals the ball’s velocity relative to the truck plus the truck’s velocity
relative to the couch:

  v BC =   v BT + v TC

= 5 cm/s + 10 cm/s
The same equation can be used for any combination of three objects, just
by substituting the relevant subscripts for B, T, and C. Just remember to
write the equation so that the velocities being added have the same sub-
script twice in a row. In this example, if you read off the subscripts going
from left to right, you get BC...=...BTTC.  The fact that the two “inside”
subscripts on the right are the same means that the equation has been set up
correctly. Notice how subscripts on the left look just like the subscripts on
the right, but with the two T’s eliminated.

Relative velocities
add together.

These two highly competent physicists disagree on absolute velocities, but they would agree on relative
velocities. Purple Dino considers the couch to be at rest, while Green Dino thinks of the truck as being at rest.
They agree, however, that the truck’s velocity relative to the couch is vTC=10 cm/s, the ball’s velocity relative
to the truck is vBT=5 cm/s, and the ball’s velocity relative to the couch is vBC=vBT+vTC=15 cm/s.

In one second, Green Dino and the
truck both moved forward 10 cm, so their

velocity was 10 cm/s. The ball moved
forward 15 cm, so it had v=15 cm/s.

Purple Dino and the couch both
moved backward 10 cm in 1 s, so they

had a velocity of -10 cm/s. During the same
period of time, the ball got 5 cm closer to

me, so it was going +5 cm/s.
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Negative velocities in relative motion
My discussion of how to interpret positive and negative signs of velocity

may have left you wondering why we should bother.  Why not just make
velocity positive by definition?  The original reason why negative numbers
were invented was that bookkeepers decided it would be convenient to use
the negative number concept for payments to distinguish them from
receipts.  It was just plain easier than writing receipts in black and payments
in red ink.  After adding up your month’s positive receipts and negative
payments, you either got a positive number, indicating profit, or a negative
number, showing a loss.  You could then show the that total with a high-
tech “+” or “-” sign, instead of looking around for the appropriate bottle of
ink.

Nowadays we use positive and negative numbers for all kinds of things,
but in every case the point is that it makes sense to add and subtract those
things according to the rules you learned in grade school, such as “minus a
minus makes a plus, why this is true we need not discuss.” Adding velocities
has the significance of comparing relative motion, and with this interpreta-
tion negative and positive velocities can used within a consistent framework.
For example, the truck’s velocity relative to the couch equals the truck’s
velocity relative to the ball plus the ball’s velocity relative to the couch:

  v TC =   v TB + v BC

= –5 cm/s + 15 cm/s
= 10 cm/s

If we didn’t have the technology of negative numbers, we would have
had to remember a complicated set of rules for adding velocities: (1) if the
two objects are both moving forward, you add, (2) if one is moving forward
and one is moving backward, you subtract, but (3) if they’re both moving
backward, you add.  What a pain that would have been.

Discussion questions

A. Interpret the general rule   v AB =–v BA  in words.

B. If we have a specific situation where   v AB+ v BC = 0 , what is going on?

If you consistently label velocities as positive
or negative depending on their directions,
then adding velocities will also give signs

that consistently relate to direction.
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2.6 Graphs of Velocity Versus Time
Since changes in velocity play such a prominent role in physics, we need

a better way to look at changes in velocity than by laboriously drawing
tangent lines on x-versus-t graphs.  A good method is to draw a graph of
velocity versus time.  The examples on the left show the x-t and v-t graphs
that might be produced by a car starting from a traffic light, speeding up,
cruising for a while at constant speed, and finally slowing down for a stop
sign.  If you have an air freshener hanging from your rear-view mirror, then
you will see an effect on the air freshener during the beginning and ending
periods when the velocity is changing, but it will not be tilted during the
period of constant velocity represented by the flat plateau in the middle of
the v-t graph.

Students often mix up the things being represented on these two types
of graphs.  For instance, many students looking at the top graph say that
the car is speeding up the whole time, since “the graph is becoming greater.”
What is getting greater throughout the graph is x, not v.

Similarly, many students would look at the bottom graph and think it
showed the car backing up, because “it’s going backwards at the end.”  But
what is decreasing at the end is v, not x. Having both the x-t and v-t graphs
in front of you like this is often convenient, because one graph may be
easier to interpret than the other for a particular purpose.  Stacking them
like this means that corresponding points on the two graphs’ time axes are
lined up with each other vertically.  However, one thing that is a little
counterintuitive about the arrangement is that in a situation like this one
involving a car, one is tempted to visualize the landscape stretching along
the horizontal axis of one of the graphs.  The horizontal axes, however,
represent time, not position.  The correct way to visualize the landscape is
by mentally rotating the horizon 90 degrees counterclockwise and imagin-
ing it stretching along the upright axis of the x-t graph, which is the only
axis that represents different positions in space.

2.7 ∫ Applications of Calculus
The integral symbol, ∫, in the heading for this section indicates that it is

meant to be read by students in calculus-based physics. Students in an
algebra-based physics course should skip these sections. The calculus-related
sections in this book are meant to be usable by students who are taking
calculus concurrently, so at this early point in the physics course I do not
assume you know any calculus yet. This section is therefore not much more
than a quick preview of calculus, to help you relate what you’re learning in
the two courses.

Newton was the first person to figure out the tangent-line definition of
velocity for cases where the x-t graph is nonlinear. Before Newton, nobody
had conceptualized the description of motion in terms of x-t and v-t graphs.
In addition to the graphical techniques discussed in this chapter, Newton
also invented a set of symbolic techniques called calculus. If you have an
equation for x in terms of t, calculus allows you, for instance, to find an
equation for v in terms of t. In calculus terms, we say that the function v(t)
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is the derivative of the function x(t). In other words, the derivative of a
function is a new function that tells how rapidly the original function was
changing. We now use neither Newton’s name for his technique (he called it
“the method of fluxions”) nor his notation. The more commonly used
notation is due to Newton’s German contemporary Leibnitz, whom the
English accused of plagiarizing the calculus from Newton. In the Leibnitz
notation, we write

  v = dx
dt

to indicate that the function v(t) equals the slope of the tangent line of the
graph of x(t) at every time t. The Leibnitz notation is meant to evoke the
delta notation, but with a very small time interval. Because the dx and dt are
thought of as very small ∆x’s and ∆t’s, i.e. very small differences, the part of
calculus that has to do with derivatives is called differential calculus.

Differential calculus consists of three things:

• The concept and definition of the derivative, which is covered in
this book, but which will be discussed more formally in your math
course.

• The Leibnitz notation described above, which you’ll need to get
more comfortable with in your math course.

• A set of rules for that allows you to find an equation for the
derivative of a given function. For instance, if you happened to
have a situation where the position of an object was given by the
equation x=2t7, you would be able to use those rules to find dx/
dt=14t6. This bag of tricks is covered in your math course.
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Summary
Selected Vocabulary

center of mass .................... the balance point of an object
velocity .............................. the rate of change of position; the slope of the tangent line on an x-t

graph.
Notation

x ........................................ a point in space
t ........................................ a point in time, a clock reading
∆ ....................................... “change in;” the value of a variable afterwards minus its value before
∆x ..................................... a distance, or more precisely a change in x, which may be less than the

distance traveled; its plus or minus sign indicates direction
∆t ...................................... a duration of time
v ........................................ velocity
vAB .................................................... the velocity of object A relative to object B

Standard Terminology Avoided in This Book
displacement ..................... a name for the symbol ∆x.
speed ................................. the absolute value of the velocity, i.e. the velocity stripped of any informa-

tion about its direction
Summary

An object’s center of mass is the point at which it can be balanced. For the time being, we are studying the
mathematical description only of the motion of an object’s center of mass in cases restricted to one dimension.
The motion of an object’s center of mass is usually far simpler than the motion of any of its other parts.

It is important to distinguish location, x, from distance, ∆x, and clock reading, t, from time interval ∆t. When
an object’s x-t graph is linear, we define its velocity as the slope of the line, ∆x/∆t. When the graph is curved,
we generalize the definition so that the velocity is the slope of the tangent line at a given point on the graph.

Galileo’s principle of inertia states that no force is required to maintain motion with constant velocity in a
straight line, and absolute motion does not cause any observable physical effects. Things typically tend to
reduce their velocity relative to the surface of our planet only because they are physically rubbing against the
planet (or something attached to the planet), not because there is anything special about being at rest with
respect to the earth’s surface. When it seems, for instance, that a force is required to keep a book sliding
across a table, in fact the force is only serving to cancel the contrary force of friction.

Absolute motion is not a well-defined concept, and if two observers are not at rest relative to one another
they will disagree about the absolute velocities of objects. They will, however, agree about relative velocities. If
object A is in motion relative to object B, and B is in motion relative to C, then A’s velocity relative to C is given
by vAC=vAB+vBC. Positive and negative signs are used to indicate the direction of an object’s motion.

Summary
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Homework Problems
1 ✓. The graph shows the motion of a car stuck in stop-and-go freeway
traffic.  (a) If you only knew how far the car had gone during this entire
time period, what would you think its velocity was?  (b) What is the car’s
maximum velocity?

2. (a) Let θ be the latitude of a point on the Earth's surface.  Derive an
algebra equation for the distance, L, traveled by that point during one
rotation of the Earth about its axis, i.e. over one day, expressed in terms of
L, θ, and R, the radius of the earth.  Check: Your equation should give L=0
for the North Pole.

(b✓) At what speed is Fullerton, at latitude θ=34°, moving with the
rotation of the Earth about its axis?  Give your answer in units of mi/h. [See
the table in the back of the book for the relevant data.]

3«✓. A person is parachute jumping.  During the time between when she
leaps out of the plane and when she opens her chute, her altitude is given by
the equation

y=(10000 m) - (50 m/s)[t+(5.0 s)e-t/5.0 s]   .

Find her velocity at t=7.0 s.  (This can be done on a calculator, without
knowing calculus.) Because of air resistance, her velocity does not increase
at a steady rate as it would for an object falling in vacuum.

4 S. A light-year is a unit of distance used in astronomy, and defined as the
distance light travels in one year.  The speed of light is 3.0x108 m/s.  Find
how many meters there are in one light-year, expressing your answer in
scientific notation.

5 S. You’re standing in a freight train, and have no way to see out.  If you
have to lean to stay on your feet, what, if anything, does that tell you about
the train’s velocity?  Its acceleration?  Explain.

6 ∫. A honeybee’s position as a function of time is given by x=10t-t3, where t
is in seconds and x in meters.  What is its velocity at t=3.0 s?

7 S. The figure shows the motion of a point on the rim of a rolling wheel.
(The shape is called a cycloid.) Suppose bug A is riding on the rim of the
wheel on a bicycle that is rolling, while bug B is on the spinning wheel of a
bike that is sitting upside down on the floor. Bug A is moving along a
cycloid, while bug B is moving in a circle. Both wheels are doing the same
number of revolutions per minute. Which bug has a harder time holding
on, or do they find it equally difficult?

8 ✓. Peanut plants fold up their leaves at night. Estimate the top speed of
the tip of one of the leaves shown in the figure, expressing your result in
scientific notation in SI units.

Problem 1.

S A  solution is given in the back of the book. « A difficult problem.
✓ A computerized answer check is available. ∫ A problem that requires calculus.
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Problem 8.

Chapter 2 Velocity and Relative Motion
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9. (a) Translate the following information into symbols, using the notation
with two subscripts introduced in section 2.5. Eowyn is riding on her horse
at a velocity of 11 m/s. She twists around in her saddle and fires an arrow
backward. Her bow fires arrows at 25 m/s. (b) Find the speed of the arrow
relative to the ground.

10 S. Our full discussion of two- and three-dimensional motion is post-
poned until the second half of the book, but here is a chance to use a little
mathematical creativity in anticipation of that generalization. Suppose a
ship is sailing east at a certain speed v, and a passenger is walking across the
deck at the same speed v, so that his track across the deck is perpendicular
to the ship’s center-line. What is his speed relative to the water, and in what
direction is he moving relative to the water?

Homework Problems
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Galileo dropped a cannonball and a
musketball simultaneously from a
tower, and observed that they hit the
ground at nearly the same time. This
contradicted Aristotle’s long-accepted
idea that heavier objects fell faster.

Galileo and the Church
Galileo’s contradiction of Aristotle had serious consequences. He was interrogated by the Church authorities and

convicted of teaching that the earth went around the sun as a matter of fact and not, as he had promised previously,
as a mere mathematical hypothesis. He was placed under permanent house arrest, and forbidden to write about or
teach his theories. Immediately after being forced to recant his claim that the earth revolved around the sun, the old
man is said to have muttered defiantly “and yet it does move.”

 The story is dramatic, but there are some omissions in the commonly taught heroic version. There was a rumor
that the Simplicio character represented the Pope. Also, some of the ideas Galileo advocated had controversial religious
overtones. He believed in the existence of atoms, and atomism was thought by some people to contradict the Church’s
doctrine of transubstantiation, which said that in the Catholic mass, the blessing of the bread and wine literally
transformed them into the flesh and blood of Christ. His support for a cosmology in which the earth circled the sun
was also disreputable because one of its supporters, Giordano Bruno, had also proposed a bizarre synthesis of Christianity
with the ancient Egyptian religion.

3.1 The Motion of Falling Objects
The motion of falling objects is the simplest and most common ex-

ample of motion with changing velocity. The early pioneers of physics had a
correct intuition that the way things drop was a message directly from
Nature herself about how the universe worked. Other examples seem less
likely to have deep significance. A walking person who speeds up is making
a conscious choice. If one stretch of a river flows more rapidly than another,
it may be only because the channel is narrower there, which is just an
accident of the local geography. But there is something impressively consis-
tent, universal, and inexorable about the way things fall.

Stand up now and simultaneously drop a coin and a bit of paper side by
side. The paper takes much longer to hit the ground. That’s why Aristotle
wrote that heavy objects fell more rapidly. Europeans believed him for two
thousand years.

Now repeat the experiment, but make it into a race between the coin
and your shoe. My own shoe is about 50 times heavier than the nickel I had
handy, but it looks to me like they hit the ground at exactly the same
moment. So much for Aristotle! Galileo, who had a flair for the theatrical,
did the experiment by dropping a bullet and a heavy cannonball from a tall
tower. Aristotle’s observations had been incomplete, his interpretation a vast
oversimplification.

It is inconceivable that Galileo was the first person to observe a discrep-
ancy with Aristotle’s predictions. Galileo was the one who changed the
course of history because he was able to assemble the observations into a
coherent pattern, and also because he carried out systematic quantitative
(numerical) measurements rather than just describing things qualitatively.

Why is it that some objects, like the coin and the shoe, have similar
motion, but others, like a feather or a bit of paper, are different? Galileo

3 Acceleration and
Free Fall
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Velocity increases more gradually on
the gentle slope, but the motion is
otherwise the same as the motion of
a falling object.

The v-t graph of a falling object is a
line.

v

t
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speculated that in addition to the force that always pulls objects down, there
was an upward force exerted by the air. Anyone can speculate, but Galileo
went beyond speculation and came up with two clever experiments to probe
the issue. First, he experimented with objects falling in water, which probed
the same issues but made the motion slow enough that he could take time
measurements with a primitive pendulum clock. With this technique, he
established the following facts:

• All heavy, streamlined objects (for example a steel rod dropped
point-down) reach the bottom of the tank in about the same
amount of time, only slightly longer than the time they would take
to fall the same distance in air.
• Objects that are lighter or less streamlined take a longer time to
reach the bottom.

This supported his hypothesis about two contrary forces. He imagined
an idealized situation in which the falling object did not have to push its
way through any substance at all. Falling in air would be more like this ideal
case than falling in water, but even a thin, sparse medium like air would be
sufficient to cause obvious effects on feathers and other light objects that
were not streamlined. Today, we have vacuum pumps that allow us to suck
nearly all the air out of a chamber, and if we drop a feather and a rock side
by side in a vacuum, the feather does not lag behind the rock at all.

How the speed of a falling object increases with time
Galileo’s second stroke of genius was to find a way to make quantitative

measurements of how the speed of a falling object increased as it went
along. Again it was problematic to make sufficiently accurate time measure-
ments with primitive clocks, and again he found a tricky way to slow things
down while preserving the essential physical phenomena: he let a ball roll
down a slope instead of dropping it vertically. The steeper the incline, the
more rapidly the ball would gain speed. Without a modern video camera,
Galileo had invented a way to make a slow-motion version of falling.

Although Galileo’s clocks were only good enough to do accurate
experiments at the smaller angles, he was confident after making a system-
atic study at a variety of small angles that his basic conclusions were gener-
ally valid. Stated in modern language, what he found was that the velocity-
versus-time graph was a line. In the language of algebra, we know that a line
has an equation of the form y=ax+b, but our variables are v and t, so it
would be v=at+b. (The constant b can be interpreted simply as the initial
velocity of the object, i.e. its velocity at the time when we started our clock,

which we conventionally write as   v o .)



77

(a) Galileo’s experiments show that all
falling objects have the same motion
if air resistance is negligible.

Aristotle said that heavier objects fell
faster than lighter ones. If two rocks
are tied together, that makes an extra-
heavy rock, (b), which should fall
faster. But Aristotle’s theory would also
predict that the light rock would hold
back the heavy rock, resulting in a
slower fall, (c).

Its speed increases at a steady rate, so in the next second it will travel 19 cm.

(b) (c)

Section 3.1 The Motion of Falling Objects

Self-Check

An object is rolling down an incline. After it has been rolling for a short time, it
is found to travel 13 cm during a certain one-second interval. During the
second after that, if goes 16 cm. How many cm will it travel in the second after
that?

A contradiction in Aristotle’s reasoning
Galileo’s inclined-plane experiment disproved the long-accepted claim

by Aristotle that a falling object had a definite “natural falling speed”
proportional to its weight. Galileo had found that the speed just kept on
increasing, and weight was irrelevant as long as air friction was negligible.
Not only did Galileo prove experimentally that Aristotle had been wrong,
but he also pointed out a logical contradiction in Aristotle’s own reasoning.
Simplicio, the stupid character, mouths the accepted Aristotelian wisdom:

SIMPLICIO: There can be no doubt but that a particular body ... has a
fixed velocity which is determined by nature...

SALVIATI: If then we take two bodies whose natural speeds are
different, it is clear that, [according to Aristotle], on uniting the two, the
more rapid one will be partly held back by the slower, and the slower
will be somewhat hastened by the swifter. Do you not agree with me
in this opinion?

SIMPLICIO: You are unquestionably right.

SALVIATI: But if this is true, and if a large stone moves with a speed of,
say, eight [unspecified units] while a smaller moves with a speed of
four, then when they are united, the system will move with a speed
less than eight; but the two stones when tied together make a stone
larger than that which before moved with a speed of eight. Hence the
heavier body moves with less speed than the lighter; an effect which
is contrary to your supposition. Thus you see how, from your
assumption that the heavier body moves more rapidly than the lighter
one, I infer that the heavier body moves more slowly.

[tr. Crew and De Salvio]

What is gravity?
The physicist Richard Feynman liked to tell a story about how when he

was a little kid, he asked his father, “Why do things fall?” As an adult, he
praised his father for answering, “Nobody knows why things fall. It’s a deep
mystery, and the smartest people in the world don’t know the basic reason
for it.” Contrast that with the average person’s off-the-cuff answer, “Oh, it’s
because of gravity.” Feynman liked his father’s answer, because his father
realized that simply giving a name to something didn’t mean that you
understood it. The radical thing about Galileo’s and Newton’s approach to
science was that they concentrated first on describing mathematically what
really did happen, rather than spending a lot of time on untestable specula-
tion such as Aristotle’s statement that “Things fall because they are trying to
reach their natural place in contact with the earth.” That doesn’t mean that
science can never answer the “why” questions. Over the next month or two
as you delve deeper into physics, you will learn that there are more funda-
mental reasons why all falling objects have v-t graphs with the same slope,
regardless of their mass. Nevertheless, the methods of science always impose
limits on how deep our explanation can go.
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3.2 Acceleration
Definition of acceleration for linear v-t graphs

Galileo’s experiment with dropping heavy and light objects from a
tower showed that all falling objects have the same motion, and his in-
clined-plane experiments showed that the motion was described by v=ax+vo.
The initial velocity vo depends on whether you drop the object from rest or
throw it down, but even if you throw it down, you cannot change the slope,
a, of the v-t graph.

Since these experiments show that all falling objects have linear v-t
graphs with the same slope, the slope of such a graph is apparently an
important and useful quantity. We use the word acceleration, and the
symbol a, for the slope of such a graph. In symbols, a=∆v/∆t. The accelera-
tion can be interpreted as the amount of speed gained in every second, and
it has units of velocity divided by time, i.e. “meters per second per second,”
or m/s/s. Continuing to treat units as if they were algebra symbols, we
simplify “m/s/s” to read “m/s2.” Acceleration can be a useful quantity for
describing other types of motion besides falling, and the word and the
symbol “a” can be used in a more general context. We reserve the more
specialized symbol “g” for the acceleration of falling objects, which on the
surface of our planet equals 9.8 m/s2. Often when doing approximate
calculations or merely illustrative numerical examples it is good enough to
use g=10 m/s2, which is off by only 2%.

Example
Question : A despondent physics student jumps off a bridge, and
falls for three seconds before hitting the water. How fast is he
going when he hits the water?
Solution : Approximating g as 10 m/s2, he will gain 10 m/s of
speed each second. After one second, his velocity is 10 m/s,
after two seconds it is 20 m/s, and on impact, after falling for
three seconds, he is moving at 30 m/s.

Example: extracting acceleration from a graph
Question : The x-t and v-t graphs show the motion of a car
starting from a stop sign. What is the car’s acceleration?
Solution : Acceleration is defined as the slope of the v-t graph.
The graph rises by 3 m/s during a time interval of 3 s, so the
acceleration is (3 m/s)/(3 s)=1 m/s2.
Incorrect solution #1 : The final velocity is 3 m/s, and
acceleration is velocity divided by time, so the acceleration is (3
m/s)/(10 s)=0.3 m/s2.
✗ The solution is incorrect because you can’t find the slope of a
graph from one point. This person was just using the point at the
right end of the v-t graph to try to find the slope of the curve.
Incorrect solution #2 : Velocity is distance divided by time so
v=(4.5 m)/(3 s)=1.5 m/s. Acceleration is velocity divided by time,
so a=(1.5 m/s)/(3 s)=0.5 m/s2.
✗ The solution is incorrect because velocity is the slope of the
tangent line. In a case like this where the velocity is changing,
you can’t just pick two points on the x-t graph and use them to
find the velocity.
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Example: converting g to different units
Question : What is g in units of cm/s2?
Solution : The answer is going to be how many cm/s of speed a
falling object gains in one second. If it gains 9.8 m/s in one
second, then it gains 980 cm/s in one second, so g=980 cm/s2.
Alternatively, we can use the method of fractions that equal one:

  9.8 m/
s2

× 100 cm

1 m/
=

980 cm

s2

Question : What is g in units of miles/hour2?
Solution :

  9.8 m
s2

× 1 mile
1600 m

× 3600 s
1 hour

2

= 7.9×104 mile / hour2

This large number can be interpreted as the speed, in miles per
hour, you would gain by falling for one hour. Note that we had to
square the conversion factor of 3600 s/hour in order to cancel
out the units of seconds squared in the denominator.

Question : What is g in units of miles/hour/s?
Solution :

  9.8 m
s2

× 1 mile
1600 m

× 3600 s
1 hour

= 22 mile/hour/s

This is a figure that Americans will have an intuitive feel for. If
your car has a forward acceleration equal to the acceleration of a
falling object, then you will gain 22 miles per hour of speed every
second. However, using mixed time units of hours and seconds
like this is usually inconvenient for problem-solving. It would be
like using units of foot-inches for area instead of ft2 or in2.

The acceleration of gravity is different in different locations.
Everyone knows that gravity is weaker on the moon, but actually it is

not even the same everywhere on Earth, as shown by the sampling of
numerical data in the following table.

location latitude
elevation
(m)

g
(m/s2)

north pole 90° N 0 9.8322

Reykjavik, Iceland 64° N 0 9.8225

Fullerton, California 34° N 0 9.7957

Guayaquil, Ecuador 2° S 0 9.7806

Mt. Cotopaxi, Ecuador 1° S 5896 9.7624

Mt. Everest 28° N 8848 9.7643

The main variables that relate to the value of g on Earth are latitude and
elevation. Although you have not yet learned how g would be calculated
based on any deeper theory of gravity, it is not too hard to guess why g
depends on elevation. Gravity is an attraction between things that have
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This false-color map shows variations
in the strength of the earth’s gravity.
Purple areas have the strongest
gravity, yellow the weakest. The over-
all trend toward weaker gravity at the
equator and stronger gravity at the
poles has been artificially removed to
allow the weaker local variations to
show up. The map covers only the
oceans because of the technique used
to make it: satellites look for bulges
and depressions in the surface of the
ocean. A very slight bulge will occur
over an undersea mountain, for
instance, because the mountain’s
gravitational attraction pulls water
toward it. The US government
originally began collecting data like
these for military use, to correct for the
deviations in the paths of missiles. The
data have recently been released for
scientific and commercial use (e.g.
searching for sites for off-shore oil
wells).

Chapter 3 Acceleration and Free Fall

mass, and the attraction gets weaker with increasing distance. As you ascend
from the seaport of Guayaquil to the nearby top of Mt. Cotopaxi, you are
distancing yourself from the mass of the planet. The dependence on latitude
occurs because we are measuring the acceleration of gravity relative to the
earth’s surface, but the earth’s rotation causes the earth’s surface to fall out
from under you. (We will discuss both gravity and rotation in more detail
later in the course.)

Much more spectacular differences in the strength of gravity can be
observed away from the Earth’s surface:

location

asteroid Vesta (surface)

Earth's moon (surface)

Mars (surface)

Earth (surface)

Jupiter (cloud-tops)

Sun (visible surface)

typical neutron star (surface)

0.3

1.6

3.7

9.8

26

270

1012

g (m/s2)

infinite according to
some theories, on the
order of 1052

according to others

black hole (center)

A typical neutron star is not so different in size from a large asteroid, but is
orders of magnitude more massive, so the mass of a body definitely corre-
lates with the g it creates. On the other hand, a neutron star has about the
same mass as our Sun, so why is its g billions of times greater? If you had the
misfortune of being on the surface of a neutron star, you’d be within a few
thousand miles of all its mass, whereas on the surface of the Sun, you’d still
be millions of miles from most if its mass.
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Discussion questions
A. What is wrong with the following definitions of g?

(a) “g is gravity.”
(b) “g is the speed of a falling object.”
(c) “g is how hard gravity pulls on things.”

B. When advertisers specify how much acceleration a car is capable of, they
do not give an acceleration as defined in physics. Instead, they usually specify
how many seconds are required for the car to go from rest to 60 miles/hour.
Suppose we use the notation “a” for the acceleration as defined in physics,
and “acar ad” for the quantity used in advertisements for cars. In the US’s non-
metric system of units, what would be the units of a and acar ad? How would the
use and interpretation of large and small, positive and negative values be
different for a as opposed to acar ad?
C. Two people stand on the edge of a cliff. As they lean over the edge, one
person throws a rock down, while the other throws one straight up with an
exactly opposite initial velocity. Compare the speeds of the rocks on impact at
the bottom of the cliff.

3.3 Positive and Negative Acceleration
Gravity always pulls down, but that does not mean it always speeds

things up. If you throw a ball straight up, gravity will first slow it down to
v=0 and then begin increasing its speed. When I took physics in high
school, I got the impression that positive signs of acceleration indicated
speeding up, while negative accelerations represented slowing down, i.e.
deceleration. Such a definition would be inconvenient, however, because we
would then have to say that the same downward tug of gravity could
produce either a positive or a negative acceleration. As we will see in the
following example, such a definition also would not be the same as the slope
of the v-t graph

Let’s study the example of the rising and falling ball. In the example of
the person falling from a bridge, I assumed positive velocity values without
calling attention to it, which meant I was assuming a coordinate system
whose x axis pointed down. In this example, where the ball is reversing
direction, it is not possible to avoid negative velocities by a tricky choice of
axis, so let’s make the more natural choice of an axis pointing up. The ball’s
velocity will initially be a positive number, because it is heading up, in the
same direction as the x axis, but on the way back down, it will be a negative
number. As shown in the figure, the v-t graph does not do anything special
at the top of the ball’s flight, where v equals 0. Its slope is always negative.
In the left half of the graph, the negative slope indicates a positive velocity
that is getting closer to zero. On the right side, the negative slope is due to a
negative velocity that is getting farther from zero, so we say that the ball is
speeding up, but its velocity is decreasing!

To summarize, what makes the most sense is to stick with the original
definition of acceleration as the slope of the v-t graph, ∆v/∆t. By this
definition, it just isn’t necessarily true that things speeding up have positive
acceleration while things slowing down have negative acceleration. The
word “deceleration” is not used much by physicists, and the word “accelera-
tion” is used unblushingly to refer to slowing down as well as speeding up:
“There was a red light, and we accelerated to a stop.”

Example
Question : In the example above, what happens if you calculate
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the acceleration between t=1.0 and 1.5 s?
Answer : Reading from the graph, it looks like the velocity is
about -1 m/s at t=1.0 s, and around -6 m/s at t=1.5 s. The
acceleration, figured between these two points, is

   a = ∆v
∆t

=
( – 6 m / s) – ( – 1 m / s)

(1.5 s) – (1.0 s)
= – 10 m / s2 .

Even though the ball is speeding up, it has a negative
acceleration.

Another way of convincing you that this way of handling the plus and
minus signs makes sense is to think of a device that measures acceleration.
After all, physics is supposed to use operational definitions, ones that relate
to the results you get with actual measuring devices. Consider an air
freshener hanging from the rear-view mirror of your car. When you speed
up, the air freshener swings backward. Suppose we define this as a positive
reading. When you slow down, the air freshener swings forward, so we’ll
call this a negative reading on our accelerometer. But what if you put the car
in reverse and start speeding up backwards? Even though you’re speeding
up, the accelerometer responds in the same way as it did when you were
going forward and slowing down. There are four possible cases:

motion of car

accelerom-
eter
swings

slope of
v-t
graph

direction of
force acting
on car

forward, speeding up backward + forward

forward, slowing down forward - backward

backward, speeding up forward - backward

backward, slowing down backward + forward

Note the consistency of the three right-hand columns — nature is
trying to tell us that this is the right system of classification, not the left-
hand column.
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Discussion question B.

Section 3.3 Positive and Negative Acceleration

Because the positive and negative signs of acceleration depend on the
choice of a coordinate system, the acceleration of an object under the
influence of gravity can be either positive or negative. Rather than having to
write things like “g=9.8 m/s2 or -9.8 m/s2” every time we want to discuss g’s
numerical value, we simply define g as the absolute value of the acceleration
of objects moving under the influence of gravity. We consistently let g=9.8
m/s2, but we may have either a=g or a=-g, depending on our choice of a
coordinate system.

Example
Question : A person kicks a ball, which rolls up a sloping street,
comes to a halt, and rolls back down again. The ball has
constant acceleration. The ball is initially moving at a velocity of
4.0 m/s, and after 10.0 s it has returned to where it started. At the
end, it has sped back up to the same speed it had initially, but in
the opposite direction. What was its acceleration?
Solution : By giving a positive number for the initial velocity, the
statement of the question implies a coordinate axis that points up
the slope of the hill. The “same” speed in the opposite direction
should therefore be represented by a negative number, -4.0 m/s.
The acceleration is a=∆v/∆t=(vafter-vbefore)/10.0 s=[(-4.0 m/s)-(4.0
m/s)]/10.0 s=-0.80 m/s2. The acceleration was no different during
the upward part of the roll than on the downward part of the roll.
Incorrect solution : Acceleration is ∆v/∆t, and at the end it’s not
moving any faster or slower than when it started, so ∆v=0 and
a=0.
✗  The velocity does change, from a positive number to a
negative number.

Discussion questions
A. A child repeatedly jumps up and down on a trampoline. Discuss the sign
and magnitude of his acceleration, including both the time when he is in the air
and the time when his feet are in contact with the trampoline.
B. Sally is on an amusement park ride which begins with her chair being
hoisted straight up a tower at a constant speed of 60 miles/hour. Despite stern
warnings from her father that he’ll take her home the next time she
misbehaves, she decides that as a scientific experiment she really needs to
release her corndog over the side as she’s on the way up. She does not throw
it. She simply sticks it out of the car, lets it go, and watches it against the
background of the sky, with no trees or buildings as reference points. What
does the corndog’s motion look like as observed by Sally? Does its speed ever
appear to her to be zero? What acceleration does she observe it to have: is it
ever positive? negative? zero? What would her enraged father answer if asked
for a similar description of its motion as it appears to him, standing on the
ground?
C. Can an object maintain a constant acceleration, but meanwhile reverse the
direction of its velocity?
D. Can an object have a velocity that is positive and increasing at the same
time that its acceleration is decreasing?
E. The four figures show a refugee from a Picasso painting blowing on a rolling
water bottle. In some cases the person’s blowing is speeding the bottle up, but
in others it is slowing it down. The arrow inside the bottle shows which
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direction it is going, and a coordinate system is shown at the bottom of each
figure. In each case, figure out the plus or minus signs of the velocity and
acceleration. It may be helpful to draw a v-t graph in each case.

x

x

x

x

(a) (b)

(c) (d)

3.4 Varying Acceleration
So far we have only been discussing examples of motion for which the

v-t graph is linear. If we wish to generalize our definition to v-t graphs that
are more complex curves, the best way to proceed is similar to how we
defined velocity for curved x-t graphs:

definition of acceleration
The acceleration of an object at any instant is the slope of the tangent
line passing through its v-versus-t graph at the relevant point.

Example: a skydiver
Question : The graphs show the results of a fairly realistic
computer simulation of the motion of a skydiver, including the
effects of air friction. The x axis has been chosen pointing down,
so x is increasing as she falls. Find (a) the skydiver’s
acceleration at t=3.0 s, and also (b) at t=7.0 s.
Solution : I’ve added tangent lines at the two points in question.
(a) To find the slope of the tangent line, I pick two points on the



85

0

10

20

30

40

50

0 2 4 6 8 10 12 14

t (s)

v 
(m

/s
)

(3.0 s, 28 m/s)

(5.0 s, 42 m/s)

(7.0 s, 47 m/s)
(9.0 s, 52 m/s)

Section 3.3 Positive and Negative Acceleration

x

t

large,
positive
a

x

t

a=0

x

t

a>0

a<0

x

t

small,
positive
a

x

t

large,
negative
a

x

t

a=0

line (not necessarily on the actual curve): (3.0 s, 28 m/s) and (5.0
s, 42 m/s). The slope of the tangent line is (42 m/s-28 m/s)/(5.0 s
- 3.0 s)=7.0 m/s2.
(b) Two points on this tangent line are (7.0 s, 47 m/s) and (9.0 s,
52 m/s). The slope of the tangent line is (52 m/s-47 m/s)/(9.0 s -
7.0 s)=2.5 m/s2.
Physically, what’s happening is that at t=3.0 s, the skydiver is not
yet going very fast, so air friction is not yet very strong. She
therefore has an acceleration almost as great as g. At t=7.0 s,
she is moving almost twice as fast (about 100 miles per hour),
and air friction is extremely strong, resulting in a significant
departure from the idealized case of no air friction.

In the above example, the x-t graph was not even used in the solution of
the problem, since the definition of acceleration refers to the slope of the v-t
graph. It is possible, however, to interpret an x-t graph to find out some-
thing about the acceleration. An object with zero acceleration, i.e. constant
velocity, has an x-t graph that is a straight line. A straight line has no
curvature. A change in velocity requires a change in the slope of the x-t
graph, which means that it is a curve rather than a line. Thus acceleration
relates to the curvature of the x-t graph. Figure (c) shows some examples.

In the skydiver example, the x-t graph was more strongly curved at the
beginning, and became nearly straight at the end. If the x-t graph is nearly
straight, then its slope, the velocity, is nearly constant, and the acceleration
is therefore small. We can thus interpret the acceleration as representing the
curvature of the x-t graph. If the “cup” of the curve points up, the accelera-
tion is positive, and if it points down, the acceleration is negative.

Since the relationship between a and v is analogous to the relationship
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between v and x, we can also make graphs of acceleration as a function of
time, as shown in figures (a) and (b) above.

Figure (c) summarizes the relationships among the three types of
graphs.

Discussion questions
A. Describe in words how the changes in the a-t graph for the skydiver relate
to the behavior of the v-t graph.
B. Explain how each set of graphs contains inconsistencies.
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3.5 The Area Under the Velocity-Time Graph
A natural question to ask about falling objects is how fast they fall, but

Galileo showed that the question has no answer. The physical law that he
discovered connects a cause (the attraction of the planet Earth’s mass) to an
effect, but the effect is predicted in terms of an acceleration rather than a
velocity. In fact, no physical law predicts a definite velocity as a result of a
specific phenomenon, because velocity cannot be measured in absolute
terms, and only changes in velocity relate directly to physical phenomena.

The unfortunate thing about this situation is that the definitions of
velocity and acceleration are stated in terms of the tangent-line technique,
which lets you go from x to v to a, but not the other way around. Without a
technique to go backwards from a to v to x, we cannot say anything quanti-
tative, for instance, about the x-t graph of a falling object. Such a technique
does exist, and I used it to make the x-t graphs in all the examples above.

First let’s concentrate on how to get x information out of a v-t graph. In
example (a), an object moves at a speed of 20 m/s for a period of 4.0 s. The
distance covered is ∆x=v∆t=(20 m/s)x(4.0 s)=80 m. Notice that the quanti-
ties being multiplied are the width and the height of the shaded rectangle
— or, strictly speaking, the time represented by its width and the velocity
represented by its height. The distance of ∆x=80 m thus corresponds to the
area of the shaded part of the graph.

The next step in sophistication is an example like (b), where the object
moves at a constant speed of 10 m/s for two seconds, then for two seconds
at a different constant speed of 20 m/s. The shaded region can be split into
a small rectangle on the left, with an area representing ∆x=20 m, and a taller
one on the right, corresponding to another 40 m of motion. The total
distance is thus 60 m, which corresponds to the total area under the graph.

An example like (c) is now just a trivial generalization; there is simply a
large number of skinny rectangular areas to add up. But notice that graph
(c) is quite a good approximation to the smooth curve (d). Even though we
have no formula for the area of a funny shape like (d), we can approximate
its area by dividing it up into smaller areas like rectangles, whose area is
easier to calculate. If someone hands you a graph like (d) and asks you to
find the area under it, the simplest approach is just to count up the little
rectangles on the underlying graph paper, making rough estimates of
fractional rectangles as you go along.
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That’s what I’ve done above. Each rectangle on the graph paper is 1.0 s
wide and 2 m/s tall, so it represents 2 m. Adding up all the numbers gives
∆x=41 m. If you needed better accuracy, you could use graph paper with
smaller rectangles.

It’s important to realize that this technique gives you ∆x, not x. The v-t
graph has no information about where the object was when it started.

The following are important points to keep in mind when applying this
technique:

• If the range of v values on your graph does not extend down to
zero, then you will get the wrong answer unless you compensate by
adding in the area that is not shown.

• As in the example, one rectangle on the graph paper does not
necessarily correspond to one meter of distance.

• Negative velocity values represent motion in the opposite direction,
so area under the t axis should be subtracted, i.e. counted as
“negative area.”

• Since the result is a ∆x value, it only tells you xafter-xbefore, which
may be less than the actual distance traveled. For instance, the
object could come back to its original position at the end, which
would correspond to ∆x=0, even though it had actually moved a
nonzero distance.

Finally, note that one can find ∆v from an a-t graph using an entirely
analogous method. Each rectangle on the a-t graph represents a certain
amount of velocity change.

Discussion question

Roughly what would a pendulum’s v-t graph look like? What would happen
when you applied the area-under-the-curve technique to find the pendulum’s
∆x for a time period covering many swings?
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3.6 Algebraic Results for Constant Acceleration
Although the area-under-the-curve technique can be applied to any

graph, no matter how complicated, it may be laborious to carry out, and if
fractions of rectangles must be estimated the result will only be approxi-
mate. In the special case of motion with constant acceleration, it is possible
to find a convenient shortcut which produces exact results. When the
acceleration is constant, the v-t graph is a straight line, as shown in the
figure. The area under the curve can be divided into a triangle plus a
rectangle, both of whose areas can be calculated exactly: A=bh for a rect-

angle and A=  1 21 2 bh for a triangle. The height of the rectangle is the initial
velocity, vo, and the height of the triangle is the change in velocity from
beginning to end, ∆v. The object’s ∆x is therefore given by the equation

   ∆x = v o∆t + 1
2

∆v∆t . This can be simplified a little by using the definition of

acceleration, a=∆v/∆t to eliminate ∆v, giving

   ∆x = v o∆t + 1
2
a∆t 2

  [motion with constant acceleration]  .

Since this is a second-order polynomial in ∆t, the graph of ∆x versus ∆t
is a parabola, and the same is true of a graph of x versus t — the two graphs
differ only by shifting along the two axes. Although I have derived the
equation using a figure that shows a positive vo, positive a, and so on, it still
turns out to be true regardless of what plus and minus signs are involved.

Another useful equation can be derived if one wants to relate the change
in velocity to the distance traveled. This is useful, for instance, for finding
the distance needed by a car to come to a stop. For simplicity, we start by
deriving the equation for the special case of vo=0, in which the final velocity
vf is a synonym for ∆v. Since velocity and distance are the variables of

interest, not time, we take the equation ∆x =  1 21 2 a∆t2 and use ∆t=∆v/a to

eliminate ∆t. This gives ∆x =  1 21 2 (∆v)2/a, which can be rewritten as

   v f
2 = 2a∆x   [motion with constant acceleration,  v o = 0]  .

For the more general case where    v o ≠ 0 , we skip the tedious algebra
leading to the more general equation,

   v f
2 = v o

2+2a∆x   [motion with constant acceleration]  .

To help get this all organized in your head, first let’s categorize the
variables as follows:

Variables that change during motion with constant acceleration:

x, v, t

Variable that doesn’t change:

a
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If you know one of the changing variables and want to find another,
there is always an equation that relates those two:

v
x

t

a=
∆v

∆t∆x = vo∆t +   a∆t21
2

vf
2 = vo

2 + 2a∆x

The symmetry among the three variables is imperfect only because the
equation relating x and t includes the initial velocity.

There are two main difficulties encountered by students in applying
these equations:

• The equations apply only to motion with constant acceleration. You
can’t apply them if the acceleration is changing.

• Students are often unsure of which equation to use, or may cause
themselves unnecessary work by taking the longer path around the
triangle in the chart above. Organize your thoughts by listing the
variables you are given, the ones you want to find, and the ones you
aren’t given and don’t care about.

Example
Question : You are trying to pull an old lady out of the way of an
oncoming truck. You are able to give her an acceleration of 20 m/
s2. Starting from rest, how much time is required in order to move
her 2 m?
Solution : First we organize our thoughts:

Variables given: ∆x, a, vo
Variables desired: ∆t
Irrelevant variables: vf

Consulting the triangular chart above, the equation we need is

clearly    ∆x = vo∆t + 1
2a∆t 2  , since it has the four variables of

interest and omits the irrelevant one. Eliminating the vo term and

solving for ∆t gives    ∆t = 2 ∆x
a =0.4 s.

Discussion questions
A Check that the units make sense in the three equations derived in this
section.
B. In chapter 1, I gave examples of correct and incorrect reasoning about
proportionality, using questions about the scaling of area and volume. Try to
translate the incorrect modes of reasoning shown there into mistakes about the
following question: If the acceleration of gravity on Mars is 1/3 that on Earth,
how many times longer does it take for a rock to drop the same distance on
Mars?
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sending people into space for the
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Courtesy of  NASA.
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3.7* Biological Effects of Weightlessness
The usefulness of outer space was brought home to North Americans in

1998 by the unexpected failure of the communications satellite that had
been handling almost all of the continent’s cellular phone traffic. Compared
to the massive economic and scientific payoffs of satellites and space probes,
human space travel has little to boast about after four decades. Sending
people into orbit has just been too expensive to be an effective scientific or
commercial activity. The 1986 Challenger disaster dealt a blow to NASA’s
confidence, and with the end of the cold war, U.S. prestige as a superpower
was no longer a compelling reason to send Americans into space. All that
may change soon, with a new generation of much cheaper reusable space-
ships. (The space shuttle is not truly reusable. Retrieving the boosters out of
the ocean is no cheaper than building new ones, but NASA brings them
back and uses them over for public relations, to show how frugal they are.)
Space tourism is even beginning to make economic sense! No fewer than
three private companies are now willing to take your money for a reserva-
tion on a two-to-four minute trip into space, although none of them has a
firm date on which to begin service. Within a decade, a space cruise may be
the new status symbol among those sufficiently rich and brave.

Space sickness
Well, rich, brave, and possessed of an iron stomach. Travel agents will

probably not emphasize the certainty of constant space-sickness. For us
animals evolved to function in g=9.8 m/s2, living in g=0 is extremely
unpleasant. The early space program focused obsessively on keeping the
astronaut-trainees in perfect physical shape, but it soon became clear that a
body like a Greek demigod’s was no defense against that horrible feeling
that your stomach was falling out from under you and you were never going
to catch up. Our inner ear, which normally tells us which way is down,
tortures us when down is nowhere to be found. There is contradictory
information about whether anyone ever gets over it; the “right stuff ” culture
creates a strong incentive for astronauts to deny that they are sick.

Effects of long space missions
Worse than nausea are the health-threatening effects of prolonged

weightlessness. The Russians are the specialists in long-term missions, in
which cosmonauts suffer harm to their blood, muscles, and, most impor-
tantly, their bones.

The effects on the muscles and skeleton appear to be similar to those
experienced by old people and people confined to bed for a long time.
Everyone knows that our muscles get stronger or weaker depending on the
amount of exercise we get, but the bones are likewise adaptable. Normally
old bone mass is continually being broken down and replaced with new
material, but the balance between its loss and replacement is upset when
people do not get enough weight-bearing exercise. The main effect is on the
bones of the lower body. More research is required to find out whether
astronauts’ loss of bone mass is due to faster breaking down of bone, slower
replacement, or both. It is also not known whether the effect can be sup-
pressed via diet or drugs.

The other set of harmful physiological effects appears to derive from the
redistribution of fluids. Normally, the veins and arteries of the legs are
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U.S. and Russian astronauts
aboard the International Space
Station, October 2000.

The International Space Station,
September 2000. The space station
will not rotate to provide simulated
gravity. The completed station will
be much bigger than it is in this
picture.

More on Apparent Weightlessness
Astronauts in orbit are not really
weightless; they are only a few
hundred miles up, so they are still
affected strongly by the Earth’s
gravity. Section 10.3 of this book
discusses why they experience
apparent weightlessness.

More on Simulated Gravity
For more information on simulating
gravity by spinning a spacecraft, see
section 9.2 of this book.

Chapter 3 Acceleration and Free Fall

tightly constricted to keep gravity from making blood collect there. It is
uncomfortable for adults to stand on their heads for very long, because the
head’s blood vessels are not able to constrict as effectively. Weightless
astronauts’ blood tends to be expelled by the constricted blood vessels of the
lower body, and pools around their hearts, in their thoraxes, and in their
heads. The only immediate result is an uncomfortable feeling of bloatedness
in the upper body, but in the long term, a harmful chain of events is set in
motion. The body’s attempts to maintain the correct blood volume are most
sensitive to the level of fluid in the head. Since astronauts have extra fluid in
their heads, the body thinks that the over-all blood volume has become too
great. It responds by decreasing blood volume below normal levels. This
increases the concentration of red blood cells, so the body then decides that
the blood has become too thick, and reduces the number of blood cells. In
missions lasting up to a year or so, this is not as harmful as the musculo-
skeletal effects, but it is not known whether longer period in space would
bring the red blood cell count down to harmful levels.

Reproduction in space
For those enthralled by the romance of actual human colonization of

space, human reproduction in weightlessness becomes an issue. An already-
pregnant Russian cosmonaut did spend some time in orbit in the 1960’s,
and later gave birth to a normal child on the ground. Recently, one of
NASA’s public relations concerns about the space shuttle program has been
to discourage speculation about space sex, for fear of a potential taxpayers’
backlash against the space program as an expensive form of exotic pleasure.

Scientific work has been concentrated on studying plant and animal
reproduction in space. Green plants, fungi, insects, fish, and amphibians
have all gone through at least one generation in zero-gravity experiments
without any serious problems. In many cases, animal embryos conceived in
orbit begin by developing abnormally, but later in development they seem
to correct themselves. However, chicken embryos fertilized on earth less
than 24 hours before going into orbit have failed to survive. Since chickens
are the organisms most similar to humans among the species investigated so
far, it is not at all certain that humans could reproduce successfully in a
zero-gravity space colony.

Simulated gravity
If humans are ever to live and work in space for more than a year or so,

the only solution is probably to build spinning space stations to provide the
illusion of weight, as discussed in section 9.2. Normal gravity could be
simulated, but tourists would probably enjoy g=2 m/s2 or 5 m/s2.  Space
enthusiasts have proposed entire orbiting cities built on the rotating cylin-
der plan. Although science fiction has focused on human colonization of
relatively earthlike bodies such as our moon, Mars, and Jupiter’s icy moon
Europa, there would probably be no practical way to build large spinning
structures on their surfaces. If the biological effects of their 2-3 m/s2

gravitational accelerations are as harmful as the effect of g=0, then we may
be left with the surprising result that interplanetary space is more hospitable
to our species than the moons and planets.
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3.8 ∫ Applications of Calculus
In the Applications of Calculus section at the end of the previous

chapter, I discussed how the slope-of-the-tangent-line idea related to the
calculus concept of a derivative, and the branch of calculus known as
differential calculus. The other main branch of calculus, integral calculus,
has to do with the area-under-the-curve concept discussed in section 3.5 of
this chapter. Again there is a concept, a notation, and a bag of tricks for
doing things symbolically rather than graphically. In calculus, the area
under the v-t graph between t=t1 and t=t2 is notated like this:

   
area under the curve = ∆x = v dt

t 1

t 2

The expression on the right is called an integral, and the s-shaped symbol,
the integral sign, is read as “integral of....”

Integral calculus and differential calculus are closely related. For in-
stance, if you take the derivative of the function x(t), you get the function
v(t), and if you integrate the function v(t), you get x(t) back again. In other
words, integration and differentiation are inverse operations. This is known
as the fundamental theorem of calculus.

On an unrelated topic, there is a special notation for taking the deriva-
tive of a function twice. The acceleration, for instance, is the second (i.e.
double) derivative of the position, because differentiating x once gives v, and
then differentiating v gives a. This is written as

  
a = d 2x

dt 2    .

The seemingly inconsistent placement of the twos on the top and bottom
confuses all beginning calculus students. The motivation for this funny
notation is that acceleration has units of m/s2, and the notation correctly
suggests that: the top looks like it has units of meters, the bottom seconds2.
The notation is not meant, however, to suggest that t is really squared.
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Summary
Selected Vocabulary

gravity ............................... A general term for the phenomenon of attraction between things having
mass. The attraction between our planet and a human-sized object causes
the object to fall.

acceleration ....................... The rate of change of velocity; the slope of the tangent line on a v-t graph.
Notation

a ........................................ acceleration
g ........................................ the acceleration of objects in free fall

Summary
Galileo showed that when air resistance is negligible all falling bodies have the same motion regardless of

mass. Moreover, their v-t graphs are straight lines. We therefore define a quantity called acceleration as the
slope, ∆v/∆t, of an object’s v-t  graph. In cases other than free fall, the v-t  graph may be curved, in which case
the definition is generalized as the slope of a tangent line on the v-t graph. The acceleration of objects in free
fall varies slightly across the surface of the earth, and greatly on other planets.

Positive and negative signs of acceleration are defined according to whether the v-t graph slopes up or
down. This definition has the advantage that a force in a given direction always produces the same sign of
acceleration.

The area under the v-t graph gives ∆x, and analogously the area under the a-t graph gives ∆v.

For motion with constant acceleration, the following three equations hold:

   ∆x = vo∆t + 1
2a∆t 2

   v f
2 = vo

2 + 2a∆x

   a = ∆v
∆t

They are not valid if the acceleration is changing.
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Homework Problems

Homework Problems
1 ✓. The graph represents the velocity of a bee along a straight line.  At t=0,
the bee is at the hive.  (a) When is the bee farthest from the hive? (b) How
far is the bee at its farthest point from the hive? (c) At t=13 s, how far is the
bee from the hive? [Hint: Try problem 19 first.]

10 2 3 4 5 6 7 8 9 10 11 12 13
time (s)

0

-1

1

2

3

4

5

6

7

8

velocity
(m/s)

2. A rock is dropped into a pond. Draw plots of its position versus time,
velocity versus time, and acceleration versus time. Include its whole motion,
starting from the moment it is dropped, and continuing while it falls
through the air, passes through the water, and ends up at rest on the bottom
of the pond.

3. In an 18th-century naval battle, a cannon ball is shot horizontally, passes
through the side of an enemy ship's hull, flies across the galley, and lodges
in a bulkhead. Draw plots of its horizontal position, velocity, and accelera-
tion as functions of time, starting while it is inside the cannon and has not
yet been fired, and ending when it comes to rest. There is not any signifi-
cant amount of friction from the air. Although the ball may rise and fall,
you are only concerned with its horizontal motion, as seen from above.

4. Draw graphs of position, velocity, and acceleration as functions of time
for a person bunjee jumping. (In bunjee jumping, a person has a stretchy
elastic cord tied to his/her ankles, and jumps off of a high platform. At the
bottom of the fall, the cord brings the person up short. Presumably the
person bounces up a little.)

5. A ball rolls down the ramp shown in the figure, consisting of a curved
knee, a straight slope, and a curved bottom. For each part of the ramp, tell
whether the ball’s velocity is increasing, decreasing, or constant, and also
whether the ball’s acceleration is increasing, decreasing, or constant. Explain
your answers. Assume there is no air friction or rolling resistance. Hint: Try
problem 20 first. [Based on a problem by Hewitt.]

S A  solution is given in the back of the book. « A difficult problem.
✓ A computerized answer check is available. ∫ A problem that requires calculus.

Problem 5.

1 2 3
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6. A toy car is released on one side of a piece of track that is bent into an
upright U shape. The car goes back and forth. When the car reaches the
limit of its motion on one side, its velocity is zero. Is its acceleration also
zero? Explain using a v-t graph. [Based on a problem by Serway and
Faughn.]

7. What is the acceleration of a car that moves at a steady velocity of 100
km/h for 100 seconds? Explain your answer. [Based on a problem by
Hewitt.]

8. A physics homework question asks, "If you start from rest and accelerate
at 1.54 m/s2 for 3.29 s, how far do you travel by the end of that time?" A
student answers as follows:

1.54 x 3.29 = 5.07 m

His Aunt Wanda is good with numbers, but has never taken physics. She
doesn't know the formula for the distance traveled under constant accelera-
tion over a given amount of time, but she tells her nephew his answer
cannot be right. How does she know?

9 ✓. You are looking into a deep well. It is dark, and you cannot see the
bottom. You want to find out how deep it is, so you drop a rock in, and you
hear a splash 3.0 seconds later. How deep is the well?

10«✓. You take a trip in your spaceship to another star. Setting off, you
increase your speed at a constant acceleration. Once you get half-way there,
you start decelerating, at the same rate, so that by the time you get there,
you have slowed down to zero speed. You see the tourist attractions, and
then head home by the same method.

(a) Find a formula for the time, T, required for the round trip, in terms of d,
the distance from our sun to the star, and a, the magnitude of the accelera-
tion. Note that the acceleration is not constant over the whole trip, but the
trip can be broken up into constant-acceleration parts.

(b) The nearest star to the Earth (other than our own sun) is Proxima
Centauri, at a distance of d=4x1016 m. Suppose you use an acceleration of
a=10 m/s2, just enough to compensate for the lack of true gravity and make
you feel comfortable. How long does the round trip take, in years?

(c) Using the same numbers for d and a, find your maximum speed.
Compare this to the speed of light, which is 3.0x108 m/s. (Later in this
course, you will learn that there are some new things going on in physics
when one gets close to the speed of light, and that it is impossible to exceed
the speed of light. For now, though, just use the simpler ideas you've
learned so far.)

11. You climb half-way up a tree, and drop a rock. Then you climb to the
top, and drop another rock. How many times greater is the velocity of the
second rock on impact? Explain. (The answer is not two times greater.)

12. Alice drops a rock off a cliff. Bubba shoots a gun straight down from the
edge of the same cliff. Compare the accelerations of the rock and the bullet
while they are on the way down. [Based on a problem by Serway and
Faughn.]
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Problem 14.
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Homework Problems

13 ∫. A person is parachute jumping. During the time between when she
leaps out of the plane and when she opens her chute, her altitude is given by
an equation of the form

  y = b – c t + ke – t / k   ,

where e is the base of natural logarithms, and b, c, and k are constants.
Because of air resistance, her velocity does not increase at a steady rate as it
would for an object falling in vacuum.

(a) What units would b, c, and k have to have for the equation to make
sense?

(b) Find the person's velocity, v, as a function of time. [You will need to use
the chain rule, and the fact that d(ex)/dx=ex.]

(c) Use your answer from part (b) to get an interpretation of the constant c.
[Hint: e –x approaches zero for large values of x.]

(d) Find the person's acceleration, a, as a function of time.

(e) Use your answer from part (b) to show that if she waits long enough to
open her chute, her acceleration will become very small.

14 S. The top part of the figure shows the position-versus-time graph for an
object moving in one dimension.  On the bottom part of the figure, sketch
the corresponding v-versus-t graph.

15 S. On New Year's Eve, a stupid person fires a pistol straight up.  The
bullet leaves the gun at a speed of 100 m/s.  How long does it take before
the bullet hits the ground?

16 S. If the acceleration of gravity on Mars is 1/3 that on Earth, how many
times longer does it take for a rock to drop the same distance on Mars?
Ignore air resistance.

17 S∫. A honeybee’s position as a function of time is given by x=10t-t3,
where t is in seconds and x in meters.  What is its acceleration at t=3.0 s?

18 S. In July 1999, Popular Mechanics carried out tests to find which car
sold by a major auto maker could cover a quarter mile (402 meters) in the
shortest time, starting from rest. Because the distance is so short, this type
of test is designed mainly to favor the car with the greatest acceleration, not
the greatest maximum speed (which is irrelevant to the average person). The
winner was the Dodge Viper, with a time of 12.08 s. The car’s top (and
presumably final) speed was 118.51 miles per hour (52.98 m/s). (a) If a car,
starting from rest and moving with constant acceleration, covers a quarter
mile in this time interval, what is its acceleration? (b) What would be the
final speed of a car that covered a quarter mile with the constant accelera-
tion you found in part a? (c) Based on the discrepancy between your answer
in part b and the actual final speed of the Viper, what do you conclude
about how its acceleration changed over time?
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Problem 19.

Problem 20.

Chapter 3 Acceleration and Free Fall

19 S. The graph represents the motion of a rolling ball that bounces off of a
wall. When does the ball return to the location it had at t=0?

20 S. (a) The ball is released at the top of the ramp shown in the figure.
Friction is negligible. Use physical reasoning to draw v-t and a-t graphs.
Assume that the ball doesn’t bounce at the point where the ramp changes
slope. (b) Do the same for the case where the ball is rolled up the slope from
the right side, but doesn’t quite have enough speed to make it over the top.

21 S. You drop a rubber ball, and it repeatedly bounces vertically. Draw
graphs of position, velocity, and acceleration as functions of time.

22 S. Starting from rest, a ball rolls down a ramp, traveling a distance L and
picking up a final speed v. How much of the distance did the ball have to
cover before achieving a speed of v/2? [Based on a problem by Arnold
Arons.]

23✓. The graph shows the acceleration of a chipmunk in a TV cartoon. It
consists of two circular arcs and two line segments. At t=0, the chipmunk’s
velocity is –3.1 m/s. What is its velocity at t=10 s?

24. Find the error in the following calculation. A student wants to find the
distance traveled by a car that accelerates from rest for 5.0 s with an accel-
eration of 2.0 m/s2. First he solves a=∆v/∆t for ∆v=10 m/s. Then he
multiplies to find (10 m/s)(5.0 s)=50 m. Do not just recalculate the result
by a different method; if that was all you did, you’d have no way of knowing
which calculation was correct, yours or his.

25. Acceleration could be defined either as ∆v/∆t or as the slope of the
tangent line on the v-t graph. Is either one superior as a definition, or are
they equivalent? If you say one is better, give an example of a situation
where it makes a difference which one you use.

26. If an object starts accelerating from rest, we have v2=2a∆x for its speed
after it has traveled a distance ∆x. Explain in words why it makes sense that
the equation has velocity squared, but distance only to the first power.
Don’t recapitulate the derivation in the book, or give a justification based
on units. The point is to explain what this feature of the equation tells us
about the way speed increases as more distance is covered.

27. The figure shows a practical, simple experiment for determining g to
high precision. Two steel balls are suspended from electromagnets, and are
released simultaneously when the electric current is shut off. They fall
through unequal heights ∆x1 and ∆x2. A computer records the sounds
through a microphone as first one ball and then the other strikes the floor.
From this recording, we can accurately determine the quantity T defined as
T=∆t2-∆t1, i.e., the time lag between the first and second impacts.  Note
that since the balls do not make any sound when they are released, we have
no way of measuring the individual times ∆t2 and ∆t1. (a✓) Find an
equation for g in terms of the measured quantities T, ∆x1 and ∆x2. (b)
Check the units of your equation. (c) Check that your equation gives the
correct result in the case where ∆x1=0. However, is this case realistic? (d)
What happens when ∆x1=∆x2?

a
(m/s2)

10

0

t (s)
0 5 10

Problem 23.

Problem 27.
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4 Force and Motion
If I have seen farther than others, it is because I have stood on the shoul-
ders of giants.

Newton, referring to Galileo

4.1 Force
We need only explain changes in motion, not motion itself

So far you’ve studied the measurement of motion in some detail, but
not the reasons why a certain object would move in a certain way. This
chapter deals with the “why” questions. Aristotle’s ideas about the causes of
motion were completely wrong, just like all his other ideas about physical
science, but it will be instructive to start with them, because they amount to
a road map of modern students’ incorrect preconceptions.

Aristotle thought he needed to explain both why motion occurs and
why motion might change. Newton inherited from Galileo the important
counter-Aristotelian idea that motion needs no explanation, that it is only
changes in motion that require a physical cause.

Aristotle gave three reasons for motion:

• Natural motion, such as falling, came from the tendency of objects
to go to their “natural” place, on the ground, and come to rest.

• Voluntary motion was the type of motion exhibited by animals,
which moved because they chose to.

• Forced motion occurred when an object was acted on by some
other object that made it move.

Even as great and skeptical a genius as Galileo was unable to
make much progress on the causes of motion. It was not until a
generation later that Isaac Newton (1642-1727) was able to attack
the problem successfully. In many ways, Newton’s personality was
the opposite of Galileo’s. Where Galileo agressively publicized his
ideas, Newton had to be coaxed by his friends into publishing a book
on his physical discoveries. Where Galileo’s writing had been popular
and dramatic, Newton originated the stilted, impersonal style that most
people think is standard for scientific writing. (Scientific journals today
encourage a less ponderous style, and papers are often written in the
first person.) Galileo’s talent for arousing animosity among the rich
and powerful was matched by Newton’s skill at making himself a
popular visitor at court. Galileo narrowly escaped being burned at the
stake, while Newton had the good fortune of being on the winning
side of the revolution that replaced King James II with William and
Mary of Orange, leading to a lucrative post running the English royal
mint.

Newton discovered the relationship between force and motion,
and revolutionized our view of the universe by showing that the same
physical laws applied to all matter, whether living or nonliving, on or
off of our planet’s surface. His book on force and motion, the
Mathematical Principles of Natural Philosophy , was uncontradicted
by experiment for 200 years, but his other main work, Optics , was on
the wrong track due to his conviction that light was composed of
particles rather than waves. Newton was also an avid alchemist and
an astrologer, an embarrassing fact that modern scientists would like
to forget.

Isaac Newton

Aristotle said motion had to be caused
by a force. To explain why an arrow
kept flying after the bowstring was no
longer pushing on it, he said the air
rushed around behind the arrow and
pushed it forward. We know this is
wrong, because an arrow shot in a
vacuum chamber does not instantly
drop to the floor as it leaves the bow.
Galileo and Newton realized that a
force would only be needed to change
the arrow’s motion, not to make its
motion continue.
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Motion changes due to an interaction between two objects
In the Aristotelian theory, natural motion and voluntary motion are

one-sided phenomena: the object causes its own motion. Forced motion is
supposed to be a two-sided phenomenon, because one object imposes its
“commands” on another. Where Aristotle conceived of some of the phe-
nomena of motion as one-sided and others as two-sided, Newton realized
that a change in motion was always a two-sided relationship of a force
acting between two physical objects.

The one-sided “natural motion” description of falling makes a crucial
omission. The acceleration of a falling object is not caused by its own
“natural” tendencies but by an attractive force between it and the planet
Earth. Moon rocks brought back to our planet do not “want” to fly back up
to the moon because the moon is their “natural” place. They fall to the floor
when you drop them, just like our homegrown rocks. As we’ll discuss in
more detail later in this course, gravitational forces are simply an attraction
that occurs between any two physical objects. Minute gravitational forces
can even be measured between human-scale objects in the laboratory.

The idea of natural motion also explains incorrectly why things come to
rest. A basketball rolling across a beach slows to a stop because it is interact-
ing with the sand via a frictional force, not because of its own desire to be at
rest. If it was on a frictionless surface, it would never slow down. Many of
Aristotle’s mistakes stemmed from his failure to recognize friction as a force.

The concept of voluntary motion is equally flawed. You may have been
a little uneasy about it from the start, because it assumes a clear distinction
between living and nonliving things. Today, however, we are used to having
the human body likened to a complex machine. In the modern world-view,
the border between the living and the inanimate is a fuzzy no-man’s land
inhabited by viruses, prions, and silicon chips. Furthermore, Aristotle’s
statement that you can take a step forward “because you choose to” inap-
propriately mixes two levels of explanation. At the physical level of explana-
tion, the reason your body steps forward is because of a frictional force
acting between your foot and the floor. If the floor was covered with a
puddle of oil, no amount of “choosing to” would enable you to take a
graceful stride forward.

Forces can all be measured on the same numerical scale
In the Aristotelian-scholastic tradition, the description of motion as

natural, voluntary, or forced was only the broadest level of classification, like
splitting animals into birds, reptiles, mammals, and amphibians. There
might be thousands of types of motion, each of which would follow its own
rules. Newton’s realization that all changes in motion were caused by two-
sided interactions made it seem that the phenomena might have more in
common than had been apparent. In the Newtonian description, there is
only one cause for a change in motion, which we call force. Forces may be
of different types, but they all produce changes in motion according to the
same rules. Any acceleration that can be produced by a magnetic force can
equally well be produced by an appropriately controlled stream of water. We
can speak of two forces as being equal if they produce the same change in
motion when applied in the same situation, which means that they pushed
or pulled equally hard in the same direction.

“Our eyes receive blue light reflected
from this painting because Monet
wanted to represent water with the
color blue.” This is a valid statement
at one level of explanation, but physics
works at the physical level of
explanation, in which blue light gets
to your eyes because it is reflected by
blue pigments in the paint.

Chapter 4 Force and Motion
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The idea of a numerical scale of force and the newton unit were intro-
duced in chapter 0. To recapitulate briefly, a force is when a pair of objects
push or pull on each other, and one newton is the force required to acceler-
ate a 1-kg object from rest to a speed of 1 m/s in 1 second.

More than one force on an object
As if we hadn’t kicked poor Aristotle around sufficiently, his theory has

another important flaw, which is important to discuss because it corre-
sponds to an extremely common student misconception. Aristotle con-
ceived of forced motion as a relationship in which one object was the boss
and the other “followed orders.” It therefore would only make sense for an
object to experience one force at a time, because an object couldn’t follow
orders from two sources at once. In the Newtonian theory, forces are
numbers, not orders, and if more than one force acts on an object at once,
the result is found by adding up all the forces. It is unfortunate that the use
the English word “force” has become standard, because to many people it
suggests that you are “forcing” an object to do something. The force of the
earth’s gravity cannot “force” a boat to sink, because there are other forces
acting on the boat. Adding them up gives a total of zero, so the boat
accelerates neither up nor down.

Objects can exert forces on each other at a distance
Aristotle declared that forces could only act between objects that were

touching, probably because he wished to avoid the type of occult specula-
tion that attributed physical phenomena to the influence of a distant and
invisible pantheon of gods. He was wrong, however, as you can observe
when a magnet leaps onto your refrigerator or when the planet earth exerts
gravitational forces on objects that are in the air. Some types of forces, such
as friction, only operate between objects in contact, and are called contact
forces. Magnetism, on the other hand, is an example of a noncontact force.
Although the magnetic force gets stronger when the magnet is closer to
your refrigerator, touching is not required.

Weight
In physics, an object’s weight , FW, is defined as the earth’s gravitational

force on it. The SI unit of weight is therefore the Newton. People com-
monly refer to the kilogram as a unit of weight, but the kilogram is a unit of
mass, not weight. Note that an object’s weight is not a fixed property of that
object. Objects weigh more in some places than in others, depending on the
local strength of gravity. It is their mass that always stays the same. A
baseball pitcher who can throw a 90-mile-per-hour fastball on earth would
not be able to throw any faster on the moon, because the ball’s inertia
would still be the same.

Positive and negative signs of force
We’ll start by considering only cases of one-dimensional center-of-mass

motion in which all the forces are parallel to the direction of motion, i.e.
either directly forward or backward. In one dimension, plus and minus
signs can be used to indicate directions of forces, as shown in the figure. We
can then refer generically to addition of forces, rather than having to speak
sometimes of addition and sometimes of subtraction. We add the forces
shown in the figure and get 11 N. In general, we should choose a one-

In this example, positive signs have
been used consistently for forces to
the right, and negative signs for forces
to the left. The numerical value of a
force carries no information about the
place on the saxophone where the
force is applied.

+8 N

+4 N

+2 N

-3 N

Section 4.1 Force
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dimensional coordinate system with its x axis parallel the direction of
motion. Forces that point along the positive x axis are positive, and forces in
the opposite direction are negative. Forces that are not directly along the x
axis cannot be immediately incorporated into this scheme, but that’s OK,
because we’re avoiding those cases for now.

Discussion questions
In chapter 0, I defined 1 N as the force that would accelerate a 1-kg mass from
rest to 1 m/s in 1 s. Anticipating the following section, you might  guess that 2
N could be defined as the force that would accelerate the same mass to twice
the speed, or twice the mass to the same speed. Is there an easier way to
define 2 N based on the definition of 1 N?

4.2 Newton’s First Law
We are now prepared to make a more powerful restatement of the

principle of inertia.

Newton's First Law
If the total force on an object is zero, its center of mass
continues in the same state of motion.

In other words,  an object initially at rest is predicted to remain at rest if the
total force on it is zero, and an object in motion remains in motion with the
same velocity in the same direction. The converse of Newton’s first law is
also true: if we observe an object moving with constant velocity along a
straight line, then the total force on it must be zero.

In a future physics course or in another textbook, you may encounter
the term net force, which is simply a synonym for total force.

What happens if the total force on an object is not zero? It accelerates.
Numerical prediction of the resulting acceleration is the topic of Newton’s
second law, which we’ll discuss in the following section.

This is the first of Newton’s three laws of motion. It is not important to
memorize which of Newton’s three laws are numbers one, two, and three. If
a future  physics teacher asks you something like, “Which of Newton’s laws
are you thinking of,” a perfectly acceptable answer is “The one about
constant velocity when there’s zero total force.” The concepts are more
important than any specific formulation of them. Newton wrote in Latin,
and I am not aware of any modern textbook that uses a verbatim translation
of his statement of the laws of motion. Clear writing was not in vogue in
Newton’s day, and he formulated his three laws in terms of a concept now
called momentum, only later relating it to the concept of force. Nearly all
modern texts, including this one, start with force and do momentum later.

Example: an elevator
Question : An elevator has a weight of 5000 N. Compare the
forces that the cable must exert to raise it at constant velocity,
lower it at constant velocity, and just keep it hanging.
Answer : In all three cases the cable must pull up with a force of
exactly 5000 N. Most people think you’d need at least a little
more than 5000 N to make it go up, and a little less than 5000 N
to let it down, but that’s incorrect. Extra force from the cable is

Chapter 4 Force and Motion
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only necessary for speeding the car up when it starts going up or
slowing it down when it finishes going down. Decreased force is
needed to speed the car up when it gets going down and to slow
it down when it finishes going up. But when the elevator is
cruising at constant velocity, Newton’s first law says that you just
need to cancel the force of the earth’s gravity.

To many students, the statement in the example that the cable’s upward
force “cancels” the earth’s downward gravitational force implies that there
has been a contest, and the cable’s force has won, vanquishing the earth’s
gravitational force and making it disappear. That is incorrect. Both forces
continue to exist, but because they add up numerically to zero, the elevator
has no center-of-mass acceleration. We know that both forces continue to
exist because they both have side-effects other than their effects on the car’s
center-of-mass motion. The force acting between the cable and the car
continues to produce tension in the cable and keep the cable taut. The
earth’s gravitational force continues to keep the passengers (whom we are
considering as part of the elevator-object) stuck to the floor and to produce
internal stresses in the walls of the car, which must hold up the floor.

Example: terminal velocity for falling objects
Question : An object like a feather that is not dense or
streamlined does not fall with constant acceleration, because air
resistance is nonnegligible. In fact, its acceleration tapers off to
nearly zero within a fraction of a second, and the feather finishes
dropping at constant speed (known as its terminal velocity). Why
does this happen?
Answer : Newton’s first law tells us that the total force on the
feather must have been reduced to nearly zero after a short time.
There are two forces acting on the feather: a downward
gravitational force from the planet earth, and an upward frictional
force from the air. As the feather speeds up, the air friction
becomes stronger and stronger, and eventually it cancels out the
earth’s gravitational force, so the feather just continues with
constant velocity without speeding up any more.

The situation for a skydiver is exactly analogous. It’s just that
the skydiver experiences perhaps a million times more
gravitational force than the feather, and it is not until she is falling
very fast that the force of air friction becomes as strong as the
gravitational force. It takes her several seconds to reach terminal
velocity, which is on the order of a hundred miles per hour.

Section 4.2 Newton’s First Law
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More general combinations of forces
It is too constraining to restrict our attention to cases where all the

forces lie along the line of the center of mass’s motion. For one thing, we
can’t analyze any case of horizontal motion, since any object on earth will be
subject to a vertical gravitational force! For instance, when you are driving
your car down a straight road, there are both horizontal forces and vertical
forces. However, the vertical forces have no effect on the center of mass
motion, because the road’s upward force simply counteracts the earth’s
downward gravitational force and keeps the car from sinking into the
ground.

Later in the book we’ll deal with the most general case of many forces
acting on an object at any angles, using the mathematical technique of
vector addition, but the following slight generalization of Newton’s first law
allows us to analyze a great many cases of interest:

Suppose that an object has two sets of forces acting on it, one set along
the line of the object’s initial motion and another set perpendicular to
the first set. If both sets of forces cancel, then the object’s center of mass
continues in the same state of motion.

Example: a car crash
Question : If you drive your car into a brick wall, what is the
mysterious force that slams your face into the steering wheel?
Answer : Your surgeon has taken physics, so she is not going to
believe your claim that a mysterious force is to blame. She
knows that your face was just following Newton’s first law.
Immediately after your car hit the wall, the only forces acting on
your head were the same canceling-out forces that had existed
previously: the earth’s downward gravitational force and the
upward force from your neck. There were no forward or
backward forces on your head, but the car did experience a
backward force from the wall, so the car slowed down and your
face caught up.

Example: a passenger riding the subway
Question : Describe the forces acting on a person standing in a
subway train that is cruising at constant velocity.
Answer : No force is necessary to keep the person moving
relative to the ground. He will not be swept to the back of the
train if the floor is slippery. There are two vertical forces on him,
the earth’s downward gravitational force and the floor’s upward
force, which cancel. There are no horizontal forces on him at all,
so of course the total horizontal force is zero.

Example: forces on a sailboat
Question : If a sailboat is cruising at constant velocity with the
wind coming from directly behind it, what must be true about the
forces acting on it?
Answer : The forces acting on the boat must be canceling each
other out. The boat is not sinking or leaping into the air, so
evidently the vertical forces are canceling out. The vertical forces
are the downward gravitational force exerted by the planet earth
and an upward force from the water.

The air is making a forward force on the sail, and if the boat
is not accelerating horizontally then the water’s backward

water's frictional
force on boat

air's force
on sail

water's bouyant
force on boat

earth's gravitational
force on boat
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frictional force must be canceling it out.
Contrary to Aristotle, more force is not needed in order to

maintain a higher speed. Zero total force is always needed to
maintain constant velocity. Consider the following made-up
numbers:

boat moving at a
low, constant

velocity

boat moving at
a high, constant

velocity

forward force of the
wind on the sail...... 10,000 N 20,000 N

backward force of
the water on the
hull........................ -10,000 N -20,000 N

total force on the
boat...................... 0 N 0 N

The faster boat still has zero total force on it. The forward force
on it is greater, and the backward force smaller (more negative),
but that’s irrelevant because Newton’s first law has to do with the
total force, not the individual forces.

This example is quite analogous to the one about terminal
velocity of falling objects, since there is a frictional force that
increases with speed. After casting off from the dock and raising
the sail, the boat will accelerate briefly, and then reach its
terminal velocity, at which the water’s frictional force has become
as great as the wind’s force on the sail.

Discussion questions
A. Newton said that objects continue moving if no forces are acting on them,
but his predecessor Aristotle said that a force was necessary to keep an object
moving. Why does Aristotle’s theory seem more plausible, even though we
now believe it to be wrong? What insight was Aristotle missing about the
reason why things seem to slow down naturally?
B. In the first figure, what would have to be true about the saxophone’s initial
motion if the forces shown were to result in continued one-dimensional
motion?
C. The second figure requires an ever further generalization of the preceding
discussion. After studying the forces, what does your physical intuition tell you
will happen? Can you state in words how to generalize the conditions for one-
dimensional motion to include situations like this one?

8 N

2 N 3 N

3 N

4 N

4 N
Discussion question B. Discussion question C.

Section 4.2 Newton’s First Law
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4.3 Newton’s Second Law
What about cases where the total force on an object is not zero, so that

Newton’s first law doesn’t apply? The object will have an acceleration. The
way we’ve defined positive and negative signs of force and acceleration
guarantees that positive forces produce positive accelerations, and likewise
for negative values. How much acceleration will it have? It will clearly
depend on both the object’s mass and on the amount of force.

Experiments with any particular object show that its acceleration is
directly proportional to the total force applied to it. This may seem wrong,
since we know of many cases where small amounts of force fail to move an
object at all, and larger forces get it going. This apparent failure of propor-
tionality actually results from forgetting that there is a frictional force in
addition to the force we apply to move the object. The object’s acceleration
is exactly proportional to the total force on it, not to any individual force on
it. In the absence of friction, even a very tiny force can slowly change the
velocity of a very massive object.

Experiments also show that the acceleration is inversely proportional to
the object’s mass, and combining these two proportionalities gives the
following way of predicting the acceleration of any object:

Newton’s Second Law

a = Ftotal/m   ,

where

m is an object’s mass
Ftotal is the sum of the forces acting on it, and
a is the acceleration of the object’s center of mass.

We are presently restricted to the case where the forces of interest are
parallel to the direction of motion.

Example: an accelerating bus
Question : A VW bus with a mass of 2000 kg accelerates from 0
to 25 m/s (freeway speed) in 34 s. Assuming the acceleration is
constant, what is the total force on the bus?
Solution : We solve Newton’s second law for Ftotal=ma, and
substitute ∆v/∆t for a, giving

Ftotal = m∆v/∆t
= (2000 kg)(25 m/s - 0 m/s)/(34 s)
= 1.5 kN   .

A generalization
As with the first law, the second law can be easily generalized to include

a much larger class of interesting situations:

Suppose an object is being acted on by two sets of forces, one set
lying along the object’s initial direction of motion and another set
acting along a perpendicular line. If the forces perpendicular to the
initial direction of motion cancel out, then the object accelerates
along its original line of motion according to a=Ftotal/m.

The relationship between mass and weight
Mass is different from weight, but they’re related. An apple’s mass tells

Chapter 4 Force and Motion
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us how hard it is to change its motion. Its weight measures the strength of
the gravitational attraction between the apple and the planet earth. The
apple’s weight is less on the moon, but its mass is the same. Astronauts
assembling the International Space Station in zero gravity cannot just pitch
massive modules back and forth with their bare hands; the modules are
weightless, but not massless.

We have already seen the experimental evidence that when weight (the
force of the earth’s gravity) is the only force acting on an object, its accelera-
tion equals the constant g, and g depends on where you are on the surface of
the earth, but not on the mass of the object. Applying Newton’s second law
then allows us to calculate the magnitude of the gravitational force on any
object in terms of its mass:

|FW| = mg  .

(The equation only gives the magnitude, i.e. the absolute value, of FW,
because we’re defining g as a positive number, so it equals the absolute value
of a falling object’s acceleration.)

Example: calculating terminal velocity
Question : Experiments show that the force of air friction on a
falling object such as a skydiver or a feather can be
approximated fairly well with the equation |Fair|=cρAv2, where c is
a constant, ρ is the density of the air, A is the cross-sectional
area of the object as seen from below, and v is the object’s
velocity. Predict the object’s terminal velocity, i.e. the final
velocity it reaches after a long time.
Solution : As the object accelerates, its greater v causes the
upward force of the air to increase until finally the gravitational
force and the force of air friction cancel out, after which the
object continues at constant velocity. We choose a coordinate
system in which positive is up, so that the gravitational force is
negative and the force of air friction is positive. We want to find
the velocity at which

Fair + FW = 0   , i.e.

cρAv 2 – mg= 0   .
Solving for v gives

vterminal =    m g
c ρ A

Self-Check
It is important to get into the habit of interpreting equations. These two self-
check questions may be difficult for you, but eventually you will get used to this
kind of reasoning.

(a) Interpret the equation vterminal =    m g / c ρ A  in the case of ρ=0.
(b) How would the terminal velocity of a 4-cm steel ball compare to that of a 1-
cm ball?

A simple double-pan balance works by
comparing the weight forces exerted
by the earth on the contents of the two
pans. Since the two pans are at almost
the same location on the earth’s
surface, the value of g is essentially
the same for each one, and equality
of weight therefore also implies
equality of mass.

(a) The case of ρ=0 represents an object falling in a vacuum, i.e. there is no density of air. The terminal velocity
would be infinite. Physically, we know that an object falling in a vacuum would never stop speeding up, since there
would be no force of air friction to cancel the force of gravity. (b) The 4-cm ball would have a mass that was greater
by a factor of 4x4x4, but its cross-sectional area would be greater by a factor of 4x4. Its terminal velocity would be

greater by a factor of  43 / 42
=2.
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Discussion questions
A. Show that the Newton can be reexpressed in terms of the three basic mks
units as the combination kg.m/s2.
B. What is wrong with the following statements?

1. “g is the force of gravity.”
2. “Mass is a measure of how much space something takes up.”

C. Criticize the following incorrect statement:
“If an object is at rest and the total force on it is zero, it stays at rest.
There can also be cases where an object is moving and keeps on moving
without having any total force on it, but that can only happen when there’s
no friction, like in outer space.”

D. The table on the left gives laser timing data for Ben Johnson’s 100 m dash
at the 1987 World Championship in Rome. (His world record was later revoked
because he tested positive for steroids.) How does the total force on him
change over the duration of the race?

4.4 What Force Is Not
Violin teachers have to endure their beginning students’ screeching. A

frown appears on the woodwind teacher’s face as she watches her student
take a breath with an expansion of his ribcage but none in his belly. What
makes physics teachers cringe is their students’ verbal statements about
forces. Below I have listed several dicta about what force is not.

Force is not a property of one object.
A great many of students’ incorrect descriptions of forces could be cured

by keeping in mind that a force is an interaction of two objects, not a
property of one object.

Incorrect statement: “That magnet has a lot of force.”
✗ If the magnet is one millimeter away from a steel ball bearing,
they may exert a very strong attraction on each other, but if they
were a meter apart, the force would be virtually undetectable.
The magnet’s strength can be rated using certain electrical units
(ampere-meters2), but not in units of force.

Force is not a measure of an object’s motion.
If force is not a property of a single object, then it cannot be used as a

measure of the object’s motion.

Incorrect statement: “The freight train rumbled down the tracks
with awesome force.”
✗ Force is not a measure of motion. If the freight train collides
with a stalled cement truck, then some awesome forces will
occur, but if it hits a fly the force will be small.

Force is not energy.
There are two main approaches to understanding the motion of objects,

one based on force and one on a different concept, called energy. The SI
unit of energy is the Joule, but you are probably more familiar with the
calorie, used for measuring food’s energy, and the kilowatt-hour, the unit
the electric company uses for billing you. Physics students’ previous famil-
iarity with calories and kilowatt-hours is matched by their universal unfa-
miliarity with measuring forces in units of Newtons, but the precise opera-
tional definitions of the energy concepts are more complex than those of the

Discussion question D.

x (m) t (s)
10 1.84
20 2.86
30 3.80
40 4.67
50 5.53
60 6.38
70 7.23
80 8.10
90 8.96
100 9.83
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force concepts, and textbooks, including this one, almost universally place
the force description of physics before the energy description. During the
long period after the introduction of force and before the careful definition
of energy, students are therefore vulnerable to situations in which, without
realizing it, they are imputing the properties of energy to phenomena of
force.

Incorrect statement: “How can my chair be making an upward
force on my rear end? It has no power!”
✗ Power is a concept related to energy, e.g. 100-watt lightbulb
uses up 100 joules per second of energy. When you sit in a chair,
no energy is used up, so forces can exist between you and the
chair without any need for a source of power.

Force is not stored or used up.
Because energy can be stored and used up, people think force also can

be stored or used up.
Incorrect statement: “If you don’t fill up your tank with gas, you’ll
run out of force.”
✗ Energy is what you’ll run out of, not force.

Forces need not be exerted by living things or machines.
Transforming energy from one form into another usually requires some

kind of living or mechanical mechanism. The concept is not applicable to
forces, which are an interaction between objects, not a thing to be trans-
ferred or transformed.

Incorrect statement: “How can a wooden bench be making an
upward force on my rear end? It doesn’t have any springs or
anything inside it.”
✗ No springs or other internal mechanisms are required. If the
bench didn’t make any force on you, you would obey Newton’s
second law and fall through it. Evidently it does make a force on
you!

A force is the direct cause of a change in motion.
I can click a remote control to make my garage door change from being

at rest to being in motion. My finger’s force on the button, however, was
not the force that acted on the door. When we speak of a force on an object
in physics, we are talking about a force that acts directly. Similarly, when
you pull a reluctant dog along by its leash, the leash and the dog are making
forces on each other, not your hand and the dog. The dog is not even
touching your hand.

Self-Check
Which of the following things can be correctly described in terms of force?

(a) A nuclear submarine is charging ahead at full steam.
(b) A nuclear submarine’s propellers spin in the water.
(c) A nuclear submarine needs to refuel its reactor periodically.

Discussion questions
A. Criticize the following incorrect statement: “If you shove a book across a
table, friction takes away more and more of its force, until finally it stops.”
B. You hit a tennis ball against a wall. Explain any and all incorrect ideas in the
following description of the physics involved: “The ball gets some force from
you when you hit it, and when it hits the wall, it loses part of that force, so it
doesn’t bounce back as fast. The muscles in your arm are the only things that
a force can come from.”

(a) This is motion, not force. (b) This is a description of how the sub is able to get the water to produce a forward
force on it. (c) The sub runs out of energy, not force.

Section 4.4 What Force Is Not
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4.5 Inertial and Noninertial Frames of Reference
One day, you’re driving down the street in your pickup truck, on your

way to deliver a bowling ball. The ball is in the back of the truck, enjoying
its little jaunt and taking in the fresh air and sunshine. Then you have to
slow down because a stop sign is coming up. As you brake, you glance in
your rearview mirror, and see your trusty companion accelerating toward
you. Did some mysterious force push it forward? No, it only seems that way
because you and the car are slowing down. The ball is faithfully obeying
Newton’s first law, and as it continues at constant velocity it gets ahead
relative to the slowing truck. No forces are acting on it (other than the same
canceling-out vertical forces that were always acting on it). The ball only
appeared to violate Newton’s first law because there was something wrong
with your frame of reference, which was based on the truck.

How, then, are we to tell in which frames of reference Newton’s laws are
valid? It’s no good to say that we should avoid moving frames of reference,
because there is no such thing as absolute rest or absolute motion. All
frames can be considered as being either at rest or in motion. According to

(a) In a frame of reference that moves with
the truck, the bowling ball appears to violate
Newton's first law by accelerating despite
having no horizontal forces on it.

(b) In an inertial frame of reference, which the surface of the earth
approximately is, the bowling ball obeys Newton's first law.  It
moves equal distances in equal time intervals, i.e. maintains
constant velocity.  In this frame of reference, it is the truck that
appears to have a change in velocity, which makes sense, since
the road is making a horizontal force on it.
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an observer in India, the strip mall that constituted the frame of reference in
panel (b) of the figure was moving along with the earth’s rotation at hun-
dreds of miles per hour.

The reason why Newton’s laws fail in the truck’s frame of reference is
not because the truck is moving but because it is accelerating. (Recall that
physicists use the word to refer either to speeding up or slowing down.)
Newton’s laws were working just fine in the moving truck’s frame of
reference as long as the truck was moving at constant velocity. It was only
when its speed changed that there was a problem. How, then, are we to tell
which frames are accelerating and which are not? What if you claim that
your truck is not accelerating, and the sidewalk, the asphalt, and the Burger
King are accelerating? The way to settle such a dispute is to examine the
motion of some object, such as the bowling ball, which we know has zero
total force on it. Any frame of reference in which the ball appears to obey
Newton’s first law is then a valid frame of reference, and to an observer in
that frame, Mr. Newton assures us that all the other objects in the universe
will obey his laws of motion, not just the ball.

Valid frames of reference, in which Newton’s laws are obeyed, are called
inertial frames of reference.  Frames of reference that are not inertial are called
noninertial frames. In those frames, objects violate the principle of inertia
and Newton’s first law. While the truck was moving at constant velocity,
both it and the sidewalk were valid inertial frames. The truck became an
invalid frame of reference when it began changing its velocity.

You usually assume the ground under your feet is a perfectly inertial
frame of reference, and we made that assumption above. It isn’t perfectly
inertial, however. Its motion through space is quite complicated, being
composed of a part due to the earth’s daily rotation around its own axis, the
monthly wobble of the planet caused by the moon’s gravity, and the rota-
tion of the earth around the sun.  Since the accelerations involved are
numerically small, the earth is approximately a valid inertial frame.

Noninertial frames are avoided whenever possible, and we will seldom,
if ever, have occasion to use them in this course. Sometimes, however, a
noninertial frame can be convenient. Naval gunners, for instance, get all
their data from radars, human eyeballs, and other detection systems that are
moving along with the earth’s surface. Since their guns have ranges of many
miles, the small discrepancies between their shells’ actual accelerations and
the accelerations predicted by Newton’s second law can have effects that
accumulate and become significant. In order to kill the people they want to
kill, they have to add small corrections onto the equation a=Ftotal/m. Doing
their calculations in an inertial frame would allow them to use the usual
form of Newton’s second law, but they would have to convert all their data
into a different frame of reference, which would require cumbersome
calculations.

Discussion question
If an object has a linear x-t graph in a certain inertial frame, what is the effect
on the graph if we change to a coordinate system with a different origin? What
is the effect if we keep the same origin but reverse the positive direction of the
x axis? How about an inertial frame moving alongside the object? What if we
describe the object’s motion in a noninertial frame?

Section 4.5 Inertial and Noninertial Frames of Reference
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Summary
Selected Vocabulary

weight ............................... the force of gravity on an object, equal to mg
inertial frame ..................... a frame of reference that is not accelerating, one in which Newton’s first

law is true
noninertial frame ............... an accelerating frame of reference, in which Newton’s first law is violated

Terminology Used in Some Other Books
net force ............................ another way of saying “total force”

Notation
FW ..................................................... the weight force

Summary
Newton’s first law of motion states that if all the forces on an object cancel each other out, then the object

continues in the same state of motion. This is essentially a more refined version of Galileo’s principle of
inertia, which did not refer to a numerical scale of force.

Newton’s second law of motion allows the prediction of an object’s acceleration given its mass and the
total force on it, a=Ftotal/m. This is only the one-dimensional version of the law; the full-three dimensional
treatment will come in chapter 8, Vectors. Without the vector techniques, we can still say that the situation
remains unchanged by including an additional set of vectors that cancel among themselves, even if they are
not in the direction of motion.

Newton’s laws of motion are only true in frames of reference that are not accelerating, known as inertial
frames.

Chapter 4 Force and Motion
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Homework Problems
1. An object is observed to be moving at constant speed in a certain direc-
tion. Can you conclude that no forces are acting on it? Explain. [Based on a
problem by Serway and Faughn.]

2. A car is normally capable of an acceleration of 3 m/s2. If it is towing a
trailer with half as much mass as the car itself, what acceleration can it
achieve? [Based on a problem from PSSC Physics.]

3. (a) Let T be the maximum tension that the elevator's cable can withstand
without breaking, i.e. the maximum force it can exert. If the motor is
programmed to give the car an acceleration a, what is the maximum mass
that the car can have, including passengers, if the cable is not to break?
[Numerical check, not for credit: for T=1.0x104 N and a=3.0 m/s2, your
equation should give an answer of 780 kg.] (b) Interpret the equation you
derived in the special cases of a=0 and of a downward acceleration of
magnitude g.

4 . A helicopter of mass m is taking off vertically. The only forces acting on
it are the earth's gravitational force and the force, Fair, of the air pushing up
on the propeller blades. (a) If the helicopter lifts off at t=0, what is its
vertical speed at time t? (b✓) Plug numbers into your equation from part a,
using m=2300 kg, Fair=27000 N, and t=4.0 s.

5«. In the 1964 Olympics in Tokyo, the best men's high jump was 2.18
m. Four years later in Mexico City, the gold medal in the same event was
for a jump of 2.24 m. Because of Mexico City's altitude (2400 m), the
acceleration of gravity there is lower than that in Tokyo by about 0.01 m/s2.
Suppose a high-jumper has a mass of 72 kg.

(a) Compare his mass and weight in the two locations.

(b✓) Assume that he is able to jump with the same initial vertical velocity
in both locations, and that all other conditions are the same except for
gravity. How much higher should he be able to jump in Mexico City?

(Actually, the reason for the big change between '64 and '68 was the
introduction of the "Fosbury flop.")

6 ∫. A blimp is initially at rest, hovering, when at t=0 the pilot turns on the
motor of the propeller. The motor cannot instantly get the propeller going,
but the propeller speeds up steadily. The steadily increasing force between
the air and the propeller is given by the equation F=kt, where k is a con-
stant. If the mass of the blimp is m, find its position as a function of time.
(Assume that during the period of time you're dealing with, the blimp is
not yet moving fast enough to cause a significant backward force due to air
resistance.)

7 S.  A car is accelerating forward along a straight road.  If the force of the
road on the car's wheels, pushing it forward, is a constant 3.0 kN, and the
car's mass is 1000 kg, then how long will the car take to go from 20 m/s to
50 m/s?

Problem 6.

S A  solution is given in the back of the book. « A difficult problem.
✓ A computerized answer check is available. ∫ A problem that requires calculus.
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8. Some garden shears are like a pair of scissors: one sharp blade slices past
another. In the “anvil” type, however, a sharp blade presses against a flat one
rather than going past it. A gardening book says that for people who are not
very physically strong, the anvil type can make it easier to cut tough
branches, because it concentrates the force on one side. Evaluate this claim
based on Newton’s laws. [Hint: Consider the forces acting on the branch,
and the motion of the branch.]

9. A uranium atom deep in the earth spits out an alpha particle. An alpha
particle is a fragment of an atom. This alpha particle has initial speed v, and
travels a distance d before stopping in the earth. (a) Find the force, F, that
acted on the particle, in terms of v, d, and its mass, m. Don’t plug in any
numbers yet. Assume that the force was constant. (b) Show that your
answer has the right units. (c) Discuss how your answer to part a depends
on all three variables, and show that it makes sense. (d) Evaluate your result
for m=6.7x10–27 kg, v=2.0x104 km/s, and d=0.71 mm.
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5 Analysis of Forces
5.1 Newton’s Third Law

Newton created the modern concept of force starting from his insight
that all the effects that govern motion are interactions between two objects:
unlike the Aristotelian theory, Newtonian physics has no phenomena in
which an object changes its own motion.

Is one object always the “order-giver” and the other the “order-fol-
lower”? As an example, consider a batter hitting a baseball. The bat defi-
nitely exerts a large force on the ball, because the ball accelerates drastically.
But if you have ever hit a baseball, you also know that the ball makes a force
on the bat — often with painful results if your technique is as bad as mine!

How does the ball’s force on the bat compare with the bat’s force on the
ball? The bat’s acceleration is not as spectacular as the ball’s, but maybe we
shouldn’t expect it to be, since the bat’s mass is much greater. In fact, careful
measurements of both objects’ masses and accelerations would show that
m

ball
a

ball
 is very nearly equal to –m

bat
a

bat
, which suggests that the ball’s force

on the bat is of the same magnitude as the bat’s force on the ball, but in the
opposite direction.

Rockets work by pushing exhaust gases out
the back. Newton’s third law says that if the
rocket exerts a backward force on the gases,
the gases must make an equal forward force
on the rocket. Rocket engines can function
above the atmosphere, unlike propellers and
jets, which work by pushing against the sur-
rounding air.
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The figures show two somewhat more practical laboratory experiments
for investigating this issue accurately and without too much interference
from extraneous forces.

In the first experiment, a large magnet and a small magnet are weighed
separately, and then one magnet is hung from the pan of the top balance so
that it is directly above the other magnet. There is an attraction between the
two magnets, causing the reading on the top scale to increase and the
reading on the bottom scale to decrease. The large magnet is more “power-
ful” in the sense that it can pick up a heavier paperclip from the same
distance, so many people have a strong expectation that one scale’s reading
will change by a far different amount than the other. Instead, we find that
the two changes are equal in magnitude but opposite in direction, so the
upward force of the top magnet on the bottom magnet is of the same
magnitude as the downward force of the bottom magnet on the top mag-
net.

In the second experiment, two people pull on two spring scales. Regard-
less of who tries to pull harder, the two forces as measured on the spring
scales are equal. Interposing the two spring scales is necessary in order to
measure the forces, but the outcome is not some artificial result of the
scales’ interactions with each other. If one person slaps another hard on the
hand, the slapper’s hand hurts just as much as the slappee’s, and it doesn’t
matter if the recipient of the slap tries to be inactive. (Punching someone in
the mouth causes just as much force on the fist as on the lips. It’s just that
the lips are more delicate. The forces are equal, but not the levels of pain
and injury.)

Newton, after observing a series of results such as these, decided that
there must be a fundamental law of nature at work:

Newton's Third Law
Forces occur in equal and opposite pairs: whenever
object A exerts a force on object B, object B must also
be exerting a force on object A. The two forces are
equal in magnitude and opposite in direction.

In one-dimensional situations, we can use plus and minus signs to indicate
the directions of forces, and Newton’s third law can be written succinctly as
F

A on B
 = –F

B on A
.

There is no cause and effect relationship between the two forces. There
is no “original” force, and neither one is a response to the other. The pair of
forces is a relationship, like marriage, not a back-and-forth process like a
tennis match. Newton came up with the third law as a generalization about
all the types of forces with which he was familiar, such as frictional and
gravitational forces. When later physicists discovered a new type force, such
as the force that holds atomic nuclei together, they had to check whether it
obeyed Newton’s third law. So far, no violation of the third law has ever
been discovered, whereas the first and second laws were shown to have
limitations by Einstein and the pioneers of atomic physics.

magnet

magnet

scale

scale

(a) Two magnets exert forces on each
other.

(b) Two people’s hands exert forces
on each other.
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The English vocabulary for describing forces is unfortunately rooted in
Aristotelianism, and often implies incorrectly that forces are one-way
relationships. It is unfortunate that a half-truth such as “the table exerts an
upward force on the book” is so easily expressed, while a more complete and
correct description ends up sounding awkward or strange: “the table and the
book interact via a force,” or “the table and book participate in a force.”

To students, it often sounds as though Newton’s third law implies
nothing could ever change its motion, since the two equal and opposite
forces would always cancel. The two forces, however, are always on two
different objects, so it doesn’t make sense to add them in the first place —
we only add forces that are acting on the same object. If two objects are
interacting via a force and no other forces are involved, then both objects
will accelerate — in opposite directions!

Excuse me, ma'am, but it
appears that the money in your

purse would exactly cancel
out my bar tab.

It doesn’t make sense for the man to
talk about the woman’s money can-
celing out his bar tab, because there
is no good reason to combine his
debts and her assets. Similarly, it
doesn’t make sense to refer to the
equal and opposite forces of Newton’s
third law as canceling. It only makes
sense to add up forces that are acting
on the same object, whereas two
forces related to each other by
Newton’s third law are always acting
on two different objects.

Newton’s third law does not mean that
forces always cancel out so that noth-
ing can ever move. If these two figure
skaters, initially at rest, push against
each other, they will both move.

Section 5.1 Newton’s Third Law
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A mnemonic for using Newton’s third law correctly
Mnemonics are tricks for memorizing things. For instance, the musical

notes that lie between the lines on the treble clef spell the word FACE,
which is easy to remember. Many people use the mnemonic
“SOHCAHTOA” to remember the definitions of the sine, cosine, and
tangent in trigonometry. I have my own modest offering, POFOSTITO,
which I hope will make it into the mnemonics hall of fame. It’s a way to
avoid some of the most common problems with applying Newton’s third
law correctly:

Pair of
Opposite
Forces
Of the
Same
Type
Involving
Two
Objects

Example
Question : A book is lying on a table. What force is the Newton’s-
third-law partner of the earth’s gravitational force on the book?
Answer : Newton’s third law works like “B on A, A on B,” so the
partner must be the book’s gravitational force pulling upward on
the planet earth. Yes, there is such a force! No, it does not cause
the earth to do anything noticeable.
Incorrect answer : The table’s upward force on the book is the
Newton’s-third-law partner of the earth’s gravitational force on
the book.
✗ This answer violates two out of three of the commandments of
POFOSTITO. The forces are not of the same type, because the
table’s upward force on the book is not gravitational. Also, three
objects are involved instead of two: the book, the table, and the
planet earth.

Example
Question : A person is pushing a box up a hill. What force is
related by Newton’s third law to the person’s force on the box?
Answer : The box’s force on the person.
Incorrect answer : The person’s force on the box is opposed by
friction, and also by gravity.
✗ This answer fails all three parts of the POFOSTITO test, the
most obvious of which is that three forces are referred to instead
of a pair.

Chapter 5 Analysis of Forces



119

Optional Topic: Newton’s third law and action at a distance
Newton’s third law is completely symmetric in the sense that neither
force constitutes a delayed response to the other. Newton’s third law
does not even mention time, and the forces are supposed to agree
at any given instant. This creates an interesting situation when it
comes to noncontact forces. Suppose two people are holding
magnets, and when one person waves or wiggles her magnet, the
other person feels an effect on his. In this way they can send signals
to each other from opposite sides of a wall, and if Newton’s third law
is correct, it would seem that the signals are transmitted instantly,
with no time lag. The signals are indeed transmitted quite quickly,
but experiments with electronically controlled magnets show that the
signals do not leap the gap instantly: they travel at the same speed
as light, which is an extremely high speed but not an infinite one.

Is this a contradiction to Newton’s third law? Not really. According to
current theories, there are no true noncontact forces. Action at a
distance does not exist. Although it appears that the wiggling of one
magnet affects the other with no need for anything to be in contact
with anything, what really happens is that wiggling a magnet un-
leashes a shower of tiny particles called photons. The magnet
shoves the photons out with a kick, and receives a kick in return, in
strict obedience to Newton’s third law. The photons fly out in all
directions, and the ones that hit the other magnet then interact with
it, again obeying Newton’s third law.

Photons are nothing exotic, really. Light is made of photons, but our
eyes receive such huge numbers of photons that we do not perceive
them individually. The photons you would make by wiggling a
magnet with your hand would be of a “color” that you cannot see, far
off the red end of the rainbow.

Discussion questions
A. When you fire a gun, the exploding gases push outward in all directions,
causing the bullet to accelerate down the barrel. What third-law pairs are
involved? [Hint: Remember that the gases themselves are an object.]
B. Tam Anh grabs Sarah by the hand and tries to pull her. She tries to remain
standing without moving. A student analyzes the situation as follows. “If Tam
Anh’s force on Sarah is greater than her force on him, he can get her to move.
Otherwise, she’ll be able to stay where she is.” What’s wrong with this analy-
sis?
C. You hit a tennis ball against a wall. Explain any and all incorrect ideas in the
following description of the physics involved: “According to Newton’s third law,
there has to be a force opposite to your force on the ball. The opposite force is
the ball’s mass, which resists acceleration, and also air resistance.”

Section 5.1 Newton’s Third Law



120

5.2 Classification and Behavior of Forces
One of the most basic and important tasks of physics is to classify the

forces of nature. I have already referred informally to “types” of forces such
as friction, magnetism, gravitational forces, and so on. Classification
systems are creations of the human mind, so there is always some degree of
arbitrariness in them. For one thing, the level of detail that is appropriate
for a classification system depends on what you’re trying to find out. Some
linguists, the “lumpers,” like to emphasize the similarities among languages,
and a few extremists have even tried to find signs of similarities between
words in languages as different as English and Chinese, lumping the world’s
languages into only a few large groups. Other linguists, the “splitters,”
might be more interested in studying the differences in pronunciation
between English speakers in New York and Connecticut. The splitters call
the lumpers sloppy, but the lumpers say that science isn’t worthwhile unless
it can find broad, simple patterns within the seemingly complex universe.

Scientific classification systems are also usually compromises between
practicality and naturalness. An example is the question of how to classify
flowering plants. Most people think that biological classification is about
discovering new species, naming them, and classifying them in the class-
order-family-genus-species system according to guidelines set long ago. In
reality, the whole system is in a constant state of flux and controversy. One
very practical way of classifying flowering plants is according to whether
their petals are separate or joined into a tube or cone — the criterion is so
clear that it can be applied to a plant seen from across the street. But here
practicality conflicts with naturalness. For instance, the begonia has separate
petals and the pumpkin has joined petals, but they are so similar in so many
other ways that they are usually placed within the same order. Some taxono-
mists have come up with classification criteria that they claim correspond
more naturally to the apparent relationships among plants, without having
to make special exceptions, but these may be far less practical, requiring for
instance the examination of pollen grains under an electron microscope.

In physics, there are two main systems of classification for forces. At this
point in the course, you are going to learn one that is very practical and easy
to use, and that splits the forces up into a relatively large number of types:
seven very common ones that we’ll discuss explicitly in this chapter, plus
perhaps ten less important ones such as surface tension, which we will not
bother with right now.

Professional physicists, however, are almost all obsessed with finding
simple patterns, so recognizing as many as fifteen or twenty types of forces
strikes them as distasteful and overly complex. Since about the year 1900,
physics has been on an aggressive program to discover ways in which these
many seemingly different types of forces arise from a smaller number of
fundamental ones. For instance, when you press your hands together, the
force that keeps them from passing through each other may seem to have
nothing to do with electricity, but at the atomic level, it actually does arise
from electrical repulsion between atoms. By about 1950, all the forces of
nature had been explained as arising from four fundamental types of forces
at the atomic and nuclear level, and the lumping-together process didn’t
stop there. By the 1960’s the length of the list had been reduced to three,
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and some theorists even believe that they may be able to reduce it to two or
one. Although the unification of the forces of nature is one of the most
beautiful and important achievements of physics, it makes much more sense
to start this course with the more practical and easy system of classification.
The unified system of four forces will be one of the highlights of the end of
your introductory physics sequence.

The practical classification scheme which concerns us now can be laid
out in the form of the tree shown below. The most specific types of forces
are shown at the tips of the branches, and it is these types of forces that are
referred to in the POFOSTITO mnemonic. For example, electrical and
magnetic forces belong to the same general group, but Newton’s third law
would never relate an electrical force to a magnetic force.

The broadest distinction is that between contact and noncontact forces,
which has been discussed in the previous chapter. Among the contact forces,
we distinguish between those that involve solids only and those that have to
do with fluids, a term used in physics to include both gases and liquids. The
terms “repulsive,” “attractive,” and “oblique” refer to the directions of the
forces.

• Repulsive forces are those that tend to push the two participating
objects away from each other. More specifically, a repulsive contact
force acts perpendicular to the surfaces at which the two objects
touch, and a repulsive noncontact force acts along the line between
the two objects.

• Attractive forces pull the two objects toward one another, i.e. they act
along the same line as repulsive forces, but in the opposite direction.

• Oblique forces are those that act at some other angle.

normal
force

static
friction

kinetic
friction

fluid
friction gravity

electrical
forces

magnetic
forces

contact
forces noncontact

forces

forces
between
solids

forces between
solids and
fluids or fluids
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not
slipping

slipping

oblique always
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depends on
the objects'
masses
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the objects'
charge, an
electrical
property
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It should not be necessary to memorize this diagram by rote. It is better
to reinforce your memory of this system by calling to mind your
commonsense knowledge of certain ordinary phenomena. For instance, we
know that the gravitational attraction between us and the planet earth will
act even if our feet momentarily leave the ground, and that although
magnets have mass and are affected by gravity, most objects that have mass
are nonmagnetic.

This diagram is meant to be as simple as possible while including most
of the forces we deal with in everyday life. If you were an insect, you would
be much more interested in the force of surface tension, which allowed you
to walk on water. I have not included the nuclear forces, which are respon-
sible for holding the nuclei of atoms, because they are not evident in
everyday life.

You should not be afraid to invent your own names for types of forces
that do not fit into the diagram. For instance, the force that holds a piece of
tape to the wall has been left off of the tree, and if you were analyzing a
situation involving scotch tape, you would be absolutely right to refer to it
by some commonsense name such as “sticky force.”

On the other hand, if you are having trouble classifying a certain force,
you should also consider whether it is a force at all. For instance, if someone
asks you to classify the force that the earth has because of its rotation, you
would have great difficulty creating a place for it  on the diagram. That’s
because it’s a type of motion, not a type of force!

Normal forces
A normal force, F

N
, is a force that keeps one solid object from passing

through another. “Normal” is simply a fancy word for “perpendicular,”
meaning that the force is perpendicular to the surface of contact. Intuitively,
it seems the normal force magically adjusts itself to provide whatever force is
needed to keep the objects from occupying the same space. If your muscles
press your hands together gently, there is a gentle normal force. Press harder,
and the normal force gets stronger. How does the normal force know how
strong to be? The answer is that the harder you jam your hands together,
the more compressed your flesh becomes. Your flesh is acting like a spring:
more force is required to compress it more. The same is true when you push
on a wall. The wall flexes imperceptibly in proportion to your force on it. If
you exerted enough force, would it be possible for two objects to pass
through each other? No, typically the result is simply to strain the objects so
much that one of them breaks.

Gravitational forces
As we’ll discuss in more detail later in the course, a gravitational force

exists between any two things that have mass. In everyday life, the gravita-
tional force between two cars or two people is negligible, so the only
noticeable gravitational forces are the ones between the earth and various
human-scale objects. We refer to these planet-earth-induced gravitational
forces as weight forces, and as we have already seen, their magnitude is
given by |F

W
|=mg.
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Static and kinetic friction
If you have pushed a refrigerator across a kitchen floor, you have felt a

certain series of sensations. At first, you gradually increased your force on
the refrigerator, but it didn’t move. Finally, you supplied enough force to
unstick the fridge, and there was a sudden jerk as the fridge started moving.
Once the fridge is unstuck, you can reduce your force significantly and still
keep it moving.

While you were gradually increasing your force, the floor’s frictional
force on the fridge increased in response. The two forces on the fridge
canceled, and the fridge didn’t accelerate. How did the floor know how to
respond with just the right amount of force? The figures on the left show
one possible model of friction that explains this behavior. (A scientific model
is a description that we expect to be incomplete, approximate, or unrealistic
in some ways, but that nevertheless succeeds in explaining a variety of
phenomena.) Figure (a) shows a microscopic view of the tiny bumps and
holes in the surfaces of the floor and the refrigerator. The weight of the
fridge presses the two surfaces together, and some of the bumps in one
surface will settle as deeply as possible into some of the holes in the other
surface. In figure (b), your leftward force on the fridge has caused it to ride
up a little higher on the bump in the floor labeled with a small arrow. Still
more force is needed to get the fridge over the bump and allow it to start
moving. Of course, this is occurring simultaneously at millions of places on
the two surfaces.

Once you had gotten the fridge moving at constant speed, you found
that you needed to exert less force on it. Since zero total force is needed to
make an object move with constant velocity, the floor’s rightward frictional
force on the fridge has apparently decreased somewhat, making it easier for
you to cancel it out. Our model also gives a plausible explanation for this
fact: as the surfaces slide past each other, they don’t have time to settle down
and mesh with one another, so there is less friction.

Even though this model is intuitively appealing and fairly successful, it
should not be taken too seriously, and in some situations it is misleading.
For instance, fancy racing bikes these days are made with smooth tires that
have no tread — contrary to what we’d expect from our model, this does
not cause any decrease in friction. Machinists know that two very smooth
and clean metal surfaces may stick to each other firmly and be very difficult
to slide apart. This cannot be explained in our model, but makes more sense
in terms of a model in which friction is described as arising from chemical
bonds between the atoms of the two surfaces at their points of contact: very
flat surfaces allow more atoms to come in contact.

Since friction changes its behavior dramatically once the surfaces come
unstuck, we define two separate types of frictional forces. Static friction is
friction that occurs between surfaces that are not slipping over each other.
Slipping surfaces experience kinetic friction. “Kinetic” means having to do
with motion. The forces of static and kinetic friction, notated F

s
 and F

k
, are

always parallel to the surface of contact between the two objects.

A model that correctly explains many
properties of friction. The microscopic
bumps and holes in two surfaces dig
into each other, causing a frictional
force.

(a)

(b) force

Static friction: the tray doesn’t slip on
the waiter’s fingers.

Kinetic friction: the car skids.
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Self-Checks
1. When a baseball player slides in to a base, is the friction static, or kinetic?
2. A mattress stays on the roof of a slowly accelerating car. Is the friction static
or kinetic?
3. Does static friction create heat? Kinetic friction?

The maximum possible force of static friction depends on what kinds of
surfaces they are, and also on how hard they are being pressed together. The
approximate mathematical relationships can be expressed as follows:

F
s
 = –F

applied
, when |F

applied
| < µ

s
|F

N
|  ,

where µ
s
 is a unitless number, called the coefficient of static friction, which

depends on what kinds of surfaces they are. The maximum force that static
friction can supply, µ

s
|F

N
|, represents the boundary between static and

kinetic friction. It depends on the normal force, which is numerically equal
to whatever force is pressing the two surfaces together. In terms of our
model, if the two surfaces are being pressed together more firmly, a greater
sideways force will be required in order to make the irregularities in the
surfaces ride up and over each other.

Note that just because we use an adjective such as “applied” to refer to a
force, that doesn’t mean that there is some special type of force called the
“applied force.” The applied force could be any type of force, or it could be
the sum of more than one force trying to make an object move.

The force of kinetic friction on each of the two objects is in the direc-
tion that resists the slippage of the surfaces. Its magnitude is usually well
approximated as

|F
k
|=µ

k
|F

N
|

where µ
k
 is the coefficient of kinetic friction. Kinetic friction is usually more

or less independent of velocity.

(1) It’s kinetic friction, because her uniform is sliding over the dirt. (2) It’s static friction, because even though the
two surfaces are moving relative to the landscape, they’re not slipping over each other. (3) Only kinetic friction
creates heat, as when you rub your hands together. If you move your hands up and down together without sliding
them across each other, no heat is produced by the static friction.

We choose a coordinate system in
which the applied force, i.e. the force
trying to move the objects, is positive.
The friction force is then negative,
since it is in the opposite direction. As
you increase the applied force, the
force of static friction increases to
match it and cancel it out, until the
maximum force of static friction is sur-
passed. The surfaces then begin slip-
ping past each other, and the friction
force becomes smaller in absolute
value.

applied
force

friction
force

static friction kinetic friction
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Self-Check
Can a frictionless surface exert a normal force? Can a frictional force exist
without a normal force?

If you try to accelerate or decelerate your car too quickly, the forces
between your wheels and the road become too great, and they begin
slipping. This is not good, because kinetic friction is weaker than static
friction, resulting in less control. Also, if this occurs while you are turning,
the car’s handling changes abruptly because the kinetic friction force is in a
different direction than the static friction force had been: contrary to the
car’s direction of motion, rather than contrary to the forces applied to the
tire.

Most people respond with disbelief when told of the experimental
evidence that both static and kinetic friction are approximately independent
of the amount of surface area in contact. Even after doing a hands-on
exercise with spring scales to show that it is true, many students are unwill-
ing to believe their own observations, and insist that bigger tires “give more
traction.” In fact, the main reason why you would not want to put small
tires on a big heavy car is that the tires would burst!

Although many people expect that friction would be proportional to
surface area, such a proportionality would make predictions contrary to
many everyday observations. A dog’s feet, for example, have very little
surface area in contact with the ground compared to a human’s feet, and yet
we know that a dog can often win a tug-of-war with a person.

The reason why a smaller surface area does not lead to less friction is
that the force between the two surfaces is more concentrated, causing their
bumps and holes to dig into each other more deeply.

Frictionless ice can certainly make a normal force, since otherwise a hockey puck would sink into the ice. Friction is
not possible without a normal force, however: we can see this from the equation, or from common sense, e.g. while
sliding down a rope you do not get any friction unless you grip the rope.
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Self-Check
Find the direction of each of the forces in the figure above.

Fluid friction
Try to drive a nail into a waterfall and you will be confronted with the

main difference between solid friction and fluid friction. Fluid friction is
purely kinetic; there is no static fluid friction. The nail in the waterfall may
tend to get dragged along by the water flowing past it, but it does not stick
in the water. The same is true for gases such as air: recall that we are using
the word “fluid” to include both gases and liquids.

Unlike solid kinetic friction, the force of fluid friction increases rapidly
with velocity. In many cases, the force is approximately proportional to the
square of the velocity,

F
fluid friction

 ∝ cρAv2  ,

where A is the cross-sectional area of the object, ρ is the density of the fluid,
and c is a constant of proportionality that depends partly on the type of
fluid and partly on how streamlined the object is.

Discussion questions
A. A student states that when he tries to push his refrigerator, the reason it
won’t move is because Newton’s third law says there’s an equal and opposite
frictional force pushing back. After all, the static friction force is equal and
opposite to the applied force. How would you convince him he is wrong?
B. Kinetic friction is usually more or less independent of velocity. However,
inexperienced drivers tend to produce a jerk at the last moment of deceleration
when they stop at a stop light. What does this tell you about the kinetic friction
between the brake shoes and the brake drums?

(1) Normal forces are always perpendicular to the surface of contact, which means right or left in this figure. Normal
forces are repulsive, so the cliff’s force on the feet is to the right, i.e., away from the cliff.  (2) Frictional forces are
always parallel to the surface of contact, which means right or left in this figure. Static frictional forces are in the
direction that would tend to keep the surfaces from slipping over each other. If the wheel was going to slip, its
surface would be moving to the left, so the static frictional force on the wheel must be in the direction that would
prevent this, i.e., to the right. This makes sense, because it is the static frictional force that accelerates the
dragster.  (3) Normal forces are always perpendicular to the surface of contact. In this diagram, that means either
up and to the left or down and to the right. Normal forces are reulsive, so the ball is pushing the bat away from
itself. Therefore the ball’s force is down and to the right on this diagram.
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C. Some of the following are correct descriptions of types of forces that could
be added on as new branches of the classification tree. Others are not really
types of forces, and still others are not force phenomena at all. In each case,
decide what’s going on, and if appropriate, figure out how you would incorpo-
rate them into the tree.

sticky force ........ makes tape stick to things
opposite force ... the force that Newton’s third law says relates to every force

you make
flowing force ...... the force that water carries with it as it flows out of a hose
surface tension .. lets insects walk on water
horizontal force . a force that is horizontal
motor force ........ the force that a motor makes on the thing it is turning
canceled force ... a force that is being canceled out by some other force

5.3 Analysis of Forces
Newton’s first and second laws deal with the total of all the forces

exerted on a specific object, so it is very important to be able to figure out
what forces there are. Once you have focused your attention on one object
and listed the forces on it, it is also helpful to describe all the corresponding
forces that must exist according to Newton’s third law. We refer to this as
“analyzing the forces” in which the object participates.

Example
A barge is being pulled along a canal by teams of horses on the shores. Analyze all the forces in which the
barge participates.

force acting on barge force related to it by Newton’s third law
ropes’ forward normal forces on barge barge’s backward normal force on ropes
water’s backward fluid friction force on barge barge’s forward fluid friction force on water
planet earth’s downward gravitational force on barge barge’s upward gravitational force on earth
water’s upward “floating” force on barge barge’s downward “floating” force on water

Here I’ve used the word “floating” force as an example of a sensible invented term for a type of force not
classified on the tree in the previous section. A more formal technical term would be “hydrostatic force.”
Note how the pairs of forces are all structured as “A’s force on B, B’s force on A”: ropes on barge and barge
on ropes; water on barge and barge on water. Because all the forces in the left column are forces acting on
the barge, all the forces in the right column are forces being exerted by the barge, which is why each entry in
the column begins with “barge.”

Often you may be unsure whether you have forgotten one of the forces.
Here are three strategies for checking your list:

(1)See what physical result would come from the forces you’ve found so
far. Suppose, for instance, that you’d forgotten the “floating” force on the
barge in the example above. Looking at the forces you’d found, you would
have found that there was a downward gravitational force on the barge
which was not canceled by any upward force. The barge isn’t supposed to
sink, so you know you need to find a fourth, upward force.

(2) Another technique for finding missing forces is simply to go
through the list of all the common types of forces and see if any of them
apply.

(3) Make a drawing of the object, and draw a dashed boundary line
around it that separates it from its environment. Look for points on the
boundary where other objects come in contact with your object. This
strategy guarantees that you’ll find every contact force that acts on the
object, although it won’t help you to find non-contact forces.
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The following is another example in which we can profit by checking
against our physical intuition for what should be happening.

Example
As shown in the figure below, Cindy is rappelling down a cliff. Her downward motion is at constant speed, and
she takes little hops off of the cliff, as shown by the dashed line. Analyze the forces in which she participates
at a moment when her feet are on the cliff and she is pushing off.

force acting on Cindy force related to it by Newton’s third law
planet earth’s downward gravitational force on Cindy Cindy’s upward gravitational force on earth
ropes upward frictional force on Cindy (her hand) Cindy’s downward frictional force on the rope
cliff’s rightward normal force on Cindy Cindy’s leftward normal force on the cliff

The two vertical forces cancel, which is what they should be doing if she is to go down at a constant rate. The
only horizontal force on her is the cliff’s force, which is not canceled by any other force, and which therefore
will produce an acceleration of Cindy to the right. This makes sense, since she is hopping off. (This solution is
a little oversimplified, because the rope is slanting, so it also applies a small leftward force to Cindy. As she
flies out to the right, the slant of the rope will increase, pulling her back in more strongly.)

I believe that constructing the type of table described in this section is
the best method for beginning students. Most textbooks, however, prescribe
a pictorial way of showing all the forces acting on an object. Such a picture
is called a free-body diagram. It should not be a big problem if a future
physics professor expects you to be able to draw such diagrams, because the
conceptual reasoning is the same. You simply draw a picture of the object,
with arrows representing the forces that are acting on it. Arrows represent-
ing contact forces are drawn from the point of contact, noncontact forces
from the center of mass. Free-body diagrams do not show the equal and
opposite forces exerted by the object itself.

Discussion questions
A. In the example of the barge going down the canal, I referred to a “floating”
or “hydrostatic” force that keeps the boat from sinking. If you were adding a
new branch on the force-classification tree to represent this force, where would
it go?
B. A pool ball is rebounding from the side of the pool table. Analyze the forces
in which the ball participates during the short time when it is in contact with the
side of the table.
C. The earth’s gravitational force on you, i.e. your weight, is always equal to
mg, where m is your mass. So why can you get a shovel to go deeper into the
ground by jumping onto it? Just because you’re jumping, that doesn’t mean
your mass or weight is any greater, does it?

Discussion question C.
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5.4 Transmission of Forces by Low-Mass Objects
You’re walking your dog. The dog wants to go faster than you do, and

the leash is taut. Does Newton’s third law guarantee that your force on your
end of the leash is equal and opposite to the dog’s force on its end? If they’re
not exactly equal, is there any reason why they should be approximately
equal?

If there was no leash between you, and you were in direct contact with
the dog, then Newton’s third law would apply, but Newton’s third law
cannot relate your force on the leash to the dog’s force on the leash, because
that would involve three separate objects. Newton’s third law only says that
your force on the leash is equal and opposite to the leash’s force on you,

F
yL

 = – F
Ly

  ,

and that the dog’s force on the leash is equal and opposite to its force on the
dog

F
dL

 = – F
Ld

  .

Still, we have a strong intuitive expectation that whatever force we make
on our end of the leash is transmitted to the dog, and vice-versa. We can
analyze the situation by concentrating on the forces that act on the leash,
F

dL
 and F

yL
. According to Newton’s second law, these relate to the leash’s

mass and acceleration:

F
dL

 + F
yL

 = m
L
a

L
  .

The leash is far less massive then any of the other objects involved, and
if m

L
 is very small, then apparently the total force on the leash is also very

small, F
dL

 + F
yL

 ≈ 0, and therefore

F
dL

 ≈ – F
yL

  .

Thus even though Newton’s third law does not apply directly to these
two forces, we can approximate the low-mass leash as if it was not interven-
ing between you and the dog. It’s at least approximately as if you and the
dog were acting directly on each other, in which case Newton’s third law
would have applied.

In general, low-mass objects can be treated approximately as if they
simply transmitted forces from one object to another. This can be true for
strings, ropes, and cords, and also for rigid objects such as rods and sticks.

If you look at a piece of string under a magnifying glass as you pull on
the ends more and more strongly, you will see the fibers straightening and
becoming taut. Different parts of the string are apparently exerting forces

If we imagine dividing a taut rope up into
small segments, then any segment has
forces pulling outward on it at each end.
If the rope is of negligible mass, then all
the forces equal +T or -T, where T, the
tension, is a single number.
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on each other. For instance, if we think of the two halves of the string as
two objects, then each half is exerting a force on the other half. If we
imagine the string as consisting of many small parts, then each segment is
transmitting a force to the next segment, and if the string has very little
mass, then all the forces are equal in magnitude. We refer to the magnitude
of the forces as the tension in the string, T. Although the tension is mea-
sured in units of Newtons, it is not itself a force. There are many forces
within the string, some in one direction and some in the other direction,
and their magnitudes are only approximately equal. The concept of tension
only makes sense as a general, approximate statement of how big all the
forces are.

If a rope goes over a pulley or around some other object, then the
tension throughout the rope is approximately equal so long as there is not
too much friction. A rod or stick can be treated in much the same way as a
string, but it is possible to have either compression or tension.

Since tension is not a type of force, the force exerted by a rope on some
other object must be of some definite type such as static friction, kinetic
friction, or a normal force. If you hold your dog’s leash with your hand
through the loop, then the force exerted by the leash on your hand is a
normal force: it is the force that keeps the leash from occupying the same
space as your hand. If you grasp a plain end of a rope, then the force
between the rope and your hand is a frictional force.

A more complex example of transmission of forces is the way a car
accelerates. Many people would describe the car’s engine as making the
force that accelerates the car, but the engine is part of the car, so that’s
impossible: objects can’t make forces on themselves. What really happens is
that the engine’s force is transmitted through the transmission to the axles,
then through the tires to the road. By Newton’s third law, there will thus be
a forward force from the road on the tires, which accelerates the car.

Discussion question
When you step on the gas pedal, is your foot’s force being transmitted in the
sense of the word used in this section?

5.5 Objects Under Strain
A string lengthens slightly when you stretch it. Similarly, we have

already discussed how an apparently rigid object such as a wall is actually
flexing when it participates in a normal force. In other cases, the effect  is
more obvious. A spring or a rubber band visibly elongates when stretched.

Common to all these examples is a change in shape of some kind:
lengthening, bending, compressing, etc. The change in shape can be
measured by picking some part of the object and measuring its position, x.
For concreteness, let’s imagine a spring with one end attached to a wall.
When no force is exerted, the unfixed end of the spring is at some position
x

o
. If a force acts at the unfixed end, its position will change to some new

value of x. The more force, the greater the departure of x from x
o
.
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Back in Newton’s time, experiments like this were considered cutting-
edge research, and his contemporary Hooke is remembered today for doing
them and for coming up with a simple mathematical generalization called
Hooke’s law:

F ≈ k(x-x
o
)  [force required to stretch a spring; valid for small

forces only]  .

Here k is a constant, called the spring constant, that depends on how stiff
the object is. If too much force is applied, the spring exhibits more compli-
cated behavior, so the equation is only a good approximation if the force is
sufficiently small. Usually when the force is so large that Hooke’s law is a
bad approximation, the force ends up permanently bending or breaking the
spring.

Although Hooke’s law may seem like a piece of trivia about springs, it is
actually far more important than that, because all solid objects exert
Hooke’s-law behavior over some range of sufficiently small forces. For
example, if you push down on the hood of a car, it dips by an amount that
is directly proportional to the force. (But the car’s behavior would not be as
mathematically simple if you dropped a boulder on the hood!)

Discussion questions
A car is connected to its axles through big, stiff springs called shock absorbers,
or “shocks.” Although we’ve discussed Hooke’s law above only in the case of
stretching a spring, a car’s shocks are continually going through both stretch-
ing and compression. In this situation, how would you interpret the positive and
negative signs  in Hooke’s law?
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5.6 Simple Machines: The Pulley
Even the most complex machines, such as cars or pianos, are built out

of certain basic units called simple machines. The following are some of the
main functions of simple machines:

transmitting a force: The chain on a bicycle transmits a force from the
crank set to the rear wheel.

changing the direction of a force: If you push down on a seesaw, the
other end goes up.

changing the speed and precision of motion: When you make the
“come here” motion, your biceps only moves a couple of centimeters
where it attaches to your forearm, but your arm moves much farther
and more rapidly.

changing the amount of force: A lever or pulley can be used to increase
or decrease the amount of force.

You are now prepared to understand one-dimensional simple machines,
of which the pulley is the main example.

Example: a pulley
Question : Farmer Bill says this pulley arrangement doubles the
force of his tractor. Is he just a dumb hayseed, or does he know
what he’s doing?
Solution : To use Newton’s first law, we need to pick an object
and consider the sum of the forces on it. Since our goal is to
relate the tension in the part of the cable attached to the stump to
the tension in the part attached to the tractor, we should pick an
object to which both those cables are attached, i.e. the pulley
itself. As discussed in section 5.4, the tension in a string or cable
remains approximately constant as it passes around a pulley,
provided that there is not too much friction. There are therefore
two leftward forces acting on the pulley, each equal to the force
exerted by the tractor. Since the acceleration of the pulley is
essentially zero, the forces on it must be canceling out, so the
rightward force of the pulley-stump cable on the pulley must be
double the force exerted by the tractor. Yes, Farmer Bill knows
what he’s talking about.
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Summary
Selected Vocabulary

repulsive ............................ describes a force that tends to push the two participating objects apart
attractive ........................... describes a force that tends to pull the two participating objects together
oblique .............................. describes a force that acts at some other angle, one that is not a direct

repulsion or attraction
normal force ...................... the force that keeps two objects from occupying the same space
static friction ..................... a friction force between surfaces that are not slipping past each other
kinetic friction ................... a friction force between surfaces that are slipping past each other
fluid .................................. a gas or a liquid
fluid friction ...................... a friction force in which at least one of the object is is a fluid
spring constant .................. the constant of proportionality between force and elongation of a spring

or other object under strain
Notation

FN ..................................... a normal force
Fs ....................................... a static frictional force
Fk ...................................... a kinetic frictional force
µs ...................................... the coefficient of static friction; the constant of proportionality between

the maximum static frictional force and the normal force; depends on
what types of surfaces are involved

µk ...................................... the coefficient of kinetic friction; the constant of proportionality between
the kinetic frictional force and the normal force; depends on what types of
surfaces are involved

k ........................................ the spring constant; the constant of proportionality between the force
exerted on an object and the amount by which the object is lengthened or
compressed

Summary
Newton’s third law states that forces occur in equal and opposite pairs. If object A exerts a force on object

B, then object B must simultaneously be exerting an equal and opposite force on object A. Each instance of
Newton’s third law involves exactly two objects, and exactly two forces, which are of the same type.

There are two systems for classifying forces. We are presently using the more practical but less
fundamental one. In this system, forces are classified by whether they are repulsive, attractive, or oblique;
whether they are contact or noncontact forces; and whether the two objects involved are solids or fluids.

Static friction adjusts itself to match the force that is trying to make the surfaces slide past each other, until
the maximum value is reached,

|F
s
|<µ

s
|F

N
|   .

Once this force is exceeded, the surfaces slip past one another, and kinetic friction applies,

|F
k
|=µ

k
|F

N
|   .

Both types of frictional force are nearly independent of surface area, and kinetic friction is usually
approximately independent of the speed at which the surfaces are slipping.

A good first step in applying Newton’s laws of motion to any physical situation is to pick an object of
interest, and then to list all the forces acting on that object. We classify each force by its type, and find its
Newton’s-third-law partner, which is exerted by the object on some other object.

When two objects are connected by a third low-mass object, their forces are transmitted to each other
nearly unchanged.

Objects under strain always obey Hooke’s law to a good approximation, as long as the force is small.
Hooke’s law states that the stretching or compression of the object is proportional to the force exerted on it,

F ≈ k(x-x
o
)   .

Summary
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Homework Problems
1. If a big truck and a VW bug collide head-on, which will be acted on by
the greater force? Which will have the greater acceleration?

2. The earth is attracted to an object with a force equal and opposite to the
force of the earth on the object. If this is true, why is it that when you
drop an object, the earth does not have an acceleration equal and opposite
to that of the object?

3. When you stand still, there are two forces acting on you, the force of
gravity (your weight) and the normal force of the floor pushing up on
your feet. Are these forces equal and opposite? Does Newton's third law
relate them to each other? Explain.

In problems 4-8, analyze the forces using a table in the format shown in
section 5.3. Analyze the forces in which the italicized object participates.

4. A magnet is stuck underneath a car.

5. Analyze two examples of objects at rest relative to the earth that are
being kept from falling by forces other than the normal force. Do not use
objects in outer space.

6. A person is rowing a boat, with her legs extended and her feet braced.
She is doing the part of the stroke that propels the boat, with the ends of
the oars in the water (not the part where the oars are out of the water).

7. A farmer is in a stall with a cow when the cow decides to press him
against the wall, pinning him with his feet off the ground. Analyze the
forces in which the farmer participates.

8. A propeller plane is cruising east at constant speed and altitude.

9 ✓. Today’s tallest buildings are really not that much taller than the tallest
buildings of the 1940s. One big problem with making an even taller
skyscraper is that every elevator needs its own shaft running the whole
height of the building. So many elevators are needed to serve the building’s
thousands of occupants that the elevator shafts start taking up too much of
the space within the building. An alternative is to have elevators that can
move both horizontally and vertically: with such a design, many elevator
cars can share a few shafts, and they don’t get in each other’s way too much
because they can detour around each other. In this design, it becomes
impossible to hang the cars from cables, so they would instead have to ride
on rails which they grab onto with wheels. Friction would keep them from
slipping. The figure shows such a frictional elevator in its vertical travel
mode. (The wheels on the bottom are for when it needs to switch to
horizontal motion.) (a) If the coefficient of static friction between rubber
and steel is µ

s
, and the maximum mass of the car plus its passengers is M,

how much force must there be pressing each wheel against the rail in order
to keep the car from slipping? (Assume the car is not accelerating.) (b)
Show that your result has physically reasonable behavior with respect to µ

s
.

In other words, if there was less friction, would the wheels need to be
pressed more firmly or less firmly? Does your equation behave that way?

S A  solution is given in the back of the book. « A difficult problem.
✓ A computerized answer check is available. ∫ A problem that requires calculus.

Problem 9.

steel rail

car

rubber wheel

Chapter 5 Analysis of Forces
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Problem 10.

Problem 13.

Problem 14.

10. Unequal masses M and m are suspended from a pulley as shown in the
figure.

(a) Analyze the forces in which mass m participates, using a table the
format shown in section 5.3. [The forces in which the other masses
participate will of course be similar, but not numerically the same.]

(b) Find the magnitude of the accelerations of the two masses. [Hints: (1)
Pick a coordinate system, and use positive and negative signs consistently
to indicate the directions of the forces and accelerations. (2) The two
accelerations of the two masses have to be equal in magnitude but of
opposite signs, since one side eats up rope at the same rate at which the
other side pays it out. (3) You need to apply Newton’s second law twice,
once to each mass, and then solve the two equations for the unknowns:
the acceleration, a, and the tension in the rope, T.]

(c) Many people expect that in the special case of M=m, the two masses
will naturally settle down to an equilibrium position side by side. Based on
your answer from part (b), is this correct?

11. A tugboat of mass m pulls a ship of mass M, accelerating it. The speeds
are low enough that you can ignore fluid friction acting on their hulls,
although there will of course need to be fluid friction acting on the tug’s
propellers.

(a) Analyze the forces in which the tugboat participates, using a table in
the format shown in section 5.3. Don’t worry about vertical forces.

(b) Do the same for the ship.

(c) Assume now that water friction on the two vessels’ hulls is negligible. If
the force acting on the tug’s propeller is F, what is the tension, T, in the
cable connecting the two ships? [Hint: Write down two equations, one for
Newton’s second law applied to each object. Solve these for the two
unknowns T and a.]

(d) Interpret your answer in the special cases of M=0 and M=∞.

12. Explain why it wouldn't make sense to have kinetic friction be stron-
ger than static friction.

13. In the system shown in the figure, the pulleys on the left and right are
fixed, but the pulley in the center can move to the left or right. The two
masses are identical. Show that the mass on the left will have an upward
acceleration equal to g/5.

14 S. The figure shows two different ways of combining a pair of identical
springs, each with spring constant k. We refer to the top setup as parallel,
and the bottom one as a series arrangement. (a) For the parallel arrange-
ment, analyze the forces acting on the connector piece on the left, and
then use this analysis to determine the equivalent spring constant of the
whole setup. Explain whether the combined spring constant should be
interpreted as being stiffer or less stiff. (b) For the series arrangement,
analyze the forces acting on each spring and figure out the same things.

15. Generalize the results of problem 14 to the case where the two spring
constants are unequal.

Homework Problems
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Problem 17.

16 S. (a) Using the solution of problem 14, which is given in the back of
the book, predict how the spring constant of a fiber will depend on its
length and cross-sectional area. (b) The constant of proportionality is
called the Young’s modulus, E, and typical values of the Young’s modulus
are about 1010 to 1011. What units would the Young’s modulus have in the
SI (meter-kilogram-second) system?

17. This problem depends on the results of problems 14 and 16, whose
solutions are in the back of the book. When atoms form chemical bonds,
it makes sense to talk about the spring constant of the bond as a measure
of how “stiff” it is. Of course, there aren’t really little springs — this is just
a mechanical model. The purpose of this problem is to estimate the spring
constant, k, for a single bond in a typical piece of solid matter. Suppose we
have a fiber, like a hair or a piece of fishing line, and imagine for simplicity
that it is made of atoms of a single element stacked in a cubical manner, as
shown in the figure, with a center-to-center spacing b. A typical value for b
would be about 10 –10 m. (a) Find an equation for k in terms of b, and in
terms of the Young’s modulus, E, defined in problem 16 and its solution.
(b) Estimate k using the numerical data given in problem 16. (c) Suppose
you could grab one of the atoms in a diatomic molecule like H

2
 or O

2
,

and let the other atom hang vertically below it. Does the bond stretch by
any appreciable fraction due to gravity?

18 S. In each case, identify the force that causes the acceleration, and give
its Newton’s-third-law partner. Describe the effect of the partner force. (a)
A swimmer speeds up. (b) A golfer hits the ball off of the tee. (c) An archer
fires an arrow. (d) A locomotive slows down.

19. Ginny has a plan. She is going to ride her sled while her dog Foo pulls
her. However, Ginny hasn’t taken physics, so there may be a problem: she
may slide right off the sled when Foo starts pulling. (a) Analyze all the
forces in which Giny participates, making a table as in section 5.3. (b)
Analyze all the forces in which the sled participates. (c✓) The sled has
mass m, and Ginny has mass M. The coefficient of static friction between
the sled and the snow is µ

1
, and µ

2
 is the corresponding quantity for static

friction between the sled and her snow pants. Ginny must have a certain
minimum mass so that she will not slip off the sled. Find this in terms of
the other three variables.(d) Under what conditions will there be no
solution for M?

Chapter 5 Analysis of Forces
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Motion in Three Dimensions

Photo by Clarence White, ca. 1903.

6 Newton’s Laws in Three
Dimensions

6.1 Forces Have No Perpendicular Effects
Suppose you could shoot a rifle and arrange for a second bullet to be

dropped from the same height at the exact moment when the first left the
barrel. Which would hit the ground first? Nearly everyone expects that the
dropped bullet will reach the dirt first, and Aristotle would have agreed.
Aristotle would have described it like this. The shot bullet receives some
forced motion from the gun. It travels forward for a split second, slowing

Section 6.1 Forces Have No Perpendicular Effects
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down rapidly because there is no longer any force to make it continue in
motion. Once it is done with its forced motion, it changes to natural
motion, i.e. falling straight down. While the shot bullet is slowing down,
the dropped bullet gets on with the business of falling, so according to
Aristotle  it will hit the ground first.

Luckily, nature isn’t as complicated as Aristotle thought! To convince
yourself that Aristotle’s ideas were wrong and needlessly complex, stand up
now and try this experiment. Take your keys out of your pocket, and begin
walking briskly forward. Without speeding up or slowing down, release
your keys and let them fall while you continue walking at the same pace.

You have found that your keys hit the ground right next to your feet.
Their horizontal motion never slowed down at all, and the whole time they
were dropping, they were right next to you. The horizontal motion and the
vertical motion happen at the same time, and they are independent of each
other. Your experiment proves that the horizontal motion is unaffected by
the vertical motion, but it’s also true that the vertical motion is not changed
in any way by the horizontal motion. The keys take exactly the same
amount of time to get to the ground as they would have if you simply
dropped them, and the same is true of the bullets: both bullets hit the
ground simultaneously.

These have been our first examples of motion in more than one dimen-
sion, and they illustrate the most important new idea that is required to
understand the three-dimensional generalization of Newtonian physics:

Forces have no perpendicular effects.
When a force acts on an object, it has no effect on the
part of the object's motion that is perpendicular to the
force.

In the examples above, the vertical force of gravity had no effect on the
horizontal motions of the objects. These were examples of projectile
motion, which interested people like Galileo because of its military applica-
tions. The principle is more general than that, however. For instance, if a

(horizontal scale reduced)

Aristotle

Newton
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rolling ball is initially heading straight for a wall, but a steady wind begins
blowing from the side, the ball does not take any longer to get to the wall.
In the case of projectile motion, the force involved is gravity, so we can say
more specifically that the vertical acceleration is 9.8 m/s2, regardless of the
horizontal motion.

Relationship to relative motion
These concepts are directly related to the idea that motion is relative.

Galileo’s opponents argued that the earth could not possibly be rotating as
he claimed, because then if you jumped straight up in the air you wouldn’t
be able to come down in the same place. Their argument was based on their
incorrect Aristotelian assumption that once the force of gravity began to act
on you and bring you back down, your horizontal motion would stop. In
the correct Newtonian theory, the earth’s downward gravitational force is
acting before, during, and after your jump, but has no effect on your
motion in the perpendicular (horizontal) direction.

If Aristotle had been correct, then we would have a handy way to
determine absolute motion and absolute rest: jump straight up in the air,
and if you land back where you started, the surface from which you jumped
must have been in a state of rest. In reality, this test gives the same result as
long as the surface under you is an inertial frame. If you try this in a jet
plane, you land back on the same spot on the deck from which you started,
regardless of whether the plane is flying at 500 miles per hour or parked on
the runway. The method would in fact only be good for detecting whether
the plane was accelerating.

Discussion Questions
A. The following is an incorrect explanation of a fact about target shooting:

“Shooting a high-powered rifle with a high muzzle velocity is different from
shooting a less powerful gun. With a less powerful gun, you have to aim
quite a bit above your target, but with a more powerful one you don’t have
to aim so high because the bullet doesn’t drop as fast.”

What is the correct explanation?
B. You have thrown a rock, and it is flying through the air in an arc.  If the
earth's gravitational force on it is always straight down, why doesn't it just go
straight down once it leaves your hand?
C. Consider the example of the bullet that is dropped at the same moment
another bullet is fired from a gun. What would the motion of the two bullets look
like to a jet pilot flying alongside in the same direction as the shot bullet and at
the same horizontal speed?

Section 6.1 Forces Have No Perpendicular Effects
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6.2 Coordinates and Components
‘Cause we’re all
Bold as love,
Just ask the axis.

-Jimi Hendrix
How do we convert these ideas into mathematics? The figure below

shows a good way of connecting the intuitive ideas to the numbers. In one
dimension, we impose a number line with an x coordinate on a certain
stretch of space. In two dimensions, we imagine a grid of squares which we
label with x and y values.

This object experiences a force that pulls it
down toward the bottom of the page. In each
equal time interval, it moves three units to
the right. At the same time, its vertical mo-
tion is making a simple pattern of +1, 0, -1, -
2, -3, -4, ... units. Its motion can be described
by an x coordinate that has zero accelera-
tion and a y coordinate with constant accel-
eration. The arrows labeled x and y serve to
explain that we are defining increasing x to
the right and increasing y as upward.

But of course motion doesn’t really occur in a series of discrete hops like
in chess or checkers. The figure on the left shows a way of conceptualizing
the smooth variation of the x and y coordinates. The ball’s shadow on the
wall moves along a line, and we describe its position with a single coordi-
nate, y, its height above the floor. The wall shadow has a constant accelera-
tion of –9.8 m/s2. A shadow on the floor, made by a second light source,
also moves along a line, and we describe its motion with an x coordinate,
measured from the wall.

The velocity of the floor shadow is referred to as the x component of the
velocity, written v

x
. Similarly we can notate the acceleration of the floor

shadow as a
x
. Since v

x
 is constant, a

x
 is zero.

Similarly, the velocity of the wall shadow is called v
y
, its acceleration a

y
.

This example has a
y
=–9.8 m/s2.

Because the earth’s gravitational force on the ball is acting along the y
axis, we say that the force has a negative y component, F

y
, but F

x
=F

z
=0.

The general idea is that we imagine two observers, each of whom
perceives the entire universe as if it was flattened down to a single line. The
y-observer, for instance, perceives y, v

y
, and a

y
, and will infer that there is a

force, F
y
, acting downward on the ball. That is, a y component means the

aspect of a physical phenomenon, such as velocity, acceleration, or force,
that is observable to someone who can only see motion along the y axis.

All of this can easily be generalized to three dimensions. In the example
above, there could be a z-observer who only sees motion toward or away
from the back wall of the room.

x

y

x

y
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Example: a car going over a cliff
Question : The police find a car at a distance w=20 m from the
base of a cliff of height h=100 m. How fast was the car going
when it went over the edge? Solve the problem symbolically first,
then plug in the numbers.
Solution : Let’s choose y pointing up and x pointing away from
the cliff. The car’s vertical motion was independent of its horizon-
tal motion, so we know it had a constant vertical acceleration of
a=-g=-9.8 m/s2. The time it spent in the air is therefore related to
the vertical distance it fell by the constant-acceleration equation

   ∆y = 1
2

ay∆t 2    ,

or

   – h = 1
2

( – g)∆t 2    .

Solving for ∆t gives

   ∆t = 2h
g    .

Since the vertical force had no effect on the car’s horizontal
motion, it had a

x
=0, i.e. constant horizontal velocity. We can

apply the constant-velocity equation

   vx = ∆x
∆t    ,

i.e.

   vx = w
∆t    .

We now substitute for ∆t to find

  vx = w / 2h
g    ,

which simplifies to

  vx = w
g

2h    .

Plugging in numbers, we find that the car’s speed when it went
over the edge was 4 m/s, or about 10 mi/hr.

Projectiles move along parabolas
What type of mathematical curve does a projectile follow through

space? To find out, we must relate x to y, eliminating t. The reasoning is very
similar to that used in the example above. Arbitrarily choosing x=y=t=0 to
be at the top of the arc, we conveniently have x=∆x, y=∆y, and t=∆t, so

  y = – 1
2
a yt

2

  x = v xt

We solve the second equation for t=x/v
x
  and eliminate t in the first equa-

tion:

  y = – 1
2
a y

x
v x

2
  .

Since everything in this equation is a constant except for x and y, we
conclude that y is proportional to the square of x. As you may or may not
recall from a math class, y∝x2 describes a parabola.Each water droplet follows a pa-

rabola. The faster drops’ parabolas
are bigger.

w

h

vx=?

x

y
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A parabola can be defined as the
shape made by cutting a cone paral-
lel to its side. A parabola is also the
graph of an equation of the form

y∝ x 2.
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Discussion Question
A. At the beginning of this section I represented the motion of a projectile on
graph paper, breaking its motion into equal time intervals. Suppose instead
that there is no force on the object at all. It obeys Newton’s first law and
continues without changing its state of motion. What would the corresponding
graph-paper diagram look like? If the time interval represented by each arrow
was 1 second, how would you relate the graph-paper diagram to the velocity
components vx and vy?
B. Make up several different coordinate systems oriented in different ways,
and describe the ax and ay of a falling object in each one.

6.3 Newton’s Laws in Three Dimensions
It is now fairly straightforward to extend Newton’s laws to three dimen-

sions:

Newton’s First Law
If all three components of the total force on an object are zero, then it
will continue in the same state of motion.

Newton’s Second Law
An object’s acceleration components are predicted by the equations

a
x
 = F

x,total
/m  ,

a
y
 = F

y,total
/m  , and

a
z
 = F

z,total
/m   .

Newton’s Third Law
If two objects A and B interact via forces, then the components of their
forces on each other are equal and opposite:

F
A on B,x

 = –F
B on A,x

   ,

F
A on B,y

 = –F
B on A,y

   , and

F
A on B,z

 = –F
B on A,z

   .

Chapter 6 Newton’s Laws in Three Dimensions
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(1) (2)

Example: forces in perpendicular directions on the same object
Question : An object is initially at rest. Two constant forces begin
acting on it, and continue acting on it for a while. As suggested
by the two arrows, the forces are perpendicular, and the right-
ward force is stronger. What happens?
Answer : Aristotle believed, and many students still do, that only
one force can “give orders” to an object at one time. They
therefore think that the object will begin speeding up and moving
in the direction of the stronger force. In fact the object will move
along a diagonal. In the example shown in the figure, the object
will respond to the large rightward force with a large acceleration
component to the right, and the small upward force will give it a
small acceleration component upward. The stronger force does
not overwhelm the weaker force, or have any effect on the
upward motion at all. The force components simply add together:

  = 0

Fx,total = F1,x + F2,x

  = 0

Fy,total = F1,y + F2,y

Discussion Question
The figure shows two trajectories, made by splicing together lines and circular
arcs, which are unphysical for an object that is only being acted on by gravity.
Prove that they are impossible based on Newton’s laws.

F1

F2

direction
of motion

x

y

Section 6.3 Newton’s Laws in Three Dimensions
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Summary
Selected Vocabulary

component ........................ the part of a velocity, acceleration, or force that would be perceptible to an
observer who could only see the universe projected along a certain one-
dimensional axis

parabola ............................ the mathematical curve whose graph has y proportional to x2

Notation
x, y, z ................................. an object’s positions along the x, y, and z axes
v

x
, v

y
, v

z
.................................................... the x, y, and z  components of an object’s velocity; the rates of change of

the object’s x, y, and z coordinates
a

x
, a

y
, a

z
.................................................... the x, y, and z  components of an object’s acceleration; the rates of change

of v
x
, v

y
, and v

z

Summary
A force does not produce any effect on the motion of an object in a perpendicular direction. The most

important application of this principle is that the horizontal motion of a projectile has zero acceleration, while
the vertical motion has an acceleration equal to g. That is, an object’s horizontal and vertical motions are
independent. The arc of a projectile is a parabola.

Motion in three dimensions is measured using three coordinates, x, y, and z . Each of these coordinates
has its own corresponding velocity and acceleration. We say that the velocity and acceleration both have x, y,
and z components

Newton’s second law is readily extended to three dimensions by rewriting it as three equations predicting
the three components of the acceleration,

a
x
 = F

x,total
/m  ,

ay = Fy,total/m  ,

az = Fz,total/m   ,

and likewise for the first and third laws.

Chapter 6 Newton’s Laws in Three Dimensions
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Homework Problems
1. (a) A ball is thrown straight up with velocity v. Find an equation for the
height to which it rises.
(b) Generalize your equation for a ball thrown at an angle θ above hori-
zontal, in which case its initial velocity components are v

x
=v cos θ and v

y
=v

sin θ.

2. At the Salinas Lettuce Festival Parade, Miss Lettuce of 1996 drops her
bouquet while riding on a float. Compare the shape of its trajectory as
seen by her to the shape seen by one of her admirers standing on the
sidewalk.

3 . Two daredevils, Wendy and Bill, go over Niagara Falls. Wendy sits in
an inner tube, and lets the 30 km/hr velocity of the river throw her out
horizontally over the falls. Bill paddles a kayak, adding an extra 10 km/hr
to his velocity. They go over the edge of the falls at the same moment, side
by side. Ignore air friction. Explain your reasoning.
(a) Who hits the bottom first?
(b) What is the horizontal component of Wendy's velocity on impact?
(c) What is the horizontal component of Bill's velocity on impact?
(d) Who is going faster on impact?

4. A baseball pitcher throws a pitch clocked at v
x
=73.3 mi/h. He throws

horizontally. By what amount, d, does the ball drop by the time it reaches
home plate, L=60.0 ft away? (a) First find a symbolic answer in terms of L,
v

x
, and g. (b✓) Plug in and find a numerical answer. Express your answer

in units of ft. [Note: 1 ft=12 in, 1 mi=5280 ft, and 1 in=2.54 cm]

L=60.0 ft

d=?

vx=73.3 mi/hr

5 S. A cannon standing on a flat field fires a cannonball with a muzzle
velocity v, at an angle θ above horizontal. The cannonball thus initially has
velocity components v

x
=v cos θ and v

y
=v sin θ.

(a) Show that the cannon’s range (horizontal distance to where the can-

nonball falls) is given by the equation R =    2v 2 sin θ cos θ
g .

(b) Interpret your equation in the cases of θ=0 and θ=90°.

S A  solution is given in the back of the book. « A difficult problem.
✓ A computerized answer check is available. ∫ A problem that requires calculus.
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6 ∫. Assuming the result of the previous problem for the range of a projec-

tile, R =    2v 2 sin θ cos θ
g , show that the maximum range is for θ=45°.

7. Two cars go over the same bump in the road, Maria’s Maserati at 25
miles per hour and Park’s Porsche at 37. How many times greater is the
vertical acceleration of the Porsche? Hint: Remember that acceleration
depends both on how much the velocity changes and on how much time
it takes to change.
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7 Vectors
7.1 Vector Notation

The idea of components freed us from the confines of one-dimensional
physics, but the component notation can be unwieldy, since every one-
dimensional equation has to be written as a set of three separate equations
in the three-dimensional case. Newton was stuck with the component
notation until the day he died, but eventually someone sufficiently lazy and
clever figured out a way of abbreviating three equations as one.

Vectors are used in aerial navigation.

Section 7.1 Vector Notation
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Example (a) shows both ways of writing Newton’s third law. Which
would you rather write?

The idea is that each of the algebra symbols with an arrow written on
top, called a vector, is actually an abbreviation for three different numbers,
the x, y, and z components. The three components are referred to as the

components of the vector, e.g. F
x
 is the x component of the vector F . The

notation with an arrow on top is good for handwritten equations, but is
unattractive in a printed book, so books use boldface, F, to represent
vectors. After this point, I’ll use boldface for vectors throughout this book.

In general, the vector notation is useful for any quantity that has both
an amount and a direction in space. Even when you are not going to write
any actual vector notation, the concept itself is a useful one. We say that
force and velocity, for example, are vectors. A quantity that has no direction
in space, such as mass or time, is called a scalar. The amount of a vector
quantity is called its magnitude. The notation for the magnitude of a vector
A is |A|, like the absolute value sign used with scalars.

Often, as in example (b), we wish to use the vector notation to repre-
sent adding up all the x components to get a total x component, etc. The
plus sign is used between two vectors to indicate this type of component-
by-component addition. Of course, vectors are really triplets of numbers,
not numbers, so this is not the same as the use of the plus sign with indi-
vidual numbers. But since we don’t want to have to invent new words and
symbols for this operation on vectors, we use the same old plus sign, and
the same old addition-related words like “add,” “sum,” and “total.” Com-
bining vectors this way is called vector addition.

Similarly, the minus sign in example (a) was used to indicate negating
each of the vector’s three components individually. The equals sign is used
to mean that all three components of the vector on the left side of an
equation are the same as the corresponding components on the right.

Example (c) shows how we abuse the division symbol in a similar
manner. When we write the vector ∆v divided by the scalar ∆t, we mean the
new vector formed by dividing each one of the velocity components by ∆t.

A vector has both a
direction and an amount.

A scalar has only an amount.

   
(a) F A on B = –F B on A stands for

F A on B,x = – F B on A, x

F A on B,y = – F B on A, y

F A on B,z = – F B on A, z

(b) F total = F 1 + F 2 + ... stands for

F total,x = F 1,x + F 2,x + ...

F total,y = F 1,y + F 2,y + ...

F total,z = F 1,z + F 2,z + ...

(c) a = ∆v
∆t

stands for

a x = ∆v x / ∆t

a y = ∆v y / ∆t

a z = ∆v z / ∆t

Chapter 7 Vectors
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It’s not hard to imagine a variety of operations that would combine
vectors with vectors or vectors with scalars, but only four of them are
required in order to express Newton’s laws:

operation definition

vector + vector
Add component by component to make
a new set of three numbers.

vector - vector
Subtract component by component to
make a new set of three numbers.

vector . scalar
Multiply each component of the vector
by the scalar.

vector / scalar Divide each component of the vector by
the scalar.

As an example of an operation that is not useful for physics, there just
aren’t any useful physics applications for dividing a vector by another vector
component by component. In optional section 7.5, we discuss in more
detail the fundamental reasons why some vector operations are useful and
others useless.

We can do algebra with vectors, or with a mixture of vectors and scalars
in the same equation. Basically all the normal rules of algebra apply, but if
you’re not sure if a certain step is valid, you should simply translate it into
three component-based equations and see if it works.

Example
Question : If we are adding two force vectors, F+G, is it valid to
assume as in ordinary algebra that F+G is the same as G+F?
Answer : To tell if this algebra rule also applies to vectors, we
simply translate the vector notation into ordinary algebra nota-
tion. In terms of ordinary numbers, the components of the vector
F+G would be F

x
+G

x
, F

y
+G

y
, and F

z
+G

z
, which are certainly the

same three numbers as G
x
+F

x
, G

y
+F

y
, and G

z
+F

z
. Yes, F+G is the

same as G+F.
It is useful to define a symbol r for the vector whose components are x,

y, and z, and a symbol ∆r made out of ∆x, ∆y, and ∆z.

Although this may all seem a little formidable, keep in mind that it
amounts to nothing more than a way of abbreviating equations! Also, to
keep things from getting too confusing the remainder of this chapter
focuses mainly on the ∆r vector, which is relatively easy to visualize.

Self-Check
Translate the equations vx=∆x/∆t, vy=∆y/∆t, and vz=∆z/∆t for motion with
constant velocity into a single equation in vector notation.

v=∆r/∆t

Section 7.1 Vector Notation
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Drawing vectors as arrows
A vector in two dimensions can be easily visualized by drawing an arrow

whose length represents its magnitude and whose direction represents its
direction. The x component of a vector can then be visualized as the length
of the shadow it would cast in a beam of light projected onto the x axis, and
similarly for the y component. Shadows with arrowheads pointing back
against the direction of the positive axis correspond to negative compo-
nents.

In this type of diagram, the negative of a vector is the vector with the
same magnitude but in the opposite direction. Multiplying a vector by a
scalar is represented by lengthening the arrow by that factor, and similarly
for division.

Self-Check
Given vector Q represented by an arrow below, draw arrows representing the
vectors 1.5Q and —Q.

Q

Discussion Questions
A. Would it make sense to define a zero vector? Discuss what the zero
vector’s components, magnitude, and direction would be; are there any issues
here? If you wanted to disqualify such a thing from being a vector, consider
whether the system of vectors would be complete. For comparison, why is the
ordinary number system (scalars) incomplete if you leave out zero? Does the
same reasoning apply to vectors, or not?
B. You drive to your friend’s house. How does the magnitude of your∆r vector
compare with the distance you’ve added to the car’s odometer?

7.2 Calculations with Magnitude and Direction
If you ask someone where Las Vegas is compared to Los Angeles, they

are unlikely to say that the ∆x is 290 km and the ∆y is 230 km, in a coordi-
nate system where the positive x axis is east and the y axis points north.
They will probably say instead that it’s 370 km to the northeast. If they
were being precise, they might specify the direction as 38° counterclockwise
from east. In two dimensions, we can always specify a vector’s direction like
this, using a single angle. A magnitude plus an angle suffice to specify
everything about the vector. The following two examples show how we use
trigonometry and the Pythagorean theorem to go back and forth between
the x-y and magnitude-angle descriptions of vectors.

x

y

x

y

x component
(positive)

y component
(negative)

1.5Q –Q
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Example: finding the magnitude and angle from the components
Question : Given that the ∆r vector from LA to Las Vegas has
∆x=290 km and ∆y=230 km, how would we find the magnitude
and direction of ∆r?
Solution : We find the magnitude of ∆r from the Pythagorean
theorem:

|∆r| =    ∆x 2 + ∆y 2

= 370 km
We know all three sides of the triangle, so the angle θ can be
found using any of the inverse trig functions. For example, we
know the opposite and adjacent sides, so

θ =    tan– 1∆y
∆x

= 38°   .

Example: finding the components from the magnitude and angle
Question : Given that the straight-line distance from Los Angeles
to Las Vegas is 370 km, and that the angle θ in the figure is 38°,
how can the x and y components of the ∆r vector be found?
Solution : The sine and cosine of θ relate the given information to
the information we wish to find:

cos θ =    ∆x
∆r

sin θ =    ∆y
∆r

Solving for the unknowns gives

∆x =    ∆r cos θ
= 290 km

∆y =    ∆r sin θ
= 230 km

Los
Angeles

Las Vegas

∆x

∆y
|∆r|

θ

Section 7.2 Calculations with Magnitude and Direction
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The following example shows the correct handling of the plus and
minus signs, which is usually the main cause of mistakes by students.

Example: negative components
Question : San Diego is 120 km east and 150 km south of Los
Angeles. An airplane pilot is setting course from San Diego to
Los Angeles. At what angle should she set her course, measured
counterclockwise from east, as shown in the figure?
Solution : If we make the traditional choice of coordinate axes,
with x pointing to the right and y pointing up on the map, then her
∆x is negative, because her final x value is less than her initial x
value. Her ∆y is positive, so we have

∆x = -120 km
∆y = 150 km   .

If we work by analogy with the previous example, we get

θ =    tan– 1∆y
∆x

=  tan– 1 –1.25

= -51°   .
According to the usual way of defining angles in trigonometry, a
negative result means an angle that lies clockwise from the x
axis, which would have her heading for the Baja California. What
went wrong? The answer is that when you ask your calculator to
take the arctangent of a number, there are always two valid
possibilities differing by 180°. That is, there are two possible
angles whose tangents equal -1.25:

tan 129° = -1.25
tan -51° = -1.25

You calculator doesn’t know which is the correct one, so it just
picks one. In this case, the one it picked was the wrong one, and
it was up to you to add 180° to it to find the right answer.

Discussion Question
In the example above, we dealt with components that were negative. Does it
make sense to talk about positive and negative vectors?

7.3 Techniques for Adding Vectors
Addition of vectors given their components

The easiest type of vector addition is when you are in possession of the
components, and want to find the components of their sum.

Example
Question : Given the ∆x and ∆y values from the previous ex-
amples, find the ∆x and ∆y from San Diego to Las Vegas.
Solution :

∆x
total

= ∆x
1
 + ∆x

2

= –120 km + 290 km
= 170 km

∆y
total

= ∆y
1
 + ∆y

2

= 150 km + 230 km
= 380

Note how the signs of the x components take care of the west-
ward and eastward motions, which partially cancel.

Los
Angeles

Las Vegas

San Diego

∆x

∆y

Los
Angeles

|∆r|

θ

San Diego
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Addition of vectors given their magnitudes and directions
In this case, you must first translate the magnitudes and directions into

components, and the add the components.

Graphical addition of vectors
Often the easiest way to add vectors is by making a scale drawing on a

piece of paper. This is known as graphical addition, as opposed to the
analytic techniques discussed previously.

Example
Question : Given the magnitudes and angles of the ∆r vectors
from San Diego to Los Angeles and from Los Angeles to Las
Vegas, find the magnitude and angle of the ∆r vector from San
Diego to Las Vegas.
Solution : Using a protractor and a ruler, we make a careful scale
drawing, as shown in the figure. A scale of 1 cm→100 km was
chosen for this solution. With a ruler, we measure the distance
from San Diego to Las Vegas to be 3.8 cm, which corresponds to
380 km. With a protractor, we measure the angle θ to be 71°.

Even when we don’t intend to do an actual graphical calculation with a
ruler and protractor, it can be convenient to diagram the addition of vectors
in this way. With ∆r vectors, it intuitively makes sense to lay the vectors tip-
to-tail and draw the sum vector from the tail of the first vector to the tip of
the second vector. We can do the same when adding other vectors such as
force vectors.

Self-Check
How would you subtract vectors graphically?

Discussion Questions
A. If you’re doing graphical addition of vectors, does it matter which vector you
start with and which vector you start from the other vector’s tip?
B. If you add a vector with magnitude 1 to a vector of magnitude 2, what
magnitudes are possible for the vector sum?
C. Which of these examples of vector addition are correct, and which are
incorrect?

Los
Angeles

Las Vegas

San Diego

190 km

370 km

141°

38° distance=?

θ=?

Section 7.3 Techniques for Adding Vectors

AB

A+B
A

B

A+B A

B
A+B

B

A
A+B

A

B

Vectors can be added graphically by
placing them tip to tail, and then
drawing a vector from the tail of the
first vector to the tip of the second
vector.

The difference A–B is equivalent to A+(–B), which can be calculated graphically by reversing B to form –B, and
then adding it to A.
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7.4* Unit Vector Notation
When we want to specify a vector by its components, it can be cumber-

some to have to write the algebra symbol for each component:

∆x = 290 km, ∆y = 230 km

A more compact notation is to write

∆r = (290 km)x  + (230 km)y    ,

where the vectors x , y , and z , called the unit vectors, are defined as the
vectors that have magnitude equal to 1 and directions lying along the x, y,
and z axes. In speech, they are referred to as “x-hat” and so on.

A slightly different, and harder to remember, version of this notation is

unfortunately more prevalent. In this version, the unit vectors are called i ,

j , and k :

∆r = (290 km)i  + (230 km)j    .

7.5* Rotational Invariance
Let’s take a closer look at why certain vector operations are useful and

others are not. Consider the operation of multiplying two vectors compo-
nent by component to produce a third vector:

R
x

= P
x 
Q

x

R
y

= P
y 
Q

y

R
z

= P
z 
Q

z

As a simple example, we choose vectors P and Q to have length 1, and
make them perpendicular to each other, as shown in figure (a). If we
compute the result of our new vector operation using the coordinate system
shown in (b), we find:

R
x

= 0
R

y
= 0

R
z

= 0
The x component is zero because P

x 
=0, the y component is zero because

Q
y
=0, and the z component is of course zero because both vectors are in the

x-y plane. However, if we carry out the same operations in coordinate
system (c), rotated 45 degrees with respect to the previous one, we find

R
x

= –1/2
R

y
= 1/2

R
z

= 0
The operation’s result depends on what coordinate system we use, and since
the two versions of R have different lengths (one being zero and the other
nonzero), they don’t just represent the same answer expressed in two
different coordinate systems. Such an operation will never be useful in
physics, because experiments show physics works the same regardless of
which way we orient the laboratory building! The useful vector operations,
such as addition and scalar multiplication, are rotationally invariant, i.e.
come out the same regardless of the orientation of the coordinate system.

Chapter 7 Vectors
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Summary
Selected Vocabulary

vector ................................ a quantity that has both an amount (magnitude) and a direction in space
magnitude ......................... the “amount” associated with a vector
scalar ................................. a quantity that has no direction in space, only an amount

Notation
A....................................... vector with components A

x
, A

y
, and A

z

 A ...................................... handwritten notation for a vector

|A| ..................................... the magnitude of vector A
r ........................................ the vector whose components are x, y, and z
∆r ...................................... the vector whose components are ∆x, ∆y, and ∆z

  x, y, z ............................... (optional topic) unit vectors; the vectors with magnitude 1 lying along the
x, y, and z axes

  i, j , k ............................... a harder to remember notation for the unit vectors

Standard Terminology Avoided in This Book
displacement vector ........... a name for the symbol ∆r
speed ................................. the magnitude of the velocity vector, i.e. the velocity stripped of any

information about its direction
Summary

A vector is a quantity that has both a magnitude (amount) and a direction in space, as opposed to a scalar,
which has no direction. The vector notation amounts simply to an abbreviation for writing the vector’s three
components.

In two dimensions, a vector can be represented either by its two components or by its magnitude and
direction. The two ways of describing a vector can be related by trigonometry.

The two main operations on vectors are addition of a vector to a vector, and multiplication of a vector by a
scalar.

Vector addition means adding the components of two vectors to form the components of a new vector. In
graphical terms, this corresponds to drawing the vectors as two arrows laid tip-to-tail and drawing the sum
vector from the tail of the first vector to the tip of the second one. Vector subtraction is performed by negating
the vector to be subtracted and then adding.

Multiplying a vector by a scalar means multiplying each of its components by the scalar to create a new
vector. Division by a scalar is defined similarly.

Summary
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Homework Problems
1. The figure shows vectors A and B. Graphically calculate the following:

 A+B,  A–B,  B–A,  –2B,  A–2B

No numbers are involved.

2. Phnom Penh is 470 km east and 250 km south of Bangkok. Hanoi is
60 km east and 1030 km north of Phnom Penh. (a) Choose a coordinate
system, and translate these data into ∆x and ∆y values with the proper plus
and minus signs. (b✓) Find the components of the ∆r vector pointing
from Bangkok to Hanoi.

3 ✓. If you walk 35 km at an angle 25° counterclockwise from east, and
then 22 km at 230° counterclockwise from east, find the distance and
direction from your starting point to your destination.

A

B

Problem 1.

S A  solution is given in the back of the book. « A difficult problem.
✓ A computerized answer check is available. ∫ A problem that requires calculus.

Chapter 7 Vectors
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8 Vectors and Motion
In 1872, capitalist and former California governor Leland Stanford

asked photographer Eadweard Muybridge if he would work for him on a
project to settle a $25,000 bet (a princely sum at that time). Stanford’s
friends were convinced that a galloping horse always had at least one foot
on the ground, but Stanford claimed that there was a moment during each
cycle of the motion when all four feet were in the air. The human eye was
simply not fast enough to settle the question. In 1878, Muybridge finally
succeeded in producing what amounted to a motion picture of the horse,
showing conclusively that all four feet did leave the ground at one point.
(Muybridge was a colorful figure in San Francisco history, and his acquittal
for the murder of his wife’s lover was considered the trial of the century in
California.)

The losers of the bet had probably been influenced by Aristotelian
reasoning, for instance the expectation that a leaping horse would lose
horizontal velocity while in the air with no force to push it forward, so that
it would be more efficient for the horse to run without leaping. But even for
students who have converted wholeheartedly to Newtonianism, the rela-
tionship between force and acceleration leads to some conceptual difficul-
ties, the main one being a problem with the true but seemingly absurd
statement that an object can have an acceleration vector whose direction is
not the same as the direction of motion. The horse, for instance, has nearly
constant horizontal velocity, so its a

x
 is zero. But as anyone can tell you who

has ridden a galloping horse, the horse accelerates up and down. The horse’s
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acceleration vector therefore changes back and forth between the up and
down directions, but is never in the same direction as the horse’s motion. In
this chapter, we will examine more carefully the properties of the velocity,
acceleration, and force vectors. No new principles are introduced, but an
attempt is made to tie things together and show examples of the power of
the vector formulation of Newton’s laws.

8.1 The Velocity Vector
For motion with constant velocity, the velocity vector is

v=∆r/∆t [ only for constant velocity ]   .

The ∆r vector points in the direction of the motion, and dividing it by the
scalar ∆t only changes its length, not its direction, so the velocity vector
points in the same direction as the motion. When the velocity is not
constant, i.e. when the x-t, y-t, and z-t graphs are not all linear, we use the
slope-of-the-tangent-line approach to define the components v

x
, v

y
, and v

z
,

from which we assemble the velocity vector. Even when the velocity vector
is not constant, it still points along the direction of motion.

Vector addition is the correct way to generalize the one-dimensional
concept of adding velocities in relative motion, as shown in the following
example:

Example: velocity vectors in relative motion
Question : You wish to cross a river and arrive at a dock that is
directly across from you, but the river’s current will tend to carry
you downstream. To compensate, you must steer the boat at an
angle. Find the angle θ, given the magnitude, |v

WL
|, of the water’s

velocity relative to the land, and the maximum speed, |v
BW

|, of
which the boat is capable relative to the water.
Solution : The boat’s velocity relative to the land equals the
vector sum of its velocity with respect to the water and the
water’s velocity with respect to the land,

v
BL 

= v
BW 

+  v
WL     

.
If the boat is to travel straight across the river, i.e. along the y
axis, then we need to have v

BL,x
=0. This x component equals the

sum of the x components of the other two vectors,
v

BL,x 
= v

BW,x 
+  v

WL,x     
,

or
0 = -|v

BW
| sin θ + |v

WL
|   .

Solving for θ, we find
sin θ = |v

WL
|/|v

BW
|   ,

    
θ = sin– 1 vWL

vBW
   .

vBW

vWL

θ

x

y
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Discussion Questions
A. Is it possible for an airplane to maintain a constant velocity vector but not a
constant |v|?  How about the opposite -- a constant |v| but not a constant
velocity vector? Explain.
B. New York and Rome are at about the same latitude, so the earth’s rotation
carries them both around nearly the same circle. Do the two cities have the
same velocity vector (relative to the center of the earth)? If not, is there any
way for two cities to have the same velocity vector?

8.2 The Acceleration Vector
When all three acceleration components are constant, i.e. when the v

x
-t,

v
y
-t, and v

z
-t graphs are all linear, we can define the acceleration vector as

a=∆v/∆t [ only for constant acceleration]   ,

which can be written in terms of initial and final velocities as

a=(v
f
-v

i
)/∆t [ only for constant acceleration]   .

If the acceleration is not constant, we define it as the vector made out of the
a

x
, a

y
, and a

z
 components found by applying the slope-of-the-tangent-line

technique to the v
x
-t, v

y
-t, and v

z
-t graphs.

Now there are two ways in which we could have a nonzero acceleration.
Either the magnitude or the direction of the velocity vector could change.
This can be visualized with arrow diagrams as shown in the figure. Both the
magnitude and direction can change simultaneously, as when a car acceler-
ates while turning. Only when the magnitude of the velocity changes while
its direction stays constant do we have a ∆v vector and an acceleration
vector in the same direction as the motion.

Self-Check
(1) In figure (a), is the object speeding up or slowing down? (2) What would the
diagram look like if v i was the same as v f? (3) Describe how the ∆v vector is
different depending on whether an object is speeding up or slowing down.

If this all seems a little strange and abstract to you, you’re not alone. It
doesn’t mean much to most physics students the first time someone tells
them that acceleration is a vector, and that the acceleration vector does not
have to be in the same direction as the velocity vector.  One way to under-
stand those statements better is to imagine an object such as an air freshener
or a pair of fuzzy dice hanging from the rear-view mirror of a car.  Such a
hanging object, called a bob, constitutes an accelerometer.  If you watch the
bob as you accelerate from a stop light, you’ll see it swing backward.  The
horizontal direction in which the bob tilts is opposite to the direction of the
acceleration. If you apply the brakes and the car’s acceleration vector points
backward, the bob tilts forward.

After accelerating and slowing down a few times, you think you’ve put
your accelerometer through its paces, but then you make a right turn.
Surprise!  Acceleration is a vector, and needn’t point in the same direction as
the velocity vector.  As you make a right turn, the bob swings outward, to
your left.  That means the car’s acceleration vector is to your right, perpen-

(a) A change in the magnitude of the
velocity vector implies an acceleration.

(b) A change in the direction of the
velocity vector also produces a non-
zero ∆v vector, and thus a nonzero
acceleration vector, ∆v/∆t.

vi
vf

-vi

vf
∆v

vi
vf

-vi

vf
∆v

(1) It is speeding up, because the final velocity vector has the greater magnitude. (2) The result would be zero,
which would make sense. (3) Speeding up produced a ∆v vector in the same direction as the motion. Slowing
down would have given a ∆v that bointed backward.

Section 8.2 The Acceleration Vector
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dicular to your velocity vector. A useful definition of an acceleration vector
should relate in a systematic way to the actual physical effects produced by
the acceleration, so a physically reasonable definition of the acceleration
vector must allow for cases where it is not in the same direction as the
motion.

Self-Check

In projectile motion, what direction does the acceleration vector have?

The following are two examples of force, velocity, and acceleration
vectors in complex motion.

As we have already seen, the projectile has ax=0 and ay=-g,
so the acceleration vector is pointing straight down.

a b c ed

∆v
points
down 

∆v
points
up

∆v≈0

a b c d e

The downward force
of gravity produces
a downward accel-
eration vector.

The upward force from
the ground is greater than
the downward force of
gravity. The total force on
the horse is upward, giving
an upward acceleration.

   This figure shows outlines traced
from the first, third, fifth, seventh, and
ninth frames in Muybridge’s series of
photographs of the galloping horse.
The estimated location of the horse’s
center of mass is shown with a circle,
which bobs above and below the hori-
zontal dashed line.
   If we don’t care about calculating ve-
locities and accelerations in any par-
ticular system of units, then we can
pretend that the time between frames
is one unit. The horse’s velocity vec-
tor as it moves from one point to the
next can then be found simply by
drawing an arrow to connect one po-
sition of the center of mass to the next.
This produces a series of velocity vec-
tors which alternate between pointing
above and below horizontal.
   The ∆v vector is the vector which
we would have to add onto one veloc-
ity vector in order to get the next ve-
locity vector in the series. The ∆v vec-
tor alternates between pointing down
(around the time when the horse is in
the air, b) and up (around the time
when the horse has two feet on the
ground, d).

Chapter 8 Vectors and Motion
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Discussion Questions
A. When a car accelerates, why does a bob hanging from the rearview mirror
swing toward the back of the car? Is it because a force throws it backward? If
so, what force? Similarly, describe what happens in the other cases described
above.
B. The following is a question commonly asked by students:

“Why does the force vector always have to point in the same direction as
the acceleration vector? What if you suddenly decide to change your force
on an object, so that your force is no longer pointing the same direction that
the object is accelerating?”

What misunderstanding is demonstrated by this question? Suppose, for
example, a spacecraft is blasting its rear main engines while moving forward,
then suddenly begins firing its sideways maneuvering rocket as well. What
does the student think Newton’s laws are predicting?

velocity acceleration force

In this example, the rappeller’s velocity has long periods of gradual
change interspersed with short periods of rapid change. These
correspond to periods of small acceleration and force and periods
of large acceleration and force.

Section 8.2 The Acceleration Vector
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8.3 The Force Vector and Simple Machines
Force is relatively easy to intuit as a vector. The force vector points in

the direction in which it is trying to accelerate the object it is acting on.

Since force vectors are so much easier to visualize than acceleration
vectors, it is often helpful to first find the direction of the (total) force
vector acting on an object, and then use that information to determine the
direction of the acceleration vector. Newton’s second law, F

total
=ma, tells us

that the two must be in the same direction.

An important application of force vectors is to analyze the forces acting
in two-dimensional mechanical systems, as in the following example.

Example: pushing a block up a ramp
Question : Figure (a) shows a block being pushed up a friction-
less ramp at constant speed by an applied force F

A
. How much

force is required, in terms of the block’s mass, m, and the angle
of the ramp, θ?
Solution : Figure (b) shows the other two forces acting on the
block: a normal force, F

N
,  created by the ramp, and the weight

force, F
W
, created by the earth’s gravity. Because the block is

being pushed up at constant speed, it has zero acceleration, and
the total force on it must be zero. From figure (c), we find

|F
A
| = |F

W
| sin θ

= mg sin θ   .
Since the sine is always less than one, the applied force is always less than
mg, i.e. pushing the block up the ramp is easier than lifting it straight up.
This is presumably the principle on which the pyramids were constructed:
the ancient Egyptians would have had a hard time applying the forces of
enough slaves to equal the full weight of the huge blocks of stone.

Essentially the same analysis applies to several other simple machines,
such as the wedge and the screw.

Discussion Questions
A. The figure shows a block being pressed diagonally upward against a wall,
causing it to slide up the wall. Analyze the forces involved, including their
directions.

Discussion question A.

(a) The applied force FA pushes the
block up the frictionless ramp.

(b) Three forces act on the block. Their
vector sum is zero.

(c) If the block is to move at constant
velocity, Newton’s first law says that
the three force vectors acting on it
must add up to zero. To perform vec-
tor addition, we put the vectors tip to
tail, and in this case we are adding
three vectors, so each one’s tail goes
against the tip of the previous one.
Since they are supposed to add up to
zero, the third vector’s tip must come
back to touch the tail of the first vec-
tor. They form a triangle, and since the
applied force is perpendicular to the
normal force, it is a right triangle.

FA

θ

FW

FNFA

θ

FA

FW
FNθ
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B. The figure shows a roller coaster car rolling down and then up under the
influence of gravity. Sketch the car’s velocity vectors and acceleration vectors.
Pick an interesting point in the motion and sketch a set of force vectors acting
on the car whose vector sum could have resulted in the right acceleration
vector.

8.4 ∫ Calculus With Vectors
The definitions of the velocity and acceleration components given in

chapter 6 can be translated into calculus notation as

    v = dx
dt

x +
dy
dt

y + dz
dt

z

and

    
a =

dv x

dt
x +

dv y

dt
y +

dv z

dt
z    .

To make the notation less cumbersome, we generalize the concept of the
derivative to include derivatives of vectors, so that we can abbreviate the
above equations as

   v = dr
dt

and

   a = dv
dt

   .

In words, to take the derivative of a vector, you take the derivatives of its
components and make a new vector out of those. This definition means
that the derivative of a vector function has the familiar properties

   d cf

dt
= cd f

dt
[c is a constant]

and

    d f + g

dt
= d f

dt
+

dg
dt

    . [c is a constant]

The integral of a vector is likewise defined as integrating component by
component.

Section 8.4 ∫ Calculus With Vectors

Discussion question C.
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Example
Question: Two objects have positions as functions of time given
by the equations

r
1
 =     3t 2xx ++ tyy

and

r
2
 =     3t 4xx ++ tyy    .

Find both objects’ accelerations using calculus. Could either
answer have been found without calculus?
Solution : Taking the first derivative of each component, we find

v
1
 =     6txx ++ yy

v
2
 =     12t 3xx ++ yy    ,

and taking the derivatives again gives acceleration,

a
1
 =   6xx

a
2
 =    36t 2xx    .

The first object’s acceleration could have been found without
calculus, simply by comparing the x and y coordinates with the

constant-acceleration equation    ∆x = vo∆t + 1
2a∆t 2

. The second

equation, however, isn’t just a second-order polynomial in t, so
the acceleration isn’t constant, and we really did need calculus to
find the corresponding acceleration.

Example: a fire-extinguisher stunt on ice
Question : Prof. Puerile smuggles a fire extinguisher into a
skating rink. Climbing out onto the ice without any skates on, he
sits down and pushes off from the wall with his feet, acquiring an

initial velocity v
o
y . At t=0, he then discharges the fire extin-

guisher at a 45-degree angle so that it applies a force to him that
is backward and to the left, i.e. along the negative y axis and the
positive x axis. The fire extinguisher’s force is strong at first, but
then dies down according to the equation |F|=b–ct, where b and
c are constants. Find the professor’s velocity as a function of
time.
Solution : Measured counterclockwise from the x axis, the angle
of the force vector becomes 315°. Breaking the force down into x
and y components, we have

F
x

= |F| cos 315°
=  

1
2

 (b–ct)

F
y

= |F| sin 315°
=  

1
2

 (–b+ct)   .

In unit vector notation, this is

F =  
1
2

 (b–ct)  x  +  
1
2

 (–b+ct)y    .

Newton’s second law gives
a = F/m

=   b – ct
2m  x  +   –b + ct

2m
y    .
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To find the velocity vector as a function of time, we need to
integrate the acceleration vector with respect to time,

v =    a dt

=
   b – ct

2m
x + –b + ct

2m
y dt

=    1
2m

b – ct x + –b + ct y dt

A vector function can be integrated component by component, so
this can be broken down into two integrals,

v =    x
2m

b – ct dt + y
2m

–b + ct dt

=
   bt – 1

2ct 2

2m
+ const. #1 x

+ 
   –bt + 1

2ct 2

2m
+ const. #2 y

Here the physical significance of the two constants of integration
is that they give the initial velocity. Constant #1 is therefore zero,
and constant #2 must equal v

o
. The final result is

v =
   bt – 1

2ct 2

2m
x +

–bt + 1
2ct 2

2m
+ vo y    .

Summary
The velocity vector points in the direction of the object’s motion. Relative motion can be described by

vector addition of velocities.

The acceleration vector need not point in the same direction as the object’s motion. We use the word
“acceleration” to describe any change in an object’s velocity vector, which can be either a change in its
magnitude or a change in its direction.

An important application of the vector addition of forces is the use of Newton’s first law to analyze me-
chanical systems.

Summary
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Homework Problems
1 ✓. A dinosaur fossil is slowly moving down the slope of a glacier under
the influence of wind, rain and gravity. At the same time, the glacier is
moving relative to the continent underneath. The dashed lines represent
the directions but not the magnitudes of the velocities. Pick a scale, and
use graphical addition of vectors to find the magnitude and the direction
of the fossil's velocity relative to the continent. You will need a ruler and
protractor.

direction of motion
of fossil relative to
glacier, 2.3x10-7 m/s

direction of motion
of glacier relative
to continent, 1.1x10-7 m/s

north

2. Is it possible for a helicopter to have an acceleration due east and a
velocity due west? If so, what would be going on? If not, why not?

3 ✓. A bird is initially flying horizontally east at 21.1 m/s, but one second
later it has changed direction so that it is flying horizontally and 7° north
of east, at the same speed. What are the magnitude and direction of its
acceleration vector during that one second time interval? (Assume its
acceleration was roughly constant.)

4. A person of mass M stands in the middle of a tightrope, which is fixed
at the ends to two buildings separated by a horizontal distance L. The rope
sags in the middle, stretching and lengthening the rope slightly. (a) If the
tightrope walker wants the rope to sag vertically by no more than a height
h, find the minimum tension, T, that the rope must be able to withstand
without breaking, in terms of h, g, M, and L. (b) Based on your equation,
explain why it is not possible to get h=0, and give a physical interpretation.

L

h

5«. Your hand presses a block of mass m against a wall with a force F
H

acting at an angle θ. Find the minimum and maximum possible values of
|F

H
| that can keep the block stationary, in terms of m, g, θ, and µ

s
, the

coefficient of static friction between the block and the wall.θ

Problem 5.

Chapter 8 Vectors and Motion
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θ

Flift
Fthrust

Problem 9.

Problem 10.

θ

ϕ

6. A skier of mass m is coasting down a slope inclined at an angle θ
compared to horizontal. Assume for simplicity that the treatment of
kinetic friction given in chapter 5 is appropriate here, although a soft and
wet surface actually behaves a little differently. The coefficient of kinetic
friction acting between the skis and the snow is µ

k
, and in addition the

skier experiences an air friction force of magnitude bv2, where b is a
constant. (a) Find the maximum speed that the skier will attain, in terms
of the variables m, θ, µ

k
, and b. (b) For angles below a certain minimum

angle θ
min

, the equation gives a result that is not mathematically meaning-
ful. Find an equation for θ

min
, and give a physical explanation of what is

happening for θ<θ
min

.

7 ∫. A gun is aimed horizontally to the west, and fired at t=0. The bullet's

position vector as a function of time is     r = bx + cty + dt 2z , where b, c,
and d are constants. (a) What units would b, c, and d need to have for the
equation to make sense? (b) Find the bullet's velocity and acceleration as

functions of time. (c) Give physical interpretations of b, c, d, x , y , and z .

8 S. Annie Oakley, riding north on horseback at 30 mi/hr, shoots her rifle,
aiming horizontally and to the northeast.  The muzzle speed of the rifle is
140 mi/hr.  When the bullet hits a defenseless fuzzy animal, what is its
speed of impact?  Neglect air resistance, and ignore the vertical motion of
the bullet.

9 S. A cargo plane has taken off from a tiny airstrip in the Andes, and is
climbing at constant speed, at an angle of θ=17° with respect to horizon-
tal.  Its engines supply a thrust of F

thrust
=200 kN, and the lift from its

wings is F
lift

=654 kN.  Assume that air resistance (drag) is negligible, so the
only forces acting are thrust, lift, and weight.  What is its mass, in kg?

10 S. A wagon is being pulled at constant speed up a slope θ by a rope
that makes an angle ϕ with the vertical. (a) Assuming negligible friction,
show that the tension in the rope is given by the equation

   F T = sin θ
sin θ + ϕ

F W    ,

where F
W

 is the weight force acting on the wagon. (b) Interpret this
equation in the special cases of ϕ=0 and ϕ=180°-θ.

11 S. The angle of repose is the maximum slope on which an object will
not slide. On airless, geologically inert bodies like the moon or an asteroid,
the only thing that determines whether dust or rubble will stay on a slope
is whether the slope is less steep than the angle of repose. (a) Find an
equation for the angle of repose, deciding for yourself what are the
relevant variables. (b) On an asteroid, where g can be thousands of times
lower than on Earth, would rubble be able to lie at a steeper angle of
repose?

Homework Problems
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9 Circular Motion
9.1 Conceptual Framework for Circular Motion

I now live fifteen minutes from Disneyland, so my friends and family in
my native Northern California think it’s a little strange that I’ve never
visited the Magic Kingdom again since a childhood trip to the south. The
truth is that for me as a preschooler, Disneyland was not the Happiest Place
on Earth. My mother took me on a ride in which little cars shaped like
rocket ships circled rapidly  around a central pillar. I knew I was going to
die. There was a force trying to throw me outward, and the safety features
of the ride would surely have been inadequate if I hadn’t screamed the
whole time to make sure Mom would hold on to me. Afterward, she
seemed surprisingly indifferent to the extreme danger we had experienced.

Section 9.1 Conceptual Framework for Circular Motion
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Circular motion does not produce an outward force
My younger self ’s understanding of circular motion was partly right and

partly wrong. I was wrong in believing that there was a force pulling me
outward, away from the center of the circle. The easiest way to understand
this is to bring back the parable of the bowling ball in the pickup truck
from chapter 4. As the truck makes a left turn, the driver looks in the
rearview mirror and thinks that some mysterious force is pulling the ball
outward, but the truck is accelerating, so the driver’s frame of reference is
not an inertial frame. Newton’s laws are violated in a noninertial frame, so
the ball appears to accelerate without any actual force acting on it. Because
we are used to inertial frames, in which accelerations are caused by forces,
the ball’s acceleration creates a vivid illusion that there must be an outward
force.

In an inertial frame everything makes more sense. The ball has no force
on it, and goes straight as required by Newton’s first law. The truck has a
force on it from the asphalt, and responds to it by accelerating (changing
the direction of its velocity vector) as Newton’s second law says it should.

(a) In the turning truck’s frame of reference, the
ball appears to violate Newton’s laws, display-
ing a sideways acceleration that is not the re-
sult of a force-interaction with any other object.

(b) In an inertial frame of reference, such as the
frame fixed to the earth’s surface, the ball obeys
Newton’s first law. No forces are acting on it, and
it continues moving in a straight line. It is the
truck that is participating in an interaction with
the asphalt, the truck that accelerates as it should
according to Newton’s second law.

Chapter 9 Circular Motion
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Circular motion does not persist without a force
I was correct about one thing, however. To make me curve around with

the car, I really did need some force such as a force from my mother,
friction from the seat, or a normal force from the side of the car. (In fact, all
three forces were probably adding together.) One of the reasons why Galileo
failed to refine the principle of inertia into a quantitative statement like
Newton’s first law is that he was not sure whether motion without a force
would naturally be circular or linear. In fact, the most impressive examples
he knew of the persistence of motion were mostly circular: the spinning of a
top or the rotation of the earth, for example. Newton realized that in
examples such as these, there really were forces at work. Atoms on the
surface of the top are prevented from flying off straight by the ordinary
force that keeps atoms stuck together in solid matter. The earth is nearly all
liquid, but gravitational forces pull all its parts inward.

Uniform and nonuniform circular motion
Circular motion always involves a change in the direction of the velocity

vector, but it is also possible for the magnitude of the velocity to change at
the same time. Circular motion is referred to as uniform if |v| is constant,
and nonuniform if it is changing.

Your speedometer tells you the magnitude of your car’s velocity vector,
so when you go around a curve while keeping your speedometer needle
steady, you are executing uniform circular motion. If your speedometer
reading is changing as you turn, your circular motion is nonuniform.
Uniform circular motion is simpler to analyze mathematically, so we will
attack it first and then pass to the nonuniform case.

Self-Check
Which of these are examples of uniform circular motion and which are nonuni-
form?

(a) the clothes in a clothes dryer (assuming they remain against the inside of
the drum, even at the top)

(b) a rock on the end of a string being whirled in a vertical circle

(a) An overhead view of a person
swinging a rock on a rope. A force from
the string is required to make the rock's
velocity vector keep changing direc-
tion.

yes
no

(b) If the string breaks, the rock will
follow Newton's first law and go
straight instead of continuing around
the circle.

(a) Uniform. They have the same motion as the drum itself, which is rotating as one solid piece. No part of the
drum can be rotating at a different speed from any other part. (b) Nonuniform. Gravity speeds it up on the way
down and slows it down on the way up.

Section 9.1 Conceptual Framework for Circular Motion
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Only an inward force is required for uniform circular motion.
The figures on the previous page showed the string pulling in straight

along a radius of the circle, but many people believe that when they are
doing this they must be “leading” the rock a little to keep it moving along.
That is, they believe that the force required to produce uniform circular
motion is not directly inward but at a slight angle to the radius of the circle.
This intuition is incorrect, which you can easily verify for yourself now if
you have some string handy. It is only while you are getting the object going
that your force needs to be at an angle to the radius. During this initial
period of speeding up, the motion is not uniform. Once you settle down
into uniform circular motion, you only apply an inward force.

If you have not done the experiment for yourself, here is a theoretical
argument to convince you of this fact. We have discussed in chapter 6 the
principle that forces have no perpendicular effects. To keep the rock from
speeding up or slowing down, we only need to make sure that our force is
perpendicular to its direction of motion. We are then guaranteed that its
forward motion will remain unaffected: our force can have no perpendicular
effect, and there is no other force acting on the rock which could slow it
down. The rock requires no forward force to maintain its forward motion,
any more than a projectile needs a horizontal force to “help it over the top”
of its arc.

Why, then, does a car driving in circles in a parking lot stop executing
uniform circular motion if you take your foot off the gas? The source of
confusion here is that Newton’s laws predict an object’s motion based on the
total force acting on it. A car driving in circles has three forces on it

(1) an inward force from the asphalt, controlled with the steering wheel;
(2) a forward force from the asphalt, controlled with the gas pedal; and
(3) backward forces from air resistance and rolling resistance.

You need to make sure there is a forward force on the car so that the
backward forces will be exactly canceled out, creating a vector sum that
points directly inward.

In uniform circular motion, the acceleration vector is inward
Since experiments show that the force vector points directly inward,

Newton’s second law implies that the acceleration vector points inward as
well. This fact can also be proven on purely kinematical grounds, and we
will do so in the next section.

To make the brick go in a circle, I had
to exert an inward force on the rope.

A series of three hammer taps makes
the rolling ball trace a triangle, seven
hammers a heptagon. If the number
of hammers was large enough, the ball
would essentially be experiencing a
steady inward force, and it would go
in a circle. In no case is any forward
force necessary.

When a car is going straight at con-
stant speed, the forward and backward
forces on it are canceling out, produc-
ing a total force of zero. When it moves
in a circle at constant speed, there are
three forces on it, but the forward and
backward forces cancel out, so the
vector sum is an inward force.

Chapter 9 Circular Motion
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Discussion Questions
A. In the game of crack the whip, a line of people stand holding hands, and
then they start sweeping out a circle.  One person is at the center, and rotates
without changing location.  At the opposite end is the person who is running
the fastest, in a wide circle.  In this game, someone always ends up losing their
grip and flying off.  Suppose the person on the end loses her grip.  What path
does she follow as she goes flying off?  (Assume she is going so fast that she
is really just trying to put one foot in front of the other fast enough to keep from
falling; she is not able to get any significant horizontal force between her feet
and the ground.)
B. Suppose the person on the outside is still holding on, but feels that she may
loose her grip at any moment.  What force or forces are acting on her, and in
what directions are they?  (We are not interested in the vertical forces, which
are the earth's gravitational force pulling down, and the ground's normal force
pushing up.)
C. Suppose the person on the outside is still holding on, but feels that she may
loose her grip at any moment.  What is wrong with the following analysis of the
situation?  "The person whose hand she's holding exerts an inward force on
her, and because of Newton's third law, there's an equal and opposite force
acting outward.  That outward force is the one she feels throwing her outward,
and the outward force is what might make her go flying off, if it's strong
enough."
D. If the only force felt by the person on the outside is an inward force, why
doesn't she go straight in?
E. In the amusement park ride shown in the figure, the cylinder spins faster
and faster until the customer can pick her feet up off the floor without falling. In
the old Coney Island version of the ride, the floor actually dropped out like a
trap door, showing the ocean below. (There is also a version in which the
whole thing tilts up diagonally, but we’re discussing the version that stays flat.)
If there is no outward force acting on her, why does she stick to the wall?
Analyze all the forces on her.
F. What is an example of circular motion where the inward force is a normal
force?  What is an example of circular motion where the inward force is
friction?  What is an example of circular motion where the inward force is the
sum of more than one force?
G. Does the acceleration vector always change continuously in circular
motion? The velocity vector?

Discussion question E.

Discussion questions A-D.

Section 9.1 Conceptual Framework for Circular Motion
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9.2 Uniform Circular Motion
In this section I derive a simple and very useful equation for the magni-

tude of the acceleration of an object undergoing constant acceleration. The
law of sines is involved, so I’ve recapped it on the left.

The derivation is brief, but the method requires some explanation and
justification. The idea is to calculate a ∆v vector describing the change in
the velocity vector as the object passes through an angle θ. We then calcu-
late the acceleration, a=∆v/∆t. The astute reader will recall, however, that
this equation is only valid for motion with constant acceleration. Although
the magnitude of the acceleration is constant for uniform circular motion,
the acceleration vector changes its direction, so it is not a constant vector,
and the equation a=∆v/∆t does not apply. The justification for using it is
that we will then examine its behavior when we make the time interval very
short, which means making the angle θ very small. For smaller and smaller
time intervals, the ∆v/∆t expression becomes a better and better approxima-
tion, so that the final result of the derivation is exact.

In figure (a), the object sweeps out an angle θ. Its direction of motion
also twists around by an angle θ, from the vertical dashed line to the tilted
one. Figure (b) shows the initial and final velocity vectors, which have equal
magnitude, but directions differing by θ. In (c), the vectors have been
reassembled in the proper orientation for vector subtraction. They form an
isosceles triangle with interior angles θ, η, and η. (Eta, η, is my favorite
Greek letter.) The law of sines gives

    ∆v

sin θ
=

v

sin η    .

This tells us the magnitude of ∆v, which is one of the two ingredients we
need for calculating the magnitude of a=∆v/∆t. The other ingredient is ∆t.
The time required for the object to move through the angle θ is

∆t = 
  length of arc

v
   .

Now if we measure our angles in radians we can use the definition of radian
measure, which is (angle)=(length of arc)/(radius), giving ∆t=θr/|v|. Com-
bining this with the first expression involving |∆v| gives

|a| = |∆v|/∆t

= 
    v 2

r ⋅ sin θ
θ ⋅

1
sin η    .

When θ becomes very small, the small-angle approximation sin θ≈θ
applies, and also η becomes close to 90°, so sin η≈1, and we have an
equation for |a|:

|a| = 
  v 2

r [uniform circular motion]   .

θ

θ

(a)

A

B

C
a

b
c

The law of sines:
A/sin a = B/sin b = C/sin c

(b) (c)

vi

vf -vi
vf

∆v = vf + (-vi)

θ

ηη
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Example: force required to turn on a bike
Question : A bicyclist is making a turn along an arc of a circle
with radius 20 m, at a speed of 5 m/s. If the combined mass of
the cyclist plus the bike is 60 kg, how great a static friction force
must the road be able to exert on the tires?
Solution : Taking the magnitudes of both sides of Newton’s
second law gives

|F| = |ma|
= m|a|   .

Substituting |a|=|v|2/r gives
|F| =m|v|2/r

≈ 80 N
(rounded off to one sig fig).

Example: Don’t hug the center line on a curve!
Question : You’re driving on a mountain road with a steep drop
on your right. When making a left turn, is it safer to hug the
center line or to stay closer to the outside of the road?
Solution : You want whichever choice involves the least accel-
eration, because that will require the least force and entail the
least risk of exceeding the maximum force of static friction.
Assuming the curve is an arc of a circle and your speed is
constant, your car is performing uniform circular motion, with
|a|=|v|2/r. The dependence on the square of the speed shows
that driving slowly is the main safety measure you can take, but
for any given speed you also want to have the largest possible
value of r. Even though your instinct is to keep away from that
scary precipice, you are actually less likely to skid if you keep
toward the outside, because then you are describing a larger
circle.

Example: acceleration related to radius and period of rotation
Question : How can the equation for the acceleration in uniform
circular motion be rewritten in terms of the radius of the circle
and the period, T, of the motion, i.e. the time required to go
around once?
Solution : The period can be related to the speed as follows:

|v| =   circumference
T

= 2πr/T   .
Substituting into the equation|a|=|v|2/r gives

|a| =    4π2r
T 2    .

Example: a clothes dryer
Question : My clothes dryer has a drum with an inside radius of
35 cm, and it spins at 48 revolutions per minute. What is the
acceleration of the clothes inside?
Solution : We can solve this by finding the period and plugging in
to the result of the previous example. If it makes 48 revolutions in
one minute, then the period is 1/48 of a minute, or 1.25 s. To get
an acceleration in mks units, we must convert the radius to 0.35
m. Plugging in, the result is 8.8 m/s2.

Section 9.2 Uniform Circular Motion
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Example: more about clothes dryers!
Question : In a discussion question in the previous section, we
made the assumption that the clothes remain against the inside
of the drum as they go over the top. In light of the previous
example, is this a correct assumption?
Solution : No. We know that there must be some minimum speed
at which the motor can run that will result in the clothes just
barely staying against the inside of the drum as they go over the
top. If the clothes dryer ran at just this minimum speed, then
there would be no normal force on the clothes at the top: they
would be on the verge of losing contact. The only force acting on
them at the top would be the force of gravity, which would give
them an acceleration of g=9.8 m/s2. The actual dryer must be
running slower than this minimum speed, because it produces an
acceleration of only 8.8 m/s2. My theory is that this is done
intentionally, to make the clothes mix and tumble.

Discussion Question
A. A certain amount of force is needed to provide the acceleration of circular
motion. What if were are exerting a force perpendicular to the direction of
motion in an attempt to make an object trace a circle of radius r, but the force
isn’t as big as m|v|2/r?
B. Suppose a rotating space station is built that gives its occupants the illusion
of ordinary gravity. What happens when a person in the station lets go of a
ball? What happens when she throws a ball straight “up” in the air (i.e. towards
the center)?

An artist’s conception of a rotating space
colony in the form of a giant wheel. A
person living in this noninertial frame of
reference has an illusion of a force pull-
ing her outward, toward the deck, for the
same reason that a person in the pickup
truck has the illusion of a force pulling
the bowling ball. By adjusting the speed
of rotation,  the designers can make an
acceleration |v|2/r equal to the usual ac-
celeration of gravity on earth. On earth,
your acceleration standing on the ground
is zero, and a falling rock heads for your
feet with an acceleration of 9.8 m/s2. A
person standing on the deck of the space
colony has an upward acceleration of 9.8
m/s2, and when she lets go of a rock,
her feet head up at the nonaccelerating
rock. To her, it seems the same as true
gravity.
Art by NASA.
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9.3 Nonuniform Circular Motion
What about nonuniform circular motion? Although so far we have been

discussing components of vectors along fixed x and y axes, it now becomes
convenient to discuss components of the acceleration vector along the radial
line (in-out) and the tangential line (along the direction of motion). For
nonuniform circular motion, the radial component of the acceleration
obeys the same equation as for uniform circular motion,

a
r

= |v|2/r   ,

but the acceleration vector also has a tangential component,

a
t

= slope of the graph of |v| versus t  .

The latter quantity has a simple interpretation. If you are going around a
curve in your car, and the speedometer needle is moving, the tangential
component of the acceleration vector is simply what you would have
thought the acceleration was if you saw the speedometer and didn’t know
you were going around a curve.

Example: Slow down before a turn, not during it.
Question : When you’re making a turn in your car and you’re
afraid you may skid, isn’t  it a good idea to slow down?
Solution : If the turn is an arc of a circle, and you’ve already
completed part of the turn at constant speed without skidding,
then the road and tires are apparently capable of enough static
friction to supply an acceleration of |v|2/r. There is no reason why
you would skid out now if you haven’t already. If you get nervous
and brake, however, then you need to have a tangential accel-
eration component in addition to the radial component you were
already able to produce successfully. This would require an
acceleration vector with a greater magnitude, which in turn would
require a larger force. Static friction might not be able to supply
that much force, and you might skid out. As in the previous
example on a similar topic, the safe thing to do is to approach the
turn at a comfortably low speed.

ar

at
a

ar

at

a

a

An object moving in a circle may
speed up (top), keep the magnitude
of its velocity vector constant (middle),
or slow down (bottom).

Section 9.3 Nonuniform Circular Motion
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Summary
Selected Vocabulary

uniform circular motion ......... circular motion in which the magnitude of the velocity vector remains
constant

nonuniform circular motion ... circular motion in which the magnitude of the velocity vector changes
radial ...................................... parallel to the radius of a circle; the in-out direction
tangential ............................... tangent to the circle, perpendicular to the radial direction

Notation
a

r
................................................................... radial acceleration; the component of the acceleration vector along the in-

out direction
a

t
.................................................................... tangential acceleration; the component of the acceleration vector tangent

to the circle
Summary

If an object is to have circular motion, a force must be exerted on it toward the center of the circle. There is
no outward force on the object; the illusion of an outward force comes from our experiences in which our point
of view was rotating, so that we were viewing things in a noninertial frame.

An object undergoing uniform circular motion has an inward acceleration vector of magnitude

|a| = 
  v 2

r    .

In nonuniform circular motion, the radial and tangential components of the acceleration vector are

a
r

= |v|2/r

a
t

= slope of the graph of |v| versus t  .

Chapter 9 Circular Motion
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Homework Problems
1. When you’re done using an electric mixer, you can get most of the
batter off of the beaters by lifting them out of the batter with the motor
running at a high enough speed. Let’s imagine, to make things easier to
visualize, that we instead have a piece of tape stuck to one of the beaters.
(a) Explain why static friction has no effect on whether or not the tape
flies off. (b) Suppose you find that the tape doesn’t fly off when the motor
is on a low speed, but speeding it up does cause it to fly off. Why would
the greater speed change things?

2. Show that the expression |v|2/r  has the units of acceleration.

3 ✓. A plane is flown in a loop-the-loop of radius 1.00 km. The plane
starts out flying upside-down, straight and level, then begins curving up
along the circular loop, and is right-side up when it reaches the top . (The
plane may slow down somewhat on the way up.) How fast must the plane
be going at the top if the pilot is to experience no force from the seat or
the seatbelt while at the top of the loop?

4 ∫. In this problem, you'll derive the equation |a|=|v|2/r using calculus.
Instead of comparing velocities at two points in the particle's motion and
then taking a limit where the points are close together, you'll just take

derivatives. The particle's position vector is r=(r cos θ)x  + (r sin θ)y ,

where x  and y  are the unit vectors along the x and y axes. By the defini-
tion of radians, the distance traveled since t=0 is rθ, so if the particle is
traveling at constant speed v=|v|, we have v=rθ/t. (a) Eliminate θ to get the
particle's position vector as a function of time. (b) Find the particle's
acceleration vector. (c) Show that the magnitude of the acceleration vector
equals v2/r.

5 S. Three cyclists in a race are rounding a semicircular curve. At the
moment depicted, cyclist A is using her brakes to apply a force of 375 N
to her bike.  Cyclist B is coasting.  Cyclist C is pedaling, resulting in a
force of 375 N on her bike.  Each cyclist, with her bike, has a mass of 75
kg.  At the instant shown, the instantaneous speed of all three cyclists is 10
m/s.  On the diagram, draw each cyclist's acceleration vector with its tail
on top of her present position, indicating the directions and lengths
reasonably accurately.  Indicate approximately the consistent scale you are
using for all three acceleration vectors.  Extreme precision is not necessary
as long as the directions are approximately right, and lengths of vectors
that should be equal appear roughly equal, etc.  Assume all three cyclists
are traveling along the road all the time, not wandering across their lane or
wiping out and going off the road.

S A  solution is given in the back of the book. « A difficult problem.
✓ A computerized answer check is available. ∫ A problem that requires calculus.

Homework Problems

20 m

A

B

C

direction
of travel

Problem 5.
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6 S«. The amusement park ride shown in the figure consists of a cylindri-
cal room that rotates about its vertical axis.  When the rotation is fast
enough, a person against the wall can pick his or her feet up off the floor
and remain “stuck” to the wall without falling.
(a) Suppose the rotation results in the person having a speed v. The radius
of the cylinder is r, the person’s mass is m, the downward acceleration of
gravity is g, and the coefficient of static friction between the person and
the wall is µ

s
.  Find an equation for the speed, v, required, in terms of the

other variables.  (You will find that one of the variables cancels out.)
(b) Now suppose two people are riding the ride.  Huy is wearing denim,
and Gina is wearing polyester, so Huy’s coefficient of static friction is three
times greater.  The ride starts from rest, and as it begins rotating faster and
faster, Gina must wait longer before being able to lift her feet without
sliding to the floor.  Based on your equation from part a, how many times
greater must the speed be before Gina can lift her feet without sliding
down?

7 S. An engineer is designing a curved off-ramp for a freeway. Since the
off-ramp is curved, she wants to bank it to make it less likely that motor-
ists going too fast will wipe out. If the radius of the curve is r, how great
should the banking angle, θ, be so that for a car going at a speed v, no
static friction force whatsoever is required to allow the car to make the
curve? State your answer in terms of v, r, and g, and show that the mass of
the car is irrelevant.

8 ✓. Lionel brand toy trains come with sections of track in standard
lengths and shapes. For circular arcs, the most commonly used sections
have diameters of 662 and 1067 mm at the inside of the outer rail. The
maximum speed at which a train can take the broader curve without flying
off the tracks is 0.95 m/s. At what speed must the train be operated to
avoid derailing on the tighter curve?

9. The figure shows a ball on the end of a string of length L attached to a
vertical rod which is spun about its vertical axis by a motor. The period
(time for one rotation) is P.

(a) Analyze the forces in which the ball participates.

(b) Find how the angle θ depends on P, g, and L. [Hints: (1) Write down
Newton’s second law for the vertical and horizontal components of force
and acceleration. This gives two equations, which can be solved for the
two unknowns, θ and the tension in the string. (2) If you introduce
variables like v and r, relate them to the variables your solution is supposed
to contain, and eliminate them.]

(c) What happens mathematically to your solution if the motor is run very
slowly (very large values of P)? Physically, what do you think would
actually happen in this case?

v

r

Problem 6.

θ

Problem 7.

Problem 9.

θ
L
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10. Psychology professor R.O. Dent requests funding for an experiment
on compulsive thrill-seeking behavior in hamsters, in which the subject is
to be attached to the end of a spring and whirled around in a horizontal
circle. The spring has equilibrium length b, and obeys Hooke’s law with
spring constant k. It is stiff enough to keep from bending significantly
under the hamster’s weight.

(a) Calculate the length of the spring when it is undergoing steady circular
motion in which one rotation takes a time T. Express your result in terms
of k, b, and T.

(b) The ethics committee somehow fails to veto the experiment, but the
safety committee expresses concern. Why? Does your equation do any-
thing unusual, or even spectacular, for any particular value of T?  What do
you think is the physical significance of this mathematical behavior?

11«. The figure shows an old-fashioned device called a flyball governor,
used for keeping an engine running at the correct speed. The whole thing
rotates about the vertical shaft, and the mass M is free to slide up and
down. This mass would have a connection (not shown) to a valve that
controlled the engine. If, for instance, the engine ran too fast, the mass
would rise, causing the engine to slow back down.

(a) Show that in the special case of a=0, the angle θ is given by

θ = 
   

cos– 1 g(m + M)P 2

4π2mL
   ,

where P is the period of rotation (time required for one complete rota-
tion).

(b) There is no closed-form solution for θ in the general case where a is
not zero. However, explain how the undesirable low-speed behavior of the
a=0 device would be improved by making a nonzero.

[Based on an example by J.P. den Hartog.]

12. The figure shows two blocks of masses m
1
 and m

2
 sliding in circles on

a frictionless table. Find the tension in the strings if the period of rotation
(time required for one complete rotation) is P.

13. The acceleration of an object in uniform circular motion can be given
either by |a|=|v|2/r or, equivalently, by |a|=4π2r/T2, where T is the time
required for one cycle. (The latter expression comes simply from substitut-
ing |v|=distance/time=circumference/T=2πr/T into the first expression.)
Person A says based on the first equation that the acceleration in circular
motion is greater when the circle is smaller. Person B, arguing from the
second equation, says that the acceleration is smaller when the circle is
smaller. Rewrite the two statements so that they are less misleading,
eliminating the supposed paradox. [Based on a problem by Arnold Arons.]

Problem 10.

Problem 11.

L1 L2
m1 m2

Problem 12.

mm

M

L

a

θ

L
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10 Gravity
Cruise your radio dial today and try to find any popular song that

would have been imaginable without Louis Armstrong. By introducing solo
improvisation into jazz, Armstrong took apart the jigsaw puzzle of popular
music and fit the pieces back together in a different way. In the same way,
Newton reassembled our view of the universe. Consider the titles of some
recent physics books written for the general reader: The God Particle,
Dreams of a Final Theory. When the subatomic particle called the neutrino
was recently proven for the first time to have mass, specialists in cosmology
began discussing seriously what effect this would have on calculations of the
ultimate fate of the universe: would the neutrinos’ mass cause enough extra
gravitational attraction to make the universe eventually stop expanding and
fall back together? Without Newton, such attempts at universal understand-
ing would not merely have seemed a little pretentious, they simply would
not have occurred to anyone.

This chapter is about Newton’s theory of gravity, which he used to
explain the motion of the planets as they orbited the sun. Whereas this
book has concentrated on Newton’s laws of motion, leaving gravity as a
dessert, Newton tosses off the laws of motion in the first 20 pages of the
Principia Mathematica and then spends the next 130 discussing the motion
of the planets. Clearly he saw this as the crucial scientific focus of his work.
Why? Because in it he showed that the same laws of motion applied to the
heavens as to the earth, and that the gravitational force that made an apple
fall was the same as the force that kept the earth’s motion from carrying it
away from the sun. What was radical about Newton was not his laws of
motion but his concept of a universal science of physics.

Gravity is the only really important force on the cosmic scale. Left: a false-color image of saturn’s rings, composed of innu-
merable tiny ice particles orbiting in circles under the influence of saturn’s gravity. Right: A stellar nursery, the Eagle Nebula.
Each pillar of hydrogen gas is about as tall as the diameter of our entire solar system. The hydrogen molecules all attract
each other through gravitational forces, resulting in the formation of clumps that contract to form new stars.
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10.1 Kepler’s Laws
Newton wouldn’t have been able to figure out why the planets move the

way they do if it hadn’t been for the astronomer Tycho Brahe (1546-1601)
and his protege Johannes Kepler (1571-1630), who together came up with
the first simple and accurate description of how the planets actually do
move. The difficulty of their task is suggested by the figure below, which
shows how the relatively simple orbital motions of the earth and Mars
combine so that as seen from earth Mars appears to be staggering in loops
like a drunken sailor.

sun

earth's orbit
Mars' orbit

Jan 1Feb 1
Mar 1

Apr 1 May 1

Jun 1Jul 1
Aug 1

As the earth
and Mars

revolve around
the sun at different 

rates, the combined 
effect of their motions 

makes Mars appear to 
trace a strange, looped

 path across the back-
ground of the distant 
stars.

Brahe, the last of the great naked-eye astronomers, collected extensive
data on the motions of the planets over a period of many years, taking the
giant step from the previous observations’ accuracy of about 10 seconds of
arc (10/60 of a degree) to an unprecedented 1 second. The quality of his
work is all the more remarkable considering that his observatory consisted
of four giant brass protractors mounted upright in his castle in Denmark.
Four different observers would simultaneously measure the position of a
planet in order to check for mistakes and reduce random errors.

With Brahe’s death, it fell to his former assistant Kepler to try to make
some sense out of the volumes of data. Kepler, in contradiction to his late
boss, had formed a prejudice, a correct one as it turned out, in favor of the
theory that the earth and planets revolved around the sun, rather than the
earth staying fixed and everything rotating about it. Although motion is
relative, it is not just a matter of opinion what circles what. The earth’s
rotation and revolution about the sun make it a noninertial reference frame,
which causes detectable violations of Newton’s laws when one attempts to
describe sufficiently precise experiments in the earth-fixed frame. Although
such direct experiments were not carried out until the 19th century, what

Tycho Brahe made his name as an
astronomer by showing that the bright
new star, today called a supernova,
that appeared in the skies in 1572 was
far beyond the Earth’s atmosphere.
This, along with Galileo’s discovery of
sunspots, showed that contrary to Ar-
istotle, the heavens were not perfect
and unchanging. Brahe’s fame as an
astronomer brought him patronage
from King Frederick II, allowing him to
carry out his historic high-precision
measurements of the planets’ motions.
A contradictory character, Brahe en-
joyed lecturing other nobles about the
evils of dueling, but had lost his own
nose in a youthful duel and had it re-
placed with a prosthesis made of an
alloy of gold and silver. Willing to en-
dure scandal in order to marry a peas-
ant, he nevertheless used the feudal
powers given to him by the king to
impose harsh forced labor on the in-
habitants of his parishes. The result
of their work, an Italian-style palace
with an observatory on top, surely
ranks as one of the most luxurious
science labs ever built. When the king
died and his son reduced Brahe’s privi-
leges, Brahe left in a huff for a new
position in Prague, taking his data with
him. He died of a ruptured bladder af-
ter falling from a wagon on the way
home from a party — in those days, it
was considered rude to leave the din-
ner table to relieve oneself.

Chapter 10 Gravity
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convinced everyone of the sun-centered system in the 17th century was that
Kepler was able to come up with a surprisingly simple set of mathematical
and geometrical rules for describing the planets’ motion using the sun-
centered assumption. After 900 pages of calculations and many false starts
and dead-end ideas, Kepler finally synthesized the data into the following
three laws:

Kepler’s elliptical orbit law: The planets orbit the sun in elliptical orbits
with the sun at one focus.

Kepler’s equal-area law: The line connecting a planet to the sun sweeps
out equal areas in equal amounts of time.

Kepler’s law of periods: The time required for a planet to orbit the sun,
called its period, is proportional to the long axis of the ellipse raised to
the 3/2 power. The constant of proportionality is the same for all the
planets.

Although the planets’ orbits are ellipses rather than circles, most are very
close to being circular.  The earth’s orbit, for instance, is only flattened by
1.7% relative to a circle.  In the special case of a planet in a circular orbit,
the two foci (plural of "focus") coincide at the center of the circle, and
Kepler’s elliptical orbit law thus says that the circle is centered on the sun.
The equal-area law implies that a planet in a circular orbit moves around
the sun with constant speed.  For a circular orbit, the law of periods then
amounts to a statement that the time for one orbit is proportional to r3/2,
where r is the radius. If all the planets were moving in their orbits at the
same speed, then the time for one orbit would simply depend on the
circumference of the circle, so it would only be proportional to r to the first
power. The more drastic dependence on r3/2 means that the outer planets
must be moving more slowly than the inner planets.

10.2 Newton’s Law of Gravity
The sun’s force on the planets obeys an inverse square law.

Kepler’s laws were a beautifully simple explanation of what the planets
did, but they didn’t address why they moved as they did. Did the sun exert a
force that pulled a planet toward the center of its orbit, or, as suggested by
Descartes, were the planets circulating in a whirlpool of some unknown
liquid? Kepler, working in the Aristotelian tradition, hypothesized not just
an inward force exerted by the sun on the planet, but also a second force in
the direction of motion to keep the planet from slowing down. Some
speculated that the sun attracted the planets magnetically.

Once Newton had formulated his laws of motion and taught them to
some of his friends, they began trying to connect them to Kepler’s laws. It
was clear now that an inward force would be needed to bend the planets’
paths. This force was presumably an attraction between the sun and each

An ellipse is a circle that has been dis-
torted by shrinking and stretching
along perpendicular axes.

An ellipse can be constructed by tying
a string to two pins and drawing like
this with the pencil stretching the string
taut.  Each pin constitutes one focus
of the ellipse.

If the time interval taken by the planet to move from P to Q is equal to the time
interval from R to S, then according to Kepler's equal-area law, the two shaded
areas are equal. The planet is moving faster during interval RS than it did during
PQ, which Newton later determined was due to the sun's gravitational force accel-
erating it. The equal-area  law predicts exactly how much it will speed up.

sun P

Q
R

S
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planet. (Although the sun does accelerate in response to the attractions of
the planets, its mass is so great that the effect had never been detected by
the prenewtonian astronomers.) Since the outer planets were moving slowly
along more gently curving paths than the inner planets, their accelerations
were apparently less. This could be explained if the sun’s force was deter-
mined by distance, becoming weaker for the farther planets. Physicists were
also familiar with the noncontact forces of electricity and magnetism, and
knew that they fell off rapidly with distance, so this made sense.

In the approximation of a circular orbit, the magnitude of the sun’s
force on the planet would have to be

F = ma = mv2/r   . (1)

Now although this equation has the magnitude, v, of the velocity vector in
it, what Newton expected was that there would be a more fundamental
underlying equation for the force of the sun on a planet, and that that
equation would involve the distance, r, from the sun to the object, but not
the object’s speed, v — motion doesn’t make objects lighter or heavier.

Self-Check
If eq. (1) really was generally applicable, what would happen to an object
released at rest in some empty region of the solar system?

Equation (1) was thus a useful piece of information which could be
related to the data on the planets simply because the planets happened to be
going in nearly circular orbits, but Newton wanted to combine it with other
equations and eliminate v algebraically in order to find a deeper truth.

To eliminate v, Newton used the equation

v =   circumference
T

= 2πr/T   . (2)

Of course this equation would also only be valid for planets in nearly
circular orbits. Plugging this into eq. (1) to eliminate v gives

F =    4π2mr

T 2    . (3)

This unfortunately has the side-effect of bringing in the period, T, which we
expect on similar physical grounds will not occur in the final answer. That’s
where the circular-orbit case, T ∝ r3/2,  of Kepler’s law of periods comes in.
Using it to eliminate T gives a result that depends only on the mass of the
planet and its distance from the sun:

F ∝ m/r2   . [ force of the sun on a planet of
mass m at a distance r from the sun;
same proportionality constant for all
the planets ]

(Since Kepler’s law of periods is only a proportionality, the final result is a
proportionality rather than an equation, and there is this no point in
hanging on to the factor of 4π2.)

It would just stay where it was. Plugging v=0 into eq. (1) would give F=0, so it would not accelerate from rest, and
would never fall into the sun. No astronomer had ever observed an object that did that!

Chapter 10 Gravity



187

As an example, the "twin planets" Uranus and Neptune have nearly the
same mass, but Neptune is about twice as far from the sun as Uranus, so the
sun’s gravitational force on Neptune is about four times smaller.

The forces between heavenly bodies are the same type of
force as terrestrial gravity

OK, but what kind of force was it? It probably wasn’t magnetic, since
magnetic forces have nothing to do with mass. Then came Newton’s great
insight. Lying under an apple tree and looking up at the moon in the sky,
he saw an apple fall. Might not the earth also attract the moon with the
same kind of gravitational force? The moon orbits the earth in the same way
that the planets orbit the sun, so maybe the earth’s force on the falling
apple, the earth’s force on the moon, and the sun’s force on a planet were all
the same type of force.

There was an easy way to test this hypothesis numerically. If it was true,
then we would expect the gravitational forces exerted by the earth to follow
the same F∝m/r2 rule as the forces exerted by the sun, but with a different
constant of proportionality appropriate to the earth’s gravitational strength.
The issue arises now of how to define the distance, r, between the earth and
the apple. An apple in England is closer to some parts of the earth than to
others, but suppose we take r to be the distance from the center of the earth
to the apple, i.e. the radius of the earth.  (The issue of how to measure r did
not arise in the analysis of the planets’ motions because the sun and planets
are so small compared to the distances separating them.)  Calling the
proportionality constant k, we have

F
earth on apple

=  k m
apple

 / r
earth

2

F
earth on moon

=  k m
moon

  / d
earth-moon

2   .

Newton’s second law says a=F/m, so

a
apple

 = k / r
earth

2

a
moon

 = k / d
earth-moon

2 .

The Greek astronomer Hipparchus had already found 2000 years before
that the distance from the earth to the moon was about 60 times the radius
of the earth, so if Newton’s hypothesis was right, the acceleration of the
moon would have to be 602=3600 times less than the acceleration of the
falling apple.

Applying a=v2/r to the acceleration of the moon yielded an acceleration
that was indeed 3600 times smaller than 9.8 m/s2, and Newton was con-
vinced he had unlocked the secret of the mysterious force that kept the
moon and planets in their orbits.

Newton’s law of gravity
The proportionality F∝m/r2 for the gravitational force on an object of

mass m only has a consistent proportionality constant for various objects if
they are being acted on by the gravity of the same object. Clearly the sun’s
gravitational strength is far greater than the earth’s, since the planets all orbit
the sun and do not exhibit any very large accelerations caused by the earth
(or by one another). What property of the sun gives it its great gravitational
strength? Its great volume?  Its great mass?  Its great temperature? Newton
reasoned that if the force was proportional to the mass of the object being

1

60
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acted on, then it would also make sense if the determining factor in the
gravitational strength of the object exerting the force was its own mass.
Assuming there were no other factors affecting the gravitational force, then
the only other thing needed to make quantitative predictions of gravita-
tional forces would be a proportionality constant. Newton called that
proportionality constant G, and the complete form of the law of gravity he
hypothesized was

F = Gm
1
m

2
/r2  . [ gravitational force between objects of mass

m
1
 and m

2
, separated by a distance r; r is not

the radius of anything ]

Newton conceived of gravity as an attraction between any two masses in the
universe. The constant G tells us the how many newtons the attractive force
is for two 1-kg masses separated by a distance of 1 m. The experimental
determination of G in ordinary units (as opposed to the special, nonmetric,
units used in astronomy) is described in section 10.5. This difficult mea-
surement was not accomplished until long after Newton’s death.

Example: The units of G
Question : What are the units of G?
Solution : Solving for G in Newton’s law of gravity gives

  G = Fr 2

m1m2
   ,

so the units of G must be N . m 2 / kg 2. Fully adorned with units,
the value of G is 6.67x10-11 N . m 2 / kg 2.

Example: Newton’s third law
Question : Is Newton’s law of gravity consistent with Newton’s
third law?
Solution : The third law requires two things. First, m

1
’s force on

m
2
 should be the same as m

2
’s force on m

1
. This works out,

because the product m
1
m

2
 gives the same result if we inter-

change the labels 1 and 2. Second, the forces should be in
opposite directions. This condition is also satisfied, because
Newton’s law of gravity refers to an attraction: each mass pulls
the other toward itself.

Example: Pluto and Charon
Question: Pluto’s moon Charon is unusually large considering
Pluto’s size, giving them the character of a double planet. Their
masses are 1.25x1022 and 1.9x1921 kg, and their average dis-
tance from one another is 1.96x104 km. What is the gravitational
force between them?
Solution : If we want to use the value of G expressed in SI
(meter-kilogram-second) units, we first have to convert the
distance to 1.96x107 m. The force is

   
6.67×10—11 N ⋅ m2

kg2 1.25 × 1022 kg 1.9 × 1021 kg

1.96 × 107 m
2

= 4.1x1018 N

1 m

1 kg1 kg

6.67x10-11 N

The gravitational attraction between
two 1-kg masses separated by a dis-
tance of 1 m is 6.67x10-11 N. Do not
memorize this number!

Computer-enhanced images of Pluto
and Charon, taken by the Hubble
Space Telescope.
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The proportionality to 1/r2 in Newton’s law of gravity was not entirely
unexpected.  Proportionalities to 1/r2 are found in many other phenomena
in which some effect spreads out from a point. For instance, the intensity of
the light from a candle is proportional to 1/r2, because at a distance r from
the candle, the light has to be spread out over the surface of an imaginary
sphere of area 4πr2. The same is true for the intensity of sound from a
firecracker, or the intensity of gamma radiation emitted by the Chernobyl
reactor. It’s important, however, to realize that this is only an analogy. Force
does not travel through space as sound or light does, and force is not a
substance that can be spread thicker or thinner like butter on toast.

Although several of Newton’s contemporaries had speculated that the
force of gravity might be proportional to 1/r2, none of them, even the ones
who had learned Newton’s laws of motion, had had any luck proving that
the resulting orbits would be ellipses, as Kepler had found empirically.
Newton did succeed in proving that elliptical orbits would result from a 1/r2

force, but we postpone the proof until the end of the next volume of the
textbook because it can be accomplished much more easily using the
concepts of energy and angular momentum.

Newton also predicted that orbits in the shape of hyperbolas should be
possible, and he was right.  Some comets, for instance, orbit the sun in very
elongated ellipses, but others pass through the solar system on hyperbolic
paths, never to return. Just as the trajectory of a faster baseball pitch is
flatter than that of a more slowly thrown ball, so the curvature of a planet’s
orbit depends on its speed. A spacecraft can be launched at relatively low
speed, resulting in a circular orbit about the earth, or it can be launched at a
higher speed, giving a more gently curved ellipse that reaches farther from
the earth, or it can be launched at a very high speed which puts it in an
even less curved hyperbolic orbit. As you go very far out on a hyperbola, it
approaches a straight line, i.e. its curvature eventually becomes nearly zero.

Newton also was able to prove that Kepler’s second law (sweeping out
equal areas in equal time intervals) was a logical consequence of his law of
gravity.  Newton’s version of the proof is moderately complicated, but the
proof becomes trivial once you understand the concept of angular momen-
tum, which will be covered later in the course. The proof will therefore be
deferred until section 5.7 of book 2.

The conic sections are the curves
made by cutting the surface of an infi-
nite cone with a plane.

An imaginary cannon able to shoot
cannonballs at very high speeds is
placed on top of an imaginary, very
tall mountain that reaches up above
the atmosphere. Depending on the
speed at which the ball is fired, it may
end up in a tightly curved elliptical or-
bit, a, a circular orbit, b, a bigger ellip-
tical orbit, c, or a nearly straight hy-
perbolic orbit, d.

a

b

d

c

hyperbola

ellipse

circle
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Self-Check

Which of Kepler’s laws would it make sense to apply to hyperbolic orbits?

Discussion Questions
A. How could Newton find the speed of the moon to plug in to a=v2/r?
B. Two projectiles of different mass shot out of guns on the surface of the earth
at the same speed and angle will follow the same trajectories, assuming that
air friction is negligible.  (You can verify this by throwing two objects together
from your hand and seeing if they separate or stay side by side.)  What
corresponding fact would be true for satellites of the earth having different
masses?
C. What is wrong with the following statement?  "A comet in an elliptical orbit
speeds up as it approaches the sun, because the sun’s force on it is increas-
ing."
D. Why would it not make sense to expect the earth’s gravitational force on a
bowling ball to be inversely proportional to the square of the distance between
their surfaces rather than their centers?
E. Does the earth accelerate as a result of the moon’s gravitational force on it?
Suppose two planets were bound to each other gravitationally the way the
earth and moon are, but the two planets had equal masses.  What would their
motion be like?
F. Spacecraft normally operate by firing their engines only for a few minutes at
a time, and an interplanetary probe will spend months or years on its way to its
destination without thrust. Suppose a spacecraft is in a circular orbit around
Mars, and it then briefly fires its engines in reverse, causing a sudden de-
crease in speed. What will this do to its orbit? What about a forward thrust?

10.3 Apparent Weightlessness
If you ask somebody at the bus stop why astronauts are weightless,

you’ll probably get one of the following two incorrect answers:

(1) They’re weightless because they’re so far from the earth.

(2) They’re weightless because they’re moving so fast.

The first answer is wrong, because the vast majority of astronauts never get
more than a thousand miles from the earth’s surface. The reduction in
gravity caused by their altitude is significant, but not 100%. The second
answer is wrong because Newton’s law of gravity only depends on distance,
not speed.

The correct answer is that astronauts in orbit around the earth are not
really weightless at all. Their weightlessness is only apparent. If there was no
gravitational force on the spaceship, it would obey Newton’s first law and
move off on a straight line, rather than orbiting the earth. Likewise, the
astronauts inside the spaceship are in orbit just like the spaceship itself, with
the earth’s gravitational force continually twisting their velocity vectors
around. The reason they appear to be weightless is that they are in the same
orbit as the spaceship, so although the earth’s gravity curves their trajectory
down toward the deck, the deck drops out from under them at the same
rate.

The equal-area law makes equally good sense in the case of a hyperbolic orbit (and observations verify it). The
elliptical orbit law had to be generalized by Newton to include hyperbolas. The law of periods doesn’t make sense
in the case of a hyperbolic orbit, because a hyperbola never closes back on itself, so the motion never repeats.
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Apparent weightlessness can also be experienced on earth. Any time you
jump up in the air, you experience the same kind of apparent weightlessness
that the astronauts do. While in the air, you can lift your arms more easily
than normal, because gravity does not make them fall any faster than the
rest of your body, which is falling out from under them. The Russian air
force now takes rich foreign tourists up in a big cargo plane and gives them
the feeling of weightlessness for a short period of time while the plane is
nose-down and dropping like a rock.

10.4 Vector Addition of Gravitational Forces
Pick a flower on earth and you move the farthest star.

Paul Dirac
When you stand on the ground, which part of the earth is pulling down

on you with its gravitational force? Most people are tempted to say that the
effect only comes from the part directly under you, since gravity always
pulls straight down. Here are three observations that might help to change
your mind:

• If you jump up in the air, gravity does not stop affecting you just
because you are not touching the earth: gravity is a noncontact force.
That means you are not immune from the gravity of distant parts of
our planet just because you are not touching them.

• Gravitational effects are not blocked by intervening matter.  For
instance, in an eclipse of the moon, the earth is lined up directly
between the sun and the moon, but only the sun’s light is blocked
from reaching the moon, not its gravitational force — if the sun’s
gravitational force on the moon was blocked in this situation,
astronomers would be able to tell because the moon’s acceleration
would change suddenly.  A more subtle but more easily observable
example is that the tides are caused by the moon’s gravity, and tidal
effects can occur on the side of the earth facing away from the moon.
Thus, far-off parts of the earth are not prevented from attracting you
with their gravity just because there is other stuff between you and
them.

• Prospectors sometimes search for underground deposits of dense
minerals by measuring the direction of the local gravitational forces,
i.e. the direction things fall or the direction a plumb bob hangs.  For
instance, the gravitational forces in the region to the west of such a
deposit would point along a line slightly to the east of the earth’s
center.  Just because the total gravitational force on you points down,
that doesn’t mean that only the parts of the earth directly below you
are attracting you.  It’s just that the sideways components of all the
force vectors acting on you come very close to canceling out.

A cubic centimeter of lava in the earth’s mantle, a grain of silica inside
Mt. Kilimanjaro, and a flea on a cat in Paris are all attracting you with their
gravity. What you feel is the vector sum of all the gravitational forces
exerted by all the atoms of our planet, and for that matter by all the atoms
in the universe.

Gravity only appears to pull straight
down because the near perfect sym-
metry of the earth makes the sideways
components of the total force on an
object cancel almost exactly. If the
symmetry is broken, e.g. by a dense
mineral deposit, the total force is a little
off to the side.
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When Newton tested his theory of gravity by comparing the orbital
acceleration of the moon to the acceleration of a falling apple on earth, he
assumed he could compute the earth’s force on the apple using the distance
from the apple to the earth’s center. Was he wrong? After all, it isn’t just the
earth’s center attracting the apple, it’s the whole earth. A kilogram of dirt a
few feet under his backyard in England would have a much greater force on
the apple than a kilogram of molten rock deep under Australia, thousands
of miles away. There’s really no obvious reason why the force should come
out right if you just pretend that the earth’s whole mass is concentrated at
its center. Also, we know that the earth has some parts that are more dense,
and some parts that are less dense. The solid crust, on which we live, is
considerably less dense than the molten rock on which it floats. By all
rights, the computation of the vector sum of all the forces exerted by all the
earth’s parts should be a horrendous mess.

Actually, Newton had sound mathematical reasons for treating the
earth’s mass as if it was concentrated at its center. First, although Newton no
doubt suspected the earth’s density was nonuniform, he knew that the
direction of its total gravitational force was very nearly toward the earth’s
center. That was strong evidence that the distribution of mass was very
symmetric, so that we can think of the earth as being made of many layers,
like an onion, with each layer having constant density throughout. (Today
there is further evidence for symmetry based on measurements of how the
vibrations from earthquakes and nuclear explosions travel through the
earth.) Newton then concentrated on the gravitational forces exerted by a
single such thin shell, and proved the following mathematical theorem,
known as the shell theorem:

If an object lies outside a thin, uniform shell of mass, then the
vector sum of all the gravitational forces exerted by all the parts of
the shell is the same as if all the shell’s mass was concentrated at its
center.  If the object lies inside the shell, then all the gravitational
forces cancel out exactly.

For terrestrial gravity, each shell acts as though its mass was concentrated at
the earth’s center, so the final result is the same as if the earth’s whole mass
was concentrated at its center.

The second part of the shell theorem, about the gravitational forces
canceling inside the shell, is a little surprising.  Obviously the forces would
all cancel out if you were at the exact center of a shell, but why should they
still cancel out perfectly if you are inside the shell but off-center?  The
whole idea might seem academic, since we don’t know of any hollow planets
in our solar system that astronauts could hope to visit, but actually it’s a
useful result for understanding gravity within the earth, which is an impor-
tant issue in geology.  It doesn’t matter that the earth is not actually hollow.
In a mine shaft at a depth of, say, 2 km, we can use the shell theorem to tell
us that the outermost 2 km of the earth has no net gravitational effect, and
the gravitational force is the same as what would be produced if the remain-
ing, deeper, parts of the earth were all concentrated at its center.

An object outside a spherical shell of
mass will feel gravitational forces from
every part of the shell — stronger
forces from the closer parts and
weaker ones from the parts farther
away. The shell theorem states that
the vector sum of all the forces is the
same as if all the mass had been con-
centrated at the center of the shell.
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Discussion Questions
A. If you hold an apple in your hand, does the apple exert a gravitational force
on the earth?  Is it much weaker than the earth’s gravitational force on the
apple?  Why doesn’t the earth seem to accelerate upward when you drop the
apple?
B. When astronauts travel from the earth to the moon, how does the gravita-
tional force on them change as they progress?
C. How would the gravity in the first-floor lobby of a massive skyscraper
compare with the gravity in an open field outside of the city?

10.5 Weighing the Earth
Let’s look more closely at the application of Newton’s law of gravity to

objects on the earth’s surface.  Since the earth’s gravitational force is the
same as if its mass was all concentrated at its center,  the force on a falling
object of mass m is given by

F = G M
earth 

m / r
earth

2    .

The object’s acceleration equals F/m, so the object’s mass cancels out and we
get the same acceleration for all falling objects, as we knew we should:

g = G M
earth 

/ r
earth

2     .

Newton  knew neither the mass of the earth nor a numerical value for
the constant G.  But if someone could measure G, then it would be possible
for the first time in history to determine the mass of the earth!  The only
way to measure G is to measure the gravitational force between two objects
of known mass, but that’s an exceedingly difficult task, because the force
between any two objects of ordinary size is extremely small.  The English
physicist Henry Cavendish was the first to succeed, using the apparatus
shown in the diagrams.  The two larger balls were lead spheres 8 inches in
diameter, and each one attracted the small ball near it.  The two small balls
hung from the ends of a horizontal rod, which itself hung by a thin thread.
The frame from which the larger balls hung could be rotated by hand about
a vertical axis, so that for instance the large ball on the right would pull its
neighboring small ball toward us and while the small ball on the left would
be pulled away from us.  The thread from which the small balls hung would
thus be twisted through a small angle, and by calibrating the twist of the
thread with known forces, the actual gravitational force could be deter-

Cavendish’s apparatus viewed from
the side, and a simplified version
viewed from above. The two large balls
are fixed in place, but the rod from
which the two small balls hang is free
to twist under the influence of the
gravitational forces.
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My student Narciso Guzman built this version of the
Cavendish experiment in his garage, from a descrip-
tion on the Web at  www.fourmilab.to. Two steel balls
sit  near the ends of a piece of styrofoam, which is sus-
pending from a ladder by fishing line (not visible in this
photo). To make vibrations die out more quickly, a small
piece of metal from a soda can is attached underneath
the styrofoam arm, sticking down into a bowl of water.
(The arm is not resting on the bowl.)

The sequence of four video frames on the right shows
the apparatus in action. Initially (top), lead bricks are
inserted near the steel balls. They attract the balls, and
the arm begins to rotate counterclockwise.

The main difficulties in this experiment are isolating
the apparatus from vibrations and air currents. Narciso
had to leave the room while the camcorder ran. Also, it
is helpful if the apparatus can be far from walls or furni-
ture that would create gravitational forces on it.
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mined.  Cavendish set up the whole apparatus in a room of his house,
nailing all the doors shut to keep air currents from disturbing the delicate
apparatus.  The results had to be observed through telescopes stuck through
holes drilled in the walls.  Cavendish’s experiment provided the first nu-
merical values for G and for the mass of the earth.  The presently ac-
cepted value of G is 6.67x10-11 N.m2/kg2.

The facing page shows a modern-day Cavendish experiment con-
structed by one of my students.

Knowing G not only allowed the determination of the earth’s mass but
also those of the sun and the other planets. For instance, by observing the
acceleration of one of Jupiter’s moons, we can infer the mass of Jupiter. The
following table gives the distances of the planets from the sun and the
masses of the sun and planets. (Other data are given in the back of the
book.)

average distance from
the sun, in units of
the earth's average
distance from the sun

mass, in units of the
earth's mass

sun — 330,000

mercury 0.38 .056

venus .72 .82

earth 1 1

mars 1.5 .11

jupiter 5.2 320

saturn 9.5 95

uranus 19 14

neptune 30 17

pluto 39 .002

Section 10.5 Weighing the Earth
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Discussion Questions
A. It would have been difficult for Cavendish to start designing an experiment
without at least some idea of the order of magnitude of G.  How could he
estimate it in advance to within a factor of 10?
B. Fill in the details of how one would determine Jupiter’s mass by observing
the acceleration of one of its moons. Why is it only necessary to know the
acceleration of the moon, not the actual force acting on it? Why don’t we need
to know the mass of the moon? What about a planet that has no moons, such
as Venus — how could its mass be found?
C. The gravitational constant G is very difficult to measure accurately, and is
the least accurately known of all the fundamental numbers of physics such as
the speed of light, the mass of the electron, etc.  But that’s in the mks system,
based on the meter as the unit of length, the kilogram as the unit of mass, and
the second as the unit of distance.  Astronomers sometimes use a different
system of units, in which the unit of distance, called the astronomical unit or
a.u., is the radius of the earth’s orbit, the unit of mass is the mass of the sun,
and the unit of time is the year (i.e. the time required for the earth to orbit the
sun).  In this system of units, G has a precise numerical value simply as a
matter of definition.  What is it?

10.6* Evidence for Repulsive Gravity
Until recently, physicists thought they understood gravity fairly well.

Einstein had modified Newton’s theory, but certain characteristrics of
gravitational forces were firmly established. For one thing, they were always
attractive. If gravity always attracts, then it is logical to ask why the universe
doesn’t collapse. Newton had answered this question by saying that if the
universe was infinite in all directions, then it would have no geometric
center toward which it would collapse; the forces on any particular star or
planet exerted by distant parts of the universe would tend to cancel out by
symmetry. More careful calculations, however, show that Newton’s universe
would have a tendency to collapse on smaller scales: any part of the universe
that happened to be slightly more dense than average would contract
further, and this contraction would result in stronger gravitational forces,
which would cause even more rapid contraction, and so on.

When Einstein overhauled gravity, the same problem reared its ugly
head. Like Newton, Einstein was predisposed to believe in a universe that
was static, so he added a special repulsive term to his equations, intended to
prevent a collapse. This term was not associated with any attraction of mass
for mass, but represented merely an overall tendency for space itself to
expand unless restrained by the matter that inhabited it. It turns out that
Einstein’s solution, like Newton’s, is unstable. Furthermore, it was soon
discovered observationally that the universe was expanding, and this was
interpreted by creating the Big Bang model, in which the universe’s current
expansion is the aftermath of a fantastically hot explosion. An expanding
universe, unlike a static one, was capable of being explained with Einstein’s
equations, without any repulsion term. The universe’s expansion would
simply slow down over time due to the attractive gravitational forces. After
these developments, Einstein said woefully that adding the repulsive term,
known as the cosmological constant, had been the greatest blunder of his
life.

This was the state of things until 1999, when evidence began to turn up
that the universe’s expansion has been speeding up rather than slowing
down! The first evidence came from using a telescope as a sort of time

Book 3, section 3.5 presents
some of the evidence for the
Big Bang.
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machine: light from a distant galaxy may have taken billions of years to
reach us, so we are seeing it as it was far in the past. Looking back in time,
astronomers saw the universe expanding at speeds that ware lower, rather
than higher. At first they were mortified, since this was exactly the opposite
of what had been expected. The statistical quality of the data was also not
good enough to constute ironclad proof, and there were worries about
systematic errors. The case for an accelerating expansion has however been
nailed down by high-precision mapping of the dim, sky-wide afterglow of
the Big Bang, known as the cosmic microwave background. Some theorists
have proposed reviving Einstein’s cosmological constant to account for the
acceleration, while others believe it is evidence for a mysterious form of
matter which exhibits gravitational repulsion. Some recent ideas on this
topic can be found in the January 2001 issue of Scientific American, which
is available online at

http://www.sciam.com/2001/0101issue/0101currentissue.html   .

Section 10.6* Evidence for Repulsive Gravity
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Summary
Selected Vocabulary

ellipse ................................ a flattened circle; one of the conic sections
conic section...................... a curve formed by the intersection of a plane and an infinite cone
hyperbola .......................... another conic section; it does not close back on itself
period ................................ the time required for a planet to complete one orbit; more generally, the

time for one repetition of some repeating motion
focus .................................. one of two special points inside an ellipse: the ellipse consists of all points

such that the sum of the distances to the two foci equals a certain number;
a hyperbola also has a focus

Notation
G ....................................... the constant of proportionality in Newton’s law of gravity; the gravita-

tional force of attraction between two 1-kg spheres at a center-to-center
distance of 1 m

Summary
Kepler deduced three empirical laws from data on the motion of the planets:

Kepler’s elliptical orbit law : The planets orbit the sun in elliptical orbits with the sun at one focus.

Kepler’s equal-area law : The line connecting a planet to the sun sweeps out equal areas in equal
amounts of time.

Kepler’s law of periods : The time required for a planet to orbit the sun is proportional to the long axis
of the ellipse raised to the 3/2 power. The constant of proportionality is the same for all the planets.

Newton was able to find a more fundamental explanation for these laws. Newton’s law of gravity states
that the magnitude of the attractive force between any two objects in the universe is given by

F = Gm1m2/r 
2   .

Weightlessness of objects in orbit around the earth is only apparent. An astronaut inside a spaceship is
simply falling along with the spaceship. Since the spaceship is falling out from under the astronaut, it appears
as though there was no gravity accelerating the astronaut down toward the deck.

Gravitational forces, like all other forces, add like vectors. A gravitational force such as we ordinarily feel is
the vector sum of all the forces exerted by all the parts of the earth. As a consequence of this, Newton proved
the shell theorem for gravitational forces:

If an object lies outside a thin, uniform shell of mass, then the vector sum of all the gravitational forces
exerted by all the parts of the shell is the same as if all the shell’s mass was concentrated at its center.
If the object lies inside the shell, then all the gravitational forces cancel out exactly.
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Problem 8.

Earth's orbit

Mars' orbit

your orbit

Homework Problems
1 ✓. Roy has a mass of 60 kg. Laurie has a mass of 65 kg. They are 1.5 m
apart.
(a) What is the magnitude of the gravitational force of the earth on Roy?
(b) What is the magnitude of Roy’s gravitational force on the earth?
(c) What is the magnitude of the gravitational force between Roy and
Laurie?
(d) What is the magnitude of the gravitational force between Laurie and
the sun?

2. During a solar eclipse, the moon, earth and sun all lie on the same line,
with the moon between the earth and sun. Define your coordinates so that
the earth and moon lie at greater x values than the sun. For each force,
give the correct sign as well as the magnitude. (a) What force is exerted on
the moon by the sun? (b) On the moon by the earth? (c) On the earth by
the sun? (d) What total force is exerted on the sun? (e) On the moon? (f )
On the earth?

3✓. Suppose that on a certain day there is a crescent moon, and you can
tell by the shape of the crescent that the earth, sun and moon form a
triangle with a 135° interior angle at the moon’s corner. What is the
magnitude of the total gravitational force of the earth and the sun on the
moon?

moon

earth

sun

4. How high above the Earth’s surface must a rocket be in order to have 1/
100 the weight it would have at the surface? Express your answer in units
of the radius of the Earth.

5✓. The star Lalande 21185 was found in 1996 to have two planets in
roughly circular orbits, with periods of 6 and 30 years. What is the ratio of
the two planets’ orbital radii?

6. In a Star Trek episode, the Enterprise is in a circular orbit around a
planet when something happens to the engines. Spock then tells Kirk that
the ship will spiral into the planet’s surface unless they can fix the engines.
Is this scientifically correct? Why?

S A  solution is given in the back of the book. « A difficult problem.
✓ A computerized answer check is available. ∫ A problem that requires calculus.

Homework Problems
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7. (a) Suppose a rotating spherical body such as a planet has a radius r and
a uniform density ρ, and the time required for one rotation is T. At the
surface of the planet, the apparent acceleration of a falling object is
reduced by acceleration of the ground out from under it. Derive an
equation for the apparent acceleration of gravity, g, at the equator in terms
of r, ρ, T, and G.
(b) Applying your equation from (a), by what fraction is your apparent
weight reduced at the equator compared to the poles, due to the Earth’s
rotation?
(c) Using your equation from (a), derive an equation giving the value of T
for which the apparent acceleration of gravity becomes zero, i.e. objects
can spontaneously drift off the surface of the planet. Show that T only
depends on ρ, and not on r.
(d) Applying your equation from (c), how long would a day have to be in
order to reduce the apparent weight of objects at the equator of the Earth
to zero? [Answer: 1.4 hours]
(e) Observational astronomers have recently found objects they called
pulsars, which emit bursts of radiation at regular intervals of less than a
second. If a pulsar is to be interpreted as a rotating sphere beaming out a
natural "searchlight" that sweeps past the earth with each rotation, use
your equation from (c) to show that its density would have to be much
greater than that of ordinary matter.
(f ) Theoretical astronomers predicted decades ago that certain stars that
used up their sources of energy could collapse, forming a ball of neutrons
with the fantastic density of ~1017 kg/m3. If this is what pulsars really are,
use your equation from (c) to explain why no pulsar has ever been ob-
served that flashes with a period of less than 1 ms or so.

8. You are considering going on a space voyage to Mars, in which your
route would be half an ellipse, tangent to the Earth’s orbit at one end and
tangent to Mars’ orbit at the other. Your spacecraft’s engines will only be
used at the beginning and end, not during the voyage. How long would
the outward leg of your trip last? (Assume the orbits of Earth and Mars are
circular.)

9.« (a) If the earth was of uniform density, would your weight be in-
creased or decreased at the bottom of a mine shaft? Explain. (b) In real life,
objects weight slightly more at the bottom of a mine shaft. What does that
allow us to infer about the Earth?

10 S. Ceres, the largest asteroid in our solar system, is a spherical body
with a mass 6000 times less than the earth’s, and a radius which is 13
times smaller.  If an astronaut who weighs 400 N on earth is visiting the
surface of Ceres, what is her weight?

11 S. Prove, based on Newton’s laws of motion and Newton’s law of
gravity, that all falling objects have the same acceleration if they are
dropped at the same location on the earth and if other forces such as
friction are unimportant.  Do not just say, “g=9.8 m/s2 -- it’s constant.”
You are supposed to be proving that g should be the same number for all
objects.
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Problem 12.

12 S. The figure shows an image from the Galileo space probe taken
during its August 1993 flyby of the asteroid Ida. Astronomers were
surprised when Galileo detected a smaller object orbiting Ida. This smaller
object, the only known satellite of an asteroid in our solar system, was
christened Dactyl, after the mythical creatures who lived on Mount Ida,
and who protected the infant Zeus. For scale, Ida is about the size and
shape of Orange County, and Dactyl the size of a college campus. Galileo
was unfortunately unable to measure the time, T, required for Dactyl to
orbit Ida. If it had, astronomers would have been able to make the first
accurate determination of the mass and density of an asteroid. Find an
equation for the density, ρ, of Ida in terms of Ida’s known volume, V, the
known radius, r, of Dactyl’s orbit, and the lamentably unknown variable T.
(This is the same technique that was used successfully for determining the
masses and densities of the planets that have moons.)

13 ∫. If a bullet is shot straight up at a high enough velocity, it will never
return to the earth. This is known as the escape velocity. We will discuss
escape velocity using the concept of energy in the next book of the series,
but it can also be gotten at using straightforward calculus. In this problem,
you will analyze the motion of an object of mass m whose initial velocity is
exactly equal to escape velocity. We assume that it is starting from the
surface of a spherically symmetric planet of mass M and radius b. The trick
is to guess at the general form of the solution, and then determine the
solution in more detail. Assume (as is true) that the solution is of the form
r = kt p, where r is the object’s distance from the center of the planet at
time t, and k and p are constants. (a) Find the acceleration, and use
Newton’s second law and Newton’s law of gravity to determine k and p.
You should find that the result is independent of m. (b) What happens to
the velocity as t approaches infinity? (c) Determine escape velocity from
the Earth’s surface.

14. Astronomers have recently observed stars orbiting at very high speeds
around an unknown object near the center of our galaxy. For stars orbiting
at distances of about 1014 m from the object, the orbital velocities are
about 106 m/s. Assuming the orbits are circular, estimate the mass of the
object, in units of the mass of the sun, 2x1030 kg. If the object was a
tightly packed cluster of normal stars, it should be a very bright source of
light. Since no visible light is detected coming from it, it is instead be-
lieved to be a supermassive black hole.

15 S. Astronomers have detected a solar system consisting of three planets
orbiting the star Upsilon Andromedae. The planets have been named b, c,
and d. Planet b’s average distance from the star is 0.059 A.U., and planet
c’s average distance is 0.83 A.U., where an astronomical unit or A.U. is
defined as the distance from the Earth to the sun. For technical reasons, it
is possible to determine the ratios of the planets’ masses, but their masses
cannot presently be determined in absolute units. Planet c’s mass is 3.0
times that of planet b. Compare the star’s average gravitational force on
planet c with its average force on planet b. [Based on a problem by Arnold
Arons.]
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16 S. Some communications satellites are in orbits called geosynchronous:
the satellite takes one day to orbit the earth from west to east, so that as
the earth spins, the satellite remains above the same point on the equator.
What is such a satellite’s altitude above the surface of the earth?

17 S. As is discussed in more detail in section 5.1 of book 2, tidal interac-
tions with the earth are causing the moon’s orbit to grow gradually larger.
Laser beams bounced off of a mirror left on the moon by astronauts have
allowed a measurement of the moon’s rate of recession, which is about 1
cm per year. This means that the gravitational force acting between earth
and moon is decreasing. By what fraction does the force decrease with
each 27-day orbit? [Hint: If you try to calculate the two forces and
subtract, your calculator will probably give a result of zero due to round-
ing. Instead, reason about the fractional amount by which the quantity 1/
r2 will change. As a warm-up, you may wish to observe the percentage
change in 1/r2 that results from changing r from 1 to 1.01. Based on a
problem by Arnold Arons.]

18. Suppose that we inhabited a universe in which, instead of Newton’s

law of gravity, we had   F = k m 1m 2 / r 2 , where k is some constant with

different units than G. (The force is still attractive.) However, we assume
that a=F/m and the rest of Newtonian physics remains true, and we use
a=F/m to define our mass scale, so that, e.g., a mass of 2 kg is one which
exhibits half the acceleration when the same force is applied to it as to a 1
kg mass. (a) Is this new law of gravity consistent with Newton’s third law?
(b) Suppose you lived in such a universe, and you dropped two unequal
masses side by side. What would happen? (c) Numerically, suppose a 1.0-
kg object falls with an acceleration of 10 m/s2. What would be the accel-
eration of a rain drop with a mass of 0.1 g? Would you want to go out in
the rain? (d) If a falling object broke into two unequal pieces while it fell,
what would happen? (e) Invent a law of gravity that results in behavior
that is the opposite of what you found in part b. [Based on a problem by
Arnold Arons.]

19 S. (a) A certain vile alien gangster lives on the surface of an asteroid,
where his weight is 0.20 N. He decides he needs to lose weight without
reducing his consumption of princesses, so he’s going to move to a differ-
ent asteroid where his weight will be 0.10 N. The real estate agent’s
database has asteroids listed by mass, however, not by surface gravity.
Assuming that all asteroids are spherical and have the same density, how
should the mass of his new asteroid compare with that of his old one? (b)
Jupiter’s mass is 318 times the Earth’s, and its gravity is about twice
Earth’s. Is this consistent with the results of part a? If not, how do you
explain the discrepancy?

20. Where would an object have to be located so that it would experience
zero total gravitational force from the earth and moon?

21. The planet Uranus has a mass of 8.68x1025 kg and a radius of 2.56x104

km. The figure shows the relative sizes of Uranus and Earth. (a) Compute
the ratio g

U
/g

E
, where g

U
 is the strength of the gravitational field at the

surface of Uranus and g
E
 is the corresponding quantity at the surface of the

Earth. (b) What is surprising about this result? How do you explain it?

Problem 21. The sizes of Uranus and
Earth are compared. The image of
Uranus is from the Voyager 2 probe,
and the photo of the earth was taken
by the Apollo 11 astronauts.

Chapter 10 Gravity
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Exercises
Exercise 0A: Models and Idealization

Equipment:
coffee filters
ramps (one per group)
balls of various sizes
sticky tape
vacuum pump and “guinea and feather” apparatus (one)

The motion of falling objects has been recognized since ancient times as an important piece of phys-
ics, but the motion is inconveniently fast, so in our everyday experience it can be hard to tell exactly
what objects are doing when they fall. In this exercise you will use several techniques to get around
this problem and study the motion. Your goal is to construct a scientific model of falling. A model
means an explanation that makes testable predictions. Often models contain simplifications or ideali-
zations that make them easier to work with, even though they are not strictly realistic.

1. One method of making falling easier to observe is to use objects like feathers that we know from
everyday experience will not fall as fast. You will use coffee filters, in stacks of various sizes, to test the
following two hypotheses and see which one is true, or whether neither is true:

Hypothesis 1A: When an object is dropped, it rapidly speeds up to a certain natural falling
speed, and then continues to fall at that speed. The falling speed is proportional to the object’s
weight. (A proportionality is not just a statement that if one thing gets bigger, the other does too.
It says that if one becomes three times bigger, the other also gets three times bigger, etc.)

Hypothesis 1B: Different objects fall the same way, regardless of weight.

Test these hypotheses and discuss your results with your instructor.

2. A second way to slow down the action is to let a ball roll down a ramp. The steeper the ramp, the
closer to free fall. Based on your experience in part 1, write a hypothesis about what will happen when
you race a heavier ball against a lighter ball down the same ramp, starting them both from rest.

Hypothesis:______________________________________________________________

Show your hypothesis to your instructor, and then test it.

You have probably found that falling was more complicated than you thought! Is there more than one
factor that affects the motion of a falling object? Can you imagine certain idealized situations that are
simpler?Try to agree verbally with your group on an informal model of falling that can make predictions
about the experiments described in parts 3 and 4.

3. You have three balls: a standard “comparison ball” of medium weight, a light ball, and a heavy ball.
Suppose you stand on a chair and (a) drop the light ball side by side with the comparison ball, then (b)
drop the heavy ball side by side with the comparison ball, then (c) join the light and heavy balls
together with sticky tape and drop them side by side with the comparison ball.

Use your model to make a prediction:____________________________________________________

Test your prediction.

4. Your instructor will pump nearly all the air out of a chamber containing a feather and a heavier
object, then let them fall side by side in the chamber.

Use your model to make a prediction:____________________________________________________
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Exercise 1A: Scaling Applied to Leaves

Equipment:
leaves of three sizes, having roughly similar proportions of length, width, and thickness

(example: blades of grass, large ficus leaves, and agave leaves)
balance

1. Each group will have one leaf, and should measure its surface area and volume, and determine its
surface-to-volume ratio (surface area divided by volume). For consistency, every group should use
units of cm2 and cm3, and should only find the area of one side of the leaf. The area can be found by
tracing the area of the leaf on graph paper and counting squares. The volume can be found by weigh-
ing the leaf and assuming that its density is 1 g/cm3, which is nearly true since leaves are mostly water.
Write your results on the board for comparison with the other groups’ numbers.
2. Both the surface area and the volume are bigger for bigger leaves, but what about the surface to
volume ratios? What implications would this have for the plants’ abilities to survive in different environ-
ments?
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Exercise 2A: Changing Velocity

This exercise involves Michael Johnson’s world-record 200-meter sprint in the 1996 Olympics. The
table gives the distance he has covered at various times.  (The data are made up, except for his total
time.) Each group is to find a value of ∆x/∆t between two specified instants, with the members of the
group checking each other’s answers.  We will then compare everyone’s results and discuss how this
relates to velocity.

t (s) x (m)
A 10.200 100.0000
B 10.210 100.0990
C 10.300 100.9912
D 11.200 110.0168
E 19.320 200.0000

group 1: Find ∆x/∆t using points A and B.
group 2: Find ∆x/∆t using points A and C.
group 3: Find ∆x/∆t using points A and D.
group 4: Find ∆x/∆t using points A and E.
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Exercise 3A: Reasoning with Ratios and Powers

Equipment:
ping-pong balls and paddles
two-meter sticks

You have probably bounced a ping pong ball straight up and down in the air. The time between hits is
related to the height to which you hit the ball. If you take twice as much time between hits, how many
times higher do you think you will have to hit the ball? Write down your hypoth-
esis:__________________________

Your instructor will first beat out a tempo of 240 beats per minute (four beats per second), which you
should try to match with the ping-pong ball. Measure the height to which the ball rises:_______________

Now try it at 120 beats per minute:________________

Compare your hypothesis and your results with the rest of the class.
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Exercise 4A: Force and Motion

Equipment:
2-meter pieces of butcher paper
wood blocks with hooks
string
masses to put on top of the blocks to increase friction
spring scales (preferably calibrated in Newtons)

Suppose a person pushes a crate, sliding it across the floor at a certain speed, and then repeats the
same thing but at a higher speed. This is essentially the situation you will act out in this exercise. What
do you think is different about her force on the crate in the two situations? Discuss this with your group
and write down your hypothesis:

_________________________________________________________________________

1. First you will measure the amount of friction between the wood block and the butcher paper when
the wood and paper surfaces are slipping over each other. The idea is to attach a spring scale to the
block and then slide the butcher paper under the block while using the scale to keep the block from
moving with it. Depending on the amount of force your spring scale was designed to measure, you
may need to put an extra mass on top of the block in order to increase the amount of friction. It is a
good idea to use long piece of string to attach the block to the spring scale, since otherwise one tends
to pull at an angle instead of directly horizontally.

First measure the amount of friction force when sliding the butcher paper as slowly as pos-
sible:___________________

Now measure the amount of friction force at a significantly higher speed, say 1 meter per second. (If
you try to go too fast, the motion is jerky, and it is impossible to get an accurate reading.)
___________________

Discuss your results. Why are we justified in assuming that the string’s force on the block (i.e. the
scale reading) is the same amount as the paper’s frictional force on the block?

2. Now try the same thing but with the block moving and the paper standing still. Try two different
speeds.

Do your results agree with your original hypothesis? If not, discuss what’s going on. How does the
block “know” how fast to go?
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Exercise 4B: Interactions

Equipment:
neodymium disc magnets (3/group)
compass
triple-arm balance (2/group)
clamp and 50-cm vertical rod for holding

balance up
string
tape
scissors

Your goal in this exercise is to compare the forces
two magnets exert on each other, i.e. to compare
magnet A’s force on magnet B to magnet B’s force
on magnet A. Magnet B will be made out of two of
the small disc magnets put together, so it is twice
as strong as magnet A.

1. Note that these magnets are extremely strong!
Being careful not to pinch your skin, put two disc
magnets together to make magnet B.

2. Familiarize yourself with how the magnets be-
have. In addition to magnets A and B, there are
two other magnets that can come into play. The
compass needle itself is a magnet, and the planet
earth is a magnet. Ordinarily the compass needle
twists around under the influence of the earth, but
the disc magnets are very strong close up, so if
you bring them within a few cm of the compass,
the compass is essentially just responding to them.
Investigate how different parts of magnets A and
B interact with the compass, and label them ap-
propriately. Investigate how magnets A and B can
attract or repel one another.

3. You are ready to form a hypothesis about the
following situation.  Suppose we set up two bal-
ances as shown in the figure.  The magnets are
not touching.  The top magnet is hanging from a
hook underneath the pan, giving the same result
as if it was on top of the pan.  Make sure it is hang-
ing under the center of the pan. You will want to
make sure the magnets are pulling on each other,
not pushing each other away, so that the top mag-
net will stay in one place.

The balances will not show the magnets’ true
weights, because the magnets are exerting forces
on each other.  The top balance will read a higher
number than it would without any magnetic forces,
and the bottom balance will have a lower than
normal reading.  The difference between each
magnet’s true weight and the reading on the bal-

ance gives a measure of how strongly the magnet
is being pushed or pulled by the other magnet.

How do you think the amount of pushing or pull-
ing experienced by the two magnets will compare?
In other words, which reading will change more,
or will they change by the same amount?  Write
down a hypothesis:________________________

Before going on to part 4, discuss your hypoth-
esis with your instructor.

4. Now set up the experiment described above
with two balances.  Since we are interested in the
changse in the scale readings caused by the mag-
netic forces, you will need to take a total of four
scale readings: one pair with the balances sepa-
rated and one pair with the magnets close together
as shown in the figure above.

When the balances are together and the magnetic
forces are acting, it is not possible to get both bal-
ances to reach equilibrium at the same time, be-
cause sliding the weights on one balance can
cause its magnet to move up or down, tipping the
other balance.  Therefore, while you take a read-
ing from one balance, you need to immobilize the
other in the horizontal position by taping its tip so
it points exactly at the zero mark.

You will also probably find that as you slide the
weights, the pointer swings suddenly to the oppo-
site side, but you can never get it to be stable in
the middle (zero) position.  Try bringing the pointer
manually to the zero position and then releasing
it.  If it swings up, you’re too low, and if it swings
down, you’re too high.  Search for the dividing line
between the too-low region and the too-high re-
gion.

If the changes in the scale readings are very small
(say a few grams or less), you need to get the
magnets closer together.  It should be possible to
get the scale readings to change by large amounts
(up to 10 or 20 g).

magnet A taped to pencil
magnet B

pencil
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Exercise 5A: Friction

Equipment:
2-meter pieces of butcher paper
wood blocks with hooks
string
masses to put on top of the blocks to increase friction
spring scales (preferably calibrated in Newtons)

1. Using the same equipment as in exercise 4A, test the statement that kinetic friction is approximately
independent of velocity.

2. Test the statement that kinetic friction is independent of surface area.

Exrcise 10A: The Shell Theorem

A

B

C
D

E

F

G

This exercise is an approximate numerical test of the shell theorem. There are seven masses A-G,
each being one kilogram. Masses A-E, each one meter from the center, form a shape like two Egyp-
tian pyramids joined at their bases; this is a rough approximation to a six-kilogram spherical shell of
mass. Mass G is five meters from the center of the main group. The class will divide into six groups
and split up the work required in order to calculate the vector sum of the six gravitational forces
exerted on mass G. Depending on the size of the class, more than one group may be assigned to deal
with the contribution of the same mass to the total force, and the redundant groups can check each
other’s results.

1. Discuss as a class what can be done to simplify the task of calculating the vector sum, and how to
organize things so that each group can work in parallel with the others.

2. Each group should write its results on the board in units of piconewtons, retaining six significant
figures of precision.

3. The class will determine the vector sum and compare with the result that would be obtained with the
shell theorem.
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Solutions to Selected
Problems

Chapter 0

6. 
  134 mg × 10 – 3 g

1 mg × 10 – 3 kg
1 g = 1.34 × 10 – 4 kg

8. (a) Let’s do 10.0 g and 1000 g. The arithmetic
mean is 505 grams. It comes out to be 0.505 kg,
which is consistent. (b) The geometric mean comes
out to be 100 g or 0.1 kg, which is consistent. (c) If
we multiply meters by meters, we get square
meters. Multiplying grams by grams should give
square grams! This sounds strange, but it makes
sense. Taking the square root of square grams (g2)
gives grams again. (d) No. The superduper mean of
two quantities with units of grams wouldn’t even be
something with units of grams! Related to this
shortcoming is the fact that the superduper mean
would fail the kind of consistency test carried out in
the first two parts of the problem.

Chapter 1

10.   1 mm2 × 1 cm
10 mm

2
= 10 – 2 cm2

11. The bigger scope has a diameter that’s ten times
greater. Area scales as the square of the linear
dimensions, so its light-gathering power is a hun-
dred times greater (10x10).

12. Since they differ by two steps on the Richter
scale, the energy of the bigger quake is 10000 times
greater. The wave forms a hemisphere, and the
surface area of the hemisphere over which the
energy is spread is proportional to the square of its
radius. If the amount of vibration was the same, then
the surface areas much be in the ratio of 10000:1,
which means that the ratio of the radii is 100:1.

Chapter 2

4. 1 light-year = v ∆t

=  3.0x108 m/s 1 year

 
  × 365 days

1 year
24 hours

1 day
3600 s
1 hour

=  9.5x1015 m

5. Velocity is relative, so having to lean tells you
nothing about the train’s velocity.  Fullerton is moving
at a huge speed relative to Beijing, but that doesn’t
produce any noticeable effect in either city.  The fact
that you have to lean tells you that the train is accel-
erating.

7. To the person riding the moving bike, bug A is
simply going in circles. The only difference between
the motions of the two wheels is that one is traveling
through space, but motion is relative, so this doesn’t
have any effect on the bugs. It’s equally hard for each
of them.

10. In one second, the ship moves v meters to the
east, and the person moves v meters north relative to
the deck. Relative to the water, he traces the diago-
nal of a triangle whose length is given by the
Pythagorean theorem, (v 2+v 2)1/2=21/2v. Relative to the
water, he is moving at a 45-degree angle between
north and east.

Chapter 3

14.

 

x

v

t

t

15. Taking g to be 10 m/s, the bullet loses 10 m/s of
speed every second, so it will take 10 s to come to a
stop, and then another 10 s to come back down, for a
total of 20 s.

16.    ∆x = 1
2at 2 , so for a fixed value of ∆x, we have

   t ∝ 1/ a . Decreasing a by a factor of 3 means that t

will increase by a factor of  3 .

Solutions to Selected Problems
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17. v =   dx
dt

=   10 – 3t 2

a =   dv
dt

= —6t

= —18 m/s2

18. (a) Solving    ∆x = 1
2at 2 for a, we find a=2∆x/t2=5.51

m/s2. (b) v=    2a∆x =66.6 m/s. (c) The actual car’s
final velocity is less than that of the idealized con-
stant-acceleration car. If the real car and the idealized
car covered the quarter mile in the same time but the
real car was moving more slowly at the end than the
idealized one, the real car must have been going
faster than the idealized car at the beginning of the
race. The real car apparently has a greater accelera-
tion at the beginning, and less acceleration at the
end. This make sense, because every car has some
maximum speed, which is the speed beyond which it
cannot accelerate.

19. Since the lines are at intervals of one m/s and
one second, each box represents one meter. From
t=0 to t=2 s, the area under the curve represents a
positive ∆x of 6 m. (The triangle has half the area of
the 2x6 rectangle it fits inside.) After t=2 s, the area
above the curve represents negative ∆x. To get –6 m
worth of area, we need to go out to t=6 s, at which
point the triangle under the axis has a width of 4 s
and a height of 3 m/s, for an area of 6 m (half of 3x4).

20. (a) We choose a coordinate system with positive
pointing to the right. Some people might expect that
the ball would slow down once it was on the more
gentle ramp. This may be true if there is significant
friction, but Galileo’s experiments with inclined planes
showed that when friction is negligible, a ball rolling
on a ramp has constant acceleration, not constant
speed. The speed stops increasing as quickly once
the ball is on the more gentle slope, but it still keeps
on increasing. The a-t graph can be drawn by in-
specting the slope of the v-t graph.

v

t

a

t

(b) The ball will roll back down, so the second half of
the motion is the same as in part a. In the first (rising)
half of the motion, the velocity is negative, since the
motion is in the opposite direction compared to the
positive x axis. The acceleration is again found by
inspecting the slope of the v-t graph.

v

t

a

t

21. This is a case where it’s probably easiest to draw
the acceleration graph first. While the ball is in the air,
the only force acting on it is gravity, so it must have
the same, constant acceleration during each hop.
Choosing a coordinate system where the positive x
axis points up, this becomes a negative acceleration
(force in the opposite direction compared to the axis).
During the short times between hops when the ball is
in contact with the ground, it experiences a large
acceleration, which turns around its velocity very
rapidly. These short positive accelerations probably
aren’t constant, but it’s hard to know how they’d really
look. We just idealize them as constant accelerations.
Since our acceleration graph consists of constant-
acceleration segments, the velocity graph must
consist of line segments, and the position graph must
consist of parabola.

Solutions to Selected Problems
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x

t

v

t

a

t

22. We have vf
2=2a∆x, so the distance is proportional

to the square of the velocity. To get up to half the
speed, the ball needs 1/4 the distance, i.e. L/4.

Chapter 4

7. a=   ∆v
∆t , and also a=  F

m , so

∆t =   ∆v
a

=   m∆v
F

=  (1000 kg)(50 m/s – 20 m/s)
3000 N

= 10 s

Chapter 5

14. (a)

top spring’s rightward force on connector
...connector’s leftward force on top spring

bottom spring’s rightward force on connector
...connector’s leftward force on bottom spring

hand’s leftward force on connector
...connector’s rightward force on hand

Looking at the three forces on the connector, we see
that the hand’s force must be double the force of
either spring. The value of x-x

o
 is the same for both

Solutions to Selected Problems

springs and for the arrangement as a whole, so the
spring constant must be 2k. This corresponds to a
stiffer spring (more force to produce the same
extension).

(b) Forces in which the left spring participates:

hand’s leftward force on left spring
...left spring’s rightward force on hand

right spring’s rightward force on left spring
...left spring’s leftward force on right spring

Forces in which the right spring participates:

left spring’s leftward force on right spring
...right spring’s rightward force on left spring

wall’s rightward force on right spring
...right spring’s leftward force on wall

Since the left spring isn’t accelerating, the total force
on it must be zero, so the two forces acting on it must
be equal in magnitude. The same applies to the two
forces acting on the right spring. The forces between
the two springs are connected by Newton’s third law,
so all eight of these forces must be equal in magni-
tude. Since the value of x-x

o
 for the whole setup is

double what it is for either spring individually, the
spring constant of the whole setup must be k/2, which
corresponds to a less stiff spring.

16. (a) Spring constants in parallel add, so the spring
constant has to be proportional to the cross-sectional
area. Two springs in series give half the spring
constant, three springs in series give 1/3, and so on,
so the spring constant has to be inversely propor-
tional to the length. Summarizing, we have k∝ A/L.
(b) With the Young’s modulus, we have k=(A/L)E.The
spring constant has units of N/m, so the units of E
would have to be N/m2.

18. (a) The swimmer’s acceleration is caused by the
water’s force on the swimmer, and the swimmer
makes a backward force on the water, which acceler-
ates the water backward. (b) The club’s normal force
on the ball accelerates the ball, and the ball makes a
backward normal force on the club, which deceler-
ates the club. (c) The bowstring’s normal force
accelerates the arrow, and the arrow also makes a
backward normal force on the string. This force on
the string causes the string to accelerate less rapidly
than it would if the bow’s force was the only one
acting on it. (d) The tracks’ backward frictional force
slows the locomotive down. The locomotive’s forward
frictional force causes the whole planet earth to
accelerate by a tiny amount, which is too small to
measure because the earth’s mass is so great.
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Chapter 6

5. (a) The easiest strategy is to find the time spent
aloft, and then find the range. The vertical motion and
the horizontal motion are independent. The vertical
motion has acceleration —g, and the cannonball
spends enough time in the air to reverse its vertical
velocity component completely, so we have

∆v
y

= v
yf
—v

yi

= —2v sin θ   .

The time spent aloft is therefore

∆t = ∆v
y 
/ a

y

= 2v sin θ / g   .

During this time, the horizontal distance traveled is

R = v
x
∆t

= 2 v 2 sin θ cos θ / g   .

(b) The range becomes zero at both θ=0 and at
θ=90°. The θ=0 case gives zero range because the
ball hits the ground as soon as it leaves the mouth of
the cannon. A 90 degree angle gives zero range
because the cannonball has no horizontal motion.

Chapter 8

8. We want to find out about the velocity vector v
BG

 of
the bullet relative to the ground, so we need to add
Annie’s velocity relative to the ground v

AG 
to the

bullet’s velocity vector v
BA 

relative to her. Letting the
positive x axis be east and y north, we have

v
BA,x

= (140 mi/hr) cos 45°

= 100 mi/hr

v
BA,y

= (140 mi/hr) sin 45°

= 100 mi/hr

and

v
AG,x

= 0

v
AG,y

= 30 mi/hr   .

The bullet’s velocity relative to the ground therefore
has components

v
BG,x

= 100 mi/hr   and

v
BG,y

= 130 mi/hr   .

Its speed on impact with the animal is the magnitude
of this vector

|v
BG

| =  (100 mi/hr)2 + (130 mi/hr)2

= 160 mi/hr

(rounded off to 2 significant figures).

9. Since its velocity vector is constant, it has zero
acceleration, and the sum of the force vectors acting
on it must be zero. There are three forces acting on
the plane: thrust, lift, and gravity. We are given the
first two, and if we can find the third we can infer its
mass. The sum of the y components of the forces is
zero, so

0 = Fthrust,y +Flift,y +FW,y

= |F
thrust

| sin θ + |F
lift

| cos θ — mg    .

The mass is

m = (|F
thrust

| sin θ + |F
lift

| cos θ) / g

= 6.9x104 kg

10. (a) Since the wagon has no acceleration, the total
forces in both the x and y directions must be zero.
There are three forces acting on the wagon: F

T
, F

W
,

and the normal force from the ground, F
N
. If we pick a

coordinate system with x being horizontal and y
vertical, then the angles of these forces measured
counterclockwise from the x axis are 90°-ϕ, 270°, and
90°+θ, respectively. We have

F
x,total

    = F
T
cos(90°-ϕ) + F

W
cos(270°) + F

N
cos(90°+θ)

F
y,total

    = F
T
sin(90°-ϕ) + F

W
sin(270°) + F

N
sin(90°+θ)   ,

which simplifies to

0 = F
T 
sin ϕ – F

N 
sin θ

0 = F
T 
cos ϕ  – F

W
 + F

N 
cos θ  .

The normal force is a quantity that we are not given
and do not with to find, so we should choose it to
eliminate. Solving the first equation for F

N
=(sin ϕ/sin

θ)F
T
, we eliminate F

N
 from the second equation,

0 = F
T 
cos ϕ  – F

W
 + F

T 
sin ϕ cos θ/sin θ

and solve for F
T
, finding

   FT =
FW

cos ϕ + sin ϕ cos θ / sin θ    .

Multiplying both the top and the bottom of the fraction
by sin θ, and using the trig identity for sin(θ+ϕ) gives
the desired result,

   FT = sin θ
sin θ + ϕ

FW

(b) The case of ϕ=0, i.e. pulling straight up on the
wagon, results in F

T
=F

W
: we simply support the

wagon and it glides up the slope like a chair-lift on a
ski slope. In the case of ϕ=180°-θ, F

T
 becomes

infinite. Physically this is because we are pulling
directly into the ground, so no amount of force will
suffice.

11. (a) If there was no friction, the angle of repose
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would be zero, so the coefficient of static friction, µ
s
,

will definitely matter. We also make up symbols θ, m
and g for the angle of the slope, the mass of the
object, and the acceleration of gravity. The forces
form a triangle just like the one in section 8.3, but
instead of a force applied by an external object, we
have static friction, which is less than µ

s
F

N
. As in that

example, F
s
=mg sin θ, and F

s
<µ

s
F

N
, so

mg sin θ<µsFN   .

From the same triangle, we have F
N
=mg cos θ, so

mg sin θ < µ
s
mg cos θ.

Rearranging,

θ < tan –1 µ
s
   .

(b) Both m and g canceled out, so the angle of
repose would be the same on an asteroid.

Chapter 9

5. Each cyclist has a radial acceleration of v2/r=5 m/
s2. The tangential accelerations of cyclists A and B
are 375 N/75 kg=5 m/s2.

A

B

C

scale:
5 m/s2

6. (a) The inward normal force must be sufficient to
produce circular motion, so

F
N

= mv 2 / r   .

We are searching for the minimum speed, which is
the speed at which the static friction force is just
barely able to cancel out the downward gravitational
force. The maximum force of static friction is

|F
s
| = µ

s
F

N
   ,

and this cancels the gravitational force, so

|F
s
| = mg   .

Solving these three equations for v gives

v =   gr
µs

   .

(b) Greater by a factor of  3 .

7. The inward force must be supplied by the inward
component of the normal force,

FN sin θ = mv 2 / r   .

The upward component of the normal force must
cancel the downward force of gravity,

F
N
 cos θ = mg  .

Eliminating F
N
 and solving for θ, we find

   θ = tan– 1 v 2

gr    .

Chapter 10

10. Newton’s law of gravity tells us that her weight
will be 6000 times smaller because of the asteroid’s
smaller mass, but 132=169 times greater because of
its smaller radius. Putting these two factors together
gives a reduction in weight by a factor of 6000/169,
so her weight will be (400 N)(169)/(6000)=11 N.

11. Newton’s law of gravity says F=Gm
1
m

2
/r2, and

Newton’s second law says F=m
2
a, so Gm

1
m

2
/r

2
=m

2
a.

Since m
2
 cancels, a is independent of m

2
.

12. Newton’s second law gives

F = mD aD   ,

where F is Ida’s force on Dactyl. Using Newton’s
universal law of gravity, F = Gm

I
m

D
/r 2,and the

equation a = v 2 / r for circular motion, we find

Gm
I
m

D 
/ r 2 = mDv 2 / r   .

Dactyl’s mass cancels out, giving

GmI / r 
2 = v 2 / r   .

Dactyl’s velocity equals the circumference of its orbit
divided by the time for one orbit: v=2πr/T. Inserting
this in the above equation and solving for m

I
, we find

m
I

=    4π2r 3

GT 2    ,

so Ida’s density is

ρ = m
I 
/ V

=    4π2r 3

GVT 2    .

15. Newton’s law of gravity depends on the inverse
square of the distance, so if the two planets’ masses
had been equal, then the factor of 0.83/0.059=14 in
distance would have caused the force on planet c to
be 142=2.0x102 times weaker. However, planet c’s
mass is 3.0 times greater, so the force on it is only
smaller by a factor of 2.0x102/3.0=65.
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16. The reasoning is reminiscent of section 10.2.
From Newton’s second law we have F=ma=mv2/r =
m(2πr/T)2/r = 4π2mr/T2,and Newton’s law of gravity
gives F=GMm/r2, where M is the mass of the
earth.Setting these expressions equal to each other,
we have

4π2mr/T2 = GMm/r2   ,

which gives

r =
   GMT 2

4π2

3

= 4.22x104 km   .

This is the distance from the center of the earth, so to
find the altitude, we need to subtract the radius of the
earth. The altitude is 3.58x104 km.

17. Any fractional change in r results in double that
amount of fractional change in 1/r2. For example,
raising r by 1% causes 1/r2 to go down by very nearly
2%. The fractional change in 1/r2 is actually

  2 × (1 / 27) cm
3.84×105 km

× 1 km
105 cm

 = 2× 10 –12

19. (a) The asteroid’s mass depends on the cube of
its radius, and for a given mass the surface gravity
depends on r –2. The result is that surface gravity is
directly proportional to radius. Half the gravity means
half the radius, or one eighth the mass. (b) To agree
with a, Earth’s mass would have to be 1/8 Jupiter’s.
We assumed spherical shapes and equal density.
Both planets are at least roughly spherical, so the
only way out of the contradiction is if Jupiter’s density
is significantly less than Earth’s.
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Glossary
Acceleration. The rate of change of velocity; the

slope of the tangent line on a v-t graph.

Attractive. Describes a force that tends to pull the
two participating objects together. Cf. repulsive,
oblique.

Center of mass. The balance point of an object.

Component. The part of a velocity, acceleration, or
force that is along one particular coordinate axis.

Displacement. (avoided in this book) A name for
the symbol ∆x .

Fluid. A gas or a liquid.

Fluid friction. A friction force in which at least one
of the object is is a fluid (i.e. either a gas or a
liquid).

Gravity. A general term for the phenomenon of
attraction between things having mass. The
attraction between our planet and a human-
sized object causes the object to fall.

Inertial frame. A frame of reference that is not
accelerating, one in which Newton’s first law is
true

Kinetic friction. A friction force between surfaces
that are slipping past each other.

Light. Anything that can travel from one place to
another through empty space and can influence
matter, but is not affected by gravity.

Magnitude. The “amount” associated with a vector;
the vector stripped of any information about its
direction.

Mass. A numerical measure of how difficult it is to
change an object’s motion.

Matter. Anything that is affected by gravity.

Mks system. The use of metric units based on the
meter, kilogram, and second. Example: meters
per second is the mks unit of speed, not cm/s or
km/hr.

Noninertial frame. An accelerating frame of
reference, in which Newton’s first law is violated

Nonuniform circular motion. Circular motion in
which the magnitude of the velocity vector

changes

Normal force. The force that keeps two objects from
occupying the same space.

Oblique. Describes a force that acts at some other angle,
one that is not a direct repulsion or attraction. Cf.
attractive, repulsive.

Operational definition. A definition that states what
operations should be carried out to measure the thing
being defined.

Parabola. The mathematical curve whose graph has y
proportional to x2.

Radial. Parallel to the radius of a circle; the in-out
direction. Cf. tangential.

Repulsive. Describes a force that tends to push the two
participating objects apart. Cf. attractive, oblique.

Scalar. A quantity that has no direction in space, only an
amount. Cf. vector.

Significant figures. Digits that contribute to the accuracy
of a measurement.

Speed. (avoided in this book) The absolute value of or, in
more then one dimension, the magnitude of the
velocity, i.e. the velocity stripped of any information
about its direction

Spring constant. The constant of proportionality between
force and elongation of a spring or other object under
strain.

Static friction. A friction force between surfaces that are
not slipping past each other.

Système International..  Fancy name for the metric
system.

Tangential. Tangent to a curve. In circular motion, used
to mean tangent to the circle, perpendicular to the
radial direction Cf. radial.

Uniform circular motion. Circular motion in which the
magnitude of the velocity vector remains constant

Vector. A quantity that has both an amount (magnitude)
and a direction in space. Cf. scalar.

Velocity. The rate of change of position; the slope of the
tangent line on an x-t graph.

Weight. The force of gravity on an object, equal to mg.
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Mathematical Review
Algebra
Quadratic equation:

The solutions of   ax 2 + bx + c = 0

are 
   x = – b ± b2 – 4ac

2a    .

Logarithms and exponentials:

  ln (ab) = ln a + ln b

  ea + b = eaeb

  ln ex = eln x = x

  ln ab = b ln a

Geometry, area, and volume
area of a triangle of base b and height h =   1

2bh

circumference of a circle of radius r = 2πr
area of a circle of radius r = πr 2

surface area of a sphere of radius r = 4πr 2

volume of a sphere of radius r =    4
3πr 3

Trigonometry with a right triangle

θ

h = hypotenuse
o = opposite
      side

a = adjacent side

Definitions of the sine, cosine, and tangent:

   sin θ = o
h

   cos θ = a
h

   tan θ = o
a

Pythagorean theorem:   h2 =a2 + o2

Trigonometry with any triangle

A

B

C
α

β

γ

Law of Sines:

   sin α
A

=
sin β

B
=

sin γ
C

Law of Cosines:

   C2 = A2 + B 2 – 2AB cos γ

Properties of the derivative and integral
(for students in calculus-based courses)
Let f and g be functions of x, and let c be a constant.
Linearity of the derivative:

  d
dx

c f = c df
dx

  d
dx

f + g = df
dx

+
dg
dx

The chain rule:

   d
dx

f(g(x)) =f ′(g(x))g ′(x)

Derivatives of products and quotients:

  d
dx

fg = df
dx

g +
dg
dx

f

   
d

dx
f
g =

f ′
g –

fg ′
g2

Some derivatives:

  d
dx

x m = mx m – 1  (except for m=0)

  d
dx

sin x = cos x

  d
dx

cos x = –sin x

  d
dx

ex = ex

  d
dx

ln x = 1
x

The fundamental theorem of calculus:

  df
dx

dx = f

Linearity of the integral:

  cf(x)dx = c f(x)dx

  f (x) + g(x) dx = f(x)dx + g(x)dx

Integration by parts:

  f dg = fg – g df
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Trig Tables
 θθθθθ sin θθθθθ cos θθθθθ tan θθθθθ  θ θ θ θ θ sin θθθθθ cos  θ θ θ θ θ tan  θ θ θ θ θ  θ θ θ θ θ sin  θ θ θ θ θ cos  θ θ θ θ θ tan θθθθθ

 0° 0.000 1.000 0.000 30° 0.500 0.866 0.577 60° 0.866 0.500 1.732

 1 0.017 1.000 0.017 31 0.515 0.857 0.601 61 0.875 0.485 1.804

 2 0.035 0.999 0.035 32 0.530 0.848 0.625 62 0.883 0.469 1.881

 3 0.052 0.999 0.052 33 0.545 0.839 0.649 63 0.891 0.454 1.963

 4 0.070 0.998 0.070 34 0.559 0.829 0.675 64 0.899 0.438 2.050

 5 0.087 0.996 0.087 35 0.574 0.819 0.700 65 0.906 0.423 2.145

 6 0.105 0.995 0.105 36 0.588 0.809 0.727 66 0.914 0.407 2.246

 7 0.122 0.993 0.123 37 0.602 0.799 0.754 67 0.921 0.391 2.356

 8 0.139 0.990 0.141 38 0.616 0.788 0.781 68 0.927 0.375 2.475

 9 0.156 0.988 0.158 39 0.629 0.777 0.810 69 0.934 0.358 2.605

10 0.174 0.985 0.176 40 0.643 0.766 0.839 70 0.940 0.342 2.747

11 0.191 0.982 0.194 41 0.656 0.755 0.869 71 0.946 0.326 2.904

12 0.208 0.978 0.213 42 0.669 0.743 0.900 72 0.951 0.309 3.078

13 0.225 0.974 0.231 43 0.682 0.731 0.933 73 0.956 0.292 3.271

14 0.242 0.970 0.249 44 0.695 0.719 0.966 74 0.961 0.276 3.487

15 0.259 0.966 0.268 45 0.707 0.707 1.000 75 0.966 0.259 3.732

16 0.276 0.961 0.287 46 0.719 0.695 1.036 76 0.970 0.242 4.011

17 0.292 0.956 0.306 47 0.731 0.682 1.072 77 0.974 0.225 4.331

18 0.309 0.951 0.325 48 0.743 0.669 1.111 78 0.978 0.208 4.705

19 0.326 0.946 0.344 49 0.755 0.656 1.150 79 0.982 0.191 5.145

20 0.342 0.940 0.364 50 0.766 0.643 1.192 80 0.985 0.174 5.671

21 0.358 0.934 0.384 51 0.777 0.629 1.235 81 0.988 0.156 6.314

22 0.375 0.927 0.404 52 0.788 0.616 1.280 82 0.990 0.139 7.115

23 0.391 0.921 0.424 53 0.799 0.602 1.327 83 0.993 0.122 8.144

24 0.407 0.914 0.445 54 0.809 0.588 1.376 84 0.995 0.105 9.514

25 0.423 0.906 0.466 55 0.819 0.574 1.428 85 0.996 0.087 11.430

26 0.438 0.899 0.488 56 0.829 0.559 1.483 86 0.998 0.070 14.301

27 0.454 0.891 0.510 57 0.839 0.545 1.540 87 0.999 0.052 19.081

28 0.469 0.883 0.532 58 0.848 0.530 1.600 88 0.999 0.035 28.636

29 0.485 0.875 0.554 59 0.857 0.515 1.664 89 1.000 0.017 57.290

90 1.000 0.000 ∞
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Index
Dialogues Concerning the Two New Sciences  37
dynamics  53

E

elephant  46
energy

distinguished from force  106

F

falling objects  73
Feynman  75
Feynman, Richard  75
force

analysis of forces  124
Aristotelian versus Newtonian  97
as a vector  160
attractive  119
contact  99
distinguished from energy  106
frictional  121
gravitational  120
net  100
noncontact  99
oblique  119
positive and negative signs of  99
repulsive  119
transmission of  126

forces
classification of  118

frame of reference
defined  59
inertial or noninertial  109

French Revolution  23
friction

fluid  123
kinetic  121, 122
static  121, 122

G

Galilei, Galileo. See Galileo Galilei
Galileo Galilei  37
gamma rays  18
grand jete  56
graphing  61
graphs

of position versus time  60
velocity versus time  69

H

high jump  56

A

acceleration  76
as a vector  157
constant  87
definition  82
negative  79

alchemy  17
area

operational definition  35
scaling of  37

area under a curve  85
area under a-t graph  86
under v-t graph  85

astrology  17

B

Bacon, Sir Francis  20

C

calculus
differential  70
fundamental theorem of  91
integral  91
invention by Newton  69
Leibnitz notation  70
with vectors  161

cathode rays  18
center of mass  55

motion of  55
center-of-mass motion  55
centi- (metric prefix)  23
Challenger disaster  89
circular motion  167

nonuniform  169
uniform  169

cockroaches  44
coefficient of kinetic friction  123
coefficient of static friction  122
component

defined  138
conversions of units  28
coordinate system

defined  59
Copernicus  64

D

Darwin  19
delta notation  57
derivative  70

second  91
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Hooke’s law  128

I

inertia
principle of  64

integral  91

K

kilo- (metric prefix)  23
kilogram  25
kinematics  53

L

Laplace  17
Leibnitz  70
light  18

M

magnitude of a vector
defined  146

matter  18
mega- (metric prefix)  23
meter (metric unit)  24
metric prefixes. See metric system: prefixes
metric system  22

prefixes  23
micro- (metric prefix)  23
microwaves  18
milli- (metric prefix)  23
model

scientific  121
models  56
motion

rigid-body  54
types of  54

Muybridge, Eadweard  155

N

nano- (metric prefix)  23
Newton

first law of motion  100
second law of motion  104

Newton, Isaac  22
definition of time  25

Newton's laws of motion
in three dimensions  140

Newton's third law  114

O

operational definitions  24
order-of-magnitude estimates  47

P

parabola

motion of projectile on  139
Pauli exclusion principle  19
period

of uniform circular motion  173
photon  117
physics  17
POFOSTITO  116
Pope  37
prefixes, metric. See metric system: prefixes
projectiles  139
pulley  129

R

radial component
defined  175

radio waves  18
reductionism  20
Renaissance  15
rotation  54

S

salamanders  44
sans culottides  24
scalar

defined  146
scaling  37

applied to biology  44
scientific method  15
second (unit)  24
significant figures  30
simple machine

defined  129
slam dunk  56
Stanford, Leland  155
strain  128
Swift, Jonathan  37

T

time
duration  57
point in  57

transmission of forces  126

U

unit vectors  152
units, conversion of  28

V

vector  53
acceleration  157
addition  146
defined  146
force  160
magnitude of  146
velocity  156
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velocity
addition of velocities  67
as a vector  156
definition  61
negative  68

vertebra  46
volume

operational definition  35
scaling of  37

W

weight force
defined  99

weightlessness
biological effects  89

X

x-rays  18

Y

Young’s modulus  133
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Useful Data

Metric Prefixes
M- mega- 106

k- kilo- 103

m- milli- 10 –3

µ- (Greek mu) micro- 10 –6

n- nano- 10 –9

(Centi-, 10 –2, is used only in the centimeter.)

Notation and Units
quantity unit symbol
distance meter, m x, ∆x
time second, s t, ∆t
mass kilogram, kg m
area m2 (square meters) A
volume m3 (cubic meters) V
density kg/m3 ρ
force Newton, 1 N=1 kg.m/s2 F
velocity m/s v
acceleration m/s2 a

symbol meaning
∝ is proportional to
≈ is approximately equal to
~ on the order of

The Greek Alphabet
α Α alpha ν Ν nu
β Β beta ξ Ξ xi
γ Γ gamma ο Ο omicron
δ ∆ delta π Π pi
ε Ε epsilon ρ Ρ rho
ζ Ζ zeta σ Σ sigma
η Η eta τ Τ tau
θ Θ theta υ Υ upsilon
ι Ι iota φ Φ phi
κ Κ kappa χ Χ chi
λ Λ lambda ψ Ψ psi
µ Μ mu ω Ω omega

Conversions
Conversions between SI and other units:

1 inch = 2.54 cm (exactly)
1 mile = 1.61 km
1 pound = 4.45 N
(1 kg)(g) = 2.2 lb
1 gallon = 3.78x103 cm3

Conversions between U.S. units:
1 foot = 12 inches
1 yard = 3 feet
1 mile = 5280 ft

Earth, Moon, and Sun
body mass (kg) radius (km)radius of orbit (km)
earth 5.97x1024 6.4x103 1.49x108

moon 7.35x1022 1.7x103 3.84x105

sun 1.99x1030 7.0x105

The radii and radii of orbits are average values. The
moon orbits the earth and the earth orbits the sun.

Subatomic Particles
particle mass (kg) radius (m)
electron 9.109x10-31 ? – less than about 10-17

proton 1.673x10-27 about 1.1x10-15

neutron 1.675x10-27 about 1.1x10-15

The radii of protons and neutrons can only be given
approximately, since they have fuzzy surfaces. For
comparison, a typical atom is about 10-9 m in radius.

Fundamental Constants
speed of light c=3.00x108 m/s
gravitational constant G=6.67x10-11 N.m2.kg-2


