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Abstract. While this school focuses on discrete integrable systems we feel it nec-
essary, if only for reasons of comparison, to go back to fundamentals and introduce
the basic notion of the Painlevé property for continuous systems together with a
critical analysis of what is called the Painlevé test. The extension of the latter to
what is called the poly-Painlevé test is also introduced. Finally we devote a lesson
to the proof that the Painlevé equations do have the Painlevé property.

1 Introduction

A course on integrability often starts with introducing the notion of soliton
and how the latter emerges in integrable partial differential equations. Here
we will focus on simpler systems and consider only ordinary differential equa-
tions. Six such equations play a fundamental role in integrability theory, the
six Painlevé equations [1]:

x′′ = 6x2 + t PI

x′′ = 2x3 + tx+ a PII

x′′ =
x

′2

x
− x′

t
+

1
t
(ax2 + b) + cx3 +

d

x
PIII

x′′ =
x

′2

2x
+

3x3

2
+ 4tx2 + 2(t2 − a)x− b2

2x
PIV

x′′ = x
′2
( 1

2x
+

1
x− 1

)
− x′

t
+

(x− 1)2

t2

(
ax+

b

x

)
+ c

x

t
+
dx(x+ 1)
x− 1

PV

x′′ =
x

′2

2

( 1
x

+
1

x− 1
+

1
x− t

)
− x′

(1
t

+
1

t− 1
+

1
x− t

)

+
x(x− 1)(x− t)

2t2(t− 1)2

(
a− bt

x2 + c
t− 1

(x− 1)2
+

(d− 1)t(t− 1)
(x− t)2

)
PVI

Here the dependent variable x is a function of the independent variable t,
while a, b, c, and d are parameters (constants). These are second order equa-
tions in normal form (solved for x′′), rational in x′ and x.
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These may look like more or less random equations, but that is not the
case. Apart from some simple transformations they cannot have a form other
than shown above. They are very special.

The equations form a hierarchy. Starting from the highest we can, through
appropriate limiting processes, obtain the lower ones (after some rescalings
and changes of variables):

PVI −→ PV −→ PIV� �
PIII −→ PII −→ PI

Note that PIV and PIII are at the same level since they can both be obtained
from PV. What makes these equations really special is the fact that they
possess the Painlevé property [2].

2 The Painlevé Property and the Naive Painlevé Test

The Painlevé property can be loosely defined as the absence of movable
branch points. A glance at the Painlevé equations above reveals the fact
that some of them possess fixed branch points. Equation PIII for instance
has t = 0 as (fixed) singular point. At such points one can expect bad be-
haviour, branching, of the solutions. In order to study this one has to go to
the complex plane of the independent variable. This is a most interesting
feature. Typically when the six Painlevé and similar equations arise from
physical applications, the variables are real and t represents physical time,
which is quintessentially real. The prototypical example that springs to mind
is the “Kowalevski top” [3]. It is surprising that the behaviour of the solution
for complex values of t should be relevant.

Kovalevskaya set out to study the integrability of a physical problem,
namely the motion of an ideal frictionless top in a uniform gravitational
field, spinning around a fixed point in three dimensions, using what today
we call singularity-analysis techniques. The equations of motion of a moving
Cartesian coordinate system based on the principal axes of inertia with the
origin at its fixed point, known as Euler’s equations, are:

A
dp

dt
= (B − C)qr +Mg(γy0 − βz0)

B
dq

dt
= (C −A)pr +Mg(αz0 − γx0)

C
dr

dt
= (A−B)pq +Mg(βx0 − αy0) (2.1)

dα

dt
= βr − γq
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dβ

dt
= γp− αr

dγ

dt
= αq − βp

where (p, q, r) are the components of angular velocity, (α, β, γ) the direction
cosines of the force of gravity, (A,B,C) the moments of inertia, (x0, y0, z0) the
centre of mass of the system, M the mass of the top, and g the acceleration of
gravity. Complete integrability of the system requires four integrals of motion.
Three such integrals are straightforward: the geometric constraint

α2 + β2 + γ2 = 1 (2.2)

the total energy

Ap2 +Bq2 + Cr2 − 2Mg(αx0 + βy0 + γz0) = K1 (2.3)

and the projection of the angular momentum on the direction of gravity

Aαp+Bβq + Cγr = K2 (2.4)

A fourth integral was known only in three special cases:
i) Spherical: A = B = C with integral px0 + qy0 + rz0 = K,
ii) Euler: x0 = y0 = z0 = 0 with integral A2p2 +B2q2 + C2r2 = K, and
iii) Lagrange: A = B and x0 = y0 = 0 with integral Cr = K.
In each of these cases the solutions of the equations of motion were given in

terms of elliptic functions and were thus meromorphic in time t. Kovalevskaya
set out to investigate the existence of other cases with solutions meromorphic
in t, and found the previously unknown case

A = B = 2C and z0 = 0 (2.5)

with integral

[C(p+ iq)2 +Mg(x0 + iy0)(α+ iβ)][C(p− iq)2 +Mg(x0 − iy0)(α− iβ)] = K
(2.6)

This case has been dubbed the Kowalevski top in her honour.
Using (2.6) Kovalevskaya was able to show that the solution can be ex-

pressed as the inverse of a combination of hyperelliptic integrals. Such inverses
are not meromorphic in general, but it turns out that the symmetric combi-
nations of hyperelliptic integrals involved in the solution of the Kowalevski
top do have meromorphic inverses, called hyperelliptic functions.

Going back to the question of singularities and the Painlevé property, we
require that the solutions be free of movable singularities other than poles.
(Poles can be viewed as nonsingular values of ∞ on the “complex sphere,”
the compact closure of the complex plane obtained by adjoining the point at
infinity.)
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Fixed singularities do not pose a major problem. Linear equations can
have only the singularities of their coefficients and thus these singularities
are fixed. The case of fixed singularities of nonlinear equations can also be
dealt with. Consider for example the t = 0 branch point of PIII. The change
of variable t = ez removes the fixed singularity by moving it to ∞ (without
creating any new singularity in the finite plane). The same or something
similar can be done for all the Painlevé equations. Thus we can rationalise
ignoring fixed singularities.

The simplest singularities are poles. Consider the equation x′ = x2, an
extremely simple nonlinear equation. Its solution is x = −1/(t − t0), with a
pole of residue −1 at the point t0. So no problem arises in this case. (But what
about essential singularities? Consider the function x = ae1/(t−t0), which
satisfies the equation (x′′/x − x

′2/x2)2 + 4x
′3/x3 = 0. This function has no

branching but its movable singularity is an essential one, not a pole.) Painlevé
himself decreed that any movable singularities should be no worse than poles,
i.e. no movable branch points or essential singularities should be present.

Next we can ask for a method to investigate whether there are movable
singularities other than poles, the “Painlevé test”. There exists a standard
practice for the investigation of the Painlevé property which we call the naive
Painlevé test [4]. It is not really satisfactory but we can consider it as a useful
working procedure. We present an example like PI but generalised somewhat
to

x′′ = 6x2 + f(t) (2.7)

where f(t) is an analytic function of its argument in some region. If the
solutions are not singlevalued then the equation does not possess the Painlevé
property. We use the test to find a condition (on f) for the equation to have all
its solutions singlevalued. We look for branched solutions in a straightforward
way. Assume x ∼ a(t− t0)p which is branched unless p is an integer. We look
for something like a Laurent series with a leading term (or even Taylor series,
depending on the exponents) and write

x ∼ a0(t− t0)p0 + a1(t− t0)p1 + · · · with �p0 < �p1 < · · ·

Looking for branching in such an expansion can be done algorithmically. This
is an asymptotic series; we do not care (in the present context) whether it
converges. We do not say that this is a solution, only that it is asymptotic to a
solution. Since �p0 < �p1 < · · · , the first term is dominant as t→ t0. If there
are two codominant leading terms (two terms with the same �p0 at dominant
order), then even the leading behaviour is bad; however this situation does
not arise in practice. If two terms have complex conjugate pi’s at orders other
than the dominant one, this violates the condition for asymptoticity, but still
the formalism goes through.

We substitute the series into the differential equation and differentiate
term by term (though this is generally not allowed for asymptotic series, it
is all right here because we are operating at a formal level) and find
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a0p0(p0−1)(t−t0)p0−2+· · · = 6(a2
0(t−t0)2p0 +· · · )+f(t0)+(t−t0)f ′(t0)+· · ·

Using the principle of dominant balance [11] we try to balance as many
dominant terms as possible. Looking at the possibly dominant exponents we
have

p0 − 2 : 2p0 : 0

and two must be equal and dominate the third for a balance (or all three
may be equal). There are three ways to equate a pair of these exponents:

First way. 2p0 = 0. Then p0 = 0 and the ignored exponent p0 − 2 is
−2, which dominates (has real part less than) the two assumed dominant
exponents. So this is not a possible case.

Second way. p0 − 2 = 0. Then p0 = 2 and the ignored exponent 2p0 is 4,
which is, satisfactorily, dominated by the two assumed dominant exponents.
However, p0 is a integer so no branched behaviour has appeared. A proper
treatment would develop the series with this leading behaviour to see whether
branching occurs at higher order, but we do not pursue that issue here.

Third way. p0 − 2 = 2p0. Then p0 = −2 so the two balanced exponents
are −4, which is, satisfactorily, less than the other exponent 0. There is no
branching to dominant order, but now we will test higher order terms. We
assume an expansion in integer powers and determine the coefficients one by
one. (A more general procedure is to generate the successive terms recursively
and see whether branching such as fractional powers or logarithms arise, as we
will demonstrate almost immediately.) Assume x =

∑∞
n=−2 an(t− t0)n, sub-

stitute into the equation, and obtain a recursion relation for the coefficients.
If at some stage the coefficient of an vanishes, this is called “resonance”. In
the case of (2.7) we find a recurrence relation of the form

(n+ 3)(n− 4)an = Fn(an−1, an−2, · · · , a0) (2.8)

where Fn is a definite polynomial function of its arguments. The resonances
are at n = −3 and 4. The one at −3 is outside the range of meaningful values
of n but was to be expected: a formal resonance at p0 − 1 is always present
(unless p0 = 0), because infinitesimal perturbation of the free constant t0
in the leading term gives the derivative with respect to t0 and thereby the
formally dominant power p0−1; this is called the “universal resonance”. From
(2.8) we see that a4 drops out and so is not determined. Since the only free
parameter in the solution we had till now was t0, it is natural for the second
order equation to have another, here a4. (Of course there is no guarantee that
what we find within the assumptions we made, in particular on the dominant
balance, will be a general solution.) Since the left side of (2.8) vanishes, the
right side must also vanish if a power series is to work. There is no guarantee
for this. If the right side is not zero the test fails: the equation does not
have the Painlevé property. (More properly, the test succeeds: it succeeds in
showing that the equation fails to have the property.) However it turns out
that for PI this condition is indeed satisfied. But what about the generalised
equation (2.7)?
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We will now present the more general way to set up the recursion to
generate a series that is not prejudiced against the actual appearance of
terms exhibiting branching when it occurs. What we do, analogous to what
Picard did to solve an ordinary differential equation near an ordinary point,
is to integrate the equation formally, obtain an integral equation to view
as a recursion relation, and iterate it. If we look at the dominant terms
of the equation near the singularity (for “the third way” above) we have
x′′ = 6x2 + · · · , and these terms we can integrate explicitly after multiplying
by 2x′:

x
′2 = 4x3 + 2xf(t) − 2

∫ t

t1

xf ′(t) dt

No confusion should result from the convenient impropriety of using t for
both the variable of integration and the upper limit of integration. The lower
limit of choice would have been t0 but since x behaves dominantly like a
double pole there the integrand would not be integrable, so we choose some
arbitrary other point t1 instead.

A second integration of the dominant terms is now possible. For this we
take the square root and multiply by the integrating factor x−3/2:

1
2
x−3/2x′ =

(
1 +

1
2x2 f(t) − 1

2
x−3

∫

t1

xf ′(t) dt
)1/2

(2.9)

One sees immediately that near a singularity the expression in parentheses
behaves like “1+ small terms” and can thus be expanded formally. There
exists a whole theory of manipulation of formal series but it is not widely
identified and taught as such; it is used naively most of the time but, fortu-
nately, in a correct way. Integrating (2.9) and expanding we find

−x−1/2 =
∫ t

t0

(
1 +

1
2x2 f(t) − 1

2
x−3

∫ t

t1

xf ′(t)dt
)1/2

dt = (t−t0)+O((t−t0)5)

(2.10)
This time we can integrate from t0 because the integrand is finite there. From
(2.10) we find immediately that the dominant behaviour of x is (t − t0)−2,
the double pole as expected. Starting from this we can iterate (2.10) (raised
to the −2 power) and obtain an expansion for x with leading term. The only
term that might create a problem is

∫
xf ′(t) dt which, because of the double

pole leading term in the expansion of x, might have a residue and contribute
a logarithm. In order to investigate this we expand in the neighbourhood of
t0: f ′(t) = f ′(t0) + f ′′(t0)(t − t0) + · · · . The term f ′′(t0)(t − t0) times the
double pole, when integrated, gives rise to a logarithm. This multivaluedness
is incompatible with the Painlevé property. Thus f ′′(t0) must vanish if we
are to have the Painlevé property. Since t0 is an arbitrary point this means
that f ′′(t) = 0 and f must be linear. (We can take f(t) = at + b but it is
then straightforward to transform it to just f(t) = t.) So the only equation
of the form (2.7) that has the Painlevé property is PI.
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The technique of integrating dominant terms and generating expansions
can be used to analyse the remaining Painlevé equations. PII and PIII have
simple poles (x = ∞), but for the latter x = 0 is also singular. Thus here we
must consider not only poles but also zeros and ensure that these are pure
zeros without logarithms appearing. The Painlevé equations are very special
in the sense that they do indeed satisfy the Painlevé property. What is less
clear is why they appear so often in applications.

What we presented above is the essence of the naive Painlevé test. With-
out assuming anything we can seek dominant balances and for each one gen-
erate a series for the solution, finding the possible logarithms (and fractional
or complex powers) naturally. The main difficulty is in finding all possible
dominant behaviours. Some equations have a dominant behaviour that is not
power-like. We have seen in the example above an equation with an essential
singularity for which the naive Painlevé test would not find anything trou-
blesome. While the solution to that equation was singlevalued, it is straight-
forward to generate similar examples with branching. Thus, starting from
the branched function x = ae(t−t0)

−1/2
we obtain the differential equation

2(x′′/x − x
′2/x2)3 + 27x

′5/x5 = 0 for which, again, the naive Painlevé test
can say nothing.

These arguments show that one must be very cautious when using the
naive Painlevé test [5]. Nevertheless, people have been using it and obtaining
results with it. If the naive Painlevé test is satisfied this means that the
equation probably has the Painlevé property.

A lot of mysteries remain. While many problems (like the one of Ko-
valevskaya) are set in real time, one still has to look for branching in the
complex plane. It is not clear why one has to look outside the real line.
If one thinks of a simple one-dimensional system in Newtonian mechanics,
x′′ = F (x) with smooth F, it is always possible to integrate it over real time
but the equation is, in general, not integrable in the complex plane, nor even
analytically extendable there. Another question is, “Why does an equation
that passes the Painlevé test behave nicely numerically?” Still, the numerical
study of an equation and the detection of chaotic behaviour is an indication
that the Painlevé property is probably absent. One should think deeply about
these mysteries and try to explain them.

3 From the Naive to the Poly-Painlevé Test

As we have seen the application of the naive Painlevé test makes possible the
detection of multivaluedness related to logarithms. But what about fractional
powers? We illustrate such an analysis with the differential equation

x′′ = −x
′2

x
+ x5 +

1
2
tx+

α

2x
(3.1)



8 M.D. Kruskal, B. Grammaticos, T. Tamizhmani

We apply the naive test by assuming that the dominant behaviour is x ∼ aτp

where τ = t − t0 and τ << 1 in the vicinity of the singularity. Furthermore
we assume that a �= 0. (The case a = 0 seems nonsensical but can be an
indication of the existence of logarithms at dominant order.) Substituting
into the equation we obtain the possible dominant order terms

ap(p− 1)τp−2 ∼ −ap2τp−2 + a5τ5p +
1
2
t0aτ

p − α

2a
τ−p

leading to the comparison of powers p−2 : p−2 : 5p : p : −p. The principle of
maximum balance [11] requires that two (at least) terms be equal. Balancing
p − 2 with −p gives p = 1, which on the face of it gives a simple zero and
so no singularity (though one should pursue its analysis to higher order in
case a singularity arises later). However here we concentrate on the balance
p − 2 = 5p which gives p = −1/2: a fractional power appears already in
the leading order! In view of this result we can conclude, correctly, that the
equation does not have the Painlevé property. However, computing the series
we find that only half-integer powers appear to all orders. Thus if we square
the solution we may find poles as the only singularities. So, while the initial
equation does not have the Painlevé property, there exists a simple change
of variable which transforms it to an equation that does. Indeed, multiplying
(3.1) by x we find

xx′′ + x
′2 = x6 +

1
2
tx2 +

α

2
and putting y = x2 we recover the Painlevé II equation

y′′ = 2y3 + ty + α

the solution of which which has simple poles with leading terms ±1/(t− t0)
as its only singularities.

Since at each singular point we have a square root, with a branching into
two branches, we have potentially an infinite number of branches. However,
as we saw, this is not the case for (3.1). How can we determine, given some
equation with many (even infinitely many) branch points, that something
like what happened here is possible? The answer to this is the poly-Painlevé
test [2,6]. While the naive Painlevé test studies the solution around just one
singularity, the poly-Painlevé test considers more than one singularity at a
time (hence the name). The idea is that if we start from a first singularity
and make a loop around a second one and come back to the first, we may
end up on a different branch of it. Thus branching may be detected through
the “interaction” of singularities.

To show how this works in a first-order equation we consider equations
which are mostly analytic, i.e. equations involving functions which are an-
alytic except for some special singular points. We try to find the simplest
nontrivial example. Clearly, linear and quadratic (Riccati) equations are too
simple. Thus we choose the cubic equation
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x′ = x3 + t (3.2)

(Abel’s equation) which we have taken to be nonautonomous lest it be in-
tegrable through quadratures. Other more or less similar forms could have
been considered, for instance x′ = x3 + tx. However it turns out that this
last equation is a Riccati equation in disguise (for the variable y = x2) and
passes the poly-Painlevé test in a trivial way.

Now, the Painlevé test looks for any multivaluedness of a solution in the
neighbourhood of a (movable) singularity; if any is found the test “fails”
(actually the test succeeds, it’s the equation that fails — to be integrable!),
and one can go on to the poly-Painlevé test which looks for “bad” (dense)
multivaluedness, generally not in the neighbourhood of a single singular point
but by following a path winding around several (movable) singular points.
Like the Painlevé test it relies on asymptotic expansions of the solution. This
means that one must have a small parameter in which to expand.

But equation (3.2) does not contain a small parameter, and if it did, such
an “external” parameter wouldn’t suit our purpose. We introduce an appro-
priate “internal” parameter by transforming variables. One way is to look
in an asymptotic region with t large (but not approaching infinity), a region
where t is approximately constant. We effect this formally by introducing the
change of variable t = N+az where N is a large (complex) number (N >> 1),
a is a parameter, and z is a new variable (to be thought of as taking “finite”
values). We must have az much smaller than N (which means that a << N)
and we expand in the small quantity a/N . We also rescale x through x = by
where b is a parameter (which can be of any size, small or large or even finite).
The equation now becomes

b

a

dy

dz
= b3y3 +N + az

We try to balance the terms as much as possible: b/a = b3 = N (assuming
that we are not at a pole and thus y is finite). We find b = N1/3 and a =
N−2/3 (so a/N is indeed small). The equation now becomes

dy

dz
= y3 + 1 + εz (3.3)

where ε ∼ N−5/3. Equation (3.3) is autonomous at leading order with a
small nonautonomous perturbation. (Here we see an application of another
asymptotological [11] principle: transform the problem so that you can treat
it by perturbation theory.) The parameter ε is an internal one, just like the
parameter α in the eponymous α-method of Painlevé.

In order to investigate whether (3.3) has the poly-Painlevé property we
start by inverting the roles of the variables, taking z as independent and y
as dependent. Introducing q = 1 + y3 we have

dz

dy
=

1
q + εz

=
1
q
− εz

q2
+
ε2z2

q3
+ · · ·
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Next we expand z in powers of ε, z = z0 + εz1 + εz2 + · · · , and set up the
equations for the zi recursively. At lowest order we have

z0 = c+
∫ y

y0

dy

y3 + 1

which is not quite as trivial as it appears. Decomposing the integrand into
partial fractions we have

1
y3 + 1

=
1
3

(
1

y + 1
+

j

y + j
+

j2

y + j2

)

where j = e2πi/3. Thus the integration for z0 leads to a sum of three loga-
rithms. A single logarithm in the complex plane of the independent variable is
defined up to a quantity 2πin, which would introduce a one-dimensional lat-
tice of values of the integration constant. Two logarithms would lead to a two-
dimensional lattice, a multivaluedness still acceptable in the poly-Painlevé
spirit. In the present case of three logarithms, the integration constant c in
the complex plane is defined up to a quantity 2πi(k + mj + nj2)/3, where
k,m, n are arbitrary integers. In general such a multivaluedness involving
three integers and arbitrary residues would be dense and thus unacceptable.
However, since the three cube roots of unity are related through 1+j+j2 = 0,
the multivaluedness of c is not dense. Thus at leading order the equation (3.3)
is integrable in the poly-Painlevé sense.

However, to decide the integrability of the full equation (3.2) we must
continue with the poly-Painlevé test to higher orders of (3.3). We are not
going to give these details here. They can be found in the course of two of
the authors (MDK, BG) together with A. Ramani in the 1989 Les Houches
winter school [2]. It turns out that while no bad multivaluedness is introduced
at the next (first) order, the second-order contribution gives an uncertainty
(in the value of the integration constant) that accumulates densely as we go
around the singularities. Thus no constant of integration can be defined and
the equation is not integrable according to the poly-Painlevé test.

Of course in this problem we studied the behaviour of the solutions only
near infinity. So the question is whether we can apply the results obtained
near infinity in all regions of the complex plane. The simple answer to this
question is that if an equation violates the poly-Painlevé criterion in any
region, then this means that the equation is not integrable. However if we
find that the poly-Painlevé criterion is satisfied in the region we studied then
we cannot conclude that it is so everywhere.

Having dealt with Abel’s equation, we return to the case of the second-
order equation (2.7), x′′ = 6x2 + f(t), for which we have found that the
Painlevé property requires f(t) = t. We ask whether some “mild” branching,
compatible with the poly-Painlevé property, is possible for this equation.
Here we shall work around some finite point and introduce the change of
variables t = t0 + δz where δ << 1. We scale x through x = αy and rewrite
the equation as
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α

δ2
d2y

dz2 = 6α2y2 + f(t0) + f ′(t0)δz + · · ·

We balance the terms by taking α/δ2 = α2 or α = δ−2 >> 1, since δ is
assumed to be small. The equation can now be written as

d2y

dz2 = 6y2 + δ4[f(t0) + f ′(t0)δz +
1
2
f ′′(t0)δ2z2 + · · · ] (3.4)

which is trivially integrable to leading order (δ = 0).
We now treat (3.4) by perturbation analysis. We start by formally inte-

grating it from the dominant terms as before, first multiplying it by 2 dy/dz:

(
dy

dz

)2

= 4y3 + 2
∫ z

z1

y′[δ4f(t0) + δ5f ′(t0)z + δ6f ′′(t0)z2/2 + · · · ] dz

or equivalently

1
2
y−3/2 dy

dz
=
(

1 +
1

2y3

∫ z

z1

y′[δ4f(t0) + δ5f ′(t0)z + δ6f ′′(t0)z2/2 + · · · ] dz
)1/2

The integral term is small because of the powers of δ, so the square root can
be expanded as 1 plus powers of that term. Integrating the whole equation
leads to

−y−1/2 = (z − z0) +
1
4

∫ z

z0

1
y3

[∫ z

z1

y′(· · · ) dz
]
dz

So y ∼ (z − z0)−2 + · · · and the leading singularity is a double pole as
expected. Next we iteratively construct the solution. The problems arise when
we integrate y′ multiplied by f ′′(t0)z2, resulting in a logarithm. The only way
to avoid having this logarithm is to have f ′′(t0) = 0, which as before, since
t0 is arbitrary, means that f must be linear. In this case the poly-Painlevé
test has uncovered no equations that don’t already satisfy the more stringent
naive Painlevé test, that is, no instances of (2.7) whose solutions are free of
dense branching other than PI itself, with no branching at all.

4 The Painlevé Property for the Painlevé Equations

The Painlevé equations possess the Painlevé property, one would say, almost
by definition. They were discovered by asking for necessary conditions for
this property to be present. But do they really have it? Painlevé himself
realized that this had to be shown. He did, in fact, produce a proof which
is rather complicated (although it looks essentially correct) [7]. Moreover
Painlevé treated only the PI case, assuming that the remaining equations
can be treated in a similar way (something which is not entirely clear). A
simple proof thus appeared highly desirable.
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In a series of papers [8,9] one of the authors (MDK) together with various
collaborators has proposed a straightforward proof of the Painlevé property
that can be applied to all six equations. The latest version of this proof is
that obtained in collaboration with K.M. Tamizhmani [10]. In what follows
we shall outline this proof in the case of PIII (for x as a function of z), which
is a bit complicated but still tractable:

x′′ =
x

′2

x
− x′

z
+

1
z
(ax2 + b) + cx3 +

d

x

To prove that PIII has the Painlevé property we must show that in the neigh-
bourhood of any arbitrary movable singular point of the equation (which is
not necessarily a singular point of the solution) the solution can be expressed
as a convergent Laurent expansion with leading term. We shall examine the
series up to the highest power where an arbitrary constant may enter (“the
last resonance”). We shall not be concerned with the fixed singularity at
z = 0: it suffices to put z = et to send the fixed singular point to infinity
without significantly affecting other singularities. Infinity is a bad singularity
for the independent variable in all the Painlevé equations, being a limit point
of poles. We are only interested here in singularities in the finite plane.

We note that the equation is singular where the dependent variable x = 0
(but not the solution, which has a simple Taylor series around this point). The
other value of the dependent variable where the equation is singular is x = ∞.
Any other initial value for x leads, given x′, to a solution by the standard
theory of ordinary differential equations. Moreover the points 0 and ∞ are
reciprocal through the transformation x → 1/x, which leaves the equation
invariant up to some parameter changes. Thus the Laurent expansion at a
pole is essentially like the Taylor expansion at a zero. This allows us to confine
our study to just one of the two kinds of singularity. In order to simplify the
calculations we put a = b = 0 (which turns out not to change anything
significant) and rescale the remaining ones to c = 1, d = 1. We have finally
the equation

uu′′ − u
′2 +

uu′

z
= u4 − 1 (4.1)

where the possible values of the dependent variable at movable singularities
are u = 0 and u = ∞.

A crucial ingredient of the proof not previously sufficiently exploited is
the localness of the Painlevé property: if in any given arbitrarily small region
(of the finite plane with the origin removed) an arbitrary solution has no
movable “bad” singularities, then it can have no bad singularities anywhere
(in the similarly punctuated finite plane). Use of this localness does away
with the difficulties encountered in previous proofs where one had to bound
integrals over (finitely) long paths in the complex plane.

Consider some region which is a little disk around z1 (which we assume
to be neither a pole nor a zero) with radius ε. (As we have shown in [10]
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ε = |z1|/96 suffices for our estimates.) As in the previous lessons we start
by formally integrating our equation so as to be able to iterate; the path of
integration is to be entirely contained in the little disk. We solve it recursively
to obtain an asymptotic series for the solution. Near the singular points
the important term on the right side (containing the terms not involving
derivatives of u, namely u4−1), is u4 when u is large, and −1 when u is small.
In order to integrate (4.1) we need an integrating factor. We start by noting
that the left side has the obvious integrating factor 1/(uu′), after multiplying
by which we can write the left side as [ln(u′z/u)]′ or [(u′z/u)]′/(u′z/u), while
the right side becomes (u4 − 1)/(uu′). To render the right side integrable we
would like to multiply by u

′2 and any function of u alone, while to maintain
the integrability of the left side we can multiply by any function of u′z/u. If
we could do both of these at the same time we would succeed in integrating
the equation exactly, which is more than we can hope for. However, here
localness enters effectively: in our little disk z is nearly constant, and we can
treat it as constant up to small corrections.

Accordingly, we multiply the latest version of the equation by (u′z/u)2

and integrate to

(
zu′

u

)2

= z2
(
u2 +

1
u2

)
+ k − 2

∫ z

z1

z

(
u2 +

1
u2

)
dz (4.2)

where the right side has resulted from integration by parts with k as the
constant of integration.

Our aim is to show that the solution is regular everywhere in the little disk
with center z1 and radius ε. If u and 1/u are finite along the path of integration
then the integral is small (because length of the integration path is of order
ε). But what happens when u passes close to 0 or ∞? If z were constant
then the solution of (4.1) would be given in terms of elliptic functions. The
latter have two zeros and two poles in each elementary parallelogram. When
the parameter (here the integration constant) becomes large, the poles (and
the zeros) of the elliptic functions get packed closely together. Thus when
we integrate we may easily pass close to an ∞ (or a zero). It is important
in this case to have a more precise estimate of the integral. To this end we
put a little disk around the pole z0 and assume that on its circumference
the value of |u| becomes large, say A. Similarly we can treat the case where
|u| is small, say 1/A, with A large as before. The integration path is now a
straight line starting at z1, till |u| hits the value A (or 1/A). Then we make a
detour around the circumference of the small disk where |u| > A (or u < 1/A)
and we proceed along the straight line extrapolation of the previous path till
we encounter the next singularity. In general the integration path will be a
straight line from z1 to z interspersed with several small detours.

We now make more precise estimates. For definiteness we choose to work
with the case of u small, but u large is entirely similar, mut. mut. To solve the
equation by iteration, we note that the contribution of 1/u2 is more important
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than that of u2. The integral of z/u2 may be an important contribution but
since it is taken over a short path it is much smaller than the z2/u2 term
outside the integral in (4.2). The precise bounds can be worked out and the
choice of a small enough ε guarantees that the integral is indeed subdominant.

Thus (4.2) becomes (zu′/u)2 = z2/u2 plus smaller terms or equivalently
u′ = ±(1 + · · · ). More precisely we have

u′ = ±
(

1 + u4 +
u2

z2
(
k − 2

∫ z

z1

z(u2 + 1/u2) dz
))1/2

(4.3)

Integrating we find u = ±(z − z0) + · · · where z0 is the point where u = 0.
(This makes the constant of this last integration exactly zero.) We find thus
that u has a simple zero, if we can show that no logarithmic term appears
in the recursively generated expansion. (We would have found a pole had we
worked with a u which became large instead of small).

The dangerous term is the integral

I :=
∫ z

z1

z(u2 + 1/u2)dz

because near z0 u starts with a series like a simple zero and it looks as if
z/u2 may have a nonzero residue, which would produce a logarithmic term.
To see that this doesn’t happen we can write

I ′ = z/u2 + · · · =
z

u2 [u′ − (u′ − 1)] + · · ·

=
z

u2u
′ − z

u2 [−u
2

z2
I + · · · ] + · · ·

Moving the last explicit term to the left side, multiplying by the integrating
factor 1/z, and integrating gives for I the formula

I = − z
u

+ · · ·

We simultaneously iterate for I, u′, and u from this, (4.3), and the ob-
vious u =

∫ z
z0
u′ dz treated as three coupled equations, and in this form it

is clear that no logarithm can be generated. (This is true only for the pre-
cise z dependence of (4.1): any other dependence would have introduced a
logarithm.)

This completes the proof that the special form of PIII (4.1) has the
Painlevé property.

Open problems remain. First one has to repeat the proof for the full PIII
without any special choice of the parameters. Then the proof should be ex-
tended to all the other Painlevé equations, including their special cases (where
one or more parameters vanish). Still we expect the approach presented above
to be directly applicable without any fundamental difficulty.
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Abstract. More than 20 years ago, it was discovered that the solutions of the
Kadomtsev-Petviashvili (KP) hierarchy constitute an infinite-dimensional Grass-
mann manifold and that the Plücker relations for this Grassmannian take the form
of Hirota bilinear identities. As is explained in this contribution, the resulting uni-
fied approach to integrability, commonly known as Sato theory, offers a deep al-
gebraic and geometric understanding of integrable systems with infinitely many
degrees of freedom. Starting with an elementary introduction to Sato theory, fol-
lowed by an exposé of its interpretation in terms of infinite-dimensional Clifford
algebras and their representations, the scope of the theory is gradually extended
to include multi-component systems, integrable lattice equations and fully discrete
systems. Special emphasis is placed on the symmetries of the integrable equations
described by the theory and especially on the Darboux transformations and ele-
mentary Bäcklund transformations for these equations. Finally, reductions to lower
dimensional systems and eventually to integrable ordinary differential equations
are discussed. As an example, the origins of the fourth Painlevé equation and of its
Bäcklund transformations in the KP hierarchy are explained in detail.

1 The Universal Grassmann Manifold

More than 20 years ago, it was discovered by Sato that the solutions of
the Kadomtsev-Petviashvili (KP) hierarchy constitute an infinite-dimensional
Grassmann manifold (which he called the Universal Grassmann manifold)
and that the Plücker relations for this Grassmannian take the form of Hirota
bilinear identities [38, 39]. The resulting “unified approach” to integrability,
commonly known as Sato theory [36], offers a deep algebraic and geometric
understanding of integrable systems with infinitely many degrees of freedom
and their solutions. At the heart of the theory lies the idea that integrable
systems are not isolated but should be thought of as belonging to infinite
families, so-called hierarchies of mutually compatible systems, i.e., systems
governed by an infinite set of evolution parameters in terms of which their
(common) solutions can be expressed.

R. Willox and J. Satsuma, Sato Theory and Transformation Groups. A Unified Approach to
Integrable Systems, Lect. Notes Phys. 644, 17–55 (2004)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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1.1 The KP Equation

One could summarize the original idea of Sato as follows:
Start from an ordinary differential equation and suppose that its solutions
satisfy certain dispersion relations, for a set of supplementary parameters.
Then, as conditions on the coefficients of this ordinary differential equation,
we obtain a set of integrable nonlinear partial differential equations.

Let us show how this recipe allows one to derive the famous KP equation
from a particularly simple set of linear dispersion relations. Consider the

following second-order linear differential equation, denoting derivatives
df
dx

by f ′, ... ,

f ′′(x) + a(x)f ′(x) + b(x)f(x) = 0 , (1)

for which we choose two linearly independent solutions, f1(x) and f2(x). The
coefficients a(x) and b(x) in (1) can be expressed in terms of these solutions
as

a(x) = −
∣∣∣∣
f1 f2
f ′′
1 f

′′
2

∣∣∣∣ /τ(x) , b(x) =
∣∣∣∣
f ′
1 f

′
2

f ′′
1 f

′′
2

∣∣∣∣ /τ(x) . (2)

The function τ(x) denotes the Wronski determinant

τ(x) :=
∣∣∣∣
f1 f2
f ′
1 f

′
2

∣∣∣∣ . (3)

If, as mentioned at the ouset, we now suppose that besides this x-
dependence the solutions f1(x) and f2(x) also depend on two new parameters,
y and t, (fi(x; y = 0, t = 0) = fi(x) for i = 1, 2) such that they satisfy the
dispersion relations

∂fi
∂y

=
∂2fi
∂x2 ,

∂fi
∂t

=
∂3fi
∂x3 , (4)

then the coefficients a and b will obviously also depend on these new parame-
ters. However, this dependence will be of a much more complicated form than
(4) ; a(x; y, t) and b(x; y, t) must satisfy certain nonlinear partial differential
equations which will turn out to be solvable in terms of the KP equation.

Let us see what kind of partial differential equations we obtain. Denote
by Ŵ the second-order differential operator acting on f(x) in (1) (∂x := ∂

∂x )

Ŵ := ∂2
x + a(x; y, t)∂x + b(x; y, t) , (5)

for which, by definition,

Ŵfi(x; y, t) = 0 , (i = 1, 2) . (6)
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By differentiating with respect to y we see that the functions fi also solve
the fourth-order differential equation,

Ŵyfi + Ŵ∂yfi ≡
[
ay∂x + by + Ŵ∂2

x

]
fi = 0 , (7)

where ay denotes ∂a
∂y , etc..., which indicates that the fourth-order differential

operator
[
Ŵy + Ŵ∂2

x

]
must factorize in terms of Ŵ and a suitable second-

order differential operator B̂2,

Ŵy + Ŵ∂2
x = B̂2Ŵ . (8)

If we parametrize B̂2 as B̂2 := ∂2
x + α2(x; y, t)∂x + β2(x; y, t), its coefficients

are obtained from (8),

α2 = 0 , β2 = −2ax , (9)

under the following nonlinear conditions on a and b,

ay = a2x − 2aax + 2bx
by = b2x − 2axb . (10)

Similarly, from the t derivative of (6), one obtains the following factor-
ization of a sixth-order operator,

Ŵt + Ŵ∂3
x = B̂3Ŵ , B̂3 = ∂3

x + α3∂
2
x + β3∂x + γ3 , (11)

α3 = 0 , β3 = −3ax , γ3 = −3a2x + 3axa− 3bx ,

under the conditions :

at = a3x + 3b2x − 3a(bx + a2x) − 3a2
x − 3bax + 3a2ax

bt = b3x − 3ba2x − 3axbx − 3bbx + 3abax . (12)

Hence, by assuming a simple linear parameter-dependence for the solutions
of the linear ordinary differential equation (1) – as in (4) – we obtain a
far more interesting system of nonlinear partial differential equations (10)
and (12) for the parameter-dependence of the coefficients of that ordinary
differential equation. The system (10,12) can be seen to be equivalent to the
KP equation. If we use the factorizations (8) and (11) to express the equality
of the cross-derivatives (Ŵy)t and (Ŵt)y, we obtain a compatibility condition
for the operators B̂2 and B̂3,

(B̂2)t − (B̂3)y =
[
B̂3, B̂2

]
−
, (13)

where [A,B]− := AB −BA. It is straightforward to show that (13) amounts
to the KP equation,
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(4ut − 12uux − u3x)x − 3u2y = 0 , (14)

in the field u(x, y, t) := (−a(x; y, t))x.
Furthermore, since solutions a and b to (10) and (12) can be expressed in

terms of the function τ(x; y, t) (2), subject to (4),

a(x; y, t) =
−τx(x; y, t)
τ(x; y, t)

, b(x; y, t) =
τ2x(x; y, t) − τy(x; y, t)

2 τ(x; y, t)
, (15)

it follows that the solution u(x, y, t) to the KP equation derived from a(x, y, t)
is also completely determined by this function,

u(x, y, t) = ∂2
x log τ(x; y, t) . (16)

Exercise 1.1. Show that (13) really yields the KP equation (14).

1.2 Plücker Relations

It is the function τ(x; y, t) that will turn out to be the single most important
object in Sato theory. In fact, it is directly connected to the notion of an
infinite-dimensional Grassmann manifold. To demonstrate this, we start by
expanding the solutions f1(x) and f2(x) of the original differential equation
(1) around a common point of analyticity, say, x = 0 for simplicity, (i = 1, 2)

fi(x) =
∞∑
j=0

ζij
xj

j!
, ζij =

djfi
dxj

∣∣∣∣
x=0

, (17)

from the coefficients of which we construct a (rank 2) ∞× 2 matrix,

ζ0 :=




ζ1
0 ζ

2
0

ζ1
1 ζ

2
1

ζ1
2 ζ

2
2

...
...


 . (18)

Observe that, due to (3), τ(x; 0, 0) is completely determined by the entries
in this matrix. However, due to the linearity of the differential equation (1),
the matrix ζ0 itself is only defined up to right-multiplication with an element
of GL(2,C), i.e., a non-singular 2 × 2 matrix. The resulting change in τ(x)
being but a mere multiplication with the determinant of that transformation
matrix, these transformations obviously leave a, b and thus also u invariant.

Definition 1.1. Given an n-dimensional vector space V , then the Grass-
mann manifold GM(m;n) (or Grassmannian for short) is defined as the set
of all m-dimensional linear subspaces of V .
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Alternatively, one may also think of GM(m;n) as the quotient space obtained
by the right-action of the Lie group GL(m,C) on the manifold M(m,n) of all
n ×m matrices of rank m, M(m,n)/GL(m,C). In particular, GM(m;n) is
m(n−m)-dimensional (see, e.g., [30] or [41] for further details on Grassmann
manifolds).

By extension of these ideas, it can be shown that the set of all ∞ × 2
matrices ζ0, defined up to the right-action ofGL(2,C), constitutes an infinite-
dimensional Grassmann manifold, in this case denoted by GM(2;∞).

It is instructive however to dwell a little longer on the case of a finite-
dimensional Grassmannian, the simplest (non-trivial) example of which is
GM(2; 4), i.e., the set W of all 2-dimensional planes passing through the
origin of a 4-dimensional vector space V . In practice, one needs to introduce
a coordinate system on this Grassmannian. If we take vi (i = 1, . . . , 4) to be
basis vectors for the vector space V (dim(V ) = 4), we can express a basis
{w1,w2} for a 2-dimensional plane by means of the coordinates ζij of the
wj in the {vi} basis,

wi =
4∑
j=1

ζjivj . (19)

The 4× 2 matrix (ζij)4×2 ∈M(4, 2) is called a frame of W and we can think
of the Grassmannian GM(2; 4) as the quotient space M(4, 2)/GL(2,C).

Now, using the minor determinants of the frame (ζij)4×2, we can define the
following homogeneous coordinates in 5-dimensional projective space (P5),

ξ = (ξ12 : ξ13 : ξ14 : ξ23 : ξ24 : ξ34)

:=
(∣∣∣∣
ζ11 ζ12
ζ21 ζ22

∣∣∣∣ :
∣∣∣∣
ζ11 ζ12
ζ31 ζ32

∣∣∣∣ :
∣∣∣∣
ζ11 ζ12
ζ41 ζ42

∣∣∣∣ :
∣∣∣∣
ζ21 ζ22
ζ31 ζ32

∣∣∣∣ :
∣∣∣∣
ζ21 ζ22
ζ41 ζ42

∣∣∣∣ :
∣∣∣∣
ζ31 ζ32
ζ41 ζ42

∣∣∣∣
)
.

(20)

Since the action of GL(2,C) on w1,w2 only results in the multiplication of
each minor by the determinant of the transformation matrix, it is clear that
ξ is invariant under such transformations. In this way we see that GM(2; 4)
can also be regarded as a 4-dimensional subvariety of P

5. The homogeneous
coordinates ξ are called the Plücker coordinates of this Grassmannian. It
is worth observing that a Grassmann manifold GM(m;n) can always be
embedded in the projective space P

(n
m)−1 [30, 41].

It is important to realize however that the Plücker coordinates are not
independent ; they satisfy (and are in fact fully characterized by) a set of
nonlinear algebraic relations which are called the Plücker relations. In the
case of GM(2; 4) there is only one such relation, which can be obtained from
the Laplace expansion of the (0) determinant,
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∣∣∣∣∣∣∣∣

ζ11 ζ12 0 0
ζ21 ζ22 ζ21 ζ22
ζ31 ζ32 ζ31 ζ32
ζ41 ζ42 ζ41 ζ42

∣∣∣∣∣∣∣∣
= ξ12ξ34 − ξ13ξ24 + ξ14ξ23 = 0 . (21)

Since GM(2; 4) is the first non trivial subvariety of the infinite-dimensional
Grassmannian GM(2;∞), (21) is of course also the simplest Plücker relation
for the Grassmannian GM(2;∞). We shall now see that this Plücker relation
actually encodes the KP equation.

1.3 The KP Equation as a Dynamical System on a Grassmannian

Let us introduce an evolution with respect to the x-coordinate in GM(2;∞).
This can be done by means of the shift matrix (see, e.g., [36] for a detailed
account)

Λ :=




0 1 0 · · ·
0 0 1 0 · · ·

. . . . . . . . .


 . (22)

It is easily seen that

exp(xΛ) =




1 x x2

2!
x3

3! · · ·
0 1 x x2

2! · · ·
0 0 1 x · · ·

. . . . . .


 , (23)

which allows us to define the x evolution ζ(x) of the matrix ζ0 (18) as

ζ(x) := exp(xΛ) ζ0 ≡




f1 f2
f ′
1 f

′
2

f ′′
1 f

′′
2

...
...


 . (24)

The y and t dependencies can be introduced in a similar way,

ζ(x; y, t) := exp(xΛ + yΛ2 + tΛ3) ζ0 =




h1 h2
h′

1 h
′
2

h′′
1 h

′′
2

...
...


 , (25)

for functions hi(x, y, t) (i = 1, 2) that satisfy the conditions :

hi(x, 0, 0) = fi(x),
∂hi
∂y

=
∂2hi
∂x2 ,

∂hi
∂t

=
∂3hi
∂x3 . (26)
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These conditions are however identical to (4), identifying the functions
hi(x, y, t) with the fi(x; y, t), i = 1, 2, and thus we have succeeded in intro-
ducing the parameter dependence (4) into the Grassmannian GM(2;∞). The
evolution of the function τ(x; y, t) then corresponds to the motion ζ(x; y, t)
of an initial point ζ0 on GM(2;∞), under the action of the 3-parameter
transformation group exp(xΛ + yΛ2 + tΛ3).

We can now translate Plücker relation (21) for GM(2;∞) into an equation
for τ(x; y, t). If we introduce the frame (25)

(ζij)∞×2 ≡
(
∂i−1
x fj

)
∞×2 , (27)

we immediately obtain the Plücker coordinate ξ12 ≡ τ(x; y, t). Differentia-
tion with respect to x, y, t yields the remaining coordinates (20): ξ13 = ∂xτ ,
ξ14 = 1

2

(
∂2
x + ∂y

)
τ , ξ23 = 1

2

(
∂2
x − ∂y

)
τ , ξ24 = 1

3

(
∂3
x − ∂t

)
τ and ξ34 =

1
12

(
∂4
x + 3∂2

y − 4∂x∂t
)
τ . With the help of these expressions, the Plücker re-

lation (21) can be transformed into a quadratic relation for τ(x; y, t), which
can be rewritten as

(
D4
x − 4DxDt + 3D2

y

)
τ · τ = 0 (28)

in terms of the Hirota operators [16],

Dm1
x1

· · ·Dmn
xn
F ·G =

(
∂m1
ε1 · · · ∂mn

εn

)
F (x1 + ε1, . . . , xn + εn)

G(x1 − ε1, . . . , xn − εn)
∣∣
εi=0 ∀i. (29)

This is nothing but the Hirota bilinear form of the KP equation (14).

Exercise 1.2. Show that the KP equation can be obtained from (28) by
means of the “bilinearizing transformation” (16).

1.4 Generalization to the KP Hierarchy

If one introduces infinitely many evolution parameters, t = (t1, t2, t3, . . . ),
the functions τ(t1, t2, t3, . . . ) will correspond to the orbits

ζ(t) := exp(
∞∑
n=1

tnΛn) ζ0 ≡
∞∑
n=0

pn(t)Λn ζ0 , (30)

where, as compared to the above, the variable t1 plays the rôle of x and t2
and t3 those of y and t respectively : we shall adhere to this convention from
here on.

Definition 1.2. The Schur polynomials, pn(t) (n ∈ N), are defined by the
following generating formula,

exp(
∞∑
n=1

tnz
n) ≡

∞∑
m=0

pm(t)zm. (31)
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Exercise 1.3. Calculate Schur polynomials p0, p1 · · · up to p5 explicitly.

This generalization to infinitely many evolution parameters, accompanied
by a careful limit GM(m→∞;∞), is necessary if one wants to capture all
the evolutions contained in the KP hierarchy. For it can be shown that [38]

Theorem 1.1 (Sato 1981). The solution-space of the KP hierarchy is
isomorphic to the infinite-dimensional Grassmannian GM(∞/2;∞) whose
Plücker relations take the form of Hirota bilinear identities for the equations
in the KP hierarchy. The evolution of a KP τ -function is defined by the
motion of a point on that Grassmannian, under the action of the Abelian
infinite-parameter group (30).

In particular, the τ -function can be expressed in terms of Plücker coordinates
ξY for GM(∞/2;∞) and vice versa,

τ(t) =
∑
Y

ξY χY (t) or ξY = χY (∂̃t)τ(t)|t=0 , (32)

where ∂̃t := (t1, 1
2 t2,

1
3 t3, . . . ). The symbol χY (t) denotes the character-

polynomials associated with the irreducible tensor representations of GL(n),
classified in terms of Young diagrams, Y . The interested reader is referred
to [36, 40] for a more detailed explanation, proofs and for some explicit ex-
amples.

2 Wave Functions, τ -Functions and the Bilinear Identity

It is intuitively clear that if one wishes to construct the Universal Grass-
mann Manifold GM(∞/2;∞) by mimicking the construction of GM(2; 4),
performed in the previous sections, one would have to start from a linear
differential operator of infinite-order and study its deformations in terms of
infinitely many auxiliary parameters. This is exactly the point where so-called
pseudo-differential operators [36, 12] come into play.

2.1 Pseudo-differential Operators

We start by pointing out that the second-order operator Ŵ (5) can be written
as

Ŵ = W (2)∂2 , W (2) := 1 + α1(x; y, t)∂−1 + α2(x; y, t)∂−2 , (33)

where ∂m := ∂mx , whenm ≥ 0, and ∂−1 is defined such that ∂∂−1 =∂−1∂ = 1.

Definition 2.1. A pseudo-differential operator A(∂) is a linear operator,
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A(∂) =
∑

j�+∞
aj(x)∂j , (34)

where the symbol ∂, as an operator, is defined by its action on a function
f(x): ∂(f) := fx, and ∂−1 is defined by ∂∂−1 = ∂−1∂ ≡ 1.

A sum of pseudo-differential operators is defined in the usual way by
collecting terms, and their product is defined by the following extension of
Leibniz’ s rule,

A(∂)B(∂) =
∑

i,j�+∞
ai∂

ibj∂
j =

∑
i,j�+∞

∞∑
k=0

(
i

k

)
ai(bj)kx ∂i+j−k , (35)

where (∀i ∈ Z)
(
i

k

)
=
{
i(i+1)···(i+k−1)

k! for k ≥ 1
1 for k = 0

; (36)

(A(∂))+ :=
∑
j≥0 aj∂

i denotes the so-called “differential” part of a pseudo-
differential operator and its complement, A(∂) − (A(∂))+, is denoted by
(A(∂))−. A pseudo-differential operator possesses a unique inverse, denoted
simply by A(∂)−1, and its formal adjoint can be calculated from (35) :

A(∂)∗ :=
∑
i

(−1)i∂iai =
∑
i

(−1)i
+∞∑
k=0

(
i

k

)
ai,kx∂

i−k . (37)

2.2 The Sato Equation and the Bilinear Identity

Extending (33), we define a pseudo-differential operator,

W := 1 +
+∞∑
j=1

wj(t)∂−j , (38)

called the gauge operator, whose coefficients wj depend on infinitely many
parameters, t = (t1 ≡ x, t2, t3, · · · ), as introduced in Sect. 1.4.

In order to generalize the line of thought running through Sect. 1.1, we
need to define differential operators, Bn (∀n ≥ 1),

Bn := (W∂nW−1)+ , (39)

which will provide us with an extension of the factorizations (8) and (11) to
arbitrary orders (n = 2, 3, . . . ),

Wtn = BnW −W∂n = −(W∂nW−1)−W . (40)

This equation is known as the Sato equation [36] and it provides a collective
description of the tn evolutions of the coefficient functions wj(t), i.e., the Sato
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equation actually encodes a “doubly infinite” sequence of partial differential
equations for the wj(t), generalizing (10) and (12).

Furthermore, the gauge operator W can be used to define the operator

L := W∂W−1 , (41)

which will turn out to be of crucial importance, not least because it underlies
the differential operators Bn,

Bn ≡ (Ln)+ . (42)

Let us now define so-called wave functions and adjoint wave functions.

Definition 2.2. A wave function (adjoint wave function) Ψ(t, λ) (Ψ∗(t, λ))
is defined by the expression

Ψ(t, λ) := W (t, λ) exp ξ(t, λ)
(
Ψ∗(t, λ) := W ∗−1(t, λ) exp−ξ(t, λ)

)
,

(43)

for

ξ(t, λ) :=
∞∑
n=1

tnλ
n (44)

and the formal Laurent series in λ,

W (t, λ) := 1 +
∞∑
j=1

wj(t)λ−j , (45)

is obtained from the gauge operator W by setting ∂→ λ−1. W ∗−1(t, λ) can
similarly be obtained from (37).

This leads to the following proposition [38,11,12],

Proposition 2.1 (Sato). If a pseudo-differential operator W satisfies the
Sato equation (40), then the operators L and Bn, obtained from W by means
of (41) and (39), satisfy ∀n,m,

Ltn = [Bn, L]− (46)
(Bn)tm − (Bm)tn = [Bm, Bn]− . (47)

Furthermore, the wave function Ψ(t, λ) and adjoint wave function Ψ∗(t, λ)
which can be derived from W satisfy the linear systems,

{
LΨ(t, λ) = λΨ(t, λ)
∂tnΨ(t, λ) = BnΨ(t, λ) ,

{
L∗Ψ∗(t, λ) = λΨ∗(t, λ)
∂tnΨ

∗(t, λ) = −B∗
nΨ

∗(t, λ) , (48)

as well as the bilinear identity,

Resλ=∞ [Ψ(t, λ)Ψ∗(t′, λ)] = 0 ∀t, t′ . (49)

In (49), Res denotes the operation A(λ) :=
∑
i aiλ

i , Resλ=∞ [A(λ)] := a−1.
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Several remarks are in order. First of all it should be clear that (47)
generalizes (13) from Sect. 1.1. Secondly, forgetting for a moment the W -
origins of the operators L and Bn and simply parametrizing L as

L := ∂ + u1(t)∂−1 + u2(t)∂−2 + · · · , (50)

equations (46) and (42) will yield an infinite system of partial differential
equations in the coefficients uj(t).

Exercise 2.1. Show that at n = 2, 3, the so-called Lax equation (46) yields a
system of equations from which, by elimination of u2, u3, · · · , the KP equation
expressed in the field u1(t) is obtained.

Observe that, due to (41), the coefficients uj(t) can easily be connected to
those of the gauge operator W , e.g., u1(t) = −(w1(t))x, etc... More im-
protantly however, observe also that due to Prop. 2.1, all the equations ob-
tained for the wj(t) or uj(t) are mutually compatible.

Corollary 2.1 ( [38,12]).

∂tm∂tnW = ∂tn∂tmW ∀m,n. (51)

In fact, the KP hierarchy is the set of nonlinear (2+1)-dimensional evolu-
tion equations expressed in u1(t) that can be obtained from (46) and (47). In
turn, these equations can be thought of as the compatibility conditions of the
linear systems (48) which underly the KP hierarchy. The bilinear identity (49)
however, as we shall see in the next section, encodes both the equations of the
KP hierarchy in their Hirota bilinear forms as well as their associated linear
formulations (48). A remark regarding the nature of the equations in the sys-
tem (48) is in order here. As the “action” (as a differential operator) of ∂−1 is
not defined on a function, the first equation in each system in (48) should be
thought of as a formal relation linking the coefficients in the (formal) Lau-
rent expansions on both sides of the equality, defining “∂−1 exp ξ(t, λ)” to
be λ−1 exp ξ(t, λ). The second set of equations in each system however only
consists of differential equations, whose compatibility conditions are given
by (47). The compatibility of these differential equations with the formal
relations in (48) is guaranteed by (46).

The converse of Prop.2.1 can be formulated as follows [39,11,12].

Proposition 2.2 (Sato). If Ψ(t, λ) and Ψ∗(t, λ) of the form

Ψ(t, λ) = W (λ)eξ(t,λ) , W (λ) = 1 + w1(t)λ−1 + · · · (52)

Ψ∗(t, λ) = V (−λ)e−ξ(t,λ) , V (−λ) = 1 + v1(t)(−λ)−1 + · · · , (53)

are solutions to the bilinear equation (49), then the pseudo-differential opera-
tor W (∂) solves the Sato equation (40) and V (−λ) ≡W ∗−1(−λ), i.e., Ψ(t, λ)
and Ψ∗(t, λ) are, respectively, a wave function and an adjoint wave function.
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2.3 τ -Functions and the Bilinear Identity

Just as the coefficients of the second-order operator Ŵ in Sect. 1.1 could be
expressed in terms of a particular (Wronski) determinant τ(x), so can the
gauge operator W , and with it the entire KP hierarchy and its associated
linear formulations, be expressed in terms of just a single function τ(t), the
KP τ -function.

The reader is referred to [36] for a more detailed discussion of this con-
struction, based on an mth-order extension of the approach that was adapted
in Sect. 1.1, or to [39] for a Grassmannian based explanation. In Sect. 3 a
third approach will be introduced, based on the representation theory of a
fermionic algebra. For now we simply state the main result [39,11,12].

Proposition 2.3 (Sato). There exists a function τ(t), in terms of which the
coefficients of W and V in (52) and (53) can be expressed as

wj =
pj(−∂̃)τ

τ
and vj =

pj(∂̃)τ
τ

∀j ≥ 1 . (54)

The pj are the Schur polynomials (31), and the “weighted” differential oper-
ators ∂̃t := (t1, 1

2 t2,
1
3 t3, . . . ) were already introduced in (32) (Sect. 1.4).

Observing that, due to the definition of the Schur polynomials (at least
formally [12]),

∞∑
n=0

pn(−∂̃)τ(t)λ−n = τ(t − ε[λ]) , (55)

one finds that Ψ(t, λ) and Ψ∗(t, λ) can be expressed as

Ψ(t, λ) =
τ(t − ε[λ])

τ(t)
eξ(t,λ), Ψ∗(t , λ) =

τ(t + ε[λ])
τ(t)

e−ξ(t,λ) , (56)

where ξ(t, λ) is as in (44) and the shift ε[λ] on the coordinates t stands for
the infinite sequence

ε[λ] = (
1
λ
,

1
2λ2 ,

1
3λ3 , · · · ) . (57)

Hence, one can reformulate identity (49) in terms of τ(t) only

Resλ=∞
[
τ(t − ε[λ]) τ(t′ + ε[λ]) eξ(t−t′,λ)

]
= 0 ∀t, t′ . (58)

Actually, this identity encodes all the evolution equations which make up
the KP hierarchy when written in Hirota bilinear form. This can be easily
seen by changing to new variables, x and y, as in t = x − y and t′ = x + y.
Direct calculation of Res in (58) then yields
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exp(
∞∑
i=1

yiDxi
)

∞∑
j=0

pj(−2y)pj+1(D̃)τ · τ = 0 ∀y , (59)

where the symbol D̃ stands for the sequence of “weighted” Hirota D-
operators, D̃ = (Dx1 , Dx2/2, Dx3/3, . . . ). The above expression is nothing
but a generating formula for all the Hirota bilinear equations in the KP hier-
archy, e.g., as the coefficients of y3 and y4 in (59) one finds the following
equations,

(4Dx1Dx3 − 3D2
x2

−D4
x1

)τ · τ = 0
(3Dx1Dx4 −Dx2D

3
x1

− 2Dx2Dx3)τ · τ = 0 , (60)

the first of which is the KP equation in bilinear form (28).

Exercise 2.2. Derive (59) from (58).

Exercise 2.3. Compute the coefficient of yn in formula (59) for general n,
in order to find bilinear expressions for all flows xn in the KP hierarchy.
Demonstrate (60).

Observe that because of the use of the Hirota bilinear operators, equa-
tions (60) are not explicitly in (2 + 1)-dimensional form since the “higher
weight” bilinear equation involves a Hirota operator corresponding to the
“lower weight” time variable x3. Elimination of this “lower” time variable is
needed to obtain a genuine (2 + 1)-dimensional equation governing the x4
flow.

To show that the bilinear identity also encompasses the linear formulation
of the KP hierarchy, it is convenient to rewrite (58) as an integral identity [11],

∮

Cλ

dλ
2πi

τ(t − ε[λ]) τ(t′ + ε[λ]) eξ(t−t′,λ) = 0 ∀t, t′ , (61)

for a narrow loop Cλ in the complex plane around λ ≈ ∞. Then, introducing
3 points νi (i = 1, 2, 3) inside Cλ, i.e., ∀i |νi| > |λ|, and identifying t′ as
t′ ≡ t −

∑3
i=1 ε[νi], we can easily compute the integral in (61),

(ν2 − ν3) τ(t − ε[ν1])τ(t − ε[ν2] − ε[ν3])
+ (ν3 − ν1) τ(t − ε[ν2])τ(t − ε[ν3] − ε[ν1])

+ (ν1 − ν2) τ(t − ε[ν3])τ(t − ε[ν1] − ε[ν2]) = 0 . (62)

Exercise 2.4. Show that exp
∑∞
n=1

1
n (λν )n = ν

ν−λ for |ν|> |λ|, i.e., the par-
ticular choice of t′ made above turns the essential singularity at λ = ∞ in
the bilinear identity into simple poles at νi. Use this result to calculate (62)
from (61).
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The quadratic expression in the τ -functions (62) is often called the Fay iden-
tity for the KP hierarchy, since it is connected to Fay’s tri-secant formula [14]
for theta functions. It first appeared in the KP context in [39] where it was
pointed out that this identity actually includes all useful information about
the KP hierarchy, such as the Hirota forms of the evolution equations or
the underlying linear formulations. As we shall see later on, it is also closely
related to the discretization procedure for the KP equation.

To show that (62) contains all information about the linear system un-
derlying the KP hierarchy, it suffices, e.g., to take the limit ν3→∞ which, at
o(ν0

3) yields,

(ν2 − ν1) [τ(t − ε[ν1])τ(t − ε[ν2]) − τ(t)τ(t − ε[ν1] − ε[ν2])]
+ τ(t − ε[ν1]) (τ(t − ε[ν2]))x − (τ(t − ε[ν1]))x τ(t − ε[ν2]) = 0 . (63)

Then, introducing the wave function, Ψ(t) := τ(t − ε[ν2])/τ(t) exp ξ(t, ν2),
this equation can be reformulated as

ν1[Ψ(t) − Ψ(t − ε[ν1])] = Ψ(t)x + Ψ(t)[log τ(t) − log τ(t − ε[ν1])]x , (64)

which, upon expansion in powers of ν−1
1 , which was after all the real meaning

of the shifts introduced in (55), yields the infinite set of linear equations [39],

pn(−∂̃)Ψ = Ψ pn−1(−∂̃)(log τ)x ∀n ≥ 2 . (65)

Analogously, one can also obtain

pn(∂̃)Ψ∗ = − Ψ∗ pn−1(∂̃)(log τ)x ∀n ≥ 2 . (66)

These equations are nothing but a recursive formulation of the Zakharov-
Shabat (ZS) linear system, or its adjoint form, for the KP hierarchy, i.e.,
of the set of (λ-independent) differential equations in (48). For a combined
approach to the KP hierarchy, its linear system and its symmetries, in the
same vain as the above, see [4].

Exercise 2.5. Calculate the ZS equations at n = 2, 3 from (65), and show
that they are equivalent to those obtained from (48) at the same order, if one
sets u1 = (log τ)2x and u2 = 1

2 [(log τ)xt2 − (log τ)3x].

Observe that, since the ZS equations (65) do not depend explicitly on
the spectral parameter associated to the wave function Ψ , here ν2, any lin-
ear combination of wave functions will solve the same set of equations, and
similarly for the adjoint case. Conversely, it can be shown that [45,3],

Proposition 2.4. Any solution Φ of the ZS system (65), generally called a
KP eigenfunction, can be expressed as a superposition of wave functions,

Φ(t) =
∮

Cλ

dλ
2πi

h(λ)Ψ(t, λ) , (67)

where h(λ) =
1
λ
Φ(t + ε[λ])Ψ∗(t, λ) . (68)
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The relevant formulae for (KP) adjoint eigenfunctions are [45]

Φ∗(t) =
∮

Cλ

dλ
2πi

h∗(λ)Ψ∗(t, λ) , (69)

where h∗(λ) =
1
λ
Φ∗(t − ε[λ])Ψ(t, λ) . (70)

In the above formulas, the loop Cλ is taken as in (61).
That (62) contains information on the KP evolution equations themselves

can be seen from the following exercise.

Exercise 2.6. Show that subsequent limits, ν2 →∞, ν1 →∞, of (63) yield
the KP equation in bilinear form (28) at o(ν−1

2 , ν−2
1 ).

3 Transformation Groups

In this section we shall present a description of Sato theory which makes
use of the representation theory for an infinite-dimensional Clifford algebra,
or free Fermion algebra. This description is originally due to Date, Jimbo,
Kashiwara and Miwa (see [11, 19] for a review of results or [21, 22] for a
slightly different point of view). We shall see that this description not only
offers an interesting perspective on the theory we presented so far, but that it
also serves as an extremely convenient starting point for further extensions or
generalizations of the theory. For details of proofs or derivations, the reader
is referred to [30] where an elementary treatment of the case of a finite (free)
Fermion algebra can be found.

3.1 The Boson-Fermion Correspondence

In terms of the usual anti-commutator, [X,Y ]+ := XY + Y X, we define the
Clifford algebra or free Fermion algebra.

Definition 3.1. The algebra over C with generators ψj and ψ∗
j that satisfy

the anti-commutation relations

[ψi, ψj ]+ = [ψ∗
i , ψ

∗
j ]+ = 0 , [ψi, ψ∗

j ]+ = δi+j,0 , (71)

where the indices run over the set of half integers Z + 1/2, and δi,j is the
Kronecker delta, is called the free Fermion algebra. It will be denoted by A.

This algebra possesses a standard representation on a so-called fermionic Fock
space F (see, e.g., [30,21]) which can be decomposed as F =

⊕
�∈Z

F�, where
F� is referred to as the �th charge-section of the fermionic Fock space F .
We shall not go into full detail as to how general elements |u〉 ∈ F can be
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constructed. Instead, let us define the heighest-weight vectors in this repre-
sentation as (∀� ∈ N \ {0}),

|�〉 := ψ1/2−� · · ·ψ−1/2 |0〉 (72)
|−�〉 := ψ∗

1/2−� · · ·ψ∗
−1/2 |0〉 , (73)

for a “cyclic vector” |0〉, sometimes called the vacuum state. The cyclic vector
|0〉 is defined in terms of the genuine vacuum state |Ω〉,

|0〉 := ψ∗
1/2ψ

∗
3/2ψ

∗
5/2 · · · |Ω〉 , (74)

which has the characteristic of being annihilated by the ψj : ψj |Ω〉 = 0 (∀j).
The dual F∗ of this Fock space, is defined by means of the duality rela-
tion ψj ↔ ψ∗

−j . From the above, one immediately obtains that the highest-
weightvectors |�〉 ∈ F and 〈�| ∈ F∗ (� ∈ Z) are such that (j ∈ Z + 1/2),

ψj |�〉 = 0 if j > −� , ψ∗
j |�〉 = 0 if j > � , (75)

〈�|ψj = 0 if j < −� , 〈�|ψ∗
j = 0 if j < � . (76)

There exists a pairing F∗ × F → C, the “expectation value”, such that
〈0|1|0〉 = 1. Since operators ψj and ψ∗

j carry “charge” +1 and −1 respec-
tively, and since the charge-sectors F� of the Fock space and its dual are
othogonal for this pairing (〈�|1|�′〉 = δ�,�′), it is easily seen that only charge-0
combinations of Fermion operators, i.e., combinations with equal amounts of
ψj ’s and ψ∗

j ’s, can yield non-zero vacuum-expectation values,

〈0|ψiψ∗
j |0〉 = δi+j,0 θ(j < 0) , θ(j < 0) :=

{
1 if j < 0
0 if j > 0 . (77)

General vacuum-expectation values are calculated with the help of the well
known Wick theorem, where ui denotes either ψjior ψ∗

ji
,

〈0|u1 · · ·ur|0〉 =
{

0∑
σ sgn(σ)〈0|uσ(1)uσ(2)|0〉 · · · 〈0|uσ(r−1)uσ(r)|0〉 ,

(78)

depending on whether r ∈ N is odd or even, and where the sum
∑
σ runs over

all possible permutations of the indices such that σ(1) < σ(2), . . . , σ(r−1) <
σ(r) and σ(1) < σ(3) < · · · < σ(r − 1).

Most importantly however, from the above Fermion operators it is possible
to construct bosonic operators,

Hn :=
∑

j∈Z+1/2

ψ−jψ∗
j+n , n ∈ Z \ {0} , (79)

which satisfy the usual commutation relations, [Hn, Hm]− = nδn+m,0, and
which can easily be seen to annihilate highest-weight vectors, Hn|�〉 =
〈�|H−n = 0 , ∀� ∈ Z, n ≥ 1.

It was discovered by Date, Jimbo, Kashiwara and Miwa that, conversely, it
is also possible to express fermionic operators in terms of bosonic ones [11,30].
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Theorem 3.1 (Boson-Fermion correspondence). Map Φ : F →
C[z, z−1; t], from F to the space of formal power series in t = (t1, t2, . . . ), z
and z−1 which are polynomial in z and z−1, is an isomorphism of vector
spaces. In particular, ∀|u〉∈F ,

Φ(Hn|u〉) =
{

∂tnΦ(|u〉) if n ≥ 1
−nt−nΦ(|u〉) if n ≤ −1 , (80)

whereas the fermionic operators are realised in the bosonic Fock space,
C[z, z−1; t],

Φ(ψ(λ)|u〉) = Γ (t, λ)Φ(|u〉) , Φ(ψ∗(λ)|u〉) = Γ ∗(t, λ)Φ(|u〉) , (81)

in terms of vertex operators Γ (t, λ) and Γ ∗(t, λ),

Γ (t, λ) := zeξ(t,λ)e−ξ(∂̃,1/λ)λH0 , (82)

Γ ∗(t, λ) := z−1e−ξ(t,λ)eξ(∂̃,1/λ) (λ−1)H0
. (83)

Operator λH0 acts on elements of C[z, z−1; t] as λH0f(z; t) := f(λz; t),
and the field operators ψ(k) and ψ∗(k) that appear in (81)

ψ(k) :=
∑

j∈Z+1/2

ψjk
−j−1/2 , ψ∗(k) :=

∑
j∈Z+1/2

ψ∗
j k

−j−1/2 , (84)

should really be thought of as generating functions for the Fermion operators
ψj , ψ

∗
j . Below we list some important properties of these field operators. First

of all, concerning their right-action on F∗,

〈�|ψ(λ) = λ�−1〈�− 1|e−H(ε[λ]) , (85)

〈�|ψ∗(λ) = λ−�−1〈�+ 1|eH(ε[λ]) , (86)

where the operator H(t) is defined as

H(t) :=
∞∑
n=1

tnHn , (87)

and secondly concerning their “evolution” with respect to such H(t)’s :

eH(t) ψ(λ) e−H(t) = eξ(t,λ) ψ(λ) , eH(t) ψ∗(λ) e−H(t) = e−ξ(t,λ) ψ∗(λ) .
(88)

Thirdly, the vacuum-expectation value of the product, ψ(λ)ψ∗(µ), of field
operators can be calculated as

〈0|ψ(λ)ψ∗(µ)|0〉 =
1

λ− µ
, if λ > µ , (89)

or 〈0|ψ∗(µ)ψ(λ)|0〉 =
1

µ− λ
, if µ > λ , (90)

which allows us to say that, at least in expectation-value, ψ(λ) and ψ∗(µ)
anti-commute when µ �= λ, ψ(λ)ψ∗(µ) = −ψ∗(µ)ψ(λ).
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3.2 Transformation Groups and τ -Functions

It was shown in Sect. 1.4 that the evolution of a τ -function is defined by
the action of the infinite-parameter group (30) on a point of the Universal
Grassmann manifold (UGM). This parameter group is a subgroup of the
group GL(∞) of automorphisms of the UGM. In fact (citing [38]), “the au-
tomorphism group GL(∞) of the Grassmannian plays the rôle of the group
of transformations [i.e., symmetry group] of the KP equation”.

The group GL(∞) can be defined by means of its associated Lie algebra,
gl(∞), which, it turns out, possesses a representation on the fermionic Fock
space F . Denote by A the set of (∞×∞) matrices :

A :=
{
(aij) i, j ∈ Z + 1/2

∣∣ ∃R ∈ N : aij = 0 ∀|i− j| > R
}
. (91)

We then associate with each infinite matrix A ∈ A a quadratic expression
XA =

∑
i,j aij : ψ−iψ∗

j : where : ψkψ∗
� : denotes the normal ordered product

:ψkψ∗
� : := ψkψ

∗
� − 〈0|ψkψ∗

� |0〉. The commutator of two such X’s then has all
the attributes of a Lie product. Most importantly,

[XA, XB ]− = X[A,B]− + ω(A,B) , (92)

where [A,B]− = AB − BA and ω(A,B) :=
∑
i,j aijbji (θ(i < 0) − θ(j < 0)),

with the θ’s defined as in (77). This leads to the following.

Definition 3.2. The Lie algebra gl(∞) and its associated group are defined
as

gl(∞) :=





∑
i,j∈Z+1/2

aij :ψ−iψ∗
j :
∣∣ ∃R ∈ N : aij = 0 ∀|i− j| > R



⊕ C ,

(93)

and GL(∞) :=
{
g
∣∣ g = eX1 · · · eXk , Xi ∈ gl(∞)

}
. (94)

It can be shown that elements of GL(∞) possess the fundamental property
[30]

Proposition 3.1. ∀g ∈ GL(∞),
∑

j∈Z+1/2

ψ−jg ⊗ ψ∗
j g =

∑
j∈Z+1/2

gψ−j ⊗ gψ∗
j . (95)

This is a property which directly underlies the existence of the bilinear iden-
tity (58) (and several others) for the KP hierarchy, as we shall see shortly.

In fact, and most importantly, it can be shown that the GL(∞)-orbit of
the cyclic vector |0〉 naturally gives rise to the UGM. For a proof in the case
of finite-dimensional Grassmannians, see [30] ; for the general construction
see, e.g., [11]. More precisely,
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Proposition 3.2. The KP τ -functions are described by the GL(∞)-orbit of
the cyclic vector |0〉 in the Fock space F ,

τ(x) := 〈0|eH(x)g|0〉 , g ∈ GL(∞) , (96)

with Hamiltonians H(x) as defined in (87).

In particular [30],

Theorem 3.2. A state |u〉 ∈ F0 belongs to the GL(∞)-orbit of the cyclic
vector |0〉, i.e., ∃ g ∈ GL(∞) : |u〉 = g|0〉, if and only if :

∑
j∈Z+1/2

ψ−j |u〉 ⊗ ψ∗
j |u〉 = 0 . (97)

This means that a function τ(x) ∈ C[z, z−1; x] is a KP τ -function if and only
if it solves the KP bilinear identity (58).

To clarify this last point let us point out that due to (85,86) and the
definition of the τ -function (96), the action of 〈1|eH(x) ⊗ 〈−1|eH(x) on (97)
exactly yields the KP bilinear identity in its τ -function form (58).

A natural question to ask in the light of Prop.3.2 is, given a KP τ -function,
what is the element in GL(∞) that will generate this function through the
definition (96) ? This problem can be settled by first constructing an appro-
priate element of the Lie algebra, gl(∞), from which it is then possible to
generate such a g ∈ GL(∞). For technical reasons we first need to introduce a
shifted version of the coordinates, x : x̄ := (x1+δ, x2, x3, . . . ), (δ ∈ C), where
δ is any number such that τ(x̄)|x=0 �= 0. We can then define the following
expression in λ, µ ∈ C, close to ∞,

h0(λ, µ) :=
[
τ(x̄ − ε[µ] + ε[λ])

(µ− λ)τ(x̄)

]∣∣∣∣
x=0

− 1
µ− λ

. (98)

The following can be proven [48].

Proposition 3.3. For any spectral density h0(λ, µ) associated with KP τ -
function by (98),

X = c+ e−δH1 v eδH1 , (99)

with c ∈ C, H1 =
∑
j∈Z+1/2 ψ−jψ∗

j+1 and

v =
∮

Cλ

dλ
2πi

∮

Cµ

dµ
2πi

h0(λ, µ)ψ(λ)ψ∗(µ) , (100)

for contours Cλ, Cµ in the complex plane around λ, µ ≈ ∞ but excluding all
singularities of h0(λ, µ) itself, belongs to a completion gl(∞) of gl(∞) such
that

τ(x) ≡ 〈0|eH(x)eX |0〉 , (101)

for a suitable normalization constant c ∈ C.
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Furthermore, one can show that if the spectral density h0(λ, µ) separates as

h0(λ, µ) =
∞∑
�=1

h�(λ) h∗
� (µ) , (102)

the τ -function can be represented by the possibly infinite determinant,

τ(x) = det[I −A] , (103)

Anm =
∮

Cλ

dλ
2πi

hn(λ) eξλ(x)
∮

Cµ

dµ
2πi

h∗
m(µ) e−ξµ(x)

µ− λ
. (104)

Observe that this implies that such τ -functions can, generally, be written in
the form

τ(x) = det[(ωi,j)] , (105)

where (ωij) stands for a possibly infinite matrix with entries ωij ,

(ωi,j)x = ϕiϕ
∗
j , (ϕi)xn

= (ϕi)nx , (ϕ∗
j )xn

= (−)n+1(ϕ∗
j )nx , (106)

for some otherwise arbitrary functions ϕi(x) and ϕ∗
j (x).

Readers familiar with the ∂̄-method [26] will notice that (103),(104) are
quite similar to determinant formulas for the solutions of the KP hierarchy
that one encounters there. This is by no means a coincidence. In fact, it
can be shown [48] that KP τ -functions are required to satisfy linear integral
equations similar to those appearing in the non-local ∂̄-problem for the KP
hierarchy [26] and hence that, at least on the operational level, both methods
are indeed very similar, with each method having its particular advantages
[49].

Finally, observe that the above reconstruction of an appropriate element
of gl(∞) from a given τ -function can actually be extended to the case in
which only partial information on the τ -function is available : It is possible
to carry out a similar reconstruction starting from an initial x1, x2-profile
τ(x1, x2, 0, . . . ), thus effectively solving the initial-value problem for the KP
τ -functions. We shall not go into this question here, since it would lead us
astray, but the interested reader is referred to [48] for further details and
explanations.

Exercise 3.1. Calculate the spectral densities for the KP τ -functions ε+ x1
(ε �= 0) and 1 + 1/(p− q) exp(ξ(x, p) − ξ(x, q)), and show that these indeed
give rise to those τ -functions by Prop.3.3.

3.3 Bäcklund Transformations for the KP Hierarchy

In Sect. 3.2 it was mentioned that GL(∞) acts like a symmetry group for the
equations in the KP hierarchy. Here we shall try to make that statement a
bit more tangible.
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Although it was not explicitly mentioned at the time, it can be seen
from the discussion in Sect. 3.1 that the bosonic operators Hn (79) span
a Heisenberg sub-algebra of gl(∞). By the Boson-Fermion correspondence,
these Hn then correspond to symmetry generators ∂xn and xn, responsible
for the translational invariance (xn → xn + ε) and gauge invariance (τ →
τ exp ξ(x, k)) of the KP bilinear equations. As these particular symmetries
are rather trivial, let us take a look at some more involved symmetries that
can be deduced from GL(∞).

First, let us define a τ -function for any highest weight vector |�〉 in F ,

τ�(x) := 〈�|eH(x)g|�〉 , g ∈ GL(∞) . (107)

The τ -function τ0(x) is, of course, the one defined in (96). In fact, the choice
of a particular highest-weight vector is irrelevant in the general definition of
a τ -function since it can be seen that any given τ can actually be realized in
any of the charge sectors by appropriately altering g.

However, from the present definition (107) and the interwining relation
(95), one can obtain a quite general bilinear identity relating τ -functions
defined in different charge sectors of the Fock space, but generated by the
same element g of GL(∞) : (∀x,x′; �, �′ : � ≥ �′)

Resλ=∞
[
λ�−�

′
τ�(x − ε[λ]) τ�′(x′ + ε[λ]) eξ(x−x′,λ)

]
= 0 . (108)

Exercise 3.2. Derive the above identity from (95). Hint : calculate the action
of 〈�+ 1|eH(x) ⊗ 〈�′ − 1|eH(x′) and |�〉 ⊗ |�′〉 on that identity.

The above bilinear identity is often referred to as that for the nth-modified
KP hierarchy, where n = � − �′, because it can be shown to correspond to
the following generator for the bilinear equations in the nth-modified KP
hierarchy,

exp(
∞∑
i=1

yiDxi
)

∞∑
j=0

pj(2y)pn+j+1(−D̃)τ� · τ�′ = 0 , (n = �−�′≥0) . (109)

The equations contained in this bilinear identity are in fact integrable evo-
lution equations in their own right, i.e., irrespective of the precise origins of
the τ -functions that appear in them, as will be seen for instance in Prop. 9.

As an example one can take n = 1 (set � = m + 1) and obtain at lowest
orders,

(Dx2 −D2
x1

)τm+1 · τm = 0 , (110)

(4Dx3 − 3Dx1Dx2 −D3
x1

)τm+1 · τm = 0 , (111)

which is the Hirota form of the 1st-modified KP equation. In fact, it can be
shown [27] that the bilinear equations in the 1st-modified KP hierarchy can,
equivalently, be interpreted as a bilinear representation of the ZS system (65)
for the KP hierarchy if one introduces Ψ = τm+1/τm.
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Exercise 3.3. Derive the generator for the bilinear representation of the ad-
joint ZS system (66), and calculate the two lowest-order bilinear equations
contained in it.

The bilinear equations encoded in (109) are often referred to as the equa-
tions describing Bäcklund transformations for the KP hierarchy and (110,111)
in particular, as the Bäcklund transformation for the KP equation. As we shall
see this is a slight misnomer since these equations do not describe the most
general Bäcklund transformation for the KP equations. System (109) actually
describes what are called Darboux transformations for the KP τ -functions.

Definition 3.3. Let Φ be a KP eigenfunction for a given τ -function τ(x),
i.e., a solution to the Zakharov-Shabat system (65) with respect to τ(x), then
the map

τ(x) → τ(x) × Φ(x) (112)

is called a Darboux transformation for τ(x).
Similarly, an adjoint Darboux transformation for τ(x) is defined by the map,
τ(x) → τ(x) × Φ∗(x), where Φ∗(x) is an adjoint eigenfunction with respect
to τ(x).

It can be shown that the Darboux transformation of a τ -function yields again
a τ -function. In fact [45],

Proposition 3.4. The following action of GL(∞) or a completion thereof,

GL(∞) � g −→ S−1φg ∈ GL(∞)
� �
τ −→ τ × Φ ≡ τ̃ ,

where φ stands for the linear superposition of Fermion operators,

φ :=
∮

Cλ(∞)

dλ
2πi

h(λ) ψ(λ) , (113)

is the Darboux transformation for τ(x), in terms of the eigenfunction Φ ob-
tained from (67) by means of the density h(λ).

The operator S−1 can be defined on the Fock space by

S−1ψj = ψj+1S
−1 , S−1ψ∗

j = ψ∗
j−1S

−1 (114)

〈�|S−1 = 〈�+ 1| , S−1|�〉 = |�− 1〉 . (115)

In fact, it can be shown [45] that the above transformation entails the classical
Darboux transformation for KP eigenfunctions [28]. More precisely, one can
show that for any eigenfunction Ψ associated to τ but different from Φ, the
transformation,
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Ψ −→ ΨxΦ− ΨΦx
Φ

(116)

yields a non-trivial KP eigenfunction associated with the new τ -function τ̃ .

As we already mentioned, (109) describes the bilinear form of the ZS sys-
tem for the KP hierarchy and hence a τ -function and its Darboux transform,
i.e., τ and τ̃ ≡ τΦ, should by definition also satisfy such bilinear equations.
In fact, denoting iterated Darboux transformations of a τ -function by τ[k]
(k = 1, 2, · · · ),

Proposition 3.5. A τ -function, τ(x), and its kth Darboux iterate, τ[k](x),
satisfy the kth modified KP hierarchy,

Resλ=∞
[
λk τ[k](x − ε[λ]) τ(x′ + ε[λ]) eξ(x−x′,λ)

]
= 0 . (117)

This is a consequence of the fact that the action of a Darboux transformation
(or an adjoint Darboux transformation) on a τ -function is a mere generaliza-
tion, in the sense of (67) or (69), of the action of the vertex operators Γ (x, λ),
or Γ ∗(x, λ), which arose in the context of the Boson-Fermion correspondence.

As can be seen from Prop. 3.4 however, a Darboux transformation is
not the most natural Bäcklund transformation if one thinks in terms of the
general action of GL(∞), the natural transformation being

Definition 3.4. A binary Darboux transformation is a map,

τ(x) → τ(x) ×Ω(Φ,Φ∗) , (118)

defined in terms of a so-called eigenfunction potential, Ω(Φ,Φ∗), which in
turn is defined by means of a total differential involving KP eigenfunctions Φ
and adjoint eigenfunctions Φ∗ [35],

dΩ(Φ,Φ∗) :=
∞∑
n=1

Andxn , (An)xm
= (Am)xn

, (119)

An := nΦ∗pn−1(∂̃)Φ−
n−1∑
k=1

(
Φ∗pn−k−1(∂̃)Φ

)
xk

. (120)

The first few A’s take the form : A1 = ΦΦ∗, A2 = ΦxΦ
∗ − ΦΦ∗

x, . . . .

Exercise 3.4. Show that (A1)x2 = (A2)x.

A binary Darboux transformation maps τ -functions into τ -functions, as can
be seen [45] from

Proposition 3.6. A binary Darboux transformation corresponds to the fol-
lowing action of GL(∞) or a completion thereof,
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GL(∞) � g −→ (1 + φφ∗)g ∈ GL(∞)
� �
τ −→ τ × Ω ≡ τ̂ ; Ω := ∂−1ΦΦ∗ ,

where φ is as in Prop. 3.4 and φ∗ denotes

φ∗ =
∮

Cµ

dµ
2πi

h∗(µ) ψ∗(µ) , (121)

with a density h∗(µ) used in the decomposition (69) of Φ∗ in terms of adjoint
wave functions.

The notation Ω = ∂−1ΦΦ∗ can be justified by the fact that Ωx ≡ ΦΦ∗.
Just as was the case for Darboux transformations, it can be shown that the

above binary transformation induces a transformation for KP eigenfunctions,

Ψ −→ Ψ − Φ
Ω(Ψ,Φ∗)
Ω(Φ,Φ∗)

, (122)

mapping an eigenfunction Ψ (�= Φ) associated to τ into a non-trivial eigen-
function associated to τ̂ .

Binary Darboux transformations possess an important property which can
be viewed as a generalization of the well-known Bianchi permutation theorem
for Bäcklund transformations for (1+1)-dimensional integrable systems [37],

Proposition 3.7. Every binary Darboux transformation τ → τ̂ ≡ τ ×
Ω(Φ,Φ∗) is associated to a Bianchi diagram for Darboux transformations,

τ ′

�
(Φ̂∗)−1

�(Φ∗)−1

τ̂

τ

�

Φ̂

�

Φ

τ̃

and vice versa. In this diagram a particular arrow indicates the direction of
a Darboux transformation involving the eigenfunction mentioned next to it.
This diagram is unique for given Φ and Φ∗, up to a constant mutiple of the
τ -functions,

Φ̂∗ ≡ Φ∗

Ω(Φ,Φ∗)
, Φ̂ ≡ Φ

Ω(Φ,Φ∗)
. (123)

An important property used in the proof of the above is

Lemma 3.1. If Φ∗ is an adjoint eigenfunction associated to a τ -function τ ,
then its inverse (Φ∗)−1 will be an eigenfunction for the τ -function τ ′ ≡ τ×Φ∗.
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These properties of binary Darboux transformations will be used later on,
when the reductions of the KP hierarchy to ordinary differential equations
are discussed.

Observe that the action of a binary Darboux transformation on a τ -
function generalizes the action of the so-called solitonic vertex operator,

Γ (p, q) := exp (ξ(x, p) − ξ(x, q)) × exp
(
−ξ(∂̃, p−1) + ξ(∂̃, q−1)

)
, (124)

which is known to generate the KP N -soliton solutions [11,30],

τN−sol = ec1Γ (p1,q1) . . . ecNΓ (pN ,qN ) · 1 , (125)

whence its name. The N -soliton solutions for the KP hierarchy are obtained
from an interation of binary Darboux transformations, (1 + ciψ(pi)ψ∗(qi))
(ci ∈ C), starting from a vacuum element g[0] ≡ 1,

g[0] −→ g[N ] =
N∏
i=1

(1 + ciψ(pi)ψ∗(qi)) ∈ GL(∞) , (126)

with the operator product ordered in descending order for the indices ;
GL(∞) denotes a completion of GL(∞) since the product ψ(p)ψ∗(q) is,
strictly speaking, not contained in gl(∞) but rather in a completion thereof.
The corresponding N -soliton τ -function can be expressed as

τN−sol = det
[
δi,j +

ci
pi − qj

exp (ξ(x, pi) − ξ(x, qj))
]

1≤i,j≤N
, (127)

in accordance with the general form (105,106). Observe that the ωi,j in (106)
are really nothing but eigenfunction potentials, Ω(ϕi, ϕ∗

j ).

4 Extensions and Reductions

One can think of several extensions of the above construction. On the one
hand, there are possible extensions of the theory to the case of semi-discrete
systems, also known as differential-difference systems, or to fully discrete
equations. On the other hand, there are also extensions involving not so
much the ranges (of types) of systems that can be described, but rather the
toolbox of methods available for the study of the properties of these systems.
This is especially the case when one wishes to study, for example, integrable
sub-cases of the KP hierarchy, i.e., systems which possess properties similar
to the full hierarchy, but whose solutions only form a subset of the solution
space of the KP hierarchy. Such a selection process is what is commonly
referred to as a reduction of the KP hierarchy.
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4.1 Extensions of the KP Hierarchy

The first possible extension which springs to mind is one to so-called multi-
component systems [38]. The theory that describes such systems is very close
to standard Sato theory, since it only requires a refinement of the represen-
tation space F .

The n-Component KP Hierarchy. The main idea underlying this exten-
sion is to sub-divide the set of Fermion operators {ψj , ψ∗

j } that formed the
free Fermion algebra for the KP theory. Define [19,23], for (α = 1, 2, . . . , n),

ψ
(α)
j := ψ(j−1/2)n+α−1/2 , ψ∗(α)

j := ψ∗
(j+1/2)n−α+1/2 , (128)

in terms of the operators ψj and ψ∗
j . This guarantees that these newly defined

operators satisfy the anti-commutation relations,

[ψ(α)
i , ψ∗(β)

j ]+ = δi+j,0 δα,β , [ψ(α)
i , ψ

(β)
j ]+ = [ψ∗(α)

i , ψ∗(β)
j ]+ = 0 , (129)

which shows that they actually form n separate sets of Fermion operators.
The fermionic Fock space F can therefore be sub-divided accordingly. If we
define shift operators Sα (cf. (114) and (115)),

Sαψ
(α)
j = ψ

(α)
j−1Sα , Sαψ

∗(α)
j = ψ∗(α)

j+1Sα , Sα|0〉 := ψ
(α)
−1/2|0〉 , (130)

which leave all operators ψ(β)
j , ψ∗(β)

j (β �= α) invariant, we can then define
so-called coloured highest-weight vectors,

m := (m1,m2, . . . ,mn) : |m〉 := Sm1
1 Sm2

2 · · ·Smn
n |0〉 , (131)

and their appropriate duals. The Lie algebra gl(∞) and its Lie group GL(∞)
can then be expresssed in terms of the new operators ψ(α)

j and ψ∗(α)
j , from

which point onwards the n-component theory runs parallel to the usual 1-
component theory. Introducing a Hamiltonian H(t) :=

∑n
α=1
∑∞
�=1 t

(α)
� H

(α)
� ,

H
(α)
� :=

∑
j∈Z+1/2 :ψ(α)

−j ψ
∗(α)
j+� :, which now depends on n sets of infinitely

many time variables, t(α) := (t(α)
1 , t

(α)
2 , . . . ), one can define an n-component

τ -function as (g ∈ GL(∞)),

τm(t) := 〈m|eH(t)g|0〉 ,
n∑
α=1

mα = 0 . (132)

Observe that, due to the constraint on m, these τ ’s are naturally defined on
an (n − 1)-dimensional lattice. They satisfy a bilinear identity of the form
(∀t, t′; k),

n∑
α=1

Resλ

[
(−)

∑α−1
i=1 ki+k′

i λkα+k′
α τk−δα(t − εα[λ])

× τk′+δα(t′ + εα[λ]) eξα(t−t′,λ)
]

= 0 , (133)
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where k ± δα := (k1, . . . , kα ± 1, . . . , kn), ξα(t, λ) :=
∑∞
�=1 t

(α)
� λ�, and with

shifts εα[λ−1] that, as in (57) only affect the t(α) component. The bilinear
identity yields a generator for the so-called n-component KP hierarchy,

n∏
β=1

e
∑∞

n=1 y
(β)
n D(β)

n∑
α=1

(−)
∑α−1

i=1 ki+k′
i

×
∞∑
m=0

pm(−2y(α)) pm−1+kα−k′
α(D̃(α)) τk′+δα · τk−δα = 0 . (134)

The simplest equation contained in this expression is

∀β �= α : D
x
(β)
1
D
x
(α)
1

τk · τk = 2 τk+δβ−δα τk−δβ+δα , (135)

which, at n = 2, yields the (2D)-molecule Toda equation, i.e., the 2D, fi-
nite, non-periodic or semi-infinite Toda latttice (see, e.g., [46] for a survey
of solutions for this system). Observe that the usual KP evolutions are also
contained in (134). For a further discussion of the systems contained in the
n-component KP hierarchy, the reader is referred to [19] or [23]. Observe also
that a further possible extension of this hierarchy would be one in which the
τ -functions are defined for general charge sectors (not only zero-charge), thus
including all modified n-component equations as well.

The 2D-Toda Lattice Hierarchy. Taking a closer look at the derivations
in the preceding sections, it becomes clear that the actual form of the KP
bilinear identity is largely due to the presence of an essential singularity
at λ = ∞ in the wave functions (cf. (61)). The introduction, next to this
singularity, of an extra essential singular point in the complex λ-plane, say
at λ = 0, leads to another interesting extension of the KP hierarchy.

This extension can be achieved by taking into account bosons Hn<0 (79)
in the time evolution of the τ -functions. Set

H+(x) :=
∞∑
n=1

xnHn , H−(y) :=
∞∑
n=1

ynH−n , (136)

in terms of two sets of infinitely many time variables x and y. The time-
evolution of the field operators ψ(λ) and ψ∗(λ) is then given by :

eH
+(x)eH

−(y) ψ(λ) e−H−(y)e−H+(x) = ψ(λ) eξ(x,λ)+ξ(y,λ−1) ,

eH
+(x)eH

−(y) ψ∗(λ) e−H−(y)e−H+(x) = ψ∗(λ) e−ξ(x,λ)−ξ(y,λ−1) ,
(137)

exhibiting the desired, essentially singular behaviour at λ = ∞ and λ = 0.
The rest of the theory can then be developed in close analogy with the KP
case, e.g., the left-action of the field operators on highest-weight vectors in
F can be shown to be (cf. (85) and (86)),
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ψ(λ)|�〉 = λ�eH
−(ε[ 1

λ ])|�+ 1〉 , ψ∗(λ)|�〉 = λ−�e−H−(ε[ 1
λ ])|�− 1〉 . (138)

τ -functions are then defined as

τn(x,y) := 〈n|eH+(x)eH
−(y) g e−H−(y)|n〉 , (139)

and the corresponding bilinear identity takes the form

Resλ=∞
[
λn−n′

τn(x−ε[λ],y) τn′(x′+ε[λ],y′) eξ(x−x′,λ)+ξ(y−y′, 1λ )
]

=

Resλ=0

[
λn−n′

τn+1(x,y−ε[
1
λ

]) τn′−1(x′,y′+ε[
1
λ

]) eξ(x−x′,λ)+ξ(y−y′, 1λ )
]
.

(140)

Since the expression for the generator of the bilinear equations in this hierar-
chy is quite complicated, let us rather present an identity for the τ -functions,
calculated along the lines of (62),

(µ− ν) τn−1(x − ε[λ],y) τn+1(x,y − ε[
1
µ

] − ε[
1
ν

])

+ (λ− µ) τn(x,y − ε[
1
ν

]) τn(x − ε[λ],y − ε[
1
µ

])

+ (ν − λ) τn(x,y − ε[
1
µ

]) τn(x − ε[λ],y − ε[
1
ν

]) = 0 . (141)

Successive limits, (ν→ 0, µ→ 0, λ→∞), yield the 2D-Toda lattice equation
in its bilinear form,

1
2
Dx1Dy1τn · τn = τ2

n − τn+1τn−1 . (142)

Observe that, in contrast to the molecule Toda type lattices (135), this lattice
is infinite in both directions of n. For a full treatment of the 2D-Toda lattice
hierarchy in the spirit of Sect. 2, we refer to [43] or, for a a description of
these lattices and their symmetries in terms of τ -function identities like the
one just above, to [5].

The Discrete KP Equation. The idea behind the construction of the
discrete KP equation [15] is the same as that used in case of the 2D-Toda
lattice. In order to obtain new identities for the KP τ -functions it suffices to
alter the singular behaviour of the wave functions.

Here we shall, so as to speak, resolve the essential singularity at ∞ in
the KP wave function by introducing 3 new singular points, in effect simple
poles near infinity, in exactly the same way as was done in (61) when we
constructed the τ -function identity (62) (cf. Ex. 2.4). At the same time, we
shall make a change of variables known as the Miwa transformation [29],
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x → � := (�1, �2, . . . , �L) : x =
L∑
i=1

�i ε[ai] , (�i ∈ Z) (143)

which relates the continuous variables x to possibly infinitely many discrete
variables � by means of a set of parameters {ai ∈ C}.

Since we are only interested in obtaining a discrete equivalent of the KP
equation, introducing only 3 of such variables, i.e., L = 3 in (143) will prove
to be sufficient. Let us, for notational simplicity, denote these variables by
�1 ≡ �, �2 ≡ m, �3 ≡ n, and the 3 lattice parameters ai by a1 ≡ a, a2 ≡
b, a3 ≡ c. Next we choose the 3 points νi close to ∞, so as to resolve the
essential singularity at ∞ in (61) in exactly the same way as was done for
(62). Furthermore, we choose the parameters a, b and c such that ν1 = a, ν2 =
b, ν3 = c.

The Miwa transformation then turns (62) into

(b− c) τ(�− 1,m, n) τ(�,m− 1, n− 1)
+ (c− a) τ(�,m− 1, n) τ(�− 1,m, n− 1)

+ (a− b) τ(�,m, n− 1) τ(�− 1,m− 1, n) = 0 , (144)

where the τ -functions now live on a 3-dimensional lattice whose vertices are
described by the coordinates �,m and n. This lattice equation is known as
the discrete KP (dKP) equation or, sometimes, as the Hirota-Miwa equation
[15,29].

Just like its continuous counterpart, the dKP equation can be described
as the compatibility condition of a system of linear equations,

ψ(�− 1,m− 1, n) =
1

b− a

τ(�− 1,m, n) τ(�,m− 1, n)
τ(�,m, n) τ(�− 1,m− 1, n)

× [ b ψ(�,m− 1, n) − a ψ(�− 1,m, n)] , (145)

and two more equations obtained from (145) by cyclic permutation of the
variables (�,m, n) and the lattice parameters (a, b, c).

For a discussion of the dKP equation, its linear system and its Darboux
transformations or binary Darboux transformations, the reader is referred
to [44], where the general case of the non-autonomous dKP equation, i.e.,
defined on a lattice with varying lattice parameters, is discussed.

Discretizations of the n-component KP hierarchy can be found in [13,47]
where it is shown that these bear geometrical meaning as so-called quadri-
lateral lattices.

Finally, the procedure of adding particular singular behaviour to the KP
wave functions, mixing essential singularities with poles or continuous vari-
ables with discrete ones, can be carried out in general [8, 19] and provides
access to a wide variety of differential-difference and lattice systems. It also
provides a powerful method by which the existence of τ -functions expressible
in terms of special functions can be proved for a whole range of systems.
These ideas are explored in great detail in [42].
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4.2 Reductions of the KP Hierarchy

As was pointed out in the beginning of this section, one of the most interesting
problems in the Sato description of the KP hierarchy or its extensions, is
that of describing lower-dimensional integrable systems whose solutions form
a subset of the solution space for the KP hierarchy. The process by means
of which such systems are singled out is known as a reduction of the KP
hierarchy, or of one of its extensions.

The spectrum of such reductions ranges from (2+1)-dimensional systems,
through (1+1)-dimensional ones, all the way to integrable ordinary differen-
tial equations. Interesting integrable systems arise at many different stages
throughout the reduction process. Let us start by describing a hierarchy of
(2+1)-dimensional systems whose solutions only make up a subset of the KP
solution space, but which still appear as an integrable hierarchy in its own
right.

The BKP Hierarchy. A well-known example of such a sub-hierarchy is the
so-called BKP hierarchy [10]. Its name derives from the fact that, whereas
gl(∞) can be identified with the infinite-rank Kac-Moody algebra A∞, the
Lie algebra that underlies the BKP hierarchy is of B-type, (B∞) [22].

In the Sato picture, the BKP hierarchy can be obtained from the KP
hierarchy (see, e.g., [11]) by requiring that the Bn operators as defined in
(39) or (42) vanish when acting on a constant,

Bn 1 = 0 , ∀n = 1, 3, 5, . . . , (146)

(since this only yields non-trivial operators for the odd flows x, t1, t3, . . . ,
the even time-flows t2, t4, . . . have to be discarded). Equivalently, one could
require the L-operator (50) to satisfy the symmetry requirement,

∂L+ L∗∂ = 0 . (147)

The BKP τ -functions are related to KP τ -functions by

τKP(x1, 0, x3, 0, x5, . . . ) ≡ τ2
BKP(x1, x3, x5, . . . ) , (148)

and they satisfy, e.g., the BKP equation which arises as the lowest member of
the hierarchy of integrable evolution equations that carries the same name,

(
9Dx1Dx5 − 5D2

x3
− 5D3

x1
Dx3 +D6

x1

)
τBKP · τBKP = 0 . (149)

For the derivation of the bilinear identity for BKP τ -functions and for
further examples of the resulting bilinear equations, we refer the reader to [19]
or [10,11] where it is also explained how to describe the BKP hierarchy using
the representation theory for so-called neutral fermion operators.

Alternatively (see, e.g., [19]), the reduction from KP to BKP τ -functions
can also be described by the following automorphism of the free fermion
algebra A,
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σ0(ψi) = (−)i−1/2ψ∗
i+1 , σ0(ψ∗

i ) = (−)i−1/2ψi+1 , (150)

since B∞ can be defined as a sub-algebra of A∞ (gl(∞)) by

B∞ :=
{
X ∈ A∞

∣∣ σ0(X) = X
}
. (151)

Similarly, the CKP hierarchy generated from the C∞-Kac-Moody alge-
bra is obtained from Sato theory by requiring that L∗ = −L for (50). D∞
type systems are associated with B-type reductions of the 2-component KP
hierarchy [19]. Recently [24,2], there has been much interest in the so-called
coupled KP system [17] which is obtained from a different representation of
the D∞ algebra (see [19] or [20] for a detailed explanation of this reduction
of the 2-component KP hierarchy). Of particular interest are the remarkable
soliton solutions that exist for the coupled KP equation [18].

A general discussion of the above reductions for the 2D-Toda lattice can
be found in [31].

Reduction from A∞ to Affine Algebras. Instead of reductions to sub-
hierarchies of the KP hierarchy that consist of (2+1)-dimensional partial dif-
ferential equations, one can also describe reductions to hierarchies of (1+1)-
dimensional equations. Such a dimensional reduction amounts to stating that
the τ -functions of the reduced system no longer depend on a particular vari-
able, say x� : τx�

= 0. From definition (56) and the ZS equations in (48), it is
then easily seen that wave functions Ψ(x, λ) associated with such a τ -function
will satisfy the eigenvalue equation,

Ψx�
= B�Ψ = λ�Ψ , (152)

the right-hand-side of which is nothing other than L�ψ. Hence one comes to
realize that imposing the constraint

L� =
(
L�
)
+ , (153)

i.e., requiring the �th-power of the pseudo-differential operator L to be a
differential operator , amounts to making the τ -functions associated with
this L operator x�-independent. Observe that all Lj� (j = 1, 2, . . . ) will then
be differential operators as well, and that accordingly, the τ -functions will
no longer depend on the xj� variables (j = 1, 2, . . . ) : τxj�

= 0. The process
of imposing the constraint (153) and the subsequent elimination of the xj�-
dependencies in the τ -functions is called an �-reduction.

For example, as is well-known, the 2-reduction of the KP equation (28)
is nothing but the Korteweg-de Vries (KdV) equation written here in Hirota
bilinear form,

(
4Dx1Dx3 −D4

x1

)
τ · τ = 0 . (154)
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Proposition 4.1. Besides the KP bilinear identity (58), �-reduced KP τ -
functions must also satisfy the identity,

Resλ=∞
[
λ� τ(t − ε[λ]) τ(t′ + ε[λ]) eξ(t−t′,λ)

]
= 0 ∀t, t′ . (155)

Combined, these two bilinear identities describe the so-called �-reduced KP
hierarchy.

As explained above, all equations in the �-reduced KP hierarchy admit a Lax
representation,

{
B�Ψ(t, λ) = λ�Ψ(t, λ)
∂tnΨ(t, λ) = BnΨ(t, λ) (n mod � �= 0) . (156)

As we saw before, studying the symmetry group for the KP hierarchy pro-
vides much information about its τ -functions and Bäcklund transformations.
It is therefore natural to ask what symmetries underly the �-reduced KP hier-
archies ? It can be shown [9,19] that the bilinear identity (155) is actually valid
for all τ -functions generated from elements of the form X =

∑
i,j aij :ψ−iψ∗

j :
in gl(∞), that are invariant under the automorphism of the fermion alge-
bra A,

ι� : ι�(ψj) = ψj−� , ι�(ψ∗
j ) = ψ∗

j−� . (157)

Condition ι�(X) = X can be easily seen to be equivalent to the following
constraint on the matrix elements aij ,

ai+�,j+� = ai,j . (158)

Exercise 4.1. Show that the above constraint also implies that such X’s
commute with all bosons, Hj� (j = 1, 2, . . . ), i.e., [Hj�, X]− = 0. Show that
this implies that all τ -functions generated from suchX’s are xj�-independent.

Furthermore, it can be shown [9] (or see [30] for an explicit proof in case of the
KdV hierarchy, including an explicit construction of the relevant algebras)
that the elements of gl(∞) (A∞) that satisfy (158), as well as a second
constraint,

�−1∑
m=0

am−1/2,m+k�−1/2 = 0 (∀k ∈ Z) , (159)

form the affine Lie algebra A(1)
�−1,

A
(1)
�−1 :=

{
X ∈ A∞

∣∣ conditions (158) and (159) hold
}
. (160)

Hence [9, 19],
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Proposition 4.2. The �-reduced KP hierarchy possesses A(1)
�−1 symmetry.

This does not mean that the equations in the �-reduced hierarchies do not
possess other symmetries as well. For example, the bilinear identity (155)
is also obviously translation-invariant as well as gauge-invariant and thus
its symmetries also include the Heisenberg algebra generated by the Bosons
Hn (or a sub-algebra thereof, if one restricts himself to the reduced set of
coordinates). It is however the A(1)

�−1 algebra that provides the more funda-
mental symmetries, since these will correspond to Bäcklund transformations
which can be used to generate solutions for the �-reduced hierarchies, notably
through the action of Darboux transformations, i.e., using solutions of linear
equations (156). Moreover, besides these two sets of symmetries, there exist
other symmetries as well, as we shall see in the next and final paragraph.

Dimensional reductions of the above type forB,C andD-type Kac-Moody
algebras are discussed in [19] for the KP hierarchy, and in [31] for the 2D Toda
lattice. There is a vast literature (see the refs. cited in [46]) on what are called
constrained hierarchies or symmetry reductions, which generalize condition
(153) so as to make a wider class of equations susceptible to the reduction
process. The reader is referred to [46] for a discussion of the connections
between those reductions and the ones described above.

Reduction of an A
(1)
2 -Type System to the Painlevé IV Equation.

A symmetry which is omnipresent when it comes to discussing the reduction
of (1+1)-dimensional partial differential equations to ordinary differential
equations (again by a dimensional reduction), is the scaling symmetry. For
example, for τ -functions one can define the following property,

Definition 4.1. A KP τ -function is called self-similar if it possesses the fol-
lowing scaling property,

τ(ηx1, η
2x2, . . . ) = K(η) τ(x) , ∀η ∈ C , (161)

or equivalently, if it is an eigenvector for the operator L,

L :=
∞∑
k=1

kxk∂xk
, ∃c ∈ C : Lτ = c τ , (162)

(compared to (161) we have that c = K′|η=1).
The L operator is part of the Virasoro algebra, (n ∈ Z),

Ln :=
∑
i+j=n

∂xi∂xj + 2
∑
i−j=n

ixi∂xj +
∑

i+j=−n
ijxixj , (163)

[Lm, Ln]− = (m− n)Lm+n + δm+n,0
m3 −m

12
, (164)

and L = 1/2 L0. L0 is commonly known as the Virasoro energy operator and
hence the eigenvalue c should be called the conformal weight of the function
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τ . It can be shown that the Virasoro algebra can be realized within gl(∞)
(see [25,7] for more details). In particular, L ∼

∑
j∈Z+1/2(j + 1/2) :ψ−jψ∗

j :.
Furthermore, operator L, so to speak, survives the reduction from gl(∞) to
the affine Lie algebras A(1)

�−1 described in the previous paragraph. In fact, it
turns out that such a reduced L can be realized as an element of the Cartan
sub-algebra of A(1)

�−1. For notational simplicity we shall use the same symbol
L throughout, even in the context of reduced hierarchies where the functions
upon which it acts no longer depend on all the coordinates.

Since Adler’s seminal paper [1], it has been known that the Painlevé equa-
tions are somehow connected to periodic chains of Darboux transformations.
This idea can be translated to the level of the KP τ -functions. As we did
in Prop. 3.5, we consider a chain of τ -functions, generated by successive ap-
plication of Darboux transformations. Starting from τ[0] = τ , we construct
τ[1] = τ[0]×Φ0, where Φ0 is a KP eigenfunction corresponding to τ[0]. Next we
construct τ[2] = τ[1] ×Φ1 in terms of Φ1 (corresponding to τ[1]), and so on . . .

Please observe that Prop. 3.5 implies that any pair (τ[n], τ[n+k]) satisfies
the kth modified KP hierarchy.

Proposition 4.3.
i) If a Darboux τ -chain, τ[0], . . . , τ[n], . . . , is �-periodic, i.e., if there exists
a number � such that τ[n+�] = τ[n] (∀n = 0, 1, . . . , � − 1),then all τ[n] are �-
reduced τ -functions.
ii) Conversely, from any �-reduced τ -function, τ[0], it is possible to construct
an �-periodic Darboux τ chain.

Let us now consider the case of a 3-periodic Darboux chain of self-similar
τ -functions,

{
τ[0], τ[1], τ[2], τ[3] = τ[0]

}
, ∃cn ∈ C : Lτ[n] = cnτ[n] . (165)

Requiring the τ -functions in the chain to be self-similar effectively eliminates
all symmetries generated by the Heisenberg algebra we discussed before. In-
stead, we focus our attention on the symmetries that remain as part of A(1)

2 .
As every pair (τ[n], τ[n+1]) in the chain satisfies the 1st-modified KP hier-

archy and especially its lowest-order member (110), we can represent such a
chain by the following set of bilinear equations (n = 0, 1, 2 ; τ[3] = τ[0]),

(
Dx2 −D2

x1

)
τ[n+1] · τ[n] = 0 . (166)

Now, the self-similarity of the τ -functions tells us that,

x1(τ[n])x1 + 2x2(τ[n])x2 + · · · = cnτ[n] , (167)

a relation which can be used to eliminate the x2-derivatives in (166) by setting

x1 ≡ x , x2 ≡ − 3
2ε

, xn = 0 (∀n ≥ 3) , (168)
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in the τ -functions (for some ε ∈ C, ε �= 0). We then obtain,
(
D2
x −

εx

3
Dx − κn

)
τ[n+1] · τ[n] = 0 , (169)

where : κn := ε
3 (cn − cn+1). This system provides a bilinear description of

the well-known Painlevé IV (PIV ) equation [33,51], the transformation

gn :=
(

log
τ[n+1]

τ[n−1]
exp(−εx

2

6
)
)

x

, αn :=
ε

3
(2cn − cn+1 − cn−1 − 1) ,

(170)

yielding the so-called symmetric form of the PIV equation [6],




(g1)x = g1(g3 − g2) + α1
(g2)x = g2(g1 − g3) + α2
(g3)x = g3(g2 − g1) + α3

. (171)

Expressing this system in terms of, e.g., y(z) = γg1(x), x = γz, γ2 = 2/ε, one
obtains the PIV equation in its standard form,

d2y

dz2
=

1
2y

(
dy
dz

)2

+
3
2
y3 + 4zy2 + 2(z2 − a)y +

b

y
, (172)

a =
α2 − α3

ε
, b = −2

(α1

ε

)2
. (173)

Observe that (171) possesses one first integral g1 + g2 + g3 = −εx which can
be used in the elimination of g2 and g3. We can thus conclude that the PIV
equation is described by a 3-periodic, self-similar Darboux τ chain.

As we also know (by construction) that such τ ’s can be generated by
elements of A(1)

2 , it is interesting to find out how much of this symmetry-
algebra actually remains in such a chain. In other words, we want to study
the Bäcklund transformations for this chain that are generated by Darboux
transformations or binary Darboux transformations. Let us first point out
that the eigenfunctions Φn = τ[n+1]/τ[n] (n = 0, 1, 2) used in the construction
of the chain satisfy the linear equations,

(Φn)2x −
εx

3
(Φn)x + 2

(
log τ[n]

)
2x Φn = κnΦn . (174)

On the other hand, according to Lemma 3.1 (cf. Sec. 3.3), adjoint eigen-
functions can be obtained by taking the inverses of these eigenfunctions,
Φ∗
n := Φ−1

n−1 = τ[n−1]/τ[n]. These then satisfy

(Φ∗
n)2x +

εx

3
(Φ∗
n)x + 2

(
log τ[n]

)
2x Φ

∗
n = κn−1Φ

∗
n . (175)

It is easy to see [50] that the only Darboux transformations that give
rise to Bäcklund transformations for the PIV equation are the trivial cyclic
permutations of the τ ’s in the chain,
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S : S(τ[n]) := τ[n+1] (= τ[n] × Φn) , S(κn) := κn+1 . (176)

Obviously, S3 = 1.
Hence we are only left with the binary Darboux transformations to pro-

duce non-trivial Bäcklund transformations. Since a binary Darboux transfor-
mation is always accompanied by two commuting sets of Darboux transforma-
tions (Prop. 3.7) one can see [50] that only a binary Darboux transformation
τ[n] → τ̂[n] of the following type will result in a Bäcklund transformation for
the PIV equation,

τ[n−1]

�
κn+1

τ[n]
�
κn−1

τ[n+1]

�
κn

�
κn − ε

3

�κn−1 + ε
3τ̂[n]

i.e., essentially, the diagram of Prop. 3.7 but with τ = τ[n], τ
′ = τ[n−1], τ̃ =

τ[n+1] and τ̂ = τ[n] ×Ω(τ[n+1]/τ[n], τ[n−1]/τ[n]), and with an additional arrow
since the chains {τ[n−1], τ[n], τ[n+1]} and {τ[n−1], τ̂[n], τ[n+1]} are periodically
closed.

Hence, there exist exactly three Bäcklund transformations that result
from binary Darboux transformations, (Bn(τ[n]) := τ̂[n]) (n = 0, 1, 2),

Bn(τ[n]) = τ[n] × ∂−1 τ[n+1]τ[n−1]

τ2
[n]

, Bn(τ[n±1]) = τ[n±1] . (177)

The resulting τ̂ ’s are still self-similar, although now for an operator L =
x∂x − 2ε∂ε, as obtained from (168),

Lτ̂[n] = ĉnτ̂[n] , ĉn = cn+1 + cn−1 − cn + 1 , (178)

which allows use to write the action of the Bn’s induced on the weights cm,

Bn(cn) = cn+1 + cn−1 − cn + 1 , Bn(cn±1) = cn±1 . (179)

Furthermore, since the binary Darboux transformation which maps τ[n]

to τ̂[n] can be shown to correspond to an element of A(1)
2 , essentially by the

Boson-Fermion correspondence, we can represent τ̂[n] as

τ̂[n] = Γ[n](τ[n]) , (180)

for some element Γ[n] in the vertex representation of A(1)
2 . In terms of this

operator, (178) can be rewritten as
([
L, Γ[n]

]
− +

3αn
ε
Γ[n]

)
τ[n] = 0 , (181)
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for αn’s as defined in (170). Since L, in this vertex representation, is part
of the Cartan sub-algebra of A(1)

2 , this last relation shows that the αn are
directly related to the roots of A(1)

2 . Indeed, if one calculates the induced
action of the Bn’s on the αn’s by means of (179) and (170),

Bn(αn) = −αn , Bn(αn±1) = αn±1 + αn , (182)

one sees that this is exactly the action of the affine Weyl group W (A(1)
2 ) on

the roots of A(1)
2 , see, e.g., [34] for an exposé on the role such Weyl groups

play in the case of the PIV and PII equations. It is easily verified that the
action of the binary Darboux transformations Bn on the τ -functions indeed
satisfies,

B2
n = 1 , (Bn+1Bn)

3 = 1 . (183)

This implies that, taken together with the symmetry S, these Bn form an ex-
tended affine Weyl group Ŵ (A(1)

2 ), i.e., in addition to (183), SBn = Bn+1S.
Similar results can be obtained for periodic Darboux chains with gen-

eral periods � ≥ 2. The resulting systems will always allow for Bäcklund
transformations (Darboux and binary Darboux) that form extended Weyl
groups Ŵ (A(1)

�−1). These systems are in fact equivalent to the systems de-
scribed in [32]. In particular, since the PII and PV equations are obtained at
� = 2 and � = 4, this result explains why these Painlevé equations are always
accompanied by such extended Weyl groups.
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of Discrete Integrable Systems
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Abstract. Hierarchies of discrete soliton equations are constructed in bilinear form
as a consequence of the algebraic identities satisfied by determinants and Pfaffians.
Difference formulas for determinants and Pfaffians are derived from the discrete
linear dispersion relations satisfied by their elements. For completeness, we first
summarize the main algebraic properties of determinants and Pfaffians.

1 Introduction

Integrable systems have attracted a great deal of interest and have been
studied for many years from various view points. One of those is the char-
acterization of the space of solutions. In the case of soliton equations, there
is a wide class of solutions which possess a simple representation in terms of
determinants or Pfaffians. Even though it has not yet been rigorously proved
that the general solution is given by determinants or Pfaffians, it is known
that the spaces of determinant and Pfaffian solutions are large enough to
determine the algebraic properties of soliton equations. This is because those
spaces suffice to construct the corresponding hierarchies of soliton equations.

The purpose of this article is to provide a simple description of the bilin-
ear theory of discrete soliton equations and their solutions in a self-contained
way. Starting from a space of solutions, that is, a space of determinants or
Pfaffians, hierarchies of bilinear equations satisfied by all of the elements of
the space are constructed from the algebraic identities satisfied by deter-
minants and Pfaffians. Because of the difficulty of the argument of conver-
gence for the series expansion of the solution, it has not yet been clarified
whether these hierarchies characterize the space or not. However, the spaces
of determinants and Pfaffians of finite size contain many solutions, including
solitons, dromions, rational exponential solitons, special function solutions,
and others.

Determinants correspond to the continuous and discrete KP hierarchy
and Pfaffians correspond to the continuous and discrete coupled KP hierar-
chies. Both for the determinants and for the Pfaffians, there are two ways
to impose the differential and difference structures. One is the Wronski type
and the other is the Gram type. The continuous KP hierarchies and their
Wronski and Gram determinant solutions, and the continuous coupled KP

Y. Ohta, Special Solutions of Discrete Integrable Systems, Lect. Notes Phys. 644, 57–83 (2004)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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hierarchies and their Wronski and Gram Pfaffian solutions are well known
and have been studied for many years. The discrete KP hierarchies and their
discrete Wronski and Gram determinant solutions, and the discrete coupled
KP hierarchies and their discrete Wronski and Gram Pfaffian solutions have
also appeared in the literature some years ago. In this article, the case of
discrete coupled KP equations and their discrete Wronski and Gram Pfaffian
solutions is described. The other cases can be derived from this in a direct
way. The discrete KP and its determinant solutions are a special case, and
the continuous cases can be recovered by the continuous limit.

In Sect. 2, we give a summary of the properties of determinants and Pfaf-
fians for later use. The most important properties are the bilinear algebraic
identities which turn out to be the bilinear form of soliton equations. The
difference formulas for the discrete Wronski and Gram Pfaffians are given in
Sect. 3. Using these formulas, we rewrite the algebraic identities as discrete
bilinear equations in Sect. 4. Concluding remarks are made in Sect. 5.

2 Determinant and Pfaffian

In this section, we list the definitions of determinants and Pfaffians and those
properties which will be used in the construction of hierarchies of soliton
equations in the following sections.

2.1 Definition

Definition 2.1. For a given square array of indeterminates,

a11 a12 · · · a1N
a21 a22 · · · a2N
...

...
...

aN1 aN2 · · · aNN

the determinant, det(aij)1≤i,j≤N is defined as the polynomial in these vari-
ables,

det(aij)1≤i,j≤N =
∑

sign
j1 j2 · · · jN
i1 i2 · · · iN

ai1j1ai2j2 · · · aiN jN (1)

where the summation is taken over all choices of N elements, ai1j1 , ai2j2 , · · · ,
aiN jN , from the square array aij (1 ≤ i, j ≤ N) such that iµ �= iν and jµ �= jν
for µ �= ν, and sign denotes the signature of permutation of the indices. The
number of terms is N !.

This quantity is well-defined because the sign does not depend on the order of
the pairs, {i1, j1}, {i2, j2}, · · · , {iN , jN}. We also use the following notation
for a determinant,
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det(aiµjν )1≤µ,ν≤N =
(
j1, j2, · · · , jN
i1, i2, · · · , iN

)
=

∣∣∣∣∣∣∣∣∣

ai1j1 ai1j2 · · · ai1jN
ai2j1 ai2j2 · · · ai2jN

...
...

...
aiN j1 aiN j2 · · · aiN jN

∣∣∣∣∣∣∣∣∣

Hence
(
j

i

)
means a 1 × 1 determinant, which is a monomial aij .

Definition 2.2. For a given triangular array of indeterminates,

a12 a13 · · · a1,2N
a23 · · · a2,2N

. . .
...

a2N−1,2N

the Pfaffian, Pf(aij)1≤i<j≤2N is defined as the polynomial in these variables,

Pf(aij)1≤i<j≤2N =
∑

sign
1 2 · · · 2N
i1 i2 · · · i2N

ai1i2ai3i4 · · · ai2N−1i2N
(2)

where the summation is taken over all choices of N elements, ai1i2 , ai3i4 , · · · ,
ai2N−1i2N

, from the triangular array aij (1 ≤ i < j ≤ N) such that iµ �= iν
for µ �= ν, and sign denotes the signature of the permutation of the indices.
The number of terms is (2N − 1)!!.

This quantity is well-defined because the signature does not depend on the
order of the pairs, {i1, i2}, {i3, i4}, · · · , {i2N−1, i2N}. We also use the following
notation for a Pfaffian,

Pf(aiµiν )1≤µ<ν≤2N = (i1, i2, · · · , i2N ) =

| ai1i2 ai1i3 · · · ai1i2N

ai2i3 · · · ai2i2N

. . .
...

ai2N−1i2N

∣∣∣∣∣∣∣∣∣

Hence (i, j) means a Pfaffian with one component, which is a monomial aij .
For convenience, we define the all Pfaffians of odd size to be 0,

Pf(aij)1≤i<j≤2N+1 = 0

and we define (i, j) for i ≥ j by the antisymmetry condition,

(i, j) = −(j, i), (i, i) = 0.

Lemma 2.1. If (i, j) = 0 for 1 ≤ i < j ≤ N , then

(1, 2, · · · , N,N ′, · · · , 2′, 1′) =
(

1′, 2′, · · · , N ′

1 , 2 , · · · , N

)
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where
(
j′

i

)
= (i, j′). In another notation,

| 0 0 · · · 0 (1, N ′) (1, N − 1′) · · · (1, 2′) (1, 1′)
0 · · · 0 (2, N ′) (2, N − 1′) · · · (2, 2′) (2, 1′)

. . .
...

...
...

...
...

0 (N − 1, N ′) (N − 1, N − 1′) · · · (N − 1, 2′) (N − 1, 1′)
(N,N ′) (N,N − 1′) · · · (N, 2′) (N, 1′)

(N ′, N − 1′) · · · (N ′, 2′) (N ′, 1′)
. . .

...
...

(3′, 2′) (3′, 1′)
(2′, 1′)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

(1, 1′) (1, 2′) · · · (1, N ′)
(2, 1′) (2, 2′) · · · (2, N ′)

...
...

...
(N, 1′) (N, 2′) · · · (N,N ′)

∣∣∣∣∣∣∣∣∣

This lemma means that determinants are special cases of the Pfaffians. There-
fore properties of determinants can be derived from those of the Pfaffians by
specialization.

Proof. From the definition of Pfaffians (2), we obtain

(1, 2, · · · , N,N ′, · · · , 2′, 1′)

=
∑

sign
1 2 · · · N N ′ · · · 2′ 1′

i1 i2 · · · iN iN+1 · · · i2N−1 i2N

×(i1, i2)(i3, i4) · · · (i2N−1, i2N )

=
∑

sign
1 2 · · · N N ′ · · · 2′ 1′

i1 i3 · · · i2N−1 i2N · · · i4 i2
×(i1, i2)(i3, i4) · · · (i2N−1, i2N )

where the summation is taken over all choices of N elements, (i1, i2), (i3, i4),
· · · , (i2N−1, i2N ), from (i, j) (1 ≤ i < j ≤ N), (i, j′) (1 ≤ i, j ≤ N) and (i′, j′)
(N ≥ i > j ≥ 1) such that iµ �= iν for µ �= ν. If (i, j) = 0 for 1 ≤ i < j ≤ N ,
the nonvanishing terms in the summation consist of the elements of the form
(i, j′) (1 ≤ i, j ≤ N) only. By arranging the order of the elements in each
term in such a way that i2 = 1′, i4 = 2′, · · · , i2N = N ′, we obtain

(1, 2, · · · , N,N ′, · · · , 2′, 1′)

=
∑

sign
1 2 · · · N
i1 i3 · · · i2N−1

(i1, 1′)(i3, 2′) · · · (i2N−1, N
′)
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where the summation is taken over all choices of i1, i3, · · · , i2N−1 from 1, 2,
· · · , N such that iµ �= iν for µ �= ν. Thus the right-hand side coincides with

the N ×N determinant whose
(
j

i

)
-element is (i, j′).

Proposition 2.1. If (i, j′) = 0 for 1 ≤ i, j ≤ N , then

(1, 2, · · · , N,N ′, · · · , 2′, 1′) = (1, 2, · · · , N)(N ′, · · · , 2′, 1′).

In another notation,

| (1, 2) (1, 3) · · · (1, N) 0 0 · · · 0 0
(2, 3) · · · (2, N) 0 0 · · · 0 0

. . .
...

...
...

...
...

(N − 1, N) 0 0 · · · 0 0
0 0 · · · 0 0

(N ′, N − 1′) · · · (N ′, 2′) (N ′, 1′)
. . .

...
...

(3′, 2′) (3′, 1′)
(2′, 1′)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

| (1, 2) (1, 3) · · · (1, N)
(2, 3) · · · (2, N)

. . .
...

(N − 1, N)

∣∣∣∣∣∣∣∣∣

| (N ′, N − 1′) · · · (N ′, 2′) (N ′, 1′)
. . .

...
...

(3′, 2′) (3′, 1′)
(2′, 1′)

∣∣∣∣∣∣∣∣∣
.

Proof. From the definition of Pfaffians (2), we obtain

(1, 2, · · · , N,N ′, · · · , 2′, 1′)

=
∑

sign
1 2 · · · N N ′ · · · 2′ 1′

i1 i2 · · · iN iN+1 · · · i2N−1 i2N

×(i1, i2)(i3, i4) · · · (i2N−1, i2N ),

where the summation is taken over all choices of N elements, (i1, i2), (i3, i4),
· · · , (i2N−1, i2N ), from (i, j) (1 ≤ i < j ≤ N), (i, j′) (1 ≤ i, j ≤ N) and
(i′, j′) (N ≥ i > j ≥ 1) such that iµ �= iν for µ �= ν. If (i, j′) = 0 for
1 ≤ i, j ≤ N , the nonvanishing terms on the right-hand side consist of the
elements of the form (i, j) (1 ≤ i < j ≤ N) and (i′, j′) (N ≥ i > j ≥ 1)
only. Thus when N is odd, all terms vanish and the proposition holds since a
Pfaffian of odd size is defined to be 0. When N is even, by arranging the order
of the elements in each term in such a way that i1, i2, · · · , iN ∈ {1, 2, · · · , N}
and iN+1, iN+2, · · · , i2N ∈ {N ′, · · · , 2′, 1′}, we get
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(1, 2, · · · , N,N ′, · · · , 2′, 1′)

=
∑

sign
1 2 · · · N
i1 i2 · · · iN

sign
N ′ · · · 2′ 1′

iN+1 · · · i2N−1 i2N

×(i1, i2)(i3, i4) · · · (i2N−1, i2N ),

where the summation is taken over all choices of (i1, i2), (i3, i4), · · · , (iN−1, iN )
from (i, j) (1 ≤ i < j ≤ N), and (iN+1, iN+2), (iN+3, iN+4), · · · , (i2N−1, i2N )
from (i′, j′) (N ≥ i > j ≥ 1). Thus the right-hand side coincides with the
product of the two Pfaffians, (1, 2, · · · , N) and (N ′, · · · , 2′, 1′).

2.2 Linearity and Alternativity

For each term of the summation in the definition of a determinant (1), each
number from 1, 2, · · · , N appears once in the indices j1, j2, · · · , jN . Thus
the determinant is linear with respect to its jth column for j = 1, 2, · · · , N .
Similarly each number from 1, 2, · · · , N appears once in the indices i1, i2,
· · · , iN , in definition (1). Thus the determinant is linear with respect to its
ith row for i = 1, 2, · · · , N . Therefore we have the next proposition.
Proposition 2.2.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
1
1

) (
2
1

)
· · ·

(
j

1

)
+
(
j

1

)′
· · ·
(
N

1

)

(
1
2

) (
2
2

)
· · ·

(
j

2

)
+
(
j

2

)′
· · ·
(
N

2

)

...
...

...
...(

1
N

) (
2
N

)
· · ·
(
j

N

)
+
(
j

N

)′
· · ·
(
N

N

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
1
1

) (
2
1

)
· · ·

(
j

1

)
· · ·
(
N

1

)

(
1
2

) (
2
2

)
· · ·

(
j

2

)
· · ·
(
N

2

)

...
...

...
...(

1
N

) (
2
N

)
· · ·
(
j

N

)
· · ·
(
N

N

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
1
1

) (
2
1

)
· · ·

(
j

1

)′
· · ·
(
N

1

)

(
1
2

) (
2
2

)
· · ·

(
j

2

)′
· · ·
(
N

2

)

...
...

...
...(

1
N

) (
2
N

)
· · ·
(
j

N

)′
· · ·
(
N

N

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
1
1

) (
2
1

)
· · · c

(
j

1

)
· · ·
(
N

1

)

(
1
2

) (
2
2

)
· · · c

(
j

2

)
· · ·
(
N

2

)

...
...

...
...(

1
N

) (
2
N

)
· · · c

(
j

N

)
· · ·
(
N

N

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
1
1

) (
2
1

)
· · ·

(
j

1

)
· · ·
(
N

1

)

(
1
2

) (
2
2

)
· · ·

(
j

2

)
· · ·
(
N

2

)

...
...

...
...(

1
N

) (
2
N

)
· · ·
(
j

N

)
· · ·
(
N

N

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Similarly

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
1
1

) (
2
1

)
· · ·

(
N

1

)

(
1
2

) (
2
2

)
· · ·

(
N

2

)

...
...

...(
1
i

)
+
(

1
i

)′ (2
i

)
+
(

2
i

)′
· · ·
(
N

i

)
+
(
N

i

)′

...
...

...(
1
N

) (
2
N

)
· · ·

(
N

N

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
1
1

) (
2
1

)
· · ·
(
N

1

)

(
1
2

) (
2
2

)
· · ·
(
N

2

)

...
...

...(
1
i

) (
2
i

)
· · ·
(
N

i

)

...
...

...(
1
N

) (
2
N

)
· · ·
(
N

N

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
1
1

) (
2
1

)
· · ·
(
N

1

)

(
1
2

) (
2
2

)
· · ·
(
N

2

)

...
...

...(
1
i

)′ (2
i

)′
· · ·
(
N

i

)′

...
...

...(
1
N

) (
2
N

)
· · ·
(
N

N

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

and
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
1
1

) (
2
1

)
· · ·

(
N

1

)

(
1
2

) (
2
2

)
· · ·

(
N

2

)

...
...

...

c

(
1
i

)
c

(
2
i

)
· · · c

(
N

i

)

...
...

...(
1
N

) (
2
N

)
· · ·

(
N

N

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
1
1

) (
2
1

)
· · ·
(
N

1

)

(
1
2

) (
2
2

)
· · ·
(
N

2

)

...
...

...(
1
i

) (
2
i

)
· · ·
(
N

i

)

...
...

...(
1
N

) (
2
N

)
· · ·
(
N

N

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

In the case of a Pfaffian, there is no distinction between column and row.
For each term of the summation in the definition of a Pfaffian (2), each
number from 1, 2, · · · , 2N appears once in the indices i1, i2, · · · , i2N . Thus
the Pfaffian is linear with respect to its ith column for i = 1, 2, · · · , 2N .
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Proposition 2.3.

| (1, 2) (1, 3) · · · (1, i) + (1, i)′ · · · (1, 2N)
(2, 3) · · · (2, i) + (2, i)′ · · · (2, 2N)

. . .
...

...
(i− 1, i) + (i− 1, i)′

(i, i+ 1) + (i, i+ 1)′ · · · (i, 2N) + (i, 2N)′

. . .
...

(2N − 1, 2N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

| (1, 2) (1, 3) · · · (1, i) · · · (1, 2N)
(2, 3) · · · (2, i) · · · (2, 2N)

. . .
...

...
(i− 1, i)

(i, i+ 1) · · · (i, 2N)
. . .

...
(2N − 1, 2N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

| (1, 2) (1, 3) · · · (1, i)′ · · · (1, 2N)
(2, 3) · · · (2, i)′ · · · (2, 2N)

. . .
...

...
(i− 1, i)′

(i, i+ 1)′ · · · (i, 2N)′

. . .
...

(2N − 1, 2N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and

| (1, 2) (1, 3) · · · c(1, i) · · · (1, 2N)
(2, 3) · · · c(2, i) · · · (2, 2N)

. . .
...

...
c(i− 1, i)

c(i, i+ 1) · · · c(i, 2N)
. . .

...
(2N − 1, 2N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= c

| (1, 2) (1, 3) · · · (1, i) · · · (1, 2N)
(2, 3) · · · (2, i) · · · (2, 2N)

. . .
...

...
(i− 1, i)

(i, i+ 1) · · · (i, 2N)
. . .

...
(2N − 1, 2N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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The determinant is alternating with respect to its columns and to its rows,
that is, the following propositions hold.

Proposition 2.4. If two columns of a square array of variables are identical,
then its determinant is 0,

(
1, 2, · · · , j, · · · , j, · · · , N
1, 2, · · · · · · · · · · · · · · · , N

)
= 0

In another notation,
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
1
1

) (
2
1

)
· · ·

(
j

1

)
· · ·

(
j

1

)
· · ·
(
N

1

)

(
1
2

) (
2
2

)
· · ·

(
j

2

)
· · ·

(
j

2

)
· · ·
(
N

2

)

...
...

...
...

...(
1
N

) (
2
N

)
· · ·
(
j

N

)
· · ·
(
j

N

)
· · ·
(
N

N

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

Similarly if two rows of a square array of variables are identical, then its
determinant is 0,

(
1, 2, · · · · · · · · · · · · · · · , N
1, 2, · · · , i, · · · , i, · · · , N

)
= 0

In another notation,
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
1
1

) (
2
1

)
· · ·
(
N

1

)

(
1
2

) (
2
2

)
· · ·
(
N

2

)

...
...

...(
1
i

) (
2
i

)
· · ·
(
N

i

)

...
...

...(
1
i

) (
2
i

)
· · ·
(
N

i

)

...
...

...(
1
N

) (
2
N

)
· · ·
(
N

N

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

Proof. First we prove the proposition in the case of identical columns. Let
us assume that the jth column and the j′th column are identical (j �= j′).

In the summation of definition (1), a term including
(
j

i

)(
j′

i′

)
cancels with



66 Y. Ohta

the same term with j and j′ exchanged, because
(
j

i

)(
j′

i′

)
=
(
j′

i

)(
j

i′

)
and

the signs of these terms are opposite. Therefore all terms in the summation
cancel each other and the determinant vanishes. The case of rows is proved
in the same way.

From this proposition and the linearity of determinant, the next one follows
immediately.

Proposition 2.5. By exchanging two columns, the determinant changes its
sign, that is,

(
1, 2, · · · , j, · · · , j′, · · · , N
1, 2, · · · · · · · · · · · · · · · , N

)
= −

(
1, 2, · · · , j′, · · · , j, · · · , N
1, 2, · · · · · · · · · · · · · · · , N

)

In another notation,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
1
1

) (
2
1

)
· · ·

(
j

1

)
· · ·
(
j′

1

)
· · ·
(
N

1

)

(
1
2

) (
2
2

)
· · ·

(
j

2

)
· · ·
(
j′

2

)
· · ·
(
N

2

)

...
...

...
...

...(
1
N

) (
2
N

)
· · ·
(
j

N

)
· · ·
(
j′

N

)
· · ·
(
N

N

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
1
1

) (
2
1

)
· · ·
(
j′

1

)
· · ·

(
j

1

)
· · ·
(
N

1

)

(
1
2

) (
2
2

)
· · ·
(
j′

2

)
· · ·

(
j

2

)
· · ·
(
N

2

)

...
...

...
...

...(
1
N

) (
2
N

)
· · ·
(
j′

N

)
· · ·
(
j

N

)
· · ·
(
N

N

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Similarly by exchanging two rows, the determinant changes its sign, that is,

(
1, 2, · · · · · · · · · · · · · · · , N
1, 2, · · · , i, · · · , i′, · · · , N

)
= −

(
1, 2, · · · · · · · · · · · · · · · , N
1, 2, · · · , i′, · · · , i, · · · , N

)

In another notation,
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
1
1

) (
2
1

)
· · ·
(
N

1

)

(
1
2

) (
2
2

)
· · ·
(
N

2

)

...
...

...(
1
i

) (
2
i

)
· · ·
(
N

i

)

...
...

...(
1
i′

) (
2
i′

)
· · ·
(
N

i′

)

...
...

...(
1
N

) (
2
N

)
· · ·
(
N

N

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
1
1

) (
2
1

)
· · ·
(
N

1

)

(
1
2

) (
2
2

)
· · ·
(
N

2

)

...
...

...(
1
i′

) (
2
i′

)
· · ·
(
N

i′

)

...
...

...(
1
i

) (
2
i

)
· · ·
(
N

i

)

...
...

...(
1
N

) (
2
N

)
· · ·
(
N

N

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

By the linearity and alternativity of the determinant, we know that adding
a column (resp., a row) multiplied by a constant to another column (resp.,
row) does not change the determinant.

The Pfaffian is also alternating with respect to its columns.

Proposition 2.6. For i �= j, if the ith and jth columns of a triangular array
of variables are identical, that is, if (i, k) = (j, k) for all k, then its Pfaffian
is 0,

(1, 2, · · · , i, · · · , i, · · · , 2N) = 0 (3)

In another notation,

|(1, 2) (1, 3) · · · (1, i) · · · (1, i) · · · (1, 2N)
(2, 3) · · · (2, i) · · · (2, i) · · · (2, 2N)

. . .
...

...
...

(i− 1, i) (i− 1, i)
(i, i+ 1) · · · (i, j − 1) 0 (i, j + 1) · · · (i, 2N)

. . . −(i, i+ 1)
. . .

...
...

−(i, j − 1)
(i, j + 1) · · · (i, 2N)

. . .
...

(2N − 1, 2N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

Proof. Without loss of generality, we can assume i < j. In the summation
of definition (2), for k < l < i < j, a term including (k, i)(l, j) cancels with
the same term with i and j exchanged, because (k, i)(l, j) = (k, j)(l, i) and
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the signs of these terms are opposite. For k < i < l < j, a term including
(k, i)(l, j) cancels with the same term with (k, i)(l, j) replaced by (k, j)(i, l),
because (k, i)(l, j) = −(k, j)(i, l) and the signs of these terms are the same.
For k < i < j < l, a term including (k, i)(j, l) cancels with the same term
with i and j exchanged, because (k, i)(j, l) = (k, j)(i, l) and the signs of
these terms are opposite. Similarly for i < k < l < j, i < k < j < l and
i < j < k < l, cancellation of the terms occurs. Finally a term including (i, j)
vanishes, because (i, j) = 0. Therefore all terms in the summation cancel each
other and the Pfaffian vanishes.

From this proposition and the linearity of the Pfaffian, the next one follows
immediately.

Proposition 2.7. By exchanging two columns, the Pfaffian changes sign,
that is,

(1, 2, · · · , i, · · · , j, · · · , 2N) = −(1, 2, · · · , j, · · · , i, · · · , 2N)

In another notation,

| (1, 2) (1, 3) · · · (1, i) · · · (1, j) · · · (1, 2N)
(2, 3) · · · (2, i) · · · (2, j) · · · (2, 2N)

. . .
...

...
...

(i− 1, i) (i− 1, j)
(i, i+ 1) · · · (i, j − 1) (i, j) (i, j + 1) · · · (i, 2N)

. . . (i+ 1, j)
. . .

...
...

(j − 1, j)
(j, j + 1) · · · (j, 2N)

. . .
...

(2N − 1, 2N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −

| (1, 2) (1, 3) · · · (1, j) · · · (1, i) · · · (1, 2N)
(2, 3) · · · (2, j) · · · (2, i) · · · (2, 2N)

. . .
...

...
...

(i− 1, j) (i− 1, i)
−(i+ 1, j) · · · −(j − 1, j) −(i, j) (j, j + 1) · · · (j, 2N)

. . . −(i, i+ 1)
. . .

...
...

−(i, j − 1)
(i, j + 1) · · · (i, 2N)

. . .
...

(2N − 1, 2N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

By the linearity and alternativity of the Pfaffian, we know that adding a
column multiplied by a constant to another column does not change the
Pfaffian.

By using the above properties of determinants and Pfaffians, we can prove
that the determinant of an antisymmetric array is the square of the Pfaffian.
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Lemma 2.2. If
(
j

i

)
is antisymmetric, that is,

(
j

i

)
= −

(
i

j

)
and

(
i

i

)
= 0,

then (
1, 2, · · · , N
1, 2, · · · , N

)
= (1, 2, · · · , N)2,

where
(
j

i

)
= (i, j). In another notation,

∣∣∣∣∣∣∣∣∣∣∣∣

0 (1, 2) (1, 3) · · · (1, N)
−(1, 2) 0 (2, 3) · · · (2, N)

−(1, 3) −(2, 3)
. . . . . .

...
...

...
. . . . . . (N − 1, N)

−(1, N) −(2, N) · · · −(N − 1, N) 0

∣∣∣∣∣∣∣∣∣∣∣∣

=

| (1, 2) (1, 3) · · · (1, N)
(2, 3) · · · (2, N)

. . .
...

(N − 1, N)

∣∣∣∣∣∣∣∣∣

2

This lemma means that the Pfaffian can be regarded as a square root of the
determinant of an antisymmetric array. Therefore the properties of Pfaffians
can be derived from those of determinants by specialization.

Proof.
∣∣∣∣∣∣∣∣∣∣∣∣

0 (1, 2) (1, 3) · · · (1, N)
−(1, 2) 0 (2, 3) · · · (2, N)

−(1, 3) −(2, 3) 0
. . .

...
...

...
. . . . . . (N − 1, N)

−(1, N) −(2, N) · · · −(N − 1, N) 0

∣∣∣∣∣∣∣∣∣∣∣∣

=

| 0 0 0 · · · 0 (1, N) · · · (1, 3) (1, 2) 0
0 0 · · · 0 (2, N) · · · (2, 3) 0 −(1, 2)

0 · · · 0 (3, N) · · · 0 −(2, 3) −(1, 3)
. . .

...
...

...
...

...
0 (N − 1, N) 0

0 −(N − 1, N) · · · −(3, N) −(2, N) −(1, N)
(N − 1, N) · · · (3, N) (2, N) (1, N)

. . .
...

...
...

(3, 4) (2, 4) (1, 4)
(2, 3) (1, 3)

(1, 2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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where we used Lemma 2.1,

=

| (1, 2) (1, 3) (1, 4) · · · (1, N) 0 · · · 0 0 0
0 0 · · · 0 (2, N) · · · (2, 3) 0 −(1, 2)

0 · · · 0 (3, N) · · · 0 −(2, 3) −(1, 3)
. . .

...
...

...
...

...
0 (N − 1, N) 0

0 −(N − 1, N) · · · −(3, N) −(2, N) −(1, N)
(N − 1, N) · · · (3, N) (2, N) (1, N)

. . .
...

...
...

(3, 4) (2, 4) (1, 4)
(2, 3) (1, 3)

(1, 2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where we added the 2Nth column to the 1st one,

=

| (1, 2) (1, 3) (1, 4) · · · (1, N) 0 · · · 0 0 0
(2, 3) (2, 4) · · · (2, N) 0 · · · 0 0 0

0 · · · 0 (3, N) · · · 0 −(2, 3) −(1, 3)
. . .

...
...

...
...

...
0 (N − 1, N) 0

0 −(N − 1, N) · · · −(3, N) −(2, N) −(1, N)
(N − 1, N) · · · (3, N) (2, N) (1, N)

. . .
...

...
...

(3, 4) (2, 4) (1, 4)
(2, 3) (1, 3)

(1, 2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where we added the (2N − 1)th column to the 2nd one,

=

| (1, 2) (1, 3) (1, 4) · · · (1, N) 0 · · · 0 0 0
(2, 3) (2, 4) · · · (2, N) 0 · · · 0 0 0

(3, 4) · · · (3, N) 0 · · · 0 0 0
. . .

...
...

...
...

...
(N − 1, N) 0 0

0 0 · · · 0 0 0
(N − 1, N) · · · (3, N) (2, N) (1, N)

. . .
...

...
...

(3, 4) (2, 4) (1, 4)
(2, 3) (1, 3)

(1, 2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where we repeatedly added the (2N + 1 − k)th column to the kth one for
k = 3, 4, · · · , N ,

=

| (1, 2) (1, 3) · · · (1, N)
(2, 3) · · · (2, N)

. . .
...

(N − 1, N)

∣∣∣∣∣∣∣∣∣

| (N − 1, N) · · · (2, N) (1, N)
. . .

...
...

(2, 3) (1, 3)
(1, 2)

∣∣∣∣∣∣∣∣∣
where we used Proposition 2.1. When N is odd, the determinant of an anti-
symmetric array vanishes.
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2.3 Cofactor and Expansion Formula

A cofactor of a determinant or Pfaffian is defined to be the coefficient of a
certain term in the polynomial. We note that for any i and j, both determi-

nant and Pfaffian are polynomials in
(
j

i

)
or (i, j) of at most degree 1, thus

the following concepts are well-defined.

Definition 2.3. We define the
(
j1, j2, · · · , jn
i1, i2, · · · , in

)
-cofactor of the determinant

(
1, 2, · · · , N
1, 2, · · · , N

)
to be

(
1, 2, · · · , N
1, 2, · · · , N

)j1j2···jn

i1i2···in
=
(

coefficient of
(
j1
i1

)(
j2
i2

)
· · ·
(
jn
in

)
in
(

1, 2, · · · , N
1, 2, · · · , N

))

Definition 2.4. We define the (i1, i2, · · · , i2n)-cofactor of the Pfaffian (1, 2,
· · · , 2N) to be

(1, 2, · · · , 2N)i1i2···i2n
=
(
coefficient of (i1, i2)(i3, i4) · · · (i2n−1, i2n)

in (1, 2, · · · , 2N)
)

From the definitions of determinants and Pfaffians, (1) and (2), it is clear
that each cofactor is also expressed as a determinant or Pfaffian with an all
over sign.

Proposition 2.8. For 1 ≤ i1 < i2 < · · · < in ≤ N and 1 ≤ j1 < j2 < · · · <
jn ≤ N ,

(
1, 2, · · · , N
1, 2, · · · , N

)j1j2···jn

i1i2···in

= (−1)i1+j1+i2+j2+···+in+jn

(
1, 2, · · · , ĵ1, · · · , ĵ2, · · · , ĵn, · · · , N
1, 2, · · · , î1, · · · , î2, · · · , în, · · · , N

)

where ̂ means deletion.

Proposition 2.9. For permutations σ and τ ,
(

1, 2, · · · , N
1, 2, · · · , N

)jσ(1)jσ(2)···jσ(n)

iτ(1)iτ(2)···iτ(n)

= signσ sign τ
(

1, 2, · · · , N
1, 2, · · · , N

)j1j2···jn

i1i2···in
.

Proposition 2.10. For 1 ≤ i1 < i2 < · · · < i2n ≤ 2N ,

(1, 2, · · · , 2N)i1i2···i2n

= (−1)i1+i2+···+i2n+n(1, 2, · · · , î1, · · · , î2, · · · , î2n, · · · , 2N),

where ̂ means deletion.
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Proposition 2.11. For a permutation σ,

(1, 2, · · · , 2N)iσ(1)iσ(2)···iσ(2n) = signσ (1, 2, · · · , 2N)i1i2···i2n .

Since in the definition of determinants (1), the index j (1 ≤ j ≤ N) ap-
pears once in the column indices j1, j2, · · · , jN in each term of the summation
and the index i (1 ≤ i ≤ N) appears once in the row indices i1, i2, · · · , iN ,
we get the following expansion formula for determinants.

Proposition 2.12.
(

1, 2, · · · , N
1, 2, · · · , N

)
=

N∑
i=1

(
1, 2, · · · , N
1, 2, · · · , N

)j
i

(
j

i

)
1 ≤ j ≤ N

=
N∑
j=1

(
1, 2, · · · , N
1, 2, · · · , N

)j
i

(
j

i

)
1 ≤ i ≤ N.

Similarly since in the definition of Pfaffians (2), the index j (1 ≤ j ≤ 2N)
appears once in each term of the summation, we get the following expansion
formula for Pfaffians.

Proposition 2.13.

(1, 2, · · · , 2N) =
2N∑
i=1

(1, 2, · · · , 2N)ij(i, j) 1 ≤ j ≤ 2N.

By taking j = 2N in this proposition, we get

(1, 2, · · · , 2N) =
2N−1∑
i=1

(−1)i−1(1, · · · , î, · · · , 2N − 1)(i, 2N) (4)

where ̂ means deletion. We note that this can be regarded as a recursive
definition of Pfaffians, that is, Pfaffians of size 2N are inductively defined by
using Pfaffians of size 2N − 2.

2.4 Algebraic Identities

We now formulate the bilinear algebraic identity for Pfaffians.

Theorem 2.1. The Pfaffians,

ξi1i2···iν = (1, 2, · · · , N, i1, i2, · · · , iν) (5)

satisfy the identity,
n∑
l=1

(−1)lξi1i2···imjlξj1j2···ĵl···jn +
m∑
k=1

(−1)kξi1i2···îk···imξj1j2···jnik = 0 (6)

where ̂ means deletion.
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Proof. Using the expansion formula of Pfaffians (4), we obtain

L∑
l=1

(−1)l(a1, a2, · · · , aK , bl)(b1, b2, · · · , b̂l, · · · , bL)

+
K∑
k=1

(−1)k(a1, a2, · · · , âk, · · · , aK)(b1, b2, · · · , bL, ak)

=
L∑
l=1

K∑
k=1

(−1)k+l−1(ak, bl)(a1, a2, · · · , âk, · · · , aK)(b1, b2, · · · , b̂l, · · · , bL)

+
K∑
k=1

L∑
l=1

(−1)k+l−1(a1, a2, · · · , âk, · · · , aK)(bl, ak)(b1, b2, · · · , b̂l, · · · , bL)

= 0 K,L : odd

Taking K = N + m, L = N + n, ak = bk = k (1 ≤ k ≤ N), aN+k = ik
(1 ≤ k ≤ m) and bN+k = jk (1 ≤ k ≤ n) in the above equation and using
(3), we recover the Pfaffian identity.

Using Lemma 2.1, we can derive a bilinear algebraic identity for determi-
nants by specialization.

Theorem 2.2. The determinants,

ξi1i2···im =
(

1, 2, · · · , N −m, i1, i2, · · · , im
1, 2, · · · · · · · · · · · · · · · · · · · · · , N

)
(7)

satisfy the identity,
m+1∑
l=1

(−1)lξi1i2···im−1jlξj1j2···ĵl···jm+1 = 0 (8)

where ̂ means deletion.

Proof. In the identity for Pfaffians (6), we replace m by m − 1, n by
m + 1 and N by 2N − m, and rewrite the indices 1, 2, · · · , 2N − m as
N ′, · · · , 2′, 1′, 1, 2, · · · , N −m. By taking (i′, j′) = 0 (N ≥ i > j ≥ 1) and

(i′, j) =
(
j

i

)

1 ≤ i ≤ N, j ∈ {1, 2, · · · , N −m, i1, i2, · · · , im−1, j1, j2, · · · , jm+1},

the Pfaffians in the first term in (6) are specialized to determinants given
in (7) and the second term in (6) vanishes. Then the Pfaffian identity (6)
reduces to the determinant one (8).

The determinant identity (8) is called the Plücker relation and the ξ’s
in (7) are called the Plücker coordinates. The algebraic identity (6) is the
Pfaffian counterpart of the Plücker relation, and the ξ’s in (5) are the Pfaffian
counterparts of the Plücker coordinates.



74 Y. Ohta

2.5 Golden Theorem

The following golden theorem is useful in the construction of new identities
for Pfaffians from simple identities.

Theorem 2.3. For a given identity for Pfaffians, the equation which is ob-
tained by replacing all Pfaffians (i1, i2, · · · , i2n) appearing in the identity by
(1, 2, · · · , 2N, i1, i2, · · · , i2n)

(1, 2, · · · , 2N)
is also an identity.

Example 2.1. We have

(a1, a2, a3, a4) = (a1, a2)(a3, a4) − (a1, a3)(a2, a4) + (a1, a4)(a2, a3)

By the above theorem, we get

(1, 2, · · · , 2N, a1, a2, a3, a4)
(1, 2, · · · , 2N)

=
(1, 2, · · · , 2N, a1, a2)

(1, 2, · · · , 2N)
(1, 2, · · · , 2N, a3, a4)

(1, 2, · · · , 2N)

− (1, 2, · · · , 2N, a1, a3)
(1, 2, · · · , 2N)

(1, 2, · · · , 2N, a2, a4)
(1, 2, · · · , 2N)

+
(1, 2, · · · , 2N, a1, a4)

(1, 2, · · · , 2N)
(1, 2, · · · , 2N, a2, a3)

(1, 2, · · · , 2N)

thus we obtain

(1, 2, · · · , 2N, a1, a2, a3, a4)(1, 2, · · · , 2N)
= (1, 2, · · · , 2N, a1, a2)(1, 2, · · · , 2N, a3, a4)
− (1, 2, · · · , 2N, a1, a3)(1, 2, · · · , 2N, a2, a4)
+ (1, 2, · · · , 2N, a1, a4)(1, 2, · · · , 2N, a2, a3) (9)

Example 2.2. Applying the theorem to the expansion,

0 = (a0, a0, a1, a2, a3, a4)
= (a0, a1, a2, a3)(a0, a4) − (a0, a1, a2, a4)(a0, a3)
+ (a0, a1, a3, a4)(a0, a2) − (a0, a2, a3, a4)(a0, a1)

we get

(1, 2, · · · , 2N, a0, a1, a2, a3)(1, 2, · · · , 2N, a0, a4)
− (1, 2, · · · , 2N, a0, a1, a2, a4)(1, 2, · · · , 2N, a0, a3)
+ (1, 2, · · · , 2N, a0, a1, a3, a4)(1, 2, · · · , 2N, a0, a2)
− (1, 2, · · · , 2N, a0, a2, a3, a4)(1, 2, · · · , 2N, a0, a1) = 0. (10)
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Proof. In the algebraic identity for Pfaffians (6), by rewriting m to 2n− 1, n
to 1, N to 2N and j1 to i2n, we obtain

(1, 2, · · · , 2N, i1, · · · , i2n)(1, 2, · · · , 2N)

=
2n−1∑
k=1

(−1)k−1(1, 2, · · · , 2N, i1, · · · , îk, · · · , i2n−1)(1, 2, · · · , 2N, ik, i2n)

thus

(1, 2, · · · , 2N, i1, · · · , i2n)
(1, 2, · · · , 2N)

=
2n−1∑
k=1

(−1)k−1 (1, 2, · · · , 2N, i1, · · · , îk, · · · , i2n−1)
(1, 2, · · · , 2N)

(1, 2, · · · , 2N, ik, i2n)
(1, 2, · · · , 2N)

This has the same form as the recursive definition of Pfaffians (4). From this
fact, the golden theorem is immediately proved, because the replacement

of (i1, i2, · · · , i2n) with
(1, 2, · · · , 2N, i1, i2, · · · , i2n)

(1, 2, · · · , 2N)
is valid in the recursive

definition of Pfaffians.

In the case of determinants, we also have a golden theorem, which is again
useful for the construction of new identities from simple ones.

Theorem 2.4. For a given identity of determinants, the equation which is

obtained by replacing all determinants
(
j1, j2, · · · , jn
i1, i2, · · · , in

)
appearing in the iden-

tity by

(
1, 2, · · · , N, j1, j2, · · · , jn
1, 2, · · · , N, i1, i2, · · · , in

)

(
1, 2, · · · , N
1, 2, · · · , N

) is also an identity.

Example 2.3. We have
(
b1, b2
a1, a2

)
=
(
b1
a1

)(
b2
a2

)
−
(
b2
a1

)(
b1
a2

)

By the above theorem, we get
(

1, 2, · · · , N, b1, b2
1, 2, · · · , N, a1, a2

)

(
1, 2, · · · , N
1, 2, · · · , N

)

=

(
1, 2, · · · , N, b1
1, 2, · · · , N, a1

)

(
1, 2, · · · , N
1, 2, · · · , N

)

(
1, 2, · · · , N, b2
1, 2, · · · , N, a2

)

(
1, 2, · · · , N
1, 2, · · · , N

) −

(
1, 2, · · · , N, b2
1, 2, · · · , N, a1

)

(
1, 2, · · · , N
1, 2, · · · , N

)

(
1, 2, · · · , N, b1
1, 2, · · · , N, a2

)

(
1, 2, · · · , N
1, 2, · · · , N

)
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thus we obtain
(

1, 2, · · · , N, b1, b2
1, 2, · · · , N, a1, a2

)(
1, 2, · · · , N
1, 2, · · · , N

)

=
(

1, 2, · · · , N, b1
1, 2, · · · , N, a1

)(
1, 2, · · · , N, b2
1, 2, · · · , N, a2

)
−
(

1, 2, · · · , N, b2
1, 2, · · · , N, a1

)(
1, 2, · · · , N, b1
1, 2, · · · , N, a2

)

This is called the Jacobi formula for determinants.

Proof. From the golden theorem for Pfaffians (Th. 2.3), we obtain

(1, 2, · · · , N, i1, i2, · · · , i2n, N ′, · · · , 2′, 1′)
(1, 2, · · · , N,N ′, · · · , 2′, 1′)

= Pf
(

(1, 2, · · · , N, iµ, iν , N ′, · · · , 2′, 1′)
(1, 2, · · · , N,N ′, · · · , 2′, 1′)

)

1≤µ<ν≤2n

By taking (i, j) = 0 (1 ≤ i < j ≤ N), (i, iµ) = 0 (1 ≤ i ≤ N, 1 ≤ µ ≤ n),
(iµ, iν) = 0 (1 ≤ µ < ν ≤ n), we get

(
1, 2, · · · , N, j1, j2, · · · , jn
1, 2, · · · , N, i1, i2, · · · , in

)

(
1, 2, · · · , N
1, 2, · · · , N

) = det




(
1, 2, · · · , N, jν
1, 2, · · · , N, iµ

)

(
1, 2, · · · , N
1, 2, · · · , N

)




1≤µ,ν≤n

where
(
j

i

)
= (i, j′) (1 ≤ i, j ≤ N),

(
jν
i

)
= (i, i2n+1−ν) (1 ≤ i ≤ N, 1 ≤

ν ≤ n),
(
j

iµ

)
= (iµ, j′) (1 ≤ µ ≤ n, 1 ≤ j ≤ N) and

(
jν
iµ

)
= (iµ, i2n+1−ν)

(1 ≤ µ, ν ≤ n). This has the same form as the definition of determinants
(1). From this fact, the golden theorem is immediately proved, because the

replacement of
(
j1, j2, · · · , jn
i1, i2, · · · , in

)
with

(
1, 2, · · · , N, j1, j2, · · · , jn
1, 2, · · · , N, i1, i2, · · · , in

)

(
1, 2, · · · , N
1, 2, · · · , N

) is valid in

the definition of determinants.

Theorems 2.3 and 2.4 are called the Wick theorems.

2.6 Differential Formula

Assume that
(
j
i

)
and (i, j) are differentiable functions of a variable x.

Theorem 2.5.

∂x

(
1, 2, · · · , N
1, 2, · · · , N

)
=

∑
1≤i,j≤N

(
1, 2, · · · , N
1, 2, · · · , N

)j
i

∂x

(
j

i

)
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Proof. Since the determinant
(

1, 2, · · · , N
1, 2, · · · , N

)
is a polynomial in

(
j

i

)
of at

most degree 1 for all i and j, we have

∂x

(
1, 2, · · · , N
1, 2, · · · , N

)
=

∑
1≤i,j≤N

(
coefficient of ∂x

(
j

i

))
∂x

(
j

i

)

and the above coefficient of ∂x

(
j

i

)
is equal to the coefficient of

(
j

i

)
in the

determinant
(

1, 2, · · · , N
1, 2, · · · , N

)
, which is

(
1, 2, · · · , N
1, 2, · · · , N

)j
i

by definition.

Theorem 2.6.

∂x(1, 2, · · · , 2N) =
∑

1≤i<j≤2N

(1, 2, · · · , 2N)ij∂x(i, j)

Proof. Since the Pfaffian (1, 2, · · · , 2N) is a polynomial in (i, j) of at most
degree 1 for all i and j, we have

∂x(1, 2, · · · , 2N) =
∑

1≤i<j≤2N

(
coefficient of ∂x(i, j)

)
∂x(i, j)

and the above coefficient of ∂x(i, j) is equal to the coefficient of (i, j) in the
Pfaffian (1, 2, · · · , 2N), which is (1, 2, · · · , 2N)ij by definition.

3 Difference Formulas

In this section, we give the difference formulas for Pfaffians with discrete
Wronski or Gram structure. Let the elements of a Pfaffian be functions of
discrete independent variables, k1, k2, k3 ,· · · . In order to specify the val-
ues of the independent variables, we write them as a suffix, for example,
(i, j)k1,k2,k3,···, and we may omit unshifted independent variables for simplic-
ity. We denote the difference interval for kν by aν .

3.1 Discrete Wronski Pfaffians

Definition 3.1. If the (i, j)-element of a Pfaffian satisfies the discrete linear
dispersion relation,

1
aν

(
(i, j)kν − (i, j)kν−1

)
= (i+ 1, j)kν + (i, j + 1)kν − aν(i+ 1, j + 1)kν

for all ν, then this Pfaffian is called a discrete Wronski Pfaffian.
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Example 3.1. Let

(i, j) =
∑
n

(ϕ(i)
n ψ

(j)
n − ϕ(j)

n ψ(i)
n ).

These are elements of a discrete Wronski Pfaffian. Here ϕ(i)
n and ψ

(j)
n are

arbitrary functions satisfying the discrete linear dispersion relations,

1
aν

(
ϕ(i)
n (kν) − ϕ(i)

n (kν − 1)
)

= ϕ(i+1)
n (kν)

1
aν

(
ψ(j)
n (kν) − ψ(j)

n (kν − 1)
)

= ψ(j+1)
n (kν),

for all ν.

Using the linearity and alternativity of Pfaffians proved in Sect. 2 and the
above discrete linear dispersion relation for the (i, j)-element, the next theo-
rem can be easily proved.

Theorem 3.1. The discrete Wronski Pfaffian (1, 2, · · · , 2N) satisfies the dif-
ference formulas,

(1, 2, · · · , 2N)kν+1 = (1, 2, · · · , 2N − 1, 2Nν)
aν(1, 2, · · · , 2N)kν+1 = (1, 2, · · · , 2N − 1, 2N − 1ν)
(aν − aµ)(1, 2, · · · , 2N)kν+1,kµ+1 = (1, 2, · · · , 2N − 2, 2N − 1µ, 2N − 1ν)

aνaµ(aν − aµ)(1, 2, · · · , 2N)kν+1,kµ+1 = (1, 2, · · · , 2N − 2, 2N − 2µ, 2N − 2ν)∏
1≤ν<µ≤n

(aν − aµ)(1, 2, · · · , 2N)k1+1,k2+1,··· ,kn+1

= (1, 2, · · · , 2N − n, 2N − n+ 1n, · · · , 2N − n+ 12, 2N − n+ 11)
n∏
ν=1

aν
∏

1≤ν<µ≤n
(aν − aµ)(1, 2, · · · , 2N)k1+1,k2+1,··· ,kn+1

= (1, 2, · · · , 2N − n, 2N − nn, · · · , 2N − n2, 2N − n1),

where

(i, jν) = (i, j)kν+1 − aν(i+ 1, j)kν+1

(jµ, jν) = (aν − aµ)(j, j + 1)kν+1,kµ+1.

3.2 Discrete Gram Pfaffians

Definition 3.2. If the (i, j)-element of a Pfaffian satisfies the discrete linear
dispersion relation,
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1
aν

(
(i, j)kν

− (i, j)kν−1
)

= ϕ
(0)
i (kν)ϕ̄

(0)
j (kν − 1) − ϕ

(0)
j (kν)ϕ̄

(0)
i (kν − 1),

for all ν, and if ϕ(n)
i and ϕ̄(n)

j satisfy the discrete linear dispersion relations,

1
aν

(
ϕ

(n)
i (kν) − ϕ

(n)
i (kν − 1)

)
= ϕ

(n+1)
i (kν)

1
aν

(
ϕ̄

(n)
j (kν + 1) − ϕ̄

(n)
j (kν)

)
= ϕ̄

(n+1)
j (kν),

for all ν, then this Pfaffian is called a discrete Gram Pfaffian.

Example 3.2. Let

(i, j) = cij +
∞∑
n=0

(−1)n(ϕ(n)
i ϕ̄

(−n−1)
j − ϕ

(n)
j ϕ̄

(−n−1)
i ).

They are elements of a discrete Gram Pfaffian. Here the cij ’s are constants
satisfying the antisymmetry, cij = −cji and cii = 0.

Using the linearity and alternativity of Pfaffians proved in Sect. 2 and the
above discrete linear dispersion relation for the (i, j)-element, the next theo-
rem can be easily proved.

Theorem 3.2. The discrete Gram Pfaffian (1, 2, · · · , 2N) satisfies the fol-
lowing difference formulas,

1
aν

(1, 2, · · · , 2N)kν+1 = (d̄0, 1, 2, · · · , 2N, d0
ν)

aν − aµ
(aνaµ)2

(1, 2, · · · , 2N)kν+1,kµ+1 = (d̄0, d̄1, 1, 2, · · · , 2N, d0
ν , d

0
µ)

∏
1≤ν<µ≤n

(aν − aµ)

( n∏
ν=1

aν
)n

(1, 2, · · · , 2N)k1+1,k2+1,··· ,kn+1

= (d̄0, d̄1, · · · , d̄n−1, 1, 2, · · · , 2N, d0
1, d

0
2, · · · , d0

n),

where

(i, d0
ν) = ϕ

(0)
i (kν + 1) (d0

µ, d
0
ν) = 0

(d̄n, j) = −ϕ̄(n)
j (d̄n, d̄m) = 0 (d̄n, d0

ν) = (−1)n
1

an+1
ν

.
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4 Discrete Bilinear Equations

Both the discrete Wronski Pfaffians and discrete Gram Pfaffians satisfy the
same bilinear equations, that is, the discrete coupled KP hierarchy. Below we
give the bilinear form of discrete coupled KP equations for both the Wronski
case and Gram case.

4.1 Discrete Wronski Pfaffian

For discrete Wronski Pfaffians, let us define

τN = (1, 2, · · · , 2N)

Then the difference formulas for τN are given by Theorem 3.1. The follow-
ing bilinear equations for τN are a direct consequence of bilinear algebraic
identities (9) and (10),

aν(aµ − aλ)τN (kµ + 1, kλ + 1)τN (kν + 1)
+ aµ(aλ − aν)τN (kν + 1, kλ + 1)τN (kµ + 1)
+ aλ(aν − aµ)τN (kν + 1, kµ + 1)τN (kλ + 1)
= aνaµaλ(aµ − aλ)(aλ − aν)(aν − aµ)τN+1(kν + 1, kµ + 1, kλ + 1)τN−1,

aµaλ(aµ − aλ)τN+1(kµ + 1, kλ + 1)τN (kν + 1)
+ aλaν(aλ − aν)τN+1(kν + 1, kλ + 1)τN (kµ + 1)
+ aνaµ(aν − aµ)τN+1(kν + 1, kµ + 1)τN (kλ + 1)
+ (aµ − aλ)(aλ − aν)(aν − aµ)τN+1(kν + 1, kµ + 1, kλ + 1)τN = 0.

These equations coincide with the bilinear equations of the discrete coupled
KP hierarchy.

4.2 Discrete Gram Pfaffian

For discrete Gram Pfaffians, let us define

τ = (1, 2, · · · , 2N)
σ = (1, 2, · · · , 2N, d0, d1)
σ̄ = (d̄0, d̄1, 1, 2, · · · , 2N),

where

(i, dn) = ϕ
(n)
i (dm, dn) = 0 (dn, d0

ν) = 0.

Then the difference formulas for τ are given by Theorem 3.2. In the same
manner, we can obtain the following difference formulas for σ and σ̄,
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aνσ(kν + 1) = (1, 2, · · · , 2N, d0, d0
ν)

(aν − aµ)σ(kν + 1, kµ + 1) = (1, 2, · · · , 2N, d0
µ, d

0
ν)

(aν − aµ)(aν − aλ)(aµ − aλ)
aνaµaλ

σ(kν + 1, kµ + 1, kλ + 1)

= (d̄0, 1, 2, · · · , 2N, d0
λ, d

0
µ, d

0
ν)

1
a3
ν

σ̄(kν + 1) = (d̄0, d̄1, d̄2, 1, 2, · · · , 2N, d0
ν).

The following bilinear equations for τ , σ and σ̄ are direct consequences of
bilinear algebraic identities (9) and (10),

aν(aµ − aλ)τ(kµ + 1, kλ + 1)τ(kν + 1)
+ aµ(aλ − aν)τ(kν + 1, kλ + 1)τ(kµ + 1)
+ aλ(aν − aµ)τ(kν + 1, kµ + 1)τ(kλ + 1)
= aνaµaλ(aµ − aλ)(aλ − aν)(aν − aµ)σ(kν + 1, kµ + 1, kλ + 1)σ̄

aµaλ(aµ − aλ)σ(kµ + 1, kλ + 1)τ(kν + 1)
+ aλaν(aλ − aν)σ(kν + 1, kλ + 1)τ(kµ + 1)
+ aνaµ(aν − aµ)σ(kν + 1, kµ + 1)τ(kλ + 1)
+ (aµ − aλ)(aλ − aν)(aν − aµ)σ(kν + 1, kµ + 1, kλ + 1)τ = 0

aµaλ(aµ − aλ)τ(kµ + 1, kλ + 1)σ̄(kν + 1)
+ aλaν(aλ − aν)τ(kν + 1, kλ + 1)σ̄(kµ + 1)
+ aνaµ(aν − aµ)τ(kν + 1, kµ + 1)σ̄(kλ + 1)
+ (aµ − aλ)(aλ − aν)(aν − aµ)τ(kν + 1, kµ + 1, kλ + 1)σ̄ = 0.

These equations coincide with the bilinear equations for discrete Wronski
Pfaffians and they also coincide with the bilinear equations of the discrete
coupled KP hierarchy.

5 Concluding Remarks

We have obtained bilinear equations for the hierarchies of discrete soliton
equations from the algebraic identities and the difference formulas for deter-
minants and Pfaffians. Whereas the identities for determinants correspond
to the KP hierarchy, the identities for Pfaffians correspond to the coupled
KP hierarchy both in the continuous and in the discrete case. Various prop-
erties of determinants and Pfaffians can be found in, for example, [1]. Both
determinants and Pfaffians are important in the solution of the hierarchies
of soliton equations.
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There are two types of differential or difference structure, the Wronski
type and the Gram type, both for determinants and for Pfaffians and both
for the continuous and for the discrete case. Continuous Wronski determi-
nants have been intensively studied [2–6]. The continuous Gram determinants
have the same algebraic properties as the Wronski ones [7,8]. The case of dis-
crete Wronski and Gram determinants was analyzed in [9]. It was shown that
Pfaffians play a role similar to that of determinants, both in the continuous
case [10, 11] and in the discrete case [12]. The methods for generating dis-
crete soliton equations were studied many years ago [13, 14]. Here they were
interpreted in the language of determinant and Pfaffian identities.

So far it is not known whether all solutions of the hierarchies of soliton
equations are determinants or Pfaffians, or whether these are only special
solutions. The Sato theory showed that the solutions of the KP hierarchies
can be characterized as orbits in the universal Grassmann manifold [15]- [19].
Date, Kashiwara, Jimbo and Miwa developed the theory of transformation
groups for soliton equations and showed that the Lie algebra of symmetries
of the space of solutions is an affine Lie algebra [20–22]. The relation between
the continuous soliton equations and the discrete ones is described by the
Miwa transformation [23].

We observe that the techniques used to construct subhierarchies of soliton
equations such as reduction, truncation [24], restriction to BKP, CKP, · · · ,
multicomponentization, and so on, are applicable to the Pfaffian case. These
subhierarchies have not been fully studied yet.

The formulations in terms of determinants and Pfaffians, which are ob-
tained by means of Darboux transformations of a trivial vacuum solution, can
be generalized to the case where the initial solution is a nontrivial vacuum.
The Darboux transformations then yield determinant and Pfaffian solutions
depending implicitly on the chosen vacuum solution, and the nontrivial vac-
uum appears in the coefficients of the associated bilinear equations [25]. This
result could be applied to similarity reductions and nonautonomous systems.

It is also known that the determinant and Pfaffian solutions have deep
relations with matrix integrals and orthogonal polynomials [26,27]. The soli-
ton equations and their solutions can be derived from the theory of random
matrices. There are so many related topics that we had to keep the number
of references to a minimum, and we can not predict in what directions the
theory will develop.
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Discrete Differential Geometry.
Integrability as Consistency
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Abstract. We discuss a new geometric approach to discrete integrability coming
from discrete differential geometry. A d–dimensional equation is called consistent
if it is valid for all d–dimensional sublattices of a (d+ 1)–dimensional lattice. This
algorithmically verifiable property implies analytical structures characteristic of
integrability, such as the zero-curvature representation, and allows one to classify
discrete integrable equations within certain natural classes. These ideas also apply
to the noncommutative case. Theorems about the smooth limit of the theory are
also presented.

1 Introduction

The original results presented in these lectures were proved in the recent
series of papers [3, 4, 6, 7]. We refer to these papers for more details, further
references and complete proofs. For the geometric background in discrete
differential geometry see in particular [2].

2 Origin and Motivation: Differential Geometry

Long before the theory of solitons, geometers used integrable equations to de-
scribe various special curves, surfaces etc. At that time no relation to math-
ematical physics was known, and quite different geometries which appeared
in this context (called integrable nowadays) were unified by their common
geometric features:

• Integrable surfaces, curves etc. have nice geometric properties,
• Integrable geometries come with their interesting transformations acting

within the class,
• These transformations are permutable (Bianchi permutability).

Since ‘nice’ and ‘interesting’ can hardly be treated as mathematically for-
mulated features, let us discuss the permutability property. We shall explain
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r r
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Fig. 1. Permutability of the Bäcklund transformations

it in more detail for the classical example of surfaces with constant negative
Gaussian curvature (K-surface) with their Bäcklund transformations.

Let r : R
2 → R

3 be a K-surface, and r10 and r01 two K-surfaces obtained
by Bäcklund transformations of r. The classical Bianchi permutability the-
orem claims that there exists a unique K-surface r11 which is a Bäcklund
transform of r10 and r01 (Fig. 1). Moreover,

(i) the straight line connecting the points r(x, y)and r10(x, y) lies in the
tangent planes of the surfaces r and r10 at these points,

(ii) the opposite edges of the quadrilateral (r, r10, r01, r11) have equal
lengths,

‖r10 − r‖ = ‖r11 − r01‖, ‖r01 − r‖ = ‖r11 − r10‖.

This way a Z
2 lattice rk,� obtained by permutable Bäcklund transforma-

tions gives rise to discrete K-surfaces. Indeed, fixing the smooth parameters
(x, y) one observes that

(i) the points rk,�, rk,�±1, rk±1,� lie in one plane (the ‘tangent’ plane of the
discrete K-surface at the vertex rk,�),

(ii) the opposite edges of the quadrilateral rk,�, rk+1,�, rk+1,�+1, rk,�+1 have
equal lengths.

These are exactly the characteristic properties [1] of the discrete K-surfaces,
r : Z

2 → R
3 .

One immediately observes that the discrete K-surfaces have the same
properties as their smooth counterparts. There exist deep reasons for that.
The classical differential geometry of integrable surfaces may be obtained
from a unifying multi–dimensional discrete theory by a refinement of the
coordinate mesh-size in some of the directions.

Indeed, by refining of the coordinate mesh-size,

r : (εZ)2 → R
3 −→ r : R

2 → R
3,

discrete surface ε→ 0 smooth surface,

in the limit one obtains classical smooth K-surfaces from discrete K-surfaces.
This statement is visualized in Fig. 2 which shows an example of a continuous
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Fig. 2. A continuous and a discrete Amsler surfaces

Amsler surface and its discrete analogue. The subclass of Amsler surfaces is
characterized by the condition that the K-surface (smooth or discrete) should
contain two straight lines.

Moreover, the classical Bianchi permutability implies n–dimensional per-
mutability of the Bäcklund transformations. This means that the set of
a given K-surface, r : R

2 → R
3, with its n Bäcklund transforms, r10...0,

r010...0, . . . , r0...01, can be completed to 2n different K-surfaces, ri1...in , ik ∈
{0, 1}, associated to the vertices of the n–dimensional cube C = {0, 1}n.
The surfaces associated to vertices of C connected by edges are Bäcklund
transforms of each other.

Similar to the 2–dimensional case, this description can be extended to
an n–dimensional lattice. Fixing the smooth parameters (x, y), one obtains a
map,

r : (ε1Z) × . . .× (εnZ) → R
3,

which is an n–dimensional net obtained from one point of a K-surface by
permutable Bäcklund transformations. It turns out that the whole smooth
theory can be recovered from this description. Indeed, completely changing
the point of view, in the limit ε1 → 0, ε2 → 0, ε3 = . . . = εn = 1, one arrives at
a smooth K-surface with an (n−2)–dimensional discrete family of permutable
Bäcklund transforms (Fig. 3),

r : R
2 × Z

n−2 → R
3.
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1

ε

Fig. 3. Surfaces and their transformations as a limit of multidimensional lattices

This simple idea is quite fruitful. In the discrete case all directions of the
multi–dimensional lattices appear in a quite symmetric way. It leads to

• A unification of surfaces and their transformations. Discrete surfaces and
their transformations are indistinguishable.

• A fundamental consistency principle. Due to the symmetry of the discrete
setup the same equations hold on all elementary faces of the lattice. This
leads us beyond the pure differential geometry to a new understanding of
the integrability, classification of integrable equations and derivation of the
zero curvature (Lax) representation from the first principles.

• Interesting generalizations for d > 2–dimensional systems, quantum sys-
tems, discrete systems with the fields on various lattice elements (vertices,
edges, faces, etc.).

As it was mentioned above, all this suggests that it might be possible
to develop the classical differential geometry, including both the theory of
surfaces and of their transformations, as a mesh-refining limit of the dis-
crete constructions. On the other hand, the good quantitative properties of
approximations provided by the discrete differential geometry suggest that
they might be put at the basis of the practical numerical algorithms for
computations in differential geometry. However until recently there were no
rigorous mathematical results supporting this observation.

The first step in closing this gap was made in the paper [7] where a
geometric numerical scheme for a class of nonlinear hyperbolic equations was
developed and general convergence results were proved. We return to this
problem in Sect. 6, considering in particular the sine–Gordon equation and
discrete and smooth K-surfaces.

3 Equations on Quad-Graphs.
Integrability as Consistency

Traditionally, discrete integrable systems were considered for fields defined
on the Z

2 lattice. Having in mind geometric applications, it is natural to



Discrete Differential Geometry. Integrability as Consistency 89

generalize this setup to include distinguished vertices with different combi-
natorics, and moreover to consider graphs with various global properties. A
direct generalization of the Lax representation from the Z

2 lattice to more
general lattices leads to a concept of

3.1 Discrete Flat Connections on Graphs

Integrable systems on graphs can be defined as flat connections whose values
are in loop groups. More precisely, this notion includes the following compo-
nent elements:

• A cellular decomposition G of an oriented surface. The set of its vertices
will be denoted by V (G), the set of its edges will be denoted by E(G),
and the set of its faces will be denoted by F (G). For each edge, one of its
possible orientations is fixed.

• A loop group G[λ], whose elements are functions from C into some group
G. The complex argument, λ, of these functions is known in the theory of
integrable systems as the spectral parameter.

• A wave function Ψ : V (G) → G[λ], defined on the vertices of G.
• A collection of transition matrices, L : E(G) → G[λ], defined on the edges

of G.

It is supposed that for any oriented edge, e = (v1, v2) ∈ E(G), the values of
the wave functions at its ends are connected by

Ψ(v2, λ) = L(e, λ)Ψ(v1, λ). (1)

Therefore the following discrete zero-curvature condition is supposed to be
satisfied. Consider any closed contour consisting of a finite number of edges
of G,

e1 = (v1, v2), e2 = (v2, v3), . . . , en = (vn, v1).

Then

L(en, λ) · · ·L(e2, λ)L(e1, λ) = I. (2)

In particular, for any edge e = (v1, v2), if e−1 = (v2, v1), then

L(e−1, λ) =
(
L(e, λ)

)−1
. (3)

Actually, in applications the matrices L(e, λ) also depend on a point of
some set X (the phase-space of an integrable system), so that some ele-
ments x(e) ∈ X are attached to the edges e of G. In this case the discrete
zero-curvature condition (2) becomes equivalent to the collection of equa-
tions relating the fields x(e1), . . . , x(en) attached to the edges of each closed
contour. We say that this collection of equations admits a zero-curvature
representation.
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3.2 Quad-Graphs

Although one can, in principle, consider integrable systems in the sense of
the traditional definition of Sect. 3.1 on very different kinds of graph, one
should not go that far with the generalization.

As we have shown in [3], there is a special class of graph, called quad-
graphs, supporting the most fundamental properties of integrability theory.
This notion turns out to be a proper generalization of the Z

2 lattice as far as
integrability theory is concerned.

Definition 3.1. A cellular decomposition, G, of an oriented surface is called
a quad-graph, if all its faces are quadrilateral.

Here we mainly consider the local theory of integrable systems on quad-
graphs. Therefore, in order to avoid the discussion of some subtle boundary
and topological effects, we shall always suppose that the surface carrying the
quad-graph is a topological disk; no boundary effects will be considered.

Before we proceed to integrable systems, we would like to propose a con-
struction which, from an arbitrary cellular decomposition, produces a cer-
tain quad-graph. Towards this aim, we first recall the notion of the dual
graph, or, more precisely, of the dual cellular decomposition G∗. The vertices
in V (G∗) are in one-to-one correspondence with the faces in F (G) (actually,
they can be chosen to be certain points inside the corresponding faces, cf.
Fig. 4). Each e ∈ E(G) separates two faces in F (G), which in turn corre-
spond to two vertices in V (G∗). A path between these two vertices is then
declared to be an edge e∗ ∈ E(G∗) dual to e. Finally, the faces in F (G∗)
are in a one-to-one correspondence with the vertices in V (G). If v0 ∈ V (G),
and v1, . . . , vn ∈ V (G) are its neighbors connected with v0 by the edges
e1 = (v0, v1), . . . , en = (v0, vn) ∈ E(G), then the face in F (G∗) corresponding
to v0 is defined by its boundary, e∗

1 ∪ . . . ∪ e∗
n (cf. Fig. 5).

Fig. 4. The vertex in V (G∗) dual to
the face in F (G).

Fig. 5. The face in F (G∗) dual to the
vertex in V (G).

Now we introduce a new complex, the double D, constructed from G,
G∗. The set of vertices of the double ,D, is V (D) = V (G) ∪ V (G∗). Each
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v1 v2

f1

f2

Fig. 6. A face of the double

pair of dual edges, say e = (v1, v2) and e∗ = (f1, f2), as in Fig. 6, defines a
quadrilateral (v1, f1, v2, f2), and all these quadrilaterals constitute the faces
of the cell decomposition (quad-graph) D. Let us stress that the edges of D
belong neither to E(G) nor to E(G∗). See Fig. 6.

Quad-graphs D arising as doubles have the following property, the set
V (D) may be decomposed into two complementary halves, V (D) = V (G) ∪
V (G∗) (“black” and “white” vertices), such that the endpoints of each edge
of E(D) are of different colors. One can always color a quad-graph this way
if it has no non-trivial periods, i.e., it comes from the cellular decomposition
G of a disk.

Conversely, any such quad-graph D may be considered to be the double
of some cellular decomposition G. The edges in E(G), say, are defined then as
paths joining two “black” vertices of each face in F (D). (This decomposition
of V (D) into V (G) and V (G∗) is unique, up to interchanging the roles of G
and G∗.)

Again, since we are mainly interested in the local theory, we avoid global
considerations. Therefore we always assume (without mentioning it explicitly)
that our quad-graphs are cellular decompositions of a disk, thus G and G∗

may be well-defined.

For the integrable systems on quad-graphs we consider here the fields z
attached to the vertices of the graph1. They are subject to an equation

Q(z1, z2, z3, z4) = 0, (4)

relating four fields residing on the four vertices of an arbitrary face in F (D).
Moreover, in all our examples it will be possible to solve equation (4) uniquely
for any field z1, . . . , z4 in terms of the other three.

1 The systems with the fields on the edges are also very interesting, and are related
to the Yang-Baxter maps (see Sect. 5.1).
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z1 z3

z2

z4

β

β

α

α

Fig. 7. A face of the labelled quad-graph

The Hirota equation,

z4
z2

=
αz3 − βz1
βz3 − αz1

, (5)

is such an example. We observe that the equation carries parameters α and
β which can be naturally associated to the edges, and the opposite edges
of an elementary quadrilateral carry equal parameters (see Fig. 7). At this
point we specify the setup further. The example illustrated in Fig. 7 can be
naturally generalized. An integrable system on a quad-graph,

Q(z1, z2, z3, z4;α, β) = 0 (6)

is parametrized by a function on the set of edges, E(D), of the quad-graph
which takes equal values on the opposite edges of any elementary quadrilat-
eral. We call such a function a labelling of the quad-graph. Obviously, there
exist infinitely many labellings, all of which may be constructed as follows:
choose some value of α for an arbitrary edge of D, and assign consecutively
the same value to all “parallel” edges along a strip of quadrilaterals, according
to the definition of labelling. After that, take an arbitrary edge still without
a label, choose some value of α for it, and extend the same value along the
corresponding strip of quadrilaterals. Proceed similarly, till all edges of D are
exhausted.

An elementary quadrilateral of a quad-graph can be viewed from various
directions. This implies that system (6) is well defined on a general quad-
graph only if it possesses the rhombic symmetry, i.e., each of the equations

Q(z1, z4, z3, z2;β, α) = 0, Q(z3, z2, z1, z4;β, α) = 0

is equivalent to (6).

3.3 3D-Consistency

Now we introduce a crucial property of discrete integrable systems which will
be taken to be characteristic.
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Fig. 8. Elementary cube

Let us extend the planar quad-graph D into the third dimension. Formally
speaking, we consider a second copy D′ of D, and add edges connecting each
vertex v ∈ V (D) with its copy v′ ∈ V (D′). In this way we obtain a “3–
dimensional quad-graph”, D, whose set of vertices is

V (D) = V (D) ∪ V (D′),

and whose set of edges is

E(D) = E(D) ∪ E(D′) ∪ {(v, v′) : v ∈ V (D)}.

Elementary building blocks of D are “cubes” as shown in Fig. 8. Clearly, we
can still consistently subdivide the vertices of D into “black” and “white”
vertices, so that the vertices connected by an edge have opposite colors. In
the same way the labelling on E(D) is extended to a labelling of E(D). The
opposite edges of all elementary faces (including the “vertical” ones) carry
equal parameters (see Fig. 8).

Now, the fundamental property of discrete integrable systems mentioned
above is the three–dimensional consistency.

Definition 3.2. Consider an elementary cube, as in Fig. 8. Suppose that the
values of the field, z, z1, z2, and z3, are given at a vertex and at its three
neighbors . Then equation (6) uniquely determines the values z12, z23, and
z13. After that the same equation (6) produces three a priori different values
for the value of the field z123 at the eighth vertex of the cube, coming from the
faces [z1, z12, z123, z13], [z2, z12, z123, z23] and [z3, z13, z123, z23], respectively.
Equation (6) is called 3D-consistent if these three values for z123 coincide for
any choice of the initial data z, z1, z2, z3.

Proposition 3.1. The Hirota equation,

z12
z

=
α2z1 − α1z2
α1z1 − α2z2

,

is 3D-consistent.
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This can be verified by a straightforward computation. For the field at the
eighth vertex of the cube one obtains

z123 =
(l21 − l12)z1z2 + (l32 − l23)z2z3 + (l13 − l31)z1z3

(l23 − l32)z1 + (l31 − l13)z2 + (l12 − l21)z3
, (7)

where lij =
αi
αj

.

In [3] and [4] we suggested treating the consistency property (in the sense
of Definition 3.2) as the characteristic one for discrete integrable systems.
Thus we come to the central definition of these lectures.

Definition 3.3. A discrete equation is called integrable if it is consistent.

Note that this definition of the integrability is conceptually transparent
and algorithmic: the integrability of any equation can be easily verified.

3.4 Zero-Curvature Representation from the 3D-Consistency

We show that our Definition 3.3 of discrete integrable systems is more funda-
mental then the traditional one discussed in Sect. 3.1. Recall that normally
the problem of finding a zero-curvature representation for a given system is
a difficult task whose successful solution is only possible with a large amount
of luck in the guess-work. We show that finding the zero-curvature represen-
tation for a given discrete system with the consistency property becomes an
algorithmically solvable problem, and we demonstrate how the corresponding
flat connection in a loop group can be derived from the equation.

We get rid of our symmetric notations and consider the system

Q(z1, z2, z3, z4;α, β) = 0 (8)

on the base face of the cube, and choose the vertical direction to carry an
additional (spectral) parameter λ (see Fig. 9).

z1

ψ1

z2

ψ2

z3

ψ3

z4

ψ4

αβ

α

β

β

α

β

α

λ λ

λ λ

Fig. 9. Zero-curvature representation from the consistency
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Assume that the left-hand-side of (8) is affine in each zk. This gives z4
as a fractional–linear (Möbius) transformation of z2 with the coefficients de-
pending on z1 and z3 and on α and β. One can of course freely interchange
z1, . . . , z4 in this statement. Now consider the equations on the vertical faces
of the cube in Fig. 9. One obtains ψ2 as a Möbius transformation of ψ1

ψ2 = L(z2, z1;α, λ)[ψ1],

with coefficients depending on the fields z2 and z1, on the parameter α in
system (8) and on the additional parameter λ, which is to be treated as
the spectral parameter. Mapping L(z2, z1;α, λ) is associated to the oriented
edge, (z1, z2). For the reverse edge, (z2, z1), one obviously obtains the inverse
transformation

L(z1, z2;α, λ) = L(z2, z1;α, λ)−1.

Going once around the horizontal face of the cube one obtains

ψ1 = L(z1, z4;β, λ)L(z4, z3;α, λ)L(z3, z2;β, λ)L(z2, z1;α, λ)[ψ1].

The composed Möbius transformation in the right-hand-side is the identity
because of the arbitrariness of ψ1.

Using the matrix notation for the action of the Möbius transformations,

az + b

cz + d
= L[z], where L =

(
a b
c d

)
,

and normalizing these matrices (for example by the condition detL = 1), we
derive the zero-curvature representation,

L(z1, z4;β, λ)L(z4, z3;α, λ)L(z3, z2;β, λ)L(z2, z1;α, λ) = I, (9)

for (8), where the L’s are elements of the corresponding loop group. Equiva-
lently, (9) can be written as

L(z3, z2;β, λ)L(z2, z1;α, λ) = L(z3, z4;α, λ)L(z4, z1;β, λ), (10)

where one has a little more freedom in normalizations.
Let us apply this derivation method to the Hirota equation. Equation (5)

can be written as Q = 0 with

Q(z1, z2, z3, z4;α, β) = α(z2z3 + z1z4) − β(z3z4 + z1z2).

Performing the computations as above in this case we derive the zero-
curvature representation for the Hirota equation (10) with the matrices

L(z2, z1, α, λ) =



α −λz2
λ

z1
−αz2

z1


 . (11)
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Another important example is the cross-ratio equation,

(z1 − z2)(z3 − z4)
(z2 − z3)(z4 − z1)

=
α

β
. (12)

It is easy to show that it is 3D-consistent. Written in the form

α(z2 − z3)(z4 − z1) − β(z1 − z2)(z3 − z4) = 0,

it obviously belongs to the class discussed in this section. By direct compu-
tation we obtain the L-matrices,

L̃(z2, z1, α, λ) =




1 +
λαz2

(z1 − z2)
− λαz1z2

(z1 − z2)
λα

(z1 − z2)
1 − λαz1

(z1 − z2)


 ,

which are gauge-equivalent to

L(z2, z1, α, λ) =

(
1 z1 − z2
α

λ(z1 − z2)
1

)
. (13)

4 Classification

We have seen that the idea of consistency is at the core of the integrability
theory and may be even suggested as a definition of integrability.

Here we give a further application of the consistency approach. We show
that it provides an effective tool for finding and classifying all integrable
systems in certain classes of equations. In the previous section we presented
two important systems which belong to our theory. Here we complete the list
of the examples, classifying all integrable (in the sense of Definition 3.3) one-
field equations on quad-graphs satisfying some natural symmetry conditions.

We consider equations

Q(x, u, v, y;α, β) = 0, (14)

on quad-graphs. Equations are associated to elementary quadrilaterals, the
fields x, u, v, y ∈ C are assigned to the four vertices of the quadrilateral, and
the parameters α, β ∈ C are assigned to its edges, as shown in Fig. 10.

We now list more precisely the assumptions under which we classify the
equations.

1) Consistency. Equation (14) is integrable (in the sense that it is 3D-
consistent). As explained in the previous section, this property means that
this equation may be consistently embedded in a three–dimensional lattice,
so that the same equations hold for all six faces of any elementary cube, as
in Fig. 8.
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x u

yv

α

α

β β

Fig. 10. An elementary quadrilateral; fields are assigned to vertices

Further, we assume that equations (14) can be uniquely solved for any

one of their arguments, x, u, v, y ∈ ĈP
1. Therefore, the solutions have to

be fractional–linear in each of their arguments. This naturally leads to the
following condition.

2) Linearity. The function Q(x, u, v, y;α, β) is linear in each argument
(affine linear):

Q(x, u, v, y;α, β) = a1xuvy + · · · + a16, (15)

where coefficients ai depend on α and β.

Third, we are interested in equations on quad-graphs of arbitrary com-
binatorics, hence it will be natural to assume that all variables involved in
equations (14) are on equal footing. Therefore, our next assumption reads as
follows.

3) Symmetry. Equation (14) is invariant under the group D4 of the
symmetries of the square (Fig. 11), that is, function Q satisfies the symmetry
properties

Q(x, u, v, y;α, β) = εQ(x, v, u, y;β, α) = σQ(u, x, y, v;α, β) (16)

with ε, σ = ±1. Of course, due to symmetries (16), not all coefficients ai in
(15) are independent.

Finally, it is worth looking more attentively at expression (7) for the
eighth point in the cube for the Hirota equation and at the similar formula

v y

x u

β β

α

α

Fig. 11. D4 symmetry
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for the cross-ratio equation

z123 =
(α1 − α2)z1z2 + (α3 − α1)z3z1 + (α2 − α3)z2z3

(α3 − α2)z1 + (α1 − α3)z2 + (α2 − α1)z3
. (17)

Looking ahead, we mention a very amazing and unexpected feature of
these expressions: value z123 actually depends on z1, z2, z3 only, and does
not depend on z. In other words, four black points in Fig. 8 (the vertices of
a tetrahedron) are related by a well-defined equation. This property, being
rather strange at first glance, actually is valid not only in this but in all
known nontrivial examples. We take it as an additional assumption in our
solution of the classification problem.

4) Tetrahedron Property. Function z123 = f(z, z1, z2, z3;α1, α2, α3),
existing due to the 3D-consistency, actually does not depend on variable z,
that is, fz = 0.

Under the tetrahedron property we can paint the vertices of the cube
black and white, as in Fig. 8, and the vertices of each of two tetrahedrons
satisfy an equation of the form,

Q̂(z1, z2, z3, z123;α1, α2, α3) = 0. (18)

It is easy to see that under assumption 2) (linearity) function Q̂ may be also
taken to be linear in each argument. (Clearly, formulas (7) and (17) may also
be written in such a form.)

We identify equations related by certain natural transformations. First,
acting simultaneously on all variables z by one and the same Möbius trans-
formation does not violate our three assumptions. Second, the same holds for
the simultaneous point change of all parameters, α �→ ϕ(α).

Theorem 4.1. [4] Up to common Möbius transformations of variables z
and point transformations of the parameters α, the 3D-consistent quad-graph
equations (14) with the properties 2), 3), 4) (linearity, symmetry and the
tetrahedron property) are exhausted by the following three lists Q, H, and A,
where x = z, u = z1, v = z2, y = z12, α = α1, β = α2:

List Q

(Q1)α(x− v)(u− y) − β(x− u)(v − y) + δ2αβ(α− β) = 0,

(Q2)α(x− v)(u− y) − β(x− u)(v − y) + αβ(α− β)(x+ u+ v + y)
−αβ(α− β)(α2 − αβ + β2) = 0,

(Q3)(β2 − α2)(xy + uv) + β(α2 − 1)(xu+ vy) − α(β2 − 1)(xv + uy)
−δ2(α2 − β2)(α2 − 1)(β2 − 1)/(4αβ) = 0,

(Q4)a0xuvy + a1(xuv + uvy + vyx+ yxu) + a2(xy + uv) + ā2(xu+ vy)
+ã2(xv + uy) + a3(x+ u+ v + y) + a4 = 0,
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where the coefficients ai are expressed in terms of (α, a) and (β, b) with
a2 = r(α), b2 = r(β), r(x) = 4x3 − g2x− g3, by the following formulas:

a0 = a+ b, a1 = −βa− αb, a2 = β2a+ α2b,

ā2 =
ab(a+ b)
2(α− β)

+ β2a− (2α2 − g2
4

)b,

ã2 =
ab(a+ b)
2(β − α)

+ α2b− (2β2 − g2
4

)a,

a3 =
g3
2
a0 −

g2
4
a1, a4 =

g2
2

16
a0 − g3a1.

List H:

(H1)(x− y)(u− v) + β − α = 0,
(H2)(x− y)(u− v) + (β − α)(x+ u+ v + y) + β2 − α2 = 0,
(H3)α(xu+ vy) − β(xv + uy) + δ(α2 − β2) = 0.

List A:

(A1)α(x+ v)(u+ y) − β(x+ u)(v + y) − δ2αβ(α− β) = 0,
(A2)(β2 − α2)(xuvy + 1) + β(α2 − 1)(xv + uy) − α(β2 − 1)(xu+ vy) = 0.

The proof of this theorem is rather involved and is given in [4].

Remarks 1) List A can be omitted by allowing an extended group of Möbius
transformations, which act on the variables x, y differently than on u, v, white
and black sublattices on Figs. 10 and 8. In this manner (A1) is related to
(Q1) by the change u→ −u, v → −v, and (A2) is related to (Q3) with δ = 0
by the change u→ 1/u, v → 1/v. So, really independent equations are given
by the lists Q and H.

2) In both lists, Q and H, the last equations are the most general ones.
This means that (Q1)–(Q3) and (H1), (H2) may be obtained from (Q4) and
(H3), respectively, by certain degenerations and/or limit procedures. So, one
might be tempted to shorten these lists to one item each. However, on the one
hand, these limit procedures are outside our group of admissible (Möbius)
transformations, and, on the other, in many situations the “degenerate” equa-
tions (Q1)–(Q3) and (H1), (H2) are of interest in themselves. This resembles
the situation with the six Painlevé equations and the coalescences connecting
them.

3) Parameter δ in (Q1), (Q3), (H3) can be scaled away, so that one can
assume without loss of generality that δ = 0 or δ = 1.

4) It is natural to set in (Q4) (α, a) = (℘(A), ℘′(A)) and, similarly, (β, b) =
(℘(B), ℘′(B)). So, this equation is actually parametrized by two points of
the elliptic curve µ2 = r(λ). The appearance of an elliptic curve in our
classification problem is by no means obvious from the beginning. If r has
multiple roots, the elliptic curve degenerates into a rational one, and (Q4)
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degenerates to one of the previous equations of list Q; for example, if g2 =
g3 = 0, then inversion x→ 1/x turns (Q4) into (Q2).

5) Note that the list contains the fundamental equations only. A discrete
equation which is derived from an equation with the consistency property
will usually lose this property.

5 Generalizations: Multidimensional
and Non-commutative (Quantum) Cases

5.1 Yang-Baxter Maps

As we mentioned, however, to assign fields to the vertices is not the only pos-
sibility. Another large class of 2–dimensional systems on quad-graphs consists
of those where the fields are assigned to the edges, see Fig. 12. In this situa-
tion it is natural to assume that each elementary quadrilateral carries a map
R : X 2 → X 2, where X is the space where the fields a and b take values,
so that (a2, b1) = R(a, b;α, β). The question of the three–dimensional consis-
tency of such maps is also legitimate and, moreover, has recently begun to
be studied. The corresponding property can be encoded in the formula

R23 ◦R13 ◦R12 = R12 ◦R13 ◦R23, (19)

where each Rij : X 3 → X 3 acts as the map R on the factors i and j of the
cartesian product X 3, and acts identically on the third factor. This equa-
tion should be understood as follows. The fields a and b are supposed to be
attached to the edges parallel to the 1st and the 2nd coordinate axes, respec-
tively. Additionally, consider the fields c attached to the edges parallel to the
3rd coordinate axis. Then the left-hand side of (19) corresponds to the chain
of maps along the three rear faces of the cube in Fig. 13,

(a, b) �→ (a2, b1), (a2, c) �→ (a23, c1), (b1, c1) �→ (b13, c12),

α

a

α

a2

β b1 βb

Fig. 12. An elementary quadrilat-
eral; both fields and labels are as-
signed to edges

a

a2

a3

a23

b
b1

b3b13

cc1

c2c12

Fig. 13. Three–dimensional consis-
tency; fields assigned to edges
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while its right-hand side corresponds to the chain of maps along the three
front faces of the cube,

(b, c) �→ (b3, c2), (a, c2) �→ (a3, c12), (a3, b3) �→ (a23, b13)

So (19) assures that the two ways of obtaining (a23, b13, c12) from the initial
data (a, b, c) lead to the same results. The maps with this property were
introduced by Drinfeld under the name of “set–theoretical solutions of the
Yang–Baxter equation”, an alternative name is “Yang–Baxter maps” used
by Veselov. Under some circumstances, systems with fields on vertices can be
regarded as systems with fields on edges or vice versa (this is the case, e.g.,
for systems (Q1), (Q3)δ=0, (H1), (H3)δ=0 of our list, for which the variables
X enter only in combinations like X −U for edges (x, u)), but in general the
two classes of systems should be considered to be different. The problem of
classifying Yang–Baxter maps, like the one achieved in the previous section,
has been recently solved in [5].

5.2 Four-Dimensional Consistency of Three-Dimensional Systems

The consistency principle can be obviously generalized to an arbitrary di-
mension. We say that

a d–dimensional discrete equation possesses the consistency property,
if it may be imposed in a consistent way on all d–dimensional sublat-
tices of a (d+ 1)–dimensional lattice.

In the three–dimensional context there are also a priori many kinds of
systems, according to where the fields are defined: on the vertices, on the
edges, or on the elementary squares of the cubic lattice.

Consider 3–dimensional systems with the fields at the vertices. In this
case each elementary cube carries just one equation,

Q(z, z1, z2, z3, z12, z23, z13, z123) = 0, (20)

relating the fields in all its vertices. Such an equation should be solvable
for any of its arguments in terms of the other seven arguments. The four–
dimensional consistency of such equations is defined in the obvious way.

• Starting with initial data z, zi (1 ≤ i ≤ 4), zij (1 ≤ i < j ≤ 4), equation
(20) allows us to determine all fields zijk (1 ≤ i < j < k ≤ 4) uniquely.
Then we have four different ways of finding z1234 corresponding to four 3–
dimensional cubic faces adjacent to the vertex z1234 of the four–dimensional
hypercube (Fig. 14). All four values actually coincide.

So, one can consistently impose equations (20) on all elementary cubes of
the three–dimensional cubical complex, which is a three–dimensional gener-
alization of the quad-graph. It is tempting to accept the four–dimensional
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z z1

z2
z3

z12

z13

z23 z123

z4 z14

z24

z34

z124

z134

z234 z1234

Fig. 14. Hypercube

consistency of equations of type (20) as the constructive definition of their
integrability. It is important to solve the correspondent classification problem.

Let us give here some examples. Consider the equation

(z1 − z3)(z2 − z123)
(z3 − z2)(z123 − z1)

=
(z − z13)(z12 − z23)
(z13 − z12)(z23 − z)

. (21)

It is not difficult to see that (21) admits as its symmetry group the group D8
of the cube. This equation can be uniquely solved for a field at an arbitrary
vertex of a 3–dimensional cube, provided the fields at the seven other vertices
are known.

The fundamental fact is:

Proposition 5.1. Equation (21) is four–dimensionally consistent.

A different factorization of the face variables into the vertex ones leads
to another remarkable three–dimensional system known as the discrete BKP
equation. For any solution x : Z

4 → C of (21), define a function τ : Z
4 → C

by the equations

τiτj
ττij

=
xij − x

xi − xj
, i < j. (22)

Equation (21) assures that this can be done in an essentially unique way (up
to initial data on the coordinate axes, whose influence is a trivial scaling of
the solution). On any 3–dimensional cube the function τ satisfies the discrete
BKP equation,

ττijk − τiτjk + τjτik − τkτij = 0, i < j < k. (23)

Proposition 5.2. Equation (23) is four–dimensionally consistent.
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Moreover, for the value τ1234 one finds a remarkable equation,

ττ1234 − τ12τ34 + τ13τ24 − τ23τ34 = 0, (24)

which essentially reproduces the discrete BKP equation. So τ1234 does not
actually depend on the values τi, 1 ≤ i ≤ 4. This can be considered to be an
analogue of the tetrahedron property of Sect. 4.

5.3 Noncommutative (Quantum) Cases

As it was shown in [6], the consistency approach works also in the noncommu-
tative case, where the participating fields live in an arbitrary associative (not
necessary commutative) algebra A (over the field K). It turns out that finding
the zero-curvature representation does not hinge on the particular algebra A
nor on prescribing some particular commutation rules for fields in the neigh-
boring vertices. The fact that some commutation relations are preserved by
the evolution is thus conceptually separate from the integrability.

As before, we deal with equations on quadrilaterals,

Q(x, u, v, y;α, β) = 0.

Now x, u, v, y ∈ A are the fields assigned to the four vertices of the quadri-
lateral, and α, β ∈ K are the parameters assigned to its edges.

We start our considerations with the following, more special equation,

yx−1 = fαβ(uv−1). (25)

(Here and below, any time we encounter the inverse x−1 of a non-zero el-
ement, x ∈ A, its existence is assumed.) We require that this equation do
not depend on how we regard the elementary quadrilateral (recall that we
consider equations on the quad-graphs). It is not difficult to see that this
implies the following symmetries:

fαβ(A) = fβα(A−1), (26)
fαβ(A−1) = (fαβ(A))−1, (27)
fβα(A) = f−1

αβ (A−1). (28)

In (28) f−1
αβ stands for the inverse function to fαβ , which has to be distin-

guished from the inversion in the algebra A in the formula (27).
All the conditions (26)–(28) are satisfied for the function which charac-

terizes the Hirota equation,

fαβ(A) =
1 − (β/α)A
(β/α) −A

. (29)
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The 3D-consistency condition for equation (25) is

fαjαk

(
fαiαj

(ziz−1
j )(fαiαk

(ziz−1
k ))−1

)
=

fαiαk

(
fαiαj

(ziz−1
j )(fαjαk

(zjz−1
k ))−1

)
zjz

−1
i .

Taking into account that fαβ actually depends only on β/α, we slightly abuse
the notations and write fαβ = fβ/α. Setting λ = αj/αi, µ = αk/αj , and
A = ziz

−1
j , B−1 = zjz

−1
k , and taking into account property (27), we rewrite

the above equation as

fµ

(
fλ(A)fλµ(BA−1)

)
= fλµ

(
fλ(A)fµ(B)

)
A−1. (30)

Proposition 5.3. The non–commutative Hirota equation is 3D-consistent.

To prove this theorem, one proves that function (29) satisfies this func-
tional equation for any λ, µ ∈ K and for any A,B ∈ A.

Alternatively, one proves the consistency by deriving the zero-curvature
representation. We show that the following two schemes for computing z123
lead to one and the same result:

• (z, z1, z2) �→ z12 , (z, z1, z3) �→ z13 , (z1, z12, z13) �→ z123 .
• (z, z1, z2) �→ z12 , (z, z2, z3) �→ z23 , (z2, z12, z23) �→ z123 .

The Hirota equation on face (z, z1, z13, z3),

z13z
−1 = fα3α1(z3z

−1
1 ),

can be written as a formula which gives z13 as a fractional–linear transfor-
mation of z3,

z13 = (α1z3 − α3z1)(α3z3 − α1z1)−1z = L(z1, z, α1, α3)[z3], (31)

where

L(z1, z, α1, α3) =
(

α1 −α3z1
α3z

−1 −α1z
−1z1

)
. (32)

We use here the notation which is common for Möbius transformations on C

represented as a linear action of the group GL(2,C). In the present case we
define the action of the group GL(2,A) on A by the formula

(
a b
c d

)
[z] = (az + b)(cz + d)−1, a, b, c, d, z ∈ A.

It is easy to see that this is indeed the left action of the group, provided that
the multiplication in GL(2,A) is defined by the natural formula

(
a′ b′

c′ d′

)(
a b
c d

)
=
(
a′a+ b′c a′b+ b′d
c′a+ d′c c′b+ d′d

)
.
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Absolutely similarly to (31), we find that

z23 = L(z2, z, α2, α3)[z3]. (33)

From (33) we derive, by a shift in the direction of the first coordinate axis,
the expression for z123 obtained by the first scheme above,

z123 = L(z12, z1, α2, α3)[z13], (34)

while from (31) we find the expression for z123 corresponding to the second
scheme,

z123 = L(z12, z2, α1, α3)[z23]. (35)

Substituting (31) and (33) on the right-hand sides of (34) and (35), respec-
tively, we represent the equality we want to demonstrate in the following
form,

L(z12, z1, α2, α3)L(z1, z, α1, α3)[z3]
= L(z12, z2, α1, α3)L(z2, z, α2, α3)[z3]. (36)

It is not difficult to prove that the stronger claim holds, namely that

L(z12, z1, α2, α3)L(z1, z, α1, α3) = L(z12, z2, α1, α3)L(z2, z, α2, α3). (37)

The last equation is nothing else but the zero-curvature condition for the
noncommutative Hirota equation.

Proposition 5.4. The Hirota equation admits a zero-curvature representa-
tion with matrices from the loop group GL(2,A)[λ]. The transition matrix
along the (oriented) edge (x, u) carrying the label α is determined by

L(u, x, α;λ) =
(

α −λu
λx−1 −αx−1u

)
. (38)

Quite similar claims (3D-consistency, derivation of the zero-curvature rep-
resentation) hold for the non–commutative cross-ratio equation,

(x− u)(u− y)−1(y − v)(v − x)−1 =
α

β
.

6 Smooth Theory from the Discrete One

Let us return to smooth and discrete surfaces with constant negative Gaussian
curvature. The philosophy of discrete differential geometry was explained in
Sect. 2. Surfaces and their transformations are obtained as a special limit of a
discrete master-theory. The latter treats the corresponding discrete surfaces
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and their transformations in an absolutely symmetric way. This is possible
because they are merged into multidimensional nets such that all their sublat-
tices have the same geometric properties. The possibility of this multidimen-
sional extension results in the permutability of the corresponding difference
equations characterizing the geometry.

Let us recall the analytic description of smooth and discrete K-surfaces.
Let F be a K-surface parametrized by its asymtotic lines,

F : Ω(r) = [0, r] × [0, r] → R
3.

This means that the vectors ∂xF , ∂yF , ∂2
xF and ∂2

yF are orthogonal to the
normal vector N : Ω(r) → S2. Reparametrizing the asymptotic lines, if
necessary, we assume that |∂xF | = 1 and |∂yF | = 1. Angle φ = φ(x, y)
between the vectors ∂xF , and ∂yF satisfies the sine–Gordon equation,

∂x∂yφ = sinφ. (39)

Moreover, a K-surface is determined by a solution to (39) essentially uniquely.
The corresponding construction is as follows. Consider the matrices U and
V defined by the formulas

U(a;λ) =
i

2

(
a −λ
−λ −a

)
, (40)

V (b;λ) =
i

2

(
0 λ−1 exp(ib)

λ−1 exp(−ib) 0

)
, (41)

taking values in the twisted loop algebra,

g[λ] = {ξ : R∗ → su(2) : ξ(−λ) = σ3ξ(λ)σ3}, σ3 =
(

1 0
0 −1

)
.

Suppose now that a and b are real-valued functions on Ω(r). Then the zero-
curvature condition,

∂yU − ∂xV + [U, V ] = 0, (42)

is satisfied identically in λ, if and only if (a, b) satisfy the system

∂ya = sin b, ∂xb = a, (43)

or, in other words, if a = ∂xφ and b = φ, where φ is a solution of (39). Given
a solution φ, that is, a pair of matrices (40), (41) satisfying (42), the following
system of linear differential equations is uniquely solvable,

∂xΦ = UΦ, ∂yΦ = V Φ, Φ(0, 0;λ) = 1. (44)
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Here Φ : Ω(r) �→ G[λ] takes values in the twisted loop group,

G[λ] = {Ξ : R∗ → SU(2) : Ξ(−λ) = σ3Ξ(λ)σ3}.

The solution Φ(x, y;λ) yields the immersion F (x, y) by the Sym formula,

F (x, y) =
(
2λΦ(x, y;λ)−1∂λΦ(x, y;λ)

) ∣∣∣
λ=1

. (45)

(Here the canonical identification of su(2) with R
3 is used.) Moreover, the

right-hand side of (45) at values of λ different from λ = 1 determines a family
of immersions, Fλ : Ω(r) → R

3, all of which are K-surfaces parametrized by
asymptotic lines. These surfaces Fλ constitute the so-called associated family
of F .

Now we turn to the analytic description of discrete K-surfaces. Let ε be
a discretization parameter, and we introduce discrete domains,

Ωε(r) = [0, r]ε × [0, r]ε ⊂ (εZ)2,

where [0, r]ε = [0, r] ∩ (εZ). Each Ωε(r) contains O(ε−2) grid points. Let F ε

be a discrete surface parametrized by asymptotic lines, i.e., an immersion,

F ε : Ωε(r) → R
3, (46)

such that for each (x, y) ∈ Ωε(r) the five points F ε(x, y), F ε(x ± ε, y), and
F ε(x, y ± ε) lie in a single plane, P(x, y). Let us introduce the difference
analogues of the partial derivatives,

δεxp(x, y) =
1
ε

(
p(x+ ε, y) − p(x, y)

)
, δεyp(x, y) =

1
ε

(
p(x, y + ε) − p(x, y)

)
.

(47)

It is required that all edges of the discrete surface F ε have the same length, ε�,
that is, |δεxF ε| = |δεyF ε| = �, and it turns out to be convenient to assume that
� = (1 + ε2/4)−1. The same relation we presented between K-surfaces and
solutions to the (classical) sine–Gordon equation (39) can be found between
discrete K-surfaces and solutions to the sine–Gordon equation in Hirota’s
discretization,

sin
1
4
(
φ(x+ ε, y + ε) − φ(x+ ε, y) − φ(x, y + ε) + φ(x, y)

)

=
ε2

4
sin

1
4
(
φ(x+ ε, y + ε) + φ(x+ ε, y) + φ(x, y + ε) + φ(x, y)

)
. (48)

Consider the matrices Uε, Vε defined by the formulas

Uε(a;λ) = (1 + ε2λ2/4)−1/2
(

exp(iεa/2) −iελ/2
−iελ/2 exp(−iεa/2)

)
, (49)

Vε(b;λ) =(1 + ε2λ−2/4)−1/2
(

1 (iελ−1/2) exp(ib)
(iελ−1/2) exp(−ib) 1

)
.

(50)
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Let a and b be real-valued functions on Ωε(r), and consider the discrete
zero-curvature condition,

Uε(x, y + ε;λ) · Vε(x, y;λ) = Vε(x+ ε, y;λ) · Uε(x, y;λ), (51)

where Uε and Vε depend on (x, y) ∈ Ωε(r) by the dependence of a and b on
(x, y), respectively. A direct calculation shows that (51) is equivalent to the
system

δεya =
2
iε2

log
1 − (ε2/4) exp(−ib− iεa/2)
1 − (ε2/4) exp(ib+ iεa/2)

, δεxb = a+
ε

2
δεya, (52)

or, in other words, to equation (48) for the function φ defined by

a = δεxφ, b = φ+
ε

2
δεyφ. (53)

The formula (51) is the compatibility condition of the following system of
linear difference equations:

Ψε(x+ ε, y;λ) = Uε(x, y;λ)Ψε(x, y;λ),
Ψε(x, y + ε;λ) = Vε(x, y;λ)Ψε(x, y;λ), (54)

Ψε(0, 0;λ) = 1.

So any solution of (48) uniquely defines a matrix, Ψε : Ωε(r) → G[λ], satisfy-
ing (54). This can be used to finally construct the immersion by an analogue
of the Sym formula,

F ε(x, y) =
(
2λΨε(x, y;λ)−1∂λΨ

ε(x, y;λ)
) ∣∣∣
λ=1

. (55)

The geometric meaning of the function φ is the following. The angle between
edges F ε(x + ε, y) − F ε(x, y) and F ε(x, y + ε) − F ε(x, y) is equal to (φ(x +
ε, y) + φ(x, y + ε))/2; the angle between edges F ε(x, y + ε) − F ε(x, y) and
F ε(x− ε, y)−F ε(x, y) is equal to π− (φ(x, y+ ε) + φ(x− ε, y))/2; the angle
between edges F ε(x− ε, y)− F ε(x, y) and F ε(x, y− ε)− F ε(x, y) is equal to
(φ(x−ε, y)+φ(x, y−ε))/2; and the angle between edges F ε(x, y−ε)−F ε(x, y)
and F ε(x + ε, y) − F ε(x, y) is equal to π − (φ(x, y − ε) + φ(x + ε, y))/2. In
particular, the sum of these angles is 2π, so that the four neighboring vertices
of F ε(x, y) lie in one plane, as they should. Again, the right-hand side of
(55), at values of λ different from λ = 1 determines an associated family F ελ
of discrete K-surfaces parametrized by asymptotic lines.

Now we are prepared to state the approximation theorem for K-surfaces.

Theorem 6.1. Let a0 : [0, r] → R and b0 : [0, r] → S1 = R/(2πZ) be smooth
functions. Then

• there exists a unique K-surface parametrized by asymptotic lines, F :
Ω(r) → R

3 such that its characteristic angle, φ : Ω(r) → S1, satisfies

∂xφ(x, 0) = a0(x), φ(0, y) = b0(y), x, y ∈ [0, r], (56)
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• for any ε > 0 there exists a unique discrete K-surface F ε : Ωε(r) → R
3

such that its characteristic angle φε : Ωε(r) → S1 satisfies

φε(x+ ε, 0) − φε(x, 0) = εa0(x), φε(0, y + ε) + φε(0, y) = 2b0(y), (57)

for x, y ∈ [0, r − ε]ε,
• The inequality

sup
Ωε(r)

|F ε − F | ≤ Cε, (58)

where C does not depend on ε, is satisfied. Moreover, for a pair (m,n) of
nonnegative integers

sup
Ωε(r−kε)

|(δεx)m(δεy)
nF ε − ∂mx ∂

n
y F | → 0 as ε→ 0, (59)

• the estimates (58), (59) are satisfied, uniformly for λ ∈ [Λ−1, Λ] with any
Λ > 1, if one replaces, in these estimates, the immersions F , F ε by their
associated families, Fλ, F ελ, respectively.

The complete proof of this theorem and its generalizations for nonlinear
hyperbolic equations and their discretizations is presented in [7]. It is ac-
complished in two steps: first, the corresponding approximation results are
proven for the Goursat problems for the hyperbolic systems (52) and (43),
and then the approximation property is lifted to the frames Ψε, Φ and finally
to the surfaces F ε, F . The proof of the C∞-approximation goes along the
same lines.

Moreover, a stronger approximation result follows from the consistency
of the corresponding hyperbolic difference equations. As it was explained in
Sect. 2, considering K-nets of higher dimensions and the corresponding consis-
tent discrete hyperbolic systems, one obtains in the limit smooth K-surfaces
with their Bäcklund transforms. The approximation results of Theorem 6.1
hold true also in this case. Permutability of the classical Bäcklund transfor-
mations then also easily follows.
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Abstract. These lectures are devoted to discrete integrable Lagrangian models.
A large collection of integrable models is presented in the Lagrangian fashion, along
with their integrable discretizations: the Neumann system, the Garnier system,
three systems from the rigid-body dynamics (multidimensional versions of the Eu-
ler top, the Lagrange top, and the top in a quadratic potential), the Clebsch case of
the Kirchhoff equations for a rigid body in an ideal fluid, and certain lattice systems
of the Toda type. The presentation of examples is preceded by the relevant theo-
retical background material on Hamiltonian mechanics on Poisson and symplectic
manifolds, complete integrability and Lax representations, Lagrangian mechanics
with continuous and discrete time on general manifolds and, in particular, on Lie
groups.

1 Introduction

These lectures are devoted to discrete integrable Lagrangian models. 1

Though Hamiltonian mechanics on general Poisson manifolds is an extremely
powerful approach, it turns out that the majority of physically interesting
models may be better understood from the Lagrangian (variational) view-
point. Thus, we present here a large collection of integrable models in the
Lagrangian fashion, along with their integrable discretizations. The presen-
tation of numerous examples is preceded by some theoretical background
material (Sects. 2–11) on Hamiltonian mechanics on Poisson and symplectic
manifolds, complete integrability and Lax representations, Lagrangian me-
chanics with continuous and discrete time on general manifolds and, in par-
ticular, on Lie groups. The list of concrete examples includes: the Neumann
system, the Garnier system, three systems from the rigid-body dynamics
(multidimensional versions of the Euler top, the Lagrange top, and the top
in a quadratic potential), the Clebsch case of the Kirchhoff equations for a
rigid body in an ideal fluid, and certain lattice systems of the Toda type, all
of them along with integrable discretizations. All bibliographical remarks are
collected in the concluding section.

1 This is an updated and corrected version of selected sections from the book [50],
where all the proofs omitted here can be found. These sections are reproduced
by permission of Birkhäuser-Verlag, which is gratefully acknowledged.

Yu.B. Suris, Discrete Lagrangian Models, Lect. Notes Phys. 644, 111–184 (2004)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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2 Poisson Brackets and Hamiltonian Flows

In what follows we denote by F(P) the set of smooth real–valued functions
on a smooth manifold P, and by X(P) the set of vector fields on P. More
notational material is given in an Appendix to this section.

Definition 2.1. A Poisson bracket (or Poisson structure) on a man-
ifold P is a bilinear operation on the space F(P) of smooth functions on P
denoted by {·, ·} and possessing the following properties:

1. Skew–symmetry:

{F,G} = −{G,F} ∀F,G ∈ F(P) ;

2. Leibniz rule: {·, ·} is a derivation in each argument, i.e.

{FG,H} = {F,H}G+ F{G,H} ∀F,G,H ∈ F(P) ;

3. Jacobi identity:

{F, {G,H}} + {G, {H,F}} + {H, {F,G}} = 0 ∀F,G,H ∈ F(P) .

The pair
(
P, {·, ·}

)
is called a Poisson manifold.

This definition is the most direct approach to the notion of a Hamiltonian
flow. Since any derivation on F(P) is represented by a vector field, we accept
the following definition.

Definition 2.2. Let
(
P, {·, ·}

)
be a Poisson manifold. A Hamiltonian vec-

tor field XH corresponding to the function H ∈ F(P) is the unique vector
field on P satisfying

XH · F = {H,F} ∀F ∈ F(P) .

The function H is called a Hamilton function of XH . The flow, ϕt : P →
P, of the Hamiltonian vector field XH is called the Hamiltonian flow of
the Hamilton function H. Another notation for XH is {H, ·}.

From the definition above the following statement follows immediately.

Proposition 2.1. The map H → XH from F(P) to X(P) is a Lie algebra
homomorphism, i.e.,

[XH1 , XH2 ] = X{H1,H2} ∀H1, H2 ∈ F(P) .

Corollary. Let ϕt be the Hamiltonian flow of XH , and ψt be the Hamiltonian
flow of XF . If {H,F} = 0, then the flows ϕt, ψt commute,
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ϕt · ψs = ψs · ϕt ∀t, s ∈ R .

One says that the functions H and F are in involution with respect to
the bracket {·, ·} if {H,F} = 0. So, two Hamiltonian flows commute if and
only if their Hamilton functions are in involution. Another property of invo-
lutive functions is expressed by the following proposition which is a direct
consequence of the definitions.

Proposition 2.2. Let ϕt be a Hamiltonian flow with the Hamilton function
H. Then

H ◦ ϕt = H ,

and

d

dt
(F ◦ ϕt) = {H,F ◦ ϕt} .

In particular, a function F is an integral of motion of the flow ϕt if and
only if {H,F} = 0, that is, if H and F are in involution; the Hamilton
function H itself is always an integral of motion of ϕt.

The most important property of the Hamiltonian flows is that each of the
maps constituting such flow preserves Poisson brackets.

Definition 2.3. Let
(
P, {·, ·}P

)
and

(
M, {·, ·}M

)
be two Poisson mani-

folds, and let ϕ : P → M be a smooth map. It is called a Poisson map
if

{F,G}M ◦ ϕ = {F ◦ ϕ,G ◦ ϕ}P ∀F,G ∈ F(M) .

Theorem 2.1. If ϕt : P → P is a Hamiltonian flow on P, then for each
t ∈ R the map ϕt is Poisson.

Appendix: Gradients, Vector Fields, and Other Notations

Gradients of functions on vector spaces and on manifolds. If V is a vector
space, and f ∈ F(V ) is a smooth function, then the gradient ∇f : V → V ∗ is
defined via the formula

〈∇f(x), y〉 =
d

dε
f(x+ εy)

∣
∣
∣
∣
ε=0

, ∀x, y ∈ V .

Similarly, for a function f ∈ F(M) on a smooth manifold M, its gradient ∇f :
M → T ∗M is defined in the following way. Let Q ∈ M; then ∇f(Q) is an element
of T ∗

QM satisfying

〈∇f(Q), Q̇〉 =
d

dε
f(Q(ε))

∣
∣
∣
∣
ε=0

∀Q̇ ∈ TQM ,
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where Q(ε) stands for an arbitrary curve in M through Q(0) = Q with the tangent
vector Q̇(0) = Q̇.

Vector Fields. A vector field X on a manifold M is a map X : M → TM such
that X(Q) ∈ TQM for any Q ∈ M. The set of all vector fields on M is denoted by
X(M).

The flow of the vector fieldX is the one–parameter family of maps ϕt : M → M
such that t → ϕt(Q) is the integral curve of X with the initial condition Q, i.e.,

d

dt
ϕt(Q) = X(ϕt(Q)) , ϕ0(Q) = Q .

The Lie derivative X · F of a function F ∈ F(M) along the vector field X ∈
X(M) is defined as

(X · F )(Q) =
d

dt
F (ϕt(Q))

∣
∣
∣
∣
t=0

= 〈∇F (Q), X(Q)〉 .

In local coordinates qj ,

X · F =
∑

j

Xj
∂F

∂qj
.

The map F → X · F is a derivation, and any derivation on F(M) is generated by
some vector field. So, X ∈ X(M) may be identified with a derivation written in
local coordinates as

X =
∑

j

Xj
∂

∂qj
.

In particular, for any two vector fields X,Y ∈ X(M), the following expression
defines a derivation on F(M),

F → X · (Y · F ) − Y · (X · F ) .

The corresponding vector field is denoted [X,Y ] and is called the Jacobi–Lie bracket
of the vector fields X,Y . In local coordinates:

[X,Y ]j =
∑

i

(

Xi
∂Yj

∂qi
− Yi

∂Xj

∂qi

)

.

If ϕt, ψt are the flows of the vector fields X, Y , respectively, then the necessary and
sufficient condition for these flows to commute is the vanishing of the Jacobi–Lie
bracket of X, Y , i.e.,

ϕt ◦ ψs = ψs ◦ ϕt ∀t, s ∈ R ⇔ [X,Y ] = 0 .
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3 Symplectic Manifolds

A somewhat more traditional approach to Hamiltonian mechanics is based
on another choice of the fundamental structure, namely that of a symplectic
manifold.

Definition 3.1. A symplectic structure on a manifold P is a nondegener-
ate closed two–form Ω on P. The pair (P, Ω) is called a symplectic man-
ifold.

Actually, as we shall see, this structure is a particular case of the Pois-
son bracket structure. One can immediately define Hamiltonian vector fields
with respect to a symplectic structure. The following definition is parallel to
Definition 2.2.

Definition 3.2. Let (P, Ω) be a symplectic manifold. A Hamiltonian vec-
tor field XH corresponding to the function H ∈ F(P), is the unique vector
field on P satisfying

Ω(ξ,XH(Q)) = 〈∇H(Q), ξ〉 ∀ξ ∈ TQP .

H is called a Hamilton function of XH . The flow ϕt : P → P of the
Hamiltonian vector field XH is called the Hamiltonian flow of the Hamilton
function H.

Actually, behind this definition the following construction is hidden. A
symplectic structure on a manifold yields a vector bundle isomorphism be-
tween T ∗P and TP. Indeed, to any vector η ∈ TQP there corresponds a
one–form, ωη ∈ T ∗

QP, defined as

ωη(ξ) = Ω(ξ, η) ∀ξ ∈ TQP .

It is easy to see that the correspondence η → ωη is an isomorphism between
TQP and T ∗

QP. Denote the inverse isomorphism by J : T ∗
QP → TQP. Then

Definition 3.2 of a Hamiltonian vector field may be represented as

XH = J (∇H) . (1)

At any point Q ∈ P, the tangent space TQP is spanned by the Hamiltonian
vector fields at the point Q.

Definition 3.3. Let (P1, Ω1) and (P2, Ω2) be two symplectic manifolds. A
smooth map ϕ : P1 → P2 is called symplectic if the pull–back of the form
Ω2 with respect to ϕ coincides with Ω1, i.e., if

Ω1(ξ, η) = Ω2(TQϕ(ξ), TQϕ(η)) ,

the form Ω1 on the left-hand side being evaluated at in an arbitrary point Q ∈
P1, while the form Ω2 on the right-hand side is evaluated at the corresponding
point ϕ(Q) ∈ P2.
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Hamiltonian flows on symplectic manifolds consist of symplectic maps.
This is their characteristic property.

Theorem 3.1. The flow ϕt of a vector field X ∈ X(P) on a symplectic
manifold

(
P, Ω

)
consists of symplectic maps if and only if this field is lo-

cally Hamiltonian, i.e. if there exists locally a function H ∈ F(P) such that
X = XH = J (∇H).

Finally, let us show how to include symplectic Hamiltonian mechanics
into the Poisson bracket framework.

Theorem 3.2. Let (P, Ω) be a symplectic manifold. Then it is a Poisson
manifold if one defines a Poisson bracket by the following formula,

{F,G} = Ω(XF , XG) = Ω(J (∇F ),J (∇G)) . (2)

For an arbitrary function F ∈ F(P), by (1) and Definition 3.2, the fol-
lowing relation is satisfied,

XH · F = 〈∇F,J (∇H)〉 = Ω(J (∇H), XF ) .

Definition (2) allows us to rewrite the last formula as

XH · F = {H,F} ,

assuring the consistency of our present notations with those of Sect. 2.

Having given an intrinsic definition of symplectic manifolds, we can now
characterize them as a subclass of Poisson manifolds. Let

(
P, {·, ·}

)
be a

d–dimensional Poisson manifold. Let Q ∈ P, and consider local coordinates
x1, . . . , xd in the neighborhood of Q. The skew–symmetric d× d matrix

Akj = {xk, xj} (3)

is a coordinate representation of an intrinsic object called the Poisson ten-
sor. We have

{F,G} =
d∑

k,j=1

Akj
∂F

∂xk

∂G

∂xj
∀F,G ∈ F(P) .

Definition 3.4. The rank of the matrix (Akj)dk,j=1 is called the rank of the
Poisson structure at the point P .

Proposition 3.1. A Poisson manifold
(
P, {·, ·}

)
is symplectic if the rank of

the Poisson structure is everywhere equal to the dimension of P.
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Since the matrix A is skew–symmetric, it can have a full rank only if
d is even. Hence the dimension of a symplectic manifold is always an even
number. We now give two important examples of symplectic manifolds.

Example 1: Constant symplectic structure on a vector space.
Any non–degenerate, skew–symmetric bilinear form on an even–dimensional
vector space V defines a symplectic structure on V . It can be shown that
by a linear change of variables this structure may be transformed into the
following canonical form. Let V = R

2N (x,p), where x = (x1, . . . , xN )T,
p = (p1, . . . , pN )T. The canonical skew–symmetric bilinear form on V is

Ω((x1,p1), (x2,p2)) = 〈p1,x2〉 − 〈p2,x1〉 ,

where 〈·, ·〉 is the usual Euclidean scalar product on R
N . Another way of

writing this is

Ω =
N∑
k=1

dpk ∧ dxk .

The corresponding Poisson bracket is defined as

{F,G} =
N∑
k=1

(
∂F

∂pk

∂G

∂xk
− ∂F

∂xk

∂G

∂pk

)
. (4)

Another way to define this Poisson bracket is to give its values for all pairs
of coordinate functions,

{xk, xj} = {pk, pj} = 0 , {pk, xj} = δkj . (5)

We call this symplectic manifold the canonical phase space, and the co-
ordinates (x, p) on this space the canonically conjugate coordinates.

Example 2: The symplectic structure on a cotangent bundle.
The cotangent bundle T ∗P of any smooth manifold P carries a natural struc-
ture of a symplectic manifold. To define canonically conjugate coordinates on
T ∗P, let {qj}Nj=1 be local coordinates on P in the neighborhood of a point
Q ∈ P. They define local coordinates {qj , q̇j}Nj=1 in the neighborhood of a
point (Q, Q̇) ∈ TP. Now the canonical local coordinates {qj , pj}Nj=1 in the
neighborhood of a point (Q,Π) ∈ T ∗P are defined by the relation

〈Π, Q̇〉 =
N∑
k=1

pk q̇k .

The Poisson bracket on T ∗P, corresponding to the standard symplectic struc-
ture, is given in these local coordinates by (4).
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4 Poisson Reduction

We will discuss a general construction for producing new Poisson manifolds
with the help of symmetry considerations. The simplest framework for the
Poisson reduction is the following one. Let P be a smooth manifold, let G be
a Lie group, and let Φ : G×P → P be a (left) group action of G on P. We
write it as Φg(Q) for g ∈ G and Q ∈ P. The axioms of a group action are the
following:

• Φe(Q) = Q for all Q ∈ P; here e is the unit element of the group G;
• Φg1(Φg2(Q)) = Φg1g2(Q) for g1, g2 ∈ G and Q ∈ P.

Observe that in the infinitesimal limit the action of one–parameter sub-
groups of G define vector fields φξ ∈ X(P) called the infinitesimal gener-
ators of the action Φ,

φξ(Q) =
d

dε

∣∣∣∣
ε=0

Φexp(εξ)(Q) , ξ ∈ g . (6)

Here g stands for the Lie algebra of the Lie group G.
A group action defines an equivalence relation on P. For Q1, Q2 ∈ P we

write Q1 � Q2, if there exists g ∈ G such that Φg(Q1) = Q2. The equivalence
classes of this relation are the orbits of the action Φ, i.e., the sets

OQ = {Φg(Q) : g ∈ G} ⊂ P .

The set of orbits, denoted by P/ �, or else by P/G, and called sometimes
the orbit space, carries a natural topology. Namely, define π : P → P/G
by π(Q) = OQ, and declare U ⊂ P/G to be open if π−1(U) is an open set
in P. Under some additional conditions on the action Φ, the orbit space is
a smooth manifold. For example, it is so if the action is free (has no fixed
points) and proper. We shall always suppose that P/G is a smooth manifold.

Theorem 4.1. Let
(
P, {·, ·}

)
be a Poisson manifold. Suppose that each map

Φg : P → P is Poisson. Then there exists a unique Poisson structure on P/G
such that π is a Poisson map.

5 Complete Integrability

The key notion for these lectures is the integrability of a given Hamiltonian
system. Among many existing definitions of integrability, our presentation
will be based on the notion of the complete integrability à la Liouville–Arnold.
The corresponding theorem tells how many integrals of motion assure inte-
grability of a given Hamiltonian system, and describes the motion on the
common level set of these integrals.
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Theorem 5.1. (a) Let
(
P, {·, ·}P

)
be a 2N–dimensional symplectic mani-

fold. Suppose that there exist N functions F1, . . . , FN ∈ F(P) such that

• F1, . . . , FN are functionally independent, i.e., the gradients ∇Fk are lin-
early independent everywhere on P;

• F1, . . . , FN are in involution:

{Fk, Fj} = 0 1 ≤ k, j ≤ N .

Let T be a connected component of a common level set
{
Q ∈ P : Fk(Q) = ck, k = 1, . . . , N

}
.

Then T is diffeomorphic to T
d × R

N−d for some 0 ≤ d ≤ N . In particular,
if T is compact, it is necessarily diffeomorphic to T

N .
(b) If T is compact, then in some neighborhood T ×Ω of T , where Ω ⊂ R

N

is an open ball, there exist coordinates (I, θ) = (Ik, θk)Nk=1, where I ∈ Ω and
θ ∈ T

N (action–angle coordinates), with the following properties:

• The actions Ik depend only on Fj’s,

Ik = Ik(F1, . . . , FN ) , k = 1, . . . , N .

• The Poisson brackets of the coordinate functions are canonical,

{Ik, Ij} = {θk, θj} = 0 , {Ik, θj} = δkj , 1 ≤ k, j ≤ N .

Hence

• For an arbitrary Hamilton function, H = H(F1, . . . , FN ), depending only
on Fj’s, the Hamiltonian equations of motion on P have the form

İk = 0 , θ̇k = ωk(I1, . . . , IN ) , k = 1, . . . , N .

• For an arbitrary symplectic map Φ : P → P admitting F1, ..., FN as
integrals of motion, the equations of motion in the coordinates (I, θ) take
the form

Ĩk = Ik , θ̃k = θk +Ωk(I1, . . . , IN ) , k = 1, . . . , N .

Hamiltonian flows and Poisson maps on 2N–dimensional symplectic man-
ifolds possessing N functionally independent integrals of motion, which are in
involution, are called completely integrable (in the Liouville–Arnold sense).

6 Lax Representations

Almost all (perhaps, all) known integrable systems possess Lax represen-
tations. In the situation of systems described by ordinary differential equa-
tions, a Lax representation for a given system means that there exist two
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maps, L : P → g and B : P → g, from the system’s phase space P into some
Lie algebra g such that the equations of motion are equivalent to

L̇ = [L,B] . (7)

Matrix L, or, better, map L : P → g is called the Lax matrix, while the
matrix B is called the auxiliary matrix of the Lax representation. The pair
(L,B) is called the Lax pair (and sometimes one uses, somewhat loosely, this
term for the equation (7) itself). Finding a Lax representation for a given
system usually implies its integrability, due to the fact that Ad–invariant
functions on the Lie algebra g are integrals of motion of the systems of the
type (7), and therefore the values of such functions composed with the map
L deliver functions on P serving as integrals of motion of the original system.
One says that matrix L undergoes an isospectral evolution.

An important case often encountered in the theory of integrable systems
occurs when the underlying algebra is a tensor product, g = g⊗N , of several
copies of some algebra g. The corresponding Lax equations are of the form

L̇j = LjBj−1 −BjLj , j ∈ Z/NZ. (8)

Such equations yield an isospectral evolution of the so called monodromy
matrices,

Ṫj = [Lj , Bj ] , Tj = Lj · . . . · L1 · LN · . . . · Lj+1 . (9)

Equations of the type (8), also called sometimes Lax triads, are typical in
the theory of integrable lattice systems.

Of course, in the Hamiltonian context, the isospectrality is not quite
enough in order to establish the complete integrability. One has to show that
the number of functionally independent integrals thus found is large enough,
and that they are in involution. There exists an approach which incorporates
an involutivity property in the very construction of Lax equations, namely
the r–matrix approach. It uses a remarkable feature of equations (7), (8),
namely that they can often be included into an abstract framework of Hamil-
tonian equations on g. More precisely, Poisson structures on g can be defined,
such that the corresponding Hamiltonian equations have the form (7), and
the map L : P → g is Poisson. In such a situation one says that the Lax
representation admits a Hamiltonian interpretation.

Finally, we point out the natural discrete time analogues of the Lax equa-
tions. In formulating them, we adopt the following notations. All functions
depend on t ∈ hZ with a small h > 0. The tilde denotes the discrete time
shift by h: if L = L(t), then L̃ = L(t+h). The discrete time analogues of the
Lax equations (7) and the Lax triads (8) are

L̃ = B−1LB , (10)

and
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L̃j = B−1
j LjBj−1 , (11)

respectively. Indeed, these equations yield the isospectrality of the discrete
time evolution of L, resp., of Tj . In order for these discrete time equations to
approximate the continuous time ones, it is required that

Bj = I + hBj +O(h2).

7 Lagrangian Mechanics on R
N

Here we consider one of the basic constructions leading to Hamiltonian sys-
tems on symplectic manifolds, namely the variational principles of mechanics.

Consider Newtonian equations of motion, i.e., a system of second
order differential equations,

ẍk = Fk(x, ẋ) , x = (x1, . . . , xN ) ∈ R
N . (12)

One says that they are variational equations if there exists a Lagrange
function L(x, v) on R

2N (x, v) such that (12) is equivalent to the Euler–
Lagrange equations

d

dt

∂L(x, ẋ)
∂ẋk

− ∂L(x, ẋ)
∂xk

= 0 . (13)

Of course, matrix (∂2L(x, ẋ)/∂ẋk∂ẋj)Nk,j=1 has to be nondegenerate in order
for (13) to be solved for ẍk. Euler–Lagrange equations are necessary condi-
tions for the corresponding integral curves (x(t), ẋ(t))t=bt=a with fixed values of
x(a) and x(b) to be critical points of the action functional

S =
∫ b

a

L(x(t), ẋ(t)) dt .

By the Lagrangian formulation of the Newtonian system (12) we under-
stand its representation in the form

pk = ∂L(x, ẋ)/∂ẋk , ṗk = ∂L(x, ẋ)/∂xk . (14)

Due to the above nondegeneracy condition for the matrix of second partial
derivatives of L(x, ẋ) with respect to ẋ, the set of equations

pk = ∂L(x, ẋ)/∂ẋk , 1 ≤ k ≤ N ,

may be solved for the quantities ẋk. It is well known in classical mechanics
(and easily proven directly) that the resulting system may be written in the
Hamiltonian form,

ẋk = ∂H(x, p)/∂pk , ṗk = −∂H(x, p)/∂xk , (15)
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where the Hamilton function H(x, p) is related to the Lagrange function by
means of the famous Legendre transformation,

H(x, p) =
N∑
k=1

ẋkpk − L(x, ẋ) . (16)

(Of course, in the last formula, ẋ must be expressed in terms of p.) Equations
(15) may be also written in the standard form,

ẋk = {H,xk} , ṗk = {H, pk} ,

with respect to the canonical Poisson bracket on R
2N (x, p) given by either

of the formulas (4), (5). As we know, the most important property of the
Hamiltonian equations of motion (15) is the preservation of bracket (5) by
the corresponding flow. In other words, the Hamiltonian flow generated by
(15) consists of symplectic maps.

The most natural discrete time analogue of the Newtonian equations of
motion may be found, if one again starts from a variational principle. The
discrete–time action functional is

S =
b−1∑
n=a

L

(
x(n+ 1), x(n)

)
, (17)

where (x(n))n=b
n=a is a sequence of points in R

N with fixed values of x(a) and
x(b). Here L(x, y) is the discrete–time Lagrange function. The neces-
sary condition for a sequence (x(n))n=b

n=a to be a critical point of the above
functional is given by the discrete–time Euler–Lagrange equations,

∂

∂xk

(
L(x̃, x) + L(x, x˜)

)
= 0 , (18)

where x = x(n), x̃ = x(n+1), x˜ = x(n−1). In order for these equations to be
solvable for x̃, the matrix of the second derivatives, (∂2

L(x, y)/∂xk∂yj)Nk,j=1,
has to be nondegenerate.

By the Lagrangian formulation of such equations of motion we shall mean
the system consisting of the following equations,

pk = −∂L(x̃, x)/∂xk , (19)
p̃k = ∂L(x̃, x)/∂x̃k . (20)

The Hamiltonian formulation in the discrete time case is not defined. In
particular, there exists no analogue of the Hamilton function which would be
an integral of motion. However, the main qualitative feature of the Hamil-
tonian systems is inherited by the discrete–time Lagrangian systems. The
map (x, p) → (x̃, p̃) generated by equations (19), (20) is symplectic with re-
spect to the standard symplectic bracket (5). In fact, these equations may be
considered as one of the classical forms of generating functions for canonical
transformations.
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8 Lagrangian Mechanics on TP and on P × P
An important generalization of the constructions of the previous section ap-
pears if we replace the Euclidean space, R

N (x), by an arbitrary smooth mani-
fold P. A continuous–time Lagrangian system is defined by a smooth function
L ∈ F(TP) on the tangent bundle of P. The function L is called the La-
grange function. For an arbitrary function Q : [a, b] → P one can consider
the action functional

S =
∫ b

a

L(Q(t), Q̇(t))dt . (21)

A standard argument shows that the functions Q(t) yielding extrema of this
functional (in the class of variations preserving Q(a) and Q(b)), satisfy nec-
essarily the Euler–Lagrange equations: in local coordinates {qj} on P,

d

dt

(
∂L
∂q̇j

)
=
∂L
∂qj

. (22)

The action functional S is independent of the choice of local coordinates, and
thus the Euler–Lagrange equations are actually coordinate–independent as
well.

Introducing the quantities

Π = ∇Q̇L ∈ T ∗
QP , (23)

one defines the Legendre transformation,

(Q, Q̇) ∈ TP → (Q,Π) ∈ T ∗P . (24)

If it is invertible, i.e., if Q̇ can be expressed in terms of (Q,Π), then the Leg-
endre transformation of the Euler–Lagrange equations (22) yields a Hamil-
tonian system on T ∗P with respect to the standard symplectic structure on
T ∗P, and with the Hamilton function

H(Q,Π) = 〈Π, Q̇〉 − L(Q, Q̇) , (25)

where, of course, Q̇ has to be expressed in terms of (Q,Π).
We will now discuss the famous Noether theorem which explains the

existence of integrals of motion for Lagrangian systems with symmetries. We
use the same notations as in Sect. 4.

Theorem 8.1. Let Φ : G × P → P be an action of the Lie group G on P,
with infinitesimal generators φξ ∈ X(P), ξ ∈ g. Let the Lagrange function
L ∈ F(TP) be invariant with respect to the action of G on TP induced by Φ:

L(Φg(Q), Φg∗(Q̇)) = L(Q, Q̇) ∀g ∈ G . (26)
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Then the functions Iξ ∈ F(TP),

Iξ(Q, Q̇) = 〈∇Q̇L, φξ(Q)〉 , (27)

are integrals of motion of the Euler–Lagrange equations (22). Under the Leg-
endre transformation these functions become integrals,

Jξ(Q,Π) = 〈Π,φξ(Q)〉 , (28)

of the corresponding Hamiltonian system on T ∗P.

We now turn to the discrete time analogue of these constructions. The
tangent bundle TP does not appear in the discrete time context at all, but the
cotangent bundle T ∗P does play an important role in the discrete time theory,
as a phase space with the canonical invariant symplectic structure. Almost
all constructions and results of the continuous time Lagrangian mechanics
have their discrete time analogues. The only exception is the existence of the
“energy” integral (25).

Let L ∈ F(P × P) be a smooth function, called the discrete–time
Lagrange function. For an arbitrary sequence, {Q(n) ∈ P, n = a, a +
1, . . . , b}, one can consider the discrete–time action functional,

S =
b−1∑
n=a

L(Q(n), Q(n+ 1)) . (29)

Obviously, the sequences {Q(n)} delivering extrema of this functional (in
the class of variations preserving Q(a) and Q(b)), necessarily satisfy the
discrete–time Euler–Lagrange equations,

∇1L(Q(n), Q(n+ 1)) + ∇2L(Q(n− 1), Q(n)) = 0 . (30)

Here ∇1,2L(Q1, Q2) denotes the gradients of L(Q1, Q2) with respect to the
first argument, Q1 (resp., the second argument, Q2). This equation is written
in intrinsic terms, i.e. independently of a choice of a coordinate chart. As
pointed out above, an invariant formulation of the Euler–Lagrange equations
in the continuous time case is more sophisticated, since the tangent bundle
is not a direct product manifold. This seems to indicate that the discrete
Euler–Lagrange equations are of a fundamental character.

Equation (30), which we shall also write as

∇1L(Q, Q̃) + ∇2L(Q
˜
, Q) = 0 , (31)

is an implicit equation for Q̃. In general, it has more than one solution, and
therefore defines a correspondence (multi–valued map) (Q

˜
, Q) → (Q, Q̃).

To discuss the symplectic properties of this correspondence, one defines the
momentum,
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Π = ∇2L(Q
˜
, Q) ∈ T ∗

QP . (32)

Then (31) may be rewritten as
{
Π = −∇1L(Q, Q̃) ,
Π̃ = ∇2L(Q, Q̃) .

(33)

This system defines a (multi–valued) map (Q,Π) → (Q̃, Π̃) on T ∗P. More
precisely, the first equation in (33) is an implicit equation for Q̃, while the
second one allows for an explicit calculation of Π̃ in terms of Q and Q̃.

Theorem 8.2. Each branch of the map T ∗P → T ∗P defined by (33) is sym-
plectic with respect to the standard symplectic structure on T ∗P.

Finally, we turn to the discrete-time Noether theorem.

Theorem 8.3. Let Φ : G × P → P be an action of the Lie group G on P,
with infinitesimal generators φξ ∈ X(P), ξ ∈ g. Let the Lagrange function
L ∈ F(P ×P) be invariant with respect to the action of G on P ×P induced
by Φ,

L(Φg(Q1), Φg(Q2)) = L(Q1, Q2) ∀g ∈ G . (34)

Then functions Iξ ∈ F(P × P),

Iξ(Q
˜
, Q) = 〈∇2L(Q

˜
, Q), φξ(Q)〉 , (35)

are integrals of motion of the Euler–Lagrange equations (31). Under the dis-
crete time Legendre transformation (32), these functions become integrals,

Jξ(Q,Π) = 〈Π,φξ(Q)〉 , (36)

of the corresponding symplectic map on T ∗P.

It is important to observe that while functions (35) in F(P × P) clearly
serve as difference approximations to functions (27) in F(TP), their expres-
sions in terms of the cotangent bundle variables (Q,Π) coincide.

9 Lagrangian Mechanics on Lie Groups

Now we turn our attention to an important particular case of Lagrangian me-
chanics, the one where the basic manifold P carries the additional structure
of a Lie group. We shall denote it by P = G, and its typical element by g ∈ G,
in order to identify the particular features of this case in its notation. The Lie
algebra of G will be denoted by g. Some further important notations from
Lie group theory are collected in the Appendix to this section. In particular,



126 Yu.B. Suris

we shall use the notions of left Lie derivative, dF , and right Lie derivative,
d ′F , of a function F ∈ F(G). The functions dF : G→ g∗ and d ′F : G→ g∗

are defined by the formulas

〈dF (g), η〉 =
d

dε
F (eεηg)

∣∣∣∣
ε=0

, ∀η ∈ g ,

〈d ′F (g), η〉 =
d

dε
f(geεη)

∣∣∣∣
ε=0

, ∀η ∈ g .

They are related to the gradient ∇F (g) ∈ T ∗
gG by

∇F (g) = R∗
g−1 dF (g) = L∗

g−1 d ′F (g) .

One of the most important features of the Lie group situation is the
possibility of trivializing the tangent and the cotangent bundles. The left
trivialization of the tangent bundle, TG → G × g, is achieved by the
map

(g, ġ) ∈ TG→ (g,Ω) ∈ G× g , (37)

where

Ω = Lg−1∗ġ ⇔ ġ = Lg∗Ω . (38)

The corresponding left trivialization of the cotangent bundle, T ∗G →
G× g∗, is given by

(g,Π) ∈ T ∗G→ (g,M) ∈ G× g∗ , (39)

where

M = L∗
gΠ ⇔ Π = L∗

g−1M . (40)

Similarly, the right trivialization of the tangent bundle is the map,
TG→ G× g,

(g, ġ) ∈ TG→ (g, ω) ∈ G× g , (41)

where

ω = Rg−1∗ġ ⇔ ġ = Rg∗Ω . (42)

The corresponding right trivialization of the cotangent bundle, T ∗G→
G× g∗, is given by

(g,Π) ∈ T ∗G→ (g,m) ∈ G× g∗ , (43)

where
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m = R∗
gΠ ⇔ Π = R∗

g−1m . (44)

Observe that the elementsΩ,ω ∈ g andM,m ∈ g∗ are related by the formulas

Ω = Ad g−1 · ω , (45)

M = Ad∗ g ·m . (46)

Our first task will be to push forward the standard symplectic Poisson
bracket on T ∗G with respect to both trivialization maps (39) and (43).

Proposition 9.1. a) The Poisson structure {·, ·}(l) on G× g∗, which is the
standard symplectic structure on T ∗G pushed forward by the left trivialization
map (39), is

{f1, f2}(l)(g,M) = −〈d ′
gf1,∇Mf2〉 + 〈d ′

gf2,∇Mf1〉 + 〈M, [∇Mf1,∇Mf2] 〉 .
(47)

b) The Poisson structure {·, ·}(r) on G × g∗, which is the standard sym-
plectic structure on T ∗G pushed forward by the right trivialization map (43),
is

{f1, f2}(r)(g,m) = −〈dgf1,∇mf2〉 + 〈dgf2,∇mf1〉 − 〈m, [∇mf1,∇mf2] 〉 .
(48)

Now we look at the Noether integrals of motion under the action of the
trivialization maps. Suppose that there is a group action, Φ : K × G → G,
of some Lie group K on G. Denote by k the Lie algebra of K, and, as usual,
by φξ ∈ X(G) the infinitesimal generators of the action Φ (here ξ ∈ k).
Assuming invariance of the Lagrange functions under the action of K, we
consider the Noether conserved quantities (28), (36) (observe that, in terms of
the cotangent bundle, these quantities coincide). Under the left trivialization
these conserved quantities are transformed into

J
(l)
ξ (g,M) = 〈M,Lg−1∗φξ(g)〉 , (49)

while under the right trivialization, we obtain

J
(r)
ξ (g,m) = 〈m,Rg−1∗φξ(g)〉 . (50)

Appendix: Notations from Lie Group Theory

Let G be a Lie group with Lie algebra g, and let g∗ be the dual vector space to g.
We identify g and g∗ with the tangent space and the cotangent space to G at the
group unit, respectively,

g = TeG , g∗ = T ∗
e G .
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The pairing between the cotangent and the tangent spaces T ∗
gG and TgG at an

arbitrary point, g ∈ G, is denoted by 〈·, ·〉. The left and right translations in the
group are the maps, Lg , Rg : G → G, defined by

Lg h = gh , Rg h = hg ∀h ∈ G ,

while Lg∗ and Rg∗ stand for the differentials of these maps,

Lg∗ : ThG → TghG , Rg∗ : ThG → ThgG .

We denote by

Ad g = Lg∗Rg−1∗ : g → g

the adjoint action of the Lie group G on its Lie algebra, g = TeG. The linear
operators,

L∗
g : T ∗

ghG → T ∗
hG , R∗

g : T ∗
hgG → T ∗

hG

are adjoint to Lg∗ , Rg∗ , respectively, by the pairing 〈·, ·〉,
〈L∗

gξ, η〉 = 〈ξ, Lg∗η〉 for ξ ∈ T ∗
ghG , η ∈ ThG ,

〈R∗
gξ, η〉 = 〈ξ,Rg∗η〉 for ξ ∈ T ∗

hgG , η ∈ ThG .

The coadjoint action of the group,

Ad∗ g = L∗
gR

∗
g−1 : g∗ → g∗,

is adjoint to Ad g by the pairing 〈·, ·〉,
〈Ad∗ g · ξ, η〉 = 〈ξ,Ad g · η〉 for ξ ∈ g∗ , η ∈ g .

The differentials of Ad g and Ad∗ g with respect to g at the group unit e are the
operators

ad η : g → g and ad∗ η : g∗ → g∗ ,

respectively, also adjoint by the pairing 〈·, ·〉,
〈ad∗ η · ξ, ζ〉 = 〈ξ, ad η · ζ〉 ∀ξ ∈ g∗ , ζ ∈ g .

The action of ad is given by applying the Lie bracket in g,

ad η · ζ = [η, ζ] , ∀ζ ∈ g .

10 Invariant Lagrangians and the Lie–Poisson Bracket

We now consider Lagrangian systems on Lie groups with invariant Lagrange
functions.
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10.1 Continuous–Time Case

Consider a Lagrange function L ∈ F(TG), invariant with respect to left
multiplications,

L(g0g, Lg0∗ġ) = L(g, ġ) , ∀g0 ∈ G . (51)

Obviously, this property is equivalent to the property that, under the left
trivialization, the Lagrange function does not depend on g, i.e., it depends
solely on Ω = Lg−1∗ġ,

L(g, ġ) = L(l)(Ω) . (52)

Now we want to reduce the Euler–Lagrange equations with respect to
the action of G on TG induced by left multiplications. We realize the factor
TG/G as g, the reduction map being

(g, ġ) ∈ TG → Ω = Lg−1∗ġ ∈ g .

It is easily seen that extremizing the functional S with a left–invariant La-
grange function L is equivalent to extremizing the functional

S(l) =
∫ b

a

L(l)(Ω(t))dt

with respect to variations Ω(t, ε) of Ω(t) of the form

Ω(t, ε) = Ω(t) + ε
(
η̇(t) + [Ω(t), η(t)]

)
,

where η : [a, b] → g is an arbitrary function vanishing at t = a and t = b.

Theorem 10.1. The differential equation for extremals of the functional S(l)

are

Ṁ = ad∗Ω ·M , (53)

where

M = ∇L(l)(Ω) ∈ g∗ . (54)

If the Legendre transformation,

Ω ∈ g →M ∈ g∗, (55)

is invertible, it transforms (53) into a Hamiltonian system on g∗ with respect
to the bracket,

{f1, f2}(l)(M) = 〈M, [∇Mf1,∇Mf2] 〉 , (56)
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with the Hamilton function,

H(l)(M) = 〈M,Ω〉 − L(l)(Ω) , (57)

where Ω has to be expressed in terms of M . The motion in the Lie group is
reconstructed by solving the linear differential equation

ġ = Lg∗Ω . (58)

The element

m = Ad∗ g−1 ·M ∈ g∗ (59)

is conserved in the evolution described by (53) and (58).

Similarly, suppose that the Lagrange function is invariant with respect to
right multiplications,

L(gg0, Rg0∗ġ) = L(g, ġ) , ∀g0 ∈ G . (60)

This is equivalent to the property that under right trivialization the Lagrange
function depends only on ω = Rg−1∗ġ, and not on g,

L(g, ġ) = L(r)(ω) . (61)

Reducing the Euler–Lagrange equations with respect to the action of G on
TG induced by right multiplications, we still regard g as TG/G, the reduction
map this time being

(g, ġ) ∈ TG → ω = Rg−1∗ġ ∈ g .

The differential equations for extremals of the functional S with a right–
invariant Lagrange function L are the same as for extremals of the functional

S(r) =
∫ b

a

L(r)(ω(t))dt

with respect to variations ω(t, ε) of ω(t) of the form

ω(t, ε) = ω(t) + ε
(
η̇(t) + [η(t), ω(t)]

)
,

where η : [a, b] → g is an arbitrary function vanishing at t = a and t = b.

Theorem 10.2. The differential equations for extremals of the functional
S(r) are

ṁ = −ad∗ ω ·m , (62)

where
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m = ∇L(r)(ω) ∈ g∗ . (63)

If the Legendre transformation

ω ∈ g → m ∈ g∗ (64)

is invertible, it transforms (62) into a Hamiltonian system on g∗ with respect
to the bracket

{f1, f2}(r)(m) = −〈m, [∇mf1,∇mf2] 〉 , (65)

with the Hamilton function

H(r)(m) = 〈m,ω〉 − L(r)(ω) , (66)

where ω must be expressed in terms of m. The motion in the Lie group is
reconstructed by solving the linear differential equation

ġ = Rg∗ω . (67)

The element

M = Ad∗ g ·m ∈ g∗ (68)

is conserved in the evolution described by (62) and (67).

The differential equations (53) and (62), when considered as equations
on the Lie algebra g, i.e., the equations for Ω ∈ g, resp. for ω ∈ g, are
called the Euler–Poincaré equations. However, it is easy to see that the
following expressions are valid: Ω = ∇MH

(l)(M), resp. ω = ∇mH
(r)(m).

This allows us to consider (53) and (62) also as equations on g∗, i.e., as
equations for M ∈ g∗, resp., for m ∈ g∗, formulated completely in terms of
the corresponding Hamilton function. As such, they are termed Lie–Poisson
equations (sometimes also Euler equations). The Poisson brackets (56)
and (65) are the simplest non–symplectic Poisson brackets. They are defined
on the dual space to an arbitrary Lie algebra, and are known as the Lie–
Poisson brackets.

10.2 Discrete–Time Case

Let the discrete–time Lagrange function L(g1, g2) be invariant with respect
to left multiplications,

L(g0g1, g0g2) = L(g1, g2) , ∀g0 ∈ G . (69)
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This is equivalent to the fact that function L(gn, gn+1) depends only onWn =
g−1
n gn+1,

L(gn, gn+1) = L
(l)(Wn) . (70)

Therefore we would like to reduce the discrete–time Euler–Lagrange equa-
tions with respect to the action of G on G × G by (componentwise) left
multiplications, whereby the factor G × G/G will be realized as G by the
reduction map

(g1, g2) ∈ G×G → W = g−1
1 g2 ∈ G .

It is easy to see that extremizing the functional S with a left–invariant La-
grange function L is equivalent to extremizing the functional

S
(l) =

b−1∑
n=a

L
(l)(Wn) ,

with respect to variations {Wn(ε)} of the sequence {Wn} of the form

Wn(ε) = Wne
εηn+1−εAdW−1

n ·ηn ,

where {ηn}bn=a is an arbitrary sequence of elements of the Lie algebra g such
that ηa = ηb = 0.

Theorem 10.3. The difference equations for extremals of the functional S
(l)

are

Mn+1 = Ad∗Wn ·Mn , (71)

where

Mn = d ′
L

(l)(Wn−1) ∈ g∗ . (72)

If the Legendre transformation,

Wn−1 ∈ G → Mn ∈ g∗, (73)

is invertible, then (71) define a map, Mn → Mn+1, which is Poisson with
respect to the Lie–Poisson bracket (56). The motion in the Lie group is re-
constructed by solving the linear difference equation

gn+1 = gnWn . (74)

The element

mn = Ad∗ g−1
n ·Mn ∈ g∗ (75)

is conserved in the evolution described by (71) and (74).
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Next, consider the situation with the discrete–time Lagrange function
L(g1, g2) invariant with respect to right multiplications,

L(g1g0, g2g0) = L(g1, g2) , ∀g0 ∈ G . (76)

This is equivalent to the fact that function L(gn, gn+1) depends only on wn =
gn+1g

−1
n ,

L(gn, gn+1) = L
(r)(wn) . (77)

This time we reduce the discrete–time Euler–Lagrange equations with respect
to the action of G on G×G by right multiplications, the reduction map being

(g1, g2) ∈ G×G → w = g2g
−1
1 ∈ G .

Extremizing the functional S with a right–invariant Lagrange function L is
equivalent to extremizing the functional

S
(r) =

b−1∑
n=a

L
(r)(wn) ,

with respect to variations {wn(ε)} of the sequence {wn} satisfying the con-
straint

wn(ε) = eεηn+1−εAdwn·ηnwn ,

where {ηn}bn=a is an arbitrary sequence of elements of g such that ηa = ηb = 0.

Theorem 10.4. The difference equations for extremals of the functional S
(r)

are

mn+1 = Ad∗ w−1
n ·mn , (78)

where

mn = dL(r)(wn−1) ∈ g∗ . (79)

If the Legendre transformation,

wn−1 ∈ G→ mn ∈ g∗, (80)

is invertible, then (78) defines a map, mn → mn+1, which is Poisson with
respect to the Lie–Poisson bracket (65). The motion in the Lie group is re-
constructed by solving the linear difference equation

gn+1 = wngn . (81)

The element

Mn = Ad∗ gn ·mn ∈ g∗ (82)

is conserved in the evolution described by (78) and (81).
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Equations (71) and (78) are naturally considered to be discrete–time
Euler–Poincaré equations on g, and may also be seen as discrete–time
Lie–Poisson equations on g∗, provided the Legendre transformations are
invertible. However, as opposed to their continuous time analogues, they do
not necessarily possess an integral of motion analogous to the Hamilton func-
tion (although, of course, Casimir functions of the Lie–Poisson brackets on
g∗ serve as integrals of motion also in the discrete time case).

11 Lagrangian Reduction and Euler–Poincaré
Equations on Semidirect Products

A very important case of the Lagrangian mechanics on Lie groups is consti-
tuted by Lagrangian functions invariant with respect to the left or right mul-
tiplications by elements of some subgroup, rather than the whole group. This
situation leads naturally to Euler–Poincaré equations on semidirect products.
The general setup is as follows.

Let Φ : G×V → V be a representation of a Lie group G in a linear space
V ; we denote it by

Φ(g) · v for g ∈ G , v ∈ V .

We also denote by φ the corresponding representation of the Lie algebra g in
V ,

φ(ξ) · v =
d

dε

(
Φ(eεξ) · v

)∣∣∣∣
ε=0

for ξ ∈ g , v ∈ V . (83)

Map φ∗ : g × V ∗ → V ∗ defined by

〈φ∗(ξ) · y, v〉 = 〈y, φ(ξ) · v〉 ∀v ∈ V , y ∈ V ∗ , ξ ∈ g (84)

is an anti–representation of the Lie algebra g in V ∗. We shall also use the
bilinear operation  : V ∗ × V → g∗ defined as follows: let v ∈ V , y ∈ V ∗,
then

〈y  v, ξ〉 = −〈y, φ(ξ) · v〉 ∀ξ ∈ g . (85)

Observe that the pairings on the left–hand side and on the right–hand side
of the latter equation are defined on different spaces.

Fix an element a ∈ V , and consider the isotropy subgroup G[a] of a, i.e.,

G[a] = {h : Φ(h) · a = a} ⊂ G . (86)

Its Lie algebra is

g[a] = {ξ : φ(ξ) · a = 0} ⊂ g . (87)

Our subject in the present section will be the Lagrangian dynamics in the
case of Lagrange functions invariant with respect to the action of G[a].
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11.1 Continuous–Time Case

Suppose that the Lagrange function L(g, ġ) is invariant under the action of
G[a] on TG induced by left translations on G:

L(g0g, Lg0∗ġ) = L(g, ġ) , g0 ∈ G[a] . (88)

Denote the Lagrange function pushed forward by the left trivialization map
(37) by L(g, ġ) = L(l)(g,Ω). The corresponding invariance property of
L(l)(g,Ω) is expressed as

L(l)(g0g,Ω) = L(l)(g,Ω) , g0 ∈ G[a] . (89)

We want to reduce the Euler–Lagrange equations with respect to this left
action. We realize the factor TG/G[a] � (G×g)/G[a] as the set g×Oa, where
Oa is the orbit of a under the action Φ:

Oa = {Φ(g) · a , g ∈ G} ⊂ V . (90)

The reduction map is

(g,Ω) ∈ G× g → (Ω,P ) ∈ g ×Oa , where P = Φ(g−1) · a , (91)

so that the reduced Lagrange function L(l) ∈ F(g ×Oa) is defined as

L(l)(Ω,P ) = L(l)(g,Ω) , where P = Φ(g−1) · a . (92)

The reduced Lagrange function L(l)(Ω,P ) is well defined because, from

P = Φ(g−1
1 ) · a = Φ(g−1

2 ) · a,

it follows that Φ(g2g−1
1 ) · a = a, so that g2g−1

1 ∈ G[a], and L(l)(g1, Ω) =
L(l)(g2, Ω).

Theorem 11.1. a) Consider the reduction (g,Ω) → (Ω,P ). The reduced
Euler–Lagrange equations are the following Euler–Poincaré equations:

{
Ṁ = ad∗Ω ·M + ∇PL(l)(Ω,P )  P ,

Ṗ = −φ(Ω) · P ,
(93)

where

M = ∇ΩL(l)(Ω,P ) ∈ g∗ . (94)

They describe the extremals of the constrained variational principle with func-
tional

S(l) =
∫ b

a

L(l)(Ω(t), P (t))dt , (95)
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and admissible variations (Ω(t, ε), P (t, ε)) of (Ω(t), P (t)) ∈ g × Oa of the
form

Ω(t, ε) = Ω(t) + ε
(
η̇(t) + [Ω(t), η(t)]

)
, P (t, ε) = P (t) − εφ(η(t)) · P (t) ,

(96)

where η : [a, b] → g is an arbitrary function taking values in the Lie algebra
g and satisfying η(a) = η(b) = 0.

b) If the Legendre transformation,

(Ω,P ) ∈ g ×Oa → (M,P ) ∈ g∗ ×Oa , (97)

is invertible, then it transforms (93) into a Hamiltonian system on g∗ × Oa
with respect to the Poisson bracket

{F1, F2}(l)(M,P ) = 〈M, [∇MF1,∇MF2] 〉
+〈∇PF1, φ(∇MF2) · P 〉 − 〈∇PF2, φ(∇MF1) · P 〉 , (98)

and with the Hamilton function

H(l)(M,P ) = 〈M,Ω〉 − L(l)(Ω,P ) , (99)

where Ω has to be expressed in terms of (M,P ).
c) The full (non–reduced) Euler–Lagrange equations on TG have the in-

tegrals of motion,

J
(l)
ξ (g,M) = 〈M,Ad g−1 · ξ〉 , ∀ξ ∈ g[a] . (100)

Remark 1. Formula (98) defines a Poisson bracket not only on g∗ ×Oa,
but on all of g∗ × V . Rewriting this formula as

{F1, F2}(l) =
〈M, [∇MF1,∇MF2] 〉 + 〈P, φ∗(∇MF2) · ∇PF1 − φ∗(∇MF1) · ∇PF2 〉

one immediately identifies this bracket with the Lie–Poisson bracket of the
semidirect product Lie algebra g�V ∗ corresponding to the representation
−φ∗ of g in V ∗. By definition, the Lie algebra g � V ∗ corresponding to the
representation ψ of g in V ∗ coincides as a vector space with g × V ∗, and
carries the Lie bracket,

[(ξ1, y1), (ξ2, y2)] =
(
[ξ1, ξ2], ψ(ξ1) · y2 − ψ(ξ2) · y1

)
.

Remark 2. An important particular case of the constructions of this
section is the following: the vector space is chosen to be the Lie algebra of
our basic Lie group, V = g, and the group representation is the adjoint,
Φ(g) · v = Ad g · v, so that φ(ξ) · v = ad ξ · v = [ξ, v]. Then the bilinear
operation,  , is nothing but the coadjoint action of g on g∗, y  v = ad∗ v · y.
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Now assume that the function L(g, ġ) is invariant under the action of G[a]

on TG induced by right translations on G,

L(gg0, Rg0∗ġ) = L(g, ġ) , g0 ∈ G[a] . (101)

Under the right trivialization (41) of TG the Lagrange function becomes
L(g, ġ) = L(r)(g, ω), and the invariance property reads:is

L(r)(gg0, ω) = L(r)(g, ω) , g0 ∈ G[a] . (102)

The reduced Lagrange function, L(r) ∈ F(g ×Oa), is defined as

L(r)(ω, p) = L(r)(g, ω) , where p = Φ(g) · a . (103)

Theorem 11.2. a) Consider the reduction (g, ω) → (ω, p). The reduced
Euler–Lagrange equations are the following Euler–Poincaré equations:

{
ṁ = −ad∗ ω ·m−∇pL(r)(ω, p)  p ,
ṗ = φ(ω) · p , (104)

where

m = ∇ωL(r)(ω, p) ∈ g∗ . (105)

They describe the extremals of the constrained variational principle with func-
tional

S(r) =
∫ b

a

L(r)(ω(t), p(t))dt , (106)

and admissible variations (ω(t, ε), p(t, ε)) of (ω(t), p(t)) of the form

ω(t, ε) = ω(t) + ε
(
η̇(t) + [η(t), ω(t)]

)
, p(t, ε) = p(t) + εφ(η(t)) · p(t) ,

(107)

where η : [a, b] → g is an arbitrary function such that η(a) = η(b) = 0.
b) If the Legendre transformation,

(ω, p) ∈ g ×Oa → (m, p) ∈ g∗ ×Oa , (108)

is invertible, then it transforms (104) into a Hamiltonian system on g∗ ×Oa
with respect to the Poisson bracket

{F1, F2}(r)(m, p) = −〈m, [∇mF1,∇mF2] 〉
−〈∇pF1, φ(∇mF2) · p 〉 + 〈∇pF2, φ(∇mF1) · p 〉, (109)
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with the Hamilton function

H(r)(m, p) = 〈m,ω〉 − L(r)(ω, p) , (110)

where ω has to be expressed in terms of (m, p).
c) The full (non–reduced) Euler–Lagrange equations on TG have the in-

tegrals of motion,

J
(r)
ξ (g,m) = 〈m,Ad g · ξ〉 , ∀ξ ∈ g[a] . (111)

Remark. Formula (109) differs from (98) only in the overall minus sign.
Therefore it also defines a Poisson bracket on all of g∗ × V , the opposite
of the Lie–Poisson bracket of the semidirect product Lie algebra g � V ∗

corresponding to the representation −φ∗ of g in V ∗.

11.2 Discrete–Time Case

Turning to the discrete–time Lagrangian mechanics on G, suppose that the
Lagrange function L(g1, g2) is invariant under the action of G[a] on G × G
induced by left translations on G,

L(g0g1, g0g2) = L(g1, g2) , g0 ∈ G[a] . (112)

Denote L(g1, g2) = L
(l)(g1,W ), where W = g−1

2 g1. The corresponding invari-
ance property of L

(l)(g,W ) is expressed as

L
(l)(g0g,W ) = L

(l)(g,W ) , g0 ∈ G[a] . (113)

To reduce the discrete–time Euler–Lagrange equations with respect to this
left action, we realize the factor (G×G)/G[a] as the set G×Oa, the reduction
map being

(g,W ) ∈ G×G → (W,P ) ∈ G×Oa , where P = Φ(g−1) · a .
(114)

The reduced Lagrange function Λ(l) ∈ F(G×Oa) is defined as

Λ(l)(W,P ) = L
(l)(g,W ) , where P = Φ(g−1) · a . (115)

Theorem 11.3. a) Consider the reduction (g,W ) → (W,P ). The reduced
Euler–Lagrange equations are the discrete–time Euler–Poincaré equations,

{
Ad∗W−1

n ·Mn+1 = Mn + ∇PΛ
(l)(Wn, Pn)  Pn ,

Pn+1 = Φ(W−1
n ) · Pn ,

(116)
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where

Mn = d ′
WΛ

(l)(Wn−1, Pn−1) ∈ g∗ . (117)

They describe the extremals of the constrained variational principle with func-
tional

S
(l) =

b−1∑
n=a

Λ(l)(Wn, Pn) , (118)

and the admissible variations {(Wn(ε), Pn(ε))} of {(Wn, Pn)} of the form

Wn(ε) = Wne
εηn+1−εAdW−1

n ·ηn , Pn(ε) = Pn − εφ(ηn) · Pn , (119)

where {ηn}bn=a is an arbitrary sequence of elements of g such that ηa = ηb =
0.

b) If the Legendre transformation

(Wn−1, Pn−1) ∈ G×Oa → (Mn, Pn) ∈ g∗ ×Oa , (120)

where Pn = Φ(W−1
n−1) ·Pn−1, is invertible, then equations (116) define a map

(Mn, Pn) → (Mn+1, Pn+1) on g∗×Oa which is Poisson with respect to bracket
(98).

c) The full (non–reduced) Euler–Lagrange equations on G × G have the
integrals of motion,

J
(l)
ξ (gn,Mn) = 〈Mn,Ad g−1

n · ξ〉 , ∀ξ ∈ g[a] . (121)

Finally, assume that function L is invariant under the action of G[a] on
G×G induced by right translations on G,

L(g1g0, g2g0) = L(g1, g2) , g0 ∈ G[a] . (122)

Let L(g1, g2) = L
(r)(g1, w), where w = g1g

−1
2 . An equivalent formulation of

the invariance property is then,

L
(r)(gg0, w) = L

(r)(g, w) , g0 ∈ G[a] . (123)

Defining the reduced Lagrange function Λ(r) ∈ F(G×Oa) as

Λ(r)(w, p) = L
(r)(g, w) , where p = Φ(g) · a , (124)

leads to the following statement.



140 Yu.B. Suris

Theorem 11.4. a) Consider the reduction (g, w) → (w, p). The reduced
Euler–Lagrange equations are the discrete–time Euler–Poincaré equations:

{
Ad∗ wn ·mn+1 = mn −∇pΛ

(r)(wn, pn)  pn ,
pn+1 = Φ(wn) · pn ,

(125)

where

mn = dwΛ
(r)(wn−1, pn−1) ∈ g∗ . (126)

They describe the extremals of the constrained variational principle with func-
tional

S
(r) =

b−1∑
n=a

Λ(r)(wn, pn) , (127)

and admissible variations {(wn(ε), pn(ε))} of {(wn, pn)} of the form

wn(ε) = eεηn+1−εAdwn·ηnwn , pn(ε) = pn + εφ(ηn) · pn , (128)

where {ηn}bn=a is an arbitrary sequence of elements of g such that ηa = ηb = 0.

b) If the Legendre transformation,

(wn−1, pn−1) ∈ G×Oa → (mn, pn) ∈ g∗ ×Oa , (129)

where pn = Φ(wn−1) · pn−1, is invertible, then equations (125) define a map
(mn, pn) → (mn+1, pn+1) on g∗×Oa which is Poisson with respect to bracket
(109).

c) The full (non–reduced) Euler–Lagrange equations on G × G have the
integrals of motion,

J
(r)
ξ (gn,mn) = 〈mn,Ad gn · ξ〉 , ∀ξ ∈ g[a] . (130)

The following table (opposite page) summarizes the information on Euler–
Poincaré equations, both in the continuous and discrete time formulations.

Recall that the relation between the continuous time and the discrete time
equations is established, if we set

gn = g , gn+1 = g + hġ +O(h2) , L(gn, gn+1) = hL(g, ġ) +O(h2) ;
Pn = P , Wn = 1 + hΩ +O(h2) , Λ(l)(Wn, Pn) = hL(l)(Ω,P ) +O(h2) ;
pn = p , wn = 1 + hω +O(h2) , Λ(r)(wn, pn) = hL(r)(ω, p) +O(h2) .
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CONTINUOUS TIME DISCRETE TIME

Left trivialization, left symmetry reduction

L(g, ġ) = L(l)(Ω,P ) L(gn, gn+1) = Λ(l)(Wn, Pn)
Ω = Lg−1∗ġ Wn = g−1

n gn+1

P = Φ(g−1) · a Pn = Φ(g−1
n ) · a

M = L∗
gΠ = ∇ΩL(l) Mn = L∗

gn
Πn = d ′

WΛ(l)(Wn−1, Pn−1)

{
Ṁ = ad∗ Ω ·M + ∇P L(l) 	 P
Ṗ = −φ(Ω) · P

{

Ad∗ W−1
n ·Mn+1 = Mn + ∇PΛ

(l)(Wn, Pn)
Pn+1 = Φ(W−1

n ) · Pn

Right trivialization, right symmetry reduction

L(g, ġ) = L(r)(ω, p) L(gn, gn+1) = Λ(r)(wn, pn)
ω = Rg−1∗ġ wn = gn+1g

−1
n

p = Φ(g) · a pn = Φ(gn) · a

m = R∗
gΠ = ∇ωL(r) mn = R∗

gn
Πn = dwΛ

(r)(wn−1, pn−1)

{

ṁ = −ad∗ ω ·m− ∇pL(r) 	 p
ṗ = φ(ω) · p

{

Ad∗ wn ·mn+1 = mn − ∇pΛ
(r)(wn, pn)

pn+1 = Φ(wn) · pn

12 Neumann System

12.1 Continuous–Time Dynamics

Consider the motion of a point x ∈ R
N under the potential 1

2 〈Ωx, x〉, where
Ω = diag(ω1, . . . , ωN ), constrained to the sphere

S =
{
x ∈ R

N : 〈x, x〉 = 1
}
. (131)

This is the famous Neumann system.
The Lagrangian approach to this problem is as follows. The motions

should correspond to local extrema for the action functional

S =
∫ t1

t0

L
(
x(t), ẋ(t)

)
dt ,
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where L : TS → R is the Lagrange function, given by

L(x, ẋ) =
1
2
〈ẋ, ẋ〉 − 1

2
〈Ωx, x〉 − 1

2
α
(
〈x, x〉 − 1

)
. (132)

Here the first two terms on the right–hand side represent the unconstrained
Lagrange function, and the Lagrange multiplier α has to be chosen to assure
that the solution of the variational problem lies on the constraint manifold,
TS, which is described by the equations

〈x, x〉 = 1 , 〈ẋ, x〉 = 0 . (133)

The differential equations of the extremals of the above problem are

ẍ = −Ωx− αx . (134)

The value of α is determined by

0 = 〈ẋ, x〉· = 〈ẋ, ẋ〉 + 〈ẍ, x〉 = 〈ẋ, ẋ〉 − 〈Ωx, x〉 − α .

Therefore

α = 〈ẋ, ẋ〉 − 〈Ωx, x〉 . (135)

So, the complete description of the Neumann problem consists of the equa-
tions of motion (134), together with the expression (135).

The Legendre transformation, leading to the Hamiltonian interpretation
of the above system, is given by

H(x, p) = 〈ẋ, p〉 − L(x, ẋ) ,

where the canonically conjugate momenta p are defined by

p = ∂L/∂ẋ = ẋ . (136)

Hence we obtain

H(x, p) =
1
2
〈p, p〉 +

1
2
〈Ωx, x〉 . (137)

The corresponding symplectic structure is the restriction of the standard
symplectic structure of the space R

2N (x, p),

{pk, xj} = δkj , (138)

to the submanifold T ∗S which is singled out by the relations

φ1 = 〈x, x〉 − 1 = 0 , φ2 = 〈p, x〉 = 0 . (139)

The Dirac Poisson bracket for this symplectic structure on T ∗S is character-
ized by the following relations:
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{xk, xj}D = 0 , {pk, xj}D = δkj −
xkxj
〈x, x〉 , {pk, pj}D =

xkpj − pkxj
〈x, x〉 .

(140)

It is easy to show that the Hamiltonian vector field generated by the Hamilton
function (137) with respect to the bracket {·, ·}D on T ∗S, is given by

ẋk = {H, xk}D = pk , ṗk = {H, pk}D = −ωkxk − αxk , (141)

where

α = 〈p, p〉 − 〈Ωx, x〉 . (142)

This is nothing but the first–order form of (134) with multiplier (135).
It can be checked that the following functions are integrals of motion of

the Neumann system, in the case when all ωk’s are distinct,

Fk = x2
k +
∑
j �=k

(pkxj − xkpj)2

ωk − ωj
, 1 ≤ k ≤ N . (143)

Only N − 1 of these N integrals are functionally independent on T ∗S, due
to the relation

N∑
k=1

Fk = 〈x, x〉 , (144)

which is equal to 1 on T ∗S. The Hamilton function of the Neumann system
can be represented as

H =
1
2

N∑
k=1

ωkFk =
1
2

(
〈p, p〉〈x, x〉 − 〈p, x〉2

)
+

1
2
〈Ωx, x〉 , (145)

which coincides with (137) on T ∗S.

Theorem 12.1. Differential equations (141) are equivalent to the matrix
equation,

L̇ = [M,L], (146)

with N ×N matrices depending on the spectral parameter λ:

L = L(x, p;λ) = Ω + λ(pxT − xpT) − λ2xxT, (147)
M = M(x;λ) = λxxT. (148)

If all ωk’s are distinct, then differential equations (141) are also equivalent to
the matrix equation,

Λ̇ = [M, Λ] , (149)
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with 2 × 2 matrices depending on the spectral parameter z:

Λ = Λ(x, p; z) =




Φz(x, p) −1 + Φz(p, p)

−Φz(x, x) −Φz(x, p)


 , (150)

M = M(x, p; z) =




0 z + α

−1 0


 . (151)

Here

Φz(x, p) =
〈
(Ω − zI)−1x, p

〉
=

N∑
k=1

xkpk
ωk − z

. (152)

The relation between these two Lax representations is an example of duality.
It can be best explained on the level of characteristic polynomials which are
related, due to the Weinstein–Aronszajn formula,

det
(
L(λ) − zIN

)
= λ2

N∏
j=1

(ωj − z) det
(
Λ(z) + λ−1I2

)
. (153)

Thus,

det
(
Λ(z) + λ−1I2

)
= λ−2 −

n∑
k=1

Fk
ωk − z

. (154)

12.2 Bäcklund Transformation for the Neumann System

Consider the following Lagrange function on S × S,

hL(x̃, x) = −
〈
(I + h2Ω)1/2x̃, x

〉
, x ∈ S, x̃ ∈ S , (155)

and the corresponding discrete–time Newtonian system,

(I + h2Ω)1/2(x̃+ x˜) = βx . (156)

Here β is the Lagrange multiplier, assuring that x remains on S during the
discrete time evolution. Requiring 〈x̃, x̃〉 = 1 provided that 〈x, x〉 = 1 and
〈x˜, x˜〉 = 1, we find that

β =
2
〈
(I + h2Ω)−1/2x, x˜

〉
〈
(I + h2Ω)−1x, x

〉 =

2
N∑
k=1

(1 + h2ωk)−1/2xk x˜k
N∑
k=1

(1 + h2ωk)−1x2
k

. (157)
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Similarly, requiring that 〈x˜, x˜〉 = 1 provided that 〈x, x〉 = 1 and 〈x̃, x̃〉 = 1,
leads to the alternative expression,

β =
2
〈
(I + h2Ω)−1/2x̃, x

〉
〈
(I + h2Ω)−1x, x

〉 =

2
N∑
k=1

(1 + h2ωk)−1/2x̃kxk

N∑
k=1

(1 + h2ωk)−1x2
k

. (158)

Hence the following quantity is an integral of motion of our discrete–time
Lagrangian system,

N∑
k=1

(1 + h2ωk)−1/2x̃kxk =
N∑
k=1

(1 + h2ωk)−1/2xk x˜k . (159)

The momenta p canonically conjugate to x are given by

hp = (I + h2Ω)1/2x̃− γx , (160)
hp̃ = −(I + h2Ω)1/2x+ γx̃ . (161)

Here the scalar multiplier γ has to be chosen to assure the relations

p ∈ T ∗
xS , p̃ ∈ T ∗

x̃S ,

or, in other words, the relations

〈p, x〉 = 〈p̃, x̃〉 = 0 , (162)

which are satisfied if

γ =
〈
(I + h2Ω)1/2x̃, x

〉
. (163)

The condition for x̃ determined by (160) to lie on S is

γ2
N∑
k=1

x2
k

1 + h2ωk
+ 2hγ

N∑
k=1

xkpk
1 + h2ωk

+ h2
N∑
k=1

p2k
1 + h2ωk

= 1 . (164)

There is one root of this quadratic equation such that γ = 1 + O(h2) when
h→ 0. It is

γ =

−h
N∑
k=1

xkpk
1 + h2ωk

+
√
F

N∑
k=1

x2
k

1 + h2ωk

, (165)
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where

F =
N∑
k=1

Fk
1 + h2ωk

, (166)

with the functions Fk given in (143).
Similarly, the condition that x determined by (161) lies on S is

γ2
N∑
k=1

x̃2
k

1 + h2ωk
− 2hγ

N∑
k=1

x̃kp̃k
1 + h2ωk

+ h2
N∑
k=1

p̃2k
1 + h2ωk

= 1 , (167)

and the root such that γ = 1 +O(h2) when h→ 0 is

γ =

h
N∑
k=1

x̃kp̃k
1 + h2ωk

+
√
F̃

N∑
k=1

x̃2
k

1 + h2ωk

, (168)

where F̃ is obtained from F by replacing (x, p) by (x̃, p̃).
Lagrangian equations (160), (161) yield Newtonian ones (156) with

β = γ + γ
˜
. (169)

This, together with (164) and the downshifted version of (167) imply the
following expression for the Lagrange multiplier β:

β =
2
√
F

N∑
k=1

(1 + h2ωk)−1x2
k

. (170)

Comparing (170) with (157), (158) leads to the formula

√
F =

N∑
k=1

(1 + h2ωk)−1/2x̃kxk . (171)

Lax representations of the map (160), (161) are given in the following
statement.

Theorem 12.2. Equations of motion (160), (161) are equivalent to the fol-
lowing matrix factorizations,

I + h2L = I + h2L(x, p;λ) = MT(x̃, x;−λ)M(x̃, x;λ) , (172)

I + h2L̃ = I + h2L(x̃, p̃;λ) = M(x̃, x; ν)MT(x̃, x;−λ) , (173)
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where the matrix L is defined as in (147), and

M(x̃, x;λ) = (I + h2Ω)1/2 + hλx̃xT. (174)

Also, equations of motion (160), (161) are equivalent to the matrix equation,

Λ̃P = PΛ , (175)

where the matrix Λ = Λ(x, p; z) is given in (150), and

P = P(x̃, x; z) =




γ hz + h−1(1 − γ2)

−h γ


 . (176)

Thus, discretization (160), (161) shares the Lax matrices, and therefore the
integrals of motion, with the Neumann system itself.

12.3 Ragnisco’s Discretization of the Neumann System

There exists an alternative integrable discretization of the Neumann system
invented by Ragnisco. Its discrete–time Lagrange function on S × S is

hL(x̃, x) = − log〈x̃, x〉 − h2

2
〈Ωx, x〉 , x ∈ S, x̃ ∈ S . (177)

The momenta p canonically conjugate to x are given by

hpk =
x̃k

〈x̃, x〉 + h2ωkxk − γxk , hp̃k = − xk
〈x̃, x〉 + δx̃k . (178)

Here the scalar multipliers γ, δ have to be chosen so as to assure that

p ∈ T ∗
xS , p̃ ∈ T ∗

x̃S ,

or, in other words, the relations

〈p, x〉 = 〈p̃, x̃〉 = 0 . (179)

It is easy to see that this is achieved if

γ = 1 + h2〈Ωx, x〉 , δ = 1 . (180)

So, the following are the equations of motion of Ragnisco’s discrete–time
Neumann system:

hpk =
x̃k

〈x̃, x〉 − xk + h2ωkxk − h2〈Ωx, x〉xk , (181)

hp̃k = − xk
〈x̃, x〉 + x̃k . (182)
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The Newtonian form of the equations of motion is

x̃k
〈x̃, x〉 − 2xk +

x˜k〈x, x˜〉
= −h2ωkxk + h2〈Ωx, x〉xk . (183)

Equations (181), (182) define an explicit symplectic map (x, p) ∈ T ∗S →
(x̃, p̃) ∈ T ∗S. Indeed, the first equation (181) yields

x̃k
〈x̃, x〉 = xk + hpk − h2ωkxk + h2〈Ωx, x〉xk ,

which allows us to determine
1

〈x̃, x〉 = ‖x+ hp− h2Ωx+ h2〈Ωx, x〉x‖ . (184)

Now the previous equality defines

x̃k =
xk + hpk − h2ωkxk + h2〈Ωx, x〉xk
‖x+ hp− h2Ωx+ h2〈Ωx, x〉x‖ ,

and, finally, the second equation of motion (182) defines p̃.
Ragnisco’s discrete–time Neumann system no longer shares the integrals

of motion and the Lax matrices with its continuous–time counterpart.

Theorem 12.3. Equations of motion (181), (182) are equivalent to the fol-
lowing matrix equation,

Λ̃RPR = PRΛR , (185)

with the matrices

ΛR = ΛR(x, p; z) =




−h
2

+ Φz(x, p) −1 + Φz(p, p)

−Φz(x, x)
h

2
− Φz(x, p)


 . (186)

PR = PR(x, p; z) =




1 hz + hα

−h γ − h2z


 , (187)

where

γ = 1 + h2〈Ωx, x〉 , (188)
α = 〈p− hΩx, p− hΩx〉 − 〈Ωx, x〉 − h2〈Ωx, x〉2 . (189)

We do not know a “big” Lax representation of Ragnisco’s discrete–time Neu-
mann system. The characteristic polynomial of the matrix ΛR yields the
following integrals of motion of Ragnisco’s discrete–time Neumann system:

Fk = x2
k − hxkpk +

∑
j �=k

(pkxj − xkpj)2

ωk − ωj
. (190)



Discrete Lagrangian Models 149

12.4 Adler’s Discretization of the Neumann System

It will be convenient to adopt the notation

αk = 1 − h2

4
ωk , A = diag(α1, . . . , αN ) = I − h2

4
Ω . (191)

Consider the discrete–time Lagrange function on S × S,

hL(x̃, x) = −2 log(1 + 〈x̃, x〉) + 2 log〈Ax, x〉 , x ∈ S, x̃ ∈ S . (192)

The corresponding discrete–time Lagrangian equations of motion are

hpk =
2x̃k

1 + 〈x̃, x〉 −
4αkxk
〈Ax, x〉 − γxk , hp̃k = − 2xk

1 + 〈x̃, x〉 + δx̃k . (193)

Here the scalar multipliers γ, δ have to be chosen so as to assure that

p ∈ T ∗
xS , p̃ ∈ T ∗

x̃S ,

or, in other words, to assure that the following relations hold,

〈p, x〉 = 0 , 〈p̃, x̃〉 = 0 .

It is easy to see that this is achieved if

γ =
2〈x̃, x〉

1 + 〈x̃, x〉 − 4 = − 2
1 + 〈x̃, x〉 − 2 , δ =

2〈x̃, x〉
1 + 〈x̃, x〉 = − 2

1 + 〈x̃, x〉 + 2 .

(194)

So, we come to the following Lagrangian equations of motion of Adler’s
discrete–time Neumann system,

hpk =
2(x̃k + xk)
1 + 〈x̃, x〉 − 4αkxk

〈Ax, x〉 + 2xk , (195)

hp̃k = −2(x̃k + xk)
1 + 〈x̃, x〉 + 2x̃k . (196)

These two equations yield also the Newtonian form of the equations of motion,

x̃k + xk
1 + 〈x̃, x〉 +

xk + x˜k1 + 〈x, x˜〉
=

2αkxk
〈Ax, x〉 . (197)

Equations (195) and (196) define a symplectic map, (x, p) ∈ T ∗S → (x̃, p̃) ∈
T ∗S. At a first glance, this definition looks implicit. However, this is actually
not the case. Indeed, the first equation (195) yields

2(x̃k + xk)
1 + 〈x̃, x〉 =

4αkxk
〈Ax, x〉 − 2xk + hpk ,
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which implies

2
1 + 〈x̃, x〉 =

∥∥∥∥
2Ax

〈Ax, x〉 − x+
hp

2

∥∥∥∥
2

. (198)

This, substituted back into (195), allows us to determine x̃, and then, finally,
the second equation of motion (196) defines p̃.

A neat Lax representation for Adler’s discrete–time Neumann system is
not known. Nevertheless, it is completely integrable, as the following theorem
shows.

Theorem 12.4. If all αk’s are distinct, then the following functions are in-
volutive integrals of motion of Adler’s discrete–time Neumann system,

Fk = x2
k − hxkpk +

h2

4

∑
j �=k

(xkpj − xjpk)(αkxkpj − αjxjpk)
αj − αk

. (199)

13 Garnier System

13.1 Continuous–Time Dynamics

The equations of motion of the Garnier system are

ẍk = −ωkxk − 2xk〈x, x〉 , (200)

or, in the vector form,

ẍ = −Ωx− 2x〈x, x〉 . (201)

Written as

ẋk = pk , ṗk = −ωkxk − 2xk〈x, x〉 , (202)

this is a Hamiltonian system on R
2N (x, p) equipped with the standard sym-

plectic structure, with the Hamilton function

H(x, p) =
1
2

N∑
k=1

(p2k + ωkx
2
k) +

1
2

(
N∑
k=1

x2
k

)2

=
1
2
〈p, p〉 +

1
2
〈Ωx, x〉 +

1
2
〈x, x〉2 .

(203)

If all ωk’s are distinct, then the full set of integrals of the Garnier system
is given by the functions

Fk = p2k + ωkx
2
k + x2

k〈x, x〉 +
∑
j �=k

X2
kj

ωj − ωk
, 1 ≤ k ≤ N . (204)

Then

H =
1
2

N∑
k=1

Fk . (205)
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Theorem 13.1. Differential equations (202) are equivalent to the matrix
equation,

L̇ = [M,L] (206)

with (N + 1) × (N + 1) matrices depending on the spectral parameter λ,

L = L(x, p;λ) =



xxT +Ω p+ λx

pT − λxT −〈x, x〉 − λ2


 , (207)

M = M(x;λ) =




0 x

−xT −λ


 . (208)

If all ωk’s are distinct, then differential equations (202) are equivalent to the
matrix equation,

Λ̇ = [M, Λ] , (209)

with 2 × 2 matrices depending on the spectral parameter z,

Λ = Λ(x, p; z) =




Φz(x, p) z + 〈x, x〉 + Φz(p, p)

−1 − Φz(x, x) −Φz(x, p)


 , (210)

M = M(x; z) =




0 z + 2〈x, x〉

−1 0


 . (211)

As for the Neumann system, also in the present case the characteristic
polynomials of the Lax matrices yield the full set of integrals of motion.

13.2 Bäcklund Transformation for the Garnier System

Consider the discrete–time Lagrangian system,

hp = (E + h2Ω)1/2x̃− x(1 − h2σ)1/2 , (212)

hp̃ = x̃(1 − h2σ)1/2 − (E + h2Ω)1/2x , (213)

where

σ = 〈x̃, x̃〉 + 〈x, x〉 . (214)

The Lagrange function generating these equations of motion is equal to

hL0(x̃, x) = −
〈
(E + h2Ω)1/2x̃, x

〉
− 1

3h2 (1 − h2σ)3/2. (215)
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The Newtonian form of the equations of motion is

(1 + h2ωk)1/2(x̃k + x˜k) = xk

(
(1 − h2σ)1/2 + (1 − h2 σ˜)1/2

)
. (216)

Theorem 13.2. Equations of motion (212), (213) are equivalent to the fol-
lowing matrix factorizations,

I + h2L = I + h2L(x, p;λ) = MT(x̃, x;−λ)M(x̃, x;λ) , (217)

I + h2L̃ = I + h2L(x̃, p̃;λ) = M(x̃, x;λ)MT(x̃, x;−λ) , (218)

with the matrix L defined as in (207), and

M(x̃, x;λ) =




(E + h2Ω)1/2 hx̃

−hxT (1 − h2σ)1/2 − hλ


. (219)

As a consequence, the discrete–time evolution of the matrix L induced by
(212), (213) is isospectral. Also, equations of motion (212), (213) are equiva-
lent to the 2 × 2 discrete–time Lax equation,

Λ̃P = PΛ , (220)

with the matrix Λ(x, p; z) defined in (210), and

P = P(x̃, x; z) =




(1 − h2σ)1/2 hz + hσ

−h (1 − h2σ)1/2


 . (221)

13.3 Explicit Discretization of the Garnier System

There exists an alternative, explicit discretization of the Garnier system.
Let C = diag(c1, . . . , cN ). Consider the system of second–order difference
equations,

x̃+ x˜ =
2Cx

1 + 〈Cx, x〉 . (222)

In the form of first–order difference equations,

ỹ = x , x̃ = −y +
2Cx

1 + 〈Cx, x〉 , (223)

this system defines a symplectic map of R
2N (x, y) onto itself, provided the

symplectic structure on this space is defined by means of the canonical Pois-
son bracket,

{xk, yj} = δkj . (224)
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To achieve the continuous limit, re-scale x→ hx, which leads to the equation

x̃+ x˜ =
2Cx

1 + h2〈Cx, x〉 ,

and then set ck = 1 − h2ωk/2 + o(h2), and finally let h→ 0.
It can be shown that, if all ck’s are distinct, the full set of involutive

integrals of the discrete–time Garnier system (222) is given by N functions,

Fk = c−1
k (x2

k + y2
k) − 2xkyk + x2

ky
2
k

+
∑
j �=k

ckcj
c2k − c2j

(x2
ky

2
j + y2

kx
2
j ) −

∑
j �=k

2c2j
c2k − c2j

xkykxjyj , 1 ≤ k ≤ N. (225)

Theorem 13.3. Difference equations (223) are equivalent to the matrix equa-
tion,

ML̃ = LM (226)

with (N + 1) × (N + 1) matrices depending on the spectral parameter λ,

L = L(x, y;λ) =



λ−2C−2 − E + xyT λx− λ−1C−1y

λ−1xTC−1 − λyT −λ2 + 1 − 〈x, y〉


 , (227)

M = M(x;λ) =



λ−1C−1 −x

xT λ


 . (228)

Also, difference equations (223) are equivalent to the matrix equation,

L̃M = ML , (229)

with 2 × 2 matrices depending on the spectral parameter u,

L = L(x, y;u) =




u−1 + uΦu(x, y) 1 + Φu(x,C−1x)

−1 − Φu(y, C−1y) −u−1 − uΦu(x, y)


 , (230)

M = M(x;u) =




2
1 + 〈Cx, x〉 u

−u 0


 . (231)

14 Multi–dimensional Euler Top

14.1 Continuous–Time Dynamics

A natural configuration space for problems related to multidimensional ana-
logues of the rigid body dynamics is the Lie group
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G = SO(n) ,

with Lie algebra

g = so(n) .

The “physical” rigid body corresponds to n = 3. Indeed, let B(t) ⊂ R
n be a

rigid body with a fixed point 0 ∈ R
n. If E(t) = (e1(t), . . . , en(t)) stands for

the time evolution of a certain orthonormal frame attached to the moving
body, called the body frame (all ek ∈ R

n), then

E(t) = g(t)E(0) ⇔ ek(t) = g(t)ek(0) (1 ≤ k ≤ n) ,

with some g(t) ∈ G. Let us derive the Lagrange function of a free rigid body.
Consider some material point in the rigid body, and denote its trajectory
by x = x(t) ∈ R

n. We will write x = (x1, . . . , xn)T for the position of the
material point with respect to the rest frame. We assume that the coordinates
xk = xk(t) are calculated with respect to the frame E(0), i.e.,

x(t) =
n∑
k=1

xk(t)ek(0) .

The rigidity of the body means that the coordinates of this vector with respect
to the body frame E(t) do not change with time,

x(t) =
n∑
k=1

Xkek(t) .

We will also denote by X = (X1, . . . , Xn)T the position of the corresponding
material point with respect to the moving frame. Obviously,

x(t) = g(t)X.

Supposing that the density of the body at the point x(t) = g(t)X is equal to
ρ(X), we can calculate the kinetic energy of the free rigid body, which will
be simultaneously its Lagrange function,

L =
1
2

∫

B(t)
〈ẋ, ẋ〉ρ(g−1x)dnx .

Here 〈·, ·〉 stands for the standard Euclidean scalar product in R
n. Performing

an orthogonal change of variables x = gX, we obtain

L =
1
2

∫

B(0)
〈ġX, ġX〉ρ(X)dnX =

1
2

∫

B(0)
〈ΩX,ΩX〉ρ(X)dnX,

where
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Ω = g−1ġ ∈ g (232)

is the matrix of the angular velocity of the rigid body in the body frame
E(t). Obviously, due to the skew–symmetry of Ω, the previous integral is
equal to

L = −1
2

tr(JΩ2) ,

where J = (Jjk)nj,k=1 is a symmetric matrix with entries

Jjk =
∫

B(0)
XjXkρ(X)dnX, (233)

the so called inertia tensor of the rigid body. It is easy to understand that
changing the initial frame leads to a conjugation of J by the corresponding
orthogonal matrix. Hence, choosing the frame E(0) properly, we can assure
the matrix J to be diagonal,

J = diag(J1, . . . , Jn) , (234)

which will be supposed from now on. Let us introduce the scalar product on
g as

〈ξ, η〉 = −1
2

tr(ξη) , ξ, η ∈ g .

This scalar product is used also to identify g∗ with g, so that the previous
formula can also be considered as a pairing between the elements ξ ∈ g and
η ∈ g∗. Introduce, further, the symmetric operator J : so(n) → so(n) acting
as

J (Ω) = JΩ +ΩJ. (235)

In these notations we finally obtain the Lagrange function of a free rigid body
rotating about a fixed point,

L(g, ġ) = L(l)(Ω) = −1
2

tr(JΩ2) =
1
2
〈Ω,J (Ω)〉 . (236)

This function depends onΩ = g−1ġ alone, and is therefore obviously invariant
under the left action of G. This allows us to apply Theorem 10.1, which
delivers the following equations of motion,

Ṁ = [M,Ω] , (237)

where

M = ∇ΩL(l) = J (Ω) ⇔ Mjk = (Jj + Jk)Ωjk . (238)
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According to the general theory, the system (237) is Hamiltonian on the dual
g∗, with the Hamilton function

H(M) =
1
2
〈M,Ω〉 =

1
2

∑
j<k

M2
jk

Jj + Jk
. (239)

Recall that the Lie–Poisson bracket on g∗ is defined as

{ϕ1, ϕ2}(M) =
〈
M, [∇ϕ1(M),∇ϕ2(M)]

〉
, (240)

or, in coordinates,

{Mij ,Mk�} = Mi�δjk −Mkjδ�i −Mikδj� +M�jδki . (241)

The generic orbits in this Poisson phase space have dimension n(n− 1)/2 −
[n/2], since the dimension of g∗ is equal to n(n− 1)/2, and the [n/2] spectral
invariants of M ∈ g∗ are Casimir functions of the Poisson bracket. In par-
ticular, for the “physical” case, n = 3, the dimension of the generic orbit is
equal to 2, and in the case n = 4 this dimension is equal to 4. The number
of independent involutive integrals of motion necessary for complete integra-
bility is equal to one–half of the above dimension, so that any Lie–Poisson
Hamiltonian system on so(3) is integrable, while for the integrability of a Lie–
Poisson Hamiltonian system on so(4) one additional integral, independent of
and involutive with the Hamilton function, is necessary.

Theorem 14.1. Equations of motion (237) with (238) are equivalent to

L̇(λ) = [L(λ), B(λ)] , (242)

where

L(λ) = M + λJ2 , (243)
B(λ) = Ω + λJ . (244)

The spectral invariants of the matrix L(λ) provide us with the necessary
number of independent integrals of motion, and their involutivity follows from
the general r–matrix theory.

14.2 Discrete–Time Euler Top

To find a discrete analogue of the Lagrange function (236), we rewrite the
latter once more as

L(g, ġ) =
1
2

tr(ġJ ġT) . (245)

Introduce the following discrete analogue,



Discrete Lagrangian Models 157

L(gk, gk+1) =
1
2h

tr
(
(gk+1 − gk)J(gk+1 − gk)T

)
. (246)

This function has the correct asymptotics in the continuous limit h → 0,
namely L(gk, gk+1) ≈ hL(g, ġ), when gk = g and gk+1 ≈ g + hġ. Up to an
additive constant, function (246) may be rewritten as

L(gk, gk+1) = − 1
h

tr(gk+1Jg
T
k ) . (247)

This is representable also in terms of Wk = gT
k gk+1 ∈ G alone,

L(gk, gk+1) = Λ(l)(Wk) = − 1
h

tr(WkJ) . (248)

(Recall that, in the continuous limit, Wk ≈ I + hΩ, so that WT
k ≈ I − hΩ.)

Theorem 10.3 leads to the following equations of motion.

Theorem 14.2. The discrete–time Euler–Lagrange equations for the La-
grange function (248) are equivalent to the following system,

{
hMk = WkJ − JWT

k ,
hMk+1 = JWk −WT

k J .
(249)

The multi–valued map (correspondence) Mk → Mk+1 described by (249) is
Poisson with respect to the Lie–Poisson bracket on g∗.

The Lax representation of equations (249) is obtained in terms of the
following matrices,

Lk(λ) = I − h2λMk − h2λ2J2 , (250)
Uk(λ) = Wk + hλJ , (251)

so that

UT
k (−λ) = WT

k − hλJ . (252)

Theorem 14.3. Equations of motion (249) are equivalent to the following
matrix factorizations,

{
Lk(λ) = Uk(λ) UT

k (−λ) ,
Lk+1(λ) = UT

k (−λ) Uk(λ) .
(253)

In particular, the matrix Lk(λ) remains isospectral in the discrete–time
evolution described by equations (249),

Lk+1(λ) = U−1
k (λ)Lk(λ)Uk(λ) .

Since Lk(λ) = I − h2λLk(λ), where
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Lk(λ) = Mk + λJ2,

an expression which formally coincides with (243), we see that the Lax matrix
of the continuous–time Euler top undergoes an isospectral evolution also in
the discrete–time dynamics. Theorem 14.3 provides us with a complete set
of integrals of motion of our discrete–time Lagrangian map, the coefficients
of the characteristic polynomial, det(Lk(λ) − µI). These integrals of motion
clearly coincide with the integrals of motion of the continuous–time problem.
In particular, they are in involution.

The definition of the above correspondence (249) depends crucially on the
solvability of the first equation in (249) for Wk ∈ G. So, we have to discuss
this point carefully. Dropping index k, we rewrite the first equation in (249)
as

hM = WJ − JWT. (254)

We are looking for a solution W ∈ G, i.e., such that

WWT = WTW = I . (255)

Recall also that equation (254), together with constraint (255), is equivalent
to a factorization problem for matrices depending on λ,

L(λ) = U(λ)UT(−λ) . (256)

Define

p(λ) = det(L(λ)) . (257)

Obviously, p(λ) is a polynomial of degree 2n with real coefficients, and, due
to L(λ) = LT(−λ), it satisfies

p(λ) = p(−λ) .
Let Σ denote the set of all roots of p(λ). Suppose that p(λ) has no roots on
the imaginary axis. Then we can find (many) splittings Σ = Σ+ ∪ Σ− into
disjoint sets Σ+, Σ− satisfying

Σ+ = −Σ− , Σ+ = Σ+ , Σ− = Σ− . (258)

Such splittings are in a one–to–one correspondence with the factorizations

p(λ) = f(λ)f(−λ) , (259)

where f(λ) is a polynomial of degree n with real coefficients such that Σ+ is
the set of the roots of f(λ), so that f(λ), f(−λ) have no common roots.

Theorem 14.4. To any polynomial factorization (259) there corresponds a
matrix factorization (256) with f(λ) = ±det(U(λ)), or, equivalently, a solu-
tion of matrix equation (254) under constraint (255).

Remark. It is important to notice that, according to Theorem 14.3, the set
Σ does not depend on k, and its splitting Σ = Σ+ ∪Σ− can also be chosen
independently of k.
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15 Rigid Body in a Quadratic Potential

15.1 Continuous–Time Dynamics

Now we extend the considerations of Sect. 14.1 by including an arbitrary
quadratic potential acting on the rigid body. To find the Lagrange function
of a rigid body rotating about a fixed point 0 ∈ R

n in a field with a quadratic
potential,

ϕ(x) = −1
2

n∑
i,j=1

aijxixj , (260)

we have to calculate the body’s kinetic and potential energy. Clearly, the
kinetic energy coincides with the Lagrange function of a free rigid body. The
potential energy is equal to

∫

B(t)
ϕ(x)ρ(g−1x)dnx = −1

2

n∑
i,j=1

aij

∫

B(t)
xixjρ(g−1x)dnx .

Performing an orthogonal change of variables, x = gX, we find the following
expression for the potential energy,

−1
2

n∑
i,j=1

aij

∫

B(0)
(gX)i(gX)jρ(X)dnX =

−1
2

n∑
i,j=1

n∑
�,m=1

aijgi�gjm

∫

B(0)
X�Xmρ(X)dnX.

Recalling definition (233), we write the potential energy as

−1
2

n∑
i,j=1

n∑
�,m=1

aijgi�gjmJ�m = −1
2

tr(AgJgT) .

Here to the notations used above we add A = (aij)ni,j=1, the symmetric matrix
of coefficients of the quadratic form, ϕ(x). So, finally, the Lagrange function of
a rigid body rotating about a fixed point in a field with a quadratic potential
is equal to

L(g, ġ) = −1
2

tr(ΩJΩ) +
1
2

tr(AgJgT) . (261)

To include this Lagrange function in the framework of Sect. 11, we make the
following identifications:

• V = Symm(n), the linear space of all n×n symmetric matrices; we identify
V ∗ with V via the following scalar product on V ,

〈v1, v2〉 =
1
2

tr(v1v2) , v1, v2 ∈ V.
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• The representation Φ of G on V is defined as

Φ(g) · v = gvg−1 = gvgT for g ∈ G, v ∈ V.

• Therefore the representation φ of g on V is given by

φ(ξ) · v = [ξ, v] for ξ ∈ g, v ∈ V,

while the anti–representation φ∗ of g in V ∗ is given by

φ∗(ξ) · y = −[ξ, y] for ξ ∈ g, y ∈ V ∗,

• Finally, the bilinear operation  : V ∗ × V → g∗ is given by

y  v = −[y, v] for y ∈ V ∗, v ∈ V.

Now defining P = gTAg = Φ(g−1) ·A, we represent (261) in the form

L(g, ġ) = L(l)(Ω,P ) = −1
2

tr(ΩJΩ) +
1
2

tr(JP ) =
1
2
〈Ω,J (Ω)〉 + 〈J, P 〉 ,

(262)

which is manifestly invariant under the left action of the isotropy subgroup
G[A]. Now Theorem 11.1 is applicable, which yields the following equations
of motion,

{
Ṁ = [M,Ω] + [P, J ] ,
Ṗ = [P,Ω] ,

(263)

where M is given by the formula

M = ∇ΩL(l) = J (Ω) ⇔ Mjk = (Jj + Jk)Ωjk , (264)

identical with (238) for the Euler top. According to the general theory, the
system (263) is Hamiltonian on the dual of the semidirect product Lie algebra
g � V ∗, with the Hamilton function

H(M,P ) =
1
2
〈M,Ω〉 − 〈J, P 〉 =

1
2

∑
j<k

M2
jk

Jj + Jk
− 1

2

n∑
k=1

JkPkk . (265)

The Lie–Poisson bracket on g∗ × V is given by:

{ϕ1, ϕ2} =
〈
M, [∇Mϕ1,∇Mϕ2]

〉
+
〈
P, [∇Pϕ1,∇Mϕ2] − [∇Pϕ2,∇Mϕ1]

〉
,

(266)

or, in coordinates,

{Mij ,Mk�} = Mi�δjk −Mkjδ�i −Mikδj� +M�jδki , (267)
{Mij , Pk�} = Pi�δjk − Pkjδ�i + Pikδj� − P�jδki , (268)
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Generic orbits in this Poisson phase space have dimension n2 − n (the di-
mension of g∗ × V is equal to n(n − 1)/2 + n(n + 1)/2 = n2; the n spectral
invariants of P ∈ V are Casimir functions of the Poisson bracket). In par-
ticular, for the “physical” case, n = 3, the dimension of the generic orbit
is equal to 6. Therefore the number of independent involutive integrals of
motion necessary for complete integrability is equal to n(n − 1)/2 (equal to
3 for n = 3).

Theorem 15.1. Equations of motion (263) with (264) are equivalent to

L̇(λ) = [L(λ), B(λ)] , (269)

where

L(λ) = λ−1P +M + λJ2, (270)
B(λ) = Ω + λJ. (271)

The spectral invariants of the matrix L(λ) provide us with the necessary
number of independent integrals of motion. Their involutivity follows from
the r–matrix interpretation of the above Lax equation.

15.2 Discrete–Time Top in a Quadratic Potential

To find a discrete analogue of the Lagrange function (261), we rewrite the
latter once more as

L(g, ġ) =
1
2

tr(ġJ ġT) +
1
2

tr(gJgTA) . (272)

Introduce the following discrete analogue,

L(gk, gk+1) =
1
2h

tr
(
(gk+1 − gk)J(gk+1 − gk)T

)
+
h

2
tr(gk+1Jg

T
k A) . (273)

The powers of h are introduced in a way that assures the correct limit when
h→ 0, namely L(gk, gk+1) ≈ hL(g, ġ), if gk = g and gk+1 ≈ g+hġ. Up to an
additive constant, function (273) may be rewritten as

L(gk, gk+1) = − 1
h

tr(gk+1Jg
T
k ) +

h

2
tr(gk+1Jg

T
k A) . (274)

This is representable also in terms of Wk = gT
k gk+1 ∈ G and Pk = gT

k Agk ∈
OA ⊂ V ,

L(gk, gk+1) = Λ(l)(Wk, Pk) = − 1
h

tr(WkJ) +
h

2
tr(WkJPk) . (275)

Recall that, in the continuous limit, Wk ≈ I + hΩ, and WT
k ≈ I − hΩ.

Theorem 11.1 allows us to come to the following conclusions.
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Theorem 15.2. Discrete–time Euler–Lagrange equations for the Lagrange
function (275) are equivalent to the following system,





Mk =
1
h

(WkJ − JWT
k ) − h

2
(PkWkJ − JWT

k Pk) ,

Mk+1 =
1
h

(JWk −WT
k J) − h

2
(JPkWk −WT

k PkJ) ,

Pk+1 = WT
k PkWk .

(276)

The multivalued map (correspondence) (Mk, Pk) → (Mk+1, Pk+1) described
by (276) is Poisson with respect to bracket (266).

Map (276) admits a Lax representation with matrices depending on a
spectral parameter λ,

Lk(λ) =
(
I − h2

2
Pk

)2
− h2λMk − h2λ2J2

= I − h2
(
Pk + λMk + λ2J2

)
+
h4

4
P 2
k , (277)

Uk(λ) =
(
I − h2

2
Pk

)
Wk + hλJ, (278)

UT
k (−λ) = WT

k

(
I − h2

2
Pk

)
− hλJ. (279)

Theorem 15.3. Equations of motion (276) are equivalent to the following
matrix factorizations,

{
Lk(λ) = Uk(λ) UT

k (−λ) ,
Lk+1(λ) = UT

k (−λ) Uk(λ) .
(280)

In particular, matrix Lk(λ) remains isospectral in the discrete–time evo-
lution described by equations (276):

Lk+1(λ) = U−1
k (λ)Lk(λ)Uk(λ) .

Hence, the same holds for the matrix

Lk(λ) = λ−1
(
Pk −

h2

4
P 2
k

)
+Mk + λJ2. (281)

Theorem 15.3 provides us with a complete set of integrals of motion of our
discrete–time Lagrangian system. These are the coefficients of the charac-
teristic polynomial det(Lk(λ) − µI). Notice that these integrals of motion
do not coincide with the integrals of motion of the continuous–time problem
(with the only exception of the free rigid body motion, i.e., Pk = 0 consid-
ered above). To be more concrete, the integrals of motion of our map are
obtained from the integrals of the continuous time problem by replacing P
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by P̂ = P − 1
4h

2P 2. A simple calculation shows that (268) also holds for
the quantities P̂k�. Therefore, the integrals of motion of the discrete–time
Lagrangian system are in involution with respect to the bracket (267), (268).

The definition of the above correspondence (276) depends crucially on the
solvability of the first equation in (276) for Wk ∈ G. This problem is very
similar to the one treated in Sect. 14.2. Dropping index k, and introducing
the notation

U =
(
I − h2

2
P
)
W,

we rewrite the first equation in (276) as

hM = UJ − JUT. (282)

We are looking for W ∈ G, which means WWT = WTW = I, hence the
solution of (282) for which we are looking has to satisfy the constraint

UUT = B, (283)

where, for the sake of brevity, we also use the abbreviation

B =
(
I − h2

2
P
)2
. (284)

Recall that equation (282), together with constraint (283), is equivalent to
the factorization

L(λ) = U(λ)UT(−λ) (285)

with the matrices

L(λ) = B − h2λM − h2λ2J2, (286)

and

U(λ) = U + hλJ , UT(−λ) = UT − hλJ. (287)

Introducing the polynomial (257), and arguing as at the end of Sect. 14.2,
we come to a statement analogous to the one given there.

Theorem 15.4. To any polynomial factorization (259) there corresponds a
matrix factorization (285) with f(λ) = ±det(U(λ)), or, equivalently, a solu-
tion of matrix equation (282) under constraint (283).

Again, according to Theorem 15.3, the set Σ does not depend on k, and
its splitting Σ = Σ+ ∪Σ− can also be chosen independently of k.
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16 Multi–dimensional Lagrange Top

16.1 Body Frame Formulation

Our next object will be a heavy top, i.e., a rigid body with a fixed point,
subject to a gravitational force with a linear potential,

ϕ(x) = 〈p, x〉 ,

where p is some constant vector. Calculating the potential energy of such a
body, we find

∫

B(t)
ϕ(x)ρ(g−1x)dnx =

∫

B(0)
ϕ(gX)ρ(X)dnX = 〈p, gA〉 ,

where

A =
∫

B(0)
Xρ(X)dnX (288)

is the vector in R
n pointing from the fixed point to the center of mass of

the rigid body, calculated with respect to the frame moving with the body.
Therefore,

L(g, ġ) =
1
2
〈Ω,J (Ω)〉 − 〈p, a〉 . (289)

Here, on the right–hand side,

a = gA (290)

is the vector in R
n pointing from the fixed point to the center of mass of the

rigid body, calculated with respect to the rest frame. Introducing

P = g−1p , (291)

the gravity vector calculated in the moving frame, we can rewrite the above
Lagrange function as

L(g, ġ) =
1
2
〈Ω,J (Ω)〉 − 〈P,A〉 . (292)

This function is in the framework of Sect. 11, if the following identifications
are made:

• V = V ∗ = R
n with the standard Euclidean scalar product;

• The representation Φ of G in V is defined as

Φ(g) · v = gv for g ∈ G, v ∈ V.
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• Therefore the representation φ of g on V is given by

φ(ξ) · v = ξv for ξ ∈ g, v ∈ V,

while the anti–representation φ∗ of g on V ∗ is given by

φ∗(ξ) · y = −ξy for ξ ∈ g, y ∈ V ∗ = V.

• Finally, the bilinear operation  : V ∗ × V → g∗ is given by

y  v = vyT − yvT = v ∧ y for y ∈ V ∗, v ∈ V.

The Lagrange function (292) is manifestly invariant under the left action of
the isotropy subgroup G[p] (rotations about the axis of the gravity field).
Theorem 11.1 is applicable, and delivers the following equations of motion of
a heavy top in the moving frame,

{
Ṁ = [M,Ω] +A ∧ P ,
Ṗ = −ΩP , (293)

where

M = ∇ΩL(l) = J (Ω) ⇔ Mjk = (Jj + Jk)Ωjk . (294)

According to the general theory, system (293) is Hamiltonian on the dual of
the semidirect product Lie algebra, e(n) = so(n) � R

n, with the Hamilton
function

H(M,P ) =
1
2
〈M,Ω〉 + 〈P,A〉 =

1
2

∑
j<k

M2
jk

Jj + Jk
+

n∑
k=1

PkAk . (295)

The corresponding invariant Poisson bracket is

{Mij ,Mk�} = Mi�δjk −Mkjδ�i −Mikδj� +M�jδki , (296)
{Mij , Pk} = Piδjk − Pjδik . (297)

The multi–dimensional Lagrange top is characterized by the following
data, J1 = J2 = . . . = Jn−1, which means that the body is rotationally
symmetric with respect to the nth coordinate axis, and A1 = A2 = . . . =
An−1 = 0, which means that the fixed point lies on the symmetry axis.
Choosing units properly, we may assume that

J1 = J2 = . . . = Jn−1 =
α

2
, Jn = 1 − α

2
, A = (0, 0, . . . , 0, 1)T. (298)

The action of the operator J is given by

Mij = J (Ω)ij =
{
αΩij , 1 ≤ i, j ≤ n− 1,
Ωij , i = n or j = n,

(299)
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or, in a more invariant fashion,

M = J (Ω) = αΩ + (1 − α)(ΩAAT +AATΩ) (300)
= αΩ − (1 − α)A ∧ (ΩA). (301)

Therefore, in the particular situation of the Lagrange top, (292) may be
written as

L(g, ġ) =
α

2
〈Ω,Ω〉 +

1 − α

2
〈ΩA,ΩA〉 − 〈P,A〉 . (302)

The Legendre transformation (300), (301) is easily invertible. Notice that
from (300) there follows immediately

MA = ΩA, (303)

and introducing this into the second term of the right–hand side of (301), we
find

Ω =
1
α
M +

1 − α

α
A ∧ (MA). (304)

The integrability of the multi–dimensional Lagrange top follows from its
Lax representation in the loop algebra sl(n+1)[λ, λ−1] twisted by the Cartan
automorphism.

Theorem 16.1. For the Lagrange top, the moving frame equations (293) are
equivalent to the matrix equation,

L̇(λ) = [L(λ), U(λ)], (305)

where

L(λ) = L(M,P ;λ) =
(

M λA− λ−1P
λAT − λ−1PT 0

)
, (306)

U(λ) = U(M ;λ) =
(

Ω λA
λAT 0

)
. (307)

The involutivity of integrals of motion follows, as usual, from the r–matrix
interpretation of the previous result.

16.2 Rest Frame Formulation

Integrability is not the only distinctive feature of the Lagrange top. Another
one is the existence of a nice Euler–Poincaré description in the rest frame.
Rewriting (302) as

L(g, ġ) =
α

2
〈ω, ω〉 +

1 − α

2
〈ωa, ωa〉 − 〈p, a〉 , (308)
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where ω = ġg−1, we observe that the Lagrange function of the Lagrange top
is not only left–invariant with respect to G[p], i.e., rotations about the axis of
the gravity field, but also right–invariant with respect to G[A], i.e, rotations
about the symmetry axis of the body. Therefore, we may apply (104), which,
in the present setup, yields{

ṁ = [ω,m] + ∇aL(r) ∧ a ,
ȧ = ωa .

(309)

Straightforward calculations based on (308) yield

∇aL(r) = −(1 − α)ω2a− p,

m = ∇ωL(r) = αω + (1 − α)(ωaaT + aaTω).

The last formula implies, first, that

ma = αωa+ (1 − α)ωa〈a, a〉 = ωa,

and, second, that

[ω,m] − (1 − α)(ω2a) ∧ a =
[
ω,m− (1 − α)(ωaaT + aaTω)

]
= [ω, αω] = 0.

Introducing these results into (309), we finally arrive at the following nice
system, {

ṁ = a ∧ p ,
ȧ = ma ,

(310)

where m = gMg−1 is the kinetic moment in the rest frame. This is a Hamil-
tonian system with respect to the opposite of the Lie–Poisson bracket of
e(n),

{mij ,mk�} = −mi�δjk +mkjδ�i +mikδj� −m�jδki , (311)
{mij , ak} = −aiδjk + ajδik , (312)

with the Hamilton function

H(m, a) =
1
2
〈m,m〉 + 〈a, p〉. (313)

Remarkable in the system (310) is its independence of the anisotropy para-
meter α.
Theorem 16.2. The rest frame equations (310) of the Lagrange top are
equivalent to the matrix equation

�̇(λ) = [�(λ), u(λ)], (314)

where

�(λ) = �(m, a;λ) =
(

m λa− λ−1p
λaT − λ−1pT 0

)
, (315)

u(λ) = u(a;λ) =
(

0 λa
λaT 0

)
. (316)
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16.3 Discrete–Time Analogue of the Lagrange Top:
Rest Frame Formulation

Consider the following discrete analogue of the Lagrange function (308),

L(gk, gk+1) =

−α
h

tr log
(
2I + wk + w−1

k

)
− 2(1 − α)

h
log
(
1 + 〈ak, ak+1〉

)
− h〈p, ak〉 ,

(317)

where wk, ak are defined by

wk = gk+1g
−1
k , ak = gkA , so that ak+1 = wkak .

The powers of h are introduced in a way assuring the correct limit when
h → 0, namely L(gk, gk+1) ≈ hL(g, ġ), if gk = g and gk+1 ≈ g + hġ. This is
seen with the help of the following simple lemma.

Lemma 16.1. Let w(h) = I + hω + O(h2) ∈ SO(n) be a smooth curve,
ω ∈ so(n). Then

tr log
(
2I + w(h) + w−1(h)

)
= const − h2

2
〈ω, ω〉 +O(h3) . (318)

For an arbitrary a ∈ R
n,

〈a,w(h)a〉 = 〈a, a〉 − h2

2
〈ωa, ωa〉 +O(h3) . (319)

Substituting wkak for ak+1 in (317), we find the Lagrange function
Λ(r)(ak, wk) = L(gk, gk+1) depending only on ak, wk, hence invariant with
respect to the right action of G[A]. It may be reduced following the procedure
of Sect. 11.

Theorem 16.3. The Euler–Lagrange equations of motion for the Lagrange
function (317) are equivalent to the following system:




mk+1 = mk + hak ∧ p ,

ak+1 =
I + (h/2)mk+1

I − (h/2)mk+1
ak .

(320)

The map (mk, ak) → (mk+1, ak+1) is Poisson with respect to bracket (311),
(312), and the following function is an integral of motion of this map,

Hh(m, a) =
1
2
〈m,m〉 + 〈a, p〉 − h

2
〈m, p ∧ a〉 . (321)
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An amazing feature of this result is that (320) is a genuine map, and
not a multi–valued correspondence, like the discretizations of the Euler top
and the top in a quadratic potential. It would be highly desirable to be able
to distinguish between these two situations by just looking at the discrete
Lagrange function, but at present we do not have methods for solving this
problem.

Actually, map (320) possesses not only integral (321) but the full set of
involutive integrals necessary for the complete integrability. The most direct
way to the proof of this statement is, as usual, through the Lax representation
which lives, just as in the continuous time situation, in the loop algebra
sl(n+ 1)[λ, λ−1] twisted by the Cartan automorphism.

Theorem 16.4. Map (320) admits the following Lax representation,

�k+1(λ) = v−1
k (λ)�k(λ)vk(λ) , (322)

with the matrices

�k(λ) =
(

mk λbk − λ−1p
λbTk − λ−1pT 0

)
, (323)

vk(λ) =
I + (h/2)uk(λ)
I − (h/2)uk(λ)

, uk(λ) =
(

0 λak
λaT

k 0

)
, (324)

where the following abbreviation is used,

bk =
(
I − h

2
mk

)
ak +

h2

4
p . (325)

Thus, we get a complete set of involutive integrals of motion for our
discrete–time Lagrangian map, as the coefficients of the characteristic poly-
nomial det(�k(λ)−µI). Observe that the integrals of map (320) are obtained
from the integrals of the continuous–time problem by the replacement of a
by b = a+O(h) given in (325). Therefore, the former are O(h)–perturbations
of the latter.

16.4 Discrete–Time Analogue of the Lagrange Top:
Moving Frame Formulation

It turns out that the equations of the discrete–time Lagrange top in the
moving frame formulation become a bit nicer under a modest change of the
Lagrange function (317), namely the replacement of 〈p, ak〉 in the last term
on the right–hand side by 〈p, ak+1〉. This modification does not influence
the discrete action functional, S =

∑
L(gk, gk+1), apart from the boundary

terms. On the other hand, it is not difficult to see that this modification is
equivalent to exchanging wk ↔ w−1

k , ak ↔ ak+1, which in turn is equivalent
to considering the evolution backwards in time with the simultaneous change
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h → −h. Now express the discrete Lagrange function (317) with the above
modification in terms of Pk = g−1

k p and Wk = g−1
k gk+1,

L(gk, gk+1) = Λ(l)(Pk,Wk) =

= −α
h

tr log
(
2I +Wk +W−1

k

)
− 2(1 − α)

h
log
(
1 + 〈A,WkA〉

)

−h〈Pk,WkA〉. (326)

Since Wk = I + hΩ +O(h2), we can apply Lemma 16.1 to show that

Λ(l)(Pk,Wk) = hL(l)(P,Ω) +O(h2) ,

where L(l)(P,Ω) is the Lagrange function (302) of the continuous–time La-
grange top. Now, one can derive all the results concerning the discrete–time
Lagrange top in the body frame from those for the rest frame by performing
the change of frames so that

Mk = g−1
k mkgk , Pk = g−1

k p , A = g−1
k ak ,

and taking into account the modification mentioned above. Alternatively, one
can derive them independently from, and similarly to, the rest frame results,
applying Theorem 11.3. Anyway, the corresponding results are

Theorem 16.5. The Euler–Lagrange equations for Lagrange function (326)
are equivalent to the following system,

{
Mk+1 = W−1

k MkWk + hA ∧ Pk+1 ,

Pk+1 = W−1
k Pk ,

(327)

where the “angular velocity” Wk ∈ SO(n) is related to the “angular momen-
tum” Mk ∈ so(n) by the Legendre transformation,

Mk =
2α
h

· Wk − I

Wk + I
− 2(1 − α)

h
· A ∧ (WkA)
1 + 〈A,WkA〉

. (328)

Map (327), (328) is Poisson with respect to bracket (296), (297), and has a
complete set of involutive integrals assuring its complete integrability. One of
these integrals is

H̄h(M,P ) =
1
2
〈M,M〉 + 〈P,A〉 +

h

2
〈M,P ∧A〉 . (329)

We close this section with a Lax representation of map (327), (328).

Theorem 16.6. Map (327), (328) has the following Lax representation,

Lk+1(λ) = V −1
k (λ)Lk(λ)Vk(λ) , (330)
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with the matrices

Lk(λ) =
(

Mk λBk − λ−1Pk
λBT

k − λ−1PT
k 0

)
, (331)

Vk(λ) =
(
Wk 0
0 1

)
I + (h/2)U(λ)
I − (h/2)U(λ)

, U(λ) =
(

0 λA
λAT 0

)
, (332)

where the following abbreviation is used,

Bk =
(
I +

h

2
Mk

)
A+

h2

4
Pk . (333)

17 Rigid Body Motion in an Ideal Fluid:
The Clebsch Case

17.1 Continuous–Time Dynamics

We next turn to the problem of the motion of an n–dimensional rigid body
in an ideal fluid. This problem is traditionally described by a Hamiltonian
system on e∗(n) with the Hamilton function

H(M,Y ) =
1
2

∑
j<k

c−1
jkM

2
jk −

1
2

n∑
k=1

bkY
2
k . (334)

Here (M,Y ) ∈ e∗(n), so that M ∈ so(n), Y ∈ R
n, and C = {cjk}nj,k=1,

B = diag(bk) are symmetric matrices. The physical meaning of M and Y is
the total angular momentum and the total linear momentum, respectively,
of the system “rigid body plus fluid”. The equations of motion (Kirchhoff
equations) are

{
Ṁ = [M,Ω] + Y ∧ (BY ) ,
Ẏ = −ΩY , (335)

where the matrix Ω ∈ so(n) and the linear operator J : so(n) → so(n) are
defined by the formula

Mjk = J (Ω)jk = cjkΩjk . (336)

The “physical” Lagrangian formulation of this problem involves a Lagrange
function on the group E(n), that is left–invariant under the action of a whole
group. However, a Lagrangian formulation may be also obtained in the frame-
work of Sect. 11, from a Lagrange function on SO(n), that is left–invariant
under the action of the isotropy subgroup of some element y ∈ R

n. These
two different settings lead to formally identical results.

So, one considers the Lagrange function
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L(g, ġ) = L(l)(Ω, Y ) =
1
2
〈Ω,J (Ω)〉 +

1
2
〈Y,BY 〉 . (337)

Here (g, ġ) ∈ TSO(n), and Ω = gTġ ∈ so(n), Y = gTy ∈ R
n. The reduced

equations of motion for this Lagrange function yielded by Theorem 11.1 co-
incide with (335).

The integrable Clebsch case of the Kirchhoff equations is characterized by
the relations

cij(bi − bj) + cjk(bj − bk) + cki(bk − bi) = 0 , (338)

which implies that

cjk =
aj − ak
bj − bk

(339)

for some matrix A = diag(ak). An invariant way of expressing this is [B,M ] =
[A,Ω]. This relation is critical in proving the following theorem.

Theorem 17.1. Under condition (339), equations (335) are equivalent to the
matrix equation

L̇(λ) = [L(λ), U(λ)] , (340)

where

L(λ) = λA+M + λ−1Y Y T, U(λ) = λB +Ω . (341)

There are two important particular subcases of the Clebsch case, for which
we will present integrable discretizations.

Case A = B2 is characterized by the following choice of coefficients,

bj = Jj , aj = J2
j , so that cjk = Jj + Jk .

The Hamilton function (334) takes the form

H(M,Y ) =
1
2

∑
j<k

M2
jk

Jj + Jk
− 1

2

n∑
j=1

JjY
2
j . (342)

Observe that the kinetic energy term in (337) is, in this case, that of the heavy
top (236), since in both cases J (Ω) = JΩ+ΩJ . The Lagrange function (337)
takes the form

L(g, ġ) = L(l)(Ω, Y ) = −1
2

tr(ΩJΩ) +
1
2
〈Y, JY 〉 . (343)

Clearly, this is a particular case of the Lagrange function (261) of the rigid
body in a quadratic potential, appearing when the matrix A of coefficients of
the quadratic potential is of rank 1, A = yyT for some y ∈ R

n. (For example,
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this is the case when the quadratic potential (260) represents the quadratic
terms in the expansion of the potential of a single point mass; it is supposed
that the distance from the rigid body to this point mass is much larger than
the size of the body itself, and the ratio of these two length scales is the
small parameter of the above mentioned expansion.) Defining Y = gTy, we
obtain P = Y Y T, i.e., the orbit OA in Symm(n) consists of matrices of rank
1. Differential equations (263) are, in this particular case, formally identical
with the Kirchhoff equations (335).

Case A = B is characterized by the following choice of coefficients,

ak = bk , so that cjk = 1 .

The Hamilton function (334) takes the form

H(M,Y ) =
1
2
〈M,M〉 − 1

2
〈Y,BY 〉 . (344)

The Lagrange function (337) takes the form

L(g, ġ) = L(l)(Ω, Y ) =
1
2
〈Ω,Ω〉 +

1
2
〈Y,BY 〉 , (345)

so that

M = Ω , (346)

and the Kirchhoff equations of motion simplify to
{
Ṁ = Y ∧ (BY ) ,
Ẏ = −MY.

(347)

The Lax representation of Theorem 17.1 can be written for this flow in two
equivalent forms,

L̇(λ) = [L(λ), U+(λ)] = [U−(λ), L(λ)] , (348)

where

L(λ) = λB +M + λ−1Y Y T, (349)

U+(λ) = λB +M , U−(λ) = λ−1Y Y T. (350)

17.2 Discretization of the Clebsch Problem, Case A = B2

We obtain the corresponding results from Sect. 15.2, simply by replacing Pk
with YkY T

k . The integrable discretization of the system under consideration
is given by the discrete–time Lagrange function,
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L(gk, gk+1) = Λ(l)(Wk, Yk) = − 1
h

tr(WkJ) +
h

2
〈Yk+1, JYk〉

= − 1
h

tr(WkJ) +
h

2
〈Yk,WkJYk〉 , (351)

where, as usual, Wk = gT
k gk+1 ∈ G and Yk = gT

k y ∈ Oy. The equations of
motion of this discretization are





Mk =
1
h

(WkJ − JWT
k ) − h

2
Yk ∧ (JYk+1) ,

Mk+1 =
1
h

(JWk −WT
k J) +

h

2
Yk+1 ∧ (JYk) ,

Yk+1 = WT
k Yk .

(352)

The Lax matrix and the Lax representation of this map are obtained from
(277) and Theorem 15.3 by replacing Pk with YkY

T
k . In particular, (281)

asserts that the following is the Lax matrix of map (352),

L(M,Y ;λ) = λJ2 +M + λ−1Y Y T
(
1 − h2

4
〈Y, Y 〉

)
. (353)

Observe that 〈Y, Y 〉 is a Casimir function, in particular, that it is an integral
of motion.

17.3 Discretization of the Clebsch Problem, Case A = B

The following discrete–time Lagrange function approximates (345),

L(gk, gk+1) = Λ(l)(Wk, Yk)

= − 1
h

tr log
(
2I +Wk +W−1

k

)
+

4
h

log
(
1 +

h2

4
〈Yk, BYk〉

)
. (354)

Here, as usual, Wk = gT
k gk+1 and Yk = gT

k y.

Theorem 17.2. The reduced Euler–Lagrange equations of motion for La-
grange function (354) are





Mk+1 = Mk + h
Yk ∧ (BYk)

1 + (h2/4)〈Yk, BYk〉
,

Yk+1 =
I − (h/2)Mk+1

I + (h/2)Mk+1
Yk .

(355)

Map (Mk, Yk) → (Mk+1, Yk+1) is Poisson with respect to bracket (296), (297).
This map is completely integrable and admits the following Lax representa-
tion,

Lk+1(λ) = Vk(λ)Lk(λ)V −1
k (λ), (356)
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with the matrices

Lk(λ) =
(
I +

h2

4
B
)−1(

λB +Mk + λ−1Pk
)
, (357)

Vk(λ) =
I + (hλ−1/2)Qk

I − (hλ−1/2)Qk
, (358)

where

Pk =
(
I +

h

2
Mk

)
YkY

T
k

(
I − h

2
Mk

)
(359)

and

Qk =
1

1 + (h2/4)〈Yk, BYk〉
YkY

T
k

(
I +

h2

4
B
)
. (360)

18 Systems of the Toda Type

There exist large classes of integrable lattice systems of the so-called Toda
type,

ẍk = f(ẋk)
(
g(xk+1 − xk) − g(xk − xk−1)

)
,

and of the relativistic Toda type,

ẍk = r(ẋk)
(
ẋk+1f(xk+1 − xk) − ẋk−1f(xk − xk−1)

+g(xk+1 − xk) − g(xk − xk−1)
)
.

Both are characterized by the fact that each lattice site only interacts with
its nearest neighbors. (The classical Toda lattice is a particular case of the
first system when f(v) = 1, g(ξ) = exp(ξ).) We restrict ourselves here to one
representative of each of these two classes.

18.1 Toda Type System

Theorem 18.1. Consider the following Newtonian equations of motion,

ẍk = −ẋ2
k

(
1

xk+1 − xk
− 1
xk − xk−1

)
. (361)

They are Lagrangian with the Lagrange function

L(x, ẋ) =
N∑
k=1

log(ẋk) −
N∑
k=1

log(xk+1 − xk) . (362)
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The corresponding Hamilton function is

H(x, p) =
N∑
k=1

log(pk) +
N∑
k=1

log(xk+1 − xk) . (363)

The Hamiltonian equations of motion are





ẋk = 1/pk ,

ṗk =
1

xk+1 − xk
− 1
xk − xk−1

.
(364)

They admit a 2 × 2 Lax representation,

L̇k = MkLk − LkMk−1 , (365)

with the matrices

Lk = I + λ



pkxk −pkx2

k

pk −pkxk


 , (366)

Mk =
λ

xk+1 − xk



xk −xkxk+1

1 −xk+1


 . (367)

An integrable discretization of this system is given in the following statement.

Theorem 18.2. Consider the discrete–time Lagrange function,

Λ(x̃, x) = h

N∑
k=1

log(x̃k − xk) − h

N∑
k=1

log(xk+1 − x̃k) , (368)

with the corresponding Newtonian equations of motion,

1
x̃k − xk

− 1
xk − x˜k

=
1

x˜k+1 − xk
− 1
xk − x̃k−1

. (369)

Its Lagrangian form is

pk = h

(
1

x̃k − xk
+

1
xk − x̃k−1

)
, (370)

p̃k = h

(
1

x̃k − xk
+

1
xk+1 − x̃k

)
. (371)

This map admits a 2 × 2 Lax representation,
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VkL̃k = LkVk−1 (372)

with the same Lax matrix (366) and

Vk = I +
hλ

xk+1 − x̃k



x̃k −x̃kxk+1

1 −xk+1


 . (373)

A simple change of variables, xk(t) → xk(t + kh), turns the implicit dis-
cretization (369) into an explicit one. However, the Hamiltonian and the Lax
aspects of this change are less trivial.

Theorem 18.3. Consider the discrete–time Lagrange function,

Λ(x̃, x) = h

N∑
k=1

log(x̃k − xk) − h

N∑
k=1

log(xk+1 − xk) , (374)

with the corresponding Newtonian equations of motion,

1
x̃k − xk

− 1
xk − x˜k

=
1

xk+1 − xk
− 1
xk − xk−1

. (375)

Their Lagrangian form is

pk =
h

x̃k − xk
− h

xk+1 − xk
+

h

xk − xk−1
, (376)

p̃k =
h

x̃k − xk
. (377)

They admit a 2 × 2 Lax representation (372) with the matrices

Lk = I + λ



xkpk − h −xk(xkpk − h)

pk −xkpk


 , (378)

Vk = I +
hλ

xk+1 − xk



xk −xk+1xk

1 −xk+1


 . (379)

18.2 Relativistic Toda Type System

The “relativistic” generalization of these systems is formulated as follows.

Theorem 18.4. Consider the following Newtonian equations of motion,

ẍk = −ẋ2
k

(
1

xk+1 − xk
− 1
xk − xk−1

− αẋk+1

(xk+1 − xk)2
+

αẋk−1

(xk − xk−1)2

)
.

(380)



178 Yu.B. Suris

They are Lagrangian with the Lagrange function

L(x, ẋ) =
N∑
k=1

log(ẋk) −
N∑
k=1

log(xk+1 − xk) − α

N∑
k=1

ẋk
xk+1 − xk

. (381)

The corresponding Hamilton function is

H(x, p) =
N∑
k=1

log
(
pk(xk+1 − xk) + α

)
. (382)

The Lagrangian form of the equations of motion is

pk =
1
ẋk

− α

xk+1 − xk
, (383)

ṗk =
xk+1 − xk − αẋk

(xk+1 − xk)2
− xk − xk−1 − αẋk−1

(xk − xk−1)2
(384)

They admit a 2 × 2 Lax representation (365) with the matrices

Lk = I + λ



xkpk − α −xk(xkpk − α)

pk −xkpk


 , (385)

Mk =
λ

xk+1 − xk + α/pk



xk − α/pk −xk+1(xk − α/pk)

1 −xk+1


 . (386)

The discretization of this system is given as follows.

Theorem 18.5. Consider the discrete–time Lagrange function,

Λ(x̃, x) =

h
N∑
k=1

log(x̃k − xk) − α

N∑
k=1

log(xk+1 − xk) + (α− h)
N∑
k=1

log(xk+1 − x̃k),

(387)

with the corresponding Newtonian equations of motion,

h

x̃k − xk
− h

xk − x˜k
=

α

xk+1 − xk
− α

xk − xk−1
− α− h

x˜k+1 − xk
+

α− h

xk − x̃k−1
.

(388)

Their Lagrangian form is

pk =
h

x̃k − xk
− α− h

xk − x̃k−1
− α

xk+1 − xk
+

α

xk − xk−1
, (389)

p̃k =
h

x̃k − xk
− α− h

xk+1 − x̃k
. (390)
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They admit a 2 × 2 Lax representation (372) with the matrices (385) and

Vk = I +
hλ

xk+1 − x̃k + α/p̃k



x̃k − α/p̃k −xk+1(x̃k − α/p̃k)

1 −xk+1


 . (391)

It is easy to see that the explicit discretization (375) of the non–relativistic
system (361) is in fact the particular case α = h of the discrete–time rela-
tivistic system (388), and, therefore, shares the Lax matrix, the integrals of
motion etc. (or belongs to the hierarchy) of the relativistic system with the
relativistic parameter chosen to be the time step.

19 Bibliographical Remarks

Sects. 2–4. There exist several comprehensive textbooks covering all the ma-
terial reviewed in these sections. Our presentation is based mainly on [1,9,29].
These excellent books treat also the historical aspects of the development of
mathematical methods in classical mechanics, and provide a rich bibliogra-
phy.

Sect. 5. The modern version of the integrability concept, known under the
name of the Liouville–Arnold integrability, appeared in the first edition of [9].

Sect. 6. A survey of the r–matrix approach to the Lax formalism is given
in [43,26].

Sects. 7–8. Continuous–time Lagrangian mechanics is a classical subject,
see, e.g., [1, 9, 29]. Discrete–time Lagrangian mechanics on manifolds was
developped in [54]. A generalization to partial differential equations and their
variational discretization is given in [28].

Sect. 9. Specific features of Lagrangian mechanics on Lie groups in the
continuous–time case are elaborated in the above–mentioned textbooks [1,
9, 29], and see also [19], where (47), (48) for the Poisson bracket on the
trivialized cotangent bundle of a Lie group are called “perhaps the basic
formula of Hamiltonian mechanics” (p. 405).

Sects. 10–11. For historical remarks on the Lie–Poisson bracket and the
Euler–Poincaré equations, which were known already to Lie and Poincaré,
but rediscovered independently in the 60’s by Berezin, Kirillov, Souriau, and
Kostant, see, e.g., [29]. The Hamiltonian version of the semi–direct product
reduction was developed in the 80’s, see, e.g., [30,31]. The Lagrangian version
was, strangely enough, formulated only recently, see [23, 16]. The discrete–
time counterparts of these constructions were elaborated in [12,13].

Sect. 12.1. The system studied here was discovered in [36] (of course, in
the “physical” dimension N = 3 only). In this classical paper the system
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was integrated in hyperelliptic functions with the help of separation of vari-
ables. The modern period in studying the Neumann system starts with the
work by Moser [32,33]. He formulated the Hamiltonian structure in terms of
the constrained Dirac bracket, stated all integrals of motion explicitly, and
discovered the N × N Lax representation. The 2 × 2 Lax representation of
the Neumann system was given in [35]. The existence of such different Lax
representations is a particular case of the general “duality” explored in [2].

Sect. 12.2. The discretization of the Neumann system was achieved for the
first time in [54], and its relation to the matrix factorization was established
in [34]. A different approach to these discretizations, based on the interpre-
tation of the Neumann system as a restricted flow of the KdV hierarchy, and
therefore on 2 × 2 Lax representations, was proposed in [24]. This approach
led also to the interpretation of these discretizations as Bäcklund transfor-
mations.

Sect. 12.3. This discretization was proposed in [38], and its r–matrix inter-
pretation was given in [39].

Sect. 12.4. This discretization was proposed in [4], as a result of the dis-
cretization of the Landau–Lifshits equation. Also two integrals of motion were
found there in the case N = 3. Integrability in the general case was proved
in [48].

Sect. 13.1. The Garnier system was discovered in [21]. It should be men-
tioned that this paper contains one of the earliest examples of a Lax represen-
tation of a mechanical system. The N ×N Lax matrix (207) is written there
explicitly! This remarkable discovery remained forgotten for a long time, and
was rediscovered in [17], where it was derived from the Lax representation of
the vector nonlinear Schrödinger equation, for which the Garnier system is a
stationary flow. The 2 × 2 Lax representation was derived, as a by–product
of the interpretation of the Garnier system as a restricted flow of the KdV
hierarchy, in [7].

Sect. 13.2. The Bäcklund transformation for the Garnier system was found
in [24] on the base of the 2 × 2 Lax representation. We add here to their
results the N ×N Lax representation.

Sect. 13.3. Explicit discretization of the Garnier system was found in [45].
This discrete–time system can be interpreted as a stationary “flow” of the vec-
tor analogue of the Ablowitz–Ladik discrete nonlinear Schrödinger equation.
Interestingly enough, the integrability of this latter system was established
only recently, in [53]. The corresponding Lax representation is not the non–
stationary version of ours, in particular, the Lax matrix is not N × N , but
rather lives in the Clifford algebra C�N .

Sect. 14.1. According to bibliographical remarks in [15], the multidimen-
sional generalization of the Euler top is due to Frahm [20] and Schottky [44],
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and was rediscovered independently several times later. The modern inter-
est in this system started with the general theory of geodesic flows on Lie
groups, due to Arnold [8], as well as with the paper by Manakov [27], who
found the n–dimensional Euler top as a reduction of the so called n–wave
equations, along with a spectral–parameter–dependent Lax representation
which we reproduce in Theorem 14.1.

Sect. 14.2. A discretization of the Euler top is due to Veselov [54], an inter-
pretation in terms of matrix factorization was given in [34].

Sect. 15.1. Integrability of a rigid body in an arbitrary quadratic poten-
tial was discovered by Reyman [42], who gave also the r–matrix interpreta-
tion, and independently by Bogoyavlensky [14], who integrated this system
in terms of Prym theta functions.

Sect. 15.2. Integrable discretization of the top in a quadratic potential was
found in [47].

Sect. 16.1. The Lagrange integrable case of the heavy top motion was dis-
covered by Lagrange in 1788. For a modern approach to its integration based
on the Lax representation and an algebro–geometric technique see [41], [22].
As for the multi–dimensional case, there are two possible ways to generalize
the notion of a heavy top, and, correspondingly, two different generalizations
of the Lagrange top. The first one, living on so(n)�R

n, was proposed in [10];
the Lax representation of Theorem 16.1 is due to [11]. The second one, living
on so(n) � so(n), was introduced in [40].

Sect. 16.3. Integrable discretization of the three–dimensional Lagrange top
in the SU(2) framework was performed in [12]. This paper also contains
the motivation, which lies in the theory of elastic curves and their discrete
analogues. Discretization of the multi–dimensional Lagrange top was achieved
in [49].

Sect. 17.1. The integrable case of the motion of a 3–dimensional rigid body
in an ideal fluid was found by Clebsch [18]. His work was a development of
results of Kirchhoff [25], who gave a Lagrangian derivation of equations of
motion in the general case, and pointed out an integrable case connected with
a rotational symmetry. The multi–dimensional generalization, along with the
Lax representation, was discovered by Perelomov [37].

Sect. 17.2. The integrable discretization of the A = B2 case of the multi–
dimensional Clebsch problem was found in [47], that of the A = B case
in [49].

Sect. 18. The exponential Toda lattice was discovered by Toda [51], see also
[52]. The system (361) was found by Yamilov [55], who also gave a complete
classification of integrable systems of the Toda type. Its discretizations (369),
(375) were found in [46]. The relativistic system (380) was first given in [5,6].
In the subsequent publication [3], a classification of integrable discrete–time
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Lagrangian systems of the relativistic Toda type was accomplished. Among
others, the discrete–time lattice (388) was found there. It was pointed out
that such systems are best interpreted as Lagrangian systems on the regular
triangular lattice.

References

1. Abraham, R. and Marsden, J.E. (1978) Foundations of mechanics, Addison–
Wesley.

2. Adams, M.R., Harnad, J. and Hurtubise, J. (1990) Dual moment maps into
loop algebras. Lett. Math. Phys., 20, 299–308.

3. Adler, V.E. (1999) Legendre transformations on the triangular lattice. Funct.
Anal. Appl., 34 (2000), 1–9.

4. Adler, V.E. (2000) On discretizations of the Landau–Lifshits equation. Theor.
Math. Phys., 124, 897–908.

5. Adler, V.E. and Shabat, A.B. (1997) On a class of Toda chains. Theor. Math.
Phys., 111, 647–657.

6. Adler, V.E. and Shabat, A.B. (1997) Generalized Legendre transformations.
Theor. Math. Phys., 112, 935–948.

7. Antonowicz, M. (1992) Gelfand–Dikii hierarchies with sources and Lax repre-
sentations for restricted flows. Phys. Lett. A, 165, 47–52.

8. Arnold, V.I. (1966) Sur la géometrie différentielle des groupes de Lie de dimen-
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Abstract. In this series of lectures, we review the application of Lie point sym-
metries, and their generalizations, to the study of difference equations. The overall
theme could be called “continuous symmetries of discrete equations”.

1 Introduction

1.1 Symmetries of Differential Equations

Before studying the symmetries of difference equations, let us very briefly
review the theory of the symmetries of differential equations. For all details,
proofs and further information we refer to the many excellent books on the
subject, e.g., [52, 7, 53,32,23,3, 57,63].

Let us consider a general system of differential equations

Ea(x, u, ux, uxx, . . . unx) = 0, x ∈ Rp, u ∈ Rq, a = 1, . . . N, (1)

where unx denotes all (partial) derivatives of u of order n. The numbers p, q, n
and N are all nonnegative integers.

We are interested in the symmetry group G of system (1), i.e., in the
local Lie group of local point transformations taking solutions of (1) into
solutions of the same equation. Point transformations in the space X ×U of
independent and dependent variables have the form

x̃ = Λλ(x, u), ũ = Ωλ(x, u), (2)

where λ denotes the group parameters. Thus

Λ0(x, u) = x, Ω0(x, u) = u,

and the inverse transformation (x̃, ũ) �→ (x, u) exists, at least locally.
The transformations (2) of local coordinates in X × U also determine

the transformations of functions u = f(x) and of derivatives of functions. A
group G of local point transformations of X × U will be a symmetry group
of system (1) if the fact that u(x) is a solution implies that ũ(x̃) is also a
solution.
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The two fundamental questions are:

1. How to find the maximal symmetry group G for a given system of equa-
tions (1)?

2. Once the group G is found, what do we do with it?

Let us first discuss the question of motivation. The symmetry group G
allows us to do the following:

1. Generate new solutions from known ones. Sometimes trivial solutions can
be boosted into interesting ones.

2. Identify equations with isomorphic symmetry groups. Such equations may
be transformable into each other. Sometimes nonlinear equations can be
transformed into linear ones.

3. Perform symmetry reduction. For partial differential equations, we can
reduce the number of variables and obtain particular solutions, satisfy-
ing particular boundary conditions, called group-invariant solutions. For
ODEs of order n, we can reduce the order of the equation. In this reduc-
tion, there is no loss of information. If we can reduce the order to zero, we
obtain a general solution depending on n constants, or a general integral
(an algebraic function depending on n constants).

How does one find the symmetry group G? Instead of looking for “global”
transformations as in (2) one looks for infinitesimal ones, i.e., one looks for the
Lie algebra L that corresponds to G. A one-parameter group of infinitesimal
point transformations will have the form

x̃i = xi + λξi(x, u), |λ| " 1 (3)
ũα = uα + λφα(x, u), 1 ≤ i ≤ p, 1 ≤ α ≤ q.

The functions ξi and φα must be found from the condition that ũ(x̃) is a
solution whenever u(x) is one. The derivatives ũα,x̃i

must be calculated using
(3) and will involve derivatives of ξi and φα. A K-th derivative of ũα with
respect to the variable x̃i will involve derivatives of ξi and φα up to order K.
We then substitute the transformed quantities into (1) and require that the
equation be satisfied for ũ(x̃), whenever it is satisfied for u(x). Thus, terms of
order λ0 will drop out. Terms of order λ will provide a system of determining
equations for ξi and φα. Terms of order λk, k = 2, 3, . . . are to be ignored,
since we are looking for infinitesimal symmetries.

The functions ξi and φα depend only on x and u, not on first, or higher
derivatives, uα,xi

, uα,xixk
, etc. This is actually the definition of “point” sym-

metries. The determining equations will explicitly involve derivatives of uα,
up to order n (the order of the studied equation). The coefficients of all
linearly independent expressions in the derivatives must vanish separately.
This provides a system of determining equations for the functions ξi(x, u)
and φα(x, u). This is a system of linear partial differential equations of order
n. The determining equations are linear, even if the original system (1) is
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nonlinear. This “linearization” is due to the fact that all terms of order λj ,
j ≥ 2, are ignored.

The system of determining equations is usually overdetermined, i.e., there
are usually more determining equations than unknown functions ξi and φα
(p+q functions). The independent variables in the determining equations are
x ∈ Rp, u ∈ Rq.

For an overdetermined system, there are three possibilities:

1. The only solution is the trivial one ξi = 0, φα = 0, i = 1, . . . p, α =
1, . . . , q. In this case the symmetry algebra is L = {0}, the symmetry
group is G = I, and the symmetry method is to no avail.

2. The general solution of the determining equations depends on a finite
number K of constants. In this case, the studied system (1) has a finite-
dimensional Lie point symmetry group and dimG = K.

3. The general solution depends on a finite number of arbitrary functions of
some of the variables {xi, uα}. In this case the symmetry group is infinite
dimensional. This last case is of particular interest.

The search for the symmetry algebra L of a system of differential equations
is best formulated in terms of vector fields acting on the space X × U of
independent and dependent variables. Indeed, consider the vector field

X =
p∑
i=1

ξi(x, u)∂xi
+

q∑
α=1

φα(x, u)∂uα
, (4)

where the coefficients ξi and φα are the same as in (3). If these functions are
known, the vector field (4) can be integrated to obtain the finite transforma-
tions (2). Indeed, all we have to do is to integrate the equations

dx̃i
dλ

= ξi(x̃, ũ),
dũα
dλ

= φα(x̃, ũ), (5)

subject to the initial conditions

x̃i |λ=0= xi ũα |λ=0= uα. (6)

This provides us with a one-parameter group of local Lie point transforma-
tions of the form (2) where λ is the group parameter.

The vector field (4) tells us how the variables x and u transform. We also
need to know how derivatives like ux, uxx, . . . transform. This is given by
the prolongation of the vector field X.

We have

prX = X +
∑
α

{∑
i

φxi
α ∂uxi

+
∑
i,k

φxixk
α ∂uxixk

(7)

+
xixkxl∑
i,k,l

φxixkxl
α ∂uxixkxl

+ . . .

}
,
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where the coefficients in the prolongation can be calculated recursively, using
the total derivative operator,

Dxi = ∂xi + uα,xi∂uα + uα,xaxi∂uα,xa + uα,xaxbxi∂uα,xaxb
+ . . . (8)

(a summation over repeated indices is to be understood). The recursive for-
mulas are

φxi
α = Dxiφα − (Dxiξa)uα,xa

φxixk
α = Dxk

φxi
α − (Dxk

ξa)uα,xixa (9)
φxixkxl
α = Dxl

φxixk
α − (Dxl

ξa)uα,xixkxa ,

etc.
The n-th prolongation of X acts on functions of x, u and all derivatives

of u up to order n. It also tells us how derivatives transform. Thus, to obtain
the transformed quantities ũx̃i

we must integrate (5) with conditions (6),
together with

dũx̃i

dλ
= φxi(x̃, ũ, ũx̃), ũx̃ |λ=0= ux. (10)

We see that the coefficients of the prolonged vector field are expressed in terms
of derivatives of ξi and φα, the coefficients of the original vector field. They
carry no new information. The transformation of derivatives is completely
determined, once the transformations of functions are known.

The invariance condition for system (1) is expressed in terms of the op-
erator (7) as

pr(n)XEa |E1=···=EN=0= 0, a = 1, . . . N, (11)

where pr(n)X is the prolongation (7) calculated up to order n where n is the
order of system (1).

In practice the symmetry algorithm consists of several steps, most of which
can be carried out on a computer. For early computer programs calculating
symmetry algebras, see [61,9]. For a more recent review, see [26].

The individual steps are:

1. Calculate all the coefficients in the n-th prolongation of X. This depends
only on the order of system (1), i.e., n, and on the number of independent
and dependent variables, i.e., p and q.

2. Consider system (1) as a system of algebraic equations for x, u, ux, uxx,
etc. Choose N variables v1, v2, . . . vN and solve system (1) for these
variables. The vi must satisfy the following conditions:
i) Each vi is a derivative of one uα of at least order 1.
ii) The variables vi are all independent; none of them is a derivative of

any other one.
iii) No derivatives of any of the vi figure in the system (1).
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3. Apply pr(n)X to all the equations in (1) and eliminate all expressions vi
from the result. This yields system (11).

4. Determine all linearly independent expressions in the derivatives remain-
ing in (11), once the quantities vi are eliminated. Set the coefficients of
these expressions equal to zero. This yields the determining equations, a
system of linear partial differential equations of order n for φα(x, u) and
ξi(x, u).

5. Solve the determining equations to obtain the symmetry algebra.
6. Integrate the obtained vector fields to obtain the one-parameter sub-

groups of the symmetry group. Compose them appropriately to obtain
the connected component Go of the symmetry group G.

7. Extend the connected component Go to the full group G by adding all dis-
crete transformations leaving system (1) invariant. These discrete trans-
formations will form a finite, or discrete group GD. Then

G = GD �Go , (12)

i.e., Go is an invariant subgroup of G.

Let us consider the case when, at Step 5, we obtain a finite dimensional
Lie algebra L, i.e., a vector field X depending on K parameters, K ∈ Z>,
K <∞. We can then choose a basis

{X1, X2, . . . , XK} (13)

of the Lie algebra L. The basis that is naturally obtained in this manner
depends on our integration procedure, though the algebra L itself does not.
It is useful to transform the basis (13) into a canonical form in which all the
properties of L which are independent of the choice of basis are evident. Thus,
if L can be decomposed into a direct sum of indecomposable components,

L = L1 ⊕ L2 ⊕ · · · ⊕ LM , (14)

a basis should be chosen that respects this decomposition. The components
Li that are simple should be identified according to the Cartan classification
(over C) or the Gantmakher classification (over R) [50,25]. The components
that are solvable should be so organized that their nilradical [56,33] is evident.
For those components that are neither simple, nor solvable, the basis should
be chosen so as to respect the Levi decomposition [56,33].

So far we have considered only point transformations, as in (2), in which
the new variables x̃ and ũ depend only on the old ones, x and u. More
general transformations are “contact transformations”, where x̃ and ũ also
depend on first derivatives of u. A still more general class of transformations
are generalized transformations, also called “Lie-Bäcklund” transformations
[52,4]. For these,

x̃ = Λλ(x, u, ux, uxx, . . . ) (15)
ũ = Ωλ(x, u, ux, uxx, . . . )
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involving derivatives up to an arbitrary, but finite order. The coefficients ξi
and φα of the vector fields (4) will then also depend on derivatives of uα.

When studying generalized symmetries, and sometimes also point symme-
tries, it is convenient to use a different formalism, namely that of evolutionary
vector fields.

Let us first consider the case of Lie point symmetries, i.e., vector fields
of the form (4) and their prolongations (7). To each vector field (4) we can
associate its evolutionary counterpart Xe, defined as

Xe = Qα(x, u, ux)∂uα , (16)

Qα = φα − ξi
∂uα

∂xi

. (17)

The prolongation of the evolutionary vector field (16) is defined as

prXe = Qα∂ua +Qxi
α ∂uα,xi

+Qxixk
α ∂uα,xixk

+ . . . (18)
Qxi
α = Dxi

Qα, Qxixk
α = Dxi

Dxk
Qα, . . . .

The functions Qα are called the characteristics of the vector field. Observe
that Xe and prXe do not act on the independent variables xi.

For Lie point symmetries evolutionary and ordinary vector fields are en-
tirely equivalent and it is easy to pass from one to the other. Indeed, (17)
gives the connection between the two.

The symmetry algorithm for calculating the symmetry algebra L in terms
of evolutionary vector fields is also equivalent. Equation (11) is simply re-
placed by

pr(n)XeEa |E1=···=EN=0,= 0, a = 1, . . . N. (19)

The reason that (11) and (19) are equivalent is the following. It is easy to
show that

pr(n)Xe = pr(n)X − ξiDi. (20)

The total derivative Di is itself a generalized symmetry of (1), i.e.,

DiEa |E1=E2=···=EN=0,= 0 i = 1, . . . p, a = 1, . . . N. (21)

Equations (20) and (21) prove that systems (11) and (19) are equivalent.
Equation (21) itself follows from the fact that DiEa = 0 is a differential
consequence of (1), hence every solution of (1) is also a solution of (21).

To find generalized symmetries of order k, we use (16) but allow the
characteristics Qα to depend on all derivatives of uα up to order k. The
prolongation is calculated using (18). The symmetry algorithm is again (19).
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A very useful property of evolutionary symmetries is that they provide
compatible flows. This means that the system of equations

∂uα
∂λ

= Qα (22)

is compatible with system (1). In particular, group invariant solutions, i.e.,
solutions invariant under a subgroup of G, are obtained as fixed points

Qα = 0. (23)

If Qα is the characteristic of a point transformation, then (23) is a system of
quasilinear first order partial differential equations. They can be solved and
their solutions can be substituted into (1), yielding the invariant solutions
explicitly.

1.2 Comments on Symmetries of Difference Equations

The study of symmetries of difference equations is much more recent than that
of differential equations. Early work in this direction is due to Maeda [47,48]
who mainly studied transformations acting on the dependent variables only.
A more recent series of papers was devoted to Lie point symmetries of
differential-difference equations on fixed regular lattices [43–45,24,35,34,49,
54,55,8]. A different approach was developed mainly for linear or linearizable
difference equations and involved transformations acting on more than one
point of the lattice [21, 22, 42, 29, 38]. The symmetries considered in this ap-
proach are really generalized ones, however they reduce to point symmetries
in the continuous limit.

A more general class of generalized symmetries has also been studied
for difference equations and differential-difference equations on fixed regular
lattices [27,28,30,36].

A different approach to symmetries of discrete equations was originally
suggested by V. Dorodnitsyn and collaborators [12, 14,13,5, 16,15,20,17,19,
18]. The main aim of this series of papers is to discretize differential equations
while preserving their Lie point symmetries.

Symmetries of ordinary and partial difference schemes on lattices that
are a priori given, but are allowed to transform under point transformations,
were studied in Ref. [39, 40,46].

While the study of symmetries of difference equations is a relatively recent
subject, it has already acquired a life of its own. Indeed, a series of biannual
conferences, “Symmetries and Integrability of Difference Equations”, is ded-
icated to this topic. The first was held in Esterel, near Montreal in 1994 [41].
The subsequent SIDE meetings were held in Canterbury (UK) [10], Sabau-
dia (Italy) [37], Tokyo (Japan) [60] and Giens (France) [51]. The proceedings
contain much information on this interesting subject.
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2 Ordinary Difference Schemes
and Their Point Symmetries

2.1 Ordinary Difference Schemes

An ordinary differential equation (ODE) of order n is a relation involving one
independent variable, x, one dependent variable, u = u(x), and n derivatives
of the function u, u′, u′′, . . . u(n),

E(x, u, u′, u′′, . . . , u(n)) = 0,
∂E

∂u(n) �= 0. (24)

An ordinary difference scheme (O∆S) involves two objects, a difference
equation and a lattice. We shall specify an O∆S by a system of two equations,
both involving two continuous variables x and u(x), evaluated at a discrete
set of points {xn}.

Thus, a difference scheme of order K will have the form

Ea({xk}n+N
k=n+M , {uk}

n+N
k=n+M ) = 0, a = 1, 2

K = N −M + 1, n,M,N ∈ Z, uk ≡ u(xk).
(25)

At this stage we are not imposing any boundary conditions, so the reference
point xn can be arbitrarily shifted to the left, or to the right. The order K
of the system is the number of points involved in the scheme (25) and it is
assumed to be finite. We also assume that if the values of xk and uk are
specified at (N −M) neighbouring point, we can calculate their values at the
point to the right, or to the left of the given set, using equations (25).

A continuous limit, when the spacings between all neighbouring points
go to zero, if it exists, will take one of the equations (25) into a differential
equation of order K ′ ≤ K, the other into an identity (like 0 = 0).

When taking the continuous limit it is convenient to introduce differ-
ent quantities, namely differences between neighbouring points and discrete
derivatives like

h+(xn) = xn+1 − xn, h−(xn) = xn − xn−1,

u,x =
un+1 − un
xn+1 − xn

, u,x =
un − un−1

xn − xn−1
, (26)

u,xx = 2
u,x − u,x

xn+1 − xn−1
, . . .

In the continuous limit,

h+ → 0, h− → 0, u,x → u′, u,x → u′, u,xx → u′′.

As a clarifying example of the meaning of the difference scheme (25), let
us consider a three-point scheme that will approximate a second-order linear
difference equation:



Symmetries of Discrete Systems 193

E1 =
un+1 − 2un + un−1

(xn+1 − xn)2
− un = 0, (27)

E2 = xn+1 − 2xn + xn−1 = 0. (28)

The solution of E2 = 0, determines a uniform lattice

xn = hn+ x0. (29)

The scale h and the origin x0 in (29) are not fixed by (28), instead they
appear as integration constants, i.e., they are a priori arbitrary. Once they are
chosen, (27) reduces to a linear difference equation with constant coefficients,
since we have xn+1 − xn = h. Thus, a solution of (27) will have the form

un = λxn . (30)

Substituting (30) into (27) we obtain the general solution of the difference
scheme (27), (28),

u(xn) = c1λ
xn
1 + c2λ

xn
2 , xn = hn+ x0, (31)

λ1,2 =

(
2 + h2 ± h

√
4 + h2

2

)1/2

.

The solution (31) of system (27)–(28) depends on 4 arbitrary constants c1,
c2, h and x0.

Now let us consider a general three-point scheme of the form

Ea(xn−1, xn, xn+1, un−1, un, un+1) = 0, a = 1, 2, (32)

satisfying

det
(

∂(E1, E2)
∂(xn+1, un+1)

)
�= 0, det

(
∂(E1, E2)

∂(xn−1, un−1)

)
�= 0, (33)

(possibly after an up or down shifting). The two conditions on the Jacobians
(33) are sufficient to allow us to calculate (xn+1, un+1) if (xn−1, un−1, xn, un)
are known. Similarly, (xn−1, un−1) can be calculated if (xn, un, xn+1, un+1)
are known. The general solution of the scheme (32) will hence depend on 4
arbitrary constants and will have the form

un = f(xn, c1, c2, c3, c4) (34)
xn = φ(n, c1, c2, c3, c4). (35)

A more standard approach to difference equations would be to consider
a fixed equally spaced lattice, e.g., with spacing h = 1. We can then identify
the continuous variable x, sampled at discrete points xn, with the discrete
variable n,
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xn = n. (36)

Instead of a difference scheme we then have a difference equation,

E({uk}n+N
k=n+M ) = 0, (37)

involving K = N −M + 1 points. Its general solution has the form

un = f(n, c1, c2, . . . cN−M ) , (38)

i.e., it depends on N −M constants.
Below, when studying point symmetries of discrete equations we will see

the advantage of considering difference systems like system (25).

2.2 Point Symmetries of Ordinary Difference Schemes

In this section we shall follow rather closely the article [39]. We shall define
the symmetry group of an ordinary difference scheme in the same manner as
for ODEs: it is, a group of continuous local point transformations of the form
(2) taking solutions of the O∆S (25) into solutions of the same scheme. The
transformations considered being continuous, we will adopt an infinitesimal
approach, as in (3). We drop the labels i and α, since we are considering the
case of one independent and one dependent variable only.

As in the case of differential equations, our basic tool will be vector fields
of the form (4). In the case of O∆S they will have the form

X = ξ(x, u)∂x + φ(x, u)∂u, (39)

with

x ≡ xn, u ≡ un = u(xn).

Because we are considering point transformations, ξ and φ in (39) depend on
x and u at one point only.

The prolongation of the vector field X is different from that of the case
of ODEs. Instead of prolonging to derivatives, we prolong to all points of the
lattice figuring in scheme (25). Thus we set

prX =
n+N∑

k=n+M

ξ(xk, uk)∂xk
+

n+N∑
k=n+M

φ(xk, uk)∂uk
. (40)

In these terms the requirement that the transformed function ũ(x̃) should
satisfy the same O∆S as the original u(x) is expressed by the requirement

prXEa |E1=E2=0= 0, a = 1, 2. (41)

Since we must respect both the difference equation and the lattice, we have
two conditions (41) from which to determine ξ(x, u) and φ(x, u). Since each
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of these functions depends on a single point (x, u) and the prolongation (40)
introduces N−M+1 points in space X×U , equation (41) will imply a system
of determining equations for ξ and φ. Moreover, in general this will be an
overdetermined system of linear functional equations that we transform into
an overdetermined system of linear differential equations [1, 2].

To illustrate the method and the role of the choice of the lattice, let us
start from a simple example. The example will be that of difference equations
that approximate the ODE

u′′ = 0 (42)

on several different lattices.
Let us find the Lie point symmetry group of ODE (42), i.e., the equation

of a free particle on a line. Following the algorithm of Sect. 1, we set

pr(2)X = ξ∂x + φ∂u + φx∂u′ + φxx∂u′′ (43)
φx = Dxφ− (Dxξ)u′ = φx + (φu − ξx)u′ − ξuu

′2

φxx = Dxφ
x − (Dxξ)u′′ = φxx + (2φxu − ξxx)u′

+(φuu − 2ξxu)u′2 − ξuuu
′3 + (φu − 2ξx)u′′

−3ξuu′u′′.

The symmetry formula (11) in this case reduces to

φxx |u′′=0= 0. (44)

Setting the coefficients of u′3, u′2, u′ and u′0 equal to zero, we obtain an
8-dimensional Lie algebra, isomorphic to sl(3,R) with basis

X1 = ∂x, X2 = x∂x, X3 = u∂x (45)
X4 = ∂u, X5 = x∂u, X6 = u∂u,

X7 = x(x∂x + u∂u), X8 = u(x∂x + u∂u).

This result was of course already known to Sophus Lie. Moreover, any
second-order ODE that is linear, or linearizable by a point transformation
has a symmetry algebra isomorphic to sl(3,R). The group SL(3,R) acts
as the group of projective transformations of the Euclidean space E2 (with
coordinates x, u).

Now let us consider some difference schemes that have (42) as their con-
tinuous limit. We shall take the equation to be

un+1 − 2un + un−1

(xn+1 − xn)2
= 0. (46)

However before looking for the symmetry algebra, we multiply out the de-
nominator and study the equivalent equation,
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E1 = un+1 − 2un + un−1 = 0. (47)

To this equation we must add a second equation, specifying the lattice. We
consider three different examples at first glance quite similar, but leading to
different symmetry algebras.

Example 2.1. Free particle (47) on a fixed uniform lattice. We consider

E2 = xn − hn− x0 = 0, (48)

where h and x0 are fixed constants, that are not transformed by the group
(e.g., h = 1, x0 = 0).

Applying the prolonged vector field (40) to (48) we obtain

ξ(xn, un) = 0 (49)

for all xn and un. Next, let us apply (40) to (47) and replace xn, using (48)
and un+1, using (47). We obtain

φ
(
h(n+ 1) + x0, 2un − un−1

)
− 2φ(hn+ x0, un)

+φ
(
h(n− 1) + x0, un−1

)
= 0. (50)

Differentiating (50) twice, once with respect to un−1, and then with respect
to un, we obtain

∂2

∂u2
n+1

φ(xn+1, un+1) = 0 (51)

and hence

φ(xn, un) = A(xn)un +B(xn). (52)

We substitute (52) back into (50) and equate coefficients of un, un−1 and 1.
The result is

A(n+ 1) = A(n), B(n+ 1) − 2B(n) +B(n− 1) = 0. (53)

Hence

A = A0, B = B1n+B0 = b1x+ b0, (54)

where A0, B1, B0, b1 and b0 are constants. We obtain the symmetry algebra
of the O∆S (47), (48) and it is only three-dimensional, spanned by

X1 = ∂u, X2 = x∂u, X3 = u∂u. (55)

The corresponding one parameter transformation groups are obtained by
integrating these vector fields (see (5) and (6)),
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G1 : x̃ = x

ũ(x̃) = u(x) + λ

G2 : x̃ = x (56)
ũ(x̃) = u(x) + λx

G3 : x̃ = x

ũ(x̃) = eλu(x).

G1 and G2 just tell us that adding an arbitrary solution of the scheme to any
given solution yields a new solution, G3 corresponds to the scale invariance
of (47).

Example 2.2. Free particle (47) on a uniform two point lattice. Instead of (48)
we define a lattice by setting

E2 = xn+1 − xn = h, (57)

where h is a fixed (non-transforming) constant. Note that (57) tells us the
distance between any two neighbouring points but does not fix an origin (as
opposed to (48)).

Applying the prolonged vector field (40) to (57) and using (57), we obtain

ξ(xn + h, un+1) − ξ(xn, un) = 0. (58)

Since un+1 and un are independent, (58) implies ξ = ξ(x). Moreover ξ(xn +
h) = ξ(x), so

ξ = ξ0 = const . (59)

Further, we apply prX to (47), and set un+1 = 2un − un−1, xn+1 = xn + h,
xn−1 = xn − h in the obtained expressions. As in Example 2.1 we find that
φ(x, u) is linear in u as in (52) and ultimately satisfies

φ(x, u) = au+ bx+ c. (60)

The symmetry algebra in this case is four-dimensional. To the basis elements
(55) we add translational invariance,

X4 = ∂x. (61)

Example 2.3. Free particle (47) on a uniform three-point lattice. Let us choose
the lattice equation to be

E2 = xn+1 − 2xn + xn−1 = 0. (62)

Applying prX to E2 and substituting for xn+1 and un+1, we find

ξ(2xn − xn−1, 2un − un−1) − 2ξ(xn, un) + ξ(xn−1, un−1) = 0. (63)
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Differentiating twice with respect to un and un−1, we find that ξ is linear in
u. Substituting ξ = A(x)u+B(x) into (63) we obtain

ξ(xn, un) = Aun +Bxn + C, (64)

and similarly, applying prX to (47), we obtain

φ(xn, un) = Dun + Exn + F. (65)

where A, . . . , F are constants. Finally, we obtain a six-dimensional symmetry
algebra for the O∆S (47), (62) with basis X1, . . . , X6 as in (45). It has
been shown [17] that the entire sl(3,R) algebra cannot be obtained as the
symmetry algebra of any 3-point O∆S.

From the above examples we can draw the following conclusions:

1. The Lie point symmetry group of an O∆S depends crucially on both
equations in system (25). In particular, if we choose a fixed lattice, as in
(48) (a “one-point lattice”) we are left with point transformations that
act on the dependent variable only.
If we wish to preserve anything like the power of symmetry analysis for
differential equations, we must either go beyond point symmetries to
generalized ones, or use lattices that are also transformed and that are
adapted to the symmetries we consider.

2. The method for calculating symmetries of O∆S is reasonably straightfor-
ward. It will however involve solving functional equations.

The method can be summarized as follows:

1. Solve equations (25) for two of the variables it contains, to make the
equations explicit. For instance, take system (32)–(33). We can solve,
e.g., for xn+1 and un+1, and obtain

xn+1 = f1(xn−1, xn, un−1, un) (66)
un+1 = f2(xn−1, yn, un−1, un)

2. Apply the prolonged vector field (40) to (25) and substitute (66) for xn+1,
un+1. We obtain two functional equations for ξ and φ of the form

{
ξ(f1, f2)

∂Ea
∂xn+1

+ ξ(xn, un)
∂Ea
∂xn

+ ξ(xn−1, un−1)
∂Ea
∂xn−1

+φ(f1, f2)
∂Ea
∂un+1

+ φ(xu, un)
∂Ea
∂un

(67)

+φ(xn−1, un−1)
∂Ea
∂un−1

} ∣∣∣∣xn+1=f1
un+1=f2

= 0, a = 1, 2.

3. Assume that the functions ξ, φ, E1 and E2 are sufficiently smooth, and
differentiate (67) with respect to the variables xk and uk so as to obtain
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differential equations for ξ and φ. If the original equations are polynomial
in all quantities we can thus obtain single-term differential equations from
(67). These we must solve, and then substitute back into (67) and solve
this equation.

We will illustrate the procedure on several examples in Sect. 2.3.

2.3 Examples of Symmetry Algebras of O∆S

Example 2.4. Monomial nonlinearity on a uniform lattice. Let us first consider
the nonlinear ODE,

u′′ − uN = 0, N �= 0, 1. (68)

For N �= −3, (68) is invariant under a two-dimensional Lie group whose Lie
algebra is given by

X1 = ∂x, X2 = (N − 1)x∂x − 2u∂u (69)

(translations and dilations). For N = −3 the symmetry algebra is three-
dimensional, isomorphic to sl(2,R), i.e., it contains a third element in addi-
tion to (69). A convenient basis for the symmetry algebra of the equation

u′′ − u−3 = 0 (70)

is

X1 = ∂x, X2 = 2x∂x + u∂u, X3 = x(x∂x + u∂u). (71)

A very natural O∆S that has (68) as its continuous limit is

E1 =
un+1 − 2un + un−1

(xn+1 − xn)2
− uNn = 0 N �= 0, 1 (72)

E2 = xn+1 − 2xn + xn−1 = 0. (73)

Let us now apply the symmetry algorithm described in Sect. 2.2 to system
(72)–(73). To illustrate the method, we shall present all calculations in detail.

First, we choose two variables that will be substituted in (41), once the
prolonged vector field (40) is applied to system (72)–(73), namely

xn+1 = 2xn − xn−1 (74)
un+1 = (xn − xn−1)2uNn + 2un − un−1.

We apply prX of (40) to (73) and obtain

ξ(xn+1, un+1) − 2ξ(xn, un) + ξ(xn−1, un−1) = 0, (75)
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where, xn, un xn−1, un−1 are independent, but xn+1, un+1 are expressed in
terms of these quantities, as in (74). Taking this into acccount, we differentiate
(75) first with respect to un−1, then with respect to un. We obtain successively

−ξ,un+1(xn+1, un+1) + ξ,un−1(xn−1, un−1) = 0 (76)

(N(xn − xn−1)2uN−1
n + 2)ξ,un+1un+1(xn+1, un+1) = 0. (77)

Equation (77) is the desired one-term equation. It implies that

ξ(x, u) = a(x)u+ b(x). (78)

Substituting (78) into (76) we obtain

−a(2xn − xn−1) + a(xn−1) = 0. (79)

Differentiating with respect to xn, we obtain a = a0 = const. Finally, we
substitute (78) with a = a0 into (75) and obtain

a = 0, b(2xn − xn−1) − 2b(xn) + b(xn−1) = 0, (80)

and hence

ξ = b = b1x+ b0, (81)

where b0 and b1 are constants. To obtain the function φ(xn, un), we apply
prX to (72) and obtain

φ(xn+1, un+1) − 2φ(xn, un) + φ(xn−1, un−1)
−(xn − xn−1)2(Nφ(xn, un)uN−1

n + 2b1uNn ) = 0. (82)

Differentiating successively with respect to un−1 and un (taking (74) into
account), we obtain

−φ,un+1(xn+1, un+1) + φ,un−1(xn−1, un−1) = 0 (83)

(N(xn − xn−1)2uNn + 2)φ,un+1un+1 = 0, (84)

and hence

φ = φ1u+ φ0(x), φ1 = const . (85)

Equation (82) now reduces to

φ0(2xn − xn−1) − 2φ0(xn) + φ0(xn−1)
−(xn − xn−1)2((N − 1)φ1 + 2b1)uNn
−N(xn − xn−1)2φ0u

N−1
n = 0. (86)

We have N �= 0, 1 and hence (86) implies that
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φ0 = 0, (N − 1)φ1 + 2b1 = 0. (87)

We have thus proven that the symmetry algebra of the O∆S (72)–(73) is the
same as that of the ODE (68), namely the algebra (69).

We observe that the value N = −3 is not distinguished here and that
system (72)–(73) is not invariant under SL(2,R) for N = −3. Actually, a
difference scheme invariant under SL(2,R) does exist and it will have (70)
as its continuous limit. It will not however have the form (72)–(73), and the
lattice will not be uniform [17,19].

Had we taken a two-point lattice, xn+1 − xn = h with h fixed, instead
of E2 = 0 as in (73), we would only have obtained translational invariance
for the equation (72) and lost the dilational invariance represented by X2 of
(69).

Example 2.5. A nonlinear O∆S on a uniform lattice. We consider

E1 =
un+1 − 2un + un−1

(xn+1 − xn)2
− f

(
un − un−1

xn − xn−1

)
= 0, (88)

E2 = xn+1 − 2xn + xn−1 = 0, (89)

where f(z) is some sufficiently smooth function satisfying

f ′′(z) �= 0. (90)

The continuous limit of (88) and (89) is

u′′ − f(u′) = 0, (91)

and it is invariant under a two-dimensional group with Lie algebra,

X1 = ∂x, X2 = ∂u, (92)

for any function f(u′). For certain functions f the symmetry group is three-
dimensional, where the additional basis element of the Lie algebra is

X3 = (ax+ bu)∂x + (cx+ du)∂u. (93)

The matrix

M =
(
a b
c d

)
(94)

can be transformed into Jordan canonical form, and a different function f(z)
is obtained for each canonical form.

Now let us consider the discrete system (88)–(89). Before applying prX
to this system we choose two variables to substitute in (41), namely

xn+1 = 2xn − xn−1 (95)

un+1 = 2un − un−1 + (xn − xn−1)2f
(
un − un−1

xn − xn−1

)
.
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Applying prX to (89) we obtain (75) with xn+1 and un+1 as in (95). Differ-
entiating twice, with respect to un−1 and un successively, we obtain

ξ,un+1un+1(1 + (xn − xn−1)f ′)(2 + (xn − xn−1)f ′) + ξ,un+1f
′′ = 0. (96)

For f ′′ �= 0, the only solution is ξ,un+1 = 0, i.e., ξ = ξ(x). Substituting back
into (75), we obtain

ξ = αx+ β, (97)

with α = const, β = const.
Now let us apply prX to E1 of (88) and (89) and replace xn+1, un+1 as

in (95). We obtain the equation

φ(xn+1, un+1) − 2φ(xn, un) + φ(xn−1, un−1) = 2α(xn − xn−1)2f(z)

+(xn − xn−1)2f ′(z)
(
φ(xn, un) − φ(xn−1, un−1)

xn − xn−1
− αz

)
(98)

with α as in (97). Thus, we only need to distinguish between α = 0 and α = 1.
Equation (98) is a functional equation, involving two unknown functions φ
and f . There are only four independent variables involved, xn, xn−1, un and
un−1. We simplify (98) by introducing new variables {x, u, h, z}, setting

xn = x, xn+1 = x+ h, xn−1 = x− h (99)
un = u, un−1 = u− hz, un+1 = u+ hz + h2f(z),

where we have used (95) and defined

z =
un − un−1

xn − xn−1
, h = xn+1 − xn. (100)

Equation (98) in these variables is

φ
(
x+ h, u+ hz + h2f(z)

)
− 2φ(x, u) + φ(x− h, u− hz)

= 2αh2f(z) + h2f ′(z)
(
φ(x, u) − φ(x− h, u− hz)

h
− αz

)
. (101)

First of all, we observe that for any function f(z) we have two obvious
symmetry elements, namely X1 and X2 of (92), corresponding to α = 0,
β = 1 in (101) (and (97)) and φ = 0 and φ = 1, respectively. Equation (101)
is quite difficult to solve directly. However, any three-dimensional Lie algebra
of vector fields in 2 variables, containing {X1, X2} of (92) as a subalgebra,
must have X3 of (93) as its third element. Moreover, (97) shows that we have
b = 0 in (93) and (94). We set α = a and

φ(x, u) = cx+ du. (102)
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Substituting into (101) we obtain

(d− 2a)f(z) = (c+ (d− a)z)f ′(z). (103)

From (103) we obtain two types of solutions:
For d �= a,

f = f0((d− a)z + c)(d−2a)/(d−a), c �= 0. (104)

For d = a,

f = f0e
−(a/c)x. (105)

With no loss of generality we could have transformed the matrix (94) with
b = 0 into Jordan canonical form and we would have obtained two different
cases, simplifying (104) and (105), respectively. They are

f = f0z
N , X3 = x∂x +

N − 2
N − 1

u∂u, N �= 1, (106)

f = f0e
−z, X3 = x∂x + (x+ u)∂u. (107)

The result can be stated as follows. The O∆S (88)–(89) is always invariant
under the group generated by {X1, X2} as in (92). It is invariant under a
three-dimensional group with algebra including X3 as in (93) if f satisfies
(103), i.e., has the form (106) or (107). These two cases also exist in the con-
tinuous limit. However, one more case exists in the continuous limit, namely

u′′ =
(
1 + (u′)2

)3/2
ek arctan u′

, (108)

with

X3 = (kx+ u)∂x + (ku− x)∂u. (109)

This equation can also be discretized in a symmetry preserving way [17], not
however on the uniform lattice (89).

3 Lie Point Symmetries of Partial Difference Schemes

3.1 Partial Difference Schemes

In this section we generalize the results of Sect. 2 to the case of two discretely
varying independent variables. We follow the ideas and notation of [40]. The
generalization to n variables is immediate, though cumbersome. Thus, we
will consider a partial difference scheme (P∆S), involving one continuous
function of two continuous variables u(x, t). The variables (x, t) are sampled
on a two-dimensional lattice, itself defined by a system of compatible relations
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Fig. 1.

between points. Thus, a lattice will be an infinite set of points Pi lying in
the real plane R2. The points will be labelled by two discrete subscripts
Pm,n with −∞ < m < ∞, −∞ < n < ∞. The cartesian coordinates of the
point Pm,n will be denoted (xm,n, tm,n), or similarly any other coordinates
(αm,n, βm,n).

A two-variable P∆S will be a set of five relations between the quantities
{x, t, u} at a finite number of points. We choose a reference point Pm,n ≡ P
and two families of curves intersecting at the points of the lattice. The labels
m = m0 and n = n0 will parametrize these curves (see Fig. 1). To define an
orientation of the curves, we specify

xm+1,n − xm,n ≡ hm > 0, tm,n+1 − tm,n ≡ hn > 0 (110)

at the original reference point.
The actual curves and the entire P∆S are specified by the 5 relations,

Ea({xm+i,n+j , tm+i,n+j , um+i,n+j}) = 0
1 ≤ a ≤ 5 i1 ≤ i ≤ i2 ji ≤ j ≤ j2.

(111)

In the continuous limit, if one exists, all five equations (111) are supposed
to reduce to a single PDE, e.g., E1 = 0 can reduce to the PDE and Ea = 0,
a ≥ 2 to 0 = 0. The orthogonal uniform lattice of Fig. 2 is clearly a special
case of that on Fig. 1.
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Fig. 2.

Some independence conditions must be imposed on system (111), e.g.,

|J | =
∣∣∣∣

∂(E1, . . . , E5)
∂(xm+i2,n, tm+i2n, xm,n+j2 , tm,n+j2 , um+i2,n+j2)

∣∣∣∣ �= 0. (112)

This condition allows us to move upward and to the right along the curves
passing through Pm,n = (xm,n, tm,n). Moreover, compatibility of the five
equations (111) must be assured.

As an example of a P∆S, let us consider the linear heat equation on a
uniform and orthogonal lattice. The heat equation in the continuous case is

ut = uxx. (113)

An approximation on a uniform orthogonal lattice is given by the five
equations,

E1 =
um,n+1 − um,n

h2
− um+1,n − 2um,n + um−1,n

(h1)2
= 0 (114)

E2 = xm+1,n − xm,n − h1 = 0 E3 = tm+1,n − tm,n = 0 (115)
E4 = xm,n+1 − xm,n = 0 E5 = tm,n+1 − tm,n − h2 = 0. (116)

Equations (115) and (116) can of course be integrated to give the standard
expressions

xm,n = h1m+ x0 tm,n = h2n+ t0. (117)

Observe that h1 and h2 are constants that cannot be scaled, they are fixed
in eqs. (115), (116). On the other hand x0 and t0 are integration constants
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and are thus not fixed by system (115)–(116). As written, these equations
are invariant under translations, but not under dilations.

Finally, we observe that the usual fixed lattice condition is obtained from
(117) by setting x0 = t0 = 0, h1 = h2 = 1 and identifying

x = m, t = n. (118)

Though the above example is essentially trivial, it brings out several
points.

1. Four equations are indeed needed to specify a two-dimensional lattice
and to allow us to move along the coordinate lines.

2. In order to solve the P∆S (114), (116) for h1 and h2 given, we must spec-
ify for instance {xm,n, tm,n, um,n, um+1,n, um−1,n}. Then we can directly
calculate {xm+1,n, tm+1,n}, {xm,n+1, tm,n+1}. In order to calculate the co-
ordinates of the fourth point figuring in (114), namely {xm,n−1, tm,n−1}
we must shift (115) down by one unit in m.

3. The Jacobian condition (112), allowing us to perform these calculations,
is obviously satisfied, since we have

∣∣∣∣
∂(E1, E2, E3, E4, E5)

∂(xm+1,n, tm+1,n, xm,n+1, tm,n+1, um,n+1)

∣∣∣∣ = 1. (119)

A partial difference scheme with one dependent and n independent vari-
ables will involve n2 + 1 relations between the variables (x1, x2, . . . xn, u),
evaluated at a finite number of points.

3.2 Symmetries of Partial Difference Schemes

As in the case of O∆S treated in Sect. 2, we shall restrict ourselves to point
transformations

x̃ = Fλ(x, t, u), t̃ = Gλ(x, t, u), ũ = Hλ(x, t, u). (120)

The requirement is that ũλ(x̃, t̃) should be a solution, whenever it is defined
and whenever u(x, t) is a solution. The group action (120) should be defined
and invertible, at least locally, in some neighbourhood of the reference point
Pm,n, including all points Pm+i,n+j involved in system (111).

As in the case of a single independent variable, we shall consider infinites-
imal transformations that allow us to use Lie algebraic techniques. Instead
of transformations (120) we consider

x̃ = x+ λξ(x, t, u),
t̃ = t+ λτ(x, t, u), (121)
ũ = u+ λφ(x, t, u), |λ| " 1.
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Once the functions ξ, τ and φ are determined from the invariance require-
ment, then the actual transformations (120) are determined by integration,
as in (5), (6).

The transformations act on the entire space (x, t, u), at least locally. This
means that the same functions F , G and H in (120), or ξ, τ and φ in (121)
determine the transformations of all points.

We formulate the problem of determining the symmetries (121), and ul-
timately (120), in terms of a Lie algebra of vector fields of the form

X = ξ(x, t, u)∂x + τ(x, t, u)∂t + φ(x, t, u)∂u, (122)

where ξ, τ and φ are the same as in (121). The operator (122) acts at one
point only, namely (x, t, u) ≡ (xm,n, tm,n, um,n). Its prolongation will act at
all points figuring in system(111) and we set

prX =
∑
j,k

(ξ(xjk, tjk, ujk)∂xjk
+ τ(xjk, tjk, ujk)∂tjk

(123)

+φ(xjk, tjk, ujk)∂ujk
),

where the sum is over all points figuring in (111). To simplify notation we set

ξjk ≡ ξ(xjk, tjk, ujk), τjk ≡ τ(xjk, tjk, ujk) (124)
φjk ≡ φ(xjk, tjk, ujk).

The functions ξ, τ , and φ figuring in (122) and (123) are determined from
the invariance condition

prXEa |E1=···=E5=0= 0, a = 1, . . . 5. (125)

It is (125) that provides an algorithm for determining the symmetry al-
gebra, i.e., the coefficients ξ, τ and φ.

The procedure is the same as in the case of ordinary difference schemes,
described in Sect. 2. In the case of system (111), we proceed as follows:

1. Choose 5 variables va to eliminate from the condition (125) and express
them in terms of the other variables, using system (111) and the Jacobian
condition (112). For instance, we can choose

v1 = xm+i2,n, v2 = tm+i2,n, (126)
v3 = xm,n+j2 , v4 = tm,n+j2 , v5 = um+i2,j+i2

and use (111) to express

va = va(xm+i,n+j , tm+i,n+j , um+i,n+j)
i1 ≤ i ≤ i2 − 1, j1 ≤ j ≤ j2 − 1.

The quanties va must be chosen consistently. None of them can be a
shifted value of another one (in the same direction). No relations between
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the quantities va should follow from system (111). Once eliminated from
(124), they should not reappear due to shifts. For instance, the choice
(126) is consistent if m + i2 and n + j2 are the highest values of these
labels that figure in (111).

2. Once the quantities va are eliminated from system (125), using (3.2),
each remaining value of xi,k, ti,k and ui,k is independent. Each of them
can figure in the corresponding functions ξi,k, τi,k, φi,k (see (124)), in the
functions Ea directly, or by means of the expressions va, in the functions
ξ, τ and φ with different labels. This provides a system of five functional
equations for ξ, τ and φ.

3. Assume that the dependence of ξ, τ and φ on x, t and u is analytic.
Convert the obtained functional equations into differential equations by
differentiating with respect to xi,k, ti,k, or ui,k. This provides an overde-
termined system of differential equations that we must solve. If possible,
use multiple differentiations to obtain single-term differential equations
that are easy to solve.

4. Substitute the solution of the differential equations back into the origi-
nal functional equations and solve these. The differential equations are
consequences of the functional ones and hence have more solutions. The
functional equations impose further restrictions on the constants and ar-
bitrary functions appearing in the integration of the differential conse-
quences.
Let us now consider examples on different lattices.

3.3 The Discrete Heat Equation

The Continuous Heat Equation. The symmetry group of the continuous
heat equation (113) is well known [52]. Its symmetry algebra has the structure
of a semidirect sum

L = L0 +⊃ L1, (127)

where L0 is six-dimensional and L1 is an infinite-dimensional ideal corre-
sponding to the linear superposition principle (present for any linear PDE).
A convenient basis for this algebra is given by the vector fields

P0 = ∂t, D = 4t∂t + 2x∂x + u∂u,

K = 4t(t∂t + x∂x) + (x2 + 2t)u∂u, (128)
P1 = ∂x, B = 2t∂x + xu∂u, W = u∂u,

S = S(x, t)∂u, St − Sxx = 0. (129)

The sl(2,R) subalgebra {P0, D,K} represents time translations, dilations
and “expansions”. The Heisenberg subalgebra {P1, B,W} represents space
translations, Galilei boosts and the possibility of multiplying a solution u by
a constant. The presence of S simply tells us that we can add a solution to
any given solution. Thus, S and W correspond to the linearity, P0 and P1
the fact that the equation is autonomous, i.e., has constant coefficients.
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Discrete Heat Equation on Fixed Rectangular Lattice. Let us con-
sider the discrete heat equation (114) on the four-point uniform orthogonal
lattice (115), (116). We apply the prolonged operator (113) to the equations
for the lattice and obtain

ξ(xm+1,n, tm+1,n, um+1,n) − ξ(xm,n, tm,n, um,n) = 0
ξ(xm,n+1, tm,n+1, um,n+1) − ξ(xm,n, tm,n, um,n) = 0

(130)

and similarly for τ(x, t, u). The quantities vi of (126) can be chosen to be

v1 = xm+1,n v2 = tm+1,n v3 = xm,n+1,

v4 = tm,n+1, v5 = um,n+1.
(131)

However, in (130) um+1,n and um,n+1 cannot be expressed in terms of um,n,
since (114) also involves um−1,n. Differentiating (130) with respect to, e.g.,
um,n. we find that ξ cannot depend on u:

∂ξ(xm,n, tm,n, um,n)
∂um,n

= 0. (132)

Since we have tn+1,n = tm,n and xm,n+1 = xm,n the two equations (130)
yield

∂ξm,n
∂xm,n

= 0,
∂ξm,n
∂tm,n

= 0, (133)

respectively. The same is obtained for the coefficient τ , so finally we have

ξ = ξ0, τ = τ0, (134)

where ξ0 and τ0 are constants.
Now let us apply prX to (114). We obtain

φm,n+1 − φm,n − h2

(h1)2
(φm+1,n − 2φm,n + φm−1,n) = 0. (135)

In more detail, eliminating the quantities va in eq (131) we have

φ(xm,n, tm,n + h2, um,n +
h2

h2
1
(um+1,n − 2um,n + um−1,n))

−φ(xm,n, tm,n, um,n) −
h2

h2
1
(φ(xm,n + h1, tm,n, um+1,n) − 2φ(xm,n, tm,n, um,n)

+φ(xm,n − h1, tm,n, um−1,n)) = 0. (136)

We differentiate (136) twice, with respect to um+1,n and um−1,n respectively.
We obtain

∂2φm,n+1

∂u2
m,n+1

= 0, (137)
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that is

φm,n = A(xm,n, tm,n)um,n +B(xm,n, tm,n). (138)

We substitute φm,n of (138) back into (136) and set the coefficients of um+1,n,
um,n, um−1,n and 1 equal to zero separately. From the resulting determining
equations we find that A(xm,n, tm,n) = A0 must be constant and that B(x, t)
must satisfy the discrete heat equation (114). The result is that the symmetry
algebra of system (114)–(116) is very restricted. It is generated by

P0 = ∂t, P1 = ∂x, W = u∂u, S = S(x, t)∂u (139)

and reflects only the linearity of the system and the fact that it is autonomous.
The dilations, expansions and Galilei boosts, generated by D, K and B of

(128) in the continuous case are absent on the lattice (115) and (116). Other
lattices will allow other symmetries.

Discrete Heat Equation Invariant Under Dilations. Let us now con-
sider a five-point lattice that is also uniform and orthogonal. We set

um,n+1 − um,n
tm,n+1 − tm,n

=
um+1,n − 2um,n + um−1,n

(xm+1,n − xm,n)2
(140)

xm+1,n − 2xm,n + xm−1,n = 0 xm,n+1 − xm,n = 0 (141)
tm+1,n − tm,n = 0 tm,n+1 − 2tm,n + tm,n−1 = 0. (142)

The variables va that we shall substitute from (140), (141) and (142) are
xm+1,n, tm+1,n, xm,n+1, tm,n+1 and um,n+1. Applying prX to (141) we obtain

ξ(2xm,n − xm−1,n, tm,n, um+1,n) − 2ξ(xm,n, tm,n, um,n)
+ξ(xm−1,n, tm,n, um−1,n) = 0 (143)

ξ(xm,n, 2tm,n − tm,n−1, um,n+1) − ξ(xm,n, tm,n, um,n) = 0. (144)

In (144) um,n and um,n+1 are independent. Differentiating with respect to
um,n we find ∂ξm,n/∂um,n = 0 and hence ξ does not depend on u. Differen-
tiating (144) with respect to tm,n−1 we obtain ∂ξm,n+1/∂tm,n+1 = 0. Thus,
ξ depends on x alone. Equation (143) can then be solved and we find that ξ
is linear in x. Applying prX to (142) we obtain similar results for τ(x, t, u).
Finally, invariance of the lattice equations (141) and (142) implies:

ξ = ax+ b, τ = ct+ d. (145)

Let us now apply prX to (140). We obtain, after using the P∆S (140) - (142)

φm,n+1 − φm,n
tm,n+1 − tm,n

− φm+1,n − 2φm,n + φm−1,n

(xm+1,n − xm,n)2

+(2a− c)
um+1,n − 2um,n + um−1,n

(xm+1,n − xm,n)2
= 0. (146)
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Observe that um,n+1 (and hence φm,n+1) depends on um+1,n and um−1,n,
whereas all terms in (146) depend on at most one of these quantities. Taking
the second derivative ∂um+1,n∂um−1,n of (146), we find

∂2φm,n+1

∂u2
m,n+1

= 0, i.e., φ = A(x, t)u+B(x, t). (147)

We substitute this expression back into (146) and find

A(x, t) = A0 = const (148)

and see that B(x, t) must satisfy system (140)–(142). Moreover, we find c =
2a in (145). Finally, the symmetry algebra has the basis

P0 = ∂t, P1 = ∂x, W = u∂u, D = x∂x + 2t∂t, (149)
S = S(x, t)∂u. (150)

Thus, the dilational invariance is recovered, but not the Galilei invariance.
Other symmetries can be recovered on other lattices.

3.4 Lorentz Invariant Difference Schemes

The Continuous Case. Let us consider the PDE

uxx − utt = 4f(u). (151)

Equation (151) is invariant under the Poincaré group of 1 + 1 dimensional
Minkowski space for any function f(u). Its Lie algebra is represented by

P0 = ∂t, P1 = ∂x, L = t∂x + x∂t. (152)

For specific interactions f(u) the symmetry algebra may be larger, in partic-
ular for f = eu, f = uN , or f = αu+ β.

Before presenting a discrete version of (151), we find it convenient to
change to light-cone coordinates

y = x+ t, z = x− t (153)

in which (151) is rewritten as

uyz = f(u) (154)

and the Poincaré symmetry algebra (152) is

P1 = ∂y, P2 = ∂z, L = y∂y − z∂z. (155)
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A Discrete Lorentz Invariant Scheme. A particular P∆S that has (154)
as its continuous limit is

um+1,n+1 − um,n+1 − um+1,n + um,n
(ym+1,n − ym,n)(zm,n+1 − zm,n)

= f(um,n) (156)

ym+1,n − 2ym,n + ym−1,n = 0, ym,n+1 − ym,n = 0 (157)
zm+1,n − zm,n = 0, zm,n+1 − 2zm,n + zm,n−1 = 0. (158)

To find the Lie point symmetries of this difference scheme, we set

X = η(y, z, u)∂y + ξ(y, z, u)∂z + φ(y, z, u)∂u. (159)

We apply the prolonged vector field prX first to (157) and (158), eliminate
ym+1,n, ym,n+1, zm+1,n and zm,n+1, using system (157)–(158), and observe
that all values of uik that figure in the equations obtained for ηik and ξik are
independent.

The result that we obtain is that η and ξ must be independent of u and
linear in y and z, respectively. Finally we obtain

ξ = αy + γ, η = βz + δ, (160)

where α, . . . , δ are constants. Invariance of (156) implies that the coefficient
φ in the vector field (159) must be linear in u and moreover have the form

φ = Au+B(y, z), (161)

where A is a constant. Taking (160) and (161) into account and applying
prX to (156), we obtain

(A− α− β)f(um,n) +
Bm+1,n+1 −Bm,n+1 −Bm+1,n +Bm,n

(ym+1,n − ym,n)(zm,n+1 − zm,n)
= (Aum,n +Bm,n)f ′(um,n). (162)

Differentiating (162) with respect to um,n we finally obtain the following
determining equation:

(α+ β)
df

dum,n
+ (Aum,n +B(ym,n, zm,n))

d2f

du2
m,n

= 0. (163)

For f(um,n) arbitrary, we find β = −α, A = B = 0. Thus for arbitrary f(u)
the scheme (156)–(157) has the same symmetries as its continuous limit. The
point symmetry algebra is given by (155), i.e., it generates translations and
Lorentz transformations.

Now let us seek special cases of f(u) when further symmetries exist. That
means that (163) must be solved in a nontrivial manner. Let us restrict
ourselves to the case when the interaction is nonlinear, i.e.,
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d2

du2
m,n

f(um,n) �= 0. (164)

Then we must have

B(ym,n, zm,n) = B = const . (165)

The equation to be solved for f(u) is actually (162) which simplifies to

(Au+B)f ′(u) = (A− α− β)f(u). (166)

For A �= 0 the solution of (166) is

f = f0u
p, (167)

and the symmetry is

D1 = y∂y + z∂z −
2

p− 1
u∂u. (168)

For A = 0, B �= 0 we obtain

f = f0e
pu (169)

and the additional symmetry is

D2 = y∂y + z∂z − 2∂u. (170)

Thus, for nonlinear interactions f(u), f ′′ �= 0, the P∆S (156)–(158) has
exactly the same point symmetries as its continuous limit (154).

The linear case

f(u) = Ru+ T (171)

is different. The PDE (154) in this case is conformally invariant. This infinite-
dimensional symmetry algebra is not present for the discrete case considered
in this section.

4 Symmetries of Discrete Dynamical Systems

4.1 General Formalism

In this section we shall discuss differential-difference equations on a fixed
one-dimensional lattice. Thus, time t will be a continuous variable, n ∈ Z a
discrete one. We will be modeling discrete monoatomic or diatomic molec-
ular chains with equally-spaced rest positions. The individual atoms will be
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vibrating around their rest positions. For monoatomic chains the actual po-
sition of the n-th atom is described by one continuous variable un(t). For
diatomic atoms there will be two such functions, un(t) and vn(t).

Only nearest neighbour interaction will be considered. The interactions
are described by a priori unspecified functions. Our aim is to classify these
functions according to their symmetries.

Three different models have been studied [45,24,35]. They correspond to
Figs. 3, 4 and 5, respectively.

The model illustrated in Fig. 3 corresponds to the equation [45]

ün(t) − Fn
(
t, un−1(t), un(t), un+1(t)

)
= 0. (172)

Figure 4 could correspond to a very primitive model of the DNA molecule.
The equations are [24]

ün = Fn
(
t, un−1(t), un(t), un+1(t), vn−1(t), vn(t), vn+1(t)

)
= 0

v̈n = Gn
(
t, un−1(t), un(t), un+1(t), vn−1(t), vn(t), vn+1(t)

)
= 0. (173)

The model corresponding to Fig. 5 already took translational and Galilei
invariance into account, so the equations are

ün = Fn(ξn, t) +Gn(ηn−1, t)
v̈n = Kn(ξn, t) + Pn(ηn, t) (174)
ξn = yn − xn, ηn = xn+1 − yn.

un−1 un un+1

Fig. 3. A monoatomic chain

vn−1 vn vn+1

un−1 un un+1

Fig. 4. A diatomic molecule with two types of atoms on parallel chains

un−1 vn un vn+1 un+1

Fig. 5. A diatomic molecule with two types of atoms alternating along one chain
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Dissipation was ignored in all three cases, so no first derivatives are
present.

In these lectures we shall only treat the case (172). The lattice is fixed,
i.e., it is given by the relation

xn = hn+ x0, (175)

with h and x0 given constants. With no loss of generality we can choose
h = 1, x0 = 0, so that xn = n.

Our aim is to find all functions Fn for which (172) admits a nontriv-
ial group of local Lie point transformations. We shall also assume that the
interaction is nonlinear and that it does indeed couple neighbouring states.

Let us summarize the conditions imposed on the model (172) in order to
study its symmetries.

1. The lattice is fixed and regular (xn = n).
2. The interaction involves nearest neighbours only, is nonlinear and cou-

pled, i.e.,

∂2Fn
∂ui∂uk

�= 0,
∂Fn
∂un−1

�= 0,
∂Fn
∂un+1

�= 0. (176)

3. We consider point symmetries only. Since the lattice is fixed, the trans-
formations are generated by vector fields of the form [40]

X = τ(t)∂t + φn(t, un)∂un . (177)

We also assume that τ(t) is an analytic function of t and φn(t, un) is also
analytic as a function of t and un.

The symmetry algorithm is the usual one, namely

prXEn |En=0= 0. (178)

The prolongation in (178) involves a prolongation to t-derivatives u̇n and
ün, and to all values of n figuring in (172), i.e., n± 1.

The terms that we actually need in the prolongation are

pr(2)X = τ∂t +
n+1∑

k=n−1

φk(t, uk)∂uk
+ φttn ∂ün

. (179)

The coefficient φttn is calculated using the formulas of Sect. 1 (or e.g., [52]).
We have

φttn = D2
tφn − (D2

t τ)un − 2(Dtτ)ün. (180)

Applying pr(2)X to (172) and replacing ü from that equation, we obtain
an expression involving (u̇n)3, (u̇n)2, (u̇n)1 and (u̇n)0. The coefficients of all
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these terms must vanish separately. The first three of these equations do not
depend on Fn and can be solved easily. They imply

φn(t, un) =
(

1
2
τ̇(t) + an

)
un + βn(t), τ = τ(t), ȧn = 0. (181)

The remaining determining equation is

1
2
τtttun + βn,tt +

(
an − 3

2
τt

)
Fn

−τFn,t −
∑
α

((
1
2
τt + aα

)
uα + βα

)
Fn,uα

= 0, (182)

and the vector fields realizing the symmetry algebra are

X = τ(t)∂t +
((

1
2
τ̇(t) + an

)
un + βn(t)

)
∂un

. (183)

Since we are classifying the interactions Fn, we must decide which func-
tions Fn will be considered to be equivalent. To do this we introduce a group
of “allowed transformations”, or a “classifying group”. We define this to be
a group of fiber-preserving point transformations

un(t) = Ωn(ũn(t̃), t̃, g), t̃ = t̃(t, g), ñ = n, (184)

taking (172) into an equation of the same form

¨̃un(t̃) = F̃n
(
t̃, ũn−1(t̃), ũn(t̃), ũn+1(t̃)

)
= 0. (185)

That is, the allowed transformations can change the function Fn (as op-
posed to symmetry transformations), but cannot introduce first derivatives,
or terms other than nearest-neighbour terms. These conditions narrow down
the transformations (184) to linear ones of the form

un(t) =
An√
t̃t
ũn(t̃) +Bn(t), t̃ = t̃(t),

An,t = 0, t̃t �= 0, An �= 0, ñ = n. (186)

Equation (172) is transformed into

ũn,t̃t̃ = A−1
n (t̃t)−3/2

{
Fn(t, un−1, un, un+1)

+
(
−3

4
An(t̃t)−5/2(t̃tt)2

+
An
2

(t̃t)−3/2t̃ttt

)
ũn(t̃) −Bn,tt

}
. (187)
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The transformed vector field (183) is

X̂ = τ(t)t̃t(t)∂t̃ +
{(

1
2
(
τ(t)t̃t

)
t̃
+ an

)
ũn

+ (t̃t)1/2A−1
n

((
1
2
τt + an

)
Bn + βn − τBn,t

)}
∂ũn

. (188)

In (187) and (188), τ(t), an, βn and Fn are given, whereas t̃(t), An and Bn(t)
are ours to choose. We use these quantities to simplify the expression of the
vector field X̂.

Our classification strategy is the following. We first classify one-dimen-
sional subalgebras. Thus, we have one vector field of the form (183). If τ(t)
satisfies τ(t) �= 0 in some open interval, we use t̃(t) to normalize τ(t) = 1
and Bn(t) to transform βn(t) into βn(t) = 0. If we have τ(t) = 0, an �= 0, we
use Bn(t) to annul βn(t). The last possibility is τ(t) = 0, an = 0, βn(t) �= 0.
Then we cannot simplify further. The same transformations will also simplify
the determining equation (182) and we can, in each case, solve it for the
interaction Fn(t, un−1, un, un+1).

Once all interactions allowing one-dimensional symmetry algebras are de-
termined, we proceed using results on the structure of Lie algebras, to be
described in Sect. 4.4. We first find all Abelian symmetry groups and the
corresponding interactions allowing them. We run through our list of one-
dimensional algebras and take them in an already established “canonical”
form. Let us call this element X1 (in each case). We then find all elements X
of the form (183) that satisfy [X1, X] = 0. We classify the obtained operators
X under the action of a subgroup of the group of allowed transformations,
namely the isotropy group of X1 (the group that leaves the one-dimensional
subalgebra generated by X1 invariant). For each Abelian group we find the
invariant interaction.

From Abelian symmetry algebras we proceed to nilpotent ones, then to
solvable ones and finally to nonsolvable ones. These can be semisimple, or
they may have a nontrivial Levi decomposition.

All details can be found in the original article [45], here we shall present
the main results.

4.2 One-Dimensional Symmetry Algebras

Three classes of one-dimensional symmetry algebras exist. Together with
their invariant interactions, they can be represented by

A1,1 X = ∂t + anun∂un

Fn(t, uk) = fn(ξn−1, ξn, ξn+1)eant (189)
ξk = uke

−akt, k = n− 1, n, n+ 1.
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A1,2 X = anun∂un

Fn(t, uk) = unfn(t, ξn−1, ξn+1) (190)
ξn±1 = uan

n±1u
−an±1
n .

A1,3 X = βn(t)∂un

Fn(t, uk) =
β̈n
βn
un + fn(t, ξn−1, ξn+1) (191)

ξn±1 = βn(t)un±1 − βn±1(t)un.

We see that the existence of a one-dimensional Lie algebra implies that the
interaction F is an arbitrary function of three variables, rather than the
original four. The actual form of the interaction in (189), (190) and (191)
was obtained by solving (182), once the canonical form of vector field X in
(189), (190), or (191) was taken into account.

4.3 Abelian Lie Algebras of Dimension N ≥ 2

Without proof we state several theorems.

Theorem 4.1. An Abelian symmetry algebra of (172) can have dimension
N satisfying 1 ≤ N ≤ 4.

Comment : For N = 1 these are the algebras A1,1, A1,2 and A1,3 of (189),
(190) and (191).

Theorem 4.2. Five distinct classes of interactions Fn exist having symmetry
algebras of dimension N = 2. For four of them the interaction will involve an
arbitrary function of two variables, for the fifth a function of three variables.

The five classes can be represented by the following algebras and interac-
tions.

A2,1 : X1 = ∂t + a1,nun∂un , X2 = a2nun∂un

Fn = unfn(ξn−1, ξn+1), a2n �= 0 (192)
ξk = ua2n

k u−a2k
n e(a1,na2k−a1ka2n)t, k = n± 1

A2,2 : X1 = ∂t + anun∂un X2 = eant∂un

Fn = a2
nun + eantfn(ξn−1, ξn+1) (193)

ξk = uke
−akt − une

−ant, k = n± 1
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A2,3 : X1 = a1,nun∂un
X2 = a2nun∂un

Fn = unfn(t, ξ) (194)
ξ = u

αn+1,n

n−1 uαn−1,n+1
n u

αn,n−1
n+1

αkl = a1ka2l − a1la2k �= 0

A2,4 : X1 = β1,n(t)∂un , X2 = β2n(t)∂un

β1,nβ2n+1 − β1,n+1β2n �= 0

Fn =
(β1,nβ̈2n − β̈1,nβ2n)un+1 − (β1,n+1β̈2n − β̈1,nβ2n+1)

β1,nβ2n+1 − β1,n+1β2n
(195)

+fn(t, ξ)
ξ = (β1,nβ2n+1 − β1,n+1β2n)un−1 + (β1,n+1β2n−1 − β1,n−1β2n+1)un

+(β1,n−1β2n − β1,nβ2n−1)un+1

A2,5 : X1 = ∂un , X2 = t∂un

Fn = fn(t, ξn−1, ξn+1), ξk = uk − un, k = n± 1 (196)

The algebra A2,5 is of particular physical significance since X1 and X2
in (196) correspond to translation and Galilei invariance for the considered
chain. Unless we are considering a molecular chain in an external field, or
unless an external geometry is imposed, the symmetry algebra A2,5 should
always be present, possibly as a subalgebra of a larger symmetry algebra.

Theorem 4.3. Four classes of three-dimensional Abelian symmetry algebras
exist. Only one of them contains the A2,5 subalgebra and can be presented as

A3,4 X1 = ∂un
, X2 = t∂un

,

X3 = βn(t)∂un , βn+1 �= βn, β̈n �= 0. (197)

The invariant interaction is

Fn =
β̈n

βn+1 − βn
(un+1 − un) + fn(t, ξ), (198)

ξ = (βn − βn+1)un−1 + (βn+1 − βn−1)un + (βn−1 − βn)un+1. (199)

For A3,1, A3,2 and A3,4, see the original article [45].

Theorem 4.4. There exist two classes of interactions Fn in (172) satisfying
conditions (176), allowing four-dimensional Abelian symmetry algebras. Only
one of them contains the subalgebra A2,5. It is represented by the following.

A1 Fn =
Bn(t)γn
γn − γn+1

(un − un+1) + fn(t, ξ), fn,ξξ �= 0 (200)

X1 = ∂un , X2 = t∂un , X3 = ψ1(t)γn∂un ,

X4 = ψ2(t)γn∂un

γn+1 �= γn, γ̇n = 0, ψ1ψ̇2 − ψ̇1ψ2 = const �= 0,
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with

ξ = (γn − γn+1)un−1 + (γn+1 − γn−1)un + (γn−1 − γn)un+1,

ψ1, ψ2 satisfying

ψ̈i −B(t)ψi = 0, i = 1, 2.

4.4 Some Results on the Structure of Lie Algebras

Let us recall some basic properties of finite-dimensional Lie algebras. Consider
a Lie algebra L with basis X1, X2, . . . , Xn. To each algebra L one associates
two series of subalgebras.

The derived series consists of the algebras

L0 ≡ L, L1 ≡ DL = [L,L], L2 ≡ D2L = [DL,DL], . . . ,
LN ≡ DNL = [DN−1L,DN−1L], . . . (201)

The algebra of commutators DL is called the derived algebra. If DL = L, the
algebra L is called perfect. If an integer N exists for which DNL = {0}, the
algebra L is called solvable.

The central series consists of the algebras

L0 ≡ L, L1 = L1 = [L,L], L2 = [L,L1], . . . , LN = [L,LN−1], . . . (202)

If there exists an integer N for which LN = {0}, the algebra L is called
nilpotent . Clearly, every nilpotent algebra is solvable, but the converse is not
true.

Let us consider two examples.

1. The Lie algebra of the Euclidean group of a plane: e(2) ∼ {L3, P1, P2}.
The commmutation relations are

[L3, P1] = P2, [L3, P2] = −P1, [P1, P2] = 0. (203)

The derived series is

L = {L3, P1, P2} ⊃ DL = {P1, P2}, D2L = {0}

and the central series is

L ⊃ L1 = {P1, P2} = L2 = L3 = . . .

Hence e(2) is solvable but not nilpotent.
2. The Heisenberg algebra H1 ∼ {X1, X2, X3} where the basis can be real-

ized by the derivation operator, the coordinate x and the identity 1:

X1 = ∂x, X2 = x, X3 = 1.
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We have

[X1, X2] = X3, [X1, X3] = [X2, X3] = 0, (204)

hence

DL = {X3}, D2L = 0.
L1 = {X3}, L2 = 0.

We see that the Heisenberg algebra is nilpotent (and therefore solvable).

An Abelian Lie algebra is of course also nilpotent.
We shall need some results concerning nilpotent Lie algebras (by nilpotent

we mean nilpotent non-Abelian).

1. Nilpotent Lie algebras always contain Abelian ideals.
2. All nilpotent Lie algebras contain the three-dimensional Heisenberg alge-

bra as a subalgebra.

We shall also use some basic properties of solvable Lie algebras, where by
solvable we mean solvable, non-nilpotent.

1. Every solvable Lie algebra L contains a unique maximal nilpotent ideal
called the nilradical NR(L). The dimension of the nilradical satisfies

1
2

dim(L) ≤ dimNR(L) ≤ dim(L) − 1. (205)

2. If the nilradical NR(L) is Abelian, then we can choose a basis for L in
the form {X1, . . . , Xn, Y1, . . . , Ym}, m ≤ n, with commutation relations

[Xi, Xk] = 0, [Xi, Yk] = (Ak)ijXj , [Yi, Yk] = ClikXl. (206)

The matrices Ak commute and are linearly nilindependent, i.e., no linear
combination of them is a nilpotent matrix.

If a Lie algebra L is not solvable, it can be simple, semisimple, or it may
have a nontrivial Levi decomposition [33]. A simple Lie algebra L has no
nontrivial ideals, i.e.,

I ⊆ L, [L, I] ⊆ I (207)

implies I = {0}, or I = L.
A semisimple Lie algebra L is a direct sum of simple Lie algebras Li

L ∼ L1 ⊕ L2 ⊕ · · · ⊕ Lp, [Li, Lk] = 0. (208)

If L is not simple, semisimple, or solvable, then it has a unique Levi decom-
position into a semidirect sum

L ∼ S �R, [S, S] = S, [R,R] ⊂ R, [S,R] ⊆ R (209)

where S is semisimple and R is solvable; R is called the radical of L. It is the
maximal solvable ideal.

Let us now return to the symmetry classification of discrete dynamical
systems.
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4.5 Nilpotent Non-Abelian Symmetry Algebras

Since every nilpotent Lie algebra contains the three-dimensional Heisenberg
algebra, we start by constructing this algebra, H1 ∼ {X1, X2, X3}. The cen-
tral element X3 of (204) is uniquely defined. We start from this element, take
it in one of the standard forms (189), (190), or (191), then construct the
two complementary elements X1 and X2. The result is that two inequivalent
realizations of H1 exist:

N3,1 : X1 = ∂un , X2 = ∂t, X3 = t∂un

Fn = fn(ξn+1, ξn−1), ξk = uk − un, k = n± 1 (210)

N3,2 : X1 = eant∂un , X2 = ∂t + anun∂un

X3 = (t+ γn)eant∂un , ȧn = 0, γ̇n = 0, γn+1 �= γn

Fn =
a2
n(γn+1 − γn) − 2an

γn+1 − γn
un (211)

+
2an

γn+1 − γn
un+1e

(an−an+t)t + eantfn(ξ)

ξ = (γn − γn+1)un−1e
−an−1t + (γn+1 − γn−1), une−ant

+(γn−1 − γn)un+1e
−an+1t.

Observe thatN3,1 contains the physically important subalgebra A2,5, whereas
N3,2 does not.

Extending the algebras N3,1 and N3,2 by further elements, we find that
N3,1 gives rise to two five-dimensional nilpotent symmetry algebras N5,k and
N3,2 to a four-dimensional one N4,1.

Here we shall only list N5,1 and N5,2 which contain N3,1 and hence A2,5:

N5,k : X1 = ∂un
, X2 = t∂un

, X3 =
(

(k − 1)t2

2
+ γn

)
∂un

,

X4 =
(

(k − 1)t3

6
+ γnt

)
∂un , X5 = ∂t, k = 1, 2 (212)

Fn =
2(k − 1)
γn+1 − γn

(un+1 − un) + fn(ξ)

with ξ as in (200).

4.6 Solvable Symmetry Algebras with Non-Abelian Nilradicals

We already know all nilpotent symmetry algebras, so we can start from the
nilradical and extend it by further non-nilpotent elements. The result can be
stated as a theorem.
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Theorem 4.5. Seven classes of solvable symmetry algebras with non-Abelian
nilradicals exist for (172). Four of them have N3,1 as nilradical, three have
N5,1.

For N3,1 we can add just one more element Y , one of the following

SN4,1 : Y = t∂t +
(

1
2

+ a

)
un∂un

, a �= −1
2

Fn = (un+1 − un)e(a−3/2)/(a+1/2)fn(ξ) (213)

SN4,2 : Y = t∂t + (2un + t2)∂un

Fn = ln(un+1 − un) + fn(ξ) (214)

SN4,3 : Y = un∂un

Fn = (un+1 − un)fn(ξ). (215)

In all the above cases we have

ξ =
un−1 − un
un+1 − un

. (216)

SN4,4 : Y = t∂t + γn∂un , γn+1 �= γn, γ̇n = 0

Fn = exp
(
−2

un+1 − un
γn+1 − γn

)
fn(ξ) (217)

with ξ as in (200). ForN5,1 we can also add at most one non-nilpotent element
and we obtain

SN6,1 : Y = t∂t +
(

1
2

+ a

)
un∂un

Fn = cnξ
(a−3/2)/(a+1/2), a �= −1

2
, a �= 3

2
(218)

SN6,2 : Y = t∂t + (2un + (a+ bγn)t2)∂un
, a2 + b2 �= 0

Fn = cn + (a+ bγn) ln ξ (219)

SN6,3 : Y = t∂t + ρn∂un , ρn �= A+Bγn, ρ̇n = 0

Fn = cne
ζ (220)

ζ =
−2ξ

(γn − γn+1)ρn−1 + (δn+1 − γn−1)ρn + (γn−1 − γn)ρn+1
.

In all cases ξ is as in (200).
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4.7 Solvable Symmetry Algebras with Abelian Nilradicals

The results in this case are very rich. There exist 31 such symmetry algebras
and their dimensions satisfy 2 ≤ d ≤ 5.

For all details and a complete list of results we refer to the original article
[45]. Here we give just one example of a five-dimensional Lie algebra with
NR(L) = A4,1.

SA5,1 : X1 = ∂un
, X2 = t∂un

, X3 = etγn∂un
,

X4 = e−tγn∂un

Y = ∂t + aun∂un a �= 0, γn �= γn+1, γ̇n = 0

Fn =
γn(un+1 − un)
γn+1 − γn

+ eatfn(ξ) (221)

ξ = ((γn − γn+1)un−1 + (γn+1 − γn−1)un
+(γn−1 − γn)un+1)e−at.

We mention that there exist 7 five-dimensional algebras with A4,1 as their
nilradical [45].

4.8 Nonsolvable Symmetry Algebras

A Lie algebra that is not solvable must have a simple subalgebra. The only
simple algebra that can be constructed out of vector fields of the form (183)
is sl(2,R). The algebra and the corresponding invariant interaction can be
represented as:

NS3,1 : X1 = ∂t, X2 = t∂t +
1
2
un∂un

X3 = t2∂t + tun∂un
(222)

Fn =
1
u3
n

fn(ξn−1, ξn+1), ξk =
uk
un
, k = n± 1.

This algebra can be further extended to a four, five or seven-dimensional
symmetry algebra. In two cases the algebra will have an A2,5 subalgebra,
namely
NS5,1: In addition to X1, X2, X3 of (222) we have

X4 = ∂un
, X5 = t∂un

Fn = (un+1 − un)−3fn(ξ), ξ =
un+1 − un
un−1 − un

. (223)

NS7,1: The additional elements are

Xn = ∂un
, X5 = t∂un

, X6 = γn∂un, X7 = tγn∂un

γn+1 �= γn, γ̇n = 0. (224)
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The invariant interaction is

Fn = sn((γn − γn+1)un−1 + (γn+1 − γn−1)un
+(γn−1 − γn)un+1)−3, ṡn = 0, sn �= 0. (225)

4.9 Final Comments on the Classification

Let us first of all sum up the discrete dynamical systems of the type (172)
with the largest symmetry algebras.

We set

ξ = (γn − γn+1)un−1 + (γn+1 − γn−1)un + (γn−1 − γn)un+1 (226)

and find that this variable is involved in all cases with 7-, or 6-dimensional
symmetry algebras.

The algebras and interactions are given in (224), (218), (219) and (220),
respectively.

A natural question is where is the Toda lattice in this classification. The
Toda lattice is described by the equation

un,tt = eun−1−un − eun−un+1 . (227)

This equation is of the form (172). It is integrable [62] and has many interest-
ing properties. In our classification it appears as a special case of the algebra
SN4,4. Indeed, (227) is obtained from

ün = exp
(
−2

un+1 − un
γn+1 − γn

)
fn(ξ), (228)

taking

fn(ξ) = −1 + eξ/2, γn = 2n. (229)

Thus, its symmetry group is four-dimensional. We see that the Toda lattice
is not particularly distinguished by its point symmetries: other interactions
have larger symmetry groups. Even in the SN4,4 class two functions have to
be specialized (see (229)) to reduce (228) to (227).

5 Generalized Point Symmetries of Linear
and Linearizable Systems

5.1 Umbral Calculus

In this section we take a different point of view than in the previous ones.
Instead of purely point symmetries, we shall consider a specific class of gen-
eralized symmetries of difference equations that we shall call “generalised
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point symmetries”. They act simultaneously at several or even infinitely many
points of a lattice, but they reduce to point symmetries of a differential equa-
tion in the continuous limit.

The approach that we shall discuss here is at this stage applicable either
to linear difference equations, or to nonlinear equations that can be linearized
by a transformation of variables (not necessarily only point transformations).

The mathematical basis for this type of study is the so-called “umbral
calculus” reviewed in recent books and articles by G.G. Rota and his col-
laborators [59, 58, 11]. Umbral calculus provides a unified basis for studying
symmetries of linear differential and difference equations.

Let us introduce several fundamental concepts.

Definition 5.1. A shift operator Tδ is a linear operator acting on polynomi-
als or formal power series in the following manner

Tδf(x) = f(x+ δ), x ∈ R, δ ∈ R. (230)

For functions of several variables we introduce shift operators in the same
manner

Tδi
f(x1, . . . xi−1, xi, xi+1 . . . xn)

= f(x1, . . . , xi−1, xi + δi, xi+1, . . . , xn). (231)

In this section we restrict the exposition to the case of one real variable
x ∈ R. The extension to n variables and other fields is obvious. We will
sometimes drop the subscript on the shift operator T when that does not
give rise to misinterpretations.

Definition 5.2. An operator U is called a delta operator if it satisfies the
following properties,

1) It is shift invariant;

TδU = UTδ, ∀δ ∈ R, (232)

2)

Ux = c �= 0, c = const, (233)

3)

Ua = 0, a = const, , (234)

and the kernel of U consists precisely of all constants.

Important properties of delta operators are:

1. For every delta operator U there exists a unique series of basic polyno-
mials {Pn(x)} satisfying

P0(x) = 1 Pn(0) = 0, n ≥ 1, UPn(x) = nPn−1(x). (235)
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2. For every delta operator U there exists a conjugate operator β, such that

[U, xβ] = 1. (236)

The operator β satisfies

β = (U ′)−1, U ′ = [U, x]. (237)

The expression

U ′ ≡ U ∗ x ≡ [U, x] (238)

is called the “Pincherle derivative” of U [59, 58,11].
For us the fundamental fact is that the pair of operators, U and xβ,

satisfies the Heisenberg relation (236).
Before going further, let us give the two simplest possible examples.

Example 5.1. The (continuous) derivative

U = ∂x, β = 1
P0 = 1, P1 = x, . . . , Pn = xn, . . .

(239)

Example 5.2. The right discrete derivative

U = ∆+ = T−1
δ , β = T−1

P0 = 1, P1 = x, P2 = x(x− δ)
Pn = x(x− δ) . . .

(
x− (n− 1)δ

)
.

(240)

For any operator U one can construct β and the basic series will be

Pn = (xβ)n · 1, n ∈ N. (241)

5.2 Umbral Calculus and Linear Difference Equations

Let us consider a Lie algebra L realized by vector fields

Xa = fa(x1, . . . , xn)∂xa
(242)

[Xa, Xb] = CcabXc. (243)

The Heisenberg relation (236) allows us to realize the same abstract Lie
algebra by difference operators

XD
a = fa(x1β1, x2β2, . . . , xnβn)∆xa , [∆xa , xaβa] = 1, a = 1, . . . n.

(244)

As long as the functions fa are polynomials, or formal power series in the
variables xa, the substitution

xa → xaβa, ∂xa → ∆xa (245)

preserves the commutation relations (243).
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We shall call the substitution (245) and more generally any substitution

{U, β} ↔ {Ũ , β̃} (246)

an “umbral correspondence”. This correspondence will also take the set of
basic polynomials related to {U, β} into the set related to the pair {Ũ , β̃}.

We shall use two types of delta operators. The first is simply the derivative
U = ∂x, for which we have β = 1. The second is a general difference operator
U = ∆ that has ∂x as its continuous limit. We set

∆ =
1
δ

m∑
k=l

akT
k
δ , l, m ∈ Z, l < m, (247)

where ak and δ are real constants and Tδ is a shift operator as in (230).
Condition (232) is satisfied. Condition (234) implies

m∑
k=l

ak = 0. (248)

We also require that when δ goes to 0, ∆ goes to ∂x. This requires a further
restriction on the coefficients ak, namely

m∑
k=l

akk = 1. (249)

Then relation (233) is also satisfied, with c = 1.
More generally, for ∆ as in (247),

∆f(x) =
1
δ

m∑
k=l

akf(x+ kδ)

=
1
δ

∞∑
q=0

f (q)(x)
q!

δq
m∑
k=l

akk
q.

We define

γq =
m∑
k=l

akk
q, q ∈ Z, (250)

and thus

∆f(x) =
df

dx
+

∞∑
q=2

γq
f (q)(x)
q!

δq−1f. (251)

Thus the limit of ∆ is the derivative at least to order δ. We can also
impose

γq = 0, q = 2, 3, . . .m− l. (252)
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Then we have

∆ =
d

dx
+O(δm−l).

Definition 5.3. A difference operator of degree m− l is a delta operator of
the form

U ≡ ∆ =
1
δ

m∑
k=l

akT
k
δ , (253)

where ak and δ are constants, Tδ is a shift operator and

m∑
k=l

ak = 0,
m∑
k=l

akk = 1. (254)

Comment : ∆̃ = T j∆ is a difference operator of the same degree as ∆.

Theorem 5.1. The operator β conjugate to ∆ = (1/δ)
∑m
k=l akT

k
δ is

β =
( m∑
k=l

akkT
k

)−1

. (255)

Proof. By definition, β = (∆′)−1 = [∆,x]−1 and

[∆,x] =
1
δ

( m∑
k=l

ak(x+ kδ)T k − x

m∑
k=l

akT
k

)

=
m∑
k=l

akkT
k.

Examples:

∆s =
T − T−1

2δ
, β =

(
T + T−1

2

)−1

(256)

∆3 = − 1
6δ

(T 2 − 6T + 3 + 2T−1), β =
(
−T

2 − 3T − T−1

3

)−1

(257)

Comment :

∆s =
∂

∂x
+O(δ2) ∆3 =

∂

∂x
+O(δ3).

Now let us apply the above considerations to the study of symmetries of
linear difference equations.



230 P. Winternitz

Definition 5.4. An umbral equation of order n is an operator equation of
the form

n∑
k=0

âk(xβ)∆kf̂ = ĝ, (258)

where âk(xβ) and ĝ(xβ) are given formal power series in xβ and f̂(xβ) is
the unknown operator function.

For ∆ = ∂x, β = 1 this is a differential equation. For ∆ as in (247), (258)
is an operator equation. Applying both sides of (258) to 1 we get a difference
equation. Its solution is

f(x) = f̂(xβ) · 1. (259)

Thus f(x) is a function, obtained by applying the operator f̂(xβ) to the
constant 1.

More generally, an umbral equation of order n in p variables is

n1,...,np∑
k1=0,...,kp=0

âk1...kp
(x1β1, x2β2, . . . , xpβp)∆k1δ1 , . . . ∆

kp

δp
f̂(x1β1, . . . , xpβp)

= ĝ(x1β1 . . . xpβp),
p∑
i=1

ni = n. (260)

As an example, we study the umbral equation,

∆f̂ = af̂ , a �= 0. (261)

(i) If ∆ = ∂x, then f(x) = eax.
(ii) If ∆ = ∆+ = T−1

δ , β = T−1, and

f(x+ δ) − f(x) = aδf(x). (262)

If f(x) = λx, then

λx+δ − λx = aδλx

so that

λ = (1 + aδ)1/δ.

We get a single “umbral” solution

f1(x) = (1 + aδ)x/δ. (263)



Symmetries of Discrete Systems 231

The umbral correspondence yields:

f2(x) = eaxT
−1 · 1. (264)

If we expand into power series, we obtain f1(x) = f2(x), and

lim
δ→0

f1,2(x) = eax.

From now on we shall call umbral solutions those that we can get from
solutions of the corresponding differential equation by the umbral cor-
respondance. Other solutions, if they exist, will be called non-umbral
solutions.

(iii) For comparison, take ∆ = ∆s = (T − T−1)/2δ, β = ((T + T−1)/2)−1.
Then

f(x+ δ) − f(x− δ) = 2δaf(x). (265)

Setting f(x) = λx, we get two values of λ and

f = A1(aδ +
√
a2δ2 + 1)x/δ +A2(aδ −

√
a2δ2 + 1)x/δ

≡ A1f1 +A2f2. (266)

We have

lim
δ→0

f1(x) = eax, (267)

but the limit of f2(x) does not exist. The umbral correspondence yields

fu(x) = exp
(
ax

(
T + T−1

2

)−1)
· 1.

Expanding into power series, we find fu = f1. The solution f2 is a non–
umbral solution.

Theorem 5.2. Let ∆ be a difference operator of order p. Then the linear
umbral equation of order n (258) has np linearly independent solutions, n of
them umbral ones.

There may be convergence problems for the formal series.
Consider the exponential

f̂(x) = eaxβ , β =
( m∑
k=l

akkT
k

)−1

. (268)

For m − l ≥ 3, β will involve infinitely many shifts, i.e., each term in the
expansion (268) could involve infinitely many shifts. However

Pn(x) = (xβ)n · 1 (269)

is a well defined polynomial. For a proof see [38].
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Let us assume that we know the solution of an umbral equation for∆ = ∂x
and that it has the form

f(x) =
∞∑
n=0

f (n)(0)
n!

xn. (270)

Then for any difference operator ∆ there will exist a corresponding umbral
solution

f̂(x)1 =
∞∑
n=0

f (n)(0)
n!

Pn(x), (271)

where Pn(x) = (xβ)n · 1 are the basic polynomials corresponding to ∆.

5.3 Symmetries of Linear Umbral Equations

Let us consider a linear differential equation

Lu = 0, L =
∑

k1,...,kp

ak1,...,kp(x1, . . . , xp)
∂k1

∂xk11

. . .
∂kp

∂x
kp
p

. (272)

The Lie point symmetries of (272) can be realized by evolutionary vector
fields of the form

X = Q(xi, u, uxi)∂u,

Q = φ−
p∑
i=1

ξiuxi . (273)

The following theorem holds for these symmetries.

Theorem 5.3. All Lie point symmetries for an ODE of order n ≥ 3, or a
PDE of order n ≥ 2 are generated by evolutionary vector fields of the form
(273) with the characteristic Q satisfying

Q = Xu+ χ(x1, . . . , xp), (274)

where χ is a solution of (272) and X is a linear operator

X =
p∑
i=1

ξi(x1, . . . , xp)∂xi (275)

satisfying

[L,X] = λ(x1, . . . , xp)L, (276)

i.e., commuting with L on the solution set of L. In (276), λ is an arbitrary
function.
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For a proof we refer to the literature [6].
In other words, if the conditions of Theorem 5.3 apply, then all symmetries

of (272) beyond those representing the linear superposition principle, are
generated by linear operators of the form (275), commuting with L on the
solution set of (272).

Now let us turn to the umbral equation (260) with ĝ = 0, i.e.,

∑
k1,...,kp

âk1...kp
(x1β1, . . . , xpβp)∆k1δ1 . . . ∆

kp

δp
û(x1β1, . . . , xpβp) = 0. (277)

We shall realize the symmetries of (277) by evolutionary vector fields of
the form

vE = QD∂u, QD = φD −
p∑
i=1

ξD,i∆iu (278)

where φD and ξD,i are functions of xiβi and u. The prolongation of vE will
also act on the discrete derivatives ∆ki

δi
u. We are now considering transfor-

mations on a fixed (nontransforming) lattice. In the evolutionary formalism
the transformed variables satisfy

x̃kβ̃k = xkβk, β̃k = βk

ũ(x̃kβ̃k) = u(xkβk) + λQD, |λ| << 1, (279)

and we request that ũ be a solution whenever u is one. The transformation
of the discrete derivatives is given by

∆x̃k
ũ = ∆xk

u+ λ∆xk
Q

∆x̃kx̃k
ũ = ∆xkxk

u+ λ∆xkxk
Q (280)

etc., where ∆xk
are discrete total derivatives.

In terms of the vector field (278),

pr vE = QD∂u +Qxi

D ∂∆iu +Qxixk

D ∂∆i∆ku + . . .

Qxi

D = ∆iQD, Qxixk

D = ∆i∆kQD (281)

(we have set ∆xi
≡ ∆i).

As in the continuous case, we obtain determining equations by requiring

pr vE(LDû) |LDû= 0 (282)

where LDû is the left hand side of (277).
The determining equations will be an umbral version of the determining

equations in the continuous case, i.e., are obtained by the umbral correspon-
dence, ∂xi

�→ ∆i, xi �→ xiβi.



234 P. Winternitz

The symmetries of the umbral equation (277) will hence have the form
(278) with

QD = XDu+ χ(x1β1, . . . xpβp), (283)

where XD is a difference operator commuting with LD on the solutions of
(277). Moreover, XD is obtained from X by the umbral correspondence.

We shall call such symmetries “generalized point symmetries”. Because
of the presence of the operators βi they are not really point symmetries. In
the continuous limit they become point symmetries.

We consider examples in the next section.

5.4 The Discrete Heat Equation

The (continuous) linear heat equation in (1 + 1) dimensions is

ut − uxx = 0. (284)

Its symmetry group is of course well-known. Factoring out the infinite-
dimensional pseudo-group corresponding to the linear superposition principle
we have a 6-dimensional symmetry group. We write its Lie algebra in evolu-
tionary form as

P0 = ut∂u, P1 = ux∂u, W = u∂u,

B = (2tux + xu)∂u, D =
(

2tut + xux +
1
2
u

)
∂u, (285)

K =
(
t2ut + txux +

1
4
(x2 + 2t)u

)
∂u,

where P0, P1, B, D, K and W generate time and space translations, Galilei
boosts, dilations, “expansions” and the multiplication of u by a constant,
respectively.

A very natural discretization of (284) is the discrete heat equation

∆tu− (∆x)2u = 0, (286)

where ∆t and ∆x are the difference operators considered in Sect. 5.2. We use
the corresponding conjugate operators βt and βx. The umbral correspondence
determines the symmetry algebra of (286), starting from the algebra (285).
Namely,

PD0 = (∆tu)∂u, PD1 = (∆xu)∂u, WD = u∂u,

BD = (2(tβt)∆xu+ (xβx)u)∂u

DD =
(

2tβt∆tu+ xβx∆xu+
1
2
u

)
∂u, (287)

KD =
(

(tβt)2∆tu+ (tβt)(xβx)∆xu+
1
4
(
(xβx)2 + 2tβt

)
u

)
∂u.
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In particular, we can choose both ∆t and ∆x to be right derivatives

∆t =
Tt − 1
δt

, βt = T−1
t , ∆x =

Tx − 1
δx

, βx = T−1
x , (288)

The characteristic QK of the element KD is XK such that

QK = XKu, XK = (t2 − δtt)T−2
t ∆t + txT−1

x T−1
t ∆x

+
1
4
((x2 − δx)T−2

x + 2tT−1
t ), (289)

so it is not a point transformation: it involves u evaluated at several points.
Each of the basis elements (287) (or any linear combination of them) provides
a flow commuting with (286):

uλ = Xu. (290)

Equations (286) and (290) can be solved simultaneously and this fact consti-
tutes an anlogue for equations of the separation of variables in PDEs, and a
tool for studying new types of special functions.

5.5 The Discrete Burgers Equation and Its Symmetries

The Continuous Case. The Burgers equation

ut = uxx + 2uux (291)

is the simplest equation that combines nonlinearity and dissipative effects. It
is also the prototype of an equation linearizable by a coordinate transforma-
tion, that is C-linearizable in Calogero’s terminology [64].

We set u = vx and obtain the potential Burgers equation for v:

vt = vxx + v2
x. (292)

Setting w = ev, we find

wt = wxx. (293)

In other words, the usual Burgers equation (291) is linearized into the heat
equation (293) by the Cole-Hopf transformation

u =
wx
w

(294)

(which is not a point transformation).
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A possible way of viewing the Cole-Hopf transformation is that it provides
a Lax pair for the Burgers equation:

wt = wxx, wx = uw. (295)

Setting

wt = Aw, wx = Bw, A = ux + u2, B = u

we obtain the Burgers equation as a compatibility condition

Ax −Bt + [A,B] = 0. (296)

Our aim is to discretize the Burgers equation in such a way as to preserve
its linearizability and also its five-dimensional Lie point symmetry algebra.
We already know the symmetries of the discrete heat equation and we will use
them to obtain the symmetry algebra of the discrete Burgers equation. This
will be an indirect application of umbral calculus to a nonlinear equation.

The Discrete Burgers Equation as a Compatibility Condition. Let
us write a discrete version of the pair (295) in the form:

∆tφ = ∆xxφ, ∆xφ = uφ, (297)

where

∆t =
Tt − 1
δt

, ∆x =
Tx − 1
δx

. (298)

The pair (297) can be rewritten as

∆tφ = (∆xu+ uTxu)φ, ∆xφ = uφ. (299)

We have used the Leibnitz rule for the discrete derivative ∆x of (298),
namely

∆xfg = f(x)∆xg + (Txg)∆xf. (300)

Compatibility of (299), i.e., ∆x∆tφ = ∆t∆xφ, yields the discrete Burgers
equation

∆tu =
1 + δxu

1 + δt(∆x∆xu+ uTxu)
∆x(∆xu+ uTxu). (301)
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In the continuous limit ∆t → ∂/∂t, ∆x → ∂/∂x, Tx → 1, δx = 0, δt = 0 we
obtain the Burgers equation (291) [31,29]. This is not a “naive” discretization
like

∆tu = (∆x)2u+ 2u∆xu (302)

which would loose all integrability properties.

Symmetries of the Discrete Burgers Equation. We are looking for
“generalized point symmetries” on a fixed lattice. We write them in evolu-
tionary form

Xe = Q(x, t, T axT
b
t u, T

c
xT

d
t ∆xu, T

e
xT

f
t ∆tu, . . . )∂u (303)

and each symmetry will provide a commuting flow

uλ = Q.

We shall use the Cole-Hopf transformation to transform the symmetry alge-
bra of the discrete heat equation into that of the discrete Burgers equation.

All the symmetries of the discrete heat equation given in (287) can be
written as

φλ = Sφ, S = S(x, t, φ, Tx, Tx . . . ) (304)

where S is a linear operator. The same is true for any linear difference equa-
tion.

For the discrete heat equation

∆tφ− (∆x)2φ = 0 (305)

with ∆t and ∆x as in (298) we rewrite the flows corresponding to (287) as

φλ1 = ∆tφ, φλ2 = ∆xφ, φλ3 =
(

2tT−1
t ∆x + xT−1

x +
1
2
δxT

−1
x

)
φ

φλ4 =
(

2tT−1
t ∆t + xT−1

x ∆x +
1
2

)
φ

φλ5 =
(
t2T−2

t ∆t + txT−1
t T−1

x ∆x +
1
4
x2T−2

x

+t
(
T−2
t − 1

2
T−1
t T−1

x

)
− 1

16
δ2xT

−2
x

)
φ (306)

φλ6 = φ.

Let us first prove a general result.
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Theorem 5.4. Let (304) represent a symmetry of the discrete heat equation
(305). Then the same linear operator S provides a symmetry of the discrete
Burgers equation (301), the flow of which is given by

uλ = (1 + δxu)∆x

(
Sφ

φ

)
, (307)

where (Sφ)/φ can be expressed in terms of u(x, t).

Proof. We require that (304) and the Cole-Hopf transformation in (297) be
compatible

∂

∂λ
(∆xφ) = ∆xφλ. (308)

This implies

uλ =
∆x(Sφ) − uSφ

φ
. (309)

A direct calculation yields

∆x

(
Sφ

φ

)
=

1
Txφ

(∆x(Sφ) − u(Sφ)), (310)

and (307) follows. It is still necessary to show that Sφ/φ depends only on
u(x, t). The expressions for Sφ can be found from (306). We thus see that
all expressions involved can be expressed in terms of u(x, t) and its shifted
values, using the Cole-Hopf transformation again. Indeed,

∆xφ = uφ, ∆tφ = vφ,

Txφ = (1 + δxu)φ, Ttφ = (1 + δtv)φ, (311)

T−1
x φ =

(
T−1
x

1
1 + δxu

)
φ, T−1

t φ =
(
T−1
t

1
1 + δtv

)
φ,

where we define

v = ∆xu+ uTxu. (312)

Explicitly, (307) maps the 6-dimensional symmetry algebra of the discrete
heat equation into the 5-dimensional Lie algebra of the discrete Burgers equa-
tion. The corresponding flows are
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uλ1 = (1 + δtv)∆tu
uλ2 = (1 + δxu)∆xu

uλ3 = (1 + δxu)∆x

(
2tT−1

t

u

1 + δtv
+
(
x+

1
2
− δx

)
T−1
x

1
1 + δxu

)

uλ4 = (1 + δxu)∆x

(
2tT−1

t

v

1 + δtv
+ xT−1

x

u

1 + δxu
− 1

2
T−1
x

1
1 + δxu

)

uλ5 = (1 + δxu)∆x

(
t2T−1

t

(
1

1 + δtv
T−1
t

v

1 + δtv

)
(313)

+txT−1
(

1
1 + δxu

T−1
t

u

1 + δtv

)

+
1
4

(
x2 − δ2x

4

)
T−1
x

(
1

1 + δxu
T−1
x

1
1 + δxu

)

+tT−1
t

(
1

1 + δtv
T−1
t

1
1 + δtv

)

−1
2
tT−1
x

(
1

1 + δxu
T−1
t

1
1 + δtv

))

uλ6 = 0.

Symmetry Reduction for the Discrete Burgers Equation. We first
treat the symmetry reduction for the continuous Burgers equation. We add
a compatible equation to the Burgers equation

ut = uxx + 2uux
uλ = Q(x, t, u, ux,t) = 0 (314)

and solve the two equations simultaneously. An example is furnished by the
time translations,

uλ = ut = 0. (315)

Then u = u(x) and

uxx + 2uux = 0 (316)

implies
ux + u2 = K.

We therefore obtain three types of solutions,

u =
1
x
, u = k arctanh kx, u = k arctan kx. (317)

We now consider the discrete case. All flows have the form (307). Condi-
tion uλ = 0 hence implies
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Sφ = K(t)φ, (318)

where K(t) is an arbitrary function. This equation must be solved together
with the discrete Burgers equation in order to obtain group-invariant solu-
tions.

Let us consider just one example, that of time translations, the first equa-
tion in (313). Equation (318) reduces to

∆tφ = K(t)φ, (319)

i.e.,

v = ∆xu+ uTxu = K(t). (320)

We rewrite the Burgers equation as

∆tu =
1 + δxu

1 + δtv
∆xv, v ≡ ∆xu+ uTxu. (321)

However, from (320), we obtain v = K(t) and hence ∆tu = 0, K(t) = K0 =
const. Since φ satisfies the heat equation, we can rewrite (319) as

∆xxφ = K0φ. (322)

The general solution of (322) is obtained for K0 �= 0 by setting φ = ax and
solving (322) for a. We find

φ = c1(1 +
√
K0δx)x/δx + c2(1 −

√
K0δx)x/δx . (323)

For K0 = 0,

φ = c1 + c2x. (324)

Solutions of the discrete Burgers equation are obtained via the Cole-Hopf
transformation

u =
∆xφ

φ
. (325)

The same procedure can be followed for all other symmetries. We obtain linear
second order difference equations for φ involving one variable only. However,
the equations have variable coefficients and are hard to solve. They can be
reexpressed as equations for u(x, t), again involving only one independent
variable. Thus, a reduction takes place, but it is not easy to solve the reduced
equations explicitly.

For instance, Galilei-invariant solutions of the discrete Burgers equation
must satisfy the ordinary difference equation

2tTxu+ x−K(t) + 2tδxuTxu+ δt

(
7
2Txu+ 7

2δxuTxu

+xuTxu+ x∆xu− 3
2u

)
+ 3

2δx −K(t)(δxu+ δt(Tx∆xu

+uT 2
xu− uTxu) + TxuT

2
xu+ δxuTxuT

2
xu) = 0

(326)

where t figures as a parameter.
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Abstract. We present a review of what is current knowledge about discrete
Painlevé equations. We start with a historical introduction which explains how
the discrete Painlevé equations made their appearance. Since the most widely used
derivation method was the one based on integrability detectors, we start by pre-
senting a brief review of the existing discrete integrability detectors, and proceed
to show how they were indeed used in deriving the discrete Painlevé equations.
Given the profusion of different forms of these mappings, we examine the vari-
ous approaches to their classification, from the first, crude ones, to the complete
classification based on affine Weyl groups. The properties of the discrete Painlevé
equations, which make them so special, are also reviewed with ample details. Fi-
nally, we present a series of results which are peripherally related to the discrete
Painlevé equations but help cast more light on these (very) special systems.

Πρoλεγóµενoν

Prologue

Why Painlevé? Why discrete? What makes Painlevé equations so special?
The best way to formulate the answer is Kruskal’s [1]: Painlevé equations
are the most complicated systems that one can solve (in a nontrivial way).
Anything simpler becomes trivially integrable, anything more complicated
becomes hopelessly nonintegrable. Thus Painlevé equations are at the bor-
derline between trivial integrability (usually linearisability) and nonintegra-
bility, a fact that bestows upon them a plethora of interesting properties [2].
The keyword here is integrability: Painlevé equations are the paradigmatic
integrable systems and they are omnipresent in the study of integrability [3].

This review will be devoted to the study of discrete Painlevé equations.
The important notion here is discreteness. What we will be talking about
are equations in which the independent variable assumes discrete values. The
simplest case is that of difference equations, but it is not the only one. In
many physical situations the independent variable is time, and discreteness
in this context would correspond to a time which is discrete. At this point the
reader would start wondering about the pertinence of these ideas: space-time
as perceived by our senses and interpreted by our intuition looks smooth,
homogeneous, isotropic, leaving no place for discreteness. But what is the
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value of intuition as far as fundamental physical notions are concerned? In
the light of modern physics (where, as explained by Mills [4], counterintuitive
notions abound) the fact that a notion may appear nonphysical at first sight
is not really reason enough to discard it. As a matter of fact, recent progress
in field theory [5] leads toward a fundamentally discrete description of nature
and thus, to counter a famous saying by Einstein [6], it indeed looks as though
we are learning how to breathe in empty space.

The program for describing physical phenomena through discrete equa-
tions is not without difficulties. Even setting aside the fact that our arsenal
of methods for dealing with continuous systems overpowers the meager gen-
uinely discrete tools at our disposal, the problems appear at the very first step
of modelling. It is in fact quite uncertain what the proper discrete equation
of a model may be. The continuous limit, being in fact a reductive proce-
dure, discards information and thus quite often leads to a unique choice for
the equation which would model the system. This is not the case for discrete
equations, and the profusion of discrete Painlevé equations with the same
continuous limit (and the possible nomenclature confusion that this may en-
tail) is a convincing illustration of this problem. So we must seek a way to
deal with these difficulties. What is needed is a way to do away with the am-
biguity in mathematical modelling while leading to models for which a great
deal of theory can be developed. Fortunately, the property of integrability is
a very good and effective criterium. Integrable systems are those that, albeit
nonlinear and highly nontrivial, can be dealt with by systematic and rigorous
approaches. And while one can argue that they are too special to represent
the entire wealth of physical phenomena, this is a quality rather than a draw-
back. Integrable systems are so very special that we lose all ambiguity in the
search for the governing equations for our models.

Of course, all these considerations are typically those of a physicist. From
a purely mathematical point of view, one can very well study discrete equa-
tions for their own sake, without having to care about their applicability
in real-world modelling. (However the authors, being die-hard physicists, do
care about these questions, unwilling to get entrapped into mathematics for
mathematics’ sake).

What do we really mean by discrete Painlevé equations? To put it simply,
a discrete Painlevé equation (d-P) is an integrable (nonautonomous) discrete
equation the continuous limit of which is a (continuous) Painlevé equation.
As in the continuous case we reserve the name of Painlevé equations (P’s) for
second-order systems. Higher-order systems (which, by the way, are almost
terra incognita) will be distinguished by the appropriate qualifier, “higher
P’s”.

Why are d-P’s (and their study) interesting? First of all, as we said before,
the continuous equations are the result of some reduction procedure. Discrete
systems are the genuine, unadulterated entities. They are indeed the most
fundamental objects. Having established their properties we can obtain those
of the continuous ones through a simple limiting procedure. This is of course
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an idealised, utopic view of things: a whole century of studies devoted to
continuous integrable systems (and in particular P’s) has made it possible to
establish most of the properties of continuous systems. Still the study of the
properties of their discrete analogues has its usefulness: it makes it possible
to establish a perfect parallel between the properties of the continuous and
those of the discrete integrable systems. On a more practical level, the d-
P’s present another interest: they constitute integrable discretisations of the
continuous P’s [6]. Thus we can use the d-P’s for numerical studies of their
celebrated continuous analogues. Given the paucity of numerical algorithms
for the computation of the solutions of P’s, and the inexistence of tabulations,
the existence of these ready-made simulators is invaluable. (Still, curiously,
very few studies have used this approach to date).

Having set the framework, we are ready now to embark upon the detailed
study of these fascinating systems.

Iστoρικά

1 The (Incomplete) History
of Discrete Painlevé Equations

Pretending to achieve completeness (and/or objectivity) when one embarks
upon writing the history of past (even recent) events is at best a delusion.
There is just no way to give the full history of discrete Painlevé equations.
There is no way to capture the intentions and intuitions of past authors when
the only thing at our disposal (most of the times) are dry scientific accounts
of their findings. With this caveat out of the way, we may proceed now to the
history of the d-P’s as it is known to the authors of the present review with
the additional warning that our views of the matter are time-dependent.

The first author to have worked on integrable, discrete nonautonomous
systems (and to have produced examples thereof) is Laguerre [7]. He obtained
integrable difference equations from the recursion relations established when
working with orthogonal polynomials. A casual analysis of the systems of
Laguerre shows that they are of order higher than two and thus will define
higher-order d-P’s (although no continuous limits have been computed, nei-
ther has there been any effort to reduce these systems as much as possible
so as to obtain their lowest-order recursion). The most interesting point is
that these integrable discrete systems predate the discovery of the contin-
uous Painlevé equations (c-P’s) [8]. This historical coincidence reestablishes
the essence of justice since the discrete systems are more fundamental than
the continuous ones.

Much (much) later (1939) a discrete Painlevé equation, easily recognizable
today, was derived, in essentially the same framework as Laguerre’s. Indeed
Shohat [9], working on orthogonal polynomials obtained the integrable recur-
sion relation
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xn+1 + xn−1 + xn =
zn
xn

+ 1, (1.1)

where zn = αn+ β. The fate of this second order difference equation was to
resurface many years later (and on this last occasion be properly recognized
as a d-P [10]).

The next apparition of a d-P was in 1981 in the work of Jimbo and Miwa
on continuous P’s [11]. In the appendix of this fundamental and thorough
study of Painlevé equations, the authors addressed the question of the conti-
guity relations of c-P’s, i.e., of relations between solutions of a given Painlevé
equation for different values of some parameter. From the solutions of PII:
w′′ = 2w3 + tw + α they obtained the contiguity relation

αn + 1/2
xn+1 + xn

+
αn − 1/2
xn + xn−1

= −(2x2
n + t), (1.2)

where xn = w(t, αn) and αn = n + α0. Curiously, no continuous limit was
derived, and thus the naming of d-P’s had to wait for ten more years. Dur-
ing that period, integrable difference (and differential-difference) recursion
relations had made their appearence in field-theoretical models. It would
probably be possible, with hindsight, to establish today their relations to
(possibly higher-order) d-P’s (but this would make this historical review less
incomplete), so let us move to the climax.

While investigating a field-theoretical model of 2-dimensional gravity, and
having to compute a partition function, Brézin and Kazakov resorted to the
method of moments. They obtained for their partition function a recursion
relation which was precisely the one obtained forty years before by Shohat,
namely (1.1). The main difference this time was that Brézin and Kazakov
did compute the continuous limit of (1.1) and obtained w′′ = 6w2 + t, i.e.,
Painlevé I. The discrete P’s were born!

This breakthrough kindled an unprecedented interest in the domain.
Shortly afterwards, and in a similar framework, Periwal and Shevitz dis-
covered an integrable discrete system which had PII as its continuous limit.
This mapping had the form

xn+1 + xn−1 =
znxn

1 − x2
n

, (1.3)

and, at the continuous limit, becomes w′′ = 2w3 + tw, i.e., the PII equation
for the zero value of its parameter α.

Almost simultaneously, the same equation was derived by a completely
independent approach by Nijhoff and Papageorgiou [13]. These authors, in
collaboration with Capel, had already derived discrete forms for such well-
known 1+1 dimensional evolution equations as KdV and mKdV [14]. (In-
cidentally, these discrete forms were no other than the ones that had been
obtained by Hirota [15] in his groundbreaking work in the 70’s and early
80’s.) The originality in the approach of Nijhoff and Papageorgiou lies in the
fact that, starting from the well-established fact that the similarity reduc-
tion of mKdV leads to PII, they obtained the similarity constraint of discrete
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mKdV. Contrary to what happens in the continuous case, where this con-
straint is linear, for discrete evolution equations the similarity constraint is
a nonlinear, nonautonomous evolution equation, integrable in its own right
[16]. The similarity reduction results from the application of the compati-
bility between the autonomous equation and the nonautonomous one. The
result of this similarity reduction was, as expected, discrete PII, precisely the
one derived by Periwal and Shevitz, eq. (1.3).

It is really noteworthy that, at that point in time, not only did exam-
ples of d-P’s exist but also they had been obtained using three of the four
main methods for their derivation: orthogonal polynomials (essentially spec-
tral methods), reductions, and contiguity relations. The time was ripe for the
introduction of a fourth method.

The main idea was to apply in a direct way an integrability detector
to some postulated functional form and to select the integrable cases. The
starting point was a family of second-order integrable autonomous mappings
proposed by Quispel, Roberts and Thompson (QRT) [17].

Let us now depart briefly from the purely historical narrative and present
a brief account of the QRT mapping. There exist two families of QRT map-
pings [17] which are dubbed respectively symmetric and asymmetric for rea-
sons which will become obvious below. One starts by introducing two 3 × 3
matrices, A0 and A1, of the form

Ai =



αi βi γi
δi εi ζi
κi λi µi.


 (1.4)

If both these matrices are symmetric the mapping is called symmetric. Oth-

erwise it is called asymmetric. Next one introduces the vector X =



x2

x
1




and constructs the two vectors F ≡



f1
f2
f3


 and G ≡



g1
g2
g3


 through

F = (A0X) × (A1X) (1.5a)

G = (Ã0X) × (Ã1X) (1.5b)

where the tilde denotes the transpose of the matrix. The components fi, gi
of the vectors F ,G are, in general, quartic polynomials in x. Given fi, gi, the
mapping assumes the form

xn+1 =
f1(yn) − xnf2(yn)
f2(yn) − xnf3(yn)

(1.6a)

yn+1 =
g1(xn+1) − yng2(xn+1)
g2(xn+1) − yng3(xn+1)

. (1.6b)
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In the symmetric case gi = fi, and (1.6) reduces to a single equation,

xm+1 =
f1(xm) − xm−1f2(xm)
f2(xm) − xm−1f3(xm)

, (1.7)

with the identification xn → x2m, yn → x2m+1.
Since F and G are obtained as vector products, it is clear that the re-

sult will be the same if one replaces the matrices A0 and A1 by the linear
combinations ρ0A0 +σ0A1 and ρ1A0 +σ1A1, where ρ0, σ0, ρ1, σ1 are four free
parameters (the only constraint is that ρ0σ1 �= ρ1σ0). This transformation
can be used in order to reduce the effective number of the parameters of the
system to 14 in the asymmetric case, and to 8 in the symmetric one. However
this is still not the number of the effective parameters since we have the full
freedom of a homographic transformation, which amounts to three parame-
ters, separately for x and y in the asymmetric case and for x alone in the
symmetric one. Thus the final number of genuine parameters in this system
is 8 for the asymmetric mapping and 5 for the symmetric one.

The QRT mapping possesses an invariant which is biquadratic in x and y

(α0 +Kα1)x2
ny

2
n + (β0 +Kβ1)x2

nyn + (γ0 +Kγ1)x2
n + (δ0 +Kδ1)xny2

n

+(ε0+Kε1)xnyn+(ζ0+Kζ1)xn+(κ0+Kκ1)y2
n+(λ0+Kλ1)yn+(µ0+Kµ1) = 0,

(1.8)

where K plays the role of the integration constant. In the symmetric case the
invariant becomes just

(α0 +Kα1)x2
n+1x

2
n+(β0 +Kβ1)xn+1xn(xn+1 +xn)+ (γ0 +Kγ1)(x2

n+1 +x2
n)

+(ε0 +Kε1)xn+1xn + (ζ0 +Kζ1)(xn+1 + xn) + (µ0 +Kµ1) = 0, (1.9)

Viewed as a relation between xn and yn, (1.8) is a 2-2 correspondence (and
similarly for (1.9)). While the generic biquadratic correspondence is not in
general integrable [18], leading to an exponential growth of the number of
images and preimages of a given point, this is not the case for (1.8), which
has linear growth [19]. The integration of this biquadratic correspondence in
the symmetric case, in terms of elliptic functions, goes in fact as far back as
Euler. A clear pedagogical presentation can be found in the book by Baxter
[20]. Curiously, the integration of the asymmetric mapping had to wait for
the 21st century [21, 22]. Thus, the solution of the QRT mapping is given
by the values of an elliptic function at equidistant points on a line in the
complex plane.

The pertinence of QRT to the derivation of d-P’s is clear. The continuous
P’s can be viewed as nonautonomous extensions of second-order, ordinary
differential equations the solutions of which are given by elliptic functions.
(Practically, this means that the P’s have the same functional forms as the
above mentioned autonomous equations, with some of the coefficients having
a specific dependence on the independent variable). Thus it seems natural to
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start from a mapping with constant coefficients, and with elliptic function
solutions, to allow the coefficients to depend on the independent variable,
and then to select the integrable cases through the application of some inte-
grability detector.

In the very first study [23] introducing the singularity confinement discrete
integrability criterion, we analysed the possible integrability of two mappings
with forms close to (1.1) and (1.3) i.e., d-PI and d-PII. First we considered
the most classical example of an integrable mapping, the McMillan mapping

xn+1 + xn−1 =
2µxn
1 − x2

n

. (1.10)

A singularity may appear in the recursion (1.10) whenever x passes through
the value 1 (or -1). So we assumed that x0 was finite and that x1 = 1 + ε.
(This could be obtained from a perfectly regular x−1). We found then the
following values: x2 = −µ/ε − (x0 + µ/2) + O(ε), x3 = −1 + ε + O(ε2) and
x4 = x0 +O(ε). Thus, not only was the singularity confined at this step, but
also the mapping had recovered the memory of the initial conditions through
x0.

Next we generalised the McMillan mapping (1.10) to the nonautonomous
case

xn+1 + xn−1 =
a+ bxn
1 − x2

n

(1.11)

where we considered a and b to be functions of n, and determined its inte-
grable nonautonomous form, based on the singularity confinement property.
Assuming that, for some n, we had a regular xn, and that xn+1 = σ+ε, where
σ = ±1 (in order to cover the two possibilities of x going through a root of
the denominator of the right-hand side), and iterating further we found that

xn+2 = −bn+1 + σan+1

2ε
+
an+1 − σbn+1

4
− xn + O(ε),

and
xn+3 = −σ +

2bn+2 − bn+1 − σan+1

bn+1 + σan+1
ε+ O(ε2). (1.12)

The condition for xn+4 to be finite was:

bn+1 − 2bn+2 + bn+3 + σ(an+1 − an+3) = 0, (1.13)

which led to an+1 = an+3 and bn+1 − 2bn+2 + bn+3 = 0. Thus bn(≡ zn) =
αn+ β and an = δ + γ(−1)n. Again we ignored, at that time, the even-odd
dependence and took a as a strict constant. We then obtained

xn+1 + xn−1 =
a+ znxn
1 − x2

n

(1.14),

a form of discrete PII in agreement with previous results derived by different
approaches.
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Similarly one can start from a nonautonomous form of (1.1)

xn+1 + xn + xn−1 = a+
b

xn
(1.15)

where we again consider a and b to be functions of n. Our assumption is that
at some iteration step n, xn is regular while xn+1 vanishes. Following the
ideas we sketched in the introduction of this lecture, we set xn+1 = ε. We
obtain thus the following sequence of values

xn+2 =
bn+1

ε
+ an+1 − xn + O(ε) (1.16)

and
xn+3 = −bn+1

ε
+ an+2 − an+1 + xn + O(ε). (1.17)

(Note that there is no way one can make the divergence of xn+3 disappear.)
Computing xn+4 we find that it diverges unless an+3 − an+2=0. Thus, for
confinement, a must be constant. Implementing this constraint we find that

xn+4 =
bn+1 − bn+2 − bn+3

bn+1
ε+ O(ε2). (1.18)

We now ask for xn+5 to be finite, and we obtain the second condition

bn+1 − bn+2 − bn+3 + bn+4 = 0. (1.19)

The solution of (1.19) is bn = αn+ β + γ(−1)n, i.e., bn is linear in n, up to
a parity-dependent constant. For the time being we can ignore this even-odd
dependence (we shall come back to it later). Setting bn ≡ zn = αn + β we
find that

xn+1 + xn + xn−1 = a+
zn
xn
. (1.20)

This is a discrete form of PI.
An even more interesting result was obtained in [24], which constituted

the very first attempt at a systematic derivation of the d-P’s. While examining
the de-autonomisation of the f2 = 0 family of the QRT mapping, we obtained
the following integrability candidate (its integrability having been confirmed
later through the explicit constuction of its Lax pair)

xn+1xn−1 =
ab(xn − cqn)(xn − dqn)

(xn − a)(xn − b)
, (1.21)

where a, b, c, and d are constants and qn = q0λ
n. Thus this mapping, the con-

tinuous limit of which is PIII, is not a difference equation, as all the previous
examples of d-P’s, but a q- (multiplicative) mapping. We now know that q-
discrete forms exist for all d-P’s and in some sense they are more fundamental
than the difference-P’s.

After this incomplete (and certainly biased) account of the remote and
recent past of the d-P’s, we are now ready to embark upon more technical
matters.
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Aνιχνευτ ές

2 Detectors, Predictors, and Prognosticators
(of Integrability)

There exist several reasons why discrete P’s have remained in limbo for al-
most a century and then mushroomed all of a sudden. First, discrete systems
started attracting the interest of physicists (and, invariably, with a short
time-lag, that of mathematicians) at the beginning of the 90’s. Thus a critical
mass of results on integrable discrete systems was attained. Second, specific
techniques for the study of discrete systems started being proposed. Foremost
among them were criteria for the detection of discrete integrability. The prob-
lem was already nontrivial for continuous systems. Still the use of complex
analysis has made possible the development of specific and efficient tools for
the prediction of integrability, and actual integration of systems expressed as
ordinary or partial differential equations. According to Poincaré, to integrate
a differential equation is to find, for the general solution, a finite expres-
sion, possibly multivalued, in terms of a finite number of functions. The word
“finite” indicates that integrability is related to a global rather than local
knowledge of the solution. However, this definition is not very useful unless
one defines more precisely what is meant by “function”. By extending the
solution of a given ordinary differential equation (ODE) in the complex do-
main, one has the possibility, instead of asking for a global solution for an
ODE, of looking for solutions locally and of obtaining a more global result
by analytic continuation. If we wish to define a function, we must find a way
to treat branch points, i.e., points around which two (or more) determina-
tions are exchanged. This can be done by various uniformisation procedures,
provided the branch points are fixed. Linear ODE’s are such that all the sin-
gularities of their solutions are fixed, and these equations are thus considered
integrable. In the case of nonlinear ODE’s, the situation is not so simple due
to the fact that the position of the singular points in this case may depend on
the initial conditions: they are movable. The approach of Painlevé [8] and his
school, which, to be fair, was based on ideas of Fuchs and Kovalevskaya, was
simple: they decided to look for those of the nonlinear ODE’s the solutions
of which were free from movable branch points. Painlevé managed to take
up the challenge of Picard and to determine the functions defined by the
solutions of second-order nonlinear equations. The success of this approach
is well-known. The Painlevé transcendents have been discovered in that way,
and their importance in mathematical physics is ever growing. The Painlevé
property, i.e., absence of movable branch points, has since been used with
great success in the detection of integrability [25].

We must stress one important point here. The Painlevé property, as in-
troduced by Painlevé, is not just a predictor of integrability but practically a
definition of integrability. As such, it becomes a tautology rather than a crite-
rion. It is thus crucial to make the distinction between the Painlevé property



254 B. Grammaticos and A. Ramani

and the algorithm for its investigation. This algorithm can only search for
movable branch points subject to certain assumptions. The search can thus
lead to a conclusion the validity of which is questionable: if we find that the
system passes what is usually referred to as the Painlevé test (in one of its
several variants), this does not necessarily mean that the system possesses
the Painlevé property. Thus at least as far as its usual practical application
is concerned, the Painlevé test may not be sufficient for integrability. The
situation becomes still more complicated if we consider systems that are in-
tegrable by quadratures and/or cascade linearisation. If we extend the notion
of integrability in order to include such systems, it turns out [26] that the
Painlevé property is no longer related to it. Thus the criterion based on the
singularity structure is not a necessary one in this case.

Despite these considerations, the Painlevé test has been of great heuristic
value for the study of the integrability of continuous systems [27], leading to
the discovery of a host of new integrable systems. The question thus naturally
arose, whether these techniques could be transposed mutatis mutandis, to
the study of discrete systems. The discrete systems to which we are referring
here (and which play an important role in physical applications) are systems
that are cast into a rational form, perhaps after some transformation of the
dependent variable. Since these systems have singularities, it is natural to
assume that singularities would play an important role in connection with
integrability. While this is quite plausible, the approach based on singularities
would be unable to deal with polynomial mappings which do not possess
any. Still, one would not expect all polynomial mappings to be integrable, in
particular in view of the fact that many of them exhibit chaotic behaviour.
Moreover, any argument based on singularities in the discrete domain can
only bear a superficial resemblance to the situation in the continuous case.
One cannot hope to relate directly the singularities of mappings to those
of ODE’s for the simple reason that there exist discrete systems which do
not have any nontrivial continuous limit. Having set the frame, we can now
present a review of the various discrete integrability detectors.

Singularity Confinement
Singularity confinement is the name of a discrete integrability criterion we
introduced in the early 90’s [23, 28] and which has been instrumental in the
derivation of the d-P’s. The role played by singularities is best illustrated
through some concrete example.

Consider the mapping

xn+1 + xn−1 =
a

xn
+

1
x2
n

. (2.1)

Obviously, a singularity appears whenever the value of xn becomes 0. Iterat-
ing this value, one obtains the sequence {0,∞, 0} and then the indeterminate
form ∞−∞. As Kruskal points out the real problem lies in the latter, while
the occurrence of a simple infinity is something with which one can easily
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deal by going to projective space. The way to treat this difficulty is to use an
argument of continuity with respect to the initial conditions and to introduce
a small parameter ε. In this case, if we assume that xn = ε, we obtain for the
first values of x, xn+1 ≈ 1/ε2, xn+2 ≈ −ε, and when we compute carefully the
next one we find not only that it is finite but also that it contains a memory
of the initial condition xn−1. The singularity has disappeared.

This is the property that we have dubbed singularity confinement and,
after having analysed a host of discrete systems, we concluded that it was
characteristic of systems integrable through spectral methods. By a bold
move, singularity confinement has been elevated to the rank of an integrability
criterion. In what follows, we shall comment on its necessary and sufficient
character.

Several questions had to be answered for singularity confinement to be
really operative. The first, that we encountered above, was related to the
fact that the iteration of a mapping may not be defined uniquely in both
directions. Thus we proposed the criterion of preimage non-proliferation [29],
which had the advantage of eliminating en masse all polynomial nonlinear
mappings. One remark, unavoidable at this point, is related to the existence of
integrable mappings involving two variables. The typical example is what we
call asymmetric discrete Painlevé equations. It can be argued that, in a such
a mapping, one of the variables can always be eliminated, leading to a single
mapping or rather a correspondence for the other one. Indeed, for a generic
second-order system, the resulting relation will be one where the variables
xn+1 and xn−1 appear at powers higher than unity. Its evolution leads in
general to an exponential number of images, and preimages, of the initial
point. This non-singlevalued system cannot be integrable [30]. This is not in
contradiction to the fact that we can obtain one solution for the mapping,
namely the one furnished by the evolution of the two-variable system. This is
the only solution that we know how to describe, while the full system, with
an exponentially increasing number of branches, eludes a full description.

The second point is that the notion of ‘singularity’ had to be refined.
Clearly the simple appearance of an infinity in the iteration of a mapping is
not really a problem. What is crucial is that a mapping may at some point
‘lose a degree of freedom’. In a mapping of the form xn+1 = f(xn, xn−1),
this simply means that ∂xn+1/∂xn−1 = 0 and the memory of the initial
condition xn−1 disappears from the iteration. What does ‘confinement’ mean
in this case? Clearly, the mapping must recover the lost degree of freedom
and the only way to do this is by the appearence of an indeterminate form
0/0, ∞−∞, etc., in the subsequent iterations.

Over the years singularity confinement has turned out to be a very con-
venient discrete integrability detector. We know of a large domain of map-
pings for which the confinement property is satisfied: they are those that
are integrable through inverse scattering tranform (IST) methods. No coun-
terexample to this is known. On the other hand, there exists a whole class of
systems, the ones integrable by linearisation, the integrability of which is not
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associated to the singularity confinement property (just as in the continuous
case, the linearisability is not related to the Painlevé property).

Perturbative Painlevé
The main idea of the perturbative Painlevé approach is the following. Sup-
pose that we start from a discrete system which contains a small parameter.
Typically, one considers the lattice spacing δ as small, whenever one is inter-
ested in the continuous limit of the mapping. Next, we expand in a power
series in this small parameter. If the initial mapping is integrable then the
equations obtained at each order of the series must equally be integrable.
(This is something that we learned from J. Satsuma [31], but no practical
application of this idea was suggested at the time.)

The colleagues who rediscovered this idea (which in fact goes back to
Poincaré) and use it in practice, were Conte and Musette [32]. The way
they did this was to work with expansions in the lattice spacing, obtain a
sequence of coupled differential equations, and investigate the integrability
of the latter using the Painlevé algorithm. The advantage of this approach
is that one can treat polynomial mappings on the same footing as rational
ones. Let us illustrate this approach through an example. We choose the
well-known logistic map

xn+1 = λxn(1 − xn). (2.2)

We introduce the lattice parameter δ and expand everything in power series
in it. Let λ = λ0 +δλ1 +δ2λ2 + . . . and xn = w0 +δw1 +δ2w2 + . . . . Similarly,
xn+1 = (w0 + δw′

0 + δ2w′′
0/2 + . . . ) + δ(w1 + δw′

1 + δ2w′′
1/2 + . . . ) + δ2(w2 +

. . . ) + . . . , where the continuous variable is t = nδ. In this particular case,
we take w0 ≡ 0, λ0 = 1, and the first equation (at order δ2) is nonlinear in
terms of the quantity w1,

w′
1 = −w2

1 + λ1w1 (2.3)

which is a Riccati equation and has movable poles as its only singularities.
Then at order δ3 we have an equation for w2

w′
2 = −w2(λ1 − 2w1) − w3

1 +
λ1

2
w2

1 + (λ2 −
λ2

1

2
)w1, (2.4)

and similarly at higher orders. Notice that (2.4) is linear in w2. The same
applies to all the subsequent equations. Indeed at order δn+1 we find a differ-
ential equation for the new quantity wn in terms of the w’s that have already
been obtained. Since this equation is linear, it cannot have movable singular-
ities when considered as an equation for wn, everything else being supposed
to be known. However, when we consider the cascade of equations, the subse-
quent objects will in general have singularities whenever the earlier ones are



Discrete Painlevé Equations: A Review 257

singular, and these singularities are movable in terms of the whole cascade.
Moreover they are not poles. Already (2.4) shows that, in the neighbourhood
of a pole of w1, where w1 ≈ 1/s with s = t− t0 (t0 being the location of the
movable singularity of w1), w2 has logarithmic singularities w2 ≈ − log(s)/s2.
This singularity is a critical one which must be considered to be movable in
terms of the cascade, and therefore the perturbative Painlevé property is not
satisfied. This is consistent with the fact that the logistic map is known to
be nonintegrable.

Although the method of the perturbative Painlevé approach is powerful
enough, it is not without drawbacks. The main disadventage is due to the
fact that not all discrete systems possess nontrivial continuous limits. In
this case, if one does not have a valid starting point, the whole approach
collapses. Moreover, the way this method was applied in the literature was
to discretise a given continuous equation by introducing some freedom and
using the perturbative Painlevé approach in order to pinpoint the integrable
subcases. However, this method is only as good as one’s imagination, and if
the proposed discretisation is not rich enough, one may miss very interesting
cases.

Algebraic Entropy
A most powerful discrete integrability detector was the one based on the ideas
of Arnold [33] and Veselov [34]. Arnold introduced the notion of complexity
which (for mappings in the plane) is the number of intersection points of a
fixed curve with the image of a second curve obtained under the iterations
of the mapping at hand. While the complexity grows exponentially with the
iteration for generic mappings, it can be shown to grow only polynomially
for a large class of integrable mappings.

Veselov has elaborated further on the notion of slow growth, applying it
to the investigation of the integrability of mappings and correspondences. His
main idea is summarised in the catch phrase “integrability has an essential
correlation with the weak growth of certain characteristics”. He studied the
integrability of polynomial mappings and showed that the mapping xn+1 =
P (xn, yn), yn+1 = Q(xn, yn), is integrable only if there exists a polynomial
change of variables transforming the mapping to triangular form xn+1 =
αxn +R(yn), yn+1 = βyn + γ, with polynomial R.

The notion of complexity was further extended in the works of Viallet and
his collaborators who focused on rational mappings [35]. They introduced
what they called algebraic entropy, which is a global index of the complexity
of the mapping. The main idea is that there exists a link between the dy-
namical complexity of a mapping and the degree of its iterates. If we consider
a mapping of degree d, then the n-th iterate will have a degree dn, unless
common factors lead to simplifications. It turns out that when the mapping
is integrable, such simplifications do occur in a massive way, leading to a de-
gree growth which is polynomial in n, instead of exponential. Thus, while the
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generic, nonintegrable, mapping has exponential degree growth, polynomial
growth is an indication of integrability.

Let us illustrate this approach with a practical application on a mapping
that we already encountered

xn+1 + xn−1 =
a

xn
+

1
x2
n

. (2.5)

In order to compute the degree of the iterates, we introduce the homogeneous
coordinates by taking x0 = p, x1 = q/r, assigning the degree zero to p, and
computing the degree of homogeneity in q and r at every iteration. We could
of course have introduced a different choice for x0 but it turns out that the
choice of a zero-degree x0 considerably simplifies the calculations. We thus
obtain the degrees 0, 1, 2, 5, 8, 13, 18, 25, 32, 41, . . . , . Clearly, the degree
growth is polynomial, d2m = 2m2 and d2m+1 = 2m2+2m+1. This is in perfect
agreement with the fact that mapping (2.5) is integrable (in terms of elliptic
functions), being a member of the QRT family of integrable mappings. (A
remark is necessary at this point. In order to obtain a closed-form expression
for the degrees of the iterates, we start by computing a sufficient number of
them. Once the expression of the degree has been heuristically established
we compute the next few ones and verify that they agree with the predicted
analytical expression). As a matter of fact, the precise values of the degrees
are not important: they are not invariant under coordinate changes. However,
the type of growth is invariant and can be used as an indication of whether
or not the mapping is integrable.

Let us show what happens in the case of a nonintegrable mapping. As
such we choose the one proposed by Hietarinta and Viallet [36] which has the
form

xn+1 + xn−1 = xn +
1
x2
n

. (2.6)

The particularity of this mapping lies in the fact that it satisfies the singular-
ity confinement criterion. Its unique singularity pattern is {0,∞,∞, 0}. Nev-
ertheless, as shown by Hietarinta and Viallet, this mapping behaves chaoti-
cally. With the same initial conditions as for the mapping above, we obtain
the following succession of degrees: 0, 1, 3, 8, 23, 61, 162, 425, . . . , . The
degree growth is here exponential. Hietarinta and Viallet have found that
the degree obeys the recursion relation dn+4 = 3(dn+3 − dn+1) + dn, leading
to a asymptotic ratio dn+1/dn → (3 +

√
5)/2. The same result was obtained

in a rigorous approach by Takenawa [37].
As we have shown in [38], the detailed study of the degree growth of the

iterates of a mapping is an indication, not just of integrability, but also of
the precise integration method for the mapping.

Nevanlinna Theory
As we have explained above, we expect the integrability of a mapping to
be conditioned by the behavsingularity confinement criterion of its solutions
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when the independent variable goes to infinity. The tools for the study of
the growth of a given function are furnished by the theory of meromorphic
functions [39]. The reason why such an approach would apply to discrete
systems has to do with the formal identity which exists between discrete sys-
tems and delay equations [40]. Thus one starts from a difference equation
and considers it to be a delay equation in the complex plane of the indepen-
dent variable [41]. The natural framework for the study of the behaviour near
infinity of the solutions of a given mapping is Nevanlinna theory [42] which
provides tools for the study of the value distribution of meromorphic func-
tions. In particular, it introduces the notion of order. The latter is infinite for
very-fast-growing functions, while a finite order indicates moderate growth.
It would be reasonable to surmise that an infinite order is an indication of
nonintegrability for discrete systems. (We do not make any statement here
concerning continuous systems). The Nevanlinna theory provides an estima-
tion of the growth of the solutions of a given discrete system. However, since
the order may depend on the precise coefficients of the equation and their
dependence on the independent variable, the starting point of our application
of the Nevanlinna theory is to consider first only autonomous mappings, i.e.,
mappings the coefficients of which are constants.

The main tool for the study of the value distribution of entire and mero-
morphic functions is the Nevanlinna characteristic (and various quantities
related to it). The Nevanlinna characteristic of a function f , denoted by
T (r; f), measures the ‘affinity’ of f for the value ∞. It is usually represented
as the sum of two terms, the frequency of poles, and the contribution from the
arcs |z| = r where |f(z)| is large. From the characteristic one can define the
order of a meromorphic function, σ = lim supr→∞ log T (r; f)/ log r. When f
is rational, T (r; f) ∝ log r, and σ = 0. When f is of the type ePn(z), where
Pn is a polynomial of degree n, one finds T ∝ rn and σ = n. A fast growing
function like ee

z

leads to T ∝ er and thus to σ = ∞.
In what follows, we shall introduce the symbols &, ' and ≺ which will

denote equality, inequality and strict inequality, respectively, up to a function
of r which remains bounded when r → ∞. The two basic relations, which
express the fact that the affinities of f for ∞, 0 or a are the same, are

T (r; 1/f) & T (r; f) (2.7)

T (r; f − a) & T (r; f). (2.8)

Using those two identities, we can easily prove that the characteristic of
a homographic transformation of f (with constant coefficients) is equal to
T (r; f) up to a bounded quantity. From a theorem due to Valiron [43] we
have

T
(
r;
P (f)
Q(f)

)
& sup(p, q)T (r; f), (2.9)

where P and Q are polynomials with constant coefficients, of degrees p and
q respectively, provided the rational expression P/Q is irreducible.
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Let us also give some useful classical inequalities:

T (r; fg) ' T (r; f) + T (r; g) (2.10)

T (r; f + g) ' T (r; f) + T (r; g) (2.11)

Another inequality, which was proven in [44], is

T (r; fg + gh+ hf) ' T (r; f) + T (r; g) + T (r;h). (2.12)

One last property of the Nevanlinna characteristic was obtained by
Ablowitz et al [41] (AHH). In our notation it reads:

T (r; f(z ± 1)) ' (1 + ε)T (r + 1; f(z)). (2.13)

This relation (which is valid for any given ε if r is large enough ) makes
possible to have access to the characteristic, and thus the order, of the solution
of some difference equations.

The discrete equations satisfied by the d-P’s have the general form

A(xn, xn−1, xn+1) = B(xn), (2.14)

where, usually, A is polynomial and B is rational with coefficients which do
not depend on the independent variable n (something to which we shall come
back). Moreover, in the cases we shall consider, A is linear separately in xn−1
and xn+1. Following the approach of AHH we consider (2.14) to be a delay
equation in the complex domain, and evaluate the Nevanlinna characteristic
of both members of the equality, using (2.8) and (2.9). We find that

(1 + ε)uT (r + 1;x) + vT (r;x) ) wT (r;x), (2.15)

(with u = 2 if A is linear separately in xn−1 and xn+1), for appropriate values
of v and w. From (2.15) we see that

T (r + 1;x) ) w − v

(1 + ε)u
T (r;x) (2.16)

Now if w > u+v, one can always choose ε small enough so that λ ≡ w−v
(1+ε)u >

1. The precise meaning of (2.16) is that, for r large enough, we have

T (r + 1;x) ≥ λT (r;x) − C (2.17)

for some C independent of r. The case where C is negative is trivial, T (r +
k;x) ≥ λkT (r;x). For positive C,

T (r + 1;x) − C

λ− 1
≥ λ
(
T (r;x) − C

λ− 1
)
. (2.18)

Thus, whenever T (r;x) is an unbounded increasing function of r, i.e., T * 0,
then, for some r large enough, the right hand side of this inequality becomes
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strictly positive. Iterating (2.18) we see that T (r + k;x) diverges at least as
fast as λk, thus log T (r;x) > r log λ, and the order σ of x is infinite. Thus,
according to the AHH hypothesis, the mapping cannot be integrable. The
only way out is if T (r;x) is a constant, which means that x is itself a con-
stant, since the slowest possible growth of the Nevanlinna characteristic for
a non-constant meromorphic function is T (r; f) & log r, for f a homographic
function of z. Giving that the mapping is rational, there can only be a finite
number of constant solutions. We could, in principle, have had an infinite
number of constant solutions if the identity A(xn, xn, xn) ≡ B(xn) held true.
However this would imply w ≤ u+v. Thus, when w > u+v in (2.15), the only
possible finite order solutions are (a finite number of) constant solutions, all
the remaining ones having σ = ∞.

The advantage of working with autonomous mappings lies in the fact
that we can control precisely the corrective terms in the inequalities for
T . Had we worked with nonautonomous systems, we would have had un-
bounded corrective terms. For instance if the coefficients depend rationally
on z, there would be corrective terms of order O(log r) and we would have
been unable to exclude (finite-order) rational solutions. Though one may sus-
pect that the generic solution is not rational, one could not easily disprove
this possibility in the nonautonomous case. However in our approach, we
consider nonautonomous equations as obtained from autonomous ones by a
de-autonomisation procedure. This procedure will never transform a σ = ∞
solution into a finite σ one. So the generic solution will have σ = ∞ whenever
w > u+ v in (2.15) even in the nonautonomous case. The rational solutions
that we cannot exclude can only come, through the de-autonomisation proce-
dure, from the finite- (in effect, zero-)order constant solutions, of which there
is a finite number.

The way we have implemented the Nevanlinna theory was through a three-
tiered approach. The first step, given a mapping, is to use the Nevanlinna
characteristic techniques in order to estimate the rate of growth of the so-
lutions. Since for nonautonomous equations this rate depends on the rate
of growth of the coefficients of the equation, we opt for a simple approach.
At this first step we consider only autonomous mappings. This first step
puts severe constraints on the discrete equations at hand. However, usually,
these constraints are not restrictive enough so as to determine completely
the form of the mapping, hence the necessity of the second step. Once the
constraints of the first step have been implemented, we pursue, using singu-
larity confinement, in order to constrain further our discrete equation. Thus
all autonomous equations that do not satisfy confinement are rejected at this
second step.

The third step consists in the de-autonomisation of the system, once again
using the confinement criterion. We thus obtain a mapping which (hopefully)
satisfies the Nevanlinna criterion for slow-growth of the solutions and the
singularity confinement as well. The major difficulty lies in the fact that the
practical evaluation of the Nevanlinna characteristic gives a clear-cut answer
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as to mappings the solutions of which must be (generically) of infinite-order,
but this does not mean that all the remaining ones have their generic solution
of finite-order. Particular care is needed in the application of this criterion,
lest one proclaim of finite-order systems which have in fact infinite-order
solutions.

Παραγωγή

3 Discrete P’s Galore

In what follows, we shall present the derivation of specific examples of d-P’s,
using the methods of singularity confinement and algebraic entropy.

Derivation of d-P’s
In order to obtain the discrete Painlevé equations through the application of
the singularity confinement method, we start from the general QRT mapping,

xn+1 =
f1(xn) − xn−1f2(xn)
f2(xn) − xn−1f3(xn)

. (3.1)

As mentioned above, one would expect to find the discrete forms by de-
autonomising the QRT map. In order to gain some insight into the choice of
the fi’s, we rewrite the QRT map as

f3(xn)Π − f2(xn)Σ + f1(xn) = 0, (3.2)

where Σ = xn+1 + xn−1, Π = xn+1xn−1, and the fi’s are quartic polyno-
mials. We require that this equation become the continuous Painlevé under
consideration at the continuous limit. For this purpose, we introduce a lattice
parameter δ and obtain

Σ = 2x+ δ2x′′ + O(δ4)

Π = x2 + δ2(xx′′ − x
′2) + O(δ4), (3.3)

and when we extract from (3.3) the part involving derivatives, we obtain a
continuous limit (as δ goes to zero) of the form

x′′ =
f3(x)

xf3(x) − f2(x)
x

′2 + g(x). (3.4)

If we are looking for a specific Painlevé equation, we must first choose f2, f3
so as to force f3(x)

xf3(x)−f2(x) to coincide with the factor multiplying x
′2 in that

equation.
For PI and PII we have, clearly, f3 = 0. The derivation for those two d-P’s

was presented in a previous section. We obtained the mappings
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xn+1 + xn−1 + xn = a+
αn+ β + γ(−1)n

xn
(3.5)

and

xn+1 + xn−1 =
xn(αn+ β) + δ + γ(−1)n

1 − x2
n

(3.6)

To derive the continuous limit of (3.5) we start by setting to zero the parity-
dependent term γ, and further set x = 1 + ε2w, z = −3 − ε4t, a = 6. At the
limit ε → 0, (3.5) becomes w′′ + 3w2 + t = 0. Similarly for (3.6), we take
γ = 0, set x = εw, z = 2 + ε3t, δ = ε3µ, and obtain the continuous PII:
w′′ = 2w3 + tw + µ = 0.

In the case of PIII, x′′ = x
′2
x + g(x). Instead of deriving the discrete form

of the “usual” PIII, we will work with the more convenient form

w′′ =
w

′2

w
+ ez(aw2 + b) + e2z(cw3 +

d

w
), (3.7)

obtained from the usual one by the transformation z → ez that absorbs the
w′
z term. This form agrees with (3.4) if we simply take f2 = 0. In that case,

the mapping takes the form

xn+1xn−1 =
κ(n)x2

n + ζ(n)xn + µ(n)
x2
n + β(n)xn + γ(n)

. (3.8)

In order to fix the n-dependent coefficients, we will study the singularity be-
haviour as described before. When one solves for xn+1, there are two possible
sources of singularity for this mapping. Either xn is a zero of the denomina-
tor or xn−1 becomes zero. In the first case, the singularity sequence is the
following: xn+1 diverges, xn+2 has a finite value κ(n+1)

xn
and xn+3 would in

principle be proportional to 1
xn+1

and thus zero. This would lead to a new
divergence. The only way out is to require that xn+2 also be a zero of the
appropriate denominator, so that xn+3 does not vanish. Expressing xn+2 in
terms of xn and taking into account that this must be true for both zeros
of xn, we obtain β(n) = β(n+2)κ(n+1)

γ(n+2) and γ(n) = κ2(n+1)
γ(n+2) . Multiplying xn

by an arbitrary function of n does not change the form of (3.8), but only af-
fects the coefficients. This scaling freedom allows us to take a constant value
β for β(n), resulting in κ(n + 1) = γ(n + 2), γ(n) = γ(n + 2). Thus the
γ’s and κ’s must be constants within a given parity, γ(even)=κ(odd)=γ+ ,
γ(odd)=κ(even)=γ−. In order to study the second kind of singularity, we
start with xn such that xn+1 vanishes, i.e., κ(n)x2

n + ζ(n)xn + µ(n) = 0.
We then find that xn+2 has a finite value µ(n+1)

γ(n+1)xn
and this would lead to a

divergent xn+3 unless the numerator also vanish. Substituting the expression
for xn+2 and using the fact that once again this must be true for both zeros
of κ(n)x2

n+ ζ(n)xn+µ(n), we obtain µ(n) = ζ(n)µ(n+1)
ζ(n+2) = µ2(n+1)

µ(n+2) . The solu-
tion to these equations is straightforward, µ(n) = µ0λ

2n and ζ(n) = ζ0,±λn,
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where µ0, ζ0,±, are constants, the ± sign being related to the parity of n.
Note that, in that case, there is no second kind of singularity at all! Indeed
xn+3 is not allowed to diverge even though xn+1 = 0. (This is reminiscent of
the case of continuous equations where, if a denominator appears, one must
consider the values of the dependent variable that makes this denominator
vanish to ascertain that this does not generate a singularity.) Since at the
continuous limit we decided to neglect the distinction between even and odd,
we can rewrite d-PIII, after a change of the variable, as

xn+1xn−1 =
cd(xn − aqn)(xn − bqn)

(xn − c)(xn − d)
(3.9)

where qn = λn. As expected, the continuous variable is w(= w0) = x. We
find moreover that λ = 1+ ε, c = 1/ε−α/2, d = −1/ε−α/2, a = βε−γε2/2,
b = −βε− γε2/2, leading to the equation:

w′′ =
w

′2

w
+ w3 + αw2 + γt− β2t2

w
, (3.10)

which is PIII, albeit in a slightly noncanonical form.
We now turn to the algebraic entropy, slow growth, approach. Let us start

with a simple case. We consider the mapping

xn+1 + xn−1 =
axn + b

x2
n

, (3.11)

where a and b are constants. In the previous section we have computed the
degrees of the iterates and found, starting with x0 = p and x1 = q/r, that
the common degree of homogeneity in q and r of the numerator and de-
nominator of the iterates was 0, 1, 2, 5, 8, 13, 18, 25, 32, 41, . . . , a clearly
polynomial growth. We now turn to the de-autonomisation of the mapping.
The singularity confinement result is that a and b must satisfy the conditions
an+1−2an+an−1 = 0, bn+1 = bn−1, i.e., a is linear in n while b is a constant
with an even/odd dependence. Assuming now that a and b are arbitrary func-
tions of n, we compute the degrees of the iterates of (3.11). We obtain succes-
sively 0, 1, 2, 5, 10, 21, 42, 85, . . . . The growth is now exponential, the degrees
behaving like d2m−1 = (22m−1)/3 and d2m = 2d2m−1, a clear indication that
the mapping is not integrable in general. Already at the fourth iteration the
degrees differ in the autonomous and nonautonomous cases. Our approach
consists in requiring that the degree in the nonautonomous case be identical
to the one obtained in the autonomous one. If we implement the requirement
that d4 be 8 instead of 10, we find two conditions an+1 − 2an + an−1 = 0,
bn+1 = bn−1, i.e., precisely the ones obtained through singularity confine-
ment. Moreover, once these two conditions are satisfied, the subsequent de-
grees of the nonautonomous case coincide with that of the autonomous one.
Thus this mapping, leading to polynomial growth, should be integrable, and,
in fact, it is. As we have shown in [45], where we presented its Lax pair, (3.11)
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with a(n) = αn+β and b constant - the even-odd dependence can be gauged
out by a parity-dependent rescaling of the variable x - is a discrete form of
the Painlevé I equation. In the examples that follow, we shall show that in all
cases the nonautonomous form of an integrable mapping obtained through
singularity confinement leads to exactly the same degrees of the iterates as
the autonomous one.

Our second example is a multiplicative mapping,

xn+1xn−1 =
anxn + b

x2
n

, (3.12)

where one can set b = 1 by an appropriate gauge. In the autonomous case,
starting with x0=p and x1=q/r, we obtain successively the degrees: 0, 1, 2, 3,
4, 7, 10, 13, 16, 21, 26, . . . , i.e., again quadratic growth. In fact, if n is of the
form 4m+k, (k = 0,1,2,3), the degree is given by dn = 4m2 +(2m+1)k. The
de-autonomisation of (3.12) is straightforward. We compute the successive
degrees in the generic case and find 0, 1, 2, 3, 4, 7, 11, . . . . At this stage
we require that a factorisation occur in order to bring the degree d6 from
11 to 10. The condition for this is that an+2an−2 = a2

n, i.e., a of the form
ae,oλ

n
e,o with an even-odd dependence which can be easily gauged away. This

condition is sufficient to bring the degrees of the successive iterates down to
the values obtained in the autonomous case. Quite expectedly, the condition
on a is precisely the one obtained by singularity confinement.

For the discrete Painlevé equations, for which the Lax pairs are not yet
known, it is important to have one more check of their integrability provided
by the algebraic entropy approach. We start with d-PIV in the form

(xn+1 + xn)(xn−1 + xn) =
(x2
n − a2)(x2

n − b2)
(xn + zn)2 − c2

, (3.13)

where a, b and c are constants. If zn is constant, we obtain dn=0, 1, 3, 6, 11,
17, 24, . . . , for the degrees of the successive iterates. The general expression
of the growth is dn=6m2 if n = 3m, dn=6m2 + 4m + 1 if n = 3m + 1
and dn=6m2 + 8m+ 3 if n = 3m+ 2. This polynomial (quadratic) growth is
expected since in the autonomous case this equation is integrable, its solution
being given in terms of elliptic functions. For a generic zn we obtain the
sequence dn=0, 1, 3, 6, 13, . . . , . The condition for the extra factorisations
to occur in the last case, bringing down the degree d4 to 11, is for zn to be
linear in n. We can check that the subsequent degrees coincide with those of
the autonomous case.

For the q-PV we start from

(xn+1xn − 1)(xn−1xn − 1) =
(x2
n + axn + 1)(x2

n + bxn + 1)
(1 − zncxn)(1 − zndxn)

, (3.14)

where a, b, c and d are constants. If, moreover, zn is also a constant, we
obtain exactly the same sequence of degrees dn=0, 1, 3, 6, 11, 17, 24, . . . , as
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in the d-PIV case. Again, this polynomial (quadratic) growth is expected since
this mapping is also integrable in terms of elliptic functions. For the generic
nonautonomous case, we again find the sequence dn=0, 1, 3, 6, 13, . . . , . Once
more we require a factorisation to bring down d4 to 11. It turns out that this
entails a zn which is exponential in n, and generates the same sequence of
degrees as the autonomous case. In both the d-PIV and q-PV cases, we find
the n-dependence already obtained through singularity confinement. Since
this results in a vanishing algebraic entropy, we expect both equations to be
integrable.

An important remark is in order here. As we have seen in the derivations
above, two different kinds of d-P’s exist. The first corresponds to difference
equations, where the independent variable enters linearly, through zn = αn+
β. Thus, if xn denotes the variable x at point zn, then xn+1 is the variable at
point zn+1 = zn + α. The second corresponds to multiplicative, q-equations.
Here the independent variable enters exponentially, through qn = q0λ

n. So if
the symbol xn is used for the variable at point qn, xn+1 denotes the variable
at point qn+1 = λqn. It can be argued that there is no fundamental difference
between the two types of equations, and that a change of variable suffices to
go from one to the other. However this argument is fallacious. The difference
between the two types of d-P’s, additive and multiplicative, is far deeper. It
is in fact related to their precise integration methods. A look at the Lax pairs
of the two kinds of d-P’s shows immediately their fundamental difference.

Lax Pairs
For additive equations there is a linear isospectral deformation problem of
the form

ζΦn,ζ = Ln(ζ)Φn (3.15a)

Φn+1 = Mn(ζ)Φn (3.15b)

leading to the compatibility condition:

ζMn,ζ = Ln+1Mn −MnLn. (3.16)

Examples of Lax pairs for additive discrete Painlevé equations were presented
in [46]. In the case of d-PI the Lax pair is

Ln =




0 xn 1
ζ zn xn+1 + zn/xn

ζxn−1 ζ zn+1


 (3.17a)

and

Mn =



−zn/xn 1 0

0 0 1
ζ 0 0


 , (3.17b)

where zn = n/2+β. From the consistency conditions we obtain the mapping
xn+2 + zn+1/xn+1 = xn−1 + zn/xn. Adding xn to both sides of this equality,
we find
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xn+1 + xn−1 + xn − zn
xn

= a (3.18)

where a is a constant, i.e., precisely d-PI.
For d-PII the Lax pair is

Ln =




a xn+1 1 0
0 zn 2b− xn 1
ζ 0 0 2b− xn+1
ζxn ζ 0 zn+1


 (3.19a)

and

Mn =




(a− zn)/xn+1 1 0 0
0 0 1 0
0 0 zn+1/(2b− xn+1) 1
ζ 0 0 0


 , (3.19b)

where zn = n/2 + β and a, b are constant. (The latter could have had an
even-odd dependence but we choose to neglect it here.) From the consistency
condition we find an equation for xn which is best written for the translated
variable X = b− x

Xn+1 +Xn−1 =
(zn + zn−1 − a)Xn + b(zn−1 − zn − a)

b2 −X2
n

(3.20)

More examples of Lax pairs for additive d-P’s can be found in [46].
For multiplicative equations, the isospectral problem is a q-difference one

rather than a differential one,

Φn(qζ) = Ln(ζ)Φn(ζ) (3.21a)

Φn+1 = Mn(ζ)Φn(ζ), (3.21b)

leading to
Mn(qζ)Ln(ζ) = Ln+1(ζ)Mn(ζ). (3.22)

The Lax pair of q-PI can be easily obtained from our results in [46]. Let us
introduce the matrices

Ln =




0 0 k
xn

0
0 0 xn−1 qxn−1
hxn 0 1 q

0 hkn−1
xn−1

0 0


 (3.23a)

and

Mn =




0 xn

k(xn+1) 0 0
0 0 1 0
0 0 1

xn

q
xn

h 0 0 0


 . (3.23b)
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From the compatibility condition (3.22) we obtain the equation xn+1xn−1 =
knkn+1(xn + 1)/x2

n, where kn+1 = qkn−1, which is q-PI, up to a gauge trans-
formation.

For q-PIII we take q = α2. We introduce the matrices

Ln =




λ1 λ1 + κ
xn

κ
xn

0
0 λ2 λ2 + xn−1 xn−1
ζxn 0 λ3 λ3 + xn

ζ(λ4 + α κ
xn

) hα κ
xn

0 λ4


 (3.24a)

Mn =




(αλ1−λ4)xn

λ4xn+ακ
λ1xn+κ
λ2xn+κ 0 0

0 0 1 0
0 0 λ3−qλ2

xn+qλ2

xn+λ3
xn+λ4

ζ 0 0 0


 (3.24b)

where λ1 = const., λ3 = const., λ2 = λαn−1, λ4 = λαn, κ = Cαn. From the
compatibility condition (3.22) we obtain q-PIII in the form

xn+1xn−1 =
ακ(xn + λ3)(κ+ λ2xn)
(κ+ λ1xn)(xn + λ4)

. (3.25)

As we can see from these examples, there exists a fundamental difference
between additive and multiplicative d-P’s. In what follows, we shall see (based
on the relation between continuous and additive P’s), that this difference goes
even deeper.

Oργάνωσις

4 Introducing Some Order into the d-P Chaos

By now it must have been clear to the careful reader that the domain of d-
P’s is vast. When we started our investigations, we immediately realised that
some order was needed lest the discrete P’s degenerate into an impenetrable
jungle. The first attempt to introduce some order was the definition of the
standard family [47]. We use the term “order” instead of “classification”
because it was clear that this first lumping together of d-P’s was not based
on any (coherent,) explicit criterion. Rather it was related to a historical
derivation and the names of the equations was based on their continuous
limits. (A much more accurate classification was to follow, albeit years later.)
This was, admittedly, a most unfortunate choice. It led to a profusion of
equations with the same name (in a recent publication [48], we have presented
over a dozen discrete PI’s). Moreover, it does not take into account the fact
that a given d-P may have more than one continuous limit (or none at all!).
Finally, for equations with more parameters than PVI, – and there exist many
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such equations – the continuous limit collapses everything to PVI. Still this
method of naming the d-P’s has the advantage of familiarity and since it
has been used traditionally, it remains in use, though with some adequate
qualifiers.

When discrete Painlevé equations were first systematically derived we
established what we called the ‘standard’ d-P’s which fall into a degeneration
cascade, i.e., an equation with a given number of parameters can be obtained
from one with more parameters by an appropriate coalescence procedure.
This list comprised three-point mappings for one dependent variable and was
initially incomplete since the discrete ‘symmetric’ (in the QRT terminology)
form of PVI was missing. This gap has been recently filled in [49] and we can
now give the full list of standard d-P’s:

δ-PI xn+1 + xn−1 = −xn +
zn
xn

+ 1

δ-PII xn+1 + xn−1 =
znxn + a

1 − x2
n

q-PIII xn+1xn−1 =
(xn − aqn)(xn − bqn)
(1 − cxn)(1 − xn/c)

δ-PIV (xn+1 + xn)(xn + xn−1) =
(x2
n − a2)(x2

n − b2)
(xn − zn)2 − c2

q-PV (xn+1xn − 1)(xnxn−1 − 1) =

(xn − a)(xn − 1/a)(xn − b)(xn − 1/b)
(1 − cxnqn)(1 − xnqn/c)

δ-PV
(xn + xn+1 − zn − zn+1)(xn + xn−1 − zn − zn−1)

(xn + xn+1)(xn + xn−1)
=

(xn − zn − a)(xn − zn + a)(xn − zn − b)(xn − zn + b)
(xn − c)(xn + c)(xn − d)(xn + d)

q-PVI
(xnxn+1 − qnqn+1)(xnxn−1 − qnqn−1)

(xnxn+1 − 1)(xnxn−1 − 1)
=

(xn − aqn)(xn − qn/a)(xn − bqn)(xn − qn/b)
(xn − c)(xn − 1/c)(xn − d)(xn − 1/d)

where zn = αn + β, qn = q0λ
n and a, b, c, d are constants. We distinguish

difference and multiplicative equations through the use of the prefixes δ and q.
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The way these d-P’s were obtained was, as explained in Sect. 2, by the
application of some integrability criterion to an appropriate ansatz. The
usual approach was the de-autonomisation of the QRT mapping. By de-
autonomisation we mean that we allow the parameters of the QRT mapping,
up to 5 in the symmetric case and up to 8 in the asymmetric one, to be
functions of the independent variable. The precise form of these functions is
obtained through the application of the integrability criterion.

In [21] we have presented a classification of the various forms of the QRT
mappings used as a starting point for the de-autonomisation and derivation
of d-P’s. We reproduce it below, giving the form of the equations and the
corresponding A1 matrices.

(I) xn+1 + xn−1 = f(xn) A1 =




0 0 0
0 0 0
0 0 1




(II) xn+1xn−1 = f(xn) A1 =




0 0 0
0 1 0
0 0 0




(III) (xn+1 + xn)(xn + xn−1) = f(xn) A1 =




0 0 0
0 0 1
0 1 0




(IV) (xn+1xn − 1)(xnxn−1 − 1) = f(xn) A1 =




0 0 0
0 1 0
0 0 −1




(V) (xn+1+xn+2z)(xn+xn−1+2z)
(xn+1+xn)(xn+xn−1)

= f(xn) A1 =




0 0 1
0 2 2z
1 2z 0




(VI) (xn+1xn−z2)(xnxn−1−z2)
(xn+1xn−1)(xnxn−1−1) = f(xn) A1 =




1 0 0
0 −z2 − 1 0
0 0 z2




(VII) (xn+1−xn−z2)(xn−1−xn−z2)+xnz
2

xn+1−2xn+xn−1−2z2 = f(xn) A1 =




0 0 1
0 −2 −2z2

1 −2z2 z4






Discrete Painlevé Equations: A Review 271

(VIII) (xn+1z
2−xn)(xn−1z

2−xn)−(z4−1)2

(xn+1z−2−xn)(xn−1z−2−xn)−(z−4−1)2 = f(xn)

A1 =




0 0 z4

0 −z2(z4 + 1) 0
z4 0 (z4 − 1)2




The forms presented above correspond to symmetric mappings but they can
be extended to asymmetric ones directly, the A1 matrix being the same. To
these cases one must add the explicitly asymmetric one,

(IX) xn+1 + xn = f(yn), ynyn−1 = g(xn) A1 =




0 0 0
0 0 1
0 0 0


 .

One can recognize in the forms presented above the autonomous limits of,
among others, the equations d-PI/II (I), q-PIII (II), d-PIV (III), q-PV (IV), d-
PV (V,VII,IX), q-PVI (VI,VIII). We must stress here that the forms presented
above are not the only ones that one may encounter when studying d-P’s.
The mappings are given up to homographic transformations, and thus the
d-P’s may assume forms different from the ones above.

From the canonical forms above it seems that the vast majority of d-
P’s will have a symmetric, in the QRT sense, form. Nothing could be farther
from the truth. As we have seen in the previous section, the application of the
singularity confinement method quite often leads to terms of the form (−1)n,
but also jn where j3 = 1, in and even kn where k5 = 1. Our initial (and
erroneous) tendency was to discard these terms on the ground that “they
do not possess a continuous limit”. This is just not true. The terms with
binary, ternary, etc. symmetry indicate that the equation is better written as
a system of two, three, etc. equations. They also introduce one or more extra
parameters with obvious consequences when it comes to continuous limit [50].

Let us illustrate this in the case of the d-PI we already encountered,
namely (3.5),

xn+1 + xn−1 + xn =
αn+ β + γ(−1)n

xn
+ a. (4.1)

Due to the presence of the (−1)n term, it is clear that we should distinguish
even and odd terms. Let us write the mapping for even and odd indices
explicitly

x2m+1 + x2m + x2m−1 =
z2m + γ

x2m
+ a (4.2a)

x2m+2 + x2m+1 + x2m =
z2m+1 − γ

x2m+1
+ a, (4.2b)

where zm = αm + β. Next we introduce two variables, Xm = x2m and
Ym = x2m+1, one for each parity. We can now rewrite this system as
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Ym +Xm + Ym−1 =
Zm + γ

Xm
+ a (4.3a)

Xm+1 +Xm +Xm =
Zm + α− γ

Ym
+ a (4.3b)

where Zm = 2αm+ β.
Thus, in the new variables, the mapping becomes a system of two two-

point mappings. The important remark is that this mapping has now one
more genuine parameter than the symmetric d-PI. A careful computation
of the continuous limit of this asymmetric d-PI leads to PII. In fact, setting
X = 1+εw+ε2u, Y = 1−εw+ε2u, Z = 1−ε3m, a = 2 and γ = −ε3c/4, we find
a first relation, u = 1

4 (w2−w′+t), with t = εm, leading to w′′ = 2w3+2tw+c.
In order to deal with the profusion of asymmetric forms, we made the

terminology situation even more complicated by introducing the qualifier
‘asymmetric’ (borrowed from the ‘asymmetric QRT’ mapping) in front of the
names derived from the continuous limit of the symmetric forms. Thus the
equation we have just examined is called ‘asymmetric d-PI’. (It is a source of
wonder to the authors that people still manage to follow their work through
this labyrinth of complications.)

Quite expectedly the limit of asymmetric d-PII is PIII, that of asymmetric
q-PIII is PVI (as has been shown by Jimbo and Sakai [51]). The limits of
asymmetric d-PIV and q-PV are given below. We start from the forms

(xn+1 + yn)(yn + xn) =
(yn − a)(yn − b)(yn − c)(yn − d)

(yn − z − κ/2)2 − e2

(yn + xn)(xn + yn−1) =
(xn + a)(xn + b)(xn + c)(xn + d)

(xn − z)2 − f2 , (4.4)

with a constraint a+ b+ c+ d = 0, and

(xn+1yn − 1)(ynxn − 1) =
λrs(yn − a)(yn − b)(yn − c)(yn − d)

(yn − p)(yn − q)

(ynxn − 1)(xnyn−1 − 1) =
pq(xn − 1/a)(xn − 1/b)(xn − 1/c)(xn − 1/d)

λ(xn − r)(xn − s)
,

(4.5)
with a constraint pq = λabcdrs. The last two systems are new forms of d-PVI,
as can be assessed from their continuous limits. For (4.4) we take a = 1/2+εα,
b = 1/2 − εα, c = −1/2 + εβ, d = −1/2 − εβ, e = εγ,f = εδ, x = w − 1/2,
z = ζ + 1/2, y = w(ζ − 1)/(w − ζ) + 1/2 + εu, while for (4.5) we take
a = θeεα, b = θeεβ , c = θ−1eεγ , d = θ−1eεδ, λ = eε, p = eε(n+φ), q = eε(n+ψ),
r = eε(n+ω), s = eε(n+χ), w = (x − θ)/(θ−1 − θ), ζ = (z − θ)/(θ−1 − θ),
y = (z(x− θ−1 − θ) + 1)/(x− z) + εu, with φ+ψ = 1 +α+β+ γ+ δ+ω+χ
(consequence of the constraint pq = λabcdrs). In both cases the limit, when
ε goes to zero, is
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d2w

dζ2 =
1
2

(
1
w

+
1

w − 1
+

1
w − ζ

)(
dw

dζ

)2

−
(

1
ζ

+
1

ζ − 1
+

1
w − ζ

)
dw

dζ

+
w(w − 1)(w − ζ)

2ζ2(ζ − 1)2

(
A+

Bζ

w2 +
C(ζ − 1)
(w − 1)2

+
Dζ(ζ − 1)
(w − ζ)2

)
, (4.6)

where A = 4γ2, B = −4α2, C = 4β2 and D = 1 − 4δ2 in the case of (4.4),
while in the case of (4.5) A = (ω − χ)2, B = −(α − β)2, C = (γ − δ)2 and
D = 1 − (φ− ψ)2.

One should not draw, based on the above examples, the conclusion that
the only ‘asymmetric’ forms are two-component mappings. Indeed there exist
systems which require a higher number of components. Take for instance the
mapping

xn+1xn−1 = a(xn − 1). (4.7)

Its asymmetric form is easily again obtained by the application of singularity
confinement. The final result is

log an = kn+ p+ rjn + sj2n + t(−1)n, (4.8)

where j is a cubic root of unity. It is clear from this expression that the fully
asymmetric form of (4.7) has four parameters. We can thus rewrite (4.7) as
a system

wm−1ym = qm(xm − 1)ad

xmzm = qmλ(ym − 1)b/d

ymum = qmλ
2(zm − 1)cd

zmvm = qmλ
3(um − 1)a/d (4.9)

umwm = qmλ
4(vm − 1)bd

vmxm+1 = qmλ
5(wm − 1)c/d,

where qm = λ6m. We must point out here that although the mapping is
written as a system of six equations, it is still of second order. Four of the
equations are just local relations between the variables.

In these last two sections we have focused on the direct derivation of dis-
crete P’s, based on some integrability criterion. While this method is very
powerful, it has one drawback. It does not lead to the Lax pair for the equa-
tion, nor does it provide any clue for its derivation. There exist, however,
as we have already explained, other methods for deriving discrete P’s. One
of them is particularly interesting since it is constructive, in the sense that
it derives the d-P together with its Lax pair. This method is based on the
deep relation that exists between continuous and discrete, difference equa-
tions [52]. Let us start with the Lax pair of a continuous Painlevé equation.
It has the general form
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ψζ = Aψ (4.10a)

ψz = Bψ, (4.10b)

where ζ is the spectral parameter and A, B are matrices depending explicitly
on ζ and the dependent as well as the independent variables, w and z. The
continuous Painlevé equation is obtained from the compatibility condition
ψζz = ψzζ leading to

Az −Bζ +AB −BA = 0 (4.11)

In general, the Painlevé equation depends on parameters (α, β, . . . ) which are
associated to the monodromy exponents θi appearing explicitly in the Lax
pair. The Schlesinger transform relates two solutions ψ and ψ′ of the isomon-
odromy problem for the equation at hand corresponding to different sets of
parameters (α, β, . . . ) and (α′, β′, . . . ). The main characteristic of these trans-
forms is that the monodromy exponents, at the singularities of the associated
linear problem, related to sets (α, β, . . . ) and (α′, β′, . . . ), differ by integers
(or half-integers). The general form of a Schlesinger transformation is

ψ′ = Rψ, (4.12)

where R is another matrix depending on ζ, w, z and the monodromy expo-
nents θi. The important remark is that (4.10a) together with (4.12) constitute
the Lax pair of the discrete, difference equation. The latter is obtained from
the compatibility conditions

Rζ +RA−A′R = 0. (3.8)

Thus, the difference equations are intimately related to the continuous ones.
They are their contiguity relations. In fact this is precisely how Jimbo and
Miwa [11] have derived the so-called alternate d-PI (1.2). Of course, this
method, while interesting, should not be considered to be a panacea. First,
with this approach one does not have a real control over the equation one
derives. One only knows how many parameters are involved. Moreover, since
the richest continuous P, namely PVI, has only four parameters, one can
obtain, at best, a difference-P with three parameters. But we know that there
exist difference P’s with many more parameters than that. The relation of
these equations to continuous systems is an open question (on which even
the authors of the present review have not succeeded in reaching unanimity).
Finally the whole class of q-equations lies beyond the scope of this method. As
we shall see in the following chapters, q-P’s are usually their own contiguity
relations.

Iδιóτητες

5 What Makes Discrete Painlevé Equations Special?

The discrete Painlevé equations have a host of special properties. Most of
these are the analogues of the properties of the continuous Painlevé equa-
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tions. This parallel between continuous and discrete systems has been of
tremendous help in the investigation of integrable mappings. In most cases,
one had to start from some property of the continuous system, namely, of
the continuous P in the case at hand, and ask how this property could be
transposed to the discrete case. (There even exist cases where, having ob-
tained some unexpected result for the discrete system, we have looked for,
and found, its continuous analogue which was, to our knowledge, a new result
[53]).

Degeneration Cascade
The first property of the discrete Painlevé equations we are going to discuss
is that of degeneration through coalescence. In practice, this means that,
starting from a d-P with a given number of parameters, and introducing a
special limit of the dependent and/or independent variables, as well as the
parameters, one obtains a d-P with one fewer parameter. The degeneration
pattern for the “standard” family of d-P’s takes the form of the cascade:

q-PVI −→ q-PV −→ q-PIII� � �
d-PV −→ d-PIV −→ d-PII −→ d-PI.

In what follows, we will present the result for the seven standard forms.
The following conventions will be used. The variables and parameters of the
‘higher’ equation will be given in capital letters (X,Z, P,Q,A,B,C,D), while
those of the ‘lower’ equation will be given in lowercase letters (x, z, p, q, a, b,
c, d). The small parameter that will introduce the coalescence limit will be
denoted by δ.

In order to illustrate the process, let us work out in full detail the case
d-PII → d-PI. We start with the equation d-PII

Xn+1 +Xn−1 =
ZnXn +A

1 −X2
n

(5.1)

We set X = 1 + δx, whereupon the equation becomes

4 + 2δ(xn+1 + xn−1 + xn) + O(δ2) = −Zn(1 + δxn) +A

δxn
. (5.2)

Now, clearly, Z must cancel A up to order δ and this suggests the ansatz
Z = −A − 2δ2z. Moreover, the constant term in the right-hand side must
cancel the 4 of the left-hand side, and we are thus led to A = 4 + 2δa. Using
these values of Z and A we find (at δ → 0)

xn+1 + xn−1 + xn =
zn
xn

+ a, (5.3)

i.e., precisely d-PI.
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The coalescence d-PIII to d-PII requires a more delicate limit since the
independent variable of d-PIII enters in an exponential way. We start from:

Xn+1Xn−1 =
AB(Xn − Pn)(Xn −Qn)

(Xn −A)(Xn −B)
(5.4)

The ansatz for X is here, too, X = 1 + δx. For the remaining quantities we
set

A = 1 + δ, B = 1 − δ

P = 1 + δ + δ2(z + a)/2 + O(δ3), Q = 1 − δ + δ2(z − a)/2 + O(δ3), (5.5)

and at the limit δ → 0, d-PIII reduces exactly to d-PII

xn+1 + xn−1 =
znxn + a

1 − x2
n

. (5.6)

In perfect analogy to the continuous case, d-PIV also reduces to d-PII. Here
we start from

(Xn+1 +Xn)(Xn +Xn−1) =
(X2

n −A2)(X2
n −B2)

(Xn − Zn)2 − C2 (5.7)

and set X = 1 + δx. We also set

A = 1 + δ, B = 1 − δ

C = δ − δ2a/2, Z = 1 − δ2z/4. (5.8)

The result at δ → 0 is precisely d-PII given by (5.6).
In the case of q-PV

(Xn+1Xn − 1)(XnXn−1 − 1) =
(Xn −A)(Xn − 1/A)(Xn −B)(Xn − 1/B)

(1 − CXnQn)(1 −XnQn/C)
,

(5.9)
two different limits exist. In order to obtain d-PIV we set X = 1 + δx and

A = 1 + δa, B = 1 − δb,

C = 1 + δc, Qn = 1 − δzn, (5.10)

i.e., λ = 1 − αδ, such that zn = αn + β. At the limit δ → 0 we find d-PIV
(5.7) in terms of the variable x. The case of the coalescence d-PV to d-PIII
requires a different ansatz. Here we set X = x/δ. Moreover we set

C = c, Qn =
qn
δ
, A =

a

δ
, B =

b

δ
, (5.11)

We then find at the limit δ → 0

xn+1xn−1 =
(xn − a)(xn − b)

(1 − cxnqn)(1 − xnqn/c)
(5.12)
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While this is not exactly the form of d-PIII (5.4) it is very easy to reduce it
to the latter. We introduce y through x = yλn (recall qn = q0λ

n) and find
with µ = 1/λ:

yn+1yn−1 =
(xn − aµn)(xn − bµn)

(xn − c)(xn − 1/c)
, (5.13)

that is obviously of the form (5.4).
In the case of d-PV,

(Xn +Xn+1 − Zn − Zn+1)(Xn +Xn−1 − Zn − Zn−1)
(Xn +Xn+1)(Xn +Xn−1)

=
(Xn − Zn −A)(Xn − Zn +A)(Xn − Zn −B)(Xn − Zn +B)

(Xn − C)(Xn + C)(Xn −D)(Xn +D)
, (5.14)

there is only one limit which is d-PIV. We set X = x but Z = z+1/δ and

A = c+ 1/δ, B = −c+ 1/δ, C = a, D = b. (5.15)

At the limit δ → 0, we find d-PIV (5.7) in terms of the variable x.
Finally, in the case of q-PVI,

(XnXn+1 −QnQn+1)(XnXn−1 −QnQn−1)
(XnXn+1 − 1)(XnXn−1 − 1)

=

(Xn −AQn)(Xn −Qn/A)(Xn −BQn)(Xn −Qn/B)
(Xn − C)(Xn − 1/C)(Xn −D)(Xn − 1/D)

(5.16)

there are again two limits, to d-PV and q-PV.
If we set

X = 1 + δx, A = 1 + δa, B = 1 + δb, C = 1 + δc and D = 1 + δd,
(5.17)

i.e., λ = 1 + δα, so Q = 1 + δz, where zn = αn+ β we recover exactly d-PV
at the limit δ → 0. On the other hand, with the choice X = x, Qn = qn/δ,
A = c/δ, B = 1/δc, C = a, D = b, one recovers at the limit δ → 0 the
equation q-PV.

It goes without saying that this degeneration through coalescence follows
the well-known pattern of the continuous P’s,

PVI → PV → {PIV, PIII} → PII → PI,

while accomodating the particularities of the d-P’s. As we shall see in the
next section, the situation is in fact much more complicated.
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Special Solutions
Another property of the d-P’s is that they possess solutions expressible in
terms of special functions. These solutions exist only for particular values
of the parameters, and of course they do not capture the full freedom of
the solution which is essentially transcendental, even for these special values.
Since another article [54] in this volume is devoted to the study of the special
solutions of d-P’s, we shall not go into details here.

Miura/Auto-Bäcklund/Schlesinger Transformations
The discrete P’s, just like their continuous brethren, have all kinds of interre-
lations. We reserve the name of Miura for transformations which relate two
different equations. While Miura transformations relate the solutions of two
different d-P’s, the auto-Bäcklund transformations are relations that allow
one to relate a solution of a given d-P to a solution of the same d-P with
different values of the parameters. The Schlesinger transformations are just
particular auto-Bäcklund transformations. As such they relate solutions of
the same equation. The Schlesinger transformations for continuous equations
relate solutions corresponding to the same monodromy data except for integer
differences in the monodromy exponents. In the discrete case the very exis-
tence of monodromy exponents to be related to the Schlesinger transforma-
tions is not always clear. However, we can use an analogy with the continuous
case. If one uses the proper parametrisation of the equation, the Schlesinger
transformations can be shown to be associated to elementary changes of the
parameters. The discrete case can be analysed in the same spirit. By using the
proper parametrisation, one can identify, among the auto-Bäcklund transfor-
mations, those which correspond to elementary changes of the parameters
and which can thus be dubbed Schlesinger transformations.

Let us illustrate the application of Miura transformations in the case of
d-PII. We introduce the system, where z̃ = (zn+zn+1)/2 and δ = zn+1−zn),

yn = (1 + xn)(1 − xn+1) −
z̃

2
. (5.18)

xn =
m+ yn − yn−1

yn + yn−1
(5.19)

Eliminating y from this system, we obtain the d-PII in the usual form,

xn+1 + xn−1 =
m− δ/2 + znxn

1 − x2
n

, (5.20)

while, by eliminating, x we find

(yn+1 + yn)(yn + yn−1) =
4y2
n −m2

yn + z̃/2
, (5.21)

which is the discrete form of equation 34 in the Painlevé/Gambier classifica-
tion, usually denoted by d-P34.
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Miura transformations are particularly interesting in the case of d-PI [55]
which has no parameter. Let us illustrate this in the case of the d-PI

xn+1 + xn−1 =
zn
xn

+
a

x2
n

. (5.22)

The Miura transformation yn = xnxn+1 can be applied in a straightforward
way, leading to

(yn + yn−1 − zn)(yn + yn+1 − zn+1) =
a2

yn
. (5.23)

This form was identified in [47] as another form of d-PI. The Miura trans-
formation yn = xn+1/xn leads to a more interesting result. We multiply
(5.22) by x2

n and take the discrete derivative, i.e., subtract it from its up-shift
to eliminate the constant a. Using systematically the Miura transformation
yn = xn+1/xn we obtain a four-point equation for y

yn+1yn + 1 − y2
n+1yn(yn+2yn+1 + 1)

ynyn−1 + 1 − y2
nyn−1(ynyn+1 + 1)

=
yn+1zn+2 − zn+1

ynzn+1 − zn

1
ynyn−1

, (5.24)

which satisfies the singularity confinement requirement. The continuous limit
is obtained by y = 1 − ε3w and z = −6 + ε4t, leading to

ww′′′ = (w′′ − 1)w′ + 12w3. (5.25)

Multiplying (5.25) by (w′′ − 1), we can rewrite it as

d

dt

(
(w′′ − 1)2 − 24w2(w′ − t)

w2

)
= 0, (5.26)

and absorbing the integration constant by a translation of t we obtain

(w′′ − 1)2 − 24w2(w′ − t) = 0, (5.27)

i.e., Cosgrove’s equation SDV [56], which is a form of modified PI. Thus (5.24)
is a discrete form of the second-degree Painlevé equation SDV in derivative
form.

How can one find the auto-Bäcklund (and Schlesinger) transformations
for a given d-P? The general principle is the following. First obtain a Miura
transformation that transforms the equation into a new one (the ‘modified’
one). Second, find the invariance of the latter, usually associated to some dis-
crete transformations. Third implement these discrete transformations and
return to the initial equation by the inverse of the Miura transformation. In
the process we find that the parameters of the initial equation have been mod-
ified and thus the chain of transformations indeed defines an auto-Bäcklund
transformation. Obtaining the Miura transformation can be facilitated once
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we remark that all known Miura transformations have the form of a discrete
Riccati equation, i.e., a homographic mapping.

An interesting case of auto-Bäcklund/Schlesinger construction is the one
concerning q-PIII. We start from the form

xn+1xn−1 =
cd(xn − a)(xn − b)
(xn − c)(xn − d)

, (5.28)

where c, d are constants and a, b proportional to λn. Following the derivation
we presented in [57], we introduce

un = (xn − c)(xn+1 − d). (5.29)

This is the first half of the Miura transformation. The second half of the Miura
transformation involves a rational expression which must be homographic in
both un and un−1. We readily find that

xn =
unun−1/cd− un − un−1 + cd− ab

−un/d− un−1/c+ c+ d− a− b
. (5.30)

Eliminating xn and xn+1 between (5.29), (5.30) and its upshift leads to an
equation for un−1, un, un+1. This equation is, after a change of variables, a
discrete form of d-PV equation, although not all the parameters of a d-PV
are present. Introducing U = u− cd, we find that

(UnUn+1 − λ2abcd)(UnUn−1 − abcd) =
cd(Un + bd)(Un + λac)(Un + ad)(Un + λbc)

Un + cd
. (5.31)

In order to define a different Miura transformation we can introduce the
quantity

wn = (1/xn − 1/a)(1/xn+1 − 1/λb). (5.32)

The second half of the Miura transformation, analogous to (5.30), is

xn =
−awn−1/λ− bwnλ+ 1/a+ 1/b− 1/c− 1/d
abwnwn−1 + 1/ab− 1/cd− wnλ− wn−1/λ

. (5.33)

Again eliminating x leads to an equation for w. IntroducingWn = wn−1/λab,
we find for this equation

(WnWn+1 −
1

λ2abcd
)(WnWn−1 −

1
abcd

) =

(Wn + 1/λbd)(Wn + 1/ac)(Wn + 1/λbc)(Wn + 1/ad)
λabWn + 1

. (5.34)
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The quantity W̃n = U/λabcd satisfies an equation obtained from (5.31),
namely,

(W̃nW̃n+1 −
1

λ2abcd
)(W̃nW̃n−1 −

1
abcd

) =

(W̃n + 1/λac)(W̃n + 1/bd)(W̃n + 1/λbc)(W̃n + 1/ad)
λabW̃n + 1

. (5.35)

Equation (5.34) has the same form as (5.35), provided one introduces the
parameters

ã = a
√
λ, b̃ = b/

√
λ, c̃ = c

√
λ, d̃ = d/

√
λ. (5.36)

We define

w̃n = W̃n + 1/λãb̃ = un/λabcd (5.37)

and

x̃n =
−ãw̃n−1/λ− b̃w̃nλ+ 1/ã+ 1/b̃− 1/c̃− 1/d̃
ãb̃w̃nw̃n−1 + 1/ãb̃− 1/c̃d̃− w̃nλ− w̃n−1/λ

. (5.38)

Given this definition of x̃, and since W̃ satisfies (5.35), it follows that

w̃n = (1/x̃n − 1/ã)(1/x̃n+1 − 1/λb̃), (5.39)

and therefore x̃ satisfies d-PIII with parameters ã, b̃, c̃, d̃. The transformation
from x to x̃ defines an auto-Bäcklund transformation for d-PIII. In this case
this is indeed a Schlesinger transformation, which we denote by Sac . (The
convention used here is to give explicitly the parameters associated to xn,
rather than xn+1, in (5.29) and (5.32).) The inverse transformation (Sac )

−1

can be obtained by defining w by (5.32), u
˜

= wλabcd and finally x
˜

through
the analogue of (5.30).

In a similar way we can introduce the transformations Sbc , S
a
d = (Sbc)

−1

and Sbd = (Sac )
−1. They correspond to multiplying the two parameters

which appear explicitly by
√
λ while dividing the two others by the same

quantity. These are the most elementary Schlesinger transformations. Us-
ing them we can construct further Schlesinger transformations that act sep-
arately on {a, b} or {c, d}. For instance the product SacS

a
d corresponds to

a→ aλ, b→ b/λ, c→ c, d→ d.
The procedure presented here for the construction of the transformations

of the solutions of d-P’s may, understandably, appear tedious and the ansatzes
introduced somewhat arbitrary. We must reassure the reader that the whole
approach will become clearer and less arbitrary once the appropriate bilin-
ear formalism for d-P’s is introduced and associated with their systematic
geometric description.
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Tαξινóµησις

6 Putting Some Real Order to the d-P Chaos

The Bilinearisation of the d-P’s
As a first step towards the classification of the d-P’s we shall present their
bilinearisation in the framework of the Hirota formalism. While the latter
is quite powerful and has been applied to the study of nonlinear evolution
equations (both continuous and discrete), curiously its use in the case of
P’s has been rather limited, a notable exception being the work of Okamoto
[58]. This is rather intriguing since the solutions of the continuous P’s are
meromorphic functions of the independent variable and thus should possess
simple expressions in terms of entire functions. This is precisely what the
Hirota formalism is doing. It introduces a dependent variable transformation,
and thus makes possible the expression of the original one in terms of τ -
functions, which are assumed to be entire. Our guide to the bilinearisation
of d-P’s will be their singularity structure and the property of singularity
confinement.

Let us examine two cases which are a perfect illustration of the method,
namely d-PI and d-PII.

xn+1 + xn−1 = −xn +
zn
xn

+ a (6.1)

xn+1 + xn−1 =
znxn + a

1 − x2
n

(6.2)

respectively, where zn = αn + β, and a, α, β are constants. For the needs
of the present paper a schematic singularity structure will suffice, the precise
balancing can be found in Sect. 1 and is not necessary here. In the case of d-PI,
we have a singularity whenever the x in the denominator happens to vanish.
This has as a consequence that both xn+1 and xn+2 diverge, whereupon
xn+3 vanishes again and xn+4 is finite, i.e., the singularity is indeed confined.
Thus the singularity pattern is {0,∞,∞, 0}. In the case of d-PII a singularity
appears whenever xn in the denominator takes the value +1 or −1. Thus we
have two singularity patterns which, in this case, turn out to be {−1,∞,+1}
and {+1,∞,−1}.

How can we use this information in order to express x in terms of τ -
functions [59]? Let us start with d-PI. As a first step, we surmise that there
exists a relationship between the singularity patterns of a d-P and the number
of τ -functions necessary to express the original variable. Thus in the case of
d-PI, which has a unique singularity pattern, it is enough to introduce just
one τ -function. Since τ -functions are entire, x must be a ratio of products of
such functions. Hence, let us assume that xn contains a τ -function Fn in the
numerator, and that Fn passes through zero. Since xn+1 and xn+2 are infinite,
the denominator of x must contain Fn−1 and Fn−2, which ensures that Fn
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appears in the denominators of xn+1 and xn+2, respectively. Finally since
xn+3 vanishes, xn must contain Fn−3 in the numerator. Thus, the expression
of x, dictated by the singularity pattern, is:

xn =
FnFn−3

Fn−1Fn−2
. (6.3)

As we shall see below, this expression suffices for the multilinearisation, more
precisely the trilinearisation, of d-PI. That the choice (6.3) is a reasonable
one also can be seen by the continuous limit of this expression. We know,
for d-PI, that the continuous limit is obtained by x = 1 + ε2w at ε → 0.
Implementing this limit in (6.3) we find that w = 2∂2

z logF , a transformation
that is at the base of the (continuous) Hirota bilinear formalism.

In the case of d-PII, we have two singularity patterns, and so we expect
two τ -functions to appear in the expression of x. Let us start with the pattern
{−1,∞,+1}. The diverging x may be related to a vanishing τ -function, say
F , in the denominator. In order to ensure that xn−1 and xn+1 are respectively
−1 and +1, we choose xn of the form x(n) = −1+ Fn+1

Fn
p = 1+ Fn−1

Fn
q, where

p, q must be expressed in terms of a second τ -function, G. We turn now to
the second pattern {+1,∞,−1} related to the vanishing of the τ -function G.
We find that in this case, xn = 1 + Gn+1

Gn
r = −1 + Gn−1

Gn
s, where r and s are

expressed in terms of F . Combining the two expressions in terms of F and G
we find, with the appropriate choice of gauge, the following simple expression
for x,

x(n) = −1 +
Fn+1Gn−1

FnGn
= 1 − Fn−1Gn+1

FnGn
, (6.4)

which satisfies both singularity patterns. Thanks to this particular choice of
gauge the relative sign is such that the continuous limit of (6.4), obtained by
x = εw, is w = ∂z log F

G , i.e., precisely the expected transformation in the
case of PII.

Having explained the general procedure we are now ready to perform the
bilinearisation. For d-PI we implement ansatz (6.3), not directly on (6.1), but
on its discrete derivative,

xn+1 − xn−2 =
zn
xn

− zn−1

xn−1
, (6.5)

and obtain the following trilinear equation,

Fn+3Fn−2Fn−1 − znF
2
n+1Fn−2 = Fn−3Fn+2Fn+1 − zn−1F

2
n−1Fn+2, (6.6)

which we can further regroup into

(Fn−1Fn+3 − znF
2
n+1)Fn−2 = (Fn−3Fn+1 − zn−1F

2
n−1)Fn+2. (6.7)

This is as far as we can go with just one τ -function. In order to really
bilinearise the equation we must introduce an auxiliary τ -function. (This
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is something one could not guess from the singularity pattern alone and it
is in fact the reason why the bilinearisation procedure cannot be entirely
automated.) So, introducing the auxiliary τ -function Gn and splitting (6.7)
into a system, we find that

Fn−2Fn+2 − znF
2
n = Gn+1Fn−1

Fn−2Fn+2 − zn−1F
2
n = Gn−1Fn+1. (6.8)

This constitutes the bilinearisation of the standard d-PI.
In the case of d-PII, we start from ansatz (6.4) which has already furnished

one bilinear equation. Eliminating the denominator, FnGn, we obtain

Fn+1Gn−1 + Fn−1Gn+1 − 2FnGn = 0. (6.9)

In order to obtain the second equation we rewrite d-PII as (xn+1 +xn−1)(1−
xn)(1 + xn) = zxn + a. We use the two possible definitions of xn in terms of
F and G in order to simplify the expressions 1 − xn and 1 + xn. Next, we
obtain two equations by using these two definitions for xn+1 combined with
the alternate definition for xn−1. We thus obtain

Fn+2Fn−1Gn−1 − Fn−2Fn+1Gn+1 = F 2
nGn(zxn + a) (6.10a)

and

Gn−2Gn+1Fn+1 −Gn+2Gn−1Fn−1 = G2
nFn(zxn + a). (6.10b)

Finally, we add (6.10a) multiplied by Gn+2, and (6.10b) multiplied by Fn+2.
Up to the use of the upshift of (6.9), a factor Fn+1Gn+1 appears in both
sides of the resulting expression. After simplification, the remaining equation
is indeed bilinear,

Fn+2Gn−2 − Fn−2Gn+2 = z(Fn+1Gn−1 − Fn−1Gn+1) + 2aFnGn (6.11)

where a symmetric expression was used for x in the right-hand side, obtained
as the arithmetic mean of the two right-hand sides of (6.4). Equations (6.9)
and (6.11), taken together, are the bilinear form of d-PII.

Complete results on the bilinearisation of d-P’s can be found in [60]. We
find that d-P’s with more parameters involve a higher number of τ -functions.
In that work, we have also examined the bilinearisation of the continuous
P’s. The latter was first obtained by Hietarinta and Kruskal [61] for the first
five equations. Since that of the continuous PVI was missing, we have taken
advantage of our bilinearisation of d-P’s in order to fill this gap. Let us present
here this method which shows the interplay between continuous and discrete
integrable systems. Our starting point is the discrete form of PVI discovered
by Jimbo and Sakai [51]. The q-PVI equation is written in the form of a
system,
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xn+1xn =
(yn − αz̃)(yn − βz̃)
(yn − γ)(yn − 1/γ)

(6.12a)

ynyn−1 =
(xn − az)(xn − bz)
(xn − c)(xn − 1/c)

, (6.12b)

where z = λn, z̃ = z
√
λ, with the constraint ab = αβ. The τ -functions are

introduced by

xn = c

(
1 + (1 − z)1/2

MnNn−1

FnGn

)
=

1
c

(
1 + (1 − z)1/2

Mn−1Nn
FnGn

)
=
HnKn

FnGn

1
xn

=
1
az

(
1 − (1 − z)1/2

PnQn−1

HnKn

)
=

1
bz

(
1 − (1 − z)1/2

Pn−1Qn
HnKn

)
=
FnGn
HnKn

yn = γ

(
1 + (1 − z̃)1/2

Fn+1Gn
MnNn

)
=

1
γ

(
1 + (1 − z̃)1/2

FnGn+1

MnNn

)
=
PnQn
MnNn

(6.13)
and

1
yn

=
1
αz̃

(
1 − (1 − z̃)1/2

Hn+1Kn

PnQn

)

=
1
βz̃

(
1 − (1 − z̃)1/2

HnKn+1

PnQn

)
=
MnNn
PnQn

leading to

2FnGn + (1 − z)1/2(MnNn−1 +Mn−1Nn) =
(
c+

1
c

)
HnKn

2HnKn − (1 − z)1/2(PnQn−1 + Pn−1Qn) = (a+ b)zFnGn

2MnNn + (1 − z̃)1/2(Fn+1Gn + FnGn+1) =
(
γ +

1
γ

)
PnQn

2PnQn − (1 − z̃)1/2(Hn+1Kn +HnKn+1) = (α+ β)z̃MnNn(
c− 1

c

)
FnGn + (1 − z)1/2

(
cMnNn−1 −

1
c
Mn−1Nn

)
= 0. (6.14)

(
1
a
− 1
b

)
HnKn − (1 − z)1/2

(
1
a
PnQn−1 −

1
b
Pn−1Qn

)
= 0

(
γ − 1

γ

)
MnNn + (1 − z̃)1/2

(
γFn+1Gn − 1

γ
FnGn+1

)
= 0

(
1
α
− 1
β

)
PnQn − (1 − z̃)1/2

(
1
α
Hn+1Kn − 1

β
HnKn+1

)
= 0.

We go to the continuous limit by a = 1 + εa1 + ε2a2, b = 1 − εa1 + ε2b2,
c = 1 + εc1, α = 1 + εα1 + ε2α2, β = 1 − εα1 + ε2β2, γ = 1 + εγ1. The
constraint ab = αβ translates into a2 + b2 − a2

1 = α2 + β2 − α2
1. The result is
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FG+ (1 − z)1/2MN = HK

HK − (1 − z)1/2PQ = zFG

c1FG+ (1 − z)1/2 (Dζ + c1)M ·N = 0

a1HK + (1 − z)1/2 (Dζ − a1)P ·Q = 0

γ1MN + (1 − z)1/2 (Dζ + γ1)F ·G = 0 (6.15)

α1PQ+ (1 − z)1/2 (Dζ − α1)H ·K = 0

(1 − z)D2
ζF ·G− (1 − z)1/2D2

ζM ·N + (1 − z)1/2D2
ζP ·Q

= −(a2 + b2)zFG− c21HK + γ2
1(1 − z)1/2PQ

(1 − z)D2
ζH ·K − z(1 − z)1/2D2

ζM ·N + (1 − z)1/2D2
ζP ·Q

= −(a2 + b2)zFG− c21zHK − (α2 + β2)z(1 − z)1/2MN,

where z = eζ , w = x = HK/FG and, in addition, at the continuous limit,
w = 1+(1−z)1/2MN/FG, 1/w = (1−(1−z)1/2PQ/HK)/z. We thus obtain
the continuous PVI,

wzz =
1
2

(
1
w

+
1

w − 1
+

1
w − z

)
w2
z −
(

1
z

+
1

z − 1
− 1
z − w

)
wz

+
w(w − 1)(w − z)

z2(z − 1)2

(
γ2
1

2
− α2

1

2
z

w2 +
c21
2

z − 1
(w − 1)2

+
1 − a2

1

2
z(z − 1)
(w − z)2

)
,

(6.16)

One last word is in order at this point. Our analysis of d-P’s was based on
the assumption that the “right” number of τ -functions is at least equal to
the number of different singularity patterns. This led to the introduction of
up to 8 τ -functions for the higher d-P’s. This proliferation of τ functions
may appear strange and one may be tempted to try to obtain a description
involving fewer τ functions. In order to cut short this speculation we must
make clear that only one τ function exists. This τ function is multidimensional
i.e., it involves several parameters, and the various symbols F,G,H etc. that
appeared above are just realisations of the same τ function for different values
of its parameters. Thus they are all related through Miura transformations,
and the use of the different symbols is a mere convenience. The details of the
description of the Painlevé equations with a multidimensional τ function will
be given in what follows.

The Property of Self-Duality
The Miura/auto-Bäcklund transformations we have discussed in the previous
section can be described in a most elegant way, for continuous P’s, through
the Hamiltonian formulation of Okamoto [62]. It is indeed known that all
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Painlevé’s can be obtained from the equations of motion of a polynomial
Hamiltonian. Starting with H(x, p, t) and the equations

f(t)
dx

dt
=
∂H

∂p

f(t)
dp

dt
= −∂H

∂x
, (6.17)

where f(t) is a rational function defined once and for all for each Painlevé
equation, we obtain, eliminating p, the desired equation for x. One can, nat-
urally, wonder what may be obtained if one eliminates x. The answer is,
another Painlevé equation for p. Thus system (1) can be viewed as defining a
Miura transformation connecting these two Painlevé equations. (Sometimes
the two equations turn out to be the same, in which case this Miura trans-
formation is just an auto-Bäcklund.)

The crucial observation of Okamoto was that the Hamiltonian is related
to the τ -functions by

f(t)
d

dt
log τ = H. (6.18)

The Bäcklund tranformations mentioned above are introduced through bi-
rational canonical transformations on H which induce a correspondence be-
tween two τ -functions associated to different sets of parameters. In particular,
when these transformations in the set of parameters is a translation, the it-
eration of the Bäcklund tranformation defines a τ -sequence {τm,m ∈ Z}.
Okamoto has shown that the τ -sequence of a Painlevé equation obeys the
Toda equation, (

f(t)
d

dt

)2
log τm =

τm−1τm+1

τ2
m

, (6.19)

which, in bilinear formalism, can be rewritten

(D2
z − 2eDm)τm ·τm = 0. (6.20)

Here we have introduced a new variable, z, to absorb the f(t) factor by
dz = f(t)−1dt.

While Miura/auto-Bäcklund/Schlesinger transformations have been de-
rived for (almost) all the d-P’s, it has not been possible to obtain the strict
equivalent of the Hamiltonian formulation. This has led to a critical exami-
nation of the Okamoto formalism which resulted to the conclusion that the
Hamiltonian is not the crucial ingredient. The key element is the τ -function.
Thus one expects the discrete form of the Toda equation to play a major role.

The first key discovery was that of the property of self-duality. This prop-
erty first arose as a surprise. In fact, there is no way one could have guessed
its existence from experience with continuous Painlevé equations. The first
known example is the alternate d-PII equation which we have derived in [52]
and studied extensively in [63]. This equation has the form,
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zn
xn+1xn + 1

+
zn−1

xnxn−1 + 1
= −xn +

1
xn

+ zn + a, (6.21)

where zn = δn + z0 and a is a parameter. Its bilinearisation was obtained
from the singularity structure. Two τ -functions F and G were introduced by

xn =
FnGn−1

Fn−1Gn
, (6.22)

and a third, auxiliary, τ -function E was needed to obtain the system

Fn+1Gn−1 + Fn−1Gn+1 = znFnGn (6.23a)

Fn+1Fn−1 = F 2
n +GnEn (6.23b)

GnEn−1 −Gn−1En = aFnFn−1 (6.23c)

The choice of equation (6.23bc) for the introduction of E is more or less
arbitrary. One could have equally well replaced (6.23) by:

Fn+1Gn−1 + Fn−1Gn+1 = znFnGn (6.24a)

Gn+1Gn−1 = G2
n + FnHn (6.24b)

HnFn−1 −Hn−1Fn = (a+ δ)GnGn−1 (6.24c)

where we recall that zn = δn+ z0, and thus that δ = zn+1 − zn. By compar-
ing (6.23) and (6.24) one sees that a shift of a to a + δ is associated to the
τ -function transformation {E,F,G} → {F,G,H}. In fact, the τ -functions
. . . , E, F,G,H, . . . constitute a Schlesinger chain, or, in Okamoto’s terminol-
ogy, a τ -sequence.

The Schlesinger transform of (6.21) was presented in [63],

x
˜
n =

1
xn

+
a(1 + xnxn−1)

1 + xnxn−1 − zn−1xn
(6.25)

where x
˜n

satisfies the alternate d-PII equation with parameter a−δ. In terms
of the τ -functions,

x
˜n

=
EnFn−1

En−1Fn
, (6.26)

which is just (6.22) transposed to the case where a is shifted to a − δ, i.e.,
{F,G} → {E,F}. Similarly,

x̃n =
(
xn − (a+ δ)(1 + xnxn−1)

1 + xnxn−1 − zn−1xn−1

)−1

, (6.27)

satisfying (6.21) with parameter a+ δ, and, of course,

x̃n =
GnHn−1

Gn−1Hn
. (6.28)
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We can obtain the discrete equation in parameter-space. Eliminating xn−1
between (6.25) and (6.27) we obtain the dual equation of alternate d-PII, i.e.,
the equation where parameter a is now the independent variable, since xn,
x
˜n

, x̃n are associated to a, a− δ, a+ δ respectively,

a+ δ

xx̃− 1
+

a

xx
˜
− 1

= x+
1
x
− a− z. (6.29)

Here we have dropped the index n, so z(≡ zn) is just a parameter. We remark
that (6.29) is essentially alternate d-PII itself. The only, minor, change is that,
in order to recover the precise form of (6.21), we must multiply x by i.

A Geometrical Interpretation of d-P’s
The discovery of the property of self-duality for alternate-d-PII raised an
important question. Is this property exceptional or does it characterise the
d-P’s in general? We know today that all difference P’s are indeed self-dual
and so are, less expectedly, almost all q-P’s. Still, some q-discrete P’s do exist
which do not possess this property.

How can self-duality lead us to a classification of the d-P’s? We must
admit that the link of self-duality to the geometrical interpretation is rather
indirect, but that’s how intuition works most of the time. Let us see the source
of alternate d-PII. In [52] we have obtained alternate d-PII as a contiguity
relation between solutions of the continuous PIII,

w′′ =
w

′2

w
− w′

t
+

1
t
(αw2 + β) + γw3 +

δ

w
. (6.30)

Assuming that γ �= 0 and δ �= 0 one can use scaling of both w and t to obtain
γ = 1 and δ = −1. We have he following relations:

w(−α,−β) = −w(α, β) (6.31)

w(−β,−α) = w−1(α, β) (6.32)

and

w(−β − 2,−α− 2) = w(α, β)

(
1 +

2 + α+ β

t(w′
w + w + 1

w ) − 1 − β

)
. (6.33)

We assume further that α �= β. Using (6.31-33) and the analogue of (6.33)
starting from w(−β,−α) (which leads to w(α− 2, β − 2)), we can eliminate
w′ and obtain a relation between w(α−2, β−2), w(α, β) and w(α+2, β+2),
i.e., a one-dimensional 3-point mapping on the (α, β)-plane. We introduce the
independent variable, z = (α+β+2)/4, so that the variation of z between two
consecutive w’s is 1, and the parameters κ and µ by µ = (β − α− 2)/4, κ =
−it/2. We choose x = i/w as the mapping variable and find that
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zn
xn+1xn + 1

+
zn−1

xnxn−1 + 1
= κ(−xn +

1
xn

) + zn + µ (6.34)

It is, moreover, straightforward to set κ = 1 by scaling. Thus one obtains
the final form of the alternate d-PII equation. We remark that both the
independent variable, z, and the parameter, µ, of alternate d-PII are linear
combinations of the parameters α and β of PIII. Since α and β play equivalent
roles in PIII, one expects z and µ to play equivalent roles in alternate d-PII.
This is näı vely the origin of self-duality.

But the situation is even deeper than this. Since Okamoto has obtained a
formulation for the transformations of the solutions of the continuous P’s, by
translations of their parameters, in terms of affine Weyl groups, one expects
the same groups to play a role in the case of d-P’s, at least the ones which are
contiguities of c-P’s, but, as it turns out, the applicability of the approach is
quite general.

Let us present here the description of the asymmetric d-PII and its trans-
formations in a geometrical language based on that of affine Weyl groups.
The asymmetric d-PII equation,

xm+1 + xm =
ymzm+1/2 + γ

1 − y2
m

and

ym + ym−1 =
xmzm + δ

1 − x2
m

, (6.35)

with zm = αm + β, is described by the affine Weyl group of A(1)
3 . That is,

the τ functions live on the weight lattice of A(1)
3 , namely the points of integer

coordinates, either all even or all odd. Such points will henceforward be called
τ -points. Any τ -point (say, the origin) has 8 nearest-neighbours (NN) at
distance

√
3, namely (ε1, ε2, ε3), where ε2i = 1, and 6 next-nearest-neighbours

(NNN) at distance 2, with one coordinate ±2 and two vanishing coordinates.
We are also interested in next-next-nearest-neighbours (NNNN) at distance
2
√

2 with one vanishing coordinate and two coordinates of absolute value 2
(so there are 12 of these).

Nonlinear variables are defined at points of integer coordinates which do
not belong to the weight lattice of A(1)

3 , but rather have two coordinates of
one parity and the third one of opposite parity. For instance, at the point
(0,0,1) one can define such a variable that we will denote as x001. A site like
(n1, n2, n3+1), where we assume that the three ni have the same parity, is the
midpoint of a unique pair of τ -points in NNN position, namely (n1, n2, n3)
and (n1, n2, n3 + 2) and of exactly two pairs of τ -points in NNNN position,
(n1 + 1, n2 + 1, n3 + 1) and (n1 − 1, n2 − 1, n3 + 1) on the one hand, and
(n1 + 1, n2 − 1, n3 + 1) and (n1 − 1, n2 + 1, n3 + 1) on the other. It turns out
that the relevant x can be expressed in terms of the τ ’s associated to these
six points in two different ways:
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xn1,n2,n3+1 =
τn1−1,n2−1,n3+1τn1+1,n2+1,n3+1

τn1,n2,n3τn1,n2,n3+2
− 1

= 1 − τn1−1,n2+1,n3+1τn1+1,n2−1,n3+1

τn1,n2,n3τn1,n2,n3+2
. (6.36)

Of course if the index with a different parity had been the first or the second
one, instead of the third one, one should change the indices accordingly. The
important point is the overall sign, which depends on the choice of the pairof
τ ’s in NNNN positions, whether the vector joining them has both components
of same or opposite parities. Writing that the two expressions for x coincide,
we obtain a first bilinear equation relating the τ ’s,

τn1−1,n2−1,n3+1τn1+1,n2+1,n3+1 + τn1−1,n2+1,n3+1τn1+1,n2−1,n3+1 =
2τn1,n2,n3τn1,n2,n3+2, (6.37)

and, of course two more equations along the two first indices. These equations
are autonomous Hirota-Miwa equation [15,64] relating the τ ’s. Consider now
a point with all coordinates half-integer, say (n1 + ε1/2, n2 + ε2/2, n3 + ε3/2),
where we again assume that the ni’s have the same parity. This is the mid-
point of one pair of τ ’s in NN position, τn1,n2,n3 and τn1+ε1,n2+ε2,n3+ε3 and
exactly three pairs of τ ’s at distance

√
11, of the type τn1,n2,n3+2ε3 and

τn1+ε1,n2+ε2,n3−ε3 . Let us assume that the three quantities,

τn1,n2,n3+2ε3τn1+ε1,n2+ε2,n3−ε3 − ε1ε2z3τn1,n2,n3τn1+ε1,n2+ε2,n3+ε3 (6.38)

and the two others, where the first two coordinates are singularized, are equal.
Writing that any two of these quantities are equal leads, for instance, to

τn1,n2,n3+2ε3τn1+ε1,n2+ε2,n3−ε3 − τn1,n2+2,n3ε3τn1+ε1,n2+ε2,n3−ε3
= ε1(ε2z3 − ε3z2)τn1,n2,n3τn1+ε1,n2+ε2,n3+ε3 . (6.39)

These equalities consitute a second set of Hirota Miwa equations, which in
this case are nonautonomous. This set is highly overdetermined but internally
consistent, and also consistent with the first one, which it implies, provided
that zi = αni+βi, with a common value for α and three independent arbitrary
values for the β’s. (In fact dividing by the products of τ ’s in the right-hand
side of (6.39), any of the three quantities (6.38), would allow us to define a
new variable on the point of half-integer coordinates, which does appear in
an interesting equation we are not going, however, to discuss further here
[65]).

We can now proceed to the Miura relation relating three nonlinear vari-
ables. Let us consider the variables at the points (0,0,1), (1,0,1) and (1,0,0),
namely, x0,0,1, etc.). We can thus write

x ≡ x0,0,1 =
τ1,1,1τ−1,−1,1

τ0,0,0τ0,0,2
− 1
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w ≡ x1,0,0 =
τ1,1,1τ1,−1,−1

τ0,0,0τ2,0,0
− 1. (6.40)

y ≡ x1,0,1 = 1 − τ2,0,0τ0,0,2
τ1,1,1τ1,−1,1

The reason why we chose this particular representation of each variable,
rather than the other one will become obvious soon. Indeed, computing x−w
we find that

x−w =
τ1,1,1τ−1,−1,1

τ0,0,0τ0,0,2
− τ1,1,1τ1,−1,−1

τ0,0,0τ2,0,0
=
τ1,1,1
τ0,0,0

× τ2,0,0τ−1,−1,1 − τ0,0,2τ1,−1,−1

τ0,0,2τ2,0,0
.

(6.41)
Using (6.39), or rather, its analogue where the second coordinate is preferred,
the numerator on the right-hand side can be rewritten (z1 − z3)τ0,0,0τ1,−1,1,
where z1 and z3 are in fact computed at y, so n1 = n3 = 1, and thus we
obtain

x− w =
z1 − z3
y − 1

. (6.42)

This is the Miura transformation relating the three points x, y and w on the
vertices of an isosceles right triangle, with y at the right angle. Let us now
consider the point (2,0,1) and the associated variable x ≡ x2,0,1,

x ≡ x2,0,1 = 1 − τ1,1,1τ3,−1,1

τ2,0,0τ2,0,2
. (6.43)

Similarly we obtain

x+ w =
z1 + z3
y + 1

. (6.44)

Taking the sum of these equations we obtain

x+ x =
z1 − z3
y − 1

+
z3 + z1
y + 1

=
2z1y − 2z3
y2 − 1

. (6.45)

One must supplement this equation by one relating y at (1,0,1) with y at
(3,0,1), using for instance, u at (2,1,1) so x at (2,0,1) is at the right angle of
the isosceles right triangle xyu. One must now compute the z’s at x so z2 for
n2 = 0 and z̃1=z1 + α at n1 = 2. Then

y + u =
z̃1 + z2
x+ 1

(6.46a)

y − u =
z̃1 − z2
x− 1

(6.46b)

so
y + y =

2z̃1x− 2z2
x2 − 1

. (6.47)

Iterating, we see that in the numerator of the right-hand side the coefficient
of the independent variable increases by α at each step while the zero-degree
terms keep alternating between the values z3 computed at n3 = 1 and z2
computed at n2 = 0. This is exactly (6.35).
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The Sakai Approach and the Classification of d-P’s
While we have undertaken the classification of d-P’s based on a geometrical
description [66], another approach has tackled the same problem and pre-
sented a global answer [67]. Our approach has been essentially constructive.
Starting from a given d-P equation, we worked out in detail its geometric de-
scription, which turned out to be described by an affine Weyl group. Sakai’s
approach is complementary. He started from the geometry of affine Weyl
groups and obtained d-P equations in the end. The approach of Sakai also
draws its inspiration from the work of Okamoto [68] on continuous P’s. The
two key notions are the “space of initial conditions” and the “symmetries
under affine Weyl groups”. Let us make these notions a little more precise.

The continuous P’s are second-order differential equations. Thus one
would expect the space of their initial conditions to be C × C since, for a
given value t0 of the independent variable, the solution is specified by the
data of the function and its derivative at this point, with some reserves con-
cerning the points at which the coefficients of the equation become singular.
However there exist solutions which diverge at t0. Thus we must compactify
C

2. Once this is done, it may happen that several solutions pass through
the point at infinity. We must then separate them. The procedure is by a
blowing-up of the space, i.e., through the introduction of local coordinates
which make the divergence disappear.

The second idea of Okamoto, pertinent to the work of Sakai, concerns
the symmetries of continuous P’s under affine Weyl groups. As Okamoto has
shown, the auto-Bäcklund (Schlesinger) transformations of the continuous
P’s generate extended affine Weyl groups and he has provided the following
correspondences between equations and symmetries: PII - A(1)

1 , PIII - (2A(1)
1 ),

PIV - A(1)
2 , PV - A(1)

3 , PVI - D(1)
4 . (Equation PI has no parameters and thus

no auto-Bäcklund transformation.) We must point out here that Okamoto’s
methodology was, in spirit, closer to ours, in the sense that he started from
a given equation and obtained the space of initial conditions as well as the
affine Weyl group corresponding to each equation.

Sakai’s approach consisted in studying rational surfaces in connection to
extended Weyl groups. Surfaces obtained by successive blow-ups of P

2 or
P

1×P
1 have been studied through the connections between Weyl groups and

the groups of Cremona isometries on the Picard group of the surfaces. (The
Picard group of a rational surface X is the group of isomorphism classes of
invertible sheaves onX, and it is isomorphic to the group of equivalent classes
of divisors on X. A Cremona isometry is an isomorphism of the Picard group
such that a) it preserves the intersection number of any pair of divisors, b)
it preserves the canonical divisor KX , and c) it leaves the set of effective
classes of divisors invariant.) In the case where 9 points (for P

2, or 8 points
for P

1×P
1) are blown up, if the points are in a generic position, the group of

Cremona isometries becomes isomorphic to an extension of the Weyl group of
type E(1)

8 . When the 9 points are not in a generic position, the classification
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of connections between the group of Cremona isometries and the extended
affine Weyl groups was studied in full generality by Sakai. Birational (bi-
meromorphic) mappings on P

2 (or on P
1×P

1) are obtained by interchanging
the procedure of blow-downs. Discrete Painlevé equations are recovered as
birational mappings corresponding to translations of affine Weyl groups. We
shall not present the work of Sakai in detail (lest we sink into plagiarism).
We urge the interested reader to read this excellent piece of work and study
it carefully.

The net result of the Sakai approach is a complete classification of the d-
P’s in terms of affine Weyl groups. Starting from the exceptional Weyl group,
E

(1)
8 , he obtained the systems corresponding to the degeneracy pattern below,

In this diagram, we assign to a Weyl group an upper index e if it supports a
discrete equation involving elliptic functions, an upper index q if the equation
is of q-type, an upper index δ if it is a difference equation not explicitly related
to a continuous equation, and an upper index c if it is a difference equation
which is explicitly the contiguity relation of one of the (continuous) Painlevé
equations, namely PVI for D4, PV for A3, PIV for A2, (full) PIII for 2A1
(which means the direct product of twice A1 in a self-dual way), PII for the
A1 on the last line and finally the one-parameter PIII for the A1 on the next
to last line. Neither PI nor the zero-parameter PIII appear here since, having
no parameter, they have no contiguity relations, hence no discrete difference
equation related to them. For each Weyl group we give below examples of
equations that live in them. In what follows, qn = q0λ

n, ρn = qn/
√
λ, while

zn = z0 + nδ and ζn = zn − δ/2.

Eq
8

We start from eight constants with the constraint that their product is unity.
Let m1, m2, . . . , m8 be the elementary symmetric functions of order 1 to 8
of these eight constants (given the constraint, m8 = 1). Then the mapping
is:

(xn+1ρ
2
n+1 − yn)(xnρ2

n − yn) − (ρ4
n+1 − 1)(ρ4

n − 1)
(xn+1/ρ2

n+1 − yn)(xn/ρ2
n − yn) − (1 − 1/ρ4

n+1)(1 − 1/ρ4
n)

=

y4
n −M1y

3
n +M2y

2
n +M3yn +M4

y4
n −M7y3

n +M6y2
n +M5yn +M4/q8n

,
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(yn−1q
2
n−1 − xn)(ynq2n − xn) − (q4n−1 − 1)(q4n − 1)

(yn−1/q2n−1 − xn)(yn/q2n − xn) − (1 − 1/q4n−1)(1 − 1/q4n)
=

x4
n −N7x

3
n +N6x

2
n +N5xn +N4

x4
n −N1x3

n +N2x2
n +N3xn +N4/ρ8

n

,

where we have introduced the auxiliary quantities M1 = m1qn, M2 = m2q
2
n−

3 − q8n, M3 = m7q
7
n −m3q

3
n + 2m1qn, M4 = q8n −m6q

6
n +m4q

4
n −m2q

2
n + 1,

M5 = m1/q
7
n −m5/q

3
n + 2m7/qn, M6 = m6/q

2
n − 3 − 1/q8n, M7 = m7/qn and

N1 = m1/ρn,x N2 = m2/ρ
2
n − 3 − 1/ρ8

n, N3 = m7/ρ
7
n − m3/ρ

3
n + 2m1/ρn,

N4 = ρ8
n −m2ρ

6
n +m4ρ

4
n −m6ρ

2
n + 1, N5 = m1ρ

7
n −m5ρ

3
n + 2m7ρn, N6 =

m6ρ
2
n − 3 − ρ8

n, N7 = m7ρn.

Eδ
8

Here we start from eight constants with the constraint that their sum must
be zero. Let s2, s3, . . . , s8 be their elementary symmetric functions of order
2 to 8 (from the constraint, s1 = 0). Then the equation is

(yn − xn+1 + 4ζ2
n+1)(yn − xn + 4ζ2

n) + 16ynζn+1ζn

ζn(yn − xn+1 + 4ζ2
n+1) + ζn+1(yn − xn + 4ζ2

n)
=

4
y4
n + S2y

3
n + S4y

2
n + S6yn + S8

8zny3
n + S3y2

n + S5yn + S7
,

with S2 = s2 +28z2n, S3 = s3 +6zns2 +56z3n, S4 = s4 +5zns3 +15z2ns2 +70z4n,
S5 = s5 +4zns4 +10z2ns3 +20z3ns2 +56z5n, S6 = s6 +3zns5 +6z2ns4 +10z3ns3 +
15z4ns2 + 28z6n, S7 = s7 + 2zns6 + 3z2ns5 + 4z3ns4 + 5z4ns3 + 6z5ns2 + 8z7n,
S8 = s8 + zns7 + z2ns6 + z3ns5 + z4ns4 + z5ns3 + z6ns2 + z8n.

(xn − yn−1 + 4z2n−1)(xn − yn + 4z2n) + 16xnzn−1zn

zn(xn − yn−1 + 4z2n−1) + zn−1(xn − yn + 4z2n)
=

4
x4
n +Σ2x

3
n +Σ4x

2
n +Σ6xn +Σ8

8ζnx3
n +Σ3x2

n +Σ5xn +Σ7
,

withΣ2 = s2+28ζ2
n,Σ3 = −s3+6ζns2+56ζ3

n,Σ4 = s4−5ζns3+15ζ2
ns2+70ζ4

n,
Σ5 = −s5+4ζns4−10ζ2

ns3+20ζ3
ns2+56ζ5

n, Σ6 = s6−3ζns5+6ζ2
ns4−10ζ3

ns3+
15ζ4

ns2 + 28ζ6
n, Σ7 = −s7 + 2ζns6 − 3ζ2

ns5 + 4ζ3
ns4 − 5ζ4

ns3 + 6ζ5
ns2 + 8ζ7

n,
Σ8 = s8 − ζns7 + ζ2

ns6 − ζ3
ns5 + ζ4

ns4 − ζ5
ns3 + ζ6

ns2 + ζ8
n.

Eq
7

(ynxn+1 − qnρn+1)(xnyn − qnρn)
(ynxn+1 − 1)(xnyn − 1)

=

(yn − aqn)(yn − bqn)(yn − cqn)(yn − dqn)
(yn − p)(yn − r)(yn − s)(yn − t)

,
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(xnyn − znρn)(xnyn−1 − zn−1ρn)
(xnyn − 1)(xnyn−1 − 1)

=

(xn − ρn/a)(xn − ρn/b)(xn − ρn/c)(xn − ρn/d)
(xn − 1/p)(xn − 1/r)(xn − 1/s)(xn − 1/t)

,

where a, b, c, d, p, r, s and t are 8 constants satisfying the constraints abcd =
prst = 1.

Eδ
7

(yn + xn+1 − zn − ζn+1)(xn + yn − zn − ζn)
(yn + xn+1)(xn + yn)

=

(yn − zn − a)(yn − zn − b)(yn − zn − c)(yn − zn − d)
(yn − p)(yn − r)(yn − s)(yn − t)

(xn + yn − zn − ζn)(xn + yn−1 − zn−1 − ζn)
(xn + yn)(xn + yn−1)

=

(xn − ζn + a)(xn − ζn + b)(xn − ζn + c)(xn − ζn + d)
(xn + p)(xn + q)(xn + s)(xn + t)

,

where a, b, c, d, p, r, s and t are 8 constants satisfying the constraints a +
b+ c+ d = p+ r + s+ t = 0.

Eq
6

(ynxn+1 − 1)(xnyn − 1) =
(yn − p)(yn − r)(yn − s)(yn − t)

(yn − aqn)(yn − qn/a)

(xnyn − 1)(xnyn−1 − 1) =
(xn − 1/p)(xn − 1/r)(xn − 1/s)(xn − 1/t)

(xn − bρn)(xn − ρn/b)
,

where a, b, p, r, s and t are 6 constants satisfying the constraint prst = 1.

Eδ
6

(yn + xn+1)(xn + yn) =
(yn − p)(yn − r)(yn − s)(yn − t)

(yn − zn − a)(yn − zn + a)

(xn + yn)(xn + yn−1) =
(xn + p)(xn + r)(xn + s)(xn + t)

(xn − ζn − b)(xn − ζn + b)
where a, b, p, r, s and t are 6 constants satisfying the constraint p+r+s+t = 0.

Dq
5

xn+1xn =
(yn − aqn)(yn − qn/a)

(yn − c)(yn − 1/c)

ynyn−1 =
(xn − bρn)(xn − ρn/b)

(xn − d)(xn − 1/d)
,

where a, b, c, d are 4 constants.
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Dc
4

ζn+1

1 − xn+1yn
+

zn
1 − ynxn

= zn + a+
byn + (1 − y2

n)(zn/2 + c)
(1 + dyn)(1 + yn/d)

zn
1 − ynxn

+
ζn

1 − xnyn−1
= ζn + a+

bxn + (1 − x2
n)(zn/2 − c)

(1 + dxn)(1 + xn/d)
,

where a, b, c and d are 4 constants.
In the same space one has also, in a different direction

xm+1xm =
(ym − zm)2 − a

y2
m − b

ym + ym−1 =
ζm − c

1 + dxm
+

ζm + c

1 + xm/d
,

where a, b, c and d are 4 constants.

Dq
4

xn+1xn =
c(yn − aqn)(yn − qn/a)

yn − 1

ynyn−1 =
(xn − bρn)(xn − ρn/b)

c(xn − 1)
,

where a b, c are 3 constants.

Ac
3

xn+1 + xn =
ynzn − a

y2
n − 1

yn + yn−1 =
xnζn − b

x2
n − 1

,

where a and b are 2 constants.
In the same space one has also, in a different direction

xm+1xm =
ym − zm
y2
m − a

ym + ym−1 =
1
xm

+
ζm + b

1 − xm

where a and b are 2 constants.
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(A2+A1)q

xn+1xn =
aqnyn − q2n
yn(yn − 1)

ynyn−1 =
bρnxn − ρ2

n

xn(xn − 1)
,

where a, b are 2 constants.

(2A1)c,
which means a self-dual combination of two Ac

1’s

ζn+1

1 − xn+1xn
+

ζn
1 − xn−1xn

= xn +
1
xn

+ zn + a,

where a is a constant.

Ac
2

xn+1 + xn = −yn + b+
zn + a

yn

yn + yn−1 = −xn + b+
ζn − a

xn
,

where a, b are 2 constants, but b can always be scaled to unity unless it is
zero.

(A1+A1)q,
which means a non self-dual combination of two Aq

1’s,

xnxn+1 =
1 + yn/qn
yn(1 + yn/a)

ynyn−1 = a
xn + 1
x2
n

or, in a different direction,

(xm+1xm − 1)(xm−1xm − 1) =
aq2mxm

(xm − qm)
.

We have two different equations corresponding to Ac
1. The one on the next

to last line, related to the one-parameter PIII, is

xn+1 + xn−1 =
xnzn + 1
x2
n

,

while the one on the last line, related to PII, contains the discrete equation

ζn+1

xn+1 + xn
+

ζn
xn−1 + xn

= x2
n + a,

where a is a constant which can always be scaled to unity unless it is zero.
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Finally we have two different possibilities for equations in Aq
1,

xn+1xn−1 =
xnqn + 1
x2
n

and an ‘asymmetric’ equation, which was shown to be a discrete form of the
zero-parameter PIII,

(xn−1yn − 1)(xnyn − 1) = qn

(xnyn − 1)(xnyn+1 − 1) = qnx
2
n

with qn = q0λ
n.

One important finding of Sakai is the discovery of the equations related
to the group E(1)

8 . He found that there are three such equations, rather than
two as in the case of E(1)

7 or E(1)
6 . The upper index e indicates the third,

new, kind of discrete P’s, namely, mappings where the independent variable
as well as the parameters enter through the arguments of elliptic functions.
Sakai’s construction is global. If one wishes to construct explicit examples
of the equations associated to specific affine Weyl groups, one has to specify
a nonclosed, periodically repeated, pattern in the appropriate space, in or-
der to obtain the corresponding d-P. (A consequence of this last statement
is that the potential number of d-P’s is infinite, since any nonclosed peri-
odically repeated pattern in each of the spaces of the affine Weyl groups of
the degeneration pattern would lead to a different d-P.) In [69] we have ob-
tained explicit examples of elliptic d-P’s and, despite its lenghty expression,
we cannot resist the temptation to present one such example here,

xn−1 − sn2(λn+ λ/2 + φ(n− 1) − (−1)nψ + ω(n);m)
xn−1 − sn2(λn+ λ/2 + φ(n− 1) − (−1)nψ − ω(n);m)

×xn − sn2(−2λn− φ(n− 1) − φ(n+ 1) + ω(n);m)
xn − sn2(−2λn− φ(n− 1) − φ(n+ 1) − ω(n);m)

×xn+1 − sn2(λn− λ/2 + φ(n− 1) + (−1)nψ + ω(n);m)
xn+1 − sn2(λn− λ/2 + φ(n− 1) − (−1)nψ − ω(n);m)

=

1 −m2sn2(λn+ α(n) + ω(n)
2 ;m)sn2(−λn+ β(n) − ω(n)

2 ;m)

1 −m2sn2(λn+ α(n) − ω(n)
2 ;m)sn2(−λn+ β(n) + ω(n)

2 ;m)

×
1 −m2sn2(λn+ α(n) − ω(n)

2 ;m)sn2(γ(n) + ω(n)
2 ;m)

1 −m2sn2(λn+ α(n) + ω(n)
2 ;m)sn2(γ(n) − ω(n)

2 ;m)

×
1 −m2sn2(−λn+ β(n) + ω(n)

2 ;m)sn2(γ(n) − ω(n)
2 ;m)

1 −m2sn2(−λn+ β(n) − ω(n)
2 ;m)sn2(γ(n) + ω(n)

2 ;m)
(6.48)

where we have introduced the auxiliary quantities α(n) = λ/6+(2φ(n−1)+
φ(n + 1) − (−1)nψ)/3, β(n) = λ/6 − (2φ(n + 1) + φ(n − 1) + (−1)nψ)/3,



300 B. Grammaticos and A. Ramani

γ(n) = (φ(n + 1) − φ(n − 1) + 2(−1)nψ − λ)/3 and where ψ is a constant,
φ(n + 3) = φ(n), i.e. φ has period three and ω(n + 4) = ω(n), i.e., ω has
period four so the whole equation has period 12. The total number of degrees
of freedom is 8, including the independent variable.

While the Sakai approach may seem somewhat abstract, it is quite use-
ful for the understanding of various aspects of d-P’s and discrete systems in
general. Sakai himself provided the link between the property of singular-
ity confinement and the construction of the space of initial conditions. He
has shown that all d-P’s have a maximum of 8 confined singularities, and
that they can be described by a maximum of 8 blow-ups. The procedure
of blowing-up at each singularity is the one first advocated by Kruskal [70].
According to Kruskal, one must provide a complete description of the dy-
namics of the mapping and this means lifting the indeterminacies of each
of the singularities. This program of complete description of the dynamics
of mappings with confined singularities was carried out by Takenawa [71].
He has studied the discrete P’s of the Sakai classification and reconstituted
their dynamics through a series of blow-ups and blow-downs. He has used
this approach in order to compute the algebraic entropy of these systems,
and has shown that all these d-P’s have a degree growth that behaves as n2,
a result previously established, albeit in a nonrigorous way, in [45]. Moreover
Takenawa has used this approach on mappings, like the one obtained in [37],
which have a positive algebraic entropy while having confined singularities.
He was able to obtain analytically the algebraic entropy of such mappings,
thus extending and complementing Sakai’s approach.

Eπιδóρπιoν

7 More Nice Results on d-P’s

This last section will be devoted to topics which either could not fit into the
previous sections or would lengthen the presentation there. Still, since they
are interesting results we decided not to omit them but regroup them in this
section, which, as a result, will appear slightly less well organised than the
previous ones.

Limits and Degeneracies of d-P’s
As we have already seen, most d-P’s do contain parameters. One can consider
the limit of the d-P when these parameters take some special values. The usual
result of this limiting procedure is again a discrete P the continuous limit of
which is different from that of the initial one.

Let us start from the simplest case, d-PI, written as

xn+1 + xn−1 + xn =
zn
xn

+ α. (7.1)
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Parameter α can be scaled to 1, unless it is 0. In this special case, the d-PI
equation reduces to

xn+1 + xn−1 + xn =
zn
xn
, (7.2)

which does not possess any nontrivial continuous limit.
Let us now turn to d-PII and introduce a scaling of all variables and

parameters so as to transform the equation to

xn+1 + xn−1 =
znxn + a

ρ2 − x2
n

. (7.3)

By taking the limit ρ→ 0 we find the equation

xn+1 + xn−1 =
zn
xn

+
a

x2
n

, (7.4)

which is a well known form of d-PI.
Similarly, one can study limits of q-PIII, which we shall rewrite here for

convenience as

xn+1xn−1 =
γx2

n + ζxn + µ

αx2
n + βxn + γ

. (7.5)

The full q-PIII corresponds to γ �= 0. Without loss of generality, one can set γ
to be a constant. We find, by applying the singularity confinement criterion,
that α and β can both be set to constants, by redefining x. We further find
that ζ = ζ0λ

n and µ = µ0λ
2n. The limits we consider here correspond to

γ = 0, while keeping the behaviours α = const., β = const., ζ ∝ λn, µ ∝ λ2n.
We first find the equation

xn+1xn−1 =
ζxn + µ

(xn + β)xn
. (7.6)

This is a novel form of q-PII. Its continuous limit can be obtained through
x = 1 + εw, β = −2 + ε3g, ζ = −2λn, µ = λ2n where λ = 1 + ε3/2, leading
to w′′ = 2w3 + wt + g. A further limit can be obtained, starting from (7.6),
by taking β = 0, in addition to γ = 0. In this case we find the equation

xn+1xn−1 =
ζ

xn
+
µ

x2
n

, (7.7)

where, by the gauge x → xλn/2, µ can be taken as to be constant and ζ
to be of the form ζ0λ

n/2. Equation (7.7) is a discrete q-PI, as can be seen
from the continuous limit obtained by x = 1 + ε2w, ζ = 4κn, µ = −3 and
κ(≡ λ1/2) = 1− ε5/4, leading to w′′ = 6w2 + t. More limiting cases based on
equations d-PIV and d-PV can be found in [47].

The cases associated to the notion that we denoted in [47] by the term
of degeneracy need some explanation. (The choice of this term is admittedly
unfortunate, since it is too similar to the term degeneration used for the
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result of coalescence. However since it is the one we have used in the initial
publication on the subject we will, with apologies, retain it here). Here is
what we mean by degeneracy. The way we have obtained most d-P’s was
to assume a functional form given by the QRT mapping at the autonomous
limit, and de-autonomise it, using some integrability criterion. The important
assumption at this stage is that the functional form is fixed.

Let us illustrate this with an example based on d-PI−II:

xn+1 + xn−1 = − βx2
n + εxn + ζ

αx2
n + βxn + γ

(7.8)

Suppose that the numerator and denominator in the right-hand side of (7.8)
have a common factor. This is what we call degenerate case. This case is of
interest only when α �= 0, otherwise the degenerate equation becomes linear.
In this case we obtain

xn+1 + xn−1 =
ε

xn + ρ
. (7.9)

We can translate ρ to zero and de-autonomise (7.9). By Using singularity
confinement, we obtain

xn+1 + xn−1 =
z

xn
+ a (7.10),

with again z linear in n and a constant, which is another form of d-PI. Its
continuous limit is obtained through x = 1 + ε2w, a = 4, z = −2 − ε5n,
leading at ε→ 0 to w′′ + 2w2 + t = 0, with t = εn.

Similarly the degenerate forms of d-PIII are obtained when the numerator
and the denominator in the right-hand side of (7.5) have a common factor.
In this case,

xn+1xn−1 =
axn + b

cxn + d
, (7.11)

The de-autonomisation of this equation yields a = a0λ
n and d = d0λ

n. Unless
c = 0, we can always take c = 1, by division, and a proper gauge allows us
to take b = 1. Equation (7.11) in its nonautonomous form is a novel form of
q-discrete PII. The limit d = 0 in (7.11) leads to the equation (c = 1),

xn+1xn−1 = a+
1
xn
, (7.12)

where a = a0λ
n. This is another form of q-PI. The continuous limit is obtained

by x = x0(1+ ε2w), where x3
0 = −1/2, a = 3x2

0λ
n, with λ = 1− ε5/3, leading

to w′′ + 3w2 + t = 0. An equivalent equation can be obtained from (7.11) by
taking a = 0,

xn+1xn−1 =
1

xn + d
. (7.13)
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Equation (7.13) is transformed into (7.12) by taking x→ 1/x and exchanging
a and d. Another limit, leading to another q-PI, is c = 0. We find the equation

xn+1xn−1 = axn + b, (7.14)

where a, in this case, is a constant and b = b0λ
n, with continuous limit

w′′ + 6w2 + t = 0 obtained by x = 1 + ε2w, a = 2, b0 = −1 and λ = 1 + ε5.
An equivalent equation can also be obtained by taking b = 0 in (7.11). We
find the equation

xn+1xn−1 =
axn
xn + d

. (7.15)

Equations (7.14) and (7.15) are related through the transformation x→ 1/x,
with the appropriate relations of the parameters.

Many more examples, related to equations d-PIV and q-PV can be found
in [47].

On Asymmetric Forms
In the previous sections we have encountered several examples of d-P’s. As
we have explained one very simple way to obtain them is to start from a
QRT-type mapping,

xn+1 =
f1(xn) − xn−1f2(xn)
f4(xn) − xn−1f3(xn)

(7.16)

and de-autonomise it by the application of an integrability criterion. The
result of this approach is, as we have seen, quite often a mapping where a
degree of freedom with binary, ternary or higher periodicity may exist. This
suggests that the mapping can be better written as a system of more than one
equation. (As we have remarked the mapping remains of the second-order,
since all but two of the relations involve dependent variables which are all
defined at for the same value of the independent variable, while the last two
involve two values of the independent variable, n− 1 and n for one of them,
n and n + 1 for the other. In the symmetric case, of course, all three values
appear in the unique equation.)

This approach does still not exhaust all the possibilities. The d-P’s ob-
tained in this way are very slightly asymmetric. One could thus wonder
whether more complicated systems would exist. The answer is, quite expect-
edly, indeed they can.

First as we have seen in the classification of the canonical QRT forms,
there exist mappings of the form

xn + xn−1 = f(yn) (7.17a)

ynyn+1 = g(xn). (7.17b)
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Several examples of such mappings are known, for instance [72],

xm+1xm =
(ym − zm)2 − a

y2
m − 1

(7.18a)

ym + ym−1 =
ζm − c

1 + dxm
+

ζm + c

1 + xm/d
, (7.18b)

with ζn = zn−1/2, which is a discrete PV, obtained as a contiguity relation
[73] for the solutions of the continuous PVI. Many more equations of this
form are known.

Another possibility also exists. Some equations can be written in a such
form that the right-hand sides are quite different, without any possibility of
further simplification. In [74] we presented the mapping

xnxn+1 =
1 + yn/qn
yn(1 + yn/d)

(7.19a)

ynyn−1 = d
xn + 1
x2
n

, (7.19b)

which was to be a discrete form of the one-parameter PIII. Similarly in [48]
we introduced the system of equations

(xnyn − 1)(xn−1yn − 1) = qn (7.20a)

(xnyn − 1)(xnyn+1 − 1) = qnx
2
n, (7.20b)

which was shown to be a q-discrete form of the zero-parameter PIII.
More equations of this kind do indeed exist, but, curiously they have not

yet been studied in detail. One way to approach this problem would be to
start from an asymmetric QRT mapping,

xn+1 =
f1(yn) − xnf2(yn)
f4(yn) − xnf3(yn)

(7.21a)

yn−1 =
g1(xn) − yng2(xn)
g4(xn) − yng3(xn)

, (7.21b)

and investigate explicitly the integrability of forms which are strongly asym-
metric.

A remark is in order here concerning the possible forms of d-P’s. Some-
times one obtains equations which are written in a form which is very far
from a QRT one. For instance while studying the contiguities of the solutions
of PV [52] we obtained the system

xn+1 = −xn(yn − 1)
(
1 − xn(yn − 1)2

syn

)
(7.22a)
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xn−1 = xn
(
1 − 1

yn
+

zn
yn(xn + zn)

− (znyn + xn(yn − 1))3

sy2
n(zn + xn)2

)
(7.22b)

yn−1 = − (znyn + xn(yn − 1))2

syn(zn + xn) − (znyn + xn(yn − 1))2
(7.22c)

yn+1 = − (syn − xn(yn − 1)2)2

(yn − 1)(syn(xn(yn − 1) − zn − 1) − x2
n(yn − 1)3)

, (7.22d)

which looks already awesome even though we do not present it here in its
full generality. As was shown in [52], the continuous limit of this mapping is
the PIV equation. We speculate that equations of the above form result from
complicated evolution paths in the corresponding geometry.

Moreover it is interesting to know that one can also look for d-P’s of the
form xn+1 = f(xn, yn), yn+1 = g(xn, yn), with the necessary reserve that the
backward evolution, xn−1 = h(xn, yn), yn−1 = k(xn, yn) be equally defined.
We point out here that this evolution is different from the one defined in the
QRT mapping. In the latter the variables are staggered, in the sense that
yn+1 is not defined in terms of xn and yn but rather in terms of yn and xn+1.

Discrete Systems from Contiguities of Continuous P’s
by Limiting Procedures
As we have seen in the previous sections, many difference P’s are just the
contiguity relations of the solutions of the continuous P’s. While the inde-
pendent variable is now what was previously a parameter of the continuous
P, the continuous independent variable t does not disappear but survives as
a parameter of the d-P. Moreover it is not a parameter the value of which
can be modified through a Schlesinger transformation. Given the relation to
the continuous Painlevé equation, there exist some values of t which play a
special role. In particular the values which correspond to the fixed singulari-
ties of the continuous Painlevé equations, namely (0,1,∞) for PVI, (0,∞) for
PV and PIII, and only ∞ for PIV and PII, are expected to play a role.

Let us now present some of these special limits, detailed analysis of which
may be found in [75]. Here we shall limit ourselves to the equations obtained
from the contiguity relations of the continuous PVI. Two such equations have
been presented in [73].

Let us start with the system,

xn + xn−1 =
zn + a

1 + yn/t
+
zn − a

1 + tyn
(7.23a)

ynyn+1 =
(xn − zn+1/2)

2 − p2

x2
n − c2

, (7.23b)

where zn = αn + β, even if n is not an integer. This equation was first
derived in [72], where we gave its Lax pair and showed that it was a discrete
form of PV. If we take t → 0 in (7.23), or t → ∞, since (7.23) is clearly
invariant under t → 1/t, a → −a, we find that the first equation reduces to
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xn + xn−1 = zn− a, i.e., a linear equation. Thus, at this limit, system (7.23)
is trivially linearised. Next we take t → 1. In this case (7.23a) reduces to
xn + xn−1 = 2zn/(1 + yn) which can be solved for y. We can thus obtain a
single equation for x,
(
xn + xn+1 − 2zn+1

xn + xn+1

)(
xn + xn−1 − 2zn
xn + xn−1

)
=

(xn − zn+1/2)
2 − p2

x2
n − c2

. (7.24)

This is an equation belonging to the family of d-PV we presented in [49] and
it is in fact linearisable, as we shall show below.

The two limits obtained above were performed in a straightforward way.
However it is possible to obtain more limiting cases if we renormalise the
variables appropriately. Let us examine again the t → 0 case. We introduce
Y = ty and take tp = k. The limit of (7.23a) now becomes xn + xn−1 =
(zn − a)/(1 + Yn) and we can solve this equation for Y . Substituting Y into
the limit of (7.23b) we find:

(
xn + xn+1 − zn+1 + a

xn + xn+1

)(
xn + xn−1 − zn + a

xn + xn−1

)
=

k2

x2
n − c2

(7.25)

This equation is the Miura of the equation we call the alternate d-PII [63].
In the case t → 1 we introduce t = 1 + ε, x = X/ε, y = −1 − εY , c = 1/ε,
p2 = 1/ε2 − 2q/ε and obtain, at the limit ε→ 0, the mapping:

Xn +Xn−1 = 2
Ynzn + a

1 − Y 2
n

(7.26a)

Yn + Yn+1 = 2
Xnzn + q

1 −X2
n

, (7.26b)

which is known as the asymmetric d-PII equation and constitutes a discrete
form of PIII.

The second equation coming from PVI is the one we presented in [73]
together with its Lax pair.

zn+1/2

1 − xnxn+1
+

zn−1/2

1 − xnxn−1
= a+zn+

b(t2 − 1)xn + t(1 − x2
n)(zn/2 + (−1)nc)

(t+ xn)(1 + txn)
.

(7.27)
It also has PV as a continuous limit. Again the limit t→ 0 (or t→ ∞) is

straightforward. The equation reduces to zn+1/2/(1 − xnxn+1) + zn−1/2/(1 −
xnxn−1) = a− b+ zn which is linear for the quantity 1/(1 − xnxn+1). Thus
this limit is trivially linearisable. The limit t → 1 is more interesting. We
obtain

zn+1/2

1 − xnxn+1
+

zn−1/2

1 − xnxn−1
= a+ zn +

1 − xn
1 + xn

(zn/2 + (−1)nc). (7.28)

This equation is a new discrete system, which we expect to be integrable,
since it is a limit of an integrable one. Moreover the iteration of some initial
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data leads to a linear degree growth. Thus we surmise that this system is
linearisable. Its linearisation will be given below.

Just as in the case of (7.23) we can take the limits t → 0 (or t → ∞)
and t → 1 in a subtler way. For the t → 0 case we put x = 2t−1/(X − 1),
z = 4 + t2Z, a = −2 + At2/2, b = 2 + At2/2 and c = −Ct2/2. At the limit
we find:

Xn+1 +Xn−1 =
ZnXn +A+ (−1)nC

1 −X2
n

, (7.29)

i.e., the asymmetric d-PII equation.
In the case of the limit t→ 1 we can obtain an equation somewhat richer

than (7.28). It suffices to assume that, while t goes to 1, b diverges so as to
keep the quantity b(t2 − 1) finite. We thus find the limit

zn+1/2

1 − xnxn+1
+

zn−1/2

1 − xnxn−1
= a+ zn +

kxn
(1 + xn)2

+
1 − xn
1 + xn

(zn/2 + (−1)nc).

(7.30)
This equation is different from (7.28). As a matter of fact (7.30) is a new dis-
crete Painlevé equation. An equivalent form of this equation can be obtained
if we take x = (1 −X)/(1 +X). We find, in this new variable,

zn+1/2

Xn +Xn+1
+

zn−1/2

Xn +Xn−1
=
k

2
+ 2

a+Xn(−zn/2 + (−1)nc)
1 −X2

n

, (7.31)

Next we introduce the new auxiliary variable Y through k(Yn − 1)/4 =
zn+1/2/(Xn +Xn+1). Equation (7.31) can now be written as a system

Yn + Yn−1 =
A+ (Zn + (−1)nC)Xn

X2
n − 1

(7.32a)

Xn +Xn+1 =
Zn+1/2

Yn − 1
, (7.32b)

with the appropriate redefinitions of a, c ,and z. We can recognize (7.32a) as
part of the asymmetric d-PII equation.

Let us now present the linearisation of the two equations we obtained
above. We start from (7.28), which we rewrite as

2ζn+1/2

1 − xnxn+1
+

2ζn−1/2

1 − xnxn−1
= a+ ζn−1/2 + ζn+1/2 +

1 − xn
1 + xn

Zn (7.33)

by introducing two new functions, ζ and Z, and we have just used the prop-
erty that the quantity appearing on the right-hand side is the half-sum of the
two quantities appearing at the numerators of the left-hand side. With this
parametrisation, the linearisation condition is Zn + Zn+1 = ζn−1/2 + ζn+3/2.
Thus only one free function remains. A most convenient way to parametrise
this linearisability condition is to introduce a free function φ and express ζ
and Z as ζn+1/2 = φn + φn+1 and Zn = φn−1 + φn+1.



308 B. Grammaticos and A. Ramani

In order to linearise (7.33) we first introduce the auxiliary variable w by
wn = 2ζn+1/2/(1 − xnxn+1) − ζn+1/2. Equation (7.33) becomes

wn + wn−1 − a =
1 − xn
1 + xn

Zn, (7.34)

which can be solved for xn in terms of wn, wn−1. Substituting this expression
for x back into the definition of w we find the equation

((wn−1 + wn − a)ζn+1/2 − Znwn)((wn+1 + wn − a)ζn+1/2 − Zn+1wn) =

(w2
n − ζ2

n+1/2)ZnZn+1. (7.35)

We can formally introduce a parameter p into the equation and rewrite it as

((wn−1 + wn − a)ζn+1/2 − Znwn)((wn+1 + wn − a)ζn+1/2 − Zn+1wn) =

(w2
n − pζ2

n+1/2)ZnZn+1. (7.36)

If we eliminate p between (7.36) and its upshift we find a four-point equation
relating four w’s (from n− 1 to n+2). On the other hand consider the linear
equation

Anwn+1 +Bn(a− wn) +An+1wn−1 + r(Znwn+1 + (Zn + Zn+1)(wn − a)
+Zn+1wn−1) = 0, (7.37)

where r is an arbitrary constant and A and B have simple expressions in
terms of φ: An = φ2

n(φn−1 + φn+1), Bn = (φn + φn+1)φn−1φn+2 + (φn−1 +
φn+2)φnφn+1. Eliminating r between (7.37) and its upshift leads to exactly
the same four-point equation as the one obtained from (7.35). The way to
integrate (7.35) becomes clear. Start from two initial conditions for w, say
w−1 and w0. Use (7.35) to compute w1, so (7.36) is satisfied with p = 1 for
these values of the w’s. Substitute all three values of w into (7.37) and set
r so that the latter is satisfied. From then on, integrate the linear equation
(7.37) for this value of r to obtain all the w’s. This ensures that the four-point
equation we referred to above is always satisfied for these values of the w’s
and, thus, so is (7.36) for a constant value of p, namely 1. So indeed (7.35) is
satisfied for all values of n. Using the definition of x in terms of w we finally
obtain the solution of (7.28).

The other case to be linearised is (7.24). We start by rewriting it in a
more convenient form as

xn + xn+1 − zn − zn+1

xn + xn+1

xn + xn−1 − zn − zn−1

xn + xn−1
=

(xn − zn)2 +m+ q

x2
n −m+ q

,

(7.38)
where m and q are constants. Next we compute the discrete derivative of
(7.38) obtained by using the fact that q is a constant, i.e., eliminating q
between (7.38) and its upshift. We do not give here the lengthy equation,
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relating four x’s (from n − 1 to n + 2) that results, but it can readily be
obtained using a symbolic-manipulation program. Next we write the linear
equation

znxn = m− k + (k +
z2n
2

)
(
xn + xn+1

zn + zn+1
+
xn + xn−1

zn + zn−1

)
, (7.39)

where a free constant k appears. It turns out that if we compute the dis-
crete derivative of (7.39) using the fact that k is a constant, i.e., eliminating
k between (7.39) and its up-shift, the four-point equation thus obtained is
identical to the one we found above starting from (7.38). The way to inte-
grate the latter is similar to the way (7.28) was integrated. Start from two
initial conditions for x, say x−1 and x0 and two constants m and q. Use (7.38)
to compute x1, substitute all three values of x into (7.39) and fix k so that
the latter is satisfied. From then on, integrate (7.39), which is linear, for this
value of k to obtain all the x’s.

Mappings Obtained for Special Values of q
One interesting result is the recent discovery of second-order autonomous
mappings which are not explicitly of QRT form but still possess an invari-
ant. The departure from the QRT type manifests itself in the fact that the
invariant, instead of being biquadratic is biquartic. The first such example
encountered was the mapping [76]

(xnxn+1 − 1)(xnxn−1 − 1) =
(x− a)(x− 1/a)(x2 − 1)

p2x2 − 1
. (7.40)

The conserved quantity is

K =(
(xn − xn−1)2 − p2(xnxn−1 − 1)2

)(
(xn + xn−1 − a− 1/a)2 − p2(xnxn−1 − 1)2

)
(xnxn−1 − 1)2

,

(7.41)

which isquartic in xn and xn−1 separately.
We shall not elaborate here on the possible existence of a transformation

which could bring (7.40) into QRT form. We believe that such a transfor-
mation exists but must be prohibitively complicated to derive. There exists
however a way to explain the existence of a mapping like (7.40) and to link
it to the discrete Painlevé equations. Let us start with the full asymmetric
q-PV

(xnyn − 1)(xnyn−1 − 1) =
(xn − a)(xn − b)(xn − c)(xn − d)

(pqnxn − 1)(rqnxn − 1)
(7.42a)

(xn+1yn − 1)(xnyn − 1) =
(yn − 1/a)(yn − 1/b)(yn − 1/c)(yn − 1/d)

(sqnyn − 1)(tqnyn − 1)
,

(7.42b)
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where the parameters satisfy the constraints abcd = 1 and st = qpr. Next
we try to obtain autonomous reductions of this mapping but, instead of the
trivial choice q = 1 we take q = −1. In order for the mapping to be indeed
autonomous we must set p + r = 0, s + t = 0. Then the constraint becomes
s2 = −p2, or s = ip. Next we introduce the scalings x → x

√
i, y → y/

√
i,

p → p/
√
i, a → a

√
i, b → b

√
i, c → c

√
i, d → d

√
i so that we now have

abcd = −1 intead of 1. We thus find the mapping

(xnyn − 1)(xnyn−1 − 1) =
(xn − a)(xn − b)(xn − c)(xn − d)

p2x2
n − 1

(7.43a)

(xn+1yn − 1)(xnyn − 1) =
(yn − 1/a)(yn − 1/b)(yn − 1/c)(yn − 1/d)

p2y2
n − 1

.

(7.43b)
This autonomous mapping is in fact an asymmetric extension of (7.40). It
turns out that it also has a biquartic invariant,

K =
(x(x− s1) + y(y − s−1) − (p(xy − 1))2)2 − 4(x(x− s1) + s2)(y(y − s−1) − s2)

(xy − 1)2
.

(7.44)

where s1 = a+ b+ c+ d, s−1 = 1/a+ 1/b+ 1/c+ 1/d, s2 = (ab+ ac+ ad+
bc+ bd+ cd)/2. By invariance, we mean that K has the same value whether
{x, y} stands for {xn, yn} or for {xn, yn−1}.

We can obtain the symmetric reduction of (7.43) to precisely (7.40). We
identify yn−1 = X2n−1, xn = X2n, yn = X2n+1, etc. and demand that (7.43b)
be just the upshift of (7.43a). The root 1/a in the right-hand side of (7.43b)
should coincide with one of the roots in the right-hand side of (7.43a). So
unless a = ±1, without loss of generality one may assume that 1/a = b and
thus d = −1/c. Then, the root 1/c in the right-hand side of (7.43b) can only
coincide with the root c in the right-hand side of (7.43a), so c = −d = ±1.
Had we taken a = ±1 we would have found the same result, up to a renaming
of the parameters.

From this construction we see clearly that (7.40) as well as its asym-
metric form (7.43) are just special, artificially autonomised, cases of (nonau-
tonomous) discrete Painlevé equations. Once this construction has been ob-
tained for q-PV, it is quite easy to extend it to other families of discrete
Painlevé equations and try to obtain autonomous mappings with quartic in-
variants.

As an illustration we start from the q-PV which was introduced in [77],

ynyn−1 =
(xn − aqn)(xn − bqn)

1 − pxn
(7.45a)

xn+1xn =
(yn − cqn)(yn − dqn)

1 − ryn
(7.45b)
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with the constraint cd = qab. We try again to obtain an autonomous reduc-
tion with q = −1. This imposes a+ b = c+ d = 0, and c2 = −a2. One could
leave the mapping in this form, but for reasons that will appear shortly, we
introduce a change of variables, x→ x/

√
pr, y → iy/

√
pr, r → r/i. Then the

mapping becomes

ynyn−1 =
x2
n − t2

sxn − 1
(7.46a)

xn+1xn =
y2
n − t2

yn/s− 1
(7.46b)

where s =
√
p/r and t2 = pra2. The autonomous mapping resulting from this

construction is indeed integrable since it is just a subcase of an integrable,
nonautonomous discrete Painlevé equation. Moreover, it possesses a biquartic
invariant, and again this mapping is not of QRT type,

K ≡
x2y2(sy − x/s)2 + 2xy(x2 − y2)(sy − x/s) + 2t2xy(sy + x/s) + (x2 + y2 − t2)2

x2y2 ,

(7.47)

where againK is invariant whether {x, y} stands for {xn, yn} or for {xn, yn−1}.
With this choice of variables, we again identify yn−1 = X2n−1, xn = X2n,

yn = X2n+1 - but, for simplicity, we denote the new variable by x rather than
X - leads, in the special case of s = 1/s, to a symmetric, one-component,
form of this mapping,

xn+1xn−1 =
x2
n − t2

xn − 1
. (7.48)

The invariant for (7.48) can be simply obtained from (7.47),

K =
x2
nx

2
n−1(xn − xn−1)2 − 2xnxn−1(xn + xn−1)((xn − xn−1)2 − t2) + (x2

n + x2
n−1 − t2)2

x2
nx

2
n−1

.

(7.49)

The integration of mappings like (7.40) was recently presented in [30]. Quite
expectedly the solution is still given in terms of elliptic functions.

Discrete P’s for Noncommuting Variables
Integrable equations involving noncommuting variables can be of particu-
lar interest since they can have an applicability in quantum field theories.
Discrete systems present an additional difficulty. Indeed, most commutation
rules one can introduce for the quantification of a discrete system are in-
compatible with the evolution induced by the mapping. By this we mean
that if we assume that the mapping variables obey some commutation rules
at some iteration, there is no guarantee whatsoever that, at the next step,
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the mapping variables will obey the same commutation rule. In particular,
the Heisenberg commutation relation [x, y] = 1 is not necessarily the proper
commutation rule for all the mappings we shall examine here, although it
does work for a certain class). On the other hand there is no deep physical
reason, such as the Hamiltonian structure in the case of the Heisenberg rule,
why one should choose one rule over another. “Exotic” commutation rules
have been introduced in [78,79] and used for the quantization of mappings.

Below we shall summarise our findings on d-P’s. As we have already ex-
plained, the integrability properties of the d-P’s are reflected in the existence
of Lax pairs,

h
dΦn
dh

= LnΦn

Φn+1 = MnΦn, (7.50)

the d-P’s being obtained from the compatibility

h
dMn

dh
= Ln+1Mn −MnLn. (7.51)

In the quantized case, the ordering is important and must be respected
throughout. Let us illustrate this point in the case of d-PI. (In what follows
we will use the notation, x ≡ xn+1, x ≡ xn and x ≡ xn−1).

In [46] we presented a 3 × 3 matrix realisation of the Lax pairs,

L =



λ1 x 1
h λ2 c− x− x
hx h λ3


 M =




(λ1 − λ2)x−1 1 0
0 0 1
h 0 0


 , (7.52)

where λ1 = const., λ2 = λ+ n
2 , λ2 = λ+ n+1

2 . Using (7.51), one finds that

x+ x+ x = c+ (λ1 − λ2)x−1, (7.53)

i.e., the usual form of d-PI without any quantum corrections. Moreover the
expressions for L andM are the straightforward transcriptions of the classical
ones. No ordering ambiguity appears. That this need not be always the case
can be seen in the 2 × 2 Lax pair of Fokas et al. [80] for the same equation
d-PI. Starting from

M =
(

2µx− 1
2 −x− 1

2x
1
2

1 0

)
L =

(
−µ(2x− c) (x+ x− c)x

1
2

−(x+ x− c)x
1
2 µ(2x− c)

)
(7.54)

and the compatibility condition, dMn

dµ = Ln+1Mn−MnLn - notice the differ-
ent definition of the spectral parameter! -, one has to make in (7.54) specific
choices for the order of the x, x and x terms. The order which was actually
used in (7.54) is in fact the one leading to the correct d-PI. Indeed one finds,
using the compatibility relation (7.51),

X −X + 1 = x
1
2xx

1
2 − x

1
2xx

1
2 , (7.55)
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where X = −4µ2x + x
1
2 (x + x + x − c)x

1
2 . Now, it can be shown that if

[x, x] = 1, then the right-hand side of (7.55) vanishes, whereupon the latter
is integrated to X = n+κ. Multiplying by x− 1

2 from right and left we obtain
(7.53).

While in the last case the choice of ordering was important, for the re-
maining cases of known Lax pairs for d-P’s the situation is quite simple: No
ordering ambiguities exist and one obtains the quantum analogue of the cor-
responding discrete Painlevé equation in a straightforward way. Thus for the
second d-PI we have

L =
(

hx+ λ1 h+ y
h2 + h(c2 − y + c1x− x2) h(c1 − x) + λ2

)
M =

(
(λ1 − λ2)y−1 1

h 0

)
,

(7.56)
where λ1 = const. and λ2 = n+ c, leading to

x+ x = c+ (λ1 − λ2)y−1 (7.57a)

y + y = c2 + xc1 − x2. (7.574b)

Similarly, for d-PII one finds that

L =



λ1 x 1 0
0 λ2 c− x 1
h 0 λ3 c− x
hx h 0 λ4




and

M =




(λ1 − λ2)x−1 1 0 0
0 0 1 0
0 0 (λ3 − λ4)(c− x)−1 1
h 0 0 0


 , (7.58)

where λ1 = const., λ3 = const., λ2 = n−1
2 + λ and λ4 = n

2 + λ leading to

x+ x = c+ (λ1 − λ2)x−1 + (λ3 − λ4)(c− x)−1
. (7.59)

Finally for d-PIII we recall that the isospectral problem is of q-difference type
rather than a differential one

Φn(ρh) = Ln(h)Φn(h), Φn+1(h) = Mn(h)Φn(h). (7.60)

The compatibility condition, in the case of (7.60), is

Mn(ρh)Ln(h) = Ln+1(h)Mn(h). (7.61)

Here, using xx = qxx,

L =




λ1 λ1 + κx−1 κx−1 0
0 λ2 λ2 + x x
hx 0 λ3 λ3 + x

h(λ4 + ακx−1) hακx−1 0 λ4
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and

M =



Λ1(λ4 + ακx−1)−1 (λ1x+ κ)(λ2x+ κ)−1 0 0

0 0 1 0
0 0 Λ2(x+ ρλ2)−1 (x+ λ3)(x+ λ4)−1

h 0 0 0


,

(7.62)
with α2 = ρ, λ1 = const., λ3 = const., λ2 = λαn−1, λ4 = λαn , Λ1 =
αλ1 − λ4, Λ2 = λ3 − ρλ2, κ = Cαn.

The quantized mapping is obtained by the application of (7.61),

x(κ+ λ1x)(κ+ λ2x)−1x = ακ(x+ λ3)(x+ λ4)−1. (7.63)

We can remark at this point that (7.63) does not depend explicitly on the
quantum parameter q. This should be related to specific way (7.63) was
written. If we compare (7.63) to (3.2), where f2 is set to zero, - which is the
appropriate choice for d-PIII –, we see that the ordering of the variables is
different. Had we written (7.63) exactly as (3.2) or, equivalently, in the form
xx = W (x), explicit q-dependence would have appeared.

Since many of the difference P’s can be obtained as contiguity of contin-
uous P’s, and thus possess a Lax pair almost “by construction”, it would be
interesting to investigate the possibility for a systematic quantization starting
from the Lax pairs of the continuous P’s and their Schlesinger transforma-
tions.

Delay-Differential Extensions of P’s
Another interesting extension of P’s is to the semi-discrete domain of delay-
differential equations. We have examined in [40] a particular class of dis-
crete/continuous systems, differential-delay equations, where the dependent
function appears at a given time t and also at previous times t−τ , t−2τ ,. . . ,
where τ is the delay. Our approach treats hystero-differential equations as
differential-difference systems. The u(t + kτ) for various k’s are treated as
different functions of the continuous variable, indexed by k, u(t+kτ) = uk(t).
A detailed analysis of a particular class of such delay systems, i.e., equations
of the form

F (uk, uk−1, u
′
k, u

′
k−1) = 0 (7.64)

which are bi-Riccati, has led to the discovery of a new class of transcendents,
the delay-Painlevé equations (D-P’s). We have, for example, with u = u(t)
and u = u(t+ τ), a particular form of D-PI,

u′ + u′ = (u− u)2 + k(u+ u) + λt. (7.65)

Our results indicate that the D-P’s are objects that may go beyond the
Painlevé transcendents.

First-order, three-point D-P’s have also been identified although our in-
vestigation in this case is still in an initial phase. An example of D-PI may
be written
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u′

u
=
u

u
+ λt (7.66)

The general form that contains all integrable cases is the mapping,

u =
f1(u, u′) − f2(u, u′)u
f4(u, u′) − f3(u, u′)u

, (7.67)

where the fi are ‘Riccati-like’ objects, fi = αiu
′ + βiu

2 + γiu + δi, with
α, β, γ, δ functions of t. Unfortunately the domain has not attracted much
attention since the first exploratory investigations.

Ultra-discrete P’s
The last extension of P’s we shall present here is to the ultra-discrete domain.
This name is used to designate systems where the dependent variables as well
as the independent ones, assume only discrete values. In this respect ultra-
discrete systems are generalised cellular automata. The name of ultra-discrete
is reserved for systems obtained from discrete ones through a specific limiting
procedure introduced in [81] by the Tokyo-Kyoto group.

Before introducing the ultra-discrete limit let us first consider the question
of nonlinearity. How simple can a nonlinear system be and still be genuinely
nonlinear. The nonlinearities to which we are we are accustomed, involving
powers, are not necessarily the simplest. It turns out (admittedly with hind-
sight) that the simplest nonlinear function of x one can think of is |x|. It is
indeed linear for both x > 0 and x < 0 and the nonlinearity comes only from
the different determinations. Thus one would expect the equations involv-
ing nonlinearities only in terms of absolute values to be the simplest. The
ultra-discrete limit does just that, i.e., it converts a given (discrete) nonlin-
ear equation to one where only absolute-value nonlinearities appear. The key
relation is the following limit,

lim
ε→0+

ε log(1 + ex/ε) = max(0, x) = (x+ |x|)/2 . (7.68)

Other equivalent expressions exist for this limi, and the notation that is often
used is the truncated power function (x)+ ≡ max(0, x). It is easy to show
that limε→0+ ε log(ex/ε + ey/ε) = max(x, y), and the extension to n terms in
the argument of the logarithm is straightforward.

Two remarks are in order at this point. First, since the function (x)+
takes only integer values when the argument is integer, the ultra-discrete
equations can describe generalised cellular automata, provided one restricts
the initial conditions to integer values. This approach has already been used
in order to introduce cellular automata (and generalised cellular automata)
related to many interesting evolution equations [82]. Second, the necessary
condition for the procedure to be applicable is that the dependent variables
be positive, since we are taking a logarithm and we require that the result
assume values in Z. This means that only some solutions of the discrete
equations will survive in the ultra-discretisation.
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As an illustration of the method and a natural introduction to ultra-
discrete Painlevé equations, let us consider the following discrete Toda sys-
tem,

ut+1
n − 2utn + ut−1

n =

log(1+δ2(eu
t
n+1−1))−2 log(1+δ2(eu

t
n−1))+log(1+δ2(eu

t
n−1−1)), (7.69)

which is the integrable discretisation of the continuous Toda system,

d2rn
dt2

= ern+1 − 2ern + ern−1 . (7.70)

For the ultra-discrete limit one introduces w by δ = e−L/2ε, wtn = εutn − L,
and takes the limit ε → 0. Thus the ultra-discrete limit of (7.69) becomes
simply

wt+1
n − 2wtn + wt−1

n = (wtn+1)+ − 2(wtn)+ + (wtn−1)+ . (7.71)

Equation (7.71) is the cellular automaton analogue of the Toda system (7.69).
Let us now restrict ourselves to a simple periodic case with period 2, i.e.,

rn+2 = rn and similarly wn+2 = wn. Calling r0 = x and r1 = y, we have, from
(7.70), the equations ẍ = 2ey − 2ex and ÿ = 2ex − 2ey leading to ẍ+ ÿ = 0.
Thus x+ y = µt+ ν, and we obtain, after some elementary manipulations,

ẍ = aeµte−x − 2ex. (7.72)

Equation (7.72) is a special form of the Painlevé PIII equation. Indeed, setting
v = ex−µt/2, we find that

v̈ =
v̇2

v
+ eµt/2(a− 2v2). (7.73)

The same periodic reduction can be performed on the ultra-discrete Toda
equation (4.13). We introduce wt0 = Xt, wt1 = Y t and have, in perfect analogy
to the continuous case, Xt+1 − 2Xt +Xt−1 = 2(Y t)+ − 2(Xt)+ and Y t+1 −
2Y t + Y t−1 = 2(Xt)+ − 2(Y t)+. Again, ∆2

t (X
t + Y t) = 0 and we can take

Xt + Y t = mt + p, where m, t, p take integer values. We find thus that X
obeys the ultra-discrete equation,

Xt+1 − 2Xt +Xt−1 = 2(mt+ p−Xt)+ − 2(Xt)+ . (7.74)

This is the ultra-discrete analogue of the special form (7.73) of the Painlevé
PIII equation [85].

In order to construct the ultra-discrete analogues of the other Painlevé
equations we must start with the discrete form that allows the ultra-discrete
limit to be taken. The general procedure is to start with an equation for x,
introduce X by x = eX/ε, and then take the limit ε → 0. Clearly the sub-
stitution x = eX/ε requires x to be positive. This is a stringent requirement
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that limits the exploitable form of the d-P’s to multiplicative ones. Fortu-
nately many such forms are known for the discrete Painlevé transcendents.
For instance for d-PI there are the multiplicative, q-forms:

d-PI−1

xn+1xn−1 =
λn

xn
+

1
x2
n

d-PI−2

xn+1xn−1 = λn +
1
xn

d-PI−3

xn+1xn−1 = λnxn + 1

From them it is straightforward to obtain the canonical forms of the ultra-
discrete PI:

u-PI−1

Xn+1 +Xn−1 + 2Xn = (Xn + n)+

u-PI−2

Xn+1 +Xn−1 +Xn = (Xn + n)+

u-PI−3

Xn+1 +Xn−1 = (Xn + n)+ .

Ultra-discrete forms have been derived for all Painlevé equations [83]. More-
over we have shown that their properties are in perfect parallel to those of
their discrete and continuous analogues (degeneration through coalescence,
existence of special solutions, auto-Bäcklund and Schlesinger transforma-
tions).

Eπίλoγoς

8 Epilogue

Faithful readers of our works must have already noticed that while we love
introductions we hate conclusions. Following our general practice we shall
keep this one as short as possible.

Our plan was to convince our readers that a) discrete systems are the
most fundamental ones and b) that discrete P’s are fascinating objects with
all kinds of interesting properties. A thorough monitoring of the activity in
the domain will test whether or not we have succeeded.
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pp 413-516 in reference [2].
20. R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Associated Press,

London (1982), p 471.
21. A. Ramani, S. Carstea, B. Grammaticos and Y. Ohta, Physica A 305 (2002)

437.
22. A. Iatrou and J.A.G. Roberts, J. Phys. A 34 (2001) 6617.
23. B. Grammaticos, A. Ramani and V. Papageorgiou, Phys. Rev. Lett. 67 (1991)

1825.
24. A. Ramani, B. Grammaticos and J. Hietarinta, Phys. Rev. Lett. 67 (1991) 1829.
25. M. J. Ablowitz, A. Ramani and H. Segur, Lett. Nuovo Cim. 23 (1978) 333.
26. A. Ramani, B. Grammaticos and S. Tremblay, J. Phys. A 33 (2000) 3045.
27. A. Ramani, B. Grammaticos and T. Bountis, Phys. Rep. 180 (1989) 159.
28. B. Grammaticos, A. Ramani and V. Papageorgiou, CRM Lecture Notes 9

(1996) 303.
29. B. Grammaticos, A. Ramani and K. M. Tamizhmani, Jour. Phys. A 27 (1994)

559.
30. C. M. Viallet, A. Ramani and B. Grammaticos, Phys. Lett. A 322 (2004) 186.
31. J. Satsuma, private communication (1992).
32. R. Conte and M. Musette, Phys. Lett. A 223 (1996) 439.
33. V. I. Arnold, Bol. Soc. Bras. Mat. 21 (1990) 1.
34. A. P. Veselov, Comm. Math. Phys. 145 (1992) 181.
35. G. Falqui and C.-M. Viallet, Comm. Math. Phys. 154 (1993) 111.
36. J. Hietarinta and C. Viallet, Phys. Rev. Lett. 81 (1998) 325.
37. T. Takenawa, J. Phys. A 34 (2001) L95.
38. A. Ramani, B. Grammaticos, S. Lafortune and Y. Ohta, J. Phys. A 33 (2000)

L287.
39. N. Yanagihara, Arch. Ration. Mech. Anal. 91 (1985) 169.
40. B. Grammaticos, A. Ramani and I. Moreira, Physica A 196 (1993) 574.
41. M. J. Ablowitz, R. Halburd and B. Herbst, Nonlinearity 13 (2000) 889.
42. E. Hille, Ordinary Differential Equations in the Complex Domain, J. Wiley and

Sons, New York (1976).
43. G. Valiron, Bull. Soc. Math. France 59 (1931) 17.
44. B. Grammaticos, T. Tamizhmani, A. Ramani and K. M. Tamizhmani, J. Phys

A 34 (2001) 3811.
45. Y. Ohta, K. M. Tamizhmani, B. Grammaticos and A. Ramani, Phys. Lett. A

262 (1999) 152.
46. V. G. Papageorgiou, F. W. Nijhoff, B. Grammaticos and A. Ramani, Phys.

Lett. A164 (1992) 57.
47. A. Ramani and B. Grammaticos, Physica A 228 (1996) 160.



320 B. Grammaticos and A. Ramani

48. B. Grammaticos, T. Tamizhmani, A. Ramani, A. S. Carstea and K. M. Tamizh-
mani, J. Phys. Soc. Japan 71 (2002) 443.

49. B. Grammaticos and A. Ramani, Phys. Lett. A 257 (1999) 288.
50. A. Ramani, B. Grammaticos and Y. Ohta, The Painlevé of discrete equa-
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Abstract. We construct special solutions for the discrete Painlevé equations. We
start with a review of the corresponding solutions in the case of the continuous
Painlevé equations and then proceed to construct the solutions in the discrete case.
We show how, starting from an elementary, seed solution, one can use the auto-
Bäcklund transformations in order to build iteratively ‘higher’ solutions. Using the
bilinear formalism we show that the τ -functions for these ‘higher’ solutions can be
cast into the form of Casorati determinants.

Prologue

Solutions are what differential equations are all about. When one formulates
a problem in terms of a differential system what one is interested in are the
solutions of the system, their properties and, whenever possible, their ex-
act dependence on the independent variable, the parameters of the equation
and the initial conditions. Painlevé equations occupy a very special position
among differential equations [1]. These second-order equations were, indeed,
proposed as the first example of equations which introduce new functions.
The name Painlevé transcendents was coined especially in order to denote the
solutions of the Painlevé equations, which in general cannot be expressed in
terms of elementary functions. Although the existence of functions defined by
the solutions of the Painlevé equations was guaranteed by the Painlevé prop-
erty [2] (absence of initial-condition-dependent, multivaluedness-inducing sin-
gularities), it was not clear how to obtain them. The construction of the so-
lutions of the Painlevé equations had to wait three-quarters of a century. It
was finally obtained in [3] following the development of spectral methods like
the Inverse Scattering Transform for the study of the solution of integrable
evolution equations.

Unfortunately the solution of the Painlevé equations by means of linear
integro-differential equations is not quite explicit and, although one can, in
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Discrete Painlevé Equations, Lect. Notes Phys. 644, 323–382 (2004)
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principle deduce all the properties of the transcendents, one cannot easily
form a qualitative idea of their behaviour. Fortunately, while the general
solution of a Painlevé equation cannot be expressed in terms of elementary
functions, there exist simple solutions which can be obtained through the
solution of Riccati (or even linear) first-order equations. These solutions are
not only one-degree-of-freedom ones but, moreover, they exist provided the
parameters of the Painlevé equation satisfy some constraint. The method for
the derivation of such solutions will be reviewed in what follows. Obtaining
a solution of a Painlevé equation in terms of an elementary function allows
one to study it easily, tabulate its values and graph its behaviour. This often
suffices for a rough, qualitative idea of how the solution behaves.

Another, quite different, approach is that of numerical simulations. Start-
ing form a given Painlevé equation, one introduces a difference scheme which
approximates the equation and uses it to construct iteratively the solution
starting from given initial data. This is where discrete Painlevé equations
enter the scene [4], they constitute integrable difference schemes for the con-
tinuous Painlevé equations (although, as explained in [5], they were not in-
troduced in this way). Discrete Painlevé equations are perfect simulators for
continuous Painlevé equations since they preserve their essential character,
integrability. Moreover, the property of singularity confinement [6] provides
the natural answer to one of the major problems of numerical analysis, the
treatment of divergences.

However the study of discrete Painlevé equations has made clear that
these objects are not only interesting for their own sake but are, in fact,
more fundamental than their continuous counterparts. They possess various
regimes [7] in which they simulate not only the continuous Painlevé equa-
tions but other systems as well. This has led to a series of works which has
tremendously increased our understanding of these particularly rich systems.
Quite expectedly, the properties of the continuous Painlevé equations find
themselves reflected in the properties of their discrete analogues.

In this expository article we shall focus on the existence of elementary
solutions for discrete Painlevé equations. As in the continuous case, these
solutions are obtained through some linearisation procedure, reduction to
Riccati or first-order linear equation. Moreover they exist only when the
coefficients of the equation satisfy some constraint. Such solutions are all the
more important since the solution of the inverse problem has not yet been
performed for the vast majority of the discrete Painlevé equations.

1 What Is a Discrete Painlevé Equation?

By a discrete Painlevé equation (d-P) we mean a nonautonomous, integrable
mapping which becomes, at the continuous limit, some (continuous) Painlevé
equation. Moreover we reserve the name of discrete Painlevé equation to
second-order mappings, in parallel with what is customary in the continuous
case. As explained in [8], numerous methods exist for the derivation of d-P’s:
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i) The methods related to some inverse problem. The discrete AKNS
method, the methods of orthogonal polynomials, of discrete dressing, of non-
isospectral deformations, etc. belong to this class.

ii) The methods based on some reduction. Similarity reduction of in-
tegrable lattices is the foremost among them, but this class contains the
methods based on limits, coalescences and degeneracies of d-P’s as well as
stationary reductions of nonautonomous differential-difference equations.

iii) The contiguity relations approach. Discrete P’s can be obtained from
the auto-Bäcklund, Miura and Schlesinger transformations of both continuous
and discrete Painlevé equations.

iv) The direct, constructive, approach. Two methods fall under this head-
ing. One is the construction of discrete Painlevé equations from the geometry
of some affine Weyl group. The other is the method of de-autonomisation us-
ing the singularity confinement approach.

In [9] we have focused on the constructive method which uses as starting
point the QRT [10] mapping. The latter is known under two canonical forms
called symmetric and asymmetric, and which involve one and two dependent
functions respectively. We have thus, for the symmetric QRT mapping the
form:

xn+1xn−1f3(xn) − (xn+1 + xn−1)f2(xn) + f1(xn) = 0, (1.1)

where the f ′
is are specific quartic polynomials involving 5 parameters. For

the asymmetric form we have the system:

xn+1xnf3(yn) − (xn+1 + xn)f2(yn) + f1(yn) = 0, (1.2a)

ynyn−1g3(xn) − (yn + yn−1)g2(xn) + g1(xn) = 0, (1.2b)

where the fi’s, and gi’s are specific quartic polynomials involving 8 parame-
ters. The rationale for the choice of the QRT mapping as starting point is that
its solutions are given in terms of elliptic functions. Since the autonomous
limits of continuous Painlevé equations are equations solvable in terms of
elliptic functions [11], it is quite reasonable to start from the QRT mapping
which has the latter property and de-autonomise it. The de-autonomisation
procedure consists of assuming that the parameters of the mapping are func-
tions of the dependent variable. We determine their precise form, compatible
with integrability, by the application of an integrability criterion. Depending
on the mapping from which we start, we may obtain a symmetric or asym-
metric d-P. In the latter case it turns out sometimes that the system can
be written in terms of more than two dependent variables. In these cases,
the equations are still of second-order since all but two equations are local,
rational relations of the dependent variables. We shall not go here neither
into the details of the derivation of the d-P’s nor into their classification.
These subjects are covered in the article of Grammaticos and Ramani [12].
It suffices to say that our current knowledge of d-P’s is quite detailed, and
that the various approaches have resulted in an identification of three kinds
of discrete Painlevé equations.
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The first kind of d-P is that of difference equations. The oldest example
known is that obtained in [13] by Shohat in 1939. In his study of orthogonal
polynomials he obtained the (integrable) recursion relation:

xn+1 + xn + xn−1 =
αn+ β + γ(−1)n

xn
+ 1 (1.3)

This equation was eventually shown [14] to be a discrete analogue of Pain-
levé I, when γ = 0. As a matter of fact, due to the presence of the (−1)n term,
this equation has a more natural form where even- and odd-index terms are
distinguished. Setting Xm = x2m and Ym = x2m+1, we find that,

Xm+1 +Xm + Ym =
Zm + C

Ym
+ 1

Ym + Ym−1 +Xm =
Zm − C

Xm
+ 1, (1.4)

where Zm = α(2m+1/2)+β and C = α/2−γ is a genuine parameter. So, due
to the even-odd degree of freedom the equation becomes a one-parameter d-
PII equation when γ is non-zero [15]. This example shows that the distinction
between “symmetric” and “asymmetric” forms is rather artificial. We will
keep it only for tradition’s sake and for lack of better terminology. Equation
(1.3) is a difference equation: the independent variable enters the equation in
an additive way, αn+ β.

The second kind of d-P is that of multiplicative, q-equations. They were
discovered by two of the authors in collaboration with J. Hietarinta [4] in
1991. The first such equation obtained was the q-discrete analogue of PIII:

xn+1xn−1 =
γe,ox

2
n + ζe,oλ

nxn + µλ2n

αx2
nn+ βe,oxn + γo,e

. (1.5)

Again we remark the presence of parity-dependent terms, γe,o, ζe,o and βe,o,
which suggests an asymmetric form for this equation and introduce three
more degrees of freedom with respect to the symmetric case, γe = γo,ζe = ζo
and βe = βo. This asymmetric equation was shown by Jimbo and Sakai [16]
to be a discrete analogue of PVI. Equation (1.5) is a multiplicative equation
since the independent variable enters through a term λn. This means that if
xn denotes the value of the dependent variable at a point z, i.e., xn = x(z),
then xn±1 are the values of x at points λz and z/λ, respectively.

The third kind of d-P was discovered by Sakai [17] in 1999 (in his PhD
thesis). He derived the classification of d-P’s in terms of affine Weyl groups
and found that equations related to the group E(1)

8 could be not only of differ-
ence and multiplicative kinds but also of a third kind where the independent
variable and the parameters of the equation enter through the arguments of
elliptic functions. These elliptic discrete Painlevé equations have very compli-
cated expressions as one can judge from the example below derived recently
by two of the authors in collaboration with Y. Ohta [18]:
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xn−1 − sn2(λn+ λ/2 + φ(n− 1) − (−1)nψ + ω(n);m)
xn−1 − sn2(λn+ λ/2 + φ(n− 1) − (−1)nψ − ω(n);m)

×xn − sn2(−2λn− φ(n− 1) − φ(n+ 1) + ω(n);m)
xn − sn2(−2λn− φ(n− 1) − φ(n+ 1) − ω(n);m)

×xn+1 − sn2(λn− λ/2 + φ(n− 1) + (−1)nψ + ω(n);m)
xn+1 − sn2(λn− λ/2 + φ(n− 1) − (−1)nψ − ω(n);m)

=

1 −m2sn2(λn+ α(n) + ω(n)
2 ;m)sn2(−λn+ β(n) − ω(n)

2 ;m)

1 −m2sn2(λn+ α(n) − ω(n)
2 ;m)sn2(−λn+ β(n) + ω(n)

2 ;m)

×
1 −m2sn2(λn+ α(n) − ω(n)

2 ;m)sn2(γ(n) + ω(n)
2 ;m)

1 −m2sn2(λn+ α(n) + ω(n)
2 ;m)sn2(γ(n) − ω(n)

2 ;m)

×
1 −m2sn2(−λn+ β(n) + ω(n)

2 ;m)sn2(γ(n) − ω(n)
2 ;m)

1 −m2sn2(−λn+ β(n) − ω(n)
2 ;m)sn2(γ(n) + ω(n)

2 ;m)
(1.6)

where we have introduced the auxiliary quantities α(n) = λ/6+(2φ(n−1)+
φ(n + 1) − (−1)nψ)/3, β(n) = λ/6 − (2φ(n + 1) + φ(n − 1) + (−1)nψ)/3,
γ(n) = (φ(n + 1) − φ(n − 1) + 2(−1)nψ − λ)/3 and where ψ is a constant,
φ(n + 3) = φ(n), i.e., φ has period three and ω(n + 4) = ω(n) i.e. ω has
period four so the whole equation has period 12. The total number of degrees
of freedom is 8, including the independent variable.

The domain of elliptic d-P’s is essentially unexplored. The possible forms
of these equations are far from known. In any case the solutions of elliptic
d-P’s will not be the object of the present course.

One thing that must be stated clearly is that the naming of d-P’s is not
without some arbitrariness. The convention that has been adopted was to
name a d-P according to its continuous limit. Thus equation (1.3) for γ = 0
is referred to as d-PI. (Even this convention is not applied consistently since
equation (1.4) is often referred to as “asymmetric d-PI”). The naming of d-
P’s after their continuous limit is inadequate. First, since there are only 6
continuous Painlevé equations and several dozen known d-P’s, it is natural
to have many discrete equations with the same limit. (In [19] we have com-
piled a, certainly non-exhaustive, list of 15 different d-PI’s). Moreover, since
the richest continuous Painlevé equation is PVI, which contains only four pa-
rameters, it is natural that all d-P’s with more than four parameters (they
can have up to 7) possess PVI as their continuous limit . One other difficulty
derives from the fact that a given d-P may have more than one continuous
limit. In [19] we have shown that the mapping

xn+1xn−1 =
αλn

xn
+

1
x2
n

, (1.7)
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which was known to be a q-discrete form of PI, may also become, at a different
continuous limit, the zero-parameter PIII equation. The situation can be made
even worse if one takes into account the fact that some d-P’s do not seem to
possess any nontrivial continuous limit. In [5] we have given the example of
such an equation:

xn+1 + xn + xn−1 =
αn+ β

xn
. (1.8)

These arguments show that the names we shall attribute to the equations we
shall examine in what follows must be considered cum grano salis. Still the
relation to continuous Painlevé equations will be a useful guide throughout.
(We are talking here about the relation in terms of the continuous limit.
The other relation some d-P’s bear to continuous Painlevé equations, namely
that of the former being contiguity relations of the latter, is an exact one and
the consequences drawn from this relationship are expected to be of general
validity).

2 Finding Special-Function Solutions

2.1 The Continuous Painlevé Equations
and Their Special Solutions

Before proceeding to the derivation of the solutions of discrete Painlevé equa-
tions, let us, as a reminder (and for pedagogical reasons as well), present the
derivation of the solutions of the continuous Painlevé equations in terms of
special functions, and the way they organise themselves in the degeneration
through the coalescence cascade of the equations.

The general form of a continuous Painlevé equations is

w′′ = f(w′, w, z), (2.1.1)

where f is polynomial in w′, rational in w and analytic in z. In order to find a
solution of (2.1.1) in terms of special functions we assume that w is a solution
of a Riccati equation,

w′ = Aw2 +Bw + C, (2.1.2)

where A,B and C are functions of z to be determined. Substituting (2.1.2)
into (2.1.1) yields an over-determined system which allows the determina-
tion of A, B and C and fixes the parameters of (2.1.1). Equation (2.1.2) is
subsequently linearised by the transformation

w = − u′

Au
. (2.1.3)

In the case of the Painlevé equations, the end result is an equation of the
hypergeometric family. The special solutions of the continuous Painlevé equa-
tions have been studied in detail in the monograph of Gromak and Lukashe-
vich [20]. However this is an almost inaccessible reference since the book
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is currently out of print and moreover it is in Russian. We prefer to retrace
these results here so as to present a consistent choice of normalisations, which
may be of help to people interested in the matter. Our aim here is not to
just present the solutions of continuous Painlevé equations is terms of special
functions, but also to insert them into the coalescence framework [21]. We
start with the PVI equation,

W ′′ =
W

′2

2
(

1
W

+
1

W − 1
+

1
W − Z

) −W ′(
1
Z

+
1

Z − 1
+

1
W − Z

)

+
W (W − 1)(W − Z)

2Z2(Z − 1)2
(
A− BZ

W 2 +C
Z − 1

(W − 1)2
− (D − 1)Z(Z − 1)

(W − Z)2
)
. (2.1.4)

When one requires the existence of a solution given by a Riccati equation
(2.1.2), the result is

W ′ =
P

Z(Z − 1)
W 2 +

QZ +M

Z(Z − 1)
W +

N

Z − 1
(2.1.5)

where the parameters P , Q, M and N are related by

P +Q+M +N = 0, (2.1.6)

and their relation to those of PVI is

A = P 2, B = N2, C = (Q+N)2, D = (P +Q− 1)2. (2.1.7)

The condition for the existence of (2.1.5) is obtained when one eliminates N ,
P and Q from equation (2.1.7),

ε1
√
A+ ε2

√
B + ε3

√
C + ε4

√
D = 1, (2.1.8)

where the εi’s are arbitrary signs. The linearisation of (2.1.5) is obtained in
a straightforward way by

W = −Z(Z − 1)U ′

PU
, (2.1.9)

and the transformation ζ = (1 − Z)−1 converts (2.1.5) to a hypergeometric
equation [22],

ζ(1 − ζ)
d2U

dζ2 + (Q− (1 −N − P )ζ)
dU

dζ
−NPU = 0. (2.1.10)

Before proceeding to the first coalescence, we introduce the following conven-
tion of notation. The variables and parameters of the “higher” equation will
be represented by upper-case letters, while those of the “lower” equation will
be represented by low-case ones. The small parameter will be denoted by δ,
and the coalescence corresponds to the limit δ → 0.
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Going from PVI to PV we set W = w, Z = 1 + δz, A = a, B = b,
C = d/δ2 + c/δ, D = d/δ2. One obtains thus PV,

w′′ = w
′2(

1
2w

+
1

w − 1
)−w

′

z
+

(w − 1)2

2z2
(aw− b

w
)+

cw

2z
− dw(w + 1)

2(w − 1)
. (2.1.11)

This coalescence limit is compatible with the linearisable case provided N =
n, P = p, Q = q/δ (and M = −q/δ − p − n). Using (2.1.6), the Riccati
equation becomes

w′ =
pw2

z
+

(qz − p− n)w
z

+
n

z
. (2.1.12)

The parameter constraints are transformed into

a = p2, b = n2, c = 2q(n+ 1 − p) and d = q2, (2.1.13)

and the condition is obtained readily,

ε1
√
a+ ε2

√
b+ ε3

c

2
√
d

= 1, (2.1.14)

for some choice of the signs εi’s. Equation (2.1.12) is linearised by a Cole-Hopf
transformation w = −(z/p)u′/u to a confluent hypergeometric equation,

u′′ −
(
q − 1 + n+ p

z

)
u′ +

npu

z2
= 0, (2.1.15)

which can be transformed either to a Kummer or a Whittaker equation.
From PV we can obtain two coalescence limits to PIV and PIII. In the

first case we set W = δw, Z = 1 + 2δz, A = 1/4δ4, B = b, C = −1/2δ4, and
D = 1/4δ4 + a/δ2 and obtain PIV in the form

w′′ =
w

′2

2w
+

3w3

2
+ 4zw2 + 2w(z2 + a) − 2b

w
. (2.1.16)

This limit is compatible with the Riccati equation (2.1.12), which becomes

w′ = w2 + 2zw + 2n, (2.1.17)

provided that P = Q = 1/2δ2, N = n. The coefficients of PIV (2.1.16), in the
linearisable case are given by

a = n+ 1, b = n2, (2.1.18)

with the obvious relation
a+ ε

√
b = 1 (2.1.19)

for some choice of the sign ε. The Riccati equation (2.1.17) linearises by
w = −u′/u to the Hermite equation

u′′ − 2zu′ + 2nu = 0. (2.1.20)
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For the second limit, to PIII, we set W = 1 + δw, Z = z, A = b/δ2 + a/δ,
B = b/δ2, C = cδ, D = dδ2 and obtain PIII in the noncanonical form

w′′ =
w

′2

w
− w′

z
+
bw3

z2
+
aw2

2z2
+

c

2z
− d

w
. (2.1.21)

For the linearisation of (2.1.18) we obtain the Riccati equation

w′ =
nw2

z
+
pw

z
+ q (2.1.22)

from the limit of (2.1.12) by N = n/δ, P = n/δ + p, and Q = qδ. The
parameters of the Riccati equation are related to those of PIII by

a = 2np, b = n2, c = 2q(1 − p), d = q2 (2.1.23)

corresponding to the linearisability condition

ε1
a

2
√
b

+ ε2
c

2
√
d

= 1 (2.1.24)

for some choice of the signs. The Riccati equation (2.1.22) is linearised
through the Cole-Hopf transformation w = −(z/n)u′/u leading to the equa-
tion

zu′′ + (1 − p)u′ + nqu = 0. (2.1.25)

The solution of the latter is given in terms of the Bessel function C as u =
zp/2 Cp(2

√
nqz).

Both PIV and PIII go to PII by coalescence. In the first case we set W =
2/δ3 + w/δ, Z = −2/δ3 + δz, A = 2/δ6 + a, B = 4/δ12 and obtain:

w′′ = 2w3 + 8wz + 4a. (2.1.26)

The Riccati equation (2.1.17) becomes

w′ = w2 + 4z, (2.1.27)

provided we take N = 2/δ6 with the linearisability condition

a = 1. (2.1.28)

The linearisation of (2.1.27) is straightforward, w = −u′/u, and leads to the
Airy equation

u′′ + 4zu = 0. (2.1.29)

In the second case we start from the noncanonical form of PIII (2.1.21). It
turns out that this does not make any difference at the level of PII, apart from
some unimportant coefficients. We set W = 1 + δw, Z = 1 + δ2z, A = −δ−6,
B = δ−6/4 + bδ−3, C = δ−6, and D = δ−6/4 and find, at the limit δ → 0,
PII in the form
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w′′ =
1
2
w3 +

1
2
wz + b. (2.1.30)

The limit of the Riccati equation (2.1.22) is obtained by Q = δ−3/2, N =
δ−3/2, and P = −δ−3

w′ =
1
2
(w2 + z). (2.1.31)

The linearisability condition is simply

2εb = 1, (2.1.32)

and the linearisation of the Riccati equation (2.1.31), with w = −2u′/u, leads
again to the Airy equation,

u′′ +
z

4
u = 0 (2.1.33)

Equation PII degenerates to PI through the appropriate limit. However this
coalescence does not present any interest for our purpose since it is incom-
patible with the existence of a Riccati equation. Indeed PI does not possess
any particular solution.

2.2 Special Function Solutions
for Symmetric Discrete Painlevé Equations

In this section we shall concentrate on d-P’s which are given in a symmetric
QRT form,

xn+1 =
f1(xn, n) − xn−1f2(xn, n)
f4(xn, n) − xn−1f3(xn, n)

(2.2.1)

where the fi’s are polynomials in xn of degree four at maximum. The solution
of (2.2.1) in terms of special functions proceeds by the introduction of a
discrete Riccati equation,

xn+1 =
Anxn +Bn
Cnxn +Dn

, (2.2.2)

where An, Bn, Cn and Dn are functions of n to be determined by substituting
(2.2.2) into (2.2.1). As in the continuous case, this fixes the parameters of
the d-P. The linearisation of (2.2.2) is again obtained by a Cole-Hopf trans-
formation,

xn =
(
Dn
Cn

)
yn+1 − yn

yn
, (2.2.3)

leading to the linear equation

Dn+1

Cn+1
yn+2 −

(
Dn+1

Cn+1
+
An
Cn

)
yn+1 +

(
An
Cn

− Bn
Dn

)
yn = 0. (2.2.4)
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Equation (2.2.4) turns out to be, in all cases concerning discrete Painlevé
equations, the discrete analogue of the hypergeometric equation or of one of
its degenerate forms.

Let us present our results following the degeneration cascade of the d-P’s
depicted in the diagram,

q-PVI −→ q-PV −→ q-PIII� � �
δ-PV −→ δ-PIV −→ δ-PII −→ δ-PI

The convention introduced in the case of continuous P’s, namely that the
variables and parameters of the equation higher in the degeneration cascade
will be represented by upper-case letters while those of the “lower” equation
will be denoted by low-case letters, will be used also here.

We start with q-PVI,

(xnxn+1 − znzn+1)(xnxn−1 − znzn−1)
(xnxn+1 − 1)(xnxn−1 − 1)

=

(xn − azn)(xn − zn/a)(xn − bzn)(xn − zn/b)
(xn − c)(xn − 1/c)(xn − d)(xn − 1/d)

, (2.2.5)

where zn = z0λ
n and a, b, c, d are free constants. The continuous PVI equation

has solutions in terms of hypergeometric functions for some special values of
the parameters. The same is true for q-PVI. The simplest way to obtain these
special solutions is to use the splitting technique [23]. We separate equation
(2.2.5) in two discrete Riccati, homographic, equations in the following way,

xnxn+1 − znzn+1

xnxn+1 − 1
=

(xn − azn)(xn − zn/a)
(xn − c)(xn − d)

(2.2.6a)

xnxn−1 − znzn−1

xnxn−1 − 1
=

(xn − bzn)(xn − zn/b)
(xn − 1/c)(xn − 1/d)

. (2.2.6b)

The two equations of system (2.2.6) are indeed homographic and compatible
provided the condition ab = λcd is satisfied. The linearisation of the discrete
Riccati equation is obtained by a Cole-Hopf transformation, xn = Pn/Qn,
resulting in the linear equation,

Qn+1(azn − d)(azn − c)((a+ b)zn−1 − c− d)
+aQn

(
(a+ b)zn−1((ab− 1)z2n + λ− cd) − (c+ d)((ab− 1/λ)z2n + 1 − cd)

)

−Qn−1(a− dzn)(a− czn)((a+ b)zn − c− d) = 0. (2.2.7)

Equation (2.2.7) has the hypergeometric equation as continuous limit. This
limit is simpler to obtain if we start from the discrete Riccati equation (2.2.6)
and implement the continuous limit by: λ = eε, a = −eεα, b = eεβ , c =
−eεγ , d = eεδ and moreover z = (1 +

√
ζ)/(1 −

√
ζ) and the transformation
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x = (
√
ζ + w)/(

√
ζ − w). In the limit ε→ 0 we are led to a continuous Riccati

equation which can be linearized through the Cole-Hopf w = ζ − ζ(1−ζ)
γu

du
dζ ,

leading to

ζ(1 − ζ)
d2u

dζ2 + (β − δ − (β + γ + 1)ζ)
du

dζ
− βγu = 0, (2.2.8)

i.e., precisely the Gauss hypergeometric equation.
From q-PVI we can obtain two different degenerations through coales-

cence: to d-PV and to q-PV. Let us start with d-PV. If we set X = 1 + δx,
A = 1+δa, B = 1+δb, C = 1+δc, D = 1+δd, i.e., λ = 1+αδ, so Z = 1+δz,
where z = αn+ β, we recover exactly d-PV at the limit δ → 0,

(xn + xn+1 − zn − zn+1)(xn + xn−1 − zn − zn−1)
(xn + xn+1)(xn + xn−1)

=
(xn − zn − a)(xn − zn + a)(xn − zn − b)(xn − zn + b)

(xn − c)(xn + c)(xn − d)(xn + d)
, (2.2.9)

where a, b, c, d are constants and zn = αn+β. The linearisation of (2.2.9) can
be obtained simply from the coalescence limit applied to (2.2.6a). We find
thus the mapping:

xn + xn+1 − zn − zn+1

xn + xn+1
=

(xn − zn − a)(xn − zn + a)
(xn − c)(xn − d)

, (2.2.10)

provided condition (obtained as well from the coalescence of the condition
for q-PVI)

a+ b = c+ d+ α (2.2.11)

is satisfied, in which case (2.2.10) is indeed homographic:

xn+1 =
((zn+1 − a)(zn+1 − b) − cd)xn + cd(zn + zn+1)

xn(zn + zn+1) − (zn + a)(zn + b)
. (2.2.12)

The discrete PV has only one degeneration, to d-PIV. We set X = x, Z =
z + 1/δ and

A = c+ 1/δ, B = −c+ 1/δ, C = a, D = b. (2.2.13)

At the limit δ → 0 we find d-PIV in terms of the variable x.
The second coalescence of q-PVI leads to q-PV through the choice X = x,

Zn = zn/δ, A = c/δ, B = 1/δc, C = a, D = b. At the limit δ → 0 one
recovers the equation q-PV, written below in slightly different notation,

(xn+1xn − 1)(xnxn−1 − 1) =
(xn − u)(xn − 1/u)(xn − v)(xn − 1/v)

(xn/p− 1)(xn/q − 1)
,

(2.2.14)
where u and v are constants and pn, qn are proportional to λn.
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Again we seek a factorisation of the equation into

xn+1xn − 1 =
(xn − u)(xn − v)
uv(xn/p− 1)

(2.2.15a)

xnxn−1 − 1 =
uv(xn − 1/u)(xn − 1/v)

xn/q − 1
. (2.2.15b)

Equation (2.2.15a) can be rewritten as a homographic mapping (discrete
Riccati equation),

xn+1 =
xn − u− v + uv/p

uv(xn/p− 1)
, (2.2.16)

and by up-shifting (2.2.15b) and solving for xn+1 we obtain the same homo-
graphic mapping, provided that

uvqλ = p. (2.2.17)

If this condition is satisfied, then q-PV possesses solutions that are obtained
through the linearisation of the discrete Riccati equation (2.2.16). The lin-
earisation of the latter was given in [10], where we showed that x can be
expressed in terms of discrete confluent hypergeometric functions. Indeed,
setting x = R/S, we find that Rn = p(Sn − Sn+1) and S obeys the discrete
confluent hypergeometric equation,

Sn+2 + (
1
λuv

− 1)Sn+1 +
1
λ

(
1
u
− 1
p
)(

1
v
− 1
p
)Sn = 0, (2.2.18)

where p ∝ λn. The continuous limit of (2.2.16) should coincide with the Ric-
cati equation obtained for PV in Sect. 2.1. As a matter of fact, implementing
the continuous limit by λ = 1 + ε , u = 1 + εν, v = −1− ερ, p = (1/ε+ µ)/z,
q = (−1/ε+ µ)/z, one does not obtain, at ε→ 0, the same Riccati equation.
This is due to the fact that one has also to transform the dependent variable.
Thus x = (1+w)/(1−w) where w is the variable that becomes that of PV in
the continuous limit. Using this transformation, one obtains PV with a = ρ2,
b = ν2, c = −8µ and d = 4. Linearisation constraint (2.2.17) becomes, at
the limit, ρ + ν + 1 = 2µ which is consistent with the continuous condition
(2.1.14). A computation of the continuous limit of the Riccati equation for
W yields

w′ =
ρw2

z
+

(2z − ρ+ ν)w
z

− ν

z
, (2.2.19)

which is exactly (2.1.12), with p = ρ, n = −ν and q = 2, which is in accor-
dance with (2.1.13).

We proceed now to the coalescence q-PV→d-PIV, using the convention of
upper/lower-case characters as explained above. Setting X = 1 + δx, U =
1 + δa, V = 1 + δb, P = 1 + δ(z + c) and Q = 1 + δ(z − c), i.e., Λ = 1 + δα,
such that z = αn+ β, we obtain, at δ → 0, the discrete PIV,
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(xn+1 + xn)(xn + xn−1) =
(x2
n − a2)(x2

n − b2)
(xn − z)2 − c2

. (2.2.20)

The linearisation is again obtained by factorisation,

xn+1 + xn =
(xn − a)(xn − b)
xn − z + c

(2.2.21a)

xn + xn−1 =
(xn + a)(xn + b)
xn − z − c

, (2.2.21b)

and the two equations are compatible if the following constraint is satisfed,

a+ b+ α = 2c, (2.2.22)

which is exactly what would result from the coalescence limit of (2.2.17).
Equation (2.2.21a) is indeed the discrete Riccati equation one obtains from q-
PV or d-PV through coalescence. Moreover its continuous limit is the Riccati
equation for the “linearisable” solutions of PIV. Indeed the continuous limit
of (2.2.21a), obtained through c = 1/ε, b = 2/ε, a = νε, with x = w and zn
becoming the continuous variable, z, is

w′ = w2 − 2zw − 2ν, (2.2.23)

i.e., the equation we obtained by linearising PIV. Equation (2.2.21a) has been
shown to be solvable in terms of the discrete analogues of Hermite functions
[25].

The second coalescence one can obtain from q-PV is that to q-PIII. It
is based on the limit δ → 0, where X = x/δ, Λ = λ, U = a/δ, V = δ/b,
P = p/δ, Q = q/δ leading to

xn+1xn−1 =
(xn − a)(xn − b)

(xn/p− 1)(xn/q − 1)
, (2.2.24)

where p = p0λ
n, q = q0λ

n. The linearisation is again given by a factorisation

xn+1 =
b

a

(xn − a)
(xn/p− 1)

(2.2.25a)

xn−1 =
a

b

(xn − b)
(xn/q − 1)

, (2.2.25b)

and the compatibility condition of (2.2.25a) and (2.2.25b) is

bp = aqλ, (2.2.26)

in which case (2.2.25) is solved in terms of discrete Bessel functions. Again,
(2.2.26) is exactly the limit of (2.2.17) under the coalescence procedure. In
perfect analogy to the q-PV→d-PIV case, we can show that (2.2.25a) is the
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coalescence limit of (2.2.16). As far as the continuous limit is concerned, we
must take into account the noncanonical character of (2.1.21). Setting x = w,
λ = 1 + ε, b = −a+ εc, p0 = −1, q0 = 1 + εd we find for the continuous limit
of q-PIII the (again noncanonical) equation,

w′′ =
w

′2

w
− w′

z
+ w3 +

dw2

z
− c

z2
− a2

wz2
, (2.2.27)

where z = nε. The continuous limit of (2.2.25a) is the Riccati equation,

w′ = −w2 − c

a

w

z
− a

z
, (2.2.28)

which, with w = u′/u, is linearised to zu′′+cu′/a+au = 0. The latter equation
is solvable, as expected, in terms of Bessel functions, u = z

a−c
2a C1−c/a(2

√
az).

Two coalescence limits remain to be considered, those of d-PIV and q-
PIII to d-PII. In the first case we set X = 1 + δx, A = 1 + δ, B = −1 + δ,
Z = 1 − δ2z/4, C = δ − δ2a/4 and find

xn+1 + xn−1 =
znxn + a

1 − x2
n

(2.2.29)

Starting from (2.2.22) we implement the coalescence limit and find that the
linearisability condition of d-PII is

a =
α

2
, (2.2.30)

while the homographic mapping (2.2.21) reduces to

xn+1 + 1 =
a+ zn

2(1 − xn)
(2.2.31a)

xn−1 − 1 =
a− zn

2(1 + xn)
. (2.2.32b)

This leads indeed to the linearisation of d-PII. It can be shown that the
continuous limit of (2.2.31), obtained by x = εw, a = 2ε3, while the discrete
variable zn is related to the continuous variable z through zn = 2 + 4ε2z,
coincides with the Riccati equation (2.1.27) from PII.

In a similar way, one can work out the coalescence q-PIII → d − PII. We
start by transforming (2.2.29) by x = y/z, where z = λn, to

yn+1yn−1 =
p0q0(yn − a/zn)(yn − b/zn)

(yn − p0)(yn − q0)
. (2.2.32)

Next we introduce Y = 1 + δx, P0 = 1 + δ, Q0 = 1 − δ, A = 1 + δ + δ2a/2,
B = 1 − δ − δ2a/2 and Λ = 1 − δ2α/2 leading to Z = 1 − zδ2/2, and we
find in the limit precisely d-PII in the form (2.2.29). Again the linearisability
condition, resulting from the limit of (2.2.26), is identical to (2.2.30). The
discrete Riccati equation is also identical to (2.2.31). As we have shown in
[26], the solution of the latter (and thus of d-PII for a = α/2) is given in
terms of discrete Airy functions.
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2.3 The Case of Asymmetric Discrete Painlevé Equations

The degeneration cascade we have presented above does not, and by far,
exhaust all d-P’s. As a matter of fact, the majority of the d-P’s have a natural
form which is asymmetric, with two and sometimes more components. In [8]
we have presented their organisation in a degeneration cascade, first obtained
by Sakai. Before proceeding to the solutions of the d-P’s corresponding to
these asymmetric forms, let us give the general method for their derivation
[27]. In analogy to the symmetric case, we seek a solution that satisfies a
discrete Riccati equation in one of the variables

xn =
axn−1 + b

cxn−1 + d
, (2.3.1a)

while the two variables are related through a homographic transformation,

yn =
fxn + g

hxn + k
. (2.3.1b)

As we have already explained, the asymmetric discrete Painlevé equations we
shall examine are organised in a coalescence cascade where a given ‘higher’
equation leads to one (or more) ‘lower’ ones through a limiting procedure
involving the dependent and independent variables as well as the parameters.

a. The Asymmetric q-PV. We start with the asymmetric q-PV equation
which by definition the system:

(ynxn − 1)(ynxn−1 − 1) =
(yn − u)(yn − v)(yn − w)(yn − s)

(1 − pyn/zn)(1 − yn/pzn)
(2.3.2a)

(ynxn − 1)(yn+1xn − 1) =
(xn − 1/u)(xn − 1/v)(xn − 1/w)(xn − 1/s)

(1 − rxn/zn+1/2)(1 − xn/rzn+1/2)
,

(2.3.2b)
with the constraint uvws = 1, and where zn = z0λ

n and zn+1/2 = z0λ
n+1/2.

For future convenience we introduce the parameter µ = λ1/2. The linearisa-
tion of (2.3.2) can be obtained most simply by the splitting procedure i.e.,
splitting each of the equations of the system in two parts and requiring that
the resulting system:

ynxn − 1 = − (yn − u)(yn − v)
uv(1 − pyn/zn)

ynxn−1 − 1 = − (yn − w)(y − s)
(1 − yn/pzn)ws

ynxn − 1 = −uv(xn − 1/u)(xn − 1/v)
(1 − rxn/zn+1/2)

(2.3.3)
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yn+1xn − 1 = −ws(xn − 1/w)(xn − 1/s)
(1 − xn/rzn+1/2)

,

be compatible. The condition for compatibility is

r = µuvp, (2.3.4)

which is precisely the linearisability condition. Indeed, when (2.3.4) is satis-
fied, we can obtain from (2.3.3) a homographic mapping for x of the form

xn =
xn−1sw(puv − (u+ v)zn + pz2n) − (p2uv − sw)zn + p(u+ v − s− w)z2n

xn−1zn(p2 − 1) + puv(sw − pzn(s+ w) + z2n)
.

(2.3.5)

This discrete Riccati equation can be linearised by a Cole-Hopf trans-
formation. The resulting equation has one more parameter than the q-
hypergeometric equation, just as asymmetric q-PV has one extra parameter
compared to PVI. However, as we have shown in [28], asymmetric q-PV does
become PVI at the continuous limit. Indeed setting u = θeεa, v = θ−1eεb,
w = θe−εa, s = θ−1e−εb, λ = eε, p = eεc, r = eεd, ω = (x − θ)/(θ−1 − θ),
ζ = (z − θ)/(θ−1 − θ), y = (z(x − θ−1 − θ) + 1)/(x − z) + εψ, where the
constraint uvws = 1 has been implemented, we obtain after eliminating ψ
from two first-order equations,

d2ω

dζ2 =
1
2

(
1
ω

+
1

ω − 1
+

1
ω − ζ

)(
dω

dζ

)2

−
(

1
ζ

+
1

ζ − 1
+

1
ω − ζ

)
dω

dζ

+
ω(ω − 1)(ω − ζ)

2ζ2(ζ − 1)2

(
A+

Bζ

ω2 +
C(ζ − 1)
(ω − 1)2

+
Dζ(ζ − 1)
(ω − ζ)2

)
, (2.3.6)

i.e., precisely PVI, where A = 4c2, B = −4b2, C = 4a2 and D = 1 − 4d2.
Similarly the continuous limit of the discrete Riccati equation (2.3.5), is

the Riccati equation:

ζ(1 − ζ)
dω

dζ
= 2dω2 + (2(a+ b)ζ − 2a− 2c)ω − 2bζ, (2.3.7)

where the linearisation condition is now d = a+b+c+1/2, and the Cole-Hopf
transformation ω = ζ − ζ(1−ζ)

2cG
dG
dζ linearises the equation to

ζ(1 − ζ)
d2G

dζ2 +
(
2a+ 2c+ 1 − (2c+ 2d+ 1)ζ

)dG
dζ

− 4cdG = 0, (2.3.8)

i.e., the Gauss hypergeometric equation in canonical form.
The coalescence procedure applied to asymmetric q-PV allows one to ob-

tain either asymmetric d-PV or asymmetric q-PIII. Let us study the first
limit.
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b. The Asymmetric d-PIV. In order to obtain asymmetric d-PIV starting
from asymmetric q-PV we introduce the following transformation,X = 1+δx,
Y = 1 + δy, Z = 1 + δz, λ = 1 + δα, U = 1 + δu, V = 1 + δv, W = 1 + δw,
S = 1 + δs, P = 1 + δp, R = 1 + δr, where now z = αn + β. At the limit
δ → 0, we obtain the system,

(yn + xn)(yn + xn−1) =
(yn − u)(yn − v)(yn − w)(yn − s)

(yn + p− zn)(yn − p− zn)
(2.3.9a)

(yn + xn)(yn+1 + xn) =
(xn + u)(xn + v)(xn + w)(xn + s)
(xn + r − zn+1/2)(xn − r − zn+1/2)

(2.3.9b)

with the constraint u+v+w+s = 0, and where zn+1/2 = zn+α/2. Instead of
performing the linearisation splitting from the start, we use the coalescence
limit on the asymmetric q-PV. We thus find the system,

yn + xn =
(yn − u)(yn − v)

(yn + p− zn)

yn + xn−1 =
(yn − w)(yn − s)

(yn − p− z)

yn + xn =
(xn + u)(xn + v)
(xn + r − zn+1/2)

(2.3.10)

yn+1 + xn =
(xn + w)(xn + s)
(xn − r − zn+1/2)

and the compatibility-linearisability condition is

r = u+ v + p+ α/2. (2.3.11)

The discrete Riccati equation is

xn =
xn−1

(
(zn + p)(zn − p− u− v) + uv

)
+ (zn − p− u− v)(sw − uv) − 2puv

2pxn−1 + (zn − p)(zn + p+ u+ v) + sw
.

(2.3.12)

Its linearisation leads again to a discrete linear equation with more parame-
ters than the hypergeometric. As in the case of asymmetric q-PV, the contin-
uous limit can be easily obtained. For asymmetric d-PIV it leads to PVI [28].
We set u = 1/2 + εa, v = −1/2 + εb, w = 1/2 − εa, s = −1/2 − εb, p = εc,
r = εd, x = ω − 1/2, z = ζ − 1/2, y = ω(ζ − 1)/(ω − ζ) + 1/2 + εψ, and
after again eliminating ψ in two first-order equations, at ε → 0 we recover
equation (2.5) with A = 4c2, B = −4a2, C = 4b2 and D = 1−4d2. The same
approach on the Riccati equation, where the linearisation condition is now
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d = a+ b+ c+ 1/2, leads to a continuous equation linearised with the same
Cole-Hopf transformation as (2.3.8) to:

ζ(1 − ζ)
d2G

dζ2 +
(
d− a− (2c+ 2d+ 1)ζ

)dG
dζ

− 4cdG = 0, (2.3.13)

again the hypergeometric equation.

c. The Asymmetric q-PIII. The asymmetric q-PV has another coalescence
limit to the asymmetric q-PIII equation. Putting: X = x/δ, Y = y/δ, Z =
z/δ, U = u/δ, V = vδ, W = w/δ, S = sδ, P = p, R = r, at δ → 0 we find
the mapping

xnxn−1 =
(yn − u)(yn − w)

(1 − ynp/zn)(1 − yn/pzn)
(2.3.14a)

ynyn+1 =
(xn − 1/v)(xn − 1/s)

(1 − xnr/zn+1/2)(1 − xn/rzn+1/2)
, (2.3.14b)

with the obvious condition uvws = 1. Equations (2.3.14) can be written in
canonical form by introducing a gauge y → zy, x→ ζx. We thus obtain

xnxn−1 =
(yn − u/zn)(yn − w/zn)

(1 − ynp)(1 − yn/p)
(2.3.15a)

ynyn+1 =
(xn − 1/zn+1/2v)(xn − 1/zn+1/2s)

(1 − xnr)(1 − xn/r)
. (2.3.15b)

Equation (2.3.15) was studied by Jimbo and Sakai [16], who have shown that
it is a q-discrete form of PVI. Thus this equation is often referred to as the
q-PVI equation. Its linearisation was also obtained by Jimbo and Sakai. Pro-
vided r = µuvp is satisfied we can obtain for x the discrete Riccati equation,

xn =
xn−1(u− pzn) + p(u− w)
xn−1zn(p2 − 1) + p(pw − zn)

. (2.3.16)

The equation can be linearised by the Cole-Hopf transformation x = H/G,
leading to

Gn+1 + (2λpzn − λu− p2w)Gn + λp(zn − pu)(pzn − w)Gn−1 = 0. (2.3.17)

Jimbo and Sakai, who first obtained this mapping, identified it as the equation
for the q-hypergeometric 2φ1.

d. The Discrete PV. From the diagram in Sect. 2.2 we can see that the
asymmetric d-PIV and the asymmetric q-PIII become the same equation in
the coalescence limit. This equation was first identified in [29], where we
showed that it is a discrete form of PV. Let us first examine the degeneration
asymmetric d-PIV → d-PV. We setX = k+x, Y = −k+(y+z)δ, Z = −k+zδ,
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U = k+ r+ uδ, V = −k+ vδ, W = k− r+wδ, P = pδ, R = r, S = −k+ sδ,
and from (2.3.9) we obtain, at the limit δ → 0,

xnxn−1 =
(yn + zn − v)(yn + zn − s)

(yn + p)(yn − p)
(2.3.18a)

yn + yn+1 = −
zn+1/2 + u

xn/c+ 1
−
zn+1/2 + w

xnc+ 1
(2.3.18b)

where the constraint u+v+w+s = 0 is still satisfied, and we have moreover
set 4k2 − r2 = 1, c = 2k + r.

The linearisation of d-PV can be obtained from the direct splitting of
(2.3.18), but also from the degeneration of the linearisation of asymmetric
d-PIV. The result is the system,

xn = −c(y + zn − v)
yn + p

xn−1 = −yn + zn − s

c(yn − p)

yn = −
zn+1/2 + u

xn/c+ 1
− p (2.3.19)

yn+1 = −
zn+1/2 + w

xnc+ 1
+ p,

under the linearisation constraint

u+ v + p+ α/2 = 0. (2.3.20).

Recall that zn = αn+ β. A discrete Riccati equation is easily obtained from
(2.3.19):

xn =
xn−1c

2(v − p− zn) + c(v − s)
2xn−1cp+ p+ s− zn

. (2.3.21)

The linearisation of (2.3.21) can be obtained through a Cole-Hopf transfor-
mation x = H/G, leading to

Gn+1+
(
(c2+1)zn+(c2−1)p−c2v−s+α

)
Gn+c2(zn−v−p)(zn−s+p)Gn−1 = 0

(2.3.22)
This equation can be transformed by a gauge transformation, G = ΦF , with
Φn = (v + p− zn)Φn−1,

(zn+1−v−p)Fn+1−
(
(c2+1)zn+(c2−1)p−c2v−s+α

)
Fn+c2(zn−s+p)Fn−1 =0.

(2.3.23)
It can be easily shown that (2.3.23) is just one of the Gauss relations for
contiguous hypergeometric functions. In fact, equation (2.3.23) is satisfied by
F (1 + (z − v − p)/α, (s− v)/α; 1 + (s− v − 2p)/α; 1 − 1/c2) [22].
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The relation of the special function solutions of d-PV to the hypergeomet-
ric equation is not at all astonishing. Indeed in [30] we showed that (2.3.18)
can be obtained from the Schlesinger transformations of PVI. This means that
the dependent variable of the discrete equation coincides, under the proper
choice, with that of the continuous equation. Thus the result that the special
solutions of the discrete PV obey the contiguity relations of the function that
appears in the special solutions of PVI, namely the hypergeometric function
makes perfect sense.

As we explained above d-PV, in the form of equation (2.3.18), can be
obtained as a degeneration of asymmetric q-PIII. This is in fact how this
equation was first obtained. We shall not go into these details. It is a mere
(and straightforward) verification to show that the linearisation of the d-PV
equations obtained from that of the q-PIII through the coalescence procedure
gives the same result as the one obtained above.

The discrete PV has two possible degenerations to PIV and to asymmetric
PII. Let us start with the first degeneration.

e. The Discrete PIV. This degeneration was first obtained in [29]. Starting
from d-PV, equation (2.3.18), we introduce the coalescence: X = x/δ, Y = y,
U = u/δ2, V = −u/δ2, W = w, S = s, P = p, C = −δ. At the limit δ → 0
we obtain:

xnxn−1 = u
(yn + zn − s)

(yn + p)(yn − p)
(2.3.24a)

yn + yn+1 =
u

xn
+
zn+1/2 + w

xn − 1
, (2.3.24b)

which was shown in [29] to become PIV at the continuous limit. From the
linearisation equations for d-PV we obtain simply

xn =
u

yn + p

xn−1 =
yn + zn − s

yn − p

yn + p =
u

xn
(2.3.25)

yn+1 − p =
zn+1/2 + w

xn − 1
,

and the linearisability condition p = s+w−α/2. The discrete Riccati equation
for x now becomes

xn =
u(xn−1 − 1)

2pxn−1 + zn − s− p
. (2.3.26)

The linearisation of this equation by a Cole-Hopf transformation, x = H/G,
results in the linear equation,

Gn+1 − (zn + α+ u− s− p)Gn + u(zn + p− s)Gn−1 (2.3.27)
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This equation is, up to a trivial gauge transformation, the recurrence relation
(with respect to the second parameter) for the Kummer confluent hyperge-
ometric U function [22], which is quite reasonable since d-PIV is related to
the continuous PV equation [31].

f. The Asymmetric d-PII, Discrete PIII, Equation. The other degener-
ation of d-PV is towards the asymmetric d-PII, which was shown in [23] to be
a discrete form of the PIII equation. Starting from d-PV, equation (2.3.18),
we set X = 1 + δx, Y = y, Z = δz, U = −δw = −W , V = 1 + δv = −S,
C = −1 − δ, P = 1, and we obtain at δ → 0,

xn + xn−1 =
zn + s

yn − 1
+
zn − s

yn + 1
=

2znyn + 2s
y2
n − 1

(2.3.28a)

yn + yn+1 =
zn+1/2 − w

xn − 1
+
zn+1/2 + w

xn + 1
=

2zn+1/2xn − 2w
x2
n − 1

. (2.3.28b)

The linearisation can be obtained from that of d-PV or by direct splitting of
(2.3.28) to

xn − 1 =
zn + s

yn − 1

xn−1 + 1 =
zn − s

yn + 1

yn − 1 =
zn+1/2 − w

xn − 1
(2.3.29)

yn+1 + 1 =
zn+1/2 + w

xn + 1
.

The linearisability/compatibility condition is s + w = α/2, and leads to the
discrete Riccati equation,

xn =
(2 − zn − s)xn−1 + 2 − 2zn

2xn−1 + 2 − zn + s
. (2.3.30)

The linearisation is again obtained by x = H/G and results in

Gn+1 + (2zn + α− 4)Gn + (z2n − s2)Gn−1 = 0. (2.3.31)

This equation, just like (2.3.27), is a recurrence relation of the Kummer U
function [22] with respect to its first parameter, and up to a simple gauge
transformation. As a matter of fact, the discrete PIII equation can also be
obtained [31] from the Schlesinger transformations of the continuous PV,
and it is intimately related to the discrete PIV equation (2.3.24). The two
equations share the same ‘Grand Scheme’ [32].
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g. The Asymmetric d-PI Equation. This equation was studied in great
detail in [15] where we showed its relation to the continuous PIV. This asym-
metric equation is just another form of d-PII. In the coalescence cascade we
presented in Sect. 2.2, it can be obtained as a degeneration of both d-PIV and
asymmetric d-PII. Let us show how the first limit can be obtained. We start
from (2.3.24) and set X = 1 + δx/2, Y = 1 + δy, S = 1 + δ2s/2, W = δ2w/2,
P = 1, Z = δ2z/2. At the limit δ → 0, we find

xn + xn−1 = −yn + u+
zn − s

yn
(2.3.32a)

yn + yn+1 = −xn + u+
zn+1/2 + w

xn
. (2.3.32b)

The linearisation splitting is:

xn = −yn + u

xn−1 =
zn − s

yn

yn = −xn + u (2.3.33)

yn+1 =
ηn + w

xn
,

and the condition is s + w = α/2. Using (2.3.33) we can obtain a discrete
Riccati equation for x,

xn = u+
s− zn
xn−1

, (2.3.34)

which linearises, by x = H/G, to:

Gn+1 − uGn + (zn − s)Gn−1 = 0, (2.3.35)

i.e., a discrete analogue of the Airy equation which is nothing but a recurrence
relation of the parabolic cylinder equation, a fact that is expected given the
relation of asymmetric d-PI to PIV.

The asymmetric d-PI equation can be also obtained from the asymmetric
d-PII through a coalescence limit. This procedure is essentially the same as
the one introduced in [4] for the degeneration of the symmetric d-PII to d-PI.
The linear equation resulting form this coalescence is, of course, the same
discrete Airy equation as in (2.3.35).

3 Solutions by Direct Linearisation

In the previous subsection we have presented solutions of the continuous and
discrete Painlevé equations which are expressed in terms of special functions.
These solutions are obtained by the assumption that the Painlevé equation
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is satisfied by the solution of some Riccati equation. However there exists
another class of solutions which will be the object of this subsection [33,
34]. Let us present the argument schematically, in the simplest case, that of
the fundamental solution. Suppose that for some value of the parameters, a
linearisability condition is satisfied and the solution is furnished by a Riccati
equation,

w′ = αw2 + βw + γ, (3.0.1)

where the prime denotes the derivative with respect to the independent vari-
able t. Now it turns out that when a further constraint is satisfied, the coef-
ficient α vanishes, whereupon the Riccati equation becomes linear. Equiva-
lently, when γ vanishes, (3.0.1) becomes linear for the quantity 1/w. In both
cases the solution w is obtained by a linear first-order equation and involves
one integration constant. When αγ �= 0, we may still reduce (3.0.1) to a first-
order equation if we are able, by inspection or any other means, to obtain an
explicit special solution, φ. In this case setting w = φ+ 1/ψ, we obtain for ψ
the first-order inhomogeneous linear equation

ψ′ + (2αφ+ β)ψ + α = 0. (3.0.2)

The integration of (3.0.2) introduces an integration constant and thus w =
φ+ 1/ψ is indeed the general solution of (3.0.1). These special solutions will
be the object of the present study. It is clear from the argument above that
the minimal number of parameters for such a solution to exist is two, thus
PII, and a fortiori PI, are excluded, to say nothing of the one-parameter PIII
[35].

While our arguments have been presented for the continuous P’s, they
can be transposed, mutatis mutandis, to the discrete case for both difference
and q-discrete Painlevé equations.

3.1 Continuous Painlevé Equations

In this section we shall present the special solutions of the continuous Painlevé
equations. In what follows, the notation εi will be reserved for a free sign,
±1.

a) The PIII Equation
The Painlevé III equation, in the following normalisation,

w′′ =
w

′2

w
− w′

t
+ w3 +

1
t
(αw2 + β) − 1

w
, (3.1.1)

does possess solutions obtained from those of a linear equation whenever the
condition [21],

ε1α+ ε2β = 2, (3.1.2)

is satisfied. These solutions are obtained by the Riccati equation:
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w′ = ε1w
2 +

αε1 − 1
t

w + ε2. (3.1.3)

Given the structure of (3.1.3), it is clear that it cannot be reduced to a first-
order linear equation. In this case, one can find a special solution with the
help of the rational solutions of PIII. If α = −ε3β equation (3.1.1) has an
elementary, rational, solution w2 = ε3. Demanding that this solution satisfy
the Riccati equation (3.1.3), we obtain the conditions α = ε1, β = ε2 and
ε3 = −ε1ε2. The Riccati equation now reduces to w′ = ε1(w2 − ε3), which we
can integrate by quadrature in an elementary way. We obtain

w = ε2 tanh(t− t0), (3.1.4a)

for ε3 = 1, i.e., ε2 = −ε1, and

w = ε2 tan(t− t0), (3.1.4b)

for ε3 = −1 (i.e. ε2 = ε1). This one-parameter solution was obtained in
[36] (see also [20]). Using the auto-Bäcklund transformations of PIII one can
construct higher solutions involving tangents. For instance, for α = 1 and
β = −3 we find the solution, w = 1/ tanh(t− t0) − 1/t.

b) The PIV Equation
The Painlevé IV equation,

w′′ =
w

′2

2w
+

3w3

2
+ 4tw2 + 2w(t2 + α) − 2β2

w
, (3.1.5)

has linearisable solutions whenever constraint

ε1α+ ε2β = 1 (3.1.6)

is satisfied [21]. They are given by the solutions of the Riccati equation,

w′ = ε1(w2 + 2tw) − 2ε2β. (3.1.7)

Clearly, if β = 0, in which case α = ε1, the Riccati equation becomes a linear
equation for u = 1/w:

u′ = −ε1(2tu+ 1). (3.1.8)

The integration of (3.1.8) is straightforward,

u =
(
c− ε1

∫
eε1t

2
dt

)
e−ε1t2 , (3.1.9)

with c an integration constant, i.e., u, or equivalently w, can be expressed in
terms of the Error function (of t for ε1 = −1 and of it for ε1 = 1) [37]. One
remark is in order here. If one applies the auto-Bäcklund transformation of
PIV,
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w̃ =
w′ − w2 − 2tw + 2β

2w
, (3.1.10)

one obtains a solution of (3.1.5) with parameters α̃ = (3β − α − 1)/2 and
β̃ = ε(β+α− 1)/2. Starting from β = 0 and α = ε1 = −1 we find that α̃ = 0
and β̃ = −ε, satisfying the condition α̃ − εβ̃ = 1. Thus, while (3.1.7) in this
case is not linear either in w or in 1/w, the transformed solution is again an
elementary one of the linearisable class. It goes without saying that repeated
application of (3.1.10) will lead to higher solutions involving Error functions.

c) The PV Equation
We start from

w′′ = w
′2
(

1
2w

+
1

w − 1

)
− w′

t
+

(w − 1)2

2t2
(α2w − β2

w
) +

γw

t
− w(w + 1)

2(w − 1)
.

(3.1.11)
The linearisablity condition, with the notation we chose above, is just [21]:

ε1α+ ε2β + ε3γ = 1, (3.1.12)

and the associated Riccati equation is

w′ = αε1
w(w − 1)

t
+ ε3w + ε2β

w − 1
t

. (3.1.13)

When α = 0, or, equivalently, β = 0 and w → 1/w, equation (3.1.13) becomes
linear,

w′ = (ε3 + ε2
β

t
)w − ε2

β

t
. (3.1.14)

Its solution,

w =
(
c− ε2β

∫
eε3ttε2β−1dt

)
eε3tt−ε2β , (3.1.15)

involves the incomplete Gamma function [20].
Just as in the case of PIV, the auto-Bäcklund transformation of PV gen-

erates solutions belonging to the linearisable class and which involve the
incomplete Gamma function.

d) The PVI Equation
The most general of the second-order Painlevé equations is

w′′ =
w

′2

2

(
1
w

+
1

w − 1
+

1
w − t

)
− w′

(
1
t

+
1

t− 1
+

1
w − t

)

+
w(w − 1)(w − t)

2t2(t− 1)2

(
α2 − β2 t

w2 + γ2 t− 1
(w − 1)2

− (δ2 − 1)
t(t− 1)
(w − t)2

)
.

(3.1.16)

The linearisability condition in this case is, [21],
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ε1α+ ε2β + ε3γ + ε4δ = 1, (3.1.17)

and the Riccati equation is:

w′ =
ε1α

t(t− 1)
w2 +

(ε3γ + ε2β)t− (ε1α+ ε3γ)
t(t− 1)

w − ε2β

t− 1
. (3.1.18)

Equation (3.1.18) reduces to a linear one, when α = 0,

w′ =
(ε3γ + ε2β)t− ε3γ

t(t− 1)
w − ε2β

t− 1
. (3.1.19)

The integration of (3.1.19) leads to a solution expressed in terms of the in-
complete Beta function [20],

w =
(
c− ε2β

∫
t−ε3γ(t− 1)−ε2β−1dt

)
tε3γ(t− 1)ε2β . (3.1.20)

A similar result could have been obtained by setting β = 0, in which case a
linear equation would have been obtained for u = 1/w.

Thus all the Painlevé equations with at least two parameters possess
solutions involving special functions which for PIV, PV and PVI are expressed
as integrals.

3.2 Symmetric Discrete Painlevé Equations

Let us now turn to the discrete Painlevé equations which are the main subject
of this course. We start with discrete P’s of the form:

xn+1 =
f1(xn, n) − xn−1f2(xn, n)
f4(xn, n) − xn−1f3(xn, n)

. (3.2.1)

As we have seen, the special solutions of the d-P’s are obtained, provided that
some linearisability constraint is satisfied by the discrete Riccati equation,

xn+1 = −αxn + β

γxn + δ
, (3.2.2)

where α, β, γ and δ are functions of the independent variable n. Now, it may
happen that, when some further constraint is satisfied, γ or β vanishes, in
which case (3.2.2) is transformed to a linear equation for xn or 1/xn. The
integration of such a linear equation is straightforward. Starting from

δnxn+1 + αnxn + βn = 0, (3.2.3)

we first obtain a solution, ξn, of the homogeneous equation

δnxn+1 + αnxn = 0. (3.2.4)



350 K.M. Tamizhmani et al.

Formally, this solution is given by ξn = A
∏n−1
k=0(−αk/δk) where A a is con-

stant. Next, using the standard “variation of constant” procedure, i.e., con-
sidering A as dependent on n, we obtain the solution of the full equation. We
find

An+1 −An =
βn

αn
∏n−1
k=0(−αk/δk)

(3.2.5)

Thus, formally, we have An =
∑
n βn/(αn

∏n−1
k=0(−αk/δk))+ c, where c is the

integration constant. In this way the solution of the Painlevé equation can
be expressed in terms of a discrete quadrature.

For the discrete P’s that we shall examine here, it turns out that the
homogeneous part of equation (3.2.3) can be solved explicitly. For all cases
of difference equations we find an expression of the form,

ξn+1

ξn
= ω

∏
i(n+ ρi)∏
i(n+ σi)

, (3.2.6)

where the number of terms in the product may vary from case to case. Given
the form of (3.2.6), the solution is expressed as a product of Gamma functions:

ξn = ξ0ω
n
∏
i

Γ (n+ ρi)
Γ (ρi)

∏
i

Γ (σi)
Γ (n+ σi)

. (3.2.7)

In the case of q-equations,

ξn+1

ξn
= ω

∏
i(λ

n+ρi − 1)∏
i(λn+σi − 1)

, (3.2.8)

and the solution is expressed in terms of q-Gamma functions:

ξn = ξ0ω
n
∏
i

Γλ(n+ ρi)
Γλ(ρi)

∏
i

Γλ(σi)
Γλ(n+ σi)

. (3.2.9)

However it does not seem possible, even given this explicit form of ξ, to
perform the last quadrature in closed form.

Now it may also turn out that there is no possibility to set either β or
γ to zero. In this case we can still proceed, provided we can find one special
solution, ηn, of the Riccati equation (3.2.2). In this case, setting x = η+1/y,
we find that y satisfies the linear, inhomogeneous equation,

(γnηn+1 + αn)yn+1 + (γnηn + δn)yn + γn = 0. (3.2.10)

Just as for the continuous P’s, this last case will apply to the discrete PIII.

a) The Discrete PIII

The form of the q-PIII we are going to work with is

xn+1xn−1 =
(xn − a)(xn − b)

(1 − xnzn/c)(1 − xnzn/d)
, (3.2.11)
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where a, b, c and d are constants and zn = λn. The linearisability condition
is

ad = bcλ (3.2.12)

and leads to the homographic mapping

xn+1 =
d

λ

a− xn
c− xnzn

(3.2.13)

As we showed in [21], equation (3.2.13) leads to solutions of q-PIII in terms
of discrete Bessel functions. Given the form of (3.2.13), it is not possible to
reduce the discrete Riccati equation directly to a linear equation. On the
other hand it is straightforward to obtain one special solution of (3.2.13). We
introduce µ ≡

√
λ and find that xn = k/

√
zn, with k =

√
ac, satisfies (3.2.13),

provided that condition cµ+ d = 0 is satisfied. Using this particular solution
we can obtain a linear first-order equation by putting xn = k/

√
zn + 1/yn.

We find for y the linear mapping

yn+1(
√
azn/c+ 1) + µyn(

√
azn/c− 1) + µzn/c = 0. (3.2.14)

The solution of the homogeneous part of this mapping is:

ηn = A
√
zn

n−1∏
tanh

1
4

ln
(
c

azk

)
. (3.2.15)

where A is a constant. The general solution of (3.2.14) can be obtained
through the variation of the constant A:

An+1 −An =
√
zn

(
√
aczn − c)

∏n−1 tanh 1
4 ln
(

c
azk

) (3.2.16)

The formal integration of (3.2.16) by a discrete quadrature introduces one
integration constant.

One remark is in order at this point concerning the comparison of the
solution of q-PIII obtained through (3.2.14) and the explicit solution of PIII
exhibited in Sect. 3.1. We expect the two solutions to be equivalent at the
continuous limit up to the allowed transformations of the dependent and
independent variables. As a matter of fact the continuous limit of (3.2.11) is
not the canonical form of PIII (3.1.1) but

w′′ =
w

′2

w
− w′

t
+ w3 +

αw2

t
+
β

t2
− 1
wt2

(3.2.17)

obtained by λ = 1 + ε, (z → t), x = w, a = ε, b = −ε + ε2β, c = 1/ε,
d = −1/ε− α. (Note that (3.2.17) can be transformed to (3.1.1) for ω and s
through the change of variables, s =

√
t, ω = w

√
t). The condition for special
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solution (3.2.15-16) to exist is α = β = 1/2. In this case the continuous limit
of the Ricccati equation (3.2.2) is just

x′ = x2 − x

2t
− 1
t
. (3.2.18)

The solution to this equation is

x = − tanh(2
√
t− φ)√
t

, (3.2.19)

(where φ is the integration constant) which should be compared to (3.1.4a).
Let us now show how we can obtain this solution from the continuous limit
of (3.2.15-16). We set θ = η/

√
z and find from (3.2.15) that

θn+1

θn
=

1 − ε
√
z

1 + ε
√
z
. (3.2.20)

In order to find the continuous limit of (3.2.20), we must take into account
that zn+1 = zn + εzn and thus, if θn → g at the continuous limit, θn+1=g +
εzg′ + O(ε2). At the limit ε→ 0 we find, from (3.2.20),

g′

g
= − 2√

t
, (3.2.21)

and after an integration, g = Ae−4
√
t. In order to obtain the solution of the

nonhomogeneous equation (3.2.14), we must solve An+1 −An → −ε
√
ze4

√
z,

or, taking the limit,

A′ = −e
4
√
t

√
t
. (3.2.22)

Integrating (3.2.22) we find that A = −e4
√
t/2 + k, where k is the inte-

gration constant. So, finally, in this limit y becomes
√
t(−1/2 + ke−4

√
t).

Since the limit of the particular solution is 1/
√
t, the full solution is w =

1/
√
t(1 + 1/(−1/2 + ke−4

√
t)) = − tanh(2

√
t− φ/

√
t), with e2φ = −2k. Thus

the continuous limit of special solution (3.2.15-16) is precisely (3.2.19).

b) The Discrete PIV

Here we shall consider the d-PIV,

(xn+1 + xn)(xn + xn−1) =
(x2
n − a2)(x2

n − b2)
(xn − zn)2 − c2

, (3.2.23)

where a, b, c are constants and zn = δn+ z0. The linearisability condition is

2c− a− b = δ, (3.2.24)

and the corresponding homographic mapping is:
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xn+1 =
xn(a+ b− c− zn) − ab

−xn + c+ zn
. (3.2.25)

This mapping can obviously be made linear for y ≡ 1/x provided we take
ab = 0. Taking, for instance, b = 0 and implementing (3.2.24) we obtain

yn+1 =
yn(c+ zn) − 1
c− zn+1

. (3.2.26)

The homogeneous part of this equation can be solved simply in terms of
Gamma functions whereupon the general solution of (3.2.26) is given in terms
of a discrete quadrature. This special solution is precisely the one discovered
by Bassom and Clarkson [37] who have shown that it is the discrete equivalent
of the Error function solution of continuous PIV.

c) The q-Discrete PV

The q-PV we are now going to study is given by

(xn+1xn−1)(xnxn−1−1) =
(xn − a)(xn − 1/a)(xn − b)(xn − 1/b)

(1 − xnzn/c)(1 − xnzn/d)
, (3.2.27)

where a, b, c, d are constants and zn = λn. The linearisability condition is:

abd = λc, (3.2.28)

while the discrete Riccati equation, which leads to solutions expressed in
terms of the discrete confluent hypergeometric function, is

xn+1 =
xn − a− b+ abzn/c

ab(xnzn/c− 1)
. (3.2.29)

A direct linearisation of (3.2.29) seems impossible, but this is only due to
the fact that x is not the appropriate variable. As we remarked already in
[21], the variable that becomes that of PV in the continuous limit is related
to x by a homographic transformation. We introduce the same homographic
transformation here, x = (1+y)/(1−y). We readily obtain for y the discrete
Riccati equation,

yn+1 =
yn(−2abzn − c(ab− a− b− 1) + c(a− 1)(b− 1)
ync(a+ 1)(b+ 1) + 2abzn − c(ab+ a+ b− 1)

. (3.2.30)

Clearly (3.2.30) becomes linear in y if a = −1 or b = −1, and also linear in
1/y if a = 1 or b = 1. Let us take for instance b = −1. We find that

yn+1 =
−yna(zn + c) + c(a− 1)

azn − c
. (3.2.31)

The solution to the homogeneous part of (3.2.31) can be expressed in terms
of q-Gamma functions, and a final quadrature leads to the general solution
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of (3.2.31) which is just a q-discrete analogue of the incomplete Gamma
function. Indeed, setting y = w, λ = 1 + ε, a = 1 + εβ, c = 2/ε we obtain
(2.1.12) as the continuous limit at ε → 0 of (3.2.29). In the same limit the
linear equation (3.2.31) becomes (3.1.14), with α = 0, ε3 = 1, ε2 = 1, which
is precisely the equation whose solution is the incomplete Gamma function.

d) The (difference) Discrete PV

This equation was introduced much more recently than its q-discrete analogue
[38]. Its form was given as,

(xn + xn+1 − zn − zn+1)(xn + xn−1 − zn − zn−1)
(xn + xn+1)(xn + xn−1)

=
(xn − zn − a)(xn − zn + a)(xn − zn − b)(xn − zn + b)

(xn − c)(xn + c)(xn − d)(xn + d)
, (3.2.32)

where a, b, c and d are constants and zn = δn+z0. However it is not difficult to
show, using the standard factorisation technique, that (3.2.32) has solutions
given by the mapping:

xn + xn+1 − zn − zn+1

xn + xn+1
=

(xn − zn − a)(xn − zn − b)
(xn − c)(xn − d)

, (3.2.33)

provided condition
a+ b = c+ d+ δ (3.2.34)

holds, in which case (3.2.33) is indeed homographic,

xn+1 =
((zn+1 − a)(zn+1 − b) − cd)xn + cd(zn + zn+1)

xn(zn + zn+1) − (zn + a)(zn + b)
. (3.2.35)

Clearly, (3.2.35) can be directly linearised for 1/x, provided that cd = 0. Let
us take c = 0 and introduce y = 1−z/x, since the latter is a more convenient
variable for the continuous limit. We thus obtain

yn+1 =
−zn+1(zn + a)(zn + b)yn + ab(zn + zn+1)

zn(zn+1 − a)(zn+1 − b)
. (3.2.36)

The solution of the homogeneous part of the linear equation can be given
in terms of Gamma functions, whereupon the solution of (3.2.36) is reduced
to a discrete quadrature. The solution thus obtained is expected to be the
discrete analogue of the incomplete Gamma function. This can be assessed
by the continuous limit obtained by taking y = w, δ = ε, b = 1/ε, a = εβ,
c = εα and d = 1/ε− εγ and z =

√
t, whereupon, at the limit ε→ 0 (3.2.33),

becomes PV. We find that under constraints α = 0 and γ + β = 1, the linear
equation (3.2.36) becomes (3.1.14).
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e) The q-Discrete PVI

The q-discrete analogue of PVI was introduced in [38]. Its form is:

(xnxn+1 − znzn+1)(xnxn−1 − znzn−1)
(xnxn+1 − 1)(xnxn−1 − 1)

=

(xn − azn)(xn − zn/a)(xn − bzn)(xn − zn/b)
(xn − c)(xn − 1/c)(xn − d)(xn − 1/d)

(3.2.37)

where a, b, c, d are constants and zn = λn. Its linearisable solutions were also
presented in [38]. It turns out that when condition

ab = cdλ (3.2.38)

is satisfied, the mapping

xnxn+1 − znzn+1

xnxn+1 − 1
=

(xn − azn)(xn − bzn)
(xn − c)(xn − d)

(3.2.39)

becomes homographic and has solutions which are given by a discrete equa-
tion having the Gauss hypergeometric function as its continuous limit. How-
ever just as in the q-PV case, this mapping is not convenient for direct lin-
earisation. Again the clue to the proper variable to choose is furnished by the
continuous limit. We thus introduce a change of the dependent variable,

x =
y(1 − z) − 1 − z

y(1 − z) + 1 + z
, (3.2.40)

and obtain a homographic mapping for y which can be directly linearised
provided (d − 1)(c − 1) = 0. Let us choose d = 1 and let us use condition
(3.2.38). We thus obtain the linear mapping,

yn+1 =(
zn+1 + 1
zn+1 − 1

)
λ(1 − zn)(bzn − 1)(azn − 1)yn + (zn + 1)(zn+1zn − 1)(ab+ λ)

(zn + 1)(zn+1 − a)(zn+1 − b)
.

(3.2.41)

The homogeneous equation for y can be solved in terms of q-Gamma func-
tions, and the full equation is then solved through a discrete quadrature. For
the continuous limit we must take λ = eε, y = w, a = −eεδ, b = eεγ , c = −eεβ ,
d = eεα and z = (

√
t − 1)/(

√
t + 1), whereupon (3.2.37) becomes the con-

tinuous PVI (3.1.16). Under the constraints (3.2.38), which in the continuous
limit are just γ + δ − α− β = 1, and d = 1, i.e., α = 0, the continuous limit
of (3.2.41) is just (3.1.19), with ε2 = −1 and ε3 = 1. Thus the solution of
(3.2.41) can be considered to be a q-discrete analogue of the incomplete Beta
function.



356 K.M. Tamizhmani et al.

3.3 Asymmetric Discrete Painlevé Equations

For asymmetric d-P’s, the procedure is quite similar. In the results below
we shall lump together the equations according to their common symmetry
group. Since we are going to deal with both difference- and q-discrete equa-
tions, we shall introduce the notations zn = δ(n−n0), zn+1/2 = δ(n−1/2−n0)
qn = q0λ

n, ρn = q0λ
n−1/2, and we will use µ =

√
λ.

Equations with Geometry Described by A
(1)
3

We start with two equations whose geometry is described by the affine Weyl
group of A(1)

3 . These equations are contiguity relations of the continuous PV
[24]. The first equation we shall examine is the discrete PIV [29],

xn+1xn =
yn + zn
y2
n − a2 (3.3.1a)

yn + yn−1 =
1
xn

+
zn+1/2 + r

xn − 1
(3.3.1b)

where a and r are two constants. The linearisability constraint in this case is
a = r + δ/2.

The discrete Riccati equation is

xn+1 =
1 + (zn − a)xn

1 − 2axn
, (3.3.2)

where y is given by:

yn =
1
xn

− a. (3.3.3)

The discrete Riccati equation can be directly linearised if a = 0. In this case
we obtain for x the equation,

xn+1 = znxn + 1. (3.3.4)

Introducing t = 1/δ, we can show that (3.3.4) is the contiguity relation of
the incomplete Gamma function, namely,

xn = ett1−nγ(n, t). (3.3.5)

This is another kind of discrete Error function, different from and simplerthan
the one introduced by Bassom and Clarkson [37].

We now turn to a second equation, known as the asymmetric d-PII, and
which is in fact a discrete form of PIII [23],

xn+1 + xn = 2
ynzn − p

y2
n − 1

(3.3.6a)

yn + yn−1 = 2
xnzn+1/2 − r

x2
n − 1

, (3.3.6b)
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where p and r are constants. The linearisability constraint,

p− r + δ/2 = 0, (3.3.7)

leads to the homographic equation for x,

xn+1 =
xn(2 + p− zn) + 2 − 2zn

2xn + 2 − p− zn
, (3.3.8)

with y given by

yn =
zn+1/2 + r

xn + 1
− 1. (3.3.9)

It turns out that there is no possibility of obtaining a direct linearisation of
the Riccati equation, a situation which exists also in the case of continuous
PIII and the standard q-PIII equations. In these two cases, special solutions
were obtained [33] using one particular solution, which happens to be ratio-
nal, of the Riccati equation whereupon the reduction to a first order linear
equation is straightforward. This is not possible here due to the fact that the
asymmetric d-PII and discrete PIII equation do not possess solutions in the
linearisable class which are rational functions of the independent variable.

Equations with Geometry Described by A
(1)
2 ⊕ A

(1)
1

The equation we will here is:

xn+1xn =
q2n − aqnyn
yn(yn − 1)

(3.3.10a)

ynyn−1 =
ρ2
n − bρnxn
xn(xn − 1)

, (3.3.10b)

where a and b are constants, and, as was shown in [39], is a discrete form of
PIII. The linearisability constraint is

b = aµ, (3.3.11)

and the homographic system is

xn+1 =
qn(xn + a2)
a(xn + aqn)

, (3.3.12)

with y given by
yn = −aqn

xn
. (3.3.13)

No direct linearisation is expected here, but one can still obtain a special
solution. It turns out that when a and b satisfy an extra constraint, ab = 1,
which, given (3.3.11) means that a = 1/σ2, b = σ2, where λ = σ8, one special
solution does exist, xn = ±Qn/σ3, yn = ∓σQn, with Qn =

√
qn. From this

elementary solution one can derive
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xn =
Qn
σ3

Zn + 1
Zn − 1

(3.3.14a)

yn = σQn
1 − Zn
1 + Zn

, (3.3.14b)

provided that Z satisfies the equation

Zn+1 = Zn
σQn + 1
σQn − 1

. (3.3.14c)

It is interesting to observe that, at the continuous limit obtained by x = w/ε,
this solution becomes a well-known solution of PIII for w. For this limit we
choose λ = 1 + ε, q0 = a2/ε2 and introduce the continuous independent
variable t = e−nε/2. We find that Q = a/(εt) and Z = e−4t/a leading to a
solution for w in terms of the hyperbolic tangent. The solution to PIII in
terms of a tangent function could have been obtained through a different
choice of signs for a and b, a = −1/σ2, and b = −σ2.

Equations with Geometry Described by A
(1)
4

The only equation associated to this affine Weyl group that we will discuss
here is the discrete q-PV [40]:

xn+1xn =
(yn − pqn)(yn − qn/p)

1 − yn/a
(3.3.15a)

ynyn−1 =
(xn − rρn)(xn − ρn/r)

1 − axn
, (3.3.15b)

where a, p, r are constants. The linearisability constraint is

pr = µa2 (3.3.16)

The homographic system is now

xn+1 =
pxn + a2(p2 − 1)qn
apxn + a3(ap− qn)

, (3.3.17)

where y is given by

yn = −xn − rρn
a2 . (3.3.18)

The extra condition p = ±1 allows one to linearise directly the discrete
Riccati equation in terms of 1/x,

1
xn+1

=
a3(a∓ qn)

xn
+ a. (3.3.19)

Observe that the choice r2 = 1 would lead to an equation linear in 1/y by
interchanging n + 1 with n − 1. Thus we have essentially only one special
solution.
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The solution of the homogeneous equation Zn+1 = a3(a∓ qn)Zn is just a
q-Gamma function, Zn = Z0(∓a4)nΓλ(n−n1)/Γλ(−n1), where λn1 = ±a/q0.
We expect the solutions of the inhomogeneous equation (3.3.19) to be some
form of the incomplete q-Gamma function, which, however, does not seem to
be well-known.

Equations with Geometry Described by D
(1)
4

The equation we shall consider here is one obtained from the auto-Bäcklund
transformation of the continuous Painlevé VI [30], although is was first iden-
tified in the degeneration through coalescence of the asymmetric q-PIII [29].
It is another discrete form of PV,

xn+1xn =
(yn − zn)2 − p2

y2
n − a2 (3.3.20a)

yn + yn−1 =
zn+1/2 − r

1 − bxn
+
zn+1/2 + r

1 − xn/b
, (3.3.20b)

where a, b, p and r are constants. The linearisability constraint can be ob-
tained from the relation to PVI,

a+ p+ r + δ/2 = 0. (3.3.21)

In this case the discrete Riccati equation is

xn+1 =
b2(zn + a− p)xn + 2bp

2abxn + zn + p− a
, (3.3.22)

where y is given by

yn =
zn + p+ abxn

1 − bxn
. (3.3.23)

Let us first make a remark about the b = 1 case. For b = 1 one obtains from
(3.3.22) and (3.3.22) a linear equation for y. However, as we showed in [41],
the full, discrete system (3.3.20) for b = 1 is not a d-P anymore but rather a
linearisable equation.

We turn now to the special solutions of the genuine d-PV, b �= 1. The
extra constraint, a = 0, leads to the linear equation,

zn + p

2bp
xn+1 =

b(zn − p)
2p

xn + 1. (3.3.24)

Similarly, for p = 0, we can obtain an equation that is linear in 1/x,

b(zn + a)
2axn+1

=
zn − a

xn
+ 1. (3.3.25)

In an analogous way, the constraint r = −a, which from (3.3.21) entails
p + δ/2 = 0, leads to an equation linear in terms of a simple homographic
transformation of y.
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All these linear equations can be shown to be contiguity relations of
the incomplete Beta function. Let us introduce the quantity Ut(µ, ν) =
t−µ(1 − t)−νBt(µ, ν) where Bt(µ, ν) =

∫ t
0 τ

µ−1(1 − τ)ν−1dτ is usually called
the incomplete Beta function. From its properties, we can easily show that
U obeys the contiguity relation,

µUt(µ, ν) − t(µ+ ν)Ut(µ+ 1, ν) = 1, (3.3.26)

which defines a recursion along the line ν = cnst. By inspection we find for
the solution of (3.3.24),

xn = −2pδ
b
U1/b2(n− n0 − p/δ, 2p/δ), (3.3.27)

and, for the solution of (3.3.25),

xn = − δ

U2a/δ(n− n0 − a/δ, 2a/δ)
. (3.3.28)

Equations with Geometry Described by D
(1)
5

The equation associated to this group is the asymmetric q-PIII which was
shown by Jimbo and Sakai [16] to be a discrete form of PVI,

xn+1xn =
(yn − pqn)(yn − qn/p)

(yn − a)(yn − 1/a)
(3.3.29a)

ynyn−1 =
(xn − rρn)(xn − ρn/r)

(xn − b)(xn − 1/b)
, (3.3.29b)

where a, b, p, r are constants. The linearisability constraint is

abµ = pr, (3.3.30)

and the homographic system is

xn+1 =
p(apqn − 1)xn − ab(p2 − 1)qn
bp(a2 − 1)xn + ab2(qn − ap)

, (3.3.31)

with y given by,

yn =
xn − rρn
a(xn − b)

(3.3.32)

The linearisation of the Riccati equation (3.3.31) leads to an equation iden-
tified by Jimbo and Sakai [16] as that of the q-hypergeometric function 2φ1.
Taking a = ±1 for x leads to the linear equation,

b2(qn ∓ p)xn+1 − p(pqn ∓ 1)xn + (p2 − 1)bqn = 0. (3.3.33)

Similarly, the choice p = 1 leads to an equation linear in 1/x, while
the choice b = ±1 and r = ±√

µ leads to linear equations involving y
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and 1/y respectively. From the relation of the solution of (3.3.31) to the
q-hypergeometric function 2φ1, we expect equation (3.3.33) to be related to
the incomplete q-Beta function. In any case, it can be shown that at the con-
tinuous limit, λ→ 1 + ε, q → t, b = −1 + ε(µ− 1)/2, p = 1 − εν/2, equation
(3.3.33) becomes

t(1 − t)
dx

dt
+ (t(1 − µ− ν) +mu− 1)x− νt = 0, (3.3.34)

with solution x = νt1−µ(1 − t)−νBt(µ, ν).

Equations with Geometry Described by E
(1)
6

Two well-known equations are associated to this affine Weyl group, a differ-
ence equation and a q-equation [28]. The former is known as the asymmetric
d-PIV equation, with PVI as continuous limit,

(yn + xn+1)(xn + yn) =
(yn − p)(yn − r)(yn − s)(yn − t)

(yn − zn − a)(yn − zn + a)
, (3.3.35a)

(xn + yn)(xn + yn−1) =
(xn + p)(xn + r)(xn + s)(xn + t)

(xn − zn+1/2 − b)(xn − zn+1/2 + b)
(3.3.35b)

where a, b, p, r, s and t are constants satisfying the constraint p+r+s+t = 0.
The linearisability constraint,

a+ b = p+ r + δ/2, (3.3.36)

leads to the homographic system,

xn+1 =
yn(ζn+1 − b) + pr

yn − zn − a
, (3.3.37a)

where one should substitute the value of yn,

yn =
xn(zn − a) + st

x− zn+1/2 − b
. (3.3.37b)

From (3.3.37) we can obtain several examples where the discrete Riccati
equation reduces to a first-order linear equation. First we have the case where
a = 0. The linear equation, for x, is

xn+1 =
xn(zn − p)(zn − r) + zn(st− pr) − (p+ r)(pr + st)

(zn − s)(zn − t)
. (3.3.38)

In an analogous way, taking b = δ/2, one finds a similar linear equation for
the variable y. For the second family of linear equations, the proper vari-
able is not x or y but an auxiliary variable obtained through homographic
transformation of it. These solutions are obtained with the extra constraint
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t = p, or analogously any of the choices s = p, s = r, t = r. We introduce the
variable X by x = 1/X − p, and obtain for X the equation

Xn+1 =
Xn(zn + a− p)(zn + p+ b− δ/2) − 2a

(zn − a− p)(zn + p− b+ δ/2)
. (3.3.39)

The integration of these linear equations proceeds along the lines described at
the beginning of this section. We expect the solutions of these linear equations
to be discrete analogues of the incomplete Beta function.

The second equation associated with E(1)
6 is the asymmetric q-PV equa-

tion,

(ynxn+1 − 1)(xnyn − 1) = q2n
(yn − p)(yn − r)(yn − s)(yn − t)

(yn − aqn)(yn − qn/a)
(3.3.40a)

(xnyn − 1)(xnyn−1 − 1) = ρ2
n

(xn − 1/p)(xn − 1/r)(xn − 1/s)(xn − 1/t)
(xn − bρn)(xn − ρn/b)

,

(3.3.40b)
where a, b, p, r, s and t are constants satisfying the constraint prst = 1.
Despite the fact that this equation has 5 genuine parameters, its continuous
limit is just PVI, as was shown in [28]. The linearisability constraint in this
case is

ab = prµ, (3.3.41)

and the homographic system becomes

xn+1 =
1 + aqn(yn − p− r)/pr

yn − aqn
, (3.3.42a)

where one should substitute the value of yn,

yn =
1 + bρn(xnst− s− t)

xn − bρn
. (3.3.42b)

Let us point out that while the linearisation of (3.3.42) leads to an equation
with more parameters than the discrete hypergeometric function, its con-
tinuous limit is the Gauss hypergeometric equation, which is expected since
the continuous limit of (3.3.40) is PVI. Again we obtain a special solution of
asymmetric q-PV by a first-order linear q-discrete equation in several cases.
Taking a = 1 we find the linear mapping,

xn+1 =
xn(qn − r)(qn − p)st+ q2n(p+ r − s− t) + qn(st− pr)

pr(qn − s)(qn − t)
. (3.3.43)

Similarly, a linear mapping for y can be obtained when b = µ. As in the
case of asymmetric d-PIV, we obtain more instances of direct linearisation
for variables obtained by a homographic transformation from x or y. These
solutions are obtained with the extra constraint t = p or analogously any
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of the choices s = p, s = r, t = r. We introduce the variable X through
x = 1/X + 1/p and obtain the equation,

Xn+1 =
Xn(aqn − p)(bpqn − µ) + prqn(bps− aµ)

p(aqn − r)(bsqn − µ)
(3.3.44)

The solutions of these equations have one more parameter than the incom-
plete q-Beta function.

Equations with Geometry Described by E(1)
7

The first equation, whose geometry is described by the E(1)
7 affine Weyl group,

is the asymmetric d-PV,

(yn + xn+1 − zn − ζn+1)(xn + yn − zn − zn+1/2)
(yn + xn+1)(xn + yn)

=

(yn − zn − a)(yn − zn − b)(yn − zn − c)(yn − zn − d)
(yn − p)(yn − r)(yn − s)(yn − t)

(3.3.45a)

(xn + yn − zn − zn+1/2)(xn + yn−1 − zn−1 − zn+1/2)
(xn + yn)(xn + yn−1)

=

(xn − zn+1/2 + a)(xn − zn+1/2 + b)(xn − zn+1/2 + c)(xn − zn+1/2 + d)
(xn + p)(xn + r)(xn + s)(xn + t)

,

(3.3.45b)

where a, b, c, d, p, r, s and t are constants satisfying the constraints a+ b+
c+d = p+ r+ s+ t = 0. This equation, just like the asymmetric q-PV above,
has more parameters than PVI. However at the continuous limit these extra
parameters do not survive, and thus at the limit we obtain just PVI [38]. The
linearisability constraint is

a+ b = p+ r + δ/2, (3.3.46)

or equivalently s+ t = c+ d+ δ/2. The homographic system now becomes

xn+1 =
yn(ζ2

n+1 − (a+ b)ζn+1 + ab− pr) + pr(zn + ζn+1)
yn(zn + ζn+1) − z2n − zn(a+ b) − ab+ pr

, (3.3.47a)

where one should substitute the value of yn

yn =
xn(z2n + (c+ d)zn + cd− st) + st(zn + ζn)

xn(zn + ζn) − z2n+1/2 + zn+1/2(c+ d) − cd+ st
. (3.3.47b)

Again, the linearisation of (3.3.47) leads to an equation which goes beyond
the discrete hypergeometric function . The direct linearisation can be ob-
tained, provided one extra constraint is satisfied together with (3.3.46). This
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constraint can be any one of t = p, s = p, s = r, t = r, a = c, b = c, a = d,
or b = d. For instance if we take t = p and introduce the auxiliary variable
X by x = 1/X − p, we find that

Xn+1 =
Xn(zn + a− p)(zn + b− p)(zn+1/2 + p− c)(zn+1/2 + p− d) +Qn

(zn + a− p)(zn + d− p)(ζn+1 + p− a)(ζn+1 + p− b)
,

(3.3.48)
where Qn is a polynomial quadratic in z, Qn = −2z2n(a+b+p+r)+2zn(−ab+
cd+ 4p(p+ r)) + δ(p2 + (ab+ cd)/2).

The second equation we shall examine is a q-equation, which, in the sym-
metric case, is a discrete form of PVI [38]. It can be written as

(ynxn+1 − qnρn+1)(xnyn − qnρn)
(ynxn+1 − 1)(xnyn − 1)

=

(yn − aqn)(yn − bqn)(yn − cqn)(yn − dqn)
(yn − p)(yn − r)(yn − s)(yn − t)

(3.3.49a)

(xnyn − qnρn)(xnyn−1 − qn−1ρn)
(xnyn − 1)(xnyn−1 − 1)

=

(xn − ρn/a)(xn − ρn/b)(xn − ρn/c)(xn − ρn/d)
(xn − 1/p)(xn − 1/r), (xn − 1/s)(xn − 1/t)

(3.3.49b)

where a, b, c, d, p, r, s and t are constants satisfying the constraints abcd =
prst = 1. The condition for the existence of a linearisable solution is

ab = prµ, (3.3.50)

or, equivalently, st = cdµ. Whenever this linearisability constraint is satisfied
the solution is given by the homographic system,

xn+1 =
yn(1 − qnρn+1) + qn(ρn+1(r + p) − a− b)
yn(r + p− qn(a+ b)) + pr(qnρn+1 − 1)

, (3.3.51a)

where one should substitute the value of yn,

yn =
xnst(qnρn − 1) + qn(c+ d− ρn(s+ t))
xn(qn(c+ d) − s− t) + 1 − qnρn

. (3.3.52b)

Just as in the case of asymmetric d-PV above, the direct linearisation can be
obtained provided one extra constraint is satisfied together with (3.3.50), and
this constraint can be any of t = p, s = p, s = r, t = r, a = c, b = c, a = d,
or b = d. For instance we can take t = p and introduce again an auxiliary
variable X by x = 1/X + 1/p. We find that

Xn+1 =
Xn(aqn − p)(bqn − p)(pqn − cµ)(pqn − dµ) +Qn

(pρn+1 − a)(pρn+1 − b)(cqn − p)(dqn − p)
, (3.3.52)

where Qn is a polynomial cubic in q, Qn = µp2q3n(1/a + 1/b − 1/c − 1/d) +
pq2n(µ

2(p/s+ 1) − p/r − 1) + µp3qn(r(c+ d) − s(a+ b)) − µp4(s− r) .
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3.4 Other Types of Solutions for d-P’s

The continuous Painlevé equations possess another type of special solution
which exists whenever one particular constraint is satisfied among their pa-
rameters. This constraint is, in general, different from the linearisability con-
straint. The solutions obtained in this case have no degree of freedom, they
are rational functions of the independent variable. The same kind of solution
does exist for discrete Painlevé equations. Let us illustrate such solutions in
the case of the symmetric d-PII,

xn+1 + xn−1 =
2xnzn + 2m
x2
n − 1

, (3.4.1)

where zn = αn+ β. Equation (3.4.1), obviously, has the solution xn = 0 for
m = 0. It is also straightforward to construct higher-degree rational solutions.
We find, for example, for m = −α,

xn =
α

1 + zn
, (3.4.2)

and for m = −2α,

xn =
2α

1 + zn

α2zn − (1 + zn)3

α2(zn + 3) − (1 + zn)3
. (3.4.3)

Observe that higher-degree rational solutions exist for all values of m which
are integral multiples of α, the step in zn. We shall return to the symmetric
d-PII in the following section.

Another type of solution is known as “molecule” solutions. The name
comes from the semi-infinite or finite Toda lattice equation which is also
known under the name of Toda molecule equation, which has the form,

d2

dt2
log Vn = Vn+1 + Vn−1 − 2Vn, (3.4.4)

with V0 = 0. It admits the solution

Vn =
τn−1τn+1

τ2
n

, (3.4.5)

where the τ -function is given by

τN =

∣∣∣∣∣∣∣∣∣

f d
dtf · · · ( ddt )

N−1f
df
dt ( ddt )

2f · · · ( ddt )
Nf

...
...

. . .
...

( ddt )
N−1f ( ddt )

Nf · · · ( ddt )
2N−2f

∣∣∣∣∣∣∣∣∣
, (3.4.6)

where f is an arbitrary function of t. The crucial point is that the size of the
determinants entering into the expression of a solution at site n depend on
n. A molecule-type solution, obviously, can exist only for discrete equations.



366 K.M. Tamizhmani et al.

Let us illustrate such a molecule-type solution in the case of asymmetric
d-PII (3.3.6). This equation is in fact a contiguity relation for the confluent
hypergeometric equation, which, in special cases, can be a rational function
of its argument. So this equation does possess another type of interesting
solution, namely solutions where xn is a rational expression of δ but of degree
depending on n called molecule-type solutions in Hirota’s terminology [42]).
Indeed, for the special value p = −δ/4, which implies that r = δ/4 under the
constraint (3.3.7), the ansatz

xn =
δ

8
vn
vn−1

+
δ

2
(n− k − 1

4
) − 1 (3.4.7)

leads to the equation for v,

vn+1 + 8(n− k +
1
2
− 2
δ
)vn + 16(n− k +

1
4
)(n− k − 1

4
)vn−1 = 0. (3.4.8)

One solution can be given in terms of Hermite polynomials. Indeed, elimi-
nating Hm+1 and Hm−1 from the usual recursion relation for Hermite poly-
nomials of argument t,

Hm+1 − 2tHm + 2mHm−1 = 0 (3.4.9)

and its up- and down-shifts, one obtains

Hm+2 + (4m+ 2 − 4t2)Hm + 4m(m− 1)Hm−2 = 0, (3.4.10)

This equation is just (3.4.8) for m = 2(n − k) + 1/2, which is an integer
provided that k ± 1/4 is an integer and t2 = 4/δ. One solution of (3.4.8) is
thus vn = Hm(2/

√
δ), leading for x to an expression that is rational in δ

(since only polynomials of the same parity enter the equation) but of degree
dependent on n.

4 From Elementary to Higher-Order Solutions

4.1 Auto-Bäcklund and Schlesinger Transformations

In the previous section we have presented solutions of Painlevé equations,
both continuous and discrete, in terms of “classical” transcendents. What
must be made clear at the outset is that these solutions are not isolated.
They are just the first, elementary, members of large families with an infi-
nite number of members. The importance of the elementary solutions just
obtained lies in the fact that they are the “seeds” for the calculation of the
higher solutions. The way one obtains these higher solutions is through the
use of auto-Bäcklund and Schlesinger transformations of the equation.

Let illustrate this aproach with two selected examples. We start with the
case of continuousPII:
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w′′ = 2w3 + tw + µ (4.1.1)
For µ = 1/2, a special solution exists which can be expressed in terms of Airy
functions. Setting w = −u′/u, we find that u satisfies the equation

u′′ +
t

2
u = 0. (4.1.2)

Next we use the auto-Bäcklund trasformation for PII [36],

w(µ+ 1) = −w(µ) − 2µ+ 1
2w2(µ) + 2w′(µ) + t

, (4.1.3)

and construct the higher Airy-type solutions. For µ = 1/2 in (4.1.3), we
obtain

w(3/2) =
u′

u
− 1

2(u′/u)2 + t
. (4.1.4)

Similarly, for µ = 5/2, we find that

w(5/2) = −w(3/2) − (2(u′/u)2 + t)2

4(u′/u)3 + 2tu′/u− 1
(4.1.5)

Higher solutions can be obtained through the repeated application of the
auto-Bäcklund transformation.

We turn now to the discrete PII

xn+1 + xn−1 =
2znxn + 2m
x2
n − 1

, (4.1.6)

where zn = αn+β. For the special value,m = −α/2, d-PII possesses a special
solution which can be expressed in terms of a discrete Airy function. Setting
xn = Qn+1/Qn − 1, we find that Q satisfies the discrete equation,

Qn+1 − 2Qn + (m− zn−1)Qn−1 = 0. (4.1.7)

The auto-Bäcklund transformation of d-PII is [26]

xn(m− α) = −xn(m) +
(2m− α)(1 − xn(m))

(xn+1(m) + 1)(xn(m) − 1) − zn −m
. (4.1.8)

Using this transformation, we can construct a solution for m = −3α/2. We
find that

xn(−3α/2) = −xn(−α/2) +
2αQn+1(Qn+1 − 2Qn)

2Q2
n+1 +Qn+1Qn(α− 4) − (2zn + α)Q2

n

.

(4.1.9)
Similarly we can construct higher Airy-type solutions for d-PII.

The way to obtain higher solutions by means of auto-Bäcklund transfor-
mations, though quite systematic, does have a drawback. If one wishes to
compute the Nth higher solution, one must start from the basic, elementary,
one and compute the higher ones successively till one reaches the Nth. Thus
no closed form expression can be given for these solutions; one has to con-
tent himself with recursion for their derivation. Fortunately an alternative
approach does exist.
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4.2 The Bilinear Formalism for d-Ps

A formalism which is particularly convenient for the study of the special so-
lutions of d-P’s is the Hirota bilinear formalism. This is not in the least aston-
ishing since it is the very same formalism which, in the context of continuous
integrable evolution equations, has made possible the systematic derivation
of multi-soliton solutions.

The application of the bilinear formalism to discrete Painlevé equations
was (first) introduced in [43]. As in the continuous case, one must propose an
ansatz in order to express the dependent variable in terms of τ -functions. The
success of the bilinearisation depends largely on the adequate choice of this
ansatz. Fortunately there exists a precious guide, the singularity structure.
This works equally well in the continuous as well as in the discrete case, but
we shall concentrate here on the latter.

The simplest way to illustrate this is through an example. Let us start
from the symmetric d-PII equation,

xn+1 + xn−1 =
zxn + a

1 − x2
n

, (4.2.1)

with z = αn+ β. Obviously, a singularity appears whenever the x in the de-
nominator takes the value +1 or −1. A detailed study of these singularities
leads to the singularity patterns {−1,∞,+1} and {+1,∞,−1}. The assump-
tion made in [43] was that there exists a relationship between the number
of singularity patterns of a d-P and the minimum number of the τ -functions
necessary for its description. In the case at hand, this means that we must
introduce two τ -functions, F and G. Since the τ -functions are entire, x must
involve ratios of such functions. With the appropriate choice of gauge, the
ansatz for x turns out to be

xn = −1 +
Fn+1Gn−1

FnGn
= 1 − Fn−1Gn+1

FnGn
. (4.2.2)

Equating the two rightmost sides of this relation leads to a first bilinear
equation for d-PII,

Fn+1Gn−1 + Fn−1Gn+1 − 2FnGn = 0, (4.2.3)

and substituting the ansatz into (4.2.1) yields the second equation,

Fn+2Gn−2 − Fn−2Gn+2 = z(Fn+1Gn−1 − Fn−1Gn+1) + 2aFnGn. (4.2.4)

However the assumption that the number of τ -functions is related to the
number of singularity patterns should not be interpreted as a strict equality.
Quite often the number of τ -functions is larger than that of the singularity
patterns. This is due to the fact that auxiliary τ -functions are necessary for
the bilinearisation. Let us illustrate this in the case of the “alternate” d-PII
equation,
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zn
xn+1xn + 1

+
zn−1

xnxn−1 + 1
= −xn +

1
xn

+ zn + µ. (4.2.5)

The singularity analysis of (4.2.5) results into two singularity patterns, {0,∞}
and {∞, 0}. This suggests the introduction of two τ -functions and the sub-
stitution:

xn =
FnGn−1

Fn−1Gn
. (4.2.6)

From the forms that appear in the denominators of the left hand side of
(4.2.5) it becomes clear that the only hope for a simplification is when there
exists some relation between numerator and denominator which leads to the
introduction of a first, bilinear condition,

Fn+1Gn−1 + Fn−1Gn+1 = znFnGn. (4.2.7)

However, even with the use of (4.2.7), the equation we obtain is still quadri-
linear. In order to simplify it further we observe that if Gn = 0, then
Fn+1Fn−1 = F 2

n . Thus, when Gn �= 0, we can extend this relation by the
introduction of a third, auxiliary, τ -function, E

Fn+1Fn−1 = F 2
n +GnEn (4.2.8)

Using (4.2.8) and (4.2.7) we can simplify the expression of alternate d-PII.
We finally obtain

GnEn−1 −Gn−1En = µFnFn−1. (4.2.9)

Equations (4.2.9), (4.2.8) and (4.2.7) constitute the bilinearization of alter-
nate d-PII. Similarly we could have considered what happens when Fn = 0.
In this case we could have introduced another τ -function H by

Gn+1Gn−1 = G2
n + FnHn, (4.2.10)

and obtained a third equation

Fn−1Hn − FnHn−1 = (µ+∆z)GnGn−1, (4.2.11)

where ∆z = zn+1 − zn. By comparing (4.2.9) and (4.2.11) one sees that a
shift from µ to µ+∆z is associated to the transformation of the τ -functions
{E,F,G} → {F,G,H}. In fact, the τ -functions E, F , G and H constitute a
Schlesinger chain in the sense of Okamoto [44].

Let us now use the bilinear form of (4.2.5) in order to construct the
elementary solution in terms of discrete Airy functions. We start with xn =
FnGn−1/Fn−1Gn and require that Fn = 1 for all n. In this case (4.2.7)
becomes

Gn−1 +Gn+1 = znGn, (4.2.12)

and it is not difficult to recognize in (4.2.12) a discrete form of the Airy
equation. Moreover xn = Gn−1/Gn defines a Cole-Hopf-like transformation
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analogous to the one used in the continuous case. Substituting F = 1 in
(4.2.8) we find that E = 0, and from (4.2.9) we obtain µ = 0.

One interesting interpretation of this solution of the alternate d-PII can
be obtained by the relation of this equation to the continuous PIII, which
we have investigated in detail in [45]. As we have seen in Sect. 2 the special
solutions of PIII can be expressed in terms of Bessel functions. From the
Riccati equation w′ = −w2 − (1 + α)w/t+ 1, setting w = u′/u we obtain,

u′′ +
1 + α

t
u′ − u = 0. (4.2.13)

Equation (4.2.13) is solved in terms of a Bessel function, Cν , u = tνCν(it),
where ν = −α/2. Using the well-known property of the Bessel functions,
C′
ν/Cν = −ν/t + Cν−1/Cν we can express w simply as w = iCν−1/Cν . As

shown in [45] the variable of alternate d-PII is related to that of PIII by
x = i/w = Cν/Cν−1. A straightforward calculation shows that x satisfies
(4.2.5), provided that µ = 0. We can easily show that µ = 0 is precisely the
condition for the existence of the special solution of PIII. We can wonder at
this point what this special solution of alternate d-PII may be. The answer is
furnished by PIII itself. The Bessel functions Cν satisfy the recursion relation,

Cν+1 + Cν−1 =
2ν
t
Cν . (4.2.14)

Equation (4.2.14), considered as an equation for ν, is nothing but the discrete
form of the Airy equation, which can be confirmed by the continuous limit
in ν. Thus the special solution of alternate d-PII is expressed in terms of the
discrete Airy function, as expected.

4.3 The Casorati Determinant Solutions

Why is the bilinear formalism useful for the construction of solutions of d-
P’s? In the beginning of this section we have pointed out the difficulty in
constructing higher solutions using the auto-Bäcklund and Schlesinger trans-
formations of the discrete Painlevé equations. In order to construct the Nth
solution one has to calculate all the previous ones. However a small mira-
cle, one of those which abound in the domain of integrability, occurs. The
τ -function for higher solutions of the d-P’s can be expressed as a Casorati
determinant. Following the analysis of Sect. 2, we expect four different kinds
of Casorati determinant solutions to exist, but it turns out that in some
case not all four types are present. The first one involves the discrete special
functions obtained as elementary solutions. These special functions appear
as entries in the Casorati determinant. At the continuous limit, they become
the corresponding solutions of the continuous Painlevé equations. We call
such solutions “lattice-type solutions”. The second one is that of the ratio-
nal solutions. They are expressed in two ways; in the continuous limit, one
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reduces to the Hankel determinant representation of rational solutions for
the corresponding continuous equation, while the other reduces to the De-
visme polynomial representation [42]. The two other ones are what we call
“molecule-type solution” (in terms of either special function or polynomi-
als). This type of solution is specific to discrete equations: the size of the
determinant in the solutions depends on the lattice site and thus the deter-
minant structure cannot have any continuous limit. The names “lattice” and
“molecule” come from the two types of the Toda equations on an infinite
lattice and on a semi-infinite or finite lattice. The former is sometimes re-
ferred to as the “Toda lattice”, and the latter as the “Toda molecule”. The
Toda lattice equation admits Casorati determinant solutions, and the size
of the determinant is the number of solitons in superposition. For the Toda
molecule equation, the size of the determinant is just the lattice site [42].

Let us first examine the lattice-type solutions for the alternate d-PII equa-
tion. We show that they are expressed by the Casorati determinant whose
entries are given by the discrete Airy function defined by (4.2.12). We here
present only the results. The details of the derivation can be found in [45].

We consider the following τ -function,

τnN =

∣∣∣∣∣∣∣∣∣

Gn Gn+1 · · · Gn+N−1
Gn+1 Gn+2 · · · Gn+N

...
...

. . .
...

Gn+N−1 Gn+N · · · Gn+2N−2

∣∣∣∣∣∣∣∣∣
, (4.3.1)

where Gn satisfies (4.2.12),

Gn+1 +Gn−1 = (an+ b)Gn. (4.3.2)

We can then show that

XN
n =

τn−1
N+1τ

n+1
N

τnN+1τ
n
N

(4.3.3)

gives the solution of alternate d-PII, in the form

an+ aN + b

XN
n+1X

N
n + 1

+
a(n− 1) + aN + b

XN
n X

N
n−1 + 1

= −XN
n +

1
XN
n

+(an+2aN+b). (4.3.4)

Note that the size of the τ -function is related to the parameter N in this
equation. The elementary solution is included as the special case N = 0,
if we define τn0 = 1. The continuous limit is obtained as follows. Setting
a = ε3, b = 2, nε = t, XN

n = 1 − εu, we find that, when ε → 0, the above
result reduces to
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τN =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ai

(
d

dt

)
Ai · · ·

(
d

dt

)N−1

Ai
(
d

dt

)
Ai

(
d

dt

)2

Ai · · ·
(
d

dt

)N
Ai

...
...

. . .
...(

d

dt

)N−1

Ai

(
d

dt

)N
Ai · · ·

(
d

dt

)2N−2

Ai

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (4.3.5)

where Ai is an Airy function satisfying d2

dt2Ai = t Ai. The continuous depen-
dent variable is

u =
d

dt
log
(
τN+1

τN

)
, (4.3.6)

and satisfies the PII equation,

d2

dt2
u = 2u3 − 2tu+ (2N + 1), (4.3.7)

as expected.
We next turn to the molecule-type solutions of alternate d-PII We start

from the Toeplitz determinant,

τnN =

∣∣∣∣∣∣∣∣∣

fn fn−1 · · · fn−N+1
fn+1 fn · · · fn−N+2

...
...

. . .
...

fn+N−1 fn+N−2 · · · fn

∣∣∣∣∣∣∣∣∣
, (4.3.8)

where the fn’s satisfy
fn+1 − fn−1 = anfn, (4.3.9)

where a a constant. We can show that

Xn
N = −

τnN+1τ
n+1
N

τn+1
N+1τ

n
N

(4.3.10)

satisfies the alternate d-PII,

a(N + 1)
Xn
N+1X

n
N + 1

+
aN

Xn
NX

n
N−1 + 1

= −Xn
N +

1
Xn
N

+ (aN + an+ a). (4.3.11)

Observe that in this case the size of the determinant is the lattice site, and
hence the determinant structure of these solutions cannot survive under the
continuous limit.

One can wonder whether the solutions expressed as Casorati-determinants
have the properties one would expect for d-P’s. We have seen above how, at
the continuous limit, the lattice solutions of the alternate d-PII become the so-
lutions of PII. Another property is that of degeneration through coalescence.
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In this case, the example of PII is a bad one, since this equation degenerates
to PI which has no special solutions. Instead we shall present an example
based on PIII. In what follows we shall present both the continuous PIII and
the q-PIII cases. We start from PIII, which is given here in the convenient
form

W ′′ =
W

′2

W
+ e2Z(W 3 − 1

W
) + eZ(AW 2 +B). (4.3.12)

The higher linearisability condition which allows the solution of PIII to be
expressed as a ratio of two τ -functions is

A+B = 2(2N + 1), (4.3.13)

for integer N . Setting A = −2ν + 2N and B = 2ν + 2N + 2, we find that W
can be expressed as [47]

W = e−Z
(
N + ν +

d

dZ
ln
(
τν+1
N

τνN+1

))
, (4.3.14)

where τνN is just the (N ×N) Wronski determinant,

τνN =

∣∣∣∣∣∣∣∣∣∣∣

Jν
d
dZ Jν . . .

dN

dZN Jν

d
dZ Jν

. . .
...

...
dN

dZN Jν . . . d2N

dZ2N Jν

∣∣∣∣∣∣∣∣∣∣∣

. (4.3.15)

Here, the Jν ’s are Bessel functions or, more precisely, Jν(eZ) is solution of
the equation

d2

dZ2 Jν + (e2Z − ν2)Jν = 0. (4.3.16)

In order to proceed to the coalescence limit, we introduce the following trans-
formation of the independent variable eZ = 1/δ3+z/δ together with ν = 1/δ3.
Thus, if δ → 0, then ν → ∞ and equation (4.3.16) becomes

d2J

dz2 + 2zJ = 0, (4.3.17)

i.e., the Airy equation. Simultaneously, we have, for the dependent variable:
W = 1 + δw, and by taking A = −2/δ3 + 2N , B = 2/δ3 + 2N + 2, we obtain
for w equation PII in the form

w′′ = 2w3 + 4zw + 4N + 2. (4.3.18)

The only subtle point remaining is to prove that the limit of (4.3.14) leads to
the Wronskian solution of (4.3.18). As a matter of fact, (4.3.14) is expressed
in terms of τν and τν+1 which involve Jν and Jν+1 respectively. These Bessel
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functions of argument eZ are related by Jν+1 = e−Z(νJν − d
dZ J

ν). Introduc-
ing the transformation of independent variable from Z to z, we find that
Jν+1 = Jν + O(δ). Thus, at the limit δ → 0, τν and τν+1 are expressed in
terms of the same solution of (4.3.17). In conclusion, the coalescence of the
Wronskian solutions of PIII leads to the Wronskian solutions of PII [48],

w =
d

dz
ln

τN
τN+1

, (4.3.19)

for all integer N , where the τ -functions are given by expression (4.3.15), and
where the entries are in terms of the solution J of the Airy equation (4.3.17).

We turn now to the case of the coalescence from q-PIII to d-PII. We start
from q-PIII in the form

Xn+1Xn−1 =
PQ(Xn −AZ)(Xn −BZ)

(Xn − P )(Xn −Q)
, (4.3.20)

where Z = Λn and A, B, P and Q are constants.
The higher linearisability condition is

AQ = BPΛ1+2N , (4.3.21)

where N is an integer. For N = 0 we set:

Xn = P +
Jn+1

Jn
, (4.3.22)

and find for J the equation

Jn+2 + (P −Q)Jn+1 +Q(AZ − P )Jn = 0. (4.3.23)

The function J is characterised by one parameter, ν, which can be related
to the parameters of q-PIII by P/Q = −Λν . In fact a simple expression for ν
exists for any value of N ,

AP

BQ
= Λ1+2ν . (4.3.24)

Equation (4.3.23) is a discrete form of the Bessel equation. One can easily
derive the contiguity relations for the discrete Bessel functions J (ν)

n . We find:

J (ν+1)
n =

1√
Z

(J (ν)
n +

1
P
J

(ν)
n+1) (4.3.25a)

J (ν−1)
n =

1√
Z

(J (ν)
n − 1

Q
J

(ν)
n+1), (4.3.25b)

where ν + 1 and ν − 1 are associated to values of parameters A
√
Λ, B/

√
Λ,

P
√
Λ, Q/

√
Λ and A/

√
Λ, B

√
Λ, P/

√
Λ, Q

√
Λ, respectively.

For generic N , the form of X is given in terms of τ -functions as [49],
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Xn = P +
τ

(ν,N+1)
n+1 τ

(ν+1,N)
n

τ
(ν,N+1)
n τ

(ν+1,N)
n+1

, (4.3.26)

where τ (ν,N)
n is given by the N ×N Casorati determinant of discrete Bessel

functions,

τ (ν,N)
n =

∣∣∣∣∣∣∣∣∣∣∣

J
(ν)
n J

(ν)
n+1 . . . J

(ν)
n+N−1

J
(ν)
n+2

. . .
...

...
J

(ν)
n+2N−2 . . . J

(ν)
n+3N−3

∣∣∣∣∣∣∣∣∣∣∣

. (4.3.27)

We now proceed to the coalescence limit and introduce X = 1 + δx,
P = 1−δ, Q = 1+δ, A = 1−δ−δ2a/2, B = 1+δ+δ2a/2 and Λ = 1+δ2α/2,
leading to Z = 1 + zδ2/2. Moreover, since P/Q = −Λν , we obtain for ν at
a leading order, ν = 2iπ/(αδ2), which means that ν diverges at the limit
δ → 0. We thus obtain d-PII, where parameter a, resulting from the limit of
(4.3.21), is

a = α(N + 1/2). (4.3.28)
The coalescence of the discrete Bessel equation (4.3.23) first leads to:

Jn+2 − 2δJn+1 + δ2(z − a)Jn/2 = 0, (4.3.29)

and we absorb the δ factors through a gauge transformation, Jn = δnKn. We
thus find for K the equation

Kn+2 − 2Kn+1 + (z − a)Kn/2 = 0, (4.3.30)

which is precisely the discrete form of the Airy equation. In the coalescence
process, ν disappears from the limit equation. Observe that, during the lim-
iting process, the solution Kn could a priori have retained a memory of the
value of ν, by the value of J (ν) from which it came. However this is not the
case. In fact, since Jn = δnKn, J

(ν)
n+1 becomes negligible in the contiguity

relation (4.3.25). Moreover, since Z goes to 1 at lowest order, the Kn’s are
indeed independent of the index ν. By taking the limit of (4.3.26), we obtain
the Casorati solution of d-PII. Starting from (4.3.27) and expressing Jn in
terms of Kn we obtain τ -functions of the same form, where Jn is replaced by
Kn, and a global factor that is a power of δ. However it turns out that when
we compute the ratio appearing in (4.3.26), all the δ’s but one drop out. We
thus have

Xn = 1 − δ + δ
τ

(N+1)
n+1 τ

(N)
n

τ
(N+1)
n τ

(N)
n+1

, (4.3.31)

and, since X = 1 + δx, we see that a solution of d-PII is given by

xn = −1 +
τ

(N+1)
n+1 τ

(N)
n

τ
(N+1)
n τ

(N)
n+1

, (4.3.32)

for all integers N .
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We turn now to the study of rational solutions. We shall concentrate
on the example of the “standard” d-PII for which Kajiwara and Ohta [46]
have derived Casorati solutions. These authors have shown that the Casorati
determinant,

τnN =

∣∣∣∣∣∣∣∣∣∣

L
(n)
N L

(n)
N+1 . . . L

(n)
2N−1

L
(n)
N−2 L

(n)
N−1 . . . L

(n)
2N−3

...
...

. . .
...

L
(n)
N+2 L

(n)
N+3 . . . L

(n)
1

∣∣∣∣∣∣∣∣∣∣
, (4.3.33)

whose elements are Laguerre polynomials, satisfies the d-PII equation. We
recall the definition of the Laguerre polynomials L(n)

k (t) in terms of their
generating function,

∞∑
k=0

L
(n)
k (t)λk = (1 − λ)1−ne

λt
1−λ , (4.3.34)

and L(n)
k (t) = 0 for k < 0. Thus L(n)

k (t) is polynomial in n of degree k. The
nonlinear variable x is related to τ by

xNn =
τn+1
N+1τ

n−1
N

τnN+1τ
n
N

− 1, (4.3.35)

and satisfies the d-PII,

xNn+1 + xNn−1 =
2
t

(n+ 1)xNn − (N + 1)
1 − (xNn )2

. (4.3.36)

What is really interesting at this point is to link the continuous limit of
this result to the one already obtained for the rational solutions of PII. This
limit was obtained by Kajiwara and Ohta, who showed that the rational
solution of d-PII becomes the rational solution of PII. For completeness, let
us mention the result concerning this latter solution. First one introduces the
Devisme polynomials, pk(z, s), by the generating function,

∞∑
k=0

pk(z, s)ηk = ezη+sη
2+η3/3, (4.3.37)

and pk(z, s) for k < 0. Then the Casorati determinant

τN =

∣∣∣∣∣∣∣∣∣

pN (z, s) pN+1(z, s) . . . p2N−1(z, s)
pN−2(z, s) pN−1(z, s) . . . p2N−3(z, s)

...
...

. . .
...

p−N+2(z, s) p−N+3(z, s) . . . p1(z, s)

∣∣∣∣∣∣∣∣∣
(4.3.38)

can be shown to be independent of s. Introducing the nonlinear variable
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v =
d

dz
log

τN+1

τN
, (4.3.39)

one can show that it satisfies the PII equation,

v′′ = 2v3 − 4zv + 4(N + 1), (4.3.40)

where the prime denotes the derivative with respect to z.

5 Bonus Track:
Special Solutions of Ultra-discrete Painlevé Equations

In this section we shall present the special solutions of another brand of
Painlevé equations, ultra-discrete P’s [50]. These equations are the cellular-
automaton-analogues of the Painlevé equations where the dependent variable
takes discrete values. The systematic derivation [51] of these systems be-
came possible thanks to the ultra-discretisation procedure introduced by the
Tokyo-Kyoto group [52]. This method is based on a transformation of the de-
pendent variable followed by a limiting procedure. We start with the transfor-
mation which relates the variable of the discrete system x to that of the ultra-
discrete X, by x = eX/ε. An essential requirement is that the variable of the
discrete equation assume only positive values. In practice this means that the
ultra-discretisation will isolate the positive solutions of the discrete system. In
order to obtain a cellular automaton, one takes the limit ε→ +0. The corner-
stone of the procedure is the identity, limε→+0 ε log(ea/ε + eb/ε) = max(a, b).
Thus, if a and b are integers, the result of the operation will be an integer.

Let us show how this method works for the PI equation. In order to
ensure the positivity requirement, the discrete forms considered were the
multiplicative ones, i.e., the q-Painlevé equations. Thus, for example, we start
from the three expressions of q-PI,

xσnxn+1xn−1 = zxn + 1, (5.1)

where σ=0, 1 or 2 and z = λn. From (5.1), with λ = e1/ε, we obtain the
ultra-discrete forms,

Xn+1 +Xn−1 + σXn = max(0, Xn + n). (5.2)

In a series of works [50], [51], [53] we showed that the properties of the ultra-
discrete P’s follow those of the d-P’s, which parallel the ones of the continuous
P’s. Thus the question of the existence of special solutions [53], like the ones
which have been the object of the present course, is quite natural.

Let us start with the ultra-discrete PII of first kind,

Xn+1 +Xn−1 = max(0, n−Xn) − max(0, Xn + n− a), (5.3)
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which is derived from the multiplicative d-PII,

xn+1xn−1 =
xn + z

xn(1 + αzxn)
, (5.4)

where z = λn, and α is a parameter, by setting x = eX/ε, λ = e1/ε, α = e−a/ε

and taking the limit ε→ +0. By the transformation of the variable,

Xn = τn−1 − τn−2, (5.5)

we obtain the ultra-discrete “bilinear” equation,

τn + max(τn−2, τn−1 + n− a) = τn−3 + max(τn−1, τn−2 + n). (5.6)

We remark that in the ultra-discrete world, “max” and “+” should be re-
garded as “addition” and “multiplication”, respectively, because eA/ε + eB/ε

and eA/εeB/ε go to max(A,B) and A+B, respectively, under the operation
limε→+0 ε log. Thus the above equation is indeed a bilinear form in τ . Now
(5.3) is invariant under the transformation a → −a, n → n − a, X → −X,
thus we can assume a ≥ 0 without loss of generality. The u-PII (5.3) ad-
mits rational solutions for a = 4m, where m is a nonnegative integer. The
τ -function for the rational solution is

τn =
m−1∑
j=0

max(0, n− 3j), (5.7)

which is also expressed as

τn = max
0≤j≤m

(
jn− 3

2
j(j − 1)

)
. (5.8)

Next we consider the special solution for the u-PII of second kind,

Xn+1 +Xn−1 −Xn = max(0, n−Xn) − max(0, Xn + n− a). (5.9)

This is derived from another multiplicative d-PII,

xn+1xn−1 =
xn + z

1 + αzxn
, (5.10)

z = λn, and α is a parameter, by setting x = eX/ε, λ = e1/ε, α = e−a/ε and
taking the limit ε→ 0. The ultra-discrete bilinear form of (5.9) is

τn + max(τn−3, τn−1 + n− a) = τn−4 + max(τn−1, τn−3 + n), (5.11)

where Xn = τn−1 − τn−3. For a = 6m, with m a nonnegative integer, there
exist rational solutions of (5.9). The τ -function for the solution is given by
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τn =
m−1∑
j=0

max(0, n− 4j). (5.12)

For this τ -function,Xn gives a multistep solution with the elementary pattern
of two successive jumps at n = 4j − 2 (1 ≤ j ≤ m) followed by two steps
with constant value.

Let us proceed to the rational solution of ultra-discrete PIII. We consider
only a degenerate case, namely, the case in which the u-PIII is decomposed
into two parts. The u-PIII,

Xn+1 +Xn−1 − 2Xn =
max(0, n−Xn)−max(0, Xn+n−a)+max(0, n−Xn+b)−max(0, Xn+n+b),

(5.13)

is derived from the d-PIII,

xn+1xn−1 =
(xn + z)(xn + βz)

(1 + αzxn)(1 + βzxn)
(5.14)

, where z = λn and α, β are parameters, by setting x = eX/ε, λ = e1/ε,
α = e−a/ε, β = eb/ε and taking the limit ε → +0. Now decomposing (5.13)
in the following two equations,

Xn+1 +Xn−1 = max(0, n−Xn) − max(0, Xn + n− a), (5.15a)

2Xn = max(0, Xn + n+ b) − max(0, n−Xn + b) (5.15b)

we obtain bilinear equations by Xn = τn−1 − τn−2,

τn + max(τn−2, τn−1 + n− a) = τn−3 + max(τn−1, τn−2 + n), (5.16a)

τn−1 + max(τn−1, τn−2 + n+ b) = τn−2 + max(τn−2, τn−1 + n+ b). (5.16b)

The first equation, (5.15a) or (5.16a), is nothing but the bilinear form of the
u-PII of first kind, therefore what we have to do is to prove that solution
(5.7) simultaneously satisfies the second bilinear equation (5.16b). Another
bilinear equation can be easily obtained,

max(τn−q1 , τn−p1 + n) − τn−p1 = max(τn−q2 , τn−p2 + n) − τn−p2 ,
0 ≤ pi ≤ qi + k, qi ≥ 0, (5.17)

which yields (5.16b) by setting p1 = q2 = b + 1, p2 = q1 = b + 2 and k = 3.
Hence we have proved that the same τ as in the rational solution of u-PII
yields the solution for the u-PIII (5.13) with a = 4m, wherem is a nonnegative
integer, and b ≥ −1.

Since ultra-discrete analogues have also been established for the higher
Painlevé equations, it is certainly possible to obtain “multistep” solutions.
However, due to the reluctance of the authors to embark upon a derivation
which presents considerable computational difficulties, none has been derived
yet.
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Epilogue

In this course we have reviewed the special solutions of Painlevé equations
with an emphasis on the solutions of the discrete P’s. We have shown that,
for both the continuous and the discrete equations, the principle for the con-
struction of the basic, “elementary”, solution is the same. One requires that
the Painlevé equation, be satisfied by the solution of a first-order Riccati, or
even linear, equation. This is, of course, possible only for some special values
of the parameters of the Painlevé equation and the solution thus obtained
does not exist for arbitrary initial conditions. After all one expects the general
solution of the Painlevé equation to be transcendental.

Several open problems remains. The Casorati determinant solutions have
been computed for only a few selected d-P’s. While for the special-function
type solutions, the situation is bad, it is even worse for the rational solutions.
For the former one knows at least what will be the elements of the deter-
minant. They are the special functions obtained at the first stage, that of
the calculation of the lower, elementary, solution. However for the rational
solutions, there is no way to know beforehand what special polynomials will
appear as elements of the Casorati determinant. So a good deal of experi-
mentation is needed, unless one is able to link the d-P to some other system
which can provide a useful guide.

Another point which would require additional study is that of the char-
acterisation of the discrete special functions which appear as solutions of the
linear second-order mappings obtained from the linearisation of the discrete
Riccati equations. For some of them, it is possible to provide a description
either as contiguities of continuous special functions or, in the case of q-
mappings, as degenerate forms of the q-hypergeometric function. In all cases,
of course, the continuous limit of the linear equation is useful, be it only for
attributing a name to the discrete special functions. However for the higher-
order linear mappings and the related special functions the question is still
open.
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Abstract. Ultradiscretization is a limiting procedure which allows one to obtain
a cellular automaton (CA) from continuous equations. Using this method, we can
construct integrable CAs from integrable partial difference equations. In this course,
we focus on a typical integrable CA, called a Box and Ball system (BBS), and re-
view its peculiar features. Since a BBS is an ultradiscrete limit of the discrete KP
equation and discrete Toda equation, we can obtain explicit solutions and con-
served quantities for the BBS. Furthermore the BBS is also regarded as a limit
(crystallization) of an integrable lattice model. Recent topics, and a periodic BBS
in particular are also reviewed.

1 Introduction

A cellular automaton (CA) is a discrete dynamical system consisting of a
regular array of cells [1]. Each cell takes only a finite number of states and
is updated in discrete time steps. Although the updating rules are simple,
CAs often exhibit very complicated time evolution patterns which resemble
natural phenomena such as chemical reactions, turbulent flows, nonlinear dis-
persive waves and solitons. As an example, let us consider a one dimensional
CA, each cell of which is in either an active or an inactive state. We assume
the updating rule at the next time step to be:

1. An active cell always becomes inactive.
2. An inactive cell becomes active if and only if one of the two adjacent cells

is active.

Figure 1 shows a time evolution pattern of this CA. A black (white) cell
denotes an active (inactive) cell. Clearly the pattern shows self-similarity and,
in an appropriate limit, coincides with a fractal pattern (a Sierpinski gasket).
From this example, we see that CAs provide models for natural phenomena
which are not easily modeled by continuous systems described by differential
and/or difference equations.

On the other hand, some CAs show behaviour similar to that explained
in general by partial differential equations. In 1985 Wolfram listed up 20
important problems in the research of CAs. [2]. The 9th problem asks “What
is the correspondence between cellular automata and continuous systems ?”.
In a comment on this problem, he pointed out the similarity between time

T. Tokihiro, Ultradiscrete Systems (Cellular Automata), Lect. Notes Phys. 644, 383–424 (2004)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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Fig. 1. A time evolution pattern of a cellular automaton

evolution patterns of CAs and behaviour of continuous systems described
by differential equations, and stated that discretization of time and spatial
valuables would correspond to an approximation in numerical calculation,
but that the meaning of a discretization of physical quantities is not clear.
He also mentioned “Explicit example of cellular automaton approximations
to partial differential equations would be variable”.

Concerning this problem, a systematic method to construct CAs from
soliton equations (nonlinear integrable equations) was proposed in [3,4]. The
method is called ultradiscretization1 and is based on a limiting procedure
through which an equation turns into a piecewise linear equation so that it
can be closed under a finite number of discrete values. Hence, in the ultra-
discretization, the discretization of physical quantities is understood as an
approximation of the equations for the quantities by piecewise linear equa-
tions. Since the limiting process is continuous, if the solutions or conserved
quantities of the system are stable under the limiting procedure they are
naturally transformed into those of the CAs, and the features of the orig-
inal systems are preserved in the CAs. For soliton equations there exists a
stable transformation parameter (a spectral parameter) and through ultradis-
cretization we can construct CAs which have soliton solutions and an infinite
number of conserved quantities. However, it is a rather difficult problem to
find such a parameter in a general partial differential equation, and when we
construct a CA through ultradiscretization its time evolution patterns often
do not reflect the original system. Hence the mathematical structure of ul-
tradiscrete systems is well elucidated only for the integrable CAs, i.e., the
CAs obtained from soliton equations.

In this chapter, we review recent developments in ultradiscrete systems.
Since, as mentioned above, there remain many problems for general ultradis-
crete systems we focus on the integrable CAs, in particular, on so called box-
ball systems (BBSs) whose mathematical structure has been clarified with
respect to soliton equations and two-dimensional integral lattice models.

1 This name was given by B. Grammaticos at the previous CIMPA meeting,
Pondicherry, 1996.
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2 Box-Ball System

Solitonic behaviour is widely observed in filter type CAs [5] and these filter
type CAs are sometimes called soliton cellular automata [6–8]. One of the
typical CAs exhibiting solitonic behaviour is the so called box and ball system
(BBS). The BBS is a dynamical system of balls in an array of boxes [9]
which is a reinterpretation of the filter type CA proposed by Takahashi and
Satsuma [10]. Let us consider a one-dimensional array of an infinite number
of boxes. At the initial time step t = 0, all but a finite number of the boxes
are empty, and each of the remaining boxes contains a ball as shown in Fig. 2.

Fig. 2. A state of BBS

As a CA, a vacant box corresponds, say, to an inactive cell and a filled box
to an active cell. The time evolution rule for this system from time t to t+ 1
is given as follows.

1. Move every ball only once.
2. Move the leftmost ball to its nearest right empty box.
3. Move the leftmost ball of the remaining balls to its nearest right empty

box.
4. Repeat the above procedure until all the balls have moved.

An example of the time evolution is shown in Fig. 3. In this example, we
clearly see the solitonic behavior of balls which is a general property of the
BBS. The following facts hold for general time evolution patterns of the BBS.

1. The speed of a sequence of consecutive balls is proportional to its length.
2. Two such sequences do not change their lengths after collision.
3. The phase of a sequence, however, shifts after collision.

Fig. 3. Time evolution of the BBS
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Thus a ‘soliton’ in the BBS is a sequence of consecutive balls and the ‘length’
of the sequence corresponds to the ‘amplitude’ of a KdV soliton. We can
prove that every state of this BBS consists of only solitons in the sense that
after finitely many time steps it becomes a state consisting of only freely
moving solitons [11].

The reason why the BBS has a solitonic nature is well understood by
the idea of ultradiscretization. The BBS is regarded as an ultradiscrete limit
of the discrete KP equation (dKP eq.) or discrete Toda equation (dToda
eq.) [12]. In this limit a soliton solution to the dKP eq. turns into one for the
BBS and a conserved quantity for the dToda eq. into that for the BBS.

Although the original BBS is a reinterpretation of the soliton CA by
Takahashi and Satsuma, it can be extended to BBSs with many kinds of
balls, larger box capacity and carrying carts [13]. All these BBSs can be
regarded as ultradiscrete limits of some integrable equations and the solutions
and conserved quantities are obtained in concrete forms [14,15]. Furthermore
the BBS can be constructed from two dimensional integrable lattice models
through so called crystallization [16]. Hence the BBS is not only a limit
of classical integrable systems (integrable partial differential equations) but
also of quantum integrable systems. Using the idea of crystallization, we can
regard the BBS as an A(1)

M crystal lattice [17,18] (Fig. 11). Hence we may say
that the BBS is an integrable CA [19,20].

In the next section, we explain the relation of the BBS to classical inte-
grable systems through ultradiscretization.

3 Ultradiscretization

Ultradiscretization is a limiting procedure which transforms a (continuous
valued) discrete equations to a piecewise linear equation. By this method
the equation becomes closed under a finite number of values and it can be
regarded as a CA. In the next two subsections, we show how this method is
used to obtain the BBS from the dKP equation and the dToda equation.

3.1 BBS as an Ultradiscrete Limit of the Discrete KP Equation

The aim of the present subsection is to relate the BBS to one of the most im-
portant integrable discrete equation, the discrete KP equation. The discrete
KP equation is often called the Hirota-Miwa equation because it was first
proposed by Hirota [21] as a discrete generalized Toda equation and Miwa
showed that it is essentially equivalent to a generating formula of the KP
hierarchy [22,23].

The KP hierarchy is the ∞×∞ simultaneous nonlinear partial differen-
tial equations with ∞ independent variables t := (t1 ≡ x, t2, t3, . . . ) and ∞
dependent variables u := (u1, u2, u3, . . . ) [24]:
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∂ui(t)
∂tj

= Fij (u,ux,uxx, . . . ) (1 ≤ i, 2 ≤ j)

where Fij are polynomials in u and their differentials with respect to x. The
KP hierarchy is integrable as simultaneous partial differential equations, i.e.,

∂2ui
∂tj∂tk

=
∂2ui
∂tk∂tj

(∀i, j, k).

The theory of the KP hierarchy (Sato theory) was developed by Sato [25]
and Date-Jimbo-Kashiwara-Miwa [26,27] in the early 1980s. The Sato theory
clarifies the structure of the space of solutions, the transformation groups
on that space and the relation to linear equations (Lax equations). Some
important results of the theory are,

(1) The KP hierarchy is equivalent to the bilinear identity for a single de-
pendent variable τ(t):

Resλ=∞
[
τ(t − ε(λ))τ(t′ + ε(λ))eξ(t−t′;λ)

]
= 0 (∀t, t′), (1)

where

ε(λ) :=
(

1
λ
,

1
2λ2 ,

1
3λ3 , · · ·

)
, ξ(t − t′;λ) :=

∞∑
j=1

(tj − t′j)λj .

(2) The existence of the boson-fermion correspondence ι , that is, the isomor-
phism between the ring of formal power series of infinite variables, C[t],
and the fermion Fock space, F , on which infinite numbers of creation and
annihilation operators act,

ι : |φ〉 ∈ F ∼−→ 〈vac|eH(t)|φ〉 ∈ C[t].

Here |vac〉 denotes the vacuum state of the Fock space F and H(t) :=
∞∑
k=1

tkHk is a linear operator with the boson operators Hk constructed

from fermion creation and annihilation operators.
(3) On F acts the infinite-dimensional transformation group GL∞ which is,

roughly speaking, the group of linear transformation of one particle states
in F . The necessary and sufficient condition for τ(t) ∈ C[t] to satisfy the
bilinear identity (1) is that the state |φ〉 := ι−1τ(t) is on an orbit of the
vacuum, that is,

∃g ∈ GL∞ |φ〉 = g|vac〉.

From these results, we see that the bilinear identity (1) is the key equation
for the KP hierarchy and that all the solutions are expressed concretely with
fermions.
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Now, let a, b, c be arbitrary but different complex numbers. Substituting

t = (�+ 1)ε(a) + (m+ 1)ε(b) + (n+ 1)ε(c), t′ = �ε(a) +mε(b) + nε(c)

into (1), we obtain

(a− b)τ�+1,m+1,nτ�,m,n+1 + (b− c)τ�,m+1,n+1τ�+1,m,n

+(c− a)τ�+1,m,n+1τ�,m+1,n = 0, (2)

where τ�,m,n := τ(�ε(a) + mε(b) + nε(c)). Equation (2) is the celebrated
discrete KP equation and reduces to the bilinear form of the KP (Kadomtsev-
Petviashvili) equation by taking an appropriate continuous limit.

More generally, using three series of arbitrary complex numbers
{a(i)}+∞

i=−∞, {b(j)}+∞
j=−∞ and {c(k)}+∞

k=−∞, we can construct the non-
autonomous discrete KP (ndKP) equation:

(b(m) − c(n)) τ(�,m− 1, n− 1)τ(�− 1,m, n)
+(c(n) − a(�)) τ(�− 1,m, n− 1)τ(�,m− 1, n)

+(a(�) − b(m)) τ(�− 1,m− 1, n)τ(�,m, n− 1) = 0
(3)

by the substitution

t =
�+1∑
i

ε(a(i)) +
m+1∑
j

ε(b(j)) +
n+1∑
k

ε(c(k)),

t′ =
�∑
i

ε(a(i)) +
m∑
j

ε(b(j)) +
n∑
k

ε(c(k))

where the symbols
∑�
i etc. denote the convention:

�∑
i

≡





∑�
i=1 for � ≥ 1
0 for � = 0

−
∑0
i=�+1 for � ≤ −1

(4)

and

τ(�,m, n) := τ




�∑
i

ε(a(i)) +
m∑
j

ε(b(j)) +
n∑
k

ε(c(k))


 .

The ndKP equation is used to construct generalized BBSs through ultradis-
cretization.

Since the dKP equation is obtained from (1) by a simple transformation of
independent variables, its solutions are immediately constructed in concrete
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forms. For example, its one-soliton solution has arbitrary parameters p, q
(p �= q) and γ and is given as

τ�,m,n = 〈vac |1 + γψ∗(t, q)ψ(t, p)| vac〉

= 1 +
γ

p− q

(
a− q

a− p

)�(
b− q

b− p

)m(
c− q

c− p

)n
. (5)

Here ψ∗(t, q) and ψ(t, p) are time dependent fermionic field operators2:

ψ∗(t, q) =
1

(q − a)�(q − b)m(q − c)n
ψ∗(q),

ψ(t, p) = (p− a)�(p− b)m(p− c)nψ(p),

which satisfy

〈vac |ψ(p1)ψ(p2) · · ·ψ(pN )ψ∗(qN )ψ∗(qN−1) · · ·ψ∗(q1)| vac〉

= det
[

1
pi − qj

]

1≤i,j≤N
.

Similarly its two-soliton solution has parameters pi, qi (pi �= qi), γi (i = 1, 2),

τ�,m,n =

〈
vac

∣∣∣∣∣
2∏
i=1

(1 + γiψ
∗(t, qi)ψ(t, pi))

∣∣∣∣∣ vac
〉

= 1 +
γ1

p1 − q1

(
a− q1
a− p1

)�(
b− q1
b− p1

)m(
c− q1
c− p1

)n
+ (1 → 2)

+
γ1γ2(p1 − p2)(q2 − q1)

(p1 − q1)(p1 − q2)(p2 − q1)(p2 − q2)

(
(a− q1)(a− q2)
(a− p1)(a− p2)

)�

×
(

(b− q1)(b− q2)
(b− p1)(b− p2)

)m( (c− q1)(c− q2)
(c− p1)(c− p2)

)n
. (6)

The dKP equation is a partial difference equation with three independent
variables. If we impose a constraint on τ , we can obtain a partial difference
equation with only two independent variables. (This procedure to construct a
lower dimensional equation is called reduction.) When we put a = 0, b = 1−δ,
c = 1 and impose a condition

τ�+1,m+1,n = τ�,m,n, (7)

the dKP equation turns into the discrete KdV (dKdV) equation

τ t+1
n+1τ

t−1
n = (1 − δ)τ tnτ

t
n+1 + δτ t−1

n+1τ
t+1
n . (8)

Here we put τ tn := τt,0,n. The dKdV equation also becomes a bilinear form
of the KdV (Korteweg-de Vries) equation in an appropriate continuous limit.
2 See the chapter by Willox and Satsuma in this volume for details.
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For the soliton solutions, the constraint (7) corresponds to the condition
pi + qi = 1 − δ for the parameters qi, pi. Hence the soliton solutions to the
dKdV equation are equal to those to the dKP equation with a condition on
the parameters. In the continuous limit, they naturally become the soliton
solutions to the KdV equation.

Now we ultradiscretize the dKdV equation and obtain ultradiscrete KdV
equation. Here an ultradiscrete equation means a piecewise linear equation in
general. For that purpose, we define a new parameter ε by δ = e−1/ε. Since
a solution to the dKdV eq. (8) also depends on ε, we express τ tn as τ tn(ε) and
define the new dependent variable ρtn(ε) by

τ tn(ε) = eρ
t
n(ε)/ε.

Now suppose that there exists a one parameter family of solutions τ tn(ε) to
the dKdV eq. (8) such that it has the limit:

lim
ε→+0

ε log τ tn(ε) = lim
ε→+0

ρtn(ε) =: ρtn,

then using the identity for a, b ∈ R

lim
ε→+0

ε log
[
ea/ε · eb/ε

]
= a+ b, lim

ε→+0
ε log

[
ea/ε + eb/ε

]
= max[a, b], (9)

we obtain the ultradiscrete KdV (udKdV) equation

ρt+1
n+1 + ρt−1

n = max
[
ρtn + ρtn+1, ρ

t−1
n+1 + ρt+1

n − 1
]
. (10)

The udKdV equation (10) coincides with (8) except for the contribution of
the parameter δ if we put × → +, + → max. Furthermore we introduce a
new dependent variable

utn := ρtn − ρt+1
n − ρtn−1 + ρt+1

n−1 (11)

with the boundary condition limn→−∞ utn = limt→+∞ utn = 0. Noticing the
fact min[a, b] = −max[−a,−b], we have

ut+1
n = min

[
1 − utn,

n−1∑
k=−∞

utk −
n−1∑
k=−∞

ut+1
k

]
(12)

Equation (12) is also a piecewise linear equation and is closed under utn ∈
{0, 1}. Hence we suppose that utn takes only the values 0 or 1 and we can
rewrite (12) as

ut+1
n =





1 utn = 0 and
n−1∑
k=−∞

utk −
n−1∑
k=−∞

ut+1
k ≥ 1

0 otherwise

(13)
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However, if we regard utn as the number of balls in the nth box at time step
t, (13) is equivalent to the time evolution rule of the BBS. Thus, in summary,
we find that the generating formula of the KP hierarchy (1) gives the dKP
equation (2) by a change of independent variables and the dKdV equation
(8) as its reduction, and the ultradiscrete limit of the dKdV equation gives
the BBS.

As is obvious by the construction, a solution to the BBS is obtained from
solutions to the dKdV equation through the limit ε→ +0. For a one-soliton
solution, we take p = e−P/ε, γ = −eθ/ε (P ∈ Z+, θ ∈ Z) and take the limit
ε→ +0. Noticing the constraint p+ q = 1 − e−1/ε, we have

ρtn = max[0, θ + tP − n],

which gives a one-soliton solution with length P as is easily seen from (11).
Similarly a two-soliton solution to the BBS is given as

ρtn = max[0, ξ1, ξ2, ξ1 + ξ2 +A12]

where ξi := θi+ tPi−n (i = 1, 2), and A12 := −2 min[P1, P2]. The expression
for a general N -soliton solution is also given in a similar manner [3].

ρtn = max
µi=0,1



M∑
i=1

µiξi −
∑
i>j

µiµjAij


 . (14)

As we have seen in this subsection, the BBS can be derived from the KP
hierarchy through ultradiscretization, and solitons in the BBS correspond to
the soliton solutions of the KP hierarchy. This is the reason why the BBS
has a solitonic nature.

3.2 BBS as Ultradiscrete Limit of the Discrete Toda Equation

One of the most important integrable dynamical systems is the Toda lattice
in which particles interact with repulsive exponential forces [28]. Its equation
of motion is given by

d2qn(t)
dt2

= e−(qn(t)−qn−1(t)) − e−(qn+1(t)−qn(t)) (n = 1, 2, . . . , N), (15)

with some boundary condition such as q0(t) = qN+1(t) = 0. This Toda equa-
tion (15) has N independent and involutive conserved quantities, and is in-
tegrable in the sense of Liouville. By putting Vn(t) = e−(qn+1(t)−qn(t)) and
In(t) = q̇n(t), (15) can be rewritten as the equation of nonlinear LC circuits





dVn(t)
dt

= Vn(t) (In(t) − In+1(t))
dIn(t)
dt

= Vn−1(t) − Vn(t)
(16)
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The Toda equation is derived from the two-component KP hierarchy or so-
called Toda lattice hierarchy whose mathematical structure is essentially
equivalent to the KP hierarchy. Therefore, as in the previous subsection,
it can be discretized preserving its solutions into the discrete Toda (dToda)
equation3




It+1
n = Itn + V tn − V t+1

n−1

V t+1
n =

Itn+1V
t
n

It+1
n

(17)

When we impose the boundary condition V t0 = V tN = 0, (17) is often called
the discrete Toda molecule equation and by introducing

Mt :=




Iti 1

It2
. . .
. . . 1

ItN




Rt :=




1
V t1 1

. . . . . .
V tN−1 1




it is rewritten as

Rt+1Mt+1 = MtRt. (18)

We define N × N matrix Lt by Lt := RtMt. Then, from (18), we have the
Lax form of the dToda (molecule) equation as

Lt+1Mt = MtLt. (19)

Since

Ct+1(λ) := det(λE − Lt+1) = det(λE − Lt) = Ct(λ) (20)

(E denotes the N × N unit matrix), the polynomial Ct(λ) of order N
does not depend on time step t. Hence, denoting the coefficients of λk

(k = 0, 1, 2, ..., N − 1) by C(k), these are N independent conserved quan-
tities of the dToda equation.

In a state of the BBS, a set of consecutive filled boxes is located between
sets of vacant boxes and vice versa. We denote by Qt1 the length of the
leftmost set of filled boxes at time step t, by W t

1 that of the right adjacent
set of vacant boxes, by Qt2 that of the next set of filled boxes, and so on
(Fig. 4). Then we find that they satisfy
{
Qt+1
n = min

[
W t
n,
∑n
j=1Q

t
j −
∑n−1
j=1 Q

t
j

]

W t+1
n = Qtn+1 +W t

n −Qt+1
n

(n = 1, 2, . . . , N − 1), (21)

3 Historically the dToda equation was first derived by Hirota under the condition
that the discretization preserves the soliton solutions [21].
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Fig. 4. Variables Qt
n and W t

n for udToda eq.

with the boundary condition

W t
0 = W t

N = +∞. (22)

This equation (21) is also an ultradiscrete equation for the BBS. We suppose
that the dToda equation (17) has a parameter ε and rewrite the dependent
variables as

Itn = exp[−Qtn(ε)/ε], V tn = exp[−W t
n(ε)/ε].

When the limit

Qtn := lim
ε→+0

Qtn(ε), W t
n := lim

ε→+0
W t
n(ε)

exists, an argument similar to that in the previous section shows that the
above Qtn, W

t
n satisfy (21) with the boundary condition (22), which means

that the BBS is also to be regarded as an ultradiscrete limit of the dToda
(molecule) equation.

Using ultradiscrete limits, we can construct conserved quantities of the
BBS from those of the dToda equation, i.e., C(k) (k = 0, 1, . . . , N − 1). By
defining uC(k) := − lim

ε→+0
−ε logC(k), we obtain [29]

uC(N−1) = min
(

min
1≤i≤N

Qti, min
1≤j≤N−1

W t
j

)

uC(N−2) = min
(

min
1≤i1<i2≤N

(Qti1 +Qti2),

min
i1 /∈{j1,j1+1}

(Qti1 +W t
j1), min

1≤j1<j2≤N
(W t

j1 +W t
j2)
)

· · ·

uC(0) =
N∑
i=1

Qti.

These N conserved quantities are independent and of course each of them
corresponds to a conserved quantity of the dToda equation. Although they
have rather complicated expressions, there is an alternative way to calculate
the same set of conserved quantities. Denoting a vacant box by 0 and a filled
box by 1, we obtain the 0, 1 sequence corresponding to a state of the BBS.
Then the explicit algorithm to construct the conserved quantities is given as
follows [30].
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1. Let p1 be the number of 10s in the sequence.
2. Eliminate all the 10s in the original sequence and let p2 be the number

of 10s in the new sequence.
3. Repeat the above procedure until all the 1s are eliminated.
4. Then the weakly decreasing positive integer sequence {p1, p2, p3, . . . }

consists of the conserved quantities.

For example, for the state

(#) . . . 00111011100100011110001101000000 . . .

we have p1 = 6, and eliminating 10s, we obtain a new sequence

. . . 0011110001110010000 . . .

and p2 = 3. In a similar manner, we have p3 = 2, p4 = 2, p5 = 1. To see that
these {pj} are conserved, we evolve (#) by one time step

(#′) . . . 00000100011011100001110010111100 . . . .

By applying the above algorithm again, we find the same integer sequence
{pj} (j = 1, 2, . . . , 5).

The sequence p1 p2 . . . is a weakly decreasing positive integer sequence
and we can associate a Young diagram to it by regarding pj as the number
of squares in the jth column of the Young diagram. For example the Young
diagram associates to (#) is shown in Fig. 5.

p1 p2 p3 p4 p5

Fig. 5. Young diagram corresponding to the conserved quantities of (#)

When we denote by Lj the length of the jth row of the Young diagram,
the weakly decreasing integer sequence {L1, L2, . . . } is another expression for
the conserved quantities of the BBS. When t → +∞, the state of the BBS
consists of solitons which are arranged according to the order of their lengths
and move freely. We can prove that the length of the jth largest soliton among
these freely moving solitons coincides with Lj [11]. Hence, for a given initial
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state, we can find the solitons which constitute that state after sufficiently
many time steps by constructing the corresponding Young diagram.

Young diagrams and Young tableaux are used in combinatorics, repre-
sentation theory and the geometry of varieties [31]. Though the Young di-
agram that appeared in the conserved quantities of BBS does not have a
direct connection to such mathematical subjects, generalized BBSs given in
the subsequent section show combinatoric aspects related to the represen-
tations of quantum algebras. As a consequence, the BBS posesses links to
two-dimensional integrable lattice models.

4 Generalization of BBS

4.1 BBS Scattering Rule and Yang-Baxter Relation

As has been mentioned in the previous section, the BBS is just a reinterpre-
tation of the soliton CA proposed by Takahashi and Satsuma. The merit of
this reinterpretation is that we can introduce new degrees of freedom–‘box
capacity’ and ‘species of balls’. Furthermore we can introduce a ‘capacity of
carrying cart’ [13]. In this section, we consider the BBS with M kinds of
balls. We leave the capacity of the boxes to be one.

For simplicity, we distinguish the species of balls by integer indices
1, 2, . . . ,M . An example of a state of the BBS with M kinds of balls is
shown in Fig. 6. Accordingly the time evolution rule is changed as follows

2331 1 1

Fig. 6. A state of a BBS with M(= 3) kinds of balls

1. Move every ball only once in one time step.
2. Move the leftmost ball with index 1 to the nearest right vacant box.
3. Move the leftmost ball with index 1 among the rest to its nearest right

vacant box.
4. Repeat this procedure until all the balls with index 1 have been moved.
5. Do the same procedure (2)–(4) for the balls with index 2.
6. Repeat this procedure successively until all the balls have been moved.

An example of a time evolution pattern is shown in Fig. 7. After several trials,
one may notice that a soliton in this BBS should be defined by a sequence of
consecutive balls with indices arranged in weakly increasing order. We also
define that the length or the amplitude of a soliton is the number of balls
which constitute the soliton. Hereafter we denote a ball with index j by a
number ‘j’ and a vacant box by ‘.’ for simplicity. Then, for example, a state
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Fig. 7. An example of time evolution pattern of BBS with M(= 3) kinds of balls

of the BBS is expressed as

....1256334...45123...2132444...

In this example, there are seven solitons–‘1256’, ‘334’, ‘45’, ‘123’, ‘2’, ‘13’ and
‘2444’. Each soliton has the length (or amplitude) 4,3,2,3,1,2 and 4 respec-
tively. With these definitions, the solitonic features of the BBS are described
as follows [14].

1. The number of solitons does not change in time evolution.
2. Suppose that solitons are far enough apart from each other at an initial

state. Then their length is not altered after their collisions. Furthermore,
the final results do not depend on the initial arrangements of solitons, in
the sense that the ingredients of each soliton are not altered by chang-
ing the initial distance between the solitons, as long as they are well
separated.

We will not give the proofs of the above features but examine the feature
of soliton scattering in detail, for it has a deep relation to the so-called R
matrices of two-dimensional integrable lattice models.

Figures 8a–c show three examples of two-soliton scatterings:

(a) ‘1135’ + ‘24’ −→ ‘35’ + ‘1124’
(b) ‘23455’ + ‘124’ −→ ‘235’ + ‘12445’
(c) ‘11555’ + ‘234’ −→ ‘555’ + ‘11234’.

As suggested by these examples, two soliton scattering is governed by a
deterministic rule (the BBS scattering rule). Consider two solitons ‘i1i2 · · · im’
and ‘j1j2 · · · jn’ that collide and transform into ‘j′

1j
′
2 · · · j′

n’ and ‘i′1i′2 · · · i′m’
(m > n). Defining Λ := {i1, i2, . . . , im}, Λ′ := {i′1, i′2, . . . , i′m}, Σ :=
{j1, j2, . . . , jn} and Σ′ := {j′

1, j
′
2, . . . , j

′
n}, we clearly have Λ+Σ = Λ′+Σ′.

Furthermore the set Λ′ is always a subset of Σ and hence Λ is always a subset
of Σ′. The set Λ′ is now determined by:
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Fig. 8. Examples of two-soliton scattering in BBS

1. If there is no integer in Σ greater than i1, choose the smallest integer in
Σ; otherwise choose the smallest integer among those in Σ greater than
i1. Denote this integer by k1.

2. Next, if there is no integer in Σ \{k1} greater than i2, choose the smallest
integer in Σ \ {k1} ; otherwise choose the smallest integer among those
in Σ \ {k1} greater than i2. Denote it by k2.

3. Repeat the procedure until kM has been chosen among Σ \ {k1, k2, · · · ,
kM−1}. Then Λ′ = {k1, k2, · · · , kM}.

For example, in the case

1123455 + 156 −→ 112 + 1345556

Σ = {1, 1, 2, 3, 4, 5, 5} and Λ = {1, 4, 4, 6}. For i1 = 1, the smallest integer
in Σ which is greater than i1 is 2. Hence we obtain k1 = 2. For i2 = 5,
no integer in Σ \ {k1} = {1, 1, 3, 4, 5, 5} is greater than i2 and we choose
k2 = min [Σ \ {k1}] = 1. Similarly we have k3 = 1 and Λ′ = {2, 1, 1} which
coincides with the result. The scattering rule for this example is depicted in
Fig. 9.

Next we consider three-soliton scattering. Examples of three-soliton inter-
action patterns are shown in Figs. 10a–c. As should be the case for genuine
solitons, the final (emerging) sequences do not depend upon the order of the
collisions. The initial states of Figs. 10 are all composed of ‘11334’, ‘255’ and
‘23’ solitons, the order of collisions however differs because of the different
initial arrangements of the solitons. Thus, in Fig. 10a we see the sequence of
interactions

(1) 11334 + 255 −→ 113 + 23455
(2) 23455 + 23 −→ 34 + 22355
(3) 113 + 34 −→ 11 + 334,



398 T. Tokihiro

Fig. 9. Schematic representation of the BBS scattering rule

..11334..255....23...
    ...113..23455.23....
       ...113....2342355....
          ...113....34..22355....
             ...113...34.....22355...
                ...113..34........22355...
                   ...11..334..........22355...

......255.23....

.........25523.....

............55223.....
11334.........55.223.....
 ....11334......55..223.....
     .....11334...55...223.....
          .....113..33455.223.....
              ....11.....333422355.....
                 ...11.......334..22355....
                   ...11........334....22355....

...11334....255.23...
     ...11334..25523.....
        .....113..3422355.....
            ....11.334....22355....
               ...11..334......22355......

( a )

( b )

(c)

Fig. 10. Three soliton interactions in a BBS

while in Fig. 10b we have

(1) 255 + 23 −→ 55 + 223
(2) 11334 + 55 −→ 11 + 33455
(3) 33455 + 223 −→ 334 + 22355.
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time

L SM ML S

Fig. 11. Yang-Baxter relation for the BBS. Three-soliton scatterings do not depend
on the order of collisions

Figure 10c shows three solitons colliding simultaneously. In all three cases the
final patterns are the same, i.e., ‘11’, ‘334’ and ‘22355’. This feature of three-
soliton scatterings implies that the N (N ≥ 3) soliton scattering rules are
governed by those for two-soliton scatterings. Scattering properties of this
type (in the exact solution of actual one-dimensional problems) were first
established by Yang [32] and Baxter [33] and are now commonly referred
to as Yang-Baxter relations [34] (Fig. 11). Hence we may regard the soliton
scattering in a BBS as an analogue of the Yang-Baxter relation on the level of
cellular automata. To satisfy the Yang-Baxter relation is usually understood
as a sufficient condition of integrability for the R-matrices in one-dimensional
quantum models and two-dimensional lattice models. The BBS scattering rule
is essentially equivalent to the action of the combinatorial R-matrix on the
symmetric tensor product representation of the quantum algebra Uq(A

(1)
M ) at

q → 0 when the states of the BBS are identified with the classical crystal of
Uq(A

(1)
M ) [35]. This fact suggests a connection between the BBS and quantum

integarable models, however before establishing the direct connection between
them, we consider further extensions of the BBSs in the next subsection.

4.2 Extensions of BBSs
and Non-autonomous Discrete KP Equation

In this subsection we introduce an extended box and ball system which may
very well be the most general BBS imaginable. Its soliton behaviour arises
from a reduction of the non-autonomous discrete KP equation (3). It will be
explained however that this correspondence entails a lot more complications
than in the simpler cases discussed before.

In the previous subsection we discussed the properties of a BBS with M
species of balls. As was mentioned at the time, a natural extension of such a
BBS is obtained by introducing varying box capacities, e.g., the box at site
n can accommodate up to θn ≥ 1 balls and this capacity may be location
dependent (i.e., θn may be a function of n). In practice this means that we
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change the BBS evolution rule for the case of M species of balls in such a
way that one does not move a ball to the first empty box on the right, but
rather to the first box on the right which has a vacant spot4. An example of
such a BBS is shown in Fig. 12.

11 2

2

3

11 2 23

11 2
2

3

11 2 2 3

11 2 2 3

Fig. 12. Example of a BBS with varying box capacities

Besides species of balls or box capacities, there is a third degree of
freedom available, one that is directly connected to the time evolution
itself. Namely, we can introduce a carrier with capacity κt which will
transport the balls to their new locations. This carrier comes in from the
left, proceeds to the right and depending on its remaining capacity (i.e.
κt − # of balls present in the carrier) picks up the balls in a box and drops
them into the first available spot ; the ‘unloading’ proceeds according to the
general rule explained above. As can be seen in Fig. 13, while the carrier goes
through the array of boxes the process of successively loading and unloading
induces the motion of balls over the boxes and hence induces the time evo-
lution of the system. We shall denote such a general box and ball system by
its 3 relevant parameters (M, θn, κt), where (as before) the variables n, t ∈ Z

play the role of space and time coordinates respectively.
The original BBS corresponds to the choice (M = 1,∀θn = 1,∀κt = ∞)

whereas the case (M ≥ 1,∀θn = 1,∀κt = ∞) is of course the one we studied in
the previous subsection. Other special cases such as (M = 1,∀θn = θ, ∀κt =
κ) with κ > θ and (M, θn,∀κt = ∞) have been treated in [13] and [15]
respectively. Remark that, just as the box capacity θn can depend on the site

4 In case a box should contain more than one ball of the same species, one may
pick any one of them when determining which ball is the ‘leftmost’ one.
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Fig. 13. Example of a BBS with a (capacity 3) carrier and the different load-
ing/unloading actions depending on the remaining capacities of boxes and carrier

n, the carrier capacity κt may also vary in time. It is the soliton scattering
in this general case (M, θn, κt) we now wish to elaborate upon.

First, let us introduce some notations. Let btn denote the balls contained
in the nth box (with capacity θn) at time t and let vtn stand for the balls
present in the carrier (with capacity κt) at that same time t. A more detailed
description of the contents of both boxes and carrier is provided by the vari-
ables utn,j and vtn,j (for 1 ≤ j ≤M + 1) : these represent the number of balls
of the (M + 1 − j)th species5 present in btn and vtn, i.e. :

btn ≡ (utn,M+1, u
t
n,M , · · · , utn,1), (23)

vtn ≡ (vtn,M+1, v
t
n,M , · · · , vtn,1). (24)

Using this notation, the evolution in a general BBS (M, θn, κt) can be ex-
pressed in the following way (1 ≤ j ≤M),
5 This notation allows for a ball of species ‘0’, which actually stands for the state

where there are no balls at all in a particular box. Although somewhat peculiar,
this notation proves useful when discussing the relation with exactly solvable
lattice models. Note also that the defining equation (26) remains valid for such
‘0’th species balls (i.e., for j = M + 1).
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ut+1
n,j − vtn,j = max[X1 − θn, X2 − θn, · · · , Xj−1 − θn, Xj − κt, · · · , XM − κt, 0]

−max[X1 − θn, X2 − θn, · · · , Xj − θn,

Xj+1 − κt, · · · , XM − κt, 0], (25)
vtn+1,j = utn,j + vtn,j − ut+1

n,j , (26)

where X� = Xt
n;� :=

M∑
i=�

utn,i +
�∑
i=1

vtn,i.

What we want to show next is that the defining equations (25) and (26) are
actually the ultradiscrete limits of a special reduction of the ndKP equation
(3) written here in the form :

(bn − cj)ττtnj + (cj − at)τtnτj + (at − bn)τnτtj = 0 (27)

for a tau-function τ(t, n, j) and for a(t), b(n) and c(j) which are arbitrary
functions of t, n and j respectively, after performing the change of variables
{�,m, n} to {−(t + 1), n, j} and a(�) to a(t). Here we used the incremental
notation, i.e. τ ≡ τ(t, n, j), τt ≡ τ(t+ 1, n, j), τtn ≡ τ(t+ 1, n+ 1, j), etc.

The reduction we want to impose on (27) consists of assigning special
values to the lattice parameters, c(1) = 1, c(2) = c(3) = · · · = c(M + 1) = 0
and of imposing the (periodicity) constraint,

τ(t, n, j +M + 1) = τ(t, n, j), (28)

on the tau-functions. As it turns out, the constraint (28) is analogous to what
one would call an M -reduction of the KP hierarchy, restricting the infinite
dimensional Lie algebra gl(∞) to the finite dimensional algebra A(1)

M .
In this reduction – the details of which we omit here – it can be shown,

following a line of reasoning very similar to the case (M = 1,∀θn = 1,∀κt =
∞) treated in Sect. 3.1, that the CA defined by (25) and (26) is obtained by
ultradiscretizing the fields

U tn,j ≡
τ(t, n+ 1, j)τ(t, n, j + 1)
τ(t, n, j)τ(t, n+ 1, j + 1)

,

(29)

V tn,j ≡
τ(t+ 1, n, j + 1)τ(t, n, j)
τ(t+ 1, n, j)τ(t, n, j + 1)

(defined for 1 ≤ j ≤M). In particular one finds that in the parametrization
at = 1 + δt, bn = 1 + γn with δt = exp [−κt/ε] and γn = exp [−θn/ε], the
ultradiscrete limits,

utn,j = lim
ε→+0

ε logU tn,j , (30)

vtn,j = lim
ε→+0

ε log V tn,j , (31)
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yield solutions {utn,j} and {vtn,j} for the system (25) and (26) (for 1 ≤ j ≤
M). The values for utn,M+1 and vtn,M+1 are specified by the requirements∑M+1
j=1 utn,j = θn and

∑M+1
j=1 vtn,j = κt, which fix the numbers of vacant spots

in a specific box and in the carrier. Because of the link to an A(1)
M reduced

KP equation we shall refer to the BBS described by (25) and (26) as an A(1)
M

automaton.
Let us consider the soliton solutions for this automaton. As before, if the

limit

Y tn,j := lim
ε→+0

ε log τ(t, n, j)

for the A(1)
M reduced tau-functions exists, then applying the ultradiscrete limit

to the expressions (29) produces solutions of the system (25) and (26) in the
form (1 ≤ j ≤M) :

utn,j = Y tn+1,j + Y tn,j+1 − Y tn,j − Y tn+1,j+1, (32)

vtn,j = Y t+1
n,j+1 + Y tn,j − Y t+1

n,j − Y tn,j+1. (33)

Hence we shall call the quantity Y tn,j an N -soliton solution to the A(1)
M

automaton if it is the ultradiscrete limit in ε of a one-parameter family of
appropriately chosen soliton solutions τ(t, n, j) for (27); the main task is the
identification of these corresponding KP-type soliton solutions.

Using the simple correspondence between (27) and the generic non-
autonomous discrete KP equation (3), it is clear that the former admits
N -soliton solutions corresponding to some elements in GL∞, where the time
evolutions of the fermion operators ψ(p) and ψ∗(q) are now given by the
expressions, x = (t, n, j),

ψ(x, p) =




t∏
t′

(at′ − p)
n∏
n′

1
bn′ − p

j∏
j′=1

1
p− cj′


ψ(p), (34)

ψ∗(x, q) =




t∏
t′

1
at′ − q

n∏
n′

(bn′ − q)
j∏

j′=1

(q − cj′)


ψ∗(q), (35)

(36)

for the multiplication convention similar to (4).
The A(1)

M reduction (28) of such an N -soliton is obtained by imposing the
constraint :

(
qk
pk

)M (1 − qk
1 − pk

)
= 1 (k = 1, 2, · · · , N). (37)

Note that, for a given pk, there are M qk’s which satisfy (37) and qk �= pk.



404 T. Tokihiro

However, the soliton solutions we need to consider here – as opposed to
the M = 1 case, i.e., the CA (14) – are far more complicated than one might
think at first. In fact, because we allow for an arbitrary number of species
M ≥ 1, we need to start from soliton solutions generated by elements :

g(x) =
N∏
k=1

(1 + ψ(x, pk)φ∗(x, pi))

of GL(∞), with

φ∗(x, p) ≡
M∑
�=1

c�(p)ψ∗(x, q�),

for carefully chosen values of the parameters c� and for the M roots q� of the
constraint (37) for a given pk.6

Finally, from these solutions for the A(1)
M reduction of (27), the N -soliton

solutions for the A(1)
M automaton are found to have the form,

Y t+1
n+1,j+1 = max

µ

[
N∑
i=1

µiK
(i)(t, n, j) −A(µ; j)

]
;

µ = (µ1, µ2, ..., µN ) (µi = 0, 1) and max
µ

[· · · ] denotes the maximum among

the 2N values obtained by setting µi = 0 or 1 for i = 1, 2, · · · , N . In this
expression there appear the functions K(i)(t, n, j) = K

(i)
0 −

∑j
j′=1 �

(i)
j′ −∑t

t′ min[κt′ , L(i)] +
∑n
n′ min[θn′ , L(i)], with sums taken as in the summation

convention (4). The (non negative) integers L(i), �
(i)
j (1 ≤ i ≤ N, 1 ≤ j ≤M)

appearing in these functions satisfy L(i) =
M∑
j=1

�
(i)
j , L(1) ≥ L(2) ≥ · · · ≥ L(N),

�
(1)
j ≥ �

(2)
j ≥ · · · ≥ �

(N)
j , (j = 1, 2, · · · ,M), K(i)

0 being an arbitrary in-
teger. Restricting the set of {µi} as in µi = 1 for i = i1, i2, · · · , ip and
µi = 0 otherwise, the phase factor A(µ; j) takes the following simple form,

A(µ; j) =
p∑
k=1

(k − 1)L(ik)

+
p∑
k=1

(
X(ik)(j + k − 1) −X(ik)(j)

)
,

with X(i)(j) =
j∑

j′=1

�
(i)
j′ and �(i)j+M = �

(i)
j .

6 Hence, these solutions should actually be interpreted as (N × M)-soliton
solutions, where the constituent solitons are themselves “degenerate” M -
soliton solutions. This can be easily seen from their generating elements,
1 + ψ(x, p)φ∗(x, p) ≡ ∏M−1

�=0 (1 + c�(p)ψ(x, p)ψ∗(x, q�)).
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5 From Integrable Lattice Model to BBS

5.1 Two-Dimensional Integrable Lattice Models and R-Matrices

It is well known that some of the two dimensional lattice models in physics
are solvable in the sense that their partition functions and correlation func-
tions can be obtained exactly [33]. In most cases, the transfer matrices of
such solvable lattice models are equivalent to the unitary operators (time
evolution operators) of some quantum spin chains and they are then called
quantum integrable lattices. The mathematical reasoning behind the solv-
ability of a quantum integrable system relies on the fact that the system has
a symmetry corresponding to a quantum algebra; the R-matrix, which gives
the Boltzmann weight for a local configuration of the lattice, is regarded as
the intertwiner of two tensor representations of the quantum algebra. One
of the simplest examples of such a system is the celebrated 6-vertex model
which has the symmetry of the quantum affine algebra Uq(A

(1)
2 ).

A state of the 6-vertex model is expressed by a square lattice with two
kinds of links. An example is shown in Fig. 14, where the two types of links

Fig. 14. A part in the state of 6 vertex model

are distinguished by thick and thin lines. The total energy of the system
is the sum of the local energies determined by the local configuration of
the 4 links around each vertex, and only 6 configurations out of 24 = 16
total configurations have finite energy, i.e., are realized in the model. These
finite energy configurations are classified into three types (a)–(c) as shown in
Fig. 15, and their energies are denoted by Ea, Eb and Ec respectively. Then,

denoting the inverse temperature by β :=
1

kBT
where kB is the Boltzmann

constant and T is the temperature, the partition function Z(β) is defined by

Z(β) :=
∑
p∈P

Prob.(p), Prob.(p) :=
∏
v∈V

wv(p : β).
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(a) (b) (c)

Fig. 15. Allowed six vertexes. They are classified into three types (a)–(c)

Here P denotes the set of all finite energy vertex configurations, V denotes
the set of all vertices, and the Boltzmann weight wv(p : β) at the vertex v for
the configuration p is given by the local energy Ev(p) (v(p) ∈ {a, b, c}) as

wv(p : β) := e−βEv(p) .

(Subscript v(p) denotes one of the three types of vertices at v in the config-
uration p.) In Fig. 14, there are 2 vertices of type (a), 4 of type (b) and 3 of
type (c), and hence the contribution of this state p to the partition function
is given by

Prob.(p) = a2b4c3,

where we used the abbreviation, a := e−βEa etc.
To calculate the partition function Z(β), we usually construct the transfer

matrix of the system, and the transfer matrix is, roughly speaking, obtained
from the R-matrix7. The R-matrix is, taking equivalence between a linear
map and a matrix into consideration, an isomorphism between two tensor
products of vector spaces,

R : V1 ⊗ V2 −→ V2 ⊗ V1

where V1 (V2) denotes the vector space of a vertical (horizontal) link and the
isomorphism is uniquely determined by the Boltzmann weight wv(p : β). In
the 6-vertex model, both the vertical and horizontal links have two states
and hence dim(V1) = dim(V2) = 2. Let e1 and e2 be a basis of V1. The
basisvector e1 (e2) corresponds to the thick (thin) link. Similarly let f1 and
f2 be a basis of V2, where f1 and f2 correspond to the thick and thin link,
respectively. Then the R-matrix of the 6-vertex model is the linear map,
R : V1 ⊗ V2 → V2 ⊗ V1,
7 More precisely, the transfer matrix is the trace of the matrix product of the

so-called L-matrices over an auxiliary degree of freedom, and the L-matrix is
essentially the product of an R-matrix and a permutation matrix (in most cases).
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R(e1 ⊗ f1) = af1 ⊗ e1

R(e1 ⊗ f2) = bf2 ⊗ e1 + cf1 ⊗ e2

R(e2 ⊗ f1) = bf1 ⊗ e2 + cf2 ⊗ e1

R(e2 ⊗ f2) = af2 ⊗ e2.

The R-matrix is of course expressed as a ‘4 by 4 matrix’ Rk,li,j (i, j, k, l ∈
{1, 2}) by the relation

R(ei ⊗ f j) =
∑
k,l

Rk,li,jfk ⊗ el.

It is well known that a sufficient condition for a two-dimensional lattice
model to be integrable is that theR-matrices satisfy the Yang-Baxter relation.
The Yang-Baxter relation is the following identity, an equality of the two
linear maps V1 ⊗ V2 ⊗ V3 → V3 ⊗ V2 ⊗ V1,

R23R13R12 = R12R13R23, (38)

where Rij acts on Vi⊗Vj as the R-matrix and acts as the identity matrix on
the third vector space8. For example,

R12(V1 ⊗ V2 ⊗ V3) = R(V1 ⊗ V2) ⊗ V3 ⊆ V2 ⊗ V1 ⊗ V3

R13(V2 ⊗ V1 ⊗ V3) = V2 ⊗R(V1 ⊗ V3) ⊆ V2 ⊗ V3 ⊗ V1

and the R-matrix for V1 ⊗ V3 does not necessarily coincide with that for
V1 ⊗ V2. (We often consider the case V2 � V3.) In the BBS with M kinds of
balls, the vector space of solitons with length L is given as

V (L) := span
{
k1 k2 · · · kL , 1 ≤ k1 ≤ k2 ≤ . . . ≤ kL ≤M

}
,

∀j kj ∈ Z+. (39)

Hence the Yang-Baxter relation of soliton scattering in a BBS is given by the
isomorphism determined by the BBS scattering rule:

V (L1) ⊗ V (L2) ⊗ V (L3) −→ V (L3) ⊗ V (L2) ⊗ V (L1) (L1 > L2 > L3).

Turning to the 6-vertex model, when the ratio of the Boltzmann weights
a(:= e−βEA), b, c is given with arbitrary complex parameters q, ζ by

a : b : c = 1 − q2ζ2 : (1 − ζ2)q : (1 − q2)ζ, (40)

a direct calculation shows that the R-matrices, R(ζ, q), satisfy the Yang-
Baxter relation:
8 In the Yang-Baxter relation of integrable lattice models, we have to take into

account the spectral parameter dependence of the R-matrices, however we will
omit this point here. (See the case of the 6-vertex model below as an example.)
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R12(ζ1/ζ2, q)R13(ζ1/ζ3, q)R23(ζ2/ζ3, q) =
R23(ζ2/ζ3, q)R13(ζ1/ζ3, q)R12(ζ1/ζ2, q)

where ζi (i = 1, 2, 3) are arbitrary nonzero complex numbers and V1 ∼= V2 ∼=
V3. (Parameter ζ is a specral parameter and q stands for the temperature of
the model.)

From the above explanation, we see that we can construct an integrable
lattice model if we know R-matrices which satisfy the Yang-Baxter relation.
The origin of the R-matrix in the framework of the representation theory of
quantum groups is elucidated by Drinfel’d and Jimbo [36]. For example, for
the 6-vertex model, the relevant quantum group is the quantum affine algebra
Uq(ŝl2). A quantum group U naturally carries a Hopf algebra structure, and
we can define the tensor product of two representations using the coproduct
∆. Hence for given U -modules V1, V2 we can define the action of ∀x ∈ U on
V1 ⊗ V2 and V2 ⊗ V1

9. Suppose there exists an intertwiner for V1 ⊗ V2 and
V2 ⊗ V1, that is, a linear operator R: V1 ⊗ V2 −→ V2 ⊗ V1 commuting with
the action of U ,

R∆(x) = ∆(x)R ∀x ∈ U.

Then, if the tensor products Vi⊗Vj⊗Vk are irreducible, the Yang-Baxter re-
lation follows automatically10. Thus once we find an intertwiner of irreducible
tensor product representations of some quantum group, we can immediately
construct an integrable two-dimensional lattice model. In the next subsec-
tion, we shall see that general BBSs result from integrable lattice models by
this fact and the idea of ‘crystallization’ [16].

5.2 Crystallization and BBS

In a lattice model at finite temperature, various configurations are allowed
in general for a given boundary condition. However, at zero temperature, the
system takes only the lowest energy state and its configuration is uniquely
determined by a boundary condition. For example, the zero temperature limit
of the 6-vertex model is realized by q → 0 in (40). In this limit, b→ 0 and the
configuration of the lowest energy state is uniquely determined by boundary
conditions for the upper and left edges as shown in Fig. 16a. If we attach
0 and 1 to a vertical thick link and a thin link respectively, we obtain an
array of 0, 1 sequence (Fig. 16b). Then, regarding the horizontal direction
as the spatial direction and the vertical direction as the time direction, a
9 It is not obvious (and not true in general) that V1⊗V2 is isomorphic to V2⊗V1 as
U -modules, because the coproduct is not always symmetric under the switching
of the tensor components.

10 Usually we consider the evaluation module Vζ = V ⊗ C[ζ, ζ−1] where V is a
finite dimensional module of the classical counter part of U , and Vj = Vζj with
an indeterminate ζi.
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Fig. 16. a A boundary condition determines the zero temperature configuration
of 6 vertex model. b Corresponding CA configuration

state of the 6-vertex model is considered to be a time evolution pattern of
the CA which evolves according to the rule determined by the Bolzmann
weight at zero temperature, or equivalently, by the R matrix at q → 0.
As in this example, ‘crystallization’ is the method to construct a CA by
identifying a zero temperature configuration of a lattice model with the time
evolution pattern of a CA. An initial condition of the CA corresponds to a
boundary condition of the lattice model, and the time evolution rule of the
CA corresponds to Boltzmann weights of the lattice model. Hikami-Inoue-
Komori showed that the BBS is obtained from the zero temperature limit
of the Bogoyavlensky lattice, which is a two-dimensional integrable lattice
model, by crystallization11. The lattice model at zero temperature for the
simple BBS is described as follows.

1. A vertical link takes one of the two states indexed by {0, 1}.
2. A horizontal link can take an infinite number of states indexed by non

negative integers {0, 1, 2, 3, . . . }.
3. The allowed vertex configurations are shown in Fig. 17.
4. The nth horizontal link is in the state 0 for |n| , 1.

An example of the lattice pattern for the BBS is shown in Fig. 18.The pattern
given by the states of vertical links coincides with the two soliton scattering
‘111’+‘1’ → ‘1’+ ‘111’ in the BBS.

As explained in the previous subsection, we can construct an integrable
lattice model if we know an R-matrix (intertwiner of tensor representations)
of a quantum algebra. Combining this fact with the idea of crystallization,
we notice that an ‘integrable CA’ can be constructed by using the R-matrix
at zero temperature, which is the isomorphism of tensor representations of
some quantum algebra at deformation parameter q → 0 and is called the
11 However the limit adopted by them is not continuous and it does not yield the

BBS directly.
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...,3,2,1,0m

m+1

1

01

00

0

0 0 m+1 m m

Fig. 17. Allowed vertex configuration of the lattice model corresponding to the
BBS

0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 2 3 2 1 2 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 2 1 2 3 2 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 1 2 3 2 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 

Fig. 18. A lattice configuration corresponding to a time evolution pattern of the
BBS

‘combinatorial R-matrix’. Hence we can associate an integrable CA with each
representation of a quantum algebra at q → 0. In particular one finds [17,18]
that the box and ball system (M, θn, κt) discussed in the previous section,
corresponds to the symmetric tensor representation of U ′

q(A
(1)
M )12. We shall

now briefly discuss how to construct a BBS using crystals of U ′
q(A

(1)
M ).

Let Bk be the crystal [37] (a good representation at q → 0) of U ′
q(A

(1)
M )

corresponding to the k-fold symmetric tensor representation. The crystal ba-
sis of Bk is characterized by the single row semistandard tableau of length
k for letters {1, 2, ...,M + 1}. Hence, we denote a crystal base b ∈ Bk by
b = m1 m2 · · ·mk for mi ∈ {1, . . . ,M + 1}. In particular, we express the

vacuum (a highest weight vector) as uk := 1 1 · · · 1 . We also denote by Rk,�
the combinatorial R-matrix from the representation Bk⊗B� to B�⊗Bk. With
these notations, we identify the array of vertical links of the square lattice
model with an element

· · · btn−2 ⊗ btn−1 ⊗ btn ⊗ btn+1 ⊗ btn+2 ⊗ · · ·

12 U ′
q(A

(1)
M ) is a subalgebra of Uq(A

(1)
M ), which does not include the elements qd in

Uq(A
(1)
M ).
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of the space
· · ·B1 ⊗B1 ⊗B1 ⊗B1 ⊗B1 · · · ,

where B1 is the crystal of the vector representaion. We set u1 = 1 and we
assume the boundary condition bn = u1 (|n| , 1). On the other hand, we
identify the horizontal links with an element

· · · vtn−2 ⊗ vtn−1 ⊗ vtn ⊗ vtn+1 ⊗ vtn+2 ⊗ · · ·

of the space
· · ·Bκ ⊗Bκ ⊗Bκ ⊗Bκ ⊗Bκ · · · .

Here we suppose κ, 1 and vtn = uκ (|n| , 1). Then, the Boltzmann weight
at each vertex can be given by the combinatorial R matirix:

Rκ,1 : vtn ⊗ btn �→ bt+1
n ⊗ vtn+1.

(for reasons of simplicity we do not consider the energy function, which is
actually the analogue of a spectral parameter for such quantum integrable
systems). Using the combinatorial R-matrices, we define a map (transfer ma-
trix) Tκ

· · · btn−1 ⊗ btn ⊗ btn+1 ⊗ btn+2 ⊗ · · ·
�→ · · · bt+1

n−1 ⊗ bt+1
n ⊗ bt+1

n+1 ⊗ bt+1
n+2 ⊗ · · · .

This map is actually an isomorphism determined by the combinatorial R-
matrix:

Bκ ⊗ (· · · ⊗B1 ⊗B1 ⊗ · · · ) � (· · · ⊗B1 ⊗B1 ⊗ · · · ) ⊗Bκ
uκ ⊗ (· · · ⊗ btn ⊗ btn+1 ⊗ · · · ) � (· · · ⊗ bt+1

n ⊗ bt+1
n+1 ⊗ · · · ) ⊗ uκ

Then, in the time evolution pattern:

. . . b0−2 b
0
−1 b

0
0 b

0
1 b

0
2 . . .

. . . b1−2 b
1
−1 b

1
0 b

1
1 b

1
2 . . .

. . . b2−2 b
2
−1 b

2
0 b

2
1 b

2
2 . . . ,

if we regard btn = m (m ≥ 2) as the nth box with a ball indexed M +2−m
at time t and 1 as a vacant box, we find that the pattern coincides with
that of the BBS with box capacity 1 and carrier capacity κ.

In Fig. 19, we show an example of a crystal lattice where M = 3, ∀n, θn =
1, and ∀t, κt = 2. In order to compare a time evolution pattern of the BBS, we
use ‘j’ and ‘j1j2’ instead of M + 2 − j and M + 2 − j1M + 2 − j2 . Hence
the vacuum states for the vertical and horizontal links are denoted by ‘4’ and
‘44’ respectively. When we observe only the vertical links and neglect the
highest weight vector ‘4’, this example presents the two soliton scattering,
‘13’ + ‘2’ −→ ‘3’+ ‘12’.

Using this construction and by virtue of the commutativity of the transfer
matrices TκTκ′ = Tκ′Tκ we can prove the following properties for the general
BBS (M, θn, κt).
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Fig. 19. A crystal lattice with parameters M = 3, θn = 1, κt = 2

(1) By identifying solitons in the BBS with the crystal basis of Uq(AM−1),
the scattering of solitons is described by the action of the combinatorial
R-matrix of Uq(AM−1).

(2) The phase shifts of the solitons are determined by the energy functions
associated with the R-matrix.

(3) The conserved quantities of the BBS are expressed by semistandard
Young tableaux [17].

CA’s with other symmetries (i.e., corresponding to algebras of type B, C,
etc.) have been discussed recently. However, at the time of writing, the rela-
tion of these CA’s to the classical integrable systems is still an open problem.

6 Periodic BBS (PBBS)

In this section, we extend the original BBS to that with a periodic boundary
condition [38,39,11]. Let us consider a one-dimensional array of N boxes. To
be able to impose a periodic boundary condition, we assume that the Nth
box is adjacent to the first one. (We may imagine that the boxes are arranged
in a circle.) The box capacity is one for all the boxes, and each box is either
empty or filled with a ball at any time step. We denote the number of balls

by M , such that M <
N

2
. The balls are moved according to a deterministic

time evolution rule. There are several equivalent ways to describe this rule.
For example, as illustrated in Fig. 20,

1. In each filled box, create a copy of the ball.
2. Move all the copies once according to the following rules.
3. Choose one of the copies and move it to the nearest empty box on the

right of it.
4. Choose one of the remaining copies and move it to the nearest empty box

on the right of it.
5. Repeat the above procedure until all the copies have been moved.
6. Delete all the original balls.



Ultradiscrete Systems (Cellular Automata) 413

� � �

� � �

Fig. 20. A rule for time evolution of a PBBS

It is not difficult to prove that the obtained result does not depend on the
choice of the copies at each stage and that it coincides with the evolution
rule of the original BBS when N goes to infinity. An example of the time
evolution of the PBBS according to this rule is shown in Fig. 21.

 

 

 

t
im

e
 
 

Fig. 21. An example of time evolution of a PBBS

In the following subsections, we will describe several important features of
PBBS without giving proofs. The interested reader is referred to the original
articles.
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6.1 Boolean Formulae for PBBS

We show that the rules for PBBS introduced above can be formulated in
terms of Boolean algebra [38]. Let N be the number of boxes. The space
of the states of the PBBS is naturally regarded as F2

N by denoting a filled
box by 1 ∈ F2 and a vacant box by 0 ∈ F2 respectively. We denote a state
X(t) of the PBBS at time t by X(t) = (x1(t), x2(t), . . . , xN (t)) ∈ F2

N , where
xi(t) = 0 if the ith box is empty and xi(t) = 1 if it is filled. Let ∧, ∨, ⊕, be
AND, OR and XOR respectively. These Boolean operators are realized in F2

N

as maps, F2
N ×F2

N → F2
N . For X = (x1, x2, . . . , xN ), Y = (y1, y2, . . . , yN ),

they are defined as

(X ∧ Y )i := xi ∧ yi ≡ xiyi

(X ∨ Y )i := xi ∨ yi ≡ xiyi + xi + yi

(X ⊕ Y )i := xi ⊕ yi ≡ xi + yi.

We also define the rotate shift to the right, S,

SX = (xN , x1, x2, . . . , xN−1).

The next theorem gives an expression of T ,

T : X(t) �→ X(t+ 1),

in terms of these Boolean operators.

Theorem 6.1. Suppose that X(t) ∈ F2
N is the state of the PBBS at time

step t. We consider the following recurrence equations,

A(0) = X(t), B(0) = SX(t), (41){
A(n+1) := A(n) ∨B(n)

B(n+1) := S(A(n) ∧B(n))
(n = 0, 1, 2, . . . ). (42)

Then,

X(t+ 1) = A(N) ⊕X(t), and B(N) = 0, (43)

where 0 := (0, 0, . . . , 0).

This recurrence equation (43) is expressed with only three operations,
AND, OR and SHIFT, and has a simple form. The SHIFT operator introduces
the right-and-left symmetry breaking that comes from the definition of the
direction of the movement of balls. From the Theorem, we also obtain the
following corollary:

Corollary 6.1. Suppose that X(t) ∈ F2
N is given as the state at time t. Then

the state at the next time step X(t+ 1) = TX(t) is calculated by recurrence
as follows.
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A(0) := X(t), B(0) := SX(t) (44){
A(n+1) := A(n) ∨B(n)

B(n+1) := S2(A(n) ∧B(n))
, (45)

and

X(t+ 1) = A(�N/2�) ⊕X(t), B(�N/2�) = 0. (46)

6.2 PBBS and Numerical Algorithm

The formulae for time evolution of the PBBS (42) have a simple and sym-
metric form, and we expect that they bear some relation to a good algorithm.
In this subsection, we show that they have indeed the same structure as that
of the algorithm to compute the pth root of a given number. Henceforth, let
the truth values “0(false)” and “1(true)” be equivalent to the integers 0 ∈ Z

and 1 ∈ Z. Then we can replace ∧ and ∨ with min and max as
{
x ∧ y ⇐⇒ min [x, y]
x ∨ y ⇐⇒ max [x, y] .

Following the notation in the previous subsection, we define that max
and min act on Z

N bitwise. Then, (42) can be rewritten as an equation on
integers as

{
A(n+1) = max

[
A(n), B(n)

]
B(n+1) = Smin

[
A(n), B(n)

] . (47)

We construct the difference equations corresponding to (47) by means of
inverse ultradiscretization. Noticing the identity:

max [x, y] = lim
ε→+0

ε log
(
ex/ε + ey/ε

)
(x, y ∈ R),

and min [x, y] = −max [−x,−y], we introduce the difference equations,




a
(n+1)
i =

{
a
(n)
i + b

(n)
i

}
/2

b
(n+1)
i = 2

{(
a
(n)
i−1

)−1
+
(
b
(n)
i−1

)−1
}−1 (1 ≤ i ≤ N). (48)

The relation between (47) and (48) is obvious. When we replace a(n)
i and

b
(n)
i by e(A

(n))i/ε and e(B
(n))i/ε respectively, and take limit ε→ +0, we obtain

(47) from (48). The factor 2 in (48) is so chosen that the recurrence formulae
do not diverge at n→ ∞.

When we disregard the space coordinates i in (48), or consider the case
N = 1, we obtain the recurrence formulae,
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a(n+1) = a(n) + b(n)

2
b(n+1) = 2a(n)b(n)

a(n) + b(n)

, (49)

which are the well-known arithmetic-harmonic mean algorithm and we have

lim
n→∞ a(n) = lim

n→∞ b(n) =
√
a(0)b(0).

The recurrence formulae (48) for general N are also considered as a numerical
algorithm to calculate the 2Nth root of a given number. To see this, first we
note that (48) has a conserved quantity C with respect to the step n,

C(n) :=
N∏
i=1

a
(n)
i b

(n)
i = C(n−1) = · · · = C(0) =

N∏
i=1

a
(0)
i b

(0)
i ≡ C, (50)

where
{
a
(0)
i , b

(0)
i

}
are the initial values. Then we can show the following

proposition.

Proposition 6.1. If all the initial values {a(0)
i , b

(0)
i } are positive, then se-

quences a(n)
k and b(n)

k converge to the same value

lim
n→∞ a

(n)
k = lim

n→∞ b
(n)
k = 2N

√√√√ N∏
i=1

a
(0)
i b

(0)
i = 2N

√
C (for all k).

Hence, the recurrence formula of the PBBS is regarded as a numerical algo-
rithm for the 2N th root.

Since the ultradiscrete model has to maintain the mathematical structures
of a discrete model in the process of ultradiscretization, when we take the
ultradiscrete limit of C, it is also a conserved quantity of the PBBS. In fact,

C =
N∏
i=1

a
(0)
i b

(0)
i

UD=⇒
N∑
i=1

{
A

(0)
i +B

(0)
i

}
(51)

gives twice the number of balls in the PBBS. The number of balls is, to be
sure, a conserved quantity of the PBBS.

We can construct other conserved quantities of the recurrence formulae
(42) by means of another inverse ultradiscretization.

From (42), we obtain
{
A(n+1) ∧ S−1B(n+1) = A(n) ∧B(n)

A(n+1) ∨ S−1B(n+1) = A(n) ∨B(n) . (52)

When we consider the inverse ultradiscretization of the above equation, we
find
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{
a
(n+1)
i b

(n+1)
i+1 = a

(n)
i b

(n)
i

a
(n+1)
i + b

(n+1)
i+1 = a

(n)
i + b

(n)
i

. (53)

Thus, for arbitrary λ, (λ+ a
(n)
i )(λ+ b

(n)
i ) = (λ+ a

(n+1)
i )(λ+ b

(n+1)
i+1 ) and we

find that

Cn(λ) :=
N∏
i=1

(λ+ a
(n)
i )(λ+ b

(n)
i ) (54)

does not depend on n, which means that any symmetric polynomial with
respect to {a(n)

i } and {b(n)
i } does not depend on n. Therefore, the ultra-

discrete limit of such symmetric polynomials gives 2N conserved quantities
S1, S2, . . . , S2N of (42). If we denote B(n)

i ≡ A
(n)
N+i, these conserved quantities

are explicitly given as

S1 := max
i

[
A

(n)
i

]

S2 := max
i<j

[
A

(n)
i +A

(n)
j

]

· · ·

S2N :=
2N∑
i=1

A
(n)
i .

6.3 PBBS as Periodic A
(1)
M Crystal Lattice

In the previous sections, we showed that the BBS (with an infinite number of
boxes) can be reformulated from the theory of crystal and the combinatorial
R-matrix. The PBBS is also reformulated as a combinatorial R matrix lattice
model with periodic boundary condition. For the original BBS, the time
evolution is given by the isomorphism:

T : B∞ ⊗B⊗N
1 → B⊗N

1 ⊗B∞
T : |{0}〉 ⊗ |c(t)〉 �→ |c(t+ 1)〉 ⊗ |{0}〉

where |c(t)〉 ∈ B⊗N
1 is the state corresponding to the BBS at time t. For

the PBBS, we have to take the trace of the vertical state, i.e., by regarding
T ∈ EndEndB⊗N

1
B∞, we define the matrix T := TrB∞T ∈ EndCB

⊗N
1 , which

gives a time evolution as

T : B⊗N
1 → B⊗N

1

T : |c(t)〉 �→ |c(t+ 1)〉.

At a glance, one may think that |c(t + 1)〉 becomes a linear combination of
many of the tensor products of B1 crystals. However a tensor product of B1
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crystals is mapped to a unique tensor product of B1 crystals and the resultant
state exactly corresponds to the state of the PBBS at time step t+ 1. Even
for the PBBS with M (M ≥ 2) kinds of balls and various box capacities,
the above lattice model is also well defined as far as the dimension of the
vertical crystal is large enough, that is, κt , 1 for the vertical crystal Bκt

of
U ′

q(A
(1)
M−1). We will present a proof of this fact for the case with one kind of

ball. Since the evolution rule for M kinds of balls is decomposed into M steps
as far as κt , 1, and only one kind of ball is moved at each step according to
the same evolution rule, the proof is also valid for the case with many kinds
of balls. When κ is small, however, the above construction will not give a
unique tensor product and will not define an evolution rule of the PBBS.

Since we treat only one kind of balls, the states are represented by a
U ′

q(A
(1)
1 ) crystal. First we consider the isomorphism Bκ ⊗ Bθ � Bθ ⊗ Bκ

given by the combinatorial R-matrix. A state b in Bκ is usually denoted by a
single row semistandard Young tableau of length κ on letters 1 and 2. Instead,
we denote b = (y, κ − y) where y is the number of 1 in the Young tableau.
For (y, κ− y)⊗ (x, θ−x) � (x′, θ−x′)⊗ (y′, κ− y′), we have the relation [35]

x′ = y − min[κ, x+ y] + min[θ, x+ y] (55)
y′ = x+ min[κ, x+ y] − min[θ, x+ y]. (56)

For κ > θ, the relation is explicitly written as

y′ =




x (x+ y ≤ θ)
2x+ y − θ (θ < x+ y ≤ κ)
x+ κ− θ (κ < x+ y)

(57)

x′ = x+ y − y′ (58)

Now let θn (n = 1, 2, . . . , N) be the capacity of the nth box, and κt be the
capacity of the carrying cart at time step t. The state at time step t is given
by |c(t)〉 ∈ Bθ1 ⊗Bθ2 ⊗ · · · ⊗BθN

. Since Bθn
is a U ′

q(A
(1)
1 ) crystal, a vector

bn ∈ Bθn is represented as bn = (xn, θn − xn), where xn corresponds to the
number of the balls in the nth box. We denote a state b1 ⊗ b2 ⊗ · · · ⊗ bN
by [x1, x2, . . . , xN ] for bi = (xi, θi − xi) (i = 1, 2, . . . , N). The combinatorial
R-matrix of U ′

q(A
(1)
1 ) gives the isomorphism T :

T : Bκt ⊗ (Bθ1 ⊗Bθ2 ⊗ · · · ⊗BθN
) � (Bθ1 ⊗Bθ2 ⊗ · · · ⊗BθN

) ⊗Bκt

([y0] ⊗ [x1, x2, . . . , xN ] � [x′
1, x

′
2, . . . , x

′
N ] ⊗ [y′

0])

From (58), we obtain the following recurrence equations:



Ultradiscrete Systems (Cellular Automata) 419

yn = F (yn−1;xn, θn)

:=




xn (xn + yn−1 ≤ θn)
2xn + yn−1 − θn (θn < xn + yn−1 ≤ κt)
xn + κt − θn (κt < xn + yn−1)

x′
n =




yn−1 (xn + yn−1 ≤ θn)
θn − xn (θn < xn + yn−1 ≤ κt)
yn − κn + θn (κt < xn + yn−1)

(59)

(n = 1, 2, . . . , N)
y′
0 = yN .

We see that the function F (y;x, θ) is a piecewise linear and monotonically
increasing function of y which satisfies F (y + 1;x, θ) − F (y;x, θ) = 0 or 1
and 0 ≤ F (y;x, θ) ≤ κt. Since y′

0 is a function of y0, we denote it by y′
0 =

FN (y0; {xi}, {θi}) := (F ◦ F ◦ · · · ◦ F )︸ ︷︷ ︸
N times

(y0). The function FN is also a mono-

tonically increasing piecewise linear function, and FN (y0 + 1; {xi}, {θi}) −
FN (y0; {xi}, {θi}) = 0 or 1 and 0 ≤ FN ≤ κt. Thus, for 0 ≤ y0 ≤ κt, there
is one and only one integer y∗ or one and only one finite interval [y∗, y∗]
(y∗, y∗ ∈ Z) where the identity y0 = FN (y0; {xi}, {θi}) holds. Furthermore,
from (59), we find that the {x′

n} do not vary for y∗ ≤ y0 ≤ y∗. Therefore we
conclude that, for given {xi} and {θi}, there is at least one y0 (0 ≤ y0 ≤ κt)
at which y′

0 is equal to y0 and that {x′
i} are uniquely determined and have the

same values for y0 which satisfies y′
0 = y0. The above conclusion means that

T := TrBκt
T ∈ EndBθ1 ⊗ · · · ⊗ BθN

maps a state b1 ⊗ · · · ⊗ bN to the state
which is also described by a tensor product of crystal bases. We summarize
the above statement as a Theorem.

Theorem 6.2. If κ is greater than any θi (i = 1, 2, . . . , N), the map T :=
TrBκ

T ∈ EndBθ1 ⊗ Bθ2 ⊗ · · · ⊗ BθN
sends a tensor product of crystal bases

to a unique tensor product of crystal bases of U ′
q(A

(1)
1 ). Furthermore, for

sufficiently large κ, the statement holds for U ′
q(A

(1)
M ) with arbitrary positive

integer M .

From the construction of the map, it is clear that the PBBS discussed in
the previous section corresponds to the case θi = 1 (i = 1, 2, . . . , N), and we
use this map to construct the PBBS with arbitrary box capacities and ball
species.

6.4 PBBS as A
(1)
N−1 Crystal Chains

When there are M balls of the same kind and N boxes, we can also reformu-
late the PBBS in terms of the combinatorial R-matrix of U ′

q(A
(1)
N−1) and the

symmetric tensor product BM and BM ′ where M ′ :=
N∑
i=1

θi −M (Fig. 22).
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Fig. 22. Twisted chains of crystal A(1)
N−1 and PBBS

A crystal b ∈ BM can be denoted by b = (x1, x2, . . . , xN ) with 0 ≤ xi ≤
θi,
∑N
i=1 xi = M . We associate a state of the PBBS with the crystal b in

which xi is the number of balls in the ith box of the state. For the crystal
b, we define the dual crystal b̄ = (x̄1, x̄2, . . . , x̄N ) ∈ BM ′ , where x̄i = θi − xi
(i = 1, 2, · · · , N). Then the crystal b′ ∈ BM associated with the state at time
t + 1 is given by the combinatorial R-matrix which gives the isomorphism
BM ′ ⊗BM � BM ⊗BM ′ as

R : b̄⊗ b −→ b′ ⊗ b̄′. (60)

From [35], we see that this gives the same time evolution of the PBBS dis-
cussed above. As is shown in Fig. 22, the time evolution is described in two
twisted chains of BM and BM ′ . Note that by changing the crystal b and/or b̄
for another crystal (say B type crystal), we obtain other types of PBBS with
a time evolution rule given by the isomorphism R. We may find interesting
features in these CAs. However, the study of these PBBSs is a project for
future research.

The isomorphism (60) has been shown to be expressed as an ultradiscrete
KP equation (eqs. (22) and (23) in [18]), which is another reason why we claim
the PBBS is an integrable CA. Here we do not repeat the results in [18], but
we state a formula similar to (42). The space of the states, however, is no
longer a finite field but Z

N . ForX = (x1, x2, . . . , xN ), Y = (y1, y2, . . . , yN ) ∈
Z
N , we define max and min: Z

N × Z
N → Z

N as
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(min[X,Y ])i = min[xi, yi]
(max[X,Y ])i = max[xi, yi].

We also define the rotate shift to the right S: Z
N → Z

N as

SX = (xN , x1, x2, . . . , xN−1).

Let θi(∈ Z>0) be the capacity of the ith box and xi(t) (0 ≤ xi(t) ≤ θi) be
the number of balls in the ith box at time step t. We denote the state of the
PBBS at t by X(t) := (x1(t), x2(t), . . . , xN (t)). The state at t+ 1, X(t+ 1),
is obtained from the following Theorem.

Theorem 6.3. Let A(0) = X(t) and B(0) = SX(t). We define A(n) and B(n)

(n = 1, 2, . . . ) by the recurrence equations,
{
A(n+1) := min

[
A(n) +B(n),θ

]
B(n+1) := Smax

[
A(n) +B(n) − θ,0

] , (61)

where θ := (θ1, θ2, . . . , θN ). Then we obtain

X(t+ 1) = A(N−1) −X(t), B(N−1) = 0. (62)

6.5 Fundamental Cycle of PBBS

Since the PBBS is composed of a finite number of cells, and it can only take
on a finite number of patterns, the time evolution of the PBBS is necessarily
periodic. In the present article, we investigate the fundamental cycle, i.e., the
shortest period of the discrete periodic motion of the PBBS.

As the original BBS, the PBBS has conserved quantities which are charac-
terized by a Young diagram withM boxes. The Young diagram is constructed
as follows. We denote an empty box by ‘0’ and a filled box by ‘1’. Then the
PBBS is represented as a 0, 1 sequence in which the last entry is regarded
as adjacent to the first entry. Let p1 be the number of the 10 pairs in the
sequence. If we eliminate these 10 pairs, we obtain a new 0, 1 sequence. We
denote by p2 the number of 10 pairs in the new sequence. We repeat the
above procedure until all the ‘1’s are eliminated and obtain p2, p3, . . . , pl.

Clearly p1 ≥ p2 ≥ · · · ≥ pl and
l∑
i=1

pi = M . These {pi}li=1 are conserved

in time evolution. Since {p1, p2, . . . , pl} is a weakly decreasing sequence of
positive integers, we can associate it with a Young diagram with pj boxes
in the j-th column (j = 1, 2, . . . , l). Then the lengths of the rows are also
weakly decreasing positive integers, and we denote them

{L1, L1, . . . , L1,︸ ︷︷ ︸
n1

L2, L2, . . . , L2,︸ ︷︷ ︸
n2

· · · , Ls, Ls, . . . , Ls︸ ︷︷ ︸
ns

}
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where L1 > L2 > · · · > Ls. The set {Lj , nj}sj=1 is an alternative expression
of the conserved quantities of the system. In the limit N → ∞, Lj means the
length of the jth largest soliton and nj is the number of solitons with length
Lj .

The following two propositions are essential to our argument. Let �0 :=
N − 2M = N −

∑l
j=1 2pj = N −

∑s
j=1 2njLj , N0 := �0, Ls+1 := 0, and

�j := Lj − Lj+1 (j = 1, 2, . . . , s) (63)
Nj := �0 + 2n1(L1 − Lj+1) + 2n2(L2 − Lj+1) + · · · + 2nj(Lj − Lj+1)

= �0 +
j∑

k=1

2nk(Lk − Lj+1). (64)

Then, for a fixed number of boxes N and conserved quantities {Lj , nj}, the
number of possible states of the PBBS Ω(N ; {Lj , nj}) is given by the follow-
ing formula.

Theorem 6.4.

Ω(N ; {Lj , nj}) =
N

�0

(
�0 + n1 − 1

n1

)(
N1 + n2 − 1

n2

)(
N2 + n3 − 1

n3

)

× · · · ×
(
Ns−1 + ns − 1

ns

)
(65)

The fundamental cycle T is given as follows.

Theorem 6.5. Let T̃ be defined as

T̃ := L.C.M.
(
NsNs−1

�s�0
,
Ns−1Ns−2

�s−1�0
, · · · , N1N0

�1�0
, 1
)
, (66)

where L.C.M.(x, y) := 2max[x2,y2]3max[x3,y3]5max[x5,y5] · · · for x = 2x23x35x5 · · ·
and y = 2y23y35y5 · · · . Then T is a divisor of T̃ . In particular, when there is
no internal symmetry in the state T = T̃ .

The definition of internal symmetry in the above proposition is rather com-
plicated and we refer the reader to the original article [11]. However, for a
given number of conserved quantities, we can always construct initial states
which do not have any internal symmetry, in particular, if ∀i, ni = 1, the
PBBS never has internal symmetry and T = T̃ .

As for the asymptotic behaviour of the fundamental cycle T , we have the
following theorems [40].

Theorem 6.6. For N , 1 and M = ρN (0 < ρ < 1/2), the maximum value
of the fundamental cycle Tmax ≡ Tmax(N ; ρ) satisfies
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exp
[
2
(
1 − max[

√
2 − 4ρ− 1, 0]

)√
N

(
1 − c

logN

)]

< Tmax < exp
[
2
√

2ρ
√
N logN

]
. (67)

Here c is a positive integer and c ∼ 0.1 for N ≥ 1016.

Theorem 6.7. Let V̄ (N ; ρ) be the number of initial states whose fundamental
cycle is less than exp

[
2(logN)2

− log t0

]
with t0 :=

ρ

1 − ρ
(0 < t0 < 1). Then, for

fixed ρ,

lim
N→∞

V̄ (N ; ρ)
V (N ; ρ)

= 1. (68)

From these theorems, a PBBS is shown to have no ergodicity in the sense that
a trajectory leaves most of the states in the phase space unvisited. Although
the maximum fundamental cycle Tmax � e

√
N (Theorem 6.6), a generic state

has fundamental cycle T � e(logN)2 (Theorem 6.7).

7 Concluding Remarks

As was explained in detail, ultradiscretization is a limiting procedure which
approximates an equation by a piecewise linear equation closed under a fi-
nite number of discrete values. This procedure can in principle be applied
to any equation, for example discrete Painlevé equations [41]. However, in
general, the näıve application of ultradiscretization to a non-integrable equa-
tion will not necessarily reproduce a specific feature of its solutions. In order
to ultradiscretize non-integrable equations while retaining their features, we
need some guiding principles. To find such principles is one of the important
problems in the theory of ultradiscrete systems.

References

1. S. Wolfram: Cellular Automata and Complexity (Addison-Wesley, Reading, MA
1994)

2. S. Wolfram: Phys. Scr. T9, 170 (1985)
3. T. Tokihiro, D. Takahashi, J. Matsukidaira and J. Satsuma: Phys. Rev. Lett.

76, 3247 (1996).
4. J. Matsukidaira, J. Satsuma, D. Takahashi, T. Tokihiro and M. Torii: Phys.

Lett. A 255, 287 (1997)
5. K. Park, K. Steiglitz, and W. P. Thurston: Physica D 19, 423 (1986)
6. A. S. Fokas, E. P. Papadopoulou and Y. G. Saridakis: Physica D 41, 297 (1990)
7. A. S. Fokas, E. P. Papadopoulou, Y. G. Saridakis and M. J. Ablowitz: Studies

in Applied Mathematics 81, 153 (1989)



424 T. Tokihiro

8. M. J. Ablowitz, J. M. Keiser, L. A. Takhtajan: Quaestiones Math. 15, 325
(1992)

9. D. Takahashi: ‘On some soliton systems defined by boxes and balls’. In: Pro-
ceedings of the International Symposium on Nonlinear Theory and Its Applica-
tions, NOLTA’93, p.555 (1991)

10. D. Takahashi and J. Satsuma: J. Phys. Soc. Jpn. 59, 3514 (1990)
11. D.Yoshihara, F.Yura and T.Tokihiro: J. Phys. A.FMath. Gen. 36, 99 (2003)
12. A. Nagai, D. Takahashi and T. Tokihiro: Physics Letters A 255, 265 (1999)
13. D. Takahashi and J. Matsukidaira: J. Phys. A.FMath. Gen. 30, 733 (1997)
14. T. Tokihiro, A. Nagai and J. Satsuma: Inverse Probl. 15, 1639 (1999)
15. T. Tokihiro, D. Takahashi and J. Matsukidaira: J. Phys. A.FMath. Gen. 33,

607 (2000)
16. K. Hikami, R. Inoue, and Y. Komori: J. Phys. Soc. Jpn. 68, 2234 (2000)
17. K. Fukuda, M. Okado, and Y. Yamada: Int. J. Mod. Phys. A 15, 1379 (2000)
18. G. Hatayama, K. Hikami, R. Inoue, A. Kuniba, T. Takagi, and T. Tokihiro: J.

Math. Phys. 42, 274 (2001)
19. M. Bruschi, P. M. Santini and O. Ragnisco: Physics Letters A 169 151 (1992)
20. A. Bobenko, M. Bordemann, C. Gunn, U. Pinkall: Comm. Math. Phys. 158,

127 (1993)
21. R. Hirota: J. Phys. Soc. Jpn.50, 3785 (1981)
22. T. Miwa: Proceedings of the Japan Academy 58 A, 9(1982)
23. E. Date, M. Jimbo, T. Miwa: J. Phys. Soc. Jpn. 51, 4125 (1982)
24. R. Willox and J. Satsuma: Sato Theory and Transformation Groups. A Unified

Approach to Integrable Systems, Lect. Notes Phys. 644, 17 (2004)
25. M. Sato: RIMS Kokyuroku 439, 30 (1981).
26. E. Date, M. Jimbo, M. Kashiwara, T. Miwa: ‘Transformation groups for soli-

ton equations’. In: Proceedings of RIMS symposium on Non-linear Integrable
Systems-Classical Theory and Quantum Theory, Kyoto, Japan May 13 – May
16, 1981, ed. by M. Jimbo, T. Miwa (World Scientific Publ. Co., Singapore
1983) pp. 39–119

27. T. Miwa, M. Jimbo and E. Date: Solitons – Differential equations, symmetries
and infinite dimensional algebras (Cambridge University Press, UK 2000)

28. M. Toda: J. Phys. Soc. Jpn. 22, 431 (1967)
29. A. Nagai, T. Tokihiro and J. Satsuma: Glasgow Math. J. 43A,91 (2001)
30. M. Torii, D. Takahashi and J. Satsuma: Physica D 92, 209 (1996)
31. W. Fulton: Young Tableaux (Cambridge University Press, UK, 1997)
32. C. N. Yang: Physical Review Letters 19, 1312 (1967)
33. R. J. Baxter: Annals of Physics 70, 193 (1972)
34. P. P. Kulish and E. K. Sklyanin: Journal of Soviet Mathematics 19, 1596 (1982).
35. A. Nakayashiki and Y. Yamada: Selecta Mathematica, New Series 30, 547

(1997)
36. See for example, M. Jimbo: ‘Topics from representations of Uq(g)-an introduc-

tory guide to physicists’. In: Nankai Lectures on Mathematical Physics (World
Scientific, Singapore, 1992), pp. 1-61.

37. M. Kashiwara: Communications in Mathematical Physics 133, 249 (1990)
38. F. Yura and T. Tokihrio: J. Phys. A.FMath. Gen. 35, 3787 (2002)
39. T. Kimijima and T. Tokihiro: Inverse Problems 18, 1705 (2002)
40. J. Mada and T. Tokihiro: J. Phys. A.FMath. Gen.36, 7251 (2003)
41. A. Ramani, D. Takahashi, B. Grammaticos and Y. Ohta: Physica D 114 185

(1998)



Time in Science:
Reversibility vs. Irreversibility
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Abstract. To discuss properly the question of irreversibility one needs to make a
careful distinction between reversibility of the equations of motion and the ‘choice’
of the initial conditions. This is also relevant for the rather confuse philosophy of the
‘wave packet reduction’ in quantum mechanics. The explanation of this reduction
requires also to make precise assumptions on what initial data are accessible in our
world. Finally I discuss how a given (and long) time record can be shown in an
objective way to record an irreversible or reversible process. Or: can a direction of
time be derived from its analysis? This leads quite naturally to examine if there
is a possible spontaneous breaking of the time reversal symmetry in many body
systems, a symmetry breaking that would be put in evidence objectively by looking
at certain specific time correlations.

1 Introduction

Scientists, as well as philosophers, have been always fascinated by time. The
greatest of them all, Isaac Newton, made profound statements about the way
time should enter into our rational understanding of the world. His deeply
thought remarks (at the beginning of the Principia) are still valid today
(for the nonrelativistic limit, relevant for most phenomena at human scale).
One question, that is well discussed in the Principia too, concerns the initial
conditions, clearly seen by Newton as something different from the laws of
the motion, a notion foreign to many writers on the subject.

I believe this distinction between laws of motion and initial conditions is
absolutely essential, and often not appreciated to its full extent. It is central
to the discussion of two related issues in modern science:

1) the apparent opposition between reversibility of the laws of motion and
everyday irreversibility in the behaviour of macroscopic systems,

2) the so-called reduction of the wave packet by measurements in quantum
mechanics.

I am going to show that both issues have to do with the initial conditions
of our world , and require us to make assumptions about them.

I felt that a visit to India was an opportunity to present some thoughts on
questions of a more philosophical nature than usual, because it is a country
of such long philosophical tradition. Later on I shall come back to more
‘concrete’ questions. In the spirit of [1], I shall discuss the following problem:
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given a time record, how is it possible to show in an objective way the fact
that it records an irreversible process? In other terms, can a direction of time
be derived from its analysis ? This has to do with ‘practical’ things as well
as more fundamental ones, such as: could it be that the time in the Universe
runs in different directions, depending on, say, the Galaxy one is inhabiting?

2 On the Phenomenon of Irreversibility
in Physical Systems

A inexhaustible theme of discussions in physics and physics-related science
is the apparent opposition between the reversible laws of motion and the ir-
reversibility observed in everyday life. This discussion is much confused by
attempts, conscious or not, to ‘prove’ the irreversibility of the motion of large
groups of point particles, without stating clearly the assumptions made at the
beginning. In some sense, this eludes one of the deepest message of Newton
: the only way to do science is to derive a set of consequences, starting from
explicitly stated ‘laws’ or ‘axioms’ (Newton used both terms interchange-
ably). The most complete derivation of irreversible behaviour from the law
of mechanics was done in the kinetic theory of gases by Boltzmann. who
based his theory on the so-called ‘Stosszahlansatz’ (meaning approximately
‘assumption on the counting of hits’), which clearly means that, besides the
laws of mechanics, an additional assumption is needed to prove irreversibility.
This Stosszahlansatz says that, before colliding, two particles have never met
before, and so have independent statistical properties. The difficulty with
the Boltzmann Stosszahlansatz is that it cannot be exact. When expanding
the collision operator beyond the lowest order in a density expansion, one
finds the so-called ring collisions that yield a certain amount of correlation
of two particles entering into a binary collision. But this correlation turns
out to be small enough to make the Stosszahlansatz valid at low densities.
In other terms, by running back in time, two particles should have no cor-
relation at all at infinite negative times. The little amount of correlation
created by the ring collisions is a short time effect, at least at low density
(in my PhD thesis [2] I showed that this is not so at finite densities because
of the occurence of slowly decaying hydrodynamical fluctuations). This im-
plies that a given non equilibrium system to which the Boltzmann equation
applies should have been made in the past of at least two completely sepa-
rated sets, without any knowledge of each other, namely without correlation.
The correlations brought in each system in the past by its own relaxation
are actually negligible, because it can be assumed that they are at equilib-
rium, where particles are uncorrelated at low density. Therefore, at the end,
the validity of Boltzmann Stosszahlansatz relies upon the absence of correla-
tion between physically separated systems. This property cannot however be
taken for granted. It has to be assumed, which can be done without violating
any basic principle. That it must be assumed follows from the following idea.
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Suppose that, once the system has decayed to equilibrium, one splits it in two
parts. These two parts bear some special correlations: running backward in
time, the system will follow the same trajectory. An outside observer looking
at it with its time running in the opposite direction of the one of the sytem
under consideration will have the impression that the Stosszahlansatz does
not apply, because the H-theorem will certainly not apply. Therefore, for this
particular observer, the correlation in the final state will be the correlations
in its reverse time frame and will certainly not satisfy the condition of appli-
cation of the Boltzmann theory. This implies that this type of correlation can
exist, and have to be excluded from the real world by an explicit assumption,
unprovable by any method.

Similar things could be said concerning the reduction of the wave packet in
quantum mechanics. Its status is often quite ambiguous, it is even sometimes
claimed to be a fundamental principle of quantum mechanics, although it is
far closer to the Stosszahlansatz than many believe. That the reduction of the
wave packet requires some irreversibility should be made obvious (hopefully)
by the following gedanken experiment. Think of a quantum system with
two possible states, A and B. To measure its state, one connects it to a
macroscopic device such that it is in either state α or β (which can be seen
as the two possible steady positions of a needle for instance). When connected
to the quantum system, the energy of the state of the full system is the lowest
in the joint states (α, A) or (β, B), so that the system reaches irreversibly
in either of these states, with probability 1/2 for instance. This irreversible
step in the evolution is possible because α and β are states of a macroscopic
system, with off-diagonal elements of the probability matrix that are very
small by interference between various eigenstates. This step requires a hidden
assumption about the possible correlations between the various components
of the state of the system in its Hilbert space. If one reverses the time, the
correlation introduced by the evolution will make the system return to a very
unlikely initial state, the one preexisting the measure. Therefore the reduction
of the wavepacket, again a process that requires assumptions about the initial
conditions, cannot be proven just by looking at the equations of motion. To be
a bit more specific, meaning more mathematical, let us introduce a quantum
system on which the measurement is made with two quantum states A and
B. The macroscopic (classical) measuring device is described by a decay
equation,

dx

dt
+
∂Φ

∂x
= f(t). (1)

In this generalized Langevin equation, x can be seen as the position of a
needle in the measuring device, with two equilibria, x = α and x = β. These
equilibria are the two minima of the function Φ(x). The thermal forcing is
represented by the Gaussian white noise force f(t), that is of zero average
and is delta correlated in time,

f(t)f(t′) = Tδ(t− t′),
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δ being the Dirac function, and T the absolute temperature. The device is a
measuring device because the potential Φ(t) depends on the quantum state
A or B, and on some coupling parameter. When the coupling is turned off,
Φ(x) has minima at x = α and x = β, in such a way that the probability of
a thermal jump above the barrier between the two states is negligible over
macroscopic times. When the interaction is turned on, the potential Φ(x) has
a single minimum. But the location of this minimum is either at x = α if
the quantum system is in the A state or at x = β if the quantum system is
in the B state. Therefore, after the time needed to fall to the bottom of the
potential Φ, the interaction brings an absolute correlation between the state of
the quantum system and the macroscopic state of the measuring device. This
correlation does not pose any problem as far as irreversibility is concerned.
The state before the interaction is turned on, and the state after, may be
different: for instance A for the quantum system and β for the measuring
device is perfectly legitimate as an initial state. But after the interaction is
turned on, the system eliminates states like (A, β). Once the measurement
is made, the interaction is turned off, following the reversed time path of the
turning-on process. Then, a reversibility paradox appears. No final state (A,β)
is possible, although the system is perfectly time reversible since the turning-
on and off of the interaction follows the same time dependance. Therefore
it seems that the post-measurement states should be possibly in the same
list as the pre-measurement states. This is not really a paradox, because
of the small probability that, once the measurement has been initiated, the
system may jump back by thermal fluctuations to a state like (A, β), starting
from (B, β). Unlikely realizations of the noise f(t) can do it. These unlikely
realizations are precisely the ones that would be observed by someone looking
at the system in the backward time direction, and that are excluded in the
forward time direction by an argument similar to the Stosszahlansatz. It
would be interesting to test this kind of idea by more detailed investigations
on the time-dependent generalized Langevin equation. The philosophy here
is that the so-called quantum discontinuity is mostly a classical, macroscopic
phenomenon. To make a connection with the general theme of integrability, it
is worth pointing out that, after all, the generalized Langevin equation rests
upon the idea of the instability of the trajectories of the classical ‘macroscopic
measuring device’. Therefore the idea of quantum chaos should be linked in
some way or another to the property of this ‘device’ of not behaving at all
according to the generalized Langevin equation, that is to say, it should be
integrable in some sense. This also brings to light the fact that quantum chaos
should be linked to the behaviour of a system with many, if not infinitely
many, degrees of freedom.

Below, as promised, I will review the following question: given some time-
dependent signal, how is it possible to decide if it is time-reversible or not,
and what does this mean?
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3 Reversibility of Random Signals

Everyday life tells us if the magnetic tape from a record,for instance, is run-
ning forward or backward in time. This is obvious for a movie, because run-
ning backward shows people walking backward, filling glasses instead of drink-
ing, etc. That a piece of music, especially a modern one is running backward
is far less obvious to my untrained ears . One can even recognize classical
pieces like Beethoven music when run backward. This brings me to my point:
is it possible to make a clearcut and ‘objective’ difference between a signal
that is ‘time reversible’ and another one that is not?

I assume that this signal, x(t), a real and smooth function of time, lasts
long enough to make it possible to ‘measure’ any kind of correlation function,
like

Ψ(τ) = (x(t) − x)(x(t+ τ) − x). (2)

This correlation function is obtained by averaging over a stationary random
process, so that Ψ depends on the time difference between the two functions
(x(.) − x), averages being denoted by an overbar. For a stationary random
process, by its very definition, function Ψ(τ) has the same value if τ is changed
into −τ . In other words no difference can be made between the two possible
directions of time by looking at the pair correlation Ψ(τ). Therefore, part
of the information in the signal x(.) , if it is not time reversible, is lost by
looking at pair correlations as given in (2).

Consider now the product x(t)x(t+ 2τ)x(t+ 3τ). It is a function of τ
only, like the pair-correlation Ψ(τ) that has been just defined. The center of
gravity of the three arguments is at t+ 5

3τ , so that the three times in argu-
ments of x(.) are not symmetrical with respect to this barycenter. Looking
backward in time, one would replace the triple product x(t)x(t+ 2τ)x(t+ 3τ)
by x(t)x(t+ τ)x(t+ 3τ). Unless something special happens, the two averages
have no reason to be the same. Therefore, it is relevant to introduce the cor-
relation of the difference between the two cubic averages,

Ψ ′(τ) = x(t)x(t+ 2τ)x(t+ 3τ) − x(t)x(t+ τ)x(t+ 3τ). (3)

Function Ψ ′(τ) is exactly zero for a time reversible process, that is, for a
process such that no time direction can be derived from its analysis. Indeed,
an infinite number of functions vanishing for time-symmetric process and
non-zero otherwise can be imagined. For instance, it can be that the plus
and minus value of x have equal probability, so that Ψ ′(τ) is zero, even for a
non-time reversible process. In such a case an even function like

Ψ ′′(τ) = x3(t)x(t+ τ) − x(t)x3(t+ τ) (4)

can be used to discriminate between a time-symmetric and a non-symmetric
process.
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Both Ψ ′ and Ψ ′′ are odd functions of τ . If signal x(.) is smooth enough,
the Taylor expansions of Ψ ′ and Ψ ′′ near τ = 0 are

Ψ ′(τ) ≈ −10
3
τ3
(
dx

dt

)3

and

Ψ ′′(τ) ≈ −τ3x(t)
(
dx

dt

)3

.

In both expression, the average is a single time-average.
Now I am going to examine various situations where this question of time

symmetry is relevant.
The standard Ornstein-Uhlenbeck process is given formally by the solu-

tion of the Langevin equation,

dx

dt
+ x = f(t), (5)

where f(.) is a Gaussian white noise of temperature T such that f = 0
and f(t)f(t′) = Tδ(t − t′). The stochastic process x(.) is time reversible
because of a balance between the damping term, the +x on the left side of
(5), and the special noise term on the right-hand side. Consider, for instance,
the correlation function entering into Ψ ′′, namely the average x3(t)x(t+ τ).
Since x(.) is a Gaussian variable of zero average, the usual rules for Gaussian
variables yield at once:

x3(t)x(t+ τ) = 3(x)3x(t)x(t+ τ)

and
x(t)x3(t+ τ) = 3(x)3x(t)x(t+ τ).

Therefore Ψ ′′(τ) = 0 for this process.
This symmetry can be shown in a more general way by looking at the auto-

correlation function of the Ornstein-Uhlenbeck process, namely the func-
tion P (x(t), x(t + τ)) such that any correlation function h(x(t))g(x(t+ τ)
is yielded by

h(x(t))g(x(t+ τ)) =
∫ +∞

−∞
dx

∫ +∞

−∞
dx+h(x)g(x+)P (x, x+). (6)

In this expression, x is for x(t) and x+ for x(t+ τ). Because x(t) is a linear
function of a Gaussian variable, f(t), both x and x+ are Gaussian variables.
Therefore the autocorrelation function, P (x, x+), is a Gaussian joint proba-
bility of the general form

P (x, x+) =
1

Z(τ)
e−[a(τ)(x2+x2

+)+2b(τ)xx+]. (7)
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The factor a is the same for x2 and x2
+ because the averages over x+ and

over x, independent of the knowledge of the other, have to be the same. The
two functions of τ , a and b, as well as the normalization factor Z, are derived
from a knowledge of the various averages. The average value of 1 yields

∫ +∞

−∞
dx

∫ +∞

−∞
dx+P (x, x+) = 1.

That yields:
Z =

π√
a2 − b2

.

The standard properties of the Ornstein-Uhlenbeck process yield

x2 =
T

2

xx+ =
T

2
e−|τ |.

Although the same quantities computed with P (x, x+) are

x2 =
a

2(a2 − b2)
,

xx+ = − b

2(a2 − b2)
.

By identification, this yields after some algebraic manipulations,

P (x, x+) =
1

πT (1 − e−2|τ |)
e

− 1
T (1−e−2|τ|) [x

2+x2
+−2xx+e

−|τ|]
. (8)

Note that because this expression depends on the absolute value of τ
only, and because of its symmetry under the exchange of x and x+, the cross
correlation of the Ornstein-Uhlenbeck process is actually time symmetric. No
measurement of a functions depending on the signal will be able to distinguish
between the forward and backward directions of time.

The same symmetry can be shown to hold true for more general Langevin
equations. Take the function of time x(t) solution of the equation

dx

dt
+
dΦ

dx
= f(t), (9)

where f(t) is the same Gaussian noise as before, and Φ a generalization of the
potential x2

2 in the familiar linear Langevin equation. It can be shown that
the same property of time-reversal symmetry holds for the random process
given by (9). The proof is based upon a formal solution of the Chapman-
Kolmogoroff equation for the pair-correlation P (x(t), x(t+ τ)), a proof given
in [1]. This proof extends to situations where x is actually a vector, denoted by
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x, and where dΦ
dx is replaced by the gradient with respect to x of a dissipation

function, ∇Φ, which depend on the various components of x. However the
proof does not work for non-gradient systems, that is for systems such as

dx
dt

+ F(x) = f

with f Gaussian white noise, and F non-potential field, with a non-zero rota-
tional. This remark is interesting in the modelization of thermal fluctuations
added to the equations of fluid mechanics. Those equations, when linearized
(the so-called Stokes limit of the Navier-Stokes equations) can be written in
the gradient form (a consequence of the Rayleigh-Prigogine principle of min-
imum production of entropy). With the non-linear terms added, it has been
known for a long time that the full Navier-Stokes equations cannot be writ-
ten in such a gradient form, so that an extenal noise source cannot be added
to describe the equilibrium and weakly non-equilibrium thermal fluctuations.
At equilibrium these fluctuations must satisfy the constraint of reversibility.

This brings me to my next point. The constraint of reversibility is relevant
for equilibrium situations only. This is not completely obvious. One might
have the impression that it is a direct consequence of the reversibility of the
fundamental equations of classical dynamics. Actually it also requires that the
system is at equilibrium. To show this, it is enough to find a counter-example,
namely a correlation that fails the test of time reversal symmetry as soon as
the system is out of equilibrium. The example I choose is the following one.
Suppose we have a gas in a 2D system, with four possible values of molecular
velocities, of modulus one, and directed along four directions at right angle
of each other. In this system, the velocity space is discrete, with index i,
between i = 1 and i = 4. The convention will be that the sum i + j, i and
j integers less than 4, will be taken modulo 4. The direction i and i+ 2 are
opposite. The Boltzmann equation for this discrete gas is

dNi
dt

= ν(Ni+1Ni+3 −Ni+2Ni). (10)

The velocity distribution Ni is a set of four time-dependent positive numbers
(I assume that the gas is homogeneous in space), normalized by the condition

Σi=4
i=1Ni = 1.

Moreover the quantity ν that appears in (10) is a frequency of collision.
Indeed, (10) is actually a list of four equations. Let us consider a Couette
shear flow. In this flow, and near the center of the flow, there is no mean
velocity and an Enskog-Hilbert expansion shows that the local stationary
distribution takes the form

Ni =
1
4

+ ε(−1)i. (11)
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In this expression, ε(−1)i denotes the deviation of the velocity distribution
from equilibrium. It would result from the shear flow. In this model, if i, for
instance, is in the y direction, and the x coordinate is orthogonal to y, the
shear flow must be a function of (x + y), the velocity being oriented in the
direction of the bissectrix of the axis such that x = y, which is because this
model has spurious collisional invariants.

The time correlation functions are quantities of the form

F (i, t)G(j, t+ τ) = Σi,j=1,4N
0
iM(j, τ ; i)G(j)F (i). (12)

By definition in this expression, F (i, t) is the value of an arbitrary function of
the velocities at time t in a given microscopic state of the gas reached at this
time, although F (i) is the function of i that is averaged over all the particles to
obtain this microscopic value. Moreover, N0

i is the velocity distribution in the
stationary state under study, and M(j, τ ; i) is the time-correlation function.
This correlation function is a solution of the linearized kinetic equation with
a delta-like initial condition,

dM(j, τ ; i)
dτ

= ν(N0
j+1Mj+3 +N0

j+3Mj+1 −N0
jMj+2 +N0

j+2Mj) (13)

In this expression, Mj+3 on the right-hand side stands for M(j+3, τ ; i). The
initial condition is M(j, τ = 0; i) = δi,j , where δi,j stands for the discrete
Kronecker delta, equal to 1 if i = j and to zero otherwise.

From the correlation of F and G at different times, as given in (12), one
can define a new correlation-function that should be zero for a time-reversible
process, by subtracting its time reversed expression. Since the speed changes
sign under time-reversal, F (i, t)G(j, t+ τ) becomes G(i+ 2, t)F (j + 2, t+ τ)
under time-reversal, reversing speeds amounting to adding two to the indices.
Therefore the time-correlation that should vanish for a time-reversal invariant
process is [F (i, t)G(j, t+ τ) −G(i+ 2, t)F (j + 2, t+ τ)]. Take a function N0

l

such that N0
l = N0

l+2, and functions F and G such that G(l) = G(l+ 2) and
F (l) = F (l + 2). Elementary but rather long calculations yields the solution
of the linear problem, (13), with the result

[F (i, t)G(j, t+ τ) −G(i+ 2, t)F (j + 2, t+ τ)] =

exp− 2
[
|ντ |(N0

1 +N0
2 )
]

(N0
1 +N0

2 )
(G(2)F (1) −G(1)F (2))

[
(N0

1 )2 − (N0
2 )2
]
. (14)

With N0
1 = 1

4 − ε and N0
2 = 1

4 + ε, this yields:

[F (i, t)G(j, t+ τ) −G(i+ 2, t)F (j + 2, t+ τ)] =
2ε (G(2)F (1) −G(1)F (2)) e−|ντ |

This last expression shows that the test function for time-reversal symme-
try vanishes at equilibrium (for ε = 0). It does not vanish for τ = 0 because
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the velocity fluctuations of the individual particles do not depend smoothly
on time.

Another interesting property of the time fluctuations of non-time-symmet-
ric systems has to do with the phase of the Fourier transform of the signal. Let
X(t) be a fluctuating signal or noise. The Wiener-Khinchin theorem relates
the time correlation of this signal to the modulus of its Fourier transform.
Let

X̃τ (ω) =
∫ t0+τ

t0

dτ ′eiωτ
′
X(τ ′)

be the Fourier tranform in the time-window [t0, t0 + τ ]. By definition, the
autocorrelation of the signal is

Sa(t) = lim
τ→∞

1
τ

∫ t0+τ

t0

dτ ′(X(τ ′) −X)(X(t+ τ ′) −X). (15)

The Wiener-Khinchin theorem states that

lim
τ→∞

1
τ
|X̃τ (ω)|2 =

∫ +∞

−∞
dteiωtSa(t)

This shows that the spectral function is independant on the phase of
X̃τ (ω). But this spectral function is insensitive to time-reversal, as is the
autocorrelation function Sa(t). Therefore, any information related to the time
reversal symmetry of the signal is stored in the phase of its Fourier transform.
This leads to a rather curious property of the phase of various transform of a
time symmetric signal. To show it, consider two functions of the signal X(τ),
like A(X(τ)) and B(X(τ)). Consider now their Fourier transform,

Ãτ (ω) =
∫ t0+τ

t0

dτ ′eiωτ
′
A(X(τ ′))

B̃τ (ω) =
∫ t0+τ

t0

dτ ′eiωτ
′
B(X(τ ′))

Let us try now to compute the part of correlation function between A and B
that vanishes for a time-symmetric signal. By definition, this is the following
correlation function,

SAB(t) = lim
τ→∞

1
τ

∫ t0+τ

t0

dτ ′ [A(X(τ ′))B(X(t+ τ ′)) −B(X(τ ′))A(X(t+ τ ′))] .

(16)

If the noise is time symmetric, this function should be zero for any choice
of A and B. An obvious extension of the derivation of the Wiener-Khinchin
theorem shows that

lim
τ→∞

2i
τ

sin(ϕA(ω) − ϕB(ω))|Ãτ (ω)B̃τ (ω)| =
∫ +∞

−∞
dteiωtSAB(t).
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In this expression, ϕA,B are the phases of the Fourier transform, while Aτ (ω)
and Bτ (ω) are seen as complex numbers. Therefore one obtains the non-
obvious result that the phases of the Fourier transform of any function of
X(t) are the same if the noise is time-reversible. Indeed this phase has a
meaning for a well defined and unique choice of the integration bounds for
the Fourier transform.

A final remark on this question of the analysis of time-reversal symmetry
is that ‘time’ there is only to mean a real variable, going from minus to plus
infinity. Therefore it makes sense to try to extend the same idea to situations
where the time is replaced by another continuous variable, typically a position
in space. In [1] I suggested this possibility, by introducing the minimal field
theoretic model showing this breaking of symmetry under reflection. The idea
is actually to consider an interaction between various points that has the
same lack of symmetry as, for instance, the triple correlations non vanishing
in a non-reversible system. It is even thinkable that this symmetry under
reflection is broken spontaneously, for instance as temperature is lowered in
a system of interacting spins on a lattice.

4 Conclusion and Perspectives

This essay intended to show that the time-dependance of physical phenomena
remains an active subject of investigations. Particularly, in the mathematical-
physical approach, it is still full of yet poorly understood questions. The
question of integrability is in some sense behind the whole subject. Any ir-
reversible behaviour is due not to the lack of reversibility of the equations,
but to their lack of integrability. I pointed out the fact that quantum chaos
is actually far closer to the usual type of chaos than expected, if one looks
at the phenomenon responsible for the reduction of the wave packet by mea-
surements. From this point of view, again, a fundamental understanding of
the issues at stake seems to be still lacking.

A final comment: part of the oral presentation concerned dynamical mod-
els with discrete time (various cellular automata models, some developed even
before the word became known). I refer the interested reader to the original
publications [3]. From the point of view of the topic of this school, I think
that the most relevant issue I have raised is the possible existence of con-
served quantities in reversible cellular automata (CA), something I leave as
a a suggestion to the readers of the present notes. To formulate the problem
in the quickest possible way, consider a Boolean CA on a square lattice. Each
site is indexed by a pair of integers, positive or negative (i, j). The value of
the Boolean variable there is at time n (discrete) σni,j . It takes either the
value 0 or +1. The law of evolution is reversible (the same in backward and
forward direction of time),

σn+1
i,j + σn−1

i,j = F (σni′,j′). (17)
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Equation (17) is written in Boolean algebra, that is such that 0 + 0 = 0,
0 + 1 = 1 and 1 + 1 = 0. Moreover its right-hand side is a function of the σ’s
in the square lattice at sites that are neighbours of σi,j , that are (for instance)
the four nearest neighbours, with i′ = i±1 and j′ = j±1. Since the function
F has two possible values, 0 or 1, there are 22K

such functions, K being
the numbers of neighbours, 4 in the present case. This gives 216 = 65536
possible functions. The Q2R model is one possible choice for a function F . It
has a conserved quantity proportional to the size of the system (and found
by trial and error, not by using any Noether-like argument). As far as I am
aware, no study has been undertaken of other possible choices of function F
giving an invariant quantity (or eventually more than one), which makes it
an interesting topic of study.
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