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Палкой щупая дорогу,
Бродит наугад слепой,
Осторожно ставит ногу
И бормочет сам с собой.
И на бельмах у слепого
Полный мир отображен:
Дом, лужок, забор, корова,
Клочья неба голубого —
Все, чего не видит он.

Вл. Ходасевич
«Слепой»

A blind man tramps at random touching the road with a stick.
He places his foot carefully and mumbles to himself.
The whole world is displayed in his dead eyes.
There are a house, a lawn, a fence, a cow
and scraps of the blue sky — everything he cannot see.

Vl. Khodasevich

«A Blind Man»



PrefacePrefacePrefacePreface

The recent years have been marked out by an evergrowing interest in the
research of qualitative behaviour of solutions to nonlinear evolutionary
partial differential equations. Such equations mostly arise as mathematical
models of processes that take place in real (physical, chemical, biological,
etc.) systems whose states can be characterized by an infinite number of
parameters in general. Dissipative systems form an important class of sys-
tems observed in reality. Their main feature is the presence of mechanisms
of energy reallocation and dissipation. Interaction of these two mecha-
nisms can lead to appearance of complicated limit regimes and structures
in the system. Intense interest to the infinite-dimensional dissipative sys-
tems was significantly stimulated by attempts to find adequate mathemati-
cal models for the explanation of turbulence in liquids based on the notion
of strange (irregular) attractor. By now significant progress in the study of
dynamics of infinite-dimensional dissipative systems have been made.
Moreover, the latest mathematical studies offer a more or less common line
(strategy), which when followed can help to answer a number of principal
questions about the properties of limit regimes arising in the system under
consideration. Although the methods, ideas and concepts from finite-di-
mensional dynamical systems constitute the main source of this strategy,
finite-dimensional approaches require serious revaluation and adaptation.

The book is devoted to a systematic introduction to the scope of main
ideas, methods and problems of the mathematical theory of infinite-dimen-
sional dissipative dynamical systems. Main attention is paid to the systems
that are generated by nonlinear partial differential equations arising in the
modern mechanics of continua. The main goal of the book is to help the
reader to master the basic strategies of the theory and to qualify him/her
for an independent scientific research in the given branch. We also hope
that experts in nonlinear dynamics will find the form many fundamental
facts are presented in convenient and practical.

The core of the book is composed of the courses given by the author at
the Department of Mechanics and Mathematics at Kharkov University dur-
ing several years. The book consists of 6 chapters. Each chapter corre-
sponds to a term course (34-36 hours) approximately. Its body can be
inferred from the table of contents. Every chapter includes a separate list
of references. The references do not claim to be full. The lists consist of the
publications referred to in this book and offer additional works recommen-
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ded for further reading. There are a lot of exercises in the book. They play
a double role. On the one hand, proofs of some statements are presented as
(or contain) cycles of exercises. On the other hand, some exercises contain
an additional information on the object under consideration. We recom-
mend that the exercises should be read at least. Formulae and statements
have double indexing in each chapter (the first digit is a section number).
When formulae and statements from another chapter are referred to,
the number of the corresponding chapter is placed first.

It is sufficient to know the basic concepts and facts from functional
analysis and ordinary differential equations to read the book. It is quite un-
derstandable for under-graduate students in Mathematics and Physics.

I.D. Chueshov
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The mathematical theory of dynamical systems is based on the qualitative theo-
ry of ordinary differential equations the foundations of which were laid by Henri
Poincaré (1854–1912). An essential role in its development was also played by the
works of A. M. Lyapunov (1857–1918) and A. A. Andronov (1901–1952). At present
the theory of dynamical systems is an intensively developing branch of mathematics
which is closely connected to the theory of differential equations.

In this chapter we present some ideas and approaches of the theory of dynami-
cal systems which are of general-purpose use and applicable to the systems genera-
ted by nonlinear partial differential equations.

§ 1 Notion of Dynamical System§ 1 Notion of Dynamical System§ 1 Notion of Dynamical System§ 1 Notion of Dynamical System

In this book dynamical system  dynamical system  dynamical system  dynamical system is taken to mean the pair of objects  con-
sisting of a complete metric space  and a family  of continuous mappings of the
space  into itself with the properties

, , (1.1)

where  coincides with either a set  of nonnegative real numbers or a set
. If , we also assume that  is a continuous

function with respect to  for any . Therewith  is called a phase space phase space phase space phase space, or
a state space, the family  is called an    evolutionary operator evolutionary operator evolutionary operator evolutionary operator (or semigroup),
parameter  plays the role of time. If , then dynamical system is
called discretediscretediscretediscrete  (or a system with discrete time). If , then  is fre-
quently called to be dynamical system with continuouscontinuouscontinuouscontinuous time. If a notion of dimen-
sion can be defined for the phase space  (e. g., if  is a lineal), the value  is
called a dimensiondimensiondimensiondimension of dynamical system.

Originally a dynamical system was understood as an isolated mechanical system
the motion of which is described by the Newtonian differential equations and which
is characterized by a finite set of generalized coordinates and velocities. Now people
associate any time-dependent process with the notion of dynamical system. These
processes can be of quite different origins. Dynamical systems naturally arise in
physics, chemistry, biology, economics and sociology. The notion of dynamical sys-
tem is the key and uniting element in synergetics. Its usage enables us to cover
a rather wide spectrum of problems arising in particular sciences and to work out
universal approaches to the description of qualitative picture of real phenomena
in the universe.
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Let us look at the following examples of dynamical systems.

E x a m p l e  1.1

Let  be a continuously differentiable function on the real axis posessing the
property , where is a constant. Consider the Cauchy
problem for an ordinary differential equation

,  , . (1.2)

For any  problem (1.2) is uniquely solvable and determines a dynamical
system in . The evolutionary operator  is given by the formula ,
where  is a solution to problem (1.2). Semigroup property (1.1) holds
by virtue of the theorem of uniqueness of solutions to problem (1.2). Equations
of the type (1.2) are often used in the modeling of some ecological processes.
For example, if we take , , then we get a logistic equ-
ation that describes a growth of a population with competition (the value 
is the population level; we should take  for the phase space).

E x a m p l e  1.2

Let  and  be continuously differentiable functions such that

, 

with some constant . Let us consider the Cauchy problem

(1.3)

For any , problem (1.3) is uniquely solvable. It generates
a two-dimensional dynamical system , provided the evolutionary ope-
rator is defined by the formula

,  

where  is the solution to problem (1.3). It should be noted that equations
of the type (1.3) are known as Liénard equations in literature. The van der Pol
equation:

and the Duffing equation:

which often occur in applications, belong to this class of equations.
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x� t� � f x t� �� ��� t 0� x 0� � x0�

x R�
R St St x0 x t� ��

x t� �

f x� � � x x 1�� ��� � 0�
x t� �

R�

f x� � g x� �

F x� � f �� � �  d

0

x

�  c�� g x� � c�

c

x�� g x� �x� f x� �� � 0 ,   t 0 ,��

x 0� � x0 ,   x� 0� � x1 .���
�
�

y0 x0 x1�� �� R2�
R2 S

t
�� �

S
t

x0 x1�� � x t� � ; x� t� �� ��

x t� �

g x� � � x2 1�� � ,   � 0 ,      f x� �� x� �

g x� � � ,   � 0 ,       f x� �� x3 a x�� b�� �



N o t i o n  o f  D y n a m i c a l  S y s t e m 13 

E x a m p l e  1.3

Let us now consider an autonomous system of ordinary differential equations

. (1.4)

Let the Cauchy problem for the system of equations (1.4) be uniquely solvable
over an arbitrary time interval for any initial condition. Assume that a solution
continuously depends on the initial data. Then equations (1.4) generate an di-
mensional dynamical system  with the evolutionary operator  acting
in accordance with the formula

,

where  is the solution to the system of equations (1.4) such that
, . Generally, let be a linear space and  be

a continuous mapping of  into itself. Then the Cauchy problem

(1.5)

generates a dynamical system  in a natural way provided this problem is
well-posed, i.e. theorems on existence, uniqueness and continuous dependence
of solutions on the initial conditions are valid for (1.5).

E x a m p l e  1.4

Let us consider an ordinary retarded differential equation

, , (1.6)

where is a continuous function on  . Obviously an initial condition
for (1.6) should be given in the form

. (1.7)

Assume that  lies in the space  of continuous functions on the
segment  In this case the solution to problem (1.6) and (1.7) can be
constructed by step-by-step integration. For example, if  the solu-
tion  is given by

,

and if , then the solution is expressed by the similar formula in terms
of the values of the function  for  and so on. It is clear that the so-
lution is uniquely determined by the initial function . If we now define an
operator  in the space  by the formula

,

where is the solution to problem (1.6) and (1.7), then we obtain an infi-
nite-dimensional dynamical system .

x�k t� � f
k

x1 x2 	 x
N

� � �� � ,      k 1 2 	 N� � ���

N -
RN S

t
�� � S

t

S
t
y0 x1 t� � 	 x

N
t� �� �� � ,     y0 x10 x20 	 x

N 0� � �� �� �

x
i

t� �
 �
x

i
0� � x

i 0� i 1 2 	 N� � �� X F

X

x� t� � F x t� �� � ,    t 0 ,    x 0� �� x0 X�� �

X S
t

�� �

x� t� � �x t� �� f x t 1�� �� �� t 0�
f R1 , � 0�

x t� �
t 1 0��� �� � t� ��

� t� � C 1� 0�� �
1� 0�� � .

0 t 1 ,� �
x t� �

x t� � e � t� � 0� � e
� t ��� ��

f � � 1�� �� � �d

0

t

���

t 1 2�� ��
x t� � t 0 1�� ��

� t� �
S

t
X C 1� 0�� ��

S
t
�� � �� � x t ��� � ,      � 1 0��� ���

x t� �
C 1� 0�� � S

t
�� �



14 B a s i c  C o n c e p t s  o f  t h e  T h e o r y  o f  I n f i n i t e - D i m e n s i o n a l  D y n a m i c a l  S y s t e m s

1

C

h

a

p

t

e

r

Now we give several examples of discrete dynamical systems. First of all it should be
noted that any system  with continuous time generates a discrete system if
we take  instead of  Furthermore, the evolutionary operator  of
a discrete dynamical system is a degree of the mapping  i. e. .
Thus, a dynamical system with discrete time is determined by a continuous mapping
of the phase space  into itself. Moreover, a discrete dynamical system is very often
defined as a pair  consisting of the metric space  and the continuous map-
ping 

E x a m p l e  1.5

Let us consider a one-step difference scheme for problem (1.5):

, , .

There arises a discrete dynamical system , where  is the continuous
mapping of  into itself defined by the formula .

E x a m p l e  1.6

Let us consider a nonautonomous ordinary differential equation

,  , , (1.9)

where  is a continuously differentiable function of its variables and is pe-
riodic with respect to  i. e.  for some . It is as-
sumed that the Cauchy problem for (1.9) is uniquely solvable on any time
interval. We define a monodromymonodromymonodromymonodromy operator (a period mapping) by the formula

 where  is the solution to (1.9) satisfying the initial condition
. It is obvious that this operator possesses the property

(1.10)

for any solution  to equation (1.9) and any . The arising dynamical
system  plays an important role in the study of the long-time proper-
ties of solutions to problem (1.9).

E x a m p l e  1.7 (Bernoulli shift)

Let  be a set of sequences  consisting of zeroes and
ones. Let us make this set into a metric space by defining the distance by the
formula

.

Let  be the shift operator on , i. e. the mapping transforming the sequence
 into the element , where . As a result, a dynamical

system  comes into being. It is used for describing complicated (qua-
sirandom) behaviour in some quite realistic systems.
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In the example below we describe one of the approaches that enables us to connect
dynamical systems to nonautonomous (and nonperiodic) ordinary differential equa-
tions.

E x a m p l e  1.8

Let be a continuous bounded function on . Let us define the hull
 of the function  as the closure of a set

 

with respect to the norm

. 

Let  be a continuous function. It is assumed that the Cauchy problem

(1.11)

is uniquely solvable over the interval  for any . Let us define
the evolutionary operator  on the space  by the formula

,

where  is the solution to problem (1.11) and . As a result,
a dynamical system  comes into being. A similar construction is of-
ten used when  is a compact set in the space  of continuous bounded func-
tions (for example, if  is a quasiperiodic or almost periodic function).
As the following example shows, this approach also enables us to use naturally
the notion of the dynamical system for the description of the evolution of ob-
jects subjected to random influences.

E x a m p l e  1.9

Assume that  and  are continuous mappings from a metric space  into it-
self. Let  be a state space of a system that evolves as follows: if is the state of
the system at time , then its state at time  is either  or  with
probability , where the choice of  or  does not depend on time and the
previous states. The state of the system can be defined after a number of steps
in time if we flip a coin and write down the sequence of events from the right to
the left using  and . For example, let us assume that after 8 flips we get the
following set of outcomes:

.

Here  corresponds to the head falling, whereas  corresponds to the tail fall-
ing. Therewith the state of the system at time  will be written in the form:
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.

This construction can be formalized as follows. Let  be a set of two-sided se-
quences consisting of zeroes and ones (as in Example 1.7), i.e. a collection
of elements of the type

,

where  is equal to either  or . Let us consider the space  con-
sisting of pairs , where , . Let us define the mapping

:  by the formula:

,

where  is the left-shift operator in  (see Example 1.7). It is easy to see that
the th degree of the mapping  actcts according to the formula

and it generates a discrete dynamical system . This system is often
called a universal random (discrete) dynamical system.

Examples of dynamical systems generated by partial differential equations will be gi-
ven in the chapters to follow.

Assume that operators  have a continuous inverse for any .
Show that the family of operators  defined by the equa-
lity  for  and  for  form a group, i.e. (1.1)
holds for all .

Prove the unique solvability of problems (1.2) and (1.3) in-
volved in Examples 1.1 and 1.2.

Ground formula (1.10) in Example 1.6.

Show that the mapping  in Example 1.8 possesses semi-
group property (1.1).

Show that the value  involved in Example 1.7 is a met-
ric. Prove its equivalence to the metric

.
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§ 2 Trajectories and Invariant Sets§ 2 Trajectories and Invariant Sets§ 2 Trajectories and Invariant Sets§ 2 Trajectories and Invariant Sets

Let be a dynamical system with continuous or discrete time. Its trajectorytrajectorytrajectorytrajectory

(or orbitorbitorbitorbit) is defined as a set of the type 

,

where is a continuous function with values in  such that 
for all  and . Positive (negative) semitrajectorysemitrajectorysemitrajectorysemitrajectory is defined as a set

, ( , respectively), where a continuous on 
( , respectively) function  possesses the property  for any

,  ( , respectively). It is clear that any positive
semitrajectory  has the form , i.e. it is uniquely determined by
its initial state . To emphasize this circumstance, we often write .
In general, it is impossible to continue this semitrajectory  to a full trajectory
without imposing any additional conditions on the dynamical system.

Assume that an evolutionary operator  is invertible for some
. Then it is invertible for all  and for any  there

exists a negative semitrajectory  ending at the point .

A trajectory  is called a periodic trajectoryperiodic trajectoryperiodic trajectoryperiodic trajectory  (or a cyclecyclecyclecycle)    if
there exists ,  such that . Therewith the minimal
number  possessing the property mentioned above is called a periodperiodperiodperiod of a tra-
jectory. Here is either  or  depending on whether the system is a continuous
or a discrete one. An element  is called a fixed pointfixed pointfixed pointfixed point of a dynamical system

 if  for all  (synonyms: equilibrium pointequilibrium pointequilibrium pointequilibrium point , stationary stationary stationary stationary

pointpointpointpoint).

Find all the fixed points of the dynamical system  ge-
nerated by equation (1.2) with . Does there exist
a periodic trajectory of this system?

Find all the fixed points and periodic trajectories of a dynami-
cal system in  generated by the equations

Consider the cases  and . Hint: use polar coordinates. 

Prove the existence of stationary points and periodic trajecto-
ries of any period for the discrete dynamical system described
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in Example 1.7. Show that the set of all periodic trajectories is dense
in the phase space of this system. Make sure that there exists a tra-
jectory that passes at a whatever small distance from any point of the
phase space.

The notion of invariant set plays an important role in the theory of dynamical sys-
tems. A subset  of the phase space  is said to be:

a) positively invariantpositively invariantpositively invariantpositively invariant, if  for all ;
b) negatively invariantnegatively invariantnegatively invariantnegatively invariant, if  for all ;
c) invariantinvariantinvariantinvariant, if it is both positively and negatively invariant, i.e. if

 for all .
The simplest examples of invariant sets are trajectories and semitrajectories.

Show that  is positively invariant,  is negatively invariant
and  is invariant.

Let us define the sets

and

for any subset  of the phase space . Prove that  is a positively
invariant set, and if the operator  is invertible for some 
then  is a negatively invariant set.

Other important example of invariant set is connected with the notions of -limit
and -limit sets that play an essential role in the study of the long-time behaviour
of dynamical systems.

Let . Then the -limit setlimit setlimit setlimit set  for  is defined by

,

where . Hereinafter is the closure of a set  in the
space . The set 

,

where , is called the -limit setlimit setlimit setlimit set  for .
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Lemma 2.1

For an element  to belong to an -limit set , it is necessary and

sufficient that there exist a sequence of elements  and a se-

quence of numbers , the latter tending to infinity such that

,

where is the distance between the elements  and  in the

space .

Proof.

Let the sequences mentioned above exist. Then it is obvious that for any
 there exists  such that

.

This implies that

for all . Hence, the element  belongs to the intersection of these sets,
i.e.  .

On the contrary, if , then for all 

.

Hence, for any  there exists an element  such that

.

Therewith it is obvious that , , . This proves the
lemma.

It should be noted that this lemma gives us a description of an -limit set but does
not guarantee its nonemptiness.

Show that is a positively invariant set. If for any 
there exists a continuous inverse to , then  is invariant, i.e.

.

Let be an invertible mapping for every . Prove the
counterpart of Lemma 2.1 for an -limit set:

.

Establish the invariance of .

y % % A� �
y

n

 � A.

t
n

d S
t
n

y
n

y�� �
n "&

lim ��

d x y�� � x y

X

� 0� n0 0

S
t
n

y
n

S
t

t �
- A� � , n n0�

y S
t
n

y
n

n "&
lim� S

t

t �
- A� �

X

�

� 0� y

y % A� ��
y % A� �� n 0 1 2 	� � ��

y St

t n
- A� �

X

�

n z
n

zn S

t n
- t A� � ,�   d y zn�� � 1

n
����

z
n

S
t
n

y
n

� y
n

A� t
n

n

%

E x e r c i s e 2.7 % A� � t 0�
St % A� �

St% A� � % A� ��

E x e r c i s e 2.8 S
t

t 0�
�

y � A� � y
n


 � A  t
n

t
n

+" ; d S
t
n

1�
y

n
y�� �

n "&
lim&�0��0 0�

� �
�  
� !

1�

� A� �



20 B a s i c  C o n c e p t s  o f  t h e  T h e o r y  o f  I n f i n i t e - D i m e n s i o n a l  D y n a m i c a l  S y s t e m s

1

C

h

a

p

t

e

r

Let be a periodic trajectory of a dy-
namical system. Show that  for any .

Let us consider the dynamical system  constructed in
Example 1.1. Let  and be the roots of the function 

, . Then the segment  is
an invariant set. Let be a primitive of the function 
( ). Then the set  is positively invariant
for any .

Assume that for a continuous dynamical system  there
exists a continuous scalar function  on  such that the value

 is differentiable with respect to  for any  and

, .

Then the set  is positively invariant for any 
.

§ 3 Definition of A§ 3 Definition of A§ 3 Definition of A§ 3 Definition of Atttttractortractortractortractor

Attractor is a central object in the study of the limit regimes of dynamical systems.
Several definitions of this notion are available. Some of them are given below. From
the point of view of infinite-dimensional systems the most convenient concept is that
of the global attractor.

A bounded closed set  is called a global attractorglobal attractorglobal attractorglobal attractor  for a dynamical sys-
tem , if

1)  is an invariant set, i.e.  for any ;
2) the set  uniformly attracts all trajectories starting in bounded sets,

i.e. for any bounded set  from 

.

We remind that the distance between an element  and a set  is defined by the
equality:

,

where  is the distance between the elements  and  in .
The notion of a weak global attractor is useful for the study of dynamical sys-

tems generated by partial differential equations.

E x e r c i s e 2.9 ( u t� � : "� t "� �
 ��
( % u� � � u� �� � u (�

E x e r c i s e 2.10 R St�� �
a b f x� � :

f a� � f b� � 0� � a b� I x : a x b� �
 ��
F x� � f x� �

F� x� � f x� �� x : F x� � c�
 �
c

E x e r c i s e 2.11 X S
t

�� �
V y� � X

V S
t
y� � t y X�

d
td

����� V St y� �� � �V St y� � 2�� � 0 , 2 0 , y X���� �

y : V y� � R�
 � R 
2 �$

A1 X.
X S

t
�� �
A1 S

t
A1 A1� t 0�

A1
B X

St y A1�� �dist : y B�
� �
�  
� !

sup
t "&
lim 0�

z A

z A�� �dist d z y�� � : y A�
 �inf�
d z y�� � z y X



D e f i n i t i o n  o f  A t t r a c t o r 21 

Let  be a complete linear metric space. A bounded weakly closed set  is
called a global weak attractorglobal weak attractorglobal weak attractorglobal weak attractor if it is invariant  and for any
weak vicinity  of the set  and for every bounded set  there exists

 such that  for .
We remind that an open set in weak topology of the space  can be described

as finite intersection and subsequent arbitrary union of sets of the form

,

where  is a real number and  is a continuous linear functional on .
It is clear that the concepts of global and global weak attractors coincide in the

finite-dimensional case. In general, a global attractor  is also a global weak attrac-
tor, provided the set  is weakly closed.

Let be a global or global weak attractor of a dynamical sys-
tem . Then it is uniquely determined and contains any boun-
ded negatively invariant set. The attractor  also contains the

limit set  of any bounded .

Assume that a dynamical system  with continuous
time possesses a global attractor . Let us consider a discrete sys-
tem , where  with some . Prove that  is a glo-
bal attractor for the system . Give an example which shows
that the converse assertion does not hold in general.

If the global attractor  exists, then it contains a global minimal attractorglobal minimal attractorglobal minimal attractorglobal minimal attractor  
which is defined as a minimal closed positively invariant set possessing the property 

for every .

By definition minimality means that  has no proper subset possessing the proper-
ties mentioned above. It should be noted that in contrast with the definition of the
global attractor the uniform convergence of trajectories to  is not expected here.

Show that , provided  is a compact set.

Prove that  for any . Therewith, if is
a compact, then .

By definition the attractor  contains limit regimes of each individual trajectory.
It will be shown below that  in general. Thus, a set of real limit regimes
(states) originating in a dynamical system can appear to be narrower than the global
attractor. Moreover, in some cases some of the states that are unessential from the
point of view of the frequency of their appearance can also be “removed” from ,
for example, such states like absolutely unstable stationary points. The next two
definitions take into account the fact mentioned above. Unfortunately, they require
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additional assumptions on the properties of the phase space. Therefore, these defini-
tions are mostly used in the case of finite-dimensional dynamical systems.

Let a Borel measure  such that  be given on the phase space  of
a dynamical system . A bounded set  in  is called a Milnor attractorMilnor attractorMilnor attractorMilnor attractor

(with respect to the measure ) for  if  is a minimal closed invariant set
possessing the property

for almost all elements  with respect to the measure . The Milnor attractor
is frequently called a probabilistic global minimal attractor. 

At last let us introduce the notion of a statistically essential global minimal at-
tractor suggested by Ilyashenko. Let be an open set in X  and let  be its
characteristic function: , ; , . Let us define the
average time  which is spent by the semitrajectory  emanating from 
in the set  by the formula

.

A set  is said to be unessential with respect to the measure  if

.

The complement  to the maximal unessential open set is called an IlyashenkoIlyashenkoIlyashenkoIlyashenko

aaaatttttractor tractor tractor tractor (with respect to the measure ).
It should be noted that the attractors  and  are used in cases when the na-

tural Borel measure is given on the phase space (for example, if  is a closed mea-
surable set in  and  is the Lebesgue measure).

The relations between the notions introduced above can be illustrated by the
following example.

E x a m p l e  3.1

Let us consider a quasi-Hamiltonian system of equations in :

(3.1)

where  and  is a positive number. It is easy
to ascertain that the phase portrait of the dynamical system generated by equa-
tions (3.1) has the form represented on Fig. 1.
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A separatrix (“eight cur-
ve”) separates the do-
mains of the phase plane
with the different quali-
tative behaviour of the
trajectories. It is given by
the equation .
The points  inside
the separatrix are charac-
terized by the equation

. Therewith
it appears that

,

,

.

Finally, the simple calculations show that , i.e. the Ilyashenko at-
tractor consists of a single point. Thus,

,  

all inclusions being strict.

Display graphically the attractors  of the system generated
by equations (3.1) on the phase plane.

Consider the dynamical system from Example 1.1 with 
. Prove that , 

, and .

Prove that  and   in general.

Show that all positive semitrajectories of a dynamical system
which possesses a global minimal attractor are bounded sets.

In particular, the result of the last exercise shows that the global attractor can exist
only under additional conditions concerning the behaviour of trajectories of the sys-
tem at infinity. The main condition to be met is the dissipativity discussed in the next
section.

Fig. 1. Phase portrait of system (3.1)
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§ 4 Dissipativity and Asymptotic§ 4 Dissipativity and Asymptotic§ 4 Dissipativity and Asymptotic§ 4 Dissipativity and Asymptotic

CompactnessCompactnessCompactnessCompactness

From the physical point of view dissipative systems are primarily connected with ir-
reversible processes. They represent a rather wide and important class of the dy-
namical systems that are intensively studied by modern natural sciences. These
systems (unlike the conservative systems) are characterized by the existence of the
accented direction of time as well as by the energy reallocation and dissipation.
In particular, this means that limit regimes that are stationary in a certain sense can
arise in the system when . Mathematically these features of the qualitative
behaviour of the trajectories are connected with the existence of a bounded absor-
bing set in the phase space of the system.

A set  is said to be absorbingabsorbingabsorbingabsorbing  for a dynamical system  if for
any bounded set  in  there exists  such that  for every

. A dynamical system  is said to be dissipativedissipativedissipativedissipative if it possesses a boun-
ded absorbing set. In cases when the phase space  of a dissipative system 
is a Banach space a ball of the form  can be taken as an absor-
bing set. Therewith the value  is said to be a radius of dissipativityradius of dissipativityradius of dissipativityradius of dissipativity.

As a rule, dissipativity of a dynamical system can be derived from the existence
of a Lyapunov type function on the phase space. For example, we have the following
assertion.

Theorem 4.1.

Let the phase sLet the phase sLet the phase sLet the phase sppppace of a continuous dynamical system  be a Ba-ace of a continuous dynamical system  be a Ba-ace of a continuous dynamical system  be a Ba-ace of a continuous dynamical system  be a Ba-

nach space. Assume that:nach space. Assume that:nach space. Assume that:nach space. Assume that:

(a) there exists a continuous function  on  possessing the pro-there exists a continuous function  on  possessing the pro-there exists a continuous function  on  possessing the pro-there exists a continuous function  on  possessing the pro-

pertiespertiespertiesperties

,,,, (4.1)

where  are continuous functions on  and where  are continuous functions on  and where  are continuous functions on  and where  are continuous functions on  and 

when ;when ;when ;when ;

(b) there exist a derivative  for  and positive numbers there exist a derivative  for  and positive numbers there exist a derivative  for  and positive numbers there exist a derivative  for  and positive numbers

 and  such that and  such that and  such that and  such that

forforforfor .... (4.2)

Then the dynamical system  is dissipative.Then the dynamical system  is dissipative.Then the dynamical system  is dissipative.Then the dynamical system  is dissipative.

Proof.

Let us choose  such that  for . Let

and  be such that  for  .  Let us show that 
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for all and . (4.3)

Assume the contrary, i.e. assume that for some  such that  there
exists a time  possessing the property . Then the continuity of 
implies that there exists  such that . Thus, equation
(4.2) implies that

,

provided . It follows that  for all . Hence,  for
all . This contradicts the assumption. Let us assume now that is an arbitrary
bounded set in  that does not lie inside the ball with the radius . Then equation
(4.2) implies that

, , (4.4)

provided . Here

.

Let . If for a time  the semitrajectory  enters the ball with
the radius , then by (4.3) we have  for all . If that does not take
place, from equation (4.4) it follows that

for ,

i.e. for . Thus,

,  .

This and (4.3) imply that the ball with the radius  is an absorbing set for the dy-
namical system . Thus, Theorem 4.1 is proved.

Show that hypothesis (4.2) of Theorem 4.1 can be replaced
by the requirement

,

where  and are positive constants.

Show that the dynamical system generated in  by the diffe-
rential equation  (see Example 1.1) is dissipative, pro-
vided the function  possesses the property: ,
where  and are constants (Hint: ). Find an up-
per estimate for the minimal radius of dissipativity.

Consider a discrete dynamical system , where  is
a continuous function on . Show that the system  is dissi-
pative, provided there exist  and  such that

 for  .
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Consider a dynamical system  generated (see Exam-
ple 1.2) by the Duffing equation

,

where  and are real numbers and . Using the properties
of the function

show that the dynamical system  is dissipative for 
small enough. Find an upper estimate for the minimal radius of dissi-
pativity.

Prove the dissipativity of the dynamical system generated
by (1.4) (see Example 1.3), provided

,  .

Show that the dynamical system of Example 1.4 is dissipative
if is a bounded function.

Consider a cylinder  with coordinates , ,
 and the mapping  of this cylinder which is defined

by the formula , where

,

.

Here  and are positive parameters. Prove that the discrete dyna-
mical system  is dissipative, provided . We note
that if , then the mapping  is known as the Chirikov map-
ping. It appears in some problems of physics of elementary parti-
cles.

Using Theorem 4.1 prove that the dynamical system 
generated by equations (3.1) (see Example 3.1) is dissipative.
(Hint: ).

In the proof of the existence of global attractors of infinite-dimensional dissipative
dynamical systems a great role is played by the property of asymptotic compactness.
For the sake of simplicity let us assume that is a closed subset of a Banach space.
The dynamical system  is said to be asymptotically compact asymptotically compact asymptotically compact asymptotically compact if for any

 its evolutionary operator  can be expressed by the form

, (4.5)

where the mappings  and  possess the properties:
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a) for any bounded set  in 

, ;

b) for any bounded set  in  there exists  such that the set

(4.6)

is compact in , where is the closure of the set .
A dynamical system is said to be compact compact compact compact if it is    asymptotically compact and

one can take  in representation (4.5). It becomes clear that any finite-di-
mensional dissipative system is compact.

Show that condition (4.6) is fulfilled if there exists a compact
set  in  such that for any bounded set  the inclusion ,

 holds. In particular, a dissipative system is compact if it
possesses a compact absorbing set.

Lemma 4.1.

The dynamical system  is asymptotically compact if there exists

a compact set  such that

(4.7)

for any set  bounded in .

Proof.

The distance to a compact set is reached on some element. Hence, for any
 and  there exists an element  such that

.

Therefore, if we take , it is easy to see that in this case de-
composition (4.5) satisfies all the requirements of the definition of asymptotic
compactness.

Remark 4.1.

In most applications Lemma 4.1 plays a major role in the proof of the

property of asymptotic compactness. Moreover, in cases when the phase

space  of the dynamical system  does not possess the structure

of a linear space it is convenient to define the notion of the asymptotic

compactness using equation (4.7). Namely, the system  is said

to be asymptotically compact if there exists a compact  possessing

property (4.7) for any bounded set  in . For one more approach

to the definition of this concept see Exercise 5.1 below.
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Consider the infinite-dimensional dynamical system genera-
ted by the retarded equation

,

where  and is bounded (see Example 1.4). Show that
this system is compact.

Consider the system of Lorentz equations arising as a three-
mode Galerkin approximation in the problem of convection in a thin
layer of liquid:

Here , , and are positive numbers. Prove the dissipativity of
the dynamical system generated by these equations in .
Hint: Consider the function

on the trajectories of the system.

§ 5 Theorems on Existence§ 5 Theorems on Existence§ 5 Theorems on Existence§ 5 Theorems on Existence

of Global Aof Global Aof Global Aof Global Atttttractortractortractortractor

For the sake of simplicity it is assumed in this section that the phase space  is
a Banach space, although the main results are valid for a wider class of spaces
(see, e. g., Exercise 5.8). The following assertion is the main result.

Theorem 5.1.

Assume that a dynamical system  is dissipative and asymptoti-Assume that a dynamical system  is dissipative and asymptoti-Assume that a dynamical system  is dissipative and asymptoti-Assume that a dynamical system  is dissipative and asymptoti-

cally compact. Let be a bounded absorbing set of the system cally compact. Let be a bounded absorbing set of the system cally compact. Let be a bounded absorbing set of the system cally compact. Let be a bounded absorbing set of the system .... Then Then Then Then

the set  is a nonempty compact set and is a global attractor of thethe set  is a nonempty compact set and is a global attractor of thethe set  is a nonempty compact set and is a global attractor of thethe set  is a nonempty compact set and is a global attractor of the

dynamical system  The attractor  is a connected set in dynamical system  The attractor  is a connected set in dynamical system  The attractor  is a connected set in dynamical system  The attractor  is a connected set in 

In particular, this theorem is applicable to the dynamical systems from Exercises
4.2–4.11. It should also be noted that Theorem 5.1 along with Lemma 4.1 gives the
following criterion: a dissipative dynamical system possesses a compact global at-
tractor if and only if it is asymptotically compact.

The proof of the theorem is based on the following lemma.
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Lemma 5.1.

Let a dynamical system  be asymptotically compact. Then for

any bounded set  of  the -limit set  is a nonempty compact

invariant set.

Proof.

Let . Then for any sequence  tending to infinity the set 
 is relatively compact, i.e. there exist a sequence  and an ele-

ment  such that  tends to  as . Hence, the asymptotic
compactness gives us that

as . 

Thus, . Due to Lemma 2.1 this indicates that  is non-
empty.

Let us prove the invariance of -limit set. Let . Then according
to Lemma 2.1 there exist sequences , and  such that

. However, the mapping  is continuous. Therefore,

, .

Lemma 2.1 implies that . Thus,

,  .

Let us prove the reverse inclusion. Let . Then there exist sequences
 and  such that . Let us consider the se-

quence , . The asymptotic compactness implies that there
exist a subsequence  and an element  such that

.

As stated above, this gives us that

.

Therefore, . Moreover,

.

Hence, . Thus, the invariance of the set  is proved.
Let us prove the compactness of the set . Assume that  is a se-

quence in . Then Lemma 2.1 implies that for any  we can find  and
 such that . As said above, the property of asymp-

totic compactness enables us to find an element  and a sequence  such
that

.
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This implies that  and . This means that is a closed and
compact set in . Lemma 5.1 is proved completely.

Now we establish Theorem 5.1. Let  be a bounded absorbing set of the dynamical
system. Let us prove that  is a global attractor. It is sufficient to verify that

 uniformly attracts the absorbing set . Assume the contrary. Then the value
 does not tend to zero as . This means that

there exist  and a sequence  such that

.

Therefore, there exists an element  such that

. (5.1)

As before, a convergent subsequence  can be extracted from the sequence
. Therewith Lemma 2.1 implies

which contradicts estimate (5.1). Thus,  is a global attractor. Its compactness
follows from the easily verifiable relation

.

Let us prove the connectedness of the attractor by reductio ad absurdum. Assume
that the attractor  is not a connected set. Then there exists a pair of open sets 
and  such that 

,  , , .

Let  be a convex hull of the set , i.e.

.

It is clear that  is a bounded connected set and . The continuity of the
mapping  implies that the set  is also connected. Therewith .
Therefore, , . Hence, for any  the pair ,  cannot
cover . It follows that there exists a sequence of points 
such that . The asymptotic compactness of the dynamical system
enables us to extract a subsequence  such that  tends in  to an
element  as . It is clear that  and . These equations
contradict one another since . Therefore, Theorem

5.1 is proved completely.
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It should be noted that the connectedness of the global attractor can also be proved
without using the linear structure of the phase space (do it yourself).

Show that the assumption of asymptotic compactness in Theo-
rem 5.1 can be replaced by the Ladyzhenskaya assumption: the se-
quence  contains a convergent subsequence for any
bounded sequence  and for any increasing sequence

 such that . Moreover, the Ladyzhenskaya as-
sumption is equivalent to the condition of asymptotic compactness.

Assume that a dynamical system  possesses a compact
global attractor . Let be a minimal closed set with the property

for every .

Then  and , i.e.  coincides with the
global minimal attractor (cf. Exercise 3.4).

Assume that equation (4.7) holds. Prove that the global at-
tractor  possesses the property .

Assume that a dissipative dynamical system possesses a glo-
bal attractor . Show that  for any bounded absorbing set

 of the system.

The fact that the global attractor  has the form , where is an absorb-
ing set of the system, enables us to state that the set  not only tends to the at-
tractor , but is also uniformly distributed over it as . Namely, the following
assertion holds.

Theorem 5.2.

Assume that a dissipative dynamical system  possesses a com-Assume that a dissipative dynamical system  possesses a com-Assume that a dissipative dynamical system  possesses a com-Assume that a dissipative dynamical system  possesses a com-

pact global attractor pact global attractor pact global attractor pact global attractor .... Let  Let  Let  Let be a bounded absorbing set for be a bounded absorbing set for be a bounded absorbing set for be a bounded absorbing set for .... Then Then Then Then

.... (5.2)

Proof.

Assume that equation (5.2) does not hold. Then there exist sequences 
 and  such that

for some . (5.3) 

The compactness of  enables us to suppose that  converges to an element
. Therewith (see Exercise 5.4)
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where is a sequence such that . Let us choose a subsequence 
such that  for every . Here  is chosen such that 

 for all . Let . Then it is clear that  and

. 

Equation (5.3) implies that

. 

This contradicts the previous equation. Theorem 5.2 is proved.

For a description of convergence of the trajectories to the global attractor it is con-
venient to use the Hausdorff metric Hausdorff metric Hausdorff metric Hausdorff metric that is defined on subsets of the phase space
by the formula

, (5.4) 

where  and

. (5.5)

Theorems 5.1 and 5.2 give us the following assertion.

Corollary 5.1.

Let  be an asymptotically compact dissipative system. Then its

global attractor  possesses the property  for any

bounded absorbing set  of the system .

In particular, this corollary means that for any  there exists  such that
for every  the set  gets into the -vicinity of the global attractor ;
and vice versa, the attractor  lies in the -vicinity of the set . Here is
a bounded absorbing set.

The following theorem shows that in some cases we can get rid of the require-
ment of asymptotic compactness if we use the notion of the global weak attractor.

Theorem 5.3.

Let the phase space  of a dynamical system  be a separableLet the phase space  of a dynamical system  be a separableLet the phase space  of a dynamical system  be a separableLet the phase space  of a dynamical system  be a separable

Hilbert space. Assume that the system  is dissipative and its evolu-Hilbert space. Assume that the system  is dissipative and its evolu-Hilbert space. Assume that the system  is dissipative and its evolu-Hilbert space. Assume that the system  is dissipative and its evolu-

tionary operator tionary operator tionary operator tionary operator  is weakly closed, i.e. for all  is weakly closed, i.e. for all  is weakly closed, i.e. for all  is weakly closed, i.e. for all  the weak convergence the weak convergence the weak convergence the weak convergence

 and  imply that  and  imply that  and  imply that  and  imply that .... Then the dynamical system Then the dynamical system Then the dynamical system Then the dynamical system

 possesses a global weak attractor possesses a global weak attractor possesses a global weak attractor possesses a global weak attractor....

The proof of this theorem basically repeats the reasonings used in the proof of Theo-
rem 5.1. The weak compactness of bounded sets in a separable Hilbert space plays
the main role instead of the asymptotic compactness.
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Lemma 5.2.

Assume that the hypotheses of Theorem 5.3 hold. For  we define

the weak -limit set  by the formula

, (5.6) 

where  is the weak closure of the set . Then for any bounded set

 the set  is a nonempty weakly closed bounded invariant

set.

Proof.

The dissipativity implies that each of the sets  is
bounded and therefore weakly compact. Then the Cantor theorem on the col-
lection of nested compact sets gives us that  is a non-
empty weakly closed bounded set. Let us prove its invariance. Let .
Then there exists a sequence  such that  weakly. The
dissipativity property implies that the set  is bounded when  is large
enough. Therefore, there exist a subsequence  and an element  such
that  and  weakly. The weak closedness of  implies that

. Since  for , we have that  for all .
Hence, . Therefore, . The proof of the reverse
inclusion is left to the reader as an exercise.

For the proof of Theorem 5.3 it is sufficient to show that the set

, (5.7) 

where is a bounded absorbing set of the system , is a global weak attractor
for the system. To do that it is sufficient to verify that the set  is uniformly attract-
ed to  in the weak topology of the space . Assume the contrary. Then
there exist a weak vicinity  of the set  and sequences  and 

 such that . However, the set  is weakly compact. There-
fore, there exist an element  and a sequence  such that

.

However,  for . Thus,  for all  and 
, which is impossible. Theorem 5.3 is proved.

Assume that the hypotheses of Theorem 5.3 hold. Show that
the global weak attractor  is a connected set in the weak topology
of the phase space .

Show that the global weak minimal attractor 
 is a strictly invariant set.
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Prove the existence and describe the structure of global and
global minimal   attractors for the dynamical system generated by
the equations

for every real .

Assume that is a metric space and is an asymptoti-
cally compact (in the sense of the definition given in Remark 4.1)
dynamical system. Assume also that the attracting compact  is
contained in some bounded connected set. Prove the validity of the
assertions of Theorem 5.1 in this case.

In conclusion to this section, we give one more assertion on the existence of the global
attractor in the form of exercises. This assertion uses the notion of the asymptotic
smoothness (see [3] and [9]). The dynamical system  is said to be asympto- asympto- asympto- asympto-

tically smooth tically smooth tically smooth tically smooth if for any bounded positively invariant  set
 there exists a compact  such that  as , where the

value  is defined by formula (5.5).

Prove that every asymptotically compact system is asymptoti-
cally smooth.

Let be an asymptotically smooth dynamical system.
Assume that for any bounded set  the set 

 is bounded. Show that the system  posses-
ses a global attractor  of the form

.

In addition to the assumptions of Exercise 5.10 assume that
 is pointwise dissipative, i.e. there exists a bounded set
 such that  as  for every point

. Prove that the global attractor  is compact.

§ 6 On the Structure of Global Attractor§ 6 On the Structure of Global Attractor§ 6 On the Structure of Global Attractor§ 6 On the Structure of Global Attractor

The study of the structure of global attractor of a dynamical system is an important
problem from the point of view of applications. There are no universal approaches to
this problem. Even in finite-dimensional cases the attractor can be of complicated
structure. However, some sets that undoubtedly belong to the attractor can be poin-
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ted out. It should be first noted that every stationary point of the semigroup  be-
longs to the attractor of the system. We also have the following assertion.

Lemma 6.1.

Assume that an element  lies in the global attractor  of a dynamical

system . Then the point  belongs to some trajectory  that lies

in  wholly.

Proof. 

Since  and , then there exists a sequence  such
that , , . Therewith for discrete time the re-
quired trajectory is , where  for  and 

 for . For continuous time let us consider the value

Then it is clear that  for all  and  for ,
. Therewith . Thus, the required trajectory is also built in the

continuous case.

Show that an element  belongs to a global attractor if and
only if there exists a bounded trajectory 
such that .

Unstable sets also belong to the global attractor. Let  be a subset of the phase
space  of the dynamical system . Then the unstable set emanatingunstable set emanatingunstable set emanatingunstable set emanating

from from from from  is defined as the set  of points  for every of which there exists
a trajectory  such that

.

Prove that  is invariant, i.e.  for all
.

Lemma 6.2.

Let  be a set of stationary points of the dynamical system 

possessing a global attractor . Then .

Proof.

It is obvious that the set  lies in the attractor
of the system and thus it is bounded. Let . Then there exists a tra-
jectory  such that  and

.

S
t

z A

X S
t

�� � z (
A

St A A� z A� zn
 � A.
z0 z� S1zn zn 1�� n 1 2 	� ��

( un : n Z�
 �� un Sn z� n 0 un �
z n�� n 0�

u t� �
S

t
z          t 0 ,�

St n� zn   n t n� 1  n��� ��� 1 2 	� ���
�
�

�

u t� � A� t R� S� u t� � u t ��� �� � 0
t R� u 0� � z�

E x e r c i s e 6.1 z

( u t� � : "� t "� �
 ��
u 0� � z�

Y

X X S
t

�� �
Y M+ Y� � z X�

( u t� � : t T�
 ��

u 0� � z u t� � Y�� �dist
t "�&

lim� 0� �

E x e r c i s e 6.2 M+ Y� � S
t
M+ Y� � M+ Y� ��

t 0�

� X S
t

�� �
A M+ �� � A.

� z : St z z�   t 0��
 ��
z M+ �� ��

(z u t� � t T��
 �� u 0� � z�

u �� � ��� �dist 0 � "�&�&



36 B a s i c  C o n c e p t s  o f  t h e  T h e o r y  o f  I n f i n i t e - D i m e n s i o n a l  D y n a m i c a l  S y s t e m s

1

C

h

a

p

t

e

r

Therefore, the set  is bounded when  is large
enough. Hence, the set tends to the attractor of the system as .
However,  for . Therefore,

.

This implies that . The lemma is proved.

Assume that the set  of stationary points is finite. Show
that

,

where are the stationary points of  (the set  is called
an unstable manifold emanating from the stationary point ).

Thus, the global attractor  includes the unstable set . It turns out that un-
der certain conditions the attractor includes nothing else. We give the following defi-
nition. Let  be a positively invariant set of a semigroup , . The
continuous functional defined on is called the Lyapunov functionLyapunov functionLyapunov functionLyapunov function of the
dynamical system  on  if the following conditions hold:

a) for any  the function  is a nonincreasing function with re-
spect to ;

b) if for some  and  the equation  holds, then
 for all , i.e. is a stationary point of the semigroup .

Theorem 6.1.

Let a dynamical system  possess a compact attractor Let a dynamical system  possess a compact attractor Let a dynamical system  possess a compact attractor Let a dynamical system  possess a compact attractor .... Assume Assume Assume Assume

also that the Lyapunov function  exists on also that the Lyapunov function  exists on also that the Lyapunov function  exists on also that the Lyapunov function  exists on .... Then , where Then , where Then , where Then , where

 is the set of stationary points of the dynamical system. is the set of stationary points of the dynamical system. is the set of stationary points of the dynamical system. is the set of stationary points of the dynamical system.

Proof.

Let . Let us consider a trajectory  passing through  (its existence fol-
lows from Lemma 6.1). Let

and .

Since , the closure  is a compact set in . This implies that the -limit
set

 

of the trajectory  is nonempty. It is easy to verify that the set  is invariant:
. Let us show that the Lyapunov function is constant on .

Indeed, if , then there exists a sequence  tending to  such that
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.

Consequently,

.

By virtue of monotonicity of the function  along the trajectory we have

.

Therefore, the function  is constant on . Hence, the invariance of the set
 gives us that ,  for all . This means that 

lies in the set  of stationary points. Therewith (verify it yourself)

. 

Hence, . Theorem 6.1 is proved.

Assume that the hypotheses of Theorem 6.1 hold. Then for
any element  its -limit set  consists of stationary points
of the system.

Thus, the global attractor coincides with the set of all full trajectories connecting the
stationary points.

Assume that the system  possesses a compact global
attractor and there exists a Lyapunov function on . Assume that
the Lyapunov function is bounded below. Show that any semitrajec-
tory of the system tends to the set  of stationary points of the sys-
tem as , i.e. the global minimal attractor coincides with the
set .

In particular, this exercise confirms the fact realized by many investigators that the
global attractor is a too wide object for description of actually observed limit regimes
of a dynamical system.

Assume that  is a dynamical system generated by the
logistic equation (see Example 1.1): .
Show that  is a Lyapunov function for this sys-
tem.

Show that the total energy

 

is a Lyapunov function for the dynamical system generated (see
Example 1.2) by the Duffing equation

,  .
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If in the definition of a Lyapunov functional we omit the second requirement, then
a minor modification of the proof of Theorem 6.1 enables us to get the following as-
sertion.

Theorem 6.2.

Assume that a dynamical system  possesses a compact global at-Assume that a dynamical system  possesses a compact global at-Assume that a dynamical system  possesses a compact global at-Assume that a dynamical system  possesses a compact global at-

tractor tractor tractor tractor  and there exists a continuous function  on  and there exists a continuous function  on  and there exists a continuous function  on  and there exists a continuous function  on  such that such that such that such that

 does not increase with respect to  for any  does not increase with respect to  for any  does not increase with respect to  for any  does not increase with respect to  for any .... Let  Let  Let  Let be a set ofbe a set ofbe a set ofbe a set of

elements  such that  for all elements  such that  for all elements  such that  for all elements  such that  for all .... Here  Here  Here  Here  isisisis
a trajectory of the system passing through  a trajectory of the system passing through  a trajectory of the system passing through  a trajectory of the system passing through  ( ).... Then  Then  Then  Then 

and  contains the global minimal attractor and  contains the global minimal attractor and  contains the global minimal attractor and  contains the global minimal attractor ....

Proof. 

In fact, the property  was established in the proof of Theorem 6.1.
As to the property , it follows from the constancy of the function  on
the -limit set  of any element .

Apply Theorem 6.2 to justify the results of Example 3.1 (see
also Exercise 4.8).

If the set  of stationary points of a dynamical system  is finite, then Theo-
rem 6.1 can be extended a little. This extension is described below in Exercises 6.9–
6.12. In these exercises it is assumed that the dynamical system  is continu-
ous and possesses the following properties:

(a) there exists a compact global  attractor ;
(b) there exists a Lyapunov function  on ;
(c) the set  of stationary points is finite, therewith 

 for  and the indexing of  possesses the property

. (6.1)

We denote

,  , .

Show that  for all .

Assume that . Then

. (6.2)

Assume that the function  is defined on the whole . Then
(6.2) holds for any bounded set ,
where is a positive number.

X St�� �
A E y� � X

E St y� � t y X� �

u A� E u t� �� � E u� �� " t "� �� u t� �
 �
u u 0� � u� M+ �� � A�

� A* % x� �x X�-�

M+ �� � A�
A* �. E u� �

% % x� � x X�

E x e r c i s e 6.8

� X S
t

�� �

X S
t

�� �

A

D x� � A

� z1 	 z
N

�
 �� D z
i

� � *
D z

j
� �* i j* z

j

D z1� � D z2� � 	 D z
N

� �� � �

A
j

M+ z
k

� �
k 1�

j

-� j 1 2 	 N� � �� A0 B�

E x e r c i s e 6.9 S
t

A
j

A
j

� j 1 2 	N� ��

E x e r c i s e 6.10 B Aj\ zj
 �.

S
t
y A

j 1��� � :dist y B�
 �sup
t "&
lim 0�

E x e r c i s e 6.11 D X

B x : D x� � D zj� � 9��
 �.
9



O n  t h e  S t r u c t u r e  o f  G l o b a l  A t t r a c t o r 39 

Assume that is the closure of the set  and
 is its boundary. Show that 

 and

, .

It can also be shown (see the book by A. V. Babin and M. I. Vishik [1]) that under
some additional conditions on the evolutionary operator  the unstable manifolds

 are surfaces of the class , therewith the facts given in Exercises 6.9–6.12
remain true if strict inequalities are substituted by nonstrict ones in (6.1). It should
be noted that a global attractor possessing the properties mentioned above is fre-
quently called regularregularregularregular.

Let us give without proof one more result on the attractor of a system with a fi-
nite number of stationary points and a Lyapunov function. This result is important
for applications.

At first let us remind several definitions. Let be an operator acting in a Ba-
nach space . The operator  is called Frechét differentiable at a pointFrechét differentiable at a pointFrechét differentiable at a pointFrechét differentiable at a point

 provided that there exists a linear bounded operator  such
that

for all  from some vicinity of the point x, where  as . Therewith,
the operator  is said to belong to the class , on a set  if it is
differentiable at every pointdifferentiable at every pointdifferentiable at every pointdifferentiable at every point  and

for all  from some vicinity of the point . A stationary point  of the mapping
 is called hyperbolichyperbolichyperbolichyperbolic if  in some vicinity of the point , the spectrum

of the linear operator  does not cross the unit circle  and the spec-
tral subspace of the operator corresponding to the set  is finite-dimen-
sional.

Theorem 6.3.

Let Let Let Let  be a Banach space and let a continuous dynamical systembe a Banach space and let a continuous dynamical systembe a Banach space and let a continuous dynamical systembe a Banach space and let a continuous dynamical system

 possess the properties: possess the properties: possess the properties: possess the properties:

1) there exists a global attractor ;there exists a global attractor ;there exists a global attractor ;there exists a global attractor ;

2) there exists a vicinity  of the attractor  such thatthere exists a vicinity  of the attractor  such thatthere exists a vicinity  of the attractor  such thatthere exists a vicinity  of the attractor  such that

for all , provided  and  belong to  for all ;for all , provided  and  belong to  for all ;for all , provided  and  belong to  for all ;for all , provided  and  belong to  for all ;

3) there exists a Lyapunov function continuous on ;there exists a Lyapunov function continuous on ;there exists a Lyapunov function continuous on ;there exists a Lyapunov function continuous on ;

4) the set  of stationary points is finite and all thethe set  of stationary points is finite and all thethe set  of stationary points is finite and all thethe set  of stationary points is finite and all the

points are hyperbolic;points are hyperbolic;points are hyperbolic;points are hyperbolic;
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5) the mapping is continuous.the mapping is continuous.the mapping is continuous.the mapping is continuous.

Then for any compact set  in  the estimateThen for any compact set  in  the estimateThen for any compact set  in  the estimateThen for any compact set  in  the estimate

(6.3)

holds for all , where  does not depend on holds for all , where  does not depend on holds for all , where  does not depend on holds for all , where  does not depend on ....

The proof of this theorem as well as other interesting results on the asymptotic be-
haviour of a dynamical system possessing a Lyapunov function can be found in the
book by A. V. Babin and M. I. Vishik [1].

To conclude this section, we consider a finite-dimensional example that shows
how the Lyapunov function method can be used to prove the existence of periodic
trajectories in the attractor.

E x a m p l e  6.1 (on the theme by E. Hopf)

Studying Galerkin approximations in a model suggested by E. Hopf for the de-
scription of possible mechanisms of turbulence appearence, we obtain the fol-
lowing system  of ordinary differential equations

Here is a positive parameter,  and are real parameters. It is clear that the
Cauchy problem for (6.4)–(6.6) is solvable, at least locally for any initial condi-
tion. Let us show that the dynamical system generated by equations (6.4)–(6.6)
is dissipative. It will also be sufficient for the proof of global solvability. Let us
introduce a new unknown function . Then equations (6.4)–
(6.6) can be rewritten in the form

These equations imply that

 

on any interval of existence of solutions. Hence,
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Thus,

Firstly, this equation enables us to prove the global solvability of problem (6.4)–
(6.6) for any initial condition and, secondly, it means that the set

is absorbing for the dynamical system  generated by the Cauchy prob-
lem for equations (6.4)–(6.6). Thus, Theorem 5.1 guarantees the existence of
a global attractor . It is a connected compact set in .

Verify that  is a positively invariant set for .

In order to describe the structure of the global attractor  we introduce the polar
coordinates

,  

on the plane of the variables . As a result, equations (6.4)–(6.6) are trans-
formed into the system

therewith, . System (6.7) and (6.8) has a stationary point 
 for all  and . If , then one more stationary point 

 occurs in system (6.7) and (6.8). It corresponds to a periodic trajectory
of the original problem (6.4)–(6.6).

Show that the point is a stable node of system (6.7)
and (6.8) when  and it is a saddle when .

Show that the stationary point  is stable
( ) being a node if  and a focus if .

If , then (6.7) and (6.8) imply that

.

Therefore,

.
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Hence, for  the global attractor  of the system  consists of the single
stationary exponentially attracting point

.

Prove that for  the global attractor of problem (6.4)–
(6.6) consists of the single stationary point .
Show that it is not exponentially attracting.

Now we consider the case . Let us again refer to problem (6.7) and (6.8). It is
clear that the line  is a stable manifold of the stationary point .
Moreover, it is obvious that if , then the value  remains positive for all

. Therefore, the function

(6.9)

is defined on all the trajectories, the initial point of which does not lie on the line
. Simple calculations show that

(6.10)

and

; (6.11)

therewith, . Equation (6.10) implies that
the function  does not increase along the trajectories. Therefore, any semi-
trajectory  emanating from the point  of
the system  generated by equations (6.7) and (6.8) possesses the
property  for . Therewith, equation (6.9) implies
that this semitrajectory can not approach the line  at a distance less then

. Hence, this semitrajectory tends to 
. Moreover, for any  the set

is uniformly attracted to , i.e. for any  there exists  such that

.

Indeed, if it is not true, then there exist , a sequence , and 
such that . The monotonicity of  and property (6.11) imply that

for all . Let  be a limit point of the sequence . Then after passing
to the limit we find out that
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with . Thus, the last inequality is impossible since 
. Hence

. (6.12)

The qualitative behaviour of solutions to problem (6.7) and (6.8) on the semiplane
is shown on Fig. 2.

In particular, the observations above mean that the global minimal attractor
 of the dynamical system  generated by equations (6.4)–(6.6) consists

of the saddle point  and the stable limit cycle

(6.13)

for . Therewith, equation (6.12) implies that the cycle  uniformly attracts
all bounded sets  in  possessing the property

, (6.14)

i.e. which lie at a positive distance from the line .

Using the structure of equations (6.7) and (6.8) near the sta-
tionary point , prove that a bounded set  pos-
sessing property (6.14) is uniformly and exponentially attracted to
the cycle , i.e.

for , where is a positive constant.
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Now let  lie in the global attractor  of the system .
Assume that  and . Then (see Lemma 6.1) there exists
a trajectory  lying in  such that .
The analysis given above shows that  as . Let us show that

 when . Indeed, the function  is monotonely nonde-
creasing as . If we argue by contradiction and use the fact that is
bounded we can easily find out that

and therefore

as . (6.16)

Equation (6.7) gives us that

. (6.17)

Since  is bounded for all , we can get the equation

by tending  in (6.17). Therefore, by virtue of (6.16) we find that 
as . Thus,  as . Hence, for  the global attractor 

y0 u0 v0 w0� �� �� A R3 S
t

�� �
r0 0* r0

2 v0
2 w0

2�� 3:�*
( y t� � u t� � v t� � w t� ���� ��  t R��
 �� A y 0� � y0�

y t� � C:& t +"&
y t� � 0& t "�& V u t� � r t� ��� �

t "�& y t� �

Fig. 3. Attractor of the system (6.4)–(6.6);
a) , b) 3 8$� : 0� � : 3 8$��

V u t� � r t� ��� �
t "�&

lim "�

r t� � v t� � 2
w t� � 2�; <

= >1 2	
� 0& t "�&

u t� � e 3 t ��� �� u s� � e 3 t ��� �� r �� �� �2 �d

s

t

���

u s� � s R�

u t� � e 3 t ��� �� r �� �� �2 �d

"�

t

���

s –"& u t� � 0&
t –"& y t� � 0& t –"& : 0� A



S t a b i l i t y  P r o p e r t i e s  o f  A t t r a c t o r  a n d  R e d u c t i o n  P r i n c i p l e 45 

of the system  coincides with the union of the unstable manifold 
emanating from the point  and the limit cycle (6.13). The at-
tractor is shown on Fig. 3.

§ 7 Stability Properties of Attractor§ 7 Stability Properties of Attractor§ 7 Stability Properties of Attractor§ 7 Stability Properties of Attractor

and Reduction Principleand Reduction Principleand Reduction Principleand Reduction Principle

A positively invariant set  in the phase space of a dynamical system  is said
to be stable (in Lyapunov’s sense)stable (in Lyapunov’s sense)stable (in Lyapunov’s sense)stable (in Lyapunov’s sense)  in  if its every vicinity  contains some
vicinity  such that  for all . Therewith,  is said to be asymp-asymp-asymp-asymp-

totically stable totically stable totically stable totically stable if it is stable and  as  for every . A set
is called uniformly asymptotically stableuniformly asymptotically stableuniformly asymptotically stableuniformly asymptotically stable  if it is stable and

(7.1)

The following simple assertion takes place.

Theorem 7.1.

Let Let Let Let be the compact global attractor of a continuous dynamical sys-be the compact global attractor of a continuous dynamical sys-be the compact global attractor of a continuous dynamical sys-be the compact global attractor of a continuous dynamical sys-

tem tem tem tem .... Assume that there exists its bounded vicinity  such that the Assume that there exists its bounded vicinity  such that the Assume that there exists its bounded vicinity  such that the Assume that there exists its bounded vicinity  such that the

mapping  is continuous on mapping  is continuous on mapping  is continuous on mapping  is continuous on .... Then  Then  Then  Then is a stable set.is a stable set.is a stable set.is a stable set.

Proof.

Assume that  is a vicinity of . Then there exists  such that 
for . Let us show that there exists a vicinity  of the attractor  such that

 for all . Assume the contrary. Then there exist sequences 
and  such that ,  and . The set  being
compact, we can choose a subsequence  such that  as 

. Therefore, the continuity property of the function 
gives us that . This contradicts the equation  . Thus,
there exists  such that  for . We can choose  such that

 for all . Therefore, the attractor  is stable. Theorem 7.1

is proved.

It is clear that the stability of the global attractor implies its uniform asymptotic
stability.

Assume that is a positively invariant set of a system
. Prove that if there exists an element  such that its

-limit set  possesses the property , then 
is not stable. 
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In particular, the result of this exercise shows that the global minimal attractor can
appear to be an unstable set.

Let us return to Example 3.1 (see also Exercises 4.8 and 6.8).
Show that:

(a) the global attractor  and the Milnor attractor  are 
stable;

(b) the global minimal attractor  and the Ilyashenko at-
tractor are unstable.

Now let us consider the question concerning the stability of the attractor with re-
spect to perturbations of a dynamical system. Assume that we have a family of dy-
namical systems  with the same phase space  and with an evolutionary
operator  depending on a parameter  which varies in a complete metric space

. The following assertion was proved by L. V. Kapitansky and I. N. Kostin [6].

Theorem 7.2.

Assume that a dynamical system  possesses a compact global at-Assume that a dynamical system  possesses a compact global at-Assume that a dynamical system  possesses a compact global at-Assume that a dynamical system  possesses a compact global at-

tractor  for every . Assume that the following conditions hold:tractor  for every . Assume that the following conditions hold:tractor  for every . Assume that the following conditions hold:tractor  for every . Assume that the following conditions hold:

(a) there exists a compact  such that  for all ;there exists a compact  such that  for all ;there exists a compact  such that  for all ;there exists a compact  such that  for all ;

(b) if if if if ,,,,  and   and   and   and ,,,, then  for some then  for some then  for some then  for some

....

Then the family of aThen the family of aThen the family of aThen the family of attttttttractors  is upper semicontinuous at the point ,ractors  is upper semicontinuous at the point ,ractors  is upper semicontinuous at the point ,ractors  is upper semicontinuous at the point ,

i.e.i.e.i.e.i.e.

(7.2) 

as as as as ....

Proof.

Assume that equation (7.2) does not hold. Then there exist a sequence 
 and a sequence  such that  for some . But

the sequence  lies in the compact . Therefore, without loss of generality we can
assume that  for some  and . Let us show that this re-
sult leads to contradiction. Let  be a trajectory of the dy-
namical system  passing through the element  ( ). Using the
standard diagonal process it is easy to find that there exist a subsequence 
and a sequence of elements  such that

for all ,

where . Here  is a fixed number. Sequential application of condition
(b) gives us that
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for all  and  . It follows that the function

gives a full trajectory  passing through the point . It is obvious that the trajectory
 is bounded. Therefore (see Exercise 6.1), it wholly belongs to , but that con-

tradicts the equation . Theorem 7.2 is proved.

Following L. V. Kapitansky and I. N. Kostin [6], for 
define the upper limit  of the attractors  along  by
the equality

,

where  denotes the closure operation. Prove that if the hypothe-
ses of Theorem 7.2 hold, then  is a nonempty compact in-
variant set lying in the attractor .

Theorem 7.2 embraces only the upper semicontinuity of the family of attractors
. In order to prove their continuity (in the Hausdorff metric defined by equation

(5.4)), additional conditions should be imposed on the family of dynamical systems
. For example, the following assertion proved by A. V. Babin and M. I. Vishik

concerning the power estimate of the deviation of the attractors  and  in the
Hausdorff metric holds.

Theorem 7.3.

Assume that a dynamical system  possesses a global attractorAssume that a dynamical system  possesses a global attractorAssume that a dynamical system  possesses a global attractorAssume that a dynamical system  possesses a global attractor

 for every  for every  for every  for every .... Let the following conditions hold: Let the following conditions hold: Let the following conditions hold: Let the following conditions hold:

(a) there exists a bounded set  such that  for all there exists a bounded set  such that  for all there exists a bounded set  such that  for all there exists a bounded set  such that  for all 

andandandand

,,,, (7.3) 
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holds, with constants  and  independent of holds, with constants  and  independent of holds, with constants  and  independent of holds, with constants  and  independent of ....

Then there exists  such thatThen there exists  such thatThen there exists  such thatThen there exists  such that

.... (7.5)

Here Here Here Here     is the Hausdorff metric defined by the formulais the Hausdorff metric defined by the formulais the Hausdorff metric defined by the formulais the Hausdorff metric defined by the formula

....

Proof.

By virtue of the symmetry of (7.5) it is sufficient to find out that

. (7.6)

Equation (7.3) implies that for any 

for all (7.7) 

when . Here  is an -vicinity of the set
. It follows from equation (7.4) that

(7.8)

Since , we have .  Therefore, with , equa-
tion (7.7) gives us that

. (7.9)

For any  the estimate

holds. Hence, we can find that 

for all  and . Consequently, equation (7.9) implies that

for . It means that

Thus, equation (7.8) gives us that for any 
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for . By taking ,  and 
 in this formula we find estimate (7.6). Theorem 7.3 is proved. 

It should be noted that condition (7.3) in Theorem 7.3 is quite strong. It can be veri-
fied only for a definite class of systems possessing the Lyapunov function (see Theo-
rem 6.3).

In the theory of dynamical systems an important role is also played by the no-
tion of the Poisson stability. A trajectory  of a dynamical
system  is said to be Poisson stable Poisson stable Poisson stable Poisson stable if it belongs to its -limit set .
It is clear that stationary points and periodic trajectories of the system are Poisson
stable.

Show that any Poisson stable trajectory is contained in the
global minimal attractor if the latter exists.

A trajectory  is Poisson stable if and only if any point 
of this trajectory is recurrent, i.e. for any vicinity  there exists

 such that .

The following exercise testifies to the fact that not only periodic (and stationary) tra-
jectories can be Poisson stable.

Let  be a Banach space of continuous functions boun-
ded on the real axis. Let us consider a dynamical system 
with the evolutionary operator defined by the formula

.

Show that the element  is recurrent for
any real  and  (in particular, when  is an irrational
number). Therewith the trajectory 
is Poisson stable.

In conclusion to this section we consider a theorem that is traditionally associated
with the stability theory. Sometimes this theorem enables us to significantly decrease
the dimension of the phase space, this fact being very important for the study of infi-
nite-dimensional systems.

Theorem 7.4. (reduction principle).

Assume that in a dissipative dynamical system  there existsAssume that in a dissipative dynamical system  there existsAssume that in a dissipative dynamical system  there existsAssume that in a dissipative dynamical system  there exists

a positively invariant locally compact set a positively invariant locally compact set a positively invariant locally compact set a positively invariant locally compact set  possessing the property of possessing the property of possessing the property of possessing the property of

uniform attraction, i.e. for any bounded set  the equationuniform attraction, i.e. for any bounded set  the equationuniform attraction, i.e. for any bounded set  the equationuniform attraction, i.e. for any bounded set  the equation
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(7.10)

holds. Let holds. Let holds. Let holds. Let be a global attractor of the dynamical system . Then be a global attractor of the dynamical system . Then be a global attractor of the dynamical system . Then be a global attractor of the dynamical system . Then 

is also a global attractor of is also a global attractor of is also a global attractor of is also a global attractor of ....

Proof.

It is sufficient to verify that

(7.11) 

for any bounded set . Assume that there exists a set  such that (7.11) does
not hold. Then there exist sequences  and  such that

(7.12) 

for some . Let  be a bounded absorbing set of . We choose a moment
 such that

. (7.13)

This choice is possible because  is a global attractor of . Equation (7.10)
implies that 

. 

The dissipativity property of  gives us that  when  is large
enough. Therefore, local compactness of the set  guarantees the existence of an
element  and a subsequence  such that

.

This implies that . Therefore, equation (7.12) gives us that
. By virtue of the fact that  this contradicts equation

(7.13). Theorem 7.4 is proved.

E x a m p l e  7.1

We consider a system of ordinary differential equations

(7.14) 

It is obvious that for any initial condition  problem (7.14) is uniquely
solvable over some interval . If we multiply the first equation by

 and the second equation by  and if we sum the results obtained, then we get
that
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,  .

This implies that the function  possesses the property

,  .

Therefore,

, .

This implies that any solution to problem (7.14) can be extended to the whole
semiaxis  and the dynamical system  generated by equation (7.14)
is dissipative. Obviously, the set  is positively invariant.
Therewith the second equation in (7.14) implies that

, .

Hence, . Thus, the set  exponentially attracts all the bound-
ed sets in . Consequently, Theorem 7.4 gives us that the global attractor of
the dynamical system  is also the attractor of the system . But
on the set  system of equations (7.14) is reduced to the differential equation

. (7.15)

Thus, the global attractors of the dynamical systems generated by equations
(7.14) and (7.15) coincide. Therewith the study of dynamics on the plane is re-
duced to the investigation of the properties of the one-dimensional dynamical
system.

Show that the global attractor  of the dynamical system
 generated by equations (7.14) has the form

.

Figure the qualitative behaviour of the trajectories on the plane.

Consider the system of ordinary differential equations

(7.16)

Show that these equations generate a dissipative dynamical system
in . Verify that the set ,  is invariant
and exponentially attracting. Using Theorem 7.4, prove that the glo-
bal attractor  of problem (7.16) has the form

.

Hint: Consider the variable  instead of the variable .
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§ 8 Finite Dimensionality§ 8 Finite Dimensionality§ 8 Finite Dimensionality§ 8 Finite Dimensionality

of Invariant Setsof Invariant Setsof Invariant Setsof Invariant Sets

Finite dimensionality is an important property of the global attractor which can be
established in many situations interesting for applications. There are several ap-
proaches to the proof of this property. The simplest of them seems to be the one
based on Ladyzhenskaya’s theorem on the finite dimensionality of the invariant set.
However, it should be kept in mind that the estimates of dimension based on La-
dyzhenskaya’s theorem usually turn out to be too overstated. Stronger estimates can
be obtained on the basis of the approaches developed in the books by A. V. Babin
and M. I. Vishik, and by R. Temam (see the references at the end of the chapter).

Let be a compact set in a metric space . Then its  fractal dimensionfractal dimensionfractal dimensionfractal dimension

is defined by

,

where  is the minimal number of closed balls of the radius  which cover
the set . 

Let us illustrate this definition with the following examples.

E x a m p l e  8.1

Let  be a segment of the length . It is evident that

.

Therefore,

.

Hence, , i.e. the fractal dimension coincides with the value of the
standard geometric dimension.

E x a m p l e  8.2

Let  be the Cantor set obtained from the segment  by the sequentual
removal of the centre thirds. First we remove all the points between  and

. Then the centre thirds  and  of the two remaining
segments  and  are deleted. After that the centre parts

, ,  and  of the four
remaining segments , ,  and , respec-
tively, are deleted. If we continue this process to infinity, we obtain the Cantor
set . Let us calculate its fractal dimension. First of all it should be noted that 

M X

Mdimf

n M ��� �ln
1 �$� �ln

���������������������������
� 0&
lim�

n M ��� � �
M

M l

l

2�
������ 1� n M ��� � l

2 �
������� 1�� �

1
����ln l 2 ��

2
��������������ln� n M ��� �ln 1

����ln l 2 ��
2

���������������ln�� �

Mdimf 1�

M 0 1�� �
1 3$

2 3$ 1 9$ 2 9$�� � 7 9$ 8 9$�� �
0 1 3$�� � 2 3$ 1�� �

1 27$ 2 27$�� � 7 27$ 8 27$�� � 19 27$ 20 27$�� � 25 27$ 26 27$�� �
0 1 9$�� � 2 9$ 1 3$�� � 2 3$ 7 9$�� � 8 9$ 1�� �

M



F i n i t e  D i m e n s i o n a l i t y  o f  I n v a r i a n t  S e t s 53 

,

,

and so on. Each set  can be considered as a union of  segments of the
length . In particular, the cardinality of the covering of the set  with the
segment of the length  equals to . Therefore,

.

Thus, the fractal dimension of the Cantor set is not an integer (if a set possesses
this property, it is called fractal).

It should be noted that the fractal dimension is often referred to as the metric order
of a compact. This notion was first introduced by L. S. Pontryagin and L. G. Shnirel-
man in 1932. It can be shown that any compact set with the finite fractal dimension
is homeomorphic to a subset of the space  when  is large enough. 

To obtain the estimates of the fractal dimension the following simple assertion
is useful.

Lemma 8.1.

The following equality holds: 

,

where  is the cardinality of the minimal covering of the com-

pact  with closed sets diameter of which does not exceed  (the dia-

meter of a set  is defined by the value ).

Proof.

It is evident that . Since any set of the diameter  lies
in a ball of the radius , we have that . These two inequa-
lities provide us with the assertion of the lemma.

All the sets are expected to be compact in Exercises 8.1–8.4 given below.

Prove that if , then .

Verify that .

Assume that is a direct product of two sets. Then

.
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Let  be a Lipschitzian mapping of one metric space into
another. Then .

The notion of the dimension by Hausdorff is frequently used in the theory of dynami-
cal systems along with the fractal dimension. This notion can be defined as follows.
Let be a compact set in . For positive  and  we introduce the value

,

where the infimum is taken over all the coverings of the set  with the balls of the
radius . It is evident that  is a monotone function with respect
to . Therefore, there exists

.

The Hausdorff dimensionHausdorff dimensionHausdorff dimensionHausdorff dimension of the set  is defined by the value

.

Show that the Hausdorff dimension does not exceed the frac-
tal one.

Show that the fractal dimension coincides with the Hausdorff
one in Example 8.1, the same is true for Example 8.2.

Assume that , where  monotonically
tends to zero. Prove that  (Hint: 

 when ).

Let . Show that .

Hint:  when 

 .

Let . Prove that .

Find the fractal and Hausdorff dimensions of the global mini-
mal attractor of the dynamical system in  generated by the diffe-
rential equation

.

The facts presented in Exercises 8.7–8.9 show that the notions of the fractal and
Hausdorff dimensions do not coincide. The result of Exercise 8.5 enables us to re-
strict ourselves to the estimates of the fractal dimension when proving the finite di-
mensionality of a set.
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The main assertion of this section is the following variant of Ladyzhenskaya’s
theorem. It will be used below in the proof of the finite dimensionality of global at-
tractors of a number of infinite-dimensional systems generated by partial differential
equations.

Theorem 8.1.

Assume that Assume that Assume that Assume that is a compact set in a Hilbert space is a compact set in a Hilbert space is a compact set in a Hilbert space is a compact set in a Hilbert space .... Let  Let  Let  Let  bebebebe a contin- a contin- a contin- a contin-

uous mapping in  such that uous mapping in  such that uous mapping in  such that uous mapping in  such that .... Assume that there exists a finite- Assume that there exists a finite- Assume that there exists a finite- Assume that there exists a finite-

dimensional projector  in the space dimensional projector  in the space dimensional projector  in the space dimensional projector  in the space  such thatsuch thatsuch thatsuch that

,,,, ,,,, (8.1)

,,,, ,,,, (8.2)

where where where where .... We also assume that  We also assume that  We also assume that  We also assume that .... Then the compact  Then the compact  Then the compact  Then the compact  possesses possesses possesses possesses

a finite fractal dimension anda finite fractal dimension anda finite fractal dimension anda finite fractal dimension and

.... (8.3)

We remind that a projector in a space  is defined as a bounded operator  with the
property . A projector  is said to be finite-dimensional if the image  is
a finite-dimensional subspace. The dimension of a projector  is defined as a num-
ber .

The following lemmata are used in the proof of Theorem 8.1.

Lemma 8.2.

Let  be a ball of the radius  in . Then

. (8.4)

Proof.

Estimate (8.4) is self-evident when . Assume that . Let
 be a maximal set in  with the property , .

By virtue of its maximality for every  there exists  such that
. Hence, . It is clear that

, , .

Here  is a ball of the radius  centred at . Therefore,

.

This implies the assertion of the lemma.

Show that

, .
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Lemma 8.3.

Let  be a closed subset in  such that equations (8.1) and (8.2) hold

for all its elements. Then for any  and  the following esti-

mate holds:

, (8.5)

where is the dimension of the projector .

Proof.

Let  be a minimal covering of the set  with its closed subsets the di-
ameter of which does not exceed . Equation (8.1) implies that in  there
exist balls  with radius  such that . By virtue of Lemma 8.1
there exists a covering  of the set  with the balls of the diameter

, where . Therefore, the collection

is a covering of the set . Here the sum of two sets  and  is defined by the
equality

.

It is evident that

.

Equation (8.2) implies that . Therefore, 
.  Hence, estimate (8.5) is valid. Lemma 8.3 is proved.

Let us return to the proof of Theorem 8.1. Since , Lemma 8.3 gives us
that

.

It follows that

.

We choose  and  such that

,

where . Then

.

Consequently,

.
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Obviously, the choice of  can be made to fulfil the condition

.

Thus,

.

By taking  we obtain estimate (8.3). Theorem 8.1 is proved.

Assume that the hypotheses of Theorem 8.1 hold and 
. Prove that .

Of course, in the proof of Theorem 8.1 a principal role is played by equations (8.1)
and (8.2). Roughly speaking, they mean that the mapping  squeezes sets along the
space  while it does not stretch them too much along . Negative invari-
ance of  gives us that  for all . Therefore, the set  should
be initially squeezed. This property is expressed by the assertion of its finite dimen-
sionality. As to positively invariant sets, their finite dimensionality is not guaranteed
by conditions (8.1) and (8.2). However, as the next theorem states, they are attract-
ed to finite-dimensional compacts at an exponential velocity.

Theorem 8.2.

Let  be a continuous mapping defined on a compact set Let  be a continuous mapping defined on a compact set Let  be a continuous mapping defined on a compact set Let  be a continuous mapping defined on a compact set  in a Hi in a Hi in a Hi in a Hil-l-l-l-

bert space  such that bert space  such that bert space  such that bert space  such that .... Assume that there exists a finite-dimensi- Assume that there exists a finite-dimensi- Assume that there exists a finite-dimensi- Assume that there exists a finite-dimensi-

onal projector  such that equations onal projector  such that equations onal projector  such that equations onal projector  such that equations (8.1) and  and  and  and (8.2) hold with hold with hold with hold with    

and and and and .... Then for any  there exists a positively invariant Then for any  there exists a positively invariant Then for any  there exists a positively invariant Then for any  there exists a positively invariant

closed set  such thatclosed set  such thatclosed set  such thatclosed set  such that

 (8.6)

andandandand

 ,,,, (8.7)

where where where where is an arbitrary number from the intervalis an arbitrary number from the intervalis an arbitrary number from the intervalis an arbitrary number from the interval    ....

Proof.

The pair  is a discrete dynamical system. Since is compact, Theo-
rem 5.1 gives us that there exists a global attractor  with the pro-
perties  and

. (8.8)
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We construct a set  as an extension of . Let be a maximal set in  pos-
sessing the property  for , . The existence of such
a set follows from the compactness of . It is obvious that

.

Lemma 8.3 with , and  gives us that

with . Hereinafter . Therefore,

,  . (8.9)

Let us prove that the set

(8.10) 

possesses the properties required. It is evident that . Since 
, by virtue of (8.8) all the limit points of the set

lie in . Thus,  is a closed subset in . The evident inequality

(8.11)

implies (8.6). Here and below . Let us prove
(8.7). It is clear that

. (8.12)

Let be a minimal covering of the set  with the closed sets the diameter
of which is not greater than . By virtue of Lemma 8.3 there exists a covering 
of the set  with closed subsets of the diameter . The cardinality of this
covering can be estimated as follows

. (8.13)

Using the covering  we can construct a covering of the same cardinality of the
set  with the balls  of the radius  centered at the
points  We increase the radius of every ball up to the
value . The parameter  will be chosen below. Thus, we consider
the covering

of the set . It is evident that every point  belongs to this covering to-
gether with the ball . If , the inequalities
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hold. By virtue of equation (8.11) with the help of (8.1) and (8.2) we have that

.

Therefore, , provided , i.e. if

.

Here is an integer part of the number . Consequently,

.

Therefore, equation (8.12) gives us that

,

where . Using (8.9) and (8.13) we find that

for . Here and further . Since

,

it is easy to find that

for ,

where the constant  does not depend on  (its value is unessential further).
Therefore,

.

If we take , then after iterations we get
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Let us fix ,  and  and choose  such
that  and . Then summarizing the geometric progres-
sion we obtain

(8.14)

Let  be small enough and

,

where, as mentioned above,  is an integer part of the number . Since ,
equation (8.14) gives us that

,

where  and are positive numbers which do not depend on . Therefore,

Simple calculations give us that

.

This easily implies estimate (8.7). Thus, Theorem 8.2 is proved.

Show that for  formula (8.7) for the dimension
of the set  can be rewritten in the form

. (8.15)

If the hypotheses of Theorem 8.2 hold, then the discrete dynamical system 
possesses a finite-dimensional global attractor . This attractor uniformly attracts
all the trajectories of the system. Unfortunately, the speed of its convergence to the
attractor cannot be estimated in general. This speed can appear to be small. However,
Theorem 8.2 implies that the global attractor is contained in a finite-dimensional po-

9 0 1 2$�� �� K 9 1�� �� q 0 1 2$ 9��� �� ( 0�
� 2 q 9 (� �� � 1�� ��G 1*

N AK �m�� � Gm N AK 1�� � H
� �m� Gm�
� �� G�

�������������������������������  

Gm N AK 1�� � H
� �� G�
�����������������������; <

= > H
� �� G�
���������������������� � �m�   .�

� �

�

� 0�

m �� � 1
1 �$� �ln
1 �$� �ln

���������������������

z� � z � �m �� ��

N AK ��� � N AK �m�� � a1 1 4 l
q
������; <

= >n m �� �
a2

1
��
������; <

= >m �� �
�� �

a1 a2 �

AKdimf

Nln AK ��� �
1
����ln

�����������������������������
� 0&
lim

m �� �
1
����ln

�������������
� 0&
lim  1

m
�����

m "&
lim a1 1 4 e

q
�������� �

n m
a2

1

��
������; <

= >m
�

� �
�  
� !

 .

�

�

�

AKdimf
1
1
�
���ln

��������� 1 4 e
q
�������; <

= >n

� ���; <
= >max

� �
�  
� !

ln��

E x e r c i s e 8.13 9 K 1 2$� �
AK

AK = Pdim
1 4 l

K 9�
�������������; <

= >ln

1
2K
�������ln

����������������������������������dimf

M Vk�� �
M0



E x i s t e n c e  a n d  P r o p e r t i e s  o f  A t t r a c t o r s  … 61 

sitively invariant set possessing the property of uniform exponential attraction. From
the applied point of view the most interesting corollary of this fact is that the dyna-
mics of a system becomes finite-dimensional finite-dimensional finite-dimensional finite-dimensional exponentially fast independent of
the speed of convergence of the trajectories to the global attractor. Moreover, the re-
duction principle (see Theorem 7.4) is applicable in this case. Thus, finite-dimen-
sional invariant exponentially attracting sets can be used to describe the qualitative
behaviour of infinite-dimensional systems. These sets are frequently referred to as
inertial setsinertial setsinertial setsinertial sets , or fractal exponential attractorsfractal exponential attractorsfractal exponential attractorsfractal exponential attractors . In some cases they turn out
to be surfaces in the phase space. In contrast with the global attractor, the inertial
set of a dynamical system can not be uniquely determined. The construction in the
proof of Theorem 8.2 shows it. 

§ 9 Existence and Properties of Attractors§ 9 Existence and Properties of Attractors§ 9 Existence and Properties of Attractors§ 9 Existence and Properties of Attractors

of a Class of Infinite-Dimensionalof a Class of Infinite-Dimensionalof a Class of Infinite-Dimensionalof a Class of Infinite-Dimensional

Dissipative SystemsDissipative SystemsDissipative SystemsDissipative Systems

The considerations given in the previous sections are mainly of general character.
They are related to a dissipative dynamical system of the generic structure. There-
with, we inevitably make additional assumptions on the behaviour of trajectories of
these systems (e.g., the asymptotic compactness, the existence of a Lyapunov func-
tion, the squeezing property along a subspace, etc.). Thereby it is natural to ask
what properties of the original objects of a particular dynamical system guarantee
the fulfilment of the assumptions mentioned above. In this section we discuss this
question in terms of the dynamical system generated by a differential equation of
the form

(9.1)

in a separable Hilbert space , where  is a linear operator and  is a nonlinear
mapping which is coordinated with  in some sense. Our main goal is to demon-
strate the generic line of arguments as well as to describe those properties of the
operators  and  which provide the applicability of general theorems proved in
the previous sections. The main attention is paid to the questions of existence and fi-
nite dimensionality of a global attractor. Nowadays the presented line of arguments
(or a modification of it) is one of the main components of a great number of works
on global attractors.

It is assumed below that the following conditions are fulfilled.

d
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(A) There exists a strongly continuous semigroup  of continuous map-
pings in  such that  is a solution to problem (9.1) in the
sense that the following identity holds:

, (9.2)

where  (see condition (B) below). The semigroup  is
dissipative, i.e. there exists  such that for any  from the collec-
tion  of all bounded subsets of the space  the estimate 

 holds when  and . We also assume that the set
 is bounded for any .

(B) The linear closed operator  generates a semigroup 
which admits the estimate  (  and  are some
constants). There exists a sequence of finite-dimensional projectors

 which strongly converges to the identity operator such that
1)  commutes with , i.e.  for any ;
2) there exists  such that  for ,

where ;
3) as .

(C) For any  the nonlinear operator  possesses the properties:
1)  if  ;
2) for , and for some  the fol-

lowing equations hold:

(the existence of the operator  follows from (B2)).

It should be noted that although conditions (A)–(C) seem a little too lengthy, they are
valid for a class of problems of the theory of nonlinear oscillations as well as for
a number of systems generated by parabolic partial differential equations.

The following assertion should be mainly interpreted as a principal result which
testifies to the fact that the asymptotic behaviour of the system is determined by
a finite set of parameters.

Theorem 9.1.

If conditions If conditions If conditions If conditions (A)–(C) are fulfilled, then the semigroup  possesses a are fulfilled, then the semigroup  possesses a are fulfilled, then the semigroup  possesses a are fulfilled, then the semigroup  possesses a

compact global attractor compact global attractor compact global attractor compact global attractor .... The attractor has a finite fractal dimension The attractor has a finite fractal dimension The attractor has a finite fractal dimension The attractor has a finite fractal dimension

which can be estimated as follows:which can be estimated as follows:which can be estimated as follows:which can be estimated as follows:

,,,, (9.3)
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where  and  is determined from the conditionwhere  and  is determined from the conditionwhere  and  is determined from the conditionwhere  and  is determined from the condition

.... (9.4)

Here Here Here Here  and  are some absolute constants and  are some absolute constants and  are some absolute constants and  are some absolute constants....

When proving the theorem, we mainly rely on decomposition (9.2) and the lemmata
below.

Lemma 9.1.

Let  be a set of elements which for some  have the form 

, where ,  with the constant  de-

termined by the condition  for . Here the value

 is the same as in (9.2) with the element  being such that

 for all . Then the set  is precompact in  for

.

Proof.

Properties (B2) and (C2) imply that

when  for . Therefore, the set

, (9.5) 

where  for all , is bounded in the space 

with the norm . The symbol  denotes the restriction of an operator on

a subspace. However, property (B3) implies that

.

Therefore, the operator  is compact. Hence, 
is compactly embedded into . It means that the set (9.5) is precom-
pact in . This implies the precompactness of .

Lemma 9.2.

There exists a compact set  in the space  such that

(9.6)

for any bounded set  and .

Proof.

Let , where is a bounded set in . Then  for 
. By virtue of (9.2) we have that
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, 

where

. 

It is evident that  for . Therefore,

. 

This implies (9.6) with , where is the closure in  of the set
 described in Lemma 9.1.

Show that  lies in the set

(9.7)

where  and  are some constants.

In particular, Lemma 9.2 means that the system  is asymptotically compact.
Therefore, we can use Theorem 5.1 (see also Exercise 5.3) to guarantee the exis-
tence of the global attractor  lying in .

Let us use Theorem 8.1 to prove the finite dimensionality of the attractor. Veri-
fication of the hypotheses of the theorem is based on the following assertion.

Lemma 9.3.

Let . Then

(9.8)

and

(9.9)

for  and  .

Proof.

Decomposition (9.2) and condition (C1) imply that

.

With the help of Gronwall’s lemma we obtain (9.8).
To prove (9.9) it should be kept in mind that decomposition (9.2) and equa-

tions (B2) and (C2) imply that for 

St u 1 Pn�� �Tt t0� St0
u Wn t , t0 , u� ���

Wn t , t0 , u� � Pn St u 1 Pn�� �G t t0 , St0
u�� ���

W
n

t , t0 , u� � K
n

� t t0

St u , Kn� �dist 1 Pn�� �Tt t0� St0
u L2 R e

� t t0�� ��� �

K K
n

� �� K
n

� � �

K
n

E x e r c i s e 9.1 K K
n

� ��

K
n A� v1 v2 : v1 P

n
� , v2 1 P

n
�� �����
�

v1 C1 , AAv2 C2� ,��

�

C1 C2

� , S
t

� �

� K K
n

� ��

St ui R , t 0 , i� 1 2��

S
t
u1 S

t
u2� L1 D R� � t� � u1 u2�exp�

1 Pn�� � St u1 St u2�� � L2 e � t� 1 C0 rn
A  

L1C3 R� �
D R� �

���������������������  e� t�; <
= > u1 u2���

n n0 � � D R� ���

S
t
u1 S

t
u2� L1 u1 u2� C1 R� � e w �� S� u1 S� u2� �d

0

t

��
; <
L M
L M
= >

ew t�

n n0



E x i s t e n c e  a n d  P r o p e r t i e s  o f  A t t r a c t o r s  … 65 

(9.10)

Here the inequality  is used . If we put (9.8) in the right-
hand side of formula (9.10), we obtain estimate (9.9).

The following simple argument completes the proof of Theorem 9.1. Let us fix
an arbitrary number  and choose  and  such that

and .

Then the hypotheses of Theorem 8.1 with , , and 
 hold for the attractor . Hence, it is finite-dimensional with

estimate (9.3) holding for its fractal dimension. Theorem 9.1 is proved.

Prove that the global attractor  of problem (9.1) is stable
(Hint: verify that the hypotheses of Theorem 7.1 hold).

Properties (A)–(C) also enable us to prove that the system generated by equation
(9.1) possesses an inertial set. A compact set  in the phase space  is said to
be an inertial setinertial setinertial setinertial set (or a fractal exponential attractor) if it is positively invariant

, its fractal dimension is finite  and it possesses
the property

(9.11)

for any bounded set  and for , where  and are positive
numbers. (The importance of this notion for the theory of infinite-dimensional dy-
namical systems has been discussed at the end of Section 8).

Lemma 9.4.

Assume that properties (A)–(C) hold. Then the dynamical system

 generated by equation (9.1) possesses the following properties:

1) there exist a compact positively invariant set  and constants

 such that

(9.12)
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2) there exist a vicinity  of the compact  and numbers  and

 such that

, (9.13)

provided that for all  the semitrajectories  lie in the clo-

sure  of the set ;

3) there exist a sequence of finite-dimensional projectors  in the

space , constants , and a sequence of positive

numbers  tending to zero as  such that

(9.14)

for any .

Proof. 

Let  be a compact set from Lemma 9.2. Let

. 

It is clear that  and equation (9.12) holds for  with 
and . Let us prove that  is a compact set. Let  be a sequence of
elements of . Then  for some  and .
If there exists an infinitely increasing subsequence , then equation (9.6)
gives us that

.

Therefore, the sequence  possesses a limit point in . If is
a bounded sequence, then by virtue of the compactness of  there exist a num-
ber , an element  and a sequence  such that  and

. Therewith

The first term in the right-hand side of this inequality evidently tends to zero.
As for the second term, our argument is the same as in the proof of formula
(9.8). We use the boundedness of the set  (see property (A)) and proper-
ties (B) and (C2) to obtain the estimate

,  . (9.15)
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Therefore,

.

The closedness of the set  can be established with the help of similar argu-
ments. Thus, property (9.12) is proved for . Now we suppose that

, where  is chosen such that  for all . It is obvious
that  is a compact positively invariant set. As it is proved above, it is easy to
find the estimate of form (9.15) for all  and  from an arbitrary bounded set

. Here an important role is played by the boundedness of the set  (see
property (A)). Therefore, for any  there exists a constant 

 such that

.

Hence, for  we have that

for . This implies estimate (9.12) with the constant  depending on 
and . However, if we change the moment  in equation (9.12), we can pre-
sume that, for example, . Therewith . Thus, the first assertion of the
lemma is proved.

Since the set  lies in the ball of dissipativity , estimates
(9.13) and (9.14) follow from Lemma 9.3. Moreover,

,

. (9.16)

Thus, Lemma 9.4 is proved. 

Lemma 9.4 along with the theorem given below enables us to verify the existence of
an inertial set for the dynamical system generated by equation (9.1).

Theorem 9.2.

Let the phase space  of a dynamical system  be a HilbertLet the phase space  of a dynamical system  be a HilbertLet the phase space  of a dynamical system  be a HilbertLet the phase space  of a dynamical system  be a Hilbert

space. Assume that in  there exists a compact positively invariant set space. Assume that in  there exists a compact positively invariant set space. Assume that in  there exists a compact positively invariant set space. Assume that in  there exists a compact positively invariant set 

possessing properties possessing properties possessing properties possessing properties (9.12)––––(9.14). Then for any  there exists an. Then for any  there exists an. Then for any  there exists an. Then for any  there exists an

inertial set  of the dynamical system  such thatinertial set  of the dynamical system  such thatinertial set  of the dynamical system  such thatinertial set  of the dynamical system  such that

 (9.17)

for any bounded set  and for any bounded set  and for any bounded set  and for any bounded set  and .... Here, as above,  Here, as above,  Here, as above,  Here, as above, 

. Moreover,. Moreover,. Moreover,. Moreover,

,,,, (9.18)
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where the number  is determined from the conditionwhere the number  is determined from the conditionwhere the number  is determined from the conditionwhere the number  is determined from the condition

(9.19)

and constant  does not depend on  and and constant  does not depend on  and and constant  does not depend on  and and constant  does not depend on  and ....

The proof of the theorem is based on the following preliminary assertions.

Lemma 9.5.

Let  be a dynamical system, its phase space being a compact in

a Hilbert space . Assume that for all  equations (9.13)
and (9.14) are valid. Then for any  there exists an inertial set

 of the system  such that

.  (9.20)

Moreover, estimate (9.18) holds for the value .

Proof.

We use Theorem 8.2 with , , and , where  and
 are chosen to fulfil

and .

In this case conditions (8.1) and (8.2) are valid for  with  and
 Therefore, there exists a bounded closed positively invariant

set  with  such that (see (8.6) and (8.15))

 (9.21)

and

 (9.22)

Assume that  and consider the set

.

Here . It is easy to see that

.

Therefore, equations (9.20) and (9.18) follow from (9.21) and (9.20) after some
simple calculations.

Lemma 9.6.

Assume that in the phase space  of a dynamical system 

there exist compact sets  and  such that (a) ; (b) properties
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(9.12) and (9.13) are valid for ; and (c) the set  possesses the pro-

perty

,  (9.23) 

where . Then for any bounded set 

and  the following inequality holds

.  (9.24)

Proof.

By virtue of (9.12) every bounded set  reaches the vicinity  in finite
time and stays in it. Therefore, it is sufficient to prove the lemma for a set

 such that  for , where  denotes the closure of .
Let  and . Evidently,

for any  and . With the help of (9.13) we have that

.

Therefore, for any  and  we have that

If we take an infimum over  and a supremum over , we find that

for all . Hence, equations (9.12) and (9.23) give us that

 

for . If we choose , we obtain (9.24). Lemma 9.6
is proved.

If we now use Lemma 9.6 with  and estimate (9.20), we get equation
(9.17). This completes the proof of Theorem 9.2.

Thus, by virtue of Lemma 9.4 and Theorem 9.2 the dynamical system  gene-
rated by equation (9.1) possesses an inertial set  for which equations (9.17)–
(9.19) hold with relations (9.16).

It should be noted that a slightly different approach to the construction of iner-
tial sets is developed in the book by A. Eden, C. Foias, B. Nicolaenko, and R. Temam
(see the list of references). This book contains further developments and applica-
tions of the theory of inertial sets.
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To conclude this section, we outline the results on the behaviour of the projec-
tion onto the finite-dimensional subspace  of the trajectories of the system

 generated by equation (9.1).
Assume that an element  belongs to the global attractor  of a dynamical

system . Lemma 6.1 implies that there exists a trajectory 
lying in  wholly such that . Therewith the following assertion is valid.

Lemma 9.7.

Assume that properties (A)–(C) are fulfilled and let . Then the

following equation holds:

,  , (9.25)

where  is a trajectory passing through , the number  can be

found from (B2) and the integral in (9.25) converges in the norm of the

space .

Proof.

Since , equation (9.2) gives us that

. (9.26)

A trajectory in the attractor possesses the property , .
Therefore, property (B2) implies that

and .

These estimates enable us to pass to the limit in (9.26) as . Thereupon
we obtain (9.25).

The following assertion is valid under the hypotheses of Theorem 9.1.

Theorem 9.3.

There exists  such that for all  the following assertionsThere exists  such that for all  the following assertionsThere exists  such that for all  the following assertionsThere exists  such that for all  the following assertions

are valid:are valid:are valid:are valid:

1) for any two trajectories  and  lying in the attractor of thefor any two trajectories  and  lying in the attractor of thefor any two trajectories  and  lying in the attractor of thefor any two trajectories  and  lying in the attractor of the

system generated by equation system generated by equation system generated by equation system generated by equation (9.1) the equality  the equality  the equality  the equality 

for all  implies that ;for all  implies that ;for all  implies that ;for all  implies that ;

2) for any two solutions  and  of the system for any two solutions  and  of the system for any two solutions  and  of the system for any two solutions  and  of the system (9.1) the equa- the equa- the equa- the equa-

tiontiontiontion

(9.27)

implies that  as implies that  as implies that  as implies that  as ....
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We can also obtain an upper estimate of the number  from the inequali-We can also obtain an upper estimate of the number  from the inequali-We can also obtain an upper estimate of the number  from the inequali-We can also obtain an upper estimate of the number  from the inequali-

ty ty ty ty ....

Proof.

Equation (9.25) implies that for any trajectory  lying in the attractor
of system (9.1) the equation

,

holds. Therefore, if , then properties (B2), (B3), and (C2) give us
that

It follows that the estimate

holds for , where . If we tend , we obtain the
first assertion, provided .

Now let us prove the second assertion of the theorem. Let

. 

Then

.

Therefore, equation (9.10) for the function  gives us that

.

This and Gronwall’s lemma imply that

Therefore, if , then equation (9.27) gives us that . Thus,
the second assertion of Theorem 9.3 is proved.
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Theorem 9.3 can be presented in another form. Let  be a basis
in the space . Let us define linear functionals  on  

. Theorem 9.3 implies that the asymptotic behaviour of trajectories of
the system  is uniquely determined by its values on the functionals .
Therefore, it is natural that the family of functionals  is said to be the determin-
ing collection. At present some general approaches have been worked out which
enable us to define whether a particular set of functionals is determining. Chapter 5
is devoted to the exposition of these approaches. It should be noted that for the first
time Theorem 9.3 was proved for the two-dimensional Navier-Stokes system by
C. Foias and D. Prodi (the second assertion) and by O. A. Ladyzhenskaya (the first
assertion).

Concluding the chapter, we would like to note that the list of references given
below does not claim to be full. It contains only references to some monographs and
reviews devoted to the developments of the questions touched on here and compris-
ing intensive bibliography.
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In this chapter we study well-posedness and the asymptotic behaviour of solu-
tions to a class of abstract nonlinear parabolic equations. A typical representative of
this class is the nonlinear heat equation

considered in a bounded domain  of  with appropriate boundary conditions on
the border . However, the class also contains a number of nonlinear partial dif-
ferential equations arising in Mechanics and Physics that are interesting from the
applied point of view. The main feature of this class of equations lies in the fact that
the corresponding dynamical systems possess a compact absorbing set.

The first three sections of this chapter are devoted to the questions of existence
and uniqueness of solutions and a brief description of examples. They are indepen-
dent of the results of Chapter 1. In the other sections containing the discussion of
asymptotic properties of solutions we use general results on the existence and pro-
perties of global attractors proved in Chapter 1. In Sections 6 and 7 we present two
quite simple infinite-dimensional systems for which the asymptotic behaviour of the
trajectories can be explicitly described. In Section 8 we consider a class of systems
generated by infinite-dimensional retarded equations.

The list of references at the end of the chapter consists only of the books re-
commended for further reading.

§ 1 Positive Operators§ 1 Positive Operators§ 1 Positive Operators§ 1 Positive Operators

with Discrete Spectrumwith Discrete Spectrumwith Discrete Spectrumwith Discrete Spectrum

This section contains some auxiliary facts that play an important role in the subse-
quent considerations related to the study of the asymptotic properties of solutions
to abstract semilinear parabolic equations.

Assume that  is a separable Hilbert space with the inner product  and
the norm . Let be a selfadjoint positive linear operator with the domain .
An operator  is said to have a discrete spectrumdiscrete spectrumdiscrete spectrumdiscrete spectrum if in the space  there exists
an orthonormal basis  of the eigenvectors:

, ,  , (1.1) 

such that

, . (1.2) 

The following exercise contains a simple example of an operator with discrete spec-
trum.

�u

� t
������� � �2 u

�x
i
2

���������� f x u�� ��
i 1�

d

��

	 Rd

�	

H . .�� �
. A D A� �

A H

e
k


 �

e
k

e
j

�� � �
k j

� A e
k


k

e
k

� k j� 1 2 �� ��

0 1 2 �� �� 
k

k ��
lim ��



78 L o n g - T i me  B e h a v i o u r  o f  S o l u t i o n s  t o  a  C l a s s  o f  S e mi l i n e a r  P a r a b o l i c  Eq u a t i o n s

2

C

h

a

p

t

e

r

Let  and let be an operator defined by the
equation  with the domain  which consists of conti-
nuously differentiable functions  such that (a) ,
(b)  is absolutely continuous and (c) . Show
that  is a positive operator with discrete spectrum. Find its eigen-
vectors and eigenvalues.

The above-mentioned structure of the operator  enables us to define an operator
 for a wide class of functions  defined on the positive semiaxis. It can be

done by supposing that

,

, . (1.3) 

In particular, one can define operators  with . For  these ope-
rators are bounded. However, in this case it is also convenient to introduce the line-
als  if we regard  as a completion of the space  with respect to the
norm .

Show that the space  with  can be identi-
fied with the space of formal series  such that

.

Show that for any  the operator  can be defined on
every space  as a bounded mapping from  into

 such that

,  . (1.4) 

Show that for all  the space  is a sepa-
rable Hilbert space with the inner product 
and the norm . 

The operator  with the domain  is a positive operator
with discrete spectrum in each space .

Prove the continuity of the embedding of the space  into
 for , i.e. verify that  and .

Prove that  is dense in  for any . 
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Let  for . Show that the linear functional 
 can be continuously extended from the space  to 

and  for any  and .

Show that any continuous linear functional  on  has the
form: , where . Thus,  is the space
of continuous linear functionals on .

The collection of Hilbert spaces with the properties mentioned in Exercises 1.7–1.9
is frequently called a scalescalescalescale of Hilbert spaces. The following assertion on the com-
pactness of embedding is valid for the scale of spaces .

Theorem 1.1.

Let Let Let Let .... The The The Thennnn the space  is compactly embedded into  the space  is compactly embedded into  the space  is compactly embedded into  the space  is compactly embedded into ,,,, i.e. i.e. i.e. i.e.

every sequence bounded in  is compact in every sequence bounded in  is compact in every sequence bounded in  is compact in every sequence bounded in  is compact in ....

Proof.

It is well known that every bounded set in a separable Hilbert space is weakly
compact, i.e. it contains a weakly convergent sequence. Therefore, it is sufficient to
prove that any sequence weakly tending to zero in  converges to zero with re-
spect to the norm of the space . We remind that a sequence  in  weakly
converges to an element  if for all 

.

Let the sequence  be weakly convergent to zero in  and let

, . (1.5) 

Then for any  we have

. (1.6) 

Here we applied the fact that for 

. 

Equations (1.5) and (1.6) imply that

. 

We fix  and choose  such that

. (1.7) 
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Let us fix the number . The weak convergence of  to zero gives us

, . 

Therefore, it follows from (1.7) that

. 

By virtue of the arbitrariness of  we have

. 

Thus, Theorem 1.1 is proved.

Show that the resolvent , , is
a compact operator in each space . 

We point out several properties of the scale of spaces  that are important for
further considerations.

Show that in each space  the equation

, ,

defines an orthoprojector onto the finite-dimensional subspace ge-
nerated by the set of elements . Moreover,
for each  we have

. 

Using the Hölder inequality

, , ,

prove the interpolation inequality

, , .

Relying on the result of the previous exercise verify that
for any  the following interpolation estimate holds:

,

where , , and .
Prove the inequality

,

where  and is a positive number. 
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Equations (1.3) enable us to define an exponential operator , , in
the scale . Some of its properties are given in exercises 1.14–1.17.

For any  and  the linear operator 
maps  into  and possesses the property 

.

The following semigroup property holds:

, .

For any  and  the following equation is valid:

. (1.8) 

For any  the exponential operator  defines a dissi-
pative compact dynamical system . What can you say
about its global attractor?

Let us introduce the following notations. Let  be the space of strongly
continuous functions on the segment  with the values in , i.e. they are con-
tinuous with respect to the norm . In particular, Exercise 1.16 means
that  if . By  we denote the subspace of

 that consists of the functions  which possess strong (in ) deri-
vatives  lying in . The space  is defined similarly
for any natural . We remind that the strong derivative (in ) of a function  at
a point  is defined as an element  such that

. 

Let  for some . Show that

for all , , and . Moreover,

, .

Let be the space of functions on the segment  with the values
in  for which the integral

exists. Let be the space of essentially bounded functions on 
with the values in  and the norm
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. 

We consider the Cauchy problem

, ; , (1.9) 

where  and . The weak solutionweak solutionweak solutionweak solution  (in ) to this
problem on the segment  is defined as a function

(1.10) 

such that  and equalities (1.9) hold. Here the derivative
 is considered in the generalized sense, i.e. it is defined by the equality

, ,

where is the space of infinitely differentiable scalar functions on 
vanishing near the points  and .

Show that every weak solution to problem (1.9) possesses the
property

. (1.11) 

(Hint: first prove the analogue of formula (1.11) for ,
then use Exercise 1.11).

Prove the theorem on the existence and uniqueness of weak
solutions to problem (1.9). Show that a weak solution  to this
problem can be represented in the form

. (1.12) 

Let  and let a function  possess the property

for some . Then formula (1.12) gives us a solution to pro-
blem (1.9) belonging to the class

 . 

Such a solution is said to be strong in .
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The following properties of the exponential operator  play an important part
in the further considerations.

Lemma 1.1.

Let  be the orthoprojector onto the closure of the span of elements

 in  and let , . Then

1) for all ,  and  the following inequality holds: 

; (1.13) 

2) for all ,  and  the following estimate is valid:

, (1.14) 

in the case  we supose that  in (1.14).

Proof.

Estimate (1.13) follows from the equation

.

In the proof of (1.14) we similarly have that

.

This gives us the inequality

.

Since  is attained when , we have that

Therefore,

.

This implies estimate (1.14). Lemma 1.1 is proved.

In particular, we note that it follows from (1.14) that

, . (1.15) 
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Using estimate (1.15) and the equation

, , ,

prove that

; , (1.16) 

provided , where a constant  does not depend
on  and  (cf. Exercise 1.16).

Show that

, , . (1.17) 

Lemma 1.2.

Let  for . Then there exists a unique solu-

tion  to the nonhomogeneous equation

, , (1.18) 

that is bounded in  on the whole axis. This solution can be

represented in the form

. (1.19)

We understand the solution to equation (1.18) on the whole axis as a function 
such that for any  the function  is a weak solution

(in ) to problem (1.9) on the segment  with .

Proof.

If there exist two bounded solutions to problem (1.18), then their diffe-
rence  is a solution to the homogeneous equation. Therefore, 

 for  and for any . Hence,

. 

If we tend  here, then we obtain that . Thus, the bounded so-
lution to problem (1.18) is unique. Let us prove that the function  defined
by formula (1.19) is the required solution. Equation (1.15) implies that

for  and . Therefore, integral (1.19) exists and it can be uniform-
ly estimated with respect to  as follows:
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, 

where  for  and

 for .

The continuity of the function  in  follows from the following equation
that can be easily verified:

. 

This also implies (see Exercise 1.18) that  is a solution to equation (1.18).
Lemma 1.2 is proved.

§ 2 Semilinear Parabolic § 2 Semilinear Parabolic § 2 Semilinear Parabolic § 2 Semilinear Parabolic EquationsEquationsEquationsEquations

in Hilbert Spacein Hilbert Spacein Hilbert Spacein Hilbert Space

In this section we prove theorems on the existence and uniqueness of solutions to
an evolutionary differential equation in a separable Hilbert space  of the form

, , (2.1) 

where is a positive operator with discrete spectrum and is a nonlinear
continuous mapping from  into , , possessing the property

 (2.2) 

for all  and  from the domain  of the operator  and such that
. Here is a nondecreasing function of the parameter  that does

not depend on  and  is a norm in the space .
A function  is said to be a mild solutionmild solutionmild solutionmild solution (in ) to problem (2.1) on the

half-interval  if it lies in  for every  and for all
 satisfies the integral equation

. (2.3) 

The fixed point method enables us to prove the following assertion on the local
existence of mild solutions.
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Theorem 2.1.

Let Let Let Let .... Then there exists  depending on  and  such that Then there exists  depending on  and  such that Then there exists  depending on  and  such that Then there exists  depending on  and  such that

problem problem problem problem (2.1) possesses a unique mild solution on the half-interval possesses a unique mild solution on the half-interval possesses a unique mild solution on the half-interval possesses a unique mild solution on the half-interval

.... Moreover, either  or the solution cannot be continued Moreover, either  or the solution cannot be continued Moreover, either  or the solution cannot be continued Moreover, either  or the solution cannot be continued

in  up to the moment in  up to the moment in  up to the moment in  up to the moment ....

Proof.

On the space  we define the mapping

.

Let us prove that  for any . Assume that 
 and . It is evident that

. (2.4)

By virtue of (1.8) we have that if  then

.

Therefore, it is sufficient to estimate the second term in (2.4). Equation (1.15) im-
plies that

(2.5) 

(if , then the coefficient in the braces should be taken to be equal to 1). Thus,
 maps  into itself. Let . In

we consider a ball of the form

.

Let us show that for  small enough the operator  maps  into itself and is con-
tractive. Since  for , equation (2.2) gives
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for all , where  is a fixed number. Therefore, with the help of (2.5) we find
that

. 

Similarly we have

for . Consequently, if we choose  such that

and ,

we obtain that  is a contractive mapping of  into itself. Therefore,  possesses
a unique fixed point in . Thus, we have constructed a solution on the seg-
ment . Taking  as an initial moment, we can construct a solution
on the segment  with the initial condition .
If we continue our reasoning, then we can construct a solution on some maximal half-
interval . Moreover, it is possible that . Theorem 2.1 is proved.

Let  and let  be such that is
the maximal half-interval of the existence of the mild solution 
to problem (2.1). Then we have either  and 

 or .

Using equations (1.16) and (2.5), prove that for any mild solu-
tion  to problem (2.1) on  the estimate 

, , (2.6) 

is valid, provided , , and .

Let  and let be a mild solution to problem (2.1)
on the half-interval . Then

for any , , and . Moreover, equations (2.1)
are valid if they are understood as the equalities in  and , re-
spectively.

It is frequently convenient to use the Galerkin method in the study of properties of
mild solutions to the problem of the type (2.1). Let be the orthoprojector in 
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onto the span of elements . Galerkin approximate solutionGalerkin approximate solutionGalerkin approximate solutionGalerkin approximate solution

of the order of the order of the order of the order  with respect to the basis  is defined as a continuously diffe-
rentiable function

(2.7) 

with the values in the finite-dimensional space  that satisfies the equations

, , . (2.8) 

It is clear that (2.8) can be rewritten as a system of ordinary differential equa-
tions for the functions . 

Show that problem (2.8) is equivalent to the problem of find-
ing a continuous function  with the values in  that satis-
fies the integral equation

. (2.9) 

Using the method of the proof of Theorem 2.1, prove the local
solvability of problem (2.9) on a segment , where the pa-
rameter  can be chosen to be independent of . Moreover,
the following uniform estimate is valid:

, , (2.10) 

where is a constant.

The following assertion on the convergence of approximate functions to exact ones
holds.

Theorem 2.2.

Let Let Let Let .... Assume that there exists a sequence of approximate solu- Assume that there exists a sequence of approximate solu- Assume that there exists a sequence of approximate solu- Assume that there exists a sequence of approximate solu-

tions  on a segment  for which estimate tions  on a segment  for which estimate tions  on a segment  for which estimate tions  on a segment  for which estimate (2.10) is valid. Then is valid. Then is valid. Then is valid. Then

there exists a mild solution  to problem there exists a mild solution  to problem there exists a mild solution  to problem there exists a mild solution  to problem (2.1) on the segment  on the segment  on the segment  on the segment 

andandandand

,,,, (2.11) 

where where where where is a is a is a is a positive constant independent of  positive constant independent of  positive constant independent of  positive constant independent of  ....
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Proof.

Let . We use (2.9), (1.14) and (1.17) to find that for  we have

Therefore, equations (2.2) and (2.10) give us that

(2.12) 

where

. 

It is evident that . By changing the variable in the integral
, we obtain

. 

Thus, equation (2.12) implies

Hence, if we use Lemma 2.1 which is given below, we can find that

(2.13) 
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for all , where is a constant depending on , , and . It is also
evident that estimate (2.13) remains true for . It means that the sequence of
approximate solutions  is a Cauchy sequence in the space .
Therefore, there exists an element  such that equation
(2.11) holds. Estimates (2.10) and (2.11) enable us to pass to the limit in (2.9) and
to obtain equation (2.3) for . Theorem 2.2 is proved.

Show that if the hypotheses of Theorem 2.2 hold, then the es-
timate

is valid with . Here  and are constants independent
of , , and .

The following assertion provides a simple sufficient condition of the global solvability
of problem (2.1).

Theorem 2.3.

Assume that the constant  in Assume that the constant  in Assume that the constant  in Assume that the constant  in (2.2) does not depend on  does not depend on  does not depend on  does not depend on ,,,, i.e. the i.e. the i.e. the i.e. the

mapping  satisfies the global Lipschitz conditionmapping  satisfies the global Lipschitz conditionmapping  satisfies the global Lipschitz conditionmapping  satisfies the global Lipschitz condition

(2.14) 

for all  with some constant for all  with some constant for all  with some constant for all  with some constant .... Then problem  Then problem  Then problem  Then problem (2.1) has a unique has a unique has a unique has a unique

mild solution on the half-interval mild solution on the half-interval mild solution on the half-interval mild solution on the half-interval ,,,, provided  provided  provided  provided .... Moreover, Moreover, Moreover, Moreover,

for any two solutions  and  the estimate for any two solutions  and  the estimate for any two solutions  and  the estimate for any two solutions  and  the estimate 

,,,, ,,,, (2.15) 

holds, where  and holds, where  and holds, where  and holds, where  and are constants that depend on are constants that depend on are constants that depend on are constants that depend on ,,,,    ,,,, and  only and  only and  only and  only....

The proof of this theorem is based on the following lemma (see the book by Henry [3],
Chapter 7).

Lemma 2.1.

Assume that  is a continuous nonnegative function on the interval

 such that 

, , (2.16) 

where  and . Then there exists a constant 

 such that

. (2.17) 
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Proof of Theorem 2.3.

Let  be a solution to problem (2.1) on the maximal half-interval of its exis-
tence . Assume that . Condition (2.14) gives us that

for all  and . Therefore, from (2.3) and (1.15) we find that

.

Hence, for  we have that

.

Therefore, Lemma 2.1 implies that the value  is bounded on  which
is impossible (see Exercise 2.1). Thus, the solution exists for any half-interval

. For the proof of estimate (2.15) we note that, as above, inequalities (2.3)
and (1.15) for the function  give us that

. 

If we apply Lemma 2.1, we find that

for .

Therefore, the estimate

holds for , where  is natural and . Thus, Theorem 2.3

is proved.

Using estimate (1.14), prove that if the hypotheses of Theo-
rem 2.3 hold, then the inequality

 (2.18) 

is valid for any two solutions  and . Here 
and  is the orthoprojector onto the span of , the num-
ber  is the same as in (2.15) and  depends on , , and .

Let us consider one more case in which we can guarantee the global solvability
of problem (2.1). Assume that condition (2.2) holds for  and
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, (2.19) 

where  satisfies the global Lipschitz condition (2.14) with  and
is a potential operator on the space . This means that there exists

a Frechét differentiable functional  on  such that , i.e.

. 

Theorem 2.4.

Let Let Let Let (2.2) be valid with  be valid with  be valid with  be valid with  and let decomposition  and let decomposition  and let decomposition  and let decomposition (2.19) take place. take place. take place. take place.

Assume that the functional  is bounded below on Assume that the functional  is bounded below on Assume that the functional  is bounded below on Assume that the functional  is bounded below on .... Then prob- Then prob- Then prob- Then prob-

lem lem lem lem (2.1) has a unique mild solution  on an has a unique mild solution  on an has a unique mild solution  on an has a unique mild solution  on an

arbitrary segment arbitrary segment arbitrary segment arbitrary segment ....

Proof.

Let be an approximate solution to problem (2.1) on a segment ,
where  does not depend on  (see Exercise 2.5):

, . (2.20) 

Multiplying (2.20) by  scalarwise in the space , we find that

 

Since  is bounded below, we obtain that

with constants  and  independent of , where

. 

Therefore, Gronwall’s lemma gives us that

for all  in the segment  of the existence of approximate solutions. Firstly,
this estimate enables us to prove the global existence of approximate solutions
(cf. Exercise 2.1). Secondly, by virtue of the continuity of the functional  on

 Theorem 2.2 enables us to pass to the limit  on an arbitrary seg-
ment  and prove the global solvability of limit problem (2.1). Theorem 2.4

is proved.
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Let  be a mild solution to problem (2.1) such that
 for . Use Lemma 2.1 to prove that

, (2.21) 

for all , where is a positive constant.

Let  and  be solutions to problem (2.1) with the ini-
tial conditions  and such that 
for  lying in a segment . Then

,

, .

Thus, if  and the hypotheses of Theorem 2.3 or 2.4 hold, then equa-
tion (2.1) generates a dynamical system  with the evolutionary operator 
which is defined by the equality , where  is the solution to problem
(2.1). The semigroup property of  follows from the assertion on the uniqueness
of solution.

Show that Theorem 2.4 holds even if we replace the assump-
tion of semiboundedness of by the condition 

 for some  and .

§ 3 Examples§ 3 Examples§ 3 Examples§ 3 Examples

Here we consider several examples of an application of theorems of Section 2. Our
presentation is brief here and is organized in several cycles of exercises. More de-
tailed considerations as well as other examples can be found in the books by Henry,
Babin and Vishik, and Temam from the list of references to Chapter 2 (see also Sec-
tions 6 and 7 of this chapter).

We first remind some definitions and notations. Let  be a domain in 
. The Sobolev space  of the order   is defined

by the formula

,

where ,  , ,

, .

The space  is a separable Hilbert space with the inner product
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.

Below we also use the space  which is constructed as the closure in 
of the set  of infinitely differentiable functions with compact support. For
more detailed information we refer the reader to the handbooks on the theory of So-
bolev spaces.

E x a m p l e  3.1 (nonlinear heat equation)

(3.1)

Here  is a bounded domain in ,  is the Laplace operator, and  is a posi-
tive constant. Assume that is a continuous function of its vari-
ables which satisfies the Lipschitz condition

(3.2) 

with an absolute constant . It is clear that the operator  defined by
the formula

,

can be estimated as follows:

. (3.3) 

Here and below  is the norm in the space . It is well-known that
the operator  with the Dirichlet boundary condition on  is a positive
operator with discrete spectrum. Its domain is . More-
over, . We also note that

,  . 

Therefore, equation (3.3) for  gives us the estimate

,

where  is the first eigenvalue of the operator  with the Dirichlet boundary
condition on . Therefore, we can apply Theorem 2.3 with  to prob-
lem (3.1). This theorem guarantees the existence and uniqueness of a mild solu-
tion to problem (3.1) in the space .
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Assume that is a continuous func-
tion of its arguments satisfying the global Lipschitz condition with
respect to the variable . Prove the global theorem on the existence
of mild solutions to problem (3.1) in the space .

E x a m p l e  3.2

Let us consider problem (3.1) in the case of one spatial variable:

(3.4)

Assume that is a continuously differentiable function with respect to
the variable  and , where  is a function bounded on
every compact set of the real axis. We also assume that the function 
is continuous and possesses property (3.2). For any element 

 the following estimates hold:

and ,

where . Therefore, it is easy to find that the inequality

(3.5) 

is valid for

,

provided  Here  is the norm in the space 
 and . Equation (3.5) and Theo-

rem 2.1 guarantee the local solvability of problem (3.4) in the space .
Moreover, if the function

is bounded below, then we can use Theorem 2.4 to obtain the assertion on the
existence of mild solutions to problem (3.4) on an arbitrary segment .

It should be noted that the reasoning in Example 3.2 is also valid for several spatial
variables. However, in order to ensure the fulfilment of the estimate of the form (3.5)
one should impose additional conditions on the growth of the function .
For example, we can require that the equation

be fulfilled, where  if  and is an arbitrary number if .
In this case the inequality of the form (3.5) follows from the Hölder inequality and
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the continuity of the embedding of the space  into , where 
 if  and is an arbitrary number if , . 

The results shown in Examples 3.1 and 3.2 also hold for the systems of parabo-
lic equations. For example, a system of reaction-diffusion equations

(3.6)

can be considered in a smooth bounded domain . Here 
 and is a continuous function from  into  such

that

, (3.7) 

where  is a constant, ,  and  is an outer normal to .

Prove the global theorem on the existence and uniqueness of
mild solutions to problem (3.6) in 

 .

E x a m p l e  3.3 (nonlocal Burgers equation).

(3.8)

Here is a continuous function with the values in ,

,

and is a positive parameter. Exercises 3.3–3.6 below answer the question
on the solvability of problem (3.8).

Prove the local existence of mild solutions to problem (3.8)
in the space . Hint:

, ,

. 

Consider the Galerkin approximate solutions to problem (3.8)

.

Write out the system of ordinary differential equations to determine
. Prove that this system is locally solvable.
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Prove that the equations

(3.9) 

and

(3.10) 

are valid for any interval of the existence of the approximate solution
. Here  is the norm in .

Use equations (3.9) and (3.10) to prove the global existence
of the Galerkin approximate solutions to problem (3.8) and to obtain
the uniform estimate of the form

, (3.11) 

for any .

Thus, Theorem 2.2 guarantees the global existence and uniqueness of weak solu-
tions to problem (3.8) in .

E x a m p l e  3.4 (Cahn-Hilliard equation).

(3.12)

where , and  are constants. The result of the cycle of Exercises
3.7–3.10 is a theorem on the existence and uniqueness of solutions to problem
(3.12).

Prove that the estimate

is valid for any two functions  and  smooth on . Use
this estimate to ascertain that problem (3.12) is locally uniquely
solvable in the space

(Hint: , ). 
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Let us consider the Galerkin approximate solution  to problem (3.12):

. 

Prove that the equality

(3.13) 

holds for any interval of the existence of approximate solutions
. Here  and

. (3.14) 

In particular, equation (3.13) implies that approximate solutions exist for any seg-
ment . For  they can be estimated as follows:

, , (3.15) 

where the number  does not depend on .

Using (3.15) show that the inequality

,

holds for any interval  and for any approximate solution
 to problem (3.12). (Hint: first prove that 

).

Using Theorem 2.2 and the result of the previous exercise,
prove the global theorem on the existence and uniqueness of weak
solutions to the Cahn-Hilliard equation (3.12) in the space  (see
Exercise 3.7).

E x a m p l e  3.5 (abstract form of two-dimensional system

of Navier-Stokes equations)

In a separable Hilbert space  we consider the evolutionary equation

, , (3.16) 
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where is a positive operator with discrete spectrum,  is a positive parame-
ter and  is a bilinear mapping from  into 

 possessing the property

for all (3.17) 

and such that for all  the estimates

, (3.18) 

and

, , (3.19) 

hold. We also assume that is a continuous function with the values in .

Prove that Theorem 2.1 on the local solvability with 
 is applicable to problem (3.16), where  is a number

from the interval .

Let  be the basis of eigenvectors of the operator , let  be
the corresponding eigenvalues and let  be the orthoprojector onto the span
of . We consider the Galerkin approximations of problem (3.16):

(3.20)

Show that the estimates

(3.21) 

and

(3.22) 

are valid for an arbitrary interval of the existence of solutions to prob-
lem (3.20). Here . Using these estimates, prove
the global solvability of problem (3.20).

Show that the estimate

(3.23) 

holds for a solution to problem (3.20). 
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Using the interpolation inequality (see Exercise 1.13) and estimate (3.18), it is easy
to find that

.

Therefore, equation (3.23) implies that

, (3.24) 

where . Hence, Gronwall’s inequality gives
us that

. 

It follows from equation (3.21) that the value  is uniformly bounded with
respect to  on an arbitrary segment . Consequently, the uniform estimates

, ,  (3.25) 

are valid for any  and .

Using equations (3.23) and (3.25), prove that if 
 then

,

for any .

Let  and let . Prove that

Use the results of Exercises 3.14 and 3.15 and inequality
(3.19) to prove the global existence of mild solutions to problem
(3.16) in the space , provided that 
and is a continuous function with the values in . Here

is an arbitrary number from the interval .
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§ 4 Existence Conditions and Properties§ 4 Existence Conditions and Properties§ 4 Existence Conditions and Properties§ 4 Existence Conditions and Properties

of Global Attractorof Global Attractorof Global Attractorof Global Attractor

In this section we study the asymptotic properties of the dynamical system genera-
ted by the autonomous equation

, , (4.1)

where, as before, is a positive operator with discrete spectrum and is
a nonlinear mapping from  into  such that

(4.2)

for all  possessing the property , .
We assume that problem (4.1) has a unique mild (in ) solution on  for any

. The theorems that guarantee the fulfilment of this requirement and also
some examples are given in Sections 2 and 3 of this chapter. It should be also noted
that in this section we use some results of Chapter 1 for the proof of main assertions.
Further triple numeration is used in the references to the assertions and formulae
of Chapter 1 (first digit is the chapter number).

Let be a dynamical system with the evolutionary operator  defined
by the formula , where  is a mild solution to problem (4.1).
As shown in Chapter 1, for the system  to possess a compact global attrac-
tor, it should be dissipative. It turns out that the condition of dissipativity is not only
necessary, but also sufficient in the class of systems considered.

Lemma 4.1.

Let be dissipative and let be its absorbing

ball. Then the set  is absorbing for all ,

where

. (4.3)

Proof.

Using equation (2.3) and estimate (1.17), we have

,

where . Let be a bounded set in . Then  for all
 and . Therefore, the estimate

,

holds for . Hence,  for all . This implies the
assertion of the lemma.
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Theorem 4.1.

Assume that the dynamical system  generated by problem Assume that the dynamical system  generated by problem Assume that the dynamical system  generated by problem Assume that the dynamical system  generated by problem (4.1)
isisisis dissipative. Then it is compact and possesses a connected compact globaldissipative. Then it is compact and possesses a connected compact globaldissipative. Then it is compact and possesses a connected compact globaldissipative. Then it is compact and possesses a connected compact global

attractor attractor attractor attractor .... This attractor is a bounded set in  for  and has This attractor is a bounded set in  for  and has This attractor is a bounded set in  for  and has This attractor is a bounded set in  for  and has

a finite fractal dimensiona finite fractal dimensiona finite fractal dimensiona finite fractal dimension....

Proof.

By virtue of Theorem 1.1 the space  is compactly embedded into  for
. Therefore, Lemma 4.1 implies that the dynamical system  is com-

pact. Hence, Theorem 1.5.1 gives us that  possesses a connected compact
global attractor . Evidently,  for all , where  is defined
by equality (4.3). Thus, we should only establish the finite dimensionality of the at-
tractor. Let us apply the method used in the proof of Theorem 1.9.1 and based on
Theorem 1.8.1. Let  and  be semitrajectories of the dynamical system

 such that  for all , . Then equations (2.3) and
(1.17) give us that

.

Using Lemma 2.1, we find that for all  such that  the following
estimate holds:

for ,

where the constant  depends on  and . Therefore,

for

for the considered  and . Consequently,

,

where  is an integer part of the number . Thus, the estimate of the form

(4.4)

is valid, where the constants  and  depend on  and . Similarly, Lemma 1.1
gives

(4.5) 

for all  such that , where  and  is the ortho-
projector onto the first  eigenvectors of the operator . If we substitute equation
(4.4) in the right-hand side of inequality (4.5), then we obtain that
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,

where

.

After the change of variable  it is easy to find that 
.  Therefore,

(4.6) 

for all  such that . Hence, there exist  and  such
that

, ,

for all  such that . However, the attractor  lies in the ab-
sorbing ball . Therefore, this estimate and inequality (4.4) mean that the hypo-
theses of Theorem 1.8.1 hold for the mapping . Hence, the attractor  has
a finite fractal dimension. It can be estimated with the help of the parameters in in-
equalities (4.4) and (4.6). Thus, Theorem 4.1 is proved.

Equations (4.4) and (4.6) which are valid for any  enable us to prove the exis-
tence of a fractal exponential attractor of the dynamical system  in the same
way as in Section 9 of Chapter 1.

Theorem 4.2.

Assume that the dynamical system  generated by problem Assume that the dynamical system  generated by problem Assume that the dynamical system  generated by problem Assume that the dynamical system  generated by problem (4.1)
is dissipative. Then it possesses a fractal exponential attractor (is dissipative. Then it possesses a fractal exponential attractor (is dissipative. Then it possesses a fractal exponential attractor (is dissipative. Then it possesses a fractal exponential attractor (inertialinertialinertialinertial

set).set).set).set).

Proof.

It is sufficient to verify that the hypotheses of Theorem 1.9.2 (see (1.9.12)–
(1.9.14)) hold for . Let us show that

,

can be taken for the compact  in (1.9.12)–(1.9.14). Here  is a number from the
interval  and  is defined by formula (4.3). We choose the parameter

 such that  for . Since  is a bounded invariant set,
equation (4.4) is valid for any  with some constants  and . It is also
easy to verify that is a compact. Indeed, let . Then , there-
with we can assume that ,  and either  or

. In the first case with the help of (4.4) we have
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.

Therefore, . In the second case

. 

Here is the omega-limit set for the semitrajectories emanating from .
Thus,  is a compact invariant absorbing set. In particular this means that condition
(1.9.12) is fulfilled, therewith we can take any number for . Conditions (1.9.13)
and (1.9.14) follow from equations (4.4) and (4.6). Consequently, it is sufficient
to apply Theorem 1.9.2 to conclude the proof of Theorem 4.2.

Thus, the dissipativity of the dynamical system  generated by problem (4.1)
guarantees the existence of a finite-dimensional global attractor and an inertial set.
Under some additional conditions concerning  the requirement of dissipativity
can be slightly weakened. We give the following definition. Let . The dynami-
cal system  is said to be -dissipative dissipative dissipative dissipative if there exists  such that
for any set  bounded in  there exists  such that

for all and .

Lemma 4.2.

Assume that  satisfies the global Lipschitz condition

. (4.7) 

Let the dynamical system  generated by mild solutions to prob-

lem (4.1) be -dissipative for some . Then  is

a compact dynamical system, i.e. it possesses an absorbing set which is

compact in .

Proof.

By virtue of Lemma 4.1 it is sufficient to verify that the system  is
dissipative (i.e. -dissipative). If we use expression (2.3) and equation (1.17),
then we obtain

for positive  and . Here . Since  we
have the estimate
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for . Hence, we can apply Lemma 2.1 to obtain

, .

Therefore, if  for  and , then the latter in-
equality gives us that

for ,

i.e. is a dissipative system. Lemma 4.2 is proved.

Show that the assertion of Lemma 4.2 holds if instead of (4.7)
we suppose that , where  possesses
property (4.7) and  is such that

.

The following assertion contains a sufficient condition of dissipativity of the dynami-
cal system generated by problem (4.1).

Theorem 4.3.

Assume that condition Assume that condition Assume that condition Assume that condition (4.2) is fulfilled with  and  is fulfilled with  and  is fulfilled with  and  is fulfilled with  and 

 is a potential operator from  into  (the prime stands for is a potential operator from  into  (the prime stands for is a potential operator from  into  (the prime stands for is a potential operator from  into  (the prime stands for

the Frechét derivative)the Frechét derivative)the Frechét derivative)the Frechét derivative).... Let Let Let Let

,,,, (4.8) 

for all for all for all for all ,,,, where  where  where  where ,,,,    ,,,,    ,,,, and  and  and  and are real parameters, therewithare real parameters, therewithare real parameters, therewithare real parameters, therewith

 and  and  and  and .... Then the dynamical system is dissipative in  Then the dynamical system is dissipative in  Then the dynamical system is dissipative in  Then the dynamical system is dissipative in ....

Proof.

In view of Theorem 2.4 conditions (4.8) guarantee the existence of the evolu-
tionary operator . Let us verify the dissipativity. As in the proof of Theorem 2.4 we
consider the Galerkin approximations . It is evident that

and

.

If we add these equations and use (4.8), then we obtain that

.
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Let

.

Therefore, it is clear that

with some positive constants  and  that do not depend on . This (cf. Exer-
cise 1.4.1) easily implies the dissipativity of the system , moreover,

. (4.9) 

Theorem 4.3 is proved.

Show that the assertion of Theorem 4.3 holds if (4.2) is ful-
filled with  and

,

where  possesses properties (4.8) and  satisfies the esti-
mate  for  small enough.

Let us look at the examples of Section 3 again. We assume that the function

(4.10) 

in Example 3.1 possesses property (3.2) and

(4.11) 

for all , where is the first eigenvalue of the operator  with the
Dirichlet boundary condition on . Here  and are positive constants.

Using the Galerkin approximations of problem (3.1) and Lem-
ma 4.2, prove that the dynamical system generated by equation (3.1)
is dissipative in  under conditions (3.2), (4.10), and (4.11). 

Therefore, if conditions (3.2), (4.10) and (4.11) are fulfilled, then the dynamical sys-
tem  generated by a mild (in ) solution to problem (3.1) posses-
ses both a finite-dimensional global attractor and an inertial set.

Prove that equation (4.11) holds if

, 

where are real constants and the function  possesses
the property
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,

for any .

Consider the dynamical system generated by problem (3.4).
In addition to the hypotheses of Example 3.2 we assume that

 and the function  possesses the pro-
perties

,  

for some positive , , and . Then the dynamical system genera-
ted by (3.4) is dissipative in .

Find the analogue of the result of Exercise 4.5 for the system
of reaction-diffusion equations (3.6).

Using equations (3.9) and (3.10) prove that the dynamical
system generated by the nonlocal Burgers equation (3.8) with 

 is dissipative in .

Let us consider a dynamical system  generated by the Cahn-Hilliard equation
(3.12). We remind that

.

Let the function  be defined by equality (3.14). Show
that for any positive  and  the set

(4.12) 

is a closed invariant subset in  for the dynamical system 
generated by problem (3.12).

Prove that the dynamical system  generated by
the Cahn-Hilliard equation on the set  defined by (4.12) is dis-
sipative (Hint: cf. Exercise 3.9).

In conclusion of this section let us establish the dissipativity of the dynamical system
 generated by the abstract form of the two-dimensional Navier-

Stokes system (see Example 3.5) under the assumption that .
We consider the dynamical system  generated by the Galerkin approxi-
mations (see (3.20)) of problem (3.16).
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Using (3.24) prove that

(4.13)

for all , where  and are constants independent of .

With the help of (3.21), (3.22) and (4.13) verify the property
of dissipativity of the system  in the space

. Deduce its dissipativity (Hint: see Exercise 3.14–3.16). 

Thus, the dynamical system generated by the two-dimensional Navier-Stokes equa-
tions possesses both a finite-dimensional compact global attractor and an inertial set.

§ 5 Systems with § 5 Systems with § 5 Systems with § 5 Systems with Lyapunov FunctionLyapunov FunctionLyapunov FunctionLyapunov Function

In this section we consider problem (4.1) on the assumption that condition (4.2)
holds with  and  is a potential operator, i.e. there exists a functional

 on  such that its Frechét derivative  possesses the pro-
perty

, . (5.1) 

Below we also assume that the conditions

, (5.2) 

are fulfilled for all , where , , and . On the one
hand, these conditions ensure the existence and uniqueness of mild (in )
solutions to problem (4.1) (see Theorem 2.4). On the other hand, they guarantee
the existence of a finite-dimensional global attractor  for the dynamical system

 generated by problem (4.1) (see Theorem 4.3). Conditions (5.1) and
(5.2) enable us to obtain additional information on the structure of attractor.

Theorem 5.1.

Assume that conditions Assume that conditions Assume that conditions Assume that conditions (5.1),,,,    (5.2),,,, and  and  and  and (4.2) hold with  hold with  hold with  hold with .... Then Then Then Then

the global attractor  of the dynamical system the global attractor  of the dynamical system the global attractor  of the dynamical system the global attractor  of the dynamical system  generated bygenerated bygenerated bygenerated by
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problem problem problem problem (4.1) is a bounded set in  and it coincides with the un- is a bounded set in  and it coincides with the un- is a bounded set in  and it coincides with the un- is a bounded set in  and it coincides with the un-

stable manifold emanating from the set of fixed points of the system, i.e.stable manifold emanating from the set of fixed points of the system, i.e.stable manifold emanating from the set of fixed points of the system, i.e.stable manifold emanating from the set of fixed points of the system, i.e.

,,,, (5.3) 

where  (for the definition of  see Secti-where  (for the definition of  see Secti-where  (for the definition of  see Secti-where  (for the definition of  see Secti-

onononon 6 of Chapter  of Chapter  of Chapter  of Chapter 1).).).).

The proof of the theorem is based on the following lemmata.

Lemma 5.1.

Assume that a semitrajectory  possesses the property

 for all , where . Then

(5.4) 

for all  .

Proof.

For the sake of definiteness we assume that . Equation (2.3) im-
plies that

. 

Since

,

equation (1.17) gives us that

This implies estimate (5.4).

Lemma 5.2.

There exists  such that the set  is absorbing

for the dynamical system .

Proof.

By virtue of Theorem 4.3 the system  is dissipative. Therefore, it
follows from Lemma 4.1 that  is an absorbing set,where
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 is defined by (4.3), . Thus, to prove the lemma it is sufficient to
consider semitrajectories  possessing the property , .
Let us present the solution  in the form

Using Lemma 5.1 we find that

.

This implies that

, ,

provided that  for . Therefore, the assertion of Lemma 5.2
follows from Lemma 4.1.

Proof of Theorem 5.1.

The boundedness of the attractor  in  follows from Lemma 5.2. Let us
prove (5.3). We consider the Galerkin approximation  of solutions to problem
(4.1):

, .

Here  is the orthoprojector onto the span of . Let

, . (5.5) 

It is clear that

.

This implies that

for  and for any , where  is the orthoprojector onto the span of
. With the help of Theorem 2.2 and due to the continuity of the func-
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tional  we can pass to the limit  in the latter equation. As a result,
we obtain the estimate

, , (5.6) 

for any solution  to problem (4.1) and for any . If the semitrajectory
 lies in the attractor , then we can pass to the limit  in (5.6)

and obtain the equation

(5.7) 

for any  and . Equation (5.7) implies that the functional 
defined by equality (5.5) is the Lyapunov function of the dynamical system

 on the attractor . Therefore, Theorem 1.6.1 implies equation (5.3).
Theorem 5.1 is proved.

Using (5.6) show that any solution  to problem (4.1) with
 possesses the property

, . 

Prove the validity of inequality (5.7) for any solution  to prob-
lem (4.1).

Using the results of Exercises 5.1 and 1.6.5 show that if the
hypotheses of Theorem 5.1 hold, then a global minimal attractor

 of the system  has the form

.

Prove that the assertions of Theorems 4.3 and 5.1 hold if we
consider the equation

, (5.8) 

instead of problem (4.1). Here is an arbitrary element from  and
 possesses properties (5.1), (5.2) and (4.2) with 

(Hint: ).

Let be an evolutionary operator of problem (5.8). Show
that for any  there exist numbers  and  such
that

,

provided ,  (Hint: ).
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Theorem 5.1 and the reasonings of Section 6 of Chapter 1 reduce the question on the
structure of global attractor to the problem of studying the properties of stationary
points of the dynamical system under consideration. Under some additional condi-
tions on the operator  it can be proved in general that the number of fixed
points is finite and all of them are hyperbolic. This enables us to use the results of
Section 6 of Chapter 1 to specify the attractor structure. For some reasons (they will
be clear later) it is convenient to deal with the fixed points of the dynamical system
generated by problem (5.8).

Thus we consider the equation

, , (5.9) 

where as before is a positive operator with discrete spectrum, is a nonline-
ar mapping possessing properties (5.1), (5.2) and (4.2) with , and  is an
element of .

Lemma 5.3.

For any  problem (5.9) is solvable. If is a bounded set in ,

then the set  of solutions to equation (5.9) is bounded in 

for . If  is compact in , then  is compact in .

Proof.

Let us consider a continuous functional

(5.10) 

on . Since  for all , the functional 
possesses the property

(5.11) 

In particular, this means that  is bounded below. Let us consider the func-
tional  on the subspace  (  is the orthoprojector onto the span
of elements , as before). By virtue of (5.11) there exists a mini-
mum point  of this functional in  which obviously satisfies the equa-
tion

. (5.12) 

Equation (5.11) also implies that
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Hence,

with a constant  independent of . Thus, equations (5.12) and (4.2) give us
that

.

Therefore, if , then . This estimate enables us to extract
a weakly convergent (in ) subsequence  and to pass to the limit as

in (5.12) with the help of Theorem 1.1. Thus, the solvability of equation
(5.9) is proved. It is obvious that every limit (in ) point  of the sequence

 possesses the property

if . (5.13) 

This means that the complete preimage  of any bounded set  in  is
bounded in . Now we prove that the mapping  is properproperproperproper, i.e. the pre-
image  is compact for a compact . Let  be a sequence from

. Then the sequence  lies in the compact  and therefore there
exist an element  and a subsequence  such that 
as . By virtue of (5.13) we can also assume that is a weakly con-
vergent sequence in . If we use the equation 

, ,

Theorem 1.1, and property (4.2) with , then we can easily prove that
the sequence  strongly converges in  to a solution  to the equation

. Lemma 5.3 is proved.

Lemma 5.4.

In addition to (5.1), (5.2), and (4.2) with  we assume that the

mapping  is Frechét differentiable, i.e. for any  there

exists a linear bounded operator  from  into  such that

(5.14) 

for every , such that . Then the operator 

is a Fredholm operator for any .

We remind that a densely defined closed linear operator  in  is said to be Fred-Fred-Fred-Fred-

holmholmholmholm  (of index zero) if
(a) its image is closed; and
(b) .

Proof of Lemma 5.4.

It is clear that the operator  has the structure
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,

where  is a bounded operator in  . By virtue of Theorem
1.1 the operator  is compact. This implies the closedness of the
image of . Moreover, it is obvious that

and

.

Therefore, the Fredholm alternative for the compact operator gives us that

. 

Let us introduce the notion of a regular valueregular valueregular valueregular value  of the operator  seen as an ele-
ment  possessing the property that for every  the
operator  is invertible on . Lemmata 5.3 and 5.4 enable us to use
the Sard-Smale theorem (for the statement and the proof see, e.g., the book by
A. V. Babin and M. I. Vishik [1]) and state that the set  of regular values of the
mapping  is an open everywhere dense set in . The following
assertion is valid for regular values of the operator .

Lemma 5.5.

Let  be a regular value of the operator . Then the set of solutions to

equation (5.9) is finite.

Proof.

By virtue of Lemma 5.3 the set is compact. Since
, the operator  is invertible on  for . It is also

evident that  has a domain . Therefore, by virtue of the uniform
boundedness principle is a bounded operator for . Hence,
it follows from (5.14) that

for any  and  in . This implies that for every  there exists a vicinity
that does not contain other points of the set . Therefore, the compact set 
has no condensation points. Hence,  consists of a finite number of elements.
Lemma 5.5 is proved.

In order to prove the hyperbolicity (for the definition see Section 6 of Chapter 1) of
fixed points we should first consider linearization of problem (5.8) at these points.
Assume that the hypotheses of Lemma 5.4 hold and  is a stationary solu-
tion. We consider the problem
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, . (5.15) 

Its solution can be regarded as a continuous function in  which satis-
fies the equation

.

If  then we can apply Theorem 2.3 on the existence and uniqueness
of solution. Let  stand for the evolutionary operator of problem (5.15).

Prove that is a compact operator in every space ,
.

Prove that for any  and  the set of points of the
spectrum of the operator  that are lying outside the disk 

 is finite and the corresponding eigensubspace is finite-di-
mensional.

Assume that is a symmetric operator in . Prove that
the spectrum of the operator  is real.

The next assertion contains the conditions wherein the evolutionary operator  be-
longs to the class ,  on the set of stationary points.

Theorem 5.2.

Assume that conditions Assume that conditions Assume that conditions Assume that conditions (5.1),,,, (5.2),,,, and  and  and  and (4.2) are fulfilled with . are fulfilled with . are fulfilled with . are fulfilled with .

Let  possess a Let  possess a Let  possess a Let  possess a Frechét derivative inFrechét derivative inFrechét derivative inFrechét derivative in  such that for any   such that for any   such that for any   such that for any 

,,,, ,,,, (5.16) 

provided that provided that provided that provided that ,,,, where the constant  depends on  where the constant  depends on  where the constant  depends on  where the constant  depends on 

and  only. Then the evolutionary operator  of problem and  only. Then the evolutionary operator  of problem and  only. Then the evolutionary operator  of problem and  only. Then the evolutionary operator  of problem (5.8) has a has a has a has a

Frechét derivativeFrechét derivativeFrechét derivativeFrechét derivative at every stationary point  at every stationary point  at every stationary point  at every stationary point .... Moreover,  Moreover,  Moreover,  Moreover, 

, where , where , where , where is the evolutionary operator of linear problem is the evolutionary operator of linear problem is the evolutionary operator of linear problem is the evolutionary operator of linear problem (5.15)....

Proof.

It is evident that

.

Therefore, using (1.17) and (5.16) we have
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where . Using the result of Exercise 5.4 we obtain that

if .

Thus,

.

Consequently, Lemma 2.1 gives us the estimate

, .

This implies the assertion of Theorem 5.2.

Assume that the constant  in (5.16) depends on  only,
provided that  and . Prove that 
for any .

The reasoning above leads to the following result on the properties of the set of fixed
points of problem (5.8).

Theorem 5.3.

Assume that conditions Assume that conditions Assume that conditions Assume that conditions (5.1),,,, (5.2) and and and and (4.2) are fulfilled with  are fulfilled with  are fulfilled with  are fulfilled with 

and the operator  possesses a and the operator  possesses a and the operator  possesses a and the operator  possesses a Frechét derivativeFrechét derivativeFrechét derivativeFrechét derivative in  such that in  such that in  such that in  such that

equation equation equation equation (5.16) holds with the constant  depending only on  for holds with the constant  depending only on  for holds with the constant  depending only on  for holds with the constant  depending only on  for

 and  and  and  and .... Then there exists an open dense (in ) set Then there exists an open dense (in ) set Then there exists an open dense (in ) set Then there exists an open dense (in ) set

 such that for  the set of fixed points of the system  gen- such that for  the set of fixed points of the system  gen- such that for  the set of fixed points of the system  gen- such that for  the set of fixed points of the system  gen-

erated by problem erated by problem erated by problem erated by problem (5.8) is finite. If in addition we assume that  is finite. If in addition we assume that  is finite. If in addition we assume that  is finite. If in addition we assume that  is ais ais ais a

symmetric operator for , then fixed points are symmetric operator for , then fixed points are symmetric operator for , then fixed points are symmetric operator for , then fixed points are hyperbolichyperbolichyperbolichyperbolic....

In particular, this theorem means that if  then the global attractor of the dy-
namical system generated by equation (5.8) possesses the properties given in Exer-
cises 1.6.9–1.6.12. Moreover, it is possible to apply Theorem 1.6.3 as well as the other
results related to finiteness and hyperbolicity of the set of fixed points (see, e.g., the
book by A. V. Babin and M. I. Vishik [1]).
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E x a m p l e  5.1

Let us consider a dynamical system generated by the nonlinear heat equation

(5.17)

in . Assume that  is twice continuously differentiable with re-
spect to its variables and the conditions

,

are fulfilled with some positive constants , and .

Prove that the dynamical system generated by equation
(5.17) possesses a global attractor , where  is
the set of stationary solutions to problem (5.17).

Prove that there exists a dense open set  in  such
that for every  the set  of fixed points of the dynamical
system generated by problem (5.17) is finite and all the points are
hyperbolic.

It should be noted that if a property of a dynamical system holds for the parameters
from an open and dense set in the corresponding space, then it is frequently said that
this property is a generic propertygeneric propertygeneric propertygeneric property.

However, it should be kept in mind that the generic property is not the one that
holds almost always. For example one can build an open and dense set  in ,
the Lebesgue measure of which is arbitrarily small . To do that we should
take

,

where is a sequence of all the rational numbers of the segment . There-
fore, it should be remembered that generic properties are quite frequently encoun-
tered and stay stable during small perturbations of the properties of a system.
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§ 6 Explicitly Solvable Model§ 6 Explicitly Solvable Model§ 6 Explicitly Solvable Model§ 6 Explicitly Solvable Model

of Nonlinear Diffusionof Nonlinear Diffusionof Nonlinear Diffusionof Nonlinear Diffusion

In this section we study the asymptotic properties of solutions to the following non-
linear diffusion equation

(6.1)

where , ,  and are parameters. The main feature of this problem is
that the asymptotic behaviour of its solutions can be completely described with the
help of elementary functions. We do not know whether problem (6.1) is related to
any real physical process.

Show that Theorem 2.4 which guarantees the global existence
and uniqueness of mild solutions is applicable to problem (6.1) in the
Sobolev space .

Write out the system of ordinary differential equations for the
functions  that determine the Galerkin approximations

(6.2) 

of the order  of a solution to problem (6.1).

Using the properties of the functions  defined by equa-
tion (6.2) prove that the mild solution  possesses the proper-
ties

(6.3) 

and

. (6.4) 

Here and below  is a norm in .

Using equations (6.3) and (6.4) prove that the dynamical sys-
tem generated by problem (6.1) in  is dissipative.
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Therefore, by virtue of Theorem 4.1 the dynamical system  generated
by equation (6.1) possesses a finite-dimensional global attractor.

Let  be a mild solution to problem (6.1) with
the initial condition . Then the function  can be conside-
red as a mild solution to the linear problem

(6.5)

where is a scalar continuous function defined by the formula

.

We consider the function

. (6.6) 

Then it is easy to check that  is a mild solution to the heat equation

(6.7)

The following assertion shows that the asymptotic properties of equation (6.7)
completely determine the dynamics of the system generated by problem (6.1).

Lemma 6.1.

Every mild (in ) solution  to problem (6.1) can be re-

written in the form

, (6.8) 

where  has the form

(6.9) 

and  is the solution to problem (6.7).
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Proof.

Let  have the form (6.9). Then we obtain from (6.6) that

. (6.10) 

Therefore,

.

Hence,

.

This and equation (6.10) imply (6.8). Lemma 6.1 is proved.

Now let us find the fixed points of problem (6.1). They satisfy the equation

.

Therefore, , where  is the solution to the problem

.

However, this problem has a nontrivial solution  if and only if

and ,

where is a natural number. Since , we obtain the equation

which can be used to find the constant . After the integration we have

.

The constant  can be found only when the parameter  possesses the property
. Thus, we have the following assertion.
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Lemma 6.2.

Let . If , then problem (6.1) has a unique

fixed point . If  for some , then

the fixed points of problem (6.1) are

, , , (6.11) 

where

, (6.12)

.

Show that every subspace

(6.13) 

is positively invariant for the dynamical system  gene-
rated by problem (6.1).

Theorem 6.1.

Let . Then for any mild solution  to problem Let . Then for any mild solution  to problem Let . Then for any mild solution  to problem Let . Then for any mild solution  to problem (6.1)
the estimatethe estimatethe estimatethe estimate

,,,, ,,,, (6.14) 

is valid. If  and , then the subspace  defined byis valid. If  and , then the subspace  defined byis valid. If  and , then the subspace  defined byis valid. If  and , then the subspace  defined by

formula formula formula formula (6.13) is exponentially attracting:is exponentially attracting:is exponentially attracting:is exponentially attracting:

.... (6.15) 

Here Here Here Here is the evolutionary operator in  corresponding to is the evolutionary operator in  corresponding to is the evolutionary operator in  corresponding to is the evolutionary operator in  corresponding to (6.1)....

Proof.

Let  be of the form (6.9). Then

, (6.16) 

where  and

.
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Assume that . Then it is obvious that

(6.17) 

However, equation (6.8) implies that

. 

Therefore, estimate (6.14) follows from (6.17) and from the obvious equality
. When  and  the function  in (6.9)

can be rewritten in the form

, (6.18) 

where

 

and  can be estimated (cf. (6.17)) as follows:

. (6.19)

Thus, it is clear that

.

Consequently, estimate (6.15) is valid. Theorem 6.1 is proved.

In particular, Theorem 6.1 means that if  then the global at-
tractor of problem (6.1) consists of a single zero element, whereas if , the
attractor lies in an exponentially attracting invariant subspace , where 

 and is a sign of the integer part of a number.
The following assertion shows that the global minimal attractor of problem

(6.1) consists of fixed points of the system. It also provides a description of the cor-
responding basins of attraction.

Theorem 6.2.
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and let and let and let and let be a mild solution to problem be a mild solution to problem be a mild solution to problem be a mild solution to problem (6.1)....

(a) If  for all , thenIf  for all , thenIf  for all , thenIf  for all , then

,,,, .... (6.20)

(b) If  for some  between  and , then there exist positiveIf  for some  between  and , then there exist positiveIf  for some  between  and , then there exist positiveIf  for some  between  and , then there exist positive

numbers  and  such thatnumbers  and  such thatnumbers  and  such thatnumbers  and  such that

,,,, ,,,, (6.21) 

where  is defined by formula where  is defined by formula where  is defined by formula where  is defined by formula (6.11), , and  is, , and  is, , and  is, , and  is

the smallest index between  and  such that the smallest index between  and  such that the smallest index between  and  such that the smallest index between  and  such that ....

Proof.

In order to prove assertion (a) it is sufficient to note that the value  is
identically equal to zero in decomposition (6.18) when . Therefore,
(6.20) follows from (6.19).

Now we prove assertion (b). In this case equation (6.18) can be rewritten in the
form

, (6.22) 

where

,

,

and  if . Moreover, the estimate

 (6.23) 

is valid for . It is also evident that

. (6.24) 

Since

using (6.23) and (6.24) we obtain

.
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Integration gives

where  is defined by formula (6.12). Hence,

, (6.25) 

where

, .

Let

.

We consider the case when . Equations (6.23)–(6.25) imply that

Therefore,
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where

.

It follows from (6.25) that  for all  and . Moreover, the
above-mentioned estimate for  enables us to state that

.

This implies that there exists a constant  such that
 for all . Consequently,

, (6.26) 

where . Now we consider
the value . Evidently,

,

where

.

Simple calculations give us that

with the constant . This and equation (6.26) imply (6.21), provi-
ded . We offer the reader to analyse the case when  on his/her
own. Theorem 6.2 is proved.

Theorem 6.2 enables us to obtain a complete description of the basins of attraction of
each fixed point of the dynamical system  generated by problem (6.1).

Corollary 6.1.

Let . Assume that the number  is not in-
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for . We also assume that

.

Then for any  we have that

,

where are the fixed points of problem (6.1) which are defined by

equalities (6.11).

The next assertion gives us a complete description of the global attractor of problem
(6.1).

Theorem 6.3.

Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem 6.2 hold and  is the same as hold and  is the same as hold and  is the same as hold and  is the same as

in Theoremin Theoremin Theoremin Theorem 6.2.... Then the global attractor  of the dynamical system Then the global attractor  of the dynamical system Then the global attractor  of the dynamical system Then the global attractor  of the dynamical system

 generated by equation  generated by equation  generated by equation  generated by equation (6.1) is the closure of the set is the closure of the set is the closure of the set is the closure of the set

,,,, (6.27)

where , , andwhere , , andwhere , , andwhere , , and

,,,, ....

Every complete trajectory  which lies in the attractor andEvery complete trajectory  which lies in the attractor andEvery complete trajectory  which lies in the attractor andEvery complete trajectory  which lies in the attractor and

does not coincide with any of the fixed points does not coincide with any of the fixed points does not coincide with any of the fixed points does not coincide with any of the fixed points ,,,, , has , has , has , has

the formthe formthe formthe form

,,,, (6.28) 

where where where where  are real numbers, , are real numbers, , are real numbers, , are real numbers, , ....    

Show that for all  the function

, (6.29) 

is nonnegative and it is monotonely nondecreasing with respect to 
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Proof of Theorem 6.3.

Let  belong to the set  given by formula (6.27). Then by virtue of Lemma 6.1
we have

, (6.30) 

where

and the value  is defined according to (6.29). Simple calculations show that

.

Therefore, it is easy to see that  for , where  has the form (6.28).
It follows that  and that a complete trajectory  lying in  has the form
(6.28). In particular, this means that . To prove that  it is sufficient to
verify using Theorem 6.1 and the reduction principle (see Theorem 1.7.4) that for
any element  there exists a semitrajectory  such that

uniformly with respect to  from any bounded set in . To do this, it should be
kept in mind that for

(6.31) 

 has the form (6.30) with

.

Therefore, it is easy to find that
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where  is given by formula (6.29). Hence, if we choose
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, (6.32) 

where

.

Using the obvious inequality

, ,

we obtain that

,

provided that  has the form (6.31). It is evident that

.

Therefore,

.

Consequently, the dissipativity property of  in  and equations (6.32) give
us that

,

for all , where is an arbitrary bounded set. Thus,  and there-
fore Theorem 6.3 is proved.

Show that the set  coincides with the unstable manifold
 emanating from zero, provided that the hypotheses of Theo-

rem 6.3 hold.

Show that the set  from Theorem 6.3 can be de-
scribed as follows:
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Therewith, the global attractor  has the form

.

Prove that the boundary

of the set  is a strictly invariant set.

Show that any trajectory  lying in  has the form 
, where

, .

Using the result of Exercise 6.10 find the unstable manifold
 emanating from the fixed point ,  .

Find out for which pairs of fixed points ,  
, there exists a heteroclinic trajectory connec-

ting them, i.e. a complete trajectory  such that

, .

Display graphically the global attractor  on the plane gene-
rated by the vectors  and 
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Study the structure of the global attractor of the dynamical
system generated by the equation

in , where  are positive parameters.

§ 7 Simplified Model of Appearance§ 7 Simplified Model of Appearance§ 7 Simplified Model of Appearance§ 7 Simplified Model of Appearance

of of of of Turbulence in FluidTurbulence in FluidTurbulence in FluidTurbulence in Fluid

In 1948 German mathematician E. Hopf suggested (see the references in [3]) to con-
sider the following system of equations in order to illustrate one of the possible sce-
narios of the turbulence appearance in fluids:

 

where the unknown functions , , and are even and -periodic with respect
to  and

.

Here  and  are even -periodic functions and is a positive constant.
We also set the initial conditions

. (7.4)

As in the previous section the asymptotic behaviour of solutions to problem
(7.1)–(7.4) can be explicitly described.

Let us introduce the necessary functional spaces. Let

.
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Evidently is a separable Hilbert space with the inner product and the norm de-
fined by the formulae:

,

There is a natural orthonormal basis

in this space. The coefficients  of decomposition of the function  with
respect to this basis have the form

, .

Let . Then  and

. (7.5) 

The Fourier coefficients  of the functions ,  and  obey
the equations

, . (7.6)

Let be the orthoprojector onto the span of elements
 in . Show that

. (7.7) 

Let us consider the Hilbert space  with the norm 
 as the phase space of problem (7.1)–(7.4). We define

an operator  by the formula 

,

on the domain

,

where  is the second order Sobolev space.

Prove that  is a positive operator with discrete spectrum. Its
eigenvalues  have the form:

, ,
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while the corresponding eigenelements are defined by the formulae

(7.8)

where 

Let

Equation (7.5) implies that , provided , , , , and are the
elements of the space , . Therefore, the formula

gives a continuous mapping of the space  into itself.

Prove that

,

where , .

Thus, if , then problem (7.1)–(7.4) can be rewritten in the form

, ,

where  and  satisfy the hypotheses of Theorem 2.1. Therefore, the Cauchy prob-
lem (7.1)–(7.4) has a unique mild solution  in the space

 on a segment , provided that . In order to prove the global exis-
tence theorem we consider the Galerkin approximations of problem (7.1)–(7.4).
The Galerkin approximate solution  of the order  with respect to basis
(7.8) can be presented in the form 

, (7.9) 

where , , and are scalar functions. By virtue of equations (7.7)
it is easy to check that the functions , , and  satisfy equa-
tions (7.1)–(7.3) and the initial conditions

, , . (7.10) 
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Thus, approximate solutions exist, locally at least. However, if we use (7.1)–(7.3) we
can easily find that

Therefore, inequality (7.5) leads to the relation

 .

This implies the global existence of approximate solutions  (see Exercise 2.1).
Therefore, Theorem 2.2 guarantees the existence of a mild solution to problem
(7.1)–(7.4) in the space  on the time interval of any length . Moreover, the
mild solution  possesses the property

,

for any segment . Approximate solution  has the structure (7.9).

Show that the scalar functions  involved
in (7.9) are solutions to the system of equations:

Here ,  for , , the numbers 
 and are the Fourier coefficients of the func-

tions  and . 

Thus, equations (7.1)–(7.3) generate a dynamical system  with the evolu-
tionary operator  defined by the formula

,

where  is a mild solution (in ) to the Cauchy problem (7.1)–
(7.4), . An interesting property of this system is given in the fol-
lowing exercise.

Let be the span of elements , where
 and  are defined by equations (7.8). Then the

subspace  of the phase space  is positively invariant with re-
spect to  .
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Therefore, the phase space  of the dynamical system  falls into the ortho-
gonal sum

of invariant subspaces. Evidently, the dynamics of the system  in the sub-
space  is completely determined by the system of three ordinary differential
equations (7.11)–(7.13). 

Lemma 7.1.

Assume that  and

. (7.14) 

Then the dynamical system  is dissipative.

Proof.

Let us fix  and then consider the initial conditions 
from the subspace

,

where  are defined by equations (7.8). It is clear that  is positively in-
variant and the trajectory

of the system is a function satisfying (7.1)–(7.4) in the classical sense. Let
be the orthoprojector in  onto the span of elements 
. We introduce a new variable  instead of the function

. Here . Equations (7.1)–(7.3) can be rewritten in the
form

 

where . The properties of the convolution operation (see Exer-
cises 7.1 and 7.2) enable us to show that

H H S
t

�� �

H �kG
k 0�

�

��

H S
t

�� �
�

k

a b� H�

C0
1
2@

����������� a x� � xd

0

2@

3 0��

H S
t

�� �

N y0 u0 v0 w0� �� ��

HN �k Lin e3 k e3 k 1� e3 k 2�� �
 �G
k 0�

N

��G
k 0�

N

��

en
 � HN

y t� � u t� � v2 t� � w2 t� �� � u
k

t� � v
k

2 t� � w
k

2 t� �� � k xcos
k 0�

N

�� �

pm H k x : ncos 0 1 �� � ��

m� u

�
t� � u t� � �m��

u t� � �m pm p0�� � a�

u
�

t
6u
�

x x
� v *v w *w� u

� �m��� � * 1 6�
x x
m  ,����

v
t

6v
x x

� v *u
�

v * q
m

a� � w * b v * p0 a� �  ,� � ��

wt 6wx x� w *u
�

v * b� w * qm a� � w * p0 a� �  ,� ��
�
8
8
�
8
8
� (7.15)

(7.16)

(7.17)

q
m

1 p
m

��



S i m p l i f i e d  M o d e l  o f  A p p e a r a n c e  o f  T u r b u l e n c e  i n  F l u i d 135 

(7.18) 

It is clear that

, ,

where is the zeroth Fourier coefficient of the function . Moreo-
ver, the estimate

, ,

holds. We choose  such that . Then equation (7.18)
implies that

If we use the inequality

,

then we find that

 ,

where . Consequently, the estimate

(7.19) 

is valid for , provided  and 
 where . By passing to the limit we can extend inequality

(7.19) over all the elements . Thus, the system  possesses an ab-
sorbing set 

, (7.20) 

where  is such that  and

. 

Show that the ball  defined by equality (7.20) is positively
invariant.
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Consider the restriction of the dynamical system  to
the subspace

.

Show that is dissipative not depending on the validity of
condition (7.14).

Lemma 7.2.

Assume that the hypotheses of Lemma 7.1 hold and let be the ortho-

projector onto the span of elements  in ,

. Then the estimate

(7.21) 

holds for all  such that . Here 

 and  is the mild solution to problem

(7.1)–(7.4) with the initial condition .

Proof.

As in the proof of Lemma 7.1 we assume that  for
some . If we apply the projector  to equalities (7.15)–(7.17), then we get
the equations

where ,  and . Therefore, we obtain 

(7.22) 

as in the proof of the previous lemma. It is easy to check that 
 for every . Therefore, inequality (7.22) implies that

.

Hence, equation (7.21) is valid. Lemma 7.2 is proved.
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Lemmata 7.1 and 7.2 enable us to prove the following assertion on the existence
of the global attractor.

Theorem 7.1.

Let  and let condition Let  and let condition Let  and let condition Let  and let condition (7.14) hold. Then the dynamical system hold. Then the dynamical system hold. Then the dynamical system hold. Then the dynamical system

 generated by the mild solutions to problem  generated by the mild solutions to problem  generated by the mild solutions to problem  generated by the mild solutions to problem (7.1)–(7.4) possesses a possesses a possesses a possesses a

global attractor . This attractor is a compact connected set. It lies in theglobal attractor . This attractor is a compact connected set. It lies in theglobal attractor . This attractor is a compact connected set. It lies in theglobal attractor . This attractor is a compact connected set. It lies in the

finite-dimensional subspacefinite-dimensional subspacefinite-dimensional subspacefinite-dimensional subspace

,,,,

where the vectors  are defined by equalities where the vectors  are defined by equalities where the vectors  are defined by equalities where the vectors  are defined by equalities (7.8) and theand theand theand the parameter parameter parameter parameter 

is defined as the smallest number possessing the property is defined as the smallest number possessing the property is defined as the smallest number possessing the property is defined as the smallest number possessing the property 

.... Here  is the orthoprojector onto the subspace generated Here  is the orthoprojector onto the subspace generated Here  is the orthoprojector onto the subspace generated Here  is the orthoprojector onto the subspace generated

by the elements  in by the elements  in by the elements  in by the elements  in ....

To prove the theorem it is sufficient to note that the dynamical system is compact
(see Lemma 4.1). Therefore, we can use Theorem 1.5.1. In particular, it should be
noted that belonging of the attractor  to the subspace  means that

, where  is an arbitrary number possessing the property
. Below we describe the structure of the attractor and evalu-

ate its dimension exactly.

According to Lemma 7.2 the subspace  is a uniformly exponentially attracting
and positively invariant set. Therefore, by virtue of Theorem 1.7.4 it is sufficient
to study the structure of the global attractor of the finite-dimensional dynamical sys-
tem . To do that it is sufficient to study the qualitative behaviour of the tra-
jectory in each invariant subspace ,  (see Exercise 7.6). This
behaviour is completely described by equations (7.11)–(7.13) which get trans-
formed into system (1.6.4)–(1.6.6) studied before if we take ,

, and . Therefore, the results contained in Section 6 of Chapter 1
lead us to the following conclusion.

Theorem 7.2.

Let the hypotheses of Theorem Let the hypotheses of Theorem Let the hypotheses of Theorem Let the hypotheses of Theorem 7.1 hold. Then the global minimal attrac- hold. Then the global minimal attrac- hold. Then the global minimal attrac- hold. Then the global minimal attrac-

tor  of the dynamical system  generated by mild solutions totor  of the dynamical system  generated by mild solutions totor  of the dynamical system  generated by mild solutions totor  of the dynamical system  generated by mild solutions to

problem problem problem problem (7.1)–(7.4) has the form , where has the form , where has the form , where has the form , where

....

Here Here Here Here ,,,,    ,,,, the values  are the the values  are the the values  are the the values  are the
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Fourier coefficients of the function Fourier coefficients of the function Fourier coefficients of the function Fourier coefficients of the function ,,,, and the number  ranges over and the number  ranges over and the number  ranges over and the number  ranges over

the set of indices  such that the set of indices  such that the set of indices  such that the set of indices  such that .... Topologically  is a torus Topologically  is a torus Topologically  is a torus Topologically  is a torus

(i.e. a cross product of circumferences) of the dimension (i.e. a cross product of circumferences) of the dimension (i.e. a cross product of circumferences) of the dimension (i.e. a cross product of circumferences) of the dimension .... The The The The

global attractor  of the system  can be obtained from  by at-global attractor  of the system  can be obtained from  by at-global attractor  of the system  can be obtained from  by at-global attractor  of the system  can be obtained from  by at-

taching the unstable manifold  emanating from the zero element oftaching the unstable manifold  emanating from the zero element oftaching the unstable manifold  emanating from the zero element oftaching the unstable manifold  emanating from the zero element of

the space the space the space the space .... Moreover,  Moreover,  Moreover,  Moreover, ....

It should be noted that appearance of a limit invariant torus of high dimension pos-
sesssing the structure described in Theorem 7.2 is usually assosiated with the Land-
au-Hopf picture of turbulence appearance in fluids. Assume that the parameter 
gradually decreases. Then for some fixed choice of the function  the following
picture is sequentially observed. If  is large enough, then there exists only one at-
tracting fixed point in the system. While  decreases and passes some critical value

, this fixed point loses its stability and an attracting limit cycle arises in the sys-
tem. A subsequent decrease of  leads to the appearance of a two-dimensional
torus. It exists for some interval of values of :  Then tori
of higher dimensions arise sequentially. Therefore, the character of asymptotic be-
haviour of typical trajectories becomes more complicated as  decreases. According
to the Landau-Hopf scenario, movement along an infinite-dimensional torus corres-
ponds to the turbulence.

§ 8 On § 8 On § 8 On § 8 On Retarded SemilinearRetarded SemilinearRetarded SemilinearRetarded Semilinear

Parabolic EquationsParabolic EquationsParabolic EquationsParabolic Equations

In this section we show how the above-mentioned ideas can be used in the study of
the asymptotic properties of dynamical systems generated by the retarded perturba-
tions of problem (2.1). It should be noted that systems corresponding to ordinary re-
tarded differential equations are quite well-studied (see, e. g., the book by J. Hale [4]).
However, there are only occasional journal publications on the retarded partial dif-
ferential equations. The exposition in this section is quite brief. We give the reader
an opportunity to restore the missing details independently. 

As before, let  be a positive operator with discrete spectrum in a separable
Hilbert space  and let  be the space of strongly continuous functions
on the segment  with the values in ,  . Further we also use
the notation , where  is a fixed number (with the meaning
of the delay time). It is clear that  is a Banach space with the norm

.
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Let be a (nonlinear) mapping of the space  into  possessing the property

, , (8.1) 

for any  such that , where is an arbitrary number and 
is a nondecreasing function. In the space  we consider a differential equation 

, , (8.2) 

where  denotes the element from  determined with the help of the function
 by the equality

,  .

We equip equation (8.2) with the initial condition

, , (8.3) 

where is an element from .
The simplest example of problem (8.2) and (8.3) is the Cauchy problem for the

nonlinear retarded diffusion equation:

(8.4) 

Here  is a positive parameter,  and  are the given scalar functions.
As in the non-retarded case (see Section 2), we give the following definition.

A function  is called a mild (in mild (in mild (in mild (in ) solution) solution) solution) solution

to problem (8.2) and (8.3) on the half-interval  if (8.3) holds and 
satisfies the integral equation

. (8.5)

The following analogue of Theorem 2.1 on the local solvability of problem (8.2)
and (8.3) holds.

Theorem 8.1.

Assume that Assume that Assume that Assume that (8.1) holds. Then for any initial condition  there holds. Then for any initial condition  there holds. Then for any initial condition  there holds. Then for any initial condition  there

exists  such that problem exists  such that problem exists  such that problem exists  such that problem (8.2) and  and  and  and (8.3) has a unique mild solution has a unique mild solution has a unique mild solution has a unique mild solution

on the half-interval on the half-interval on the half-interval on the half-interval ....

Proof.

As in Section 2, we use the fixed point method. For the sake of simplicity we
consider the case  (for arbitrary  the reasoning is similar). In the space

 we consider a ball
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,

where  and is the initial condition for problem
(8.2) and (8.3). We also use the notation

.

We consider the mapping  from  into itself defined by the formula

.

Here we assume that  for . Using the estimate (see Exer-
cise 1.23) 

, , (8.6) 

(for  we suppose ) we have that

. (8.7) 

If , then

.

This easily implies that

, ,

where, as above,  is defined by the formula

, .

Hence, estimate (8.1) for  gives us that

.

Since  for , the last estimate can be rewritten in
the form

for . Therefore, (8.7) implies that

,

if , . Similarly, we have that
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for . These two inequalities enable us to choose 
such that  is a contractive mapping of  into itself. Consequently, there exists
a unique fixed point  of the mapping . The structure of the ope-
rator  implies that . Therefore, the function

lies in  and is a mild solution to problem (8.2), (8.3) on the segment
. Thus, Theorem 8.1 is proved.

In many aspects the theory of retarded equations of the type (8.2) is similar to the
corresponding reasonings related to the problem without delay (see (2.1)). The exer-
cises below partially confirm that.

Prove the assertions similar to the ones in Exercises 2.1–2.5
and in Theorem 2.2.

Assume that the constant  in (8.1) does not depend
on . Prove that problem (8.2) and (8.3) has a unique mild solution
on , provided . Moreover, for any pair of solu-
tions  and  the estimate

(8.8) 

is valid, where is the initial condition for  (see (8.3)).

For the sake of simplicity from now on we restrict ourselves to the case when the
mapping  has the form

,  , (8.9) 

where is a continuous mapping from  into ,  continu-
ously maps  into  and possesses the property . We also assume
that  is a potential operator, i.e. there exists a continuously Frechét differenti-
able function  on  such that . We require that

, (8.10) 

for all , where , , , and  are real parameters,  and are positive
(cf. Section 2). As to the retarded term , we consider the uniform estimate

(8.11) 

to be valid. Here is an absolute constant and .
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Assume that conditions (8.9)–(8.11) hold. Then problem (8.2)
and (8.3) has a unique mild solution (in ) on any segment

 for every initial condition  from .

Therefore, we can define an evolutionary operator  acting in the space 
by the formula

, , (8.12) 

where is a mild solution to problem (8.2) and (8.3).

Prove that the operator  given by formula (8.12) satisfies
the semigroup property: , ,  and the
pair  is a dynamical system.

Theorem 8.2.

Let conditions Let conditions Let conditions Let conditions (8.9)–(8.11) and and and and (8.1) withwithwithwith  hold. Assume thathold. Assume thathold. Assume thathold. Assume that

the parameters in the parameters in the parameters in the parameters in (8.10) and  and  and  and (8.11) satisfy the equation satisfy the equation satisfy the equation satisfy the equation

....

Then the dynamical system  generated by equality Then the dynamical system  generated by equality Then the dynamical system  generated by equality Then the dynamical system  generated by equality (8.12) is a dissi- is a dissi- is a dissi- is a dissi-

pative compact system.pative compact system.pative compact system.pative compact system.

Proof.

We reason in the same way as in the proof of Theorem 4.3. Using the Galerkin
approximations it is easy to find that a solution  to problem (8.2) and (8.3) satisfies
the equalities

and

.

If we add these two equations and use (8.10), then we get that

(8.13) 

where

. (8.14) 

Using (8.11) it is easy to find that there exists a constant  such that
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,

where

, .

Consequently, the inequality

is valid for . Therefore, we have

for the function

.

If we integrate this inequality from  to , then we obtain

.

Therefore, Gronwall’s lemma gives us that

,

provided that

.

Here  and  are positive numbers, . This implies
the dissipativity of the dynamical system . In order to prove its compactness
we note that the reasoning similar to the one in the proof of Lemma 4.1 enables us
to prove the existence of the absorbing set  which is a bounded subset of the
space  for . Using the equality (cf. (8.5)) 

for  large enough, we can show that the equation

holds for the solution  in the absorbing set . Here the constant  depends
on  and the parameters of the problem only, . This circumstance enables
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us to prove the existence of a compact absorbing set for the dynamical system
. Theorem 8.2 is proved. 

Theorem 8.2 and the results of Chapter 1 enable us to prove the following assertion
on the attractor of problem (8.2) and (8.3).

Theorem 8.3.

Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem 8.2 hold. Then the dynamical hold. Then the dynamical hold. Then the dynamical hold. Then the dynamical

system  possesses a compact connected global attractor  which issystem  possesses a compact connected global attractor  which issystem  possesses a compact connected global attractor  which issystem  possesses a compact connected global attractor  which is

a bounded set in the space  for each .a bounded set in the space  for each .a bounded set in the space  for each .a bounded set in the space  for each .

It should be noted that the finite dimensionality of this attractor can be proved
in some cases.
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If an infinite-dimensional dynamical system possesses a global attractor of finite
dimension (see the definitions in Chapter 1), then there is, at least theoretically,
a possibility to reduce the study of its asymptotic regimes to the investigation of pro-
perties of a finite-dimensional system. However, as the structure of attractor cannot
be described in details for the most interesting cases, the constructive investigation
of this finite-dimensional system cannot be carried out. In this respect some ideas
related to the method of integral manifolds and to the reduction principle are very
useful. They have led to appearance and intensive use of the concept of inertial ma-
nifold of an infinite-dimensional dynamical system (see [1]–[8] and the references
therein). This manifold is a finite-dimensional invariant surface, it contains a global
attractor and attracts trajectories exponentially fast. Moreover, there is a possibility
to reduce the study of limit regimes of the original infinite-dimensional system
to solving of a similar problem for a class of ordinary differential equations.

In this chapter we present one of the approaches to the construction of inertial
manifolds (IM) for an evolutionary equation of the type:

, . (0.1)

Here is a function of the real variable  with the values in a separable Hilbert
space . We pay the main attention to the case when  is a positive linear operator
with discrete spectrum and  is a nonlinear mapping of  subordinated to 
in some sense. The approach used here for the construction of inertial manifolds is
based on a variant of the Lyapunov-Perron method presented in the paper [2]. Other
approaches can be found in [1], [3]–[7], [9], and [10]. However, it should be noted
that all the methods for the construction of IM known at present time require a quite
strong condition on the spectrum of the operator : the difference 
of two neighbouring eigenvalues of the operator  should grow sufficiently fast
as .

§ 1 Basic Equation and Concept§ 1 Basic Equation and Concept§ 1 Basic Equation and Concept§ 1 Basic Equation and Concept

of Inertial Manifoldof Inertial Manifoldof Inertial Manifoldof Inertial Manifold

In a separable Hilbert space  we consider a Cauchy problem of the type

, , , , (1.1)

where  is a positive operator with discrete spectrum (for the definition see Section
1 of Chapter 2) and  is a nonlinear continuous mapping from 
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into ,  possessing the properties

(1.2)

and

 (1.3)

for all , , and  from the domain  of the operator . Here  is
a positive constant independent of  and  is the norm in the space . Further it
is assumed that  is the orthonormal basis in  consisting of the eigenfunctions
of the operator :

, , .

Theorem 2.3 of Chapter 2 implies that for any initial condition  prob-
lem (1.1) has a unique mild (in ) solution  on every half-interval ,
i.e. there exists a unique function  which satisfies the inte-
gral equation

(1.4)

for all . This solution possesses the property (see (2.6) in Chapter 2)

,

for  and . Moreover, for any pair of mild solutions  and  to
problem (1.1) the following inequalities hold (see (2.2.15)):

, (1.5)

and (cf. (2.2.18))

, (1.6)

where ,  and  are positive numbers depending on , ,
and  only. Hereinafter , where  is the orthoprojector onto the first

 eigenvectors of the operator . Moreover, we use the notation

for and for . (1.7)

Further we will also use the following so-called dichotomy estimates proved
in Lemma 1.1 of Chapter 2:

, ;

, ; (1.8)
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, , .

The inertial manifoldinertial manifoldinertial manifoldinertial manifold (IM) of problem (1.1) is a collection of surfaces
 in  of the form

,

where is a mapping from  into  satisfying the Lipschitz
condition 

(1.9)

with the constant  independent of  and . We also require the fulfillment of the
invariance condition (if , then the solution  to problem (1.1) posses-
ses the property , ) and the condition of the uniform exponential
attraction of bounded sets: there exists  such that for any bounded set 
there exist numbers  and  such that

for all . Here  is a mild solution to problem (1.1).
From the point of view of applications the existence of an inertial manifold (IM)

means that a regular separation of fast (in the subspace ) and slow (in the
subspace ) motions is possible. Moreover, the subspace of slow motions turns
out to be finite-dimensional. It should be noted in advance that such separation is
not unique. However, if the global attractor exists, then every IM contains it.

When constructing IM we usually use the methods developed in the theory
of integral manifolds for central and central-unstable cases (see [11], [12]).

If the inertial manifold exists, then it continuously depends on , i.e.

for any  and . Indeed, let  be the solution to problem (1.1) with
, . Then  for  and hence

.

Therefore,

Consequently, Lipschitz condition (1.9) leads to the estimate

.

Since , this estimate gives us the required continuity pro-
perty of .
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Prove that the estimate

holds for  when , , .

The notion of the inertial manifold is closely related to the notion of the inertialinertialinertialinertial

formformformform. If we rewrite the solution  in the form , where
, , and , then equation (1.1) can be re-

written as a system of two equations

By virtue of the invariance property of IM the condition  implies that
, i.e. the equality  implies that .

Therefore, if we know the function  that gives IM, then the solution 
lying in  can be found in two stages: at first we solve the problem

, , (1.10)

and then we take  . Thus, the qualitative behaviour of solu-
tions  lying in IM is completely determined by the properties of differential
equation (1.10) in the finite-dimensional space . Equation (1.10) is said to be
the inertial form (IF) of problem (1.1). In the autonomous case ( )
one can use the attraction property for IM and the reduction principle (see Theorem
7.4 of Chapter 1) in order to state that the finite-dimensional IF completely deter-
mines the asymptotic behaviour of the dynamical system generated by problem (1.1).

Let  give the inertial manifold for problem (1.1).
Show that IF (1.10) is uniquely solvable on the whole real axis, i.e.
there exists a unique function  such that
equation (1.10) holds.

Let  be a solution to IF (1.10) defined for all . Prove
that  is a mild solution to problem (1.1) de-
fined on the whole time axis and such that .

Use the results of Exercises 1.2 and 1.3 to show that if IM
 exists, then it is strictly invariant, i.e. for any  and
 there exists  such that  is a solution to prob-

lem (1.1).
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In the sections to follow the construction of IM is based on a version of the Lyapunov-
Perron method presented in the paper by Chow-Lu [2]. This method is based on the
following simple fact.

Lemma 1.1.

Let  be a continuous function on  with the values in  such that

, .

Then for the mild solution  (on the whole axis) to equation

(1.11)

to be bounded in the subspace  it is necessary and sufficient that

(1.12)

for , where  is an element from  and  is an arbitrary real

number.

We note that the solution to problem (1.11) on the whole axis is a function 
 satisfying the equation

for any .

Proof.

It is easy to prove (do it yourself) that equation (1.12) gives a mild solution
to (1.11) with the required property of boundedness. Vice versa, let  be
a solution to equation (1.11) such that  is bounded. Then the func-
tion  is a bounded solution to equation

.

Consequently, Lemma 2.1.2 implies that

.

Therefore, in order to prove (1.12) it is sufficient to use the constant variation
formula for a solution to the finite-dimensional equation

, .

Thus, Lemma 1.1  is proved.
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Lemma 1.1 enables us to obtain an equation to determine the function .
Indeed, let us assume that  is bounded and there exists  with the func-
tion  possessing the property  for all  and .
Then the solution to problem (1.1) lying in  has the form

.

It is bounded in the subspace  and therefore it satisfies the equation of the
form

(1.13)

Moreover,

 . (1.14)

Actually it is this fact that forms the core of the Lyapunov-Perron method. It is
proved below that under some conditions (i) integral equation (1.13) is uniquely
solvable for any  and (ii) the function  defined by equality (1.14)
gives IM.

In the construction of IM with the help of the Lyapunov-Perron method an im-
portant role is also played by the results given in the following exercises.

Assume that , where  is any
number from the interval  and . Let be a mild
solution (on the whole axis) to equation (1.11). Show that  pos-
sesses the property

 

if and only if equation (1.12) holds for . 
Hint: consider the new unknown function

instead of .

Assume that  is a continuous function on the semiaxis
 with the values in  such that for some  from the interval

 the equation

holds. Prove that for a mild solution  to equation (1.11) on the
semiaxis  to possess the property
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it is necessary and sufficient that

(1.15)

where  and  is an element of . Hint: see the hint to
Exercise 1.5.

§ 2 Integral Equation for Determination§ 2 Integral Equation for Determination§ 2 Integral Equation for Determination§ 2 Integral Equation for Determination

of Inertial Manifoldof Inertial Manifoldof Inertial Manifoldof Inertial Manifold

In this section we study the solvability and the properties of solutions to a class of in-
tegral equations which contains equation (1.13) as a limit case. Broader treatment of
the equation of the type (1.13) is useful in connection with some problems of the ap-
proximation theory for IM.

For  and  we define the space  as the set
of continuous functions  on the segment  with the values in 
and such that

.

Here  is a positive number. In this space we consider the integral equation

, , (2.1)

where

Hereinafter the index  of the projectors  and  is omitted, i.e.  is the ortho-
projector onto  and . It should be noted that the most sig-
nificant case for the construction of IM is when .
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Lemma 2.1.

Let at least one of two conditions be fulfilled:

and (2.2)

or  and 

, , (2.3)

where  is defined by equation (1.7). Then for any fixed  there

exists a unique function  satisfying equation (2.1) for all

, where  is an arbitrary number from the segment 

 in the case of (2.2) and  in the case of (2.3).

Moreover,

(2.4)

and

, (2.5)

where

. (2.6)

Proof.

Let us apply the fixed point method to equation (2.1). Using (1.8) it is easy
to check (similar estimates are given in Chapter 2) that

where

(2.7)
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and

. (2.8)

Therefore, if the estimate

, (2.9)

holds, then

. (2.10)

Let us estimate the values  and . Assume that (2.2) is fulfilled.
Then it is evident that 

and

for . Therefore,

.

Consequently, equation (2.2) implies (2.9). Now let the spectral condition (2.3)
be fulfilled. Then

for all . We change the variable in integration 
and find that

,

where the constant  is defined by (1.7). It is also evident that

provided that . Equation (2.3) implies that  lies in
the interval . If we choose the parameter  in such way, then we get
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.

Hence, equation (2.3) implies (2.9). Therefore, estimate (2.10) is valid, provi-
ded that the hypotheses of the lemma hold. Moreover, similar reasoning enables
us to show that

, (2.11)

where  is defined by formula (2.6). In particular, estimates (2.10) and (2.11)
mean that when , , and  are fixed, the operator  maps  into itself
and is contractive. Therefore, there exists a unique fixed point . Evi-
dently it possesses properties (2.4) and (2.5). Lemma 2.1 is proved.

Lemma 2.1 enables us to define a collection of manifolds  by the formula

,

where

. (2.12)

Here  is the solution to integral equation (2.1). Some properties of
the manifolds  and the function  are given in the following assertion.

Theorem 2.1.

Assume that at leaAssume that at leaAssume that at leaAssume that at leasssst one of two conditions t one of two conditions t one of two conditions t one of two conditions (2.2) and  and  and  and (2.3) is satisfied.is satisfied.is satisfied.is satisfied.

Then the mapping  from  into  possesses the propertiesThen the mapping  from  into  possesses the propertiesThen the mapping  from  into  possesses the propertiesThen the mapping  from  into  possesses the properties

a) (2.13)

for any , hereinafter  is defined by formula for any , hereinafter  is defined by formula for any , hereinafter  is defined by formula for any , hereinafter  is defined by formula (2.6) and and and and

;;;; (2.14)

b) the manifold  is a Lipschitzian surface andthe manifold  is a Lipschitzian surface andthe manifold  is a Lipschitzian surface andthe manifold  is a Lipschitzian surface and

(2.15)

for all  and ;for all  and ;for all  and ;for all  and ;

c) if if if if  is the solution to problem is the solution to problem is the solution to problem is the solution to problem (1.1) with the with the with the with the

initial data initial data initial data initial data ,,,,    ,,,, then  then  then  then 

for for for for .... In case of  the inequality In case of  the inequality In case of  the inequality In case of  the inequality

(2.16)
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holds for all , where  is an arbitrary number from theholds for all , where  is an arbitrary number from theholds for all , where  is an arbitrary number from theholds for all , where  is an arbitrary number from the

segment  if segment  if segment  if segment  if (2.2) is fulfilled and  when is fulfilled and  when is fulfilled and  when is fulfilled and  when

(2.3) is fulfilled;  is fulfilled;  is fulfilled;  is fulfilled; 

d) if  does not depend on if  does not depend on if  does not depend on if  does not depend on ,,,, then , i.e. then , i.e. then , i.e. then , i.e.

 is independent of  is independent of  is independent of  is independent of ....

Proof.

Equations (2.12) and (1.8) imply that

By virtue of (2.9) we have that . Therefore, when we change the vari-
able in integration  with the help of equation (2.5) we obtain (2.13).
Similarly, using (2.4) and (1.8) one can prove property (2.15).

Let us prove assertion (c). We fix  and assume that  is a
function on the segment  such that  for  and 

 for . Here  is the solution to integral equation (2.1). Using
equations (1.4) and (2.1) we obtain that 

(2.17)

for . Evidently, equation (2.17) also remains true for . Equa-
tion (1.4) gives us that

.

Therefore, the substitution in (2.17) gives us that

(2.18)

for all , where  and

. (2.19)
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In particular, if  equation (2.18) turns into equation (2.1) with  and
. Therefore, equation (2.12) implies the invariance property 

. Let us estimate the value (2.19). If we reason in the same way as
in the proof of Lemma 2.1, then we obtain that

,

where  is defined by formula (2.7) and

. (2.20)

Therefore, simple calculations give us that

, (2.21)

where  is defined by formula (2.14). Let  be the solution to integral equa-
tion (2.1) for  and . Then using (2.12), (2.18), and (2.1) we find
that

. (2.22)

However, for all  we have that

.

Therefore, the contractibility property of the operator  gives us that

.

Hence, it follows from (2.21) and (2.22) that

This and equation (2.5) imply (2.16). Therefore, assertion (c) is proved.
In order to prove assertion (d) it should be kept in mind that if 

, then the structure of the operator  enables us to state that

for , where . Therefore, if 
is a solution to integral equation (2.1), then the function
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is its solution when  is written instead of . Consequently, equation (2.12)
gives us that 

 .

Thus, Theorem 2.1 is proved.

Show that if , then inequalities (2.13) and
(2.16) can be replaced by the relations

, (2.23)

 , (2.24)

where  is defined by formula (2.14).

§ 3 Existence and Properties§ 3 Existence and Properties§ 3 Existence and Properties§ 3 Existence and Properties

of Inertial Manifoldsof Inertial Manifoldsof Inertial Manifoldsof Inertial Manifolds

In particular, assertion (c) of Theorem 2.1 shows that if the spectral gap condition

, , (3.1)

is fulfilled, then the collection of surfaces

, , (3.2)

is invariant, i.e.

, . (3.3)

Here  is defined by formula (2.12) for  and  is
the evolutionary operator corresponding to problem (1.1). It is defined by the for-
mula , where  is a mild solution to problem (1.1).

In this section we show that collection (3.2) possesses the property of exponen-
tial uniform attraction. Hence,  is an inertial manifold for problem (1.1). More-
over, Theorem 3.1 below states that  is an exponentially asymptoticallyexponentially asymptoticallyexponentially asymptoticallyexponentially asymptotically

completecompletecompletecomplete  IM, i.e. for any solution  there exists a solution 
 lying in the manifold  such that

, , .

In this case the solution  is said to be an induced trajectoryinduced trajectoryinduced trajectoryinduced trajectory for  on the
manifold . In particular, the existence of induced trajectories means that the so-
lution to original infinite-dimensional problem (1.1) can be naturally associated with
the solution to the system of ordinary differential equations (1.10).
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Theorem 3.1.

Assume that spectral gap condition Assume that spectral gap condition Assume that spectral gap condition Assume that spectral gap condition (3.1) is valid for some  is valid for some  is valid for some  is valid for some ....

Then the manifold  given by formula Then the manifold  given by formula Then the manifold  given by formula Then the manifold  given by formula (3.2) is inertial for prob- is inertial for prob- is inertial for prob- is inertial for prob-

lem lem lem lem (1.1).... Moreover, for any solution  there exists an in- Moreover, for any solution  there exists an in- Moreover, for any solution  there exists an in- Moreover, for any solution  there exists an in-

duced trajectory  such that  for  andduced trajectory  such that  for  andduced trajectory  such that  for  andduced trajectory  such that  for  and

,,,, (3.4)

where and where and where and where and ....

Proof.

Obviously it is sufficient just to prove the existence of an induced trajectory
 possessing property (3.4). Let  be a mild solution to problem (1.1),

. We construct the induced trajectory  for 
in the form , where  lies in the space 

 of continuous functions on the semiaxis  such that

, (3.5)

where . We introduce the notation

(3.6)

and consider the integral equation (cf. (1.15))

 (3.7)

in the space . Here the value  is chosen from the condition

,

i.e. such that

.

Therefore, by virtue of (3.7) we have

. (3.8)

Thus, in order to prove inequality (3.4) it is sufficient to prove the solvability of inte-
gral equation (3.7) in the space  and to obtain the estimate of the solution. The
preparatory steps for doing this are hidden in the following exercises.
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Assume that  has the form (3.6). Show that for any

 

and for  the following inequalities hold:

, (3.9)

. (3.10)

Using (1.8) prove that the equations 

, (3.11)

(3.12)

hold for  and . Here  is defined by formula
(1.7).

Lemma 3.1.

Assume that spectral gap condition (3.1) holds with . Then

 is a continuous contractive mapping of the space  into itself.

The unique fixed point  of this mapping satisfies the estimate

. (3.13)

Proof.

If we use (3.7), then we find that

for . Therefore, (3.9), (3.11), and (3.12) give us that
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Since , spectral gap condition (3.1) implies that

. (3.14)

Similarly with the help of (3.10)–(3.12) we have that

(3.15)

for any . From equations (3.8), (3.9), and (2.15) we obtain that

.

Therefore, (3.11) implies that

.

Similarly we have that

. (3.17)

It follows from (3.14)–(3.17) that

, (3.18)

.

Therefore, if , then the operator  is continuous and contractive in
. Estimate (3.13) of its fixed point follows from (3.18). Lemma 3.1 is proved.

In order to complete the proof of Theorem 3.1 we must prove that the function

is a mild solution to problem (1.1) lying in  (here  is a solution
to integral equation (3.7) ). We can do that by using the result of Exercise 1.2, the in-
variance of the collection , and the fact that equality (3.8) is equivalent to the
equation . Theorem 3.1 is completely proved.

Show that if the hypotheses of Theorem 3.1 hold, then the in-
duced trajectory  is uniquely defined in the following sense: if
there exists a trajectory  such that  for  and

with , then   for  .
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The construction presented in the proof of Theorem 3.1 shows that in order to build
the induced trajectory for a solution  with the exponential order of decrease 
given, it is necessary to have the information on the behaviour of the solution 
for allallallall  values . In this connection the following simple fact on the exponential
closeness of the solution  to its projection  onto the mani-
fold appears to be useful sometimes.

Show that if the hypotheses of Theorem 3.1 hold, then the es-
timate

is valid for any solution  to problem (1.1). Here 
and  (Hint: add the value 

 to the expression under the norm sign in the left-hand
side. Here  is the induced trajectory for ).

It is evident that the inertial manifold  consists of the solutions  to problem
(1.1) which are defined for all real  (see Exercises 1.3 and 1.4). These solutions can
be characterized as follows.

Theorem 3.2.

Assume that spectral gap condition Assume that spectral gap condition Assume that spectral gap condition Assume that spectral gap condition (3.1) holds with  and holds with  and holds with  and holds with  and

 is the inertial manifold for problem  is the inertial manifold for problem  is the inertial manifold for problem  is the inertial manifold for problem (1.1) constructed in Theorem constructed in Theorem constructed in Theorem constructed in Theorem 3.1....

Then for a solution  to problem Then for a solution  to problem Then for a solution  to problem Then for a solution  to problem (1.1) defined for all  to lie in the defined for all  to lie in the defined for all  to lie in the defined for all  to lie in the

inertial manifold , it is necessary and sufficient thatinertial manifold , it is necessary and sufficient thatinertial manifold , it is necessary and sufficient thatinertial manifold , it is necessary and sufficient that

 (3.19)

for each , where for each , where for each , where for each , where ....

Proof.

If , then . Therefore, equation (2.13)
implies that

. (3.20)

The function  satisfies the equation

for all real  and . Therefore, we have that
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for , where

.

Hence, the inequality

holds for the function  and . If we introduce the func-
tion , then the last inequlity can be rewritten in the form

, ,

or

, .

After the integration over the segment  and a simple transformation it is easy
to obtain the estimate

. (3.21)

Obviously for  we have that

.

Therefore, equations (3.21) and (3.20) imply (3.19).
Vice versa, we assume that equation (3.19) holds for the solution . Then

, . (3.22)

It is evident that  is a bounded (on ) solution to the
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where . By virtue of (3.22) the function  is
bounded in . It is also clear that  is a positive operator with discrete
spectrum in . Therefore, Lemma 1.1 is applicable. It gives

.

Using the equation for  it is now easy to find that

, ,

where  and  is the integral operator similar to the one in (2.1).
Hence, we have that  accoring to definition (2.12) of the
function . Thus, Theorem 3.2  is proved.

The following assertion shows that IM  can be approximated by the mani-
folds , , with the exponential accuracy (see (2.12)). 

Theorem 3.3.

Assume that spectral gap condition Assume that spectral gap condition Assume that spectral gap condition Assume that spectral gap condition (3.1) is fulfilled with  is fulfilled with  is fulfilled with  is fulfilled with .... We also We also We also We also

assume that the function  is defined by equality assume that the function  is defined by equality assume that the function  is defined by equality assume that the function  is defined by equality (2.12) for for for for

. Then the estimate. Then the estimate. Then the estimate. Then the estimate

(3.23)

is valid with , , ; the constants  and is valid with , , ; the constants  and is valid with , , ; the constants  and is valid with , , ; the constants  and 

are defined by equations are defined by equations are defined by equations are defined by equations (2.6) and  and  and  and (2.14);;;;

,,,, ....

Proof.

Let . Definition (2.12) implies that

, (3.24)

where  is a solution to integral equation (2.1) with , . The ope-
rator  acting in  (see (2.1)) can be represented in the form

, ,
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and  is an arbitrary element in . Therefore, if  is a solution
to problem (2.1) with , then

(3.25)

for all . Let us estimate the value . As before it is easy to
verify that

for all , where

,

 ,

and the norm  is defined using the constants  and 
by the formula

.

Evidently, spectral gap condition (3.1) implies the same equation with the parameter
 instead of . Therefore, simple calculations based on (1.8) give us that

and ,

where  is defined by formula (2.14). Using Lemma 2.1 under condition (2.3) with
 instead of  we obtain that

,

where  is given by formula (2.6). Therefore, finaly we have that
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Therefore, since  is a contractive operator in , equation (3.25)
gives us that

Here we also use the equality . Hence, estimate (3.23) follows from
(3.24). Theorem 3.3  is proved.

Show that in the case when  equation (3.23)
can be replaced by the inequality

.

Assume that the hypotheses of Theorem 3.1 hold. Then the
estimate

holds for  and for any solution  to problem (1.1) possess-
ing the dissipativity property:  for  and for
some  and . Here  and the constant 
does not depend on .

Therefore, if the hypotheses of Theorem 3.1 hold, then a bounded solution to prob-
lem (1.1) gets into the exponentially small (with respect to  and ) vicinity of
the manifold  at an exponential velocity.

According to (2.12) in order to build an approximation  of the inertial
manifold  we should solve integral equation (2.1) for  large enough. This
equation has the same structure both for  and for . Therefore, it is im-
possible to use the surfaces  directly for the effective approximation of .
However, by virtue of contractiveness of the operator  in the space 

, its fixed point  which determines  can be found with the
help of iterations. This fact enables us to construct the collection  of appro-
ximations for  as follows. Let  be an element of . We take

, ,

and define the surfaces  by the formula

,
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Let  and let . Show that

and .

Assume that spectral gap condition (3.1) is fulfilled. Show
that

,

where  is defined by formula (2.6) and  is the function
that determines the inertial manifold.

Prove the assertion for  similar to the one in Exer-
cise 3.5.

Theorems represented above can also be used in the case when the original system is
dissipative and estimates (1.2) and (1.3) are not assumed to be uniform with respect
to . The dissipativity property enables us to restrict ourselves to the con-
sideration of the trajectories lying in a vicinity of the absorbing set when we study
the asymptotic behaviour of solutions to problem (0.1). In this case it is convenient
to modify the original problem. Assume that the mapping  is continuous with
respect to its arguments and possesses the properties

, (3.26)

for any  and for all , , and  lying in the ball .
Let  be an infinitely differentiable function on  such that

, ;  , ;

, , .

We define the mapping  by assuming that

, . (3.27)

Show that the mapping  possesses the properties

,

, (3.28)

where  and  is a constant from (3.26). 

Let us now assume that  satisfies condition (3.26) and the problem

, , (3.29)

has a unique mild solution on any segment  and possesses the following
dissipativity property: there exists  such that for any  the relation
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for all (3.30)

holds, provided that . Here  is the solution to problem (3.29).

Show that the asymptotic behaviour of solutions to problem
(3.29) completely coincides with the asymptotic behaviour of solu-
tions to the problem

, , (3.31)

where  is defined by formula (3.27) and  is the constant
from equation (3.30).

Assume that for a solution to problem (3.29) the invariance
property of the absorbing ball is fulfilled: if , then

 for all . Let  be the invariant manifold
of problem (3.31). Then the set  is in-
variant for problem (3.29): if , then  ,

.

Thus, if the appropriate spectral gap condition for problem (3.29) is fulfilled, then
there exists a finite-dimensional surface which is a locally invariant exponentially at-
tracting set.

In conclusion of this section we note that the version of the Lyapunov-Perron me-
thod represented here can also be used for the construction (see [13]) of inertial
manifolds for retarded semilinear parabolic equations similar to the ones considered
in Section 8 of Chapter 2. In this case both the smallness of retardation and the fulfil-
ment of the spectral gap condition of the form (3.1) are required.

§ 4 Continuous Dependence of Inertial§ 4 Continuous Dependence of Inertial§ 4 Continuous Dependence of Inertial§ 4 Continuous Dependence of Inertial

Manifold on Problem ParametersManifold on Problem ParametersManifold on Problem ParametersManifold on Problem Parameters

Let us consider the Cauchy problem

, , (4.1)

in the space  together with problem (1.1). Assume that  is a nonlinear
mapping from  into  possessing properties (1.2) and (1.3) with the
same constant  as in problem (1.1). If spectral gap condition (3.1) is fulfilled, then
problem (4.1) (as well as (1.1)) possesses an invariant manifold
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, . (4.2)

The aim of this section is to obtain an estimate for the distance between the
manifolds  and . The main result is the following assertion.

Theorem 4.1.

Assume that conditions Assume that conditions Assume that conditions Assume that conditions (1.2),,,, (1.3),,,, and  and  and  and (3.1) are fulfilled both forare fulfilled both forare fulfilled both forare fulfilled both for

problems problems problems problems (1.1) and  and  and  and (4.1).... We also assume that We also assume that We also assume that We also assume that

(4.3)

for all  and for all  and for all  and for all  and ,,,, where  and  are positive numbers. Then where  and  are positive numbers. Then where  and  are positive numbers. Then where  and  are positive numbers. Then

the equationthe equationthe equationthe equation

is valid for the functions  and  which give the invariantis valid for the functions  and  which give the invariantis valid for the functions  and  which give the invariantis valid for the functions  and  which give the invariant

manifolds for problems manifolds for problems manifolds for problems manifolds for problems (1.1) and  and  and  and (4.1) respectively. Here the numbers respectively. Here the numbers respectively. Here the numbers respectively. Here the numbers

 and  do not depend on  and  and  do not depend on  and  and  do not depend on  and  and  do not depend on  and ....

Proof.

Equation (2.12) with  implies that

,

where  and  are solutions to the integral equations of the type (2.1) cor-
responding to problems (1.1) and (4.1) respectively. Equations (1.3) and (4.3) give
us that

(4.4)

for , where

(4.5)

and  as before. Hence, after simple calculations as in Section 2 we
find that

. (4.6)

Let us estimate the value . Since  and  are fixed points of the correspon-
ding operator , we have that
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Therefore, by using spectral gap condition (3.1) and estimate (4.4) as above it is
easy to find that

.

Consequently,

.

Therefore, equation (4.6) implies that

.

Hence, estimate (2.5) gives us the inequality

.

This implies the assertion of Theorem 4.1.

Let us now consider the Galerkin approximations  of problem (1.1). We re-
mind (see Chapter 2) that the Galerkin approximation of the order  is defined as a
function  with the values in , this function being a solution to the problem

, . (4.7)

Here  is the orthoprojector onto the span of elements  in .

Assume that spectral gap condition (3.1) holds and .
Show that problem (4.7) possesses an invariant manifold of the form

in , where the function  is de-
fined by equation similar to (2.12).
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The following assertion holds.

Theorem 4.2.

Assume that spectral gap condition Assume that spectral gap condition Assume that spectral gap condition Assume that spectral gap condition (3.1) holds. Let  andholds. Let  andholds. Let  andholds. Let  and

 be the functions defined by the formulae of the type  be the functions defined by the formulae of the type  be the functions defined by the formulae of the type  be the functions defined by the formulae of the type (2.12) and and and and

let these functions give invariant manifolds for problems let these functions give invariant manifolds for problems let these functions give invariant manifolds for problems let these functions give invariant manifolds for problems (1.1) and  and  and  and (4.7) for for for for

 respectively. Then the estimate respectively. Then the estimate respectively. Then the estimate respectively. Then the estimate

(4.8)

is valid, where the constant  is defined by formula is valid, where the constant  is defined by formula is valid, where the constant  is defined by formula is valid, where the constant  is defined by formula (2.6)....

Proof.

It is evident that

, (4.9)

where  and  are solutions to the integral equations

, ,

and

, .

Here  is defined as in (2.1). Since

,

we have

.

The contractiveness property of the operator  leads to the equation

.

In particular, this implies that

.

Hence, with the help of (4.9) we find that

(4.10)
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Let us estimate the value . It is clear that

.

Therefore, Lemma 2.1.1 (see also (1.8)) gives us that

where

as above. Simple calculations analogous to the ones in Lemma 2.1 imply that

,

where the constant  has the form (1.7). Consequently, using (2.5) we obtain

This and (4.10) imply estimate (4.8). Theorem 4.2  is proved.

In addition assume that the hypotheses of Theorem 4.2 hold
and . Show that in this case estimate (4.8) has the form 
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§ 5 Examples and Discussion§ 5 Examples and Discussion§ 5 Examples and Discussion§ 5 Examples and Discussion

E x a m p l e  5.1

Let us consider the nonlinear heat equation

Assume that  is a positive parameter and  is a continuous function
of its variables which possesses the properties

, .

Problem (5.1)–(5.3) generates a dynamical system in  (see Section 3
of Chapter 2). Therewith

, ,

where  is the Sobolev space of the order . The mapping  given
by the formula  satisfies conditions (1.2) and (1.3) with

. In this case spectral gap condition (2.3) has the form

.

Thus, problem (5.1)–(5.3) possesses an inertial manifold of the dimension ,
provided that

(5.4)

for some .

Find the conditions under which the inertial manifold of prob-
lem (5.1)–(5.3) is one-dimensional. What is the structure of the cor-
responding inertial form?

Consider problem (5.1) and (5.3) with the Neumann bounda-
ry conditions:

(5.5)

Show that problem (5.1), (5.3), and (5.5) has an inertial manifold
of the dimension , provided condition (5.4) holds for some
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. (Hint:  with condition (5.5), 
, where  is small enough).

Find the conditions on the parameters of problem (5.1), (5.3),
and (5.5) under which there exists a one-dimensional inertial mani-
fold. Show that if , then the corresponding iner-
tial form is of the type

, .

E x a m p l e  5.2

Consider the problem

(5.6)

Here  and  is a continuous function of its variables such that

(5.7)

for all ,  and

,

where  are nonnegative numbers. As in Example 5.1 we assume that

, , .

It is evident that

.

Here  is the norm in . By using the obvious inequality

, ,

we find that

.

Hence, conditions (1.2) and (1.3) are fulfilled with

, .
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Therewith spectral gap condition (2.3) acquires the form

,

where

.

Thus, the equation

or

must be valid for some . We can ensure the fulfilment of this con-
dition only in the case when

, ,

i.e. if

. (5.9)

Thus, in order to apply the above-presented theorems to the construction of the
inertial manifold for problem (5.6) one should pose some additional conditions
(see (5.7) and (5.9)) on the nonlinear term  or require that the
diffusion coefficient  be large enough.

Assume that  in (5.6), where
the function  possesses properties (5.7) and (5.8) with arbitrary

. Show that problem (5.6) has an inertial manifold for any
, where

.

Characterize the dependence of the dimension of inertial manifold
on .

Study the question on the existence of an inertial manifold for
problem (5.6) in which the Dirichlet boundary condition is replaced
by the Neumann boundary condition (5.5).
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It should be noted that 

, , ,

where  are the eigenvalues of the linear part of the equation of the type

, , ,

in a multidimensional bounded domain . Therefore, we can not expect that Theo-
rem 3.1 is directly applicable in this case. In this connection we point out the paper
[3] in which the existence of IM for the nonlinear heat equation is proved in a boun-
ded domain   that satisfies the so-called “principle of spatial ave-
raging” (the class of these domains contains two- and three-dimensional cubes).

It is evident that the most severe constraint that essentially restricts an applica-
tion of Theorem 3.1 is spectral gap condition (3.1). In some cases it is possible to
weaken or modify it a little. In this connection we mention papers [6] and [7]
in which spectral gap condition (3.1) is given with the parameters  and 
for . Besides it is not necessary to assume that the spectrum of the opera-
tor  is discrete. It is sufficient just to require that the selfadjoint operator  pos-
sess a gap in the positive part of the spectrum such that for its edges the spectral
condition holds. We can also assume the operator  to be sectorial rather than self-
adjoint (for example, see [6]). 

Unfortunately, we cannot get rid of the spectral conditions in the construction
of the inertial manifold. One of the approaches to overcome this difficulty runs as
follows: let us consider the regularization of problem (0.1) of the form

, . (5.10)

Here  and the number  is chosen such that the operator 
possesses spectral gap condition (3.1). Therewith IM for problem (5.10) should be
naturally called an approximate IM for system (0.1). Other approaches to the con-
struction of the approximate IM are presented below.

It should also be noted that in spite of the arising difficulties the number of equations
of mathematical physics for which it is possible to prove the existence of IM is large
enough. Among these equations we can name the Cahn-Hillard equations in the do-
main , , the Ginzburg-Landau equations ( ,

), the Kuramoto-Sivashinsky equation, some equations of the theory of oscilla-
tions ( ), a number of reaction-diffusion equations, the Swift-Hohenberg equa-
tion, and a non-local version of the Burgers equation. The corresponding references
and an extended list of equations can be found in survey [8].

In conclusion of this section we give one more interesting application of the
theorem on the existence of an inertial manifold.
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E x a m p l e  5.3

Let us consider the system of reaction-diffusion equations

, , (5.11)

in a bounded domain . Here  and the function 
satisfies the global Lipschitz condition:

, (5.12)

where , , and . We also assume that .
Problem (5.11) can be rewritten in the form (0.1) in the space 
if we suppose

, .

It is clear that the operator  is positive in its natural domain and it has a dis-
crete spectrum. Equation (5.12) implies that the relation

is valid for . Thus,

,

where 

.

Therefore, problem (5.11) generates an evolutionary semigroup  (see Chap-
ter 2) in the space . An important property of  is the following: the
subspace  which consists of constant vectors is invariant with respect to this
semigroup. The dimension of this subspace is equal to . The action of the
semigroup in this subspace is generated by a system of ordinary differential
equations

, . (5.13)

Assume that equation (5.12) holds for . Show that
equation (5.13) is uniquely solvable on the whole time axis for any
initial condition and the equation

(5.14)

holds for any .
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The subspace  consists of the eigenvectors of the operator  corresponding to the
eigenvalue . The next eigenvalue has the form , where  is
the first nonzero eigenvalue of the Laplace operator with the Neumann boundary
condition on . Therefore, spectral gap equation (3.1) can be rewritten in the
form

(5.15)

for  and , where . It is clear that there exists 
such that equation (5.15) holds for all . Therefore, we can apply Theorem 3.1
to find that if  is large enough, then there exists IM of the type

.

The invariance of the subspace  and estimate (5.14) enable us to use Theorem 3.2
and to state that . This easily implies that , i.e. . Thus,
Theorem 3.1 gives us that for any solution  to problem (5.11) there exists a so-
lution  to the system of ordinary differential equations (5.13) such that

, ,

where the constant  does not depend on  and  is the Sobolev norm
of the first order.

Consider the problem

, ; , (5.16)

where the function  has the form

.
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then the dynamical system generated by problem (5.16) has the
two-dimensional (flat) inertial manifold

and the corresponding inertial form is:

, .

Study the question on the existence of an inertial manifold
for the Hopf model of turbulence appearance (see Section 7 of Chap-
ter 2).

§ 6§ 6§ 6§ 6 Approximate Inertial ManifoldsApproximate Inertial ManifoldsApproximate Inertial ManifoldsApproximate Inertial Manifolds

for for for for Semilinear Parabolic EquationsSemilinear Parabolic EquationsSemilinear Parabolic EquationsSemilinear Parabolic Equations

Even in the cases when the existence of IM can be proved, the question concerning
the effective use of the inertial form 

(6.1)

is not simple. The fact is that it is not practically possible to find a more or less ex-
plicit solution to the integral equation for  even in the finite-dimensional
case. In this connection we face the problem of approximate or asymptotic construc-
tion of an invariant (inertial) manifold. Various aspects of this problem related to fi-
nite-dimensional systems are presented in the book by Ya. Baris and O. Lykova [14].

For infinite-dimensional systems the problem of construction of an approxi-
mate IM can be interpreted as a problem of reduction, i.e. as a problem of construc-
tive description of finite-dimensional projectors  and functions : 

 such that an equation of form (6.1) “inherits” (of course, this needs
to be specified) all the peculiarities of the long-time behaviour of the original system
(0.1). It is clear that the manifolds arising in this case have to be close in some sense
to the real IM (in fact, the dynamics on IM reproduces all the essential features of
the qualitative behaviour of the original system). Under such a formulation a prob-
lem of construction of IM acquires secondary importance, so one can directly con-
struct a sequence of approximate IMs. Usually (see the references in survey [8]) the
problem of the construction of an approximate IM can be formulated as follows: find
a surface of the form 

, (6.2)

which attracts all the trajectories of the system in its small vicinity. The character of
closeness is determined by the parameter  related to the decomposition 
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E x e r c i s e 5.8

9
t
p A p� PB p # p t�� �� t�� ��

# p t�� �

P # . t�� � P H 	
1 P�� �H	

Mt p # p t�� � : p P H��� ��

�N 1�
1�



A p p r o x i m a t e  I n e r t i a l  M a n i f o l d s  f o r  S e m i l i n e a r  P a r a b o l i c  E q u a t i o n s 183 

(6.3)

We obtain the trivial approximate IM  if we put  in (6.2).
In this case  is a finite-dimensional subspace in  whereas inertial form (6.1)
turns into the standard Galerkin approximation of problem (0.1) corresponding to
this subspace. One can find the simplest non-trivial approximation  using for-
mula (6.2) and assuming that 

. (6.4)

The consideration of system (0.1) on  leads to the second equation of equa-
tions (6.3) being replaced by the equality . The results of the
computer simulation (see the references in survey [8]) show that the use of just the
first approximation to IM has a number of advantages in comparison with the tradi-
tional Galerkin method (some peculiarities of the qualitative behaviour of the system
can be observed for a smaller number of modes). 

There exist several methods of the construction of an approximate IM. We present
the approach based on Lemma 2.1 which enables us to construct an approximate IM
of the exponential order, i.e. the surfaces in the phase space  such that their expo-
nentially small (with respect to the parameter ) vicinities uniformly attract all
the trajectories of the system. For the first time this approach was used in paper [15]
for a class of stochastic equations in the Hilbert space. Here we give its deterministic
version.

Let us consider the integral equation (see(2.1))

,

and assume that , where the parameter  possesses the property

. (6.5)

In this case equations (2.2) hold. Hence, Lemma 2.1 enables us to construct a collec-
tion of manifolds  for  with the help of the formula

, (6.6)

where

. (6.7)

Here  is a solution to integral equation (2.1) and . 
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Show that both the function  and the surface 
do not depend on  in the autonomous case .

The following assertion is valid.

Theorem 6.1.

There exist positive numbers  and There exist positive numbers  and There exist positive numbers  and There exist positive numbers  and 

such that ifsuch that ifsuch that ifsuch that if

,,,, ,,,, ,,,, (6.8)

then the mappings  defined by equation then the mappings  defined by equation then the mappings  defined by equation then the mappings  defined by equation (6.7) possess possess possess possess

the propertythe propertythe propertythe property

(6.9)

for all for all for all for all .... Here  is an absolute constant and  is a mild Here  is an absolute constant and  is a mild Here  is an absolute constant and  is a mild Here  is an absolute constant and  is a mild

solution to problem solution to problem solution to problem solution to problem (1.1) such that such that such that such that

 forforforfor .... (6.10)

If , then estimate If , then estimate If , then estimate If , then estimate (6.9) can be rewritten as follows: can be rewritten as follows: can be rewritten as follows: can be rewritten as follows:

(6.11)

where  is defined by equality where  is defined by equality where  is defined by equality where  is defined by equality (2.14)....

Proof.

Let

, ,

where  is a mild solution to problem (1.1) with the initial condition
 at the moment . Therewith . It is evident that

(6.12)

Let us estimate each term in this decomposition. Equation (1.6) implies that

, (6.13)
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where

.

Using (2.16) we find that

(6.14)

where

,

moreover, the second term in  can be omitted if  (see Exer-
cise 2.1). At last equations (2.15) and (1.5) imply that

(6.15)

Thus, equations (6.12)–(6.15) give us the inequality

(6.16)

for , where

and

It follows from (6.16) that under the condition  the equation
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holds with

.

It is clear that  if

,

and

, . (6.18)

Let  be such that equation (6.18) holds for  and for
the parameter  of the form (6.5) with . Then equation (6.8) with

 implies that . Let . Then
it follows from (6.17) that
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,

After iterations we find that

, (6.19)

Equation (6.17) also gives us that

, .

Therefore, it follows from (6.19) that

for all . This implies (6.9) and (6.11) if we take  in the equa-
tion for . Thus, Theorem 6.1  is proved.

In particular, it should be noted that relations (6.9) and (6.11) also mean that a solu-
tion to problem (0.1) possessing the property (6.10) reaches the layer of the thick-
ness  adjacent to the surface  given by equation (6.6)
for  large enough. Moreover, it is clear that if problem (0.1) is autonomous

 and if it possesses a global attractor, then the attractor lies in this
layer. In the autonomous case  does not depend on  (see Exercise 6.1). These
observations give us some information about the position of the attractor in the
phase space. Sometimes they enable us to establish the so-called localization theo-
rems for the global attractor.

Let . Use equations (1.4) and (1.8) to show
that

,

where .

In particular, the result of this exercise means that assumption (6.10) holds for any
 and for  large enough under the condition . In the general

case equation (6.10) is a variant of the dissipativity property.

Let  be a function from .
Assume that 

,

and

,

Show that the assertions of Theorem 6.1 remain true for the function
 if we add the term
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to the right-hand sides of equations (6.9) and (6.11). Here  is de-
fined by equality (6.5) and  is the norm of the function  in the
space .

Therefore, the function  generates a collection of approximate inertial
manifolds of the exponential (with respect to ) order for  large enough.

E x a m p l e  6.1

Let us consider the nonlinear heat equation in a bounded domain :

(6.20)

Assume that the function  possesses the properties

,  .

We use Theorem 6.1 and the asymptotic formula

, ,

for the eigenvalues of the operator  in  to obtain that in the Sobolev
space  for any  there exists a finite-dimensional Lipschitzian surface

 of the dimension  such that

for  and for any mild (in ) solution  to problem (6.20). Here 
is large enough,  and  are positive constants.

Consider the abstract form of the two-dimensional system of
the Navier-Stokes equations

, (6.21)

(see Example 3.5 and Exercises 4.10 and 4.11 of Chapter 2). Assume
that  for . Use the dissipativity property for
(6.21) and the formula

for the eigenvalues of the operator  to show that there exists a col-
lection of functions  from  into 
possessing the properties
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a) ;

 

for any ;

b) for any solution  to problem (6.21) there
exists  such that

Here  is the orthoprojector onto the first  eigenelements of the
operator .

Use Theorem 6.1 to construct approximate inertial manifolds
for (a) the nonlocal Burgers equation, (b) the Cahn-Hilliard equa-
tion, and (c) the system of reaction-diffusion equations (see Sec-
tions 3 and 4 of Chapter 2). 

In conclusion of the section we note (see [8], [9]) that in the autonomous case the ap-
proximate IM can also be built using the equation

. (6.22)

Here , ,  is the Frechét derivative and  is its
value at the point  on the element . At least formally, equation (6.22) can be ob-
tained if we substitute the pair  into equation (6.3). The second of
equations (6.3) implicitly contains a small parameter . Therefore, using (6.22)
we can suggest an iteration process of calculation of the sequence  giving the
approximate IM:

, , (6.23)

where the integers  are such that

, , .

One should also choose the zeroth approximation and concretely define the form of
the values  (for example, we can take  and , 

). When constructing a sequence of approximate IMs one has to solve only a linear
stationary problem on each step. From the point of view of concrete calculations this
gives certain advantages in comparison with the construction used in Theorem 6.1.
However, these manifolds have the power order of approximation only (for detailed
discussion of this construction and for proofs see [9]).

Prove that the mapping  has the form (6.4) under the
condition . Write down the equation for  when

, .

A# p t�� � c1 N 1 2���

A # p1 t�� � # p2 t�� ��� � c2 A p1 p2�� ��

p p� 1 p2� PD A� ��

u t� � D A� ��
t* 1


AQ u t� � # Pu t� � t�� ��� �

c3 �0 N1 2� t t
*

�� ��� �exp c4 �1 N1 2��� �.exp�

�

�

P N

A

E x e r c i s e 6.5

#6 p� � Ap� PB p # p� ��� ���C D A# p� �� QB p # p� ��� ��

p PH� Q I P�� #6 p� � #6 p� � w�C D
p w

p t� � # p t� �� ��� �
�

N 1�
1�

#
m

� �

A#
k

p� � Q B p #:1 k� � p� ��� �

#:2 k� �
6 p� � Ap PB p #:3 k� � p� ��� ���C D

�

�

�

k 1�

:
i

k� �

0 :
i

k� � k 1�� � :
i

k� �
k �	
lim �� i 1 2 3� ��

:i k� � #0 v� � 0& :i k� � k 1�� i 1 2� ��
3

E x e r c i s e 6.6 #1 v� �
#0 v� � 0& #2 v� �

:1 2� � 1� :2 2� � :3 2� � 0� �



I n e r t i a l  M a n i f o l d  f o r  S e c o n d  O r d e r  i n  T i m e  E q u a t i o n s 189 

§ 7 Inertial Manifold for Second Order§ 7 Inertial Manifold for Second Order§ 7 Inertial Manifold for Second Order§ 7 Inertial Manifold for Second Order

in Time Equationsin Time Equationsin Time Equationsin Time Equations

The approach to the construction of IM given in Sections 2–4 is essentially based on
the fact that the system has form (0.1) with a selfadjoint positive operator . How-
ever, there exists a wide class of problems which cannot be reduced to this form.
From the point of view of applications the important representatives of this class are
second order in time systems arising in the theory of nonlinear oscillations:

(7.1)

In this section we study the existence of IM for problem (7.1). We assume that
 is a selfadjoint positive operator with discrete spectrum (  and  are the cor-

responding eigenvalues and eigenelements) and the mapping  possesses the
properties of the type (1.2) and (1.3) for , i.e.  is a continuous
mapping from  into  such that

,

, (7.2)

where  and .

The simplest example of a system of the form (7.1) is the following nonlinear
wave equation with dissipation:

(7.3)

Let . It is clear that  is a separable Hilbert space with the
inner product

, (7.4)

where  and  are elements of . In the space  prob-
lem (7.1) can be rewritten as a system of the first order:

, ; . (7.5)
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Here

, .

The linear operator  and the mapping  are defined by the equations:

, , (7.6)

, .

Prove that the eigenvalues and eigenvectors of the operator
 have the form:

, , , (7.7)

where  and  are the eigenvalues and eigenvectors of .

Display graphically the spectrum of the operator  on the
complex plane.

These exercises show that although problem (7.1) can be represented in the form
(7.5) which is formally identical to (0.1) we cannot use Theorem 3.1 here. Neverthe-
less, after a small modification the reasoning of Sections 2–4 enables us to prove the
existence of IM for problem (7.1). Such a modification based on an idea from [16] is
given below.

First of all we prove the solvability of problem (7.1). Let us first consider the li-
near problem

(7.8)

These equations can also be rewritten in the form (cf. (7.5))

, , (7.9)

where  and . We define a mild solution  mild solution  mild solution  mild solution to
problem (7.8) (or (7.9)) on the segment  as a function  from the class

which satisfies equations (7.8). Here  as before (see Chapter 2). One
can prove the existence and uniqueness of mild solutions to (7.8) using the Galerkin
method, for example. The approximate Galerkin solution  approximate Galerkin solution  approximate Galerkin solution  approximate Galerkin solution of the order  is
defined as a function
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satisfying the equations

(7.10)

for . Moreover, we assume that  and  is
absolutely continuous. Hereinafter we use the notation . Evidently
equations (7.10) can be rewritten in the form

(7.11)

where  is the orthoprojector onto  in .

In the exercises given below it is assumed that

, , . (7.12)

Show that problem (7.10) is uniquely solvable on any segment
 and . 

Show that the energy equality

(7.13)

holds for any solution to problem (7.10).

Using (7.11) and (7.13) prove the a priori estimate

for the approximate Galerkin solution  to problem (7.8).

Using the linearity of problem (7.11) show that for every two
approximate solutions  and  the estimate
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holds for all , where  is an arbitrary number.

Using the results of Exercises 7.5 and 7.6 show that we can
pass to the limit  in equations (7.11) and prove the existence
and uniqueness of mild solutions to problem (7.8) on every segment

 under the condition (7.12).

For a mild solution  to problem (7.8) prove the energy
equation:

(7.14)

In particular, the exercises above show that for  problem (7.8) generates a
linear evolutionary semigroup  in the space  by the formula

, (7.15)

where  is a mild solution to problem (7.8) for . Equation (7.14) implies
that the semigroup  is contractive for .

Assume that conditions (7.12) are fulfilled. Show that the
mild solution to problem (7.8) can be presented in the form

, (7.16)

where the semigroup  is defined by equation (7.15).

Let us now consider nonlinear problem (7.1) and define its mild solution  mild solution  mild solution  mild solution as
a function  satisfying the integral equation

(7.17)

on . Here  and .
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Show that the estimates

,

hold in the space . Here  is a positive constant.

Follow the reasoning used in the proof of Theorems 2.1 and
2.3 of Chapter 2 to prove the existence and uniqueness of a mild so-
lution to problem (7.1) on any segment .

Thus, in the space  there exists a continuous evolutionary family of operators
 possessing the properties

, ,

and

,

where  is a mild solution to problem (7.1) with the initial condition 
.

Let condition  hold for some integer . We consider the decomposi-
tion of the space  into the orthogonal sum

,

where

and  is defined as the closure of the set

.

Show that the subspaces  and  are invariant with re-
spect to the operator . Find the spectrum of the restrictions of the
operator  to each of these spaces.

Let us introduce the following inner products in the spaces  and  (the pur-
pose of this introduction will become apparent further):

 

Here  and  are elements from the corresponding sub-
space . Using (7.18) we define a new inner product and a norm in  by the
equalities:

, ,

where  and  are decompositions of the elements  and 
into the orthogonal terms , .
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Lemma 7.1.

The estimates

, ; (7.19)

, (7.20)

hold for . Here

. (7.21)

Proof.

Let . It is evident that in this case 
for any . Therefore,

,

i.e. equation (7.19) holds. Let . Then using the inequality

, , (7.22)

for  we find that

.

If we take  and use (7.22), then we obtain estimate (7.20). The
lemma  is proved.

In particular, this lemma implies the estimate

(7.23)

for any , where  and  has the form (7.21).

Prove the equivalence of the norm  and the norm generated
by the inner product (7.4).

Show that we can take  for  in (7.20)
and (7.23).

Prove that the eigenvectors of the operator  (see
(7.7)) possess the following orthogonal properties: 

, ,

, . (7.24)
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Note that the last of these equations is one of the reasons of introducing a new inner
product.

Let  be the orthoprojector onto the subspace  in , .

Lemma 7.2.

The equality

, , (7.25)

is valid. Here  is the operator norm which is induced by the corres-

ponding vector norm. 

Proof. 

Let . We consider the function . Since  is inva-
riant with respect to , the equation

holds, where  is a solution to problem (7.8) for . After simple cal-
culations we obtain that

.

It is evident that

.

Therefore,

.

Consequently,

, . (7.26)

If we now notice that

,

then equation (7.26) implies (7.25). Thus, Lemma 7.2  is proved.

Let us consider the subspaces

.

Equation (7.24) gives us that the subspaces are orthogonal to each other and there-
fore . Using (7.24) it is easy to prove (do it yourself) that
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, , (7.27)

, . (7.28)

We use the following pair of orthogonal (with respect to the inner product
) projectors in the space 

,

to construct the inertial manifold of problem (7.1) (or (7.5)). Lemma 7.2 and equa-
tions (7.27) and (7.28) imply the dichotomy equations

, ; , . (7.29)

We remind that  and .
The assertion below plays an important role in the estimates to follow.

Lemma 7.3.

Let , where  and  pos-

sesses properties (7.2). Then

, ,

, , (7.30)

where

. (7.31)

The proof of this lemma follows from the structure of the mapping  and from
estimates (7.2) and (7.23).

Show that one can take  for  in
(7.30) (Hint: see Exercise 7.14).

Let us now consider the integral equation (cf. (2.1) for )

(7.32)
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in the space  of continuous vector-functions  on  with the values
in  such that the norm

, ,

is finite. Here  and .

Show that the right-hand side of equation (7.32) is a continu-
ous function of the variable  with the values in .

Lemma 7.4.

The operator  maps the space  into itself and possesses the pro-

perties 

(7.33)

and

. (7.34)

Proof.

Let us prove (7.34). Evidently, equations (7.29) and (7.30) imply that

Since

,

it is evident that

with

.

Simple calculations show that . Consequently, equa-
tion (7.34) holds. Equation (7.33) can be proved similarly. Lemma 7.4 is proved.
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Thus, if for some  the condition

(7.35)

holds, then equation (7.32) is uniquely solvable in  and its solution  can be esti-
mated as follows:

. (7.36)

Therefore, we can define a collection of manifolds  in the space  by the for-
mula

, (7.37)

where

. (7.38)

Here  is a solution to integral equation (7.32). The main result of this section is
the following assertion.

Theorem 7.1.

Assume thatAssume thatAssume thatAssume that

andandandand (7.39)

for some , where  and  is defined by formulafor some , where  and  is defined by formulafor some , where  and  is defined by formulafor some , where  and  is defined by formula

(7.31).... Then the function  given by equality  Then the function  given by equality  Then the function  given by equality  Then the function  given by equality (7.38) satisfies the Lip- satisfies the Lip- satisfies the Lip- satisfies the Lip-

schitz conditionschitz conditionschitz conditionschitz condition

(7.40)

and the manifold  is invariant with respect to the evolutionary opera-and the manifold  is invariant with respect to the evolutionary opera-and the manifold  is invariant with respect to the evolutionary opera-and the manifold  is invariant with respect to the evolutionary opera-

tor  generated by the formulator  generated by the formulator  generated by the formulator  generated by the formula

,,,, ,,,,

in in in in ,,,, where  is a solution to problem  where  is a solution to problem  where  is a solution to problem  where  is a solution to problem (7.1) with the initial condition with the initial condition with the initial condition with the initial condition

.... Moreover, if  Moreover, if  Moreover, if  Moreover, if ,,,, then there exist initial conditions then there exist initial conditions then there exist initial conditions then there exist initial conditions

 such that such that such that such that

for , where for , where for , where for , where ....

The proof of the theorem is based on Lemma 7.4 and estimates (7.29) and (7.30).
It almost entirely repeats the corresponding reasonings in Sections 2 and 3. We give
the reader an oppotunity to recover the details of the reasonings as an exercise. 
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Let us analyse condition (7.39). Equation (7.31) implies that (7.39) holds if

, . (7.41)

However, if we assume that

, (7.42)

then for condition (7.41) to be fulfilled it is sufficient to require that

. (7.43)

Thus, if for some  conditions (7.42) and (7.43) hold, then the assertions of Theo-
rem 7.1 are valid for system (7.1). This enables us to formulate the assertion on the
existence of IM as follows. 

Theorem 7.2.

Assume that the eigenvalues  of the operator  possess the propertiesAssume that the eigenvalues  of the operator  possess the propertiesAssume that the eigenvalues  of the operator  possess the propertiesAssume that the eigenvalues  of the operator  possess the properties

andandandand ,,,, ,,,, ,,,, (7.44)

for some sequence  which tends to infinity and satisfies the estimatefor some sequence  which tends to infinity and satisfies the estimatefor some sequence  which tends to infinity and satisfies the estimatefor some sequence  which tends to infinity and satisfies the estimate

,,,, ....

Then there exists  such that the assertions of Theorem Then there exists  such that the assertions of Theorem Then there exists  such that the assertions of Theorem Then there exists  such that the assertions of Theorem 7.1 hold for all hold for all hold for all hold for all

....

Proof.

Equation (7.44) implies that there exists  such that the intervals

, ,

cover some semiaxis . Indeed, otherwise there would appear a subse-
quence  such that

But that is impossible due to (7.44). Consequently, for any  there exists
 such that equations (7.42), (7.43) as well as (7.39) hold.

Consider problem (7.3) with the function 
 possessing the property

.

Use Theorem 7.1 to find a domain in the plane of the parameters
 for which one can guarantee the existence of an inertial ma-

nifold.
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§ 8 Approximate § 8 Approximate § 8 Approximate § 8 Approximate Inertial ManifoldsInertial ManifoldsInertial ManifoldsInertial Manifolds

for Second Order in Time Equationsfor Second Order in Time Equationsfor Second Order in Time Equationsfor Second Order in Time Equations

As seen from the results of Section 7, in order to guarantee the existence of IM for
a problem of the type

(8.1)

we have to require that the parameter  be large enough and the spectral
gap condition (see (7.41)) be valid for the operator . Therefore, as in the case with
parabolic equations there arises a problem of construction of an approximate inertial
manifold without any assumptions on the behaviour of the spectrum of the operator

 and the parameter  which characterizes the resistance force.
Unfortunately, the approach presented in Section 6 is not applicable to the

equation of the type (8.1) without any additional assumptions on . First of all, it is
connected with the fact that the regularizing effect which takes place in the case of
parabolic equations does not hold for second order equations of the type (8.1) (in
the parabolic case the solution at the moment  is smoother than its initial con-
dition).

In this section (see also [17]) we suggest an iteration scheme that enables us to
construct an approximate IM as a solution to a class of linear problems. For the sake
of simplicity, we restrict ourselves to the case of autonomous equations 

. The suggested scheme is based on the equation in functional derivatives
such that the function giving the original true IM should satisfy it. This approach was
developed for the parabolic equation in [9] (see also [8]). Unfortunately, this ap-
proach has two defects. First, approximate IMs have the power order (not the expo-
nential one as in Section 6) and, second, we cannot prove the convergence of
approximate IMs to the exact one when the latter exists.

Thus, in a separable Hilbert space  we consider a differential equation of the type
(8.1) where  is a positive number,  is a positive selfadjoint operator with discrete
spectrum and  is a nonlinear mapping from the domain  of the operator

 into  such that for some integer  the function  lies in  as a
mapping from  into  and for every  the following estimates hold:

, (8.2)
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, (8.3)

where ,  is a norm in the space , , ,
and . Here  is the Frechét derivative of the order  of 
and  is its value on the elements . 

Let  be a class of solutions to problem (8.1) possessing the following
properties of regularity:

I) for  and for all 

and

, ,

where  is the space of strongly continuous functions on 
with the values in , hereinafter ;

II) for any  the estimate

(8.4)

holds for  and for , where  depends on  and  only.
In fact, the classes  are studied in [18]. This paper contains necessary and

sufficient conditions which guarantee that a solution belongs to a class .
It should be noted that in [18] the nonlinear wave equation of the type

(8.5)

serves as the main example. Here ,  and the conditions set on
the function  from  are such that we can take  or 

, where  for  and  for .
In this example the classes  are nonempty for all . Other examples will be
given in Chapter 4.

We fix an integer  and assume  to be the projector in  onto the sub-
space generated by the first  eigenvectors of the operator . Let . If we
apply the projectors  and  to equation (8.1), then we obtain the following sys-
tem of two equations for  and :

(8.6)

The reasoning below is formal. Its goal is to obtain an iteration scheme for the deter-
mination of an approximate IM. We assume that system (8.6) has an invariant mani-
fold of the form

(8.7)

B k� � u� � B k� � u*� �� w1 � w
k

� ��C D C4 A1 2� u u*�� � A1 2� w
j

j 1�
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k
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u Lm R��

u k 1�� � t� � 2
A1 2� u k� � t� � 2

Au k 1�� � t� � 2� � R2�

k 1 � m� �� t t*� t* u0 u1
L

m R�
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m R�

9
t
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u $ 9
t
u u?� g u� �� � f x� � , x = , t 0  ,
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u 9= 0 , u
t 0� u0 x� � , 9tu t 0� u1 x� �  ,� � �

$ 0
 f x� � C� =� ��
g s� � C� R� � g u� � usin� g u� � �

u2 p 1�� p 0 1 2 �� � �� d dim = 2�� p 0 1�� d 3�
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N P PN� H
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9
t
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p $ 9
t
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9t
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q $ 9t q A q� � QB p q�� �  .�
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in the phase space . Here  and  are smooth mappings from 
into . If we substitute  and 
in the second equality of (8.6), then we obtain the following equation:

The compatibility condition

gives us that

.

Hereinafter  and  are the Frechét derivatives of the function  with
respect to  and ;  and  are values of the corresponding deri-
vatives on an element .

Using these formal equations, we can suggest the following iteration process to
determine the class of functions  giving the sequence of approximate IMs
with the help of (8.7):

(8.8)

where  and the integers  should be choosen such that 
. Here  is defined by the formula

, (8.9)

where . We also assume that

. (8.10)

Find the form of  and  for  and for
.

The following assertion contains information on the smoothness properties of the
functions  and  which will be necessary further.

Theorem 8.1.

Assume that the class of functions  is defined according toAssume that the class of functions  is defined according toAssume that the class of functions  is defined according toAssume that the class of functions  is defined according to

(8.8)–(8.10).... Then for each  Then for each  Then for each  Then for each  the functions  the functions  the functions  the functions  and  and  and  and  belong to the class belong to the class belong to the class belong to the class

 as mappings from  as mappings from  as mappings from  as mappings from  into  into  into  into  and for all integers  such and for all integers  such and for all integers  such and for all integers  such

that  the estimatesthat  the estimatesthat  the estimatesthat  the estimates
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2
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l
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(8.11)

(8.12)

are valid for all  and  from  such that  and are valid for all  and  from  such that  and are valid for all  and  from  such that  and are valid for all  and  from  such that  and ....

Hereinafter  is the mixed Frechét derivative of the function  of theHereinafter  is the mixed Frechét derivative of the function  of theHereinafter  is the mixed Frechét derivative of the function  of theHereinafter  is the mixed Frechét derivative of the function  of the

order  with respect to  and of the order  with respect to ; the valuesorder  with respect to  and of the order  with respect to ; the valuesorder  with respect to  and of the order  with respect to ; the valuesorder  with respect to  and of the order  with respect to ; the values

 and  are from  and  are from  and  are from  and  are from .... Moreover, if  or  Moreover, if  or  Moreover, if  or  Moreover, if  or ,,,, then the correspon- then the correspon- then the correspon- then the correspon-

ding products in ding products in ding products in ding products in (8.11) and  and  and  and (8.12) should be omitted. should be omitted. should be omitted. should be omitted.

Proof.

We use induction with respect to . It follows from (8.10) and (8.2) that esti-
mates (8.11) and (8.12) are valid for . Assume that (8.11) and (8.12) hold
for all . Then the following lemma holds.

Lemma 8.1.

Let  and let

.

Then for  and for all integers  such that 

the estimate

(8.13)

holds, where , , , and , .

Proof.

It is evident that  is the sum of terms of the type

, .

Here  is one of the values of the form:

,

.
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Equation (8.2) implies that

.

Therefore, the induction hypothesis gives us (8.13).

Let us prove (8.12). The induction hypothesis implies that it is sufficient to estimate
the derivatives of the second term in the right-hand side of (8.9). It has the form

, (8.14)

where

.

The Frechét derivatives of value (8.14)

are sums of the terms of the type

,

where

.

Here ,  and the sets of indices possess the following proper-
ties:

,

;

,

.

The induction hypothesis implies that

.

Using the induction hypothesis again as well as Lemma 8.1 and the inequality

,

we obtain an estimate of the following form (if  or , then the correspon-
ding product should be considered to be equal to 1):

.

B:
s

y� � CR A1 2� yj

j 1�
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2
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� wj�
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w� 41
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j1 � j�� �� � K1 � K3 ��� �� �M 1 2 � 3� � �� ��
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Hereinafter  is the -th eigenvalue of the operator . Thus, it is possible to state
that

. (8.15)

Using the inequality 

, , (8.16)

and equation (8.15) it is easy to find that estimates (8.12) are valid for . If we
use (8.8), (8.12) and follow a similar line of reasoning, we can easily obtain (8.11).
Theorem 8.1  is proved.

Theorem 8.1 and equation (8.4) imply the following lemma.

Lemma 8.2.

Assume that  is a solution to problem (8.1) lying in , .

Let  and let

, . (8.17) 

Then the estimates

with  and

are valid for  large enough.

Proof.

It should be noted that  is the sum of terms of the form

,

where , , ,  are nonnegative integers such that

, .

Similar equation also holds for . Further one should use Theorem 8.1 and
the estimates

, , ,

which follow from (8.4).

Let us define the induced trajectories of the system by the formula

,

where  and

, . (8.18)
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Here ,  is a solution to problem (8.1);  and  are defined
with the help of (8.17). Assume that  lies in . Then Lemma 8.2 implies
that the induced trajectories can be estimated as follows:

, ;

for  large enough. Using (8.3), (8.4), and the last estimates, it is easy to prove the
following assertion (do it yourself).

Lemma 8.3.

Let

.

Then

for  and for  large enough.

The main result of this section is the following assertion.

Theorem 8.2.

Let  be a solution to problem Let  be a solution to problem Let  be a solution to problem Let  be a solution to problem (8.1) lying in  with  lying in  with  lying in  with  lying in  with ....

Assume that  and  are defined by Assume that  and  are defined by Assume that  and  are defined by Assume that  and  are defined by (8.8)–(8.10).... Then the es- Then the es- Then the es- Then the es-

timatestimatestimatestimates

,,,, (8.19)

,,,, (8.20)

are valid for  and for  large enough. Here ,are valid for  and for  large enough. Here ,are valid for  and for  large enough. Here ,are valid for  and for  large enough. Here ,

 and  are defined by  and  are defined by  and  are defined by  and  are defined by (8.18),,,, and  is the -th eigenva-and  is the -th eigenva-and  is the -th eigenva-and  is the -th eigenva-

lue of the operator lue of the operator lue of the operator lue of the operator ....

Proof.

Let us consider the difference between the solution  and the trajectory in-
duced by this solution:

, , ,

where  and  are defined by formula (8.18). Since , equation
(8.4) implies that

, , (8.21)
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for  large enough. Equations (8.8)–(8.10) also give us that

.

We use Lemma 8.3 and equation (8.21) to find that

, ,

for  large enough. Therefore, equation (8.19) holds for  and for  large
enough. From equations (8.6), (8.8), and (8.9) it is easy to find that

and

. (8.22)

Lemma 8.4.

The estimates

(8.23)

and

(8.24)

are valid for  large enough and for each , where .

Proof.

Let  or . It is clear that the value  is the
algebraic sum of terms of the form:

Therefore, Theorem 8.1 and Lemma 8.3 imply (8.23) and (8.24). Lemma 8.4
is proved.

We use Lemmata 8.3 and 8.4 as well as inequality (8.16) to obtain that

 (8.25)

where  and the numbers  and  do not depend on .

t

A51 t� � 5 N0 t� � $ 5 60 t� � QE0 t� �����

A51
j� �

t� � C�
N 1�

1 2��� j 0 1 � m 2�� � ��

t n 0 1�� t

A5
k

9
t
5k 1�� $ 9

t
5: k� � 1� $ 2

p�
h: k� � 1� PE: k� � 1��C D��  

2
p�

l
k 1� PE

k 1��C D Q E
k 1���

��

5
k

9
t
5

k 1� 2
p�

h
k 1� PE

k 1��C D��

A 9
t
j 2

p�
h: PE:�C D C�

N
1 2�

A1 2� 5:
s� � t� �

s 0�

j

F�

A1 2� 9
t
j 2

p�
l: PE:�C D C�

N
1 2�

A1 2� 5:
s� � t� �

s 0�

j

F�

t : 0� j 0 1 � m 1�� � ��

f: h:� f: l:� 9
t
j 2

p�
f: PE:�C D

D3 � 1�� f: p
$1 � p

$3 p
�1 � p

�� 9
t
s
PE:� � ��� ��C D  .

A5
k
j� �

t� � c
k j� �

N 1�
1�

A5
k 1�
s� �

t� �
s 0�

j 2�

F A5: k� � 1�
s� �

t� �
s 0�

j 1�

F�
� �
� �
� �  

d
k j
�

N 1�
1 2��

A5
k 1�
s� �

t� �  ,
s 0�

j

F

�

�

�

j 0 1 � m 2�� � �� c
k j� d

k j� N



208 I n e r t i a l  M a n i f o l d s

3

C

h

a

p

t

e

r

If we now assume that (8.19) holds for , then equation (8.25) implies
(8.19) for  and for . Using (8.22) and (8.23) we obtain equation
(8.20). Theorem 8.2 is proved.

Corollary 8.1

Let the manifold  have the form (8.7) with  and

. We also assume that , where 

is the solution to problem (0.1) from the class . Then

, .

Thus, the thickness of the layer that attracts the trajectories in the phase space has
the power order with respect to  unlike the semilinear parabolic equations
of Section 6.

E x a m p l e  8.1

Let us consider the nonlinear wave equation (8.5). Let . We as-
sume the following (cf. [18]) about the function :

;

there exists  such that

;

for any  there exists  such that

. (8.26)

Under these assumptions the solution  lies in  for  large
enough if and only if the initial data satisfy some compatibility conditions [18].
Moreover, the global attractor  of system (8.5) exists and any trajectory lying
in  possesses properties (8.4) for all  and , [18]. It is easy
to see that Theorem 8.2 is applicable here (the form of ,  and  is evi-
dent in this case). In particular, Theorem 8.2 gives us that for a trajectory

 of problem (8.5) which lies in the global attractor  the
estimate

holds for all , all , and all . Here  and
 are defined with the help of (8.18). Therewith
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, , (8.27)

where  is a manifold of the type (8.7) with  and .
Here  is the distance between  and  in the space

. Equation (8.27) gives us some information on the location of
the global attractor in the phase space.

Other examples of usage of the construction given here can be found in papers [17]
and [19] (see also Section 9 of Chapter 4).

§ 9 Idea of Nonlinear Galerkin Method§ 9 Idea of Nonlinear Galerkin Method§ 9 Idea of Nonlinear Galerkin Method§ 9 Idea of Nonlinear Galerkin Method

Approximate inertial manifolds have proved to be applicable to the computational
study of the asymptotic behaviour of infinite-dimensional dissipative dynamical sys-
tems (for example, see the discussion and the references in [8]). Their usage leads
to the appearance of the so-called nonlinear Galerkin method [20] based on the re-
placement of the original problem by its approximate inertial form. In this section we
discuss the main features of this method using the following example of a second or-
der in time equation of type (8.1):

, , . (9.1)

If all conditions on  and  given in the previous section are fulfilled, then
Theorem 8.2 is valid. It guarantees the existence of a family of mappings 
from  into  possessing the properties:

1) there exist constants  and , , such
that

, e, (9.2)

, (9.3)

(9.4)

for all  and  from  such that

, , ;

2) for any solution  to problem (9.1) which lies in  for  the es-
timate
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(9.5)

is valid (see Theorem 8.2) for all  and  large enough. Here

(9.6)

 is the -th eigenvalue of , and  is the constant from (8.4).

The family  is defined with the help of a quite simple procedure (see (8.8)
and (8.9)) which can be reduced to the process of solving of stationary equations of
the type  in the subspace . Moreover,

, , . (9.7)

In particular, estimates (9.5) and (9.6) mean (see Corollary 8.1) that trajectories
 of system (9.1) are attracted by a small (for  large enough)

vicinity of the manifold

. (9.8)

The sequence of mappings  generates a family of approximate inertial
forms of problem (9.1):

. (9.9)

A finite-dimensional dynamical system in  which approximates (in some sense)
the original system corresponds to each form. For  equation (9.9) transforms
into the standard Galerkin approximation of problem (9.1) (due to (9.7)). If ,
then we obtain a class of numerical methods which can be naturally called the non-
linear Galerkin methods. However, we cannot use equation (9.9) in the computa-
tional study directly. The point is that, first, in the calculation of  we have
to solve a linear equation in the infinite-dimensional space  and, second, we can
lose the dissipativity property. Therefore, we need additional regularization. It can
be done as follows. Assume that  stands for one of the functions 
or . We define the value

, (9.10)

where  is an infinitely differentiable function on  such that a) ;
b)  for ; c)  for ;  is the radius of dissipativity
(see (8.4) for ) of system (9.1);  is the orthoprojector in  onto the sub-
space generated by the first  eigenvectors of the operator , . We consider
the following -dimensional evolutionary equation in the subspace :
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(9.11)

Prove that problem (9.11) has a unique solution for  and
the corresponding dynamical system is dissipative in .

We call problem (9.11) a nonlinear Galerkin -approximation of problem
(9.1). The following assertion is valid.

Theorem 9.1.

Assume that the mappings  and  satisfy equationsAssume that the mappings  and  satisfy equationsAssume that the mappings  and  satisfy equationsAssume that the mappings  and  satisfy equations

(9.2)–(9.5) for  and for some  for  and for some  for  and for some  for  and for some .... Moreover, we assume that Moreover, we assume that Moreover, we assume that Moreover, we assume that

(9.5) is valid for all  is valid for all  is valid for all  is valid for all .... Let  and  be defined by  Let  and  be defined by  Let  and  be defined by  Let  and  be defined by (9.10) with the help with the help with the help with the help

of  and  and letof  and  and letof  and  and letof  and  and let

,,,,

,,,,

where  is a solution to problem where  is a solution to problem where  is a solution to problem where  is a solution to problem (9.11).... Then the estimate Then the estimate Then the estimate Then the estimate
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and

are valid for the class of solutions under consideration. Therefore, we use (9.5) to
find that

(9.13)

and

(9.14)

Therefore, we must compare the solution  to problem (9.11) with the value
 which satisfies the equation

(9.15)

with the same initial conditions as the function . Let . Then
it follows from (9.11) and (9.15) that

(9.16)

where

.

Due to the dissipativity of problems (9.11) and (9.15) we use (9.13) to obtain

for the class of solutions under consideration. Therefore, equation (9.16) implies
that

.

Hence, Gronwall’s lemma gives us that

.

This and equations (9.13) and (9.14) imply estimate (9.12). Theorem 9.1  is proved.

If we take  and  in Theorem 9.1, then estimate (9.12) changes into the
accuracy estimate of the standard Galerkin method of the order . Therefore, if the
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parameters , , and  are compatible such that , then the error of
the corresponding nonlinear Galerkin method has the same order of smallness as in
the standard Galerkin method which uses  basis functions. However, if we use the
nonlinear method, we have to solve a number of linear algebraic systems of the order

 and the Cauchy problem for system (9.11) which consists of  equations.
In particular, in order to determine the value  we must solve the equation

for  and choose the numbers  and  such that . Moreover,
if , , as , then the values  and  must be com-
patible such that .

We note that Theorem 9.1 as well as the corresponding variant of the nonlinear
Galerkin method can be used in the study of the asymptotic properties of solutions
to the nonlinear wave equation (8.5) under some conditions on the nonlinear term

. Other applications of Theorem 9.1 can also be pointed out.
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In this chapter we use the ideas and the results of Chapters 1 and 3 to study in
details the asymptotic behaviour of a class of problems arising in the nonlinear theo-
ry of oscillations of distributed parameter systems. The main object is the following
second order in time equation in a separable Hilbert space :

, (0.1)

, (0.2)

where  is a positive operator with discrete spectrum in ,  is a real function
(its properties are described below),  is a linear operator in ,  is a given
bounded function with the values in , and  is a nonnegative parameter. The
problem of type (0.1) and (0.2) arises in the study of nonlinear oscillations of a plate
in the supersonic flow of gas. For example, in Berger’s approach (see [1, 2]), the dy-
namics of a plate can be described by the following quasilinear partial differential
equation:

, (0.3)

 

with boundary and initial conditions of the form

. (0.4)

Here  is the Laplace operator in the domain ; , , and  are con-
stants; and , , and  are given functions. Equations (0.3)–(0.4)
describe nonlinear oscillations of a plate occupying the domain  on a plane which
is located in a supersonic gas flow moving along the -axis. The aerodynamic pres-
sure on the plate is taken into account according to Ilyushin’s “piston” theory (see,
e. g., [3]) and is described by the term . The parameter  is determined by
the velocity of the flow. The function  measures the plate deflection at the
point  and the moment . The boundary conditions imply that the edges of the
plate are hinged. The function  describes the transverse load on the plate.
The parameter  is proportional to the value of compressive force acting in the
plane of the plate. The value  takes into account the environment resistance.

Our choice of problem (0.1) and (0.2) as the base example is conditioned by the
following circumstances. First, using this model we can avoid significant technical
difficulties to demonstrate the main steps of reasoning required to construct a solu-
tion and to prove the existence of a global attractor for a nonlinear evolutionary se-
cond order in time partial differential equation. Second, a study of the limit regimes
of system (0.3)–(0.4) is of practical interest. The point is that the most important
(from the point of view of applications) type of instability which can be found in the
system under consideration is the flutter, i.e. autooscillations of a plate subjected to
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aerodynamical loads. The modern look on the flutter instability of a plate is the fol-
lowing: there arises the Andronov-Hopf bifurcation leading to the appearance of
a stable limit cycle in the system. However, there are experimental and numerical
data that enable us to conjecture that an increase in flow velocity may result in the
complication of the dynamics and appearance of chaotic fluctuations [4]. Therefore,
the study of the existence and properties of the attractor of the given problem
enables us to better understand the mechanism of appearance of a nonlinear flutter.

§ 1 Spaces§ 1 Spaces§ 1 Spaces§ 1 Spaces

As above (see Chapter 2), we use the scale of spaces  generated by a positive ope-
rator  with discrete spectrum acting in a separable Hilbert space . We remind
(see Section 2.1) that the space  is defined by the equation

,

where  is the orthonormal basis of the eigenelements of the operator  in ,
 are the corresponding eigenvalues and is a real parameter

(for  we have  and for  the space  should be treated as a class
of formal series). The norm in  is given by the equality

for .

Further we use the notation  for the set of measurable functions
on the segment  with the values in the space  such that the norm

is finite. The notation  has a similar meaning for .
We remind that a function  with the values in a separable Hilbert space 

is said to be Bochner measurableBochner measurableBochner measurableBochner measurable on a segment  if it is a limit of a se-
quence of functions

for almost all , where  are elements of  and  are the cha-
racteristic functions of the pairwise disjoint Lebesgue measurable sets . One
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can prove (see, e.g., the book by K. Yosida [5]) that for separable Hilbert spaces un-
der consideration a function  is measurable if and only if the scalar function

 is measurable for every . Furthermore, a function  is said
to be Bochner integrableBochner integrableBochner integrableBochner integrable  over  if

, ,

where  is a sequence of simple functions defined above. The integral of the
function  over a measurable set  is defined by the equation

,

where is the characteristic function of the set  and the integral of a simple
function in the right-hand side of the equality is defined in an obvious way.

For the function with the values in Hilbert spaces most facts of the ordinary Le-
besgue integration theory remain true.

Let  be a function on  with the values in a sepa-
rable Hilbert space . If there exists a sequence of measurable func-
tions  such that  almost everywhere, then 
is also measurable.

Show that a measurable function  with the values in 
is integrable if and only if . Therewith

for any measurable set .

Let a function  be integrable over  and let  be
a measurable set from . Show that

for any .

Show that the space  can be described as a set
of series

,
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where  are scalar functions that are square-integrable over
 and such that

. (1.1)

Below we also use the space  of strongly continuous functions on 
with the values in  and the norm

.

Let  be a function with the values in  integrable over
. Show that the function 

lies in . Moreover,  is an absolutely continuous
function with the values in , i.e. for any  there exists 
such that for any collection of disjoint segments 
the condition  implies that 

.

Show that for any absolutely continuous function  on
 with the values in  there exists a function  with the

values in  such that it is integrable over  and

, .

(Hint: use the one-dimensional variant of this assertion).

The space

 (1.2)

with the norm

plays an important role below. Hereinafter the derivative  stands for
a function integrable over  and such that
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almost everywhere for some  (see Exercises 1.5 and 1.6). Evidently, the space
 is continuously embedded into , i.e. every function  from 

lies in  and

,

where  is a constant. This fact is strengthened in the series of exercises given be-
low.

Let be the projector onto the span of the set 
 and let . Show that  is absolutely

continuous and possesses the property

.

The equations

(1.3a)

and

 (1.3b)

are valid for any  and .

Use (1.3) to prove that

 (1.4a)

and

. (1.4b)

Use (1.4) to prove that  is continuously embedded into
 and

.
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The following three exercises result in a particular case of Dubinskii’s theorem
(see Exercise 1.13).

Let  be an orthonormal basis in  con-
sisting of the trigonometric functions

, , ,

. Show that  if and only if

(1.5)

and

.

Show that the space  can be described as a set of series of
the form (1.5) such that

.

Use the method of the proof of Theorem 2.1.1 to show that
 is compactly embedded into the space  for any

.

Show that  is compactly embedded into .
Hint: use Exercise 1.10 and the reasoning which is usually applied
to prove the Arzelà theorem on the compactness of a collection
of scalar continuous functions.

§ 2 Auxiliary Linear Problem§ 2 Auxiliary Linear Problem§ 2 Auxiliary Linear Problem§ 2 Auxiliary Linear Problem

In this section we study the properties of a solution to the following linear problem:
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Here is a positive operator with discrete spectrum. The vectors , , 
as well as the scalar function  are given (for the corresponding hypotheses see
the assertion of Theorem 2.1).

The main results of this section are the proof of the theorem on the existence
and uniqueness of weak solutions to problem (2.1) and (2.2) and the construction
of the evolutionary operator for the system when . In fact, the approach we
use here is well-known (see, e.g., [6] and [7]).

A weak solution  weak solution  weak solution  weak solution to problem (2.1) and (2.2) on a segment  is a func-
tion  such that  and the equation

(2.3)

holds for any function  such that . As above,  stands for the
derivative of  with respect to .

Prove that if a weak solution  exists, then it satisfies
the equation

 (2.4)

for every  (Hint: take  in (2.3), where
is a scalar function from ).

Theorem 2.1

Let Let Let Let , , and . We al, , and . We al, , and . We al, , and . We alsssso assume that o assume that o assume that o assume that  is a bounded is a bounded is a bounded is a bounded

continuous function on continuous function on continuous function on continuous function on and and and and , where , where , where , where  is a posi- is a posi- is a posi- is a posi-

tive number. Then problem tive number. Then problem tive number. Then problem tive number. Then problem (2.1) andandandand (2.2) has a unique weak solution has a unique weak solution has a unique weak solution has a unique weak solution

 on the segment  on the segment  on the segment  on the segment .... This solution possesses the properties This solution possesses the properties This solution possesses the properties This solution possesses the properties

,,,, (2.5)

and satisfies the energy equationand satisfies the energy equationand satisfies the energy equationand satisfies the energy equation

 (2.6)
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Proof.

We use the compactness method to prove this theorem. At first we construct ap-
proximate solutions to problem (2.1) and (2.2). The approximate Galerkin solution
(to this problem) of the order  with respect to the basis  is considered to be
the function

(2.7)

satisfying the equations

, (2.8)

, , . (2.9)

Here  and is absolutely continuous. Due to the orthogonality
of the basis  equations (2.8) and (2.9) can be rewritten as a system of ordinary
differential equations:

e,

, , .

Lemma 2.1

Assume that , ,  is continuous, and  is a measu-

rable bounded function. Then the Cauchy problem

 (2.10)

is uniquely solvable on any segment . Its solution possesses the

property

, (2.11)

where . Moreover, if ,  and for all

 the conditions

, , (2.12)

hold, then the following estimate is valid:

. (2.13)
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Proof.

Problem (2.10) is solvable at least locally, i.e. there exists  such that a so-
lution exists on the half-interval . Let us prove estimate (2.11) for the in-
terval of existence of solution. To do that, we multiply equation (2.10) by .
As a result, we obtain that

.

We integrate this equality and use the equations 

, ,

to obtain that

.

This and Gronwall’s lemma give us (2.11).
In particular, estimate (2.11) enables us to prove that the solution  can

be extended on a segment  of arbitrary length. Indeed, let us assume the
contrary. Then there exists a point  such that the solution can not be extended
through it. Therewith equation (2.11) implies that

, .

Therefore, (2.10) gives us that the derivative  is bounded on .
Hence, the values

,

are continuous up to the point . If we now apply the local theorem on exis-
tence to system (2.10) with the initial conditions at the point  that are equal to

 and , then we obtain that the solution can be extended through .
This contradiction implies that the solution  exists on an arbitrary segment

.
Let us prove estimate (2.13). To do that, we consider the function

.  (2.14)

Using the inequality

,

it is easy to find that the equation
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holds under the condition

, .

Further we use (2.10) with  to obtain that

.

Consequently, with the help of (2.15) we get

under conditions (2.12). This implies that

.

We use (2.15) to obtain estimate (2.13). Thus, Lemma 2.1 is proved.

Assume that  in Lemma 2.1. Show that problem (2.10)
is uniquely solvable on any segment  and the estimate 

is valid for  and for any , where .

Lemma 2.1 implies the existence of a sequence of approximate solutions 
to problem (2.1) and (2.2) on any segment .

Show that every approximate solution  is a solution to
problem (2.1) and (2.2) with , , and 

, where 

,

, 

and  is the orthoprojector onto the span of elements 
 in  .

Let us prove that the sequence of approximate solutions  is convergent.
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At first we note that 

for every . Therefore, by virtue of Lemma 2.1 we have that

for . Moreover, in the case , the result of Exercise 2.2 gives that

.

These equations imply that the sequences  and  are the Cauchy
sequences in the space  on any segment . Consequently, there
exists a function  such that

, ,

. (2.17)

Equations (2.8) and (2.9) further imply that

for all functions  from  such that . Here , and , ,
are defined by (2.16). We use equation (2.17) to pass to the limit in this equation and
to prove that the function  satisfies equality (2.3). Moreover, it follows from
(2.17) that . Therefore, the function  is a weak solution to problem
(2.1) and (2.2).

In order to prove the uniqueness of weak solutions we consider the function
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.

Due to the structure of the function  we obtain that

, (2.19)

where

.

It is evident that  for . Therefore,

If we substitute this estimate into equation (2.19), then it is easy to find that

,

where  and is a positive constant depending on the length of the seg-
ment . This and Gronwall’s lemma imply that .

Let us prove the energy equation. If we multiply equation (2.8) by  and
summarize the result with respect to , then we find that

.

After integration with respect to  we use (2.17) to pass to the limit and obtain (2.6).
Theorem 2.1 is completely proved.

Prove that the estimate

(2.20)

is valid for a weak solution  to problem (2.1) and (2.2). Here
 and .
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Let  be a weak solution to problem (2.1) and (2.2). Prove
that  and

.

Here we treat the equality as an equality of elements in . 
(Hint: use the results of Exercises 2.1 and 2.1.3).

Let  be a weak solution to problem (2.1) and (2.2) con-
structed in Theorem 2.1. Then the function  is absolutely conti-
nuous as a vector-function with the values in  while the derivati-
ve  belongs to the space . Moreover, the function

 satisfies equation (2.1) if we treat it as an equality of elements
in  for almost all .

In particular, the result of Exercise 2.6 shows that a weak solution satisfies equation
(2.1) in a stronger sense then (2.4).

We also note that the assertions of Theorem 2.1 and Exercises 2.4–2.6 with the
corresponding changes remain true if the initial condition is given at any other mo-
ment  which is not equal to zero.

Now we consider the case  and construct the evolutionary operator of prob-
lem (2.1) and (2.2). To do that, let us consider the family of spaces

, .

Every space  is a set of pairs  such that  and .
We define the inner product in  by the formula

.

Prove that  is compactly embedded into  for .

In the space  we define the evolutionary operator  of problem (2.1) and
(2.2) for  by the equation

, (2.21)

where is a solution to (2.1) and (2.2) at the moment  with initial conditions
that are equal to  at the moment .

The following assertion plays an important role in the study of asymptotic be-
haviour of solutions to problem (0.1) and (0.2).
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Theorem 2.2

Assume that the function Assume that the function Assume that the function Assume that the function  is continuously differentiable in  is continuously differentiable in  is continuously differentiable in  is continuously differentiable in (2.1)
and such thatand such thatand such thatand such that

, .

Then the evolutionary operator Then the evolutionary operator Then the evolutionary operator Then the evolutionary operator  of problem  of problem  of problem  of problem (2.1) andandandand (2.2) for for for for

 is a linear bounded operator in each space  is a linear bounded operator in each space  is a linear bounded operator in each space  is a linear bounded operator in each space  for  for  for  for  and it and it and it and it

possesses the properties:possesses the properties:possesses the properties:possesses the properties:

a) ,,,, ,,,, ;;;;

b) for all  the estimatefor all  the estimatefor all  the estimatefor all  the estimate

 (2.22)

is valid;is valid;is valid;is valid;

c) there exists a number there exists a number there exists a number there exists a number     depending ondepending ondepending ondepending on , , , , , , , , and  such that the and  such that the and  such that the and  such that the

equationequationequationequation

,,,, ,,,, (2.23)

holds holds holds holds for all for all for all for all ,,,, where where where where  is the orthoprojector onto the subspace is the orthoprojector onto the subspace is the orthoprojector onto the subspace is the orthoprojector onto the subspace

in the space in the space in the space in the space ....

Proof.

Semigroup property a) follows from the uniqueness of a weak solution.
The boundedness property of the operator  follows from (2.22). Let us prove
relations (2.22) and (2.23). It is sufficient to consider the case . According
to the definition of the evolutionary operator we have that

, ,

where  is the weak solution to problem (2.1) and (2.2) for . Due to
(2.17) it can be represented as a convergent series of the form

.

Moreover, Lemma 2.1 implies that

. (2.24)

Since

,

equation (2.24) implies (2.22).
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Further we use equation (2.13) to obtain that

, (2.25)

provided the conditions (cf. (2.12))

, ,

are fulfilled. Evidently, these conditions hold if

,

where and . Since

,

equation (2.25) gives us (2.23) for all , where  is the smallest natural
number such that

. (2.26)

Thus, Theorem 2.2 is proved.

Show that a weak solution  to problem (2.1) and (2.2)
can be represented in the form

, (2.27)

where  and  is defined by (2.21).

Use the result of Exercise 2.2 to show that Theorem 2.1 and
Theorem 2.2 (a, b) with another constant in (2.22) also remain true
for . Use this fact to prove that if the hypotheses of Theorems
2.1 and 2.2 hold on the whole time axis, then problem (2.1) and (2.2)
is solvable in the class of functions

with .

Show that the evolutionary operator  has a bounded
inverse operator in every space  for . How is the operator

 for  related to the solution to equation (2.1) for
? Define the operator  using the formula 

 for  and prove assertion (a) of Theorem 2.2 for
all .
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§ 3 Theorem on Existence§ 3 Theorem on Existence§ 3 Theorem on Existence§ 3 Theorem on Existence

and Uniqueness of Solutionsand Uniqueness of Solutionsand Uniqueness of Solutionsand Uniqueness of Solutions

In this section we use the compactness method (see, e.g., [8]) to prove the theorem
on the existence and uniqueness of weak solutions to problem (0.1) and (0.2) under
the assumption that

, , ; (3.1)

, , (3.2)

where , ,  is the first eigenvalue of the operator , and the
operator  is defined on  and satisfies the estimate

, . (3.3)

Similarly to the linear problem (see Section 2), the function  is said
to be a weak solution  weak solution  weak solution  weak solution to problem (0.1) and (0.2) on the segment 
if  and the equation

 (3.4)

holds for any function  such that . Here the space  is defined
by equation (1.2).

Prove the analogue of formula (2.4) for weak solutions to
problem (0.1) and (0.2).

The following assertion holds.

Theorem 3.1

Assume that conditions Assume that conditions Assume that conditions Assume that conditions (3.1)–(3.3) hold. Then on every segment  hold. Then on every segment  hold. Then on every segment  hold. Then on every segment 

problem problem problem problem (0.1) andandandand (0.2) has a weak solution  has a weak solution  has a weak solution  has a weak solution .... This solution is unique. This solution is unique. This solution is unique. This solution is unique.

It possesses the propertiesIt possesses the propertiesIt possesses the propertiesIt possesses the properties

,,,, (3.5)
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and satisfies the energy equalityand satisfies the energy equalityand satisfies the energy equalityand satisfies the energy equality

,,,, (3.6)

wherewherewherewhere

....  (3.7)

We use the scheme from Section 2 to prove the theorem.
The Galerkin approximate solution of the order  to problem (0.1) and (0.2)

with respect to the basis  is defined as a function of the form

which satisfies the equations

(3.8)

for  with  and the initial conditions

, , . (3.9)

Simple calculations show that the problem of determining of approximate solutions
can be reduced to solving the following system of ordinary differential equations:

, (3.10)

, , . (3.11)

The nonlinear terms of this system are continuously differentiable with respect to
. Therefore, it is solvable at least locally. The global solvability follows from the

a priori estimate of a solution as in the linear problem. Let us prove this estimate.
We consider an approximate solution  to problem (0.1) and (0.2) on the

solvability interval . It satisfies equations (3.8) and (3.9) on the interval
. We multiply equation (3.8) by  and summarize these equations with re-

spect to  from 1 to . Since

,

we obtain

 (3.12)
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as a result, where  is defined by (3.7). Equation (3.3) implies that

.

Condition (3.2) gives us the estimate

 (3.13)

with the constants independent of . Therefore, due to Gronwall’s lemma equation
(3.12) implies that

, (3.14)

with the constants , , and  depending on the problem parameters only.

Use equation (3.14) to prove the global solvability of Cauchy
problem (3.10) and (3.11).

It is evident that

and .

Therefore,

 ,

where . Consequently, equation (3.14) gives
us that

 (3.15)

for any , where  does not depend on . Thus, the set of approximate solu-
tions  is bounded in  for any . Hence, there exist an element

 and a sequence  such that  weakly in . Let us
show that the weak limit point  possesses the property 

 (3.16)

for almost all . Indeed, the weak convergence of the sequence  to
the function  in  means that  and  weakly (in ) con-
verge to  and  respectively. Consequently, this convergence will also take
place in  for any  and  from the segment . Therefore, by
virtue of the known property of the weak convergence we get
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With the help of (3.15) we find that

.

Therefore, due to the arbitrariness of  and  we obtain estimate (3.16).

Lemma 3.1

For any function 

,

where

.

Proof.

Since

where , due to (3.15) and (3.16) we have

,

where the constant  is the maximum of the function  on the sufficient-
ly large segment , determined by the constant  from inequalities
(3.15) and (3.16). Hence,

The compactness of the embedding of  into  (see Exer-
cise 1.13) implies that  as . It is evident that
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.

Because of the weak convergence of  to  this gives us the assertion of the
lemma. 

Prove that the functional

is continuous on  for any .

Let us prove that the limit function  is a weak solution to problem (0.1) and
(0.2).

Let  be the orthoprojector onto the span of elements 
in the space . We also assume that

and

.

It is clear that an arbitrary element of the space  has the form

,

where  is an absolutely continuous real function on  such that

, .

If we multiply equation (3.8) by , summarize the result with respect to  from
1 to , and integrate it with respect to  from  to , then it is easy to find that

for . The weak convergence of the sequence  to  in  as well as Lem-
ma 3.1 and Exercise 3.3 enables us to pass to the limit in this equality and to show
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that the function  satisfies equation (3.4) for any function , where
. Further we use (cf. Exercise 2.1.11) the formula

for any function  in order to turn from the elements  of  to the func-
tions  from the space .

Prove that .

Thus, every weak limit point  of the sequence of Galerkin approximations 
in the space  is a weak solution to problem (0.1) and (0.2).

If we compare equations (3.4) and (2.3), then we find that every weak solution
 is simultaneously a weak solution to problem (2.1) and (2.2) with  and

. (3.17)

It is evident that . Therefore, due to Theorem 2.1 equations
(3.5) are valid for the function .

To prove energy equality (3.6) it is sufficient (due to (2.6)) to verify that for
 of form (3.17) the equality

(3.18)

holds. Here is a vector-function possessing property (3.5). We can do that by
first proving (3.18) for the function of the form  and then passing to the limit.

Let  be a weak solution to problem (0.1) and (0.2). Use
equation (3.6) to prove that

, , (3.19)

where  are constants depending on the parameters
of problem (0.1) and (0.2).

Let us prove the uniqueness of a weak solution to problem (0.1) and (0.2). We as-
sume that  and  are weak solutions to problem (0.1) and (0.2) with the
initial conditions  and , respectively. Then the function
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is a weak solution to problem (2.1) and (2.2) with the initial conditions 
, , the function , and the right-hand

side

.

We use equation (3.19) to verify that

, ,

where  is a positive monotonely increasing function of the parameter .
Therefore, equation (2.20) implies that

where  depends on  and the problem parameters and is a function of the
variables , . We can assume that  is the same for all initial
data such that , . Using Gronwall’s lemma we obtain that

, (3.20)

where  and  is a constant depending only on , the problem pa-
rameters and the value  such that . In particular, this esti-
mate implies the uniqueness of weak solutions to problem (0.1) and (0.2). The proof
of Theorem 3.1 is complete.

Show that a weak solution  satisfies equation (0.1) if we
consider this equation as an equality of elements in  for almost all .
Moreover,  (Hint: see Exercise 2.5).

Assume that the hypotheses of Theorem 3.1 hold. Let  be
a weak solution to problem (0.1) and (0.2) on the segment 
and let  be the corresponding Galerkin approximation of the
order . Show that

as .
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In conclusion of the section we note that in case of stationary load  we
can construct an evolutionary operator  of problem (0.1) and (0.2) in the space

 supposing that 

for , where  is a weak solution to problem (0.1) and (0.2) with the
initial conditions . Due to the uniqueness of weak solutions we have

, , .

By virtue of (3.20) the nonlinear mapping  is a continuous mapping of . Equa-
tion (3.5) implies that the vector-function  is strongly continuous with respect
to  for any . Moreover, for any  and  there exists a constant

 such that

 (3.21)

for all  and for all . 

Use equation (3.21) to show that  is a continu-
ous mapping from  into .

Prove the theorem on the existence and uniqueness of solu-
tions to problem (0.1) and (0.2) for . Use this fact to show that
the collection of operators  is defined for negative  and forms
a group (Hint: cf. Exercises 2.9 and 2.10).

Prove that the mapping  is a homeomorphism in  for eve-
ry .

Let  be a periodic function: 
, . Define the family of operators  by the for-

mula

, ,

in the space . Here is a solution to problem (0.1)
and (0.2) with the initial conditions . Prove that the
pair  is a discrete dynamical system. Moreover, 
and  is a homeomorphism in .
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§ 4 Smoothness of Solutions§ 4 Smoothness of Solutions§ 4 Smoothness of Solutions§ 4 Smoothness of Solutions

In the study of smoothness properties of solutions constructed in Section 3 we use
some ideas presented in paper [9]. The main result of this section is the following as-
sertion.

Theorem 4.1

Let the hypotheses of Theorem Let the hypotheses of Theorem Let the hypotheses of Theorem Let the hypotheses of Theorem 3.1 hold. We assume that  hold. We assume that  hold. We assume that  hold. We assume that 

 and the load  and the load  and the load  and the load  lies in  lies in  lies in  lies in  for some  for some  for some  for some .... Then Then Then Then

for a weak solution for a weak solution for a weak solution for a weak solution  to problem  to problem  to problem  to problem (0.1) andandandand (0.2) to possess the properties to possess the properties to possess the properties to possess the properties

 (4.1)

it is necessary and sufficient that the following compatibility conditionsit is necessary and sufficient that the following compatibility conditionsit is necessary and sufficient that the following compatibility conditionsit is necessary and sufficient that the following compatibility conditions

are fulfilled:are fulfilled:are fulfilled:are fulfilled:

,,,, ;;;; .... (4.2)

Here Here Here Here  is a strong derivative of the function  is a strong derivative of the function  is a strong derivative of the function  is a strong derivative of the function  with respect to  with respect to  with respect to  with respect to 

of the order of the order of the order of the order  and the values  and the values  and the values  and the values  are recurrently defined by the initial are recurrently defined by the initial are recurrently defined by the initial are recurrently defined by the initial

conditions conditions conditions conditions  and  and  and  and  with the help of equation  with the help of equation  with the help of equation  with the help of equation (0.1)::::

,,,, ,,,,

 (4.3)

where where where where ....

Proof.

It is evident that if a solution  possesses properties (4.1) then compatibility
conditions (4.2) are fulfilled. Let us prove that conditions (4.2) are sufficient for
equations (4.1) to be satisfied. We start with the case . The compatibility condi-
tions have the form: , . As in the proof of Theorem 3.1 we consider
the Galerkin approximation

of the order  for a solution to problem (0.1) and (0.2). It satisfies the equations
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(4.4)

, ,

where  is the orthoprojector onto the span of elements . The structure
of equation (3.10) implies that . We differentiate equation
(4.4) with respect to  to obtain that  satisfies the equation

 (4.5)

and the initial conditions

, 

. (4.6)

It is clear that

,

where  is defined by (4.3). Therefore,

.

The compatibility conditions give us that  and hence . Thus,
the initial condition  possesses the property

, . (4.7)

We multiply (4.5) by  scalarwise in  to find that

, (4.8)

where

 (4.9)

Using a priori estimates (3.14) for  we obtain

, .
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Thus, equation (4.8) implies that

, .

Equation (4.7) and the property  give us that the estimate 

holds uniformly with respect to . Therefore, we reason as in Section 3 and use
Gronwall’s lemma to find that

, . (4.10)

Consequently,

, . (4.11)

Equation (4.4) gives us that

.

Therefore, (3.14) and (4.11) imply that

, . (4.12)

Thus, the sequence  of approximate solutions to problem (0.1) and (0.2)
possesses the properties (cf. Exercise 3.7):

 (4.13)

where  is a weak solution to problem (0.1) and (0.2). Moreover (see Exer-
cise 1.13),

 (4.14)

for every . If we use these equations and arguments similar to the ones given in
Section 3, then it is easy to pass to the limit and to prove that the function 
is a weak solution to the problem
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where  is defined by (4.3). Therefore, Theorem 2.1 gives us that

.

This implies equation (4.1) for .

Further arguments are based on the following assertion.

Lemma 4.1

Let  be a weak solution to the linear problem

 (4.16)

where  is a scalar continuously differentiable function, 

 and , . Then

 (4.17)

and the function  is a weak solution to the problem obtained

by the formal differentiation of (4.16) with respect to  and equiped

with the initial conditions  and  

.

Proof.

Let  be the Galerkin approximation of the order  of a solution to
problem (4.16) (see (2.7)). It is clear that  is thrice differentiable with re-
spect to  and  satisfies the equation

, ,

and the initial conditions

, .

Therefore, as above, it is easy to prove the validity of equations (4.10)–(4.14)
for the case under consideration and complete the proof of Lemma 4.1.

Assume that the hypotheses of Lemma 4.1 hold with 
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for . Show that the weak solution  to problem
(4.16) possesses properties (4.1) and the function  is
a weak solution to the equation obtained by the formal differentia-
tion of (4.16)  times with respect to . Here .

In order to complete the proof of Theorem 4.1 we use induction with respect to
. Assume that the hypotheses of the theorem as well as equations (4.2) for

 hold. Assume that the assertion of the theorem is valid for .
Since equations (4.1) hold for the solution  with , we have

,

where , . Therefore, we differentiate equation
(0.1)  times with respect to  to obtain that  is a weak solution
to problem (4.16) with

and .

Consequently, Lemma 4.1 gives us that  is a weak solution to the problem
which is obtained by the formal differentiation of equation (0.1)  times with re-
spect to :

However, the hypotheses of Lemma 4.1 hold for this problem. Therefore (see (4.17)),

,

i.e. equations (4.1) hold for . Theorem 4.1 is proved.

Show that if the hypotheses of Theorem 4.1 hold, then the
function  is a weak solution to the problem which is
obtained by the formal differentiation of equation (0.1)  times with
respect to , .

Assume that the hypotheses of Theorem 4.1 hold and 
in equation (0.1). Show that if the conditions

, , (4.18)

are fulfilled, then a solution  to problem (0.1) and (0.2) possess-
es the properties

, .
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Assume that the hypotheses of Theorem 4.1 hold. We define
the sets

equation (4.2) holds with (4.19)

in the space . Prove that

and  .

Show that every set  given by equality (4.19) is invariant:

, .

Here  is a weak solution to problem (0.1) and (0.2).

Assume that  in equation (0.1) and the load  pos-
sesses property (4.18). Show that for  the set  of
form (4.19) contains the subspace .

Assume that the hypotheses of Theorem 3.1 hold and the ope-
rator  (in equation (0.1)) possesses the property

for some . (4.20)

Let  and let . Show that the estimate

, , (4.21)

is valid for the approximate Galerkin solution  to problem
(0.1) and (0.2). Here the constant  does not depend on 
(Hint: multiply equation (3.8) by  and summarize the re-
sult with respect to ; then use relation (3.14) to estimate the non-
linear term).

Show that if the hypotheses of Exercise 4.7 hold, then prob-
lem (0.1) and (0.2) possesses a weak solution  such that

,

where  is the number from Exercise 4.7.
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§ 5 Dissipativity and Asymptotic§ 5 Dissipativity and Asymptotic§ 5 Dissipativity and Asymptotic§ 5 Dissipativity and Asymptotic

CompactnessCompactnessCompactnessCompactness

In this section we prove the dissipativity and asymptotic compactness of the dynam-
ical system  generated by weak solutions to problem (0.1) and (0.2) for

 in the case of a stationary load . The phase space is 
. The evolutionary operator is defined by the formula

, (5.1)

where  is a weak solution to problem (0.1) and (0.2) with the initial condition
.

Theorem 5.1

Assume that in addition to Assume that in addition to Assume that in addition to Assume that in addition to (3.2) the following conditions are fulfilled the following conditions are fulfilled the following conditions are fulfilled the following conditions are fulfilled::::

a) there exist numbers there exist numbers there exist numbers there exist numbers     such thatsuch thatsuch thatsuch that

,,,,  (5.2)

with a constant with a constant with a constant with a constant ;;;;

b) there exist there exist there exist there exist  and  and  and  and  such that such that such that such that

,,,, .... (5.3)

Then the dynamical system Then the dynamical system Then the dynamical system Then the dynamical system  generated by problem  generated by problem  generated by problem  generated by problem (0.1) andandandand (0.2)
for for for for  and for  and for  and for  and for  is dissipative is dissipative is dissipative is dissipative....

To prove the theorem it is sufficient to verify (see Theorem 1.4.1 and Exercise 1.4.1)
that there exists a functional  on  which is bounded on the bounded sets of
the space , differentiable along the trajectories of system (0.1) and (0.2), and
such that

, (5.4)

, (5.5)

where  and  are constants. To construct the functional 
we use the method which is widely-applied for finite-dimensional systems (we used
it in the proof of estimate (2.13)). 

Let

,

where . Here  is the energy of system (0.1)
and (0.2) defined by the formula (3.7),
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,

and the parameter  will be chosen below. It is evident that

.

For  this implies estimate (5.4) and the inequality

 (5.6)

with the constants  independent of . This inequality guarantees the
boundedness of  on the bounded sets of the space .

Energy equality (3.6) implies that the function , where , is
continuously differentiable and

.

Therefore, due to (5.3) we have that

.

We use interpolation inequalities (see Exercises 2.1.12 and 2.1.13) to obtain that

, .

Thus, the estimate

 (5.7)

holds for any .

Lemma 5.1

Let  be a weak solution to problem (0.1) and (0.2) and let 

. Then the function  is continuously differenti-

able and

. (5.8)

We note that since  (see Exercise 3.6), equation (5.8) is correct-
ly defined.

Proof.

It is sufficient to verify that

. (5.9)
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Let  be the orthoprojector onto the span of elements  in
. Then it is evident that the vector-function  is twice continu-

ously differentiable with respect to . Therefore,

.

The properties of the projector  (see Exercise 2.1.11) enable us to pass to
the limit  and to obtain (5.9). Lemma 5.1 is proved.

Since  is a solution to equation (0.1), relation (5.8) implies that

.

Therefore, equation (5.2) and the evident inequality

give us that

.

Hence, (5.6) and (5.7) enable us to obtain the estimate

where  and

.

Therefore, for any  estimate (5.5) holds, provided  and  are chosen
appropriately. Thus, Theorem 5.1 is proved.

Prove that if the hypotheses of Theorem 5.1 hold, then the as-
sertion on the dissipativity of solutions to problem (0.1) and (0.2)
remains true in the case of a nonstationary load .

Theorem 5.2

Let the hypotheses of Theorem Let the hypotheses of Theorem Let the hypotheses of Theorem Let the hypotheses of Theorem 5.1 hold and assume that for some  hold and assume that for some  hold and assume that for some  hold and assume that for some 

,,,, ,,,,  .... (5.10)

Then there exists a positively invariant bounded set Then there exists a positively invariant bounded set Then there exists a positively invariant bounded set Then there exists a positively invariant bounded set  in the space  in the space  in the space  in the space 

 which is closed in  which is closed in  which is closed in  which is closed in  and such that and such that and such that and such that
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 (5.11)

for any bounded set for any bounded set for any bounded set for any bounded set  in the space  in the space  in the space  in the space , , , , ....

Due to the compactness of the embedding of  in  for , this theorem and
Lemma 1.4.1 imply that the dynamical system  is asymptotically compact.

Proof.

Since the system  is dissipative, there exists  such that for all
 and 

, (5.12)

where  is a weak solution to problem (0.1) and (0.2) with the initial conditions
. We consider  as a solution to linear problem (2.1) and (2.2)

with  and . It is easy to verify that  is a
continuously differentiable function and

, .

Moreover, equation (2.27) implies that

, (5.13)

where

.

Here  is the evolutionary operator of the homogeneous problem (2.1) and
(2.2) with  and . By virtue of Theorem 2.2 there
exists  such that

, (5.14)

where , , and is the orthoprojector  onto

, .

This implies that

.

Therefore, we use (5.10) to obtain that

. (5.15)
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It is also easy to find that

, .

Consequently, there exists a number  depending on the radius of dissipativity 
and the parameters of the problem such that the value

 (5.16)

lies in the ball

for . Therefore, with the help of (5.12) and (2.23) we have that

. (5.17)

Let . Evidently equation (5.11) is valid. Moreover, 
is positively invariant. The continuity of  with recpect to the both variables

 in the space  (see Exercise 3.8) and attraction property (5.17) imply that
 is a closed set in . Let us prove that  is bounded in . First we note that
 is bounded in . Indeed, by virtue of the dissipativity we have that 

for all  and . Since  is continuous with respect to the vari-
ables , its maximum is attained on the compact . Thus, there exists

 such that  for all . Let us return to equality (5.16) for 
and . It is evident that the norm of the right-hand side in the space 
is bounded by the constant . However, equation (5.14) implies that

, , .

Therefore, equation (5.16) leads to the uniform estimate

, , .

Thus, the set  is bounded in . Theorem 5.2 is proved.

Show that for any  a bounded set of  is attracted
by  at an exponential rate with respect to the metric of the space

. Thus, we can replace  by  in (5.11).

Prove that if the hypotheses of Theorem 5.2 hold, then the as-
sertion on the asymptotic compactness of solutions to problem (0.1)
and (0.2) remains true in the case of nonstationary load 

 (see also Exercise 5.1).

Prove that the hypotheses of Theorem 5.1 and 5.2 hold for
problem (0.3) and (0.4) for any , provided that 
and  lies in the Sobolev space .
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Let us consider the dissipativity properties of smooth solutions (see Section 4) to
problem (0.1) and (0.2).

Theorem 5.3

Let the hypotheses of Theorem Let the hypotheses of Theorem Let the hypotheses of Theorem Let the hypotheses of Theorem 5.1 hold. Assume that  hold. Assume that  hold. Assume that  hold. Assume that 

and the initial conditions and the initial conditions and the initial conditions and the initial conditions  are such that equations  are such that equations  are such that equations  are such that equations (4.1) (and (and (and (and

hence hence hence hence (4.2)) are valid for the solution ) are valid for the solution ) are valid for the solution ) are valid for the solution .... Then there exists Then there exists Then there exists Then there exists

 such that for any initial data  such that for any initial data  such that for any initial data  such that for any initial data  possessing the property possessing the property possessing the property possessing the property

,,,, ,,,, (5.18)

the solution the solution the solution the solution  admits the estimate admits the estimate admits the estimate admits the estimate

 (5.19)

for all for all for all for all  as soon as  as soon as  as soon as  as soon as ....

We use induction to prove the theorem. The proof is based on the following asser-
tion.

Lemma 5.2

Assume that the hypotheses of Theorem 5.3 hold for . Then the dy-

namical system  generated by problem (0.1) and (0.2) in the

space  is dissipative.

Proof.

Let  be a semitrajectory of the dynamical system
 and let . If the hypotheses of the lem-

ma hold, then the function  is a weak solution to problem (4.15) ob-
tained by formal differentiation of (0.1) with respect to  (as we have shown in
Section 4). By virtue of Theorem 2.1 the energy equality of the form (2.6) holds
for the function . We rewrite it in the differential form:

, (5.20)

where

 (5.21)

and

The dissipativity property of  given by Theorem 5.1 leads to the esti-
mates
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,

for all  with the property

and for all  large enough. Hereinafter  is the radius of dissipativity
of the system . These estimates imply that for  we have

 (5.22)

and

, (5.23)

where the constants  depend on . Here . Similarly, we use Lem-
ma 5.1 to find that

for . Consequently, the function

possesses the properties

, ,

and

for and for  small enough. This implies that

 (5.24)

for , provided that

. (5.25)

If we use (5.4)–(5.6), then it is easy to find that

, ,

under condition (5.25). Using the energy equality for the weak solutions to
problem (4.15) we conclude that
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.

Therefore, standard reasoning in which Gronwall’s lemma is used leads to

,

provided that equation (5.25) is valid. Here  and  are some positive con-
stants depending on  and . This and equation (5.24) imply that

, (5.26)

where  depends on  only. Since

,

provided that

,

equation (5.26) gives us the estimate

, .

This easily implies the dissipativity of the dynamical system . Thus,
Lemma 5.2 is proved.

Prove that the dynamical system  generated by
problem (0.1) and (0.2) with the initial data 

 is asymptotically compact provided that equations (5.10)
hold.

In order to complete the proof of Theorem 5.3, we should note first that Lemma 5.2
coincides with the assertion of the theorem for  and second we should use the
fact that the derivatives  are weak solutions to the problem obtained by dif-
ferentiation of the original equation. The main steps of the reasoning are given in the
following exercises.

Assume that the hypotheses of Theorem 5.3 hold for 
and its assertion is valid for . Show that  is
a weak solution to the problem of the form
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Use the result of Exercise 5.6 and the method given in the
proof of Lemma 5.2 to prove that  can be estima-
ted as follows:

(5.27)

where , the numbers  depend on  and , , and
the constant  depends on  only.

Use the induction assumption and equation (5.27) to prove
the assertion of Theorem 5.3 for .

§ 6 Global Attractor and § 6 Global Attractor and § 6 Global Attractor and § 6 Global Attractor and Inertial SetsInertial SetsInertial SetsInertial Sets

The above given properties of the evolutionary operator  generated by problem
(0.1) and (0.2) in the case of stationary load  enable us to apply the gene-
ral assertions proved in Chapter 1 (see also [10]).

Theorem 6.1

Assume that conditions Assume that conditions Assume that conditions Assume that conditions (3.2), , , , (5.2), , , , (5.3), and , and , and , and (5.10) are fulfilled. Then are fulfilled. Then are fulfilled. Then are fulfilled. Then

the dynamical system the dynamical system the dynamical system the dynamical system  generated by problem  generated by problem  generated by problem  generated by problem (0.1) andandandand (0.2) pos- pos- pos- pos-

sesses a global attractor sesses a global attractor sesses a global attractor sesses a global attractor  of a finite fractal dimension. This attractor is of a finite fractal dimension. This attractor is of a finite fractal dimension. This attractor is of a finite fractal dimension. This attractor is

a connected compact set in  and is bounded in the space a connected compact set in  and is bounded in the space a connected compact set in  and is bounded in the space a connected compact set in  and is bounded in the space ,,,,

where where where where  is defined by condition  is defined by condition  is defined by condition  is defined by condition (5.10)....

Proof.

By virtue of Theorems 5.1, 5.2, and 1.5.1 we should prove only the finite dimen-
sionality of the attractor. The corresponding reasoning is based on Theorem 1.8.1
and the following assertions.

Lemma 6.1.

Assume that conditions (3.2), (5.2), and (5.3) are fulfilled. Let .

Then for any pair of semitrajectories ,  posses-

sing the property  for all  the estimate

, , (6.1)

holds with the constant  depending on .
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Proof.

If  and  are solutions to problem (0.1) and (0.2) with the initial
conditions  and , then the function 

 satisfies the equation

, (6.2)

where

.

It is evident that the estimate 

holds, provided that . Therefore, (2.20)
implies that

.

Gronwall’s lemma gives us equation (6.1).

Lemma 6.2

Assume that the hypotheses of Theorem 6.1 hold. Let  be the compact

positively invariant set constructed in Theorem 5.2. Then for any

 the inequality

(6.3)

is valid, where , , the orthoprojector  and the

number  are defined as in (5.14),  and  are positive constants

which depend on the parameters of the problem.

Proof.

It is evident that

, 

where  is the orthoprojector onto the closure of the span of elements 
 in . Moreover, the function  

is a solution to the equation

,

where

.
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Let us estimate the value . Since  for  (see the proof
of Theorem 5.2), we have

.

Using equation (5.10) we similarly obtain that

.

Therefore,

.

Consequently,

. (6.4)

Using equation (2.27) we obtain that

,

where  is the evolutionary operator of homogeneous problem (2.1) with
 and . Therefore, (2.23) and (6.4) imply that

(6.5)

We substitute (6.1) in this equation to obtain (6.3). Lemma 6.2 is proved.

Let us choose  and  such that

, , .

Then Lemmata 6.1 and 6.2 enable us to state that

and

,

where  and the elements  and  lie in the global attractor . Hence,
we can use Theorem 1.8.1 with , , and . Therefore, the fractal
dimension of the attractor  is finite. Thus, Theorem 6.1 is proved.
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Theorem 5.2 and Lemmata 6.1 and 6.2 enable us to use Theorem 1.9.2 to obtain an
assertion on the existence of the inertial set (fractal exponential attractor) for the
dynamical system  generated by problem (0.1) and (0.2).

Theorem 6.2

Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem 6.1 hold. Then there exists hold. Then there exists hold. Then there exists hold. Then there exists

a compact positively invariant set a compact positively invariant set a compact positively invariant set a compact positively invariant set  of the finite fractal dimen- of the finite fractal dimen- of the finite fractal dimen- of the finite fractal dimen-

sion such thatsion such thatsion such thatsion such that

for any bounded set for any bounded set for any bounded set for any bounded set  in  in  in  in     and and and and .... Here  Here  Here  Here  and  and  and  and  are positive num-are positive num-are positive num-are positive num-

bers. The inertial set bers. The inertial set bers. The inertial set bers. The inertial set  is bounded in the space  is bounded in the space  is bounded in the space  is bounded in the space ....

To prove the theorem we should only note that relations (5.11), (6.1), and (6.3)
coincide with conditions (9.12)–(9.14) of Theorem 1.9.2.

Using (1.8.3) and (1.9.18) we can obtain estimates (involving the parameters of the
problem) for the dimensions of the attractor and the inertial set by an accurate ob-
serving of the constants in the proof of Theorems 5.1 and 5.2 and Lemmata 6.1 and
6.2. However, as far as problem (0.3) and (0.4) is concerned, it is rather difficult
to evaluate these estimates for the values of parameters that are very interesting
from the point of view of applications. Moreover, these estimates appear to be quite
overstated. Therefore, the assertions on the finite dimensionality of an attractor and
inertial set should be considered as qualitative results in this case. In particular, this
assertions mean that the nonlinear flutter of a plate is an essentially finite-dimen-
sional phenomenon. The study of oscillations caused by the flutter can be reduced to
the study of the structure of the global attractor of the system and the properties
of inertial sets.

Prove that the global attractor of the dynamical system gene-
rated by problem (0.1) and (0.2) is a uniformly asymptotically stable
set (Hint: see Theorem 1.7.1).

We note that theorems analogous to Theorems 6.1 and 6.2 also hold for a class of re-
tarded perturbations of problem (0.1) and (0.2). For example, instead of (0.1) and
(0.2) we can consider (cf. [11–13]) the following problem
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Here , , and  are the same as in Theorems 6.1 and 6.2, the symbol  denotes
the function on  which is given by the equality  for 

, the parameter  is a delay value, and  is a linear mapping from
 into  possessing the property

for  small enough and for all , where  is a positive number. Such
a formulation of the problem corresponds to the case when we use the model of the
linearized potential gas flow (see [11–14]) to take into account the aerodynamic
pressure in problem (0.3) and (0.4).

The following assertion gives the time smoothness of trajectories lying in the attrac-
tor of problem (0.1) and (0.2).

Theorem 6.3

Assume that conditions Assume that conditions Assume that conditions Assume that conditions (3.2) and  and  and  and (5.2) are fulfilled and the linear ope- are fulfilled and the linear ope- are fulfilled and the linear ope- are fulfilled and the linear ope-

rator rator rator rator  possesses the property possesses the property possesses the property possesses the property

,,,,  (6.6)

for allfor allfor allfor all    .... Let  Let  Let  Let .... Then the assertions of Theorem  Then the assertions of Theorem  Then the assertions of Theorem  Then the assertions of Theorem 6.1
are valid for any are valid for any are valid for any are valid for any .... Moreover, if  Moreover, if  Moreover, if  Moreover, if  for some for some for some for some

, then the trajectories , then the trajectories , then the trajectories , then the trajectories     lying in the global attractor lying in the global attractor lying in the global attractor lying in the global attractor 

of the system of the system of the system of the system  generated by problem  generated by problem  generated by problem  generated by problem (0.1) andandandand (0.2) for  for  for  for  pos- pos- pos- pos-

sess the propertysess the propertysess the propertysess the property

 (6.7)

for allfor allfor allfor all    ,,,,    ,,,, where  where  where  where  is a constant depending onis a constant depending onis a constant depending onis a constant depending on

the problem parameters onlythe problem parameters onlythe problem parameters onlythe problem parameters only....

Proof.

It is evident that conditions (5.3) and (5.10) follow from (6.6). Therefore, we
can apply Theorem 6.1 which guarantees the existence of a global attractor . Let
us assume that , . Let  be a trajectory in

, . We consider a function , where  is the ortho-
projector onto the span of the basis vectors  in  for  large enough.
It is clear that  and satisfies the equation 

. (6.8)

Equation (6.6) for  implies that  is a continuously differentiable
function. It is also evident that . Therefore, we differenti-
ate equation (6.8) with respect to  to obtain the equation
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for the function . Here

.

Since any trajectory  lying in the attractor possesses the property

, , (6.9)

it is clear that

, . (6.10)

Relation (6.9) also implies that the function

 (6.11)

possesses the property

, .

Therefore, as in the proof of Theorem 2.2, we find that there exists  such that

 (6.12)

for all real , where ,  is the orthoprojector onto

,

, and  is the evolutionary operator of the problem

with  of the form (6.10). Moreover,  can be presented
in the form

. (6.13)

Then for  we have
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Therefore, we use (6.9), (6.10), and (6.6) for  to obtain that

.

We tend  in this inequality to find that

,

where  does not depend on . It further follows from (6.9) and equation (0.1)
that

,

where the constant  can depend on . Hence,

.

We tend  to find that any trajectory  lying in the attrac-
tor possesses the property

, .

By virtue of (6.6) we have

, .

Therefore, we reason as above to find that equation (6.13) implies

.

Similarly we get

for all . Consequently, using equation (0.1) we obtain estimate (6.7) for
. In order to prove (6.7) for the other values of  we should use induction with

respect to  and similar arguments. We offer the reader to make an independent de-
tailed study as an exercise.

In addition to the hypotheses of Theorem 6.3 we assume that
 and . Prove that the global attractor  of

the system  lies in .
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§ 7 Conditions of Regularity of Attractor§ 7 Conditions of Regularity of Attractor§ 7 Conditions of Regularity of Attractor§ 7 Conditions of Regularity of Attractor

Unfortunately, the structure of the global attractor of problem (0.1) and (0.2) can be
described only under additional conditions that guarantee the existence of the Lya-
punov function (see Section 1.6). These conditions require that  and assume
the stationarity of the transverse load . For the Berger system (0.3) and (0.4)
these hypotheses correspond to  and , i.e. to the case of plate
oscillations in a motionless stationary medium.

Thus, let us assume that the operator  is identically equal to zero and
 in (0.1). Assume that the hypotheses of Theorem 3.1 hold. Then energy

equality (3.6) implies that

, (7.1)

where , the function  is a weak solution to problem
(0.1) and (0.2) with the initial conditions , and  is the energy
of the system defined by formula (3.7).

Let us prove that the functional  with 
is a Lyapunov function (for definition see Section 1.6) of the dynamical system

. Indeed, it is evident that the functional  is continuous on . By vir-
tue of (7.1) it is monotonely increasing. If  for some , then

.

Therefore,  for , i.e.  is a stationary solution to prob-
lem (0.1) and (0.2). Hence,  is a fixed point of the semigroup .

Therefore, Theorems 1.6.1 and 6.1 give us the following assertion.

Theorem 7.1

Assume that Assume that Assume that Assume that ,,,,    ,,,, and  and  and  and  for some  for some  for some  for some .... We also assume We also assume We also assume We also assume

that the function that the function that the function that the function  satisfies conditions  satisfies conditions  satisfies conditions  satisfies conditions (3.2) and  and  and  and (5.2).... Then the global Then the global Then the global Then the global

attractor attractor attractor attractor  of the dynamical system  of the dynamical system  of the dynamical system  of the dynamical system  generated by problem  generated by problem  generated by problem  generated by problem (0.1)
andandandand (0.2) has the form has the form has the form has the form

,,,, (7.2)

where where where where  is the set of fixed points of the semigroup  is the set of fixed points of the semigroup  is the set of fixed points of the semigroup  is the set of fixed points of the semigroup , i.e., i.e., i.e., i.e.

,,,, (7.3)

and  is the unstable set emanating from  and  is the unstable set emanating from  and  is the unstable set emanating from  and  is the unstable set emanating from  (for definition see Sec-

tion 1.6).
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Let . Prove that if the hypotheses of Theorem 7.1 hold,
then any fixed point  of problem (0.1) and (0.2) either equals to ze-
ro, , or has the form , where the constant

 is the solution to the equation .

Assume that  and . Then problem (0.1)
and (0.2) has a unique fixed point  for .
If , then the number of fixed points is equal to 
and all of them have the form , ,
where

, , .

Show that if the hypotheses of Exercise 7.2 hold, then the
energy  of each fixed point  has the form

, , ,

for .

Assume that the hypotheses of Theorem 7.1 hold. Show that
if the set

(7.4)

is not empty, then it is a closed positively invariant set of the dyna-
mical system  generated by weak solutions to problem (0.1)
and (0.2).

Assume that the hypotheses of Theorem 7.1 hold and the set
 defined by equality (7.4) is not empty. Show that the dynamical

system  possesses a compact global attractor ,
where  is the set of fixed points of  satisfying the condition

.

Show that if the hypotheses of Theorem 7.1 hold, then the
global minimal attractor  (for definition see Section 1.3)
of problem (0.1) and (0.2) coincides with the set  of the fixed
points (see (7.3)).

Further we prove that if the hypotheses of Theorem 7.1 hold, then the attractor 
of problem (0.1) and (0.2) is regular in generic case. As in Section 2.5, the corre-
sponding arguments are based on the results obtained by A. V. Babin and M. I. Vishik
(see also Section 1.6). These results prove that in generic case the number of fixed
points is finite and all of them are hyperbolic.
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Lemma 7.1.

Assume that conditions (3.2) and (5.2) are fulfilled. Then the problem

, , (7.5)

possesses a solution for any , where . If  is a bounded set

in , then its preimage  is bounded in . If 

is a compact in , then  is a compact in , i.e. the

mapping  is proper.

Proof.

We follow the line of arguments given in the proof of Lemma 2.5.3. Let us
consider the continuous functional

 (7.6)

on , where  is a primitive of the function .
Equation (3.2) implies that

 (7.7)

Thus, the functional  is bounded below. Let us consider it on the subspace
, where  is the orthoprojector onto  as before. Since

 as , there exists a minimum point  on the subspace
. This minimum point evidently satisfies the equation

. (7.8)

Equation (7.7) gives us that

with the constants being independent of . Therefore, it follows from (7.8)
that , provided . This estimate enables us to pass to the
limit in (7.8) and to prove that if , then equation (7.5) is solvable for any

. Equation (7.5) implies that

for ,

i.e.  is bounded in  if  is bounded. In order to prove that the
mapping  is proper we should reason as in the proof of Lemma 2.5.3. We give
the reader an opportunity to follow these reasonings individually, as an exercise.
Lemma 7.1 is proved.

� u* + A2 u M A1 2� u
2

� �
� � Au� p
� u D A2 7�� 	�

p �7� 7 0� 


�7 � 1� 
� 	 �2 7� D A2 7�� 	
 


�7 � 1� 
� 	 D A2 7�� 	
�

W u� 	 1
2
��� Au Au�� 	 � A1 2� u

2
� �
� ��

�  
! "
# $

p u�� 	�


�1 D A� 	
 � z� 	 M :� 	 :d
0

z

�
 M z� 	

W u� 	 1
2
��� Au

2
a A1 2� u

2� b�� �
� � A 1� p Au6�� �

1
4
��� 1 a

�1
�������� �

� � Au
2 b

2
���� 1 a

�1
�������� �

� � 1�
A 1� p

2 .��

W u� 	
pm�1 pm Lin e1 ' em� �% &
W u� 	 ��- Au �- um

pm�1

A2 u
m

M A1 2� u
m

2
� �
� � Au

m
� p

m
p


Au
m

2
c1 c2

W u� 	 : u p
m
�1�

�  
! "
# $

inf c3 A 1� p
2

� �(

m

A2 um CR( p R(
7 0


p �7�

A2 7� u
m

C
R

( p 7 R(

� 1� 
� 	 D A2 7�� 	 


�



264 T h e  P r o b l e m  o n  N o n l i n e a r  O s c i l l a t i o n s  o f  a  P l a t e  i n  a  S u p e r s o n i c  G a s  F l o w

4

C

h

a

p

t

e

r

Lemma 7.2

Let . Then the operator  defined by the formula

 (7.9)

with the domain  is selfadjoint and 

.

Proof.

It is clear that  is a symmetric operator on . Moreover, it is
easy to verify that

, , (7.10)

i.e.  is a relatively compact perturbation of the operator . Therefore,
 is selfadjoint. It is further evident that

.

However, due to (7.10) the operator  is compact. Therefore,
. Lemma 7.2 is proved.

Prove that for any  the operator  is bounded
below and has a discrete spectrum, i.e. there exists an orthonormal
basis  in  such that

, , .

Assume that , where  is a constant and  is an
element of the basis  of eigenfunctions of the operator . Show
that  for all , where

.

Here  for  and  for .

As in Section 2.5, Lemmata 7.1 and 7.2 enable us to use the Sard-Smale theorem
(see, e.g., the book by A. V. Babin and M. I. Vishik [10]) and to state that the set

for all

of regular values of the operator  is an open everywhere dense set in  for
.

Show that the set of solutions to equation (7.5) is finite for
 (Hint: see the proof of Lemma 2.5.5).
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Let us consider the linearization of problem (0.1) and (0.2) on a solution 
to problem (7.5):

(7.11)

Here  is given by formula (7.9).

Prove that problem (7.11) has a unique weak solution on any
segment  if , , and the function 

 possesses property (3.2).

Thus, problem (7.11) defines a strongly continuous linear evolutionary semigroup
 in the space  by the formula

, (7.12)

where  is a weak solution to problem (7.11).

Let  be the orthonormal basis of eigenelements of the
operator  and let  be the corresponding eigenvalues. Then
each subspace

is invariant with respect to . The eigenvalues of the restriction
of the operator  onto the subspace  have the form

.

Lemma 7.3

Let . Assume that  possesses property (3.2). Then

the evolutionary operator  of problem (0.1) and (0.2) is Frechét dif-

ferentiable at each fixed point . Moreover, ,

where  is defined by equality (7.12).

Proof.

Let

,

where , , and  is a solution to equation (7.5).
It is clear that , where  is a weak so-
lution to problem

(7.13)
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Here

where  is a weak solution to problem (0.1) and (0.2) with the initial condi-
tions  and  is a solution to problem (7.11) with

 and . It is evident that

, (7.14)

where

.

It is also evident that the value  can be estimated in the following way

for  and for , where the constants  and  depend on ,
, and . This implies that

. (7.15)

Let us rewrite the value  in the form

Consequently, the estimate

(7.16)

holds for  and for . Therefore, equations (7.14)–(7.16) give
us that

on any segment . Here  and . We use conti-
nuity property (3.20) of a solution to problem (0.1) and (0.2) with respect to
the initial conditions to obtain that
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, , .

Therefore,

 

for  and for . Hence, the energy equality for the solutions
to problem (7.13) gives us that

.

Therefore, Gronwall’s lemma implies that

, .

This equation can be rewritten in the form

.

Thus, Lemma 7.3 is proved.

Use the arguments given in the proof of Lemma 7.3 to verify
that under condition (3.2) for  the evolutionary
operator  of problem (0.1) and (0.2) in  belongs to the class 
and

for any  and .

Use the results of Exercises 7.7 and 7.11 to prove that for
a regular value  of the mapping  the spectrum of the opera-
tor  does not intersect the unit circumference while the eigen-
subspace  which corresponds to the spectrum outside the unit
disk does not depend on  and is finite-dimensional.

The results presented above enable us to prove the following assertion (see Chap-
ter V of the book by A. V. Babin and M. I. Vishik [10]).

Theorem 7.2

Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem 7.1 hold. Then there exists an hold. Then there exists an hold. Then there exists an hold. Then there exists an

open dense set open dense set open dense set open dense set  in  in  in  in  such that the dynamical system  such that the dynamical system  such that the dynamical system  such that the dynamical system  possesses possesses possesses possesses

a regular global attractor  for every a regular global attractor  for every a regular global attractor  for every a regular global attractor  for every , i. e., i. e., i. e., i. e.

,,,,

where  is the unstable manifold of the evolutionary operator  ema-where  is the unstable manifold of the evolutionary operator  ema-where  is the unstable manifold of the evolutionary operator  ema-where  is the unstable manifold of the evolutionary operator  ema-

nating from the fixed point . Moreover, each set  is a finite-dimen-nating from the fixed point . Moreover, each set  is a finite-dimen-nating from the fixed point . Moreover, each set  is a finite-dimen-nating from the fixed point . Moreover, each set  is a finite-dimen-

sional surface of the class sional surface of the class sional surface of the class sional surface of the class ....
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In the case of a zero transverse load  Theorem 7.2 is not applicable in gene-
ral. However, this case can be studied by using the structure of the problem. For exam-
ple, we can guarantee finiteness of the set of fixed points if we assume (see Exer-
cise 7.1) that the equation , first, is solvable with respect to 
only for a finite number of the eigenvalues  and, second, possesses not more than
a finite number of solutions for every . The solutions to equation (7.5) are either

, or , where  and  satisfy . The eigen-
values of the operator  have the form

if

and

if .

Therefore, the result of Exercise 7.11 implies that the fixed points are hyperbolic
if all the numbers  are nonzero, i.e. if

, ; , ;

for all  and  such that . In particular, if ,
then for any real  there exists a finite number of fixed points (see Exercise 7.2)
and all of them are hyperbolic, provided that  for all  and the eigenvalues

 satisfying the condition  are simple. Moreover, we can prove that for
 the unstable manifold , , emanating

from the fixed point  (see Exercise 7.2) possesses the property

, .

§ 8 On Singular Limit in the Problem§ 8 On Singular Limit in the Problem§ 8 On Singular Limit in the Problem§ 8 On Singular Limit in the Problem

of Oscillations of a Plateof Oscillations of a Plateof Oscillations of a Plateof Oscillations of a Plate

In this section we consider problem (0.1) and (0.2) in the following form:

, (8.1)

. (8.2)

Equation (8.1) differs from equation (0.1) in that the parameter  is intro-
duced. It stands for the mass density of the plate material. The introduction of a new
time  transforms equation (8.1) into (0.1) with the medium resistance pa-
rameter  instead of . Therefore, all the above results mentioned above
remain true for problem (8.1) and (8.2) as well.
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The main question discussed in this section is the asymptotic behaviour of the
solution to problem (8.1) and (8.2) for the case when the inertial forces are small
with respect to the medium resistance forces . Formally, this assumption
leads to a quasistatic statement of problem (8.1) and (8.2):

, (8.3)

. (8.4)

Here we prove that the global attractor of problem (8.1) and (8.2) is close to the glo-
bal attractor of the dynamical system generated by equations (8.3) and (8.4)
in some sense.

Without loss of generality we further assume that . We also note that
problem (8.3) and (8.4) belongs to the class of equations considered in Chapter 2.

Assume that conditions (3.2) and (3.3) are fulfilled and
. Show that problem (8.3) and (8.4) has a unique mild

(in ) solution on any segment , i.e. there exists
a unique function  such that

(Hint: see Theorem 2.2.4 and Exercise 2.2.10).

Let us consider the Galerkin approximations of problem (8.3) and (8.4):

, (8.5)

, (8.6)

where  is the orthoprojector onto the first  eigenvectors of the operator  and
.

Assume that conditions (3.2) and (3.3) are fulfilled and
. Then problem (8.5) and (8.6) is solvable on any seg-

ment  and

, . (8.7)

Theorem 8.1

Let Let Let Let  and assume that conditions  and assume that conditions  and assume that conditions  and assume that conditions (3.2),,,,    (5.2),,,, and  and  and  and (5.3) are ful- are ful- are ful- are ful-

filled. Then the dynamical system filled. Then the dynamical system filled. Then the dynamical system filled. Then the dynamical system  generated by weak solutions to generated by weak solutions to generated by weak solutions to generated by weak solutions to

problem problem problem problem (8.3) andandandand (8.4) possesses a compact connected global attractor  possesses a compact connected global attractor  possesses a compact connected global attractor  possesses a compact connected global attractor ....

This attractor is a bounded set in This attractor is a bounded set in This attractor is a bounded set in This attractor is a bounded set in  for  for  for  for  and has a finite frac- and has a finite frac- and has a finite frac- and has a finite frac-

tal dimensiontal dimensiontal dimensiontal dimension....
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Proof.

First we prove that the system  is dissipative. To do that we consider
the Galerkin approximations (8.5) and (8.6). We multiply (8.5) by  scalarwise
and find that

Using equation (5.2) we obtain that

We use equation (5.3) and reason in the same way as in the proof of Theorem 5.1 to
find that

 (8.8)

with some positive constants ,  . Multiplying equation (8.5) by 
we obtain that

,

where

.

It follows that

. (8.9)

If we summarize (8.8) and (8.9), then it is easy to find that

.

This implies that

.

We use (8.7) to pass to the limit as  and to obtain that

 .

This implies the dissipativity of the dynamical system  generated by prob-
lem (8.3) and (8.4). In order to complete the proof of the theorem we use Theorem
2.4.1.
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We note that the dissipativity also implies that the dynamical system  pos-
sesses a fractal exponential attractor (see Theorem 2.4.2).

Assume that the hypotheses of Theorem 8.1 hold and .
Show that for generic  the attractor of the dynamical system

 generated by equations (8.3) and (8.4) is regular (see the
definition in the statement of Theorem 7.2). Hint: see Section 2.5.

We assume that  and conditions (3.2), (5.2), (5.3), and (5.10) are
fulfilled. Let us consider the dynamical system  generated by problem
(8.1) and (8.2) in the space . Lemma 5.2 and Exer-
cise 5.5 imply that  possesses a compact global attractor  for any

.
The main result of this section is the following assertion on the closeness of

attractors of problem (8.1) and (8.2) and problem (8.3) and (8.4) for small .

Theorem 8.2

Assume that Assume that Assume that Assume that  and conditions  and conditions  and conditions  and conditions (3.2),,,,    (5.2),,,,    (5.3),,,, andandandand

(5.10) concerning  concerning  concerning  concerning ,,,,    ,,,, and  are fulfilled and  are fulfilled and  are fulfilled and  are fulfilled....    Then the equationThen the equationThen the equationThen the equation

 (8.10)

is valid, where is valid, where is valid, where is valid, where  is a global attractor of the dynamical system  is a global attractor of the dynamical system  is a global attractor of the dynamical system  is a global attractor of the dynamical system 

generated by problem generated by problem generated by problem generated by problem (8.1) andandandand (8.2),,,,

....

Here Here Here Here  is a global attractor of problem  is a global attractor of problem  is a global attractor of problem  is a global attractor of problem (8.3) andandandand (8.4) in  in  in  in  and and and and

 is the distance between the element  is the distance between the element  is the distance between the element  is the distance between the element  and the set  and the set  and the set  and the set  in the in the in the in the

space space space space . We remind that . We remind that . We remind that . We remind that     in equations in equations in equations in equations (8.1) and  and  and  and (8.3)....

The proof of the theorem is based on the following lemmata.

Lemma 8.1

The dynamical system  is uniformly dissipative in  with

respect to  for some , i.e. there exists  and

 such that for any set  which is bounded in  we have

 (8.11)

for all , .

�1 S
t

�� 	

E x e r c i s e 8.3 L 0�
p H�

�1 S
t

�� 	

M z� 	 C2 R�� 	�
�1 St

G�� 	
�1 �2 �18 D A2� 	 D A� 	8�


�1 St
G�� 	 �G

G 0�

G 0�

M z� 	 C2 R�� 	�
M z� 	 L p

y �*�� 	�dist : y �G�% &sup
G 0-
lim 0


�G �1 S
t
G�� 	

�* z0 z1)� 	 : z0 �� ,  z1 A2 z0� M A1 2� z0
2

� �
� � Az0� Lz0 p��


�  
! "
# $




� �1
y A�� 	

�
dist y A

� �1 �08
 � 1


�1 S
t
G�� 	 �

G 0 G0� +�� G0 0� G0 0�
R 0� B �1� �

S
t
G

B y u0 u1)� 	
 : G u1
2

Au0
2� R2(

�  
! "
# $

�

t t B G�� 	� G 0 G0� +��



272 T h e  P r o b l e m  o n  N o n l i n e a r  O s c i l l a t i o n s  o f  a  P l a t e  i n  a  S u p e r s o n i c  G a s  F l o w

4

C

h

a

p

t

e

r

Proof.

We use the arguments from the proof of Theorem 5.1 slightly modifying
them. Let

, ,

where

and

.

As in the proof of Theorem 5.1 it is easy to find that the inequalities

(8.12)

and

(8.13)

are valid for . Here  is an arbitrary number,
the constants  and  do not depend on . Moreover, it is also evident that

(8.14)

for  and for any . Here  and  do not depend on 
 and . Equations (8.12)–(8.14) lead us to the inequality

where the constant  does not depend on . If we choose  small
enough, then we can take  and  independent of  and
such that

, (8.15)

where  does not depend on . Moreover, we can assume
(due to the choice of ) that

, (8.16)

where  and  do not depend on . Using equations (8.14)–(8.16)
we obtain the assertion of Lemma 8.1.
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Lemma 8.2

Let  be a solution to problem (8.1) and (8.2) such that 

for all . Then the estimate

is valid for , where  is a positive constant such that .

Proof.

It is evident that the estimate

holds, provided . Therefore, equaiton (8.1) easily implies the esti-
mate

for the solution . We multiply this inequality by . Then by virtue
of the fact that  we have

for . We integrate this equation from  to  to obtain the assertion
of the lemma.

Lemma 8.3

Let  be a solution to problem (8.1) and (8.2) with the initial condi-

tions  and such that  for . Then

the estimate

 (8.17)

is valid for the function . Here ,  is small

enough, , and the numbers  and  do not depend on

.

Proof.

Let us consider the function

for . It is clear that
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(8.18)

Since the function  is a weak solution to the equation obtained by the dif-
ferentiation of (8.1) with respect to  (cf. (4.15)):

,

where

,

then we have that

It follows that

.

We take  and choose  small enough to obtain with the help
of (8.18) that

, , ,

where the constants  and  do not depend on . Consequently,

.

Therefore, estimate (8.17) follows from equation (8.18) and Lemma 8.2. Thus,
Lemma 8.3 is proved.

Lemma 8.3 and equations (8.11) imply the existence of a constant  such that for
any bounded set  in  there exists  such that

, , (8.19)

where  is a solution to problem (8.1) and (8.2) with the initial conditions from
. However, due to (8.1) equations (8.11) and (8.19) imply that  for

. Thus, there exists  such that
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, , (8.20)

where  is a solution to system (8.1) and (8.2) with the initial conditions from the
bounded set  in ,  does not depend on , and  is small
enough. Equation (8.20) and the invariance property of the attractor  imply the
estimate

(8.21)

for any trajectory  lying in  for all .
Let us prove (8.10). It is evident that there exists an element 

from  such that

.

Let  be a trajectory of system (8.1) and (8.2) lying in the at-
tractor  and such that . Equation (8.21) implies that there exist
a subsequence  and an element 
such that for any segment  the sequence  converges to  in the

weak topology of the space  as . Equation (8.21) gives us
that the subsequence  is uniformly continuous and uniformly bounded
in . Therefore (cf. Exercise 1.14), 

(8.22)

for any . However, it follows from (8.21) that  as . There-
fore, we pass to the limit  in equation (8.1) and obtain that the function 
is a bounded (on the whole axis) solution to problem (8.3) and (8.4). Hence, it lies in
the attractor  of the system . With the help of (8.21) and (8.22) it is easy
to find that

, ,

where

.

Thus, Theorem 8.2 is proved.
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§ 9 On Inertial and § 9 On Inertial and § 9 On Inertial and § 9 On Inertial and ApproximateApproximateApproximateApproximate

Inertial ManifoldsInertial ManifoldsInertial ManifoldsInertial Manifolds

The considerations of this section are based on the results presented in Sections 3.7,
3.8, and 3.9. For the sake of simplicity we further assume that .

Theorem 9.1

Assume that conditions Assume that conditions Assume that conditions Assume that conditions (3.2), , , , (5.2), and , and , and , and (5.3) are fulfilled. We also as- are fulfilled. We also as- are fulfilled. We also as- are fulfilled. We also as-

sume that eigenvalues of the operator sume that eigenvalues of the operator sume that eigenvalues of the operator sume that eigenvalues of the operator  possess the properties possess the properties possess the properties possess the properties

andandandand ,,,, ,,,, ,,,, (9.1)

for some sequence for some sequence for some sequence for some sequence .... Then there exist numbers  Then there exist numbers  Then there exist numbers  Then there exist numbers  and  and  and  and 

such that the conditionssuch that the conditionssuch that the conditionssuch that the conditions

andandandand (9.2)

imply that the dynamical system imply that the dynamical system imply that the dynamical system imply that the dynamical system  generated by problem  generated by problem  generated by problem  generated by problem (0.1) andandandand

(0.2) possesses a  possesses a  possesses a  possesses a local inertial manifold, i.e. there exists a finite-dimen-local inertial manifold, i.e. there exists a finite-dimen-local inertial manifold, i.e. there exists a finite-dimen-local inertial manifold, i.e. there exists a finite-dimen-

sional manifold sional manifold sional manifold sional manifold  in  in  in  in  of the form of the form of the form of the form

,,,, (9.3)

where where where where  is a Lipschitzian mapping from is a Lipschitzian mapping from is a Lipschitzian mapping from is a Lipschitzian mapping from  into  into  into  into  and  and  and  and  is a is a is a is a

finite-dimensional projector in finite-dimensional projector in finite-dimensional projector in finite-dimensional projector in .... This manifold possesses the properties: This manifold possesses the properties: This manifold possesses the properties: This manifold possesses the properties:

1) for any bounded set for any bounded set for any bounded set for any bounded set  in  in  in  in  and for  and for  and for  and for 

;;;; (9.4)

2) there exists there exists there exists there exists  such that the conditions  such that the conditions  such that the conditions  such that the conditions  and  and  and  and  for for for for

 imply that  imply that  imply that  imply that     for for for for ;;;;

3) if the global attractor of the system if the global attractor of the system if the global attractor of the system if the global attractor of the system  exists, then the set  exists, then the set  exists, then the set  exists, then the set 

contains it contains it contains it contains it (see Theorem 6.1)....

Proof.

Conditions (3.2), (5.2), and (5.3) imply (see Theorem 5.1) that the dynamical
system  is dissipative, i.e. there exists  such that

, ,  (9.5)

for any bounded set . This enables us to use the dynamical system 
generated by an equation of the type

 (9.6)

to describe the asymptotic behaviour of solutions to problem (0.1) and (0.2). Here
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and  is an infinitely differentiable function on  possessing the properties

; ;

, ; , .

It is easy to find that there exists a constant  such that

and

.

Therefore, we can apply Theorem 3.7.2 to the dynamical system  generated
by equation (9.6). This theorem guarantees the existence of an inertial manifold of
the system  if the hypotheses of Theorem 9.1 hold. However, inside the dissi-
pativity ball  problem (9.6) coincides with problem (0.1) and (0.2).
This easily implies the assertion of Theorem 9.1.

Show that the hypotheses of Theorem 9.1 hold for the prob-
lem on oscillations of an infinite panel in a supersonic flow of gas:

Here  and  are real parameters and .

It is evident that the most essential assumption of Theorem 9.1 that restricts its ap-
plication is condition (9.2). In this connection the following assertion concerning the
case when problem (0.1) and (0.2) possesses a regular attractor is of some interest.

Theorem 9.2

Assume that in equation Assume that in equation Assume that in equation Assume that in equation (0.1) we have  we have  we have  we have  and  and  and  and 

    for some for some for some for some .... We also assume that conditions  We also assume that conditions  We also assume that conditions  We also assume that conditions (3.2) and and and and

(5.2) are fulfilled. Then there exists  are fulfilled. Then there exists  are fulfilled. Then there exists  are fulfilled. Then there exists  such that for all  such that for all  such that for all  such that for all  the the the the

subspacesubspacesubspacesubspace

 (9.7)

is an invariant and exponentially attracting set of the dynamical systemis an invariant and exponentially attracting set of the dynamical systemis an invariant and exponentially attracting set of the dynamical systemis an invariant and exponentially attracting set of the dynamical system

 generated by problem  generated by problem  generated by problem  generated by problem (0.1) andandandand (0.2)::::

,,,,  (9.8)

for for for for and for any bounded set  in . Here  is the orthoprojectorand for any bounded set  in . Here  is the orthoprojectorand for any bounded set  in . Here  is the orthoprojectorand for any bounded set  in . Here  is the orthoprojector

onto onto onto onto ....
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Proof.

Since  for , where  is the orthoprojector onto the span of
, the uniqueness theorem implies the invariance of . Let us prove

attraction property (9.8). It is sufficient to consider a trajectory  lying in
the ball of dissipativity . Evidently the function 
satisfies the equation

 (9.9)

It is also clear that the conditions

and

hold in the ball of dissipativity. This fact enables us to use Theorem 2.2 with 
. In particular, equation (2.23) guarantees the existence of a num-

ber  which depends on , , and  and such that

, ,

for all , where  is the orthoprojector onto  and .
This implies estimate (9.8). Theorem 9.2 is proved.

Assume that the hypotheses of Theorem 9.2 hold. Show that
for any semitrajectory  there exists an induced trajectory in

, i.e. there exists  such that

for  and for some .

Write down an inertial form of problem (0.1) and (0.2) in the
subspace , provided the hypotheses of Theorem 9.2 hold. Prove
that the inertial form coincides with the Galerkin approximation of
the order  of problem (0.1) and (0.2).

Show that if the hypotheses of Theorem 9.2 hold, then the
global attractor of problem (0.1) and (0.2) coincides with the global
attractor of its Galerkin approximation of a sufficiently large order.

Let us now turn to the question on the construction of approximate inertial mani-
folds for problem (0.1) and (0.2). In this case we can use the results of Section 3.8
and the theorems on the regularity proved in Sections 4 and 5.
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Assume that , and

,

where  and . Show that the mapping 
has the Frechét derivatives  up to the order  inclusive. Moreo-
ver, the estimates

 (9.10)

and

(9.11)

are valid, where , , , and
. Here  is the value of the

Frechét derivative on the elements .

We consider equations (9.10) and (9.11) as well as Theorem 5.3 which guarantees
nonemptiness of the classes  corresponding to the problem considered when

 is large enough. They enable us to apply the results of Section 3.8.
Let  be the orthoprojector onto the span of elements  in  and

let . We define the sequences  and  of map-
pings from  into  by the formulae

, (9.12)

(9.13)

(9.14)

Here ,  and  are the Frechét de-
rivatives with respect to the corresponding variables, , , where

 is a stationary transverse load in (0.1), , the numbers
 are chosen to fulfil the inequality .

Evaluate the functions  and .
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Theorem 3.8.2 implies the following assertion.

Theorem 9.3

Assume that Assume that Assume that Assume that , , , , , , , , , and conditions, and conditions, and conditions, and conditions

(3.2), , , , (5.2),,,, andandandand (5.3) are fulfilled. Then for all   the collection are fulfilled. Then for all   the collection are fulfilled. Then for all   the collection are fulfilled. Then for all   the collection of of of of

mappings mappings mappings mappings     given by equalities given by equalities given by equalities given by equalities (9.12)––––(9.14) possesses the properties possesses the properties possesses the properties possesses the properties

1) there exist constants there exist constants there exist constants there exist constants  and  and  and  and , , , ,  such that such that such that such that

,,,, ,,,,

,,,,

,,,,

for all for all for all for all  and  and  and  and  from  from  from  from  and such that and such that and such that and such that

,,,, , ;;;;

2) for any solution for any solution for any solution for any solution  to problem  to problem  to problem  to problem (0.1) andandandand (0.2) which satisfies com- which satisfies com- which satisfies com- which satisfies com-

patibility conditions patibility conditions patibility conditions patibility conditions (4.3) with  with  with  with  the estimate the estimate the estimate the estimate

is valid for is valid for is valid for is valid for  and for  and for  and for  and for  large enough. Here large enough. Here large enough. Here large enough. Here

,,,,

,,,,

 is the  is the  is the  is the -th eigenvalue of the operator -th eigenvalue of the operator -th eigenvalue of the operator -th eigenvalue of the operator  and the constant  and the constant  and the constant  and the constant  de- de- de- de-

pends on the radius of dissipativity.pends on the radius of dissipativity.pends on the radius of dissipativity.pends on the radius of dissipativity.

In particular, Theorem 9.3 means that the manifold

attracts sufficiently smooth trajectories of the dynamical system  generated
by problem (0.1) and (0.2) into a small vicinity (of the order ) of .

Assume that the hypotheses of Theorem 6.3 hold (this theo-
rem guarantees the existence of the global attractor  consisting of
smooth trajectories of problem (0.1) and (0.2)). Prove that

for all  (the number  is defined by the condition
).

Prove the analogue of Theorem 3.9.1 on properties of the non-
linear Galerkin method for problem (0.1) and (0.2).
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The results presented in previous chapters show that in many cases the asymp-
totic behaviour of infinite-dimensional dissipative systems can be described by a fi-
nite-dimensional global attractor. However, a detailed study of the structure of
attractor has been carried out only for a very limited number of problems. In this re-
gard it is of importance to search for minimal (or close to minimal) sets of natural
parameters of the problem that uniquely determine the long-time behaviour of a sys-
tem. This problem was first discussed by Foias and Prodi [1] and by Ladyzhenskaya
[2] for the 2D Navier-Stokes equations. They have proved that the long-time beha-
viour of solutions is completely determined by the dynamics of the first  Fourier
modes if  is sufficiently large. Later on, similar results have been obtained for
other parameters and equations. The concepts of determining nodes and deter-
mining local volume averages have been introduced. A general approach to the prob-
lem on the existence of a finite number of determining parameters has been
discussed (see survey [3]).

In this chapter we develop a general theory of determining functionals. This
theory enables us, first, to cover all the results mentioned above from a unified point
of view and, second, to suggest rather simple conditions under which a set of func-
tionals on the phase space uniquely determines the asymptotic behaviour of the sys-
tem by its values on the trajectories. The approach presented here relies on the
concept of completeness defect of a set of functionals and involves some ideas and
results from the approximation theory of infinite-dimensional spaces.

§ 1 Concept of a Set of Determining§ 1 Concept of a Set of Determining§ 1 Concept of a Set of Determining§ 1 Concept of a Set of Determining

FunctionalsFunctionalsFunctionalsFunctionals

Let us consider a nonautonomous differential equation in a real reflexive Banach
space  of the type

. (1.1)

Let  be a class of solutions to (1.1) defined on the semiaxis  such
that for any  there exists a point of time  such that

, (1.2)

where  is a reflexive Banach space which is continuously embedded into . Here-
inafter  is the space of strongly continuous functions on  with the
values in  and  has a similar meaning. The symbols  and 
stand for the norms in the spaces  and , .
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The following definition is based on the property established in [1] for the Fou-
rier modes of solutions to the 2D Navier-Stokes system with periodic boundary con-
ditions.

Let  be a set of continuous linear functionals on .
Then  is said to be a set of asymptotically  set of asymptotically  set of asymptotically  set of asymptotically -determining func--determining func--determining func--determining func-

tionals tionals tionals tionals (or elements) for problem (1.1) if for any two solutions  the con-
dition

for (1.3)

implies that

. (1.4)

Thus, if  is a set of asymptotically determining functionals for problem (1.1), the
asymptotic behaviour of a solution  is completely determined by the behaviour
of a finite number of scalar values . Further, if no ambi-
guity results, we will sometimes omit the spaces , , and  in the description of
determining functionals.

Show that condition (1.3) is equivalent to

,

where  is a seminorm in  defined by the equation

.

Let  and  be stationary (time-independent) solutions to
problem (1.1) lying in the class . Let  be a
set of asymptotically determining functionals. Show that condition

 for all  implies that .

The following theorem forms the basis for all assertions known to date on the exis-
tence of finite sets of asymptotically determining functionals.

Theorem 1.1.

Let  be a family of continuous linear functionalsLet  be a family of continuous linear functionalsLet  be a family of continuous linear functionalsLet  be a family of continuous linear functionals

on . Son . Son . Son . Suuuuppose that there exists a continuous function  on ppose that there exists a continuous function  on ppose that there exists a continuous function  on ppose that there exists a continuous function  on 

with the values in  which possesses the following properties:with the values in  which possesses the following properties:with the values in  which possesses the following properties:with the values in  which possesses the following properties:

a) there exist positive numbers  and  such thatthere exist positive numbers  and  such thatthere exist positive numbers  and  such thatthere exist positive numbers  and  such that

for allfor allfor allfor all ;;;; (1.5)
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b) for any two solutions  to problem for any two solutions  to problem for any two solutions  to problem for any two solutions  to problem (1.1) there exist  there exist  there exist  there exist (i)
a point of time , a point of time , a point of time , a point of time , (ii) a function  that is locally integrable a function  that is locally integrable a function  that is locally integrable a function  that is locally integrable

over the half-interval  and such thatover the half-interval  and such thatover the half-interval  and such thatover the half-interval  and such that

(1.6)

andandandand

(1.7)

for some , and for some , and for some , and for some , and (iii) a positive constant  such that for all a positive constant  such that for all a positive constant  such that for all a positive constant  such that for all

 we have we have we have we have

(1.8)

Then  is a set of asymptotically -determining functionals forThen  is a set of asymptotically -determining functionals forThen  is a set of asymptotically -determining functionals forThen  is a set of asymptotically -determining functionals for

problem problem problem problem (1.1)....

It is evident that the proof of this theorem follows from a version of Gronwall's lemma
stated below.

Lemma 1.1.

Let  and  be two functions that are locally integrable over

some half-interval . Assume that (1.6) and (1.7) hold and 

is nonnegative and possesses the property

, . (1.9)

Suppose that  is a nonnegative continuous function satisfying the

inequality

(1.10)

for all . Then  as .

It should be noted that this version of Gronwall's lemma has been used by many au-
thors (see the references in the survey [3]).
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Proof.

Let us first show that equation (1.10) implies the inequality

(1.11)

for all . It follows from (1.10) that the function  is absolutely
continuous on any finite interval and therefore possesses a derivative  al-
most everywhere. Therewith, equation (1.10) gives us

(1.12)

for almost all . Multiplying this inequality by

,

we find that

almost everywhere. Integration gives us equation (1.11).
Let us choose the value  such that

, (1.13)

and

, (1.14)

for all . It is evident that if  and , where  is the in-
teger part of a number, then

Thus, for all 
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.

Consequently, equation (1.11) gives us that

,

where . Therefore,

. (1.15)

It is evident that

where is the integer part of the number . Therefore,

Since , this implies that

(1.16)
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for any  such that equations (1.13) and (1.14) hold. Hence, equations (1.15)
and (1.16) give us that

.

If we tend , then with the help of (1.9) we obtain

.

This implies the assertion of Lemma 1.1.

In cases when problem (1.1) is the Cauchy problem for a quasilinear partial differen-
tial equation, we usually take some norm of the phase space as the function 
when we try to prove the existence of a finite set of asymptotically determining func-
tionals. For example, the next assertion which follows from Theorem 1.1 is often
used for parabolic problems.

Corollary 1.1.

Let  and  be reflexive Banach spaces such that  is continuously

and densely embedded into . Assume that for any two solutions

 to problem (1.1) we have

(1.17)

for , where  is a constant and the function  depends on

 and  in general and possesses properties (1.6) and (1.7).

Assume that the family  on  possesses the pro-

perty

(1.18)

for any , where  and  are positive constants depending

on . Then  is a set of asymptotically determining functionals for

problem (1.1), provided

. (1.19)
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Proof.

Using the obvious inequality

, ,

we find from equation (1.18) that

(1.20)

for any . Therefore, equation (1.17) implies that

where . Consequently, if for some  the function

possesses properties (1.6) and (1.7) with some constants  and , then
Theorem 1.1 is applicable. A simple verification shows that it is sufficient to re-
quire that equation (1.19) be fulfilled. Thus, Corollary 1.1 is proved.

Another variant of Corollary 1.1 useful for applications can be formulated as follows.

Corollary 1.2.

Let  and  be reflexive Banach spaces such that  is continuously

embedded into . Assume that for any two solutions  to

problem (1.1) there exists a moment  such that for all 

the equation

(1.21)

holds. Here  and the positive function  is locally integrable

over the half-interval  and satisfies the relation
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for some , where the constant  is independent of  and

. Let  be a family of continuous linear func-

tionals on  possessing the property

for any . Here  and  are positive constants. Then  is a set

of asymptotically -determining functionals for problem (1.1),

provided that .

Proof.

Equation (1.20) implies that

for any . Therefore, (1.21) implies that

where . Using (1.22) and applying Theorem 1.1
with , we complete the proof of Corollary 1.2.

Other approaches of introduction of the concept of determining functionals are also
possible. The definition below is an extension to a more general situation of the pro-
perty proved by O.A. Ladyzhenskaya [2] for trajectories lying in the global attractor
of the 2D Navier-Stokes equations.

Let  be a class of solutions to problem (1.1) on the real axis  such that
. A family  of continuous linear

functionals on  is said to be a set of  set of  set of  set of -determining functionals -determining functionals -determining functionals -determining functionals (or
elements) for problem (1.1) if for any two solutions  the condition

for and almost all (1.23)

implies that .

It is easy to establish the following analogue of Theorem 1.1.

Theorem 1.2.
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.... (1.24)

Assume that there exists a continuous function  on  with theAssume that there exists a continuous function  on  with theAssume that there exists a continuous function  on  with theAssume that there exists a continuous function  on  with the

values in  which possesses the following properties:values in  which possesses the following properties:values in  which possesses the following properties:values in  which possesses the following properties:

a) there exist positive numbers  and  such thatthere exist positive numbers  and  such thatthere exist positive numbers  and  such thatthere exist positive numbers  and  such that

for all , ;for all , ;for all , ;for all , ; (1.25)

b) for any for any for any for any 

;;;; (1.26)

c) for any two solutions  to problem for any two solutions  to problem for any two solutions  to problem for any two solutions  to problem (1.1) there exist  there exist  there exist  there exist (i)
a function  locally integrable over the axis  with the propertiesa function  locally integrable over the axis  with the propertiesa function  locally integrable over the axis  with the propertiesa function  locally integrable over the axis  with the properties

(1.27)

andandandand

(1.28)

for some , and for some , and for some , and for some , and (ii) a positive constant  such that equation a positive constant  such that equation a positive constant  such that equation a positive constant  such that equation

(1.8) holds for all  holds for all  holds for all  holds for all .... Then  is a set of -determining func- Then  is a set of -determining func- Then  is a set of -determining func- Then  is a set of -determining func-

tionals for problem tionals for problem tionals for problem tionals for problem (1.1)....

Proof.

It follows from (1.23), (1.8), and (1.11) that the function  
satisfies the inequality

(1.29)

for all . Using properties (1.27) and (1.28) it is easy to find that there exist
numbers , , and  such that

, .

This equation and boundedness property (1.26) enable us to pass to the limit
in (1.29) for fixed  as  and to obtain the required assertion.

Using Theorem 1.2 with  as above, we obtain the following assertion.
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Corollary 1.3.

Let  and  be reflexive Banach spaces such that  is continuously

embedded into . Let  be a class of solutions to problem (1.1) on the

real axis  possessing property (1.24) and such that

 for all . (1.30)

Assume that for any  and for all real  equation

(1.21) holds with  and a positive function  locally integrable

over the axis  and satisfying the condition

(1.31)

for some . Here  is a constant independent of  and .

Let  be a family of continuous linear functionals

on  possessing property (1.18) with . Then  is a set of

asymptotically -determining functionals for problem (1.1).

Proof.

As in the proof of Corollary 1.2 equations (1.20) and (1.21) imply that

for all , where  and is an arbitrary positive
number. Hence

(1.32)

for all . Using (1.31) it is easy to find that for any  there exists
 such that

 

for all . This equation and boundedness property (1.30) enable
us to pass to the limit as  in (1.32), provided , and to obtain
the required assertion.

We now give one more general result on the finiteness of the number of determining
functionals. This result does not use Lemma 1.1 and requires only the convergence
of functionals on a certain sequence of moments of time.
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Theorem 1.3.

Let  and  be reflexive Banach spaces such that  is continuouslyLet  and  be reflexive Banach spaces such that  is continuouslyLet  and  be reflexive Banach spaces such that  is continuouslyLet  and  be reflexive Banach spaces such that  is continuously

embedded into . Assume that  is a class of solutions to problem embedded into . Assume that  is a class of solutions to problem embedded into . Assume that  is a class of solutions to problem embedded into . Assume that  is a class of solutions to problem (1.1)
possessing property possessing property possessing property possessing property (1.2). Ass. Ass. Ass. Assumumumume that there exist constants ,e that there exist constants ,e that there exist constants ,e that there exist constants ,

, and  such that for any pair of solutions  and, and  such that for any pair of solutions  and, and  such that for any pair of solutions  and, and  such that for any pair of solutions  and

 from  we have from  we have from  we have from  we have

,,,, ,,,, (1.33)

andandandand

,,,, (1.34)

for  large enough. Let  be a finite set of continuous linear functionalsfor  large enough. Let  be a finite set of continuous linear functionalsfor  large enough. Let  be a finite set of continuous linear functionalsfor  large enough. Let  be a finite set of continuous linear functionals

on  possessing property on  possessing property on  possessing property on  possessing property (1.18) with  with  with  with .... Assume that  is a Assume that  is a Assume that  is a Assume that  is a

sequence of positive numbers such that  and sequence of positive numbers such that  and sequence of positive numbers such that  and sequence of positive numbers such that  and ....

Assume thatAssume thatAssume thatAssume that

,,,, .... (1.35)

ThenThenThenThen

asasasas .... (1.36)

It should be noted that relations like (1.33) and (1.34) can be obtained for a wide
class of equations (see, e.g., Sections 1.9, 2.2, and 4.6).

Proof.

Let . Then equations (1.34) and (1.18) give us

,

where . Therefore, after iterations we obtain that

.

Hence, equation (1.35) implies that  as . Therefore, (1.36) fol-
lows from equation (1.33). Theorem 1.3 is proved.

Application of Corollaries 1.1–1.3 and Theorem 1.3 to the proof of finiteness of a set
 of determining elements requires that the inequalities of the type (1.17) and

(1.21), or (1.30) and (1.33), or (1.33) and (1.34), as well as (1.18) with the constant
 small enough be fulfilled. As the analysis of particular examples shows, the fulfil-

ment of estimates (1.17), (1.21), (1.30), (1.31), (1.33), and (1.34) is mainly con-
nected with the dissipativity properties of the system. Methods for obtaining them
are rather well-developed (see Chapters 1 and 2 and the references therein) and in
many cases the corresponding constants , , , and  either are close to opti-
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mal or can be estimated explicitly in terms of the parameters of equations. There-
fore, the problem of description of finite families of functionals that asymptotically
determine the dynamics of the process can be reduced to the study of sets of func-
tionals for which estimate (1.18) holds with  small enough. It is convenient to
base this study on the concept of completeness defect of a family of functionals with
respect to a pair of spaces.

§ 2 Completeness Defect§ 2 Completeness Defect§ 2 Completeness Defect§ 2 Completeness Defect

Let  and  be reflexive Banach spaces such that  is continuously and densely
embedded into . The    completeness defect completeness defect completeness defect completeness defect of a set  of linear functionals
on  with respect to  is defined as

. (2.1)

It should be noted that the finite dimensionality of  is not assumed here.

Prove that the value  can also be defined by one
of the following formulae:

, (2.2)

, (2.3)

. (2.4)

Let be two sets in the space  of linear functionals
on . Show that .

Let  and let  be a weakly closed span of the set 
in the space . Show that .

The following fact explains the name of the value . We remind that a set 
of functionals on  is said to be complete if the condition  for all  im-
plies that .

Show that for a set  of functionals on  to be complete it is
necessary and sufficient that .
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The following assertion plays an important role in the construction of a set of deter-
mining functionals.

Theorem 2.1.

Let  be the completeness defect of a set  of linear func-Let  be the completeness defect of a set  of linear func-Let  be the completeness defect of a set  of linear func-Let  be the completeness defect of a set  of linear func-

tionals on  with respect to tionals on  with respect to tionals on  with respect to tionals on  with respect to .... Then there exists a constant  such Then there exists a constant  such Then there exists a constant  such Then there exists a constant  such

thatthatthatthat

 (2.5)

for any element for any element for any element for any element ,,,, where  is a weakly closed span of the set  where  is a weakly closed span of the set  where  is a weakly closed span of the set  where  is a weakly closed span of the set  in in in in

....

Proof.

Let

(2.6)

be the annihilator of . If , then it is evident that  for all .
Therefore, equation (2.4) implies that

for all , (2.7)

i.e. for  equation (2.5) is valid.
Assume that . Since  is a subspace in , it is easy to verify that there

exists an element  such that

. (2.8)

Indeed, let the sequence  be such that

.

It is clear that is a bounded sequence in . Therefore, by virtue of the reflexivi-
ty of the space , there exist an element  from  and a subsequence 
such that  weakly converges to  as , i.e. for any functional  the
equation

holds. It follows that

.

Therefore, we use the reflexivity of  once again to find that

.

However, . Hence, . Thus, equation (2.8) holds.
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Equation (2.7) and the continuity of the embedding of  into  imply that

.

It is clear that

.

Therefore,

. (2.9)

Let us now prove that there exists a continuous linear functional  on the space 
possessing the properties

, , for . (2.10)

To do that, we define the functional  by the formula

, ,

on the subspace

.

It is clear that  is a linear functional on  and  for . Let us cal-
culate its norm. Evidently

, .

Since , equation (2.8) implies that

, , .

Consequently, for any 

.

This implies that  has a unit norm as a functional on . By virtue of the Hahn-Ba-
nach theorem the functional  can be extended on  without increase of the norm.
Therefore, there exists a functional  on  possessing properties (2.10). Therewith

 lies in a weakly closed span  of the set . Indeed, if , then using the re-
flexivity of  and reasoning as in the construction of the functional  it is easy to
verify that there exists an element  such that  and  for all

. It is impossible due to (2.10) .
In order to complete the proof of Theorem 2.1 we use equations (2.9) and

(2.10). As a result, we obtain that

.

However, , , and . Therefore, equation (2.5)
holds. Theorem 2.1 is proved.
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Assume that is a finite set in .
Show that there exists a constant  such that

(2.11)

for all .

In particular, if the hypotheses of Corollaries 1.1 and 1.3 hold, then Theorem 2.1 and
equation (2.11) enable us to get rid of assumption (1.18) by replacing it with the cor-
responding assumption on the smallness of the completeness defect .

The following assertion provides a way of calculating the completeness defect when
we are dealing with Hilbert spaces.

Theorem 2.2.

Let  and  be separable Hilbert spaces such that  is compactly andLet  and  be separable Hilbert spaces such that  is compactly andLet  and  be separable Hilbert spaces such that  is compactly andLet  and  be separable Hilbert spaces such that  is compactly and

densely embedded into densely embedded into densely embedded into densely embedded into .... Let  be a selfadjoint positive compact operator Let  be a selfadjoint positive compact operator Let  be a selfadjoint positive compact operator Let  be a selfadjoint positive compact operator

in the space  defined by the equalityin the space  defined by the equalityin the space  defined by the equalityin the space  defined by the equality

,,,, ....

Then the completeness defect of a set  of functionals on  can be evalua-Then the completeness defect of a set  of functionals on  can be evalua-Then the completeness defect of a set  of functionals on  can be evalua-Then the completeness defect of a set  of functionals on  can be evalua-

ted by the formulated by the formulated by the formulated by the formula

,,,, (2.12)

where  is the orthoprojector in the space  onto the annihilatorwhere  is the orthoprojector in the space  onto the annihilatorwhere  is the orthoprojector in the space  onto the annihilatorwhere  is the orthoprojector in the space  onto the annihilator

and  is the maximal eigenvalue of the operator and  is the maximal eigenvalue of the operator and  is the maximal eigenvalue of the operator and  is the maximal eigenvalue of the operator ....

Proof.

It follows from definition (2.1) that

where  is the unit ball in . Due to the compactness
of the embedding of  into , the set  is compact in . Therefore, there exists
an element  such that

.

Therewith is the maximum point of the function  on the set .
Hence, for any  and  we have

.
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It follows that

.

It is also clear that . Therefore,

for all . This implies that

for any . If we take  instead of  in this equation, then we obtain the op-
posite inequality. Therefore,

, .

Consequently,

,

i.e.  is an eigenvalue of the operator . It is evident
that this eigenvalue is maximal. Thus, Theorem 2.2 is proved.

Corollary 2.1.

Assume that the hypotheses of Theorem 2.2 hold. Let  be an ortho-

normal basis in the space  that consists of eigenvectors of the opera-

tor :

, , , .

Then the completeness defect of the system of functionals

is given by the formula .

To prove this assertion, it is just sufficient to note that  is the orthoprojector
onto the closure of the span of elements  and that  commutes
with .

Let be a positive operator with discrete spectrum in the
space :

, , , , 

and let , , be a scale of spaces generated by the
operator  (see Section 2.1). Assume that

. (2.13) 

Prove that  for all .

It should be noted that the functionals in Exercise 2.6 are often called modes modes modes modes.
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Let us give several more facts on general properties of the completeness defect.

Theorem 2.3.

Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem 2.2 hold. Assume that  is a set hold. Assume that  is a set hold. Assume that  is a set hold. Assume that  is a set

of linear functionals on  and  is a family of linear bounded operatorsof linear functionals on  and  is a family of linear bounded operatorsof linear functionals on  and  is a family of linear bounded operatorsof linear functionals on  and  is a family of linear bounded operators

 that map  into  and are such that  for all . Let that map  into  and are such that  for all . Let that map  into  and are such that  for all . Let that map  into  and are such that  for all . Let

(2.14)

be the global approximation error in  arising from the approximationbe the global approximation error in  arising from the approximationbe the global approximation error in  arising from the approximationbe the global approximation error in  arising from the approximation

of elements  by elements of elements  by elements of elements  by elements of elements  by elements .... Then Then Then Then

.... (2.15)

Proof.

Let . Equation (2.14) implies that

, .

Therefore, for  we have , i.e.  for all
. Let us show that there exists an operator  such that

. Equation (2.12) implies that

,

where  is the orthoprojector in the space  onto  and  is the
norm of the operator  in the space  of bounded linear operators in .
Therefore, the definition of the operator  implies that

. (2.16)

It is evident that the orthoprojector  belongs to  (it projects onto
the subspace that is orthogonal to  in ). Theorem 2.3 is proved.

Assume that  is a finite set. Show that
the family  consists of finite-dimensional operators  of the
form

, ,

where  is an arbitrary collection of elements
of the space  (they do not need to be distinct). How should the
choice of elements  be made for the operator  from the
proof of Theorem 2.3?
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Theorem 2.3 will be used further (see Section 3) to obtain upper estimates of
the completeness defect for some specific sets of functionals. The simplest situation
is presented in the following example.

E x a m p l e  2.1

Let  and let . As usual, here  is
the Sobolev space of the order  and  is the closure of the set 
in . We define the norms in  and  by the equalities

, .

Let , , . Consider a set of functionals

on . Assume that  is a transformation that maps a function  into its
linear interpolating spline

.

Here  for  and  for . We apply Theo-
rem 2.3 and obtain

.

We use an easy verifiable equation

, ,

to obtain the estimate

.

This implies that .

The assertion on the interdependence of the completeness defect  and the Kol-
mogorov -width made below enables us to obtain effective lower estimates
for .

Let  and  be separable Hilbert spaces such that  is continuously and
densely embedded into . Then the Kolmogorov Kolmogorov Kolmogorov Kolmogorov  -width of the embedding-width of the embedding-width of the embedding-width of the embedding

of  into  of  into  of  into  of  into  is defined by the relation
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, (2.17)

where  is the family of all -dimensional subspaces  of the space  and

is the global error of approximation of elements  in  by elements of the sub-
space . Here

.

In other words, the Kolmogorov -width  of the embedding of  into  is the
minimal possible global error of approximation of elements of  in  by elements
of some -dimensional subspace.

Theorem 2.4.

Let  and  be separable Hilbert spaces such that  is continuouslyLet  and  be separable Hilbert spaces such that  is continuouslyLet  and  be separable Hilbert spaces such that  is continuouslyLet  and  be separable Hilbert spaces such that  is continuously

and densely embedded into and densely embedded into and densely embedded into and densely embedded into .... Then Then Then Then

,,,, (2.18)

where  is the nonincreasing sequence of eigenvalues of the operator where  is the nonincreasing sequence of eigenvalues of the operator where  is the nonincreasing sequence of eigenvalues of the operator where  is the nonincreasing sequence of eigenvalues of the operator 

defined by the equality defined by the equality defined by the equality defined by the equality ....

The proof of the theorem is based on the lemma given below as well as on the fact
that , where  is a compact positive operator in the space 
(see Theorem 2.2). Further the notation  stands for the proper basis of the
operator  in the space  while the notation  stands for the corresponding eigen-
values:

, , , .

It is evident that  is an orthonormalized basis in the space .

Lemma 2.1.

Assume that the hypotheses of Theorem 2.4 hold. Then

. (2.19)
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Proof.

By virtue of Corollary 2.1 it is sufficient to verify that

for all , where  are linearly independent functionals
on . Definition (2.1) implies that

(2.20)

for all  such that  and , . Let us substi-
tute in (2.20) the vector

,

where the constants  are choosen such that  for  and
. Therewith equation (2.20) implies that

.

Thus, Lemma 2.1 is proved.

We now prove that . Let us use equation (2.16)

. (2.21)

Here  is the orthoprojector onto the subspace  orthogonal to  in . It is
evident that  is isomorphic to . Therefore, . Hence, equa-
tion (2.21) gives us that

(2.22)

for all  such that . Conversely, let  be an -dimensional
subspace in  and let  be a orthonormalized basis in the space .
Assume that

.

Let  be the orthoprojector in the space  onto . It is clear that

.

Therefore, if , then . It is clear that  is a bounded operator
from  into . Using Theorem 2.3 we find that
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.

However, . Hence,

(2.23)

for any -dimensional subspace  in . Equations (2.22) and (2.23) imply that

.

This equation together with Lemma 2.1 completes the proof of Theorem 2.4.

Let  and  be reflexive Banach spaces such that  is con-
tinuously and densely embedded into , let  be a set of linear
functionals on , . Assume that

,

where

, .

Prove that

.

Use Lemma 2.1 and Corollary 2.1 to calculate the Kolmogorov
-width of the embedding of the space  into 

for , where  is a positive operator with discrete spectrum.

Show that in Example 2.1 .
Prove that .

Assume that there are three reflexive Banach spaces 
 such that all embeddings are dense and continuous.

Let  be a set of functionals on . Prove that 
 (Hint: see (2.3)).

In addition to the hypotheses of Exercise 2.11, assume that
the inequality

,  ,

holds for some constants  and . Show that

.
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§ 3 Estimates of Completeness Defect§ 3 Estimates of Completeness Defect§ 3 Estimates of Completeness Defect§ 3 Estimates of Completeness Defect

in Sobolev Spacesin Sobolev Spacesin Sobolev Spacesin Sobolev Spaces

In this section we consider several families of functionals on Sobolev spaces that are
important from the point of view of applications. We also give estimates of the cor-
responding completeness defects. The exposition is quite brief here. We recommend
that the reader who does not master the theory of Sobolev spaces just get acquain-
ted with the statements of Theorems 3.1 and 3.2 and the results of Examples 3.1 and
3.2 and Exercises 3.2–3.6.

We remind some definitions (see, e.g., the book by Lions-Magenes [4]). Let 
be a domain in . The Sobolev space  of the order  
is a set of functions

,

where , ,  and

. (3.1)

The space  is a separable Hilbert space with the inner product

.

Further we also use the space  which is the closure (in ) of the set
 of infinitely differentiable functions with compact support in  and the

space  which is defined as follows:

,

where ,  is the Fourier transform of the function ,

,

, and . Evidently this definition coin-
cides with the previous one for natural  and .

Show that the norms in the spaces  possess the pro-
perty
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We can also define the space  as restriction (to ) of functions from 
with the norm

and the space  as the closure of the set  in . The spaces 
and  are separable Hilbert spaces. More detailed information on the Sobolev
spaces can be found in textbooks on the theory of such spaces (see, e.g., [4], [5]).

The following version of the Sobolev integral representation will be used fur-
ther.

Lemma 3.1.

Let  be a domain in  and let  be a function from  such

that

, . (3.2)

Assume that  is a star-like domain with respect to the support 

of the function . This means that for any point  the cone

(3.3)

belongs to the domain . Then for any function  the re-

presentation

(3.4)

is valid, where

, (3.5)

, , , 

. (3.6)

Proof.

If we multiply Taylor’s formula

Hs @� � @ Hs R-� �

u
s @� v

s R-�
: v x� � u x� ��   in  @ , v Hs R-� �


�  
" #
$ %

inf�

H0
s @� � C0

� @� � Hs @� � Hs @� �
H0

s @� �

@ R- 7 x� � L� R-� �

supp 7 0 @0 7 x� � xd

R-
� 1�

@ supp 7
7 x @


V
x

z �x 1 ��� � y��  0 � 1� � y supp7
��� ��

@ u x� � Hm @� �


u x� � Pm 1� x u�� � m

�B������ x y�� ��K x y�� �� � u y� � yd

Vx

�
� m�
*��

Pm 1� x u�� � 1
�B������ 7 y� � x y�� �� � �u y� � yd

@
�

� m�
*�

� �1 � �-� �� �� �B �1B��-B� z� z1
�1� z-

�-�

K x y�� � s -� 1� 7 x
y x�

s
�������������& '

( ) sd

0

1

��

u x� �
x y�� ��

�B���������������������� �u y� �
� m�
*

m�
x y�� ��

�B��������������������� sm 1� ��u x s y x�� ��� � sd

0

1

�
� m�
*

��



308 T h e o r y  o f  F u n c t i o n a l s  t h a t  U n i q u e l y  D e t e r m i n e  L o n g - T i m e  D y n a m i c s

C

h

a

p

t

e

r

5

by  and integrate it over , then after introducing a new variable
 we obtain the assertion of the lemma.

Integral representation (3.4) enables us to obtain the following generalization of the
Poincaré inequality.

Lemma 3.2.

Let the hypotheses of Lemma 3.1 be valid for a bounded domain

 and for a function . Then for any function 

the inequality

(3.7)

is valid, where ,  is the surface measure of

the unit sphere in  and .

Proof.

We use formula (3.4) for :

. (3.8)

It is clear that  when . There-
fore,

.

Consequently,

 , . (3.9)

Thus, it follows from (3.8) that
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Let . Then it is evident that

, (3.11)
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where  is the surface measure of the unit sphere in . Therefore, equation
(3.10) implies that

.

After integration with respect to  and using (3.11) we obtain (3.7). Lemma 3.2
is proved.

Lemma 3.3.

Assume that the hypotheses of Lemma 3.1 are valid for a bounded do-

main  from  and for a function . Let , where

 is a sign of the integer part of a number. Then for any function

 we have the inequality 

(3.12)

where  is defined by formula (3.5), ,

 is the surface measure of the unit sphere in , and .

Proof.

Using (3.4) and (3.9) we find that

As above, we obtain that

.

Thus, equation (3.12) is valid. Lemma 3.3 is proved.
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Lemma 3.4.

Assume that the hypotheses of Lemma 3.3 hold. Then for any function

 and for any  the inequality

(3.13)

is valid, where  is a constant that depends on  only and  is the

diameter of the domain .

Proof.

It is evident that

, (3.14)

where

.

The structure of the polynomial  implies that

for all . Therefore, estimate (3.13) follows from (3.14) and Lemmata 3.2
and 3.3. Lemma 3.4 is proved.

These lemmata enable us to estimate the completeness defect of two families of
functionals that are important from the point of view of applications. We consider
these families of functionals on the Sobolev spaces in the case when the domain is
strongly Lipschitzian, i.e. the domain  possesses the property: for every

 there exists a vicinity  such that
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in some system of Cartesian coordinates, where  is a Lipschitzian function.
For strongly Lipschitzian domains the space  consists of restrictions to 
of functions from ,  (see [5] or [6]).

Theorem 3.1.

Assume that a bounded strongly Lipschitzian domain  in  can beAssume that a bounded strongly Lipschitzian domain  in  can beAssume that a bounded strongly Lipschitzian domain  in  can beAssume that a bounded strongly Lipschitzian domain  in  can be

divided into subdomains  such thatdivided into subdomains  such thatdivided into subdomains  such thatdivided into subdomains  such that

,,,,  forforforfor .... (3.15)

Here the bar stands for the closure of a set. Assume that  is a functionHere the bar stands for the closure of a set. Assume that  is a functionHere the bar stands for the closure of a set. Assume that  is a functionHere the bar stands for the closure of a set. Assume that  is a function

in  such thatin  such thatin  such thatin  such that

,,,, (3.16)

and  is a star-like domain with respect to and  is a star-like domain with respect to and  is a star-like domain with respect to and  is a star-like domain with respect to .... We define the set  We define the set  We define the set  We define the set 

of generalized local volume averages corresponding to the collectionof generalized local volume averages corresponding to the collectionof generalized local volume averages corresponding to the collectionof generalized local volume averages corresponding to the collection

as the family of functionalsas the family of functionalsas the family of functionalsas the family of functionals

.... (3.17)

Then the estimateThen the estimateThen the estimateThen the estimate

(3.18)

holds, whereholds, whereholds, whereholds, where ,,,, ,,,,

,,,,

 and  are constants. and  are constants. and  are constants. and  are constants.

Proof.

Let us define the interpolation operator  for the collection  by the formula
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It is easy to check that

, .

It further follows from Lemma 3.2 that

.

This implies the estimate

.

Using the fact (see [4, 6]) that

, ,

and the interpolation theorem for operators [4] we find that

for all . Consequently, Theorem 2.3 gives the equation

, . (3.19)

Using the result of Exercise 2.12 and the interpolation inequalities (see, e.g., [4,6])

, , , (3.20)

it is easy to obtain equation (3.18) from (3.19).

Let us illustrate this theorem by the following example.

E x a m p l e  3.1

Let  be a cube in  with the edge of the length . We construct
a collection  which defines local volume averages in the following way.
Let  be the standard unit cube in  and let  be a measurable set
in  with the positive Lebesgue measure, . We define the function

 on  by the formula
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for any multi-index , where , .
It is clear that the hypotheses of Theorem 3.1 are valid for the collection

. Moreover,

,

and hence in this case we have 

(3.21)

for the set  of functionals of the form (3.17) when  and .
It should be noted that in this case the number of functionals in the set  is
equal to . Thus, estimate (3.21) can be rewritten as

.

However, one can show (see, e.g., [6]) that the Kolmogorov -width of the em-
bedding of  into  has the same order in , i.e.

.

Thus, it follows from Theorem 2.4 that local volume averages have a complete-
ness defect that is close (when the number of functionals is fixed) to the mini-
mal. In the example under consideration this fact yields a double inequality

, , (3.22)

where  and  are positive constants that may depend on , , , and .
Similar relations are valid for domains of a more general type.

Another important example of functionals is given in the following assertion.

Theorem 3.2.

Assume the hypotheses of Theorem Assume the hypotheses of Theorem Assume the hypotheses of Theorem Assume the hypotheses of Theorem 3.1.... Let us choose a point  (called Let us choose a point  (called Let us choose a point  (called Let us choose a point  (called
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Then for all  and  the estimateThen for all  and  the estimateThen for all  and  the estimateThen for all  and  the estimate
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,,,, ,,,, 

....

Proof.

Let  and let , . Then using
(3.13) for  and  we obtain that

,

where

.

It follows that

for all  such that , . Using interpola-
tion inequality (3.20) we find that

. (3.25)

By virtue of the inequality
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for  and for all . We substitute these inequalities in (3.25)
to obtain that

(3.26)

d d
j
: j 1 2 � N� � ��

�  
" #
$ %

max� d
j

@diam�

I d
j
- 7

j L� @� �
: j 1 2 � N� � ��

�  
" #
$ %

max�

u H m @� �
 lj u� � u xj� � 0� � j 1 2 � N� � ��
@ @j� x

*
xj�

u
L2 @

j
� �

C- d
j
- 7

j L� @
j

� �& '
( ) d

j
l

u
l @

j
�

l 1�

m

*�

u l @
j

�
1
�B������ �� u

L2 @
j

� �
� l�
*�

u
L2 @� �

C -� � I dl u
Hl @� �

l 1�

m

*� ��

u H m @� �
 lj u� � u xj� � 0� � j 1 2 � N� � ��

u
L2 @� �

C- I dl u
L2 @� �

1 l

m
������

u
Hm @� �
l m��

l 1�

m

*� ��

x y
x p

p
�������

yq

q
�������� 1

p
��� 1

q
���� 1� x y� 0�

I dl u
L2 @� �

1 l

m
������

u
Hm @� �
l m�� � � u

L2

1 l

m
������

dmI
m

l
�����

u
Hm

& '
F G
( )

l

m
�����

�  

1 l
m
������� � ,

m

m l�
�������������

u
L2 @� �

l
m
����� ,

m

l
������

d mI
m

l
�����

u
Hm @� �

��

�

�

�

l 1 2 � m 1�� � �� , 0�

u
L2 @� �

C- 1 l
m
������� � ,

m

m l�
�������������

u
L2 @� �

�
l 1�

m 1�

*�  

C-
l

m
����� ,

m

l
������

I
m

l
�����

l 1�

m 1�

* I�
& '
F G
( )

d m u
Hm @� �

 .

�

�



E s t i m a t e s  o f  C o m p l e t e n e s s  D e f e c t  i n  S o b o l e v  S p a c e s 315 

We choose  such that

.

Then equation (3.26) gives us that

for all  such that , . Hence, the estimate

is valid. Since , this implies inequality (3.24) for  and 
. As in Theorem 3.1 further arguments rely on Lemma 2.1 and interpola-

tion inequalities (3.20). Theorem 3.2 is proved.

E x a m p l e  3.2

We return to the case described in Example 3.1. Let us choose nodes 
and assume that . Then for a set  of functionals of the form (3.23) we
have

for all ,  and for any location of the nodes  inside the
. In the case under consideration double estimate (3.22) is preserved.

In the exercises below several one-dimensional situations are given.
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Let

.

Show that

where  consists of functionals  and  for 
(the functionals  and  are defined in Exercises 3.2 and 3.3).

Consider the functionals

,

, , ,

on the space . Assume that an interpolation operator 
maps an element  into a step-function equal to 
on the segment . Show that

.

Prove the estimate

.

Consider a set  of functionals

, , , ,

on the space . Assume that an interpolation operator 
maps an element  into a step-function equal to 
on the segment . Show that

.

Prove the estimate

.
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§ 4 Determining Functionals for Abstract§ 4 Determining Functionals for Abstract§ 4 Determining Functionals for Abstract§ 4 Determining Functionals for Abstract

Semilinear Parabolic EquationsSemilinear Parabolic EquationsSemilinear Parabolic EquationsSemilinear Parabolic Equations

In this section we prove a number of assertions on the existence and properties of
determining functionals for processes generated in some separable Hilbert space 
by an equation of the form

, , . (4.1)

Here  is a positive operator with discrete spectrum (for definition see Section 2.1)
and  is a continuous mapping from  into  possessing the pro-
perties

, (4.2)

for all  and for all  such that , where  is an arbitrary
positive number,  and  are positive numbers.

Assume that problem (4.1) is uniquely solvable in the class of functions

and is pointwise dissipative, i.e. there exists  such that

when (4.3)

for all . Examples of problems of the type (4.1) with the properties listed
above can be found in Chapter 2, for example.

The results obtained in Sections 1 and 2 enable us to establish the following as-
sertion.

Theorem 4.1.

For the set of linear functionals  on the spaceFor the set of linear functionals  on the spaceFor the set of linear functionals  on the spaceFor the set of linear functionals  on the space

 with the norm  to be -asymptotically with the norm  to be -asymptotically with the norm  to be -asymptotically with the norm  to be -asymptotically

determining for problem determining for problem determining for problem determining for problem (4.1) under conditions  under conditions  under conditions  under conditions (4.2) and  and  and  and (4.3), it is suffi- it is suffi- it is suffi- it is suffi-

cient that the completeness defect  satisfies the inequalitycient that the completeness defect  satisfies the inequalitycient that the completeness defect  satisfies the inequalitycient that the completeness defect  satisfies the inequality

,,,, (4.4)

where  and  are the same as in where  and  are the same as in where  and  are the same as in where  and  are the same as in (4.2) and  and  and  and (4.3)....

Proof.

We consider two solutions  and  to problem (4.1) that lie in .
By virtue of dissipativity property (4.3) we can suppose that

, , . (4.5)
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Let . If we consider  as a solution to the linear problem

,

then it is easy to find that

for all . We use (2.11) to obtain that

for any , where

.

Therefore,

. (4.6)

Using (4.4) we can choose the parameter  such that .
Thus, we can apply Theorem 1.1 and find that under condition (4.4) equation

implies the equality

. (4.7)

In order to complete the proof of the theorem we should obtain

(4.8)

from (4.7). To prove (4.8) it should be first noted that

(4.9)

for any . Indeed, the interpolation inequality (see Exercise 2.1.12)

, ,

and dissipativity property (4.5) enable us to obtain (4.9) from equation (4.7). Now
we use the integral representation of a weak solution (see (2.2.3)) and the method
applied in the proof of Lemma 2.4.1 to show (do it yourself) that
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, , .

Therefore, using the interpolation inequality

, ,

we obtain (4.8) from (4.9). Theorem 4.1 is proved.

Show that if the hypotheses of Theorem 4.1 hold, then equa-
tion (4.9) is valid for all .

The reasonings in the proof of Theorem 4.1 lead us to the following assertion.

Corollary 4.1.

Assume that the hypotheses of Theorem 4.1 hold. Then for any two weak

(in ) solutions  and  to problem (4.1) that are boun-

ded on the whole axis,

, , (4.10)

the condition  for  and  implies that

.

Proof.

In the situation considered equation (4.6) implies that

for all  and some . It follows that

, .

Therefore, if we tend , then using (4.10) we obtain that 
for all , i.e. .

It should be noted that Corollary 4.1 means that solutions to problem (4.1) that are
bounded on the whole axis are uniquely determined by their values on the functionals

. It was this property of the functionals  which was used by Ladyzhenskaya [2]
to define the notion of determining modes for the two-dimensional Navier-Stokes
system. We also note that a more general variant of Theorem 4.1 can be found in [3].

Assume that problem (4.1) is autonomous, i.e. 
. Let  be a global attractor of the dynamical system 

generated by weak (in ) solutions to problem (4.1) and
assume that a set of functionals  possesses
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property (4.4). Then for any pair of trajectories  and 
lying in the attractor  the condition  implies
that  for all  and .

Theorems 4.1 and 2.4 enable us to obtain conditions on the existence of  deter-
mining functionals.

Corollary 4.2.

Assume that the Kolmogorov -width of the embedding of the space

 into  possesses the property . Then

there exists a set of asymptotically -determining functionals

for problem (4.1) consisting of  elements.

Theorem 2.4, Corollary 2.1, and Exercise 2.6 imply that if the hypotheses of Theorem
4.1 hold, then the family of functionals  given by equation (2.13) is a -
determining set for problem (4.1), provided . Here  and  are
the constants from (4.2) and (4.3). It should be noted that the set  of the form
(2.13) for problem (4.1) is often called a set of determining modes determining modes determining modes determining modes.... Thus, Theo-
rem 4.1 and Exercise 2.6 imply that semilinear parabolic equation (4.1) possesses
a finite number of determining modes.

When condition (4.2) holds uniformly with respect to , we can omit the re-
quirement of dissipativity (4.3) in Theorem 4.1. Then the following assertion is valid.

Theorem 4.2.

Assume that a continuous mapping  from  into Assume that a continuous mapping  from  into Assume that a continuous mapping  from  into Assume that a continuous mapping  from  into 

possesses the propertiespossesses the propertiespossesses the propertiespossesses the properties

,,,, (4.11)

for all for all for all for all .... Then a set of linear functionals  Then a set of linear functionals  Then a set of linear functionals  Then a set of linear functionals 

on  is asymptotically -determining for problem on  is asymptotically -determining for problem on  is asymptotically -determining for problem on  is asymptotically -determining for problem (4.1),,,,

provided provided provided provided ....

Proof.

If we reason as in the proof of Theorem 4.1, we obtain that if , then
for an arbitrary pair of solutions  and  emanating from the points  and

 at a moment  the equation (see (4.6))

(4.12)

is valid. Here ,  and  are positive con-
stants, and
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Therefore, using Theorem 1.1 we conclude that the condition

(4.13)

implies that

. (4.14)

Since  is a solution to the linear equation

, (4.15)

it is easy to verify that

(4.16)

for . It should be noted that equation (4.16) can be obtained with the help
of formal multiplication of (4.15) by  with subsequent integration. This conver-
sion can be grounded using the Galerkin approximations. If we integrate equation
(4.16) with respect to  from  to , then it is easy to see that

.

Using the structure of the function  and inequality (4.11), we obtain that

.

Consequently, (4.14) gives us that

.

Therefore, Theorem 4.2 is proved.

Further considerations in this section are related to the problems possessing inertial
manifolds (see Chapter 3). In order to cover a wider class of problems, it is conve-
nient to introduce the notion of a process.

Let  be a real reflexive Banach space. A two-parameter family 
 of continuous mappings acting in  is said to be    evolutionaryevolutionaryevolutionaryevolutionary ,

if the following conditions hold:
(a) , , .
(b)  is a strongly continuous function of the variable .
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A pair  with  being an evolutionary family in  is often called
a processprocessprocessprocess . Therewith the space  is said to be a phase space and the family
of mappings  is called an evolutionary operator. A curve

is said to be a trajectory of the process emanating from the point  at the moment .
It is evident that every dynamical system  is a process. However, main

examples of processes are given by evolutionary equations of the form (1.1). There-
with the evolutionary operator is defined by the obvious formula

,

where  is the solution to problem (1.1) with the initial condition
 at the moment .

Assume that the conditions of Section 2.2 and the hypotheses
of Theorem 2.2.3 hold for problem (4.1). Show that weak solutions
to problem (4.1) generate a process in .

Similar to the definitions of Chapter 3 we will say that a process  acting
in a separable Hilbert space  possesses an asymptotically complete finite-dimen-
sional inertial manifold  if there exist a finite-dimensional orthoprojector  in
the space  and a continuous function  such that

(a) (4.17)

for all , , where  is a positive constant;
(b) the surface

(4.18)

is invariant: ;
(c) the condition of asymptotical completeness holds: for any  and

 there exists  such that

,  , (4.19)

where  and  are positive constants which may depend on  and
.

Show that for any two elements ,  the fol-
lowing inequality holds

.

Using equation (4.19) prove that

for .
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Show that for any two trajectories , ,
of the process  the condition

implies that

.

In particular, the results of these exercises mean that  is homeomorphic to a sub-
set in , , for every . The corresponding homeomorphism

 can be defined by the equality , where  is a ba-
sis in . Therewith the set of functionals  appears
to be asymptotically determining for the process. The following theorem contains
a sufficient condition of the fact that a set of functionals  possesses the proper-
ties mentioned above.

Theorem 4.3.

Assume that  and Assume that  and Assume that  and Assume that  and  are are are are separable Hilbert spaces such that  is con-separable Hilbert spaces such that  is con-separable Hilbert spaces such that  is con-separable Hilbert spaces such that  is con-

tinuously and densely embedded into tinuously and densely embedded into tinuously and densely embedded into tinuously and densely embedded into .... Let a process  possess Let a process  possess Let a process  possess Let a process  possess

an asymptotically complete finite-dimensional inertial manifold an asymptotically complete finite-dimensional inertial manifold an asymptotically complete finite-dimensional inertial manifold an asymptotically complete finite-dimensional inertial manifold ....

Assume that the orthoprojector  from the definition of  can be conti-Assume that the orthoprojector  from the definition of  can be conti-Assume that the orthoprojector  from the definition of  can be conti-Assume that the orthoprojector  from the definition of  can be conti-

nuously extended to the mapping from  into nuously extended to the mapping from  into nuously extended to the mapping from  into nuously extended to the mapping from  into ,,,, i.e. there exists a constant i.e. there exists a constant i.e. there exists a constant i.e. there exists a constant

 such that such that such that such that

,,,, .... (4.20)

If If If If  is ais ais ais a set of linear functionals on  such that set of linear functionals on  such that set of linear functionals on  such that set of linear functionals on  such that

,,,, (4.21)

then the following conditions are valid:then the following conditions are valid:then the following conditions are valid:then the following conditions are valid:

1) there exist positive constants  and  depending on  such thatthere exist positive constants  and  depending on  such thatthere exist positive constants  and  depending on  such thatthere exist positive constants  and  depending on  such that

(4.22)

for all for all for all for all ,,,, ; i.e. the mapping  acting from  into ; i.e. the mapping  acting from  into ; i.e. the mapping  acting from  into ; i.e. the mapping  acting from  into

 according to the formula  is a Lipschitzian ho- according to the formula  is a Lipschitzian ho- according to the formula  is a Lipschitzian ho- according to the formula  is a Lipschitzian ho-

meomorphism from  into  for every ;meomorphism from  into  for every ;meomorphism from  into  for every ;meomorphism from  into  for every ;

2) the set of functionals  is determining for the process  inthe set of functionals  is determining for the process  inthe set of functionals  is determining for the process  inthe set of functionals  is determining for the process  in

the sense that for any two trajectories  the conditionthe sense that for any two trajectories  the conditionthe sense that for any two trajectories  the conditionthe sense that for any two trajectories  the condition

 implies that implies that implies that implies that

....
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Proof.

Let . Then

, .

Therewith equation (4.17) gives us that

, . (4.23)

Consequently, using Theorem 2.1 and inequality (4.20) we obtain that

,

where  and . Therefore, equa-
tion (4.21) implies that

,

where .

On the other hand, (4.20) and (4.23) give us that

. (4.25)

Equations (4.24) and (4.25) imply estimate (4.22). Hence, assertion 1 of the theo-
rem is proved.

Let us prove the second assertion of the theorem. Let , ,
be trajectories of the process. Since

,

using (4.17) it is easy to find that

The property of asymptotical completeness (4.19) implies (see Exercise 4.5) that

, .

Therefore, equation (4.20) gives us the estimate

. (4.26)

It follows from Theorem 2.1 that

.

Therefore, provided (4.21) holds, equation (4.26) implies that

, ,

u1 u2� Mt


u
j

Pu
j

L Pu
j

t�� ��� j 1 2��

u1 u2�
V

1 L2�� �1 2�
Pu1 Pu2�

V
� uj Mt


u1 u2�
H

C
�

N
�

u1 u2�� � +
�

1 L2�� �1 2� I u1 u2�
H

���

N
�

u� � l
j

u� � : j 1 � N� ��� �max� +
�

+
�

V H�� ��

u1 u2�
H

C1 �� � N
�

u1 u2�� ���

C1 �� � C
�

1 +
�

1 L2�� �1 2� I�� � 1���
(4.24)

l
j

u1 u2�� � C
�

u1 u2�
V

C
�

1 L2�� �1 2� I u1 u2�
H

� �

u
j

t� � S t s�� �u
j

� t s�

u
j

t� � Pu
j

t� � L Pu
j

t� � t�� ��� � 1 P�� �u
j

t� � L Pu
j

t� � t�� ��� ���

u1 t� � u2 t� ��
V

1 L2�� �1 2�
P u1 t� � u2 t� ��� �

V
��

1 P�� �u
j

t� � L Pu
j

t� � t�� ��
V

 .
j 1 2��
*�

1 P�� �u
j

t� � L Pu
j

t� � t�� �� C e � t s�� ��� t s�

u1 t� � u2 t� ��
V

1 L2�� �1 2� I u1 t� � u2 t� ��
H

� C e � t s�� ���

u1 t� � u2 t� ��
H

C
�

N
�

u1 t� � u2 t� ��� � +
�

u1 t� � u2 t� ��
V

��

u1 t� � u2 t� ��
V

A
�

N
�

u1 t� � u2 t� ��� �� B
�

e � t s�� ���� t s�



D e t e r m i n i n g  F u n c t i o n a l s  f o r  A b s t r a c t  S e m i l i n e a r  P a r a b o l i c  E q u a t i o n s 325 

where  and  are positive numbers. Hence, the condition

implies that

.

Thus, Theorem 4.3 is proved.

Assume that the hypotheses of Theorem 4.3 hold. Let
 be such that  for all . Show that

for .

Prove that if the hypotheses of Theorem 4.3 hold, then in-
equality (4.22) as well as the equation

is valid for any  and , where  are con-
stants depending on .

Let us return to problem (4.1). Assume that  is a continuous mapping from
 into , , possessing the properties

,

for all , . Assume that the spectral gap condition

holds for some  and . Here  are the eigenvalues of the opera-
tor  indexed in the increasing order and  is a constant defined by (3.1.7). Under
these conditions there exists (see Chapter 2) a process  generated
by problem (4.1). By virtue of Theorems 3.2.1 and 3.3.1 this process possesses an
asymptotically complete finite-dimensional inertial manifold  and the corres-
ponding orthoprojector  is a projector onto the span of the first  eigenvectors
of the operator . Therefore,

, .

Therewith the Lipschitz constant  for  can be estimated by the value
. Thus, if  is a set of functionals on , then in order to apply

Theorem 4.3 with , , it is sufficient to require that

.
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Due to Theorem 2.4 this estimate can be rewritten as follows:

,

where  is the Kolmogorov -width of the embedding of 
into , , .

It should be noted that the assertion similar to Theorem 4.3 was first estab-
lished for the Kuramoto-Sivashinsky equation

, , ,

with the periodic boundary conditions on  in the case when  is a set of
uniformly distributed nodes on , i.e.

, where , .

For the references and discussion of general case see survey [3].

In conclusion of this section we give one more theorem on the existence of deter-
mining functionals for problem (4.1). The theorem shows that in some cases we can
require that the values of functionals on the difference of two solutions tend to zero
only on a sequence of moments of time (cf. Theorem 1.3).

Theorem 4.4.

As before, assume that  is a positive operator with discrete spectrum:As before, assume that  is a positive operator with discrete spectrum:As before, assume that  is a positive operator with discrete spectrum:As before, assume that  is a positive operator with discrete spectrum:

,,,, ,,,, ....

Assume that Assume that Assume that Assume that  is a continuous mapping from  into  foris a continuous mapping from  into  foris a continuous mapping from  into  foris a continuous mapping from  into  for

some  and the estimatesome  and the estimatesome  and the estimatesome  and the estimate

,,,, ,,,,

holds. Let  be a finite set of linear functionals on holds. Let  be a finite set of linear functionals on holds. Let  be a finite set of linear functionals on holds. Let  be a finite set of linear functionals on .... Then for Then for Then for Then for

any  there exists  such that the conditionany  there exists  such that the conditionany  there exists  such that the conditionany  there exists  such that the condition

implies that the set of functionals  is determining for problem implies that the set of functionals  is determining for problem implies that the set of functionals  is determining for problem implies that the set of functionals  is determining for problem (4.1)
in the sense that if for some pair of solutions  and for some se-in the sense that if for some pair of solutions  and for some se-in the sense that if for some pair of solutions  and for some se-in the sense that if for some pair of solutions  and for some se-

quence  such thatquence  such thatquence  such thatquence  such that

,,,, ,,,, ,,,,

the conditionthe conditionthe conditionthe condition

,,,, ,,,,

holds, thenholds, thenholds, thenholds, then

.... (4.27)
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Proof.

Let . Then the results of Chapter 2 (see Theorem 2.2.3 and
Exercise 2.2.7) imply that

, (4.28)

(4.29)

for , where , , and  are positive numbers depending on , and
 and  is the orthoprojector onto . It follows form (4.29) that

, , (4.30)

where

.

Let us choose  such that . Then equation (4.30)
gives us that

, .

This inequality as well as estimate (4.28) enables us to use Theorem 1.3 with 
 and to complete the proof of Theorem 4.4.

Assume that  is chosen such that  in the proof
of Theorem 4.4. Show that the condition 
as  implies (4.27).

The results presented in this section can also be proved for semilinear retarded
equations. For example, we can consider a retarded perturbation of problem (4.1)
of the following form

where, as usual (see Section 2.8),  is an element of  defined with the help
of  by the equality , , and  is a continuous map-
ping from  into  possessing the property

for any . The corresponding scheme of reasoning is similar to the me-
thod used in [3], where the second order in time retarded equations are considered.
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§ 5 Determining Functionals§ 5 Determining Functionals§ 5 Determining Functionals§ 5 Determining Functionals

for for for for Reaction-Diffusion SystemsReaction-Diffusion SystemsReaction-Diffusion SystemsReaction-Diffusion Systems

In this section we consider systems of parabolic equations of the reaction-diffusion
type and find conditions under which a finite set of linear functionals given on the
phase space uniquely determines the asymptotic behaviour of solutions. In particu-
lar, the results obtained enable us to prove the existence of finite collections of de-
termining modes, nodes, and local volume averages for the class of systems under
consideration. It also appears that in some cases determining functionals can be gi-
ven only on a part of components of the state vector. As an example, we consider
a system of equations which describes the Belousov-Zhabotinsky reaction and the
Navier-Stokes equations.

Assume that  is a smooth bounded domain in , ,  is the
Sobolev space of the order  on , and  is the closure (in ) of the set
of infinitely differentiable functions with compact support in . Let  be a norm
in  and let  and  be a norm and an inner product in , respec-
tively. Further we also use the spaces 

, .

Notations  and  have a similar meaning. We denote the norms and the inner
products in  and  as in  and .

We consider the following system of equations

, , , (5.1)

, ,

as the main model. Here ,   is the Laplace ope-
rator, , and  is an -by-  matrix with the ele-
ments from  such that for all  and 

, . (5.2)

We also assume that the continuous function

is such that problem (5.1) has solutions which belong to a class  of functions
on  with the following properties:

a) for any  there exists  such that

, , (5.3)

where  is the space of strongly continuous functions on
 with the values in ;
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b) there exists a constant  such that for any  there exists
 such that for  we have

. (5.4)

It should be noted that if  is a diagonal matrix with the elements from
 and  is a continuously differentiable mapping such that

(5.5)

for all , , , and , then under natural compa-
tibility conditions problem (5.1) has a unique classical solution [7] which evidently
possesses properties (5.3) and (5.4). In cases when the dynamical system generated
by equations (5.1) is dissipative, the global Lipschitz condition (5.5) can be
weakened. For example (see [8]), if  is a constant matrix and

,

where , , and 
is continuously differentiable and satisfies the conditions

 , , ,

, , ,

where  and  for , then any solution
to problem (5.1) with the initial condition from  is unique and possesses proper-
ties (5.3) and (5.4).

Let us formulate our main assertion.

Theorem 5.1.

A set A set A set A set  of linearly independent continuous linear of linearly independent continuous linear of linearly independent continuous linear of linearly independent continuous linear

functionals on functionals on functionals on functionals on  is an asymptotically determining set with respect is an asymptotically determining set with respect is an asymptotically determining set with respect is an asymptotically determining set with respect

to the space to the space to the space to the space  for problem  for problem  for problem  for problem (5.1) in the class  in the class  in the class  in the class     ifififif

,,,, (5.6)

where , and  and  arewhere , and  and  arewhere , and  and  arewhere , and  and  are

constants from constants from constants from constants from (5.2) and  and  and  and (5.4).... This means that if inequality  This means that if inequality  This means that if inequality  This means that if inequality (5.6) holds, holds, holds, holds,

then for some pair of solutions then for some pair of solutions then for some pair of solutions then for some pair of solutions     the equationthe equationthe equationthe equation

,,,, ,,,, (5.7)
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implies their asymptotic closeness in the space implies their asymptotic closeness in the space implies their asymptotic closeness in the space implies their asymptotic closeness in the space ::::

.... (5.8)

Proof.

Let . Then equation (5.1) for  gives us that

.

If we multiply this by  in  scalarwise and use equation (5.4), then we find that

for  large enough. Therefore, the inequality 
enables us to obtain the estimate

. (5.9)

Theorem 2.1 implies that

(5.10)

for all  and for any , where  is a constant and 
. Consequently, estimate (5.9) gives us that

,

where  is defined by equation (5.6). It follows that if estimate (5.6) is valid,
then there exists  such that

for all , where  is large enough. Therefore, equation (5.7) implies (5.8).
Thus, Theorem 5.1 is proved.

Assume that  and  are two solutions to equation (5.1)
defined for all . Let (5.3) and (5.4) hold for every  and
let

.

Prove that if the hypotheses of Theorem 5.1 hold, then equalities
 for  and  for some  im-

ply that  for all .
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Let us give several examples of sets of determining functionals for problem (5.1).

E x a m p l e  5.1 (determining modes, , , , )

Let  be eigenelements of the operator  in  with the Dirichlet bounda-
ry conditions on  and let  be the corresponding eigenva-
lues. Then the completeness defect of the set

can be easily estimated as follows:  (see Exer-
cise 2.6). Thus, if  possesses the property , then 
is a set of asymptotically -determining functionals for prob-
lem (5.1).

Considerations of Section 5.3 also enable us to give the following examples.

E x a m p l e  5.2 (determining generalized local volume averages)

Assume that the domain  is divided into local Lipschitzian subdomains
, with diameters not exceeding some given number .

Assume that on every domain  a function  is given such
that the domain  is star-like with respect to  and the conditions

, ,

hold, where the constant  does not depend on  and . Theorem 3.1 im-
plies that

for the set of functionals

.

Therewith the reasonings in the proof of Theorem 3.1 imply that ,
where  is the area of the unit sphere in . For every  we define the
functionals  on  by the formula

, , . (5.11)

Let

. (5.12)
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One can check (see Exercise 2.8) that

.

Therefore, if  is small enough, then  is a set of asymptotically deter-
mining functionals for problem (5.1).

E x a m p l e  5.3 (determining nodes,    )

Let  be a convex smooth domain in , . Let  and let

,

where . Let us choose a point  in every subdomain
 and define the set of nodes

, . (5.13)

Theorem 3.2 enables us to state that

,

where  is an absolute constant. Therefore, the set of functionals  defined
by formulae (5.11) and (5.12) with  given by equality (5.13) possesses the
property

.

Consequently,  is a set of asymptotically determining functionals for prob-
lem (5.1) in the class , provided that  is small enough.

It is also clear that the result of Exercise 2.8 enables us to construct mixed determin-
ing functionals: they are determining nodes or local volume averages depending
on the components of a state vector. Other variants are also possible.

However, it is possible that not all the components of the solution vector 
appear to be essential for the asymptotic behaviour to be uniquely determined.
A theorem below shows when this situation can occur.

Let  be a subset of . Let us introduce the spaces

, .

We identify these spaces with , where  is the number of elements of
the set . Notations  and  have the similar meaning. The set  of linear
functionals on  is said to be determining if  is determining, where  is the
natural projection of  onto .
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Theorem 5.2.

Let Let Let Let  be a diagonal matrix with constant elementsbe a diagonal matrix with constant elementsbe a diagonal matrix with constant elementsbe a diagonal matrix with constant elements

and let  be a partition of the set  into two disjoint subsets.and let  be a partition of the set  into two disjoint subsets.and let  be a partition of the set  into two disjoint subsets.and let  be a partition of the set  into two disjoint subsets.

Assume that there exist positive constants , where Assume that there exist positive constants , where Assume that there exist positive constants , where Assume that there exist positive constants , where ,,,,

such that for any pair of solutions  the following inequality holdssuch that for any pair of solutions  the following inequality holdssuch that for any pair of solutions  the following inequality holdssuch that for any pair of solutions  the following inequality holds

(hereinafter )(hereinafter )(hereinafter )(hereinafter )::::

(5.14)

Then a set  of linearly independent continuous linearThen a set  of linearly independent continuous linearThen a set  of linearly independent continuous linearThen a set  of linearly independent continuous linear

functionals on  is an asymptotically determining set with respectfunctionals on  is an asymptotically determining set with respectfunctionals on  is an asymptotically determining set with respectfunctionals on  is an asymptotically determining set with respect

to the space  for problem to the space  for problem to the space  for problem to the space  for problem (5.1) in the class  if  in the class  if  in the class  if  in the class  if 

,,,, (5.15)

where  is defined as in where  is defined as in where  is defined as in where  is defined as in (5.6).... This means that if two solutions This means that if two solutions This means that if two solutions This means that if two solutions

 possess the property possess the property possess the property possess the property

forforforfor ,,,, (5.16)

where  is the natural projection where  is the natural projection where  is the natural projection where  is the natural projection of of of of  onto , then equation  onto , then equation  onto , then equation  onto , then equation (5.8)
holds.holds.holds.holds.

Proof.

Let and . Then

(5.17)

for . In  we scalarwise multiply equations (5.17) by 
for  and by  for  and summarize the results. Using inequality (5.14)
we find that

,
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.
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As in the proof of Theorem 5.1 (see (5.10)) we have

for every . Therefore, provided (5.15) holds, we obtain that

with some constant . Equation (5.16) implies that  as .
Hence,

. (5.18)

However, equation (5.9) and the inequality

, ,

imply that

for all  with  large enough and for . Therefore, equation (5.8) follows
from (5.18). Theorem 5.2 is proved.

The abstract form of Theorem 5.2 can be found in [3].

As an application of Theorem 5.2 we consider a system of equations which describe
the Belousov-Zhabotinsky reaction. This system (see [9], [10], and the references there-
in) can be obtained from (5.1) if we take , , 
and

,

where

,

, .

Here  and  are positive numbers. The theorem on the existence of classi-
cal solutions can be proved without any difficulty (see, e.g., [7]). It is well-known
[10] that if  and , then the domain

is invariant (if the initial condition vector lies in  for all , then 
for  and ). Let  be a set of classical solutions the initial condi-
tions of which have the values in . It is clear that assumptions (5.3) and (5.4) are
valid for . Simple calculations show that the numbers , and  can be
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chosen such that equation (5.14) holds for , , and . In-
deed, let smooth functions  and  be such that  for all

 and let . Then it is evident that there exist constants
 such that

,

,

.

Consequently, for any  we have 

It follows that there is a possibility to choose the parameters  and  such that

with positive constants  and . This enables us to prove (5.14) and, hence, the
validity of the assertions of Theorem 5.2 for the system of Belousov-Zhabotinsky
equations. Therefore, if  is a set of linear functionals on

 such that  is small enough, then the
condition

, ,

for some pair of solutions  and 
which lie in  implies that

as .

In particular, this means that the asymptotic behaviour of solutions to the Belousov-
Zhabotinsky system is uniquely determined by the behaviour of one of the compo-
nents of the state vector. A similar effect for the other equations is discussed in the
sections to follow.

The approach presented above can also be used in the study of the Navier-Stokes
system. As an example, let us consider equations that describe the dynamics of a vis-
cous incompressible fluid in the domain  with periodic
boundary conditions:
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, , ,

(5.19)

where the unknown velocity vector  and pressure
 are -periodic functions with respect to spatial variables, , and
 is the external force.

Let us introduce some definitions. Let  be a space of trigonometric polynomi-
als  of the period  with the values in  such that  and

. Let  be the closure of  in , let  be the orthoprojector onto
 in , let  and  for all  and  from

. We remind (see, e.g., [11]) that  is a positive operator with dis-
crete spectrum and the bilinear operator  is a continuous mapping from

 into . In this case problem (5.19) can be rewritten in the form

, . (5.20)

It is well-known (see, e.g., [11]) that if  and , then prob-
lem (5.20) has a unique solution  such that

, . (5.21)

One can prove (see [9] and [12]) that it possesses the property

(5.22)

for any . Here  is the first eigenvalue of the operator  in 
and

.

Lemma 5.1.

Let  and let . Then

, (5.23)

, (5.24)

where  is the -norm,  is the -th component of the vector ,

, and  is an absolute constant.

Proof.

Using the identity (see [12])

for  and , it is easy to find that

.
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Therefore, it is sufficient to estimate the norm . The incompressibili-
ty condition  gives us that

,

where  is the derivative with respect to the variable . Consequently,

 . (5.25)

This implies (5.23). Let us prove (5.24). For the sake of definiteness we let
. We can also assume that . Then (5.25) gives us that

.

We use the inequalities (see, e.g., [11], [12])

and

,

where  and  are absolute constants (their explicit equations can be found
in [12]). These inequalities as well as a simply verifiable estimate 

 imply that

.

This proves (5.24) for .

Theorem 5.3.

1. A set  of linearly independent continuousA set  of linearly independent continuousA set  of linearly independent continuousA set  of linearly independent continuous

linear functionals on  is an asymptotically determining setlinear functionals on  is an asymptotically determining setlinear functionals on  is an asymptotically determining setlinear functionals on  is an asymptotically determining set

with respect to  for problem with respect to  for problem with respect to  for problem with respect to  for problem (5.20) in the class of solutions with property in the class of solutions with property in the class of solutions with property in the class of solutions with property

(5.21) if if if if

,,,, (5.26)

where  is an absolute constant.where  is an absolute constant.where  is an absolute constant.where  is an absolute constant.

2. Let  be a set of linear functionals on Let  be a set of linear functionals on Let  be a set of linear functionals on Let  be a set of linear functionals on 

and letand letand letand let

,,,,

where  is an absolute constant. Then every set  is an asymptoticallywhere  is an absolute constant. Then every set  is an asymptoticallywhere  is an absolute constant. Then every set  is an asymptoticallywhere  is an absolute constant. Then every set  is an asymptotically

determining set with respect to  for problem determining set with respect to  for problem determining set with respect to  for problem determining set with respect to  for problem (5.20) in the class of solu- in the class of solu- in the class of solu- in the class of solu-

tions with property tions with property tions with property tions with property (5.21).... Here  is the natural projection onto the -th Here  is the natural projection onto the -th Here  is the natural projection onto the -th Here  is the natural projection onto the -th

component of the velocity vector, component of the velocity vector, component of the velocity vector, component of the velocity vector, ,,,, ....

B w w�� �
Ew 0�

w E�� �w w1 A2 w2� w2 A2 w1� , w1 A1 w2 w2 A1 w1�� ��

Ai xi

w E�� �w
2 2 w1 E�� �w2

2
w2 E�� �w1

2�& '
( )�

k 1� w �


w E�� �w 2 w1 L4 Ew2 L4 w2 � Ew1�& '
( )�

v
L� a0 v

1 2�
vM 1 2���

v
L4 a1 v

1 2� Ev
1 2���

a0 a1
v �

L 2>/� � Ev��

w E�� �w L
>��� a1

2 a0�� � Ew1 Ew 1 2� wM 1 2�� ��

k 1�

� l
j
: j 1 2 � N� � ��� ��

D A� � HHHH2 HHHH�
HHHH1

+
�

+
�

D A� � H�� � c1G c1-
2 NF t� �

t ��
lim& '

( ) 1�
	�	

c1
� lj : j 1 � N� ��� �� H2 @� �

+ 9
�

+
�

H2 @� � L2 @� ��� � c2-
4 L 3� NF t� �

t ��
lim& '

( ) 2�
�	

c2 p
k
*�

HHHH1

p
k

k

p
k

u1 u2�� � u
k

� k 1 2��



338 T h e o r y  o f  F u n c t i o n a l s  t h a t  U n i q u e l y  D e t e r m i n e  L o n g - T i m e  D y n a m i c s

C

h

a

p

t

e

r

5

Proof.

Let  and  be solutions to problem (5.20) possessing property (5.21).
Then equations (5.20) and (5.23) imply that

for . As above, Theorem 2.1 gives us the estimate

, .

Therefore,

.

The inequality

enables us to obtain the estimate (see Exercise 2.12)  and
hence

for every . Therefore, we use dissipativity properties of solutions (see [8] and
[9] as well as Chapter 2) to obtain that

,

where

.

Equation (5.22) for  implies that the function  possesses proper-
ties (1.6) and (1.7), provided (5.26) holds. Therefore, we apply Lemma 1.1 to obtain
that  as , provided

.

In order to prove the second part of the theorem, we use similar arguments. For
the sake of definiteness let us consider the case  only. It follows from (5.20)
and (5.24) that

. (5.27)

The definition of completeness defect implies that
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where .Therefore,
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for any , where the constant  depends on , and . Consequently,
from (5.27) we obtain that

.

Therefore, we can choose  and find that

,

where  is an arbitrary number. Further arguments repeat those in the proof
of the first assertion. Theorem 5.3 is proved.

It should be noted that assertion 1 of Theorem 5.3 and the results of Section 3 enable
us to obtain estimates for the number of determining nodes and local volume avera-
ges that are close to optimal (see the references in the survey [3]). At the same time,
although assertion 2 uses only one component of the velocity vector, in general it
makes it necessary to consider a much greater number of determining functionals in
comparison with assertion 1. It should also be noted that assertion 2 remains true if
instead of  we consider the projections of the velocity vector onto an arbitrary
a priori chosen direction [3]. Furthermore, analogues of Theorems 1.3 and 4.4 can be
proved for the Navier-Stokes system (5.19) (the corresponding variants of estimates
(4.28) and (4.29) can be derived from the arguments in [2], [8], and [9]).

§ 6 Determining Functionals§ 6 Determining Functionals§ 6 Determining Functionals§ 6 Determining Functionals

in the Problem of Nerve Impulsein the Problem of Nerve Impulsein the Problem of Nerve Impulsein the Problem of Nerve Impulse

TransmissionTransmissionTransmissionTransmission

We consider the following system of partial differential equations suggested by
Hodgkin and Huxley for the description of the mechanism of nerve impulse trans-
mission:

, , , (6.1)
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Here , , and

, (6.3)

where  and . We also assume that  and  are the
given continuously differentiable functions such that  and ,

. In this model  describes the electric potential in the nerve and  is
the density of a chemical matter and can vary between  and . Problem (6.1) and
(6.2) has been studied by many authors (see, e.g., [9], [10], [13] and the references
therein) for different boundary conditions. The results of numerical simulation given
in [13] show that the asymptotic behaviour of solutions to this problem can be quite
complicated. In this chapter we focus on the existence and the structure of deter-
mining functionals for problem (6.1) and (6.2). In particular, we prove that the
asymptotic behaviour of densities  is uniquely determined by sets of functionals
defined on the electric potential  only. Thus, the component  of the state vector

  is leading in some sense.
We equip equations (6.1) and (6.2) with the initial data

, , , (6.4)

and with one of the following boundary conditions:

, , (6.5a)

, , (6.5b)

, , , (6.5c)

where . Thus, we have no boundary conditions for the function 
when the corresponding diffusion coefficient  is equal to zero for some .

Let us now describe some properties of solutions to problem (6.1)–(6.5). First
of all it should be noted (see, e.g., [10]) that the parallelepiped

is a positively invariant set for problem (6.1)–(6.5). This means that if the initial data
 belongs to  for almost all ,

then

for  and for all  for which the solution to problem (6.1)–(6.5) exists.
Let  be the space consisting of vector-functions

, where , , . 
We equip it with the standard norm. Let
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.

Depending upon the boundary conditions (6.5 a, b, or c) we use the following nota-
tions  and , where

, or , or (6.6)

and

, or

, or , (6.7)

respectively. Hereinafter  is the Sobolev space of the order  on ,
 and  are subspaces in  corresponding to the boundary conditions

(6.5a) and (6.5c). The norm in  is defined by the equality

,

We use notations  and  for the norm and the inner product in 
. Further we assume that  is the space of strongly continu-

ous functions on  with the values in . The notation  has a simi-
lar meaning.

Let  for all . Then for every vector  problem
(6.1)–(6.5) has a unique solution  defined for all  (see, e.g., [9], [10]).
This solution lies in

for any segment  and if , then

. (6.8)

Therefore, we can define the evolutionary semigroup  in the space 
by the formula

,

where  is a solution to problem (6.1)–(6.5) with the initial conditions

.

The dynamical system  has been studied by many authors.
In particular, it has been proved that it possesses a finite-dimensional global attrac-
tor [9].
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If , then the corresponding evolutionary semigroup can be
defined in the space . In this case for any segment

 we have

, (6.9)

if . This assertion can be easily obtained by using the general methods
of Chapter 2.

The following assertion is the main result of this section.

Theorem 6.1.

Let Let Let Let  be a finite set of continuous linear functio-be a finite set of continuous linear functio-be a finite set of continuous linear functio-be a finite set of continuous linear functio-

nals on the space  (see nals on the space  (see nals on the space  (see nals on the space  (see (6.6) and  and  and  and (6.7)). Assume that). Assume that). Assume that). Assume that
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forforforfor (6.14)

implies thatimplies thatimplies thatimplies that

.... (6.15)

Proof.

Assume that (6.10) is valid. Let

and

be solutions satisfying either (6.8) with , or (6.9) with , .
It is clear that
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Theorem 2.1 gives us that

for any . Therefore,
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Let us now assume that (6.11) is valid. Since

,

then it follows from (6.16) that

(6.22)

Therefore, we can use equation (6.18) and obtain (cf. (6.19)) that

 

for any  and . As above, we find that

for any . Therefore,

,

provided that

.

As in the first part of the proof, we can now conclude that if (6.11) is valid, then (6.14)
implies the equations

and , . (6.23)

It follows from (6.17) that

.

Therefore, as above, we obtain equation (6.15) for the case (6.11). Theorem 6.1

is proved.
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As in the previous sections, modes, nodes and generalized local volume averages can
be choosen as determining functionals in Theorem 6.1.

Let  be a basis in  which consists of eigenvec-
tors of the operator  with one of the boundary conditions (6.5).
Show that the set

is determining (in the sense of (6.14) and (6.15)) for problem (6.1)–
(6.5) for  large enough.

Show that in the case of the Neumann boundary conditions
(6.5b) it is sufficient to choose the number  in Exercise 6.1 such
that

, . (6.24)

Obtain a similar estimate for the other boundary conditions (Hint:
see Exercises 3.2–3.4).

Let

. (6.25)

Show that for every  the estimate

(6.26)

holds for any  (Hint: see Exercise 3.6).

Use estimate (6.26) instead of (6.20) in the proof of Theorem
6.1 to show that the set of functionals (6.25) is determining for prob-
lem (6.1)–(6.5), provided that .

Obtain the assertions similar to those given in Exercises 6.3
and 6.4 for the following set of functionals
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where the function  possesses the properties

, .

It should be noted that in their work Hodgkin and Huxley used the following expres-
sions (see [13]) for  and :

, ,

where , ;

, ;

, .

Here . They also supposed that , , ,
and . As calculations show, in this case  and .
Therefore (see Exercise 6.4), the nodes  
are determining for problem (6.1)–(6.5) when . Of course,
similar estimates are valid for modes and generalized volume averages.

Thus, for the asymptotic dynamics of the system to be determined by a small
number of functionals, we should require the smallness of the parameter .
However, using the results available (see [14]) on the analyticity of solutions to
problem (6.1)–(6.5) one can show (see Theorem 6.2 below) that the values of all
components of the state vector  in two sufficiently close nodes
uniquely determine the asymptotic dynamics of the system considered not depend-
ing on the value of the parameter . Therewith some regularity conditions for
the coefficients of equations (6.1) and (6.2) are necessary.

Let us consider the periodic initial-boundary value problem (6.1)–(6.5c). As-
sume that  for all  and the functions  and  are polynomials such
that  and  for . In this case (see [14]) every
solution

possesses the following Gevrey regularity  Gevrey regularity  Gevrey regularity  Gevrey regularity property: there exists  such
that

(6.27)

for some  and for all . Here  are the Fourier coefficients of the
function :
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,

In particular, property (6.27) implies that every solution to problem (6.1)–(6.5c) be-
comes a real analytic function for all  large enough. This property enables us to
prove the following assertion.

Theorem 6.2.

Let  for all  and let  and  be the polynomials pos-Let  for all  and let  and  be the polynomials pos-Let  for all  and let  and  be the polynomials pos-Let  for all  and let  and  be the polynomials pos-

sessing the propertiessessing the propertiessessing the propertiessessing the properties

,,,, forforforfor ....

Let  and  be two nodes such that  andLet  and  be two nodes such that  andLet  and  be two nodes such that  andLet  and  be two nodes such that  and

,,,, where  is defined by formula  where  is defined by formula  where  is defined by formula  where  is defined by formula (6.12).... Then for every Then for every Then for every Then for every

two solutionstwo solutionstwo solutionstwo solutions

andandandand

to problem to problem to problem to problem (6.1)–(6.5 c) the condition the condition the condition the condition

implies their asymptotic closeness in the space implies their asymptotic closeness in the space implies their asymptotic closeness in the space implies their asymptotic closeness in the space ::::

.... (6.28)

Proof.

Let  and let , . We introduce the notations:

, , and .

Let

.

As in the proof of Theorem 6.1, it is easy to find that
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and

.

It follows from (6.27) that

.

Therefore, for any  and , , we have

where  is defined by formula (6.12). Simple calculations give us that

for any . Consequently, if , then there exist  and
 such that

,

where  is a positive constant. As in the proof of Theorem 6.1, it follows that condi-
tion  as  implies that

. (6.29)

Let us now prove (6.28). We do it by reductio ad absurdum. Assume that there exists
a sequence  such that

 . (6.30)

Let  and  be sequences lying in the attractor  of the dynamical system
generated by equations (6.1)–(6.5c) and such that

, . (6.31)
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Using the compactness of the attractor we obtain that there exist a sequence 
and elements  such that  and . Since

,

it follows from (6.29) and (6.31) that

.

Therefore,  for . However, the Gevrey regularity property im-
plies that elements of the attractor are real analytic functions. The theorem on the
uniqueness of such functions gives us that  for . Hence,

 as . Therefore, equation (6.31) implies that

.

This contradicts assumption (6.30). Theorem 6.2 is proved.

It should be noted that the connection between the Gevrey regularity and the exis-
tence of two determining nodes was established in the paper [15] for the first time.
The results similar to Theorem 6.2 can also be obtained for other equations (see the
references in [3]). However, the requirements of the spatial unidimensionality
of the problem and the Gevrey regularity of its solutions are crucial.

§ 7 Determining Functionals§ 7 Determining Functionals§ 7 Determining Functionals§ 7 Determining Functionals

for Second Order in Time Equationsfor Second Order in Time Equationsfor Second Order in Time Equationsfor Second Order in Time Equations

In a separable Hilbert space  we consider the problem

, , , (7.1)

where the dot over  stands for the derivative with respect to ,  is a positive
operator with discrete spectrum,  is a constant, and  is a continuous
mapping from  into  with the property

(7.2)

for some  and for all  such that . Assume
that for any , , and  problem (7.1) is uniquely solvable in
the class of functions

(7.3)

and defines a process  in the space  with the evolu-
tionary operator given by the formula

, (7.4)
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where  is a solution to problem (7.1) in the class (7.3). Assume that the process
 is pointwise dissipative, i.e. there exists  such that

, (7.5)

for all initial data . The nonlinear wave equation (see the book
by A. V. Babin and M. I. Vishik [8])

is an example of problem (7.1) which possesses all the properties listed above. Here
 is a bounded domain in  and the function  possesses the pro-

perties:

,

,

where  is the first eigenvalue of the operator  with the Dirichlet boundary
conditions on ,  and  are constants,  for  and

 is arbitrary for .

Theorem 7.1.

Let  be a set of continuous linear functionalsLet  be a set of continuous linear functionalsLet  be a set of continuous linear functionalsLet  be a set of continuous linear functionals

on . Assume thaton . Assume thaton . Assume thaton . Assume that

,,,, (7.6)

where  is the radius of dissipativity (see where  is the radius of dissipativity (see where  is the radius of dissipativity (see where  is the radius of dissipativity (see (7.5)),  and ),  and ),  and ),  and 

are the constants from are the constants from are the constants from are the constants from (7.2),,,, and  is the first eigenvalue of the operator and  is the first eigenvalue of the operator and  is the first eigenvalue of the operator and  is the first eigenvalue of the operator

.... Then  is an asymptotically determining set for problem  Then  is an asymptotically determining set for problem  Then  is an asymptotically determining set for problem  Then  is an asymptotically determining set for problem (7.1) in the in the in the in the
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Proof.

We rewrite problem (7.1) in the form

, , (7.9)

where

, , .

Lemma 7.1.

There exists an exponential operator  in the space 

 and

, (7.10)

where  is the first eigenvalue of the operator .

Proof.

Let . Then it is evident that ,
where  is a solution to the problem

, , , (7.11)

(see Section 3.7 for the solvability of this problem and the properties of solu-
tions). Let us consider the functional

, ,

on the space . It is clear that
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Moreover, for a solution  to problem (7.11) from the class (7.3) with 
we have that

. (7.13)
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,

.

This implies estimate (7.10). Lemma 7.1 is proved.

It follows from (7.9) that

.

Therefore, with the help of Lemma 7.1 for the difference of two solutions 
, , we obtain the estimate

, (7.14)

where  and the constants  and  have the form

, .

By virtue of the dissipativity (7.5) we can assume that  for all .
Therefore, equations (7.14) and (7.2) imply that

.

The interpolation inequality (see Exercise 2.1.12)

, ,

Theorem 2.1, and the result of Exercise 2.12 give us that

,

where . Therefore,

where . If we introduce a new unknown
function  in this inequality, then we obtain the equation
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,

where . We apply Gronwall’s lemma to obtain

.

After integration by parts we get

.

If equation (7.6) holds, then . Therewith it is evident that for
 we have the estimate

Therefore, using the dissipativity property we obtain that

for  and . If we fix  and tend the parameter  to infinity, then
with the help of (7.7) we find that

for any . This implies (7.8). Theorem 7.1 is proved.

Unfortunately, because of the fact that condition (7.2) is assumed to hold only for
, Theorem 7.1 cannot be applied to the problem on nonlinear plate

oscillations considered in Chapter 4. However, the arguments in the proof of Theo-
rem 7.1 can be slightly modified and the theorem can still be proved for this case
using the properties of solutions to linear nonautonomous problems (see Section 4.2).
However, instead of a modification we suggest another approach (see also [3]) which
helps us to prove the assertions on the existence of sets of determining functionals
for second order in time equations. As an example, let us consider a problem of plate
oscillations .
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Thus, in a separable Hilbert space  we consider the equation

 

We assume that  is an operator with discrete spectrum and the function  lies
in  and possesses the properties:

a) , (7.17)

where , , and  is the first eigenvalue of the opera-
tor ;

b) there exist numbers  such that

, (7.18)

with some constant . 
We also require the existence of  and  such that

, . (7.19) 

These assumptions enable us to state (see Sections 4.3 and 4.5) that if

, , , , (7.20) 

then problem (7.15) and (7.16) is uniquely solvable in the class of functions

. (7.21)

Therewith there exists  such that

, (7.22)

for any solution  to problem (7.15) and (7.16).

Theorem 7.2.

Assume that conditions Assume that conditions Assume that conditions Assume that conditions (7.17)–(7.20) hold. Let  hold. Let  hold. Let  hold. Let 

be a set of continuous linear functionals on be a set of continuous linear functionals on be a set of continuous linear functionals on be a set of continuous linear functionals on .... Then there exists  Then there exists  Then there exists  Then there exists 

depending both on  and the parameter of equation depending both on  and the parameter of equation depending both on  and the parameter of equation depending both on  and the parameter of equation (7.15) such that the such that the such that the such that the
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.... (7.24)

Proof.

Let  and  be solutions to problem (7.15) and (7.16) lying in . Due
to equation (7.22) we can assume that these solutions possess the property

, , . (7.25)

Let us consider the function  as a solution to equation

, (7.26)

where

.

It follows from (7.19) and (7.25) that

. (7.27)

Let us consider the functional

(7.28)

on the space , where

and the positive parameters  and  will be chosen below. It is clear that for
 we have

,

where . Moreover,

.

Therefore, the value  can be chosen such that

(7.29)

for all , where  and  are positive numbers depending on . Let us
now estimate the value . Due to (7.26) we have that
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With the help of (7.25) and (7.27) we obtain that

.

Using (7.26) and (7.27) it is also easy to find that

where

.

We choose  and use the estimate of the form

, , ,

to obtain that

Therefore, using the estimate

and equation (7.29) we obtain the inequality 

,

provided . Here  is a positive constant. As above, this
easily implies (7.24), provided (7.23) holds. Theorem 7.2 is proved.

Show that the method used in the proof of Theorem 7.2 also
enables us to obtain the assertion of Theorem 7.1 for problem (7.1).

Using the results of Section 4.2 related to the linear variant of
equation (7.15), prove that the method of the proof of Theorem 7.1
can also be applied in the proof of Theorem 7.2.

Thus, the methods presented in the proofs of Theorems 7.1 and 7.2 are close to each
other. The same methods with slight modifications can also be used in the study
of problems like (7.1) with additional retarded terms (see [3]).
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Using the estimates for the difference of two solutions to equ-
ation (7.15) proved in Lemmata 4.6.1 and 4.6.2, find an analogue
of Theorems 1.3 and 4.4 for the problem (7.15) and (7.16).

§ 8 On Boundary Determining Functionals§ 8 On Boundary Determining Functionals§ 8 On Boundary Determining Functionals§ 8 On Boundary Determining Functionals

The fact (see Sections 5–7 as well as paper [3]) that in some cases determining func-
tionals can be defined on some auxiliary space admits in our opinion an interesting
generalization which leads to the concept of boundary determining functionals.
We now clarify this by giving the following simple example.

In a smooth bounded domain  we consider a parabolic equation with
the nonlinear boundary condition

(8.1)

Assume that  is a positive parameter,  and  are continuously differenti-
able functions on  such that

, , (8.2)

where  and  are constants. Let

. (8.3)

Here  is a set of functions  on  that are twice continu-
ously differentiable with respect to  and continuously differentiable with respect
to . The notation  has a similar meaning, the bar denotes the closure
of a set.

Let  and  be two solutions to problem (8.1) lying in the class
 (we do not discuss the existence of such solutions here and refer the reader to

the book [7]). We consider the difference . Then (8.1) evidently
implies that
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Using (8.2) we obtain that

. (8.4)

One can show that there exist constants  and  depending on the domain 
only and such that

, (8.5)

. (8.6)

Here  is the Sobolev space of the order  on the boundary of the domain
. Equations (8.4)–(8.6) enable us to obtain the following assertion.

Theorem 8.1.

Let  be a set of continuous linear functionalsLet  be a set of continuous linear functionalsLet  be a set of continuous linear functionalsLet  be a set of continuous linear functionals

on the space on the space on the space on the space .... Assume that  and Assume that  and Assume that  and Assume that  and

,,,, (8.7)

where the constants , and  are defined in equations where the constants , and  are defined in equations where the constants , and  are defined in equations where the constants , and  are defined in equations (8.1),,,,

(8.2), , , , (8.5), and , and , and , and (8.6). Then  is an asymptotically determining set with. Then  is an asymptotically determining set with. Then  is an asymptotically determining set with. Then  is an asymptotically determining set with

respect to  for problem respect to  for problem respect to  for problem respect to  for problem (8.1) in the class of classical solutions  in the class of classical solutions  in the class of classical solutions  in the class of classical solutions ....

Proof.

Let , where  are solutions to problem (8.1).
Theorem 2.1 implies that

(8.8)

for any . Equations (8.5) and (8.6) imply that

.

Therefore, equation (8.4) gives us that

Using estimate (8.5) once again we get

(8.9)
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provided that

. (8.10)

It is evident that (8.10) with some  follows from (8.7). Therefore, inequality
(8.9) enables us to complete the proof of the theorem.

Thus, the analogue of Theorem 3.1 for smooth surfaces enables us to state that prob-
lem (6.1) has finite determining sets of boundary local surface averages.

An assertion similar to Theorem 8.1 can also be obtained (see [3]) for a nonlinear
wave equation of the form

, , ,

, , , .

Here  is a smooth open subset on the boundary of ,  and  are bound-
ed continuously differentiable functions, and  and  are positive parameters.
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In this chapter we consider some questions on the asymptotic behaviour of a dis-
crete dynamical system. We remind (see Chapter 1) that a discrete dynamical sys-
tem is defined as a pair  consisting of a metric space  and a continuous
mapping of  into itself. Most assertions on the existence and properties of attrac-
tors given in Chapter 1 remain true for these systems. It should be noted that the fol-
lowing examples of discrete dynamical systems are the most interesting from the
point of view of applications: a) systems generated by monodromy operators (period
mappings) of evolutionary equations, with coefficients being periodic in time;
b) systems generated by difference schemes of the type 

,  in a Banach space  (see Examples 1.5 and 1.6 of Chap-
ter 1).

The main goal of this chapter is to give a strict mathematical description of one
of the mechanisms of a complicated (irregular, chaotic) behaviour of trajectories.
We deal with the phenomenon of the so-called homoclinic chaos. This phenomenon
is well-known and is described by the famous Smale theorem (see, e.g., [1–3]) for fi-
nite-dimensional systems. This theorem is of general nature and can be proved for
infinite-dimensional systems. Its proof given in Section 5 is based on an infinite-di-
mensional variant of Anosov’s lemma on -trajectories (see Section 4). The conside-
rations of this Chapter are based on the paper [4] devoted to the finite-dimensional
case as well as on the results concerning exponential dichotomies of infinite-dimen-
sional systems given in Chapter 7 of the book [5]. We follow the arguments given in [6]
while proving Anosov’s lemma.

§ 1 Bernoulli Shift as a Model of Chaos§ 1 Bernoulli Shift as a Model of Chaos§ 1 Bernoulli Shift as a Model of Chaos§ 1 Bernoulli Shift as a Model of Chaos

Mathematical simulation of complicated dynamical processes which take place in real
systems requires that the notion of a state of chaos be formalized. One of the possible
approaches to the introduction of this notion relies on a selection of a class of expli-
citly solvable models with complicated (in some sense) behaviour of trajectories.
Then we can associate every model of the class with a definite type of chaotic beha-
viour and use these models as standard ones comparing their dynamical structure
with a qualitative behaviour of the dynamical system considered. A discrete dynami-
cal system known as    the Bernoulli shift    is one of these explicitly solvable models.

Let  and let

,

i.e.  is a set of two-sided infinite sequences the elements of which are the inte-
gers . Let us equip the set  with a metric
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. (1.1)

Here  and  are elements of . Other methods
of introduction of a metric in  are given in Example 1.1.7 and Exercise 1.1.5.

Show that the function  satisfies all the axioms of
a metric.

Let  and  be elements of the set .
Assume that  for  and for some integer . Prove that

.

Assume that equation  holds for ,
where  is a natural number. Show that  for all 
(Hint: if ).

Let  and let

. (1.2)

Prove that for any  the relation

holds, where  is an integer with the property

.

Show that the space  with metric (1.1) is a compact met-
ric space.

In the space  we define a mapping  which shifts every sequence one symbol
left, i.e.

, , .

Evidently,  is invertible and the relations

,

hold for all . Therefore, the mapping  is a homeomorphism.
The discrete dynamical system  is called the Bernoulli shift  the Bernoulli shift  the Bernoulli shift  the Bernoulli shift of the

space of sequences of  symbols. Let us study the dynamical properties of the sys-
tem .

Prove that  has  fixed points exactly. What struc-
ture do they have?
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We call an arbitrary ordered collection  with 
a segment (of the length ). Each element  can be considered as an or-
dered infinite family of finite segments while the elements of the set  can be con-
structed from segments. In particular, using the segment  we can
construct a periodic element  by the formula

, , . (1.3)

Let  be a segment of the length  and let
 be an element defined by (1.3). Prove that  is a periodic

point of the period  of the dynamical system , i.e.
.

Prove that for any natural  there exists a periodic point
of the minimal period equal to .

Prove that the set of all periodic points is dense in , i.e. for
every  and  there exists a periodic point  with the
property  (Hint: use the result of Exercise 1.4).

Prove that the set of nonperiodic points is not countable.

Let  and  be fi-
xed points of the system . Let  be an element
of  such that  for  and  for , where

 and  are natural numbers. Prove that

, . (1.4)

Assume that an element  possesses property (1.4) with  and .
If , then the set

is called a    heteroclinic trajectory heteroclinic trajectory heteroclinic trajectory heteroclinic trajectory that connects the fixed points  and .
If , then  is called a homoclinic trajectory  homoclinic trajectory  homoclinic trajectory  homoclinic trajectory of the point . The
elements of a heteroclinic (homoclinic, respectively) trajectory are called hetero-
clinic (homoclinic, respectively) points.

Prove that for any pair of fixed points there exists an infinite
number of heteroclinic trajectories connecting them whereas the
corresponding set of heteroclinic points is dense in .

Let

and
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be cycles (periodic trajectories). Prove that there exists a hetero-
clinic trajectory  that connects the cycles 
and , i.e. such that

,

and

, .

For every  there exists only a finite number of segments of the length . There-
fore, the set  of all segments is countable, i.e. we can assume that 

, therewith the length of the segment  is not less than the length
of . Let us construct an element  from  taking  for

 and sequentially putting all the segments  to the right of the zeroth posi-
tion. As a result, we obtain an element of the form

, . (1.5)

Prove that a positive semitrajectory  with
 having the form (1.5) is dense in , i.e. for every  and

 there exists  such that .

Prove that the semitrajectory  constructed in Exercise 1.14
returns to an -vicinity of every point  infinite number
of times (Hint: see Exercises 1.4 and 1.9).

Construct a negative semitrajectory 
which is dense in .

Thus, summing up the results of the exercises given above, we obtain the following
assertion.

Theorem 1.1.

The dynamical system  of the Bernoulli shift of sequencesThe dynamical system  of the Bernoulli shift of sequencesThe dynamical system  of the Bernoulli shift of sequencesThe dynamical system  of the Bernoulli shift of sequences

of symbols possesses the properties:of symbols possesses the properties:of symbols possesses the properties:of symbols possesses the properties:

1) there exists a finite number of fixed points;there exists a finite number of fixed points;there exists a finite number of fixed points;there exists a finite number of fixed points;

2) there exist periodic orbits of any minimal period and the set of thesethere exist periodic orbits of any minimal period and the set of thesethere exist periodic orbits of any minimal period and the set of thesethere exist periodic orbits of any minimal period and the set of these

orbits is dense in the phase space ;orbits is dense in the phase space ;orbits is dense in the phase space ;orbits is dense in the phase space ;

3) the set of nonperiodic points is uncountable;the set of nonperiodic points is uncountable;the set of nonperiodic points is uncountable;the set of nonperiodic points is uncountable;

4) heteroclinic and homoclinic points are dense in the phase space;heteroclinic and homoclinic points are dense in the phase space;heteroclinic and homoclinic points are dense in the phase space;heteroclinic and homoclinic points are dense in the phase space;

5) there exist everywhere dense trajectories.there exist everywhere dense trajectories.there exist everywhere dense trajectories.there exist everywhere dense trajectories.

All these properties clearly imply the extraordinarity and complexity of the dyna-
mics in the system . They also give a motivation for the following definitions.
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Let  be a discrete dynamical system. The dynamics of the system 
is called chaotic  chaotic  chaotic  chaotic if there exists a natural number  such that the mapping  is
topologically conjugate to the Bernoulli shift for some , i.e. there exists a homeo-
morphism  such that  for all . We also say
that chaotic dynamics is observed in the system  if there exist a number 
and a set  in  invariant with respect to   such that the restriction
of  to  is topologically conjugate to the Bernoulli shift.

It turns out that if a dynamical system  has a fixed point and a correspon-
ding homoclinic trajectory, then chaotic dynamics can be observed in this system
under some additional conditions (this assertion is the core of the Smale theorem).
Therefore, we often speak about homoclinic chaos in this situation. It should also be
noted that the approach presented here is just one of the possible methods used to
describe chaotic behaviour (for example, other approaches can be found in [1] as
well as in book [7], the latter contains a survey of methods used to study the dynam-
ics of complicated systems and processes).

§ 2 Exponential Dichotomy§ 2 Exponential Dichotomy§ 2 Exponential Dichotomy§ 2 Exponential Dichotomy

and Difference Equationsand Difference Equationsand Difference Equationsand Difference Equations

This is an auxiliary section. Nonautonomous linear difference equations of the form

, , (2.1)

in a Banach space  are considered here. We assume that  is a family of linear
bounded operators in ,  is a sequence of vectors from . Some results both
on the dichotomy (splitting) of solutions to homogeneous  equation (2.1)
and on the existence and properties of bounded solutions to nonhomogeneous equa-
tion are given here. We mostly follow the arguments given in book [5] as well as
in paper [4] devoted to the finite-dimensional case.

Thus, let  be a sequence of linear bounded operators in a Banach
space . Let us consider a homogeneous difference equation

, , (2.2)

where  is an interval in , i.e. a set of integers of the form

,

where  and  are given numbers, we allow the cases  and .
Evidently, any solution  to difference equation (2.2) possesses the pro-
perty

, , ,
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where  for  and . The mapping
 is called an evolutionary operator  evolutionary operator  evolutionary operator  evolutionary operator of problem (2.2).

Prove that for all  we have

.

Let  be a family of projectors (i.e. ) in 
such that . Show that

, , ,

i.e. the evolutionary operator  maps  into .

Prove that solutions  to nonhomogeneous difference
equation (2.1) possess the property

, .

Let us give the following definition. A family of linear bounded operators 
is said to possess an exponential dichotomy  exponential dichotomy  exponential dichotomy  exponential dichotomy over an interval  with constants

 and  if there exists a family of projectors  such that

a) , ;

b) , , ;

c) for  the evolutionary operator  is a one-to-one mapping
of the subspace  onto  and the following estimate
holds:

, , .

If these conditions are fulfilled, then it is also said that difference equation (2.2) ad-
mits an exponential dichotomy over . It should be noted that the cases  and

 are the most interesting for further considerations, where  is
the set of all nonnegative (nonpositive) integers.

The simplest case when difference equation (2.2) admits an exponential dicho-
tomy is described in the following example.

E x a m p l e  2.1 (autonomous case)

Assume that equation (2.2) is autonomous, i.e.  for all , and the spec-
trum  does not intersect the unit circumference . Linear
operators possessing this property are often called hyperbolic (with respect to
the fixed point ). It is well-known (see, e.g., [8]) that in this case there
exists a projector  with the properties:
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a) , i.e. the subspaces  and  are invariant with re-
spect to ;

b) the spectrum  of the restriction of the operator  to  lies
strictly inside of the unit disc;

c) the spectrum  of the restriction of  to the subspace
 lies outside the unit disc.

Let  be a linear bounded operator in a Banach space  and
let  be its spectral radius. Show that for
any  there exists a constant  such that

,

(Hint: use the formula  the proof of which can be
found in [9], for example).

Applying the result of Exercise 2.4 to the restriction of the operator  to , we ob-
tain that there exist  and  such that

, . (2.3)

It is also evident that the restriction of the operator  to  is invertible and
the spectrum of the inverse operator lies inside the unit disc. Therefore,

, , (2.4)

where the constants  and  can be chosen the same as in (2.3). The
evolutionary operator  of the difference equation  has the
form , . Therefore, the equality  and estimates
(2.3) and (2.4) imply that the equation  admits an exponential dicho-
tomy over , provided the spectrum of the operator  does not intersect the unit
circumference.

Assume that for the operator  there exists a projector 
such that  and estimates (2.3) and (2.4) hold with .
Show that the spectrum of the operator  does not intersect the
unit circumference, i.e.  is hyperbolic.

Thus, the hyperbolicity of the linear operator  is equivalent to the exponential di-
chotomy over  of the difference equation  with the projectors  in-
dependent of . Therefore, the dichotomy property of difference equation (2.2)
should be considered as an extension of the notion of hyperbolicity to the nonauto-
nomous case. The meaning of this notion is explained in the following two exercises.

Let  be a hyperbolic operator. Show that the space  can be
decomposed into a direct sum of stable  and unstable  sub-
spaces, i.e.  therewith
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,  , ,

, , ,

with some constants  and .

Let  be a plane and let  be an operator defined by
the formula

, .

Show that the operator  is hyperbolic. Evaluate and display gra-
phically stable  and unstable  subspaces on the plane. Display
graphically the trajectory  of some point  that lies
neither in , nor in .

The next assertion (its proof can be found in the book [5]) plays an important role in
the study of existence conditions of exponential dichotomy of a family of operators

.

Theorem 2.1.

Let  be a sequence of linear bounded operators in a Ba-Let  be a sequence of linear bounded operators in a Ba-Let  be a sequence of linear bounded operators in a Ba-Let  be a sequence of linear bounded operators in a Ba-

nach space nach space nach space nach space .... Then the foll Then the foll Then the foll Then the folloooowing assertions are equivalent:wing assertions are equivalent:wing assertions are equivalent:wing assertions are equivalent:

(i) the sequence  possesses an exponential dichotomy overthe sequence  possesses an exponential dichotomy overthe sequence  possesses an exponential dichotomy overthe sequence  possesses an exponential dichotomy over

,,,,

(ii) for any bounded sequence  from  there exists a uniquefor any bounded sequence  from  there exists a uniquefor any bounded sequence  from  there exists a uniquefor any bounded sequence  from  there exists a unique

bounded solution  to the nonhomogeneous differencebounded solution  to the nonhomogeneous differencebounded solution  to the nonhomogeneous differencebounded solution  to the nonhomogeneous difference

equationequationequationequation

,,,, .... (2.5)

In the case when the sequence  possesses an exponential dichotomy, solutions
to difference equation (2.5) can be constructed using the Green function the Green function the Green function the Green function :

Prove that .

Prove that for any bounded sequence  from 
a solution to equation (2.5) has the form

, .
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Moreover, the following estimate is valid:

.

The properties of the Green function enable us to prove the following assertion
on the uniqueness of the family of projectors .

Lemma 2.1.

Let a sequence  possess an exponential dichotomy over . Then

the projectors  are uniquely defined.

Proof.

Assume that there exist two collections of projectors  and  for
which the sequence  possesses an exponential dichotomy. Let 
and  be Green functions constructed with the help of these collec-
tions. Then Theorem 2.1 enables us to state (see Exercise 2.9) that

for all  and for any bounded sequence . Assuming that 
for  and  for , we find that

, , , .

This equality with  gives us that . Thus, the lemma is proved.

In particular, Theorem 2.1 implies that in order to prove the existence of an expo-
nential dichotomy it is sufficient to make sure that equation (2.5) is uniquely solv-
able for any bounded right-hand side. It is convenient to consider this difference
equation in the space  of sequences  of elements of 
for which the norm

(2.6)

is finite. Assume that the condition

(2.7)

is valid. Then for any  the sequence  lies in .
Consequently, equation

, (2.8)

defines a linear bounded operator acting in the space . Therewith as-
sertion (ii) of Theorem 2.1 is equivalent to the assertion on the invertibility of the
operator  given by equation (2.8).
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The assertion given below provides a sufficient condition of invertibility of the
operator . Due to Theorem 2.1 this condition guarantees the existence of an expo-
nential dichotomy for the corresponding difference equation. This assertion will be
used in Section 4 in the proof of Anosov’s lemma. It is a slightly weakened variant
of a lemma proved in [6].

Theorem 2.2.

Assume that a sequence of operators  satisfies conditionAssume that a sequence of operators  satisfies conditionAssume that a sequence of operators  satisfies conditionAssume that a sequence of operators  satisfies condition

(2.7).... Let there exist a family of projectors  such that Let there exist a family of projectors  such that Let there exist a family of projectors  such that Let there exist a family of projectors  such that

,,,, ,,,, (2.9)

,,,, ,,,, (2.10)

for all . We also assume that the operator  is invertiblefor all . We also assume that the operator  is invertiblefor all . We also assume that the operator  is invertiblefor all . We also assume that the operator  is invertible

as a mapping from  into  and the estimatesas a mapping from  into  and the estimatesas a mapping from  into  and the estimatesas a mapping from  into  and the estimates

,,,, (2.11)

are valid for every . Ifare valid for every . Ifare valid for every . Ifare valid for every . If

,,,, ,,,, (2.12)

then the operator  acting in  according to formula then the operator  acting in  according to formula then the operator  acting in  according to formula then the operator  acting in  according to formula (2.8) is invertible is invertible is invertible is invertible

and and and and ....

Proof.

Let us first prove the injectivity of the mapping . Assume that there exists a
nonzero element  such that , i.e.  for all .
Let us prove that the sequence  possesses the property

(2.13)

for all . Indeed, let there exist  such that

. (2.14)

It is evident that this equation is only possible when . Let us con-
sider the value
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it follows from (2.11) that

for every  and for all . Therefore, we use estimates (2.10) to find that

. (2.16)

Then it is evident that

Therefore, estimates (2.9)–(2.11) imply that

, . (2.17)

Thus, equations (2.15)–(2.17) lead us to the estimate

.

It follows from (2.14) that

.

Therefore,

.

Hence, if conditions (2.12) hold, then

. (2.18)

When proving (2.18) we use the fact that

.

Thus, equation (2.18) follows from (2.14), i.e.  implies . Hence,

for all .

Moreover, (2.18) gives us that

, .

Therefore,  as . This contradicts the assumption .
Thus, for all  estimate (2.13) is valid. In particular it leads us to the inequality

. (2.19)

Therefore, it follows from (2.17) that

for all . We use conditions (2.12) to find that

, . (2.20)
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If , then inequality (2.19) gives us that there exists  such that
. Therefore, it follows from (2.20) that

for all . We tend  to obtain that  which is impossible
due to (2.9) and the boundedness of the sequence . Therefore, there does not
exist a nonzero  such that . Thus, the mapping  is injective.

Let us now prove the surjectivity of . Let us consider an operator  in the
space  acting according to the formula

, ,

where the operator  acts from  into 
and is inverse to . It follows from (2.9) and (2.11) that

, . (2.21)

It is evident that

Since

,

we have that

Consequently,

Therefore, inequalities (2.10), (2.11), and (2.12) give us that

,

i.e. . That means that the operator  is invertible and

. (2.22)

Let  be an arbitrary element of . Then it is evident that the element 
 is a solution to equation . Moreover, it follows from (2.21) and

(2.22) that

.

Hence,  is surjective and . Theorem 2.2 is proved.
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§ 3 Hyperbolicity of Invariant Sets§ 3 Hyperbolicity of Invariant Sets§ 3 Hyperbolicity of Invariant Sets§ 3 Hyperbolicity of Invariant Sets

for Differentiable Mappingsfor Differentiable Mappingsfor Differentiable Mappingsfor Differentiable Mappings

Let us remind the definition of the differentiable mapping. Let  and  be Banach
spaces and let  be an open set in . The mapping  from  into  is called
(Frechét)    differentiable differentiable differentiable differentiable at the point  if there exists a linear bounded ope-
rator  from  into  such that

.

If the mapping  is differentiable at every point , then the mapping 
 acts from  into the Banach space  of all linear bounded oper-

ators from  into . If  is continuous, then the mapping  is
said to be continuously differentiable  continuously differentiable  continuously differentiable  continuously differentiable (or -mapping) on . The notion of
the derivative of any order can also be introduced by means of induction. For example,

 is the Frechét derivative of the mapping .

Let  and  be continuously differentiable mappings from
 into  and from  into , respectively. Moreover, let

 and  be open sets such that . Prove that 
 is a -mapping on  and obtain a chain rule for the

differentiation of a composed function

, .

Let  be a continuously differentiable mapping from  into
 and let  be the -th degree of the mapping , i.e. 

, , . Prove that  is a -map-
ping on  and

. (3.1)

Now we give the definition of a hyperbolic set. Assume that  is a continuously dif-
ferentiable mapping from a Banach space  into itself and  is a subset in which
is invariant with respect to  . The set  is called hyperbolic  hyperbolic  hyperbolic  hyperbolic (with
respect to ) if there exists a collection of projectors  such that

a)  continuously depends on  with respect to the operator
norm;

b) for every 

; (3.2)

c) the mappings  are invertible for every  as linear operators
from  into ;
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d) for every  the following equations hold:

, , (3.3)

, , (3.4)

with the constants  and  independent of . Here
 is the -th degree of the mapping  (  for

 and ).

It should be noted that properties (b) and (c) as well as formula (3.1) enable us
to state that  maps  into  and is an invertible
operator. Therefore, the value in the left-hand side of inequality (3.4) exists.

Let , where  is a fixed point of a -mapping ,
i.e. . Then for the set  to be hyperbolic it is necessary
and sufficient that the spectrum of the linear operator  does
not intersect the unit circumference (Hint: see Example 2.1).

Let  be an invariant hyperbolic set of a -mapping  and let 
be a complete trajectory (in ) for , i.e.  is a sequence of points from 
such that  for all . Let us consider a difference equation ob-
tained as a result of linearization of the mapping  along :

, . (3.5)

Prove that the evolutionary operator  of difference
equation (3.5) has the form

, , .

Prove that difference equation (3.5) admits an exponential di-
chotomy over  with (i) the constants  and  given by equations
(3.3) and (3.4) and (ii) the projectors  involved in the
definition of the hyperbolicity.

It should be noted that property (a) of uniform continuity implies that the projectors
 are similar to one another, provided the values of  are close enough.

The proof of this fact is based on the following assertion.

Lemma 3.1.

Let  and  be projectors in a Banach space . Assume that

, , (3.6)

for some constant . Then the operator

(3.7)
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possesses the property  and is invertible, therewith

. (3.8)

Proof.

Since , we have

.

It follows from (3.6) that

.

Hence, the operator  can be defined as the following absolutely convergent
series

.

This implies estimate (3.8). The permutability property  is evident.
Lemma 3.1 is proved.

Let  be a connected compact set and let  be
a family of projectors for which condition (a) of the hyperbolicity de-
finition holds. Then all operators  are similar to one another, i.e.
for any  there exists an invertible operator  such
that .

The following assertion contains a description of a situation when the hyperbolicity
of the invariant set is equivalent to the existence of an exponential dichotomy for dif-
ference equation (3.5) (cf. Exercise 3.5).

Theorem 3.1.

Let  be a continuously differentiable mapping of the space  intoLet  be a continuously differentiable mapping of the space  intoLet  be a continuously differentiable mapping of the space  intoLet  be a continuously differentiable mapping of the space  into

itself. itself. itself. itself. Let Let Let Let  be a hyperbolic fixed point of  ( ) and let be a hyperbolic fixed point of  ( ) and let be a hyperbolic fixed point of  ( ) and let be a hyperbolic fixed point of  ( ) and let 

be a homoclinic trajectory (not equal to ) of the mapping , i.e.be a homoclinic trajectory (not equal to ) of the mapping , i.e.be a homoclinic trajectory (not equal to ) of the mapping , i.e.be a homoclinic trajectory (not equal to ) of the mapping , i.e.

,,,, ,,,, ,,,, .... (3.9)

Then the set  is hyperbolic if and only if the diffe-Then the set  is hyperbolic if and only if the diffe-Then the set  is hyperbolic if and only if the diffe-Then the set  is hyperbolic if and only if the diffe-

rence equationrence equationrence equationrence equation

,,,, ,,,, (3.10)

possesses an exponential dichotomy over possesses an exponential dichotomy over possesses an exponential dichotomy over possesses an exponential dichotomy over ....

Proof.

If  is hyperbolic, then (see Exercise 3.5) equation (3.10) possesses an expo-
nential dichotomy over . Let us prove the converse assertion. Assume that equa-
tion (3.10) possesses an exponential dichotomy over  with projectors 
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and constants  and . Let us denote the spectral projector of the operator 
corresponding to the part of the spectrum inside the unit disc by . Without loss
of generality we can assume that

, ,

, .

Thus, for every  the projector  is defined: , .
The structure of the evolutionary operator of difference equation (3.10) (see Exer-
cise 3.4) enables us to verify properties (b)–(d) of the definition of a hyperbolic set.
In order to prove property (a) it is sufficient to verify that

as . (3.11)

Since  is a compact set, then

. (3.12)

Let us consider the following difference equations

, , (3.13)

and

, , (3.14)

where  is an integer. It is evident that equation (3.14) admits an exponential di-
chotomy over  with constants  and  and projectors . Let 
and  be the Green functions (see Section 2) of difference equations
(3.13) and (3.14). We consider the sequence

, .

Since (see Exercise 2.8)

, , (3.15)

we have that the sequence  is bounded. Moreover, it is easy to prove (see Exer-
cise 2.9) that  is a solution to the difference equation

.

It follows from (3.12) and (3.15) that the sequence  is bounded. Therefore,
(see Exercise 2.9),

.

If we take  in this formula, then from the definition of the Green function we
obtain that

. 
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Therefore, equation (3.15) implies that

.

Consequently,

where  is an arbitrary natural number. Upon simple calculations we find that

for every . It follows that

, .

We assume that  to obtain that

.

This implies equation (3.11). Therefore, Theorem 3.1 is proved.

It should be noted that in the case when the set  from The-
orem 3.1 is hyperbolic the elements  of the homoclinic trajectory 
are called transversal homoclinic points transversal homoclinic points transversal homoclinic points transversal homoclinic points. The point is that in some cases (see,
e.g., [4]) it can be proved that the hyperbolicity of  is equivalent to the transversa-
lity property at every point  of the stable  and unstable  mani-
folds of a fixed point  (roughly speaking, transversality means that the surfaces

 and  intersect at the point  at a nonzero angle). In this case the
trajectory  is often called a transversal homoclinic trajectory transversal homoclinic trajectory transversal homoclinic trajectory transversal homoclinic trajectory.

§§§§ 4 Anosov’s Lemma on -trajectories4 Anosov’s Lemma on -trajectories4 Anosov’s Lemma on -trajectories4 Anosov’s Lemma on -trajectories

Let  be a -mapping of a Banach space  into itself. A sequence 
in  is called a -pseudotrajectory -pseudotrajectory -pseudotrajectory -pseudotrajectory (or -pseudoorbit) of the mapping  if for
all  the equation
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is valid. A sequence  is called an -trajectory -trajectory -trajectory -trajectory of the mapping  cor-
responding to a -pseudotrajectory  if

(a)  for any ;

(b)  for all .

It should be noted that condition (a) means that  is an orbit (complete tra-
jectory) of the mapping . Moreover, if a pair of -mappings  and  is given,
then the notion of the -trajectory of the mapping  corresponding to a -pseu-
doorbit of the mapping  can be introduced.

The following assertion is the main result of this section.

Theorem 4.1.

Let  be a -mapping of a Banach space  into itself and let  beLet  be a -mapping of a Banach space  into itself and let  beLet  be a -mapping of a Banach space  into itself and let  beLet  be a -mapping of a Banach space  into itself and let  be

a hyperbolica hyperbolica hyperbolica hyperbolic invariant  set. Assume that there exists a -vicini- invariant  set. Assume that there exists a -vicini- invariant  set. Assume that there exists a -vicini- invariant  set. Assume that there exists a -vicini-

ty  of the set  such that  and  are bounded and uniformlyty  of the set  such that  and  are bounded and uniformlyty  of the set  such that  and  are bounded and uniformlyty  of the set  such that  and  are bounded and uniformly

continuous on the closure  of the set continuous on the closure  of the set continuous on the closure  of the set continuous on the closure  of the set .... Then there exists  posses- Then there exists  posses- Then there exists  posses- Then there exists  posses-

sing the property that for every  there exists  suchsing the property that for every  there exists  suchsing the property that for every  there exists  suchsing the property that for every  there exists  such

that any -pseudoorbit  lying in  has a unique -trajectorythat any -pseudoorbit  lying in  has a unique -trajectorythat any -pseudoorbit  lying in  has a unique -trajectorythat any -pseudoorbit  lying in  has a unique -trajectory

  corresponding to .  corresponding to .  corresponding to .  corresponding to .

As the following theorem shows, the property of the mapping  to have an -trajec-
tory is rough, i.e. this property also remains true for mappings that are close to .

Theorem 4.2.

Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem 4.1 hold for the mapping . hold for the mapping . hold for the mapping . hold for the mapping .

LetLetLetLet  be a set of continuously differentiable mappings  of the spacebe a set of continuously differentiable mappings  of the spacebe a set of continuously differentiable mappings  of the spacebe a set of continuously differentiable mappings  of the space

 into itself such that the following estimates hold on the closure of the into itself such that the following estimates hold on the closure of the into itself such that the following estimates hold on the closure of the into itself such that the following estimates hold on the closure of the

-vicinity  of the set :-vicinity  of the set :-vicinity  of the set :-vicinity  of the set :

,,,, .... (4.1)

Then  can be chosen to possess the property that for every Then  can be chosen to possess the property that for every Then  can be chosen to possess the property that for every Then  can be chosen to possess the property that for every 

there exist  and  such that for any -pseudotra-there exist  and  such that for any -pseudotra-there exist  and  such that for any -pseudotra-there exist  and  such that for any -pseudotra-

jectory  (lying in ) of the mapping  and for any jectory  (lying in ) of the mapping  and for any jectory  (lying in ) of the mapping  and for any jectory  (lying in ) of the mapping  and for any 

there exists a unique trajectory  of the mapping  with the pro-there exists a unique trajectory  of the mapping  with the pro-there exists a unique trajectory  of the mapping  with the pro-there exists a unique trajectory  of the mapping  with the pro-

pertypertypertyperty

 for all for all for all for all ....

It is clear that Theorem 4.1 is a corollary of Theorem 4.2 the proof of which is based
on the lemmata below.

x
n

: n Z��  � f

+ y
n

: n Z�� 
f xn� � xn 1�� n Z�

x
n

y
n

� �� n Z�
xn� 

f C1 f g

� g +
f

f C1 X 2
f 2� � 2�� � 4

� 2 f x� � D f x� �
� � �0 0�

0 � �0�� + �� �+ 0��
+ yn : n Z��  2 �

xn :� n Z�  yn� 

f �
f

f

�5 f� � g

X �

4 � 2

f x� � g x� �� 5� D f x� � D g x� �� 5�

�0 0� � 0 �0 ����
+ �� �+ 0�� 5 5 �� � 0�� +

yn : n Z��  2 f g �5 f� ��
xn : n Z��  g

y
n

x
n

� �� n Z�



H y p e r b o l i c i t y  o f  I n v a r i a n t  S e t s  f o r  D i f f e r e n t i a b l e  M a p p i n g s 383 

Lemma 4.1.

Let  be an open set in a Banach space  and let  be a con-

tinuously differentiable mapping. Assume that for some point 

there exist an operator  and a number  such that

(4.2)

for all  with the property . Assume that for some 

the inequality

(4.3)

is valid with . Then for any -mapping  such that

(4.4)

and

(4.5)

for , the equation  has a unique solution  with

the property .

Proof.

Let  and let

.

For  we have that

Since

,

it follows from (4.2) that

(4.6)

for all  and  from . Now we rewrite the equation  in the form

.
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Let us show that the mapping  has a unique fixed point in the ball 
. It is evident that

for any . Since , we obtain from (4.6) that

.

Therefore, estimates (4.3) and (4.4) imply that

for ,

i.e.  maps the ball  into itself. This mapping is contractive in . Indeed,

,

where

It follows from (4.5) that

.

This equation and inequality (4.6) imply the estimate

.

Therefore, the mapping  has a unique fixed point in the ball 
. The lemma is proved.

Let the hypotheses of Theorems 4.1 and 4.2 hold. We assume that  in (4.1).
Then for any element  the following estimates hold:

, , , (4.7)

where  is a constant. In particular, these estimates are valid for the mapping .

Lemma 4.2.

Let  be a -pseudotrajectory of the mapping  lying in .

Then for any  the sequence  is a -pseu-

dotrajectory of the mapping . Here  has the form

, , , (4.8)

and  is a constant from (4.7).
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Proof.

Let us use induction to prove that

, . (4.9)

Since  is a -pseudotrajectory, then it is evident that for  inequality
(4.9) is valid. Assume that equation (4.9) is valid for some  and prove esti-
mate (4.9) for :

.

With the help of (4.7) we obtain that

.

Thus, Lemma 4.2 is proved.

Lemma 4.3.

Let  be a -pseudoorbit of the mapping  lying in . Let  be

a trajectory of the mapping  such that

, , (4.10)

for some . If

, (4.11)

then

, (4.12)

where  has the form (4.8).

Proof.

We first note that

Therefore, it is evident that

. (4.13)

Here we use the estimate

which follows from (4.7) and holds when the segment connecting the points 
and  lies in . Condition (4.11) guarantees the fulfillment of this property
at each stage of reasoning. If we repeat the arguments from the proof of (4.13),
then it is easy to complete the proof of (4.12) using induction as in Lemma 4.2.
Lemma 4.3 is proved.
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Lemma 4.4.

Let  and . Assume that

. (4.14)

Then the estimates

, , (4.15)

, (4.16)

(4.17)

are valid for  and for every mapping .

Proof.

As above, let us use induction. If , it is evident that equations (4.15)–
(4.17) hold. The transition from  to  in (4.15) is evident. Let us consider
estimate (4.16):

. (4.18)

Condition (4.14) and the induction assumption give us that  lies in the ball
with the centre at the point  lying in . Therefore, it follows from
(4.18) that

.

The transition from  to  in (4.17) can be made in a similar way. Lemma 4.4
is proved.

Lemma 4.5.

There exists  such that the equations

(4.19)

and

(4.20)

are valid in the -vicinity  of the set  for any function

. Here  as .

The proof follows from the definition of the class of functions  and estimates
(4.7) and (4.17).
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Let us also introduce the values

(4.21)

and

. (4.22)

The requirement of the uniform continuity of the derivative  (see the hypo-
theses of Theorem 4.1) and the projectors  (see the hyperbolicity definition)
enables us to state that

, as . (4.23)

Let  be a -pseudotrajectory of the mapping  lying in . Then due to
Lemma 4.2 the sequence  is a -pseudotrajectory of the
mapping . Let us consider the mappings  and  in the space

 (for the definition see Section 2) given by the equalities

, (4.24)

 , (4.25)

where  is an element from . Thus, the construction of -trajec-
tories of the mapping  and  corresponding to the sequence  is reduced to
solving of the equations

and

in the ball . Let us show that for  large enough Lemma 4.1 can be
applied to the mappings  and . Let us start with the mapping .

Lemma 4.6.

The function  is a -smooth mapping in  with the properties

, (4.26)

, . (4.27)

Proof.

Estimate (4.26) follows from the fact that  is a -pseudotrajec-
tory. Then it is evident that

, (4.28)

where  and  lie in . Therefore, simple cal-
culations and equation (4.21) give us (4.27).
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In order to deduce relations (4.2) and (4.3) from inequalities (4.26) and (4.27) for
, we use Theorem 2.2. Consider the operator . It is clear that

, .

Let us show that equations (2.9)–(2.11) are valid for  and 
 and then estimate the corresponding constants. Property (2.9) follows

from the hyperbolicity definition. Equations (3.3) and (4.15) imply that

and .

Further, the permutability property (3.2) gives us that

Hence (see (4.22)),

.

Similarly, we find that

.

The operator

is invertible if (see Lemma 3.1)

 .

Moreover,

,

provided . Due to the hyperbolicity of the set , the operator
 is an invertible mapping from  into . Therefore,

since

,

the operator  is invertible as a mapping from  into
. Moreover, by virtue of (3.4) we have that

.

Thus, under the conditions

, , , (4.29)

Theorem 2.2 implies that the operator  is invertible and .
Let us fix some . If
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, , (4.30)

then by Lemma 4.6 relations (4.2) and (4.3) hold with , , and . If

, (4.31)

then equations (4.4) and (4.5) also hold with , , and . Hence,
under conditions (4.29)–(4.31) there exists a unique solution to equation 
possessing the property . This means that for any -pseudoorbit 

 (lying in ) of the mapping  there exists a unique trajectory 
of the mapping  such that

, ,

provided conditions (4.29)–(4.31) hold. Therefore, under the additional condition

and due to Lemma 4.3 we get

, .

These properties are sufficient for the completion of the proof of Theorem 4.2.
Let us fix  such that . We choose  (  is defined

in Lemma 4.5) such that

for all .

Let us fix an arbitrary  and take . Now we choose
 and  such that the following conditions hold:

, ,

, , .

It is clear that under such a choice of  and  any -pseudoorbit (from ) of the
mapping  has a unique -trajectory of the mapping . Thus, Theorem 4.2 is proved.

Let the hypotheses of Theorem 4.1 hold. Show that there
exist  and  such that for any two trajectories 
and  of a dynamical system  the conditions

, ,

imply that , . In other words, any two trajectories of
the system  that are close to a hyperbolic invariant set cannot
remain arbitrarily close to each other all the time.
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Show that Theorem 4.1 admits the following strengthening:
if the hypotheses of Theorem 4.1 hold, then there exists  such
that for every  there exists  with the property
that for any -pseudoorbit  such that  there
exists a unique -trajectory.

Prove the analogue of the assertion of Exercise 4.2 for Theo-
rem 4.2.

Let  be a periodic orbit of the mapping ,
i.e.  for all  and for some . Assume
that the hypotheses of Theorem 4.2 hold. Then for  small
enough every mapping  possesses a periodic trajectory
of the period .

§ 5 Birkhoff-Smale Theorem§ 5 Birkhoff-Smale Theorem§ 5 Birkhoff-Smale Theorem§ 5 Birkhoff-Smale Theorem

One of the most interesting corollaries of Anosov’s lemma is the Birkhoff-Smale the-
orem that provides conditions under which the chaotic dynamics is observed in
a discrete dynamical system . We remind (see Section 1) that by definition
the possibility of chaotic dynamics means that there exists an invariant set  in the
space  such that the restriction of some degree  of the mapping  on  is to-
pologically equivalent to the Bernoulli shift  in the space  of two-sided infinite
sequences of  symbols.

Theorem 5.1.

Let  be a continuously differentiable mapping of a Banach space Let  be a continuously differentiable mapping of a Banach space Let  be a continuously differentiable mapping of a Banach space Let  be a continuously differentiable mapping of a Banach space 

into itself. Let  be a hyperbolic fixed point of  and let into itself. Let  be a hyperbolic fixed point of  and let into itself. Let  be a hyperbolic fixed point of  and let into itself. Let  be a hyperbolic fixed point of  and let 

be a homoclinic trajectory of the mapping  that does not coincide withbe a homoclinic trajectory of the mapping  that does not coincide withbe a homoclinic trajectory of the mapping  that does not coincide withbe a homoclinic trajectory of the mapping  that does not coincide with

, i.e., i.e., i.e., i.e.

;;;; ,,,, ,,,, ;;;; , ....

Assume that the trajectory  is transversal, i.e. the setAssume that the trajectory  is transversal, i.e. the setAssume that the trajectory  is transversal, i.e. the setAssume that the trajectory  is transversal, i.e. the set

is hyperbolic with respect to  and there exists a vicinity  of the set is hyperbolic with respect to  and there exists a vicinity  of the set is hyperbolic with respect to  and there exists a vicinity  of the set is hyperbolic with respect to  and there exists a vicinity  of the set 

such that  and  are bounded and uniformly continuous on thesuch that  and  are bounded and uniformly continuous on thesuch that  and  are bounded and uniformly continuous on thesuch that  and  are bounded and uniformly continuous on the

closure . By  we denote a set of continuously differentiable map-closure . By  we denote a set of continuously differentiable map-closure . By  we denote a set of continuously differentiable map-closure . By  we denote a set of continuously differentiable map-

pings  of the space  into itself such thatpings  of the space  into itself such thatpings  of the space  into itself such thatpings  of the space  into itself such that

,,,, ,,,, ....
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Then there exists  such that for any mapping  and for anyThen there exists  such that for any mapping  and for anyThen there exists  such that for any mapping  and for anyThen there exists  such that for any mapping  and for any

 there exist a natural number  and a continuous mapping  of the there exist a natural number  and a continuous mapping  of the there exist a natural number  and a continuous mapping  of the there exist a natural number  and a continuous mapping  of the

space  into a compact subset  in  such thatspace  into a compact subset  in  such thatspace  into a compact subset  in  such thatspace  into a compact subset  in  such that

a)  is strictly invariant with respect to , i.e. ; is strictly invariant with respect to , i.e. ; is strictly invariant with respect to , i.e. ; is strictly invariant with respect to , i.e. ;

b) if  and  are elementsif  and  are elementsif  and  are elementsif  and  are elements

of  such that  for some , then ;of  such that  for some , then ;of  such that  for some , then ;of  such that  for some , then ;

c) the restriction of  on  is topologically conjugate to the Bernoullithe restriction of  on  is topologically conjugate to the Bernoullithe restriction of  on  is topologically conjugate to the Bernoullithe restriction of  on  is topologically conjugate to the Bernoulli

shift  in , i.e.shift  in , i.e.shift  in , i.e.shift  in , i.e.

,,,, ....

Moreover, if in addition we assume that for the mapping  there existsMoreover, if in addition we assume that for the mapping  there existsMoreover, if in addition we assume that for the mapping  there existsMoreover, if in addition we assume that for the mapping  there exists

 such that for any two trajectories  and  such that for any two trajectories  and  such that for any two trajectories  and  such that for any two trajectories  and 

(of the mapping ) lying in the -vicinity of the set  the condition(of the mapping ) lying in the -vicinity of the set  the condition(of the mapping ) lying in the -vicinity of the set  the condition(of the mapping ) lying in the -vicinity of the set  the condition

 for some  implies that  for all  for some  implies that  for all  for some  implies that  for all  for some  implies that  for all ,,,, then the map- then the map- then the map- then the map-

ping  is a homeomorphism.ping  is a homeomorphism.ping  is a homeomorphism.ping  is a homeomorphism.

The proof of this theorem is based on Anosov’s lemma and mostly follows the stan-
dard scheme (see, e.g., [4]) used in the finite-dimensional case. The only difficulty
arising in the infinite-dimensional case is the proof of the continuity of the mapping

. It can be overcome with the help of the lemma presented below which is bor-
rowed from the thesis by Jürgen Kalkbrenner (Augsburg, 1994) in fact.

It should also be noted that the condition under which  is a homeomorphism
holds if the mapping  does not “glue” the points in some vicinity of the set , i.e.
the equality  implies .

Lemma 5.1.

Let the hypotheses of Theorem 5.1 hold. Let us introduce the notation

,

where  and . Let  be a segment (lying

in ) of a pseudoorbit of the mapping :

, , . (5.1)

Assume that  and  are segments of or-

bits of the mapping :

, , , (5.2)

such that

, . (5.3)

Then there exist , and  such that conditions (5.1)–
(5.3) imply the inequality

. (5.4)
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Proof.

It follows from (5.2) that

, (5.5)

where

.

Since the set  is hyperbolic with respect to , there exists a family of projec-
tors  for which equations (3.2)–(3.4) are valid. Therefore,

It means that

Consequently, equation (3.4) implies that

.

Let us estimate the value . It can be rewritten in the form

.

It follows from (5.3) that . Hence, using (4.20)
and (4.21), for  small enough we obtain that

, (5.6)

where  as  and  as . Therefore,

, (5.7)

provided . Further, we substitute the value  for 
in (5.5) to obtain that

.

Therefore, using (3.2) we find that
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Hence, equations (3.3) and (5.6) with  instead of  give us that

(5.8)

Since

,

it follows from (4.15) and (5.1) that

for  small enough. Therefore,

,

where  as  (cf. (4.22)). Consequently, estimate (5.8) implies that

(5.9)

It is evident that estimates (5.7) and (5.9) enable us to choose the parameters
, and  such that

.

Using this inequality with  instead of  we obtain that

for all . Therefore,

.

If we continue to argue like that, then we find that

.

Since , this and estimate (5.3) imply (5.4).
Lemma 5.1 is proved.

Proof of Theorem 5.1.

Let  be distinct integers. Let us choose and fix the parame-
ters  and the integer  such that (i) Theorem 4.2 and Lemma 5.1
can be applied to the hyperbolic set  and (ii)
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. (5.10)

Assume that  is such that

for and (5.11)

for all . Let us consider the segments  of the orbits of the map-
ping  of the form

, ,

.

The length of every such segment is . Let . Let us
consider a sequence of elements  made up of the segments  by the formula

. (5.12)

It is clear that  and by virtue of (5.11)  is a -pseudoorbit of the mapping
. Therefore, due to Theorem 4.2 there exists a unique trajectory 

 of the mapping  such that

, (5.13)

where  and  is the -th element of the
segment , , . Let us define the mapping  from 
into  by the formula

, (5.14)

where  is the zeroth element of the trajectory . Since the trajectory 
possessing the property (5.13) is uniquely defined, equation (5.14) defines a map-
ping from  into .

If we substitute  for  in (5.13) and use the equations

,

we obtain that

for all  and . Therefore, the equality 
with  being the Bernoulli shift in  leads us to the equation

.

Consequently, the uniqueness property of the -trajectory in Theorem 4.2 gives us
the equation
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This implies that

, , (5.15)

i.e. property (c) is valid for . It follows from (5.15) that

.

Therefore, the set  is strictly invariant with respect to . Thus, as-
sertion (a) is proved.

Let us prove the continuity of the mapping . Assume that the sequence of ele-
ments  of  tends to 

 as . This means (see Exercise 1.4) that for any  there exists
 such that

for , . (5.16)

Assume that  and  are -pseudoorbits in  constructed ac-
cording to (5.12) for the symbols  and , respectively. Equation (5.16) implies
that  for . Let  and  be -trajectories corres-
ponding to  and , respectively. Lemma 5.1 gives us that

, (5.17)

provided , i.e. for any  equations (5.17) is valid for .
This means that

as . Thus, the mapping  is continuous and  is a compact strict-
ly invariant set with respect to .

Let us now prove nontriviality property (b) of the mapping . Let 
be such that  for some . Let  and  be -trajectories corres-
ponding to the symbols  and , respectively. Then

Therefore, it follows both from (5.13) and the definition of the elements  that

,

where  and . We apply (5.10) to obtain that

. (5.18)

Therefore, if , then

.

Hence, . This completes the proof of assertion (b).
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If the trajectories of the mapping  cannot be “glued” (see the hypotheses of
Theorem 5.1), then for some  equation (5.18) gives us that , i.e.

 if . Thus, the mapping  is injective in this case. Since 
is a compact metric space, then the injectivity and continuity of  imply that  is
a homeomorphism from  onto . Theorem 5.1 is proved.

It should be noted that equations (5.13) and (5.14) imply that the set 
lies in the -vicinity of the hyperbolic set . Therewith, the values  and  in-
volved in the statement of the theorem depend on  and one can state that for any
vicinity  of the set  there exist  and  such that the conclusions of Theo-
rem 5.1 are valid and . It is also clear that the set  is not
uniquely determined.

Assume that  in Theorem 5.1. Prove that the mapping 
can be constructed such that , where

 is a homoclinic orbit of the mapping .

Prove the Birkhoff theorem: if the hypotheses of Theorem 5.1
hold, then for any  small enough there exist  and 
such that for every mapping  there exist periodic trajec-
tories of the mapping  of any minimal period in the -vicinity
of the set .

Use Theorem 1.1 to describe all the possible types of beha-
viour of the trajectories of the mapping  on a set

.

In conclusion, it should be noted that different infinite-dimensional versions of Ano-
sov’s lemma and the Birkhoff-Smale theorem have been considered by many authors
(see, e.g., [6], [10], [11], [12], and the references therein).

§ 6 Possibility of Chaos in the Problem§ 6 Possibility of Chaos in the Problem§ 6 Possibility of Chaos in the Problem§ 6 Possibility of Chaos in the Problem

of Nonlinear Oscillations of a Plateof Nonlinear Oscillations of a Plateof Nonlinear Oscillations of a Plateof Nonlinear Oscillations of a Plate

In this section the Birkhoff-Smale theorem is applied to prove the existence of chaotic
regimes in the problem of nonlinear plate oscillations subjected to a periodic load.
The results presented here are close to the assertions proved in [13]. However, the
methods used differ from those in [13].
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Let us remind the statement of the problem. We consider its abstract version
as in Chapter 4. Let  be a separable Hilbert space and let  be a positive operator
with discrete spectrum in , i.e. there exists an orthonormalized basis  in 
such that

, , .

The following problem is considered:

Here , and  are positive parameters,  is an element of the space , 
is a linear operator in  subordinate to , i.e.

, (6.3)

where  is a constant. The problem of the form (6.1) and (6.2) was studied in Chap-
ter 4 in details (nonlinearity of a more general type was considered there). The re-
sults of Section 4.3 imply that problem (6.1) and (6.2) is uniquely solvable in the
class of functions

. (6.4)

Moreover, one can prove (cf. Exercise 4.3.9) that Cauchy problem (6.1) and (6.2)
is uniquely solvable on the whole time axis, i.e. in the class

.

This fact as well as the continuous dependence of solutions on the initial conditions
(see (4.3.20)) enables us to state that the monodromy operator  acting in 

 according to the formula

(6.5)

is a homeomorphism of the space  (see Exercise 4.3.11). Here  is a solution
to problem (6.1) and (6.2)

The aim of this section is to prove the fact that under some conditions on  and
 chaotic dynamics is observed in the discrete dynamical system  for some

set of parameters , and .

Lemma 6.1. 

The mapping  defined by equality (6.5) is a diffeomorphism of the

space .

Proof.

We use the method applied to prove Lemma 4.7.3. Let  be a solution
to problem (6.1) and (6.2) with the initial conditions  and let
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 be a solution to it with the initial condions  .
Let us consider a linearization of problem (6.1) and (6.2) along the solution :

As in the proof of Theorem 4.2.1, it is easy to find that problem (6.6) and (6.7) is
uniquely solvable in the class of functions (6.4). Let .
It is evident that  is a weak solution to problem

where

A simple calculation shows that

,

where

,

.

We assume that  and . In this case (see Section 4.3) the esti-
mates

,

,

, (6.10)

are valid on any segment . Here  is a constant. Therefore,

,  , ,

where  and  are constants depending on  and T. Hence,

, .
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(6.6)

(6.7)

w�� t� � "w� t� � A2w ; A1 2� u1 t� � 2 6�� � Aw� � � �

2� ; A1 2� u1 t� � A1 2� w t� ��� � Au1 t� � L w  = 0  ,�

w
t 0� z0�  w�

t 0�� z1  .�
�
*
*
�
*
*
�

v t� � u2 t� � u1 t� �� w t� ���
v t� �

(6.8)

(6.9)

v�� "v� t� � A2v t� �� � F t� �� F u1 t� � u2 t� � w t� �� �� �  ,#

v
t 0� 0 , v�

t 0� 0  ,� �
�
*
�
*
�

F u1 u2 w� �� � ; A1 2� u2
2 6�

- .
/ 0� Au2 ; A1 2� u1

2 6�
- .
/ 0 Au1� +

; A1 2� u1
2 6�

- .
/ 0 Aw 2; Au1 w�� � Au1 L u2 u1� w�� �  .�� �

�

F u1 u2 w� �� � F1 u1 u2 w� �� � F2 u1 u2 w� �� ��� F1 F2�#

F1 ; A1 2� u2
2 6�

- .
/ 0� Av Lv� 2; Au1 v�� � A u1 w�� ���

F2 ; A1 2� u1 u2�� � 2� A u1 w�� � 2; Au1 w�� � Aw��

y
�

R� z
�

1�

Auj t� � CR T��

A u1 t� � u2 t� ��� � CR T� z
�

�

Aw t� � CR T� z
�

�

0 T�� � C
R T�

F1 C1 Av� F2 C2 z
�

2� t 0 T�� ��

C1 C2 R

F t� � 2
C1 Av

2
C2 z

�

4�� t 0 T�� ��



P o s s i b i l i t y  o f  C h a o s  i n  t h e  P r o b l e m  o f  N o n l i n e a r  O s c i l l a t i o n s  o f  a  P l a t e 399 

Therefore, the energy equation 

(6.11)

for problem (6.8) and (6.9) leads us to the estimate

, .

Using Gronwall’s lemma we find that

, ,

where the constant  depends on  and . This estimate implies that the map-
ping 

(6.12)

is a Frechét derivative of the mapping  defined by equality (6.5). Here 
is a solution to problem (6.6) and (6.7). It follows from (6.10) and (6.6) that 
is a continuous linear mapping of  into itself. Using (6.10) it is also easy to see
that  continuously depends on  with respect to
the operator norm. Lemma 6.1 is proved.

Further we will also need the following assertion.

Lemma 6.2.

Let  be the monodromy operator of problem (6.1) and (6.2) with

 and , . Assume that for  equation (6.3) is va-

lid and , . Moreover, assume that

, , .

Then the estimates

(6.13)

and

(6.14)

are valid. Here  is a ball of the radius  in , 

is an arbitrary number while the constant  depends on  and  but

does not depend on the parameters , and  provided they

vary in bounded sets.
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Proof.

Let  be a solution to problem (6.1) and (6.2) with  and ,
. It is evident (see Section 4.3) that

, . (6.15)

Therefore, it is easy to find that the difference  satisfies
the equation

where the function  can be estimated as follows:

.

As in the proof of Lemma 6.1, we now use energy equality (6.11) and Gronwall’s
lemma to obtain the estimate

. (6.16)

This implies inequality (6.13). Estimate (6.14) can be obtained in a similar way.
In its proof equations (6.12), (6.15), and (6.16) are used. We suggest the reader
to carry out the corresponding reasonings himself/herself. Lemma 6.2 is proved.

Let us now prove that there exist an operator  and a vector  such that the corres-
ponding mapping  possesses a hyperbolic homoclinic trajectory. To do that, we use
the following well-known result (see, e.g., [1], [13], as well as Section 7) related to the
Duffing equation.

Theorem 6.1.

Let Let Let Let  be a monodromy operator corresponding to the Duffing be a monodromy operator corresponding to the Duffing be a monodromy operator corresponding to the Duffing be a monodromy operator corresponding to the Duffing

equationequationequationequation

,,,, (6.17)

i.e. the mapping of the plane i.e. the mapping of the plane i.e. the mapping of the plane i.e. the mapping of the plane  into itself acting according to the formula into itself acting according to the formula into itself acting according to the formula into itself acting according to the formula

,,,, (6.18)

where where where where  is a solution to equation  is a solution to equation  is a solution to equation  is a solution to equation (6.17) such that  such that  such that  such that  and  and  and  and 

.... All the parameters contained in  All the parameters contained in  All the parameters contained in  All the parameters contained in (6.17) are assumed to be positive. are assumed to be positive. are assumed to be positive. are assumed to be positive.

Let us also assume thatLet us also assume thatLet us also assume thatLet us also assume that

.... (6.19)
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Then there exists Then there exists Then there exists Then there exists  such that for every  such that for every  such that for every  such that for every  the mapping  the mapping  the mapping  the mapping     pos-pos-pos-pos-

sesses a fixed point sesses a fixed point sesses a fixed point sesses a fixed point  and a homoclinic trajectory  and a homoclinic trajectory  and a homoclinic trajectory  and a homoclinic trajectory  to it, to it, to it, to it,    ,,,,

therewith the set therewith the set therewith the set therewith the set  is hyperbolic. is hyperbolic. is hyperbolic. is hyperbolic.

Let  be the orthoprojector onto the one-dimensional subspace generated by the
eigenvector  in . We consider problem (6.1) and (6.2) with  in-
stead of  and , where  is a positive number. Then it is evident that
every solution to problem (6.1) and (6.2) with the initial conditions  and

 has the form

,

where  is a solution to the Duffing equation

(6.20)

with the initial conditions  and . In particular, this means that
the two-dimensional subspace  of the space  is strict-
ly invariant with respect to the corresponding monodromy operator  while the re-
striction of  to  coincides with the monodromy operator corresponding to the
Duffing equation (6.20). Therefore, if  is small enough and the conditions

,

hold, then the mapping  possesses a hyperbolic invariant set

consisting of the fixed point  and its homoclinic trajectory

, where .

Thus, if  and for some  the condition  holds, then there exists an
open set  in the space of parameters  such that for every  the mo-
nodromy operator  corresponding to problem (6.1) and (6.2) with 
instead of  and  possesses a hyperbolic set consisting of a fixed point and
a homoclinic trajectory. This fact as well as Lemmata 6.1 and 6.2 enables us to apply
the Birkhoff-Smale theorem and prove the following assertion.

Theorem 6.2. 

Let Let Let Let  and let the condition  and let the condition  and let the condition  and let the condition  hold for some  hold for some  hold for some  hold for some .... Then there Then there Then there Then there

exist exist exist exist  and an open set  and an open set  and an open set  and an open set  in the metric space  in the metric space  in the metric space  in the metric space  such that if such that if such that if such that if

,,,, ,,,,

then some degree then some degree then some degree then some degree  of the monodromy operator  of the monodromy operator  of the monodromy operator  of the monodromy operator  of problem  of problem  of problem  of problem (6.1) andandandand

(6.2) possesses a compact strictly invariant set  possesses a compact strictly invariant set  possesses a compact strictly invariant set  possesses a compact strictly invariant set  in the space  in the space  in the space  in the space 

in which the mapping in which the mapping in which the mapping in which the mapping  is topologically conjugate to the Bernoulli shift of is topologically conjugate to the Bernoulli shift of is topologically conjugate to the Bernoulli shift of is topologically conjugate to the Bernoulli shift of
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sequences of sequences of sequences of sequences of  symbols, i.e. there exists a homeomorphism  symbols, i.e. there exists a homeomorphism  symbols, i.e. there exists a homeomorphism  symbols, i.e. there exists a homeomorphism 

such thatsuch thatsuch thatsuch that

 ,,,, ....

Prove that if the hypotheses of Theorem 6.2 hold, then equa-
tion (6.1) possesses an infinite number of periodic solutions with pe-
riods multiple to .

Apply Theorem 6.2 to the Berger approximation of the prob-
lem of nonlinear plate oscillations:

§ 7 On the Existence of § 7 On the Existence of § 7 On the Existence of § 7 On the Existence of TransversalTransversalTransversalTransversal

Homoclinic TrajectoriesHomoclinic TrajectoriesHomoclinic TrajectoriesHomoclinic Trajectories

Undoubtedly, Theorem 6.1 on the existence of a transversal (hyperbolic) homoclinic
trajectory of the monodromy operator for the periodic perturbation of the Duffing
equation is the main fact which makes it possible to apply the Birkhoff-Smale
theorem and to prove the possibility of chaotic dynamics in the problem of plate
oscillations. In this connection, the question as to what kind of generic condition
guarantees the existence of a transversal homoclinic orbit of monodromy operators
generated by ordinary differential equations gains importance. Extensive literature
is devoted to this question (see, e.g., [1], [2] and the references therein). There are
several approaches to this problem. All of them enable us to construct systems with
transversal homoclinic trajectories as small perturbations of “simple” systems with
homoclinic (not transversal!) orbits. In some cases the corresponding conditions on
perturbations can be formulated in terms of the Melnikov function.

This section is devoted to the exposition and discussion of the results obtained
by K. Palmer [14]. These results help us to describe some classes of systems of ordi-
nary differential equations which generate dynamical systems with transversal ho-
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moclinic orbits. Such differential equations are obtained as periodic perturbations
of autonomous equations with homoclinic trajectories.

In the space  let us consider a system of equations

, , (7.1)

where  is a twice continuously differentiable mapping. Assume that the
Cauchy problem for equation (7.1) is uniquely solvable for any initial condition

. Let us also assume that there exist a fixed point  and
a trajectory  homoclinic to , i.e. a solution to equation (7.1) such that

 as . Exercises 7.1 and 7.2 given below give us the examples of the
cases when these conditions hold. We remind that every second order equation 

 can be rewritten as a system of the form (7.1) if we take  and
.

Consider the Duffing equation

, .

Prove that the curve  is an orbit of the corres-
ponding system (7.1) homoclinic to . Here .

Assume that for a function  there exist a num-
ber  and a pair of points  such that

; , ;

; ; .

Then system (7.1) corresponding to  possesses an or-
bit homoclinic to  that passes through the point .

Unfortunately, as the cycle of Exercises 7.3–7.5 shows, the homoclinic orbit of au-
tonomous equation (7.1) cannot be used directly to construct a discrete dynamical
system with a transversal homoclinic trajectory.

For every  define the mapping  by the for-
mula , where  is a solution to equation
(7.1) with the initial condition . Show that  is a diffeomorphism
in  with a fixed point  and a family of homoclinic orbits

, where , .

Prove that the derivative  of the mapping  constructed in
Exercise 7.3 can be evaluated using the formula ,
where  is a solution to problem

, .

Here  is a solution to equation (7.1) with the initial
condition .

Rn
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Let  be the mapping constructed in Exercise 7.3 and let
 be a homoclinic orbit of equation (7.1). Show that

 is a bounded solution to the difference equa-
tion , where  (Hint: the function

 satisfies the equation ).

Thus, due to Theorems 2.1 and 3.1 the result of Exercise 7.5 implies that the set

cannot be hyperbolic with respect to the mapping  defined by the formula
, where  is a solution to equation (7.1) with the initial

condition . Nevertheless we can indicate some quite simple conditions on the
class of perturbations  periodic with respect to  under which the mo-
nodromy operator of the problem

, , (7.2)

possesses a transversal (hyperbolic) homoclinic trajectory for  small enough.

Further we will use the notion of exponential dichotomy for ordinary differential
equations (see [15], [16] as well as [5] and the references therein)

Let  be a continuous and bounded  matrix function on the real axis.
We consider the problem

, , , (7.3)

in the space . It is easy to see that it is solvable for every initial condition.
Therefore, we can define the evolutionary operator , , by the for-
mula

, ,

where  is a solution to problem (7.3).

Prove that

,

for all  and the following matrix equations hold:

, . (7.4)

Prove the inequality

, .

E x e r c i s e 7.5 f
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f
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x0
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x� t� � g x t� �� � >h t x t� � >� �� ��� x t� � Rn�
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A t� � n nA
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t s� x0�

X Rn�
$ t s�� � t s� R�

$ t s�� � x0 x t� � x t s x0)�� �#� t s� R�

x t� �

E x e r c i s e 7.6
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Let  be some interval of the real axis. We say that equation (7.3) admits an expo- expo- expo- expo-

nential dichotomy nential dichotomy nential dichotomy nential dichotomy over the interval  if there exist constants  and
a family of projectors  continuously depending on  and such that

, ; (7.5)

, , (7.6)

, , (7.7)

for .

Let  be a constant matrix. Prove that equation (7.3)
admits an exponential dichotomy over  if and only if the eigenva-
lues on  do not lie on the imaginary axis.

The assertion contained in Exercise 7.8 as well as the following theorem on the
roughness enables us to construct examples of equations possessing an exponential
dichotomy.

Theorem 7.1. 

Assume that problemAssume that problemAssume that problemAssume that problem (7.3) possesses an exponential dichotomy over possesses an exponential dichotomy over possesses an exponential dichotomy over possesses an exponential dichotomy over

an interval . Then there exists  such that equationan interval . Then there exists  such that equationan interval . Then there exists  such that equationan interval . Then there exists  such that equation

(7.8)

possesses an exponential dichotomy over , provided  for possesses an exponential dichotomy over , provided  for possesses an exponential dichotomy over , provided  for possesses an exponential dichotomy over , provided  for ....

Moreover, the dimensions of the corresponding projectors for Moreover, the dimensions of the corresponding projectors for Moreover, the dimensions of the corresponding projectors for Moreover, the dimensions of the corresponding projectors for (7.3) and and and and

(7.8) are the same. are the same. are the same. are the same.

The proof of this theorem can be found in [15] or [16], for example.

The exercises given below contain some simple facts on systems possessing an expo-
nential dichotomy. We will use them in our further considerations.

Prove that equations (7.5)–(7.7) imply the estimates

, ,

, ,

for any .

Assume that equation (7.3) admits an exponential dichotomy
over . Prove that , where

(7.9)

(Hint: , ).

	

	 K �� 0�
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$ t s�� � 7 K 1� e� t s�� � 1 P s� ��� � 7
 t s
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7 X Rn#�
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If equation (7.3) possesses an exponential dichotomy over
, then , where

(7.10)

(Hint: , ).

Assume that equation (7.3) possesses an exponential dicho-
tomy over  (over , respectively). Show that any solution to
problem (7.3) bounded on  (on , respectively) decreases
at exponential velocity as  (as , respectively).

Assume that equation (7.3) possesses an exponential dicho-
tomy over the half-interval , where  is a real number.
Prove that equation (7.3) possesses an exponential dichotomy over
any semiaxis of the form .
(Hint: ).

Prove the analogue of the assertion of Exercise 7.13 for the
semiaxis .

Prove that for problem (7.3) to possess an exponential dicho-
tomy over  it is necessary and sufficient that equation (7.3) pos-
sesses an exponential dichotomy both over  and  and has no
nontrivial solutions bounded on the whole axis .

Prove that the spaces  and  (see (7.9) and (7.10)) pos-
sess the properties

, ,

provided problem (7.3) possesses an exponential dichotomy over .

Consider the following equation adjoint to (7.3):

, (7.11)

where  is the transposed matrix. Prove that the evolutionary
operator  of problem (7.11) has the form .

Assume that problem (7.3) possesses an exponential dichoto-
my over an interval . Then equation (7.11) possesses exponential
dichotomy over  with the same constants  and projectors

.

Assume that problem (7.3) possesses an exponential dichoto-
my both over  and . Let , where  are
defined by equalities (7.9) and (7.10). Show that the dimensions of
the spaces of solutions to problems (7.3) and (7.11) bounded on the
whole axis are finite and coincide.

E x e r c i s e 7.11
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Assume that problem (7.3) possesses an exponential dichoto-
my over . Then for any  and  the difference equation

 possesses an exponential dichotomy over
 (for the definition see Section 2).

Let us now return to problem (7.1). Assume that  is a hyperbolic fixed point for
(7.1), i.e. the matrix  does not have any eigenvalues on the imaginary axis. Let

 be a trajectory homoclinic to . Using Theorem 7.1 on the roughness and the
results of Exercises 7.13 and 7.14 we can prove that the equation

(7.12)

possesses an exponential dichotomy over both semiaxes  and . Moreover, the
dimensions of the corresponding projectors are the same and coincide with the di-
mension of the spectral subspace of the matrix  corresponding to the spec-
trum in the left semiplane. Therewith it is easy to prove that ,
where  have form (7.9) and (7.10). The result of Exercise 7.15 implies that equa-
tion (7.12) cannot possess an exponential dichotomy over  (  is a solu-
tion to (7.12) bounded on ) while Exercise 7.19 gives that the number of linearly
independent bounded (on ) solutions to (7.12) and to the adjoint equation

(7.13)

is the same. These facts enable us to formulate Palmer’s theorem (see [14]) as fol-
lows.

Theorem 7.2. 

Assume that Assume that Assume that Assume that  is a twice continuously differentiable function from is a twice continuously differentiable function from is a twice continuously differentiable function from is a twice continuously differentiable function from

 into  into  into  into  and equation and equation and equation and equation

possesses a fixed hyperbolic point possesses a fixed hyperbolic point possesses a fixed hyperbolic point possesses a fixed hyperbolic point  and a trajectory  and a trajectory  and a trajectory  and a trajectory  homo- homo- homo- homo-

clinic to clinic to clinic to clinic to . We also assume that . We also assume that . We also assume that . We also assume that  is a unique (up to a scalar fac- is a unique (up to a scalar fac- is a unique (up to a scalar fac- is a unique (up to a scalar fac-

tor) solution to equationtor) solution to equationtor) solution to equationtor) solution to equation

(7.14)

bounded on . Let bounded on . Let bounded on . Let bounded on . Let  be a continuously differentiable vector func- be a continuously differentiable vector func- be a continuously differentiable vector func- be a continuously differentiable vector func-

tion tion tion tion -periodic with respect to -periodic with respect to -periodic with respect to -periodic with respect to  and defined for  and defined for  and defined for  and defined for ,,,,    ,,,,

,,,,    .... If If If If

,,,, ,,,, (7.15)

where where where where  is a bounded (unique up to a constant factor) solution to is a bounded (unique up to a constant factor) solution to is a bounded (unique up to a constant factor) solution to is a bounded (unique up to a constant factor) solution to

the equation adjoint to the equation adjoint to the equation adjoint to the equation adjoint to (7.14), then there exist , then there exist , then there exist , then there exist  and  and  and  and  such that for such that for such that for such that for

 the perturbed equation the perturbed equation the perturbed equation the perturbed equation

(7.16)

E x e r c i s e 7.20
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possesses the following properties:possesses the following properties:possesses the following properties:possesses the following properties:

(a) there exists a unique -periodic solution  such thatthere exists a unique -periodic solution  such thatthere exists a unique -periodic solution  such thatthere exists a unique -periodic solution  such that

,,,, ,,,,

andandandand

,,,, ;;;;

(b) there exists a solution  bounded on  and such thatthere exists a solution  bounded on  and such thatthere exists a solution  bounded on  and such thatthere exists a solution  bounded on  and such that

,,,, ,,,,

,,,,

andandandand

;;;;

(c) the linearized equationthe linearized equationthe linearized equationthe linearized equation

,,,, (7.17)

where  is equal to either  or , possesses an ex-where  is equal to either  or , possesses an ex-where  is equal to either  or , possesses an ex-where  is equal to either  or , possesses an ex-

ponential dichotomy over .ponential dichotomy over .ponential dichotomy over .ponential dichotomy over .

This theorem immediately implies (see Exercise 7.20 and Theorem 3.1) that
under conditions (7.15) the monodromy operator for problem (7.16) has a hyperbo-
lic fixed point in a vicinity of the orbit  and a transversal trajectory ho-
moclinic to it.

We will not prove Theorem 7.2 here. Its proof can be found in paper [14]. We only
outline the scheme of reasoning which enables us to construct a homoclinic trajecto-
ry . Here we pay the main attention to the role of conditions (7.15). If we
change the variable  in equation (7.16), then we obtain the equation

.

We use this equation to construct a mapping  from  into
 acting according to the formula

. (7.18)

We remind that  is the space of  times continuously differentiable bound-
ed functions from  into  with bounded derivatives with respect to  up to the -
th order, inclusive.

Thus, the existence of bounded solutions to problem (7.16) is equivalent to the
solvability of the equation . It is clear that . Therefore, in
order to construct solutions to equation  we should apply an appropri-
ate version of the theorem on implicit functions. Its standard statement requires
that the operator  be invertible. However, it is easy to check that the
operator  has the form

T 70 t >�� �
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 .

Therefore, it possesses a nonzero kernel . Hence, we should use the modi-
fied (nonstandard) theorem on implicit functions (see Theorem 4.1 in [14]). Roughly
speaking, we should make one more change  and consider the equation

. (7.19)

If this equation is solvable and the solution  depends on  smoothly, then  sa-
tisfies the equation

, (7.20)

where  is the derivative of  with respect to the parameter . This equation can
be obtained by differentiation of the identity  with respect to .
Due to the smoothness properties of the mapping , it follows from (7.20) the solva-
bility of the problem

, (7.21)

which is equivalent to the differential equation

(7.22)

in the class of bounded solutions. It is easy to prove that the first condition in (7.15)
is necessary for the solvability of (7.22) (it is also sufficient, as it is shown in [14]).

Further, the necessary condition of the dichotomicity of (7.17) for 
 on  is the condition of the absence of nonzero solutions to equation

(7.17) bounded on . However, this equation can be rewritten in the form

, (7.23)

where  is determined with (7.19). If we assume that equation (7.23) has
nonzero solutions, then we differentiate equation (7.23) with respect to  at zero,
as above, to obtain that

, (7.24)

where  is a solution to equation (7.21), , , and  is
a solution to equation (7.23). Equation (7.17) transforms into (7.14) when .
Therefore, the condition of uniqueness of bounded solutions to (7.14) gives us that

, therewith we can assume that . Hence, equation (7.24) trans-
forms into an equation for  of the form

, (7.25)

where
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Here  is a solution to (7.22). A simple calculation shows that equation (7.25)
can be rewritten in the form

. (7.26)

The second condition in (7.15) means that equation (7.26) cannot have solutions
bounded on the whole axis. It follows that equation (7.23) has no nonzero solutions,
i.e. equation (7.17) is dichotomous for .

Thus, the first condition in (7.15) guarantees the existence of a homoclinic tra-
jectory  while the second one guarantees the exponential dichotomicity of
the linearization of the equation along this trajectory.

As to the existence and properties of the periodic solution , this situa-
tion is much easier since the point  is hyperbolic. The standard theorem on im-
plicit functions works here.

It should be noted that condition (7.15) can be modified a little. If we consider a
“shifted” homoclinic trajectory  for  instead of  in Theo-
rem 7.2, then the first condition in (7.15) can be rewritten in the form

.

If we change the variable , then we obtain that

. (7.27)

It is evident that

.

Therefore, the second condition in (7.15) leads us to the requirement .
Thus, if the function  has a simple root  ( , ), then the
assertions of Theorem 7.2 hold if we substitute the value  for  in (b).
Performing the corresponding shift in the function , we obtain the asser-
tions of the theorem in the original form. Thus, condition (7.15) is equivalent to the
requirement

, for some , (7.28)

where  has form (7.17).

In conclusion we apply Theorem 7.2 to prove Theorem 6.1. The unperturbed Duffing
equation can be rewritten in the form

(7.29)

w0 t� �

d
td

����� y1 t� � w� 0 t� ��� � g 9 z t� �� � y1 t� � w� 0 t� ��� �� ht t z t� � 0� �� ��

5 t >�� � 7 t >�� ��

7 t >�� �

70 t >�� �
z0

z
s

t� � z t s�� �� s R� z t� �

s� �4 I t s�� � h t z t s�� � 0� �� ��- .
/ 0

Rn
td

��

�

8# 0�

t t s�!

s� �4 I t� � h t s� z t� � 0� �� ��- .
/ 0

Rn
td

��

�

8�

49 s� � I t s�� � h
t

t z t s�� � 0� �� ��- .
/ 0

Rn
td

��

�

8�

49 s� � 0�
s� �4 s0 s0� �4 0� 49 s0� � 0�

z t s0�� � z t� �
7 t >�� �

s0� �4 0� 49 s0� � 0� s0 R�

s� �4

x�1 x2  ,�

x�2  x1 �x1
3  .���

�
�



O n  t h e  E x i s t e n c e  o f  T r a n s v e r s a l  H o m o c l i n i c  T r a j e c t o r i e s 411 

The equation linearized along the homoclinic orbit  (see Exer-
cise 7.1) has the form

(7.30)

Let us show that system (7.30) has no solutions which are bounded on the axis and
not proportional to . Indeed, if  is another bounded solution,
then due to the fact that  as , the Wronskian 

 possesses the properties

and .

This implies that  and therefore  is proportional to .
Evidently, the equation adjoint to (7.30) has the form

(7.31)

Since we have that

,

a solution to (7.31) bounded on  has the form . Let us now
consider the corresponding function . Since in this case 

, we have

,

where

.

Calculations (try to do them yourself) give us that

.

Therefore, equation  has simple roots under condition (6.19). Thus, the as-
sertion of Theorem 6.1 follows from Theorem 7.2.

It should be noted that in this case the function  coincides with the famous
Melnikov function arising in the geometric approach to the study of the transversali-
ty (see, e.g., [1], [2] and the references therein). Therewith conditions (7.28) trans-
form into the standard requirements on the Melnikov function which guarantee the
appearance of homoclinic chaos.
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Addition to the English translation:

The monographs by Piljugin [1*] and by Palmer [2*] have appeared after publication
of the Russian version of the book. Both monographs contain an extensive bibliogra-
phy and are closely related to the subject of Chapter 6.
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�-pseudotrajectory 381
�-trajectory 382

AAAA

Attractor
fractal exponential 61, 103
global 20
minimal 21
regular 39
weak 21, 32
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Belousov-Zhabotinsky equations 334
Berger equation 217
Bernoulli shift 14, 365
Burgers equation 96

CCCC

Cahn-Hilliard equation 97
Cantor set 52
Chaotic dynamics 369
Chirikov mapping 26
Completeness defect 296
Cycle 17
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Determining functionals 286, 292
boundary 358
mixed 332

Determining nodes 313, 332
Diameter of a set 53
Dichotomy

exponential 370, 405
Dimension of a set

fractal 52
Hausdorff 54

Dimension of dynamical system 11
Duffing equation 12, 26, 37, 400
Dynamical system

-dissipative 104
asymptotically compact 26, 249
asymptotically smooth 34
compact 27
continuous 11
discrete 11, 14, 365
dissipative 24
pointwise dissipative 34
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Equation
nonlinear diffusion, explicitly solvable 118
nonlinear heat 94, 117, 176, 187, 358
oscillations of a plate 217, 402
reaction-diffusion 96, 180, 328
retarded 13, 138, 171, 327
second order in time 189, 200, 209, 217, 350
semilinear parabolic 77, 85, 182, 317
wave 189, 201, 208, 351, 360

Evolutionary family 193, 321
Evolutionary semigroup 11

FFFF

Flutter 217
Frechét derivative 377
Fredholm operator 113
Function

Bochner integrable 219
Bochner measurable 218
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Galerkin approximate solution 88, 190, 224, 233
Galerkin method

non-linear 209
traditional 87, 190, 224, 233

Generic property 117
Gevrey regularity 347
Green function of difference equation 372
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Hausdorff metric 32, 48
Hodgkin-Huxley equations 339
Hopf model of appearance of turbulence 40, 130
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Ilyashenko attractor 22
Inertial form 152
Inertial manifold 151

approximate 182, 200, 276
asymptotically complete 161
exponentially asymptotically complete 161
local 171, 276

Invariant torus 138
KKKK

Kolmogorov width 302
LLLL

Landau-Hopf scenario 138
Lorentz equations 28
Lyapunov function 36, 108
Lyapunov-Perron method 153
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Mapping
continuously differentiable 377
Frechét differentiable 113, 377
proper 113

Melnikov function 411
Milnor attractor 22
Modes 300

determining 320, 331
NNNN

Navier-Stokes equations 98, 335
OOOO

Operator
evolutionary 11
Frechét differentiable at a point 39
hyperbolic 370
monodromy 14, 397
potential 108
regular value 114
with discrete spectrum 77, 218

Orbit see Trajectory
PPPP

Phase space 11
Point

equilibrium 17
fixed 17

hyperbolic 39, 116, 268
heteroclinic 367
homoclinic 367

transversal 381
recurrent 49
stationary 17

Poisson stability 49
Process 322
Projector 55
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Radius of dissipativity 24
Reduction principle 49
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Scale of Hilbert spaces 79
Semigroup property 11
Semitrajectory 17
Set

�-limit 18
�-limit 18
absorbing 24, 30
fractal 53
hyperbolic 377
inertial 61, 65, 67, 103, 254
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invariant 18
negatively invariant 18
of asymptotically determining functionals 286
of determining functionals 292
positively invariant 18

asymptotically stable 45
Lyapunov stable 45
uniformly asymptotically stable 45

unessential, with respect to measure 22
unstable 35

Sobolev space 93, 306
Solution

mild 85
strong 82
weak 82, 223, 232

Stability
asymptotic 45

uniform 45
Lyapunov 45
Poisson 49

Star-like domain 307
TTTT

Trajectory 17
heteroclinic 367
homoclinic 367

transversal 381, 402
induced 161
periodic 17
Poisson stable 49
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Upper semicontinuity of attractors 46
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Value of operator, regular 114
Volume averages, determining 311, 331


