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Foreword
New Directions in Computer Graphics:
Experimental Mathematics

As a mathematician one is accustomed to many things. Hardly any other academics
encounter as much prejudice as we do. To most people, mathematics is the most
colourless  of all school subjects - incomprehensible, boring, or just terribly dry. And
presumably, we mathematicians must be the same, or at least somewhat strange. We deal
with a subject that (as everyone knows) is actually complete. Can there still be anything
left to find out? And if yes, then surely it must be totally uninteresting, or even
superfluous.

Thus it is for us quite unaccustomed that our work should so suddenly be
confronted with so much public interest. In a way, a star has risen on the horizon of
scientific knowledge, that everyone sees in their path.

Experimental mathematics, a child of our ‘Computer Age’, allows us glimpses into
the world of numbers that are breathtaking, not just to mathematicians. Abstract
concepts, until recently known only to specialists - for example Feigenbaum diagrams or
Julia sets - are becoming vivid objects, which even renew the motivation of students.
Beauty and mathematics: they belong together visibly, and not just in the eyes of
mathematicians.

Experimental mathematics: that sounds almost like a self-contradiction!
Mathematics is supposed to be founded on purely abstract, logically provable
relationships. Experiments seem to have no place here. But in reality, mathematicians, by
nature, have always experimented: with pencil and paper, or whatever equivalent was
available. Even the relationship a%@=~?,  well-known to all school pupils, for the
sides of a right-angled triangle, didn’t just fall into Pythagoras’ lap out of the blue. The
proof of this equation came after knowledge of many examples. The working out of
examples is a‘typical  part of mathematical work. Intuition develops from examples.
Conjectures are formed, and perhaps afterwards a provable relationship is discerned.
But it may also demonstrate that a conjecture was wrong: a single counter-example
suffices.

Computers and computer graphics have lent a new quality to the working out of
examples. The enormous calculating power of modem computers makes it possible to
study problems that could never be assaulted with pencil and paper. This results in
gigantic data sets, which describe the results of the particular calculation. Computer
graphics enable us to handle these data sets: they become visible. And so, we are
currently gaining insights into mathematical structures of such infinite complexity that we
could not even have dreamed of it until recently.

Some years ago the Institute for Dynamical Systems of the University of Bremen
was able to begin the installation of an extensive computer laboratory, enabling its
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members to carry out far more complicated mathematical experiments. Complex
dynamical systems are studied here; in particular mathematical models of changing or
self-modifying systems that arise from physics, chemistry, or biology (planetary orbits,
chemical reactions, or population development). In 1983 one of the Institute’s research
groups concerned itself with so-called Julia sets. The bizarre beauty of these objects
lent wings to fantasy, and suddenly was born the idea of displaying the resulting pictures
as a public exhibition.

Such a step down from the ‘ivory tower’ of science, is of course not easy.
Nevertheless, the stone began to roll. The action group ‘Bremen and its University’, as
well as the generous support of Bremen Savings Bank, ultimately made it possible: in
January 1984 the exhibition Harmony in Chaos and Cosmos opened in the large bank
lobby. After the hectic preparation for the exhibition, and the last-minute completion of a
programme catalogue, we now thought we could dot the i’s and cross the last t’s. But
something different happened: ever louder became the cry to present the results of our
experiments outside Bremen, too. And so, within a few months, the almost completely
new exhibition Morphology of Complex Boundan’es  took shape. Its journey through
many universities and German institutes began in the Max Planck Institute for
Biophysical Chemistry (Gottingen)  and the Max Planck Institute for Mathematics (in
Bonn Savings Bank).

An avalanche had broken loose. The boundaries within which we were able to
present our experiments and the theory of dynamical systems became ever wider. Even
in (for us) completely unaccustomed media, such as the magazine Gw on ZDF
television, word was spread. Finally, even the Goethe Institute opted for a world-wide
exhibition of our computer graphics. So we began a third time (which is everyone’s
right, as they say in Bremen), equipped with fairly extensive experience. Graphics,
which had become for us a bit too brightly coloured,  were worked over once more.
Naturally, the results of our latest experiments were added as well. The premiere was
celebrated in May 1985 in the ‘BGttcherstrasse  Gallery’. The exhibition SchSnheit  im
Chaos/Frontiers of Chaos has been travelling throughout the world ever since, and is
constantly booked. Mostly, it is shown in natural science museums.

It’s no wonder that every day we receive many enquiries about computer graphics,
exhibition catalogues (which by the way were all sold out) and even programming
instructions for the experiments. Naturally, one can’t answer all enquiries personally. But
what are books for? The  Beauty of Fractals, that is to say the book about the exhibition,
became a prizewinner and the greatest success of the scientific publishing company
Springer-Verlag. Experts can enlighten themselves over the technical details in The
Science of Fractal Images, and with The Game of FractaJ  Images lucky Macintosh II
owners, even without any further knowledge, can boot up their computers and go on a
journey of discovery at once. But what about all the many home computer fans, who
themselves like to program, and thus would like simple, but exact. information? The
book lying in front of you by Karl-Heinz Becker and Michael DGrfler  fills a gap that has
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too long been open.
The two authors of this book became aware of our experiments in 1984, and

through our exhibitions have taken wing with their own experiments. After didactic
preparation they now provide, in this book, a quasi-experimental introduction to our field
of research. A veritable kaleidoscope is laid out: dynamical systems are introduced,
bifurcation diagrams are computed, chaos is produced, Julia sets unfold, and over it all
looms the ‘Gingerbread Man’ (the nickname for the Mandelbrot set). For all of these,
there are innumerable experiments, some of which enable us to create fantastic computer
graphics for ourselves. Naturally, a lot of mathematical theory lies behind it all, and is
needed to understand the problems in full detail. But in order to experiment oneself (even
if in perhaps not quite as streetwise a fashion as a mathematician) the theory is luckily not
essential. And so every home computer fan can easily enjoy the astonishing results of
his or her experiments. But perhaps one or the other of these will let themselves get
really curious. Now that person can be helped, for that is why it exists: the study of
mathematics.

But next, our research group wishes you lots of fun studying this book, and great
success in your own experiments. And please, be patient: a home computer is no
‘express train’ (or, more accurately, no supercomputer). Consequently some of the
experiments may tax the ‘little ones’ quite nicely. Sometimes, we also have the same
problems in our computer laboratory. But we console ourselves: as always, next year
there will be a newer, faster, and simultaneously cheaper computer. Maybe even for
Christmas... but please with colour  graphics, because then the fun really starts.

Research Group in Complex Dynamics
University of Bremen Hartmut  Jikgens





Preface to the German Edition
Today the ‘theory of complex dynamical systems’ is often referred to as a revolution,
illuminating all of science. Computer-graphical methods and experiments today define
the methodology of a new branch of mathematics: ‘experimental mathematics’. Its content
is above all the theory of complex dynamical systems. ‘Experimental’ here refers
primarily to computers and computer graphics. In contrast to the experiments are
‘mathematical cross-connections’, analysed with the aid of computers, whose examples
were discovered using computer-graphical methods. The mysterious structure of these
computer graphics conceals secrets which still remain unknown, and lie at the frontiers of
thought in several areas of science. If what we now know amounts to a revolution, then
we must expect further revolutions to occur.
. The groundwork must therefore be prepared, and
. people must be found who can communicate the new knowledge.
We believe that the current favourable research situation has been created by the growing
power and cheapness of computers. More and more they are being used as research
tools. But science’s achievement has always been to do what can be done. Here we
should mention the name of Benoi§t  B. Mandelbrot, a scientific outsider who worked for
many years to develop the fundamental mathematical concept of a fractal and to bring it to
life.

Other research teams have developed special graphical techniques. At the
University of Bremen fruitful interaction of mathematicians and physicists has led to
results which have been presented to a wide public. In this context the unprecedented
popular writings of the group working under Professors Heinz-Otto Peitgen and Peter
H. Richter must be mentioned. They brought computer graphics to an interested public
in many fantastic exhibitions. The questions formulated were explained non-technically
in the accompanying programmes and exhibition catalogues and were thus made
accessible to laymen. They recognised  a further challenge, to emerge from the ‘Ivory
Tower’ of science, so that scientific reports and congresses were arranged not only in the
university. More broadly, the research group presented its results in the magazine Geo,
on ZDF television programmes, and in worldwide exhibitions arranged by the Goethe
Institute. We know of no other instance where the bridge from the foremost frontier of
research to a wide lay public has been built in such a short time. In our own way we
hope to extend that effort in this book. We hope, while dealing with the discoveries of
the research group, to open for many readers the path to their own experiments. Perhaps
in this way we can lead them towards a deeper understanding of the problems connected
with mathematical feedback.

Our book is intended for everyone who has a computer system at their disposal and
who enjoys experimenting with computer graphics. The necessary mathematical formulas
are so simple that they can easily be understood or used in simple ways. The reader will
rapidly be brought into contact with a frontier of today’s scientific research, in which
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hardly any insight would be possible without the use of computer systems and graphical
data processing.

This book divides into two main parts. In the first  part (Chapters 1 -lo),  the reader
is introduced to interesting problems and sometimes a solution in the form of a program
fragment. A large number of exercises lead to individual experimental work and
independent study. The fist  part closes with a survey of ‘possible’ applications of this
new theory.

In the second part (from Chapter 11 onwards) the modular concept of our program
fragments is introduced in connection with selected problem solutions. In particular,
readers who have never before worked with Pascal will find in Chapter 11 - and indeed
throughout the entire book - a great number of program fragments, with whose aid
independent computer experimentation can be carried out. Chapter 12 provides reference
programs and special tips for dealing with graphics in different operating systems and
programming languages. The contents apply to MS-DOS systems with Turbo Pascal
and UNIX 4.2 BSD systems, with hints on Berkeley Pascal and C. Further example
programs, which show how the graphics routines fit together, are given for Macintosh
systems (Turbo Pascal, Lightspeed Pascal, Lightspeed C), the Atari (ST Pascal Plus), the
Apple IIe (UCSD Pascal), and the Apple IIGS (TML Pascal).

We are grateful to the Bremen research group and the Vieweg Company for
extensive advice and assistance. And, not least, to our readers. Your letters and hints
have convinced us to rewrite the fist  edition so much that the result is virtually a new
book - which, we hope, is more beautiful, better, more detailed, and has many new ideas
for computer graphics experiments.

Bremen Karl-Heinz Becker Michael Dbffler
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The story which today so fascinates researchers, and which is associated with chaos
theory and experimental mathematics, came to our attention around 1983 in Bremen. A t
that time a research group in dynamical systems under the leadership of Professors
Peitgen and Richter was founded at Bremen University. This starting-point led to a
collaboration lasting many years with members of the Computer Graphics Laboratory at
the University of Utah in the USA.

Equipped with a variety of research expertise, the research group began to install its
own computer graphics laboratory. In January and February of 1984 they made their
results public. These results were startling and caused a great sensation. For what they
exhibited was beautiful, coloured  computer graphics reminiscent of artistic paintings. The
first  exhibition, Harmony in Chaos and Cosmos, was followed by the exhibition
Moqhology of Complex Frontiers. With the next exhibition the results became
internationally known. In 1985 and 1986, under the title Frontiers of Chaos and with
assistance from the Goethe Institute, this third exhibition was shown in the UK and the
USA. Since then the computer graphics have appeared in many magazines and on
television, a witches’ brew of computer-graphic simulations of dynamical systems.

What is so stimulating about it?
Why did these pictures cause so great a sensation?
We think that these new directions in research are fascinating on several grounds. It

seems that we are observing a ’ celestial conjunction’ - a conjunction as brilliant as that
which occurs when Jupiter and Saturn pass close together in the sky, something that
happens only once a century. Similar events have happened from time to time in the
history of science. When new theories overturn or change previous knowledge, we.
speak of a paradigm change. 1

The implications of such a paradigm change are influenced by science and society.
We think that may also be the case here. At any rate, from the scientific viewpoint, this
much is clear:
. A new theory, the so-called chaos theory, has shattered the scientific world-

view. We will discuss it shortly.
. New techniques are changing the traditional methods of work of mathematics and

lead to the concept of experimental mathematics.
For centuries mathematicians have stuck to their traditional tools and methods such

as paper, pen, and simple calculating machines, so that the typical means of progress in
mathematics have been proofs and logical deductions. Now for the first time some
mathematicians are working like engineers and physicists. The mathematical problem
under investigation is planned and carried out like an experiment. The experimental
apparatus for this investigatory mathematics is the computer. Without it, research in this
field would be impossible. The mathematical processes that we wish to understand are

‘Paradigm = ‘example’. By a paradigm we mean a basic Point of view, a fundamental unstated
assumpt ion ,  a  dogma,  through which  sc ient i s t s  d i rec t  the i r  inves t iga t ions .
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visual&d in the form of computer graphics. From the graphics we draw conclusions
about the mathematics. The outcome is changed and improved, the experiment carried out
with the new data. And the cycle starts anew.
. Two previously separate disciplines, mathematics and computer graphics, are

growing together to create something qualitatively new.
Even here a further connection with the experimental method of the physicist can be seen.
In physics, bubble-chambers and semiconductor detectors are instruments for visualising
the microscopically small processes of nuclear physics. Thus these processes become
representable and accessible to experience. Computer graphics, in the area of dynamical
systems, are similar to bubble-chamber photographs, making dynamical processes
visible.

Above all, this direction of research seems to us to have social significance:
. The ‘ivory tower’ of science is becoming transparent.
In this connection you must realise that the research group is interdisciplinary.
Mathematicians and physicists work together, to uncover the mysteries of this new
discipline. In our experience it has seldom previously been the case that scientists have
emerged from their own ‘closed’ realm of thought, and made their research results known
to a broad lay public. That occurs typically here.
l These computer graphics, the results of mathematical research, are very surprising

and have once more raised the question of what ‘art’ really is.
Are these computer graphics to become a symbol of our ‘hi-tech’ age?

b For the first time in the history of science the distance between the
utmost frontiers of research, and what can be understood by the ‘man
in the street’, has become vanishingly small.

Normally the distance between mathematical research, and what is taught in schools, is
almost infinitely large. But here the concerns of a part of today’s mathematical research
can be made transparent. That has not been possible for a long time.

Anyone can join in the main events of this new research area, and come to a basic
understanding of mathematics. The central figure in the theory of dynamical systems, the
Mandelbrot set - the so-called ‘Gingerbread Man’ - was discovered only in 1980.
Today, virtually anyone who owns a computer can generate this computer graphic for
themselves, and investigate how its hidden structures unravel.

1 .l Chaos and Dynamical Systems - What Are They?
An old farmer’s saying runs like this: ‘When the cock crows on the dungheap, the

weather will either change, or stay as it is.’ Everyone can be 100 per cent correct with
this weather forecast. We obtain a success rate of 60 per cent if we use the rule that
tomorrow’s weather will be the same as today’s.  Despite satellite photos, worldwide
measuring networks for weather data, and supercomputers, the success rate of
computer-generated predictions stands no higher than 80 per cent.

Why is it not better?
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Why does the computer - the very incarnation of exactitude - find its limitations
here?

Let us take a look at how meteorologists, with the aid of computers, make their
predictions. The assumptions of the meteorologist are based on the causality principle.
This states that equal causes produce equal effects - which nobody would seriously
doubt. Therefore the knowledge of all weather data must make an exact prediction
possible. Of course this cannot be achieved in practice, because we cannot set up
measuring stations for collecting weather data in an arbitrarily large number of places.
For this reason the meteorologists appeal to the strong causality principle, which holds
that similar causes produce similar effects. In recent decades theoretical models for the
changes in weather have been derived from this assumption.

Data:
Air-pressure
Temperature
Cloud-cover
Wind-direction

Parameters:
Time of year
Vegetation
Snow
Sunshine

Wind-speed

Innut Mathematical formulas

- 1 1 represZt~  ~~atkZaviour  i
Situation
at 12.00

I piii5

for 06.00

Figure 1.1-i Feedback cycle of weather research.

Such models, in the form of complicated mathematical equations, are calculated with
the aid of the computer and used for weather prediction. In practice weather data from the
worldwide network of measuring stations, such as pressure, temperature, wind direction,
and many other quantities, are entered into the computer system, which calculates the
resulting weather with the aid of the underlying model. For example, in principle the
method for predicting weather 6 hours ahead is illustrated in Figure 1.1-l. The 24-
hour forecast can easily be obtained, by feeding the data for the l&hour  computation
back into the model. In other words, the computer system generates output data with the
aid of the weather forecasting program. The data thus obtained are fed back in again as
input data. They produce new output data, which can again be treated as input data. The
data are thus repeatedly fed back into the program.



Discover ing C h a o s 5

One might imagine that the results thus obtained become ever more accurate. The
opposite can often be the case. The computed weather forecast, which for several days
has matched the weather very well, can on the following day lead to a catastrophically
false prognosis. Even if the ‘model system weather’ gets into a ‘harmonious’ relation to
the predictions, it can sometimes appear to behave ‘chaotically’. The stability of the
computed weather forecast is severely over-estimated, if the weather can change in
unpredictable ways. For meteorologists, no more stability or order is detectable in such
behaviour. The model system ‘weather’ breaks down in apparent disorder, in ‘chaos’.
This phenomenon of unpredictablity  is characteristic of complex systems. In the
transition from ‘harmony’ (predictability) into ‘chaos’ (unpredictability) is concealed the
secret for understanding both concepts.

The concepts ‘chaos’ and ‘chaos theory’ are ambiguous. At the moment we agree
to speak of chaos only when ‘predictability breaks down’. As with the weather (whose
correct prediction we classify as an ‘ordered’ result), we describe the meteorologists -
often unfairly - as ‘chaotic’, when yet again they get it wrong.

Such concepts as ‘order’ and ‘chaos’ must remain unclear at the start of our
investigation. To understand them we will soon carry out our own experiments. For
this purpose we must clarify the many-sided concept of a dynamical system.

In general by a system we understand a collection of elements and their effects on
each other. That seems rather abstract. But in fact we are surrounded by systems.

The weather, a wood, the global economy, a crowd of people in a football stadium,
biological populations such as the totality of all fish in a pond, a nuclear power station:
these are all systems, whose ‘behaviour’ can change very rapidly. The elements of the
dynamical system ‘football stadium’, for example, are people: their relations with each
other can be very different and of a multifaceted kind.

Real systems signal their presence through three factors:
l They are dynamic, that is, subject to lasting changes.
l They are complex, that is, depend on many parameters.
. They are iterative, that is, the laws that govern their behaviour can be

described by feedback.
Today nobody can completely describe the interactions of such a system through
mathematical formulas, nor predict the behaviour of people in a football stadium.

Despite this, scientists try to investigate the regularities that form the basis of such
dynamical systems. In particular one exercise is to find simple mathematical models, with
whose help one can simulate the behaviour of such a system.

We can represent this in schematic form as in Figure 1.1-2.
Of course in a system such as the weather, the transition from order to chaos is hard

to predict. The cause of ‘chaotic’ behaviour is based on the fact that negligible changes to
quantities that are coupled by feedback can produce unexpected chaotic effects. This is an
apparently astonishing phenomenon, which scientists of many disciplines have studied
with great excitement. It applies in particular to a range of problems that might bring into
question recognised  theories or stimulate new formulations, in biology, physics,
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chemistry and mathematics, and also in economic areas.
The research area of dynamical systems theory is manifestly interdisciplinary. The

theory that causes this excitement is still quite young and - initially - so simple
mathematically that anyone who has a computer system and can carry out elementary
programming tasks can appreciate its startling results.

Possible Parameters

Initial
Value

Specification of a
process

I, R e s u l t

Feedback

Figure 1.1-2 General feedback scheme.

The aim of chaos research is to understand in general how the transition from order
to chaos takes place.

An important possibility for investigating the sensitivity of chaotic systems is to
represent their behaviour by computer graphics. Above all, graphical representation of
the results and independent experimentation has considerable aesthetic appeal, and is
exciting.

In the following chapters we will introduce you to such experiments with different
dynamical systems and their graphical representation. At the same time we will give you
- a bit at a time - a vivid introduction to the conceptual world of this new research area.

1.2 Computer Graphics Experiments and Art
In their work, scientists distinguish two important phases. In the ideal case they

alternate between experimental and theoretical phases. When scientists carry out an
experiment, they pose a particular question to Nature. As a rule they offer a definite
point of departure: this might be a chemical substance or a piece of technical apparatus,
with which the experiment should be performed. They look for theoretical interpretations
of the answers, which they mostly obtain by making measurements with their
instruments.

For mathematicians, this procedure is relatively new. In their case the apparatus or
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measuring instrument is a computer. The questions are presented as formulas,
representing a series of steps in an investigation. The results of measurement are
numbers, which must be interpreted. To be able to grasp this multitude of numbers, they
must be represented clearly. Often graphical methods are used to achieve this. Bar-
charts and pie-charts, as well as coordinate systems with curves, are widespread
examples. In most cases not only is a picture ‘worth a thousand words’: the picture is
perhaps the only way to show the precise state of affairs.

Over the last few years experimental mathematics has become an exciting area, not
just for professional researchers, but for the interested layman. With the availability of
efficient personal computers, anyone can explore the new territory for himself.

The results of such computer graphics experiments are not just very attractive
visually - in general they have never been produced by anyone else before.

In this book we will provide programs to make the different questions from this
area of mathematics accessible. At first we will give the programs at full length; but later
- following the building-block principle - we shall give only the new parts that have not
occurred repeatedly.

Before we clarify the connection between experimental mathematics and computer
graphics, we will show you some of these computer graphics. Soon you will be
producing these, or similar, graphics for yourself. Whether they can be described as
computer art you must decide for yourself.

Figure 1.2-l Rough Diamond.
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Figure 1.2-2 Vulcan’s Eye.
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Figure 1.2-3 Gingerbread Man.
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Figure 1.2-4 Tornado Convention.2

2Tbis  picture was christened by Prof. K. Kenkel of Dartmouth College.
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Figure 1.2-5 Quadruple Alliance.



I&*
Figure 1.2-6 Seahorse Roundelay.
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Figure 1.2-7 Julia Propeller.
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Figure 1.2-8 Variation 1.

Figure 1.2-9 Variation 2.
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Figure 1.2-10 Variation 3.

Figure 1.2-  11 Explosion.
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Figure 1.2-12 Mach 10.

Computer graphics in, computer art out. In the next chapter we will explain the relation
between experimental mathematics and computer graphics. We will generate our own
graphics and experiment for ourselves.



2 Between Order and Chaos:
Feigenbaum Diagrams
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2.1 First Experiments
One of the most exciting experiments, in which we all take part, is one which

Nature carries out upon us. This experiment is called life.  The rules am the presumed
laws of Nature, the materials are chemical compounds, and the results are extremely
varied and surprising. And something else is worth noting: if we view the ingredients
and the product as equals, then each year (each day, each generation) begins with exactly
what the previous year (day, generation) has left as the starting-point for the next stage.
That development is possible in such circumstances is something we observe every day.

If we translate the above experiment into a mathematical one, then this is what we
get: a fixed rule, which transforms input into output; that is, a rule for calculating the
output by applying it to the input. The result is the input value for the second stage,
whose result becomes the input for the third stage, and so on. This mathematical
principle of re-inserting a result into its own method of computation is called feedback
(see Chapter 1).

We will show by a simple example that such feedback is not only easy to program,
but it leads to surprising results. Like any good experiment, it raises ten times as many
new questions as it answers.

The rules that will concern us are mathematical formulas. The values that we obtain
will be real numbers between 0 and 1. One possible meaning for numbers between 0
and 1 is as percentages: 0% I p I 100%. Many of the rules that we describe in this
book arise only from the mathematician’s imagination. The rule described here originated
when researchers tried to apply mathematical methods to growth, employing an
interesting and widespread model. We will use the following as an example, taking care
to remember that not everything in the model is completely realistic.

There has been an outbreak of measles in a children’s home. Every day the number
of sick children is recorded, because it is impossible to avoid sick and well children
coming into contact with each other. How does the number change?

This problem corresponds to a typical dynamical system - naturally a very simple
one. We will develop a mathematical model for it, which we can use to simulate an
epidemic process, to understand the behaviour and regularities of such a system.

If, for example, 30% of the children are already sick, we represent this fact by the
formula p = 0.3. The question arises, how many children will become ill the next day?
The rule that describes the spread of disease is denoted mathematically by gP). The
epidemic can then be described by the following equation:

fc.Pl  = P+z.
That is, to the original p we add a growth z.

The value of z, the increase in the number of sick children, depends on the number
p of children who are already sick. Mathematically we can write this dependence as
z=  p, saying that ‘z is proportional to p’. By this proportionality expression we
mean that z may depend upon other quantities than p. We can predict that z depends
also upon the number of well children, because there can be no increase if all the children
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are already sick in bed. If 30% are ill, then there must be 100% - 30% = 70% who are
well. In general there will be 100%-p  = 1 -p well children, so we also have z =
(l-p). We have thus decided that z = p and z = (l-p). Combining these, we get a
growth term z = p*(  1 -p). But because not all children meet each other, and not every
contact leads to an infection, we should include in the formula an infection rate k.
Putting all this together into a single formula we find that:

z = k*p*(l-p),
so that

fly)  = pt-k*p*(I-P).
In our investigation we will apply this formula on many successive days. In order to
distinguish the numbers for a given day, we will attach an index top. The initial value is
po,  after one day we have ~1,  and so on. The result gp>  becomes the initial value for
the next stage, so we get the following scheme:

00)  = po+k*pg*(l-pg)  = PI
tip11 = pl+k*pl*(l-pi)  = ~2
II&) = fi+k*pz*(l-pi)  = B

f-W  = n+k*p3*(l-m)  = ~4
and so on. In general we have

KP,,)  = pn+k*pn*(l  -P,J = pn+1.

Parameter k

p. = 0.3 + p n+l = Pn+k*Pn*  C1 -Pn>
+ Table or

Graphic

Feedback
Figure 2.1-1 Feedback scheme for ‘Measles’.

In other words this means nothing more than that the new values are computed from the
old ones by applying the given rule. This process is called mathematical feedback or
iteration. We have already spoken of this iterative procedure in our fundamental
considerations in Chapter 1.

For any particular fixed value of k we can calculate the development of the disease
from a given starting value po.  Using a pocket calculator, or mental arithmetic, we find
that these function values more or less quickly approach the limit I; that is, all children
fall sick. We would naturally expect this to occur faster, the larger the factor k is.
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Figure 2.1-2 Development of the disease for po  = 0.3 and k = 0.5.

Figure 2.1-3 Development of the disease for po  = 0.3 and k = 1 .O.

In order to get a feeling for the method of calculation, get out your pocket calculator.
Work out the results first  yourself, for the k-values

k,  = 0.5, k2  = 1, k3  = 1.5, k4  = 2, k5  = 2.5, k  = 3
using the formula

f&,1 = p,,+k*p,,*(l-pd  = P,,+I
to work out pt  up to ~5. Take po  = 0.3 in each case. So that you can check your
results, we have given the calculation in the form of six tables (see Figures 2.1-2 to
2.1-7). In each table ten values per column are shown. In column A are the values pi,
in  CO~UIWI  E the values pi+l.
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Figure 2.1-4 Development of the disease for po  = 0.3 and k = 1.5.

Figure 2.1-5 Development of the disease for po  = 0.3 and k = 2.0.

Figure 2.1-6 Development of the disease for po  = 0.3 and k = 2.5.
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Figure 2.1-7 Development of the disease for po  = 0.3 and k = 3.0.

The tables were computed using the spreadsheet program ‘Excel’ on a Macintosh. Other
spreadsheets, for example ‘Multiplan’, can also be used for this kind of investigation. For
those interested, the program is given in Figure 2.1-8, together with the linking
formulas. All diagrams involve the mathematical feedback process. The result of field
E2 provides the starting value for A3, the result of E3 is the initial value for A4, and so
on.

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  /  .  .  .  .
. . . . . . . . . . . . . . . . . . . . . i

.F..U . . . . . . . . . . . . . . . . . . . . . . . . k.87  . . . . . . . . . . . . . . . . . . . . . . . . . . l.:!..2!8  . . . . . . . . . . . . . . . . . . . . . . 2TtM!.~!.8.~~.8  . . . . . . . . . . . . . i.:Pl!.+.r>3
.%8 . . . . . . . . . . . . . . . . . . . . . . . . . I.?!!  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.:.!..:A@ . . . . . . . . . . . . . . . . . . . . . j.?.E?.“AS”C?  . . . . . . . . . . . . . . $???D?i=l-AlO i=BlO*AlO*ClO  i=AlO+DlO

Figure 2.1-8  List of formulas.

Now represent your calculations graphically. You have six individual calculations to
deal with. Each diagram, in a suitable coordinate system, contains a number of points
generated by feedback.
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Figure 2.1-9 Discrete series of 6 (ki , p;)-values after 10 iterations.

We can combine all six diagrams into one, where for each kj -value (kj = 0.5, 1.0, 1.5,
2.0,2.5,  3.0) we show the corresponding pi  -values (Figure 2.1-g).

You must have noticed how laborious all this is. Further, very little can be
deduced from this picture. To gain an understanding of this dynamical system, it is not
sufficient to carry out the feedback process for just 6 k-values. We must do more: for
each kj -value 0 I kj < 3 that can be distinguished in the picture, we must run
continuously through the entire range of the k-axis, and draw in the corresponding
p-values.

That is a tolerably heavy computation. No wonder that it took until the middle of
this century before even such simple formulas were studied, with the help of newfangled
computers.

A computer will also help us investigate the ‘measles problem’. It carries out the
same tedious, stupid calculation over and over again, always using the same formula.

When we go on to write a program in Pascal, it will be useful for more than just this
problem. We construct it so that we can use large parts of it in other problems. N e w
programs will be developed from this one, in which parts are inserted or removed. W e
just have to make sure that they fit together properly (see Chapter 11).

For this problem we have developed a Pascal program, in which only the main part
of the problem is solved. Any of you who cannot finish the present problem, given the
program, will find a complete solution in Chapters 1 lff.

Program 2.1-1
PROGRAM MeaslesNumber;

VAR
Population, Feedback : real;
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MaximalIteration  : integer;
(*----------------------------------------------------*)

(" BEGIN : Problem-specific procedures *)
FUNCTION f (p, k : real) : real;
BEGIN
f:=p+k*p*(l-p);

END;

PROCEDURE MeaslesValue;
VAR

i : integer;
BEGIN

FOR i := 1 to MaximalIteration  DO
BEGIN

Population := f(Population, Feedback);
writeln('After'  , i , 'Iterations p has the

value :I,
Population : 6 : 4);

END;
END;

(* END Problem-specific procedures *)
(X ____--___-----_-----~~~~~~~--- --------------------*)

(* BEGIN: Useful subroutines *)
(* see Chapter 11.2 *)
c* END : Useful subroutines *)

(* BEGIN : Procedures of main program *)
PROCEDURE Hello;
BEGIN

InfoOutput  ('Calculation of Measles-Values');
Infooutput  ('---------------------------I) ;
Newlines  (2);
CarryOn  ('Start : ');
Newlines  (2);

E-NJ;

PROCEDURE Application;
BEGIN

ReadReal  ('Initial Population p (0 to 1) >I,
Population);

ReadReal  ('Feedback Parameter k (0 to 3) >I,
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Feedback);
ReadInteger  ('Max. Iteration Number >',

MaximalIteration);
END;

PROCEDURE ComputeAndDisplay;
BEGIN

MeaslesValues;
END;

PROCEDURE Goodbye;
BEGIN

CarryOn  ('To stop : ');
END;

(* END : Procedures of Main Program)

BEGIN (* Main Program *)
Hello;
Application;
ComputeAndDisplay;
Goodbye;

END.

We have here written out only the  main part of the program. The ‘useful subroutines’ are
particular procedures to read in numbers or to output text to the screen (see Chapters
1 Iff.).

When we type in this Pascal program and run it, it gives an output like Figure
2.1-10. In Figure 2.1-10 not all iterations are shown. In particular the interesting
values are missing. You should now experiment yourself: we invite you to do so before
reading on. Only in this way can you appreciate blow by blow the world of computer
simulation.

We have now built our first measuring instrument, and we can use it to make
systematic investigations. What we have previously accomplished with tedious
computations on a pocket calculator, have listed in tables, and drawn graphically (Figure
2.1-9) can now be done much more easily. We can carry out the calculations on a
computer. We recommend that you now go to your computer and do some
experimenting with Pascal program 2. l- 1.

A final word about our ‘measuring instrument’. The basic structure of the program,
the main program, will not be changed much. It is a kind of standard tool, which we
always construct. The useful subroutines are like machine parts or building blocks,
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which we can use in future, without worrying further. For those of you who do not feel
so sure of yourselves we have an additional offer: complete tested programs and parts of
programs. These are systematically collected together in Chapter 11.

Initial Population p (0 to 1)
Feedback Parameter k (0 to 3)
Max. Iteration No.

>0.5
>2.3
>20

After1 Iterations p has the value : 1.0750
After2 Iterations p has the value : 0.8896
After3 Iterations p has the value : 1.1155
Afiter4 Iterations p has the value : 0.8191
After5 Iterations p has the value : 1.1599
AfTer6  Iterations p has the value : 0.7334
AfIter7  Iterations p has the value : 1.1831
AfYzer8  Iterations p has the value : 0.6848
Af'ter  9 Iterations p has the value : 1.1813
Afiter 10 Iterations p has the value : 0.6888
Afiterll  Iterations p has the value : 1.1818
After12 Iterations p has the value : 0.6876
Afiter13 Iterations p has the value : 1.1817
After14 Iterations p has the value : 0.6880
After15 Iterations p has the value : 1.1817
After16 Iterations p has the value : 0.6879
Afiter17 Iterations p has the value : 1.1817
AfTer18 Iterations p has the value : 1.6879
Afiter19  Iterations p has the value : 1.1817
AfYer20 Iterations p has the value : 0.6879

Figure 2.1-  10 Calculation of measles values.

Computer Graphics Experiments and Exercises for $2.1

Exercise 2.1.-l
Implement the measles formula using a spreadsheet program. Generate similar

tables to those shown in Figures 2.1-  1 to 2.1-7. Check your values against the tables.

Exercise 2.1-2
Implement Program 2.1-1 on your computer. Carry out 30 iterations with 6 data

sets. For a fixed initial value po  = 0.3 let k take values from 0 to 3 in steps of 0.5.
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Exercise 2.1-3
Now experiment with other initial values of p,  vary k, etc.
Once you’ve got the program Meas 1esNumber  running, you have your fist

measuring instrument. Find out for which values of k and which initial values of p the
resulting series of p-values is
(a) simple (convergence top = I),
(b) interesting, and
(c) dangerous.

We call a series ’ dangerous’ when the values get larger and larger - so the danger
is that they exceed what the computer can handle. For many implementations of Pascal
the following range of values is not dangerous: lo-37 < I x I < 1038 for numbers x of
type real.

By the interesting range of k we mean the interval from k = 1.8 to k= 3.0.
Above this range it is dangerous; below, it is boring.

Exercise 2.14
Now that we have delineated the boundaries of the k-regions, we can present the

above results acoustically. To do this you must change the program a little.
Rewrite Program 2.1-  1 so that the series of numerical values becomes audible as a

series of musical tones.

Exercise 2.1-S
What do you observe as a result of your experiments?

2.1.1 It’s Prettier with Graphics
It can definitely happen that for some k-values no regularity can be seen in the

series of numbers produced: the p-values seem to bc  more or less disordered. The
experiment of Exercise 2.1-4 yields a regular occurrence of similar tone sequences
only for certain values of p and k. So we will now make the computer sketch the
results of our experiments, because we cannot find our way about this ‘numerical salad’
in any other manner. To do that we must first solve the problem of relating a Cartesian
coordinate system with coordinates x,y or k,p  to the screen coordinates. Consider
Figure 2.1.1-1 below.

Our graphical representations must be transformed in such a way that they can all
be drawn on the same screen. In the jargon of computer graphics we refer to our
mathematical coordinate system as the universal cuordinate  system. With the aid of a
transformation equation we can convert the universal coordinates into screen coordinates.

Figure 2.1.1-I shows the general case, in which we wish to map a window, or
rectangular section of the screen, onto a projection surface, representing part of the
screen. The capital letter Urepresents the universal coordinate system, and S the screen
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‘YT-- SYT  --

‘YB--

I

UXL

IX

U xR %B--
Projection surface

Screen SxR

Figure 2.1.1-1 Two coordinate systems.

coordinate system.
The following transformation equations hold:

%R-%L
xs = u _  u (xu-UXL) + SXL 9

XR XL

syT-syB
ys  = u -u (~u-Uy~)+sy~

YT YB

Here L, R, B, T are the initials of ‘left’, ‘right’, ‘bottom’, ‘top’. We want to express the
transformation equation as simply as possible. To do this, we assume that we wish to

map the window onto the entire screen. Then we can make the following definitions:
. UyT= Top and ,$,T’  Yscreen
. U$=  Bottom and s,B = 0
. Uti=Left  a n d s,=  0
+ U,=  Right and Sfi = Xscreen.

This simplifies the transformation equation:

xs = $;;yft (x,-l-m

Y screen
ys  = Top-Bottom

(yu-Bottom)  .

On the basis of this formula we will write a program that is suitable for displaying the
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measles values. Observe its similar structure to that of Program 2.1-  1.

Program 2.1.1-1
PROGRAM MeaslesGraphic;

(* Possible declaration of graphics library *)
(* Insert in a suitable place *)

CONST
Xscreen = 320; (* e.g. 320 pixels in x-direction *)
Yscreen = 200; (* e.g. 200 pixels in y-direction *)

VAR
Left, Right, Top, Bottom, Feedback : real;
IterationNo  : Integer;

(* BEGIN: Graphics Procedures *)
PROCEDURE SetPoint  (xs, ys : integer);
BEGIN (* Insert machine-specific graphics commands here*)
m;

PROCEDURE SetUniversalPoint  (xu, yu: real);
VAR

xs, ys : real;
BEGIN

xs := (xu - Left) * Xscreen / (Right - Left);

YS := (yu - Bottom) * Yscreen / (Top - Bottom);
SetPoint  (round(xs),  round(ys));

END;

PROCEDURE TextMode;
BEGIN

(* Insert machine-specific commands: see hints *)
(* in Chapter 11 *)

END;

PROCEDURE GraphicsMode;
BEGIN

(* Insert machine-specific commands: see hints *) in
(* Chapter 11 *)

END;

lise the graph
PROCEDURE EnterGraphics;

(* various actions to initia
(* such as GraphicsMode  etc.

GraphicsMode;

its  *)
*)
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END;
PROCEDURE ExitGraphics;
BEGIN
(* Actions to end the graphics, e.g. : *)

REPEAT
(* Button is a machine-specific procedure *)

UNTIL Button;
TextMode;

m;
(* END: Graphics Procedures *)
(*  ____________-----------------------------------------  “)

(* BEGIN : Problem-specific Procedures *)
FUNCTION f (p, k : real) : real;
BEGIN

f :=p+k*p* (l-p);

END;

PROCE:DURE  MeaslesIteration;
VAR

range, i: integer
population : real
deltaxPerPixe1:  real;

BEGIN
deltaxPerPixe1  := (Right - Left) / Xscreen;
FOR  range := 0 TO Xscreen DO
BEGIN

Feedback := Left + range * deltaxPerPixe1;
population := 0.3
FOR i := 0 to IterationNo  DO
BEGIN

SetUniversalPoint  (Feedback, population);
population := f ( population, Feedback );

END;
END;

END;
(* END: Problem-specific Procedures *)
(*---------------------------------------------------*)

(* BEGIN Useful Subroutines *)
(* See Program 2.1-1, not given here *)
(* END : Useful Subroutines *)
(* BEGIN: Procedures of Main Program *)
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PROCEDURE Hello;
BEGIN

TextMode;
InfoOutput  ('Diagram of the Measles Problem');
Infooutput  ('-----------------------------I);

Newlines  (2);
CarryOn  ('Start : ');
Newlines  (2);

END;

PROCEDURE Initialise;
BEGIN

ReadReal  ('Left
ReadReal  ('Right
ReadReal  ('Top
ReadReal  ('Bottom
ReadInteger  (Iteration Number

END:

>'r Left);
>'r Right);
>'r Top);
'I, Bottom);
>'r IterationNo);

PROCEDURE ComputeAndDisplay;
BEGIN

EnterGraphics;
MeaslesIteration;
ExitGraphics;
END;

PROCEDURE Goodbye;
BEGIN

CarryOn  ('To end : ');
END
(*END : Procedures of Main Program *)

BEGIN (* Main Program *)
Hello;
Initialise;
ComputeAndDisplay;
Goodbye;

END.

We suggest that you now formulate Program 2.1.1-  1 as a complete Pascal program and
enter it into your machine. The description above may help, but you may have developed
your own programming style, in which case you can do everything differently if you
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wish. Basically Program 2.1.1-l solves the ‘algorithmic heart’ of the problem. The
machine-specific components are discussed in Chapter 12 in the form of reference
programs with the appropriate graphics commands included.

TextMode,  GraphicsMode,  and Button are machine-specific procedures. In
implementations,TextMode  and GraphicsMode  are system procedures. This is the
case for Turbo Pascal on MS-DOS machines and for UCSD Pascal (see Chapter 12).

Button corresponds to the Keypressed function of Turbo Pascal. The ‘useful
subroutines’ have already been described in Program 2.2-l. By comparing Programs
2.1-I and 2.1 .I -1 you will see that we have converted our original ‘numerical’
measuring-instrument into a ‘graphical’ one. Now we can visualise the number flow
more easily.

The development of the program mostly concerns the graphics: the basic structure
remains unchanged.

Something new, which we must clarify, occurs in the procedure
MeaslesIteration  (see Program2.1.1-1):

deltaxPerPixe1  := (Right - Left) / Xscreen;
FOR range := 0 TO Xscreen DO
BEGIN

Feedback := Left + range * deltaxPerPixe1;
. . .

Compare this with the transformation formula:

xs = P-J;;;e,nft(xu-Left)

Solve this equation for x9
When we give the screen coordinate xs the value 0, then the universal coordinate

must becomeLeft. Setting the value Xscreen for the maximal screen coordinate x,
we get the value Right. Every other screen coordinate corresponds to a universal
CoordinatebetweenLeft  and Right. The smallest unit of size that can be distinguished
on the screen is one pixel. The corresponding smallest unit of size in universal
coordinatesis thusdeltaxPerPixel.

After this brief explanation of the graphical representations of the measles data with
the aid of Program 2.1.1-1, we will describe the result, produced by the computer
program in the form of a graphic. See Figure 2.1.1-2, to which we have added the
coordinate axes.

How do we interpret this graphic? From right to left the factor k changes in the
range 0 to 3. For small values of k (in particular k = 0) the value of p changes by little
or nothing. For k-values in the region of 1 we see the expected result: p takes the value
1 and no further changes occur.

The interpretation for the model is thus: if the infection rate k is sufficiently large,
then soon all children become ill (p = 100%). This occurs more rapidly, the larger k is.
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Figure 2.1.1-2 Representation of the measles epidemic on the screen,
IterationNo= 10.

You can also see this result using the values computed by pocket calculator, e.g. Figures
2.1-1 to 2.1-7.

For k-values greater than 1 something surprising and unexpected happens: p can
become larger than I! Mathematically, that’s still meaningful. Using the formula you
can check that the calculation has proceeded correctly. Unfortunately it illustrates a
restriction on our measles example, because more than 100% of the children cannot
become ill. The picture shows quite different results here. Might something abnormal
be going on?

Here we find ourselves in a typical experimental situation: the experiment has to
some extent confirmed our expectations, but has also led to unexpected results. That
suggests new questions, which possess their own momentum. Even though we can’t
make sense of the statement that ‘more than 100% of children become sick’, the following
question starts to look interesting: how does p behave, if k gets bigger than 2?

Figure 2.1.1-2 provides a hint: p certainly does not, as previously, tend to the
constant value p = 1. Apparently there is no fixed value which p approaches, or, as
mathematicians say, towards which the sequence p converges.

It is also worth noting that the sequence does not diverge either. Then p would
increase beyond all bounds and tend towards +co or -03.  In fact the values of p jump
about ‘chaotically’, to and fro, in a range of p between p = 0 and p = 1.5. It does not
seem to settle down to any particular value, as we might have expected, but to many.
What does that mean?

In order better to understand the number sequences for the population p, we will
now take a quick look at the screen print-out of Figure 2.1-10 (calculation of measles
values) from Chapter 2.1.

We can use the program again in Exercises 2.1- 1 to 2.1-4, which we have already
given, letting us display the results once more on the screen (see Figure 2.1-10). As an



34 Dynamical Systems and Fractals

additional luxury we can also make the results audible as a series of musical tones. The
melody is not important. You can easily tell whether the curve tends towards a single
value or many. If we experiment on the MeaslesNumber  program with k = 2.3, we
find an ’ oscillating phase’ jumping to and fro between two values (see Figure 1.2-10).
One value is > 1, and the other c 1. For k = 2.5 it is even more interesting. At this
point you should stop hiding behind the skirts of our book, and we therefore suggest that,
if you have not done so already, you write your first program and carry out your fist
experiment now. We will once more formulate the task precisely:

Computer Graphics Experiments and Exercises for $2.1  .l

Exercise 2.1.1-l
Derive the general transformation equations for yourself with the aid of Figure

2.1. l-l. Check that the simplified equation follows from the general one. Explain the
relation between them.

Exercise 2.1.1-2
Implement the Pascal programMeaslesGraphic on your computer. Check that

you obtain the same graphic displays as in Figure 2.1.1-2. That shows you are on the
right track.

Exercise 2.1.1.3
Establish the connection between the special transformation formula and the

expression for delt axPerP  ixe 1.

Exercise 2.1.1-4
Use the program Meas  1esGraphic  to carry out the same investigations as in

Exercise 2.1-3 (see Chapter 2.1) - this time with graphical representation of the results.

2.1.2 Graphical Iteration
It may perhaps have occurred to you that the function

f(x) = x+k* x* (l-x)
- for so we can also write the equation - is nothing other than the function for a parabola

fix)=  -k*xz+(k+l)*x
This is the equation of a downward-opening parabola through the origin with its vertex
in the first quadrant. It is clear that for different values of k we get different parabolas.
We can also study the ‘feedback effect’ of this parabola equation by graphicaliteration.

Let us explain this important concept.
Feedback means that the result of a calculation is replaced into the same equation as
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a new initial condition. After many such feedbacks (iterations) we establish that the
results run through certain fixed values. By graphical feedback we refer to the picture of
the function in an x,y-coordinate system (x stands for p, y for f(x)  or f(p)).

Graphical iteration takes place in the following way. Beginning with an x-value,
move vertically up or down in the picture until you hit the parabola. You can read off
fix) on the y-axis. This is the initial value for the next stage of the feedback. The
value must be carried across to the x-axis. For this purpose we use the diagonal, with
equation y = x. From the point on the parabola (with coordinates (x, f(x)) we draw a
line horizontally to the right (or left), until we encounter the diagonal (at the coordinates
(f(x), f(x))). Then we draw another vertical to meet the parabola, a horizontal to meet
the diagonal, and so on.

This procedure will be explained further in the program and the pictures that follow
it.

Program Fragment 2.1.2-1
(” _________---------------------------------------  *)
(* BEGIN : Problem-specific Procedures *)
FUNCTION f (p, k : real) : real;
BEGIN

f := p + k * p * (1 - p);
END;

PROCEDURE ParabolaAndDiagonal(population,feedback  : real) ;
VAR

xcoord,  deltaxPerPixe1  : real;
BEGIN

DeltaxPerPixel : = (Right - Left) / Xscreen;
SetUniversalPoint  (Left, Bottom);
DrawUniversalLine (Right, Top);
DrawUniversalLine (Left, Bottom);
xCoord := Left;
REPEAT

DrawUniversalLine (xCoord,  f(xCoord,  feedback));
xCoord := xCoord  + deltaxPerPixe1;

UNTIL (xCoord  > Right);
GoToUniversalPoint  (population, Bottom);

END;

PROCEDURE GraphicalIteration;
(* Version for graphical iteration *)
Km
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previousPopulation  : real;
BEGIN

ParabolaAndDiagonal  (population, feedback);
FUWiAT

DrawUniversalLine (population, population);
previousPopulation  := population;
population := f(population,  feedback);
DrawUniversalLine (previousPopulation,  popu

UNTIL Button;
END;

.lation)

(* END : Problem-specific Procedures *)
(X  -------------------------------------------------  “)

(* DrawUniversalLine (x,y)  draws a line from the *)
(* current position to the point with universal coordinates

by)  . ")

Graphical Iteration

Start: hit <RETURN> key

Left >o
Right >1.5
Bottom >o
Top >1.5
Population >O.l
Feedback >1.99

End: hit <RETURN> key

Figure 2.1.2-l Initial value p = 0.1, k = 1.99, a limit point, with screen dialogue.

For  each  g iven  k-va lue  we  ge t  d i s t inc t  p ic tures . If the final value is the point flp)  = 1, we

obtain a spiral track (Figure 2.1.2-1). In all other cases the horizontal and vertical lines tend

towards segments of the original curve, which correspond to limiting p-values. Clear ly  the
two vertical lines in Figure 2.1.2-2 represent two different p-values.
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Graphical Iteration

Start: hit <RETURN> key

Left >o
Right >1.5
Bottom >o
Top >1.5
Population >O.l
Feedback >2.4

End: hit <RETURN> key

Figure 2.1.2-2 Initialvaluep = 0.1, k = 2.4, two limiting points.

The distinct cases (limiting value 1, or n-fold cycles, Figures 2.1.2-1, 2.1.2-2)
are thus made manifest. For an overview it can be useful to carry out the first 50
iterations without drawing them, after which 50 iterations are carried out and drawn.

This process of graphical iteration can also be applied to other functions. In this
way we obtain rules, about the form of the graph of a function, telling us which of the
above two effects it will produce.

Computer Graphics Experiments and Exercises for $2.1.2

Exercise 2.1.2-1
Develop a program for graphical iteration. Try to generate Figures 2.1.2-1 and

2.1.2-2. Experiment with the initial value p = 0.1 and k = 2.5, 3.0. How many
limiting values do you get?

Exercise 2.1.2-2
Devise some other functions and apply graphical iteration to them.

2.2 Fig-trees Forever
In our experiments with the program MeaslesGraphic  you must surely have

noticed that the lines in the range 0 I k I 1 get closer and closer together, if we increase
the number of iterations (see Program 2.1 .1-l). Until now we have computed with small
values, in order not to occupy too much of the computer’s time. But now we will make
our first survey of the entire range. Figure 2.2.-l  shows the result of 50 iterations for
comparison with Figure 2.1.1-2.
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Figure 2.2--l Situation after the onset of oscillations, iteration number = 50.

Obviously some structure comes to light when we increase the accuracy of our
measurements (that is, the number of iterations). And it is also clear that the extra lines
in the range 0 I k 5 1 are transient effects. If we first carry out the iteration procedure
for a while (say 50 iterations) without drawing points, and then continue to iterate while
plotting the resulting points, the lines will disappear.

The above remarks are in complete agreement with our fundamental ideas in the
simulation of dynamical systems. We are interested in the ‘long-term behaviour’ of a
system under feedback (see Chapter 1). Program 2.2.-l shows how easily we can
modify our program MeaslesGraphic, in order to represent the long-term behaviour
more clearly.

Program Fragment 2.2-l

t* BEGIN: Problem-specific procedures *)
FUNCTION f (p, k : real) : real;
BEGIN
f:=p+k*p*  (l-p);

END;
PROCE:DURE  FeigenbaumIteration;

VPR
range, i zinteger;
population, deltaxPerPixe1  : real;

BEGIN
deltaxPerPixe1  := (Right - Left) / Xscreen;
FOR range := 0 TO Xscreen DO
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Figure 2.2-2 Print-out from Program 2.2-l.

l The name ‘Feigenbaum’ is  in  honour  of  the  physic is t  Mitchel l  Feigenbaum, 2 who
carr ied  out  the  p ioneer ing  research  descr ibed  in  th is  chapter .  We shal l  ca l l  any
pic ture  l ike  Figure  2 .2- l  a  Feigenbaumdiagram.

l In the program fragment we introduce two new variables I nv i s i b 1 e and
Visible, which in the example are given the value 50.

The resul ts  show a  cer ta in  independence of  the  in i t ia l  va lue  for  p, prov ided  we  do  no t
start with p = 0 or p = 1. You will probably have discovered that already. What
in teres ts  us  here  i s  jus t  the  resul t s  of  a  la rge  number  of  i te ra t ions . To s top  the  p ic ture
look ing  uns igh t ly ,  the  f i r s t  50  i t e ra t ions  run  ‘ in  the  da rk ’ .  Tha t  i s ,  we  do  no t  p lo t  the
results k,p. After that, a further 50 (or 100 or 200) iterations are made visible.

In  order  to  faci l i ta te  comparison wi th  Figure  2.2-  1 ,  you  can  se t  the  var iab les  in
Program 2.2-l as follows:

Invisible := 0; Visible := 10;

As regards the working of  the program, the fol lowing remarks should be made:
Input  data  are  read f rom the  keyboard and ass igned to  the  corresponding var iables

in theprocedure  Initialise. It is then easy to set up arbitary values from the
keyboard , However ,  the  program must  then be  in i t ia l ised on each run.  The type of  input

ZTmnsJafor’s  note: It is also Geman for ’ fig-tree’ , hence the section title.
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BEGIN
Feedback := Left + range*deltaxPerPixel;
population := 0.3;
FOR i := 0 to Invisible DO

BEGIN
population := f(population,  Feedback);

END
FOR i := 0 TO Visible DO

BEGIN
SetUniversalPoint  (Feedback, population);
population := f(population,  Feedback);

END;
END;

END;
(* END: Problem-specific procedures *)
(* -----------------------------------------------------*)

PROCEDURE Initialise;
BEGIN

ReadReal  ('Left >'r Left);
ReadReal  ('Right >'I Right);
ReadReal  ('Bottom >'r Bottom);
ReadReal  ('Top >'r Top)  ;
ReadInteger  ('Invisible >'r Invisible);
ReadInteger  ('Visible >'I, Visible);

END;

PROCEDURE ComputeAndDisplay;
BEGIN

EnterGraphics;
FeigenbaumIteration;
ExitGraphics;

END;

The new or modified parts of the program are shown in bold type. If we type in and run
this progam then it gives a print-out as in Figure 2.2.-2.  It shows for the ‘interesting’
range k > 1.5 a piece of the so-called Feigenbaum diagram.1

This program and picture will keep us busy for a while.

1  Transla~or’s  nofez  This is more commonly known as a bifurcation diagram.
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Program  Fragment 2.2-2
. . . . .
deltaxPerPixe1  := (Right - Left) / Xscreen;
FOR range := 0 to Xscreen DO

BE:GIN
Feedback := Left + range * deltaxPerPixe1;
DisplayFeedback  (Feedback);
population := 0.3;

Elsewherewewillintroduce aprocedureDisplayFeedback,  and thereby enlarge
ourexperimentalpossibilities. DisplayFeedback  displays the current value of k in
the  lower left comer of the screen. It will be useful later, to establish more accurately the
boundaries of interesting regions in the Feigenbaum diagram. To display text on the
graphics screen some computers (such as the Apple II) require a special procedure.
Other computers have the ability to display numbers of type re a 1  directly on the
graphics screen, or to display text and graphics simultaneously in different windows.

TheprocedureDisplayFeedback  can also  be omitted if it is not desired to
display numerical values on the screen. In this case DisplayFeedback  must be
deleted from the initial part of the main program, and also in the procedure
FeigenbaumIterationwhichca& it.

When the program runs correctly, you should use it to draw sections of the
Feigenbaum diagram. By choosing the boundaries of the windows suitably you can plot
pictures whose fine detail can scarcely be distinguished in the full diagram. A tiny part
of the picture can already contain the form of the whole. This astonishing property of the
Feigenbaum diagram, containing itself, is called self-similarity. Look for yourself for
further examples of self-similarity in the Feigenbaum diagram.

We should describe how the above program works in practice. Instructions appear
on the screen for the input of the necessary data. The data are always input by using the
<RETURN> key. The dialogue might, for example, go like this:

Start: <hit RETURN key
Left (>= 1.8) >2.5
Right (<= 3) >2.8
Bottom (>= 0) >0.9

Top (<=  1.5) >I.4
Invisible (>= 50) >50
Visible (>= 50) >50

The picture that arises from this choice of input data is shown in Figure 2.2-3.
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procedure used depends on the purpose of the program. With keyboard input, typing
errors are possible. Sometimes it is useful to insert fixed values into the program.

To draw Figure 2.2-2 on the screen on an g-bit home computer takes about 5-10
minutes. With more efficient machines (Macintosh, IBM, VAX, SUN, etc.) it is
quicker.

It is harder to describe these astonishing pictures than it is to produce them slowly
on the screen. What for small k converges so regularly to the number 1, cannot
continue to do so for larger values of k because of the increased growth-rate. The
curve splits into two branches, then 4, then 8, 16, and so on. We have discovered this
effect of 2, 4, or more branches (limiting values) by graphical iteration. This
phenomenon is called a period-doublingcascade,  (Peitgen and Richter 1986, p.7).

When k > 2.570 we see behaviour that can only be described by a new concept:
chaos. There are unpredictable ‘flashes’ of points on the screen, and no visible
regularity.

As we develop our investigations we will show that we have not blundered into
chaos by accident. We have witnessed the crossing of a frontier. Up to the point k  =  2
our mathematical world is still ordered. But if we work with the same formula and
without rounding errors, for higher values of k it is virtually impossible to predict the
outcome of the computation. A series of iterations beginning with the value p = 0.1,
and one beginning with p = 0.11, can after a few iterations become completely
independent, exhibiting totally different behaviour. A small change in the initial state can
have unexpected consequences. ‘Small cause, large effect’: this statement moreover holds
in a noticeably large region. For our Feigenbaum formula the value k = 2.57 divides
‘order and chaos’ from each other. On the right-hand-side of Figure 2.2-2 there is no
order to be found. But this chaos is rather interesting - it contains structure!

Figure 2.2-2 appears to have been drawn by accident. As an example, let us
consider the neighbourhood of the k-value 2.84. Here there is a region in which points
are very densely packed. On the other hand, there are also places nearby with hardly any
points at all. By looking carefully we can discover interesting structures, in which
branching again plays a role.

In order to search for finer detail, we must ‘magnify’ the picture. On a computer
this means that we want to display a window, or section, from the full picture 2.2-2 on
the screen.3  To do this we give suitable values to the variables Right, Left, Bottom,
and Top. The program user can input values from the keyboard. In that way it is
possible to change the window at will, to investigate interesting regions. If the picture is
expanded a large amount in the y-direction it becomes very ‘thin’, because the majority
of points lead outside the window. It then makes sense, by changing the variable
Visible, to increase the total number of points plotted.

We now investigate the precise construction of the Feigenbaum diagram, with the
aid of a new program. It is derived by a small modification of Program Fragment 2.2-  1.

31n  the choice of a window there is often a problem, to find  out the values for the edges. As a
simple tid we construct a bansparent  grid, which divides the screen into ten parts in each direction.
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Figure 2.2-4 Fig-tree with data: 2.5,2.8,0.9,  1.4,50,  100.

Figure 2.2-5 Fig-tree with data: 2.83,2.87,0.5,0.8,50,  100.

Exercise 2.2-3
Find regions in the Feigenbaum diagram around k = 2.8, where self-similarity can

be found.

Exercise 2.2-4
Try to discover ‘hidden structure’, when you increase the iteration number in

interesting regions. Think about taking small regions (and magnifying them).
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Figure 2.2-3 Section from the Feigenbaum diagram (see the following figures).

Figures 2.2-4 and 2.2-S represent such sections from the Feigenbaum diagram, as
drawn in Figure 2.2-3.

We also suggest that you try equations other than the Feigenbaum equation.
Surprisingly, you will find that quite similar pictures appear! In many cases we find that
the picture again begins with a line, and splits into 2,4,  8,... twigs. There is also another
common feature, which we do not wish to discuss further at this stage.

The stated values in Figures 2.2-4 and 2.2-5 are just examples of possible inputs.
Try to find other interesting places for yourself.

Computer Graphics Experiments and Exercises for $2.2

Exercise 2.2-l
Implement Program 2.2-l on your computer. Experiment with different values of

thevariablesvisible  and Invisible.

Exercise 2.2-2
Extend the program toincludeaprocedureDisplayFeeclback,  which during the

running of the program can ‘measure’ the k-values.
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f (pn) := pn + 1/2*k*(3*pnMinuslX(1-pnMinusl)-
pnMinus2*(1-pnMinus2));

Exercise 2.2-8
Investigate at which k+alues  branches occur.

2.2.1 Bifurcation Scenario - the Magic Number ‘Delta’
The splittings in the Feigenbaum diagram, which by now you have seen repeatedly

in your experiments, are called bifurcations. In the Feigenbaum diagram illustrated
above, some points, the branch points, play a special role. We use the notation ki for
these: kl, k2,  and so on. We can read off from the figures that k, = 2, k2  = 2.45, and
k3  = 2.544. You can obtain these results with some effort from Exercise 2.2-8.

It was the great discovery of Mitchell Feigenbaum to have found a connection
between these numbers. He realised that the sequence

kn-kn-1- , for n = 2,3,  . . .
kn+l -k”

converges to a constant value 6  (the Greek letter ‘delta’) when n tends to 00. Its decimal
expansion begins 6  = 4.669 . . . .

We have formulated a series of interesting exercises about this number 6  (Exercises
2.2.1-lff.  at the end of this section). They are particularly recommended if you enjoy
number games and are interested in ‘magic numbers’. Incidentally, you will then have
shown that 6  is a genuinely significant mathematical constant, which appears in several
contexts. This same number arises in many different processes involving dynamical
systems. For bifurcation problems it is as characteristic as the number K is for the area

Figure 2.2.1-1 Logarithmic representation from k = 1.6 to k = 2.569.
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Exercise 2.2-S
As regards the chaotic phenomena of Feigenbaum iteration, much more can be said.
‘The initial value leads to unpredictable behaviour, but on average there is a definite

result.’ Test this hypothesis by displaying the average value of a large number of results
as a graph, for k-values in the chaotic region.

See if you can confirm this hypothesis, or perhaps the contrary: ‘Chaos is so
fundamental that even the averages for k-values taken close together get spread out.’

Exercises 2.2-6
That after these explanations our investigation of the ‘fig-tree’ has not revealed all

its secrets, is shown by the following consideration:
Why must the result of the function f always depend only on the previous

p-value?
It is possible to imagine that the progenitors of this value ‘have a say in the matter’.

The value fn for the nth iteration would then depend not only on fn-l,  but also on
fn-2,  etc. It would be sensible if ‘older generations’ had somewhat less effect. In a
program you can, for example, store the most recent value as pn, the previous one as
pnMinus1,  and the one before that as pnMinus2. The function fcan then be viewed as
follows. We give two examples in Pascal notation.

f (pn) := pn + 1/2*k*  (3*pn*  (l-pn)  -
pnMinusl*  (1-pnMinus1)  ) ;

o r
f (pn) := pn +1/2*k*  (3*pnMinusl-pnMinus2)  *

(1-3*pnMinusl-pnMinus2  );
To start, pn, pnMinus  1, etc. should be given sensible values such as 0.3, and at each
stage they should obviously be given their new values. The k-values must lie in a rather
different range than previously. Try it out!

In the above print-out it goes without saying that other factors such as -1 and 3
and other summands are possible. The equations under consideration no longer have
anything to do with the original ‘measles’ problem. They are not entirely unknown to
mathematicians: they appear in a similar form in approximation methods for the solution
of differential equations.

Exercise 2.2-l
In summary we might say that we always obtain a Feigenbaum diagram if the

recursion equation is nonlinear. In other words, the underlying graph must be curved.
The diagrams appear especially unusual, if more generations of values are made

visible. This gives rise to a new set of functions to investigate, for which we can change
the series, in which we ‘worry about the important bend in the curve’ - which happens to
be the term expression* (1 - expression) intowhichwe substitute theprevious
value:
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powers of 10) into 60 parts, and draw three decades on the screen, there will be a figure
180 points wide.

If you also expand the scale in the vertical direction, you will have a good
measuring instrument to develop the computation of the kj-values.

Exercise 2.2.1-3
With a lot of patience you can set loose the ‘order within chaos’ - investigate the

region around k = 2.84. Convince yourself that 6  has the same value as in the range
k < 2.57.

Exercise 2.2.1-4
Develop a program to search for the kj-values  automatically, which works not

graphically, but numerically. Bear in mind that numerical calculations in Pascal rapidly
run into limitations. The internal binary representation for a floating-point number uses
23 bits, which corresponds to about 6 or 7 decimal places.

This restriction clearly did not put Feigenbaum off - he evaluated the
aforementioned constant 6  as 4.669 201660 910 299 097 . . . .

On some computers it is possible to represent numbers more accurately. Look it
up in the manual.

Exercise 2.2.1-5
Feigenbaum’s amazing constant arises not only when we follow the branching from

left to right (small k-values to large ones). The ‘bands of chaos’, which are densely
filled with points, also split when we go from large k-values to small ones. A single
connected band splits into 2, then 4, then 8, . . . . Compute the k-values where this
occurs.

Show that the constant 6  appears here too.

2.2.2 Attractors and Frontiers
The mathematical equation which lies at the basis of our first experiment was

formulated by Verhulst as early as 1845. He studied the growth of a group of animals,
for which a restricted living space is available. In this interpretation it becomes clear what
a value p > 1 means. p = 100% means that every animal has the optimum living space
available. More than 100% corresponds to overpopulation. The simple calculations we
have performed for the measles problem already show how the population then develops.
For normal values of k the population is cut back until the value 1 is reached. However,
the behaviour is different if we start with negative or large numbers. Even after many
steps the population no longer manages to reach 1.

Mathematicians, like other scientists, habitually develop new ideas in order to attack
new and interesting phenomena. This takes us a little way into the imposing framework
of technical jargon. With clearly defined concepts it is possible to describe clearly
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and circumference of a circle. We call this number the Feigenbazun  number. Mitchell
Feigenbaum demonstrated its universality in many computer experiments. 4

The higher symmetry and proportion that lies behind the above is especially
significant if we do not choose a linear scale on the k-axis. Once the limiting value k,
of the sequence k,, k2,  k3,  . . . is known, a logarithmic scale is preferable.

Computer Graphics Experiments and Exercises for $2.2.1

Exercise 2.2.1- 1
The Feigenbaum constant 6  has proved to be a natural constant, which occurs in

situations other than that in which Feigenbaum first discovered it. Compute this natural
constant as accurately as possible:

6=lim kIl-k”-l
kIHcm  n+l -k ’II

In order to work out 6, the values kj  must be calculated as accurately as possible. Using
Program Fragments 2.2-l and 2.2-2 you can look at the interesting intervals of k and
p, and pursue the branching of the lines. By repeatedly magnifying windows taken
from the diagram you can compute the k-values.

Near the branch-points, convergence is very bad. It can happen that even after 100
iterations we cannot decide whether branching has taken place.

We should henceforth make tiny changes to the program
l to make the point being worked on flash, and
l to avoid choosing a fixed iteration number at the start.
It is easy to make a point flash by changing its colour  repeatedly from black to white and
back again.

We can change the iteration number by using a different loop construction. Instead
o f

FOR counter := 1 to Visible DO
we introduce a construction of the form

REPEAT UNTIL Button;5

Exercise 2.2.1-2
Change the Feigenbaum program so that it uses a logarithmic scale for the k-axis

instead of a linear one. Posit ions k should be replaced by -ln(k,-k)  measured from
the right.

For the usual Feigenbaum diagram the limit k,  of the sequence kl, k2,  k3,  .  .  .
has the value 2.570. If, for example, we divide each decade (interval between successive

4Tbe universality was proved mathematically by Pierre Collet, Jean-Pierre Eckmann,  and Oscar
Lanford (1980).
51nTurboPascalyoumustuse  REPEAT UNTIL Keypressed;
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attraction, of the strange attractor. We will see that these boundaries do not always take
such a smooth and simple form. And they cannot always, as in the Feigenbaum
diagram, be described by simple equations. The problem of the boundaries between
attracting regions, and how to draw these boundaries, will concern us in the next chapter.

In Figure 2.2.2-  1 we again show the Feigenbaum diagram for the fist  quadrant of
the coordinate system. We have superimposed the basin of attraction of the attractor.

kl k2  k3

Figure 2.2.2-l Basin of attraction for the Feigenbaum diagram.

If you are interested in how the attractor looks and what its boundaries are when k is less
than 0, try Exercise 2.2.2-2 at the end of this section.

Computer Graphics Experiments and Exercises for $2.2.2

Exercise 2.2.2-l
Show that ~+k*p*(l-p) > 0, p #  0, k # 0 implies that p < (k+l)/k.

Exercise 2.2.2-2
So far we have described all phenomena in the case k > 0. What happens for

k I 0 the reader/experimentalist must determine. To that end, three types of problem
must be analysed:
l In which k,p-regions do we find stable solutions (that is, solutions not tending to

-w)?
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defined circumstances. We will now encounter one such concept.
In the absence of anything better, mathematicians have developed a concept to

capture the behaviour of the numbers in the Feigenbaum scenario. The final value p = 1
is called an attractor, because it ‘pulls the solutions of the equations’ towards itself.

This can be clearly seen on the left-hand side of Figure 2.1.1-2. However many
times we feed back the results p,,  into the Feigenbaum equation, all the results tend
towards the magic final value 1. The p-values are drawn towards the attractor 1. What
you may perhaps have noticed already in your experiments is another attractor, -00
(minus infinity). At higher values (k > 2) of the feedback constant, the finite attractor is
not just the value 1. Consider the picture of the Feigenbaum diagram: the whole figure
is the attractor!

Each sequence of p-values which starts near the attractor invariably ends with a
sequence of numbers that belong to the attractor, that is, the entire figure. An example
will clarify this. IntheprogramMeaslesNumber start with p = 0.1 and k = 2.5.
After about 30 iterations the program stops. From the 20th iteration on we see these
numbers over and over again: . . . 1.2250, 0.5359, 1.1577, 0.7012, 1.2250, 0.5359,
1.1577,0.7012,  . . . etc. It is certainly not easy to understand why this happens, but from
the definition it is undeniable that these four successive values determine the attractor for
k = 2.5. The attractor is thus the set of those function values which emerge after a
sufficiently large number of iterations. A set like that illustrated in Figure 2.2-2 is
called a strange attractor.

In the region k > 3 there is just the attractor -00.
Whenever a function has several attractors, new questions are raised:

. Which regions of the kq-plane belong to which attractor? That is, with which
value p must I start, so that I am certain to reach a given objective - such as
landing on the attractor l?

. With which values should I start, if I do not wish to end at -m?
Because each sequence of numbers is uniquely determined, this question has a

unique answer. Thus the k,p-plane is divided into clearly distinguished regions, whose
boundaries are of considerable interest.

For the Feigenbaum diagram this problem can be solved in a relatively simple and
clear fashion. But other cases, which we will encounter later, lead to surprising results.

For the above function
fW = p+k*p*(l-P)

we can calculate the boundaries mathematically. Experimenting with the program
MeaslesNumber  should make it apparent that it is best to take negative p-values.
Only then is there a chance of landing on the attractor.

This means that gP)  must be > 0. From the equation (see Exercise 2.2.2-l at the
end of this section) this condition holds when

p < (k+l)/k.
Thus near p = 0 we have found the two boundaries for the catchment area, or basin of
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Figure 2.2.3-l Feigenbaum landscape with the data 0, 3,0,  1.4, 50, 500.

The box-number is counted from the right and the contents are drawn upwards,
joining neighbouring  values by a line. The result is a curve resembling a mountain
range, which describes the distribution of p-values for a given k-value.

To draw a picture with several k-values, we combine several such curves in one
picture. Each successive curve is displaced two pixels upwards and one pixel to the right.
In this way we obtain a ‘pseudo-three-dimensional’ effect. Of course the horizontal
displacement can be to the left instead. In Figure 2.2.3-3 ten such curves are drawn.

To improve the visibility, the individual curves must be combined into a unified
picture. To achieve this, we do not draw the curves straight away. Instead, for each
horizontal screen coordinate (x-axis) we record in another field (in Pascal it is an array,
just like the ‘boxes’) whichever of the previous vertical y-coordinates has the largest
value. Only this maximal value is actually drawn.

With these hints you should be in a position to develop the program yourself.
A solution is of course given in 3  11.3.



B e t w e e n  O r d e r  a n d  C h a o s :  F e i g e n b a u m  D i a g r a m s 51

I What form does the attractor have?
I Where are the boundaries of the basins of attraction?

Exercise 2.2.2-3
We obtain a further extension of the regions to be examined, and hence extra

questions to be answered, if we work with a different equation from that of Verhulst.
One possibility is that we simplify the previous formula for f(p)  to

f(p)  = k*p*(p-I).
This is just the term that describes the change from one generation to the next in the
Verhulst equation. Investigate, for this example in particular, the basins of attraction and
the value of 6.

Exercise 2.2.2-4
With enough courage, you can now try other equations. The results cannot be

anticipated in advance, but they tend to be startling. Examples which provide attractive
pictures and interesting insights are:
l f(p)  = k*p+p*(l  -p)  in the region 4 5 k I 7,
+ f(p) = k*p*(l-p*p) and other powers,
l f(p)  = k*sin(p)*cos(p)  or square (cube, nth) root functions,
m f(p)  = k*(l - 2*1  p-O.5 I) where 1 x I means the absolute value of x.

2.2.3 Feigenbaum Landscapes
Even the simple fig-tree poses several puzzles. In the ‘chaotic regime’ we can see

zones where points lie more thickly than in others. You can get a nice overview by
representing the frequency with which the p-values fall inside a given interval. By
putting the results together for different k-values, you will get a Feigenbaum landscape
(Figures 2.2.3-l and 2.2.3-2).

These Feigenbaum landscapes can be made to reveal further interesting structure.
We suggest you experiment for yourself. It is naturally best if you develop the program
yourself too, or at least try it out with your own parameter values. To help you in this
task, we now provide some tips for the development of a Feigenbaum landscape
program.

The appropriate range of values from 0 to 1.4 for f@)  must be divided into a
certain number of intervals. This number of course depends on the size of the screen
display, which we have set using the constants xscreen  and ~screen. In the
program, for example, we have 280 ‘boxes’, one for each interval.

For a given k-value the Feigenbaum program begins as usual. When a value of
fTp)  falls within a given interval, this is noted in the corresponding box. After a
sufficiently large number of iterations we stop the computation. Finally the results are
displayed.
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l The interesting cases are those in which the results of our computations do not tend
to m or -m.

+ The set of all results that can be obtained after sufficiently many iterations is called
an anractor.

l The graphical representation of attractors leads to pictures, which contain smaller
copies of themselves.

. Three new concepts - attractor, frontier, and bifurcation - are connected with
these mathematical features.

We began with the central idea of ‘experimental mathematics’:
. These important concepts in the theory of dynamical systems are based on taking an

arbitrary mathematical equation and ‘feeding it back’ its own results again and
again.

By choosing different starting values we repeatedly find the same results upon iteration.
With the same initial values we always obtain the same results. There are however some
deep and remarkable facts to be observed:

In the Feigenbaum diagram we can distinguish three regions:
+ k<  2 (Order);
. 2 c k < 2.57 (Period doubling cascade: 0 I p 5 1.5);
. k 2 2.57 (Chaos).
Under certain conditions, moreover, we cannot predict what will happen at all.
Insignificant differences in the initial value lead to totally different behaviour, giving
virtually unpredictable results. This ‘breakdown of computability’ happens around
k = 2.57. This is the ‘point of no return’ , dividing the region of order from that of chaos.

To avoid misunderstandings, we must again emphasise that the above remarks refer
to a completely deterministic system. But - from a practical point of view - the chaos
effect produces the bitter aftertaste of indeterminacy.

Mathematicians try to find models that can describe the ‘long-term behaviour’ of a
system. The Feigenbaum scenario exemplifies the behaviour of the simplest nonlinear
system. The message is that any nonlinear system may exhibit similar phenomena.
Complex systems, depending on many parameters, can under certain conditions switch
from stable conditions to instability. We speak of chaos.

Of course we want to keep on the track of this essentially philosophical question. It
seems that there is some deep connection between order and chaos, which we cannot yet
makeexplicit.

One thing is certain.
As a result of our previous investigations, order and chaos are two sides to the

same coin - a parameter-sensitive classification.
Enough theory!
In the following chapter we will return to the question. But now you must try out

some exercises for yourself. Good luck with your experiments!
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Figure 2.2.3-2 Feigenbaum landscape with the data 3, 2.4, 1.4, 0, 50,  500.

Computer Graphics Experiments and Exercises for $2.2.3

Exercise 2.2.3-l
Develop a program to draw Feigenbaum landscapes. Use  the resulting

‘three-dimensional measuring instrument’ to investigate interesting sections of the
Feigenbaum diagram. We have already given hints for the main steps above.

Exercise 2.2.3-2
Ceneralise the pseudo-three-dimensional landscape method, so that other formulas

can be represented in the same way.

2.3 Chaos - Two Sides to the Same Coin
In the previous chapter you were confronted with many new concepts.

Furthermore, your own experiments will certainly have given you more to think about, so
that the basic idea of the first chapter may have been somewhat obscured. We will
therefore discuss the initial consequences of our investigations, before we embark on new
adventures. What have we discovered?
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3.1 The Strange Attractor
Because of its aesthetic qualities, the Feigenbaum diagram has acquired the nature

of a symbol. Out of allegedly dry mathematics, a fundamental form arises. It describes
the connection between two concepts, which have hitherto seemed quite distinct: order
and chaos, differing from each other only by the values of a parameter. Indeed the two
are opposite sides of the same coin. All nonlinear systems can display this typical
transition. In general we speak of the Feigenbaumscenario (see Chapter 9).

Indeed the fig-tree, although we have considered it from different directions, is an
entirely static picture. The development in time appears only when we see the picture
build up on the screen. We will now attempt to understand the development of the
attractor from a rather different point of view, using the two dimensions that we can set
up in a Cartesian coordinate system. The feedback parameter k will no longer appear in
the graphical representation, although as before it will run continuously through the range
OIk  13. That is, we replace the independent variable k in our previous
(k,p)-coordinate system by another quantity, because we want to investigate other
mathematical phenomena. This trick, of playing off different parameters against .each
other in a coordinate system, will frequently be useful.

From the previous chapter we know that it is enough to choose k between 0 and 3.
There are values between k = 1.8 and k = 3 at which we can observe the period-
doubling cascade and chaos. In order to investigate the development of the Feigenbaum
diagram in terms of the sequence

pm1  = p,i+k*pn*U-PA
we choose as coordinate system the population values p,,  and p,,+l  which follow each
other in the sequence. To the right we draw the final value pn  of the previous iteration,
and we draw the result p,,+l  = f&J vertically. We know this construction already
from graphical iteration (see Chapter 2.1.2).

If you have already set up the program Feigenbaum then the modifications
required are relatively easy. They relate solely to the part that does the drawing. Instead
of the coordinates (k,p)  we must now display (p,  qP,k))  on the screen. In the
program fragment only the following part changes:

FOR i = 0 to Visible DO
BEGIN

SetUniversalPoint  (population, f(population,  Feedback));
population := f(population,  Feedback);

END;
Nothing else need be altered.

You should make this modification to your existing program and see what happens.
The final result (Figure 3.1-1) can only convey an incomplete impression of the
dynamical development that occurs during its generation. You are advised to observe the
gradual growth of this figure on the screen. If we choose the same scale on both axes the
picture begins (for k a little larger than 0) in a less than spectacular way. The diagonal
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For small k-values we soon run into a boundary, which of course lies on the
diagonal of the @,Q))-coordinate  system. We can observe the periods 2, 4, 8, etc.
When we reach the chaos-value k= 1.6 things get very exciting. At the first instant a
parabola suddenly appears. Furthermore, it is not evenly filled, as we have seen already.
It has an ‘internal structure’.

Let us once more collect our conclusions together. The geometric form of the
attractor arises because we draw the elements of a sequence in a coordinate system. T o
do this we represent the starting value p in one direction, and in the other the result gP)
of the iteration for a fixed value of k. We first notice that the values for 0) do not
leave a certain range between 0 and 1.4. Furthermore, we notice genuine chaos,
revealing either no periodicity at all or a very long period. Here we know that more and
more points appear in a completely unpredictable way. These points form lines or hint at
their presence. Under careful observation the attractor seems to sit on a parabolic curve,
defined by numerous thin lines. We want to take a closer look at that!

Figure 3.1-2 The Verhulst attractor for k = 1.60.

The changes in our previous program that are needed to generate the Verhulst attractor are
again very simple:

Program Fragment 3.1-1
(* BEGIN: problem-specific procedures *)
PROCEDURE VerhulstAttractor;

VARi : integer;



Strange Attractors 5 7

straight lime, which fit appears, expresses the fact that the underlying value is tending to
a constant. Then p = 0). After k = 2 we obtain two alternating underlying values.

Data: 0,3,0,  1.4,50,50  for 0 I k I 3

Figure 3.1-1 Trace’ of the parabola-attractor in the p&)-plane.

The figure grows in two directions. Low starting values for the formula produce a
higher result and then return. The curious picture here has the form of a thin curved line
and runs roughly perpendicular to the original bisector. For periods 4 and 8 - when the
figure grows in 4 or 8 places - it is also easy to see how the starting value p and the
result RJJ) are connected Thus we have built ourselves yet another measuring or
observing instrument, with which we can watch the temporal development of period-
doubling. As soon as we enter the chaotic region, a well-known mathematical object
appears: the parabola.

If you want to draw this and similar pictures, please take a look at Exercises 3-l
and 3-2 at the end of this chapter. However, you will need a certain amount of patience,
because in Figure 3.1-  1 it takes some time, after the diagonal line is drawn, before points
scatter on to the parabola.

In order to delve more deeply into the ‘history’ of the sequence, it is necessary to
link together the results not just of one, but of several previous values. The investigation
of the so-called Verhulst attractor (Figure 3.1-2) is especially interesting. This is the
attractor corresponding to the equation

f(pn)  = pn + 1/2*k*(3*pn*(l-pn)-pnMinusl*(l-pnMinus1))
which we have already encountered in $2.2.



60 Dynamical Systems and Fractats

(Figure 3.1-3 ff.). By looking closely enough we encounter the same structure
whenever we magnify the attractor. This structure is repeated infinitely often inside itself
and occurs more often the more closely we look. The description of this ‘self-similarity’,
and the aesthetic structure of the Verhulst attractor already referred to, are developed
further in exercises at the end of the chapter.

Figure 3.1-3 Self-similarity at each step (top left projections of the attractor).

As already mentioned at the end of $2.1, we have wandered some way from our
original problem (‘measles in the children’s home’). We will now explain the
mathematical background and some possible generalisations. The equation on which the
Verhulst attractor is based is well known as a numerical procedure for the solution of a
differential equation. By this we mean an equation in which a function y and one of
more of its derivatives occur, either linearly or nonlinearly. You remember: the first
derivative y’  describes how rapidly y changes. The second derivative y”  describes
how y’  changes, and hence the curvature of y. The simplest form for a nonlinear
differentialequationis

f = Y*(l-Y) = d.Yh
The symbol g(y), which we use for y*(l-y),  will simplify the later description. A
nonlinear differential equation is an equation in which the function y occurs
quadratically, to a higher power, or for example as a trignometric  expression.

Numerical methods are known for solving such equations. Starting from an initial
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pn, pnMinus1,  pnMinus2, oldvalue:  real;

59

FUNCTION f(pn : real) : real;
B E G I N

pnMinus1 := pnMinus2;
pnMinus2  := pn;
f := pn + Feedback/2*(3*pn*(l-pn)  -

pnMinusl*(l-pnMinus1));
END;

BEGIN
pn := 0.3; pnMinus1 := 0.3; pnMinus2 := 0.3;
FOR i := 0 TO Invisible DO

pn := f(pn);
REPEAT

oldValue  := pn;

w := f(pn);
SetUniversalPoint  (pn, oldValue);

UNTIL Button;
END;

The value of Feedback is constant during each run of the program, e.g. k = 1.6. I n
order to experiment with different k-values, the variable Feedback - and also Left ,
Right,Bottorn,Top  -mustbeinput.

Using this VerhulstAttractor  program we draw, in the first instance, the
whole attractor, when p and i(p)  lie between 0 and 1.4 (see Exercise 3-3). If we
choose a different range of values, we get different sections of it. To begin with, we
look at places where there seems to be just a line, and then at the ‘nodes’ where the ‘lines’
meet or cross. These lines break up when they are magnified. In fact, they are really
‘chains’ into which the points arrange themselves. The picture resembles an aerial
photograph of a large number of people walking in the snow along pm-defined tracks.
The starting-point and destination are nowhere to be seen. By looking closely enough
we can distinguish a faint track (along which the points/people lie more thickly) and
parallel to it a wider one, on which the points are distributed more irregularly. A
magnification of the wider track shows exactly the same structure. The same even
happens if we magnify the thin track by a larger amount. If we examine the ‘nodes’ more
carefully, we obtain something we have already encountered: a smaller version of the
same attractor. This remarkable behaviour has already arisen in the Feigenbaum diagram.
Many sections of the diagram produce the entire figure. This is the phenomenon of
self-similarity again.

The strange Verhulst attractor exhibits a structure assembled from intricate curves
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3.2 The HCnon  Attractor
We can find formulas for other graphically interesting attractors, without needing

any specialmathematical background.
Douglas Hofstadter (1981) describes the H&non  attractor. On page 7 he writes: ‘It

refers to a sequence of points (x,,,y,J generated by the recursive formulas
xml = y,-a*+1

yIl+1=  b*%r
For the sequence illustrated the values a = 7/5 and b = 3/10  were taken; the starting
values were ~0 = 0 and yu  = 0.’

Contemplate the Henon  attractor of Figure 3.2-  1.

Figure 3.2-l The H&non  attractor

Like the Feigenbaum diagram, the H&non  attractor should not be thought of as just a
mathematical toy which produces remarkable computer graphics. In 1968, Michel
H&on,  at the Institute for Astrophysics, Paris, proposed taking such simple quadratic
mappings as models, to carry out computer-graphical simulations of dynamical systems.
In particular, he was thinking of the study of the orbits of asteroids, satellites, and other
heavenly bodies, or of electrically charged particles in particle accelerators.

During the period 1954-63 the mathematicians Kohnogorov, Arnold, and Moser
developed a theory centred  around the so-called KAM theorem. In it, they studied the
behaviour of a stable dynamical system - such as, for example, a satellite circling the
Earth - to clarify what happens when tiny external forces act on it. Planets or asteroids
which orbit round the Sun often undergo such perturbations, so that their orbits are not
truly elliptical. The KAM theorem attempts to decide whether small perturbations by
external forces can lead to instability - to chaos - in the long-term behaviour. For
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value yo,  we try to approximate the equation in small steps. The rapidity with which we
approach the limiting value (if one exists) is represented by the symbol k.

r :
e-*

.: c.
. ..a..

. . *.
c:

Figure 3.1-4 Self-similarity at each step (detail from the ‘node’ to the right of
centre) .

The simplest technique, known as Euler’s method, is described e.g. in Abramowitz
and Stegun (1968):

Y,I = yn+k*Yn+W2).
The final term expresses the fact that the equation is not exact, and that the error is of the
order of magnitude of k2. Since we have previously considered many iterations, the
error interests us no further. The estimate is simplified if instead of f/n  = g(y,) =
yn*(  1 -y,J  we substitute

yn+l=  y,+k*in  = y,+k*&Q  = y,,+k*y,*U-y,).
Thus we have recovered our old friend, the Feigenbaum formula, from $2.2!

There now opens up a promising approach to interesting graphical experiments:
choose a differential equation that is easy to compute, and try to approximate the solution
by a numerical method. The numerical method, in the form of an iterative procedure, can
then be taken as the basis of the graphical experiment.

In the same way we can derive the equation for the Verhulst attractor. The
starting-point is the so-called two-step Adams-Bashforth method. It is somewhat
more complicated than the Euler method (see Exercises 3-6 and 3-7).
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FOR j = 1 to orbitNumber  DO
BEGIN

i := 1;
WHILE i <= pointNumber  DO
BEGIN

IF (abs(xOld)<=  maxReal)  AND (abs(yOld)<=  maxReal)
THEN
BEGIN

xNew  := xOld*cosA  - (yOld  - xOld*xOld)*sinA;
yNew := xOld*sinA  + (yOld  - xOld*xOld)*cosA;
ok1  := (abs(xNew-Left) < maxInt/deltaxPerPixel);
ok2 := (abs(Top-yNew)  < MaxInt/deltayPerPixel);
IF ok1  AND ok2 THEN
BEGIN

SetUniversalPoint  (xNeW,  yNew);
END;
xOld := xNew;
yOld := yNew;

END;
i := i+l;

END; {WHILE i}
xOld  := x0 + j * dx0;
yOld := y0 + j * dy0;

END; {FOR j := . ..)
END;
(* END : problem-specific procedures *)

3.3 The Lorenz Attractor
Five years before Michel  H&non  began working in Paris on models for simulating

dynamical systems, equally  exciting things were happening elsewhere. In 1963, working
in a completely different area, the American Edward N. Lorenz wrote a remarkable
scientificarticle.

In his article Lorenz described a family of three particular differential equations1
with parameters a, b, c :

Pi  = a*(y-x)
y’ = b*x-y-x*z
z! = x*y-oz.

Numerical analysis on a computer revealed that these equations have extremely

‘We write the first derivatives with respect to time as x’, y’. z’, etc. For example x’  will be written
in place of dx/dt.
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instance an asteroid can be disturbed in its path by the gravitational force of Jupiter.
Here one talks of resonance. Such resonances occur when the ratio of the orbital periods
is a rational number. If, for example, two of Jupiter’s orbits take the same time as five
orbits of an asteroid, we have the case of a 2:5resonance.

In the title picture of Chapter 3 we see (upper figure) such a computer simulation,
where in the course of the simulation ever stronger external influences are imposed. The
inner curves elucidate the influence on the orbital behaviour of small external
disturbances. Each point in the drawing shows the position of the asteroid after a further
revolution. For small disturbances only small differences can be seen, and the system
remains stable. When the influence of the external disturbance increases, we observe six
‘islands’. These represent a I:6  resonance. A body, such as for instance an asteroid,
having l/6  the orbital period of Jupiter, would find itself in such a resonance band.

Further out, we see dotted regions of instability. The behaviour of an asteroid in
this region is no longer predictable, because small external influences can have large
effects. It is even possible for the asteroid to be catapulted out of its orbit into the
‘emptiness’ of the universe. Scientists believe that the gaps in the asteroid belt can be
explained by this mechanism.

This brief explanation should make clear the connection between such simple
formulas, and deep effects in the field of macroscopic physics. Further explanation can
be found in physics texts or in Hughes (1986).

The formula to generate the title picture of Chapter 3 is as follows:
xwl = x,*cos(w)  - (y,-x,z)*sin(w)
yrrtl  = x,*sin(w) - (yn-xn2)*cos(w).

Here w is an angle in the range 0 I w I IC.
Compare the structure of this formula with the one described by Hofstadter at the

start of this chapter. A program fragment for generating (other) H&non  attractors is as
follows:

Program Fragment 3.2-l
PROCEDURE HenonAttractors;
(* x0, ~0,  dx0,  dy0  global variables *)

VAR
COSA,  sinA  : real;
xNew,  yNew,  xOld,  yOld  : real;
deltaxPerPixe1,  deltayPerPixe1  : real;
okl,  ok2 : boolean;
8
1, 3 : integer;

BEGIN
cosA  := cos (phaseAngle);  sir-A  := sin (phaseAngle);
xOld := x0; yOld  := y0; {starting point of first orbit]
deltaxPerPixe1 := Xscreen/(Right-Left);
deltayPerPixe1 := Yscreen/(Top-Bottom);
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The program fragment that generates the figure is like this:

Program Fragment 3.3-l
(* START : Problem-specific procedures
PROCEDURE LorenzAttractor;

VAR x, y, 2 : real;
PROCEDURE f;

CONST
delta = 0.01;

VAR
dx, dy, dz : real;

BEGIN
dx  := lo*(y-x);

dy := x*(28-2)-y;
dz := x*y  - (8/3)X2;
x := x + delta*dx;

Y := y + delta*dy;
z := z + delta*dz;

END;
BEGIN

“)

x := 1; y := 1; z := 1;
f;
SetUniversalPoint  (x,z);
REPEAT

f;
DrawUniversalLine  (x, z);

UNTIL Button;
END;
(* END : Problem-specific procedures *)

The behaviour which Lorenz  observed on the screen in 1963 can be described in the
following manner. The wandering point on the screen circles first round one of the two
foci around which the two-lobed shape develops. Suddenly it changes to the other side.
The point wanders on, drawing its line, until suddenly it switches back to the other side
again. The behaviour of the path, in particular the change from one lobe to the other, is
something that we cannot predict in the long run.

Even though this simple model is not, broadly speaking, capable of explaining the
complex thermodynamic and radiative mechanisms that go on in the atmosphere, it does
establish two points:
. It illustrates the basic impossibility of precise weather-prediction. Lorenz talked

about this himself, saying that the ‘fluttering of a butterfly’s wing’ can influence
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complicated solutions. The complicated connections with and dependences  upon the
parameters could at first be elucidated only through computer-graphical methods.

The interpretation of the equations was exciting. In particular Lorenz sought - and
found - a mathematical description which led to a rational explanation of the
phenomenon of unpredictability of the weather in meteorology.

The idea of the model is as follows. The Earth is heated by the Sun. Part of the
energy received at the Earth’s surface is absorbed and heats the atmosphere from below.
From above, the atmosphere is cooled by radiation into space. The lower, warmer layers
of air want to rise upwards, and the upper, colder layers want to fall downwards. This
transport problem, with oscillating layers of cold and warm air, can lead to turbulent
behaviour in the atmosphere.

The picture’s remarkable appearance cannot fully capture the surprising behaviour
that occurs while it is being drawn on the screen. In consequence it is very important
that you program and experiment for yourself.

Having said that, let us look first at some pictures of the Lorenz attractor.

Figure 3.3-l Lorenz attractor for a = 10, b = 28, c = 8/3,  and screen dimensions
-30, 30, -30, 80.

Figure 3.3-2 Lorenz attractor for a = 20, b = 20, c = 8/3,  and screen dimensions
-30, 30, -30, 80.
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Exercise 3-5
Make a ‘movie’ in which a sequence of magnified sections of the attractor are

superimposed on each other.

Exercise 3-6
The two-step Adams-Bashforth method can be written like this:

1
Y,l = Yn + z*~*(3*g&MYn-1)).

If we substitute &) = p(  1 -y) we obtain
KYJJ  = Y~+~*k*(3*Y,*(l-Yn)-Yn-**(l-Y,-1)).

If we use the current variable p and the previous value pnMinus  1, we get the familiar
formula

f(pn)  = pn+l/2*k*(3*pn*(l-pn)-pnMinusl*(l-pNminus1)).
Try out the above method to find solutions of differential equations, and also other
variations on the method, such as:

Y,,+I = yn-I  + 2*k*&a)
Y,,+I = Y~+~~~*MY,,MY~-IN
Y,,+~  = ya+k/24*(55*go;1)-S9*~a-l~37*~a-2)-9*~a-3)

or whatever else you can find in your mathematical textbooks.
Calculate Feigenbaum diagrams and draw the attractor in @,iip))-coordinates.

Exercise 3.7
We will relax the methods for solving differential equations further. The constants

3 and -1 appearing in the Adams-Bashforth method are not sacred. We simply change
them.

Investigate the attractors produced by the recursion formula
f(p) = p + 1/2*k*(a*p*(l-p)+b*pnMinusl*(l-pnMinus1)).

Next work out, without drawing anything, which combinations of a and b can occur
without the value fTp)  becoming too large. Put together a ‘movie’ of the changes in the
attractor, occurring when the parameter a alone is varied from 2 to 3, with a = 3, b =
-1 as the end point.

Exercise 3-8
Write a program to draw the H&non  attractor. Note that you do not have to use the

same scale on each coordinate axis. Construct sections of this figure. Change the
values of a and b in the previous exercises. Get hold of the article by Hofstadter (1981)
and check his statements.

Exercise 3-9
Experiment with the system of equations for the ‘planetary’ H&non  attractor. Data

for the title picture, for instance, are:
phaseAngle := 1.111; Left := -1.2, Fight := 1.2;
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l

the weather. He called it the butterfly &cl.
It raises the hope that very complex behaviour might perhaps be understood
through simple mathematical models.

This is a basic assumption, from which scientists in the modem theory of dynamical
systems start. If this hypothesis had been wrong, and had not on occasion already
proved to be correct, everybody’s scientific work in this area would have been pointless.

As far as we are concerned, it remains true that certain principles on the limits to
predictability exist, which cannot be overcome even with the best computer assistance.

To understand and pin down this phenomenon is the aim of scientists in the
borderland between experimental mathematics, computer graphics, and other sciences.

Computer Graphics Experiments and Exercises for Chapter 3

Exercise 3 - 1
Modify the program Feigenbaum so that you can use it to draw the parabola

attractor. Investigate this figure in fine detail. Look at important k-intervals, for
example those with a uniform period. Look at the region near the vertex of the parabola,
magnified.

Exercise 3-2
Carry out similar investigations using the number sequences described above in

$ 2 . 2 .

Exercise 3-3
Starting from Feigenbaum develop a Pascal program to draw the Verhulst

attractor with the value k = 1.6, within the ranges 0 I p I 1.4 and 0 I fTp)  I 1.4. Start
with p = 0.3 and do not draw the first 20 points. Compare your result with Figure
3.1-2.

Investigate different sections from this figure, in which you define the boundaries
of the drawing more closely.

Exercise 3-4
Make an animated ‘movie’ in which several pictures are shown one after the other.

The pictures should show a section of the attractor at increasingly large magnification.
We recommend a region near the ‘node’ with coordinates p = 0.6, I@)  = 1.289. Start
with the entire picture. In this connection we offer a warning: the more extreme the
magnification, the more points you must compute that lie outside the region being drawn.
It can take more than an hour to put the outline of the attractor on the screen.
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Bottom := -1.2; Tcp  := 1.2; x0 := 0.098; y0 := 0.061;
dX0 := 0.04; dy0 := 0.03; orbitNuder := 40;
pointNumber  := 700;

further suitable data can be  found in Hughes (1986).

Exercise 3-10
Experiment with the L,orenz  attractor. Vary the parameters a, b, c. What

influence do they have on the form of the attractor?

Exercise 3-11
Another attractor, called the R&sler  attractor, can be obtained from the following

formulas:
‘d = -cy+z)
J/  = x+ty/5)
.?!  = l/5  + 24x-5.7).

Experiment with this creature.
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In the previous chapters we saw what the 140-year-old  Verhulst formula is capable of
when we approach it with modem computers. Now we pursue the central ideas of self-
similarity and chaos in connection with two further mathematical classics. These are
Newton’s method for calculating zeros, and the Gaussian plane  for representing
complex numbers.

In both cases we are dealing with long-established methods of applied
mathematics. In school mathematics both are given perfunctory attention from time to
time, but perhaps these considerations will stimulate something to change that.

4.1 Newton’s Method
A simple mathematical example will demonstrate that chaos can be just around the

next comer.
Our starting point is an equation of the third degree, the cubic polynomial

y = &x) = (x+1)*x*(x-l)  = x3-x.
This polynomial has zeros at XI  = -1, x2 = 0, and x3 = 1 (Figure 4.1-1).

Figure 4.1-1 The graph of the function fix) = (x+1)*x*(x-l).

In order to introduce chaos into the safe world of this simple mathematical equation, we
will apply the apparently harmless Newton method to this function.

Sir Isaac Newton was thinking about a widely encountered problem in mathematics:
to find the zeros of a function, for which only the formula is known. For equations of
the first and second degree we learn simple methods of solution at school, and
complicated and tedious methods are known for polynomials of degree 3 or 4. For
degree 5 there is no simple expression for the solution in closed form. However,
complicated equations like these, and others containing trigonometric or other functions,
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When we get close enough to the zero for our purposes, we stop the calculation. A
criterion for this might be, for example, that f(x) is close enough to zero (If( I 10-6)
or that x does not change very much (Ix,-xn+tl I 10-b).

For further investigation we return to the above cubic equation
fix)  = x3-x

for which
f’(x) = 3x2-1.

Then we compute the improved value xlnt from the initial value x, using
xHl = x0 - (x,3-x,)/(3x,2-1).

If we exclude2 the two irrational critical points x4 = -6(1/3)  and x5 = 4(1/3),
then from any starting value we approach one of the three zeros x1, x2, or x3. These
zeros thus have the nature of attractors, because every possible sequence of iterations
tends towards one of the zeros. This observation leads to a further interesting question:
given the starting value, which zero do we approach? More generally: what are the
basins of attraction of the three attractors xt , x2, and x3?

The first results of this method will be shown in three simple sketches.

c

X

Figure 4.1-3 Initial value x6 leads to attractor xt.

We know the position of the axes and the graph of the function. At each iteration,
we draw a vertical line and construct the tangent to the curve at that point. The result of
Figures 4.1-3  to 4.1-S is not particularly surprising: if we begin with values x6, x7, or
x8 close to an attractor, the the iteration converges towards that same attractor.

By further investigation we can establish:

2These numbers cannot be represented exactly in the computer. The Newton method fails here
because the first derivativef’(x,)  = 0. Graphically, this  follows because the tangents at these points
are horizontal, and obviously cannot cut the x-axis, because they run parallel to it.
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are of interest in many applications.
Newton’s point of departure was simple: find the zeros by trial and error. We start

with an arbitrary value, which we will call xn. From this the function value flx,J  is
calculated. In general we will not have found a zero, that is, fix,,) = 0. But from here
we can ‘take aim’ at the zero, by constructing the tangent to the curve. This can be seen
in Figure 4.1-2. When constructing the tangent we need to know the slope of the curve.
This quantity is given by the derivative f ‘(x,), which can often be found easily.1

Graph of the function f(

x-axis

Better value xi+1 Starting value Xi

Figure 4.1-2 How Newton’s method leads to a zero

A further problem should be mentioned. If f ‘(xn) = 0, we find ourselves at a
minimum, maximum, or inflexion point. Then we must carry out the analysis at the point
X,&t.

The right-#angled  triangle in Figure 4.1-2 represents a slope of height f(x,,) and
width flx,)/f’(x,). From this last expression we can correct our approximate zero
x,,  to get a better value for the zero:

x*1  = X”  - f&J/f  ‘(XJ
An even better approximation arises if we carry out this calculation again with x,,+t as
input.

Basically Newton’s method is just a feedback scheme for computing zeros.

‘Even when f’(.r,) is not known as an explicit function we can approximate the differential
quotient closely, by&,)  = (@,+dx)-f(x,,-dx))/(2*ctx),  where dx  is a small number, e.g. 10e6.
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We expect exceptions only where the graph of the function has a maximum or a
minimum. But we have already excluded these points from our investigations.

If we now take a glance at Figures 4.1-6 to 4.1-8, we realise that not everything is
at simple as it appears from the above. In the next sequence of pictures we begin from
three very close initial values, namely

x9 = 0.447 20,
x10 = 0.447 25, and
x11 = 0.447 30.

We found these values by trial.

Figure 4.1-6 Initial value x9 leads to attractor y.

Figure 4.1-7 Initial value x10 leads to attractor x1.
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Figure 4.1-4 Initial value x7 leads to attractor x2.

Figure 4.1-5 Initial value x8 leads to attractor x3.

I The basin of attraction of the attractor xt includes the region
-co < x< x4 = -J(1/3).

l The basin of attraction of the attractor x3 includes the region
x5  =  J(1/3)  < x < 03.

In particular, this region is symmetrically placed relative to the basin of attraction of

Xl-
+ The numbers near the origin belong to the basin of attraction of q.
+ If we have found the attractor for a given initial value, then nearby initial values lead

to the same attractor.
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be seen as high dark-grey rectangles.
Can you reconstruct the results collected together after Figure 4.1-5 from Figure

4.1-9?

Figure 4.1-9 Graphical representation of the basins of attraction.

Especially interesting are the chaotic zones, in which there is a rapid interchange
between the basins (of attraction). We show a magnified version of the left-hand region
(for x-values in the range -0.6 < x < -0.4) in Figure 4.1-10. The section from Figure
4.9-9 is stretched along the x-axis by a factor of 40. The graph of the function in this
range is barely distinguishable from a straight line.

Graph of function

x-axis

-d.6 -0.5 -0.4

Figure 4.1-  10 Basins of attraction (detail of Figure 4.1-9).



7 7

Figure 4.1-8 Initial value x1 t leads to attractor x3.

Despite their closeness, and despite the smooth and ‘harmless’ form of the graph of the
function, the Newton method leads to the three different attractors. A sensible prediction
seems not to be possible here. We refer to this ‘breakdown of predictability’ when we
speak below of chaos.

In all areas of daily life, and also in physics and mathematics, we make use of a
great number of unspoken assumptions, when we describe things or processes. One of

. the basic principles of physics is the causality principle.3 Recall that this states that the
same causes lead to the same effects. If this rule did not hold, there would be no
technical apparatus upon which one could rely. Interestingly, this precept is often
handled in a very cavalier fashion. We formulate this generalisation as the strong
causality principle: similar causes lead to similar effects.

That this statement does not hold in general is obvious every Saturday in Germany
when the lottery numbers are called - the result is not similar, even though the 49 balls
begin each time in the same (or at least a similar) arrangement. Our definition of chaos is
no more than this:

A chaotic system is one in which the strong causality principle is broken.
In the next step - and indeed in the whole book - we will show that such chaos is

not totally arbitrary, but that at least in some regions an order, at first hard to penetrate,
lies behind it.

In order to explain this order, in Figure 4.1-9 we have drawn the basins of
attraction for the three attractors of the function f(x)  in different shades of grey and as
rectangles of different heights. Everywhere we find a short, medium-grey rectangle, the
iteration tends towards the attractor x1. The basin of attraction of q  can be recognised
as the light-grey, medium-height rectangles; and all points which tend towards x3 can

3Causality:  logical consequence.
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lim &l-g,-,- = 6.0 = q .
n+m  g”+l  -g”

Index n gn

1 -0.577 350 269 189 626
2 -0.465 600 621 433 678
3 -0.450 201 477 782 476
4 -0.447 709 505 812 910
5 -0.477 296 189 979 436
6 -0.447 227 359 657 766
7 -0.447 215 889 482 132
8 -0.447 213 977 829 095
9 -0.447 213 659 221 447
10 -0.447 213 606 120 205
1 1 -0.447 213 597 269 999
12 -0.447 213 595 794 965

7.256 874 166 975 182
6.179 501 149 801554
6.029 219 709 825 583
6.004 851 109 839 370
6.000 807 997 292 021
6.000 134 651772 122
6.000 022 441 303 783
6.000 003 740 154 308
6.000 000 623 270 044
6.000 000 039 232 505

, -

Table 4-l The basin boundaries

For x-values greater than zero the same result holds but now with positive
g,-values.  The resulting quotient is the same.

A few words to explain these numbers are perhaps in order.
+ The number  gt  has the value gt  = 4(1/3)  = 3-112.
This is worked out by applying school methods to investigate the curve

f(x) = x3-x.
At x = gl  the first derivative

f ‘(x) = 3x2- 1
takes the valuefYg~>  = 0.

The function fix) has an extreme value there, at which the derivative changes sign,
so an increasing function becomes decreasing. Because the slope (first derivative) plays a
special role in Newton’s method, this leads us to conclude that the points on the right and
left of an extreme value belong to distinct basins of attraction.
+ For the limiting value of the gi  we have:

lim gn  =
n+m $

$ = xg .

This value too can be expressed analytically.4

4Analytic  behaviour  is here intended in comparison with the numerical behaviour  found previously.
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If we now investigate the basins shown by the grey areas  we observe the following:
l On the outside we find the basins of x1 and x2.
l A large region from the basin of x3 has sneaked between them.
l Between the regions for x3 and x2 there is another region for x1.
l Between the regions for x1 and x2 there is another region for x3.
l Between the regions for x3 and x2 there is another region for x1,

and so on.

Graph of function

x-axis
I I I I II 8 I I I

-0.451 -0.45 -0.449 -0.448 -0.447 -0.446

Figure 4.1-11 Basins of attraction (detail of Figure 4.1-10).

A further magnification by a factor of 40 in Figure 4.1-  11 shows the same scheme
again, but on a finer scale. We have already met the scientific description of this
phenomenon: self-similarity.

The apparent chaos reveals itself as a strongly ordered zone.
In a further investigation we will now set to work, calculating as closely as possible

the points that separate the basins from each other. The corresponding program will not
be described further here: it is left as an exercise. These boundary points will be denoted
gj . Only the results are shown, in Table 4-1.

I The first value is given by gf  = -0.577 35..  .
l If x c gl  then x belongs to the basin of xl.
+ If gt  c x c g2  then x belongs to the basin of x3.

. If g2  c x < g3  then x belongs to the basin of xl,
and so on.

Using Table 4- 1 we have discovered a simple mathematical connection between the
gj-values.  Namely, the quotient tends to a constant value. In fact
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&ill  write out the important equations in full detail. In some motivation and
generalisations a knowledge of complex numbers will prove useful. The theory of
complex numbers also plays a role in physics and engineering, because of its numerous
applications. This is undeniable: just look at a mathematics textbook on the subject.
Independently we have collected together the basic ideas below.

The complex numbers are an extension of the set of real numbers. Recall that the
real numbers comprise all positive and negative whole numbers, all fractions, and all
decimal numbers. In particular all numbers that are solutions of a mathematical equation
belong to this set. These might, for example, be the solutions of the quadratic equation

x2=  2,
namely 42, the ‘square root of 2’, or the famous number A, which gives the connection
between the circumference and diameter of a circle. There is only one restriction. You
cannot take the square root of a negative number. So an equation like

3, -1
has no solutions in real numbers. Such restrictions are very interesting to
mathematicians. New research areas always appear when you break previously rigid
rules.

The idea of introducing imaginary numbers was made popular by Carl Friedrich
Gauss (1777-1855),  but it goes back far earlier. In 1545 Girolamo Cardano used
imaginary numbers to find solutions to the equations x+y = 10, xy = 40. Around
1550, Raphael Bombelli used them to find real roots to cubic equations.

They are imaginary in the sense that they have no position on the number line and
exist only in the imagination. The basic imaginary number is known as i and its
properties are defined thus:

i * i = -1.
The problem of the equation

9, -1
is thus solved at a stroke. The solutions are

x1 = i and x2 = -i.
If you remember this, the rules of calculation are very straightforward.

A few examples of calculation with imaginary numbers should clarify the
computational rules:5
l 2i *  3i = -6.
0 d(-16)  = f i*4  = f4i.
l The equation x‘t = 1 has four solutions I, - 1, i, and -i: they are all ‘fourth

roots’ of 1.
l 6i-2i  = 4i.
Imaginary numbers can be combined with real numbers, so that something new appears.
These numbers are called complex numbers. Examples of complex numbers are 2+3i or
3.141592 - 1.4142*i.

5You  will find  further examples at the end of the chapter.
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For this purpose we use Figures 4.1-4 to 4.1-6. In all three cases the iteration
runs several times almost symmetrically round the origin, before it decides on its broader
course. In the extreme case we can convince ourselves, that there must exists a point xg,
such that the iteration can no longer escape, and indeed that each iteration only changes
the sign. After two steps the original value recurs.

For xg we must have

f(xg) _
3

xg = r(xp)  - -xg  or
xg -xg

x = - = -Xg  *g
3x;-1

Simplifying the equation, we get
5X82 = 1

whence the above expression.
+ As regards 4:
Why this quotient always has the value q = 6, we cannot explain here. It puzzled us too.

Further experiments make it possible to show that q is always 6 if we investigate a
cubic function, whose zeros lie on the real line, and are equal distances apart. In other
cases we instead find a value qA  > 6 and a value qB  c 6.

Computer Graphics Experiments and Exercises for 54.1
The only experiments for this chapter are, exceptionally, rather short. You can of

course try to work out Table 4- 1, or similar tables for other functions.
The next section will certainly be more interesting graphically.

4.2 Complex Is Not Complicated
In previous chapters we have formulated the two basic principles of graphical

phenomena that concern us: self-similarity and boundaries. The first concept we have
encountered many times, despite the different types of representation that are possible in a
Cartesian coordinate system.

In previous figures the boundaries between basins of attraction have not always
been clearly distinguishable. In order to investigate these boundaries more carefully, we
will change our previous methods of graphical representation and switch to the two-
dimensional world of surfaces. We thus encounter a very ingenious and elegant style of
graphics, by which we can also show the development of the boundary in two
dimensions on a surface.

No one would claim that what we have discussed so far is entirely simple. But now
it becomes ‘complex’ in a double sense. Firstly, what we are about to consider is really
complicated, unpredictable and not at all easy to describe. Secondly, we will be dealing
with mathematical methods that have come to be called ‘calculations with complex
numbers’. It is not entirely necessary to understand this type of calculation in order to
generate the pictures: you can also use the specific formulas given. For that reason we
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P = (x,y)  of this Gaussian plane 6 represents a complex number
z= x+i*y

(Figure 4.2-l).
Multiplication can be understood better graphically than by way of the above

equation. To do this we consider not, as before, the real and imaginary parts of the
complex number, but the distance of the corresponding point from the origin and the
direction of the line that joins them (Figure 4.2-l). Instead of Cartesian coordinates
(x,y)  we use polar coordinates (r,cp). In this polar coordinate system, multiplication
of two complex numbers is carried out by the following rule:

If zt*q  = 23, then rt*~ = r3 and (pr+cp2  = 93.
We multiply the distances from the origin and add the polar angles. The distance ris
described as the modulus of the number z and written r = I z I.

imaginary axis

real axis

Figure  4.2-  1 A point in the Gaussian plane and its polar coordinates.

What connection does the complex plane have with our mathematical experiments,
with chaos, with computer graphics?

The answer is simple. Until now the region in which we have calculated, and
which we have drawn, has been a section of the real-number axis, from which the
parameter k was chosen. We carried out our calculations, and drew the result, for each
point of that section - as long as it remained within the limits of the screen. Now we let
the parameter become complex. As a result the equations for calculating chaotic systems

6Translaror’s  note: Gauss represented complex numbers on a plane in about  1811. In many
countries the Gaussian plane is lrnown  as the Argad  diagram, after Jean-Robert Argand  who published
it in 1806. A Danish surveyor, Caspar  WesselJ,  has a greater claim than either, having independently
described the idea in 1797. The above is the conventionally recognised  trio: for some reason everyone
seems to ignore the fact that John W&is  used a plane  to represent a complex number geometrically in
his Algebra of 1673.
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A whole series of mathematical and physical procedures can be carried out
especially elegantly and completely using complex numbers. Examples include damped
oscillations, and the electrical behaviour of circuits that contain capacitors and resistors.
In addition, deep mathematical theories (such as function theory) can be constructed using
complex numbers, a fact that is not apparent when we discuss just the basics.

All equations for the basic rules, which are important for the respresentation of
boundary behaviour, can be expressed using elementary mathematics.

We begin with the rule
i*i = -1

and the notation
z = a+i*b

for complex numbers.
Two numbers zt and q,  which we wish to combine, are

zt = a&band  q = oti*d.
Then the following basic rules of calculation hold:
Addition

zt+q  = (a+i*b)+(oti*d)  = (a+~)  + i*(bM).
Subtraction

21-q = (a+i*b)-(&+d)  = (a-c) + i*(b-d).
Multiplication

zt*q  = (ati*b)*(oti*d) = (a*c-b*d)  + i*(a*&b*c).
The squareis  a special case of multiplication:

zt2  = zl*zl  = (a+i*b)2  = (9-d)  + 2*i*a*b.
Division

Here a small problem develops: all expressions that appear must be manipulated so
that only real numbers appear in the denominator. For

1 1-CT
52 c+t*d

this can be achieved by multiplying by (c-i@,  the complex conjugate of the
denominator:

1 c-i*d c-i*d
-=
c+i*d  (c+i*d)*(c-i*d)

=-,
C2td2

From this we get the rule for division:

z1 ati*b a*ctb*d . b*c-a*d-=- = -+I*-.
z2 cti*d

C2td2 C2td2

Furthermore, there is also a geometrical representation for all complex numbers and
all of the mathematical operations. The two axes of an (x,y)-coordinate system are
identified with the real and imaginary numbers respectively. We measure the real
numbers along the x-axis and the imaginary numbers along the y-axis. Each point
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Exercise 4.2-4
If all the previous exercise have been too easy for you, try to find a formula for

powers. How can you calculate the number
z = (a+i*b)p

when p is an arbitrary positive real number?

Exercise 4.2-5
Formulate all of the algorithms (rules of calculation) in this section in a

programming language.

4.3 Carl Priedrich Gauss meets Isaac Newton
Of course, these two scientific geniuses never actually met each other. When Gauss

was born, Newton was already fifty years dead. But that will not prevent us from
arranging a meeting between theirrespective ideas and mathematical knowledge.

We transform Newton’s method into a search for zeros in the complex plane. The
iterative equations derived above will be applied to complex numbers instead of reals.
This is a trick that has been used in innumerable mathematical, physical, and technical
problems. The advantage is that many important equations can be completely solved, and
the graphical representations are clearer. The normally important real solutions are
considered as a special case of the complex.

Our starting point ($4.1) was
f(x) =x3-x.

For this the Newton method takes the form
x,+1 =x, - (X,3-X,)/(3X,2-1).

For complex numbers it is very similar:
z,,+~ = I, - (z,S-z,)/(3z,2-1).

Recalling that zn = x,+i*y,,  this becomes

3 2 2 3
2*(x,-3x,ya+i*(3x,y,-y,))

5l+1  =
3x:-3yi-l+i*6x,yn

Further calculations, in particular complex division, can be carried out more easily on a
computer.

The calculation has thus become a bit more complicated. But that is not the only
problem that faces us here. Now it is no longer enough to study a segment of the real
line. Instead, our pictures basically lie in a section of the complex plane. This two-
dimensional rectangular area must be investigated point by point. The iteration must
therefore be carried out for each of 400 points in each of 300 lines.7

We know the mathematical result already from the previous chapter: one of the three

‘IThese  data can vary from program to program and computer to computer. Most of our pictures use
a screen of 400 x  300 pixels.
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are especially simple. In particular we can represent the results directly in the complex
plane. Depending on the shape of the computer screen we use a rectangular or square
section of the plane. For each point in the section - as long as it remains within the
limits of the scree:n  - we carry out our calculations. The complex number corresponding
to this point represents the current parameter value. After iteration we obtain the value
42) from the result of our calculation, which tells us how the corresponding screen
point is coloured.

Complex numbers aren’t so hard, are they? Or aren’t they?

Computer Graphics Experiments and Exercises for 54.2

E x e r c i s e  4 . 2 - l

Draw on millimetre graph paper a section of the complex plane. Using a scale 1
unit = 1 cm, draw the points which correspond to the complex numbers

z1  = 2-i*2,  q = -OS+l*lS,  and 5 = 2-i*4.
Join these points to the origin. Do the same for the points

q = zl+q  and 3 = z3-zl.
Do you recognise  an analogy with the addition and subtraction of vectors?

Exercise 4.2-2
The following connection holds between Cartesian coordinates (x,y)  and polar

coordinates with distance r and polar angle ‘p:
? = xzt-y2  and tan cp  = y/x.

Ifx=Oandy>(lI,thencp=90°.
Ifx=Oandyc0,thencp=270°.
If x = 0 and also y = 0, then r = 0 and the angle cp  is not defined.

Recall that for multiplication the following then holds: if zl*q  = z3 then
r1*r2  = r3 and cprtcp2  = ‘p3.  Express this result in colloquial terms.

Investigate ,whether  both methods of multiplication lead to the same result, using the
numbers in Exercise 4.2-  1.

Exercise 4.2-3
In the complex plane, what is the connection between:

. A number and its complex conjugate?

. A number and its square?
l A number and its square root?
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Figure 4.3-2 Section from Figure 4.3-l left of centre.

Compared with the appearance on the real axis, which we have seen already, Figure 4.3-
1 reveals something new. Jn many different places there appear ‘grape&e’ structures like
Figure 4.3-2. An example appears magnified in Figure 4.3-3.

Self-similarity does not just occur on the real axis in these graphical experiments.
Jn general, where a boundary between two basins of attraction occurs, similar figures are
observed, sprinkled ever more thickly along the border. The same section as in Figure
4.3-3 leads to the next picture, in a different experiment. In this drawing only points are
shown for which it cannot be decided, after 12 iterations, to which basin they belong.
Thus the white areas correspond to those which in the previous pictures are shown in
grey. Their structure is somewhat reminiscent of various sizes of ‘blister’ attached to a
surface.

Further magnified sections reveal a similar scheme. The basins of attraction sprout
ever smaller offshoots. One of the first mathematicians to understand and investigate
such recursive structures was the Frenchman Gaston  Julia. After him we call a complex
boundary with self-similar elements a Julia ser.
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zeros xt, x2, x3 on the real axis will be reached.* This remains true even when the
iteration starts with a complex number.

The graphical result is nevertheless new. To show how the three basins of
attraction fit together, we have shaded them in grey in Figure 4.3-1, just as we did in
34.1.

Figure 4.3-l The basins of attraction in the complex plane.9

Thus the basin of x1 is medium grey, that of x2 is light grey, and that of x3 is
dark grey. All points for which it cannot be decided, after 15 iterations, towards which
attractor they are tending, are left white.

Along the real axis, we again find the various regions that were identified in $4.1.
‘Chaos’, as it first appeared to us in Figure 4.1-9, we recognise  in the small multi-
coloured  regions. We have defined chaos as the ‘breakdown of predictability’. The
graphical consequence of this uncertainty is fine structures ‘less than one pixel in
resolution’. We can investigate their form only by magnification.

The interesting region, which we investigated on the  real axis in Figures 4.1-9 to
4.1-  11, is shown in Figure 4.3-2 on a large scale. Again, self-similarity and regularity
of the structure can be seen.

8We  retain the names from 54.1, even though we are working with complex numbers z1 etc. This
i s  p e r m i s s i b l e ,  b e c a u s e  t h e  i m a g i n a r y  p a r t s  a r e  z e r o .
9The  two outlined regions on the real axis and above it will be explored in more detail in the
fo l lowing p ic tures .



90 Dynamical Systems and Fractals

To close this section, which began with a simple cubic equation and immediately
into ‘complex chaos’, we illustrate a further possibility, visible in Figure 4.3-1.
graphical form. Instructions for the production of these pictures are to be found in
next chapter.

led
, in
the

Figure 4.3-S Stripes approaching the boundary.



Greet ings f rom Si Isaac 89

imagir
realaxis - I I I II I I

-1.0 -0.9 -0.8 -0.7

Figure 4.3-3 At the boundary between two basins of attraction.

4

-- 1.0

-- 0 . 9

-- 0.8
imaginaryreal axis

-1.0 -0.9 - 0 . 8

Figure 4.3-4 The boundary between two basins of attraction.

- 0 . 7
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5.1 Julia and His Boundaries
We again state the question on the domains of influence of attractors. Where must

we start the iteration, to be certain of reaching a given attractor? The precise boundaries
between the initial zones should not be investigated. We are not exaggerating when we
say that they are invisible. In order to get at least the attractors in the simplest possible
fashion, we will use an arrangement as in Figure 5.1-  1.

zB
= -0.5 + 0.866 i 4imaginary axis

0

ZA= 1

h” b
real
axis

zC = -0.5 - 0.866 i

0

Figure 5.1-1 Position of three point attractors in the Gaussian plane.

The imaginary parts of zg and zcare  irrational numbers. For instance

We will finish up at one of these three points from any initial value (except ~0 = 0) using

the following iteration equation:

1
Zn + l 2, +- .3 n

3zt

Such points and such equations naturally don’t fall from out of the blue. This one arises,
for example, if you try to use Newton’s method to find the complex zeros of the
function*

f(z) = 23-l.
It is easy to prove that each of the points ZA,  zg,  zc defined in Figure 5.1-l satisfies

’ If you do not see the connection here, take another look at 54.1.
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preassigned bound epsilon, we say ‘we have arrived’.3
To formulate this test in Pascal we require a boolean function. It has the value

true if we have already reached the relevant attractor, and otherwise the value false.
For example, for the point z&e  test becomes the following:

Program Fragment 5.1-2
FUNCTION belongsToZc (x, y : real) : boolean;

CONST
epsqu = 0.0025;

(* coordinates of the attractor zc *)
xc = -0 .5 ;
yc = -0.8660254;

BEGIN
IF (sqr (x-xc)+sqr (y-yc) < = epsqu)

THEN belongsToZc := true
ELSE belongsToZc := false;

END; (* belongsToZc *)

Thevariable epsqu is the square of the small number 0.05, xc and yc are the coordinates
of the attractor ZC,  and x and y are the working coordinates which will be modified and
tested during the investigation. The calculation for the other attractors requires similar
programs.

In order to obtain an overview of the basins of the attractors and the boundaries
between them, we explore point by point a section of the complex plane, which contains
the attractors. We colour  the initial point for the iteration series according to which basin
it belongs to.

We give the method for drawing the boundaries in the following Program
Fragment. In a few places we have slightly modified Example 5.1-1, to make the
algorithm quicker and more elegant. In particular we do not need to distinguish between
x,, and xn+t  in the contruction  of the mathematical formula. Computers work with
assignments, not with formulas.

Program Fragment 5.1-3
PROCEDURE Mapping;
WAR

xRange, yRange  :  i n t e g e r ;
x ,  y, deltaxPerPixe1,  deltayPerPixe1  :  r e a l ;

BEGIN
deltaxPerPixe1  : = (Right - Left) / Xscreen;
deltayPerPixe1  : = (Top - Bottom) / Yscreen;

31n  fact in Program Fragment 5.1-2  we compare the square of the distance with the square of epsilon,
eliminating the need to extract a square  toot.
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z3  = 1. We show this here for rg:

93

ThuszA,zg,zCi~e'ethethreecomplexcubef~~of~j~
We have already dealt with calculation rules for complex numbers in $4.2. If we

apply Newton’s method, we get

xi-yt-i*(2*xnyn)’
Z n+l = $(xn+i*yn)  +

222  *
3*(x,+y,)

Thus for the complex number zmt we have

%+l  ‘%+l  + i*yn+1
so that we can ohtain  equations for the real and imaginary parts x and y:

2  2
‘n-y,

X 2x +n+l gn 2  22  ’
3*(x,+y,)

(
Xn*Yn

Yn+l =f  Y,--

(x;+Y;)
) .

In Program Fragment 5.1-1, we denote the values xn and yn  by xN  and yN,  etc. The
instructions for the two iteration equations can in principle be found as follows:

Program Fragment 5.1-1 (See also Program Fragments 5.1-2 and 5.1-3)
. . .

XN : =  xNplus1;

P : =  yNplus1;
xNplus  1 : = 2*xN/3+  (sqr (xN)  -sqr (yN)  )

/ (3*sqr  (sqr  (xN)  +sqr  (yN)  ) ) ;
yNplus1 := 2*yN/3-  (2*xN*yN)  / (3*sqr  (sqr (xN)  tsqr (yN)  ) ) ;
. . .

Using these,whichever initial value z = x+i*y we start with, after suitably many
iterations we encl  up near one of the three attractors. We can recognise  which by looking
at the distance from the known attractors. 2 If this distance is less than some

21f  we do not know the attractors, we must compare the current value zn+t  with the previous value
2,. If this is less than epsilon, we are finished.
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REPEAT
compute;
test;

UNTIL (IterationNo  = MaximalIteration)  OR finished;
distinguish;

END; (* JuliaNewtonComputeAndTest  *)

Now the procedure JuliaNewtonComputeAndTest is fornwlatedin  reasonable
generality, It makes use of four local procedures. The first  sets up the values for the
local  variables:

Program Fragment 5.1-5
PROCEDURE startVariableInitialisation;
BEGIN

finished := false;
iterationNo  := 0;

xsq := sqr(x);

Y% := sqr(y);
distancesq := xsq + ysq;

END (* startVariableInitialisation  *)

The next procedure does the actual computation.

Program Fragment 5.1-6
PROCEDURE Compute;
BEGIN

IterationNo := IterationNo  + 1;
xTimesy  := x*y;
distanceFourth := sqr(distanceSq);
denominator :=

distanceFourth+distanceFourthtdistanceFourth;
X := 0.666666666*x t (xSq-ySq)/denominator;

Y : =  0.666666666*y  -

(xTimesy+xTimesy)/denominator;

ml := sqr(x);

Y% := sqr(y);
distancesq := xsq + ysq;

END;
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Y := 13ottom;
FOR yRange := 0 TO Yscreen DO
BEGIN

x := left;
FOR xRange := 0 to Xscreen DO
BEGIN

IF JuliaNewtonComputeAndTest (x, y)
THEN SetPoint  (xRange,  yRange);
x := x + deltaxPerPixe1;

Em);

Y ::=  y + deltayPerPixe1;
END;

END; (* Mapping *)

In contrast to the. more linear structures of the previous chapter, we no longer compute a
hundred points in each series. The 120 000 points of the chosen section4 obviously
need more computing time. A complete calculation requires, in some circumstances, more
thananhour .  Theprocedure  Mapping searchesthroughthe screen areaonepixel at a
time. For each screen point it computes the universal coordinates x and y. It passes
these variables to a functional procedure, which in this case is called
JuliaNewtonComputeAndTest. We use such an unequivocal name to distinguish
this procedure from others which play similar roles in later programs. The
corresponding screen point is coloured, or not, according to the result of this function.
TheprocedureMapping  uses 7 global variables, which we already know from other
problems:

Left,  Right, Bottom, Top,
MaximalIteration,  Xscreen, Yscreen.

For a computer with 400 x 300 pixels on the graphics screen, we might for example set
up the computation as follows:

Xscreen:=  400; Yscreen := 300;
Left := ->!.QRight:=  2.0; Bottom := -1S;Top  := 1.5;

Program Fragment 5.1-4
FUNCTION JuliaNewtonComputeAndTest (x, y : real) : boolean;

VAR
IterationNo  : integer;
finished : boolean;
xSq,  ySq,  xTimesy,  denominator : real;
distancesq,  distanceFourth  : real;

BEGIN
Start'JariableInitialisation;

4We here refer to a section of 400 x 300 pixels.
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equality condition is not fulfilled, so the iteration is stopped before the variable
iterationNo  getsthat high.

Figure 5.1-2 Boundary between the three basins after 15 iterations.

If instead of the boundary we draw the basin of attraction of one of the three attractors, as
in Figure 5.1-3, we can use the functional procedure belongsToZc  defined in Program
Fragment 5.1-2.

Program Fragment 5.1-9
PROCEDURE distinguish
BEGIN

(* does the point belong to the basin of zC?  *)
JuliaNewtonTestAndCompute  := belongsToZc  (x,y)

END;

It is of course entirely arbitrary, that we have chosen to draw the basin of the
attractor ZC.  In Exercise 5.1-2 we give hints for computing the other two basins.
Perhaps you can already guess what form they will take?
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A few tricks have heen  used so that the most time-consuming calculation steps,

especially multiplication and division, are not carried out twice. For example the

expression fX is not coded as

2*x/3.
In this form, the integer numbers 2 and 3 must first he converted to real numbers every
time the procedure is used. Further, a division takes more time than a multiplication. So
a more efficient ‘expression is

0.666666666*x.
After each iterative step we must test whether we have ‘arrived’ near enough to one

of the attractors. Moreover, we must he careful that the numbers we are calculating with
do not go outside the range within which the computer can operate. If that happens, we
stop the calculation.

Program Frag,ment  5.1-7
PROCEDURE test;
BEGIN

finished := (distancesq  < l.OE-18)
OR (distancesq  > l.OE18)

OR belongsToZa  (x,y)
OR belongsToZb  (x,y)

OR belongsToZc(x,y);
END;

Finally we must distinguish what should he drawns.  The points which belong to
the boundary are those which, after that maximal number of iterations, have not
converged to any of the three attractors.

Program Fragment 5.14
PROCEDURE distinguish;
BEGIN

(* does the point belong to the boundary? *)
JuliaNewtonComputeAndTest  :=

IterationNo  = MaximalIteration;
END;

We interpret Program Fragment 5.1-8 as follows. We include all points in the
boundary for which the computation, after a given number of iterations, has not reached
anattractor. InFigureLl-2thismaximalIteration  = 15. In all other cases the

5We  can carry  out the investigation most easily when the computer has a colour  graphics screen.
Then  each basin of attraction is given a colour,  and the boundaries are easily visible.
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Program  Fragment 5.1.10
PROCEDURE distinguish;
BEGIN

(* does the hoint  reach one of the three attractors *)
(* after an odd number of steps? *)

JuliaNewtonComputeAndTest  : =
(iterationNo  < maximalIteration)

AND odd(iterationNo);
END;

PROCEDURE distinguish;
BEGIN

(* does the point reach one of the three attractors *)
(* after a number of steps divisble by 3? *)
JuliaNewtonComputeAndTest : =

(iterationNo  < maximalIteration)
AND  (IterationNo  MOD 3 = 0);

END;

Figure 5.1-4 Contour lines.
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Figure 5.1-3 Basin of the attractor ZC.

In a different style of drawing, as in Figure 5.1-4, we take into account the number
of iterations required to reach any particular one of the three atractors. A point is then
coloured  if this requires an odd number of iterations. In Figure 5.1-4  you should look
for the three point attractors (see Figure 5.1-1). They are surrounded by three roughly
circular areas. All points in these regions of the complex plane have already reached the
attractor, to the relevant degree of accuracy, after one iteration.

From there we see in turn alternating regions of black and white, from which we
reach the attractor in 2, 3, 4, . . . steps. In other words, the black regions correspond to
initial values which take and odd number of steps to reach an attractor. In this way we
obtain pictures reminiscent of contour lines on a map. If you think of the attractors as
flat valleys and the boundaries between them as mountain ranges, this interpretation
becomes even better. The peaks become ever higher, the longer the computation,
deciding to which attractor the point belongs, lasts.

If the contour lines get too close together, there is always the possibility of drawing
only every third or every fourth one of them.6

6  In the Program Fragment we use the MOD function of Pascal. It gives the remainder upon division,
e.g. 7 MOD 3 = 1.
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Figure 5.1-6 The basins of the three attractors zA,  zB, ZC.

Peitgen and Richter, in Research Group in Complex Dynamics, Bremen (1984a),
pp. 19,31,  describe this phenomenon by equating the three basins of attraction with the
territories of three superpowers on a fantasy planet:

Three power centres  have divided up their sphere of influence and have agreed to avoid
simple boundaries with only two adjoining regions: each boundary point must be
adjacent to all three countries. If the computer graphic did not show a solution, one
would scarcely believe that it existed. The key to the trick is that everywhere two
c o u n t r i e s  c o m e  n e x t  t o  e a c h  o t h e r ,  t h e  t h i r d  e s t a b l i s h e s  a n  o u t p o s t . This is then in turn
s u r r o u n d e d  b y  t i n y  e n c l a v e s  o f  t h e  o t h e r  p o w e r s  - a  p r i n c i p l e  w h i c h  l e a d s  t o  e v e r  s m a l l e r
s i m i l a r  s t r u c t u r e s  a n d  a v o i d s  a  f l a t  l i n e . ’

These  ‘s imilar  s t ructures’  are  what  we have a l ready encountered as  se l f -s imilar i ty :  here
we meet them again. Meanwhile this behaviour has become so natural to us that it is no
longer a surprise!

When the basins of attraction seem so ragged, there is one thing in the picture that
still hangs together: the boundary. Here we observe a member of an entirely new class
of geometrical figures, a fmctal.  This concept has been developed over the past twenty
years by the France-Polish mathematician Ben&t  B. Mandelbrot. By it he refers to
structures which cannot be  described by the usual forms such as lines, surfaces, or solids.

On the one hand, the boundary in Figure 5.1-2 is certainly not a surface. For each
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PROCEDURE distinguish;
BEGIN

JuliaNewtonComputeAndTest  : =
(IterationNo  = MaximalIteration)  OR

((IterationNo  < Bound)
AND (IterationNo  MOD 3 = 0));

END;

The three variations show how you can combine these methods of graphical
representation to give new designs (Figure 5.1-5). The global variable Bound should
bcabouthalfasbigasMaximalIteration.

Figure 5.1-5 Every third contour line, and the boundaries, in a single picture.

There is a further possibility for drawing the pictures which we will only sketch
here (see Execise  5.1-8). It is possible to show all three basins in the same picture.
Different grey tones represent the different basins (Figure 5.1-6).

If you look at the basin of the attractor zc (Figure 5.1-3) it may not be at all clear
how the regions within it are divided up. Near the attractor itself the region is a connected
piece. But at the boundaries they seem to get increasingly confused with each other. The
divison nevertheless exists: it only appears confused. We already know from the
example in Chapter 4 that the basins of attraction can never overlap.
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Figure 5.1-7 A Julia set with fivefold symmetry.

fractal point of view. Then we find about 300 to 1000 times as many small insects in the
same space that a single creature, 10 times as big, would occupy. This has actually been
verified experimentally: see Morse et al. (1985). Thus there are many more tiny insects
on a plant than had hitherto been thought. The smaller the organisms, the larger the
world in which they live.’

An entire series of physical processes, whose detailed description raises many other
problems, are of a fractal nature. Examples include Brownian  motion and the study of
turbulence in the flow of gases and fluids. This is true even though natural fractals can
obviously display self-similarity and piecewise crumpling only up to some limit,
whereas mathematical fractals have these properties completely and at every level.

As often happens in mathematics, parts of the scientific preparatory work had
already been carried out some time ago. But the discoveries of the French mathematicans
Pierre Fatou and Gaston  Julia were already becoming somewhat forgotten. In honour of
the French researcher who studied the iteration of complex functions prior to 1920, fractal
boundaries (Figure 5.1-2) are known as Julia sets.

The possibilities raised by the computer now make it possible, for the first time, to
investigate this fundamental area. It is indisputably to the credit of the Bremen Research
Group of H. 0. Peitgen and P. Richter to have excited attention - not only in the
technical world - with the results of the ‘computer cookery’ of their work in graphics.
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point that we have investigated, after sufficiently many iterations, it can be assigned to
one of the three attractors. Only the point (O,O), the origin, obviously belongs to the
boundary. Therefore the boundary always lies between the screen pixels, and has no
‘thickness’.

On the other hand, the boundary is certainly not a line. Try to work out its length!
In any particular picture it looks as though this can be done. But if we magnify small
pieces, we find a remarkable phenomenon: the more we magnify - that is, the more
closely we look -.  the longer the boundary becomes. In other words, the boundary is
infinitely long and has zero width. To such structures, between’ lines and surfaces,
mathematicians attribute a ftactd  dimension which is not a whole number, but lies
between 1 and 2.

Two properties, closely related, are characteristic of fractals:
+ Self-similarity, that is, in each tiny piece we observe the form of the entire shape.
I Irregularity, that is, there are no smooth boundaries. Lengths or areas cannot be

determined.
Once this concept had been drawn to the attention of researchers, they soon found many
examples of it in Nature. The coastline of an island is a fractal from the geometric point
of view.

It is possible to read off the length of a coastline from a map with a given scale. But
if we use a map with a different scale, that can change the result. And if we actually go to
the beach, and measure round every rock, every grain of sand, every atom... we encounter
the same phenomenon. The more closely we look, that is, the larger the scale of the map,
the longer the coastline seems to be.

Thus many natural boundaries, by the same principle, are fractal.
Fractals with dimension between 2 and 3 are the main surfaces that will concern us.

Every morning when we look in the mirror we notice that:
l Skin is fractal - especially when one is ‘getting on in years’. It has the basic
purpose of covering the body with the smallest possible surface. But for several other
reasons a crumpled structure is preferable.

It is even more obvious, when we leave the house:
I Clouds, trees, landscapes, and many other objects, when viewed at a different level,
appear fractal. To investigate these is the subject of rapidly growing research activity in
all areas of natural science.

The consequences of this discovery for biology are explained in Walgate (1985)
p.76. For small creatures, for example insects on a plant, the living space grows in an
unsuspected fashion. Consider as a model case two species, differing in size by a
factor of 10. They must expand their population on one of the available surfaces.
There should therefore be 100 times as many small creatures as large. But this
argument takes on a different appearance if we think of the surface of a leaf from the
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zg= -0.5+0.8660254*  i
and

ZC= -0.5 - 0.8660254 *  i,
see Figure 5.1-3.

It is not a coincidence that the pictures resemble each other in various ways. ‘Ihe
reason involves the equivalence of the three complex cube roots of unity.

Exercise 5.1-3
Using the method of magnifying detail, investigate sections of Figures 5.1-  1 to

5.1-6. Choose regions that lie near boundaries. In all these cases we find self-
similarity!

Check that if we increase the number of iterations (and also increase the admittedly
not short computation time) self-similar structures continue to appear.

Exercise 5.1-4
If you want to apply Newton’s method with powers higher than 3, for example to

equations such as #-1 = 0 or 25-l  = 0, you must know the appropriate complex roots
of 1. These give the positions of the attractors.

In general the nth roots of 1  are given by

s = cos(*)  + i*sin(*)

where k runs from 0 to n-l. Produce (with the aid of a computer program) a table of
roots of unity z,, up to n  = 8.

Exercise 5.1-5
Investigate and draw Julia sets resulting from Newton’s method for

z?-1 = 0 andzS-1 = 0.
The mathematical difficulties are not insuperable. In Program Fragment 5.1-3 you must
construct a modified function JuliaNewtonComputeAndTest.  If you cannot solve
this and the following exercises straight away, you can take a look at $6.4. There we
summarise the important rules for calculating with complex numbers.

Exercise 5.1-6
We apply Newton’s method and thereby get beautiful, symmetric computer

graphics. Although the above examples seem to be well founded, they are certainly not
to be thought of as ‘sacred’. As with our excellent experience in changing formulas in
the previous chapter, so too we can change Newton’s method somewhat.

Starting from Zp-  1,  we insert in the equation
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Their pioneering work is well known internationally.
The investigation of Newton’s method carried out above, for the equation

23-l  = 0,
can be applied equally well to other functions. To show you one result, Figure 5.1-7
indicates what happens for

z5-1 = 0.
You will find some hints about it in Exercises 5.1-4 and 5.1-5.

In other exercises for this chapter we suggest experiments, leading to innumerable
new forms and figures, which we have scarcely been able to explore ourselves. So
varied are the possibilities opened up, that you are guaranteed to produce pictures that
nobody has ever seen before!

Computer Graphics Experiments and Exercises for $5.1

Exercise 5.1-l
Apply Newton’s method to the function

42) = 23-l.
In the iteration equation

f(z,)
‘n+l  =

- -
“n  fyz,)

insert the expressions for the functions fiz) and f’(z). Show that this leads to the
equation

1
Zn+l

=!z + - .
3 n 3zf

For the complex numbers zA to zc in Figure 5.1-l compute the value of ~3.
What happens?

Exercise 5.1-2
On the basis of Program Fragments 5.1-l to 5.1-3, write a program that allows

you to compute the basins and boundaries of the three attractors in Figure 5.1-3.
Next investigate and draw the basin of the attractor

,??A  = 1
with the iteration formula

1djz +-.‘n+l  A n
3zi

Compare the resulting picture with those that you get for
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IF (odd(row)  AND (column MOD 4 = 0)) (* light grey *)
OR (NOT odd (row) AND (column MOD 4 = 2)) THEN . . .

IF (odd(row) AND odd(column)) (* medium grey *)
OR (NOT odd (row) AND NOT odd(column))  THEN . . .

IF (odd(row)  AND (column MOD 4 0 0)) (* dark grey *)
OR (NOT odd (row) AND (column MOD 4 <>  2)) THEN ,.. .

5.2 Simple Formulas give Interesting Boundaries
The various pictures of previous pages, and the innumerable sections and variations

that you have derived from them, owe their existence to the calculating performance of the
computer. Without this, no one would have made the effort to perform hundreds of
thousands of completely different calculations - especially since it appears that the
pictures become ever more ragged and complicated, the more complicated (and ragged?)
the underlying formulas become.

Again, this conjecture was first considered by B. B. Mandelbrot,7  who already
knew in 1979-80 that the production of ‘richly structured’ pictures does not necessarily
need complicated mathematical formulas. The important thing is for the iteration formula
to be nonlinear. It can thus contain polynomials of the second or higher degree, or
transcendental functions, or other such things.

The simplest nonlinear iteration equation that leads to nontrivial results was
suggested by Mandelbrot:

Zn+l = zn2  - c.
That is, we obtain a new member of the iteration series, by taking the previous one,
squaring it, and subtracting from the square a number c.

Until now, in previous chapters, we have investigated relatively complicated
formulas, having one simple parameter, which can be changed. In contrast, in this
Mandelbrot formula we have a very simple equation, containing not one but two
parameters. These are the real and imaginary parts of the complex8 number c. The
equation

c=c&+l*Cimaginary

holds for c. For the complex number z we have as before
z = x + i * y .

In other words, we can write the formula as

Zn+l =xn+1  + i * Yn+l ’

=ftzn>
= (xn2-yn2-crd)  + i * (2 *x n n imaginary*y -c 1.

‘ISee  the very readable article Fracfals and the Rebirth of Iterafion  Theory in Peitgen and Richter
(1986) p. 151.

8If the mathematical concepts of real, imaginary, and complex numbers still cause difficulty, we
again advise you to reread 54.2.
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f&J
Zn+l =Z”-f’o

the factor v(which is of course complex), obtaining:

f(z,)
‘n+l = j!

n -yq  *

First decide for yourself, without drawing, what the attractors will be. How far do they
correspond to the complex roots of unity, that is, with the solutions to zP  - 1 = O?

Start with values v that lie near 1. Investigate the influence of v on the form of the
Julia sets.

Exercise 5.14
Investigate the changes that occur if we modify the formula by putting an imaginary

summand i*w  in the denominator:

f(z,)
Z n+l = j! -

n i*w+f(z,)  ’

Again work out, without drawing, what the attractors are. Draw the way the basins of
attraction fit together.

How far does the modification of the equation influence the symmetry of the
corresponding pictures?

Exercise 5.14
If you wish to work with grey tones, as in Figure 5.1-6,  but these are not directly

available on your computer, Figure 5.1-8 shows how to proceed.

n n n
n n n

n n n
w n n

n n n
n n n

n n n
n n n

n n n
n n n

n n n
n n n

n n n

Figure 5.1-8 Grey shades, normal size (left) and magnified, to show individual
pixels.

To achieve this, not every point should be coloured,  even when after calculation it is
known in which basin it belongs. The drawing depends in which basin and also in which
row or column of the screen a point occurs.

In particular the conditions for drawing points should be:
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poor. If lflz)lz  stays below the value 100.0 after this number of steps, we declare the
attractor to be ‘finite’ or effectively ‘zero’.

In fact the situation is somewhat more complicated. Only in some cases is fiz)  =
0 a limiting value. In other cases we encounter a different number z # 0, a so-called
fixed point. It lies near the origin, and satisfies r(z)  = z. Further, there are also
attractors that are not single points, but which consist of 2,3,4,...  or more points. For an
attractor with the period 3 we have

JVWN)  = z.
Despite these complications, we concentrate on only one important thing: that the attractor
be finite, that is, that the series should not exceed the value 100.0.

Each picture shows a section of the complex z-plane. We make the initial values
~0 the basis of our drawing. At each iteration z changes, and we give it the value
computed forf(z) at the previous stage.

The complex parameter c must be kept constant throughout a given picture.
To repeat: there exist two attractors, zero and infinity, whose basins of attraction

border each other. As has already been explained in $5.1, we can call these complex
boundaries Julia sets. For the rest of this chapter we will be concerned with  their
graphical representation.

Two different complex numbers ct and q generate two different Julia sets, and
thus two different graphics! The variety of possible complex numbers produces an
uncountable number of distinct pictures.

The graphical appearance of these sets can be very varied too, because the form of
the Julia set depends strongly on the value of the parameter c.

For some of the pictures on the following two pages only the upper halves are
drawn. They are symmetric about the origin, as can be seen in Figure 5.2-4 (lower left)
and Figure 5.2-5 (upper right). In the series Figures 5.2-l to 5.2-8, the complex
parameter c takes the values

cl = O.l+O.l*i,q=O.2+0.2*i  ,..., ~=0.8+0.8*i.
We start with c = 0, surely the simplest case. Without a computer it is easy to see that
the boundary is the unit circle. Each z-value, whose modulus is greater than 1, has m as
an attractor. Each value 1 z 1~ 1 has 0 as attractor and should be drawn. We also colour
the points with I z I = 1 since these too lead to a finite attractor. In terms of contours
nothing much can be distinguished in this case, and we do not give a picture. But in the
majority of cases, when we change c, the resulting picture yields contours. If c is
increased in steps of 0.1 + 0.1 *  i, we get in turn Figures 5.2-l to 5.2-8.

A program to generate these figures obviously has certain parts in common with the
graphics programs that we have already encountered (see Program Fragment 5.2-2).
The remainder can be found in Program Fragment 5.1-3. Make the procedure now
called JuliaComputeAndTest  call theprocedureMapping  . The surrounding program
must supply the global variables cRea1  and cImaginary  with suitable values.

In comparison with Program Fragment 5.2-l a small improvement has been made.
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These formulas can be set up within a Pascal program:

Program Fragment 5.2-1
. . .

xsq : =  ,sqr(x)
Y% := ,sqr  (y)
Y : =  2*x*y  - cImaginary
X : =  xSq  - ySq  - cRea1

. . .

It is important to keep these statements in the given order, or else information will
get lost.9 In particular, contrary to alphabetical order and other custom, we must Fist
compute the value of y and then that for x (because x appears in the equation for y).

Just like those for Newton’s method, these iteration formulas seem to be fairly
harmless and not very complicated. But it is not so easy to grasp the possibilities for
investigation that arise when a single parameter is changed. Not only the components of
c play a role, but also the initial value of z, the complex number

q=  xo+i*yo.
Thus we have four quantities to change and/or draw, namely

On a sheet of paper we can show only two dimensions, so we must choose two out of
the four as the basis of our drawing. As in the previous chapter these are the components
x0 and yo  of the (complex initial value ZQ. The computation of these pictures takes the
following form. The position of a point on the screen (in screen coordinates) represents
the components xc and yo  (in universal coordinates). For a given value

c=creaI+l*cimaginaiy
the iteration is carried out. As a result, x and y change, and with them z. After a given
number of iterations we colour  the point corresponding to z according to the result. If it
is not possible to use different colours,  we can still use black-and-white or grey tones.
The method is then repeated for the next value of ~0.

The Mandelbrot formula is so constituted that it has only two attractors. One of
them is ‘infinite’. By the attractor ‘co’,  we mean that the series of numbers f(z) exceeds
any chosen value. Since for complex numbers there is no meaningful concept of
larger/smaller, we understand by this that the square of the modulus, lflz)12,  exceeds
any given value after sufficiently many steps. It does not matter much which value, and
we take for this bound the number 100.0 (defined as a real number so that the comparison
does not take too long).

ThevariableMaximalIteration  can be seen as a measure of how much patience
we have. The bigger this number, the longer the calculation takes, and the longer we
must wait for the-picture. But if Maximal Iterat ion is too small, the drawing is very

%ou  will still get interesting pictures -but not the ones intended.
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Figures 5.2-5 to 5.2-8 Julia sets.

As a result we save one multiplication per iteration and replace it by an addition, which is
computedsignificantlyfaster.
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Figures 5.2-l to 5.2-4 Julia sets.
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compute;
test;

UNTIL (iterationNo  = maximalIteration)  OR finished;
distinguish;

END; (* JuliaComputeAndTest *)

We recognise  familiar structures in the Program Fragment. In the main part the
screen section is scanned point by point and the values of x and y passed to the
functionalprocedure JuliaComputeAndTest. Thesenumbersarethestatingvalues
x0 and yo  for the iteration series. The global constants cRea1  and cImaginary
control the form of the set that is drawn.

Each new pair of numbers generates a new picture!
For mathematicians, it is an interesting question, whether the Julia set is connected.

Can we reach every point in the basin of the finite attractor, without crossing the basin of
the attractor w? The question of connectedness has been answered in a difficult
mathematical proof, but it can be studied rather more easily with the aid of computer
graphics.

In Figures 5.2-7 and 5.2-8 we certainly do not have connected Julia sets. The
basin of the attractor 00 can be seen from the contour lines. It cuts the Julia set into many
pieces. In Figures 5.2-l to 5.2-5 the Julia set is connected. Is this also the case in
Figure 5.2-6? We ask you to consider this question in Exercise 5.2-  1.

As another example we will demonstrate what effect an extremely small change of
c can have on the picture of the Julia set. We choose for the two parameters cl  and ~2
the following values, which differ only by a very tiny amount:

cl  = 0.745 405 4 + i*O.113  006 3
q = 0.745 428 0 + i*O.113  009 0

Figures 5.2-9 and X2-10  Julia sets for c1  and q.

In both cases the Julia sets appear the same (Figures 5.2-9, 5.2-10). The pictures
that follow are drawn with contour lines, so that the basin of the attractor w can be
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Below we describe a complete functional procedure JuliaComputeAndTest,
containing all relevant local functions and procedures.

Frogram Fragment 5.2-2
FUNCTION JuliaComputeAndTest (x, y : real) : boolean;

VAR
iterationNo : integer;
xSq,,  ySq,  distancesq : real;

lisation;
finished : boolean;

PROCEDURE StartVariableInitia
BEGIN

finished := false;
iterationNo  := 0;

xsq := sqr(x);  ySq  := sqr(
distancesq := xsq + ysq;

Y)  ;

END; (* startVariableInitialisation  *)

PROCEDURE compute;
BEGIN

iterationNo  := iterationNo  + 1;
Y ::=  x * YJ
Y : = y + y - cImaginary;
x ::=  xSq  - ySq  - cRea1;

xsq := sqr(x);  ysQ  := sqr(y);
distancesq := xSq  + ySq;

END; (* compute *)

PROCEDURE test;
BEGIN

finished := (distancesq > bound);
END; (* test *)

PROCElXJRE  distinguish;
BEGIN (* does the point belong to the Julia set? *)

JuliaComputeAndTest :=
iterationNo  = maximalIteration;

END; (* distinguish *)

BEGIN (* JuliaComputeAndTest *)
startVariableInitialisation;
REPEAT
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Figure 5.2-13 Julia set for ct. Section from Figure 5.2-12.

Figure 5.2-14 Julia set for q.  Section corresponding to Figure 5.2-13.

The extreme 6000-fold  magnification in Figure 5.2-15  (for cl) and Figure 5.2-
16 (for ~2) confirms the distinction.

‘Ihe  stripes indicating the basin of attraction of m are connected together in Figure
5.2- 15 from top to bottom. At this point the figure is divided into a left and a right half.
As a result the Julia set is no longer connected. It is different for q in Figure 5.2-16.
The basin of attraction of m ‘silts up’ in ever more tiny branches, which do not touch each
other. Between them the other attractor holds its ground.

We must magnify the original Figures 5.2-9 and 5.2-10, with an area of about 60
cm2,  so much that the entire figure would cover a medium-sized farm (21 hectares).
Only then can we notice the difference.
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deduced from the stripes. The object of investigation is the indicated spiral below and to
the right of the middle of Figures 5.2-9 and X2-10. Figures 5.2-11 (the same as
Figure 5.2-9 magnified 14 times) and 5.2-12 (magnified about 135 times) are here
drawn only for cl. These magnified pictures are also barely distinguishable from those
for ~2.

Figure 5.2-11 Julia set for ct. Section from Figure 5.2-9.

Figure 5.2-12 Julia set for ct. Section from Figure 5.2-l 1.

In Figure 5..2-13  (for ct)  and 5.2-14 (for 9) the pictures of the two Julia sets
fist  begin to differ in detail in the middle. After roughly 1200-fold  magnification there
is no visible difference at the edge of the picture, at least up to small displacements.



118 Dynamical Systems and Fractals

Gal,  Cimaginq produces new pictures. To be able to carry out the investigation in a
fairly systematic way, we will first look at the sets that can be generated using ct and q.

The following pictures are generated using the same data as in Figure 5.2-10.
They differ from it mostly in their size, and in the way that the ideas under investigation
arerepresented.

Figure 5.2-17 Julia sets with small iteration number.

As we have already shown earlier in this chapter, the form of this figure is
completely connected. But that does not mean that every pixel, for which we compute
the iteration series, really belongs to the figure. Because of the filigreed fractal structure
of many Julia sets it is possible that in a given region all points which we investigate just
lie near the figure. This is how the apparent gaps in Figure 5.2-17 arise. This holds
even more when we raise the iteration number. Then there is often just ‘dust’ left. In
Figure 5.2-18 we have therefore illustrated another limitation. It shows the points for
which it is already clear after 12 iterations that they do not belong to the Julia set.

Even though these stripes, which we have referred to as ‘contour lines’, do not
count towards the Julia set, they represent an optical aid without which the fine fractal
structure could not often be detected.

If these stripes do not seem as thick and dominant as in the previous pictures, this is
because not every second, but every third of them has been drawn. We interpret these
regions as follows. The outermost black stripe contains all points, for which it is already
apparent after 3 iterations steps that the iteration sequence converges to the attractor m.
The next stripe inwards represents the same for 6 iterations, and so on.

It is also apparent that we cannot show all details of a fractal figure in a single
picture. With a relatively coarse solution Figure 5.2-17 shows many different spiral
shapes. On looking closer they disappear, to bc replaced by finer structures inside the
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Figure 5.2-15 Julia set for ct.  Section from Fig 5.2-13.

Figure 5.2-16 Julia set for y.  Section from Fig 5.2-14.

Who would have real&d, just a few years ago, that mathematicians might use
computer graphic:s  to investigate and test basic mathematical concepts? This trend has led
to a new research area for mathematicians - experimental mathematics. Basically they
now work with similar methods to those used long ago by physicists. But the typical
measuring instrument is not a voltmeter, but a computer.

We have no wish to give the impression that the only interest in Julia sets is for
measurement or research. Many pictures are also interesting for their aesthetic appeal,
because of the unusual shapes that occur in them.

Throughout this book you will find pictures of Julia sets, and we recommend all
readers to work on them with their own computers. Each new number pair
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Figure 5.2-19 Section from the centre of Figure 5.2-17.
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Figure 5.2-l 8 Julia set with higher iteration number also acts as a boundary.

large black regions.
If we investigate further details of this figure, you will perhaps notice the

contiguous spirals in the middle. On the next two pages we show successive
magnifications of this motif. Pay special attention to the central point. That is the origin
of the coordinate system.

There we see an already known phenomenon ($2.2) in a new guise: a period-
doubling scenario! The two contiguous spirals generate several smaller spirals, which
you can see at the centre of Figure 5.2-19. After even greater magnification this can be
seen in Figure 5.2-20,  when it is possible to detect sixteen diminutive mini-spirals.

What else do you think is concealed within the black central dot?
Near the filigreed shape of the Julia set you can see still more ‘contour lines’ which,

together with the white areas, belong to the basin of the attractor 00.
Note also the numerous details of the Julia set in these pictures. In particular, as

will become clearer, it looks as though all structures eventually belong to contiguous
spirals.

At the beginning of this chapter, we stated that each c-value produces a different
picture. Now we have seen that it can even be more than one picture.

Not all c-values lead to figures as rich in detail as the value c - 0.745+0.113*i,
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which underlies Figures 5.2-9 to 5.2-20. If you try out other values yourself, it can in
some circumstances be rather boring, sitting in front of the computer, watching a picture
form. For this reason we will suggest another way to draw the pictures, which is
suitable for a general overview. To avoid confusion, we refer to the previous method as
Mapping, whilethenewoneiscalledbackwardsIteration.

We begin with the following observation.
Each point that lies outside the Julia set follows, under the iteration

ZHl = z&c,
an ever larger path. It wanders ‘towards infinity’. But we can reverse the direction.
Through the backwards iteration

z, = d(zml+c)
the opposite happens: we get closer and closer to the boundary. Starting from a very
large value such as z = 106+10%  we reach the boundary after about 20 to 30 steps.
Because each root has two values in the field of complex numbers, we get about 220 to
230 points (-lo6  to ~109), which we can draw. This high number of possible points
also makes it possible to stop the calculation at will.

In a Pascal program we implement this idea with a procedure backwards, which
calls itself twice. This style of recursive programming leads to rather elegant programs.

The procedure backwards requires three parameters: the real and imaginary
components x and y of a point, as well as a limit on the number of recursive steps.
Inside the procedure the roots of the complex number are taken and the result is stored in
twolocalvariables xLoca1  and ylocal.  Once the limit on the depth of recursion is
reached, the two points corresponding to the roots are drawn. Otherwise the calculation
continues. The constant c is added to the roots, and a new incarnation of the procedure
backwards iscalled.

Extracting roots is very easy for complex numbers. To do so we go over to the
polar coordinate representation of a number. As you know from $4.2, r and cp  can be
computed from x and y. Recalling the rule for multiplication, we see that the square
root of a complex number is obtained by halving the polar angle cp  and taking the (usual)
square root of the radius r.

Program Fragment 5.2-3
PROCEDURE backwards (x, y : real; depth : integer);

VAR
xLoca1,  yLoca1  : real;

BEGIN
compRoot(x,  y, xLoca1,  ylocal);
IF depth = maximalIteration  THEN
BEGIN

SetUniversalPoint (xLoca1,  ylocal);
SetUniversalPoint (-xLoca1,  -yLocal);

E.m
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Figure X2-20 Section from the centre of Figure 5.2- 19.
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Figure 5.2-21 Backwards iteration, 20 seconds’ computing time.

Figure 5.2-22 Backwards iteration, 4 hours’ computing time.

you exit from the entire set of incarnations of the recursive procedure.
The next two pictures show examples of this method. In Figure 5.2-21 you see

that already after a few seconds the general from of the Julia set is visible. The
applicability of this fast method is limited by its duration. The points that lie far in from
the edge are scarcely reached. Even after a few hours of computing time (Figure 5.2-
22) the interesting spiral structures, which we really should expect, cannot be seen.
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ELSE IF NOT button THEN (*button: break calculation *)
BEGIN

backwards (xLocal+cReal,  yLocal+cImaginary, depth+l);
backwards (-xLocal+cReal,  -yLocal+cImaginary,

depth+l);
END;

END (* backwards *)

Program Fragment 5.24
PROCEDURE compRoot  (x, y: real; VAR a, b : real);

CONST
halfPi  = 1.570796327;

vim
phi, r : real;

BEGIN
r := sqrt(sqrt(x*x+y*y));
IF ABS(x)  < l.OE-9  THEN

BEGIN
IF y > 0.0 THEN phi := halfPi

ELSE phi := halfPi  + pi;
END

ELSE
BEGIN

IF x > 0.0 THEN phi := arctan  (y/x)
ELSE phi := arctan  (y/x) + pi;

END;
IF phi < 0.0 THEN phi := phi + 2.O*pi;
phi :=:  phi"0.5;
a := r*cos(phi);  b := r*sin(phi);

END; (* compRoot  *)

If you want to experiment with this version of the program, you must set the values of the
real part cRea1 and the imaginary part cImaginary  of the complex parameter c. Take
a maximal iteration depth of, e.g.,

maximalIteration  := 30;
If you make this number too large you will get a stack overflow error. For each new
recursion step the computer sets aside yet another storage location.

In preparation, call the procedure with
backwards (1000,1000,1);

You can quit the procedure by pressing a key or clicking the mouse, whichever is set up
on your computer (see chapter 11). You must hold the key down long enough so that
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Exercise 5.2-6
Write  a program which produces a series of Julia sets, so that the c-values are

either
+ r a n d o m
o r
+ change step by step in a predetermined fashion.

Exercise 5.2-7
Attach a super-8 camera or a video camera which can take single frames to your

computer. Make a film in which you compute several hundred members of a sequence
such as Figures 5.2-i to 5.2-8, to show how the shape of the Julia set changes as the
value of c is altered. The results make the world of Julia sets seem rather more orderly
that one might expect from the individually computed pictures.

Figure 5.2-23 Yet another Julia set (just  to whet your appetite).
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Exercise 5.2-l
Write a program to compute and draw Julia sets. It should have the facility for

cutting out sections and magnifying them.
Preferably the computation should follow the ‘contour line’ method.
Do not forget to document your programs, so that you can pursue other interesting

questions later.
Use the program to investigate the first magnification of Figure 5.2-6, to decide the

question: is the Julia set connected or does it fall to pieces?

Exercise 5.2-2
Investigate similar series as in Figures 5.2-t to 5.2-8.
The c-values can be changed along the real or imaginary axis. Can you detect -

despite the complexity - some system in these series?
To save time you can exploit the symmetry of these Julia sets. You need carry out

the computation only for half the points. The other half of the picture can be drawn at the
same time or with the aid of some other graphical program.

Exercise 5.2-3
Find particularly interesting (which can mean particularly wild) regions, which you

can investigate by further magnification.
Note the corresponding c-values, and try out similar values.
How do the  pictures corresponding to two conjugate c-values differ from each

other?
(If c = a+i*  h  then its complex conjugate is a-i* b.)

Exercise 5.24
Build the procedure for backwards iteration into your program.
Use it to investigate a larger number of parameters c.

l Is the boundary of the set smooth or ragged?
. Does the set appear to be connected or does it split into several pieces?

Exercise 5.2-5
What pictures arise if, instead of large values, you start with small ones? For

example,
backwards (0.01, 0.01, 1).

Compare the pictures with those in Exercise 5.2-  1.
Can you give an explanation?
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Pictures like grains of sand on the seashore... the graphics which we can generate by the
methods of the previous chapter are as different or as similar as sand. Each complex
number produces another picture, sometimes fundamentally different from the others,
sometimes differing only in details. Despite the self-similarity (or maybe because of it?)
new surprises appear upon magnification.

6.1 A Superstar with Frills
From all this variety of apparent forms we will pursue only one property. It

concerns the question: is the picture connected or does it split apart?1  But instead of
investigating the connectivity with particular magnifications in unpredictable places, we
wihall use a trick. Perhaps something has already occurred to you in connection with the
experiments in Chapter S?

As an example, consider the two complex numbers
cl  = 0.745 405 4 + i*O.113  006 3

and
c2  = 0.745 428 + i*O.113  009.

We have already looked at the corresponding pictures in Chapter 5 (Figures 5.2-9 to
5.2- 16),  and discovered that the Julia set corresponding to CQ  is connected. In contrast
cl  produces pictures in which the basin of the finite attractor splits into arbitrarily many
pieces. It suffices to show that the figure is not connected together at one place, but falls
into two pieces there. The more general conclusion follows by self-similarity.

Consider Figures 6.1-1 and 6.1-2, corresponding to the above c-values. They
show at about 40-fold magnification the region in the neighbourhood of the origin of the
complex plane, which lies symmetrically placed in the middle of the entire figure.

The question whether the set is connected can now be answered quite easily. If you
look in Figure 6.1-  1 in the middle of the striped basin, it is clear that no connection can
exist between the lower left and the upper right portions of the figure. That is a
fundamentally different observation from Figure 6.1-2. There the stripes in the basin of
the attractor at infinity do not approach near enough to each other.

In the middle there appears, between them, a relatively large region from the other
attractor. We have already encountered something similar in Figures 5.2-14 and 5.2-
16. You can show for yourself that such circle-like forms appear at very many places in
this Julia set. But this region round the origin of the complex plane is fairly large.
Thus we can pursue the investigation without any pictures at all, reducing the question to
a single point, namely the origin. In the sequence for ct  (Figure 6.1-l) we have drawn
the required boundary after about 160 iterations, and thereby made sure that the origin
belongs to the basin of the attractor ~0. But even if the computer takes a week, we cannot
determine the boundary for c2  (Figure 6. l-l).

‘We call a set connected if there is a path within it, by means of which we can reach any point
w i t h o u t  l e a v i n g  t h e  s e t . If this is not the case, the set must divide into two distinct parts.



6 Encounter with the
Gingerbread Man
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Figure 6.1-2 Julia set for ~2,  section near the origin.
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Figure 6.1-1 Julia set for cl, section near the origin.
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Nobody can carry out this kind of calculation with complex numbers in his head.
For a few simple cases we will work out the boundary of the non-divergent region,
before we try to obtain an overview of all possible c-values at once.

To begin with we will use purely real numbers c with no imaginary part. At each
iteration step the current value is squared and c is subtracted. Thus the number only
stays small if the square is not much larger than c. Furthermore, we will carry out the
computation in a spreadsheet program. * In Table 6.1-  1,  we see the development for
different real values of c.

In column 1 we find the variable n for n = 0 to 10. In order to get a glimpse of
the later development, the values n = 45 to n = 50 are shown below. Next come the
z,-values,  computed using the value of c listed in the first row.

Here is a brief commentary on the individual cases.

Column 2, c = 0: z,, remains zero, no divergence.

Column 3, c = 1: switching between z = 0 and z = - 1, again no divergence.
Column 4, c = -1: already after 5 steps the answers cannot be represented in the
space available (##MS) and after 15 steps they become larger than the biggest
number with which EXCEL can work (#NUM  ! ), namely lO*m. Certainly we
have divergence here!
Now we must investigate the boundary between c = -1 and c = 0.

c = 0.5 (column 5): surely not small enough, divergence.
c = -0.25 (column 6): the first new case in which the c-values do not
grow beyond reasonable bounds.

The remaining case (columns 6-8) show that the upper boundary lies
near c = 2.0.

Conclusion: the iteration sequence diverges if c c -0.25 or c > 2.0. In between we find
(as in the Feigenbaum scenario in Chapter 2) simple convergence or periodic points,
hence finite limiting values.

We have here carried out the iteration in great detail, in order to
+ give you a feel for the influence of the c-values,
b show you how effectively a spreadsheet works,
. prepare you for the next step in the direction of complex numbers.

The investigation for purely imaginary parameters is not so easily carried out. Even
when we square, we create from an imaginary number a negative real one, and upon
subtracting we obtain a complex number! In Tables 6.1-2 and 6.1-3 we always list the
real and imaginary parts of c and z next to each other. Otherwise both are constructed
like Table 6.1-1.

2We use EXCEL, German version. As a result the decimal numbers have commas in place of the
d e c i m a l  p o i n t .
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In other words, the Julia set for a particular number c in the iteration sequence
Zn+l = zn2-c

is connected, provided the sequence starting from
zo = 0

does not diverge.
We shall not pursue the mathematics of this relationship any further. All iteration

sequences depend only on c,  since ~0  = 0 is predetermined. If you insert this value into
the iteration sequence, you obtain in turn:

zo = 0,
Zl  = -c,
22  = G-c,
z3  = c4-2c3~c2-c,

etc.
z4  = c8-4&2&-6,5+5&-2c3+&c,

Whether this sequence diverges depends upon whether the positive and negative
summands are of similar sizes, or not. Then, when the modulus of z exceeds a certain
bound, squaring produces such a large increase that subtracting c no longer leads to
small numbers. In the succeeding sequence the z-values grow without limit.

p Quadratic Iteration / c real I
I 2 I 3 I 4 I 5 I 6 I 7 I a I 9 I1HI ~ i , 10 4)c + 0 1 ,oo -1 ,oo -ii,50  $25 i ,50  ;,oo i.10 1,99  -

n & Z n Z n Z n Zn Zn Z n Z n Z n Z n :::j:j

Table 6.1-1 Iteration sequence zn+t=zn2-c for purely real c-values.



134 Dynamical Systems and Fractals

En- Quadratic Iteration / c imaginary
1 10 I 1 1 12 1 1 3 14 1 1 5 16 1 1 7 0

c -3 0,oo 0,90 ,061OS 0,90 0,50 0,60 -0,30 0,50 -
n A z-real z - i m a g  z - r e a l z - i m a g  z - r e a l z - i m a g  z - r e a l z - imag m
0 0,oo 0,oo 0,oo 0,oo 0,oo 0 ,oo 0,OO 0,oo  $2
1 0,oo -0,90 -0,06 -0,90 -0,50 -0,60 0,30 -0,50 gig/
2 -0,81 -0,90 -0,87 -0,79 -0,61 0,oo 0,14 -0,80 $j
3 -0,lS 0,56 0,07 0,47 -0,13 -0,60 -0,32 -0‘72 ;I;I;l
4 -0,29 -1,07 -0,28 -0,84 -0,84 -0,45 -0,12 -0,04 @
5 -1,07 -0,28 -0,68 -0,43 0,Ol 0,15 0,31 -0,4g ijiiii
6 1 ,06 -0,30 0,22 -0,31 -0,52 -0,60 0,16 -o,81 $#

7 1 ,03 -1,52 -0,ll - 1  ,03 -0,58 0,02 -0,33 -0,75
::::!:
$$$

8 - 1  ,27 -4,03 -1,12 -0,68 -0,16 -0,63 -0,16 -Q,Ql i];li]

Table 6.1-3 Iteration sequence for purely imaginary and complex c-values.

than the boundary at c = -0.25, which have have discovered on the real axis.
We certainly will not obtain a complete overview using the tables - the problem is

too complicated. We must resort to other means, and use graphical representation.
Every possible Julia set is character&d by a complex number. If we make the

c-plane the basis of our drawing, each point in it corresponds to a Julia set. Since the
point can be coloured  either black or white, we can encode information there. As already
stated, this is the information on the connectivty  of the Julia set. If it is connected, a point
is drawn at the corresponding screen position. If the appropriate Julia set is not
connected, the screen remains blank at that point. In the following pictures, all points of
the complex c-plane are drawn, for which that value of c belongs to the basin of the
finite attractor. A program searches the plane point by point. In contrast to the Julia sets
of the previous section, the initial value is fixed at 20 = 0, while the complex number c
changes.

The corresponding program is developed from Program Fragment 5.2-2. To start
with, we have changed the name of the central functional procedure. It must throughout
be called from the procedure Mapping. The above parameter will be interpreted as
Creal  and Cimaginary  . We define x and y as new local variables, intialised to the
value 0.
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E n - - - - - Quadratic Iteration / c imaginary
1 2 I 3 4 I 5 6 1 7 8 1 9 4)

c -9 0,oo 0,50 0,oo -0,so 0,oo 1 ,oo 0 ,oo 1,10-

#NUM! #NUM!

Table 6.1-2 Iteration sequence for purely imaginary c-values.

l Columns 2 and 3 (c = OSi) show that a non-divergent sequence occurs.
. In columns 4 and 5 ( c = -0.S) we obtain the same numbers, except that the sign

of the imaginary part is reversed.
+ What we observe by comparing columns 2 and 3 with 4 and 5 can be expressed in a

general rule: two conjugate complex3 numbers c generate two sequences z
which are always complex conjugates.

+ In column 6 and 7 we see that c = l.Oi  provides an upper limit... .
I, . . . which is clear by comparing with columns 8 and 9 (c = 1 .li).

To see that the behaviour on the imaginary axis is not as simple as on the real axis,
take a look at
l Columns 10 and 11: for c = 0.9i the sequence diverges!
It is a total surprise that a small real part, for example
. c = 0.06105 + 0.9i (columns 12 and 13),
again leads to an orderly (finite) sequence (at least within the first 50 iterations).

The last two examples, columns 14 and 15 (c = 0.5+0.6i) and 16 and 17
(c = -0.3+0.5i)  should convince you that non-divergent sequences can be found when
c is well removed from the axes. Indeed the number -0.3+0.5i  lies further to the left

31f  you have difficulty with this concept, re-read the fundamental ideas of calculation with complex
numbers in Chapter 4.
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dist inguish;
END; (* MandelbrotComputeAndTest  *)

The figure that this method draws in the complex plane is known as the Mandelbmt  set.
To be precise, points belong to it when, after arbitrarily many iterations, only finite z-
values are produced. Since we do not have arbitrarily much time, we can only employ a
finite number of repetitions. We begin quite cautiously with 4 steps.

Figure 6.1-3  Mandelbrot set (4 repetitions).

As we see from the coordinate axes that are included, the resulting shape surrounds
the origin asymmetrically. In the calculation in Table 6.1-  1 we have already noticed that
the basin stretches further in the positive direction. After two further iterations the
egg-shaped basin begins to reveal its first contours.

Figure 6.1-4 and 5 Mandelbrot set (6, respectively 8 repetitions).

It gradually emerges that the edge of the figure is not everywhere convex, but that in
some places it undergoes constrictions.

The mirror symmetry about the real axis is obvious. It means that a point above the
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Program Fagment 6.1-1.
FUNCTION MandelbrotComputeAndTest (Creal,  Cimaginary :

real) : boolean;
VAR

iterationNo  : integer;
x, y, xSq,  ySq,  distancesq : real;
finished: boolean;

PROCEDURE StartVariableInitialisation;
BEGIN

finished := false;
IterationNo  := 0;
x ::=  0.0; y := 0.0;
xsq := sqr(x); YQ := sqr(y);
distancesq := xsq + ysq;

END; (* StartVariableInitialisation *)
PROCEDURE compute;
BEGIN

Ite.rationNo := IterationNo  + 1;
y ::=  x*y;

Y ::=  y+y-Cimaginary;
x ::=  xSq  - ySq  -Creal;
xsq := sqr(x);  ySq  := sqr(y);
distancesq := xsq + ysq;

END; (* compute *)

PROCEDURE test;
BEGIN

finished := (distancesq > 100.0);
END; (* test *)

PROCEDURE distinguish;
BEGIN (* Does the point belong to the Mandelbrot set? *)

MandelbrotComputeAndTest : =
(IterationNo  = MaximalIteration);

END; (* distinguish *)

BEGIN (* MandelbrotComputeAndTest *)
StartVariableInitialisation;
REPEAT

compute;
test;

UNTIL (IterationNo  = MaximalIteration)  OR finished;
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Figure 6.143 Mandelbrot set (100 repetitions, ‘contour lines’ up to 16).

magnification. On the other hand, the strangeness of this type of repetition is very
different from that of, e.g. a leaf and a tree. The structure on different scales, whereby
more features of the shape emerge, contradicts our normal vision. It makes us rethink
our perceptions and eventually reach a new understanding.

In name-giving, and the fascination of form (and colour),  we will follow the
example of the Research Group at the University of Bremen, when in 1983 they were
first able to produce the Mandelbrot set in their graphics laboratory. The name
‘Gingerbread Manf4  arose spontaneously, and we find it so appropriate that we will
also  use it.

The figure itself is not much older than the name. In the Spring of 1980 Benoit
Mandelbrot first caught a glimpse of this graphic on a computer, hence its more formal

4Trans2otor’s  note: ‘Apfelmknchen  in the German, literally ‘Little Apple Man’. The  ‘ t r ans l a t i on ’
in the text, traditional among some sections of the English-speaking fractal  community, captures the
style of the German term. It is also a near-pun on ‘Mandelbrot’, which translates as ‘almond bread’.
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real axis has the same convergence behaviour as the corresponding point below. The
complex numbers corresponding to these points are complex conjugates. In Table 6.1-2
we have already seen that such complex numbers have similar behaviour. They produce
conjugate complex sequences.

Figures 6.1-6 and 7 Mandelbrot set (10 - 20 repetitions).

In Figure 6.1.6 some unusual points can be identified. The right-hand outermost
point corresponds to c = 2. There the figure has already practically reduced to its final
form: it exists only as a line along the real axis. However, magnified sections soon
show that it possesses a complicated structure there.

The left upper branch of the same figure lies on the imaginary axis, where c has the
value c = i. If we move from there directly downwards, we leave the basin of
attraction, as we already know from Table 6.1-3 (columns 10 and 11).

Even if the drawing at first sight appears to show the opposite, the figure is
connected. On the relatively large grid that determines the screen, we do not always
encounter the extremely thin lines of which the figure is composed at many places. W e
already know this effect from the pictures of Julia sets.

All pictures can be combined and lead to ‘contour lines’. In the next picture we not
only draw the sets. In addition we draw the points, for which we can determine, after 4,
7,10,13,  or 16 iterations, that they do not belong to it.

At this point we should describe the form of the Mandelbrot set. But, you may well
ask, are there really similes for this uncommonly popular figure, which have not already
been stated elsewhere?

In many people’s opinion, it is reminiscent of a tortoise viewed from above,
Randow  (1986). Others see in it a remarkable cactus plant with buds, Clausberg (1986).
For some mathematicians it is no more than a filled-in hypocycloid, to which a series of
circles have been added, on which sit further circles, Durandi (1987). They are surely
all correct, as also is the Bremen instructor who was reminded of a ‘fat bureaucrat’ (after
rotation through 900).  Personal attitudes and interpretations certainly play a role when
describing such an unusual picture. Two perceptions are involved, in our opinion. First,
a familiarity with the forms that resemble natural shapes, in particular those seen upon
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Figure 6.1-10 Mandelbrot set (section left of the origin).

The pictures that will now be drawn are all formed by sections of the original
Gingerbread Man at different places and with different magnifications. In Figure 6.1-9,
the regions concerned are marked by arrows.

This pictures shows a ‘skewered Gingerbread Man’ on the real axis. In order to
obtain the contours more sharply, it is necessary to raise the iteration number. Here it is
loo.

The magnification relative to the original is about 270-fold. Compare the central
figure with the corresponding one in Figures 6.1-3 to 6.1-7.

Figures 6.1-  12 and 6.1-13 show a section of the figure which is imprinted with
spirals and various other forms. The massive black regions on the left side are offshoots
of the main body. If the resolution were better, you would be able to identify them as
baby Gingerbread Men.
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nanreP
Never before has a product of esoteric mathematical research become a household

word in such a short time, making numerous appearances on notice-boards, taking up
vast amounts of leisure time,6  and so rapidly becoming a ‘superstar’.

In order to avoid misunderstandings in the subsequent description, let us define our
terms carefully.7

The complete figure, as in Figure 6.1-9, we will call the Mandelbrot set or
Gingerbread Man. It is the basin of the ‘finite attractor’.
The approximations to the figure, as shown in Figure 6.143, are the contour lines
or eqtipotentialsurfaces. They belong to the basin of the attractor m.
In the Mandelbrot set we distinguish the main body and the buds, or baby
Gingerbread Men.
At some distance from the clearly connected central region we find higher-order
Mandelbrot sets or satellites, connected to the main body by filaments. The only
filament that can be clearly seen lies along the positive real axis. But there are also
such connections to the apparently isolated points above and below the figure.
We speak of magnification when not the whole figure, but only a section of it, is
drawn. In a program we achieve this by selecting values for the variables Left ,
Right,Bottom,Top.

t

imaginary
axis

1 . 0 - i

b
.o r e a l

axis

Figure 6.1-9 Mandelbrot set (60 repetitions).

5Compare  the description in Peitgen and Richter (1986).
61f w e  c a n  s o  d e s c r i b e  t h e  o c c u p a t i o n  w i t h  h o m e  a n d  p e r s o n a l  c o m p u t e r s .
7They  go back in particular to Peitgen and Richter (1986).
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Figure 6.1-12 A section betv---_-  - nly and a bud.

Figure 6.1-13 A section directly below Figure 6.1-12.
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Figure 6.1-11 A Mandelbrot set of the second order.

The final picture, Figure 6.1-  14, has been turned 90”. In the original position the
tiny Mandelbrot set has an orientation almost opposite to that of the original. It is
attached to a branch with very strongly negative values for creal.  The magnification is
about SIO-fold.

The self-similarity observed here is also known in natural examples. Take a look
at a parsley plant. For many ‘iterations’ you can see that two branches separate from each
main stem. In contrast to this, the self-similarity of mathematical fractals has no limit.
In a lecture, Professor Mandelbrot briefly showed a picture with a section of the
Gingerbread Man magnified 6* 1023 times (known to chemists as Avogadro’s Number),
which quite clearly still exhibited the standard shape.
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Exercise 6.1-3
Implement a Pascal program to draw the Mandelbrot set (Gingerbread Man).
Choose the limits for the region of the complex plane under investigation roughly as

follows:
Left < -1.0, Rightkz.s(Left SqdIRight)
Bottoms  -1.5, Top2  1.5 (Bottom<~~~inaryITop).

For each screen pixel in this region start with the value
q = qt+i*yo  = 0.

Draw all points, for which after 20 iterations the value of
lflz)P = &by2

does not exceed the bound 100.
It should take your computer about an hour to do this.

Exercise 6.14
When you have plenty of time (e.g. overnight), repeat the last exercise with 50,100,

or 200 steps. The more iteration steps you choose, the more accurate the contours of the
figure will be.

Draw ‘contour lines’ too, to make the approximations to the Mandelbrot set more
accurate.

Exercise 6.1-S
Investigate sections of the Mandelbrot set, for which you choose the values for

Left,Right,Bottom,Top  yOudf.
Take care that the real section (Right - Left) and the imaginary section (Top -

Bottom) always stay in the same proportion as the horizontal @screen)  and thevertical
(Yscreen)  dimensions of your screen or graphics window. Otherwise the pictures will
appear distorted, and this strangeness can detract from their pleasing appearance. If you
do not have a 1:l mapping of the screen onto the printer output, you must also take care
of this. For large magnifications you must also increase the iteration number.

In the pictures in this section you can already see that it is the boundary of the
Mandelbrot set that is graphically the  most interesting.

Worthwhile objects of investigation are:
l The filament along the real axis, e.g. the neighbourhood of the point c = 1.75,
+ Tiny ‘buds’ that sprout from other larger ones,
+ The regions ‘around’ the buds,
I The valleys between the buds,
I The apparently isolated satellites, which appear some distance from the main body,

and the filaments that lead to them.
By now you will probably have found your own favourite regions within the Mandelbrot
set. The boundary is, just like any fractal, infinitely long, so that anyone can explore new
territory and generate pictures absolutely unseen before.
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Figure 6.1- 14 A satellite fairly far left.

Computer Graphics Experiments and Exercises for 56.1

Exercise 6.1-1
Using a spreadsheet calculator or a Pascal program, construct an instrument to

represent iterative sequences in tabular form.
Verify the results of Tables 6.1-1 to 6.1-3.
Find out what changes if instead of the formula

Zn+l = z,*-c
you use

Zn+l = z,*+c.

Exercise 6.1-2
To make the processes on the real axis, and their periodicity, more obvious, draw a

Feigenbaum diagram for this case. Draw the parameter crMf  (-0.25 I crd I 2.0)
horizontally, and the z-value for 50 to 100 iterations vertically.
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yo =  0 .0 yo  =  0 . 2 yo =  0 . 4

Figure 6.2-l Quasi-Mandelbrot sets for different initial values.

basically does the same.
A particularly pretty example appears on the cover of Douglas R. Hofstadter’s book

Gael,  Escher, Bach. A shape, presumably cut from wood, has a shadow which from
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Exercise 6.1-6
The assumption that all iterations begin with

q = %+i*yg  = 0
is based on a technical requirement. For our graphical experiments it is not a necessity.
Therefore, try constructing sequences beginning with a number other than zero, with
%#Oand/oryg#O.

Exercise 6.1-7
The iteration sequence studied in this section is of course not the only one possible.

Perhaps you would like to reconstruct the historical situation in the Spring of 1980,
which B. B. Mandelbrot described in his article. Then you should try using the sequence

Z,l = c*(l+z,2)2/(zn2*(z,2-1))
o r

zml = c*zn*(l-z,).
The boundaries and the remaining parameters you must find out for yourself by
experimenting. Enjoy yourself: it will be worth it!

6.2 Tomogram of the Gingerbread Man
Julia sets and Mandelbrot sets, such a variety of forms, such fantastic patterns!

And all that happens if you just iterate a simple nonlinear equation with a complex
parameter.

If we resolve the possible parameters into their components, we find that we can
influence the iteration mathematically in four places. The first two values available to us
are the real and the imaginary component of the initial value Q; the other two are the
components of c.

Because these four quantities can be varied independently of one another, we obtain
a fourfold range of new computational foundations and thus a fourfold system of new
pictures, when we combine the quantities in different ways. The true structure of the
attractor of the iteration formula

Zn+l = z,2-c
is four-dimensional!

Most people experience severe difficulties thinking about three-dimensional
situations. Everything that transcends the two dimensions of a sheet of paper discloses
itself only with great difficulty, and only then when one has much experience with the
subject under investigation. There is no human experience of four independent
directions, and four mutually orthogonal coordinate axes cannot be represented artistically
or technically. If people wish, despite this, to get a glimpse of higher-dimensional
secrets, there is only one possibility: to make models that reduce the number of
dimensions. Every architect or draughtsman reduces the number of dimensions of his
real objects from three to two, and can thus put them on paper. Each photo, each picture



148 D y n a m i c a l  S y s t e m s  a n d  F r a c t a l s

given by the three mutually perpendicular axes length, breadth, and height. In its simplest
form we can create a section by fixing the numerical value in one coordinate direction -
for example, in the plan of a house, looking at the height of the first storey. In this case
the space that is graphically represented runs parallel to the two remaining axes.
Complicated sections run obliquely to the axes.

The pictures on the previous two pages survey the form of the basin of attraction,
when the iteration begins with the value shown round the edges. That is,

zo = xo+iyo
is drawn in the middle of each of the 24 frames, together with the contours for the values
3,5,  and 7. In the frames, just as in the Mandelbrot set itself, crd runs horizontally and
ciinagitrary  vertically. In the frame at lower left we see the standard Mandelbrot set.

In our previous computer graphics experiments we have always kept two variables
fixed, so that of the four dimensions only two remain. This lets us draw the results on
the screen without difficulty.

In 85.2  we fixed
c =  C,&  +  l*cimaginary

for every picture. The two components of
zo = xu+i*yo

could then be  changed, and provided the basis for drawing Julia sets.
For the Gingerbread man in 86.1  we did exactly the opposite, a mathematically

‘perpendicular’ choice. There
q = xu+i*yu

remained fixed,  while
C =  C+&  + l*  Cjmaginary

formed the basis of the computation and the drawing.
Building on the four independent quantities xt-~,  yo,  crd,  qmaainw  we will

systematically investigate which different methods can be. used to represent graphically
the basin of the finite attractor.

x0

x0 X

YoI-1
creal 2
cimaginary  3

Y o

01

X
4
5

02

04
X
6

Gmaginaly

03

05

06
X

Table 6.2-  1 Possibilities for representation.
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x0 =

0.9

yo=  0.6 yo=  0.8 yo=  1.0

Figure 6.2-2 Quasi-Mandelbrot sets for different initial values.

different directions looks like the letters G, E, or B. Thus we see that such a reduction of
dimension can colloquially be described as a silhouette, a section, or a tomogram.
Architects and mathematicians alike build upon a three-dimensional coordinate system
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Cred  = 0.0 L&al  = 0.2 Creal=  0.4

Figure 6.2-3 Diagram for case 2.

Interesting forms first arise for values such that  the sets are rapidly disappearing.
There it also looks as though the basin is no longer connected.

The pictures on the surrounding pages are symmetric about the origin. They all lie
in the X0-cnnaSinat.y  plane, with cimaginw  being drawn vertically. We also find this
type of symmetry in Julia sets.
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In Table 6.2-  1 we show the 4 x  4 = 16 possibilities, which can be expressed using two
of these four parameters. The two quantities on the upper edge and down the side are
kept constant in the graphics. The remaining two are still variable, and form the basis of
the drawing. Because of the ‘four-dimensional existence’ of the basin of attraction, we
select sections that are parallel to the four axes.

The four possibilities along the diagonal of Table 6.2-l do not give a sensible
graphical representation, because the same quantity occurs on the two axes.
Corresponding to each case above the diagonal there is one below, in which the axes are
interchanged. For the basic investigation that we carry out here, this makes no difference.
Thus there remain 6 distinct types, with which to draw the basin of the iteration sequence.

By case 1 we refer to that in which xo and yc  are kept fixed. Then w and
citnaginary  are the two coordinates in the plane that underlies each drawing. A special
case of this, which we call case la, is when x0 = yo  =0, and this leads to pictures of the
Mandelbrot set or Gingerbread Man. Case lb, for which x0 # 0 and/or yo  $ 0, has
already been worked out in Exercise 6.1-6. A general survey of the forms of the basins
may be found in Figs. 6.2-l and 6.2-2. The intial values x0 and yu  are there chosen
from the range 0 to 1. Lacking any better name we call them qua+MancJeJbrot  sets.

We recommend you to find out what happens when one or both components of the
initial value are negative. Do you succeed in confirming our previous perception that the
pictures of the basins becomes smaller and more disconnected, the further we go away
from the starting value

20 = xc+i*yc  = O?
And that we obtain symmetric pictures only when one of the two components x0 or yo
has the value zero?

Another case, already used in $5.2 as a method for constructing Julia sets, is
number 6 in the Table.

If you have already wondered why the Julia sets and the Gingerbread Man have
so little in common, perhaps a small mathematical hint will help. In a three-dimensional
space there are three possible ways in which two planes can be related. They are either
equal, or parallel, or they cut in a line. In four-dimensional space there is an additional
possibility: they ‘cut’ each other in a point. For Julia sets this is the origin. For the
Gingerbread Man this is the parameter c,  which is different for each Julia set.

The two real quantities xc and cred  are kept fixed throughout. The basis for the
drawing is then the two imaginary parts yn  and cimagiw.  The pictures are symmetric
about the origin, which is in the middle of each frame.

The central basin is rather small near cral = 0.8 Recall that at c = 0.75 we find
the first constriction in the Gingerbread Man, where its dimension along the imaginary
axis goes to zero. And this axis is involved in the drawing.

The central basin is fairly shapeless for small values of x0 and Cimagiuary.  Perhaps
this is just a matter of the depth of iteration, which for all the pictures here is given by
maximalIteration  = 100.
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x0 =
0 . 6

xg =
0 . 3

xg =
0 . 0

C&q&q  =  0.0 CjnqrJ*ary  =  0.2 Cimaginiq  = 0.4

Figure 6.2-S Diagram for case 3.
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cred  = 0.6 Creal = 0.8

Figure 6.2-4 Diagram for case 2.
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Yo =
0.9

Yo =
0.6

Yo =
0.3

Yo =
0.0

Dynamical Systems and Fractals

Figure 6.2-7 Diagram for case 4.
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cimaginq  = O-6
cimaginary  = 0.8 Gagbary = 1.0

Figure 6.2-6 Diagram for case 3.
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Chaginary = 0.2 cimaginary  = 0.4

Figure 6.2-9 Diagram for case 5.
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Yo =
0.3

Y, =
0.0

ll!!zil
h-w

I0e.
cd = 0.6 cred = 0.8 Cd = 1.0

Figure 6.2-8 Diagram for case 4.
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Provided cimaginary > 0, the sets break up into many individual regions. In Fig. 6.2-  11
you see a section of the boundary of such a set, drawn as in case 5. Its individual pieces
are no longer joined up to each other.

Figure 6.2-l 1 Detail with sevenfold spiral.

Computer Graphics Experiments and Exercises for $6.2

Exercise 6.2-l
To formulate specific exercises at this stage, you should avoid undervaluing your

taste for adventure and fantasy. Simply cast your eyes a little further afield when you
look at the previous pages. Negative and large parameters are wide open. Explore
sections of the pictures shown. In some cases you must then employ different scales on
the two axes, or else the pictures will be distorted.

We show you an attractive example above in Fig. 6.2-  11. The two values yo  =
0.1 and cimaginiuy  = 0.4 are fixed. From Left to Right the real starting values changes
in the range 0.62 I x0 2 0.64. From Bottom to Top crd varies: 0.74 I creal  < 0.8.
In the diagonal direction the original square figure is stretched by a factor of 3.
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Yo  =
0.9

Ye  =
0.6

‘~.,=  ww

chaghary  = 0.6 cimaginary  = O-8 Chaghary  = 1.0

Figure 6.2-10 Diagram for case 5.

It is clear that the central basin is no longer connected. If you produce
magnifications of the details, you must take into account the extreme irregularity (see
Exercise 6.2-l). If we keep the two imaginary quantities yo  and Cimagiaw  constant,
and in each picture change x0 and ~~1, we get the most remarkable and wildest shapes.
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For example, if we have established that the 73rd number in a sequence is equal to the
97th,  then we can conclude that a period of 24 then exists. This condition can be used to
colour  the uniformly black region inside the Gingerbread man.

We offer this as an example, and collect the results together:

The constrictions in the Mandelbrot set (or, more poetically, the necks of the
Gingerbread Man) divide regions of different periodicity from each other.
The main body has period 1, that is, each number sequence z,l = z&c
beginning with ZQ  = 0, for c chosen within this region, tends towards a fixed
complex limit. If c is purely real, so is the limit.
The fist  circular region, which adjoins it to the right, leads to sequences of period
2.
The further ‘buds’ along the real axis exhibit the periods 4, 8,16,  .  .  .  .
We find period 3 in the two next largest adjoining buds near the imaginary axis,
near c = 1.75.
For each further natural number we can find closed regions of the Mandelbrot set in
which that periodicity holds.
Regions that adjoin each other differ in periodicity by an integer factor. Adjacent to
a region with periodicity 3 we find regions with the periods 6,9,12,  15, etc. The
factor 2 holds for the largest bud, the factor 3 for the next largest, and so on.
At the limits of the above regions the convergence of the number sequence becomes
very poor, so that we need far more than 100 iterations to decide the question of
periodicity.

We have already had a lot to do with this condition in Chapter 2, in the study of the
Feigenbaum phenomenon. First, as a bridge-building exercise, we show that the new
graphics display a similar state of affairs. Thus even the formula that underlies the
Mandelbrot set can be drawn in the foxm  of a Feigenbaum diagram.

The parameter to be varied here is, in the first instance, crd.  To begin with, the

imaginary  Part  Cimaginary will be held at a constant value of 0. The program that we used
in $6.1  to draw the Mandelbrot set changes a little.

To make as few alterations to the program as possible, we relinquish the use of the
globalvariablesvisible  and Invisible. Their role will be played by boundary
andmaximalIteration,respectively.

Program Fragment 6.3-3
PROCEDURE Mapping;

VAR
Xrange : integer;
deltaXPerPixe1  : real;
dummy : boolean;
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Exercise 6.2-2
Experiment with ‘slanting sections’. From left to right change both I+&  and

chatiary  using a formula of the type
c& = os*c unaginary

or similar. Or nonlinear expressions. From bottom to top x0, say, varies, while yo
stays fixed.

6.3 Fig-tree and Gingerbread Man

The definitive investigations that we have carried out for the Gingerbread Man in
$6.1 have reminded us that in different regions of the complex plane it is possible to find
different periodicides  in the number sequences. It is therefore not so easy to distinguish
between periodic behaviour and chaos - for instance, when the period is large. The
highest number in respect of which we will consider periodicity  is therefore 128. For
purely computational procedures a whole series of problems arise. First, we must wait
several hundred iterations before the computation ‘settles down’. By this we mean it
reaches a stage at which order and chaos can be distinguished. The next difficulty is that
of comparison. The internal computer code for representing real numbers in Pascal is
not completely unequivocal,* so that equality can only be tested using a trick. Thus we
can investigate only whether the numbers differ by less than an assigned bound (e.g.
10-9 In Pascal we can formulate a functional procedure like that in Program Fragment
6.3-l:

Program Fragment 6.3-l
FUNCTION equal (nol,  no2:  real) : boolean;
BEGIN

equal := (ABS(nol-no2))  < 1.03-6);
END;

For complex numbers, we must naturally check that both the real and the imaginary
parts are equal:

Program  Fragment 6.3-2
FUNCTION equal (zlRea1,  zlImag,  z2Rea1,  z2Imag  : real) :

boolean;
BEGIN

equal := (ABS(zlReal-z2Real)+ABS(zlImag-z2Imag)
< l.OE-6;

END;

8The  same sort of thing happens with the decimal numbers 0.1 and 0.0999...,  which are equal, but
written differently.
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x := Left;
FOR xRange := 0 TO Xscreen  DO
BEGIN

dummy := ComputeAndTest (x, 0.0);
x := x + deltaxPerPixe1;

m;
END; (* Mapping *)

As you see, we now need a loop which increments the running variable xRange. A s  a
result, variables for the other loops become superfluous. A new introduction is the
variable dummy. By including it we can call the functional procedure
ComputeAndTest as before. The drawing should be carried out during the iteration,
and would be called fromMapping  and built into ComputeAndTest.

As global parameters we use
Left := -0.25; Right := 2.0; Bottom := -1.5; Top := 1.5;
MaximalIteration  := 300; Bound := 200;

and away we go!

Figure 6.3-l Feigenbaum diagram from the Mandelbrot set.

The result in Figure 6.3-l appears very familiar, when we recall Chapter 2. It
shows that the Feigenbaum scenario with bifurcations, chaos, and periodic windows is
present in all respects along the real axis of the Mandelbrot set.

The next figure, 6.3-2, illustrates this by drawing the two diagrams one above the
other: the periods 1,2,4,8,  . . . etc. can be identified in the (halved) Mandelbrot set just as
well as in the Feigenbaum diagram. And the ‘satellite’ Gingerbread Man corresponds in
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FUNCTION ComputeAndTest (Creal, Cimaginary : real) :
boolean;

VAR
IterationNo  : integer;
Xl YI xSq,  ySq,  distancesq : real;
finished : boolean;

PROCEDURE StartVariableInitialisation;
BEGIN

x := 0.0; y := 0.0;
finished := false;
iterationNo  := 0;

xsq := sqr(x);  ySq
distancesq := xSq  +

:= sqr(y) ;
YS%

END; (* StartVariableInitialisation *)

PROCEDURE ComputeAndDraw;
BEGIN

IterationNo  := IterationNo  + 1;

Y := x*y; y := y+y-Cimaginary;
x := xSq  - ySq  - Creal;

xsq := sqr(x);  ySq  := sqr(y);
distancesq := xsq + ysq;
IF (IterationNo  > Bound) THEN

SetUniversalPoint  (Creal,x);
END; (* ComputeAndDraw  *)

PROCEDURE test;
BEGIN

finished := (distancesq > 100.0);

END; (* test *)

BEGIN (* ComputeAndTest *)
StartVariableInitialisation;
REPEAT

computeAndDraw;  test;
UNTIL (IterationNo  = MaximalIteration)  OR finished;

END (* ComputeAndTest *)

BEGIN
deltaxPerPixe1  := (Right - Left)/Xscreen;
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specified in two-point form. Using the parameter xRange  , which runs from 0 to 400,
we can travel along the desired section.

Mapping thentakesthefollowing  form:

Program Fragment 6.3-4
(Working part of the procedure Mapping)
BEGIN (* Mapping *)

FOR xRange := 0 TO xScreen  DO
dummy := ComputeAndTest

(0.1288 - xRange*6.7673-5, {Creal}
0.6 + xRange*l.OE-3); {Cimaginary)

END ; (* Mapping *)

Now we must clarify what should actually be drawn, since ultimately both the real and
imaginary parts of z are to be studied. We try both in turn. To draw the real part x, the
appropriatepartof ComputeAndTestrunslikethis:

Program Fragment 6.3-5 (Drawing commands in ComputeAndTest)
IF (IterationNo  > Bound) THEN

SetUniversalPoint (Cimaginary, x);

Figure  6.3-4 Quasi-Feigenbaum diagram, real part.

And as a matter of fact we see in this picture an example of ‘trifurcation’, when the
period changes from 1 to 3. It looks rather as if first two paths separate, and then a
further one branches off these. But that is just an artefact  of our viewpoint.

In the next figure we look at the imaginary part y. For Figure 6.3-5 the relevant
commands run like this:

Program Fragment 6.3-6 (Drawing commands in ComputeAndTest)
IF (IterationNo  > Bound) THEN

SetUniversalPoint (Cimaginary, y);
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the Feigenbaum diagram to a periodic window with period 3! The diagram is only
defined where it lies within the basin of the finite attractor, -0.25 I cral I2.0. For
other values of treat  all sequences tend to -03.

Figure 6.3-2 Direct comparison: Gingerbread Man and Fig-tree.

Now the real axis is a simple path, but not the only one along which a parameter can
be changed. Another interesting path is shown in Figure 6.3-3.

.

Figure 6.3-3 A parameter path in the Mandelbrot set.

This path is interesting because it leads directly from a region of period 1 to a bud
of period 3, then on to 6 and 12.

This straight line is specified by two points, for example those at which the buds
touch. Using a program to investigate the Mandelbrot set we have discovered the
coordinates of the points Pt (0.1255, 0.6503) between the main body and the first bud,
and P2 (0.1098,0.882)  where the next bud touches. The equation of the line can then be
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Computer Graphics Experiments and Exercises for $6.3

Exercise 6.3-l
Using your Gingerbread Man program, or your own variation on it, find other

boundary points at which buds touch. We have already looked at the thinnest
constriction and done additional computation at its midpoint.

Exercise 6.3-2
The method for obtaining the parameters for the path can be described here in

general terms.9
We have found the two points P1  (xl,yl)  and P2 (q,y2).  Thus, a 400-pixel  line

between them can be seen schematically as follows:

Pl p2
----_---  + -_________-----______________________  + -_________

0 50 350 400

Let the variable trun  along this line (in the program t becomes xRange). Then for the
two components we have

Ed = ~1  - (x2-x1)/6+  f*(X2-X1)/30&
Cirnagnary  = YI - cY2-~1)/6  + t*cY2-~1)/30O.

Change your program to this general form, and investigate other interesting paths.
You might consider starting from the period 3 region and finding a further sequence

leading into the region of period 9.
Or perhaps you can find a ‘quintufurcation’ - a fivefold branch-point?

Exercise 6.3-3
Naturally it is also possible to follow other lines than straight ones, which can be

represented parametrically. Or those that can be obtained by joining straight segments.
Take care not to leave the Gingerbread Man, however. If you do, the iteration will cease,
and nothing will be drawn.

Exercise 6.3-4
We have obtained the pseudo-3D effect using the following trick.
In principle we have drawn the cimaginq  diagram. But we have added to or

subtracted from each of the two components a multiple of the x-value. The numbers 0.5

and 0.866 come from the values of the sine and cosine of 30”.
Experiment using other multiples.

91n  program Fragment 6.3-4 we have proceeded somewhat differently.
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Figure 6.3-5 Quasi-Feigenbaum diagram, imaginary part.

We obtain a fairly complete picture using a pseudo-three-dimensional
representation, as follows:

Program Fragment 6.3-7 (Drawing commands in ComputeAndTest)
IF (IterationNo  > Bound) THEN

SetUniversalPoint  (Cimaginary - 0.5*x, y+O.866*x);

Figure 6.3-6 Pseudo-three-dimensional representation of trifurcation (oblique view
from the front).

Here we get a complete view of the Quasi-Feigenbaum diagram. Two of the three
main branches are shortened by perspective. The 24 tiny twigs appear at greater heights
to come nearer the observer, whereas the first few points of the figure (period 1) are
towards the rear. We can clearly see that the threefold branching occurs at a single point.
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We find three different types of behaviour for this equation, depending on c. In many
cases, in particular if we calculate with  c-values of large modulus, the sequence
converges to the real solution of the equation, namely

z= 1.
In other cases the sequence converges to another mot. In a few cases the Newton method
breaks down completely. Then we get cyclic sequences, that is, after a number of steps
the values repeat:

Zn+h  = zn,
where h  is the length of the cycle.

We can draw all of the points in the complex c-plane corresponding to the first
case, using a Pascal program.

The calculation requires so many individual steps that it can no longer, as in the
previous examples, be programmed ‘at a walking pace’. For that reason we provide here
a small procedure for calculating with complex numbers. The complex numbers are
throughout represented as two ‘real’ numbers.

The components deal with addition, subtraction, multiplication, division, squaring,
and powers. All procedures are constructed in the same way. They have one or two
complexinputvariables (in1  r stands for ‘input 1 real part’ etc.) and one output variable
as VAR  parameter.

In respect of division and powers we must take care of awkward cases. We do
not, for example, consider it sensible to stop the program if we inadvertently divide by the
number zero. Thus we have defined a result for this value too.

In your program these procedures can be defined globally, or locally within
ComputeAndTest.

Program Fragment 6.4-l
PROCEDURE compAdd  (inlr, inli, in2r,  in2i:  real; VAR outr,

outi:  real);
BEGIN

outr := inlr + in2r;
outi  := inli + in2.i;

END; (* compAdd  *)

PROCEDURE compSub  (ink, inli, in2r,  in2i:  real; VAR outr,
outi:  real);

BEGIN
outr := inlr - in2r;
outi := inli - in2i;

END; (* compSub  *)

PROCEDURE compMu1  (inlr, inli, in2r,  in2i:  real; VAR outr,
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6.4 Metamorphoses
With the Gingerbread Man and Julia sets constructed from the quadratic feedback

mwing
zwl  = z&c

we have reached some definite conclusions. For investigations that go beyond these we
can only provide a few hints. The questions that arise are so numerous that even for us
they are for the most part unsolved and open. Treat them as problems or as further
exercises.

First of all, we should point out that the quadratic mapping is not the only
possible form for feedback. To be sure, it is the simplest that leads to ‘nontrivial’ results.
In this book we have tried to avoid equations of higher degree, for which the computing
time increases steeply, and we have only done so when it illustrates worthwhile
principles.

In Peitgen and Richter (1986) p. 106, the authors describe the investigation of
rational (that is, fractional) functions, which occur in physical models of magnetism. As
above, there is a complex variable z which is iterated, and a constant c which in general
is complex. The appropriate equations are:

‘n+l  = (&I
n

Model 1,

( z;+3(c-l)z,+(c-l)(c-2)  2
zn+l =

3~;+3(c-2)zn+c2-3c+3
) Model 2.

Again there are two methods of graphical representation. We draw in either the
z-plane or the c-plane, so that in the fist  case we choose a fixed c-value, and in the
second case we begin with ~0  = 0. You should decide for yourself the c-values, which
can also be real, the boundaries of the drawings, and the type of colouring  used. Of
course there is nothing wrong in experimenting with other equations or modifications.

We encounter rational functions if we pursue an idea from Chapter 4. There we
applied Newton’s method to solve a simple equation of the third degree. It can be
shown (see Curry, Garnett and Sullivan, 1983) that we can investigate similar cubic
equations with the formula

f(z) = z3+(c-l)*z  - c.

Here c is a complex number.
We begin the calculations once more with

zo = 0,
insert different c-values, and apply Newton’s method:

f(z,) &c-‘)Z”+c
Zn+l = zn -- = z -

f(z,) n 3z;+c-1
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END ELSE BEGIN
ELSE alpha := halfpi  + Pi;

IF inlr > 0.0 THEN alpha := arctan  (inli/inlr)
ELSE alpha := arctan  (inli/inlr)  + Pi;

END;
IF alpha < 0.0 THEN alpha := alpha + Z.O*Pi;
alpha := alpha * power;
outr := r * cos(alpha);
outi  := r * sin(alpha);

END; (* compPow  *)

Having equipped ourselves with this utility we can now carry out an investigation of the
complexplane. Replacethefunctional procedureMandelbrotComputeAndTest  in
your Gingerbread Man program by one based upon the above procedures. But do not be
surprised if the computing time becomes a bit longer.

Program Fragment 6.4-2 (Curry-Gamett-Sullivan Method)
FUNCTION ComputeAndTest  (Creal, Cimaginary : real) :

boolean;
VAR

IterationNo  : integer;
x, y, distancesq,  intr, inti, denr, deni  : real;
(* new variables to store the denominator *)
(* and intermediate results *)
finished : boolean;

PROCEDURE StartVariableInitialisation;
BEGIN

finished := false;
IterationNo  := 0;
x := 0.0;
Y := 0.0;

END; (* StartVariableInitialisation *)

PROCEDURE compute;
BEGIN

IterationNo  := IterationNo  + 1;
compSq  (x, y, intr, inti);
compAdd  (3.0*intr,  3.0*inti,  Creal-1.0, Cimaginary,

denr, deni);
compAdd  (intr, inti, cRea1  -1.0, Cimaginary, intr,

inti):
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BEGIN
outi:  real);

outr := inlr * in2r  - inli * in2i;
outi  := inlr * in2i  + inli * in2r;

END; (* compMu1  *)

PROCEDURE compDiv  (inlr, inli, in2r,  in2i:  real; VAR outr,
outi:  real);

VAR numr, numi, den: real;
BEGIN

compMu1  (inlr, inli, in2r,  -in2i,  numr, numi);
den := in2r * in2r  + in2i  * in2i;
IF den := 0.0 THEN

BEGIN
outr := 0.0; outi  := 0.0; (* emergency solution *)

END
ELSE

BEGIN
outr := numr/den;
outi  := numi/den;

END;
END; (* compDiv  *)

PROCEDURE compSq  (inlr, inli : real; VAR outr, outi:  real);
BEGIN

outr := inlr * inlr - inli * inli;
outi  := inlr * inli * 2.0;

END; (* compSq  *)

PROCEDURE compPow  (inlr, inli, power: real; VAR outr, outi:
real);

CONST
halfpi := 1.570796327;

VAR
alpha, r : real;

BEGIN
r := sqrt (inlr*inlr + inli * inli);
IF r > 0.0 then r := exp (power * In(r));
IF ABS(inlr)  < l.OE-9 THEN

BEGIN
IF inli > 0.0 THEN alpha := halfpi;
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Figure 6.4-2 Section from Figure 6.4-l (with a surprise!).

UNTIL (IterationNo  = MaximalIteration)  OR finished;
distinguish;

END; (* ComputeAndTest  *)

As you see, the computing expense for each step has grown considerably. A s  a
result you should not choose too large a number of iterations.

Figure 6.4-l has a very clear structure and displays some interesting regions which
are worth magnifying. For example, you should investigate the area around

c= 1,
c = 0,
c = -2.

The elliptical shape in the neighbourhood of
c = 1.7%

is enlarged in Figure 6.4-2.
l Black areas correspond to regions in which z, converges to z = 1.
l Most white regions mean that case 2 holds there. The sequence converges, but not

toz= 1.
l A white region at the right-hand end of the figure is an exception. This is a region

where the sequences become cyclic.
Check this for c-values near

c = 0.31 + i*1.64.
You can already discern the result in Figure 6.4-2. In fact what you get is a close
variant of the Gingerbread Man from 96.1.

This resemblance to the Gingerbread Man is of course no accident. What we
named the ‘finite attractor’ at the start of Chapter 5 is mostly a cyclic attractor, as in this
computation.
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compMu1  (intr, inti, x, y, intr, inti);
compsub  (intr, inti, Creal, Cimaginary, intr, inti);
compDiv  (intr, inti, denr, deni,  intr, inti);
compSub  (x, y, intr, inti, x, y);
distancesq  := (x-1.0) * (x-1.0) + y * y;

END; (* compute *)

PROCEDURE test;
BEGIN

finished := (distancesq  < 1.03-X);
END (* FurtherTest  *)

PROCEDURE distinguish;
BEGIN (* does the point belong to the set? *)

ComputeAndTest := iterationNo  < maximalIteration;
END; (* distinguish *)

BEGIN (* ComputeAndTest *)
StartVariableInitialisation;
REPEAT

compute;
test;

Figure 6.4-l Basin of the attractor z = 1.
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p=  1.0 p= 1.1 p= 1.2

~ii.jQe&#@

p= 1.3 p= 1.4 p= 1.5

p= 1.6 p= 1.7 p=  1.8

B@ig

p = 1.9 p = 2.0

Figure 6.4-3 General ised Mandelbrot  set  for  powers  f rom 1 to  2 .
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If the change to third powers already leads to such surprising results, what will we
find for fourth or even higher powers? To get at least a few hints, we generalise the
simple iteration equation

Zn+l = z,2-c.
Instead of the second power we use the pth:

Z*+l = ZJk
We carry out the power computation using the procedure comppow  (Program Fragment
6.4-l),  which involves the global variable p.  The changes to the Gingerbread man
program are limited to the procedure Compute.

Program Fragment 6.4-3
PROCEDURE compute;

VAR
tempr, tempi: real;

BEGIN
IterationNo  := IterationNo  + 1;
compPow  (x,  y, p, tempr, tempi);
x : = tempr - Creal;
y := tempi - Cimaginary;
xsq := sqr(x);

Y-w := sqr(y);
distancesq  := xSq  + ySq;

END; (* compute *)

A brief assessment of the results shows that for the power p = 1 the finite attractor is
confined to the origin. Every other c-value moves further away, that is, to the
attractor 00.

For very high values of p we can guess that the modulus of c plays hardly any
role compared with the high value of zP, so that the basin of the finite attractor is fairly
close to the unit circle. Inside this boundary, the numbers always get smaller, and hence
remain finite. Outside it they grow beyond any bound.

In the next few pages we will attempt to give you an overview of the possible forms
of the basins of the finite attractor. For non-integer values of p we observe breaks in
the pictures of the contour lines, which are aconsequence of the way complex powers
behave.

Because the calculation of powers involves complicated functions such as
exponentials and logarithms, these computations take a very long time.

In each frame we see the central basin of attraction, together with contour lines for
3, 5, and 7 iterations. The attractor for p = 1.0, virtually a point, at first extends
relatively diffusely, but by p = 1.6 acquires a shape which by p = 2.0 becomes the
familiar Gingerbread Man. Between p = 2.0 and 3.0 it gains a further protuberance, so
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that we eventually obtain a very symmetric picture. The origin of the complex plane is in
the middle of each frame.

The powers increase further, and at each whole number p a further bud is added to
the basin. As already indicated, the figure grows smaller and smaller, and concentrates
around the unit circle. We leave the investigation of other powers as an exercise.

00
Q Q
p = 3.0 p = 3.2 p = 3.4

p = 4.0p = 3.6

p=  4.2 p = 4.4 p = 4.6

p=4.8 p = 5.0

Figure 6.4-5 General&d  Mandelbrot set for powers from 3 to 5.
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Figure 6.4-4 Generalised Mandelbrot set for powers from 2 to 3.
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Exercise 6.4-4
Develop a program to illustrate the iteration formula

.&I  = zg-c
graphically. Use it to investigate the symmetries of the basins for p = 6, p = 7, etc.

Try to formulate the results as a general rule.

Exercise 6.4-5
Naturally it is also possible to draw Julia sets for the iteration equation

zm1=  z,p-c.
To get connected basins, you should probably choose a parameter c belonging to the
inner region of the sets found in Exercise 6.4-4 or shown in Figures 6.4-3 and 6.4-S.

The changes to the program are fairly modest. Concentrate on the differences
between the Gingerbread Man program in $6.1 and that for Julia sets in $5.2.

Exercise 6.4-6
If you have come to an understanding of the symmetries of the genera&d

Mandelbrot sets in Exercise 6.4-4, try to find something similar for the generalised Julia
sets of the previous exercise. An example is shown in Figure 6.4-7. There the power
p =3 and the constant

c = -0.5 + 0.44*i.

Figure 6.4-7 Generalised Julia set.
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Computer Graphics and Exercises for $6.4

Exercise 6.4-  1
Write a program to compute and draw the basin according to Curry, Gamett, and

Sullivan. Either use the given procedures for complex operations, or try  to formulate the
algorithm one step at a time. This is not particularly easy, but has an advantage in
computational speed.

Investigate the regions recommended in connection with Figure 6.4-2. An
example for the region at c = 1 is shown in Figure 6.4-6.

Does the picture remind you of anything else you have seen in this book?

Figure 6.4-6 Section from Figure 6.4-l near c = 1.

Exercise 6.4-2
Modify the program so that in the interesting region of Figure 6.4-2 a distinction is

drawn between convergent and cyclic behaviour of the number sequences. Draw the
figure corresponding to the Gingerbread Man. It corresponds to the numbers c for
which Newton’s method does not lead to a solution, but ends in a cyclic sequence.

Compare the resulting figure with the original Mandelbrot set. Spot the difference!

Exercise 6.4-3
Investigate further the elliptical regions on the edge of the ‘white set’ in Figure

6.4- 1. Compare these. What happens to the Gingerbread Man?
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Until now we have departed from the world of the ground-plan Mapping only in
exceptional cases, but this chapter will show that the results of iterative calculations can
be represented in other ways. The emphasis here should not be only on naked power:
for the understanding of complicated relationships, different graphical methods of
representation can also be used. If ‘a picture is worth a thousand words’, perhaps two
pictures can make clear facts that cannot be expressed in words at all.

7.1 Up Hill and Down Dale
Among the most impressive achievements of computer graphics, which we

encounter at every local or general election, are 3D pictures. Of course we all know that a
video screen is flat, hence has only two dimensions. But by suitable choice of
perspective, projection, motion, and other techniques, at least an impression of three-
dimensionality can be created, as we know from cinema and television. The architectural
and engineering professions employ Computer Aided Design (CAD) packages with 3D
graphical input, which rapidly made an impact on television and newspapers. Although
we certainly cannot compare our pictures with the products of major computer
corporations of the ‘Cray’ class, at least we can give a few tips on how to generate
pseudo-3D graphics, like those in 52.2.3.

The principle leans heavily on the mapping method of the previous chapter. The
entire picture is thus divided into a series of parallel stripes. For each of them we work
out the picture for a section of the 3D form. We join together the drawings of these
sections, displaced upwards and to the side. We thus obtain, in a simple fashion, a 3D
effect, but one without true perspective and without shadows. It also becomes apparent
that there is no point in raising the iteration number too high. This of course helps to
improve the computing time. To avoid searching through huge data sets.. which must be
checked to see which object is in front of another, we note the greatest height that occurs
for each horizontal position on the screen. These points are if necessary drawn many
times. For all computations concerned with iteration sequences, the iteration step should
be the quantity that appears in the third direction. Two further quantities, usually the
components of a complex number, form the basis of the drawing. In general we will
denote these by x and y,  and the third by z.

To begin with, we can generate a new pseudo-3D graphic for each picture in the
previous chapters. In this type of representation Newton’s method for an equation of
third degree, which we know from Figure 4.3-5, generates Figure 7.1-  1.

The central procedure bears the name Dsmapping,  which you will recognise
because all new variables, procedures, etc. carry the prefix D3 before their names.

The resulting picture is in a sense ‘inclined’ to the screen, and sticks out a bit on
each side. To avoid cutting off the interesting parts of the picture, we can for instance be
generous about the limits Left and Right. We have chosen a different possibility here,
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D3max[xRange]  := 0;
deltaxPerPixe1  := (Right - Left) / (Xscreen - 100);
deltayPerPixe1  := (Top - Bottom) / (Yscreen - 100);

Y := Bottom;
FOR yRange := 0 to (Yscreen - 100) DO
BEGIN

x := Left;
FOR xRange := 0 TO (Xscreen - 100)  DO
BEGIN

dummy := D3ComputeAndTest  (x, y, xRange,  yRange);
x := x + deltaxPerPixe1;

END;
D3Draw  (D3max);
y := y + deltayPerPixe1;

END;
END; (* D3mapping  *)

As you see, two further procedures must  be introduced: D 3Draw and the functional
procedureD3ComputeAndTest.  The latter naturally has a lotin  common with the
functionalprocedureComputeAndTest  , which we have already met. Since the drawing
is carried out in D3Draw,  we must pass to it the coordinates of the currently computed
point in (x,y)-space. Instead of deciding whether each individual point is to be drawn,
we store the values corresponding to a given row, so that eventually we can draw the line
in a single piece. D3 set controls this. From the coordinates in the (x,y)-space
(column, row) and the computed iteration number (height) we can work out the
pseudo-3D coordinates. First the horizontal value cell is calculated, if it fits on the
screen, and then the value content, which gives the vertical component. If the value is
higher than the previously determined maximal value for this column of the screen, then
this is inserted in its place. If it is less, then that means that it corresponds to a hidden
point in the picture, and hence it is omitted.

Program Fragment 7.1-2
FUNCTION D3ComputeAndTest  (x, y : real; xRange,  yRange  :

integer) : boolean;
vim

iterationNo  : integer;
xSq,  ySq,  distanceSq  : real;
finished: boolean;

PROCEDURE startVariableInitialisation;
(* as usual *) BEGIN END;
PROCEDURE compute;
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Figure 7.1- 1 Boundaries between three attractors on the real axis.

in order to make this program as similar as possible to those already encountered. This
gives rise to a somewhat modified denominator in the calculation of deltaxPerPixe1
anddeltayPerPixe1,  andtheupperlimitofthe FOR-loop.

The number D 3 fact o r expresses how strongly the figure is stretched in the
verticaldirection.TheproductD3factor * maximalIteration  should amount to
roughly a third of the screen size, that is, about 100 pixels.

The maximal coordinate of each vertical screen coordinate is stored in the array
D3max.  To enable this array to be passed to other procedures, a special type is defined
for it. To begin with, the contents of this array are initialised with the value 0.

Program Fragment 7.1-1
PROCEDURE D3mapping;

TYPE
D3maxtype  = ARRAY[O..Xscreen]  OF integer;

VAR
D3max : D3maxtype;
xRange,  yRange,  D3factor  : integer;
x, y, deltaxPerPixe1,  deltayPerPixe1  : real;

(* here some local procedures are omitted *)

BEGIN
D3factor := 100 DIV maximalIteration;
FOR xRange := 0 TO xScreen  DO
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beginning of each row we start at the left side of the screen (Setpoint)  and then draw
the section as a series of straight lines (DrawLine).

With a few small supplements we can retain the principle of this computation, while
improving the pictures somewhat.

The method can be changed in its fist  stage. In 02.2.3 we drew only every second
line, and we can do the same here. As a result the gradations are more easily
distinguished. The variable D3yStep  controls the step size. For a quick survey, for
example, every tenth line suffices. Thevariable D3xStep  runs in the oblique direction,
so that the slopes merge and the steps do not seem quite so abrupt if this value is
relatively large.

Figure 7.1-2 shows the Julia set for Newton’s method applied to
23-l = 0.

There every second row is drawn, so D3xStep  has the  value 2. Essentially, this is a
section from Figure 5.1-5,  to the lower right of the middle.

Figure 7.1-2 Julia set for Newton’s method applied to ~3-1  = 0.

We have proceeded in fivefold steps in the next figure, Figure 7.1-3. It shows a
Julia set that you already saw in its usual fashion in Figure 5.2-5.

These large steps are useful, for example, if you just want to get a quick view of the
anticipated picture.

In order to make the central shape of the Mandelbrot set, or a Julia set, stand out
more clearly than before, it helps to draw the lines thicker - that is, to use several adjacent
lines - at these places. Our Pascal version provides a facility for doing this very easily,
using the procedure pens  i ze . In other dialects you have to remember the beginning and



New Sights - New Insights 1 8 3

(* as usual *) BEGIN END;
PROCEDURE test
(* as usual *) BEGIN END;

PROCEDURE D3set  (VAR D3max  : D3maxType;
column, row, height : integer);

VAR
cell, content : integer;

BEGIN
cell := column + row - (Yscreen  -100) DIV 2;
IF (cell >=  0) AND (cell <=  Xscreen)  THEN
BEGIN

content := height * D3factor  + row;
IF content > D3max[cell]  THEN

D3max[cell]  := content;
END;

END; (* D3set  *)

BEGIN (* D3ComputeAndTest  *)
StartVariableInitialisation;
D3ComputeAndTest  := true;
REPEAT

compute;
test;

UNTIL (iterationNo  = MaximalIteration)  OR finished;
D3set  (D3max, xRange,  yRange,  iterationNo);

END (* D3ComputeAndTest  *)

Program Fragment 7.1-3
PROCEDURE D3draw  (D3max:  D3maxType);

vim
cell, coordinate : integer;

BEGIN
setPoint  (0, D3max[Ol);
FOR cell := 0 TO xScreen  DO
BEGIN

coordinate := D3max[cell];
IF coordinate >O THEN DrawLine  (cell, coordinate);

m;
END; (* D3draw  *)

The visible parts are not drawn until an entire row has been worked out. At the
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Figure 7.1-5 Julia set, top and bottom interchanged, c = 0.745 + i *  0.113.

Finally, as in Figure 7.1-6, we can use the reciprocal of the iteration depth in the
‘third dimension’, obtaining a convex imprint, but with steps of different heights.

Figure 7.1-6 Gingerbread Man, inverse iteration height.

7.2 Invert It - It’s worth It!
In this section we bring to the fore something that hitherto has been at an infinite

distance - namely, the attractor ‘infinity’. It is clear that to do this we must forego what
until now has been at the centre of things, the origin of the complex plane. The method
whereby the two are interchanged is mathematically straightforward, if perhaps a little
unfamiliar for complex numbers. To turn a number into another one, we invert it.

To each complex number z there corresponds another d,  called its inverse, for
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end of this horizontal stretch and then draw a line one pixel displaced. Figure 7.10-4
shows a Mandelbrot set drawn in this manner.

Figure 7.1-4 Gingerbread Man.

Sometimes in these pictures the slopes are interrupted by protruding peaks, and
instead of mountains we find gentle valleys. That too can be handled. Instead of the
iterationheight weusethedifferenceMaxima1Iteration  - iterationNo. In
Figure 7.1-5 we see a Julia set drawn in this manner:
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Figure 7.2-l Inverted Mandelbrot set.

outside, are now on the inside. The first bud, as before, is still the largest, but it is quite
comparable with the remainder. And the stripes, which got wider and more solid, the
further away we got from the main body ? If we do not pay attention, we may miss them
completely. They are alI collected together in a tiny region in the middle of the picture.
The middle is where the point attractor CO  appears. The mathematical inversion has thus
turned everything inside out.

Let us now compare another Gingerbread Man with his inverse. It is the one for
the third power.

Figure 7.2-2 Gingerbread Man for the third  power (top half; compare Figure 6.4-5).
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which
z*d=  1.

In other words, z’ = l/z, the reciprocal of z. The computational rules for complex
numbers have already been set up in Chapter 4, so we can proceed at once to incorporate
the idea into a Pascal program. The previous program is only changed a little. At the
beginning of ComputeAndTest the appropriate complex parameter, namely ZQ  for Julia
sets and c for the Mandelbrot set, is inverted.

Program Fragment 7.2-l
FUNCTION ComputeAndTest (Creal, Cimaginary : real)

: boolean;

(* variables and local procedures as usual *)

PROCEDURE invert (VAR x, y : real);
VAR denominator : real;

BEGIN
denominator := sqr(x)  + sqr(y);
IF denominator = 0.0 THEN

BEGIN
x := l.OE6;  y := x; (emergency solution}

END ELSE BEGIN
x := x / denominator;
y := y / denominator;

END;
END; (* invert *)

BEGIN
invert (Creal, Cimaginary);
startVariableInitialisation;
REPEAT

compute;
test;

UNTIL (iterationNo  = MaximalIteration)  OR fisnished;
distinguish;

END; (* ComputeAndTest *)

With these changes we can recompute everything we have done so far. And look: the
results are overwhelming. In Figure 7.2-l you see what happens to the Gingerbread
Man, when the underlying c-plane is inverted.

Now the Mandelbrot set appears as a black region surrounding the rest of the
complex plane, which has a drop-shaped form. The buds, which previously were on the
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Figure 7.2-S Julia set for c = 1.39 - i *  0.02.

Figure 7.2-6 Inverted Julia set for c = 1.39 - i *  0.02.
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Figure 7.2-3 Gingerbread Man for the third power, inverted (cropped on right).

And what happens to the Julia sets.7 At first sight Figure 5.1-2 resembles its
‘antipode’ in Figure 7.2-4, but on further study the differences can be detected.

On the following pages are further pairs of normal and inverted Julia sets.

Figure 7.2-4 Inverted Julia set for Newton’s method applied to 23-l  = 0.
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7.3 The World Is Round
It is certainly  attractive  to compare  corresponding  pictures  from  the  previous  chapter

with  each  other,  and  to observe  the  same  structures  represented  in different  ways  and/or
distorted. However,  from  a technical  point  of  view  a large  part  of  the  pictures  is
superfluous,  in that  it contains  information  which  can  already  be  obtained  elsewhere. A
more  economical  picture  shows  just  the  inside  of  the  unit  circle. Everything  else  can  be
seen  in the  inverted  picture  in the  unit  circle. It may  amount  to sacrilege  on  aesthetic
grounds,  but  the  pure  information  that  lies in the  complex  plane  can  be  contained  in two
circles  of  radius  1.  The  fist  contains  all points  (x,y)  for  which

x2+y2  I 1
and  the  second  circle contains  all the  rest  in inverted  form:

x2+y2  2 1.

Figure 7.3-  1 The  entire  complex  plane  in two  unit  circles.

In Figure  7.3-l  we  see  the  Gingerbread  Man  in this  form  - of  course,  he  has  lost
much  of  his charm. Imagine  that  these  two  circles  are  made  of  rubber:  cut  them  out  and
glue  the  edges  together  back  to back. Then  all we  need  to do  is blow  up  the  picture  like a
balloon  and  the  entire  complex  plane  ends  up  on  a sphere!

Mathematicians  call  this  the  Riemann  sphere,  in memory of  the  mathematician
Bernhard  Riemann  (1826-66),  who  among  other  things  made  important  discoveries  in
the  area  of  complex  numbers.  His idea  is explained  in Figure  7.3-2.

The  sphere  and  the  plane  meet  at  a point:  the  same  point  is the  origin  of  the  complex
plane  and  the  south  pole  S of  the  sphere.  The  north  pole  N acts  as  a centre  of  projection.
A point  P of  the  plane  is to be  mapped  on  the  sphere.  The  connecting  line  NP cuts  the
sphere  at  R. The  scales  of  the  plane  and  the  sphere  are  so  adjusted  that  all points  lying
on  the  unit  circle in the  plane  are  mapped  to the  equator  of  the  sphere. In the  southern
hemisphere  we find  the  inner  region,  the  neighbourhood  of  the  origin. In the  northern
hemisphere  we find  everything  that  lies  outside  the  unit  circle,  the  ‘neighbourhood  of
infinity’.

Why  have  we told  you  about  that  now ? It leads  naturally  to new  and  dramatic
graphical  effects.  Our  programme  for  the  next few  pages  will be  to map  the  Gingerbread
Man  (playing  the  role of  any  picture  in the  complex  plane)  on  to the  Riemann  sphere,  to
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Figure 7.2-7 Julia set for c = -0.35 - i *  0.004.

Figure 7.2-8 Inverted Julia set for c = -0.35 - i *  0.004.
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y-coordinates, thus i$,here  = crd and yVhae  = qruaginary.  Then z is computed
using the fact that

x%y%z2=  1,
s o

zsphere  = sqrt(l.0-sqr(Xsphere)-S9rCYsphere)).
This method we call orthogonalprojection.

The second method is Riemann’s. This time the north pole acts as a centre  of
projection.

To make different perspectives possible, we construct our figure on the Riemann
sphere. Then we rotate it so that the point whose neighbourhood we wish to inspect falls
at the south pole. Finally we project the resulting 3D-coordinates  back into the complex
plane.

On the next three pages we have again written out the procedure Mapping,
including all local procedures. New global variables Radius, Xcentre and Ycentre
are defined, which determine the position and size of the circle on the screen.

Because we want to use the mapping method (scan the rows and columns of the
screen), we must of course work backwards through the procedure laid down above.

At the first  step we test whether the point under investigation lies inside the circle.
If so, we find its space coordinates using orthogonal projection. The x- and y-
coordinates carry over unchanged. We compute the z-coordinate as described above.
Because we are observing the sphere from below  (south pole), this value is given a
negative sign.

Next we rotate the entire sphere - on which each point lies - through appropriate
angles (given by variables width and length). To prescribe this rotation in general we
use matrix algebra, which cannot be explained further here. For further information see,
for example, Newman and Sproull(l979).

From the rotated sphere we transform back into the complex plane using the
Riemann method, and thus obtain the values x and y (for the Gingerbread Man these are
interpreted as cral and Cimaginary ) for which the iteration is to be carried out.

The result of the iteration determines the colour  of the original point on the screen.

Program Fragment 7.3-l
PROCEDURE Mapping;

TYPE
matrix : ARRAY [l. .3,1..31  OF real;

VAF?
xRange,  yRange  : integer;
x, y, deltaxPerPixe1,  deltayPerPixe1  : real;
xAxisMatrix,  y?+xisMatrix:  matrix;

PROCEDURE ConstructxRotationMatrix  (VAR m: matrix; alpha
: real);
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A z-axis

N

b
P x-axis

Figure 7.3-2 projection from plane to sphere.

rotate this, and to draw the resulting picture. In order to make the resulting distortion
clear, the drawing is performed by a simple orthogonal projection, which for example
transforms point T to point Q in Figure 1.3-2.

For a clear and unified specification of the quantities occurring we adopt the
following conventions. The final output is the complex plane, in which as before
everything is computed and drawn. Each point is determined by the coordinate pair
xRange  , yRange  (picture coordinates). The universal coordinates (for the Gingerbread
Man these are creal  and chagiw)  follow from these. They will be mapped on to a
circle. From the two-dimensional coordinate pair a coordinate triple xsphere,  ysnnere,
zsphere  is therefore formed.

The centre of the sphere lies above the origin of the complex plane. The x-axis
and y-axis run along the corresponding axes of the plane, that is, xsphere  = crew  and

Ysphere z qmaginq.  The .?$,phere-axis  runs perpendicular to these two along the axis
through the south and north poles.

We transfer all the points within the unit circle on to the southern hemisphere; all the
others lie in the northern hemisphere. However, these are obscured, because we view the
sphere from below. The points directly above the unit circle form the equator of the
sphere. At the north pole, then, lies the point ‘w’. It is in fact only one point! Two
diametrically opposite points on the sphere (antipodes) are reciprocals of each other.

For mapping the complex plane we employ a second possibility as well as
Riemann’s; both are explained in Figure 7.3-2. There we see a section through the
sphere and the plane. Suppose that a point P with coordinates (creal,  ctmaginq)  is being
mapped. The fist  possibility for achieving this is simply to transfer the x- and
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xsq := sqr(x);
Y := 0.0;

Y% := sqr(y);
END (* StartVariableIn itialisat

PROCEDURE Compute;
BEGIN

Y := x*y;
Y := y+y-Cimaginary;
xsq := sqr(x);

Y% := sqr(y);
iterationNo  := iterationNo  +

END;

PROCEDURE test;
BEGIN

ion *)

1;

finish := ((xSq  + ySq)  > 100.0);
END;

PROCEDURE distinguish;
BEGIN

ComputeAndTest := (iterationNo  = MaximalIteration)  OR
(iterationNo  < Bound) AND (odd(iterationNo));

END;

BEGIN (* ComputeAndTest *)
StartVariableInitialisation;
REPEAT

compute;
test;

UNTIL (iterationNo  = MaximalIteration  OR finished);
END; (* ComputeAndTest *)

FUNCTION calculateXYok(VAR  x, y : real;
xRange,  yRange  : integer) : boolean;

vm
xSphere,  ysphere,  zSphere,
xInter,  yInter,  zInter  : real;

BEGIN
IF ((sqr(l.0  * (xRange  - xCentre))tsqr(l.O*(yRange-

ycentre)  ))
> sqr(l.O*Radius))
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BEGIN
alpha := alpha * pi / 180.0; {radian measure]

m[I,ll := 1.0; m[1,21 := 0.0; m[1,3]  := 0.0;

mL2,Il := 0.0; m[2,2]  := cos(alpha);  m[2,31  :=
sin(alpha);

m[3,11 := 0.0; m[3,2]  := -sin(alpha);  m[3,31  :=
cos(alpha);

END; (* ConstructxRotationMatrix  *)

PROCEDURE ConstructyRotationMatrix (VAR m: matrix; beta
: real);

BEGIN
beta := beta * pi / 180.0; (radian measure]
m[l,ll := cos(beta);  m[1,21  := 0.0; m[1,31  :=

sin(beta);
m[2,11 := 0.0; m[2,21 := 1.0; m[2,3]  := 0.0;
m[3,1]  := -sin(beta);  m[3,21  := 0.0; m[3,3]  :=

cos(beta);
END; (* ConstructyRotationMatrix *)

PROCEDURE VectorMatrixMultipIy  (xIn,  yin,  zIn  : real; m
: matrix;
VAR xOut,  yOut,  zOut  : real);

BEGIN
xout := m[l,l]*xIn  + m[l,2l*yIn+m[l,3l*zIn;
ycklt := m[2,1]*xIn  + m[2,2l*yIn+m[2,3l*zIn;
zout := m[3,1]*xIn  + m[3,2l*yIntm[3,3l*zIn;

END; (* VectorMatrixMuItipIy  *)

FUNCTION ComputeAndTest  (Creal,  Cimaginary : real)
: boolean;

VAR
iterationNo  : integer;
finished : boolean;
x, y, xSq,  ySq  : real;

PROCEDURE StartVariableInitialisation;
BEGIN

finished := false;
iterationNo  := 0;
x := 0.0;



198 Dynamical Systems and Ftactals

Figure 7.3-3 Examples of Mandelbrot sets on the Riemann sphere.

that we no longer need to scan the entire screen: it is sufficient to investigate the region in
which the circle appears. We therefore terminate the computation if we discover from
calculateXYok  that the point is outside this region. However, if we find a point inside
thecircleon the screen, calculateXYok  computes the coordinates in the steps descibed
above. The final ComputeAndTest  differs only in small ways from the version already
laid down.

Figure 7.3-4 Gingerbread Man rotated 60”,  front and back.

Thus the important new ingredient in this chapter for representation on the Riemann
sphere is the functional procedure calculateXYok. First the screen coordinates
mange  and yRange  , together with the variables that determine the circle, are tested, to
see whether we are inside it. Do not worry about the rather curious constructions such
as sqr (1 . O*Radius)  . The variable Radius is an integer, and if for example we square
200, we may exceed the appropriate range of values for this type, which in many
implementations of Pascal is limited to 32767. By multiplication by 1.0, Radius is
implicitly converted to a real number, for which this limit does not hold.

The variables xSphere and ysphere, with values between -1 and +l, are
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THEN calculateXYok  := false;
ELSE BEGIN

caculateXYok  := true;
xSphere  := (xRange-Xcentre)/Radius;
ySphere  := (yRange-Ycentre)/Radius;
zSphere  := -sqrt(abs(l.O-sqr(xSphere)-

sqr  WSphere)  1) ;
VectorMatrixMultiply

(xsphere,  ysphere, zsphere,  yAxisMatrix,
xInter,  yInter,  2Inter);

VectorMatrixMultiply
(xInter,  yInter,  zInter,  xAxisMAtrix,

xsphere,  ysphere,  zsphere);
IF zSphere  = 1.0 THEN BEGIN

x := 0.0;

Y := 0.0;
END ELSE BEGIN

x := xSphere/(l.O  - zsphere);

Y := ySphere/  (1.0 - zsphere);
END;

END;
END; (* calculateXYok  *)

BEGIN
ConstructxRotationMatrix  (xAxisMatrix,  width);
ConstructyRotationMatrix  (yAxisMatrix,  length);
FOR yRange := Ycentre-Radius TO Ycentre+Radius DO

FOR xRange := Xcentre-Radius TO Xcentre+Radius DO
BEGIN

IF calculateXYok  (x, y, xRange,  yRange)  THEN
IF ComputeAndTest  (x,y)  THEN

SetPoint  (xRange,  yRange);
END;

END; (* Mapping *)

In the first step of Mapping we set up the two rotation matrices. These are arrays of
numbers which will be useful in each computation. In this way we avoid using the rather
lengthy computations of sine and cosine unneccessarily  often.

The main work again takes place in the two FOR loops. You may have realised
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Figure 7.4-l Gingerbread Man with interior structure (insideFactor = 2).

Figure 7.4-2 Gingerbread Man with interior structure (insideFactor = 10).
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computed from the screen coordinates, and from them the negative z Sphere.
For the rotation we treat the three variables that define a point as a vector, which is

multiplied by the previously computed matrix. The result is again a vector and contains
the coordinates of the point after rotation. Intermediate values are stored in xInter,
yInter  ,and zInter.  In the next picture you once more see our favourite figure with
the parameters width = 60, length = 0 (respectively 180).

7.4 Inside Story
As we have learned from our calculations, the most interesting thing about a fractal

figure is undoubtedly the boundary. Its endless variety has occupied us for a great many
pages. The approximation of this boundary by contour lines has led to a graphical
construction of the neighbourhood of the boundary, which is often very attractive. But
the inside of the basin of attraction has until now remained entirely black. That can be
changed too!

In the interior the information that we can lay hands on is just the two values x and
y,  that is, the components of the complex number z. These are real numbers between
-10 and +lO.  What can we do with those ? First one might imagine taking one of the
numbers, and using the TRUNC function to cut off everything after the decimal point, and
then drawing the points for which the result is an odd number. To do this we can use the
PascalfunctionODD  . Unfortunately the result is very disappointing, and it does not help
to take x+y or multiples of this. However, we have not tried everything that is possible
here, and we recommend that you experiment for yourself. We have obtained the best
results using a method which, to end with, we now describe. (It should be said at once
that it is intended purely for graphical effect. No deeper meaning lies behind it.)

You must...
I Take the number distancesq,  which has already been found during the iteration.
+ Construct its logarithm.
+ Multiply by aconstant insideFactor.  This number should lie between 1 and 20.
l Cut off the part after the decimal point.
l If the resulting number is odd, colour  the corresponding point on the screen.
All this takes place in the procedure distinguish below. The Pascal print-out has become
so long that it spreads across three lines.

Program Fragment 7.4-l
PROCEDURE distinguish
BEGIN

ComputeAndTest  :=
(iterationNo  = MaximalIteration)  AND
ODD(TRUNC(insideFactor * ABS(  In (distancesq))));

END;
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Computer Graphics Experiments and Exercises for Chapter 7

Exercise 7 - 1
Modify your programs to implement three-dimensional representation. Try out all

the different methods. Parameters such as total height, or step-size in the two directions,
let you generate many different pictures.

You get especially rugged contours if you allow drawing only in the horizontal and
vertical directions. Then you must replace the move-to command, which generates
slanting lines as well, by an appropriate instruction.

Exercise 7-2
If you wish to view the object from a different direction, you can interchange

parameters, so that Left > Right and/or Bottom > Top. Alternatively or in addition
you can displace the individual layers to the left instead of to the right.

Exercise 7 -3
Add the inversion procedure to all programs that draw things in the complex plane.

In particular you will obtain fantastic results for filigreed Julia sets.

Exercise 7-4
Further distortions occur if before or after the inversion you add a complex constant

to the c- or q-value. In this way other regions of the complex plane can be moved to
the middle of the picture.

Exercise 7 -5
Transfer everything so far computed and drawn on to the Riemann sphere.

Observe the objects from different directions.

Exercise 7-6
Magnified sections of the sphere are also interesting. Not in the middle -

everything stays much the same there. But a view of the edge of the planet (perhaps with
another behind it) can be very dramatic.

Exercise 7 -7
Perhaps it has occurred to you to draw lines of longitude and latitude? Or to try

other cartographic projections?

Exercise 7.8
The entire complex plane is given a very direct interpretation in the Riemann sphere.

New questions arise which, as far as we know, are still open. For example: how big is
the area of the Gingerbread Man on the Riemann sphere?

Exercise 7-9
Combine the method for colouring  the interior with all previously encountered

pictures!



New Sights - New Insights 201

The effect of this  computation is to divide the interior of the basin of attraction into
several parts. Their thickness and size can be changed by altering the value of
insideFactor.

Can you still see the Gingerbread Man in Figures 7.4-  1 and 7.4-2?
Julia sets, too, provided they contain large black regions, can be improved by this

method. First we show an example without contour lines, then one with.

Figure 7.4-3 Julia set for c = 0.5 + i*O.S with interior structure.

Figure 7.4-4 Julia set for c = -0.35 + i*O.15  with interior structure.
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8.1 All Kinds of Fractal Curves
We have already encountered fractal geometric forms, such as Julia sets and the

Gingerbread Man. We will develop other aspects of their interesting and aesthetically
appealing structure in this chapter. We gradually leave the world of dynamical systems,
which until now has played a leading role in the formation of Feigenbaum diagrams, Julia
sets, and the Gingerbread Man. There exist other mathematical functions with fractal
properties. In particular we can imagine quite different functions, which have absolutely
nothing to do with the previous background of dynamical systems. In this chapter we
look at purely geometric forms, which have only one purpose - to produce interesting
computer graphics. Whether they are more beautiful than the Gingerbread Man is a
matter of personal taste.

Perhaps you already know about the two most common fractal curves. The typical
structure of the Hilbert and Sierpit5ski  curves is shown in Figures 8.1-  1 and 8.1-2. The
curves are here superimposed several times.

Figure 8.1-1 ‘Genesis’ of the Hilbert curve.

As with all computer graphics that we have so far drawn, the pictures are ‘static’
representations of a single situation at some moment. This is conveyed by the word
‘genesis’. Depending on the parameter II,  the number of wiggles, the two ‘space-filling’
curves become ever more dense. These figures are so well known that in many computer
science books they are used as examples of recursive functions. The formulas for
computing them, or even the programs for drawing them, are written down there: see for
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Before you proceed to your own experiments, with the aid of the exercises, we will
provide you with some drawing instructions in the form of a program fragment. Having
set up this scheme you can easily experiment with fractal figures.

It is simplest if we start the drawing-pen at a fixed position on the screen and begin
drawing from there. We can move forwards or backwards, thereby drawing a line.

Figure 8.1-4 Different Koch curves.

Figure 8.1-5 A C-curve.

Seymour Papert’s  famous turtle can be used in the same way. This creature has
given its name to a type of geometric drawing procedure: turtle geometry see Abelson
and diSessa  (1982). The turtle can of course turn as well, changing the direction in which
it moves. If the turtle is initially placed facing the x-direction, thecommand
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example Wirth (1983). We therefore do not include a detailed description of these two
curves. Of course, we encourage you to draw the Hilbert and Sierpifiski curves, even
though they are well known.

Figure 8.1-2 ‘Genesis’ of the Sierpifiski curve.

Recursive functions are such that their definition is in some sense ‘part of itself.
Either the procedure calls itself (direct recursion), or it calls another, in which it is itself
required (indirect recursion). We refer to recursion in a graphical representation as self-
similarity.

We obtain further interesting graphics if we experiment with dragon curves or
C-curves. Figures 8.1-3 to 8.1-5 show the basic form of these figures.

Figure 8.1-3 Different dragon curves.
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With this scheme you are in a position to carry out the following exercises. We hope
you have a lot of fun experimenting.

Computer Graphics Experiments and Exercises for $8.1

Exercise 8 . 1 - 1
Set up a program to draw the I-filbert graphic. Experiment with the parameters.

Draw pictures showing overlapping Hilbert curves, Draw the Hilbert curve tilted to
different inclinations. Because the task is easier with a recursive procedure, we will
describe the important features now. The drawing instructions for the Hilbert curve are:

PROCEDURE hilbert (depth, side, direction : integer);
BEGIN

IF depth > 0 THEN
BEGIN

turn (-direction * 90);
hilbert (depth-l, side, -direction);
forward (side);
turn (direction * 90);
hilbert (depth-l, side, direction);
forward (side);
hilbert (depth-l, side, direction);
turn (direction * 90);
forward (side);
hilbert (depth-l, side, direction);
turn (direction * 90);

END;
END;

As you have already discovered in earlier pictures, you can produce different computer-
graphical effects by varying the depth of recursion or the length of the sides. The value
for the direction of the Hilbert curve is either 1 or -1.

Exercise 8.1-2
Experiment with the following curve. The data are, e.g.:

depth side startx starty
9 5 50 50

10 4 40 40
1 1 3 150 30
12 2 150 50
13 1 160 90
15 1 90 150
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forward (10)
means that it takes 10 steps in the direction of the positive x-axis. The command

turn (90)

rotates it clockwise through 90”. A repeat of the command
forward (10)

makes the turtle  move 10 steps in the new direction. Basically, that is everything that the
turtle can do. On some computers, hutle  graphics is already implemented. Find out
more from your  handbook.

We have also formulated the main commands in Pascal, so that you can easily carry
out this process on your computer. This scheme, which works with ‘relative’
coordinates, is as follows:

Program Fragment 8.1-l (Procedures for tnrtle  graphics)
PROCEDURE forward (step : integer) ;

CONST
pi = 3.1415;

vie
xstep, ystep: real;

BEGIN
xstep := step * cos ((turtleangle*pi)  /180);
ystep := step * s i n  ((turtleangle*pi)  /180);
turt lex : = turtlex + trunc (xstep) ;
turt ley : = turtley + trunc (ystep) ;
drawLine (turtlex, turtley) ;

END;

PROCEDURE backward (step: integer);
BEGIN

forward (-step);
END;

PROCEDURE turn (alpha: integer);
BEGIN

turtleangle := (turtleangle + alpha) MOD 360;
END;

PROCEDURE startTurtle;
BEGIN

turtleangle := 90; turtlex := startx; turtley := starty;
setPoint  (startx, starty);

END;
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PROCEDURE snowflake;
BEGIN

koch  (depth, side); turn (120);
koch  (depth, side); turn (120);
koch  (depth, side); turn (120);

END;

Exercise 8.1-5
Experiment with right-angled Koch curves. The generating method and the data

for pictures are, e.g.:
PROCEDURE rightkoch (depth, side: integer);
BEGIN (* depth = 5, side = 500, startx = 1, starty = 180 *)

IF depth = 0 THEN forward (side)
ELSE
BEGIN

rightkoch (depth-l, trunc (side/3));  turn (-90);
rightkoch (depth-l, trunc (side/3));  turn (90);
rightkoch (depth-l, trunc (side/3));  turn (90);
rightkoch (depth-l, trunc (side/3));  turn (-90);
rightkoch (depth-l, trunc (side/3));

END;
END;

Exercise 8.1-6
Experiment with different angles, recursion depths, and side lengths. It is easy to

change the angle data in the procedural description of C-curves:
PROCEDURE cCurve  (depth, side : integer);
BEGIN (* depth = 9,12;  side = 3; startx = 50, 150;

starty = 50, 45 *)
IF depth = 0 THEN forward (side)
ELSE
BEGIN

cCurve  (depth-l, trunc (side)); turn (90);
cCurve  (depth-l, trunc (side)); turn (-90);

END;
m;

Exercise 8.1-7
At the end of the C-curve procedure, after the turn (- 9 0 ) , add yet another

procedurecallcCurve  (depth-l, side). Experiment with this new program.
Insertthenewstatement afterthepromiurecallturn(90).

Experiment also with C-curves by changing the side length inside the procedure,
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The drawing instructions for the dragon curve are:
PROCEDURE dragon (depth, side: integer);
BEGIN

IF depth > 0 THEN
foward (side)

ELSE IF depth > 0 THEN
BEGIN

dragon (depth-l, trunc (side));
turn (90);
dragon (-(depth-l), trunc (side));

END
ELSE

BEGIN
dragon (-(depth+l),trunc  (side));
turn (270);
dragon (depth+l,trunc  (side);

END;
END;

Exercise 8.1-3
Experiment in the same way with the Koch curve. The data are, e.g.:

depth side startx starty
4 500 1 180
5 500 1 180
6 1000 1 180

The drawing procedure is:
PROCEDURE koch  (depth, side: integer);
BEGIN

IF depth = 0 then forward (side)
ELSE BEGIN

koch  (depth-l, trunc (side/3));  turn (-60);
koch  (depth-l, trunc (side/3));  turn (120);
koch  (depth-l, trunc (side/3));  turn (-60);
koch  (depth-l, trunc (side/3));

END;
END;

Exercise 8.1-4
In the lower part of Figure 8.1-4 you will find  the snowflake curve. Snowflakes

can be built from Koch curves. Develop a program for snowflakes  and experiment with
it:
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computing power before films contain lengthy sequences calculated by a computer.
Some examples show how easy it is to construct grasses and clouds on a personal

computer.

Figure 8.2-l Grass and twigs.

Figure 8.2-l shows a tree curve (see exercises for $8.1). The generating
procedure for Figure 8.2-2 is already known. Namely, it is a dragon curve of high
recursion depth and side length 1. In fact, with all fractal figures, you can experiment,
combining the recursive generating procedures together or generalising them. Changing
the depth, side length, or angles according to parameters can produce baffling results,
which it is quite likely that nobody has ever seen before. To simulate natural structures
such as grass, trees, mountains, and clouds, you should start with geometrical figures
whose basic form resembles them, and fit them together.

A new possibility arises if we change the parameters using a random number
generator.

For example we can make the angle change randomly between 10 and 20 degrees,
or the length. You can of course apply random numbers to all of our other figures. W e
recommend that you first become very familiar with the structure, to get the best possible
grasp of the effect of parameter changes. Then you can introduce random numbers
effectively.

Figure 8.2-3 shows examples of such experiments. For example, the command
forward (side) may be changed by a random factor. Thus the expression side is
replaced by side * random (10,20)  . This is what we have done to get the left and
middle pictures in Figure 8.2-3. More natural effects are obtained if we make only small
changes. Thus in the right-hand picture the expression s i de is replaced by
side*random (side, side+5). The random function always producesvalues
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forexample forward (side/2)  , etc.

Exercise 8.1-8
Draw a tree-graphic. Use the following general scheme:
PROCEDURE tree (depth, side: integer);
BEGIN (* e.g. depth = 5, side = 50 *)

IF depth > 0 THEN
BEGIN

turn (-45); forward (side) ;
tree (depth-l, trunc (side/2));  backward (side);

turn (90);
forward (side);
tree (depth-l, trunc (side/2));  backward (side);

turn (-45);
END;

J3-D;

We have collected together the solutions to these exercises in 8  11.2 in a complete
program. Look there if you do not wish to develop the programs for yourself.

If you have done Exercise 8.1- 10, the picture will doubtless have reminded you of
structures in our natural surroundings - hence the name. We thereby open up an entire
new chapter of computer graphics. Computer graphics experts throughout the world
have been trying to construct convincing natural forms. The pictures that emerge from
the computer are landscapes with trees, grass, mountains, clouds, and lakes. Of course
you need rather fancy programs to draw really convincing graphics.

But even with  small computers we can produce nice things.

8.2 Landscapes: Trees, Grass, Clouds, Mountains, and Lakes
Since 1980, when the discovery of the Mandelbrot set opened a new chapter in

fundamental mathematical research, new discoveries in the general area of fractal structure
have occurred almost daily. Examples include fractal models of cloud formation and
rainfall in meteorology. Several international conferences on computer graphics have
been devoted to this; see SIGGRAPH (1985).

Likewise, such procedures are part of the computer-graphical cookery used for
special effects in films. The latest research objective is the convincingly natural
representation of landscapes, trees, grass, and clouds. Some results are already available
in the products of the American company LucasFilms,  which in recent years has made
several well-known science fiction films. It has its own team for basic scientific research
into computer graphics. Not surprisingly, conference proceedings sometimes bear the
address of the LucasFilms studios, e.g.Smith (1984). It is now only a matter of time and
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Figure 8.2-3 Different grasses.

Having obtained the many small units that arise in nature, we wish to put them
together into a complete landscape. The principle for generating landscapes was
explained in the Computer Recreations column of Scientific American, see Dewdney
(1986a).

Start with a triangle in space. The midpoints of the three sides are displaced
upwards or downwards according to a random method. If these three new points are
joined, we have in general four different triangles, with their own particular sides and
comers. The method is carried out in turn for the resulting small triangles. To obtain a
realistic effect, the displacment of the midpoints should not be as great as the fist  time.
From 1 triangle with 3 vertices, we thus obtain 4 triangles with 6 vertices, 16 triangles
with 15 vertices, 64 triangles with 45 vertices. After 6 iterations we have 4096 tiny
triangles contained by 2145 vertices. Now we draw these. As you see in Figure 8.2-4,
the result is in fact reminiscent of mountains. For reasons of visibility we have drawn
only two of the three sides of each triangle. Also, we have supplemented the picture to
form a rectangle.

We avoid describing a program here: instead we have given an example of a
complete program in 0  11.3. Because the computation of the four points takes quite a
long time, we have only specified the displacements. So, for example, with the same
data-set you can draw a sunken or a raised landscape. Or you can ignore everything
below some particular value of the displacment and draw just single dots. In this way an
impression of lakes and seas is created, as in Figure 8.2-4. In fact these pictures are
already quite remarkable. Of course there are many other gadgets in the LucasFilm
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Figure 8.2-2 Two-dimensional cloud formation.

between the two bracketed bounds (compare Exercise 8.2-2).
Of course the different pictures in Figure 8.2-3 are not easily reproducible. W e

wrote a program to draw an endless sequence of such grass-structures, and selected
interesting pictures from the results. You can collect your best grass- and cloud-
structures on an external storage medium (optical, hard, or floppy disk).

For experiments with grass-structures, use the above description (see Exercise
8.2-2) as the basis for your own discoveries. The pictures were generated with the
fixedvalue depth = 7, angle = 20 or 10, andrandom side lengths.

Modem computers sometimes have the facility to merge or combine parts of
pictures with others. It is also possible, using drawing programs such as MacPaint
(Macintosh) or special programs on MS-DOS or Unix machines, to mix parts of
pictures and work on them further.
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PROCEDURE randomTwig  (depth, side, angle: integer);
CONST

delta = 5;
BEGIN

IF depth > 0 THEN
BEGIN

turn (-angle);
forward (2 * random (side, side+delta));
randomTwig  (depth-l, side, angle);
forward(-2 * random (side, side+delta));
turn (2*angle);
forward (random (side, side+delta));
randomTwig  (depth-l, side, angle);
forward (-random (side, side+delta));
turn (-angle);

END;
END;

As data for the two exercises, use 7 I depth I 12,lO  I side I20,lO  I angle I20.
Try to implement a suitable procedure random.
If you modify the program descriptions in other ways, you can generate still more

pictures.

8.3 Graftals
Besides fractal structures, nowadays people in the LucasFilm  studios or university

computer graphics laboratories also do experiments with paftals.  These are
mathematical structures which can model much more professionally the things we drew
in the previous section: plants and trees. Like fractals, graftals are characterised  by self-
similarity and great richness of form under small changes of parameters. For graftals,
however, there is no mathematical formula such as those we have found for the simple
fractal structures we have previously investigated. The prescription for generating
graftals is given by so-called praluction rules. This concept comes from information
theory. The grammatical structure of progamming languages is defined by production
rules. With production rules it is possible to express how a language is built up. We use
something similar to model natural structures, when we wish to lay down formal rules for
the way they are constructed.

The words of our language for generating graftals are strings formed from the
symbols ‘0’, ‘l’, and square brackets ‘I’,  ‘I’.  For instance, the string 0111 l[Olll  represents a
graftal.

A production rule (substitution rule) might resemble the following:
o+  1[011[010
l+ 11
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Figure 8.2-4 Fractal landscape with lake and mountains.

studio’s box of tricks. Even the computer-graphical methods are improved from day to
day, so that fiction and reality merge smoothly into each other. But that is another story.

Computer Graphics Experiments and Exercises for $8.2

Exercise 8.2-l
With the aid of the above description, develop a program to represent twigs:
PROCEDURE twig (depth, side, angle : integer);
BEGIN

IF depth > 0 THEN
BEGIN

turn (-angle);
forward (2*side);
twig (depth-l, side, angle);
backward (2*side);  turn (2*angle);
forward (side);
twig (depth-l, side, angle);
backward (side); turn (-angle);

END;
END;

Exercise 8.2.-2
Experiment with grass structures too:
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the appropriate production rule, the graftal  is constructed
For example, ‘101’ expresses in binary the number 5, and ‘111’ the number 7.
We provide a table of binary numbers to help you remember:

Decimal Binary
0 ooo
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Table 8.3-l Decimal and binary numbers (0 - 7).

We express the production rule for building the graftal  in terms of such binary numbers.
Because there are 23 possible combinations of digits {O,lI,  we must specify 8 production
rules.

An example of such an g-fold  production rule is:
0.1.0.1.0.00[0110.0

or, otherwise written,
position: 0 1 2 3 4 5 6 7
rule: 0. 1. 0. 1. 0. ~011.  0. 0
binary number: ooo 001 010 011 100 101 110 111

An example will explain how the construction is carried out.
We take each individual digit of the rule and generate the binary triple. Compare the

triple with the production rule. Replace the digit with the corresponding sequence from
the rule. To do this, the formation of the triples must also  be governed by a rule. This
takes (e.g.) the following form:

For a single zero or one at the beginning, a 1 is added to left and right. For a pair of
numbers, first  a 1 is added to the left and then the pair is repeated with a 1 added to the
right.

Start with a 1. We add 1 to left and right: this gives 111. If we had started with 0
we would have got 101.

Our production rule consists mainly of the strings ‘0’ or ‘00[011’. A ‘1’ generates ‘0’
by applying the rule, a ‘0’ generates ‘OO[Oll’.

Applying the rule to these strings then leads to complicated forms.
We follow the development through several  generations, beginning with ‘1’:
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The rule given here is only an example. The rule expresses the fact that the string to the
left of the arrow can be replaced by the string to its right. If we apply this rule to the
string 1[011[010,  we get

Another rule (111 l[l 1111[11111)  represents, for instance, a tree or part of a tree with a
straight segment 7 units long. Each 1 counts 1 unit, and in particular the numbers in
brackets each represent a twig of the stated length. Thus the first open bracket represents
a twig of length 2. It begins after the first 4 units of the main stem. The 4 units of the
main stem end at the first open bracket. The main stem grows a further 2 units. Then
there is a twig of length 3, issuing from the 6th unit of the main stem. The main stem is
then finally extended by 1 unit (Figure 8.3-l).
This example shows how by using and interpreting a particular notation, namely
111 1[11111[11111,  a simple tree structure can be generated. Our grammar here has the
alphabet Cl,[,D. The simplest graftal  has the alphabet {O,l~,D.  The ‘1’ and ‘0’ characterise
segments of the structure. The brackets represent twigs.

T
7 units long

I

0
I’0
I
1)0
I

T3 units long

1

I2 units long

! I
I
I

Figure 8.3-l The structure 1111[11111[11111.

Once we know how to interpret these bracketed structures, all we require is a
method for producing structures with many twigs by systematically applying production
rules. This variation on the idea just explained can be obtained as follows:

We agree that each part of the structure is generated from a triple of zeros and ones,
such as 101 or 111. Each triple stands for a binary number, from which, with the aid of
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I
0 1 2 3 4 5 6
“OY

0

;s’
0

.?I
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0
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0
0
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0

0
0

Figure 8.3-2 Construction of a graftal.

At the next digit 1 we must attach the previous digit 0 from the main branch. If we do
this we get the pair 01. Now we have:

Take the 01 and extend right by 1 to get 011.
The two remaining digits 1011  then give 101 and 011.

Figure 8.3-2 shows how this graftal  builds up over 6 generations.
Now that this example has clarifed  the principles for constructing graftak, we will

exhibit some pictures of such structures.
In Figure 8.3-4 we show the development of a graftai  from the 4th to the 12th

generation. A sequence up to the 13th generation is shown in Figure 8.3-5.
We should point out that the development of graftal  structures takes a lot of

computation - hence time. In fact, the later generations can tie up your computer for an
entire night. Your computer may also  exceed the available RAM storage capacity (about
1 MB),  so that generations this high cannot be computed (see the description in $11.3).
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Generation 0
1 + transformation + 111
111 +rule+ 0

(An isolated ‘1’ at the start is extended to left and right by ‘l’.)
Generation 1

0 + transformation + 101
101 +rule+ OO[Oll

(An isolated ‘0’ at the start is extended to left and right by ‘1:)
Generation 2

OO[Oll + transformation+ 100001 DO1  0111
1OOCOl  DO1  0111 +rule+ 011111

(For pairs of digits 1 is added to the left and to the right.)
Gemlwion  3

Ol[l  II + transformation + 101 011[1111111
101 Olltlll  1111 *rule+ 00~011  1 to 01

(If the main track is broken by a branch, the last element of the main branch is used for
pair-formation.)
Generation 4

OO[Oll 1 IO 01 + transformation + 100 001 BO10111011 [loo  0011
100001 KtO10111011[1000011  *rule-t 01[1111[011

(if the main track is broken by a branch, the last element of the main branch is used for
pair-formation.)
Generation 5

01[1111[011 + transformation + 101011 I111 1111111 I101 0111
101011[111  1111111[1010111  +rule+  OO[Oll  1 IO  01 0 DOtOll  11

Generation 6
wouldthenbeOlI1  llO[OllOO[Oll[Ol[lllll.

In order to make the above clearer, let us consider generations 3 and 4 (see Figure
8.3-2).

Generation 3 comprises Ol[l 11.
TakethepairOl  andextendleftby 1 to get 101.
Take the pair 01 and extend right by 1 to get 011.
The brackets follow.
Take the pair 11 and extend left by 1 to get 111.
Take the pair 11 and extend right by 1 to get 111.

Generation 4 comprises OO[Olll[Oll.  At generation 4 there is a difficulty. The main
branch (001) is broken by a side-branch (brackets): 00[0111~011.

Take the pair 00 and extend left by 1 to get 100.
Take the pair 00 and extend right by 1 to get 001.
Take the pair 01 and extend left by 1 to get 100.
Take the pair 01 and extend right by 1 to get 011.
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4 5 7 i?

Figure 8.3-5 A graftal from the 4th to the 13th generation.
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Figure 8.3-3 Graftal-plant.

1 0 il

Figure 8.3-4 Development of a graftal  f rom the  4 th  to  the  12th  genera t ion .
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8.4 Repetitive Designs
Now things get repetitive. What in the case of graftals required the endless

application of production rules, resulting in ever finer structure, can also be generated by
other - simpler - rules. The topic in this section is computer-graphical structures which
can be continued indefinitely as ‘repetitive designs’ - rather lie carpets. The generating
rules are not production rules, but algorithms constructed in the simplest manner. The
structures that are generated are neither fractals nor graftals, but ‘repetitak’,  if you wish.

We found the simple algorithms in the Computer Recreations column of Scientific
American; see Dewdney (1986b).  Naturally we immediately began to experiment. The
pictures we produced will not be concealed any longer:

Data: 0, 10, 0, 20

Figure 8.4-l Interference pattern 1.

The program listing for Figures 8.4-l to 8.4-3 is very simple:

Program Fragment 8.4-l
PROCEDURE Conett;

VAR
1, Jr c: integer;
x, YI 2: real;

BEGIN
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Computer Graphics Experiments and Exercises for 98.3
The experimental field of graftals is still not widely known. The fol lowing

examples will get you started. A program for graphical representation is given in
§11.3.1

Exercise 8.3-l
Experiment with graftals of the following structure:

Rule:O.l.O.ll.tOll.O.OO~Oll.O.O
Angle :  -40,40,-30,30
Number  of  generat ions:  10.

Exercise 8.3-2
Experiment with graftals of the following structure:

Rule:0.1.0.1.0.10[11l.0.0
Angle :  -30,20,-20,lO
Number  of  generat ions:  10.

Exercise 8.3-3
Experiment with graftals of the following structure:

Rule:O.l[ll.l.l.O.l1.1.0
Angle: -30,30,-15,15,-$5
Number  of  generat ions:  10.

Exercise 8.3-4
Experiment with graftals of the following structure:

Rule:O.l[ll.l.l.O.l1.1.0
Angle :  -30,30,-20,20
Number  of  generat ions:  10.

Exercise 8.3-S
Experiment with graftals of the following structure:

Rule:O.l[Oll.l.l.O.OO~Oll.l.O
Angle :  -45,45,-30,20
Number  of  generat ions:  10.

Exercise 8.3-6
Vary the  above examples  in  any way you choose ,  changing the  product ion ru le ,  the

angle ,  or  the  number  of  generat ions .

‘The idea of graftals has been known for some time in the technical literature; see Smith (1984),
SIGGRAPH (1985). We first thought about  carrying out this type of experiment on a PC after reading
a beautiful essay about them. In this section we have oriented ourselves following the examples in
that article: Estvanik (1986),  p. 46.
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Data: a =-  i137,  b = 17,‘~ = -4, n= 6378

Figure 8.4-4 Garland.

FOR i := 1 TO Xscreen  DO
FOR j := 1 TO Yscreen DO
BEGIN

x := Left + (Right-Left)*i/Xscreen;

Y := Bottom + (Top - Battom)  * j / Yscreen;
2 := sqr(x)  + sqr(y);
IF trunc (z)  < maxInt  T&N
BEGIN

c := trunc (2);
IF NOT odd (c)  THEN SetPoint  (i,j);

END;
END;

END;
Input data for Left, Right, Bottom, Top are given in the figures. Again the richness
of form obtained by varying parameters is astonishing. The idea for this simple algorithm
is due to John E. Conett of the University of Minnesota; see Dewdney (1986b).

A quite different form of design can be obtained with Barry Martin’s algorithm
(Figures 8.4-4ff.). Barry Martin, of Aston  University in Birmingham, devised a method
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Data: 0, 30, 0, 100

Figure 8.4-2 Interference-pattern 2

Data: 0, 50, 0, 80

Figure 8.4-3 Interference-pattern 3.
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PROCEDURE Martinl;
VAR

i, j : integer;
xold,  yold,  xNew,  yNew  : real;

BEGIN
xOld  := 0;
yOld  := 0;
REPEAT

SetUniversalPoint  (xOld,  yOld);
xNew  := yOld  - sign (xOld)*sqrt  tabs  (b*xOld-c));
yNew := a - xOld;
xOld  := xNew;
yOld := yNew;

UNTILButton;
END;

-2OO,b=-4,c=-SO,n>l  500000

Figure 8.4-6 Cell culture.

With these completely different pictures we bring to and end our computer-
graphical experiments, and once more recommend that you experiment for yourself.
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which is just as simple as the above method of John Conett. It depends on two simple
formulas, which combine together the sign, absolute value, and root functions. The sign
function has the value +I or -1, depending on whether the argument x is positive or
negative. If x = 0 then the sign function equals 0.

Figure 8.4-S Spiderweb with a = -137, b  = 17, c = -4, n = 1 898  687.

The program listing for Figs 8.4-4ff.  is as follows:

Program Fragment 8.4-2
FUNCTION sign (x:  real) : integer;
BEGIN

sign := 0;
IF x <> 0 THEN

IF x < 0 THEN
sign := -1

ELSE IF x > 0 THEN
sign := 1;

END;
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In previous chapters you have been confronted with many new concepts and
meanings. It all began with experimental mathematics and measles. We reached a
provisional end with fractal computer graphics and now with carpet designs. Other
aspects will not be discussed further.

Until now we have made no attempt to structure our discoveries in this new
science, on the border between experimental mathematics and computer graphics. W e
attempt this in the next chapter under the tide ‘step by step into chaos’. After a glance
back to the ‘land of infinite structures’, our investigations of the relation between order
and chaos will then come to an end.

In the chapters after these (Chapter 11 onwards), we turn to the solutions to the
exercises, as well as giving tricks and tips which are useful for specific practical
implementations on various computer systems.

Computer Graphics Experiments and Exercises for $8.4

Exercise 8.4-  1
Implement program listing 8.4-l and experiment with different data in the range

[O,lGOl for the input size.
Try to find how the picture varies with parameters.
Which parameters produce which effects?

Exercise 8.4-2
Implement program listing 8.4-2 and experiment with different data for the input

variables a, b,  c.
Try to find how the picture varies with parameters.
Which parameters produce which effects?

Exercise 8.4-3
In program listing 8.4-2 replace the statement

xNew  := yOld  - sign (xOld)*sqrt  (abs (b*xOld-c));

by
xNew  := yOld  - sin (x);

and experiment (as in Exercise 8.4-2).
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The people of Bremen are used to all kinds of weather. But what happened in the
summer of 1985 in Bremen exceeded the proverbial composure of most inhabitants. On
the 24th of July the telephone in the weather office was running hot. Angry callers
complained about the weather forecast which they had read in the morning in the
Weserkurier.  There, a day later, you can read a lengthy article on the summer weather:

Zottery  players discover twice a week whether they have landed a jackpot or a

miserable failure. The game of Bremen weather can now be played every day. For

example, whoever took yesterday’s forecast from the Bremen weather office as the basis

of his bet may as well have thrown it down the drain. Instead of “heavy cloud and

intermittent rain with temperatures of 19””  we got a beautiful sunny summer’s day with

blue skies, real bikini weather.’

What happened to make the meteorologists go so wrong, and what does it have to do
with complex systems and the concept of chaos?

The starting point for any weather forecasts is the synopsis, that is, a survey of the
current weather over a large area. The basis for this is measurements and observations
from weather stations on land or at sea. For example, every day radiosondes climb into
the atmosphere, and during their climb to almost 40 km in altitude they measure
temperature, humidity, and pressure. A whole series of parameters such as pressure,
temperature, dewpoint, humidity, cloud cover and windspeed are collected in this manner
and input into a forecasting model, which is calculated with the aid of high-speed
supercomputers.

Such a forecasting model is a system of differential equations, which describes a
closed, complex system. It is derived from particular physical assumptions, which you
may perhaps have encountered during your schooldays. Within it are quantities such as:
. impulse
l mass (continuity equation)
+ humidity (balance equation for specific heat)
+ energy (primary concept in the study of heat)
As already touched upon in the first chapter, the German  meteorological department uses
a lattice-point model, which lays down a 254 km mesh (at 60”  N) over the northern
hemisphere. It recognises  9 different heights, so there are about 5000 x  9 = 45 000 lattice
points. Influences from ground level (soil, ocean) and topography (mountains, valleys)
are taken into consideration at individual lattice points.

For each lattice point the evolution of the atmospheric state is computed by
‘mathematical feedback’ from the initial state. Every 3.33 minutes the current state of a
lattice point is taken as the initial value (input) for a new computation. Such a time-step
takes the computer 4 seconds in ‘real time’. The preparation of a 24-hour forecast takes
about 30 minutes.

The model equations contain the following parameters: temperature, humidity,
wind, pressure, cloud cover, radiation balance, temperature and water content of the
ground, water content of snow cover, warm currents at ground level, and surface
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23.7.1985
to newspapers
headline: correction

weather conditions.
westerly winds are carrying massive warm and cloudy air-masses
with associated disturbances towards north-west gennany.

weather forecast for the weser-ems region Wednesday:
heavy cloud, and intermittent rain or showers especially near
the coast. clouds dispersing in the afternoon leading to
cessation of preciptation. Warming to around 19 degrees
Celsius. cooling at night to 13 to 9 degrees Celsius.
moderate to strong westerly winds.
further outlook:
thursday cloudy, becoming warm, and mainly dry. temperatures
increasing.

bremen weather bureau.

Overnight (24.7.1985, 2.00 MESTt),  the trough became quite pronounced and
lay close to the east of Scotland. According to forecast, it moved further to the east and
12 hours later was off Jutland. The cloud cover associated with the trough then stretched
only into the coastal regions and brought a few drops of rain to isolated parts. Intensive
and high precipitation passed over Schleswig-Holstein. In contrast, in Bremen almost
the entire day was sunny. The weather reports of 24 July then showed how wrong the
forecast of 23 July 1985 was.

Weather Report 24 July 1985

Bremen
Heligoland
Schleswig

8.00
clear
overcast
cloudy

sun
10h
3h
1/2h

rain
- - -

0.1 mm (L/m2)
6 mm (L/m2)

On that day the duty meteorologist2 could soon recite her explanation of the false
prediction by heart:

‘Middle European Summer Time.
*The  information was provided by the Bremen weather office on the  instructions of qualified
meteorologists Sabine Nasdalack and Manfred  Kldppel.
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temperature of the ocean.
This is an impressive number of lattice points and parameters, which argues for the

complexity, and equally for the realistic nature, of the forecasting model.
But we must be more honest and consider how likely it is, in spite of this, that a

false prediction might be made. There is a whole series of evident possibilities for failure
in the model:
l Uncertainty and inaccuracy in the analysis, due to poverty of data (e.g. over the

ocean) or inadequate description of the topography.
b Space-time solution of the weather parameters in the prediction model. Of course,

the finer the lattice and the shorter the time-step, the better the prediction will be.
But too small units lead to long computation times!

l Various processes in the atmosphere are only understood empirically: that is, they
are not studied through physically grounded equations, but with the help of
parameters obtained in experiments. Thus convection, precipitation regions,
ground processes, and the interaction of ground and atmosphere are all described
empirically.

+ Various boundary conditions cannot be represented well. Among these are the
influence of ‘edges’ of the model space (weather in the southern hemisphere, deeper
ground and water layers).

One might now imagine that the development of a finer lattice, a still better model, or an
increase in the computational capacity of the supercomputer, could lead to an improved
success rate of almost 100%.

But in fact this belief in computability, that by setting up all parameters the
behaviour of a complex system can be understood, is fallacious - though it is
encountered throughout science. This is true of meteorology, physics, and other
disciplines. The discovery of chaos theory has cast great doubt upon the scientific
principle of the ‘computability of the world’. Let us look again at the precise situation on
the 23/24  July, to find out what the weather has to do with the concept of chaos.

On 23 July at 11.30 the weather report for 24 July 1985 was dictated by the duty
meteorologist on to the teleprinter. According to this, the next day would be sunny and
warm. As a rule, the punched tape with the weather report remains untransmitted in the
teleprinter, so that later weather changes can be incorporated. The colleague who took
over around midday faced a new situation, which led to second thoughts.

A drop in pressure had suddenly appeared to the west of Ireland. Such a tendency
often leads to the development of a trough, leading to a worsening of the weather in the
direction that the air is moving. In this case the trough was known to be capable of
development, and its associated warm/cold front would then move east. This would
lead to an air flow in the direction of the North Sea coast over Jutland,  passing over the
Baltic Sea. The duty meteorologist changed the previously prepared report and put the
following message on the teleprinter:
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Perhaps the Gingerbread Man had a hand in events?

Dynamical Systems and Fractals

24.07.85

Great Britain

Figure 9.2 Gingerbreadweather?

In the dynamical development of systems like the weather, near complex boundaries
all predictions come to nothing. At the frontier between regular and chaotic development
of such a system we must make the lattice points infinitely close together to make the
model 100  times better, while our computer program becomes larger by a factor of
IOOO...

Moreover, negligible changes to a single parameter on the borderline of the system
can make it go chaotic. In extreme form, in such a situation the ‘flap of a butterfly’s
wing’ can change the weather!

In your experiments with Feigenbaum diagrams, Julia sets, and the Gingerbread
Man, you have already seen how sensitively systems can react to small changes in
parameters. If even simple systems can react so severely, you can see how much more
severe it must be for complicated systems like the weather. Astonishingly, however, it
seems that even the weather functions according to relatively simple principles, similar to
those we have studied. This also applies to other systems whose behaviour depends on
many parameters. This explains the interest of many scientists in chaos theory. While
there can be no return to the ancient dream of ‘computability of the world’, at least there is
progress in understanding how the change from an ordered computable state into an
unpredictable chaotic state can occur.

In particular, chaos theory shows that there is a fundamental limit to the
‘computability of the world’. Even with the best supercomputers and rapid technological
development, in some cases it may be impossible to predict the behaviour of a system. It
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‘Around 12 midday we prepare the weather forecast for the next  day. For Wednesday 24
J u l y  w e  w e r e  p r e d i c t i n g  a  s u n n y  d a y ,  w h i c h  i t  w a s . T h e n  s u d d e n l y  a  t r o u g h  a p p e a r e d  o n
the map and a colleague on a later shift quickly amended the forecast It was our
misfortune that the trough of low pressure with cloud and rain passed to the North of
Bremen at a distance of about 100 km. On the North Sea coast it did rain and it was
also fairly cool. We did our best to within 100 km.’

23.07.85 fl 24.07.85 u
‘I

08 MEST 02 MEST
A

24.07.85
14 MEST

Direction of motion

Figure 9-l Complex weather boundaries around Bremen: 23/24.7.1985.

The weather forecast for 25 July 1985 was ‘sunny and warm’. This was doubly
unfortunate for the Bremen weathermen, because on that day it then rained. This was
another case where a ‘weather frontier’ 50 or 100 km wide rendered all forecasts useless.
Success and failure were only a hair’s breadth apart. No wonder. And the Bremen
weathermen might have realised this, if they had witnessed a related situation, which we
have ‘played around with’ using computer graphics.
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similar conclusions from similar assumptions. But often this strengthening of the
causality principle fails and the consequences differ considerably. Then we speak of
‘chaos’. For example, it shocks a physicist to learn that in fact the strong causality
principle need not hold without restriction in classical mechanics: we need only think of a
billiard player. The movement of the ball is governed by the classical laws of motion and
the reflection principle. But the path of the ball is in no way predictable. After just a few
bounces it can no longer be foreseen. Even a manifestly deterministic system can be
chaotic. Tiny changes in the forces during the motion, or in initial conditions, lead to
unpredictable movements. This can even happen as a result of the gravitational attraction
of a spectator standing near the billiard table.

Chaotic systems are the rule in our world, not the exception! This opens up a
reversal of our thinking:
l Chaotic systems lie behind significant dependence on initial conditions.
. The strong causality principle does not always hold. Similar causes do not always

produce similar effects.
l The long-term behaviour of a system may be uncomputable.

For further examples of chaotic systems we do not need to restrict ourselves to the
weather. Simpler systems can also demonstrate the limits to computability.

Time is fundamental to our civilisation.  For a long time its measurement depended
on the regular swing of a pendulum. Every young physics student learns the ideas that
govern the pendulum. Who would imagine that chaos sets in if we add a second
pendulum to its end? But that’s what happens! Two double pendulums, constructed to
be as similar as possible, and started with the same initial conditions, at first display
similar behaviour. But quite soon we reach a situation where one of the pendulums is in
unstable equilibrium and must decide: do I fall to the left or right? In this situation the
system is so sensititve that even the attractive force of a passing bird, the noise of an
exhaust, or the cough of an experimentalist can cause the two systems to follow entirely
different paths. Many other examples present themselves if we consider flows. The air
currents behind buildings or vehicles are chaotic. The eddies in flowing water cannot be
pre-computed. Even in the dripping of a tap we find all behaviour from ‘purest order’ to
‘purest chaos’. But there is a further discovery, first made in recent times: whenever a
system exhibits both order and chaos, the transition occurs in the same simple manner,
the one we were led to in ‘step by step into chaos’. Perhaps this simple pattern is one of
the first fingerprints of chaos, the first ‘seismic event’, which signals uncomputability.

What do water drops, heartbeats, and the arms race, have in common? ‘Nothing’,
anyone would probably say, if asked. But all three things are involved in chaos research,
all three show the same simple pattern that we saw in ‘step by step into chaos’.

The Dripping Tap
Chaos can IX found in a dripping tap. Here we can even experiment for ourselves.

Normally a tap has two states: open or closed. We are of course interested in the border
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might be a political system, economic, physical or otherwise. If we find ourselves in
these boundary regions, then any further expenditure is a waste of money.

We nevertheless have a chance. We must learn to understand the ‘transition from
order to chaos’, and to do this we begin with simple systems. At the moment this is done
mostly by mathematicians and physicists. You yourself have done it too in your
computer graphics experiments - of course without studying intensively the regularities
towards which such a process leads.

The final aim of all this investigation is to obtain something like a ‘fingerprint’ of
chaos. Perhaps there is a central mathematical relationship, hidden in a natural constant or
a figure like the Gingerbread Man? Perhaps there are ‘seismic events’ that proclaim
chaos? That is what we are seeking. In fact there do seem to be such signs of chaotic
phenomena, which signal the transition from order to chaos.

Each of us has a rudimentary understanding of this opposing pair of concepts. We
speak of order when ‘everything is in its place’. Chaos, according to the dictionary,
means among other things ‘confusion’. We find another interesting hint there too. By
‘chaos’, the ancient Greeks meant the primordial substance out of which the world is
built. More and more, scientists are coming to the conclusion that chaos is the normal
course of events. The much-prized and well-understood order of things is just a special
case. This exceptional circumstance has been the centre of scientific interest for centuries,
because it is easier to understand and to use. In combination with the indisputable
successes of modem science over the past 200 years it has led to a disastrous
misconception: that everything is computable. When today a model fails and predicted
events do not occur, we simply assume that the model is not good enough, and that that is
why the predictions fail. We confidently believe that this can be corrected by more and
better measurements and bigger mathematical and computational investment. At fist  it
seems quite a startling idea that there exist problems that simply are not computable,
because they lead to ‘mathematical chaos’. We have discussed the example of weather at
the beginning of this book and in this chapter. When two cars pass each other in the
street, a vortex forms in the air between them. As a result, depending on whether we
drive on the left or right, whether we live in the northern or southern hemispheres, the
global high and low pressure systems are strengthened or weakened. But which weather
forecasts take traffic into account? In an extreme case we speak of the ‘butterfly effect’.
The flap of a butterfly’s wing can change our weather! This idea occurred to the
American meteorologist Edward N. Lorenz  in 1963. He came to the conclusion that
long-term weather prediction may not be possible (compare 33.3).

In daily life and science we assume that nothing happens without a reason (the
causality principle). Whether we apply this principle to reality or to a mathematical
experiment, it makes no difference. This long-standing principle that ‘equal causes have
equal effects’, lies at the heart of our scientific thinking. No experiment would be
reproducible if it did not hold. And therein lies the problem. This principle makes no
statement about how small changes in causes change their effects. Even the flap of a
butterfly‘s wing can lead to a different outcome. Usually it ‘still works’, and we obtain
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l If a little water flows, the drops follow each other at equal intervals.
l By increasing the flow rate, periods 2 and 4 can be clearly detected.
l Finally, shortly before the water flows in a smooth stream, big and small drops

follow each other indiscriminately. We have reached chaos!
A possible design of apparatus is shown in Figure 9-3.

The Heartbeat
The heartbeat is another process, in which the complex system ‘heart‘ attains a

chaotic state. We consider the process somewhat more precisely.
Normal heartbeats depend upon the synchronised  behaviour of many millions of

strands of heart muscle. Each of these individual elements of the heart’s musculature runs
through an electrophysiological cycle lasting about 750 ms. Sodium, potassium and
chlorine ions are so arranged, inside and outside the cell wall, that by a combination of
chemical events each individiual cell attains a progressively unstable ‘explosive’
electrophysiological state. Millions of tiny chemical ‘catapults’ are sprung.

It is now purely a matter of time before this situation leads to a sudden increase in
the electrical potential difference across the cell membrane. This is the trigger for the
muscular activity of the heart. Normally the initiative for this is controlled by natural
pacemaker tissue, which conveys the impulse to the active muscles by a circuit similar to
the  nervous system.

Once the above chain reaction has begun, it propagates through the musculature of
the heart by transmission from each cell to its neighbours. The ‘explosive’ neighbouring
cells are triggered. The process of transmission takes the form of a travelling  wave, like a
burning fuse, and within 60 - 100  ms this wave has travelled right round the heart.

One consequence, that different parts  of the whole heart muscle contract at very
similar times, is necessary for the optimal functioning of this organ.

It can sometimes happen that the process of building up the potential can reach a
critical level in some places earlier than it does elsewhere in the active musculature. As a
result, the stimulus from outside can fail to occur. This is literally fatal, because the
outside stimulus provides the starting signal that triggers off the entire heart. Possible
causes include a cardiac infarction, that is, a localised  injury to the heart muscle, which
becomes electrophysiologically unstable and capable of providing a chaotic stimulus.

After ‘ignition’, a buildup of potential and the onset of muscular contraction, there
follows a passive condition lasting some 200-300 ms and leading to neither action nor
reaction. This is the refractory phase. Because of this spatially extended discharging
process in the roughly 500 cm3 muscle mass, this phase is important to synchronise  the
next work-cycle throughout the entire heart muscle. Ultimately it guarantees the
coordinated activity of the millions of muscle strands.

The control system responsible for the regular transmission of the triggering
impulses is essential. If a ‘firing’ impulse arrives at the active muscles too soon, then
these will react too soon. The result is an irregular heartbeat: an exirasystole.



Step by Step into Chaos 239

zone, when the tap is only partially open. The dripping tap then represents an ordered
system. The drops are of equal size and fall at regular intervals. If the tap is opened a
little more, the drops fall more quickly, until we encounter a phenomenon which we have
previously seen only as mathematical feedback: suddenly two drops of different sizes
appear, one after the other.

In the same way that a curve in the Feigenbaum diagram can grow two branches,
where the sequence alternates between a small and a large value, so also  does the water
behave. After a large drop there follows a smaller one; after a small one comes a large
one.

Unfortunately it is not so easy to observe what happens next. The very rapid events
are best seen using photography or with the aid of a stroboscope. Then under some
conditions we can see a further period-doubling: a regular sequence of four different
drops! Of course, the periods of time between them also differ.

With an accurate timer all this can be made quantitative. The arrangement should be
one where the flow rate of the water can be changed reproducibly. Unfortunately a tap is
not accurate enough, and it is better to use a water reservoir about the size of an aquarium.
A tube is placed across the edge and ends in a spout, made as uniform as possible. It
should point downwards. The height of this spout, compared to the water level, controls
the quantity of fluid that flows per minute. Because the size of drops is hard to measure,
we measure the times at which the drops fall. To do this we let them fall through a
suitable light-beam, a few centimetres below the opening. An electronic timer produces
a sequence of measurements. We discover:

I /A-
/ i

Photocell with
timer

Figure 9-3 Water drop experiment.
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questionable whether so simplified a formulation of this fundamental problem is really
applicable to our times.

Today we live in a world of the balance of terror. Complex systems such as the
global environment or national defence  switch between phases of order and disorder.
Chaotic situations are well known in both systems. Seveso, Bhopal and Chernobyl are
environmental catastrophes. World wars and other more local conflicts are peace
catastrophes.

History offers many examples of how the precursors of an outbreak of war
announce themselves. At the threshold between war and peace political control and
predictability are lost. ‘I suggest that war be viewed as a breakdown in predictability: a
situation in which small perturbations of initial conditions, such as malfunctions of early
warning radar systems or irrational acts of individuals disobeying orders, lead to large
unforeseen changes in the solutions to the dynamical equations of the model,’ says Alvin
M. Saperstein (1984), p. 303.

In his article Chaos - a model for the outbreak of war he starts out with the same
simple mathematical model that we have encountered in the Feigenbaum diagram. The
starting point is the following equation, which you should recognise:

x*1  = 4*&x,*(1-xn)  = Fb(xJ
One can easily show that the attractor for b c l/4 is zero. In the range l/4  < b c 3/4
the attractor is 1 - b/4. For b > 3/4 there is no stable state. The critical point is when
b = 0.892. In certain places there are 2, 4, 8, 16, etc. states. Chaos announces itself
through period-doubling. Past the critical value, chaos breaks out. You can easily
change your Feigenbaum program to determine the value for period-doubling more
accurately.

The Saperstein model applies to a bilateral arms race between two powers X and Y,
which proceeds ‘step by step’. The symbol R can represent the number of years or the
military budget. The model of the arms race consists of the following system:

xn+l  = 4*a*~,*(l-Y,)  = F&n)
ywl = 4&+x,*(1-x,)  = F&x”)

with 0 < a,b  c I. The dependent variables xn and y,, represent the proportion that the
two nations spend on their armaments. Thus the following should hold: xn > 0 and

Yn<  1.
The armament behaviour of one nation depends of course on that of its opponent up

to the current time, and conversely. This is expressed by the dependence between x and
y. Much as in the measles example, the factors (l-y,) and (l-x,,) give the proportion
of gross national product that is not invested in armaments. Depending on the values of
the parameters a and b, we get stable or unstable behaviour of the system. The two
nations can  ‘calculate’ the behaviour of their opponents - or perhaps not.

Saperstein has derived a table from the book European MstoticaJ  Statistics 1750-
1970, which shows the military output of several countries between 1934 and 1937 in
terms of gross national product (GNP).
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This is primarily a normal phenomenon. Even in a healthy heart it can be observed,
insofar as this impulse may act on a uniformly ready muscle. But if parts of the heart find
themselves in an inaccessible stationary state, while other parts are ready to transmit or
propagate a spreading impulse, then a fatal condition ensues. It begins with a division of
the activity of the heart muscle into regions that are no longer in synchrony. A
consequence is the threat that islands of musculature will exhibit cyclic stimulus
processes: chaos breaks out, and the result is fibrillation.  Despite maximal energy use,
no output occurs from the biological pump ‘heart’. A vicious circle has set in.

Figure 9-4 shows a normal ECG and an ECG showing the typical symptoms of
fibrillation. The amplitude is exaggerated compared with the time in relative units.

Figure 9-4 ECG curves: normal action (top) and fibrillation.

Astonishingly, this transition from order to chaos, which means fibrillation and death,
seems to follow the same simple pattern as water drops and the Feigenbaum diagram.
Feigenbaum called the phase shortly before chaos set in period-doubling. In this
situation complex systems oscillate to and fro between 2, then 4, then 8, then 16, and so
on states. Finally nothing regular can be observed.

In the case of the heart, Richard J. Cohen of the Massachusetts Institute of
Technology found the same typical pattern in animal experiments. These might imply that
an early warning of such extrasystoles in the heart might perhaps be able to save lives.

Outbreaks of War
As a final example we mention that researchers in peace studies have also shown an

interest in chaos theory. Again we can see the fist  tentative beginnings, which as in
other examples suggest how effective the applications might become. But it is
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oscillating to and fro between two possible states of the system. Mixtures of states can
develop, without the system as a whole becoming chaotic.

Of great interest today is the manufacture of new materials. Their magnetic and
non-magnetic properties play an important role for different characteristics, such as
elasticity or other physical properties. In fact, today, chaos theorists are already
‘experimenting’ with such materials, albeit hypothetical ones. For this purpose the data of
real materials are incorporated in a computer model, which calculates the magnetic and
non-magnetic zones. The pictures obtained in this manner are similar to Julia sets. Of
course people are particularly interested in the complex boundaries between the two
regions.

A surprising result of this research could be the discovery that highly complex
phase transitions, as they apply to magnetism, can be understood through simple
mechanisms.

Another example from biology shows that even here the Feigenbaum scenario is
involved. The biologist Robert M. May investigated the growth of a type of insect, the
gipsy moth Lyman&-h  &spar,  which infests large areas of woodland in the USA. In fact
there are all the signs that this sometimes chaotic insect behaviour  can be described by the
Feigenbaum formula: see May (1976), Breuer (1985).

Chaos theory today concerns itself, as we have seen, with the broad question of
how the transition from order to chaos takes place. In particular there are four questions
that the researchers pose:
. How can we detect the way in which ‘step by step’ inevitably leads to chaos?

Is there a fingerprint of chaos, a characteristic pattern or symptom, which can
give advance warning?

. Can this process be formulated and pinned down in simple mathematical terms?
Are there basic forms, such as the Gingerbread Man, which always occur in

different complex systems of an economic, political, or scientific nature?
Are there basic relations in the form of system constraints or invariants?

+ What implications do all these discoveries have for the traditional scientific
paradigm?

What modifications or extensions of existing theoretical constructions are useful
or important?

l How do natural systems behave in transition from order to chaos?

Video Feedback
To bring to a close this stepwise  excursion into the continuing and unknown

development of chaos theory, we will introduce you to a graphical experiment, which will
set up the beginnings of a visual journey into the ‘Land of Infinite Structures’. This
experiment requires apparatus which is already available in many schools and private
households. The materials are: a television set, a video camera, and a tripod. Whether
you use a black-and-white or a colour  TV is unimportant.
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France Germany IdY UK U S S R

1934 0.0276 0.0104 0.0443 0.0202 0.0501
1935 0.0293 0.0125 0.0461 0.0240 0.0552
1936 0.0194 0.0298 0.0296 0.078 1 not known

1937 0.0248 0.0359 0.0454 0.0947 not known

Table 9-l Dependence of military output on GNP, Saperstein (1984) p. 305.

The values in Table 9- 1 are now taken in turn for +yo,  respectively xl,yf,  in the
model equations, and a and b  determined from them. Table 9-2 shows the result:

France-Germany
France-Italy
UK-Germany
UK-Italy
USSR-Germany
USSR-Italy

(1934-35)
(1936-37)
(1934-35)
(1934-35)
(1934-35)
(1936-37)

a b
0.712 0.116
0.214 0.472
0.582 0.158
0.142 0.582
1 . 3 4 0.0657
0.819 0.125

Table 9-2 Parameters a and b, Saperstein (1984), p. 305.

Accordingly, the arms race between USSR and Germany during the chosen period is in
the chaotic region. France-Germany and USSR-Italy are, in Saperstein’s interpretation,
near the critical point.

For such a simple model the results are rather surprising, even if no temporal or
historical development is taken into consideration. We suggest that you test the
Saperstein model and locate new data. Statistical yearbooks can be found in most
libraries. Of course the model is too simple to provide reliable results. We are in the
early days of chaos research, and we can only hope that eventually it will be possible to
help avoid chaotic situations in real life.

Phase Transitions and Gipsy Moths
These three examples are typical of many other phenomena currently under

investigation by scientists in many fields. We briefly describe one of them.
Changes from order to disorder are on the physicist’s daily agenda. The transition

from water to steam, the change from a conducting to a superconducting state at low
temperature, the transition from laminar  to turbulent flow or from solid to fluid or
gaseous states characterise  such phase transitions. Phase transitions are extremely
complex, because in the system certain elements ‘wander’ for indeterminate times,
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The setup is conceptually simple. The video camera is connected to the TV and
pointed at the screen. Both machines are switched on. The camera films the picture that
it itself creates. In the TV we see a picture of the TV, containing a picture of the TV,
containing a picture of the TV, containing...

A recursive, self-similar picture appears. Now bring the camera nearer to the
screen. At certain places the screen becomes very bright, at others it stays dark.
Feedback leads to a strengthening, in one or the other direction. The interesting thing for
us is the border between the light and dark regions. There accidental variations are
enhanced, so that scintillations appear, the fit symptoms of chaos.

A word about the parameters we can vary in this experiment. On the TV these are
brightness and contrast; on the camera they are field of vision (zoom) and sensitivity. If
necessary the automatic exposure control must be shut off. Our third piece of apparatus
plays an especially important role: the tripod. With this we can tilt the camera at an angle
between 0” and 90” above the monitor. A bright speck on the screen can become brighter
after being filmed and may strengthen further iterations.

Switch off the light and darken the room. Suddenly the journey begins. Through
feedback between the camera and the TV, remarkable dynamically changing structures
appear (Figure 9-3,  and chaos shows its face. The patterns that arise in this way are so
varied that we will make no attempt to describe them.

Nobody can yet compute or predict these structures. Why should it be otherwise?

Figure 9-5 Revolving, self-modifying patterns on the screen.3

3The  pictures on the TV screen generally resemble such computer-generated stntctures.
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With our final experiments on fractal graphics, and questions of the fundamental
principles of chaos theory that are today unresolved, we end the computer graphics
experiments in this book. That does not mean that the experiment is over for you. O n
the contrary, perhaps it has only just really begun.

For the Grand Finale we invite you on a trip into the Land of Infinite Structures.
That is what we have been discussing all along. A microcosm within mathematics,
whose self-similar structures run to infinity, has opened up before us.

Have you ever seen the Grand Canyon or Monument Valley in America? Have
you perhaps flown in an aeroplane through their ravines and valleys? Have you gazed
out from a high peak upon the scenery below? We have done all that in the Land of
Infinite Structures, too. And here we have once more collected together some of the
photographs as a memento.

With the sun low in the evening, when the contours are at their sharpest, we fly
from the west into Monument Valley. Rocky outcrop upon rocky outcrop towers red
into the sky. Below spreads the flat land of the reservation. Between two mesas we lose
height and turn to the right:

Figure 10.1

Ahead of us stretches the plateau. At its edge, as far as the eye can see in the twilight,
stretch the cliffs, seeming to lose themselves in the infinite distance:

Figure 10.2



10 Journey to the Land of Infinite
Structures
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1

Figure 10.5

Once more we must climb, to gain height, until behind the winding mountain chain the
airport lights appear:

Figure 10.6 Figure 10.7

The following day, when we fly over the Grand Canyon, our appetite for the variety of
the forms that the Colorado has engraved in the rock during its thousand- year efforts is
insatiable. Joe, the pilot, has switched on the terrain radar, which plots contour lines.
Remarkably, as in the three-dimensional world of forms, which lies before our eyes, a
strange reality now appears.
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A glance at our flight-plan shows that we are flying in the area of a basin boundary:

Fignre 10 .3

The nearer we approach, the more precipitous and forbidding the slopes become,
throwing long shadows in the evening sun:

Figure 10.4

Suddenly a gap opens up in the hitherto impenetrable massif.  We follow it with the
setting sun. The gap becomes smaller and smaller. We switch on the terrain radar.
Whenever critical points loom ahead, we switch to the next level of magnification:





Journey  to the Land of Infinite Structures

Figure 10.11

Figure 10.10

..-- .- --..  .--,..J

Figure 10.12
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Figure 10.18

On the next day of the trip we once more fly over the outcroppings of the Grand Canyon.
‘How many years did it take the Colorado to produce these contours? It is at most a
hundred years since humans fist  saw them.’

We scramble out of the aircraft and look around at the place we have reached:

Figure 10.19
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Figure 10.16

A few days later we depart from base in a car to see the local terrain. We encounter
two Indians, who want to sell us their artwork, carvings, drawings, and finely beaten
jewellery. We have never seen such art before. ‘Ihe  forms are hardly ever geometrically
simple. Indeed, in general we find complex patterns, which split up infinitely finely (see
the following figures). We ask the Indians what this art-form is called but do not
understand what they say. ‘Ailuj, Ailuj!’ they cry, and point to their drawings. What is
this ‘Ailuj’? We do not understand.

Figure 10.17
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Figure 10.20

Figure 10.21

We look again. I point silently to the heavens. A flock of birds flies to the west. They
go on forever.
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11.1 The Fbndamental  Algorithms
In the first eight chapters we have explained to you some interesting problems and

formulated a large number of exercises, to stimulate your taste for computer graphics
experiments. In the chapters following Chapter 11 we provide solutions to the exercises,
sometimes as complete programs or else as fragments. The solution, the complete Pascal
program, can be obtained by combining the ready-made component fragments, after
which you can perform a great number of graphical experiments.

Structured programs are programs in which the founder of the programming
language Pascal - the Swiss computer scientist Niklaus Wirth - has always taken a great
interest. Such programs are composed only of procedures and functions. The
procedures are at most a page long. Naturally such programs are well documented. Any
user who reads these programs can understand what they do. The variable names, for
example, convey their meaning and are commented at length when necessary. In
particular the programs are written in a structured fashion, in which the ‘indentation rules’
and ‘style rules’ for Pascal are strictly adhered to. We hope that you too will write
structured programs, and we would like to offer some advice.

Perhaps you have read the entire book systematically up to Chapter 11, to get a
good survey of the formulation of the problem, perhaps you have also written the first
few programs. By analysing our program description you have surely noticed that the
structure of our programs is always the same. The reason is that we have always tried to
write structured programs.

These are, in particular:
+ portable, so that they can easily run on other computers (‘machine-independent’);
+ clearly structured (‘small procedures’);
. well commented (‘use of comments’);
. devoid of arbitrary names (‘description of variables and procedures’).
Exceptions are limited and removed in a tolerable time.

New programs can quickly be assembled from the building blocks. You can get a
clear idea of the structure of our programs from Example 1 1 . 1 - 1:

Reference Program 11.1-1 (cf. Program 2.1-1)

PROGRAM EmptyApplicationShell;  (* for computer XYZ
(* library declarations where applicable

*)
"1

CONST
Xscreen  = 320; (* e.g. 320 points in x-direction *)
Yscreen  = 200; (* e.g. 200 points in y-direction *)

VAR
PictureName  : string;



11 Building Blocks for Graphical
Experiments
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BEGIN
REPEAT
UNTIL KeyPressed  (* DANGER - machine-dependent!

END;
")

PROCEDURE Newlines  (n : integer);
VAR

i : integer;
BEGIN
FORi:=lTOnDO

writeln;
END;

(* END: Useful Subroutines *)
(* -------------------------UTILITy--------------------------*)

(X  ------------------------ GRAPHICS--------------------s---m-*)

(* BEGIN: Graphics Procedures *)

PROCEDURE SetPoint  (xs, ys : integer);
BEGIN

(" Insert machine-specific graphics commands here ")
END;

PROCEDURE SetUniversalPoint  (xw, yw: real);
VAR xs, ys : real;

BEGIN
xs := (xw - Left) * Xscreen  / (Right - Left);

YS := (yw - Bottom) * Yscreen  / (Top - Bottom);
SetPoint  (round(xs),  round(ys));

END;

PROCEDURE GoToPoint  (xs, ys : integer);
BEGIN

(* move without drawing *)
(* Insert machine-specific graphics commands here

END;
")

PROCEDURE DrawLine  (xs, ys : integer);
BEGIN

(" Insert machine-specific graphics commands here *)
END;
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Left, Right, Top, Bottom : real;
(* include additional global variables here *)
Feedback : real;
Visible, Invisible : integer;

(*  -----------------------UTILIT~----------------------------*)

(* BEGIN: Useful Subroutines *)
PROCEDURE ReadReal  (information : STRING; VAR value

: real);
BEGIN

write (information);
readln (value);

END;

PROCEDURE ReadInteger  (information : STRING; VAR value
: integer);

BEGIN
write (information);
readln (value);

END;

PROCEDURE ReadString  (information : STRING; VAR value
: string);

BEGIN
write (information);
readln (value);

END;

PROCEDURE InfoOutput  (information : STRING);
BEGIN

writeln (information);
writeln;

END;

PROCEDURE CarryOn  (information : STRING);
BEGIN

write (information, ' hit <RETURN>');
readln

END;

PROCEDURE CarryOnIfKey;
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BEGIN f := p + k * p * (l-p);
END;

PROCEDURE FeigenbaumIteration;
VAR

range, i: integer;
population, deltaxPerPixe1  : real;

BEGIN
deltaxPerPixe1  := (Right - Left) / Xscreen;
FOR range := 0 TO Xscreen DO

BEGIN
Feedback := Left + range * deltaxPerPixe1;
population := 0.3;
FOR i := 0 TO invisible DO

population := f(population, Feedback);
FOR i := 0 TO visible DO

BEGIN
SetUniversalPoint  (Feedback, population);
population := f(population, feedback);

END;
END;

END;

(* END: Problem-specific procedures "1
(*------------------------APPLICATION------------------------*)
(X--------------------------- MAIN-----------------------.--A)

(* BEGIN: Procedures of Main Program ")

PROCEDURE Hello;
BEGIN

TextMode;
InfoOutput ('Calculation of
InfoOutput ( 1--___--___--__-----_______I)  ;

Newlines  (2);
CarryOn  ('Start :');
Newlines  (2);

END;

‘I;

PROCEDURE Goodbye;
BEGIN

CarryOn  ('To stop : I);

END;
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PROCEDURE DrawUniversalLine  (xw, yw  : real);
vim xs, ys : real;

BEGIN
xs := (XW - Left) * Xscreen/(Right  - Left);

YS := (YW  - Bottom) * Yscreen  / (Top - Bottom);
DrawLine  (round(xs),  round&s)) i

END;

PROCEDURE TextMode;
BEGIN

(* switch on text-representation *)
t* Insert machine-specific graphics commands here ")

END;

PROCEDURE GraphicsMode;
BEGIN

(* switch on graphics-representation *)
t* Insert machine-specific graphics commands here *)

END;

PROCEDURE EnterGraphics;
BEGIN

writeln ('To end drawing hit <RETURN> ');
write ('now hit <RETURN> I); readln;
GraphicsMode;

END;

PROCEDURE ExitGraphics
BEGIN
(* machine-specific actions to exit from Graphics Mode *)

TextMode;
END;

(END: Graphics Procedures *)
(-------------------------- GRAPHICS--------------------------X)

(------------------------ APPLICATION-------------------------*)

(BEGIN: Problem-specific procedures *)
(* useful functions for the given application problem "1

FUNCTION f(p,  k : real) : real;
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(“----------------------------------------------------------

(* BEGIN: Graphics Procedures
I l Here follows the definition of the graphics pProcedures

(* END: Graphics Procedures
("----------------------------------------------------------

(* BEGIN: Problem-specific Procedures
I l Here follows the definition of the problem-specific procedures

(* END: Problem-specific Procedures
("----------------------------------------------------------

(* BEGIN: Procedures of Main Program
I l Here follows the definition of the
I . Procedures of the main program:
I  l  Hello,Goodbye,Initidlise,ComputeAndDisplay

(* END: Procedures of Main Program
("----------------------------------------------------------

BEGIN (* Main Program *)
Hello;
Initialise;
ComputeAndDisplay;
Goodbye;

END.

*)
*)

*)
*)
*I

*I
*)
*)

*)
“)

Layout of Pascal  Programs
All Pascal programs have a unified appearance.
Global symbols begin with a capital letter. These are the name of the main program,
global variables, and global procedures.
Local symbols begin with a lower-case letter. These are names of local procedures
and local variables.
Keywords in Pascal are written in capitals or printed boldface.

Machine-Independence of Pascal Progm~~s
By observing a few simple rules, all Pascal programs can be used on different

machines. Of course today’s computers unfortunately still differ widely from one
another. For this reason we have set up the basic structure of our reference program (see
overleaf), so that the machine-dependent parts can quickly be  transported to other
machines. Model programs and reference programs for different makes of machine and
programming languages can be found in Chapter 12.

We now describe in more detail the overall structure of Pascal programs.
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PROCEDURE Initialise;
BEGIN

ReadReal  ('Left
ReadReal  ('Right
ReadReal  ('Top
ReadReal  ('Bottom
ReadInteger  ('Invisible
ReadInteger  ('Visible

(* possibly further inputs
ReadString  ('Name of Picture

END;

>‘I Left);
>'I Right);
>'r Top)  ;
>'r Bottom);
>'r invisible);
>'r visible);

“1
>',PictureName);

PROCEDURE ComputeAndDisplay;
BEGIN

EnterGraphics;
FeigenbaumIteration;
ExitGraphics;

END;

(* END: Procedures of Main Program ")
(" ----------------------------MAIN-----------------------------  *)

BEGIN (* Main Program *)
Hello;
Initialise;
ComputeAndDisplay;
Goodbye;

END.

1 Structure of Pascal Pmgrams
All program examples are constructed according to the following scheme:

PROGRAM ProgramName;
1 Here follows the declaration part including
I  l  Librarydeclarations(ifapplicable)
I l Constantdeclarations
1 l Typedeclarations
1 l Declaration of global variables

(*---------------------------------------------------------- *)

(* BEGIN: Useful Subroutines *)
1 l Here follows the definition of the useful subroutines

(* END: Useful Subroutines *I
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FixValuel,  FixValue (*tomogram  parameters ")
Width, Length, (*Riemann  sphere coordinates *)
Power, (*for generalised Gingerbread *)
HalfPi, (* used for arc sine, = Pi/2  *)

:  rea l ;

F, In, Out : IntFile;
InText,  OutText : CharFile;

(* for screen-independent *)
(* data storage ")

Value : ARRAY [O..Parts,  O..PartsPlus2]  OF
integer;
(* fractal landscapes *)

CharTable :P.RRAY  [O.. 631 OF Char;
(* look-up tables ")

IntTable : ARRAY ['O'.. 'z']  OF integer;
D3max : D3maxType;

(* maximal values for 3D *)

Graphics Procedu.res
With graphics procedures the problem of machine-dependence becomes prominent.

The main procedures for transforming from universal to picture coordinates are self-
explanatory.

Problem-specific BOlXdUreS
Despite the name, there are no problems with problem-specific procedures. On

any given occasion the appropriate procedures and functions are inserted in the
declaration when called from the main program.

Useful Subroutines
In example program 11.1-1 we first formulate all the useful subroutines required

for the program fragments of previous chapters; but these are not described in detail.
This would probably be superfluous, since anyone with a basic knowldedge of Pascal or
other programming languages can see immediately what they do.

Most of these procedures rely upon reading data from the keyboard, whose input is
accompanied by the output of some prompt. In this way any user who has not written the
program knows which input is required. The input of data can still lead to problems if
this simple procedure is not carried out in the manner that the programmer intended. If
the user types in a letter instead of a digit, in many dialects Pascal stops with an
unfriendly error message. We recommend that you add to the basic algorithms
procedures to protect against input errors. You can find examples in many books on
Pascal.

We can now finish the survey of the structure and basic algorithms of our reference
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Global Variables
The definitions of global constants, types, and variables are identified with bold

capital headings for each new global quantity. Although not all of them are used in the
same program, a typical declaration for a Julia or a Gingerbread Man program might look
like this:

Program Fragment 11.1-2
CONST
Xscreen  = 320;
Yscreen  = 200;
WindowBorder  = 20;
Limit = 100;
Pi = 3.141592653589;

(*screen width in pixels "1
(*screen height in pixels *)
("0 for a Macintosh *)
(*test for end of iteration *)
(*implemented in many dialects*)

Parts = 64;
PartsPlus = 66:

(* for fractal landscapes
(*=Parts  + 2, for landscapes

TYPE

IntFile  = FILE OF integer; (*machine-independent
CharFile  = Text; (*storage of picture data

VAR
Visible, Invisible, (*drawing limits for

("Feigenbaum  diagrams
MaximalIteration,  Bound, (*drawing limits for

(*Julia and Mandelbrot sets
Turtleangle, Turtlex, Turtley,
Startx, Starty, Direction,
Depth, Side, (*turtle graphics
Xcentre, Ycentre, Radius, (*screen parameters of

(*Riemann  sphere
Quantity, Colour, Loaded, (*Data values for screen-

(*independent picture storage *)
Initial, Factor, (*fractal  mountains ")
D3factor,  D3xstep,  D3ystep, (*3D-specialities ")

: i n t e g e r ;
C h : char;
PictureName,  FileName : STRING;
Left, Right, Top, Bottom, (*screen window limits *)

Feedback, Population, (*parameters for Feigenbaum *)
Nl,  N2, N3, StartValue (*parameters for Newton "1
Creal, Cimaginary, (*components of c *)

*)
*)

*)
“1

“)
*)
*)
*I

“1
“)
*I
“1
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PROCEDURE Backward (step : integer);
BEGIN

Forward (- step);
END;

PROCEDURE Turn (alpha : integer);
BEGIN

Turtleangle := (Turtleangle + alpha) MOD 360;
END;

PROCEDURE StartTurtle;
BEGIN

Turtleangle := 90; Turtlex := Startx; Turtely := Starty;
SetPoint  (Startx, Starty);

END;

PROCEDURE dragon (Depth, Side : integer);
BEGIN

IF Depth = 0 THEN
Forward (Side)

ELSE IF Depth > 0 THEN
BEGIN

dragon (Depth - 1, trunc (Side));
Turn (90);
dragon (-(Depth - l), trunc (Side));

END
ELSE

BEGIN
dragon (-(Depth + l), trunc (Side));
Turn (270);
dragon (Depth + 1, trunc (Side));

END;
END;

(* END: Problem-specific procedures *)
(X-------------------------APPLICATION----------------------  ")

. . .
PROCEDURE Initialise;
BEGIN

ReadInteger  ('Startx
ReadInteger  ( ’ Starty

>'r Startx);
>’ , Starty) ;
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program, and in the next chapter we lay out solutions to problems that were not fully
explained earlier.

Since the program structure is always the same, to provide solutions we need only
give the following parts of the program:
l The problem-specific part.
l The input procedure.
From the input procedure you can read off without difficulty which global variables must
be declared.

11.2 Fractals Revisited
Now we begin the discussion of the solutions to the exercises, supplementing the

individual chapters. Occasionally we make a more systematic study of things that are
explained in the first eight chapters. Why not begin at the end, which is likely to be still
fresh in your mind?

Do you remember the ‘fractal  computer graphics’ from Chapter 8? Possible partial
solutions for the exercises listed there are here given as program fragments. In the main
program the appropriate procedures must be called in the places signified. This type of
sketch is very quick to set up.

Program Fragment 11.2-l (for Chapter 8)
. . .

VAR
(* insert further global variables here *)

Turtleangle, Turtlex, Turtley : integer;
Startx, Starty, Direction, Depth, Side : integer;

. . .
(*------------------------APPLICATION------------------------*)

(* BEGIN: Problem-specific procedures *)
(*Here follow the functions needed in the application program*)

PROCEDURE Forward (step : integer);
VAR

xStep,  yStep  : real;
BEGIN

xStep := step * cos (Turtleangle * Pi) / 180.0);

ystep := step * sin (Turtleangle * Pi) / 180.0);
Turtlex := Turtlex + trunc (xStep);
Turtley := Turtley + trunc (yStep);
DrawLine  (Turtlex, Turtley);

END;
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(* BEGIN: Problem-specific procedures
FUNCTION RandomChoice  (a, b : integer) : integer;

(* Function with a side-effect on Maxi and Mini
VAR zw : integer;

BEGIN

*)

")

zw  := (a t b) DIV 2 + Random MOD Picsize - Initial;

IF zw < Mini THEN Mini := zw;
IF zw > Maxi THEN  Maxi := zw;
RandomChoice  := zw;

END; (* of RandomChoice  *)

PROCEDURE Fill;
VAR i, j : integer;

PROCEDURE full;
VAR xko, yko : integer;

BEGIN
yko := 0;
REPEAT

xko := Initial;
REPEAT

Value [xko, yko] :=
RandomChoice  (Value [xko  - Initial, yko],

Value [xko + Initial, yko]);
Value [yko, ykol :=

RandomChoice  (Value [yko, xko - Initial 1,
Value [yko, xko + Initial I);

Value [xko, Parts - xko - ykol :=
RandomChoice  (

Value [xko-Initial,
Parts-xko-yko+Initial I,

Value [xko+Initial,
Parts-xko-yko-Initial I);

xko := xko t Picsize;
UNTIL xko > (Parts - yko);

yko := yko + Picsize;
UNTIL yko >=  Parts;

END; (" of full *)

BEGIN (* of Fill *)
FOR i := 0 TO Parts DO

FOR j := 0 TO PartsPlus  DO
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ReadInteger  ('Direction >I, Direction);
ReadInteger  ('Depth >'r Depth);
ReadInteger  ('Side >'r Side);

END;

PROCEDURE ComputeAndDisplay;
BEGIN

EnterGraphics;
StartTurtle;
dragon (Depth, Side) ;
ExitGraphics;

END;

The declaration part of the main program always stays the same.
Please take note of this solution, because it will run in this form on any computer,

provided you insert your machine-specific commands in the appropriate places of the
graphics part. The relevant global variables for all exercises are given in full. In the
graphics part you must always insert your commands in the procedures Set P o i n t ,
DrawLine,TextMode,GraphicsMode,andExitGraphics  (see511.1 and Chapter
12). We have included the implementation of our own turtle graphics in the problem-
specific procedures. If your computer has its own turtle graphics system (UCSD
systems, Turbo Pascal systems) you can easily omit our version. But do not forget to
include the global variables of your turtle version. That applies also to the correct
initialisation of the turtle, which we simulate with the aid of the procedure
StartTurtle. Read the hints in Chapter 12.

All procedures which stay the same will here and in future be omitted to save space.
In Chapter 8, Figure 8.2-4 we showed a fractal landscape with mountains and seas.

You must have wondered how to produce this graphic. Here you will find an essentially
complete solution. Only the seas are absent.

Program 11.2-2 (for Figure 8.2-4)
PROGRAM fractallandscapes;

CONST
Parts = 64;
PartsPlus = 66; (= Parts + 2)

VAR
Initial, Picsize : integer;
Value : ARRAY [O..Parts, O..PartsPlus2]  OF integer;

Mini, Maxi, Factor, Left, Right, Top, Bottom : real;
. . .

(* Insert the global procedures (see 11.1-1) here *)
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END; (* of along *)
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BEGIN (* of Draw *)
FOR yko := 0 TO Parts DO

slant;
FOR xko := 0 TO Parts DO

along;
END; (* of Draw *)

(* END: Problem-specific Procedures *)
PROCEDURE Initalise;
BEGIN

ReadReal  (' Left >, Left);
ReadReal  (' Right >','Right);
ReadReal  (' Bottom >I, Bottom);
ReadReal  (' Top >'r Top);
ReadReal  (' Factor >I, Factor);
Newlines  (2);
InfoOutput  ('wait 20 seconds ');
Newlines  (2);

END;

PROCEDURE ComputeAndDisplay;
BEGIN

Fill;
EnterGraphics;
Draw;
ExitGraphics;

END;

BEGIN (* Main Program *)
Hello;
Initialise;
ComputeAndDisplay;
Goodbye;

END.
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Value [i, jl := 0;
Mini := 0; Maxi := 0;
Picsize := Parts;
Initial := Picsize DIV 2;
REPEAT

full;
Picsize := Initial;
Initial := Initial DIV 2;

UNTIL Initial := PiCSiZe;

Value [0, Parts + 11 := Mini;
Value [l, Parts + 11 := Maxi;
Value [2,  Parts + 11 := Picsize;
Value [3, Parts + 11 := Initial;

END (* of Fill *)

PROCEDURE Draw;
vim  xko, yko : integer;

PROCEDURE slant;
VAR  xko : integer;

BEGIN (* of slant *)
SetUniversalPoint  (yko, yko+Value[O,ykol*Factor);
FOR xko := 0 TO Parts - yko DO

DrawUniversalLine (xko+yko,
yko + Value[xko,ykol*Factor);

-FOR  xko := Parts - yko TO Parts DO
DrawUniversalLine (xko+yko,

yko + Value[Parts-yko,
Parts-xko]*Factor);

END; (* of slant *)

PROCEDURE along;
VAR  xko : integer;

BEGIN
SetUniversalPoint  (xko, Value[xko,Ol*Factor);
FOR yko := 0 TO Parts -xko DO

DrawUniversalLine (xko+yko,
yko+Value[xko,yko]*Factor);

FOR yko := Parts - xko TO Parts DO
DrawUniversalLine (xko+yko,

xko+Value[Parts-yko, Parts-xko]*Factor);
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x.number  := a; y.number  := b;
x.seq : x.seq * y.seq;
bitAND := x.number  0 0;

END; (* of bitAND  *)

PROCEDURE codeInput
(VAR generationNo  : integer;
VAR code : codeArray;
VAR angle : realArray;
VAR angleNo  : integer;
VAR start : StringArray);

VAR rule : STRING[20];

PROCEDURE inputGenerationNo;
BEGIN

write (' Generation Number > ');
readln (generationNo);
IF generationNo  > 25 THEN generat

END;
ionNo  := 25

PROCEDURE inputRule;
VAR ruleNo,  alphabet : integer;

BEGIN
FOR ruleNo := 0 TO 7 DO
BEGIN

,

‘);write(' Input of ', ruleNo+l,  *. Rule >
readln (rule);
IF rule = ' ' THEN

rule := '0';
code [ruleNo,  01 := length (rule);
start [ruleNo]  := rule;
FOR alphabet := 1 TO code [ruleNo,  01 DO
BEGIN

CASE rule[alphabetl  OF
'0' : code [ruleNo,  alphabet] := 0;
'1' : code [ruleNo,  alphabet] := 1;

' 1' : code [ruleNo,  alphabet] := 128;
'I' : code [ruleNo,  alphabet] := 64;
END;

END;
END;

m;
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Figure 11.2-1 Fractal mountains.

The theory of graftals is certainly not easy to understand. For those who have not
developed their own solution, we here list the appropriate procedure:

Program 11.2-3 (for §8.3)
PROCEDURE Graftal; (* Following Estvanik [19861  *)

TYPE
byte = 0..255;
byteArray  = ARRAY[O..15000]  OF byte;
codeArray  = ARRAY[O..7,  O..ZO]  OF byte;
realArray  = ARRAY[O..lSl  OF real;
stringArray  = ARRAY[O..7]  OF STRING[201;

VAR
code : codeArray;
graftal : byteArray;
angle : real&ray;
start : stringArray;
graftallength, counter, generationNo,  angleNo

: integer;
ready : boolean;

FUNCTION bitAND  (a, b : integer ) : boolean;
VARX,  y: RECORD CASE boolean OF

False : (counter : integer);
True : (seq : SET OF 0..15)

END;
BEGIN
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BEGIN
depth := 0;
found := False;
WHILE (p < sourcelength)  AND NOT found DO
BEGIN

P := ptl;
IF (depth = 0) AND (source[p]  < 2) THEN
BEGIN

findNext := source[pl;
found := True;

END
ELSE
IF (depth = 0) AND (bitAND  (source[pl,  64)) THEN

BEGIN
findNext  := 1;
found := True;

END
ELSE IF bitAND  (source[pl,  128) THEN

BEGIN
depth := depth t 1

END
ELSE IF bitAND  (sourcetpl, 64)  THEN

BEGIN
depth := depth - 1;

END
END;

IF NOT found THEN
findNext  := 1;

END; (* of findNext  *)

PROCEDURE newAddition  (b2, bl, b0 : integer;
VAR row : byteArray;
VAR code : codeArray;
VAR rowLength  : integer;
angleNo  ; intger;

VAR ruleNo,  i : integer;
BEGIN

ruleNo := b2 * 4 t bl * 2 + b0;
FOR i := 1 TO code [ruleNo,  01 DO

BEGIN
rowLength := rowLength  t 1;
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PROCEDURE inputAngleNo;
VARk,i : integer;

BEGIN
> ‘);write (' Number for angle

readln (angleNo);
IF angleNo  > 15 THEN

angleNo  := 15;
FOR k := 1 TO angleNo  DO
BEGIN

write ('Input of I, k:2, '.Angle  (Degrees) > ')
readln (i);
angle [k-l] := i*3.14159265  / 180.0;

END;
END;

PROCEDURE controlOutput;
VAR  alphabet : integer;

BEGIN
writeln;
writeln;
writeln;
writeln (' Control Output for input of code ' );
writeln (' ---------------------------- '1;
FOR alphabet := 0 TO 7 DO

writeln (alphabet+1 : 4, start [alphabet] : 20);
END;

BEGIN
Textmode;
inputGenerationN0;
inputRule;
input?+ngleNo;
controlOutput;
CarryOn  ('Continue : '1;

END; (* Input of code *)

FUNCTION FindNext  (p : integer;
VAR source : byteArray;
sourceLength  : integer) : integer;

via
found: boolean;
depth : integer;



278 Dynamical Systems and Fractals

BEGIN
rowLength := rowLength  + 1;
row[rowLength] := source[alphabet];
bl := stack[depth];
depth := depth - 1;

END;
END;
FOR k := 1 TO rowLength  DO source[k]  := row[k];
sourceLength  := rowlength;

END; (* Of generation *)

PROCEDURE drawGeneration  (VAR graftal  : byteArray;
VAR  graftalLength  : integer;
VAR angle : realArray;
VAR counter : integer);

vm
arrayra, arrayxp, arrayyp : ARRAYtO.  ,501 OF real;
ra, dx, dy, xp, yp, length : real;
alphabet, depth : integer;

BEGIN
xP := Xscreen  / 2; yp := 0; ra := 0;
depth := 0; length := 5;
dx := 0; dy := 0;
FOR alphabet := 1 TO graftalLength  DO
BEGIN

IF graftal[alphabetl  < 2 THEN
BEGIN

GoToPoint  (round(xp),  round(yp));
DrawLine  (round(xp+dx),  round(yp+dy));
xp := xp+dx;

YP := yp+dy;
END;
IF bitAND  (graftal[alphabet],  128) THEN
BEGIN

depth := depth + 1;
arrayra[depth] := ra;
arrayxp[depth]  := xp;
arrayyptdepthl  := yp;
ra := ra+angle[graftal[alphabetl  MOD 161;
dx := sin(ra)  * length;

dy := cos(ra)  * length;
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IF (code[ruleNo,  i] >= 0) AND
(code[ruleNo,  i] <= 63) THEN

row[rowLength] := code[ruleNo,  i];
IF (code[ruleNo,  i] = 64) THEN

row[rowLength]  := 64;
IF (code[ruleNo, i] = 128) THEN

row[rowLength] := 128 + Random MOD angleNo;
END;

END; (* of newAddition  *)

PROCEDURE generation (VAR source : byteArray;
VAR sourceLength  : integer;
VAR  code : codeArray);

VAR
depth, rowlength,  alphabet, k : integer;
b0, bl, b2 : byte;
stack : ARRAY[O..200]  OF integer;
row : byteArray;

BEGIN
depth := 0;
rowLength  := 0;
b2 := 1;
bl := 1;
FOR alphabet := 1 TO sourceLength  DO
BEGIN

IF source[alphabet]  < 2 THEN
BEGIN

b2 := bl;
bl := source[alphabet];
b0 := findNext  (alphabet, source, sourcelength);
newAddition  (b2, bl, bo, row, code,

sourcelength,  angleNo);
EWD

ELSE IF bitAND  (source[alphabet],  128) THEN
BEGIN

rowLength := rowLength  + 1;
row[rowLength] := source[alphabet];
depth := depth + 1;
stack[de[th]  := bl;

END
ELSE IF bitAND(  source[alphabet],  64) THEN
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CarryOn  (' More? ');
counter := counter + 1;
ready := (graftalLength  > 8000) OR

( counter > generationNo)
OR button; (* e.g. Keypressed *)

UNTIL ready;
END;

(* END: Problem-specific Procedures *)

Insert these procedures into the reference program in the appropriate places.
In the declaration part of the procedure, inside the REPEAT loop, two procedures are

called which are enclosed in comment brackets. The procedure SaveDrawing provides
a facility for automatically saving the picture to disk. Check in your technical manual to
see whether this is possible for your machine. You can also write such a procedure
yourself. TheprocedureprintGeneration,  ifrequired,prints out the graftal  as a
string on the screen. It uses the form explained in Chapter 8, with the alphabet CO, 1, I, Il.

The input precedure, which we usually use to read in the data for the screen
window, is absent this time. Instead, the required data are read in the procedure
codeInput,  which is part of the procedure Graft al. After starting the program you
will get, e.g., the following dialogue:

>lOGeneration Number
Input of 1 .Rule  > 0
Input of 2 .Rule  > 1
Input of 3 .Rule  > 0
Input of 4 .Rule > l[Ol]
Input of 5 .Rule  > 0
Input of 6 .Rule  > OO[Oll
Input of 7 .Rule  > 0
Input of 8 .Rule  > 0
Number for angle >4
Input of 1 .Angle  (Degrees) >-40
Input of 2 .Angle  (Degrees) >40
Input of 3 .Angle  (Degrees) >-30
Input of 4 .Angle  (Degrees) >30
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END;
IF bitAND  (graftalralphabet],  64) THEN
BEGIN

ra := arrayra[depth];
xp := arrayxp[depth];
YP := arrayyp[depth];
depth := depth - 1;
dx := sin(ra)  * length;

dy := cos(ra)  * length;
END;

m;
CarryOn  (' ');

END (* Of drawGeneration  *)

PROCEDURE printGeneration  (VAR graftal:  byteArray;
VAR graftalLength : integer);

VARp: integer;
BEGIN

writeln ('Graftal Length : ', graftalLength : 6);
FOR p := 1 TO graftalLength DO
BEGIN

IF graftal[p]  < 2 THEN write(graftal[p]  : 1);
IF bitAND  (graftalfp],  128) THEN  write ('[I);
IF bitAND  (graftal[p],  164) THEN write ('I  ');

END;
writeln;

END; (* Of printGeneration  *)

BEGIN
inputcode  (generationNo,  code, angle, angleNo,  start);
graftalLength := 1;
counter := 1;
graftal[graftalLength]  := 1;
REPEAT

generation (graftal, graftallength,  code);
GraphicsMode;
drawGeneration  (graftal, graftalLength,  angle,

counter);
(* Save drawing "Graftal"  *)
TextMode;
printGeneration  (graftal, graftallength);
writeln ('There were I, counter, ' generations');
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epsilon := (In (10.0) / 100);
kInfinity  := 2.57;
Left := 0.0; Right := 400;
FOR range := 0 TO Xscreen  DO

BEGIN
iDiv  := 1 + range DIV 100;
iMod  := range MOD 100;
Feedback := kInfinity  -

exp((lOO-iMod)*epsilon)*exp(-iDiv"ln(l0.0));
population := 0.3;
IF Feedback > 0 THEN  BEGIN

FOR i := 0 to Invisible DO
population := f(population, Feedback);

FOR i:= 0 TO Visible DO
BEGIN

SetUniversalPoint  (range, population);
population := f(population, Feedback);

END;
END;

ENI;
END;

In addition, the discussion of how one generates a Feigenbaum landscape may have been
a little too brief.

Program 11.3-2 (Feigenbaum landscape)
(* BEGIN: Problem-specific procedures *)

FUNCTION f (p, k : real) : real;
BEGIN

f:=p+k*p* (l-p);
END;

PROCEDURE Feigenbaumlandscape;
CONST

lineNo  := 100;
garbageLine  = 2;

TYPE
box = ARRAY[O..Xscreenl  OF integer;

VAR
pixel, maximalvalue  : box;
i, pixelNo  : integer;
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Control Output for input of code
-_----------------~-------~-

1 0
2 1
3 0
4 l[Ol 1
5 0
6 OO[O
7 0
a 0

11

Continue: hit <RETURN>

Figure 11.2-2 Input dialogue for Graftal.

What else is there left to say about Chapter 8? In $8.4 on repetitive patterns a series
of program fragments were given, but we think you can embed them in the reference
program yourself without any difficulty.

11.3 Ready, Steady, Go!
‘Ready, steady, go!’ After fractals and graftals  we return to the beginning of our

computer graphics experiments on Feigenbaum diagrams, in particular landscapes, and
the remarkable appearance of the H&on attractor.

The first exercises that should have stimulated you to experiment were given in the
form of the following program fragments:
. 2 .1-1 MeaslesValue,  numerical  calculation
+ 2.1.1-1 MeaslesIteration,  graphicalrepresentation
I 2.1.2-1 ParabolaAndDiagonal,graphical  iteration
. 2.2-2 DisplayFeedback,output  ofthefeedbackconstant.
You can complete these without difficulty.

In $2.2.1,  which dealt with the bifurcation scenario, we made an attempt to treat the
&-values  of the bifurcation points logarithmically, to estimate the Feigenbaum number
(see Exercise 2.2.1-2). Because this exercise involves some difficulty, we give a
solution here.

Program 11.3-1 (For Exercise 2.2.1-2)
PROCEDURE FeigenbaumIteration;

VAR
range, i, iDiv,  iMod  : integer;
epsilon, kInfinity,  population : real;
delatxPerPixe1  : real;

BEGIN
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(”

BEGIN
fill (p);

P := f (p,k);
END;

END;

‘) ;PROCEDURE sort (i : integer
VAR

j, height : integer;
BEGIN

FOR j := 1 TO pixelNo  DO
BEGIN

height :=  WindowBorder  +
garbageLines  * i + factor * pixel[j];

IF maximalValue[j+i]  < height THEN
maximalValue[j+i]  := height;

END;
END;

PROCEDURE draw (i : integer);
VAR

j : integer;
BEGIN

SetUniversalPoint  (0,O);
FOR j := 1 TO pixelNo  +i DO

DrawUniversalLine  (j, maximalValue[j]);
END;

BEGIN
initialisepicture;
FOR i := 1 TO lineNo  DO

BEGIN
initialiseRows  (i);
iterate;
sort (i);
draw (i);

END; (* for i *)
END;

END : Problem-specific procedures *)
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p, k, real;

283

PROCEDURE initialisepicture;
W-JR

J : integer;
BEGIN
(* For the Macintosh you must use: ")
(* pixelNo  = Xscreen-lineNo-WindowBorder  *)
(* instead of "1
( * pixelNo  = Xscreen-lineNo ")
pixelNo  = Xscreen-lineNo
FOR j := 0 TO Xscreen  DO

maximalValue[jl := WindowBorder;
(*obliterate everything*)

PROCEDURE initialiseRows  (i : integer);
VAR

j : integer;
BEGIN

FOR j := 1 TO pixelNo  DO
pixel[j]  := 0; (* clear pixels *)

k := Right - j*(Right  - Left)/ lineNo;

P := 0.3; (* leave start value the same *)
END;

~~ocmum  fill (p : real);
VAR

j : integer;
BEGIN

j := trunc((p-Bottom) * pixelNo  / (Top - Bottom));
IF (j >= 0) AND )j <= pixelNo)  THEN

pixel[j] := pixel[j]+l;
END;

PROCEDURE iterate;
via

j : integer;
BEGIN

FOR j := 1 TO Invisible DO

P := f (p,k);
FOR j := 1 TO Visible DO
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dy := x + y * A;
dz := B + z * (x - C);
x := x + delta * dx;
Y := y + delta * dy;
z := z + delta * dz;

END;
BEGIN (* Roessler *)

x := -10;
y := -1;
z := -1
f;
REPEAT

f;
i := i + 1;

UNTIL i = 1000;
SetUniversalPoint  (x, x+ z + z);
REPEAT

f;
DrawUniversalLine  (x, y + z + z);

UNTIL Button;
END; (* Roessler *)

‘Ready, steady, go’ - in this section the speed is often a sprint. This happens because the
problems, compared with the Julia and Mandelbrot sets, are very simple and do not
require intensive computation. Nevertheless, before we devote our next section to this
problem, we will give a few hints for Chapter 4.

The sketches that explain Newton’s method must of course be provided with a
drawing program, whose central part we now show you:

Program Fragment 11.3-4 (Newton demonstration)
VAR

Nl, N2, N3, StartValue,  Left, Right, Top, Bottom : real;
. . .
FUNCTION f (x : real) : real;
BEGIN

f := (x - Nl) * (x - N2) * (x - N3);
END;

PROCEDURE drawcurve;
VAR

i : integer;
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In Chapter 3 the Program fragments were given so clearly in Pascal notation that
they can easily be incorporated into a complete program. Because some of you may
perhaps not have seen the picture of the Riissler  attractor, we give it here, together with
the corresponding program.

Figure. 11.3-1 Rijssler  attractor.

You obtain this figure if you incorporate the following procedure into your
program. Compute 1000 steps without drawing anything, so that we can be sure that the
iteration sequence has reached the attractor. Then let the program draw, until we stop it.

Give the variables the following values:
Left : = -15; Right := 15; Bottom := -15; Top := 60;
A := 0.2; B := 0.2; c  :=  5 .7 ;

Program 11.3-3 (Riissler  attractor, see Program Fragment 3.3-l)
PROCEDURE Roessler;

VAR
i : integer;

PROCEDURE f;
CONST

delta = 0.005;
VAR

DX, DY, DZ : REAL;
BEGIN

dx := - (y + 2) i
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ReadReal  ('Root 1 >I, Nl);
ReadReal  ('Root 2 >'I N2);
ReadReal  ('Root 3 >'r N3);
ReadReal  ('Start Value >I, StartValue);

END;

PROCEDURE ComputeAndDisplay;
BEGIN

EnterGraphics;
drawCurve;
approximation (StartValue);
ExitGraphics;

END;

In the standard example of Chapter 4 the roots had the values
Nl := -1; N2 := 0; N3 := 1;

Of course, that does not prevent you experimenting with other numbers.

11.4 The Loneliness of the Long-distance Reckoner
All our experiments with Julia and Mandelbrot sets have a distressing feature.

They take a long time.
In this section we give you some hints for alleviating or exacerbating the loneliness

of your long-distance computer.
In Chapter 5 we discussed the representation of Julia sets in the form of a detailed

program fragment. We will now provide a full representation as a complete program, in
which you see all of the individual procedures combined into a single whole. But again
we limit ourselves, as usual, to giving only the problem-specific part and the input
procedure.

Program  Fragment 11.4-l
PROCEDURE Mapping;

CONST
epsq = 0.0025;

VAR
xRange,  yRange  : integer;
x, y, deltaxPerPixe1,  deltayPerPixe1  : real;

FUNCTION belongsToZa  (x, y : real) : boolean;
CONST

xa = 1.0;
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deltaX  : real;
BEGIN
(* First draw coordinate axes *)

SetUniversalPoint (Left, 0);
DrawUniversalLine (Right, 0);
SetUniversalPoint (0, Bottom);
DrawUniversalLine (0, Top);

(* Then draw curve *)
SetUniversalPoint (Left, f(Left));
i := 0;
deltaX  := (Right - Left) / Xscreen;
WHILE i <= Xscreen DO

BEGIN
DrawUniversalLine (Left+i*deltaX,f(Left+i*deltaX));
i := i+3;

END;

END; (* drawcurve  *)

PROCEDURE approximation (x : real);
CONST

dx = 0.001;
VAR

oldx,  fx, fslope : real;
BEGIN (* approximation *)

REPEAT
oldx := x;
fx := f(x);
fslope := (f(x+dx)-f(x-dx))/(dx+dx)
IF fslope <> 0.0 THEN

x := x - fx / fslope
SetUniversalPoint (oldx, 0);
DrawUniversalLine (Oldx, fx);
DrawUniversalLine (X,  0);

UNTIL (ABS(fx)  < 1.03-5);
END; (* approximation *)

PROCEDURE Initialise;
BEGIN

ReadReal  ('Left
ReadReal  ('Right
ReadReal  ('Bottom
ReadReal  ('Top

>‘r Left);
>'r Right);
>'r Bottom);
>I, Top);
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xTimesy  := x*y;
distanceFourth  := sqr(distanceSq);
denominator := distanceFourth+distanceFourth

+distanceFourth;
X := 0.666666666*x + (xSq-ySq)/denominator;
Y := 0.666666666*y  -

(xTimesy+xTimesy)/denominator;
x% := sqr(x);

Y% := sqr(y);
distancesq := xsq + ysq;

END;

PROCEDURE test;
BEGIN

finished := (distancesq  < l.OE-18)
OR (distancesq  > l.OE18)

OR belongsToZa  (x,y);
IF NOT finished THEN finished := belongsToZb  (x,y);
IF NOT finished THEN finished := belongsToZc  (x,y);

END;

PROCEDURE distinguish;
BEGIN
(* Choose one of the statements *)
(* and delete all the others *)

JuliaNewtonComputeAndTest :=
iterationNo  = maximalIteration;

JuliaNewtonComputeAndTest := belongsToZc  (x,y)
JuliaNewtonComputeAndTest :=

(iterationNo  < maximalIteration)  AND
odd (iterationNo);

JuliaNewtonComputeAndTest :=
(iterationNo<maximalIteration)  AND

(iterationNo  MOD 3 = 0);
END;

BEGIN
startVariableInitialisation;
REPEAT

compute;
test;

UNTIL (iterationNo  = maxIteration)  OR finished;
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ya = 0.0;
BEGIN

belongsToZa  := (sqr(x-xa)+sqr(y-ya)  <= epsq);
END; (* belongsToZa)

FUNCTION belongsToZb  (x, y : real) : boolean;
CONST

xb = -0.5;

yb = 0.8660254;
BEGIN

belongsToZb  := (sqr(x-xb)+sqr(y-yb)  <= epsq);
END; (* belongsToZb)

FUNCTION belongsToZc  (x, y : real) : boolean;
CONST

xc = -0.5;

yc = -0.8660254;

BEGIN
belongsToZc  := (sqr(x-xc)+sqr(y-yc)  <= epsq);

END; (* belongsToZc)

FUNCTION JuliaNewtonComputeAndTest  (x, y : real)
: boolean;

VAR
iterationNo  : integer;
finished : boolean;
xSq, ySq, xTimesy,  denominator : real;
distancesq,  distanceFourth  : real;

PROCEDURE startVariableInitialisation;
BEGIN

finished := false;
iterationNo  := 0;

xsq := sqr(x);

Y% := sqr(y);
distancesq := xsq + ysq;

END (* startVariableInitialisation  *)

PROCEDURE compute;
BEGIN

iterationNo := iterationNo  + 1;
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finished : boolean;
PROCEDURE startVariableInitialisation;
BEGIN

finished := false;
iterationNo  := 0;
xsq := sqr(x);  ySq  := sqr(y);
distancesq  := xSq  + ySq;

END; (* startVariableInitialisation  *)

PROCEDURE compute;
BEGIN

iterationNo  := iterationNo  + 1;

Y := x * Y;
Y : = y + y - cImaginary;
x := xSq  - ySq  - cRea1;

xsq := sqr(x);  ysQ  := sqr(y);
distancesq := xsq + ysq;

END; (* compute *)

PROCEDURE test;
BEGIN

finished := (distancesq  > 100.0);
END; (* test *)

PROCEDURE distinguish;
BEGIN (* See also Program Fragment 11.4-l*)

JuliaComputeAndTest :=
iterationNo  = maximalIteration;

END; (* distinguish *)

BEGIN (* JuliaComputeAndTest *)
startVariableInitialisation;
REPEAT

compute;
test;

UNTIL (iterationNo  = maximalIteration)  OR finished;
distinguish;

END; (* JuliaComputeAndTest *)

BEGIN
deltaxPerPixe1  := (Right - Left ) / Xscreen;
deltayPerPixe1  := (Top - Bottom ) / Yscreen;
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distinguish;
END; (* JuliaNewtonComputeAndTest *)

BEGIN
deltaxPerPixe1  := (Right - Left ) / Xscreen;
deltayPerPixe1  := (Top - Bottom ) / Yscreen;
y := Bottom;
FOR yRange := 0 TO yScreen  DO
BEGIN

x := Left;
FOR xRange := 0 TO xScreen  DO
BEGIN

IF JuliaNewtonComputeAndTest (x,y)
THEN SetUniversalPoint  (xRange,  yRange);

x := x + deltaxPerPixe1;
END;
y := y + deltayPerPixe1;

END;
END; (* Mapping *)

PROCEDURE Initialise;
BEGIN

ReadReal  (' Left >'r Left);
ReadReal  (' Right >'I Right);
ReadReal  (' Bottom >'r Bottom);
ReadReal  (' Top >'r Top) ;
ReadInteger  ('Maximal Iteration >I, MaximalIteration);

END;

AndnowwegivetheversionforJuliasetsusingquadraticiteration:

Program Fragment 11.4-2
PROCEDURE Mapping;

VAR
xRange,  yRange  : integer;
x, y, deltaxPerPixe1,  delayPerPixe1  : real;

FUNCTION JuliaComputeAndTest  (x, y : real) : boolean;
VAR

iterationNo  : integer;
xSq, ySq, distancesq : real;
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FUNCTION MandelbrotComputeAndTest (cRea1,  cImaginary
: real)

: boolean;
VAR

iterationNo  : integer;
x, y, xSq, ySq, distancesq : real;
finished: boolean;

PROCEDURE StartVariableInitialisation;
BEGIN

finished := false;
iterationNo  := 0;
x := x0;
Y := yo;

xsq := sqr(x);
Y-w := sqr(y);
distancesq := xsq + ysq;

END; (* StartVariableInitialisation *)

PROCEDURE compute;
BEGIN

iterationNo := iterationNo  + 1;
y := x*y;

Y := y+y-cImaginary;
x := xSq  - ySq  -cReal;

xx := sqr(x);

Y%7 := sqr(y);
distancesq := xsq + ysq;

END; (* compute *)

PROCEDURE test;
BEGIN

finished := (distancesq > 100.0);
END; (* test *)

PROCEDURE distinguish;
BEGIN (* See also Program Fragment 11.4-l *)

MandelbrotComputeAndTest  : =
iterationNo  = maximalIteration;

END; (* distinguish *)
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Y := Bottom;
FOR yRange := 0 TO yScreen  DO
BEGIN

x := Left;
FOR xRange := 0 TO xScreen  DO
BEGIN

IF JuliaComputeAndTest  (x,y)
THEN SetUniversalPoint  (xRange,  yRange);

x := x t deltaxPerPixe1;
END;
Y := y t deltayPerPixe1;

END;
END; (* Mapping *)

PROCEDURE Initialise;
BEGIN

ReadReal  (' Left
ReadReal  (' Right
ReadReal  (' Bottom
ReadReal  (' Top
ReadReal  (' cRea1
ReadReal  (' cImaginary
ReadInteger  ('Maximal Iteration

END;

>‘I Left);
>'I Right);
>', Bottom);
>'r Top)  ;
>‘r cRea1);
'I, cImaginary);
>'I MaximalIteration);

We have already explained in Chapter 5 that the wrong choice of c-value can
considerably extend the'lonelinessofthelong-distancecomputer'andleave you sittting
in front of an empty screen for several hours. To get a quick preview and to shorten the
time taken looking for interesting regions, we used the method of backwards iteration.
We consider Program Fragments 5.2-3 and 5.2-4 to be so clear that they do not need
further elaboration here.

Proceeding from Julia sets, we finally made our ‘encounter with the Gingerbread
Man’. Again we will collect together the important parts of the program here.

Program Fragment 11.4-3 (see amplifying remarks in Chapter 6)

PROCEDURE Mapping;
VAR

xRange,  yRange  : integer;
x, y, x0, y0, deltaxPerPixe1,  deltayPerPixe1  : real;
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In order that the other four cases can be investigated with the fewest possible
program changes, we modify the procedure Mapping only slightly. Before calling
MandelbrotComputeAndTest  weinsertonefrom ablockoffourprogramsegments,
which ensure that the right variables change and the others stay constant. The two global
variablesFixedValuelandFixedValue2mustbereadfromthekeyboard.

Program Fragment 11.4-4 (Cases 2 to 5)
PROCEDURE Mapping;

vim
iRange,  yRange : integer;
x, y, x0, y0, deltaxPerPixe1,  deltayPerPixe1  : real;

BEGIN
deltaxPerPixe1  := (Right - Left) / Xscreen;
deltayPerPixe1 := (Top - Bottom) / Yscreen;

Y := Bottom;
FOR yRange := 0 TO Yscreen DO
BEGIN

x:=  Left;
FOR xRange := 0 TO Xscreen DO

BEGIN
(* Case 2 *)
x0 := FixedValuel;
yo := y;
cRea1 := FixedValue2;
cImaginary  := x;
IF MandelbrotComputeAndTest (x, y)

THEN SetPoint  (xRange,  yRange);
x := x + deltaxPerPixe1;

END;
y := y + deltayPerPixe1;

END;
END; (*Mapping)

I (*  Case 3 *) I (* Case 4 *) I
1 x0 := FixedValuel; 1 x0 := y; I
1 yo := y; I YO := FixedValuel; I
I cRea1  := x; I cRea1 := FixedValue2; I
I cImaginary :=  FixedValue2; I cImaginary  := x; I
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BEGIN (* MandelbrotComputeAndTest *)
StartVariableInitialisation;
REPEAT

compute;
test;

UNTIL  (iterationNo  = maximalIteration)  OR finished;
distinguish;

END; (* MandelbrotComputeAndTest *)

BEGIN
deltaxPerPixe1  := (Right - Left) / XSCreen;
deltayPerPixe1 := (Top - Bottom) / Yscreen;

x0 := 0.0; yo := 0.0;

Y := Bottom;
FOR yRange := 0 TO Yscreen DO
BEGIN

x:=  Left;
FOR xRange := 0 TO Xscreen  DO

BEGIN
IF MandelbrotComputeAndTest (x,  y)

THEN  SetPoint  (xRange,  yRange);
x := x + deltaxPerPixe1;

END;
Y := y + deltayPerPixe1;

END;
END; (*Mapping)

PROCEDURE InitialiSe;
BEGIN

ReadReal  ('Left > '; Left);
ReadReal  ('Right > '; Right);
ReadReal  ('Bottom > '; Bottom);
ReadReal  ('Top > '; Top);
ReadReal  ('MaximalIteration > '; MaximalIteration  );

END;

In addition, the five different methods by which we represented the basins of
attraction in $6.2  should briefly be mentioned.

The simplest is Case 1. We have already dealt with this in Program Fragment
11.4-3 without saying so. If you give the starting values x0 and y0 in Mapping another
value, the computation can explode.
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distancesq  := xSq  + ySq;
END; (* StartVariableInitialisation *)

PROCEDURE computeAndDraw;
BEGIN

iterationNo  := iterationNo  + 1;

Y := x*y;
Y := y+y-cImaginary;
x := xSq  - ySq  - cRea1;
xsq := sqr(x);  ySq  := sqr(y);
distancesq  := xSq  + ySq;
IF (iterationNo  > bound) THEN

SetUniversalPoint  (cReal,x);
END; (* ComputeAndTest *)

PROCEDURE test;
BEGIN

finished := (distancesq  > 100.0);
END; (* test *)

BEGIN (* ComputeAndTest *)
StartVariableInitialisation;
REPEAT

computeAndDraw;
test;

UNTIL (iterationNo  = maximalIteration)  OR finished;
END (* ComputeAndTest *)

BEGIN
X l := 0.1255; yl := 0. 6503;
x2 := 0.1098; y2 := 0.882;
FOR xRange := 0 TO Xscreen  DO

ComputeAndTest
(xl-(x2-xl)/6+xRange*(x2-x1)/300,
yl-(y2-yl)/6+xRange*(y2-yl)/300);

END; (* Mapping *)

For $6.4, ‘Metamorphoses’, in which we dealt with higher powers of complex numbers,
we willshowyouonly theprocedureCompute. It uses alocalprocedure  compPow.
Everything else remains as you have seen it in Program Fragment 11.4-3. Do not forget
to give power a reasonable value.
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1 (* Case 5 *) I (* Case 1, alternative *) I
1 xo:=y; 1 x0 := FixedValuel; I
I YO := Fixedvaluel; I YO := FixedValue2; I

I cRea1  := x; 1 cRea1  := x; I
I cImaginary := FixedValue2; I cImaginary  := y; I

Select whichever version is best for your problem.

BEGIN
ReadReal  ('Left > '; Left);
ReadReal  ('Right > '; Right);
ReadReal  ('Bottom > '; Bottom);
ReadReal  ('Top > '; Top);
ReadReal  ('FixedValue > '; FixedValue  );
ReadReal  ('FixedValue > '; FixedValue );
ReadReal  ('MaximalIteration > 1; MaximalIteration  );

END;

The central procedure of the program, with which we generated Figures 6.3-4 to

6.3-6, is given in the next program fragment. The drawing, which almost always takes

PlacewithinMapping,  is here doneinside the procedure computeAndDraw.

Program Fragment 11.4-5 (Quasi-Feigenbaum diagram)
PROCEDURE Mapping;

vim

xRange  : integer;
xl, Yl, x2, y2, deltaXPerPixe1  : real;
dummy : boolean;

FUNCTION ComputeAndTest  (cRea1,  cIamginary  : real)
: boolean;

VAR
IterationNo  : integer;
x, y, xSq, ySq, distancesq  : real;
finished : boolean;

PROCEDURE StartVariableInitialisation;
BEGIN

x := 0.0; y := 0.0;

finished := false;
iterationNo  := 0;

XW := sqr(x);  ySq  := sqr(y);
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Program Fragment 11.4-7 (Pseudo-3D graphics)

TYPE
D3maxtype  = ARRAY[O..Xscreen]  OF integer;

VAR
D3max : D3maxtype;
Left, Right, Top, Bottom,
D3factor,  CReal,  CImaginary  : real;
D3xstep,  D3ystep,  MaximalIteration,  Bound : integer;
PictureName  : STRING;

PROCEDURE D3mapping;
VAR

dummy: boolean;
xRange,  yRange  : integer;
x, y,  deltaxPerPixe1,  deltayPerPixe1  : real;

FUNCTION D3ComputeAndTest  (x, y : real; xRange,  yRange
: integer)
: boolean;

VAR
iterationNo  : integer;
xSq, ySq, distancesq  : real;
finished: boolean;

PROCEDURE StartVariableInitialisation;
BEGIN

finished := false;
iterationNo  := 0;

xsq := sqr (x);
YN := sqr (y);
distancesq := xsq + ysq;

END; (* StartVariableInitialisation *)

PROCEDURE Compute; (* Julia-set *)
BEGIN

iterationNo := iterationNo  + 1;

Y := x * Yi
Y := Y+Y - CImaginary;
x := xsq  - ySq  - CReal;

xx := sqr (x);
Y% := sqr (y);
distancesq := xsq + ysq;



Building Blccks  for Graphical Experiments 299

Program Fragment 11.4-6 (High-powered Gingerbread Man)

PROCEDURE Compute
VAR

tl, t2 : real;

PROCEDURE compPow  (inlr,inli,  power: real;
VAR outr, outi:  real);

CONST
halfpi := 1.570796327;

VAR
alpha, r : real;

BEGIN
r := sqrt (inlr*inlr  + inli * inli);
IF r > 0.0 then r := exp (power * In(r));
IF ABS(inlr)  < l.OE-9  THEN

BEGIN
IF inli > 0.0 THEN alpha := halfpi;

ELSE alpha := halfpi  + Pi;
END ELSE BEGIN

IF inlr > 0.0 THEN alpha := arctan  (inli/inlr)
ELSE alpha := arctan  (inli/inlr)  + Pi;

END;
IF alpha < 0.0 THEN alpha := alpha + 2.O*Pi;
alpha := alpha * power;
outr := r * cos(alpha);
outi  := r * sin(alpha);

END; (* compPow  *)

BEGIN (* Compute *)
compPow  (x, y, power, tl, t2);
x := tl - cRea1;
y := t2 - cImaginary;

xsq := sqr (x);

YQ := sqr (y);
iterationNo := iterationNo  + 1;

END; (* Compute *)

From Chapter 7 we display only the pseudo-3D representation. This time it was a Julia
set that we drew. The remaining program fragments are so clearly listed that it will give
you no trouble to include them.
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(* Pascal dialects. If it does not exist on your computer, *)
(* omit the next few lines of code *)
(" from  here  -_-------_-------_______________________------  *)

IF cell > 1 THEN
IF (D3max[cell]  = lOO+yRange)  AND

(D3max[cell-D3xstep]=lOO+yRange)
THEN

pensize  (1, D3ystep)
ELSE

pensize  (1, 1)
(X------------------------------------------------  to here  ")

coordinate := D3max[cell];
IF coordinate >O THEN DrawLine

(cell, coordinate);
END;

END; (* D3draw  *)

BEGIN
FOR xRange := 0 TO xScreen  DO

D3max[xRange]  := 0;
deltaxPerPixe1  := (Right - Left) / (xScreen  - 100);
deltayPerPixe1 := (Top - Bottom) / (yscreen  - 100);

Y := Bottom;
FOR yRange := 0 to (yScreen  - 100) DO

BEGIN
x := Left;
FOR xRange := 0 TO (xScreen  - 100) DO

BEGIN
IF (xRange  MOD d3ystep  = 0) THEN

dummy:= D3ComputeAndTest
(x, y, xRange,  yRange);

x := x + deltaxPerPixe1;

END;
D3Draw  (D3max);
Y := y + deltayPerPixe1;

END;
END; (* Mapping *)
(* END: Problem-specific procedures *)

PROCEDURE  Initialise;
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END; (*Compute *)

PROCEDURE Test;
BEGIN

finished := (distancesq  > 100.0);
END; (* Test *)

PROCEDURE D3set  (VAR D3max  : D3maxType;
column, row, height : integer);

VAR
cell, content : integer;

BEGIN
cell := column + row - (yScreen  -100) DIV 2;
IF (cell >= 0) AND (cell <= xscreen)  THEN
BEGIN

content := height * D3factor  + row;
IF content > D3max[cell]  THEN

D3max[cell]  := content;
END;

END; (* D3set  *)

BEGIN (* D3ComputeAndTest  *)
D3ComputeAndTest  := true;
StartVariableInitialisation;
REWAT

Compute;
Test;

UNTIL (iterationNo  = maximalIteration)  OR finished;
D3set  (D3max, xfiange, yRange,  iterationNo);

END (* D3ComputeAndTest  *)

PROCEDURE D3draw  (D3max:  D3maxType);
VAR

cell, coordinate : integer;
BEGIN

set1JniversalPoint  (Left, Bottom);
FOR cell := 0 TO xScreen  DO

IF (cell MOD D3xstep  = 0) THEN
BEGIN

(* Warning! The procedure pensize  used below is Macintosh- *)
(* specific and cannot be implemented easily in other *I
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Figure 11.5-i Three methods of data compression.

The circles represent six programs, which perform the different transformations.
Others are certainly possible, and you can develop your own. In the upper part of the
picture you can see the different states of the data in our conception. We start with just
one idea, in which we communicate with the computer in the form of keyboard input.
Instead of producing a graphic (lower picture) straight away, as we have usually done so
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BEGIN
ReadReal  ('Left >'r Left);
ReadReal  ('Right >'r Right);
ReadReal  ('Top >I, Top);
ReadReal  ('Bottom >'r Bottom);
ReadReal  ('c-real >'r CReal);
ReadReal  ('c-imaginary >'r CImaginary);
ReadInteger  ('Max. iteration No >I, MaximalIteration);
ReadInteger  ('3D factor >'r DSfactor);
ReadInteger  ('3D step - x >'r D3xstep);
ReadInteger  ('3D step - y >'r D3ystep);

END;

11.5 What You See Is What You Get
Now we will eliminate another minor disadvantage in our graphics. Pictures on the

screen may appear quite beautiful - but it is of course better to print them out, solving the
problem of Christmas and birthday presents, or to record the data directly on floppy disk
and reload them into the computer at will.

To make ourselves absolutely clear: we will not tell you here how to produce a
screen-dump, so-called hard copy, on your computer and with your particular printer.
The possible combinations are innumerable, and all the time you find new tricks and tips
in the computer magazines. Instead we take the point of view that you have a knob
somewhere on your computer which causes whatever is on the screen to be printed out
on paper, or that you own a graphics utility program that collects the pictures you have
produced in memory or on disk, pretties them up, and prints them.

In this chapter we prefer to go into the problem of soft copy, that is, into machine-
independent methods for storing information generated by computations. A computer
does not have to be. capable of graphics under all circumstances: it need only generate the
data. Admittedly, it is often possible to draw the corresponding pictures on the same
machine. The data obtained in this way can be sent to other chaos researchers, and to
other types of computer. From there the output can be processed further, for example as
coloured pictures.

And in contrast to all drawing methods that we have explained previously, not a
single bit of information is lost, so that we can always distinguish between ‘black and
white’.

We will explain three methods for storing graphical data. The reason is that speed of
operation and compactness of storage often conflict. It is left up to you to select which
method to use, if you implement one of the following methods in your programs, or
whether you develop an entirely different storage concept. But remember, it must be
comprehensible to the people (and their computers) with whom you work. In Figure
11 S-1 we show the three methods together.
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begin
write (information); value := 'pictxxxx';

(* a part for interactive input of the data name in a *I
(* packed array [ . ..I  of char, which we do not give "1
(* here. Pascal I/O is often extremely machine- *)
(* specific, because no data type 'string' is provided. ")
(*The name here is fixed: pictxxxx (8 letters) *)

end;

(* end: useful subroutines *)
(* -----_-----_----------  utility ----_-----_---___---_____  X)

(X ------_-----_-----_----  file ~-----------_----__--~~~~~
*I

(* begin: file procedures *)
procedure store (var f: intfile; number : integer);
begin

write (f, number);
end;

procedure enterwritefile(var f : intfile; filename
: string8)  ;

begin
rewrite (f, filename);

end;

procedure exitwritefile (var f : intfile);
(* if necessary close(f); *)
begin;
end;

(* end: file procedures *)
(* -_____---___-----------  file -----_-------------------- *)

(” -_____-----------~~_- application  ~~-~~~-~_----~~_---~ *)

(* begin: problem-specific procedures *)

procedure mapping;
Var

xrange, yrange : integer;
Xl YI XOI y0, deltaxperpixel

function mandelbrotcomputeandtest (creal,  cimaginary
: real)
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far, we record the results of the computation as data (long rectangle) on a floppy disk. In
theMapping  program this is given by the variable iterat ionNo,  whose current value
represents the result of the computation. In order to build in a few possibilities for error
detection and further processing, we always write a ‘0’ (which, like negative numbers,
cannot occur) when a screen row has been calculated. This number acts as an ‘end of line
marker’.

The corresponding program (for example the Gingerbread Man) on the whole
differs only a little from the version we have seen already. But at the start, instead of the
graphics commands, now superfluous, is a variable of type file, and three procedures
which make use of it are introduced. These are Store, EnterWriteFile, and
ExitWriteFile, which are called in place of Mapping or ComputeAndDisplay.
The procedures reset and rewrite are standard Pascal. In some dialects however
these may be omitted. This is also true for the implementation of read and write or
put and get. If so, you must make special changes to the relevant procedures. Find out
about this from your manuals.1

ThefunctionalprocedureMandelbrotComputeAndTest  uses, in contrast to the
direct drawing program, an integer value, which can immediately be transcribed to disk.
We call this method of data representation integer encoding.

Program 11.5-l (Integer encoding)
program integerencoding;( * berkeley Pascal  on sun or vax *)

const
stringlength = 8;
xscreen  = 320; (* e.g. 320 pixels in x-direction *)
yscreen  = 200; (* e.g. 200 pixels in y-direction *)

type
string8 = packed array[l..stringlength]  of char;
intfile = file of integer;

VZX

f: intfile;
dataname  = string8;
left, right, top, bottom : real;

(* include further global variables here *)
maximal iteration : integer;

(* _-----_-------___--~~~~ utility  -------------------------*)

(* begin: useful subroutines *)
procedure readstring (information : string8; var value

: string8);

lTurboPascal 3.0 running under MS-DOS departs  from the language standard. Here reset and
rewrite most be used in conjuntion  with the assign command. In many Pascal implementations
the combination of .re ad and write is defined only for text files. In TurboPascal  and Berkeley
Pascal, however, it is defined more generally.
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compute;
test;

until (iterationno = maximaliteration) or finished;
distinguish;

end; (* mandelbrotcomputeandtest *)

begin (* mapping *)
deltaxperpixel := (right - left) / xscreen;
deltayperpixel := (top - bottom) / yscreen;
x0 := 0.0; yo := 0.0;
Y := bottom;
for yrange := 0 to yscreen do
begin

x:=  left;
for xrange := 0 to xscreen do

begin
store(f,mandelbrotcomputeandtest(x, Y) 1;
x := x + deltaxperpixel;

end;
store (f, 0) ; { at the end of each row ]

Y := y + deltayperpixel;
end;

end; (*mapping)

(* end: problem-specific procedures *)
(" --_-------_-------_---- application  _-------------_----- X)

(” ___-------_--------------- main  ----___-----____--------  X)

(* begin: procedures of main program *)
procedure hello;
begin

writeln;
writeln ('computation of picture data ');
writeln  (t------------------------  ');

writeln; writeln;
end;

procedure Initialise;
begin

readreal  ('left
readreal  ('right
readreal  ('bottom

> ‘; left);
> '; right);
> '; bottom);
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: integer;
Var

iterationno : integer;
x,  y,  xsq, ysq, distancesq : real;
finished: boolean;

procedure startvariableinitialisation;
begin

finished := false;
iterationno := 0;
x := x0;
Y := yo;
xsq := sqr(x);

Ysq := sqr(y);
distancesq :=  xsq + ysq;

end; (* startvariableinitialisation *)

procedure compute;
begin

iterationno := iterationno + 1;
Y := x*y;

Y := y+y-cimaginary;
x := xsq - ysq -creal;

xsq := sqr(x);

YW := sqr(y);
distancesq := xsq + ysq;

end; (* compute *I

procedure test;
begin

finished := (distancesq > 100.0);
end; (* test *)

procedure distinguish;
begin (* see also program fragment 11.4-1 *)

mandelbrotcomputeandtest : =iterationno;

end; (* distinguish *)

begin (* mandelbrotcomputeandtest *)
startvariableinitialisation;
repeat
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Program Fragment 11.5-2  (Integer coding to paint)

. . .
PROCEDURE ReadIn  (VAR F : IntFile; VAR number : integer);
BEGIN

read(F,  number);
m;

PROCEDURE EnterReadFile  WAR F: IntFile; fileName
: STRING);

BEGIN
reset (F, fileName);

END;

PROCEDURE ExitReadFile  (VAR F: IntFile);
BEGIN

close (F);
END;

PROCEDURE Mapping;
VAR

xRange,  yRange,  number : intger;
BEGIN

yRange  := 0;
WHILE NOT EOF (F) DO
BEGIN

xRange  := 0;
ReadIn  (F, number);
WHILE NOT (number = 0) DO
BEGIN

IF (number = MaximalIteration)
OR ((number < Bound) AND odd (number)) THEN

SetPoint  (xRange,  yRange);
ReadIn  (F, number);
xRange := xRange  + 1;

END;
yR=w := yRange  + 1;

END;
END;
. . .
PROCEDURE ComputeAndDisplay;
BEGIN

EnterGraphics;
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r'eadreal  ('top > '; top);
readreal  ('maximaliteration > '; maximaliteration );

end;

procedure computeandstore;
begin

e n t e r w r i t e f  i l e  ( f ,  d a t a n a m e )  ;
mapping;
e x i t w r i t e f  i l e (f) ;

end;

(* end: procedures of main program *)
(* --_---------------------- main  ----------------_--------  *)

begin (* main program *)
hello;
initialise;
computeandstore;

end.

You must be wondering why - in contrast to our own rules of style - everything is
written in lower case in this program. The reasons are quite straightforward:
I The program is written in Berkeley Pascal, which is mainly found on UNIX

systems with the operating system 4.3BSD.  This Pascal compiler accepts only
lower case (cf. hints in Chapter 12).

+ It is an example to show that you can generate data on any machine in standard
Pascal.

This program also runs on a large computer such as a VAX, SUN, or your PC. Only
devotees of Turbo Pascal must undertake a small mofidication to the data procedures2.

A further hint: in standard Pascal the data-type ‘string’ is not implemented, so that
the programmer must work in a very involved manner with the type

packed array [..I  of char
(cf.procedurereadString).

A few other new procedures include a drawing program, which reads the files thus
generated and produces graphics from them. The data are opened for reading with
reset insteadofwith rewrite, and Store isreplaced by ReadIn. Otherwise
MandelbrotComputeAndTest  remains the same as before, except that distinguishing
what must be drawn occurs within the procedure Mapping.

2Read  the information on the as sign command.
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Program 11.5-3
program compresstoint; (* standard Pascal  *)

const
stringlength = 8;

type
intfile = file of integer;
string8 = packed array[l..stringlengthl  of char;

VEUI

dataname : string8;
i n , out : intfile;
quantity, colour,  done : integer;

procedure readin  (var f : intfile; var number
: integer) ;

begin
read(f, number);

end;

procedure enterreadfile (var f: intfile; filename
: string8);

begin
reset (f, filename);

end;

procedure store (var f : intfile; number : integer);
begin

write (f, number);
end;

procedure enterwritefile (var f : intflie; filename
: string8);

begin
rewrite (f, filename);

end;

procedure exitreadfile (var f: intfile);
(* if necessary close (f)  *)

begin end;

procedure exitwritefile (var f: intfile);
(* if necessary coose  (f)  *)

begin end;
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EnterReadFile  (F, filelame);
Mapping;
ExitReadFile ( F ,  fileName) ;
ExitGraphics,

END;

With these two programs we can arrange that what takes a few hours to compute
can be drawn in a few minutes. And not only that: if the drawing does  not appeal to us,
because the contour lines are too close or a detail goes awry, we can quickly produce
further drawings from the same data. For this all we need do is change the central IF
condition in Mapping. By using

IF (number = MaximalIteration)  THEN . . .
we draw only the central figure of the Mandelbrot set; but with

IF ((number>Bound)  AND (number<maximalIteration))  THEN  . . .
we draw a thin neighbourhood of it.

This is also the place where we can bring colour into the picture. Depending on the
value input for number, we can employ different colours from those available. You will
find the necessary codes in your computer manual.

A short mental calculation reveals the disadvantages of integer coding. A standard
screen with 320 x 200 = 64 000 pixels requires roughly 128 kilobytes on the disk,
because in most Pascal implementations an integer number takes up two bytes of
memory. And a larger picture, perhaps in DIN-A 4-format, can easily clog up a hard
disk. But the special structure of our pictures gives us a way out. In many regions,
nearby points are all coloured the same, having the same iteration depth. Many equal
numbers in sequence can be combined into a pair of numbers, in which the first gives the
length of the sequence, and the second the colour information. In Figure 11 S-  1 you can
see this: for example from 15, 15, 15, 15 we get the pair 4, 15. This method is called run
length encoding and leads to a drastic reduction in storage requirement, to around 20%.
That lets us speak of data compression.

Because very many disk movements are necessary for this transformation, to do the
work on your PC! we will use the silent pseudo-disk.3 This is very quick and more
considerate, especially for those family members who are not reminded of the music of
the spheres by the singing of a disk-drive motor. And every ‘freak’ knows that ‘it’s
quicker by RAMdisk’.

AsuitableprogramCompressToInt is given here in standard Pascal (Berkeley
Pascal). It uses the file procedures descibed above.

3Find out how to set up a RAMdisk for your computer.
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to represent colour on the screen, we use DrawLine  to draw a straight line on the screen
of the appropriate length, or use GotoPoint to go to the appropriate place.

Program Fragment 11.5-4
PROCEDURE Mapping;

WAR
xRange,  yRange,  quantity, colour : integer;

BEGIN
yRange  := 0;
WHILE NOT eof (F) DO
BEGIN

xRange  := 0;
GotoPoint (xRange,  yRange);
ReadIn  (F, quantity);
WHILE NOT (quantity = 0) DO
BEGIN

xRange := xRange  + quantity;
ReadIn  (F, colour);
IF (colour = MaximalIteration)  OR

((colour < Bound) AND odd (colour)) THEN
DrawLine  (xRange  -1, yRange)

ELSE
GotoPoint (xRange,  yRange);

ReadIn  (F, quantity);
END;
yRange := yRange  + 1;

END;
END;

The third approach, known as the run length encoded character method, has
advantages and disadvantages compared with the above (RLInt) method. It is more

complicated, because it must be encoded before storage and decoded before drawing.
However, it uses a genuine Pascal text file. We can change this with special programs
(editors) and - what is often more important - transmit it by electronic mail.

In text data there are 256 possible symbols. Other symbols, such as accents, are not
uniquely defined in ASCII, so we omit them as far as possible. In fact, we restrict
ourselves to just 64 symbols,5 namely the digits, capital and lower-case letters, and
also 5’ and I?‘.

By combining any pair of symbols we can produce an integer code6  between 0

5The  method goes back to an idea of Dr Georg Heygster of the regional computer centre of the
University of Bremen.
6In this way we can represent 4096 different colours. If you need even more, just combine three of
the  symbols together, to get 262 144 colours. Good  enough?
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begin
enterreadfile (in, ‘intcoded’);
enterwritefile (out, ‘rlintdat’);
while not eof (in) do

begin
quantity := 1;
readin  (in, colour);
repeat

readin  (in, done);
if (done <> 0) then

if (done = colour) then
quantity := quantity + 1

else
begin

store (out, quantity);
store (out, colour);
colour := done;
quantity := 1;

end;
until (done := 0) or eof (in);
store (out, quantity);
store (out, number);
store (out, 0);

end;
exitreadfile (in); exitwritefile (out);

end.

In the firstprogram,  11.5-1, youcan  use the procedure readstring to read in an
arbitrary data name of length 10. The program requires an input procedure with the name
intcoded. TheresultingcompresseddataisalwayscalledRLIntDat.

Before the compression run, name your data file as intcoded. Note that standard
Pascal requires certain conditions. Always naming the data the same way is, however,
not too great a disadvantage. In that way you can automate the entire transformation
process - which is useful if you have a time-sharing system, which can process your
picture data overnight when the computer is free. You will find hints for this in Chapter
12.

We can also draw the compressed data RLIntDat4. For this data type too we
show you, in Program Fragment 11 S-4, how to produce drawings. Because we no
longer have to specify every individual point, there is a small gain in drawing speed.
From 11.5-2  we must change only the procedure Mapping. Whether or not we wish

4FCLJntDat stands for Run Length Integer Data
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procedure exitwritefile (var f : charfile);
begin

(* if necessary close (f)  *)
end;

procedure store (var outtext  : charfile; number
: integer);

begin
if number = 0 then writeln (outtext)
else
begin

write (outtext, chartablefnumber  div 641);
write (outtext, chartable[number  mod 641);

end;
end;

procedure inittable;
var i : integer;

begin
for i = 0 to 63 do
begin

if i < 10 then
chartable[i] := chr(ord('0')  + i)

else if i < 36 then
chartable[i] := chr(ord('0')  + i + 7)

else if i < 62 then
chartable[i] := chr(ord('0')  + i + 13)

else if i = 62 then
chartable[i]  := '>I

else if i = 63 then
chartable[i]  := I?';

end;
end;

begin
inittable;
enterreadfile (in, 'rlintdat');
enterwritefile (outtext, 'rlchardat');
while not eof (in) do
begin
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and 4095 (= 6464-l). This range of values should not be exceeded by the length
information (maximal value is the row length) nor by the colour information (maximal
value is the iteration depth).

Program 11.5-5 Vransfer  int to char7)
program transferinttochar;

const  stringlength = 8;
type

intfile = file of integer;
charfile  = text;
string8 = packed array[l..stringlength]  of char;

VX

in : i n t f i l e ;

outtext : charf  i l e ;

quantity, colour : integer;
chartable : array[O.  -631  of char;
dataname : string8;

procedure readin  (var f : intfile; var quantity
: integer);

begin
readin  (f, quantity);

end;

procedure enterreadfile (var f : i&file; filename
: string8);

begin
reset (f, filename);

end;

procedure enterwritefile (var f : charfile; filename
: string8);

begin
rewrite (f, filename);

end;

procedure exitreadfile (var f : intfile);

begin
(* if necessary close (f)  *)

end;

7We  repeat that in some Pascal compilers read and write must be replaced by put and get,
and assignments must be specified for the ‘window variable’ datavar iable.
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ELSE IF ch IN ['A'..','] THEN
IntTable[ch] := ord (ch)  - ord ('0') - 7

ELSE IF ch IN ['a'..'z']  THEN
IntTable[ch] := ord (ch) - ord ('0') - 13

ELSE IF ch = '>'  THEN
IntTable[ch]  := 62

ELSE IF ch = '?'  THEN
IntTable[chl  := 63

ELSE
IntTable[ch]  := 0;

END;
END;

PROCEDURE ReadIn  (VAR InText  : CharFile;  VAR number
: integer);

VAR chl, ch2 : char;
BEGIN

IF eoln (InText)  THEN

BEGIN
readln (InText);
number := 0;

END
ELSE
BEGIN

read (InText,  chl);
read (InText,  ch2);
number := (64*IntTable[chl]+IntTable[ch2]);

=;
m;

PROCEDURE Mapping;
VAR  xRange,  yRange,  quantity, colour  : integer;

BEGIN
yRange  := 0;
WHILE NOT eof (InText)  DO
BEGIN

xRange  := 0;
GotoPoint  Wange, yRange);
ReadIn  (InText,  quantity);
WHILE NOT (quantity = 0) DO
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readin  (in, quantity);
if quantity = 0 then

store (outtext, 0)
else
begin

store (outtext, quantity);
readin  (in, colour);
store (outtext, colour);

end;
end;
exitreadfile (in); exitwritefile (outtext);

end.

The coding happens in the two combined programs, 11 S-5  and 11 S-6, by means of a
look-up table. That is, a table that determines how to encode and decode the appropriate
information. These tables are number fields, initialised once and for all at the start of the
program. They can then be used for further computations in new runs.

The first of the two programs, 11.5-5,  converts the run length encoded integers
into characters, and is listed here. Note the line markers, which we insert with writeln
(outtext) when a row of the picture has been completed. They make editing easier.

We can imagine using them to help carry out particular changes to a picture.
In the final program of this section the drawing will be done. The table contains

integer numbers, whose actual characters will be used as an index. The procedure
Mapping conforms to the version of 11.5-4: only InitTable must be called at the
beginning. The main changes occur in the procedure ReadIn.

Program Fragment 11.5-6 (Run length encoding char to paint)
. . .
TYPE

CharFile  : text;
WAR

InText  : CharFile;
IntTable : ARRAY['O'.. 'z']  OF integer;

. . .
PROCEDURE InitTable;

VAR
ch : char;

BEGIN
FOR ch := '0' TO 'z'  DO

BEGIN
IF ch IN ['O'..'g'l  THEN

IntTable[ch] := ord (ch)  - ord ('0')
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by telephone, locally or worldwide.
If you live in the same town all you need next to your computer is an acoustic

coupler or a modem. In this way you can transmit Pascal programs and picture data
between different computers without moving your computer from the desk. And you do
not have to mess about with the pin-connections of the V24 interface on different
computers, because when you bought the modem for your machine you naturally also
bought the appropriate connecting cable.

It is well known how to transmit data over the local telephone network by modem.
Not so well known is the fact that worldwide communication networks exist, which can
be used to send mail. Of course they are not free.

Basically, by paying the appropriate user fees, anyone can send a letter to - for
instance - the USA. Standard communications networks, which can be used from
Europe, are CompuServe and Delphi. Of course, the user who wishes to send a picture
or a Pascal program must have access to the appropriate network. Another possibility is
to send mail over the worldwide academic research network. Only universities and other
research institutions can do this.

How do we send e-mail? Easy!
With an acoustic coupler or modem we call the data transmission service of the Post

Office and dial the number for the computer to which we wish to send the mail.
First, you must call the DATEX node computer of the German Federal Postg,  and

give your NUItO.

DATEX-P: 44 4000 99132
nui dxyz1234

DATEX-P: Password

DATEX-P: Usercode  dxyz1234 active

set 2:0,  3:0,  4:4, 126:O

After setting the PAD parameters (so that the input is not echoed and the password
remains invisible) then the telephone number of the computer with which we wish to
communicate is entered (invisibly).

(001) (n, Usercode  dxyz1234, packet-length: 128)

RZ Unix system 4.2 BSD

login: kalle

9Translator's nofe.  This is the procedure in Gexmany. In other countries it is very similar, but the
names of the services and their telephone numbers are different.
t%etwork  User Identification. This consists of two parts: your visible identification and a secret
password.
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BEGIN
xRange := xRange  + quantity;
ReadIn  (InText,  colour);
IF (colour >= MaximalIteration)  OR

i(colour  < Bound) AND odd (colour)) THEN
DrawLine  (xRange  - 1, yRange)

ELSE
GotoPoint  (xRange,  yRange);

ReadIn  (InText,  quantity);
END;
yRange := yRange  + 1;

END;
END;

The  character files can take up the same space as the compressed integer data - in
the above example around 28 kilobytes. On some computers, the storage of an integer
number can take up more space than that of a character, implying some saving.

If you transmit the character data using a 300 baud modem, it can take longer than
15 minutes, so you should only do this on local phone lines. We now explain one way to
reduce the telephone bill. The text files produced with Program 11 S-5 contain a very
variable frequency of individual characters. For example there are very few zeros. In
this case the Huffman  method of text compression (Streichert 1987) can lead to a saving
in space of around 50%. The same applies to the telephone bill!

11.6 A Picture Takes a Trip
We can make use of the possibilities described in the previous chapter for screen-

and machine-independent generation of data, when we want to send our pictures to a
like-minded ‘Gingerbread Man investigator’. For this purpose there are basically two
methods:
l the normal mail service
l electronic mail (‘e-mail’).

There is no probem when two experimenters possess the same make of computer.
Then it is quite straightforward to exchange programs and data on floppy disks using the
normal mail. But we often encounter a situation where one of them has, say, a Macintosh
or Atari, and the other has an MS-DOS machine.

In this case one possibility is to connect both computers by cable over the V24
interface, and to transmit programs and data using special software. Many such file
transfer programs are available for many different computers. We recommend the
popular ‘Kermit’ program, which is available for most machines.*

A much simpler, but more expensive, possibility is to send your programs and data

*Read the hints in $12.7 and the instructions in the Kermit documentation for your computer, to
see how to install this.
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The simplest example would be a Feigenbaum diagram.

Please send me the Pascal program to gienerate the picture - and,
for safety, a copy of the picture itself - as soon as possible.

By e-mail, the ordinary mail is dreadful as usual and it takes
about 12 days.

Apart from that, there:s  nothing much happening here.

When are you coming over next?
Best wishes

Otmar

Held 5 messages in usr/spool/mail/kalle
0.9u 1.2s 4:54 0% 8t+4d=13<18  19i+28o  38f+llOr  Ow

kalle§FBinf  2) logout

After reading all the news the connection is broken, and we use logout to leave the
Unix system. The features of Unix and the details of e-mail will not be given here,
because they can differ from one computer to the next. For more information, read your
manual.

Three days later...

DATEX-P: 44 4000 49632

nui dxyz.1234

DATEX-P: Password

DATEX-P: Usercode  dxyz1234  active
set 2:0,  3:0,  4:4,  126:O
(001) (n, Usercode  dxyz1234,  packet-length: 128)

RZ Unix system 4.2 BSD

login: kalle

Password:

Last login  Tue Jul 14 07:05:47  on ttyh3
4.2 BSD UNIX Release 3.07 #3 root§FBinf)  Wed Apr 29 18:12:35

EET 1987

You have mail.
TERM = (vtlO0)

kalle§FBinf  2) mail ABC007SPortland.bitnet

Subject Pascalprogram for Feigenbaum

Dear Otmar,
many thanks for your last letter. Unfortunately I didn't have
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Password:

Last login  Sat Jul 11 18:09:03  on ttyh3
4.2 BSD UNIX Release 3.07 #3 (root§FBinf) Wed Apr 29 18:12:35

EET 1987

You have mail.
TERM = (vt100)

From ABCOO7SPORTLAND.BIlNET  Sat Jul 11 18:53:31  1987

From ABCOO7SPORTLAND.BITNET  Sun Jul 12 01:02:24  1987
From ABCOO7SPORTLAND.BITNET  Sun Jul 12 07:14:31  1987

From ABC007§PORTLAND.BITNET  Mon Jul 13 16:lO:OO  1987
From ABCOO7§PORTLAND.BITNET  Tue Jul 14 03:38:24  1987
kalle§FBinf  1) mail

Mail version 2.18 5/19/83. Type ? for help.

"/use/spool/mail/kalle":  5 messages 5 new
>N 1 ABC007SPORTLAND.BITNET  Sat Jul 11 18:53:31  15/534

"Saturday"

From ABC007§PORTLAND.BITNET  Sun Jul 12 01:02:24  31/1324
"request"

From ABC007SPORTLAND.BITNET  Sun Jul 12 07:14:31  47/2548  "FT"

From ABCOO7SPORTLAND.BITNET  Mon Jul 13 16:lO:OO  22/807  "Auto"
From ABC0075PORTLAND.BITNET  Tue Jul 14 03:38:24  32/1362
&2 Message 2:

From ABCOO7SPORTLAND.BITNET  Sun Jul 12 01:02:24  1987

Received: by FBinf.WCP; Sun, 12 Jul 87 01:02:19  +0200; AA04029
Message-Id: <8707112302.AA04029§FBinf.UUCP>

Received: by FBinf.BITNET from portland.bitnet(mailer) with bsmtp
Received: by PORTLAND (Mailer X1.24) id 6622; Sat, 11 Jul 87

19:01:54  EDT

Subject: request
From: ABCOO7SPORTLAND.BITNET

To: KALLE§RZAOl.BITNET

Date: Sat, 11 Jul 87 19:00:08  EDT
Status: R

Dear Karl-Heinz,
it is atrociously hot here this summer. Instead of sitting on the

deck with a six-pack, i've got to spend the next few weeks putting

together a small survey of information technology. It has to be

at an elementary level. In particular I want to include aspects
that are relatively new - such as the connection between computer

graphics and experimental mathematics.
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You can see on the screen how the letter is sent on from station to station. In a few
minutes it has reached its destination. A few minutes later the picture is on the way too...

kalle§FBinf  ) mail ABCOO7§Portlan&Bitnet
Subject: Picture

Dear Otmar,

now I’m sending you the picture you wanted.
(This file must be converted with BinHex  4.0)

:#dpdE@&bFbV'#D@N!&19%G338j8. '*!%(L!!N!3EE!#3!‘2rN!MGrhIrhIphrpeh
hhAIGGpehUP@U9DT9UP99reAr9Ip9rkU3#llGZhIZ~YhL*!)x6!$'pM!$)f!%!)

J!~K!"2q)N!2rL*!$ri#3!rm)N!1!!*!(J%!J!!)%#!##4$P%JJ13!rKd)NH2&b

a9D"!3&8+"!3J8)L3"!8#[‘#r[1#3"! #3X) !!#!#!!!J!L!!L!)J!)J#))sJ
))US!UJ#U!+S!r'$r!2m!r‘!4)N5)%5*%L2m!N!2r!*!$!3)%#"!J3)#U!)!!L!
!!2q!N!F)(#,"J!%#" )J8)N')!+S!3+!!!!3+!!!$K%J'$!)"!B#!36i)#"6

!23#j!,N!Z3#j!,N!Z3#j!,N!Z3#j!,N!Z3#j!,N!Z3#j!,N!Z3#j!,N!Z3#j!,N

!Z3#j!,N!Z3#j!,N!Z3#j!,N!Z3#j!,N!Z3#j!,N!Z3#j!,N!Z3#j!,N!Z3#j!,N
!Z3#j!,N!Z3#j!,N!Z3#j!,N!Z3#j!,N!Z3#j!,N!Z3#j!,N!Z3#j!,N!Z3#j!,N

!Z3#j!,N!Z3#j!,N!Z3#j!,N!Z3#j!,N!Z3#j!,N!Z3#j!,N!Z3#j!,N!Z3#j!,N

We do not list the entire encoded picture data...

---__--------_----

As usual, please cut out the bit between the two colons.
Best wishes, Karl-Heinz

A day later, back comes the answer.

Message 3:
From ABCOO7SPORTLAND.BITNET  Thu Jul 16 03:19:30  1987

Received: by FBinf.WCP: Thu 16 Jul 87 03:19:27  +0200; AA04597
Message-Id: <8707160119.AA04597§FBinf.WCP>

Received: by FBinf.BITNET from portland.bitnet(mailer)  with bsmtp

Received: by PORTLAND (Mailer X1.24) id 5914; Wed, 15 Jul 87

21:11:18  EDT



Building Blocks  for Graphical Experiments 323

time to reply until today.
Here is the required Turbopascal program for the Mac.

As usual start with the following inputs:

Left = 1.8

Right = 3.0
Bottom = 0

Top = 1.5
-------------------------------cut  here --------------------

PROGRAM  EmptyApplicationShell; (* TurboPascal  on Macintosh *)

USES MemTypes,  QuiCkDraW;

CONST
Xscreen  = 320; (* e.g. 320 pixels in x-direction *)
Yscreen  = 200: (* e.g. 200 pixels in y-direction *)

VAR

PictureName  : string;

Left, Right, Top, Bottom : real;

(* include other global variables here *)

And so on... we will not give the program at full length here: see 512.4  for the complete
listing.

(* --------------------- MAIN------------------*)

BEGIN (*Main Program *)

Hello;

Initialise;

ComputeAndDisplay;

Goodbye :

END

That's it! Good luck with the survey.

Best wishes Karl-Heinz.

EOT
ABC007§Portland.Bitnet... Connecting to portland.bitnet...

ABCOO7§Portland.Bitnet...  Sent

File 2119 Enqueued  on Link RZB23

Sent file 2119 on link RZB23  to PORTLAND ABC007
From P.ZB23: MDTNCMl471  SENT FILE 1150 (2119)

ON LINK RZOZIB21 TO PORTLAND IXS2
From RZSTUl:  MDTVMB1471  SENT FILE 1841 (2119)
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Subject: Picture?Pascalprogram

From: ABC0075PORTLAND.BITNET

To: KALLE§RZAOl.BITNET

Date: Wed, 15 Jul 87 21:09:05  EDT

Status: R

Dear Kalle,
the picture has arrived perfectly. I have converted it without

any problems using binhex. You might try using packit  next time.
The text file was larger than 10K - the resulting paint file was
only 7K!

More next time,
otmar .

A few explanations to end with.
We have printed the dialogue in full to show you how

+ to write your programs in such a form that they can be transferred between
computers of different types and different disk formats;

. to consider how to set up communications within a single town or internationally;

. to think about the problem of data compression.
Our pen-pal Otmar has already spoken about this last problem. When two

computers communicate directly, binary files, that is, pictures, can be transmitted directly.
You can do this with Kermit. But it only makes sense to do it when both computers are
of the same make, otherwise the picture cannot be displayed.

Between different computers, we can use the intermediate format set out in $11.5,
which changes a picture to a text file. If a picture passes between several computers en
mute to its destination, and if the sending and receiving computers are of the same type,
we recommend the use of programs that convert a binary file into a hex file (BinHex
program). Such programs are available on any computer. There also exist programs
that can take a hex file (e.g. generated from a picture) and compress it still further, to
make the text file smaller (‘Compress’, ‘PackIt’,  etc.).

A very well-known method of data compression is the so-called Huffman
method. It achieves an astonishing degree of compression. Of course the person with
whom you are communicating must also have such a program. Maybe this is an idea for
a joint programming project. Consult the appropriate technical literature, in order to
implement the algorithm: Huffmann  (1952),  Mann (1987),  Streichert  (1987).

We end the problem of picture transmission here; but the problem of different
computers will continue to concern us in Chapter 12.
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12.1 Some Are More Equal Than Others - Graphics on Other
S y s t e m s

In this chapter we show you how to generate the same graphic of a Feigenbaum diagram
on different computer systems. We have chosen the Feigenbaum diagram because it does
not take as long to produce as, say, the Gingerbread Man. We will give a ‘Feigenbaum
reference program’ for a series of types of computer, operating systems, and
programming languages. Using it you can see how to embed your algorithms in the
appropriate program.

Our reference picture is shown in Figure 12.1-1.

Figure 12.1-  1 Feigenbaum reference picture.

12.2 MS-DOS and PS/2  Systems
With IBM’s change of direction in 1987, the world of IBM-compatibles and MS-

DOS machines changed too. In future as well as MS-DOS there will be a new IBM
standard: the OS/2 operating system. The programmer who wishes to develop his
Gingerbread Man program on these computers can do so on both families. Turbo Pascal
from the Borland company, version 3.0 or higher, is the system of choice. The only
difficulties involve different graphics standards and different disk formats, but these
should not be too great a problem for the experienced MS-DOS user. The new graphics
standard for IBM, like that for the Macintosh II, is a screen of 640 x 480 pixels. Our
reference picture has 320 x 200 pixels, corresponding to one of the old standards.

The experienced MS-DOS user will already be aware of the different graphics
standards in the world of MS-DOS. It will be harder for beginners, because a program
that uses graphics may run on computer X but not on computer Y, even though both are
MS-DOS machines. For this reason we have collected here a brief summary of the
important graphics standards. In each case check further in the appropriate manual.
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GraphMode; GraphColorMode;  BiRes;

320 x 200 pixels 320 x 200 pixels
01x1319 01x1319
OIy<200 OIy1200
black/white colour

Table 12.2-1 Turbo Pascal commands

640 x 200pixels
OIxI639
Olyll99
black + one colour

Dark
0
1
2
3
4
5
6
7

c010llrs
black
blue
green
cyan
red
magenta
brown
light grey

Light Colours
08 dark gre y
0 9 light blue
10 light green
1 1 lightcyan
12 light red
1 3 light magenta
14 yellow
1.5 white

Table 12.2-2 Colour codes for high-resolution graphics: Heimsoeth (1985),  p. 165.

Table 12.2-2 shows the colour codes needed if you want to use colour graphics.
But we recommend you to draw your pictures in black and white. To see that this can
produce interesting effects, look at the pictures in this book. The old IBM standard, in
our opinion, produces unsatisfying colour pictures: the resolution is too coarse. With the
new AGA standard, colour becomes interesting for the user. This of course is also true
of colour graphics screens, which can represent 1000 x 1000 pixels with 256 colours.
But such screens are rather expensive.

In each of the three graphics modes, Turbo Pascal provides two standard
procedures, to draw points or lines:

P l o t  (x, y, colour) ; draws in point in the given colour.
Draw (xl, yl, x2, y2, colour) : draws aline of the given colour between

the specified points.
We will not use any procedures apart from these two.

The graphics routines select colours from a palette. They are called with a
parameter between 0 and 3. The active palette contains the currently used colours. That
means,forexample, that Plot (x, y, colour) with colour = 2 produces red on
Palette(O) ;,withcolour = 3 the point is yellow with Palette (2) ;. Plot
(x, y, 0) draws a point in the active background colour. Such a point is invisible. Read
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MDA (monochrome display adapter)
l 720 x 348 points
. only text, 9 x 4 pixels per symbol, only for TTL-monitor

CGA (Colour Graphics Adapter with different modes)
l 00: Text 40 x 25 monochrome
l 01: Text 40 x 25 colour
+ 02: Text 80 x 25 monochrome
l 03: Text 80 x 25 colour
. 04: Graphics 320 x 200 colour
. 05: Graphics 320 x 200 monochrome
l 06: Graphics 640 x 200 monochrome

HGA (Hercules Graphics Adapter)
+ 720 x 348 pixels graphics

EGA (Enhanced Graphics Adapter)
. 640 x 350 pixels graphics in 16 colours, fore- and background

AGA (Advanced Graphics Adapter)
+ Combines the modes of MDA, CGA, HGA

For our reference program we aim at the lowest common denominator: the CGA
standard with 320 x 200 pixels. If you possess a colour screen, you can in this case
represent each point in one of four colours. To use the colour graphics commands, see
the handbook.

Many IBM-compatible computers use the Hercules graphics card. Unfortunately
with this card the incorporation of graphics commands can vary from computer to
computer. We restrict ourselves here to the graphics standard defined in the Turbo
Pascal handbook from the Borland company for IBM and IBM-compatible computers.

The top left comer of the screen is the coordinate (0,O);  x is drawn to the right and
y downwards. Anything that lies outside the screen boundaries is ignored. The
graphics procedures switch the screen to graphics mode, and the procedure TextMode
must be called at the end of a graphics program to return the system to text mode.

The standard IBM Graphics card of the old MS-DOS machines up to the Model
AT includes three graphics modes. We give here the Turbo Pascal commands and the
colour codes:
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BEGIN
CarryOn  ('To finish :I);

END;
(" __________---------------------------------------------  *)

(* Here Include-File with problem-specific procedures ")
(*§I  a:feigb.Pas *)

(X -------------------------- MAIN ----------------------- X)
BEGIN

Hello;
Initialise;
ComputeAndDisplay;
Goodbye;

END.

Two useful hints: In Turbo Pascal there is no predefined data type ‘string’, having a
length of 80. Unfortunately the string length must always be specified in square brackets.
Our string variables are thus all of type Tst ring. In the Include-Files a : specifies the
drive. This is just an example to show what to do when the Turbo Pascal system is on a
different drive from the Include-Files.

The Include-File follows: Util.Graph.Pas.

(X  ____------------------- UTILITY-------------------------  *)

(* BEGIN: Useful subroutines *)
PROCEDURE ReadReal  (information : Tstring; VAR value

: real);
BEGIN

Write (information);
ReadIn  (value);

END;

PROCEDURE ReadInteger  (information : Tstring; VAR value
: integer);

BEGIN
Write (information);
Readln  (value);

END;

PROCEDURE ReadString  (information : Tstring; VAR value :
Tstring);

BEGIN
Write (information);
ReadLn  (value);
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the relevant information in the manual.
The following Turbo Pascal reference program is very short, because it works with

‘Include-Files’. In translating the main program, two types of data are ‘compiled
together’. The data Ut ilGraph  . Pas contains the useful subroutines and the graphics
routines. The data f eigb . Pas contain the problem-specific part and the input
procedure that sets up the data for the Feigenbaum program. We recommend you to
construct all of your programs in this way, so that only one command

(+§I feigb.pas *)
relative to the above data names is required.

The Turbo Pascal reference program follows.

Program 12.2-1 (Turbo Pascal reference program for MS-DOS)
PROGRAM EmptyApplicationShell;

(* only TurboPascal  on MS-DOS *)
CONST

Xscreen  = 320; (* e.g. 320 points in x-direction *)
Yscreen  = 200; (* e.g. 200 points in y-direction *)
palcolour = 1 ;(*TurboPascal  MS-DOS: for palette *)
dcolour = 15; (*TurboPascal MS-DOS: for draw, plot *)

TYPE Tstring = string[80] ;(* only TurboPascal  *)
VAR

PictureName  : Tstring;
P e n x ,  P e n y  : i n t e g e r ;

Left, Right, Top, Bottom : real;
(* Insert further global variables here *)

Population, Feedback : real;
Visible, Invisible : integer;

(*$I a:UtilGraph.Pas  *)

PROCEDURE Hello;
BEGIN

ClrScr;
TextMode;
InfoOutput  ('Representation of 'I;
Infooutput  (I------------------------------');

Newlines  (2);
CarryOn  ('Start :I);
Newlines  (2);

END;
PROCEDURE Goodbye;
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xs := (xu - Left) * Xscreen  / (Right - Left);

YS := (yu - Bottom) * Yscreen / (Top - Bottom);
SetPoint  (round(xs),  round(ys));

END;

PROCEDURE GoToPoint  (xs, ys : integer);
BEGIN

Plot (xs, Yscreen - ys, 0);
Penx := xs; Peny := ys;

END;

PROCEDURE DrawLine  (xs, ys : integer);
BEGIN

Draw (Penx, Yscreen - Peny, xs, Yscreen-ys,
dcolour);

Penx := xs; Peny := ys;
END;

PROCEDURE DrawUniversalLine  (xu, yu : real);
VAR  xs, ys : real;

BEGIN
xs := (xu - Left) * Xscreen/(Right  - Left);

YS := (yu - Bottom) * Yscreen / (Top - Bottom);
DrawLine  (round(xs),  round(ys));

END;

(* PROCEDURE TextMode; implemented in Turbo Pascal*)
(* already exists "1

PROCEDURE GraphicsMode;
(* DANGER! DO NOT CONFUSE WITH GraphMode!!!  !! *)

BEGIN
ClrScr;
GraphColorMode;
Palette (palcolour);

END;

PROCEDURE EnterGraphics;
BEGIN

Penx := 0;
Peny := 0;
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PROCEDURE InfoOutput  (information : Tstring);
BEGIN

WriteLn (information);
WriteLn;

END;

PROCEDURE CarryOn  (INFORMATION : TSTRING);
BEGIN

Write (information, 'Hit <RETURN>');
ReadLn;

END;

PROCEDURE CarryOnIfKey;
BEGIN

REPEAT UNTIL KeyPressed;
END;

PROCEDURE NewLines  (n : integer);
VAR

i : integer;
BEGIN

FOR i := 0 TO n DO WriteLn;
END;

(* END: Useful subroutines *)
(" -----------------------UTILITY------------------------- ")

(”  ------------------------ GRAPHICS-------------------------A)

(* BEGIN: Graphics Procedures *)

PROCEDURE SetPoint  (xs, ys : integer);
BEGIN

t* Insert machine-specific graphics commands here *)
Plot (xs, Yscreen-ys, dcolour);
Penx := xs; Peny := ys

END;

PROCEDURE  SetUniversalPoint  (xu,  yu: real);
VAR  xs, ys : real;

BEGIN
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FOR i := 0 TO invisible DO
population := f(population,  Feedback);

FOR i := 0 TO visible DO
BEGIN

SetUniversalPoint  (Feedback, population);
population := f(population,  feedback);

END;
EM);

JQJD;

(* END: Problem-specific procedures ")

(X---------------------- APPLICATION------------------------*)

PROCEDURE Initialise;
BEGIN

ReadReal  ('Left
ReadReal  ('Right
ReadReal  ('Top
ReadReal  ('Bottom
ReadInteger  ('Invisible
ReadInteger  ('Visible

(* possibly further inputs 9
ReadString  ('Name of Picture

END;

>I, Left);
>'r Right);
>'I Top);
>'r Bottom);
>'r invisible);
'I, visible);

c)
>'r PictureName);

PROCEDURE ComputeAndDisplay;
BEGIN

EnterGraphics;
FeigenbaumIteration;
ExitGraphics;

END;

In our reference program in 8 11.2 we gave a very clear sequence of procedures. All of
these should be retained if you do not work with Include-Files. In the example shown
here we have changed these procedures slightly. The procedures also are not grouped
according to their logical membership of the class ‘Utility’, ‘Graphics’, or ‘Main’. Instead,
Initialise and ComputeAndDisplay  are included among the problem-specific
procedures. In this way we can rapidly locate the procedures that must be modified, if
another program fragment is used. You need only include new global variables in the
main program, and change the initialisation procedure and the procedure calls that lie
between EnterGraphics  and ExitGraphics.
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writeln ('To end drawing hit <RETURN> I);
write ('now hit <RETURN> I);  readln;
Gotoxy(l,23);
writlen  (' ------------ Graphics  Mode  --------------t);

CarryOn  ('Begin :I);
GraphicsMode;

END;

“)
PROCEDURE ExitGraphics

(* Machine-specific actions to exit from Graphics Mode
BEGIN

ReadLn;
ClrScr;
TextMode;
Gotoxy(l,23);
Writeln (' -------------- Text  Mode  ---------------I);

END;

(* END: Graphics Procedures *)
(* --_--_--__------------- G-HI,-S--------------------------*)

In the implementation of Turbo Pascal for MS-DOS and CP/M  computers we must
introduce two special global variables Penx and Pen y, to store the current screen
coordinates.

(” __-__---------------- ~,,,I,-JTION-------------------------*)

(* BEGIN: Problem-specific procedures *)
FUNCTION f(p, k : real) : real;
BEGIN f := p + k * p * (l-p);
END;

PROCEDURE FeigenbaumIteration;
VAR

range, i: integer;
population, deltaxPerPixe1  : real;

BEGIN
deltaxPerPixe1  := (Right - Left) / Xscreen;
FOR range := 0 TO Xscreen DO

BEGIN
Feedback := Left + range * deltaxPerPixe1;
population := 0.3;
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To incorporate the graphics you can without difficulty use the program fragments
from this book. One point that causes problems is the data type ‘string’, which in
standard Pascal is not implemented. Replace the use of this type by procedures you write
yourself, using the type packed array [ . . 1 of char.

Another important hint: in many compilers the declaration of external procedures
must occur before all other procedure declarations. In Berkeley Pascal everything must
lx. written in lower case.

UNIX is a multi-user system. On a UNIX system the methods shown here, to
calculate the picture data in the computer and display them on the screen, are not entirely
fair to other system users. With these methods (see below) you can hang up a terminal for
hours.

We recommend that you use the methods of $11 S, generating only the picture data
on the UNIX computer, and only after finishing this time-consuming task should you
display the results on a graphics screen with the aid of other programs.

This has in particular the consequence that your program to generate the picture data
can run as a process with negligible priority in the background. It also allows the
possibility of starting such a process in the evening around 10 o’clock, leaving it to run
until 7 in the morning, and then letting it ‘sleep’ until evening, etc. Of course you can
also start several jobs one after the other. But remember that all these jobs take up CPU
time. Start your jobs at night or at weekends, to avoid arguments with other users or the
system manager.

Many UNIX systems do not possess a graphics terminal,  but these days they often
have intelligent terminals at their disposal. That is, IBM-ATs, Macintoshes, Ataris, or
other free-standing personal computers are connected to the UNIX system over a V24
interface at 9600 Baud serial. In this case you should generate your picture data on the
UNIX system in one of the three formats suggested (see $11.5)  and transfer the resulting
data on to floppy disk with a file transfer program. Then you can display the picture
calculated on the UNIX system on the screen of your computer.

To make everything concrete, we have collected it together for you here.
The Pascal program for generating the picture data has already been listed in $11.5.

After typing Program 11.5  1 into the UNIX system you must compile it and mn it. The
data can be input interactively. Do not worry if your terminal shows no activity beyond
that. Doubtless your program is running and generating picture data. However, it can
sometimes happen that your terminal is hung up while the program runs. That can take
hours.

Press the two keys <CTRL>  <Z>. This breaks into the program, and the
promptlinel  of the UNIX system appears:

%
Type the command jobs . The following dialogue ensues:

‘In  this case the prompt symbol is the % sign. Which symbol is used differs from shell to shell.
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12.3 UNIX Systems
The word has surely got around by now that UNIX is not just an exotic operating

system found only in universities. UNIX is on the march. And so we will give all of
you who are in the grip of such an efficient operating system as MS-DOS a few hits on
how to dig out the secrets of the Gingerbread Man on UNIX computers.

Let us begin with the most comfortable possibilities. The UNIX system on which
you can most easily compute is a SUN or a VAX with a graphics system. UNIX is a
very old operating system, and previously people did not think much about graphics.
Usually UNIX systems are not equipped with graphics terminals.

If this is the case at your institution, get hold of a compatible standard Pascal
compiler (Berkeley Pascal, OMSI Pascal, Oregon Pascal, etc.). Unfortunately these
Pascal systems do not include graphics commands as standard. You must supply the
appropropriate commands to set a point on the screen with the help of external C routines.
Get together with an experienced UNIX expert, who will quickly be able to write out
these Croutines, such as setpoint  and line. Of course they may already exist.

A typical Pascal program, to represent a picture on a graphics terminal, has the
following structure:

PROGRAM EmptyApplicationShell;
(* Pascal on UNIX systems *)

CONST
Xscreen=  320; (* e.g. 320 points in x-direction *)
Yscreen=  200; (* e.g. 200 points in y-direction *)

VAR
Left, Right, Top, Bottom : real;

(* Insert other global variables here *)
Feedback : real;
Visible, Invisible : integer;

PROCEDURE setpoint (x, y, colour : integer) ;
e x t e r n a l

PROCEDURE line (xl, yl, x2, y2, colour : integer):
external;

(X  __--_____------------ UTILITY---------------------em----  “)

. . .

BEGIN (* Main Program *)
Hello;
Initialise;
ComputeAndDisplay;
Goodbye;

END
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double Left, Right, Top, Bottom;
int MaximalIteration;
/* include further global variables here */
/* ________________________ file  ---------------------- */

/* begin: file procedures */
void Store (F, number)
IntFile F;
int number;
I

fwrite (&number, sizeoftint),  1, F);
I

void EnterWriteFile(F,  Filename)
IntFile *F;
String8 Filename;

(:
*F = fopen(Filename,  "w");

void ExitWriteFile  (F)
IntFile *F;
I

fclose(F);
1

/* end: file procedures */
/* -----------___-___----  file  _-_---------__---------  */
/* ----__-----_______--  application  ___---___________-  */

/* begin: problem-specific procedures */

double x0, ~0;

int MandelbrotComputeAndTest  (cRea1,  cImaginary)
double cRea1,  cImaginary;
(
#define Sqr(X)  (X)*(X)

int iterationNo;
double x, y, xSq, ySq, distancesq;
boo1  finished;
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% jobs
[ll  + Stopped SUNcreate
% b g % l
[l] SUNcreate
%

What does that mean? The square brackets give the operating system reference number
of the program that is running. For instance, you can use the ki 11 command to cut off
this process. The name of the translator program is e.g. SUNcreate. By giving the
command bg and the process number the program is activated and sent into background.
The prompt symbol appears and the terminal is free for further work; your job continues
to run in the background.2

The Pascal program to reconstruct a picture from a text file and diplay it on your
computer is also given in 0 11.5. We recommend you to use the UNIX system as a
calculating aid, even if there is no graphics terminal connected to it. You can transfer the
resulting picture data to your PC using ‘Kermit’ and convert them into a picture.

Many users of UNIX systems prefer the programming language C. For this
reason we have converted programs 11.5-1, 11.5-3, and 11.5-6 ‘one to one’ into C.
Here too the programs should all remain in the background. The resulting data can be
read just as well from C as from Pascal.

C Program  Exampled

Program 12.3-1 (Integer encoded, see 11.5-l)

/* EmptyApplicationShell,  program 11.5-l in C */

#include <stdio.h>

#define Xscreen  320 /* e.g. 320 pixels in x-direction */
#define Yscreen  200 /* e.g. 200 pixels in y-direction */
#define Bound 100.0
#define True 1
#define False 0
#define Stringlength 8
typedef char string8 [Stringlength];
typedef FILE *IntFile;
typedef int bool;

IntFile  F;

*This kind of background operation works only in BSD Unix or in Unix versions with a C shell.
Ask your system manager, if you want to work in this kind of fashion.
3The C programs were written by Roland Meier from the Research Group in Dynamical systems at
the University of Bremen.
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store (F, 0); /* at the end of each row */
y += deltayPerPixe1;

I
I

/* end: problem-specific procedures */
/* -_----__-_-_-_____-_  application  --------------____  X/

/* ----------------------- main  -----------------------*/

/* begin: procedures of main program */
void hello0
{

printf("\nComputation  of picture data 'I);
pr-ntf (“\n------------------------ 11);

void Initialiseo
(.

printf ("Left > 'I); scanf("%lf",  &Left);
printf ("Right > 'I); scanf("%lfq',  &Right);
printf ('Bottom > I'); scanf ("%lf", &Bottom);
printf ("Top > 'I); scanf ("%lf", &Top);
printf ( "Maximal Iteration > 'I); scanf ("%lf",

&MaximalIteration );
/* insert further inputs here */
I

void ComputeAndStore;
{

Enterwritefile (&F,  "IntCoded");
Mapping ( ) ;
ExitWriteFile  (F);

I

/* end: procedures of main program */
/* ----------------------- main  ---------------------- */

main0 /* main program */
Hello();
Initialiseo;
ComputeAndDisplay();

1
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/* StartVariableInitialisation  */
finished = False;
iterationNo  = 0;
x = x0;
y = yo;
xSq  = sqr(x);
$32  = sqr(y)  ;
distanceSq  = xsq + ysq;
do { /* compute */

iterationNot+;
y = x*y;
y = yty-cImaginary;
x = xSq  - ySq  -cReal;
xSq  = sqr(x);
ySq  = sqr  (Y)  ;
distancesq  = xsq + ysq;
/* test */
finished = (distancesq  > Bound);

) while (iterationNo  != MaximalIteration  &&
!finished);

/* distinguish, see also Program 11.5-1 */
return iterationNo;

tundef  sqr

void Mapping ()

int xRange,  yRange;
double x, y, deltaxPerPixe1,  deltayPerPixe1;

deltaxPerPixe1  = (Right - Left) / Xscreen;
deltay PerPixel  = (Top - Bottom) / Yscreen;
x0 = 0.0;
yo = 0.0;
y = Bottom;
for (yRange  = 0; yRange  < Yscreen; yRangett){

x= Left;
for (xRange  = 0; xRange  < Xscreen; xRangett){

store (F, MandelbrotComputeAndTest  (x, y));
x t= deltaxPerPixe1;
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t
fread(number,  sizeof(int),  1, F);

void store (F, number);
IntFile  F;
int number;

fwrite(&b=number,  sizeof(int),  1, F);

main0

EnterReadFile  (&in, "IntCoded");  /* Integer encoded */
EnterWriteFile  (&out, "RLIntDat");

/* RL encloded  Integer */
while (!feof(in))  (

quantity = 1;
ReadIn  (in, &colour);
if (!feof(in))  (

do(
ReadIn  (in, &done);
if (done != 0)

if (done == colour)
quantity++;

else (
store (out, quantity);
store (out, colour);
colour = done;
quantity = 1;

) while (done != 0 && !feof(in));
store (out, quantity);
store (out, number);
store (out, 0);

ExitReadFile  (in);

ExitWriteFile  (out);
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Program 12.3.2 (Compress to int; see 11.5-3)

/* CompressToInt,  Program 11.5-3 in C */
#include <stdio.h>
#define Stringlength 8
typedef FILE *IntFile;
typedef char String8 [Stringlength];

String8 Dataname;
IntFilein,  Out;
int quantity, colour,  done ;

void EnterReadFile  (F, Filename)
IntFile *F;
string8 FileName;

*F = fopen(Filename, "r");

void EnterWriteFile  (F, FileName)
IntFile *F;
string8 FileName;

*F = fopen(FileName,  "w");

void ExitReadFile(F);
IntFile F;

fclose(F);

void ExitWritefile(F);
IntFile F;

fclose(F);

void ReadIn(F, number)
IntFile F;
int *number;
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void ReadIn  (F, number)
IntFile  F;
int *number;

fread(number,  sizeof(int),  1, F);
I

void store (outText,  number)
CharFile  outText;
int number;

if (number == 0)
fputc('\n',  outText);

else I
fputc(CharTable[number/64],  outText);
fputc (CharTable[number  % 641, outText);

void InitTableO

int i;
for (i = 0; i < 64; i++) (

if (i < 10)
CharTable[i]  = '0' + i;

else if (i < 36)
CharTable[i]  = '0'  + i + 7;

else if (i < 62)
CharTable[i]  = '0' + i + 13;

else if (i == 62)
CharTable[i]  = '>'

else if (i == 63)
CharTable[i]  = '?'

main0

InitTableO;
EnterReadFile  (&in, ' 'RLIntDat");
EnterWriteFile  (&outText,  "RICharDat');
while (!feof(in))  I
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Program  12.3-3 (Transfer int to char, see 11.5-5)
/* TrarsferIntToChar,  Program 11.5-5 in C */

#include <stdio.h>

#define Stringlength 8

typedef FILE*IntFile;
typedef FILE*CharFile;
typedef charString8[Stringlength];
IntFile in;
CharFile  outText;
int quantity, colour;
char CharTable[641;
String8 DataName;

void EnterReadFile  (F,  FileName)
IntFile *F;
String8 FileName;

*F = fopen(Filename,  "r");

void EnterWriteFile  (F, FileName)
CharFile  *F;
String8 FileName;

*F  = fopen(Filename,  "w");

void ExitReadFile  (F)
IntFile F;

fclose (F);

void Exitwritefile (F)
CharFile  F;

fclose (F);
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(”  -----------------------“TILIT~----------------------------*)

(* BEGIN: Useful Subroutines *)
PROCEDURE ReadReal  (information : STRING; VAR value

: real);
BEGIN

write (information);
readln (value);

END;

PROCEDURE ReadInteger  (information : STRING; VAR value
: integer);

BEGIN
write (information);
readln (value);

END;

PROCEDURE ReadString  (information : STRING; VAR value
: string);

BEGIN
write (information);
readln (value);

END;

PROCEDURE InfoOutput  (information : STRING);

BEGIN
writeln (information);
writeln;

END;

PROCEDURE CarryOn  (information : STRING);
BEGIN

write (information, ' hit <RETURN>');
readln

END;

PROCEDURE CarryOnIfKey;
BEGIN

REPEAT
UNTIL KeyPressed

END;
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ReadIn  (in, &quantity);
if (quantity == 0)

store (outText,  0);
else {

store (outText,  quantity);
readin  (in, &colour);
store (outText,  colour);

ExitReadFile  (in);
ExitWriteFfile  (outText);

Those were the hints for UNIX. UNIX is in particular available on the
Macintosh II, which brings us to another operating system and another computer family:
the Macintosh.

12.4 Macintosh Systems
There is an enormous range of Pascal implementations for the Macintosh family of

computers, all very suitable for computer graphics experiments. They include Turbo
Pascal (Borland), Lightspeed Pascal (Think Technologies), TML-Pascal (TML
Systems), and MPW (Apple), the Apple development system on the Macintosh. Of
course the programs can also be written in other programming languages such as C or
Modula II. We now give the corresponding Reference Program for one of the cited
implementations.

Program 12.4-  1 (Turbo Pascal reference program for Macintosh)
PROGRAM EmptyApplicationShell;

(* Turbo Pascal on Macintosh *)
USES MemTypes,  QuickDraw;

CONST
Xscreen  = 320; (*e.g. 320 points in x-direction *)
Yscreen  = 200; (*e.g. 200 points in y-direction *)

VAR
PictureName  : string;
Left, Right, Top, Bottom : real;
(* include additional global variables here *)
Feedback : real;
Visible, Invisible : integer;
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PROCEDURE  DrawUniversalLine  (xu,  yu : real);
'VAR  xs, ys : real;

BEGIN
xs := (xu - Left) * Xscreen/(Right - Left);

YS := (yu- Bottom) * Yscreen  / (Top - Bottom);
DrawLine  (round(xs),  round(ys));

END;

PROCEDURE TextMode;
t* Insert machine-specific graphics commands here ")
BEGIN

GotoXY(1,23);
writlen  (' _-_----___---  Text  Mode  -----------------');

END;

PROCEDURE GraphicsMode;
t* Insert machine-specific graphics commands here
BEGIN

ClearScreen;
END;

*)

PROCEDURE EnterGraphics;
BEGIN

writeln ('To end drawing hit <RETURN>  ');
write ('now hit <RETURN>  I);  readln;
GotoXY(1,23);
writeln(‘-------------- Graphics  Mode  ---------------a);

CarryOn('BEGIN  :I);
GraphicsMode;

END;

PROCEDURE ExitGraphics
BEGIN

(*machine-specific actions to exit from Graphics Mode*)
readln;
ClearScreen;
TextMode;

END;

(END: Graphics Procedures *)
(-------------- m.----------GRAPHIC,---------------------------*)
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PROCEDURE Newlines  (n : integer);
via

1 : integer;
BEGIN

FOR i := 1 TO n DO
writeln;

EbJD;

(* END: Useful Subroutines *)
t* -------------------------UTILITY------------------------------*)

(* ------------------------GRAPHICS--G-----------------------*)

(* BEGIN: Graphics Procedures *)

PROCEDURE SetPoint  (xs, ys : integer);
BEGIN

t* Insert machine-specific graphics commands here
moveto  (xs, Yscreen - ys);
line (0,O)

END;

PROCEDURE SetUniversalPoint  (xu, yu: real);
VAR  xs, ys : real;

BEGIN
xs := (xu - Left) * Xscreen  / (Right - Left);

YS := (yu - Bottom) * Yscreen / (Top - Bottom);
SetPoint  (round(xs),  round(ys)  );

ENDi

PROCEDURE GoToPoint  (xs, ys : integer);
BEGIN

t* Insert machine-specific graphics commands here
moveto  (x3, Yscreen - ys);

END;

PROCEDURE DrawLine  (xs, ys : integer);
BEGIN

(" Insert machine-specific graphics commands here
lineto  (xs, Yscreen - ys);

m;

*I

“)

“1
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PROCEDURE ComputeAndDisplay;
BEGIN

EnterGraphics;
FeigenbaumIteration;
ExitGraphics;

END;

(*---------------------------MAIN-------------------------------  “)

(* BEGIN: Procedures of Main Program *)

PROCEDURE Hello;
BEGIN

TextMode;
InfoOutput  ('Calculation of
InfoOutput  (I--------------------');

Newlines  (2);
CarryOn  ('Start :I);
Newlines  (2);

ESJD;

‘);

PROCEDURE Goodbye;
BEGIN

CarryOn  ('To stop : ');
END;

(* END: Procedures of Main program *)

(“---------------------------MAIN------------------------------  ,c)

BEGIN (* Main Program *)
Hello;
Initialise;
ComputeAndDisplay;
Goodbye;

END.

Of course all of this also works with Include-Files. Compare this program with
the reference program from $12.2.

After the start of the program a window appears with the name of the main
program. This window is simultaneously a text and graphics window. That is, not only
characters but also the usual graphics commands in Turbo Pascal such as ClearScreen
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(----------------------- AppLI~TION---------------------*)

(BEGIN: Problem-specific procedures *)
(* useful functions for the given application problem ")

FUNCTION f(p, k : real) : real;
BEGIN f := p + k * p * (l-p);
END;

PROCEDURE FeigenbaumIteration;
VAR

range, i: integer;
population, deltaxPerPixe1  : real;

BEGIN
deltaxPerPixe1  := (Right - Left) / Xscreen;
FOR range := 0 TO Xscreen DO

BEGIN
Feedback := Left + range * deltaxPerPixe1;
population := 0.3;
FOR i := 0 TO Invisible DO

population := f(population, Feedback);
FOR i := 0 TO Visible DO

BEGIN
SetUniversalPoint  (Feedback, population);
population := f(population, Feedback);

END;
END;

END;

(* END: Problem-specific procedures ")
("------------------------ APPLICATION----------------------  ")

PROCEDURE Initialise;
BEGIN

ReadReal  ('Left >'r Left);
ReadReal  ('Right >I, Right);
ReadReal  ('Top >'r Top) ;
ReadReal  ('Bottom >'r Bottom);
ReadInteger  ('Invisible >'r invisible);
ReadInteger  ('Visible >'r visible);

(* possibly further inputs *)
ReadString  ('Name of Picture >', PictureName);

END;



354 Dynamical Systems and Fractals

Program 12.4-2 (Lightspeed Pascal reference program for Macintosh)

PROGRAM EmptyApplicationShell;
(* Lightspeed Pascal Macintosh *)

(* possible graphics library declarations here *)
USES UtilGraph;
(* include further global variables here *)
VAR

Feedback: real;
Visible, Invisible : integer;

PROCEDURE Hello;
BEGIN (* as usual *)
. . .
END;

PROCEDURE Goodbye;
BEGIN

CarryOn  ('To stop : '1;
END;

(" ---------------------APPLICATION-------------------------------*)

(* BEGIN: Problem-specific procedures *)
(* useful functions for the given application problem *)

FUNCTION f(p, k : real) : real;
BEGIN

f := p + k * p * (l-p);
EM>;

PROCEDURE FeigenbaumIteration;
VAR

range, i: integer;
population, deltaxPerPixe1  : real;

BEGIN (* as usual *)
. . .
END;

PROCEDURE Initialise;
BEGIN (* as usual  *)
. . .
END;
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and GotoXY  apply. It can now be given the appropriate inputs.
On logical grounds we still distinguish here between Text MO  de and

GraphicsMode.  In practice we have implemented this in such a way that text called
from the procedure TextMode  is written in the 22nd row and rolls upwards.

When the drawing is finished, you should see the following picture:

EmptyApplicationShelI

Figure 12.4-1 Turbo Pascal reference picture.

After the drawing is finished the blinking text cursor appears in the left upper
comer. You can print out the picture with the key combination

<Shift> <Command> <4>
or make it into a MacPaint document with

<Shift> <Command> <3>.
If you then press the <RETURN> key further commands can be given.

Next, some hints on turtle graphics. We described this type of computer graphics
experiment in Chapter 8. You can implement your own turtle graphics as in the
solutions in 011.3,  or rely on the system’s own procedures.

In Turbo Pascal on the Macinstosh,  as in the MS-DOS version, a turtle graphics
library is implemented. Read the description in Appendix F, Turtle Graphics: Mac

graphics made easier in the Turbo Pascal  Handbook, editions after 1986.
In addition to Turbo Pascal there is another interesting Pascal implementation. In

Lightspeed Pascal it is not possible to modularise into pieces programs that can be
compiled with the main program in the form of Include-Files. In this case we
recommend that you use the so-called unit concept. You can also use units in the
Turbo Pascal version. In the main program only the most important parts are given here.
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PROCEDURE Newlines  (n : integer);
(X -----------------------UTILITY  ------------------------ ")

t* ----------------------GF?JQBI(-.S  ------------------------ ")

PROCEDURE InitMyCursor;
PROCEDURE SetPoint  (xs, ys : integer);
PROCEDURE SetUniversalPoint  (xw, yw : real);
PROCEDURE DrawLine  (xs, ys : integer);
PROCEDURE DrawUniversalLine  (xw, yw : real);
PROCEDURE TextMode;
PROCEDURE GraphicsMode;
PROCEDURE EnterGraphics;
PROCEDURE ExitGraphics;

(" ---------------------mG~~IC~ ------------------------ *)
IMPLEMENTATION

(" _----__------~----~~~~- UTILITY----------------u--X)

(* BEGIN: Useful Subroutines *)
PROCEDURE ReadReal;
BEGIN

write (information);
readln (value);

END;

PROCEDURE  ReadInteger;
BEGIN

write (information);
readln (value);

END;

PROCEDURE ReadString;
BEGIN

write (information);
readln (value);

END;

PROCEDURE InfoOutput;
BEGIN

writeln (information);
writeln;

END;
PROCEDURE CarryOn;
BEGIN

write (information, ' hit <RETURN>');
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PROCEDURE ComputeAndDisplay;
BEGIN

EnterGraphics;
FeigenbaumIteration;
ExitGraphics;

END;
(* END: Problem-specific procedures *)
("-------------------------APPLICATION-----------------------

")

BEGIN (* Main Program *)
Hello;
Initialise;
ComputeAndDisplay;
Goodbye;

END.

In the unit Ut ilGraph  we put the data structures and procedures that always remain the
same. You can comfortably include all data structures that are global for all programs in
such a unit.

UNIT UtilGraph;
INTERFACE

CONST
Xscreen  = 320; (* e.g. 320 points in x-direction *)
Yscreen  = 200; (* e.g. 200 points in y-direction *)

VAR
CursorShape  : CursHandle;
PictureName  : STRING;
Left, Right, Top. Bottom : real;

(* ----------------------- UTILITY  ----------~~~~~_________  “)

PROCEDURE ReadReal  (information : STRING; VAR value
: real);

PROCEDURE ReadInteger  (information : STRING; VAR value
: integer);

PROCEDURE ReadString  (information : STRING; VAR value
: STRING);

PROCEDURE InfoOutput  (information : STRING);
PROCEDURE CarryOn  (information : STRING);
PROCEDURE CarryOnIfKey;
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PROCEDURE DrawLine  (xs, ys : integer);
BEGIN

lineto  (xs, Yscreen - ys);
END;

PROCEDURE  DrawUniversalLine  (xu, yu : real);
VAR  xs, ys : real;

BEGIN
xs := (XU - Left) * Xscreen/(Right - Left);

YS := (yu - Bottom) * Yscreen / (Top - Bottom);
DrawLine  (round(xs),  round(ys));

END;

PROCEDURE TextMode;
(" Insert machine-specific graphics commands here
CONST delta = 50;
VAR window : Rect;
BEGIN

SetRect (window, delta, delta, Xscreen+delta,
Yscreen+delta);

SetTextRect  (window);
ShowText; (* Lightspeed Pascal *)

=;

"1

PROCEDURE GraphicsMode;
t* Insert machine-specific graphics commands here
CONST delta = 50;
VAR  window : Rect;
BEGIN

*)

SetRect (window, delta, delta, Xscreen+delta,
Yscreen+delta);

SetDrawingRect  (window);
ShowDrawing;
InitMyCursor;  (* initialise WatchCursorForm *)
SetCursor(CursorShape"");  (* set up WatchCursorForm *)

END;

PROCEDURE EnterGraphics;
BEGIN

writeln ('To end drawing hit <RETURN> ');
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readln;
END;

PROCEDURE CarryOnIfKey;
BEGIN

REPEAT UNTIL button; (* Lightspeed Pascal *)
END;

PROCEDURE Newlines;
WJR

i : integer;
BEGIN
FORi:=lTOnDO

writeln;
END;

(* END: Useful Subroutines *)

(” -------------------------“TILITy--------------------------*)

(” ------------------------G-~ICS-------------------------*)

(* BEGIN: Graphics Procedures *)

PROCEDURE InitMyCursor;
BEGIN

CursorShape := GetCursor(WatchCursor);
END;

PROCEDURE SetPoint  (xs, ys : integer);
BEGIN

t* Insert machine-specific graphics commands here *)
moveto  (xs, Yscreen - ys);
line (0,O)

END;

PROCEDURE  SetuniversalPoint  (xu,  yu: real);
VAR  xs, ys : real;

BEGIN
xs := (XU - Left) * Xscreen  / (Right - Left);

YS := (YU  - Bottom) * Yscreen / (Top - Bottom);
SetPoint  (round(xs),  round(ys));
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Figure 12.4-2 Screen dialogue.

MPW Pascal
MPW Pascal is a component of the software development environment ‘Macintosh

Programmer’s Workshop’, and was developed by Apple. It is based on ANSI Standard
Pascal. It contains numerous Apple-specific developments such as the SANE library.
SANE complies with the IEEE standard 754 for floating-point arithmetic. In addition
MPW Pascal, like TML Pascal, contains facilities for object-oriented programming.
MPW Pascal, or Object Pascal, was developed by Apple in conjunction with Niklaus
Wirth, founder of the Pascal language.

MacApp
MacApp consists of a collection of object-oriented libraries for implementing the

standard Macinstosh user interface. With MacApp you can considerably simplify the
development of the standard Macintosh user interface, so that the main parts of Mac
programs are at your disposition for use as building blocks. MacApp is a functional
(Pascal) program, which can be applied to an individual program for particular extensions
and modifications.
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write ('now hit <RETURN> I);  readln;
writeln('---------------  Graphics  MO&  --------------t);
CarryOn('BEGIN  :I);
GraphicsMode;

END;

PROCEDURE ExitGraphics;
BEGIN

(*machine-specific actions to exit from Graphics Mode*)
InitCursor  (* call the standard cursor *)
readln; (* graphics window no more frozen *)
SaveDrawing(PictureName);

(* store pit  as MacPaint document *)
TextMode; (* text window appears *)
writeln('-----------TextMode--------------');

END;
(* END: Graphics Procedures *)
(" _-----___-------------- GRAPHI,-S-------w--------------v-")

END

If you run this program then the following two windows (Figure 12.4-2) appear
one after the other.

After inputting the numerical value and pressing <RETURN>, the ‘drawing
window’ of Lightspeed Pascal appears, and the Feigenbaum diagram is drawn. While it
is being drawn the ‘watch cursor’ - the cursor that resembles a wristwatch - is visible.
When the drawing is finished the normal cursor appears. Press <RETURN> to give
further commands.

As well as Turbo Pascal and Lightspeed Pascal there is a whole series of other
Pascal versions or programming languages that will run on the Macintosh. We will
make a few remarks about some of these. The graphics procedures are naturally the same
in all Pascal versions.

TML. Pascal
In contrast to Turbo Pascal and Lightspeed Pascal, TML Pascal generates the most

efficient code. Nevertheless we recommend Lightspeed Pascal. In our opinion it is the
most elegant development system as regards the simplicity of giving commands to the
Macintosh. The graphics procedures are the same, and we do not give a sample program.
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PROCEDURE Hello;
BEGIN

Clear-Screen;
TextMode;
InfoOutput  ('Calculation of
Infooutput  (V--------------------------8);

Newlines  (2);
CarryOn  ('Start :I);
Newlines  (2);

END;

‘I;

PROCEDURE Goodbye;
BEGIN

CarryOn  ('To stop : ');
END;

(”  --------------------------------------------------------  “)

(* include file of problem-specific procedures here :------  *)
(*$I D:feigb.Pas *)
(" -------------------------MAIN------------------------------  ")

BEGIN
Hello;
Initialise;
ComputeAndDisplay;
Goodbye;

END.

A hint here too for Include-Files: in Include-Files the drive is specified as, for instance,
D : . That is just an example to show what to do when the Pascal system is on a different
drive from the Include-Files.

The Include-File follows; UtilGraph.Pas.

(“--------------------------“TI~IT~-----------------------  “)

(* BEGIN: Useful Subroutines *)
PROCEDURE ReadReal  (information : Tstring; VAR value

: real);
BEGIN

write (information);
readln (value);

END;
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Modula lZ
Another interesting development environment for computer graphics experiments is

Modula II. Modula II was developed by Niiaus Wirth as a successor to Pascal. On the
Macintosh there are at present a few Modula II versions: TDI-Modula and MacMETH.
MacMETH is the Modula II system developed by ETH at Zurich. We choose TDI-
Modula here, because the same firm has developed a Modula compiler for the Atari.

Lightspeed C
C holds a special place for all those who wish to write code that resembles machine

language. Many large applications have been developed using C, to exploit the portability
of assembly programming. Three examples of C programs have been given already  in
$12.3 (UNIX systems). They were originally programmed in Lightspeed C on the
Macintosh and thus run without change on all C compilers.

12.5 Atari Systems
The Atari range has become extremely popular among home computer fans in the

last few years. This is doubtless due to the price/power ratio of the machine. Of
course, the Atari 1024 is no Macintosh or IBM system 2, but it can produce pretty good
Gingerbread Men - in colour.

Among the available programming languages are GFA Basic, ST Pascal Plus,
and C. We give our Reference Program here for ST Pascal Plus.

Program 12.5-1 (ST Pascal Plus reference rrogram for Atari)
PROGRAM EmptyApplicationShell;

(* ST Pascal Plus on Atari *)
CONST

Xscreen  = 320; (* e.g. 320 points in x-direction *)
Yscreen  = 200; (* e.g. 200 points in y-direction *)

(*$I GEMCONST *)
TYPE T&ring  = string[80];

(*$I GEMTYPE  *)
VAR

PictureName  : Tstring;
Left, Right, Top, Bottom : real;
(* include additional global variables here *)
Feedback : real;
Visible, Invisible : integer;

(*$I GEMSUBS  *)
(*$I D:UtilGraph.Pas *)
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(” ------------------------G~~*cs-------------------------*)

(* BEGIN: Graphics Procedures *)

PROCEDURE SetPoint  (xs, ys : integer);
BEGIN

(" Insert machine-specific graphics commands here *)
move-to  (x9, Yscreen - ys);
l ine - to  (xs ,  Yscreen - ys )  ;

EM);

PRocEDuRE  SetUniversalPoint  (xu, yu: real);
VAR  xs, ys : real;

BEGIN
xs := (XU - Left) * Xscreen / (Right - Left);

YS := (yu - Bottom) * Yscreen / (Top - Bottom);
SetPoint  (round(xs),  round(ys));

END;

PROCEDURE GoToPoint  (xs, ys : integer);
BEGIN

t* Insert machine-specific graphics commands here *)
move-to  (xs, Yscreen - ys);

END;

PROCEDURE DrawLine  (xs, ys : integer);
BEGIN

(" Insert machine-specific graphics commands here *)
lineto  (xs, Yscreen - ys);

EM);

PROCEDURE GoToUniversalPoint  (xu, yu : real);
BEGIN

VAR xs, ys : real;
BEGIN

xs := (xu - Left) * Xscreen / (Right - Left);
YS := (yu  - Bottom) * Yscreen / (Top - Bottom);
GotoPoint  (round(xs),  round(ys));

END;

PROCEDURE DrawUniversalLine  (xu, yu : real);
VAR xs, ys : real;
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PROCEDURE ReadInteger  (information : Tstring; VAR  value
: integer);

BEGIN
write (information);
readln (value);

EM);

PROCEDURE ReadString  (information : Tstring; VAR value
: string);

BEGIN
write (information);
readln (value);

END;

PROCEDURE InfoOutput  (information : Tstring);
BEGIN

writeln (information);
writeln;

END;

PROCEDURE CarryOn  (information : Tstring);
BEGIN

write (information, ' hit <RETURN>');
readln

END;

PROCEDURE CarryOnIfKey;
BEGIN

REPEAT
UNTIL KeyPress; (* NOT as for Turbo! *)

END;

PROCEDURE Newlines  (n : integer);
via

i : integer;
BEGIN

FOR i := 1 TO n DO
writeln;

END;
(* END: Useful Subroutines *)
(" -------------------------UTILITY--- ----------------------")
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12.6 Apple II Systems
It is certainly possible to take the view that nowadays the Apple IIe is ‘getting on a

bit’. It is undisputedly slow, but nevertheless everything explained in this book can be
achieved on it. The new Apple IIGS has more speed compared with the Apple II, and
better colours, so that devotees of the Apple are likely to stay with this range of machines,
rather than try to cope with the snags of, e.g., MS-DOS.

Turbo Pascal
Turbo Pascal 3.OOA  can only run on the Apple II under CP/M. It functions pretty

much as in MS-DOS. Specific problems are the graphics routines, which have to be
modified for the graphics system of the Apple II. Recently several technical journals
(such as MC and c’l) have given hints for this.

TML. Pascal/ORCA  Pasca l
Compared with the Apple IIe the Apple IIGS is a well-tried machine in new

clothes. In particular, the colour  range is improved. We recommend the use of TML
Pascal (see Program 12.6-3) or ORCA Pascal.

UCSD  Pascal
Many Pascal devotees know the UCSD system. At the moment there is version

1.3, which runs on the Apple IIe  and also the Apple IIGS. Unfortunately until now the
UCSD system recognises only 128K of memory, so that extra user memory (on the GS
up to 4 MB) can be used only as a RAMdisk.

Basically there are few major changes to our previous reference program. The use
of Include-Files or units is possible.4

Program 12.6-1 (Reference program for Apple II, UCSD Pascal)
PROGRAM EmptyApplicationShell;

(* UCSD Pascal on Apple II *)
USES a p p l e s t u f f ,  t u r t l e g r a p h i c s ;
CONST

Xscreen  = 280; (* e.g. 280 points in x-direction *)
Yscreen  = 192; (* e.g. 192 points in y-direction *)

VAR
PictureName  : string;
Left, Right, Top, Bottom : real;
(* include additional global variables here *)
Feedback : real;
Visible, Invisible : integer;

4Examples for Include-Files are given in 412.2,  for units in $12.4.
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BEGIN
xs := (xu - Left) * Xscreen/(Right  - Left);

YS := (yu - Bottom) * Yscreen  / (Top - Bottom);
DrawLine  (round(xs),  round(ys));

END;

PROCEDURE TextMode;
BEGIN

Exit-Gem;
END;

PROCEDURE GraphicsMode;
VARi : integer

BEGIN (* machine-specific graphics commands *)
i : = INIT-Gem;
Clear -Screen ;

END;

PROCEDURE EnterGraphics;
BEGIN

writeln ('To end drawing hit <RETURN> I);
writeln(‘--------------- Graphics  Mode  --------------n);
CarryOn('BEGIN  :I);
GraphicsMode;

END;

PROCEDURE ExitGraphics
BEGIN

(*Machine-specific actions to exit from Graphics Mode*)
readln;
Clear -Screen ;
TextMode;

WriteIn  ('-----------------Text Mode w---------------8);

END;

(* END: Graphics Procedures *)
(" -----------------------GRAPHICS--------------------------")

The problem-specific part does not change (see Turbo Pascal, 312.2).
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STRING; VAR value

write (information);
readln (value);

END;

PROCEDURE ReadInteger  (information
: integer);

BEGIN
write (information);
readln (value);

END;

PROCEDURE ReadString  (information : STRING; VAR value
: string);

BEGIN
write (information);
readln (value);

END;

PROCEDURE InfoOutput  (information : STRING );
BEGIN

writeln (information);
writeln;

END;

PROCEDURE CarryOn  (information : STRING );
BEGIN

write (information, ' hit <RETURN>');
readln;

END;

PROCEDURE CarryOnIfKey;
BEGIN

REPEAT
UNTIL KeyPressed;

END;

PROCEDURE Newlines  (n : integer);
VziR

I : integer;
BEGIN

FORi:=lTOnDO
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(*$I Utiltext *)

PROCEDURE Hello;
BEGIN

TextMode;
InfoOutput  ('Calculation of
~nfoou~put  (I---------------------');

Newlines  (2);
CarryOn  ('Start :I);
Newlines  (2);

END;

‘);

PROCEDURE Goodbye;
BEGIN

CarryOn  ('TO stop : I);
END;

(”  --------------------------------------------------------  “)

(* include file of problem-specific procedures here :------  *)

( * $ I  f e i g b . P a s  * )

(A  -------------------------MAIN------------------------------  “)

BEGIN
Hello;
Initialise;
ComputeAndDisplay;
Goodbye;

END.

Most changes occur in the graphics procedures. UCSD Pascal implements a kind of
turtle graphics, which does not distinguish between 1 ine and move. Instead the colour
of the pen is changed using the procedure pencolor. On leaving a procedure the colour
should always be set to pen co 1 o r ( none ) . Then a program error, leading to
unexpected movements on the graphics screen, cannot harm the picture.

Program 12.6-2 (Include-File of useful subroutines)
(“--------------------------“TI~IT~-----------------------  “)

(* BEGIN: Useful Subroutines *)
PROCEDURE ReadReal  (information : STRING; VAR value

: real);
BEGIN
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xs := (xu - Left) * Xscreen  / (Right - Left);

YS := (yu - Bottom) * Yscreen / (Top - Bottom);
GotoPoint  (round(xs),  round(Ys));

END;

PROCEDURE  DrawUniversalLine  (xu, yu : real);
m xs, ys : real;

BEGIN
xs := (XU - Left) * Xscreen/(Right  - Left);

YS := (yu- Bottom) * Yscreen / (Top - Bottom);
DrawLine  (round(xs),  round(ys));

END;

(* PROCEDURE TextMode  is defined in turtle graphics ")
(* PROCEDURE GraphMode  is defined in turtle graphics *)

PROCEDURE EnterGraphics;
BEGIN

writeln ('To end drawing hit <RETURN> I);
Page  (Output )  ;
GotoXY  (0,O)  ;
writeln( I--------------  Graphics  Mode  --------------‘I;

CarryOn('BEGIN  :I);
InitTurtle;

END;

PROCEDURE ExitGraphics
BEGIN

(*Machine-specific actions to exit from Graphics Mode*)
readln;
TextMode;
Page  (opu tpu t )  ;
GotoXY(O,O);

END;

(* END: Graphics Procedures *)
(" -----------------------G~~ICs--------------------------*)

The problem-specific part does not change (see Turbo Pascal, $12.2).
As we have already explained at the start of this chapter, we recommend you to use TML
Pascal on the Apple II. There are two versions:
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writeln;
END;

(* END: Useful Subroutines *)
(" -------------------------uTILITy--------------------------*)
(" _______________------ ---GRAPHICS----------------------*)

(* BEGIN: Graphics Procedures *)

PROCEDURE SetPoint  (xs, ys : integer);
BEGIN

(" Insert machine-specific graphics commands here *)
moveto  (x9, YeI;
pencolor(white); move(O);
pencolor(none);

END;

PROCEDURE  SetUniversalPoint  (XU,  yU: real);
VAR xs, ys : real;

BEGIN
xs := (XU - Left) * Xscreen  / (Right - Left);

YS := (yu - Bottom) * Yscreen  / (Top - Bottom);
SetPoint  (round(xs),  round(ys));

END;

PROCEDURE GoToPoint  (xs, ys : integer);
BEGIN

(" Insert machine-specific graphics commands here *)
moveto  (x9, YeI;

END;

PROCEDURE DrawLine  (xs, ys : integer);
BEGIN

(" Insert machine-specific graphics commands here *)
pencolor(white);
moveto  (x9, YS)  ;
pencolor(none);

END;

PROCEDURE GoToUniversalPoint  (xu, yu : real);
BEGIN

VAR  xs, ys : real;
BEGIN
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Moveto  (x, y);
Line (0, 0);

END;

PROCEDURE sqr(x  :real) : real;
BEGIN

sqr (x) := x * x;
END;

PROCEDURE Mapping;
VAR

xRange,  yRange  : intger;
x, y, x0, y0, deltaxPerPixe1,  deltayPerPixe1  : real;

FUNCTION MandelbrotComputeAndTest  (cRea1,  cImaginary
: real)

: integer;
v?B

iterationNo  : integer;
x, y, xSq, ySq, distancesq  : real;
finished: boolean;

BEGIN
t* StartVariableInitialisation *)

finished := false;
iterationNo  := 0;
x := x0;
Y := yo;

xsq := sqr(x);

Y% := sqr(y);
distancesq := xsq + ysq;

(* StartVariableInitialisation *)
REPEAT

(* Compute *)
iterationNo := iterationNo  + 1;
Y := x*y;
Y := y+y-cImaginary;
x := xSq  - ySq  -cReal;

x--l := sqr(x);  ySq  := sqr(y);
distancesq := xsq + ysq;

(* Compute *)
(* Test *)
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I TML Pascal (APW)
. TML Pascal (Multi-Window)
The first version is best considered as a version for the software developer who wishes to
use Apple Programmer’s Workshop, the program development environment from Apple
Computer Inc. The second version is easier to use. The multi-window version has a
mouse-controlled editor and is similar to TML Pascal on the Macintosh.

Below we once again give our reference program, this time for TML Pascal on the
Apple IIGS. For a change, here we draw a Gingerbread Man. We confine ourselves to
the most important procedures; you have already seen in previous sections that the
surrounding program scarcely changes.

Program 12.6-3 (TML Pascal for Apple IIGS)
PROGRAM EmptyApplicationShell(input,  output);

USES
ConsolelO, (* Library for plain vanilla I/O *)
QDIntf; (* Library for Quick-draw calls *)

CONST
Xscreen  = 640.0;

(* SuperHIRES  screen 640x400 points*)
Yscreen  = 200; (* NOTE: real constants!

VAR
")

Left, Right, Top, Bottom : real;
I, MaximalIteration,  Bound : integer;
R: Rect;

PROCEDURE ReadReal  (s : string; VAR number : real);
BEGIN

writeln;
write (s);
readln (number);

END;

PROCEDURE ReadInteger  (s : string; VAR number : integer);
BEGIN

writeln;
write (s);
readln (number);

END;

PROCEDURE SetPoint  (x, y, colour : integer);
BEGIN

SetDithColor  (co lour )  ; (* 16 possible colours *)
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BEGIN (* main *)
In i t ia l i se ;

Mapping;
REPEAT UNTIL KeyPressed;

END.

Observe that:
. We have collected together all local procedures inside the functional

proccdurcMandelbrotComputeAndTest  .

l The graphics procedure calls arc  similar to those for the Macintosh. Therefore it is
not necessary for us to list all of them. They are identical.

. TheLibrary  Console10 contains the following useful subroutines:
Function KeyPressed : boolean
Procedure EraseScreen;
Procedure  SetDithColor  ( c o l o r  :  i n t e g e r ) ; .

The value for the variable color must lie between 0 and 14, corresponding to the
following colours:

Black (0), Dark Grey (l), Brown (2),  Purple (3),  Blue (4),  Dark Green (5),
Grange (6),  Red (7),  Flesh (8),  Yellow (9),  Green (lo),  Light Blue (ll), Lilac (12),
Light Grey (13),  White (14).

The way to use colour is easy to see in the program listing. In the algorithmic part
distinguish(insideMandelbrotComputeAndTest) the value of IterationNo

detertnines  the colour value.

12.7 ‘Kermit Here’ - Communications
In the course of time we become ever more special&d.  Now the discussion will be

extremely special. The difficult probem of computer-computer communication is the
final topic. What we now discuss will be most likely to appeal to ‘freaks’ - assuming
they do not already know it.

The problem is well known: how can we get data and text files from computer X to
computer Y? We have already given the main answer in 511.6,  ‘A Picture Takes a
Trip’. But the gap between direct computer-computer connection and e-mail is vast.
To bridge it you need to read manuals, think about cables and connectors - all of which
takes time. We cannot make the process effortless, but we can give a little help.

First you must buy or assemble a cable, to connect your computer to a modem or
another computer via the V24 interface. This hardware problem is the most disagreeable
part, because the computer will not do anything if you use the wrong pin-connections.
The best solution is the help of a knowledgeable friend, or the purchase of a ready-made
cable. Then the next problem raises its head: software. We recommend ‘Kermit’. This
communications package exists for virtually every computer in the world: try to get this
‘public domain’ software from usergroups or friends. Of course you can also get other
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finished := distancesq  > 100.0;
(* Test *)

UNTIL (iterationNo  - MaximalIteration)  OR finished;
(* distinguish *)

IF iterationNo  = MaximalIteration  THEN
MandelbrotComputeAndTest : = 15
ELSE BEGIN

IF iteratioNo  > Bound THEN
MandelbrotComputeAndTest : = 15

ELSE MandelbrotComputeAndTest : =
iterationNo  MOD 14;

END;
(* distinguish *)

END;
BEGIN (* Mapping *)

SetPenSize(1,  1);
deltaxPerPixe1  := (Right - Left) / Xscreen;
deltayPerPixe1  := (Top - Bottom) / Yscreen;
x0 := 0.0; yo := 0.0;
Y := Bottom;
FOR yRange := 0 TO trunc (yscreen)  DO BEGIN

x:= Left;
FOR xRange := 0 TO trunc (xscreen)  DO BEGIN

SetPoint  (xRanqe,  yRanqe,
MandelbrotComputeAndTest (x, y));

x := x + deltaxPerPixe1;
IF KeyPressed  THEN exit (Mapping);

END;
Y := y + deltayPerPixe1;

END;
END;
PROCEDURE Initialise;
BEGIN

ReadReal  ('Left ' 'I Left);
ReadReal  ('Right ' 'I Right);
ReadReal  ('Top ' 'I Top) ;
ReadReal  ('Bottom ' '1 Bottom);
ReadInteger  ('Max. Iteration > ',MaximalIteration);
ReadInteger  ('Bound ' 'I Bound);

END;
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Assume that you want to transfer a file named rlecdat, containing your picture data,
from the VAX to the PC. Then you do this:

VAX>kermit  s rlecdat

The UNIX computer waits until the PC is ready for the transfer. You must return to the
Kermit environment of your running MS -DOS program. Type:

<CTRL-]  ><?>
A command line appears. Give it the letter c , as an abbreviation for closeconnection.

coMMAND>c
Kermit-MSreceive picturedata

Thedatarlecdat (on a UNIX system)become  picturedata on the MS-DOS
system. The transfer then starts, and its successful completion is reported.

Kermit-MSdir

The transferred file is written into the directory of your MS-DOS machine. If you
already have a file of the same name on your PC, things do not work out very well.

The converse procedure is also simple:

VAX>Kermit  r

You return to the Kermit environment and give the command:

Kermit-MSsend  examp1e.p

The transfer then begins in the opposite direction...
Everything works much the same on other computers, including the Macintosh.

But here there is an elegant variant. In the USA there are two programs named MacPut
and MacGet,  which can transfer Macintosh text and binary files under the MacTerminal
1.1 protocol to and from a UNIX system.

Get hold of the C source files, transfer them to your VAX, compile them into the
program - and you are free of all Kermit problems.

login:  kalle
password:
4.3 BSD UNIX O4:  Thu Feb 19 16:00:24 MET 1987
Mon Jul 27 18:28:20 MET DST 1987
suwmacget  msdosref.pas  -u
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software, provided both computers use the same communications protocol, for instance
XModem. Kermit is the most widely available and its documentation is clearly written.

Without going too much into fine detail, we will first describe how file transfer
works5  between an IBM-PC running under MS-DOS and a UNIX  system, such as a
VAX or SUN.

We assume that your IBM-compatible has two drives or a hard disk, and that the
Kermit program is on drive b : or c : . Then you must enter into the following dialogue
with the host computer, for example the VAX.

(...  means that the screen printout is not given in full.)

Kermit Dialogue: MS-DOS -C--B UNIX
b>kermit
IBM-PC Kermit-MS V2.26
Type ? for help
Kermit-MS>?
BYE CLOSE CONNECT DEFINE
. . .
STATUS TAKE

Kermit-MS>status
Heath-19 emuilation ON
. . .
Communication port: 1
Kermit-MS>set  baud 9600

Local Echo Off

Debug Mode Off

Now you must set the other parameters such as XON/XOPF, Parity, Stop-bits, g-bit,
etc. as applicable. Once both computers are similarly configured, the connection can be
made.

Kermit-MS>connect
[connecting to host, type control-] C to return to PC]

Hit <RETURN> and the UNIX system reports...

login  : kalle
password:

. . .

bnder  Kermit, the procedure is much the same for other machines.
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suN>1s  -1
total 777
-rwxrwxr-x 1 kalle 16384 Jan 16 1987 macget
-m-r--r-- 1 kermit 9193 Jan 16 1987 macget.c.source
-rwxrwxr-x 1 kalle 19456 Jan 16 1987 macget
-rw-r--r-- 1 kermit 9577 Jan 16 1987 macget.c.source
-m-m-r-- 1 kalle 5584 Jul 27 18:33  msdosref.pas
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13.1 Data for Selected Computer Graphics
Especially in your first investigations, it is useful to know where the interesting

sections occur. Then you can test out your own programs there. Some of the more
interesting Julia sets, together with their parameters in the Mandelbrot set, are collected
together below.

In addition to the title picture for this Chapter, an ‘Atlas’ of the Mandelbrot set, we
also give a table of the appropriate data for many of the pictures in this book. For layout
reasons many of the original pictures have been cropped. Some data for interesting
pictures may perhaps be missing: they come from the early days of our experiments,
where there were omissions in our formulas or documentation.

Table 13-1 shows for each figure number the type of picture drawn, as this may
not be clear from the caption. We use the following abbreviations:

G Gingerbread man (Mandelbrot set) or variation thereon

J Julia set, or variation thereon

C Set after Curry, Garnett, Sullivan

Nl Newton development of the equationflr)  = (~-1)*x*(x+1)

N 3 Newton development of the eqationf(x)  =x3-1

N5 Newton development of the equati~flx)  =x5-1

T Tomogram picture, see Chapter 6

F Feigenbaum diagram
* See text for farther information

Near the (approximate) boundaries of the picture sections you will see the maximal
number of iterations and the quantity that determines the spacing of the contour lines.
The last two columns give the initial value for Mandelbrot sets, and the complex constant
c for Julia sets.

Picture Type Left Right TOP Bottom Maximal  Bound Complex constant
iteration or initial value

cr0r.m ci or fl

5.1-2ff  N 3 -2.00 2 . 0 0 -1.50 1.50
5.1-7 N5 -2.00 2.00 -1.50 1.50 ;5
5.2-l J -1.60 1.60 0 . 0 0 1.20 2 0
5.2-2 J -1.60 1.60 0 . 0 0 1.20 2 0
5.2-3 J -1.60 1.60 0 . 0 0 1.20 20
5.2-4 J -1.60 1.60 -1.20 1.20 20
5.2-5 J -1.60 1.60 -1.20 1.20 2 0
5.2-6 J -1.60 1.60 0 . 0 0 1.20 2 0
5.2-l J -1.60 1.60 0 . 0 0 1.20 20
5.2-8 J -1.60 1.60 0 . 0 0 1.20 2 0
5.2-9 J -1.75 1.75 -1.20 1.20 200
5 . 2 - 1 0  J -1.75 1.75 -1.20 1.20 2 0 0
5 . 2 - 1 1  J 0.15 0 . 4 0 -0.322 -0.15 200
5 . 2 - 1 2  J 0 . 2 9 0.316 4 -0.209 1 -0.191 4 400
5 . 2 - 1 3  J 0.295 11 0.298 14 -0.203 3 -0.201 3 400

;
20
20
2 0
2 0
2 0
2 0
20
2 0
0
0
40
1 4 0
1 4 0

0 . 1 0 0 . 1 0
0 . 2 0 0 . 2 0
0 . 3 0 0 . 3 0
0 . 4 0 0 . 4 0
0 . 5 0 0 . 5 0
0 . 6 0 0 . 6 0
0 . 7 0 0 . 7 0
0 . 8 0 0 . 8 0
0.745 405 4 0.113 006 3
0.745 428 0.113 cG9
0.745 405 4 0.113 006 3
0.745 405 4 0.113 006  3
0.745 405 4 0.113 006 3
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Pictore  T y p e .  Left Right Top B o t t o m Maximal Bound Complex cxxwant
iteration or initial value

cr or .m ci or JQ

10-2 G 0 .80 0.95 -0.35 -0.15 25 0
10-3  G 0 .80 0.95 -0.35 -0.15 25 15
10-4 G 0 .85 0 .95 -0.35 -0.25 25 0
10-5  G 0 .85 0.95 -0.35 -0.25 25/50 15/21
10-6 G 0.857 0.867 -0.270 -0.260 50 0
10-7 G 0.857 0.867 -0.270 -0.260 loo 40
10-8  G 0.915 0 .940 -0.315 -0.305 100 4 0
10-9 G 0.935 0.945 -0.305 -0.295 100 40
lo-10  G 0.925 0.935 -0.295 -0.285 100 40
lo-11  G 0.857 0.867 -0.270 -0.260 100 40
lo-12  G 0.900 0 .92 -0.255 -0.275 150 6 0
lo-13  G 1.044 1.172 -0.299 2 -0.211 6 60 3 0
lo-14  G 1.044 1.172 -0.299 2 -0.211 6 60 3 0
lo-15  G 1.044 1.172 -0.299 2 -0.211 6 60 3 0
lo-16  G 0 .75 0 .74 0 .108 0.115 5 120 9 9
lo-19  G 0.745 05 0.745 54 0.112 91 0.113 24 400 100
lo-20  G 0.745 34 0.745 90 0.112 95 0.113 05 400 140
10-21  G 0.015 36 0.015 40 1.020 72 1.020 75 300 6 0
12 .1 -1  F 1.80 3 .00 0 .00 1.50 50 100
12.4-2  F 1.80 3 .00 0 .00 1.50 50 100

O.Oil
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0 .00
0.00
0.00

Table 13-1 Data for selected pictures.



AppendiCeS 381

Picture Type Left Right Top B o t t o m Maximal Bound Complex lxmsmt
iteration or initial value

5.2-14 J 0.295 1 1 0.298 14
5.2-15 J 0 .296 26 0 .296 8 6
5.2-16 J 0 .296 2 6 0.296 86
5.2-11 J -1.75 1.75
5.2-18 J -2.00 1.50

5.2-19 J -0.08 0.07

5.2-20 J -0.08 0.07
5.2-23 J -1.75 1.75
6.1-1 J -0.05 0.05
6.1-2 J -0.05 0.05
6.1-3 G -1.35 2.65
6.1-4 G -1.35 2.65
6.1-5 G -1.35 2.65
6.1-6 G -1.35 2.65
6.1-7 G -1.35 2.65
6.1-8 G -1.35 2.65
6.1-9 G -1.35 2.65
6.1-10 G -0.45 -0.25
6.1-11 G 1.934 68 1.949 3
6.1-12 G 0 .74 0.75
6.1-13 G 0 .74 0.75
6.1-14 G -0.465 -0.45
6.2-lff T -2.10 2 .10
6.2-11 T 0 .62 0.64
6.3-4ff F 0 .60 0 .90
6.4-l C -2.50 2 .00
6.4-2 C -0.20 0 .40
6.4-3ff Gt -2.10 2 .10
6.4-6 C 0 .90 1.10
6.4-7 Jt -2.00 2.cQ
7.1-l Nl -2.00 2 .00
1.1-2 N 3 1.00 3 .40
7.1-3 J -2.00 2 .00
7.1-4 G -1.35 2.65
7.1-5 J -2.00 2 .00
7.1-6 G -1.35 2.65
7.2-l G -4.00 1.50
7.2-2 G+ -1.50 1.50
7.2-3 Gt -3.00 3 .00
7.2-4 N 3 -2.00 2 .00
7.2-5 J -2.00 2 .00
7.2-6 J -18.00 18.00
7.2-7 J -2.00 2 .00
7.2-8 J -3.20 3 .20
1.4-l G -1.35 2.65
7.4-2 G -1.35 2.65
1.4-3 J -2.00 2 .00
7.4-4 J -2.00 2 .00
9 . 5 J -1.00 1.00
10-l G -1.35 2.65

-0.2033 -0.2013 400 140
-0.2024 -0.202 600 200
-0.2024 -0.202 600 200
-1.20 1.20 5 0 0
-1.20 1.20 1000 12
-0.1 0 . 1 200 6 0
-0.1 0 . 1 300 0
-1.20 1.20 6 0 10
-0.075 0 .075 400 150
-0.075 0 .075 400 150
-1.50 1.50 4 0
-1.50 1.50 6 0
-1.50 1.50 8 0
-1.50 1.50 10 0
-1.50 1.50 20 0
-1.50 1.50 100 16
-1.50 1.50 6 0 0
-0.10 0 .10 40 40
-0.005 0.009 100 2 0
0 .108 0.115 5 120 100
0.115 5 0.123 120 100
0 .34 0.35 200 6 0
-2.10 2 .10 100 7
0.75 0 .80 250 100
0 .00 1.50 5 0 250
-2.00 2 .00 250 0
1.50 1.91 100 0
-2.10 2 .10 100 7
-0.03 0 .10 100 0
-2.00 2 .00 225 8
-1.50 1.50 2 0 0
-4.50 -2.70 2 0 0
-1.50 1.50 10 0
-1.50 1.50 1 5 0
-1.50 1.50 2 0 0
-1.50 1.50 2 0 0
-2.00 2.00 4 0 12
-0.10 1.50 40 7
-2.25 2.25 3 0 10
-1.00 1.50 4 0 3
-1.50 1.50 3 0 10
-13.50 13.50 3 0 10
-1.50 1.50 3 0 3 0
-2.00 4 .80 3 0 3 0
-1.50 1.50 2 0 0
-1.50 1.50 2 0 0
-1.50 1.50 3 0 0
-1.50 1.50 3 0 5
-1.20 1.20 100 0
-1.50 1.50 2 0 0

0.745 428 4 0.113 CO9
0 .745 405 4 0 .113 006 3
0 .745 428 0.113 co9
0 .745 428 0.113 009
0.745 428 0 .113 009
0 .745 428 0.113 009
0 .745 428 0 .113 009
1.25 0.011
0.745 405 4 0 .113 006 3
0.745 428
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
*
yo=O.l

0.00
0 .00
0.00
0 .00
-0.50

0 .50
0 .00
0.745
O.CCl
0 .00
0 .00
0.00

1.39
1.39
-0.35
-0.35
0 .00
0 .00
0 .50
-0.35
-0.30
0 .00

0.113 009
0 .00
0 .00
0 .00
0 .00
0.00
0.00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
*
ci=o.4

0 .00
0 .00
0 .00
O.Oll
0 . 44

0 .50
0.M)
0 .113
0 .00
0 .00
0 .00
0 .00

-0.02
-0.02
-O.CW
-0.004
0 .00
0 .00
0 .50
0.15
-0.005
0 .00
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Picture Page Caption

2.2.3-2 5 3

3.1-1 5 7

3.1-2 5 8

3.1-3 6 0

3.1-4 61

3.2-l 6 2

3.3-l 65

3.3-2 65

4.1-l 7 2

4.1-2 73

4.1-3 7 4

4.1-4 7 5

4.1-s 7 5

4.1-6 1 6

4.1-I 7 6

4.1-8 1-l

4.1-9 78

4.1-10 7 8

4.1-11 7 9

4.2-l 8 4

4.3-l 87

4.3-2 88

4.3-3 8 9

4.3-4 89

4.3-5 9 0

5.1-l 9 2

5.1-2 9 8

5.1-3 99

5.1-4 1 0 0

5.1-5 101

5.1-6 1 0 2

5.1-7 1 0 4

5.1-8 107

5.2.1-4 111

5 . 2 . 5 - 8 1 1 2

5.2-9/10 1 1 4

Feigenbaum  landscape with the data 3.2.4.  LA,  0.50.500

Trace’ of the parabola-attractor in the p IQ?)-plane

T h e  Verhulst  a t t r ac to r  fo rk  =  1 .60

Se l f - s im i l a r i t y  a t  e ach  s t ep  ( t op  l e f t  p ro j ec t i ons  o f  t he  a t t r a c to r )

Se l f - s im i l a r i t y  a t  e ach  s t ep  (de t a i l  fmm the  ‘node’  to  the  r ight  of  cenwe)

The  H&non  a t t r a c t o r

Lorenz  attractor for a = 10. b = 28, c = S/3. and screen dimensions -30, 30,

-30. 80

Lmenz attractor for a = 20.  b = 20. c = 8/3.  and screen diensions  -34  30,

-30. 80

The graph of the function &r)  = (.x+1)+x*(x-l)

How Newton’s method leads to a zero

hitid  VdU.5  X6  kads  to  atnaCt‘,f  X1

Initial vahw x7  leads to attTactor  x2

hitiatdue  xg leads  to Bth‘actol  x3

Initial value XrJ  leads to attractor x2
In i t i a l  va lue  xl0  l eads  t o  a t t r ac to r  xi

In i t ia l  value  x11  l eads  to  a t t r ac to r  x3

Graph ica l  r ep re sen ta t ion  o f  t he  bas ins  o f  a t t r ac t ion

Basins of attraction (detail of Fig. 4.1-9)

Basins of attraction (detail of Fig. 4.1-10)

A point in the Gaussian plane and its polar coordinates

The  bas ins  o f  a t t r ac t ion  in  the  complex  p l ane

Section from Fig. 4.3-l left of centre

At the boundary between two basins of attraction

The boundary between two basins of amaction

‘Stripes approaching the boundary’

Pos i t ion  o f  th ree  po in t  a t t r ac to r s  in  the  Gauss ian  p lane

Boundary between the three basins after  15 iterations

Bas in  o f  t he  a t t r ac to r  zc

‘Contour  l imes

Every third contour line. and  the boundaries, in a single picture

The  bas in s  o f  t he  t h r ee  a t t r ac to r s  zA. zB. zc

A Ju l i a  s e t  w i th  f i ve fo ld  symmet ry

Grey shades, normal size (left) and magnified to show individual pixels

Julia sets

Julia sets

Julia sets for cl  and c.2
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13.2 Figure Index

Figure Page caption

1.1-1 4

1.1-2 6

1 .2 -1 7

1 .2 -2 8

1 .2 -3 9

1.2-4 1 0

1 .2 -5 11

1 .2 -6 1 2

1 .2 -7 1 3

1.2-S 1 4

1 .2 -9 1 4

1.2-10 1 5

1 .2-11 1 5

1.2-12 1 6

2.1-1 1 9

2.1-2 2 0

2.1-3 2 0

2.1-4 2 1

2.1-5 2 1

2.1-6 2 1

2.1-7 2 2

2.1-8 2 2

2.1-9 2 3

2.1-10 2 6

2.1.1-t 2 8

2.1.1-2 3 3

2.1.2-1 3 6

2.1.2-2 3 7

2.2-l 3 8

2.2-2 40

2.2-3 4 3

2.2-4 4 4

2.2-5 44

2.2.1-1 4 6

2.2.2-l 5 0

2.2.3-l 5 2

Feedback cycle of weather research

General feedback scheme

Rough Diamond

Vulcan’s Eye

Gingerbread Man

Tornado Convention

Quadruple Alliance

Seahorse Roundelay

JuliaPropeller

var ia t ion  1

variation2

Variation3

Explosion

Mach 10

Feedback scheme for ‘measles’

Development of the disease  for 4,  = 0.3 and k = 0.5

Development of the  disease  for po = 0.3 and k = 1.0

Development of the disease for ~0 = 0.3 and k = 1.5

Development of the disease  for 4)  = 0.3 and k = 2.0

Development of the disease  for w = 0.3 and k = 2.5

Development of the disease for po  = 0.3 and k = 3.0

L i s t  o f  f o r m u l a s

D i s c r e t e  s e r i e s  o f  6  (ki,pi)-values  a f t e r  10  i t e r a t ions

Calculationofmeasles values

Two coordinate systems

Representation of the  measles epidemic on the screen, IterationNo  = 10

Initial value p = 0.1. k = 1.99, a limit point, with screen dialogue

Initial valuep  = 0.1. k= 2.4, two limiting  points

Situation after the onset of oscillations, iterationnumber = 50

Print-out from Program 2.2-i

Section from the Feigenbaum diagram

Fig-tree with data: 2.5,2.8,  0.9, 1.4, 50, 100

Fig-tree with data: 2.83.2.87,  0.5, 0.8. 50,  100

Logarithmic representation from k = 1.6 to k = 2.569

Basin of attraction for the Feigenbaum  diagram

Feigenbamn  Ian&cape  with the data 0.3.  0, 1.4. 50. 500
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Picture Page Caption

6.3-2 1 6 3

6.3-3 163

6.3-4 1 6 4

6.3-5 165

6.3-6 165

6.4-l 171

6.4-2 1 7 2

6.4-3 1 7 4

6.4-4 175

6.4-5 176

6.4-6 1 7 7

6.4-l 1 7 8

7.1-t 181

7.1-2 184

7.1-3 185

7.1-4 185

7.1-5 1 8 6

7.1-6 1 8 6

7.2-l 1 8 8

7.2-2 188

7.2-3 189

7.2-4 189

7.2-5 1 9 0

7.2-6 1 9 0

7.2-7 191

7.2-8 191

7.3-l 192

7.3-2 193

7.3-3 198

7.3-4 198

1.4-l 2 0 0

7.4-2 2 0 0

7.4-3 2 0 1

7.4-4 2 0 1

8.1-l 204

8.1-2 2 0 5

8.1-3 2 0 5

Diiect  comparison: Gingerbread Man / Fig-bee

A  p a r a m e t e r  p a t h  i n  t h e  Mandelbmt  se t

Quasi-Feigenbaom  diagram, real part

Quasi-Feigenbaum  diagram, imaginary part

Pseudo-three-dimensional representation of tiforcation  (oblique view horn the

f r o m )

Bas in  o f  t he  a t t r ac to r  z = 1

Section from Figure 6.4-l (with a surprise!)

General&d  Mandelbmt set for powers from 1 to 2

Generalised  Mandelbrot  set for &wers  from  2 to 3

Generabed  Mandelbror  s e t  f o r  p o w e r s  f r o m  3  t o  5

Section from Figure 6.4-l near c =  1

Generalised  Julia set

Boundaries between three atuactors  on the real axis

Julia set for Newton’s method applied to d-1

Julia set for c = 0.5 + it0.5

Gingerbread Man

Julia set, top and bottom interchanged, c = 0.745 + iaO.113

Gingerbread Man, inverse iteration height

Inverted Mandelbrot  set

Gingerbread Man for the third power (top half, compare Figure 6.4-5)

Gingerbread Man for the third power. inverted (cropped on right)

Inverted Julia set for Newton ‘s method applied to d-1

Julia set for c = 1.39 - i*O.O2

Inverted  Julia set for c = 1.39 - it0.02

Julia set for c = -0.35 - i+O.O04

Inverted Julia set for c = -0.35 - i*O.O@l

The  en t i r e  complex  p l ane  i n  two  un i t  c i r c l e s

P r o j e c t i o n  f r o m  p l a n e  t o  s p h e r e

Examples of Mandelbrot sets on the Riemann sphere

Gingerbread Man rotated 60°, front and  back

Gingerbread Man with interior structure (insideFactor  - 2)

Gingerbread Man with interior stmctwe  (insideFactor  = 10)

Julia set for c = 0.5tit0.5 with interior stmchre

Julia set for c = -0.35+i*O.l5  with interior s~~cture

‘Genesis’of the Hilbertcurve

‘Genes is ’  of  the  Sierptiki  c u r v e

Different dragon curves
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Picture Page Caption

5.2-11 115

5.2-12 115

5.2-13 1 1 6

5.2-14 116

5.2-15 117

5.2-16 117

5.2-17 118

5.2-18 1 1 9

5.2-19 1 2 0

5.2-20 121

5.2-21 1 2 4

5.2-22 1 2 4

5.2-23 126

6.1-1 1 2 9

6.1-2 1 3 0

6.1-3 1 3 6

6.1-4 136

6.1-5 1 3 6

6.1-6 137

6.1-7 137

6.1-8 138

6.1-9 139

6.1-10 1 4 0

6 .1-11 141

6.1-12 1 4 2

6.1-13 1 4 2

6.1-14 143

6.2-l 1 4 6

6.2-2 147

6.2-3 1 5 0

6.2-4 151

6.2-5 1 5 2

6.2-6 153

6.2-7 1 5 4

6.2-8 155

6.2-9 156

6.2-10 157

6 .2-11 158

6.3-l 1 6 2

Julia setfor  cl. Section from Fig. 5.2-9

Julia set for cl. Section from Fig. 5.2-11

Julia set for cl. Section from Fig. 5.2-12

Julia set for 9.  Section corresponding to Fig. 5.2-13

Julia set for cl. Section from Fig. 5.2-13

Julia set for s. Section from  Fig. 5.2-14

Juliasetswithsmalliterationnumber

Julia set with higher iteration number also acts as a boundary

Section from the cenne  of Fig. 5.2-17

Section from the centre  of Fig. 5.2-19

Backwards iteration, 20 seconds’ computing time

Backwards iteration. 4 hours’ computing time

Yet  ano the r  Ju l i a  s e t  ( j u s t  t o  whe t  you r  appe t i t e )

Julia set for cl, section near the origin

Julia set for g, section near the origin

Mande lb ro t  se t  (4  r epe t i t ions )

Mandelbrot set (6repetitions)

Mande lb ro t  se t  (8  r epe t i t ions )

Mande lb ro t  se t  (10  repe t i t ions )

Mande lb ro t  se t  (20  repe t i t ions )

Mandelbrot set (100  repetitions, ‘contour lines’ up to 16)

Mande lbro t  se t  (60  repe t i t ions )

Mande lb ro t  se t  ( sec t ion  l e f t  o f  the  o r ig in )

A Mandelbrot set of the second order

A section between the main body and a bud

A section directly below Figure 6.1-12

Asatellitefairlyfarleft

Quasi-Mend&rot sets for different initialvalues

Quasi-Mandelbrot  sets  f o r  d i f f e r en t  i n i t i a l  va lue s

Diagram for c&e 2

Diagram for case 2

Diagram for case 3

Diagram for case 3

Diagram for case 4

Diagram for case 4

Diagram for case 5

D i a g r a m  f o r  case  5

Deta i l  w i th  ‘ I - fo ld  sp i ra l

Feigenbaun  diagram from the Mandelbrot set
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13.3 Program Index
We list here both programs and program fragments (without distinguishing them). Each
represents the algorithmic heart of the solution to some problem. By embedding these
procedures in a surrounding program you obtain a runnable Pascal program. It is left to
you as an exercise to declare the requisite global variables, to change the initiahsation
procedure appropriately, and to fit together the necessary fragments (see hints in Chapters
11 and 12). The heading ‘Comments’ states which problem the procedures form a
solution to.

Progmn Page commenta

2.1-1 2 3

2.1.1-1 2 9

2.1.2-1 3 5

2.2-l 3 8

2.2-2 42

3.1-1 5 8

3.2-l 6 3

3.3-l 6 6

5.1-l 9 3

5.1-2 9 4

5.1-3 94

5.1-4 9 5

5.1-5 9 6

5.1-6 9 6

5.1-7 9 7

5.1-8 9 7

5.1-9 9 8

5.1-10 100

5.2-l 109

5.2-2 113

5.2-3 1 2 2

5.2-4 123

6 .1 -1 135

6.3-l 1 5 9

6.3-2 1 5 9

6.3-3 160

6.3-4 1 6 4

6.3-5 164

6.3-6 164

Measles numeric

Measles graphical

Graphical iteration

Feigenbaum  i te ra t ion

Print-out of kin a running program

Verhulst  a t t r a c t o r

H&non  a t t r a c t o r

L‘3rel-u  attrsctor

Ass ignment  fo r  i t e ra t ion  equa t ion

Belongs to zC

Mapping

JuliaNewtonComputeAst

StartVariableInitialisation

Compute

T e s t

Distinguish (does the point belong to the boundary?)

Distinguish (does the point  belong to the basin?)

Dis t ingu i sh  ( i t e ra t ion  number  MOD 3  e tc . )

Formulas in Pascal

JuliaNewtonComputeAndTest

Backwardsiteration

Roots

MandelbrotComputeAndTest

Equality test for real numbers

Equality test for complex numbers

Mapping

Working part of Mapping

Drawing commands, real part

Drawing commands, imaginary part



AppendiCeS 387

Picture P a g e .

8.1-4

8.1-5

8.2-l

8.2-2

8.2-3

8.2-4

8.3-l

8.3-2

8.3-3

8.3-4

8.3-5

8 . 4 - l

8.4-2

8.4-3

8.4-4

8.4-5

8.4-6

9-l

9-2

9-3

9-4

9-5

10-l-21

11.2-1

11 .2-2

11 .3-1

11.5-l

12 .1-1

12 .4-1

12.4-2

206

206

212

213

214

215

211

220

221

221

222

224

225

225

226

221

228

235

236

239

241

245

248-55

273

281

285

304

328

353

360

379

caption

Different Koch curves

A C-curve

Grassandtwigs

Two-dimensional cloud formation

Different grasses

Fractal landscape with lake and mountains

T h e  stmchlre 111[11111[11111

Construction of a graftal

Graftal-plant

D e v e l o p m e n t  o f  a  graftal f rom the  4 th  to  the  12 th  gene ra t ion

A  graftal f rom the  4 th  to  the  13 th  gene ra t ion

I n t e r f e r e n c e  p a t t e r n  1

I n t e r f e r e n c e  p a t t e r n  2

I n t e r f e r e n c e  p a t t e r n  3

Garland

Spiderweb with a = -137. b = 17. c = -4. n = 1 898 687

Cellculhlre

Complex weather boundaries around Bremen:  23/24.7  1985

Gingerbread weather?

Water drop experiment

EEG curves: normal action and fibrillation

Revolving. self-modifying patterns  on the screen

From  the  ‘Land of  Inf in i te  St ructures’ :  no  t i t le

F rac ta l  moun ta ins

Input dialogue for Graftal

Rijssler  a t t r a c t o r

Three methods of data compression

Feigenbaum  reference pichue

Turbo Pascal reference picture

Screen dialogue

‘Atlas’of  the  Mandelbrot  se t .
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12.4-2 3 5 4 Lightspeed Pascal Reference Program for Macintosh

12.5-1 3 6 1 ST Pascal Plus Reference Program for Atari

12.6-1 3 6 6 UCSD Pascal Reference Program for Apple II

12.6-2 361 Include-File of useful subroutines

12.6-3 3 7 1 TMLPascal  Reference Program for Apple UGS
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Program Page Comments

6.3-l 165

6.4- 1 168

6.4-2 1 7 0

6.4-3 173

7.1-1 181

7.1-2 182

7.1-3 183

7.2-l 187

7.3-l 1 9 4

7.4-l 199

8 .1 -1 2 0 7

8.4-l 2 2 4

8.4-2 2 2 7

11 .1-1 2 5 8

11 .1-2 2 6 5

11 .2-1 2 6 7

11.2-2 2 6 9

11 .2-3 213

11 .3-1 2 8 1

11.3-2 2 8 2

11 .3-3 2 8 5

11.3-4 2 8 6

11.4-t 2 8 8

11 .4-2 2 9 1

11 .4-3 2 9 3

11.4-4 2 9 6

11 .4-5 2 9 7

11.4-6 2 9 9

11 .4-7 3 0 0

11 .5-1 3 0 5

11.5-2 3 1 0

11 .5-3 3 1 2

11 .5-4 3 1 4

11 .5-5 3 1 5

11 .5-6 3 1 7

12 .2-1 3 3 1

12.3-lff 3 3 9

12 .4-1 3 4 7

Drawing commar&.. pseudo-3D

Complex  a r i thmet ic

Curry-Gamett-Sullivan  method

Compute for higher powers

DJ-Mapping

D3ComputeAndTest

D3Draw

ComputeAndTesf  inverted

Mapping for Riemann sphere

Dis t inguish  for  s t ruc tures  in  in te r io r

Turtle graphics

Conett method

Martin method

Empty Application Shell, shell program for graphics

Globalconstwts.  tyypes,  variables

Turtle graphics - dragon

Fractallandscapes

Graft&

Feigenbaum  i te ra t ion .  logar i thmic

Fcigenbaum  landscape

Riissler attractor

Newton demonstration

Mapping for Newton development of x3-t

Mapping for quadratic iteration. Julia sets

Mapping for Gingerbread Man

Mapping for tomogram

Mapping for quasi-Feigenbaum  diagram

Compote for high-powered Gingerbread Man

Mapping and Initialise for pseudo-3D

Integer encoding (Berkeley Pascal)

Integer encoding to paint

Compress  int  to int

Run length encoding integer to paint

T r a n s f e r  int  t o  c h a r

Run length encoding char to paint

Turbo Pascal Reference Program for MS-DOS

Program examples in C

Turbo Pascal Reference Program for Macintosh
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diagram, 39,40,43-4,  50, 160,
162

landscape, 5 1
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scenario, 54, 56

fibrillation, 241
fig-tree, 37,44,  159
file transfer 3 19
fingerprint of chaos, 237
fractal, 102, 104, 199, 267
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graphics, 204-29
landscape 211-6,273

frontier, 54

Gaussian plane, 72, 84
Gingerbread Man, see Mandelbrot set
gipsy moth, 243
global variable, 265
graftal,  216-23,273
Grand Canyon, 248
graphical iteration, 34
graphics procedure, 29
GraphMode, 32
grey tone, 79, 107

hard copy, 303
heartbeat, 240-  1
HCnon,  Michel,  62,64
Hercules Graphics Adaptor (HGA), 329
Hilbert curve, 204,208
Huffman  method. 3 19
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IBM-PC, IBM-AT, 328,375
imaginary number, 82
Include-File, 332, 352, 362
integer encoding, 305
inversion, 186
iteration, 19,34

Julia, Gaston,  88, 104
Julia set, 88, 105, 110, 111-21,

129-30, 184, 288
inverted, 189-9 1
with interior structure, 201

KAM theorem, 62
Kermit, 319,339,374
Keypressed, 47
Koch curve, 206,209

layout of Pascal programs, 258,264
Lightspeed C, 360
Lightspeed Pascal, 353
limits to predictability, 238,244
look-up table, 3 11
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MacApp,  360
MacGet  and MacPut,  376
machine-independence, 258,264
Macintosh, 41, 319, 347
magnetism, 244
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Mandelbrot set, 3, 128-66, 185, 198,

293
inverted, 188-9
with interior structure, 200
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395

Ill&X

acoustic coupler, 320
Adams-Bashforth method, 61,68
algorithm, 258
Apple IIe,  366
Apple IIGS, 366, 371
armament behaviour, 242-3
asteroid, 63
Atari, 3 19,361
atlas of the Mandelbmt set, 379
attractor, 49,54,92,  172

HCnon,  62
Lorenz, 64-5
parabola, 57
Riissler,  69, 285
strange, 49,56
Verhulst, 58

backwards iteration, 122, 124
basin of attraction, 50,75,98,99,

105
Berkeley Pascal, 309
bifurcation, 39,46,54
billiards, 238
binary representation, 2 18
BinHex,  324
boolean function, 94
Borland, 329
boundary, 51, 80,89,  98, 108, 199
breakdown of predictability, 77,87
butterfly effect, 67, 236,237
Button, 32

C (programming language), 361
Cartesian coordinates, 85
cascade, 4 1
causality principle, 4,237

strong, 4,77,238

chaos, 2, 53, 72, 87, 232-45
researcher, 244
theory, 244

chaotic zone, 78
Cohen, Richard J., 241
Colour Graphics Adaptor (CGA), 329
computability of the world, 233
complex

arithmetic, 83
conjugate, 83
number, 81
plane, 84

computer-aided design (CAD), 180
computer

art,8
graphics, 180

graphics experiments, 6
contour line, 99, 144
C-curve, 206,210
connected set, 128, 157
CP/M,  366
cube root of unity, 93, 106
Curry-Garnett-Sullivan, 167, 170
cyclic sequence, 168

data compression, 3 11
data transmission, 474
DATEX, 320
decimal representation, 218
delta (Feigenbaum number), 46,48
dragon curve, 205,209
dynamical system, 5,18,54

electronic mail (e-mail), 3 19
Euler’s method, 61
Excel, 22, 132
experimental mathematics, 2,54
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universal coordinate system, 27
Unix, 309, 322, 337, 375
useful subroutine, 25,266

V24 interface, 374
VAX, 41,309,337,375

war, 241-3
weather, 4, 232-8

forecast, 66, 234-6
window, 27,41

zero, 73, 86
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measuring instrument, 25
meteorology, 232
modem, 320
Modula II, 360
modulus, 84
Monument Valley, 248
MPW Pascal, 360
MS-DOS, 319,328

Newton’s method, 72, 80, 86, 92 ,
104-5

nonlinear, 45

ORCA Pascal, 366
order and chaos, 79
orthogonal projection, 194

PAD parameter, 320
Papert,  Seymour, 206
paradigm, 2
parity, 375
period doubling, 41, 54
periodicity, 159
phase transition, 243
point of no return, 54
polar coordinates, 84, 122
production rule, 216
projection, 192

centre, 192
promptline, 338
PSI2  system, 328
pseudo-3D graphics, 165, 182,300

RAMdisk, 311
real number, 82
repetital, 224
repetitive design, 224-9
Research Group in Complex Dynamics,

Bremen, 2, 102, 138
Riemann sphere, 192
run length encoding, 304

Saperstein, Alvin M., 242
screen coordinates, 27
section, 41
self-similarity, 42,61,  103
Sierpihski curve, 205
snowflake curve, 206,210
soft copy, 303
spreadsheet, 22, 13 l-4
stop bits, 375
ST Pascal Plus, 361
strange attractor, see attractor
structured program, 258
SUN, 41, 309, 337,375

tap, 238-40
TextMode, 32
three-dimensional graphics, 180-6
TML Pascal, 359,366,37  1
tomogram, 145
transformation equation, 28
transient, 38
tree graphics, 212
Turbo Pascal, 330,353,366
Turbo Pascal reference program, 33 1
turtle graphics, 206,267

quadratic iteration, 131,291
quasi-Feigenbaum diagram, 164,297
quasi-Mandelbrot set, 146-7, 149

UCSD Pascal, 366
unit circle, 192




