CONTENTS

Introduction

Preliminaries

1. Conventions
Notation
Pre-requisities in point set topology (Chapters 1-6)
Pre-requisites in measure theory (Chapters 7-12)
Subadditive sequences
References

Sl N

Chapter 1. Examples and basic properties
1.1. Examples
1.2. Transitivity
1.3. Other characterizations of transitivity
1.4. Transitivity for subshifts of finite type
1.5. Minimality and the Birkhoff recurrence theorem
1.6. Commuting homeomorphisms
1.7. Comments and references

Chapter 2. An application of recurrence to arith-
metic progressions
2.1. Van der Waerden’s theorem
2.2. A dynamical proof
2.3. The proofs of Sulemma 2.2.2 and Sublemma 2.2.3
2.4. Comments and references

Chapter 3. Topological entropy
3.1. Definitions
3.2. The Perron-Frobenious theorem and subshifts of fi-
nite type
3.3. Other definitions and examples
3.4. Conjugacy
3.5. Comments and references

Chapter 4. Interval maps
4.1. Fixed points and periodic points
4.2. Topological entropy of interval maps
4.3. Markov maps

ix
xi
peel
peel
peel
xii
xiii
xiii

Q0 CO O = N~

22
26
30
32

33
33
37
39



vi

CONTENTS

4.4. Comments and references

Chapter 5. Hyperbolic toral automorphisms
5.1. Definitions
5.2. Entropy for Hyperbolic Toral Automorphisms
5.3. Shadowing and semi-conjugacy
5.4. Comments and references

Chapter 6. Rotation numbers
6.1. Homeomorphisms of the circle and rotation numbers
6.2. Denjoy’s theorem
6.3. Comments and references

Chapter 7. Invariant measures
7.1. Definitions and characterization of invariant measures

7.2. Borel sigma-algebras for compact metric spaces
7.3. Examples of invariant measures

7.4. Invariant measures for other actions

7.5. Comments and references

Chapter 8. Measure theoretic entropy
8.1. Partitions and conditional expectations
8.2. The entropy of a partition
8.3. The entropy of a transformation
8.4. The increasing martingale theorem
8.5. Entropy and sigma algebras
8.6. Conditional entropy
8.7. Proofs of Lemma 8.7 and Lemma, 8.8
8.8. Isomorphism
8.9. Comments and references

Chapter 9. Ergodic measures

9.1. Definitions and characterization of ergodic measures

9.2. Poincaré recurrence and Kac’s theorem

9.3. Existence of ergodic measures

9.4. Some basic constructions in ergodic theory
9.4.1. Skew products
9.4.2. Induced transformations and Rohlin towers
9.4.3. Natural extensions

9.5. Comments and references

Chapter 10. Ergodic theorems

10.1. The Von Neumann ergodic Theorem

10.2. The Birkhoff theorem (for ergodic measures)
10.3. Applications of the ergodic theorems

10.4. The Birkhoff theorem (for invariant measures)
10.5. Comments and references

Chapter 11. Mixing

44

47
47
49
92
95

57
o7
60
63

65

65
65
67
69
71

73
73
76
78
81
83
85
87
88
89

91
91
91
93
94
95
95
96
97

99
99
102
106
111
112

113



CONTENTS

11.1. Weak mixing 113
11.2. A density one convergence characterization of weak

mixing 114
11.3. A generalization of the Von Neumann Ergodic The-

orem 116
11.4. The spectral viewpoint 118
11.5. Spectral characterization of weak mixing 120
11.6. Strong mixing 122
11.7. Comments and reference 123

Chapter 12. Statistical properties in ergodic theory 125

12.1. Exact endomorphisms 125
12.2. Statistical properties of expanding Markov maps 126
12.3. Rohlin’s entropy formula 132
12.4. The Shannon-McMillan-Breiman theorem 134
12.5. Comments and references 136

Chapter 13. Fixed points for homeomorphisms of

the annulus 137
13.1. Fixed points for the annulus 137
13.2. Outline proof of Brouwer’s plane translation theorem 141
13.3. Comments and references 143
Chapter 14. The variational principle 145
14.1. The variational principle for entropy 145
14.2. The proof of the variational principle 145
14.3. Comments and references 149
Chapter 15. Invariant measures for commuting trans-

formations 151
15.1. Furstenburg’s conjecture and Rudolph’s theorem 151
15.2. The proof of Rudolph’s theorem 151
15.3. Comments and references 156

Chapter 16. Multiple recurrence and Szemeredi’s

theorem 159

16.1. Szemerdi’s theorem on arithmetic progressions 159

16.2. An ergodic proof of Szemerdi’s theorem 160

16.3. The proof of Theorem 16.2 161
16.3.1.(UMR) for weak-mixing systems, weak-mixing

extensions and compact systems 161

16.3.2.The non-weak-mixing case 162

16.3.3.(UMR) for compact extensions 163

16.3.4.The last step 163

16.4. Appendix to section 16.3 164

16.4.1.The proofs of Propositions 16.3 and 16.4 164

16.4.2.The proof of Proposition 16.5 168

16.4.3.The proof of Proposition 16.6 169

vii



viii CONTENTS

16.4..4The proof of Proposition 16.7 170
16.4.5.The proof of Proposition 16.8 171
16.4.6.The proof of Proposition 16.9 173
16.5. Comments and references 152

Index 177



INTRODUCTION

This book is intended as an introduction to both dynamical systems and
ergodic theory. Our aim is to give a direct and detailed introduction to
the basic theory, suitable as a text for advanced undergraduate students or
beginning graduate students in mathematics.

The notes divide naturally into three parts. The first part (chapters 1-6)
concentrates on topological dynamics. The second part (chapters 7-12) deals
with ergodic theory and measurable dynamics. The third part (chapters 13-
16) consists of more advanced material to supplement the two earlier parts.

Each of the first two parts is intended to be essentially self-contained, as
is illustrated by the following diagram of the relationships between chapters:

6 — 13
S
1 - 2 5
¢ f
3 — 4 — 12
{ T
14 15 11 — 16
I S
8 10
S a
7 — 9

The areas of dynamical systems and ergodic theory are rich in connections
with other subjects (e.g. number theory, geometry, statistics, mathematical
physics, biology, etc.). In the course of these notes we have tried to motivate
the general theory with some important applications (particularly to number
theory, in chapter 2 and chapter 16).

There are already a number of excellent books on dynamical systems and
ergodic theory (e.g. Devaney’s Introduction to Chaotic Dynamical Systems)
Walters’ Introduction to Ergodic Theory and Introduction to the Modern The-
ory of Dynamical Systems by Katok and Hasselblatt).

ix



b'd INTRODUCTION

To pre-empt any comparison with these fine texts, we should emphasize
that this book is intended to be a more modest introduction to the subject.
The reader who would like to find out more about dynamical systems and
ergodic theory will find much more in these books.

Mark Pollicott Michiko Yuri
Department of Mathematics Department of Business Administration
Manchester University Sapporo University



PRELIMINARIES

1. Conventions. The book is divided into 16 chapters, each subdivided
into sections numbered in order (e.g. chapter 12, section 3 is numbered 12.3).

Within each chapter results (Theorems, Propositions or Lemmas) are la-
belled by the chapter and then the order of occurrence (e.g. the fifth result
in chapter 3 is Proposition 3.5). The exceptions to this rule are: sublem-
mas which are presented within the context of the proof of a more important
result (e.g. the proof of Theorem 2.2 contains Sublemmas 2.2.1 and 2.2.2);
and corollaries (the corollary to Theorem 5.5 is Corollary 5.5.1).

We denote the end of a proof by M.

Finally, equations are numbered by the chapter and their order of occur-
rence (e.g. the fourth equation in chapter 5 is labelled (5.4))

2. Notation. We shall use the standard notation: R to denote the
real numbers; Q to denote the rational numbers; Z to denote the integer
numbers; N to denote the natural numbers; and Z* to denote the non-
negative integers. We use the convenient convention that: R/Z = {z +
Z : x € R} (which is homeomorphic to the standard unit circle); R?/Z? =
{(z1,22) + Z? : (z1,22) € R?} (which is homeomorphic to the standard 2-
torus); etc. However, for x € R we denote the corresponding element in R/Z
by x (mod 1) (and similarly for R?/Z2, etc.).

We denote the interior of a subset A of a metric space by int(A), and we
denote its closure by cl(A).

If T: X — X denotes a continuous map on a compact metric space then
T™ (n > 1) denotes the composition with itself n times.

If T:1— IisaC! map on the unit interval I = [0, 1] then T’ denotes its
derivative.

3. Prerequisites in point set topology (chapters 1-6). The first six
chapters consist of various results in topological dynamics for which the only
prerequisite is a working knowledge of point set topology for metric spaces.
For example:

THEOREM A (BAIRE). Let X be a compact metric space; then if {Uy, }nen
is a countable family of open dense sets then (), oy Un C X is dense.

Xi



xii PRELIMINARIES

THEOREM B (SEQUENTIAL COMPACTNESS). Let X be a metric space;
then X is compact if and only if every sequence (T )nen tn X contains a
convergent subsequence.

THEOREM C (ZORN’S LEMMA). Let Z be a set with a partial ordering. If
every totally ordered chain has a lower bound in Z then there is a minimal
element in Z.

Two good references for this material are [4] and [5]

4. Pre-requisites in measure theory (chapters 7-12). Chapters 7-
12 form an introduction to ergodic theory, and suppose some familiarity (if
not expertise) with abstract measure theory and harmonic analysis. The
following results will be required.

THEOREM D (RIESZ REPRESENTATION). There is a bijection between

(1) probability measures p on a compact metric space X (with the Borel
sigma algebra),
(2) Continuous linear functionals ¢ : C°(X) — R,

given by c(f) = [ fdu.

THEOREM E. Let (X,B,u) be a measure space. For every linear func-
tional o : LY (X, B, u) — LY(X, B, u) there exists k € L>(X, B, i) such that

a(f)= [ f-kdu, Vf e LY(X,B,u) 3, p.121].

In proving invariance of measures in examples the following basic result
will sometimes be assumed.

THEOREM F (KOLMOGOROV EXTENSION). Let B be the Borel sigma-
algebra for a compact metric space X. If u1 and ps are two measures for the

Borel sigma-algebra which agree on the open sets of X then my = mqy [3, p.
310].

The following terminology will be used in the chapter on ergodic measures.
Given two probability measures p,v we say that p is absolutely continuous
with respect to v if for every set B € B for which v(B) = 0 we have that
w(B) = 0. We write u << v and then we have the following result.

THEOREM G (RADON-NIKODYM). If i is absolutely continuous with re-
spect to i then there exists a (unique) function f € LY(X,B,dv) such that
for any A € B we can write u(A) = [, fdv.

We usually write f = ‘;—’V‘ and call this the Radon-Nikodym derivative of
with respect to v.

We call two measures p,v mutually singular if there exists a set B € B
such that p(A) =0 and v(A) = 1. We then write p L v.

In chapter 8 we shall need a passing reference to Lebesgue spaces. A
Lebesgue space is a measure space which is measurably equivalent to the
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the union of unit intervals (with the usual Lebesgue measure) with at most
countably many points (with non-zero measure).
In chapter 11 we shall use the following result.

THEOREM H (DOMINATED CONVERGENCE). Let h € LY(X,B, i) and let
(fn)nEZ+
C LYX, B, ), with |f,(z)| < h(z), converge (almost everywhere) to f(z);
then [ fndu — [ fdu as n — +o0.

Good general references for this material are [1], [2], [3].

5. Subadditive sequences. A simple result which proves its worth
several times in these notes is the following.

THEOREM F (SUBADDITIVE SEQUENCES). Let (a,)nen be a sequence of
real numbers such that anim < ap + am, Vn,m € N (i.e. a subadditive
sequence); then a, — a, as n — 400, where a = inf{a, /n: n > 1}

PrRoOOF. First note that a,, < a; +an_1 < ... <nap, and so a < a; For
e > 0 we choose N > 0 with ay < N(a +¢). For any n > 1 we can write
n=kN +r, where k > 0and 1 <r <N — 1. Then

an < apy +ap < kaN+ar < kan + sup ar
1<r<N

and we see that

) a ) kan + sup a a
limsup — < limsup SR <a+e

This shows that <* — a, as required.
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CHAPTER 1

EXAMPLES AND BASIC PROPERTIES

In this chapter we shall introduce some of the basic dynamical properties
associated to continuous maps 7' : X — X on compact metric spaces.

1.1 Examples

To set the stage, we begin with some standard examples of continuous
maps (transformations) which will be used to illustrate different properties.

EXAMPLE 1 (DOUBLING MAP). Let X denote the unit interval with its
endpoints identified, X = R/Z. Define a continuous map 7 : X — X by
T(xz) = 2z (mod 1), i.e.

21 if0<z<4i,
Tx = o 1
2r—1 if5<zr<1.

This is usually called the “doubling map”, since it doubles distances on
X. An equivalent formulation would be if welet X = K :={z€ C: |z| =1}
and then define T : X — X by T(e?™¥) = €229 where 0 < § < 1. This is
equivalent in the sense that there is a homeomorphism p : R/Z — K given
by p(6 + Z) = 2™ which relates the two transformations. We shall return
to this notion of equivalence (or conjugacy) in chapter 3.

EXAMPLE 2 (ROTATIONS ON THE CIRCLE). Let X = R/Z and fix a
number « € [0,1). We define a homeomorphism 7' : X — X by T(z) =
z + « (mod 1), ie.

{x+aﬁ0§x+a§L
Tz = .
r+a—1ifz+a>1.

(An equivalent formulation would be if we let X = K and then define T :
X — X by T(e?™) = ¢2mi(6+a)  This is equivalent in the sense that the
homeomorphism p : R/Z — K given by p(t + Z) = 2™ relates the two
transformations.)

EXAMPLE 3 (SHIFT MAP). For k > 2 let Xy = [],c;{1,2,...,k} denote
the space of all sequences taking values {1,2,...,k} indexed by Z. In or-
der to define a metric we first associate to two sequences x = (2 )nez and

1



2 1. EXAMPLES AND BASIC PROPERTIES

Y = (Un)nez an integer N(z,y) = min{N > 0: zy # yy or 2_n # Y-~}
We define a metric on X by

1 N(z,y) .
dzy) = ) ifa 7,
0 otherwise.

LEMMA 1.1. Xj is a compact space.

ProoOF. We shall actually show that Xj is sequentially compact. Let
(™) = (m%m))nez (m = 1,2,3,...) be a sequence in X; then we need
to show that there exist a point z € Xj and a sub-sequence z(™) — z
(1=1,2,3,...).

First observe that the zeroth terms a:ém) (m=1,2,3...) must take some
value in {1,2,...,k} infinitely often. Choose such an zy € {1,2,...,k}

with :U(()m) = 1z, for infinitely many m. We continue inductively: For

l > 0, choose z; € {1,2,...,k} and z_; € {1,2,...,k} such that x(_";) =

T_q,... ,xém) = zg,... ,a:l(m) = x;, say, for infinitely many m. Finally,

we define © = (x7);ez. For each | > 0 we choose m; := m such that
a:(_";) =x_... ,xgm) = xzo,... ,xl(m) = 255 then d(z(™), z) < 2—1, and so
d(z(™) ) — 0 as | — 4o0.

|

DEFINITION. We can define a map o : Xy — X by (0%)n = Tni1,
Vn € Z, i.e.

0:( e T 0, T 1,%0,%1,%2,---) —> (co0 ,T_1,L0, X1, X2, L3y .- )-

Since this map shifts sequences by one place it is called the shift map.
LEMMA 1.2. The map o : X, — X s a homeomorphism.

PROOF. To show continuity we observe that if z # y and d(z,y) =

)N then we know that z; = y; for —N < ¢ < N. Thus we have that
x); = Tiy1 = Yi+1 = (oy); for i = —(N 4+ 1),..., N — 1. This means that
d(oz,0y) < (3) ~l= 3d(z,y) and we see that o is continuous.

Clearly o : X — Xy, is invertible (since the inverse transformation o~
X — X, simply shifts sequences back one place). Finally, the inverse map

o~ 1: X} — X} is continuous by the same sort of argument as above.

(3
(o

1.2 Transitivity

In this section we shall introduce some basic properties of continuous maps
T : X — X on compact metric spaces X.
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DEeFINITION. We say that a homeomorphism 7' : X — X of a compact
metric space X is transitive if there exists a point z € X such that its orbit
{Trx:neZy={...,T %z, T 'z,2, Tz, T?z,...,} is dense in X. We call
such a point z € X a transitive point.

We say that a continuous map 7' : X — X of a compact metric space
X is (forward) transitive if there exists a point x € X such that its orbit
{T"x :n € Z*} = {z,Tx,T?x,...,} is dense in X. We call such a point
x € X a (forward) transitive point.

We can check each of the examples in section 1.1 for this property.

ExaAMPLE 1. We shall show that this example is forward transitive when
k = 2, other cases being similar. Consider the sequence 1,2,11,12,21,22, 111,
112,121,122,221,...,222,1111,.... We can write down z, € {1,2}, n > 0,
as the nth term in the sequence

1211122122111112121122221...2221111....
Finally, consider the point = € [0, 1] given by the series z = 10 (22;1 ).
We claim that the point z is a (forward) transitive point. Observe that

400 +o0
Tzr =2 ZM (mod 1) ==z —i-zw(modl)
- 2n+1 — 0 ‘ 2n—|—1

n=0
. = (xn—H - 1)
- Z on+1 )

n=0

Similarly, T*z = 377 22kl (mod 1).
To show that the set {T"z : n > 0} is dense it suffices to show that for
each interval of the form [Z ’il}, with 0 < p < 2! — 1, we can find N >0

2ty 9l
with TNz € [%, 1’2—+,1} Given p we can write it in binary form as 79 ...%,_1,
with dg,...,i,—1 € {0,1}. But for some N we can find zy = ip,zny4+1 =
i1y-++ yTN4n—1 = in_1. This means that TNz € [%, ’%,1], as required.

ExAMPLE 2. There are two different cases, depending on whether or not
o is irrational.

First assume that « is irrational, then the map 7' : X — X can be
shown to be transitive (and even forward transitive) where z = 0, say. It
suffices to show that the orbit {T™0}, cz+ is dense. Since this is an infinite
set in R/Z we can choose x € R/Z and a sub-sequence n; — +oo with
T™0 = n;a (mod 1) — z. For any sufficiently small ¢ > 0 we can choose
n; > nj with [T™0 — x| < § and [T™0 — z| < § and thus [T™:0 — T 0| =
|T™:~"i0| < e. Moreover, T™0 # T™i0, since if not this would contradict «
being irrational. Thus the points T~k k > 1, form an e-dense subset
of R/Z. Since € can be chosen arbitarily small this completes the proof of
transitivity.
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Now assume that a = ’5’ with p,q € Z having no common divisors and
g # 0. For any x € X the orbit {T"x : n € Z} would be a finite set
{z,z + é, T+ q%l (mod 1)}. In particular, T is not transitive.

ExAMPLE 3. We shall show that this example is forward transitive. The
sequence

{Zn}nen =4{1,2,...,k, 1,1, .., 1,k 2,1, ... 2k, ... ;20,21 yZN—1---}

v

~
All strings appear

in X, (in which all finite strings appear once) is a forward transitive point. To
see this choose any point z € X and for any € > 0 choose N > 0 sufficiently
large that (%)N < e. If we choose r such that z, = zg,... , T, N_1 = ZN—1
then we see that (6"z)o = z, = 20,...,(0"Z)N—1 = Tr4+N-1 = Zr+N—1 and
sod(o"z,z) < (%)N < e.

1.3 Other characterizations of transitivity

The following result gives equivalent conditions for a homeomorphism of
a compact metric space to be transitive.

THEOREM 1.3. The following are equivalent.

(i) T: X — X is transitive.
(ii) If U is an open set with TU = U then either U is dense or U = ().
(iii) If U,V are non-empty open sets then for some n € Z we have that
T"UNV # 0.
(iv) The set {x € X : the orbit {T"x}ncz is dense in X} is a dense G
set (i.e. the intersection of a countable collection of open dense sets).

ProOOF. (i) = (ii). Assume x € X has a dense orbit. Assume that
TU = U # (). We can choose n € Z such that T"x € U. Moreover, for any
m € Z we have that T™xz € T™ "U = U. Since the orbit of z is dense (i.e.
UmezT™x C X is dense) we see that U is dense.

(i) = (iii). The T-invariant union U,czT"U is dense in X by assumption

(ii). Thus UpezT™U NV # 0 and so 3n € Z with T"U NV # ().

(iii) = (iv). Consider a dense set {zy }nen and consider the balls of radius
>

%, k > 1, denoted by B (a:n, %) We can identify

m=—00

1
z€X : {T"x} ez is dense in X} =N N2 ut® TmB (2, -
S n=0""k=1 k

(i.e. Vo > 0,Yk > 1,3m € Z with T™z € B (zp, 1))
(iv) = (i). This is immediate.
|

REMARK. There is a similar result giving equivalent conditions for for-
ward transitivity [4, p. 128]
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1.4 Transitivity for subshifts of finite type

In section 1.1 we defined the shift transformation o : X — X on X =
[I.cz11,--. ,k}. For any closed o-invariant subset X C Xy (i.e. 0(X) = X)
we consider the restriction o|x. We can use the same notation o : X — X.

DEFINITION. Let A be a k X k matrix with entries 0 or 1. We call the
matrix irreducible if V1 < i, j, < k, AN > 0 such that AN (i, 5) > 0.

011
ExAMPLES. When k = 3 the matrix A = (0 1 1) is irreducible. However,
100

110

the matrix A’ = (1 1 0> is not irreducible. (These properties are readily
001

checked).

DEFINITION. Given a k£ X k matrix A with entries 0 or 1 we define

X4 ={(xn)nez € H {1,...,k} : A(®n,Tns1) =1,n € Z}.

n=—oo

We define the subshift of finite type o : X4 — X4 to be the restriction o|X 4.

The following gives necessary and sufficient conditions for o : X4 — X4
to be transitive.

THEOREM 1.4. A subshift of finite type o : X 4 — X 4 1s transitive if and
only if A is irreducible.

PROOF. Assume that o is transitive. Consider the sets

[Z]O = {(-’I;n)nEZ S XA T = ’L}

for i =1,...,k. These sets are open. Given 1 < 4,5 < k we know that there
exists N > 0 such that o=V [j]o N [i]o # 0. Choose (x,,)nez € N [5]o N [4]o;
then we know that zo = ¢ and z = j. Notice that

k k
AN ) =0 Y A(i,m)A(ry, ) . A(rn—2, TN—1) A(TN -1, §)-

ri=1 rv—1=1

But since A(i,z1) = A(z1,72) = ... = A(zn_1,Jj) = 1 we see that AN (4, 5) >
1.

Conversely, assume that for 1 < 4,5 < k we have that AN (i, j) > 1. Given
U,V # 0 open sets we can choose (in)nez € U and (jn)nez € V such that
for M > 0 sufficiently large

UDlicayicpmr—t,--im)My = {(@n)nez € Xa : 23 =iy, —M < k < M},

V> [j—M;j—M—l;"' 7]M]¥M = {(xn)nEZ S XA Tk :Jk;_M S k S M}
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By hypothesis we can find N > 0 such that AN (ip7,j_ps) > 1. This means
that we can find a string #,...,z/y_; such that A(iy,z}) = A(z), 24) =
...=A(z"y_{,j—m) = 1 and then define
in ifn < M,
Tp=1¢ ¢ _yifM+1<n<M+N -1,
Jn—@m4n) E M+ N <n;

then we have that 1 e UNo™NV ie. UNaNV # 0.

1.5 Minimality and the Birkhoff recurrence theorem

In this section we want to present a simple but important recurrence result,
called the Birkhoff recurrence theorem. Our starting point is to define the
following property.

DEFINITION. A homeomorphism 7 : X — X is minimal if for every x € X
the orbit {T™x : n € Z} is dense in X.

The following is obvious from the definitions
PROPOSITION 1.5. A minimal homeomorphism is necessarily transitive.

We can now consider each of the examples from section 1.1 and ask which
of these are minimal. Since Example 1 is not a homeomorphism we begin
with Example 2.

EXAMPLE 2.
LEMMA 1.6. When « is irrational then T(xz) = x + « is minimal.

Proor. It suffices to show that for every x € R/Z and every neigh-
bourhood (y — €,y +¢) (y € R/Z,e > 0) we can find n > 1 such that
T"(x) € (y — €y +6).

We already know that T is transitive (i.e. there exists at least one transi-
tive point o € R/Z with dense orbit). Fix y € R/Z and use the transitivity
to choose a sub-sequence n; with T zy — (y — x + z¢) as i — +oo. Thus

TViz =n;a+x  (mod 1)
=nia+ o+ (r —z9) (mod1)
=T" (x9) + (x — xzp) (mod 1)
—y+(xo—2x)+(r—20) =y (mod1).
[

ExAMPLE 3. The shift map is not minimal since it contains a fixed point

(eg. z=1(...,1,1,1,...)).

The following theorem gives equivalent definitions.
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THEOREM 1.7. LetT : X — X be a homeomorphism of a compact metric
space. The following properties are equivalent.
(i) T is minimal.
(ii) If TE = E is a closed T-invariant set, then either E =0 or E = X.
(i) If U # 0 is an open set then X = UpezT™U.

PROOF. (i) = (ii) Assume that TE = E # () and choose = € E.
Hypothesis (i) gives that X = cl ({T"z}nez) C E C X.

(i) = (iii) Given a non-empy open set U let £ = X — (U,ezT™U). By
construction TE = F and E # X (since U # ()) and so by hypothesis (ii) we
have that E = (). Thus X = U, ezT"U.

(iii) = (i) Fix x € X and an open neighbourhood U C X. Since
x € T"U for some n € Z (by hypothesis (iii)) we have that T~"x € U. This
shows that the orbit {T"x},cz is dense in X.

|

Using property (ii) we get the following suprising result that every home-
omorphism contains a minimum homeomorphism.

THEOREM 1.8. LetT : X — X be a homeomorphism of a compact metric
space X. There exists a non-empty closed set Y C X with TY =Y and
T:Y —Y is minimal.

ProoFr. This follows from an application of Zorn’s Lemma. Let £ denote
the family of all closed T-invariant subsets of X with the partial ordering by
inclusion, i.e. 77 < Zs iff Z1 C Z5.

Every totally ordered subset (or “chain”) {Z,} has a least element Z =
NaZa (which is non-empty by compactness of X). Thus by Zorn’s lemma
there exists a minimal element ¥ C X (ie. Y€ andY' € E withY' <Y
implies that Y = Y’). By property (ii) of Theorem 1.7 this can be re-
interpreted as saying that 7': Y — Y is minimal.

[ |

As a corollary we get the following simple but elegant result.

COROLLARY 1.8.1(BIRKHOFF RECURRENCE THEOREM). LetT : X — X
be a homeomorpism of a compact metric space X. We can find x € X such
that Tz — x for a sub-sequence of the integers n; — +oo.

Proor. By Theorem 1.8 we can choose a T-invariant subset Y C X such
that T : Y — Y is minimal. For any x € Y C X we have the required
property.

[ |

ExAMPLE 2. Consider the case X = R/Z and T : X — X defined by
Tz = x+ « (mod 1), where « is an irrational number.
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Let ¢ > 0; then we can find n > 0 (by Birkhoff’s theorem) such that
lan (mod 1)| < ¢, i.e. there exists p € N such that —e < an —p < e
Rewriting this, we have that for any irrational o, 3p, n € N such that [a—2| <
€. This is a (marginal) improvement on the most obvious estimate.

1.6 Commuting homeomorphisms

Let Ty, ... ,Tnx : X — X be commuting homeomorphisms on a compact
metric space X, i.e. T;T; = T;T; for 1 < 4,7 < N. In this section we shall
briefly consider how some of the ideas from the previous section might be
modified for such families of maps.

ExAMPLE 4. Consider the simple example of two rotations on the torus
X =R"/Z"™ of the form

Ty(v1,.. ow0) = (@140, ... 20+ al)) (mod 1),

Tn(z1, ... 20) = (1 + ™, .. zn +a®™) (mod 1),

where (agl),... ,ag)),... ,(agN),... ,aﬁf")) e R,

We can consider all closed simultaneously invariantsets A C X, i.e. T;A =
A,i=1,...,N. By a similar argument to that before, we can consider the
partial order by inclusion on all such closed sets and by applying Zorn’s
lemma (just as in the proof of Theorem 1.8) we can deduce that there exists
a closed set Xy C X such that

(i) T;Xo = Xg,i=1,...,N.

(ii) whenever A C X, with A closed and T;A = A for i = 1,... , N then

necessarily A = Xj.

The following lemma will prove useful in chapter 2.

LEMMA 1.9. For each open set U C Xy we can choose a finite number M
and n;; € Z with1 <1 < N,1 < j < M with Xo = U;‘le(Tlnlj o...0TWN)U.

PROOF. Clearly Xo = Up,ez .. .Unyez (I7" o...0TyN)U (since otherwise
the difference X — (Up,ez---Unyez (I7" 0 ... o TN )U) is a closed (non-
empty) set invariant under Ti,...,Tx, contradicting property (ii) above).
Now by compactness we can choose a finite subcover. This completes the

proof.
|

To formulate a generalisation of the Birkhoff recurrence theorem to a fam-
ily of commuting maps is a more substantial exercise, and will be a principal
part of chapter 2.
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1.7 Comments and references

A wealth of interesting examples can be found in the literature (cf. [1],
2], [3], [4], [5]).

The simple Birkhoff recurrence theorem has a version for commuting
homeomorphisms (the multiple Birkhoff recurrence theorem) which we shall
describe in Chapter 2. The corresponding result to the Birkhoff recurrence
theorem in ergodic theory is the Poincaré recurrence theorem, which appears
in section 9.2.
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CHAPTER 2

AN APPLICATION OF RECURRENCE
TO ARITHMETIC PROGRESSIONS

In this chapter we shall describe a particularly nice application of the
recurrence ideas from chapter 1 to a result in number theory.
2.1 Van der Waerden’s theorem
We begin with a simple idea from number theory.

DEFINITION. An arithmetic progression is a sequence of integers
{a + jb}) for a,b € Z (b # 0), N > 1. We call N the length of the
arithmetic progression.

EXAMPLES.

(1) The sequence 10,13, 16,19, 22 is an arithmetic progression with a =
10,b=3,N = 5.

(2) The sequence —4,0, 4, 8 is an arithmetic progression with a = —4,b =
4 N = 4.

Consider a partition of the integers Z = B; U ...U B; where
(ii) BinBj =0 for i # j.
The main result we want to prove is the following.

THEOREM 2.1 (VAN DER WAERDEN). Consider a finite partition 7 =
B1U...UBy. At least one element B, in the partition will contain arithmetic
progressions of arbitrary length (i.e. 31 <r <k,VN >0, Ja,be Z (b # 0)
such that a + jb € B, for j =0,... ,N —1).

Since an arithmetic progression of length N contains arithmetic progres-
sions of all shorter lengths, this is equivalent to: dN; — +o0, da;, b; € Z
such that a; + jb; € B, for j =0,...,N; — 1.

We give below some simple examples.

EXAMPLES.

(1) If the sets By, ..., Bg, say, in the partition are finite then it is easy to
see that B; is the element with arithmetic progressions of arbitrary
length.

11
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(2) If Z = B;UBy where By = {odd numbers} and By = {even numbers}
then both contain arithmetic progressions of arbitrary length.

(3) If B; = {prime numbers} and By = {non-prime numbers} then Bs
contains arithmetic progressions of arbitrary length. However, it is an
unsolved problem as to whether By contains arithmetic progressions
of arbitrary length.

HisTORICAL NOTE. This result was originally conjectured by Baudet and
proved by Van der Waerden in 1927 [6, 7]. The theorem gained a wider
audience when it was included in Khintchine’s famous book Three pearls in
number theory [4]. The dynamical proof we give is due to Furstenberg and
Weiss [3](from 1978).

2.2 A dynamical proof

The key to proving Van der Waerden’s theorem is the following general-
ization of Birkhoft’s theorem.

THEOREM 2.2. Let Ty,...,Tn : X — X be homeomorphisms of a com-
pact metric space such that T;T; = T;T; for1 <4,5 < N. There erist v € X
and nj — +oc such that d(T,” z,z) — 0 for eachi=1,...,N.

We shall first prove Theorem 2.1 assuming Theorem 2.2 and then return
to the proof of Theorem 2.2.

PROOF OF THEOREM 2.1 (ASSUMING THEOREM 2.2). We want to begin
by associating to the partition Z = B; U...U By a suitable homeomorphism
T:X — X (and then we set T; =T7, j =1,...,N).

Let Q = [],ez11,--- ,k} and then we can associate to the partition Z =
B1U...U By asequence z = (2p)nez € 2 by 2z, =1 if and only if n € B;.

Let o0 : Q@ — € be the shift introduced in Example 3 of section 1.1 (i.e.
(02)n = Tni1, n € Z). Consider the orbit {¢"z : n € Z} and its closure
X = cl(Upezo™z). Finally, we define T; := T® = 0 o...0 0 (T composed
with itself 4 times).

By Theorem 2.2 (with e = 1) we can find z € X and b > 1 with

1
d(Tz, z) < Z,d(Té’:v,a:) <=, d(Thz,x) <

-
-

Since X = cl (Upezo™z) we can choose a € Z such that

1
ey d(Th i, TOTY 2) <

1
d(z,T%z) < Z,d(T{’x,T“T{’z) <7

o |

Thus, for each ¢ = 1,..., N we have that

1 1 1 3
d(TT?z, T%) < d(T*TPx, T)x) + d(TPz, z) + d(z, T%2) < 1 - 1 + 1T
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Since d(z,y) = (%)N(m’y) (where N(z,y) = min{|N| > 0: zy # yn, or
T_N # y_n}) we see that (T°T?z)o = Tpyia = 24 € {1,...,k} for i =
1,...,N. This means that b+ia € B,_, for: =1,..., N, and completes the
proof of Theorem 2.1.

All that remains is to prove Theorem 2.2. This is a fairly detailed proof
and to help clarify matters we shall divide it into sublemmas.

PROOF OF THEOREM 2.2. We shall use a proof by induction.

CAsE N = 1. For N = 1 the multiple Birkhoff recurrence theorem reduces
to the (usual) Birkhoff recurrence theorem (Corollary 1.8.1).

INDUCTIVE STEP. Assume that the result is known for N — 1 commuting
homeomorphisms. We need to show that it holds for N commuting homeo-
morphisms.

SIMPLIFYING FACT. We can assume that X is the smallest closed set
invariant under each of T, ... ,Tx. If this is not the case we can restrict to
such a set (using Zorn’s lemma as in section 1.6).

In order to establish the Birkhoff multiple recurrence theorem for these N
commuting homeomorphisms, the following simple alternative formulation of
this result is useful.

ALTERNATIVE FORMULATION. Let Xy = X x...x X be the N-fold carte-
sian product of X and let Dy = {(z,...,x) € Xn} be the diagonal of the
space. Let S : Xy — Xy be given by S(z1,...,zn) = (T121,--. , TNZN)-
Then the following are equivalent:

(i) the Birkhoff multiple recurrence holds for T7,... ,Tn;

(14)y 32 =1(2,...,2) € Dy such that dx, (S™2,2) = 0 as n; = +00

(where dx (z,w) = sup; ;< d(2i, Ti))-

We can apply the inductive hypothesis to the (N — 1) commuting home-
omorphisms Ty Ty, ..., Tn—1Tx" and using the equivalence of (i), _, and
(#) y_, above we have that for the map R := TyTel x ... % TN_lT];l :
XN—l — XN—l defined by

R (.771, e ,a:N_l) — (TlT];laj'l, . aTN—lTj\_flxN—l)

there exists z = (z,...,2) € Dy—1 C Xn—1 with dx,_,(R™2,2) — 0 as
n; — +oo. In particular, dy,(S™z,z) — 0 as n; — +oo where z =
(2,...,2),2 =(TN"2,...,TN"2) € Dn.

Thus we have proved the following result.
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SUBLEMMA 2.2.1. Ve > 0, 32,2’ € Dy, In > 1 such that dx, (S"z,2') <

Unfortunately, this is not quite in the form of (4¢), we need for the in-
ductive step. (For example, we would like to take z = 2’.) To get a stronger
result, we break the argument up into steps represented by the following
sublemmas.

SUBLEMMA 2.2.2. Ve > 0,Vx € Dy,3y € Dy and In > 1 such that
d(S™y,x) < e.

(This changes one of the quantifiers 3 to V.)
SUBLEMMA 2.2.3. Ve > 0,3z € Dy and n > 1 such that d(S™z,2) < €

(This is almost the Birkhoff multiple recurrence theorem, except that z
might still depend on the choice of € > 0.)

We will now complete the proof of the Birkhoff multiple recurrence the-
orem assuming Sublemma 2.2.3. (We shall then return to the proofs “Sub-
lemma 2.2.1 = Sublemma 2.2.2” and “Sublemma 2.2.2 =— Sublemma
2.2.3” in the next section.)

Consider the function F : Dy — Rt = [0,400) defined by F(z) =
inf,,>1 d(S™z,z). It is easy to see that to complete the proof of Theorem
2.2 we need only show there exists a point x¢g € Dy with F(zp) = 0. To
show this fact, the following properties of F' are needed.

SUBLEMMA 2.2.4.

(i) F : Dy — R* is upper semi-continuous (i.e. Yz € Dy,Ve > 0,35 >
0 such that d(z,y) < = F(y) < F(z)+¢).
(ii) Jzo € Dy such that F : Dy — R is continuous at xg.

PROOF.

(i) This is an easy exercise from the definition of F'.

(ii) For € > 0 we can define A = {x € Dy : Vi > 0, Jy such that d(y,x) <
nand F(y) < F(z) — €} (i.e. 3 points y arbitrarily close to z with F(y) <
F(z) — €). Notice that

(a) A is closed,

(b) Ac has empty interior.

(To see part (b) observe that if int(A.) # @ we could choose a sequence of
pairs z,x1 € int(A.) with F(z1) < F(z) — €, £1,22 € int(A) with F(z3) <
F(x1) — €, etc. Together these inequalities give F(x,) < F(z) —ne < 0 for n
arbitrarily large. But this contradicts F' > 0).

The set of points at which F' is continuous is

(z€Dy: o & Aye> 0} =N, (DN—AL>.
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Since this is a countable intersection of open dense sets, it is still dense
(by Baire’s theorem). Thus there exists at least one point of continuity
for F : Dy — R* (in fact, infinitely many). This completes the proof of
Sublemma 2.2.4.

[ |

Let x¢ be such a point of continuity.

Assume for a contradiction that F(xzp) > 0. We can then choose § > 0
and an open neighbourhood U > z( such that F(z) > § > 0 for z € U.
However, we also know that for the diagonal actions T; : (z1,...,zn) —
(Tixl, “e ,T;JIN)

Dy CUM, (T 0. o TR 'U

(since by the simplifying assumption X is the smallest closed set invariant
under T3, ... ,Tn and so we may apply Lemma 1.9 from Chapter 1).

By (uniform) continuity of the family {77 o...o Ty}, there exists
1 > 0 such that

d(z,y) <n = d(T{" o...0oT™ig, T/ o...0 Ty"'y) <4 (2.1)
(for 1 < j < M). Observe that for y € (Ty" o...oT]T\L,Nj)_lU (j =
1,...,M) we have that F(y) > n. If this were not the case then there
would exist n > 1 with d(y, S™y) < 7, from the definition of F. This then
implies that d(T]" o...0o Ty, T{" o...0 TV S™y) < 6 by (2.1). Choos-
ing z := TV o...0 TNy € U gives F(z) = inf,>1 d(z, S"z) < § which
contradicts our hypothesis.
Finally we see that by (2.1) we have F(y) > n for all y € Dy. However,
this contradicts Sublemma 2.2.3 and we conclude that F'(zy) = 0.

The proof of Theorem 2.3 is finished (given the proofs of Sublemma 2.2.2
and Sublemma 2.2.3).
[ |
2.3. The proofs of Sublemma 2.2.2 and Sublemma 2.2.3
We now supply the missing proofs of Sublemma 2.2.2 and Sublemma, 2.2.3.
PROOF OF SUBLEMMA 2.2.2 (ASSUMING SUBLEMMA 2.2.1). Consider
the N commuting maps T1,Ts,... , Ty : Dy — Dy defined by

T1:T1X...XT1:DN—)DN,
Ty =Ty X ...x Ty : Dy — Dy,

TN:TNXXTNDN—)DN
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We want to apply Lemma 1.9 to these commuting maps with the choice of
open set U = {w € Dy : dpy(z,w) < §}. This allows us to conclude that
there exist n1j,...,nn; (j =1,..., M) such that

Dy = UM, T7™i T~

Thus for any z € Dy we have some 1 < j < M such that

dpy (T™9 ... T™iz ) < (2.2)

N

Next we can use (uniform) continuity of 71 o. ..o T™~i to say that there
exsits § > 0 such that whenever dp, (z,2') < § for 2,2’ € Dy then we have
that

dyy(TM 0. 0Tz T™io. . 0T™Niz) < 2 (2.3)

By Sublemma 2.2.1 32,2’ € Dy and 3In > 1 such that dx, (S"z,2') < 6.
Therefore by inequality (2.3) we have that

dxy (S" (T”lj o... OT”NjZ) ™o, OT”NJ'z') < (2.4)

€
1
Writing y = 7™ ... T™Niz and comparing (2.2), (2.3) and (2.4) gives that

day (S™y,z) < dxy (S"y,T™io .. 0o T™iz) +dy (T™ o...0 T™iz' )

+dxy(T™ 0...0T™iz, T™ o...0T"Ni7)

+dxy (T™io...0T™iz, 1)

<€+€+€_
217"

This completes the proof of Sublemma 2.2.2.
[ |

PROOF OF SUBLEMMA 2.2.3 (ASSUMING SUBLEMMA 2.2.2). Fix 2y € Dy
and let ¢; = 5. By Sublemma 2.2.2 we can choose n; > 1 and z; € Dy with
d(T"lzl, Zo) < €1.

By continuity of 7™ we can find ¢; > €3 > 0 such that d(z,21) < €2
implies that d(T™ z, zp) < €1.

We can now continue inductively (for & > 2):

(a) By Sublemma 2.2 we can choose ny > 1 and 2z € Dy with d(T} 2,
Zk—l) < €g-

(b) By continuity of 7™ we can find € > €11 > 0 such that d(z, zx) <
€x1 implies that d(T™ z, zx_1) < €k.
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This results in sequences

ZO7Z17Z27"'EDN7
ng,N1,N2... € N, such that {
€g > €1 > €2 > ...

d(T"kzk, Zk—l) < e k<1,
d(z, Z,L) < €g41 — d(Tn’“Z, zk—l) < €g.

In particular we get that whenever 7 < ¢ then

d(Tni+ni—1+---+nj+2+”j+1zi’ Zj) < €it1 S (25)

€

5"

By compactness of Dy we can find d(z;, z;) < 5 for some j < i.
By the triangle inequality we have that for N =n; +n;_1 + ...+ nj41

d(TNzZ-, z;) < d(TNzi, zj) +d(z,2;) < e

Thus the choice z = z; completes the proof of Sublemma 2.2.3.

2.4 Comments and references

A treatment of Van der Waerden’s theorem (and many other related ap-
plications of dynamics to number theory) can be found in [1]. The proof
originally appeared in the article [3] and the survey [2]. An account also
appears in [5].

Sublemma 2.2.2 was originally proved by Bowen.

Finally, there is a stronger version of this result due to Szemeredi. In
chapter 16 we shall present Furstenburg’s proof of this using ergodic theory.
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CHAPTER 3

TOPOLOGICAL ENTROPY

In this chapter we shall introduce an important numerical quantity called
topological entropy. This is an important quantifier of their dynamical be-
haviour (as we shall see in chapters 4 and 5). It also plays an important réle
as an invariant for the classification of continuous maps up to conjugacy.

3.1 Definitions

We begin with some simple ideas on finite open covers for X.

DEFINITIONS. Let X be a compact metric space. If o = {4;},8 = {B;}
are (finite) open covers of X, define the refinement a v g ={A;NB; : A;N
Bj # 0}. More generally, if o" = {A7,... A%y }, r = 1,...,k, are open
covers of X (of cardinality N,.) then we define their refinement

VE_jom={A] nA} n..nA}F ri;e{1,... N}ji=1,... k}.

To draw the map T' : X — X into the definition we make the following
definitions.

DEFINITION. Let a = {A1,...,A,} be an open cover for a compact met-
ric space X; then for a continuous map 7' : X — X we define

T 'a={T"'A,... T7'A,}.
For k£ > 1 we define

\/f:_OlT_ia —aVT lav...vT~k-1y

= {4, NT 4, n...nT~F YA 01 <igiy,... k1 < n}.

Th—1

Given a cover a = {Ay,...,A,} we call 8 C « a subcover if it is still a
cover for X (i.e. X = UpepB). We can now define the topological entropy
of a cover a for X as follows.

DEFINITION. The topological entropy of the cover « is defined to be the
logarithm H(a) = log N () of the smallest number N («) of sets that can be
used in a subcover of a.

19
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It is useful to illustrate this with a little example.

EXAMPLE. Let X = R/Z and consider the open cover

{02 G 00) (] (o))

consisting of four open sets. Here N(a) = 2 and so H(«a) = log 2.

The next lemma gives some of the basic properties of the topological
entropy of covers.

LEMMA 3.1.
(i) H(a) = 0.
(ii) If B C « is a subcover then H(a) > H().
(iii) If o and B are two finite covers for X then H(aV ) < H(a)+H(S).
(iv) If T : X — X is continuous and T'(X) = X then H(a) > H(T 'a).
IfT: X — X is a homeomorphism then H(a) = H(T la).

PrOOF. Parts (i) and (ii) follow immediately from the definitions. For (iii)
weleta Do’ ={A,..., Ay} and 8D B = {By,..., By} be subcovers of «
and (3 of minimal cardinality. We can then write o/ V3’ = {4;NB; : 1 <i <
n,1 < j<m,A;NB;j # 0} which is a subcover of aV 3 of cardinality at most
n X m. Thus H(aV ) < log(nm) = log(n) + log(m) = log H(a) + log H(p).

For (iv), we note that if @ D o/ = {A4,...,A,} is a subset of a of least
cardinality then T-'a/ = {T"'4,,... ,T71A,} is a subcover of Tl of
cardinality n. Thus N(T7'a) < n = N(a).

If T is surjective, then for a minimal subcover T~ 1o/ = {T1Aq4,...,
T-1A,} C T 'a we have that o’ = {A4,..., A} is a subcover of a. Thus
N(T 'a) =m > N(a). Together these two inequalities give an equality.

|

We can define the topological entropy of a transformation relative to a
cover as follows.

DEeFINITION. Let T': X — X be a continuous map on X; then we define
the topological entropy of T relative to a cover a by

1 .

MT,a) = limsup —H (Vi T ‘).
n—+oo N

We can see that h(T, @) < 400 by the following lemma.

Lemma 3.2. LH(VI /T a) < H(a) forn > 1.

PrROOF. We can write H(V} /T 'a) < Z?:_ol H(T 'a) < nH(a) by

parts (iii) and (iv) of Lemma 3.1.
|
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Finally, we can define the topological entropy of a transformation as fol-
lows.

DeFINITION. If T : X — X is a continuous map on a compact metric
space then we define the topological entropy by

h(T) = sup{h(T,a) : « is a finite cover for X}.

REMARK. In fact the limsup in the definition of the topological entropy
of T relative to a cover a can be replaced by a straightforward limit.
If we write a, = H(V]_y T~a) then for n,m > 1 we have that

Ontm = H(V?;Om_lT_ia)
<HNVM)T o)+ HNVIE™ 1T q)
<HNVY YT ')+ HNVES' T )

= ay, + am

(i.e. this sequence is subadditive). In particular, if @ = inf{ %2 : n > 1}, then
we know that €= — a, as n — +oc.

Although the definition of topological entropy we have given is not par-
ticularly convenient for computations, we shall take the opportunity to show
that the trivial identity map has zero topological entropy.

TRIVIAL EXAMPLE. Let T'=14d : X — X be the identity transformation
on a space X. For any cover a we have that T*a = v and so a = Vg‘z_olT_za.
This means that H(a) = H(V}—y T @) and so

1 ; 1
h(T, ) = limsup —H (VI_y'T @) = limsup — H(a) = 0.

n—+oo N n—+oo N

Since this holds for any cover «, we see that A(T") = 0.
We shall describe a method of computing topological entropy.

DEeFINITION. We call a finite cover a a generator for a homeomorphism
T:X — X if Ve > 0 3N > 0 the cover VI__ T "a = {By,...,Bny} con-
sists of open sets each of which has diameter at most ¢, i.e. sup,{diam(B;)} <
€.

We call a finite cover a a (strong) generator for a continuous map
T:X — X if Ve > 0 3N > 0 the cover VI_ T "a = {By,..., By} consists
of open sets each of which has diameter at most ¢, i.e. sup,{diam(B;)} < e.

This brings us to the following useful result.
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PropPoOSITION 3.3. If a is a strong generating cover for a continuous map
T : X — X (or a generator for a homeomorphism T : X — X) then
h(T, ) = h(T)

PROOF. We prove the result for a strong generator (the proof for a gen-
erator being similar). Let [ be an arbitrary cover. Let § be the Lebesgue
number for 3 (i.e. every ball of diameter ¢ is contained inside some open set in
the cover ). For sufficiently large N we get that VA € vnN;OIT_”a, dBep
with A C B, from the definition of o being generating. This means that
N(VE T (VN T—a))N(VEZ T—8), for k > 1.

We claim that h(T, a) = h(T,VA_,T~"a). In fact, the equality

H (VS T~ (ValoT "a)) = H(ViZy T ), k21,
gives

h(T,VI_yT~"a) = limsup %H (Vi T~ (VI , T "a))

k— 400

1 .
= limsup - HVMN"1T7a) = W(T, a).
k—+o0 k

Altogether we see that h(T, «) > h(T, 3). Since this holds for all open covers
B we see that h(T) = h(T, ).
|

EXAMPLE (FULL SHIFT ON k SYMBOLS). Let X =[], c,{1,...,k} and
o : X — X be the shift map. We can choose a cover by open sets of the form

a={[1]o,...,[klo}, where [i]o = {z = (x,) € X : 2o =i},

fort=1,...,k. Observe that

VN o ra={[i_n, 00y NN Ny y00, - 5N € {1,...  k}}

where we write
[i_Nyeeeyt0yeee NNy = {2 = (z,) € X : xj =14; for — N <j<N}.

For any € > 0 we can choose N > 0 sufficiently large that 2% < ¢; then for
any [i—n,...,%0,--- ,z'N]fN € \/TIZIZ_NO'_TLCV we have that

diam ([i_n, ... ,i0,...,in]"y) <€
(i.e. the open cover « is a generator). Moreover, each of the sets in V)_ 0 "«
is disjoint and V_ 0"« contains kN *! elements. This means that N(V2_,
o~ "a) = kNt Thus h(T) = h(T,a) = logk.
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3.2 The Perron-Frobenius theorem and subshifts of finite type

We want to consider a subshift of finite type o : X4 — X4 where A is a
k x k matrix satisfying the following property.

DEFINITION. The matrix A is called aperiodic if AN > 0, V1 < 4,5 < k,
AN(i,5) > 1.

This property is stronger than that of irreducibility introduced in chapter 1.
In order to understand the topological entropy we need the following.

LEMMA 3.4 (PERRON-FROBENIUS). Let A be an aperiodic k X k matriz;
then there exists a positive eigenvalue Ay > 0 such that all other eigenvalues
i satisfy |Ai| < A1, i =2,...,k. Moreover, there is a unique positive vector
v = (v1,...,0) Such that Av = \jv.

PROOF. We denote the positive cone in RF by
C={r=(x1,...,2) €R* : 2; > 0,1 <4<k}

Observe that A : C — C where

k k
A, o) = (W o) = (0 AG Do, S AG, K)os)
=1 =1
andso v, >0,i=1,...,k (ie. Av € C). We denote the standard simplex in
R* by
k
S={z=(x1,...,2) ERF : 2; >0,1<i<k, and inzl}CC
=1

and we can define T : S — S by

T, ,vg) = ( S AG S AGR ) |
o Zf:l Z?=1 AG v Z?zl Z?Zl A(iy 7)v;

Observe that for each n > 0, we can write

n k
™S8 = {inT"(ei) s x; > 0,1 <i<k, and sz =1}

where e;, 1 < i < k, are the standard basis vectors for R”. Notice that:

(1) because of the assumption that A is aperiodic, we know that for some
N > 0 we have AN (i,5) =1, for all 1 < i,j < k. In particular, we
see that TS C int(S) (see figure 3.1); and

(2) TN(S) is convex.
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FIGURE 3.1. The image T'(S) C int(S)

We would like to show that S > TN(S) D T?N(S) > ... > TN (S) > ...
converges to a single point by using the contraction mapping theorem applied
to a suitable metric.

Given two points z,y € int (T (S)) let I(z,y, TN (S)) be the line segment
given by the intersection of the convex set TV (S) with the unique line in S
through = and y. We can always translate each such segment I (z, y, TV (S)) to
the standard one-dimensional simplex A = {(z1,22) € R? : 21,25 > 0,21 +
z9 = 1} by a surjective affine transformation L = L, , r~ : l(z,y, TN (S)) —
A. Furthermore, we can identify A with R™ by (z1,z2) — oL

If we write L(z) = (x1,22) and L(y) = (y1,y2) then we can introduce a
metric on int(TVS) by

o) = og (22 |

Z1Y2

We claim that TV : TN(S) — T2N(S) ¢ TN(S) is a contraction with
respect to this metric (i.e. there exists 0 < C' < 1 such that d(TNz, T"y) <
Cd(z,y)).

We can affinely identify each of the line segments I(z,y,T"(S)) and
TNz, TNy, TN (S)) with A, and hence Rt, as above. The transformation
P : Rt — Rt corresponding to TV : I(z,y, TN (S)) — {(TNz, TNy, TN(S))

is a linear fractional transformation P(z) = ijr'g (a,b,c,d € RT). The cor-
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responding metric on R is given by

21
0(z1,22) = |log (—) |.
22
To show that TV is a contraction it suffices to show that each such cor-
responding P is a contraction, and that the contraction constant C < 1 is
independent of the choices x,y. Using the usual euclidean distance on R we

see that P'(z) = (gj_'__g;; and since the ratio of the # distance relative to the

euclidean distance at z € Rt is given by % we conclude that P is Lipschitz

with constant
C - supd & ad — be cz+d
B zeg (cz 4+ d)? az+b/) |

However, elementary calculus shows that the supremum is realised where
z = (2)1/2 and thus

J1/2 _ ,—1/2
C< m < 1,
where v := Z—‘cl > 1.

Finally, since log(v) = log (%) = 6(P(0), P(+oc)) we conclude from the
fact that TV (TN S) C int(TNS) that v is uniformly bounded over all choices
I(z,y, TNS). In particular, we can choose a value C' < 1 valid for all such
choices.

This completes the proof of the lemma.

[ |

This lemma has immediate applications to the topological entropy of mix-
ing subshifts of finite type.

PROPOSITION 3.5. Let A be an aperiodic k x k matriz with entries 0 or
1. Let 0 : X4 — X 4 be the associated subshift of finite type and let A1 be the
maximal positive eigenvalue; then h(o) = log ;.

PrROOF. We can choose a cover for X 4 by the disjoint open sets of the form
a={[1]o,...,[k]o} where [i]o ={z = (z,) € Xa: xzo=1i},i=1,... k. We
see that « is a generating cover.

Since all of the open sets in the cover \/71:,:_010_”@ are disjoint we see that

H (VN_la_"a) = log Card (VnNz_Ola_"a)

n=0
=log | Y AN71(i, )
]
From elementary linear algebra there are an invertible matrix U and a matrix

A1 0 ... 0
0 By ... 0
D= T

0 0 .. B
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with Jordan block matrices B, ..., B;, such that A = UDU~!. In particu-
lar, we can write

S ANG,5) =Y (UDNUTY (G, j)

2,7 2,
=C\Y + E(n)
where
(i) C = (zm. Ui, 1)U~ (1, j)), and

(i) imn— oo "”;(—ﬁ)' = 0.

Thus we see that

: 1 N—1_—i
Nl_l)I_{loo NH (Vilslo ") = log As.

3.3 Other definitions and examples

There are equivalent definitions of topological entropy which, in some
examples, are easier to apply. In this section we shall describe two such
definitions.

DEFINITION. Let T : X — X be a continuous map on a compact metric
space.

(1) For n > 1 and € > 0 we call a finite set S C X an (n, €)-separated set
if for distinct points x,y € S we have that d(T¢z, T*y) > ¢ for some
0<1<n—1.

Let s(n,e) € N denote the maximal cardinality of any (n,e¢)-
separated set.

(2) For n > 1 and € > 0 we call a finite set R C X an (n, €)-spanning set
if Vo € X, Jy € R such that d(T'z, T'y) < eforalli=0,...,n— 1.

Let 7(n,€) € N denote the least cardinality of any (n, ¢)-spanning
set.

LEMMA 3.6.
(i) For € > ¢ we have that s(n,e') > s(n,€) and r(n,€e') > r(n,e). In
particular,
. 1 , . 1
lim sup — log (s(n, €')) > lim sup — log (s(n, €))
n—+oo N n—-+oo
and
, 1 , . 1
lim sup — log (7(n, €')) > limsup — log (r(n, €)) .
n—+oo T n—+oo N

(ii) For e >0 and n > 1 we have that

r(n,e) < s(n,€) and s(n,2¢) < r(n,e).



3.3 OTHER DEFINITIONS AND EXAMPLES 27

PrOOF. Part (i) follows directly from the definitions.

For part (ii) we first observe from the definitions that s(n,e) > r(n,e€)
since an (n, €)-separated set S of maximum cardinality s(n,€) must also be
an (n, €)-spanning set.

If R is an (n, €)-spanning set of least cardinality 7(n, €) then we know that
X = UgerD(z,n,€) where

D(z,n,e) ={y € X : d(T'z,T'y) <e, i=1,...,n}.

If S is an (n, 2¢)-separated set, then for each y € S we can choose a distinct
open set D(z,n,€) >y, with x € R (since if y,4’ € S and = € R with y,y’ €
D(z,n,€) then d(T'y, T"') < d(T'y, T'z) + d(T'z, T*y') < € + € = 2¢ which,
since S is (n, 2¢)-separated, implies that y = ¢’). Thus Card(S) < r(n,¢) for
all such sets S, i.e. s(n,2¢) < r(n,e).

|

The values r(n,e) and s(n,e) tend to be more tractable than, say,
N(VIZ) T %a). These quantities are compared by the following lemma.

LEMMA 3.7.

(i) If « is a finite open cover for X with Lebesque number & then
N (VI T "a) < r(n,d)

for allm > 1.
(ii) Ife >0 and v = {B1,...,Bg} is an open cover with max;<;<j diam
(B;) <€, then

s(n,e) < N (VIZ, T )

PRrooOF. (i) If R is an (n,d)-spanning set of maximum cardinality r(n, d)
then X = UzcrD(x,n, ). However, for each # € R we have B(T?x,6) C A;,,
where A;; € o, for 0 < j < n—1,ie D(zx,n,0) C Ajy NT 14; N---N
T-m=Y A, | € VP T . In particular, since these sets form a subcover
for X we see that N (VI _'T~*a) < r(n,?).

(ii) Let S be a (n, €)-separated set of cardinality s(n,€). Each point z € S
must lie in a different element of v?:_OIT_W (since for z,y € B;, N T 1B;, N
..NT~-UpB, e VI T iy we see that d(T"z, T"y) < diam (B;,) < €).

In particular, s(n,e) < N (Vi T~%y).

|

This gives us the following equivalent definitions of topological entropy
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PROPOSITION 3.8. The topological entropy of a continuous map T : X —
X on a compact metric space is given by

1
h(T) = lim lim sup — log (r(n, €))

€20 pstoo N

and .
h(T) = lim lim sup — log (s(n,¢€)) .

€20 pstoo N

PROOF. Since h(T) = sup, h(T, o) we can choose for any > 0 a finite
cover « such that
BT, 0) + 1> W(T) > h(T, o).

Let 6 > 0 be the Lebesgue number for the open cover a.
By Lemma 3.6 we see that the two limits are the same, i.e.

1 1
lim lim sup — log (r(n, €)) = lim lim sup — log (s(n,€)). (3.1)

€30 nstoo N €30 nstoo N

Observe that we have the following inequalities:

1
lim lim sup — log (7 (n, €))
€20 540 N

1
> limsup — log (r(n, d by Lemma 3.6 (i
msup ~log (r(n,5)) ) 2
1 .
> limsup — log N (V) T ) (by Lemma 3.7 (i))
n—+oco N

= h(T,a) > h(T) — 1.

For any ¢ > 0 we can choose an open cover § = {By,..., B} for X with
maxi<;<i{diam(B;)} < e. This gives the following inequalities:

1
lim sup — log (s(n, €))

n—+oo N

1 )

<limsup —log N (Vi 'T~*8) (by Lemma 3.7 (ii))
n—+oco N

< h(T, B) < h(T).

Letting € — 0 now gives that

lim lim sup 1 log (s(n,€)) < h(T). (3.3)

€20 pstoo N
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Comparing the estimates (3.1),(3.2) and (3.3) (and recalling that n > 0
can be chosen arbitrarily small) completes the proof.
[ |

EXAMPLE (ROTATIONS). Let T : R/Z — R/Z by Tz = z + « (mod 1).
We claim that h(T") = 0.

Observe that for € > 0 and n = 1 we choose a finite cover for [0, 1] con-
sisting of intervals (:vz — £,%i + %), i=1,...,N,say. Thus R = {z; : i =
1,...,N}is a (1,€)-spanning set and r(1,¢) < N.

We claim that R is also an (n,€)-spanning set for each n > 1. For any
x € [0,1] we can choose d(z,z;) < € then d(T"z;,T"x) = d(z,x;) < ¢, for
r=0,...,N — 1. In particular, 7(n,e) < N. Thus we see that

1
0 < h(T) = lim <lim sup — logr(n, 6))

€20 \ ns4oo N

1
< lim <lim sup — log N)

€20\ nstoco N

= 0.

REMARK. This proof works equally well for any isometry 7': X — X on
a compact metric space.

EXAMPLE (DOUBLING MAP). Consider the map T : R/Z — R/Z defined
by Tz = 2z (mod 1).

For k£ > 1 we can define the set

m k
Fk:{2_k :m=0,...,2" -1}
(whose cardinality is 2’“). For ¢ > 0 choose k£ > 1 such that 2% <e< %%1

For n > 1 we claim that F,,;_» is an (n,€)-separated set. This is clear
since for distinct points za—s, 72— € Fpyx—2 we have that d(T" ! (F2%),
T (582)) = d(582r, 5121 ) > 55=t > €. Thus s(n,e) > 2Fn=2,

For n > 1 we claim that Fj,;x_1 is an (n,€)-spanning set. For any z €
R/Z we can choose srinw=r € Fjix—1 with d(z, ge5=1) < 2k+1n_1. Then
for 7 = 0,1,...,n — 1 we have that d(T" 552=,T"%) < z5r < €. Thus
r(n,e) < 2k+n=1,

We now know that

1
h(T) = lim (lim sup — log s(n, e)) > log2

=0\ nstoo N
and .
h(T) = lim (lim sup — log r(n, e)) < log2.

€20 \ ns4oo N

Together these inequalities show that A(T") = log 2.

Finally, we give a result that will be useful later on.
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COROLLARY 3.8.1 (ABRAMOV’S THEOREM). Let T : X — X be a con-

tinuous map on a compact metric space X, then for any m > 1 we have
h(T™) = mh(T).

PRrROOF. Let T : X — X be a continuous map on a compact metric space
X. For m > 1, let spm(n,€) denote the maximal cardinality of an (n,€)-
separated set for T™ and let rrm(n,€) denote the least cardinality of an
(n, €)-spanning set for 7™. We shall show that spm(n,€) > sp(nm,e¢) and
rrm (n,€) < rp(nm,e). Let S be an (n, €)-separated set for T™ of cardinality
spm(n,€). ThenV (distinct) z, 2’ € X, 30 <4 < n—1 with d(T™z, T™z') >
e. In particular, S is also an (nm, €)-separated set for T. Thus spm(n,€) is
a lower bound on the maximal cardinality of (n,¢)-separated sets for T
STm (na 6) Z sT (nm7 6)

Similarly, let R be an (nm, ¢)-spanning set for T' of maximal cardinality
rr(nm,e€); then Vo € X, 3z € R such that d(T%z, T%2) < e for 0 < i < nm—1.
In particular, R is also an (n,e¢)-spanning set for 7™ and so rym(n,e) <
rr(nm,e).

Finally, we have that

1 1
m = 1 1 — m < 1 1 — =
h(T™) 2111(1) ngr}rloo T (n,e) < !1_1;1(1) nll)IJrrl an(nm, €) = mh(T) and

1 1
my _ 13 : Z Gmm > i 1 — = .
M) = I B o () 2 1 B o, € = mA(T)

which completes the proof.

3.4 Conjugacy
We begin with the following definition.

DEFINITION. Two homeomorphisms (or continuous maps) 77 : X1 — X3
and Ty : X9 — X5 are conjugate if there exists a homeomorphism h : X; —
X5 such that hoTy =T5 0 h.

REMARKS.

(i) The existence of such a homeomorphism requires X; and X» to be
homeomorphic (before any consideration is made of the maps 77 and
Ts).

(ii) The condition Ty o h = h o T} means that h respects the orbits of T}
and Ty, i.e. for any x € X7 and n > 0 (or n € Z for homeomorphisms)
we have that h(z) € Xo and h(TT'z) = T3 (hx)

(iii) Conjugacy is an equivalence relation on the set of all homeomor-
phisms on compact metric spaces.

The following is easy to prove from the definitions.
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PROPOSITION 3.9. Assume that T : X1 — X1 and Ty : X9 — X9 are
conjugate maps then;

(1) Ty : X1 — X3 is transitive if and only if Ty : Xo — Xy is transitive,

(2) Ty : X1 — X1 is minimal if and only if Ty : X9 — Xy is minimal.

ProoOF. This is immediate from the definitions and the easy observation

that the homeomorphic image of a dense set is dense.
[ |

DEFINITION. Denote by Fix(T™) the set of fixed points for the nth iterate
T" : X — X of amap T : X — X (also called periodic points). We let
Card (Fix(T™)) denote the cardinality of this set (which might be empty,
finite or infinite).

Remark (ii) above now gives us that the number of fixed points for T™
gives us a simple set of invariants for conjugacy.

ProrosiTIiON 3.10. Conjugate homeomorphisms Ty and Ty have the prop-
erty that h (Fix(T7')) = Fix(Tg') and Card (Fix(T7")) = Card (Fix(Ty")), for
n > 1.

PROOF. This is immediate from Remark (ii).

|
EXAMPLES.
(i) Let T : R/Z — R/Z be the homeomorphism given by Tz = x +
a (mod 1).

If « is irrational then there are no fixed points or periodic points.
To see this, assume that T"x = z; then x+na = x+m with n,m € Z.
Then a = ™, contradicting the fact that « is irrational.

If o is rational ( @ = ’a’, where p,q > 1 are co-prime, i.e. they have
no common divisors) then Fix(T") = R/Z if n is a multiple of ¢ and
the empty set otherwise.

(ii) Let o : X — X be a subshift of finite type described by a k x k matrix
with entries either 0 or 1. A fixed point will be of the form

T = ( ,560,.170,.170,.%’0,.170,...)

where A(xg,20) = 1. We see that Card(Fix(T)) = trace(A) and
similarly Card(Fix(T™)) = trace(A"™).

DEFINITION. Let T7 : X1 — X1 and Ty : X5 — X5 be continuous maps
on compact metric spaces. A continuous map h : X; — X, is called a
semi-conjugacy if hoT; =Ty o h and h(X7) = Xo.

If h: X1 — X5 is homeomorphism with A o Ty} = T o h is conjugacy.

The following relates the entropies of semi-conjugate and conjugate maps.
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ProprosiTION 3.11. IfT; : X1 — X1 is semi-conjugate to Ty : Xo — X9
then h(Ty) > h(Ts). If T1 : X1 — X1 and Ty : Xo — X are conjugate then

PrROOF. Let a be an open cover for X5. Then for any n > 1 we have that

H (Vi Ty'a) = H (" (Vi5 Ty o))
— H (V5! (hTy )
=H VI, Ty (hla)).

In particular,

1 .
h(Ts, @) = limsup —H (Vi) Ty "a)
n—+oo N

— limsup - H (VI=MT (1)

n—+oo N

= h(Tl, h_la).
This gives us that

h(Ty) = sup h(Ty, ) = sup h(Ti, h™ ') < sup h(Ty, B) = h(Ty).
a h=la B

If h: X; — X5 is a homeomorphism then we can interchange 77 : X; —
X1 and T : X3 — X in the above argument (and replace h : X; — X5 by
the homeomorphism h™! : X5 — X7) to get h(T1) < h(T?).

[ |

3.5 Comments and references

A more detailled treatment of topological entropy and its properties can
be found in Walters’ book [3] (or in Bowen’s notes [2]). The original reference
for this material is [1].
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CHAPTER 4

INTERVAL MAPS

In this chapter we shall concentrate on the special case of continuous maps
on the closed interval I = [0, 1]. This level of specialization allows us to prove
some particularly striking results on periodic points and topological entropy.

4.1 Fixed points and periodic points

Let T : I — I be a continuous map of the interval I = [0, 1] to itself. Recall
that a fixed point = € I satisfies Tz = x and that a periodic point (of period
n) satisfies T"x = x. We say that = has prime period n if n is the smallest
positive integer with this property (i.e. TFz # x for k=1,...,n—1).

For interval maps a very simple visualization of fixed points exists. We
can draw the graph Gr of T : I — I and the diagonal D = {(z,z) : = € I}.

LEMMA 4.1. The fized points Tx = x occur at the intersection points
(x,z) € Gr ND (see figure 4.1).

Similarly, if for n > 2 we look for intersections of the graph Gr» (of n-
compositions T™ : I — I) with the diagonal D then the intersection points
(z,z) € Gpn N'D are periodic points of period n.

LEMMA 4.2. Assume that we have an interval J C I with T(J) D J; then
there exists a fixed point Tx =z € J.

PrOOF. We see that showing that there exists Tx = x € J is equivalent
to showing the restriction of the graph Gr to the portion above J intersects
the diagonal D. This is obvious by the intermediate value theorem and figure
4.1.

[ |

The following simple lemma will prove useful.

LEMMA 4.3. IfT : I — I is a continuous map and Jy,Jo C I are (closed)

sub-intervals with T(J1) D Ja then we can choose a sub-interval Jo C Jy with
T(Jo) = Js.

PROOF. Let Jo = [a,b] and introduce the disjoint closed sets A = {z €
Ji:T(x) =a}and B = {y € Ji: T(y) = b}. Choose o/ € A, V/ € B

33
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Tx=x Tx=x

FIGURE 4.1. Characterizing fixed points (Lemma 4.1) and the exis-
tence of fixed points in J C T'(J) (Lemma 4.2)

J2

FIGURE 4.2. Choosing a subinterval Jy C J; for which T'(Jy) = J

such that o' — b'| = inf{|z —y|: z € A,y € B}; then with Jy = [a’, ] or
Jo = [V/, a’] the results follows.
|

Our first theorem shows the significance of having a periodic point of prime
period 3.

THEOREM 4.4. Let T : I — I be a continuous map and suppose there
exrists a periodic point x of prime period 3. Then for all n > 1 there exists a
periodic point of prime period n (i.e. Yn > 1,3z € I with T"z = z).

PRrOOF. We shall do the simpler case n = 1 and the trickier case n > 2
separately.
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(I) Existence of a fixed point (i.e. n = 1). Let {x, Tz, T?z} be the
three distinct points in the orbit of z. Let us assume (for simplicity) that
x < Tx < T?z. (The five other permutations are easy to derive from this

case either by replacing # by Tx or T2z, or by reversing the horizontal axis
of the graph of T'.)

FIGURE 4.3. Intervals J’ and J” defined with endpoints containing the
orbit of x

Let J = [z, T?z]; then we can write J = J' U J” with J' = [z, Tz] and
J" = [Tz, T?z] (see figure 4.3). With these choices we have

(a) T(J') D J", and

(b)y T(J")D J
since the endpoints of the intervals J’ and J” are mapped to the endpoints
of J' and J, respectively, and the continuous image of an interval is again an
interval.

The existence of a fixed point in J” now follows immediately from Lemma
4.2 and (b) since T'(J") D> J D J".

(IT) Existence of a point of period n > 2. Since by the hypothesis
of the theorem we already have a point x of prime period 3 we shall assume
henceforth that n # 3.

SUBLEMMA 4.4.1. There exists a nested sequence of intervals
J'=Iy>L1>DI,>...0I,_ 5D I,

with the following properties:
(i) Ix = T(Igy1) for k=0,...,n—3;
(i) T Y(I,—1) = J'; and
(iii) T"(I—1) D J".

To see that Sublemma 4.4.1 implies Theorem 4.4 we first observe that by
part (iii) we have that T"(I,—1) D J"” D I,,_1 and so applying Lemma 4.2
(with T replaced by the n-fold composition T™) shows the existence of a fixed
point z = T"z € I, for T" (i.e. z is a point of period n for T : I — I).
However, we still have to show that this is a periodic point of prime period
n. We see from Sublemma 4.4.1 that

2,Tz,T?z, ..., T" %2z € J" (by part (i) since T?z € T*(In_1) = I,_i_3),

T 'z € J' (by part (ii)).
(4.1)
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To proceed, we want to eliminate the possibility that z = Tz(e J N J").
Assume for a contradiction that z = Tz, then we immediately have T3z = z
(since T3z = ) and z is a periodic point of prime period 3 (since the same
is true of x). However, this contradicts our assumption that n # 3.

In particular, this means that in (4.1) we can “improve” the second con-
clusion to 7" 'z ¢ J"” We are now in a position to see that n is the
prime period of z. If this were not the case, then Tz = 2z for some
1 < k < n—1 (which must divide n). But this would mean, in particu-
lar, that T*~1z = T"~1z ¢ J” which is inconsistent with the first line of
(4.1)

The only thing that remains in order to complete the proof of Theorem
4.4 is to prove Sublemma 4.4.1 .

PROOF OF SUBLEMMA 4.4.1.

(i) We know from (b) that T'(J"”) D J D J” and so by Lemma 4.3 we can
choose Iy C J"” with T'(I;) = J". Similarly, since T'(I;) = J" D I, we can
apply Lemma 4.3 again to choose Iy C I; with T'(I3) = I;.

Proceeding inductively, we can construct a sequence J” DI DI D ... D
I, with T(I) = Ix—1 for k=1,2,... ,n — 2 (which, in particular, implies
that TF(I) = J" for k=1,2,...n — 2).

(i) To construct I, 1, observe that T"~(I,_5) = T(J") > J' by (b).
Applying Lemma 4.3 we can find I,,_; C I, 5 with T"~1(I,_) = J'.

(iii) Finally, we observe that T"(I,—1) = T'(J') D J" (by (a)).

This completes the proof of the sublemma (and consequently of Theorem
4.4).

|

This result that a point of prime period 3 implies points of all possible
prime periods is a special case of a more general result due to Sharkovski.
We can introduce a new ordering on the natural numbers N by

3<5<T7T=<9<11<...<2m+1<...
L.=6<10<14<18<22<...<22m+1) < ...
L.o=12<20<28<36<44<...<42m+1)<...

=273 <275 <277 <27-9<2"-11<...<2"2m+1) <...

L=ortlcor corl o 216 <8<4<2<1

This ordering is clearly somewhat different from the usual ordering on the
natural numbers. For example, the ordering of the first dozen natural num-
bers becomes 3 <5 <7<9<11<6<10<12<8<4<2<1.
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THEOREM (SHARKOVSKI). Let T : I — I be a continuous map and as-
sume that T has a point of prime period n. Then for each m > n (with
respect to the above ordering) there exist periodic points of prime period m.

The proof of Sharkovski’s theorem runs along similar lines to that of The-
orem 4.4.

4.2 Topological entropy of interval maps

Given a continuous map T : I — I we want to express the topological
entropy in terms of the growth of the number of monotone intervals for the
n th iterate T™.

DEFINITION. We let N (T') denote the number of intervals of monotonicity
for the map T : I — I (i.e. the number of disjoint maximal subintervals
I,1, ..., I for which each restriction T : I; — I is strictly monotone).

LEMMA 4.5. For continuous maps S1 : I — I and Sy : I — I we have that
N (S1083) <N(S2).N(S1). In particular, for a continuous map T : I — I
(i) N(T™F™) < N(T™N(T™) forn,m > 1,

(ii) the sequence N (T™) is monotone increasing.

PrROOF. Assume that {I;}7, are disjoint intervals of monotonicity for
S1:1 — I and {J;};~, are disjoint intervals of monotonicity for Sy : I — I.
The intervals of monotonicity for Sy 0 Sy : T — I take the form J; N Sy ' (I;).
Thus N (Si 0 S2) < Card{(i,j) : J; NSy (L;) # 0} < N(S1) - N(Sa).

[

REMARK. If we were to also consider C* maps T : I — I then the end-
points of the intervals of monotonicity would be the critical points {c¢ : T"(c) =
0}. The above results become even more transparent using the chain rule

(T™) (@) = [IiZy T'(T*x).

Lemma 4.5 (i) shows that the sequence log N (T™) is subadditive and so
Llog N(T™) converges (to inf {1 log N'(T™) : n > 1}).

THEOREM 4.6. Assume that T : I — I is a continuous map with N'(T) <
400, then
1
h(T) = lim —logN(T™).

n—+oco N

PROOF. For each n > 1 let E,, = {z1,z2,...,xn} be a maximal (n,€)-
separated set for T : I — I (i.e. N = s(n,¢)). By definition, for each
1 <4 < N there exists some 0 < r; < n —1 with |T7(z;) — T" (zi41)] > €.
In particular, we can choose 0 < r < n—1 with [T"(z;;) —T" (x;;41)| > € for
a subset {z;, <z, <...<wx;, _,} C E, with cardinality m > %
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If C = sup,¢;|T(z)| then this property implies there are at least &
intervals of monotonicity for T7, i.e. N(T") > & > % Thus

1 1
lim —logN(T") > lim — (logs(n,e) — (logC + logn —loge))

n——+oco n—+oo N

— 1m L (4.2)
= nll)ar_loo - log s(n,€)
= h(T).

The opposite inequality is slightly more complicated. We begin with some
preliminary estimates. We can fix m > 1 and consider S :=T™ : I — 1.
Observe that

m ( BI_'I_l %10gN(T”)> =m <1imsup 1 logN(T"))

n>1 N

1
> lim sup - log V(S*)
k>1 K

= lim %log./\/' (S*)

k— o0

k n
(since (%}\/(5)) is a sub-sequence of (k)g}\/#) ). Moreover, we
keN neN

can estimate
. 1
m ( lim — logN(T”))
n—oo N

< lim = log (J\/(S[%])N(T"—[%]m)) (by Lemma 4.5)

n—,oo N

n—oo 1 0<i<m—1

< lim mlog (N(S[%]) + max {103N(Ti)}>

1
= lim - log NV (S%).

k—oo k

Comparing these last two inequalities we see that

lim %logN(Sk) =m ( lim - 10gN(T”)> :

k—o0 n—oo n

We shall now concentrate on the interval map S : I — I. We denote by
{J. 34, the intervals of monotonicity for S : I — I (with neighbouring
intervals labelled consecutively).

Let o = {U,}, denote the open cover for I whose elements are open
intervals formed from neighbouring intervals from {J,.} (i.e. Uy = int(J;UJ3),
Us = int(J1UJoUJ3),..., U, =int(J 1 U Udpys), ..., Up = int(Jp_1 U
Im))-
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For n > 1, each non-degenerate interval J;, N S'_lJi1 N...N S_(”_I)Ji(n_l)
is now an interval of monotonicity for S™ and corresponds to at most 3"
elements of the cover

n—1 g—r
Voo S T«

= {Ujo N S_lUjl n...N S_(n_l)Uj(n_l) : jOa s a.j(n—l) € {]-a o aN}}

(given by the at most three choices int.J;; _qy, int.J;,, and intJ(; ;1) con-
tained in U;_, for 0 < 7 < n — 1). In particular, we see that N (S¥) <
3k N(VFZlS—"a). By the definition of topological entropy in section 3.2 we
have that h(S) > h(S, @) and then we may write

h(S) > h(S, @)

. 1 1 i
= Jm g7 (vizgs ™)

> lim sup % log (N(S¥)/3%)  (since N(S%) < 3°N (V215" a))

k——+o0

1
= limsup - log V(5%) — log 3
k—+o0 k

Finally, by Corollary 3.8.1 we know that h(S) = mh(T') and so we have

h(S)
hT)=——=
(r)==°
1 1 log 3
> — (limsup — logN(Sk)) _ 28
m \ k—+oco k
1 log 3
= lim sup — log V' (T") — 87
n—+oco T m
Since m > 1 can be arbitrarily large, we get
) 1
h(T) > limsup — log N (T™). (4.3)

n—+oo N

Comparing (4.2) and (4.3) completes the proof.

4.3 Markov maps

Consider a division of the interval I = [0, 1] into a finite number of closed
sub-intervals I; = [z;, z;11] (i =0,...,k — 1) with endpoints 0 = 2o < z1 <
o< axp =1
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DEFINITION. We are interested in surjective maps T : I — I which are C*
and monotone on each of the (open) intervals intl; = (x;_1, ;) and satisfy
the following additional properties.

(i) (Piecewise erpanding) There exists f > 1 such that |T'(z)| > £,
Ve € I; (Z=1, ,k),
(i) (Markov property) If T (intl;) Nintl; # (0 then T'(intl;) O intl; (for
ij=1,....,k).
(see figure 4.4)

X 4 Gy

Xg [ R~

2 :

Xl"

FIGURE 4.4. Gp for a Markov map

ExAMPLE. Consider the interval I = [0, 1] and the map T : I — I defined
by
2z if0<zx< %,

20 -1 ifi<z<l.

T(z) = {

In this case we take I; = [0, 3] and I» = [1,1]. It is easy to see that this
map is piecewise expanding (where we can take 8 = 2 in (i)). Also, since
T(0,3)=T(3,1) = (0,1) D (0,3) U (3,1) it is a simple matter to see that
the Markov property holds.

TECHNICAL POINT FOR THE CAUTIOUS. These maps 7' : I — I may not
be continuous at the points 1 < ... < xi_1, which sits a little uncomfortably
with our earlier definitions (of topological entropy, etc.) for continuous maps.
This can be rectified by the simple device of looking at the map 7 on the
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disjoint union Uf;llli (i.e. treating the endpoints of different intervals as
different points). To avoid this concern, we invite the reader to restrict his
attention to continuous maps.

The following is a useful property for such maps to have.

DErFINITION. We say that T': I — I is locally eventually onto if for every
interval J C I there exists n > 1 with T"J = 1.

We want to associate to a piecewise expanding Markov interval map a
k x k matrix A with entries either 0 or 1.

DEFINITION. We define a transition matriz A by

. 1 if T(intl;) D intl},
A(i,5) = oo .
0 if T'(intl;) Nintl; = 0.
We can now define a one-sided subshift of finite type on the shift space of
sequences,

X;i= { = @n)nez+ € [[{L- -k} A(@n,@nga) =1, forn > 0} ’
7.+

by o : X — XI with 0 (Zn)nez+) = (Tnt1)nez+ (i-e. all the terms in the
sequence z are shifted one place to the left, except the zeroth term xy which
is thrown away).

For x = (Zpn)nez+ and y = (Yn)nez+ we define

Nt(z,y) =min{N >0: 2y # yn}.

N+(:1:

A natural metric on this space is defined by d (z,y) = (%) Y) for xz,y €

X5 (= #y).
LEMMA 4.7. The space XZ is compact and the map o : X:{ — XZ 18
continuous. Moreover, every point x € Xj[ has at most k pre-images

PRrROOF. The proofs of the first two assertions are almost identical to those
for 0 : X4 — X 4 in chapter 1, and so we shall omit them.

For the last part, we observe that if x = (z,)nez+ € X1 and y = (Yn)nez+
satisfies o(y) = x then the values y; = zo,y2 = Z1,... ,Yr = Tp_1,... are
all determined, and so y is completely specified up to the at most k possible
choices yo € {1,...,k} (such that A(yg,zo) = 1).

[ |

The next proposition shows that o : XZ — X;'{ gives a lot of information
about T': I — 1.
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PROPOSITION 4.8. There is continuous map  : Xj{ — I such that

(i) 7 is surjective and roo =T om (i.e. T is a semi-conjugacy),
(ii) points z € I have ezactly one or two pre-images in XZ (i.e. Yz € I
the set E(z) = {z € X} : m(z) = z} consists of either one or two

points),
(iii) the set of points z € I such that E(z) consists of more than one point
is contained in the countable set U,cy+T ™"{xo,... , 2k},

(iv) if T : I — I is locally eventually onto then A is aperiodic (i.e. In > 1,
V1<i,j <k, A%(i,5) > 0).

PROOF. We want to define the map 7 : XJ — I by
m(w) = NS gcl (T "int (1, ))

where w = (wy,)nez+ € X4 (i.e. 7(w) should correspond to a point = € I
such that T"z € I, for n > 0). The use of cl (closure) and int (interior)
helps to avoid tiresome problems with the endpoints of intervals.

We first show that this map is well-defined. For any N > 0 we have
that Jy(w) = NN_ycl (T~"int(I,,)) is non-empty and closed. Since Jo(w) D
Ji(w) D ... D Jx(w) D ... is a nested sequence of closed sets we have by
compactness that Ngez+Ji(w) # 0. Moreover, since T : I — I is piecewise
expanding we see that

diam(J, (z)) < %diam(Jn_l(m)) <.

< %diamul(x)) < ﬁin 0

as n — +o0o. In particular, this intersection consists of a single point, which
we take to be m(w).

To see that m : X1 — I is continuous, we begin by choosing for each
e > 0 an integer n > 1 such that ﬂ% <e If d(z,y) < 3 then z; = y; for
i=0,...,n—1and n(x),n(y) € J,(x) (by definition of J,,(x)). In particular,
|m(x) — 7(y)| < diamJ, (z) < ﬂ% < e.

(i) To see that = is surjective, we need only observe that for every point
z in the complement of the dense set U,cz+T "{zo,...,zr} we have a
unique choice (wy)pez+ € X4 with T"(z) € int(I,,) for n > 0, and thus
7 ((Wn)nez+) = x. Since the image of 7 is compact and contains a dense set,
we conclude that 7 is surjective.

To see that m oo =T o m observe that

™o U(wn)nEZ‘f‘ =7 ((wn-i—l)nEZ"')
= Npez+cl (T~ ™int(1y,,,))

= (T om) (Wn)nez+) -
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(ii) Assume that z = w(w) = 7(y) with w = (Wp)nez+ # ¥ = Yn)nez+-
If wo # yo then z € I,, N I,, # 0, i.e. z must be one of the endpoints
xg,-..,Tn. However, if z = xz;, say, then the choice of either wy = ¢ or
wp = i + 1 uniquely determines the rest of the sequence w = (wy,),ez+ With
m(w) = z. Thus F(z) can have cardinality at most two.

More generally, if w; = y; for ¢ = 0,...,7 — 1 but w, # y, then T"z €
L, N1, . Thus, T"z = x;, say. Moreover, the choice of w, = j or w, = j+1
uniquely determines the rest of the sequence w = (wy, ),ez+ With m(w) = 2z

(iii) From the proof of (ii) we see that we require that z € US2 (T~ "{xy,
..., xk}. Since T is Markov this is a countable set.

(iv) For each 1 < i < k we can use the definition of locally eventually onto
to choose n; > 1 with T™I; = I. In particular, for n > max{n; : 1 <i < k}
we see that for any 1 < i < k we have T"[; =T "™ (T™1;) =T " (I) = 1.
In particular, this means that V1 <i,5 < k we can find z € ;N T "I;. If
we choose i1,...,i,—1 € {1,...,k} such that T"z € I; (r=1,...,n—1)
then we see that

A4, §) > A(i,i1) A(i1, 82) - - - A(in—1,4) = 1.

This shows that A is aperiodic.

The usefulness of Proposition 4.8 lies in converting relatively easy results
for o : XX — Xj{ into corresponding results for 7" : I — 1.

THEOREM 4.9. IfT : I — I is locally eventually onto then h(T) = log A\
where A1 s the unique mazimal eigenvalue for the matrix A.

PROOF OF THEOREM 4.9. Since 7 : X:{ — [ is a surjective semi-conjugacy
between o : X;'{ — X;'{ and T : I — I we have by Proposition 3.11 that
h(T) < h(c). To get the reverse inequality we need only argue as in the
proof of Theorem 4.6. This shows that h(T) = h(o).

To complete the proof, we only need the following sublemma.
SUBLEMMA 4.9.1. h(o) = log ;.

PROOF OF SUBLEMMA 4.9.1. The proof is identical to that of Proposition
3.5.
[ |

An algebraic number is one which is the root of a polynomial with integer
entries. There are only countably many algebraic numbers.
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COROLLARY 4.9.1. The value ™™ is an algebraic number.

PROOF. Observe that A\; = e™(?) is an eigenvalue for A and so, in partic-
ular, a root of the characteristic polynomial p(z) = det(zI — A) which has
integer coefficients (since the matrix A has integer entries). By Theorem 4.9
we have e?(?) = ()

[ |

DEFINITION. For each n > 1 we let Fix(T") = {x € I : T"x = z} denote
the set of fixed point for 7" and let Card(Fix(7T™)) be the cardinality of this
set.

THEOREM 4.10. lim,, % =1.

PROOF OF THEOREM 4.10. We first establish the analogous result in the
easier context of o : XZ — Xj{. By Sublemma 4.9.1. the topological entropy
of this map is log A;.

CardFiz(oc™) __ 1

SUBLEMMA 4.10.1. lim,, 4 N
1

PROOF OF SUBLEMMA 4.10.1. A fixed point z = (zy)gez+ for o™ : X1 —

X:{ is a sequence for which z = T4y = Tgq2n = ..., for k=0,1,... ,n—1.
Thus Card(Fix(¢™)) is exactly the number of strings (zg, z1,... ,Z,—1) with
A(zg, 1) = A(z1,22) = ... = A(Tp_2,Tn_1) = A(xn_1,20) = 1. However,

this is given by trace(A™) = AT + A§ + ...+ A%, where \; (i =1,... ,k) are
the eigenvalues for A.
Since by the Perron-Frobenius theorem we have |A\;| < Ay fori=2,...  k
we see that
lim Card(Fix(c™)) — m AT+ ..+ A7 _
n—-+00 )\71‘ n—+o0 )\71"

1. (4.4)

By Proposition 4.8 (iii) there is a bijection between Fix(o™) and Fix(T™),
with the possible exception of the finite set Fix(7T™) N {z1,...,zx}. Thus
|Fix(o™) — Fix(T™)| < k and so by (4.4)

_ Card(Fix(e™)) —k _ .. . .Card(Fix(T"))
1= n—&r—{r—loo e"h(o) S lrng—ll-{olE e"h(T)
. Card(Fix(T™)) . Card(Fix(o™)) + &k _
< lmsup ="y — < m (o) =1

This completes the proof.
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4.4 Comments and references

Sharkovski’s theorem on periodic points can be found in [8], [9], [2] or [5]
(for period 3 orbits).

The interpretation of the topological entropy as the growth rate of mono-
tone intervals is due to Milnor and Thurston [6].

The use of subshifts of finite type to study Markov interval maps is a simple
analogue of Markov Partitions and symbolic dynamics for Axiom A diffeo-
morphisms (cf. references to chapter 5). If we drop the Markov assumption
then there is a construction due to Hofbauer [4] of Markov extensions.

Other important aspects of interval maps which we have omitted are dealt
with in [2] (kneading theory), [1] (renormalization) and [3] (period doubling).
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CHAPTER 5

HYPERBOLIC TORAL AUTOMORPHISMS

We want to consider a simple class of homeomorphisms whose dynamical
behaviour illustrates many of the ideas we have discussed.

5.1 Definitions

Let GL(2,7Z) be the set of all 2x 2 matrices A = (Z Z), where a,b,c,d € Z

and Det(A) = ad — bc = 1. Each such matrix A gives a linear map on R?
X x

Let T? = R? /Z? be the two-dimensional torus and we define a linear toral
automorphism T : T2 — T? by T(x1,22) = (azy + bxa,cxy + dxs) (mod 1)
(see figure 5.1). We say that T : T2 /Z? — T?/Z? is hyperbolic if A does not
have eigenvalues of modulus 1.

FIGURE 5.1. The map A : R?> — R? projects down to a map T : T? —
T2

PROPOSITION 5.1. A hyperbolic linear toral automorphism T : T? — T?
is a homeomorphism

PROOF. The map T is clearly continuous since if |z1—y1|, |£2—y2| < € then

(T'(z1,22))1 — (T(y1, y2))1| < (Ja + [b])e and (T (21, 22))2 — (T(y1,y2))2| <
(lel + [d]e.

47
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To see that T is invertible we note that if we write the inverse matrix
d —b
-1 _ d—b d—b
A — < a e C a - C >
ad—bc ad—bc

then since ad — bc = +1 we see that A=' € GL(2,Z). The inverse to T :
T? — T? is then the linear toral automorphism associated to A1, i.e.

d —b —c a

T-! =
(1, 72) (ad — bcw1 + ad — bch’ ad — bcjlc1 + ad — bcxz

) (mod 1),

[ |
We give some examples.

EXAMPLES.
(i) Let Ay = (f i), then Det(A;) = 1 and the associated map T; :
T? — T? takes the form T} (z1,z2) = (221 + %2, 71 + 2) (mod 1).
(ii) Let As = <:;§>, then Det(A2) = 1 and the associated map T :
T2 — T? takes the form Ty(x1, 22) = (57214222, 85x1+3x2) (mod 1).
(iii) Let Az = ((1) 1) then Det(A3) = 1 and the associated map T3 : T? —
T? takes the form T3(x1,z2) = (21 + 22, 22) (mod 1).

DEFINITION. Let A € GL(2,7Z) have eigenvalues A1, Ay then if [A\;| > 1 >
|A2](= P\%D we call the matrix A hyperbolic and the associated linear toral
transformation 7' : T2 — T2 is called hyperbolic.

The matrix A; = (i 1) has eigenvalues %\/57 and so is hyperbolic. The

matrix As = ( °7 %) has eigenvalues 30 & 21/3596, and so is hyperbolic. The
85 3 2

matrix Az = ((1) 1) has both eigenvalues 1, and so is not hyperbolic.

The following results shows that for these simple homeomorphisms much
information on the periodic points can be easily obtained.

PROPOSITION 5.2. Let T : T? — T? be a hyperbolic toral automorphism
associated to A € GL(2,7) (with eigenvalues A1, \2).
(i) The periodic points have rational coordinates in T? (i.e. they are of
the form (%, %2) with natural numbers 0 < py,pa < q).

(ii) We have Card{z € T?: TNz =z} = |AT + \§ — 2|.

S

1

3

2

, is a point with rational co-ordinates

Proor. (i) If (z1,22) = (

2
ol

() ()
then we can write T"(x1,22) + Z* = (pl— p2—> + Z?, where the integers

N

q’ q
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(n)
0< p&"),pén) < q — 1 are given by (p}n)> = A" (g;) Since there are at
Y2
most g2 distinct choices pgn), pgn) we can choose g2 +1 > n; > ng > 0 with

p§”°) = p&"l) and pg"O) = pé"l). In particular, this means that A™ (g;) =

Ano (2) This corresponds to the identity 7" (z1,z2) = T™(x1,z2) and

so we conclude that T 7" (x4, 29) = (z1,x2), i.e. (1, x2) is periodic.
Conversely, assume that T™(x1,x2) = (21, 22) is a periodic point; then

A" () = () + () (5-1)

for some ni,ne € Z. Since A™ does not have 1 as an eigenvalue, the matrix
A™ — I is invertible and solutions to (5.1) are of the form (2) = (A" —

I)7* (). Since A™ — I has entries in Z the matrix (A” — I)~* has entries
in Q, and we can conclude the same for the values z1, 2.

This completes the proof of part (i).

(ii) If we write A™ = (Z" Z”) then we can define a map S = (A" —I) :

R? — R% by S : (z1,22) = ((an —1)T1 +bpTa, cnz1 + (dy — 1)x2). This maps
the unit square [0,1) x [0,1) onto the parallelogram R = {au + fv : 0 <
a, 3 < 1} where v = S(0,1) and v = S(1,0) (see figure 5.2).

[0,1) x [0,1)

FIGURE 5.2. The number of points in Z2 N R is Card(Fix(T™))

A fixed point T™(x1,x2) = (21, 22) corresponds to a solution to the iden-
tity (5.1) or, equivalently, to solutions S(x1,3) € Z2N'R (where (r1,T2) €
[0,1) x [0,1)). Due to the shape of a parallelogram the number of such so-
lutions is precisely the area of R, which is |Det (A" —I)| = |AT + A} — 2.
This completes the proof of part (ii).

|

5.2 Entropy for hyperbolic toral automorphisms

The main result on the entropy is the following.
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THEOREM 5.3. The entropy of the hyperbolic toral automorphism is given
by h(T) = log A;.

PRrROOF. We fix € > 0. We can cover T? by e-balls centred at a finite set

of points {(21,3),... , (s1,25)},

B ((2%,3%),€) = {(21,22) € T : |(21, 22) — (w1, 72)| < €}

(cf. Figure 5.3.)
Around each point z° = (2%, 2%),i=1,... ,k, we can describe a “box”

Box(z%, z%) = {(z%,2%) + avi + Buy 1 —e<a,B <€}

where v; and v are the eigenvectors for A (with |v1| = |va| = 1) correspond-
ing to [A\1] > 1 and |A2| < 1, respectively. We can choose boxes such that
Box(zi,x%), i =1,...,n cover the torus. For each n > 1and 1 <i <k we
can consider the finite subset of Box(z*) consisting of the points

i i i i J€ : n n
R(x%,25) = {(27,z3) + P =[[Ax["] S AL}

This set has cardinality 2[|\1|"] + 1.

Box(x!) Box(x! )

FIGURE 5.3. Construction an (n, 2¢)-spanning set and an (n, €)-separating
set
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SUBLEMMA 5.3.1. R = UX_  R(z%) is an (n,2¢)-spanning set (see figure
5.3).

PROOF. For any point (z1,22) € R?/Z? we can choose some i = 1,... ,k
such that (z1,22) € Box(z},x%) and so we can write (z1,22) = (2%, 2%) +
avy + [uy for some —e < o, B < e. .

If we choose —[|A1|"] < j S [|A1]™] with |« — |/\71€|n| < 37w then we can
select (wq,ws) = (zi,xh) + Ll € R(zi,xh).

For any 0 < r < n we can write

T (z1,22) = T" (w1, ws) + (oz - ﬁ) A"vy + AT vy
1

€
=T" (w1, w2) + (a - ‘)\Jl‘n) 101 + BAGv2

and, in particular,

€
1T" (21, 22) — T" (w1, ws)| < | (a— |)\]1|n> |- | A1|" - Jv1| 4+ BAG|vs

elA1|” €
< = = 2e.
_2|)\1|n—|—6_2+6 €

This completes the proof of Sublemma 5.3.1.
[ |

The cardinality of the (n,2¢)-spanning set R is at most k(2[|\1]|"] + 1)
we see that this is an upper bound on the least cardinality r(n,€) of (n, 2¢)-
spanning sets. By Proposition 3.11 we can write

1
h(T) =1lim lim —logr(n,e¢)

e»>0n—+oco n

<lim lim = log (k(2[M["] + 1)) (5.2)

e—=»0n—+oco N

= lim log |A1| = log |A1].
e—0

To get the reverse inequality, we fix a point (z1,22) € T2. For € > 0 and
n > 1 we can consider the subset

) 2€ . n n
S:{(xl,x2)+|iTnu1 = =M™, [

SUBLEMMA 5.3.2. S is an (n,2¢/|\1|)-separated set (see Figure 5.3).

PROOF. Any two distinct points in S will be of the form (ui,us) =
(@1, 22) + pfmvn, (w1, wa) = (21, 22) + ﬁvla with —[[A|"] < 4,5 < [[A]"]-
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For 0 <r <n —1 we have

|_|(J—z)

‘)\ ‘ (U1)|

T (u1,u2) — T" (w1, w2)
€

In particular, for some 0 < r < n—1 we have that |[T™(u1, ug)—T" (w1, ws2)| >
€. This completes the proof of Sublemma 5.3.2.
[ |

The cardinality of the (n,e¢)-separated set S is 2[|[A1|"] + 1 and so this
gives a lower bound on the maximal cardinality s(n,e€) of (n,€)—separated
sets. By Proposition 3.11 we have that

1
h(T) =1lim lim —logs(n,e)

e—>0n—+oco n

> lim lim log(2[|)\1|] 1) (5.3)

e—»>0n—+oco n

= lim (log |A1]) = log |A\1]-
e—0

The two complementary inequalities (5.2) and (5.3) combine to show that
h(T) = log|A1|. This completes the proof of Theorem 5.3.

|
COROLLARY 5.3.1.
1 mn
nll)rfoo () Card (Fiz(T™)) = 1.
PROOF. This is immediate from Proposition 5.2 (ii) and Theorem 5.3
|

5.3 Shadowing and semi-conjugacy
We begin with a very useful property for hyperbolic toral automorphisms.

DEFINITION. Let 6 > 0. We call a sequence of points (zy,)nez € T a
d-pseudo-orbit if |T(xy,) — Tpy1| < 6, for all n € Z.

THEOREM 5.4 (SHADOWING PROPERTY). For all € > 0 there exists 6 > 0
such that any 0-pseudo-orbit (,)necz 15 €-close to a true orbit (T™(x))5L _ o
(in the sense that Vn € Z, |T™(x) — xn| < €).

Furthermore, if § > 0 is sufficiently small then there is a unique point x
with this property.

PROOF. Given ¢ > 0 we choose § > 0 sufficiently small that any vector
v € R? with |v| < § can be written in the form v = av; + fvs with |al, |3| <

€ 1
51— )
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Let (z,)nez be any d-pseudo-orbit. By our choice of 4, for each n €
Z we can write T(Tp_1) = Tn — anV1 — Buva, Where |ag|,|Ba] < $(1 -
o |) Iterating this identity gives that T?(2,_2) = Z,, — (0 + p_1A1) V1 —
(B + Bn—1X2) v2 and proceeding inductively we get that

T (xo) + (Z?:l ai)\?_i) vy + (Z?:l ,Bi)\g_i) Vg for n > 1,
In = n -1 n—g -1 n—g
T (.730) + ( i——n ai/\l ) v+ (Zi:_n ﬁi/\2 ) Vs for n < —1.

We can now define z = z¢ + (Y ooy ozi)\l_i) V1 + (Z;l_oo ﬂi)\;i) vy. It is
easy to see that |x — zo| < (sup; |a;| +sup; [5i])/(1 — |>\—11|) < 2¢. We observe

that T7(z) = T™(wo) + AT (D ooy AT i) v1 + AR (Z;;_Oo A;’ﬂi) vg, for any
n € 7.
For n > 1 we have that

" (x) —xn—(A"Zaz)\ ¢ Zaz)\” ’)
()\n Z :81)‘ 7 Zﬂl)\n z)

1=—00

(5.4)

The coefficient of vy in (5.4) is > ;2 ., a;A"*, which is bounded by
(sup; |a;])/(1 — ﬁ) < €/3. The coefficient of vy in (5.4) can be crudely
bounded by 2(sup; |5;])/(1 — BN |) < 2¢/3. Combining these estimates shows
that [T"(z) — z,| < ¥+ § =€ foralln > 1.

For n < —1 we have that

T () — x, = (Alzaz)\ ¢ Zaz)\" ’)

(5.5)
(vazZmﬁ
The coeflicient of vy is ij_loo B A5, which is bounded by (sup; \,Bz|)1_i
A1l
< £, and the coefficient of v; can be crudely dominated by (sup; |o|) 17 <

[A1]
2¢/3. Thus [T™(z) — zn| < §+ % =¢, for alln < —1.
This shows that the pseudo-orbit (z,,)nez is e-close to the orbit (T"x),cz-

Consider two points z,y € T? which are e-close to the same pseudo-orbit
(Zn)nez- To complete the proof of the theorem we need to show that pro-
viding ¢ is sufficiently small this property implies x = y.
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By the triangle inequality we have that |[T"(y) — T"(z)| < |T™(y) — xn| +
|zp, — T™(x)| < 2e.

Provided the separation | — y| < 2¢ is small we can write y = z + av; +
Bug and then T™(y) = T™(x) + aAfvy + BASvg, for any n € Z. If a # 0
then |T"(y) — T™(z)| > |a||A1|™ — |B]|A2]™ > 2¢, for some n > 1, giving a
contradiction. If 8 # 0 then |[T-"(y) — T-"(z)| > |B]|\1]|™ — ||| A2|™ > 2e,
for some n > 1, giving a contradiction.

This completes the proof.
[ |

Let T : T> — T? be a hyperbolic toral automorphism and let S : T? — T2
be a second homeomorphism. We can write these maps in terms of their
co-ordinates:

{ T(:Cl,SL'z) = (T1(£C1,$2),T2(£L'1,£L'2)) and
S(l‘l,mg) = (51(371,.7)2),82(:1}1,1'2)).

DEFINITION. Given 6 > 0 we say that S and T are uniformly -close if

( SUI)D {T1 (21, 22) — S1(w1,22)], |To(21, T2) — Sa2(w1,T2)|} < 6.
T1,T2 ETZ

The next result tells that any homeomorphism close to a hyperbolic toral
automorphism 7T : T?> — T? (in the above sense) must be semi-conjugate to
T.

THEOREM 5.5. Let T : T2 — T? be a hyperbolic toral automorphism then
there exists 6 > 0 such that any uniformly 6-close S : T? — T? is semi-
conjugate to T.

ProOF. We use Theorem 5.4 to choose € > 0 sufficiently small that there
exists 0 > 0 with every d-pseudo-orbit being e-close to the orbit of exactly
one point in T2.

For any z € T? it follows from the definition of S being uniformly J-close
to T that the orbit (z,)nez := (S™x)nez under S gives a d-pseudo-orbit for
T. By Theorem 5.4 there is a unique point z € T? whose T-orbit (T™(2))nez
is e-close t0 (zn)nez (i-e. sup,cz |T™(2)—S™(z)| < €). We define 7 : T? — T?
by w(z) := 2.

It is immediate that this is a semi-conjugacy, since from the definitions
the orbit (S™(Sz))nez of Sz (under S) is e-close to the orbit of Tz (under
T). By uniqueness, we see that 7(Sx) =Tz = T (nx).

We next show that 7 : T2 — T? is continuous. Let n > 0 be fixed and
choose N > 0 such that 2(35 + 1)|A2|Y < 5. The continuity of S : T? — T2
shows that provided z,y € T? are sufficiently close then we have |z, — y,| =
|S™(x) — S™(y)| < d for —N < n < N (where z,, = S"z and y, = S™y). In
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particular, |T" (mx) —T™(ny)| < |T™(7x) —Zn|+|Trn —Yn|+|yn—T" (7y)| < 30.
However, if we write m(z) = 7(y) + avy + vy then 36 > |T"(wx) —=T"(7my)| =
|aATvy + A Bve|. For N > n > 1 we see that 30 > |A1|"a — ||/ and for
—N < n < —1 we see that 30 > |A\3|” — |A\1|"«. This allows us to see that
lal, [8] < (30 +1)[ A2V and so |7 (z) —7(y)| < [e|+[6] < 2(30 +1)[ AoV < 7.
Finally, to see that 7 : T2 — T2 is surjective we first observe from the
proof of Theorem 5.4 that S — mg := 7 is continuous and np = I (where
I:T? — T? is the (surjective) identity map . Thus for S sufficiently close to

T we have that 7 is surjective.
|

COROLLARY 5.5.1. Let T : T2 — T2 be a hyperbolic toral automorphism;

then there exists € > 0 such that for any uniformly e-close homeomorphism
S : T? — T? we have h(T) < h(S).

Proor. This follows by Theorem 5.4 and Proposition 3.5.

REMARK. If we make the strong assumption that S : T? — T? is C! and
S and T are uniformly close and their derivatives are close then 7" and S

are conjugate. This property is called structural stability of T : T2 — T2.
[ |

5.4 Comments and references

We have chosen to consider only hyperbolic toral automorphisms in two
dimensions, rather than in arbitrary dimensions, to make the proofs more
graphic. However, the results and proofs would be the same.

Good accounts of the general hyperbolic theory are in [3], [6], [5], etc.
Other treatments of toral automorphisms are in [2] and [7]. For other im-
portant related topics see [2], [6], [7] (for structural stability and stable man-
ifolds), [4], [1], [6, chapter 10], [3] (for Markov partitions)
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CHAPTER 6

ROTATION NUMBERS

In this chapter we shall define the useful concept of the rotation number
for orientation preserving homeomorphisms of the circle.

6.1 Homeomorphisms of the circle and rotation numbers

Let T : R/Z — R/Z be an orientation preserving homeomorphism of
the circle to itself. There is a canonical projection m : R — R/Z given by
m(z) = z (mod 1). We call a monotone map 7' : R — R a lift of T if the
canonical projection 7 : R — R/Z is a semi-conjugacy (i.e. moT =T o).

For a given map T : R/Z — R/Z a lift 7' : R — R will not be unique.

ExAMPLE. If T(z) = (z + «) (mod 1) then for any k¥ € Z the map
T : R — R defined by T'(z) = x + a + k is a lift. To see this observe that
©(T(z)) =7m(z+a+k) =z +a (mod 1) and T(r(z)) = 7(z) + a(mod 1) =
z + « (mod 1).

The following lemma summarizes some simple properties of lifts.

LEMMA 6.1.

(i) Let T : R/Z — R/Z be a homeomorphism of the circle; then if T :
R — R s a lift, then any other lift T : R — R must be of the form
T'(x) = T'(x) + k, for some k € Z.

(i) For any z,y € R with |z—y| < k (k € Zt) we have |T(z)—T(y)| < k.
Iterating this gives that

A

T™(z) — T™(y)| < k, Vn >0.

PROOF. These are easily seen from the continuity and the monotonicity
of T.
[ |

DEFINITION. We define the rotation number p(T') of the homeomorphism
by

p(T) = limsup "(z) (mod 1).

n—+oo n

57
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(The limsup is independent of the choice z € R by Lemma 6.1. The choice
of lift T' can only alter the limsup by an integer, which has no bearing since
we define p(T') modulo one.)

EXAMPLE. Consider the standard rotation R, : R/Z — R/Z defined by
R,(z) = x4 p (mod 1), where p € [0,1), say. Any lift R, : R — R will be of
the form R,(zx) = = + p + k, for some k € Z i.e. translation on the real line
by p+ k. It is now immediate from the definition that the rotation number
for R, is merely p (mod 1).

We can now show some interesting properties of p(T).

PROPOSITION 6.2.

(i) Forn > 1 we have that p(T™) = np(T)(mod 1).
(ii) If T has a periodic point (i.e. In > 1,3z € R/Z such that T"z = z)
then p(T) is rational.
(iii) If T : R/Z — R/Z has no periodic points then p(T) is irrational.
(iv) The limit actually exists and we can write

p(T) = lim 7" (z)

n—-+oo n

(mod 1).

PROOF. (i) Since 7™ (the n th iterate of the lift 7" for T) is itself a lift for
T™ : R/Z — R/Z this is immediate from the definitions.

(i) Since T™(z+Z) = x+Z we have that 7™ (z) and z differ by an integer
(i.e. T"(z) —x = k € Z). Then for pn +r with 0 <7 <n —1 and p > 0 we
have that TP+ (z) = T (TP"z) = T" () + pk because of Lemma 6.1. Thus

p(T) = limsup, , , TI::;SC) = £ (mod 1).

(iii) Assume for contradiction that p(T) = £ is rational. By part (i) we
see that for S := T'? we have p(S) = 0 and since T has no periodic points we
conclude that S : R/Z — R/Z has no fixed points.

If $: R — R is a lift for S then the absence of fixed points for S implies
either S(z) > =, Vz € R, or $(z) < z, Vo € R. Assume S(z) > z, Vz € R
(the other case being similar), i.e. S is strictly increasing. If 3k > 0 with

S%(0) > 1 then we see that S™*(0) > m and so

o .
p(S) = limsup 5"(z) > -,
n—-+oo n k

contradicting that p(S) = 0. This leaves the possibility that S*(0) < 1 for
all k> 1. Since S is strictly increasing the sequence (S*¥(0))$°; is monotone
increasing and the supremum z € R satisfies S(z) = z. Thus S has a fixed
point S(z + Z) = z + Z, giving a contradiction.
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(iv) If T has a periodic point 7"z = x then the argument in part (i)

actually shows that p(T) = limy_ 10 Tl\]’\;m) = % (mod 1), in particular,

n
showing that the limit exists.
Assume that T : R/Z — R/Z has no periodic points. Thus for all n > 1
there exists k, € Z such that T"(x) — z € [kn,kn + 1] , Vz € R, and, in

™) _

particular, observe that | %"| < % Then, for any m > 1 we have that

T (0) = 1 (T (0) ) - (T (0))
+Pm (T"<m—2>(o)) - (T"<m—2> (o)) Yo (6.1)

o T T(0) = (T7(0)) + T7(0) € [k, m(kn + 1))

In particular, we see from (6.1) that |w — En| < L The triangle in-
equality gives that
L) 1), IO ke ke T0),
m n o m m m mn
T™(0)  kyp k., T™(0)
P Eayf 17O
mn n n n
2 2
< —+-=
mn

0)\>* . . .
- is Cauchy, and in particular the

which shows that the sequence
=0

3

limit exists.
[ |

The next lemma and its corollary will be useful later.

LEMMA 6.3. Assume that p is irrational.
(i) Let ni,n2,my,mo € Z and z,y € R. Ifff’”l () +my < T2 () + ma
then T™ (y) + my < T™ (y) +mg;
(ii) The bijection np(T) +m — T™(0) + m between the sets

Q= {np(T) +m: n,m € Z} and A = {T™(0) + m: n,m € Z}

preserves the natural ordering on R.

ProOOF. (i) If 3z, y € R for which the ordering is reversed, then by conti-
nuity (and the intermediate value theorem) there exists z € R with 77 (z) +
my = T™ (2)4+mg, ie. T™ (2)—T™ (z) € Z. But then T™ ™ (2+Z) = z+7Z
is a periodic point. This contradicts the assumption that 7' has irrational
rotation number (and so no periodic points by Proposition 6.2 (ii)).
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(ii) Assume that 7™ (0) +mq < T™(0) + my with nq > ny; then we wish
to show that nip + m; < ngp + mg. We can rewrite the first inequality as
Trmi—n2 (Tm20) —T™20 < (mg —m4) and we can apply part (i) with z = 7720
and y = 0 to deduce that

Tnl—nz (O) < (m2 — ml). (62)

Next, we can apply part (i) to (6.2) with the choices z = 7™ ~"2(0) and
y = 0 to deduce

T2("1—"2)(0) _ Tm—nz (0) — Tm—m (Tnl—ng 0) . Tnl—m (0)

6.3
< (mg —my). (6:3)

Comparing (6.2) and (6.3) gives that T2("1=72)(0) < 2(my—my). Proceeding
inductively shows that for any N > 1 we have TV (™1—"2)(0) < N(mg — m1).
Finally, we see that

A

77 (0 TN(ni-n2)(( _
o) = tim 2@ gy ©) _ (mz = mi)
n—-+4oo n N—>+o0 N(n1 — nz) (n1 — ng)
and in fact p < 2™ gince p is assumed irrational. This is the required

(n1—n2)
inequality, and so this completes the proof.

COROLLARY 6.3.1. Let T : R/Z — R/Z have irrational rotation number
p. For anyx € R/Z the orbits of x under T and the rotation R, : R/Z — R/7Z
have the same ordering.

ProOOF. This follows immediately from part (ii) of Lemma 6.3, since a
difference in the ordering of 7" (z) and R} (x) would contradict the conclusion
of the lemma.

6.2 Denjoy’s theorem

The following result gives a sufficient condition for a homeomorphism to
be conjugate to a rotation.

PROPOSITION 6.4. IfT : R/Z — R/Z is a minimal orientation preserving
homeomorphism with irrational rotation number p then T is topologically
conjugate to the standard rotation R, : R/Z — R/Z.

PROOF. Let 7' : R — R be a lift of T : R/Z — R/Z. Observe that since
p is irrational we have that Q C R (as defined in Lemma 6.3 (ii)) is dense.
Moreover, since T is minimal we know that {70} is dense in R/Z, and so
we also have that A C R is dense.
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The map ¢ : A — Q given by qS(T” (0) + m) = np + m is order preserving
by Lemma 6.3. Thus it extends to a homeomorphism ¢ : R — R.
Observe that

é (T(T”(o) + m)) - (:fmﬂ(o) + m)) =(n+1)p+m

and
Rpp(T™(0) +m) = Ry(np+m) = (n+1)p+m

where ]A{p : R — R is a lift for R,. Thus qSoT = Rp o .

Finally, we observe that by construction ¢(z + 1) = ¢(z) + 1. Thus the
homeomorpism ¢ : R/Z — R/Z defined by ¢(z + Z) = ¢(z) + Z is well-
defined. Moreover, the identity gbO’f’ = Rp o ¢ implies the conjugacy relation

¢poT = R, o0 ¢. This completes the proof of the proposition.
[ |

Given a C! map T : R/Z — R/Z we consider its derivative 7" : R/Z — R.

DEFINITION. We define the variation of log |T"| : R/Z — R by
Var(log |T"|)

n—1
=Sup{Z|log|T'|<a:i+1> —log |T'|(zi)] : 0=y <21 < ... <ap = 1}.
=0

We say that the logarithm of |T”| has bounded variation if this value Var(log
|T"|) is finite.

It is easy to see that if T : R/Z — R/Z is C? with |T"|/|T'| is bounded
then Var(log|T"|) is finite.

We now come to the main result of this section which gives sufficient
conditions for a homeomorphism to be conjugate to a rotation (and are more
readily checked than those of Proposition 6.4).

THEOREM 6.5 (DENJOY’S THEOREM). If T : R/Z — R/Z is a C' ori-
entation preserving homeomorphim of the circle with derivative of bounded
variation and irrational rotation number p = p(T) then T : R/Z — R/Z is
topologically conjugate to the standard rotation R, : R/Z — R/Z.

ProoOF. It suffices to show that T is minimal, then the result follows
by applying Proposition 6.4. The proof of minimality will come via two
sublemmas.
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SUBLEMMA 6.5.1. If T' has irrational rotation number and there are a
constant C' > 0 and a sequence of integers q, — —+0o such that the maps
T :R/Z — R/Z satisfy

|(T9) ()| - [(T~") (2)| = C

then T : R/Z — R/Z is minimal.

Proor. If T is not minimal we may choose z € R/Z such that ¥ =
cl(UnezT"z) # X. We can choose a (maximal) interval Iy C X — Y’ then
we claim that I, := T~"Iy C X — Y are distinct (maximal) intervals. To
see this we observe that by maximality Iy must be of the form Iy = (a,b)
(with a,b € Y). Thus I, = (T~ "a,T~"b) and if I, N I,,, # () then again by
maximality I,, = I,,, and, in particular, T~"a = T~™a. But if n # m then
this means a is a periodic point, which contradicts 7" having an irrational
rotation number (by Lemma 6.1 (ii)).

If |I,,| denotes the length of the interval I,,, n € Z, then by the disjointness
we see that ) ., |I,| < 1. In particular, [I,| — 0 as n — +oo0.

However, we see that for all n > 1,

L+ Vg, = [ (@Y @)+ @) @) do

> / /(T ()] (T~ (z)))
> 207 |I|

D=

dx

(since arithmetic averages are larger than geometric averages). This contra-

dicts |I,| — 0, and so completes the proof of the sublemma.
[ |

To make use of the assumption of the bounded variation of log |T”| we
need a second sublemma.

SUBLEMMA 6.5.2. Fiz z € R/Z and write x,, = T"(x), for n € Z. There
exists an increasing sequence ¢, — +0o of natural numbers such that the
intervals

(',EO’ ',I;Q'n)’ (',I;]-’ :L'qn_*']-)’ ($2’ '/qun+2)’ st (.fL'Z, :L'qn+i)’ ctt ($Qn’ :L'2Qn)

are all disjoint.

PRrROOF. By Corollary 6.3.1 we see that the order on R/Z of points in the
orbit of T : R/Z — R/Z is the same as that of the rotation R, : R/Z — R/Z.
Thus it suffices to prove this sublemma with R, rather than T'.

For each n > 1 we want to choose the sequence ¢, to correspond to
the successive nearest approaches of {T™z} to z (i.e. [Tz — x| = 6, =
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inf{|T9z —z|: 1 < j < ¢, — 1}). Consider a typical interval (z;,z,,+:),
0 < ¢ < gy, (the case (x4, +i, z;) being similar) and assume for a contradiction
that there exists =, € (zi,2q,+i), 0 <7 < 2gy, . There are two cases.

(a) Firstly, assume that r < i. We then know that
zo = R,"(z,) € R, (%, Tq,+i) = (T(i—r)> Tgp+(i—r))-

In particular, |z;—, — 20| < |Zq,4(i—r) — T(-r)| = |Tq, — To| = In.
But since ¢, > (¢ — r) > 0 this contradicts the definition of g¢,,.
(b) Secondly, assume that r > i. We then know that

Tr—i = R;i(xT) € R;i(xiﬂan-l-i) = (%0, %q,,)

and so we see that r — i > ¢, (from the definition of ¢,). But
then z(,_;_q, = Ry (z,—;) € Ry (20,2q,) = (T—g,,To) and, in
particular, | _;)_q, — Zo| < |T_g, —To| = |RI*(x_g,) — BRI (z0)| =
\zg — x4, = 0p. Since 0 < (r — i) — gp < @, this contradicts the
definition of g,,.

This completes the proof of the sublemma.
[ |

Since the intervals in Sublemma 6.5.2 are disjoint we have for any n > 1

dn

Var(log [7']) > > [log |T" (z:)| — log |T" (4, +:)|
=0

dn dn
> > log |T'(z;)| = Y log |T'(l'qn+i)|‘
=0 1=0

- . N 4
= |log ( im0 |T'(T*)| )‘ (6.4)
o 1T (T, )|

o (1@ (o)
= g(|<T%>'<an>\)
= [log [(T%)' (z4,) (T~ (2, )|

(where by the chain rule (T=%)'(z,, )(T%)'(z¢) = 1). Since this holds for
arbitrary x the point z,, can be replaced by an arbitrary point on the circle.
If we take the exponential in identity (6.4) then Theorem 6.5 now follows
from Sublemma 6.5.1 and 6.4.

REMARK. We should remark that the assumption that log 7’ has bounded
variation is necessary. If we relax this assumption then we have that 7" may
be merely semi-conjugate to the rotation R,,.
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6.3 Comments and references

Some basic results about rotation numbers can be found in [2, pp. 102-

108], [5, chapter 12] and [1].

The question of when the conjugating map is differentiable is subtler

(ct.[4], [3], [9] and [6], [7], [8] for variants).

[N
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CHAPTER 7

INVARIANT MEASURES

In this chapter we shall introduce some basic definitions in ergodic theory.

7.1 Definitions and characterization of invariant measures

Let (X, B, 1) be a measure space. Assume that p is a probability measure,
ie. p(X)=1

DEFINITION. A measurable map 7' : X — X (i.e. T7'B C B) is said
to preserve the measure p if for any B € B we have u(B) = u(T~'B).
Alternatively we say that p is T-invariant.

The next lemma gives a characterization in terms of integrable functions.
LEMMA 7.1. T preserves p iff [ fdu = [ foTdu for all f € L*(X, B, ).

Proor. This is easy, using indicator functions.
[ |

7.2 Borel sigma-algebras for compact metric spaces

We now specialize to homeomorphisms T : X — X of a compact metric
space X. In this case a natural sigma-algebra is the Borel sigma-algebra C,
i.e. the smallest sigma-algebra containing all of the open sets in X.

LEMMA 7.2. T preserves p iff [ fdu = [ foTdu for all f € C°(X).

PRrROOF. One way follows from Lemma 7.1. The other follows from the
Hahn-Banach and Riesz representation theorems.

The next proposition shows that there always exists an invariant measure.

PROPOSITION 7.3 (EXISTENCE OF INVARIANT MEASURES). Let X be a
compact metric space and B be the Borel sigma-algebra. Given any homeo-
morphism T : X — X (or more generally, a continuous map) there exists at
least one probability measure pu preserving T'.

PrRoOF. Choose

(1) a countable dense subset {f; € C°(X,R) : k > 0}, in the uniform
topology
(2) a point x € X.

65
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We can consider the averages Nzn 0 fk(T" ) € R for k > 0,N > 1
then clearly —||fx||co < & Zn 0 ' fe(T™2) < ||fellos- By compactness of the

interval [—|| fol|oo || fo|loo] We can choose a sub-sequence N'(®) = {N,go)]fo:o C
Z™ such that
N(®_1
1 r

O Z fo(T"z) — C(fo) as r — +o0.
n=0

T

We repeat the argument with f; replacing fy. By compactness of the
interval [—||f1|oo, || f1||oo] We can choose a subsequence N'(V) = {N,gl)}ﬁozo C

1) _
N such that ﬁ Zﬁfjo Y f(T ) = C(f1) as 1 — +oo.
Repeating the argument inductively we can arrange subsequences N (™) =
{(N{™}ee  with N c Nm=1) ¢ .. c N c N for m > 0 such that
N{™ —1

T n=0

as r — 400.
Next we choose a diagonal sub-sequence N,, = N,g") and we conclude that
for any k > 0 we have that

N{W 1

- Je(T™z) = C(fr)

as n — +00. -
We claim that for any f € C°(X) we have that (n) Z]nv 0 L F(T),

n > 1, converges (to a limit we shall call C(f)) as n — Foo.
For any € > 0 we choose ||f — fk||co < € and thus

N(™ 1
lim su (™) <e.
imeup |5 2 Ti)) <

Since € > 0 can be chosen arbitrarily small this is enough to show that the
1 Nr(L )1 n
sequence —zy donto  f(T™z) converges.
We can summarize the properties of the limit C'(f) as follows:
(1) Vfl, fg € CO(X) and )\1, Ao € R we have C()\lfl +A2f2) = )\10(]01)"‘
C(f2) and [C(f)[ < [|f]]co;
(2) if f(z) > 0 Vx € X we have C(f) >0
(3) C(1) =1, where 1(x) =1, Vz € X,
(4) C(foT)=C(f) (since it is true for each f = fi by
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7.3 Examples of invariant measures

It is illuminating to look at some simple examples.

EXAMPLE 1 (ROTATIONS ON TORI). Let X = T" = R™/Z"™ be a torus.
Define a generalized rotation T : X — X (or Kronecker system) by fixing a
vector (aq,...,a,) and defining

T (1, 20) + Z") = (21 + a1, . ,Tn + an) + Z".

We let B be the Borel sigma-algebra. We let iz be the Lebesgue-Haar measure
and then naturally p is T-invariant. When n = 1 this is simply rotation on
a circle.

One way to see this is the following. For any f(z1,...,z,) € C°(X) we
write it as a Fourier series:

o0
f(fl;]_, e ’xn) = E : a/k:[’-.. 7kne27rl(k1z1+“.+knmn).

kl,... ,kn=—00

Moreover, we see that ag = [ fdzy...dz, (just by integrating both sides).
The action of the rotation can be written as

oo

2mi(k T S
DN viom) = Z Aky,... ,k, € mi(k1(z1+a1)+...+kn (Tn+an))
ki,... . kpn=—00
o ]
N Z bklv---,knEZﬂ-Z(klml‘F...—Fknmn)
ki,... kp=—00

where by = [ fTdz; ...dz,, as before. But by comparing terms we see that
bo = Qag.

REMARK. More generally this is a property of Haar measure: Assume
that X is a (locally) compact second countable metric space which is also
a group with identity element e, where multiplication between z,y € X is
denoted by zy and the inverse to z is denoted by z~!. Assume that the
map X X X — X given by (z,y) — zy is continuous. By a general theorem
(Haar measure theorem) there exists a (sigma) finite measure p on the Borel
sigma-algebra for X such that

(1) u(U) > 0 for every non-empty open set U C X,
(2) for any Borel set A and g € X we have u(gA) = u(A).
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More generally, we can take X to be a compact topological group and for
any fixed element g € X we define a transformation 7' : X — X by Tx = gx.
The (normalized) Haar measure is then an invariant probability measure.

EXAMPLE 2 (ADDING MACHINE). A slightly more exotic example is the
adding machine transformation defined on X =[] . ,{0,1}. This is a topo-
logical group under “addition with infinite carry”. In particular, let g =
(1,0,0,0,...) and define T : X — X as follows: If z = (0,0,...,0,1, ag, agt1,
ak+2,...) then Tz =z + g = (1,0,...,0,1, ag, ags1, agt2,--.), and if x =
(1,1,...,1,0,ak, Gg+1, Gk42,-..) then Tx =2+ g = (0,0,...,0,1, ak, ax+1,
Ak+2,---). The invariant measure here is given by the measure on cylinders,

(20, y2n] ={x € Xa: x; =2 for 0 <i<n}

by u([z0,---,za]) = (2)"7.

EXAMPLE 3 (DOUBLING MAP). Let T : R/Z — R/Z be defined by T'(z) =
2z (mod 1). Let B be the usual Borel sigma-algebra. Let u be the usual
Lebesgue-Haar measure. To show that p is invariant, it suffices to show that
for each interval I = [a,b] we have that pu(T~1I) = u(I). Writing

a b a 10 1
Tl I=|=-|Uu|l=+=,-4+=
[2’2] [2+2’2Jr }

this becomes apparent.

TECHNICAL REMARK. The reason that it suffices to prove this only on
intervals (or more generally on a basis for the topology) and not necessarily
all sets is by virtue of the Kolmogorov extension theorem.

ExXAMPLE 4 (MARKOV MEASURES). Let A be a k x k matrix with entries
either 0 or 1, and let o : X4 — X 4 be the associated subshift of finite type.

Let P = {P;;} be any k x k stochastic matrix, i.e.

(1) P; >0,

(2) The row sums are unity (i.e. Z§=1 P;; =1).
In addition we ask that P;; = 0 whenever A(%,j) = 0. The second condition
means that (1,...,1)% is a right eigenvector. We let p = (p1, ... ,px) be the

left eigenvector with eigenvalue 1. We can define a measure p on X 4 on the
cylinders by

K ([Z—ma s ;Zn]) = pz—mPZ—m,Z—m+1PZ—m+1,Z—m+2 Tt Pzn—1,zn'

This is enough to define the measure on the entire sigma-algebra (i.e. Kol-
mogorov extension theorem). Clearly the measure is shift-invariant. The use
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of p in the definition is to ensure that it is consistent, i.e.

12 ([Z—m+17 s 7Zn])
= pz—m-}—lPz—m+1az—m+2Pz—m+1az—m+2 e Pzn—lazn
Z y -
= Pz—maz—m-{-l pz—m+1PZ—m+lyz—m+2 e Pzn—lyz'n

1<z_m<k Pzmia
A(Z—m7z'm—1):1

— Z ‘u,([z_m,... ,Zn])

1<z_m<k
A(z—m 7zm—1):1

This is called a Markov measure.

SPECIAL CASE: FULL SHIFT. In the special case that all of the entries in
the matrix are 1s the shift X4 = [],c;{1,...,k} is called a full shift on
k symbols. In this case let p = (p1,...,pr) be any probability vector (i.e.
P1y--- .0k > 0and p; + ...+ pxr = 1). We then define p ([z_pm,...,2,]) =
Dz ,, ---Dz,- Thisis called a Bernoulli measure.

ANOTHER EXAMPLE. In section 12.2 one can find another example in-
volving expanding maps of the interval.

7.4 Invariant measures for other actions

In this section we shall consider the case where the discrete transformation
T is replaced by either a flow (an R-action) or a Z™-action. Although this
will not play an important role in the sequel, we shall include a few comments
here for completeness.

DEFINITION (INVARIANT MEASURES FOR FLOWS). A flow T3 : X — X is
a one-parameter family of measurable invertible maps (i.e. (z,t) — Tz is
measurable) which satisfy

(1) TiTs = Tsy¢ for all s,t € R,
(2) Ty is the identity map.

DEFINITION. A measurable flow T; : X — X is said to preserve the
measure y if for any B € B we have u(B) = u(T; 'B) for all t € R.

Alternatively we say that p is T-invariant.

EXAMPLE 5 (SUSPENDED FLOWS). Consider a measure space (X, B, u)
and a transformation 7' : X — X which preserves the measure y. Given any
function r : X — RT with [ rdp < +00 we define a new space by

X' ={(z,t) e X xR: 0<t<r(x)}
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where we identify the points (z,7(z)) = (Tz,0). We associate to this
the product sigma algebra (from the sigma-algebra on X and the sigma-
algebra on the real line). We define a (probability) measure p” on X" by

du” = frldu dy x dt. (Here the factor fjdﬂ appears to normalize this to be a

probability measure.)

We define a flow T; : X" — X" by

n—1

Ti(z,u) = (T" 'z,u+t — Zr(T’x))

whenever ¢ > 0 and 0 < u +t — Y7 r(T?z) < r(T"z), and

—1
Ti(z,u) = (T "z, u+t+ Z r(T'x)

i=—n
whenever t < 0and 0 < u+t+ Zi_:l_n r(T~tz) < r(T~"+z). It is easy to
see that this is a measurable flow, and that the measure y” is invariant.

EXAMPLE 6 (GEODESIC AND HOROCYCLE FLOWS). Counsider the group

Gz{(ccl Z) ca,b,c,d €R, ad —bc =1}

This is a locally compact topological group. There is an associated Haar
measure defined by du(g) = ITliI (da)(db)(dc) on G (although the total measure
of the space G is infinite!).

Assume that I' C G is a discrete subgroup such that the measure of the
quotient space G/T" is finite (i.e. we can find B C G such that B/T' = G/T’
and u(B) < +00).

We can define two flows on G/I" as follows:

(1) the geodesic flow ¢y : gI' — g¢gI" defined by left multiplication by the
et 0 )
0 e—t ’
(2) the horocycle flow ; : gT' — hygT" defined by left multiplication by

the matrices h; = ((1) i)

Each of these flows preserves the measure on G/I' corresponding to p.

matrices g; =

REMARK. Geometrically these correspond to flows on the unit tangent
bundle of compact surfaces of constant negative curvature. The invariant
measure then corresponds to the Liouville measure.
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Let Ty, ... ,Tx : X — X be a family of commuting measurable (invertible)
transformations on a measurable space (X,B). We can define a Z*-action
A:ZFx X = X by A(ny,...,ng;x) =T o...0o Tz,

DEFINITION. We say that a measure p is invariant under the action A if for
every B € B we have that p(B) = p(Ty ™ ... T, "*B) for all (ny,...,nx) €
Z" (or equivalently, u(B) = u(T; 'B) for alli =1,... k).

7.5 Comments and references

More examples of invariant measures for different transformations can be
found in [2] and [4], and also particularly in [3].
Details on the theory of suspended flows can be found in [1, pp. 292-295].
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CHAPTER 8

MEASURE THEORETIC ENTROPY

In this chapter we shall show how to associate to a measure preserving
transformation an important quantity called the measure theoretic entropy.
This gives important information on the dynamics of the map (cf. Chapter
12) and is useful in classifying measure preserving transformations.

The essential results are contained in sections 8.1-8.3. If one accepts Sinai’s
result on strong generators (Lemma 8.8) without proof then sections 8.4-8.8
will only be required again in chapter 12.

8.1 Partitions and conditional expectations

Let o = {A;}icr be a countable measurable partition of the probability
space (X, B, p), i.e.
(i) X =U;A; (up to a set of zero p-measure), and
(i) A;nA; =0fori+#j (up to a set of zero y-measure).

DEFINITION. We define the information function I(«) : X — R by

1(0)(@) = = Y log u(A:)xa, (@),

ie. I(a)(x) = —logu(4;) if x € A;.

Consider a sub-sigma-algebra A C B; then we can define a measure space
(X, A, p) with respect to the smaller sigma-algebra. For any f € L1(X, B, du)
we can define a measure on the measure space (X, A, 1) by pa(4) = [, fdu,
for A € A. Clearly, pa << p (where u is here defined on A).

DEFINITION. By the Radon-Nikodym theorem there is a unique function
E(flA) := 'ZL—MA € L1(X, A, du) which is called the conditional expectation.

Since in general A is strictly contained in B then E(f|A) may be very
different from f, since it must be measurable on a smaller sigma-algebra.
For example, if A = {X, 0} then E(f|A) is the constant function [ fdp.

The main properties of E(f|.A) are

(1) [LE(flA)dp= [, fdu for all A€ A,

(i) E(f|A) € LY(X, A, dp),

73
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(The first two properties are just the definition repeated.),

(iii) if f € LY(X, B, ) and g € L™(X, A, du) then E(fg|A) = gE(f|A),

(iv) if f € LYX,B,p) and Ay, C A; C B then E(E(f|A1)|lA2) =
E(f‘A2)7

(v) if f € LY(X, B, u) then |E(f|A)| < E(|f||A), and if f, g € L*(X, B, du)
and  + 1 =1 then E(|fg[|A) < E(|f|?|A)/7E(|g|?|A)"4,

(vi) If T preserves u then E(f|A)T = E(f o T|T !A), where T"1A =
{T71A: Aec A}.

Parts (iii)-(vi) are a trivial exercise from the definitions (cf. [5, p. 10]).
DEFINITION. Given any sub-sigma-algebra A C B we can define the con-
ditional information function I(a|A): X — R by
I(a]A)(z) = — ) _log (4] A) (z)x 4, (z)
i

where we write pu(A;|A)(z) = E(x4,|A)(x) (called the the conditional mea-
sure).

Assume that we “know” the position of the point z relative to A, then
I(a|A) is an indicator of how much additional information we get from
“knowing” the position of the point z relative to the partition «.

The following properties all come directly from the definition.

LEMMA 8.1.

(1) When A= {0, X} then E(A;|{0, X})(x) = u(A;) and I(a|{0, X })(z) =
I(e)().

(2) IfT : X — X preserves the measure p then I (a|A)(Tx) = I(T'a|T~1A)(x)
(where T™ra = {T71A;}).

(3) If a C A then I(a|A) =0 almost everywhere.

We can associate to each partition « the sigma-algebra & generated by .

DEFINITION. Given two partitions «, # we define their refinement
aVpB={A4;NB;: A; € a, B; € B}.

Given two sigma-algebras A, B we denote by AV B the sigma-algebra gener-
ated by {ANB: A€ a,Be€ S}

The following lemma will prove very useful throughout this chapter.
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LEMMA 8.2 (BASIC IDENTITY FOR INFORMATION). Given partitions o, (3
and a third v with associated sigma-algebra 4 we have that

(o v fA)(z) = I(alBV 9)(@) + I(B17)()
(almost everywhere).

PROOF. Observe that for any function g € Ll(X , B, 1) we have that

fcg
E(g1%)(x) = ) _ xc u(C

Cey

In particular, for B € 8 we can set g(z) = xp(z) and then we get

B nC
W(BR)) = 3 xol@) M 25 mBOC)
Cery
and therefore
BNnC
M@ =~ 3 xenn)log (MBS
Cer,Bep H

The partition 3V « (with elements of the form BN C with B € 5,C € v)
gives that

Iehvi@=— Y xAanc@)log(%). (8.2)

Cevy,BeB, A€

Adding (8.1) and (8.2) gives that

1(8%) (=) + I(alf v B)(x)

Cev,Bep,Aca

= - Z xansnc (@) log <M>

Cev,Bep,Aca

=I(aV B7)(z).
This completes the proof.
[ |

If « and (8 are partitions we write o < 3 if every element of o is a union
of elements of 8. In this case aV 3 = .

COROLLARY 8.2.1. If a < B then I(«a|¥)(z) < I(B|7)(x).
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8.2 The entropy of a partition

DEFINITION. We define the entropy of the partition « by

H(e) = [ 1@)(@)du() = = 3 u(4) g u(4).

A€a

Given a partition « and a sub-sigma-algebra A C B we define the conditional
entropy by H(a|A) = [ I(a]A)(z)du(z).
LEMMA 8.3.
(1) When A={0,X} then H(a|{0, X}) = H(«).
(2) IfT : X — X preserves the measure i then H(a|A) = H(T 'a|TA).
(3) If o C A then H(a|A) = 0.
(4) Given o, v we have H(a|¥) < H(a).

Proor. Parts (1), (2) and (3) follow by integrating the corresponding
results for the information function in Lemma 8.1.
For part (4) we have

Heh == ¥ utancyos(“500)

Aca,Cey 'U(C)
_ w(AN C’ u(ANC)
- CZ@“ AZ ( ) )

< — [ AmC-I [ AmC-‘
<[ & AN e AN

<= u(A)logpu(A) = H(a)

A€a

since for fixed A € o we can bound

,uAﬂC u(ANC)
-y og (M85 ) <= | S utan0) | tog | S utanc)

Cey Cey Cey

using concavity of ¢t — —tlogt. (A more general result appears in Lemma
8.13.)

LEMMA 8.4 (BASIC IDENTITY FOR ENTROPY). Given partitions c, 3 and
a third v with associated sigma-algebra 4 we have that

H(aV Bl7) = H(a|BVA) + H(BA).
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COROLLARY 8.4.1 (“MONOTONICITY” OF ENTROPY FOR PARTITIONS).
Given two partitions o, B with o < 8 we have that H(a|y) < H(B|¥) (and,
in particular H(a) < H(f))

With the next definition, we begin to re-introduce measure preserving
transformations.

DEFINITION. Assume that T : X — X preserves p. Given a partition
a={A;} we write

VT = {A, T A, N---NT~ DA 0 A €a,i=0,...,n—1}.

NOTATIONAL COMMENT. Frequently it proves convenient to drop the cir-
cumflex (hat) over 4. Thus if we write H(«|f3), say, we understand this to
mean H(«|f).

For n > 1 we can write H,(a) = H(V?_)Ta). By the above estimates
we have that
Hyim(a) = H (VT a)
=H (V)T 'a) + H(VIE" T a| Vi) T a)
< H (ViTia) + 1 (VP17 %)
=H,(o) + Hn(a).

Thus the sequence H, (), n > 1, is subadditive (which shows that the limit
in the following definition exists).

(8.3)

DEFINITION. We define the entropy of the partition « relative to the trans-
formation T': X — X as the limit A(T, o) = limy, 4 H(a)

n

Notice that in particular from (8.3) we have that 0 < h(T,a) < H(a).
The following result gives an equivalent characterization.

PROPOSITION 8.5 (ALTERNATIVE DEFINITION OF A(T, @)).
_ : n—1 mp—i
T, a) = nll)rfoo H(a|VIZ] T ).

(N.B. Sometimes it is convenient to write this limit as H(a| V2, T 'a).)

Proor. Using Lemma 8.4 we see that
H\V?)T ) = H(a| VI T7) + H(VIZT )
= H(a| V] 1 L T7%) + H(a| VIZ2 T a) + HVI 2T "a)

=Y H(a| ViZ T™%0) + H(a).
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We then see that

1 . ,
lim —~HNV!ZyT "a) = lim H(a| VI T ')

n—+oo N n—-+oo

as required (since if a,, — a for any sequence of real numbers then W —

a).
[

The entropy of the transformation relative to two different partitions is
described by the following inequality.

LEMMA 8.6. For finite entropy partitions o, B of X we have that
W(T, a) < h(T, B) + H(alB).

PROOF. Since (VIZJTa) V (VI T~*6) > VI, T *a we have that
H (ViZ)T) < H (Vi) T ) v (Vi T76))
= H (ViZgT7'8) + H (V5 T™"a| ViZy T°B)

(where we use Lemma 8.4, with v being the trivial partition, for the last
line). We next estimate

H (VI T el VIiZ, T7B)
=H (a| V?z_ol T_iﬂ) +H (V?=_11T_i0‘|a Vv (V?;olT_iﬁ))
< H(alf) + H (Vi T o VIS T70)
< H(a|f)+ H (VIgT ‘al VIZZ T7'B).
Proceeding inductively gives us
H (VI T a| ViZ, T*8) < nH(a|p).
Finally, we see that

1 : 1 .
~H (VP T "a) < ~H (ViZg T7'8) + H(lB).

Letting n — 400 gives the correct inequality.
[ |

COROLLARY 8.6.1. For finite entropy partitions o, B of X we have that

|W(T, B) — (T, )| < H(Bl|a) + H(c|B).

PROOF. By interchanging o and 8 in Lemma 8.6 we get that h(T,3) <
h(T, o)+ H(B|a).
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8.3 The entropy of a transformation

Consider a measure preserving transformation 7' : X — X on a probability
space (X, B, 1). We want to associate to this a numerical invariant. We start
from the definition of the entropy relative to a partition @ and then remove
the dependence on « by taking a supremum.

DEFINITION. We define the measure theoretic entropy of T : X — X for
the probability space (X, B, p) by hy(T) = sup{q. 1 (a)<+o0} P(Ts ).

We write the measure p as a subscript not only to remind us that there
is an ambient measure, but also to distinguish the notation from that of
topological entropy in chapter 3.

As one might imagine, it can be very difficult to compute the measure
theoretic entropy from the definition given. We now want to describe a very
important method of practical computation. We begin with a result which
replaces the supremum in the definition of the measure theoretic entropy
with a limit.

LEMMA 8.7 (ABRAMOV). Let 81 C B2 C ... C Bx C B be an increasing
sequence of partitions with H(fB) < +oo, Yk > 1; and such that Uy,
generates the sigma-algebra B. Then hy,(T) = limg_, 4o h(T, Br)-

We shall return to the proof in section 8.7.

The following definition gives us a way to generate the increasing parti-
tions.

DEFINITION. We say that a partition o with H(a) < +oco is called a
strong generator for the probability space (X, B, i) if V32, T 'a = B.

If T is invertible, then we say that a partition a with H(«) < 400 is called
a generator for the probability space (X, B, u) if vi2_ T ‘o =B

1=—00

LEMMA 8.8 (SINAIL). If a is a (strong) generator then h,(T) = h(T, a).

We shall return to the proof in section 8.7. Before developing the theory
needed to prove these two results we shall use them to compute the measure
theoretic entropy of some simple examples.

Example 1 (doubling map). Let X = R/Z, B denote the Borel sigma-
algebra, and p the Haar-Lebesgue measure. We let T' : X — X be the
doubling map T'(z) = 2z (mod 1). Let o = {[0, 1), [3,1)}; then observe that

oo {p2) [12)-[2) )
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and more generally,

| o
v?;olT_’a:{{Zin,%) :i:O,...,2"—1}.

. Z <[ ) os ([0
(4 >mg< )

Thus we see that 2H(VP'T~%a) = log2 and thus letting n — +oo gives
that h,(T) = log 2.

H(\V''T )

= nlog?2.

Example 2 (rotations on the circle). Let X = R/Z, let B denote
the Borel sigma-algebra, and let 4 be the Haar-Lebesgue measure. We let
T : X — X be the rotation T(z) = z + a (mod 1) for some fixed values
a R

First assume that a = q is a rational number. For any partition 3 we see

that 7798 = 3. Thus
Vi T 8= Vi;T~"8

and so in particular

hu(T,B) = lim i]—_] (\/nq lp —kﬂ>

n—-+oo qn
1
_ _ q—1 —k:
= Jim ot (Vi 0)
=0.

Thus the measure theoretic entropy of any partition is zero, and thus the mea-
sure theoretic entropy of the transformation, h,(T') = sup g(gy<4oo MT, B) =
0.

Next, assume that a is irrational. We let 8 = {[0,3),[3,1)}. Since the
sequence 3 + na (mod 1) is dense in the unit circle (Weyl’s theorem) we

see that the partition is (strong) generating. Moreover, we see that B =
Ve T~k3. As we observed before

WT,B) = lim H(B|ViZy T™"B) =0
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and therefore h,(T) = h(T, 3) = 0.
As one might imagine, a similar method applies to rotation on tori R" /Z",
n > 2.

Example 3 (Markov measures). Let 0 : X — X denote a subshift of
finite type

+00
X ={(xn) € [[{L,--- k} : Appa,,, =1}

where A = (A;;) is a k x k matrix with entries either zero or unity.

We associate to this a k x k stochastic matrix P = (P;;) (cf. Example 4
in section 7.3) and let p = (p1,...,pr) be the left eigenvector associated to
the left eigenvalue unity.

The partition o = {[1],...[k]} for X is generating. Let 0 : X — X
denote the shift transformation. The refined partition Vi_;T~*« consists of
“cylinder” sets of the form

(205 -+ s Zn—1] = {(Tn)nez € X : 7, = 2;,0<i<n—1}

where z; € {1,...,k}.
By the definition of the Markov measure p associated to P we have that

p([20, -+ s 2n-1]) = PagProzy Poyzy - - - Po gz -
We explicitly compute:
H(VpZyT™ )
=— > w20 zmo1])log (20, .. 2n-1))

[20,...,,3"_1]

== Z ProProzi Poizs - Pry sz 1108 (D2 Prozy Poros - - - Pry 220 1)
[20,...,Zn_1]

= - Z p20P2021P2122 cr Pzn—2zn—1 (logpzo + logpzozl + 10gPZ122
[Z(),...,Zn_l]

+logP,, s +...+10gP, _,. )

k 2
= pilogp;—(n—1) Y piP;log Py
=1

ij=1

(where we use that pP = p and P is stochastic).
Therefore we see that

k
1
ha(T) = lim —H(Vi 3T "a) =~ )  piPijlog P;.

n—-+4oo N i1
1,)=
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In the special case that X = X; = [[F{1,...,k} we can define a
“Bernoulli measure” from a probability vector (pq,...,px) (i.e. (p1+...+
pr = 1) by

,u([ZOa e Zn—l]) = PzyPz1Pzy -+ -Pzpp_1-
The measure theoretic entropy in this case is h,(T) = Zle pi log p;. For
example, where X = X, and p = (3, 1) we have that h,(T) = log2. Where
X = X; and p = (3, 3, 1) we have that h,(T) = log3, etc.
8.4 The increasing martingale theorem

We now begin to develop some of the machinery need to prove the results
in section 8.3.

We know that if f € L1(X,B, ) and A C B is a sub-sigma-algebra then
we can associate the conditional expectation E(f|A) € L'(X, A, ). The
increasing martingale theorem describes how E(f|.A) depends on the sigma-
algebra A. This is crucial in understanding the corresponding behaviour of
the information function and thus the measure theoretic entropy.

The following simple lemma is very useful.

LEMMA 8.9. If (X, B, ) is a probability space and if By C By C ... C
By C B are sigma-algebras and X > 0 then if we let

E={zeX: 1ér:lanNE(f|l$’n)(ac) > A}

then we have the upper bound on its measure p(E) < I [|f|dp with f €
LY(X, B, ).

PRrROOF. Without loss of generality we can assume that f > 0 (otherwise
we replace f by max{f(z),0}). We can partition £ = F; U...U Ex where

E,={ze X : E(f|By)(z) >\ E(f|B)(xz) <\,i=1,2,...,n—1}
(and observe that E,, € B,,); then E; N E; = () for ¢ # j. We then write

/E fin=3 /E =3 /E BB Do NulEn) = N9,

Thus u(E) < + [ fdp =5 [ |f|dp.
n

REMARK. This is very similar to the Chebyshev inequality for f € L'(X,
B, 1) and A > 0 which says that u{x € X : f(z) > A} < %.

This brings us to the main result of this section.
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THEOREM 8.10 (INCREASING MARTINGALE THEOREM). Let f € L'(X,
B, ). Assume that By C Ba C ... C B, C ... C B is an increasing sequence
of sigma-algebras and that the union UJ2 1Bn generates B (written B, —
B). Then E(f|B,) — f in L'(X,B, ,u) and E(f|B,)(xz) — f(x), almost

everywhere.

PROOF. The theorem is clearly true on the subspace U L' (X, By, u)
since if g € LY(X,Bg,p) then E(g|B,) = g for n > k. Moreover, this
subspace is dense in L'(X, B, 1) in the L' norm.

Given an arbitrary f € L(X, B, i) we can choose € > 0 and g € L'(X, By,
1), say, with [ |f — g|du < e. We then see that for any n > k we have that

/ B(f|By) - fldu
< / \E(f|B,) — E(g|Ba)|dp + / E(g|Ba) — gldu + / 9~ fldu
<2 / 19— fldp

(where [ |E(g|By)—g|dp = 0 since E(g|B,) = g and we use that E(.|B,) is a
contraction on L(X, B, p)). In particular, limsup,,_, o, [ |[E(f|Bn)—fldp <
2¢. Since € > 0 is arbitrary, we see that we have L' convergence.

To show that we also have almost everywhere convergence, we argue as
follows:

p{x € X : limsup |E(f|B,)(z) — f(z)| > 61/2}

n—+oo
<z € X o limsup(|E((f = 9)[Ba) (@) = (f = 9)(@)
+ |E(91Bn) (2) = g(2)]) > €'/%}
<z € X limsup |B((f = 9)|Bn) ()| +|(f = 9)(=)] > ¢/}

n—-+oo

<p{reX: hmsup|E((f 9)|Bn )(a;)\> 1/2}

n—-+4o00

+u{z € X [(f—9)(@) > 5 L2y

1
<2(1 1/2)/” g|dﬂ<2( %)€§461/2

(where we have used Lemma 8.9 and the Chebyshev inequality). Since € > 0
is arbitrary this shows almost everywhere convergence.

REMARK. There is a corresponding “decreasing martingale theorem”, but
we shall not need it.
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8.5 Entropy and sigma-algebras

We want to apply the increasing martingale theorem to the information
functions. First we need a simple technical lemma.

LEMMA 8.11. If o is a partition with H(a) < 400 and we have sub-
sigma-algebras Ay C As C ... C B then

[ (sup @) du < (@) + 1

n>1

(and, in particular, f(x) = sup,s; I(alAn)(z) € LY(X,B,p)).

PRrROOF. We can write
[ r@inta) = / " F()de (8.4)

where F(t) = p{x € X : f(x) > t}, provided the right hand side of (8.1) is
finite.
We can write

Fit)=p{re X : Sup I(a|Ay)(z) > t}

:,u{a:EX: sup( ZXA )log u(A|Ay) (z ))>t}

n>1 Aca

= Z L (A N{reX: il;}; (—log (Al AL) (z)) > t})

A€ca

(since the sets A are disjoint). However, we can simplify this by writing

{zeX: Sup (—log u(A|An)(2)) > t}

={zeX: inf (o u(Al4,) (@) < ~t}

= {re X : inf (4(A14)@) < e} = Unz1 4

where A, = {z € X : p(4]|A4,)(z) < et and p(A|A4;)(z) > et fori =

1,...,n — 1} are disjoint sets. If we write
Y AN Und) = 3 S w4 4,)
A€a Acan>1

then we can use the estimates

,u(AﬂAn):/ XAd,u:/ E(XA|An)d,u§/ e tdp = e tu(Ay,).
A, A,

n
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We now have two possible upper bounds on the same summation:

ZﬂAﬂAn)<Ze p(Ap)=e* and D u(ANAg) < p(A).

n>1 n>1
Therefore F(t) < 3 4., min{e™*, u(A)}. Finally, we can use this bound to

estimate
/OOOF dt</ (me{e i )})dt

A€a
=— )1o h e td
% ( g'u’ ) \/—log p(A) t)
== (u(A)log u(A) — u(A))
A€a
= H(a) + 1.

[ |
We are now in a position to prove the following crucial result.

THEOREM 8.12. If a is a partition with H(a) < 400 and Ay C Ay C
... = B is an increasing sequence of sub-sigma-algebra then I(a|Ay)(x) —
I(a|B)(z) almost everywhere and in L'. Thus H(a|Ay,) — H(a|B) asn —
+00.

ProOF. By Theorem 8.10 u(A|A,) — u(A|B) almost everywhere, for any
A € . This implies that I(«|Ay)(x) — I(«|B)(x) almost everywhere.

By Lemma 8.11 we have that I(«|A,) are dominated by the integrable
function sup,,~; I(@|A,)(z). Thus by Lebesgue’s dominated convergence
theorem we have that I(a|Ay,)(z) — I(a|B)(z) in L' (ie. [ |[I(a]An)(z) —
I(c|B)(z)|dp(z) — 0 as n — +00).

Integrating shows the corresponding result for measure theoretic entropy
i.e. H(a|Ay)(z) — H(a|B)(z) as n — +oo.

|

Using Theorem 8.12 we can extend the basic identities (Lemma 8.2 and
Lemma 8.4) to arbitrary sub-sigma-algebras C C B, i.e.

(1) for the information functions
I(av BIC) = I(alB v C) + I(BIC)
(and, in particular, I(«|C) > I(B8|C) if a > ),
(2) for the measure theoretic entropy
H,(aVBIC) = H,(a|BVC) + h,(BIC)
(and, in particular, H,(a|C) > H,(B|C) if a > ).
This only requires that we choose partitions v such that 4 — C and apply
the theorem (and this is a basic property of Lebesgue spaces).
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8.6 Conditional entropy

We want to consider how changing the sigma-algebra (with the same parti-
tion) affects the conditional measure theoretic entropy. The following lemmas
are useful.

LEMMA 8.13. Assume that f € LY(X,B,p) and 0 < f(z) <1 a.e. and
that A C B is a sub-sigma-algebra. Let v : [0,1] — R be a concave function

(i-e. P(az+(1-a)y) = ap(z)+(1-a)i(y)); then p(E(f|A)) = E(P(f)[A)).

PROOF. First consider the case of simple functions f(z) = > ., b;xs,,
where {B,...,B,} is a partition for X.
By linearity of E(.|.A),

E(flA)(z ZbEXB A)(z szﬂBM

=1

and observe that Y ., u(B;]A)(z) = 1. We can compute
P (E(f1A) > (b u(BilA) = Zw )xB,|A) = E(p(f)A). (8.5)
=1

For an arbitrary function f € LY(X,B,u) we can choose a monotonically
increasing sequence of step functions fj increasing to f a.e. Since E(-|.A)
takes positive functions to positive functions we see that E(fx|A) — E(f|.A).
We can now take limits in (8.5) to get that ¢ (E(f|A)) > E(¢¥(f).A), as
required.

[

The following is a simple application of this result.

PROPOSITION 8.14. If B is a partition and As C Ay C B are sub-sigma-
algebras then H(B|A1) < H(B|As2).

(The corresponding result for information functions may not be true).

PRrROOF. For each B € [ we fix the choice f = pu(B|A;). We then fix
P(t) = —tlog(t) for 0 < t <1 (and ¥(0) = 0). We then have that ¢(f) =
—u(B|A;p)log (1(B|.A1)) and the lemma (Jenson’s inequality) gives that

—E (u(B| A1) log (1(B| A1) |A2) < —p(B|Az2) log u( B Ay).

Integrating both sides with respect to p (and summing over B € f3) gives
that H(B|A1) < H(B|A2).
[ |
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8.7 Proofs of Lemma 8.7 and Lemma 8.8

We can now use the results from the preceding sections to supply the
omitted proofs of Lemmas 8.7 and 8.8.

PROOF OF LEMMA 8.7. We know that A(T, 8,) < h(T, By) + H(Bn|fm)
for n,m > 1. Moreover, if m > n then 8, C G, and so H((3,|8m) = 0. Thus
h(T, 3,) is monotonically decreasing and so converges.

For any partition o with H(a) < +oo we can start with the inequality
h(T, o) < hy,(T, Bn) + H(|Bn) (proved in a previous lemma). By a corollary
to the increasing martingale theorem we know that H(«|8,) — H(a|B) =0
(since a C B). We conclude that

h(T, o) < limsup h(T, 5,).

n—-+oo

Taking the supremum over all such « gives that

hy(T) =sup h(T,a) < lim k(T By).

n—-+oo

Clearly, h,(T') > h(T, ) for n > 1. Thus

n—-+oo

hy(T) > sup h(T, 3,) > lim h(T, By)

and the proof is complete.
[ |

Before moving on to the proof of Lemma 8.8, we recall the following useful
fact.

A FACT ABOUT LEBESGUE SPACES. For Lebesgue spaces a necessary and
sufficient condition for (3, — B is that there exists a set of zero measure
N C X such that for z,y € X — N (with z # y) there exist n > 1 and
B € 3, such that x € B but y ¢ B.

PrROOF OF LEMMA 8.8. This is an application of Abramov’s result where
we take 3, = VI__ T %«a or 3, = VP T ‘«, as appropriate. We then have
that ,

hT, Be) = H(Bk| V21 T Br)

— H(VAZIT o] v, Ta)
= h(T, @)

and we need only let £k — +o0.
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8.8 Isomorphism

Entropy is very important in the classification of measure preserving trans-
formations. We begin with a definition.

DerFINITION. Let (X;, B;, i), for i = 1,2, be probability spaces; then an
isomorphism between measure preserving transformations 77 : X; — X; and
Ty : Xo — Xy is amap ¢ : X1 — Xy such that

(1) ¢isa bijection (after removing sets of zero measure, if necessary),
(2) both qb and ¢! are measurable (i.e. ¢~ 1B, C By and ¢B; C Bs),

(3) pu1(¢~'B) = ua(B) for B € By (also uz(¢B) = p1(B) for B € By),
(4) poTy =T50 gb

THEOREM 8.15. FEntropy is an isomorphism invariant (i.e. if Ty : X; —
X1 and Ty : Xy — Xy are isomorphic then hy, (T1) = hy,, (T2)).

PROOF. Let a be a partition for X»; then clearly ¢ 1o = {¢71(A) : A€
a} is a partition for X;. Moreover, the properties for ¢ imply that

1 Ry |
~H (Vi Ty ba) = ~H (Vi T "9 ).

Letting n — +oc gives that hy, (T1, ¢~ 'a) = hy, (T, @). Taking the supre-
mum over all partitions « (with H(a) < +00) gives the result.
|

EXAMPLE (BERNOULLI SHIFTS). Using the formula for the entropy of a
Bernoulli measure from section 8.3 we see that the shifts

{ o : [hez{l,2} = [1,ez{1, 2} with probability vector (3, 3)

1
y 9 )
o : [1ez{1,2} = [1,ez{1, 2,3} with probability vector (3, 3, 3)

have entropies log2 and log 3, respectively. Therefore they are not isomor-
phic.

W=

REMARK. Let us consider a slightly different situation where we drop the
assumption that ¢ is a bijection. That is, if we consider (X;, B;, u;), for
1 = 1,2, to be probability spaces then a factor map between T : X; — X3
and Ty : X9 — X4 satisfies

(1) ¢(X1) is equal to Xo (after removing a set of zero ps-measure, if
necessary),
(2) ¢ is measurable,
(3) p1(¢~1B) = uz(B) for B € By,
(4) poTy =T 0¢.
In this case it is easy to see that h,(T1) > h,(T3).
We usually say that T is an extension of Ty or that Ty is an factor of Tj.
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8.9 Comments and references

Our development of entropy has followed the lines of Parry’s treatment in
[2]. It is possible to reduce some of the analysis if we accept working only
with countable sigma-algebras [5].

References for some more advanced topics we have omitted include [3, §7.5]
(Krieger’s generator theorem), [3, §7.6] (Ornstein’s isomorphism theorem),
and [1, §10.7] (Keane-Smorodinsky finitary Isomorphism Theorem).
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CHAPTER 9

ERGODIC MEASURES

In this chapter we shall consider the stronger property of ergodicity for an
invariant probability measure p. This property is more appropriate (amongst
other things) for understanding the “long term” average behaviour of a trans-
formation.

9.1 Definitions and characterization of ergodic measures

DEFINITION. Given a probability space (X, B, ), a transformation T :
X — X is called ergodic if for every set B € B with T~!B = B we have that
either y(B) =0 or u(B) = 1.

Alternatively we say that p is T-ergodic.
The following lemma gives a simple characterization in terms of functions.

LEMMA 9.1. T is ergodic with respect to u iff whenever f € LY(X, B, p)
satisfies f = foT then f is a constant function.

Proor. This is an easy observation using indicator functions.

9.2 Poincaré recurrence and Kac’s theorem

We begin with one of the most fundamental results in ergodic theory.

THEOREM 9.2 (POINCARE RECURRENCE THEOREM). Let T : X — X
be a measurable transformation on a probability space (X,B,p). Let A € B
have u(A) > 0; then for almost points x € A the orbit {T"x},>0 returns to
A infinitely often.

PROOF. Let FF = {x € A: T"x ¢ A,Vn > 1}, then it suffices to show
that p(F) = 0.

Towards this end, we first observe that T-"FNT"F = () when n > m,
say. If this were not the case and w € T"™F NT~"F then T™w € F and
Tr—™(T™w) € F C A, which contradicts the definition of F.
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92 9. ERGODIC MEASURES

Thus since the sets {T~"F'},>( are disjoint we see that
Z W(ITF) = (U~ F) < u(X) = 1

and then because p is T-invariant u(F) = p(T7'F) = ... = u(T™"F) =
so we can only have that u(F) = 0.
|

DEFINITION. Let ng : A — Z* U {400} be the first return time i.e.
na(x) > 0 is the smallest value for which T4z ¢ A.

By Theorem 9.2 n4(x) is finite almost everywhere. The next theorem
shows that when p is an ergodic measure then the average return time to A
can be calculated explicitly.

THEOREM 9.3 (KAC’S THEOREM). Let T : X — X be an ergodic trans-
formation on a probability space (X, B, ). Let A € B have u(A) > 0 then we
define the return time function na : A — Z+ U {oco} (which is finite, almost
everywhere). The average return time (with respect to the induced probability

measure [14) 18
1

/AnA(ﬂf)dﬁbA(SU) = A

PROOF. By definition of 14 it is equivalent to show that [, na(z)du(z) =
1. It is useful to define the following sets.

(a) For each n > 1 we define A,, = {x € A: ny(z) =n}, and write A =
Up>1A4n (with A; N A; = 0 for ¢ # j). In particular, Y oo, u(4,) =
1(A).

(b) Forn > 1wedefine B, ={z € X : TVa g Afor 1 <j<n—1,T"'z €
A}. The sets B, are disjoint (i.e. B; N B; = 0 for i # j) and by
ergodicity X = Up>1By, (since Up>1By, D Up>1T™"A D A) so that
2211 p(Bn) = 1.

We can rewrite

[ na@ants) = 3"kt = (ZM )

A k=1 k=1

then if we can show that Y, u(A,) = p(By) this will complete the proof.
When & = 1 we have from the definitions that By = T '4 and so

S m(Ay) = u(A) = p(Bi), as required. For k > 1 we can proceed

by induction. We can partition T71By = Bgy1 U T 1Ay (where T 1A} =

T-1B, NT'A and Bpyy = T-'By N (X — T-'A)). Thus u(T-1By) =

w(Bg) = u(Bry1) + (T~ Ag) = u(Bry1) + u(Ag) and using the inductive

hypothesis we see that u(Bri1) = p(Br) — w(Ax) = >0~ ki1 #(An). This

completes the inductive step and the proof.
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9.3 Existence of ergodic measures

When T : X — X is a continuous map on a compact metric space there is
a very simple relationship between ergodic measures and invariant measures
which we can now describe.

Let M denote the set of invariant probability measures on X. There is a
natural topology on this space called the weak-star topology, i.e. the weakest
topology such that a sequence pu,, € M converges to u € M iff Vf € C°(X),

f fdpn — f fdp.
The following properties of M are well-known (and easily checked):

(i) M is convex (i.e. if 1, po € Mand 0 < a < 1, then ap+(1—a)pus €
M);
(ii) the set M is compact (in the weak-star topology) [5, Theorem 6.10].

LEMMA 9.4. The extremal points in the convexr set M are ergodic mea-
sures (i.e. pu € M is ergodic if whenever pui,pu2 € M and 0 < o < 1 with
p=ap + (1 —a)us then p1 = psg).

The converse is also true, but we shall not require it.

PRrROOF. If p is not ergodic then we can find B € B with T~'B = B and
0 < p(B) < 1. But for any set A € B we can write A = (ANB)U(AN(X —B))
and thus

w(A) = u((ANBYU (AN (X - B)))
 (u(ANB)  (uAN(X — B))
‘“(B)< u(B) )*“(X B)( (X~ B) )

= amn(A) + (1 - a)pa(A)

where o = p(B) and pq(A) = “(ﬁg]f), pa(A) = %. This shows
that p = ap + (1 — @) pa.

PROPOSITION 9.5 (EXISTENCE OF ERGODIC MEASURES). Let X be a com-
pact metric space and B be the Borel sigma-algebra. Given any continuous
map T : X — X there exists at least one T-ergodic probability measure .

PROOF. Choose a dense set of functions fr € C°(X), k > 0. Since the
map p — [ fodp is continuous on M there exists by (weak-star) compactness
at least one v € M such that [ fodv = sup,cp{ [ fodp}. We let

Moz{ueM: /fodl/: Séljr\)/t{/f()du}};
m

then clearly My is non-empty and closed. Similarly, define

M = {V e My : /fldV: sup { fld,u}}

HEMo
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and the same reasoning shows that M; C My C M is non-empty and closed.
Proceeding inductively we define

Mk:{VEMk—13 /fde: sup { fkdﬂ}}

BEME_1

and arrive at a nested sequence M D My D M; DMy D ...D M D....
Since the sets are all closed in M (and hence compact) we have that the
intersection is non-empty. Assume p € Ngez+ M. We want to show that p
is ergodic by showing that it is an extreme point in M.

Assume that p can be written as an affine combination p = auy+(1—a)ps
(with 0 < a < 1); then to show that u is ergodic we need to show that
p1 = pe. Thus it suffices to show that for every fr € C°(X) we have that
[ fefdpr = [ fufdps (since the set fi is dense).

We begin with £ = 0 and observe that by assumption [ fodp = o [ fodpi+
(1 — @) [ fodus. Since p € Mgy we see that sup,,ca{ [ fodm} = [ fodp
implies that [ fodp1 = [ fodpe = supem{ ) fodm}. We thus conclude

(1) the first identity [ fodui = [ fodps is proved.
(2) pa1, p2 € Mo.

Continuing inductively, we establish that for arbitrary & > 0 we have
[ frdps = [ frdpo and py, pe € My. This completes the proof (i.e. g1 = po
and p is an extremal measure).

REMARK. The following facts are easy to check.

(3) If v, p are distinct T-ergodic measures then v L p.
(4) If p is ergodic then it is an extremal measure in M. (The converse
to Lemma 9.4.)

Since M is a compact convex metric space there is a general theorem of
Choquet that says every invariant measure u € M can be written as a con-
ver combination of extremal measures in M. More precisely, we can find a
measure p = p, on the space M (with respect to the Borel sigma-algebra
associated to the weak-star topology) such that

(1) for any function f € C°(X) we have

[ ran= [ ( / fdu) dp(v).

(2) p({v : v is extremal}) = 1.

9.4 Some basic constructions in ergodic theory

In this final section of chapter 9 we shall describe two basic constructions
in ergodic theory.
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9.4.1. Skew products. Let T': X — X be a measure preserving trans-
formation of a probability space (X, B, u). Let (G, B) be a compact Lie group
with the Borel sigma-algebra B. We can consider the product space X x G
with the product sigma-algebra A.

DEFINITION. Given a measure preserving transformation of 7': X — X
and a measurable map ¢ : X — G we define a skew product to be the
transformation S : X x G — X x G defined by S(z,9) = (Tz,¢(x)g).
Given any T-invariant probability measure p we can associate the S-invariant
measure v defined by dv = du x dt.

A simple example is the following.

ExAMPLE. Let T : R/Z — R/Z be given by T(z) = 2 + « (mod 1) for
some @ € R. Let G = R/Z and we define ¢ : R/Z — R/Z by ¢(z) =

z (mod 1) (i.e. the identity map). The associated skew product is then the
map S : R?/Z? — R? /72 given by S(z,y) = (z + o,z + y) (mod 1).

9.4.2. Induced transformations and Rohlin towers. Assume that
T : X — X is a measurable transformation on a measurable space (X, B).
Assume that A C X with A € B.

DEFINITION. The transformation Ty : A — A defined by Ta(z) = T"4 @) g
is called the induced transformation on A. We denote by B4 = {BNA: B €
B} the restriction of the sigma-algebra B to A.

If p is a T-invariant sigma-finite measure on (X,B) and 0 < p(A4) <

oo then we can define a T4-invariant measure g4 on (A, Ba) by pa(B)
r(ANB)
p(A)

ExAMPLE (CONTINUED FRACTION TRANSFORMATION). Consider the case
where (X, B) is the positive half-line R = (0,+0c) with the Borel sigma-
algebra. We define a transformation 7' : Rt — R* by

(1) Tx=z—1ifz € [1,400), and

(2) Tz =1 ifz € (0,1).
We can consider the induced transformation T4 : A — A on the interval
A = (0,1] defined by Tyz = 1 — [1].
1 1

Tog2 JB T4z dz is Ts-invariant.

The measure 4 defined by pa(B) =

REMARK. We need not be too careful about the definition of 7" and Ty
on a countable set of points since they have zero measure.

Consider an (ergodic) transformation 7' : X — X on a probability space
(X, B, 1) and let A € B have u(A) > 0.
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DEFINITION. We can define a space
A" = {(z,k) € AXZT: 0<k<na(z)},

where we identify (z,n4(z)) ~ (T"4(®)z,0), and introduce the product
sigma-algebra B (i.e. the smallest sigma-algebra containing the products
of sets in B4 and Bz+).

We define a probability measure on the space A™4 by v = % (where
dn corresponds to the usual counting measure on ZV).

Finally, we define a transformation T : A™4 — A™4 by

(1) Th*(z, k) = (z,k+1)if 0 < k <na(z), and

(2) Th*(x,na(z)) =Ty* (Taz,0)) = (Tax,1).
This construction is called the Rohlin tower over A.

(N.B. A Rohlin tower is the converse process to induced transformations.
We reproduce the original transformation on X from the induced transfor-
mation on A.) The following lemma tells us the Rohlin tower is a good model
of the original transformation.

LEMMA 9.6. The map ¢ : (A", B,v) — (X,B,p) defined by ¢(z,k)
= T*(x) is measurable and satisfies the following:

(1) ¢ is a bijection (almost everywhere);
(2) VB € B we have that v(¢~'B) = u(B); and
(3) ¢T4* =T¢ (almost everywhere).

PROOF. The result follows almost immediately from the definitions.
[ |

REMARK. The map ¢ is an isomorphism which implies that from the point
of view of ergodic theory the transformations 7' and Tj* are the same.

9.4.3 Natural extensions. Given a non-invertible map 7' : (X, B, 1) —
(X, B, 1) there is a natural way of associating to it an invertible transforma-
tion T : (X B, Q) — (X B, 1) with similar dynamical properties.

We define

X = {(xn)'nEZ"' € H X : T(.’L’n) = Tpn41,M 2 O}
neZt

and associate the sigma-algebra generated by the sets
B, = {($n)nez+ eX: Ly € B} for Be Band me Z™.

We next define a probability measure /i on B by ,u(B ) = p(B). Finally, we
define the (invertible) transformation 7' : X — X by

T(JI(), T1,%2,- - ) = (TJZ(), Lo, L1,L2y - - )
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It is easy to see from the construction that T is measurable and preserves
the probability measure ji.

DEFINITION. We call T : X — X the natural extension of T.

There is a canonical map 7 : X — X defined by 7 ((£n)nez+) = Zo. The
natural extension 7" has the following properties:

(i) T is an extension of T' in the sense that m o T = T o 7; and

(ii) if we denote by Bt C B the sub-sigma-algebra generated by sets
{==Y(B) : B € B} then

L CTIBY CBYCTBT C... C Uyt TVBY = B.

REMARK. In fact, any transformation satisfying (i) and (ii) will be iso-
morphic to the natural extension as we have defined it above [3].

EXAMPLE (SUBSHIFTS OF FINITE TYPE). Let o : X — X be a (one-
sided) subshift of finite type, defined by the k x k matrix A. Relative to a
Markov measure, say, its natural extension is the shift o : X — X.

9.5 Comments and references

More can be found on ergodic measures in [1], [2] and [5].

Important applications of ergodic theory beyond the scope of these notes
are Mostow’s rigidity theorem [4] and the Margulis super-rigidity theorem
[6, §5.1].

The skew product example in subsection 9.4.1 was used by Furstenburg to
give a simple proof of a result on diophantine approximation due to Hardy
and Littlewood [2].
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CHAPTER 10

ERGODIC THEOREMS

In this chapter we shall describe the ergodic theorems and some of their
applications. These simple but elegant theorems are important in many other
areas.

Let f be a function which is an observable for a physical quantity. One
of the main themes in ergodic theory is to study the asymptotic behaviour
of their time evolution {f o T¥},cz+. Under the ergodic hypothesis, their
averages % Zsz_Ol foTF converge to the space average f fdu. This property
also implies the well-known law of large numbers, which is a key concept
in statistics (i.e. the distribution of the long term average converges to the
Dirac measure supported on [ fdu).

10.1 The von Neumann ergodic theorem. Let (X, B, 1) be a measure
space with p a probability measure, and assume that 7' : X — X preserves
p. In general, ergodic theorems describe how the averages of functions f :
X — R along the orbits {T"z}>° , behave for (almost all) points z € X.
The simplest theorem of this type is the following “mean” ergodic theorem.

THEOREM 10.1 (VON NEUMANN MEAN ERGODIC THEOREM). Let (X, B,
w) be a probability space, and assume that T : X — X preserves p. Then for
f,g9 € L?(X, B, 1) the averages

y 2 [ 1w

converge as N — 4oo. If T is ergodic then

—Z/fT” du(%ﬁ/fdu/gdu
as N — +o0.

PRrROOF. Consider the subspace I = {f € L*(X,B,u): fT = f} of T -
invariant functions. (If T is ergodic then I consists of constant functions.)
Consider too the subspace

B={feL*X,B,p): 3he L*(X,B,p) with f = hT — h}

99



100 10. ERGODIC THEOREMS

of coboundaries.
On each of these spaces the averages are easier to study.
On the first space I we see that for f; € I and any N > 1

N-1
1
= 3" A(T") = fi(x) € TA(X, B, )
n=0
On the second space B we see that if fo = hoT — h € B then
5 fz (T"2) = +- (H(TV ) = h(a))
N

By the Cauchy-Schwarz inequality we have that

%‘/(h(wa) ~ h(a)) gdu(z)| < 1 (‘/hoTN .gdu‘ + ‘/h-ngD

1
< 5 (1o T lallgll> + [121121lg]]2)

2
= —l|lh

which converges to zero as N — +o0.
If we can write f = f1 + fo with f; € I and fy € B then

%NZ [ rarog@ut)
——folT" e +—Z/sz“ dp(x)

and therefore

%; [ 1@ ag@in) — [ At

as N — +4oo. If T' is ergodic, then
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as N — +oo.
More generally, assume that for any € > 0 we can find f; € I and f; € B;
so then [ |f — (f1+ f2)|?dp < € then by the Cauchy-Schwarz inequality

X [0 Gt ) E g @u)
< = (it £DT gl

(= (fr+ f2)) [l2llgl]2

(where to get from the second to third line we use the property that T
preserves p to write [|[ho T"|[3 = [|hoT"|dp = [ |h| o T"dp = [ |h|dp =
||h||2). Therefore the limit (points) of the sequence

y 2 [ 1w

lie in the interval ([ fdu [gdu—e, [ fdu [gdu+€). Since € > 0 can be
chosen arbitrarily small we see that

%Ng [ raeg@an) [ sau [ gdu

as N — 4-o00.

So to prove the theorem it suffices to show that L?(X, B, u) = I + cl(B).
To see this, assume that f L cl(B), ie. [ f- fadu = 0,Yfy € cl(B) or in
particular [ f-hoTdy = [ f-hdu, Vh € L*(X, B, ). Taking h = f gives us
that

/If\Zdu=/foT-fdu- (10.1)

We need to show that f € I (i.e. foT = f) and to this end we can write

[1ror=tPan= [1forPdu+ [I5Pdu=2 [ foT.sau
- 2(</|f|2dﬂ—/foT-fdu>
=0

where we use (10.1) and that [|f o T|?du = [|f|*dp. This shows that
foT = fae. (ile. fel).
This completes the proof.
|
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10.2 The Birkhoff theorem (for ergodic measures)

Let (X, B, ) be a probability space, and assume that the transformation
T : X — X preserves . The Birkhoff “individual” ergodic theorem gives a
strong type of ergodic theorem in that it describes the average of functions
along individual “typical” orbits.

We first prove the theorem under the additional assumption that p is
ergodic, and then for arbitrary invariant measures.

THEOREM 10.2 (BIRKHOFF’S THEOREM (ERGODIC VERSION)). Consider
f € LYX, B, ). If the measure p is ergodic then for almost all x € X we
have that the averages

N-1
¥ > g = [ g
n=0

as N — +oo (i.e. pfz € X: hmy_oo & S0 f(T2) # [ fdu} =0).
(Cf. [6 §1.2], [8, p. 30].)

PROOF. Assume for convenience that [ fdp = 0. (If this is not the case
then replace f by f— [ fdp in the two sides of the equality in the statement
of the theorem.)

For any € > 0 we can define

E(f)={zreX: l;vxgiupﬁw Zf (T"z)| > €}.

To prove the theorem it suffices to show that for each ¢ > 0 we have that
w(E:) = 0. We do this via two lemmas.

We begin with the following estimate.

SuBLEMMA 10.2.1. p(Ea(f)) < 1L1%

PrOOF. We first write f = f. — f— where fi, f_ >0 and min(f;, f-) =
0.
We next define the sets

N-1
EM(f{)={reX:N<N<MY fi(T"z)>eN}

n=0

and
N-1

EM(f_)={zreX:3<N<M, Y f(T"z)>eN}

€
n=0
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for any M > 1.

Next observe that for any x € X and any P > M we have the lower
bounds

P-1 P-M _
Y F(Tra) > e > xpmsyy(Tix)
n=0 7=0

and
P_1 P-M ‘
D F(Tr)> € ) xpusy(T)
n=0 7=0

where we bound f(T"z) or f_(T"x) from below by € or 0 as appropriate.
Integrating each side of these identities gives that

/ (2_: f+(T”$)) du(z) = P/f+du > (P — M)eu (Eé\/"(f+))

and

/(iﬁJW®>M@=P/LW2@—MMWﬂ@M

for all M > 1.
Letting P — 400 gives that

[ feduz en(B2(r)  and [ fapzean(EM(). (102
We finally see that

p (Eze (f)) < limsup p (EX (f+)) + limsup s (B2 (f-))
M—+o0 M——+oo

< [ frdp [ f-du
€

€
_ JIfldw

€

This completes the proof of Sublemma 10.2.1.
[ |

The inequality in Sublemma 10.2.1 is not effective unless we can control
the size of [ |f|du. The next sublemma allows us to do this (and this is also
where the ergodicity of u is used).
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SUBLEMMA 10.2.2. Let [ fdu=0. Given § > 0 we can choose a function
h € L (X, B, ) with [ |f — (hT — h)|dp < 4.

PrOOF. We need to show that the subspace
E:={hT —h: heL®(X,B,u)}

is dense in the subspace

Bo={f € L'X,B.0): [ fdu=o0}.

By the Hahn-Banach theorem it suffices to show that all linear functionals
which vanish on E also vanish on By.

As is well-known, for each linear functional o on L!(X, B, 1) there exists
k € L*°(X, B, p) such that a(f) = [ fkdp. Given a linear functional, and
thus k € L*°(X, B, i), the hypothesis that the linear functional vanishes on
E implies that [(hT — h)kdp =0, Vh € L>°(X, B, ).

With the specific choice h = k we get that [ kT - kdp = [ k*dp which
implies that

/(koT—k)zd,u:/(koT)zd,u+/(k)2d,u—2/koT.kdu

=2 (/(k)zdu - /k o T.kdu>

= 0.

In particular, k o T = k. By the ergodicity assumption this implies that
k is constant. So if f € By then [ fdy = 0, which in turn implies that
J fkdp = 0 and so f is in the kernel of the functional, i.e. the functional
vanishes on By.

[ |

We can assume without loss of generality that f € By (otherwise we
replace f by f— [ fdu). For an arbitrary 6 > 0 we can use sublemma 10.2.2
to choose h € L>(X, B, u) with [ |f — (hT — h)|dp < 4.

(From the definitions we see that for arbitrary e > 0 we have F.(f) C
E<(f — (AT — h)) U E< (hT — h) and therefore

p(E(f)) < p(Es(f = (hT = h))) + p (Es (T — b)) . (10.3)

However,
(1) since Vz € X

N-1
2|[R|

LY T - B(Tm0) = = ITe) — ha) < 2

n=0




10.2 THE BIRKHOFF THEOREM (FOR ERGODIC MEASURES) 105

we see that E¢ ((hT — h)) =0 and so u (Eg ((hT — h))) = 0.
(2) by sublemma 10.2.1 we have that

— (AT — h)|du < 44
e/4 ~ e

w (B (f — (v — ) < L2

ol

Since § > 0 was arbitrary we deduce from part (2) that u (E< (f — (hT — h)))
= 0 and so by (10.3) and part (1) that u (E.(f)) = 0, Ve > 0. This suffices

to prove the result.
|

The following corollary shows that the Birkhoff Theorem gives a quanti-
tative version of the Poincaré recurrence theorem.

COROLLARY 10.2.1. Let (X, B, i) be a probability space, and assume that
the transformation T : X — X preserves p and ergodic.. The proportion of
time spent by almost all points in a subset B € B is given by it measure pu(B),
i.e.

li — <n<N-1:T" B
yim NCard{O n x € B} = u(B)
for almost all points x € X.

Proor. This follows from applying the ergodic theorem to the indicator
function on the set A.
[ |

EXAMPLE (LACK OF CONVERGENCE ON A SET OF ZERO MEASURE). Con-
sider the map T : R/Z — R/Z defined by T'(z) = 2z (mod 1) and the usual
Haar- Lebesgue measure y. Consider any continuous function f : R/Z — R
such that f(0) # [ fdu. Clearly,

Z f(T™0) = f(0)

since T™0 = 0, for all n > 0. But since f(0) # [ fdu we see that at the point
0 the sequence does not converge to the integral.

2 |

REMARK. Given a flow ¢; : X — X and an ergodic measure p there is
a corresponding version of the ergodic theorem. For f € L'(X,B,u) the
averages T [ f(¢ww)dt — [ f(z)du(z) as T — +oo for almost all points
z e X.
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10.3 Applications of the ergodic theorems

In this section we shall consider some of the beautiful applications of the
Birkhoff ergodic theorem.

Application 1 (Normal numbers). Let £ > 2 be a positive integer.
For any 0 < x < 1 we can expand

TR TR TR
where i1,142,143,... € {0,1,...,k — 1}. (This expansion may not be unique.)
When k£ = 10 this is the usual decimal expansion.
We say that z is normal to base k if for each 7 € {0,1,...,k—1} that term

occurs in the expansion for x with density %, ie. limy, 400 %Card{l <n<
N :ip =i} = 4.

The transformation T' : [0,1) — [0,1) defined by Tz = kz (mod 1)
preserves Lebesgue measure p and is p-ergodic. Moreover, we see that

T~ (z) € (%, »d1) and so by Theorem 10.2 we have the following.

PropPOSITION 10.3. For almost all 0 < x < 1, x is normal to any base
k> 2.

Application 2 (First digits of powers of 2). Consider the sequence
2,4,8,16,32,64,128, ... ,2™ and consider the sequence of first digits 2,4, 8, 1,
3,6,1,...,rn € {0,1,...,9}.

PropPOSITION 10.4. The frequency of the occurrence of the symbol k 1is
gwen by logyy (1+ 1), i.e. limyyo xCard{l < n < N:r, = k} =
logy (1 + %)

For example, the frequency of the occurrence of the symbol 7 is given by
logyg (1 + %)

To prove Proposition 10.4, consider the distribution of the first digits of
{2"}. The first digit of 2" equals k iff £ - 10" < 2" < (k+ 1) - 10" for some
r > 0. (Equivalently, n - log,, 2 € [log,o(k + 1),log, k) (mod 1)).

But since a = log;,2 is irrational the map Tx = z + a is ergodic with
respect to Lebesgue measure. From the ergodic theorem it is easy to deduce
that the proportion of the orbit 7™0 spent in the interval [log,,(k+1),log, k)
is equal to its length |log,o(k + 1) — logyo k| = logyo(1 + 7).

Application 3 (Continued fractions). The continued fraction trans-
formation T : (0,1) — (0,1) defined by Tz = L — [1] preserves the Gauss
measure

1 dx
wB) = 1 )[
og2 Jpl+=x

where B € B is in the Borel sigma-algebra.
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In particular, for any B € B, if [(B) denotes its measure with respect to
the Haar-Lebesgue measure then

1 1
B) < u(B) <
31og3l(B) < (B) <

B
log2l( )

(since 1 < H% < 1). Consider the (measurable) partition of (0,1) by the
11

intervals of the form Iy, := (37, %
a finer partition into disjoint intervals by Iy, NT~ Iy, N...N T~ "I} _, where
ko, k1y... s kn > 1.

We want to show that u is ergodic. As is easily seen,

(i) |T'(x)| > 1 and |(T?)'(z)| > 4, for any z € (0,1),

(ii) there exists D > 0 such that sup, , ,¢j, IT!%;;% <D, V0o<z<l1.

) for £ > 1. For any n > 1 we can define

The maps T" ! : I, N T}, N...N T~ "I, — [0,1] have inverses which
we denote by g, k, : [0,1] = Iy, NT g, N...N T "I} and we see that

Do W) 7 iy Altn=i-1)/2]

Fix a Borel-measurable set £ € B then by the change of variables formula
we get the following two inequalities:

(a) U(ENT,T e, NsNT " "I;,,) > 0, then ! (EN Iy, NT 'y, N...N T "I,) =
! (Yro.. ke (TTE))
= Jrug Wk, (@)|dz > 1 (T"E) (infoepo) Wy 4, (@)]);

(b) l (Iko N T_lfkl Nn...N T_nIkn) < SUDz¢(o0,1] (’l/);c()kn (a:)) .

From the definitions we have
(¢) I(T"E) >1log2 - u(T™E) = log 2u(T~"T"E) > log 2u(E) > 1(E).

In particular, we see that

1
WEN, NT 'y, N...NT "I ) > El(E) AT NT ', NN T ", ).

Thus we see that for E € B for which T7'E = E and any € > 0 we
can choose n large and a cover for the complement ([0,1] — E) C U;I; by
intervals I; of the form Iy, N T~ ', N...N T~ "I, such that >, I(I;) <
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[([0,1] —FE)+e=1—1l(F)+e Then

I(E)-1(]0,1] — E)

E) (Zl([i) - e>

< 2D Zl(EmI») +€

=2D (> WENL)+ (Zl(Ii N ([0,1] — E)) — 1([0,1] — E))) +e

= 2D 21(1) 1([0,1] — ))+eg(2D+1)e.

Since € > 0 is arbitrary, we see that either [(F) = 0 or [([0,1] — E) = 0 (or
equivalently, pu(F) =0 or u([0,1] — E) = 0).

For almost all 0 < z < 1 we can define a sequence a,, = a,(z) € {1,2,...}
(for n > 0) by 1+ < T™(z) < aln. We can then write x in its continued
fraction expansion as

1
xr =
a0+ L

ar+o

Consider the function f : (0,1) — R defined by f(z) = logn whenever
HL” <z < . Observe that

1
o1
1
/f Ydu(z) = Z ogni—— g2 " 1+md$
>, logn (n+1)2
= I < .
g log 2 o8 (n(n +2) oo
By the Birkhoff theorem we have for almost all points = that
| Nl | N1
¥ 2 log(an) = 1 3 T~ [ fla)du
n=0 n=0

as N — +o00. Taking exponentials of both sides gives that

logn
1 n+ 1 log 2
li .ayn)V
N—1>I£oo (202 H ( (n+2 )

for almost all points z.
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Application 4 (Diffeomorphisms which preserve geodesics). Let
M7 and M5 be two finite volume smooth Riemannian surfaces whose curva-

tures are negative (and uniformly bounded away from zero). Let f : M; —
M> be a C? diffeomorphism.

THEOREM 10.5. If the image of each geodesic in My is a geodesic in M,
then the diffeomorphism f is an isometry (up to a homothetic rescaling).

We denote by QS} : SM; — SM; and d)% : SMy — SM, the associated
geodesic flows on the unit tangent bundles SM; and SM; of the two mani-
folds. The diffeomorphism f : M; — M> extends to a map F': SM; — SM,
defined by F(v,) = %.

The proof is based on the following sublemmas:

SUBEMMA 10.5.1. Under the above hypotheses we have the following re-
sults.

(i) F carries orbits of ¢* to orbits of $? (but without necessarily preserv-
ing the parameterization).
(ii) Each flow ¢i (i = 1,2) preserves the smooth Liouville measure v; on
the sphere bundle SM;.
(iii) The map F is nonsingular (i.e. carries sets of zero measure to sets
of zero measure).

SUBLEMMA 10.5.2.

(i) If My is a surface then for a (geodesic) arc Cy between two points
x,y € My, the set So, M1 = Ugzec, S: M1 has relative Liouville mea-
sure /1'1(501M1) = 2”TdM1 ($7y)

(ii) If M, is of dimension n > 2 then for an (n —1)-dimensional geodesic
submanifold Cy the set So, M1 = Uzec, Sz M1 has relative Liouville
measure pi1(Sc, M) = Vol(S"~1)Vol,_1)(Ch).

A similar conclusion holds on replacing M1 by My and Cy C M7 by a geodesic
arc or submanifold Co C Ms.

By assumption, the image Cs := f(C1) is a geodesic arc from f(z) to f(y).
By applying sublemma 10.5.2 on My we see that us(Sc, Ms) = 2wdar, (2, y).

Observe that the subsets S¢, M1 and Sc¢, M2 of the unit tangent bundles
SM; and SMs,, respectively, are transverse almost everywhere to the respec-
tive flows ¢! and ¢2. To prove Theorem 10.5 we want to show the slightly
more general result that there exists a constant C > 0 with the property that
if By is a cross-section for the flow ¢! (and thus By = F(By) is a cross-section
for the flow ¢2) then pi(B1) = C - ua(Bs). In particular, we want to apply
this with Bl = SclMl-



110 10. ERGODIC THEOREMS

We shall use two simple consequences of the well-known Birkhoff ergodic
theorem (presented as sublemma 10.5.3 and sublemma 10.5.4 below).

LEMMA 10.5.3 (SIZE AND RETURN TIMES). Given a point x € SM; let
m(z,t) = Card{0 < u <t : ¢i(x) € B;};
then for almost all x € SM; (with respect to Liouville measure) we have that

1
lim Zﬂ'(.’lﬁ,t) = ,U'z(Bz)

t——+oo

for i =1,2.

This statement and its proof essentially appear on p. 295 of [4].

Observe that since the map F' preserves the orbits of the two flows, it
is a conjugacy up to a change of parameterization, i.e. there exists a map
a: SM; x R — R such that F(gb}( ) = ¢2(4.)(F'z). Moreover, from the

definition of F' we can write a(z,t) fo |Df(¢lz)||du.
The following is a direct application of the Birkhoff ergodic theorem for

flows.

LEMMA 10.5.4 (AVERAGE REPARAMETERIZATION). For almost all points
xz € M7, we have that

t—+o0

- / IDf (@) |dun (<).

ProOF oF THEOREM 10.5. For a typical point x € M;, we can write
down the (increasing) sequence of times ¢, such that ¢; x € Bi. For the
corresponding point f(z) € Mj, we can write down the (increasing) se-
quence of times ¢/, such that qbf;l f(x) € By. Notice that by construction
we have that =n(z,t,) = n(f(x),t,). By sublemma 10.5.4 we have that
tr, ~tn ([ ||Df(2)||dvi(z)) as n — +oo (for almost all points z € My).

For almost all x € M; we therefore have that

1
Vl(Bl): lim —W(Jf,tn)

n—+oo i,

1
= lim —n(Fz,t)

n—4oco ¢

= </HDf )||do ( )) gmoo%w(F:v,t;)

= ([121@)lan(@)) va(2).

We need only choose one point x in this set of full measure to see that this
identity gives us the desired identity with the choice C = ([ ||Df(z)||dv1(z)).
[ |



10.4 THE BIRKHOFF THEOREM (FOR INVARIANT MEASURES) 111

10.4 The Birkhoff theorem (for invariant measures)

We begin with a definition.

DEFINITION. We let Z = {A € B: T7'A = A} denote the invariant
sigma-algebra, i.e. the sigma-algebra consisting of T-invariant sets.

Notice that E(f o T|Z) = E(f|Z) for f € L*(X,B,u) ( since T™'T =T

and so [, E(foT|D)du= [, foTdu= [, foTdu= [, fdu).
In the case that T is ergodic this sigma algebra is trivial i.e. Z = {X,0}.

THEOREM 10.6 (BIRKHOFF’S ERGODIC THEOREM). Consider f € L1(X,
B, ). If the measure p is T-invariant then for almost all x € X we have
that the averages

1 N-1 .
N X /(") > BU1D

as N — +oo, for almost all z € X.

PRrROOF. We can assume for convenience that E(f|Z) = 0. (If this is not
the case we can replace f by f — E(f|Z) on both sides of the identity.)

We need to show that if E(f|Z) = 0 then we can choose h € L™ (X, B, i)
with [ |f — (hT — h)|dp < 4, i.e. ker (E(.|Z)) = cl(B). Since we are also at
liberty to use sublemmas 10.5.1 and 10.5.2 as before (since their proofs did
not require ergodicity) the proof will be complete.

Let B={hT —h: he L*®(X,B,u)} (denoted by E in the previous proof
of Birkhoft’s theorem). First notice that B C ker (E(.|Z)) since if f = hT —h
with h € L*°(X, B, ) then

E(RT — h|T) = E(hT|T) — E(h|T)
= E(h|T)T — E(|T)
=0.

To show that ker (F(|Z)) = cl(B) it suffices to show that any linear functional
which vanishes on B must also vanish on ker (E(|Z). We know that any linear
functional can be written in the form f — [ fkdu, where k € L™ (X, B, u).
If we are assume that this functional vanishes on B then it is equivalent
to [gkdpy = 0 for all g = KT — h € B, ie. [hTkdy = [ hkdp, Vh €
L>(X, B, ). With the specific choice h = k we get that [ kT -kdp = [ k*dp
which implies that [(kT — k)?du = 0 (as in the proof of Theorem 10.2). In
particular, kT = k.

If we assume that f € ker (E(.|Z)) then the image under the linear func-
tional is

[ rdn= [ Bz = [ kBT =0
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(by property (iii)), i.e. the functional vanishes on kerE(.|Z). This completes
the proof.
|

10.5 Comments and references

Many simple example of applications of the ergodic theorems can be found
in the appendices of [1]. A nice treatment of continued fractions and the
Birkhoff ergodic theorem is contained in [2]. There exist various alternative
proofs of the von Neumann ergodic theorem (cf. [3],[9]) and Birkhoff ergodic
theorem (cf. [5]).

Other interesting ergodic theorems we have not considered are discussed
in [6], [7] and [8, pp 101-103].
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CHAPTER 11

MIXING PROPERTIES

We now want to consider two stronger properties than ergodicity. These
are weak mixing and strong mixing which are important from the statistical
point of view, as we shall see in the next chapter.

11.1 Weak mixing

DEeFINITION. Let T': X — X be a measure preserving map on a prob-
ability space (X, B, u); then we call T weak-mizing if for any A, B € B we
have that
N—
D T ANB) — pu(A)u(B)| — 0

n=0

[ary

1
N
as N — +oo.

We have the following equivalent characterization.

LEMMA 11.1. The following are equivalent.

(i) T is weak-mixing;
(ii) for f,g € L*(X, B, u) we have that

N-1

1

x| [ rgdn= [ gau [ gaul —0
n=0

as N — +o0.

Proor. For “(ii) implies (i)” we need only make the choices f = x4 and

g = xp- For “(i) implies (ii)” we can use an argument of approximation by
step functions (finite linear combinations of characteristic functions).

[

The following lemma shows that weak-mixing is a stronger property than
ergodicity.

113
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LEMMA 11.2. If a transformation T : X — X on a probability space
(X, B, 1) is weak-mizing then it is necessarily ergodic.

Proor. IfT is weak-mixing then by definition we have that for any A, B €
B

% z_: (W(T"ANB) — p(A)u(B)| — 0

as N — +o00. By the triangle inequality we have that

N-1

\—Z pT™"ANB) — p(A)u(B)|

n=

(11.1)

<+ Z T-"AN B) ~ u(A)u(B)

— 0.

If we assume (for a contradiction) that T were not ergodic then there would
exist a T-invariant set E € B with T7'E = E with 0 < p(E) < 1. If we
take A = F and B = X — E in (11.1) then since u(T""EN (X — E)) =
p(EN(X — E)), for all n > 0, we deduce that u(E) - u(X — E) = 0 giving
the required contradiction. Thus T is ergodic.

[ |

The converse is not true: there exist examples of transformations which
are ergodic but not weak-mixing, as the following simple example shows.

EXAMPLE (ERGODIC, NOT WEAK-MIXING). Let X = R/Z, let B be the
Borel sigma-algebra, and let p be the Haar-Lebesgue measure. For any ir-
rational number a € R the transformation 7' : X — X defined by T'(z) =
z+a (mod 1) is known to be ergodic. We can see that it is not weak-mixing
by choosing A = B = [0,1], and then p(A)u(B) = 3. Since the sequence
na + 7 is uniformly distributed we know that the proportion of the terms in
the sub-sequence n; for which n;a € [0, 155] (mod 1) 1s W%o For these terms
we have that p(T™ AN B) — u(A)u(B) > & — * = 2% which means that

N-1

1
= § ni > .2 5.
11\1,mJ1rnf lu(T™ AN B) — u(A)u(B)| > 100° 100 >0

11.2 A density one convergence characterization of weak mixing

Using the previous lemma on sequences there is also a characterization for
weak mixing which is closer to that of strong mixing. We say that a sequence
{n;}ien of natural numbers has density one if

lim Cawd{nZ 0,1,...,n—1]: i€ N} =1.

n—+oo N
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PROPOSITION 11.3. The transformation T is weak-mixing if there exists
a sequence {n;}ien of density one such that u(T~™ AN B) — pu(A)u(B) as
1 — +00.

The proof requires only the following simple lemma on sequences.

LEMMA 11.4. The following are equivalent for a bounded sequence of real
positive numbers {a,}.
(1) 23 rsa, — 0 asn — +oo; and
(2) limg— 400 @n, = 0 for some sub-sequence {ny} C N of density one
(i.e. limy_, 4o ~Card{n; € [0,1,...,n—1}: ie N} =1).

PrOOF. (2) = (1): Let J be a sequence of density one. Given ¢ > 0
we can choose NN such that for n > N we have that

Card{n; € [0,1,...,n—1]} > n(l —¢)

and for n; > N we have a,, < e. In particular,

1 n—1 1 N
=DIL =l DI D RS D DR
k=0 k=0 ke{n;} kg{n;}
N<k<n-—-1 N<k<n-—1
L
< - kz—oak +€((1 —€) +sup{a;}).

We can choose n sufficiently large that %Zszo ar < €. Since € > 0 can be
n—1

chosen arbitrarily small we have that % ko 0k — 0.
(1) = (2): Assume that %ZZ;; ar — 0. For each m > 1 we define
1
Jm:{'n/EN anga}
and observe that this has density one, since
1 1 n—1 1 n—1
o (ﬁ ZXN—Jm(k)> = > ar =0
k=0 k=0
as n — +o0o. Thus for each m > 1 we can choose n,, such that
1 (&= 1
— (Z XN—Jm(k)> < —
n m
k=0
for n > n,,. We then define

J = UI?;1Jk N [nk7 - 7nk+1]

and it is easy to see that J has density one and lim,_,..neg @y = 0.

The following corollary is quite useful.
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COROLLARY 11.4.1. 1 Z ak — 0 asn — 400 if and only zf Zk 0 0%
— 0 as n = 4o0.
11.3 A generalization of the von Neumann ergodic theorem

We want to present the following interesting generalization of the Von
Neumann ergodic theorem (Theorem 10.1) for weak-mixing transformations.
It will only be used in chapter 16 and is not required for the rest of this
chapter.

THEOREM 11.5. Assume that f1,...,fr € L¥°(X,B,p). If T : X - X
18 weak-mizing then

1 N
= (T2 fo(T?™x) . .. fo(T*z) — | frdp | fodp... | fedp

(in the L? topology) as N — +oo.

PRrROOF. The proof is by induction. When k£ = 1, this is precisely the Von
Neumann ergodic theorem (Theorem 10.1).

Assume that the result has been established for k£ — 1 functions. We may
assume without loss of generality that | frdu = 0 (otherwise we need only
replace fi by fr — [ frdp). Thus it suffices to show that

N
/ I% ; f1(T™2) fo(T?x) . .. fo(T*"2)|2dp(z) — 0 as N — +oo.

For any 1 < m < N we can now bound

[ 13 X @) fa00) . ) (o)

% X RIS 1) )| dute)

(11.2)
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(The first inequality comes from the observation that

1 & R R m

N;an o ngl m jgo nti | Ty (11252X ol + NomEi<N |a’|>
for any real numbers aq,...,anx. The second inequality comes from the ob-
servation that (% 25:1 bn)2 <% ij:l |b,,|? for any real numbers by, ...,
bn.) We next observe that

[ Zh (T7455) fo(TX04Di) . (TH49:5) ()

m—1m—1

k
/ (H fl(Tl("”)a:)) (H fl(Tl("+j)x)> dp(z) (11.3)
=0 =1

1=0 j= =1
m—1m—1 k

= / (H (1o o TUG-D) (X1 H0)) da(a)
=0 7=0 =1

By the inductive hypothesis we know that for each 0 <4,5 < m — 1,

_ZH(fl froThi~ ’)) (T i) g) —>H/fz froT!U=Ddy

n=1[=2

as N — +oo (in the L? topology) and so

1 Y i 1(j—14) l(n+i)
ﬁ;/g(ﬁ.f,oT )(T z)dp(z)
N k
_ %nz::l/ (fl o T(j—z')) (x) (g (fl fio Tl(j—i)) (Tl(n-l-i)gj)) du(x)
k
— H/fl fro T dy,
1=1

(11.4)
Comparing (11.2), (11.3) and (11.4) we see that
N
timsup [ | 3 (T FT0) . FeT0) P
L (11.5)
< %Z > ( /fl fro T Ddp(z ))
m =0 j5=0

Finally, since T is weak-mixing we know that [ f;- f, fioTrndu(x) — [ fidu(z
= 0 where r,, — 400 through a set of density one. Thus for sufficiently large
m the expression in (11.4) can be made arbitrarily small.
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11.4 The spectral viewpoint

Consider a measure preserving transformation 7' : X — X on a probabil-
ity space (X,B,u). Consider the Hilbert space H = L?(X, B, ) of square
integrable functions with the inner product (f,g) = [ fgdu. We can asso-
ciate to T' an operator Ur : H — H defined by (Urf)(z) = f(Tx) whenever
f € H. It is easy to see the following.

LEMMA 11.6. Urp: H — H is an isometry. i.e. ||[Urf|| =||f]|.

We recall a few elementary observations about operators U : H —+ H on a
Hilbert space H. We call a linear operator U an isometry if for every pair of
vectors z,y € H we have that (Ux,Uy) = (x,y). We shall only be interested
in isometries.

An eigenvalue for U : H — H is a complex number a € C for which there
exists a (non-zero) vector x € H (called the eigenvector) such that Uz = ax.

LEMMA 11.7. Figenvalues of isometries must be complex numbers of mod-
ulus unaity.

ProOF. Clearly, if Uz = ax then (Uxz,Ux) = aa(z,z). But since U is
an isometry we have that (Uz,Uy) = (z,y) and so (z,z) = |a|*(z,z) ie.
la] =1, as claimed.

An important aspect of the spectrum of the operator is the variety (or
lack of it) of eigenvectors. Two extreme cases are the following.

DEFINITION. The operator U : H — H has continuous spectrum if there
are no eigenvectors. The operator U : H — H has pure point spectrum if H
is the closure of the linear span of the eigenvectors.

REMARK. Between these two extreme cases we have the possibility of
having mized spectrum. We can let V' C H denote the subspace spanned
by the eigenvectors. We let V- C H denote the orthogonal subspace to V.
;From the definitions we see that U : V' — V then has pure point spectrum
and U : V1t — V1 has continuous spectrum.

We now recall one of the basic theorems in spectral theory.

DEFINITION. A sequence 7, € C, n € Z, is called positive definite if for
each N > 1 and each sequence ag, ... ,any we always have that

N
Z Tn—mGnOm > 0.

n,m=0
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BOCHNER-HERGLOTZ SPECTRAL THEOREM. If r,, n € 7, is positive
definite then there is a unique finite Borel measure p on R/Z such that

Tn = fol e2™intdy(t).
(The proof can be found in the appendix to [1].)

APPLICATION TO ISOMETRIES. The Bochner-Herglotz theorem is partic-
ularly well suited to isometries U : H — H. Fix € H and then set
rn = (U"z,z) and r_,, = (x,U™x) and observe that

N N N
Z Ty—n Oy Gy, = (Z a,U"z, Z a,U"z) > 0.
n=0 n=0

n,m=0
The measure p on the unit circle R/Z is called the spectral measure.

The choice of point z € H affects the resulting spectral measure p. If
z € V (i.e. z is in the closure of the span of the eigenvectors) then the
associated measure is singular with respect to the Haar-Lebesgue measure
on the circle R/Z. If z € V1 then the associated measure is absolutely
continuous with respect to the Haar-Lebesgue measure on the circle R/Z.

ExAMPLE. Consider an irrational rotation 7' : X — X on the unit circle
X = R/Z defined by T'(z + Z) = (z + a + Z). The functions e, (z) = e27in®
are eigenfunctions for the operator U : L?(X, B, u) — L?(X, B, 1) since

Ue, (l‘) — e27rin(a:+a) — e27rinaen (.T) ]

Since the family e, ,n € Z, spans the space the transformation 7" has pure
point spectrum.

In applying this to ergodic theory, we consider a measure preserving trans-
formation T : X — X on the Hilbert space H = L?*(X, B, u) with inner

product < f,g >= [ fgdp.

REMARK. The following lemma is also a standard result from spectral
theory (although we won’t require it).

RIEMANN-LEBESGUE LEMMA. If the spectral measure y on R/Z for the
operator U : H — H (and a point © € H) is absolutely continuous then
<U"x,x >— 0 as n — +o0.
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11.5 Spectral characterization of weak mixing

The Hilbert space H = L?(X, B, 1) has the obvious one-dimensional sub-
space consisting of constant functions and denoted by C. We let C* denote
the orthonormal (co-dimension one) subspace. For a measure preserving

transformation T : X — X the associated isometry U : H — H preserves
both C and C*.

PROPOSITION 11.8. Let T : X — X be a measure preserving transforma-
tion on the probability space (X, B, u). The following conditions are equiva-
lent:

(1) for the map U : Ct — C* has continuous spectrum;

(2) T is weak-mizing;

(3) the measure preserving transformation T X T : X x X — X x X (on
X x X with the product measure p X p) defined by (T x T)(z,y) =
(T'z,Ty) is weak-mizing (and thus ergodic).

PROOF.

(1) = (2): Assume that U : Ct — C! has continuous spectrum. f
denotes the spectral meausre. Choose any vector f € C; then we estimate
that

2

1 -1
N 2| [ Forniaup

0
N-1

3
Il

% nz::() (/foT"fdp,) (/foT"fdu>
SE (e [

/ / T d (X ) (t, 5)
1 eZﬂ"lN(t—s) -1 ) )
_/0 /o N ( o2mi(t—s) _ | )d(u X [)(t, s).

Observe that since p has continuous spectrum the product measure i X [

gives the diagonal {(¢,t) : t € R/Z} measure zero. In particular, the last
integrand is finite almost everywhere. Since

1 e27riN(t—s) -1

N e2mi(t—s) — 1

—0
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for almost all (s,t) and it is dominated by the constant function 1, we see by
the Lebesgue dominated convergence theorem that

1 N-1 o 1 (1 /1 2miN(t—s) _{
- T" fd < — : d(i X i t7 0
an::()|/fo fdul —/0/0 (N ezm(t—s)_l) (i x p)(t,s)

as N — +o0. Finally, we observe that

1 N-1 _
N 2| [ Fornfaut 0
n=0

implies
N-1
1 .
ﬁ§|/fo:r fdu| —0

(by Corollary 11.4.1).

(2) = (3): Consider sets E = sup,;(A4; x B;),F = sup;(C; x Dj)
(for finite disjoint unions of product sets A;, B;, C; and D;). Since T is
weak-mixing we know that

p(T™™ AN Cj) — p(Ag)p(Cy) (11.6)
and

for sequences ny — 400 of density one (and without loss of generality we
can assume that we have the same sequence in each case).
To show T x T is weak-mixing we want to show that

(pxp) (TXxT)™ENF) = (nxp) (E)(px p)(F)

for a sequence ny — +o00 of unit density. This follows from (11.5) and (11.6)

since (ux ) (T x T)™(A; x B;) N (C; x D))

= U (T—"iAi N C]) Y (T_niBl' N D])
— 1(Ag)u(C) 1(Bi) u(Dy)
=u (T_niAi N CJ) - U (T_"iBi N Dj)

for a sequence ny — +o0o of unit density.

(3) = (1): Assume for a contradiction that there is a non-constant
eigenfunction f € H for T : X — X, i.e. Uf = af. We can then define a
function F': X x X — C by F(z,y) = f(z)f(y). Observe that

F(Tz,Ty) = f(Tz)f(Ty) = aaf(z)f(y) = F(z,y).

But then F(x,y) is a (T x T')-invariant function which is non-constant. This
contradicts T' x T being ergodic (and therefore being weak-mixing).
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11.6 Strong mixing

We now turn to another notion of “mixing”.

DEFINITION. Let T': X — X be a measure preserving transformation on
a probability space (X, B, ); then we call T strong mizing if for any A, B € B
we have that
u(T~"AN B) = p(A)u(B)

as n — +o00. We have the following equivalent characterization.

LEMMA 11.9. The following are equivalent:

(i) T is strong-mixing;
(ii) for f,g € L*(X,B,p), [ foT"gdp — [ fdu [ gdp as n — +oo.

Proor. For “(ii) == (i)” we need only make the choices f = x4 and
g = xB- For “(i) == (ii)” we can use an argument of approximation by

step functions (finite linear combinations of characteristic functions).
[

The following lemma states the obvious fact that strong mixing is a
stronger property than weak mixing.

LEMMA 11.10. If T is a strong-mizing transformation on a probability
space (X, B, 1) then it is necessarily weak-mizing (and thus also ergodic).

PROOF. This is immediate from the definitions.
[ |

EXAMPLE (MARKOV MEASURES AND SHIFTS). Recall that a subshift of
finite type T': X — X 1is defined on a space

X={ze[[{L....k}: A@n,2n41) =1,n € Z}
nez

for some k x k matrix A with entries either zero or unity. We define T'(z,,) =
(n+1) (ie. all terms in the infinite sequences are shifted one place to the
left). We shall assume in addition that A is aperiodic, i.e. there exists n > 1
such that for each 1 <14, j < k we have that A™(i,j) = 1.

Let P denote a k x k stochastic matrix with entries P(i,7) = 0iff A(4,j) =
0, and let p be its left eigenvector. Recall that we define the associated
Markov measure by

[1;[’1:0, e ail—l] = p(Zo)P(Zo, 7/1) . .P(il_Q, il—l)-
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Let C = [ig,...,%-1] and D = [jo,...,Ji—1] be two cylinder sets. Observe
that

cn T_(n+l)D = Um,__, ,$n+l—1[7;0’ R YRR 17 :-Tn+l—1,j07 - ,jl_l]
and thus

w(C N T~ D)
= Y plio)P(io,i1) ... P(ii—1,21) ... P(&n41-1,40) - - - P(ji—2, fu—1)

Tpyeee s5Tn41—1
1 _ .
= u(C)u(D) o) :c,,...%;H_l P(i1_1,21) ... P(Tpy1-1, jo)
Pn(il—laj())
= u(Cu(D) ——=—=,
u(C)u(D) oGl

However, we know that P"(i;_1,jo) — p(jo) as n — +oo (by writing P in
terms of Jordan forms) and so we know that

uCNT~ D) — p(C)u(D)

as n — +oo. For arbitrary sets A, B € B we can cover them by unions of
disjoint cylinders A C Uj_;C; and B C UL, D; such that pu((Uj_,C; — C) < e
and p((U™,D; — D) < € and then by approximation we see that p(A N
T-"+t)B) — u(A)pu(B) as n — +oo.

11.7 Comments and reference

We have given only the briefest introduction to the spectral theory asso-
ciated with measure preserving transformations. A particularly nice intro-
duction is contained in the appendix to [1].

Reference

1. W. Parry, Topics in Ergodic Theory, C.U.P., Cambridge, 1981.



CHAPTER 12

STATISTICAL PROPERTIES IN ERGODIC THEORY

12.1 Exact endomorphisms

DEFINITION. We call a measure preserving transformation 7' : X — X on
a probability space (X, B, i) an ezact endomorphism if N\S_, T~ "B = {X,0}
up to a set of zero measure (i.e. if B € T~" B, for every n > 0, then y(B) =0
or u(B) =1).

ProprosiTIiON 12.1. T : X — X is exact if for any positive measure set
A withT"A € B(n > 0), u(T™(A)) - 1 as n — +o0.

It is easy to see that this sufficient condition for exactness is also necessary
[2] (although we will not need this here).

ProOF. First we remark that T is exact if every measurable set A sat-
isfying for arbitrary n the relationship A = T~"(T™A) is of either measure
zero or measure 1. For such a set A, it is clear that u(A) =1 if u(A) > 0, as
p(T™A) = p(A) and so limy, o0 u(T™A) = u(A) =1 if u(A) > 0.

[ |

PROPOSITION 12.2. If T is exact then it is strong-mixing.

PROOF. Consider the sub-sigma-algebras B D T7!B > T72B D> ... D
{X,0}. We can associate the mnested subspaces L?(B) > L2*(T~1B)
D L*(T72B) D ... D C and for each n # 0 we can choose an orthonormal ba-

o0

sis {k;oT™ Y for L2(T—"B)o L*(T~("+tVB). Tt follows that {k; o T™ zionzo
is an orthonormal basis for L2(X, B, p). Two functions f,g € L*(X, B, u)SR
can be written in the form

{ f=30r0Xianikio T" + ([ fdp),
9= 002 i bniki o T" + ([ gdp),

where ay, ;, b, ; € R. In particular,

/fOTNng:iZan,ibn—}—N,i‘i‘/fdl///gdll’_)/fd/.b/gdu

n=0 =<

as N — o0, i.e. T is strong-mixing.

125
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EXAMPLE 1 (ONE-SIDED APERIODIC MARKOV SHIFTS). We can modify
the definition of the Markov shift and define

Xi=fee [[{0....k=1}: Alwn,@nin) = Lin € 27}
neNt

and 0 : X1 — X1 by (0x), = zp41. For the stochastic matrix P (with
entries P(i,7) = 0 iff A(i,j) = 0) letting p be its left eigenvector we define
the measure on a cylinder

[0, sii—1)={z € X} :z;=14;,0<j<1-1},

M[’io, e ,il_l] = p(lo)P(’LO, 21) .. .P(’il_z, /’:l—l)-

Let A be aperiodic. Then the argument for the (two sided) Markov shift still
applies and we see that T is strong-mixing; moreover, Ve > 0,V cylinders C,
AN > 0 such that Vn > N and any cylinder D we have |u(C NT~"D) —
p(C)u(D)| < ep(C)u(D). By approximating an arbitrary set B € B by a
cylinder D we see that the same result holds on replacing D by B.

Assume that E € N9 T~ "B and write £ = T~ "FE,. For any cylinder C
we see from the above observations that

wCNE)=pCNT"Ey) 2 (1 —e)u(En)u(C) = (1 - e)u(E)u(C);

since € > 0 is arbitrary we see that u(C N E) > u(E)u(C) for all cylinders
C. By approximation by disjoint unions of cylinders we can replace this
by u(BNE) > pu(E)u(B), VB € B. If we take B = X — E we see that
p(E)u(X — E) = 0. This completes the proof that T is exact.

12.2 Statistical properties of piecewise expanding Markov maps

Consider a piecewise expanding C? surjective Markov map T : I — I for
which there exists 8 > 1 with inf,c7 |T'(x)| > 5. We can define an operator
L:LYI)— L'(I) as follows.

DEFINITION. Given f € L(I) we define the Perron-Frobenius operator
by

() -
Li@)= Y 52 <=Zf(¢ix)\¢£(w)\><m(x)>

!
per—1g 1T (@)l

(where 1; denotes the inverse of T'|I;).
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LEMMA 12.3. For any f € LY(I) satisfying (Lf)(x) = f(x) the measure
i defined by f = dw 1s T-invariant.

Proor. This follows from the change of variables formula since we have
_ k
IA) = fT—lA f(z)dz = Zi:l fTI,nA [P ()] fovpi(x)dr = fA Lf(z)dr =

p(A).
|

We have the following result.

PROPOSITION 12.4 (SMOOTH INVARIANT MEASURES FOR PIECEWISE EX-
PANDING MARKOV MAPS). There ezists an invariant probability measure p
which is absolutely continuous with respect to the ( normalized ) Haar—Lebesgue
measure A (i.e. there exists f € L'(I) such that u(B) = [, f( x) for
every Borel set B € B).

Proor. By Lemma 12.3, to construct p it suffices to find such a function
f satisfying Lf = f. We first choose a point z € I and for any n > 1 we
look at the families 77"z of all n-iterate pre-images of z.

It is easy to see from the chain rule that

n B £"—11(y)_ 1
@)= D TEgl = 2 )

yeT 1z yeT—"g

We denote the inverse of T™| N} 0 T~ I, by ¥i,. i, Let V be the
partition generated by {T'(I;) : 1 g i § k}. Then for z,2’ € V € V we can
compare

' 1 1
L7 (z) — L™1(z')]| = | Z )]~ Z W|

yeT—'n:K y’ET_nﬂC’

= > W, @] =¥, @) xTor, s, (@)

21 yeee 9ln

where I, ., = M;Z oT79I;,,,. Observe that
].Og | 'Ll 'Ln :L‘I Zl ¢ZJ+1 i 'ILJ) ‘
7/1 i (.17 j=1 '@bl (¢Zj+1...7,n$)

' (ij.in’)
— 1 g
Z og\ % T )I
SZlog <1+D|3,CB;_:§|)

i=1
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where D bounds % on I. Then we have a constant C > 1 such that

SUPgeTI;, |¢’£1zn (2)]

infzerr,, (¥, i, @]

<C, VYii,...,in,n>0.

The property allows us to find a constant K < +oco such that

S W @)X, () < K, Vo

We conclude that there exists D’ > 0 such that [£"1(x) — L"1(2)| <
K (o —9l:25)

(where none of the bounds on the right hand side depends on n). We
conclude that Vn > 1

(1) the functions £"1 are bounded in the supremum norm,
(2) the functions £"1 are an equicontinuous family.

We construct a new family of averages

n—1
1
Fo(w) =~ Y LF(z), n>0.
k=0

We again see that

(1) the functions F,, are bounded in the supremum norm,
(2) the functions F,, are an equicontinuous family.

By the Ascoli theorem, there must be a limit point F,,, — f (> 0) in the
continuous functions on each component of [0,1] — {zo,...,2x} and since
J £"1dz =1 we have [ fd\ =lim,_,o [ F,, d)\ = 1. Moreover, we see that

ny,—1 k
LF (@)= Y o, (y) _ ™ niz L*1(y)

/ /
e ) T e ny & T
ne,—1
1 '« LF1(y)
=—> D i
1 n,—1
=— > LK)
Ny
k=0
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completing the proof.
[ |

DErFINITION. We say that T is aperiodic if there exists a positive number
m such that A(T~™1; N 1;) >0, Vi,j > 0.

THEOREM 12.5. The absolutely continuous invariant measure p in Propo-
sitton 12.4 is exact if T : I — I is aperiodic.

PROOF. By Proposition 12.1 it suffices to show that for any set A €
B with u(A) > 0 and for which T"A € B for all n > 0 we have that
limy, oo p(T™A) = 1.

Giveni = (i1,... ,in) we write I; = Nf_, T/ ifint (N7, 777111 ) #
(). As T is piecewise invertible on each atom I;, we know that T"| I isa C1-
diffeomorphism. For all I; and for all n > 0 we write (T"|7,)~" = t;. Let
z,y € T"1; (=T1I;,); then it follows from the mean value theorem that

[¥s(2) — i(y)| = [¥i(0)]|z — ]

for some 6 € I;. From the above equality and the condition (i) in page 39,
the diameter diam (I;) of I; decays exponentially fast (i.e., diam(1;) < ﬂin)
This implies that the partition Z = {I;} is a “ generating partition”. In
particular, for any ¢ > 0 we can choose a finite disjoint set of cylinders
{Z; : j = (41,.--,J1)}, with p ((UjIj) AA) < €. The following estimates
will be useful in the rest of the proof.

(a) Given d > 0 there exists at least one cylinder I; (where j = (j1...Ji1),
say) for which

MANT) > (1-6) A(I))- (12.1)

Assume for a contradiction that this is not the case, then for all cylin-
ders I; we would have A(AN1;) < (1 —6)A(L;). We can extend this
inequality to disjoint unions of cylinders, and then by approximation
to arbitrary sets B € B to get u(ANB) < (1 —6)u(B). However, if
we take B = A, then we get p(A) < (1 —0)u(A), which contradicts
w(A) > 0.

(b) We observe that there is a constant C > 1 such that for any cylinder
I;

! ()]
- <C. 12.2
saetnr, [ (9)] = (12:2)

(This is usually referred to as Renyi’s condition.)
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From the change of variables formula we see that

AT < [ (T @)
g(%yaﬂnm)MQnA%

e (;g; (T (y )\) A(I;NA%)  (using (12.2))

fI N (z)|d\(x)
/AR
< CSMNT'T) (using (12.1)).

N A°)

If T* (;) = I, then we could proceed directly to the end of the proof. How-
ever, since this need not be the case, we require the following sublemma.

SUBLEMMA 12.5.1. There exist S > 0 and a subset I' of T* (I;) which is a
finite disjoint union of elements of V;S:OlT_i{h ... It} and satidfies T (I') =
1.

Proor. Let {Uy,...,Un} = {TI,... T}, where N < k, denote the
collection of images under T' of the original intervals. The aperiodicity as-

sumption implies that for each 1 < j < N there exists 0 < s; < +oc
such that each U;, ¢ = 1,..., N, contains a cylinder I,(,’L’ﬂ)m,msj satisfying
T%i I,Sif)m = U;. In particular, we see that T°:U; D TS'I,%’B;) e, = U;.
Let, Tl(I) U;. Setting S = H iy sj and I' = U 8D m,, allows us

to have that I’ C T'(I;) and T5T' Ul U; = X.
- [ |

We need only modify the previous argument to write
MT3(I' N (TP A)°)) < D6

for some uniform constant D > 0. Since A(T°(I' N (T'A)¢)) > 1= XN(T°(I' N
T'A)), we see that

MT'5A) > NT5(I'nT'A)) > 1 — D6,
Since p is absolutely continuous with respect to A we conclude that pu(7T™A) —

1 as n — +o0.
|
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COROLLARY 12.5.1. If T : I — I is aperiodic, then it is strong-mizing
with respect to any absolutely continuous invariant measure. In particular,
there exists a unique absolutely continuous invariant probability measure.

Proor. By Proposition 12.1 the exact measure p is also strong mixing.
By Proposition 11.2 it is also ergodic, and since no two distinct ergodic mea-
sures can be equivalent to Lebesgue measure (and thus each other) uniqueness
follows.

PROPOSITION 12.6. p s equivalent to A.

Proor. First we show the following fact:
Ve > 0,3N(e) > 0 such that for each z € I, T"Vz is e-dense in I. (12.3)

As we have already observed in Theorem 12.5, for VI;, _ there exist a set of
cylinders {L(f;)l___msi :i=1,...N} and S > 0 satisfying TS(Ui]\LIIT(ri)l...msi) =
I.Let x € I, . p,. Then Ji s.t. my...mg hy ...~ is an admissible sequence
and 80 Y, m,, () € Iy ..m,, C T'I;, .. j,- Hence we have that T—(+3i+t) N
I .. j, # 0. Here we take t = S — s;. Let [ = l(€) be a positive integer such
that supr, diamlj, . j < €. Then, each I; . ; contains at least a point
belonging to T~(+%)z. Choosing N (¢) = I(€) — S, we have the fact (12.3).
It remains to show that f is bounded away from zero. Assume for a contra-
diction that f(z) = 0. Thensince foralln > 1, L™ f(z) = >, cp-n, % =
0, we see that f(y) = 0 whenever T"y = z. By the property (12.3) the set of
such points is dense. The continuity of f implies that f is identically zero,
contradicting [ fdX = 1.
[ |

PROPOSITION 12.7. For irreducible piecewise expanding Markov maps T :
I — I the following condition is equivalent to strong mixing:

AoT™™(A) = u(A), asn — +o0o (VA € B),
where \ is Lebesgue measure.
Proor. It is enough to observe that

AT A) = / xr-na(@)dA(z) = / xa(T"2) f(2) dp(z)

- / xa(@)d(u(@)) - / dA(z)) = u(A).
[ |

REMARK. Under the generating condition we can extend these results to
multi-dimensional piecewise expanding Markov maps with countable infinite
partitions.
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Since the invariant density f is strictly positive, we can make the following
definition.

DEFINITION. We define an operator £ : L' (I) — L*(I) by £(h) = %,C(fh)
where h € L'(X).

PROPOSITION 12.8. L*(u) = p, i.e. the dual operator L* acting on mea-
sures (defined by (L*p)(A) = [ Lxadp) fizes p.
PrOOF. It is an immediate consequence of Sublemma 14.2.3 and the def-
inition.
[ |

THEOREM 12.9 (CONVERGENCE TO INVARIANT DENSITY). L™(h) —
f ([ hdX) uniformly for h € CO(I).

PROOF. Define g = % From Renyi’s condition we have that
there exists a uniform constant D > 1 such that Vz,z’ € Uy

n—1 ;

TZ
D(z,z') = sup sup 7||9(Ti y,)|
n2lyeT "zy' €T~ "z’ ;4 9(T*y")]

is bounded above by D and furthermore
D(z,z') = 1 as |z —2'| = 0.

An easy calculation shows that {£"h : n > 0} is equicontinuous on each
component of I — 9V for Vh € Cy(I — dV). It follows from the definition of
L™ that ||£™h|| is bounded by ||h||os and so the closure of {£™h : n > 0}
in C(I —0V) is compact. Hence there are a subsequence {n;} — oc (i — 00)
and h* € C°(I — V) such that £ h — h* uniformly.

We can now show that any limit point of the sequence is a constant which,
in particular, shows that the limit exists. Notice that minge;(£¥h*(z)) =
mingez(h*(z)) for all k£ > 0. For any k > 0 choose z € I such that £¥h*(z) =
minger h*(z). Then for all y € T~z we have that h*(y) = minges h*(z). In
fact,

Lt (2)= ) (9(w)---g(T*'y)) A’ (y) > minh* ()
Tky=2
with equality if and only if A*(y) = minges h*(x), Yy € T~ "z. By (12.3)
we see that the set of y such that 3k > 1 with 7%y = z is dense. Thus h*
is a constant function with value mingec; h*(x) on a dense set, and thus by
piecewise continuity is constant almost everywhere.

Moreover, this constant takes the value limy, oo [ £%hdp = [ hdp. Re-
placing h by % for h € C°(I) and appealing to the definition of £ we get
that

ey == 1Ly ([5san) =5 [nar)
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uniformly as n — +oo0.

12.3 Rohlin’s entropy formula

In this section we want to give a formula for the entropy of an irreducible
Markov piecewise expanding interval map 7' : I — I with respect to the
unique absolutely continuous probability measure .

THEOREM 12.10 (ROHLIN ENTROPY FORMULA).
hu(T) = [ log IT'(T'0) du).

PROOF. The proof follows immediately from the string of statements (i)-
(iv) below.
(i) By the chain rule we can write log|(TN) (z)| = Zi]i_ol log |T'(Tz)|
for each z € I, N > 1. Since the measure p is ergodic (even exact)
we can apply the Birkhoff ergodic theorem to deduce that

1

- 1og (TVY ()] / log |T" () |du(x) as N — +o0.

(ii) Let z € I, ... iy = ﬂfrle_(j_l)Iij; then using Renyi’s condition we
can estimate

1

)\(I“ZN) - /TNIil...iN |(TN)I(¢'L1ZNZ)|dA(Z)
] 1
<c (meﬁfl__f_m) m) A(TI;,)

< (e

and

1 1

1 1

Thus we see that for any x € T

1 1
— lim —1 I, . )= lim —log|(TN)
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(where z € I;, ;. )-
(iii) Since the density f of the invariant measure is bounded from below
and away from infinity, we see that

1 1
- hm Nlog)‘(IhZN):_ hIIl —log,u(I“ZN)

N—+00 No+4oo N

(iv) Finally, we claim that

. 1
— NE)I_EOO N 10g /‘I’(I'i1~~~iN) = h’ﬂ(T)

This is an application of the Shannon-McMillan-Brieman theorem to
interval maps, whose proof we present in the next section.

[ |
12.4 The Shannon-McMillan-Brieman theorem

We now give an application of entropy to describe the asymptotic size of
elements in partitions.

Let @ = {A1, Ag,...} be a measurable partition of the space (X, B), i.e.
X =Ur A, and A;NA; =0 for i # j (up to a set of zero u-measure).

For each n > 1 we consider the new partition a,, = \/?:_OIT_ia. For almost
all z € X we can choose a unique element A, (x) € a,, with z € A, (z).

THEOREM 12.11 (SHANNON-MCMILLAN-BREIMAN THEOREM). Let T :
X — X be a measure preserving transformation of a probability space (X, B,
w). Let a be a partition. For almost all x € X we have that

8D gy fi7)

as n — +o0o, where f(z) = I(a| VoL, T ") (z) and T is the sigma-algebra

generated by the T-invariant sets T"'B = B.

COROLLARY 12.11.1. If T is ergodic then for almost all x € X

logp(An(@)) h

T,a) as n — +o0.
n

If a is a generating partition then

_log i (An(2))

— h,(T) as n — +o0.
n
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PROOF. Assuming the theorem, the ergodicity of the measure and the
T-invariance of the limit imply that it is a constant. Integrating therefore
gives that the limit is

/ B(f|T)du = / fdp = H(a| V&, T~"a) = h(T, a).

PROOF OF THEOREM 12.11. We first observe that

I(ViZy T™"a)(z) = —log p (An(2))
Using the basic identities for the information function we see that
(Vi T ')
=I(a| VIS T7) + I(VIS T a)
=I(a| VI T7%) + I(a| VIZ2 T'a)T
+ .o+ 1T )T 2 +I(a)T" L

(12.4)

We see from (12.4) that (almost everywhere)

lim sup — |I( VI T ) — E(f|T)|

n—r—+00
< limsu e lr— o) T
imsup (VS T~0) = 3 7 (12.5)

n—1

+hmsup\l ZfTi — E(f|7)]

n—-+o00 i—0

(using the triangle inequality). By the Birkhoff ergodic theorem (Theorem
10.6) we know that

lim —| Zsz E(f|7)| =

n—+oo N

(almost everywhere) and thus the second term on the right hand side of
(12.5) vanishes.
We can next write from (12.5) that

]' n i (2
—(vViz LT Tig) — ZfT

n—1
1 ) . .
<= E (o] V32 A ]a)T’—I(a|VJ‘?°;1T_7a)T’|
n
i=0
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(using also the definition of f). For N > 1 we define

Fy(z) := up (| ViZi T a)(z) = I(a] V2, T a)(z)|

and then upon fixing N > 1 we see that

1 n—1
SV T ) = ) ST
=0

(12.6)

< (FNT" + FNT"_1 + ...+ FNT”_N>
o n

. (25251 o] Visi T )T — 1] Vi, T—ja)m)
n

We can bound the second term on the right hand side of (12.6) by

N-1
> (o VI T )T — I(af V2, T a) T
1=0

1
n

N ' )
< — I(a| V§2, T o) + I(a| VE_, T
< 3 (s (el viz, 70 + o] viy 7))

which tends to 0 (almost everywhere) as n — +o0.
We now turn to the first term on the right hand side of (12.6). We observe
that by the Birkhoff ergodic theorem

lim sup

n—-+oco

(FNTn +FNT"_1 + ... +FNTn_N
n

) = E(Fn|T).

Notice that Fy > Fny1 and so
E(FN|T) > E(FN+1]Z) > 0

(since E(.|Z) is a positive operator). Since E(Fn|Z) — 0 (and is dominated
by an integrable function) then

lim [ E(Fy|T)dp= lim [ Fydu=0.

N—+o00 N—+o00

This completes the proof.
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12.5 Comments and references

A good reference for more information on exactness is Rohlin’s original
paper [2].

Without the Markov assumption (but still assuming the uniform expansion
property) the existence of an absolutely continuous invariant measure follows
from the work of Lasota and Yorke [1].

There is an alternative proof of the Shannon-McMillan-Brieman theorem
given in [3, 5.2]
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CHAPTER 13

FIXED POINTS FOR
HOMEOMORPHISMS OF THE ANNULUS

13.1 Fixed points for the annulus

Let A =R/Z x [0,1] be a closed annulus. Assume that T: A — A is a
homeomorphism that preserves the two boundary circles (i.e. T(R/Zx{0}) =
R/Z x {0} and T(R/Z x {1}) = R/Z x {1}).

DEeFINITION. We say that T : A — A is area preserving if the Haar-

Lebesgue measure A is T-invariant.

REMARK. Wesay that T : A — Ais conservative if there are no wandering
sets of positive measure. This condition will suffice for most of the results of
this section.

ExAMPLE. For any pair of values 0 < «, 8 < 1 consider the map 7' : A —
A given by T'(z,y) = (z+ay+B(1—y),y). To see that this is area preserving
we can write this affine transformation as T'(z,y) = (3,0) + B(z,y) where

B = ((1) aI'B ) Since det(B) = 1 we see that T is area preserving.

DEFINITION. An e-chain (for T : A — A) from (z,y) to (w,z) is a se-
quence of points

(may) = (5'30,3/0), (xl?yl)a e ’(mnayn) = (’UJ, Z) €A
such that

d(T (24, yi), (Tit1,Yig1)) <€ fori1=0,...,n—1.

We can use the same notation for e-chains for the lift 7' : R x [0,1] —
R x [0, 1].
These are finite versions of the pseudo-orbits introduced in chapter 5.

LEMMA 13.1. If (z,y) = (z0,%0), (Z1,Y1)s-- - s (Tn,yn) = (w, 2) is an e-
chain from (z,y) to (w,z) and (w,z) = (wo,20), (W1,21),-- 5 (Wny2n) =
(u,v) is an e-chain from (w, z) to (u,v) then defining (Tnii, Ynvi) = (Wy, 2;)
for 0 < i < m makes (20,0);- - 5 (Tns Yn)s (Tnt1,Ynt1)s - -+ 5 (Trtms Yntm)

an e-chain from (x,y) to (u,v).

139
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PROOF. This is immediate from the definitions.
[ |

DEFINITION. We say that a point (z,y) is chain recurrent if for each € > 0
we can find an e-pseudo-orbit from (z,y) to itself.

We say that T : A — A is chain recurrent if for every (z,y), (w,z) € A
and every € > 0 we can find a finite e-pseudo-orbit from (z,y) to (w, z).

LEMMA 13.2. Let T : A — A be an area preserving homeomorphism; then

(i) every point (z,y) € A is chain recurrent,
(ii) T : A — A is chain recurrent.

ProOOF. (i) Fix € > 0 and then by (uniform) continuity we can choose
5 > 6 > 0 such that whenever |(z,y)—(u,v)| < é then |T'(z,y)—T (u,v)| < §.
Let us choose a finite cover of J-balls

AC Uij\;lB((zi,wi),d) where (z1,w1),..., (2N, wnN) € A.

Since T is area preserving we have for each 2 = 1,..., N that we can choose
n; such that T~ B ((z;, w;),0) N B ((z;,w;)d) # 0. If we choose (u;,v;) in
this intersection then

( (3707?/0) = (’U,i,’Ui),

(xla yl) = T(uu U’i)7

3 (l’j,yj) = Tj(uiavi)v

(mni_l’ yni_l) = T(ni_l)(uia Ui)a

\ (xmv ynz) = (uia vi)

gives an §-chain from (z;, w;) to itself since we observe that
(a) [T((z0,y0)) — T(zi; wi)| < 5 (since [(zo,y0) — (2i, wi)| = |(wi, vi) -
(zi,wq)| <6), .
(b) T(zj,y;) =T (T (us,vj)) =TI (uj,v;) for j =1,... ,n; — 2; and
(C) T(ajni—h y’ni—l) =Tm (uj7 Uj) € B((ziaw’i)a 6) - B((Z’i7 wi)7 %))
For any (z,w) € A we can choose some (z;,w;) (1 = 1,...,N) which is
d-close to (z,w) (i-e. |(2,w;) — (z,w)| < §). We then see that the above
s-chain from (z;,w;) to itself also serves as an e-chain from (z,w) to itself
on replacing both (zg,yo) and (2,,, yn,) by (z,w). To see this observe that:
(d) [T(z,w) = (21, 91)| < [T(2,w)) = T (2i, wi) | + [T (zi, wi) = T(z1,91)| <
S+ 5 = € (since [(z,w;) — (z,w)| < ¢ implies that |T(z;,w;) —
T(z,w)| < 3),
T (s yn;) = (2, 0)] < |\T(n;,yn;) — (20, wi)| + |(zi, wi) — (2,w)] <
5+6<e).

(e)
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(ii) We may choose a sequence (z;,, Wi, ), (2iy, Wiy ), - - - » (%, , w;, ) such that

(x,y) € B((zio7w’io)75)7
B((zi;,wi;),0) N B((2i;,,,wi;,,),0) # D for 0 < j <n—1,
(u,v) € B((z,,w;,),0).

If we write in succession the e-pseudo-orbit from (z;,, w;,) to (2., w;,), and
then the §-pseudo-orbit from (z;,,w;,) to (z;,w;, ), etc. until we get to
the 5-pseudo-orbit from (z;,,w;,) to (2i,,w;,) then resulting concatenated
sequence is an e-chain from (z,y) to (u,v) (cf. Lemma 13.1).

|

The following result tells us that there is no distinction between the exis-
tence of fixed points and periodic points for the map 7' : Rx[0,1] — Rx [0, 1].

BROUWER PLANE THEOREM. If T : R x [0,1] — R x [0, 1] kas a periodic
point (i.e. In #1, T (x,y) = (z,y)) then T has a fized point (i.e. AT (u,v) =
(u,v)).

This is a classical result. We sketch the proof in the final section. (For
detailed proofs we refer to [2], [1].)

THEOREM 13.3 (POINCARE-BIRKHOFF). Assume thatT : A — A is an
area preserving homeomorphism and that the rotation numbers py and py for
T:R/Z x {0} - R/Z x {0} and T : R/Z x {0} — R/Z x {0}, respectively,
satisfy either pg < 0 < p1 or p1 < 0 < po. Then there exists a fixed point for
T.

REMARK. This result is also known as Poincaré’s last geometric theorem.
Usually the statement involves the existence of two distinct fixed points.

Theorem 13.3 is a special case of the following more general result.

THEOREM 13.4 (FRANKS). Assume that T : A — A is chain recurrent
and that the rotation numbers py and p1 for T : R/Z x {0} — R/Z x {0}
and T : R/Z x {0} — R/Z x {0}, respectively, satisfy either py < 0 < p1 or
p1 < 0 < po. Then there exists a fized point for T'.

PROOF OF THEOREM 13.3 (ASSUMING THEOREM 13.4). By Lemma 13.2
the hypothesis that T is area preserving implies that 7 is chain recurrent.
The results follows immediately from Theorem 13.4.

[ |

It remains to prove Theorem 13.4.

PROOF OF THEOREM 13.4. The proof of the theorem will be conveniently
divided into the following sublemmas.
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SUBLEMMA 13.4.1. Let T : R x [0,1] — R x [0,1] be the lift of a chain
recurrent homeomorphism T : A — A. There are four possibilities:
(i) T:Rx[0,1] = R x [0,1] has a chain recurrent point,

(ii) all points move to the right (i.e. ¥(z,y) € R x [0,1] if (z(™,y(™) :=
T (2, y) then lim,_, o (™ = +00),

(iii) all points move to the left (i.e. Y(z,y) € R x [0,1] we have
limy,_, o0 2(™ = —0), or

(iv) VM > 0, 3(z,y), (w,2) € R x [0,1] In,m > 1 with (z™ — 2(™)) <
~M and (w™ —w) > M.

The following result shows that case (iv) is actually redundant.

SUBLEMMA 13.4.2. Case (iv) implies case ().

SUBLEMMA 13.4.3. Let T : R x [0,1] = R x [0,1] be a lift of T : A — A.
Assume that I(xz,y) € R x [0,1], Ve > 0, I(z;,v:), ¢ = 0,...,n, such that
(.CE(), y()) = (xna yn) = ('T’y) and ‘T('T'La Z/Ai)_(xi-i-la yi+1)| <€ fO'f"l: = 07 IR (2
1. Then there exists a fixzed point for T : R x [0,1] = R x [0, 1].

Assuming these sublemmas the proof of Theorem 13.4 is now a simple
matter. By the area preserving hypothesis T': A — A is chain recurrent and
Sublemma 13.4.1 applies.

By the hypotheses on the rotation numbers of the boundaries, points on
the two boundaries move in opposite directions. Thus we see that cases (ii)
and (iii) are eliminated. If (i) holds then T has a chain recurrent point. If
(iv) holds than by Sublemma 13.4.2 this again leads to the same conclusion,
that there exists a chain recurrent point.

Finally, by Sublemma 13.4.3 the existence of a chain recurrent point im-

plies the existence of a fixed point.
[ |

We are only left with the chore of proving the sublemmas.

PROOF OF SUBLEMMA 13.4.1. Let us assume that (iv) fails, then to prove
the sublemma we need to show that either (i), (ii) or (iii) holds.

Let us assume that (iv) fails because 3M > 0, V(z,y) € R x [0,1], Vn > 1
we have that (™ — 2 > —M. We have two possibilities.

Firstly, if for some (z,y) € R x [0, 1] we have that the sequence (™) — z,
n > 1, is also bounded above then the sequence (T%(z,y))$2, is confined
to a bounded region of R x [0,1] and so must have an accumulation point
(z*,y*), say. However, for any 6 > 0 we need only choose n’ > n > 1 with
7™ (2, y) — (.,T*, y*)| < £ and T (2, y) — (x*, y*)| < ¢ and then the sequence
(=@, y(i)))?:n is a d-chain from (z*,y*) back to (z*,y*). Thus (z*,y*) is a
chain recurrent point and we are in case (i).

The second possibility is that V(z,y) € R x [0, 1] the sequence z(") — 2 >
—M (n > 0) is unbounded (i.e. 7™ may move points arbitrarily far to the
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right, but never to the left). In particular, for any C > 0 we can choose N
with z®™V) — 2 > C. Thus if n > N then z(™ — z = (a:(N))(n_N) — ) 4
(z™) —z) > =M + C. i.e. lim,_ 00 2™ = 400 (thus we are in case (ii)).
If we had assumed that (iv) failed because the second condition in (iv)
was not met then a similar argument would have given that we are in either
case (i) or case (iii).
|

ProOF OF SUBLEMMA 13.4.2. We need a preliminary observation. Con-
sider any two points (u,v), (s,t) € A; then by Lemma 13.2 (i) we can find
an e-chain (u;, ;)i from (u,v) to (s,t). Lifting this chain to R x [0, 1] we
get that there is an e-chain in R x [0, 1] from (u,v) to (s+7,t), say, for some
r € Z. In addition, n can be bounded above by a bound D, say, depending
only on € and not on the choice of (u,v) and (s,t).

Returning to the proof of Sublemma 13.4.2, assuming property (iv) let us
take M > 4D, then let (z,y), (w, z) € R x [0, 1] be the two points described
in its statement.

(a) Given any point (u,v) € R x [0,1] we can construct an e-chain from
(u,v) to (x 4+ r1,y), for some r; € Z, by the above observation (with
|’I"1| < D)

(b) We can construct an e-chain in R x [0, 1] from (z + 71,y) to (z(™ +
r2,y(")), for some ro € Z, by taking the lift of the orbit sequence
(2, "J(i))lo- By hypotheses, 7o > 4D.

(¢) We can construct an e-chain in R x [0,1] from (z(™ + ro,5(™) to
(u+ 73, v), for some r € Z, by the above observation (with |rq| < D).

Thus by Lemma 13.1 we can concatenate these to get an e-chain from (u,v)
to (u,v) + (r,0) with r > 2D

A similar argument (using the second part of property (iv)) shows that
there is an e-chain from z to z — (s,0), say, for some s € Z.

If s = r then we can use Lemma 13.1 to combine the e-chain from z to
z+(r,0) with the e-chain from z+(r,0) to 2+ (r —s,0) = z to get an e-chain
from z to itself. If r # s, we can repeat s times the e-chain (applying Lemma
13.1 repeatedly) from z to z + (r,0) (to get an e-chain from z to z + (rs,0))
followed by r times the e-chain from z to z — (s,0) (applying Lemma 13.1
repeatedly) to get from z + (rs,0) to z.

[

PrOOF OF SUBLEMMA 13.4.3. We shall first show that for each 6 > 0 we
can find a homeomorphism S : R x [0, 1] — R x [0, 1] such that S has a fixed

point and Sup(, ,)erx[o,1] |T(:E, y)—S(z,y)| < g.

By hypothesis, we can choose a g—pseudo—orbit (zi,yi),2=0,...,N, from
(x,y) to itself. We introduce a homeomorphism A : R x [0,1] — R x [0, 1]
such that h(T'(2i, yi)) = (Tit1, Yi+1) and sup(, ) erxo,1] (2, y) — (2, y)| < S.
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(Intuitively, this seems easy, although in practice it is harder to write down
details.)

If we define g(x,y) = (h o T)(z,y) then we can arrange that

A

0
sup ‘T(I,y)—S(I,y)‘ < 5 and Sn(l‘ay):(l‘ay)'
(z,y)ERX[0,1]

Thus there exists a periodic point for S and therefore by Brouwer’s theorem
there is a fixed point for S.
We observe that if we assume for a contradiction that 7' did not have
a fixed point then (by compactness of A) the same would be true for any
sufficiently close homeomorphim S. This contradicts the above construction.
Finally, this fixed point for T projects to a fixed point for T : A — A.

13.2 Outline proof of Brouwer’s theorem

In the previous section we made use of a classical (but not standard) result
of Brouwer. In this section we shall ouline the main ideas in the proof.

OUTLINE PROOF. The proof has two distinct parts:

(i) If T : R — R? is a homeomorphism with a periodic point of prime
period n > 3 then there exists a homeomorphism 7" : R> — R? with
either a fixed point or a periodic point of prime period at most 2 and
the two homeomorphisms have the same set of fixed points.

(ii) If T : R? — R? has a periodic point of prime period 2 then there
exists a fixed point.

Part (i) is proved by an iterative method. Specifically, If T : R? — R? is a
homeomorphism with a periodic point T"x = x of prime period n > 3 then
one shows there exists a homeomorphism 7" : R? — R? with a periodic point
of prime period at most n — 1 and the two homeomorphisms have the same
set of fixed points.

To see this, consider the family of balls B(z, €) about z, and their images
T (B(x,¢€)) as neighbourhoods of Tz (cf. Figure 13.1). We choose the smallest
e > 0 such that cl(B(z,€)) N T (cl (B(z,€))) # 0. We can choose a point
z € cl(B(z,¢)) N T (cl(B(x,¢))) and a path v in B(z,¢) from T~ 'z to z
(passing through z). By construction, this path v has the property that
yNT(y) = (0. Since z € v we see that T™(y) Ny # 0 and so the “first”
intersection y € T*(y) N+ (n > k > 2) gives rise to a simple closed curve
containing T'(y) U T?(y) U ... U T" !(y). The homeomorphism T can be
changed in a continuous way, or isotopied (but only in a small neighbourhood
of this closed curve), to T : R? — R? so that z becomes a point of period
k—1 for T".

Furthermore, since T' can have no fixed points on the simple closed curve
then it has some neighbourhood U in which the same is true. If we arrange



13.2 OUTLINE PROOF OF BROUWER’S THEOREM 145

T(B(x, €))

FiGURE 13.1. The proof of Brouwer’s theorem

that T” differs from T only in this neighbourhood, then they have the same
set of fixed points in R2.

Part (ii) is proved using some elementary topology. Assume that T :
R? — R? has a periodic point T?z = z (with x and Tz distinct). By
“adding the fixed point at infinity” oo this corresponds to a homeomorphism
on the standard 2-sphere S2. By “blowing-up” the points z and Tz into
circles we finally get a corresponding homeomorphism 7' : A — A on a closed
annulus A = S x [0, 1], say, which preserves orientation (since T : R? — R2
preserved orientation) and interchanges the two boundary components (since
T interchanged x and Txz). Finally, the universal cover of the annulus is
X =R x [0,1], and the lift T : X — X interchanges the two sides R x {0}
and R x {1}. Let 7 : X — A be the covering projection and let g : X — X
be a generator for the covering group (isomophic to Z).

A simple application of the familiar Brouwer fixed point theorem gives
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that there exist fixed points Tzo = 2o for T : X — X and (Tg)zl = 7z for
(Tg) : X — X. There are two possibilities: either 7(zy) # oo or 7(zp) = co.
In the first case, m(z) corresponds to a genuine fixed point for the original
map T : R2 — R?, and the proof is complete. In the second case, we have
that m(z;1) is distinct from m(2z9) = oo and so it corresponds to a genuine
fixed point for the original map T : R? — R2.

|

13.3 Comments and references

The Poincaré-Birkhoff theorem usual guarantees the existence of two fixed
points. However, the theorem of Franks has much weaker hypotheses [3].

Modern proofs of the Brouwer plane translation theorem can be found in
[1] and [2].
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CHAPTER 14

THE VARIATIONAL PRINCIPLE

We introduced in chapter 3 the topological entropy h(T) of a continuous
map T : X — X of a compact metric space X and in chapter 8 the entropy
h,(T) of a T-invariant probability measure p. In this chapter we show that
these two notions are closely related.

14.1 The variational principle for entropy
The main result of this chapter is the following.
THEOREM 14.1 (VARIATIONAL PRINCIPLE). Let T : X — X be a contin-

uous map on a compact metric space.

(1) For any T-invariant probability measure p we have that h,(T) <
h(T).
(2) W(T) =sup{h,(T): p is a T-invariant probability measure}.

14.2 The proof of the variational principle

The proof we give is due to Misiurewicz [1]. Recall that the topological
entropy of a cover U is H(U) = log N(U) and the entropy of a partition «
with respect to p is Hy (o) = =3 4, #(A) log u(A).

PROOF OF (1). Fix a finite Borel measurable partition o = {4y, ..., Ax}
for X. Given € > 0, say, we want to “improve” this partition by choosing a
family of closed sets Aq,..., Ag such that

(1) Az CAZ', 1=1,... ,]{,‘, and
(2) p(A; — A;) <,
and then defining a new partition & = {Al, e ,flk,V}, where V = X —

(ulefli).

We can consider an open cover for X defined by
U= {Aluv,... ,AkuV}

If we compare the open covers \/iz_olT_iZ/{ and the partitions \/?Z_OIT_ié then
we see that

N (ViRT6) < 2N (VI T U, n>1 (14.)

147
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(where we recall that N (V! /T~if) is the number of elements in a mini-
mal subcover for Vf_OIT_iZ/{ and N (V72 T%@) is the number of non-trivial
elements in VI T~4).

SUB-LEMMA 14.1.1. H,(VIT~a&) <log N (Vi T—i4).

PROOF. Assume that VI~ T ‘@& = {C,...,Cn}; then we can write
H,(ViZy T~16) = = 3207, p(Ci) log u(Cr).
|
We can use Sub-lemma 14.7 to bound
H,(VIZ/T™"&)
<log N (\/?z_olT_i&)
<nlog2+log N (VI T~U) (by (14.1)).
Recalling that
WT) > WTU) = T H(VET 1)

and )
hu(Tyo) = lim —H, (Vi T a)

n—+oo N

we see that h,(T,&) < log2+ h(T). Moreover, by Corollary 8.6.1 we have

that A A A
|hu(T, &) — hy (T, )| < Hy(a|@) + Hy (&)

_ o u(CnC)
= ZZ C’ﬂClg( 2©) )

Cea Cea

— Z Z CﬂC’ ) log (u(C(g)C)) <1,

Cea CEOz

say, providing € was sufficiently small.
Since o was arbitrary, we see that

hy(T) = sup{h, (T, @) : « is a finite partition} < A(T) +log2 + 1.

Finally, we can apply the argument to iterates T% (k > 1) to see that
h,(T*) < h(T*)+log2+1. By Corollary 3.8.1 we know that h(T*) = kh(T).
The following gives the analogous result for measure theoretic entropy.

SUB-LEMMA 14.1.2 (ABRAMOV’S THEOREM). For k > 1, h,(T*) =
khy(T).

PROOF. Given any partition o we observe that

hy (TF VEST™a) = lim lHH (Vi Tk (V;’;&T‘ja))

n—+oco N

.k yN-1
= 1 —H, T 'a) = T,
N-»foo (Vico' T™"0) = khu (T ).
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Given € > 0 we can choose a with h(T,a) > h,(T) — € so that we have

hu(T*) > by, (TF,VE T )
> khy, (T, @) > khy(T) — ke.
Since € > 0 is arbitrary we see that h,(T*) > kh,(T).
To get the reverse inequality, notice that hy, (T*,a) < h, (T*, vEZ/T~a),

using Lemma 8.6. Given € > 0 we can choose o with h, (T, ) > h,(T*) — €

and then .
khy(T) > kb, (T, @) = hy, (TF, Vi 1T )

> hy, (T*, @) > h,(TF) — e
Since € > 0 is arbitrary we see that h,(T*) < kh,(T).

|
We can now complete the proof of (1) since
— oy w(TF)
h” (T) B kzkr—}{loo k
4§ log2 + 1
< tim MID Loy, le2+1 g
k=400 k k—+oo kK

|

PROOF OF (2). It suffices to show that given 6 > 0 there exists a T-
invariant probability measure p with h,(T) > h(T') — 6. We want to choose
¢ > 0 sufficiently small that lim,_, ;o = log(s(n,€)) > h(T) — 6, where s(n, €)
is the maximal cardinality of an (n,¢)-separating set. We can find a sub-
sequence n; — +oo such that n% log(s(n;,€)) = h(T). Let S,, be such an
(n;, €)-separated set.

For each n; we can define a (possibly non-invariant) probability measure

Up, = 1 Z O-

s(ng, €) o
2

In order to arrive at a T-invariant probability measure we can consider an
accumulation point u (in the weak-star topology) of the measures

By replacing {n;} by a sub-sequence, if necessary, we can assume that p,, —
L.

Let want to consider a finite partition o = {Ay,..., Ag} such that

(1) diam(4;) <e, i=1,...,k; and

(2) p(04;)=0,fori=1,...,k.
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Since Sy, is an (n;,€)-separated set we know that each set C € a(™) :=
Vv -lT=iq contains at most one point z = z¢ € Sy,,. Thus of the sets in

j=0
Sp, there are s(n;,€) sets with v,,-measure o ! ) and the remainder have

n;,€e
Vp,-measure zero. In particular, we see that

log(s(ni,€)) = — Z Un, (C)logvy, (C). (14.2)
Cealmi)

In order to take limits in a sensible way we fix first 1 < N < n; and then
0<j5<N-—1. We can write

™) = Vi T e = (Vl=j (moa )T~ (Vf\i_olT_iO‘)> V (VierT o)
0<I<n;—N

where E = {0,1,...,j—1}U{M;, M;+1,... ,n;— 1}, with M; = N [2=1],
has cardinality at most 2N.

SUB-LEMMA 14.1.3. Given measurable partitions 3 and v we have that

H”ni (BVy) < Huni (B) + Huni (7)

PrROOF. For invariant measures, this would be an immediate consequence
of Lemma 8.4 (and Corollary 8.4.1). However, although in chapter 8 we
assumed that the ambient measures were invariant, this property was not

used at this stage and the result remains true without it.
[ |

In particular, we have that

= Y ml(@)log,(0)

Cea(ni)

< Y [+ T w@bemo
l=j (mod N) ceT-1alN)
0<I<N—n;

(14.3)
+ Z - Z Un,; (C) 10g Vn; (C)
1€E CeT—ial)
M.
<Y = 3 @), (D) log(T™N )"0, (D))
r=0 Dea(N)
+ 2N logk

<
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(where for I = 7N + j there is a natural correspondence between D € a(N)
and C € T™'a™) with (T*)*v,, (D) := v,,(T7'D) = v,,(C) and C = T'D).
Summing the inequalities (14.3) over j =0,..., N — 1 we have by (14.2)

N log(s(ni,¢€))

S - S @0 os@ ) | + o8 0gr MY
1=0 Dea®)

SUB-LEMMA 14.1.4. Let o be a measurable partition and let v1 and v
be (not necessarily invariant) probabilty measures; then given 0 < a < 1 we
have that

> lavs + (1 = a)va](A)loglar + (1 — a)ra](A)
A€a

<a (Z v1(4) 103”1(/‘0) +(1-a) (Z v2(A) log V2(A)) :

A€a A€Exa

Proor. This follows immediately since ¢ — tlogt is convex.
Dividing (14.4) by n; N we get that

1 log(s(n;,¢€))

ng
n;—1
L 1 N e 2N log k
<= =% 2 @) (O)og((T7) v, (C) | + ==
n; i
r=0 Dea(N)
1 2N logk
< N Z pin; (C) log pn, (C) + T

where we have used Sub-lemma 14.1.4 repeatedly for the last line.
Since we have assumed u(0A4;) = 0, letting n; — +oo (with N fixed) we
have that
o Z ll’nz(C) 1Og Hn; (C) - HH(O‘(N))'
CealM)

This means that

h(T) -6 < lim S log(s(n;,€))

n;—>+00 N,

1 2N?logk
< (N) i = R
- NHM(OZ ) + nzl—l>r-rl-100 n;

1
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Letting N — 400 we have that

. 1
WT)—d < lim <H, (™) = hy(@) < h(T).

Since 0 > 0 is arbitrary this completes the proof.

14.3 Comments and reference

The proof we give is due to Misiurewicz [1]. Theorem 14.1 (1) was origi-
nally due to Goodman. Theorem 14.1 (2) was subsequently proved by Wal-
ters.

References
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CHAPTER 15

INVARIANT MEASURES FOR
COMMUTING TRANSFORMATIONS

In this chapter we describe an important conjecture of Furstenberg and
related work of Rudolph.

15.1 Furstenberg’s conjecture and Rudolph’s theorem

Consider the transformations
(i) S:R/Z — R/Z defined by S(x) = 2z (mod 1), and
(ii) T : R/Z — R/Z defined by T(x) = 3z (mod 1).
(For a mnemonic aid: S stands for “second” and T for “third”.) It is easy
to see that these transformations commute, i.e. ST = T'S).

Recall that the S-invariant probability measures form a convex weak-star
compact set Mg (and similarly, the T-invariant probability measures form a
convex weak-star compact set Mr).

We want to describe the probability measures which are both T-invariant
and S-invariant (i.e. the intersection Mg N Mr). We need only consider
the (S, T)-ergodic measures p in Mg N My (i.e. those probability mea-
sures invariant under both S and T for which the only Borel sets B with
T-"S™™B = B VYn,m > 0 have either u(B) = 0 or 1, since these are the
extremal measures in Mg N Mr).

FURSTENBERG’S CONJECTURE. The only (S, T)-ergodic measures are the
Haar-Lebesque measure and measures supported on a finite set.

Notice that the Haar-Lebesgue measure v has entropies log2 and log 3,
respectively, for the transformations S§ and T, and any finitely supported
measure always has zero entropy with respect to either S or T'. The following
partial solution is due to D.J. Rudolph.

THEOREM 15.1 (RuDOLPH). The only (S,T)-ergodic measure j which
has non-zero entropy (w.r.t. either S or T ) is the Haar-Lebesque measure.

15.2 The proof of Rudolph’s theorem

We begin with a few comments.

(1) Haar-Lebesgue measure v on the unit circle is characterized as the
only probability measure invariant under all rotations on the circle.
153
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Moreover, it is the only measure invariant under all rotations z —
x 4 a(mod 1), where a is any rational number a = .
(2) For n > 1 and f € L?(X, B, ) we can write that

EfT B = Y AW

ot ()

where T'(x) = % (and similarly for S).

(3) We can write (S™)(z) = S'(S" 1z)...S'(x). If we knew that S’
is constant (almost everywhere) then by the martingale theorem we
would have that

n—-+oco

/f(a:—l—a)du: lim E(f(z+a)|S™"B)

= lim [ E(f(z)|S™"B)

n—-+oo

= /f(x)du

and thus we know that v is the Haar-Lebesgue measure.
(4) Since ST =TS we have that

T'(Sz) - §'(z) = (TS) (z) = (ST (z) = S'(Tx) - §'(z).

In particular, we can write i,’,((gg = f,:gg

We begin with the following simple (but fundamental) Sub-lemma.

SUB-LEMMA 15.1.1. S(Tz) = S'(z) for almost all x.

PROOF. We begin by claiming that E(S'|T~1B)(x) = S'(Tx). To see this
we observe that

BT B@= Y W

!
y:Ty=Txzx T (y)

3 igg; (by (4) above)

y:Ty=Tz

, 1
=T | 3 T'(Sy)

y:Ty=Tz

= S (Tx)
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where we have used that there is a bijection between {y : Ty = Tz} and
{w:Tw = T(Sx)} to write that

1 1
2 TS 2 T

y:Ty=Tzx w:Tw=T(Sz)

This proves the claim. To complete the proof of the Sub-lemma we need only
show that E(S'|T~1B)(z) = S'(z). However, since E(.|T~1B)(z) : L?(X, B,
p) — L3(X, B, ) is a positive operator which is a contraction and

1E(S'[T7'B)[l2 = |IS'T]2| = [|5"] 2,

we indeed see that S'T = E(S'|T~1B)(z) = S'(z).
|

If we knew that T was ergodic we could now deduce S’ is constant. Un-
fortunately, we don’t know this and a little more work is required.

DEFINITION. We let A; C B denote the smallest sub-sigma-algebra for

which S’(z) is measurable.

In the course of the proof we shall establish that A; C S™'B (which, by
the definition of A, will imply that S’(z) is constant).

Similarly, we can introduce the sub-sigma-algebras A; C Ay C ... C
A, C ... C B where A, is the smallest sub sigma-algebra for which all of
the functions S’(x), (5?)'(x), ... ,(S™)'(x) are measurable.

SUB-LEMMA 15.1.2. For each n > 1 we have that

(a) S_lAn C An—l—l;
(b) T7A, = A,.

PROOF.

(a) If we write (S™*1) (x) = (S™)'(Sz) - S'(z) then, since by hypothesis
S™ and S’ are A,,-measurable, the right hand side is measurable with
respect to ST1A,,.

(b) Since S'(Tz) = S'(z) we also see that

(8™ (Tx) = §'(Tx) - S'(STx) ...S' (8" 'Tx)
= S'(z)-S8'(Sz)...8" (8" 'x)
= (5") (@)

But the right hand side is A,,-measurable by hypothesis.
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DEFINITION. We write A = V2 ,.4,,. The above lemma guarantees that
T 'A=Aand S7'AC A

We now move on to entropy considerations. Let v = {[0, ], 3, 2], .., [2, 1]}
denote the partition into intervals of length one sixth.

SUB-LEMMA 15.1.3. There exists a sequence s,, — +oo such that the
partitions

Ve g—in — 1 g 1 1 2 6-2°%» —1 1 d
i=0 Y= ’6‘25" 3 6'28",6'23" ey 6 - 25n ) an

o qein o 1 1 2 6-3"—1
=0 Y= 763" ’ 63”763”‘ PRI 6 - 3n )

have the property that every element of either partition is contained in at
most four elements of the other partition.

PRroOOF. For each n > 1 we choose the values s,, > 1 such that 37~ 1 <
2%» < 3™. The lengths of the intervals for each partition are 6_2%" and ﬁ
and thus their ratios are bounded above and below by 3 and %, respectively.

This is enough to complete the proof.
[ |

In what follows we shall make frequent use of the basic identity for entropy:
H(aV p|C) = H(a|CV B) + H(B|C).
Recall that the entropies of the transformations are given by

1 .
MT) = Tim —H(VIZIT ™)

and

.1 i
W) = lim EH(\/Q;(}S 7).

The following sub-lemma shows similar limits involving the sigma-algebra A.

SuB-LEMMA 15.1.4. The following limits exist and are equal to the en-
tropies:
1 .
MT)= lim —H(\V' ST "
(T) = lim —H(ViZoT™*7|A)
and .
h(S)= lim —H(Vir;'S™iy|A).

n—+oo S,
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PROOF. We begin with an argument which is borrowed from the standard
entropy identities. We see that for any n,m > 0 we have that

H(ViEA T y]A)
= H( Vito Ty A) + H(ViZ T T AV (VIS T )
H(ViZ T *y|A) + H(V; "+m T ] A)
H(ViZ Ty A) + H(VIG T ] A)
(where for the last equality we use that 7714 = A). Thus by subadditiv-
ity the limit h(T|A) = lim, 1o 2 H (VI T %y|A) exists. By the basic
equalities for entropy we see that
H(Vizg 'Sy A) = H(ViZ T~ A)
= H ((VizoS™"7) V (ViSg T™) [A) + H (VizoS ™"y (ViZg T ™) V A)
= H((VizoS™ ) Vv (ViZd T™*) [A) = H (ViZg T (VizeS ™) v A)
and so we can identify the limit as

WTA) = lim ~H(VI5 Tyl A)

n—4+oco N

-t (a1 (v (i)

n—4+oo N

= W(T)

since

h(T) = lim 1 (H(VIZZT ™))

n—4+oco n v=

and
H (T~ "D AV (VEZT ™)) < H (T~ Dy]A) = H(y|A) < +oo.

By sublemma 15.1.3 we have that the final expression above is bounded
(independently of n) and thus we have that the following limit exists

1 ,
h(S|A):= lim —H(Virg T 'v|A).
(S]A) = lim —H(Vizo T "v|A)
Moreover, this argument gives that h(T'|A) = 10g2 h(S|.A).
Observe that if we replace A by the trivial sigma-algebra then the same
argument gives that h(T) = 2&21(S). Comparing these identities we see

log 2
that h(S) = h(S|A).

We now apply Sub-lemma 15.1.4 to show that A C V52,8 %y, which is
essentially the end of the proof.
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SUB-LEMMA 15.1.5. H(A| V2, S71B) = 0.

PrROOF. By the basic equality for entropy we have that

H(A| V2 S7') = H(y VA V2, ST8) — H(v| V2, STy v A)
= H(y|VZ, S718) — H(y| V2, ™'y V A) (15.1)
= h(S) —H(¥|ViZ, 577V A)

(where we have used that H(yV A| V2, S7¢8) = H(y| v, S7B) = h(S)).
We next observe that

H(V?:_ols_i'ﬂfl)

=H(y|ViZ! STV A) + H(VIL S| A)

< H(y| VI STy Vv A) + H(VIZS Sy A)

SH@W| VIS STy VA) + H| V22 STV A) + ...+ H(v|A)

(This argument is a modification of the standard entropy proof that h(S) =
H(y|Vv$, S7%y).) Thus from the definition of h(S|.A) we have that

h(S|A) := lim lH(\/?;OlS_iﬂA)

n—+oo N
_ : 1 n—1 g—1i : 1 n—1qg—1
= nkffoo ﬁH(’ﬂ Vicy STty v A) + ngrfoo EH(Vi=1 S7'v|A)

= H(y| V{2, 57').
(15.2)
Comparing (15.1) and (15.2) we see that

0 < H(y| V2, ™) < MT) — h(T|A) = 0.

To finish off the proof of Theorem 15.1 we need only recall that H(A| V2,
S~ty) = 0 implies that A C V52,8 %y.

Repeating the argument with S replaced by S* for k = 1,2,... we see
that A C NS>, S™™B. In particular, this shows that (S™)’(y) is constant for
y € {w|S"z = S™w} (almost everywhere).

We observe that since h(S) > 0 (equivalently A(T") > 0), there must be a
set of positive measure on which S has two pre-images (otherwise S would
be invertible almost everywhere and then have entropy zero). Moreover we
claim that the set with two S pre-images is invariant under S and 7. By
ergodicity of (S,T) we see that almost all points have two pre-images.

This suffices to apply the argument in comment (3).
|
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15.3 Comments and references

The original proof of Rudolph had a symbolic formulation [2]. The proof
we give here is a version due to Parry [1].
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CHAPTER 16

MULTIPLE RECURRENCE
AND SZEMEREDI’'S THEOREM

In this chapter we shall present a famous application of ergodic theory
to number theory. The theorem we shall prove is an improvement on Van
der Waerden’s theorem (Theorem 2.1) originally proved by Szemeredi. The
proof we give is due to Furstenberg.

16.1 Szemeredi’s theorem on arithmetic progressions

To state the theorem we begin with the following definition.

DEFINITION. We say that a set of integers N' C Z has positive density if

§(N) :=limsup

Card{—-N<n<N:neN}>0.
N—)+oo2 +1

(This quantity is called the (upper) density of N.)

The following result generalizes the result of Van der Waerden in chapter
2.

THEOREM 16.1 (SZEMEREDI). If N C Z has positive density then for all

k > 1 there exists an arithmetic progression of length k in N (i.e. Vk > 1,
da, b€ Z,b#0 such thata+ibeN,i1=0,... ,k—1).

REMARKS.

(i) Tt is clear from the definition of § that in the special case N = 7Z
we have that 0(Z) = 1. Moreover, if we consider a finite partition
of the integers Z = N1 U... N}, then sup;;<, 6(N;) > £, and thus

at least one of the elements in this partition has positive density.
Thus Van der Waerden’s theorem can be considered as a corollary to
Szemeredi’s theorem.

(ii) Finite sets obviously have density zero. The set of odd (or even)

numbers has density %

(iii) The prime numbers have zero density (i.e. §({primes}) = 0) and so

Szemeredi’s theorem does not apply. It is an open problem as to
whether the conclusion holds for this set.

161
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A historical comment. The above result was conjectured by Erdos and
Turan in 1936. For the special case of £ = 3 the above theorem was proved
by Roth in 1952. The special case £ = 4 was then proved by Szemeredi in
1969 before proving the general theorem in 1975.

In 1977 Furstenberg gave an alternative proof using ergodic theory.

16.2 An ergodic proof of Szemeredi’s theorem

The key to the ergodic theory proof of Szemeredi’s theorem is the following
multi-dimensional version of the Poincaré recurrence theorem.

THEOREM 16.2. Let T : (X, B) — (X, B) be a measurable transformation
and let p be a T-invariant probability measure. For any A € B with u(A) > 0
and k > 1 there exists n > 1 such that

p(ANT"ANT>"AN...NnT*4) > 0. (MR)

NoTATION. We can say that the set A satisfies the multiple recurrence
property when the condition (M R) holds. A stronger condition, which we
refer to as uniform multiple recurrence, is when for all £ > 1 the following
condition holds:

N
. . ]- —n —2n —kn
llgg?fﬁng_lu(AﬂT ANT*AN...nT~*A) > 0. (UMR)

(o.]

PROOF OF THEOREM 16.1 ASSUMING THEOREM 16.2. Let X = an_oo
{0,1} and let o : X — X be the associated shift map (i.e. (0z), = Zp_1).
Given N' C N we can define a sequence z = (z,,)nez € X by

{1ifn€N,
Ty =
0ifn¢gN.

For any n > 1 we can define a probability measure u,, on X by
1 =n
Hn = m+ 1 Z Ogiz-
i=—n
Since the space of probability measures on X is compact (in the weak-star

topology) we can choose a limit point p of {p, : n > 1}. This will have the
following properties:

(a) pis a o-invariant probability measure (since for any continuous func-
tion f : X — R we have that

i=n+1

N ;
/f"d“_nkrfoo2n+1, >, I0')

1=—n+1

1 =n )
= ]_. z = M
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(b) If we choose A = {y = (Yn)nez : Yo = 1} then u(A) > 0 (since
p(A) = limsup,,_, . pn(A) = limsup,,_, o 5.0 (Card{N N [-n,
n]}) = d(WN) > 0).
We can now apply Theorem 16.2 to ¢ : X — X, the measure y and the set
A, to deduce that Vk > 1, 9n > 1 with

1 (A N "ANo 2"AN...N a_k”A) > 0.

From the construction of ;1 we see that for (open and closed) sets ANo~ AN
072" AN...N o~ *"A there are values of N > 1 such that uy(ANo AN
c”mAN...Nno"*A) > 0. In particular, for some —N < i < N we have
that o'z € ANomANo™2"AN...No A,
Finally, from the definition of x this means that the arithmetic progression
1+ jke N, for j=0,...,n.
|

16.3 The proof of Theorem 16.2

In this section we present an overview of the proof of Theorem 16.2. De-
tails of the technical propositions used are presented in the appendix to this
section.

16.3.1: (UMR) for weak-mixing systems, weak-mixing exten-
sions and compact systems. The (UMR) condition is easier to establish
if we assume that T : (X, B) — (X, B) under additional assumptions. For
example:

PROPOSITION 16.3. Let T : (X,B) — (X,B) be weak-mizing; then T
satisfies (UMR).

To introduce the definition of a weak-mixing extension we first recall a
useful fact on skew products (which can be found in the work of Rohlin [4]).

LEMMA (ROHLIN). LetT : (X,B) — (X, B) be a measurable map, and let

i be a T-invariant ergodic measure. Given a T-invariant sub-sigma-algebra
ACB (ie. if A€ Athen T~1A € A) there exists a skew product

{SIX1XX2—)X1XX27
S(z1,x2) = (S1(x1), S2(x1,x2))

(with respect to measure spaces (X1, By, u1) and (X, Ba, p2)) such that

(i) there exists an isomorphism ¢ : (X1 X X3,B1 X Ba,p1 X p2) —
(X, B, 1) between S and T,
(ii) the images (A x X2), A € By, correspond to sets in A C B,
(iii) Sa(z1,-) : Xo — Xo preserves pg (for a.e. (u1) 1)
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The property of sub-sigma-algebras we want to specify is closely related
to the definition of weak-mixing (cf. chapter 11) and makes use of the above
lemma of Rohlin.

We can identify the quadruple A = (X, A, u, T') with the quadruple (X,
Bla M1, Sl) .

DEFINITION. Let T': (X, B) — (X, B) be a measurable map and let u be
an ergodic T-invariant probability measure. Given a T-invariant sub-sigma-
algebra A C B we define the A-cartesian product to be the skew product
T X_AT = Sl X (Sg X Sz), i.e.

{S]_X (SgXSg):X1X(X2XX2)—)X1 X(XQXXQ),
S1 X (S2 x S2)(x1, %2, y2) = (S1(x1), S2(w1, w2), Sa(x1,¥2)).

with the product sigma-algebra By X B x B2 and product measure j1 X o X .

We say that T : (X, B, u) = (X, B, p) is weak-mizing (relative to A) if the
A-cartesian product T x 4 T is ergodic.

REMARK. If we take A to be the trivial sigma-algebra {X, ()} then in the
Rohlin lemma X, is trivial, Xo = X and T x4 T = T x T. We see by
Proposition 11.8 that T being weak-mixing relative to {X, 0} is equivalent
to T : X — X being weak-mixing.

The next result shows that the (UMR) property is preserved under weak-
mixing extensions.

PROPOSITION 16.4. Let T : (X,B,u) — (X,B,u) be ergodic. Let T :
(X,B) — (X, B) be a weak-mizing extension of T : (X, A) — (X,.A) which
satisfies (UMR); then T : (X, B) — (X, B) also satisfies (UMR).

Notice that when A = {X, 0} then Proposition 16.4 reduces to Proposition

16.3.
We now introduce a property that complements that of weak mixing.

DEFINITION. The system (X, B) is compact if for every f € L?(X, u) the
closure in L?(X, p) of the orbit {f o T™}, -, is compact.

ExAMPLE. Let T : R/Z — R/Z be a rotation T(z) = z + « (mod 1)
(o € R); then this is a compact system. (The same applies for any rotation
on a compact group.)

The next proposition complements Proposition 16.3 by giving a second
special case in which (UMR) can be readily established.

PROPOSITION 16.5. If the system T : (X,B) — (X, B) is compact then
property (UMR) holds.
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16.3.2: The non-weak-mixing case. In view of Proposition 16.3 we
have to concentrate on the alternative where T : (X,B) — (X, B) is not
weak-mixing.

PROPOSITION 16.6. If the system T : (X, B) — (X, B) is not weak-mizing
then there exists a non-trivial compact factor T : (X,B1) — (X, B1) which
satisfies property (UMR).

DEFINITION. We denote by F the family of factors A C B for which
T:(X,A) — (X, A) satisfies property (UMR).

By Proposition 16.6, F is non-empty (and non-trivial). The main result
on F is the following.

PROPOSITION 16.7. There ezxists a mazimal factor in F (i.e. By, € F
such that By C B, VB1 € F).

16.3.3: (UMR) for compact extensions. Given A C B, a T-invariant,
sigma-algebra, and thus by Rohlin’s lemma a quadruple (X1, By, p1, S1) iden-
tified with (X, A, u,T), and z; € X we write u,, (B) = E(x|A)(z1). We
need the following definition.

DEFINITION. A function f € L?(X, B, 1) is almost periodic (AP) relative
to the factor A C B if for every § > 0 there exist functions Fy,...,F, €
L*(X, A, p) such that for every j € N we have infi<s<y || foT? —Fy||p2(,,) < 0
for almost all z; € X.

We let P(A) denote the set of all almost periodic functions in L2(X, i),
relative to A.

DEeFINITION. If P(A) C L?(X, B, ) is dense then T : (X,B) — (X, B) is
a compact extension of T : (X, A) — (X, .A)

The following result complements Proposition 16.4 by showing that (UMR)
is also preserved under compact extensions.

PrOPOSITION 16.8. Let T : (X,C) — (X,C) be a compact extension of
T:(X,A) — (X,A) which satisfies (UMR); then T : (X,C) — (X,C) also
satisfies (UMR).

16.3.4: The last step. The final ingredient in the proof of Theorem
16.2 is the following.

PROPOSITION 16.9. Let T : (X,B) — (X, B) be a not relatively weak-
mizing extension of T : (X, A) — (X, A); then there exists an intermediate

factor T : (X,C) — (X,C) which is a non-trivial compact extension of T :
(X, A4) = (X, A).

To finish the proof of Theorem 16.2 we proceed as follows. If T : (X, B) —
(X, B) is weak-mixing, then we are done (by Proposition 16.3). Alternatively,
if T : (X,B) — (X,B) is not weak-mixing then there are a further two
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possibilities: either the maximal sigma-algebra B, (given by Proposition
16.7) is equal to B or it is a non-trivial sub-sigma-algebra of B. In the
first case the proof is complete because B = B, € F satisfies (UMR) by
definition. In the second case, we may assume that the maximal factor
Bs C B is not relatively weak-mixing since otherwise we immediately have
that T : (X, B) — (X, B) satisfies (UMR), by Proposition 16.4. Under this
assumption there exists (by Proposition 16.9) an intermediate non-trivial
extension T : (X,C) — (X,C) (i.e. Bo C C C B) which is relatively compact
(see diagram).
compact

——N—
pooc(,’cli

not relatively weak-mixing

But then (by Proposition 16.8) we know that T' : (X,C) — (X,C) satisfies
property (UMR). Since by construction C # By, this gives a contradiction to
By being maximal, and so the second case cannot occur. Thus the proof of

Theorem 16.2 is complete.
[ |

16.4 Appendix to section 16.3.

In this rather lengthy appendix, we shall give the omitted proofs of propo-
sitions from section 16.3.

16.4.1 The proofs of Propositions 16.3 and 16.4. Proposition 16.3
is a special case of Proposition 16.4. To simplify notation, we shall write

E(f|A) for E(f|A)p~1.

LEMMA 16.10. Let T : (X,B) — (X, B) be a relatively weak-mizing ex-
tension of T : (X, A) — (X, A) and f,g € L>®(u). Then

fim > [{EGT™)IA) - EGIAEGT A din =

In particular, for the characteristic functions x4 and xp we have

N
1
/ N Z |:u’$1 (A n T_nB) = MKz (A),uilll (B)|d,u’1($1) - Oa as n — Q.
n=1

PrOOF. We can assume that E(f|A) = 0 (otherwise we simply replace f
by f— E(f|A))-
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Define f®4 f : X1 x (X2 X X3) = X1 X (X2 x X3) by f®u f(x1,T2,12) =
f(z1,22) f(21,y2); then

1 N
Jim 5 S [ (B(rgo T4 du
=t N (16.1)
- NHI—EOO (f®af) (% ;9&4 9(T x4 T)") d(p1 X p2 X pa).

By assumption T' x 4 T' is ergodic and so by the Birkhoff ergodic theorem

n—+oo

N
1 .
lim n§:19®A g(T xaT)" = /g ®.4 gd(p1 X p2 X pi2)
— [ B du

(where the last line follows from the definitions of g ® 4 g).
Hence the limit in (16.1) is

[ @l 2 x o). { [ By du1}2 — 0

since [(f @4 f)d(p1 X po X p2) = [ {E(f]A)}" dpy = 0 (because we assumed
E(f|lA) = 0).
|

LEMMA 16.11. Let T : (X,5) — (X, ) be a relatively weak-mizing ex-
tension of A. Then T x 4 T is also relatively weak-mixing extension of A.

ProoF. This is an immediate consequence of Lemma 16.10 and the equal-
ity E(gf|A) = gE(f|A), whenever g € L*(X, A).
[ |

LEMMA 16.12. Let T : (X,C) — (X, C) be a relatively weak-mizing ex-
tension of T : (X, A) — (X, A). Then if f; € L*>°(u),l =1,...,k, we have,

2
()i oo & Sals S { BT AT A) = T BUT™A) | din = 0,
()1 tim oo |14 S0 (T AT = T BGALAT™) [|z2 = 0.

PROOF. First we show (2); by induction. For £ = 1 the limit (2); follows
from the ergodic theorem since

{ ¥ ZnNzl Hi(Trz) — [ fidp (in L? norm),
¥ S E(f1|A) (T 2) — [ E(f1|A)dp = [ frdp (in L? norm).
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Assume for the inductive step that the result has been established for k—1
functions (i.e. (2)g_1 is valid).
By the simple identity

j=1 \I= I=j+1

k k ko /i-1 k
[ 1103 (Tl =00 ( 11 ).
=1 =1 1

with a1,...,ag,b1,...,bx € R we can write

([ 15 i(fl (") fo(T"0) ... [ (T*"a)
BT DB A T) . B AT ) Pauta))!
< i( [1x 2N31<E<f1|A> (T"2) ... B(f;1| A)(T6"z)
BT ) e

We fix a choice of 1 < 7 < k and we may assume without loss of generality
that E(f;|.A) = 0 (otherwise we need only replace f; by f; — E(f;|.A)). Thus
it suffices to show that

as(N) = [ I 3 850 Pduta) 0

as N — +o00, where
Bi(n) = E(f1|A)(T"2) ... B(f;—1| A)(TI0) £, (T75) ... fo(T¥"3).

For any 1 < m < N we can now bound

a;(NV)
_/|N;(E 2 Bi(n+ 1) *dp(x) + o~

1 N 1 m—1 5 L .
SN;(/%Z%@(H@M@% mlfilee 2 i

2m| fifoo - - - | fk]oo
N .

3
1
—

I

2|~

[~]=

N

S\H

[\V]
\

&2

)

_|_
>
8

_|_
=
E
&

N——

_|_
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Collecting together similar terms we get that

o (V) < & ZZ tm D /H (FulA) - B(fJJA) o T*7) (T~ Dng)

n=1r=—m

k
< [T (fs- foo T*) (TP ) dp(a)
t=j
+ N ;
We can now write that
li WM< S Mol g A)|2 E(fi_1]A)|2
imsup |oy;(N)[* < ) s— [ E(f1ilA)ls - - [[E(fi-1lA) ][5
N—o4o0 r——m m

< |E(fj+1lA) 5 - IIE(frl A5
X | /E(fj o TI".f;| A)dpl.

since in the limit we can replace the terms Hf=j 41 (fe - feoT™) (Tt Dny)

by the terms Ht_JJr1 (E(f]A) - E(fi|A) o Tt (T(*~V"2) using the inductive
hypothesis.

Finally, we know that the averages over terms [ E(f;|A) o TV"E(f;|A)dp,
for —m < r < m, are small for large m (since using Lemma 16.10 we can show
that the terms tend to 0 for a sub-sequence of density one). This completes
the proof of (2).

To prove (1) we proceed as follows. By (2); we know that for f € L (u),

(i)

n=1[=1
=N£f£oo{/fo( ZHE filA) T) du}
n=1[]=1

Since T'x 4 T is also relatively weak-mixing (by Lemma 16.11) we can replace
fiby fi®4 frand T by T x4 T so that we obtain

Jim {/fo®Afo( ZHflmfl (T xaT) )d(M1XM2><M2)}

N
i { o}

k
HE' fida filA) o (T x4 T)l"> d(p1 X pa
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A similar argument to the proof of Lemma 16.10 allows us to see that the
right hand side of (16.2) is equal to

k 2
/{E(ka\/l)} d/ﬁl'/{E(fo\-A)fdul- (16.3)
=1

Let us assume for the present that E(fy|.A) = 0, then we see that (16.3) (and
thus the right hand side of (16.2)) is identically zero. On the other hand, the
left hand side of (16.2) is equal to

| N k 2
e 5o o)

n=1
LN k 2
_ : = In

showing (1).

It remains to consider the case that E(fo|.A) # 0. We then write fo =
(fo — E(fo|A)) + E(fo|A). The proof of (1) for (fo — E(fo|.A)) is as above
and for the proof of (1) for E(fo|.A) we may write

| N k k 2
jvlgnooﬁg/{E (E(fo|A)1:[floTl"\A> —];[E(floTln|.A)} dn

2
ngnooﬁZfE folA)? {E(Hfon’"\A) HEfon”‘IA)} dpy
< ||E(folA)?[|oo

N k k 2
1
><J&E%ONZ/{HHJ‘M’"M)—HE(fonl"V‘)} e
n=1 =1 =1

using (1)x_1.
|

To complete the proof of Proposition 16.4 we proceed as follows. Let
A € B with u(A) > 0. Let ¢ > 0 be a small number so that for 4; =
{z : E(xa|B1) > €} we have u;(A;) > 0. It follows from Lemma 16.12 and
E(xa|B1) > exa, that we have the following:

N
NZ'U NzoT 7 A) > - 2 kHNZ (Mo Sy Av),
J=1 J=1

for all £ > 0.
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16.4.2 The proof of Proposition 16.5. Let f satisfy 0 < f < 1.
We first note that if Fy,..., Fy are measurable functions with 0 < F; <1
satisfying ||f — Fi|l2 < € (i =0,...,k), then

k k -1
|/HFldu—/f’“+1du| < Z/HFJ‘|FI — fIf*du
1=0 1=0Y j=0
k -1
SGZ/Hijk_ld,u
=07 j=0

< (k+1)e.

So if we put a = [ f¥*1dy > 0 and choose € < a/(k+1), we have [ [}, Fidp
> (k+1)e—a>0.

LEMMA 16.13. For a set of n of positive lower density, ||foT™-f—f|[2 < £
forl=1,... k.

PROOF. Since cl{f o T"} C L?(u) is compact we can find a finite set
{foT™, foT™, ..., foT™ } which is £-separated, i.e.

1
(/\foni—fonJPd,u) Z%, for1<i<j<r.

We can assume that r is the maximal cardinality of all such subsets.

For all n > 0 we have that {f o T"t™ f o Tntmz2  foTrntmr}
is again f-separated. For each n there exists 1 < i(n) < r such that

1
([|f = foTm*mim|du)? > £. In particular, the sequence {n + m;@)}5,
is a sequence of positive lower density with the required property.
[ |
16.4.3 The proof of Proposition 16.6.

DEFINITION. A function f € L?(u) is almost periodic if its orbit closure
is compact.

In particular, T : (X,B) — (X, B) is compact if every f € L*(X,B) is
almost periodic.

LEMMA 16.14. IfTxT : (X x X,BxB) — (X x X, B x B) is not ergodic,
then there exists a non-constant function f € L?(u) which is almost periodic.

PROOF. Since T x T is not ergodic we can choose g(z,y) to be a non-
constant (T x T)-invariant function in L2(ux ). In the case that T is ergodic,
the existence of a non-constant almost periodic function is trivial, so we
suppose that T' is not ergodic. Define a metric d on X by

d(z,y) = / 9, 2) — g(y, 2)|dp(2).
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If we identify points that are 0 distance, then we have an invariant sub-
sigma-algebra (i.e., factor) so that T" acts on this factor space as an isometry.
Furthermore if we can show that the metric space is totally bounded (i.e. for
any € > 0 there exist a finite number N(€) of points which are e-separated)
then we can apply the well-known result: for any function f defined on a
totally bounded metric space the orbit closure of {f o T™} is compact when
T is an isometry. Without loss of generality, we can assume that the T-
invariant function [ g(z,y)du(z), which is constant by ergodicity, vanishes
(else we subtract the constant from g). Since g is not identically 0 there
exists a function h € L?(u) satisfying [ g(z,y)h(y)du(y) # 0 on a set of
positive measure. Now define a function H(z) = [ g(z,y)h(y)du(y) which
is non-constant. Then we see that the function H is the desired almost
periodic function. In fact, H o T™(z) = [ g(z,y)ho T™(y)du(y) (because of
the T-invariance of ) and the integral operator

{ G: L?(p) = L*(p),
Go(x) = [ g(z,y)d(y)du(y)

is a compact operator. Since the closure of {H o T™},5¢ coincides with the
closure of {G(hoT")}n>0 and the norms of hoT™ are constant, we have the

desired result.
[ |

Now we suppose that T : (X, B) — (X, B) is not weak-mixing. By lemma
16.14 we have a non-constant function f € L2(X,B) which is almost pe-
riodic. Recall that a subset of a complete metric space has compact clo-
sure if and only if for any ¢ > 0 there are finitely many balls of radius
less than ¢ > 0 which are cover the subset. It follows from this fact that
the set of f € L?(X,B) which are almost periodic is a closed linear sub-
space of L2(X, B). In fact, we can see that the set of almost periodic func-
tions is closed under the (lattice) operations (hi,hy) — max(hi, hy) and
(h1, ha) — min(hq, he). Let By be the smallest sigma-algebra of sets with
respect to which f is measurable. In particular, every characteristic function
x4 (A € Byp) is also almost periodic. Let By be the smallest sigma-algebra of
sets with respect to which f, foT,..., foT",... are measurable. Since f is
almost periodic if and only if foT is almost periodic we know that each x 4,
A € By, is almost periodic. If for every A € B; we know x4 € P(B;) then
any f’ € L?(X,B;) must be almost periodic because the set of almost peri-
odic functions is a closed linear subspace of L?(X, B) as we have mentioned
above. Finally, we have a non-trivial T-invariant sigma-algebra B; so that
the factor T : (X, By) — (X, By) is compact.

Using Proposition 16.5 the proof of Proposition 16.6 is complete.

|

16.4.4 The proof of Proposition 16.7. We wish to apply Zorn’s lemma.
Thus it suffices to show that every chain contains a maximal element, i.e. if
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{44} C F is a totally ordered chain then Uy A, € F (where this represents
the sigma-algebra generated by the union).

Let A € UgA, with p(A) > 0 and fix k£ > 0. Take p = m; then for aq
sufficiently large we can choose A € A,, with
1
wADAY) < 7 pu(A). (16.4)

By assumption T : (X, Ay,) — (X, An,) satisfies (UMR). We can use
Rohlin’s lemma to find a system Sy : (X1, By, 1) — (X1, By, p1) and a map
m: X — X;sothat Ay, = 77 1(Bi). Let Aj = 7(Ap); then by (16.3) we have
n(Af) > p(A) — 2pp(A). This implies that pq (z1 € Af + pz, (A) <1—1) <

1
1H(A).
Write Ag = {z1 € Af : pg,(A) > 1 —n}. Then Ay € By and
1 1 1
p1(Ao) > p(Ag) = 7u(A) = u(Ag) — ;p(A) > Su(A).

By hypothesis T : (X, Aqy,) — (X, Aqy,) satisfies (UMR). We claim that
for every j > 0

1 ; ) ; .
S (AO NST?ApN...N S{’“JAO) <p(ANT7AN... mT—’“JA) (16.5)

To see this it suffices to show that for z; € AgN Sl_jAO N...N Sl_ijO
. . 1
oy (ANT7AN...NTFA) > 3 (16.6)

because (16.5) follows from (16.6) by integration. But if z; € S;Y Ay, | =
0,...,k, then by definition of Ay we see that piz, (ST Ag) > 1—n and (16.6)
follows easily.

Averaging over j = 1,..., N and letting N — 400 we get

N

1 . .

i 3 —J —kj

11\1{I_r)1i1r£ El,u(AﬂT ANn...NT A)>0.
J:

16.4.5 Proof of Proposition 16.8. We shall show that for A € C with
w(A) > 0 and for k > 0 we have

N
oo 1 k  p—jl
lim inf Z; p (N, 7794 4) > 0. (16.7)
J:

Since the above inequality follows for any subset of A, we can assume (with-
out loss of generality) that pi,, (A) > $p(A) for z1 € Ay with pq (A1) > 1u(A)
and pg, (A) =0 for z; ¢ A; (by removing from A those fibres projecting to
1 satisfying pg, (A) < 2u(A)). The claim follows.
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LEMMA 16.15. x4 is almost periodic

ProOF. Compactness of (X,C) implies that for every € > 0 there exists

1
an almost periodic function f’ such that ([ |f — f’|?dp)? < €2. This means
that the set B, = {z1 € X1: [|f — f'|* dus, } > €%} satisfies pq(Ee) < €2.
(If this were not the case we would have a contradiction since

et > //If—f’lduzldm(m)

> /E | 1 = 1P, dps )

> u1(E) > €t)

Let A = AN E¢ then on every fibre and for every j > 0 either
(1) [lxa. oT? = f o T/ Pdu,, <€ or
(2) [Ixa, o T?|dps, = 0.
Since f’ is almost periodic we have from the definition that for each § > 0

there exist Fy, ..., F, € L?(p) such that infocs<, ([ [xa, 0 T7 — Fs\2dux1)%
< § + ¢, for almost all z; and 57 > 0.

We can replace A, by the intersection in A; then providing we choose a se-
quence {€;};>0 With } ., €7 < 400 the above procedure gives a sequence of
sets A¢;. The set Ao, = N;>0A¢,; has non-zero measure and the characteristic

function y 4 is almost periodic.
[ |

By the above lemma f = x4 is almost periodic. Given z; let ®F_L%(p,)
have the norm

2

(1505 f)l|z, = maxi<i<k (/ \f¢\2dum1>

Let V(k, f,z1) be the set of vectors of the form (f, foT™,..., foTk"),,
n € N. This has compact closure in L? (g, ).
Denote by V*(k, f,z1) the subset of V(k, f,z1) consisting of elements all
1

of whose components are non-zero (|||| > 3 (u(4))?).

Given z; € A; and € > 0 we denote by M (e, 1) the maximum cardinality
of an e-separated set in V*(k, f, x1). Since V*(k, f, x1) has compact closure,
M (e, x1) is bounded for x; € A;.

We choose % >e>0,7>0and Ay C Ay with p1(A2) > 0 such that
M(e,x1) = M, Veg —n < € < €y, Vr1 € Ay. Since M(e,z1) is an integer
valued monotone decreasing function of € it is locally constant (except at a
countable set of €) and is a measurable function.

Choose z¥ € Ay and my, ... ,my for ¥ such that {(f, foT™i, ..., fo
Tkma')xcf : j=1,..., M} is a maximal ¢g-separated set in V*(k, f, z?).
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As a function on the factor space X,

2

T — (/|foTlmi —foTlmf|duw1>

is measurable (for 1 <i< j < M and for [ =0,... k).

Without loss of generality we can assume that every neighbourhood of the
image of 2 has positive y-measure in A;. Now we let A3 C As, u(A43) > 0,
be the set such that

1 1
(/IfoT’m"—foT’mf\dum(;) —(/\foT’m"—foTlmjldum) <n

for y € As.

Assume that T : (X, A) — (X,.A) satisfies (UMR). Let n > 0 satisfy
1 (ﬂ{“zOSf"lAg) > 0and fixx; € ﬂszSl_"lAg. It follows from the definition
of Az and V*(k, f,z1) that

Az C Nk (S;’"’m1 N S‘l"A1>

for j =1,..., M. Since the vectors {(f, foT™™i, ... foTkr+tmi)) jl\/il

are (eo — n)-separated in V*(k, f, 1), these form a maximal set which is
(€0 — m)-dense in V*(k, f,z1).

Applying the argument in the proof of Lemma 16.13 to (f,...,f) €
V*(k, f, 1) we can choose j > 0 such that (f, foT™t™i ..., foTkr+ms))
is €g-close to it. Then

k
Ly (ﬁfZOT_l("erj)A) = /Hf o T™t™idp, > /XAd,u,g,;1 — keg > Cpu(A)
1=0

for some C' > 0. Summing over j = 1,..., N, integrating over x; €
Nk_,S7'™ A3; then averaging over 1 < n < N and letting N — 400 finally
gives (16.2).

[

16.4.6 Proof of Proposition 16.9. We can assume T : (X, B) — (X, B)
is ergodic and use Rohlin’s lemma so that we identify (X,B) and (X; X
Xg, Bl X Bz)

Assume that T x 4 T is not ergodic; then there exits a bounded function
g(z,y)on X x4 X := X1 x Xo x Xg (=Ugex,m Hz1) X 7 1(x1)) which
is invariant under T x 4 T' but is not purely a function of z € 7~ !(z1), nor
purely a function of y € 771(z1). We write g(x,y) = g(x1, z2, 75) and define
an integral operator

{ G:L%(X,B) - L*(X,B),
Gop(w1,m2) := [ g(w1, w2, w5)p(w1, ) dpa (xh)
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which is a compact operator.
By analogy with the proof of Lemma 16.14 we have the following. There
exists a function h € L?(X, B, 1) such that

Gh(wy, z2) = / g(@1, w2, Ty (1, o) dpia ()

is not a function of x; alone and cl{(Gh)T? : j > 0} = cl{G(hoTY): j >
0} C L*(X,B). For 6§ > 0 there exists M = M (x1,0) > 0 such that {(Gh) o
TI)}L 5 is e-dense in {(Gh) o T? }jen (in the L (g, )-norm).

For every € > 0 we choose a sufficiently large M, s and a set E(d,€) C X1
with p1(E(6,€)) < € such that M(zq,0) < M for all z; € E(6,€)¢. For a
positive sequence {d;}en (with 0; — 0 as j — 400) and a positive sequence
{ej}jen (with Y772 ¢; sufficiently small) we define f : L?(X, B) — L*(X, B):

0 if x; € UjENE((Sj’Gj)a
Gh  otherwise.

f(@1,@2) = {

For each x; the integral operator is compact and so ||f — Ghl|l2 <
gllze - [|Bl|L2(x) D jen €j- Furthermore, for every 6 > 0 and large M the
family {0} U {(Gh) o T7}JL_, is 6-dense in {fT7}jen (in the L?(ug, )-norm
for every x1).

Let F be the algebra spanned by {Gh: g € L°(X x4 X),9(T x4 T) =
g,h € L*°(X)}; then F is T-invariant and the almost periodic functions in
F are dense in F.

Let B* C B denote the smallest sigma algebra with respect to all of the
elements of F are measurable. B* is T-invariant and B; C B*. Moreover,
F C L*(X, B*, i) is dense and so the set of almost periodic functions is dense
in L2(X, B*, u)

Finally, the desired compact factor corresponds to T : (X, B*) — (X, B*).

[

16.5 Comments and references

Most of the details are taken from the article of Furstenberg, Katznelson
and Ornstein [2]. Alternative accounts of the proof appear in [1] and [5] and
[3] contains an overview of the proof.
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ERRATA FOR "DYNAMICAL
SYSTEMS AND ERGODIC THEORY”

PRELIMINARIES
Thereom G should read:

Theorem G (Radon-Nikodym). If y is absolutely continuous with respect to v
then there exists a (unique) function f € L*(X,B,dv) such that for any A € B we
can write p(A) = [, fdv.

CHAPTER 1

page 1, Example 1: It should read 0 < 6 < 1 (Tex error).

page 2, line 2: y = (yn)neyz instead of x = (x,)neyz, again.

page 2, Proof of Lemma 1.1: The superscript ks should become ms, say (Too
many ks)

page 3, Example 1: It should read "T*z = Z:i% w"ziil_l (mod 1).”

page 7, Theorm 1.8: The sets in £ should also be closed.

CHAPTER 2

page 12, Proof of Theorm 1.8: We should define T; := T = (0 0...00)
page 13, line 2: It should read (T°T2x)o = Tpria = 24 € {1,...,k}
page 13, bottom: It should read ”In particular, dy, (S™ 2/, z) — 0 as n; — 400

where z = (z,...,2),2 = (TN"2,... ,TN""z) € Dn.”
page 14-15, Sublemma 2.2.4 (and proof): Each D is really Dy (subscripts
omitted)

page 15, mid-page: It should read ” The proof of Theorem 2.3 is finished”.

page 16, after (2.3): It should read: dp, (S™z,2') < § (S™ for T™).

page 16, displayed equation (2.3): It should read dx,, (T”lj o...0T™Niz Tmi ol
.oTmNiZ) < £ (no negative powers.)

page 16, displayed equation (2.4): dy, (S” (T”li o...0TnN; z) JT™io. .. o TN z’) <I

5. (8" for T™)
page 16, last displayed equation :

dXN (Sny7 .CE) < dXN (Snya Tnlj ©...0 Tan Z,) + dXN (Tnlj 0...0 Tan ZI, 37)

+dxy(T™ 0. .0oT™iz, T™io...0T"Niz)

+ dXN(T”U 0...0 T"sz,x)

Typeset by AMS-TEX
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(term missing)
page 17, after (2.5): Another D which should be a Dy (subscript omitted).
Comments and references: It should read ” An account also appears in [5].”

CHAPTER 3

page 19, last displayed equation: Thete is a N missing.

page 22, first paragraph of proof: It should read : This means that N (Vf:_OIT Z(VN 'T—"q)) >

NV T=ip), for k > 1.

page 22, Definition: It should read The matrix A is called aperiodic if 3N > 0,
V1 <i,j5 <k, AN(i,j) > 1. (Power of N missing)

page 22, mid-page. The displayed equation should read

VN voTha={li=N, e yd0ye e NN Nt Ny B0y e yin € {1, ... )}

and serveral o ~‘a should change to o~ "a.

page 23, mid-page. It should read A(v1, ... ,v5)T = (vl,...,v})T = (Zl 1A®G D, ...

(the transpose T is omitted)

page 24, end of proof. It should read: However, elementary calculus shows
that the supremum is realised where z = (24)/2 and thus

J1/2 _ —1/2
C< DEyC R <1,
where v := ‘g—g > 1. page 24, bottom of page. It should read ”a contraction

with respect to this metric”. (The error seems to appear in the source article: G.
Birkhoff, Fztensions of Jentzsch’s theorem, Trans. Amer. Math. Soc., 85 (1957)
219-227)

page 25, second paragraph. It should read "C' < 1 is independent of the
choices z,y.”

page 25, last displayed equation. It should read

H(Vr]z\,rolf7 ") = 10gCard(noa "Q) =

page 26, near top. It should read ” ... Jordan block matrices Bs,..., By, ...”
page 26, Lemma 3.6 (i) It should read: s(n,€') > s(n,€) and r(n,€') > r(n,€).
page 27, near top For r(n,¢) > s(n,€) read s(n,€) > r(n,¢).

Y

k
=1

/

page 28, near the bottom It should read: limsup,,_, % log N (\/?Z_OlT_i,B) (by Lemma 3.7 (

(H instead of N)
page 30, near the top It should read: rpm(n,€) < rp(nm,e€) (r missing).
page 30, middle of page. It should read R is also an (n,€)-spanning set for
T™ (T™ not T™).

CHAPTER 4

page 33, Proof of Lemma 4.3 It should read ”"Let J; = [a, b]”
page 35, Sublemma 4.4.1 It should read:

(i) T '(I,—1) = J'; and

(iii) T™(In_1) D J".
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page 36, second paragraph. The two J’ should be J”.

page 37, Proof of Lemma 4.5. The intervals of monotonicity for S; o S5 :
I — I take the form J; N Sy ' (I;). Thus N'(S10S,) < Card{(i,5) : J; NSy (I;) #
0} < N(S1) - N(Ss).

page 37, Remark. The chain rule says: (T")'(x) = H?:_()l T'(T'x).

page 37, Proof of Theorem 4.6. It should read: 0 < r; < n — 1 and
0<r;<n-—1.

page 37, penultimate paragraph. It is better to write: {z;, < z;, < ... <
ximfl} C En

page 37, last paragraph.lt should read: there are at least "% intervals of
monotonicity for T7, i.e. N(T7) > 7¢ > Fe. Thus

1 1
lim —logN(T") > lim — (logs(n,e)—

n—+oco 7 n—+00 7

page 38, after first displayed equation.
It should read.

m ( lim ~ log./\/(T")> =m <lim sup 1 logN(T”)>

n——+oo N n>1 N

1
> limsup — log V(S%)

k>1 K
.1 k
= kli)rglo z log NV (S*¥)

log N(T™)

n

(since ( mog N2 ) log,j:/(sk) )

estimate

is a sub-sequence of ( ) . Moreover, we can
neN

keN

m ( lim 11ogN(Tn))

n—oo M

n—oo M

< lim log (N(S[%])N(T"_[%]m)) (by Lemma 4.5)

< lim Zlog (N(s[%l)+ max {1ogN(Ti)}>

n—oo 1 0<i<m—1

1
= lim — log N'(S%).

k— o0

page 39, first displayed equation. It should read

> lim sup % log (N (S%)/3%) (since NV (S*) < 3*N(VFZ357"a))
k— 40

page 42, Proof of (i). It should read for every point z in the complement of
the dense set U,cz+T "{x0,... ,Zr}

page 42, Proof of (ii). It should read n(w) = z (twice) instead of 7(w) = x.

page 43, Proof of Theorem 4.9. We actually use Proposition 3.11.

page 43, Proof of sublemma 4.9.1. We actually use Proposition 3.5.

page 44, Proof of sublemma 4.10.1. For )\ read ;.
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CHAPTER 5

page 47 We should use GL(2,Z) instead of SL(2,Z).

page 47 To give the broadest definition of hyperbolicity we should ue

Let A € GL(2,7Z) have eigenvalues A1, Ay then if [\1| > 1 > |A2|(= I/\%D we call
the matrix A hyperbolic

page 49, below figure 5.2 It should read: (where (z1,z3) € [0,1) x [0,1)).

page 50, near the top Delete the upper bound on k (For the "boxes” below to
cover we should require £ < m, where 6 is the angle between the eigenvectors.)

page 50, Next paragraph add ”"We can choose boxes such that Box(z%, x%),
1=1,...,n cover the torus.”

page 50, Proof of Sublemma 5.3.1 Change the first line(s) to: ”For any point
(21,22) € R2/Z2 we can choose some i = 1,...,k such that (21,22) € Box(z%, x%)
and so ...”

page 51, displayed equation (5.2) Change to: lim._, lim,,, %1og r(n,€) g.
lim,_, limy,— + oo % log (k(2[|A1|™] + 1)).

page 51, sublemma 5.3.2. The statement should read: 7S is an (n, 2¢/|A|)-
separated”.

CHAPTER 6

page 59, proof of part (i). In fact, it is the argument in part (ii).

page 59, statement of Lemma 6.3. We are assuming p is irrational.

page 60, first line. Assume n; > ny

page 60, first paragraph. There T's should be T (i.e. hats missing).

page 61, lower part of page. It should read: ”It is easy to see that if
T :R/Z — R/Z is C? with |T"|/|T’| is bounded then Var(log |T"]) is finite.”

page 62, Statement of Sublemma 6.5.1. The displayed equation should be
|(T®) ()] - |(T~) (z)| = C.

page 62, Displayed equation, mid-page. It should read |I,, |+ |I_,, | (mis-
placed minus sign).

page 62, last line. It should read |7z — x| = 6.

page 63, displayed equation (6.4). The second line should read > instead
of =.

CHAPTER 7
page 67, first displayed equation . In the first line the upper limit in the

(n) _ .
sum should be NS —1; the second line should be fj, (TNr(»n))m)JFErIYQO " (T 2)~ fi ()
(reverse signs).

page 68, item (2). It should read ”for every non-empty open set U C X”
page 68, mid-page. It should read u([zo,...,2,]) = (%)nJr1 (n + 1 instead of
page 69, second line. For (1,...,1) read (1,...,1)T (i.e. the transpose).

CHAPTER 8

page 74, Lemma 8.1 . Part (1) should read I(a|{0, X})(z) = I(a)(z);
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Part(2) should read I(a|A)(Tx) = I(T 'a|T~tA)(x).

page 74, line before definition. Delete the erroneous comment ” (in particu-
lar, & is countable and consists of all unions of elements from «).”

page 75, last displayed equation. It should read I(a V £|9)(z) (hat missing
in ).

page 76, proof of lemma 8.3. It should be corrected to:

"For part (4) we have

Hakh == % utancys(“EE0)

A€a,Cey

_ wANC) C’ u(ANC)
=LA |2 Ty o (“iey )
<=> 1D uwANC)|log | > wANC)
A€a | Cey Cery
< = u(A)log u(A) = H(e)
A€«

since for fixed A € o we can bound

—Z”Ag)g) g(”(ﬁ(g)c)>§— > uwANC)|log | Y m(ANC)

Cey cey cey

using concavity of ¢t — —tlogt.”

CHAPTER 9

page 95, line 3 : Replace X x R/Z by X x G.

page 95, line 25 from below : ,u(A) > 0 should be 0 < ,u(A) < 0.
page 96, line 5 from below : T:X — X shouldbe T: X — X.

page 96, line 1 : natural extension of X sould be natural extension of T.
page 96, line 2 : 7 ((z,,),ecz+) = X should be 7 ((zn)nez+) = %o

CHAPTER 10

page 100, line 2 from below : = [ f(z)g(z)du(z) should be removed.

page 101, line 6 : ¢||g||2 should be /e||g]||2.

page 101,lines 11,13 : Replace ([ fdu [ gdu —¢, [ fdu [ gdu + €) should be
([ figdp— e, [ figdp + €). Mark ? Hoeever..??? Or are you assuming ergodicity
N

page 102, line 5 from below : We assume min(f, f—) = 0.

page 105, line 9 : We assume ergodicity.

page 106, lines 17-18 : Replace 2%, 7 by 2%, 7, respectively.
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page 107 : (ii) should be corrected as follows. (ii) there exists D > 0 such that

T (z i n()
SupwyzeIk%<D VO < z < 1. Then | RALLERLI A

by

7 | is bounded from above
kg-- kn

“ D

We assume in (a) that [(E NIy, NT 1, N...NT "I, ) > 0.

page 109, line 18 : Replace ” Absolutely continuous ” by ” nonsingular ”

page 110, line 2 : Mark ? : We should put a reference for the ergodicity
of the geodesic flow....

page 111, line 19 from below : Replace ”sublemmas 10.5.1 and 10.5.2” by
”sublemmas 10.2.1 and 10.2.2.”

CHAPTER 11

page 115 : Lemma 11.4 : ” a bounded sequence of real numbers {a,} ”
should read ” a bounded sequence of positive numbers {an}. ”

page 115, line 3 from below : N, Ni.1 should be ng, ni41 respectively.

page 117, line 6 from below : 7 (11-1), (11.2) and (11.3) ” should be ” (11-2),
(11.3) and (11.4)

page 118, line 3 from below : It should read n € Z.

page 119, line 1 : It should read n € Z.

page 120 All C* should be C*.

120, Proof of Proposition 11.8 : i denotes the spectral measure.

page 121,(2) = (3): All n; should b ny.

page 121, line 8 from below : p(T~" B; N D;) should be removed.

page 123, line 9 : It should read ” (by writing P in terms of Jordan forms) ”

page 123, line 7 from below : It should read u(ANT~ ™) B) — u(A)u(B)
as n — +oo.

CHAPTER 12

page 125, line 8 from below : It shooléld read ” {k;oT™ {;0 for L2(T~"B)©

LT~ (+1B). Tt follows that {k; o T} On=0"

page 126, line 4 : Example 1 should be one-sided aperiodic Markov shifts(
aperiodicity is missing).

page 127, line 4 : [, f(«x)dz should be [, , f(z)dz.

page 128, line 6 : Kexp (\x — | 1_l) should be K (|:1: -y 11_);)

B B

page 129, line 15 : It should read ” we can choose a finite disjoint set of
cylinders {I; : j = (j1,..-,51)}, with p ((UJI ) AA)

page 129 line 2 from below : It should read

%' (@)
sup = <C
syer1; [¥i (y)]

(12.2)

page 130, Sublemma 12.5.1. The statement should read ” There exist S > 0
and a subset I’ of T* (1) which is a finite disjoint union of elements of VLTI, . I, }I
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and satidfies T7°(I') = I. ” In the proof, T*U; D TsiI,(,fb’f;)... ;m,, should be T*/U; >
T 157 m,,-

page 131, Proof of Proposition 12.6 : All It(f,)zlmmy
Relace ¢tm1___m3ih1,_,ht(x) by Ym,...m,, (). "Here we take ¢ —5— s;’
17 should be put before ” Let I = [(e) ” on the line 15.

page 132, lines 5-6 : It should read ” E*A(,u) = u, i.e. the dual operator L
acting on measures (defined by (£*p)(A) = [ Lxadp) fixes p. ”

page 124, line 7 : it should read ” Channon-McMillan- Breiman theorem ”.

page 134, line 14 : It should read o, = V= T .

page 135 line 1 from below : (¢ V?:_I" T—7a)T* should be replacded by
I(e| ViZ{ " T a)T".

page 135-136 : Mark ? How to correct......

Define

should be I$%) .m,, -

> on the line

Fr(2) =t [I(a] Vit T a)(2) — I(a| V§Z) T a)()].

Then we see that

1 n—1 1 n—1
- IV T i) = ) fTH| < - > Fol T ().
i=0 j=0

It follows from Corollary 1.2 in page 96 in [Mane’s book]| that if F,, is a sequence
that converges to 0 almost everywhere and in L' then Z;:Ol F,_;T7(z) converges
to 0 almost everywhere and in L. Tt is easy (??) to see pointwise convergence and

L'-convergence of F;, to 0 (?!)

CHAPTER 14

page 147, line 12 : It should read ” a compact metric space. ”

page 147, line 12 from below : It shoud read ” a finite Borel measurable
partition ”

page 148, line 7 : Sub-lemma 14.1 should be Sub-lemma 14.7.

page 148, line 2 from below : It shoud read

"hy (TR, VE T™a) = lim EHM (Vi T (v?;&T—ja)) ”

n——+oo N,

page 149, line 8 : It should read

" (T*) > by, (T*, veef g T™"a) > kh, (T, a) > kh,(T) — ke.”

page 151, line 2 : Tt should read 7C € T—'a™) with (THY*vy, (D) = v, (T7'D) =

Vpn,(C)) and C =T!D.”
page 151, line 5 : It should read :

n;—1

"Nlog(s(ni, ) < 3 [ = 37 (7)1, (D) 1og((T')* v, (D)) | + 2N log k"
1=0 Dea(N)
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page 151, line 9 from below : It should read

2N logk,,
n;

) 1
S _N Z ,um (C) log :unz' (C) +
CealN)

page 151, line 5 to page 152, line 2 : All H, should be H,,.

CHAPTER 15

page 154, (3) : It should read

”/f(a:+a)du: lim [ E(f(x+a)|S™"B)dyp = lim E(f(a:)\S_”B)d,u:/f(a:)d,uI

n—-+oo n—-+oo

and thus we know that p is the Haar-Lebesgue measure. ”

page 154, (4) : It should read
"T'(Sz) - S'(z) = (TS) (z) = (ST) (z) = S'"(Tz) - T' (x).”

page 155, line 6 : it should read ” E(.|T~'B)(z) : L*(X, B, u) — L*(X, B, p)
is an orthogonal projection which is a contraction ”
page 155, line 7 from below : It should read ” S"" and S’ are A,-measurable

”

Proof 157 : It should read : ” Thus by subadditivity the limit h(T|A) :=
limy,y oo L H(VIZ, T~/ A) exists.
By the basic equalities for entropy we see that

WTIA) = lim —H(VI Ty |A)

n—+oo N
. 1 n— —1 —(n— n— —1
= lim (H (VIZ2T~iy| A) + H (T (=D AV (VI2T 7)))
= h(T)
since .
AT) = Tim -~ (H(VEZT )

and

H (T—("—%\Av (v?;ozT—iy)) <H (T_("_l)v\/l) = H(y|A) < +cc.

It follows from Sub-lemma 15.1.3 that h(T|A) = }%g%h(s |A) and so we have that
the following limit exists

: 1 Sp—1lm—1
h(S|A) := nBI-IT-loo EH(Vizo T™*y|A).
Observe that if we replace A by the trivial sigma-algebra then the same argument
gives that h(T) = }gggh(S). Comparing these identities we see that hA(S) = h(S|A).
[

”

page 158 : In Sub-lemma 15.1.5 and in the proof, all B, 3 should be ~.



CHAPTER XIII

MARKOV EXTENSIONS FOR INTERVAL MAPS

In section 4.3 we introduced piecewise expanding Markov interval maps and
showed they can be effectively modelled by a (one sided) subshift of finite type. This
was particularly useful in estimating numbers of periodic points. In this chapter we
shall describe a more general construction which works for non-Markov piecewise
expanding maps.

13.1 BASIC CONSTRUCTIONS

Assume that T : I — [ is a interval map which is expanding on each of the
intervals I = I; U...UI. We shall denote their endpoints by {xg,z1,... ,2zx} (i.e.
Il = [an xl]v s 7Ik = [.flfk_]_,.fljk]).

The following simple lemma will be used several times.

Lemma 13.1. Let J be a sub interval of one of the intervals I, ... ,Ix. The image
T(J) will be a union either of the form:

() () =Dy < I

(b) T(J )—Ut

(c) T(J) = (uj:SIj) or T(J) = (Ui_,I;) UDF

(d) T(J) = DJ U (Uj—I;) UDJ

where Dy, D; C Is_1 and D}r C Iiy1 are each closed non-degenerate (strict)
sub-intervals.

fifth.eps

FIGURE 13.1. The image T'(J) of J € £ gives rise to two more intervals
D75 and D} in &

Proof. Since T'(J) is a closed interval in I it is clear that this exhausts all possibil-
ities.

Definition. We call & = {I1,... , I} the zeroth generation of intervals

We can apply Lemma 13.1 toeach J = I; (i = 1,... ,n) to get new sub-intervals.
For example, Dy, (when T'(I;) is as in case (a) or (¢)) and D7, D} (when T(I;) is
as in case (d)). If T'(I;) corresponds to case (b) then no new intervals are created.

Definition. We call & = {DI_Z-’DL- or Dy, : i = 1,... ,k} the first generation of
intervals.

We define collections of intervals E,, n > 1, (each a closed sub-interval of one
of the original intervals Iy, ... , I}) inductively. Given a collection of intervals &, _;
(each a closed sub-interval of one of the original intervals Iy, ... ,I)) then we can

Typeset by ApS-TEX
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126 XIII. MARKOV EXTENSIONS FOR INTERVAL MAPS

apply Lemma 13.1 to each interval J € &£,_1. We define the nth generation of
intervals to be the collection of closed intervals

En = {D;,D} or Dy: Je gn_1}

We write & = Uy &y

If J € &,, say, then each of the sets J’ in the appropriate union for T'(J) (in
Lemma 13.1) is called a successor to J. We write J — J'.

The essence of this construction is to compensate for the absence of the Markov
property by introducing more and more intervals so that the image of any J € & is
again the union of other intervals from £. The complications over and above those
in the Markov case are that the larger family £ will not in general be finite, and
intervals in £ will not in general have disjoint interiors.

The following simple example illustrates this construction.

Ezample (B-transformation). Let I = [0, 1] and choose 2 > § > 1. We can define
an interval map T : I — I by

Bx ifOS:cg%
Tx = -
Bxr—1 1f3<x§1

In this case, we have that & = {]0, %], [%7 1]}. Since 3 < 2 we have that T'[0, %] =
[o,/%] U[g,1] and T[5,1] = [0, 5] U [5,8 —1]. Thus & = {[5,1 - 6]} If 5 <
51/2_

5 L say, then T[%,ﬁ— 1]=10,8>-p-1] C|o, %] and so & = {[0,5% — 3 —1]}.

For the purposes of exposition we want to make the following simplifying as-
sumption (which, for example, holds for the S-transformation when 5 > 1 is not
an algebraic number.)

Simplifying Assumption. There are no choices 1 < i < k and n,m > 1 such that
T"(T™x;) = T™x; (i.e. none of the endpoints is pre-periodic).
The next lemma shows that there are some restrictions on the possible successors

to a given interval in &,.

Lemma 13.2 (Restrictions on successors).
(1) If J € &, (n > 1) then there are two possibilities. Fither J' = T(J) or
T(J)=J"U(UiZ I;) UJ" where
(i) J" €&;, for some 0 < j <n (perhaps with J" =10),
(i) I.,...,Is_1 are original intervals (perhaps with US_'I; = (), and
(il) J' € Enan,
(2) Each element J € &, must be of one of the two types:
(i) J=T1"(1;), for some 1 <1i <k,
(ii) J has endpoints T™x;, T"x; withn —1 > m > 0 (for some 1 < i,j5 < k)
(i.e. J=[T"z;,T"x;] or J =[T"x;,T"x;])

sixth.eps

FIGURE 13.2
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Proof. We prove the lemma by induction on n.

For n = 1 both parts of the lemma are immediate from Lemma 4.11 and As-
sumption (2). Assume that both part (1) and part (2) of the lemma are know for
Jeé&,.

If we first assume that J = T"1[,. = [T"xs, T"xs11], say, then either

(a) T(J)=T""1I.; or

() zig <T" oy <z <...<x; <T""agy <zj41, say (perhaps with the

order reversed)

In case (a) we immediately have T'(J) € £,41 (i.e. the “either” case in part (1) of
the statement and case (i) in part (2)). In case (b) we have by Lemma 13.1 that
the sucessors to J are [T" " wg, z;], Li1,..., I, [z;, T"  xsiq], (i.e. the “or” case
in part (1) of the statement). Moreover, we see that [T" "'z, z;] € £,41 is in the
form of case (ii) of part (2).

Alternatively, we can assume J = [a,b] = [T (x;),T"(zk)] € &,, say, with
0 <m < n—1 (the case with the endpoints reversed being similar).

There are now two possibilities.

() p_1 <T(a) <xp <...<x5 <T(b) <sy1, say.

(d) z, <T(a) <T(b) < xry1
(where in each case T'(a) and T'(b) might be in the reverse order).

In case (c) we can take J' = [T'(a),z,] € Eyy1 and J" = [25,T(z;)] € Emt1. In
case (d) we take J” = [T'(a),T(b)] € Enq1. (The case x, < T(b) < T(a) < xri1
being similar). These both correspond to the “Or” case of part (1) in the statement.
Moreover, in both cases (¢) and (d) J” € &,41

This completes the proof of the Lemma

Remarks.
(a) If we don’t assume the simplifying Assumption then there are yet more possi-
bilities with J' € D;, 1 <1i < n.
(b) Since the map T : I — I is clearly piecewise expanding, there are at most
finitely many successors of the form 77 (1;).
(c) Assume that z € Jy = [a,b] € &,. It is useful to enumerate the various
possibilities Jy — J1 with T'(z) € J; (cf. Figure 13.3):

(1) f Ta < z; <Tx <Tb < x;41 then J; = [x;,TD];

(2) ITa <z <Tx <xiy1 <Tbthen Jy = [x;, Tit1];

(3) f x; < Ta < Tx < xiy1 <Tbthen J; = [Ta,x;11]

(4) f x; <Ta < Tx <Tb < x;41 then J; = [Ta,Th)
and four more cases if T'|.J reverses orientation.

What characterises these cases is:

(i) In case (2) none of the endpoints of J; are images of Jp;
(ii) in cases (1) and (3) one of the end points of J; is the image of an endpoint
of Jy; and,
(iii) in case (4) both of the endpoints of .J; are images of endpoints of .J.

seventh.eps

FIGURE 13.3



128 XIII. MARKOV EXTENSIONS FOR INTERVAL MAPS

Let (Jp,),ecz+ be a sequence of sucessor intervals (i.e.Jg — J; — Jo — ...) then
we can associate a unique element 7 ((J,,)nez+) € I by

T ((Jn)n€Z+) = ﬂn€Z+T_an

(in complete analogy with the Markov case).

Although x € I will not in general have a unique sequence (Jy,),cz+ such that
7T ((Jn)nez+ ), the next lemma shows the remarkable fact that (generically) the “tail”
of such a sequence is uniquely determined.

Lemma 13.3. Let (J,)nez+ and (J))nez+ be two sequences of sucessors such that
T ((Jn)nez+) = T((Ju)nez+) = ¢ € I. = Nypeg+T™J)). If Ym > 0, T™(z) ¢
Un>oT™{x1,... 2k} then AN > 0 with J,, = J] forn > N.

Proof.

Let us denote Jy = [a,b] and J); = [¢,d]. The proof is a little involved, depending
on analysing a number of similar cases. Here is a typical case (the others being
variations on the same theme). The approach is to analyse the endpoints of the
intervals J,, and J/, and to show that that for sufficiently large n they must agree.

Step One (Comparing Jy and J}): Assume (for definiteness) that we begin
with ¢ < ¢ < x < b < d. By monotonicity of T" on I; the images of these points
must have the same order (or be reversed). Assume that the order of the images is
preserved and that Ta < x; <Tec <Tx <Tb < xj41 <Td, say. The succesors to
Jo, J§ containing x are then J; = [x;,T(b)] and J| = [T'(c¢), zj4+1] (by cases (1) and
(3) above, respectively).
Step Two (Jy and Jj, with a common endpoint): Let N be the smallest
positive integar such that T (c,b) N {zg,... 1} # 0. For 1 <n < N —1 we
see (by repeated application of cases (1),(3) and (4) above) that the succesors J,,
each have one of their endpoints being equal to 77 (b). Similarly, J/, will have an
endpoint equal to 7" (c).

Assume that we arrive at TV (¢) < x; < TN(x) < TN (b) < w41, say, then z;
now usurps of TV (c) as the (left) endpoint of JA, by case (1) above. Furthermore,
x; is also the (left) endpoint of Jy.

eighth.eps

FIGURE 4.8

Step Three (J, and J), (n > N) with a common endpoint): We need the
following easy sublemma.

Sublemma 13.3.1. If Jy C Jj with one (or both) of their endpoints the same,
then the same is true for Jy,J],, n > N.

Proof of sublemma 13.3.1. This is something which one sees from the four cases
(1) to (4) above.

Four (Jy and Jj; (M > N) with two common endpoints): Assume that
M > N is the least integar for which T™ (z,b) N {xq,... ,zx} # 0. We see from
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sublemma 4.13.1 that for N < n < M the point 7" N z; is an endpoint for J,,, J/,.
Assume that TM (z) < z; < TM(b), say, then x; usurps T™(b) as an endpoint for
Ju (by cases (1) or (2) above). Moreover, x; is also an end point for J;,. We
conclude that Jy = Jj, and so J, = J) for n > M (by sublemma 4.13.1 now
applied to both endpoints).

The other cases are similar. This completes the proof &

If T :1 — Iis not Markov then & = U2 &, is infinite (by the Simplifying
Assumption). We can define an infinite matrix A with entries 0 or 1, whose rows
and columns are indexed by &, in the following way

Definition. For Ji,Js € €

1 if Jy succeeds J;

0 otherwise

A(Jy, J2) = {

The next Proposition gives us (amongst other things) a nice characterization of
periodic orbits for T': [ — 1.

Proposition 13.4.

(i) There exists C > 0 such that for allm > 1 CardE, < C
(ii) There is a bijection between periodic points T"x = x and strings (ig, i1, - .. ,in—1)}}
such that A(ig,i1) = A(i1,i2) = ... = A(in—1,70) = 1 (except possibly for
endpoints of the original intervals I; )
(iii) There exists N > 0 such that every J € £ has at most N succesors.

Proof.

(i) From Lemma 13.1 we see that each I; (i =1,... k) gives rise to either two,
one or no elements in £. Thus Card€; < 2k. For n > 1 we see from Lemma
4.12 (i) that each J € &, gives rise to at most one element J' € &,.1. Thus
Card€,,+1 < Cardé, < ... < Card€y. Thus part (i) is proved with C' = 2k.

(ii) Let (Jn)5%, be a sequence of sucessors which is periodic (i.e. In > 1 with
Jmtn = JIm, for k > 0). Then if x € I is the corresponding point (i.e. {z} =
Nm>0T~™Jy,) then T"(z) is the corresponding point for (J,4m)eey = (Jn)oly
(le{T™ ()} = Nm>0T " Jptm). Thus T"(z) ==

Assume that T"(x) = z and choose a corresponding sequence of sucessors
(Jn)nez+. We know by Lemma 13.3 that provided z & U, >0T ™" (Up>0T™{z1,... , 21}l
then the two sequences of sucesssors (for z = T"x) (J,)pez+ and (Jyi1m)nez+ agree
for n > N, say. If we choose nm > N then the periodic sequence (J)),cz+ =
(JntmN)nez+ correspons to x since {z = T™Nx} = N,cpr T "J).

Assume that T"(z) = z and T™(z) = T%(x;), for some 1 < i < k and
g,m > 0. In particular, if we choose (r — 1)n < m < rn then we see x =
T (z) = T97"=m)(z;). (i.e. z is characterised as the (unique) periodic orbit
{x,Tx,... , T 12} into which the orbit of x; eventually falls). Since there are
only k boundary points 1, ...,z this means the bijection fails on at most k& pe-
riodic orbits.

(iii) This is an easy consequence of the definitions.
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Corollary 13.4.1. The number of periodic points T™(x) = x of period n is given
by
CardFiz(T") = Z A™(J,J)
Je&

13.2 THE GROWTH OF PERIODIC POINTS

In this section we want apply the analysis from the previous section to study
the number of periodic points CardFic(T™) via the matrix A. Rather than try
to analyse infinite matrices A it is simpler to fix some large k1 and consider the
truncated (finite) matrix Ay (J,J") = A(J,J') if J,J € UF_.&,

Proposition 4.77 we know that every string of sucessors corresponding to a fixed
point for T™ : I — I must be of length n. Moreover, since we can always choose
a string starting in & then the uniqueness conclusion of Proposition 13.(ii) tell us
that the string contains an interval from &j. Finally we see by 13.2 that all the
elements of the string must therefore be in U}, &;. Thus by Corollary 13.4.1 we see
that

CardFiz(T") = Y A"(J,J) =Y _ Ap(J,J) = trace(A})

Je& Je&

whenever k > n.
Since Ay can be thought of as a finite matrix, we have the standard matrix
identity

oo

Zm
Det(I — zAi) = —t AL
et(I — zA) = exp (; - race( k))
The right hand-side carries information on the traces trace(A}*). To study the

left land side, it helps to fix 1 < N < k and write Ay = (éz gz ) where Ay is

the square submatrix with indices U ,&;, and Dy is the square sub-matrix with
indices U,’L.“:NH&-, etc.

Lemma 13.5. For any k > N > 1, the sub-matriz Dy has all of its eigenvalues
with modulus at most NY/N

We shall postpone the proof until later and first consider the implications of this
lemma.

Since Dy — zI is invertable whenever |z| > N~ (by Lemma 13.5), we have the
matrix identity

(Ajé;z D§{Z> _ ((AN—z)—BJ(\);(DN—z)—lc B<DN1_ z)_1> (é D(iz) I

and taking determinants gives that
Det(Ay, — 2I) = Det ((Ay — z) — BN(Dy — 2) 'CB(Dn — 2)" ") Det (Dy — 2) .
The argument needs completing

The following theorem shows that the number of periodic points has a very
distinctive pattern.
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Theorem 4.16. For any § > 1 there exist constants
(i) My.oyAn, with | N> B (t=1,...,M), and
(ii) C4,...,Cpy €C
such that
M
N(n) =Y Ci\! + E(n)
i=1
where the error term E(n) satisfies |E(n)| < Constant3"
Proof. The above identity shows that provided N'/* < 3 the eigenvalues of A, (
for any k > N) are determined by the determinant of a N x N matrix (by Lemma
4.15).
The argument needs completing

Finally, with some additional bounds we can let £ — 400 to see that the power
series ) -, Z—trace A}".

It only remains to supply the proof of Lemma 4.15
Proof of Lemma 4.15. We can define a norm on the matrix Dy, (and its powers) by
— AR k . ;
||Dn|| = sup {ZD,GU;C:NH& Dy(D,D"): D € Uz’:N—|—lgl}‘ By the spectral radius

theorem it suffices to show that limsup,,_,, ||D’]{,||% < Nw
For p > 0 we let N (p) denote the number of possible strings of successors

J1—>J2—>...—> p_1—>Jp

with J; € Ujjf:k“é'm for 1 <17 < p. If we set

r =

0ifr <0
2k ifr =1

and then define inductively T, 11 = T, +T,_j (r > 1) then we claim that N (p) < T),.
For p = 1 this is true by definition. We proceed by induction. and assume that
N(r)<T, forr=1,...,p. Consider a typical string of successors

J1HJ2—>...HJP—>JP+1

(of length p + 1) with J; € Uss_, &y for 1 <d <p+ 1.
By Lemma 4.12 we see that there are three possible types of successor for J; € &,
(n > k). There are three possibilities
(i) If J; = [T"x;, T'x;] (with 0 < I < n — 1), say, then assume that J, =
[zk, T'x;], say. To satisfy J; € Upe_jp1Em for 2 < i < k + 3 the only

posibility is that J3 = [Tag, T aj], Jy = [T, T 2xy), ..., Jije =
[Tix,, Tz, ..., Jeys = [TF e, TR 1)) (or with the endpoints re-
versed). Thus only the remaining intervals Jyy4,...,Jp41 are not deter-

mined, and by the inductive hypothesis the number of possible choices is
bounded by N (p — k) < Tp,—p.
(ii) Assume that J5 is a unique sucessor with Jo € &,11. Then by the inductive
hypothesis there are at most AV (n) < T, choices for the remaining succesors
(iii) Finally, the possibility Jo € & is eliminated by our requirement that Jo €
U pg1Em.
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Thus we see that T},11 < T}, + T,_, completing the inductive step.
We now see that

T, <Tp 1 +Tp 1

< (Tp—2 +Tp—p—2) + Tp—p—1

< < Ty + Tpok+ oo+ Tpp—2) + Tp—k—1)
< KT,y

and so Tp, < k™1, for m > 1. In particular, we see that ||D%|| < N(n) for n > 1.
Since ||(A — Ax)™|| is sub-additive in n we see that

_1
limsup ||(A — Ak;)””}/n = limsup [[(A — Ap)™" || 7"

n—-+00o m— 400

< lim sup N (mk) mE

m——+oo

< limsup () 7% < k

m— 400

=

This completes the proof of the sublemma.

13.3 COMMENTS AND REFERENCES

The theory of Markov extensions was originated by Hofbauer [H]. The main
application we give to periodic points is based on work of Hofbauer and Keller.
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