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Preface

This volume presents most contributions given at the School “Noise of fre-
quencies in oscillators and the dynamics of algebraic numbers”which was held
in Chapelle des Bois, Jura (France) from 5 to 10 April 1999. The event was
made possible by the full support of the thematic school program of the Cen-
tre National de la Recherche Scientifique in France.
Noise is ubiquitous in nature and in man-made systems. For example, noise
in oscillators perturbs high technology devices such as time standards or dig-
ital communication systems. The understanding of its algebraic structure is
thus of vital importance to properly guide the human activity.
The book addresses these topics in three parts. Several aspects of classical
and quantum noise are covered in Part I, both from the viewpoint of quan-
tum physics and from the nonlinear or fractal viewpoint. Part II is mainly
concerned with noise in oscillating signals, that is phase or frequency noise
and 1/f noise. From a careful analysis of the experimental noise attached to
the carrier the usefulness of the number theoretical based method is demon-
strated. This view is expanded in Part III, which is mathematically oriented.
In conclusion, the noise concept proved to be a very attractive one gathering
people from at least three scientific communities: electronic engineering, the-
oretical physics and number theory. They represented an original mixture of
talents and the present editor acknowledges all authors for their patience and
open-mindedness during the school. Most manuscripts are comprehensible to
a large audience and should allow readers to discover new bridges between
the fields. We ourselves have identified but a few.
The meeting was followed by a small workshop sponsored by M. Waldschmidt
at the Institut Henri Poincaré in Paris on 3 and 4 December 1999: ‘Théorie des
nombres, bruit des fréquences et télécommunications ’. The purpose here was
to emphasize the newly discovered link between the Riemann zeta function
and communication systems. Some papers and related material are available
at the address: http://www.archetypo.web66.com, a new URL site built by
Matthew Watkins and devoted to the relationship between prime number
theory and physics.

Besançon, April 2000 Michel Planat
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Introduction

Michel Planat �

Laboratoire de Physique et Métrologie des Oscillateurs du CNRS, 32 Avenue de
l’Observatoire, 25044 Besançon Cedex, France

In the classical realm the best known type of noise is thermal noise. Due to
thermal agitation, free electrons in a metallic conductor are moving around
continuously causing collisions with the atoms and a continuous exchange of
energy between the modes. This was first investigated experimentally by J.B.
Johnson and H. Nyquist in 1928. Nyquist’s theorem states that the power
spectral density (psd) of voltage fluctuations through a resistor R at temper-
ature T is SV (f) = 4kRT , with k the Boltzman’s constant. The quantum
approach is also a very efficient way to understand the limitation in the accu-
racy of measurements performed in thermal equilibrium. The paper by J.M.
Courty et al. examines the fluctuations which are expected in an operational
amplifier from a quantum network approach. The ultimate sensitivity of a
cold damped accelerometer designed for space applications is calculated as
well.

Quantum physics is also used to understand the quantum Hall effect, that
is the behaviour of charged interacting electrons in the presence of a strong
magnetic field. The indivisibility of the electron charge e may be demon-
strated from a measurement of the current power spectral density (psd)
SI(f) = 2eI which is known as shot noise (Schottky, 1918). Such noise results
from the random emission of electrons from the cathode to the anode in a
diode or a semiconductor. Similarly, partition noise is added to the measure-
ment whenever a current is distributed randomly between two electrodes. Its
net effect is to introduce an extra multiplicative factor in the relation for the
shot noise psd. Partition noise measurements in small size quantum conduc-
tors have recently revealed the existence of fractional charges epq (p and q

integers) associated to quasi particle tunneling states. The paper presented
at the school by C. Glattli was published elsewhere (Phys. Rev. Lett. 79, 2526
(1997) and in “Topological aspects of low dimensional systems”, Proceedings
of Les Houches 1998 Summer School ). The theory of the fractional quantum
Hall effect is still very open to debate, as shown in the paper by V. Pasquier
which adresses the problem of bosonic particles interacting repulsively at the
filling factor ν = 1.

In his early study of thermal noise J.B. Johnson also found a large amount
of voltage noise SV (f) ∼ KV 2/f at low Fourier frequencies f . From many
experiments it was found that the noise intensity is inversely proportional
to the number of carriers N in the sample, that is K ∼ γ/N , with γ in

� planat@lpmo.univ-fcomte.fr

M. Planat (Ed.): LNP 550, pp. 1–5, 2000.
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2 Michel Planat

the range 10−3 to 10−8. This was generally attributed to different scatter-
ing mechanisms, by the crystal lattice or the impurities, leading to mobility
fluctuations of the electrons. These findings point to a nonlinear origin of the
1/f noise. Fine structures revealing the interaction of electrons with bulk and
surface phonons in several solid-state physical systems are given in Mihaila’s
paper in Part II. On the theoretical side, a quantum electrodynamical the-
ory was developed by P. Handel in the seventies based on infrared divergent
coupling of the electrons to the electromagnetic field in the scattering pro-
cess. The basic result for the γ parameter involves the fine structure constant
α ∼ 1/137 times the square of the ratio between the change of the velocity
of the accelerated charge over the light velocity (see the introduction of Han-
del’s paper). This so-called (by him) conventional quantum 1/f effect applies
to small solid-state devices with K of the order 10−7. For large samples K
increases to 2α/π ∼ 4.6× 10−3 which is the value predicted by the coherent
state approach of the quantum 1/f effect (see Fig. 2 in Handel’s paper).

Charged particles can be kept free and interrogated for very long times in
a miniature trap as shown in the paper by F. Vedel. Synchronized and chaotic
states of the oscillating ions are studied in such a set-up. Using laser cooling
with a few ions, the technique also allows the study of quantum jumps and
the design of a very accurate clock.

High energy particles and nuclei reaching earth from space are called cos-
mic rays. Their energy spectrum is very broad (from 109 to 1020 eV); they
are emitted from multiplicative cascades (cosmic showers) with a variety of
disintegrations as shown in the paper by J. Gomez. At the ground level parti-
cle densities show fluctuations with a 1/f power spectrum in the polar angle
coordinate. This a new example of the deep relationship between nonlinearity
and 1/f noise.

The paper by F. Chapeau-Blondeau studies the intrinsically nonlinear
link between signal and noise in a variety of systems. The word stochastic
resonance has been coined to describe situations in which the noise can benefit
the information-carrying signal. The ability to increase the signal to noise
ratio from noise enhancement in a non linear information channel or an image
is conclusively demonstrated.

It is not so well known that the first mathematical study of Brownian
motion, which is due to Bachelier (prior to Einstein) in 1900 concerned the
pricing of options in speculative markets. Anomalous (non-Gaussian) distri-
butions are the rule in stock market data as shown in the paper by M. Ausloos.

The papers by V. Giordano (G), E. Rubiola (R), M. Planat (P), C. Eckert
(E) and J. Cresson (C) in Part II are closely related. They mainly concern
the understanding of the building block of an electronic oscillator, that is
a resonant cavity (a quartz crystal) and a sustaining amplifier. Time and
frequency metrology was born in an effort to improve the design and perfor-
mance of such oscillators used as accurate clocks (G). Instruments to measure
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phase noise on such oscillators have gained a high level of sophistication (R).
Moreover the scheme of an oscillator is similar to the basic constituent of a
communication receiver (P). The dynamics of frequency and amplitude states
has the appearance of a low dimensional deterministic system (E), but the
actual rules mimic analytical number theory and the properties of Riemann
zeta function (P). In essence this can be understood from the physical limit
of any physical measurement: the finite resolution (C).

The papers by M. N. Mihaila (M) and P. Handel (H) remind us that the
question of the origin of 1/f noise is as old as electronics and is very universal.
Nonlinear interactions between the lattice phonons and thermal phonons are
clearly involved (M). Besides in the quantum 1/f effect, the basic nonlinear
system is the charged particle interacting with the emitted field which reacts
back on the source particle (M). One way to experimentally study the cou-
pling between the oscillating particles is through nonlinear mixing and low
pass filtering (P). The information-carrying oscillator of frequency f0, when
mixed with a reference oscillator of frequency f1, produces all tones at beat
frequencies fi = |pf0− qf1|, which after normalizing with respect to f1 looks
similar to the problem of approximating real numbers from rational numbers
but with a finite resolution (C).

The observed approximations are of the diophantine type (as it is the
case for resonances in celestial mechanics) and are calculated by truncating
the continued fraction expansion of the frequency ratio of the oscillators at
the mixer inputs. The standard map introduced by B. Chirikov in 1979 is an
alternative way to describe the nonlinear coupling between two oscillators as
shown in the paper by P. Moussa (M). It allows one to express the diophantine
problem in terms of the Brjno function introduced by J.C. Yoccoz in 1995 to
linearize a complex holomorphic map around a fixed point, and measure the
radius of the associated Siegel disk at the resonance (M).

To measure the ability of continued fraction expansion (cfe) to approx-
imate a real number one may introduce the Markoff constant A which is
the asymptotic limit (when they are infinitely many terms in the cfe) of the
error term modulus times the square of the partial quotient denominator.
The most badly approximated numbers are

√
5 − 1 with infinitely many 1’s

in the cfe,
√
2 − 1 with infinitely many 2’s in the cfe, (

√
221 − 11)/10 with

periodicity (2, 1, 1, 2) in the cfe and so on. Getting the whole theory is a
formidable task which is attempted in the paper by S. Perrine in Part III.
The first-order theory was obtained by Markoff in 1880. It predicts Markoff
numbers at Ai = ai(9a2i − 4)1/2 where the ai’s are 1, 2, 5, 13, 29... and satisfy
the algebraic condition a2 + b2 + c2 = 3abc and are the traces of matrices in
a subgroup of index 6 in the modular group SL(2,Z) [in topological terms it
is a punctured torus as it is nicely explained in Gutzwiller’s book (Chaos in
classical and quantum mechanics, Springer, 1990)].

Frequency fluctuations of the oscillators are often characterized in the fre-
quency domain from the power spectral density or in the time domain from
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the Allan deviation (this averages the mean frequency deviation between two
consecutive samples, each one measured over an integration time τ). The two
measures are related; white noise (that is constant psd) corresponds to Allan
deviation proportional to τ−1/2 and 1/f noise corresponds to constant Allan
deviation versus τ . White noise below the thermal floor is measured using
an interferometric method and correlation analysis (R). A transition from
white to 1/f frequency noise at the resonance is observed in the electronic
receiver. This transition corresponds taking bounded partial quotients in the
cfe of the frequency ratio of the oscillators at the mixer inputs (P). This
is interpreted in terms of the position of resolved rationals with respect to
the equally spaced graduation and is equivalent to Riemann hypothesis (as
expressed from the Franel-Landau sums)(P).

It is not very surprising to encounter the Riemann zeta function in physics.
The ordinary Riemann zeta function ζ(s) =

∑∞
n=1 n−s, with �(s) > 1 is

present in the black body radiation laws. The number of photons per unit
volume is proportional to ζ(3) and the energy to ζ(4). Similarly in a Bose-
Einstein condensate the number of modes is proportional to ζ(3/2) and the
energy to ζ(5/2). The argument of the zeta function also defines the ex-
ponent in the temperature dependence. Now the Casimir (vacuum) energy
between two parallel conducting plates is essentially ζ(−3) which requires
a first extension of ζ(s) to lower than 1 integer values of the argument s.
This is achieved thanks to the connection of ζ(s), with s a relative integer,
to Bernouilli numbers; they are defined from the algebraic expansion of the
“Planck” factor x/(ex − 1) (see also Cartier’s paper).

Looking at ζ(s) as a partition function (this was emphasized by B. Julia
in 1994 (P)) of some “Riemann gas” with energies log i (instead of i in a
conventional quantum harmonic oscillator), thermodynamical quantities are
proportional to the inverse of the partition function so that the zeros of ζ(s)
should play the dominant role in the dynamics. Since the psd of |1/ζ(s)| is
a “white noise” at the critical line s = 1

2 + it and transforms into a “1/f
noise” close to it, it is tempting to expect that ζ(s) should play a role in the
unification of physics.

Can we find an algebraic definition of randomness? This is attempted in
the paper by J.P. Allouche in Part III restricting the study to infinite se-
quences taking their values in a finite alphabet, as it is the case in digital
communications. What is the alphabet in models of deterministic chaos? Ac-
cording to the paper by K. Karamanos the chaoticity of the symbolic sequence
in the Feigenbaum bifurcation diagram (which is also a model of phase noise)
has much to do with transcendance and thus with rational polynomials. This
is further elaborated in Waldschmidt’s paper in terms of the logarithm of
Mahler’s measure on such polynomials, which also expresses the topological
entropy of an algebraic dynamical system.
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An important ingredient in the theory of continued fraction expansions
is the concept of a Farey mediant p+p

′

q+q′ of two rational numbers p
p′ and q

q′ .
They are found recursively in the structure of the electronic receiver (P) and
are intimely connected to the structure of the modular group SL(2,Z) (C),
(M). A further example is in the paper by Y. Bugeaud about a specific type
of analog-to-digital converter.

Numbers with a periodic cfe beyond some level are the algebraic numbers
of degree 2. They play a major role in the Markoff spectrum (see the paper by
S. Perrine). A dual role is played by imaginary quadratic integers τ defined
on the upper half plane �(τ) > 0 as it is shown in the paper by P. Cohen. At
such numbers the modular function j(τ) (which is the automorphic function
with respect to the full modular group SL(2,Z)) takes an algebraic value,
that is the associated class of elliptic curves has complex multiplication; and
conversely j(τ) is transcendental if τ is not quadratic imaginary.

Mathemagics defined by P. Cartier as the symbolic methods of mathemat-
ics or operational calculus played a fundamental role in the development of
physics. Heisenberg’s generalization of Hamiltonian mechanics is one exam-
ple. In an extensive and magistral paper P. Cartier examines the development
of such formal methods from Euler to Feynman.



Mathemagics
(A Tribute to L. Euler and R. Feynman)

Pierre Cartier �

CNRS, Ecole Normale Supérieure de Paris, 45 rue d’Ulm, 75230 Paris Cedex 05
and Institut des Hautes Etudes Scientifiques, Le Bois Marie, 35 Route de
Chartres, 91440 Bures-sur-Yvette, France

1 Introduction

The implicit philosophical belief of the working mathematician is today the
Hilbert-Bourbaki formalism. Ideally, one works within a closed system:
the basic principles are clearly enunciated once for all, including (that is an
addition of twentieth century science) the formal rules of logical reasoning
clothed in mathematical form. The basic principles include precise defini-
tions of all mathematical objects, and the coherence between the various
branches of mathematical sciences is achieved through reduction to basic
models in the universe of sets. A very important feature of the system is its
non-contradiction ; after Gödel, we have lost the initial hopes to establish
this non-contradiction by a formal reasoning, but one can live with a corre-
sponding belief in non-contradiction. The whole structure is certainly very
appealing, but the illusion is that it is eternal, that it will function for ever
according to the same principles. What history of mathematics teaches us is
that the principles of mathematical deduction, and not simply the mathe-
matical theories, have evolved over the centuries. In modern times, theories
like General Topology or Lebesgue’s Integration Theory represent an almost
perfect model of precision, flexibility and harmony, and their applications,
for instance to probability theory, have been very successful.

My thesis is: there is another way of doing mathematics, equally
successful, and the two methods should supplement each other and
not fight.

This other way bears various names: symbolic method, operational cal-
culus, operator theory . . . Euler was the first to use such methods in his
extensive study of infinite series, convergent as well as divergent. The cal-
culus of differences was developed by G. Boole around 1860 in a symbolic
way, then Heaviside created his own symbolic calculus to deal with systems
of differential equations in electric circuitry. But the modern master was R.
Feynman who used his diagrams, his disentangling of operators, his path in-
tegrals . . . The method consists in stretching the formulas to their extreme
consequences, resorting to some internal feeling of coherence and harmony.
They are obvious pitfalls in such methods, and only experience can tell you
� cartier@ihes.fr

M. Planat (Ed.): LNP 550, pp. 6–67, 2000.
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Mathemagics 7

that for the Dirac δ-function an expression like xδ(x) or δ′(x) is lawful, but not
δ(x)/x or δ(x)2. Very often, these so-called symbolic methods have been sub-
stantiated by later rigorous developments, for instance Schwartz distribution
theory gives a rigorous meaning to δ(x), but physicists used sophisticated
formulas in “momentum space” long before Schwartz codified the Fourier
transformation for distributions. The Feynman “sums over histories” have
been immensely successful in many problems, coming from physics as well
from mathematics, despite the lack of a comprehensive rigorous theory.
To conclude, I would like to offer some remarks about the word “formal”.
For the mathematician, it usually means “according to the standard of for-
mal rigor, of formal logic”. For the physicists, it is more or less synonymous
with “heuristic” as opposed to “rigorous”. It is very often a source of misun-
derstanding between these two groups of scientists.

2 A new look at the exponential

2.1 The power of exponentials

The multiplication of numbers started as a shorthand for repeated additions,
for instance 7 times 3 (or rather “seven taken three times”) is the sum of
three terms equal to 7

7× 3 = 7 + 7 + 7︸ ︷︷ ︸
3 times

.

In the same vein 73 (so denoted by Viete and Descartes) means 7× 7× 7︸ ︷︷ ︸
3 factors

.

There is no difficulty to define x2 as xx or x3 as xxx for any kind of multipli-
cation (numbers, functions, matrices . . . ) and Descartes uses interchangeably
xx or x2, xxx or x3.

In the exponential (or power) notation, the exponent plays the role of
an operator. A great progress, taking approximately the years from 1630 to
1680 to accomplish, was to generalize ab to new cases where the operational
meaning of the exponent b was much less visible. By 1680, a well defined
meaning has been assigned to ab for a, b real numbers, a > 0. Rather than
to retrace the historical route, we shall use a formal analogy with vector
algebra. From the original definition of ab as a× ...×a (b factors), we deduce
the fundamental rules of operation, namely

(a× a′)b = ab × a′b, ab+b
′
= ab × ab

′
, (ab)b

′
= abb

′
, a1 = a. (1)

The other rules for manipulating powers are easy consequences of the rules
embodied in (1). The fundamental rules for vector algebra are as follows:

(v + v′).λ = v.λ + v′.λ, v.(λ + λ′) = v.λ + v.λ′,
(v.λ).λ′ = v.(λλ′), v.1 = v. (2)
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The analogy is striking provided we compare the product a× a′ of numbers
to the sum v+ v′ of vectors, and the exponentiation ab to the scaling v.λ of
the vector v by the scalar λ.

In modern terminology, to define ab for a, b real, a > 0 means that we
want to consider the set R×+ of real numbers a > 0 as a vector space over
the field of real numbers R. But to vectors, one can assign coordinates: if the
coordinates of the vector v(v′) are the vi(v′i), then the coordinates of v+ v′

and v.λ are respectively vi + v′i and vi.λ. Since we have only one degree of
freedom in R×+, we should need one coordinate, that is a bijective map L
from R×+ to R such that

L(a× a′) = L(a) + L(a′). (3)

Once such a logarithm L has been constructed, one defines ab in such a way
that L(ab) = L(a).b. It remains the daunting task to construct a logarithm.
With hindsight, and using the tools of calculus, here is the simple definition
of “natural logarithms”

ln(a) =
∫ a
1

dt/t for a > 0. (4)

In other words, the logarithm function ln(t) is the primitive of 1/t which
vanishes for t = 1. The inverse function exp s (where t = exp s is synonymous
to ln(t) = s) is defined for all real s, with positive values, and is the unique
solution to the differential equation f ′ = f with initial value f(0) = 1. The
final definition of powers is then given by

ab = exp(ln(a).b). (5)

If we denote by e the unique number with logarithm equal to 1 (hence e =
2.71828...), the exponential is given by exp a = ea.
The main character in the exponential is the exponent, as it

should be, in complete reversal from the original view where 2 in x2, or 3 in
x3 are mere markers.

2.2 Taylor’s formula and exponential

We deal with the expansion of a function f(x) around a fixed value x0 of x,
in the form

f(x0 + h) = c0 + c1h + · · ·+ cph
p + · · · . (6)

This can be an infinite series, or simply a finite order expansion (include then
a remainder). If the function f(x) admits sufficiently many derivatives, we
can deduce from (6) the chain of relations

f ′(x0 + h) = c1 + 2c2h + · · ·
f ′′(x0 + h) = 2c2 + 6c3h + · · ·
f ′′′(x0 + h) = 6c3 + 24c4h + · · · .
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By putting h = 0, deduce

f(x0) = c0, f ′(x0) = c1, f ′′(x0) = 2c2, . . .

and in general f (p)(x0) = p!cp. Solving for the cp’s and inserting into (6) we
get Taylor’s expansion

f(x0 + h) =
∑
p≥0

1
p!

f (p)(x0)hp. (7)

Apply this to the case f(x) = expx, x0 = 0. Since the function f is equal to its
own derivative f ′, we get f (p) = f for all p’s, hence f (p)(0) = f(0) = e0 = 1.
The result is

exph =
∑
p≥0

1
p!

hp. (8)

This is one of the most important formulas in mathematics. The idea is
that this series can now be used to define the exponential of large classes of
mathematical objects: complex numbers, matrices, power series, operators.
For the modern mathematician, a natural setting is provided by a complete
normed algebra A, with norm satisfying ||ab|| ≤ ||a||.||b||. For any element a
in A, we define exp a as the sum of the series

∑
p≥0 ap/p!, and the inequality

||ap/p!|| ≤ ||a||p/p! (9)

shows that the series is absolutely convergent.
But this would not exhaust the power of the exponential. For instance,

if we take (after Leibniz) the step to denote by Df the derivative of f , D2f
the second derivative, etc... (another instance of the exponential notation!),
then Taylor’s formula reads as

f(x + h) =
∑
p≥0

1
p!

hpDpf(x). (10)

This can be interpreted by saying that the shift operator Th taking a
function f(x) into f(x+h) is equal to

∑
p≥0

1
p!h

pDp, that is to the exponential
exphD (question: who was the first mathematician to cast Taylor’s formula
in these terms?). Hence the obvious operator formula Th+h′ = Th.Th′ reads
as

exp(h + h′)D = exphD. exph′D. (11)

Notice that for numbers, the logarithmic rule is

ln(a.a′) = ln(a) + ln(a′) (12)
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according to the historical aim of reducing via logarithms the multiplications
to additions. By inversion, the exponential rule is

exp(a + a′) = exp(a). exp(a′). (13)

Hence formula (10) is obtained from (12) by substituting hD to a and h′D
to a′.

But life is not so easy. If we take two matrices A and B and calculate
exp(A + B) and expA. expB by expansion we get

exp(A + B) = I + (A + B) +
1
2
(A + B)2 +

1
6
(A + B)3 + · · · (14)

expA. expB = I + (A + B) +
1
2
(A2 + 2AB + B2)

+
1
6
(A3 + 3A2B + 3AB2 + B3) + · · · . (15)

If we compare the terms of degree 2 we get

1
2
(A + B)2 =

1
2
(A2 + AB + BA + B2) (16)

in (13) and not 12 (A
2+2AB+B2). Harmony is restored if A and B commute:

indeed AB = BA entails

A2 + AB + BA + B2 = A2 + 2AB + B2 (17)

and more generally the binomial formula

(A + B)n =
n∑
i=0

(
n
i

)
AiBn−i (18)

for any n ≥ 0. By summation one gets

exp(A + B) = expA. expB (19)

if A and B commute, but not in general. The success in (10) comes
from the obvious fact that hD commutes to h′D since numbers commute to
(linear) operators.

2.3 Leibniz’s formula

Leibniz’s formula for the higher order derivatives of the product of two func-
tions is the following one

Dn(fg) =
n∑
i=0

(
n
i

)
Dif.Dn−ig. (20)
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The analogy with the binomial theorem is striking and was noticed early.
Here are possible explanations. For the shift operator, we have

Th = exphD (21)

by Taylor’s formula and

Th(fg) = Thf.Thg (22)

by an obvious calculation. Combining these formulas we get∑
n≥0

1
n!

hnDn(fg) =
∑
i≥0

1
i!

hiDif.
∑
j≥0

1
j!

hjDjg; (23)

equating the terms containing the same power hn of h, one gets

Dn(fg) =
∑
i+j=n

n!
i!j!
Dif.Djg (24)

that is, Leibniz’s formula.
Another explanation starts from the case n = 1, that is

D(fg) = Df.g + f.Dg. (25)

In a heuristic way it means that D applied to a product fg is the sum of two
operators D1 acting on f only and D2 acting on g only. These actions being
independent, D1 commutes to D2 hence the binomial formula

Dn = (D1 +D2)n =
n∑
i=0

(
n
i

)
Di1.D

n−i
2 . (26)

By acting on the product fg and remarking that Di1.D
j
2 transforms fg into

Dif.Djg, one recovers Leibniz’s formula. In more detail, to calculate D2(fg),
one applies D to D(fg). Since D(fg) is the sum of two terms Df.g and f.Dg
apply D to Df.g to get D(Df)g + Df.Dg and to f.Dg to get Df.Dg +
f.D(Dg), hence the sum

D(Df).g +Df.Dg +Df.Dg + f.D(Dg)
= D2f.g + 2Df.Dg + f.D2g.

This last proof can rightly be called “formal” since we act on the formu-
las, not on the objects: D1 transforms f.g into Df.g but this doesn’t mean
that from the equality of functions f1.g1 = f2.g2 one gets Df1.g1 = Df2.g2
(counterexample: from fg=gf , we cannot infer Df.g = Dg.f). The modern
explanation is provided by the notion of tensor products: if V and W are two
vector spaces (over the real numbers as coefficients, for instance), equal or
distinct, there exists a new vector space V ⊗ W whose elements are formal
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finite sums
∑
i λi(vi ⊗ wi) (with scalars λi and vi in V , wi in W ); we take

as basic rules the consequences of the fact that v ⊗w is bilinear in v, w, but
nothing more. Taking V and W to be the space C∞(I) of the functions de-
fined and indefinitely derivable in an interval I of R, we define the operators
D1 and D2 in C∞(I)⊗ C∞(I) by

D1(f ⊗ g) = Df ⊗ g, D2(f ⊗ g) = f ⊗Dg. (27)

The two operators D1D2 and D2D1 transform f ⊗ g into Df ⊗Dg, hence
D1 and D2 commute. Define D̄ as D1 +D2 hence

D̄(f ⊗ g) = Df ⊗ g + f ⊗Dg. (28)

We can now calculate D̄n = (D1 +D2)n by the binomial formula as in (25)
with the conclusion

D̄n(f ⊗ g) =
n∑
i=0

(
n
i

)
Dif ⊗Dn−ig. (29)

The last step is to go from (28) to (19). The rigorous reasoning is as
follows. There is a linear operator µ taking f ⊗ g into f.g and mapping
C∞(I)⊗ C∞(I) into C∞(I); this follows from the fact that the product f.g
is bilinear in f and g. The formula (24) is expressed by D ◦ µ = µ ◦ D̄ in
operator terms, according to the diagram:

C∞(I)⊗ C∞(I)
µ−→ C∞(I)

D̄ ↓ ↓ D
C∞(I)⊗ C∞(I)

µ−→ C∞(I).

An easy induction entails Dn ◦ µ = µ ◦ D̄n, and from (28) one gets

Dn(fg) = Dn(µ(f ⊗ g)) = µ(D̄n(f ⊗ g))

= µ(
n∑
i=0

(
n
i

)
Dif ⊗Dn−ig) =

n∑
i=0

(
n
i

)
Dif.Dn−ig. (30)

In words: first replace the ordinary product f.g by the neutral ten-
sor product f ⊗ g, perform all calculations using the fact that D1
commutes to D2, then restore the product . in place of ⊗.

When the vector spaces V and W consist of functions of one variable,
the tensor product f ⊗ g can be interpreted as the function f(x)g(y) in
two variables x, y; moreover D1 = ∂/∂x, D2 = ∂/∂y and µ takes a function
F (x, y) of two variables into the one-variable function F (x, x) hence f(x)g(y)
into f(x)g(x) as it should. Formula (24) reads now

∂

∂x
(f(x)g(x)) = (

∂

∂x
+

∂

∂y
)f(x)g(y)|y=x. (31)
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The previous “formal” proof goes over a familiar proof using Schwarz’s the-
orem that ∂

∂x and ∂
∂y commute.

Starting from the tensor product H1 ⊗H2 of two vector spaces, one can
iterate and obtain

H1 ⊗H2 ⊗H3, H1 ⊗H2 ⊗H3 ⊗H4, . . . .
Using once again the exponential notation, H⊗n is the tensor product of
n copies of H, with elements of the form

∑
λ.(ψ1 ⊗ ... ⊗ ψn). In quantum

physics, H represents the state vectors of a particle, and H⊗n represents the
state vectors of a system of n independent particles of the same kind. If H is
an operator in H representing for instance the energy of a particle, we define
n operators Hi in H⊗n by

Hi(ψ1 ⊗ ...⊗ ψn) = ψ1 ⊗ · · · ⊗Hψi ⊗ · · · ⊗ ψn (32)

(the energy of the i-th particle). Then H1, ..., Hn commute pairwise and H1+
· · ·+Hn is the total energy if there is no interaction. Usually, there is a pair
interaction represented by an operator V in H⊗H; then the total energy is
given by

∑n
i=1Hi +

∑
i<j Vij with

V12(ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψn) = V (ψ1 ⊗ ψ2)⊗ ψ3 ⊗ · · · (33)

V23(ψ1 ⊗ · · · ⊗ ψn) = ψ1 ⊗ V (ψ2 ⊗ ψ3)⊗ · · · ⊗ ψn (34)

etc... There are obvious commutation relations like

HiHj = HjHi

HiVjk = VjkHi if i, j, k are distinct.

This is the so-called “locality principle”: if two operators A and B refer to
disjoint collections of particles (a) for A and (b) for B, they commute.

Faddeev and his collaborators made an extensive use of this notation
in their study of quantum integrable systems. Also, Hirota introduced his
so-called bilinear notation for differential operators connected with classical
integrable systems (solitons).

2.4 Exponential vs. logarithm

In the case of real numbers, one usually starts from the logarithm and invert
it to define the exponential (called antilogarithm not so long ago). Positive
numbers have a logarithm; what about the logarithm of −1 for instance?

Things are worse in the complex domain. For a complex number z, define
its exponential by the convergent series

exp z =
∑
n≥0

1
n!

zn. (35)
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From the binomial formula, using the commutativity zz′ = z′z one gets

exp(z + z′) = exp z. exp z′ (36)

as before. Separating real and imaginary part of the complex number z =
x + iy gives Euler’s formula

exp(x + iy) = ex(cos y + i sin y) (37)

subsuming trigonometry to complex analysis. The trigonometric lines are the
“natural” ones, meaning that the angular unit is the radian (hence sin δ � δ
for small δ).

From an intuitive view of trigonometry, it is obvious that the points of a
circle of equation x2 + y2 = R2 can be uniquely parametrized in the form

x = R cos θ, y = R sin θ (38)

with −π < θ ≤ π, but the subtle point is to show that the geometric definition
of sin θ and cos θ agree with the analytic one given by (36). Admitting this,
every complex number u �= 0 can be written as an exponential exp z0, where
z0 = x0 + iy0, x0 real and y0 in the interval ] − π, π]. The number z0 is
called the principal determination of the logarithm of u, denoted by Ln u.
But the general solution of the equation exp z = u is given by z = z0 + 2πin
where n is a rational integer. Hence a nonzero complex number has infinitely
many logarithms. The functional property (35) of the exponential cannot be
neatly inverted: for the logarithms we can only assert that Ln(u1 · · ·up) and
Ln(u1) + . . . + Ln(up) differ by the addition of an integral multiple of 2πi.

The exponential of a (real or complex) square matrix A is defined by the
series

expA =
∑
n≥0

1
n!

An. (39)

There are two classes of matrices for which the exponential is easy to compute:
a) Let A be diagonal A = diag(a1, . . . , an). Then expA is diagonal with

elements exp a1, . . . , exp an. Hence any complex diagonal matrix with non
zero elements is an exponential, hence admits a logarithm, and even infinitely
many ones.
b) Suppose that A is a special upper triangular matrix, with zeroes on

the diagonal, of the type

A =


0 a b c
0 d e
0 f
0

 .
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Then Ad = 0 if A is of size d× d. Hence expA is equal to I + B where B is
of the form A + 1

2A
2 + 1

6A
3 + · · · + 1

(d−1)!A
d−1. Hence B is again a special

upper triangular matrix and A can be recovered by the formula

A = B − B2

2
+

B3

3
− · · ·+ (−1)dB

d−1

d− 1
. (40)

This is just the truncated series for ln(I + B)(notice Bd = 0). Hence in
the case of these special triangular matrices, exponential and logarithm are
inverse operations.

In general, A can be put in triangular form A = UTU−1 where T is upper
triangular. Let λ1, ..., λd be the diagonal elements of T , that is the eigenvalues
of A. Then

expA = U. expT.U−1 (41)

where expT is triangular, with the diagonal elements expλ1, ... expλd. Hence

det(expA) =
d∏
i=1

expλi = exp
d∑
i=1

λi = exp(Tr(A)). (42)

The determinant of expA is therefore non zero. Conversely any complex
matrixM with a nonzero determinant is an exponential: for the proof,
write M in the form U.T.U−1 where T is composed of Jordan blocks of the
form

Ts =


λ 1 . . 0

. . . .
0 . 1

. . . . λ

 with λ �= 0 .

From the existence of the complex logarithm of λ and the study above of
triangular matrices, it follows that Ts is an exponential, hence T and M =
UTU−1 are exponentials.

Let us add a few remarks:
a) A complex matrix with nonzero determinant has infinitely many log-

arithms; it is possible to normalize things to select one of them, but the
conditions are rather artificial.

b) A real matrix with nonzero determinant is not always the exponential

of a real matrix; for example, choose M =
(
1 0
0 −1

)
. This is not surprising

since −1 has no real logarithm, but many complex logarithms of the form
kπi with k odd.

c) The noncommutativity of the multiplication of matrices implies that
in general exp(A + B) is not equal to expA. expB . Here the logarithm of
a product cannot be the sum of the logarithms, whatever normalization we
choose.
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2.5 Infinitesimals and exponentials

There are many notations in use for the higher order derivatives of a function
f . Newton uses ḟ , f̈ , . . . , the customary notation is f ′, f ′′, . . . . Once again,
the exponential notation can be systematized, f (m) or Dmf denoting the
m-th derivative of f , for m = 0, 1, . . . . This notation emphasizes that the
derivation is a functional operator, hence

(f (m))(n) = f (m+n), or Dm(Dnf) = Dm+nf. (43)

In this notation, it is cumbersome to write the chain rule for the derivative
of a composite function

D(f ◦ g) = (Df ◦ g).Dg. (44)

Leibniz’s notation for the derivative is dy/dx if y = f(x). Leibniz was
never able to give a completely rigorous definition of the infinitesimals dx, dy,
...1. His explanation of the derivative is as follows: starting from x, increment
it by an infinitely small amount dx; then y = f(x) is incremented by dy, that
is

dy

dx

dy

dx

y

x

zoom

Fig. 1. Geometrical description: an infinitely small portion of the curve y =
f(x), after zooming, becomes infinitely close to a straight line, our function is
“smooth”, not fractal-like.

f(x + dx) = y + dy. (45)

Then the derivative is f ′(x) = dy/dx, hence according to (44)

f(x + dx) = f(x) + f ′(x)dx. (46)

1 In modern times, Abraham Robinson has vindicated them using the tools of
formal logic. There has been many interesting applications of his nonstandard
analysis, but one has to admit that it remains too cumbersome to provide a
viable alternative to the standard analysis. May be in the 21th century!
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This cannot be literally true, otherwise the function f(x) would be linear.
The true formula is

f(x + dx) = f(x) + f ′(x)dx + o(dx) (47)

with an error term o(dx) which is infinitesimal, of a higher order than dx,
meaning o(dx)/dx is again infinitesimal. In other words, the derivative f ′(x),
independent of dx, is infinitely close to f(x+dx)−f(x)

dx for all infinitesimals
dx. The modern definition, as well as Newton’s point of view of fluents,
is a dynamical one: when dx goes to 0, f(x+dx)−f(x)dx tends to the limit
f(′x). Leibniz’s notion is statical: dx is a given, fixed quantity. But there
is a hierarchy of infinitesimals: η is of higher order than ε if η/ε is again
infinitesimal. In the formulas, equality is always to be interpreted up to an
infinitesimal error of a certain order, not always made explicit.

We use these notions to describe the logarithm and the exponential. By
definition, the derivative of lnx is 1

x , hence

d lnx

dx
=

1
x
, that is ln(x + dx) = ln(x) +

dx

x
.

Similarly for the exponential

d expx

dx
= expx, that is exp(x + dx) = (expx)(1 + dx).

This is a rule of compound interest. Imagine a fluctuating daily rate of inter-
est, namely ε1, ε2, ..., ε365 for the days of a given year, every daily rate being
of the order of 0.0003. For a fixed investment C, the daily reward is Cεi for
day i, hence the capital becomes C+Cε1+ ...+Cε365 = C.(1+

∑
i εi), that is

approximately C(1+ .11). If we reinvest every day our profit, invested capital
changes according to the rule:

Ci+1 = Ci + Ciεi = Ci(1 + εi).
↑ ↑ ↑

capital capital profit
at day i + 1 at day i during day i

At the end of the year, our capital is C.
∏
i(1 + εi). We can now formulate

the “bankers rule”:

if S = ε1 + ... + εN , then expS = (1 + ε1) · · · (1 + εN ). (B)

Here N is infinitely large, and ε1, . . . , εN are infinitely small; in our example,
S = 0.11, hence exp S = 1 + S + 1

2S
2 + . . . is equal to 1.1163 . . . : by

reinvesting daily, the yearly profit of 11% is increased to 11.63%.
Formula (B) is not true without reservation. It certainly holds if all εi are

of the same sign, or more generally if
∑
i |εi| is of the same order as

∑
εi = x.
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For a counter-example, take N = 2p2 with half of the εi being equal to + 1
p ,

and the other half to − 1
p (hence

∑
i εi = 0 while

∏
i(1 + εi) is infinitely close

to 1/e = exp(−1)).
To connect definition (B) of the exponential to the power series expansion

expS = 1 + S + 1
2!S

2 + · · · one can proceed as follows: by algebra we get

N∏
i=1

(1 + εi) =
N∑
k=0

Sk, (48)

where S0 = 1, S1 = ε1 + ... + εN = S, and generally

Sk =
∑

i1<...<ik

εi1 ...εik . (49)

We have to compare Sk to 1
k!S

k = 1
k! (ε1 + · · · + εN )k. Developing the k-th

power of S by the multinomial formula, we obtain Sk plus error terms each
containing at least one of the ε′is to a higher power ε2i , ε

3
i , ... hence infinitesimal

compared to the ε′is. The general principle of compensation of errors2

is as follows: in an infinite sum of infinitesimals

Σ = η1 + · · ·+ ηM (50)

subject each term to an error ηj becoming η′j = ηj+o(ηj) with an error o(ηj)
of higher order than ηj . Then Σ becomes

Σ′ = η′1 + · · ·+ η′M , (51)

equal to Σ plus an error term o(η1) + · · ·+ o(ηM ). If the ηj are of the same
sign, the error is o(Σ), that is negligible compared to Σ.

Zoom
dx

x x+dx
Fig. 2. Leibniz’ continuum: by zooming, a finite segment of line is made of a
large number of atoms of space: a fractal.

The implicit view of the continuum underlying Leibniz’s calculus is as
follows: a finite segment of a line is made of an infinitely large number of
2 This terminology was coined by Lazare Carnot in 1797. Our formulation is more
precise than his!
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geometric atoms of space which can be arranged in a succession, each atom
x being separated by dx from the next one. Hence in the definition of the
logarithm

ln a =
∫ a
1

dx

x
(for a > 1), (52)

we really have
∑
1≤x≤a

dx
x . Similarly, the bankers rule (B) should be inter-

preted as

exp a =
∏

0≤x≤a
(1 + dx) (for a > 0). (53)

2.6 Differential equations

The previous formulation of the exponential suggests a method to solve a
differential equation, for instance y′ = ry. In differential form

dy = r(x)ydx, (54)

that is

y + dy = (1 + r(x)dx)y. (55)

The solution is

y(b) =
∏
a≤x≤b

(1 + r(x)dx).y(a). (56)

What is the meaning of this product? Putting ε(x) = r(x)dx, an infinitesimal,
and expanding the product as in (47), we get∏

x

(1 + ε(x)) =
∑
k≥0

∑
a≤x1<...<xk≤b

ε(x1) · · · ε(xk); (57)

reinterpreting the multiple sum as a multiple integral, this is∑
k≥0

∫
· · ·
∫
∆k

r(x1) · · · r(xk)dx1 · · · dxk. (58)

The domain of integration ∆k is given by the inequalities

a ≤ x1 ≤ x2 ≤ . . . ≤ xk ≤ b. (59)

The classical solution to the differential equation y′ = ry is given by

y(b) = (exp
∫ b
a

r(x)dx).y(a). (60)
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Let us see how to go from (57) to (59). Geometrically, consider the hypercube
Ck given by

a ≤ x1 ≤ b, · · · , a ≤ xk ≤ b (61)

in the euclidean space Rk of dimension k with coordinates x1, . . . , xk. The
group Sk of the permutations σ of {1, . . . , k} acts on Rk, by transforming
the vector x with coordinates x1, . . . , xk into the vector σ.x with coordinates
xσ−1(1), . . . , xσ−1(k). Then the cube Ck is the union of the k! transforms
σ(∆k). Since the function r(x1) . . . r(xk) to be integrated is symmetrical in
the variables x1, . . . , xk and moreover two distinct domains σ(∆k) and σ′(∆k)
overlap by a subset of dimension < k, hence of volume 0, we see that the
integral of r(x1) · · · r(xk) over Ck is k! times the integral over ∆k. That is∫

· · ·
∫
∆k

r(x1) · · · r(xk)dx1 · · · dxk =

1
k!

∫ b
a

dx1 · · ·
∫ b
a

dxk r(x1) · · · r(xk) = 1
k!
(
∫ b
a

r(x)dx)k.

Summing over k, and using the definition of an exponential by a series, we
conclude∑

k≥0

∫
· · ·
∫
∆k

r(x1)...r(xk)dx1...dxk = exp
∫ b
a

r(x)dx. (62)

as promised.
The same method applies to the linear systems of differential equations.

We cast them in the matrix form

y′ = A.y, (63)

that is the differential form

dy = A(x)ydx. (64)

Here A(x) is a matrix depending on the variable x, and y(x) is a vector (or
matrix) function of x. From (64) we get

y(x + dx) = (I + A(x)dx)y(x). (65)

Formally the solution is given by

y(b) =
∏
a≤x≤b

(I + A(x)dx).y(a). (66)

We have to take into account the noncommutativity of the products
A(x)A(y)A(z) . . . . Explicitly, if we have chosen intermediate points

a = x0 < x1 < . . . < xN = b,
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with infinitely small spacing

dx1 = x1 − x0, dx2 = x2 − x1, ..., dxN = xN − xN−1,

the product in (67) is

(I + A(xN )dxN )(I + A(xN−1)dxN−1) · · · (I + A(x1)dx1).

We use the notation
←−∏
1≤i≤NUi for a reverse product UNUN−1 · · ·U1;

hence the previous product can be written as
←−∏
1≤i≤N (I + A(xi)dxi) and

we should replace
∏

by
←−∏

in equation (67). The noncommutative version of
equation (47) is

←−∏
1≤i≤N (I + Ai) =

N∑
k=0

∑
i1>···>ik

Ai1 · · ·Aik . (67)

Let us define the resolvant (or propagator) as the matrix

U(b, a) =
←−∏
a≤x≤b(I + A(x)dx). (68)

Hence the differential equation dy = A(x)ydx is solved by y(b) = U(b, a)y(a)
and from (68) we get

U(b, a) =
∑
k≥0

∫
· · ·
∫
∆k

A(xk) · · ·A(x1)dx1 · · · dxk (69)

with the factors A(xi) in reverse order

A(xk) · · ·A(x1) for x1 < . . . < xk. (70)

One owes to R. Feynman and F. Dyson (1949) the following notational
trick. If we have a product of factors U1, · · · , UN , each attached to a point
xi on a line, we denote by T (U1 · · ·UN ) (or more precisely by ←−T (U1 · · ·UN ))
the product Ui1 · · ·UiN where the permutation i1 . . . iN of 1 . . . N is such that
xi1 > · · · > xiN . Hence in the rearranged product the abscisses attached to
the factors increase from right to left. We argue now as in the proof of (62)
and conclude that∫

· · ·
∫
∆k

A(xk) · · ·A(x1)dx1 · · · dxk

=
1
k!

∫ b
a

dx1 · · ·
∫ b
a

dxkT (A(x1) · · ·A(xk)). (71)

We can rewrite the propagator as

U(b, a) = T exp
∫ b
a

A(x)dx, (72)
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with the following interpretation:
a) First use the series expS =

∑
k≥0

1
k!S

k to expand exp
∫ b
a

A(x)dx.

b) Expand Sk = (
∫ b
a

A(x)dx)k as a multiple integral∫ b
a

dx1 · · ·
∫ b
a

dxk A(x1) · · ·A(xk).

c) Treat T as a linear operator commuting with series and integrals, hence

T exp S =
∑
k≥0

1
k!

T (Sk) =
∑
k≥0

1
k!

T{
∫ b
a

dx1 · · ·
∫ b
a

dxk A(x1) · · ·A(xk)}

=
∑
k≥0

1
k!

∫ b
a

dx1 · · ·
∫ b
a

dxk T (A(x1) · · ·A(xk)).

We give a few properties of the T (or time ordered) exponential:
a) Parallel to the rule∫ c
a

A(x)dx =
∫ b
a

A(x)dx +
∫ c
b

A(x)dx (for a < b < c) (73)

we get

T exp
∫ c
a

A(x)dx = T exp
∫ c
b

A(x)dx.T exp
∫ b
a

A(x)dx. (74)

Notice that, in (73), the two matrices

L =
∫ b
a

A(x)dx, M =
∫ c
b

A(x)dx

don’t commute, hence exp(L+M) is in general different from expL. expM .
Hence formula (74) is not in general valid for the ordinary exponential.

b) The next formula embodies the classical method of “variation of con-
stants” and is known in the modern litterature as a “gauge transformation”.
It reads as

S(b).T exp
∫ b
a

A(x)dx.S(a)−1 = T exp
∫ b
a

B(x)dx (75)

with

B(x) = S(x)A(x)S(x)−1 + S′(x)S(x)−1, (76)

where S(x) is an invertible matrix depending on the variable x. The gen-
eral formula (75) can be obtained by “taking a continuous reverse product”←−∏
a≤x≤b over the infinitesimal form

S(x + dx)(I + A(x)dx))S(x)−1 = I + B(x)dx (77)
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(for the proof, write S(x + dx) = S(x) + S′(x)dx and neglect the terms
proportional to (dx)2). We leave it as an exercise to the reader to prove (75)
from the expansion (70) for the propagator.

c) There exists a complicated formula for the T -exponential T exp
∫ b
a

A(x)
dx when A(x) is of the form A1(x)+A2(x)

2 . Neglecting terms of order (dx)2, we
get

I + A(x)dx = (I + A2(x)
dx

2
)(I + A1(x)

dx

2
) (78)

and we can then perform the product
←−∏
a≤x≤b. This formula is the foundation

of themultistep method in numerical analysis: starting from the value y(x)
at time x of the solution to the equation y′ = Ay, we split the infinitesimal
interval [x, x + dx] into two parts

I1 = [x, x +
dx

2
], I2 = [x +

dx

2
, x + dx];

we move at speed A1(x)y(x) during I1 and then at speed A2(x)y(x + dx
2 )

during I2. Let us just mention one corollary of this method, the so-called
Trotter-Kato-Nelson formula:

exp(L + M) = limn→∞(exp(L/n) exp(M/n))n. (79)

d) If the matrices A(x) pairwise commute, the T -exponential of
∫ b
a

A(x)dx
is equal to the ordinary exponential. In the general case, the following formula
holds

T exp
∫ b
a

A(x)dx = expV (b, a) (80)

where V (b, a) is explictly calculated using integration and iterated Lie brack-
ets. Here are the first terms

V (b, a) =
∫ b
a

A(x)dx +
1
2

∫ ∫
∆2

[A(x2), A(x1)]dx1dx2 (81)

+
1
3

∫ ∫ ∫
∆3

[A(x3), [A(x2), A(x1)]]dx1dx2dx3 (82)

−1
6

∫ ∫ ∫
∆3

[A(x2), [A(x3), A(x1)]]dx1dx2dx3 + · · · .

The higher-order terms involve integrals of order k ≥ 4. As far as I can
ascertain, this formula was first enunciated by K. Friedrichs around 1950 in
his work on the foundations of Quantum Field Theory. A corollary is the
Campbell-Hausdorff formula:

expL. expM =

exp(L + M +
1
2
[L,M ] +

1
12

[L, [L,M ]] +
1
12

[M, [M,L]] + · · · ). (83)
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It can be derived from (80) by putting a = 0, b = 2, A(x) = M for 0 ≤ x ≤ 1
and A(x) = L for 1 ≤ x ≤ 2.

The T -exponential found lately numerous geometrical applications. If C
is a curve in a space of arbitrary dimension, the line integral

∫
C

Aµ(x)dxµ is
well-defined and the corresponding T -exponential

T exp
∫
C

Aµ(x)dxµ (84)

is closely related to the parallel transport along the curve C.

3 Operational calculus

3.1 An algebraic digression: umbral calculus

We first consider the classical Bernoulli numbers. I claim that they are
defined by the equation

(B + 1)n = Bn for n ≥ 2, (1)

together with the initial condition B0 = 1. The meaning is the following:
expand (B+1)n by the binomial theorem, then replace the power Bk by Bk.
Hence (B + 1)2 = B2 gives B2 + 2B1 + B0 = B2, that is after lowering the
indices B2 + 2B1 + B0 = B2, that is 2B1 + B0 = 0. Treating (B + 1)3 = B3

in a similar fashion gives 3B2 + 3B1 + B0 = 0. We write the first equations
of this kind

n = 2 2B1 + B0 = 0
n = 3 3B2 + 3B1 + B0 = 0
n = 4 4B3 + 6B2 + 4B1 + B0 = 0
n = 5 5B4 + 10B3 + 10B2 + 5B1 + B0 = 0.

Starting from B0 = 1 we get successively

B1 = −1
2
, B2 =

1
6
, B3 = 0, B4 = − 1

30
, ...

Using the same kind of formalism, define the Bernoulli polynomials by

Bn(X) = (B + X)n. (2)

According to the previous rule, we first expand (B +X)n using the binomial
theorem, then replace Bk by Bk. Hence we get explicitly

Bn(X) =
n∑
k=0

(
n
k

)
Bn−kXk. (3)
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Since d
dX (X + c)n = n(X + c)n−1 for any c independent of X, we expect

d

dX
Bn(X) = nBn−1(X). (4)

This is easy to check on the explicit definition (3). Here is a similar calculation

(B + (X + Y ))n = ((B + X) + Y )n =
n∑
k=0

(
n
k

)
(B + X)n−kY k,

from which we expect to find

Bn(X + Y ) =
n∑
k=0

(
n
k

)
Bn−k(X)Y k. (5)

Indeed from (4) we get

(
d

dX
)kBn(X) =

n!
(n− k)!

Bn−k(X) (6)

by induction on k, hence (5) follows from Taylor’s formula Bn(X + Y ) =∑
k≥0

1
k! (

d
dX )kBn(X)Y k.

We deduce now a generating series for the Bernoulli numbers. Formally

(eS − 1)eBS = eSeBS − eBS = e(B+1)S − eBS

=
∑
n≥0

1
n!

Sn((B + 1)n −Bn) = S((B + 1)1 −B1) = S.

Since eBS =
∑
n≥0

1
n!B

nSn, we expect

∑
n≥0

BnS
n/n! =

S

eS − 1
. (7)

Again this can be checked rigorously.
What is the secret behind these calculations?
We consider functions F (B,X, . . . ) depending on a variable B and other

variables X, . . . . Assume that F (B,X, . . . ) can be expanded as a polynomial
or power series in B, namely

F (B,X, . . . ) =
∑
n≥0

BnFn(X, . . . ). (8)

Then the “mean value” with respect to B is defined by

< F (B,X, ...) >=
∑
n≥0

BnFn(X, ...), (9)
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where the Bn’s are the Bernoulli numbers: this corresponds to the rule “lower
the index in Bn”. If F (B,X, . . . ) can be written as a series∑
i Fi(B,X, . . . )Gi(X, . . . ) where the Gi’s are independent of B, then obvi-

ously 3

< F (B,X, . . . ) >=
∑
i

< Fi(B,X, . . . ) > Gi(X, . . . ). (10)

All formal calculations are justified by this simple rule which affords also
a probabilistic interpretation (see section 3.7).

3.2 Binomial sequences of polynomials

These are sequences of polynomials U0(X), U1(X), ... in one variable X sat-
isfying the following relations:

a) U0(X) is a constant;
b) for any n ≥ 1, one gets

d

dX
Un(X) = nUn−1(X). (11)

By induction on n it follows that Un(X) is of degree ≤ n. The binomial se-
quence is normalized if furthermore U0(X) = 1, in which case every Un(X)
is a monic polynomial of degree n, that is

Un(X) = Xn + c1X
n−1 + . . . + cn.

Applying Taylor’s formula as above (derivation of formula (5)), one gets

Un(X + Y ) =
n∑
k=0

(
n
k

)
Un−k(X)Y k. (12)

We introduce now a numerical sequence by un = Un(0) for n ≥ 0. Putting
X = 0 in (12) and reverting from Y to X as a variable, we get

Un(X) =
n∑
k=0

(
n
k

)
un−kXk. (13)

Conversely, given any numerical sequence u0, u1, ... and defining the polyno-
mials Un(X) by (13), one derives immediately the relations

d

dX
Un(X) = nUn−1(X), Un(0) = un. (14)

3 Sofar we considered only identities linear in the Bn’s. If we want to treat nonlinear
terms, like products Bm.Bn, we need to introduce two independent symbols B
and B′ and use the umbral rule to replace BmB′n by BmBn. In probabilistic
terms (see section 3.7), we introduce two independent random variables and take
the mean value w.r.t. both simultaneously.
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The exponential generating series for the constants un is given by

u(S) =
∑
n≥0

unS
n/n!. (15)

From (13), one obtains the exponential generating series

U(X,S) =
∑
n≥0

Un(X)Sn/n!

for the polynomials Un(X), namely in the form

U(X,S) = u(S)eXS . (16)

This could be expected. Writing ∂X , ∂S . . . for the partial derivatives, the ba-
sic relation ∂XUn = nUn−1 translates as (∂X−S)U(X,S) = 0 or equivalently
as

∂X(e−XSU(X,S)) = 0. (17)

Hence e−XSU(X,S) depends only on S, and putting X = 0 we obtain the
value U(0, S) = u(S).

The umbral calculus can be successfully applied to our case. Hence Un(X)
can be interpreted as 〈(X+U)n〉 provided 〈Un〉 = un. Similarly u(S) is equal
to 〈eUS〉 and U(X,S) to 〈e(X+U)S〉. The symbolic derivation of (16) is as
follows

U(X,S) = 〈e(X+U)S〉 = 〈eXS .eUS〉 = eXS〈eUS〉 = eXSu(S).

We describe in more detail the three basic binomial sequences of polyno-
mials:

a) The sequence In(X) = Xn satisfies obviously (11). In this (rather
trivial) case, we get

i0 = 1, i1 = i2 = . . . = 0, I(S) = 1, I(X,S) = eXS .

b) The Bernoulli polynomials obey the rule (11)(see formula (4)). I
claim that they are characterized by the further property∫ 1

0
Bn(x)dx = 0 for n ≥ 1. (18)

Indeed, introducing the exponential generating series

B(X,S) =
∑
n≥0

Bn(X)Sn/n!, (19)
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the requirement (18) is equivalent to the integral formula∫ 1

0
B(x, S)dx = 1. (20)

According to the general theory of binomial sequences, B(X,S) is of the form
b(S)eXS , hence∫ 1

0
B(x, S)dx =

∫ 1

0
b(S)exSdx = b(S)(

eS − 1
S

).

Solving (20) we get b(S) = S/(eS − 1) and from (7) this is the exponential
generating series for the Bernoulli numbers. The exponential generating series
for the Bernoulli polynomials is therefore

B(X,S) =
SeXS

eS − 1
. (21)

Here is a short table:

B0(X) = 1

B1(X) = X − 1
2

B2(X) = X2 −X +
1
6

B3(X) = X3 − 3
2
X2 +

1
2
X.

c) We come to the Hermite polynomials which form the normalized
binomial sequence of polynomials characterized by∫ +∞

−∞
Hn(x)dγ(x) = 0 for n ≥ 1, (22)

where dγ(x) denotes the normal probability law, that is

dγ(x) = (2π)−1/2e−x
2/2dx. (23)

We follows the same procedure as for the Bernoulli polynomials. Hence for
the exponential generating series

H(X,S) =
∑
n≥0

Hn(X)Sn/n! = h(S)eXS (24)

we get∫ +∞

−∞
H(x, S)dγ(x) = 1, (25)
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that is

1/h(S) =
∫ +∞

−∞
exSdγ(x). (26)

The last integral being easily evaluated, we conclude

h(S) = e−S
2/2. (27)

From this relation, we can evaluate H(X,S) namely

H(X,S) = eXS−S
2/2 = eX

2/2e−(X−S)
2/2 (28)

and using Taylor’s expansion for e−(X−S)
2/2, we get

Hn(X) = (−1)neX2/2(
d

dX
)ne−X

2/2. (29)

In the spirit of operator calculus, use the identity

eX
2/2 d

dX
e−X

2/2 =
d

dX
−X, (30)

hence

Hn(X) = (X − d

dX
)n.1. (31)

This is tantamount to a recursion formula

Hn+1(X) = XHn(X)− d

dX
Hn(X) = XHn(X)− nHn−1(X). (32)

The following table is then easily derived:

H0(X) = 1
H1(X) = X

H2(X) = X2 − 1
H3(X) = X3 − 3X
H4(X) = X4 − 6X2 + 3.

3.3 Transformation of polynomials

We use the standard notation C[X] to denote the vector space of polynomials
in the variable X with complex coefficients. Since the monomials Xn form a
basis of C[X], a linear operator U : C[X]→ C[X] is completely determined



30 Pierre Cartier

by the sequence of polynomials Un(X) defined as the image U[Xn] of Xn

under U. Here are a few examples:

I identity operator In(X) = Xn

D derivation
d

dX
Dn(X) = nXn−1

Tc translation operator Tc,n(X) = (X + c)n.

Notice that in general Tc transforms a polynomial P (X) into P (X + c) and
Taylor’s formula amounts to

Tc = ecD; (33)

furthermore T0 = I. From the definition of the derivative, one gets

D = lim
c→0

(Tc − I)/c. (34)

We can reformulate the properties of binomial sequences:
- the definition DUn(X) = nUn−1(X) amounts to UD = DU;
- the exponential generating series U(X,S) is nothing else than U[eXS ];
- formula (12), after substituting c to Y reads as

Un(X + c) =
n∑
k=0

(
n
k

)
Un−k(X)ck

that is

TcU[Xn] =
n∑
k=0

(
n
k

)
U[Xn−k]ck = U[(X + c)n] = UTc[Xn].

Hence this formula expresses that U commutes to Tc

TcU = UTc; (35)

- formula (13) can be rewritten as

U[Xn] =
∑
k≥0

1
k!

ukDk[Xn]. (36)

From the definition (15) of the exponential generating series, we obtain

U = u(D). (37)

To sum up, our operators are characterized by the following equivalent
properties:

a) U commutes to the derivative D;
b) U commutes to the translation operators Tc;
c) U can be expressed as a power series u(D) in D.

Furthermore, since D acts on eXS by multiplication by S, then U = u(D)
multiplies eXS by u(S), hence we recover formula (16).
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3.4 Expansion formulas

As we saw before, Bn(X) and Hn(X) are monic polynomials and therefore
the sequences (Bn(X))n≥0 and (Hn(X))n≥0 are two basis of the vector space
C[X]. Hence an arbitrary polynomial P (X) can be expanded as a linear com-
bination of the Bernoulli polynomials, as well as of the Hermite polynomials.
Our aim is to give explicit formulas.

Consider a general binomial sequence (Un(X))n≥0 such that u0 �= 0, with
exponential generating series U(X,S) = u(S)eXS . Introduce the inverse se-
ries v(S) = 1/u(S); explicitly

v(S) =
∑
n≥0

vnS
n/n!

and the coefficients vn are defined inductively by

v0 = 1/u0, vn = − 1
u0

n∑
k=1

(
n
k

)
ukvn−k. (38)

In the spirit of umbral calculus, let us define the linear form φ0 on C[X] by
φ0[Xn] = vn. I claim that the development of an arbitrary polynomial
in terms of the Un’s is given by

P (X) =
∑
n≥0

1
n!

φ0[DnP ].Un(X). (39)

Before giving a proof, let us examine the three basic examples:
a) If Un(X) = Xn, then u(S) = 1, hence v(S) = 1. That is v0 = 1 and

vn = 0 for n ≥ 1. The linear form φ0 is given by φ0[P ] = P (0) and formula
(39) reduces to MacLaurin’s expansion

P (X) =
∑
n≥0

1
n!
DnP (0).Xn. (40)

b) For the Bernoulli polynomials we know that 1/b(S) is equal to
(eS − 1)/S, hence vn = 1

n+1 . The linear form φ0 is defined by φ0[Xn] = 1
n+1 ,

that is

φ0[P ] =
∫ 1

0
P (x)dx. (41)

Hence

P (X) =
∑
n≥0

1
n!

∫ 1

0
DnP (x)dx.Bn(X). (42)
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c) In the case of Hermite polynomials, we know that 1/h(S) is equal to
eS

2/2, hence

v2m =
(2m)!
m!2m

, v2m+1 = 0. (43)

According to (26), we get vn =
∫ +∞
−∞ xndγ(x), hence

φ0[P ] = (2π)−1/2
∫ +∞

−∞
P (x)e−x

2/2dx. (44)

In these three cases, the formula for φ0[P ] takes a similar form, namely

φ0[P ] =
∫ b
a

P (x)w(x)dx (45)

with the following prescriptions:
a = −∞, b = +∞, w(x) = δ(x) in case a),
a = 0, b = 1, w(x) = 1 in case b),
a = −∞, b = +∞, w(x) = (2π)−1/2e−x

2/2 in case c).
The normalization φ0[1] = 1 amounts to

∫ b
a

w(x)dx = 1, that is w(x) is the
probability density of a random variable taking values in the interval [a, b](see
section 3.7).

There is a peculiarity in case c).
Namely, according to the general formula (39), an arbitrary polynomial P (X)
can be expanded in a series

∑
n≥0 cnHn(X) of Hermite polynomials where

cn is equal to 1
n!

∫ +∞
−∞ DnP (x) dγ(x). Integrating by parts and taking into

account the definition (29) of Hn(X) we obtain

cn =
∫ +∞

−∞
P (x)Hn(x)dγ(x). (46)

This amounts to the orthogonality relation∫ +∞

−∞
Hm(x)Hn(x)dγ(x) = δmnn! (47)

for the Hermite polynomials. There is no such orthogonality relation for the
Bernoulli polynomials.

One final word about the proof of (39). By linearity, it suffices to consider
the case P = Um, that is to prove the biorthogonality relation

φ0[DnUm] = n!δmn. (48)

We first calculate φ0[Um]. From formula (13), we obtain

φ0[Um] =
m∑
k=0

(
m
k

)
um−kφ0[Xk] =

m∑
k=0

(
m
k

)
um−kvk
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and from (38), φ0[Um] is 0 for m ≥ 1. Since DnUm is proportional to Um−n
according to the basic formula DUm = mUm−1, one gets φ0[DnUm] = 0 for
m �= n. Finally DmUm = m!, hence φ0[DmUm] = m!.

3.5 Signal transforms

A transmission device transforms a suitable input f into an output F. Both
are evolving in time and are represented by functions of time f(t) and F (t)4.
We assume the device to be linear and in a stationary regime, that is there
is a linear operator V taking f(t) into F (t) (linearity) and f(t + τ) into
F (t + τ) for any fixed τ (stationarity).

Here are the main types of response:

Input Output

δ(t) I(t)
ept Θ(t)ept

tn Vn(t)

In the first case, δ(t) is a Dirac singular function, that is a pulse, and I(t) is
the impulse response. By stationarity V transforms δ(t− τ) into I(t− τ);
an arbitrary input f can be represented as a superposition of pulses

f(t) =
∫ +∞

−∞
f(τ)δ(t− τ)dτ (49)

hence by linearity the output

F (t) =
∫ +∞

−∞
f(τ)I(t− τ)dτ =

∫ +∞

−∞
f(t− τ)I(τ)dτ. (50)

In the non-anticipating case, I(t) is zero before the pulse δ(t) occurs, that
is I(t) = 0 for t < 0. In this case the output is given by

F (t) =
∫ t
−∞

f(τ)I(t− τ)dτ. (51)

In the case of the exponential input f(t) = ept, the output is equal to∫ +∞
−∞ epτI(t− τ)dτ =

∫ +∞
−∞ ep(t−τ)I(τ)dτ according to (50), that is to Θ(p)ept

with the spectral gain

Θ(p) =
∫ +∞

−∞
e−pτI(τ)dτ. (52)

4 For simplicity, we restrict to the case where input and output are scalars and not
vectors.
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We can give an a priori argument: fp(t) = ept is a solution of the differential
equation Dfp = pfp; since the operator V is stationary, that is commutes to
the translation operator Tc, it commutes to D = limc→0(Tc − I)/c. Hence
the output Fp corresponding to the input fp is a solution of the differential
equation DFp = pFp, hence is proportional to ept.

In a similar way, the monomials tn satisfy the cascade of differential equa-
tions

D[t] = 1, D[t2] = 2t, D[t3] = 3t2, . . .

Since V commutes to D and the constants are the solutions of the differential
equation D(f) = 0, it follows that the images Vn(t) = V[tn] form a binomial
sequence of polynomials. Explicitly

Vn(t) =
∫ +∞

−∞
(t− τ)nI(τ)dτ =

n∑
k=0

(
n
k

)
vn−ktk

with the constants

vn = (−1)n
∫ +∞

−∞
I(τ)τndτ = Vn(0). (53)

Comparing (52) to (53) we conclude

Θ(p) =
∑
n≥0

vnp
n/n!. (54)

More generally, since ept is equal to
∑
n≥0

1
n!p

ntn, application of the linear
operator V gives

V[ept] =
∑
n≥0

1
n!

pnV [tn], (55)

that is

Θ(p)ept =
∑
n≥0

1
n!

pnVn(t) (56)

Up to the change in notation (p for S, and t for x), the spectral gain Θ(p) is
nothing else than the numerical exponential generating series associated to
the binomial sequence (Vn(t))n≥0.

Comparing with the results obtained in section 3.3, it is tempting to
write the operator V as Θ(D). According to (54), Θ(D) can be interpreted
as
∑
n≥0 vnDn/n!, but it is known that infinite order differential operators

are not so easily dealt with. A better interpretation is obtained via Laplace
or Fourier transform. Indeed since D multiplies ept by p, any function F (D)
ought to multiply ept by F (p), and the rule V[ept] = Θ(p)ept is in agreement
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with the interpretation V = Θ(D). If the input can be represented as a
Laplace transform

f(t) =
∫

eptφ(p)dp (57)

then V = Θ(D) transforms it into the output

F (t) =
∫

eptΘ(p)φ(p)dp. (58)

Similarly, if the input f(t) is given by its spectral resolution (or Fourier
transform)

f(t) =
∫ +∞

−∞
f̂(ω)eiωtdω, (59)

then the output is given by

F (t) =
∫ +∞

−∞
Θ(iω)f̂(ω)eiωtdω. (60)

This is Heaviside’s magic trilogy:
symbolic p
operator D
spectral iω = 2πiν (ν frequency, ω = 2πν pulsation)

Θ(p)←→ Θ(D)←→ Θ(2πiν)

Recall that in the Laplace transform, p is a complex variable, while in the
Fourier transform ω and ν are real variables (see example in the next section).

3.6 The inverse problem

This is the problem of recovering the input, knowing the output. In operator
terms, we have to compute the inverse U of the operator V (if it exists!).
Since V is stationary, so is U, and at the level of polynomial inputs and
outputs, U corresponds to a binomial sequence of polynomials Un(t):

{
input Un(t)
output tn.

Together with the numerical sequence vn = Vn(0), we have to consider
the numerical sequence un = Un(0). Introducing the exponential generating
series

u(S) =
∑
n≥0

1
n!

unS
n, v(S) =

∑
n≥0

1
n!

vnS
n = Θ(S), (61)
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we can write U = u(D) and V = v(D) at least when acting on polynomials.
Since U and V are inverse operators, we expect the relation u(S)v(S) = 1,
equivalent to the chain of relations

u0v0 = 1,
n∑
k=0

(
n
k

)
ukvn−k = 0 for n ≥ 1, (62)

to hold. Indeed, this is easily checked (see section 3.4, formula (38)).
Since the input Un(t) corresponds to the output tn, a Taylor-MacLaurin’s

expansion of the output corresponds to an expansion of the input in terms
of the Un(t). Fix an epoch t0 and use the Taylor expansion of the output

F (t) =
∑
n≥0

1
n!
DnF (t0)(t− t0)n. (63)

Applying the operator U, we get

f(t) =
∑
n≥0

1
n!
DnF (t0).Un(t− t0), (64)

since U transforms (t − t0)n into Un(t − t0) by stationarity. The reader is
invited to compare this formula to formula (39).

We give one illustrating example. Let the output be a moving average of
the input

F (t) =
∫ t
t−1

f(s)ds, (65)

corresponding to the following impulse response
The spectral gain is

Θ(p) =
∫ 1

0
e−pτdτ =

1− e−p

p
. (66)

The inverse series v(p) = 1/Θ(p) is given by

v(p) =
p

1− e−p
. (67)

Since v(−p) = p
ep−1 is the exponential generating series of the Bernoulli

numbers, the polynomials Un(t) are easily identified

Un(t) = (−1)nBn(−t) = Bn(t) + ntn−1 = Bn(t + 1). (68)

Notice that Θ(p) vanishes for p �= 0 of the form p = 2πin with an integer n;
equivalently, the inverse function v(p) has poles for p �= 0, p = 2πin. Hence



Mathemagics 37

I(t)

1

1 t0

Fig. 3. The impulse response corresponding to (65)

not every output is admissible since (65) entails
∑
n F (t+ n) =

∫ +∞
−∞ f(s)ds.

That is, an output satisfies the necessary (and sufficient) condition∑
n

F (t + n) = c (cconstant) (69)

and the input f(t) can be reconstructed from the output F (t) up to the
addition of a function f0(t) with

f0(t) = f0(t + 1),
∫ 1

0
f0(t)dt = 0. (70)

Exercise a) Derive from (64) the relation

f(t) =
∑
n≥0

1
n!

unDnF (t), (71)

for a general transmission device, where 1/Θ(p) =
∑
n≥0 unp

n/n!.
b) In the particular case (65), one gets un = Bn(1), hence un = Bn if

n ≥ 2, and u0 = 1, u1 = 1
2 .

c) Deduce from relation (7) that Bn = 0 for n ≥ 3, n odd.
d) Derive the Euler-MacLaurin summation formula

1
2
(f(t) + f(t− 1))

=
∫ t
t−1

f(s)ds +
∑
m≥1

1
(2m)!

B2m[D2m−1f(t)−D2m−1f(t− 1)]. (72)
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3.7 A probabilistic application

We consider a random variable ξ. In general, we denote by 〈X〉 the mean
value of a random variable X. We want to define a probabilistic version of
the so-called Wick Powers in Quantum Field Theory.

The goal is to associate to ξ a sequence of random variables : ξn : such
that

a) the mean value of : ξn : is 0 for n ≥ 1;
b) there exists a normalized binomial sequence of polynomials

Πn(X) such that : ξn := Πn(ξ).
Let w(x) be the probability density associated to ξ, hence w(x) ≥ 0 and∫ +∞

−∞ w(x)dx = 1. Moreover, for any (non random) function f(x) of a real
variable x, the random variable f(ξ) has a mean value given by

〈f(ξ)〉 =
∫ +∞

−∞
f(x)w(x)dx. (73)

Hence the conditions a) and b) amount to

0 = 〈Πn(ξ)〉 =
∫ +∞

−∞
Πn(x)w(x)dx for n ≥ 1. (74)

Using the same method as in section 3.2, we introduce the exponential gener-
ating series Π(X,S) =

∑
n≥0Πn(X)Sn/n!, hence the relation (74) translates

as ∫ +∞

−∞
Π(x, S)w(x)dx = 1. (75)

Putting π(S) = Π(0, S), hence Π(X,S) = π(S)eXS , we derive

1/π(S) =
∫ +∞

−∞
exSw(x)dx. (76)

We translate these relations into probabilistic jargon: replace S by p and
x by ξ to get

1/π(p) = 〈epξ〉 (77)

Π(ξ, p) =
∑
n≥0

1
n!

pn : ξn : (78)

Π(ξ, p) = π(p)epξ. (79)
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Extending the definition of : : by linearity to epξ =
∑
n≥0

1
n!p

nξn, we rewrite
(78) as Π(ξ, p) =: epξ :. Here is the conclusion

: epξ : =
epξ

〈epξ〉 . (80)

Let us specialize our results in the case of the binomial sequences consid-
ered so far:

a) If ξ = 0, then 〈epξ〉 = 1, hence : epξ := epξ = 1. That is : ξn := 0 for
n ≥ 1.

b) Suppose that ξ is uniformly distributed in the interval [0, 1], that
is w(x) = 1 if 0 ≤ x ≤ 1, and w(x) = 0 otherwise. Then

〈epξ〉 =
∫ 1

0
epxdx =

ep − 1
p

. (81)

We get∑
n≥0

1
n!

pn : ξn : = : epξ : =
pepξ

ep − 1
, (82)

that is

: ξn : = Bn(ξ) (83)

where Bn(X) is the Bernoulli polynomial of degree n. In particular

: ξ : = ξ − 〈ξ〉 = ξ − 1
2

: ξ2 : = ξ2 − ξ +
1
6

: ξ3 : = ξ3 − 3
2
ξ2 +

1
2
ξ, etc . . .

c) Assume now that ξ is normalized: 〈ξ〉 = 0, 〈ξ2〉 = 1, and follows a
Gaussian law. Then w(x) = (2π)−1/2e−x

2/2 and

〈epξ〉 = (2π)−1/2
∫ +∞

−∞
epx−x

2/2dx = ep
2/2. (84)

Reasoning as above, we obtain

: ξn : = Hn(ξ) (85)

where Hn(X) is the Hermite polynomial of degree n. Explicitly

: ξ : = ξ

: ξ2 : = ξ2 − 1
: ξ3 : = ξ3 − 3ξ.
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To get a general formula, apply (80) to obtain the pair of relations

: epξ : = e−p
2/2epξ, epξ = ep

2/2 : epξ : . (86)

Equating equal powers of p, we derive

: ξn : =
∑

0≤k≤n/2
(−1)k n!

2kk!(n− 2k)!
ξn−2k, (87)

and conversely

ξn =
∑

0≤k≤n/2

n!
2kk!(n− 2k)!

: ξn−2k : . (88)

Notice that the orthogonality relation (46) for the Hermite polynomials trans-
lates in probabilistic terms as

〈: ξm : : ξn :〉 = m!δmn, (89)

hence the sequence 1, : ξ :, : ξ2 :, . . . is derived from the natural sequence
1, ξ, ξ2, . . . by orthogonalization.

To conclude, we can use the reflected probability density w(−x) as an
impulse response and define the input-output relation by

F (t) =
∫

f(t + τ)w(τ)dτ, (90)

that is

F (t) = 〈f(t + ξ)〉 (91)

in probabilistic terms. The interpretation is that the input is spoiled by ran-
dom delay in transmission. Then Πn(t) is the input corresponding to the
output tn. Analytically this is expressed by∫ +∞

−∞
Πn(t + τ)w(τ)dτ = tn (92)

and probabilistically by

〈: (ξ + t)n :〉 = tn. (93)

3.8 The Bargmann-Segal transform

Let us consider again the input-output transformation in the Gaussian case.
It is then called the Bargmann-Segal transform (or B-transform), denoted by
B. According to (90), we have

Bf(z) =
1√
2π

∫ +∞

−∞
f(x + z)e−x

2/2dx (94)
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or

Bf(z) =
1√
2π

∫ +∞

−∞
f(x)e−(z−x)

2/2dx. (94′)

Comparing formulas (23) and (27), one obtains

e−(z−x)
2/2 = e−x

2/2
∑
n≥0

Hn(x)zn/n!, (95)

and by integrating term by term in the expression (94′) one concludes

Bf(z) =
∑
n≥0

Γn(f)zn/n! (96)

with

Γn(f) =
∫ +∞

−∞
Hn(x)f(x)dγ(x). (97)

Taking into account the orthogonality property (46) namely∫ +∞

−∞
Hm(x)Hn(x)dγ(x) = δmnn!,

one derives Γn(f) = n!cn for f given by a series
∑
n≥0 cnHn(x).

That is, the B-transform takes
∑
n≥0 cnHn(x) into

∑
n≥0 cnz

n.
To be more precise, we need to introduce some function spaces. The nat-

ural one is L2(dγ) consisting of the (measurable) functions f(x) for which
the integral

∫ +∞
−∞ |f(x)|2dγ(x) is finite; the scalar product is given by

〈f1|f2〉 =
∫ +∞

−∞
f1(x)f2(x)dγ(x). (98)

In this space, the functions Hen(x) := Hn(x)/(n!)1/2 (for n = 0, 1, . . . ) form
an orthonormal basis 5. The B-transform takes this space onto the space of
series

∑
cnz

n with
∑
n≥0 n!|cn|2 < ∞.

In its original form (94), the transformation B requires z to be real, but
the form (94′) extends to the case of a complex number z. Indeed, from the
property that

∑
n≥0 n!|cn|2 is finite, it follows that the series

∑
n≥0 cnz

n has
an infinite radius of convergence, hence represents an entire function of the
complex variable z. The space of such entire functions is denoted F(C) and
called the Fock space (in one degree of freedom, see section 3.9).
5 The orthonormality condition 〈Hem|Hen〉 = δmn is nothing else than the or-
thogonality condition (46). But it requires a proof to show that this system is
complete, that is that any function in the Hilbert space L2(dγ) can be approx-
imated by polynomials (in the norm convergence).
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The elements of L2(dγ) can be interpreted as the random variables of the
form X = f(ξ) with 〈|X|2〉 finite, where ξ is a normalized Gaussian random
variable. We saw that B takes Hn(ξ) = : ξn : into zn. Hence it is tempting
to denote by : : the map inverse to B, so that : zn : = Hn(x). We have a
new kind of operational calculus

B
L2(dγ) ⇀↽ F(C),

: :

where B transforms a random variable X = f(ξ) into the entire
function

BX(z) = e−z
2/2〈X.ezξ〉 (99)

and the inverse map takes an entire function Φ(z) =
∑
n≥0 cnz

n in
the Fock space into the random variable : Φ(z) :=

∑
n≥0 cn : ξn :.

According to the definition (94), B takes the function epx into epz+p
2/2,

that is it acts as eD
2/2 where D is the derivation, followed by the change

of variable x into z. This result can be reformulated as follows. Using the
exponential generating series∑

n≥0
Hn(x)pn/n! = epx−p

2/2 (100)

for the Hermite polynomials, and noting that eD
2/2 applied to epz−p

2/2 gives
epx, we conclude that eD

2/2 takes Hn(x) into xn, that is B coincides on the
polynomials with the differential operator eD

2/2 of infinite degree.
We would like to conclude to the general rule

B = eD
2/2, (101)

hence

: : = e−D2/2. (102)

One way to substantiate these claims is to consider the heat (or diffusion
equation)

∂sF (s, x) =
1
2
∂2xF (s, x) (103)

with initial value

F (0, x) = f(x). (104)

Since D = ∂x, the solution of equation (103) can be written formally as
F (s, x) = esD

2/2f(x), hence eD
2/2f(x) represents the value for s = 1 of
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the solution of equation (103) which agrees for s = 0 with f(x). But
we know an explicit solution to the heat equation

F (s, x) =
1√
2πs

∫ +∞

−∞
f(x + u)e−u

2/2sdu. (105)

Comparing with (94), we obtain

Bf(x) = F (1, x) (106)

and this relation is the true expression of B = eD
2/2.

The operator eD
2/2 (or B) is smoothing. That is, if we simply assume

that f belongs to L2(dγ) (that is that the integral
∫ +∞
−∞ |f(x)|2e−x2/2dx is

finite), then the function F (1, x) = eD
2/2f(x) extends as an entire function in

the complex domain. Conversely, theWick operator : : = e−D2/2 makes
sense only for the functions g(x) (for x real) which extend in the complex
domain into a function Φ(z) (for z complex) belonging to the Fock space
F(C).

3.9 The quantum harmonic oscillator

Let us rewrite the definition of the B-transform as an integral operator

Bf(z) =
∫ +∞

−∞
B(z, x)f(x)dx (107)

with a kernel

B(z, x) = (2π)−1/2e−(z−x)
2/2. (108)

It is often more convenient to replace the Hilbert space L2(dγ) by the Hilbert
space L2(R) 6. Defining the function u0(x) by (2π)−1/4e−x

2/4, we get

dγ(x) = u0(x)2dx (109)

hence
∫ |f(x)|2dγ(x) is finite if and only if

∫ |f(x)u0(x)|2dx is finite. That
is the multiplication by the function u0(x) gives an isometry of L2(dγ) onto
L2(R). We can transfer the B-transform to L2(R), as the isometry B′ of
L2(R) onto F(C) 7 defined by Bf = B′(fu0). Explicitly

B′f(z) =
∫ +∞

−∞
B′(z, x)f(x)dx (110)

6 consisting of the (measurable) functions φ(x) such that
∫ +∞

−∞ |φ(x)|2dx be finite,

with scalar product 〈φ1|φ2〉 =
∫ +∞

−∞ φ1(x)φ2(x)dx.
7 with the scalar product 〈Φ1|Φ2〉 = ∑

n≥0 n!cn,1cn,2 for Φj(z) =
∑
n≥0 cn,jz

n

(j = 1, 2).
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with

B′(z, x) = u0(x)−1B(z, x) = (2π)−1/4e−z
2/2+zx−x2/4. (111)

Many properties are easier to describe in the Fock space. For instance the
function 1 is called the ground state Ω, the multiplication by z is called
the creation operator, denoted by a∗, and the derivation ∂z = d

dz is the
annihilation operator, denoted by a. The vectors

en =
1√
n!
(a∗)nΩ, (112)

that is the functions en(z) = 1√
n!

zn, form an orthonormal basis of F(C) with
e0 = Ω. An easy calculation gives{

aen = n1/2en−1 for n ≥ 1, ae0 = 0
a∗en = (n + 1)1/2en+1,

(113)

hence the matrices

a =


0
√
1 0 0 . . .

0 0
√
2 0 . . .

0 0 0
√
3 . . .

0 0 0 0 . . .
. . . . . . .
. . . . . . .

, a∗ =



0 0 0 0 . . .√
1 0 0 0 . . .

0
√
2 0 0 . . .

0 0
√
3 0 . . .

. . . . . . .

. . . . . . .


in the basis (en)n≥0; it follows that a and a∗ are adjoint to each other.
Moreover from the definitions a∗ = z, a = ∂z follows the commutation
relation

aa∗ − a∗a = 1. (114)

Finally the number operator N = a∗a is given by N = z∂z, hence is
diagonalized in the basis (en)

Nen = nen. (115)

In the spirit of operational calculus, we transfer these results from the
Fock space model to the spaces L2(dγ) and L2(R). The following table sum-
marizes these translations (where ∂x is d

dx ):
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Space L2(dγ) L2(R) F(C)

Ω 1 (2π)−1/4e−x
2/4 = u0(x) 1

en (n!)−1/2Hn(x) (n!)−1/2Hn(x)u0(x) (n!)−1/2zn

a∗ x− ∂x x/2− ∂x z

a ∂x x/2 + ∂x ∂z

N x∂x − ∂2x −∂2x + x2/4− 1/2 z∂z

For instance, the fact that a∗ corresponds to x − ∂x in L2(dγ) is proved
as follows: from the definition of B(z, x) one gets

(x + ∂x)B(z, x) = zB(z, x). (116)

Multiplying by f(x) and integrating by parts, we get∫
B(z, x)(x− ∂x)f(x)dx =

∫
(x + ∂x)B(z, x)f(x)dx

= z

∫
B(z, x)f(x)dx,

that is B((x− ∂x)f) = zBf . The other cases are similar.
We apply these results to the harmonic oscillator. In classical mechan-

ics, the harmonic oscillator is described by the Hamiltonian H = p2

2m + Kq2

2
in canonical coordinates p,q. The equation of motion is q̈ + ω2q = 0 with the
pulsation ω =

√
K/m, and the momentum p = mq̇. To get the corresponding

quantum Hamiltonian H, replace p by the operator p = −ih̄∂q hence

H = − h̄2

2m
∂2q +

mω2q2

2
. (117)

Introduce the dimensionless coordinate x = (2mω/h̄)1/2q. Then H can be
rewritten as

H = h̄ω(a∗a+
1
2
) (118)

in the model L2(R). From the diagonalization of N = a∗a, we conclude that
the energy levels of the quantum harmonic oscillator (that is, the eigenvalues
ofH) are given by h̄ω(n+ 1

2 ) with n = 0, 1, 2, . . . : that is Planck’s radiation
law, with the correction 1

2 giving 1
2 h̄ω for the energy of the ground state

u0 = Ω.
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4 The art of manipulating infinite series

4.1 Some divergent series

Euler claimed that S = 1−1+1−1+ . . . is equal to 1
2 . Here is the purported

proof:

S = 1 − 1 + 1 − 1 + . . .
+ S = 1 − 1 + 1− . . .
——————————–
2 S = 1 + 0 + 0 + 0 + . . . = 1

What is implicit is the use of two rules:
a) If S = u0 + u1 + u2 + . . . , then S = 0 + u0 + u1 + . . .
b) If S = u0 + u1 + u2 + . . . and S′ = u0 + u′1 + u′2 + . . . , then

S + S′ = (u0 + u′0) + (u1 + u′1) + (u2 + u′2) + . . . .
These rules certainly hold for convergent series but to extend them to diver-
gent series is somewhat hazardous.

Let us repeat the previous calculation in a slightly more general form:

S = 1 − t + t2 − t3 + . . .
+ tS = t − t2 + t3 − . . .
———————————

(1 + t)S = 1 + 0 + 0 + 0 + . . . = 1.

The result is

1− t + t2 − t3 + . . . =
1

1 + t
, (1)

the classical summation of the geometric series. If t is a real number such
that |t| < 1, the geometric series is convergent, and the use of rules a) and
b) is justified. To get Euler’s result, take the limiting value t = 1 in (1).

What we need is the explicit description of various procedures to define
rigorously the sum of certain divergent series (not all at once) and to compare
these procedures. Suppose we want to define the sum

S = u0 + u1 + . . . . (2)

Introduce weights p0,t, p1,t, . . . and the weighted series

St = p0,tu0 + p1,tu1 + . . . . (3)

If the series St is convergent for each value of the parameter t, and
St approaches a limit S when t approaches some limiting value t0,
then S is the sum for this procedure 8.

The previous procedure is reasonable only when limt→t0 pn,t = 1 for n =
0, 1, . . . . Some examples:
8 See Knopp’s book [8] for this method.
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a) p0,N = p1,N = . . . = pN,N = 1, pn,N = 0 for n > N and N =
0, 1, 2, . . . . Then the weighted sum amounts to the finite sum

SN = u0 + . . . + uN

(obviously convergent) and the convergence of SN towards a limit S corre-
sponds to the convergence of the series u0 + u1 + u2 + . . . in the standard
sense, with the standard sum S.

b) Put σN = 1
N+1 (S0 + . . . + SN ); this corresponds to the weights

pn,N =
{
1− n

N+1 for 0 ≤ n ≤ N

0 for n > N.
(4)

If σN converges to a limit σ, this is the Cesaro-sum of the series u0 + u1 +
u2 + . . . .

c) To get the Abel summation, we introduce the weights pn,t = tn for
n = 0, 1, 2, . . . and a real parameter t with 0 < t < 1. We take therefore the
limit for t = 1 of the power series

∑
n≥0 unt

n.
It is known that every convergent series with sum S is Cesaro-summable

with the same sum σ = S. Similarly, Cesaro summation is extended by Abel
summation. Euler’s example is un = (−1)n, hence

SN =
{
1 if N > 0 is even
0 if N > 0 is odd (5)

and therefore

σN =
{ 1
2 if N is odd
1
2 +

1
2N+2 if N is even. (6)

It follows that σN converges to σ = 1
2 . Hence the series 1 − 1 + 1 − 1 + . . .

is Cesaro-summable to 1
2 , and a previous calculation shows that it is Abel-

summable to 1
2 also.

The scope of Abel summation can be extended in various ways. For in-
stance, if the sequence (un) is bounded, that is |un| ≤ M for n = 0, 1, 2, . . .
with a constant M independent of n, then the power series

∑
n≥0 unz

n con-
verges for any complex number z with |z| < 1 and defines therefore a holo-
morphic function U(z) in the open disk |z| < 1 (see Fig. 4). If the limit
limr→1 U(reiθ)(for 0 ≤ r < 1) exists, it can be taken as an Abel sum for the
series

∑
n≥0 une

inθ.
In a slightly more general way, we can assume that the sequence (un) is

polynomially bounded, that is

|un| ≤ Cnk

for all n = 1, 2, . . . and some constants C > 0 and k = 1, 2, . . . The radius
of convergence of the series

∑
n≥0 unz

n is still at least 1, and if U(1) =
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i

-1

-i

10

Fig. 4. The open unit disk

limr→1 U(r) = limr→1
∑
n≥0 unr

n exists, it is the Abel sum for u0 + u1 +
u2 + . . .

We just give one example, namely un = (−1)nnk for k = 0, 1, 2, . . . . We
calculate

U(z) =
∑
n≥0

unz
n =
∑
n≥0

(−1)nnkzn =
∑
n≥0

nk(−z)n

=
∑
n≥0

(z∂z)k(−z)n = (z∂z)k
∑
n≥0

(−z)n = (z∂z)k
1

1 + z
.

Particular cases:

k = 0, U(z) =
1

1 + z
, U(1) =

1
2

k = 1, U(z) =
−z

(1 + z)2
, U(1) = −1

4

k = 2, U(z) =
z(z − 1)
(1 + z)3

, U(1) = 0

k = 3, U(z) =
−z3 + 4z2 − z

(1 + z)4
, U(1) =

1
8
,

that is∑
n≥0

(−1)n =
1
2

∑
n≥0

(−1)nn = −1
4
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n≥0

(−1)nn2 = 0

∑
n≥0

(−1)4n3 = 1
8
.

In general, we get U(1) = (z∂z)k 1
1+z |z=1 that is, after the change of variable

z = eu,∑
n≥0

(−1)nnk = ∂ku
1

eu + 1
|u=0. (7)

Using the exponential generating series for the Bernoulli numbers in the form

1
eu − 1

=
1
u
+
∑
k≥0

Bk+1
(k + 1)!

uk

we obtain

1
eu + 1

=
1

eu − 1
− 2

e2u − 1
=
∑
k≥0

(1− 2k+1)Bk+1
(k + 1)!

uk, (8)

hence Euler’s result∑
n≥0

(−1)nnk = (1− 2k+1)Bk+1
k + 1

. (9)

We leave it to the reader to rederive the previous cases 0 ≤ k ≤ 3 using the
values for B1, B2, B3, B4 given in section 3.1. We come back to this result in
section 4.4.

Euler gave formulas for wildly divergent series like
∑
n≥0(−1)nn!. Using

the classical formula

n! =
∫ ∞
0

e−ttndt (10)

and assuming term by term integration, we get∑
n≥0

(−1)nn! =
∑
n≥0

(−1)n
∫ ∞
0

e−ttndt

=
∫ ∞
0

e−t
∑
n≥0

(−t)n dt =
∫ ∞
0

e−t

1 + t
dt,

the last integral being convergent. This is just the beginning of the use of
Borel transform and Borel summation for divergent series.
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4.2 Polynomials of infinite degree and summation of series

It is an important principle that a polynomial can be reconstructed
from its roots. More precisely, let

P (z) = cnz
n + cn−1zn−1 + . . . + c1z + c0 (11)

(with cn �= 0) be a polynomial of degree n with complex coefficients. If λ1 is a
root of P , that is P (λ1) = 0, it is elementary to factorize P (z) = (z−λ1)P1(z)
where P1(z) is a polynomial of degree n− 1. Continuing this process, we end
up with a factorization

P (z) = (z − λ1) . . . (z − λm)Q(z) (12)

where the polynomial Q(z) of degree n−m has no more roots. According to
a highly non-trivial result, first stated by d’Alembert (1746) and proved by
Gauss (1797), a polynomial without roots is a constant, hence the factoriza-
tion (12) takes the form

P (z) = cn(z − λ1) . . . (z − λn) (13)

with m = n. By a well known calculation, one derives the following relations
between coefficients and roots

λ1 + . . . + λn = −cn−1/cn∑
i<j

λiλj = cn−2/cn, etc . . .

For our purposes, it is better to use the inverses of the roots, assumed
to be nonzero. Since the logarithmic derivative transforms product into sum
and annihilates constants, we derive

DP (z)/P (z) =
n∑
i=1

1
z − λi

. (14)

Using the geometric series gives
n∑
i=1

1
z − λi

= −
n∑
i=1

∑
k≥0

zk/λk+1i . (15)

Introducing the sums of inverse powers of roots

γk =
n∑
i=1

λ−ki , (16)

we conclude from this calculation

zDP (z) + P (z)
∑
k≥1

γkz
k = 0. (17)
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Assuming for simplicity c0 = 1 and equating the coefficients of equal powers
of z, we obtain the following variant of Newton’s relations

γk + c1γk−1 + . . . + ck−1γ1 + kck = 0 (18)

for k ≥ 1. It is important to notice that the degree n of P (z) does not
appear explicitly in the relation (18), which can be solved inductively

γ1 = −c1 (19)
γ2 = c21 − 2c2 (20)
γ3 = −c31 + 3c1c2 − 3c3 (21)
γ4 = c41 − 4c21c2 + 4c1c3 − 4c4 + 2c22. (22)

Around 1734, Euler undertook to calculate the sum of the series S2 =∑
n≥1

1
n2 . This series is slowly convergent, but Euler invented efficient acceler-

ation methods for summing series and calculated the sum S2 = 1.64493406 . . . ;
he recognized S2 = π2/6. He obtained also the value of S4 =

∑
n≥1 1/n

4 to
be π4/90. To establish these results rigorously, he introduced the equation
sinx = 0 admitting the solutions x = 0,±π,±2π,±3π, . . . Discarding the
root x = 0 and using the power series expansion of sinx, we are led to con-
sider the equation

1− x2

6
+

x4

120
− . . . = 0

with roots ±π,±2π,±3π, . . . . With the previous notations we have

c1 = 0, c2 = −1
6
, c3 = 0, c4 =

1
120

, . . .

γ2 =
∑
n≥1

[
1

(πn)2
+

1
(−πn)2

] = 2S2/π2

γ4 =
∑
n≥1

[
1

(πn)4
+

1
(−πn)4

] = 2S4/π4.

Assuming that the relations (20) and (22) still hold, we get

2S2/π2 = γ2 = −2c2 = 1
3

2S4/π4 = γ4 = −4c4 + 2c22 = − 1
30

+
1
18

=
1
45

.

The sought for relations

S2 = π2/6, S4 = π4/90

follow immediately.
To summarize the method used by Euler:
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a) first guess the value from accurate numerical work;
b) consider the function

sin x

x
= 1− x2

6
+

x4

120
− . . .

as a polynomial of infinite degree, with infinitely many roots
±π,±2π,±3π, . . . ;

c) since the Newton’s relations (19) to (22) don’t involve explicitly the
degree n of the polynomial, assume their validity in the case n =∞ as well,
and exploit them for P (x) = (sin x)/x.

4.3 The Euler-Riemann zeta function

We use Riemann’s definition and notation

ζ(s) =
∑
n≥1

n−s. (23)

The series converges absolutely for any complex number s with real part �(s)
greater than 1. It has been shown by Riemann that ζ(s) can be analytically
continued to the whole complex plane, the only singularity being a pole of
order 1 at s = 1, that is ζ(s) − 1/(s − 1) is an entire function. Obviously
ζ(1) =

∑
n≥1 1/n is a divergent series, but ζ(s) is defined when s �= 1 is an

integer (positive or negative). Euler was the first to calculate ζ(s) when s is
an integer.

We consider the case where s is even and strictly positive. Euler proved
the formula

ζ(2k) =
22k−1π2k|B2k|

(2k)!
(24)

and in particular

ζ(2) =
2π2|B2|

2!
=

π2

6
(25)

ζ(4) =
8π4|B4|

4!
=

π4

90
. (26)

Since ζ(2) =
∑
n≥1 1/n

2 = S2 and similarly ζ(4) = S4, we recover the for-
mulas for S2 and S4. The method we used in the previous section could be
extended to cover the general case (24), but it is simpler to go back to the for-
mula given for the logarithmic derivative in (14). For the function sin z, the
logarithmic derivative is cot z = cos z/ sin z. This function is meromorphic
in the whole complex plane, with simple poles of residue 1 at each integral
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multiple of π. Euler assumed at first that, in analogy with (14), cot z
should be equal to the sum of its polar contributions, that is

cot z =
+∞∑
n=−∞

1
z − nπ

. (27)

Assume this relation for a moment, and derive (24). The series (27) is not
absolutely convergent, but can be summed in a symmetrical way by taking∑+∞
n=−∞ to be limN→∞

∑+N
n=−N . Hence

cot z − 1
z
=
∞∑
n=1

2z
z2 − n2π2

. (28)

The right-hand side can be developed using the geometric series; for |z| < π,
the series involved are absolutely convergent, hence

∞∑
n=1

2z
z2 − n2π2

= −
∞∑
n=1

2z
∞∑
k=1

(z2)k−1

(n2π2)k
= −2

∞∑
n=1

∞∑
k=1

z2k−1

n2kπ2k

= −2
∞∑
k=1

z2k−1

π2k

∞∑
n=1

1
n2k

,

that is

cot z =
1
z
− 2
∑
k≥1

ζ(2k)
π2k

z2k−1. (29)

Using again the exponential generating series for the Bernoulli numbers yields

cot z = i
e2iz + 1
e2iz − 1

=
2i

e2iz − 1
+ i

= 2i{ 1
2iz

− 1
2
+
∑
k≥1

B2k
(2k)!

(2iz)2k−1}+ i

hence finally

cot z =
1
z
+
∑
k≥1

(−1)k22kB2k
(2k)!

z2k−1. (30)

To establish (24), it is enough to compare the expansions (29) and (30) for
cot z and to remark that ζ(2k) =

∑
n≥1

1
n2k is the sum of a convergent series

of positive numbers hence ζ(2k) > 0.
Euler’s proof for the expansion (27) of cot z is reproduced in many text-

books. Here is a variant which seems to have been unnoticed so far. Define

Φ(z) = cot z −
+∞∑
n=−∞

1
z − nπ

. (31)
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Examining the poles of cot z, we see that Φ(z) is an entire function of the
complex variable z. A simple manipulation yields the functional equation

Φ(z) =
1
2
[Φ(

z

2
) + Φ(

z + π

2
)]; (32)

we have to prove that Φ(z) = 0 for all z.
a) The function Φ is bounded: indeed, denote by Cn the set of complex

numbers whose modulus is at most (2n +1)π. Since C1 is a compact set and
Φ is continuous, there exists a constant M > 0 such that |Φ(z)| ≤ M for z
in C1. Assuming the estimate |Φ(z)| ≤ M for z in Cn, we use the functional
equation for z in Cn+1

|Φ(z)| ≤ 1
2
|Φ(z

2
)|+ 1

2
|Φ(z + π

2
)| (33)

and remark that both z/2 and (z+π)/2 belongs to Cn, hence |Φ(z/2)| ≤ M ,
|Φ((z + π)/2)| ≤ M ; from (33) we conclude that |Φ(z)| ≤ M (for z in Cn+1).
Every complex number belongs to some set Cn, hence |Φ(z)| ≤ M for all z.

b) We appeal now to Liouville’s theorem to conclude that Φ, being a
bounded entire function is a constant, hence Φ(z) = Φ(0).

c) The function Φ is odd, that is Φ(−z) = −Φ(z), hence Φ(0) = 0.
Liouville’s theorem, the main ingredient in this proof, was proved around

1850, a century after Euler worked on these questions. It is interesting to note
that d’Alembert-Gauss theorem is an easy corollary of Liouville’s theorem
[Hint: if P (z) is a polynomial without zeroes, the function Φ(z) = 1/P (z) is
entire and bounded, hence a constant; that is, P (z) is a constant].

4.4 Sums of powers of numbers

The other result of Euler about ζ(s) can be stated as follows

1k + 2k + 3k + . . . = −Bk+1
k + 1

(34)

for k = 1, 2, 3, . . . It looks at first suspicious, since it gives a finite value to
an infinite sum of positive numbers, obviously divergent since each term is
at least 1. Euler’s derivation is more or less as follows.

Formula (9) can be written as

1k − 2k + 3k − 4k + . . . = −(1− 2.2k)
Bk+1
k + 1

. (35)

On the other hand, multiply the right-hand side of (34) by 1 − 2.2k and
rearrange. This yields
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This yields

(1− 2.2k)(1k + 2k + 3k + . . . ) =
1k + 2k + 3k + 4k + 5k + 6k + . . .

−2( 2k + 4k + 6k + . . . )
——————————————–

= 1k − 2k + 3k − 4k + 5k − 6k + . . .

and finally (34) is obtained from (35).
This procedure is highly questionable, but can be fixed as follows. We

introduce two functions

ζ(s) =
∑
n≥1

n−s, η(s) =
∑
n≥1

(−1)n−1n−s. (36)

Provided these functions can be continued analytically to the negative inte-
gers, formula (34) and (35) read respectively as

ζ(−k) = −Bk+1
k + 1

(34′)

η(−k) = (2k+1 − 1)
Bk+1
k + 1

(35′)

for k = 1, 2, . . . Furthermore

η(s) =
∑
n odd

n−s −
∑
n even

n−s =
∑
n≥1

n−s − 2
∑
n even

n−s

= ζ(s)− 2
∑
m≥1

(2m)−s

and finally

η(s) = (1− 21−s)ζ(s). (37)

Our manipulation of series is justified as long as �(s) > 1, but the final
formula remains valid for all s for which both ζ(s) and η(s) are regular
(analytic continuation!). In particular

η(−k) = (1− 2k+1)ζ(−k). (38)

Hence formulas (34′) and (35′) are equivalent, substantiating Euler’s deriva-
tion.

Using the known values of the Bernoulli numbers, we deduce

ζ(−2) = ζ(−4) = ζ(−6) = . . . = 0

ζ(−1) = − 1
12

, ζ(−3) = 1
120

, ζ(−5) = − 1
252

, . . . .
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It can also be shown that ζ(0) = −1/2. Hence we get the paradoxical results:

ζ(0) = 1 + 1 + 1 + . . . = −1
2

ζ(−1) = 1 + 2 + 3 + . . . = − 1
12

.

Among the many methods available to construct the analytical contin-
uation of ζ(s), we select the following one using η(s). Indeed, from Euler’s
definition of the gamma function

Γ (s) =
∫ ∞
0

e−tts−1dt (39)

(for �(s) > 1), we deduce by a simple change of variable

Γ (s)n−s =
∫ ∞
0

e−ntts−1dt. (40)

By summation and term by term integration

Γ (s)η(s) =
∑
n≥1

(−1)n−1Γ (s)n−s =
∑
n≥1

(−1)n−1
∫ ∞
0

e−ntts−1dt

=
∫ ∞
0

{
∑
n≥1

(−1)n−1e−nt}.ts−1dt,

that is

Γ (s)η(s) =
∫ ∞
0

ts−1

et + 1
dt. (41)

All the calculations are justified as long as �(s) > 1. We use now a general
principle, unknown to Euler, to deal with integrals of the type

Φ(s) =
∫ ∞
0

F (t)ts−1dt. (42)

We split the integral as
∫ 1
0 +
∫∞
0 .

a) Assuming that F (t) decreases at infinity faster than any power t−k (for
k ≥ 0), then

Φ1,∞(s) =
∫ ∞
1

F (t)ts−1dt (43)

extends to an entire function.
b) Assuming that F (t) is differentiable to any order on the closed interval

[0, 1], then

Φ0,1(s) =
∫ 1

0
F (t)ts−1dt (44)
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extends to a meromorphic function in the complex plane C. The only singu-
larities 9 are at s = 0,−1,−2, . . . with singular part DkF (0)

k!(s+k) around s = −k.
Applying this principle to the definition (39) of Γ (s) we recover the well-

known fact that Γ (s) extends as a meromorphic function, with poles at s =
0,−1,−2, . . . and singular part (−1)k

k!(s+k) around s = −k. We use now formula
(41) for Γ (s)η(s). Hence this function extends to a meromorphic function
with poles at s = 0,−1, . . . and singular part ck

s+k around s = −k, where

1
et + 1

=
∑
k≥0

ckt
k. (45)

According to (8), we get

ck =
(1− 2k+1)Bk+1

(k + 1)!
. (46)

Dividing Γ (s)η(s) by Γ (s), the poles cancel; hence η(s) extends as an entire
function, and comparing the singular parts of Γ (s)η(s) and Γ (s) around
s = −k, we find

η(−k) = (−1)kk!ck. (47)

We have to distinguish several cases:
-k = 0 yields η(0) = c0 = −B1 = 1

2 ;
-k ≥ 2 is even yields η(−k) = 0 since Br = 0 for r = k + 1 odd;
-k ≥ 1 is odd, then (−1)k = −1 and

η(−k) =
(2k+1 − 1)Bk+1

k + 1
. (48)

This is Euler’s formula (35) or formula (35′). The analytical continuation of
ζ(s) can now be performed by using (37), that is we define

ζ(s) =
η(s)

1− 21−s
. (49)

Since η(s) is entire, the only singularity of ζ(s) is a pole at s = 1, with
singular part 1

s−1 . We can calculate now ζ(−k) from η(−k) and get

ζ(−k) = −Bk+1
k + 1

(50)

for k = 1, 2, . . . as expected. Furthermore, from η(0) = 1
2 we get the remaining

value

ζ(0) = −η(0) = −1
2
. (51)

9 Hint: integrate by parts using d
dt

t−s = −st−s−1.
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4.5 Variation I: Did Euler really fool himself?

Bourbaki wrote (in [2], page VI.29): “Mais la tendance au calcul formel est la
plus forte, et l’extraordinaire intuition d’Euler lui-même ne l’empêche pas de
tomber parfois dans l’absurde, lorsqu’il écrit par exemple 0 =

∑+∞
n=−∞ xn”.

Did Euler really fool himself?
To keep with our habits (after Cauchy!) denote by z a complex variable

and try to evaluate the sum of I =
∑+∞
n=−∞ zn. We break the sum into

I+ + I− − 1, where

I+ =
∑
n≥0

zn, I− =
∑
n≤0

zn.

By the geometric series, we get I+ = 1
1−z and I− = 1

1−1/z and simple algebra
gives

I+ + I− =
1

1− z
+

z

z − 1
=

1− z

1− z
= 1, (52)

hence I = 0 as claimed. What is paradoxical is that there is no complex
number z �= 0 for which both series I+ and I− converge simultaneously,
since

∑
n≥0 zn converges for |z| < 1 and

∑
n≤0 zn converges for |z| > 1. We

really need analytical continuation: I+ as a function of z extends from the
convergence domain |z| < 1 to C−{1} as the rational function 1

1−z , and one
goes from I+to I− by inverting z (into 1/z). If both I+ and I− are extended
in this way to C−{1}, the calculation (52) is perfectly valid, hence I = 0 in
this sense.

Another method to prove I = 0 is to remark that multiplying I by z shifts
zn to zn+1, hence rearranges the series, hence Iz = I, hence I(z − 1) = 0,
and by dividing by z − 1, we get I = 0 for z �= 1. Nevertheless, there is some
trouble. Consider the critical region |z| = 1 where both I+ and I− diverge,
and use polar coordinates z = e2πiu. Then I is the series

J(u) =
+∞∑
n=−∞

e2πinu. (53)

Playing with Fourier series, introduce a test function f(u) supposed to be
smooth (i.e. infinitely differentiable) and periodic f(u+1) = f(u). We expand
it as a Fourier series

f(u) =
+∞∑
n=−∞

cne
2πinu (54)

with

cn =
∫ 1

0
e−2πinuf(u)du. (55)
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From (54) we get, by putting u = 0,

f(0) =
+∞∑
n=−∞

cn (56)

hence by (55) and (53)

f(0) =
+∞∑
n=−∞

∫ 1

0
e−2πinuf(u)du =

∫ 1

0
{
+∞∑
n=−∞

e−2πinu}.f(u)du

and finally

f(0) =
∫ 1

0
J(u)f(u)du. (57)

Remove now the assumption f(u+ 1) = f(u) by introducing a smooth func-
tion φ(u) vanishing off some finite interval and by defining

f(u) =
+∞∑

m=−∞
φ(u + m) (58)

(an absolutely convergent series). By an easy manipulation, one derives from
(57)

+∞∑
m=−∞

φ(m) =
∫ +∞

m=−∞
J(u)φ(u)du. (59)

Using the standard Dirac’s function δ(u), we get by definition

φ(m) =
∫ +∞

−∞
φ(u)δ(u−m)du,

hence

0 =
∫ +∞

−∞
{J(u)−

+∞∑
m=−∞

δ(u−m)}φ(u)du. (60)

Since the test function φ is arbitrary, we can omit it from (60), hence the
conclusion

J(u) =
+∞∑

m=−∞
δ(u−m). (61)

That is, by substituting e2πiu to z, the series I =
∑+∞
n=−∞ zn is not 0 but∑+∞

m=−∞ δ(u−m) . So Euler was wrong, but not too much, since δ(u−m) = 0
for u �= m, hence

∑+∞
n=−∞ zn is 0 for z �= 1.
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Recall the other proof, using

I(z − 1) = 0; (62)

division by z − 1 gives I = 0, provide z �= 1, corresponding to u /∈ Z for
z = e2πiu. Formula (62) is equivalent to

J(u)(e2πiu − 1) = 0, (63)

and this suggests a new proof of (61). Indeed, if f(u) is a smooth function
with isolated simple zeros um, then J(u)f(u) = 0 implies that J(u) is a linear
combination of terms cmδ(u − um). Here f(u) = e2πiu − 1, hence um = m
for m in Z, that is m = 0,±1,±2, . . . hence J(u) =

∑+∞
m=−∞ cmδ(u − m)

for suitable coefficients cm. But J(u + 1) = J(u), hence all coefficients cm
are equal to some constant c and J(u) = c

∑+∞
m=−∞ δ(u − m). It remains

to calculate the normalization constant c. That kind of argument could be
understood by Euler, but it acquires now a rigorous meaning due to Laurent
Schwarz’s theory of distributions (200 years after Euler!) 10.

Another version of our proof is by using contour integral (see Fig. 5).
Consider a function Φ(z) holomorphic in a domain containing the annulus

-1 1

-i

i

C-

C+

r R

Fig. 5. Path for the contour integral

r ≤ |z| ≤ R bounded by C+ and C− (beware the orientations). The rational
function R(z) = 1

z−1 is given by a convergent series
∑−1
n=−∞ zn for |z| > 1,

10 Our final result can be expressed as
∑+∞
n=−∞ e2πinu =

∑+∞
m=−∞ δ(u − m). It is

equivalent to Poisson’s summation formula.
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hence for z in C+. It follows∫
C+

R(z)Φ(z)dz =
−1∑

n=−∞

∫
C+

znΦ(z)dz. (64)

Similarly∫
C−

R(z)Φ(z)dz =
∞∑
n=0

∫
C−

znΦ(z)dz (65)

and using the residue formula∫
C+

−1∑
n=−∞

zn.Φ(z)dz +
∫
C−

∞∑
n=0

zn.Φ(z)dz = 2πiΦ(1).

A shorthand would be

+∞∑
n=−∞

zn = 2πiδ(z − 1) (66)

using δ-functions in the complex domain 11.
Let us go back to sums of powers and Bernoulli numbers and polynomials.

A classical formula reads as follows

Bk(u) = −k!
∑
n =0

e2πinu

(2πin)k
. (67)

A complex version is as follows

∑
n =0

zn

nk
= − (2πi)k

k!
Bk(

log z

2πi
) (68)k

11 A classical formula is

δ(f(u)) =
∑

m

1
|f ′(um)|δ(u − um),

the summation being extended to the solutions of the equation f(um) = 0 (pro-
vided f ′(um) �= 0). In this formula f(u) is a real-valued function of a real variable
u. Assuming that it remains valid for f(u) = e2πiu− 1 (with complex values), we
derive

2πiδ(z − 1) =
+∞∑

m=−∞
δ(u − m)

for z = e2πiu. This brings together our two methods.
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(by the change of variables z = e2πiu) for k = 0, 1, 2, . . . . For k = 0, this
reads as Euler’s “absurd formula” as∑

n =0
zn = −1 (68)0

since B0(x) = 1. The case k = 1 is∑
n =0

zn

n
= πi− log z; (68)1

of course
∞∑
n=1

zn

n
= log

1
1− z

−1∑
n=−∞

zn

n
= −

∞∑
m=1

(z−1)m

m
= − log

1
1− 1/z

and (68)1 amounts to

log
1

1− z
− log

1
1− 1/z

= πi− log z. (69)

Since log(−1) = −πi and 1
1−1/z = z

z−1 = z.(−1)
1−z , this relation follows from

log uv = log u+log v, but some care has to be exercized with the multivalued
complex logarithm (notice the ambiguity log(−1) = ±πi for instance).

For the general case, notice the following. Define

Lk(z) =
∑
n =0

zn

nk
, Rk(z) = − (2πi)k

k!
Bk(

log z

2πi
). (70)

We know already that L0(z) = R0(z) and L1(z) = R1(z). Furthermore, it is
obvious that

z
d

dz
Lk(z) = Lk−1(z), (71)

and from the fact that the derivative of Bk(x) is kBk−1(x), one gets

z
d

dz
Rk(z) = Rk−1(z). (72)

So we can easily conclude that L2(z)−R2(z) is a constant, which has to be
shown to be 0 to prove L2(z) = R2(z). Then L3(z) − R3(z) is a constant,
etc...



Mathemagics 63

This line of argument can be made rigorous. Introduce the polylogarithmic
functions 12

Lik(z) =
∞∑
n=1

zn

nk
. (73)

Our formula reads now as follows:

Lik(z) + (−1)kLik(1
z
) = − (2πi)k

k!
Bk(

log z

2πi
). (74)k

To make sense out of it, we proceed as follows:
a) We cut the complex plane along the real interval [0,+∞[, to get Ω0 =

C− [0,+∞[.
b) In the cut plane, we choose the somewhat unusual branch of the loga-

rithm log(reiθ) = log r + iθ for 0 < θ < 2π.
c) We define the function Lik(z) by the convergent series (73) for |z| < 1,

and verify that

z
d

dz
Lik(z) = Lik−1(z) (75)

for k = 1, 2, . . . and Li0(z) = z
1−z . Since the cut plane Ω1 = C − [1,∞[ is

simply connected, any holomorphic function in Ω1 has a primitive, hence by
(75), each Lik(z) extends analytically to Ω1.

d) For z in Ω0, both z and 1
z are in Ω1, hence both Lik(z) and Lik( 1z ) are

defined for z in Ω0, and formula (74)k is asserted for z in Ω0.
e) The cases k = 0 and k = 1 are settled as before.
f) From (75) and the rule for the derivative of Bk(x), we get that the

validity of (74)k for the index k implies that of (74)k+1 for the index k + 1
up to the addition of a constant. To show that it is 0 use the fact that for
k ≥ 2, the series

∑∞
n=1

zn

nk converges also for |z| = 1, and study the limiting
value for z → 1, using Bk(0) = Bk(1).
So after all, Euler was right!
Putting z = 1 in (74)k we obtain the value of ζ(k) + (−1)kζ(k). For k

odd, we get 0 = 0, but for k even, we recover the value of ζ(k) given by (24).

4.6 Variation II: Infinite products

Suppose we want to calculate ∞! = 1.2.3 . . . . Going to logarithms we define

∞! = exp(
∞∑
n=1

log n). (76)

12 The dilogarithm Li2(z) was known by Euler, and further developed in the 19th

century in connection with Lobatchevski geometry. Fifteen years ago, the subject
was almost forgotten, to be resurrected by geometers and mathematical physicists
alike. It is now a hot subject of research.
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Suppose we have a series
∑
n≥1 an with nan bounded. The ζ-summation

procedure fits our general framework in section 2: consider the convergent
series

∑
n≥1 ann

−ε for ε > 0, and let ε tend to 0. To sum the series
∑
n≥1 log n,

we should consider
∑
n≥1 n−ε. log n but this converges for ε > 1 only and we

cannot go directly to the limit ε → 0. What we have to do is to consider the
series

∑
n≥1 n−s. log n for �(s) > 1; this is obviously the derivative −ζ ′(s)

of the Riemann zeta function, hence it can be analytically continued to the
neighborhood of 0. The regularized sum of

∑
n≥1 log n is then −ζ ′(0) and

finally

∞! = e−ζ
′(0). (77)

From the formulas (37) and (41), one derives without much ado ζ ′(0) =
− 1
2 log 2π (a formula more or less equivalent to Stirling’s formula). Conclu-

sion:

∞! =
√
2π. (78)

General rule: to normalize a divergent product Πn≥1an, introduce the
series

∑
n≥1 a−sn = Z(s), make an analytic continuation from the convergence

domain �(s) > σ0 to s = 0 and define

reg∏
n≥1

an := e−Z
′(0). (79)

Generalizing slightly (78), we can use this method to prove the identity 13

reg∏
n≥0

(n + v) =
√
2π

Γ (v)
. (80)

We can compare this to the Weierstrass product expansion for the gamma
function

1
Γ (v)

= veγv
∏
n≥1

(1 +
v

n
)e−v/n. (81)

A careless, but nevertheless instructive, comparison of (80) and (81) is as
follows:∏

n≥1
(1 +

v

n
)e−v/n =

∏
n≥1

n + v

n
e−v/n

=
∏
n≥1

(n + v)(
∏
n≥1

n)−1 exp(−v
∑
n≥1

1/n)

13 Formally: ∞!
(∞+v)! = Γ (v + 1).
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and regularizing the divergent series
∑
n≥1

1
n by the Euler constant γ, we are

through! Notice that the two most important properties of Γ , namely
1) the functional equation Γ (v + 1) = vΓ (v);
2) the function 1

Γ (v) of a complex variable v is entire with zeros at
0,−1,−2, . . . can be read off immediately from (80).

According to our general method, the proof of (80) requires to study the
function

ζ(s, v) =
∑
n≥0

(n + v)−s (82)

known as Hurwitz zeta function (see [9] for more details). We list a few
properties:

a) a particular case ζ(s, 1) = ζ(s);
b) functional equations:

ζ(s, v + 1) = ζ(s, v)− v−s (83)
∂vζ(s, v) = −sζ(s + 1, v); (84)

c) analytic continuation: for fixed v, ζ(s, v) can be analytically contin-
ued to the complex plane with one singularity at s = 1, with singular part
1
s−1 ; hence ζ(s, v)− ζ(s) is an entire function;

d) special values:

ζ(−k, v) = −Bk+1(v)
k + 1

(85)

for k = 0, 1, 2, . . .
The last relation can be written, in the spirit of Euler, as

vk + (v + 1)k + (v + 2)k + . . . = −Bk+1(v)
k + 1

. (86)

As a particular case we get the surprising identity

v0 + (v + 1)0 + (v + 2)0 + . . . =
1
2
− v. (87)

5 Conclusion: From Euler to Feynman

Feynman is the modern heir to Euler. Among his many contributions to
theoretical physics, the most famous one is his use of diagrams to encode in
a very compact way complicated integrals with significance in experiments
in high energy physics. His method of diagrams has been generalized by
various authors (Cvitanovic, Penrose,...) to provide a very flexible tool for
computations in tensor analysis.
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His really bold discovery is the use of integrals in function spaces (see for
instance [5]), the so-called Feynman path integrals. These (so far) ill-defined
integrals are powerful tools to evaluate infinite series and infinite products.
We give just one example. Consider the Hilbert space L2(0, 2π) of functions
f(x) with 0 < x < 2π and

∫ 2π
0 |f(x)|2dx finite. The unbounded operator

∆ = −d2/dx2 can be diagonalized with eigenfunctions en(x) = einx (for n =
0,±1,±2, . . . ) corresponding to the eigenvalue n2. Hence the characteristic
determinant det(v − ∆) is an entire function with the eigenvalues as zeros.
Using our normalized products, one now defines the regularized determinant
as

detreg(v −∆) = v(
reg∏
n≥1

(v − n2)2) (1)

(0 is a simple eigenvalue, and 12, 22, . . . are eigenvalues of multiplicity 2).
This can be evaluated by a formula due to Euler

sin v = v
∏
n≥1

(1− v2

n2π2
), (2)

equivalent (via logarithmic derivatives) to the formula

cot v =
1
v
+
∑
n≥1

2v
v2 − n2π2

(3)

also due to Euler, and considered above.
Feynman bold step is as follows. From matrix calculus, we learn the fol-

lowing integral formula for a characteristic determinant

det(v −A) = [
∫
Rn

dnx exp−π(v
n∑
i=1

x2i −
∑
i,j

ai,jxixj)]2 (4)

where dnx is the volume element dx1 . . . dxn in the Euclidean space Rn, and
A = (ai,j) is a real symmetric, positive definite, matrix of size n × n. By
analogy, Feynman writes det(v −∆) as the square of∫

L2(0,2π)
Dx. exp−πS(x), (5)

where the so-called action S(x) is defined by

S(x) = v

∫ 2π

0
x(t)2dt−

∫ 2π

0
x′(t)2dt (6)

(the variable in [0, 2π] is denoted by t, the function in L2(0, 2π) by x(t), and
its derivative by x′(t)). The symbol Dx is formally a volume element in the
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Hilbert space L2(0, 2π) (infinite-dimensional generalization of the Euclidean
space Rn), sometimes written as C

∏
t dx(t). Its rigorous definition is the

main problem [5].
Part of these calculations have been put into a rigorous framework, but

not all of them.
After all, Feynman shall be right!
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Thermal and Quantum Noise in Active
Systems

Jean-Michel Courty �, Francesca Grassia ��, and Serge Reynaud� � �

Laboratoire Kastler Brossel †,
UPMC case 74, 4 place jussieu, F75252 Paris Cedex 05, France

Abstract. We present a quantum network approach to the treatment of thermal
and quantum fluctuations in measurement devices. The measurement is described
as a scattering process of input fluctuations towards output ones. We present the
results obtained with this method for the treatment of a cold damped capacitive
accelerometer.

1 Non-ideal Quantum Measurements

Active systems are fundamental elements in high precision measurements.
Amplifiers are used either for amplifying the signal to a macroscopic level
or to make the system work around its optimal working point with the help
of feedback loops. With techniques such as cold damping, it is possible to
manipulate actively the fluctuations and to reduce the effective noise tem-
perature of the devices well below the operating temperature. The analysis
of sensitivity limits in these devices rises many questions related to funda-
mental processes as well as experimental constraints. How far is it possible
to reduce the measurement temperature? How are these process related to
the fluctuation dissipation theorem? Are there quantum limits to this noise
reduction associated with Heisenberg inequalities? How do the experimental
constraints interplay with the fundamental limitations of the sensitivity?

The aim of the present paper is to address these questions with quan-
tum network theory. This approach provides a rigorous thermodynamical
framework able to withstand the constraints of a quantum analysis of the
measurement. In the same time, it makes possible a realistic description of
real measurement devices. Thermodynamic and quantum fluctuations are
treated in the same footing. The measurement process is described as a scat-
tering process allowing for a modular analysis of real quantum systems. Ac-
tive systems such as the linear amplifier or the ideal operational amplifier are
� courty@spectro.jussieu.fr
�� grassia@spectro.jussieu.fr

� � � reynaud@spectro.jussieu.fr
† UMR de l’Ecole Normale Supérieure, de l’Université Pierre et Marie Curie et du
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described in this framework. Here, the approach will be illustrated by ana-
lyzing the sensitivity of a cold damped capacitive accelerometer developed
for fundamental physics applications in space [1–3].

We first present the analysis of passive electrical systems in term of quan-
tum networks. Then, we use this approach to present the quantum analysis
of an operational amplifier working in the ideal limit of infinite gain, infinite
input impedance and null output impedance. In the last section, we illustrate
the theoretical framework with the example of a cold damped accelerometer.

2 Coupling with the Environment

Relations between fluctuations and dissipation have first been discovered by
Einstein who studied the viscous damping of mechanical systems [4]. Another
important application was the study of Johnson-Nyquist noise in resistive
electrical elements [5]. This classical result was extended to take into account
the quantum statistical properties of fluctuations [6,7]. A general approach of
these relations was widely studied in the framework of linear response theory
[8,9].

2.1 Dissipation and fluctuations

A first insight into the physical effect of the coupling of an electrical circuit
to the environment is provided by the analysis of an antenna in an electrical
resonator. When a current flows through the antenna, electromagnetic radi-
ation is emitted and the resonator energy decreases. As far as the electric
circuit is concerned, the effect of the antenna is the same as a resistance. The
antenna is also able to detect electromagnetic fields. An incoming wave puts
into motion the electrons in the antenna and causes an electrical current to
flow in the circuit. For thermal radiation, the detection radiation leads to a
random current which brings the electrical oscillator to thermal equilibrium.
In the high temperature limit, it leads to the usual thermodynamic 12kBT per
degree of freedom, with kB being Boltzmann constant and T the radiation
temperature. In the zero temperature limit, the detected field corresponds
to the vacuum fluctuations of the electromagnetic field and the induced en-
ergy of the oscillator is the zero point energy 1

2 h̄ω0, with ω0 the resonance
frequency of the oscillator.

In figure 1 are depicted two representations for a resistance R. Figure 1a
corresponds to the Thevenin representation with the noise source represented
as a voltage noise generator Un. The relation between the current I and the
voltage V is

U = RI + Un (1)

Figure 1 b corresponds to a model that originates from Nyquist’s analysis
[5]. It consists in a semi infinite coaxial line of characteristic impedance R.
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U

I

a
out

a
in

U

IUn

R

a b

Fig. 1. Representations of a resistance R. (a) Thevenin representation with a volt-
age noise generator Un. (b) Model with a semiinfinite line and propagating fields
ain and aout

The solution of the propagation equations in the line may be written as the
sum of two counterpropagating fields Ioutand I in

I (x, t) = Iout
(
t +

x

c

)
− I in

(
t− x

c

)
U (x, t) = R

(
Iout
(
t +

x

c

)
+ I in

(
t− x

c

))
(2)

At the end of the line, we deduce the following relations:

U = RI + 2RI in = RI + Un

Iout = I + I in (3)

The first equation corresponds to the relation (1) and leads to the identifi-
cation of the noise as the input current I in. The second equation describes
the output fields Iout emitted back to the line. This output field may be used
either to feed other elements of the system or to perform a measurement by
extracting information on the system of interest through a line considered as
the detection channel.

2.2 Treatment with quantum fields

In an infinite line, current and voltage may be treated as quantum fields
propagating in a two dimensional space-time. Throughout the paper, we will
consider that a function f is defined in the time domain (notation f (t)) or
in the frequency domain (Kubo’s notation f [ω]) and that these two repre-
sentations are related through the Fourier transform with the convention of
quantum mechanics

f (t) =
∫

dω

2π
f [ω] e−iωt (4)

The electronics convention may be recovered by substituting j to −i.
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Free field operators ain and aout can be defined as the Fourier components
of I inand Iout

I (x, t) =
∫ ∞
−∞

dω

2π

√
h̄ |ω|
2R

(
aout [ω] exp

[
−iω
(
t +

x

c

)]
− ain [ω] exp

[
−iω
(
t− x

c

)])
U (x, t) =

∫ ∞
−∞

dω

2π

√
h̄ |ω|R

2

(
aout [ω] exp

[
−iω
(
t +

x

c

)]
+ ain [ω] exp

[
−iω
(
t− x

c

)])
(5)

They are normalized so that they obey the standard commutation relations[
ain [ω] , ain [ω′]

]
=
[
aout [ω] , aout [ω′]

]
= 2π δ (ω + ω′) ε (ω) (6)

where ε (ω) denotes the sign of the frequency ω. This relation just means that
the positive and negative frequency components correspond respectively to
the annihilation aω and creation a†ω operators of quantum field theory

ain [ω] = aωθ (ω) + a†−ωθ (−ω) (7)

θ (ω) denotes the Heavyside function.
To characterize the fluctuations of these noncommuting operators, we

use the correlation function defined as the average value of the symmetrized
product. With stationary noise, the correlation function depends only on the
time difference〈

ain (t) · ain (t′)〉 = σinaa (t− t′)〈
ain [ω] · ain [ω′]〉 = 2π δ (ω + ω′) σinaa [ω] (8)

The dot symbol denotes a symmetrized product for quantum operators.
In the case of a thermal bath, the noise spectrum is

σinaa [ω] =
1

exp h̄|ω|
kBTa

− 1
+

1
2
=

1
2
coth

h̄ |ω|
2kBTa

(9)

One recognizes the black body spectrum or the number of bosons per mode
for a field at temperature Ta and a term 1

2 corresponding to the quantum
fluctuations. The energy per mode will be denoted in the following as an
effective temperature Θa

kBΘa = h̄ |ω|σinaa [ω] =
h̄ |ω|
2

coth
h̄ |ω|
2kBTa

(10)

In the high temperature limit the classical energy for an harmonic field of
kBTa per mode is recovered. In the low temperature limit, the energy h̄|ω|2 cor-
responding to the ground state of a quantum harmonic oscillator is obtained.
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Note that the term 1
2 corresponding to the zero point quantum fluctuations

was added by Planck so that the difference with the classical result kBTa
tends to zero in the high temperature limit [10].

These results are easily translated to obtain the expression of the Johnson
Nyquist noise power

σUnUn
[ω] = 2Rh̄ |ω|σinaa [ω] = 2RkBΘa (11)

Our symmetric definition of the noise power spectrum leads to a factor 2
difference with the electronic convention where only positive frequencies are
considered.

2.3 Quantum networks

The elementary systems described up to now as well as more complex de-
vices to be studied later in this paper may be described by using a systematic
approach which may be termed as “quantum network theory”. Initially de-
signed as a quantum extension of the classical theory of electrical networks
[11], this theory was mainly developed through applications to optical sys-
tems [12,13]. It has also been viewed as a generalized quantum extension of
the linear response theory which is of interest for electrical systems as well
[14]. It is fruitful for analyzing non-ideal quantum measurements containing
active elements [15,16].

In this quantum network approach, the various fluctuations entering the
system, either by dissipative or by active elements, are described as input
fields in a number of lines as depicted on 1 b.

In

an

in

Unan

out

Fig. 2. Representation of an electrical circuit as a quantum network. The central
box is a reactive multipole which connects noise lines corresponding to the fluctua-
tions entering the system, either by dissipative or by active elements. For example,
the upper left port n with voltage Un and current In is connected to a line of
impedance Rn with inward and outward fields ain

n and aout
n .

We first consider a passive linear network built with resistances and reac-
tive elements like capacitances or inductances. Each resistance Rn is modeled
as a semi-infinite coaxial line an with characteristic impedance Rn. The volt-
age Un and current In associated with the resistance are the inward and
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outward fields ainn and aoutn evaluated at the end of this line

I = R−
1
2

√
h̄ |ω|
2
(
aout − ain)

U = R
1
2

√
h̄ |ω|
2
(
aout + ain

)
(12)

Here, X = I,U,ain,aout denotes the column vector with components Xn and
R is the diagonal matrix formed with the characteristic impedances Rn.

Input fields corresponding to different lines commute with each other. For
simplicity, we also consider that the fields entering through the various ports
are uncorrelated with each other. The interaction with the reactive elements
is described by a reactive impedance matrix Z

U = −Z I
Z† = −Z (13)

The whole network is then associated with a scattering S matrix, also
called repartition matrix [17], describing the transformation from the input
fields to the output ones

aout = S ain

S =
R−

1
2ZR−

1
2 − 1

R−
1
2ZR−

1
2 + 1

(14)

The output fields aout are also free fields which obey the same commutation
relations 6 as the input ones. In other words, S matrix is unitary. In the
case of the passive network, this property is an immediate consequence of the
reactive nature of the impedance matrix Z

S† =
R−

1
2Z†R−

1
2 − 1

R−
1
2Z†R−

1
2 + 1

=
−R− 1

2ZR−
1
2 − 1

−R− 1
2ZR−

1
2 + 1

= S−1 (15)

More generally, the unitarity of the S matrix is required to ensure the
quantum consistency of the description. In the following section, we will make
use of this property to deduce general properties of amplifiers.

3 Fluctuations in Amplifiers

Quantum noise associated with linear amplifiers has been the subject of nu-
merous works. In the line of thought initiated by early works on fluctuation-
dissipation relations, active systems have been studied in the optical domain
when maser and laser amplifiers were developed [18–20]. General thermody-
namical constraints impose the existence of fluctuations for amplification as
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well as dissipation processes. The added noise determines the ultimate per-
formance of linear amplifiers [21,22] and plays a key role in the question of
optimal information transfer in optical communication systems [23,24].

We first consider the amplification of a field, for example in long distance
telecommunication systems with repeaters.

The amplification of the field ain with a phase insensitive gain G is given
by the following equation

aout = Gain + Bin (16)

where Bin is a noise added by the amplification. The gain G may be frequency
dependent. The commutator of the output field is then[

aout [ω] , aout [ω′]
]
= |G|2 [ain [ω] , ain [ω′]]+ [Bin [ω] , Bin [ω′]] (17)

The unitarity of the input output transformation and the preservation of the
commutation implies a non zero commutator for Bin[

Bin [ω] , Bin [ω′]
]
=
[
ain [ω] , ain [ω′]

]− [aout [ω] , aout [ω′]]
=
(
1− |G|2

)
2π δ (ω + ω′) ε (ω) (18)

This result does not depend on the specific amplification process. For a gain
larger than unity, the added noise can be represented by a free field bin with
the usual commutation relation (6)

Bin [ω] =
√
|G|2 − 1bin [−ω] =

√
|G|2 − 1

(
bin [ω]

)†
(19)

The presence of the conjugation is characteristic of amplification processes
and is encountered as soon as gain is present [21,22] .

We may use this example to describe the noise analysis in a measurement
process. Let us consider that the field ain carries a signal A superimposed
with fluctuations cin

A =
〈
ain
〉
, cin = ain − 〈ain〉 (20)

The input noise power Σin
AA corresponds to the fluctuations σincc

Σin
AA = σincc (21)

The measurement corresponds to the output aout of the amplifier

aout = GA + Gcin +
√
|G|2 − 1 bin† (22)

To analyze the noise of this amplified signal, we define an estimator Â by
normalizing the output field aoutof the amplifier so that it is the sum of A
and an extra noise

Â =
1
G

aout = A + cin +

√
1− 1

|G|2 bin† (23)
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The added noise Σout
AA is then described by a spectrum

Σout
FF = σincc +

(
1− 1

|G|2
)

σinbb (24)

In the limit of large gain G and for thermal fluctuations, it corresponds to

h̄ |ω|Σout
FF = kB(Θa + Θb) (25)

When the temperatures are equal, this corresponds to a loss of 3dB in the
signal to noise ratio. This effect has been observed since the beginning of
radiowave communications. It also sets a limit in the number of repeaters in
optical fiber communications[23,24].

Most practical applications of amplifiers in measurements involve ideal
operational amplifiers operating in the limits of infinite gain, infinite input
impedance and null output impedance. In order to deal with the pathologies
that could arise in such a system, we consider that it operates with a feedback
loop which fixes its effective gain and effective impedances [25].

Ul

Il

Ur

Ir

If

Zf

a a'

U

IUl

Ur

Il

Ir

1

If

Zf

a b

Fig. 3. Representation of the ideal operational amplifier working in the limit of
infinite gain with a reactive feedback Zf . (a) The noise sources are described as
a current generator I and a voltage generator U . (b) The amplifier is represented
with a left (input) port l and a right (output) port r and the noise sources are
modeled as input fields in the two noise lines a and a′

We first analyze the amplifier as depicted on figure 3a where the noise
sources are represented as a current generator I and a voltage generator
U . By coupling two coaxial lines denoted l and r respectively on the left
port and the right port of the amplifier, one realizes a measurement model.
The left line comes from a monitored electrical system so that the inward
field lin plays the role of the signal to be measured. Meanwhile, the right
line goes to an electrical meter so that the outward field rout plays the role
of the meter readout. In connection with the discussions of Quantum Non
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Demolition measurements [26,27], lout appears as the back-action field sent
back to the monitored system and rin represents the fluctuations coming from
the readout line. A reactive impedance Zf acts as feedback for the amplifier.

We now present the electrical equations associated with this measurement
device. We first write the characteristic relations between the voltages and
currents

U = Ul = Ur + ZfIf

I = Il + If (26)

Here, Up and Ip are the voltage and current at the port p, i.e. at the end of the
line p = l or r, while U and I are the voltage and current noise generators as-
sociated with the operational amplifier itself (see Fig.1). Zf is the impedance
feedback. All equations are implicitly written in the frequency representation
and the impedances are functions of frequency. Equations (26) take a sim-
ple form because of the limits of infinite gain, infinite input impedance and
null output impedance assumed for the ideal operational amplifier. We also
suppose that the fields incoming through the various ports are uncorrelated
with each other as well as with amplifier noises.

As already emphasized, the output fields pout obey the commutation rela-
tions (6) of free fields. To make this property explicit, we use the characteristic
equations (26,12 ) associated with the amplifier and the lines to rewrite the
output fields lout and rout in terms of input fields lin, rin and of amplifier
noise sources U and I

lout = −lin +

√
2

h̄ |ω|RlU

rout = −rin − 2
Zf√
RrRl

lin +

√
2

h̄ |ω|Rr

(
Rl + Zf

Rl
U − ZfI

)
(27)

We then deduce from (27) that the voltage and current fluctuations U and I
obey the following commutation relations

[U [ω] , U [ω′]] = [I [ω] , I [ω′]] = 0
[U [ω] , I [ω′]] = 2π h̄ω δ (ω + ω′) (28)

Hence, voltage and current fluctuations verify Heisenberg inequalities which
determine the ultimate performance of the ideal operational amplifier used
as a measurement device [25].

To push this analysis further it is worth introducing new quantities ain

and a′in as linear combinations of the noises U and I depending on a factor
R having the dimension of an impedance

U [ω] =
√
2h̄ |ω|R (ain [ω]− a′in [−ω]

)
I [ω] =

√
2h̄ |ω|

R

(
ain [ω] + a′in [−ω]

)
(29)
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For an arbitrary value of R, the quantities ain and a′in satisfy the free field
commutation relations. In other words, the voltage and current noises asso-
ciated with the amplifier may be replaced by the coupling to 2 further lines
a and a′ and the presence of amplification requires a conjugation of fluctu-
ations coming in one of these two lines. This representation of the amplifier
as a quantum network is depicted on figure 3b.

We may then fix the parameter R to a value Ra chosen so that the fluc-
tuations ain and a′in are uncorrelated. This specific value is determined by
the ratio between voltage and current noise spectra

Ra =
√

σUU
σII

(30)

The 2 noise spectra σUU and σII are defined as symmetric correlation func-
tions. The fields ain and a′in are thus described by temperatures Ta and Ta′ .
We have assumed that these fluctuations are the same for all field quadra-
tures, i.e. that the amplifier noises are phase-insensitive. Although this as-
sumption is not mandatory for the forthcoming analysis, we also consider
for simplicity that the specific impedance Ra is constant over the spectral
domain of interest.

4 The Cold Damped Accelerometer

We come to the discussion of the ultimate performance of the cold damped
capacitive accelerometer designed for fundamental physics experiments in
space [16].

The central element of the capacitive accelerometer is a parallelepipedic
proof mass placed inside a box. The walls of these box are electrodes distant
from the mass off a hundred micrometers. The proof mass is kept at the
center of the cage by an electrostatic suspension. Since a three dimensional
electrostatic suspension is instable, it is necessary to use an active suspension.

In the cage reference frame, an acceleration is transformed in an iner-
tial force acting on the proof mass. The force necessary to compensate this
inertial force is measured. In fact, as in most ultrasensitive measurements,
the detected signal is the error signal used to compensate the effect of the
measured phenomenon.

The essential elements of the accelerometer are presented in figure 4. The
proof mass and the cage form two condensators. Any mass motion unbalances
the differential detection bridge and provides the error signal. In order to
avoid low frequency electrical noise, the electrical circuit is polarized with
an AC voltage with a frequency of a hundred kilohertz. After demodulation,
this signal is used for detection and as an error signal for a servo control loop
which allows to keep the mass centered in its cage.

Furthermore, the derivative of this signal provides a force proportional
to the mass velocity and simulates a friction force. This active friction is
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X
1

SC

D

Servo Control
Demodulation

Proof mass

detection

Fig. 4. Scheme of the capacitive sensor. The proof mass is placed between two elec-
trodes formed by the inner walls of the accelerometer cage. The position dependent
capacitances are polarized by an AC sinewave source which induces a mean current
at frequency ωt in the symmetrical mode. The mass displacement is read as the
current induced in the antisymmetric mode. An additional capacitance is inserted
to make the antisymmetric mode resonant with ωt. The signal is detected after
an ideal operational amplifier with capacitive feedback followed by a synchronous
demodulation. The impedance of the detection line plays the role of a further re-
sistance Rr. The detected signal then feds the servo loop used to keep the mass
centered with respect to the cage.

called cold damping since it may be noiseless. More precisely, the effective
temperature of the fluctuations of this active friction is much lower than the
physical temperature of the device.

The detection is performed with the output detection signal rout1 . It is
a linear combination of the external force Fext and of input fields in the
various noise lines. We normalize this expression so that the coefficient of
proportionality appearing in front of the external force Fext is reduced to
unity. With this normalization, we obtain a force estimator F̂ext which is just
the sum of the true force Fext to be measured and of an equivalent input
force noise. In the absence of feedback, the force estimator reads [16]:

F̂ext = Fext +
∑
α

µαα
in (31)

where αin denote the various input fields corresponding to the active and
passive elements in the accelerometer.

When the feedback is active, the servo loop efficiently maintains the mass
at its equilibrium position and the velocity is no longer affected by the exter-
nal force Fext. The residual motion is interpreted as the difference between
the real velocity of the mass and the velocity measured by the sensor. This
means that the servo loop efficiently corrects the motion of the mass except
for the sensing error. However the sensitivity to external force is still present
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in the correction signal. Quite remarkably, in the limit of an infinite loop
gain and with the same approximations as above, the expression of the force
estimator F̂ext is the same as in the free case [16].

The added noise spectrum ΣFF is obtained as

ΣFF =
∑
α

|µα|2 σinαα

We have evaluated the whole noise spectrum ΣFF for the specific case of the
instrument proposed for the µSCOPE space mission devoted to the test of
the equivalence principle. Some of the main parameters of this system are
listed below

M = 0.27 kg Hm = 1.3× 10−5 kg s−1

Ω

2π
� 5× 10−4 Hz

ωt
2π

� 105 Hz

Ra = 0.15× 106 Ω Θa = 1.5 K (32)

M is the mass of the proof mass, Hm is the residual mechanical damping force,
Ω
2π is the frequency of the measured mechanical motion, ωt

2π is the operating
frequency of the electrical detection circuit. Ra and Θa are the characteristic
impedance and temperature of the amplifier.

In these conditions and at an operating temperature Θm = 300 K the
added noise spectrum is dominated by the mechanical Langevin forces

ΣFF = 2HmkBΘm

= 1.1× 10−25
(
kg m s−2

)2
/Hz (33)

This corresponds to a sensitivity in acceleration
√

ΣFF
M

= 1.2× 10−12 m s−2/
√
Hz (34)

Taking into account the integration time of the experiment, this leads to the
expected instrument performance corresponding to a test accuracy of 10−15.

In the present state-of-the-art instrument, the sensitivity is thus limited
by the residual mechanical Langevin forces. The latter are due to the damping
processes in the gold wire used to keep the proof mass at zero voltage [3]. With
such a configuration, the detection noise is not a limiting factor. This is a
remarkable result in a situation where the effective damping induced through
the servo loop is much more efficient than the passive mechanical damping.
This confirms the considerable interest of the cold damping technique for
high sensitivity measurement devices.

Future fundamental physics missions in space will require even better
sensitivities. To this aim, the wire will be removed and the charge of the test
mass will be controlled by other means, for example UV photoemission. The
mechanical Langevin noise will no longer be a limitation so that the analysis
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of the ultimate detection noise will become crucial for the optimization of the
instrument performance. This also means that the electromechanical design
configuration will have to be reoptimized taking into account the various
noise sources associated with detection [16].
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Dipole at ν = 1
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Abstract. I consider the problem of Bosonic particles interacting repulsively in
a strong magnetic field at the filling factor ν = 1. We project the system in the
lowest Landau level and map the dynamics into an interacting Fermion system. We
study the resulting Hamiltonian in the Hartree–Fock approximation in the case of
a δ repulsive potential. The physical picture which emerges is in agreement with
the proposal of N. Read that the composite Fermions behave as a gas of dipoles.
We argue that the consequence of this is that the composite Fermions interact with
screened short range interactions. We develop a Landau theory which we also expect
to describe the physical ν = 1/2 Fermionic state. The form factor, the effective mass
and the conductivity are analyzed in this model 1 .

1 Introduction

There has been recently a renewed interest in the quantum Hall effect when
the filling factor is a fraction with an even denominator. Willets and his col-
laborators [3] have observed an anomalous behavior in the surface acoustic
wave propagations near ν = 1/2 and ν = 1/4. A remarkable outcome of
their experiments is that they probe a longitudinal conductivity σxx (q, ω)
increasing linearly with the wave vector q. Halperin, Lee and Read [4] have
suggested that the system exhibits a Fermi liquid behavior at this particular
value. They have developed a formalism based on the Chern–Simon theory
to explain the formation of a Fermi surface which provides an explanation for
the experimental observations. Subsequently, several studies have developed
and improved the predictions of the Chern– Simon theory [4],[8],[9],[10], [11].
Another approach followed by Rezayi and Read [13] and Haldane et al. [18]
consists in obtaining trial wave functions which enable to study numerically
the properties of the system at this filling factor. In these studies the cyclotron
frequency is supposed to be sufficiently large so that the only relevant excita-
tions are confined to the lowest Landau level. The trial wave functions can be
compared to the exact ground state and the overlap between the two turns
� pasquier@spht.saclay.cea.fr
1 This lecture is issued from an unpublished paper on Bosons at filling factor 1
(“Composite fermions and confinement” March 1996). Although some results are
outdated, some aspects considered here have not been discussed in the more
recent literature. I give a list of more recent references on the subject for the
interested reader [24-28].
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out to be extremely good [13]. In these studies the effective mass m∗ which
defines the Fermi velocity is generated dynamically by the interactions. This
paper is an attempt to introduce a model which accounts for the success of
these trial wave functions and enables to compute the physical properties of
the system in the infinite cyclotron energy limit. We have tried to keep as
close as possible to the microscopic reality by using a theoretical description
which coincides exactly with what is simulated in the numerical studies. This
is a different approach than the Chern–Simon field theory which mixes the
Landau levels and requires the mass of the electron as a parameter of the
theory. We do not address the physical problem of electrons in a magnetic
field at ν = 1/2. Instead we have considered the problem of Bosonic particles
interacting repulsively in a magnetic field at a filling factor ν = 1. Although
it may at first look quite different, it is important to stress that the problem
of formation of a Fermi sea is essentially the same as in the ν = 1/2 case.
If one applies the analyses of the composite Fermions or the Chern– Simon
approach to such a system, one is essentially led to the same picture of Fermi
sea formation as in the ν = 1/2 case. We have also verified this hypotheses
by performing a numerical simulation for a small system on a sphere (see
Fig.1). The main reason why this is simpler theoretical problem to look at
than the ν = 1/2 physical problem is that the wave function one needs to
start from is the Slater determinant of the lowest Landau level one body wave
functions which is a much simpler object to consider than the Laughlin ν = 2
wave function which one would have to use in the ν = 1/2 case. We shall
present an exact mapping of the Bosonic problem into a Fermionic one which
has the advantage of making the appearance of a Fermi liquid natural. Let
us briefly review some important features of a 2D electron gas in a strong
magnetic field. Classically, due to the magnetic field each electron moves on
a circular orbit at the cyclotron frequency ωc = eB/mec. Quantum mechan-
ically in the absence of interactions the one particle energies are quantized
(En = (n + 1/2) h̄ωc) and the degeneracy of each energy state is obtained by
dividing the area of the system by a quantum of area a0 equal to 2πh̄c/eB.
The physical properties are characterized by the filling factor ν = a0ρe where
ρe is the electron density. The amount of magnetic flux through a0 defines
the flux unit Φ0 = 2πh̄c/e. One usually defines the magnetic length l equal
to
√

h̄c/eB.
At the filling factors where the system exhibits a quantum Hall effect, the

chemical potential has a discontinuous slope. This is the case when ν is an
integer where it results from the fact that ν Landau levels are fully occupied
and the Pauli principle forces the next electron to be in a higher level. When
the filling factor is fractional, the interactions between the electrons play a
crucial role and the effect requires a much more involved explanation. The
special filling factors ν = 1/(2p + 1) are well understood from the analysis
of Laughlin [1] and a hierarchical extension to fractions with an odd denom-
inator was proposed by Haldane [18]. Jain [2] has produced a mean field
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Fig. 1. The ground state energy of Bosons on a sphere at filling factor ν = 1. The
Bosons interact through a δ repulsive potential. We plot the energy as a function of
the number of bosons n (1 ≤ n ≤ 12) . As a function of n, the energy is roughly linear
by pieces with a slope breaking at each perfect square (n = 4, 9) . This indicates
that the bosons have a similar ground state energy as a system of n free fermions
on a sphere without without magnetic field. 
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Fig. 2.We consider a system of 10 particles interacting on a sphere with a magnetic
field at ν = 1. the interaction potential is a δ function as in Fig.1.These particles
are splitted into n bosons and 10− n fermions and we plot the ground state energy
as a function of n. We see that even more convincingly as in figure 1 the energy
behaves a if there were n free fermions without magnetic field. The interpretation
is that the boson binds to the fermionic hole to form a quasi-free bound state. The
striking fact is that this feature remains true even where there is no fermion left!
(n = 10) .
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argument to predict the dominant series of fractions ν = p/(2p± 1) in good
agreement with experiments. The mean field interpretation of Jain’s trial
wave functions requires attaching flux tubes to the electron which has given
rise to the denomination of composite fermion to describe such a dressed
electron. Halperin Lee and Read use the composite Fermions arguments to
motivate the formation of a Fermi sea in the ν = 1/2 case (which is the
p =∞ limit of Jains hierarchy). They attach two magnetic fluxes to an elec-
tron in order to cancel the magnetic field seen by the electron in the mean
field approximation. This flux attachment does not modify the statistics of
the electrons and if one ignores fluctuations one is led to a system of spinless
Fermions in a zero magnetic field. In the case of Bosons at ν = 1, we can pro-
ceed similarly by attaching one flux unit to each particle so as to cancel the
exterior magnetic field. In this process the statistics is changed from Bosons
to Fermions and a Fermi liquid is expected to form.

Read has interpreted the fluxes attached to the electron as physical vor-
tices bound to it [5]. We believe that his proposal differs considerably from
the mean field interpretation for the following reason. The mean field treats
the composite electron as a charged particle which couples minimally to the
electro-magnetic field. In Reads picture, the vortices carry a charge equal to
minus one half of that of the electron so that the bound state must be viewed
as a neutral particle which propagates in a constant charge background. In
this case the response to an electric field depends on the internal structure
of the composite object. Bakaran has independently reached this conclusion
using a semi-classical analyses [7]. We are led to this picture in the ν = 1 case.
The essential simplification is that there is a single vortex coupled to the Bo-
son, this vortex is a Fermion carrying the opposite charge as the Boson and
we can use a second quantized formalism to analyse the model. The bound
state is then a dipole whose structure was discovered long ago [16],[15],[14].

Our approach is mainly motivated by the trial wave functions of [13],[18].
The Laughlin is the wave function is the starting point to describe the low
energy physics but it gives the particles the opposite statistics to the one we
are interested in. In the ν = 1 case for example, the exact ground state wave
function for distinguishable particles interacting with a δ repulsive potential
in a disc geometry is given by Ψ (zi) =

∏
i<j (zi − zj) exp(−

∑
i zizi/4). This

wave function is antisymmetric while we are interested in a Bosonic statistics.
The trial wave functions are obtained by multiplying this wave function by a
Slater determinant of plane waves so as to give the wave function the correct
statistics. The product is then projected into the lowest Landau level. The
effect of the projection is to replace the coordinate which appear in the plane
waves by the guiding center coordinates [18] which displace the particles
minimally from their original position. Here we advocate that the charge
fluctuations induced by this displacement are the fundamental excitations.

To show this we want to use the Laughlin wave function as a vacuum and
develop a low density formalism to construct the excitations one by one above
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this ground state. We have looked at a model which enables us to define a
Fermi momentum varying continuously between zero and the physical value
kf =

√
2/l. We consider a system consisting of Bosons at a filling factor ν1 and

Fermions at a filling factor ν2 such that the total filling factor ν = ν1 + ν2
is kept equal to one. We also keep the interactions equal between all the
particles. We argue that the model should behave as a Fermi liquid with a
Fermi momentum proportional to ν2 regardless of the ratio ν2/ν1. Let us
first explain why this behavior is predicted by the mean field argument. To
show this, we make an analogy with the Double-Layer Quantum Hall system
studied in [21] (and references therein). In a thought experiment, we consider
a system consisting of a pair of 2D layers exactly on top of each other. The
particles in the top layer obey the Fermi statistics and the particles in the
lower layer obey the Bose statistics. Because the statistics of the particles
differ from one layer to the other we are in the situation where there is
no tunneling between the two layers. Although we are ultimately interested
in the case where the top layer is empty we consider intermediate systems
where the top layer has a filling factor ν1 and the lower layer a filling factor
ν2 such that the total filling factor ν1 + ν2 is kept equal to one. The mean
field argument to account for the formation of a Fermi surface proceeds as
follow: Each particle regardless of which layer it belongs to is attached a
unit of flux so that in the mean field approximation where the magnetic field
is replaced by its spatial average the particles see no magnetic field. The
mutual particle statistics needs to be modified by this flux attachment as
follow. Two particles in different layers are distinguishable so we need only
consider the relative statistics of the particles in the same layer. Then we
must impose that if two particles of the same layer are interchanged in a
clockwise manner around a curve which encloses no other particles, the wave
function is changed by a factor eiπ(1+ε) where ε = 1 or 0 according to weather
the particles are Fermions (in the first layer) or Bosons to Fermion (in the
second layer). Thus the attachment of a flux exchanges the statistics from
Fermion to Boson in the first layer and from Boson to Fermion in the second
layer. Now the particles in the first layer behave as a Bose superfluid and the
particles in the second layer as a Fermi liquid so that in the low energy limit
the system should behave the Fermi momentum kf =

√
2ν2l. To convince the

reader of the validity of the conclusion we note that a trivial modification
of the argument predicts that the system exhibits a quantum Hall behavior
in the physical case where the two layers are filled with electrons. In this
situation the quantum Hall effect is experimentally observed although the
gap responsible for it is due to a nontrivial collective effect [21]. In order to
test this hypotheses we have also performed a numerical evaluation of the
ground state energies for a mixed system consisting of N1 Bosons and N2
Fermions on a sphere keeping N1 + N2 = N fixed. The sphere has N − 1
quantum fluxes and the interaction between the particles is a delta function
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interaction. The gross features of the spectrum are those of a system of N2
free Fermions on a sphere with no magnetic field (see Fig. 2).

Although the preceding argument is qualitative it can be made rigorous
when ν2 is small. In this low density limit, the particles in the second Layer
bind to the holes of the first layer to form exciton pairs. The main difference
with the standard double layer system studied in [21] is that the excitons are
Fermion. This paper is an attempt to construct a model for the Fermi-sea
formation which uses these excitons as fundamental quasiparticle. In doing
so we follow a suggestion made long ago by Lerner and Lozovik in a different
context [15]. We obtain an exact representation of the dynamics in terms of
these excitations still valid in the case where there are only Bosons (the first
layer is empty). One of the outcome of this interpolation is that it makes a
link between the formalism of Kallin and Halperin which is relevant at low
densities (ν2 � 1) and the wave functions of Rezayi and Read which describe
the other limit.

The next section is devoted to present the microscopic model and analyze
its phenomenological consequences.

2 The Microscopic Model

We consider N particles of identical charge interacting with a repulsive force
in a domain of area Ω thread by a magnetic field B. is chosen so that the
flux per unit area is equal to one. We take units where h̄ = 1 and the mag-
netic length l =

√
h̄c/eB = 1 in which case Ω = 2πN . We assume that

the cyclotron frequency ωc is large compared to the interaction so that the
dynamic can be restricted to the Lowest Landau Level. The one body Hamil-
tonian has N degenerate eigenstates, thus in the case where the particles are
Fermions the only accessible state is given by the Slater determinant of the
one body wave functions. This state will define the vacuum of the theory. We
now discuss the case where there are two sets of particles obeying distinct
statistics. The first set contains N1 Fermions and the second set contains N2
Bosons. We keep the sum N1+N2 = N fixed so that the filling factor remains
equal to one. We also keep the interaction equal between all the particles.
It is instructive to first look at the case of 1 Boson interacting with N − 1
Fermions. By performing a particle hole transformation on the Fermions, we
can equivalently regard this as a Boson interacting with a hole. This problem
has been studied by Kallin and Halperin [14]. A surprising outcome is that
the wave functions which describe this two body state are independent of
the potential and are given by the ground state eigen-functions of the free
Hamiltonian [16],[15],[14]. Let us recover this result using the Lancau Gauge
(Ax = 0, Ay = x in units where the magnetic length is equal to one). We
consider a cylinder of length Ly in the periodic y direction and confine the
particles on a segment of length Lx in the x direction. The one-body Hamil-
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tonian is given by:

2H = p2x + (py − x)2 (1)

and the corresponding ground state wave functions are:

〈−→x |s〉 =
√
1/πLye

isy−(x−s)2/2 (2)

s = 2πn/Ly denotes the momentum in the y direction and one must have
0 ≤ s ≤ Lx in the x direction. This Hamiltonian commutes with the two
guiding center coordinates Ry = px − y and Rx = py which do not commute
with each other [Rx, Ry] = i. In the particle hole case however the situation is
quite different. The Free Hamiltonian which describes the particle-hole pair is
the sum of two one body Hamiltonians where we change the sign of coupling
to the potential vector for the hole:

H = p2x1 + (py1 + x1)
2 + p2x2 + (py2 + x2)

2 (3)

Since the particles have exactly opposite charges, their guiding center
coordinates px = Ry1+Ry2 = px1+px2−(y1 − y2) and py = Rx1+Rx2 = py1+
py2 now commute with each other and can be diagonalized simultaneously
with H. The wave functions which diagonalize this generalized momentum
in the lowest Landau level are given by:

〈−→x 1,−→x 2|−→p 〉 = ei(px+y1−y2)(x1+x2)/2eipy(y1+y2)/2

e−(x1−x2−py)2/4e−(y1−y2+px)2/4 (4)

They describe a dipole propagating freely in such a way that its dipole vector
given by (py,−px) is perpendicular to the momentum (px, py). When we
switch the interaction on, the potential commutes with the momentum px, py
so that these wave functions are eigenstates of the projected potential and
thus of the total projected Hamiltonian. The degeneracy is lifted and the
energy of a pair depends on its momentum. When the interactions is repulsive
these wave functions describe bound states which we shall denote excitons
following [15]. Their energy ε0 (−→p ) will be computed later in the text.

The idea which motivates the following discussion is to subdivide the
particles and the holes into pairs so as to include the interaction in each pair
in the one body Hamiltonian H0 and treat residual interaction between the
different pairs as a perturbation.

2.1 Second quantized formalism

In order to study the system where several Bosons interact with the same
number of holes we introduce a second quantization formalism by defining
Bosonic (a+s ) and Fermionic (b+s ) creation operators which create the one
body states in the Lowest Landau level. They obey the standard commutation
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relations
[
as, a

+
s′
]
= δs,s′ ,

{
bs, b

+
s′
}
= δs,s′ . The vacuum |0〉 is the filled Landau

level state which is characterized by as |0〉 = b+s |0〉 = 0. We also define the
fields which create a Boson (a Fermion) at position x in the Lowest Landau
Level:

Φ+b (−→x ) =
∑
s

〈−→x |s〉 a+s

Φ+f (−→x ) =
∑
s

〈−→x |s〉 b+s (5)

The second quantized expression for the exciton with momentum −→p is de-
termined by the equation〈

0|Φb (−→x 1)Φ+f (−→x 2) |−→p
〉
= 〈−→x 1,−→x 2|−→p 〉 (6)

The wave function on the right hand side is defined in (40) so, in this way
we determine the state |−→p 〉 which we write in the form |−→p 〉 = A+−→p |0〉 where
A+−→p is then given by:

A+−→p = eipxpy/21/
√

N
∑
s

e−ipxsa+s bs−py (7)

Note that the definition of A+−→p is not unique.
Another way to obtain the operators A−→k consists in defining the field

A+ (−→x ) which creates the exciton (destroys a fermion and creates a boson)
at position −→x :

A+ (−→x ) = 1/
√

NΦ+b (−→x )Φf (−→x )

This definition is similar to Read’s [6] way to obtain operators that create
quasi electrons and holes. One can then verify that A+−→

k
are proportional to

the Fourier modes of A+ (x) :

A+−→
k
= ek

2/4
∫

e−i
−→
k −→x A+ (x) d2x (8)

In a similar way we also define the densities of Bosons and fermion operators:

ρb (−→x ) = Φ+b (−→x )Φb (−→x )

ρf (−→x ) = Φ+f (−→x )Φf (−→x ) (9)

and their Fourier transforms as in (8). One ends up with similar expressions
as in (7):

ρb−→p = ei
−→p x
−→p y/2

∑
s

e−ipxsa+s as−py

ρf−→p = ei
−→p x
−→p y/2

∑
s

e−ipxsb+s bs−py (10)
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The commutations between these fields lead to a generalization of the
magnetic translation algebra [17]. The relations between the ρ themselves
are given by:[

ρb−→p , ρb−→q
]
=
(
e−i
−→p ×−→q /2 − ei

−→p ×−→q /2
)

ρb−→p +−→q[
ρf−→p , ρf−→q

]
= −

(
ei
−→p ×−→q /2 − ei

−→p ×−→q /2
)

ρf−→p +−→q[
ρb−→p , ρf−→q

]
= 0 (11)

where −→p ×−→q = pxqy − pyqx. The relation between the ρ and the A+ are:[
ρb−→p , A+−→q

]
= e−i

−→p ×−→q /2A+−→p +−→q[
ρf−→p , A+−→q

]
= e−i

−→p ×−→q /2A+−→p +−→q (12)

Finally, the relations between A−→p and A+−→q is:{
A−→p , A+−→q

}
= 1/N

(
e−i
−→p ×−→q /2ρb−→q −−→p + ei

−→p ×−→q /2ρf−→q −−→p
)

(13)

Instead of the fermion density operator, it will be more convenient to use
its normal ordered form: ρh−→p = eipxpy/2

∑
s e
−ipxsbs−pyb

+
s . One has ρf−→p +

ρh−→p = δ−→p ,−→0 N . We shall see that the physical observables can be expressed
in terms of the total density operator: ρt−→p = ρb−→p −ρh−→p which by construction
vanishes at zero momentum: ρt−→0 = 0. The Fourier modes ρt−→p also obey the
relations (11), in addition they obey the following relations with A+−→q :[

ρt−→p , A+−→q
]
=
(
e−i
−→p ×−→q /2 − ei

−→p ×−→q /2
)

A+−→p +−→q (14)

When we express the commutator between A−→p and A+−→q in terms of ρh
instead of ρf the commutator takes the more natural form:{

A−→p , A+−→q
}
= δ−→p ,−→q + 1/N

(
e−i
−→p ×−→q /2ρb−→p −−→q − ei

−→p ×−→q /2ρh−→p −−→q
)

(15)

Assuming that the coefficient of 1/N is an operator of order one, up to a
1/N correction this commutator is equal to the usual commutator between
creation and annihilation operators. This will be our main approximation in
the following.

Remark 1. The above algebra admits a compact form relevant to study the
finite size system on a torus. In the appendix B we show that in this case the
“Slater determinants”:

A+ (−→p 1)A+ (−→p 2) ...A+ (−→p N ) |0〉 (16)

coincide with a class of trial wave functions used by Haldane et al. [18] to
study the system on a finite geometry in the ν = 1 case.
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Remark 2. The reader familiar with the works on Double Layer systems [21]
will notice a resemblance between this algebra and the algebra used in [21]. It
is not surprising in view of the analogy used in the introduction. In the double
layer context we can replace the operators as and a+s in (5) by operators
which anticommute instead. Since both layers carry particles which obey a
Fermionic statistics, the only difference with this case is that the excitons are
Bosons. If we use the same formulas (8, 9) to define the density operators
and the exciton creation operator they obey the algebra considered in [21].

Remark 3. The zero mode operators ρb−→0 , ρf−→0 , A+−→0 , A−→0 , form a supersym-
metric su (1|1) subalgebra which is the symmetry of the present problem
analogous to the su(2) symmetry in the two Layer system. A simple conse-
quence of this will be that the two states |Ψ〉 and A+−→0 |Ψ〉 will be degenerate
eigenstates of the Hamiltonian when we consider the dynamics of the model
in the next section.

Holstein–Primakov representation There is a natural representation of
the operators ρb−→p ρh−→p and A+−→p in terms of creation and annihilation operators

obeying Fermionic commutation relations:
{
c−→p , c+−→q

}
= δ−→p ,−→q . It is given by:

ρb−→p =
∑
r

e−i
−→p ×−→r /2c+−→p +−→r c−→r

ρh−→p =
∑
r

ei
−→p ×−→r /2c+−→p +−→r c−→r

A+−→p = c+−→p (17)

It is easy to verify that the relations (11, 12) are satisfied by this representa-
tion. To satisfy (13) one must modify the expression of A+−→p in terms of c+−→p
as explained in the appendix A. Unfortunately one ends up with a non linear
representation of A+−→p which we were not able to handle in practice. Instead
we have made the assumption that the 1/N correction can be neglected in
the commutator (15) and replace the field A+−→p by c+−→p in the following.

This approximation is similar to the RPA approximation in the sense that
we replace the right hand side of (13) by its expectation value in the ground
state. Since the only place where the commutator of A and A+ appears is in
the scalar product of the states, this amounts to work in a Hilbert space with
a different norm than the physical one. This is essentially where this work
departs from the numerical calculations which evaluate the overlap between
the states in an exact way.

One can verify on a finite size system (see appendix B) that the c+ basis
of states is overcomplete. In the low density limit, the Hilbert space with n
creation operators c+ is n! times bigger than the true Hilbert space. This
factor originates from the fact than all the states obtained by permuting the
Bosons (or the Fermions) describe the same physical state and as long as the
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excitons are separated by distances large compared to their size there is no
overlap between these Hilbert spaces.

The equivalence with the Fermionic Hamiltonian introduced here is sim-
ilar in spirit to the representation of the Heisenberg spin chain in terms of a
Bosonic Hamiltonian [19]. This would be the case here if we were studying
the double Layer system. Here, since the particles of the two layers obey op-
posite statistics it is a Fermionic representation. We call this a generalized
Holstein Primakov transformation because the expression of A+−→

k
in terms of

c+−→
k
is similar to the spin operator expression of S+−→

k
in the spin chain case as

shown in the appendix B.

2.2 Dynamics of the model

The Hamiltonian which governs the dynamics of the model is given by the
projection of the interaction potential energy on the lowest Landau level. For
obvious symmetry reasons, we consider the case where the two layers are
exactly on top of each other and this we take the interaction energy to be
the same between the different type of particles Bosonic or Fermionic:

H =
∫

d2x d2y 1/2V (−→x −−→y ) ρt (−→x ) ρt (−→y ) (18)

Or in Fourier modes as:

H = 1/2Ω
∑
−→q

Ṽ (−→q ) ρt (−→q ) ρt (−−→q ) (19)

where Ṽ (−→q ) = e−q
2/2
∫

d2xV (−→x ) ei−→q −→x .
If we use the Fermionic representation of ρt, it can be expressed in a more

conventional form of an interacting Fermion Hamiltonian:

H =
∑
−→
k

ε0

(−→
k
)

c+−→
k
c−→k + 1/2Ω

∑
−→q ,−→k ,−→k ′

Ṽ (−→q )× [

4 sin
(−→

k ×−→q /2
)
sin
(−→

k ′ ×−→q /2
)

c+−→
k +−→q c+−→

k ′−−→q c−→k ′c−→k ] (20)

ε0

(−→
k
)
= 1/2Ω

∑
−→q Ṽ (−→q ) 4 sin2

(−→
k ×−→q /2

)
is the dipole dispersion rela-

tion introduced earlier in the text.
The long range part of the interaction (q � 1) has the interpretation of

a dipole dipole potential where ẑ × −→
k , ẑ × −→

k ′ define the dipole vectors.
Note that since the dipole vector depends on the momentum of the particle
the Hamiltonian has no Gallilean invariance. This is not be surprising since a
Galilean transformation creates of an electric field perpendicular to the speed
in the presence of a magnetic field.
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We can also rewrite the interaction in the form of a current-current inter-
action:

Hint = 1/2Ω
∑
−→q

q2Ṽ (−→q ) Jt (−→q ) Jt (−−→q )

where Jt (−→q ) is the transverse current Jt (−→q ) =
∑
k

(−→q ×−→
k
)

c+−→
k +−→q c−→k .

So, if V (q) behaves as q−x at small q, the coefficient of the current-current
potential behaves as q2−x and we expect no infrared singularity in the physical
range 0 ≤ x ≤ 2. This absence of divergent contribution at small momentum
transfer is due to the screening of the dipole interaction. In this range of
values the system becomes essentially equivalent to a neutral Fermi liquid
with a short range interaction potential. In the following, we have restricted
ourself to the case where V (x) = δ2 (x) because the angular integrations can
be carried out analytically and in this model we do not expect the physics to
depend very much on the range of the potential for x ≤ 2.

The ground state energy E0 can be evaluated in a Hartree–Fock approx-
imation. Denoting n (p) the ground state distribution
(n (p) = 1 if p < kf , n (p) = 0 if p > kf ) one obtains:

E0 = 1/2Ω
∑
−→p ,−→q

Ṽ (−→q ) 4 sin2 (−→p ×−→q /2)n (−→p ) (1− n (−→p −−→q )) (21)

Using this expression we can determinate the appropriate Landau parameters
in this approximation [22]:

ε (p) = 1/2Ω
∑
−→q

Ṽ (−→q ) 4 sin2 (−→p ×−→q /2) (22)

× (1− n (−→p −−→q )− n (−→p +−→q ))
f (−→p ,−→q ) = −1/ΩṼ (−→p −−→q ) 4 sin2 (−→p ×−→q /2) (23)

From this dispersion relation we can deduce the Fermi velocity at the
Fermi momentum kf =

√
2, vf = 7.5×10−2. If we compare the effective mass

m∗ = kf/vf with the “bare mass” m0 = 2π defined by the curvature of the
dispersion relation at zero momentum ε (p) = p2/2m0 one has approximately
m∗/m0 ≈ 3. Note that due to the lack of Galilean invariance of the theory,
there is no relation between the mass and the Landau parameter F1.

The homogeneous transport equation which follows from the Landau the-
ory is given by [22]:

(−s + cos (θ)) n̂ (θ) + 1/2π cos (θ)
∫ 2π

0
dθF (θ − θ′) n̂ (θ′) = 0 (24)

where the fluctuation of the quasiparticle distribution takes the form

δn (−→p ,−→r , t) = δ (ε (−→p )− µ) n̂ (θ) ei
−→q −→r −ωt (25)
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s = ω/qvf and θ labels a point on the Fermi surface. The coefficient F (θ) =
Ωm∗f (−→p ,−→p ′) /2π, where −→p ,−→p ′ are two momenta on the Fermi surface
making an angle θ with each other.

The two first Fourier modes
(
Fn =

∫
dθ/2πF (θ)

)
of F (θ) are both less

than zero, furthermore, when pf/
√
2 = .985 F0 becomes less than −1 and

the system becomes unstable (The compressibility is negative). Although we
have no clear interpretation for this instability, it may be related to our
approximation in the following way. We know a priori that the filling factor
ν2 cannot exceed one because at this value all the particles are Bosons. The
Fermionic Hamiltonian (20) which we have introduced can in principle give
rise to a Fermi liquid with an arbitrary Fermi momentum and the value
pf =

√
2 does not seem to be distinguished among other values at first.

When we consider the stability conditions however, we recover an infinite
compressibility for a filling factor very close to 1 and the system becomes
unstable beyond this value

(
kf >

√
2
)
.

Before the Hartree–Fock approximation is taken, the Hamiltonian (20) is
an exact representation of the dynamics in the sense that the physical spec-
trum is contained in its spectrum when we consider the finite size dynamics as
in the appendix B. Since our description of the Hilbert space is overcomplete,
there are eigenstates which must be disregarded in the physical theory.

At the physical point where all the particles are Bosons (ν2 = 1) one
should expect that ρf−→p |phys〉 = 0 on the physical Hilbert space since there is
no fermion in the system: bs |phys〉 = 0. The Hartree–Fock states do not fulfill
this requirement. In this paper, we use of the fact that the physical quantities
depend on ρb or ρf only through the total density ρt. Although the quantities
which depend on ρb,t individually are not correctly calculated in the Hartree–
Fock approximation, it is reasonable to expect than those which depend upon
them through the combination ρt are correctly obtained. An indication that
this approximation makes sense consists in evaluating the Casimir operators∑
−→q ρ−→q ρ−−→q of the algebras generated by ρb−→p , ρf−→p , ρt−→p respectively. While the

first two sets of Casimir which are not related to any physical quantities are
incorrectly predicted by the Hartree–Fock approximation, the third set which
gives the asymptotic behavior of the form factor S (q) is correctly obtained.
We shall return to this question in the next section.

Remark 4. Since the interaction between two dipoles is attractive when their
momentum are opposite a BCS state should form at very low temperature.
In the context of the quantum Hall effect this state should probably be in-
terpreted as a plateau. Unlike in the Chern–Simon case [23] the gap equa-
tion which one obtains is real (the dipoles are neutral). This makes suspect
that the order parameter is real with nodes on the Fermi surface. Typically
∆ (θ) = ∆0 sin (θ − θ0) which leads to an O (2) order parameter to describe
the transition.
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2.3 Form factor and conductivity

Form factor As an application of the preceding formalism we compute the
form factor S (−→q , ω). We recall that the dynamical form factor is defined as:

S (q, ω) =
∑
n

|〈n| ρ−→q |0〉|2 δ (ω0 − ωn) (26)

where 〈n| ρ−→q |0〉 | is the matrix element of the density operator ρ−→q between
the ground state |0〉 and a complete basis denoted |n〉. [22] contains all the
information one can learn about the system in a particle scattering experi-
ment.

At a general filling factor ν2 = 1 we could in principle use either ρt

or ρb since ρf = 0. Here we evaluate the form factor in a Hartree–Fock
approximation which violates the condition ρf = 0 and we use ρt to evaluate
it to be consistent with our evaluation of the energy. The computation done
with ρb would be justified only at this specific point, it would clearly give an
incorrect answer for S (q) both at small and large q.

In the Fermionic representation ρt (q) is a one body operator ρt (q) =∑
−→
k 2i sin(−→

k ×−→q /2
)

c+−→
k +−→q c−→k . Up to the prefactor acts on the vacuum by creating

a particle hole excitation of energy:

ω = ε
(−→

k +−→q
)
− ε
(−→

k
)

(27)

From then the Hartree–Fock calculation proceeds as usual and the expression
of the dynamical form factor S (−→q , ω) is given by the Fermi-liquid result [22]
multiplied by a factor 4 sin2

(−→
k ×−→q /2

)
where k is determined by 27.

To test the validity of our approximation let us compare the expression of
the static form factor we obtain with some theoretical predictions. The form
factor S (q) is defined as:

S (q) = 1/N
∫

dωS (q, ω) (28)

For q small S (q) behaves as 2kfq3/3π instead of 2q/πkf in a Fermi liquid.
The q3 behavior of the form factor agrees with the numerical predictions [18]
(The predictions do not give the coefficient of q3 and we shall see that the
effect of the interactions is to enhance it). As for the quantum Hall effect
form factor [17] there is a q2 reduction with respect to the normal Fermi
liquid behavior at small q.

For q > 2kf , S (q) goes to k2f as k2f (2− j1 (qkf ) /qkf ) where j1 denotes
the Bessel function (we use a normalization of ρq for which there is no expo-
nential behavior of S (q) at large q unlike in [17]). The limiting value k2f is
an exact result related to the Casimir operator of the ρ algebra as shown in
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the appendix B. This prediction also indicates the limitation of the present
model to the ν = 1 Bosonic case since in the physical ν = 1/2 Fermionic case
the limiting value should be 1/2 (The general limiting value of is 1 + ν 〈Pij〉
where 〈Pij〉 denotes the expectation value of the permutation operator +1
for Bosons, −1 for Fermions [18]). This S (q) does not reproduce a cusp sin-
gularity at 2kf which is indicated by the simulations [18].

Macroscopic response function We can gain a better understanding of
the preceding result by comparing the expression of the form factor with the
response function evaluated in the quasistatic limit: (s = ω/vfq � 1) . In this
limit one can interpret the system as a 2D Fermi liquid consisting of dipoles.
At the Fermi surface the dipole vector of a quasiparticle with a momentum
equal to kf is given by di = εijkj . Let ρq =

∑
k c+k+qck denote the Fourier

modes of the dipole density. A scalar potential φ (−→r , t) acts on the system
through an interacting Hamiltonian:

He =
∑
−→q

∫
dωρ−−→q −→q .

−→
d φ (−→q , ω) e−iωt (29)

where φ (−→q , ω) is the Fourier transform in space and time of φ (−→r , t). In
the long wavelength limit (q � kf ) the dipole-vector can be replaced by its
value at the Fermi surface and the net effect is to replace the interaction
Hamiltonian by the usual coupling to a scalar potential:

He =
∑
−→q

∫
dωρt−−→q φ (−→q , ω) e−iωt (30)

where ρt−→
k

=
∑
−→q
(−→

k ×−→q
)

c+−→
k +−→q c−→q denotes the long wavelength limit of

the total density operator. The response function is defined as:

χ (q, ω) =
〈
ρt (−→q , ω)

〉
/φ (−→q , ω) .

To evaluate it we use the transport equation in the presence of the external
force due tot he scalar potential. It reads:

(−s + cos (θ)) n̂ (θ) + cos (θ) n̂ (θ′) dθ′/2π

= (qkf ) sin (θ) cos (θ)φ (−→q , ω) (31)

We expend the solution of this equation in powers of s and make use of
the fact that: 〈ρt (−→q , ω)〉 = ∑−→p (−→p ×−→q ) δn (−→p ). Form the first term we
deduce the static response function:

χ (q, 0) = − (qkf )
2
ν (0) /2 (1 + F1) (32)
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where ν (0) = m∗Ω/2π is the density of states on the Fermi surface.
Note the q2 dependence which is different from the usual Fermi liquid

behavior and that F1 appears instead of F0. This result does not satisfy the
usual compressibility sum rule because the scalar potential does not see the
quasiparticles as elementary but rather as dipoles. As a result, it does not
deform the Fermi sea symmetrically.

The next order gives an imaginary contribution which is related to the
dynamical Form factor [22]. One deduces the following expressions:

S (−→q , ω) =
(
2m∗ω/ (2π)2 vfq

)
(kfq/1 + F1)

2 (33)

The first factor is the free fermion result. The factor (kfq)
2 was predicted

at the Hartree–Fock approximation and originates from the fact that dipoles
couple much more weakly to the scalar potential as ordinary quasiparticles.
Finally the many-body effects renormalize the Hartree–Fock contribution by
(1 + F1)

−2 ≈ 4 (instead of (1 + F0)
−2) in the usual Fermi liquid case.

Conductivity Let us first consider the system in a constant electric field.
We put the field E in the y direction by choosing the gauge Ay = −Et. The
effect is to replace the x dependence of the one body-wave functions (2) by
x − Et and thus to produce a Galilean transformation in the x direction.
Since the vacuum |0〉 carries the charge and moves at speed E in the x direc-
tion one recovers in this way the standard ν = 1 quantum Hall conductivity:
σxy = e2/2π. To see the effect of the electric field on the dipoles it is sim-
pler to put the electric field in the y direction by adding to the Hamiltonian
(1) a potential equal to Ex. After projection onto the lowest Landau level,
this adds to the Hamiltonian (20) a term equal to −→E × −→

K where −→K is the
total momentum operator: −→K =

∑
−→
k

−→
k c+−→

k
c−→k . This interaction can be inter-

preted as a Lagrange multiplier which gives each quasiparticle an additional
energy proportional to −→E × −→

K and thus a rapidity proportional to
∣∣∣−→E ∣∣∣ in

the direction perpendicular to −→E . Physically, we can say that although the
dipoles are neutral, the electric field tends to stretch them and since their
dipole vector is proportional to their momentum they acquire a rapidity by
this mechanism.

We can use the arguments based on the transport equation to compute
the transverse conductivity σ⊥ (−→q ) in the quasistatic limit in a similar way
as for the response function. The electric-field is applied in the x direction
and the wave vector −→q is perpendicular to it. We evaluate the conductivity
in the direction of the electric field (σ⊥ (−→q ) = σxx (−→q )) in the quasistatic
limit. In a normal 2D Fermi liquid the transverse conductivity evaluated in
the Landau theory is equal to σ⊥ (−→q ) = 2ρee2/kfq.

Let J denote the quasiparticle current at the Fermi surface. In the dipole
theory we define a modified current J t in such a way that the variation of the
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kinetic energy with the time is proportional to −→J t (−→x ) = −→
d .
−→∇J (−→x ) where−→

d denotes the dipole vector. The computation of the conductivity then pro-
ceeds as for the response function and the net effect of this redefinition is
to renormalize the Fermi liquid result by the factor (kfq)

2. In the case of
interest ν2 = 1 one has ρe = 1/2π and kf =

√
2 so that σ⊥ (−→q ) = e2

√
2q/π.

We see that this theory predicts an anomalous conductivity proportional to
q in a straightforward way. Unfortunately, this does not produce the longitu-
dinal conductivity

(−→
E and −→q in the x direction

)
which is observed in the

experiments [3].
The physical interpretation of the above result is simple: The only quasi-

particles which can radiate must travel with the group velocity of the electric
field. When the group velocity is small compared to vf they lie at the two
points of the Fermi surface with a Fermi momentum perpendicular to −→q .
Since the electric field is not constant in the direction of −→q , it couples to
the dipole vector of the quasiparticles and the system radiates when −→

E is
parallel to their velocity.

2.4 Conclusion

We have introduced a microscopic model to analyze the problem of Bosonic
particles in a strong magnetic field at ν = 1. We have generalized the model
in order to be able to vary continuously the Fermi momentum pf and we
have been able to study it in a Hartree–Fock approximation.

The present model gives a description in agreement with the dipole pic-
ture introduced by N. Read [5]. The main conclusion of our study is that
the system behaves essentially as a gas of Fermionic dipoles with a dipole
vector perpendicular to their momentum and a strength proportional to the
momentum. As a result, the interactions are screened and the gas behaves
in many respect as a neutral Fermi liquid (the same conclusion is reached in
[7]). The response theory to an external field is modified by the fact that the
quasiparticles couple as dipoles to the field. The main consequence is that the
linear response quantities get renormalized by a factor (kfq)

2 coefficient at
low momentum transfer q and that the Landau parameter F1 appears instead
of F0 in the final results. The Landau theory only relies on the hypotheses
that the quasiparticles are dipoles with a dipole vector perpendicular and
equal in strength to the Fermi momentum. it should therefore also be valid
in the ν = 1/2 case.

Since our conclusions are based on a self consistent approximation, we can-
not prove them from first principles. In particular, the theory should become
inconsistent when the Fermi momentum pf >

√
2. A somewhat unexpected

feature of our numerical study is the fact that the Landau parameter F0 = −1
very close to the physical point pf =

√
2.

The model differs from the Chern–Simon theory by the fact that the dy-
namics is projected into the Lowest Landau Level. Thus, the effective mass



Dipole at ν = 1 101

depends only on the interactions. This model does not seem to predict a
divergence of the effective mass. It predicts a form factor S (q) with the ex-
pected qualitative behavior at small and large wave vector q. While the low
q behavior is expected to be the same as in the ν = 1/2 case, the large Q
behavior is specific to the ν = 1 Bosonic case. It is however the best test that
we have that our approximation is consistent.

Curiously, we do not predict a longitudinal conductivity linear in the wave
vector q but instead we compute a transverse conductivity with this behavior .
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Appendix A

in this appendix we recast the commutation relations (11, 12, 13) of the
order parameters in a “local form” by introducing a non commutative for-
malism. This enables us to obtain a Fermionic representation for those fields
which turns out to be a generalized Holstein–Primakov transformation. Let
us introduce a plane wave basis which obey the magnetic translation group
multiplication law:

ei
−→p −→q ei

−→q −→x = e
−→p ×−→q /2e(

−→p ×−→q )−→x (34)

We also impose that the Fourier modes commute at different space posi-
tions:

ei
−→p −→x ei

−→p −→y = ei
−→q −→y ei

−→p −→x (35)

Given the Fourier modes ρ (−→p ) of a density operator we define ρ (−→x ) as:

ρ (−→x ) = 1/Ω
∑
p

ρ (−→p ) ei
−→p −→x (36)

Ω is the total area. To be consistent with our earlier definitions we do the
same with the Fermion operators A+ (−→x ) but we replace Ω by

√
Ω in the

definition.

A+ (−→x ) = 1/
√

Ω
∑
p

A+ (−→p ) ei
−→p −→x (37)

A (−→x ) is defined as the hermitian conjugated of A+ (−→x ) .
We also define the delta function δ2 (−→x ) = 1/Ω

∑
p ei
−→p −→x . Because the

Fourier modes do not commute, one must be careful in commuting δ2 (−→x −−→y )
through an operator O (−→x ). The rule is given by:elations

δ2 (−→x −−→y )O (−→x ) = O (−→y ) δ2 (−→x −−→y )
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as can be easily verified.
With this formalism, the commutation between the ρ′s and the A′s be-

come:[
ρb (−→x ) , ρb (−→y )

]
= ρb (−→x )− ρb (−→y ) δ2 (−→x −−→y )[

ρf (−→x ) , ρf (−→y )
]
= ρf (−→x )− ρf (−→y ) δ2 (−→x −−→y )[

ρb (−→x ) , ρf (−→y )
]
= 0 (38)

[
ρb (−→x ) , A+ (−→y )

]
= A+ (−→x ) δ2 (−→x −−→y )[

ρf (−→x ) , A+ (−→y )
]
= −A+ (−→y ) δ2 (−→x −−→y ) (39)

{
A (−→x ) , A+ (−→y )

}
= 2π

(
ρb (−→y ) + ρf (−→x )

)
δ2 (−→x −−→y ) (40)

A first result which can be easily obtained from these relations is that the
operators

∫
ρb(f)

n

d2x are the Casimir operators of the ρb(f) algebra respec-
tively.

Let us now consider Fermionic operators c−→p , c+−→p such tat
{
c−→p , c+−→q

}
=

δ−→p ,−→q . The field c+ (−→x ) is defined as in 38 and c (−→x ) is its hermitian conju-
gate. They verify:

{c (−→x ) , c (−→y )} =
{
c+ (−→x ) , c+ (−→y )

}
= 0{

c (−→x ) , c+ (−→y )
}
= δ2 (−→x −−→y ) (41)

It is then straightforward to verify that the operators c+ (−→x ) c (−→x ) and
c (−→x ) c+

(−→x ) obey the same commutation relations as ρb (−→x ) and ρf (−→x ) respec-
tively and that they commute with each other. A possible realization of the
operators A (−→x ) , A+ (−→x ) which satisfies the correct commutation relations
is then:

A+ (−→x ) = c+ (−→x )
A (−→x ) = 2πc (−→x ) c+ (−→x ) c (−→x ) = 2πρf (−→x ) c (−→x ) (42)

This representation however, does not achieve the hermiticity condition
A+

(−→x ) = (A (−→x ))+. One way out is not to impose that c (−→x ) and c+ (−→x )
are Hermitian conjugated; another one consist in modifying the expression
of A (−→x ) , A+ (−→x ) as follow: We show in the text section that the commu-
tation relations are not modified if A+ (−→x ) = c+ (−→x )

√
2πρf (−→x ), A (−→x ) =√

2πρf (−→x )c (−→x ) and the Hermiticity condition is satisfied. The square root
the operator 2πρf (−→x ) can be understood as

√
1− 2πρf (−→x ) to define a

formal series in the normal ordered operator ρh (−→x ). This representation is
reminiscent of the Holstein Primakov representation of the su (1|1) algebra.
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As for the Holstein–Primakov case the Fermionic Hilbert space must be trun-
cated. This can be traced back to the fact that the physical scalar product
of the “Slater determinants” (16) does not coincide with the natural scalar
product in the Fock Hilbert space c+

(
p1
)
c+
(
p2
)
...c+ (−→p N) |0〉. As a re-

sult there are linear combinations of slater determinants with a zero physical
norm. This means that if one replaces A+−→

k
by their expression (7) these states

vanish identically. In other words the c+−→
k

Hilbert space is an overcomplete
description of the physical states and must be properly truncated.

Invariance of the commutation relations We show that the commuta-
tion relations of the operators c+ (−→x ) and c+ (−→x )(41) are not modified if one
makes the substitution c+ (−→x )→ C (−→x ) = Ψ

(
ρf (−→x )

)
c (−→x ),

c+ (−→x ) → C+ (−→x ) = c+ (−→x )Ψ−1
(
ρf (−→x )

)
. In the following ρ stands for

ρf and we denote the vector −→a as a. We assume that Ψ (ρ) can be repre-
sented as Ψ (ρ) =

∫
dueupf (u). In which case Ψ−1 (ρ) =

∫
dueupg (u) where

duf (u) g (t− u) = δ (t) . If one substitutes Ψ (ρ) by its expression in the com-
mutator, the result follows if the following commutator depends only on the
sum λ + µ :

B (λ, µ) =
{
eλρ

f (x)c (x) , c+ (y) eµρ
f (y)
}
= B̃ (λ + µ) (43)

Here B̃ (λ) is an operator function which verifies B̃ (0) = δ (x− y) .
To show (44) it is sufficient to show that dB/dλ− dB/dµ = O. This last

expression can be rewritten as:

eλρ(x)
({

ρ (x) c (x) , c+ (y) eµρ(y)
}
−
{
c (x) , c+ (y) eµρ(y)ρ (y)

})
−
({

eλρ(x), c+ (y) eµρ(y)
}

ρ (x)−
{
eλρ(x), c+ (y) ρ (y) eµρ(y)

})
c (x)

= eλρ(x)C + Dc (x) (44)

We now show that C = D = 0.

C =
({

ρ (x) c (x) c+ (y)
}− {c (x) , c+ (y) ρ (y)

})
eµρ(y)

−c+ (y)
({

ρ (x) c (x) , eµρ(y)
}
− ρ (y)

{
c (x) , eµρ(y)

})
(45)

The first line of the above expression can easily be seen to vanish. If we call
β (µ) the coefficient of c+ (y) , one can show along the same lines that it obeys
dβ/dµ = ρ (y)β (µ) and it therefore vanishes since β (0) = 0. Thus C = 0.

To show that D = 0 one considers D as a function of λ. D (0) = 0 and
one has:

dD/dλ = ρ (x)D (λ)

+
({

ρ (x) , c+ (y) eµρ(y)
}
−
{
ρ (x) , c+ (y) eµρ(y)ρ (y)

})
eλρ(x) (46)
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The coefficient of eλρ(x) can be evaluated directly and vanishes identically
therefore D = 0 as well. This proves the result.

Appendix B

In this appendix we extend the formalism to the case of periodic boundary
conditions. This enables us to relate the approach of this paper to the trial-
wave functions considered by Haldane [18]. Let us consider the case of a
periodic box of length LxLy = 2πN where N is an integer so that exactly N
flux tubes thread the box.

The lowest Landau level wave functions are obtained by taking the sum
of the wave functions 〈x|s〉 defined in (2) for s = s0 + kLx, k ∈ Z in order to
make them quasi-periodic in the x direction.

〈−→x |s0〉 =
∑

s=s0+kLx

√
1/πLye

isy−(x−s)2/2 (47)

Now s0 = 2πn0/Ly where n0 takes the values 0, 1, ...N−1 and 〈x + Lxy|s〉 =
eiLxy 〈x, y|s〉. Let us define the variables z = Lx (y − ix) /2π, τ = iL2x/2π and
a = n0/N . The periodic wave functions rewrite:

〈−→x |s0〉 = e−πIm(z)
2)/Im(τ)θa,0 (z, τ) (48)

where θa,b for a, b ∈ Z/N is the theta function with characteristics a, b [20]
defined as:

θa,b (z, τ) =
∑
n∈Z

exp
(
πi (a + n)2 τ + 2πi (n + a) (z + b)

)
(49)

They obey the following periodicity conditions:

θa,0 (z + N) = θa,0 (z)
θa,0 (z + τ) = e−iπτ−2iπzθa,0 (z) (50)

Unlike those defined in (2), the wave functions 〈−→x |s0〉 are not eigenstates
of the operator Rx = py but they are eigenstates of γ1 = e2πiRy/Ly with the
eigenvalues e2πia. Similarly, the operator γ2 = e2πiRy/Ly where Ry = px − y
acts on the wave functions by shifting a by −1/N. One recovers the action
of the Heisenberg group

(
γN1 = γN2 = 1, γ1γ2 = e−2iπ/Nγ2γ1

)
on the theta

functions given by:

γ1θ (z) = θ (z + 1)

γ2θ (z) = e−iπτ/N
2−2iπz/Nθ (z − τ/N) (51)

In these notations, the momentum−→p = 2π (n1/Lx, n2/Ly) so that the one
body operator eipyRyeipxRx = γn2

2 γn1
1 . Assuming the particles are Bosons, the
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second quantized expression of this operator is given by
∑
s=2πn/Ly

eipxsa+s−py
as

where n takes the values 0, ..., N − 1 and as, a
+
s are Bosonic creation and an-

nihilation operators. This operator coincides up to a phase with the projected
density operator ρb−→p defined in (10). The same holds for ρf−→p if the particles
are Fermions and Fermionic creation operators b+s , (bs). One can verify that
the two sets ρb−→p , and ρf−→p generate two commuting SU (N) lie algebras when
we consider their commutators.

The Fermionic ground state which is the only possible state when the Low-
est Landau level is occupied by N Fermionic particles is given by the slater
determinant of the one-body wave-functions Ψ0 (−→x i) = Det (〈−→x i|j/N〉) .

Consider the case where all the particles obey a Bosonic statistics (N2 = N).
Given a set of N momenta −→p i, one can construct a symmetric wave function
given by:

Ψ{−→p i} (
−→x i) =

∑
σ∈SN

(−)σ
∏
j

e−ipx
−→
R σΨ0 (−→x i) (52)

where the operator ei
−→p −→R i acts on the coordinate −→x i. Here ei

−→p −→R stands for
the ordered expression eipxpy/2eipyRyeipxRx defined above. These trial-wave
functions have been considered by Haldane [18] to study the Fermi-sea forma-
tion in the ν = 1 case. If we define the operators A+−→p = e−ipxpy/2

∑
s e
ipxsa+s−py

bs,

the second-quantized expression for these wave functions is given by
∏
−→p i

A+−→p i
|0〉.

This establishes the link between the formalism used in this paper and the
trial wave functions studied in [18].

Casimir operator

The quadratic Casimir operator of the ρt algebra is given by

C2 =
∑
−→q

ρt−→q ρt−−→q =
∑
−→q

ei
−→q (−→R i−−→R j) (53)

The action of this operator on a many-body wave functions of M particles is
given by

C2 =
M∑
i,j=1

M∑
n1,n2=1

(γn1
1 γn2

2 )i
(
γ−n2
2 γ−n1

1

)
j

(54)

where the subscripts i, j means that the operator acts on the coordinate zi, zj
respectively. When we evaluate this operator on a wave function the prod-
uct of the two factors when i = j is equal to 1 and one can verify that for
i �= j the sum oven n1, n2 adds up to N times the permutation of the coor-
dinates zi and zj . Thus C2 = N2M + N

∑
i =jPi,j . If the system consists of

N1 Fermions and N2 Bosons, only two possible representations of the per-
mutation group appear in the decomposition. They are characterized by the
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two young tableaux
(
N2, 1N1

)
and

(
N2 + 1, 1N1−1) . In the representations(

λ1, 1λ2
)
the operator

∑
i =j Pi,j takes the value (λ1 + λ2) (λ1 − λ2 − 1) so

that the Casimir C2 takes 2 possible value which can be evaluated.
Let us consider the thermodynamic limit M = N1+N2 = N →∞, N2/N =

ν2. For q large S (q)(28) has a limit given by 1/N3C2 = 2ν2. This result can
be compared with the Hartree–Fock approximation which gives S (q) → k2f .

Since k2f = 2ν2 the two results agree with each other although we have no
good explanation for this fact.
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Abstract. Ion storage is a powerful tool for keeping charged particles for very long
times in a perturbation-free environment, a perfect system for atomic physics or
frequency metrology. Due to the existing anharmonicies in the confining field, equa-
tions of the ion motion are governed by non-linear dynamics and new frequencies
built on the classic rules of the frequency dynamics appears.

In addition with laser cooling, the technique allows one to develop precise in-
vestigations on microscopic systems and then very fundamental illustrations in
quantum optics. Moreover, storing single ion are now a “common” to propose new
frequency standards in the optical domain; however the frequency locking on the
clock transition presents the originality to use the quantum jumps detection. The
paper will essentially present some highlights in connection with the research un-
dertaken at PIIM.

1 Introduction

Due to the long storage times possible, the very few collisions with neutral
background gas, the high degree of spatial localisation and excellent detection
sensitivities, measurements on trapped ions allow very high resolution spec-
troscopy (such as hyperfine structure and radiative lifetime measurements),
the proposal of novel frequency standards and the observation of several
quantum effects [1]. This paper is obviously limited to the presentation of
some aspects among the numerous applications more or less connected to the
studies carried on in Marseille.

The motion equation in the ideal case (Mathieu equation) of confined ion
in a Paul trap and then the properties of this ion motion in the real cases,
where limit conditions of the trap, as well as collisions, space charge, ... will
modify the equation of motion will be first discussed. Ions could be consid-
ered as an ensemble of similar oscillators with non-linear properties which
raise frequency locking and new motion frequencies, as well as instabilities
or amplitude increases at this frequencies. Experimental illustrations of these
characteristics will be described.

Because the ion motion is oscillating, it is possible to reach situations
where the amplitude of ion motion is much less than the wavelength of an
� fern@frmrs12.u-3mrs.fr
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atomic transition (Lamb-Dicke regime). The first order Doppler effect is sup-
pressed. Performing frequency standard in the microwave regions using the
ion storage are then realizable.

Laser cooling techniques permit to extend this conditions in the optical
domain. The storage of a chain of few ions or of a single particle quasi at rest
can also be used for developing new frequency standards also in the optical
domain. The last part of this contribution will be devoted to present shortly
the progress in this area.

2 Dynamics of Stored Ions

2.1 Ion motion in a pure quadrupole field

Ideally, the trajectory of the ion is governed by three independent pure Math-
ieu equations as for the z-component of the motion [2]:

dz2

dt2
+

Ω2

4
(az − 2qz cosΩt)z = 0 (1)

For a given e/m ratio, the stability domain depends on the parameters az
and qz which are direct functions of the dc and ac trapping voltages Udc and
Vac, of the r.f. frequency Ω of the ac voltage and of the dimension parameters
of the trap r0, z0 [2]. The corresponding solution is :

z(t) = uz (Az(t) cos(ωzt + φz) + Bz(t) sin(ωzt + φz)) (2)

where Az(t) and Bz(t) are the sums of the harmonics of the r.f. frequency
Ω, uz and φz the motion constants, ωz is the secular frequency which is
related to the parameter βz such that ωz = βzΩ/2. βz is computed by an
iterative technique from az and qz. The frequency spectrum is formed by
the ensemble of Ω and sums of Ω ± ωz shows that the ion motion could be
considered as the superposition of two contributions: the micro-motion at Ω
and the macro-motion at ωz.

Refined 3D-modelisation of the ion and Monte-Carlo simulations allows
to measure, with T.O.F. techniques the kinetic energy of the ion cloud with
a good accuracy [3,4]. Actually, this information is required for applications
in physico-chemistry and to ion/molecule collision studies

The spectral properties of the ion motion will influence the shape of ab-
sorption or emission profiles, which normally is monitored by the Doppler ef-
fect (first order and second order). Actually, the frequency of the radiation (ω0
in the laboratory frame) as seen by the ion is modulated by the first Doppler
effect and the time dependence of the field becomes in cos(ω0 + ω0v

ωzc
sinωzt),

where v is the maximum amplitude of the velocity. This modulation can be
expressed in Bessel functions developments and that consequently the ion see
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the radiation with discrete components spaced symmetrically about ω0 and
separated by the secular frequency. These components will be resolved when
the first-order shift is less than the secular frequency, that is finally when
the amplitude of the motion is smaller than the wavelength divided by π.
This last condition is so-called “the Lamb–Dicke regime”. In this case the
first-Doppler profile become discret [5,6].

2.2 Ion motion in experimental conditions

In real cases, the ion motion is governed by a more complex equation than
1. Investigating the fundamental aspect of the properties of the Mathieu
equation with additional terms is important for developping new tools for non
linear physics. On the other hand, a greater knowledge of the dynamics of the
ion cloud is always sought, for instance, for refining ion detection methods,
mass-selective trapping of injected ion species, and the determination of the
optimum conditions for prolonged ion storage at quasi-rest.

The ion motion must be described by:

d2z

dt2
+

Ω2

4
(az − 2qz cosΩt)z = Γ

dz

dt
+

n∑
i=1

A
z − zi

r3
+ qe

∂Ve(ω, z)
∂z

+ f(x, y, z) (3)

r2 = (x− xi)2 + (y − yi)2 + (z − zi)2

where the viscosity Γ in the first term of the right-hand side represents colli-
sions with buffer gas, or laser cooling interaction, the second term describes
the coulombic interactions, the third one could be an alternating electrical
excitation and finally f(x, y, z) takes into account the imperfections of the
rf driving field.

Frequencies are defined within a sharp but not null interval, therefore
integer ratios between them are experimentally unreachable. However, when
the ratio of the frequencies involved is close to a rational number, this ratio
becomes rational due to the presence of nonlinearities, that will result in
frequency locking. Frequency locking is understood in terms of the excitation
of an oscillator with a periodic force [7]. The eigenfrequencies of the oscillator
will tend to values corresponding to rational ratios between these frequencies
and those of the excitation and will lead to resonance.

In Fig. 1 is shown, as an example, the resulting frequency locking, as
computed in the space charge case [8]. Actually, Poincaré sections computed
when increasing the importance of the additional space charge term do not
continue to be well defined ellipses, but spiral successively in an increasing
or decreasing way limited by two ellipses, according to the KAM theorem.
Then for a given threshold of the perturbation amplitude, points are concen-
trated in discrete islands instead of a quasiuniform distribution. When the
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Fig. 1. Example of frequency locking. Poincaré section (or stroboscopic phase space
representation for one component: xk, ẋk, at rf-phase = π/2) of the trajectory of an
rf stored ion is computed in the presence of strong coupling of the degrees of free-
dom. Here, the perturbation, modeling space charge effect, is shaped approximately
as Kn

∫
2k(α)xexp

(−k(α)
(
x2 + y2 )

+ k ′(α)z 2 )
dα,n being the ion number, K and

k geometrical factors. The pure ellipse corresponds to the case of ”n =0”; the is-
lands demonstrate that the secular frequency becomes a multiple of the rf frequency
and arises for a given value of n depending on the ion temperature

perturbation becomes larger, resonances can also appear for ratios different
from an integer value, following the Arnold tongue scheme, in the same way
that a viscosity term allows forced resonances not only for one value but for
an interval around this value [10].

Following the pioneering work of Kotowski [11] for the theoretical aspect
of the modified Mathieu equation, and of Dawson [12] on its applications to
the quadrupole mass filter, experimental [13,14], as well as theoretical and nu-
merical [15] studies have been carried out subsequently. A dramatic variation
of the ion storage capability was observed as the working point was moved
within the stability diagram that led to the discovery of the so-called black
holes and black canyons [16,17]. These defects in trapping capability were ex-
plained by the presence of couplings between the macro- and micro-motions,
which were already observed previously by Paul in the early experiments for
the 2D-case (linear mass filter [18]).Trapping variations due to axial-radial
motion couplings besides those coming from the well known macro-micro ones
can be also observed.

As mentioned in [15] resonant couplings between the different degrees of
freedom can be predicted from the following equations:
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nx
βx
2

+ nz
βz
2

= ℵ N =| nx | + | nz | (4)

with nx or nz = 0, ±1, ±2, ... and ℵ = 0, 1, 2,...

The case ℵ = 0 corresponds to radial-axial couplings, while ℵ �= 0 de-
scribes couplings between the macro- and the micromotion. Up to now the
case ℵ = 0 was considered to be rather unlikely for observation [15]. It induces
necessarily nx and nz with opposite signs. In this radial-axial coupling case,
energy is alternately exchanged between the radial and the axial components,
that will lead at each time one of the motion amplitude to be increased and
even larger than the trap dimensions, and then allowing ion loss by neutral-
ization on the electrodes (“ion evaporation”). For ℵ �= 0 energy could be
exchanged but it is above all supplied by the rf driving field. In both cases of
couplings, resonances will increase the amplitude of motion or will render it
unstable. These resonances are expected for integer nx, nz and ℵ.

The radial-axial couplings reveal new regions of the stability diagram
where the storage is less efficient [19]; these regions come in addition to
those corresponding to the well-known regions of less efficient storage due to
couplings between the macro- and the micro-motions.

2.3 Experimental observations

The number of the stored N+ ions for different trapping conditions was mea-
sured by varying the dc voltage Udc in step for different fixed Vac voltages.

Fig. 2 evidences that the number of ions depends dramatically on the
working point. The minima indicate that a significant part of the ions are
lost during the storage time. From the values of Udc and Vac at which these
storage minima were observed, it is possible to get approximate values of the
axial and the radial secular frequencies ωz and ωx,y.

More precisely, the frequency spectrum of the ion motion is obtained
by applying a tickle as shown in Fig. 3 which establishes pertinently the
presence of harmonics [21]. Indeed, the spectra is then formed by parametric
contributions, 2ωz/n, 2ωx/n, nωz + pωx, the occurence and the intensities of
each peaks depend on the strenght and the shape of the anharmonicities.

Figure 4 the broadening due to the individual behavior of the ions and
the effect of increase of the magnitude of perturbation (a) the existence of
collective oscillation.

In the spectrum from Fig.5 frequency was found to be in coincidence
with the half of the axial frequency. The other ion storage minima happen
for rational values of βz (macro-micro-motion coupling case), here 2/5, 1/3
and 2/7 (x, y, and z ), which is significant of distortions of the 5th, 6th
and 7th orders, respectively; the 6th order showing a defect in the reflection
symmetry (cf. eq. 4), as foreseen in [13–15]. Lines corresponding to N <5
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Fig. 2. Comparison of the variation of the number of stored N+ ions for four
ac voltages; 1: Vac=80Vrms, 2: Vac=90Vrms, 3: Vac=100Vrms, 4: Vac=110Vrms. The
valleys are assigned as x: βz =2/5, y: βz=1/3, z: βz =2/7, α : βz/βx = 1, β : βz/βx
= 2/3, γ : βz/βx = 1/2. Note that the loci of x ,y ,z , show constant values of βz,
the α, β, γ intersect as it would be expected because α, β, γ are constant ratios

could not be observed under our Vac conditions (as well as similar properties
for βx).

2.4 Simplified motion equation for radial-axial couplings

In order to understand the observations, we can establish new equations of
motion obtained when considering the pseudopotential-well model introduced
by H. Dehmelt [20] when the static potential boundaries contains higher
order terms. These equations are easier to understand as exact equations and
could therefore give rapidly qualitative descriptions. The major defect of such
models is to suppress the presence of the rf motion, that is not crucial here,
since we are not interested in macro-micro couplings. Detailed presentation
of this developments are given in [22].

Assuming the cylindrical symmetry, the potential up to the fourth order
is given by an expansion of the spherical harmonics Φn :

Φ(x, y, z, t) = Φ0(t) + Φ0(t)
i=4∑
i=1

aiΦi(r, z) r =
√

x2 + y2 (5)

with
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Fig. 3. Ion ejection signal after the interuption of the confinement voltage moni-
tored after a delay with the quadrupolar excitation, a: ωx−ωz, b: 2ωx−ωz,c: ωz/2,
d: ωx, e: ωz, f: 2ωz − ωx, g: 2ωx,h: ωx+ωz, k: 2ωz , l : 3ωz − ωx, at the upper limit,
2ωx + ωz

Φ0(t) =
Udc + Vac cos(Ωt)

2
(6)

Φ(x, y, z, t) can be written as a sum of two functions: U depending only on
the space coordinates and V depending on the space and on the time, versus
a geometrical function G.

U(x, y, z) =
Udc
2

(1 + G (x, y, z)) (7)

V(x, y, z) =
Vac cos(Ωt)

2
(1 + G (x, y, z)) (8)

G(x, y, z) =
n∑
i=1

AiΦi(
√

x2 + y2, z); Ai =
ai
ri0

(9)



114 Fernande Vedel

Fig. 4. (a) Axial resonance for N+ with parametric excitation 2ωz as a function of
ion number . Top to bottom: ion number decreasing by shortening the ionization
pulse, (b) detailed 2ωz profile due to the space charge, a very narrow response,
which occurs at a greater frequency indicates a strong collective behaviour

The stored particle is then in a steady field, suffering a force, which os-
cillates at a high frequency (Ω) which will induce small oscillations in the
motion. Therefore, the pseudopotential method [10],[19] can be applied. Av-
eraging the fast motion on the rf period, the slow motion equation is given
by:

z̈ = −e
dU
dz

− 1
mΩ2

fz
∂fz
∂z

= −e
dU eff

dz
fz = −e

dV
dz

= −e
Vac cos(Ωt)

2
dG
dz

(10)

Expanding the terms up to third order, 10 becomes:

mz̈ + ω2z

(
1− α3

ω2z

(
x2 + y2

))
z + α2zz

2 + α3zz
3 = −α1 + α2r

(
x2 + y2

)
(11)

ω2z =
e

2m

(
2A2Udc +

(
2A22 + 3A1A3

) eV 2ac
2mΩ2

)
(12)
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Fig. 5. Experimental frequency spectrum of N+ ion motion for working conditions
inside the valley previously assigned to βz/βx = 2/3, νz = ωz/2π

and for one of the radial components:

ẍ + ω2x

(
1 +

αxz
ω2x

− αx2y
ω2x

y2 +
αx2z
ω2x

z2
)

x + α3xx
3 = 0 (13)

ω2x =
e

2m

(
A2

eV 2ac
4mΩ2

− Udc

)
A2 (14)

where the coefficients αnξmξ′ are functions of Udc, Vac, Ai and Ω2

The shape of eqs. 11 and 13 show couplings between the different compo-
nents of the motion. From these equations, the effects of the couplings can
be foreseen. Actually, the oscillating motion of each component, due to the
confinement potential, will act as a forced oscillator at the secular frequency
of the involved components ωx, ωz). For given relations between ωx and ωz,
resonances could occur. These resonances will lead to momentum exchange,
that will increase the amplitude of the motion of one component, while the
other(s) will decrease. From these alternating variations, one can imagine
that the amplitude will be great enough to render the ion cloud larger (while
its density will decrease), or to permit ions to hit the walls of the trap. The
relations between ωx and ωz, for which resonances are possible can be found
from the shape of the equations themselves.
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In the most general case, symmetry of reflection is not rigorously re-
spected and A2i+1 are not zero. Eq. (11), e.g., can be written in terms of a
forced Duffing equation. From the resolution of the general equation, reso-
nances occur if ωz/ωx = n or 1

n . The properties of the parametric resonance
teaches that the width or the strength of the resonance is weaker when n
increases, since it varies versus hn , when we identify the term of z in eq.
(11) to ω2z (1 + h cos 2ωx t) . However, because α2z or α2 > α3z or α3, the
particular solution, which depends on the time through x and y, should be
rather considered and leads only to resonances such as n = 2pq . The respect
of the symmetry of reflection, that is α1 = α2z = α2r = 0, raises new kinds of
resonances such as ωz/ωx = 2

3n, which then could be considered as possible
values. Similar deductions could be done from Eq. (11) for the ratio ωx/ωz
which is of the form ωx/ωz = 2p

′

q′ . However, because of the shape of the x
coefficient, the approach seems more complex. The found ratios come from
p = 1, q = 2, 3, 4 and p′ = 1, q′ = 2, 3.

The general construction for finding resonances as the Farey tree algo-
rithm [6,18], valid when two frequencies appears in a non linear equation,
can also be used. The involved ratios as 1, 1/2, 2/3 appear on the first,
second and third line of the Farey tree.

3 Application to Frequency Standards

3.1 The radiofrequency domain

Using an atomic transition of a stored ion (passive clock) to control a local
oscillator was proposed by Dehmelt [23] in the early stage of the ion storage
developments. Because the ion storage technique allows suppression of the
first-order Doppler broadning and does not limit the interrogation time, the
realisation must permit to satisfy the best possible to the fundamental two
criteria for a standard: accuracy and stability. While fulfilling the first crite-
rion needs a severe analysis of the frequency shift due to the imperfections
of the systems, the second one is controlled by measuring the two-sample
variance or the Allan deviation defined by [24]:

σ(τ) =
1

2πf0∆trSNR

√
Tc
τ

τ ≥ Tc ≥ 2∆tr (15)

where f0 is the frequency of the local oscillator, SNR, the signal to noise
ratio, ∆tr characterises the line width, Tc the measurement cycle time and τ
the duration of the probe interval.

In the microwave frequencies, the best way to reach Allan variance mag-
nitude competitive with atomic fountains clock [25] is to work with an ion
cloud which at the same time increases the SNR ratio and reduce the para-
sitic frequency shifts. The 199Hg+ ion species is a good candidate with the
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possibility to prepare easily the ion [26]. The clock transition at 40.5 GHz
corresponds to the hyperfine separation of the fundamental level. The linear
ion traps (LITS) at JPL (NASA) provide successful stability (short stability
of 3× 10−14/

√
τ [27], which allows to measure that temporal variation of the

fine constant is smaller than 4 × 10−14 per year [28], while the Grand Uni-
fied String Theory predicts a time variation at the level of 10−20 per year.
Improvement of the system is now undergo by replacing the four rods of the
linear trap by a judicious set of 12 round rods with a 60◦/30◦ symmetry and
by using an extended trap in order to separate the optical state selection
region from the clock resonance region [27].

The quality of an atomic clock depends also on its accuracy. The NIST
(Boulder) project develops small linear ion traps working with laser- cooled
ions [30] and interrogation based on a temporal Ramsey technique. Actu-
ally , using linear ionic crystals allows to expect systematic shifts to be less
than a part in 1016, since reducing the micro-motion heating, the electric and
magnetic field allows to minimize all the systematic effects. Nevertheless, re-
ducing the number of ion will decreases the SNR ratio and long stability is
more difficult to be reached. The Ramsey technique for the detection into-
duces at this level of sophistication limit of the accuracy due to the quantum
projection noise , evidenced in [29]

3.2 The optical domain

Working at higher frequency with narrow forbidden lines can be very at-
tractive since the limit of the Allan variance is expected to be smaller. For
these spectral regions, the Lamb–Dicke regime [6] or the “strong binding
conditions” profile [31] requires Doppler laser cooling. Due to presence of the
micro-motion, the required temperature ( few mK) can only be attained with
single ions stored in miniature trap or with ion chains in a linear trap. The
spectrum of the considered transition is then discrete showing a central car-
rier and sidebands which are separated by multiples of the ion’s frequencies of
motion [5,32]. Numerous possibilities exist. For instance, projects with Yb+

are developed at PTB (Braunschweig), NPL (Teddington), with Sr+ at NPL
and NRC (Ottawa), with In+, at MPQ (Munich) [33] and Washington Uni-
versity, Hg+, at NIST (Boulder), finally Ca+ potentialities are investigated
in Kobe and Marseille.

In the optical region, the error signal of the local oscillator (“clock-laser”)
does not result from a collective response (even from few ions as in Mer-
cury with twelve-ion chain) but from a single ion using the Dehmelt shelving
amplification scheme [34]. Actually, the observation of single ion “quantum
jumps” indicates the internal quantum state of a two-level ion with 100% of
confidence, assuming that the power of the laser will not couple the involved
levels. For this reason, the cooling laser is stopped during the interrogation
timt. However influence of the Ramsey technique in the optical domain, as
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proposed at NIST must be evaluated. The measured signal is the fluores-
cence light corresponding to the cooling transition. When the probe laser is
locked on the clock transition, which is not coupled to the cooling cycle, the
fluorescence disappears. Example of quantum jumps are shown in Fig.6.

Fig. 6. Collision-induced quantum jumps with one, two and three Ca+ laser-cooled
ions in a medium-size trap at PIIM.

The efficiency of its amplification is of the order of the ratio of the strength
of the lines, that is, for instance, more than 108. The error signal will then be
built from the accumulation of the detected quantum jumps for two values
of the frequencies of the clock laser corresponding to symmetric positions in
the spectral line of the clock transition.

At this time, only frequency measurements (in the optical domain) with
Sr+ are published (NPL [35] and NRC [36]). The last measurements at NRC
referenced to a Cs atomic clock [37] involving a diode laser present an accu-
racy of 200 Hz at 445 THz on the 5s2S1/2 - 4d2D5/2 (natural width of 46
Hz).

One major problem with the optical frequency standard is to fulfil
the required condition on the local oscillator, that is here the laser linewidth
which should be of the same order as the passive oscillator, which is generally
about 1Hz. A noteworthy step was achieve at NIST: a two-step stabilised
doubled frequency laser was able to give spectral width of 0,84 Hz (beat-
note spectrum) [38]. This remarkable result is obtained from dye frequency
doubled lasers, but the group is now preparing an solid-state system based
upon a frequency-doubled Nd3+- doped fluorapatie (Nd:FAP), the frequency
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instability of this arrangment being dominated by low-frequency acoustical
and mechanical noise.

Then, the suitable very high laser stability can be only reached when
locking is done with very high-finesse cavities (12000 ≤ F ≤ 200000) [38,35]
placed in a very well controlled environment.

3.3 The Ca+ at PIIM, Marseille

Among the ions proposed for a frequency standard in the optical domain, Ca+

is one of the most favourable candidates due to its wavelengths accessible with
all-solid-state laser systems. This allows to imagine an ultimate experimental
setup which would be simple and compact [39]. The 4s2S1/2 – 3d2D5/2 electric
quadrupole transition at 729 nm with a natural linewidth of 200 mHz serves
as clock transition (giving rise to a Q-factor of the transition higher than
1015), while laser cooling on the 4s2S1/2 – 3d2P1/2 resonance line is carried
out at 397 nm (Fig. 7 ).

The D-doublet lifetimes were studied in detail in differents laboratory
and also in Marseille where systematic investigations allowed to estimate
quenching and j-mixing rate constants under collisions with different atomic
and molecular neutral gases. [40]

Fig. 7. Lowest energy levels of the 40Ca+ ion

The miniature ion trap of the Paul-Straubel-type [41] consists of a cylin-
drical ring of 1.4 mm inner diameter and a wall thickness of 0.3mm being
surrounded by four compensation electrodes (for ion positionning and electric
field control), the total height of the cylinder (2z0) equals 0.85mm (Fig.8 ).
The confinement frequency is Ω/2π = 11.6 MHz with an AC amplitude Vac
up to 1500 Vrms, the related frequencies of ion motion are then in the MHz
range.

Ions are created by electron bombardement of a slow atomic calcium
beam produced by an oven. After loading of the trap, the oven and the
electron gun are turned off to avoid collisions and a high stray light level.
Collimation of the ion’s fluorescence is made by an aspheric lens at about
16mm away from the trap center. This very open structure provides a solid
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Fig. 8. Miniature trap for the Calcium project at PIIM, schematic design of the
miniature trap, the compensation electrodes in x and y are not shown

angle of observation of almost 90◦. The base pressure in the vessel is below
5 × 10−10 mbar as measured by a Bayard–Alpert-gauge. The composition
of the partial pressures of the residual gas can be determined by a mass-
spectrometer with a resolution up to 1× 10−9 mbar.

First laser-cooled small ion clouds were obtained [42]. The cooling wave-
length is obtained at this time by frequency doubling of a 794 nm Ti-Sa-laser.
In Fig.9 are plotted the signals of clouds containing approximately 50 to 150
ions. These signals have been obtained with the use of a light buffer gas
(p(He)=1 × 10−7 mbar) for the pre-cooling of the clouds. Different cloud
sizes can easily be produced by changing the heater current of the calcium
oven. The temperature of the clouds can roughly be estimated from the en-
velopping Doppler profile. They lie between 400 and 700K, which represents
an equilibrium value between the initial ion temperature due to rf heating,
the infinite heat reservoir of the buffer gas at 300K and the laser-cooling
process.

Colder ions (of the order of 50K) have been trapped without buffer gas.
After termination of the testing process of our trap, lower temperatures will
be reached by reducing the size of the cloud in the trap.

4 Quantum Optics with Laser-Cooled Ions

Obtention of one single ion or small laser-cooled ion cloud allows one to ma-
nipulate internal states and the ion motion with external laser fields and
to then perform efficient probing of the considered atomic levels. These last
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Fig. 9. Fluorescence of Ca+ ion clouds of different sizes in the miniature trap. The
different curves correspond to various values of the heater current of the calcium
oven. These signals have been obtained with a moderate buffer gas pressure

years saw very rich harvest of findings thanks to such techniques. Thanks
to the quantification of the motion, more performing cooling was achieved,
with the resolved sideband Raman cooling [43,33]. Study of the statistics of
“quantum jumps” shows photon antibunching and sub-Poissonian statistics
of the spontaneous emission. Single ions are largely utilised for such illustra-
tion [44] measuring the photon correlation statistics with a Hanbury–Brown–
Twiss experiment and experimentally evidencing the predicted value, zero,
of the correlation function in such conditions. Interference fringes with light
scattered from two ions were observed with mercury species [45], the fringe
pattern can be used to investigate the degrees of ion localization the dis-
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tance between the two ions. Generation of non classical states of ion motion
as Fock states was successively succeeded in a standing wave , via observa-
tion of quantum jumps [48], via adiabatic passage [49], or via trapping states
[50] and also in travelling waves on Raman transition [51]. Coherent states
has been prepared and the related Poissonian distribution of the Fock states
measured [51].

Preparation of Schrödinger cats [52] and entangled states [46] shows that
cold ions provide a realistic physical system for the implementation of a quan-
tum computer. Indeed, delicate preparations using several steps for manipu-
lating both internal and external states allows to success for the realisation
or “controlled-NOT” gate [43,47], when the decoherence is controlled.

5 Conclusion

Ion storage technique provide a large range of example of individual and
coupled oscillators. The couplings between them can be done macroscopi-
cally, it gives good examples of non linear dynamics and can be applied for
sophisticated high resolution mass spectrometry methods [53].

A very large review on physics and instrumentation with ion traps can be
found in [54]. In the quantum domain, entangled states are formed with ion
chain characterised by their common frequencies. The challenge to exploit
these new quantum systems is continuously increasing, as the last proposi-
tions to use entangled states for optical frequency standards [55] or to propose
atomic interferometry [56] show it.
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2 Departamento de F́ısica Atómica y Nuclear, Facultad de Ciencias F́ısicas,
Universidad Complutense de Madrid, E-28040 Madrid, Spain

Abstract. The fluctuations of the particle density distributions in extensive air
showers have been studied at ground level. In order to achieve meaningful statistics,
the interaction of cosmic rays with the earth atmosphere has been simulated by
means of the CORSIKA Monte Carlo code. It is shown that the fluctuations of the
particle density distributions as a function of the polar angle have features typical of
a 1/f noise. The sample is then analysed in order to study its scaling behaviour and
we find that it can be parametrized by means of a universal multifractal approach.

1 Introduction

Since the discovery of cosmic rays at the beginning of this century, their
study has provided substantial contributions to physics which could not have
been obtained otherwise, because it is not possible to achieve so high particle
energies in laboratories. Traditional questions related to cosmic rays are, for
example, Where do these particles come from? What is their age? How did
they get such a high energy? ... But in this work we pose different questions:
What kind of statistical fluctuations are observed in cosmic rays? Do they
contain any information?

The interaction of cosmic rays with the high altitud atmosphere produces
secondary particles, and successive interactions of the primary cosmic rays
and their secondaries give rise to multiplicative cascades called Extensive Air
Shower (EAS). For a good survey of EAS physics see for example ref.[1].

Current models of the particle density in an EAS describe average values
and it is usually assumed that the fluctuations around the mean must have
zero mean value and are totally independent, i.e., they should show no corre-
lation structure. Thus for example the widely used NKG[2] formula describes
the particle density as a function of the distance to the core, but it is assumed
to be independent of the polar angle. In this paper we study the character-
istics of fluctuations in the particle density of EAS at ground level. We shall
see that these fluctuations are not a simple white noise. They contain a com-
plex structure which can be interpreted as a white noise plus a 1/f noise.
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Furthermore, they exhibit statistical selfsimilarity properties which can be
quantified by means of the universal multifractal formalism.

We note that similar structures have been found as well in the analysis of
fluctuations in the semiinclusive rapidity distribution in high-energy hadron-
hadron collisions and scaling laws have been observed in particle density and
correlations functions in high-energy multiparticle dynamics[3,4].

We shall first give a brief introduction to the physics of cosmic rays and
Extensive Air Showers (EAS) in section 2, and we describe in section 3 the
databasis of EAS events obtained by Monte Carlo simulation for statistical
studies. In section 4 we present an analysis of the statistical fluctuations in the
secondary particle density of EAS events at ground level, and in section 5 we
analyse their multifractal structure. Finally, the conclusions are summarized
in section 6.

2 Extensive Air Showers

The high energy particles and nuclei arriving at the Earth from space are
collectively called cosmic rays. They consist mainly of protons and α particles,
an appreciable fraction of heavier atomic nuclei, a small fraction of electrons
(∼ 0.1%) and an even smaller fraction of photons (∼ 0.01%). The energy
spectrum of cosmic rays varies from 109 eV to 1020 eV. The latter particle
energies are very seldom, since the flux of cosmic rays decreases quickly with
increasing energy, following a power law E−γ .

Cosmic rays can be directly detected in balloons and satellites up to ∼
100 TeV for charged particles, or up to ∼ 30 GeV for the less abundant γ
rays. For higher energy particles the flux is so small that direct detection
and measurements become practically impossible. The main experimental
technique is then based on detection at ground level of the secondary particles
arising from the collision of primary cosmic rays with the earth atmosphere.

Fig. 1 illustrates how an electromagnetic EAS arises from a primary γ ray.
In the neighbourhood of an atmospheric nucleus, the photon materializes
creating a positron and an electron pair. Each of these high energy leptons
produces bremsstrahlung γ rays, which lead again to pair production, and
the process continues quickly producing an electromagnetic shower.

The physical processes giving rise to a hadronic EAS are also shown
in Fig.1. A cosmic hadron collides with an atmospheric nucleus producing
mainly pions and possibly also nucleon and other mesons. The π0, π+ and
π− particles are produced in approximately the same quantities. The π0 decay
spontaneously (mean life 1.78×10−16 s), by electromagnetic interaction, into
two γ rays, which again produce new electromagnetic showers. The charged
pions decay by weak interaction (mean life 2.55 × 10−8 s) according to the
reactions

π+ → µ+ + νµ , (1)
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Fig. 1. Schematic diagram of the basic reactions producing a pure electromagnetic
shower iniciated by a primary γ ray, and a hadronic shower iniciated by a proton
or some other nucleus.

π− → µ− + ν̄µ . (2)

The muons decay according to the reactions

µ+ → e+ + νe + ν̄µ , (3)

µ− → e− + ν̄e + νµ , (4)

with a mean life of 2.2 · 10−6 s in their own reference frame. However, for
an external observer the mean life is multiplied by the Lorentz factor. Thus
only muons with a Lorentz factor larger than 20 survive a flight from the
upper atmosphere to the ground before they decay. Therefore the highest
energy muons provide information on the hadronic EAS component and on
the primary cosmic ray.

Fig. 2 illustrates an extensive air shower in which a considerable number
of secondary particles reach the earth surface, where they are detected. At
this point the secondaries are mostly e+, e−, γ and µ, and the figure shows
a grid of scintillator counters, Cerenkov telescopes and other detectors.

3 Simulation of EAS Events

The detailed data needed to study fluctuations of the EAS particle density
at ground level were obtained by a Monte Carlo simulation using the COR-
SIKA[5] code. The observation level was set to 2200 meters above sea level,
corresponding to the altitude of the Roque de los Muchachos Observatory
in the Canary Islands, where the HEGRA[6] experiment is located. Parti-
cles were tracked down to this height and the parameters of e+, e− and γ
rays at their impact point with the surface were stored. The rest of the EAS
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Fig. 2. Schematic extensive air shower reaching a grid of different photon and
charged particle detectors placed at ground level, and underground muon detectors.

components, particularly µ and Cherenkov photons, were not used at this
point. With the mentioned setup we generated over 1000 γ rays and over
2000 protons with energies ranging from 10 to 50 TeV. As a simplification,
all the showers have been generated at 900 incidence angle with respect to
the earth surface.

Fig.3 shows some examples of EAS particle distributions at the obser-
vation level. Two events generated by 10 TeV primary photons having their
first collision al different altitudes are shown, and similarly two proton events
are also shown. It can be seen that the hadronic EAS contain more inhomo-
geneities than the electromagnetic EAS particle distributions.



1/f Fluctuations in Cosmic Rays 129

Fig. 3. Examples of secondary particle distributions at the observation level in EAS
generated by 10 TeV cosmic rays. Two primary photon and two primary proton
events are shown. The core of the shower is at the geometrical centre.

We have taken as a starting point for our analysis the particle densities
at ground level. To gain in simplicity and get a clearer physical view of the
problem, we have reduced it to a one dimensional case by considering the
density of particles as a function of the azimuthal angle in a ring, comprised
between radii rmin and rmax, around the shower axis. The inner radius rmin,
chosen at 50 meters, is determined by the convenience to be sufficiently far
away from the core of the shower, so that the uncertainties in the very forward
region of the cross sections do not influence the results significantly. The outer
radius rmax was taken as 100 meters in order to have a sufficient number
of particles and thus reduce the importance of Poisson fluctuations in the
number of particles. Nevertheless we have tested that changing the values of
rmin and rmax in a wide range esentially does not alter our conclusions.

Table I shows the distribution of primary protons and γ rays according to
their number of secondary particles arriving to the ring, classified into bins
of size 2500 particles. With this databasis we achieve reasonable statistics for
EAS events giving up to about 15000 secondary particles in the ring.
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Table 1. Main features of the Monte Carlo simulation of primary photon and
proton samples ranging from 10 to 50 TeV. Here Np is the number of primary
particles whose number of secondary particles arriving to the ring is within the bin
∆Ns; A and C are the parameters of the power spectrum density χ2 fit, and α and
C1 are the universal multifractal parameters

Primary Np ∆Ns A C χ2
r α C1

proton 706 0−−2500 0.46 0.0192 1.3 1.629 1.57×10−2

572 2500−−5000 1.22 0.0534 1.2 1.999 6.04×10−3

450 5000−−7500 1.99 0.0906 1.2 2.012 3.33×10−3

284 7500−−10000 2.49 0.128 1.0 2.011 2.26×10−3

186 10000−−12500 3.3 0.161 1.3 2.011 1.81×10−3

104 12500−−15000 3.4 0.203 1.0 2.005 1.24×10−3

75 15000−−17500 4.4 0.236 1.2 2.005 1.16×10−3

γ 514 0−−2500 0.054 0.0252 1.0 1.870 1.51×10−3

359 2500−−5000 0.119 0.0587 1.6 1.969 6.23×10−4

201 5000−−7500 0.21 0.1005 1.3 1.982 3.75×10−4

161 7500−−10000 0.31 0.143 1.1 2.003 2.73×10−4

110 10000−−12500 0.37 0.178 1.0 2.008 2.10×10−4

119 12500−−15000 0.58 0.218 1.3 1.995 2.18×10−4

79 15000−−17500 0.50 0.263 1.2 1.995 1.43×10−4

In order to study the fluctuations of the particle density in the ring, it was
divided in 256 equal sectors in azimuthal angle and the number of particles
in each sector was computed. Thus an event is characterised by a primary
particle and the array of its secondary particle density distribution in the
ring sectors.

4 Analysis of Fluctuations

Statistical analysis of fluctuations normally considers each event as the con-
crete realization of a stochastic process whose statistical properties are being
determined. The stochastic process could be defined by the set of all primaries
of the same type and energy, or even by the totality of events generated. Each
process is then characterised by its statistical parameters, which may be stud-
ied in the coordinate or in the frequency domain. In this work, although the
spatial coordinate is the polar angle around the shower axis, we use instead
the ring sector number t.
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The autocorrelation information about a process is contained in the au-
tocorrelation function R(t, t+ τ) =< ε(t)ε(t+ τ) >, where ε(t) is the content
of sector t and the symbol < . > indicates ensemble averaging[7]. For a spe-
cial class of processes, the so-called wide sense stationary processes (WSS),
it simplifies to R(τ). In this case it is related to the mean power spectrum
density (PSD) denoted P (k), by a Fourier transformation[8]

R(τ) =
1
2π

∫ ∞
−∞
P (k)eikτdk , (5)

where τ is a variable that here represents the separation between sectors. The
PSD is usually estimated from

P (k) ≈ 〈|g(k)|2〉 , (6)

where angular brackets represent again the ensemble averaging of the quantity
inside them, and g(k) stands for the amplitude corresponding to frequency k
in the Fourier transform of the data.

In fig. 4 the natural logarithm of P (k) for our events, is represented ver-
sus log k. The plots show two important facts. In the first place, instead of
finding a constant P (k), as would be the case for a signal whose fluctuations
were uncorrelated, a PSD showing a complex structure is found. As a second
remark, the shape of P (k) suggest a simple model of functional form

P (k) ∼ A

kB
+ C . (7)

The constant term C represents a white noise which is clearly seen in the
constant behaviour at high k, while the first term stems for the nearly linear
behaviour in 1/k seen at low k. The appearance of a plateau in the power
spectrum for high k is related to the discrete nature of collecting secondary
particles in the sectors. If Ne is the average number of arriving particles
per sector, for a white Gaussian noise we have C = σ2 ≡ Ne. Thus P (k)
becomes constant for large k and represents the average particle density. The
direct estimation of B is difficult, specially for photons showers, due to the
limited sample size at low k. A direct fit gives values close to 1. To test
the consistency of the data with the proposed function, we have filtered the
constant component using a real non random filter with transfer function

h(k) =

√
1− C

A
k + C

. (8)

The filter is a variant of the Wiener filter[8], which is known to be adecuate
for elimination of the white noise in the signal provided that it is uncorrelated
to the 1/f component. After the filter is applied, a power spectrum analysis
of the residual signal confirms the value B � 1. Data have therefore been
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Fig. 4. Power Spectrum Density P(k) for two of the considered samples. The spatial
frequency k is in fundamental frequency units.

fitted to the model PSD

Pmod(k) ∼ A
k
+ C . (9)

Table I contains the best fit parameters A and C and the chi square per
degree of freedom χ2r obtained for our model power spectrum. The fit errors
of A and C affect the last digit of the values given in the table. We see that
the model power spectrum (9) fits well the data. Thus it can be concluded
that the fluctuations of the particle density are composed of a white noise
plus a noise 1/f which gives rise to its complex structure. This kind of noise
is usually called a flicker noise in the literature [9]. The value found for the
parameter B, approximately one, shows that the scaling component of the
signal may a priori be assumed to be conservative within the multiplicative
cascade model that we should now propose [10–12]. Finer corrections could
later be included in further work.
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5 Multifractal Analysis of the 1/f Noise

Provided that the 1/f noise found in data can be approximately considered
conservative, we study here the scaling properties of its statistical moments
〈εqλ〉, where ελ is the content of a generic sector at resolution λ and q > 0
is a real mumber. The signal at resolution µ < λ is obtained by a simple
coarse-graining procedure that is represented by [12,13]

εµ =
1
µr

∑
i

ελ (10)

where µr is the ratio of scales and the sum is taken over the sectors at scale
λ, covering the considered sector at scale µ. The scaling law for statistical
moments in a multifractal scheme states that [11,12]

〈εqλ〉 ∼ λK(q) (11)

where the K(q) function characterises the scaling behaviour and also the
statistics of the data and it is called moment scaling function. The non lin-
earity of K(q) involves a multiscaling description corresponding to a nontriv-
ial power law. Fig. 5 shows the empirical function K(q) obtained from (11),
using the average 〈εqλ〉 calculated over all the events and sectors at scale λ in
a bin ∆Ns. It is clearly seen that K(q) is a smooth non linear function and
therefore the particle density distribution has a multifractal structure.

Let us now see whether this multifractal fits into the universal multifractal
scheme [11,12]. In this scheme the theoretical value of K(q) is given by

K(q) =
C1
α− 1(q

α − q) , α �= 1 (12)

with 0 ≤ α ≤ 2, called Levy index, and 0 ≤ C1 ≤ 1 for unidimensional data,
called mean fractal inhomogeneity measure. Eq.(12) arises considering the
empirical signal as an outcome of a multiplicative stochastic process governed
by Levy stable probability distributions of index α. To determine the indices
α and C1 we applied a direct analysis technique called DTM (Double Trace
Moment technique [3,14]) to the data. The theoretical K(q) given by (12) is
shown in fig. 5. The agreement with the empirical K(q) is very good. In all
the other bins ∆Ns the agreement is also good at least up to q = 4.

The parameters of the DTM analysis are given in table I. We can see that
both primary types show an extremely low intermittency, corresponding to
a great homogeneity. On the other hand, the value of the α parameter, near
α = 2, shows a typical log-normal behaviour. The small values of C1 ob-
tained might suggest that we are dealing with nonconservative multifractals.
However, calculations of the first order structure function exponent ζ(1), give
values about 0.12, corresponding to quasi-conservative multifractals. Using
this exponent, we performed a fractional derivation of the signal followed by
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Fig. 5. Comparison of the empirical moment scaling function K(q) (triangles) for
two of the samples, with the theoretical value in the universal multifractal scheme
(dashed line).

a DTM reanalysis, and we found that α does not substantially change and
C1 changes roughly by a factor of 2 and thus it is still very small.

In order to check the reliability of the values obtained for α and C1, they
were used in a multiplicative cascade simulation following the method of ref.
[15], and finally a white noise was added. The power spectrum of the resulting
signal is very similar to the P (k) shape shown in fig. 4.

Finally, from the equation [11,12,16]

B = 1−K(2) , (13)

it is seen that the low value of K(2) � 0 is coherent with the value found for
the PSD exponent, B � 1, corresponding to 1/f noise.

6 Conclusions

Using Monte-Carlo simulations, we have generated large sets of extensive
air shower events arising from the interaction of high-energy (10 to 50 TeV)
protons and γ rays with the earth atmosphere. The density distribution of
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secondary particles at ground level has been analysed in detail as a function
of azimuthal angle in a ring centered at the core of the EAS.

It is found that the power spectrum density P (k) of the particle distri-
bution fluctuations behaves as a flicker noise plus a white noise. When the
white noise component is filtered, the remaining fluctuations correspond quite
accurately to a 1/f noise.

The scaling properties of the particle density statistical moments have
been studied. The moment scaling function K(q) is found to be nonlinear and
is thus characterised as a multifractal structure. Furthermore, the moment
scaling function is shown to fit well into a universal multifractal scheme. The
Levy index α and the mean fractal inhomogeneity measure C1 have been
calculated for all the samples. Their values depend on the energy of the
primary particle, but this dependence is found to be very similar for protons
and γ rays.
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Abstract. Stochastic resonance is a nonlinear effect wherein the noise turns out
to be beneficial to the transmission or detection of an information-carrying sig-
nal. This paradoxical effect has now been reported in a large variety of nonlinear
systems, including electronic circuits, optical devices, material-physics phenomena,
neuronal systems, chemical reactions. Stochastic resonance can take place under
various forms, according to the types considered for the noise, for the information-
carrying signal, for the nonlinear system realizing the transmission or detection,
and for the quantitative measure of performance receiving improvement from the
noise. These elements will be discussed here so as to provide a general overview of
the effect. Various examples will be treated that illustrate typical types of signals
and nonlinear systems that can give rise to stochastic resonance. Various measures
to quantify stochastic resonance will also be presented, together with analytical ap-
proaches for the theoretical prediction of the effect. For instance, we shall describe
systems where the output signal-to-noise ratio or the input–output information ca-
pacity increase when the noise level is raised. Also temporal signals as well as images
will be considered. Perspectives on current developments on stochastic resonance
will be evoked.

1 Introduction

When linear coupling takes place between signal and noise, usually the noise
acts as a nuisance degrading the signal. In contrast, when certain types of
nonlinear interaction take place between signal and noise, there may exist
a possibility of cooperation between the signal and the noise. The presence
of the noise then becomes beneficial to the signal, up to a point where an
increase of the noise may improve the performance for transmitting or de-
tecting the signal. Stochastic resonance (SR) designates this type of nonlinear
effect whereby the noise can benefit to the signal [55,73].

This paradoxical effect was first introduced some twenty years ago in the
domain of climate dynamics, as an explanation for the regular recurrences of
ice ages [2]. Since this origin, SR has been largely developed and extended to
a broad variety of domains [54,26,53]. Today, it is possible to summarize the
various forms observed for SR by means of the scheme of Fig. 1.
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nonlinear
system

coherent signal
s

noise n

output

y

Fig. 1. A general scheme for stochastic resonance, which consists in the possibility
of increasing the “similarity” between the information-carrying or coherent input
signal s and the output signal y by means of an increase of the level of the noise η

Stochastic resonance, as illustrated by Fig. 1, involves four essential ele-
ments:
(i) an information-carrying or coherent signal s: it can be deterministic, pe-
riodic or non, or random;
(ii) a noise η, whose statistical properties can be of various kinds (white or
colored, Gaussian or non Gaussian, . . . );
(iii) a transmission system, which generally is nonlinear, receiving s and η as
inputs under the influence of which it produces the ouput signal y;
(iv) a performance or efficacy measure, which quantifies some “similarity”
between the output y and the coherent input s (it may be a signal-to-noise
ratio, a correlation coefficient, a Shannon mutual information, . . . ).
SR takes place each time it is possible to increase the performance measure
by means of an increase in the level of the noise η. Historically, the devel-
opments of SR have proceeded through variations and extensions over these
four basic elements.

From the origin, and for a relatively long period of time, SR studies have
concentrated on a periodic coherent signal s(t), transmitted by nonlinear
systems of a dynamic and bistable type [27,52]. This form of SR now appears
simply as a special form of SR. Nevertheless, it bears important historical
and conceptual significance, and we shall present in the next Section this
form of (periodic) SR as our first detailed example of an SR phenomenon.

2 Periodic SR in Bistable Dynamic Systems

This form of SR is based on the evolution equation

τaẋ(t) = −dU(x)
dx

+ s(t) + η(t) . (1)

Such an equation represents a dynamic system whose state x(t) is forced by
the input s(t)+η(t), and whose free relaxation τaẋ = −dU/dx is governed by
a potential U(x) which generally is a double-well potential. A form frequently
chosen is the “quartic” potential

U(x) = −x2

2
+

x4

4X2
b

(2)
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with parameter Xb > 0, whose shape is depicted in Fig. 2.

1−1

x/Xb

U(x)

0

Fig. 2. Double-well bistable potential U(x) of (2)

Because of its double-well potential U(x), the dynamic system of (1) has
two stable stationary states (x = ±Xb in the case of (2) ) corresponding to
the two minima of the potential (U(x = ±Xb) = −X2

b /4 in the case of (2) ),
and separated by a potential barrier (with height X2

b /4 in the case of (2) ).
A mechanical interpretation of this system allows a concrete description of

the occurence of the SR phenomenon. In such an interpretation, (1) describes
the motion in an overdamped regime (inertia ẍ is neglected relative to viscous
friction ẋ), of a particle in a potential U(x) subjected to the external force
s(t)+ η(t). If a periodic input s(t) = A cos(2πt/Ts) is applied alone and with
a too weak amplitude A, then the particle cannot jump over the potential
barrier between the two wells; it remains confined in one of the wells around
a potential minimum, with no transitions between wells. One can introduce
here a binary output signal y(t), with two states say y(t) = ±1, indicating
which of the two wells the particle is in at time t, for instance

y(t) = sign[x(t)] (3)

with the potential of (2). As no transitions take place between wells, y(t)
remains stuck in one of its two states. Then, if a small noise η(t) is added,
a cooperative effect between the signal s(t) and the noise becomes possible,
enabling occasionally the particule to jump over the potential barrier. This
translates into transitions between wells which are correlated with the pe-
riodic input s(t) as it plays a part in their production (in conjunction with
the noise). When the noise level is raised, the probability of occurence of
such coherent transitions first increases, thus reinforcing the correlation of
the output y(t) with the periodic input s(t). For stronger noise levels, in-
coherent transitions induced by the noise alone will become more and more
frequent, and will gradually destroy the correlation of the output with the
periodic input. The noise thus has a nonmonotonic influence, first enhancing
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the correlation of the output with the periodic input, up to an optimum, after
which the correlation is gradually destroyed.

The output y(t) is a random signal, because of the influence of the noise
input η(t), yet it bears correlation with the periodic input s(t). To quan-
tify the correlation of y(t) with s(t), the standard method starts with the
calculation of the autocorrelation function of y(t), and then through Fourier
transform, to its power spectral density [55,73,26]. In the power spectral den-
sity of y(t), the influence of the periodic input s(t) shows up as spectral
lines at integer multiples of the coherent frequency 1/Ts. These lines emerge
out of a broadband continuous noise background stemming from incoherent
transitions due to η(t). This typical constitution of the output power spec-
tral density in periodic SR is depicted in Fig. 3A. The SR effect is identified
by coherent spectral lines whose emergence out of the noise background gets
more pronounced when the level of the input noise is raised. This is quantified
[55,73,26] by a signal-to-noise ratio (SNR) at the output, defined as the power
contained in the spectral line at 1/Ts divided by the power contained in the
noise background in the region of 1/Ts. When the level of the input noise is
raised, the ouput SNR experiences a nonmonotonic evolution culminating at
a maximum for an optimal nonzero noise level, whence the term resonance.
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Fig. 3. (A) Power spectral density at the output serving for the definition of the
signal-to-noise ratio Rout = S/B offering a quantitative measure to periodic SR.
(B) Output signal-to-noise ratio Rout from (4) as a function of the input noise
power density D, demonstrating SR in the bistable dynamic system of Eqs. (1)–(3)

For the case of the quartic potential of (2) with a Gaussian white noise η(t)
of autocorrelation function E[η(t)η(t+τ)] = 2Dδ(τ), in the regime where the
coherent signal is both small and slow, the theory of [52] (based on a master
equation for the output state probabilities governed by transition rates of a
Kramers type) derives an explicit expression for the SNR under the form:

Rout =
A2X2

b /4
(D/τa)2

exp

(
−X2

b /4
D/τa

)
. (4)
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A typical evolution of the output SNR of (4) is depicted in Fig. 3B. The
nonmonotonic evolution of the SNR in Fig. 3B with the noise power density
D is the signature of SR, which is also verified by simulation of the system
of Eqs. (1)–(3) [52]. This SR theory of [52] is applicable for any double-well
bistable potential U(x), but with a sinusoidal input s(t) both slow and small
and with a white Gaussian input noise. This treatment was for example used
with a double-well potential differing from the quartic potential, and which
describes certain regimes of operation of neurons in networks [4].

It is under this form, associated to a bistable dynamic system of the type
of (1) excited by a noisy sinusoid, that the phenomenon of SR was originally
introduced [2]. Under this form also, that SR has received the most sustained
attention for a long period of time [26]. This form of SR has been gradually
observed experimentally in various processes obeying the bistable dynamics
of (1), and including electronic circuits [24], lasers [72], electron paramag-
netic resonance [28], neurons [4,18], a magnetoelastic pendulum [66], chemi-
cal reactions [45,21], superconducting devices [37]. In these observations, the
characterization scheme exposed above for SR, which proceeds through the
computation of the output autocorrelation function then to the power spec-
tral density to access the SNR in the frequency domain, can be numerically
realized on measured signals. In addition, the theory of [52] can be used to
derive an approximate expression of the SNR for a theoretical prediction of
SR.

Other theories have been proposed to predict the behavior of the SNR
in SR based on (1). Some approaches consider the Fokker-Planck equation
[29] associated to the stochastic differential equation (1) [26,43,42,39]. In this
context which is both nonlinear and nonstationary, these approaches lead to
approximate expressions for the SNR.

Another method proposed for the theoretical analysis of SR is linear-
response theory [22,20,23,57]. This theory is a perturbative method based on
the linearization of the response of a nonlinear system for a small coherent
input added to the noise. In principle, it can be applied to any nonlinear
system, not necessarily bistable dynamic; an application is performed in [68]
exhibiting periodic SR in a monostable nonlinear dynamic system. But linear-
response theory is restricted to perturbative conditions defined by a small
coherent input. However, SR can well take place outside these perturbative
conditions [11], especially if one wants to obtain the important property of
an output SNR larger than the input SNR in SR [7,9].

3 Periodic SR in Static Nonlinear Systems

SR in nonlinear dynamic systems as those based on (1) is usually difficult
to theoretically analyze, and deriving an explicit expression for the SNR in
given conditions usually requires to ressort to approximations (like those of a
small or a slow coherent signal s(t)). There exists another class of nonlinear
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dynamic systems where the theoretical analysis of SR can be performed ex-
actly in many conditions [6,11]. This class consists of the nonlinear dynamic
systems for which the nonlinear and the dynamic characters are separated.
These systems are formed by the association of a static or memoryless non-
linearity followed by an arbitrary linear dynamic system, according to Fig. 4,
and they are amenable to a general theory [11,7].

periodic signal
s(t)

noise n(t)

output

y(t)

linear
dynam.
system

static
nonlin.
g(.)

Fig. 4. A general class of nonlinear dynamic systems exhibiting SR, and describable
by the theory of [11,7]

We shall now expose an example of periodic SR in a simple instance of the
class of Fig. 4, with a complete theoretical description based on the approach
of [11]. We shall deal with a nonlinear electronic circuit involving one of the
most common nonlinearities found in electronic devices, i.e. the threshold
nonlinearity of a PN junction diode [33].

We consider the circuit shown in the inset of Fig. 5A, where the input
voltage consists of the sum s(t) + η(t), with s(t) a Ts-periodic signal and
η(t) a stationary white noise with the probability density function fη(u).
The output voltage y(t) results as a nonstationary, yet cyclostationary [61],
random signal bearing correlation with the periodic input s(t).

This correlation is quantified here by means of the output autocorrelation
function [11]

Ryy(k∆t) =
1
N

N−1∑
j=0

E[y(j∆t)y(j∆t + k∆t)] , (5)

where, for comparing theory and experiment, we use a discrete-time formu-
lation in which the signals are sampled at a step ∆t � Ts = N∆t.

The output power spectral density follows, from a discrete Fourier trans-
form of Ryy over an integer number 2M of period Ts, as

Pyy(Z∆ν) =
MN−1∑
k=−MN

Ryy(k∆t) exp

(
−i2π

kZ

2MN

)
, (6)

with the frequency resolution ∆ν = 1/(2MN∆t).
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Fig. 5. Panel A: Diode circuit and its input–output static characteristics exper-
imentally recorded (solid line) and its simple piecewise-linear theoretical model
(dashed line). Panel B: Experimental (circles) and theoretical from (12) (solid line)
ouput SNR Rout(1/Ts) at the fundamental 1/Ts, as a function of the rms amplitude
ση of a zero-mean Gaussian input noise η(t), for the diode circuit with a sinusoidal
input signal s(t) = A cos(2πt/Ts) with A = 1V

The theory of [11] leads in these conditions to an explicit expression for
the output power spectral density as

Pyy(Z∆ν) = var(y) +
+∞∑
n=−∞

|Y n|2 δ̂(Z− 2Mn) , (7)

with δ̂(0) = 2MN and δ̂(j) = 0 for an integer j �= 0. In (7),

Y n =
1
N

N−1∑
j=0

E[y(j∆t)] exp

(
−i2π

jn

N

)
(8)

is the order n Fourier coefficient of the Ts-periodic output expectation E[y(j∆t)]
computable as

E[y(t)] =
∫ +∞

−∞
g(u)fη[u− s(t)]du . (9)

Also in (7),

var(y) =
1
N

N−1∑
j=0

var[y(j∆t)] , (10)

with the Ts-periodic output variance var[y(t)] = E[y2(t)] − E2[y(t)] com-
putable with

E[y2(t)] =
∫ +∞

−∞
g2(u)fη[u− s(t)]du . (11)
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In (9) and (11), the function g(u) represents the input–output static char-
acteristics of the nonlinear circuit realizing y = g(s+η). For the circuit of the
inset of Fig. 5A, the experimental characteristics has been measured and is
also represented in Fig. 5A. We chose the diode (a red LED TLHR 5400 from
TEMIC) so as to have an almost linear characteristics above the conduction
threshold, well approximated by the simple model g(u) = u−Vth for u > Vth,
and g(u) = 0 otherwise, with Vth = 1.5V.

The output power spectral density Pyy of (7) has a shape which conforms
to the general model of Fig. 3A. It is formed by spectral lines with amplitude
|Y n|2 at integer multiples of the coherent frequency n/Ts, emerging out of
a continuous noise background whose magnitude is measured by var(y) con-
stant in the present case of a white noise. The standard ouput SNR given by
the power in the line at frequency n/Ts divided by the power in the noise
background in a small frequency band ∆B around n/Ts, results as

Rout
(

n

Ts

)
=

|Y n|2
var(y)∆t∆B

. (12)

In the case where η(t) is a zero-mean Gaussian noise with rms amplitude
ση, (9) leads to

E[y(t)] =
ση√
2

{
1√
π
exp[−z2(t)]− z(t) erfc[z(t)]

}
, (13)

and (11) to

E[y2(t)] =
σ2η

2

{
[1 + 2z2(t)] erfc[z(t)]− 2√

π
z(t) exp[−z2(t)]

}
, (14)

with z(t) = [Vth − s(t)]/(ση
√
2).

From (13) and (14), the output SNR of 12) has been computed. Also,
this quantity has been experimentally evaluated on the circuit of Fig. 5A in
the interesting regime of a subthreshold coherent input s(t). Both results are
shown in Fig. 5B (with ∆B = 1/Ts) revealing very good agreement between
theory and experiment, taking into account the simple piecewise-linear model
adopted for the static characteristics. The nonmonotonic evolution of the
output SNR with the input noise level, which culminates at a maximum value
for an optimal nonzero noise level, demonstrates the SR effect, by which here a
subthreshold coherent input s(t) is aided by noise to overcome the threshold.

The present electronic circuit stands for one of the simplest conceivable
stochastic resonators. In particular, it comes here with a complete theoretical
analysis, which is not always feasible for more complex stochastic resonators.
Other electronic circuits also shown to exhibit SR, like a Schmitt trigger [24]
or a chaotic Chua circuit [1], have more complicated nonlinearities that hinder
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an exact theoretical treatment of the effect, which was essentially exhibited
through experiments or numerical simulations.

SR in our diode circuit relies here on the presence of a threshold and
a subliminal signal whose transmission is only possible in the presence of
the noise, with maximum efficacy for an optimum noise level explicitly pre-
dictable with the theory. Other situations exist where a subliminal signal or
a threshold are not necessary for SR [11,3]. Also for SR, the periodic sig-
nal s(t) can be replaced either by a high-frequency carrier modulated by a
low-frequency message, or by a broadband aperiodic signal [1,14,8].

4 Aperiodic SR in a Nonlinear Information Channel

We shall now expose an example of aperiodic SR, i.e. SR with an aperiodic
coherent signal s(t) in the scheme of Fig. 1. At the same time, we shall
introduce another measure of the performance receiving enhancement from
the noise, under the form of an information-theoretic quantity. This will result
in an information channel whose capacity is improvable via noise addition.

We consider the transmission of information over a memoryless channel.
The input to the channel is a discrete random variable, that we write s to
conform to the general scheme of Fig. 1, and which assumes values 1 or −1
respectively with probabilities p1 and p−1 = 1 − p1. Transmission over the
channel involves two effects. First a noise η is added to the input s to produce
s+ η. Next, s+ η is compared to a fixed double threshold θ > 0 to determine
the discrete output y of the channel according to

s + η < −θ ⇒ y = −1,
−θ ≤ s + η ≤ θ ⇒ y = 0, (15)

s + η > θ ⇒ y = 1.

The noise η is a random variable, continuous or discrete, with the cumula-
tive distribution function Fη(u) = Pr{η ≤ u}. The successive realizations of
the noise η are independent and identically distributed, and the same for the
random input s. The noise η and the input s are statistically independent.

The present channel can be considered as a binary channel with erasure
[16] where the input binary information s = ±1 can be received as y = ±1
possibly with an error, or erased when y = 0.

For the input–output transfer probabilities of this channel we have, for
example, the probability p11 = Pr{y = 1 | s = 1} which is also Pr{s + η >
θ | s = 1} amounting to Pr{η > θ− 1} = 1−Fη(θ− 1). With similar rules we
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arrive at

p11 = Pr{y = 1 | s = 1} = 1− Fη(θ − 1) , (16)
p−1,1 = Pr{y = −1 | s = 1} = Fη(−θ − 1) , (17)
p1,−1 = Pr{y = 1 | s = −1} = 1− Fη(θ + 1) , (18)

p−1,−1 = Pr{y = −1 | s = −1} = Fη(−θ + 1) , (19)
p01 = Pr{y = 0 | s = 1} = [1− Fη(−θ − 1)]Fη(θ − 1) , (20)

p0,−1 = Pr{y = 0 | s = −1} = [1− Fη(−θ + 1)]Fη(θ + 1) . (21)

Once the transfer probabilities are known, the input–output mutual in-
formation I(s; y) can be evaluated from the entropies [16] as

I(s; y) = H(y)−H(y | s) . (22)

With h(u) = −u log2(u), the output entropy H(y) =
∑
y h(Pr{y}) is here

H(y) = h[p1p11 + (1− p1)p1,−1] + h[p1p−1,1 + (1− p1)p−1,−1]
+ h[p1p01 + (1− p1)p0,−1] , (23)

and the input–output conditional entropy H(y|s) = p1
∑
y h(Pr{y|s=1}) +

(1− p1)
∑
y h(Pr{y|s=−1}) is

H(y | s) = p1[h(p11) + h(p01) + h(p−1,1)]
+ (1− p1)[h(p1,−1) + h(p0,−1) + h(p−1,−1)] . (24)

Equations (22), (23) and (24) provide an explicit expression for the mutual
information I(s; y) as a function of the transfer probabilities (16)–(21) and
the input probability p1. In the case where the input noise η is symmetric,
i.e. with an even probability density, the transmission process is symmetric,
and the mutual information is invariant in the exchange of the values of
p1 and p−1 = 1 − p1. As the mutual information of a discrete memoryless
channel is always a concave function of the input probability distribution
[16], we deduce that for η symmetric, the maximum of I(s; y) which defines
the information capacity C of the channel, is reached for p1 = 0.5 = p−1. In
case of a symmetric noise, Eqs. (22), (23) and (24) with p1 = 0.5, thus allow
an explicit evaluation of the capacity C of the channel. We can now examine,
on the capacity C, the influence of the noise η as conveyed by the function
Fη(u).

Figure 6A shows the capacity C as a function of the rms amplitude ση of
the noise η chosen zero-mean Gaussian. When the threshold θ < 1, an input
s = 1 (respectively s = −1) is alone sufficent to trigger an output y = 1
(resp. y = −1). In the absence of the noise η the capacity is thus C = 1bit.
Addition of noise is then only felt as a nuisance, entailing a decay of C as ση
increases above zero. In contrast, when θ > 1, and input s = 1 (or s = −1)
is alone insufficent to trigger an output y = 1 (or y = −1). In the absence of
the noise η the capacity is thus C = 0 and the channel is unable to transmit
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any information. It is the addition of noise which allows the transmission
of information, through a cooperative effect where the noise and the input s
collaborate to overcome the threshold. This translates into a nonzero capacity
C of the channel in the presence of the noise, with a region where C increases
as ση increases, up to an optimal noise level where C is maximized.
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Fig. 6. Information capacity C (in bits) of the channel of (15) as a function of the
rms amplitude ση of the noise η. Panel A: η is zero-mean Gaussian; the 9 curves are
obtained for 9 values of the threshold θ, with successively from the uppest curve
to the lowest: θ = 0.8, 0.9, 0.95, 0.99, 1, 1.01, 1.05, 1.1, 1.2. Panel B: θ = 1.2 and
the symmetric zero-mean noise η being (a) two-sided exponential, (b) Gaussian, (c)
uniform, (d) two-level discrete

Our model also predicts an influence of the noise distribution on the
SR effect of noise-enhanced capacity. For illustration, we have tested four
different symmetric noises sharing the same rms amplitude ση. Figure 6B
shows that in each case the noise enhancement of the capacity is preserved,
yet with an influence from the noise distribution.

The results of the present Section demonstrate that information-theoretic
measures are capable of quantifying an effect of noise-enhanced transmis-
sion of an aperiodic random information-carrying signal. This is a form of
aperiodic SR. Other examples of SR characterized by information-theoretic
measures can be found in [46,58,5,36,8,32,17]. Various studies have used
information-theoretic measures to establish that aperiodic SR can take place
in information transmission by neurons [46,5,17].

5 Aperiodic SR in Image Transmission

Recently the phenomenon of SR has been applied to the noise-enhanced
transmission of bidimensional spatial signals or images, instead of monodi-
mensional temporal signals. Various studies have considered SR in image per-
ception by the visual nervous system [65,62,74]. SR has also been reported
in image transmission by nonlinear optical devices [71].
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For illustration, we shall expose here a simple example of SR on images,
which again has the advantage of allowing a complete theoretical analysis.
Also, at this occasion we shall introduce a new class of quantitative measures
for SR based on input–output cross-correlations [15,14].

Leaning again on the general scheme of Fig. 1, we consider this time that
the coherent information-carrying signal s is a bidimensional image where the
pixels are indexed by integer coordinates (Z,m) and have intensity s(Z,m).
For a simple illustration, we take here a binary image with s(Z,m) ∈ {0, 1}. A
noise η(Z,m), statistically independent of s(Z,m), linearly corrupts each pixel
of image s(Z,m). The noise values are independent from pixel to pixel, and
are identically distributed with the cumulative distribution function Fη(u) =
Pr{η(Z,m) ≤ u}. A nonlinear detector, that we take as a simple hard limiter
with threshold θ, receives the sum s(Z,m)+ η(Z,m) and produces the output
image y(Z,m) according to:

If s(Z,m) + η(Z,m) > θ then y(Z,m) = 1
else y(Z,m) = 0 . (25)

When the intensity of the input image s(Z,m) is low relative to the thresh-
old θ of the detector, i.e. when θ > 1, then s(Z,m) (in the absence of noise)
remains undetected as the output image y(Z,m) remains a dark image. Addi-
tion of the noise η(Z,m) will then allow a cooperation between the intensities
of images s(Z,m) and η(Z,m) to overcome the detection threshold. The re-
sult of this cooperative effect can be visually appreciated on Fig. 7, where an
optimal nonzero noise level maximizes the visual perception.

Fig. 7. The 256×256 binary image y(6, m) at the output of the detector of (25) with
threshold θ = 1.2, when η(6, m) is a zero-mean Gaussian noise with rms amplitude
0.1 (left), 0.5 (center) and 2 (right)

It is possible to quantitatively characterize the effect visually perceived in
Fig. 7. An appropriate quantitative measure of the similarity between input
image s(Z,m) and output image y(Z,m), is provided by the normalized cross-
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covariance [71]

Csy =
〈(s− 〈s〉)(y − 〈y〉)〉√
〈(s− 〈s〉)2〉 〈(y − 〈y〉)2〉

, (26)

where 〈.〉 denotes an average over the images.
Another possibility is provided by the mutual information Isy between

the pixels of images s(Z,m) and y(Z,m),

Isy = H(y)−H(y|s) , (27)

with standard definitions [64] for the entropies H(y) and H(y|s).
Both measures Csy and Isy can be experimentally evaluated through pix-

els counting on images similar to those of Fig. 7. Also, for the simple transmis-
sion system of (25), both measures Csy and Isy can receive explicit theoretical
expressions, as a function of p1 = Pr{s(Z,m) = 1} the probabilty of a pixel
at 1 in the binary input image s(Z,m), and as a function of the properties of
the noise conveyed by Fη(u) [71].

For the scenario of Fig. 7, Fig. 8 represents these quantitative measures
Csy and Isy, with both their experimental and theoretical evaluations which
are in close agreement. Both measures identify a maximum efficacy in image
transmission for an optimal nonzero noise level, another instance of SR.
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Fig. 8. Input–output similarity measures between input image s(6, m) and output
image y(6, m), as a function of the rms amplitude of the noise η(6, m) chosen zero-
mean Gaussian. (a) is the cross-covariance Csy of 26), (b) is the mutual information
Isy of (27). The crosses are experimental evaluations through pixels counting on
images, the solid lines are the theoretical predictions (p1 = 0.6)
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6 Outlook

The above examples that we have treated are typical of the signals and non-
linear mechanisms by which SR can occur, and of how SR can be measured.
Such processes have received numerous experimental embodiments materi-
alizing SR in many areas of physical sciences [54,26]. Among the systems
specially studied that exhibit SR, one finds electronic circuits [24,1,31], opti-
cal devices [72,40,19,41,71], phenomena from material physics [28,44,56,35],
neuronal systems [4,18,12,10], chemical reactions [45,21,38]. Most of the time
SR is described at the macroscopic level by means of concepts from classical
physics; but quantum forms of SR are also discussed [51,26,69].

SR, as presented here as an effect of noise-enhanced signal transmission,
encompasses and generalizes other useful noise techniques that were previ-
ously known for specific purposes. This is the case with “dithering”, which
designates a technique of noise addition used in signal quantization [70,34]
or image coding [63]. An application of dithering aims at limiting the dis-
tortion to an analog signal in its analog-to-digital conversion. The technique
specifies to add to the analog signal prior to its quantization a white noise
uniform over the quantization step, this to allow exact recovery of the mean
of the analog signal from its digital representation. Dithering can be seen
as a special form of SR, on a special nonlinear system (i.e. analog-to-digital
converter) with a special performance measure (i.e. minimum input–output
distortion of the mean) [25,11].

The “modern” approach to SR is thus, in the presence of given signals
and nonlinear system, to select one specific performance measure endowed
with a special significance in relation to the context or prospect involved,
and then to examine whether conditions exist where the performance can be
enhanced by addition of noise.

The examples of SR systems that we have treated here are nonlinear sys-
tems involving potential barriers or threshold nonlinearities. In such systems,
SR takes place when the coherent signal alone is unsufficient to overcome the
barrier or the threshold, and assistance to this aim is provided by the noise.
Nevertheless, we emphasize that these nonlinear ingredients (barriers, thresh-
olds) are not strictly necessary for the occurence of SR. The phenomenon of
SR has been shown to operate in nonlinear systems without barriers [68] and
without threshold [11,3]: [68] in a single-well monostable dynamic system,
[11] in smooth monotonic or nonmonotonic static nonlinearities, [3] in ther-
mal kinetics driven by the Boltzmann exponential factor. At a general level,
SR can be interpreted as a displacement, by means of noise addition, of the
operating zone of a nonlinear system into a region more favorable to the co-
herent signal. Standard techniques would use a constant bias for displacing
the operating zone, meanwhile SR achieves it by noise addition.

Current developments to SR are concerned with the extension of the
“signal-enhanced-by-noise” effect to broader conditions and domains. Among
others one can cite the domain of array-enhanced SR where SR systems are
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interconnected to interact in arrays [47,49], the domain of noise-enhanced
propagation of nonlinear waves [50,75,48], extensions of SR to multidimen-
sional signals or images [71,74], interplay between SR and chaotic dynamics
[59,26]. SR studies are particularly active and relevant in the domain of neural
information processing [30,67,13,60,17]. Neurons are examples of intrinsically
nonlinear and noisy systems, in which SR operates, and that achieve very high
performances for signal and information processing, through mechanisms that
mainly remain to be understood.

In parallel to such analysis-oriented studies, another line of current de-
velopment is the exploitation of SR for practical purposes and as a basis for
competitive methods for signal and information processing. This direction of
exploration is still in its infancy. It can have an impact if one is ready to
depart, as neural systems suggest, from the realm of linear signal processing
(as soon as the lower levels of processing) to come to the stage of nonlinear
processing, more difficult to master but potentially rich of useful effects, as
exemplified by SR.
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Abstract. Specialized topics on financial data analysis from a numerical and phys-
ical point of view are discussed when pertaining to the analysis of coherent and
random sequences in financial fluctuations within (i) the extended detrended fluc-
tuation analysis method, (ii) multi-affine analysis technique, (iii) mobile average
intersection rules and distributions, (iv) sandpile avalanches models for crash pre-
diction, (v) the (m, k)-Zipf method and (vi) the i-variability diagram technique for
sorting out short range correlations. The most baffling result that needs further
thought from mathematicians and physicists is recalled: the crossing of two mobile
averages is an original method for measuring the ”signal” roughness exponent, but
why it is so is not understood up to now.

1 Introduction

It is fortunate to recall from the start that Louis Bachelier (1870-1946) was a
mathematician at the University of Franche-Comté in Besançon. He was the
first to develop a theory of Brownian motion, – in his Ph. D. thesis [1], in
fact for the pricing of options in speculative markets. Later on he wrote down
what is known as the Chapman–Kolmogorov equation. Alas, he motivated his
approach on what is known nowadays as the efficient market theory, basically
a Gaussian distribution for the price changes. This is known to be incorrect,
at least for economic indices [2,3].

Recently the statistical physics community has been reattracted into in-
vestigating economic and financial problems. Two modern reasons can cer-
tainly be given: (i) economic systems, like stock markets produce quite com-
plex signals due to a high number of parameters involved, and (ii) mod-
els developed so far in actual econometry do seem irrelevant for mimicking
available signals, – at least on the level expected by usual physical models
for natural phenomena. A list of recent progress is too long to be cited or
discusssed here. Several books are already of interest. One aim should be
first to review a few technical details in a global context. Even for a general
audience, with mathematical orientation, it is in fact hopefully possible to
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give nonrigourous informations on how physicists pretend that an increase in
revenue can be obtained if general rules are found from non linear dynamic-
like analysis of financial time series. Some general views have been already
presented in “Money Games Physicists Play” [4]. More specialized topics are
discussed here as were already sketched in ref. [5].

There are six methods or so that we have been discussing and using in
the Liège GRASP1, when performing investigations in the context of sorting
deterministic features from apparently stochastic noise contained in economic
and financial data. The investigations pertain to considerations on different
time correlation ranges. First it has been observed a long time ago that stock
market fluctuations were not Brownian motion-like, but some long range
correlation existed [3]. We have tested that idea on foreign exchange currency
(FXC) rates [6]. Using the detrended fluctuation analysis method (DFA), it
was shown that profit making in the FXC market can be made by bankers.
This leads to the introduction of a turbulence-like picture in order to discuss
the spareness and roughness of FXC rates. It can be shown that not all FXC
rates belong to the same so-called universality class, but nobody knows at
this time why, nor what universality classes exist.

Next, some medium range correlation can be discussed. First, a technique
due to stock analysts, known as the mobile (or moving) average technique
which allows for predicting gold or death crosses, whence suggesting buying
or selling conditions will be discussed. It can be shown to be a rather delicate
(a euphemism !) way of predicting what to do on a market. This will lead to
a very interesting, and apparently unsolved problem for mathematicians and
physicists. Moreover, the behavior of major stock market average indices will
be recalled, and it will be observed that so-called crashes have well defined
precursors. The crash of October 1987 could be seen as a phase transition [7].
The amplitude and the universality class can be discussed as well, thereby
indicating how the financial crash of October 1997 could have been (and
was) predicted. This will lead to indicate a microscopic model for such a set
of crashes, model based on sandpile avalanches on fractal lattices. This will
lead to emphasize a very interesting problem for the dynamics of numbers.

Moreover, a claim will be substantiated that the (m, k)-Zipf analysis and
low order variability diagrams can be used for demonstrating short range
correlation evidence in financial data.

2 Detrended Fluctuation Analysis Techniques

The Detrended Fluctuation Analysis technique consists in dividing a time
series or random one-variable sequence y(n) of length N into N/T nonover-
lapping boxes, each containing T points [8]. Then, the local trend in each box

1 GRASP = Group for Research in Applied Statistical Physics
http://www.supras.phys.ulg.ac.be/statphys/statphys.html
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is a priori defined. A linear trend z(n) like

z(n) = an + b, (1)

or a cubic trend like

z(n) = cn3 + dn2 + en + f, (2)

can be assumed [6,9]. In a box, the linear trend might be way-off from the
overall intuitive trend, henceforth shorter scale fluctuations might be missed
if the box size becomes quite large with respect to the apparent short time
fluctuation scale of the signal. Thus the interest of using non linear trends.
The parameters a to f are usually estimated through a linear least-square
fit of the data points in that box. The process is repeated for all boxes. The
detrended fluctuation function F (T ) is then calculated following

F 2(T ) =
1
T

(k+1)T∑
n=kT+1

|y(n)− z(n)|2, k = 0, 1, 2, · · · , (
N

T
− 1). (3)

Usually only one type of trend is taken for the whole analysis, but mixed
situations could be envisaged. Averaging F (T ) over all N/T box sizes centered
on time T gives the fluctuations 〈F (T )〉 as a function of T . If the y(n) data
are random uncorrelated variables or short range correlated variables, the
behavior is expected to be a power law

〈F 2(T )〉1/2 ∼ Tα (4)

with an exponent α =1/2 [8]. An exponent α �= 1/2 in a certain range of T
values implies the existence of long-range correlations in that time interval as
e.g. in the fractional Brownian motion [10]. Correlations and anticorrelations
correspond to α > 1/2 and α < 1/2 respectively.2

If a signal has a fractal dimension D, its power spectrum is supposed to
behave like

S(f) ∼ f−β (5)

where

D = E +
(3− β)

2
(6)

2 Notice that the procedure to estimate α in [11] includes an a priori integration
of the tested signal, and these authors measure in fact an α′ = α+ 1.
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or

β = 2H + 1, (7)

in terms of the Hurst exponent H such that D = E + 1−H [10,12-14]; e.g.
β = 2 for Brownian motion. Therefore, since α= H

β = 2α + 1. (8)

In so doing one defines pink (or black) noise depending whether H is less (or
greater) than 1/2. Black noise is related to long-memory effects, and pink
noise to anti-persistence. processes are dominant over the external influences
and perturbations [10].

Such power laws are the signature of a propagation of information across
a hierachical system over very long times. Two cases are shown in Fig. 1. For
time scales above 2 years, a crossover is however observed on studied financial
data. This crossover suggests that correlated sequences have a characteristic
duration of ca. 2 years along the whole financial evolution at least for the 16
years cases studied in ref. [6]. In order to probe the existence of correlated
and decorrelated sequences, a so-called observation box of “length” 2 year
was constructed and placed at the beginning of the data. The exponent α
for the data contained in that box was calculated at each step. The box was
then moved along the historical time axis by 20 points (4 weeks) toward the
right along the financial sequence. Iterating this procedure for the sequence,
a “local measurement” of the degree of “long-range correlations” is obtained,
i.e. a local measure of the Hurst or α exponent. The results indicate that
the α exponent value varies with the date. This is similar to what is also
observed along DNA sequences where the α exponent drops below 1/2 in
so-called non-coding regions.

The opposite has been observed for the breaking apart and disappearance
of stratus clouds (over Oklahoma) [15]. The exponent α jumps from much be-
low 1/2 to about 1/2 and drops back to a low value when the clouds scattered
all over the area. By analogy with DNA and cloud behaviors, our findings
suggest that financial markets loose the controlled structure (following some
loss of “information”) at such a time. It should be noticed that in ref. [6]
both sequences observed around 1983 and 1987 were not immediately seen
from the rough data nor the value of α, and were missed by R/S and Fourier
analysis.

Therefore, two of the main advantages of the DFA over other techniques
like Fourier transform, or R/S methods [3] are that (i) local and large scale
trends are avoided, and (ii) local correlations can be easily probed [6,9]. In
economic data like stock exchange and currency fluctuations, long or short
scale trends are a posteriori obvious and are of common evidence. The DFA
method allows one to avoid such trend effects which can be considered as the
envelope of the signal and could mask interesting details. Thus, we expect
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that DFA allows a better understanding of apparently complex financial
signals.

In so doing, correlations can be sorted out and a strategy for profit making
can be developed in terms of persistence and antipersistence signals [6].
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Fig. 1. Linearly Detrended Fluctuation Analysis function for two typical foreign
currency exchange rates, i.e. JPY/USD and NLG/BEF between Jan. 01, 1980 and
Dec. 31, 1995. The Brownian motion behavior corrresponds to a slope 1/2 on this
log-log plot as indicated. The notation 〈F 〉 is used for 〈F 2(T )〉1/2 for conciseness
in labeling the y-axis.

3 Multiaffine Analysis Techniques

A locally varying value of α suggests a multifractal process. A multi-affine
analysis of several currency exchange rates has been performed in ref.[16–18],
and also for Gold price, and Dow Jones Industrial Average (DJIA) in ref.[17].
In order to do so the roughness (Hurst) exponent H1 and the intermittency
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exponent C1 are calculated for the correlation function c(τ) supposed to
behave like

c1(τ) = 〈|y(t)− y(t′)|〉τ ∼ τH1 . (9)

The technique consists in calculating the so-called ‘qth order height-height
correlation function” [19] cq(τ) of the time-dependent signal y(t)

cq(τ) = 〈|y(t)− y(t′)|q〉τ (10)

where only non-zero terms are considered in the average 〈.〉τ taken over all
couples (t, t′) such that τ = |t− t′|. The roughness exponent H1 describes the
excursion of the signal. For the random walk (Brownian motion), H1 = 1/2 =
H. In the case of white noise H1 = 0 [10]. Notice also that H1 ∼ H2 = H.

The generalized Hurst exponent Hq is defined through the relation

cq(τ) ∼ τ qHq . (11)

The C1 exponent [19–21] is a measure of the intermittency in the signal y(t)

C1 = − dHq
dq

∣∣∣∣
q=1

. (12)

which can be numerically estimated by measuring Hq around q = 1.
It appears that in a (H1, C1) diagram (Fig. 2) the currency exchange rates

are dispersed over a wide region around the Brownian motion case (H1 =
0.5, C1 = 0) and have a significantly non-zero thus intermittent component,
i.e. (C1 �= 0) – the value of which might depend on the nature of the trading
market, thereby indicating that economic policy seems to be probed through
the analysis and its role should be taken into account in further microscopic
modeling [17].

4 Moving Average Techniques

A stock market index has often been considered as cyclic, but so-called unpre-
dictable events, like crashes are fascinating. It should be noted that they take
place at the end of a period of euphory, when some anxiety builds in. Surely it
is not obvious from the general trend nor from the apparently stochastic noise
when a crash is forthcoming. Can we find some deterministic content beside
the official trend from a basic noise characteristic, e.g. the fractal dimension
has beentaken as a fundamental question.

Roughness or Hurst exponents are commonly measured in surface science
[22] and also in time series analysis [23]. From a usual technique by analysts,
known as the mobile (or moving) average technique, an interesting way can
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Fig. 2. Roughness(H1), intermittency (C1) parameter phase diagram of a few typ-
ical financial data and mathematical, i.e.fractional Brownian motion (fBm) and
white noise (WN) signals.

be proposed for determining H and how to apply it right away to many cases
with persistent or antipersistent correlations.

Consider a time series y(n) given at discrete times n. At time n, the
mobile average ȳ is defined as

ȳ(n) =
1
N

N−1∑
i=0

y(n− i), (13)

i.e. the average of y for the last N data points. One can easily show that
if y increases (resp. decreases) with time, ȳ < y (resp. ȳ > y). Thus, the
mobile average captures the trend of the signal over a time interval N . Such
a procedure can be used in fact on any time series like in atmospheric or
meteorological data, DNA, electronic noise, fracture, internet, traffic, and
fractional Brownian motions.

Let two different mobile averages ȳ1 and ȳ2 be calculated respectively over
e.g. T1 and T2 intervals such that T2 > T1. Since T1 �= T2, the crossings of ȳ1
and ȳ2 coincide with drastic changes of the trend of y(n). If y(n) increases
for a long period before decreasing rapidly, ȳ1 will cross ȳ2 from above. This
event is called a ”death cross” in empirical finance [24,25]. On the contrary,
if ȳ1 crosses ȳ2 from below, the crossing point coincide with an upsurge of
the signal y(n). This event is called a “gold cross”. Financial analysts usually
try to ’“extrapolate” the evolution of y1 and y2 expecting “gold” or “death”
crosses. Most computers on trading places are equiped for performing this
kind of analysis and forecasting [25]. Even though mobile averages seem to be
”arbitrary” measures, they present some very practical interest for physicists
and raise new questions. It is paradoxical to have such a type of nalysis
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performed while on the other hand the ”efficient market hypothesis” is the
basis of most econometry theories.

It is well known [23] that the set of crossing points between a signal y(n)
and the y = 0-level is a Cantor set with a fractal dimension 1 − H. The
related physics pertain to so-called studies about first return time problems
[26]. However, we have checked that the density ρ of crossing points between
ȳ1 and ȳ2 curves is homogeneous along a signal and is thus not a Cantor set.

In so doing, the fractal dimension of the set of crossing points is one, i.e.
the points are homogeneously distributed in time along ȳ1 and ȳ2. Due to
the homogeneous distribution of crossing points, the forecasting of ‘gold” and
“death” crosses even for self-affine signals y(n) seems unfounded.

However, it is of interest to observe how ρ behaves with respect to the
choice in the relative difference T1 − T2. More precisely, consider the relative
difference 0 < ∆T < 1 defined as ∆T = (T2 − T1)/T2. It has been found
[27] that the density of crossing points ρ(∆T ) curve is fully symmetric, has
a minimum and diverges for ∆T = 0 and for ∆T = 1, with an exponent
which is the Hurst exponent. This remarkable and puzzling result does not
seem to have been mentioned previously to ref. [27] due to the fact that
some theoretical framework for the mobile average method is missing. The
behavior of ρ is analogous to the age distribution of domains after coarsening
in spin-like models [28] and to the density of electronic states on a fractal
lattice in a tight binding approximation. This method of mobile averages can
in fact serve to measure the Hurst exponent in a very fast and continuous
way.

5 Sandpile Model for Rupture and Crashes

Another investigation of the relationship between the trend and local struc-
ture of a signal, like that of stock market measures like the DJIA and the
Standard & Poor 500 (S&P500) has led us into examining regions where
huge variations were taking place. These are usually associated to rupture
phenomena‘and ‘crashes”.

It has been proposed [29] that an economic index y(t) increases as a
complex power law, i.e.

y(t) = A + B

(
tc − t

tc

)−m [
1 + C sin

(
ω ln
(

tc − t

tc

)
+ φ

)]
for t < tc

(14)

where tc is the crash-time or rupture point, A, B, m, C, ω and φ are free
parameters. The law for y(t) diverges (converges) at t = tc if the exponent
m is positive (negative) while the period of the oscillations converges to the
rupture point at t = tc. The real part of the law is similar to that of crit-
ical points at so-called second order phase transitions [30] but generalizes
the scaleless situation to cases in which a discrete scale invariance [31] is
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presupposed when a complex exponent m + iω exists. This relationship was
already proposed in order to fit experimental measurements of sound wave
rate emissions prior to the rupture of heterogeneous composite stressed up
to failure [32]. Such log-periodic corrections have been recently reported in
biased diffusion on random lattices [33], and in our sandpile studies is found
when the underlying base is quasi-fractal [34]. Thus, an avalanche sand pile
model can be imagined for financial indices [35]

A logarithmic divergence, corresponding to the m = 0 limit, can be also
proposed, [36] i.e. the divergence of the index y for t close to tc should be
such that

y(t) = A + B ln
(

tc − t

tc

)[
1 + C sin

(
ω ln
(

tc − t

tc

)
+ φ

)]
for t < tc

(15)

In August 1997, a series of investigations was performed in order to test
the existence of crash precursors. Daily data of the DJIA and the S&P500
was used. A strong indication of a crash event or a rupture point in between
the end of october 1997 to mid-november 1997 was numerically discovered
[37], and later predicted to occur during the week of Oct. 27, 97, and it
was observed to occur on Oct. 27, 97 [38]. This resulted from an analysis of
the similarities between two long periods: 1980-87 and 1990-97. The number
of open days per year on Wall Street is about 261 days, - the exact value
depending on the number of holidays falling on week ends. For the first period,
the analysis was performed on data ending two months before the so-called
Black Monday, i.e. October 19, 1987. For the second period, the data was
considered till August 20th, 1997. In fact, we have separated the search of
the crash day into two problems, that of the divergence itself and that of
the oscillation convergences on the other hand, i.e. (i) tdivc for the power (or
logarithmic) divergence and (ii) toscc for the oscillation convergence.

Sometimes it might be natural to be contempting, and/or displeased by,
the eye balling technique we are supposedly using [39–42]. We should totally
disagree concerning this gross misunderstanding of our technique. Our sta-
tistical analysis takes into account the approximate location of the maxima,
and in a recent paper it has been precisely shown one good way of taking
the maximum location into account. It is true that in ref.[37] the arrows
pointing at maxima and minima look rather thick, but this is for a display
purpose. In fact the statistical data analysis takes into account the num-
ber of data points in the best possible interval, as it is standard in critical
point (exponent) analysis [43,44]. In so doing the origin of the time interval
is obtained indeed. This time origin the definition of the phase) should lead
to some interesting questions in fact. It might be of interest to recall that
the closing value of the DJIA was used. This is not necessarily the intraday
maximum value in fact, nor the intraday average value. One might wonder if
the former or the latter would give a better estimate of the upper bound of
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the predicted crash day. One might search whether rather than the closing
value or the maximum the average DJIA, or average of range, or something
else over a one day interval should be better used for better predictability,
etc. It is known that there are larger fluctuations at the begining and at the
end of a day. These are left for further investigations. The stability of the
fit parameters can also be checked on these closing values with respect to
random noise and through a Monte-Carlo data in order to take into account
some sort of uncertainty in a bivariate data analysis (with error bars on the
x and y axes). However due to the apparent precision of the technique at this
time no robustness test has been performed as of now.

It should be pointed out that we do not expect any real divergence in the
stock market indices; this is total non sense of course. However a divergence is
predicted by us to occur at some upper bound of tc. This is exactly the same
as in phase transitions, where there is never any infinite divergence at the
critical temperature. The divergence of the correlation length, specific heat,
etc. is a virtual (mathematical) image of physical reality. There is no infinity
(nor zero in fact) in physics due to finite size effects, inhomogeneities, noise,
etc. Therefore to argue on the true existence of zeroes and infinity [33,40–42]
is rather meaningless. We consider that to give an upper bound is certainly
an as good predictive technique in data analysis and for modeling, as good
as to give a determinis tic finite value at tc.

Moreover a true drop certainly exists at a crash and is the signature of
the crash, and the formula of ref. [29] would seem therefore appropriate.
According to ref. [29,40], the drop goes to a finite value. Notice that there is
some sense indeed to examine the size of jumps at crashes though. Such an
attempt has been made in ref. [7].

index - (period) tdivc (m = 0) tdivc (m �= 0) toscc
DJIA (80-87) 87.85± 0.02 88.46± 0.04 87.91± 0.10
DJIA (90-97) 97.92± 0.02 98.68± 0.04 97.89± 0.06

S&P500 (80-87) 87.89± 0.03 88.78± 0.05 87.88± 0.07
S&P500 (90-97) 97.90± 0.02 98.67± 0.04 97.85± 0.08

Table 1: Fundamental parameters found for the DJIA and S&P500 indices
during 1980-87 and 1990-97 periods. Time is expressed in years. The notations for
tc are such that e.g. 97.90 means the calendar date corresponding to the 90-th day
as if there are 100-days in 1997. Two values of tdivc correspond to a fit using a
logarithmic divergence (m = 0) and a fit using a power law divergence (m �= 0)
respectively. The true date of the October 1987 crash in the above units gives
tc = 87.79 and for the October 1997 crash is tc = 97.81, i.e. quasi the predicted
dates.

6 (m, k)-Zipf Techniques

For testing and emphasizing short range correlations, the (m, k)-Zipf and the i-
Variability Diagram (i-VD) techniques have been used. The Zipf analysis consists
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in counting the number of words of a certain type appearing in a text, calculating
the frequency of occurence fo of each word in a given text, and sorting out the
words according to their frequency, i.e. a rank R is assigned to each word, with
R = 1 for the most frequent one, and rank RM for the word appearing the less.
Moreover call fM the frequency (occurrence) of the most often observed word.

For natural languages, one observes a power law

fo ∼ R−ζ (16)

with an exponent ζ close to one for any language. This has been applied to various
complex signals or “texts” [45–47], economy (size of sales and firms) data [48],
financial data [5], meteorological [17,49], sociological [50] or even random walk
[51] and percolation [52] after translating whatever signal into a text based on an
alphabet of k characters. The appearance of this power law is due to the presence
of a so-called hierarchical structure of long range correlations in words, sentences,
paragraphs, and so on for the given set of characters in an alphabet used for writing
a text [46]. A simple extension of the Zipf analysis is to consider m-words only, i.e.
the words strictly made of m characters without considering the white spaces.

Let for the sake of argument, only a binary alphabet with u and d characters,
and the translation of a signal into a text (Fig.3). Let the probability to find a u
in the text be p. The deviation from p = 1

2 , i.e. p = 1
2 + ε where 0 ≤ ε ≤ 1

2 is called
the bias. The bias is in fact a local measure of the trend in a stock price or index
value.

We have chosen to examine (m = 6, k = 2) cases. It may be remarked that this
is useful for attempting to observe short range (weekly) fluctuations in (weather or
financial) data for example. The aim of the study is to find the exponent ζ. By the
way, it has been conjectured [53,54] that ζ is related to the Hurst exponent H, thus
to the fractal dimension D [10,12,14] of the signal as

ζ = |2H − 1|. (17)

Therefore, for H different from 0.5, and thus ζ different from zero, the signal is
not Brownian-like, whence some predictability can be expected because non trivial
correlations exist between successive daily fluctuations.

One case can serve as an illustration herebelow. As experimental data among the
many indices and stocks available on Internet, let us choose an insurance company
Oxford Health Plan (OXHP ), treated on the NASDAQ. From Aug. 8, 1991 till
March 15, 1999, this consists in about 1900 data points [15]. The daily closing price
signal is shown in Fig. 4. The fractal dimension D, or power spectrum characterized
by β, the DFA exponent α and ζ can be examined as well. The latter from a Zipf
analysis for the OXHP closing price is given in Fig. 5, and values of exponents
summarized in Table 2. The corresponding results for the Brownian motion are
also given and serve as an estimate of the validity of the analysis.

Name of the signal ζ α β

Brownian motion 0.08± 0.0007 0.50± 0.01 1.79± 0.20
OXHP: Closing price 0.27± 0.02 0.56± 0.03 1.75± 0.25

Table 2: The ζ, α and β values for OXHP closing price for the time spans from
August 8, 1991 till March 15, 1999.
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u d u d d d u u d d u d u u d d
Fig. 3. Translation of part of a random walk sequence (“fluctuations”) into a binary
sequence made of two characters u and d.
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Fig. 4. Daily closing price of Oxford Health Plan (OXHP ) stock, treated on the
NASDAQ, from mid-91 till Jan. 99, i.e. about 1900 data points.
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7 Basics of i-Variability Diagram Techniques

One disadvantage of the Zipf-method is that it is not possible to distinguish
between persistent and antipersistent sequences. Only the departure from
randomness is easily observed. Another way to sort out short range correla-
tions is the i-Variability Diagram technique, used for example in heart beat
[55] and meteorological [49] studies. Recall that the first return map (ri, ri−1)
or the τ -return map (ri, ri−τ ) of a signal are often used for revealing a pos-
sible dominant correlation between the events of the data set. This leads to
studies of strange attractors and the embedding dimension of a signal.

The return map of the first derivative of the signal, i.e. the so-called
first order variability diagram (1-V D) [55] correlates every three consecutive
points of the series,

si+1 = ri+1 − ri (18)
si = ri − ri−1

The curvature of the signal, thus relating every four consecutive events as

ui+1 = ri+1 − 2ri + ri−1 (19)
ui = ri − 2ri−1 + ri−2.

is called the second order variability diagram (2-V D).
The links between the 4-points e.g. defining the above relationship are

seen through a phase space diagram for the curvature. A non-trivial shape of
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the point cloud and point distribution itself on such a diagram indicate an
asymmetry between the different consecutive curvatures, and can be used for
predictability.

It has been found [56] that for free market financial series (DJIA and Gold
price) the local trend behaves like a

√
t. However the BGL/USD exchange

rate variability seems to be different: the set of events leads to a line structure
with slope I = −1.21 in the curvature return map. The differences can be
conjectured to depend on economic policy grounds.

A combination of Zipf and i-V D has been recently attempted for the local
curvature correlations in financial signals [56]. This method leads to suggest
tests based on microscopic models.

Acknowledgments

KI thanks the hospitality of T. Ackerman and the Department of Meteorology
at Penn State University and NRC for a research grant during which part of
this work was completed. Thanks to the F-532 grant of the Bulgarian NFSI
as well. MA and NV thank the ARC 94-99/174 for financial support. MA
thanks the organizers of the Ecole thématique de Chapelle des Bois and in
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Abstract. This paper provides an introduction to basic concepts commonly used
in time and frequency metrology, and is addressed to other scientific communities.
Thus no attempt is made to provide an exhaustive review. Instead, attention is fo-
cused on the most important tools used by physicists and engineers involved in time
and frequency metrology. We first explain the principles of the oscillator through an
example. Then we introduce the concepts of frequency reference, oscillating loop,
frequency stability and accuracy. Finally, we define the power spectrum density of
frequency fluctuations and the Allan variance as means to characterize the stability
of frequency standards.

1 Introduction

The ideas presented in this paper originated in the early 1960s, and have been
widely exploited not only for research purposes, but also for the technological
development of time and frequency industry. These ideas have led to a rapid
progress in the knowledge of noise in electronic circuits and oscillators, and
to an impressive stability improvement of frequency standards and clocks.
Original works and further information dealing with the characterization of
frequency stability can be found in [1–4]. Up-to-date information on various
topics – both fundamental and applied – on time and frequency metrology
can be found in the proceedings of the conferences on that subject [5–7].
Finally, we advise consulting some books dealing with oscillators and atomic
frequency standards [8–10].

2 Basic Definitions and Principles

The ideal oscillator can be regarded as a black box that transforms the sup-
plied energy into a sinusoidal signal A(t) of amplitude A0 and frequency ν0

A(t) = A0 cos(2πν0t) . (1)
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Actual oscillators show frequency offset, drift and fluctuations that are not
accounted in (1). We restrict our attention to frequency stability, discarding
all the problems connected with amplitude stability. The main reason for this
is that frequency is integrated over a long time, while amplitude has just a
local effect. Characterization methods are therefore needed to describe os-
cillator non-idealities and to provide efficient tools suitable to compare the
performances of frequency standards. The concepts related to frequency sta-
bility are being introduced taking as an example the traditional grandfather’s
clock known in the region of Chapelle des Bois as the horloge comtoise.1

2.1 The pendulum as a frequency reference

As the frequency of an oscillator is determined by a resonator, the overall
performance of the oscillator relies upon the performance of that resonator.
In the case of the horloge comtoise, this oscillator is a gravitational pendulum
of length L0 and mass m (Fig. 1).
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Fig. 1. Freely swinging pendulum

If the pendulum is set off from its equilibrium state, it gets potential en-
ergy. The mass let free starts swinging, continuously interchanging potential
and kinetic energy. In the small oscillation approximation, which consists of
replacing sin θ = θ in the derivation of the motion equations, and neglecting
losses, the total energy conservation yields

θ̈(t) +
g

L0
θ(t) = 0 , (2)

where g � 9.81 m/s2 (at the sea level) is the local gravity acceleration. The
general solution of the above equation is

θ(t) = θ0 cos
(
2π
T0

t

)
. (3)

1 “horloge comtoise” is the French term for the traditional clock made in the French
region of Franche-Comté.
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Thus, the pendulum swings regularly with oscillation period

T0 = 2π

√
L0
g

(4)

and peak amplitude θ0. The number of cycles per unit of time is the oscillation
frequency ν0 = 1/T0.

As we are confident of the horloge comtoise – the Franche Comté artisans
are quite competent watchmakers – we can base the unit of time on it. A
possible definition could be: “the ‘Franche Comté second’ is the period of
a pendulum 24.9 mm long freely swinging in vacuum at Chapelle des Bois
(France) on August 11th 1999 at noon, during the millennium eclipse”. This
definition includes date and place, which is needed to define the local value
of g; thus the definition can be extrapolated to all other cases. A time scale,
consisting of a counter incremented at each period of the pendulum oscilla-
tion, is the coordinate frame on which we can date coffee break, lunch, and
any other relevant event. Our pendulum can also be used as a frequency
standard. A simple way to compare an oscillator to our frequency standard
is the measurement of the beat-note. If two frequencies are not sufficiently
close, a gearbox – i.e. a frequency synthesizer – may be inserted.

2.2 Damped and stationary oscillations

Due to dissipation forces acting on the rod and mass, actual resonators are
damped. Thus the angular position results from

θ̈(t) + 2ξθ̇(t) +
g

L0
θ(t) = 0 . (5)

If losses are negligible (ξ � 2πν0), the solution is

θ(t) = θ0 exp
(
− t

τ

)
cos
(
2π
T0

t

)
. (6)

Oscillation is exponentially damped with a time constant τa = 1/ξ, and
therefore the total energy decreases with a time constant τe = 1/2ξ. The
resonator loss is often reported in terms of the merit factor Q, also called
quality factor

Q = π
τa
T0

, (7)

that is the time constant of the energy decay normalized over the duration
of one radian.

Continuous operation requires stationary amplitude, thus power must be
spent to compensate for losses. In the grandfather’s clock this is accomplished
by an escapement that also ensures the proper phase relation of the stimulus
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with respect to the rod position. Obviously, the frequency of the steady state
oscillation and of the external stimulus must be the same. The pendulum
can be regarded as a bandpass filter whose −3 dB bandwidth is ∆ν = Q0ν0.
The higher the resonator Q factor is, the better is the spectral definition of
the resonance. Hence, the value of Q has a direct impact on the frequency
stability of oscillators.

2.3 Frequency stability

As a result of experimental observations, frequency stability turns out not
to be a single and constant parameter. Even in the presence of stationary
processes only, it depends on the observation time. Thus we have to distin-
guish short term and long term stability, and in case of need, medium term
stability.

The short term frequency stability of our pendulum may be limited by
the brownian motion of the residual gas in the vacuum chamber. Due to
the high collision rate and to the small mass of the molecules, the collision
pulses are averaged by the mass of the pendulum, and therefore frequency
stability increases proportionally to the observation time. As the sustaining
force is controlled by a position detector, the noise of that detector originates
additional frequency fluctuations. The Q factor turns out to be equal to the
ratio Pr/Pd between the reactive power Pr and the dissipated power Pd.
High Q means low dissipated energy and consequently low coupling to the
environment, which warrants high short term stability.

Some other physical effects act directly on the resonator frequency, turn-
ing the environment fluctuations into frequency instability. In our pendulum,
this may occur with the thermal expansion of the rod and with the fluc-
tuation of the local gravity acceleration g. Because there is no averaging
mechanism, these phenomena acts in the long term. In addition, aging due
to deterministic or quasi-deterministic phenomena may be a relevant factor.

2.4 Accuracy

The ideal conditions assumed in the definition of the unit of time are never
realized in practice [11]. In our example, the actual rod length differs from
L0. We can measure that length and correct the clock frequency, but a resid-
ual uncertainty remains. If, for example, δL0/L0 = 10−3 is the rod length
uncertainty, the frequency uncertainty derived from (4) is δν/ν0 = 1

2δL/L0 =
5×10−4. The uncertainty of other parameters acting on ν0 can be accounted
in similar ways. The overall accuracy of the clock results from the sum of the
individual uncertainties, added with the appropriate statistical rules.

Finally, actual accuracy limitations may be divided in two types, namely
the uncertainty of the realization of the SI unit of time, which applies to
fundamental metrology, and the residual uncertainty after calibrating against
a primary standard.
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3 Electronic Oscillators

The electronic oscillator is described by the same differential equations as the
pendulum, provided that mass and force are replaced by voltage and current.
Accordingly, the RLC resonator (Fig. 2) consists of an inductance L and a
capacitance C, plus a resistance R0 that accounts for losses.

0
L

C
R

Fig. 2. RLC resonator

The resonator acts as a band-pass filter characterized by the center fre-
quency ν0 = 1/2π

√
LC and by the −3 dB bandwidth ∆ν = ν0/Q. The

frequency response of the parallel RLC filter (Fig. 3) shows its maximum at
ν = ν0, where the phase lag is 0.

Let us now consider the circuit of Fig. 4. Due the positive feedback, the
transfer function is

Vout
Vin

=
G

1−GA
. (8)

If GA = 1, the denominator of (8) is zero. In this condition, the switch-on
transient circulates permanently in the loop, and consequently no input is
necessary for a periodic signal to be present at the output (Fig. 5). The con-

ν − ν0

/2QL0ν

∆ν

1

0

π/2

−π/2

ν − ν0

Fig. 3. Modulus (left) and phase (right) of the parallel RLC filter response to a
current excitation

dition GA = 1, often referred as the Barkhausen condition, involves complex
quantities, hence |GA| = 1 and argGA = 0 must be ensured separately. Usu-
ally the amplitude condition is guarented by saturation of the amplifier or
by a separate gain control, while the phase condition determines the actual
oscillation frequency. As a consequence, the effect of a phase perturbation
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Fig. 4. Amplifier with positive feedback
loop

outV

����
����
����
������������

A

G

Fig. 5. Oscillator

∆ϕ in the loop is a phase variation −∆ϕ in the resonator, which causes a
frequency change

∆ν

ν0
=

∆ϕ

2Q
. (9)

Obviously, this phase-to-frequency conversion also takes place with random
phase fluctuations of any part of the loop, whereat higher values of Q yield
better frequency stability. Table 1 shows the merit factor of some resonator
types.

Table 1. Merit factor of some resonators

resonator frequency Q

pendulum swinging in vacuum 1 Hz 103

watch quartz crystal 32768 Hz 5×104
Bulk Acoustic Wave (BAW) quartz crystal 10 MHz 106

Surface Acoustic Wave (SAW) quartz crystal [12] 400 MHz 1.6×104
dielectric resonator [13] 10 GHz 5×103

cryogenic sapphire (4 K) whispering gallery [14] 10 GHz 109

4 Frequency-Domain Characterization
of Frequency Stability

Due to internal noise sources, the amplitude and the frequency of the oscil-
lator output signal fluctuate. In general, amplitude is sufficiently stable for
applications, while phase is not. This occurrs because frequency is integrated
over a long time. Hence a term ϕ(t) must be introduced in (1), that becomes

A(t) = A0 cos [2πν0t + ϕ(t)] . (10)
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The above model does not contain information on the nature of ϕ(t). The
latter can result from either deterministic (drift or modulation) or random
processes. Nevertheless, as we are interested in random fluctuations, we as-
sume that all deterministic phenomena are removed. In addition, we assume
that ϕ(t) is stationary and derivable. These hypotheses, despite some intrinsic
difficulties [2], enable the description of experimental results.

The instantaneous frequency of A(t) is

ν(t) =
1
2π

d

dt
[2πν0 + ϕ(t)] , (11)

from which we define the fractional frequency offset

y(t) =
∆ν(t)

ν0
=

1
2πν0

dϕ(t)
dt

. (12)

As ϕ(t) is stationary, y(t) also is stationary. Therefore the autocorrelation
function

Ry(τ) = 〈y(t) y(t− τ)〉 (13)

is a function of a single variable τ . The Fourier transform of Ry(τ) is the
double-sided power spectrum density (PSD) of y

SDSy (f) =
∫ ∞
−∞

Ry(τ) exp (−2iπfτ) dτ . (14)

As instruments generally show positive frequencies only, the one-sided power
spectrum density

Sy(f) =

{
2SDSy (f) for f ≥ 0
0 for f < 0

(15)

is generally preferred to SDSy (f).
Finally, the PSD of other quantities related to phase fluctuations are of

interest. Table 2 reports a summary.

4.1 The power law model

As a result of experimental observations, the instability of actual oscillators
is well approximated by the so called power law

Sy(f) =
2∑

α=−2
hαf

α , (16)

which corresponds to a superposition of the five independent noise processes
reported in Table 3. As an example, Fig. 6 shows the typical spectrum density
Sy(f) of some oscillators.
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Table 2. Useful quantities and their spectrum densities

quantity definition PSD PSD unit

fractional frequency
fluctuations

y(t) =
1

2πν0

dϕ(t)
dt

Sy(f) Hz−1

phase fluctuations ϕ(t) Sϕ(f) =
ν2
0

f2 Sy(f) rad2Hz−1

angular frequency
fluctuations

ϕ̇(t) =
dϕ(t)

dt
Sϕ̇(f) = (2πν0)2Sy(f) rad2Hz

frequency
fluctuations

∆ν(t) =
1
2π

dϕ(t)
dt

S∆ν(f) = ν2
0Sy(f) Hz−1

Table 3. Summary of the oscillator noise types

noise type Sy(f) Sϕ(f)

frequency random walk h−2f−2 ν2
0 h−2f−4

frequency flicker noise h−1f−1 ν2
0 h−1f−3

white frequency noise h0 ν2
0 h0f−2

flicker phase noise h1f ν2
0 h1f−1

white phase noise h2f2 ν2
0 h2

dB
 H

z-1
S 
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Fig. 6. Sy(f) for some oscillators. DRO stands for dielectric resonator oscillator.
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The phenomenological model fα suffers from a basic difficulty due to the
fact that the total power

P =
∫ ∞
0

Sy(f) df (17)

is infinite. In fact,
∫

fα df diverges at high frequencies for α ≤ −1, and at
low frequencies for α ≥ −1; in addition, a noise process that diverges for
f → 0, i.e. in the long term, can be regarded as a non-stationary one. But
actual measurements make sense, in spite of these theoretical difficulties. In
fact, the measurement bandwidth is bounded by the maximum frequency of
the instrument input stage and by low frequency that results from the finite
duration of the measurement. While the upper bound can be easily accounted
for, the lower bound requires a different formalism. That is why variance σ2

must be replaced with the Allan variance σ2y(τ), as described in the next
section.

5 Time-Domain Characterization of Frequency
Stability

For technical reasons, commercially available counters are not suitable to
measure slow frequency or phase variations, which would require an extremely
high resolution. Therefore, the beat note method (Fig. 7) is commonly used
as a replacement for direct frequency measurement schemes.

k-1 kν    , ν  ,   ν    , ...k+1Counter

Oscillator Reference
Mixer

Low pass filter

Fig. 7. The beat note method

A reference frequency ν0 must be chosen close to the oscillator frequency
ν, so that the beat frequency νb = |ν − ν0| is of some 1–100 Hz. As the
low pass filter removes the ν + ν0 component, the counter measures νb only.
Because the measurement resolution is a critical point, it is necessary to
take νb from the measurement of the beat period Tb = 1/νb averaged over a
suitable interval τ ; obviously, τ is an integer multiple of Tb. In a well designed
system the quantization noise δνb = νb/(τνc) is made lower than the analog
circuit noise; νc is the counter clock frequency.
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The output of the counter is a stream of values

νb k =
1
τ

∫ tk
tk−τ

νb(θ) dθ (18)

of the beat frequency averaged over τ , that is converted into a stream of
fractional frequency fluctuation values

yk =
1
τ

∫ tk
tk−τ

y(θ) dθ . (19)

The measurement intervals of duration τ are assumed to be contiguous, which
means that there is no dead time. With modern equipment this is a generally
good approximation of the reality. If the dead time is not negligible, results
must be corrected using a suitable model, such as [15]. Alternatively two
counters can be swapped, so that one counter can measure when the other
one is busy with data transfer or with internal housekeeping [16].

Yet, the above details should not distract from the main problem, that is
the suitability of statistical tools to represent frequency fluctuations.

True variance. The true variance, indicated as σ2, is widely used in statis-
tics as a means to characterize random variables. In frequency metrology,
however, the true variance is often meaningless if the measurement time is
not clearly indicated. The variance of y is

I2(τ) =
〈
y2
〉

=
1
τ2

〈[∫ tk
tk−τ

y(t) dt

]2〉
. (20)

The process of averaging over τ is equivalent to a filter whose response is
defined in Fig. 8. Making this filter appear explicitely in (20) we get

I2(τ) =

〈[∫ ∞
−∞

y(t′)h1(t− t′) dt′
]2〉

. (21)

The variance turns out to be easier to evaluate in the frequency domain as

I2(τ) =
∫ ∞
0

Sy(f) |H1(f)|2 df , (22)

where

|H1(f)|2 =
(
sinπτf

πτf

)2
(23)
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h (t)1

1/τ
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τ f
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0

1

Fig. 8. Impulse response h1(t) and frequency response |H1(f)|2 of the equivalent
filter inherent in the measurement of the true variance

is the filter frequency response (Fig. 8).
The key point is that the integral (22) is undefined for α ≥ −1, that

corresponds to the flicker and random walk frequency noise types. Yet, the
lower integration bound can not approach zero because it is limited by the
duration T of the measurement. There results a high pass filter whose cutoff
frequency is of the order of 1/T . As a consequence, the estimate of I2(τ)
depends on the number of samples involved in the averaging process. That is
why the true variance is scarcely useful for oscillator characterization.

Two-sample variance. The two-sample variance, also known as the Allan
variance, is defined as

σ2y(τ) =
1
2

〈(
yk+1 − yk

)2〉
. (24)

It is worth noting that the Allan Variance is a simple case of wavelet analysis
[17].

Expanding (24), σ2y(τ) can be rewritten as

σ2y(τ) =
1
2τ2

〈[∫ tk+τ
tk

y(t′)dt′ −
∫ tk
tk−τ

y(t′)dt′
]2〉

. (25)

This measurement mechanism, that involves the difference of two contiguous
integrals, is equivalent to the band bandpass filter whose response is shown
in Fig. 9. Therefore

σ2y(τ) =
1
2

〈[∫ ∞
−∞

y(t′)h2(t− t′)dt′
]2〉

(26)

Consequently, σ2y(τ) is related to Sy(f) by

σ2y(τ) =
∫ ∞
0

Sy(f) |H2(f)|2 df (27)
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where

|H2(f)|2 = 2
sin4 πτf

(πτf)2
(28)

is the filter frequency response (Fig. 9 right).

h (t)

1/τ

−τ
t

2
|H  (f)|2

2

τ f
3210

0.5

1

Fig. 9. Impulse response h1(t) and frequency response |H2(f)|2 of the filter intro-
duced Allan variance measurement process

For low Fourier frequencies |H2(f)|2 is proportional to f2, hence the in-
tegral (27) exists for both flicker frequency and random walk frequency noise
types. For this reason, σ2y(τ) is suitable to characterize frequency stability in
the time domain.

Actual instruments always show a high-frequency cut-off that limits the
contribution of rapid frequency fluctuations. Then, the estimation of the two-
sample variance is affected by the cut-off frequency fh of this filter, as well
as the roll-off This is relevant for flicker and white phase noise only.

Table 4 gives the relations between σ2y(τ) and the spectrum for the differ-
ent noise types. These relations holds for τ ' 1/2πfh, under the assumption
of a sharp low-pass filter at the cut-off frequency fh.

To conclude, Fig 10 shows the typical frequency stability of some clocks
and oscillators. Data are taken from [19–22].
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Abstract. As a result of a major technological trend towards high speed digital
communications and circuits, phase noise turns out to be a relevant concern for
scientists and engineers. This paper describes methods and instruments to mea-
sure the phase noise of oscillators, components and more complex devices in the
radiofrequency and microwave bands, from approximately 100 kHz to 30–40 GHz,
and even beyond. After a brief introduction, two sections deal with basic definitions
and traditional methods, and one section presents a set of schemes that cover most
actual needs. Then a new approach – known as the interferometric method – is
discussed in detail, providing design strategies and examples; this method exhibits
the highest sensitivity in real time, which can alse be exploited to dynamically
correct the phase noise of amplifiers and oscillators. The last section deals with
an improved version of the interferometric method, in which correlation is used to
remove the instrument noise of two equal interferometers that simultaneously mea-
sure the same device. This scheme enables the measurement of low noise processes,
even below the thermal floor, and therefore it represents the state of the art in the
high sensitivity phase noise metrology.

1 Introduction

This paper deals with the measurement of the phase noise of radiofrequency
and microwave signals. As one can expect, we are mainly interested in the
measurement of low noise signals.

We first define a quasi-sinusoidal signal of the form

s(t) =
√
2R0Pc [1 + α(t)] cos[2πνct + ϕ(t)] . (1)

where R0 is the characteristic impedance and Pc is the carrier power. ϕ(t)
and α(t) are realizations of random processes that we call phase noise and
(relative) amplitude noise, respectively. By definition α(t) and ϕ(t) have zero
mean, which results from an appropriate choice of Pc and of the time axis
origin. Phase noise is our main concern, while amplitude noise can also be
of interest in a smaller set of problems and applications. The phase noise
is commonly described in terms of Sϕ(f), i.e. the power spectrum density
(PSD) of ϕ(t).
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Why scientists are so worried by phase noise? As this question involves
many fields of science and technology, we try to answer it through some
examples.

First of all, the replacement of analog circuits with digital electronics at
higher and higher clock frequencies is a major technological trend. In a digital
circuit the bit, i.e. the quantum of information, is represented as a voltage
saturated to the high or low level, 1 or 0, which makes small amplitude
fluctuations not so relevant. On the other hand, for proper operation digital
circuits need precise timing, within a fraction of the clock period.

Secondly, we consider a synthesizer that – by definition – transforms the
driving frequency νi into an output frequency νo = n

d νi, where n and d
are integers. Restricting our attention to an ideal synthesizer consisting of
zero-delay noise-free circuits, if the driving signal is affected by a time jitter
δti, the same time jitter is present at the output. Therefore, the synthesizer
transforms the input phase fluctuations ϕi(t) into fluctuations ϕo(t) = n

d ϕi(t)
of the output signal. So, any attempt to increase the frequency also increases
phase noise. Even worse, if the rms value of ϕo(t) exceeds some 1 rad, the
carrier vanishes due to cycle loss and extra cycle insertion at random time.

Thirdly, we consider a feedback oscillator whose nominal frequency ν0
is set by a resonator of merit factor Q. The oscillator loop gain must be
equal to 1 for the oscillation to be stable, which means unity modulus and
0◦ phase. In practice the oscillation frequency is determined by the 0◦ phase
condition only, while the unity gain condition results from saturation or from
amplitude control. Thus, a phase perturbation ϕa present along the loop path
is compensated by the resonator, whose phase changes by ϕr = −ϕa, which
produces a frequency change δν = ν0

2Qϕa. The output phase error, which is
the integral of δν, may diverge. This description of the oscillator behaviour
is known as the Leeson model [1].

Finally, get a look at the long range radar. The main lobe illuminates both
the target and the ground. Obviously, a pulsed radar can not discriminate
between the target and the ground clutter at the same range. But fortunately
the echo from a moving target is frequency shifted by ∆ν/νc = 2v/c, due to
the Doppler effect; v is the range rate of the target and c = 3×108 m/s is the
speed of light. As a consequence, a Doppler radar can divide a moving target
from the clutter, but this is possible only if the source linewidth is sufficiently
narrow to allow dividing the received frequency from the transmitted one;
in addition, the radar oscillator must keep its frequency constant from the
emission to the reception instant. Both these features rely upon the low phase
noise of the oscillator and its components [2,3].

2 Background

Phase noise is a random process, and consequently its power spectrum density
Sϕ(f) can only be defined as the Fourier transform of the autocorrelation
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function Rϕ(τ). The one-side spectrum is preferred because this is what
spectrum analyzers display. Complying to the usual terminology, we use the
symbol ν for the frequency and f for the Fourier frequency, i.e. the frequency
of the detected signal when the sidebands around ν are down converted to
baseband.

The power-law model is most frequently used for describing phase noise.
It assumes that Sϕ(f) is equal to the sum of terms, each of which varies as
an integer power of frequency. Thus each term, that corresponds to a noise
process, is completely specified by two parameters, namely the exponent and
the value at f = 1 Hz. Five power-law processes, listed below, are common
in electronics.

noise type Sϕ(f)

white phase b0f
0

flicker phase b−1f−1

white frequency b−2f−2

flicker frequency b−3f−3

random-walk frequency b−4f−4

All these noise types are generally present at the output of oscillators, while
two-port devices show white phase and flicker phase noise only. For reference,
Fig. 1 reports the typical phase noise of some oscillators and devices.
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Fig. 1. Typical phase noise of some oscillators and devices

Phase noise can be measured by means of a phase-to-voltage converter
in conjunction with a spectrum analyzer, which can be of the low frequency
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type. On the other hand, it could be measured directly by inspecting around
the carrier with a spectrum analyzer. The first method is related to the double
sideband (DSB) representation of noise, while the second refers to the single
sideband (SSB) representation.

2.1 Double sideband (DSB) representation of noise

Let us consider a noise process of spectrum density N(ν) symmetrical around
the carrier frequency νc, which means that N(νc+f) = N(νc−f). That noise
process is regarded as a pair of sidebands responsible for phase and ampli-
tude noise. In order to derive Sϕ(f) we consider two symmetrical noise slots of
bandwidth B at ±f apart from νc, as shown in Fig. 2. The rms voltage of the
carrier is

√
R0Pc. The two noise sidebands must be in quadrature to the car-

rier for only the phase to be perturbed. Assuming that the noise contributes
equally to amplitude and phase, the rms voltage of the quadrature sidebands
is
√

R0NB/2. These sidebands cause a phase modulation whose peak an-
gle is ϕp = arctan

√
2NB/Pc, as it results from the phasor representation

of Fig. 2; the corresponding phase fluctuation is ϕrms = arctan
√

NB/Pc.
Under the assumption of low noise-to-carrier ratio, that modulation angle
becomes ϕrms =

√
NB/Pc. Hence the spectrum density is

Sϕ(f) =
N(νc + f)

Pc
. (2)

The physical dimension of Sϕ(f) is rad2/Hz. In addition, the technical unit
dBrad2/Hz is frequently used.
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In some relevant situations, the noise does not equally contribute to phase
and amplitude. This occurs for instance with all digital circuits, in which the
amplitude noise is nearly suppressed by saturation. In these cases, amplitude
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and phase noise must divided and dealt with separately representing the
spectrum density as N(ν) = Nα(ν) + Nϕ(ν). Hence, the rms voltage of the
quadrature noise is

√
R0NϕB for each sideband, and consequently the phase

fluctuation is ϕrms =
√
2NϕB/Pc. The phase noise spectrum density thereby

obtained is

Sϕ(f) =
2Nϕ(νc + f)

Pc
. (3)

2.2 Single sideband (SSB) representation of noise

Let us now consider one sideband of the noise process N(ν) around the carrier,
as shown in Fig. 3. Taking one slot of bandwidth B at the frequency f apart
from the carrier, the corresponding rms voltage is

√
R0NB. The latter causes

a phase modulation ϕrms =
√

NB/2Pc, plus an amplitude modulation. The
quantity used to describe the spectrum density thereby obtained is

L(f) =
N(νc + f)

2Pc
. (4)

The physical dimension of L(f) is Hz−1; the unit of angle (rad) should be
omitted. L(f) is usually expressed in dBc/Hz, where “c” is intended to re-
mind one that the L(f) results from the noise referred to the carrier power.

Assuming that noise contributes equally to phase and amplitude modu-
lation, for small modulation angles it holds L(f) = 1

2 Sϕ(f).
It should be noticed that the above derivation of (4) does not contain

any explicit reference to phase, while phase noise comes from the equiparti-
tion of noise between the two degrees of freedom, i.e. phase and amplitude.
Obviously, whenever the equipartition does not apply – as it occurrs with fre-
quency multiplication – definition (4) yields a misleading result. In addition,
nowadays L(f) is almost always measured by means of a phase to voltage
converter, which is insensitive of amplitude. For this reason, the definition
(4) is now being changed [4] into

L(f) =
1
2

Sϕ(f) . (5)

Finally, L(f) is preferred to Sϕ(f) by most manufacturers; nevertheless, we
use Sϕ(f) because we find it more clear.

3 Traditional Methods

The double balanced mixer (DBM), used as a phase-to-voltage converter as
shown in Fig. 4, is the main tool for phase noise measurements. The mixer is
driven by two signals in quadrature (γ = 90◦) with nearly equal power

r(t) =
√
2R0Pc cos [2πνct + γ] (6a)

s(t) =
√
2R0Pc [1 + α(t)] cos [2πνct + ϕ(t)] . (6b)
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Basically, the mixer is a multiplier. Thus the signal at the output of the
lowpass filter is [r(t)s(t)] ∗ hlp(t) = R0Pc[1 + α(t)] sin[ϕ(t)]; the symbol ‘∗’
stands for the convolution operator and hlp(t) is the low pass function that
eliminates the 2νc component of the IF signal. For proper operation, the
mixer is saturated at both inputs. Hence the output signal is independent of
the input power, and the amplitude noise α(t) vanishes. Linearizing sin(ϕ)
for small ϕ, the output signal is

v(t) =
√

Kϕ ϕ(t) (7a)
Sv(f) = Kϕ Sϕ(f) , (7b)

which also defines the power gain Kϕ. For commodity we tend to use either
Kϕ or kϕ =

√
Kϕ, depending on the measurement method; anyway, the

numerical value in dB is the same.
Obviously, the measurement of Sv(f) gives Sϕ(f). Often, the fast Fourier

transform (FFT) analyzer is the most suitable instrument because of the wide
dynamic range, typically of some 80–90 dB.

LO

RF

IF

s(t)

r(t)

FFT

Fig. 4. Basic scheme of the traditional
phase noise measurement system

LO RF

IF

Fig. 5. Scheme of a typical radiofre-
quency double balanced mixer

The double balaced mixer can take various forms [5–7], depending on
frequency and technology. Figure 5 shows the scheme most widely used in
the HF to UHF bands (bands 7 to 9).

3.1 Instrument sensitivity

The white noise limit comes from the input noise of the amplifier inserted
between the mixer and te spectrum analyzer (not shown in Fig. 4), In fact,
commercial FFT spectrum analyzers show a typical input noise of the order
of 20 nV/

√
Hz, limited by the relatively high input impedance. On the other

hand, the mixer output impedance is low, typically 50 Ω. Consequently, the
sensitivity can be significantly improved by inserting an amplifier with lower
input impedance between the mixer and the analyzer. The input noise Sv0(f)
of that amplifier can be of 1 nV/

√
Hz (−180 dBV) or lower [8]. In this condi-

tions, assuming that Kϕ = −10 dBV2/rad2, a noise floor of −170 dBrad2/Hz
can be attained. This high sensitivity refers to good or best conditions only.
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It should be remarked that the best noise impedance Rb =
√

Sv(f)/Si(f)
of the operational amplifiers is in the kΩ range; Sv(f) and Si(f) refer to the
spectral density of the voltage and current noise of the amplifier. For this
reason, the operational amplifiers are misused when connected to a mixer
that shows an output impedance as low as 50 Ω.

The flicker noise of the instrument comes from the mixer diodes, and it
is insufficiently documented in the literature. According to our experience,
the actual limit turns out to be of some −140 dBrad2/Hz, depending on the
mixer type and the driving power. The flicker of a low noise amplifier can
be lower than 3 nV/

√
Hz at f = 1 Hz, i.e. −170 dBV, which is negligible

compared to the mixer noise.
Figure 6 shows the typical limit of the phase noise measurement system

based on the double balanced mixer.
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Fig. 6. Typical instrument noise of a
mixer based phase noise measurement
system

Fig. 7. Example of instrument noise
Sϕ 0(f), measured in the absence of the
device to be tested. Vertical scale is
dBrad2/Hz

3.2 Additional instrument limitations

Due to disturbances from the mains, the measured spectrum includes many
lines at 50 Hz (or the appropriate frequency, out of the Europe) and multiples.
These disturbances are picked up at the input of the operational amplifier,
where the signal level is the lowest. Signal processing is only partially useful
to clean up the measurement results because the spectrum analyzer shows a
finite bandwidth, and consequently two contiguous harmonics of the mains
may hide the useful information in between, thus limiting the sensitivity.
Figure 7 provides a typical example of actual results.

The mixers designed for radiofrequency bands are based on ferrite tore
transformers and Schottky diodes. They show a bandwidth of up to 3 decades
in the region from 20 kHz to 2 GHz approximately. At higher frequencies, the
transformer is replaced with a microstrip network, whereat the bandwidth
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is limited to 1–3 octaves. The maximum operating frequency is of the order
of 40 GHz, although some special devices may be usable up to 100 GHz, or
even beyond.

The adoption of a saturated mixer as the phase-to-voltage converter turns
into a severe limitation of the instrument power range. The conversion gain
is roughly proportional to driving power. Accounting for the diode saturation
level and maximum power, the useful dynamic range tends to be of some 10
dB. Mixers are hardly usable below approximately 5 dBm, while flicker noise
increases as the power approaches the maximum value.

4 Useful Schemes

Figures 8 to 15 show some experimental configurations that cover most prac-
tical needs.

General two port devices. A two port device (DUT, i.e. the device under
test) can be measured with the scheme of Fig. 8. This scheme is a direct appli-
cation of the principles shown in Section 3. Both r(t) and s(t) originate from
a single source, but only s(t) is affected by the DUT noise. The quadrature
condition is ensured by the variable phase shifter γ, that must be adjusted to
compensate for the phase lag of the DUT and cables. The quadrature condi-
tion can be first checked observing the dc voltage at the mixer output, that
must be 0 V. For highest accuracy, the dc offset that results from the diode
asymmetry must be taken into account; a true phase measurement may be
necessary instead of just trimming γ for 0 Vdc at the IF output.

The scheme of Fig. 8 works well if the DUT shows relatively low insertion
loss because the mixer must be driven with the same level at the two inputs.
In addition, the DUT group delay must be relatively small. This is necessary
to ensure the rejection of the phase noise of the driving oscillator. Anyway,
this problem will be explained underneath dealing with the discriminator.

LO

RF

IF
FFT

γ

DUT

Fig. 8. Phase noise measurement of a 2
port device

LO

RF

IF
FFT

γ

l g

Fig. 9. Measuring an amplifier as the
DUT, the amplifier must be preceeded
by an attenuuator of loss 6 equal to the
gain g
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Amplifiers. The phase noise of an amplifier can be measured with the
scheme of Fig. 9. The amplifier gain g is compensated by an attenuator of loss
Z � g. Obviously the attenuator and the amplifier can not be interchanged,
unless the amplifier dynamics is sufficienly large to avoid saturation. Anyway,
it should be noticed that the close-to-the-carrier flicker noise of the amplifier
comes from the near-dc flicker of the bias current, up converted by nonliear-
ity [9,10], and hence it strongly depends upon the output power. In addition,
the presence of the attenuator increases by a factor Z the overall noise figure
of the attenuator-amplifier compound, whereat the white noise floor of the
measurement is also increased by Z.

High insertion-loss two port devices. The mixer requires nearly equal
driving power at the two inputs. Accordingly, if the DUT shows a significant
loss Z, an attenuator of equal loss must be inserted in the other arm, and the
oscillator power must be set to an appropriately higher value. This solution
requires that the increased power is tolerated by the DUT without noise in-
crease or damnage. Alternatively, the DUT loss can be compensated inserting
an amplifier of gain g � Z, as shown in Fig. 10. The amplifier is also needed
to measure the DUTs that must work in low power conditions. Unfortunately
the power required to drive the mixer is relatively high and sufficient to make
the amplifier flicker, which impairs the instrument sensitivity. For this reason
some low noise devices, like the high stability quartz resonators [11], can not
be measured with this scheme.

LO

RF

IF
FFT

γ

DUT g

Fig. 10. In some cases an amplifier is
needed to compensate for the DUT loss
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RF

IF
FFT

γ

lDUT

DUT

Fig. 11. Whenever possible, two equal
DUTs should be measured simultane-
ously

Equal DUT pair. When two equal DUTs are available, they can be inserted
each in one arm of the circuit, as shown in Fig. 11. To reduce the circuit
complexity, the attenuation of the variable phase shifter γ is compensated by
the variable attenuator Z, while the phase lag of the latter is compensated by
γ. If the two devices are equally noisy there results a 3 dB improvement of
sensitivity.

The presence of two equal DUTs is sometimes useful to improve the rejec-
tion of the source noise by compensating for the discriminator effect of each
DUT.
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The scheme of Fig. 11 turns out to be useful for the measurement of
frequency multipliers, dividers and synthesizers in general. In fact, if two
independent oscillators were used to measure a single sinthesizer – one os-
cillator drives the synthesizer and the other one serves as the reference of
the mixer – it would be necessary to use two noise-free oscillators because no
rejection of the fluctuations of these oscillators would take place.

Discriminator and delay line. A single oscillator can be measured with
the scheme of Fig. 12, in which the resonator is used as a reference frequency
discriminator. The resonator responds to a frequency change y = ν−νc

νc
with

a phase ϕm = 2Qy, where Q is the merit factor of the resonator. Accord-
ingly, the spectrum density Sϕm(f) of the measured phase is related to the
frequency fluctuation Syo(f) of the oscillator by

Sϕm(f) = 4Q2Syo(f)

= 4Q2
f2

ν20
Sϕo(f) . (8)

The above hold at low Fourier frequencies (f � νc

2Q ), where the resonator
phase lag can be derived from a quasistatic model. For f > νc

2Q , the resonator
filters out the frequency fluctuations of the oscillator. These fluctuations are
still present at the other input of the mixer, and therefore the instrument
measures the phase noise of the oscillator.

In most cases the discriminator shows poor sensitivity, due to the insuffi-
cient Q factor of the resonator. On the other hand, the poor sensitivity turns
into a wide dynamic range.

A delay line does the same work as the resonator. The equivalent merit
factor is Qe = πτνc, where τ is the delay of the line. Unfortunately, delay
lines are scarcely useful in the frequency domain of our interest because of
the insufficient value of the τνc product. Nevertheless, the delay line is of
great interest for optics.
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RF

IF
FFT

γ

ϕd = 2Q y0

Discri.

Fig. 12. A discriminator converts the
frequency fluctuation of the driving os-
cillator into phase fluctuations that are
measured by means of a mixer
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Fig. 13. Phase noise measurement of
two equal oscillators
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Oscillator pair The measurement of oscillators requires a phase locked loop
(PLL) as in Fig. 13 – or some other locking mechanism – otherwise it would
be impossible to keep the mixer inputs in quadrature. The PLL is usually
regarded as a low pass filter, in which the voltage contolled oscillator (VCO)
tracks the input. The corresponding transfer function is

Sϕ2(f)
Sϕ1(f)

=
|kokϕHc(f)|2

4π2f2 + |kokϕHc(f)|2 , (9)

where ko is the VCO gain, given in rad/sV. In order to measure phase noise,
the error signal v is used as the PLL output signal, and therefore the transfer
function is

Sv(f)
Sϕ1(f)

=
4π2f2k2ϕ

4π2f2 + |kokϕHc(f)|2 , (10)

which is a high pass function. Obviously, the loop response must be suffi-
ciently slow for the oscillator no. 2 not to track the other one.

Alternatively, the scheme of Fig. 13 can be exploited to increase the dy-
namic range of the system. In this case, an amplifier is inserted as the Hc
block, setting the loop gain to a suitable value that pushes the high pass
cutoff frequecy just below the corner of the oscillator frequency flicker.

The frequency flicker is of the f−3 type, while the PLL response is pro-
portional to f2. The combined effect yields a measured spectrum of the f−1

type, from which the flicker coefficient can be calculated.
The PLL scheme of Fig. 13 can be used to compare an oscillator to a

reference one, considered noise free, or to compare two equal oscillators. In
this case, a 3 dB factor must taken into account.

Frequency multiplier. In some cases the frequency multiplier turns out
to be a useful tool to enhance the instrument sensitivity (Fig. 14). In fact,
if the frequency is multiplied by n, the phase also is multiplied by n. Hence
the output power spectrum Sϕo(f) is related to the input spectrum Sϕi(f)
by Sϕo(f) = n2Sϕi(f). The obvious extension to the general case of the
synthesizer is νo = n

d νi, which means ϕo(t) = n
d ϕi(t) and conssequently

Sϕo(f) = (nd )
2Sϕi(f).

The multiplier contributes with its own noise, which must be lower than
that of the mixer for the multiplier to be useful. In pratice this constraint
turns into a serious difficulty for the white noise, but it is relatively easy to
meet with the frequency flicker noise of the oscillator, whose slope is f−3.

Narrow tuning range oscillators. With some high quality oscillators, the
tuning range is significantly narrower than the initial frequency accuracy.
This occurrs when the Q factor of the resonator is extremely high, 106 to
109, and for technical reasons the resonance frequency can not be changed
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Fig. 14. Frequency multiplication en-
hances the instrument gain

LO

RF

IF

LO

RF

IF

c

FFT

|ν  − ν  |1 2

|ν  − ν  |1 2

ν1

VCO
in

ν2

SYNT.

H  (p)

Fig. 15. Phase noise measurement of
two oscillators not at the same fre-
quency

with a resolution better than νc

2Q . This is typical of the oscillators based on
whispering gallery sapphire resonators or on cryogenic resonators. The noise
of these oscillators is so low that no synthesizer would be adequate, and there
is no chance to get two oscillators at the same frequency. Yet, the phase noise
measurement is still possible by means of the scheme of Fig. 15. Choosing
two oscillators whose frequencies are as close as possible to one another, the
phase noise measurement is performed at the beat frequency νd = |ν1 − ν2|,
by comparison with an auxiliary synthesizer.

The configuration of Fig. 15 shows an additional advantage as it prevents
the measurement error due to injection locking. In fact, when high Q res-
onators are used, the oscillators tend to lock to one another if the frequencies
are sufficiently close.

5 Interferometric Noise Measurement Method

It has been shown in Sect. 3 that the saturated mixer used as a phase-
to-voltage converter suffers from three basic problems, namely the narrow
power range, the flicker noise of the mixer, and the relatively high white noise
floor due to the poor phase-to-voltage conversion gain. An improved solution
consists of the interferometric scheme, shown in Fig. 16. This scheme, inspired
to [12], has been subsequently ameliorated and extended to the HF and VHF
bands [13].

Fig. 16. Basic scheme of the radiofrequency interferometer
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The left hybrid is used as a power splitter. It should be remarked that
actual two way power splitters are 4 port hybrids with one port terminated
to an internal resistor, otherways they could not be impedance matched; for
details on these devices consult [14]. The right hybrid coupler makes the
vector addition, i.e. the interference of its input signals. Thus, setting Z′ and
γ′ so that the two paths from the oscillator to the ∆ output of that hybrid
are equal in amplitude and opposite in phase, all the oscillator power goes
to the Σ output, while the carrier is suppressed at the ∆ output. The DUT
noise sidebands, which are not suppressed by the interference mechanism, are
amplified by the low noise amplifier and downconverted to baseband by the
mixer. After filtering out the 2νc component, the instant voltage at the mixer
output is

v(t) = k [ϕ(t) sin γ′′ + α(t) cos γ′′] . (11)

Thus the mixer detects PM noise, AM noise or a combination of them, de-
pending on the detection phase γ′′. Because of the particular type of conver-
sion, the instrument gain k is written without the index ϕ.

Let us now introduce the following symbols

Nϕ(ν) the power spectrum density (PSD) of the quadrature noise
at the DUT output, around the carrier frequency νc,

Nα(ν) the PSD of the in-phase noise at the DUT output, around
the carrier frequency νc,

Zh the power loss of the hybrid, not including the 3 dB in-
trinsic loss. Therefore, driving one input with a power P ,
a power P/2Zh is expected at each output,

Zm the power loss of the mixer, icluding the 3 dB intrinsic
loss. Hence, driving the RF input with a power P , a power
P/Zm is expected in each output band,

R0 the mixer output impedance,
g the power gain of the amplifier.

A few words are to be spent about the contrast between the definition of Zm,
that includes the 3 dB intrinsic loss of the mixer, and the definition of Zh,
that does not include the 3 dB intrinsic loss of the hybrid. Apart from the
fact that the physical origin of the intrinsic losses is not the same, the above
definitions of Zm and Zh are consistent with the technical documentation of
most commercial components.

From the scheme of Fig. 16, the noise PSD is

S∆(ν) =
Nϕ(ν) + Nα(ν)

2 Zh
(12)

at the ∆ output of the hybrid, and

SRF(ν) = g
Nϕ(ν) + Nα(ν)

2 Zh
(13)
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at the RF input of the mixer.
The noise behaviour of actual DUTs is such that the sidebands are sym-

metrical with respect to the carrier, which means that Nϕ(νc−f) = Nϕ(νc+f)
and Nα(νc−f) = Nα(νc+f). Hence, the DUT noise down converted to base-
band is

SV (f) =
2R0g
ZhZm

[
Nϕ(νc + f) sin2 γ′′ + Nα(νc + f) cos2 γ′′

]
. (14)

Still assuming the sideband symmetry, the PM noise is related to Nϕ by

Sϕ(f) = 2
Nϕ(νc + f)

Pc
. (15)

If γ′′ is set to 90◦, combining the two above equations with the instrument
gain Kϕ = SV (f)/Sϕ(f), we obtain

Kϕ =
R0gPc
ZhZm

. (16)

The expected noise floor of the instrument can be easily derived as follows.
We first remove the DUT, replacing it with a cable; obviously, Z′ and γ′ must
be set to 0 dB and 0◦ respectively. The carrier suppression is still effective, and
the whole circuit is still impedance matched. As a consequence, the thermal
noise present at the input of the amplifier comes from the termination R0 of
left side hybrid.

Accounting for the amplifier noise figure F , the equivalent noise density at
input of the amplifier is S∆0 = FakBT0, where kB = 1.38×10−23 W/Hz is the
Boltzmann constant, and T0 = 290 K is the absolute reference temperature.
It is assumed that the temperature of the interferometer is close to T0. Thus,
the voltage noise at the mixer output is

SV 0(f) = 2
R0g

Zm
FkBT0 . (17)

Assuming that the carrier is perfectly suppressed at the input of the amplifier,
the amplifier noise FkBT0 can not be related with the phase of the carrier.
Accordingly, FkBT0 gives equal contributions to phase and amplitude noise.
Hence, combining (16) with (17) we obtain the phase noise floor

Sϕ0(f) = 2Zh
FkBT0

Pc
. (18)

Quite a similar development yields the AM noise floor

Sα0(f) = 2Zh
FkBT0

Pc
. (19)

The practical consequences of the above theory can be better understood
through the following example.
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Design example 1. We assume that Zh = 0.5 dB and Zm = 6 dB, which are
typical values for hybrids and mixers. We choose a g = 37 dB amplifier and we
set the driving power for Pc = 15 dBm at the DUT output. From equation
(16) we get Kϕ = 32 dBV2/rad2. Assuming that the noise figure of the
amplifier is F = 2 dB, equation (18) yields Sϕ0 = −185 dB rad2/Hz. These
results compare favorably to the performance of a traditional system based
on a saturated mixer that operates in similar conditions. The interferometer
shows a gain 42 dB higher and a noise floor 15 dB lower.

5.1 Design strategies

Whereas the potential benefit of high carrier suppression is clear, a suppres-
sion specification can hardly be drawn. This occurs because the interferom-
eter takes benefit of some features of the electronic components that are not
adequately documented. Therefore, we can only give some hints derived from
experience.

1. The amplifier gain g should be in the 20–40 dB range. Higher values
make a sufficient carrier suppression difficult to achieve, while lower values
cause the mixer noise to be taken in, impairing the sensitivity.

2. The residual carrier power at the amplifier output must be much lower
than the maximum amplifier power Pm; the latter is usually specified as
the “1 dB compression level”. A margin Pm/(gPr) of 35–40 dB or more
is needed, depending on the amplifier; Pr is the residual carrier power at
the amplifier input.

3. The close-to-the-carrier flicker of the amplifier results from the combined
effect of near-dc flicker and nonlinearity. Although we have no informa-
tion on the former, we can infer the latter from the 3rd harmonic intercept
power, which is always specified for commercially available amplifiers. Ob-
viously, the devices showing the highest intermodulation intercept power
tend to be the best ones.

4. For a given configuration, flicker noise of the amplifier is entierly deter-
mined by the power available at the output of the amplifier, that is mostly
due to the residual carrier. As a consequence, the suppression ratio Pc/Pr
should be regarded just as a way to specify Pr, rather than a parameter
relevant by itself.

5. The presence of a low noise amplifier precedig the mixer relaxes the noise
specifications for the latter.

Let us consider two examples.

Design example 2. The amplifier shows g = 40 dB, Pm = 15 dBm and
needs a power margin Pm/(gPr) = 35 dB for full linearity. In this condition,
Pr must be less than –60 dBm. Consequently, if the DUT output power is
Po = 15 dBm than a carrier suppression of 75 dB must be ensured.
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Design example 3. With the same instrument of the example 2, we now
measure the phase noise of two piezoelectric quartz resonators, each dissipat-
ing Pd = 10 µW. For this purpose we insert two equal DUTs, one in each
arm of the interferometer. Each DUT is a text fixture consisting of a resistive
matching network that incorporates one quartz. The DUT output power is of
the same order of Pd, depending on the test fixture network. Hence, assuming
Pc = −20 dBm, a carrier suppression of 40 dB would be sufficient.

For referece, a carrier suppression of 80 dB results from an error δγ′ = 100
µrad of the phase shifter, or from an error δZ = 8.7×10−4 dB of the vari-
able attenuator. Accounting for both, the accuracy specification is even more
stringent.

Microwave design. Phase matching is the greatest technical difficulty at
microwave frequencies. In fact, because the wavelength inside cables is about
22 mm at 10 GHz, a phase matching within 100 µrad – that is necessary for a
carrier suppression of for 80 dB – is equivalent to an electrical length matching
within 0.4 µm. Obviously, phase matching must be stable at that level for the
duration of the experiment, say half an hour. Some commercially available
phase shifters are adequate to do so, after a really patient adjustment.

A low instrument noise requires particular care with mechanical vibra-
tions. In fact, at 10 GHz a noise floor of −180 dBrad2/Hz corresponds to
an electrical length fluctuation of 4×10−12 m/

√
Hz. According to our expe-

rience, a sufficient stability can be obtained by fixing all the parts onto an
antivibrating table – of the same type of those commonly used for optics –
and securing to the table all the cables connecting the system to the external
world.

Microwave hybrids and mixers show poor isolation, typically of the order
of 20 dB. The obvious consequence is an unwanted feedback of the amplified
signal through the mixer and the hybrid. In order to prevent oscillation or
measurement alteration, isolation must be increased by inserting some ferrite
isolators; the best configuration must be determined experimentally.

Microwave amplifiers show a wide bandwidth, in some cases more than
10 GHz. Noise integrated over such a wide band can push the amplifier out
of linearity. If, for example, the amplifier shows a noise figure F = 2 dB, a
gain g = 40 dB, and a bandwidth B = 10 GHz, the total integrated noise is
Pn = FkBT0gB = −32 dBm. Unfortunately, saturation is due to the peak
power, which is some 20 dB higher than Pn. A bandpass filter can be needed.

VHF and HF design For technical reasons, the 5–10 MHz quartz oscillator
exhibits the lowest frequency flicker, compared to similar devices at other
frequencies. Besides, the quartz oscillator exhibits the lowest white noise floor
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when crystal resonates around 100 MHz. Therefore, a great effort is wortly to
be spent to characterize the electronic devices designed for these frequencies.

Phase matching, phase stability, and a sufficient damping of mechanical
vibrations are much easier to achieve than in the microwave bands because the
wavelength is 102–103 times longer. The adoption of semirigid cables, SMA
type connectors and antivibrating table ensures sufficient stability. Working
at νc = 10 MHz, a 120 mm thick sand layer proved to be sufficient to damp
the vibrations of the floor if some care were spent to do the measurements
at certain hours, when only a few people were present in the laboratory.

In spite of the apparent simplicity, for a series of reasons the design for
the HF and VHF bands turns out to be more difficult than that for the X
band.

The most difficult problem arises from the variable phase shifters. Some
microwave devices, consisting of a transmission line whose length can be var-
ied by means of a micrometer, proved to be a bad choice. Apart from the
small delay range (0.1–1 ns), that can be extended with a set of calibrated
cables, these phase shifters turned out to be scarcely useful because of their
high flicker noise; the same devices work successfully in the microwave range.
We guess that this anomalous behaviour could be due to the parasitic capac-
itance in parallel with non-perfect contacts, which behaves as short circuit at
10 GHz and takes in acoustic noise when used at 100 MHz. Presently, a type
of phase shifter specific for this application, based on a LC network with a
variable capacitance, is the best known solution.

Variable attenuators suitable to the VHF band are generally based on po-
tentiometers and for this reason they tend to flicker more than the microwave
ones, based on movable absorbing surfaces. We are still searching for a more
satisfactory solution, consisting either of better potentiometers or a different
physical principle.

It should be remarked that the flicker performance of variable attenuators
and phase shifters is usually not documented in the device specifications, and
consequently the possibility to find low noise devices relies upon experience
and a pinch of good luck.

Eliminating the harmonics at frequencies multiple of νc is a critical point
because the carrier suppression mechanism has no effect on them. As almost
all the components show a bandwidth of 2–3 decades, these unwanted signals
would be present in the entire circuit, pushing the amplifier out of linearity
and making it flicker. The only known solution consists of inserting low Q
bandpass filters in certain points of the circuit.

Ferrite isolators are not available for the HF and VHF bands and must be
replaced with active isolators. Although noise is not critical at the Σ output
of the hybrid, where the isolators are to be placed, it is really important to
drive both the active isolator and the mixer at the appropriate power level.

The presence of electromagnetic pollution can be a relevant problem at
some frequencies. In fact, in highly populated areas of Europe and the U.S.A.
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– well covered by FM broadcastings – the electromagnetic field is often of the
order of +100 dBµV/m in the 88–108 MHz band. Besides, the Ethernet –
that is probably the most popular standard for local area network – operates
either at 10 Mb/s or 100 Mb/s and for this reason it turns into a source of
pollution particularly difficult to eliminate from some experiments. Solutions
are strongly dependent on the local situation, as well as the design.

Finally, the design for the measurement of quartz crystal resonators, that
shows high Q factor and operate at low power, is subject to specific design
rules [15,16].

5.2 Further remarks

The scheme of Fig. 16 can be improved by deriving the mixer LO signal from
the oscillator instead of taking it at the Σ output of the hybrid. This makes
the mixer pump level independent of the DUT power.

Working in the microwave bands, the 90◦ hybrids turn out to be the best
choice. They are cheaper, smaller, and show better isolation and insertion loss
than the 180◦ ones. The bandwidth of a 90◦ hybrid can be of 1–3 octaves,
depending on the design and on the device size. The HF and VHF hybrids
are based on lumped parameter networks. Hence, in these bands the 180◦

hybrids are superior to the 90◦ ones with respect to loss, isolation, size and
cost. In addition, the 180◦ hybrids show a typical bandwidth of 2 decades,
while the bandwidth of the 90◦ devices is of the order of half an octave.

In our experience the low frequency magnetic fields originated from the
mains turn into a serious design problem because copper shields are not ef-
fective at these frequencies. The traditional systems, of the type described in
Sections 3 and 4, are prone to that kind of disturbances because the signal,
i.e. the DUT noise, is first down converted and then amplified; therefore the
smallest signal, that is present at the mixer output, is a baseband one. Mag-
netic shielding can be used, but this solution makes the whole instrument
more complicated. By contrast, the interferometer can be more effectively
shielded. This occurs because the smallest signal, that consists of noise side-
bands around the carrier, is amplified before being down converted. Moreover,
low frequency magnetic fields have no effect on the high frequency noise side-
bands. Figure 17, taken from [13], shows an example of instrument noise of an
interferometer operating at νc = 9.1 GHz with a carrier power Pc = 15 dBm.
The residual of the mains can hardly be distinguished from the instrument
noise.

Finally, it should be remarked that the interferometer provides the instant
value of ϕ(t) in real time, which makes it suitable to the dynamical removal
of noise by means of a voltage controlled phase shifter in closed loop [17].
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Fig. 17. Noise floor of a microwave interferometer prototype operating at νc = 9.1
GHz. The DUT output power is 15 dBm

6 Correlation Techniques

The noise limitation of the traditional saturated mixer can be partially over-
come by exploiting a correlation technique, in which two equal mixers mea-
sure the same noise process at the same time, as shown in Fig. 18. This type
of measurement extracts the shared-path noise and rejects the single-arm
noise processes, provided that they are independent. Obvously, the scheme of
Fig. 18 can be easyly modified to measure oscillators, amplifiers, synthesizers
etc., taking example from the single mixer schemes described in Section 4
(Figures 8 to 15).
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Fig. 18. Basic dual mixer correlation scheme

Searching back through the bibliography, the correlation scheme was prob-
ably used for the first time in the early ’60s to measure the phase noise of
hydrogen masers [18]. The dual channel correlation spectrum analyzers were
not available at that time, and the correlation was evaluated through a calori-
metric method. Since there, similar schemes were reproposed with updated
technologies; see, for example, [19,20].
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The (cross) correlation function Rab(τ) of two random voltages a(t) and
b(t) is defined as

Rab(τ) = lim
θ→∞

1
θ

∫
θ

a(t) b∗(t−τ) dt , (20)

where the symbol “∗” stands for complex conjugate and can be omitted
because we deal with real signals. The Fourier transform of Rab(τ) is the
cross spectrum density

Sab(f) =
∫
∞

Rab(τ) exp(−2πfτ) dτ . (21)

Dynamic signal analyzers usually evaluate the cross spectrum density through
the property

Sab(f) = F{a(t)} F{b(t)} , (22)

that holds for real signals; F{.} is the Fourier transform operator. The math-
ematics used in this section is clearly preseted in [21].

The signals a(t) and b(t) are proportional to the instant phase of the
DUT, plus a random component due to the single-arm noise. Averaging on
m measures, a rejection of the single-arm noise spectrum density by a factor
2
√

m is expected. The ultimate noise limit of the dual mixer method is not
be discussed here. The noise theory of the double interferometer, that is a
more sensitive instrument based on the correlation, is be given instead.

6.1 Double interferometer

An improved version of the correlation scheme, first proposed in [22], makes
use of two equal interferometers that simultaneously measure the phase noise
of a shared device, as shown in Fig. 19. The spectrum analyzer rejects the
noise of the individual interferometers, under the assumption that the corre-
sponding processes are independent.

The two low noise amplifiers of Fig. 19 are impedance matched, which
implies that thermal noise is present at their input. In the absence of the
DUT – the latter is replaced with a short cable – all the thermal noise comes
from the terminations R1, R2 and R3 of the hybrids used as power splitters.
Because the noise coming from R1 R2 and R3 is shared by the two amplifiers,
at first sight one could believe that the thermal noise limits the instrument
sensitivity. The full explanation, derived from [23] and explained underneath,
is much more complex.

6.2 Noise theory of the double interferometer

In order to derive the noise theory of the double interferometer we analyze the
case in which an attenuator of loss Z is inserted as the DUT. Then we define six
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Fig. 19. Scheme of the double interferometer

thermal noise processes indicated with n1(t), n2(t), . . . , n6(t), each of which
coming from a resistor of value R0, i.e. the characteristic impedance of the
whole circuit. n1, n2 and n3 are the available noise voltages across the resistors
R1, R2 and R3, respectively. n4 and n5 are the equivalent thermal noise of
the resistive network of the variable attenuators, while n6 is the equivalent
thermal noise due to the resistive loss of the DUT. The power spectrum
density Ni(f) of each of these processes is equal to R0kBT0. The temperature
of the whole instrument is assumed to be close to T0, uniform and constant.
As the DUT is an attenuator, it attenuates by Z any signal present at its input,
including the thermal noise. As a consequence, only a fraction

√
(Z−1)/Z n6.

of the DUT noise n6 is present at the output. This occurs because the total
output noise at the attenuator output must be R0kBT0 when the attenuator
input is terminated to a resistor. Similarly, the noise contributions of the
two variable attenuators are

√
(Z−1)/Z n4 and

√
(Z−1)/Z n5. In addition, we

assume that the DUT adds extra noise ň6 that can be of any type, including
flicker. We use the word “extra” deliberately avoiding “excess” because the
latter tend to be used as a synonym of flicker. Under the above hypotheses,
the DUT output noise is

ndut(t) =

√
Z−1
Z

n6(t) + ň6(t) . (23)

In the vicinity of the carrier frequency, a noise process can be divided in
in-phase and quadrature components as

n(t) = nx(t) cos(ωt)− ny(t) sin(ωt) . (24)

As we deal with thermal noise, the PSDs of the baseband noise processes
nx(t) and ny(t) are Nx(f) = R0kBT0 and Ny(f) = R0kBT0, so that the
PSD of the radiofrequency process n(t) is N(f) = R0kBT0. Taking the os-
cillator signal V cos(ωt) as the phase reference, the DUT output signal is√
2R0Pc sin(ωt). This means that the x noise component is responsible for

phase noise; accordingly, Sϕ(f) = Nx(f)/R0Pc.
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For the sake of simplicity, we neglect the loss Zh of the hybrids and power
splitters, and the amplifier noise. The former can be introduced subsequently,
and the latter vanishes in the correlation function because the two amplifiers
are independent.

The reference signals at the mixer LO ports are of the form

ra(t) = −Vp cos(ωt) (25a)
rb(t) = Vp sin(ωt) . (25b)

Consequently, arm a detects the cos(ωt) signal, while arm b detects the sin(ωt)
component. Due to the circuit phase relationships, the signals at the mixer
RF inputs are

va(t) =
√

g

[
− 1√

2Z
n1x +

1
2
√

Z
n2x +

1
2

n3y +

√
Z−1
2Z

n4x +

− 1
2

√
Z−1
Z

n6x − 1
2

ň6x

]
cos(ωt) +

√
g

[
non

detected
terms

]
sin(ωt) (26a)

vb(t) =
√

g

[
1√
2Z

n1x +
1

2
√

Z
n2x +

1
2

n3y −
√

Z−1
2Z

n5x +

+
1
2

√
Z−1
Z

n6x +
1
2

ň6x

]
sin(ωt) +

√
g

[
non

detected
terms

]
cos(ωt) . (26b)

After filtering out the 2ω components, the detected signals present at the IF
output of the mixers are

a(t) =
√

2g
Zm

[
1√
2Z

n1x − 1
2
√

Z
n2x − 1

2
n3y +

−
√

Z−1
2Z

n4x +
1
2

√
Z−1
Z

n6x +
1
2

ň6x

]
(27a)

b(t) =
√

2g
Zm

[
1√
2Z

n1x +
1

2
√

Z
n2x +

1
2

n3y +

−
√

Z−1
2Z

n5y +
1
2

√
Z−1
Z

n6x +
1
2

ň6x

]
. (27b)

Substituting the expression (27a) and (27a) in the definition (20), all the
cross terms vanish. Hence the cross spectrum density is

Sab(f) =
g

Zm

[
1
Z

N1x − 1
2Z

N2x − 1
2

N3y +
Z−1
2Z

N6x +
1
2

Ň6x

]
. (28)

Under the hypothesis of temperature uniformity, it holds Ni = R0kBT0 for
all i = 1 . . . 6. Consequently most of the terms of (28) cancel with one another
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and there results

Sab(f) =
g

2Zm
Ň6x(f) . (29)

The above equation states that the instrument compensates for the thermal
noise, and therefore Ň6x(f) only contributes to the measured phase noise.

Finally, the gain of the double interferometer is

Kϕ =
gR0Pc
2Zm

, (30)

which is half that of the single interferometer. This is is reasonable because
in this case only half of the DUT noise is processed by each interferometer.
For the same reason, the single arm noise floor is 3 dB higher than that of
the single interferometer.
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Fig. 20. Noise floor of the 100 MHz double interferometer prototype. A and B:
single-arm. C: correlation

6.3 Noise properties of the double interferometer

The double interferometer shows some relevant noise properties that, al-
though quite innatural at first sight, are well predicted by the general theory.

Noise floor. The first consequence of the thermal noise compensation mech-
anism is that the noise floor of the double interferometer can be lower than
the thermally originated phase noise Sϕ th = kBT0/Pc.

Figure 20 shows an example of noise floor averaged on m = 32767 mea-
sures. This floor refers to a prototype operating at the carrier frequency
νc = 100 MHz, and fully described in [24]. In this prototype, the amplifiers
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show gain g = 40 dB and noise figure F = 2 dB. The signal power at the
mixer LO inputs is 8 dBm, and the DUT power is Pc = 8 dBm. The hybrids
show losses Zh = 0.8 dB, while the mixer loss is Zm = 6 dB. Obviously, the
DUT is replaced with a cable.

The single-arm noise floor (curves A and B of Fig. 20) is −172 dBrad2/Hz,
which is close to the expected value Sϕa(f) = Sϕ b(f) = 4FkBT0Z

2
h/Pc �

−172.3 dBrad2/Hz. The thermal noise calculated for the same conditions is
Sϕ th = kBT0/Pc � −182 dBrad2/Hz. Yet, the measured floor (curve C) is
Sϕ 0 � −194 dBrad2/Hz, which is 12 dB lower than Sϕ th.
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Fig. 21. Measurement of a reference noise Ň6 injected along the DUT path

Noise measurement below the thermal floor. The possibility of mea-
suring extra noise below the thermal floor can be experimented by injecting
noise in the DUT path through a directional coupler, as shown in Fig. 21
(top). Neglecting the thermal noise N6 because it is expected to be rubbed
out, this circuit injects calibrated noise Ň6(f) = gaR0FakBT0/(Zvkc). Ň6 can
be set to the desired value adjusting Zv. The equivalent phase noise thereby
injected is Sϕ i(f) = gaR0FakBT0/(ZvkcPc). Fig. 21 (bottom) shows the mea-
sured Sϕ as a function of the injected Sϕ i. Going to the left of that figure, Zv
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increases and the injected noise becomes negligible compared to the equiv-
alent noise at the amplifier inputs. Therefore, the single-arm Sϕ approaches
the value of −172 dBrad2/Hz previously measured in the absence of the
DUT. By contrast, the correlated noise fits the straight line Sϕ = Sϕ i even
below Sϕ th = kBT0/Pc.

Noise of an attenuator. The same noise mechanism responsible for the
compensation of the shared resistor noise (R1, R2 and R3) is also effective
on the noise of an attenuator inserted along the DUT path. Figure 22 shows
two extreme situations, in which the attenuator noise is generated separately
in each arm of the double interferometer (left), or in the shared path (right).
Experiments performed with 16 dB attenuators show that the instrument
noise floor is the same for both the configurations, that it is lower than the
thermal noise, and that it is limited by the averaging size m only [23].

Fig. 22. Measurement schemes with independent attenuators in each arm, and with
a shared attenuator. The attenuation 6 = 16 dB was usen in the experiments
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Abstract. Results pointing to phonon participation in the 1/f noise of metals,
semiconductors and semiconductor devices are presented. A fine structure corre-
sponding to both bulk and surface phonons is shown to exist in the 1/f noise of
different solid-state physical systems. It is described how Phonon Density Of States
(PDOS) superposition method can be used to identify surface and bulk equilib-
rium atomic motions as microscopic 1/f noise sources. A close connection between
the 1/f noise parameter and PDOS or Eliashberg function is suggested. Exam-
ples proving that the temperature dependence of the 1/f noise parameter is the
image of the lattice vibration spectrum are given for both metals and semiconduc-
tors. Consequently, a simple connection between the activation energy distribution
and PDOS is revealed and lattice anharmonicity appears to naturally affect the
frequency exponent.

1 Introduction

During his famous experiment on thermal noise of electricity in conductors,
Johnson [1] observed that under a given frequency f , the noise in a vac-
uum diode increases while the frequency decreases. The noise intensity was
found to be inversely proportional to the frequency: SI ∼ 1/f . Schottky
[2] has called it flicker noise. In almost 75 years since then, 1/f noise –
as it is called now- has been found in an enormous number of physical sys-
tems. In solid-state systems, such as metals, superconductors, semiconductors
and semiconductor devices, 1/f noise is almost omnipresent. Over the years,
the phenomenon proved to be of formidable ubiquity entailing a very com-
plex, sometimes entangled, problematics. It has been vividly investigated,
discussed and disputed in literature and throughoutly reviewed by experts in
the field[3]-[16].

Due to its ubiquity, 1/f noise practically eluded all attempts to find its
microscopic origin. In solid, there is a general consensus that 1/f noise is due
to resistance(conductivity) fluctuations. This is mainly due to the fundamen-
tal experiments of Voss and Clarke [17] and Beck and Spruit [18] who found
1/f noise in thermal noise, both in metals and semiconductors. The main
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unsolved dispute is what is the microscopic mechanism of conductivity fluc-
tuations: is it the carrier number or the mobility which fluctuates with a 1/f
spectrum? The mobility fluctuation hypothesis is supported by experiments
strongly suggesting the phonon involvement in 1/f noise generation [19]-[26].
A set of observations and experiments, all pointing to phonon participation
in the 1/f noise, is described in this paper. Phonon-based 1/f noise models
are beyond the scope of this paper.

2 Mobility Fluctuation 1/f Noise
Induced by Lattice Scattering

Where 1/f noise comes from has been investigated since the thirties when
Bernamont [27] originated the idea that one can obtain a 1/f spectrum by
superposition of lorentzians. Van der Ziel [28] and du Pre [29] showed that
superposition of lorentzians requires the existence of a distribution of the
relaxation times(τ): D(τ)∼1/τ.

The first microscopic model of 1/f noise is due to McWhorter [30] who
attributed the phenomenon to the tunneling of the carriers into the ox-
ide(surface) states. If the concentration of these states is constant, one can
obtain a distribution D(τ)∼1/τ , as required by the phenomenological mod-
els[28],[29]. McWhorter’s model is, in essence, a number fluctuation model
and it is applicable to semiconductors and semiconductor devices. As a corol-
lary, the idea that 1/f noise is a surface effect has been introduced. In 1969,
collecting a large number of existing experimental data for both metals and
semiconductors, Hooge[31] found that the noise intensity is inversely pro-
portional to the total number of the carriers in the sample(N). From this
dependence, he concluded that 1/f noise is a bulk effect.

Quantitatively, Hooge expressed his findings by heuristic formula:

SV
V 2

=
γ

Nf
, (1)

where SV is the noise spectral density of a fluctuating voltage (V) developed
across the terminals of a linear resistor when a current is injected into it; γ
is a variable which is now generally adopted under the name of 1/f noise
parameter.

For semiconductors, the introduction of the 1/f noise parameter paved the
way toward mobility fluctuation hypothesis, whose roots are in the applica-
tion of the relation (1) to the explanation of 1/f noise in concentration cells[4]
and thermo e.m.f.[32]. Before long, experiments performed on semiconduc-
tors with different impurity concentrations revealed that from all scattering
mechanisms only mobility fluctuation due to lattice scattering generates 1/f
noise[19].
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3 Phonon Fine Structure in the 1/f Noise
of Semiconductor Devices

Soon after its introduction by Hooge, the 1/f noise parameter became a very
useful mean to characterize the noisiness of semiconductor devices. Very low γ
values(of the order 10−8) found by Schmidt et al. [33] in near ballistic n+nn+

GaAs submicron diodes were “attributed to the near absence of phonon col-
lisions”. This was an indirect confirmation that 1/f noise was “caused by
lattice phonon collisions”[33]. For a given batch of bipolar transistors, it has
been found that statistical distribution of γ vs. base current(IB) exhibits max-
ima at some currents. It was possible to show that this maxima correspond
to phonon energies in silicon [21]. Moreover, for a given transistor, it turned
out that both γ(IB) [35] and SI(IB) [36] features a phonon fine structure. In
this way, phonon energies in phosphorous doped silicon were determined by
1/f noise spectroscopy. Investigating 1/f noise in a GaAs Schottky tunnel
diode at 77 K and 4.2 K, Carruthers [34] found a fine structure in the noise
intensity vs. applied bias. Almost all structure in noise was in coincidence
with a structure in the second derivative d2I/dV2. A peak observed at 36
mV was in good correspondence with the energy of the LO phonon at Γ in
GaAs. The shape of the noise spectrum at some voltages was a lorentzian.
The spectrum at 36 mV was not presented, so that no direct link between
the LO phonon and the 1/f noise is possible.

At room temperature, the mobility of a two-dimensional electron gas
(2DEG) is almost entirely determined by phonon scattering, so that a 2DEG
is an ideal system to verify phonons participation in 1/f noise. Such mea-
surements were done recently on InAlAs/InGaAs High Electron Mobility
Transistors [37]-[39]. Figure 1 shows that at very low drain voltage, the 1/f
noise spectral density of the drain voltage fluctuations does not smoothly
follow the Ohm’s law(V2DS), as required by linear response theory, but fea-
tures a fine structure(indicated by arrows) which corresponds to the specific
phonon energies of InAlAs/InGaAs system. The first two singularities lo-
cated at 28.2 mV and 33.7 mV are in good agreement with InAs-like(28.5
meV) and GaAs-like(33.7 meV) longitudinal optical(LO) phonon energies in
InGaAs, respectively. The singularity at 36.5 mV fits with a 36 meV LX
intervalley phonon in InAlAs, while those at 42 mV and 48.6 mV can be as-
signed to 43 meV transversal optical(TO) and 48 meV(LO), both AlAs-like
phonons in InAlAs, respectively. The structure in 1/f noise mirrors a phonon
fine structure existing in both drain-source resistance and second derivative
of I-V characteristic, as was shown recently [39]. Such a correlation gives
strong experimental support to the phonons participation in the generation
of 1/f noise in semiconductor devices.
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Fig. 1. Dependence of the 1/f noise drain voltage spectral density on the drain
voltage VDS for an InAlAs/InGaAs HEMT; the arrows along with the associated
voltages indicate the noise fine structure. Dots are experimental data, while con-
tinuous line was obtained by a spline function fitting procedure(from [38])

4 Surface and Bulk Phonons in the 1/f Noise of
Metals

In metallic point contacts(PC) at very low temperature and in ballistic regime,
a nonmonotonic dependence of 1/f noise intensity on the applied bias has
been observed by Akimenko et al. [22]. The structure they have observed has
been attributed to both normal and Umklapp phonons. In the diffusion and
thermal regimes the noise structure dissapears.

Since with the work of Eberhard and Horn [40], peaks in the temperature
dependence of the 1/f noise parameter were often found for both continuous
[41]–[51] and discontinuous [53]–[55] metal films. A close examination of Eber-
hard and Horn’s [40] noise data for continuous noble metal films revealed not
only peaks but also kinks [23]. From their noise data, the 1/f noise parameter
has been calculated by taking into account the temperature dependence of
the frequency exponent m(1/fm). In this way, the structure in γ vs. tempera-
ture for copper, silver [23] and gold [52] became more evident. To understand
what the origin of this structure would be, the associated energies(kBT , kB
the Boltzmann constant) have been compared with the specific bulk phonon
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energies of each metal. A very good correspondence has been found. These
results pointed to the electron-bulk phonons interaction as microscopic source
of 1/f noise in metals.

Further experiments performed on discontinuous platinum films [53]–[55],
which have both surface and bulk properties, revealed that under about 200
K, the relative noise spectral density shows a fine structure. It has been pos-
sible to associate this structure not only with bulk phonons but also with
surface phonons. In this way, surface phonons were observed in the 1/f noise
of a metal. Therefore, it has been established that the carrier-phonon interac-
tion is the common microscopic source of 1/f noise at both surface and in the
bulk. The observation of surface and bulk phonons in 1/f noise conciliates
the perennial dispute whether 1/f noise is a surface or a bulk effect, in the
sense that it offers a common physical explanation. Consequently, whether
1/f noise is a surface or a bulk effect is irrelevant from physical point of view.

5 1/f Noise Induced by Surface and Bulk
Atomic Motion

For some time, a kind of atomic motion has been suspected to be the source
of 1/f noise especially in metals [10],[49]-[51],[56],[57] but the role of lattice
vibrations(phonons) was not explicitely recognized. Usually, under 200 K, the
temperature dependence of 1/f noise in discontinuous platinum films is very
complicated. Attempting to model such a structure, we have developed what
is was called Phonon Density Of States(PDOS) superposition method [53]-
[55]. The PDOS method consists in the superposition of bulk and surface
phonon spectra. The resulting function is used to model the temperature
dependence of the normalized 1/f noise intensity.

An example of how this method works is shown in Fig. 2, where the
noise data for the RAB film and the function F(ω) are compared [55]. The
function F(ω) was obtained by superposition of some surface PDOS and
bulk PDOS for platinum [58]. For surface, only PDOS corresponding to the
longitudinal motion of the platinum atoms in the first atomic layer, both in
the ΓK and ΓM symmetry directions, were taken from Kern et al. [59]. For
comparison to be possible, the phonon frequency(ω) was converted into an
equivalent temperature(T = h̄ω/kB , where terms have their usual meaning).
The reasonable fit between F (ω) and the noise data points to the longitudinal
motion of surface atoms as a source of 1/f noise. In a similar way, the vertical
motion of the surface atoms was also identified as source of 1/f noise [55].
These data showed that both longitudinal and vertical(Rayleigh wave) motion
of the surface atoms as well as bulk atomic motion are microscopic sources of
1/f noise. In this way, the fundamental sources of 1/f noise were identified.
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Fig. 2. Comparison between the normalized 1/f noise spectral density of the RAB
film and the function F (ω); the arrows with the associated letters indicate the
symmetry directions in the platinum surface Brillouin zone (from[55])

6 Physical Significance of the 1/f Noise Parameter

An interesting consequence of the PDOS method is that it allowed for a
physical explanation of the 1/f noise parameter [55],[60]. Using this method,
we have found that the function obtained by superposition of platinum surface
and bulk phonon densities of states fits well the noise experimental results.
From these data, one can write:

Sv/V
2 ∼
∑

Fi(ω) (2)

where Fi(ω) is the PDOS function of the i-th phonon mode (surface or bulk)
and ω is the phonon frequency. From the relations (1) and (2), it results:

γ ∼
∑

Fi(ω) = F (ω) (3)

Relation (3) suggests a possible connection between γ and PDOS[F(ω)].
Our data showed that each noise peak develops in a small temperature inter-
vals and can be almost exclusively attributed to a single phonon mode(branch).
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Consequently, for a single peak one can write: SV /V2 ∼ Fi(ω). The contri-
bution of each atomic vibration mode could be weighted by the associated
electron-phonon matrix element(α2i ), so as in the Hooge’s form we have:

Sv/V
2 ∼ γ ∼ α2iFi(ω) (4)

But the product α2iFi(ω) of the squared matrix element(α2i ) for the electron-
phonon interaction and the phonon density of states Fi(ω) is known as the
Eliashberg function. Consequently, the formula (4) suggests a possible con-
nection between 1/f noise parameter and the Eliashberg function.

Such a connection, if any, can explain –at least qualitatively– many un-
clear and apparently dissimilar aspects of the 1/f noise in solid-state physical
systems. In general, according to the relation (4), large 1/f noise(γ) would
be expected in materials with strong electron-phonon coupling, but this pre-
diction has to be experimentally verified. The new interpretation of the 1/f
noise parameter suggests that its temperature dependence would follow the
energy dependence of the Eliashberg function or phonon density of states.

7 Image of Phonon Spectrum in 1/f Noise

7.1 Metals

The validity of the relation (4) has been recently verified for the case of tin,
aluminum and a copper nanobridge [60]. The example of tin is given in what
follows. For a comparison between 1/f noise parameter and the Eliashberg
function to be possible, we need both noise data and the Eliashberg function
for the same metal. The phonon spectrum, F(ω), is usually determined by
inelastic neutron spectroscopy [58], while the Eliashberg functions for differ-
ent metals were determined by both inelastic electron tunneling spectroscopy
[61] and point-contact spectroscopy at very low temperature. The supercon-
ducting properties of tin(Sn) were intensively studied [61]. Also its noise
properties at the superconducting transition were investigated by Clarke and
Hsiang [62]. Fleetwood and Giordano [63] have found that, at room tem-
perature, the 1/f noise intensity is substrate-dependent. In a further study,
Fleetwood and coworkers [42] presented very interesting and reliable results
for the temperature dependence of 1/f noise parameter in tin films on both
sapphire and glass substrates. Their noise data for a tin film on a sapphire
substrate are presented in Fig. 3.

A peak in the noise has been observed at about 240 K. Above this tem-
perature the noise is substrate dependent, while for lower temperatures the
substrate dependence is “much smaller or negligible” [42]. This may indicate
that noise could be determined by some intrinsic properties of the metal. For
comparison, the Eliasberg function α2F (ω) for Sn, as determined by Rowell
et al. [61] in a tin-tin oxide-tin(Sn-I-Sn) tunnel junction in superconducting
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Fig. 3. Comparison between the temperature dependence of the 1/f noise
parameter(γ) for tin(from Fleetwood et al. [42]) and the Eliashberg
function(α2F (ω), from Rowell et al. [61]).

state, is also presented in Fig. 3. Since α2F (ω) is a function of the tunnel
electron energy(voltage across the tunnel junction), this energy was converted
into an equivalent temperature: T = h̄ω/kB, where h̄ and kB are Planck and
Boltzmann constant, respectively, and ω is phonon frequency. In this way, the
comparison between the noise data and Sn Eliashberg function is possible.
Note the good correspondence between the two curves especially for temper-
ature lower than 150 K. It is remarkable that the two noise peaks, indicated
by arrows at 100 K and 120 K, are in reasonable agreement with some peaks
located at 93 K and 127 K in the Eliashberg function, respectively. There
seems also to be an asymmetrical noise peak at about 185 K which could
be well described by the shape of the Eliashberg function. For temperature
higher than about 200 K, α2F (ω) strongly decreases, the maximum of atomic
vibration energy being of about 19 meV. The equivalent temperature of this
energy is of about 220 K(indicated by arrow in Fig. 3).

It results that at least for T <150 K, in Sn film on sapphire the tempera-
ture dependence of 1/f noise parameter mirrors the Eliashberg function, as
predicted by relation (4). As noted by Rowell et al. [61], in the case of Sn, the



224 Mihai Mihaila

electron-phonon coupling parameter α2 is relatively slow energy dependent.
Great difficulties could be encountered when α2 is energy dependent, α2(ω),
and electron-phonon strength differs from one mode of atomic vibrations to
another.

7.2 Semiconductors

Starting with the work of Montgomery [64] on germanium filaments, the
temperature dependence of 1/f noise in semiconductors has been quite inten-
sively studied [20],[65]-[68]. Many of these data were interpreted in terms of
mobility fluctuation due to phonon-carrier interaction. Processes of thermally
activated kinetics were also proposed [65]. For different reasons, eq. (4) can-
not be easily applied to semiconductors. Assuming a slow energy dependence
for α2i , α

2
iFi(ω) would feature the same structure as Fi(ω). Consequently, the

relation (3) have been applied to explain some temperature dependences of
γ in germanium, gallium arsenide and silicon [71].
The temperature dependence of the 1/f noise parameter in p-type germanium
has been determined by Bisschop and Cuijpers [66] for samples of different
resistivities. Their noise data for a sample of 1Ωcm are shown in Fig.4 (curve
a). It is a matter of evidence that γ(T ) features a fine structure composed
mainly of peaks, some of them indicated by arrows. In Fig. 4, the results
of Montgomery [64] for single crystal filaments of germanium are compared
with those of Bisschop and Cuijpers [66]. Striking similarities exist between
these data, although they were obtained at a considerable interval of time.
For temperature T higher than about 166 K (1000/T � 6 K−1), although the
shape of the curves is different, there is an almost one-by-one correspondence
between the noise peaks. Even the point which in the Bisschop’s data appears
as an anomaly at about 200 K seems to correspond to a very well defined peak
in the Montgomery’s results. For T ¡166 K, the noise data vary quite similar
with temperature. Germanium bulk PDOS function obtained by inelastic
neutron scattering [69] is also presented in Fig. 4. For comparison, the phonon
frequency ω has been converted into an equivalent temperature: T = h̄ω/kB ,
where the terms have their usual meaning. The noise peaks located at about
166 K and 286 K are in excellent correspondence with van Hove singularities
in PDOS. For temperature lower than 166 K, namely, in the region where
the PDOS is determined by the transversal acoustic phonons, some general
trends in the noise behaviour are reasonably described by the PDOS shape.
Comparison between the temperature dependence of the 1/f noise parameter.

The noise data of Chen et. al. [68] for two δ-doped, MBE-grown GaAs samples
are compared with GaAs bulk PDOS function [69] in Fig. 5. Note that in both
samples, the noise peaks correspond to the van Hove singularities in PDOS,
which are indicated by arrows along with the associated atomic vibration
modes in different symmetry directions.
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Fig. 4. Comparison between γ(T ) for germanium (Montgomery [64]–curve b; Biss-
chop and Cuijpers [66]–curve a) and germanium bulk PDOS obtained by inelastic
neutron scattering(Dolling and Cowley [69]). Note the one-by-one correlation be-
tween the noise structure(indicated by vertical arrows) of the two curves (a and b)
for T ≥166 K.

For T <125 K (1000/T=8 K−1), then in the region where the PDOS is
dominated by transversal acoustic(TA) phonons, there is a reasonable fit be-
tween γ(T ) and PDOS only for the sample W294 [68]. In this temperature
range, the noise level in the sample W261 is much lower. According to the
relation (3), γ(T ) could be determined by different combinations of Fi func-
tions, so that some functions could lack. The shape of γ(T ) for the sample
W261 indicates the absence of the function Fi of the TA[12

1
2
1
2 ] phonons, so

that it is a consequence of the fact that carriers do not interact with this
atomic vibration mode. A similar situation appears in the noise data of Chen
[67], which are represented as γ/T vs. T in Fig. 5. Three peaks are visible in
this dependence, all being located at van Hove singularities in PDOS. The
two peaks located at temperatures under 200 K(1000/T = 5K−1) are very
weak, indicating a weak interaction between carriers and phonon modes hav-
ing energy excitation thresholds under 200 kB(17.2 meV). But in the Dutta,
Dimon and Horn(DDH) model [70], γ/T ∼ D(E), where D(E) is the acti-
vation energy(E) distribution function. Because γ ∼ F (ω), it simply results
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that γ/T ∼ F (ω)/T or, equivalently, γ/T ∼ F (ω)/ω ∼ D(E). This observa-
tion is a hint that a connection between F (ω) and D(E) could also exist [71].

Fig. 5. Comparison between γ(T ) for δ-doped MBE-grown GaAs (Chen et al. [68])
and GaAs bulk PDOS (Dolling and Cowley [69]): black triangle-sample W261;
+−sample W294. Figured with dots is γ/T calculated from Chen [67]. The vertical
arrows indicate the van Hove singularities in the PDOS along with the associated
atomic vibration modes in different symmetry directions of the bulk Brillouin zone;
TA and LA are the transversal and longitudinal acoustic vibration modes, respec-
tively.

Physical significance of the activation energy distribution. In search
of the possible connection F (ω)/ω ∼ D(E), we have calculated both γ/T
and F (ω)/ω from the noise data of Palenskis and Shoblitzkas [ 20] for n-type
silicon and bulk silicon PDOS of Dolling and Cowley [69], respectively. When
represented vs. T , as in the Fig. 6, it appears that F (ω)/ω is capable to
reproduce the structure of γ/T , so that – at least for silicon- the activation
energy distribution function, D(E), seems to be the image of F (ω)/ω.

In all presented cases, it appeared that temperature dependence of 1/f
noise parameter is more or less the image of lattice vibration spectrum. This
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new approach reveals the existence of some possible new, to date, hidden
aspects of the 1/f noise. One of them is that these observations, if correct at
all, strongly support the idea that 1/f noise comes from the perpetual
equilibrium atomic motion. This mechanism may well be the explanation
why Voss and Clarke [17] observed 1/f noise in thermal noise of both semi-
conductors and metals. Quite surprisingly, it becomes now apparent that a
connection between phonon-induced mobility fluctuations and DDH model
[70] could exist. It comes about because, if one introduces F(ω)∼ γ ∼SV
instead of SV in the analytical expression of the frequency exponent(m) [70],
it results:

m ∼ 1 +
1

ln(f0/f)

[
∂ lnF (ω)

∂ lnω

∂ lnω

∂ lnT
− 1
]
, (5)

where ∂ lnω/∂ lnT represents the pure anharmonicity or lattice self-
energy shift. Hence, for the first time, lattice anharmonicity (nonlinearity)
explicitely appears as a factor affecting the 1/f noise exponent. That may
partially explain why DDH [70] phenomenological model proved so successful
in explaining the temperature dependence of m in silicon on sapphire [65]
and metals [6],[40],[47],[50-51],[70]. Except for the measuring frequency(f),
Eq. (5) shows that m is entirely determined by lattice-specific parameters.
Other factors affecting m can be the phonon occupation function and the
matrix element.

8 Conclusion

The hypothesis of mobility fluctuation due to lattice scattering as micro-
scopic source of 1/f noise was very briefly presented. As arguments in favour
of this hypothesis, a phonon fine structure was shown to exist in the 1/f
noise of different semiconductor devices. Moreover, both bulk and surface
phonons were identified in the 1/f noise of metals. PDOS method was de-
scribed. Using this method, surface and bulk atomic motions were identified
as fundamental sources of 1/f noise. Also, the PDOS method allowed for a
physical explanation of the 1/f noise parameter. In this new interpretation,
a connection between the 1/f noise parameter and the phonon density of
states/Eliashberg function would exist. The validity of this connection was
exemplified by interpreting some existing data for metals (tin) and semicon-
ductors. In all cases, it has been found that the temperature dependence of
the 1/f noise parameter is the image of lattice vibration spectrum. It in-
dicates that 1/f noise is brought about by equilibrium, perpetual atomic
motion. A connection between the activation energy distribution function
and the phonon density of states has been revealed. As a consequence of the
new interpretation, lattice anharmonicity explicitely appears in the analytical
expression of the frequency exponent. These results revealed the existence of
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Fig. 6. Comparison between γ(T )/T ∼ kBD(E) calculated from Palenskis and
Shoblitskas’ data [20] for n-type silicon and F (ω)/ω(in arbitrary units) calculated
from Dolling and Cowley [69]. From these data, it seems that, for silicon, F (ω)/ω
is the image of the activation energy distribution function D(E).

some (to date, hidden) unifying factors between some apparently dissimilar
models of 1/f noise.
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Abstract. The ubiquitous fundamental 1/f noise spectrum is derived ontologi-
cally from quantum electrodynamics for any current, cross section or process rate
as a universal macroscopic quantum fluctuation process, and as the most impor-
tant infrared divergence phenomenon. It is present both in space and in time and
is described in both the frequency and time domains. For small and ultrasmall de-
vices and solid state samples the conventional quantum 1/f effect is introduced,
and for larger sizes the coherent quantum 1/f effect applies. This new aspect of
quantum mechanics is described by simple practical relations and by a general in-
terpolation formula. The connection with numbers of harmonics and subharmonics
characterizing the basic non-linearity of the particle-field interaction as well as other
nonlinearities, is elucidated. Finally, the general epistemological explanation of the
ubiquitous 1/f phenomenon is derived in the form of a sufficient 1/f noise crite-
rion, and is applied to various nonlinear systems, including the particle-field system
of quantum-electrodynamics as a particular example. Application of the frequency
mixing 1/f frequency noise experiments of Planat and collaborators is considered
as an equivalent way to understand the derivation of the fundamental 1/f spec-
trum. This new approach could reveal how our earlier qualitative interpretation of
lattice-dynamical quantum 1/f effects below the lowest transversal acoustic phonon
frequency of the sample in terms of subharmonics can be verified.

1 Introduction

Fluctuations with a spectral density proportional to 1/f are found in a large
number of systems in science, technology and everyday life. These fluctu-
ations are known as 1/f noise in general. They have first been noticed by
Johnson [1] in early amplifiers, have limited the performance of vacuum tubes
in the thirties and forties, and have later hampered the introduction of semi-
conductor devices.

1/f noise is present as a limitation in most modern high-technology de-
vices. It is present in the resonance frequency of quartz resonators, in SAW de-
vices, in junction and MIS infrared detectors, in SQUIDs, in electron beams,
etc. Outside the domain of electrophysics 1/f noise is present in the rate of
radioactive decay, in the flow rate of sand in an hourglass, in the flux of cars
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on an expressway, in the frequency of sunspots, in the light output of quasars,
in the flow rate of the Nile over the last 2000 years, in the water current ve-
locity fluctuations at a depth of 3100 meters in the Pacific ocean, and in the
loudness and pitch fluctuations of classical music. It has also been found be-
low 10−8 Hz in the angular velocity of the earth’s rotation, and below 10−4

Hz in the relativistic neutron flux in the terrestrial atmosphere [2].
The present paper is focused on the general origin of fundamental 1/f

noise as a universal form of chaos, and on the cause of its ubiquity. It starts
with a special case of the general 1/f noise phenomenon, the Quantum 1/f
Effect (with its conventional and coherent contributions) which is as funda-
mental as time and space. The paper then presents the general case of 1/f
fluctuations as a necessary consequence of the mathematical homogeneity
of the dynamical (or physical) equations describing the motion of an arbi-
trary chaotic or stochastic nonlinear system. A sufficient criterion is derived,
which indicates if an arbitrary system governed by a given system of differen-
tial equations will exhibit 1/f noise. The criterion is then applied to several
particular systems, and is used to predict the fundamental quantum 1/f ef-
fect as a special case. Elsewhere the nature of the entropy increase implied by
quantum 1/f noise is clarified based on the new quantum information the-
ory and the negative quantum entropy concept. Again, in another paper, the
characteristic functional is derived, and the fractal dimension of this oldest
and most basic form of quantum chaos is discussed. In this paper we focus on
the connection between the quantum 1/f theory and the number theoretical
approach in Sec. 11.

2 Conventional Quantum 1/f Effect

This effect [3]– [8] is present in any cross section or process rate involving
charged particles or current carriers. The physical origin of quantum 1/f
noise is easy to understand. Consider for example Coulomb scattering of
current carriers, e.g., electrons on a center of force. The scattered electrons
reaching a detector at a given angle away from the direction of the inci-
dent beam are described by DeBroglie waves of a frequency corresponding
to their energy. However, some of the electrons have lost energy in the scat-
tering process, due to the emission of bremsstrahlung. Therefore, part of the
outgoing DeBroglie waves is shifted to slightly lower frequencies. When we
calculate the probability density in the scattered beam, we obtain also cross
terms, linear both in the part scattered with and without bremsstrahlung.
These cross terms oscillate with the same frequency as the frequency of the
emitted bremsstrahlung photons. The emission of photons at all frequencies
results therefore in probability density fluctuations at all frequencies. The
corresponding current density fluctuations are obtained by multiplying the
probability density fluctuations by the velocity of the scattered current car-
riers. Finally, these current fluctuations present in the scattered beam will
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be noticed at the detector as low frequency current fluctuations, and will
be interpreted as fundamental cross section fluctuations in the scattering
cross section of the scatterer. While incoming carriers may have been Pois-
son distributed, the scattered beam will exhibit super-Poissonian statistics,
or bunching, due to this new effect which we may call quantum 1/f effect.
The quantum 1/f effect is thus a many-body or collective effect, at least a
two-particle effect, best described through the two-particle wave function and
two-particle correlation function.

Let us estimate the magnitude of the quantum 1/f effect semiclassically
by starting with the classical (Larmor) formula 2q2a2/3c3 for the power ra-
diated by a particle of charge q and acceleration a. The acceleration can be
approximated by a delta function a(t) = ∆v δ(t) whose Fourier transform
∆v is constant and is the change in the velocity vector of the particle during
the almost instantaneous scattering process. The one-sided spectral density
of the emitted bremsstrahlung power 4q2(∆v)2/3c3 is therefore also constant.
The number 4q2(∆v)2/3hfc3 of emitted photons per unit frequency interval
is obtained by dividing with the energy hf of one photon. The probability
amplitude of photon emission

[
4q(∆v)2/3hfc3

]1/2
eiγ is given by the square

root of this photon number spectrum, including also a phase factor eiγ . Let
ψ be a representative Schrödinger catalogue wave function of the scattered
outgoing charged particles, which is a single-particle function, normalized to
the actual scattered particle concentration. The beat term in the probabil-
ity density ρ = |ψ|2 is linear both in this bremsstrahlung amplitude and
in the non-bremsstrahlung amplitude. Its spectral density will therefore be
given by the product of the squared probability amplitude of photon emission
(proportional to 1/f) with the squared non-bremsstrahlung amplitude which
is independent of f . The resulting spectral density of fractional probability
density fluctuations is obtained by dividing with |ψ|4 and is therefore

|ψ|−4 S|ψ|2(f) = 8q2(∆v)2/3hfNc3 = 2αA/fN = j−2Sj(f), (1)

where α = e2/h̄c = 1/137 is the fine structure constant and the expression
αA = 4q2(∆v)2/3hc3 is known as the infrared exponent in quantum field
theory, and is known as the quantum 1/f noise coefficient, or Hooge constant,
in electrophysics.

The spectral density of current density fluctuations is obtained by multi-
plying the probability density fluctuation spectrum with the squared velocity
of the outgoing particles. When we calculate the spectral density of fractional
fluctuations in the scattered current j, the outgoing velocity simplifies, and
therefore (1) also gives the spectrum of current fluctuations Sj(f), as indi-
cated above. The quantum 1/f noise contribution of each carrier is indepen-
dent, and therefore the quantum 1/f noise from N carriers is N times larger;
however, the current j will also be N times larger, and therefore in (1) a
factor N was included in the denominator for the case in which the cross
section fluctuation is observed on N carriers simultaneously.
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The fundamental fluctuations of cross sections and process rates are re-
flected in various kinetic coefficients in condensed matter, such as the mobility
µ and the diffusion constant D, the surface and bulk recombination speeds s,
and recombination times τ , the rate of tunneling jt and the thermal diffusivity
in semiconductors. Therefore, the spectral density of fractional fluctuations
in all these coefficients is given also by (1).

When we apply it to a certain device, we first need to find out which are
the cross sections σ or process rates which limit the current I through the
device, or which determine any other device parameter P , and then we have
to determine both the velocity change ∆v of the scattered carriers and the
number N of carriers simultaneously used to test each of these cross sections
or rates. Then (1) provides the spectral density of quantum 1/f cross section
or rate fluctuations. These spectral densities are multiplied by the squared
partial derivative (∂I/∂σ)2 of the current, or of the device parameter P of
interest, to obtain the spectral density of fractional device noise contributions
from the cross sections and rates considered. After doing this with all cross
sections and process rates, we add the results and bring (factor out) the
fine structure constant α as a common factor in front. This yields excellent
agreement with the experiment [9] in a large variety of samples, devices and
physical systems.

(1) was derived in second quantization, using the commutation rules for
boson field operators. For fermions one repeats the calculation replacing in
the derivation the commutators of field operators by anticommutators, which
yields [6], [7].

ρ−2Sρ(f) = j−2Sj(f) = σ−2Sσ(f) = 2αA/f(N − 1). (2)

This causes no difficulties, since N ' 2 for particle correlations to be defined,
and is practically the same as (9), since usually N >> 1. Equations (1) and
(2) suggest a new notion of physical cross sections and process rates which
contain 1/f noise, and express a fundamental law of physics, important in
most high-technology applications [7].

We conclude that the conventional quantum 1/f effect can be explained
in terms of interference beats between the part of the outgoing DeBroglie
waves scattered without bremsstrahlung energy losses above the detection
limit (given in turn by the reciprocal duration T of the 1/f noise measure-
ment) on one hand, and the various parts scattered with bremsstrahlung
energy losses; but there is more to it than that: exchange between identical
particles is also important. This, of course, is just one way to describe the
reaction of the emitted bremsstrahlung back on the scattered current. This
reaction, itself an expression of the nonlinearity introduced by the coupling
of the charged-particle field to the electromagnetic field, thus reveals itself as
the cause of the quantum 1/f effect, and implies that the effect can not be
obtained with an independent boson model. The effect, just like the classical
turbulence-generated 1/f noise [12], is a result of the scale-invariant nonlin-
earity of the equations of motion describing the coupled system of matter and



236 Peter H. Handel

field. Ultimately, therefore, this nonlinearity is the source of the 1/f spectrum
in both the classical and quantum form of the theory. We can say that the
quantum 1/f effect is an infrared divergence phenomenon, this divergence
being the result of the same nonlinearity. The quantum 1/f effect is, in fact,
the first time-dependent infrared radiative correction. Finally, it is also de-
terministic in the sense of a well determined wave function, once the initial
phases γ of all field oscillators are given. In quantum mechanical correspon-
dence with its classical turbulence analog [12], the new effect is therefore a
quantum manifestation of classical chaos which we can take as the definition
of a certain type of quantum chaos.

3 Derivation of the Coherent Quantum 1/f Noise
Effect

The coherent quantum 1/f effect is a quantum fluctuation effect present
in any extended current due to the definition of the physical electron as a
system composed of the bare particle plus its electomagnetic field which is in
a coherent state and has therefore indefinite energy. This in turn causes the
state to be non-stationary. The non-stationarity is expressed by the coherent
quantum 1/f effect. An elementary physical derivation is given in Sec. 7.

The present derivation is based on the well-known new propagator Gs(x′−
x) derived relativistically [13] in 1975 in a new picture required by the infinite
range of the Coulomb potential. The corresponding nonrelativistic form [14]
was provided by Zhang and Handel:

−i
〈
Φ0|TψS′(x′)ψ+S (x)|Φ0

〉 ≡ δSS′GS(x′ − x)

= (i/V )
∑
p

{ exp i[p(r− r′)− p2(t− t′)/2m]/h̄}np,s

× {−ip(r− r′)/h̄ + i(m2c2 + p2)1/2(t− t′)(c/h̄)}α/π.
(3)

Here α = e2/h̄c = 1/137 is Sommerfeld’s fine structure constant, np,s the
number of electrons in the state of momentum p and spin s, m the rest mass
of the fermions, δss′ the Kronecker symbol, c the speed of light, x = (r, t)
any space-time point and V the volume of a normalization box. T is the
time-ordering operator which orders the operators in the order of decreasing
times from left to right and multiplies the result by (−1)P , where P is the
parity of the permutation required to achieve this order. For equal times,
T normal-orders the operators, i.e., for t = t′ the left-hand side of (3) is
i
〈
Φ0|ψ+S (x)ψS′(x′)|Φ0

〉
. The state Φ0 of the N electrons is described by a

Slater determinant of single-particle orbitals.
The resulting spectral density coincides with the result 2α/πfN , first

derived [10] directly from the coherent state of the electromagnetic field of
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a physical charged particle. The connection with the conventional quantum
1/f effect was suggested later [11].

To calculate the current autocorrelation function we need the density cor-
relation function, which is also known as the two-particle correlation function.
The two-particle correlation function is defined by〈

Φ0|Tψ+S (x)ψS(x)ψ
+
S′(x′)ψS′(x′)|Φ0

〉
=
〈
Φ0|ψ+S (x)ψS(x)|Φ0

〉 〈
Φ0|ψ+S′(x′)ψS′(x′)|Φ0

〉
− 〈Φ0|TψS′(x′)ψ+S (x)|Φ0

〉 〈
Φ0|TψS(x)ψ+S′(x′)|Φ0

〉
.

(4)

The first term can be expressed in terms of the particle density of spin s,
n/2 = N/2V =

〈
Φ0|ψ+S (x)ψS(x)|Φ0

〉
, while the second term can be expressed

in terms of the Green function (1) in the form

ASS′(x− x′) ≡ 〈Φ0|ψ+S (x)ψ+S′(x′)ψS′(x′)ψS(x)|Φ0
〉

= (n/2)2 + δSS′GS(x′ − x)GS(x− x′). (5)

The ”relative” autocorrelation function A(x− x′) describing the normalized
pair correlation independent of spin is obtained by dividing by n2 and sum-
ming over s and s′

A(x− x′) = 1− (1/n2)
∑
s

GS(x− x′)GS(x′ − x) = 1− (1/N2)∑
s

∑
pp′

{exp i[(p− p′)(r− r′)− (p2 − p′2)(t− t′)/2m]/h̄}np,snp′,s

×{p(r− r′)/h̄− (m2c2 + p2)1/2(t− t′)(c/h̄)}α/π
×{p′(r− r′)/h̄− (m2c2 + p′2)1/2(t− t′)(c/h̄)}α/π. (6)

Here we have used (1). We now consider a beam of charged fermions, e.g.,
electrons, represented in momentum space by a sphere of radius pF , centered
on the momentum p0 which is the average momentum of the fermions. The
energy and momentum differences between terms of different p are large, lead-
ing to rapid oscillations in space and time which contain only high-frequency
quantum fluctuations. The low-frequency and low-wavenumber part Al of this
relative density autocorrelation function is given by the terms with p = p′

Al(x− x′) = 1− (1/N2)

×
∑
s

∑
pp′

np,s{p(r− r′)/h̄− (m2c2 + p2)1/2(t− t′)(c/h̄)}2α/π

≈ 1− (1/N)|p0(r− r′)/h̄−mc2τ/h̄|2α/π for pF � |p03 −mc2τ/z|
(7)

Here we have used the mean value theorem, considering the 2α/π power as a
slowly varying function of p and neglecting p0 in the coefficient of τ = t− t′,
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with z ≡ |r− r′|. Using the identity [15], with arbitrarily small cutoff ω0, we
obtain from (7) with θ ≡ |p0(r− r′)/h̄−mc2τ/h̄| the exact form

Al(x− x′) = 1 + [(2α/πN)
∫ ∞
ω0

(mc2/h̄ω)2α/π cos(θω)dω/ω]

×{cos α + (2α/π)
∞∑
n=0

(θω0)2n−2α/π[(2n)!(2n− 2α/π)]−1}−1

(8)

This indicates a ω−1−2α/π spectrum and a 1/N dependence of the spectrum
of fractional fluctuations in density n and current j, if we neglect the curly
bracket in the denominator which is very close to unity for very small ω0.
The fractional autocorrelation of current fluctuations δj is obtained by mul-
tiplying (5) on both sides with ep0/m, and dividing by (enp0/m)2 which is
the square of the average current density j, instead of just dividing by n2.
It is the same as the fractional autocorrelation for quantum density fluctu-
ations. Then (8) for the coherent Quantum Electrodynamical chaos process
in electric currents can be written also in the form

Sδj/j(k) � [(2α/πωN)(mc2/h̄ω)]2α/π � 2α/πωN = 0.00465/ωN (9)

Being observed in the presence of a constant applied field, these fundamental
quantum current fluctuations are usually interpreted as mobility fluctuations
[3]. Most of the conventional quantum 1/f fluctuations in physical cross sec-
tions and process rates are also mobility fluctuations, but some are also in
the recombination speed or tunneling rate.

4 Sufficient Criterion for Fundamental 1/f Noise

In spite of the practical success of our quantum 1/f theory in explaining
electronic 1/f noise in most high tech devices, and in spite of the conceptual
success of our earlier classical turbulence approach to 1/f noise, the question
about the origin of nature’s omnipresent 1/f spectra remained unanswered.
During the last three decades, we have claimed repeatedly that nonlinearity
is a general cause of 1/f noise. The present paper proves that nonlinearity al-
ways leads to a 1/f spectrum if homogeneity is also present in the equation(s)
of motion. Specifically, if the system is described in terms of the dimensionless
vector function Y(x, t) by the mth order nonlinear differential equation

∂Y/∂t + F(x,Y, ∂Y/∂x1...∂Y/∂xn, ∂
2Y/∂x21.....∂

mY/∂xmn ) = 0 (10)

a 1/f spectrum is obtained if the nonlinear function F satisfies the homo-
geneity condition

F[λx,Y, ∂Y/(λ∂x1)...∂Y/(λ∂xn), ∂2Y/(λ∂x1)2.....∂mY/(λ∂xn)m]
= λ−pF(x,Y, ∂Y/∂x1)...∂Y/∂xn, ∂

2Y/∂x21.....∂
mY/∂xmn ), (11)
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for any real number λ. The order of homogeneity is the number −p.
Performing a Fourier transformation of (9) with respect to the vector

x(x1, x2, .....xn), we get in terms of the Fourier-transformed wavevector k
the nonlinear integro-differential equation

∂y(k, t)/∂t +G[k,y(k, t), k1y(k, t), ...kny(k, t), k21y(k, t).....k
m
n y(k, t)]

= 0, (12)

where y(k, t) is the Fourier transform of Y(x, t). Due to (11) , the nonlinear
integro-differential operator G satisfies the relation

G[λk,y, λk1y...λkny, (λk1)2y...(λkn)my]
= λpG[k,y, k1y...kny, k21y.....k

m
n y], (13)

where the integration differentials dk, dk′, etc., are excepted from replace-
ment with λdk, λdk′, etc. Equation (12) can thus be rewritten in the form

dy/d(t/λp) + G[λk,y, λk1y...λkny, (λk1)2y.....(λkn)m]y] = 0 (14)

Taking λ = 1/k, where k = |k| = (k21 + .... + k2n)
1/2, and setting kpt = z, we

notice that k has been eliminated from the dynamical equation, and only k/k
is left. This means that there is no privileged scale left for the system in x or k
space, other than the scale defined by the given time t, and expressed by the
dependence on z. We call this property of the dynamical system ”sliding-scale
invariance”.

In certain conditions, instabilities of a solution of (9) may generate chaos,
or turbulence. In a sufficiently large system described by the local dynamical
equation (9), in which the boundary conditions become immaterial, homo-
geneous, isotropic turbulence, (chaos) can be obtained, with a spectral den-
sity determined only by (9). The stationary autocorrelation function A(τ) is
defined as an average scalar product, the average being over the turbulent
ensemble

A(τ) = 〈Y(x, t)Y(x, t + τ)〉
=
∫
〈y(x, t)y(x, t + τ)〉dnk =

∫
u(k, z)dnk. (15)

Here we have introduced the scalar

u(k, z) = 〈y(k, t)y(k, t + τ)〉 (16)

of homogeneous, isotropic chaos (turbulence), which depends only on |k| and
z = kpτ . All integrals are from minus infinity to plus infinity. The chain of
integro-differential equations for the correlation functions of any order obeys
the same sliding-scale invariance which we have noticed in the fundamental
dynamical equation above. Therefore, in isotropic, homogeneous, conditions,
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u can only depend on k and z. Furthermore, the direct dependence on k must
reflect this sliding-scale invariance, and is therefore of the form

u(k, z) = k−nv(z) (17)

Indeed, only this form insures that u(k, z)dnk and therefore also the corre-
sponding integrals and multiple convolutions in k space have the necessary
sliding-scale invariance.

According to the Wiener-Khintchine theorem, the spectral density is the
Fourier-transform of A(t),

Sy(f) =
∫

e2πifτA(τ)dτ = (1/f)
∫

e2πit
′
∫
k

′−nv(z)dnk′dt′ = C/f

(18)

where we have set fτ = t′, kn = fk
′n, z = knτ = k

′nt′, and the integral

C =
∫

e2πit
′
∫
k

′−nv(z)dnk′dt′ =
∫

e2πit
′
∫
k

′′−nv(k”n)dnk”dt′ (19)

is independent of f . We have defined the vector k” = t
′1/nk.

The general form of our criterion considers a system described in terms
of the integro-differential system of equations

Φ[t,x,Y, ∂Y/∂t, ∂Y/∂x1...∂Y/∂xn, ∂
2Y/∂t2, ∂2Y/∂x21, .....∂

mY/∂xmn ]
= 0 (20)

where the vector function Φ may be nonlinear in any of its arguments. If a
number θ exists such that (20) implies

Φ[λθt, λx,Y, ∂Y/λθ∂t, ∂Y/λ∂x1...

∂Y/λ∂xn, ∂
2Y/λ2θ∂t2, ∂2Y/λ2∂x21.....∂

mY/λm∂xmn ] = 0, (21)

for any real number λ, the power spectral density of any chaotic solution for
the vector function Y defined by (10) is proportional to 1/f.

Here we have assumed that there are no boundary conditions associated
with (21), or that any boundary conditions included would satisfy the same
homogeneity conditions.

In conclusion, nonlinearity + homogeneity = 1/f noise, provided the sys-
tem is chaotic. The ultimate cause of the ubiquitous 1/f noise in nature is
the omnipresence of nonlinearities (no matter how weak) and homogeneity.
The latter is finally related to rotational (or Lorentz) invariance and therefore
to the isotropy of space (or space-time). All our four specific theories of 1/f
chaos in nonlinear systems are just special cases to which this criterion is ap-
plicable. They include our magneto-plasma theory of turbulence for current
carriers in intrinsic symmetric semiconductors [12] (1966), our similar theory
for metals [12] (1971), the quantum 1/f theory [3]–[11] (pure QED, 1975), and
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the spectral theory of Musha’s highway traffic turbulence results [16] (1989).
Applied to the motion of a nonlinearly interacting chain of atoms, it predicts
no 1/f spectrum. Starting from a wrong defining equation of the chain, both
our criterion and direct calculation allowed for 1/f noise in a special case
[16], but the correct defining equation does not fulfill the criterion, and no
1/f spectrum is expected. However, 1/f fluctuations in phonon number, in
frequency, and in phase are predicted by the criterion, are derived directly
[17] with the quantum 1/f theory, and have been experimentally verified
[17],[18], in piezoelectric crystals.

5 Application to QED:
Quantum 1/f Effect as a Special Case

The nonlinearity causing the 1/f spectrum of turbulence in both semiconduc-
tors and metals is caused by the reaction of the field generated by charged
particles and their currents back on themselves. The same nonlinearity is
present in quantum electrodynamics (QED), where it causes the infrared
divergence, the infrared radiative corrections for cross sections and process
rates, and the quantum 1/f effect. We shall prove this on the basis of our
sufficient criterion for 1/f spectral density in chaotic systems.

Consider a beam of charged particles propagating in a well-defined di-
rection which we shall call the x direction, so that the one-dimensional
Schrödinger equation describes the longitudinal fluctuations in the concentra-
tion of particles. Considering the non-relativistic case which is encountered
in most quantum 1/f noise applications, we write in second quantization the
equation of motion for the Heisenberg field operators ψ of the in the form

ih̄
∂ψ

∂t
= (1/2m)[−ih̄∇− (e/c)A]2ψ, (22)

With the non-relativistic form J = −ih̄ψ∗∇ψ/m + hermitian conjugate, and
with

A(x, y, z, t) = (h̄/2cmi)
∫

ψ∗∇ψ − ψ∇ψ∗

|x− x′| dx′ (23)

we obtain

ih̄
∂ψ

∂t
= (1/2m)[−ih̄∇− (eh̄/2c2mi)

∫
ψ∗∇ψ − ψ∇ψ∗

|x− x′| dx′]2ψ. (24)

At very low frequencies or wave numbers the last term in rectangular brackets
is dominant on the r.h.s., leading to

ih̄
∂ψ

∂t
= (−1/2m)[(eh̄/2c2m)

∫
ψ∗∇ψ − ψ∇ψ∗

|x− x′| dx′]2ψ. (25)



242 Peter H. Handel

For x replaced by λx, and x′ replaced by λx′, we obtain

ih̄
∂ψ

∂t
= (−1/2m)[(eh̄/2c2m)

∫
ψ∗∇/λψ − ψ∇/λψ∗

|x− x′| λ3dx′]2ψ

= λ2Hψ = λ−pHψ. (26)

This satisfies our homogeneity criterion with p = −2. Our sufficient criterion
only requires homogeneity, with any value of the weight p, for the existence of
a 1/f spectrum in chaos. Therefore, we expect a 1/f spectrum of quantum
current-fluctuations, i.e., of cross sections and process rates in physics, as
derived in detail earlier [3]-[8],[10]-[11]. This is in agreement with the well-
known, and experimentally verified, results of the Quantum 1/f Theory.

In conclusion, we realize that, both in classical and quantum mechanical
nonlinear systems, the limiting behavior at low wave numbers is usually ex-
pressed by homogeneous functional dependences, leading to fundamental 1/f
spectra on the basis of our criterion.

6 Derivation of the Conventional Quantum 1/f Noise
Effect in Second Quantization

The simplified description of quantum 1/f noise was presented above in the
elementary terms of Schrödinger’s statistical catalogue model, without using
second quantization. This approach is natural in view of the close connec-
tion between this new effect and diffraction which is usually treated without
second quantization, in the statistical catalogue model based on the single-
particle solution of the Schrödinger equation, normalized to the number of
particles N . Just as the superposition of elementary phase-shifted waves al-
lows for the simplest and most intuitive description of diffraction through a
slit, the description of quantum 1/f noise in terms of interference beats be-
tween slightly frequency-shifted scattered partial waves with bremsstrahlung
energy losses will always provide the simplest and most elementary quan-
titative derivation of the quantum 1/f effect, easily accessible even at the
undergraduate level.

Below we now present the derivation of the Quantum 1/f Effect in a gen-
eral form which determines the scattered current j from the observation of
a sample of N outgoing particles. The minimal outgoing sample for defining
particle-particle correlations in the scattered wave consists of two particles,
and therefore the effect can be calculated for the case of two outgoing parti-
cles.

We start with the expression of the Heisenberg representation state |S〉 of
N identical bosons of mass M emerging at an angle θ from some scattering
process with various undetermined bremsstrahlung energy losses reflected in
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their one-particle waves φi(ξi)

|S〉 = (N !)−1/2
∏
i

∫
d3ξiφi(ξi)ψ+(ξi)|0〉 =

∏
i

∫
d3ξiφi(ξi)|S0〉, (27)

where ψ+(ξi) is the field operator creating a boson with position vector ξi
and |0 > is the vacuum state, while |S0 > is the state with N bosons of
position vectors ξi with i = 1.....N . All products and sums in this Section
run from 1 to N , unless otherwise stated.

To calculate the particle density autocorrelation function in the outgoing
scattered wave, we need the expectation value of the operator

O(x1,x2) = ψ+(x1)ψ+(x2)ψ(x2)ψ(x1), (28)

known as the operator of the pair correlation. This operator corresponds to
a density autocorrelation function. The presence of two-particle coordinates
in the operator O does not mean that we are considering two-particle inter-
actions, it only means that the expectation value which we are calculating
depends on the relative position of the particles. Using the well known com-
mutation relations for boson field operators

ψ(x)ψ+(y)− ψ+(y)ψ(x) = δ(x− y),
ψ(x)ψ(y)− ψ(y)ψ(x) = 0,
ψ+(x)ψ+(y)− ψ+(y)ψ+(x) = 0, (29)

we first calculate the matrix element:

N !〈S0|O|S0〉 =
′∑
µν

′∑
mn

δ(ην − x1)δ(ηµ − x2)δ(ξn − x1)δ(ξm − x2)
∑
(i,j)

′∏
ij

δ(ηj − ξi),(30)

where |S0 > is the state with well defined particle coordinates. Here the
prime excludes µ = ν and m = n in the summations and excludes i = m,
i = n, j = µ and j = ν in the product. The summation

∑
(i,j) runs over all

permutations of the remaining N − 2 values of i and j. On the basis of this
result we now calculate the complete matrix element

〈S|O|S〉 = [1/N(N − 1)]
′∑
µν

′∑
mn

∫
d3ηµ

∫
d3ην

∫
d3ξm

∫
d3ξn

φ∗µ(ηµ)φ
∗
ν(ην)φm(ξm)φn(ξn)δ(ην − x1)δ(ηµ − x2)δ(ξn − x1)δ(ξm − x2) =

[1/N(N − 1)]
′∑
µν

′∑
mn

φ∗µ(x2)φ
∗
ν(x1)φm(x1)φn(x2). (31)

The one-particle states are spherical waves emerging from the scattering cen-
ter located at x = 0:

φ(x) = (C/x)eiKx[1 +
∑
kl

b(k, l)e−iqxa+k,l]. (32)
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Here C is an amplitude factor, K the boson wave vector magnitude, b(k, l)
the bremsstrahlung amplitude for emission of photons of wave vector k and
polarization l, while a+k,l = is the corresponding photon creation operator,
allowing the emitted photon state to be created from the vacuum if (32) is in-
serted into (31). The momentum magnitude loss h̄q = Mck/K ≡ 2πMf/K is
necessary for energy conservation in the bremsstrahlung process. The reader
can derive this expression of q = δp from the canonical equation v = ∂H/∂p
which yields δp = δH/v = MδH/p = MδH/h̄K. Substituting (32) into (31),
we obtain

〈S|O|S〉 = |C/x|4{N(N − 1) + 2(N − 1)

×
∑
kl

|b(k, l)|2[1 + cos q(x1 − x2)]}, (33)

where we neglected a small term of higher order in b(k, l). To perform the
angular part of the summation in (33), we calculate the current expectation
value of the state in (32), and compare it to the well known cross section
without and with bremsstrahlung

j = (h̄K/Mx2)[1 +
∑
kl

|b(k, l)|2] = j0[1 + αA

∫
df/f ], (34)

where the quantum fluctuations have disappeared, α = e2/h̄c is the fine
structure constant, αA = (2α/3π)(∆v/c)2 is the fractional bremsstrahlung
rate coefficient, also known in QED as the infrared exponent, and where the
1/f dependence of the bremsstrahlung part displays the well-known infrared
catastrophe, i.e., the emission of a logarithmically divergent number of pho-
tons in the low frequency limit. Here ∆v is the velocity change h̄(K−K0)/M
of the scattered boson, and f = ck/2π the photon frequency. Equation (33)
thus gives

〈S|O|S〉 = |C/x|4{N(N − 1) + 2(N − 1)αA

∫
[1 + cos q(x1 − x2]df/f}

(35)

which is the pair correlation function, or density autocorrelation function
along the scattered beam with df/f = dq/q. The spatial distribution fluctu-
ations along the scattered beam will also be observed as fluctuations in time
at the detector, at any frequency f . According to the Wiener-Khintchine the-
orem, we obtain the spectral density of fractional scattered particle density
ρ, (or current j, or cross section σ) fluctuations in terms of frequency f or
wave number q by dividing the coefficient of the cosine by the constant term
N(N − 1):

ρ−2Sρ(f) = j−2Sj(f) = σ−2Sσ(f) = 2αA/fN, (36)

where N is the number of particles or current carriers used to define the
current j whose fluctuations we are studying. Quantum 1/f noise is thus
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a fundamental 1/N effect. The exact value of the exponent of f in (36)
can be determined by including the contributions from all real and virtual
multiphoton processes of any order (infrared radiative corrections), and turns
out to be αA − 1, rather than −1, which is important only philosophically,
since αA << 1. The spectral integral is thus convergent at f = 0.

For fermions we repeat the calculation replacing in the derivation of (33)
the commutators of field operators by anticommutators, which finally yields
in the same way

ρ−2Sρ(f) = j−2Sj(f) = σ−2Sσ(f) = 2αA/f(N − 1), (37)

The denominator causes no difficulties, since N >> 2 for particle correlations
to be defined, and which is practically the same as (37), since usually N >> 1.
Equations (36) and (37) suggest a new notion of physical cross sections and
process rates which contain 1/f noise, and express a fundamental law of
physics, important in most high-technology applications [9].

We conclude that the conventional quantum 1/f effect can be explained
in terms of interference beats between the part of the outgoing DeBroglie
waves scattered without bremsstrahlung energy losses above the detection
limit (given in turn by the reciprocal duration T of the 1/f noise measure-
ment) on one hand, and the various parts scattered with bremsstrahlung
energy losses; but there is more to it than that: exchange between identical
particles is also important. This, of course, is just one way to describe the
reaction of the emitted bremsstrahlung back on the scattered current. This
reaction thus reveals itself as the cause of the quantum 1/f effect, and implies
that the effect can not be obtained with the independent boson model. The
effect, just like the classical turbulence-generated 1/f noise [12], is a result
of the scale-invariant nonlinearity of the equations of motion describing the
coupled system of matter and field. Ultimately, therefore, this nonlinearity
is the source of the 1/f spectrum in both the classical and quantum form of
the author’s theory. We can say that the quantum 1/f effect is an infrared
divergence phenomenon, this divergence being the result of the same nonlin-
earity. The new effect is, in fact, the first time-dependent infrared radiative
correction. Finally, it is also deterministic in the sense of a well determined
wave function, once the initial phases γ of all field oscillators are given. In
quantum mechanical correspondence with its classical turbulence analog, the
new effect is therefore a quantum manifestation of classical chaos which we
can take as the definition of a certain type of quantum chaos.

We turn now to the connection to the coherent Quantum 1/f Effect.
The coherent state in a conductor or semiconductor sample is the result of
the experimental efforts directed towards establishing a steady and constant
current, and is therefore the state defined by the collective motion, i.e. by
the drift of the current carriers. It is expressed in the Hamiltonian by the
magnetic energy Em, per unit length, of the current carried by the sample.
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In very small samples or electronic devices, this magnetic energy

Em =
∫
(B2/8π)d3x = [nevS/c]2 ln(R/r) (38)

is much smaller than the total kinetic energy Ek of the drift motion of the
individual carriers

Ek =
∑

mv2/2 = nSmv2/2 = Em/s. (39)

Here we have introduced the magnetic field B, the carrier concentration n, the
cross sectional area S and radius r of the cylindrical sample (e.g., a current
carrying wire), the radius R of the electric circuit, and the ”coherence ratio”

s = Em/Ek = 2ne2S/mc2 ln(R/r) � 2e2N ′/mc2, (40)

where N ′ = nS is the number of carriers per unit length of the sample and
the natural logarithm ln(R/r) has been approximated by one in the last form.
We expect the observed spectral density of the mobility fluctuations to be
given by a relation of the form

e-

Fig. 1. To define the parameter s, a slice as thick as the classical electron radius is
considered. The number of carriers in it is s

(1/µ2)Sµ(f) = [1/(1 + s)][2αA/fN ] + [s/(1 + s)][2α/πfN ], (41)

which can be interpreted as an expression of the effective quantum 1/f con-
stant if the number N of carriers in the (homogeneous) sample is brought to
the numerator of the left hand side. In this equation αA = 2α(∆v/c)2/3π is
the usual nonrelativistic expression of the infrared exponent, present in the
familiar form of the conventional quantum 1/f effect [3]-[8]. This equation
is limited to quantum 1/f mobility (or diffusion) fluctuations, and does not
include the quantum 1/f noise in the surface and bulk recombination cross
sections, in the surface and bulk trapping centers, in tunneling and injection
processes, in emission or in transitions between two solids.
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Fig. 2. The quantum 1/f parameter αH and the resulting spectral density Sj =
αH/Nf as a function of the number of carriers in the sample N or of the cross-
section size L

Note that the coherence ratio s introduced here equals the unity for the
critical value N ′ = N” = 2.1012/cm., e.g. for a cross section S = 2.10−4 cm2

of the sample when n = 1016. This critical linear concentration corresponds
to having 2 electrons in every cross-sectional ”salami slice” of thickness equal
to the classical radius of the electron r = e2/mc2 (see Fig. 1). For small
samples with N ′ << N” only the first term survives, while for N ′ > N”
the second term in (41) is dominant. Fig. 2 shows the resulting quantum
1/f constant and the fractional mobility fluctuation spectrum αH/fN , as a
function of sample size, when the cross-sectional dimension of the sample is
increased.

7 Physical Derivation
of Coherent Quantum 1/f Noise Effect

This effect arises in a beam of electrons (or other charged particles propagat-
ing freely in vacuum) from the definition of the physical electron as a bare
particle plus a coherent state of the electromagnetic field. It is caused by the
energy spread characterizing any coherent state of the electromagnetic field
oscillators, an energy spread which spells non-stationarity, i.e., fluctuations.
To find the spectral density of these inescapable fluctuations which are known



248 Peter H. Handel

to characterize any quantum state which is not an energy eigenstate, we use
an elementary physical derivation based on Schrödinger’s definition of co-
herent states, which supplements the rigorous derivation which was given in
Sec. 3 from a well-known quantum-electrodynamical propagator. The chaotic
character of these fluctuations was discussed in Sec. 5.

The coherent quantum 1/f effect will be derived in three steps: first we
consider a hypothetical world with just one single mode of the electromagnetic
field coupled to a beam of charged particles; considering the mode to be in
a coherent state, we calculate the autocorrelation function of the quantum
fluctuations in the particle-density (or concentration) which arise from the
nonstationarity of the coherent state. Then we calculate the amplitude with
which this one mode is represented in the field of an electron, according to
electrodynamics. Finally, we take the product of the autocorrelation functions
calculated for all modes with the amplitudes found in the previous step.

Let a mode of the electromagnetic field be characterized by the wave
vector q, the angular frequency ω = cq and the polarization λ. Denoting the
variables q and λ simply by q in the labels of the states, we write the coherent
state of amplitude |zq| and phase arg zq in the form

|zq〉 = exp[−(1/2)|zq|2] exp[zqa+q ]|0〉 = exp[−(1/2)|zq|2]
∞∑
n=0

(znq )/n!|n〉.

(42)

Here a+q is the creation operator which adds one energy quantum to the
energy of the mode. Let us use a representation of the energy eigenstates in
terms of Hermite polynomials Hn(x)

|n〉 = (2nn!
√

π)−1/2 exp[−x2/2]Hn(x)einωt. (43)

This yields for the coherent state |zq > the representation

ψq(x) = exp[−(1/2)|zq|2] exp[−x2/2]
∞∑
n=0

[zqeiωt]n

[n!(2n
√

ω)]1/2
Hn(x)

= exp[−|zq|2/2] exp[−x2/2] exp[−z2qe
−2iωt + 2xzqe

iωt](44)

In the last form the generating function of the Hermite polynomials was
used. The corresponding autocorrelation function of the probability density
function, obtained by averaging over the time t or the phase of zq, is, for
|zq| << 1,

Pq(τ, x) = 〈|ψq|2t |ψq|2t+τ 〉
= {1 + 8x2|zq|2[1 + cos ωτ ]− 2|zq|2} exp[−x2/2] (45)

Integrating over x from −∞ to +∞, we find the autocorrelation function

A1(τ) = 2−1/2{1 + 2|zq|2 cos ωτ}. (46)
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This result shows that the probability distribution contains a constant back-
ground with small superposed oscillations of frequency ω. Physically, the
small oscillations in the total probability describe self-organization or bunch-
ing of the particles in the beam. They are thus more likely to be found in
a measurement at a certain time and place than at other times and places
relative to each other along the beam. Note that for zq = 0 the coherent state
becomes the ground state of the oscillator which is also an energy eigenstate,
and therefore stationary and free of oscillations.

We now determine the amplitude zq with which the field mode q is rep-
resented in the physical electron. One way to do this is to let a bare particle
dress itself through its interaction with the electromagnetic field, i.e. by per-
forming first order perturbation theory with the interaction Hamiltonian

H ′ = Aµj
µ = −(e/c)v.A+ eφ, (47)

where A is the vector potential and φ the scalar electric potential. Another
way is to Fourier expand the electric potential e/r of a charged particle in a
box of volume V . In both ways we obtain the well-known result

|zq|2 = π(e/q)2(h̄cqV )−1. (48)

Considering now all modes of the electromagnetic field, we obtain from the
single - mode result of (46)

A(τ) = C
∏
q

{1 + 2|zq|2 cos ωqτ} = C{1 +
∑
q

2|zq|2 cos ωqτ}

= C{1 + 4(V/23π3)
∫

d3q|zq|2 cos ωqτ} (49)

Here we have again used the smallness of zq and we have introduced a con-
stant C. Using (48) we obtain

A(τ) = C{1 + 4π(V/23π3)(4π/V )(e2/h̄c)
∫
(dq/q) cos ωqτ}

= C{1 + 2(α/π)
∫

cos(ωτ)dω/ω}. (50)

Here α = e2/h̄c is Sommerfeld’s fine structure constant. The first term in
curly brackets is unity and represents the constant background, or the d.c.
part of the current carried by the beam of particles through vacuum. The au-
tocorrelation function for the relative (fractional) density fluctuations, or for
the current density fluctuations in the beam of charged particles is obtained
therefore by dividing the second term in curly brackets by the first term.
The constant C drops out when the fractional fluctuations are considered.
According to the Wiener-Khintchine theorem, the coefficient of cos ωτ is the
spectral density of the fluctuations, S|ψ|2 for the particle concentration, or
Sj for the current density j = e(k/m)|ψ|2

S|ψ|2〈|ψ|−2〉 = Sj〈j〉−2 = 2(α/πfN) = 4.6.10−3f−1N−1 (51)
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Here we have included the total number N of charged particles which are
observed simultaneously in the denominator, because the noise contributions
from each particle are independent. This result is related to the conventional
Quantum 1/f Effect considered in the next section. A similar calculation
yields the gravidynamical quantum 1/f effect (QGD 1/f effect) by substi-
tuting gravitons for the photons considered so far as infraquanta.

8 Derivation of Mobility Quantum 1/f Noise
in n+ − p Diodes

For a diffusion limited n+ − p junction the current is controlled by diffusion
of electrons into the p - region over a distance of the order of the diffusion
length L = (Dnτn)1/2 which is shorter than the length wp of the p - region in
the case of a long diode. If N(x) is the number of electrons per unit length
and Dn their diffusion constant, the electron current at x is

Ind = −eDndN/dx, (52)

where we have assumed a planar junction and taken the origin x = 0 in
the junction plane. Diffusion constant fluctuations, given by kT/e times the
mobility fluctuations, will lead to local current fluctuations in the interval
∆x

δ∆Ind(x, t) = Ind∆xδDn(x, t)/Dn. (53)

The normalized weight with which these local fluctuations representative of
the interval ∆x contribute to the total current Id through the diode at x = 0
is determined by the appropriate Green function and can be shown to be
(1/L) exp(−x/L) for wp/L >> 1. Therefore the contribution of the section
∆x is

δ∆Id(x, f) = (∆x/L) exp(−x/L)IndδDn(x, t)/Dn, (54)

with the spectral density

S∆Id(x, f) = (∆x/L)2 exp(−2x/L)I2ndSDn(x, f)/D2
n. (55)

For mobility and diffusion fluctuations the fractional spectral density is given
by αHnd

/fN∆x, where αHnd
is determined from quantum 1/f theory accord-

ing to Secs 2 and 6. With (52) we obtain then

S∆Id(x, f) = (∆x/L)2 exp(−2x/L)(eDndN/dx)2αHnd
/fN. (56)

The electrons are distributed according to the solution of the diffusion equa-
tion, i.e.

N(x) = [N(0)−Np] exp(−x/L); dN/dx = −{[N(0)−Np]/L} exp−x/L.
(57)
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Substituting (56) into and simply summing over the uncorrelated contribu-
tions of all intervals ∆x, we obtain

SId(f) = αHnd
(eDn/L2)2

×
∫ wp

0

[N(0)−Np]2e−4x/L

[N(0)−Np]e−x/L + Np
dx. (58)

We note that eDn/L
2 = e/τn. With the expression of the saturation current

I0 = e(Dn/τn)1/2Np and of the current I = I0[exp(eV/kT )−1], we can carry
out the integration

SId(f) = αHnd
(eI/fτn)

∫ 1

0
a2u3du/(au + 1) = αHnd

(eI/fτn)F (a) (59)

Here we have introduced the notations

u = exp(−x/L), a = exp(eV/kT )− 1,
F (a) = 1/3− 1/2a + 1/a2 − (1/a3) ln(1 + a). (60)

Equation (59), obtained by van der Ziel and Anderson, gives the diffusion
noise as a function of the quantum 1/f noise parameter aHnd. A similar
result can be derived for the quantum 1/f fluctuations of the recombination
rate r in the bulk of the p - region, the only difference being the presence of
αHnr instead of αHnd

in (59). The total noise is the given by (59) with αHnr

replaced by the sum αHnd
+ αHnr

SId = (αHnd
+ αHnr

)(eI/fτn)F (a) (61)

As we have seen in Secs. 2 and 3, quantum 1/f noise is a low-frequency
fluctuation process present in elementary cross sections σ and process rates
Γ , given by the fractional spectral density

Sσ(f)/σ2 = SΓ (f)/Γ 2 = (4α/3πfN)(∆v/c)2 (62)

for conventional quantum 1/f noise which is applicable to small devices, and

Sσ(f)/σ2 = SΓ (f)/Γ 2 = (2α/πfN) = αc/fN (63)

for coherent state quantum 1/f noise which is applicable to large devices
in which the energy of the carrier drift motion is predominantly magnetic,
rather than kinetic. The two forms of quantum 1/f noise are closely related
infrared divergence phenomena which arise due to the interaction of electrons
and soft photons.

Both in n+p diodes [9] and metal-insulator-semiconductor (MIS) devices
the current will be determined by cross sections si such as recombination and
scattering cross sections (by phonons and lattice defects), as well as by other
process rates (e.g., band to band and trap-assisted tunneling, particularly
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important in long-wavelength Hg1−xCdxTe detectors). The spectral density
of the resulting quantum 1/f current fluctuations is therefore

SI(f) =
∑
i

[∂I/∂σi]2Sσi
(f) +

∑
i

[∂I/∂Γi]2SΓi
(f), (64)

where the spectral densities on the right hand side will be given by (62) or
(63), depending on the size of the device.

The current density I of (64) contains a diffusion term Id, a term Ir caused
by recombination in the space charge region, a surface recombination term
Is, a tunneling term It and a photovoltaic term caused by the creation of
electron hole pairs by photons:

I = Id + Ir + Is + It + qηΦ = qηi{(ni/n0)(Dn/τn)1/2(eqV/kT − 1)
+ (W/τ)(eqV/2kT − 1) + s}+ It + qηΦ. (65)

Here ni is the intrinsic concentration, n0 the concentration of acceptors on
the p side, Dn and τn the diffusion constant and lifetime of minority carri-
ers on the p side, W the width of the depletion region, t = τp0 + τn0 the
Shockley-Hall-Read lifetime, V the applied voltage, s the surface recombina-
tion speed, η the quantum efficiency and Φ the incident flux of photons. With
the exception of the last term, the terms in (65) are known as dark current
components.

The first term in curly brackets in (65) gives the diffusion current density
Id, and yields a noise term [9] as shown in (61)

SId(f) = (αd + αr)(qId/fτn)F (a); αd = (4α/3π)(h/m∗bc)2 exp(−θ/2T )
(66)

in (64) for small devices, and

SId(f) = αC(qId/fτn)F (a) (67)

for large devices, with F (a) = −1/3 − 1/2a + 1/a2 − (1/a3) ln(1 + a) and
a = exp(qV/kT ) − 1. Here b is the lattice constant, m∗ the effective mass
of the electrons, and q the Debye temperature. These results are obtained
by adding the scattering and recombination quantum 1/f cross section fluc-
tuation spectra for all points on the p side of a long n+p diode with the
appropriate Green function weight [∂I/∂σi]2, as prescribed by (64). The spa-
tial dependence exp(−x/Ld) of this Green function is given by the diffusion
equation applied to electrons on the p side, with Ld being the electron dif-
fusion length. If the length wp of the p side is shorter than Ld, we have to
replace F (a) by F (a)− F [a exp(−wp/Ld)] in (66) and (67), and also to in-
clude the quantum 1/f noise of the recombination cross sections at the p
contact. Similarly we obtain [9]

SIr = αrqIrtanh(qV/2kT )/fτ

= (4α/3πc2)[2q(Vdiff − V ) + 3kT ]{(m∗n)1/2 + (m∗p)
1/2}−2. (68)
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The corresponding expression for the surface recombination current is given
by (68) with half of the surface potential jump U added to the diffusion
potential Vdiff . The tunneling current It and its noise is the same as in MIS
devices,and will be discussed below. In the final form of (64) the fine structure
constant a appears as a general factor.

9 Quantum 1/f Noise in SQUIDS

As we have seen in Secs. 2 and 6 above, any cross section or process rate
defined for electrically charged particles must fluctuate in time with a 1/f
spectral density according to quantum electrodynamics, as a consequence
of infrared-divergent coupling to low-frequency photons. This fundamental
effect leads to quantum 1/f noise observed in many systems with a small
number of carriers, and is also present in the cross sections and process rates
which determine the resistance and tunneling rate in Josephson junctions,
providing a lower limit of the observed 1/f noise.

In a Josephson junction the normal resistance Rn of the barrier is pro-
portional to a scattering cross section or transition rate experienced by the
electron in quasiparticle tunneling and by the Cooper pairs below the critical
current Ic. Therefore

R−2n SRn
(f) = (4α/3π)[(∆v)2/c2Nf ]

= (8α/3π)(v2F /c2Nf) = 4.10−14/fΩ, (69)

where we have approximated (∆v)2 with 2v2F , vF being the Fermi velocity,
and the number of carriers N simultaneously present in the barrier of volume
Ω (in m3) by 107, for barriers wider than 10−7 cm.

Assuming a linear relationship between the critical current Ic and Gn =
R−1n , we obtain , from (69) for Rn, the spectral density of voltage fluctuations

SV (f) = (4/f)10−12(T/3K)RSg(V )[RS + RJ ]2

[IcRn(I2/I2c − 1)−1/2 + g(V )V ]2Ω−1 (70)

where RJ(V ) is the junction resistance, Rs the shunt resistance, and g(V ) =
Rn/RJ .

The noise caused in a SQUID by the source considered above can be
obtained as the sum of the noise contributions from the two junctions.

The above quantum 1/f results of (69) and (70) are in good quantitative
agreement with the experimental data.

In conclusion, the fundamental quantum 1/f fluctuations of the cross sec-
tions and transition rates which determine the normal resistance have been
evaluated in this Section for the case of a Josephson junction. Considering
the velocity change in the quantum 1/f formula equal to twice the Fermi
velocity and the concentration of carriers in the barrier 1019 cm−3, a spectral
density of fractional fluctuations in the normal resistance of the barrier of
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4.10−14/f was obtained for a Josephson junction with a volume of the bar-
rier of 10−12cm3. These fluctuations are inversely proportional to the barrier
volume and result in voltage fluctuations both directly and through the de-
pendence of the critical current on the normal resistance, in good agreement
with the experimental data.

10 Quantum 1/f Noise in Bulk Acoustic Wave
and SAW Quartz Resonators

Frequency standards contain a main resonant mode which can be described
as a harmonic oscillator with losses

d2x/dt2 + γdx/dt + ω20x = F (t). (71)

The quantum 1/f fluctuations are present in the loss coefficient γ. They are
given by an expression of the form

Sδγ/γ(f) = Λ/f (72)

where Λ is a quantum 1/f coefficient characterizing the elementary loss pro-
cess. The resonance frequency is given by

ω2r = ω20 + γ2 (73)

The quantum 1/f fluctuations in the resonance frequency are given by ωrδωr =
−2γδγ, or

δωr/ωr = −2(γ/ωr)2δγ/γ = −(1/2Q2)(δγ/γ) (74)

where Q = ωr/2γ is the quality factor. Squaring, averaging and particulariz-
ing (74) for the unit frequency interval, we obtain the Q−4 law [21]

Sy(f) =
〈
(δωr/ωr)2

〉
f
= (1/4Q4)

〈
(δγ/γ)2

〉
f
= Λ/4fQ4 (75)

where y is the fractional frequency fluctuation δωr/ωr. This law was found in
approximative form empirically by Gagnepain and Uebersfeld for the case of
quartz resonators. The coefficient Λ is calculated for an ideal quartz crystal
as follows.

Phonon scattering in the resonator is known to limit the short- and
medium-term frequency stability in all quartz resonators [1]. Phonon scatter-
ing can occur on other phonons (particularly at higher temperatures) or on
crystal defects (favored by default at low temperatures). In both cases this
process is shown to yield a 1/f spectrum of resonator frequency fluctuations
through the conventional Quantum 1/f Effect. As was first shown on this
basis with the help of a simple harmonic oscillator model [2], bulk acoustic
wave (BAW) and surface acoustic wave (SAW) quartz resonators ought to
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have a Q−4 dependence of their FM power spectrum. This has been experi-
mentally verified by Gagnepain and Uebersfeld for BAW resonators [3] when
they first noticed their 1/Q4.4 law, and by Parker for the SAW case [4]. Al-
though the quantum 1/f effect provided the historical basis for the derivation
of the Q−4 law [2] as being caused by fluctuations in the dissipation rate of
the quartz resonator, the exact mechanism through which the quantum 1/f
effect modulates the dissipation rate remained unknown from 1978 to 1991.

Finally, the bridge directly connecting 1/f noise in frequency standards
to the quantum 1/f effect was discovered [5]–[7]. Here is how it works. The
rate Γ of photon-interactions which remove phonons from the main quartz
resonator mode is modulated by the quantum 1/f effect, therefore exhibiting
observable quantum fluctuations, while its expectation value remains con-
stant. Indeed, whenever a phonon is removed from the main resonator mode,
the time-derivative of the polarization vector of the quartz crystal dP/dt = Ṗ
, is suddenly jolted, suffering a step-like modification as a function of time.
From Maxwell’s equations we know, however, that Ṗ is added to the cur-
rent J and that such a modification of the current causes radiation. Solving
Maxwell’s equations we find that as a result of the phonon removal there is a
constant energy of (1/4πε0)4(∆Ṗ)/3c3 radiated away per unit frequency, i.e.
per Hertz at any frequency f . Dividing this result by the energy of a photon
hf , we find that there is thus a probability of 2α(∆ Ṗ)2/(3πfe2c2) for the
emission (radiation) of a bremsstrahlung photon of frequency f . Here α is
Sommerfeld’s fine structure constant, a dimensionless universal constant con-
structed from Planck’s constant, the charge e of the electron, and the speed
of light c. SI units are used here, while Gaussian units were used above and
in [7].

Since there is a probability 2α(∆ Ṗ)2/(3πfe2c2)� 1 for the emission of a
photon of frequency f , the quartz crystal suffers a reaction, or a recoil, in its
quantum state, causing the phonon-emission rate Γ to perform quantum os-
cillations with frequency f and with two-sided spectral density S′ of fractional
fluctuations given by the same expression S′δΛ/Λ(f) = 2α(∆Ṗ)2/3πfe2c2.
This is the quantum 1/f effect. The one-sided spectrum is thus

SδΛ/Λ(f) = 4α(∆Ṗ)2/3πfe2c2 (76)

This means that any radiation caused or implied by a quantum transition
from one state to another comes with a price: it reacts back on the system,
causing the rate of that transition to be modulated by exhibiting observ-
able macroscopic quantum fluctuations with a spectral density of fractional
rate fluctuations identical to the photon emission probability accompanying
the transition considered. No knowledge of quantum mechanics is therefore
needed in order to apply the quantum 1/f effect, provided one manages to
divide the energy radiated by the energy hf of one photon of frequency f , i.e.,
provided one accepts just the reality of Planck’s constant h and Planck’s re-
lation between photon energy and frequency. Knowledge of electrodynamics
is needed, however, in order to calculate the energy radiated in a transition.
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Our application of the quantum 1/f theory to bulk acoustic wave (BAW)
and surface acoustic wave (SAW) quartz resonators has initially been limited
to the case of very high Q resonators in which the phonons are coherent
throughout the resonator volume. Below the quantum 1/f theory is applied
to the general case of an arbitrary coherence length of the phonons, which
may be large or small compared with the size of the quartz resonator. This
allows to extend the theory for the first time to low-Q resonators in which
the phonons are localized in a part of the resonator volume. Our theory is
also extended to include defect scattering along with the phonon scattering
case exclusively published so far.

Spatial incoherence of phonon loss rate fluctuations in low and
intermediate Q resonators. The treatment [5]-[7] we have provided so
far, assumes that the photons are spread over the whole crystal, and that
therefore there is coherence of the quantum 1/f phonon loss rate fluctuations
throughout the resonator volume. In the limit of very high Q resonators, and
of high resonator frequency, the mean free path and the coherence length
ε of the phonons exceed the size of the resonator and our assumption is
justified. However, in the low Q and low frequency case the coherence length
is small compared with the dimensions of the resonator crystal. The resonator
volume is then composed of many incoherent regions of volume ε3 which
fluctuate independently. This is applicable in particular to SAW resonators,
as suggested empirically by Parker et al. [9],[10]. We are here borrowing their
notation of the size of the coherent volume elements by ε. Considering the
ν = V/ε3 independently fluctuating regions similar, we replace (76) by

SδΩ/Ω(f) =
ν∑
i=1

〈(δΓi/Γ ))2〉f = ν−1〈(δΓi/Γi))2〉f

= 4α(∆Ṗi)2/3πfνe2c2. (77)

Here we assumed that Γ = νΓi and that 〈(δΓi/Γi)2〉f = νSδΓ/Γ (f) is inde-
pendent of i. With ν = V/ε we finally obtain

SδΓ/Γ (f) = 4αε3(∆Ṗi)2/3πfV e2c2 = Λ/f (78)

in the incoherent domain i.e., for sufficiently large V and small Q. The corre-
sponding fluctuations in the frequency ω of the quartz resonator are derived
from the equations

ω2 = ω20 − 2Γ 2, ωδω = −2ΓδΓ ; Sδω/ω = (1/4Q4)Sδγ/γ(f) (79)

in which ωo would be the natural frequency of the unloaded quartz resonator
mode in the absence of the dissipation Γ . Therefore the spectral density of
fractional frequency fluctuations Sδω/ω(f) will display the same 1/V depen-
dence in the incoherent regime, down to a volume V ≈ ε. Below this vol-
ume we expect a proportionality of Sδω/ω(f) with the volume. Consequently,
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Sδω/ω(f) will first increase proportional to 1/V in the incoherent region, and
will decrease proportional to V when V is lowered to values below ε. This
line of thought, however, neglects the fact that resonators operate usually
in the lowest vibration mode, and that therefore a decrease in volume will
correspond to a certain increase in the frequency ω0. The latter is also con-
nected with the speed of the sound cs and the acoustic attenuation length
l = 1/αac = 2cSQ/ω0 ≈ ε.

The phonon mean free path is about 40 Å for bulk wave phonons in
quartz at room temperature and 500 Å at liquid nitrogen temperatures. This
approximates the phonon coherence length ε very well. For SAW phonons
the corresponding coherence length values may be 4 times lower due to the
smaller velocity of the surface wave and due to its stronger scattering.

In a SAW quartz resonator the wave is localized within about two coher-
ence lengths ε from the surface. Therefore, in the incoherent regime V = 2εA
is a good approximation. Consequently, we expect an increase of Sδω/ω(f)
proportional with 1/A when the resonant area A is decreased, down to very
small areas of the order of ε2.

The incoherence encountered here is similar to the incoherence introduced
spatially by the very small coherence length of electrons in semiconductors,
of the order of 30 Å. The quantum 1/f effect and therefore the measured 1/f
noise, has no spatial correlations in semiconductors down to this very small
length scale. No other 1/f noise “models” can explain this experimental fact.
The quantum 1/f contributions from each electron are independent, which
causes a factor 1/Ne to be present in all quantum 1/f effect formulas. Here
Ne is the number of electrons present in the sample, which had the transition
considered as their last interaction.

In the following subsection we consider the quantum 1/f effect in a res-
onator volume equal or smaller than ε in all directions, the result being ap-
plicable whether or not it represents the whole resonator mode.

Spatial coherence of phonon loss rate fluctuations in high-Q res-
onators. Let the resonator volume V be smaller than the phonon coherence
length ε in all directions. Then ν = 1 and we can use (1). In (76)–(78), (∆Ṗ)2

is the square of the dipole moment rate change associated with the process
causing the removal of a phonon from the main oscillator mode: scattering
of a main resonator mode phonon on a themal phonon of higher frequency
〈ω〉 ≈ kT/h̄. After this, we will include also the case of defect scattering
below. To calculate (∆Ṗ)2, we write the energy W of the interacting mode
〈ω〉 in the form

W = nh̄〈ω〉 = 2(Nm/2)(dx/dt)2 = (Nm/e2)(e dx/dt)2

= (m/Ne2)ε2(Ṗ)2; (80)

The factor two includes the potential energy contribution. Here m is the
reduced mass of the elementary oscillating dipoles, e their charge, g a po-
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larization constant of the order of the unity, and N their number in the
resonator. Applying a variation ∆n = 1 we get

∆n/n = 2|∆Ṗ||Ṗ|, or ∆Ṗ = Ṗ/2n. (81)

Solving (80) for Ṗ and substituting into (81), we obtain

∆Ṗ = (Nh̄〈ω〉/n)1/2(e/2g). (82)

Substituting Ṗ into (76), we get

Γ−2SΓ (f) = Nαh̄〈ω〉/3nπmc2fg2 ≡ Λ/f. (83)

This result is applicable to the fluctuations in the loss rate Γ of the resonator
volume.

From (4) the corresponding resonance frequency fluctuations of the quartz
is given for V ≤ ε by

ω−2Sω(f) = (1/4Q4)(Λ/f) = Nαh̄〈ω〉/12nπmc2fg2Q4; (84)

where Q = ω/2Γ is the quality factor of the single-mode resonator consid-
ered, and 〈ω〉 is not the circular frequency of the main resonator mode, but
rather the practically constant frequency of the average interacting (thermal)
phonon. Indeed, there are an average nω = kT/h̄ω phonons present in any
mode of frequency ω. For the case of quartz resonators we have used the
interacting thermal mode of average frequency 〈ω〉 to calculate the quantum
1/f effect. The corresponding ∆Ṗ in the main resonator mode of frequency
ω0 has to be also included, but is negligible because of the very large num-
ber n of phonons present in the main resonator mode and entering in the
denominator of (82)-(84).

Considering also (78), (84) can be written in general with N ≡ V N/V in
the form

S(f) = β′V/fQ4, for V ≤ ε, (85)

and

S(f) = β′ε2/fV Q4, for V ≥ ε, (86)

where, with an intermediary value 〈ω〉 = 108/s, with n = kT/h̄〈ω〉, T = 300K
and kT = 4.10−21 J

β′ = (N/V )αh̄〈ω〉/12nπg2mc2

= 1022(1/137)(10−27108)2/12kTπ10−27 9 1020 ≈ 1 (87)

For the case of defect scattering, a two-phonon process takes place. A phonon
from the main resonator mode scatters on a defect and a phonon of compa-
rable frequency emerges into another mode with much smaller phonon occu-
pation number nω = kT/h̄ω. In this case we have to replace 〈ω〉 by ω and
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n〈ω〉 with nω, which gives a β-value which is (〈ω〉/ω)2 smaller, i.e. 104 − 106

times smaller. In general, therefore, writing Γ = Γ ′ + Γ ′′, we obtain for the
combined phonon and defect scattering case, in general,

β = β′[Γ
′2 + (〈ω〉/ω)2Γ ′′2]/Γ 2. (88)

Although the defect scattering term is small at room temperature, it may
become dominant at low temperatures, when the phonon scattering rate Γ ′

becomes much smaller than the defect scattering rate Γ”.
The form of (85)–(88) shows that the level of 1/f frequency noise depends

not only as Q−4 as previously proposed [21], but also on the oscillation fre-
quency or the volume of the active region [17]. This theory qualitatively fits
the data of Gagnepain who varied the Q-factor with temperature in the same
quartz resonator (but not frequency or volume), the data of Walls who con-
sidered several quartz resonators which differ in volume and frequency, and
the data of Parker for SAW resonators, with their relatively low Q values.

The theory also provides the basis for predicting from first principles,
without adjustable parameters, how to improve the 1/f level of resonators,
beyond just improving the Q-factor, which has been known for many years,
and which has been related [21] to fluctuations in the dissipation. Since the
1/f noise level depends on the active volume, in the coherent regime one
should use the lowest overtone and smallest diameter consistent with other
circuit parameters. In the incoherent (low Q) case the opposite should be
considered.

The case of other frequency standards [22]-[25] has been studied by Handel
and Walls.

11 A Different Approach to 1/f Noise
from Frequency Mixing Experiments

As we have seen, the quantum 1/f theory provides us with the ontologically
most fundamental example of nonlinear system exhibiting a 1/f spectrum.
Indeed, we have shown how this basic nonlinear system of particle and field
derives its nonlinearity from the infrared-divergent coupling between them,
each of them being linear in the absence of interaction. It is the reaction of
the emitted field back on the source particle, which causes the nonlinear-
ity. Combined with the homogeneity required by dimensional consistency in
simple physical systems, this leads to the 1/f spectrum as we have already
seen in Secs. 2–5. In the special case of high stability and high Q quartz res-
onators, the whole quartz crystal takes the role of an accelerated “particle”
showing a time-dependent current Ṗ From the epistemological vantage point
offered to us by the sufficient criterion applicable to the special quantum 1/f
case, we recognize that both the particular distribution of photon frequencies
and their amplitudes contribute to the fundamental 1/f spectrum. We also
realized in Sec. 5 that this spectrum is just caused by the combination of
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nonlinearity and homogeneity, independent of the specific system considered.
Therefore we believe that the simple numerical consideration of the distribu-
tion of frequencies and of their associated amplitudes is sufficient to derive
the fundamental 1/f spectrum and its magnitude from first principles.

We are dealing with two physical entities that are the “parents” of the
1/f noise: the particle and the field. If the charged particle moves uniformly,
i.e., the current I is constant, the 1/f spectrum contains all beat frequencies
between this zero-frequency of the current and the frequencies of the electro-
magnetic oscillators of the universe which make up the field. This corresponds
to coherent quantum 1/f effect, but can also correspond to the conventional
case if the sample exhibiting 1/f noise is very small. If the particle oscillates
with the frequency fo, the beat frequencies will generate the 1/∆f spectrum
of sidelines on both sides of the frequency f0. This is interpreted as quan-
tum frequency fluctuations of the given particle-oscillator. This can transform
itself also into 1/f phase noise if the particle is part of an electronic system.

In fact, the quantum 1/f effect is much more complex than the simplistic
1st order model presented here so far. The shapeless 1/f spectrum with no
lower limit does not make sense physically in our real world that is shaped
by a subtle perfection characterized by perturbed, spoiled or broken sym-
metries. The actual, physical, 1/f spectrum is not infrared divergent and is
beautifully shaped by infrared radiative corrections of all orders. It shows
a 2αAfαA−1 dependence of the spectral density of fractional quantum 1/f
current fluctuations. This comes about through the inclusion of multipho-
tonic processes of any order, both real and virtual. Therefore, the physical
1/f spectrum includes all inter-combination frequencies with the frequency
fo of the particle-oscillator. This combines with the right amplitude all har-
monics of the frequencies of each of the field oscillators of the universe among
themselves and with the particle’s frequency fo.

If the charged particle-oscillator would be allowed to interact only with
one of the electromagnetic oscillators of the universe, of frequency f1 (with
well-defined wave vector and polarization), the sideline spectra would be re-
duced to just two frequencies, f0 − f1 and f0 + f1 until we allow for infrared
radiative corrections of all orders. This is not a 1/∆f spectrum, but the de-
pendence of the amplitude of the two sidebands on f1 is given by (f1)−3/2.
[Note: This insures the presence of a 1/∆f spectrum when all oscillators of
the universe are switched on again, because the number of such oscillators
is 8πf2df/3c2. The physical result, including infrared radiative corrections,
but with only one oscillator allowed to interact, will therefore show a line-
spectrum of sidelines at frequencies f0−nf1 and fo+nf1 where n is a natural
number. The intensity would decrease strongly from line to line when n in-
creases, because of the factor α2 which enters into the partial process rate
whenever one additional photon is attached to the corresponding Feynman
diagram.
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If, on the other hand, we allow a current of frequency f0 and amplitude I0
to interact in a nonlinear circuit with a current of frequency f1 and amplitude
I1, we obtain outgoing currents of all frequencies fmn = |mf0±nf1|[26],[27].
Their amplitudes I(|mf0 ± nf1|) will be given for m = 1 and n = 1 by the
most simple Manley-Rowe relations

I(|f0 ± f1|) = [|f0 ± f1|/f0]1/2I0 = [|f0 ± f1|/f1]1/2I1, (89)

Denoting the power I20/2 with P0 and I21/2 with P1, we obtain the Manley-
Rowe relations in their original form

P (|f0 ± f1|) = [|f0 ± f1|/f0]P0 = [|f0 ± f1|/f1]P1, (90)

where P (|f0 ± f1|) is the power obtained at the frequency P (|f0 ± f1|). Con-
sidering, as Planat et al. did [26],[27] , f0 and f1 close to each other, and
interposing a low-pass filter which rejects the |f0+ f1| frequency component,
we obtain (90) with the minus sign only. In this case P1 is negative and a
low-frequency output power P (|f0 − f1|) is generated. If the generator of
power P1 is replaced by a resistor or any other white noise current generator,
of power density P ′1, we obtain a noise current output with a low frequency
(f = |fo− f1|) spectral density

P (f) = (f/f0)P0 = (f/f1)P ′1dω1 = [(f/f0)P0(f/f1)P ′1dω1]
1/2. (91)

By connecting this noise current to the plate of a capacitor C whose other
plate is grounded, the noise current gets integrated. This corresponds to a
1/f spectrum of the voltage on the capacitor,

P ′′(f) =
1

C2f
[P0P ′1dω1/(f1f0)]

1/2 (92)

provided the rates P0 and P1 do not depend on f . This remains to be verified.
Finally, if this 1/f noise voltage can be obtained as described here, and

if it is applied to the voltage-controlled oscillator which generates the power
P0, its frequency fo will be modulated to display 1/f frequency noise. Such a
feedback would close the feedback loop indicated earlier. The feedback loop
can also be used to provide the integration of the intermediary current noise.

12 Discussion

The derivations of conventional and coherent quantum 1/f noise in Secs. 2
and 3 correspond to different physical situations. These two situations have
been discussed on the first page of the 1966 turbulence paper [12], at the be-
ginning of this long journey which led us from the classical hydromagnetic or
plasma turbulence to quantum 1/f noise and the general sufficient criterion.
The discussion of these two situations was repeated identically [10] for the
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quantized form of our turbulence theory, i.e., for the two related quantum 1/f
effects in 1985. It shows us that conventional quantum 1/f noise is observed
in small samples, for which most of the drift energy of the current carriers
is included in the sum of their individual kinetic energies mv2/2. For larger
samples, and larger values [20] of the parameter s measuring this proportion
numerically, most of the drift energy of the carriers is in their collective mag-
netic energy LI2/2. The transition between the two situations is given by a
physical interpolation formula [12], and is the focus a present research effort
discussed by Handel and Zhang [20].

Our criterion shows how homogeneity provides the ingredient leading from
nonlinearity to 1/f noise. Physically, the homogeneity is required both by the
physical requirement of dimensional homogeneity of terms in the equations
of physics, and by the invariance of the three-dimensional space with respect
to rotations, i.e., by the isotropy of space, which requires x1, x2, and x3
to enter in the same way into the basic laws of nature. In general, we con-
clude that the ubiquity of the 1/f spectrum is caused by the omnipresence of
nonlinearities, no matter how small, and by the simultaneous requirement of
rotational and Lorentz invariance which shape the world of classical and rel-
ativistic physics respectively. In general, we conclude that ontologically, i.e.,
from the construction of our world with quarks and leptons, quantum 1/f
noise theory gives the cause of fundamental 1/f noise, while epistemologi-
cally, i.e., in the world of general notions, the combination of nonlinearity and
homogeneity required by our general sufficient criterion is the ultimate cause
of all fundamental 1/f noise, including the ontologically primordial quantum
1/f noise as a special case. Mathematically, this happens in all fundamental
1/f spectra on the basis of the idempotence of 1/f1−ε with respect to con-
volutions in the limit ε ∼ 0, with ε = αA in the case of quantum 1/f noise.
In practice, however, the idempotent property of 1/f does not allow us to
distinguish which systems will show 1/f fluctuations, while the general suffi-
cient criterion, first presented at the Symposium on 1/f Noise and Chaos In
Tokyo, March 1991, allows us to easily recognize the systems which generate
1/f spectra, if their mathematical definition is given in terms of a dynamical
system of nonlinear integro-differential equations, or in simpler terms.

We note that our sufficient criterion explains the ubiquity of 1/f noise
through a homogeneity which can be established sometimes even without
knowing the exact form of the dynamical equation(s) governing a nonlinear
system. The derivation of the criterion shows that it is obviously connected
with (actually based on) the idempotent property of the 1/f spectrum with
respect to the convolution operation. Therefore the 1/f spectrum corresponds
to an accumulation point in Hilbert space, as was first demonstrated [12]
directly in 1966 and 1971. Due to the divergence of the integral of 1/f at f =
0, this author reformulated this accumulation point property in dimensional
analysis terms before submitting his paper [19] for publication in 1980; in
this form, the argument is more elegant and avoids the divergence at f = 0.
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1/f Frequency Noise in a Communication
Receiver and the Riemann Hypothesis

Michel Planat �

Laboratoire de Physique et Métrologie des Oscillateurs du CNRS, 32 Avenue de
l’Observatoire, 25044 Besançon Cedex, France

Abstract. A mixer cascaded with a low pass filter is the central element of any
communication receiver. It is also used to register minute frequency fluctuations of
an external oscillator (RF) under test versus the frequency of a local oscillator (LO).
Such a scheme may also be viewed as the basic model of an electronic oscillator, with
the amplifier noise at the RF input and the resonator signal at the LO input. We
have investigated experimentally the whole spectrum of frequencies and amplitudes
of beat signals and their frequency fluctuations at the IF output of the mixer + filter
set-up. We have found evidence that all the dynamics follows arithmetical rules.
The frequency of the beat signal is defined from a diophantine approximation of
the frequency ratio of input oscillators; the amplitude is defined globally from the
position of resolved fractions with respect to the equally spaced graduation; and for
the frequency fluctuations, a transition from white frequency noise to 1/f frequency
noise is observed close to resonance. This is explained on the basis of number theory
in relation to the Riemann problem concerning the distribution of prime numbers.
More precisely it is shown that diophantine signal processing is at work in the
receiver and that this may be understood from the Littlewood and Franel–Landau
formulation of the Riemann hypothesis.

1 The Communication Receiver

1.1 Theoretical background

Although it may have a quite complex architecture, the basic piece of a com-
munication receiver is close to the one proposed by Amstrong for broadcast
reception. That technique revives today in wireless applications. The receiver
is designed to compare the information carying external oscillator (called RF)
to a local oscillator (called LO) of about the same high frequency through
a nonlinear mixing element. For narrow band FM demodulation (which is
typical for broadcasting and wireless analogic applications) one uses a dis-
criminator of which the role is first to differentiate the signal, that is convert
frequency modulation (FM) to amplitude modulation (AM) and second to
detect its low frequency envelope: this is called baseband filtering. For more
general wideband or narrowband FM demodulation one uses a low frequency
filter instead of the discriminator to remove the high frequency signals gen-
erated after the mixer.
� planat@lpmo.univ-fcomte.fr
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In the closed loop operation a voltage controlled LO is used to track the
frequency of the RF (hence the generic words: FMFB for a FM feedback
loop or PLL for a phase locked loop). Phase modulation is becoming most
frequently used for digital signals because low bit error rates can be obtained
for relatively poor signal to noise ratio, in comparison to frequency modula-
tion [1].
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Fig. 1. Schematic of the electronic set-up used in the experiment

In this paper we will consider that the basic piece of the receiver includes
a multiplier (or mixer) cascaded with a lowpass filter (in the closed loop op-
eration, this is the PLL ). Such a set up (Fig. 1) is widely used in frequency
metrology to register minute frequency fluctuations of an external RF oscilla-
tor under test versus the frequency of a local LO oscillator. Mixing operation
results from the frequency conversion in the time varying conductance of the
diode, or the transconductance from gate to drain in a field effect transis-
tor. Here we use Schottky barrier diodes in a doubly balanced structure to
produce good isolation between the inputs [2].

The ideal mixer multiplies the RF signal of frequency f0 to be received
by the reference sinusoid of frequency f1 of the LO shifting in both to the
sum frequency and the difference frequency f0 ± f1. The down conversion at
the intermediate frequency (called IF) is desired so that a low pass filter of
cut-off frequency fc is included. In such a configuration the set mixer + filter
essentially behaves as a phase detector, that is the instantaneous voltage at
the output is the sine of the phase difference at the inputs:

u(t) = a sin(θ(t)− ψ(t)), (1)
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where θ(t) and ψ(t) are the instantaneous phases of the RF and LO oscillators
and a (in Volts per radian) is the phase detector sensitivity. The non linear
dynamics of the set-up in the closed loop configuration is well described
by introducing the phase difference φ(t) = θ(t) − ψ(t). Using θ̇ = ω0 and
˙ψ(t) = ω1+A u(t) with ω0 = 2π f0, ω1 = 2π f1 and A (in rad. Hz/Volt) the

sensitivity of the voltage controlled oscillator (called VCO) one obtains the
non linear differential eq.

φ̇(t) +K sin(φ(t)) = ωi, (2)

with ωi = ω0−ω1 as the bare frequency shift between the input oscillators and
the frequency K = aA as the coupling coefficient (also called open loop gain).
Equation ( 2) is integrable but its solution looks complex [4]. If the frequency
shift ωi does not exceed the open loop gain K, the average frequency〈φ̇〉
vanishes after a finite time to reach the stable steady state φ(∞) = 2lπ +
sin−1(ωi/K), l integer. In this phase tracking range of width 2K the RF and
LO oscillators are also frequency locked. Outside the modelocking zone there
is a sech shape beat signal of frequency

ωB = 〈φ̇(t)〉 = K(u2 − 1)1/2 that is ωB = (ω2
i −K2)1/2, (3)

with u = ωi/K converging to the open loop frequency ωi as u� 1.
Due to the nonlinearity of the mixer the practical operation of the phase

detector also involves the harmonic interactions

u(t) =
∑
p,q

a(p,q) sin(qθ(t)− pψ(t)), (4)

leading to the intermodulation frequencies

f
(p,q)
i =| pf0 − qf1 | with p and q, integers (5)

in the bandwidth of the filter [4]. Standard models account for non linear
interactions resulting from the LO excitation only, assuming the RF exci-
tation is negligible. We found in section 2 an alternative way of thinking
the spectrum of frequency mixings based on number theory and specifically
on continued fraction expansions (CFE) of frequency ratios of signals at the
input of the mixer.

From this form we can expect the device will produce a rational approxi-
mation of the frequency ratio ν = f1/f0. We will show below that it behaves
as a diophantine approximator. This is in contradiction with the conven-
tional view of filtering that we remind from now. In such a linear approach
the loop filter is represented from the Laplace transform H2(P )(P = d

dt ) so
that instead of (1) we get

u(t) = a H2(P ) sin φ(t), (6)
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and the nonlinear dynamics is described from

φ̇(t) +K H2(P ) sin φ(t) = ωi. (7)

The loop filter is typically a low pass filter of overall transfer function

H2(P ) =
1 + P

A

1 + P
B

, (8)

leading to the describing equation

˙̇
φ(t) + φ̇(t)(B +KB/A cosφ(t)) +BK sinφ(t) = Bωi. (9)

The linear description of the PLL leads to the closed loop transfer function
[1]

H(P ) =
1 +

P

a0ωn

(
P

ωn
)2 + 2η

P

ωn
+ 1

, (10)

with ωn = (KB)1/2 , η = 1/2(B/K)1/2+(KB)1/2/2A and a0 = A/(K)B1/2.
This closed loop transfer function is similar to the one in a FMFB loop. There
is a complex pole pair of natural frequency ωn, a damping factor η and a real
zero at P = −a0ωn.

The nonlinear operation is much more complicated allowing for the so-
called cycle skipping phenomenon, i.e. the trajectory in phase space may
leave the main attractive region through successive cycles of 2π phase error.
This beat signal looks similar to the one described in (3) when the initial
frequency offset is outside the phase-locked range K. As shown below we found
experimentally a 1/f frequency spectrum associated to that phenomenon [4].
It represents one of the main motivations for the arithmetical approach.

A full understanding of the cycle skipping phenomenon and the associated
1/f frequency spectrum needs an account of the intermodulation products
which are present at the output of the receiver. Using (4) instead of (1), the
PLL (7) is generalized as:

φ̇(p,q)(t) + q H2(P )
∑
r,s

K(r,s) sin φ(r,s) = ω
(p,q)
i , (11)

where ω(p,q)
i = pω0 − qω1, and K(r, s) is the effective gain at the harmonic

(r, s) and H2(P ) is the open loop gain as in (8).
Equation (11) can be rewritten for two individual modes (p, q) and (m,n)

and the sum over (r, s) removed. After integration we obtain:

φ̇(p,q)(t) + q H2(P )
∑
r,s

K(r,s) sin(
s

q
φ(p,q) − ω0t

q
(qr − ps) + φ

(r,s)
0 )

= ω
(p,q)
i , (12)
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where φ(r,s)0 is a reference phase at harmonic (r,s). We didn’t undertake the
task to study the differential equation (12) in detail because the arithmetical
approach below will be far more efficient. However some hints concerning the
non linear interactions are given now. Let us first consider the case of a first
order filter H2(P ) = 1. If one neglects the interaction of one product with
the other so that p

q = r
s , one recovers an equation similar to (7) at each

harmonic. In the general case it is observed from (12) that the RF signal acts
as periodic perturbation for the standard PLL loop. In order to illustrate
the net effect of introducing such perturbations, we consider the realistic
case of the interaction of the fundamental (p, q) = (1, 1) with the main odd
subharmonic at (r, s) = (1, 3). In such a case (12) simplifies as:

˙φ(t) +K sin(φ(t)) +K(3) sin(3φ(t) + 2ω0t) = ωi, (13)

where we used φ = φ(1,1) and K = K(1,1) and K(3) = K(1,3). In ref. [3]
we described an asymptotic perturbation analysis for deriving mode-locked
zones in (13). If the condition φ̇(t) = Cte holds over each cycle provided
the counting time is large enough in comparison to the period, we can get a
recurrence formula mapping the phase φn+1 at time t+ 2π/ω0 to that φn at
time t with the following form:

φn+1 = φn + 2πω − c sinφn − d sin(3φn), (14)

with ω = ωi/ω0, c = 2πK/ω0 and d = 2πK(3)/ω0. Eq. (14) extends the well
known Arnold map.

Such an equation is studied by introducing the winding number
νav = limn←∞(φn − φ0)/(2πn). The curve νav versus ω is a devil’s staircase
with steps attached to rational values of ω = p/q and their width increasing
with the coupling coefficient c. In ref. [5] we presented an approach to plot
the mode-locked zones (called Arnold tongues) based on the introduction of
an Hölder exponent. In the present case d � c � 1 so that we stay very
far from the critical value c=1 where the tongues may recover and chaotic
states may be present. This means that the cycle skipping phenomenon and
the 1/f frequency noise are not related to the type of chaos predicted from
the Arnold map. If we turn to the second order filtering effect in (8), we get
instead of (14) a two dimensional map extending the well known standard
map [6].

1.2 Experiments

We derived above a non linear differential model (12) taking into account
the full intermodulation spectrum at the output of the demodulator. We
now present the experimental motivation for that work and the reasons why
it should be further improved to get a full consideration of the frequency
and amplitude spectra and of the associated frequency fluctuations. All the
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experiments below are given for the PLL in the open loop configuration.
They can be regarded as an asymptotic low coupling limit for (12). We used a
f0 = 10 MHz RF oscillator and a LO oscillator of frequency varying from f1 =
100 kHz up to f1 = 10 MHz, interacting through a wideband doubly balanced
Schottky diode mixer (Fig. 1). The low frequency filter can be approximated
to a second order type one with fn ∼ ωn/2π = 375 kHz. It is observed in
Fig. 2 that there are many subharmonic modes ν = p/q in addition to the
fundamental one at ν = 1/1. The main ones correspond to p and q odd;
intermodulation products at p or q even are strongly rejected due to the
doubly balanced phase bridge structure of the mixer. Each mode is resonant
and extends over a basin which is controlled from the low frequency cut off
of the loop filter, the full dynamics of the subharmonics and the thermal
noise of the input oscillators. In order to get valuable insights into these
seemingly complicated dynamics, we need to derive an arithmetical approach
of the filtering process. The transfer function H2(P ) derived in (8) is clearly
insufficient to describe the experimental plots. Instead of this a diophantine
approach of the filtering process will be presented below.

We now turn to records of frequency fluctuations versus time. These ex-
periments are performed using period counting of the beat frequency fi over
an integration time τ . The low frequency beat signal opens a gate of the
reciprocal counter at one of its zero crossings. The register counts the pe-
riod of both the high frequency counter clock signal and the beat signal. The
sampling duration τ determines the integral number of cycles of the counter
oscillator accumulated before the gate closes. The number of cycles of the
beat signal accumulated during this time interval is finally divided by τ to
yield the average frequency fi(τ) . The average beat frequency being contin-
uously monitored, the dead time, that is the time elapsed between the end
of one recording of fi and the beginning of the next, is zero. By this way the
outcome is a collection of f (l)i (τ) where l stands for the lth measurement of
the averaged beat frequency fi(τ). The type of frequency noise being present
may be characterized by introducing the Allan deviation which is defined as
the mean squared value of the relative frequency deviation between adjacent

samples of length τ . Using y(l)(τ) = f
(l)
i (τ)
fi

it may be rewritten as [7], [8]:

σ2y(τ) =
1
2

〈
(y(l+1)(τ)− y(l)(τ))2

〉
, (15)

where l = (1, 2, . . . , N) stands for the N measurements and 〈 〉 means the
averaging. This method is widely used to characterize the frequency stability
of a test oscillator of frequency f0(t) against a highly stable reference oscilla-
tor of constant frequency f1 .Using fi = f0(t)− f1 at the fundamental mode,
we get a relative frequency stability defined as δf0

f0
= δfi

fi
. fi

f0
∼ σy(τ), and the

sensitivity f0/fi of the frequency measurement set-up may be choosen very
large. In the subsequent measurements it is shown that the frequency stability
of the test oscillator (the frequency synthesizer) is of the order 10−11.
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Fig. 2. The amplitude spectrum (top) and the frequency spectrum (bottom)

The graph of the Allan variance versus the sampling time generally obeys
power laws τ−m (m integer) over a restricted range of time scales. A dual
measure of frequency noise is the power law which is followed by the power
spectral density of frequency fluctuations Sy(f) = fp (p integer). In the
hypothesis of stationarity, the time and frequency domains are related with
a simple law m = p+1 (if − 3 < p ≤ 1) and m = 2 (if p ≥ 1) [7]. Therefore
white frequency noise p = 0 leads to the Allan deviation σy(τ) ∼ τ−1/2 and
the flicker noise p = −1 leads to a flicker floor m = 0 in the Allan deviation.
In cases when m is not integer, the frequency and time domains may also be
related using the Fourier transform, but with less confidence in their meaning.
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Fig. 3. Instantaneous frequency fluctuations of the beat signal between two input
oscillators at f1 = 5.0206 MHz and f0 = f1 + 100 Hz versus time in units a
number of periods (a1). The corresponding Allan deviation (b1) corresponds to
white frequency noise

For the experiments we used a highly stable LO oscillator with frequency
f1 = 5.0206 MHz. The beat frequency fluctuations f (l)i (τ) and the associated
Allan deviation σy(τ) observed at the fundamental mode p/q = 1/1 in three
situations. Instantaneous period measurements could be performed in the
three cases due to the low frequency of beat signals. The first case fi ∼ 100 Hz
shown in Fig. 3 lies away from the resonance and the corresponding Allan
deviation scales as σy(τ) ∼ τ−1/2 which is typical of white frequency noise.
The second case fi ∼ 4.4 Hz is closer to resonance and the observed Allan
deviation Fig. 4 is slowly divergent with scaling law σy(τ) ∼ τ1/4. Time
fluctuations show frequency jumps of magnitude 1 mHz and 2 mHz which
are typical of a random telegraph signal (RTS). Finally if the two input
oscillators have fi ∼ 0.5 Hz, we found that the RTS converts into a more
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Fig. 4. Instantaneous frequency fluctuations of the beat signal between two input
oscillators at f1 = 5.0206 MHz and f0 = f1 +4.43 Hz versus time in units a number
of periods (a2). This regime shows a RTS type noise. The corresponding Allan
deviation Allan deviation diverges approximately as τ1/4 (b2)

irregular time dynamics with an approximately constant Allan deviation as
shown in Fig. 5, which is typical of a pure 1/f noise.

Amplitude fluctuations of the beat signals have been recorded in addition
to frequency fluctuations. It has been observed that the conversion from the
RTS type signal to the 1/f type signal near the resonance is associated to
unpredictible amplitude jumps of the shot noise type. The low frequency
amplitude and frequency noises were found recently in bipolar transistors;
they were found of 1/f type and correlated to each other [9]. These features
will be explained later on the basis of the arithmetical approach.
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Fig. 5. Instantaneous frequency fluctuations of the beat signal between two input
oscillators at f1 = 5.0206 MHz and f0 = f1+0.5 Hz versus time in units a number of
periods (a3). The corresponding Allan deviation (b3) corresponds to 1/f frequency
noise

2 Arithmetic of Amplitude–Frequency Relationships

2.1 The frequency of beat signals
from a diophantine approximation

As shown in Sect. 1, the practical operation of the communication receiver
always involves many downconverted products at all intermediate frequen-
cies in the bandwidth of the filter. We show that the understanding of the
frequency spectrum of beat signals can be based on number theory and specif-
ically on continued fraction expansions (CFE) of frequency ratios of signals
at the input of the mixer. Let ν = f1/f0 the LO to RF frequency ratio and
µ = fi/f0 the IF to RF frequency ratio, the three frequencies operation may
be rewritten as:

µ(pi,qi) = qi | ν − pi
qi
| . (16)
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From this form we can guess the device will produce a rational approximation
pi/qi of the real number ν allowed by the physical constraints, in particular
the non linear interaction and the synchronization between the frequencies
which take place in the mixer, the properties of the filter, the finite resolution
of countings and the unavoidable thermal noise which is present in the set-up.
One clearly shows that the approximation is not a decimal one, otherwise we
should not understand the hierarchy of interacting basins at intermodulation
ratios pi/qi. The approximation which is performed is the best one possible
accounting for the finite resolution, it is of a diophantine type. Best rational
approximations of a real number ν are given from CFE, that is:

ν = a0 + 1/{a1 + 1/{a2 + ....+ 1/{ai + ...}}}; (17)

and the ai’s are positive integers (called partial quotients) which are read-
ily obtained from the formulas: a0 = [ν] , α0 = {ν} and if i ≥ 1, ai =
[1/αi−1] , αi = {1/αi−1}, where [ν] denotes the integral part of ν and {ν} =
ν − [ν] is its fractional part. Successive best approximants of ν, that is con-
vergents pi/qi are obtained by truncating Eq. (17) at some stage i.

Let us remind the difference between the decimal and the diophantine
approximation. From the decimal approximation one builds a series pi/qi

which verifies the approximation
∣∣∣ν − pi

qi

∣∣∣ ≤ 1
qi
. On the other hand the CFE

lead to convergents pi/qi which satisfy the far better approximation∣∣∣∣ν − pi
qi

∣∣∣∣ ≤ 1
qiqi+1

≤ 1
ai+1q2i

. (18)

The approximation constant C(ν) = limi→∞ q2i

∣∣∣ν − pi

qi

∣∣∣ is known as the
Markoff constant [10]. It can be shown that the worst numbers (in terms
of the diophantine approximation) are ν = (

√
5 − 1)/2, ν =

√
2 − 1, ν =

(
√
221 − 11)/10,... They have periodic CFE which are given respectively by

ν = [0; 1̄], ν = [0; 2̄], ν = [0; 2, 1, 1, 2]... corresponding to Markoff constants
C = 1/

√
5, C = 1/(2

√
2), C = 5/

√
221...respectively. The symbol [.; ...]

means the CFE as in (17) and the bar shows the period of the expansion.
They can be predicted by studying the minima of binary quadratic forms.
There is also much geometry behind [10].

From (18) one expects that whenever a large partial quotient is reached,
the diophantine approximation becomes very efficient and the CFE is trun-
cated at level i. Let us see the effect of restricting CFE at

ai ≤ amax. (19)

Any rational number pi/qi has two CFE given by pi/qi = [a0; a1, a2..., ai]
and pi/qi = [a0; a1, a2..., ai − 1, 1]. Let us consider truncation at a given value
amax and numbers ν which are very close to pi/qi on the right (respectively on
the left); they should be approximated as pi+1/qi+1 = [a0; a1, a2, ...ai, ai+1]
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Fig. 6. The intermodulation spectrum resulting from the truncation at amax = 10
in the continued fraction expansion of ν. The larger basin in the window 0.6 < ν <
0.7 is at the rational pi/qi = 2/3 = [0; 1, 2] with νR = [0; 1, 2, 10] = 21/31 and
νL = [0; 1, 1, 1, 10] = 21/32

(respectively pi+1/qi+1 = [a0; a1, a2, ...ai − 1, 1, ai+1]) with ai+1 ≥ amax.
But as a result of the truncation at amax those numbers will be approx-
imated from the set of two straight lines µ = qi

∣∣∣ν − pi

qi

∣∣∣. The last num-
bers in the basin of pi/qi will be at νR = [a0; a1, a2, ...ai, amax] and νL =
[a0; a1, a2, ...ai − 1, 1, amax] given by the formulas:∣∣∣∣νR − pi

qi

∣∣∣∣ = 1
qiqi+1

and
∣∣∣∣νL − pi

qi

∣∣∣∣ = 1
qi(qiamax + qi − qi−1)

. (20)

It is seen that a significant asymmetry results in most cases. Fig. 6 illustrates
the result obtained by taking amax = 10 and the window 0.6 < ν < 0.7. In
order to check the validity of the above arithmetical approach we registered
the intermodulation spectrum for the device in Fig. 1, using a constant fre-
quency RF signal and a variable frequency LO signal. Acquisition of data
was performed using a digital counter with an integration time τ0 = 0.1 s.
Results are shown in Fig. 7(a). A good fit of the data is obtained accounting
for the physical device: products with pi or qi even were strongly rejected
due to the doubly balanced phase bridge structure of the diode mixer. The
theoretical curve is shown in Fig. 7(b). The filtering rate was found to govern
the truncation level of CFE in the loop. Using more selective filters at 58 kHz
(and 3 kHz) we found truncations at values amax = 9 (and 65) also allowing
a good fit of the experimental curves.
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Fig. 7. (a) The intermodulation spectrum for the loop in Fig. 1 and cut-off fre-
quency fc = 375 kHz and the RF constant frequency f0 = 5.0206 MHz. (b) The
theoretical spectrum. For the fit we chose amax = 3 for the fundamental mode 1/1,
amax = 2 for products pi/qi with pi and qi odd and amax = 20 for products with pi

or qi even

We just saw the intermodulation spectrum is described from CFE and a
resolution increasing with the degree of filtering. It may also be convenient
to represent the error µ versus ν on a tree with the number of leaves given
from a Farey criterion

qi ≤ qmax. (21)

The Farey series Fqmax of order qmax is defined as the set of irreductible
fractions pi/qi between 0/1 and 1/1 whose denominators do not exceed qmax.
Thus F5 is {0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1}. Between two
leaves ending on the real axis at p/q and p′/q′ there is one at (p+p′)/(q+ q′)
provided q, q′ and q + q′ do not exceed qmax. It arises at the node ν =
(p+ p′)/(q + q′), µ = 1/(q + q′) as shown in Fig. 8. The number of fractions
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Fig. 8. The increased resolution spectrum as calculated from finite continued frac-
tion expansions of ν from imax = 1 to imax = 3

up to qmax is as follows

n(qmax) =
qmax∑
k=1

φ(k) =
3 q2max

π2
+ 0(qmaxlog(qmax)), (22)

where φ(k) is the Euler function [5]. Such fractions are called well resolved
and n−1 is called the resolution. In contrast to criterion (21) a badly resolved
experiment is governed by the truncation trick (19) or by truncating CFE at
a given height:

i ≤ imax. (23)

We will show below their effect in producing 1/f type noises.

2.2 The amplitude of beat signals and the Franel–Landau shift

As shown in Sect. 2.1 the frequency of beat signals in the demodulator may
be interpreted from the diophantine approximation of frequency ratios ν of
signals at the input of the mixer. Although this definition accounts for the
Farey structure of the underlying tree, it is local and linear: that is nearby
frequencies lie on a straight line defined from the truncated CFE of ν; non-
linearity only happens from jumps whenever a partial quotient ai has been
added or removed so that the approximation of ν is controled from a new
leave of the tree. Linearity is ensured provided the device operates on a pre-
scribed subharmonic pi/qi; this is precisely the property one needs if one uses
the demodulator to compare a test oscillator against a reference one.
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In contrast to the frequency, the amplitude of beat signals is non linear as
shown in Fig. 2b : thus the beat signal is resonant at the subharmonic pi/qi,
leading to a strong sensitivity of the demodulator to amplitude modulations
(AM). It is thus very critical to understand the amplitude of beat signals.

The amplitude a(pi,qi) of the beat signal at the subharmonic pi/qi can still
be defined from number theory. This is achieved by comparing the position
of fraction pi/qi with respect to the point i/n of the equally spaced scale with
n given in (22). The shift is given from:

δi =
∣∣∣∣ in − pi

qi

∣∣∣∣ , (24)

and the corresponding amplitude a(pi,qi) = A δi where A (in Volts) is a
reference voltage depending on the sensitivity of the set-up. The shift δi was
introduced in 1924 by Franel and Landau in the context of a conjecture
equivalent to Riemann’s hypothesis [5], [11]. The hypothesis relies on the
position of zeros of the function ζ(s) which was introduced by Riemann in
1859 on his celebrated paper on prime numbers. According to Riemann’s
hypothesis there are an infinite number of non trivial zeros all located on the
axis s = 1/2. The conjecture will be set forth in section (2.4).

Fig. 9 (curve 1) shows a plot of the shift δi versus i(i = 1, n(qmax))
for qmax = 150 (and n(150) ∼ 3

π2 q
2
max = 6839) as predicted from (22). An

efficient MAPLE procedure was implemented in order to compute Farey frac-
tions and the associated shifts. A computing time increasing like n2 ( 30 s
for qmax = 100) was obtained. It can be compared to the experimental plot
in Fig. 2a, if we account for the rejection of even intermodulation products
due to the balanced structure of the mixer.

As already mentioned in section (1) and will be further extended in our
study of frequency fluctuations in section (2.3) our ability to fit the experi-
mental curves depends on our ability to perturb the above result to account
for the lack of resolution in the CFE by truncating it at a selected partial
quotient amax or at a given height imax. To our knowledge no systematic
theory of finite CFE has been developed until know. See [12] for preliminary
results and the companion paper by J. Cresson. Here we mention some ana-
lytical calculations of Franel–Landau shifts for CFE of low height imax from
1 to 3.

At first order imax = 1 the RF to LO frequency ratio is ν = 1/a1, a1 ≤
n(1)(qmax) = qmax so that the shift is as follows:

δ(1)(qmax) =
∣∣∣∣qmax − a1 + 1

qmax
− 1
a1

∣∣∣∣ . (25)

At second order imax = 2, ν = a2/(1+a1a2) with a1 taking all values between
a1 and qmax−1 that is a1 = (1, qmax−1) and a2 = (1,

[
qmax−1

a1

]
). The number
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of ill resolved fractions is

n(2)(qmax) = 1 +
qmax−1∑
a1=1

[
qmax − 1

a1

]
, (26)

with the shift as

δ(2)(qmax) =

∣∣∣∣∣a2 +
∑qmax−1

k=a1+1

[
qmax−1

k

]
n(2)(qmax)

− a2
1 + a1a2

∣∣∣∣∣ . (27)

The calculation is still more complicated at order imax = 3. In such a case
we get

n3(qmax) = qmax +
[ qmax−1

2 ]∑
a1=1

[
qmax−a1−1

a1

]∑
a2=1

[
qmax − a1
1 + a1a2

]
. (28)

There are one term fractions p3/q3 = 1/a1 which are located at

i = qmax − a1 + 1 if a1 =
([

qmax − 1
2

]
, qmax

)
, (29)

or at the position

i = n(3)(qmax)− a1 + 1−
k=a1−1∑

k=1

[ qmax−1−k
k ]∑

l=1

[
qmax − k

1 + kl

]
if a1 =

(
1,
[
qmax − 1

2

])
, (30)

and there are fractions with three terms p3
q3

= 1+a2a3
a1+a3+a1a2a3

which are located
at the position

i = n(3)(qmax)− (a1 + a3)−
a2∑
l=1

[
qmax − a1
1 + a1l

]
−

a1∑
k=1

[ qmax−1−k
k ]∑

l=1

[
qmax − k

1 + kl

]
(31)

with the following range of values

a1 =
(
1,
[
qmax − 1

2

])
, a2 =

(
1,
[
qmax − 1− a1

a1

])
and a3 =

(
1,
[
qmax − 1
1 + a1a2

])
. (32)

From these relations, the third order shift may be calculated as:

δ(3)(qmax) =
∣∣∣∣ i

n(3)(qmax)
− p3

q3

∣∣∣∣ . (33)
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Since the effective resolution is given from ( 18) it may be more useful to
consider finite length fractions with partial quotient bounded as ai ≤ amax.
In such a case calculations are easier. At first order imax = 1,the number of
fractions is n(1) = amax and such fractions p1/q1 = 1/a1 are located at

i = amax − a1 + 1, (34)

as above in (25). At second order, n(2) = a2max and fractions p2/q2 = a2/(1+
a1a2) are located at

i = a2max − a21 + a2. (35)

Then for imax = 3,n(3) = a3max + amax, there are fractions 1/a1 located at

i = (amax − a1 + 1)(a2max + 1), (36)

and there are fractions p3/q3 = (1+ a2a3)/(a1+ a3+ a1a2a3) that we find at

i = (amax − a1)(a2max + 1) + a2amax − a3 + 1. (37)

These explicit calculations are of restricted interest however since they can-

Fig. 9. The Franel–Landau shift δi in the well resolved case (curve 1) and for finite
length fractions imax = 7 (curve 2)

not be generalized easily to arbitrary imax or amax. Our MAPLE procedure
does not show this drawback (see Fig. 9, curve 2) and the related comments.

2.3 Diophantine signal processing and 1/f frequency fluctuations

Experiments above clearly demonstrated the diophantine nature of signal
processing realized in the receiver shown in Fig. 1. The spectrum of frequen-
cies and amplitudes of beat signals was interpreted in terms of simple rules
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(16) and (24) of the diophantine type. Although the amplitude-frequency re-
lationship looks very complicated, the dynamics is predictable provided we
know what limits the continued fraction expansion (17) of the frequency ratio
ν.

One supplementary task is to understand the time dynamics and the
origin of the transition from white frequency noise to 1/f frequency noise
close to resonance. This may be approached from the diophantine nature of
”waves”

εi = cos{2π pi/qi} , i=1, . . . , n, (38)

which constitutes the observed signal, with n ∼ 3 q2max/π
2 for a well resolved

signal, or less if the signal lacks resolution close to resonance. For a continuous
(i.e. non-diophantine) signal we would expect that the resolution dν = 1/n
vanishes when n increases, so that by integrating over the frequencies ν =
pi/qi we would get the mean value

σ =
∫ ν=1

ν=0
ε(ν)dν =

∫ ν=1

ν=0
cos(2πν)dν = sin(2πν)/2π = 0. (39)

Such a result is not observed in a finite resolution experiment. Let us consider
the discrete partial sum over the waves as:

M(i) =
i∑

k=1

cos{2π pk/qk} , i=1, . . . , n, (40)

and the discrete partial sum over the frequency shifts as:

S(i) =
i∑

k=1

|k/n− pk/qk| , i=1, . . . ,n. (41)

The terms εi and δi will be called Littlewood term and Franel–Landau shift re-
spectively, and M(n) and S(n) will be called Littlewood and Franel–Landau
sums. This refer to the history of Riemann zeta function that we will re-
mind below. Let us first consider the (resonant) case when continued fraction
expansions are restricted to a finite partial quotient ai ≤ amax. Fig. 10 il-
lustrates the case amax = 8. It can be observed in (a) and (b) that the
shift δi and the wave εi are fractal like. This is confirmed by computing
numerically the fractal dimension (see the companion paper by C. Eckert).
Also the mean deviation follow the laws amaxσF = S(n)amax/n ∼ 0.40 and
amaxσL = M(n)amax/n ∼ −1.5 where n is the number of resolved fractions.
We say that this dependence is of the 1/f type, since the deviation is con-
stant at all scales n. This is similar to what was obtained in Fig. 5 in the
almost resonant interaction of the two input oscillators. Going far away from
the resonance we expect to reach a well resolved zone, i.e. at arbitrarily small
resolution we should recover the continuous case (39). We found numerically
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Fig. 10. The Littlewood term (b) and the Franel–Landau shift (a) for fractions
with bounded partial quotient amax

that the deviation scales approximatively as σF ∼ n−3/4; this is what we
expect also from Riemann hypothesis as will be reminded below. The ex-
periments showed an Allan deviation depending on the integration time as
σ ∼ τ−1/2 (see Fig. 5).

Finally in the intermediate zone, at the outer edge of a resonant zone,
there is an increase of the number of fractions and then a decrease of the
resolution as shown in Fig. 8. As a result there is an increasing shift δi at
most subharmonics (Fig. 9, curve 2 where imax = 7) as compared to the well
resolved case (curve 1). There we calculate a drift σF ∼ nα, with α > 0
depending on the value of imax. For imax ≤ 3 as calculated above, α ∼ 1/4 at
large n, which reminds the experimental value σ ∼ τ1/4 in Fig. 4. A similar
dependance is obtained for σL.
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We have given a diophantine approach of the low frequency noise close
to a resonance in the receiver. It would be nice at this stage to compare
quantitative results given from the Allan deviation σy(τ) in (15) and the
mathematical result from σF or σL. To achieve such a goal we need to know
precisely what determines the resolution n−1 and the truncation at amax or
imax and relates these measures to physical parameters, in particular the filter
bandwith and the noise of input oscillators.

2.4 The Riemann zeta function
and the Riemann hypothesis and physics

In his celebrated paper on the number of prime numbers π(qmax) less or equal
than qmax, Riemann studies the extension of the zeta function

ζ(s) =
∞∑

n=1

1
ns

=
∏

p prime

1
1− p−s

(with � (s) > 1), (42)

to the complex plane s [11]. The connection to π(qmax) is through the log of
this function and the Euler product formula is one way to express the decom-
position of any integer as a product of powers of prime numbers. Riemann
extends the formula to the whole complex plane as follows

ζ(s) =
Π(−s)
2iπ

∫ +∞

+∞

(−x)s
ex − 1

.
dx

x
, (43)

where Π(s) =
∫∞
0 e−xxsdx and s > −1 is the Euler integral, and Π(s) =

s! whenever s is a natural number. In (43) the path of integration begins
at +∞, moves to the left down the positive real axis, circles the origin in
the counterclockwise direction and returns up the positive real axis to +∞.
Formula is valid for all s. It is analytic at all points of the complex plane s
except for a single pole at s = 1, with residue 1. From calculations already
performed by Euler for real x one gets a connection to Bernoulli numbers
Bn. Using the expansion near x = 0 of x/(ex−1) =

∑∞
n=0Bnx

n/n!, one gets
B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30,B6 = 1/42... and B2n+1 = 0
if n > 1 and the formula ζ(−n) = (−1)nBn+1/(n + 1). It follows that the
zeta function has ”trivial” real zeros at s = −2,−4,−6.... Also some real
zeta functions are obtained easily as ζ(0) = −1/2, ζ(−1) = −1/12, ζ(−3) =
−1/120, ζ(2) = π2/6, ζ(4) = π4/90 . . . .

Riemann hypothesis asserts that the only non trivial zeros are located on
the imaginary axis s = 1/2. Billions of zeros are known all on the critical line
but until now the hypothesis has not be proved. It was shown by Littlewood
in 1912 that a statement equivalent to Riemann hypothesis may be obtained
from the Dirichlet series associated to the inverse of the zeta function as

1
ζ(s)

=
∞∑

n=1

µ(n)
ns

(with �(s) > 1), (44)
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where the Möbius function µ(n) is zero if n is divisible by a square, is 1 if n
is a product of an even number of distinct prime factors and is −1 if n is a
product of an odd number of distinct prime factors. The inverse zeta function
may be extended to the whole complex plane as:

1
ζ(s)

= s

∫ ∞
0

M(x)
xs+1 dx, (45)

andM(x) =
∑x

n=1 µ(n) the partial sum over the Möbius function. Littlewood
proved that Riemann hypothesis is equivalent to the statement

M(x) = 0(x
1
2+ε) for all ε > 0. (46)

There is an interesting history behind that early work which is reported by
Edwards [11]. I refer to the conjecture by Mertens: |M(x)| < x1/2 which was
disproved only in 1984 by Odlyzko and the unproved Stieljes statement in
1885: M(x) = 0(x1/2). A significant step was achieved in 1920 by Franel and
Landau by introducing Farey fractions and the shifts δi as given in (24). M(x)
may be alternatively written as a sum over the waves M(n) as obtained from
(40) so that using (22) Littlewood conjecture is M(n) = 0(n

1
4+ε) whatever ε.

The equivalent Franel–Landau conjecture is the sum over the shifts δi and
may be similarly written as S(n) = 0(n

1
4+ε) for all ε where S(n) follows from

(41).
It is useful at that point to remind that physical interpretations of (46)

have been proposed. In 1931, A. Denjoy [11] suggested that since the Möbius
function equals plus or minus one with apparent equal probability (which is
3/π2) it looks similar to flipping a coin with equal chance for heads and tails,
so that M(x) looks like a brownian motion [13]. Consequently the Riemann
hypothesis would be true with probability one!

More recently it was observed [14] that the Riemann zeta function ζ(s)
has a quantum statistical interpretation. The unique factorization of an in-
teger into primes, n =

∏pmax
p=1 pNp translates into a unique decomposition of

log n =
∑pmax

p=1 Np log p, where Np corresponds to the number of ”particles” of
energy log p. It follows that the zeta function is the grand canonical partition
function of a ”Riemann gas” of quantum bosons of energies log p (because
there is no factor of indistinguishability in the expression for the whole en-
ergy log n. Similarly 1/ζ(s) was interpreted as a gas of free ”ghost” fermions
with the same energy log p (there is a fermionic aspect since µ(n) = 0 at a
square number n).

The interpretation of frequency variability is thus embedded into the num-
ber theoretical concepts attached to 1/ζ(s). One can go a step ahead by look-
ing at the integer n in (42) as an integration time τ and consider the variable
s as a complex time 1/2 + η + it, where η is a small real parameter. Using
the decomposition 1/ζ(s) = Z(t) exp [iθ(t)] one easily computes numerically
the discrete Fourier transform S(ω) =

∑∞
t=0 Z(t) exp [iωt] with the result
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|S(ω)|2 ∼ Cte on the critical line (at η = 0) and |S(ω)|2 ∼ 1/ω close to it.
This shows a transition from white to 1/ω power spectrum of the modulus
of 1/ζ(s). Similarly the power spectral density of the phase θ(t) decreases
like ω−2 at the critical line and like ω−3 close to it. This corresponds to a
transition from white to 1/ω frequency noise as observed in our experiments.
In addition one predicts peaks in the power spectral density at ωn = C log q
with q = pl, l integer and p prime. The first low frequency peaks are found
at 2, 3, 22, 5, 7, 23, 32, 11, 13 . . . . This may be explained on the basis of the
derivative of log ζ(s) [11] or in relation to a quasiclassical approximation of
quantum chaotic orbits [15]

Consequently one has a number theoretical model of the transition from
white to 1/f frequency noise based on the properties of 1/ζ(s) at or close to
the critical line s = 1/2. The deviation of the beat note with respect to the
perfect oscillation should be in the form 1/ζ(1/2 + η + it) with η non-zero
at resonance and η equal to zero away from it. This model has now to be
checked in detail by new experiments related to receivers and particularly in
the digital domain.
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Detection of Chaos in the Noise of Electronic
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Abstract. Frequency fluctuations of an electronic oscillator are studied by time
series analysis methods in order to detect an eventual underlying attractor. Mea-
surements are performed by a period counting technique with a reference signal of
10 MHz and various frequencies of the local oscillator. Three different behaviours
of the Allan variance are observed, depending on the mean frequency of the beat
signal. The results of time series analyses clearly show that two of these behaviours
are associated with the presence of a chaotic process, whereas the third is more in-
tricate. When applied to data computed from continued fraction expansions of real
numbers, these methods lead to the same conclusions. For two kinds of truncation,
the data present a chaotic behaviour, which is not obvious for the third kind. A
correspondence between the behaviour of the frequency fluctuations and the way
of truncating the continued fraction expansions can thus be proposed.

1 Introduction

Since E.N. Lorenz [1] realized in 1963 that low-dimensional deterministic
systems can take the appearance of noisy fluctuations, such oddnesses have
been discovered in fields as various as physics [2], chemistry [3], biology [4],
economy [5], and climatology [6]. Erratic time series have therefore been
widely studied, and great efforts have been devoted to the distinction between
chaotic and stochastic processes.

One feature common to most of the time series analysis methods is the
time delay embedding procedure [7] which reconstructs a possible attrac-
tor from a scalar time series. The popularity of this procedure comes from
the embedding theorem [8], [9] which states that, under suitable conditions,
it unfolds the underlying attractor, so that such properties as the correla-
tion dimension [10], the Kolmogorov entropy [11], the phase portraits and
Poincaré sections [12], the Lyapunov exponents [13], etc., may be extracted.

This article describes key advances in the detection of an underlying
chaotic process in the noise of an electronic oscillator, including the esti-
mation of a low correlation dimension. Previous works [14], [15] showed that
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the fluctuations of an electronic oscillator can be understood in terms of a
low-dimensional deterministic system, but none of its properties could be ex-
tracted. Here both experimental time series, recorded by a customary period
counting technique, and data computed from continued fraction expansions
(CFE) of real numbers, are examined. For low values of the mean beat fre-
quency, the experimental fluctuations clearly have a behaviour characteristic
of a chaotic system, with a correlation dimension close to one. This contrasts
with the results obtained for higher beat frequencies where the ambiguity on
the kind of process, deterministic or stochastic, is difficult to overcome. As
concerns the computed data, the only difference between the various calculi
lies in the way of truncating the CFE. Here also the outcomes can be splitted
into two classes, one presenting typical features of an underlying attractor,
and a second class for which the estimation of a correlation dimension is
awkward. It is suggested that the different kinds of frequency fluctuations,
observed by varying the frequency of the local oscillator, may be associated to
different truncations of the CFE. This may help to improve the understanding
of frequency fluctuations, which seems particularly important in the scope of
telecommunications if one reminds that the device used to measure frequency
fluctuations is the corner-stone of any communication receiver.

2 Experimental and Computed Data

Typically, a period counting experiment consists in applying the signal of the
oscillator under test and a reference signal of about the same frequency to
a multiplier. Both signals are mixed and result in a beat signal that passes
through a low pass filter, intended to reject high frequency components, be-
fore being measured by a reciprocal counter. In the usual operating mode, the
gate of the counter opens at one zero crossing of the beat signal, counts the
periods of both the high frequency counter clock signal and the beat signal
during a sampling duration τ , and closes. In the present experiments [16],
the gate opens at one zero crossing of the beat signal and closes at the next,
so that taking the reciprocal leads to the measurement of a frequency that
may be considered as instantaneous for no average over a sampling duration
is performed. The gate again opens at the next zero crossing, closes, and so
on, resulting in the recording of a collection of xi, with i denoting the ith

measurement of the instantaneous frequency x. The frequency of the refer-
ence signal was fixed to f0 = 10 MHz and several time series were recorded
for various frequencies f1 of the local oscillator.

Such experiments have been shown [17] to be linked to the number theory.
Indeed, the best rational approximation of any real number ν is given by its
CFE

ν = a0 + 1/(a1 + 1/(a2 + ... + 1/(ai + ...))). (1)

From the experimental point of view, ν represents the ratio between the
frequencies f1 of the local oscillator and f0 of the reference signal. The ratio
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between the frequencies of the beat signal and of the reference signal can be
represented formally by the relation

µ = q|ν − p/q|, (2)

where p and q are integer numbers such that p < q. Considering the set of n
Farey ordered fractions

0/1 < ... < pi/qi < ... < 1/1 (3)

whose denominator not exceeds qmax, and the set of n equidistant fractions
i/n, the deviations

δi = |i/n− pi/qi| (4)

can be calculated for i = 1, ..., n. The requirement q < qmax thus gives a first
way to compute a series of data δi. Other collections can be obtained by im-
posing further restrictions. The Farey fractions pi/qi being rational numbers,
their development according to (1) involves a finite number of terms ai. This
suggests to define two sorts of truncation for further calculations. The first
consists in discarding the pi/qi, hence the δi, whose CFE (1) comprises more
than imax terms, and the second amounts to reject the fractions involving a
value ai greater than a fixed amax. The three truncation criteria qmax, imax,
and amax give rise to three kinds of computed data.

An experimental time series corresponding to a mean beat frequency of
3.3 Hz is plotted in Fig. 1. Further examples of experimental and computed
time series, together with details about the experiments and the calculation
of data can be found in [16].

Fig. 1. Instantaneous frequency fluctuations of the beat signal recorded at 3.3 Hz.
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3 Time Series Analysis Methods

During the last two decades, the distinction between stochastic and chaotic
processes has been the subject of numerous works [4], [11] - [14], [18] - [22].
In the proposed methods, the time delay embedding procedure [7] has be-
come into common use as a way to reconstruct a possible underlying at-
tractor from a scalar time series. This procedure comes to construct a set
{Y1,Y1+k,Y1+2k, ...,Y1+kNv} of m-dimensional vectors

Yi = {yi, yi+l, yi+2l, ..., yi+(m−1)l} (5)

from the scalar time series {yi, i = 1, ..., Np} for fixed delays k, l and embed-
ding dimension m.

According to the embedding theorem [8], [9] the original attractor can
be unfolded provided that the parameters k, l, and m are properly chosen.
Denoting by d the dimension of the underlying attractor, m > 2d would
surely be sufficient [8], [9], but the optimal embedding dimension may be
smaller. The delays k and l were introduced to prevent short-correlation
effects [18] – [20], [23]. In practice k is the delay, in terms of measurements
numbers, between the first components of successive vectors, while l is the
delay between successive coordinates of a vector.

The method of the false nearest neighbours percentage (FNNP) [21] relies
on the study of the topological properties of the reconstructed vectors. Its
main advantage is to be efficient even for short and/or noisy time series. How-
ever, it is limited to the detection of an underlying attractor, and none of its
features can be extracted. Regarding the correlation dimension method [10],
it is the most popular method used to estimate the fractal dimension of an
attractor, but it can give rise to misleading results because of its high sensi-
tiveness to the time series length and to the inherent experimental noise.

3.1 False nearest neighbour percentage

In this method, the repartition of the vectors constructed in m dimensions is
compared to that achieved in a (m + 1)-dimensional embedding space. The
subjacent idea is that as long as the embedding dimension is too small, or
when there is no attractor at all, the neighbourhood of a point is greatly
affected by the increment of the dimension. So, points that are neighbours in
the m-dimensional space will no longer be neighbours in m + 1 dimensions.
This is illustrated in Fig. 3 of [24] for the Hénon map. At the opposite, in
the case of an attractor embedded in a space of sufficiently high dimension,
the distribution of the reconstructed vectors is essentially unaltered by the
increase of the dimension. The conservation of the neighbourhood relations
in passing from a m- to a (m + 1)-dimensional space can thus be taken
as a proof of the attractor’s existence and used to determine the minimal
acceptable embedding dimension and delays.
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Let Yi,n(m) and Yi,n(m+1) be the nth nearest neighbour in m and m + 1
dimensions, respectively, of any given reference point Yi. Their squared Eu-
clidean distances from Yi are, respectively, denoted by

Dm(i, n(m)) = |Yi,n(m) −Yi|2 (6)

Dm+1(i, n(m + 1)) = |Yi,n(m+1) −Yi|2. (7)

In order to identify the false nearest neighbours, Kennel et al. [21] pro-
posed to reckon the FNNP by jointly applying the two following criteria :

Dm+1(i, 1(m))−Dm(i, 1(m))
Dm(i, 1(m))

> R2tol (8)

and

Dm+1(i, 1(m)) > Ftolσ
2, (9)

where Rtol stands for the relative increase of the distance that is tolerated,
Ftol denotes some tolerance factor, and σ2 is the variance of the data. The first
inequality (8) rejects neighbours whose distance from Yi increases too much
when the dimension is incremented. However, due to the limited number of
data in the time series, the distance may already be large in m dimensions,
so that its relative increase in passing to a (m + 1)-dimensional space is
small. In this case, the neighbour successfully passes the test (8), although
it should be considered as a false neighbour because of its remoteness from
Yi. The criterion (9) is intended to properly identify such false neighbours.
If one of the two inequalities (8) or (9) is verified, then the nearest neighbour
of Yi is declared as a false neighbour. Testing all the embedded vectors
{Yi, i = 1, 2, ..., 1+Nv} gives rise to the number of false neighbours, which
is finally divided by 1 +Nv in order to get the FNNP.

In the case of a time series that underlies an attractor, the FNNP is high
so long that the embedding dimension is too small. It diminishes when m is
increased, until becoming negligible when the accurate embedding dimension
is reached. It is worth remarking that the FNNP should theoretically drop to
zero. However, in passing from a m- to a (m+1)-dimensional space, the vector
Yi and its nearest neighbourYi,1(m) both acquire a (m+1)th coordinate. This
leads to an increase of Dm(i, 1(m)) that is at least of the order of magnitude
of the experimental noise, including the rounding off errors, so that some
nearest neighbours may unjustly be considered as false neighbours. On the
contrary, if the time series results from a stochastic process, the FNNP may
decrease at the very beginning of the dimension incrementation procedure,
but not so much as for chaotic data, and it can never be neglected.

Turning now to the determination of the accurate parameters of the em-
bedding space, the embedding dimension m can be chosen as the one for
which the FNNP becomes negligible. As far as the delays k and l are con-
cerned, there are different ways to find their proper value. The first way is
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to compute the percentage of false neighbours for various parameters k and
l, and to examine their influence, bearing in mind that the FNNP should be
as low as possible. The delays have also been shown [25] to influence critical
properties such as the mean time separation (in sampling units) between a
reference point and its nearest neighbour. If this time separation suddenly
decreases when the embedding dimension is incremented and stays to a low
value, then it can safely be inferred that the time lags k and/or l are too
small. Another way of estimating the optimal parameters is to compute [20]

W = ln
〈 w∏
n=1

[
Dm(i, n(m))

Dm(i, n(m + 1))
× Dm+1(i, n(m))

Dm+1(i, n(m + 1))

]1/w 〉
i

(10)

for increasing m and different delays k and l, where 〈 〉i denotes an average
over various reference points Yi. In the case of an underlying attractor, W
is expected to decrease towards zero when m increases, and the proper em-
bedding parameters are those for which W is minimal. However, this method
requires more computing time than the method of the FNNP. More annoy-
ing, it is less efficient because the upper limit is known in the latter method
(100 %), but not in the former, so that it is difficult to estimate what can be
considered as a negligible value of W .

3.2 Correlation dimension

The starting point of the method proposed by Grassberger and Procaccia [10]
is the computation of the correlation integrals

C(m, r) =
2

Nv(Nv + 1)

Nv∑
i=1

Nv+1∑
j=i+1

H(r − |Yi −Yj |) (11)

for various embedding dimensions m, with H(r) denoting the Heaviside func-
tion and —— the Euclidean distance. So, C(m, r) is the fraction of pairs of
vectors whose distance is lower than r. Obviously, C(m, r) increases with r,
for more and more pairs of vectors are taken into account in the sum of (11).
At small r, the correlation integrals generally follow a power law

lim
Nv→∞, r→0

C(m, r) = rD2(m) (12)

from which the correlation exponent D2(m) can be extracted.
In the presence of an underlying deterministic process, it is foreseen [10]

that the correlation exponent begins by increasing with m, but less and less,
and ends by reaching a constant

D2 = lim
m→M

D2(m), (13)
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where M stands for the optimal embedding dimension. It has been argued [10]
that D2 is a lower bound of the fractal dimension. At the opposite, the corre-
lation exponent of a stochastic time series is expected to continuously increase
with the embedding dimension and to follow the straight line D2(m) = m.

Before implementing this method, some word has to be said about its
drawbacks, which arise for it clearly appears that none of the limits implicated
in (12) can be achieved. The limit r → 0 is unapproachable because of the
experimental noise, the precision of the measurements, and/or the rounding
off errors. Very small r correspond to distances whose order of magnitude is
that of the noise. Consequently, taking a range of too small values of r leads
to a correlation exponent characteristic of the noise [19] and not, as it should,
representative of the possible underlying chaos. The local slope [19]

ln[C(m, r)]/ ln(r) (14)

may help to estimate the range of r that is suited for the estimation of D2(m).
Moreover, the effect of the noise is amplified when the embedding dimension is
incremented because its contribution increases, resulting in an enlargement of
the range of r for which the correlation integral depicts the noise. On the other
hand, the limit Nv → ∞ is prevented both by experimental considerations
and by the immoderate increase of the recording and computing times.

It finally must be noted that, as well as for the methods of false neighbours,
the modifications of the correlation exponents induced by the variation of k
and l allow to get an idea of their proper values. Yet, it should be remembered
that the number of embedded vectors is related to the number of data points
by 1 +Nv = 1 + [Np − 1 − (m− 1)l] / k , so that the higher the values
of k and/or l, the smaller the number of embedding vectors.

4 Detection of Chaos
in Experimental and Computed Data

In this section the time series analysis methods just described are applied to
the time series whose recording and computing has been reported in Sect. 2.
Both kinds of data being treated in the same manner, some correspondences
will become apparent.

4.1 Experimental time series

The experimental time series have been used to construct embedding vectors
from their general definition (5). The embedding dimension was varied from
m = 1 to 10 and the time lags were fixed as being equal to k = l = 1.
The FNNP has been computed for Rtol ranging from 5 to 50, and Ftol = 4
as suggested by Kennel et al. [21]. The percentage of false neighbours nearly
equals 100 % when m = 1 and decreases for increasing values of Rtol,
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as expected from (8). For high embedding dimensions the FNNP becomes
independent of Rtol (see [15], [24] for examples), due to the finite length of
the time series. Indeed, the increase of the dimension leads to the lowering of
the density of embedded vectors, so that false neighbours are chiefly rejected
according to the criterion (9), hence independently of the tolerated threshold.

For all the considered experimental data, the percentage of false neigh-
bours is minimal when m = 4 and Rtol = 30, and a further increase of
Rtol has almost no effect, indicating that none of the neighbours that have to
be declared as false from the first criterion (8) are missed. This value of the
tolerated relative increase of the distances has thus been retained for the plot
(Fig. 2) of the FNNP. The curves corresponding to a mean beat frequency
of 100, 4.43, and 0.5 Hz have 2000, 2000, and 1000 data points, respectively,
whereas the time series recorded at 3.30 Hz has a length of Np = 20000
points. It clearly appears from Fig. 2 that the different time series can not be
considered as behaving alike. The FNNP corresponding to the data recorded
at 4.43 Hz is characteristic of an underlying deterministic system, whereas it
never drops to zero for the other time series. Because of the relatively high
value (11.5 %) of its minimal FNNP and of the increase observed when m
is further incremented, the time series recorded at 100 Hz is the one that
seems the most result from a stochastic process. However, caution has to be
taken for this may eventually arise because of a relatively high noise level [24].
Between these two curves there is another one (empty diamonds) that may
arise as well from a stochastic process as from a chaotic system blurried by
the experimental noise. The FNNP obtained for the longer time series (filled
diamonds) suggests that these data have a determinist origin.

As noted before (Sect. 3.1), the alterations of the results induced by the
variation of the time delays allow to fixe their proper value. The independence
of the FNNP on k and l is a sign of the absence of short-time correlations. This
is corroborated by the reckoning of the mean time separation, in sampling
units, between a point and its first neighbour, which is near 200 for the shorter
time series, close to 500 for those of intermediate length, and beyond 3000 for
the longer one. The calculation of the averaged wavering product according
to (10) has been performed to further test the effect of the time lags. For
this computation, the geometric mean has been done over w = 10 nearest
neighbours [20] and all the data points have been taken into account for the
arithmetic average. For all the considered time series, for a given embedding
dimension m, W is minimal when l = 1. A departure from k = 1 also
increases W , so that the same conclusion as previously intrudes, namely, the
best choice for the time delays is k = l = 1.

In order to evaluate the correlation dimension, correlation integrals have
been computed from (11), with k = l = 1 and m ranging from 1 to 10,
for various time series. The distances have been normalized with respect to
the diameter of the embedding space in order to facilitate the comparison
between the results obtained for different embedding dimensions and time
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Fig. 2. False nearest neighbours percentage of time series measured at various mean
beat frequencies. The embedding delays are k = l = 1 and the tolerated threshold
is Rtol = 30.

series. It must be noted that the effect of varying the time lags was inves-
tigated, but no modification was detected. In the case of the fluctuations
measured at 100 Hz, the correlation integrals lock much like those displayed
in other works [24]. Their double logarithmic plot presents a linear region,
but it is difficult to exclude that it depicts only the experimental noise. The
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Ln[C(m,r)]

Ln[C(m,r)] = 0.6 Ln(r) + 0.45

Fig. 3. Correlation integrals of the data recorded at 4.43 Hz embedded in a space
with lags k = l = 1. The straight line results from the correlation dimension
extracted in the range 0.05 < r < 0.3.
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correlation integrals of data recorded for a mean beat frequency of 4.43 Hz
are shown in Fig. 3. For each embedding dimension, the curves ln[C(m, r)]
versus ln(r) obviously present two linear ranges. The one corresponding to
the lower values of r is characteristic of the inherent noise and leads to cor-
relation exponents that increase continuously with m, ranging from about 1
for m = 1 to D2(m) > 8 for m = 10. At the opposite, the correlation
exponents extracted from the higher range of r are independent of the em-
bedding dimension. The plots of the local slope (14) versus ln(r) reported
in Fig. 4 give valuable insights on the presence of different scaling regions in
the correlation integrals. Indeed, it has been argued [26] that after the region
dominated by the noise, where D2(m) approaches the embedding dimension,
there is a region, where the local slope presents a plateau, from which the
correct correlation exponent can be estimated. So, comparison between the
correlation integrals (Fig. 3) and the local slopes (Fig. 4a) of the data mea-
sured at 4.43 Hz shows evidence that D2(m) should be extracted in the range
0.05 < r < 0.3, the linear region observed at lower values of r arising from
the noise. As concerns the fluctuations recorded at 100 Hz, the local slope
of the correlation integrals (Fig. 4b) doesn’t exhibit any flat range, so that
no correlation exponent can in principle be deduced. The double logarithmic
plot of C(m, r) nevertheless presents a linear range from which the values of
D2(m) displayed in Fig. 5 have been extracted. The correlation exponents
determined for other time series are also plotted in Fig. 5 as a function of
the embedding dimension m. As can be seen on this figure, the time series
can obviously be shared in two classes. In the case of the data measured at
100 Hz, the correlation exponents neither become constant, nor follow the
straight line D2(m) = m. This behaviour supports the conclusions deduced
from the computation of the FNNP (Fig. 2) : the fluctuations may arise
either from a stochastic process, or from the superposition of experimental
noise to a chaotic system. The second category of data leads to correlation
exponents that are nearly independent of the embedding dimension and can
safely be identified with the correlation dimension D2. It is of interest to re-
mark that the lower correlation exponents (crosses in Fig. 5) are obtained for
the data for which the percentage of false neighbours drops to zero (crosses
in Fig. 2). Regarding the outcomes presented as diamonds in Figs. 2 and 5,
those (empty symbols) whose correlation dimension is the higher also have
the higher residual FNNP (Fig. 2), but the estimation of D2(m) (filled dia-
monds) is less accurate for the longer time series, though the corresponding
percentage of false neighbours is lower. Nevertheless, for these three time
series, the presence of an underlying low-dimensional system is manifest.

4.2 Computed time series

The outcomes related in this section concern four time series calculated
from (4) by truncating the CFE (1) at qmax = 200, imax = 4, amax = 10,
and amax = 50. The embedded vectors have been constructed in the same
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Fig. 4. Local slope of the correlation integral, for data measured at (a) 4.43 Hz and
(b) 100 Hz.

way as for the experimental data, that is, with delays k = l = 1 for they
have almost no effect, and embedding dimensions varying between 1 and 10.
For all the considered time series, the FNNP that results from the applica-
tion of the criteria (8) and (9), with Ftol = 4, sharply decreases in passing
from m = 1 to m = 2. The data achieved by imposing the criteria imax and
amax lead to a percentage of false neighbours that already approaches zero
when m = 3. For this value of the embedding dimension, there still are 5 %
of false neighbours left in the case of the data computed with the less severe
restriction qmax. However, this is not the minimal FNNP, it reaches zero for
m = 5. Hence, one noticeable feature of these results, comparatively to those
obtained for the experimental fluctuations, is that the percentage of false
neighbours of all the computed time series rapidly tends towards zero.
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Fig. 5. Correlation exponents of time series recorded at four mean beat frequencies
embedded in a space with lags k = l = 1. The straight line of slope 1 is also
shown.

The results of applying (11) to the data calculated with the truncation
requirement q < qmax are shown in Fig. 6 for m = 1 - 10. A linear range is
observed at small values of r for low embedding dimensions (m < 5), but
it shrinks when m is further incremented. This linear region can be looked
on as reflecting the effect of the noise, though it is here limited to the round-
ing off errors, so that the extraction of a correlation exponent would not be
advisable. This observation is to be compared to the features of the FNNP
obtained for the same time series, which asymptotically reaches zero when
m increases. Both outcomes contradict one another and therefore raise an
important question about the origin, stochastic or deterministic, of the time
series. Such a behaviour of the correlation integrals may be attributed to the
absence of any underlying attractor. However, other chaotic time series blur-
ried by noise have been shown [24] to entail similar apparent discrepancies.

As far as the time series get with the further truncation conditions imax
and amax are concerned, the correlation integrals are in agreement with the
FNNP. Indeed, the local slope (Fig. 7) and the correlation integrals (Fig. 8)
both present a large range of values of r where no dependence upon the cor-
relation dimension is observed. Comparison between Figs. 3 and 4 on one
hand, and Figs. 7 and 8 on the other hand, evidences that in the case of
the computed data the range of r from which a proper correlation exponent
can be extracted is approximately five times larger than for the experimental
fluctuations. The correlation exponents being independent of m, they may
safely be considered as an estimation of the correlation dimension. The val-
ues derived from the different time series are D2 = 0.92, 0.99, and 0.97 for
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Fig. 6. Correlation integrals of data computed with the truncation condition
qmax = 200 embedded in a space with lags k = l = 1.

imax = 4, amax = 10, and amax = 50, respectively. However, they should be
thought of as an order of magnitude because, from a practical point of view,
a variation of about 5 % of the slope of the correlation integrals is almost
imperceptible. It is therefore difficult to ascertain that the correlation di-
mensions of the three time series are different, nor that they differ from one.
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Fig. 7. Local slopes of the correlation integrals corresponding to data calculated
with the restriction imax = 4 and embedded in a space with lags k = l = 1.
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Fig. 8. Same as Fig. 6 in the case of data computed with the further restriction
amax =10. The straight line results from the correlation dimension extracted in the
range 0.008 < r < 0.15.

5 Discussion and Conclusion

So far, the experimental and computated time series have been handled sep-
arately, and the outcomes obtained by implementing the time series analysis
methods have been discussed independently. It remains therefore to make
the connexion between both kinds of data and results. As a first step, it is
of importance to mention that the experimental fluctuations can be divided
in three categories according to their temporal comportment and Allan vari-
ance [16], which is the common technique of characterization for the frequency
noise of oscillators [27]. The time series measured at 100 Hz has the most er-
ratic appearance and leads to an Allan variance that follows a power law
τ−1/2. The fluctuations recorded for a mean beat frequency of 4.43 Hz are
characteristic of a random telegraph signal and their Allan variance also varies
as a power law, but with an exponent of 1/4. Finally, the two last time series
present an irregular behaviour and their Allan variance is almost constant.
Concerning the computed data, they also are of three kinds, corresponding
to the three truncations qmax, imax, and amax (see Sect. 2).

Turning now to the examination of the outcomes of the time series analysis
methods, one of the common features of the experimental and computed data
is that, in each case, there is only one time series for which the presence of
an underlying deterministic process doesn’t assert itself as a pertinent origin.
These are the data measured at 100 Hz and those calculated with the only
requirement q < qmax. In both cases, the absence of reliable correlation
exponents (Figs. 4–6) is in favour of a stochastic origin of the data, which
agrees with the white frequency noise indicated by the variation as τ−1/2 of
the Allan variance [27]. However, the implementation of a noise reduction
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procedure [28], especially to the experimental data, seems essential in order
to make sure that the time series analyses are not warped by noise and,
consequently, that no underlying attractor is present.

The comparison of the results obtained for the two other kinds of ex-
perimental and computed data enables likewise to highlight some correspon-
dences. The fluctuations measured at 3.3 Hz appear as having the same origin
as those recorded at 0.5 Hz. Indeed, they lead to a FNNP greater than that
of the data whose mean beat frequency is 4.43 Hz (Fig. 2), though the for-
mer time series is much longer than the latter, thus excluding a common
origin. They neither can be considered as having the same source than the
data measured at 100 Hz (Fig. 2). Finally, when compared to the time series
that has a mean beat frequency of 0.5 Hz, some similarities can be observed
in their variation with time, and the percentage of false neighbours of the
data measured at 3.3 Hz may be viewed as a curtailment, resulting from
the increase of the length of the time series, of that of the data recorded at
0.5 Hz (Fig. 2). The Allan variance of these time series being constant, and
taking into account that the Littlewood and Franel-Landau sums [16] of the
data computed with the truncation criterion amax are also constant, these
experimental and calculated time series can be thought over as originating
from a similar process. Besides, the time series recorded at 4.43 Hz and that
computed with the truncation condition i < imax are those for which the
correlation dimension is the lowest (Figs. 5 and 7). Moreover, both their Allan
variance and Franel-Landau sum vary as τ1/4 [16].

It can thus be concluded that the lowering of the mean beat frequency
is accompanied by a transition from a process whose origin, stochastic or
chaotic, has to be elucidated, to a behaviour characteristic of an underly-
ing low-dimensional deterministic system. Moreover, a comparison with the
results obtained for the computed data indicates that this transition can
be understood as an effect of the degree of filtering, which comes out as
different rational approximations of real numbers [16]. Further works have
nevertheless to be undertaken in order to check if the time series measured
at the higher mean beat frequency and computed with the less restrictive
requirement q < qmax arise from a stochastic or a chaotic process. Another
task consists in improving the correlation dimensions, with the aim to see if
their values really differ one from another and/or from one. At last, it must
be attempted to seize if the aspect of the computed time series [16] can be
considered as the attractor of the corresponding chaotic systems.
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Abstract. We define a special set, called resolution space, which corresponds to
real numbers obtained via the following resolution rule : every number greater
than a given integer a is identified with ∞. This space possesses a natural scaling
structure and dynamics. We introduce several notions as locking and transient
resonance zones, as well as unstable irrationals numbers. This space is the natural
object coming in the 1/f frequency noise problem. Special numbers as Markoff’s
irrationals are proved to play a specific role. This first criterion must be understood
as a finite resolution in space for physical systems.

We then introduce an additional resolution criterion which allows only a finite
construction of the previous space. A natural notion of fuzzy zone is defined. This
second criterion is interpreted as a finite time experiment in physics.

1 Introduction

Many physical problems involve a careful measurement of a given quantity.
For example, synchronization of oscillators is studied via a precise measure-
ment of the frequency and amplitude of a given signal. Of course, an infinite
precision measurement is impossible. This problem has little consequence in
general, but as proved in recent works ( [2], [11], [12]), a universal phenomenon
known as 1/f noise comes from an explicit dependency on resolution.

The aim of this paper is to provide an understanding of the role of a finite
resolution assumption on real numbers. We define a resolution space, image
of an approximation function Ra which takes into account the fact that ev-
ery real number greater than a given integer a is identified with ∞. In other
words, we introduce a cutoff which can be understood as a finite resolution in
space. We then construct iteratively our space via successive applications of
two elementary maps on numbers : 1/x and x+ 1. We first remark that this
construction induces a natural emergence of a scaling structure. We distin-
guish three specific zones : the first type of zone is called a locking resonance
zone. It corresponds to an attractive basin of a given rational number. The
second type of zone is a transient resonance zone. These transient zones accu-
mulate on the boundary of locking resonance zones. The third type is the set
of unstable points which corresponds to irrational numbers with a periodic
tail (so quadratic irrational numbers).
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It must be pointed out that this is not the modular group which induces
such a specific structure. Indeed, if we use the modular group in order to
construct such a resolution space, then we obtain symmetric locking reso-
nance zones with respect to rationals. But, as proved by Planat [11], such
configurations are not observed. Instead, we obtain precisely the structure
given by our definition of resolution space.

We discuss several particular phenomena as accumulation of locking res-
onance zones on irrational numbers of Markoff’s type. These numbers play a
special role in number theory and diophantine approximation [18].

A convenient representation of the space Ra can be obtained by the fol-
lowing : we represent the approximated representative of a real number. We
obtain a classical object in dynamical system’s theory : a devil’s staircase. We
introduce a natural hierarchy of locking resonance zones, following previous
works on dynamical devil’s staircase [6]. We then try to see how these locking
resonance zones are classified. We then see, that when a is not too large, we
obtain a classification which is approximately given by the modular group.

We then introduce a second resolution constraint. We allow only a finite
number n of inversions during the recursive construction of the space Ra. It
can be understood as a constraint on the time of observation. This truncation
rule induces a fuzzy zone around irrationals in Ra, where we do not know what
exactly happens.

2 Continued Fractions and Action of F2 on Q

We recall in this section classical results dealing with continued fraction ex-
pansions and rational numbers.

To any irreducible fraction p/q of Q we associate the point (p, q) of Z2

or, equivalently the line (additive subgroup) of Z2 going through (0, 0) and
(p, q) of slope q/p of equation py − qx = 0. This leads to a bijection between
Q∪{∞} and P 1(Z), the set of vector lines of Z2, which is usually defined as
the set of classes of points of Z × Z modulo the equivalence (p, q) ∼ (p′, q′)
iff there exists a ∈ Z such that (p, q) = (ap′, aq′) or (p′, q′) = (ap, aq).

Each line L in P 1(Z) is isomorphic (as an additive discrete subgroup) to
Z , and is generated by one of the two points (p, q)(−p,−q) of L verifying
gcd(p, q) = 1.

We call such points, irreducible points of Z2. We denote by I the set of
opposites irreducible points pairs {(p, q), (−p,−q)} (Fig. 1)

We thus have the following one-to-one correspondences :

Q ∪ {∞} −→ P 1(Z) −→ P
p
q +−→ L : qy − px = 0 +−→ (p, q) with gcd(p, q) = 1. (1)

The ring of 2 × 2 Z-matrices, M2(Z) acts naturally on Z2. This action
induces an action on Q by the so called Möbius transformations as follows :
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Fig. 1. Irreducible points of Z2 (gcd(p, q) = 1).

A =
(

a b
c d

)
: (p, q) +−→ (ap + bq, cp + dq)

↓ ↓
z =

p

q

A+−→ ap + bq

cp + dq
=

az + b

cz + d
.

(2)

It can be shown that A preserves P if and only if |det(A)| = 1 or equiv-
alently, A invertible in M2(Z). Thus, we consider the action of the group
GL2(Z) of invertible 2× 2 Z-matrices on Q via Möbius transformations.

Notice that GL2(Z) contains PSL2(Z) (determinant one) as a subgroup
of index two and also that, since A ∈ GL2(Z) preserves P , gcd(p, q) = 1

implies gcd(ap+bq, cp+bq) = 1 and, thus, the fraction
ap + bq

cp + dq
is irreducible.

2.1 Continued fractions and F +
2

We recall some basic results on continued fractions. We refer to Khintchine [8]
for more details.
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Let (a0, a1, . . . , an) be a finite sequence of integers with an �= 0. We denote
by [a0, . . . , ak] the finite continued fraction

a0 +
1

a1 +
1

a2 + . . . +
1
ak

. (3)

In the case of an infinite sequence, we write [a0, . . . , ak, . . . ] to denote the
associated infinite continued fraction.

Assume that each ak > 0, for k > 0, then each irrational has a unique
representation as an infinite continued fraction. Nevertheless, each rational
has two such representation given by:

[a0, . . . , ak] = [a0, . . . , ak − 1, 1] (4)

We deduce that each rational x has a unique representation as a finite
continued fraction with k odd. By the way, there also exists a unique rep-
resentation as a continued fraction of even length. Notice that this (odd)
continued fraction always gives the irreducible writing of the rational x, and
thus the continued fraction represents an irreducible pair of I.

Those continued fractions can be built by the two Möbius transformations,

A : x +→ x + 1 and I : x +→ 1/x, (5)

applied to the irreducible fraction 1/1.
The continued fraction [a0, . . . , an] is written as Aa0 ◦ I ◦ Aa1 ◦ · · · ◦ I ◦
Aan−1(1) where (1) =

(
1
1

)
. To work with unimodular (determinant one)

transformations, we represent each rational by its odd continued fraction.
Indeed, det(A) = 1 and det(I) = −1, and the odd representation has an even
number of inversions. Regrouping inversion two by two, and introducing the
tranformation B = I ◦A ◦ I, we obtain:

Lemma 1. Any positive rational number admits a unique expressions:

[a0, a1, . . . , a2n] = Aa0 ◦Ba1 ◦ · · · ◦Aa2n−1(1). (6)

The matrices A and B are:

A =
(
1 1
0 1

)
, B =

(
1 0
1 1

)
. (7)

They generate the modular group PSL2(Z) [19] of unimodular Möbius
transformations which is isomorphic to the free group of rank two F2, A and
B being two free generators. Denoting by F+2 the semi-group of words written
with positive powers of A and B, we have the following
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Corollary 1. The application of Q+∗ in F+2 defined as:

[a0, a1, ...a2n] +−→ Aa0 ◦Ba1 ◦ ... ◦Aa2n−1 (8)

is a bijection.

Moreover F+2 acts on Q by left multiplication.

This is a simple reformulation of the previous lemma. In particular, this
establishes a bijection between N∗, the set of positive numbers, and the set
of words Ai with i ≥ 0.

2.2 Geometry of continued fractions

The words Bi, with i ≥ 0, applied on 1, generate the fractions 1/n with
n ∈ N∗. Going back to the representation of irreducible fractions by points
(p, q) of Z2, with gcd(p, q) = 1, we represent these two sets as two affine half
lines, L∞ and L0 coming out of (1, 1), and of respective slope 0 and ∞.

We then let F+2 (it’s a linear group) act on Z2, and observe the images
of those two half-lines. We obtain the following Fig. 2.
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Fig. 2. A plane Farey tree

The striking facts are that it is a binary tree, T , that it is nodes are exactly
the points (p, q) with gcd(p, q) = 1, naturally associated with the irreducible
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factions p/q, and therefore indexed by Q and, moreover, that each point
(except (1, 1)), is both living on a straight branch (called cross branch) and
the root point of a new springing straight branch. Moreover, each of those
branches is exactly the image, by a uniquely determined word of F+2 , of one
of the two half lines L0 and L∞. Leaving aside the proofs of those facts, we
just give the following properties, dealing with continued fractions :

Lemma 2. If pq �= 1 is a node of T , and [a0, a1, . . . , a2n] its odd continued
fraction.

- The root of its cross branch is: [a0, a1, . . . , a2n−1, 1] if a2n > 1,
[a0, a1, . . . , a2n−2 + 1] if a2n = 1.
- The slope of this cross branch is
[0, a0, a1, . . . , a2n−1 − 1, 1] = [0, a0, a1, . . . , a2n−1] if a2n > 1,
[0, a0, a1, . . . , a2n−2] if a2n = 1.
- As a consequence, the slope of (p, q)’s springing branch is
[a0, a1, . . . , a2n − 1] if a2n > 1.

Proof. We admitted that the cross branch of (p, q), call it C, is exactly the
image of L0 or L∞ by a word of F+2 .

We suppose that C is the image of L∞, the horizontal half line, by the
word M . The root of C is then M(1), and p/q is M(l) = M ◦ Al−1(1) with
l ∈ L0 � N (and l > 1 since (p, q) is not the root of C).

First, M doesn’t end with an A. If it did, call N its subword obtained by
cutting the last A. N(1) would belong to C and M(1) wouldn’t be the root.

Second, l = an. Indeed, p/q = M ◦Al−1(1) = Aa0 ◦Ba1 ◦ · · · ◦Aa2n−1(1),
and, with 1 we obtain l = an.

As a consequence M = Aa0 ◦ Ba1 ◦ · · · ◦ Ba2n−1 and M(1) = Aa0 ◦ Ba1 ◦
· · · ◦Ba2n−1 ◦A0(1) = [a0, a1, . . . , a2n−1, 1] which establishes the first point.

The case C is the image of L0 by M is treated the same way, replacing B
by A. (and M ends with a B).

We skip to the second point which becomes clearer if we notice that L∞ is
parallel to the horizontal axe, going through (0, 0) and (1, 0) = B−1((1, 1)).
(0, 0) is fixed by M (it’s linear), and M((1, 0)) = M ◦ B−1((1, 1)) = Aa0 ◦
Ba1 ◦ · · · ◦Ba2n−1−1(1, 1).

Therefore, the slope of the image of the horizontal line (and thus of B)
is the rational associated to M((1, 0)) which is [a0, a1, . . . , a2n−1 − 1, 1] as
announced.

For the third point, just think the springing branch as a cross branch of
an appropriated rational. Notice that this branch will then be an image of
L0, and the same proof should be done, replacing B by A and (1, 0) by (0, 1).

This tree, which is inspired by the Farey tree on the hyperbolic disk,
gives us a good description of Q, for continued fractions calculus (but very
complex if we wish to translate, in this language, multiplication by 2!). The
first point of the last lemma, for example, shows that we can obtain the



Geometry and Dynamics of Numbers 311

successive truncated fractions of a given one, just by sliding down the tree
from springing point to another.

The two next ones gives us another information: take a rational p/q =
[a0, a1, . . . , a2n], and his two sons, going up in the tree: x1 = [a0, a1, . . . , a2n+
1] and x2 = [a0, a1, . . . , a2n − 1, 1, 1]. The two springing branches of those
points are then parallels of slope q/p. Those branches (with the two segments
[p/q, x1] and [p/q, x2] delimit a domain D(p/q) of the plane which will never
be crossed by any other branch of the tree.

Theses domains pave the plane. (look Fig. 2). The only vector line out of
(0,0) which, once entered, never leaves it, is the line L(p/q) : py− qx = 0, as-
sociated to p/q as previously. Thus the only point of P1(Z) = Q “contained”
in D(p/q) is p/q, and we can say, in this sense, that it’s wideness is 0. We’ll
see in the next section, that those domains open when we restrict the set of
available words of F+2 , truncating the tree.

3 Arithmetic Resolution Space

The upper construction gives a description of R+ ∪ {∞}, with infinite res-
olution. The rational being associated to finite words of F+2 , and irrational
(and ∞) to infinite words. We now give a way to introduce finite resolution,
keeping consistency with continued fractions. This question arises naturally
in some physical problems.

Let a be a positive integer. We assume that the following finite resolution
criterion is satisfied: every real number x ≥ a is identified with ∞. This

means that the only words of F+2 , of type Ai =
(
1 i
0 1

)
, we tolerate are the

words Ai with i < a. The other words being mapped to the limit word A∞.
Impose the same resolution condition near 0, mapping the words Bi =(

1 0
i 1

)
to B∞, for any i > a. We want those resolution conditions to be

imposed near any rational of Q+. Let F+2 (a) be the set of words of F+2
containing no subword Ai or Bi with i > a, and define the map :

Ra : R+ ∪ {∞} −→ R+ ∪ {∞}
M(1) +−→ Ma(1) (9)

where Ma is the word obtained from M , by replacing in M the first word Ai

or Bi with i > a by, respectively A∞ and B∞. Notice many words are fixed
by Ra, as for example, the word infinite ABABA.... The tree corresponding
to F+2 (a) is given in Fig. 3. Observe that the domains of any node of this
tree (in the sense defined in previous section) are more open and the numbers
associated to the vector lines “contained” in it are sent, by Ra to the rational
corresponding to the node.
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Fig. 3. The truncated tree (for a = 2)

The approximation function Ra defined above has a rather complicated
structure with many autosimilarities. It leads, by iterations, to a dynamical
system on numbers. Ra is represented below (Fig. 4 ).

0
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0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Fig. 4. Approximation function (for a = 3).

We can characterize the different horizontal landings of this function:
locking resonance zones, which are basins of attraction where all real num-
bers are approximated by the rational defining this zone, itself being fixed
(locked) by Ra;
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transient resonance zones which accumulate on each side of any locking zone,
but only possess a semi-basin of attraction (we say also that they are semi-
stable). The numbers in these transient zones (including p/q) only reach their
locking rational after several iterations of Ra.

These landings can be built on an iterative way, as images of the two
fundamental attractive zones: [a,∞[→ ∞ and ]0, 1/a] → 0, by the maps of
F+2 (a), written as iterations of A and B.
Recall A : x +→ x+1 and B : x +→ 1/x +→ 1+1/x +→ 1/(1+1/x) = x/(x+1).

For example A(]0, 1/a] → 0) gives ]1, 1 + 1/a] → 1 and B([a,∞[→ ∞)
gives [a/(a + 1) = 1 − 1/(a + 1), 1[→ 1, which builds the locking basin of 1.
The border of these zones will later be called ν+(1) and ν−(1). An analogous
construction of the transient zones on the left the locking zone of 1 is given
later in Sect. 4.2:

By iterating the previous maps (at most a consecutive A and B are tol-
erated), these dynamics build the resolution function Ra of Fig. 4. The two
types of dynamics (transient and locking) can also be observed by a close
look at the function error of resolution: |Ra(x)− x| given on Fig. 5.
We define the resolution space in a, to be the image of R+ ∪∞ by Ra.
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0.5

0.6

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fig. 5. Resolution error, a = 3.

We can now state the following theorem :

Theorem 1. Let a ∈ N be given, the resolution set Im(Ra) has the following
structure :
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(i) locking rational p/q: corresponding to a locking interval, with rational
boundaries ν+(p/q) and ν−(p/q) (with p/q ∈]ν−(p/q), ν+(p/q)[) such that
for all x ∈ [ν−(p/q), ν+(p/q)], the resolution of x is Ra(x) = p/q.

(ii) transient rational p/q: corresponding to a transient interval with bound-
aries ]ν(p/q), p/q[ such that, for all x ∈]p/q, ν(p/q)], the resolution of x is
Ra(x) = p/q. (and its not the case for any x ∈]0, p/q]

(iii) irrational obtained as accumulation of locking resonance zones.
(iv) irrational obtained as accumulation of transient and locking resonance

zones.

As already pointed out in the introduction, this set occurs in 1/f fre-
quency noise. Next section deals with some particular properties of this space.

3.1 An analogue of the dynamical devil’s staircase
in number theory

The devil’s staircase is a common object in dynamical system theory. Briefly,
synchronization can be studied via one parameter family of diffeomorphism
of the circle [13]. One can take the Arnold’s model [3] defined by fω(θ) =
θ + ω + ε sin(θ) mod. 2π for θ ∈ S1. When ε = 0, we have a rigid rotation of
frequency ω. When ε �= 0, we can study the behavior of fω via the rotation
number ρ(ω), which corresponds to a mean frequency associated to the system
(see [5], [6]). Periodic behaviors of the system are given by rational rotation
numbers. One can prove that, each rational number p/q gives rise to an
interval in ω of constant rotation number, of size εq (see [4], [6]). If we
picture the value of the rotation number versus ω for a fixed value of ε, then
we obtain a devil’s staircase [6].

In this case, a natural hierarchy of zones in ω of constant rational fre-
quency numbers is given by Farey’s numbers [6]. Indeed, as the length in
ω of the p/q zone is of order εq, these zones are classified following Farey’s
hierarchy.

What’s about our devil’s staircase ? First, when a is not to large, we obtain
for locking zones of resonance in the unit interval [0, 1], a hierarchy (with
respect to the length of these zones) which can be approximately described
via the modular group. The typical value of a where we can take the modular
group to classify locking resonance zones is a = 4. When a is greater than 4,
locking resonance zones are not at all classified by the modular group.

We emphasize that the resolution space corresponding to physical and ex-
perimental results about 1/f noise is generated by our approach. This means
that the modular group is not the natural object associated to resolution. El-
ementaries maps as A and I do not define a group at all. Resolution induces
specific indempotent properties like Ap = Aa for all p ≥ a.
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4 Behavior of Continued Fractions with Bounded
Partial Quotients

In this section we characterize the various dynamical behaviors of numbers,
under iterations of Ra, using their continued fractions.

4.1 On the boundary of locking resonances

Let x = p/q be a locked number. Following Planat [11], we denote by ν+(x)
(resp. ν−(x)), the rational number which defines the right (resp. left) bound-
ary of the locking zone of x. We have the following elementary properties:

Lemma 3. For any locked number, we have

νσ(x + 1) = 1 + νσ(x), σ = ±,
νσ(1/x) = 1/ν−σ(x), (10)

These functional equations allow us to define νσ, σ = ± for all rational
numbers.

Lemma 4. The zone of locking resonance for a given rational
p

q
= [a0, a1, . . . , ak],

is determined by the following boundary numbers

ν = [a0, . . . , ak, a],
β = [a0, . . . , ak − 1, 1, a]. (11)

Proof. We have

ν+([a0, . . . , ak]) = ν+(a0 +
1

[a1, . . . , ak]
) = a0 + ν+(

1
[a1, . . . , ak]

. (12)

Then,

ν+([a0, . . . , ak]) = a0 +
1

ν−([a1, . . . , ak])
, (13)

and, by induction we obtain

ν+([a0, . . . , ak]) = [a0, . . . , ak−1, νσ(ak)], (14)

where σ = + if k is odd and − otherwise.
As ν+(ak) = ak +

1
a
, and ν−(ak) = ak − 1+

1

1 +
1
a

, we obtain either ν or

β for νσ([a0, . . . , ak]), σ = ±.
This result deals with diophantine approximation via classical relation

between continued fractions and best approximation of real numbers. We
point out that from the physical view point, continued fraction and resolution
arguments come from diophantine approximation problems (see [8]).
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4.2 Dynamics of transient resonance zones

BAa−1([1 − 1/(a + 1), 1[→ 1) = B([a − 1 + a/(a + 1), a[→ a) = [B(a − 1 +
a/(a + 1)), a/(a + 1)[→ a/(a + 1), which sticks on the left of [a/(a + 1) =
1− 1/(a + 1), 1[→ 1 attractive zone.

Transient resonance zones can be obtained via a simple recursive formula.
We first construct the primary transient resonance zone, given by the partial
locking resonance zone: take the locking interval [a/a + 1, 1], and make x +→
x + a− 1.

We obtain the interval [a−1/a+1, a]. By taking the image under x +→ 1/x
of this interval, we obtain the primary resonance zone.

We then produce an infinite sequence of transient resonance zones by
applying the following rule on each generation of transient resonances: do
x +→ x + 1, x +→ 1/x, x +→ x + a− 1 and x +→ 1/x (see Fig. 6).
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0.34 0.36 0.38 0.4 0.42 0.44

Fig. 6. Accumulation of locking and transient resonances, near
√
3− 1 for a = 3.

Then, we must iterate the following map

P =
(

1 1
a− 1 a

)
, (15)

on the primary transient resonance.
We can easily prove that this map is hyperbolic. By iteration, it converges

toward a fixed point of Pn. Precisely, we have

Lemma 5. By iteration of P we obtain an irrational number such that its
tails, at a given depth, becomes periodic of period 2, given by

[. . . , 1, a− 1, 1, a− 1, 1, a− 1, 1, a− 1, . . . ]. (16)
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We then obtain a quadratic irrational number.

These points are called unstable. Let x be a fixed point of P (i.e. P (x) =
x). Then, x is solution of (a−1)x2+(a−1)x−1 = 0. For example, for a = 2,

we obtain x =
−1 +√

5
2

which is the golden number. The stability of this

fixed point is given by the sign of P ′(x) =
1

((a− 1)x + a)2
. Since P ′(x) > 0,

this point is unstable from the dynamical viewpoint.
Assume that we take a small random perturbation of this unstable point.

Then, we can go, with equal chance, toward two different locking zone of
resonance. Then, if a system depends on such a number, we will have a high
sensibility to small perturbation in this zone, which is not the case for locking
or transient zone of resonances.

4.3 Accumulation of locking resonance zones

With respect to the previous lemma on the behavior of transient resonance
zones under iteration of the map P , we can try to do the same for locking
zone of resonances.

The basic idea is to look at a recursive construction of the rationals defin-
ing locking resonance zones. We restrict ourselves these rationals in the in-
terval [0, 1].

At the first step, they are obtained by 1/x from the integer 2, 3, . . . , a−1.
We then obtain at step one the following set of primary resonances

R1 = {1/(a− 1), . . . , 1/3, 1/2}. (17)

To obtain the second generation of locking resonances, we must do a trans-
lation of the form x +→ x + t where 1 ≤ t ≤ a − 1. Then, we take 1/x. The
elementary map is defined by

At =
(
0 1
1 t

)
. (18)

Let us first see what happens when we iterate a given number from R1
by At, which of course is the most elementary kind of resonance that we can
produce from R1 (as one must, in general, allow different combination of At
in the iterate). We then have the following accumulation lemma.

Lemma 6. (accumulation lemma) Any rational 1/x, 2 ≥ x ≤ a − 1 of R1
converges toward an irrational number of the following form

t̄ = [t, t, . . . , t, . . . ]. (19)
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At each generation of resonances, the action of At put a new t in the
sequence defining the continued fraction of the previous generation step.

For example, take 1/x, which can be written [0, x]. By A1, we obtain
1/(1 + 1/x) which takes the form [0, 1, x]. By induction, the i-generation of
resonances is given [0, 1, . . . , 1, x] with i times 1 in the continued fraction.
Then, when i →∞, we obtain an irrational number of the form given in the
lemma. This irrational number is the golden number. Precisely, the golden
number is the best approximated irrational number by rational. It is defined

by
−1 +√

5
2

and its continued fraction expansion is given by [1, . . . , 1, . . . ].
So, by induction of A1, we obtain the set of poorly approximated irrational
number by rational (in the continued fraction sense).

Let x be an irrational as in the lemma. It is a fixed point of At. Then, it

is a solution of x2 + tx − 1 = 0, which are given by x =
−t +

√
t2 + 4

2
. The

stability of this point is given by the sign of A′t(x). As A′t(x) = −x2, this
point is stable.

The previous lemma can be generalized for other inductive scheme. We
must allow combination like A1◦Aa−1◦A2 etc., in order to obtain a complete
description of the accumulation limit set. Nevertheless, no new phenomenon
occurs for these kind of combination, and they are all, more or less, relevant
of the “basic” accumulation lemma.

4.4 Approximation property

We shall say that ξ is approximable by rational to order n if there is a K(ξ),
depending only on ξ, for which∣∣∣∣pq − ξ

∣∣∣∣ < K(ξ)
qn

, (20)

has an infinity of solutions.
A rational is approximable to order 1 and to no higher order. A quadratic

irrational is approximable to order 2 and to no higher order.

Theorem 2. An irrational real number with bounded partial quotients is ap-
proximable to order 2 and to no higher order.

A conjecture asserts that: an irrational real number with bounded partial
quotients is either quadratic or transcendental. We refer to [1] for more details
and to [14] for an example of transcendental number with bounded partial
quotients.

By theorem 2, two irrational real numbers with bounded partial quotients
are distinguished by their constant of approximation, K(ξ). It is possible to
describe the spectrum of this constant. We obtain the so called Markoff’s
spectrum. We refer to [18] and [16] for more details.
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4.5 Length of locking resonance zones

The previous section allow us to compute the size of the locking resonance
zone for each rational. We do this by induction on the generation of locking
resonant rationals. We will see, in the last section, that these length play an
important role in physics for the understanding of 1/f noise fluctuation.

We define the length function as

l(x) = ν+(x)− ν−(x). (21)

We have

Lemma 7. The length function satisfies

l(x + 1) = l(x),

l(1/x) =
l(x)

ν+(x)ν−(x)
.

(22)
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Fig. 7. Length of locking resonance zones

The preceding picture (Fig.7)leads us to the following problem: is this
figure symmetric with respect to x = 1/2 ? If you look at this picture you
can see on the right a little part which has no symmetric counterpart. Never-
theless, all the rest seems symmetric. The following lemma gives a complete
description of this phenomenon.

First, we prove that the length function is symmetric with respect to
x = 1/2.
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Lemma 8. For x ∈ [2,∞], we have

l

(
x− 1

x

)
= l

(
1
x

)
. (23)

Proof. For all x ∈ [1,∞[, we have via lemmas 3, 7

νσ(x− 1) = νσ(x)− 1,
l(x− 1) = l(x). (24)

We note that
x

x− 1
= 1 +

1
x− 1

, then

l

(
x− 1

x

)
=

l(x/x− 1)
ν+(x/x− 1)ν−(x/x− 1)

=
l(1 + (1/x− 1))

ν+(1 + (1/x− 1))ν−(1 + (1/x− 1))
.

(25)

We obtain

l(x− 1/x) = l(1/x− 1)
1

ν+(1/x− 1)ν−(1/x− 1)

= l(x− 1)
1

ν+(x− 1)ν−(x− 1)
1

ν+(1/x− 1)ν−(1/x− 1)
,

(26)

and finally,

l(x− 1/x) = l(x− 1)
1

(ν+(x− 1) + 1)(ν−(x− 1) + 1)
=

l(x)
ν+(x)ν−(x)

= l(1/x).

(27)

So the length function is symmetric with respect to x = 1/2. What about
the disymmetry of the picture ?

First, we state a technical lemma, which gives the continued fraction
expansion of 1− x from that of x.

Lemma 9. If x = [0, a1, a2, . . . ] with a1 ≥ 2, then we have 1−x = [0, 1, a1−
1, a2, . . . ].

Proof. If x = [0, a1, a2, . . . ], then 1/x = [a1, a2, . . . ]. We note that
1

1− x
=

1 +
1

1
x − 1

. Then, we obtain

1
1− x

= [1, a1 − 1, a2, . . . ]. (28)

Hence, by inversion, we have

1− x = [0, 1, a1 − 1, a2, . . . ]. (29)
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We are now able to specify points of [1/2, 1] with no symmetric. We have

Lemma 10. If x ∈ [1/2, 1] with its continued fraction expansion of the form
x = [0, 1, a1, a2, . . . ], with a1 = amax − 1, then 1− x belongs to the transient
zone of 0.

Proof. If a1 = amax − 1, then 1− x = [0, amax, a2, . . . ] and by the truncation
rule, this point is identified with 0. Then, x, which possess a locking zone of
resonance, has no symmetric in Ramax .

By lemma 10, all the locked rational in the interval defined by [0, 1, amax−
1] and [0, 1, amax− 1, 1, amax− 1, . . . possess no symmetric counterpart. This
explain the existence of a single zone on the right which breaks the symmetry.

We emphasize that this property reflects the fact that the modular group
is not adapted to classify locking zone of resonances.

5 Truncated Resolution Space

Despite our first resolution constraint, our space contains irrational numbers.
From a physical viewpoint, this is not at all realistic, and one need to intro-
duce a second natural constraint in order to provide a space which can really
occur in physics.

The basic idea is the following. When we construct our resolution space
by induction, we have a natural notion of generation of resonances (as used
for example in the section about the accumulation of locking resonance zone).
More or less, this notion of generation counts the number n of invertion that
we allow for the construction of locking resonance zone. From the physical
view point, this must be understood as a finite time observation. Then trun-
cation in a is a space resolution and truncation in n is a time resolution.

Let us consider an integer n. We restrict ourselves to the structure of the
resolution space on [0, 1].

Definition 1. The truncated resolution space of order n, denoted by Rna , is
the set of rational number in [0, 1] obtained by iteration of A : x +→ x+1 and
I : x +→ 1/x on the set R1 = {1/(a− 1), . . . , 1/2} with only n iterations of I.
Precisely, for each rational of R1 we allow map of the form

I ◦As1 ◦ I ◦As2 ◦ I ◦As3 ◦ I ◦ · · · ◦Asn , (30)

with 1 ≤ si ≤ a− 1.

We then obtain the following picture for a = 3 and n = 2.
So, there exists fuzzy zone between lockings and transient resonances zones

in which we do not know what happens really, as we have not get any infor-
mation on this part via our construction. Finite resolution in time induces
natural fuzzy zones where one cannot say what the system really do.
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Fig. 8. Truncated resolution space.
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Diophantine Conditions
and Real or Complex Brjuno Functions
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Abstract. The continued fraction expansion of the real number x = a0 + x0,
a0 ∈ ZZ, is given by 0 ≤ xn < 1, x−1

n = an+1 + xn+1, an+1 ∈ IN, for n ≥ 0.
The Brjuno function is then B(x) =

∑∞
n=0 x0x1 . . . xn−1 ln(x−1

n ), and the number
x satisfies the Brjuno diophantine condition whenever B(x) is bounded. Invariant
circles under a complex rotation persist when the map is analytically perturbed, if
and only if the rotation number satisfies the Brjuno condition, and the same holds
for invariant circles in the semi-standard and standard map cases. In this lecture, we
will review some properties of the Brjuno function, and give some generalisations
related to familiar diophantine conditions. The Brjuno function is highly singular
and takes value +∞ on a dense set including rationals. We present a regularisation
leading to a complex function holomorphic in the upper half plane. Its imaginary
part tends to the Brjuno function on the real axis, the real part remaining bounded,
and we also indicate its transformation under the modular group.

1 Hamiltonian Chaos and the Standard Map

The simplest non-trivial model for Hamiltonian chaos is a two dimensional
real map, called the “Standard Map”. It has been introduced more or less
independently by Chirikov and Taylor [1,2]. The occurrence of chaos was dis-
cussed by Greene [3] who displayed many numerical results on this model,
which describes a simplified version of the non–linear coupling of two oscil-
lators. It occurs naturally in many domains of physics, including celestial
mechanics, classical quasiperiodic systems, quantum quasicrystals, adiabatic
response in non–linear mechanics, magnetic toroidal configurations in plasma
physics, non–linear electronic devices, and many others.

The Standard Map is a map from the cylinder T× IR to itself, defined as

(
θ, r
) +→ (θ′, r′) = (θ + r +

K

2π
sin(2πθ) (mod 1) , r +

K

2π
sin(2πθ)

)
.

(1)

Note that the second variable can also be taken modulo 1, in which case we
get a map T2 → T2. The above map can be written in two equivalent forms:

M. Planat (Ed.): LNP 550, pp. 324–342, 2000.
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• Hamiltonian form

r′ − r =
K

2π
sin(2πθ) , θ′ − θ = r′ , (2)

• Lagrangian form, where one considers now the twice iterated map, that
is (θ, r)→ (θ′, r′)→ (θ′′, r′′), so that

θ′′ − 2θ′ + θ =
K

2π
sin(2πθ′) , (3)

and for the n-th iterated map one gets

θn+1 − 2θn + θn−1 =
K

2π
sin(2πθn) . (4)

This last equation is sometimes called the Frenkel-Kontorova model [4] which
describes equilibrium positions of a chain of material points placed in a peri-
odic potential and submitted to an harmonic elastic force between two neigh-
bouring points.

If K = 0, we get the so-called “twist-map”, which gives

rn+1 = rn = r0 = ρ = constant , θn+1 = θ0 + nρ (mod 1) , (5)

after n iterations. This map is nothing but a rotation of angle 2πρ–we say
that the rotation number is ρ. The orbits are all transverse to the axis of the
cylinder. They are made of a finite number of points (and therefore discrete)
if ρ is rational, and they are dense on transverse circles if ρ is irrational. The
cylinder is sliced along orbits at irrational values of r, which are intertwined
with discrete orbits at rational values of r. The question is: in which sense is
such a pattern stable under perturbations, that is here when K �= 0?

Among the orbits which are dense in a curve wrapped around the cylinder,
particularly interesting are the orbits which will persist under perturbation,
in particular because they separate the space into domains which do not
communicate. It is known that when K is large (for example K > 4/3, see
[5]), such orbits do not exist, and on the other hand, when K is small, some
of the irrational orbits persist, depending on arithmetical properties of the
rotation number. For perturbed twist maps, we define the rotation number
as limn→∞ n−1θn, where (θn, rn) is the n-th iterated map obtained from (1).

Other kinds of invariant curves may occur, attached to elliptic periodic
orbits. For instance if K > 0 is sufficiently small, the point (1/2, 0) is an
elliptic fixed point. Due to KAM Theorem (see [6] for a review), there exist
homotopically trivial invariant curves on the cylinder winding around this
fixed point, which form the so–called elliptic islands. We shall not consider
here the problem of such orbits, although there existence is very important
in connection with ergodic theory. Indeed one expects chaotic behaviour for
K large, but the persistence of elliptic islands could prevent the map from
being ergodic.
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2 The Critical Constants

For the standard map, we consider now the homotopically non–trivial invari-
ant curves i.e. wrapped around the cylinder. A natural way to look for their
existence is to replace the angular variable θ by the new variable φ ∈ T

θ = φ + u(φ,K, ρ) , r = ρ + u(φ,K, ρ)− u(φ− ρ,K, ρ) . (6)

With the condition 1 + ∂u/∂φ > 0, it would describe a curve around the
cylinder, on which the map is expressed as φ′ = φ + ρ, when φ describes T
for K and ρ fixed. We say that (6) expresses on the curve the conjugacy of
the map to a rotation. The existence of a function u(φ,K, ρ), analytic in the
variable φ, insures the existence of an analytic invariant curve with rotation
number ρ. We are interested to determine the critical constant Kc(ρ) as being
the largest possible value of K for which such an analytic function u exists.
Of course, one could consider regularity constraints weaker than analyticity,
leading to other critical constants. We look for a perturbation expansion of
the function u, and we follow the notations of [7]. From the standard map
we get from (6)

u(φ + ρ,K, ρ)− 2u(φ,K, ρ) + u(φ− ρ,K, ρ) =
K

2π
sin(2π(φ + u(φ,K, ρ))

(7)

For k ≥ 1, we have

u(k)(φ + ρ, ρ)− 2u(k)(φ, ρ) + u(k)(φ− ρ, ρ)

=
1
2π

sin
(
2πφ + 2πu(φ,K, ρ)

)∣∣∣∣
k−1

, (8)

where in the right hand side, one keeps only the terms of order k − 1 in the
expansion on powers of K. We use now the Fourier series expansion on φ,
that is u(k)(φ, ρ) =

∑
ν∈Z u

(k)
ν (ρ)e2iπνφ, and we see that the coefficient of

e2iπνφ in the left hand side of (8) is 2(cos(2πνρ) − 1)u(k)ν (ρ). Therefore (8)
allows a recursive computation of the Fourier coefficients u

(k)
ν (ρ), and we get

for u(k)(φ, ρ) expressions as trigonometric polynomials in φ. However terms
of the kind 2(cos(2πνρ) − 1) occur in the denominators along the steps of
the recursion. Such factors are called “small divisors”, some of them vanish
when ρ is rational, and may become arbitrarily small when ν becomes large,
for irrational ρ. Now let K̃c(ρ) be the minimum over φ of the convergence
radius of the expansion

u(φ,K, ρ) =
∞∑
k=1

Kku(k)(φ, ρ) . (9)

For ρ rational, (8) cannot be solved, and we set K̃c(ρ) = 0. For irrational
values of ρ, Berretti and Gentile [8] were able to control K̃c(ρ) using the
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Brjuno function B(ρ) which is a number theoretic function which will define
in the following Section 4. More precisely, there exists C > 0 such that, for
any irrational ρ,∣∣∣ln((K̃c(ρ))−1)− 2B(ρ)

∣∣∣ < C . (10)

The functions K̃c(ρ) and e−2B(ρ) both vanish on all rationals, but the previous
equation shows that the ratio K̃c(ρ)/e−2B(ρ) remains uniformly bounded at
every irrationals. The fact that this ratio remains bounded is in itself amazing,
but it recalls earlier and now classical results by Yoccoz [9] on the linearisation
of holomorphic maps. We shall see later that we may have even better results
in the framework of holormorphic maps.

The determination of the radius of convergence in (9) is not the whole
story. It is possible that the function u may be analytically continued for real
values of φ and for K > K̃c(ρ) real. Thus we would have another critical
constant Kc(ρ) such that we still have real analytic curves for K̃c(ρ) < K <
Kc(ρ) real. The numerical results [10] seem to indicate that this is indeed the
case: see [11] for a detailed discussion of this issue both from the numerical
and the analytical points of view, which also uses results of [12,13]. The
definitive answer is not known to us today, although we are led to expect
that the function B(ρ) plays a central role in the determination of Kc(ρ) (see
also Davie [14]).

3 Complex Analytic Maps

The problems of the critical constant is better understood in the case of the
complex analytic maps. We have already seen in (10) that the critical constant
K̃c(ρ) of the complexified version of the standard map is controlled by the
Brjuno function. A simpler example is the “Semi-standard Map”, which is a
two dimensional complex map on the cylinder, closely related to the standard
map (1) : to get the semi-standard map, just replace in (1) the sine function
sin(2πθ) by its positive frequency part (1/2i) exp(2iπθ). The procedure to get
analytic invariant curves proceeds in a completely similar way as Equations
(6) to (9), and it was proven that in this case [15,16], the critical constant
Kssm(ρ) defined in a same way as above, fulfils as in (10)∣∣ln ((Kssm(ρ))−1

)− 2B(ρ)
∣∣ < C . (11)

The numerical results (especially the figure 16) in ref. [16] provide more. Not
only the ratio Kssm(ρ))/e−2B(ρ) is bounded on irrationals, but it is extend-
able to a continuous function on [0, 1], bounded below and above by positive
constants. This result is amazing if one remember that both Kssm(ρ)) and
e−2B(ρ) vanish at all rationals. Therefore the Brjuno function B(ρ) is a good
model to represent the singular behavior of ln

(
(Kssm(ρ))−1

)
.
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The Brjuno function was introduced by Yoccoz [9] in the apparently sim-
pler problem of the linearisation of complex holomorphic maps around their
fixed points. This is a more than one century old problem (see [17] for a nice
review), which we can state as follows. Let f(z) be a holomorphic map such
that f(0) = 0, f ′(0) = e2iπρ. Is it possible to conjugate the map f to its
linear part? This means that we look for a function h, holomorphic in a disk
of radius Rf , such that h(0) = 0, h′(0) = 1, and f(h(z)) = h(ze2iπρ). Note
that such a function h, if it exists, is unique. In this case, the function f
is said to admit a Siegel disk of radius Rf . The Siegel disk is a topological
disk with conformal radius Rf , since it is the image through the normalised
conformal map h of the disk |z| < Rf .

We quote now the classical results on this question [17]. i) If ρ is rational,
there is no disk, that is Rf = 0. ii) If ρ is irrational and satisfies a (strong)
Liouville condition, we still have Rf = 0. iii) If ρ is a diophantine irrational
(see Section 5 below), then there exists a Siegel disk and Rf > 0, more
precisely this happens when B(ρ) is finite. iv) If B(ρ) = +∞, then that there
exist functions f such that Rf = 0. Indeed Yoccoz [9] proved the following:
define R(ρ) as the smallest radius of the Siegel disks Rf obtained when f
varies in the compact family of all univalent maps on the unit disk such that
f(0) = 0, and f ′(0) = e2iπρ. Then we have∣∣ln ((R(ρ))−1

)−B(ρ)
∣∣ < C . (12)

Now consider the family of quadratic polynomial P2(z) = e2iπρ(z − z2), and
call R2(ρ) the radius of the Siegel disk associated to it. Observe first that,
through the rescaling z → e−2iπρR×z, then P2 is transformed in e2iπρz−Rz2.
In the rescaled variable, we see that R2 is the maximum value of the constant
R for which a circle with conformal radius one is persistant. Therefore R2(ρ)
is the critical constant adapted to the present case, and this leads to the
analogies between (10), or its equivalent in the real case, and (12).

Here again, the numerical results (now the figure 6) in ref. [16] bring
some continuity properties. Not only the ratio R2(ρ))/e−B(ρ) is bounded on
irrationals, but it is extendable to a continuous function on [0, 1], bounded
below and above by positive constants. Therefore the Brjuno function B(ρ)
is again a good model to represent the singular behavior of ln

(
(R2(ρ))−1

)
.

In our work [18] which started from these observations, we give arguments
which strongly support the conjecture that the ratio R2(ρ))/e−B(ρ) is not
only continuous but satifies a Hölder continuity condition with exponent 1/2.
More precisely, the Brjuno function displays the universal singular behaviour
(up to some Hölder- 12 continuous function) of the critical functions occuring
in small divisors holomorphic problems in dimension one.

The use of the Brjuno function was somewhat implicit in the work of
Buric et al. [19], where they attempted to find representations of the critical
constants by what they called modular smoothing. Singular functions of the
same type occured in MacKay [20] in relation to the Brjuno condition.
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It is nevertheless useful to recall here briefly one of the steps, called renor-
malisation, which plays a special role in Yoccoz’s argument, and will appear to
be crucial in understanding the fine regularity properties of ratios of the type
R2(ρ))/e−B(ρ). For this purpose, we follow [17], and we we consider first a ro-
tation of angle 2πρ, with 0 ≤ ρ < 1, that is z → e2iπρz, acting in an open disk
of radius Rρ centered at the origin in the complex plane. We need an arbitrary
point a, such that |a| = Rρ, and for simplicity we take the real point a = Rρ.
Let a′ = e2iπρRρ its image. Now, consider the angular sector bounded by the
lines 0a and 0a′, namely ∆ρ = { z | 0 ≤ arg z < 2πρ , |z| < Rρ}, the line
0a′ being excluded. Consider the orbit made of the successive iterated points
zn, n ≥ 1 starting from z0 ∈ ∆ρ, and let zq the first of these points which also
belong to ∆ρ. The map z0 → zq is thus the first return map in the sector. We
have (2π)−1(arg zq) = (2π)−1(arg z0)+qρ−1. We now take in the sector the
variable u such that its complex conjugate u = z

1
ρ , where now u belongs to a

disk of radius R
1
ρ
ρ . For the values u0 and uq, corresponding to z0 and zq, we

have (2π)−1(arg uq) = (2π)−1(arg u0)−q+ 1
ρ (mod 1) = (2π)−1(arg u0)+ 1

ρ .
The original map which acted in a disk of radius Rρ, leads in the new “renor-
malised variable” u, to a rotation with rotation number 1

ρ , acting in a disk
with radius R(1/ρ), such that lnRρ = ρ lnR(1/ρ).

This construction extends to the non linear perturbed case, for example
P2(ρ, z) = e2iπρ(z − z2), with a lot of complications. Suppose that there is a
Siegel disk for P2(ρ, z). In this disk, there are conformal coordinates on which
the maps is exactly a rotation of angle 2πρ, and on these coordinates we apply
the linear renormalisation. The problem is then to give an interpretation of
the renormalised coordinates u which we obtain. It appears that there exist a
holomorphic map in the variable u with rotation number ρ−1, which admits
a Siegel disk, with conformal radius R̃(1/ρ) such that lnRρ − ρ ln R̃(1/ρ) = 0.
However, this map is not a polynomial with degree 2. This led Yoccoz to
extend the problem to the compact family of univalent map on the unit
disk with rotation number ρ, and he has considered the minimum R(ρ) of
the radius of the Siegel disk taken over this family of maps. The result is two
modifications to the relation lnRρ−ρ lnR(1/ρ) = 0 obtained in the linear case.
First due to the minimisation procedure, the best one could get is a positive
uniform upper bound for this expression instead of zero. Second, there is a
special difficulty when ρ goes to zero. In this case the Siegel disk is strongly
distorted, since there is an other fixed point which tends to zero when ρ goes
to zero. The comparison between the linear and the non linear case becomes
unjustified in this limit. Yoccoz proved that the result is an additional loga-
rithmic term in the estimate, so that we only get that lnRρ−ρ lnR(1/ρ)− ln ρ
is bounded. It is therefore natural to compare the function − lnR(ρ) (as well
as − lnR2(ρ)) to the solution of the equation B(ρ) − ρ lnB(1/ρ) + ln ρ = 0
which we will see, is nothing else than the Brjuno function.
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4 Continued Fractions and the Brjuno Function

We first give a somewhat unusual definition of the continued fraction expan-
sion sometimes called “Japanese continued fractions” [21]. Let α be a fixed
real number such that 1

2 ≤ α ≤ 1. Then, given the starting number x, the
coefficients an and εn are recursively uniquely defined by the conditions

x = a0 + ε0x0, and ∀n ≥ 0, x−1n = an+1 + εn+1xn+1 , (13)

with ∀n ≥ 0, α − 1 ≤ εnxn < α. We define the modified integer part [x]α
and the modified fractional part {x}α as follows,

[x]α = [x− α + 1]1 and {x}α = {x− α + 1}1 + α− 1 , (14)

where [x]1 and {x}1 are the usual integer and fractional parts of x (so that
0 ≤ {x}1 < 1). With these notations, we can rewrite (13) as

a0 = [x]α, ε0x0 = {x}α, and,
an+1 = [x−1n ]α, εn+1xn+1 = {x−1n }α,∀n > 0 . (15)

Therefore the xn are generated by iterating the function Aα(x) =
∣∣{x−1}α∣∣,

that is ∀n ≥ 0, xn+1 = Aα(xn) =
∣∣{x−1n }α

∣∣ = ∣∣x−1n − [x−1n ]α
∣∣. A more de-

tailed description states that the map Aα is made of the following branches

branch k+ : Aα(x) =
1
x
− k for

1
k + α

< x ≤ 1
k

, (16a)

branch k− : Aα(x) = k − 1
x

for
1
k

< x ≤ 1
k + α− 1

. (16b)

When 1
2 < α ≤ 1, the function Aα maps the interval [0, α) to itself, whereas

when α = 1
2 , it maps the interval [0, α] to itself. In both cases, it is convenient

to set Aα(0) = 0, and we get a map which is infinitely differentiable by pieces,
and the points where it is not differentiable accumulate to 0. Now x and the
reduced fraction pn/qn admit the following representation

x = a0 +
ε0

a1 +
ε1

a2 +
.. . +

εn−1
an + εnxn

,

pn
qn

= a0 +
ε0

a1 +
ε1

a2 +
.. . +

εn−1
an

. (17)

As long as the xn’s do not vanish, we have

x =
pn + pn−1εnxn
qn + qn−1εnxn

, xn = (−εn)
pn − xqn

pn−1 − xqn−1
, (18)
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and the recursion relations

pn = anpn−1 + εn−1qn−2 , p0 = a0 , p−1 = 1 , (19a)
qn = anqn−1 + εn−1qn−2 , q0 = 1 , q−1 = 0 , (19b)

so that we get 0 < q0 ≤ q1 < q2 < . . . < qn < qn+1 < . . . . We also define

βn = x0x1 · · ·xn = (−1)nε0ε1 · · · εn(qnx− pn) , (20)

and we have
1

1 + α
≤ βnqn+1 =

qn+1
qn+1 + εn+1qnxn+1

≤ 1
α

. (21)

Now there exist λ(α), with 0 < λ(α) < 1, and positive constants C1 and C2,
such that[18]

βn < C1λ(α)n , qn > C2λ(α)−n . (22)

Indeed we have

for
√
5− 1
2

< α ≤ 1 , λ(α) = λ(1) =
√
5− 1
2

= 0.618... , (23a)

and for
1
2
≤ α ≤

√
5− 1
2

, λ(α) = λ

(
1
2

)
=
√
2− 1 = 0.414... . (23b)

When xn=0 for some n, and xm �= 0 for m < n, then we have x = pn/qn
which is rational, and we say that the fraction stops at order n (with our
conventions, we have xm = 0,∀n ≥ m). Conversely, if x is rational, the
continued fraction expansion stops at some finite order n. For α = 1, we get
the classical Gauss continued fraction expansion for which all signs εn = +1,
and for α = 1/2, we have the continued fraction to the nearest integer. Note
that when α �= 1, the results of equations (23a) and (23b) are not obvious.
For details, and in particular for the extension to others values of α, with
0 ≤ α < 1

2 , see [18,22].
Given a positive real function f on (0, 1), the Brjuno series B

(α)
f (x) is the

sum (which can be infinite) of the series with positive terms

B
(α)
f (x) =

∞∑
n=0

βn−1f(xn)

= f(x0) + x0f(x1) + . . . + x0x1 · · ·xn−1f(xn) + . . . , (24)

where 12 ≤ α ≤ 1, and for k ≥ 0, xk defined in Eq. (13) or (15). As mentioned
above, when x is rational, we have xn = 0 for some n, and we use xm = 0 for
m ≥ n, The following results are easily obtained from the definitions

B
(α)
f (x) = B

(α)
f (x + 1) , (25a)

B
(α)
f (x) = xB

(α)
f

(
1
x

)
+ f(x) for 0 < x < α , (25b)

B
(α)
f (x) = B

(α)
f (−x) for 0 < x ≤ 1− α . (25c)
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In particular, B
( 12 )
f (x) is an even function. More surprising is the following

result [18] : in the α = 1 case, for B
(±)
f (x) = 1

2 (B
(1)
f (x) ± B

(1)
f (−x)) which

are the even and odd parts of B
(1)
f (x), we have for 0 < x ≤ 1

2 ,

B
(−)
f (x) =

1
2

(
f(x)− f(1− x)− (1− x)f

(
x

1− x

))
, (26a)

B
(+)
f (x) = xB

(+)
f

(
1
x

)
+

1
2
G(x) , with (26b)

G(x) = f(x) + f(1− x) + (1− x)f
(

x

1− x

)
+ 2xB

(−)
f

(
1
x

)
. (26c)

In order to prove the previous equations, we use Equations (23a–b) and the
succession of transformations

−x → 1− x → 1
1− x

→ 1
1− x

− 1 =
x

1− x
→ 1− x

x
=

1
x
− 1→ 1

x
→ x ,

which provides the requested relations between B(x) and B(−x).
Now, it is convenient to introduce the following specific notations:
i) In B

(α)
f (x), when α = 1, we omit the superscript (α), and when α = 1

2 ,

we replace the superscript (α) by e, so that Bf (x) = B
(1)
f (x) and Bef (x) =

B
(1/2)
f (x) respectively.
ii) We omit the subscript f when f(x) = − ln(x) = ln(x−1), so that

B(α)(x) = B
(α)
− ln(x), B(x) = B

(1)
− ln(x) and Be(x) = B

(1/2)
− ln (x) respectively.

We will call B(x) the Brjuno function, which has been mentioned above in
Sects. 2 and 3. We have

B(x)=
∞∑
n=0

βn−1ln
(
x−1n
)

=− ln(x0)− x0 ln(x1) + . . .− x0x1 · · ·xn−1 ln(xn)− . . . , (27)

where the xn are obtained from (13) using α = 1 (Gaussian case), whereas
Be(x) is given by the same equation (27) with xn obtained from (13) using
α = 1

2 (continued fraction to the nearest neighbour). Both functions B(x)
and Be(x) are 1-periodic, and take value +∞ for x rational. From (25a), the
odd part of B(x) is given for 0 ≤ x ≤ 1

2 by B−(x) = 1
2x(ln(x

−1−1)), which is
continuous (and even Hölder continuous for any exponent σ < 1). Moreover,
Be(x) is even, and it has been proven [18] that the difference Be(x)−B+(x)
is not only bounded, but continuous, and even Hölder continuous for expo-
nent 1

2 . This refines a more general statement [18,22] which says that the
differences B

(α)
ln −B(x) are bounded over the irrationals.

The numerical computation of B(x) and Be(x) is delicate, due to the
instabilities of the continued fraction expansion. However, it is very easy to
compute their values when the continued fraction expansion is periodic, that
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is when x is an irrational quadratic number. This applies to noble numbers,
in which case the xn are constant after a certain order.

5 The Brjuno Series and Diophantine conditions

A real number is said to be a Brjuno number if and only if B(x) is finite,
and we also say that x satisfies the Brjuno diophantine condition. Brjuno
numbers are irrationals and real numbers satisfying the classical diophantine
conditions (which we recall below) are Brjuno numbers. In [18], we show that
for 1

2 ≤ α ≤ 1, B(α)(x) is finite if and only if x is a Brjuno number. More
precisely, the proof says that for any α ∈ [0, 12 ], the difference |B(α)(x)−B(x)|
is bounded over irrational values of x. We also show that for α = 1, the
difference |B(x) −∑∞n=0 q−1n ln(qn+1)| is bounded over irrational values of
x, so that we recover the original definition of the Brjuno numbers [23]: x
is a Brjuno number if and only if

∑∞
n=0 q−1n ln(qn+1) is bounded over the

irrational. One can see [18,22] that such a definition of the Brjuno numbers
does not depend of the particular value of α used to compute the qn.

We now report the usual definition [6] of the diophantine conditions :
we say that x is an irrational diophantine number of order τ ≥ 0 (and we
write x ∈ C(τ)), if there exists c > 0 such that for any integers p and q,
such that q > 0, we have |x− p/q| ≥ cq−2−τ . Some classical facts need to be
recalled here [24]. First, for any p and q such that 0 < q < qn+1, we have
|qx − p| ≥ |qnx − pn|, where pn/qn is the Gaussian reduced fraction to x.
Therefore, in order to have x ∈ C(τ), it is sufficient to check that for any
n > 0, |x− pn/qn| ≥ cq−2−τn . Second, Liouville’s classical theorem asserts
that algebraic numbers of degree n belong to x ∈ C(n− 2). Moreover Roth’s
theorem shows that all algebraic numbers belong to C(τ), for all τ > 0.
Finally, for an arbitrary irrational, and any n > 0, we have (qnqn+1)−1 ≤
|x− pn/qn| ≤ q−2n . Using (21) for α = 1, we get an equivalent characterisation
of the diophantine conditions: x ∈ C(τ) if and only if there exists a constant
c > 0 such that βn ≥ c β1+τn−1 for any n > 0.

Now we introduce for ν > 0, the Brjuno series B{ν}(x) ≡ Bx−ν (x) for the
fonctions f(x) = x−ν (still using α = 1),

B{ν}(x) =
∞∑
n=0

βn−1(x)x−νn =
∞∑
n=0

βn−1

(
βn

βn−1

)−ν
=
∞∑
n=0

β1+νn−1(x)β
−ν
n (x) .

(28)

Using (21) one gets

2−ν
∞∑
n=0

q−1−νn |qnx− pn|−ν ≤ B{ν}(x) ≤
∞∑
n=0

q−1−νn |qnx− pn|−ν . (29)

The series B{ν}(x) converges if and only if the series
∑∞
n=0 q−1−νn |qnx−pn|−ν

converges, that is if the series
∑∞
n=0 q−1−2νn |x− (pn/qn)|−ν also converges.
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As a consequence, if B{ν}(x) < ∞, then q−1−2νn |x− (pn/qn)|−ν is bounded,
and x ∈ C(1/ν). Conversely, assume τ ≥ 0, and x ∈ C(τ), then we have

B{ν}(x) ≤ c−ν
∞∑
n=0

q−1+τνn . (30)

Using bounds in (22), we get the following statement: If x ∈ C(τ), then for
any ν such that τ < ν−1, B{ν}(x) < ∞. Therefore, there is a relation between
the diophantine conditions C(τ), and the convergence of the Brjuno series for
f(x) = x−ν : the set of irrationals x such that B{ν}(x) ≡ Bx−ν (x) is bounded,
is contained in C(1/ν), and contains C(−ε + 1/ν), for any 0 < ε ≤ 1/ν.
In some sense, the Brjuno conditions is related to the limiting case ν = 0,
and in particular, x ∈ C(τ) for τ > 0 implies B(x) < ∞, that is x is a
Brjuno number. Using a more general function f , positive on (0, 1), and
monotoneously decreasing in the vicinity of zero, we can introduce a wide
family of conditions Bf (x) < +∞. The diophantine conditions obtained will
be mainly governed by the singular behavior of f around zero. A power
law behaviour would simulate the usual conditions, whereas a logarithmic
behaviour would generate a condition similar to the Brjuno condition. Other
interesting examples would be obtained by taking functions f of the form
x−ν | log(x)|µ, x−ν | log(x)|µ| log(| log x|)|σ, and so one.

6 The Brjuno Operator

We will introduce now some functional analysis in order to solve Equations
(25a–c). For fixed 1

2 ≤ α ≤ 1, let us consider the operator T(α), acting on
locally Lebesgue integrable functions f on the real line, which verify

f(x) = f(x + 1) for almost everyx ∈ IR , (31a)
f(x) = f(−x) for almost everyx ∈ (0, 1− α) . (31b)

The operator is defined by

(T(α)f)(x) = xf

(
1
x

)
, if x ∈ (0, α) . (32)

It is understood that the function T(α)f is completed outside (0, α) by impos-
ing on T(α)f the same parity and periodicity conditions which are expressed
for f in the above equations (31a–b). The functional equations (25a–c) can
then be written in the form(

1− T(α)
)
B
(α)
f = f . (33)

This suggests studying the operator T(α) on the Banach spaces

Xα,p = {f : IR→ IR | f verifies (31a–b) , f ∈ Lp(0, α)} (34)
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endowed with the norm of Lp(0, α), namely

||f ||α,p =
(∫ α

0
|f(x)|p dx

)1/p
, (35)

for p ∈ [1,∞]. Note that one could also use Lp(0, 1), instead of Lp(0, α), and
that if p < p′ one has the obvious inclusion Xα,p′ ⊂ Xα,p. If (1 − T(α)) is
invertible in the considered space, then (25a–c) have a unique solution for
B
(α)
f , provided that the f in the right hand side of (25b) also belongs to the

space. The invertibility property is given by the following theorem, which
states in particular that the spectral radius of T(α) is strictly smaller than 1.
Theorem. T(α) is a linear bounded operator from Xα,p into itself for all
α ∈ [ 12 , 1] and for all p ∈ [1,∞]. Its spectral radius on Xα,p is bounded by
the constant λ(α) of Equation (22), and therefore 1− T(α) is invertible.
For the proof, see [18]. We will just observe here that the result is immediate
in the p =∞ case. Indeed,

(Tn(α)f)(x) = βn−1(x)f(xn) = βn−1(x)(f ◦Anα)(x) , (36)

where the map Aα is defined above (see (16a–b)). Therefore

||Tn(α)f ||α,∞ ≤ supx(βn−1(x))||f ||α,p ≤ cλ(α)n−1||f ||α,p (37)

and one gets the theorem (for p infinite) by taking the 1/n–th root of both
sides. For the other values of p, it is convenient to make use of the mea-
sure which is invariant under transformation by the map Aα, instead of the
Lebesgue measure. An immediate consequence of the theorem, is that if we
take f(x) = ln(x), for 0 < x < α, then f ∈ Xα,p, for all finite p and therefore
we also have B(α) ∈ Xα,p for all finite p.

However, we have a stronger property in the α = 1
2 case. Here, we set

again Te ≡ T(1/2). In this case, the logarithm belongs also to the set X∗ ⊂
Xα=1/2,p=1, made of even, periodic (with period 1) functions belonging to
the so-called “BMO-space”. In this space, f has bounded mean oscillation,
more precisely the following semi-norm ||f ||∗ is bounded, with

||f ||∗ = sup
I

1
|I|
∫
I

|f − fI |dx , (38)

where the mean value of f over I is fI = |I|−1 ∫
I
|f − fI |dx, and the sup

is taken over all possible intervals I with length |I| smaller than one. The
BMO space has remarkable properties. First it is contained in all Lp spaces
for p finite, and it contains the L∞ space, second it is the space adequate to
describe functions having singular behaviour not worse than logarithmic, but
around every point in a dense set of the real line, and third, it has remarkable
properties connected to the harmonic conjugacy transformation [25,18].

In [18,26], we have shown that 1−Te ≡ 1−T(1/2) is invertible in X∗, and
therefore that Be ≡ B(1/2) ∈ X∗. Since |Bα −Be| is bounded for 12 ≤ α ≤ 1,
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we have the unexpected consequence that all B(α) for 1
2 ≤ α ≤ 1, also have

the Bounded Mean Oscillation property, although it cannot be shown directly
through the properties of 1− T(α).

The BMO property obtained for the Brjuno function in the real case, was
one of our motivations to consider the complexification procedure which we
will describe in the last Section of this paper [27].

7 Application to Hölder–continuous Functions

In this Section, we will consider only the case α = 1
2 . In this case the map

Aα ≡ A1/2 is continuous on the interval (0, 12 ]. The functional equation for
the Brjuno function Be for α = 1/2 is

[(1− Te)Be](x) = − log x , (39)

for all x ∈ (0, 1/2), complemented with the condition that Be is even and
periodic. We suppose that the right hand side of this equation is pertubed,
by an additional term f , which is less singular than the logarithmic function,
and we want to study the singular properties of the perturbed solution. Since
the equation is linear, we only need to consider the action on f of Te and
(1−Te)−1, which we will conveniently rename the Brjuno operatorBe. We will
consider even and periodic functions f which are continuous. It is sufficient
to know the value of f on [0, 1/2], so we assume f ∈ C0[0,1/2]. One can check
that Tf is also continuous provided we set Tf(0) = 0. We need now the usual
Hölder’s type semi-norms for continuous functions : let f ∈ C0[0,1/2], then we
define the Hölder’s γ-norm as

|f |γ = sup
0≤x<y≤1/2

|f(x)− f(y)|
|x− y|γ , (40)

with 0 < γ ≤ 1. This is a seminorm since it vanishes on constant functions,
so that we introduce the norm:

||f ||γ = A|f |γ + B|f |∞ , (41)

where |f |∞ is the L∞ norm of f , and A and B are positive constants which
we can choose arbitrarily, provided that they do not vanish. We say that
f ∈ Cγ , if f ∈ C0[0,1/2] and |f |γ is finite. We now have:
Proposition. Te is a bounded operator in Cγ , for the norm ||f ||γ , when
0 < γ ≤ 1/2, provided B/A is large enough: if B/A > (2γ − 2−γ)−1, the
norm of Te corresponding to the norm (41) satisfies ||Te||γ ≤ 2(2γ−1) ≤ 1.
Therefore for 0 < γ < 1/2, Te is a contraction, and 1− Te is invertible.

We need the following Lemma
Lemma. Let 0 < y < x ≤ 1/2, and define x1 and y1 by the following
conditions

y =
1

n + y1
, x =

1
m + x1

, (42)
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with n ≥ 2 and m ≥ 2, and −1/2 ≤ x1 < 1/2 and −1/2 ≤ y1 < 1/2, then we
have

||x1| − |y1|| ≤ |x− y|
|x||y| . (43)

Proof of the Lemma. Since y < x, we have n−m > x1 − y1 > −1. therefore
n ≥ m. Let n−m = p ≥ 0. We have x−y = xy(p+y1−x1). So that we need
to prove ||x1| − |y1|| ≤ |p + y1 − x1|. This is obvious when p = 0. We always
have ||x1| − |y1|| ≤ 1/2, so the required inequality also holds when p ≥ 2. In
the remaining case p = 1, we set η = sign(y1) and ε = sign(x1), and we need
to check that ||x1|−|y1|| ≤ |1+η|y1|−ε|x1||. Still because the left hand side is
smaller or equal to 1/2, this last inequality is not obvious only when η = −1
and ε = +1. It therefore remains to show that ||x1| − |y1|| ≤ |1− |y1| − |x1||.
Setting u = 1/2 − |x1| and v = 1/2 − |y1|, the last inequality is equivalent
to |1 − v/u| ≤ |1 + v/u|, which is readily checked since u/v is real and non-
negative.
Proof of the Proposition. Let 0 < y < x ≤ 1/2, and x1 and y1 as in the
preceding lemma. We have

|Tef(x)− Tef(y)| = |xf(1/x)− yf(1/y)| = |xf(|x1|)− yf(|y1|)| (44a)
≤ |x− y||f(|x1|)|+ |y||f(|x1|)− f(|y1|)| (44b)
≤ |x− y||f |∞ + |y||f |γ ||x1| − |y1||γ (44c)

≤ |x− y||f |∞ + |f |γ |x− y|γ
|x|γ |y|γ−1 , (44d)

where we have used f ∈ Cγ , and the Lemma. Therefore

|Tef(x)− Tef(y)|
|x− y|γ ≤ |x− y|1−γ |f |∞ +

( |y|
|x|
)γ

|y|1−2γ |f |γ (45a)

≤ (1/2)1−γ |f |∞ + (1/2)1−2γ |f |γ , (45b)

since 0 < y < x ≤ 1/2, and γ ≤ 1/2. For y = 0, the right hand side can be
replaced by its first term (1/2)1−γ |f |∞, and the above inequality extends to
the case where y vanishes, so that

|Tef |γ ≤ Kγ(f) = 2γ−1|f |∞ + 22γ−1|f |γ . (46)

For the norm, we get

||Tef ||γ = A|Tef |γ + B|Tef |∞ (47a)
≤ 22γ−1

[
A|f |γ + (2−2γB + 2−γA)|f |∞

]
, (47b)

≤ 2(2γ−1)||f ||γ , (47c)

provided 2−2γB + 2−γA ≤ B, that is A/B ≤ 2γ − 2−γ which completes the
proof. The above proposition has two obvious consequences
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• Since Cγ ⊂ Cγ
′
whenever γ′ ≤ γ, we have

f ∈ Cγ and γ ≥ 1/2 =⇒ Tef ∈ C1/2 (48a)
f ∈ Cγ and γ ≥ γ0 , γ0 ≤ 1/2 =⇒ Tef ∈ Cγ0 (48b)

• When γ < 1/2, Te is a contraction on Cγ . Therefore 1− Te is invertible
and Be =

∑∞
0 (Te)n = (1− Te)−1 preserves Cγ , and we have

f ∈ Cγ and 0 < γ < 1/2 =⇒ Bef ∈ Cγ (49a)
f ∈ C1/2 =⇒ Bef ∈ Cγ ,∀γ such that 0 < γ < 1/2 . (49b)

We have reproduced here the proof of [26], because it is essentially elementary.
In fact we have a slightly better result for Be than for Te, as shown in the
next proposition, which shows that the C1/2 property is effectively reached.
Its proof [18,26] is too difficult to be reproduced here. We have
Proposition. If f ∈ Cγ , and γ > 1/2, then Bef ∈ C1/2.

The Brjuno function Be which we have studied in the previous section
is nothing else than BeZ, where Z is equal to minus the logarithmic fonction
restricted to [0, 1/2]. When made even and periodic, this function is not
continuous. Suppose that we perturb Z by a function with enough regularity
properties (for example C1 or C1/2+ε), the change in BeZ will be continuous
and even in C1/2, that is Hölder- 12 continuous. In this sense, the ‘most singular
part’ of the Brjuno function is stable or ‘universal’, roughly speaking modulo
Hölder- 12 continuous contributions. As noticed at the end of Section 5 above,
we can use either Be ≡ B(1/2) or B ≡ B(1) since a similar argument starting
from (26a–c) shows that their difference is also Hölder- 12 continuous [18].

This provides a frame to understand the properties of the critical con-
stants K of the Sections 2 and 3 above. We assume that the singularity
comes from the renormalisation equation (1 − T e)K = Z + f , and not from
additional singular behaviour coming from f in the right-hand side. If it
would exist, such an additional singular behaviour would require a further
physical interpretation. This argument, which is usual in the renormalisation
analysis of singularities, was one of the motivation for our previous work
[18]. The renormalisation equation allows naturally to conjecture that the
difference between the Brjuno function Be, and the logarithm of the various
critical constants (multiplied by a suitable coefficient), is continuous and even
Hölder- 12 continuous. As an example, we conjecture that the ratio of e−B and
the radius of the Siegel disk of the quadratic polynomial, is an Hölder- 12 con-
tinuous function of the rotation number. These conjectures are in agreement
with the numerical results [16,10].

8 The Complexification of the Brjuno Function

We consider here the case α = 1, and we want to associate to the function
f in X1,2, a function Φ, holomorphic in the upper half plane, such that
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ImΦ → Bf when z goes to the real axis. Since ReΦ is associated to the
harmonic conjugate of f , we expect to find better boundedness properties
when f has the BMO property. We will here describe our procedure, and
report the results [27].

We associate to f a function F (z) holomorphic in C\[0, 1], and vanishing
at infinity, as follows

F (z) =
i

π

∫ 1

o

f(x)
x− z

dx . (50)

For x real, we have ImF (x ± iε) = ±f(x) for x ∈ [0, 1], and ImF (x) = 0
for x �∈ [0, 1]. We will be particularly interested in the case f(z) = ln(z), in
which case we get F (z) = −π−1Li2(1/z), where Li2 is the classical dilogaritm
function [28]. Now we set

Φ(z) = lim
N→∞

+N∑
−N

F (z + n) , (51)

and we get a function Φ holomorphic in the upper-half plane IH+, periodic
with a real period equal to one, and such that for x real, ImF (x±iε) = ±f(x).
In fact the previous equation defines a pair on functions Φ±, respectively
holomorphic in the upper or lower half plane IH±, so that the natural frame
in which our procedure takes place is the frame of complex hyperfunctions,
which we will not consider here [27].

We consider now the action of T , with (Tf)(x) = xf(1/x) if 0 ≤ x < 1,
f and Tf being complemented using periodicity. Using the above correspon-
dence f +→ Tf , a correspondence F +→ TF is induced on holomorphic func-
tions in C\[0, 1], vanishing at infinity. We get

(TF )(z) = −z
∞∑
m=1

(
F

(
1
z
−m

)
− F (−m)

)
+
∞∑
m=1

F ′(−m) . (52)

In fact, TF is essentially −z
∑∞
m=1 F

(
z−1 −m

)
, up to an affine additive

correction, which could be determined by the vanishing condition at infinity.
If f is associated to F as above, the solution Bf (x) (for α = 1) of (25a–c)

is associated to the series

Bf (z) =
∑
ZZ

∞∑
m=0

(TnF (z)) , (53)

where we use the notation
∑

ZZ F for Σ+∞
n=−∞F (z + n) understood as the

symmetric summation (51) to insure convergence.
It is now interesting to display the link between (53) and the modular

group GL(2,ZZ). Let g =
(

a b
c d

)
∈ GL(2,ZZ), which mean a, b, c, d ∈ ZZ,
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εg = ad− bc = ±1. To g we associate the following group action on functions
holomorphic on C\[0, 1], that is g +→ LgF , with

(
LgF )(z) = (a− cz)

{
F

(
dz − b

a− cz

)
− F

(
−d

c

)}
− εg

c
F ′
(
−d

c

)
. (54)

Let M+ ⊂ GL(2,ZZ) be the multiplicative monoid generated by the unit

matrix, and the set of matrices
(
0 1
1 m

)
, for m ≥ 1 integer. The monoid

M+ ⊂ GL(2,ZZ) can also be defined as the set of matrices including identity

and the matrices
(

a b
c d

)
∈ GL(2,ZZ) such that first, d ≥ c ≥ a ≥ 0, and

second, d ≥ b ≥ a ≥ 0. In GL(2,ZZ) there is a unique product decomposition,
namely ∀g ∈ GL(2,ZZ) there exist a unique set of three matrices k, m and
h, with g = kmh, and m ∈ M+, k ∈ Z, where Z is the translation subgroup

of matrices
(
1 n
0 1

)
, n ∈ ZZ, and h ∈ H, where h is the order eight sugroup

of GL(2,ZZ) made of the matrices
(

ε 0
0 ε′

)
, and

(
0 ε
ε′ 0

)
, with ε = ±1 and

ε′ = ±1.
Now (53) is rewritten as

Bf (z) =
∑
k∈Z

∑
g∈M+

(
L(hg)F

)
(z) . (55)

The double sum over g and k amounts to a sum over a part of the full modular
group (here one over eight). The contribution over the seven other possible
parts would be −Bf (z), ±Bf (z−1), ±Bf (−z), and Bf (−z−1).

We will now summarize the results:
i) The sums in (55) converge in the open upper half plane as long as f is
in L1(0, 1) which insures that F is holomorphic in C\[0, 1], and vanishes at
infinity.
ii) When f is in Lp(0, 1), p finite, then Bf is in the Hardy IHp space.
iii) If f is such that F has bounded real part, then the same holds for Bf .
iv) For f(x) = ln(x), and F (z) = −π−1Li2(1/z), we get the complexified
Brjuno function, B, holomorphic in the upper half plane, vanishing at +i∞.
When z goes to a real number in a non-tangential way, we have the following
limits when ε > 0 goes to zero : the real part ReB(x+iε) has a bounded limit
for any real x. This limit is continuous at all irrationals and has a decreasing
jump of π/q at each rational p/q. When x is a Brjuno number, ImB(x + iε)
goes to the Brjuno function B(x).

The limit properties of the complex Brjuno function on the real axis are
characteristic of functions f having a logarithmic singularity aroud zero. Al-
though the boundedness of the real part reminds the BMO property of the
real Brjuno function, it is in fact a stronger property. This is one more re-
markable feature of this function. We are convinced that the interpretation
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of the properties of the Brjuno function in terms of the modular group is
promising. On the other hand, we can hope to find an interpretation of the
complexified version of rotation numbers analogous with the usual interpre-
tation of complex frequencies in terms of damped oscillations, but this is
another story.
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Abstract. Is it possible to mathematically define words like: randomness, chaos,
disorder, irregularity, complexity, or like: determinism, order, periodicity, regular-
ity, simplicity? Are there concepts in between (quasi-periodicity)? How do these
concepts fit objects from physics, e.g., glasses, crystals, quasi-crystals? We try to
describe and compare various notions used in mathematics.

1 A Few “Principles”

In what follows we restrict our study to infinite sequences taking their values
in a finite set (sometimes called an alphabet). To deal with more complicated
objects (e.g., functions) is possible by “hacking” them and restricting oneself
to the “caricature” of the object: if an object is random, all its caricatures
should also be random.

We begin with a few principles.

• No general definition of randomness is given in mathematics. Only defi-
nitions suitable for a given purpose can be found.

• No algorithm should produce “randomness”. (Algorithm here means:
finite sequence of instructions taken from a finite set of possible in-
structions.) Algorithms could only produce quasi-randomness or pseudo-
randomness.

• No “context-free” algorithm applied to a random sequence should give
a deterministic sequence. (Context-free here means the algorithm does
not depend on the sequence. For example taking every second term of a
random sequence should give a random sequence. Of course taking each 1
out of a binary sequence will not give a random sequence: this algorithm
is not context-free.)

We now mention the question of “representation”. To take an example
from number theory, let τ = (1 +

√
5)/2 = 1.618 . . . be the golden ratio.

Asking whether this number is random can mean various things, since this
number can be represented in various ways.
� allouche@bri.fr
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• Is it true that, for any positive integer Z, any finite block of Z symbols
taken from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} occurs in the decimal expan-
sion of τ with frequency 1/10P? (In other words, is the real number τ
normal in base 10?)

• What can be said about the formal power series 1+6X+X2+8X3+ . . .
obtained from the decimal digits of τ (for X = 1/10 the numerical value
of this series is τ)? For example is it transcendental over Q(X)? Another
question could be: let p be a prime number; is the series 1 + 6X +X2 +
8X3 + . . . mod p transcendental over Z/pZ(X)?

• Is the sequence of partial quotients in the continued fraction expan-
sion of τ “random”? The reader knows that the answer is no, since
τ = [1, 1, . . . , 1, . . . ].

• What can be said about the expansion of τ in base b, where b �= 10,
or even b non-integer, for example... b = τ? (The seminal papers for
expansions in non-integer bases are [31] and [28].)

2 Algebraic Randomness

We first discuss algebraic notions.

2.1 Block complexity

A first intuition is that a sequence is more complicated if many different finite
blocks occur in it. This leads to the following definition.

Definition 2. The (block-)complexity of a sequence with values in a finite
alphabet is the function k −→ p(k), where p(k) is the number of (different)
blocks of length k that occur in the sequence.

Remark 5. If a sequence takes its values in a d-letter alphabet, its complexity
satisfies 1 ≤ p(k) ≤ dk, for all k ≥ 1. As easily seen, if a sequence is ultimately
periodic (i.e., periodic from some point on) then its complexity is ultimately
constant. Moreover a “random” sequence should have maximal complexity
p(k) = dk, for all k ≥ 1, since all possible blocks should occur in the sequence.
The converse is not true: consider the Champernowne number obtained by
concatenating in order the base 10 expansions of the natural integers:

0.1234567891011121314 . . .

The sequence of digits of this number has complexity 10k, but it cannot be
considered as random.

The following result is due to Morse and Hedlund (see [26] and [27]).
It shows that a sequence with very low complexity is very far from being
random.
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Proposition 1. If the complexity of a sequence satisfies

∃k ≥ 1, p(k) ≤ k,

then the sequence is ultimately periodic. (Hence its complexity must be ulti-
mately constant.)

Remark 6. The “simplest” non-periodic sequences should thus satisfy the
inequality p(k) ≥ k + 1, for all k ≥ 1. One might even ask whether it is
possible to find sequences with complexity p(k) = k + 1 for all k ≥ 1. Such
sequences should take their values in a two-letter alphabet (take k = 1). It
was proved by Morse and Hedlund [27] that these sequences, called Sturmian
sequences, are exactly the sequences obtained by cutting the infinite two-
dimensional lattice Z2 by a straight line with irrational slope, and coding
its intersections with horizontal lines and with vertical lines by two different
letters. Note that Sturmian sequences are sometimes considered as a one-
dimensional model for quasi-crystals.

To know more about complexity of sequences, the reader can look at the
survey [3]. Of interest is also [20].

2.2 Some algebraic “algorithms”

Instead of trying to define randomness, we may try to define non-randomness.
In particular sequences generated by “algorithms” should be considered non-
random. We briefly describe below two kinds of algorithms.

Morphisms and finite automata

We first describe three morphisms.

• Define the map µ by µ(0) = 01, µ(1) = 10, and µ applied to a word (i.e.,
a string of symbols 0 and 1) by the concatenation in order of the images
by µ of the letters of the word (e.g., µ(001) := µ(0)µ(0)µ(1) = 010110).
Hence µ is a morphism of the monoid {0, 1}∗ that consists of all words on
{0, 1} (including the empty word) equipped with the concatenation rule.
This morphism has constant length: the images of single letters all have
same length (here length 2). Now iterating µ starting from 0 gives

0
0 1
0 1 1 0
0 1 1 0 1 0 0 1
...
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If we iterate an infinite number of times, we obtain an infinite sequence
that is a fixed point of the morphism µ (extended to infinite words)

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 . . .

This sequence is called the Prouhet-Thue-Morse sequence (see [29], [37],
[38], and [25]). It occurs in many mathematical questions that seem un-
related, see [7].

• Define as above the morphism τ on {0, 1}∗ by τ(0) = 01, τ(1) = 0. This
morphism does not have constant length. Iterating τ yields the Fibonacci
sequence

0 1 0 0 1 0 1 0 0 1 0 . . .

It can be proved that this sequence is Sturmian, with a slope equal to
the golden ratio. This sequence is the most popular example of a one-
dimensional quasi-crystal.

• Define the morphism σ on the alphabet {a, b, c, d} by

σ(a) = ab
σ(b) = ac
σ(c) = db
σ(d) = dc

Let ϕ the map from {a, b, c, d} to {−1,+1} defined by

σ(a) = +1
σ(b) = +1
σ(c) = −1
σ(d) = −1

Iterating σ as above yields a fixed point on {a, b, c, d, }

a b a c a b d b a b a c d c a c . . .

Taking the (letterwise) image of this sequence by the map ϕ gives the
Rudin-Shapiro sequence ([36] and [32])

+ + + − + + − + + + + − − − + − . . .

Such a construction (letterwise image of an infinite fixed point of a mor-
phism of length 2 gives what is called a 2-automatic sequence. We will
see below that the Rudin-Shapiro sequence though clearly “determinis-
tic” has some aspects of a random sequence.

The reader can find more details on d-automatic sequences, as well as the
finite automata formalism, in [15], [17], [1], [6], and [35].
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Cellular automata

We will not give here a general definition of cellular automata. The study of
two-dimensional patterns generated by the time evolution of one-dimensional
linear cellular automata is a very popular subject. The reader can, for ex-
ample, look at [4] and the references therein. A typical example is given by
the Pascal triangle reduced modulo an integer m ≥ 2. For d = 2, the time
evolution pattern is closely related to the Sierpinsky triangle. It begins with

1
1 1
1 0 1
1 1 1 1
1 0 0 0 1
1 1 0 0 1 1
1 0 1 0 1 0 1
1 1 1 1 1 1 1 1
. . .

Some links between these algorithms

The complexity function of a sequence generated by a morphism cannot be
very large. We have the following results, (see [15] and [18]).

Theorem 1 (Cobham). The complexity of a d-automatic sequence satisfies
p(k) = O(k).

Theorem 2 (Ehrenfeucht, Lee, and Rozenberg). The complexity of a
sequence that is a fixed point of any morphism (not necessarily of constant
length) satisfies p(k) = O(k2).

Some links exist between automatic sequences and sequences generated by
linear cellular automata as above. We first indicate that it is possible to
define morphisms of constant length d and their fixed points (hence also d-
automatic sequences as letterwise images of such fixed points) in dimension
2 (see for example [33], and [34]). Define e.g., the two-dimensional morphism
θ on {0, 1} by

θ(0) =
0 1
1 0 θ(1) =

1 0
0 1
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The map θ can be extended to a “morphism”, and iterated starting from 0,
yielding

θ(0) =
0 1
1 0 θ2(0) =

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

θ3(0) =

0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0

. . .

The reader may iterate, starting from 1, the map γ defined by

γ(0) =
0 0
0 0 γ(1) =

1 0
1 1

and guess the following result (see [19], and [5]).

Theorem 3. Let m and d be two integers ≥ 2. The Pascal triangle reduced
modulo m is a two-dimensional d-automatic sequence if and only if there
exists a prime number p such that m and d are both powers of p.

2.3 Algebraicity and transcendence

Does algebraicity or transcendence of a number tell something about the
complexity of its expansion? As we said in the first section, we have to be
precise on what is meant by “expansion”.

The Thue-Morse sequence revisited

The Thue-Morse sequence was defined above. It begins with

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 . . .

We can first consider the real number whose base b expansion is

0.110100110010110 . . .

This number is transcendental [23] (see also [16]). We can also look at the
formal power series in Q[[X]] whose coefficients are given by the Thue-Morse
sequence

X + X2 + X4 + X7 + X8 + X11 + X13 + X14 . . .

This series can be proved transcendental over Q(X), but if we consider it as
a formal power series in Z/2Z[[X]], it is algebraic over Z/2Z(X). This can be
proved directly by noting that the Thue-Morse sequence (un)n≥0 satisfies for
all n ≥ 0 the relations u2n = un and u2n+1 = 1+ un mod 2, and by splitting
the formal power series

∑∞
n=0 unX

n into two series (odd and even indices).
This is also a consequence of Christol’s theorem (see [12], see also [13]).
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Theorem 4 (Christol). Let p be a prime number and let (un)n≥0 be a
sequence with values in Z/pZ. The the formal power series

∑∞
n=0 unX

n is
algebraic over Z/pZ(X) if and only if the sequence (un)n≥0 is p-automatic.

Remark 7. Let (un)n≥0 be again the Thue-Morse. Let p be a prime number
�= 2. One may ask whether the formal power series

∑∞
n=0 unX

n considered
as an element of Z/pZ[[X]], is algebraic over Z/pZ(X). The answer is no,
from a theorem of Cobham [14].

Real numbers with automatic base b expansion

An old standing conjecture asserts that an algebraic irrational real number
is “normal” in any base (the definition of normality is given in Section 3.1
below). In particular any possible block of any length should appear in the
base b expansion of such a number (in other words the complexity of the
base b expansion of an algebraic irrational real number is conjecturally equal
to bk). A weak form of this conjecture consists of studying numbers that
miss some blocks of digits. In particular, numbers whose base b expansion is
an automatic sequence (or even the letterwise image of a fixed point of any
morphism). Some results were obtained in this direction (see [22] although
the paper has been reported to contain a gap, see also [21] and [8]).

Remark 8. The converse of the above conjecture is not true. The Cham-
pernowne number obtained by concatenating the decimal expansions of the
integers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 . . . thus obtaining the real number

0.123456789101112 . . .

is normal in base 10 (see Section 3.1). It is easily proved irrational, since
it contains arbitrarily long strings of 0’s. It was proved transcendental by
Mahler [24].

Real numbers with automatic continued fraction expansion

A conjecture that is still open asserts that the continued fraction of an irra-
tional algebraic number has bounded partial quotients if and only if the num-
ber is quadratic (in this case the continued fraction expansion is ultimately
periodic). This means that an irrational real number with bounded partial
quotients is (conjecturally) either quadratic or transcendental. As above a
weaker conjecture can be addressed: is it true that an irrational real num-
ber whose sequence of bounded partial quotients is automatic (or even is the
letterwise image of a fixed point of any morphism) is either quadratic or tran-
scendental? A recent paper [30] gives the following nice result (generalization
to other sequences can be found in [2]).
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Theorem 5 (Queffélec). Let a �= b be two integers ≥ 2. Define a real
number by the continued fraction expansion

[a, b, b, a, b, a, a, b, b, a, a, b, a, b, b, a, . . . ]

where the sequence of a’s and b’s is obtained from the Thue-Morse sequence
by replacing 0’s by a’s and 1’s by b’s. Then this number is transcendental.

3 Analytic Randomness

3.1 Normality

If we toss a fair coin an infinite number of times, and look at the sequence
of heads and tails we obtain, we expect that the frequency of heads and
the frequency of tails are both equal to 1/2. We also expect that any given
finite string of heads and tails of length k appears with frequency 1/2k. This
leads to the following definition of normality, and to the informal claim that
“randomness implies normality”.

Definition 3. Let b ≥ 2 be an integer. A real number is called b-normal if,
for every k ≥ 1, each block of length k occurs with frequency 1/bk in the base
b expansion of this number.

Note that it can be proved that almost all numbers are normal in all bases.
The Champernowne number quoted above is given by its base 10 expansion

0.123456789101112131415 . . .

This number is “easy” to compute; it was proved normal in [11].

Remark 9. To give an idea of how far we are of a proof of the conjecture
quoted in the previous section that all irrational algebraic numbers are normal
in any base, let us consider

√
2 = 1.4142 . . . in base 10. It is not known

whether each single digit occurs with frequency 1/10. It is not even known
whether a given digit, say 4, occurs infinitely often in this decimal expansion!

3.2 Topological entropy

The notion of complexity introduced in Definition 2 is a counting property.
It leads to the following definition of entropy for a sequence taking its values
in a finite set.

Definition 4. Let (un)n≥0 be a sequence taking its values in the finite set
A. Let p(k) be its block complexity. The topological entropy of this sequence
is defined by

h = lim
n→∞

log p(n)
n log(#A)

.
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Remark 10. The limit above always exists (note that p(m+n) ≤ p(m)p(n)).
It always satisfies 0 ≤ h ≤ 1. Of course low complexity sequences (e.g.,
Sturmian sequences, or automatic sequences) have zero entropy. Sequences
with maximal complexity (e.g., the sequence of digits of a number normal in
base b) have entropy 1.

The reader can find more information about topological entropy as well as
other entropies in [9].

3.3 Fourier analysis

In this Section we survey some results on the Fourier analysis of infinite
sequences. The reader can find more details in Part IV of Ref. [6].

The Fourier–Bohr spectrum

Definition 5. Let (un)n≥0 be a sequence with values in C such that, for
each real number λ, the quantity limN→∞ 1

N

∑N−1
n=0 une

−2iπnλ exists. The
Fourier-Bohr spectrum of the sequence (un)n≥0 is the set

S =

{
λ; û(λ) = lim

N→∞
1
N

N−1∑
n=0

une
−2iπnλ �= 0

}
.

Remark 11. The Fourier-Bohr spectrum of a sequence is countable.

The reader will easily check the following examples.

• If un = e2iπ logn (n ≥ 1), then û(0) does not exist.
• If un = (−1)[αn], where [y] is the integer part of y, and α is an irrational
number, then S = {α2 + kα mod 1; k ∈ Z}.

• If (un)n≥0 is the sequence obtained from the Thue-Morse sequence by
replacing 0’s by 1’s and 1’s by −1’s, then û(λ) = 0 for every λ ∈ R.

• If (un)n≥0 is the sequence obtained from the Rudin-Shapiro sequence by
replacing 0’s by 1’s and 1’s by −1’s, then û(λ) = 0 for every λ ∈ R.

The Wiener spectrum

Definition 6. Let (un)n≥0 be a sequence with values in C such that, for
each integer k, the quantity limN→∞ 1

N

∑N−1
n=0 unun+k exists. The Wiener

spectrum of the sequence (un)n≥0 is the measure σ defined on the torus R/Z
by its Fourier transform

σ̂(k) = lim
N→∞

1
N

N−1∑
n=0

unun+k.

The Wiener spectrum of the sequence (un)n≥0 is the set

WS = {λ; σ({λ}) �= 0} .
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Remark 12. The existence of the measure σ is given by Bochner’s theorem.
This measure is called the spectral measure of the sequence (un)n≥0.

We have the following interesting theorem [10].

Theorem 6 (Bertrandias). Let (un)n≥0 be a sequence for which the hy-
potheses of Definitions 5 and 6 are fulfilled. Then, for each real number λ,

û(λ) ≤
√

σ({λ}).
Remark 13. This theorem has an immediate corollary: let S and WS be the
Fourier-Bohr spectrum and the Wiener spectrum of a sequence satisfying the
hypotheses of Definitions 5 and 6, then

S ⊂ WS.

A few examples

The measure σ introduced in Definition 6 above can be uniquely written (as
any measure on the torus) as the sum of three measures

σ = σd + σac + σsc

where σd is discrete, σac absolutely continuous with respect to the Lebesgue
measure, and σsc singular continuous (i.e., each point has measure zero, and
the support of σsc has Lebesgue measure zero). We give below the spectral
measure of some sequences.

• The spectral measure of almost all sequences on, say, {0, 1} is equal to the
Lebesgue measure (in other words the spectral measure of a “random”
sequence is equal to the Lebesgue measure).

• The spectral measure of the sequence (e2iπαn
2
)n≥0, where α is irrational,

is the Lebesgue measure.
• The spectral measure of the Thue-Morse sequence with values ±1 is sin-
gular continuous.

• The spectral measure of the Rudin-Shapiro sequence with values ±1 is the
Lebesgue measure. (Hence this sequence behaves like a random sequence.)

• The spectral measure of the Fibonacci sequence is discrete.

References

1. Allouche, J.-P. (1987) Automates finis en théorie des nombres. Exposition. Math.
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31. Rényi, A. (1957) Representations for real numbers and their ergodic properties.
Acta Math. Acad. Sci. Hung. 8, 477–493

32. Rudin, W. (1959) Some theorems on Fourier coefficients. Proc. Amer. Math.
Soc. 10, 855–859

33. Salon, O. (1987) Suites automatiques à multi-indices et algébricité. C. R. Acad.
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From Symbolic Dynamics to a Digital
Approach: Chaos and Transcendence
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Abstract. We review recent progress on Feigenbaum attractors and their inter-
connection with Number Theory. We further enlight the relation between Chaos
and Transcendence.

1 Introduction

What has a deterministic dynamical system to do with noise? In the begin-
ning of this century, H. Poincaré and J. Hadamard have shown that under
some not very restrictive conditions a purely deterministic system can present
an extremely irregular, unpredictable and erratic behavior. Moreover, this
may depend very much on the variations of the initial conditions and/or
control parameters. This phenomenon whereby the behavior of a dynamical
system is indeed reminiscent of noise has been dubbed “deterministic chaos”,
although the term “chaos” has not yet been accepted by many mathemati-
cians.

We shall be interested in the connection of the behavior of a “mechanical”
view of a system (represented at this level by an endomorphism, that is a
function f : [0, 1] → [0, 1]) with the corresponding “thermal” view (repre-
sented by the long-time statistical properties of the iterations xn+1 = f(xn)
of the endomorphism).

To be more concrete, the minimal non-linearity one can introduce is a
quadratic one, leading to the logistic map

xn+1 = rxn(1− xn) (1)

where r is the control parameter, r ∈ [0, 4]. The continuous time form of this
map, the logistic equation, was introduced in 1845 by the Belgian sociologist
and mathematician P.-F. Verhulst to model the growth of populations limited
by finite resources. The logistic map has been essentially introduced in the
literature of mathematical physics by Metropolis, Stein and Stein (MSS) in a
paper considered classical by now [14], but became really famous only after
Feigenbaum’s work [17,18].
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2 Symbolic Dynamics at the Feigenbaum Points

MSS actually considered the logistic map as a member of a more general class
of functions, called unimodal maps. Let us summarize some key properties of
the familly of unimodal maps defined as follows:

(i) They are functions fλ : [0, 1] → [0, 1], depending on a real parameter
λ (control parameter),

(ii) fλ is continuous and (at least) piecewise differentiable in [0, 1],
(iii) fλ is convex and has a unique maximum but is otherwise arbitrary.

Let c the position of the maximum, that is if x �= c : f(x) < f(c), f ′(x) > 0
if x < c and f ′(x) < 0 if x > c. A particular iterate xn will be said to be
of “0” or of L type, and of “1” or of R type, according as xn < c or xn >
c, respectively. Given an initial condition xo, the “minimum distinguishing
information” about the sequence of iterates xn will consist in a pattern of
0’s (L’s) and 1’s (R’s). Note that there are many possible ways to partition
the phase space and many candidates as initial points. However, according
to the Julia theorem [12], the partition ([0, c] ∪(c, 1]) and the initial point
xo = c turn out both to be the most fruitful from the point of view of
the extraction of information available by the system. More specifically, the
resulting coarse-grained path (symbolic dynamics [1–5,8,9]) is in a one-to-
one correspondence with the actual trajectory and hence there is no loss of
information in the topological sense. We are thus in position to completely
characterize the dynamical system as an information generator by examining
its symbolic dynamics only. This is why this partition is called a “generating”
one.

For polynomial maps a stronger result, called Fatou and Julia theorem
[12,13], holds: for appropriate λ’s one can further localize the stable periodic
orbits starting from the “critical” point c (where f ′(c) = 0) and iterating it.

Based on this theoretical framework one can develop a whole machinery
for the construction and the classification in an ordered way of the “patterns”
of the (super)stable periodic orbits of any period. This task has been accom-
plished first in [14] for finite limit sets and later completed in [15] in order to
include infinite limit sets.

Let P be a pattern associated with the m-period. By definition the (first)
harmonic of P is the pattern Ĥ(P ) = PµP , where µ = L if P contains an
odd number of R’s, and µ = R otherwise. The procedure can be iterated,
so that one may speak of the second, third,..., j-th harmonic, etc, hereafter
denoted as Ĥj(P ). MSS also introduce the Ĥ-extension of a pattern P as
the pattern generated by iterating the harmonic construction applied j times
to P , when j increases indefinitely. In the sequel we shall rather adopt the
notation Ĥ∞(P ) for this asymptotic pattern.

MSS [14] prove that, if P is allowed, Ĥ(P ) is allowed too (their theorem
1). Furthermore in their universal ordering we have P < Ĥ(P ) and the
harmonics are adjacent, that is, no allowed sequence exists between P and
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Ĥ(P ). Upon iterating the process

∀j, P < Ĥ(P ) < Ĥ2(P ) < ... < Ĥj(P ). (2)

This is the famous period-doubling scenario or period-doubling route to
chaos. For the shake of illustration we list hereafter the first few harmon-
ics associated with the 2k and 3 · 2k cycles.

- The 2∞ cycle.
P ≡ R (2 period) → Ĥ(R) = RLR (4 period) →
Ĥ2(R) = RLRRRLR = RLR3LR (8 period) →
Ĥ3(R) = RLRRRLRLRLRRRLR = RLR3LRLRLR3LR (16 period) →
Ĥ4(R) = RLRRRLRLRLRRRLRRRLRRRLRLRLRRRLR =
RLR3LRLRLR3LR3LR3LRLRLR3LR (32 period)

- The 3 · 2∞ cycle.
P ≡ RL (3 period) → H(RL) = RLLRL (6 period) →
Ĥ2(RL) = RLLRLRRLLRL = RL2RLR2L2RL (12 period) →
Ĥ3(RL) = RL2RLR2L2RLLRL2RLR2L2RL (24 period)

Yet, the question about the coarse-grained statistical properties of the
resulting Feigenbaum attractors (attractors of the accumulation points of
the m · 2k cycles) remained open. In view of the particular importance of the
period-doubling route to chaos [1–4], several authors tried to examine the
symbolic dynamics of the corresponding attractors and some fragmentary,
semi-empirical results have been reported [24–27]. In our paper [16], we have
derived the statistical properties of the Feigenbaum attractors on a systematic
basis. Note that for these attractors the so-called zeta-function formalism
does not apply, because the system is non-hyperbolic and its Lyapounov
exponent strictly vanishes [10,11].

One can do some more precise statements on that. It has been shown in
[11] that at the accumulation point of the 2k cycles the reciprocal (topologi-
cal) zeta function equals

ζ−1(r∞, t) = (1− t)2(1− t2)(1 − t4)(1− t8)... (3)

where each new cycle contributes a cyclotomic polynomial of the form (1−t2
n

)
as a factor in the infinite product. The accumulation points predicted by the
MSS algorithm are conjectured to be unique [11,15].

For the 2∞ accumulation (Feigenbaum) point of the logistic map one
has r∞ 	 3.56994567 (with 8 digits) [25]. The arithmetic nature of r∞ is not
known for the moment. We do not know whether the control parameter values
corresponding to the accumulation points are rational or irrational numbers,
and if this is the case if they are algebraic irrational or transcendental.
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3 Self–Similarity

In [16] we established certain invariance and self-similarity properties of the
symbolic sequences associated to the m · 2∞ attractors. To do this we intro-
duced a set of operators acting on these symbolic sequences. Taking advantage
of these properties we have then introduced a scheme mapping the original
sequence into a new sequence of hypersymbols with well-defined statistical
properties, obtained by the lumping of groups of original symbols.

More specifically, we have shown that the 2∞ sequence remains invariant
under the replacements (or lumping or hypersymbol formation)

RR → L, RL → R (4)

starting from the beginning of the sequence. Actually this self-similarity prop-
erty can be extended straightforwardly to guarantee invariance under a repet-
itive use of this replacement rule.

We turn next to the invariance properties of the m · 2∞ sequences. Let
Pm be a specific (fixed) pattern of the m-cycle (many different patterns may
correspond to an m-cycle). We first perform the lumpings

PmR → R, PmL → L (5)

if Pm contains an even number of R’s, or

PmR → L, PmL → R (6)

if Pm contains an odd number of R’s, starting from the first Pm. One can
then show that this action maps the m · 2∞ sequence into the 2∞ sequence.
The result can obviously be extendend to guarantee invariance under a first
lumping (5)-(6) and then repetitive use of the lumpigs (4).

Note that the symbolic dynamics at the accumulation points turns out
to be exactly self-similar, and not in a statistical sense. (Actually a similar
(in view of [36]) property, automaticity has been already reported by math-
ematicians [21,22].) By a simple number-theoretic argument on the transfer
of information from the trajectory to the topological level, this implies exact
self-similarity (which means fractality [29] ) of the actual path. Self-similarity
in an approximate sense has been reported in the past by many authors, see
for instance [19,20]. Again, we know almost nothing about the arithmetical
properties of the fractal dimensionality D as a number.

4 Entropy Analysis and Complexity
at a Feigenbaum Point

A very useful tool for analyzing symbolic sequences are entropy-like quanti-
ties. Of special interest are the block entropies, extending Shannon’s classical
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definition to the entropy of a sucession of states rather than of a single state
[5,6].

We are interested in the properties of the block entropies at a Feigenbaum
point m · 2∞, in the light of the analysis of the preceding section.

So far there was no specification on the way the sequences are to be
analyzed or “read”. One could thus glide, take portions (lumping), jump, form
hypersymbols or even make dynamical renormalization (applying majority
rules, for instance) on the symbolic sequence. If the sequence is generated
by a random processor, a well-known result of probability theory establishes
that the nature of the process is crucially dependent on lumping [7]. One of
our main objectives is to explore the relation between these various ways of
reading and the statistical properties of Feigenbaum attractors.

Based on the Cantor-like structure of the attractor of the 2∞ cycle for
the logistic map, and measuring the words by gliding along the sequence,
Grassberger [19] proposed the following decimation scheme

H(n) = H(n/2) + 1, (7)

for n even and larger than 2, giving

H(n) = ln

(
3n

2

)
, (8)

for n = 4, 8, 16, ... . Note that the penalization of long words is in this case
logarithmic, leading to a probability of occurrence

pn(A1, ..., An) ∼ 1

n
(9)

for a word of length n, which is far less restrictive than for the case of devel-
oped chaos, where it is exponential.

Based on simple empirical rules, Ebeling and Nicolis achieved a full cal-
culation of the word frequencies (incuding Grassberger’s result as a special
case) for this way of reading the sequence [25]. This work has been completed
in [26,27], after the numerical observation of some apparent symmetries of the
sequence and the formulation of an empirical rule for its generation. More-
over, the effects of different types of noise have been numericaly investigated
[28].

In the light of this work Ebeling and Nicolis [25] propose a scaling of the
type

H(n) = e+ g(lnn)µ1 (10)

with g �= 0 and µ1 > 0, for Feigenbaum attractors in general.
In [16], we have presented a new approach to this subject based on alter-

native decimation schemes.
Consider indeed a subsequence of length n selected out of a very long

(theoretically infinite) symbolic sequence obtained by iterating the trajectory
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of the underlying dynamical system. We stipulate that this subsequence is to
be read in terms of distinct “words” of length �,

... A1...A	︸ ︷︷ ︸
B1

A	+1...A2	︸ ︷︷ ︸
B2

... Aj	+1...A(j+1)	︸ ︷︷ ︸
Bj

... (11)

Clearly, if the words just defined happen to be identical to the patterns
appearing in the replacement rules (4) or (5)-(6), the original subsequence of
A’s will be reformulated entirely in terms of a limited number of hypersymbols
B. Upon substituting the latter from the replacement rules one will then
obtain a subsequence identical to the original one if m = 2, and identical to
a subsequence of length n/l of the 2∞ sequence if m ≥ 3. This implies the
following invariance property of the block entropies,

H2(2
k) = H2(2) = H2(1) (12)

Hm(rm) = H2(r), rm �= 2k (13)

where the subscript m refers to the block entropy of a subsequence of the
m · 2∞ sequence.

As a corollary, the entropy per letter h(n) will diminish exponentially on
the successive words of length 2k of the 2∞ sequence,

h
(2k)
2 =

H2(1)

2k
→ 0, k → ∞ (14)

whereas for the m · 2∞ sequence one will have

hm(mr) =
H2(r)

m
(15)

Until now we have been referring to the relations between block entropies
of different symbolic sequences. One can further relate block entropies of
the same symbolic sequence. Indeed, our operator formalism enables us to
introduce the following entropic decimation scheme for subsequences of the
full (infinite) sequence

Hm(m · 2r) = Hm(m · r) (m · 2∞sequence) (16)

which is to be compared with the decimation scheme for gliding.
In particular, for m = 2 one has

H2(2 · 2r) = H2(2 · r) (17)

and for m · 2r = 2k one recovers the first part of eq.(12). Decimating further
once again, we recover the right hand side of eq.(12).
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For the less trivial case m = 3, applying eq.(16) one finds

H3(3 · 2r) = H3(3 · r). (18)

As an example, consider the subsequence

RLRRRLRL (19)

which is part of the 2∞ symbolic trajectory. Applying twice the rule (4) one
obtains successively,

RLRR (20)

RL (21)

as stipulated, precisely, in (12). Notice that this reduction would be inap-
plicable, had the sequence been read by gliding one symbol each time as in
[19,24,25].

We thus conclude that the very notion of the block entropy as a measure
of complexity is subjective, as it depends on the way of reading, that is on
the observer (see also [23]). At this moment there exist many open questions
and conjectures related to these problems.

5 Other Coarse–Grained Statistical Properties
at the Feigenbaum Points

We next proceed to the explicit evaluation of the probability mass of the
symbols in a sequence, from which explicit values of the block entropies can
be deduced.

Consider first the 2∞ sequence. According to the MSS algorithm the per-
centage of R’s is

% of R′s = lim
ν→∞



[
2ν+1−1
3

]
2ν − 1


 =

2

3
(22)

In other words, the a priori probabilities of R and L in a long sequence are

pR =
2

3
, pL =

1

3
(2∞ sequence) (23)

These results are in agreement with the real space renormalization tech-
nique of Fraser and Kapral [20] but are derived in [16] in a much more
straightforward and compact manner. These equations provide precious infor-
mation for such a complicated mathematical object as the invariant density
at the Feigenbaum point.



364 K. Karamanos

The procedure can be easily adapted to the m · 2∞ cycle. Here we present
the result for the case of the 3 · 2∞ cycle. Utilizing (23) one has

% of R′s =
2 1
3
+ 2
3

3 1
3
+ 3 2

3

=
4

9
(24)

in other words

pR =
4

9
, pL =

5

9
(3 · 2∞ sequence) (25)

As a corollary, one is in position to evaluate explicitly the block entropies
of any subsequence of length m · 2k. In particular, for the 2∞ sequence,

H(2k) = H(2) = H(1) = −
(
1

3
ln
1

3
+

2

3
ln

2

3

)
	 0.63651417 (26)

(a transcendental constant).
For words of an odd legth, as explained in Sec 7 of [16], the entropies H2(r)

coincide with the corresponding values calculated when gliding and can also
be calculated in a constructive manner. For a general m · 2∞ sequence the
situation turns out to be much more complicated.

Actually, one may push the analysis much further and derive, using sym-
bolic dynamics, the statistics of recurrence and escape times from the left
and from the right halfs of the interval (0, 1). This provides an extension of
the results of Balakrishnan, Nicolis and Nicolis [30], limited to the regime
of developed chaos. On the same grounds one can also show that the sym-
bolic dynamics at the Feigenbaum points does not correspond to a Markovian
procces of any order.

Note that all the numbers involved in the expressions of the long-time
coarse-grained statistical properties of the system (except from those defined
by transcendental functions, as the block entropies) turn out to be simple
fractions, that is rational numbers. This is a very interesting fact by itself.

6 Replacements and Morphisms

In [16] we have introduced a suggestive visualization of the self-similar sym-
bolic dynamics at the Feigenbaum points, thus giving an interpretation of
our result in terms of geometric arguments.

Still, a similar description in terms of arithmetical constants (such as the
scaling exponents or the Feigenbaum constants in the renormalization group
approach) was lacking.

The question so remains: Is it possible to express these results somehow in
terms of numbers? The answer, as we shall see in this and the next Sections
will be in the affirmative.
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These last years there has been a renewal of interest on the connection be-
tween Number Theory and Finite Automata, mainly following A. Cobham’s
pioneering work [34–39]. In addition to theorems and important conjectures
that relate number theory with the theory of automatic sequences, many re-
sults have been reported concerning automatic sequences which enjoy some
invariance properties (very reminiscent indeed of these exposed in Sec 3 for
Feigenbaum sequences), as for instance being the fixed points of non-trivial
morphisms of constant length or of primitive morphisms. (A morphism is a
set of replacement rules for each letter, see [39].)

In particular a very recent theorem by J.-P. Allouche and L. Q. Zamboni
asserts either the rationality or the transcendence of numbers whose binary
expansion is a fixed point of the above kind of morphisms [39]. The possibility
to take advantage of these properties gives us an additional motivation to
somehow invert our viewpoint and to represent the m · 2∞ sequences as
“tag” (that is automatic in A. Cobham’s terminology) sequences generated
by morphisms.

Note that in Sec 3 we had been given the MSS algorithm and we exploited
its symmetries. The idea now is to generate the infinite symbolic sequences
from an initial pattern and their symmetries.

The generation of the 2∞ sequence through the inverse of the replacements
(4) is formally a quite non-trivial task. But, in [31] we have shown that if
we denote as Re−1() the inverse operation, that is the replacements R →
RL, L → RR we have

Ĥ∞(R) = (Re−1)∞(R) (27)

Moreover, if we denote as RE−1() the replacements

R → PmL, L → PmR (28)

if Pm contains an odd nomber of R’s, and

R → PmR, L → PmL (29)

if Pm contains an even number of R’s, then we have

Ĥ∞(Pm) = RE−1[(Re−1)∞(R)] (30)

This means that the symbolic sequences at the Feigenbaum points can be
generated by the above morphisms. According now to a result of Cobham,
one can explicitly construct a deterministic finite automaton which generates
these sequences [36]. In other words these sequences are also automatic, a
fact already known in the mathematical literature [21,22].

7 Digital Approach, Transcendence and Non-Normality

Let us consider now the number generated by the standard arithmotheoretic
procedure when identifying R as the digit 1 and L as the digit 0 (the passage
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from symbolic dynamics to the digital approach), and write down formally

x = 0.Ĥ∞(1) (base 2) (31)

or, more explicitly

x = 0.1011101... (base 2) (32)

and more generally for an arbitrary m · 2∞ sequence

xPm = 0.Ĥ∞(Pm) (base 2) (33)

where Pm is again expressed in terms of 0’s and 1’s instead of L’s and R’s.
We further need the following theorem [39]:

Theorem: (J.-P. Allouche and L.Q. Zamboni, 1998)
Let x a positive real number whose binary expansion is a fixed point of a mor-
phism on the alphabet {0,1}. If the morphism is either of constant length ≥
2 or primitive, then the number x is either rational or transcendental.

Utilizing this theorem and the self-similarity, we have shown in [31] that
the universal (for all unimodal maps) numbers introduced in (32), (33) are
transcendental. They cannot result as roots of a polynomial with rational
coefficients. These sequences form an infinite countable set. Moreover one
can show relatively easy that these numbers are all non-normal. This is in
agreement with a widely accepted conjecture in Number Theory according
to which algebraic irrational numbers are believed to be normal (see also
[33,34,39–43]).

These results can also be rigorously extended in some other cases, as for
the pure m∞ sequences [31,32].

8 On the Feigenbaum Constants δ and α

After all what we have presented in the three previous Sections, one could
start to wonder about the arithmetic nature of the Feigenbaum constants δ
and α.

Both constants are defined by an approximate real space renormalization
procedure. The constant δ has to do with the spacing in the control parameter
space of the successive values of occurrence of the superstable periodic orbits
and can be roughly estimated by the bifurcation diagram. If we denote as
{rn} this set of values, δ is defined as

δ = lim
n→∞

rn − rn−1
rn+1 − rn

(34)

and for the logistic map

δ 	 4.669201609102990... (35)
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The constant α is related to the rescaling of the period doubling functional
composition law and its value for the logistic map is

α 	 −2.502907875095892... (36)

The two constants are not unrelated between them. A crude approximation
gives

δ 	 α2 + α+ 1 (37)

More accurate relations can be found by more refined renormalization group
arguments. The values of the two constants depend only on the order of
the maximum and have long been studied [20]. They are thus, for instance,
universal for quadratic maps irrespectively of the exact way one writes down
the map.

The constants δ and α for quadratic maps are actually known up to about
1000 digits. Despite this, due to the indirect way they are defined we ignore
almost everything for their precise arithmetical nature.

9 The “Standard” Conjecture of Chaos

The general conjecture stated at the end of Sec 7, that algebraic irrational
numbers are supposed to be normal, is not as innocent as it seems. It has
some extremely profound consequences.

In fact, let us focus our attention to the case of a unimodal map, for
instance of the logistic map in three important regimes [1–4]:

(i) In the chaotic region extended to the right of the Feigenbaum point,
(ii) In the intermittent region and
(iii) In the region of developed chaos with zero memory, just before the

fully developed chaos.
If we still consider the numbers generated as in eq. (32), but this time by

the symbolic dynamics of the iterates of the maximum

x(λ) = 0. J(f(c)) J(f(f(c)))... J(f(n)(c))... (base 2) (38)

where J denotes the symbolic dynamics and c the critical point of the map
(the point where f ′(c) = 0), we observe that in general the attractors are
asymmetric around the maximum xo = c and the coarse-grained invariant
measure is in the general case not equidistributed on the two partitions R
and L of the phase space, that is pR �= pL. This implies that if we define as in
eq. (38) the associated numbers for these three regions, these numbers cannot
be normal. And as they are not normal they cannot be algebraic irrational.
But they cannot be rational either, as a positive Lyapounov exponent means
chaoticity - certainly an aperiodic occurrence of the digits 0 and 1 in the
binary expansion (38).
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Adding now to the previous cases the systems at the onset of chaos (at
the Feigenbaum and other accumulation points) we arrive to a result of a
great generality: the occurrence of Chaos is ultimately connected with tran-
scendence, as far as numbers defined as in eq. (38) cannot be normal. Because
as they are not normal they cannot be algebraic irrational.

Unfortunately this very simple argument does not cover the case of fully
developed chaos (with Lyapounov exponent equal to ln 2). In fact in the case
of the logistic map in fully developed chaos, as well as in the case of the tent
map, the iterates of the maximum are trapped by the unstable fixed point.
To avoid this difficulty, we could thus consider in that case the symbolic
dynamics of another, arbitrary point, not belonging to the exceptional set
of points with poor ergodic properties (which is of zero measure). As now
in fully developed chaos successive steps are completely uncorrelated [1–3],
any outcome compatible with normality (that is pR = pL = 1

2) is possible,
and it is plausible to accept that any normal number, algebraic irrational or
transcendental is a possible outcome.

This “typical” (or “standard” in view of its profound character and of the
difficulty of its possible proof) conjecture of chaos, that chaos is ultimately
related with transcendence, is a very important step towards the classification
of the numbers defined by this digital approach, for 1d chaotic systems in
general.

More specifically from a dynamical viewpoint transcendence manifests
itself also through the existence of (weakly) chaotic systems, irrationality
through the existence of fully developed chaotic systems and rationality
through the existence of periodic orbits.

10 Conclusion

We have shown that the symbolic sequences generated by Feigenbaum at-
tractors can be reformulated entirely in terms of hypersymbols. Under well-
defined replacement rules the hypersymbol sequences could then be mapped
into the original ones. We have analyzed the block entropies of the sequences
and found that, under the convention that the sequence is to be read in terms
of such hypersymbols, the entropies satisfy some well-defined invariance prop-
erties. Thus, the blurred image (due to the inherent spatial inhomogeneity of
the corresponding attractor) observed at the trajectory level of description,
is replaced by a set of clearcut rules at the level of symbolic dynamics.

The realization that the kind and the amount of information of a given
symbolic sequence may depend on the way of reading brings symbolic dynam-
ics closer to natural languages, in which the existence of distinct privileged
words conveying a precise “meaning” is crucial. It would be interesting to
reconsider the analysis of physiological time series including DNA or RNA
sequences in the light of our results.
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Moreover, based on very recent mathematical and computational argu-
ments, we have observed an interesting but apparently unexpected connection
between the chaoticity and the transcendental character of the corresponding
symbolic sequence considered as a binary number. Transcendence has to do
with rational polynomials and chaos with exponential sensitivity to initial
conditions and erratic behavior. As this result is really new, we do not know
how to interpret it.

It is conjectured that this is a quite general result and it also holds for
continuous time flows and in higher dimensionalities. We thus conclude that
transcendence is an appropriate measure of complexity.

This kind of results are of obvious importance in information theory, in
theoretical computer science and in metrology.

Acknowledgements

It is a pleasure to thank G. Nicolis, J.-P. Allouche and M. Waldschmidt
for illuminating discussions and suggestions. I would also like to thank the
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Abstract. A first example of a connection between transcendental numbers and
complex dynamics is the following. Let p and q be polynomials with complex co-
efficients of the same degree. A classical result of Böttcher states that p and q are
locally conjugates in a neighborhood of ∞: there exists a function f , conformal in a
neighborhood of infinity, such that f(p(z)) = q(f(z)). Under suitable assumptions,
f is a transcendental function which takes transcendental values at algebraic points.
A consequence is that the conformal map (Douady-Hubbard) from the exterior of
the Mandelbrot set onto the exterior of the unit disk takes transcendental values
at algebraic points. The underlying transcendence method deals with the values of
solutions of certain functional equations.

A quite different interplay between diophantine approximation and algebraic
dynamics arises from the interpretation of the height of algebraic numbers in terms
of the entropy of algebraic dynamical systems.

Finally we say a few words on the work of J.H. Silverman on diophantine ge-
ometry and canonical heights including arithmetic properties of the Hénon map.

1 Transcendental Values of Böttcher Functions

For any complex number c ∈ C, define the polynomial pc ∈ C[z] by pc(z) =
z2 + c. For n ≥ 1, let pnc be the n-th iterate of pc:

p1c(z) = pc(z) = z2 + c, p2c(z) = pc(z2 + c) = (z2 + c)2 + c,

pnc (z) = pn−1c (z2 + c) (n ≥ 2).

The Mandelbrot set M can be defined as

M =
{
c ∈ C | pnc (0) does not tend to ∞ as n →∞}.

In 1982, A. Douady and J. Hubbard showed that M is connected. They
constructed a conformal map

Φ : C \M −→ {z ∈ C ; |z| > 1}

from the complement of M onto the exterior of the unit disk, which is defined
as follows.
� miw@math.jussieu.fr
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For each c ∈ C, there is a unique power series ϕc with coefficients in Q(c),

ϕc(z) = z + c0 +
c1
z

+
c2
z2

+ · · · ∈ Q(c)((1/z)),

such that
ϕc(z2 + c) = ϕc(z)2.

For c �∈ M , ϕc defines an analytic function near c. Then the above mentioned
map Φ is defined by Φ(c) = ϕc(c).

According to P.G. Becker, W. Bergweiler and K. Nishioka [2], [3], [11], for
any algebraic α ∈ C \M , the number Φ(α) is transcendental. .

The function ϕc is the unique Böttcher function with respect to pc = z2+c
and z2. More generally, let

p = azd + · · · and q = bzd + · · ·

be two polynomials in C[z] of degree d ≥ 2 and let λ ∈ C satisfy λd−1 = a/b.
There exists a unique function f , which is defined and meromorphic in a
neighborhood of ∞, such that

lim
z→∞

f(z)
λz

= 1 and f
(
p(z)
)
= q
(
f(z)
)

for sufficiently large |z|. Such a conjugating function f is called a Böttcher
function with respect to p and q.

Assume p and q have algebraic coefficients and are not linearly conjugate
to monomials or Chebychev polynomials. Then f is a transcendental function,
which takes transcendental values at algebraic points.

This result holds more generally for classes of analytic functions which
satisfy certain functional equations. There are two methods to study the
transcendence of values of such functions.

The first one originates in the solution, by Th. Schneider, of Hilbert’s
seventh problem on the value of the exponential function, which satisfies the
functional equation f(z1 + z2) = f(z1)f(z2). This method can be used to
consider other functional equations, like

f(zd) = af(z)d + bzh.

The second method has been introduced by K. Mahler (see [11]) and enables
one to prove transcendence results for the values of analytic functions f which
are solutions of more general functional equations, like

P
(
z, f(z), f(zd)

)
= 0.

In the present situation, both methods provide the desired result.
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2 Lehmer’s Problem and the Entropy
of Algebraic Dynamical Systems

Let F ∈ Z[X] be a monic polynomial of degree d ≥ 1 with complex roots
α1, . . . , αd. Define, for any positive integer n,

∆n(F ) =
d∏
i=1

(αni − 1) ∈ Z.

In case F = X − 2 we have ∆n(F ) = 2n − 1, and the prime values of the
sequence 2n− 1 are the so-called Mersenne primes. In 1933 [7], D.H. Lehmer
suggested that the sequence ∆n(F ) is likely to produce prime numbers, pro-
vided that it grows slowly. If no |αi| is 1, then

lim
n→∞

∆n+1(F )
∆n(F )

=
∏

1≤i≤n
|αi|>1

|αi|.

More generally, for a polynomial

F = a0X
d + · · ·+ ad = a0

d∏
i=1

(X − αi) ∈ C[X],

define, with K. Mahler,

M(F ) = |a0|
∏

1≤i≤n
|αi|>1

|αi| = exp
∫ 1

0
log |F (e2iπt)|dt.

For any polynomial F ∈ C[X], we have M(F ) ≥ 1. When F ∈ Z[X], we
have M(F ) = 1 if and only all its roots αi are either zero or roots of unity.
For his calculations, Lehmer used the polynomial F (X) = X3 − X − 1.
It turns out that this actually is the polynomial having smaller measure
> 1 among the non reciprocal polynomials (its root > 1 is the smallest
Pisot-Vijiyaraghavan number). For reciprocal polynomials F , that is for F
satisfying F (Xd) = XdF (1/X), Lehmer said he could not find a polynomial
having smaller measure than M(F0) = 1.1762808183 . . . , with

F0(X) = X10+X9−X7−X6−X5−X4−X3+X +1 = X5Q
(
X +(1/X)

)
and

Q(T ) = (T + 1)2(T − 1)(T + 2)(T − 2)− 1.

He asked whether for each c > 1 there is a polynomial F ∈ Z[X] for which
1 < M(F ) ≤ c, and this open question is known as Lehmer’s problem.

The number M(F ) has a dynamical interpretation, which is a bridge
between the notion of height of a polynomial and ergodic theory [6], [12], [5].
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For our purposes, an algebraic dynamical system is a continuous endo-
morphism T : X → X of a metrizable compact topological group. The easiest
case, which will be sufficient for our purpose, is the torus X = Td = Rd/Zd.
Each continuous endomorphism of Td is given by a d × d matrix AT with
integer coefficients, and

Tx ≡ ATx (mod 1).

Automorphisms are given by a matrix AT with determinant 1 of −1.
An endomorphism T is “ergodic” if, whenever a measurable subset B of

X (for a Haar measure µ) satisfies T−1B = B, we have µ(B) = 0 or 1. In the
torus case Td, this condition amounts to say that for every square integrable
function f , the condition f(Tx) = f(x) almost everywhere implies that f is
constant almost everywhere.

It follows that an endomorphism T is ergodic is and only if no eigenvalue
of AT is a root of unity. So we shall be interested in polynomials (namely the
characteristic polynomial χ(AT ) of AT ) with no root a root of unity.

The set of periodic points of period n under T is

Pern(T ) = {x ∈ Td | Tn(x) = x}.

If T is ergodic, then the number of periodic points of period n is

|Pern(T )| = |det(AnT − I)| = |∆n(χ(AT ))|.

The topological entropy of T can be defined in terms of the metric: for ε > 0
denote by Bε the ball around the origin with radius ε. Then

h(T ) = lim
ε→0

lim
n→∞− 1

n
logµ

(∩n−1j=0 T
−j(Bε)

)
.

Denote by λ1, . . . , λd the eigenvalues of AT (counting multiplicities). Then
Yuzvinskii’s formula reads

h(T ) =
d∑
i=1

logmax{1, |λi]}.

Hence the entropy of T is nothing else than the logarithm of Mahler’s measure
of the characteristic polynomial χ(AT ) of AT .

Since any monic polynomial Xd + a1X
d−1 + · · ·+ ad is the characteristic

polynomial of a matrix, namely

A =


0
... Id−1
0

−ad −ad−1 · · · −a1

 ,
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it follows that Lehmer’s problem is equivalent to asking: which values in
[0,∞] can occur as an entropy?

According to D.A. Lind, a positive answer to Lehmer’s problem (i.e. the
existence of polynomials in Z[X] with arbitrarily small M(F ) > 1) is equiv-
alent to the existence of a continuous endomorphism of the infinite torus TZ

with finite entropy.

Interesting problems occur when one tries to replace the torus R/Z by
an elliptic curve [1].

This section has been prepared with the help of Paola D’Ambros.

3 Canonical Heights and Dynamical Systems

Define the absolute multiplicative height of a polynomial F ∈ Z[X] of degree
d > 0 by

H(F ) = M(F )1/d

and the absolute multiplicative height of an algebraic number α by

H(α) = H(F )

where F ∈ Z[X] is the minimal polynomial of α over Z. The name is moti-
vated by the property

H(αn) = H(α)n

for any algebraic number α and any positive integer n. Hence this height H
behaves nicely with respect to the polynomials φ(X) = Xn.

J.H. Silverman [18] introduced a height function which behaves nicely for
an arbitrary rational function φ with algebraic coefficients, viewed as a map
P1(Q)→ P1(Q).

Definition. Let φ ∈ Q(X) be a rational function of degree n ≥ 2. The φ-
canonical height of an algebraic number is

Ĥφ(α) = lim
r→∞
(
φr(α)

)1/nr

, (∗)

where φr = φ ◦ φr−1 and φ0 is the identity.
This construction has been introduced by Tate in his work on Abelian

varieties, and has been extended to this general context by Silverman in a
series of papers. He proved:

The limit (∗) defining Ĥφ(α) exists, and

Ĥφ(φα) = Ĥφ(α)n.

Moreover
Ĥφ(α) ≥ 1
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for any α ∈ Q, with equality if and only if α is pre-periodic for φ.

Recall that α is a pre-periodic point for φ if the orbit {α, φα, φ2α, . . . } con-
tains only finitely many points.

The natural generalization of Lehmer’s conjecture to this more general
setting had been raised by P. Moussa, J-S. Geronimo and D. Bessis in 1984
[10].

The rational map

φ(X) =
(X2 − 1)2

4X3 + 4X

corresponds to the duplication map on the elliptic curve Y 2 = X3 + X. For
this map, and more generally for the rational maps corresponding to multipli-
cation by an integer on an elliptic curve, partial results towards this Lehmer-
type conjecture are known (M. Laurent, D.W. Masser and S.W. Zhang,
M. Hindry and J. Silverman).

Variants of this construction have been proposed, mainly by J.H. Silver-
man. In [13], he defined heights on K3 surfaces using two involutions which
generate an infinite group of automorphisms. With G.S. Call in [4], he did the
same on general varieties V by using a morphism φ : V → V and a divisor D
for which φ∗D is linearly equivalent to αD with α > 1. In [14], he considered
a variety V related with the Hénon map

φ : A2 → A2, φ(X,Y ) = (Y, Y 2 + aX + b)

as follows: blowing up each of the points (1 : 0 : 0) and (0 : 1 : 0) three
times, one obtains a variety V so that both φ and φ−1 extend to morphisms
V → P2. For P ∈ A2(Q), the relation

h(φnP ) + h(φ−nP ) ≥ (2n + 2−n)
(
h(P )− c

)
+ 2c

holds with some constant c = c(φ). Silverman used this inequality to prove
that φ has only finitely many periodic points with rational coordinates and
to count the growth rate of points in an infinite orbit.

The author wishes to thank Michel Planat for the excellent organization of
this conference.
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Abstract. In various problems in signal theory, the following family of functions
of [0, 1[ into itself arises naturally :

Tγ,α : x �→ γx+ α modulo 1, with 0 < γ < 1, 0 ≤ α < 1.

The purpose of the present work is to describe very precisely the asymptotic be-
haviour of the iterates of the functions Tγ,α. Further, we give a continued fraction
type algorithm which allows us to obtain, for a given pair (γ, α), the numerical
information on the dynamic of Tγ,α.

1 Introduction

The problem considered here is motivated by questions arising naturally in
signal theory (see for example [5]). Indeed, in order to describe certain ob-
servations, one is led to define the following sequences (sn) and (xn) :

sn = A sin
(
2π(nf + f0)

)
,

xn+1 = {γ xn + sn},
where A, γ, f0 and f are real numbers, with f irrational and 0 < γ ≤ 1. Here,
and in the rest of the paper, {x} denotes the fractional part of the real number
x. We would like to study the existence of the limit of the mean sequence
mn = 1

n

∑n
k=1 xk and of the correlation sequence cn = 1

n

∑n
k=1 xk xk+1 −

m2
n. Both questions are not yet solved and they look very difficult.
A preliminary step is the study of the dynamic associated to the recur-

rence xn+1 = {γ xn + sn} when f = 0, i.e. when sn =: α is a constant input.
The case γ = 1 corresponds to the rotations of the circle, and hence is well
known. However, for 0 < γ < 1, the associated map, say Tγ,α : x +→ {γ x+α},
contracts the torus [0, 1[, and it seems that the asymptotic behaviour of the
iterates of Tγ,α has not been studied previously. In a joint work with J.-
P. Conze [3], we completely solve this question and, for any fixed γ ∈]0, 1[
and any given rational p/q ∈ ]0, 1[, we determine precisely the set of values
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of the parameter α for which Tγ,α behaves asymptotically like the rotation
x +→ x + p/q. Some of the results of [3] were announced in [2].

This expository paper is organized as follows. We first recall the basic
results about the rotations of the torus, and introduce some (classical) nota-
tions used in the statement of the main theorem. Then, we state our main
result, as well as a slight generalization, and we briefly discuss two different
ways to prove them. Finally, we describe an algorithm which, for any given
pair (γ, α) of real numbers with 0 < γ, α ≤ 1, computes the asymptotic
behaviour of the iterates of Tγ,α, and we conclude by studying an example.

2 Notation

We denote by X the unit interval [0, 1[ and by [x] the integer part of the real
number x. For any α ∈ [0, 1[, we denote by Tα : X → X the rotation of the
torus given by Tαx = {x+α} for x ∈ X, and by R the set of all the rotations.

One can code the rotation Tα using the partition of the interval [0, 1[ in
the two sub-intervals [0, 1− α[ and [1− α, 1[. Namely, let ε : X → X be the
function defined by

ε(x) = 0, if x ∈ [0, 1− α[, and ε(x) = 1, if x ∈ [1− α, 1[.

For any x ∈ X, the sequence (ε(T k−1α x))k∈Z is a sequence of “0” and “1”
coding the point x. Applying the relation x + α = Tαx + ε(x) at the point
Tn−1α x, we get by induction that

x + nα = Tnαx + ε(Tn−1α x) + ε(Tn−2α x) + ... + ε(x).

We will simply denote by (εk)k∈Z the sequence corresponding to x = 0. Then,
by definition, we have εk = ε(T k−1α 0), for all k ∈ Z. In order to point out that
this sequence depends on α, we also denote it by (εαk ). We point out that for
any α, we have εα1 = 0 and, for k ≥ 1, we get

εαk = [kα]− [(k − 1)α].

The sequence (εαk ) gives the dynamic of the map Tα on the orbit of the
point 0. If we denote by A0 (resp. A1) the rotation x +→ x + α (resp. x +→
x + α− 1), we have

Tnα (0) = Aεα
n

. . . Aεα
1
(0). (1)

In the sequel, we call the sequence (εαk ) the coding sequence of the rotation
Tα. This is also called the Sturmian sequence of α. For a rational α = p/q,
with p/q irreducible, the sequence (εp/qk ) is q-periodic. Moreover, the set
{Tnp/q0}n∈Z is finite and has exactly q distinct elements. If α is irrational,
then the set {Tnα 0}n∈Z is dense in [0, 1[, and even equidistributed. The fol-
lowing observation appears to be the key of the proofs of our main results.
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Lemma 11. Let p/q and p′/q′ be rational numbers with p′q − pq′ = 1 and
set r = (p+p′)/(q+q′). Let (εp/qk (resp. (εp

′/q′

k )) be the coding sequence of the
rotation Tp/q (resp. Tp′/q′). Then the coding sequence (εrk) of the rotation Tr
is given by

εrP = ε
p/q
P for all 1 ≤ Z ≤ q,

and
εrq+P = ε

p′/q′

P for all 1 ≤ Z ≤ q′.

We observe that, for n ≥ 1, we have [nα] =
∑n
1 εk and nα = {nα} +∑n

1 εk. This furnishes a method of binary quantification for α, since α can
be written, if α = p/q ∈ [0, 1[ is rational :

α =
1
q
[ε(T q−1α 0)+ε(T q−2α 0)+...+ε(0)] = lim

n

1
n
[ε(Tn−1α 0)+ε(Tn−2α 0)+...+ε(0)],

and if α is irrational :

α = lim
n

1
n
[ε(Tn−1α 0) + ε(Tn−2α 0) + ... + ε(0)].

3 Results

The problem of the asymptotic behaviour of iterates of smooth perturbations
of rotation maps has been extensively studied. The more famous example is
given by the family of applications over X

Aα,ε : x +→ {x + α + ε sin 2πx}, (2)

for 0 ≤ α < 1 and 0 ≤ ε < 1/(2π), which leads to the so-called “Arnold’s
tongues” (see [1], [4], [7]).

The question considered here is on an essentially different nature, since
the perturbated maps are no more onto. Let 0 < γ, α ≤ 1 be two real numbers
and set

Tγ,α : x +−→ {γx + α},
where γ and α are two real parameters with γ ∈ ]0, 1] and α ∈ [0, 1[. We
observe that the maps Tγ,α are injective and that, for γ = 1, we obtain the
rotation Tα. We denote by C the set of these maps Tγ,α. As we are now
interested in the contracting case, we assume in the sequel that 0 < γ < 1.

Similarly as for diffeomorphisms of the torus (see [4], Theorem 14.6), one
can define a rotation number for the maps Tγ,α.

Proposition 2. Let f : X → X be an injective map and assume that there
exists a continuous, increasing map F : [0, 1[→ R such that for all x ∈ [0, 1[
we have f(x) = {F (x)}. We still denote by F the extension of F to R given



382 Yann Bugeaud et al

by F (x) = [x] + F ({x}), for all x ∈ R. Then, F is called a lift of f and the
limit

lim
n→∞

Fn(x)
n

=: ρ

exists and does not depend on x ∈ R : the real ρ ∈ [0, 1] is called the rotation
number of f .

The dynamic of the iterates of the map Tγ,α is given in terms of the
parameters γ and α by the following result of [2].

Theorem 1. Let q and p be two relatively prime integers with 1 ≤ p ≤ q,
and let define the interval Ipq (γ) by :

Ipq (γ) =

[
P pq (γ)

1 + γ + ... + γq−1
,
P pq (γ) + γq−1 − γq

1 + γ + ... + γq−1

]
,

where P pq is the polynomial

P pq (X) =
q−1∑
k=0

ε
p/q
−kXk. (3)

Then, the application Tγ,α has a periodic attracting orbit with the same dy-
namic as the rotation T1,p/q if, and only if, α ∈ Ipq (γ). Say differently, the
rotation number of Tγ,α equals p/q if, and only if, α ∈ Ipq (γ).

We point out that unlike the case of the rotations, the applications Tγ,α
have almost surely a rational rotation number.

Corollary 2. Let γ ∈ ]0, 1[. The Lebesgue measure of the set of parameters
α ∈ ]0, 1[ for which the rotation number of Tγ,α is rational is equal to one.

Since the proof of Corollary 1 is short and easy, we put it in here. The
sum of the lengths of the intervals Ipq (γ) defined in Theorem 1 is given by

µ(γ) =
∞∑
q=1

Φ(q)(γq−1 − γq)
1 + γ + . . . + γq−1

,

where µ is the Lebesgue measure on [0, 1] and Φ(q), the Euler totient function,
counts the number of positive integers p less than q and coprime with q. Then,
Theorem 308 of [6] yields µ(γ) = 1.

A comparison with the asymptotic behaviour of the applications Aα,ε (see
(2)) may be in order here. Indeed, let 0 < ε < 1/(2π) and set

µε =
∑

1≤p≤q and (p,q)=1
µ
{
α ∈ [0, 1[ | ρ(Aα,ε) = p/q

}
.
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Then we have (see [1]) 0 < µε < 1 and µε → 0 when ε → 0.

One can also describe very precisely the set of values of α such that the
rotation number of Tγ,α is irrational.

Theorem 2. Let γ ∈]0, 1[ and let α ∈]0, 1[ be an irrational number. Then
there exists a unique real number τ := τγ(α) such that the rotation number of
the function Tγ,τ is equal to α. The map γ +→ τγ(α) is analytic and is given
by

τγ(α) = (1− γ)
∞∑
k=0

εα−kγ
k.

Further, we have limγ→1 τγ(α) = α.

It is easy to check that for 0 < γ < 1, the rotation number of Tγ,α is
strictly less than this of the rotation Tα.

It turns out that Theorem 1 can in a natural way be generalized to a wider
class of contracting maps on the torus, namely to maps with two distinct
slopes.

Let θ ∈ [0, 1], u, v be three parameters with 0 < u < 1 − θ < v < 1 and
denote by γ0, α0, γ1, α1 the four reals defined by

γ0 = (1− v)/θ, α0 = v, γ1 = u/(1− θ), α1 = −uθ/(1− θ).

They satisfy

−1 < α1 < 0 < α0, γ0, γ1 < 1, α0 > α1 + γ1

and also the relation
α1γ0 = (α0 − 1)γ1.

We consider the applications

[0, θ]
Aγ0,α0−→ [v, 1], where Aγ0,α0(x) = γ0x + α0,

[θ, 1]
Aγ1,α1−→ [0, u], where Aγ1,α1(x) = γ1x + α1.

In the sequel, we will write A0 and A1 these affine maps (compare with (1)).

The map Tγ0,γ1,α0 : X −→ X, which we denote by T when there is no
source of confusion, is defined as the unique application which coincides with
A0 on [0, θ[ and with A1 on [θ, 1[.

We denote by S the set of these transformations Tγ0,γ1,α0 contracting,
piecewise linear over [0, 1[, and we observe that R ⊂ C ⊂ S. The following
theorem provides a generalization of Theorem 1 to the set S.
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Theorem 3. Let γ0 and γ1 be such that 0 < γ0, γ1 ≤ 1. To any rational p/q
irreducible, 1 ≤ p ≤ q, there is an associated compact interval Ipq (γ0, γ1) such
that, if α0 ∈ Ipq (γ0, γ1), then the rotation number of the map Tγ0,γ1,α0 is equal

to p/q. Further, setting εP = ε
p/q
P , we have

Ipq (γ0, γ1) =
[
Apq(γ0, γ1)
Bpq (γ0, γ1)

,
Cpq (γ0, γ1)
Dpq (γ0, γ1)

]
,

where

Apq(γ0, γ1) = 1 +
q−1∑
k=1

εk γεq−1 . . . γεk
,

Bpq (γ0, γ1) = 1 +
q−1∑
k=1

γεq−1 . . . γεk
,

Cpq (γ0, γ1) = 1 +
q∑
k=2

εkγε2 . . . γεk
− γε1 . . . γεq ,

Dpq (γ0, γ1) = 1 +
q∑
k=2

γε2 . . . γεk
.

(1)

It is now time to give some details of the proofs. For the sake of simplicity,
we will focus on Theorem 1, since the proofs of Theorem 3 rest on the same
ideas, but are a little more technical. The key ingredient for both methods is
Lemma 1.

A first way for proving Theorem 1 is given in details in [3]. Roughly
speaking, for a fixed γ ∈ ]0, 1[ and for a polynomial P pq as given in (3), we
compute the orbits of the point 0, hence

Tnγ,Pp
q (γ)/(1+...+γq−1)(0) and Tnγ,(Pp

q (γ)+γq−1−γq)/(1+...+γq−1)(0),

for all integers n ≥ 0. This method allows us to determine explicitely the
points of the limit cycle of Tγ,α, when α belongs to the interval Ipq (γ). Indeed,
for 0 ≤ u ≤ γq−1 − γq, the asymptotic orbit of Tγ,(Pp

q (γ)+u)/(1+...+γq−1) is
composed by the points

RP(γ) + u/(1− γ)
1 + ... + γq−1

,

where, for 1 ≤ Z ≤ q, the polynomial RP is the rest in the Euclidean division
of (1 + X + . . . + XP−1)× P pq (X) by the polynomial 1 + X + . . . + Xq−1.

The second approach for proving Theorem 1 does not yield such an infor-
mation. This is briefly described in [2], and more details are available from
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the author. It depends on the observation that the asymptotic behaviour of
the iterates of T = Tγ,α is deeply related to the position of the critical point
θ = (1− α)/γ, which is the preimage of 0 by T . More precisely, one has the
following result.

Lemma 12. Let n0 = inf{n ≥ 0 | θ /∈ Tn(X)}+ 1. For all integers n < n0,
Tn(X) is a disjoined union of n + 1 intervals. If n0 is finite, then, for all
n ≥ n0, Tn(X) is the union of exactly n0 disjoined intervals.

Proof : Let n ≥ 0 be given and assume that Tn(X) is the disjoined union of

Z intervals I1, ..., IP. Then, if θ ∈ IP, we have Tn+1(X) =
P−1⋃
i=1

T (Ii) ∪ J1 ∪ J2,

where the T (Ii) are intervals and where J1 and J2 are respectively of the
shape [0, .[ and [., 1[. These Z + 1 intervals are disjoined, since the map T is
injective; in this case, an additional iteration yielded an additional interval.
If θ /∈ Tn(X), then Tn+1(X) is the distinct union of the Z intervals T (Ii). We
conclude by noticing that T 0(X) = X is composed by a unique interval.

The idea is then to write the condition θ /∈ Tn(X) in terms of inequalities
involving γ and α and to conclude by an induction based on Lemma 1.

4 An Algorithm

Finally, we describe a continued fraction algorithm which computes the rota-
tion number of any given function Tγ,α. The existence of such an algorithm
is not surprising at all, since it is well known that, for 0 < α < 1, induc-
tion of the rotation x +→ x + α on the interval [1− α, 1] allows us to recover
the continued fraction expansion of α. Here, and in the sequel, we mean by
continued fraction expansion a (signed) continued fraction expansion, i.e. an
expansion of the shape

a = a0 ± 1

a1 ± 1

a2 ± 1

a3 ± 1
. . .

.

The sign essentially depends on the choice of the interval on which we induce
and we merely describe here an algorithm leading to an expansion with the
minus sign.

Unlike the class C, the class S is stable by induction, and this is the
main reason why we have introduced it. Let γ0, γ1, α0 and α1 be parameters
satisfying (4) and (5). As above, we denote by θ the critical point of the
transformation T = Tγ0,γ1,α0 , and we will induce on the interval [θ, 1]. As
in the case of the rotations, one can define an algorithm which allows use
to know precisely the asymptotic behaviour of the iterates of T . The critical
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point θ is in [0, 1] if and only if α0 + γ0 > 1, and if θ does not belong to the
interval [0, 1], then T contracts the torus X, and the iterates of T converge
to its unique fixed point. We then repeat the induction process while the
induced transformation has a critical point. The parameters of the induced
map of T on [θ, 1] are computed in [3]; they yield the following algorithm.

Input : Two real numbers 0 < α, γ ≤ 1.
Output : The continued fraction expansion with minus sign of the rotation
number of Tγ,α.

γ1 := γ ;
while α + γ > 1 do
begin

u := 1 ;
z := γ ;
b := 1 ;
while u ≤ 1/α do
begin

b := b + 1 ;
u := 1 + γ ∗ u ;

end ;
α := (α ∗ u− 1)/(γ + α− 1) ;
γ := γb ∗ γ1 ;
γ1 := γ/z ;
print (b) ;

end.

By Corollary 1, this algorithm stops for almost all choice of the param-
eters. If b1, b2, . . . , bn denote the integers successively obtained through the
procedure, then the rotation number of T is the rational ρ given by

ρ =
1

b1 − 1

b2 − 1
. . .
− 1

bn

.

5 An Example

We illustrate the preceding sections by the study of a numerical example. We
consider the map Tγ,α given by γ = 0.8 and α = 0.5, hence the map

T : x +→ {0.8x + 0.5}.
By an easy calculation, we get

T
(
[0, 1[

)
= [0; 0.3[∪ [0.5; 1[,
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T 2
(
[0, 1[

)
= [0; 0.3[∪ [0.5; 0.74[∪ [0.9; 1[,

T 3
(
[0, 1[

)
= [0; 0.092[∪ [0.22; 0.3[∪ [0.5; 0.74[∪ [0.9; 1[,

and

T 4
(
[0, 1[

)
= [0; 0.092[∪ [0.22; 0.3[∪ [0.5; 0.5736[∪ [0.676; 0.74[∪ [0.9; 1[.

We observe that the critical point θ = (1 − α)/γ = 0.625 does not belong
to T 4

(
[0, 1[

)
, hence the limit cycle has 5 elements. Further, by Theorem 1,

P 25 (γ) = 1 + γ2, and

0.5 ∈ I25 (γ) =
[

1.64
3.3616

,
1.72192
3.3616

]
,

hence ρ(T ) = 2/5. As for the algorithm of Sect. 4, we check that it gives

ρ(T ) =
1

3− 1
2

=
2
5
.
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différentielles ordinaires, Editions de Moscou.

2. Bugeaud, Y. (1993) Dynamique de certaines applications contractantes linéaires
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Abstract. The modular function

j(τ) = exp(−2iπτ) + 744 +
∞∑

n=1

an exp(2iπnτ), an ∈ Z,

automorphic with respect to the action of SL(2,Z) on the Poincaré upper half plane
of those τ ∈ C with positive imaginary part, is very important for the theory of
elliptic curves and of modular forms. Indeed, the values of j parametrise the iso-
morphism classes over C of elliptic curves. In this lecture, we give an introduction
to the modular function, and explain in particular a celebrated result of Th. Schnei-
der (1937) which says that the j function takes an algebraic value at an algebraic
point τ if and only if τ is imaginary quadratic, that is the associated class of elliptic
curves has complex multiplication. We also discuss some more recent results.

1 The Modular Function and Elliptic Curves

Among the objects of central importance in number theory are the elliptic
curves. The richness of their structure stems from its multiple faces: topolog-
ical, algebraic and analytic. Elliptic curves are complex curves, or Riemann
surfaces, of genus 1. The complex points of an elliptic curve can be repre-
sented as a torus C/Λ where Λ is a lattice in C, that is a Z-module of rank
2: Λ = Zω1 + Zω2, such that Rω1 +Rω2 = C. By definition, two complex
elliptic curves corresponding to lattices Λ and Λ′ are isomorphic exactly when
there is a λ ∈ C, λ �= 0 with λΛ = Λ′. Therefore, there is a representative of
each isomorphism class whose lattice is of the form Λτ = Z+ τZ with τ ∈ H,
where H is the upper half plane of complex numbers with positive imaginary
part. We denote by Eτ the corresponding elliptic curve C/Λτ . Let SL(2,Z)
be the group of 2 by 2 matrices with integer coefficients and determinant 1.

Then the elements
(

a b
c d

)
, a, b, c, d ∈ Z, ad − bc = 1, act on the elements

τ ∈ H by fractional linear transformations:

τ +→ τ ′ =
aτ + b

cτ + d
.
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The lattice Z+ τZ is clearly isomorphic to the lattice Z+ τ ′Z, the action of
SL(2,Z) amounting to a base change over Z. Let PSL(2,Z) be the quotient
of SL(2,Z) by the matrices ±1. Then this projective group has a well defined
action by fractional linear transformations induced by that of SL(2,Z). The
above remarks show that we have a bijection,

PSL(2,Z)\H � {Complex isomorphism classes of elliptic curves} . (1)

This bijection is fundamental to all that follows. We shall mainly be concerned
with the analytic nature of elliptic curves, but let us recall briefly their status
as algebro-geometric objects

One of the advantages of algebro-geometric constructions is that they
allow us to work over essentially any field, something of crucial importance
for arithmetic considerations. Let k be a field. Then an elliptic curve over k
is by definition a non-singular projective cubic curve together with a point
with coordinates in k. Up to a suitable change of coordinates, such a curve
can be given in affine form by an equation of the shape

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

The point defined over k is then the projective point at infinity (0 : 1 : 0).
When working over k = C, we can further simplify the above equation to

one of the form

y2 = 4x3 − g2x− g3, g32 − 27g23 �= 0.

We can relate this to the original picture of an elliptic curve as a complex
torus C/Λ.
Proposition 1: Let Λ = Zω1 + Zω2 be a lattice in C with Im(ω1/ω2) > 0
and define

g2 = g2(Λ) = 60
∑
(m,n) =(0,0)(mω1 + nω2)−4,

g3 = g3(Λ) = 140
∑
(m,n) =(0,0)(mω1 + nω2)−6.

Then g32 − 27g23 �= 0 and there is an isomorphism of abelian groups between
the complex points E(C) of the curve

E : y2 = 4x3 − g2x− g3,

together with the point at infinity, and the complex torus C/Λ.
In order to understand the statement of Proposition 1, we must under-

stand the group law. On C/Λ it is just the addition of complex numbers
modulo Λ induced by the usual addition of complex numbers. Hence all the
numbers of the form mω1+nω2, with m,n ∈ Z, are the zero element in C/Λ.
In the algebraic description as the complex points on the curve E, the zero
element is the point at infinity (0 : 1 : 0). The inverse of a point (x, y) is the
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point (x,−y). If P1 = (x1, y1) and P2 = (x2, y2) on E are not inverses of each
other, then their sum P3 = (x3, y3) is given by the formulae,

x3 = −x1 − x2 + 1
4G

2,
y3 = −y1 −G(x3 − x1)

where
G = (y1 − y2)/(x1 − x2), P1 �= P2,
= (12x21 − g2)/(2y1), P1 = P2.

Geometrically speaking, given two points P1 = (x1, y1) and P2 = (x2, y2) on
E, with neither being the point at infinity, there is a line P1P2 joining them.
If P1 = P2 we understand this as the tangent to P1. If P1P2 is a vertical line
we have P1+P2 = 0. If P1P2 is not a vertical line, then −P1−P2 is the third
point of intersection of E with P1P2.

The two descriptions of an elliptic curve in Proposition 1 are linked by
the Weierstrass parametrisation. Given a lattice Λ in C, we associate to Λ
the Weierstrass elliptic function P(z) = P(z, Λ) defined by

P(z) = 1
z2

+
∑

ω∈Λ\{0}
(

1
(z − ω)2

− 1
ω2

). (2)

By construction, the function P(z) is periodic with respect to Λ, that is
P(z) = P(z + ω) for all ω ∈ Λ, the extra terms 1

ω2 being necessary to ensure
convergence. Differentiating the above expression term by term yields

P ′(z) = −2
∑
ω∈Λ

1
(z − ω)3

. (3)

The function P(z) has a double pole at each element of Λ, its derivative P ′(z)
has triple poles at these same points, and it satisfies the differential equation

(P ′(z))2 = 4(P(z))3 − g2P(z)− g3.

In fact, we have a parametrisation of E given by the Weierstrass map

C→ C/Λ � E(C)
z +→ (P(z) : P ′(z) : 1), z �= 0
0 +→ (0 : 1 : 0).

The algebraic addition law for the complex points of E can be translated into
an addition law for the Weierstrass functions.

The modular function arises when one wishes to look at all isomor-
phism classes of elliptic curves at once. As we saw above, the isomorphism
classes of elliptic curves are parametrised by the points of the moduli space
PSL(2,Z)\H. Therefore our modular function should be “periodic” or auto-
morphic with respect to the action of PSL(2,Z) on H. It turns out that all
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reasonable such functions form a field generated by a single modular function
which one can normalise in a suitable way so that it is uniquely determined.
Definition 1: A function h = h(τ) on H is said to be modular (of weight
zero) if it is meromorphic on H and satisfies

h(
aτ + b

cτ + d
) = h(τ), τ ∈ H,

(
a b
c d

)
∈ SL(2,Z).

We require in addition that h be meromorphic at infinity, namely that its
Fourier series

h(τ) =
∑
n∈Z

anq
n, q = e2πiτ ,

have at most finitely many nonzero an with n < 0.
Such functions form a field. Moreover, as the transformation τ +→ τ + 1

is in PSL(2,Z), each modular function has a Fourier expansion in powers of
q = exp(2πiτ). The field of modular functions is generated by one element
which we can choose by stipulating that an = 0 for all n < 1 and by requiring
that a−1 = 1 and a0 = 744. We recover then the modular function

j(τ) = q−1 + 744 +
∞∑
n=1

anq
n, (4)

also referred to as the j-function. All of the coefficients an, n ≥ −1 are positive
integers, for example a1 = 196884 and a2 = 21493760. We can express the
j-function in terms of the g2 and g3 of Proposition 1. From their definition
we see at once that

g2(λΛ) = λ−4g2(Λ), g3(λΛ) = λ−6g3(Λ)

for all λ ∈ C \ {0} and all lattices Λ in C. Let ∆ = ∆(Λ) = g32 − 27g23 . Then
the ratio j(Λ) = g32(Λ)/∆(Λ) clearly satisfies j(λΛ) = j(Λ), λ ∈ C \ {0} and
so depends only on the isomorphism class of Λ.
Proposition 2: The function

j : H → C

induces a bijection between the moduli space PSL(2,Z)\H and the complex
numbers C. Therefore, to each isomorphism class of elliptic curves corre-
sponds one and only one value of the function j. Moreover, we have

j(τ) = j(Z+ τZ), τ ∈ H.

Proof: For a full proof of the Proposition see [4], Proposition 11, p.119. By
the defining properties of modular functions, we know that the function j
is well defined modulo PSL(2,Z). One can verify that j(τ) = j(Z + τZ) for
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τ ∈ H by using its expression in terms of g2 and g3 and computing the first
few coefficients of the resulting Fourier expansion of j(τ). The function ∆
has a simple zero at infinity and no other zero. Since g2 does not vanish at
infinity, the j-function has a simple pole at infinity and is holomorphic on H.
By properties of modular forms, we know that for any c ∈ C the modular form
1728g32− c∆ must vanish at exactly one point P ∈ PSL(2,Z)\H. Dividing by
∆, we see that j(τ)− c = 0 has exactly one zero for τ ∈ PSL(2,Z)\H. Thus
j takes ∞ to ∞ and induces a bijection of PSL(2,Z)\H with C.

2 Complex Multiplication

The group PSL(2,Z) has a presentation, which determines it up to conjugacy
in PSL(2,R), in terms of generators and relations by

〈M1,M2,M3 | M2
1 = M3

2 = M1M2M3 = 1〉.
We can take as generators M1 and M3, the transformations given respectively
by the matrices

S =
(
0 −1
1 0

)
, T =

(
1 1
0 1

)
.

We then can take M2 = ST−1. Notice that M3 is the transformation z +→ z+1
and so has order infinity. The fundamental domain for the action of PSL(2,Z)
on H is given by two adjacent copies of a hyperbolic triangle with angles
π/2, π/3 and 0 and vertices at fixed points of elements of PSL(2,Z) of order
2, 3 and∞ respectively. We can take this fundamental domain to have closure
the region

F = {z ∈ H | −1/2 ≤ Re(τ) ≤ 1/2, |τ | ≥ 1} .

The matrix S has fixed point τ = i =
√−1 whereas T has fixed point at

infinity and ST−1 has fixed point τ = (1 +
√−3)/2. The points τ = i and

τ = (1 +
√−3)/2 correspond to elliptic curves with special properties.

Definition 2: A non-zero complex number α is called an endomorphism of a
lattice Λ in C if αΛ ⊂ Λ. Such an endomorphism induces an endomorphism
of the elliptic curve E = C/Λ by multiplication in C and reduction modulo
Λ. These endomorphisms form a ring denoted End(E). Let Endo(E) denote
the algebra of endomorphisms of E defined by Endo(E) = End(E)⊗Z Q.

It is clear that any lattice Λ of C is invariant under multiplication by
the elements of Z. Hence we always have Q ⊂ Endo(E). Consider the lattice
Λi = Z+ iZ corresponding to the fixed point i of S. We clearly have iΛi = Λi
since i2 = −1. Therefore Q(i) ⊂ Endo(Ei) and as Λi ⊗Z Q = Q(i) we in
fact have Q(i) = Endo(Ei). We can argue in a similar way for the point
τ = (−1 +√−3)/2.
Definition 3: An elliptic curve E is said to have complex multiplication if
its endomorphism ring End(E) strictly contains Z.

We have the following observation.
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Proposition 3: Let E be an elliptic curve and assume that E has complex
multiplication. Then End(E) is isomorphic as a ring to Z+τZ for some τ ∈ H
which is an imaginary quadratic integer, that is it satisfies an equation of the
form

τ2 − Tτ + N = 0

where T and N are integers with D = T 2 − 4N < 0. Conversely, if τ ∈ H
is quadratic imaginary, the elliptic curve Eτ has complex multiplication and
Endo(E) = Q(τ).
Proof: We write E = C/Λ for a lattice Λ in C. Then End(E) is given by
the α ∈ C \ {0} with αΛ ⊂ Λ. As we are just interested in End(E), we can
suppose Λ = Λτ = Z+ τZ with τ ∈ H. As α leaves Λτ fixed, there must be
integers a,b,c,d with

α = a + bτ, ατ = c + dτ.

Therefore α is an eigenvalue of the matrix
(

a b
c d

)
and hence is an alge-

braic integer of degree 2 and satisfies an equation as in the statement of the
Proposition with T = a + d and N = ad − bc. Since α = a + bτ we have
Q(α) = Q(τ) which is an imaginary quadratic extension of Q containing
End(E) as a subring of its ring of integers.

For example, thinking algebraically, the curves y2 = x3 − ax all have
complex multiplication by the Gaussian integers Z[i]. Indeed, the action of i
itself is given by the map of (x, y) to (−x, iy). Similarly, the curves y2 = x3+b
all have complex multiplication by Z[(−1 + √−3)/2] with map of (x, y) to
(((−1 +√−3)/2)x, y). For another example, one can check that the curve

y2 = x3 − (3/4)x2 − 2x− 1

has complex multiplication by Z[κ] where κ = (1 +
√−7)/2, multiplication

by κ sending (x, y) to (u, v), where

u = κ−2(x + a + b
x−a )

v = κ−3y(1− b
(x−a)2 ),

with a = (κ− 3)/4 and b = − 7
16 (3κ− 1). These computations are due to D.

Bernardi (see [1], p.224).
A far more difficult result than Proposition 3 concerns the values of the

j-function at complex multiplication moduli τ (that is moduli for which Eτ
has complex multiplication).
Theorem 1: Let τ ∈ H be quadratic imaginary. Then j(τ) is an algebraic
integer.

Some examples, again taken from the reference [1], p225, of such special
values of the j-function are,
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j((1 + i
√
3)/2) = 0

j(i) = 1728 = 123

j((1 + i
√
7)/2) = −3375 = (−15)3

j(i
√
2) = 8000 = 203

j((1 + i
√
11)/2) = −32768 = (−32)3

j((1 + i
√
19)/2) = −884736 = (−96)3

j((1 + i
√
43)/2) = −884736000 = (−960)3

j((1 + i
√
67)/2) = −147197952000 = (−5280)3

j((1 + i
√
163)/2) = −262537412640768000 = (−640320)3

j(i
√
3) = 54000 = 2(30)3

j(2i) = 287496 = (66)3

j((1 + 3i
√
3)/2) = −12288000 = −3(160)3

j(i
√
7) = 16581375 = (255)3

j((1 + i
√
15)/2) = (−191025 + 85995

√
5)/2(1 +

√
5)/2((75− 27

√
5)/2)3

j((1 + i
√
23)/2) = θ,

where θ is the largest negative root of the cubic equation

X3 + 3491750X2 − 5151296975X + 12771880859375 = 0.

As also noted in [1], we know that j(τ) is rather well approximated for Im(τ)
large by 1/q+744, just by looking at its Fourier expansion. Hence, for example
eπ
√
163 should be close to an integer and (eπ

√
163 − 744)1/3 should be even

closer. In fact, one finds

eπ
√
163 = 262537412640768743.99999999999925007259...,

and

(eπ
√
163 − 744)1/3 = 640319.99999999999999999999999939031735....

By transcendence theory, the above quantities cannot be integers and are
even transcendental numbers.

3 Schneider’s Theorem

There is a converse to Theorem 1 proven in 1937 by Th. Schneider [5]. It
cannot expect to say anything about the converse to being an “algebraic
integer”, but it says something about transcendence, that is the converse to
being “algebraic”.
Theorem 2: Let τ be an algebraic point of H, that is τ ∈ H ∩Q, then if τ
is not quadratic imaginary then j(τ) is transcendental.

We can put this together with Theorem 1.



The Modular Function 395

Corollary The numbers τ ∈ H and j(τ) ∈ C are both algebraic if and only
if τ is imaginary quadratic.

This Corollary is really a remarkable statement. It says that for an alge-
braic number τ ∈ H, the algebraicity of the value of a transcendental function
at τ will determine whether or not the degree of τ is 2! Generally speaking,
we expect that suitably normalised transcendental functions will take tran-
scendental values at algebraic points. In our case the suitable normalisation
corresponds to the fact that the Fourier coefficients an of j(τ) are algebraic.
When algebraic values are taken by a transcendental function at algebraic
points, it means something very special happens. Indeed, a more modern
name for complex multiplication points in H is “special points”. The special
points in the elliptic situation are being given by fixed points of elements of
PSL(2,Q) and the value of the j-function at a special point τ generates a
particular type of class field, namely the Hilbert class field H of K = Q(τ).
The extension H/K is an abelian Galois extension with abelian Galois group
isomorphic to the ideal class group of K. The generalisation of such construc-
tions of class fields, arising from moduli spaces of abelian varieties, has been
done by Shimura. The generalisation of Schneider’s theorem to this higher
dimensional situation is due to myself, Shiga and Wolfart [2].

The proof of Schneider’s theorem uses heavily, through the use of Weier-
strass functions, the fact that the orbits of the action of PSL(2,Z) correspond
to isomorphism classes of elliptic curves. An important open problem origi-
nally posed by Th. Schneider is the following.
Open Problem: Prove Theorem 2 using only the intrinsic properties of the
modular function j(τ), in particular by bypassing the use of elliptic curves.

It would go beyond the scope of this lecture to enter into the proof of
Theorem 2 using Weierstrass functions. It relies on the fact that if τ is
not imaginary quadratic then the two functions P(z) and P(τz) are alge-
braically independent. This allows to make an auxiliary construction using
a polynomial P (X,Y ) with X = P(z) and Y = P(τz). One shows that if
Λ = Zω1+Zω2 is a lattice in C with generators ω1 and ω2, where τ = ω1/ω2,
and with “invariants” g2(Λ) and g3(Λ) algebraic numbers, then the Q-vector
space Λ⊗ZQ has Q-dimension equal to 2/[Endo(E) : Q]. If g2 and g3 are in
Q , then the algebraic equation defining E has coefficients in Q, and E is said
to be defined over Q. We have j(τ) ∈ Q by the expression of j in terms of the
invariants. Conversely if j(τ) ∈ Q, there is a lattice Λ isomorphic to Λτ with
algebraic invariants. Hence if τ and j(τ) are in Q, then 2/[Endo(E) : Q] = 1
so that Endo(E) has to be an extension of Q of degree 2 and this means it
is quadratic imaginary and so E has complex multiplication.

4 Generalisations

It is natural to ask about the transcendence properties of the j-function as a
function of q = exp(2πiτ): we shall write J = J(q) = j(τ). This has turned
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out to be a motor for very important recent developments in the theory of
transcendence and algebraic independence of quantities derived from modular
functions. In 1995, K. Barré-Sirieix, G. Diaz, F. Gramain, and G. Philibert
showed that J(q) is transcendental for all q ∈ Q with 0 < |q| < 1, so solving
a problem posed by Mahler in 1969. There is also a p-adic version of this
problem solved by the same four authors. In 1996, Y. Nesterenko developed
techniques inspired by this progress to deduce a powerful result about the
algebraic independence of the values of certain Eisenstein series. One can
deduce many results from this one, for example the algebraic independance
of the three numbers π, eπ, Γ (1/4). The algebraic independence of π, Γ (1/4)
was known by a result of G.V. Chudnovsky going back to 1976, but the
algebraic independence of π, eπ was unknown before the work of Nesterenko.

We have already mentioned results in higher dimension. A related question
is the study of other fuchsian triangle groups besides PSL(2,Z), in the spirit
of work of the author and J. Wolfart [3]. A fuchsian triangle group ∆ is a
subgroup of PSL(2,R) determined up to conjugacy by the presentation, for
integers 2 ≤ p, q, r ≤ ∞ with 1/p + 1/q + 1/r < 1,

∆ = ∆(p, q, r) = 〈M1,M2,M3 | Mp
1 = Mq

2 = Mr
3 = M1M2M3 = 1〉.

We say that ∆ is of signature (p, q, r). The case (p, q, r) = (2, 3,∞) corre-
sponds to PSL(2,Z). The action of ∆(p, q, r) on H is properly discontinuous
and so we have a corresponding fundamental domain which is two copies of
a hyperbolic triangle with angles π/p, π/q, π/r. The fuchsian triangle groups
fall into 2 classes, arithmetic and non-arithmetic. In [6], [7] Takeuchi found
those signatures (p, q, r) with ∆(p, q, r) arithmetic. They are a finite list of
85 arithmetic signatures and of course the signature (2, 3,∞) is among them.
The infinitely many other signatures give rise to non-arithmetic groups, for
example the group with signature (2, 5,∞). The arithmetic groups are those
for which the orbits of the action on H can be made to correspond to cer-
tain isomorphism classes of abelian varieties (higher dimensional analogues
of elliptic curves) with some given structure. In the non-arithmetic case, one
can also find some underlying abelian varieties, but the situation is more
involved (see [3]). There is a notion of complex multiplication for abelian
varieties and one can therefore define “special points” on H corresponding to
these abelian varieties: they are not in general the same as the special points
for PSL(2,Z). There is a generalisation of the j-function, which we denote
by j∆, to a general fuchsian triangle group ∆ and we have an analogue of
Schneider’s theorem for this situation as a consequence of the methods of [2]
and [3]. A special case of a conjecture of André-Oort applied to this situation
leads to the following question.
Open Problem: The set

S = {j∆(τ) | τ, j∆(τ) ∈ Q}
is finite if and only if ∆ is non-arithmetic.
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If ∆ is arithmetic then it is clear that S is infinite once one understands
the role of (H, ∆) as defining a moduli space for abelian varieties and indeed
this case is not difficult. The fact that the situation is more involved in the
non-arithmetic case, as mentioned above, leads to the finiteness prediction in
this case. This finiteness statement will be the hard part to prove.
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Abstract. This article gives a generalization of the Markoff theory for diophantine
equations:

m2 + ε2m2
1 + ε1m2

2 = (a+ 1)mm1m2 + ε2∂Km1m2 − um

It is shown how these equations are linked to finite sequences of integers. The
arborescent structure of their solutions is given. The link is given with the analysis of
the Markoff spectrum, and with the representation of the free group F2 in M(2, Z),
the algebra of 2× 2 matrices with integers coefficients.

1 Introduction

The classical theory of Andrei A. Markoff [19] [3] [10] deals with the diophan-
tine equation, with solutions (m,m1,m2) ∈ (N∗)3:

M++(2, 0, 0) : x2 + y2 + z2 = 3xyz

• In two former articles [24] [26], it was built an analog theory with similar
equations, as for example:

M++(2, 0,−2) : x2 + y2 + z2 = 3xyz + 2x

For such equations, we present here an interpretation with matrices, gener-
alizing the work made by Harvey Cohn [5] for the classical Markoff theory.
The formalism that we build can be extended to more general equations
(Ms1s2(a, ∂K, u)) written, with s1 the sign of ε1 ∈ {±1}, s2 the sign of
ε2 ∈ {±1}, a ∈ N , ∂K ∈ Z and u ∈ Z:

m2 + ε2m
2
1 + ε1m

2
2 = (a + 1)mm1m2 + ε2∂Km1m2 − um (M)

We show how to build, for such equations, trees of solutions. We establish a
link with the study of diophantine approximation for real algebraic numbers
of degree 2, and the representation of free groups with two generators.

In the present article, we use sequences of positive integers:

W = (αi, αi−1, ..., α0)
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W ∗ = (α0, α1, ..., αi) the mirror sequence of W

We associate two extended sequences, on left and right:

^W =
{
(1, αi − 1, αi−1, ..., α0) if αi �= 1

(αi−1 + 1, ..., α0) if αi = 1

}
W_ = (^W ∗)∗

We define the matrix associated to W and its determinant:

M[W ] =
[
αi 1
1 0

] [
αi−1 1
1 0

]
...

[
α0 1
1 0

]
ε[W ] = det(M[W ]) = (−1)i+1

The tranposition of matrices is associated to the mirror operation for se-
quences. We use the same notation for it. Moreover, we make the following
convention:

M[R] =
[
1 0
1 −1

]
= M∗[S]

The matrices that we consider are situated in the set M(2, Z) of 2×2 matrices
with integer coefficients. They operate on R ∪ {∞} thanks to the relation:[

a b
d c

]
(x) =

ax + b

cx + d

So we have relations between matrices and continued fractions:

M[W ](∞) = [W ] = [αi, αi−1, ..., α0]

M[W ](0) = [αi, αi−1, ..., α1]

where we use the notation:

[W ] = [αi, αi−1, ..., α0] = αi +
1

αi−1 +
1

... +
1
α0

Hence, we have:

M[W1]([W2]) = [W1,W2]

M[∅] =
[
1 0
0 1

]
= 1

[∅] =∞
It is necessary to avoid confusion with the commutator of matrices:

[A,B] = A−1B−1AB
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2 The Case of the Classical Markoff Theory

Here we are concerned with the triples of solutions (m,m1,m2) ∈ (N∗)3 of
the equation:

M++(2, 0, 0) : x2 + y2 + z2 = 3xyz

For a permutation, we only consider Cohn’s triples of solutions, defined by
the condition:

m ≥ m1 ≥ m2 ≥ 1

H. Cohn has shown [5] that any of them is associated to a triple of matrices
(M,M1,M2) of SL(2, Z), such that:

tr(M) = 3m
tr(M1) = 3m1

tr(M2) = 3m2

The equation M++(2, 0, 0) is then the translation of the relation (FR1) of
Robert Fricke, demonstrated for to matrices A and B contained in SL(2, Z):

tr(AB)2 + tr(B)2 + tr(A)2

= tr(AB)tr(B)tr(A) + tr(ABA−1B−1) + 2

Here, we set AB = M,B = M1, and A = M2. Simplifying, the relation
M++(2, 0, 0) is equivalent to the equality:

tr(ABA−1B−1) = −2
The construction of M,M1 et M2 can be done as now described. Every

Cohn triple (m,m1,m2) gives birth to an algebraic number of degree 2, whose
development as a continued fraction is:

θ2(S) = [0, S∗, 2]

The sequence S∗ can be decomposed as:

S∗ = (an, an−1, ..., a0) = (X1, 2, X2)

So, we can consider the following matrices:

M[S∗] =
[

m m−K2
K1 K1 − l

]
( here K1 = K2 )

M[X1] =
[
m1 m1 − k12
k1 k1 − l1

]
M[X2] =

[
m2 m2 − k2
k21 k21 − l2

]
M = AB = M[S∗,2] = M[RSS,2]

M1 = B = M[X∗
1 S,2]

M2 = A = M[RX∗
2 ,2]
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With the notation:

L = M[2]M
−1
[S,2,R] =

[−1 −6
0 −1

]
= M[S]L

−1M[S]

we can write:

AB = M[RX2,2,T ]LM[S,2,R,X2,2]

BA = M[RX2,2,T ]M[S,2,R,X2,2]

tr(ABA−1B−1) = tr(M[RX2,2,T ]LM−1[RX2,2,T ]
) = tr(L) = −2

The link with the formalism of H. Cohn [5] is now completely clear.
The former development gives some hyperbolic quadrilateral in the Poincare’s

half-plane H2, as p β sα, whose vertices are rational numbers situated on the
edge of H2:

A
α = [T ] −→ s = [X∗1_] = [X∗1 ]

B ↑ ↑ B

p = [−1, 1, 1, X∗2 ] −→ β = 0
A

It is easy to deduce from the above diagram a conformal torus perforated
at a point, associated to the triple (m,m1,m2). In order to do it, we only
identify, in the half-plane H2, two geodesics pα and βs thanks to A, and the
two other geodesics pβ and αs thanks to B.

So, we get the geometrical interpretation given by H. Cohn for the classical
Markoff theory, classifying the hyperbolic quadrilaterals which are fundamen-
tal domains of H2, thanks to conformal transformations of H2.

The things happen as if, by an hyperbolical Tangram game, we were
building quadrilaterals giving the same conformal perforated torus.For this,
we use the inner automorphisms of GL(2, Z) :

Ad(P ) : x −→ Ad(P )(x) = PxP−1

The operator Ad is the adjunct representation of the group GL(2, Z) inside
the algebra M(2, Z) of 2 × 2 matrices with integer coefficients. And the set
of these transformations Ad(P ) such that P ∈ GL(2, Z) is a group that we
call here Ad(GL(2, Z)).

It can be shown that any couple (A,B) built as before is a couple of
generators of [SL(2, Z), SL(2, Z)], the normal sugroup of commutators of
SL(2, Z).

The couples (A,B) and (A′, B′) of [SL(2, Z), SL(2, Z)] can be linked by
a matrix P of GL(2, Z):

(A′, B′) = (Ad(P )(A), Ad(P )(B))
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We deduce [22] a conformal equivalence (if P is in SL(2, Z)) or an anti-
conformal one in H2 defined by P . This allows to identify the quadrilaterals
built with any of the two couples.

When it is not the case, we can cut the associated quadrilaterals associated
to any of the couples (A,B) and (A′, B′) in a finite number of domains,
respectively conformly or anti-conformly equivalent. It is the phenomenon of
hyperbolic Tangram quoted before.

We also find this way a direct verification that the group G = gp(A,B)
generated by A and B in SL(2, Z) is a Fricke group [7] [15], that is to say a
group G, which is fuchsian and free with two generators A and B, such that
the quotient H2/G is a perforated torus. Hence we get the other notation
([17] p.7):

G = 〈A,B〉
In our present case, the group G is nothing but [SL(2, Z), SL(2, Z)], a

free group with two generators. It is a normal subgroup of SL(2, Z), even
normal in GL(2, Z), and such that:

SL(2, Z)/[SL(2, Z), SL(2, Z)] cyclic group with 12 elements

The classical Markoff theory gives then couples of generators for the group G
that we consider. For example, with the triple (5, 2, 1) corresponding to the
sequences X2 = ∅ and X1 = (1, 1), we get:

G = [SL(2, Z), SL(2, Z)] = 〈
[
2 1
1 0

]
,

[
5 2
2 1

]
〉

But any other Cohn’s triple for the equation M++(2, 0, 0) gives another sys-
tem of generators for this group, hence isomorphic to the free abstract group
F2 = 〈x, y〉 with two generators x and y.

The complete tree of solutions of the equation M++(2, 0, 0) can be iden-
tified (see [22]) with the quotient group:

Aut(F2)/Ad(GL(2, Z)) = Z/2Z ∗ Z/2Z ∗ Z/2Z

So we classify the couples of generators (A,B) of F2 by inner automorphisms
of GL(2, Z). In fact, the group Ad(GL(2, Z)) is normal in Aut(F2), and
choosing an automorphism of F2 is the same thing as choosing a couple of
generators of this last group.

The group Ad(GL(2, Z)) has to be distinguished from the group Int(F2),
defined thanks to the inner automorphisms of the group F2. This last group
gives the possibility to define [13]:

Out(F2) = Aut(F2)/Int(F2) = SL(2, Z)

We easily see that any inner automorphism of F2 can be extended as an
inner automorphism of GL(2, Z) (see [12] [14]).
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Moreover, it is known [6] [31] [29] that the simple closed geodesics of the
conformal perforated torus associated to F2 give the Cohn’s triples of solu-
tions for the equation M++(2, 0, 0). So we get the possibility to understand
the apparition in Physics of the classical Markoff theory, with periodical tra-
jectories of a dynamical system which can be built on a torus perforated by
the extraction of a point [1] [27].

3 More General Diophantine Equations

Our aim is to get more general dynamical systems than before. So we consider
here a sequence with positive integers:

S∗ = (an, an−1, ..., a0) = (X1, a,X2)

We suppose in what follows that the sequence X1 is defined with a new
sequence T :

X1 = (^X∗2 , a, T )

The sequence S∗ allows to consider the three matrices M[S∗], M[X1], M[X2].
We suppose that they have the same expressions as in the previous section.
We also introduce:

M[T ] =
[

µ µ− κ2
κ1 κ1 − λ

]
It is easy to deduce relations between the parameters of the matrices that

we consider. For example:

K1 −K2 = ε[X2](κ1 + κ2 − µ) = ε[X2]∂K

where ∂K is equal to zero if and only if, like in the Markoff theory, we have:

T = T ∗

We write now:

A = M[RX∗
2 ,a]

B = M[X∗
1 S,a]

AB = M[RX∗
2 ,a]M[X∗

1 S,a] = M[RSS,a]
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These relations introduce new parameters:

εA = det(A) = ε[X2] (also denoted ε2)
εB = det(B) = ε[X1] (also denoted ε1)
tr(AB) = (a + 1)m + (K2 −K1) ∈ Z

tr(A) = (a + 1)m2 + T2 ∈ Z

tr(B) = (a + 1)m1 − T1 ∈ Z

T2 = k2 + k21 −m2

T1 = k1 + k12 −m1

u = m2T1 −m1T2

The Fricke’s formula, generalizing (FR1) to GL(2, Z) is now:

tr(ABA−1B−1) = −2 + εAtr(A)2 + εBtr(B)2 + εAεBtr(AB)2

−εAεBtr(A)tr(B)tr(AB)

It gives a quite complicated formula:

tr(ABA−1B−1) + 2 = ε2[(a + 1)2m2
2 + 2(a + 1)m2T2 + T 22 ]

+ε1[(a + 1)2m2
1 − 2(a + 1)m1T1 + T 21 ]

+ε1ε2[(a + 1)2m2]
−ε1ε2(a + 1)3mm1m2

−ε1ε2(a + 1)2m[m1T2 −m2T1]
+ε1ε2(a + 1)mT1T2 + ∆(ABA−1B−1)

where:

∆(ABA−1B−1) = ε1ε2[2(a + 1)(K2 −K1) + (K2 −K1)2]
−ε1ε2(a + 1)2m1m2(K2 −K1)
−ε1ε2(a + 1)[m1T2 −m2T1](K2 −K1)
+ε1ε2T1T2(K2 −K1)

We now introduce M[U ] and M[V ] such that:

M[X2] = M[V ]M[RX∗
2 ]

M[X1] = M[RX∗
2 ,a,T ] = M[X∗

1 S]M[U ] = M[T∗,a,X2]M[U ]

M[V ] = M[X2]M
−1
[RX∗

2 ]
= M[R] + ε2T2M[X2]M[−1]

M[U ] = M−1[X∗
1 S]

M[X1] = M[S] − ε1T1M[−1]M[X1]

Hence we have:

BA = M[X∗
1 S]M[a]M[RX∗

2 ,a]

AB = M[X∗
1 S]L

−1M[a]M[RX∗
2 ,a]
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where we can introduce the matrix depending on T :

L−1 = M[U ]M
−1
[T ]M[T∗]M[a]M[V ]M

−1
[a]

The former expressions give:

[A−1, B−1] = ABA−1B−1 = M[X∗
1 S]L

−1M−1[X∗
1 S]

tr(ABA−1B−1) = tr(L−1)

In order to compute tr(L−1), we introduce:

J =
[

0 1
−1 0

]

N = M−1[T ]M[T∗] = 1 + ε[T ]ε2(K1 −K2)JM[T∗]

The product giving L−1 can be expressed:

L−1 = L−10 + ε1T1L
−1
1 + ε2T2L

−1
2 + ε1ε2T1T2L

−1
12

with:

L−10 = M[S]NM[aR]M
−1
[a]

tr(L−10 ) = −2 + 2ε1(K1 −K2)(a + 1)µ + ε1ε2(K1 −K2)2

L−11 = −M[−1]M[X1]NM[a]M[R]M
−1
[a]

tr(L−11 ) = (T1 − 2(a + 1)m1) + ε2(K1 −K2)((a + 1)m2 − T2)
L−12 = M[S]NM[a]M[X2]M[−1]M

−1
[a]

tr(L−12 ) = (T2 + 2(a + 1)m2)− ε1(K1 −K2)((a + 1)m1 + T1)
L−112 = −M[−1]M[X1]NM[a]M[X2]M[−1]M

−1
[a]

tr(L−112 ) = (a + 1)m + (K1 −K2)

The former relations give now, using the linearity of the trace:

tr(L−1) + 2 = ε1T
2
1 − 2ε1(a + 1)m1T1 + ε2T

2
2

+2ε2(a + 1)m2T2 + ε1ε2(a + 1)mT1T2 + ∆(L−1)

where:

∆(L−1) = ε1ε2(K1 −K2)((a + 1)(u + 2ε2µ) + K1 −K2 − T1T2)

Subtracting from the relation given before for tr(ABA−1B−1)+2, we obtain:

∆(L−1)−∆(ABA−1B−1)
= (a + 1)2[ε1ε2m2 + ε1m

2
1 + ε2m

2
2 − ε1ε2(a + 1)mm1m2 + ε1ε2um]
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But with the relations already given, we easily evaluate:

∆(ABA−1B−1)−∆(L−1) = ε1ε2(K1 −K2)(a + 1)2m1m2

Simplifying with (a + 1)2, the equation (Ms1s2(a, ∂K, u)) appears:

m2 + ε2m
2
1 + ε1m

2
2 = (a + 1)mm1m2 + ε2∂Km1m2 − um

For ∂K = 0, ε1 = ε2 = 1, a = 2 and u = 0, we get the equation
M++(2, 0, 0). If ∂K �= 0 and ε1 = ε2 = 1, we obtain the equation M++(a, ∂K, u)
mentionned in [24]. If ∂K = 0, ε1 = −ε2 = 1 and u = 0, we find the equation
M+−(a, 0, 0) completely solved in [20]:

m2 −m2
1 + m2

2 = (a + 1)mm1m2

It is very easy to see that the equation (Ms1s2(a, ∂K, u)) is equivalent to
the union of the two following equations:

m2
1 − ∂Km1m2 + ε1ε2m

2
2 = µm

ε2µ = (a + 1)m1m2 −m− u

In order to obtain it again, we only have to eliminate the terms µ. Con-
versely, the former calculus give the system of the two equations thanks to
(Ms1s2(a, ∂K, u)).

We find also the equation (M−s1−s2(a,−∂K, u + 2ε2µ)) with the same
solutions:

m2 − ε2m
2
1 − ε1m

2
2 = (a + 1)mm1m2 − ε2∂Km1m2 − (u + 2ε2µ)m

We remark that the former conjunction of two equations simply appears
in the situation where we have:

m | m2
1 − ∂Km1m2 + ε1ε2m

2
2

We need only to give ε2 and to define:

µ = ((m2
1 − ∂Km1m2 + ε1ε2m

2
2)/m)

u = (a + 1)m1m2 −m− ε2µ

So, we can build a generalized Markoff equation, and the associated equa-
tion with the corresponding two matrices A and B. More generally, with the
condition:

m | αm2
1 + βm1m2 + γm2

2

We find analog equations, studied in [24] or [26]:

m2 + αm2
1 + γm2

2 = (a + 1)mm1m2 − βm1m2 − um
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Such equations contain all the information leading to the theory of quadratic
forms [11] [32].

We saw that the number ∂K does not depend on T . For u, the dépendance
on T is complicated with a dependance on a and X2:

u + ε2µ = (aκ2 + λ)m2
2 − (aµ + κ1 − κ2)m2k21 − µk221 = Ψ(T,a)(m2, k21)

The possible values u come from values represented by the form Ψ(T,a). But
there exists [8] an algorithmic process determining whether, for any value
u we can find m2 and k21, and also an effective method to compute these
values. The number ε2 being in {±1}, we deduce a possible sequence X2.

This gives the complete answer to the question of knowing the values
u, hence diophantine equations (Ms1s2(a, ∂K, u)) having solutions. We have
also the answer to the question of knowing the possible sequences X2, when
(T, a) is given (see [21]).

All the classical Markoff theory is, with (T, a) = (∅, 2), given by the
following form, linked with the golden ratio:

Ψ(∅,2)(x, y) = x2 − xy − y2

4 Solving the Generalized Equations

It is possible to get arborescent structures for the solutions (m,m1,m2) ∈
(N∗)3 of the equation (Ms1s2(a, ∂K, u)). In order to do it, we use the following
three transformations:

X : (A,B) −→ (AX , BX)
AX = M[R]A

−1M[R]

BX = M−1[a] B
∗M[a]

Y : (A,B) −→ (AY , BY )
AY = M[R]M

−1
[a] M[S](A∗)−1M[a]

BY = M−1[a] A
∗M[S]M[a]M[R]M

−1
[a] B

∗A∗M[a]

Z : (A,B) −→ (AZ , BZ)
AZ = M−1[a] B

∗A∗M[S]M[a]M[R]M
−1
[a] B

∗M[a]

BZ = M−1[a] (B
∗)−1M[a]M[R]M

−1
[a] M[S]M[a]

These transformations are idempotent, as is easy to verify. We can compose
them in order to get transformations that can be applied to Cohn’s triples,
according to the methods of [25]. But these transformations change from one
level to another level the equation (M), as we are going to see it.
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• The lefthand construction is defined with the sequences X2 and T as
follows:

XG2 = (^T ∗, a,X2)
TG = T

It gives:

AG = M[RXG∗
2 ,a] = M[R]M

−1
[a] B

∗M[S]M[a]

BG = M[XG∗
1 S,a] = BM−1[a] M[S](A∗)−1M[a]M[R]B

We deduce:

εG2 = det(AG) = det(B∗) = ε1

εG1 = det(BG) = det((A∗)−1) = ε2

uG = ε1ε2u

(∂K)G = ∂K

The resulting lefthand equation (MG) can be computed from (M). It can
be different from (M), but is to it equal when ε1 = ε2 = 1.

• Twice on the right, the construction is given by:

XDD2 = X∗2
TDD = (^X∗2 , a, T

∗, a,X2_)

We find:

ADD = M[RXDD∗
2 ,a] = M[R]M

−1
[a] A

∗M[S]M[a]

BDD = M[XDD∗
1 S,a] = ABM−1[a] M[S]A

∗M[S]M[a]

With these expressions:

εDD2 = det(ADD) = det(A∗) = ε2

εDD1 = det(BDD) = det(B) = ε1

uDD = u

(∂K)DD = ε2∂K

The resulting equation (MDD) coming from (M) can be computed. It can
be different from (M), but is equal when we have ε1 = ε2 = 1 or ∂K = 0.

• The construction on the right after left is defined by:

XGD2 = (^X∗2 , a, T )
TGD = (X∗2 , a, T

∗, a,X2)

It gives:

AGD = M[RXGD∗
2 ,a] = M[R]BM−1[a] M[S]M[a]

BGD = M[XGD∗
1 S,a] = M−1[a] B

∗A∗M[S]M[a]M[R]M
−1
[a] B

∗M[a]
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With the expressions:

εGD2 = det(AGD) = det(B) = ε1

εGD1 = det(BGD) = det(A∗) = ε2

uGD = ε2u ou uGD = ε1ε2u

(∂K)GD = ε2∂K

The equation (MGD) coming from (M) can be deduced. It can also be
different from (M), but is equal when ε1 = ε2 = 1.

The repeated application of the transformations that we have exhibited
shows easily that any equation (M) having a Cohn’s triple of solutions have an
infinity of other solutions. We deduce from them longer and longer sequences
X2 corresponding to such solutions. The same transformations organize the
set of triples of solutions as arborescent structures.

Also, considering for (M) the triples of solutions (m,m1,m2) ∈ Z3, the
transformations X,Y and Z constitute sets of triples as arborescent struc-
tures. It is easy to show that are a finite number of them (see [23]).

5 Application to the Analysis of the Markoff Spectrum

For the equation (M) we can realize the same calculus as the one made
by Cassels for the classical Markoff equation [3]. We introduce for that the
quadratic forms:

φ(z, y) = z2 + ((a + 1)m + K1 −K2)zy + ε1ε2y
2 = m2F (x, y)

F (x, y) = x2 +
[
(a + 1)m−K1 −K2

m

]
xy +

[
l − (a + 1)K1

m

]
y2

where:

z = mx−K1y

We find properties similar to those already met in [21]. Moreover, thanks
to (M), we have:

φ(−ε1m2,m1) = ε2ε1m
2
1 − ε1(a + 1)mm1m2 − ε2ε1∂Km1m2 + m2

2

= −ε1m
2((m + u)/m)

= m2F (k1,m1)

The discriminant of F can easily be computed:

∆(F ) =
[
((a + 1)m + K1 −K2)2 − 4ε1ε2

m2

]
=

∆a(S)
m2

We have only to compute the arithmetical minimum of F :

m(F ) = inf{| F (x, y) |: (x, y) ∈ Z2 − {(0, 0)}}
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In order to deduce the Markoff constant of F :

C(F ) = (m(F )/
√

∆a(S))

This number measures the best way to approximate by rational numbers
(p/q) the following irrational number associated to F :

θa(S) =
K1 + K2 − (a + 1)m +

√
∆a(S)

2m
Without difficulty, we find:

C(F ) = limq∈Z−{0} (q
2
∣∣∣∣θa(S)− p

q

∣∣∣∣)
The Markoff spectrum is the sets of these values C(F ), also noted C(θa(S)).
In many cases, we have:

C(F ) =
| m + u |√

((a + 1)m + K1 −K2)2 − 4ε1ε2
≤ m√

∆a(S)

This readily yields:

F (k1,m1) = −ε1((m + u)/m)
F (K1,m) = F (K2 − (a + 1)m,m) = ε1ε2

The only cases to consider, in order to compute C(F ) are the cases where we
have:

−2m < u ≤ 0

We find a lot of possibilities as soon as we have an arborescent structure of
solutions, because the values m increase then to infinity with the length of
the sequences S∗ that appear. But the number u is given by the form Ψ(T,a)
depending only on T and a, with:

u + ε2µ = Ψ(T,a)(m2, k21)

Hence, the same sequence (T, a) gives the possibility to analyze a part of the
Markoff spectrum constituted with constants having the form given before.

If we have an infinity of possibilities for m such that:

m(F ) = F (k1,m1) = −ε1((m + u)/m)

we find at the limit a unique accumulation point for the Markoff constants
that we consider. It has the form:

1
(a + 1)

The real difficulty for progressing in the analysis is to ensure that we get:

m(F ) = F (k1,m1)

We have in fact encountered cases where this is not true [26].
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6 A Link with the Representation of Free Groups

Let us consider two matrices A and B built as before. They generate a group
g = gp(A,B) in GL(2, Z), which is an image of the abstract free group F2
represented by:

π(A,B) : F2 = 〈x, y〉 −→ GL(2, Z)

With every word W = W (x, y) of F2 written with x and y, we put:

π(A,B)(W (x, y)) = W (A,B)

The group ker(π(A,B)) is a subgroup of the free group F2. By a classical
result of Nielsen and Schreier ([17] p.95), it is also a free group. The group
ker(π(A,B)) is not necessarily of finite rank, though the rank is denumerable.
If W1,W2,... are terms of F2 generating ker(π(A,B)), we write:

G = gp(A,B) = �(π(A,B))
= 〈A,B;W1(A,B) = W2(A,B) = ... = 1〉
� 〈x, y;W1 = W2 = ... = 1〉
= F2/ ker(π(A,B))

and when ker(π(A,B)) = {1}, we have only:

G = 〈A,B〉 � 〈x, y〉 = F2

In order to use on G transformations X, Y , Z we introduce two matrices
M[R] and M[a]. But this is not adapted here, because we want to have the
guarantee that the computations are made inside the group G. Then we use
a deformation building transformations again idempotent:

X : (A,B) −→ (AX , BX)

AX = A−1

BX = B

Y : (A,B) −→ (AY , BY )

AY = A−1

BY = ABA

Z : (A,B) −→ (AZ , BZ)

AZ = BAB

BZ = B−1
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These notations are not precise enough. We must write them, for any word
W = W (x, y) of F2 acting on G, in the following manner:

X(W )(A,B) = WX(A,B) = W (A−1, B)

Y (W )(A,B) = WY (A,B) = W (A−1, ABA)

Z(W )(A,B) = WZ(A,B) = W (BAB,B−1)

Thus, AX designates xX(A,B) = A−1, and BX is the term yX(A,B) = B,
etc.

The transformations X, Y , Z, then become automorphisms of F2. We call
them elementary automorphisms:

WX = WX(x, y) = X(W )(x, y) = X(W ) = X(W (x, y)) = W (x−1, y)

WY = WY (x, y) = Y (W )(x, y) = Y (W ) = Y (W (x, y)) = W (x−1, xyx)

WZ = WZ(x, y) = Z(W )(x, y) = Z(W ) = Z(W (x, y)) = W (yxy, y−1)

For example, the transformation Z is operating on the word W (x, y) susti-
tuing in this word yxy to x, and y−1 to y.

Thanks to composition, we build the essential automorphisms of F2:

N = N(X,Y , Z)

The group of essential automorphisms of F2 constitutes a proper subgroup of
the group Aut(F2) of the automorphisms of F2. It is an image of the triangle
group Z/2Z ∗ Z/2Z ∗ Z/2Z, and a free product of three cyclic groups with
two elements.

So, we find the possibility to define other couples of generators of G:

G = gp(N(x)(A,B), N(y)(A,B))

An interesting phenomenon is that the traces of the expressions that we
consider are similar. They are equal for the classical Markoff theory. So, we
have:

tr(AX) = tr(AX) = ε2((a + 1)m2 + T2)

tr(BX) = tr(BX) = ((a + 1)m1 − T1)
tr(AY ) = ε2((a + 1)m2 − T2)

tr(AY ) = ε2((a + 1)m2 + T2)
tr(BY ) = ((a + 1)m)((a + 1)m2 + T2)− ε2((a + 1)m1 + T1)

tr(BY ) = ((a + 1)m + K2 −K1)((a + 1)m2 + T2)− ((a + 1)m1 − T1)
tr(AZ) = ((a + 1)m)((a + 1)m1 − T1)− ε1((a + 1)m2 − T2)

tr(AZ) = ((a + 1)m + K2 −K1)((a + 1)m1 − T1)− ((a + 1)m2 + T2)
tr(BZ) = ε1((a + 1)m1 + T1)

tr(BZ) = ε1((a + 1)m1 − T1)
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For any automorphism τ ∈ Aut(F2), we write also τ the application:

(tr(AB), tr(B), tr(A)) −→ (tr(τ(xy)(A,B)), tr(τ(y)(A,B)), tr(τ(x)(A,B)))

We get with what we saw:

X : (tr(AB), tr(B), tr(A)) −→ ((tr(A)tr(B)− tr(AB)), tr(B), εAtr(A))
Y : (tr(AB), tr(B), tr(A)) −→ (tr(AB), tr(AB)tr(A)− tr(B), εAtr(A))
Z : (tr(AB), tr(B), tr(A)) −→ (tr(AB), εBtr(B), tr(AB)tr(B)− tr(A))

• For any field k, we write usually Rk(G, 2) the set of homomorphisms
ρ of the group G in SL(2, k). Clearly, Rk(G, 2) is a subset of the set of
representations of degree 2 from G to k:

ρ : G −→ GL(2, k)

The former developments give, when the characteristic of k is equal to zero,
informations about the characters of these representations:

χρ : C ∈ G −→ χρ(C) = tr(ρ(C)) ∈ k

In order to define a representation ρ ∈ Rk(G, 2), we have only to dispose of
two matrices ρ(A) and ρ(B) contained in SL(2, k).

Using π(A,B), and composing with ρ, we get an application:

˜π(A,B) : ρ ∈ Rk(G, 2) −→ ρ′ = ρ ◦ π(A,B) ∈ Rk(F2, 2)

This verifies the condition:

ker(π(A,B)) ⊂ ker(ρ′)

If k is a field with charateristic 0, the ring Z immerges in a natural way
in k, and SL(2, Z) appears in SL(2, k).

If det(A) = det(B) = 1, we find a natural representation of G in SL(2, k)
with G ⊂ SL(2, Z).

In the more general cases, it is easy to see [2] that Rk(G, 2) can be con-
sidered as an affine k-algebraic set.

When k = C, we also find the affine C-algebraic set [2]:

RC(F2, 2) = SL(2, C)× SL(2, C)

It has dimension 6 and can be projected on C3 thanks to:

ϕ′ : ρ′ ∈ RC(F2, 2) −→ ϕ′(ρ′) = (trρ′(xy), trρ′(y), trρ′(x)) ∈ C3

So we have an interest to consider the former triples.
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• Another way to deal with the situation is to consider the Z[GL(2, Z)]-
modulus Z2. The isomorphism of two such structures associated to the two
representations ρ1 and ρ2, is equivalent to the existence of P ∈ GL(2, Z) a
matrix such that:

ρ1(M) = Pρ2(M)P−1 for any M ∈ GL(2, Z)

Hence, the classical Markoff theory also gives information about the structure
of Z[GL(2, Z)]-modulus on Z2.

• For any field k with characteristic zero, we have a natural extension
with the representation Ad of SL(2, k) in the k-space k2. This can be consid-
ered as a k[SL(2, k)]-modulus. The extension of the field k gives ramification
phenomenons and resolution of singularities. A representation ρ ∈ RC(G, 2)
gives also on k2 a structure of k[G]-modulus. The isomorphism of the two
structures of k[G]-moduli on k2, associated to ρ1 and ρ2, is given thanks to
a matrix P ∈ SL(2, k) verifying:

ρ1(M) = Pρ2(M)P−1 for any M ∈ G

With [2] p.101, we get a parametrization of all the classes of semi-simple
representations for this equivalence thanks to points of an affine algebraic
set. In the case when k = C or G = F2, we find all the corresponding
characters. With the notations of [2] and what we have seen before:

X(F2, 2) = ϕ′(RC(F2, 2)) = C3

We refer the reader to [16] for more details on the characters.
We designate by Φ2 the group Aut(F2) of automorphisms of the group

F2. It acts on the couples of generators of F2.
Thanks to a result of B.H. Neumann, we have the following presentation

[17] p.169, where the product that we use is the composition of automor-
phisms:

Φ2 = 〈σ, P, U ;σ2 = P 2 = (UPσP )2 = (σPU)3 = (Pσ)4 = [U, σUσ] = 1〉

Its uses the three Nielsen transformations, defined by:

σ : W (x, y) −→ W (x−1, y)
P : W (x, y) −→ W (y, x)
U : W (x, y) −→ W (xy, y)

Changing U , we prefer to consider here V such that V 3 = 1:

V = (UσP ) : W (x, y) −→ W (y, y−1x−1)
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These transformations act on the traces (tr(AB), tr(B), tr(A)) with:

σ : (tr(AB), tr(B), tr(A)) −→ (tr(A)tr(B)− tr(AB), tr(B), εAtr(A))
P : (tr(AB), tr(B), tr(A)) −→ (tr(AB), tr(A), tr(B))
V : (tr(AB), tr(B), tr(A)) −→ (εAtr(A), εABtr(AB), tr(B))

Composing, we find all the possible permutations of the three traces. This
result gives the possibility to write expressions similar to the action of X, Y ,
Z, on the triples of traces. We deduce:

σ = X : W (x, y) −→ W (x−1, y)
PV V PσV PV V P = Ad(yxy)Z : W (x, y) −→ (yxy)W (yxy, y−1)(yxy)−1

PZP = Y : W (x, y) −→ W (x−1, xyx)

Composing, we get now expressions for all the essential transformations
N(X, Y , Z) with the three Nielsen transformations σ, P , V , and inner au-
tomorphisms of F2.

The interest of the former development is that we can change the couple
of generators in the group G, keeping under control, step by step, all the
successive changings that we do. For this, we define a notion of height:

h(A,B) = (| tr(AB) |, | tr(B) |, | tr(A) |) ∈ N3

The elementary transformations X, Y , Z, are used in order to minimize
this height according to the methods of [9] [23]. We deduce an algorithm for
reducing couples of generators (A,B) in G. This algorithm identifies for any
couple an essential automorphism reducing it, and the corresponding couple
with a less height. With this algorithm, we get:

Theorem 1. We consider two matrices built as before:

A = M[RX∗
2 ,a] ∈ SL(2, Z)

B = M[X∗
1 S,a] ∈ SL(2, Z)

The group G generated by A and B in SL(2, Z) is free and of rank 2. This con-
struction gives the faithful representations of the free group with two genera-
tors F2 in SL(2, Z). They are all given by this way, at a SL(2, Z)-equivalence.
Moreover, when two of them are taken different, they are not equivalent.

This result gives, at an equivalence, the faithful representations of F2 in
the modular group PSL(2, Z).

Lifting the restriction to cases where det(εA) = det(εB) = 1, we then
generalize to faithful representations of F2 in the group GL(2, Z).

As a fuchsian group, the image of F2 acts in the half plane of Poincaré
H2. The Riemann surface which is deduced is a torus perforated by the
extraction of a closed disk. So we have the garantee that the image group
of F2 in PSL(2, Z) is a Fricke group [7]. Hence, we determine all the Fricke
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groups given by subgroups of GL(2, Z). Conversely, for any torus perforated
by the extraction of a closed disk, the fundamental group is isomorphic to
F2. The mapping class group is isomorphic to the quotient of Aut(F2) by the
subgroup of inner automorphisms [18].

Our construction generalizes completely to conformal toruses, and to
equations (Ms1s2(a, ∂K, u)) linked to them, the approach of Harvey COHN
[5]. It gives some complementary aspects of other articles quoted in our bib-
liography.
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