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THE SOLVAY CONFERENCES ON PHYSICS

The Solvay conferences started in 1911. The first conference on radiation
theory and the quanta was held in Brussels. This was a new type of
conference and it became the tradition of the Solvay conference; the
participants are informed experts in a given field and meet to discuss one or
a few mutually related problems of fundamental importance and seek to
define the steps for the solution.
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the development of modern physics in the twentieth century.
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understanding of elementary particles and their interactions to much greater
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For more information, visit the website of the Solvay Institutes
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PREFACE

This volume contains the contributions to the XXIst Solvay Conference on

Physics, which took place at the Keihanna Interaction Plaza in the Kansaı̈

Science City. The topic was Dynamical Systems and Irreversibility.

The conference has been made possible thanks to the support of the

Keihanna Foundation, the Honda Foundation, and the International Solvay

Institutes for Physics and Chemistry, founded by E. Solvay.

Ioannis Antoniou
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OPENING SPEECH BY J. SOLVAY

Ladies and Gentlemen,

It is a great pleasure and honor to open here the XXIst Solvay Conference on

Physics. Generally, the Conferences are held in Brussels. There were also a few

organized in the United States. This is the first Solvay meeting organized in

Japan. I would like to interpret this conference as a sign of admiration for the

creativity of Japanese scientists. May I first tell you an anecdote? Ernest Solvay,

my great-grandfather, was a man of multiple interests. He was equally attracted

by physics, chemistry, physiology, and sociology. He was in regular correspon-

dence with outstanding people of his time, such as Nernst and Ostwald. This

was a period where the first difficulty had appeared in the interpretation of the

specific heat by classical physics. Ernest Solvay was bold enough to have his

own opinion on this subject. He thought there were surface tension effects, and

he expressed his view in a meeting with Nernst in 1910. Nernst was a practical

man. He immediately suggested that Ernest Solvay should organize an inter-

national meeting to present his point of view. This was the starting point for the

Solvay Conferences, the first of which took place in 1911. The Chairman was

the famous physicist H. A. Lorentz. At the end of the conference, Lorentz

thanked Ernest Solvay not only for his hospitality but also for his scientific

contribution. However, in fact his contribution was not even discussed during

the meeting. Ernest Solvay was not too disappointed. He thought he had just to

continue to work and appreciated greatly the first conference dealing with

radiation theory and quanta. He therefore decided to organize the ‘‘Solvay

Institute for Physics,’’ which was founded in May 1912. He called it the

‘‘Institut International de Physique’’ with the goal ‘‘to encourage research which

would extend and deepen the knowledge of natural phenomena.’’ The new

foundation was intended to concentrate on the ‘‘progress of physics.’’ Article 10

of the statutes required that ‘‘at times determined by the Scientific Committee a

‘Conseil de Physique,’ analogous to the one convened by Mr. Solvay in October

1911, will gather, having for its goal the examination of significant problems of

physics.’’ A little later, Ernest Solvay established another foundation ‘‘Institut

International de Chimie.’’ The foundations were ultimately united into ‘‘Les

Instituts Internationaux de Physique et de Chimie,’’ each having its own

Scientific Committee.

The first Solvay Conference on Physics had set the style for a new type of

scientific meetings, in which a select group of the most well informed experts in

a given field would meet to discuss the problems at the frontiers and would seek

xvii



to identify the steps for their solution. Except for the interruptions caused by the

two World Wars, these international conferences on physics have taken place

almost regularly since 1911, mostly in Brussels. They have been unique

occasions for physicists to discuss the fundamental problems that were at the

center of interest at different periods and have stimulated the development of

physical science in many ways. This was a time where international meetings

were very exceptional. The Solvay Conferences were unexpectedly successful.

In his foreword to the book by Jadgish Mehra, ‘‘The Solvay Conferences on

Physics,’’ Heisenberg wrote:

I have taken up these reminiscences in this foreword in order to emphasise
that the historical influence of the Solvay Conferences on the development of
physics was connected with the special style introduced by their founder. The
Solvay Meetings have stood as an example of how much well-planned and
well-organised conferences can contribute to the progress of science.

It was often said that the people who met at Solvay Conferences went

subsequently to Stockholm to receive the Nobel Prize. This is perhaps a little

exaggerated, but there is some truth. It is also at the Solvay Conference in 1930

that one of the most famous discussions in the history of science took place.

This was the discussion between Einstein and Bohr on the foundations of

Quantum theory. Nearly 70 years later it is remarkable to notice that physicists

seem not to agree on who won in this discussion.

There is another, more personal aspect that influences the development of the

Solvay Conferences. When my friend Ilya Prigogine some 40 years ago in 1958

was nominated Director of the Institutes, he extended their activities from

organizing conferences to doing research in a direction that encompasses

today’s theme, ‘‘Irreversible Processes and Dynamical Systems.’’

The Institutes evolved into a mini Institute for Advanced Study centered

around complex systems, nonlinear dynamics, and thermodynamics. In that

role, they were an impressive success. Work done within the Institutes shows

that far from equilibrium, matter acquires new properties that form the basis of a

new coherence. These results introduced the concept of auto-organization,

which is echoed into economic and social sciences. These innovations were

the reason for Professor Prigogine’s 1977 Nobel Prize.

We all know Professor Prigogine’s passion for the understanding of time. The

flow of time is present on various levels of observations, be it cosmology,

thermodynamics, biology, or economics. Moreover, time is the basic existential

dimension of man, and nobody can remain indifferent to the problem of

time. We all care for the future, especially in the transition period in which

we live today. Curiously, the place of time in physics is still a controversial

subject. I hope that this conference will make a significant contribution to this

vast subject.

xviii OPENING SPEECH BY J. SOLVAY



My gratitude goes to the local committee that has organized this conference.

Finally, I want to thank Keihanna Plaza for the magnificent hospitality we

have received there. I would also like to acknowledge the Honda Foundation,

Unoue Foundation, L’Oreal Foundation, the Consul of Belgium and the European

Commission for financial contributions that have made this conference possible.

OPENING SPEECH BY J. SOLVAY xix





INTRODUCTORY REMARKS

BY ILYA PRIGOGINE

I am happy to open the XXIst Solvay Conference on Physics, especially as it

takes place in Japan, in this beautiful setting.

The organization of the Solvay Conference in Kansaı̈ Science City is a fitting

tribute to Japanese science. I want also to thank the staff of the Keihanna

Interaction Plaza and especially Mr. Yasuki Takeshima for the hospitality and

the local organization committee chaired by Professor Kitahara, who was many

times our honored guest in Brussels. I am very grateful to Professor Ioannis

Antoniou for his help in the organization of this Conference.

Over the years I had many Japanese students. The first was Professor Toda

and the most recent were Professors Tasaki and Hasegawa, who are here. My

Japanese co-workers had a decisive influence on the evolution of the work of the

Brussels–Austin group.

The subject of the XXIst Conference, ‘‘Dynamical Systems and the Arrow of

Time,’’ is closest to the XVIIth conference, ‘‘Order and Fluctuations in

Equilibrium and Nonequilibrium Statistical Mechanics,’’ held in 1978. It is a

pleasure to mention that a number of people who participated in the 1978

conference are here. Let me mention Professors Arecchi, Balescu, Hao Bai Lin,

Kitahara, Reichl, Sinai,. . .; I hope I have not omitted anyone.

In the XVIIth Conference, much time was devoted to equilibrium critical

phenomena and to macroscopic nonequilibrium dissipative structures. A high

point was the discussion around the statement by Professor Philip Anderson that

dissipative structures have no intrinsic character as they would depend on the

boundary conditions. This led to hot discussions that have gone on for years. I

believe that this question is now resolved by the experimental discovery of

Turing structures with intrinsic wave lengths. At no previous Solvay Conference

was the relation between irreversibility and dynamics systematically discussed.

However, this is a fascinating subject as we discover irreversible processes at all

levels of observations, from cosmology to chemistry or biology.

This is a kind of paradox. It is well known that classical or quantum

dynamics lead to a time-reversible, deterministic description. In contrast, both

kinetic theory and thermodynamics describe probabilistic processes with broken

time symmetry. Kinetic theory and thermodynamics have been quite successful.

It is therefore quite unlikely that they can be attributed to approximations

introduced in dynamics. Many attempts have been now developed to give a

deeper formulation to the problem.

xxi



From this point of view, there is some similarity between the goal of the first

Solvay Conference held in 1911 and the present conference at the end of the

century. In 1911, the question was how to formulate the laws of nature to include

quantum effects. Now we ask if irreversibility is the outcome of approximations

or if we can formulate microscopic basic laws that include time symmetry

breaking.

In my long experience, I always found that the problem of time leads to

much passion. So I look forward with great expectations to this conference.

xxii introductory remarks by ilya prigogine
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NON-MARKOVIAN EFFECTS IN THE

STANDARD MAP

R. BALESCU

Department of Physical Statistics—Plasma, Free University of Brussels,

Brussels, Belgium
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I. INTRODUCTION

Iterative maps have been extensively used for the study of evolution problems,

as a substitute for differential equations. Of particular importance for the

modeling of classical mechanical systems are Hamiltonian (or area-preserving)

maps. A special case to which a great deal of attention has been devoted is the

Chirikov–Taylor standard map [1–3] (we only quote here a few among the

numerous works devoted to this subject). It is, indeed, the simplest two-

dimensional Hamiltonian map, many properties of which can be derived

analytically:

xtþ1 ¼ xt �
K

2p
sin2pyt

ytþ1 ¼ yt þ xtþ1 ðmod 1Þ
ð1Þ

3



Here xt is a continuous variable ranging from �1 to þ1, yt is an angle

divided by 2p, and t is a ‘‘discrete time,’’ taking integer values from 0 to 1; K

is a nonnegative real number, called the ‘‘stochasticity parameter.’’ Iterative (in

particular, Hamiltonian) maps prove to be useful tools for the study of transport

processes. In order to treat such problems, one adopts a statistical description.

The consideration of individual trajectories defined by Eq. (1) is then replaced

by the study of a statistical ensemble defined by a distribution function in the

phase space spanned by the variables x and y: f ðx; y; tÞ; this is a 1-periodic

function of y and is defined only for nonnegative integer values of t. Of special

physical interest is the phase-averaged distribution function, which will be

called the density profile nðx; tÞ:

nðx; tÞ ¼
ð1

0

dy f ðx; y; tÞ ð2Þ

It has been known for a long time [1–7] that in the limit of large K, the

evolution described by the standard map has a diffusive character. This

statement has to be made more precise, because it may address various aspects

of the evolution.

In the pioneering work of Rechester and White [4], a Liouville equation for

the distribution function is modified by adding (arbitrarily) an external noise. A

calculation of the mean square displacement of x then yields, for large K, a

diffusion coefficient. This derivation is unsatisfactory for two reasons: (a) the

assumption of a continuous-time Liouville equation for the description of a

discrete-time process and (b) the presence of noise, which introduces from the

very beginning an artificial dissipation.

Abarbanel [5] gave a more transparent derivation, in which these two

assumptions are no longer introduced. He used a projection operator formalism

for the derivation of a kinetic equation. His formalism is close to ours, but uses a

continuous time formalism and is used for a different purpose.

Hasegawa and Saphir [6] gave the first truly fundamental treatment of the

standard map, showing that in the limit of large K, and simultaneously of large

spatial scales, there exists an intrinsic diffusive mode of evolution of the

standard map dynamics (this result was further developed by the present author

[7]). No additional probabilistic assumption is necessary for obtaining this

result. More specifically, these authors proved the existence (in this limit) of a

pole of the resolvent (in Fourier representation) of the form [�ð2pqÞ2
D], where

q is the wave vector and D is identified with the diffusion coefficient.

Given this result, it appears desirable to study more globally the behavior of a

system. In particular, we should like to determine how the system, starting from

an arbitrary initial condition, and evolving by the exact standard map dynamics,

reaches a regime in which the evolution is determined by a diffusion equation.

This goal requires the study of the density profile, Eq. (2).

4 r. balescu



In ‘‘classic’’ statistical mechanics, such a study involves the solution of a

kinetic equation—that is, a closed equation for a reduced distribution function.

A corresponding equation for systems described by discrete time iterative maps

was obtained in a recent paper by Bandtlow and Coveney [8]. They derived an

exact closed equation for the density profile, analogous to the master equation

obtained by Prigogine and Résibois [9] in continuous-time statistical mechanics.

The most important characteristic of both equations is their non-Markovian

nature: The evolution of the system at time t is determined not only by its

instantaneous state, but rather by its past history. It is well known in continuous-

time kinetic theory that, whenever there exist two characteristic time scales that

are widely separated (e.g., the duration of a collision, and the inverse collision

frequency in a gas), the master equation reduces, for times much longer than the

short time scale, to a Markovian kinetic equation.

The Bandtlow–Coveney equation is quite general; it appears that the standard

map provides us with an ideal testing bench for studying its properties. It is

interesting to investigate whether there exist here also two such characteristic

time scales, and under which conditions a markovianization is justified. This

will be the object of the present work.

II. NON-MARKOVIAN AND MARKOVIAN
EVOLUTION EQUATIONS

The evolution of the distribution function of a system governed by the

standard map in discrete time t is determined by the Perron–Frobenius

operator U [7]:

f ðx; y; tþ 1Þ ¼ Uf ðx; y; tÞ ð3Þ

Alternatively, one may introduce the propagator, which relates the

instantaneous distribution function to its initial value:

f ðx; y; tÞ ¼ Utf ðx; y; 0Þ ð4Þ

In continuous-time dynamics this propagator is related to the Liouville

operator L:

UðtÞ ¼ expðLtÞ ð5Þ

Here and below, Roman letters t; s; . . . denote real, continuous-time

variables, whereas Greek letters t;s; . . . denote discrete-time variables, taking

only integer values.
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The Fourier transform of the distribution function with respect to both phase

space variables will be extensively used below:

f ðx; y; tÞ ¼
X1

m¼�1

ð1
�1

dq e2pi ðqxþmyÞ ~fmðq; tÞ ð6Þ

As explained in Section I, we are interested in deriving an equation of

evolution for the reduced distribution function, or density profile nðx; tÞ [Eq. (2)]

or, equivalently, for its Fourier transform, which is simply the m ¼ 0 Fourier

component of the distribution function; it will be denoted by the notation

jðq; tÞ:

nðx; tÞ ¼
ð1
�1

dq e2piqx jðq; tÞ

jðq; tÞ ¼ ~f0ðq; tÞ
ð7Þ

The density profile can also be obtained by acting on the full distribution

function with a projection operator P whose effect is the average over the

angle y:

Pf ðtÞ ¼ ~f0ðtÞ � jðtÞ ð8Þ

(In forthcoming equations, the argument q of the distribution functions will not

be written down explicitly whenever it is clearly understood.) Obviously,

P2 ¼ P. Let Q be the complement of the projector P; thus P þ Q ¼ I, where I is

the identity operator.

In order to derive a closed equation for the density profile, Bandtlow and

Coveney [8] start from the trivial identity expressing the group property of the

Perron–Frobenius operator:

Utþ1 ¼ UUt ð9Þ

which is projected on the P and Q subspaces and rewritten in the form

PUtþ1 ¼ PUPUt þ PUQUt ð10Þ

with a similar equation for QUtþ1. A Z-transformation (the analog of the

Laplace transformation for discrete time) is performed on these equations, and

some simple transformations (similar to those of Chapter 15 of Ref. 7) lead,

without any approximations, to the following equation:

Pf ðtþ 1Þ ¼
Xt
s¼0

PcðsÞPf ðt� sÞ þ PDðtþ 1ÞQ f ð0Þ ð11Þ
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The diagonal (P � P) operator cðtÞ is defined as follows (for simplicity we

no longer write the P-projectors explicitly):

cðtÞ � PcðtÞP ¼
PUP; t ¼ 0

0; t ¼ 1

PUQðQUQÞt�1
QUP; t � 2

8<
: ð12Þ

The nondiagonal ‘‘destruction operator’’ PDðtÞQ has a similar form, which

is not written here, because it will not be needed in the forthcoming work. Note

that Eq. (11) is not limited to the standard map: It is easily adapted to a general

iterative map, in arbitrary dimensionality, subject only to some mathematical

regularity conditions, discussed in Ref. 8.

Equation (11) is called the Master equation in discrete time. It is the closest

analog to the Prigogine–Résibois master equation in continuous time [7,9] for

the reduced velocity distribution function in a gas:

qtjðtÞ ¼
ðt

0

dscðsÞjðt � sÞ þ DðtÞCf ð0Þ ð13Þ

The most conspicuous characteristic of both equations is their non-

Markovian nature, expressed by the convolution appearing in the first term of

the right-hand side. Thus, the instantaneous change at time t, leading to

jðtþ 1Þ, is determined, in principle, by the whole past history. For obvious

physical reasons, cðtÞ must be a decreasing function of the time t. The effective

width of this function determines the range of the memory of the process; we

therefore call cðtÞ the memory kernel.

The second term in the right-hand side of Eq. (11) is a source term,

describing the effect of the initial angle-dependent part of the distribution on the

evolution at time t of the density profile; it corresponds to the so-called

destruction term acting on the initial correlations in the continuous-time master

equation. Normally, it decreases in time over the same time scale as the memory

kernel.

For simplicity, we shall assume here that the initial distribution function is

independent of the angle y, hence the destruction term is zero. Using also the

simpler notation, Eq. (8), we rewrite Eq. (11) under this condition in the simpler

form:

jðtþ 1Þ ¼
Xt
s¼0

cðsÞjðt� sÞ ð14Þ

As explained in Section I, whenever there exist two intrinsic, widely

separated time scales, the master equation can be markovianized; that is, the
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retardation effects can be neglected for long times. We must now understand

what this operation means in discrete-time dynamics. Mathematically, it implies

that the right-hand side of Eq. (14) could be approximated by an expression

containing only the distribution function at time t.

(i) A straightforward, rather brutal way of achieving this goal consists of

neglecting all terms corresponding to s 6¼ 0. Equation (14) then reduces to

j0ðtþ 1Þ ¼ cð0Þj0ðtÞ ð15Þ

This will be called the zero-Markovian approximation. It implies that the

evolution of the density profile occurs without any memory: The memory kernel

cðsÞ has strictly zero width. From the definition (12) it follows that this

amounts to supposing that the ‘‘complementary’’ states Q f (which only appear

in the terms with s � 2) are completely excluded as intermediate states in the

construction of the memory kernel. The latter reduces to

cð0Þ ¼ PUP ð16Þ

that is, the diagonal P � P element of the Perron–Frobenius operator. In

continuous-time dynamics, this approximation corresponds to

qtPf ðtÞ ¼ PLPf ðtÞ ð17Þ

which is the celebrated Vlasov equation [7,10].

(ii) A more subtle markovianization (called the full Markovian approxima-

tion) is performed when the following conditions are satisfied.

(a) The memory kernel is a rapidly decaying function of time. More

precisely, there exists a characteristic time tM , called the memory time, such that

jcðtÞj � 0 for t � tM ð18Þ

This characteristic time is analogous to the duration of a collision in ordinary

kinetic theory.

(b) The density profile is slowly varying in time. This implies the existence

of a second time scale tR, the relaxation time, much longer than the memory

time: tR � tM , such that

jðtÞ � jasðtÞ for t � tR ð19Þ

where jasðtÞ is the asymptotic form of the distribution function, which is

independent of the initial condition.
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When these conditions are satisfied, then, for long times compared to tM , the

following approximations are justified in Eq. (14):

* The retardation in the density profile is neglected on the right-hand side:

jðt� sÞ � jðtÞ
* The upper limit in the summation is pushed up to infinity.

The resulting equation is then

jMðtþ 1Þ ¼ �jMðtÞ ð20Þ

The time-independent evolution operator appearing here is

� ¼
X1
s¼0

cðsÞ ð21Þ

Equation (20) is a Markovian equation of evolution, which will be called the

kinetic equation of the map. The name is suggested by the analogous kinetic

equation of continuous-time statistical mechanics; the operator corresponding to

� is there the sum of the Vlasov operator and of the collision operator. The form

of the kinetic equation is similar to the starting equation (3), and the kinetic

operator � plays a role similar to the Perron–Frobenius operator U. It must not

be forgotten, however, that unlike Eq. (3), Eq. (20) is a closed equation for the

density profile, that is, the P-component of the distribution function.

All the considerations of the present section are valid for arbitrary two-

dimensional Hamiltonian maps (and can be easily generalized to higher

dimensionality). We now illustrate the results of this section in the case of the

standard map.

III. MASTER EQUATION FOR THE STANDARD MAP

The advantage of the standard map is that many quantities can be calculated

analytically. Thus, the Fourier representation of Eq. (3) is [7]

~fmðq; tþ 1Þ ¼
X1

m0¼�1

ð1
�1

dq0hq;mjUjq0;m0i~fm0 ðq0; tÞ ð22Þ

with the following expression for the matrix elements of the Perron–Frobenius

operator:

hq;mjUjq0;m0i ¼ dðq0 � q � mÞ Jm�m0 ðq0KÞ ð23Þ
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where JlðxÞ is the Bessel function of order l. It is clearly seen that this operator is

nondiagonal in both q and m. Using now the definition (8) of the P-projector and

the definition (12) of the memory kernel, a straightforward, but rather lengthy

calculation similar to those of Refs. 6 and 7 leads to the following result (details

will be published elsewhere [11]):

cð0Þ ¼ J0ðqKÞ
cð1Þ ¼ 0

cðtÞ ¼
X
m1 6¼0

� � �
X
mt 6¼0

dðm1 þ m2 þ � � � þ mtÞ � J�m1
ðqKÞ ð24Þ

Yt�1

j¼1

Jmj�mjþ1

(
q �

Xj

l¼1

ml

 !
K

" #)
JmtðqKÞ; t ¼ 2; 3; . . .

This expression is exact, but rather untransparent; in particular, the

dependence on t is not easily grasped. We now restrict the study of the

evolution to a special domain of parameter space, which defines the diffusive

regime:

ffiffiffiffi
K

p
� 1; qK � 1 ð25Þ

Let us stress the fact that the mere condition of a large K is not sufficient for

characterizing a diffusive regime. The second condition puts a limit on the wave

vector q; it implies that the larger the stochasticity parameter, the larger the

length scales (�q�1Þ for which diffusive behaviour will (eventually) be

observed. It follows from the well-known properties of the Bessel functions that

in the diffusive regime the following orders of magnitude prevail:

JmðqKÞ ¼ O½ðqKÞm�; m ¼ 0; 1; 2; . . .

Jm½ðq � nÞK� ¼ OðK�1=2Þ; n ¼ �1;�2; . . . ; m ¼ 0; 1; 2; . . .
ð26Þ

Under these conditions, the expressions (24) can be approximated by retain-

ing only a small number of terms in the summations. In the present work we

approximate the memory kernel by retaining terms through order ðqKÞ4
. We do

not write down the explicit expressions, which will be published elsewhere [11].

We first check that the memory kernel cðq;K; tÞ [� cðtÞ] is a decreasing

function of time. Choosing a rather extreme value for q ¼ 0:01, we plot cð2Þ,
cð3Þ; cð4Þ against K in the range 15 � K � 50 (Fig. 1).

Over this whole range, cð0Þ varies very slowly from 1 to 0:98; thus it

strongly dominates the remaining three components. The latter have a
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characteristic oscillating behavior due to the Bessel functions. Their maximum

amplitude (which increases with K) remains everywhere much smaller than

cð0Þ; thus

jcð0ÞjMax � jcð2ÞjMax � jcð4ÞjMax ð27Þ

[cð3Þ is out of phase with cð2Þ and cð4Þ]. The relative size of these

functions is, however, a sensitive function of K [for instance, when cð2Þ
vanishes, the leading non-Markovian correction would be cð3Þ or cð4Þ]. In

spite of these details, the very rapid decay of jcðtÞj is obvious. The memory time

defined in Eq. (18) is of the order tM � 4 (this quantity is only defined, as usual,

in order of magnitude: its value depends on the precision accepted in the

calculations). Thus, for the present choice of parameters, the kernel jcðtÞj
decreases by three orders of magnitude after t ¼ 4.

IV. SOLUTION OF THE GENERAL MASTER EQUATION

We now take advantage of the rapid decrease of the memory kernel, expressed

by Eq. (27), in order to obtain an approximate solution of the non-Markovian

master equation (14). The latter is written in terms of a propagator:

jðtÞ ¼ WðtÞjð0Þ ð28Þ

Figure 1. Dependence of the memory kernel cðq;K; tÞ on the stochasticity parameter K

ðq ¼ 0:01Þ. Solid: t ¼ 2; dot: t ¼ 3; dash: t ¼ 4.
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We decide to truncate the convolution in the master equation at the level of

cð4Þ. The propagator then obeys the following approximate equation:

Wðtþ 1Þ ¼ cð0ÞWðtÞ þ cð2ÞWðt� 2Þ þ cð3ÞWðt� 3Þ þ cð4ÞWðt� 4Þ
ð29Þ

This equation is easily solved through order cð4Þ (a detailed proof will be

published separately):

WðtÞ ¼ cð0Þt þ ðt� 2Þcð0Þt�3 cð2Þ þ ðt� 3Þcð0Þt�4 cð3Þ

þ ðt� 4Þcð0Þt�5 cð4Þ þ 1

2
ðt� 5Þðt� 6Þcð0Þt�6 cð2Þ2

t � 6

ð30Þ

It is understood that in the first members (t < 6) of the sequence (30), the

coefficients of the terms containing a negative power of cð0Þ are set equal to

zero.

This solution will be compared to the two Markovian approximations

discussed in Section 2. The zero-Markovian approximation yields a trivially

simple solution:

j0ðtÞ ¼ W0ðtÞjð0Þ
W0ðtÞ ¼ ½cð0Þ�t

ð31Þ

that is, simply the first term in Eq. (30).

The full Markovian approximation is also easily obtained from Eqs. (20) and

(21), truncated to order cð4Þ:

jMðtÞ ¼ WMðtÞjð0Þ

WMðtÞ ¼
X4

s¼0

cðsÞ
" #t ð32Þ

Let it be stressed at this point that all the results obtained in the present

section are valid for an arbitrary Hamiltonian map dynamics, provided that the

ordering (27) is valid and the truncation at the level cð4Þ is justified. The

truncation level can easily be extended to higher orders if necessary.

V. SOLUTION OF THE STANDARD MAP MASTER EQUATION

The general results obtained in Section IV are now applied to the standard map.

The general expressions of the memory kernel, Eq. (24), are truncated at the
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appropriate level, considering the orders of magnitude (26) pertaining to the

diffusive regime (25). The explicit calculations are somewhat tedious, but

are facilitated by the use of a symbolic computer program, such as Maple. The

result is then inserted into Eqs. (28)–(32), thus yielding the expressions of the

non-Markovian solution, as well as of its Markovian approximations.

We choose on purpose a relatively small value of K ¼ 22:5. The initial

condition of the density profile (in Fourier representation) will be chosen as the

following rectangular function:

jðq; 0Þ ¼ 1; q � 0:01

0; q > 0:01

�
ð33Þ

This choice ensures the validity of the second condition (25) over the whole

range of wave vectors.

Figure 2 shows the solution jðq; tÞ of the non-Markovian master equation

[Eq. (29)] for times t ¼ 10, 100, 1000, 5000. The evolution from the initial

rectangular distribution toward an asymptotic ‘‘Gaussian-like’’ distribution

characteristic of the diffusive regime is quite evident. A more quantitative

conclusion can be drawn from this figure. It is clearly seen that it takes a

time t � 1000 for the initial shape of the density profile to be forgotten. This

Figure 2. Non-Markovian solution jðq;K; tÞ at different times. K ¼ 22:5. Dash-dot: t ¼ 10;

dot: t ¼ 100; dash: t ¼ 1000; solid: t ¼ 5000:
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value can be taken as the definition of the relaxation time tR, Eq. (19).

Combining this result with the value of the memory time obtained in Section III,

we see that the ratio of the characteristic times for the standard map in the

diffusive regime is, in order of magnitude,

tM

tR

� 10�2�10�3 ð34Þ

This very small value justifies the use of the markovianized kinetic equation (20)

for t � tM.

We now wish to examine in more detail the transition from the non-

Markovian to the Markovian regime. We thus compare the non-Markovian

solution jðq; tÞ (30) with the zero-Markovian solution j0ðq; tÞ (31) and with

the full Markovian solution jMðq; tÞ (32). The former has a simple expression

for the standard map in the diffusive regime; using Eq. (24) we find

W0ðtÞ ¼ ½J0ðqKÞ�t � 1 � 1

4
ðqKÞ2

� �t
� exp � 1

4
K2 q2t

� �
ð35Þ

This is precisely of the form of the propagator associated with the diffusion

equation (in Fourier representation), with a diffusion coefficient D:

W0ðtÞ � exp½�D ð2pqÞ2 t� ð36Þ

The diffusion coefficient appearing in the zero-Markovian approximation (35) is

thus

D ¼ DQL ¼ 1

4ð2pÞ2
K2 ð37Þ

The latter value is the well-known quasilinear diffusion coefficient [1–7]. Thus,

the ‘‘Vlasov’’ approximation for the standard map in the diffusive regime is

equivalent to the quasilinear approximation.

In Fig. 3 the three solutions are shown for a short time t ¼ 6 (of the order of

the memory time). As expected, the Markovian approximations deviate

significantly from the non-Markovian one. The deviation is strongest for

large q; the zero-Markovian is definitely not good, even at such short times.

In Fig. 4 the same three solutions are plotted for t ¼ 1000 (of the order of the

relaxation time). On the scale of this figure, the full Markovian solution is now

very close to the ‘‘exact’’ non-Markovian one. On the other hand, the zero-

Markovian (quasilinear) solution is significantly wrong. This is a quite

interesting result. Recalling Eqs. (20) and (21), it is seen that the memory
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Figure 3. Non-Markovian and Markovian solutions for short time, t ¼ 6. K ¼ 22:5. Solid:

Non-Markovian jðq;K; tÞ; dash: Zero-Markovian j0ðq;K; tÞ; dots: fully Markovian jMðq;K; tÞ.

Figure 4. Non-Markovian and Markovian solutions for long time, t ¼ 1000. K ¼ 22:5. Solid:

Non-Markovian jðq;K; tÞ; dash: Zero-Markovian j0ðq;K; tÞ; dots: fully Markovian jMðq;K; tÞ.
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effect [i.e., cðsÞ for s > 0] cannot be ignored in the markovianization of the

evolution equation— that is, in the construction of the fully Markovian operator

WMðtÞ [Eq. (32)] or � [Eq. (21)]. Thus, the full Markovian approximation

should not be understood as a ‘‘memoryless’’ evolution. The evolution operator

� is built up by the cumulative action of the exact operator over a finite time

span of the order of the (short) memory time.

It is instructive to look more closely to the way in which the non-Markovian

solution approaches the asymptotic Markovian solution as a function of time. In

Fig. 5 we plot the difference �jðq; tÞ ¼ jðq; tÞ � jMðq; tÞ for a fixed value of

q ¼ 0:004 (in the region of large deviation). The deviation is, of course,

strongest for short time; it approaches zero asymptotically for times longer than

the relaxation time tR � 1000.

The final asymptotic density profile is expected to be a diffusive Gaussian of

the form (36). The ‘‘true’’ diffusion coefficient is obtained from the ‘‘exact’’

non-Markovian density profile by the well-known relation

D ¼ � 1

2ð2pÞ2

d

dt
q2jðq; tÞ

qq2

����
q¼0

ð38Þ

Let jGðq; tÞ be the Gaussian (36) combined with the diffusion coefficient

(38). In Fig. 6a it is seen that, for t ¼ 1000, the deviation of the non-Markovian

Figure 5. Deviation of the fully Markovian from the Non-Markovian solution, as a function of

time. K ¼ 22:5; q ¼ 0:004. �jðq;K; tÞ ¼ jðq;K; tÞ � jMðq;K; tÞ.
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Figure 6. (a) Non-Markovian and Gaussian density profiles at t ¼ 1000: K ¼ 22:5. (b) Devi-

ation of the Gaussian from the Non-Markovian solution at t ¼ 1000. K ¼ 22:5. Djðq;K; tÞ ¼
jðq;K; tÞ � jGðq;K; tÞ:
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solution from the corresponding Gaussian is small, but visible. This is better

visualized by plotting the difference Djðq; tÞ ¼ jðq; tÞ � jGðq; tÞ (Fig. 6b).

The relatively important deviation has a nonnegligible maximum.

We now plot the deviation of the non-Markovian solution from the Gaussian

diffusive profile Djðq; tÞ at the position of the maximum deviation q ¼ 0:004

as a function of time (Fig. 7).

Comparing this figure with Fig. 5 (corresponding to the same value of q), we

note that the deviation of the Gaussian has everywhere an opposite sign

compared to the Markovian solution. Both deviations eventually go to zero; this

takes, however, a very long time (t ¼ 6000 in the present case); this time

actually depends on q: Large values of q relax faster than the small ones. The

following interesting conclusion thus follows from this discussion: Over a long

range of intermediate times (1000 < t < 10000) the asymptotic Markovian

density profile is non-Gaussian. The ‘‘pure’’ diffusive regime (36) only sets in

after a time much longer than the relaxation time.

VI. CONCLUSIONS

In this work we presented a first step toward the construction of a kinetic theory

of chaotic dynamical systems described by iterative maps. This theory follows

as closely as possible the methodology of the kinetic theory of continuous-time

dynamical systems developed in the framework of nonequilibrium statistical

mechanics (see, e.g., Refs. 7 and 10). A closed equation for the density profile

Figure 7. Deviation of the Gaussian density profile from the Non-Markovian solution,

Djðq;K; tÞ; as a function of time. K ¼ 22:5; q ¼ 0:004:
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due to Bandtlow and Coveney [8] is taken as a starting point. Particular

attention is devoted to the transition from this non-Markovian equation to a

Markovian approximation, corresponding to the usual kinetic equation. This

transition appears whenever there exist two widely separated time scales: a short

memory time tM and a long relaxation time tR. Two levels of markovianization

are described. The zero-Markovian approximation consists of neglecting

altogether all memory effects: It is shown to correspond to the Vlasov

approximation of the usual kinetic theory. The full Markovian approximation

introduces a description formally similar to the collision operator of kinetic

theory, although the role of collisions is played here by the intrinsic

stochasticity. The evolution tends asymptotically, for times much longer than

the relaxation time, toward an irreversible process of diffusive type.

The general properties described above are illustrated explicitly in the case of

the Chirikov–Taylor standard map in the diffusive regime, where all calculations

can be done analytically. The conditions of validity of the Markovian approxi-

mation are thus verified. The non-Markovian equation is solved explicitly in this

regime. It can therefore be compared in detail with the Markovian approxi-

mations. The zero-Markovian approximation is shown to correspond to the

quasilinear approximation; it appears to be inadequate for the asymptotic

description of the evolution. Memory effects must necessarily be retained even

in the asymptotic regime, through the construction of the fully Markovian

evolution operator.

The transition from the non-Markovian to the Markovian regime is described

in detail. It was also pointed out that the latter regime is not necessarily a purely

diffusive one, described by a Gaussian density profile. Only for times very much

longer than the relaxation time does the Markovian asymptotic solution tend

towards a diffusive one.
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I. INTRODUCTION

A simple non-Hamiltonian chaotic system, such as the baker map, is a nice

model to investigate the foundations of thermodynamics [1–3]. Because of such

system’s simplicity, we can use them to directly connect a time reversible

dynamics with irreversible thermodynamics. In order to understand irreversi-

bility, it was quite useful to see how a unique time scale such as the relaxation

time, which characterizes irreversibility, appears in a time reversible dynamical

system [2].
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In this chapter we will investigate a simple Hamiltonian chaotic system as a

small thermodynamics one [4,5]. To understand thermodynamic laws [6], we

need real energy. We consider thermodynamics as a general theory, which

describes how a system responds to slow external operations. We will introduce

external operations such as isothermal and fixed-volume transformations in our

system and study how the system responds.

Our study is motivated by a pioneer work by Sekimoto and Sasa [7].

They derived the thermodynamic laws of a system governed by the Langevin

equation with slow external operations. In the Langevin equation, white noise

plays a role of heatbath. The correlation time is negligible compared to the time

scale of the external operations. They showed that the work is given as

the difference between the initial and final free energy in the quasi-static

isothermal process. They presented a beautiful derivation of the second law, the

positive excess heat production, using an expansion with respect to the slow

external operation.

In the next section we will construct thermodynamics of the cat map.

In Section II.A, we start with a time-dependent Hamiltonian, which governs

the motion of a periodically kicked particle between two walls. The Poincaré

map can be scaled as a generalized standard map. Because of the chaotic

dynamics, the motion of the particle is irregular. We interpret the irregular

motion as coming from thermal noise from a virtual heatbath. We introduce a

Figure 1. Phase space of the operated system.
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harmonic oscillator as the heatbath with which the system conserves total

energy.

Because of the mixing property, the probability density physically appro-

aches equilibrium. We define temperature as the average kinetic energy of the

particle. The temperature is determined by the scale of the momentum.

In Section II.B, we will introduce the external isothermal operation and the

fixed-volume one. In the former the walls move while the scale of the

momentum stays fixed. In the latter the scale of the momentum changes without

the walls moving.

In Section II.C, the time evolution of the probability density will be written

as the repeated operation of a pair of transfer operators, with one describing an

isothermal transformation and the other describing the chaotic map.

In Section II.D, we will calculate the work for slow isothermal process.

In Section II.E, following the argument of Sekimoto–Sasa, we derive the

inequality corresponding to the 2nd law of thermodynamics. The inequality may

lose the direct connection to the non-existence of perpetual motion of the

second kind.

In Section II.F, we will discuss how the ordinary second law of thermo-

dynamics can be recovered in large systems.

In Section III, we will conclude this chapter and comment on extension of

thermodynamics into the region of weak chaos.

Figure 2. Thermodynamics of the cat map.
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II. THERMODYNAMICS OF THE CAT MAP

A. Hamiltonian

We consider a periodically kicked particle between two walls at X ¼ �L=2. The

time evolution of the particle is governed by the following time-dependent

Hamiltonian:

HðtÞ ¼ P2

2m
þ VðXÞ

X1
n¼�1

dðt � ntÞ ð1Þ

The potential depends on time through the periodic d-function.

Adding a pair of action-angle variables ðJ; aÞ corresponding to a harmonic

oscillator, we can rewrite the original non-autonomous system as an extended

autonomous one. In the extended Hamiltonian, the time in the time-dependent

potential is replaced by the new angle variable,

H ¼ HðaÞ þ J ð2Þ
As a result, the total energy is conserved.

We interpret the virtual harmonic oscillator as a heatbath. When the system is

chaotic, the particle moves irregularly. This irregular motion causes a random

energy transfer between the particle and the heatbath. Although our heatbath

includes only a few degrees of freedom, the detailed dynamics inside of the

heatbath are not important. The random energy transfer between the system and

the heatbath is what is essential for thermodynamics.

As we will discuss later, the walls play an important role in an isothermal

operation. At the walls the particle collides elastically such that P changes to

�P. To avoid the frequent flips of the sign at each collision, we choose a

symmetric initial distribution function, r0ðP;XÞ ¼ r0ð�P;�XÞ. Suppose

we choose one symmetric pair of particles, ðP;XÞ and ð�P;�XÞ. When

one particle changes the sign of its momentum, the other changes at the same

time. We can reinterpret that as one particle keeping its momentum but jumping

instantaneously from the right-hand wall to the left-hand wall. That is

equivalent to the well-known periodic boundary condition. The periodic

boundary condition means that Xnþ1 þ L=2 should be taken mod L.

We choose a periodic boundary condition with respect to momentum at

P ¼ ��=2, when the particle is kicked.

The Poincaré map of our system is

Pnþ1 ¼ Pn � V 0ðXnÞ ð3Þ
Xnþ1 ¼ Xn þ Pnþ1t=m ð4Þ

Jnþ1 ¼ Jn �
P2

nþ1

2m
þ P2

n

2m
ð5Þ

anþ1 ¼ an þ 1 ð6Þ
where the subscript n means the value just before the nth kick.
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We insist that Pnþ1 þ �=2 should be taken mod � just before a kick.

Then, the kinetic energy reduces less than ð�=2Þ2=2m before the kick. This

means heatbath absorbs energy. It is one of the important roles of our

heatbath. Between two consecutive kicks, we do not insist on any boundary

condition with respect to momentum, because there is no connection with the

heatbath.

We choose V 0ðXÞ ¼ ��f ð2X=LÞ=2 and t ¼ m�=L. Then the map of the

particle can be scaled as the generalized standard map,

pnþ1 ¼ pn þ f ðxnÞ ð7Þ
xnþ1 ¼ xn þ pnþ1 ð8Þ

We have introduced scaled variables defined as pn ¼ 2Pn=� and xn ¼ 2Xn=L.

The boundary conditions imply that both pn þ 1=2 and xn þ 1=2 should be taken

mod 1. Although we will consider varying the momentum scale � or system size

L as external operation, the map of the scaled variables is kept the same.

For VðXÞ ¼ ��X2=ð2LÞ so f ðxÞ ¼ x, the map becomes a typical ideal

chaotic map, the cat map. The phase space is uniformly chaotic. The natural

invariant measure is uniform for unit square, �1=2 < xn < 1=2 and

�1=2 < pn < 1=2. Because of the mixing property, the expectation value of

the energy function approaches an equilibrium value,

� ¼ 1

L

ðL=2

�L=2

dX
1

�

ð�=2

��=2

dP
P2

2m
¼ 1

3

ð�=2Þ2

2m
ð9Þ

We define the temperature, �, as the average kinetic energy of the particle.

B. External Operations

We consider two typical external operations, one isothermal and the other at

fixed volume.

In the isothermal process, we vary slowly the system size L while we keep

the momentum scale � and the mass m so that the temperature remains at �. For

the isothermal expansion/contraction, we move the two walls to outer/inner

symmetrically. It makes negative/positive work by external operation. Because

the average energy of the particle is kept the same, the energy of the heatbath

decreases/increases.

In the fixed-volume process, the total energy is kept the same, because

there is no external work. For the fixed-volume heating/cooling, the tempera-

ture increases/decreases and the energy transfers from/to the heatbath to/

from the particle. By combining the isothermal contraction and expansion and

also the fixed-volume heating and cooling, we can make a Carnot cycle in this

simple chaotic system.

thermodynamics of a simple hamiltonian chaotic system 25



We vary the system size/the momentum scale in the isothermal/fixed volume

operation. As we mentioned above, the map of the scaled variables is kept

the same under these operations. We keep the basic dynamical properties the

same under these operations. As an example, we will look in detail at the iso-

thermal expansion. We consider the operation after the nth map. Before the

operation, the particle has the scaled momentum and position ðpn; xnÞ. The

momentum and position are scaled back as ðPn;XnÞ ¼ ðpn�=2; xnLn=2Þ where Ln

is the system size after the nth map.

We slowly vary the size of the system from Ln to Lnþ1 ¼ Ln þ dL within a

time interval dt. During the operation, the particle is moving freely between two

moving walls and may collide elastically with the right or left wall. The two

walls move out symmetrically. The velocity of the right-hand wall is given as

Vw ¼ dL=2dt > 0.

After the operation, the particle moves to ð~Pn; ~XnÞ ¼ ðPn;Xn þ Pndt=mÞ
without collision. If Xn þ Pndt=m > Lnþ1=2, the particle elastically collides

with the right-hand wall, and then the particle changes both momentum and

position as ð~Pn; ~XnÞ ¼ ð�Pn þ 2mVw; Lnþ1 � Xn � Pndt=mÞ. On the other hand,

if Xn þ Pndt=m < �Lnþ1=2, then ð~Pn; ~XnÞ ¼ ð�Pn � 2mVw;�Lnþ1 � Xn�
Pndt=mÞ. After one collision, the particle loses kinetic energy as dEðPnÞ ¼
�2VwðjPnj � mVwÞ. After the operation, the new scaled variables are given as

ð~pn;~xnÞ ¼ ð2~Pn=�; 2~Xn=Lnþ1Þ. We assume that the time interval of the operation

is so short that there are no more than two collisions during one operation.

We consider the quasi-static isothermal process. We consider a pair of two

consecutive operations. The former is isothermal expansion and the latter is the

cat map. We repeat the pair N times. We make the quasi-static isothermal

process by taking the limit of N going to infinity while keeping �L 
 NdL

constant.

We also keep the operation time dt finite in the limit of N going to infinity.

This means that the duration of collision is finite on the analogy of the gas

system [5]. During the operation, the system does not approach to equilibrium,

because of the free motion. There is a time lag to start approaching to

equilibrium. We will discuss the limit of the zero operation time later.

C. Time Evolution of Probability Density

Now we consider the time evolution of the symmetric probability density,

rnðp; xÞ, in the space of the scaled variables,

rnðp; xÞ ¼ Umap UopðLn�1Þ � � � Umap UopðL0Þr0ðp; xÞ ð10Þ

where Umap is the Frobenius–Perron operator of the generalized standard map,

Umaprðp; xÞ ¼ rðp � f ðx � pÞ; x � pÞ ð11Þ
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and UopðLnÞ governs the time evolution of the probability density during the

nth isothermal operation. If 4mVw=�� 1 < p < 2mVðx � 1ÞLnþ1=ð2�dLÞþ
2mVw=�, the particle collides at right-hand wall, and then

Uoprðp; xÞ ¼ Lnþ1

Ln

r �p þ 4mVm

�
;
Lnþ1

Ln

ðx � 1Þ þ �dt

mLn

p � 4mVm

�

� �� �
ð12Þ

If 1 � 4mVw=� > p > 2mVðx þ 1ÞLnþ1=ð2�dLÞ � 2mVw=�, the particle col-

lides at left-handed wall, and then

Uoprðp; xÞ ¼ Lnþ1

Ln

r �p � 4mVm

�
;
Lnþ1

Ln

ðx þ 1Þ þ �dt

mLn

p þ 4mVm

�

� �� �
ð13Þ

If 2mVðxþ1ÞLnþ1=ð2�dLÞ�2mVw= > 2mVðx � 1ÞLnþ1=ð2�dLÞ þ 2mVw=�,

the particle does not collide, and then

Uoprðp; xÞ ¼ Lnþ1

Ln

r p;
Lnþ1

Ln

x þ �dt

mLn

p

� �
ð14Þ

If p < 4mVw=�� 1 and p < 2mVðx � 1ÞLnþ1=ð2�dLÞ þ 2mVw=� or if p >
1 � 4mVw=� and p > 2mVðx þ 1ÞLnþ1=ð2�dLÞ � 2mVw=�, two new spaces

appear because of the expansion, and

Uoprðp; xÞ ¼ 0 ð15Þ

We choose the uniform invariant density as the initial symmetric density,

r0 ¼ 1.

D. Work

We will estimate the work in the isothermal process. A quasi-static isothermal

process is realized in the limit of N ! 1 while keeping �L and NVw constant. In

the case of strong chaos, the probability density is almost equilibrium,

rnðp; xÞ  1, in the expectation of a smooth observable.

The total work during the isothermal operations is given as the sum of the

energy loss of the particle in the N isothermal operations,

�W ¼
XN�1

n¼0

hdEnin ð16Þ
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where

h�in ¼
ð=2

�1=2

dp

ð=2

�1=2

dx � rnðp; xÞ ð17Þ

dEnðp; xÞ ¼�Vwðjpj�� 2mVwÞ y x þ p
L�

Ln

� Lnþ1

Ln

� �
þy �x � p

L�

Ln

� Lnþ1

Ln

� �� �
ð18Þ

where L� ¼ �dt=m.

For large N, we treat dUop 
 Uop � 1 as a small perturbation in the

expectation for a smooth observable. Using the formal expansion

rnðp; xÞ ¼ r0ðp; xÞ þ
Xn�1

i¼0

Un�i
map dUopðLiÞr0ðp; xÞ þ � � � ð19Þ

we obtain

�W ¼
XN�1

n¼0

hdEni0 þ
XN�1

n¼1

Xn�1

i¼0

hdEnUn�i
mapdUopðLiÞi0 þ � � � ð20Þ

After an easy integration, we obtain the first term as

�W ð0Þ 

XN�1

n¼0

hdEni0 ¼ � 2

3�m
ð�=2 � mVwÞ3dL

XN�1

n¼0

1

Ln

ð21Þ

The last sum is related to the Boltzmann entropy for large N,

dL
XN�1

n¼0

1

Ln

¼ log
LN

L0

� �
þ �L2

2NðLNÞL0

þ O
1

N2

� �
ð22Þ

The phase volume of the equilibrium density for the initial and final states is

Ai ¼ �L0 and Af ¼ �LN , respectively. The first term of the average is the change

of the Boltzmann entropy, �S ¼ logðAfÞ � logðAiÞ.

�W ð0Þ ¼ �2� �S � 6mVw

�
�S þ �L2

2NLNL0

� �
þ O

1

N2

� �
ð23Þ

We can understand why the Boltzman entropy appears in the work �W ð0Þ.
Since the phase volume increases during the isothermal expansion, the empty
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space appears after the operation

wnðp; xÞ 
 1 � Ln

LNþ1

UopðLiÞ1
� �

ð24Þ

After the mixing, the empty space is filled by the probability density and has the

average energy �hwni0, where hwni0 is the area of the empty space. Therefore, the

loss of the kinetic energy of the particle can be related to the area of the empty

space:

hdEni0 ¼ �� p2�2

8m

� �
wn

� �
0

 �� �2

8m

� �
hwni0 ð25Þ

Here we define

d ~Enðp; xÞ 
 �� p2�2

8m

� �
wnðp; xÞ ð26Þ

This function will play an important role in an inequality in Section II.E.

From our definition, the temperature is same as the internal energy. In the

limit N ! 1, the work is given as change of the free energy, F 
 �� 2�S,

lim
N!1

�W ð0Þ ¼ �F ð27Þ

Note that there are Oð1=NÞ correction terms in Eq. (23). As we mentioned

before, these contributions are caused by the free motion of the particle during

the operations.

E. ‘‘The Second Law’’ of Thermodynamics

Now we consider the excess heat production in Eq. (20),

�W ð1Þ 

XN�1

n¼1

Xn�1

i¼0

hdEnUn�i
map dUopðLiÞi0 ð28Þ

In the case of the Langevin equation [7], the excess heat production satisfies

the second law of thermodynamics, �W ð1Þ > 0. The Fokker–Plank equation

derived from the Langevin equation includes the small perturbation dEn. This

makes a bilinear form with respect to dEn and guarantees the inequality.

By contrast, the time evolution operator of the probability density includes

dUop instead of dEn in our system. Because dEnðp; xÞ is a different function

from UopðLiÞ1, we cannot expect an inequality for the excess heat production.
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If dEnðp; xÞ were d~Enðp; xÞ defined in Eq. (26), we would have an inequality.

Replacing d~Enðp; xÞ by dEnðp; xÞ, we introduce a modified work,

� ~W ¼
XN�1

n¼1

hd~Enin ð29Þ

As we have shown in Eq. (25), hd~Eni0 ¼ hdEni0, the modified work is given as

the change of the free energy in the quasi-static limit, � ~W ð0Þ ¼ �W ð0Þ ! �F.

Furthermore, we can derive the following inequality by neglecting Oð1=N2Þ

� ~W ��Wð0Þ ¼
XN�1

n¼1

Xn�1

i¼0

hd~EnUn�i
map dUopðLiÞi0

¼
XN�1

n¼1

Xn�1

i¼0

p2�2

8m
��

� ��1

hd~EnUn�i
map d~Eii0 ð30Þ

¼ 1

4�

XN

n¼1

d~En

					
					
2* +

0

� 0 ð31Þ

where

d~En 
 U�n
map d~EnUn

map ð32Þ

The modified inequality may not be related to the nonexistence of perpetual

motion of the second kind. Because we are considering the small dynamical

system, the fluctuations of the momentum and position are the same order of the

system size. This means that we can be the Maxwell demon. If there exists an

inequality in the scale of the Maxwell demon, the inequality cannot be

equivalent to the nonexistence of perpetual motion of the second kind.

We roughly estimate � ~W ð1Þ. For convenience, we assume only one dominant

decay mode in the correlation function in Eq. (30). Then, we rewrite

� ~W ð1Þ 
XN�1

n¼1

Xn�1

i¼0

1

4�
hd~EnjgRie�gðn�iÞhgLjd~Eii0

 1

4�
hd~EN=2jgRi

N

1 � e�g hgLjd~EN=2i0 ð33Þ

where gRðp; xÞ=gLðp; xÞ is right/left eigenfunctional of the Frobenius–Perron

operator.

For g � 1, the modified excess heat production is proportional to the lifetime

1=g as

� ~W ð1Þ  1

Ng
ð34Þ
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From the perturbation theory, the modified excess heat production � ~W ð1Þ comes

from deviation from the equilibrium state. The lifetime of the excited state is

important factor to determine it. The decay constant is similar to the

Kolmogorov–Sinai entropy that is equivalent to the positive Lyapunov exponent

in a small Hamiltonian chaotic system. It is important that the modified excess

heat production is greater for the smaller Lyapunov exponent. This means that it

increases in the region of weak chaos.

F. Recover of the Second Law in Large System

Now we will discuss the limit of zero operation time dt ! 0. We consider the

scaling dt ! Edt, where E is an infinitesimal positive number. For this scaling,

dL ! EdL and N ! N=E. Therefore, Oð1=NÞ contributions are suppressed as

OðE=NÞ. In order to avoid this trivial result, we have to scale the decay constant

g ! Eg in Eq. (34).

We naturally obtain the scaling of the decay constant by multiplying system

size as L ! ½1=
ffiffiffi
E

p
�GL, where the Gauss symbol ½R�G means the greatest integer

less than R. By multiplying system size as NcellL, the system becomes multi-cat

map, called the sawteeth map. The extended map has diffusion modes. The least

decay constant has expected scaling as g ¼ Dp2=N2
cell  Dp2=E, where the

diffusion coefficient is D ¼ 1=24.

By extending the small system to a large one, we keep the nontrivial

contribution � ~W ð1Þ. For the large system, does the ordinary second law recover?

The answer is yes. Because the diffusion modes are associated with intercell

motion of the particle, details of intracell motion do not affect the diffusion

modes. The difference between d~Enðp; xÞ and dEnðp; xÞ vanishes in the limit of

zero operation time and infinite system size. Therefore, the inequality means the

nonexistence of perpetual motion of the second kind.

The excess heat production is proportional to the variance of the total energy

distribution in Eq. (31). For the Gaussian distribution, we can interpret the

variance as information h�E2i ¼ �hlog e��E2i. It is quite important that the

excess heat production can be interpret as scaled loss of information of the total

energy distribution. We will report the details in our forthcoming paper [8].

III. CONCLUSIONS AND REMARKS

In this chapter we constructed thermodynamics of the simple Hamiltonian

chaotic system with a Poincaré map that can be scaled as the cat map. In the cat

map, the ordinary thermodynamics almost worked. The work became a change

of free energy in a quasi-static isothermal process. An important difference

appeared in the second law of thermodynamics. The inequality lost the direct

connection to the nonexistence of perpetual motion of the second kind.
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In our treatment we chose the finite operation time, which is corresponding

the finite duration of collision. When we took the limit of the zero operation

time, the contributions from the decay modes associate with Kolmogorov–Sinai

entropy vanished. Nontrivial contribution can survive for the multiple system. In

the large system, the second law recover and the excess heat production became

the loss of information of the total energy distribution.

We consider the thermodynamics as a general theory that describes how a

system responds to slow external operation. There is no reason to restrict it in

the region of the strong chaos. We will extend it into the region of the weak

chaos, in which the correlation decays in power law. As we encountered in the

previous arguments, new rules may lose the connection of the nonexistence of

perpetual motion of the second kind. But the rules can characterize the

complicated phase structure in the weak chaos.

The weak chaos is an other possibility to obtain nontrivial contributions in

the limit of the zero operation even for small system. The long time correlation

makes nontrivial contribution to the excess heat production. Actually, we have

found anomalous behavior of the excess heat production in the standard map.

We will report it in our forthcoming paper [9].
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I. INTRODUCTION

The idea of using operator theory for the study of dynamical systems is due to

Koopman and was extensively used thereafter in statistical mechanics and

ergodic theory because the dynamical properties are reflected in the spectrum of

the density evolution operators. The evolution of a dynamical system on the

phase space � is described by the evolution group fStg, with t real for flows and

integer for cascades. The phase space is endowed with a s-algebra S of mea-

surable subsets of � and a probability measure m. Usually m is the equilibrium

measure; that is, St preserve the measure m:

mðS�1
t ðAÞÞ ¼ mðAÞ for all A 2 S

The evolution of dynamical systems can be classified according to different

ergodic properties which correspond to various degrees of irregular behavior

such as ergodicity, mixing, exact systems, and Kolmogorov systems. The

ergodic properties of classic dynamical systems can be conveniently studied

in the Hilbert space formulation of dynamics due to Koopman [1,2]. We

consider the Hilbert space L2 ¼ L2ð�; S; mÞ of square integrable functions on �.

The transformations St induce the Koopman evolution operators Vt acting on the

functions f 2 L2 as follows:

Vt f ðoÞ ¼ f ðSt oÞ; o 2 �

The adjoint operator

Ut ¼ Vy
t

is called the Frobenius–Perron operator [2].

As St preserve the measure m, the operators Vt are isometries. If St are, in

addition, invertible, then Vt are unitary. In the case of flows the self-adjoint

generator of Vt is known as the Liouville operator:

Vt ¼ ei Lt

In the case of Hamiltonian flows the Liouville operator is given by the Poisson

bracket associated with the Hamiltonian function H:

Lf ¼ ifH; f g

The work of the Brussels group and collaborators over the last 8 years [3–23]

has demonstrated that for unstable systems, classic or quantum, there exist
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spectral decompositions of the evolution in terms of resonances and resonance

states which appear as eigenvalues and eigenprojections of the evolution

operator.

These new spectral decompositions in terms of resonances include the

correlation decay rates, the lifetimes, and the Lyapunov times. In this sense they

provide a natural representation for the evolution of unstable dynamical

systems. The decompositions acquire meaning in suitable dual pairs of

functional spaces beyond the conventional Hilbert space frameworks. For

invertible systems the reversible evolution group, once extended to the

functional space, splits into two distinct semigroups. Irreversibility emerges

therefore naturally as the selection of the semigroup corresponding to the future

observations. The resonances are the singularities of the extended resolvent of

the evolution operator, while the resonance states are the corresponding Riesz

projections computed as the residues of the extended resolvent at the

singularities [10,11].

The spectral decomposition of evolution operators employing the methods of

functional analysis is a new tool for the probabilistic analysis of dynamical

systems. The canonically conjugate approach in terms of the time operator has

also been developed in Brussels during the last 20 years [3,24] and proved

recently to be even more powerful tool for the probabilistic analysis of complex

systems.

Time operators in dynamical systems were introduced in 1978 by B. Misra

and I. Prigogine [3,24] as self-adjoint operators T satisfying the canonical

commutation relation with the Koopman operators Vt:

TVt ¼ VtT þ tVt ð1Þ

Dynamical systems with time operators are intrinsically irreversible because

they admit Lyapunov operators as operator functions of the time operator

M ¼ MðTÞ, where M is any decreasing function [3,24]. The typical example is

Kolmogorov systems where the spectral projections of the time operator are

averaging projections on the refining K-partitions.

The idea behind the analysis of the evolution semigroup fVtg on a Hilbert

space H through the time operator T is to decompose T in terms of a complete

orthonormal set of eigenvectors jn;a, known also as age eigenfunctions:

Tjn;a ¼ njn;a

T ¼
X

n

n
X
a

jjn;aihjn;aj
X
n;a

jjn;aihjn;aj ¼ I
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The Koopman operator Vt shifts the eigenvectors jn;a:

Vtjn;a ¼ jnþt;a

The index n labels the age and a the multiplicity of the spectrum of the time

operator. As a result the eigenvectors jn;a of the time operator provide a shift

representation of the evolution:

f ¼
X
n;a

an;ajn;a ) Vt f ¼
X
n;a

an;ajnþt;a ¼
X
n;a

an�t;ajn;a

The knowledge of the eigenvectors of T amounts therefore to a probabilistic

solution of the prediction problem for the dynamical system described by the

semigroup fVtg. The spaces Nn spanned by the eigenvectors jn;a are called age

eigenspaces or spaces of innovation at time (stage) n, as they correspond to

the new information or detail brought at time n.

The relation between the spectral and shift representation of dynamical

systems is like the canonical relation between the position and momentum

representations in quantum mechanics. However, the shift representations can

be derived for a substantially a wider class of systems than dynamical systems

associated with maps. This includes evolution semigroups associated with some

classes of stochastic processes such as stationary, Markov or self similar

processes. We present below some selected results concerning generalized

spectral decompositions and time operator obtained in recent years [6–22,

25–32].

II. GENERALIZED SPECTRAL DECOMPOSITIONS AND
PROBABILISTIC EXTENSION OF THE DYNAMICS

OF UNSTABLE SYSTEMS

The ergodic properties of classic dynamical systems: ergodicity, mixing,

exactness, and Kolmogorov property can be expressed as spectral properties of

the corresponding Koopman or Frobenius–Perron evolution operators. The

spectral approach allows us to study and classify in a unified way dynamical

systems in terms of operator theory and functional analysis.

The drawback of this approach is that the spectra of Frobenius–Perron or

Koopman operators of unstable systems considered on the space L2 of square

integrable densities do not contain characteristic time scales of irreversible

changes such as decay rates of the correlation functions. In order that isolated

point spectra corresponding to the decay rates of the correlation functions

emerge, the Frobenius–Perron operator has to be restricted to suitable locally

convex subspaces of L2. For example, for expanding maps, as the
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differentiability of the domain functions increases, the essential spectrum (i.e.,

the spectrum excluding isolated point spectra) of the Frobenius–Perron operator

decreases from unit disk to a smaller one and isolated point spectra appear in the

annulus between the two disks [33,34]. The logarithms of these isolated point

eigenvalues of the Frobenius–Perron operator are known as the Pollicot–Ruelle

resonances [35,36].

In some particular cases it is possible to restrict the Frobenius–Perron

operator to a dense subspace in such a way that its spectrum becomes discrete.

In such a case the Hilbert space L2 can be replaced by the dual pair ð�;��Þ,
where � is an invariant with respect to U locally convex subspace of L2 and ��

is its topological dual. Here the Koopman operator V is extended to the space

��. Moreover, in many cases it is possible to obtain a generalized spectral

decomposition of V (and also of U) in the form

V ¼
X

i

zijjiÞðFij ð2Þ

where zi are the eigenvalues of U, and jjiÞ and ðFij are a biorthogonal family of

the corresponding eigenvectors which are elements of � and ��, respectively.

Following Dirac’s notation [37] we denote by the bras ð j and kets j Þ the linear

and antilinear functionals, respectively. Formula (2) has to be understood as

follows:

ðfjVf Þ ¼
X

i

ziðfjjiÞðFij f Þ ¼ ðUfjFÞ

for any state f and observable f from a suitable dual pair. This procedure is

referred to as rigging, and the triple

� � L2 � ��

is called a rigged Hilbert space (see Ref. 38 for details).

Summarizing for the reader’s convenience, a dual pair ð�;��Þ of linear

topological spaces constitutes a rigged Hilbert space for the linear endomorph-

ism V of the Hilbert space H if the following conditions are satisfied:

1. � is a dense subspace of H.

2. � is complete and its topology is stronger than the one induced by H.

3. � is stable with respect to the adjoint Vy of V , i.e. Vy� � �.

4. The adjoint Vy is continuous on �.

The extension Vext of V to the dual �� of � is then defined in the standard way as

follows:

ðfjVext f Þ ¼ ðVyfj f Þ
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for every f 2 �. The choice of the test function space � depends on the specific

operator V and on the physically relevant questions to be asked about the system.

Let us present now some of the generalized spectral decompositions of the

Frobenius–Perron operators.

A. The Renyi Maps

The b-adic Renyi map S on the interval [0,1) is the multiplication, modulo 1, by

the integer b � 2:

S : ½0; 1Þ ! ½0; 1Þ x 7! Sx ¼ bx ðmod 1Þ

The Koopman operator admits the following generalized spectral decom-

position [8.9]:

V ¼
X1
n¼0

1

bn j~BnÞðBnj ð3Þ

where BnðxÞ is the n-degree Bernoulli polynomial defined by the generating

function:

zezx

ez � 1
¼
X1
n¼0

BnðxÞ
n!

zn ð4Þ

and

j~BnÞ ¼
j1Þ ; n ¼ 0

j ð�1Þðn�1Þ

n! fdðn�1Þðx � 1Þ � dðn�1ÞðxÞgÞ n ¼ 1; 2; . . .

(

Formula ð3Þ defines a spectral decomposition for the Koopman and Frobenius–

Perron operators in the following sense:

ðrjVf Þ ¼
X1
n¼0

1

bn ðrj~BnÞðBnj f Þ

for any density function r and observable f in the appropriate pair ð�;��Þ.
The generalized spectral decomposition of the Renyi map has no meaning in

the Hilbert space L2. The derivatives dðnÞðxÞ of Dirac’s delta function that appear

as right eigenvectors of the Koopman operator V of the Renyi map are outside

L2. In order to give meaning to these formal eigenvectors the Koopman operator

has to be extended to a suitable rigged Hilbert space. In the case of the Renyi
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map, various riggings exist [19]. For example, we can consider the restrictions

of the Frobenius–Perron operator to a series of test function spaces such as the

space P of polynomials in one variable, the Banach space Ec of entire functions

of exponential type c, and others [19]. Among them we looking for such space

that gives the tightest rigging i.e. such for which the test function space is the

(set-theoretically) largest possible within a chosen family of test function

spaces, such that the physically relevant spectral decomposition is meaningful.

In the case of the Renyi map the tight rigging is realized in a natural way by the

space ~E2p �
S

c<2p Ec, where Ec is the space of entire functions of exponential

type less than c, with the inductive limit topology (see Ref. 19 for details).

B. The Tent Maps

The family of tent maps is defined by

Tm: ½0; 1Þ ! ½0; 1Þ

Tm ¼
m x � 2n

m

� �
for x 2 2n

m
; 2nþ1

m

� �
mð2nþ2

m
� xÞ for x 2 2nþ1

m
; 2nþ2

m

� �
(

where m ¼ 2; 3; . . . ; n ¼ 0; 1; . . . ; m�1
2

� �
and ½y� denotes the integer part of real

number y. The case m ¼ 2 corresponds to the well known tent map. The

absolutely continuous invariant measure is the Lebesgue measure dx for all maps

Tm. The Frobenius–Perron operator for the tent maps has the form

UTrðxÞ ¼ 1

m

Xm�1
2½ �

n¼0

r
2n þ x

m

� 	
þ
Xm�2

2½ �

n¼0

r
2n þ 2 � x

m

� 	8<
:

9=
;

The spectrum consists of the eigenvalues [21]

zi ¼ 1

miþ1

m � 1

2

� �
þ 1 þ ð�1Þi m � 2

2

� �
þ 1

� 	� �

which means that for the even tent maps, m ¼ 2; 4; . . . ; the eigenvalues are

zi ¼
1
mi ; i even

0; i odd

�
ð5Þ

and for the odd tent maps, m ¼ 3; 5; . . . ; the eigenvalues are

zi ¼
1
mi ; i even

1
miþ1 ; i odd

�
ð6Þ
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The eigenvectors of the tent maps can be expressed in terms of the Bernoulli and

Euler polynomials. For even tent maps m ¼ 2; 4; . . .

fiðxÞ ¼
Bi

x
2

� �
; i ¼ 0; 2; 4; . . .

iþ1
2miþ1 EiðxÞ; i ¼ 1; 3; 5; . . .

(

For odd tent maps m ¼ 3; 5; . . .

fiðxÞ ¼
1; i ¼ 0

EiðxÞ; i ¼ 1; 3; 5; . . .
BiðxÞ þ Ei�1ðxÞ; i ¼ 2; 4; . . .

8<
:

The Bernoulli polynomials are defined by the generating function (4). The Euler

polynomials are defined by the generating function

2ext

et þ 1
¼
X1
n¼0

EnðxÞ tn

n!
; jtj < p

The left eigenvectors are given by the following formulas:

For even tent maps m ¼ 2; 4; . . .

FiðxÞ ¼
mi~BiðxÞ; i ¼ 0; 2; 4; . . .

miþ1 2
iþ1

~EiðxÞ þ ~Biþ1ðxÞ
� �

; i ¼ 1; 3; 5; . . .

8<
:

For odd tent maps m ¼ 3; 5; . . .

FiðxÞ ¼
1; i ¼ 0

~EiðxÞ; i ¼ 1; 3; 5; . . .
~BiðxÞ þ ~Ei�1ðxÞ; i ¼ 2; 4; . . .

8<
:

The expressions ~BiðxÞ; ~EiðxÞ are given by the following formulas as in the case

of the Renyi maps:

~BiðxÞ ¼
1; i ¼ 0

ð�1Þi�1

i! fdði�1Þðx � 1Þ � dði�1ÞðxÞg; i ¼ 1; 2; . . .

(

~EiðxÞ ¼ ð�1Þi
2ði!ÞfdðiÞðx � 1Þ þ dðiÞðxÞg; i ¼ 0; 1; . . .

From Eqs. (5) and (6) we observe that the spectrum of the symmetric tent

maps m ¼ 2; 4; . . . does not contain the odd powers of 1=m. This is a general

property of symmetric maps and is due to the fact that the antisymmetric

eigenfunctions are in the null space of the Frobenius–Perron operator.
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Summarizing, the spectra of the tent maps Tm depend upon m but the

eigenvectors depend only on the evenness of m.

C. The Logistic Map

The logistic map in the case of fully developed chaos is defined by

SðxÞ ¼ 4xð1 � xÞ for x 2 ½0; 1�

The logistic map is a typical example of exact system. The invariant measure for

the logistic map is [2] dnðxÞ ¼ 1

p
ffiffiffiffiffiffiffiffiffiffi
xð1�xÞ

p dx.

The spectral decomposition of the logistic map can be obtained from the

spectral decomposition of the dyadic tent map through the well-known

topological equivalence of these transformations [22]. The transformation

g: ½0; 1Þ ! ½0; 1Þ defined by

gðxÞ ¼ 1

p
arcosð1 � 2xÞ

defines a topological equivalence between the logistic map and the dyadic tent

map T : ½0; 1Þ ! ½0; 1Þ

TðxÞ ¼ 2x; for x 2 ½0; 1
2
Þ

2ð1 � xÞ for x 2 ½1
2
; 1Þ

�

expressed through the formula

S ¼ g�1 � T � g

The transformation g transforms the Lebesgue measure, which is the invariant

measure of the tent map to the invariant measure of the logistic map.

The transformation G intertwines the Koopman operator V of the logistic

map with the Koopman operator VT of the tent map:

V ¼ GVT G�1

The intertwining transformations G and G�1, when suitably extended, map the

eigenvectors of VT onto the eigenvectors of V . Therefore

V ¼
Xþ1

n¼0

znGj�nÞðjnjG�1

V ¼
Xþ1

n¼0

znjFnÞð fnj
ð7Þ

with zn ¼ 1
22n, FnðxÞ ¼ 22n~B2n

1
p arcosð1 � 2xÞ
� �

; fnðxÞ ¼ B2n
1

2p arcosð1 � 2xÞ
� �

.

In formula (7) the bras and kets correspond to the invariant measure of the
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logistic map. The meaning of the spectral decomposition of the logistic map is

inherited from the meaning of the spectral decomposition of the tent map in

terms of the dual pair of polynomials; that is it can be understood in the sense

ðrjVf Þ ¼
Xþ1

n¼0

1

22n
r 22n~B2n

1

p
arcosð1 � 2xÞ

� 	����
	

B2n

1

2p
arcosð1 � 2xÞ

� 	� ���� f
� 	

for any state r in the space P 1
parcosð1�2xÞð Þ, and any observable f in the anti-dual

space �P 1
parcosð1�2xÞð Þ.

D. The Baker’s Transformations

The b-adic, b ¼ 2; 3; . . ., baker’s transformation B on the unit square

Y ¼ ½0; 1Þ � ½0; 1Þ is a two-step operation: (1) Squeeze the 1 � 1 square to a

b � 1=b rectangle and (2) cut the rectangle into bð1 � 1=bÞ-rectangles and pile

them up to form another 1 � 1 square:

ðx; yÞ 7!Bðx; yÞ¼ bx � r;
y þ r

b

� 	
for

r

b
� x <

r þ 1

b
; r ¼ 0; . . . b � 1

� 	
ð8Þ

The invariant measure of the b-adic baker transformation is the Lebesgue

measure on the unit square. The Frobenius–Perron and Koopman operators

are unitary on the Hilbert space L2 ¼ L2
x � L2

y of square integrable densities over

the unit square and has countably degenerate Lebesgue spectrum on the unit

circle plus the simple eigenvalue 1 associated with the equilibrium (as is the

case for all Kolmogorov automorphisms).

The Koopman operator V has a spectral decomposition involving Jordan

blocks, which was obtained [7,23] using a generalized iterative operator method

based on the subdynamics decomposition:

V ¼ jF00Þð f00j þ
X1
n¼1

Xn
r¼0

1

bn
jFn;rÞð f n;rj þ

Xn�1

r¼0

jFn;rþ1Þð f n;rj
( )

ð9Þ

The vectors jFn;rÞ and ðf n;rj form a Jordan basis:

ð fn;rj V ¼
1
bn fð fn;rj þ ð fn;rþ1jg ðr ¼ 0; . . . ; n � 1Þ
1
bn ð fn;rj ðr ¼ nÞ

(

V jFn;rÞ ¼
1
bn f jFn;rÞ þ jFn;r�1Þg ðr ¼ 1; . . . ; nÞ
1
bn jFn;rÞ ðr ¼ 0Þ

(

ð f n;rj Fn0;r0 Þ ¼ dnn0drr0 ;
X1
n¼0

Xn
r¼0

jFn;rÞð f n;rj ¼ I
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While the Koopman operator V is unitary in the Hilbert space L2 and thus has

spectrum on the unit circle jzj ¼ 1 in the complex plane, the spectral

decomposition (9) includes the numbers 1=bn < 1 which are not in the Hilbert

space spectrum. The spectral decomposition (9) also shows that the Frobenius–

Perron operator has Jordan-block parts despite the fact that it is diagonalizable

in the Hilbert space. As the left and right principal vectors contain generalized

functions, the spectral decomposition (9) has no meaning in the Hilbert space

L2.

The principal vectors fn; j and Fn; j are linear functionals over the spaces

L2
x � Py and Px � L2

y , respectively [7].

III. TIME OPERATOR AND SHIFT REPRESENTATION
OF THE EVOLUTION

Time operators appear naturally for chaotic systems because the associated

Koopman operators are shift operators on the Hilbert space L2 � ½1�. In particular

the Koopman operator is a unilateral shift for exact endomorphisms and a

bilateral shift for Kolmogorov automorphisms. It is therefore natural to consider

time operators associated with shifts in general.

Let us recall first the basic notions concerning shifts. A linear continuous

operator V on a Hilbert space H is called a shift if there exists a sequence

fNnjn ¼ 0; 1; 2; . . .g, enumerated by the set of all integers or by the set of all

positive integers, of closed linear subspaces of H such that

1. Nn is orthogonal to Nm if m 6¼ n.

2. H ¼ �
n
Nn.

3. For any n, V isometrically maps Nn onto Nnþ1.

V is called unilateral shift if n ¼ 0; 1; 2; . . . and bilateral shift if n 2 Z.

The number m ¼ dimN0 is called the multiplicity of the (bilateral or

unilateral) shift. We shall call N � N0 the generating space or the innovation

generator of the shift V and call Nn ¼ VnðNÞ the space of innovations at time

(stage) n.

Let V be a unilateral shift of multiplicity m 2 N [ f1g on a Hilbert space

H. An orthonormal basis fwan jn ¼ 0; 1; . . . ; 1 � a < m þ 1g is called a

generating basis for V iff Vwan ¼ wanþ1 for all n; a (or equivalently,

Vywan ¼ wan�1 if n � 1 and Vywa0 ¼ 0).

Let V be a bilateral shift of multiplicity m 2 N [ f1g on a Hilbert space

H. An orthonormal basis fwan jn 2 Z; 1 � a < m þ 1g is called a generating

basis for V iff Vwan ¼ wanþ1 for all n; a (or equivalently, Vywan ¼ wan�1 for all n; a).

Let Wt, where t 2 ½0;1Þ; t 2 R; t 2 Z or t ¼ 0; 1; 2; . . . ; be a semigroup

flow or cascade of continuous linear operators on a Hilbert space H. A linear
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operator T on H is called a time operator for the semigroup Wt if T has dense

domain DT , WtðDTÞ � DT for all t � 0 and TWt f ¼ WtðT þ tÞf for all f 2 DT .

A. Time Operator for the Renyi Map [25]

We consider here the 2-adic Renyi map, that is, the transformation

S : ½0; 1� ! ½0; 1�:

Sx ¼ 2x ðmod 1Þ

The dynamical system is ð½0; 1�; fB; dx; fSngn2Ng, where B is the Borel s-

algebra of the interval [0,1], dx symbolizes the Lebesgue measure, and

Sn ¼df
S � S �    � S|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

n�times

. The Koopman operator of the Renyi map is

Vf ðxÞ ¼ f ðSxÞ ¼
f ð2xÞ; for x 2 0; 1

2

� �
f ð2x � 1Þ; for x 2 1

2
; 1

� �
(

As the first step in the construction of the time operator we define the functions

j1ðxÞ ¼ 1½0;1�ð2xÞ � 1½0;1�ð2x � 1Þ

and

jnþ1ðxÞ ¼ Vnj1ðxÞ; for n ¼ 1; 2; . . .

Then, for a given ordered set of integers n; n ¼ fn1; . . . ; nkg n1 <    < nk,

define the function

jnðxÞ ¼df jn1
ðxÞ . . .jnk

ðxÞ

The Koopman operator acts as a shift on jn, i.e. Vjn ¼ jnþ1, where

n þ 1 ¼ fn1 þ 1; . . . ; nm þ 1g. Moreover, the functions jn, where n runs over

all ordered subsets of N, together with the constant � 1, form an orthonormal

basis in L2
½0;1Þ.

Theorem. Each vector j 2 H has the following expansion in the basis fjng:

j ¼
X1
t¼1

X2t�1

k¼1

at;kjnk
t

ð10Þ

where nk
t denotes the set fn1; . . . ; nig with fixed ni ¼ t while k runs through all

2t�1 possible choices of integers n1 <    < ni�1 < t (N can be þ1). The
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operator T acts on j of the form (10) as follows:

Tj ¼
XN

t¼1

X2t�1

k¼1

tat;kjnk
t

Moreover, T satisfies

TVn ¼ VnT þ nVn; n ¼ 1; 2; . . .

B. Time Operator for the Cusp Map [29]

In this section we present a Time Operator for the so-called cusp map

F: ½�1; 1� ! ½�1; 1�; where FðxÞ ¼ 1 � 2
ffiffiffiffiffi
jxj

p
which is an approximation of the Poincaré section of the Lorenz attractor [39].

The absolutely continuous invariant measure of the cusp map has density

rðxÞ ¼ 1 � x

2

The Koopman operator of the cusp map is the operator V acting on

L2 ¼ L2ð½�1; 1�; mÞ, where m is the measure with density r defined by the above

formula, is

Vf ðxÞ ¼ f ð1 � 2
ffiffiffiffiffi
jxj

p
Þ

The generating space N of the Koopman operator regarded as a shift coincides

with the space of functions:

f f 2 L2 : f ðxÞ ¼ ð1 þ xÞgðxÞ; where g is oddg

The set of functions

waðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 þ xÞ

1 � x

r
sinpax; a ¼ 1; 2; . . .

is an orthonormal basis in the space N. We have the following theorem.

Theorem. The set wan ¼ Vnwa ¼ waðSnðxÞÞ; a ¼ 1; 2; . . . ; n ¼ 0; 1; . . . ; is a

generating basis for the Koopman operator V of the cusp map acting on L2 � 1.
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The operator with eigenvectors wan and eigenvalues n is the natural time operator

of the shift V:

Twan ¼ nwan ; T ¼
X1
n¼0

n
X1
a¼1

jwanihwan j

Remark. Although the spectral representation is formally equivalent to the

shift representation, in the case of the cusp map, the spectral analysis seems to

be quite involved and even not possible for analytic functions [30]. However, the

shift representation of the cusp map is quite simple and explicit, allowing for

probabilistic predictions.

Acknowledgments

We are grateful to Professor Ilya Prigogine for numerous insightful discussions on time operators

and subdynamics which were the origins of the harmonic analysis of dynamical systems.

This work received financial support from the Belgian Government through the Interuniversity

Attraction Poles.

References

1. B. Koopman, Proc. Natl. Acad. Sci. USA 17, 315–318 (1931).

2. A. Lasota and M. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge

University Press, U.K., 1985.

3. I. Prigogine, From Being to Becoming, Freeman, San Francisco, 1980.

4. T. Petrosky, I. Prigogine, and S. Tasaki, Physica A173, 175–242 (1991).

5. T. Petrosky and I. Prigogine, Physica A175, 146–209 (1991).

6. I. Antoniou and I. Prigogine, Physica A192, 443–464 (1993).

7. I. Antoniou and S. Tasaki, Physica A190, 303–329 (1992).

8. I. Antoniou and S. Tasaki, J. Phys. A26, 73–94 (1993).

9. I. Antoniou and S. Tasaki, Int. J. Quantum Chemistry 46, 425–474 (1993).

10. I. Antoniou, L. Dmitrieva, Yu. Kuperin, and Yu. Melnikov, Comput. Math. Appl. 34, 399–425

(1997).

11. O. F. Bandtlow, I. Antoniou, and Z. Suchanecki, Comput. Math. Appl. 34, 95–102 (1997).

12. S. Tasaki, Z. Suchanecki, and I. Antoniou, Phys. Lett. A 179, 103–110 (1993).

13. S. Tasaki, I. Antoniou, and Z. Suchanecki, Chaos Solitons and Fractals 4, 227–254 (1994).

14. S. Tasaki, I. Antoniou, and Z. Suchanecki, Phys. Lett. A 179, 97–102 (1993).

15. I. Antoniou and Z. Suchanecki, Advances in Chemical Physics, Vol. 99, I. Prigogine and S. Rice,

eds., Wiley, New York, 1997, pp. 299–332.

16. I. Antoniou and Z. Suchanecki, in Nonlinear, Deformed and Irreversible Systems, H.-D. Doebner,

V. K. Dobrev, and P. Nattermann, eds., World Scientific, Singapore, 1995, pp. 22–52.

17. I. Antoniou and Z. Suchanecki, Found. Phys. 24, 1439–1457 (1994).

18. Z. Suchanecki, I. Antoniou, S. Tasaki, and O. F. Bandtlow, J. Math. Phys. 37, 5837–5847 (1996).

19. I. Antoniou, Yu. Melnikov, S. Shkarin, and Z. Suchanecki, Chaos Solitons and Fractals 11,

393–421 (2000).

46 i. antoniou and z. suchanecki



20. I. Antoniou, Bi Qiao, and Z. Suchanecki, Chaos Solitons and Fractals 8, 77–90 (1997).

21. I. Antoniou and Bi Qiao, Phys. Lett. A 215, 280–290 (1996).

22. I. Antoniou and Bi Qiao, Nonlinear World 4, 135–143 (1997).

23. D. Driebe, Fully Chaotic Maps with Broken Time Symmetry, Kluwer Academic Publishers,

Boston 1997.

24. B. Misra, Proc. Natl. Acad. USA 75, 1627–1631 (1978).

25. I. Antoniou and Z. Suchanecki, Chaos Solitons and Fractals 11, 423–435 (2000).

26. I. Antoniou and K. Gustafson, Chaos, Solitons and Fractals 11, 443–452 (2000).

27. I. Antoniou, V. A. Sadovnichii, and S. A. Shkarin, Physica A269, 299–313 (1999).

28. I. Antoniou, I. Prigogine, V. A. Sadovnichii, and S. A. Shkarin, Chaos, Solitons and Fractals

11, 465–477 (2000).

29. I. Antoniou, Chaos Solitons and Fractals 12, 1619–1627 (2001).

30. I. Antoniou, S. A. Shkarin, and E. Yarevsky, Spectral Properties of the Cusp Families (in

preparation).

31. I. Antoniou and Z. Suchanecki, Time operator and approximation (to appear).

32. I. Antoniou and Z. Suchanecki, Time operator and stochastic processes (to appear).

33. M. Pollicott, Ann. Math. 131, 331 (1990).

34. D. Ruelle, Commun. Math. Phys. 125, 239 (1990); Publ. Math. IHES 72, 175 (1989).

35. M. Pollicott, M Invent. Math. 81, 413 (1986); Invent. Math. 85, 147 (1985).

36. D. Ruelle, Phys. Rev. Lett. 56, 405–407 (1986); J. Stat. Phys. 44, 281 (1986).

37. P. A. M. Dirac, The Principles of Quantum Mechanics, Clarendon Press, Oxford, 1958.

38. A. Bohm and M. Gadella, Dirac Kets, Gamow Vectors and Gelfand Triplets, Springer Lecture

Notes on Physics, No. 348, Berlin, 1989.

39. E. Ott, Rev. Mod. Phys. 53, 655 (1981).

harmonic analysis of unstable systems 47





PROPERTIES OF PERMANENT AND TRANSIENT

CHAOS IN CRITICAL STATES
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I. INTRODUCTION AND SUMMARY

Fully chaotic dissipative systems are considered and changes of characteristics

are followed when a control parameter is varied in such a way that these changes

are smooth; in particular the chaotic state is maintained. Besides the permanent

chaos, equal weight is given to the transient one, and the features of the two types

of chaotic motions are compared.

In the case of the transient chaos, one can specify a region � in the phase

space, where the chaotic motion takes place [1–3]. After leaving this region the

trajectory finally settles to an attractor (which can be simple or a chaotic one).

The residence time in � depends on the initial condition; its average is given by

the inverse of the escape rate, which is related to the conditionally invariant

measure, a basic concept in the field of transient chaos [1–3]. This measure is

invariant if after each step it is renormalized by a factor fixed by the escape rate.

The physically relevant conditionally invariant measures are those which are

smooth (absolutely continuous with respect to the Lebesgue measure) along the

49



expanding directions, and in the following it will be always assumed that this

requirement is fulfilled. (Such a measure can be called Sinai–Ruelle–Bowen

(SRB) type of conditionally invariant measure in analogy with the SRB measure

for permanent chaos [4].) The maximal invariant set S in �, which is a fractal

with rich multifractal properties [2], is called the repeller. Note that the time

spent in � is longer if the initial point is closer to S. Consequently, the

transiently chaotic motion can be arbitrarily long, which makes this type of

chaos also experimentally relevant. The natural measure on the repeller is obtained

by restricting the conditionally invariant measure to the invariant set S [5].

Scenarios and properties are demonstrated by using a family of one-

dimensional maps with one increasing and one decreasing monotonic branch.

They act on the two preimages I0 and I1 of the interval I chosen as [0, 1]. In the

case of permanent chaos I ¼ I0 [ I1, while in the case of transient chaos the

trajectory is regarded as escaped, if it gets outside the I0 [ I1 interval. The maps

are complete in the sense of symbolic dynamics based on a bipartition with

elements I0, I1.

For maps close to the piecewise linear one, perturbation expansion is applied

to calculate the spectrum of the Frobenius–Perron operator and the entropies [2,

6,7]. By changing further the control parameter, one can arrive at the weakly

intermittent state in the case of permanent chaos. Here the Kolmogorov–Sinai

entropy is still positive (despite of the fact that the fixed point at the origin

becomes marginally unstable, the slope there is unity); the Rényi entropies for

q > 1 are, however, zero [2,8]. (Weak intermittent states are, of course, not

restricted to 1D maps. One can identify such a state also in the Lorenz model

[9].)

The analogous state of transient chaos is achieved when the logarithm of the

slope of the map at the origin becomes equal to the escape rate. When

approaching this state the conditionally invariant measure remains smooth (like

the invariant measure in the weakly intermittent state), but the natural measure

highly degenerates; it is entirely concentrated in the fixed point at the origin,

which remains, however, now a strictly unstable fixed point. As a consequence,

not only the q > 1 Rényi entropies, but also the Kolmogorov–Sinai entropy,

become zero [10–12]. One has to emphasize that the repeller preserves its

fractal nature.

The states obtained this way representing border states of chaos are called

critical in the permanent and in the transient chaos as well, since phase

transition-like phenomena can be associated with them within the framework of

the thermodynamic formalism of chaotic systems [2,8,10,11]. The correspond-

ing value of the control parameter is referred to as its critical value. It is worth

noting that while the Kolmogorov–Sinai entropy (the measure of chaoticity) is

decreasing when approaching toward the critical state, the complexity is

increasing [13].
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Finally, a further essential difference between the two types of chaos in their

critical states has to be stressed. Namely, in the transient case, when the control

parameter has arrived at its critical value, a second important conditional

invariant measure emerges, whose properties are very different from the first

one discussed above [12]. The two conditionally invariant measures have large

basins of attraction, a fact that makes both of them physically relevant. The

density of the second conditionally invariant measure is zero at the left endpoint

of the interval I [11,12]. Its basin of attraction is constituted by functions also

sharing this property. In particular, an initial distribution restricted to the inside

of the interval I will approach the second conditionally invariant measure. The

basin of attraction of the density of the first one is formed by functions having

finite values at the left endpoint of the interval I. The situation can be understood

by investigating the eigenfunctions of the operator adjoint to the Frobenius–

Perron operator [11,12]. The two measures produce different escape rates.

Interesting consequences concerning transient diffusion processes taking place

in a chain of such maps can be drawn [12]. Namely, the diffusion coefficient can

have a finite jump, when the control parameter reaches its citical value.
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1. Ch. Beck and F. Schlögl, Thermodynamics of Chaotic Systems, Cambridge University Press,

1993.
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7. A. Csordás and P. Szépfalusy, Phys. Rev. A38, 2582 (1988).
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I. INTRODUCTION

How should we understand the origin of biological irreversibility?

As an empirical fact, we know that the direction from the alive to the dead is

irreversible. At a more specific level, we know that in a multicellular organism

with a developmental process, there is a definite temporal flow. Through the

developmental process, the multipotency (i.e., the ability to create different

types of cells) decreases. Initially, the embryonic stem cell has totipotency and

has the potentiality to create all types of cells in the organism. Then a stem cell

can create a limited variety of cells, having multipotency. This hierarchical loss
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of multipotency terminates at a determined cell, which can only replicate its

own type, in the normal developmental process. The degree of determination

increases in the normal course of development. How can one understand such

irreversibility?

Of course this question is not easy to answer. However, it should be pointed

out that:

1. It is very difficult to imagine that this irreversibility is caused by a set of

specific genes. The present irreversibility is too universal to be attributed

to characteristics of a few molecules.

2. It is also impossible to simply attribute this irreversibility to the second

law of thermodynamics. One can hardly imagine that the entropy, even if

it were possible to be defined, suddenly increases at the death, or

successively increases at the cell differentiation process. Furthermore, it

should be generally very difficult to define a thermodynamic entropy to a

highly nonequilibrium system such as a cell.

Then what strategy should we choose?

A biological system contains always sufficient degrees of freedom—say, a

set of chemical concentrations in a cell, whose values change in time. Then, one

promising strategy for the study of a biological system lies in the use of

dynamical systems [1]. By setting a class of dynamical systems, we search for

universal characteristics that are robust against microscopic and macroscopic

fluctuations.

A biological unit, such as a cell, has always some internal structure that can

change in time. As a simple representation, the unit can be represented by a

dynamical system. For example, consider a representation of a cell by a set of

chemical concentrations. A cell, however, is not separated from the outside

world completely. For example, isolation by a biomembrane is flexible and

incomplete. In this way, the units, represented by dynamical systems, interact

with each other through the external environment. Hence, we need a model

consisting of the interplay between inter-unit and intra-unit dynamics. For

example, the complex chemical reaction dynamics in each unit (cell) is affected

by the interaction with other cells, which provides an interesting example of

‘‘intra–inter dynamics.’’ In the ‘‘intra–inter dynamics,’’ elements having internal

dynamics interact with each other. This type of intra–inter dynamics is not

necessarily represented only by the perturbation of the internal dynamics by the

interaction with other units, nor is it merely a perturbation of the interaction by

adding some internal dynamics.

As a specific example of the scheme of intra–inter dynamics, we will mainly

discuss the developmental process of a cell society accompanied by cell

differentiation. Here, the intra–inter dynamics consists of several biochemical
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reaction processes. The cells interact through the diffusion of chemicals or their

active signal transmission.

If N cells with k degrees of freedom exist, the total dynamics is represented

by an Nk-dimensional dynamical system (in addition to the degrees of freedom

of the environment). Furthermore, the number of cells is not fixed in time, but

they are born by division (and die) in time.

After the division of a cell, if two cells remained identical, another set of

variables would not be necessary. If the dynamical system for chemical state of

a cell has orbital instability (such as chaos), however, the orbits of chemical

dynamics of the (two) daughters will diverge. Hence, the number of degrees of

freedom, Nk, changes in time. This increase in the number of variables is tightly

connected with the internal dynamics. It should also be noted that in the

developmental process, in general, the initial condition of the cell states is

chosen so that their reproduction continues. Thus, a suitable initial condition for

the internal degrees of freedom is selected through interaction.

Now, to study a biological system in terms of dynamical systems theory, it is

first necessary to understand the behavior of a system with internal degrees of

freedom and interaction [4]. This is the main reason why I started a model

called Coupled Map Lattice [5] (and later Globally Coupled Map [6]) about

2 decades ago. Indeed, several discoveries in GCM seem to be relevant to

understand some basic features in a biological system. GCM has provided us

some novel concepts for nontrivial dynamics between microscopic and

macroscopic levels, while the dynamic complementarity between a part and

the whole is important to study biological organization [7]. In the present

chapter we briefly review the behaviors of GCM in Section II, and in Sections

III–V we discuss some recent advances about dominance of Milnor attractors,

chaotic itinerancy, and collective dynamics. Then we will switch to the topic of

development and differentiation in an interacting cell system. After presenting

our model based on dynamical systems in Section VI, we give a basic scenario

discovered in the model, and interpret cell differentiation in terms of dynamical

systems. Then, the origin of biological irreversibility is discussed in Section IX.

Discussion toward the construction of phenomenology theory of development is

given in Section X.

II. HIGH-DIMENSIONAL CHAOS REVISITED

The simplest case of global interaction is studied as the ‘‘globally coupled map’’

(GCM) of chaotic elements [6]. A standard example is given by

xnþ1ðiÞ ¼ ð1 � EÞ f ðxnðiÞÞ þ
E
N

XN

j¼1

f ðxnð jÞÞ ð1Þ
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where n is a discrete time step and i is the index of an element

(i ¼ 1; 2; . . . ;N¼system size), and f ðxÞ ¼ 1 � ax2. The model is just a mean-

field-theory-type extension of coupled map lattices (CML) [5].

Through the interaction, elements tend to oscillate synchronously, while

chaotic instability leads to destruction of the coherence. When the former

tendency wins, all elements oscillate coherently, while elements are completely

desynchronized in the limit of strong chaotic instability. Between these cases,

elements split into clusters in which they oscillate coherently. Here a cluster is

defined as a set of elements in which xðiÞ ¼ xð jÞ [6]. Attractors in GCM are

classified by the number of synchronized clusters k and the number of elements

for each cluster Ni. Each attractor is coded by the clustering condition

½k; ðN1;N2; . . . ;NkÞ�. Stability of each clustered state is analyzed by introducing

the split exponent [6,9].

An interesting possibility in the clustering is that it provides a source for

diversity. In clustering it should be noted that identical chaotic elements

differentiate spontaneously into different groups: Even if a system consists of

identical elements, they split into groups with different phases of oscillations.

Hence a network of chaotic elements gives a theoretical basis for isologous

diversification and provides a mechanism for the origin of diversity and

complexity in biological networks [10,11].

In a globally coupled chaotic system in general, the following phases appear

successively with the increase of nonlinearity in the system (a in the above

logistic map case) [6]:

1. Coherent phase: Only a coherent attractor ðk ¼ 1Þ exists.

2. Ordered phase: All attractors consist of a few ðk ¼ oðNÞÞ clusters.

3. Partially ordered phase: Attractors with a variety of clusterings coexist,

while most of them have many clusters ðk ¼ OðNÞÞ.
4. Turbulent phase: Elements are completely desynchronized, and all

attractors have N clusters.

The above clustering behaviors have universally been confirmed in a variety

of systems.

In the partially ordered (PO) phase, there are a variety of attractors with a

different number of clusters and a different type of partitions [N1;N2; . . . ;Nk].

The clustering here is typically inhomogeneous: The partition [N1;N2; . . . ;Nk]

is far from equal partition. Often this clustering is hierarchical as for the number

of elements, and as for the values. For example, consider the following idealized

clustering: First split the system into two equal clusters. Take one of them and

split it again into two equal clusters, but leave the other without split. By

repeating this process, the partition is given by [N=2;N=4;N=8; . . .]. In this

case, the difference of the values of xnðiÞ is also hierarchical. The difference
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between the values of xnðiÞ decreases as the above process of partition is

iterated. Although the above partition is too much simplified, such hierarchical

structure in partition and in the phase space is typically observed in the PO

phase. The partition is organized as an inhomogeneous tree structure, as in the

spin glass model [8].

We have also measured the fluctuation of the partitions, using the prob-

ability Y that two elements fall on the same cluster. In the PO phase, this Y value

fluctuates by initial conditions, and the fluctuation remains finite even if the size

goes to infinity [12,13]. It is noted that such remnant fluctuation of partitions is

also seen in spin glass models [8].

III. PREVALENCE OF MILNOR ATTRACTORS

In the partially ordered (PO) phase, there coexist a variety of attractors

depending on the partition [12]. To study the stability of an attractor against

perturbation, we introduce the return probability PðsÞ, defined as follows [14]:

Take an orbit point fxðiÞg of an attractor in an N-dimensional phase space, and

perturb the point to xðiÞ þ s
2

rndi, where rndi is a random number taken from

[�1; 1], uncorrelated for all elements i. Check if this perturbed point returns to

the original attractor via the original deterministic dynamics (1). By sampling

over random perturbations and the time of the application of perturbation, the

return probability PðsÞ is defined as (# of returns)=(# of perturbation trials).

As a simple index for robustness of an attractor, it is useful to define sc as the

largest s such that PðsÞ ¼ 1. This index measures what we call the strength of

an attractor.

The strength sc gives a minimum distance between the orbit of an attractor

and its basin boundary. In contrast with our naive expectation from the concept

of an attractor, we have often observed ‘‘attractors’’ with sc ¼ 0; that is,

Pðþ0Þ 
 limd!0 PðdÞ < 1. If sc ¼ 0 holds for a given state, it cannot be an

‘‘attractor’’ in the sense with asymptotic stability, since some tiny perturbations

kick the orbit out of the ‘‘attractor.’’ The attractors with sc ¼ 0 are called

Milnor attractors [15,16]. In other words, Milnor attractor is defined as an

attractor that is unstable by some perturbations of arbitrarily small size, but

globally attracts orbital points. The basin of attraction has a positive Lebesgue

measure. (The basin is riddled here [17,18].) Because it is not asymptotically

stable, one might, at first sight, think that it is rather special, and it appears only

at a critical point like the crisis in the logistic map [15]. To our surprise, the

Milnor attractors are rather commonly observed around the PO phase in our

GCM. The strength and basin volume of attractors are not necessarily

correlated. Attractors with sc ¼ 0 often have a large basin volume.

Still, one might suspect that such Milnor attractors must be weak against

noise. Indeed, by a very weak noise with the amplitude s, an orbit at a Milnor
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attractor is kicked away, and if the orbit is reached to one of attractors with

sc > s, it never comes back to the Milnor attractor. Rather, an orbit kicked out

from a Milnor attractor is often found to stay in the vicinity of it [16]. The orbit

comes back to the original Milnor attractor before it is kicked away to other

attractors with sc > s. Furthermore, by a larger noise, orbits sometimes are

more attracted to Milnor attractors. Such attraction is possible, since Milnor

attractors here have global attraction in the phase space, in spite of their local

instability.

Prevalence of Milnor attractors gives us reason to suspect the computability

of our system. Once the digits of two variables xðiÞ and xð jÞ agree down to the

lowest bit, the values never split again, even though the state with the

synchronization of the two elements may be unstable. As long as digital

computation is adopted, it is always possible that an orbit is trapped to such

unstable state. In this sense a serious problem is cast in numerical computation

of GCM in general.1

Existence of Milnor attractors may lead us to suspect the correspondence

between a (robust) attractor and memory, often adopted in neuroscience (and

theoretical cell biology). It should be mentioned that Milnor attractors can

provide dynamic memory [4,19] allowing for an interface between outside and

inside, external inputs, and internal representation.

IV. CHAOTIC ITINERANCY

Besides the above static complexity, dynamic complexity is more interesting at

the PO phase. Here orbits make itinerancy over ordered states with partial

synchronization of elements, via highly chaotic states. This dynamics, called

chaotic itinerancy (CI), is a novel universal class in high-dimensional dynamical

systems. Our CI consists of a quasi-stationary high-dimensional state, exits to

‘‘attractor ruins’’ with low effective degrees of freedom, residence therein, and

chaotic exits from them. In the CI, an orbit successively itinerates over such

‘‘attractor ruins,’’ involving ordered motion with some coherence among

elements. The motion at ‘‘attractor ruins’’ is quasi-stationary. For example, if

the effective degrees of freedom is two, the elements split into two groups, in

each of which elements oscillate almost coherently. The system is in the vicinity

of a two-clustered state, which, however, is not a stable attractor, but keeps

attraction to its vicinity globally within the phase space. After staying at an

attractor ruin, an orbit exits from it due to chaotic instability, and it shows a high-

dimensional chaotic motion without clear coherence. This high-dimensional

1 Indeed, in our simulations we have often added a random floating at the smallest bit of x(i) in the

computer, to partially avoid such computational problems.
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state is again quasi-stationary, although there are some holes connecting to the

attractor ruins from it. Once the orbit is trapped at a hole, it is suddenly attracted

to one of attractor ruins—that is, ordered states with low-dimensional dynamics.

This CI dynamics has independently been found in a model of neural

dynamics (by Tsuda [19]), optical turbulence [20], and GCM. It provides an

example of successive changes of relationships among elements.

Note that the Milnor attractors satisfy the condition of the above ordered

states constituting chaotic itinerancy. Some Milnor attractors we have found

keep global attraction, which is consistent with the observation that the

attraction to ordered states in chaotic itinerancy occurs globally from a high-

dimensional chaotic state. Attraction of an orbit to precisely a given attractor

requires infinite time, and before the orbit is really settled to a given Milnor

attractor, it may be kicked away.2 When Milnor attractors that lose the stability

(Pð0Þ < 1) keep global attraction, the total dynamics can be constructed as the

successive alternations to the attraction to, and escape from, them. If the attrac-

tion to robust attractors from a given Milnor attractor is not possible, the

long-term dynamics with the noise strength ! þ0 is represented by successive

transitions over Milnor attractors. Then the dynamics is represented by transi-

tion matrix over Milnor attractors. This matrix is generally asymmetric: Often,

there is a connection from a Milnor attractor A to a Milnor attractor B, but not

from B to A. The total dynamics is represented by the motion over a network,

given by a set of directed graphs over Milnor attractors.

In general, the ‘‘ordered states’’ in CI may not be exactly Milnor attractors

but can be weakly destabilized states from Milnor attractors. Still, the attribution

of CI to Milnor attractor network dynamics is expected to work as one ideal

limit.3

As already discussed about the Milnor attractor, computability of the

switching over Milnor attractor networks has a serious problem. In each event of

switching, which Milnor attractor is visited next after the departure from a

Milnor attractor may depend on the precision. In this sense, the order of visits to

Milnor attractors in chaotic itinerancy may not be undecidable in a digital

computer. In other words, motion at a macroscopic level may not be decidable

from a microscopic level. With this respect, it may be interesting to note that

there are similar statistical features between (Milnor attractor) dynamics with a

riddled basin and undecidable dynamics of a universal Turing machine [23].

2 This problem is subtle computationally, since any finite precision in computation may have a

serious influence on whether the orbit remains at a Milnor attractor or not.
3 The notion of chaotic itinerancy is rather broad, and some of CI may not be explained by the

Milnor attractor network. In particular, chaotic itinerancy in a Hamiltonian system [21,22] may not

fit directly with the present correspondence.
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V. COLLECTIVE DYNAMICS

If the coupling strength E is small enough, oscillation of each element has no

mutual synchronization. In this turbulent phase, xðiÞ takes almost random values

almost independently, and the number of degrees of freedom is proportional to

the number of elements N; that is, the Lyapunov dimension increases in

proportion to N. Even in such cases, the macroscopic motion shows some

coherent motion distinguishable from noise, and there remains some coherence

among elements, even in the limit of N ! 1. As a macroscopic variable we

adopt the mean field,

hn ¼ 1

N

XN

i¼1

f ðxnðiÞÞ ð2Þ

In almost all the parameter values, the mean field motion shows some dynamics

that is distinguishable from noise, ranging from torus-like to higher-dimensional

motion. This motion remains even in the thermodynamic limit [24].

This remnant variation means that the collective dynamics hnðiÞ keeps some

structure. One possibility is that the dynamics is low-dimensional. Indeed in

some system with a global coupling, the collective motion is shown to be low-

dimensional in the limit of N ! 1 (see Refs. 25 and 26). In the GCM equation

[Eq. (1)], with the logistic or tent map, low-dimensional motion is not detected

generally, although there remains some collective motion in the limit of

N ! 1. The mean field motion in GCM is regarded to be infinite-dimensional,

even when the torus-like motion is observed [27–30]. Then it is important to

clarify the nature of this mean-field dynamics.

It is not so easy to examine the infinite-dimensional dynamics, directly.

Instead, Shibata, Chawanya, and the author have first made the motion low-

dimensional by adding noise, and then they studied the limit of noise ! 0. To

study this effect of noise, we have simulated the model

xnþ1ðiÞ ¼ ð1 � EÞ f ðxnðiÞÞ þ
E
N

XN

j¼1

f ðxnð jÞÞ þ sZi
n ð3Þ

where Zi
n is a white noise generated by an uncorrelated random number

homogeneously distributed over [�1; 1].

The addition of noise can destroy the above coherence among elements. In

fact, the microscopic external noise leads the variance of the mean field

distribution to decrease with N [24,31]. This result also implies decrease of the

mean field fluctuation by external noise.
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Behavior of the above equation in the thermodynamic limit N ! 1 is

represented by the evolution of the one-body distribution function rnðxÞ at time

step n directly. Because the mean field value

hn ¼
ð

f ðxÞrnðxÞ dx ð4Þ

is independent of each element, the evolution of rnðxÞ obeys the Perron–

Frobenius equation given by

rnþ1ðxÞ ¼
ð

dy
1ffiffiffiffiffiffi
2p

p
s

e�
FnðyÞ�xð Þ2

2s2 rnðyÞ ð5Þ

with

FnðxÞ ¼ ð1 � EÞf ðxÞ þ Ehn ð6Þ

By analyzing the above Perron–Frobenius equation [32], it is shown that the

dimension of the collective motion increases as logð1=s2Þ, with s as the noise

strength. Hence in the limit of s ! 0, the dimension of the mean field motion is

expected to be infinite. Note that the mean field dynamics (at N ! 1) is

completely deterministic, even under the external noise.

With the addition of noise, high-dimensional structures in the mean-field

dynamics are destroyed successively; and the bifurcation from high-dimen-

sional to low-dimensional chaos, and then to torus, proceeds with the increase of

the noise amplitude. With a further increase of noise to s > sc, the mean field

goes to a fixed point through Hopf bifurcation. This destruction of the hidden

coherence leads to a strange conclusion. Take a globally coupled system with a

desynchronized and highly chaotic state, and add noise to the system. Then the

dimension of the mean field motion gets lower with the increase of noise.

The appearance of low-dimensional ‘‘order’’ through the destruction of

small-scale structure in chaos is also found in noise-induced order [33]. Note,

however, that in a conventional noise-induced transition [34], the ordered

motion is still stochastic, since the noise is added into a low-dimensional

dynamical system. On the other hand, the noise-induced transition in the collec-

tive dynamics occurs after the thermodynamic limit is taken. Hence the low-

dimensional dynamics induced by noise is truly low-dimensional. When we say

a torus, the Poincaré map shows a curve without thickness by the noise, since

the thermodynamic limit smears out the fluctuation around the tours. Also,

it is interesting to note that a similar mechanism of the destruction of hidden

coherence is observed in quantum chaos.

This noise-induced low-dimensional collective dynamics can be used to

distinguish high-dimensional chaos from random noise. If the irregular behavior
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is originated in random noise, (further) addition of noise will result in an

increase of the fluctuations. If the external application of noise leads to the

decrease of fluctuations in some experiment, it is natural to assume that the

irregular dynamics there is due to high-dimensional chaos with a global

coupling of many nonlinear modes or elements.

VI. CELL DIFFERENTIATION AND DEVELOPMENT
AS DYNAMICAL SYSTEMS

Now we come back to the problem of cell differentiation and development. A

cell is separated from environment by a membrane, whose separation, however,

is not complete. Some chemicals pass through the membrane; and through this

transport, cells interact with each other. When a cell is represented by a

dynamical system the cells interact with each other and with the external

environment. Hence, we need a model consisting of the interplay between inter-

unit and intra-unit dynamics. Here we will mainly discuss the developmental

process of a cell society accompanied by cell differentiation, where the intra–

inter dynamics consist of several biochemical reaction processes. Cells interact

through the diffusion of chemicals or their active signal transmission, while they

divide into two when some condition is satisfied with the chemical reaction

process in it. (See Fig. 1 for schematic representation of our model.)

We have studied several models [2,3,35–38] with (a) internal (chemical)

dynamics of several degrees of freedom, (b) cell–cell interaction type through

the medium, and (c) the division to change the number of cells.

As for the internal dynamics, an autocatalytic reaction among chemicals is

chosen. Such autocatalytic reactions are necessary to produce chemicals in a

cell, required for reproduction [39]. Autocatalytic reactions often lead to

nonlinear oscillation in chemicals. Here we assume the possibility of such

oscillation in the intracellular dynamics [40,41]. As the interaction mechanism,

the diffusion of chemicals between a cell and its surroundings is chosen.

To be specific, we mainly consider the following model here. First, the state

of a cell i is assumed to be characterized by the cell volume and a set of

functions x
ðmÞ
i ðtÞ representing the concentrations of k chemicals denoted by

m ¼ 1; . . . ; k. The concentrations of chemicals change as a result of internal

biochemical reaction dynamics within each cell and cell–cell interactions

communicated through the surrounding medium.

For the internal chemical reaction dynamics, we choose a catalytic network

among the k chemicals. The network is defined by a collection of triplets (l, j, m)

representing the reaction from chemical m to l catalyzed by j. The rate of

increase of xl
iðtÞ (and decrease of xm

i ðtÞ) through this reaction is given by

x
ðmÞ
i ðtÞðxðjÞi ðtÞÞa, where a is the degree of catalyzation (a ¼ 2 in the simulations

considered presently). Each chemical has several paths to other chemicals, and
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thus a complex reaction network is formed. Thus, the change in the chemical

concentrations through all such reactions is determined by the set of all terms of

the above type for a given network. (These reactions can include genetic

processes.)

Cells interact with each other through the transport of chemicals out of and

into the surrounding medium. As a minimal case, we consider only indirect

cell–cell interactions through diffusion of chemicals via the medium. The

transport rate of chemicals into a cell is proportional to the difference in

chemical concentrations between the inside and the outside of the cell and is

Figure 1. Schematic representation of our model.
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given by DðXðlÞðtÞ � x
ðlÞ
i ðtÞÞ, where D denotes the diffusion constant, and XðlÞðtÞ

is the concentration of the chemical at the medium. The diffusion of a chemical

species through cell membrane should depend on the properties of this species.

In this model, we consider the simple case in which there are two types of

chemicals; one that can penetrate the membrane and one that cannot. For

simplicity, we assume that all the chemicals capable of penetrating the

membrane have the same diffusion coefficient, D. With this type of interaction,

corresponding chemicals in the medium are consumed. To maintain the growth

of the organism, the system is immersed in a bath of chemicals through which

(nutritive) chemicals are supplied to the cells.

As chemicals flow out of and into the environment, the cell volume changes.

The volume is assumed to be proportional to the sum of the quantities of

chemicals in the cell, and thus is a dynamical variable. Accordingly, chemicals

are diluted as a result of the increase of the cell volume.

In general, a cell divides according to its internal state, for example, as some

products, such as DNA or the membrane, are synthesized, accompanied by an

increase in cell volume. Again, considering only a simple situation, we assume

that a cell divides into two when the cell volume becomes double the original.

At each division, all chemicals are almost equally divided, with random

fluctuations.

Of course, each result of simulation depends on the specific choice of the

reaction network. However, the basic feature of the process to be discussed does

not depend on the details of the choice, as long as the network allows for the

oscillatory intracellular dynamics leading to the growth in the number of cells.

Note that the network is not constructed to imitate an existing biochemical

network. Rather, we try to demonstrate that important features in a biological

system are a natural consequence of a system with internal dynamics,

interaction, and reproduction. From the study we try to extract a universal

logic underlying a class of biological systems.

VII. SCENARIO FOR CELL DIFFERENTIATION

From several simulations of the models starting from a single cell initial

condition, we have shown that cells undergo spontaneous differentiation as the

number is increased (see Fig. 2 for schematic representation): The first

differentiation starts with the clustering of the phase of the oscillations, as

discussed in globally coupled maps (see Fig. 2a). Then, the differentiation comes

to the stage that the average concentrations of the biochemicals over the cell

cycle become different. The composition of biochemicals as well as the rates of

catalytic reactions and transport of the biochemicals become different for each

group.
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After the formation of cell types, the chemical compositions of each group

are inherited by their daughter cells. In other words, chemical compositions of

cells are recursive over divisions. The biochemical properties of a cell are

inherited by its progeny; in other words, the properties of the differentiated cells

Figure 2. Schematic representation of cell differentiation process, plotted in the phase space of

chemical concentrations.
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are stable, fixed, or determined over the generations (see Fig. 2b). After several

divisions, such an initial condition of units is chosen to give the next generation

of the same type as its mother cell.

The most interesting example here is the formation of stem cells,

schematically shown in Fig. 2c [37]. This cell type, denoted as S here, either

reproduces the same type or forms different cell types, denoted for example as

type A and type B. Then after division events S ! S;A;B occur. Depending on

the adopted chemical networks, the types A and B replicate, or switch to

different types. For example, A ! A;A1;A2;A3 is observed in some network.

This hierarchical organization is often observed when the internal dynamics

have some complexity, such as chaos.

The differentiation here is ‘‘stochastic,’’ arising from chaotic intracellular

chemical dynamics. The choice for a stem cell either to replicate or to

differentiate seems stochastic as far as the cell type is concerned. Because such

stochasticity is not due to external fluctuation but is a result of the internal state,

the probability of differentiation can be regulated by the intracellular state. This

stochastic branching is accompanied by a regulative mechanism. When some

cells are removed externally during the developmental process, the rate of

differentiation changes so that the final cell distribution is recovered.

In some biological systems such as the hematopoietic system, stem cells

either replicate or differentiate into different cell type(s). This differentiation

rule is often hierarchical [42,43]. The probability of differentiation to one of the

several blood cell types is expected to depend on the interaction. Otherwise, it is

hard to explain why the developmental process is robust. For example, when the

number of some terminal cells decreases, there should be some mechanism to

increase the rate of differentiation from the stem cell to the differentiated cells.

This suggests the existence of interaction-dependent regulation of the

differentiation ratio, as demonstrated in our results.

Microscopic Stability

The developmental process is stable against molecular fluctuations. First,

intracellular dynamics of each cell type are stable against such perturbations.

Then, one might think that this selection of each cell type is nothing more than

a choice among basins of attraction for a multiple attractor system. If the

interaction were neglected, a different type of dynamics would be interpreted

as a different attractor. In our case, this is not true, and cell–cell interactions

are necessary to stabilize cell types. Given cell-to-cell interactions, the cell

state is stable against perturbations on the level of each type of intracellular

dynamics.

Next, the number distribution of cell types is stable against fluctuations.

Indeed, we have carried out simulations of our model, by adding a noise term,

considering finiteness in the number of molecules [3,44]. The obtained cell type,
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as well as the number distribution, is hardly affected by the noise as long as the

noise amplitude is not too large.4

Macroscopic Stability

Each cellular state is also stable against perturbations of the interaction term. If

the cell type number distribution is changed within some range, each type of

cellular dynamics keeps its identity. Hence discrete, stable types are formed

through the interplay between intracellular dynamics and interaction. The

recursive production is attained through the selection of initial conditions of the

intracellular dynamics of each cell, so that it is rather robust against the change of

interaction terms as well.

The macroscopic stability is clearly shown in the spontaneous regulation of

differentiation ratio. How is this interaction-dependent rule formed? Note that

depending on the distribution of the other cell types, the orbit of the internal cell

state is slightly deformed. For a stem cell case, the rate of the differentiation or

the replication (e.g., the rate to select an arrow among S ! S;A;B) depends on

the cell-type distribution. For example, when the number of ‘‘A’’ type cells is

reduced, the orbit of an ‘‘S’’-type cell is shifted toward the orbits of ‘‘A,’’ with

which the rate of switch to ‘‘A’’ is enhanced. The information of the cell-type

distribution is represented by the internal dynamics of ‘‘S’’-type cells, and it is

essential to the regulation of differentiation rate [37].

It should be stressed that our dynamical differentiation process is always

accompanied by this kind of regulation process, without any sophisticated

programs implemented in advance. This autonomous robustness provides a

novel viewpoint to the stability of the cell society in multicellular organisms.

VIII. DYNAMICAL SYSTEMS REPRESENTATIONS
OF CELL DIFFERENTIATION

Because each cell state is realized as a balance between internal dynamics and

interaction, one can discuss which part is more relevant to determine the

stability of each state. In one limiting case, the state is an attractor as internal

dynamics [45], which is sufficiently stable and not destabilized by cell–cell

interaction. In this case, the cell state is called ‘‘determined,’’ according to the

terminology in cell biology. In the other limiting case, the state is totally

governed by the interaction; and by changing the states of other cells, the cell

state in concern is destabilized. In this case, each cell state is highly dependent

on the environment or other cells.

4 When the noise amplitude is too large, distinct types are no longer formed. Cell types are

continuously distributed. In this case the division speed is highly reduced, since the differentiation of

roles by differentiated cell types is destroyed.
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Each cell type in our simulation generally lies between these two limiting

cases. To see such intra–inter nature of the determination explicitly, one effective

method is a transplantation experiment. Numerically, such an experiment is

carried out by choosing determined cells (obtained from the normal differen-

tiation process) and putting them into a different set of surrounding cells, to set

distribution of cells so that it does not appear through the normal course of

development.

When a differentiated and recursive cell is transplanted to another cell

society, the offspring of the cell keeps the same type, unless the cell-type

distribution of the society is strongly biased. When a cell is transplanted into a

biased society, differentiation from a ‘‘determined’’ cell occurs. For example, a

homogeneous society consisting only of one determined cell type is unstable,

and some cells start to switch to a different type. Hence, the cell memory is

preserved mainly in each individual cell, but suitable intercellular interactions

are also necessary to keep it.

Because each differentiated state is not an attractor, but is stabilized through

the interaction, we propose to define partial attractor, to address attraction

restricted to the internal cellular dynamics. Tentative definition of this partial

attractor is as follows:

1. Internal stability. Once the cell–cell interaction is specified (i.e., the

dynamics of other cells), the state is an attractor of the internal dynamics.

In other words, it is an attractor when the dynamics is restricted only to

the variables of a given cell.

2. Interaction stability. The state is stable against change of interaction

term, up to some finite degree. With the change of the interaction term of

the order E, the change in the dynamics remains of the order of OðEÞ.
3. Self-consistency. For some distribution of units of cellular states

satisfying 1 and 2, the interaction term continues to satisfy condition 1

and 2.

We tentatively call a state satisfying 1–3 a partial attractor. Each determined

cell type we found can be regarded as a partial attractor. To define the dynamics

of stem cell in our model, however, we have to slightly modify the condition of 2

to a ‘‘Milnor-attractor’’ type. Here, small perturbation to the interaction term

(by the increase of the cell number) may lead the state to switch to a

differentiated state. Hence, instead of 2, we set the condition:

20. For some change of interaction with a finite measure, some orbits remain

to be attracted to the state.

So far we have discussed the stability of a state by fixing the number of cells.

In some case, condition 3 may not be satisfied when the system is developed
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from a single cell following the cell division rule. As for developmental process,

the condition has to be satisfied for a restricted range of cell distribution realized

by the evolution from a single cell. Then we need to add the condition:

4. Accessibility. The distribution (3) is satisfied from an initial condition of

a single cell and with the increase of the number of cells.

Cell types with determined differentiation observed in our model is regarded

as a state satisfying 1–4, while the stem cell type is regarded as a state satisfying

1, 20, 3, and 4.

In fact, as the number is increased, some perturbations to the interaction term

is introduced. In our model, the stem-cell state satisfies 2 up to some number;

but with the further increase of number, the condition 2 is no more satisfied and

is replaced by 20. Perturbation to the interaction term due to the cell number

increase is sufficient to bring about a switch from a given stem-cell dynamics to

a differentiated cell. Note again that the stem-cell type state with weak stability

has a large basin volume when started from a single cell.

IX. TOWARD BIOLOGICAL IRREVERSIBILITY
IRREDUCIBLE TO THERMODYNAMICS

In the normal development of cells, there is clear irreversibility, resulting from

the successive loss of multipotency.

In our model simulations, this loss of multipotency occurs irreversibly. The

stem-cell type can differentiate to other types, while the determined type that

appears later only replicates itself. In a real organism, there is a hierarchy in

determination, and a stem cell is often over a progenitor over only a limited

range of cell types. In other words, the degree of determination is also

hierarchical. In our model, we have also found such hierarchical structure. So

far, we have found only up to the second layer of hierarchy in our model with

the number of chemicals k ¼ 20.

Here, dynamics of a stem-type cell exhibit irregular oscillations with

orbital instability and involve a variety of chemicals. Stem cells with these

complex dynamics have a potential to differentiate into several distinct cell

types. Generally, the differentiated cells always possess simpler cellular

dynamics than do the stem cells—for example, fixed-point dynamics and

regular oscillations.

Although we have not yet succeeded in formulating the irreversible loss of

multipotency in terms of a single fundamental quantity (analogous to

thermodynamic entropy), we have heuristically derived a general law describing

the change of the following quantities in all of our numerical experiments, using

a variety of reaction networks [44,46]. As cell differentiation progresses through
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development, we encounter the following:

I. Stability of intracellular dynamics increases.

II. Diversity of chemicals in a cell decreases.

III. Temporal variations of chemical concentrations decrease, by realizing

less chaotic motion.

The degree of statement I could be determined by a minimum change in the

interaction to switch a cell state, by properly extending the ‘‘attractor strength’’

in Section III. Initial undifferentiated cells spontaneously change their state

even without the change of the interaction term, while stem cells can be

switched by a tiny change in the interaction term. The degree of determination

is roughly measured as the minimum perturbation strength required for a switch

to a different state.

The diversity of chemicals (statement II) can be measured, for example, by

S ¼ �
Pk

j¼1 pð jÞlog pð jÞ, with pð jÞ ¼ hxðjÞ=
Pk

m¼1 xðmÞi, with h � � � i as

temporal average. Loss of multipotency in our model is accompanied by a

decrease in the diversity of chemicals and is represented by the decrease of this

diversity S.

The tendency (III) is numerically confirmed by the subspace Kolmorogorov–

Sinai (KS) entropy of the internal dynamics for each cell. Here, this subspace

KS entropy is measured as a sum of positive Lyapunov exponents, in the tangent

space restricted only to the intracellular dynamics for a given cell. Again, this

exponent decreases through the development.

X. DISCUSSION: TOWARD PHENOMENOLOGY THEORY
OF DEVELOPMENTAL PROCESS

In the present chapter, we have first surveyed some recent progress in coupled

dynamical systems—in particular, globally coupled maps. Then we discuss

some of our recent studies on the cell differentiation and development, based on

coupled dynamical systems with some internal degrees of freedom and the

potentiality to increase the number of units (cells). Stability and irreversibility of

the developmental process are demonstrated by the model, and they are

discussed in terms of dynamical systems.

Of course, results based on a class of models are not sufficient to establish a

theory to understand the stability and irreversibility in development of

multicellular organisms. We need to unveil the logic that underlies such models

and real development universally. Although mathematical formulation is not yet

established, supports are given to the following conjecture:

Assume a cell with internal chemical reaction network whose degrees of

freedom is large enough and which interacts each other through the
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environment. Some chemicals are transported from the environment and

converted to other chemicals within a cell. Through this process the cell volume

increases and the cell is divided. Then, for some chemical networks, each

chemical state of a cell remains to be a fixed point. In this case, cells remain

identical, where the competition for chemical resources is higher, and the

increase of the cell number is suppressed. On the other hand, for some reaction

networks, cells differentiate and the increase in the cell number is not

suppressed. The differentiation of cell types forms a hierarchical rule. The

initial cell types have large chemical diversity and show irregular temporal

change of chemical concentrations. As the number of cells increases and the

differentiation progresses, irreversible loss of multipotency is observed. This

differentiation process is triggered by instability of some states by cell–cell

interaction, while the realized states of cell types and the number distribution of

such cell types are stable against perturbations, following the spontaneous

regulation of differentiation ratio.

When we recall the history of physics, the most successful phenomenological

theory is nothing but thermodynamics. To construct a phenomenology theory

for development, or generally a theory for biological irreversibility, comparison

with the thermodynamics should be relevant. Some similarity between the

phenomenology of development and thermodynamics is summarized in Table I.

As mentioned, both the thermodynamics and the development phenomeno-

logy have stability against perturbations. Indeed, the spontaneous regulation in a

stem cell system found in our model is a clear demonstration of stability against

perturbations, similar to the Le Chatelier–Braun principle. The irreversibility in

thermodynamics is defined by suitably restricting possible operations, as

formulated by adiabatic process. Similarly, the irreversibility in a multicellular

organism has to be suitably defined by introducing an ideal developmental

process. Note that in some experiments such as cloning from somatic cells in

animals [47], the irreversibility in normal development can be reversed.

The last question that should be addressed here is the search for macroscopic

quantities to characterize each (differentiated) cellular ‘state’. Although

thermodynamics is established by cutting the macroscopic out of microscopic

TABLE I

Comparison Between Development Phenomenology and Thermodynamics

Parameter Development Phenomenology Thermodynamics

Stability Cellular and ensemble level Macroscopic

Stability against perturbation Regulation of differentiation ratio Le Chatelier–Braun principle

Irreversibility Loss of multipotency Second law

Quantification of irreversibility Some pattern of gene expression? Entropy

Cycle Somatic clone cycle? Carnot cycle
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levels, in a cell system, it is not yet sure if such macroscopic quantities can be

defined, by separating a macroscopic state from the microscopic level. At the

present stage, there is no definite answer. Here, however, it is interesting to

recall recent experiments of tissue engineering. By changing the concentrations

of only three control chemicals, Ariizumi and Asashima [48] have succeeded in

constructing all tissues from Xenopus undifferentiated cells (animal cap). Hence

there may be some hope that a reduction to a few variables characterizing

macroscopic ‘‘states’’ may be possible.

Construction of phenomenology for development charactering its stability

and irreversibility is still at the stage ‘‘waiting for Carnot’’; but following our

results based on coupled dynamical systems models and some of recent

experiments, I hope that such phenomenology theory will be realized in the near

future.
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I. INTRODUCTION

Consistent incorporation of irreversibility into conservative dynamical systems is

one of important problems in physics. Prigogine and his collaborators have been

studying this problem [1–5] and recently proposed a formalism, called the

complex spectral theory [6–14], which explicitly represents irreversible time

evolution of states for conservative systems as a superposition of decaying terms.

The early stage of this theory was the subdynamics theory [3–5], where solutions

of the Liouville equation are decomposed into components (or subdynamics)

each obeying Markovian time evolution. The decomposition is carried out in

such a way that the lowest-order approximation satisfies the Markovian

master equation obtained in the van Hove limit [4]. Later the subdynamic

decomposition was shown to be equivalent to the eigenvalue problem of the

Liouville operator corresponding to complex eigenvalues, the imaginary parts of

which are relaxation rates for the forward time evolution [6].1 Because the

Liouville operator of a conservative system is Hermitian in a suitable Hilbert

space, it is inevitable to change mathematical settings in order for the Liouville

operator to have complex eigenvalues. One of the possible settings is the Gelfand

triple (i.e., the rigged Hilbert space), where admissible dynamical variables and/

or states are restricted and the eigenmodes corresponding to complex eigenvalues

are defined as Schwartz’ distributions [8]. In many cases, the test function space

of the Gelfand triple is invariant only for the forward time evolution; as a result,

the evolution becomes a forward semigroup on the space of generalized

functions.

Here we remark that the complex spectral theory applied to quantum

unstable systems such as the Friedrichs model gives the same results as the

contour deformation theory of Sudarshan et al. [15], the rigged Hilbert space

approach of Bohm et al. [16], and the complex scaling approach of Combes

et al. [17]. In the contour deformation theory, the continuous spectra of the

Hamiltonian are analytically continued to complex values and the unstable

states are obtained as usual eigenstates of the analytically continued

Hamiltonian. In the Bohm’s rigged Hilbert space approach, the completeness

relation of the energy eigenstates is represented as an energy integral of a

product of the S-matrix element and analytical functions and unstable states

are obtained from the residues of the S-matrix poles in the second Riemann

sheet. Such unstable states are justified as generalized vectors with the aid of

suitable rigged Hilbert spaces. In the complex scaling approach, a family of one

real-parameter unitary deformation of the Hamiltonian is introduced, the

parameter is analytically continued to complex values, and unstable states are

1Although it was not explicitly explained, one-dimensional subdynamics decomposition of George

and Mayné [5] solves the eigenvalue equation of the Liouville operator.
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obtained as usual eigenfunctions of the analytically continued non-Hermitian

Hamiltonian.

On the other hand, stimulated by the recent progress of the dynamical

systems theory, a new approach is developed in classical statistical mechanics

[18–42]. This dynamical systems approach mainly deals with hyperbolic

systems. Roughly speaking, a hyperbolic system is a system where nearby

trajectories of any trajectory either exponentially deviate from or exponentially

approach to the original trajectory, or, a system where every trajectory is

exponentially unstable along some directions and exponentially stable along the

other directions. Because of the exponential instability of every trajectory, a

hyperbolic system is chaotic. Note that a hyperbolic system can be either

conservative or dissipative. Indeed, there are two directions in the dynamical

systems approach: In one direction, dissipative and time-reversal symmetric

systems, thermostated systems, are investigated; and in the other direction, open

conservative systems are studied. Because we are interested in the conservative

systems, the dissipative case is not discussed.

The dynamical systems approach is believed to be sufficiently generic

because typical systems are considered to satisfy the Gallavotti–Cohen

hypothesis [26,27], which asserts that the microdynamics of an N-body system

for large N is of hyperbolic character. And, so far, several new results have been

obtained such as relations among Kolmogorov–Sinai entropy, Lyapunov

exponents and transport coefficients (escape-rate formalism [18,19,22]), simple

symmetry of a large-deviation distribution of the entropy production in non-

equilibrium steady states (fluctuation theorem [25,26]), and fractal distributions

describing nonequilibrium steady states [23,25–27,31].

While the complex spectral theory asserts that the state evolution becomes

semigroup, the dynamical systems approach deals with both forward and

backward time evolutions. Then, it is interesting to investigate conditions,

which lead to a description with broken time-reversal symmetry. This point will

be discussed later.

Note that the dynamical systems approach is different from the conventional

ergodic theory because, in the latter, an invariant measure is fixed from the

beginning, while in the former, invariant measures are not fixed. As is well

known in the dynamical systems theory [43], a hyperbolic system may admit

uncountably many invariant (even ergodic) measures, and the selection of a

‘‘physical measure’’ is one of important problems. So far, two candidates are

proposed for the physical measure [43]: the Kolmogorov measure and the

Sinai–Ruelle–Bowen measure [44]. The former is a zero noise limit of the

invariant measure of the given system perturbed by a random noise. The latter

describes the time averages of observables on motions where initial data are

randomly sampled with respect to the Lebesgue measure. It should be noted that

both criteria of selecting physical measures are nondynamical because the noise
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in the former is of external origin and the Lebesgue measure in the latter is not

derived from dynamics. This observation seems to imply that the statistical

behavior of a given system cannot be derived from its dynamics alone, contrary to

reductionists’ view. The problem of measure selection, would be irrelevant for

physicists if the choice of an invariant measure did not affect observable

phenomena. However, as will be shown later, this is not the case in general.

In this report, using a reversible area-preserving hyperbolic multibaker map,

the appearance of irreversible state evolution in reversible conservative systems

is illustrated, and several related problems will be discussed.

A multibaker map [19,31,32] is a lattice extension of the conventional baker

transformation, which exhibits a deterministic diffusion. The multibaker maps

and their generalizations are extensively used to illustrate transport properties of

hyperbolic systems including the fractality of nonequilibrium steady states [31,

33], the problem of irreversible entropy production [33,34,36–38,41,42], two or

more kinds of transport [37,38,42], fluctuation theorem [40], and new relations

between fractality of the steady states and transport coefficients [41]. For the

details of recent developments, see the review by Tél and Vollmer [39]. Here,

we deal with the multibaker map with energy coordinate introduced in Ref. 37.

The report is organized as follows. In Section II we describe the multibaker

map with energy coordinate. The evolution of statistical ensembles starting from

smooth initial distributions are discussed in Section III. The nonequilibrium

steady state obtained from the forward time evolution and the decay modes are

shown to have fractality along the contracting direction, and their properties are

consistent with thermodynamics. As a result of the time reversal symmetry,

there exists another steady state with anti-thermodynamical properties. The

states are shown to evolve unidirectionally from the anti-thermodynamical

steady state to the thermodynamically normal steady state in a way consistent

with dynamical reversibility. In Section IV, after briefly reviewing the complex

spectral theory, we show that a description with broken time-reversal symmetry

naturally arises from the requirement of including the (fractal) steady states into

a class of admissible initial states. Problem of measure selection is discussed in

Section V. The last section is devoted to the summary.

II. MULTIBAKER MAP WITH ENERGY COORDINATE

The multibaker map with energy coordinate introduced in Ref. 37 is a caricature

of the periodic Lorentz gas and was constructed based on the following

observation: For the 2d periodic Lorentz gas, the dimension of the phase space is

four: two for the position and two for the momentum of a moving particle. And

each trajectory of a particle can be fully determined by the states at collisions,

which are specified by the name of a scatterer, the scattering position of the

particle on the scatterer (y), the direction of the particle velocity just before the
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scattering ðcÞ, and the kinetic energy of the particle. When one considers the

motion of particles having the same total energy, the kinetic energy can be

omitted and the dynamics of the Lorentz gas is fully described by a map defined

on an array of (y;c)-rectangles, and this map resembles the usual multibaker

map [19,39]. On the other hand, in order to describe the motion of particles with

different energies, it is necessary to use a map defined on an array of pillars,

where the vertical direction corresponds to the kinetic-energy axis and the

horizontal section represents a ðy;cÞ-rectangle. A multibaker map with energy

coordinate introduced in Ref. 37 mimics this map.

The phase space is a chain � of three-dimensional cells as shown in Fig. 1a:

� ¼ ðn; x; y;EÞjn 2 Z; E 2 Rþ; 0 < x � aE; 0 < y � aEf g ð1Þ

where Z and Rþ stand for the sets of integers and of positive real numbers,

respectively, and aE is a positive function of E. The variables n, x, y, and E

correspond respectively to the name of a scatterer, y, c (or c, y), and the kinetic

energy, and a2
E is the area of a constant ‘‘kinetic energy’’ section of each cell. As

shown in Ref. 37, the form of a2
E is fixed to be a2

E / e2E by three conditions: (i)

conservation of the total energy, (ii) invertibility of the map, and (iii)

independence of the transition rates from the ‘‘kinetic’’ energy E.

In case corresponding to a system under constant external field, the

multibaker map BF is given by (cf. Fig. 1b)

BFðn; x; y;EÞ

¼

n� 1; x
lþeF ; lþeFy; E þ F

� �
; ð0 < x

aE
� l�Þ

ðn; x�l�aE

s
; syþ lþaE; EÞ; ðl� < x

aE
� 1� lþÞ

ðnþ 1; x�ð1�lþÞaE

l�e�F ; fl�yþ ð1� l�ÞaEge�F ;E � FÞ;
ð1� lþ < x

aE
� 1Þ

8>>>>><
>>>>>:

ð2Þ

In the above, F is the parameter corresponding to the applied field,

l�  2l=ð1þ e�2FÞ is the transition rate from nth to ðn� 1Þth cells, and

s  1� 2l to the self-transition rate with l 2 ð0; 1=2� a real parameter.

Because we are interested in transports of open conservative systems, we

consider a system where the multibaker chain of length N þ 1 is embedded

between infinitely extended ‘‘free chains’’ (Fig. 2). Then, (2) holds for

n 2 ½1;N � 1�. The free motion is modeled by simple shifts, that is,

BFðn; x; y;EÞ ¼
ðn� 1; x; y;EÞ; ð0 < x

aE
� lf Þ

ðn; x; y;EÞ; ðlf <
x

aE
� 1� lf Þ

ðnþ 1; x; y;EÞ; ð1� lf <
x

aE
� 1Þ

8><
>: ð3Þ

where lf ¼ lþ for n � �2 and lf ¼ l� for n � N þ 2.
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The sites n ¼ �1; 0;N;N þ 1 are joint sites. The transformation rules for

n ¼ �1 and n ¼ N þ 1 are mixtures of (2) and (3): BFð�1; x; y;EÞ for

1� lþ < x=aE � 1 and BFðN þ 1; x; y;EÞ for 0 < x=aE � l� are given by (2),

and BFð�1; x; y;EÞ for 0 < x=aE � 1� lþ and BFðN þ 1; x; y;EÞ for

l� < x=aE � 1 by (3). The transformation rule for the sites n ¼ 0 and n ¼ N

Figure 1. (a) Schematic representation of the phase space �. The sectional area at ‘‘kinetic

energy’’ E depends on E. The arrow represents the applied field, and hatched squares correspond to a

constant total energy surface. (b) Hyperbolic part of the multibaker map BF on the constant total

energy surface.
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is partly given by (2); that is, BFð0; x; y;EÞ for l� < x=aE � 1 and BFðN; x; y;EÞ
for 0 < x=aE � 1� lþ are given by (2). And the rest cases are given by

BFð0; x; y;EÞ ¼ �1; lþeFy;
x

l�e�F
;E þ F

� �
; 0 <

x

aE

� l�
	 


ð4Þ

BFðN; x; y;EÞ ¼ N þ 1; fl�yþ ð1� l�ÞaEge�F;
x� ð1� lþÞaE

lþeF
;E þ F

	 

;

1� lþ <
x

aE

� 1

	 

ð5Þ

Equations (2)–(5) provide the transformation rule of the multibaker map with

energy coordinate imbedded between free chains.

As clearly seen from (2), the phase space is stretched along the x axis and is

contracted along the y axis, or the multibaker part is hyperbolic. Contrarily, the

dynamics of the free parts is a simple shift operation and there is no phase space

deformation. Hence, the present system is of chaotic scattering type.

Before closing this section, we remark that the map BF is time reversal

symmetric. Indeed, let

I ðn; x; y;EÞ 
ðn; aE � y; aE � x;EÞ ðfor 0 � n � NÞ
ðn; aE � x; aE � y;EÞ ðfor n � �1 or n � N þ 1Þ

�
ð6Þ

Then it is an involution: I2 ¼ I and IBt
FI ¼ B�t

F .

III. STATES AND THEIR EVOLUTION

A. Measures and Time Evolution

We are interested in a situation where identical particles are distributed to the

whole system with finite density. This can be described by the Poisson

Figure 2. Overall view of the constant energy surface of the open multibaker map BF . In the

shaded cells the map is hyperbolic, and in the unshaded cells the map is a simple shift.
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suspension [33,45] because the multibaker map is a toy model of the Lorentz gas

which consists of particles without mutual interaction and admits an equilibrium

state given by a Poisson suspension.

Each configuration of the system is specified by a list of particle coordinates

�  fz1; z2; . . .g with zj ¼ ðnj; xj; yj;EjÞ 2 � ( j ¼ 1; 2; . . .), which is not ordered

and where repetitions are permitted. Because the particle density is assumed to

be finite everywhere, the number of particles included in any compact subset K

of � should be finite, or only configurations � satisfying #ð� \ KÞ < þ1 are

allowed where # stands for the cardinal number of the subsequent set. The

collection of such lists forms the phase space X called the configuration space.2

A probability measure on X is defined by specifying probability of finding n

particles (n ¼ 0; 1; . . .) in any compact subset K � �. Here we consider the case

where the number of particles in a compact set K obeys the Poisson distribution.

More precisely, let CK;m ¼ f� 2 Xj#ð� \ KÞ ¼ mg be a set of configurations

with m particles in a set K; then the Poisson measure P is defined [45] on the

minimal s-algebra containing all sets of the form CK;m by putting

PðCK;mÞ ¼
nðKÞm

m!
e�nðKÞ ð7Þ

PðCK;m \ CK0;m0 Þ ¼ PðCK;mÞPðCK 0;m0 Þ ð8Þ

where nðKÞ is a measure on � representing the average number of particles in a

set K (hence it is not a probability measure) and the sets K;K 0 � � are disjoint.

The multibaker map BF induces dynamics of configurations via

B̂
t

F�  fBt
Fz1;Bt

Fz2; . . .g. The time evolution of the Poisson measure induced

by the map B̂F is given by

PtðCK;mÞ ¼ PðB̂�t

F CK;mÞ ¼
ntðKÞm

m!
e�ntðKÞ ð9Þ

where ntðKÞ  nðB�t
F KÞ is the evolved measure on �.

When the initial measure n0 is absolutely continuous with respect to the

Lebesgue measure with density r0, it is convenient to consider the time

evolution of the partially integrated distribution Gt at fixed total energy E, which

is defined by

Gtðn; x; y;EÞ 
ðy

0

dy0r0ðB�t
F ðn; x; y0;E � nFÞ ð10Þ

Let ~Gt be the partially integrated distribution function expressed in terms of

the rescaled coordinates x  x=aE;n 2 ½0; 1� and Z  y=aE;n 2 ½0; 1� with

2For technical reasons, lists of finite number of particle coordinates are also included in X [45].
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aE;n ¼ aeEe�Fn; then the evolution equation of the partially integrated distribu-

tion [37] is

~Gtþ1ðn; x;Z;EÞ ¼ l�e�F ~Gt nþ 1; l�x;
Z
lþ

;E
� �

ð11Þ

for Z 2 ½0; lþÞ;

~Gtþ1ðn; x;Z;EÞ ¼ l�e�F ~Gtðnþ 1; l�x; 1;EÞ þ s ~Gt n; sxþ l�;
Z� lþ

s
;E

	 

ð12Þ

for Z 2 ½lþ; 1� l�Þ; and

~Gtþ1ðn; x;Z;EÞ ¼ l�e�F ~Gtðnþ 1; l�x; 1;EÞ þ s ~Gtðn; sxþ l�; 1;EÞ

þ lþeF ~Gt n� 1; lþxþ 1� lþ;
Z� 1þ l�

l�
;E

	 

ð13Þ

for Z 2 ½1� l�; 1�.
Here we consider a class of initial distributions where particles are uniformly

distributed with respect to the Lebesgue measure on the left chain ð�1;�1�
with particle density (per energy) r�ðEÞ and on the right chain ½N þ 1;þ1Þ
with particle density rþðEÞ. When one is interested in the state evolution only in

the middle chain, this initial condition is equivalent to the flux boundary

conditions [31]

~Gtð�1; x;Z;EÞ ¼ r�ðEÞaEeF Z; ~GtðN þ 1; x;Z;EÞ ¼ rþðEÞaEe�ðNþ1ÞF Z

ð14Þ

B. Forward Time Evolution

1. Steady States

Equations (11)–(14) were shown to admit a unique stationary solution ~G1 which

does not depend on x [37]. In terms of the measure nþ1 represented by ~G1 and

three sets

�nðE;�Þ ¼ ðn; x; y;E0 � nFÞ 0 � x

aE0;n
< 1 ; 0 � y

aE0;n
< 1 ;E < E0 < E þ�


��

RnðE;�Þ ¼ ðn; x; y;E0 � nFÞ 1� lþ � x

aE0 ;n
< 1 ; 0 � y

aE0 ;n
< 1 ;E < E0 < E þ�


��

LnðE;�Þ ¼ ðn; x; y;E0 � nFÞ 0 � x

aE0;n
< l� ; 0 � y

aE0;n
< 1 ;E < E0 < E þ�


��

(15)

(16)

(17)
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the particle distribution �þ1ðn;EÞ per energy per site is given by

�þ1ðn;EÞ  lim
�!0

nþ1ð�nðE;�ÞÞ=�

¼ a2
E ðrþðEÞ � r�ðEÞÞ

e�2ðNþ1ÞFð1� e�2ðnþ1ÞFÞ
1� e�2ðNþ2ÞF þ r�ðEÞe�2nF

� �
ð18Þ

and the corresponding flow Jþ1
njnþ1

ðEÞ from the nth to the ðnþ 1Þth sites is given

by

Jþ1njnþ1ðEÞ  lim
�!0

fnþ1ðRnðE;�ÞÞ � nþ1ðLnþ1ðE;�ÞÞg=�

¼ lþ�þ1ðn;EÞ � l��þ1ðnþ 1;EÞ

¼ � 2l

1þ e�2F
ðrþðEÞ � r�ðEÞÞ

a2
Ee�2ðNþ1ÞFð1� e�2FÞ

1� e�2ðNþ2ÞF ð19Þ

Obviously, when rþ 6¼ r�, the flow is nonvanishing.

When F ¼ 0, the particle distribution �þ1ðn;EÞ is linear in the site

coordinate n:

�þ1ðn;EÞ ¼ �þ1ðN þ 1;EÞ � �þ1ð�1;EÞ
N þ 2

ðnþ 1Þ þ �þ1ð�1;EÞ ð20Þ

and Fick’s law of diffusion holds:

Jþ1njnþ1ðEÞ ¼ �l
�þ1ðN þ 1;EÞ � �þ1ð�1;EÞ

N þ 2
ð21Þ

This flow-density relation and, thus, the steady state ~G1 are not time reversal

symmetric. This is also the case for F 6¼ 0.

In terms of the particle distribution and the flow, the intracell distribution is

given by

aE;n
~Gþ1ðn;Z;EÞ ¼ �þ1ðn;EÞZ�

Jþ1
njnþ1

ðEÞ
l

jnðZÞ ð22Þ

where jn is defined as the unique solution of a functional equation

jnðZÞ ¼
l�jnþ1

Z
lþ

� �
þ l

lþ Z; ð0 � Z � lþÞ
s jn

Z�lþ

s

� �
þ l; ðlþ � Z � 1� l�Þ

lþ jn�1
Z�1þl�

l�

� �
þ l

l� ð1� ZÞ; ð1� l� � Z � 1Þ

8><
>: ð23Þ
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with the boundary conditions j�1ðZÞ ¼ jNþ1ðZÞ ¼ 0. As shown in Fig. 3, the

function jn has a self-similar graph and the intracell distribution of the steady

state ~G1 is fractal [31,37]. However, the self-similarity is not complete. Indeed,

the steady-state measure ~G1 is absolutely continuous with respect to the

Lebesgue measure with a density rþ1ðn; y;E � nFÞ. The density takes r�ðEÞ or

Figure 3. The fractal part jnðZÞ of the partially integrated distribution ~Gþ1 versus the

rescaled intracell coordinate Z for lþ ¼ l� ¼ 0:3 and N ¼ 8. The functions jn (n ¼ 1, 3, 5, and 7)

are shown, respectively, in (a), (b), (c), and (d).
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rþðEÞ on the complement of the stable manifold of a fractal set, called the fractal

repeller, which has zero Lebesgue measure [33].

2. Decay Modes

The evolution equations (11)–(13) provide more information. With the aid of a

method of Ref. 46 (see also Ref. 47), one can show that the partially integrated

distribution of any initial measure, which is absolutely continuous with respect to

the Lebesgue measure and possesses a density piecewise continuously

Figure 3. (Continued)
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differentiable in x, approaches the steady-state distribution ~Gþ1 when t ! þ1:

~Gtðn; x;Z;EÞ � ~Gþ1ðn;Z;EÞ ¼
XNþ1

j¼1
jkj j>l

kt
jbjðEÞgjðn;ZÞ þ dGtðn; x;Z;EÞ ð24Þ

where l ¼ maxð1� 2l;
ffiffiffiffiffiffiffiffiffi
lþl�

p
Þ, the j-sum runs over all j ¼ 1; . . . ;N þ 1

satisfying jkjj > l, a function dGt decays as jdGtj ¼ Oðt2ltÞ uniformly with

respect to n, x and Z, and the relaxation rates kj < 1 are given by

kj ¼ 1� 2lþ 2
ffiffiffiffiffiffiffiffiffi
lþl�

p
cos

pj

N þ 2

	 

ð25Þ

Those rates correspond to the Pollicott–Ruelle resonances [48,49].

The function gjðn;ZÞ describing intracell distribution of the jth decay mode

is defined as the unique solution of a functional equation:

gjðn;ZÞ ¼

ffiffiffiffiffiffiffi
lþl�

p

kj
gjðnþ 1; Z

lþÞ; ð0 � Z � lþÞ
s
kj
gj n; Z�lþ

s

� �
þ

ffiffiffiffiffiffiffi
lþl�

p

kj
sin

ðnþ2Þpj
Nþ2

� �
; ðlþ � Z � 1� l�Þffiffiffiffiffiffiffi

lþl�
p

kj
gj n� 1; Z�1þl�

l�

� �
þ s

kj
sin

ðnþ1Þpj
Nþ2

� �
þ

ffiffiffiffiffiffiffi
lþl�

p

kj
sin

ðnþ2Þpj
Nþ2

� �
; ð1� l� � Z � 1Þ

8>>>>>><
>>>>>>:

ð26Þ
and the coefficient bjðEÞ is determined by the initial measure:

bjðEÞ ¼
2

N þ 2

XN

n¼0

ð1

0

d	gjðn; xÞf~G0ðn; x; 1;EÞ � ~Gþ1ðn; 1;EÞg ð27Þ

where 	gjðn; xÞ  gjðn; 1Þ � gjðn; 1� xÞ. The function gjðn;ZÞ is dipicted in

Fig. 4, and its graph is fractal. As seen in the figure, faster decay modes have

more singular distributions. The slowest decay mode (the j ¼ 1 mode) is a

conditionally invariant measure [50] for a chaotic repeller formed under the

absorbing boundary condition: rþðEÞ ¼ r�ðEÞ ¼ 0.

We remark that particle distribution per site (18) of the steady state nþ1 and

relaxation rates (25) are identical to the corresponding quantities for a one-

dimensional random walk shown in Fig. 5, where the transition rate to the left

adjacent site (the right adjacent site) is l�ðlþÞ. Moreover, the macroscopic

distribution corresponding to the decay mode (26) is

�jðn;EÞ ¼ aE;n

ð1

0

dxgjðn; 1Þ ¼ aE

lþ

l�

	 
n=2

sin
pðnþ 1Þj

N þ 2

	 

ð28Þ

which is again equal to the decay mode of the random walk. In short, when

t ! þ1, the evolution of the measure is equivalent to a random walk, which is

an irreversible stochastic process.
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Furthermore, along the line of thoughts of Gaspard [33] and Gilbert and

Dorfman [36], the production of a relative coarse-grained entropy of ~G1 with

respect to the Lebesgue measure was shown to be positive and to reduce to the

phenomenological expression in an appropriate scaling limit [37]. Thus, the

steady state ~G1 is irreversible in this sense as well.

Figure 4. Intracell distributions of the jth decay modes gjðn;ZÞ versus the rescaled intracell

coordinate Z for lþ ¼ l� ¼ 0:3 and N ¼ 8. The distributions g1ðn;ZÞ (n ¼ 1, 3, 5, and 7) of the first

mode are shown in (a), (b), (c), and (d), and those g3ðn;ZÞ (n ¼ 1, 3, 5, 7) of the third mode are

shown in (e), (f), (g), and (h).
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C. Backward Time Evolution and Time Reversal Symmetry

Now we study the backward time evolution. Then the state is conveniently

described by another partially integrated distribution function:

Htðn; x; y;EÞ 
ðx

0

dx0r0 B�t
F ðn; x0; y;E � nFÞ

� �
ð29Þ

Figure 4. (Continued)
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or its rescaled version ~Htðn; x;Z;EÞ  Htðn; xaE;n;ZaE;n;EÞ. Because of the

time reversal symmetry of the map BF , ~Ht for 0 � n � N is related to the

partially integrated distribution ~Gt via the time reversal operation I:

~Htðn; x;Z;EÞ ¼ aE;n

ðx
0

dx0r0ðB�t
F Iðn; ð1� ZÞaE;n; ð1� x0ÞaE;n;E � nFÞÞ

¼ f~G�tðn; 1� Z; 1;EÞ � ~G�tðn; 1� Z; 1� x;EÞgr0�I ð30Þ

Figure 4. (Continued)
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where the subscript r0 � I implies that the initial state of ~G�t has a density r0 � I.

Applying the previous result (24), if r0 � Iðn; x; y;EÞ is piecewise continuously

differentiable in x or r0ðn; x; y;EÞ is piecewise continuously differentiable in y,

one finds for t < 0

~Htðn; x;Z;EÞ � ~H�1ðn; x;EÞ ¼
XNþ1

j¼1
jkj j>l

kjtjj
	bjðEÞ	gjðn; xÞ þ dHtðn; x;Z;EÞ ð31Þ

Figure 4. (Continued)
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where dHt ¼ Oðt2ljtjÞ, 	gj is defined just below (27), the steady-state ~H�1 is

defined by

aE;n
~H�1ðn; x;EÞ ¼ �þ1ðn;EÞxþ

Jþ1
njnþ1

ðEÞ
l

jnð1� xÞ ð32Þ

and the coefficient 	bjðEÞ is given by

	bjðEÞ ¼
2

N þ 2

XN

n¼0

ð1

0

dgjðn;ZÞf~H0ðn; 1;Z;EÞ � ~H�1ðn; 1;EÞg ð33Þ

In the above, we have used ~H�1ðn; 1;EÞ ¼ ~Gþ1ðn; 1;EÞ ¼ �þ1ðn;EÞ=aE;n.

Note that two steady states n�1 are time-reversed states with each other.

Equation (31) shows that when t ! �1, the measure converges to a steady-state

measure n�1 represented by ~H�1. The functions 	gjðn; xÞ represent relaxation

for t ! �1, or growing for t ! þ1, and, thus, will be referred to as grow

modes.

The particle distribution ��1ðn;EÞ per site per energy of the steady state

n�1 is equal to that of the state nþ1:

��1ðn;EÞ ¼ lim
�!0

n�1ð�nðE;�ÞÞ=� ¼ �þ1ðn;EÞ ð34Þ

Similarly, the macroscopic distribution 	�jðn;EÞ corresponding to the grow mode

is equal to that of the decay mode (28): 	�jðn;EÞ ¼ �jðn;EÞ. The difference

between the two steady states nþ1 and n�1 as well as that between the decay

and grow modes lie in the direction along which the distributions possess

fractality. Indeed, the steady state nþ1 and decay modes are fractal along the

contracting y direction, while the state n�1 and grow modes are fractal along the

expanding x direction.

Figure 5. A random walk corresponding to the asymptotic evolution of measure nt (t � 1).

The transition probabilities to the left and right adjacent sites are, respectively, l� and lþ. The

random walk has the same decay rate (25), and its stationary distribution and decay modes have the

same expression as those (18) and (28) for the multibaker map BF .
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The two steady states are different also in their flows. The flow J�1njnþ1 in the

state n�1 is opposite to the flow Jþ1
njnþ1

in the state nþ1:

J�1njnþ1ðEÞ  lim
�!0

fn�1ðRnðE;�ÞÞ � n�1ðLnþ1ðE;�ÞÞg=� ¼ �Jþ1njnþ1ðEÞ ð35Þ

Because the state nþ1 has consistent properties with the second law of

thermodynamics, the state n�1 is anti-thermodynamical. For example, the anti-

Fick law holds for F ¼ 0:

J�1njnþ1ðEÞ ¼ l
��1ðN þ 1;EÞ � ��1ð�1;EÞ

N þ 2
ð36Þ

which corresponds to a negative diffusion coefficient.

D. Unidirectional Evolution of Measures and Time Reversal Symmetry

We have shown that the measure evolves to the steady state nþ1 for t ! þ1 and

to the state n�1 for t ! �1. More precisely, this is the case when the initial

density r0ðn; x; y;EÞ is piecewise continuously differentiable in both x and y; that

is, the support suppr0 consists of a finite number of sets with smooth boundaries:

suppr0 ¼ [M
m¼1Dm and r0 is continuously differentiable in both x and y on the

closure of each set Dm with bounded derivatives. Because the state nþ1 attracts

the class of initial states for t ! þ1, it behaves as an attracting fixed point in the

space of states. On the other hand, the initial states evolve toward n�1 for

t ! �1, and this implies that the initial states deviate from n�1 for t ! þ1, or

the state n�1 behaves as a repelling fixed point. Thus, the states evolve

unidirectionally from the repeller n�1 to the attractor nþ1 (c.f. Fig. 6).

This unidirectional evolution is fully consistent with the time reversal

symmetry of the map BF . To clarify this point, we consider the following

thought experiment. At t ¼ 0, the system is prepared to be in a state n0, which is

one of the initial states described before (14). Until time t ¼ t1ð> 0Þ, the system

evolves according to the multibaker map BF . At t ¼ t1, time reversal operation I

is applied. After t ¼ t1, the system again evolves according to BF . Let BF and I
be transformations of measures induced by the multibaker map BF and the time

reversal operation I:

BFnðKÞ  nðB�1
F KÞ; InðKÞ  nðI�1KÞ ð37Þ

where K � � is an arbitrary measurable set. Then the properties of BF and I

implies

IBFI ¼ B�1
F ; I2 ¼ I
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and the state nt at time t is given by

nt ¼
Bt

Fn0 ð0 � t < t1Þ
Bt�2t1

F In0 ðt1 � tÞ

�
ð38Þ

Note that the state In0 is one of the initial states described before (14).

As the initial state n0 evolves toward the steady state nþ1 (cf. (24)), the state

just before the time reversal operation nt1� ¼ Bt1
Fn0 is close to nþ1 for large t1.

On the other hand, as �t1 < 0, the state nt1þ ¼ B�t1
F In0 just after the time

reversal operation is close to the other stationary state n�1. Afterwards, the

state nt ¼ Bt�2t1
F In0 deviates from n�1 and reaches In0 at time t ¼ 2t1. Then,

the state nt again approaches nþ1. Thus, the time reversal operation

discontinuously changes a state nt1� close to nþ1 into a state nt1þ close to

n�1, but does not invert the evolution. In this way, the time reversal symmetry

is consistent with the unidirectional state evolution. A similar view was given by

Prigogine et al. [1,51] for the behavior of entropy under time reversal

experiments, where their entropy increases in dynamical evolution and

discontinuously decreases by the time reversal operation.

IV. DESCRIPTION WITH BROKEN TIME
REVERSAL SYMMETRY

In the previous section, forward and backward time evolutions of states are

investigated and a class of initial states, which possess piecewise continuously

Figure 6. Schematic view of the state evolution. The steady state nþ1 with normal transport

properties behaves as an attracting fixed point, and the steady state n�1 with anti-thermodynamical

properties behaves as a repelling fixed point. And any initial state unidirectionally evolves from the

repeller n�1 to the attractor nþ1. Attracting and repelling processes are described, respectively, by

decay modes and grow modes.
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differentiable densities with respect to x and y, are shown to approach steady

states n�1 for t ! �1 in a way consistent with dynamical reversibility.

However, the limits n�1 do not belong to the same class as the initial states, and

the results are not fully satisfactory. To improve this point, one needs a different

mathematical setting, which does not allow the asymptotic expressions of the

forward and backward state evolutions ( (24) and (31)) to hold simultaneously.

This is also the case for the complex spectral theory. Then, we begin with a brief

summary of the mathematical aspects of the complex spectral theory following

the arguments of [9] (for details, see Refs. 6–14).

A. Complex Spectral Theory

Let ðX; Tt; m0Þ be a classic dynamical system, where X, Tt (�1 < t < þ1) and

m0 are, respectively, a phase space, a flow representing the dynamical evolution

of each point in X, and an invariant probability measure defined on X. Then,

when the system is mixing, the expectation value of an observable A at time t

with respect to an initial state with density r0 behaves as follows:

lim
t!þ1

ð
X

AðzÞUtr0ðzÞ dmðzÞ ¼
ð

X

AðzÞ dmðzÞ
ð

X

r0ðzÞ dmðzÞ

¼
ð

X

AðzÞ dmðzÞ ð39Þ

where Ut is an evolution operator of densities defined by Utr0ðzÞ  r0ðT�1
t zÞ

and we have used the normalization condition
Ð

X
r0ðzÞ dmðzÞ ¼ 1. As often

discussed (see, e.g., Refs. 2 and 52), this asymptotic behavior can be identified

with a relaxation process to the equilibrium state. The main objective of the

complex spectral theory is to express an average hAit 
Ð

X
AðzÞUtr0ðzÞ dmðzÞ as

a superposition of decaying components and to obtain them as a complete set of

generalized eigenvectors of the evolution operator Ut.

We restrict ourselves to the simplest case where the expectation values at

time t are superpositions of countably many exponentially decaying terms.

Then, provided that the initial density r0 and the real-valued observable A

belong to certain classes of functions, one has

hAit ¼
X1
j¼0

fjðA�Þe�iajt ~f
�
j ðr0Þ ðt > 0Þ ð40Þ

where fjð�Þ and ~f jð�Þ are antilinear functionals, particularly

f0ðBÞ ¼
ð

X

B�ðzÞ dmðzÞ; ~f 0ðr0Þ ¼
ð

X

r�0ðzÞ dmðzÞ
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with a0 ¼ 0 and aj’s are complex values with Imaj � 0. Following Dirac’s

notation in quantum theory, the functionals are abbreviated as

fjðBÞ ¼ hBj fji; ~f
�
j ðr0Þ ¼ h~f jjr0i

then

hA�jUtr0i ¼
X1
j¼0

hA�j fjie�iajth~f jjr0i ð41Þ

The right-hand side is the sesquilinear form defined by

hBjCi 
ð

X

B�ðzÞCðzÞ dmðzÞ

As easily seen, in a Hilbert space L2  fAj
Ð

X
jAðzÞj2 dmðzÞ < þ1g, the

evolution operator Ut is unitary: hUtAjUtBi ¼ hAjBi. Therefore, in order to

justify the decomposition (40), a different mathematical setting is necessary. We

consider a space 
þ �L2 of observables A and a space 
� �L2 of initial

densities r0, for which the decomposition (40) is possible, and we assume that

the spaces carry some topologies stronger than the Hilbert space topology, are

complete with respect to them and satisfy

Uy
t 
þ � 
þ; Ut
� � 
� ðt > 0Þ ð42Þ

where U
y
t AðzÞ  AðTtzÞ. Let 
0� be antiduals of 
�, namely spaces of continuous

antilinear functionals over 
� equipped with weak topologies, then the evolution

operators Ut and U
y
t can be extended, respectively, to 
yþ and 
y� via

Ut f ðAÞ  f ðUy
t AÞ ðA 2 
þ; f 2 
0þÞ ð43Þ

Uy
t
~f ðrÞ  ~f ðUtrÞ ðr 2 
�; f 2 
0�Þ ð44Þ

The antilinear functionals fj and ~f j appearing in (40) are eigenvectors of the

extended evolution operators:

Ut fj ¼ e�iajtfj; Uy
t
~f j ¼ eia�j t ~f j ð45Þ

In this sense, the decomposition (40) can be regarded as a generalized spectral

decomposition of the evolution operator Ut. Equation (40) corresponds to the

case where the generalized spectrum of Ut consists only of simple discrete

eigenvalues. Of course, more general spectra such as continuous spectra and

Jordan block structures are possible.

Because the space of continuous antilinear functionals over the Hilbert space

L2 is naturally identified with itself, one has a couple of triples:


þ �L2 � 
0þ; 
� �L2 � 
0� ð46Þ
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which are nothing but rigged Hilbert spaces or Gelfand triples. A remarkable

feature of those triples is the possibility of semigroup evolution in the extended

spaces. For example, the invariance (42) implies that Ut with t > 0 is well-defined

on 
0þ, but Ut with t < 0 may not be defined on 
0þ because one may have

U
y
t 
þ 6� 
þ for t < 0. Or the evolution Ut extended to 
0þ may be a forward

semigroup. For many examples, this is certainly the case. The noninvariance of

the test function spaces for the backward time evolution implies the

noninvariance of the test function spaces under the time reversal operation I:

I
� 6� 
�. Indeed, because of IU
y
t I ¼ U

y
�t, U

y
t 
þ � 
þ (t > 0) and I
þ � 
þ

lead to U
y
�t
þ � 
þ (t > 0) and, thus, U

y
�t
þ 6� 
þ (t > 0) implies I
þ 6� 
þ.

Note that the possibility of the decomposition (40) as well as the invariance of the

test function spaces (42) depend on systems and should be checked case by case.

Now we remark that a set of operators �̂j from 
� to 
0þ defined by

�̂jr  ~f
�
j ðrÞ fj (r 2 
�) form a resolution of the natural embedding i:


� ! 
0þ as
P

j �̂j ¼ i and commute with the evolution operator:

�̂jUt ¼ Ut�̂j (t > 0). The operators �̂j are nothing but subdynamics projectors

involved in the early stage of the complex spectral theory [3–5].

As shown by Pollicott [48] and Ruelle [49], for expanding maps and axiom A

systems, the Fourier transform of a correlation function between two dynamical

variables with certain smoothness admits meromorphic extension to the complex

frequency domain and may have complex poles there, which are known as the

Pollicott–Ruelle resonances. Now we turn to the decomposition (40). As seen

from (41), the expectation value hAit is a correlation function between A and r0

with respect to the invariant measure m; its Fourier transform has complex poles

at o ¼ aj, which thus correspond to the Pollicott–Ruelle resonances. For

expanding maps and axiom A systems, Ruelle [49] proved existence of

generalized eigenvectors and a possibility of Jordan block structures.

B. Multibaker Map Revisited

We return to the multibaker map and, for the sake of simplicity, consider the

expectation values of one-particle dynamical variables, which are of the form

A#ð�Þ ¼
X1
j¼1

AðzjÞ ð47Þ

where � ¼ fz1; z2; . . .g is a configuration and AðzÞ is a function defined on the

phase space �. In the same way as the derivation of the 1-moment measure [45],

the expectation value of A# with respect to the Poisson measure (9) can be easily

calculated and is given by

hA#it 
ð

X

A#ð�Þ dPtð�Þ ¼
ð
�

AðzÞ dntðzÞ ð48Þ
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or, in terms of the partially integrated distribution function ~Gt, by

hA#it ¼
Xþ1

n¼�1

ð
dE aE;n

ð
½0;1�2

Aðn; xaE;n;ZaE;n;E � nFÞdxdZ ~Gtðn; x;Z;EÞ

ð49Þ

where the subscript Z in dZ implies that dZ ~Gt represents a Stieltjes integral only

with respect to the argument Z.

Now we consider the case of t > 0 and where A is supported by a finite

lattice: fðn; x; y;EÞj0 � n � N; E 2 Rþ; 0 < x � aE; 0 < y � aEg. Let the

initial density r0 and the observable A be piecewise continuously differentiable

with respect to both x and y; thus the decomposition (24) gives

hA#it � hA#iþ1 ¼
ð

dE
XNþ1

j¼1

jkj j>l

hA�j fjðEÞi kt
j h~f jðEÞjdr0i þ dAt ð50Þ

where dAt ¼ Oðt2ltÞ, hA#iþ1 is an average of A# with respect to the

nonequilibrium steady state nþ1:

hA#iþ1 ¼
XN

n¼0

ð
dE aE;n

ð
½0;1�2

Aðn; xaE;n;ZaE;n;E � nFÞ dxdZ ~Gþ1ðn;Z;EÞ

ð51Þ

and the antilinear functional h�j fjðEÞi and the linear functional h~f jðEÞj�i are

defined by

hBj fjðEÞi 
ffiffiffiffiffiffiffiffiffiffiffiffi

2

N þ 2

r XN

n¼0

aE;n

ð
½0;1�2

B�ðn; xaE;n;ZaE;n;E � nFÞ dxdgjðn;ZÞ

ð52Þ

h~f jðEÞjri 
ffiffiffiffiffiffiffiffiffiffiffiffi

2

N þ 2

r XN

n¼0

aE;n

ð
½0;1�2

d	gjðn; xÞ dZ rðn; xaE;n;ZaE;n;E � nFÞ

ð53Þ

And dr0  r0 � rþ1 is the deviation of the initial distribution from the steady-

state distribution rþ1. Equation (50) implies that hA#it relaxes to the steady-

state average hA#iþ1 with relaxation rates j lnkjj.
Because of hA#it � hA#iþ1 ¼ hA�;Utdr0i, (50) can be rewritten as

hA�;Utdr0i ¼
ð

dE
XNþ1

j¼1
jkj j>l

hA�j fjðEÞi kt
j h~f jðEÞjdr0i þ dAt ð54Þ
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where h�; �i stands for the sesquilinear form:

hB; ri 
ð

dE
XN

n¼0

ð
½0;aE;n�2

B�ðn; x; y;E � nFÞrðn; x; y;E � nFÞ dx dy ð55Þ

and Ut is an evolution operator of the distribution:

Utrðn; x; y;E � nFÞ  rðB�t
F ðn; x; y;E � nFÞÞ ð56Þ

Moreover, we have

hUy
t A�j fjðEÞi ¼ kt

jhA�j fjðEÞi; h~f jðEÞjUtdr0i ¼ kt
jh~f jðEÞjdr0i ðt > 0Þ

ð57Þ

Although r0 in the decomposition (54) stands for the average particle density

while r0 in the decomposition (41) of the complex spectral theory is the

probability density, their forms are identical. Thus, the present results can be

compared with the complex spectral theory.

C. Condition for Description with Broken Time Reversal Symmetry

As mentioned in the beginning of this section, the class of initial states satisfying

both forward and backward state evolution formulas (24) and (31) does not

contain the limits n�1. Indeed, the initial states are piecewise continuously

differentiable with respect to x and y, while the steady-state densities rþ1 and

r�1 are discontinuous on the stable and unstable manifolds of the fractal repeller

(see Ref. 33), respectively, which consist of infinitely many segments. To remove

this dissymmetry, it is necessary to modify the class of initial states in such a way

that it contains the steady-state densities. However, inclusion of r�1 to the initial

states is not compatible with (54). Indeed, the slowest decaying mode ~f 1

h~f 1jri ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2

N þ 2

r XN

n¼0

aE;n

ð
½0;1�2

d	g1ðn; xÞ dZ rðn; xaE;n;ZaE;n;E � nFÞ ð58Þ

involves an integral over a conditionally invariant measure supported by the

unstable manifold of the fractal repeller, where the steady state r�1 has

discontinuities. Thus, (58) and (54) are ill-defined for r0 ¼ r�1. In other words,

let 
� be a space of admissible initial states satisfying (54) and including rþ1;

then r�1 62 
�. Because the state r�1 is the time-reversed state of rþ1:

r�1 ¼ Irþ1, this immediately implies the noninvariance of 
� under time

reversal operation: I
� 6� 
�, or the space of admissible initial states 
� has

broken time reversal symmetry. In short, the requirement of including steady
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states to a class of admissible initial states naturally leads to a description with

broken time reversal symmetry.

Furthermore, if the space 
� carries a stronger topology than the Hilbert

space topology and is invariant under the forward time evolution Ut
� � 
�
(t > 0), the forward evolution U

y
t (t > 0) can be extended to the (anti)dual space


0� and admits generalized eigenfunctions ~f j corresponding to eigenvalues kj.

The same arguments are applied to Ut and observables A. Therefore, the

difference between the time-symmetric description and that with broken time

reversal symmetry lies in the different choice of admissible initial densities and

observables.

V. MEASURE SELECTION AND MACROSCOPIC PROPERTIES

As mentioned in the Introduction, it is well known in the dynamical systems

theory [43] that a hyperbolic system may admit uncountably many invariant

measures. And one of important problems is the selection of a ‘‘physical

measure.’’ Such a problem, however, would be physically irrelevant if observable

phenomena would not depend on the measures. We show that it is not the case for

the multibaker map.

Let mð�bÞ be a measure defined by

mð�bÞð�x;Z
n ðE;�ÞÞ ¼

ðEþ�

E

dE0 a2
E0 �

nc�bðxÞ	c�bðZÞ ð59Þ

where �x;Z
n ðE;�Þ is a set given by

�x;Z
n ðE;�Þ¼

�
ðn; x; y;E0 � nFÞ

0 � x

aE0;n
< x; 0 � y

aE0;n
< Z;E < E0 < E þ�

�

ð60Þ

and 	c�bðZÞ  1� c�bð1� ZÞ. The function c�bðxÞ is the unique solution of a

functional equation:

c�bðxÞ ¼

1�b
1þ� c�b

x
l�

� �
ð0 < x < l�Þ

b c�b
x�l�

s

� �
þ 1�b

1þ� ðl� < x < 1� lþÞ

�ð1�bÞ
1þ� c�b

x�1þlþ

lþ

� �
þ 1þ�b

1þ� ð1� lþ < x < 1Þ

8>>>>><
>>>>>:

ð61Þ
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where � and b 2 ð0; 1Þ are positive real parameters. In (60), aE;n ¼ aEe�nF

(0 � n � N), aE;n ¼ aEeF (n � �1), and aE;n ¼ aEe�ðNþ1ÞF (N þ 1 � n). As is

easily seen, the measure mð�bÞ is invariant under the multibaker map BF

irrespective of the parameters � and b.

Instead of the initial states where the particles are distributed on semiinfinite

segments uniformly with respect to the Lebesgue measure, we consider those

corresponding to the uniform distribution with respect to the invariant measure

mð�bÞ. Let the initial particle distribution nð�bÞ0 be given by

nð�bÞ0 ð�x;Z
n ðE;�ÞÞ ¼

ðEþ�

E

dE0a2
E0�

n

ðx
0

dc�bðx0Þ
ðZ

0

d	c�bðZ0Þ

 	r0ðn; x0aE0;n;Z0aE0;n;E0 � nFÞ ð62Þ

for 0 � n � N with density 	r0 and

nð�bÞ0 ð�x;Z
n ðE;�ÞÞ ¼

Ð Eþ�
E

dE0a2
E0r�ðE0Þ��1c�bðxÞ	c�bðZÞ ðn � �1ÞÐ Eþ�

E
dE0a2

E0rþðE0Þ�Nþ1c�bðxÞ	c�bðZÞ ðn � N þ 1Þ

(

ð63Þ

Then, if the initial density 	r0ðn; xaE;n;ZaE;n;E � nFÞ is piecewise continuously

differentiable in x, as in Section III, one can show that the initial measure

converges to a steady-state measure nð�bÞþ1 for t ! þ1. The steady-state particle

distribution ~�þ1ðn;EÞ per energy per site and the associated flow ~J
þ1
njnþ1ðEÞ from

the nth to the ðnþ 1Þth sites are given by

~�þ1ðn;EÞ ¼ a2
E ðrþðEÞ � r�ðEÞÞ

�Nþ1ð1� �nþ1Þ
1� �Nþ2

þ r�ðEÞ�n

� �
ð64Þ

~J
þ1
njnþ1ðEÞ ¼ �

1� b
1þ �

ðrþðEÞ � r�ðEÞÞ
a2

E�
Nþ1ð1� �Þ

1� �Nþ2
ð65Þ

Those results are remarkable because macroscopic properties such as the

particle density per site and the associated flow depend only on the parameters

of the invariant measures � and b, but not on the dynamical parameters l and F.

As an example, suppose that a given system is known to be described by the

multibaker map BF and consider a question as to whether one can determine

dynamical parameters l and F from the macroscopic properties. The answer to

this question is no because of (64) and (65). Thus, the choice of the invariant

measures does affect the macroscopic properties of the multibaker map, and a

measure selection condition is certainly necessary to relate microscopic
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dynamics with macroscopic properties. Or the problem of the measure selection

is not only mathematically important, but also physically relevant.

As explained in Ref. 43, two conditions of selecting the physical measure are

proposed—that is, robustness against an external noise and describability of

time averages on motions starting from randomly sampled data with respect to

the Lebesgue measure. The former corresponds to the Kolmogorov measure, and

the latter corresponds to the Sinai–Ruelle–Bowen measure [44]. Here we

emphasize again that both criteria are not derived from internal dynamics

because, in the former, a noise should be imposed from outside and, in the latter,

there is no dynamical process which guarantees the distinct role of the Lebesgue

measure. This observation seems to imply that the statistical behavior of a given

system cannot be derived from its dynamics alone, contrary to reductionists’

view.

VI. CONCLUSIONS

In this report, we have illustrated the appearance of irreversible state evolution in

reversible conservative systems using a reversible area-preserving multibaker

map, which is considered to be a typical hyperbolic system exhibiting

deterministic diffusion.

We considered an open multibaker map where a finite chain of multibaker

map is embedded between two semiinfinite free parts. Assuming, as usual (e.g.,

Refs. 2 and 52), that the states are described by statistical ensembles, we investi-

gated the state evolution starting from initial states for which particles distribute

uniformly on the semiinfinite segments with respect to the Lebesgue measure.

The system in question is an infinitely extended system consisting of infinitely

many particles with finite particle density and its state can be described by a Poisson

suspension specified by a measure representing the average particle number.

When time t goes to �1, the average-number measure nt (precisely

speaking, its cumulative function) at t evolves toward steady states n�1,

provided that the initial density is piecewise continuously differentiable. The

state nþ1 possesses transport properties consistent with the second law of

thermodynamics, while n�1 has anti-thermodynamical properties. Because the

evolution to n�1 for t ! �1 implies that the state nt is repelled from n�1 for

t ! þ1, the states nt unidirectionally evolve from ‘‘a repeller’’ n�1 to ‘‘an

attractor’’ nþ1. This evolution is consistent with the time reversal symmetry as

the time reversal operation induces jump of states near nþ1 to those near n�1.

Reviewing the complex spectral theory and evaluating averages of one-

particle dynamical variables along the present approach, their mathematical

structures are compared. At least in the present multibaker map, inclusion of

steady states to a class of admissible initial states naturally leads to a description

with broken time-reversal symmetry.
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Finally, the problem of selecting a physical measure from many invariant

measures, a well-known problem in dynamical systems theory, is discussed

from physical points of view, and different invariant measures are shown to

correspond to different macroscopic properties such as the particle distribution

per site and the associated flow. This implies that the introduction of a

nondynamical measure selection condition is inevitable to bridge between

microscopic dynamics and macroscopic properties and, hence, macroscopic

properties cannot be derived from dynamics alone.
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I. INTRODUCTION

In the present contribution, we summarize recent work on diffusion in spatially

periodic chaotic systems. The hydrodynamic modes of diffusion are constructed

as the eigenstates of a Frobenius–Perron operator associated with the Poincaré–

Birkhoff mapping of the system. The continuous-time dynamics is included in

the Frobenius–Perron operator of the mapping by using the first-return time

function. We show that the transport properties of diffusion can be derived from

this Frobenius–Perron operator, such as the Green–Kubo relation for the
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diffusion coefficient, the Burnett and higher-order coefficients, the Lebowitz–

McLennan–Zubarev expression for the nonequilibrium steady states, and the

entropy production of nonequilibrium thermodynamics. The hydrodynamic

modes are given by conditionally invariant complex measures with a fractal-like

singular character. The construction of the hydrodynamic modes is inspired by

works of Prigogine [1], Balescu [2], Résibois [3], Boon [4], and others.

Recent progress in statistical mechanics has revealed the importance of chaos

to understand normal transport processes such as diffusion, viscosity, or heat

conductivity. During this last decade, many works have shown that microscopic

systems of interacting particles are typically chaotic in the sense that their

dynamics is highly sensitive to initial conditions because of positive Lyapunov

exponents and that this dynamical instability leads to a dynamical randomness

characterized by a positive Kolmogorov–Sinai (KS) entropy per unit time

[5–12]. This dynamical randomness can induce various transport phenomena,

which turn out to be normal in the sense that the associated fluctuations are of

Gaussian character on long times and that the associated hydrodynamic modes

decay exponentially.

Such results have been obtained for systems with few mutually interacting

degrees of freedom. In particular, diffusion has been extensively studied in

systems such as the Lorentz gases, in which a point particle undergoes elastic

collisions in a periodic lattice of ions. The ions have been modeled as hard disks

[13,14] or as centers of Yukawa-type potentials [15]. Normal diffusion has also

been studied in simplified models such as the multibaker maps [16–19]. In the

same context, Gaussian thermostated Lorentz gases have also been studied

[20,21]. In these thermostated systems, the particle is submitted to an external

field and to a deterministic force which is non-Hamiltonian. As a consequence,

phase-space volumes are no longer preserved in thermostated systems, which

constitutes a fundamental difficulty of this approach. Non-area-preserving

multibaker maps have also been considered [22]. In this case, an equivalence

was shown between the non-area-preserving maps and area-preserving maps

with an extra variable of energy allowing the phase space to be larger as the

particle gains kinetic energy [23,24]. In this contribution, we shall focus on

transport in systems that preserve phase-space volumes so that the sum of all the

Lyapunov exponents vanishes
P

iðl
þ
i þ l�i Þ ¼ 0, in agreement with Liouville’s

theorem of Hamiltonian mechanics. For systems of statistical mechanics,

Liouville’s theorem is an important property because it is a consequence of the

unitarity of the underlying quantum mechanics ruling the microscopic

dynamics.

The purpose of the present contribution is to give a short synthesis of the

studies of diffusion and other transport processes in spatially periodic chaotic

systems which obeys Liouville’s theorem. In these studies, a special role is

played by the Poincaré–Birkhoff mapping, which provides a powerful method
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to reduce the continuous-time evolution of statistical ensembles of trajectories

to a discrete-time Frobenius–Perron operator [25]. The concept of microscopic

chaos and the escape-rate formalism will also be shortly reviewed.

The contribution is organized as follows. Section II contains a discussion

about chaos in nonequilibrium statistical mechanics and about the escape-rate

formalism. In Section III, we show how a flow can be reduced to a Poincaré–

Birkhoff mapping and similarly how, in spatially periodic systems, Liouville’s

equation can be studied in terms of a special Frobenius–Perron operator of our

invention. In Section IV, we show that all the known formulae of the transport

theory of diffusion can be derived from our Frobenius–Perron operator and its

classic Pollicott–Ruelle resonances. Applications and conclusions are given in

Section V.

II. MICROSCOPIC CHAOS

In chaotic systems, the sensitivity to initial conditions generates a time horizon

that is of the order of the inverse of the maximum Lyapunov exponent

lþmax ¼ maxflþi g, multiplied by the logarithm of the ratio of the final error efinal

over the initial one einitial:

tLyapunov ¼ 1

lþmax

ln
efinal

einitial

ð1Þ

This Lyapunov time constitutes a horizon for the prediction of the future

trajectory of the system [26]. Starting from initial conditions known to a

precision given by einitial, the trajectory keeps a tolerable precision lower than

efinal only during the time interval 0 � t < tLyapunov. We notice that the Lyapunov

horizon is movable in the sense that it can be extended to a longer time by

decreasing the initial error einitial. Nevertheless, this requires to increase

exponentially the precision on the initial conditions.

In a dilute gas of interacting particles, a positive Lyapunov exponent has the

typical value [5,6]

lþi 	 v

l
ln

l

d
ð2Þ

where d is the particle diameter, v 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
is the mean velocity, and

l 	 ðnd2Þ�1
is the mean free path given in terms of the particle density n. At room

temperature and pressure, a typical Lyapunov exponent takes the value

lþi 	 1010 sec�1, which is of the order of the inverse of the intercollisional

time. There are as many positive Lyapunov exponents as there are unstable
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directions in phase space. Pesin’s formula [27] can be used to evaluate the KS

entropy per unit time of a mole of particles at equilibrium:

hKS ¼
X

i

lþi 	 3NAv
v

l
ln

l

d
ð3Þ

where NAv is Avogadro’s number. The KS entropy characterizes the dynamical

randomness of the motion of the particles composing the gas. The effect of this

microscopic chaos has been observed in a recent experiment where a positive

lower bound has been measured on the KS entropy per unit time of a fluid

containing Brownian particles [28].

At equilibrium, formula (3) shows that the dynamical instability is converted

into an exactly equal amount of dynamical randomness. The reason for this is

that the dynamical instability cannot proceed forever in nonlinear Hamiltonian

systems where the explosion is stopped by nonlinear saturations. In this way,

dynamical randomness is generated by some mechanisms of nonlinear

saturation during the dynamics. The exact compensation of the dynamical

instability by the dynamical randomness is an interesting feature expressed by

Pesin’s formula (3).

In nonequilibrium situations, this exact compensation is broken leading to

the generation of fractal structures in the phase space of the system of particles

[11,29–32]. In the escape-rate formalism, a nonequilibrium situation is induced

by absorbing boundaries in the phase space. These absorbing boundaries

describe for instance an experiment in which the system is observed until a

certain property reaches a certain threshold or exits a certain range of values or a

domain of motion. The time of this event is recorded and the experiment is

restarted. After many repetitions, a statistics of first-passage times can be

performed. Very often, these first-passage times are distributed exponentially,

which defines a rate of exponential decay called the escape rate. This rate

depends on the observed property as well as on the chosen threshold— that is,

on the geometry of the absorbing boundaries. If the observed property is the

position of a tracer particle diffusing in a fluid, the escape rate turns out to be

proportional to the diffusion coefficient. Similarly, if the observed property is

the center of momentum of all the particles composing the fluid, the escape rate

is proportional to the viscosity, and so on [32].

At the microscopic level, the absorbing boundaries select highly unstable

trajectories along which the observed property never reaches the threshold. In

chaotic systems, infinitely many such trajectories exist in spite of the fact that

most trajectories reach the threshold and are absorbed at the boundary (or,

equivalently, they escape out of the domain delimited by the boundaries).

Accordingly, all these trajectories that evolve forever inside the boundaries

without reaching them form a so-called fractal repeller. On this fractal repeller,
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the KS entropy is slightly smaller than the sum of positive Lyapunov exponents,

and the difference is equal to the escape rate [27]

g ¼
X

i

lþi � hKS ð4Þ

Because the escape rate g depends on the transport coefficient, it is possible to

relate the transport coefficients to the characteristic quantities of chaos, as shown

elsewhere [11,30–32].

A priori, it is not evident that such a relationship is possible because the

microscopic chaos is a property of the short time scale ðlþi Þ
�1 	 10�10 sec of

the collisions between the particles, although the transport properties manifest

themselves on the long hydrodynamic time scale. However, the nonequilibrium

conditions created by the absorbing boundaries lead to a small difference

between the KS entropy and the sum of positive Lyapunov exponents. This

difference is of the order of the inverse of a hydrodynamic time such as the

diffusion time for a tracer particle to reach the absorbing boundaries. Thanks to

the escape-rate formalism [11,30–32], the connection between both types of

properties thus becomes possible because a difference is taken between two

properties from the short intercollisional time scale.

Subsequent work has shown the fundamental importance of the fractal

repeller of the escape-rate formalism [11,19,25,33,34]. This fractal repeller is

closely associated with the other fractals that appear in infinitely extended

systems without absorbing boundaries. For instance, it has been possible to

show that, in infinitely extended systems such as the periodic Lorentz gas, the

nonequilibrium steady states of diffusion are described by singular measures

(see Section IV) [19,25]. The singularities of these measures originate from the

discontinuities of the invariant density in a large but finite system between two

reservoirs of particles [33]. These discontinuities occur on the unstable

manifolds of the fractal repeller of the trajectories evolving forever between

the two reservoirs. In turn, the singular measures describing the nonequilibrium

steady states are the derivatives of the diffusive hydrodynamic modes with

respect to their wavenumber. As a consequence, these hydrodynamic modes are

also described by singular measures with their singularities intimately related to

the same fractal repeller of the escape-rate formalism. Because the singular

character of these measures is at the origin of the positive entropy production of

nonequilibrium thermodynamics (as shown in Section IV) [34], it turns out that

the fractal repeller of the escape-rate formalism plays a basic and fundamental

role in this whole context. Let us here mention that the escape-rate formalism is

closely related to the scattering theory of transport by Lax and Phillips [35].

These authors have pointed out the importance of the set of trapped

trajectories— today called the fractal repeller—and of its stable and unstable

manifolds in order to define a classic scattering operator.
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III. SPATIALLY PERIODIC SYSTEMS

A. Poincaré–Birkhoff Mapping in Spatially Periodic Systems

We consider a continuous-time system with a phase space that is periodic in

some directions. This is the case for the periodic Lorentz gas in which a point

particle undergoes elastic collisions in a lattice of hard disks or interacts with a

lattice of Yukawa attracting potentials. In the first example [13,14], the system is

defined by the Hamiltonian of kinetic energy for the free motion between the

hard disks and by the condition that the position ðx; yÞ remains outside the hard

disks of diameter d forming a regular lattice L:

H ¼
p2

x þ p2
y

2m
ð5Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � lxÞ2 þ ðy � lyÞ2
q


 d=2 for l ¼ ðlx; lyÞ 2 L ð6Þ

In the second example [15], the Hamiltonian is given by

H ¼
p2

x þ p2
y

2m
þ
X
l2L

Vðr � lÞ with VðrÞ ¼ � expð�arÞ
r

ð7Þ

Another example is a system composed of a tracer particle moving among

ðN � 1Þ other particles with periodic boundary conditions, as usually assumed in

numerical simulations.

Such systems are described by some differential equations

dX

dt
¼ FðXÞ ð8Þ

for M variables X. If the conditions of Cauchy’s theorem are satisfied, the

trajectory at time t is uniquely given in terms of the initial conditions X0, which

defines the continuous-time flow:

Xt ¼ UtðX0Þ ð9Þ

Because of the periodicity, the phase space can be divided into a lattice of

cells within each of them the vector field (8) is the same. One of these cells

defines the fundamental cell of our lattice in the phase space. The flow in the

full phase space can be reduced to the flow in the fundamental cell with periodic

boundary conditions. The motion on the lattice of cells is followed by a vector l
belonging to the lattice L. A Poincaré surface of section P can be defined in

this fundamental cell of the phase space. This surface of section is equipped
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with M � 1 coordinates x. During the time evolution, a trajectory (9) will

intersect the surface of section successively at the points fxngþ1
n¼�1 and the

times ftngþ1
n¼�1. At each intersection with the surface of section, the vector

locating the trajectory in the lattice is updated so that a sequence of lattice

vectors flngþ1
n¼�1 is furthermore generated by the motion.

Because the system is deterministic, each intersection x uniquely determines

the next intersection by a nonlinear map uðxÞ called the Poincaré–Birkhoff

mapping, a time of first return TðxÞ, and a vector-valued function aðxÞ 2 L
giving the jump on the lattice [25]:

xnþ1 ¼ uðxnÞ
tnþ1 ¼ tn þ TðxnÞ
lnþ1 ¼ ln þ aðxnÞ

ð10Þ

Reciprocally, the flow can be expressed as a suspended flow in terms of the

quantities introduced in the construction of the Poincaré–Birkhoff mapping. In

order to recover the M coordinates X of the original flow, we need to introduce

an extra variable t beside the M � 1 coordinates x of the Poincaré surface of

section. The extra variable t is the time of flight since the last intersection with

the surface of section. This variable ranges between zero and the time TðxÞ of

first return in the section: 0 � t < TðxÞ. Thanks to these coordinates, the

suspended flow takes an explicit form given by [25]

~Utðx; t; lÞ ¼ unx; tþ t �
Xn�1

j¼0

Tðu jxÞ; l þ
Xn�1

j¼0

aðu jxÞ
" #

ð11Þ

for 0 � tþ t �
Pn�1

j¼0 TðujxÞ < TðunxÞ. According to Cauchy’s theorem and the

geometric construction, there exists a function G that connects the variables of

the suspended flow to the original ones:

X ¼ Gðx; t; lÞ with x 2 P; 0 � t < TðxÞ; l 2 L ð12Þ

and an isomorphism is established in this way between the suspended and the

original flows:

~Ut ¼ G�1  Ut  G ð13Þ

We notice that the jump vector is given by

aðxÞ ¼ rðxÞ þ
ðTðxÞ

0

v  Ut  Gðx; 0; 0Þ dt� rðuxÞ ð14Þ
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in terms of the velocity v of the tracer particle at the current position in the phase

space, if rðxÞ denotes the position with respect to the center of the fundamental

cell at the instant of the intersection x with the surface of section.

B. Frobenius–Perron Operator

Beyond the Lyapunov horizon, the predictability on the future trajectory is lost

and statistical statements become necessary as emphasized by Nicolis [26].

Because the relaxation toward the thermodynamic equilibrium is a process

taking place on asymptotically long times, its description requires the

introduction of statistical ensembles of trajectories.

In a multiparticle system, the use of statistical ensembles corresponds to the

repetition of the same experiment over and over again until the statistical

property is established with confidence. This is the case in scattering

experiments—for instance, in the study of atomic or molecular collisions.

Two beams of particles are sent onto each other, and the scattering cross section

of elastic or inelastic collisions can be measured. These cross sections are such

statistical properties. In a scattering experiment, each beam contains an

arbitrarily large number of particles arriving one after the other with statistically

distributed velocities, impact parameters, and arrival times. In a beam, the

particles are sufficiently separated to be considered as independent so that the

experiment can be described as a succession of independent binary collisions,

forming a statistical ensemble of events.

In a single-particle system such as the Lorentz gas, the statistical ensembles

are introduced for the same use as aforementioned. In such systems, the

statistical ensemble can also be considered for the description of a gas of

independent particles bouncing in a lattice of ions. Indeed, a statistical ensemble

of N trajectories of the bouncing particle is strictly equivalent to a gas of N

independent particles bouncing in the system. In the limit N ! 1, the phase-

space distribution of the statistical ensemble is equivalent to the position–

velocity distribution of the gas of independent particles. The relaxation toward

the equilibrium of the former is thus equivalent to the relaxation of the latter.

Our purpose is here to describe this relaxation at the microscopic level without

approximation.

The statistical ensemble is described by a probability density rðXÞ defined in

the phase space. The time evolution (8)–(9) of each trajectory induces a time

evolution for the whole statistical ensemble according to Liouville’s equation,

which takes one of the following equivalent forms [1,26]:

qtr ¼ �divðFrÞ ¼ fH;rg � L̂r ð15Þ

where F is the vector field (8), H is the Hamiltonian, f� ; �g is the Poisson bracket,

and L̂ is the so-defined Liouvillian operator. As aforementioned, Liouville’s
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equation (15) also rules the position–velocity density of a Lorentz gas of

independent particles.

In the same way as the equations of motion (8) can be integrated to give the

flow (9), the time integral of Liouville’s equation gives the probability density rt

at the current time t in terms of the initial probability density r0 according to

rtðXÞ ¼ expðL̂tÞr0ðXÞ ¼ r0ðU�tXÞ � P̂tr0ðXÞ ð16Þ

which defines the Frobenius–Perron operator, here given for volume-preserving

systems.

In Ref. 25, we have shown how this continuous-time Frobenius–Perron

operator decomposes into the discrete-time Frobenius–Perron operator asso-

ciated with the Poincaré–Birkhoff mapping (10), which we assume to be area-

preserving. This reduction is carried out by a Laplace transform in time which

introduces the rate variable s conjugated to the time t. Furthermore, since the

system is spatially periodic, we perform a spatial Fourier transform that

introduces the wavenumber k. In this way, the probability density decomposes

into the so-called hydrodynamic modes of diffusion. Each of them corresponds

to spatially quasiperiodic inhomogeneities of wavelength L ¼ 2p=kkk in the

phase-space density. Accordingly, the Frobenius–Perron operator decomposes

into a continuum of Frobenius–Perron operators, one for each wavenumber k [25]:

ðR̂k;s f ÞðxÞ ¼ exp½�sTðu�1xÞ � i k � aðu�1xÞ� f ðu�1xÞ ð17Þ

where f ðxÞ is the k-component of the density defined in the Poincaré surface of

section P. For k ¼ 0, the Frobenius–Perron operator (17) reduces to an operator

previously derived by Pollicott [36,37].

In the Frobenius–Perron operator (17), the Laplace transform in time has

introduced an exponential factor exp½�sTðu�1xÞ�, where Tðu�1xÞ is the time of

first return in the surface of section P after a previous intersection at u�1x. This

factor has the following interpretation. Let us suppose that the Frobenius–Perron

operator rules the time evolution of a mode with a decay rate g ¼ �s such that

Re g > 0. The operator (17) should describe locally in the phase space the time

evolution from the previous intersection u�1x up to the current intersection x
with P. During the first-return time Tðu�1xÞ, the density f decays exponentially

by an amount exp½�gTðu�1xÞ�. The first factor in Eq. (17) is there to

compensate this decay in order to define the conditionally invariant density

associated with the decay mode.

A similar interpretation holds for the factor exp½�ik � aðu�1xÞ�. During the

same segment of trajectory from u�1x 2 P to x 2 P, the particle has moved in

the lattice by a vector aðu�1xÞ so that the Fourier k-component f acquires the

phase exp½þik � aðu�1xÞ� during this motion. The second factor has thus the
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effect to compensate this phase in order for the component f to continue to

describe the density in the fundamental cell.

According to the previous discussion, we can conclude that a hydrodynamic

mode of wavenumber k will be given by a solution of the generalized

eigenvalue problem [25]:

R̂k;sk
ck ¼ ck ð18Þ

R̂
y
k;sk

~ck ¼ ~ck ð19Þ

with the biorthonormality condition taken with respect to the invariant Lebesgue

measure n defined in the surface of section:

h~c�
k ckin ¼ 1 ð20Þ

In Eqs. (18)–(20), ck is the eigenstate of the Frobenius–Perron operator (17) and
~ck is the adjoint eigenstate. In Eq. (18), the eigenvalue of the operator (17) is

taken to be equal to unity in order for ck to become the density associated with a

conditionally invariant measure, as discussed above. Indeed, it has been

necessary to include already the decay rate ð�sÞ in the Frobenius–Perron

operator (17) because the Poincaré–Birkhoff mapping (10) is not isochronic.

Therefore, requiring that the eigenvalue of the operator (17) is equal to unity has

the effect of fixing the variable s to a value which depends on the wavenumber k
and which is intrinsic to the system. This value sk is a so-called Pollicott–Ruelle

resonance [36–41]. The Pollicott–Ruelle resonances have been theoretically

studied in different systems such as the disk scatterers [42] or the pitchfork

bifurcation [43] and, notably, in connection with relaxation and diffusion in

classically chaotic quantum systems [44–49]. These resonances have also been

evidenced in an experimental microwave study of disk scatterers [50,51].

Several such Pollicott–Ruelle resonances may exist. In ergodic and

mixing spatially periodic systems, we may expect that there is a unique

Pollicott–Ruelle resonance that vanishes with the wavenumber: limk!0 sk ¼ 0.

In this limit, the corresponding eigenstate becomes the invariant state, which is

the microcanonical equilibrium measure for volume-preserving Hamiltonian

systems: limk!0 ck ¼ 1. However, for small enough nonvanishing wave-

numbers k 6¼ 0, the eigenstate is no longer the invariant measure and instead

defines a complex conditionally invariant measure describing a hydrodynamic

mode of diffusion.

In chaotic systems, these conditionally invariant measures are singular

with respect to the Lebesgue measure so that their density ck is not a function

but a mathematical distribution (also called a generalized function) of a type

defined by Schwartz or Gel’fand. A cumulative function can be defined as
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the measure of a m-dimensional rectangular domain ½0; x�m in phase space

with 0 < m � M � 1:

FkðxÞ ¼
ð
½0;x�m

ckðx0Þdx0 ð21Þ

which is expected to be continuous but nondifferentiable for small enough

wavenumbers k 6¼ 0 [17,18,25,52–54]. In Eq. (21), dx0 defines the invariant

Lebesgue measure n in the surface of section P. For m ¼ 1, the cumulative

functions (21) of the hydrodynamic modes of the multibaker maps and of the two-

dimensional Lorentz gases form fractal curves in the complex plane. These

fractal curves are characterized by a Hausdorff dimension that is given in terms

of the diffusion coefficient and the Lyapunov exponent [55,56].

In the next section, we shall present the consequences of these results on the

transport properties of diffusion.

IV. CONSEQUENCES OF THE EIGENVALUE PROBLEM

The generalized eigenvalue problem presented in the previous section defines the

hydrodynamic modes of diffusion at the microscopic level of description. As

summarized here below, all the relevant properties of the transport by diffusion

such as the diffusion coefficient, the higher-order Burnett and super-Burnett

coefficients if they exist, the nonequilibrium steady states, Fick’s law, and the

entropy production of nonequilibrium thermodynamics can be derived from the

Frobenius–Perron operator (17).

A. The Diffusion Coefficient and the Higher-Order Coefficients

We suppose that the leading Pollicott-Ruelle resonance sk is n-times differen-

tiable near k ¼ 0: sk 2 Cn. Hence, the eigenvalue equations (18)–(20) can

be differentiated successively with respect to the wavenumber: qk, q2
k, q3

k,

q4
k, . . . , qn

k [25].

In the absence of external field, there is no mean drift and the first derivatives

give

qks0 ¼ 0 ð22Þ

qkc0ðxÞ ¼ �i
X1
n¼1

aðu�nxÞ ð23Þ

Proceeding in a similar way up to the second derivatives gives us the matrix

of diffusion coefficients (if they exist) as

Dab ¼ � 1

2

q2s0

qkaqkb
¼ 1

2hTin

Xþ1

n¼�1
haaðab  unÞin ð24Þ
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Using Eq. (14), which relates the jump vector aðxÞ to the integral of the particle

velocity v, Eq. (24) implies the Green–Kubo relation:

Dab ¼
1

2

ðþ1

�1
dthvaðvb  UtÞim ð25Þ

where m is the microcanonical equilibrium measure in the original phase

space.

Higher derivatives give expressions for the Burnett and super-Burnett (Babgd)

coefficients if they exist [25]. These higher-order coefficients appear in the

expansion of the dispersion relation of diffusion in powers of the wavenumber:

sk ¼ �
X
ab

Dab ka kb þ
X
abgd

Babgd ka kb kg kd þ Oðk6Þ ð26Þ

In a recent work [57,58], Chernov and Dettmann proved the existence of these

higher-order coefficients and conjectured the convergence of the expansion (26)

for the periodic Lorentz gas with a finite horizon, on the basis of the formalism

described here.

B. Periodic-Orbit Theory

The periodic-orbit theory of classic systems has been extensively developed

since the pioneering work by Cvitanović [59]. This theory has been applied to

many dynamical systems that are either classic, stochastic, or quantum. For an

overview of periodic-orbit theory, see Ref. 60.

For Axiom-A spatially periodic systems, the Fredholm determinant of the

Frobenius–Perron operator (17) can be expressed as a product over all the

unstable periodic orbits given by the following Zeta function [25]:

Zðs; kÞ � DetðÎ � R̂k;sÞ

¼
Y

p

Y1
m1���mu¼0

1 � expð�s Tp � i k � apÞ
j�1p � � ��upj�m1

1p � � ��mu
up

" #ðm1þ1Þ���ðmuþ1Þ ð27Þ

where �ip with i ¼ 1; . . . ; u are the instability eigenvalues of the linearized

Poincaré–Birkhoff mapping (10) for the periodic orbit p. These instability

eigenvalues satisfy j�ipj > 1. Tp is the period of p and ap is the vector by which

the particle travels on the lattice during the period. The integer u is the number of

unstable directions in the phase space.

According to the eigenvalue equation (18), the Pollicott–Ruelle resonances

sk are the zeroes of the Fredholm determinant: Zðsk; kÞ ¼ 0. This result can be
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used in order to obtain a periodic-orbit formula for the diffusion coefficient of

an isotropic d-dimensional diffusive process [61–63]:

D ¼
P1

l¼0ð�ÞlP
p1 6¼���6¼pl

ðap1
þ � � � þ apl

Þ2
Fp1

� � �Fpl

2d
P1

l¼0ð�ÞlP
p1 6¼���6¼pl

ðTp1
þ � � � þ Tpl

ÞFp1
� � �Fpl

ð28Þ

with Fp ¼
Qu

i¼1 j�ipj�1
.

We remark that the existence and analyticity of Fredholm determinants such

as (27) has recently been studied for hyperbolic diffeomorphism of finite

smoothness on the basis of a new theory of distributions associated with the

unstable and stable leafs of the diffeomorphism [64].

C. The Nonequilibrium Steady States

At the phenomenological level, a nonequilibrium steady state can be obtained

from a hydrodynamic mode in the limit where the wavelength increases

indefinitely together with the amplitude because limL!1ðL=2pÞsinð2pg � r=LÞ ¼
g � r, where g ¼ rc is a gradient of concentration c. Accordingly, a non-

equilibrium steady state can be obtained by the following limit [19]:

�nss � �ig � qk�kjk¼0 ð29Þ

Because the first derivatives of the hydrodynamic mode is given by Eq. (23) and

because the jump vector is related to the time integral of the particle velocity by

Eq. (14), it is possible to obtain the following expression for the phase-space

density of a nonequilibrium steady state with a gradient of concentration

g ¼ rc:

�nnsðXÞ ¼ g � rðXÞ þ
ð1

0

vðUtXÞ dt

� �
ð30Þ

where r and v are, respectively, the position and the velocity of the tracer particle

that diffuses [25].

This expression can also be derived from the phase-space probability density

of a nonequilibrium steady state of an open system between two reservoirs of

particles at different densities [33]. These reservoirs have the effect to impose

flux boundary conditions to the diffusive system. As we said in Section II, the

discontinuities of this probability density occur on the unstable manifolds of

the fractal repeller of the escape-rate formalism [33]. In the limit where the

reservoirs are separated by an arbitrarily large distance L ! 1 while keeping

constant the gradient g, expression (30) is obtained for the phase-space density

with respect to the density at a point in the middle of the system. Expression (30)
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is known as the Lebowitz–McLennan–Zubarev nonequilibrium steady state

[65–68]. This density is an invariant of motion in the sense that fH;�nssg ¼ 0,

where fH; �g is the Poisson bracket with the Hamiltonian.

An essential property of the nonequilibrium steady state is its singular

character that has appeared in the limit L ! 1. Indeed, Eq. (30) defines the

density of a measure which is singular with respect to the Lebesgue measure.

This singular character is furthermore of fractal type because the dynamics is

chaotic. The fractal-like singular character is evidenced by considering the

cumulative function associated with the density (30). For the so-called

multibaker model, this cumulative function is given in terms of the continuous

but nondifferentiable Takagi function which is self-similar [19]. This self-

similarity is a reflect of the self-similarity of the underlying fractal repeller in a

finite but large open system.

A consequence of Eq. (30) is Fick’s law:

j ¼ �Drc ð31Þ

obtained by computing the mean flux j of particles for the nonequilibrium steady

state (30) [19,25].

D. Entropy Production

The fractal-like singular character of the nonequilibrium steady state in the limit

of a large system has a fundamental consequence on the question of entropy

production. Indeed, the usual argument leading to the constancy of Gibbs’

entropy becomes questionable because this argument assumes the existence of a

density function for the probability density of the system. Because the density

function may no longer exist in the limit L ! 1, we may expect a very different

behavior for the time variation of the entropy [34].

As shown very recently [69], a similar problem is expected for the time-

dependent relaxation toward equilibrium in a finite system. In the long-time

limit t ! 1, the relaxation is described in terms of the hydrodynamic modes

which are singular with respect to the Lebesgue measure so that the constancy

of the entropy is here again in question.

A detailed analysis of the entropy production in an elementary model of

diffusion known as the multibaker map has shown that the fractal-like singular

character of the nonequilibrium steady state [34]—and equivalently of the

hydrodynamic modes [69]—explains why the entropy production is positive

and has the following form given by nonequilibrium thermodynamics [70]:

diS

dt
¼
ð

D
ðrcÞ2

c
dr þ � � � ð32Þ
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where the dots denote possible corrections of higher orders in the gradient. The

calculation leading to this result simply assumes a coarse-grained entropy based

on a partition of phase space into arbitrarily small cells [34]. Taking an arbitrarily

fine partition allows us to get rid of the arbitrariness of the partition, in analogy

with the procedure used to define the Kolmogorov–Sinai entropy per unit time.

For nonequilibrium steady states, the positive entropy production (32) is

obtained in the limit where an arbitrarily large system is considered before an

arbitrarily fine partition [34]. Indeed, for a finite system in a nonequilibrium

steady state, there is always a small scale in phase space below which the

invariant measure is continuous with respect to the Lebesgue measure, so that

the entropy production vanishes for fine enough partitions. The remarkable fact

is that this critical scale decreases exponentially rapidly in chaotic systems so

that the behavior predicted by nonequilibrium thermodynamics will predomi-

nate even in relatively small systems. This result is especially interesting

because it justifies the use of nonequilibrium thermodynamics already in small

parts of a biological system.

For the time-dependent relaxation toward the equilibrium in chaotic systems,

the positive entropy production (32) will be obtained in the long-time limit

t ! 1 for any partition into arbitrarily small cells, even if the system is finite

[69]. This remarkable result has its origin in the fact that the hydrodynamic

modes controlling the relaxation are always singular with respect to the

Lebesgue measure even in finite chaotic systems. In this regard, we may

conclude that the second law of thermodynamics is a consequence of the fractal-

like singular character of the hydrodynamic modes that describe the relaxation

toward the equilibrium. This conclusion is natural in view of the fact that this

fractal-like singular character is a direct consequence of the phase-space mixing

induced by the dynamical chaos.

V. CONCLUSIONS

In this short overview, we have summarized recent results about transport by

diffusion in spatially periodic chaotic systems. These results extend to reaction-

diffusion systems as recently shown elsewhere [71–73].

In this context, we have shown that all the relevant properties of transport (as

well as of chemical reaction) are the consequences of a Frobenius–Perron

operator such as Eq. (17). The generalized eigenvalue problem based on this

Frobenius–Perron operator defines the hydrodynamic modes as the slowly

damped long-wavelength eigenstates corresponding to the smallest Pollicott–

Ruelle resonance sk. These modes describe the relaxation toward equilibrium of

quasiperiodic inhomogeneities in the phase-space probability density of a

statistical ensemble of trajectories. The inhomogeneities are quasiperiodic in the
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sense that the wavelength L ¼ 2p=kkk of the hydrodynamic mode adds an extra

periodicity to the intrinsic one of the lattice L.

In systems with a gas of independent particles such as the Lorentz gas, the

Frobenius–Perron operator (17) directly describes the relaxation toward

equilibrium of quasiperiodic inhomogeneities in the position–velocity density

of particles composing the gas. Therefore, our results show explicitly how the

relaxation to equilibrium can occur in a N-particle system in the limit N ! 1.

Indeed, in this limit, the particle density rðXÞ—or its Fourier component

f ðxÞ—becomes a smooth function which evolves according to the Frobenius–

Perron operator (16)—or (17)—so that the time evolution of the gas has the

nonequilibrium properties described in Section IV.

A comment is here in order that the Pollicott–Ruelle resonances sk are

defined for the semigroup of the forward time evolution for t ! þ1. By time

reversibility, there exists another semigroup for t ! �1 with time-reversed

properties. The hydrodynamic modes of the forward semigroup are singular in

the stable directions of the phase space, but they are smooth in the unstable

directions because the dynamics is expanding in the unstable directions. In

contrast, the hydrodynamic modes of the backward semigroup are singular in

the unstable directions and smooth in the stable directions. This inequivalence

constitutes a spontaneous breaking of the time reversal symmetry which is due

to the Lyapunov dynamical instability. We notice that a dynamical instability

without chaos (like in the two-disk scatterer or in the inverted harmonic potential

[11]) is already enough to generate this spontaneous time reversal symmetry

breaking. However, chaos is required to give a fractal character to the singular

conditionally invariant measures of the hydrodynamic modes, which is essential

to obtain the transport properties as well as for the entropy production (32).

We remark that the hydrodynamic modes exist only in the asymptotic

expansions for t ! �1 of the time averages hAit of the physical observables

AðXÞ. The relaxation toward equilibrium can be described in terms of

exponentially decaying modes thanks to these time asymptotic expansions.

Because of the dynamical instability, the forward asymptotic expansion turns

out to be inequivalent to the backward asymptotic expansion. The forward

asymptotic expansion for t ! þ1 is obtained by the analytic continuation to

complex frequencies expðstÞ ¼ expðiotÞ with Im o > 0, while the backward

expansion for t ! �1 is given by the analytic continuation to complex

frequencies with Im o < 0. Supposing that the initial time of the experiment is

taken at t ¼ 0, it is a known result that the forward (resp. backward) asymptotic

expansion converges only for t > 0 (resp. t < 0) [11]. Therefore, the origin

t ¼ 0 constitutes a horizon if we want to use the backward semigroup for future

predictions on the time evolution of a statistical ensemble (or of a gas of

independent particles). Somehow, this horizon is to the statistical ensemble of

trajectories (or to the gas) what the Lyapunov horizon (1) is to a single
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trajectory. We observe that the accumulation of infinitely many trajectories in the

statistical ensemble (or infinitely many particles in the gas) has created a

horizon that is much stronger than the movable Lyapunov horizon (1). The

semigroup horizon at t ¼ 0 restricts the use of the exponentially decaying

hydrodynamic modes to the future relaxation for t > 0. Therefore, this horizon

constitutes a fundamental limit on the use of nonequilibrium thermodynamics

in the description of many-particle systems. In this sense, the semigroup horizon

justifies the irreversible character of nonequilibrium thermodynamics.
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I. INTRODUCTION

In spite of many interesting results obtained in the past [1–17], the kinetic theory

to moderately dense gases faces still great difficulties. The main difficulty is that

the macroscopic transport equations (such as the diffusion equation) are only

‘‘Markovian’’ equations in which the time change is determined by the

instanteneous state of the system. In contrast, the generalized master equation

first derived by Prigogine and Résibois [18] (see also Ref. 19) indicates

that beyond the Boltzmann type we have ‘‘memory effects’’ and therefore
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non-Markovian behavior. Indeed, introducing the projector Pð0Þ that projects the

distribution function rðr1; . . . ; rN ; v1; . . . ; vNÞ on a function depending only on

velocities, we have the well-known expression [19]

i
q
qt

Pð0ÞrðtÞ ¼
ðt

0

dt0~cð0Þðt0ÞPð0Þrðt � t0Þ þ ~D
ð0ÞðtÞrð0Þ ð1Þ

Many attempts have been made to ‘‘markovianize’’ this equation (see, for

example, Ref. 6). However, difficulties remain. As discussed briefly in Section

III, the Markovian approximation diverges for two-dimensional systems.

However, it is difficult to believe that transport theory fails in two-dimensional

systems. Also, it is well known that the approach to equilibrium involves slow

nonexponential processes. The memory effects retained in (1) correspond to the

physical situations beyond the Boltzmann approximation valid for low

concentrations.

The approach based on the complex spectral representation of the Liouville

operator introduced by Prigogine and the author shows that these difficulties can

be overcome [20,21]. To make this chapter more accessible, we first present a

brief summary of our method (Section II). In short we consider a class of

distribution functions r which lies outside the Hilbert space (they correspond to

generalized functions or distributions). We then solve the eigenvalue problem

for the Liouvillian L ¼ L0 þ L0 in this extended space (L0 corresponds to free

particles and L0 takes into account interactions). This permits us to introduce

two complete sets of projection operators PðnÞ and �ðnÞ:X
n

PðnÞ ¼ 1;
X
n

�ðnÞ ¼ 1 ð2Þ

where PðnÞ commutes with L0 while �ðnÞ commutes with L, and n as defined is the

degree of correlations that is the number of nonvanishing wave vectors in the

Fourier representation of r. The fundamental result of our theory is that each

component PðnÞ�ðnÞr satisfies the closed Markovian equation [Eq. 34].

The Markovian description involves both PðnÞ and �ðnÞ. It applies to

‘‘dressed’’ or ‘‘renormalized’’ distribution functions. For example, the one-

particle velocity distribution function is given by

jðv1; tÞ ¼
ð

dv2 . . .

ð
dvNPð0ÞrðtÞ ¼

ð
dv2 . . .

ð
dvNjNðv1; v2; . . . vN ; tÞ ð3Þ

In contrast, Pð0Þ�ð0Þr takes into account the interaction processes. The

‘‘dressed’’ velocity distribution function is

jð0Þðv1; tÞ ¼
ð

dv2 . . .

ð
dvNPð0Þ�ð0ÞrðtÞ ð4Þ
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and this is a functional which depends on the interaction with other particles in

the medium. In other words it is a ‘‘collective mode.’’ This dressing is a

nonequilibrium effect because for equilibrium the dressing effect disappears:

jð0Þ
eq ðv1Þ ¼ jeqðv1Þ, where jeq is the normalized Maxwellian.

This result is interesting, since the original distribution function jðv1; tÞ also

obeys a non-Markovian equation as a result of (1). The well-known Markovian

approximation for the ordinary distribution functions such as the so-called l2t-

approximation in weakly coupled systems is valid only for finite time interval of

order of the mean free time [19]. Both for short and long time scales, the

memory effects neglected in the Markovian approximation dominate in the

evolution of the distribution function. Hence, the ordinary distribution functions

do not satisfy Markovian transport equations. In contrast, the dressed

distribution functions such as jð0Þðv1; tÞ satisfy Markovian equation for all

times. Therefore, it is possible to define transport coefficients in terms of our

dressed distribution functions. An attempt in this direction has already been

made by Thedosopulu and Grecos [22]. They derived linearized hydrodynamics

from kinetic theory for three-dimensional fluids. In their paper they have

already shown that linearized hydrodynamics exist only for the collective

modes.

In this chapter we shall mainly consider classic systems of identical particles

with mass m interacting via hard-core potentials of a diameter a0 with number

density n, in d-dimensional space with d � 2. We shall apply our complex

spectral representation of the Liouvillian to the system near equailibrium where

we expect the linearized scheme of kinetic equations is valid. One of the main

conclusions reached in this chapter are that Markovian equations for our dressed

states exist for all dimensions. We then can define transport coefficiencies even

for d ¼ 2 (see Section III). Therefore the transition from the Boltzmann

approximation to moderately dense fluids involves a radical change. The

transport coefficients are now associated with collective modes and are no

longer associated with ordinary reduced distribution functions.

However, since our observations of nature are established through measuring

the average values of physical quantities over the original distribution functions,

it is important to follow the time evolution of these distribution functions. The

non-Markovian evolution for the distribution function in (1) can now be

described as the superposition of Markovian evolution for the collective modes:

jðv1; tÞ ¼
X
n

ð
dv2 . . .

ð
dvNPð0Þ�ðnÞrðtÞ ð5Þ

This is also true when we study the effect of the long-time tails on the linear

response theory, the so-called Green–Kubo formalism. (For an excellent and still

up-to-date review of these problems, see Ref. 6, as well as the book by Résibois
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and de Leener [13]. See also Refs. 14 and 15.) In this chapter we shall specially

consider the evolution of the normalized dimensionless velocity autocorrelation

function defined by

�ðtÞ ¼ hv1;xð0Þv1;xðtÞieq

hv1;xð0Þ2ieq
¼
ð

dv1v1;xdjðv1; tÞ ð6Þ

Here hAieq ¼
Ð

dvNdrNAreq
N with N-particle canonical equilbrium req

N , and

djðv1; tÞ is the one-particle reduced function defined by

djðv1; tÞ 
 bm

ð
dvN�1

ð1Þ

ð
drNe�iLtv1;xr

eq
N ð7Þ

with b ¼ 1=kBT . We shall show that the long-time tails contributions in (6) lead

to divergences of the Green–Kubo integrals defined in (8) for d � 4.

In the Boltzmann approximation, the autocorrelation function decays in the

relaxation time by the exponential law. It is well known that the memory effect

in the kinetic equation for the hard-core potential leads to power law decay (the

so-called long-time tail) with t�d=2 which comes from two-mode coupling

between hydrodynamic modes in the ring processes [13]. This result for d ¼ 3

leads to a convergent contribution to Green–Kubo’s ‘‘diffusion coefficient’’

defined by

DGK ¼ lim
t!1

1

mb

ðt

0

dt�ðtÞ ð8Þ

while leads to serious problem of the Green–Kubo formula for d ¼ 2, since it

leads to a divergence as ln t ! 1. Indeed, the calculation of �ðtÞ, based on the

assumption that a diffusive mode exists in the ordinary reduced distribution

functions for d ¼ 2, leads to the contradictory result that the diffusion

coefficients does not exist. This problem is related to the fact that the

Markovianization of the ordinary reduced distribution functions for d ¼ 2 fails

because of the appearance of the divergence. In contrast, as mentioned our

complex spectral representation of the Liouvillian leads to a set of well-defined

Markovian kinetic equations near equilibrium for the dressed distribution

functions for all d (including d ¼ 2). Using our spectral decomposition, the non-

Markovian evolution can be split rigorously into independent Markovian

evolutions that can be studied independently of any truncation procedure.

Therefore, our complex spectral representation provides a consistent approach to

estimate the long-time tail effects.

For a long time it has been accepted that the two-mode coupling in the binary

correlations leads to the slowest decay process in �ðtÞ for d > 2, and the

‘‘critical dimension’’ is d ¼ 2; that is, higher modes processes lead to slower
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decay process in the autocorrelation function for d < 2, while they lead to

quicker decay process for d > 2 [23–25]. The phenomenological approach

based on hydrodynamic equations has supported this result [13]. We shall show

this would be true if we restrict all intermediate states only to hydrodynamic

modes. However, we shall show that there are slower decay processes than

binary correlations in higher correlation subspace, which are coming from

processes where nonhydrodynamic modes are incorporated in vertices. Indeed,

we shall show for moderately dense gases that the order of magninude of the

long-time tail is given by

��ðtÞ �
X1
n¼2

��ðnÞðtÞ ð9Þ

Here, ��ðnÞðtÞ is the slowest-decaying contribution �ðnÞðtÞ in each correlation

subspace and is given by

��ðnÞðtÞ � gn g

1 � g

� �2ðn�2Þ
1

1 � g

� �2

t2ðn�2Þt�dðn�1Þ=2 ð10Þ

where t 
 t=tr is a dimensionless time measured by the unit of the relaxation

time tr 
 g�1 with g ¼ k0hvi, and

g 
 nd�1
0 ¼ kd

0=n; with n0 
 ad
0n ð11Þ

where k0 ¼ l�1
m ¼ ad�1

0 n is the inverse of the mean free length and hvi ¼
ðmbÞ�1=2

is the thermal velocity. This shows that the actual critical dimension is

d ¼ 4. Moreover, this shows that Green–Kubo’s diffusion coefficient DGK

diverges even for d ¼ 3. This is in contrast to the well-defined transport

coefficients associated with the Makovian kinetic equations for our dressed

distribution functions.1

II. COMPLEX SPECTRAL REPRESENTATION

Let us present a brief summary of our method. See Ref. 20 for complete

presentation. The Liouville equation for the N-particle distribution function (d.f.)

rðrN ; vN ; tÞ is given by

i
qr
qt

¼ Lr ð12Þ

The distribution function is normalized as
Ð

drNdvNr ¼ 1.

1 Many of the derivations in the present chapter have been included in detail in Ref. [30].
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The Liouvillian L consists of a free Liouvillian L0 and an interaction part L0, that

is,

L ¼ L0 þ L0 ¼
XN

a¼1

L
ðaÞ
0 þ

XN

b>a¼1

L0
ab ð13Þ

where L
ðaÞ
0 ¼ �iva � ðq=qraÞ. We have the eigenstates

L0jkN ; vNi ¼
XN

a¼1

ka � vajkN ; vNi

where jkN ; vNi 
 jkNi � jvNi. They are plane waves hrN jkNi ¼ V�N=2

exp½i
PN

a¼1 ka � ra�, where V is the volume of the system. The eigenstates of

L
ðaÞ
0 give a complete orthonormal basis,

X
ka

jkaihkaj ¼ 1;

ð
dvajvaihvaj ¼ 1 ð14Þ

and

hkajk0
ai ¼ dkrðka � k0

aÞ; hvajv0
ai ¼ dðva � v0

aÞ ð15Þ

where dkrðkaÞ is a d-dimensional Kronecker’s delta. In an infinite volume limit,

��1
X

ka

!
ð

dka; �dkrðkaÞ ! dðkaÞ ð16Þ

where � 
 V=ð2pÞd
.

In this chapter we shall consider hard-core interactions. To describe these

interactions we use the ‘‘pseudo-Liouvillian’’ formalism introduced by Ernst et

al. [7] to take into account the singular nature of the hard-core interaction (see

also Ref. 13). In this formalism the matrix element of the interaction is given by

hk0N ; v0N jL0
abjkN ; vNi ¼ i

V
T
ðabÞ
k0�kd

krðk0
a þ k0

b � ka � kbÞ

� dkr
abðk0N�2 � kN�2Þdðv0N � vNÞ ð17Þ

with the ‘‘binary collision operator’’ defined by

TðabÞ
q ¼ ad�1

0

ð
ŝ�vab >0

dŝðŝ � vabÞðe�iq�̂sa0 b̂
ðabÞ
v � eþiq�̂sa0Þ ð18Þ
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where a0 is a diameter of the hard spheres, and ŝ is the unit vector. The operator

b̂
ðabÞ
v replaces va and vb by their pre-collisional values as b̂

ðabÞ
v f ðva; vbÞ ¼

f ð�va; �vbÞ, where �va ¼ va � ŝð̂s � vabÞ; �vb ¼ vb þ ŝðŝ � vabÞ, and vab 
 va � vb.

Moreover, dkr
abðkN�2Þ is a product of N � 2 Kronecker’s deltas which excludes

the particle a and b. We note that the total wavevector is preserved in the

transition (2.6). As usual, this is a result of the translational invariance of the

interaction in space.

Our method deals with the class of ensembles corresponding to the

thermodynamic limit (i.e., the number of particle N ! 1, and the volume

V ! 1, with the number density n ¼ N=V finite). This class includes

the canonical distribution. It describes ‘‘persistent’’ interactions [20]. The

distribution function r therefore can be decomposed into contributions from

different degrees of correlations,

r ¼ Pð0Þrþ
XN

a

X
ka

PðkaÞrþ
XN

b>a

X
ka;kb

Pðka;kbÞrþ � � � ð19Þ

where PðnÞ is the projection operator which retains the nth degree of correlations

[20]. For example, Pð0Þ retains the ‘‘vacuum component’’ r0ðvNÞ, which is the

velocity d.f. with vanishing wavevectors for all particles kN ¼ 0; PðkaÞr are the

‘‘inhomogeneity components’’ rka
ðvNÞ with ka 6¼ 0, and kN�1 ¼ 0 for particles

a ¼ 1 to N, Pðka;kbÞr are the ‘‘binary correlation components’’ rka;kb
with ka 6¼ 0

and kb 6¼ 0, and so on. To avoid heavy notations we shall abbreviate the notations

as Pð1Þ ¼ PðkaÞ;Pð2Þ ¼ Pðka;kbÞ; . . . in the following expressions. We have

L0PðnÞ ¼ PðnÞL0; PðnÞPðmÞ ¼ PðnÞdn;m;
X
n

PðnÞ ¼ 1 ð20Þ

As we have shown (see Ref. 19), the Fourier coefficients with a smaller

number of nonvanishing components in wavevectors kN have a higher-order

dependence on the volume factor V in the large volume limit—for example,

r0=rka
� V . The appearance of these delta-function singularities leads to the

usual cluster expansion of the reduced distribution functions. Then, for example,

we have the reduced one-particle distribution function in the limit � ! 1,

f1ðr1; v1; tÞ ¼ N

ð
dr2 � � � drN

ð
dv2 � � � dvNrðrN ; vN ; tÞ

¼ njðv1; tÞ þ
n

�

X
q

fqðv1; tÞeiq�r1

! njðv1; tÞ þ n

ð
dq fqðv1; tÞeiq�r1 ð21Þ

transport theory for collective modes 135



where the volume element ��1 in the second line manifests the delta-function

singularity.

Also, because of these singularities, r does not belong to the Hilbert space.

As a result, the hermitian operator L acquires complex eigenvalues Z
ðnÞ
j breaking

time symmetry. The time evolution of the system then splits into two

semigroups. For Im Z
ðnÞ
j � 0 the equilibrium is approached in our future that is

for t ! þ1, whereas for Im Z
ðnÞ
j � 0 the equilibrium had been reached in our

past. The domain of the two semigroups do not overlap (see Refs. 20 and 21).

To be self-consistent we choose the semigroup oriented toward our future. Then

we have the complex spectral representation,

e�iLtjrð0Þi ¼
X
n

X
j

jFðnÞ
j ie�iZ

ðnÞ
j

th~FðnÞ
j jrð0Þi ð22Þ

where F
ðnÞ
j and ~F

ðnÞ
j are biorthonormal sets of right- and left-eigenstates of the

Liouvillian with the complex eigenvalue Z
ðnÞ
j ,

LjFðnÞ
j i ¼ Z

ðnÞ
j jFðnÞ

j i; h~FðnÞ
j jL ¼ Z

ðnÞ
j h~FðnÞ

j j ð23Þ

Operating the projection operator PðnÞ and its orthogonal operator

QðnÞ 
 1 � PðnÞ to both sides of (2.12), one has a set of equations for PðnÞ

and QðnÞ components. Solving these equations, one can write the QðnÞ

components as a functional of the PðnÞ components. Then, one can find the

eigenstates of L as

jFðnÞ
j i ¼ ½PðnÞ þ QðnÞCðnÞðZðnÞ

j Þ�jFðnÞ
j i; h~FðnÞ

j j ¼ hFðnÞ
j j½PðnÞ þDðnÞðZðnÞ

j ÞQðnÞ�
ð24Þ

The ‘‘creation operator’’ CðnÞðzÞ and the ‘‘destruction operator’’ DðnÞðzÞ are

defined by

CðnÞðzÞ 
 Gn
QðzÞLPðnÞ; DðnÞðzÞ 
 PðnÞLGn

QðzÞ ð25Þ

with the propagator

Gn
QðzÞ ¼ QðnÞ½z � QðnÞLQðnÞ��1

ð26Þ

Substituting (24) into (23), we obtain the equation for the PðnÞ components of

the eigenstates that satisfy the eigenvalue equation of the ‘‘collision operators’’

cðnÞ, that is,

cðnÞðZðnÞ
j ÞjuðnÞ

j i ¼ Z
ðnÞ
j juðnÞ

j i; h~vðnÞj jcðnÞðZðnÞ
j Þ ¼ h~vðnÞj jZðnÞ

j ð27Þ
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where we have put PðnÞjFðnÞ
j i ¼

ffiffiffiffiffiffiffiffiffi
N

ðnÞ
j

q
juðnÞ

j i and h~FðnÞ
j jPðnÞ ¼

ffiffiffiffiffiffiffiffiffi
N

ðnÞ
j

q
h~vðnÞj j with a

normalization constant N
ðnÞ
j , and cðnÞ is given by

cðnÞðzÞ ¼ PðnÞL0PðnÞ þ PðnÞL0PðnÞ þ PðnÞL0CðnÞðzÞPðnÞ ð28Þ

This operator consists of three components: (1) the free flow L0, (2) an interaction

linear in L0, and (3) nonlinear term of the interaction where L0 is incorporated in

the propergagor in CðnÞðzÞ.
Note that the eigenvalue problem associated to the collision operators

cðnÞ ðZðnÞ
j Þ is nonlinear as the eigenvalue Z

ðnÞ
j appears inside the operators. This

will play an important role. Also, the above relations show that the Liouville

operator shares the same eigenvalues with the collision operators. Assuming

bicompleteness in the space PðnÞ, we may always construct a set of states

fh~uðnÞ
j jg biorthogonal to fjuðnÞ

j ig— that is, h~uðnÞ
j juðmÞ

b i ¼ dn;mda;b and
P

j ju
ðnÞ
j i

h~uðnÞ
j j ¼ PðnÞ—and construct a similar relation for the set fh~vðnÞj jg biorthogonal

to fjvðnÞj ig. In general, h~vðnÞj j 6¼ h~uðnÞ
j j (see Ref. 20).

In addition to the collision operator, let us introduce the ‘‘global’’ collision

operator defined by

yðnÞ 

X

j

cðnÞðZðnÞ
j ÞjuðnÞ

j ih~uðnÞ
j j ¼

X
j

juðnÞ
j iZðnÞ

j h~uðnÞ
j j ð29Þ

We also introduce the ‘‘global’’ creation operator CðnÞ and destruction operator

DðnÞ:

CðnÞ 

X

j

CðnÞðZðnÞ
j ÞjuðnÞ

j ih~uðnÞ
j j; DðnÞ 


X
j

jvðnÞj ih~vðnÞj jDðnÞðZðnÞ
j Þ ð30Þ

Then we have

jFðnÞ
j i ¼

ffiffiffiffiffiffiffiffiffi
N

ðnÞ
j

q
ðPðnÞ þ CðnÞÞjuðnÞ

j i; h~FðnÞ
j j ¼ h~vðnÞj jðPðnÞ þ DðnÞÞ

ffiffiffiffiffiffiffiffiffi
N

ðnÞ
j

q
ð31Þ

In our earlier work, we have repeatedly introduced the concept of

‘‘subdynamics’’ [26,27]. The relation of subdynamics to the complex spectral

representation can be seen through the projection operators �ðnÞ defined by

�ðnÞ 

X

j

jFðnÞ
j ih~FðnÞ

j j ¼ ðPðnÞ þ CðnÞÞAðnÞðPðnÞ þ DðnÞÞ ð32Þ

where ‘‘normalization operator’’ is defined by AðnÞ 
 PðnÞð1 þ DðnÞCðnÞÞ�1
,

which gives us N
ðnÞ
j ¼ h~uðnÞ

j jAðnÞjvðnÞj i for the normalization constant. They
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satisfy the orthogonality and completeness relations

L�ðnÞ ¼ �ðnÞL; �ðnÞ�ðmÞ ¼ �ðnÞdn;m;
X
n

�ðnÞ ¼ 1 ð33Þ

�ðnÞ is an extension of PðnÞ to the total Liouvillian L. Because these projection

operators commute with the Liouvillian, each component �ðnÞjri individually

satisfies the Liouville equation. For this reason, the projection operators �ðnÞ are

associated with subdynamics. Then, (22) leads to a Markovian equation, which is

a closed equation for the ‘‘privileged component’’ [i.e., PðnÞrðnÞðtÞ] of each of the

subdynamics rðnÞðtÞ 
 �ðnÞrðtÞ:

i
q
qt

PðnÞjrðnÞðtÞi ¼ yðnÞPðnÞjrðnÞðtÞi ð34Þ

This result is important, since as mentioned any component PðnÞ of the total

rðtÞ ¼
P

n r
ðnÞðtÞ obeys a non-Markovian equation with memory effects. These

effects can now be described by the superposition of Markov processes, that is,

rðtÞ ¼
X
n

e�iLtrð0Þ ¼
X
n

½PðnÞ þ CðnÞ�e�iyðnÞtAðnÞ½PðnÞ þ DðnÞ�rð0Þ ð35Þ

III. APPLICATION TO MODERATELY DENSE GASES

After this short summary we now consider the application of our approach to

moderately dense systems which consist of N hard spheres (d ¼ 3), or hard disks

(d ¼ 2) with the same mass m. We use the ‘‘pseudo-Liouvillian’’ formalism to

take into account the singular nature of the hard-sphere interaction [13] (see also

Ref. 7). We consider situations near equilibrium, then the linearized regime of

the kinetic equations is applicable. In our argument, we follow the standard

hypotheses (see Ref. 13) that (1) the classification of the processes in terms of the

so-called ‘‘ring processes’’ is legitimate, and (2) in evaluation of the transport

coefficients there is a well-defined separation of the hydrodynamic modes from

the contribution of the nonhydrodynamic modes.

Let us consider the reduced one-particle d.f. for the inhomogeneous

component associated to the subdynamics �ðqÞ. This is defined through the

N-particle d.f. by integrating over the velocities of dummy particles, that is,

f
ðqÞ
1 ðv1; tÞ ¼

X
j

f
ðqÞ
j;1 ðv1; tÞ ð36Þ
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where

f
ðqÞ
j;1 ðv1; tÞ 
 VN=2

ð
dv N�1

ð1Þ h1q; v N jPðqÞjFðqÞ
j ih~FðqÞ

j jrðtÞi ð37Þ

and we have introduced a new notation for the state jak; vNi 
 jka ¼
k; kN�1 ¼ 0; vNi. With this reduction the kinetic equation (34) leads to

Markovian equations:

i
q
qt

f
ðqÞ
1 ðv1; tÞ ¼ 	

ðqÞ
1 f

ðqÞ
1 ðv1; tÞ ð38Þ

or

i
q
qt

f
ðqÞ
j;1 ðv1; tÞ ¼ 


ðqÞ
1 ðZðqÞ

j Þ f
ðqÞ
j;1 ðv1; tÞ ð39Þ

for each component associated to the eigenstate of the collision operator, where

the reduced one-particle collision operator for particle a is defined by [c.f. (28)

and (29)]

	ðqÞ
a 


X
j


ðqÞ
a ðZðqÞ

j ÞjrðqÞj ðaÞiihh~rðqÞj ðaÞj ¼
X

j

jrðqÞj ðaÞiiZðqÞ
j hh~rðqÞj ðaÞj ð40Þ

with


ðqÞ
a ðzÞ 
 q � va þ iKðqÞ

a þ d
ðqÞ
a ðzÞ ð41Þ

Here r
ðqÞ
j (a) is an eigenstates of the ‘‘reduced’’ collision operator,


ðqÞ
a ðZðqÞ

j ÞjrðqÞj ðaÞii ¼ Z
ðqÞ
j jrðqÞj ðaÞii ð42Þ

and ~r
ðqÞ
j ðaÞ is its biorthonormal state. The index a in 


ðqÞ
a as well as in r

ðqÞ
j ðaÞ

denotes the label of a paricle in which we are interested. To distinguish the

reduced one-particle states jrðqÞj ðaÞii from the N-particle states juðnÞ
j i, we have

used the double-ket notation for the reduced states.

Corresponding to the three components mentioned in (28), the reduced

collision operator consists of three components: (1) the free flow q � va, (2) the

‘‘linearized collision operator’’ K
ðqÞ
a associated to L0, and (3) the mode–mode

coupling term d
ðqÞ
a ðzÞ associated the last term in (28).

In the thermodynamic limit we have

K
ðqÞ
1 �ðv1Þ ¼

X
k

h1q; b0jK̂1j1k; b0i�ðv1Þ ð43Þ
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where

K̂a ¼ n

ð
dvbtðabÞð1 þ P̂abÞjeqðvbÞ ð44Þ

with

hak; bljtðabÞjap; bqi ¼ T
ðabÞ
k�pd

krðk þ l � p � qÞ ð45Þ

Here jak; bk0 i 
 jka ¼ k; kb ¼ k0; kN�2 ¼ 0i; P̂ab is the exchange operator

[i.e., P̂abf ðva; vbÞ ¼ f ðvb; vaÞ], and jeqðvÞ ¼ ðbm=2pÞd=2
expð�bmv2=2Þ is the

normalized Maxwellian.

For q ¼ 0, Eq. (43) reduces to the well-known linearized Boltzmann collision

operator KB
1 :

KB
1 �ðv1Þ ¼ n

ð
dv2T

ð12Þ
0 ð1 þ P̂12Þjeqðv2Þ�ðv1Þ ð46Þ

The eigenvalue problem of this operator

KB
1 jf

0
j ð1Þii ¼ l0

j jf
0
j ð1Þii ð47Þ

has been studied in several papers (see, for example, Ref. 13). Defining the scalar

product

hhgj f ii 

ð

dvjeqðvÞ
�1

g�ðvÞ f ðvÞ ð48Þ

KB
1 becomes a hermitian operator hhgjKB

1 j f ii� ¼ hh f jKB
1 jgii. In the Hilbert space

defined by this scalar product the spectrum l0
j is discrete and the eigenstates

f0
j ðv1Þ provide a complete and orthogonal basis,

X
j

jf0
j ð1Þiihhf

0
j ð1Þj ¼ 1; hhf0

j ð1Þjf
0
j0 ð1Þii ¼ dj; j0 ð49Þ

where the first one in (49) is a formal expression of the relation
P

j f
0
j ðv1Þ�

f0
j ðv0

1Þ ¼ dðv1 � v0
1Þjeqðv1Þ.

As a working example, we here present the case for d ¼ 2 (see Ref. 13 for

d ¼ 3). The solution of the eigenvalue problem (47) leads to fourth-order

degeneracy for the collisional invariants f0
a that belong to the zero eigenvalue

l0
a ¼ 0 for fag 
 f1; . . . ; 4g (hereafter we shall use the notation fag to indecate

the eigenstates associated with the collisional invariants). They consist of
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jeqðvaÞ multiplied by 1, vax; vay, or v2
a, respectively. In order to specify the

direction in space, we chose x axis toward the direction which is parallel to a

unit vector q̂ of a given wavevector q; that is, vax ¼ q̂ � va. Then the normalized

collisional invariants are given by

f0
aðvaÞ ¼ w0

aðvaÞjeqðvaÞ ð50Þ

where (for i ¼; 2)

w0
i ðvaÞ ¼

1ffiffiffi
2

p � 3ffiffiffiffiffi
17

p � ð�1Þi
ffiffiffiffiffiffiffi
mb

p
q̂ � va þ

2ffiffiffiffiffi
17

p mbv2
a

� �
ð51aÞ

w0
3ðvaÞ ¼

ffiffiffiffiffiffiffi
mb

p
q̂?� va ð51bÞ

w0
4ðvaÞ ¼

1ffiffiffiffiffi
17

p 5 � mbv2
a

2

� �
ð51cÞ

with the unit vector q̂? which is perpendicular to q.

For the remaining spectrum with j 62 fag we have l0
j 6¼ 0, and the minimum

value of the nonvanishing eigenvalue is of order g.

For inhomogeneous systems, the eigenvalue equation of the linearized

Boltzmann collision operator is

ðKB
a � iq � vaÞjfðqÞ

j ðaÞii ¼ lq
j jf

ðqÞ
j ðaÞii ð52Þ

The left-eigenstate belonging to the same eigenvalue is given by hhfð�qÞ
j ðaÞj.

Together with the right-eigenstate, this satisfies bicomplete and biorthonormal

relations [13].

In our calculation we use also the spectral property of the ‘‘Boltzmann–

Lorentz operator’’ KBL
a defined by [13].

KBL
a �ðvaÞ ¼ n

ð
dvbT

ðabÞ
0 jeqðvbÞ�ðvaÞ ð53Þ

as well as its inhomogeneous operator KBL
a � iq � va.

Among the eigenstates jfðqÞ
BL; jðaÞii of KBL

a � iq � va, there is only one

collisional invariant f0
BL;1ðvaÞ ¼ jeqðvaÞ with q ¼ 0, which is just the

Maxwellian: KBL
a jeqðvaÞ ¼ 0.

We now consider the last term in (41). Retaining only two-mode processes,

the operator d
ðqÞ
a in (41) becomes

d
ðqÞ
1 ðzÞ � d
ðqÞ

1 ðz; 2Þ

¼ n�

ð2pÞd

ð
dk

ð
dv2h1q; 20jitð12Þg

ð12Þ
2 ðzÞitðabÞð1 þ P̂12Þjeqðv2Þj1k; 20i

ð54Þ
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where m in d
ðqÞ
1 ðz;mÞ denotes that this is assiciated only to the m-mode

processes. The reduced two-particle propagator is defined by

g
ðabÞ
2 ðzÞ ¼

X1
n¼0

g
ðabÞ
2R ðzÞ½ið2pÞ�d

tðabÞg
ðabÞ
2R ðzÞ�n

¼ 1

z � L
ðabÞ
0 � iK̂a � iK̂b � ið2pÞ�d

tðabÞ
ð55Þ

while the ‘‘ring’’ propagator is defined by

g
ðabÞ
2R ðzÞ ¼ 1

z � L
ðabÞ
0 � iK̂a � iK̂b

ð56Þ

where L
ðab...cÞ
0 
 L

ðaÞ
0 þ L

ðbÞ
0 þ � � � þ L

ðcÞ
0 .

The propagator has to be evaluated as an analytic continued function from

the upper half-plane of z. To obtain (54) we have approximated the N-particle

propagator Gn
Q in (28) by retaining only the binary correlation subspace, that is,

Gn
Q � G2 
 Pð2Þ½z � Pð2ÞLPð2Þ��1 ð57Þ

Let us separate the contribution of (54) coming from the first term g
ðabÞ
2R in

the expansion in (55) by writing d
ðqÞ
1 ðz; 2Þ ¼ d
ðqÞ

1 ðz; 2RÞ þ d
ðqÞ
1 ðz; 2R0Þ,

where d
ðqÞ
1 ðz; 2RÞ is the operator obtained by replacing g

ðabÞ
2 by g

ðabÞ
2R in (54),

while d
ðqÞ
1 ðz; 2R0Þ corresponds to the remaining part of the expansion in (55).

The operator d
ðqÞ
1 ðz; 2RÞ is well known [13]. For z ¼ E ! þi0 it

corresponds to the so-called ‘‘ring operator.’’ This operator corresponds to a

process in which an arbitrary number of collisions occur with particles in the

medium during the two-mode coupling.

Before investigating the eigenvalue problem of the reduced collision operator

for the inhomogeneous component 

ðqÞ
1 , let us first discuss a simpler case of the

homogeneous component with q ¼ 0. The derivation of the kinetic equation for

the dressed one-particle velocity distribution function jð0Þ
j ðv1; tÞ associated with

the vacuum-of-correlation subspace near equilibrium is quite parallel to the one

presented above. The resultant equation has the same structure as (39) except

that the inhomogeneous component f
ðqÞ
j;1 ðv1; tÞ is replaced by jð0Þ

j ðv1; tÞ, and the

collision operator 

ðqÞ
1 ðZðqÞ

j Þ is replaced by the one evaluated at q ¼ 0 in (41),

that is,

jð0Þ
j ðv1; tÞ ¼ VN=2

ð
dvN�1

ð1Þ h10; vN jPð0ÞjFð0Þ
j ih~Fð0Þ

j jrðtÞi ð58Þ
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with

i
q
qt
jð0Þ

j ðv1; tÞ ¼ 

ð0Þ
1 ðZð0Þ

j Þjð0Þ
j ðv1; tÞ ð59Þ

where



ð0Þ
1 ðZð0Þ

j Þ ¼ iKB
1 þ d
ð0Þ

1 ðZð0Þ
j Þ ð60Þ

It is interesting to compare this equation to the traditional kinetic equation of

the ordinary distribution function. Then the ring operator is considered in the

literature as the asymptotic form of the formal kinetic equation obtained by the

reduction of the generalized Master equation (1) using the so-called

‘‘Markovian approximation.’’ In (1) the symbol ‘‘�’’ denotes the ‘‘inverse

Laplace transformation’’ of the operators defined in (28) with n ¼ 0. In the

Markovian approximation, one replaces rðt � t0) by rðtÞ and drops the term

with ~Dð0ÞðtÞ neglecting the memory effect. Moreover, taking the asymptotic

limit of the upper bound of time integration to þ1 in (1) with an oprimistic

assumption that the asymptotic limit exists, we obtain indeed a Markovian

equation:

i
q
qt

Pð0ÞrðtÞ ¼ lim
E!0þ

cð0ÞðþiEÞPð0ÞrðtÞ ð61Þ

From now on, E denotes a positive infinitesimal E ! 0þ, and we shall not

explicitly write the ‘‘limit’’ notation. We reduce this Markovian equation to the

one-particle velocity distribution function jðv1Þ by taking integration over

dummy variables. Then, using the linear approximation near equilibrium, we

obtain the formal kinetic equation [13]:

i
q
qt
jðv1; tÞ ¼ ½iKB

1 þ d
ð0Þ
1 ðþiEÞ�jðv1; tÞ ð62Þ

where jðv1; tÞ is the bare distribution function defined in (3).

In contrast, in our approach for the dressed state the argument of the collision

operator z ¼ þiE is replaced by a finite value of z ¼ Z
ð0Þ
j 
 �ixð0Þj . This is a

consequence of the nonlinearity of the eigenvalue problem [see (42)]. For the

relaxing modes with xð0Þj 6¼ 0 the order of its magnitude is given by xð0Þj � g.

The physical meaning of our operator d
ð0Þ
1 ðZð0Þ

j Þ is that the collision process

takes in place in an ‘‘absorbing medium.’’

Approximating d
ð0Þ
1 ðzÞ by d
ð0Þ

1 ðz; 2RÞ by retaining the two-mode

processes, we obtain the ‘‘ring approximation’’ of the collision operator for

moderately dense systems. The difference between our operator for the dressed

distribution function and the traditional ring operator for the ordinary
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distribution function in (62) is essential, because our operator is finite while the

ring operator as defined traditionally diverges for d ¼ 2. To see this, let us

decompose the ring operator into two parts: d
ð0Þ
1 ðz; 2RÞ ¼ d�
ð0Þ

1 ðz; 2RÞ þ Rnh,

where the overbar on the operator denotes the contribution from the hydro-

dynamic modes with jkj < k0 in the integration in (54), while Rnh denotes the

contribution from the remaining nonhydrodynamic modes. Moreover, we shall

approximate T
ð12Þ
p by T

ð12Þ
0 in (54), so that K̂a for a ¼ 1 and 2 in the ring

propagator (56) is approximated by KB
a .2

It is well known that the diffusion modes [i.e., the share modes and heat

modes associated with a ¼ 3 and 4 in (50)] leads to the divergence of the

traditional ring operator [13]. Hence we focus here the contribution from these

modes to our collision operator. The integration over the diffusion modes in (54)

leads to a contribution of the order

d�
ð0Þ
1 ðZð0Þ

j ; 2RÞ � in
g
n


 �2
ðk0

0

dk
kd�1

k2DB
a þ xð0Þj

ð63Þ

where we have approximated tð12Þ � T
ð12Þ
0 � g=n and substituted Z

ð0Þ
j ¼ �ixð0Þj

into z, as well as k2DB
a into �ik � v12 þ KB

1 þ KB
2 in the denominator of (56). The

angle integration is neglected as it is irrelevant to the order of magnitude

estimation (see Ref. 13, for instance). For xð0Þj � g this integral is finite for all

dimensions. For three dimensions this is well known. But (63) is finite even for

d ¼ 2. Indeed, by substituing the order estimate of the Boltzmann diffusion

constant as DB
a � D 
 hvi=k0 into (63), we obtain d�
ð0Þ

1 ðZð0Þ
j ; 2RÞ � ign0 ln 2;

for d ¼ 2.

It is well known that the nonhydrodynamic part of the ring diagram gives a

finite correction to the linearized Boltzmann collision operator (see Refs. 1, 13,

and 16). Therefore, our Markovian kinetic equation for the dressed distribution

function exists for all dimensions. This is in contrast to (62) for the ordinary

distribution function, because (63) is a diverging integral for d ¼ 2 if xð0Þj is

replaced by the infinitesimal E. This conclusion agrees with intuition. Two-

dimensional systems approach equilibrium, but non-Markovian effects play

there a more important role as in three-dimensional systems.

We now consider the more complicated case of the inhomogeneous

component 

ðqÞ
1 . For this case the eigenvalue equation for the right eigenstate

is given by


ðqÞ
a ðZðqÞ

j ÞjrðqÞj ðaÞii ¼ Z
ðqÞ
j jrðqÞj ðaÞii ð64Þ

2 In this chapter we shall not discuss the effect of the size of hard spheres for bulk viscosity (see

Refs. 13 and 28).
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In the hydrodynamic case with jqj < k0 for d ¼ 3, this equation reduces to

the same eigenvalue equation as introduced by Ernst and Dorfman to discuss the

nonanalytic dispersion relations in classic fluids [3]. They have shown that the

eigenvalue contains the nonanalytic term of order q5=2 term for 3d systems. Later

these calculations have been extended to the 2d case [12]. Because these

calculations have been already presented in detail in their papers, we shall not

repeat them. The reader should consult the original papers. Here, we display only

the main results. For d ¼ 2 the q dependence of the eigenvalues that vanish in the

limit q ! 0 are given by

xðqÞa ¼ �iqc0sa � q2D0
a þ q2�a ln

q

k0

� �
ð65Þ

where c0, D0
a, and �a are positive constants that are independent of q. Their

explicit forms are not important here. The sound velocity c0 and the diffusion

constants D0
a include correction terms due to the ring process. These corrections

are small for small n0.

The last term in Eq. (65) is also the correction due to the ring process.

This correction is nonanalytic at q ¼ 0. We have the estimate �a=D0
a � n0

for small n0. For moderately dense systems the diffusion term dominates for

a wide domain of q. Only for extremely small values of q satisfying

q=k0 < expð�1=n0Þ, the nonanalytic term becomes larger than the diffusion

term.

The results obtained in this section are interesting, because one can now

define transport coefficients through the Markovian kinetic equation for the

dressed distribution function for arbitrary dimensional systems. We should

emphasize that the coefficients c0, D0
a, and �a in (65) are defined only for the

distribution function of the collective modes which is a functional of the original

distribution function. This is in contrast to the markovianization of the kinetic

equation (62) for the ordinary distribution functions, as it leads to diverging

transport coefficients for d ¼ 2.

As a final part of the subject discussed in this section, let us comment on the

relation between the kinetic equation (59) for the vacuum component discussed

and (39) for the inhomogeneous component. Simply by substituting q ¼ 0 into

Eq. (39) we obtain the same structure of the equation as (59). However, a care

has to be taken to consider their relation. Indeed, as mentioned in Section II

the essential reason why we obtain the irreversible kinetic equations in the

Hamiltonian system is that the distribution functions which we consider are

distributions with the delta-function singularities in the Fourier representation,

and they do not belong to the Hilbert space [see the discussion after (20)]. As a

result of this singularity, the inhomogeneous component f
ðqÞ
j;1 ðv1; tÞ with q ¼ 0

is not equal to jð0Þ
j ðv1; tÞ (cf. (21) and the volume factor in the expression).
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Therefore, it should not be astonished to find the logarithmic singularity � ln q

for d ¼ 2 in the collision operator 

ðqÞ
1 for the inhomogeneous component at

q ¼ 0, in spite of the fact that the collision operator 

ð0Þ
1 for the vacuum

component is always well-defined. The logarithmic singularity is so weak that

the coordinate representation of the kinetic equation for the inhomogeneous

component is still well-defined.

IV. VELOCITY AUTOCORRELATION FUNCTION

In the previous section we studied only the evolution of the dressed distribution

functions associated to Pð0Þ�ð0Þ or to Pð1Þ�ð1Þ. However, the tools introduced in

this chapter enable us to study more general problems such as the time evolution

of original distribution functions [see (3)] as well as autocorrelation functions.

This involves all subdynamics �ðnÞ. For this situation the distinction of the

original distribution functions from the dressed distribution functions is not

negligible, and our nonequiliburium renormalization effects become important.

As we shall show now the incorporation of the effects of all subdynamics �ðnÞ in

the autocorrelation functions (6) introduces, as in the renormalization group, the

critical dimension d ¼ 4. It is for d > 4 that the usual Green–Kubo formalism is

valid, while for d < 4 memory effects decay too slowly. This conclusion clashes

with the traditional point of view that leads to a critical dimension d ¼ 2, and it

deserves a detailed discussion of the long-time tail effects, which will be

presented in the subsequent sections.

Let us first illustrate the calculation of a contribution in the simplest ‘‘ring

process’’ for binary correlation subspace jFð2Þ
j ih~Fð2Þ

j j which is in the �ð2Þ

subspace in (32). In this subspace the time evolution takes place in Pðk;�kÞ

subspace, while the initial condition of djðv1; 0Þ and the observable v1;x are

both in the vacuum-of-correlation subspace Pð0Þ. Hence we have

�ð2ÞðtÞ ¼
ð

dvNv1;xh0; vN jPð0ÞCð2ÞðZð2Þ
j ÞPð2Þ

� exp½�icð2ÞðZð2Þ
j Þt�Að2ÞPð2ÞDð2ÞðZð2Þ

j ÞPð0Þjreq
N iv1;x ð66Þ

The contribution consists of three parts: (i) the transition Pð0ÞCð2ÞðzÞPð2Þ, (ii) the

time evolution exp½�icð2ÞðzÞt�Að2Þ in the intermediate Pð2Þ�ð2ÞPð2Þ subspace, and

(iii) the transition Pð2ÞDð2ÞðzÞPð0Þ.
To write an explicit form of the contribution in (66), it is convenient to

represent the vertices lL0
ab and the propagators ðz � L0Þ�1

by the Prigogine–

Balescu diagram technique [19]. We first consider a process represented by the

ring diagram shown in Fig. 1. In Fig. 1 the renormalized propagator is defined

by the summation of the diagrams shown in Fig. 2. The left-hand part the vertex
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at left in Fig. 1 corresponds to the transition (i) mentioned above, the

intermediate two lines correspond to the process (ii), and the right-hand part of

the vertex at right in Fig. 1 corresponds to the transition (iii), respectively.

After the reduction by performing the integrations over the dummy variables

for the particles in the medium, we obtain the contribution corresponding to Cð2Þ

given by

Pð0ÞCð2ÞðZð2Þ
j ÞPð2Þ :) n

�ixðk;�kÞ
j � iKBL

1

h10; 20jitð12Þj1k; 2�ki ð67Þ

where xðk;�kÞ
j ¼ iZ

ðk;�kÞ
j and the symbol ‘‘:)’’ denotes the correspondence

between the N-particle operator and its reduced expression. Similarly for Dð2Þ we

Figure 1. The ring diagram corresponding to (66) as well as to (71) in the binary correlation

subspace, where the renormalized lines are defined in Fig. 2.

Figure 2. Renormalized lines. For the hard-core interaction we have added the new vertex [the

first term in this diagram in (d)] in addition to the Prigogine–Balescu diagram.
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have the correspondence

Pð2ÞDð2ÞðZð2Þ
j ÞPð0Þv1;xr

eq
N :) 1

ð2pÞd
h1k; 2kjitð12Þj10; 20i

� Pð2Þ 1

�ixðk;�kÞ
j � iKBL

1

v1;xjeqðv2Þ ð68Þ

The generator of the motion in the �ð2Þ subspace is given by the reduced

collision operator


ðk;�kÞðZðk;�kÞ
j Þ ¼ k � v12 þ iKBL

1 þ iKB
2 þ d
ðk;�kÞðZðk;�kÞ

j Þ ð69Þ

where v12 
 v1 � v2. In the process corresponding to the graph in Fig. 1, the last

term d
ðk;�kÞðzÞ in the collision operator is neglected. This approximation

corresponds to the so-called the ‘‘ring approximation’’ which is valid for

moderately dense gases [13]. Moreover, we approximate the ‘‘renormalization

operator’’ Að2Þ by Pð2Þ in the intermediate part (ii), since the difference Pð2Þ from

Að2Þ leads to a higher-order correction in n0, which is small in the moderately

dense gas. Then we have the time evolution corresponding to

e�icð2ÞðZð2Þ
j

ÞtAð2Þ :)Pð2Þexp½ð�ik � v12 þ KBL
1 þ KB

2 Þt�Pð2Þ

¼
X
j; j0

jfð�kÞ
BL; j ð1Þf

ðkÞ
j0 ð2Þiiexp½ðlk

BL; jþl�k
j0 Þt�hhfðkÞ

BL; jð1Þf
ð�kÞ
j0 ð2Þj

ð70Þ

where jfðkÞ
j ð2Þii is an eigenstate of the inhomogeneous linearized Boltzmann

operator �ik � v2 þ KB
2 with an eigenvalue lk

j , while jfðkÞ
BL;jð1Þii is an eigenstate

of the inhomogeneous linearized Boltzmann–Lorentz operator �ik � v1 þ KBL
1

with an eigenvalue lk
BL;j: see (52).

It is well known that the long-time tail effects in the autocorrelation come

from the diffusion mode in the hydrodynamic modes with the small

intermediate wavevector k � k0 (see [6] for instance). For these modes we

have xðk;�kÞ
a � k2D with D ¼ hvi=k0. On the other hand, the nonvanishing

eigenvalues of KBL
1 are of order g ¼ k0hvi. Hence, we may neglect xðk;�kÞ

a in the

denominator in (67) and in (68) as compared with the eigenvalues of KBL
1 .

Furthermore, because we are interested in the contribution from the small value

of the wavevector, we may approximate T
ð12Þ
k � T

ð12Þ
0 as before in Section III.

Combining (67), (68), and (70) with these approximations, we have the
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dominant contribution of the slowest decaying contribution in this subspace as

follows:

�̂ð2ÞðtÞ � nmb

ð2pÞd

X
j2fag

ð
k< k0

dk

ð
dv1 dv2v1;x

1

KBL
1

T
ð12Þ
0 fð�kÞ

BL;1 ðv1ÞfðkÞ
j ðv2Þ

� eðl
k
BL;1þl�k

j Þt
ð

dv0
1 dv0

2jeqðv01Þ
�1jeqðv02Þ

�1fðkÞ
BL;1ðv0

1Þfð�kÞ
j ðv0

2Þ

� T
ð12Þ
0

1

KBL
1

v01;xjeqðv01Þjeqðv02Þ

¼ nmb

ð2pÞd

X
j2fag

ð
k< k0

dkjmj
kj

2
eðl

k
BL;1þl�k

j Þt ðfor t � tr ¼ g�1Þ

ð71Þ

where

mj
k ¼

ð
dv1 dv2v1;x

1

KBL
1

T
ð12Þ
0 fð�kÞ

BL;1 ðv1ÞfðkÞ
j ðv2Þ ð72Þ

and the hat on �̂ðnÞðtÞ denotes that the contribution coming from the processes

where all intermediate states are restricted only to the hydrodynamic modes. The

last expression is the same one obtained by Résibois and de Leener [13]. This

leads to the well-known asymptotic expression of the long-time tail effect � td=2.

In the following sections we shall estimate the contributions from higher-

mode processes. However, as it is easy to expect, the complexity of the

calculation rapidly increases when the degree of correlations increases. Hence

we shall present only order-of-magnitude estimations of their contributions. To

this end, let us first reevaluate the order estimation of the above result. As we

shall see, the following estimation gives a straightforward extention to higher-

order correlations.

We note that v1;x is not a collisional invariant of KBL;1. This implies that

v1;x ¼ v1;xQBL
0h ð73Þ

where QBL
0h 
 1 � PBL

0h with PBL
0h ¼ jfð0Þ

BL;1ð1Þiihhf
ð0Þ
BL;1ð1Þj. Similarly, we intro-

duce QBL
h 
 1 � PBL

h and QB
h 
 1 � PB

h for p 6¼ 0 with

PBL
h ð1Þ ¼ jfðpÞ

BL;1ð1Þiihhf
ð�pÞ
BL;1 ð1Þj; PB

h ðbÞ ¼
X
j2fag

jfðpÞ
j ðbÞiihhfð�pÞ

j ðbÞj

ð74Þ

where PBL
h ð1Þ and PB

h ðbÞ are projection operators for the hydrodynamic modes.
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Using these projection operators, we can write the essential part of (71) as

�̂ð2ÞðtÞ � n

hvi2

ð
dk

ð
dv1 dv2v1;x

1

g
QBL

0h T
ð12Þ
0 PBL

h ð1ÞPB
h ð2Þf

ð�kÞ
BL;1 ðv1ÞfðkÞ

a ðv2Þe�k2Dt

�
ð

dv0
1 dv0

2f
ðkÞ
BL;1ðv0

1Þfð�kÞ
a ðv0

2ÞPBL
h ð1ÞPB

h ð2ÞT
ð12Þ
0

1

g
QBL

0h v01;x ð75Þ

where we have replaced KBL
1 by g and lk

BL;1 þ l�k
j by �k2D.

Because KBL
1 � nT

ð12Þ
0 , the order of magnitude of the transition T

ð12Þ
0 between

hydrodynamic modes and the nonhydrodynamic mode is given by QBL
0h T

ð12Þ
0

PBL
h ð1ÞPB

h ð2Þ � PBL
h ð1ÞPB

h ð2ÞT
ð12Þ
0 QBL

0h � g=n. With obvious notations we may

abbreviate this relation by

QhT
ð12Þ
0 Ph � PhT

ð12Þ
0 Qh � g

n
ð76Þ

We substitute this estimation into (75), and then approximate the eigenstate

fðpÞ
BL;1ðv1Þ by its lowest order contribution f0

BL;1ðv1Þ ¼ jeqðv1Þ and fðqÞðv2Þ by

f0
aðv2Þ, respectively, in the expansion in the series of p. Moreover, we introduce

the dimensionless wave vector measured by the unit of the inverse of the

mean free length y ¼ lmk ¼ k=k0. Using the explicit form of f0
aðv2Þ presented

in (50) and (51a)–(51c), we finally obtain the order of magnitude estimation

of (75),

�̂ð2ÞðtÞ � 1

n

ð
dk e�k2Dt � kd

0

n

ð
dy e�y2t � g

td=2
ð77Þ

where we have used the fact that the integration over the velocities in (75) leads

to hvi2
with a numerical factor of order one, and we have changed the dummy

variable as x ¼ y
ffiffiffi
t

p
to get the last estimation. This is consistent with the

asymptotic time dependence of (71).

V. TERNARY CORRELATION SUBSPACE

Next we shall estimate the contribution from the ternary correlation subspace

jFð3Þ
a ih~Fð3Þ

a j for the graph shown in Fig. 3. Renormalizing again the denominator

with the linearized Boltzmann operator as in (67) and (68), we have a
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contribution from the hydrodynamic modes:

�̂ð3ÞðtÞ � n2

ð
dk

ð
dk0 1

xð3Þa þ KBL
1

Qhh10; 20jtð12Þj1k; 2�kiPh

� 1

xð3Þa � ik � v12 þ KBL
1 þ KB

2

Phh1k; 30jtð13Þj1k�k0 ; 3k0 iPh

� exp½ð�iðk � k0Þ � v1 þ KBL
1 þ ik � v2 þ KB

2 � ik0 � v3 þ KB
3 Þt�

� Phh1k�k0 ; 3k0 jtð13Þj1k; 30iPh

1

xð3Þa � ik � v12 þ KBL
1 þ KB

2

� Phh1k; 2�kjtð12Þj10; 20iQh

1

xð3Þa þ KBL
1

ð78Þ

where we have abbreviated the velocity integration part. We have for the

diffusion modes xð3Þa � ðk2 þ k02ÞD. Hence, we can again neglect xð3Þa in the first

and last denominators as in (66); that is, ðxð3Þa þ KBL
1 Þ�1 � 1=KBL

1 � n=g.

In contrast, we cannot neglect xð3Þa in the denominators of the intermediate

states, since eigenvalues of the linearized collision operators �ik � v1 þ KBL
1 and

Figure 3. The ring diagram corresponding to (78) in the ternary correlation subspace. Here and

in the following figures we abbreviate the renormalized lines of type (a) in Fig. 2 in the Pð0Þ subspace

in both ends indicated by Qh.
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�ik � va þ KB
a are of the same order � k2D. As a result, the intermediate

denominators lead to the ‘‘infrared’’ singularity at k ¼ k0 ¼ 0.

In (78) there appears a new type of transitions which does not exist in (75)—

that is, a type of transitions between the hydrodynamic modes PhT
ð13Þ
k0 Ph such as

Phh1k; 30jtð13Þj1k�k0 ; 3k0 iPh � hhfðkÞ
BL;1ð1Þjeqð3ÞjT

ð13Þ
k0 jfðk�k0Þ

BL;1 ð1Þfðk0Þ
m ð3Þii ð79Þ

for the hydrodynamic modes m 2 fag. These transitions vanish in the limit

k ! 0 and k 0 ! 0. Hence, by a dimensional analysis the order of magnitude of

this type of transitions is given by (e.g., for k � k0 < k0)

PhT
ð13Þ
k0 Ph � k0

k0

g
n

ð80Þ

This compensates the infrared singularities.

Substituting (76), (80), and the above-mentioned estimation for xð3Þa into (78)

and again replacing the linearized collision operators in the time-dependent part

by their eigenvalues, we have an estimation as

�̂ð3ÞðtÞ � n2

ð
dk

ð
dk0 1

g

� �2 g
n


 �2 k0

k0

g
n

� �2
1

ðk2 þ k02ÞD

� �2

e�ðk2þk02ÞDt

¼ 1

n2

ð
dk

ð
dk0 k0

k0

� �2
k2

0

k2 þ k02

� �2

e�ðk2þk02ÞDt

� g2tðt�d=2Þ2 ð81Þ

Dividing the estimation (81) by (77), we obtain gtð2�dÞ=2. Hence, the critical

dimension for this ratio is d ¼ 2. Equation (81) decays quicker than (77) for

d > 2.

The estimation (81) is easily extended to higher-order correlations such as

the contribution from the jFðnÞ
a ih~FðnÞ

a j subspace for the graph shown in Fig. 4.

Then we obtain the same critical dimension d ¼ 2, as far as we restrict the

intermediate states only to hydrodynamic modes.

However, this type of contribution is not the slowest decaying process. In the

next section we shall show that the incorporation of nonhydrodynamic modes in

intermediate vertices leads to slower decaying processes.

VI. RENORMALIZATION OF VERTICES

Let us now estimate the jFð3Þ
a ih~Fð3Þ

a j subdynamics contribution of the process

shown in Fig. 5. We estimate the contibution where the intermediate states
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Figure 4. A ring diagram in the nth order correlation subspace with intermediate states

restricted only in the hydrodynamic modes.

Figure 5. The ring diagram corresponding to (85) in the ternary correlation subspace. The

arrows indicate the location of the intermediate rlaxing modes.
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indicated by the arrows in the graph are restricted to nonhydrodynamic modes

(i.e., the relaxing modes), while all other intermediate states are in hydrodynamic

modes. Corresponding to (78), we have

���
ð3ÞðtÞ � n2

ð
dk

ð
dk0 1

xð3Þa þ KBL
1

Qhh10; 20jtð12Þj1k; 2�kiPh

� 1

xð3Þa � ik � v12 þ KBL
1 þ KB

2

PhT
ð13Þ
1 ðk; k0ÞPh

� exp½ð�iðk � k0Þ � v1 þ KBL
1 þ ik � v2 þ KB

2 � ik0 � v3 þ KB
3 Þt�

� PhT
ð13Þ
2 ðk0; kÞPh

1

xð3Þa � ik � v12 þ KBL
1 þ KB

2

� Phh1k; 2�kjtð12Þj10; 20iQh

1

xð3Þa þ KBL
1

ð82Þ

where the double overbar on ���
ð3ÞðtÞ denotes that the contribution coming from

the processes which we are looking at. Here, the transition PhT
ð13Þ
1 ðk; k0ÞPh in

(82) is corresponding to the portion indicated by the arrow on the left-hand side

in Fig. 5 and is defined by

PhT
ð13Þ
1 ðk; k0ÞPh 


ð
dPPhh1k; 30jtð13Þj1k�p; 3piQh

� 1

�iðk � pÞ � v1 þ KBL
1 þ ik � v2 þ KB

2 � ip � v3 þ KB
3

� Qhh1k�p; 3pjtð13Þj1k�k0 ; 3k0 iPh ð83Þ

where the intermediate propagator is restricted in the nonhydrodynamic modes.

Similarly, the transition PhT
ð13Þ
2 ðk0; kÞPh in (82) corresponds to the portion

indicated by the arrow on the right-hand side in Fig. 5 with the nonhydrodynamic

intermediate states.

The matrix elements of the transition tð13Þ between Ph and Qh or between Qh

and Ph in (83) do not vanish at k ¼ k0 ¼ 0 [cf. (76); this is also the case for the

transition between Qh and Qh]. Hence the infrared singularities in the

propagator are not compensated by this type of transition. This is in contrast

to the transition between Ph and Ph which vanishes at the vanishing wavevectors

[see (80)]. As we shall see, this difference is essential to understand the origin of

the slower decay process than (78).

Moreover, we note that the eigenvalues of the linearized collision operators

in the denominator in (83) is bounded from below by a positive constant of

order g for the relaxing modes in Qh subspace. Hence, these denominators have
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no singularity at k ¼ 0. Combining this with the property of the matrix elements

of tð13Þ mentioned above, we may estimate the order of magnitude of the

transitions in (83) by the aid of the dimensional analysis as [cf. (76)]

lim
k;k0!0

PhT
ð13Þ
1 ðk; k0ÞPh �

ð
dPPhT ð13Þ

p Qh
1

g
QhT ð13Þ

�p Ph � kd
0

g
n

1

g
g
n

ð84Þ

where the factor kd
0 comes from the integration over p by measuring the

wavevector with its intrinsic unit k0 of the system as p ¼ k0y, as before. We have

the same esitimation for PhT
ð13Þ
2 ðk0; kÞPh in (82).

To find the order of magnitude estimation of (82), we note a similar structure

of (82) to (78). Hence, if we replace ðk0=k0Þðg=nÞ in (81) by kd
0g=n2, we have the

estimation of (82). This gives us

���
ð3ÞðtÞ � n2

ð
dk

ð
dk0 1

g

� �2 g
n


 �2 kd
0g
n2

� �2
1

ðk2 þ k02ÞD

� �2

e�ðk2þk02ÞDt

� g4t2ðt�d=2Þ2 ð85Þ

It is remarkable that (85) is a slower decaying process than (81).

One can improve the estimate by introducing renormalized vertex ~T ðabÞ

shown in Fig. 6, where all intermediate states are restricted to Qh subspace as

shown in Fig. 7. The order of magnitudes are estimated as [for g < 1; see (11)]

Ph
~TðabÞQh � PhT ðabÞ

p 1 þ
ð

dq
1

g
QhT ðabÞ

q�p þ
ð

dqdq0 1

g
QhT ðabÞ

q�p

1

g
QhT

ðabÞ
q0�q þ � � �

� 
Qh

� g
n
ð1 þ g þ g2 þ � � �Þ ¼ g

n

1

1 � g
ð86Þ

Figure 6. (a) The ring diagram with the renormalized vertices in the binary correlation

subspace (c.f. Fig. 1). (b) The ring diagram with the renormalized vertices in the ternary correlation

subspace (c.f. Fig. 3).
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where we have used an estimation
Ð

dp0QhT
ðabÞ
p0 Qh � kd

0g=n. Similarly, we have

Qh
~T ðabÞPh � g

n

1

1 � g
; Ph

~T ðabÞPh � g
n

g

1 � g
ð87Þ

With these renormalized vertices, we can estimate the processes (a) and (b)

shown in Fig. 6. For the jFð2Þ
a ih~Fð2Þ

a j subdynamics contribution of (a), we have

��ð2ÞðtÞ � 1

n

1

1 � g

� �2ð
dke�k2Dt � gt�d=2

ð1 � gÞ2
ð88Þ

while for jFð3Þ
a ih~Fð3Þ

a j subdynamics contribution of (b)

��ð3ÞðtÞ � 1

n2

1

1 � g

� �2
g

1 � g

� �2ð
dk

ð
dk0 k2

0

k2 þ k02

� �2

e�ðk2 þ k02ÞDt � g4t2�d

ð1 � gÞ4

ð89Þ

where the overbar in ��ðnÞðtÞ denotes the slowest decaying power law

contributions with the renormalized vertices in �ðnÞðtÞ.
Dividing the estimate (89) by (88), the ratio is given by gtð4�dÞ=2. Hence, the

critical dimension for this ratio is d ¼ 4, instead of d ¼ 2. Equation (89) decays

quicker than (88) for d > 4.

This result can be also obtained by comparing the first expression in (88) to

(89). Indeed, (89) contains an additional factor to (88) for n ¼ 3 as

��ðnÞðtÞ
��ðn�1ÞðtÞ �

1

n

g

1 � g

� �2ð
dk0 k2

0

k2 þ k02

� �2

e�k02Dt � g
g

1 � g

� �2

tð4�dÞ=2 ð90Þ

We can repeat the same order of magnitude estimation of the contribution

from the jFðnÞ
a ih~FðnÞ

a j subspace for the same type of graphs shown in Fig. 5,

except that each vertex is replaced by the renormalized vertex. Then we obtain

the same ratio as (90) for arbitrary n � 3.

For any n one can easily extend the above order of magunitude estimation to

an arbitrary graph. The result is summarized as follows: We first count the

number of lines in each intermediate state. The slowest decaying processes are

Figure 7. Renormalized vertex where all intermediate states are restricted in the relaxing

modes.
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given by the processes in which the number of intermediate line m increases by

1 (starting with m ¼ 0) by every succesive renomarized vertex, and reaches to

the maximum value m ¼ n, then decreases by 1 until m ¼ 0. An example of the

diagram is obtained by replacing all vertices in Fig. 5 by renormalized vertices.

Then, the contribution in jFðnÞ
a ih~FðnÞ

a j subspace is obtained by iterative use of

(90) starting with n ¼ 3. This leads finally our main result (10).

VII. DISCUSSIONS AND CONCLUDING REMARKS

It is well known that the basic quantities in statistical mechanics are reduced

distribution functions such as (3). However, it is now well understood that

outside equilibrium they have a complicated time dependence including memory

effects [see (1)]. It is therefore quite remarkable that there exist collective,

dressed, reduced distribution functions, such as f
ðqÞ
1 ðv1; tÞ in (27), which satisfy

Markovian equation in each �ðnÞ space.

In this chapter we studied only the evolution of the dressed distribution

functions associated with Pð0Þ�ð0Þ or with Pð1Þ�ð1Þ. However, our complex

spectral representetion of the Liouvillian permitted us to study more general

problems such as the auto-correlation function. This involved all subdynamics

�ðnÞ. For this situation the distinction of the original distribution functions from

the dressed distribution functions was not negligible, and our nonequiliburium

renormalization effects became important. We then derived the long-time

estimation (10) for the the autocorrelation function. We can deduce several

interesting conclusions from this result.

There is a critical dimension at d ¼ 4, as in the renormalization group.

Higher-order correlations lead to quicker decay process for d > 4, while they

lead to slower decay process for d < 4. For d < 4, the infrared singularity at

k ¼ 0 is so strong that Green–Kubo’s formula for the transport coefficients such

as (8) diverges.

For d < 4, higher-order correlations lead to a diverging contribution of the

summation (9) for large time, so that there is an upper limit of the time scale

t ¼ t0 where (10) is applicable for times t < t0. Beyond the limit the

estimation based on the ring processes is likely to be invalid. The value of t0 can

be found by putting the ratio (90) equal to one. Then we have

t0 ¼ ð1 � gÞ2

g3

" #2=ð4�dÞ

ð91Þ

For n0 ¼ 10�1, they give us

t0 � 103 for d ¼ 2

1012 for d ¼ 3

�
ð92Þ
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while for a dense case such as n0 ¼ 0:5, we obtain

t0 � 2 for d ¼ 2

1:3 � 103 for d ¼ 3

�
ð93Þ

For t � t0, our estimation (11) leads to ��ðtÞ � t�d=2 from the binary

correlation subspace n ¼ 2, which is consistent to the numerical simulations [2].

In order to determine whether if the correction ��ð3ÞðtÞ due to the ternary

correlation accelerates or decelerates the decay of the autocorrelation function

during this time scale, we need more careful estimation of ��ð3ÞðtÞ including the

determination of the sign of this contribution by performing the integration over

the angles. We intend to present such a detailed calculation elsewhere.

For d ! 1, the long-time tail effects vanish, and Green–Kubo’s formula is

governed by a Markovian kinetic evolution of djð0Þðv1; tÞ with the exponential

decay in a single subspace �ð0Þ.
In contrast to our conclusion of the critical dimension as d ¼ 4, the

phenomenological approach based on hydrodynamic equations has led to

the critical dimension d ¼ 2 (see Ref. 6 and the papers cited therein). Because

the new type of the slower decaying processes discussed in this chapter is

associated with the intermediate nonhydrodynamic processes in the vertices, it

is clear why the phenomenological approach based only on hydrodynamic

equations fails to predict these slower processes.

Let us conclude with some general remarks. The traditional approach of the

kinetic theory based on the BBGKY hierarchy relays upon a truncation of the

hierarchy at a certain order of correlations. Because the higher-order

correlations become more important for asymptotic times and for d < 4, this

truncation is incorrect.

The long-time tail effects described by (10) invalidate the Green–Kubo

formalism for d < 4. This was well known for d ¼ 2, but it is also true for

d ¼ 3 because there are contributions of t�1; t�1=2; . . . coming from multiple

mode–mode couplings. Still the linear response formalism remains a valuable

tool when used for times where the Markovian approximation to transport

theory is valid [29]. Also, it is rigorous for d ! 1. There is an amusing analogy

with the mean field approach in equilibrium statistical mechanics.

In conclusion, our approach based on the spectral decomposition of the

Liouville operator which avoids carefully nondynamical assumptions appears to

be of special interest when going beyond the limit of dilute gases.
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I. TWO KINETIC PHASES EMBEDDED IN THE CLUSTER

An equilibrium cluster is described by the ergodic measure mðxÞ defined in the

one-particle phase space x,

mðxÞ ¼ hrimcðxÞ þ ð1 � hriÞmgðxÞ ð1Þ

where hri stands for the mean fraction of the phase space corresponding to the

clustering motions; mcðxÞ and mgðxÞ are the normalized characteristic measures

to describe the cluster phase and the gaseous phase, respectively. The probability

density PgðTgÞ for the residence time Tg in gaseous phase is usually

approximated by the Poissonian, PgðTgÞ ¼ hTgi�1
exp½�Tg=hTgi	, but on the

other hand the probability density PcðTcÞ for the residence time Tc in cluster

phase is quite different from the Poissonian:

PcðTcÞ ¼ p 
 dQW

dTc

þ ð1 � pÞ 
 dQL

dTc

¼ dQc

dTc

ð2Þ
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where QW ¼ exp½�AT�a
c 	 (negative Weibull distribution), QL ¼ exp½�B

�ðlog TcÞ�b	 (log-Weibull distribution), and p is the fraction of the negative

Weibull component [1–3]. Figure 1 demonstrates the accumulated probability

QcðxÞðx ¼ TcÞ, where the scaling regimes corresponding to two components

QWðor PWÞ and QLðor PLÞ are clearly observed, and particularly the intrinsic

long-time tails of QLðxÞ are systematically prolonged when the cluster size

becomes large; when the total energy E decreases, the size of the cluster

increases. Two kinetic phases generally coexist in big clusters.

The shape of a cluster depends on the strength of interaction between the

cluster and the environment. When the member particles are violently

exchanged in the case of a small cluster, the shape is quite irregular, but in a

large cluster the shape is almost globular and the variation of the shape is very

slow and majestic. This is the reason why the 1=f fluctuation is often observed

in clustering motions. Figure 2 is a typical example of cluster formation in

N-body hamiltonian systems which we have reported in a previous paper [1],

where the stability of member particles is demonstrated by the gray scale which

represents the Gauss–Riemannian curvature; the inside of a cluster has positive

curvature, and the outside has negative one. The Riemannian geometrization,

which was used in the analysis of the Mixmaster universe model [4], is

successfully applied for the rigorous definition of the cluster.

Figure 1. Distribution function QðxÞ for the trapping time x. PW ðxÞ is the negative-Weibull and

PLðxÞ is the log-Weibull. The parameter E is the total energy that controls the size of the cluster.
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II. UNIVERSALITY OF THE LOG-WEIBULL DISTRIBUTION
CHARACTERIZING ARNOLD DIFFUSION

The log-Weibull component becomes larger and larger when the cluster size

increases and the cluster shape approaches to a globular one. This implies that

the one-particle motion can be approximated by an integrable hamiltonian

Hðp; qÞ if we consider the clustering motions in a large cluster;

Hðp; qÞ ¼ H0ðpÞ þ EH1ðp; q; tÞ ð3Þ

where H0 is the effective integrable Hamiltonian and the EH1ðp; q; tÞ is the

perturbation due to the small derivation from the globular cluster. Equation (3) is

the standard form of nearly integrable hamiltonian systems, where we can use the

Nekhoroshev theorem [7] for slowly drifting motions such as the Arnold

diffusion in the Fermi–Pasta–Ulam models for quartz oscillators [5]. The dis-

tribution function PðTÞ of the characteristic time T for the diffusion was derived

many years ago [6] in the following form: PðTÞ / 1
Tðlog TÞc ðT  1Þ. It is easily

obtained that the distribution function PðTÞ for the Arnold diffusion is nothing

but the log-Weibull distribution function demonstrated in Fig. 1; if we put c ¼ 2,

Figure 2. A snapshot of the cluster formation at E ¼ 0, where the number of member particles

is almost 50% of the total particles.
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the intrinsic long-time tails in cluster formation (in two-dimensional simulations)

are completely understood in terms of the Arnold diffusion [3].

III. QUASI-STRUCTURE SURVIVING AS A WHOLE BODY

Clusters appear almost always in the transitional regime between two different

thermodynamical phases as a stable kinetic phase. The only difference from the

ordinary phase in thermodynamic limit is that the cluster is an extremely small

open system with finite scales in time as well as in space, where microscopic

fluctuations influence prominently on the whole processes extending from the

birth to the death of the quasi-structure. The cluster discussed here behaves like a

giant particle composed of many microscopic particles. The internal structure of

the cluster has been explored for a long time, but no one succeeded in finding out

any rigid structures on the inside of the cluster. However, our simulations

elucidate that the internal structures are clearly understood in terms of the

coexistence of two different kinetic laws embedded in a cluster. The self-

organization of these two different types of kinetic phases is essential in order

that the cluster can survive for long period, and the stability seems to be protected

by its own internal mechanisms, which are inherent to the cluster itself. We can

say that a cluster should be understood as an entity with active nature, and it is

never a passive entity only adapting to the environment.
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I. INTRODUCTION

Using the modern techniques of laser spectroscopy, it has become possible to

observe the radiation interaction of single atoms. The techniques thus made it

possible to investigate the radiation–atom interaction on the basis of single

atoms. The most promising systems in this connection seem to be single atoms

in cavities and also single atoms in traps. The studies in cavities allow us to

select one interacting mode and thus represent the ideal system with respect to a

quantum treatment. In high-Q cavities a steady-state field of photons can be

generated displaying nonclassic photon statistics. It thus becomes possible to

study the interaction also in the limit of nonclassic or sub-Poissonian fields.
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Single trapped ions allow us to observe among other phenomena quantum

jumps and antibunching in fluorescence radiation. The fluorescent channel

represents the interaction with many modes; however, it is also possible to

combine single mode cavities with trapped atoms, as, for example, in the case of

the proposed ion-trap laser.

A new and interesting twist in radiation–atom interaction can be added when

ultracold atoms are used in both cavities and traps. In this case the distribution

of the matter wave plays an important role besides the standing electromagnetic

wave in the cavity, and their interaction is determined by their respective

overlap leading to new effects.

In the following we will review experiments of single atoms in cavities and

traps performed in our laboratory. Furthermore, new proposals for experiments

with ultracold atoms will be discussed. We start with the discussion of the

one-atom maser.

II. EXPERIMENTS WITH THE ONE-ATOM MASER

The one-atom maser or micromaser uses a single mode of a superconducting

niobium cavity [1–4]. In the experiments, values of the quality factor as high as

3 � 1010 have been achieved for the resonant mode, corresponding to an

average lifetime of a photon in the cavity of 0.2 s. The photon lifetime is thus

much longer than the interaction time of an atom with the maser field; during

the atom passes through the cavity, the only change of the cavity field that

occurs is due to the atom-field interaction. Contrary to other strong coupling

experiments in cavities (optical or microwave; see, e.g., Ref. 5 for a comparison

between the different setups), it is possible with our micromaser to generate a

steady-state field in the cavity which has nonclassic properties so that the

interaction of single atoms in those fields can be investigated. Furthermore,

the generation process of those fields has been studied and is well understood.

The experiment is quite unique in this respect; this also holds in comparison

with the one-atom laser [6] which has been omitted in the survey given in

Table 1 of Ref. 5.

The atoms used in our micromaser experiments are rubidium Rydberg atoms

pumped by laser excitation into the upper level of the maser transition, which is

usually induced between neighboring Rydberg states. In the experiments the

atom–field interaction is probed by observing the population in the upper and

lower maser levels after the atoms have left the cavity. The field in the cavity

consists only of single or a few photons depending on the atomic flux.

Nevertheless, it is possible to study the interaction in considerable detail. The

dynamics of the atom–field interaction treated with the Jaynes–Cummings

model was investigated by selecting and varying the velocity of the pump

atoms [2]. The counting statistics of the pump atoms emerging from the cavity
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allowed us to measure the nonclassic character of the cavity field [3,4] predicted

by the micromaser theory. The maser field can be investigated in this way since

there is entanglement between the maser field and the state in which the atom

leaves the cavity [7,8]. It also has been observed that under suitable experi-

mental conditions the maser field exhibits metastability and hysteresis [9]. The

first of the maser experiments have been performed at cavity temperatures of 2

or 0.5 K. In the more recent experiments the temperature was reduced to

roughly 0.1 K by using an improved setup in a dilution refrigerator [9]. For a

review of the previous work see Raithel et al. [10].

In the following we give a brief review of recent experiments which deal

with the observation of quantum jumps of the micromaser field [9] and with the

observation of atomic interferences in the cavity [11]. New experiments on the

correlation of atoms after the interaction with the cavity field will be briefly

mentioned. Furthermore, we will discuss the generation of number or Fock

states, and we will also describe new possibilities opening up when ultracold

atoms are used for the experiments.

A. Quantum Jumps and Atomic Interferences in the Micromaser

Under steady-state conditions, the photon statistics P(n) of the field of the

micromaser is essentially determined by the pump parameter, � ¼ N
1=2
ex � tint=2

[10,13]. Here, Nex is the average number of atoms that enter the cavity during

the decay time of the cavity field tcav, � is the vacuum Rabi floppy frequency,

and tint is the atom–cavity interaction time. The quantity hni ¼ hni=Nex shows

the generic behavior shown in Fig. 1.

Figure 1. Mean value of n ¼ n=Nex versus the pump parameter � ¼ �tint

ffiffiffiffiffiffiffi
Nex

p
=2, where the

value of � is changed via Nex. The solid line represents the micromaser solution for � ¼ 36 KHz,

tint ¼ 35ms, and temperature T ¼ 0:15 K. The dotted lines are semiclassic steady-state solutions

corresponding to fixed stable gain¼ loss equilibrium photon numbers [14]. The crossing points

between a line � ¼ const and the dotted lines correspond to the values where minima in the Fokker–

Planck potential VðnÞ occur (see details in the text).
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It suddenly increases at the maser threshold value � ¼ 1 and reaches a

maximum for � � 2 (denoted by A in Fig. 1). At threshold the characteristics of

a continuous phase transition [12,13] are displayed. As � further increases, hni
decreases and reaches a minimum at � � 2p and then abruptly increases to a

second maximum (B in Fig. 1). This general type of behavior recurs roughly at

integer multiples of 2p, but becomes less pronounced with increasing �. The

reason for the periodic maxima of hni is that for integer multiples of � ¼ 2p the

pump atoms perform an almost integer number of full Rabi flopping cycles and

start to flip over at a slightly larger value of �, thus leading to enhanced photon

emission. The periodic maxima in hni for � ¼ 2p; 4p , and so on, can be

interpreted as first-order phase transitions [12,13]. The field strongly fluctuates

for all phase transitions being caused by the presence of two maxima in the

photon number distribution PðnÞ at photon numbers nl and nhðnl < nhÞ.
The phenomenon of the two coexisting maxima in PðnÞ was also studied in a

semiheuristic Fokker–Planck (FP) approach [12]. There, the photon number

distribution PðnÞ is replaced by a probability function Pðn; tÞ with continuous

variables t ¼ t=tcav and nðnÞ ¼ n=Nex, the latter replacing the photon number n.

The steady-state solution obtained for Pðn; tÞ; t 	 1, can be constructed by

means of an effective potential VðnÞ, showing minima at positions where

maxima of Pðn; tÞ; t 	 1, are found. Close to � ¼ 2p and multiples thereof,

the effective potential VðnÞ exhibits two equally attractive minima located at

stable gain–loss equilibrium points of maser operation [14] (see Fig. 1). The

mechanism at the phase transitions mentioned is always the same: A minimum

of VðnÞ loses its global character when � is increased, and it is replaced in this

role by the next one. This reasoning is a variation of the Landau theory of first-

order phase transitions, with
ffiffiffi
n

p
being the order parameter. This analogy

actually leads to the notion that in the limit Nex ! 1 the change of micromaser

field around integer multiples � ¼ 2p can be interpreted as first-order phase

transitions.

Close to first-order phase transitions, long field evolution time constants are

expected [12,13]. This phenomenon was experimentally demonstrated in Ref. 9,

along with related phenomena, such as spontaneous quantum jumps between

equally attractive minima of VðnÞ, bistability, and hysteresis. Some of those

phenomena are also predicted in the two-photon micromaser [15], for which

qualitative evidence of first-order phase transitions and hysteresis is reported.

The experimental setup used is shown in Fig. 2. It is similar to that described

by Rempe and Walther [4] and by Benson et al. [9]. As before, 85Rb atoms were

used to pump the maser. They are excited from the 5S1=2, F ¼ 3 ground state to

63P3=2, mJ ¼ �1=2 states by linearly polarized light of a frequency-doubled

c.w. ring dye laser. The polarization of the laser light is linear and parallel to the

likewise linearly polarized maser field, and therefore only �mJ ¼ 0 transitions

are excited. Superconducing niobium cavities resonant with the transition to the
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61D3=2;mJ ¼ �1=2 states were used; the corresponding resonance frequency is

21.506 GHz. The experiments were performed in a 3He/4He dilution refrigerator

with cavity temperatures T � 0:15 K. The cavity Q values ranged from 4 � 109

to 8 � 109. The velocity of the Rydberg atoms and thus their interaction time tint

with the cavity field were preselected by exciting a particular velocity subgroup

with the laser. For this purpose, the laser beam irradiated the atomic beam at an

angle of approximately 82. As a consequence, the UV laser light (linewidth �
2 MHz) is blue-shifted by 50–200 MHz by the Doppler effect, depending on the

velocity of the atoms.

Information on the maser field and interaction of the atoms in the cavity can

be obtained solely by state-selective field ionization of the atoms in the upper or

lower maser level after they have passed through the cavity. For different tint the

atomic inversion has been measured as a function of the pump rate by

comparing the results with micromaser theory [12,13], and the coupling

constant � is found to be � ¼ ð40 � 10Þ krad/s.

Depending on the parameter range, essentially three regimes of the field

evolution time constant tfield can be distinguished. Here we only discuss the

results for intermediate time constants. The maser was operated under steady-

state conditions close to the second first-order phase transition (C in Fig. 1). The

interaction time was tint ¼ 47ms and the cavity decay time was tcav ¼ 60 ms.

The value of Nex necessary to reach the second first-order phase transition was

Nex � 200. For these parameters, the two maxima in PðnÞ are manifested in

spontaneous jumps of the maser field between the two maxima with a time

constant of �5 s. This fact and the relatively large pump rate led to the clearly

Figure 2. Sketch of the experimental setup. The rubidium atoms emerge from an atomic beam

oven and are excited at an angle of 82 at location A. After interaction with the cavity field, they

enter a state-selective field ionization region, where channeltrons 1 and 2 detect atoms in the upper

and lower maser levels, respectively. A small fraction of the UV radiation passes through an electro-

optic modulator (EOM), which generates sidebands of the UV radiation. The blueshifted sideband is

used to stabilize the frequency of the laser onto the Doppler-free resonance monitored with a

secondary atomic beam produced by the same oven (location B).
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observable field jumps shown in Fig. 3. Because of the large cavity field decay

time, the average number of atoms in the cavity was still as low as 0.17. The two

discrete values for the counting rates correspond to the metastable operating

points of the maser, which correspond to �70 and �140 photons. In the FP

description, the two values correspond to two equally attractive minima in the

FP potential VðnÞ. If one considers, for instance, the counting rate of lower-state

atoms (CT2 in Fig. 3), the lower (higher) plateaus correspond to time intervals

in the low (high) field metastable operating point. If the actual photon number

distribution is averaged over a time interval containing many spontaneous field

jumps, the steady-state result PðnÞ of the micromaser theory is recovered.

In the parameter ranges where switching occurs much faster than in the case

shown in Fig. 3, the individual jumps cannot be resolved; therefore, different

methods have to be used for the measurement. Furthermore, hysteresis is

observed at the maser parameters for which the field jumps occur. Owing to lack

of space, these results cannot be discussed here. For a complete survey on the

performed experiments, see Ref. 9.

The next topic we would like to discuss is the observation of atomic

interferences in the micromaser [11]. Because a nonclassic field is generated in

the maser cavity, we were able for the first time to investigate atomic

interference phenomena under the influence of nonclassic radiation. Owing to

the bistable behavior of the maser field, the interferences display quantum

jumps; thus the quantum nature of the field becomes directly visible in the

interference fringes. Interferences occur because a coherent superposition of

dressed states is produced by mixing the states at the entrance and exit holes of

the cavity. Inside the cavity the dressed states develop differently in time, giving

Figure 3. Quantum jumps between two equally stable operation points of the maser field. The

chaneltron counts are plotted versus time (CT1¼ upper state and CT2¼ lower state signals). The

signals of the two different detectors show a counterphase behavior; this makes it easy to

discriminate between signal and noise.
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rise to Ramsey-type interferences [16] when the maser cavity is tuned through

resonance.

The setup used in the experiment is identical to the one described previously

[9]. However, the flux of atoms through the cavity is by a factor of 5–10 higher

than in the previous experiments, where the 63P3=2–61D5=2 transition was used.

For the experiments the Q value of the cavity was 6 � 109, corresponding to a

photon decay time of 42 ms.

Figure 4 shows the standard maser resonance in the uppermost plot which is

obtained when the resonator frequency is tuned. At large values of Nex

ðNex > 89Þ sharp, periodic structures appear. These typically consist of (a) a

smooth wing on the low-frequency side and (b) a vertical step on the high-

frequency side. The clarity of the pattern rapidly decreases when Nex increases

to 190 or beyond. We will see later that these structures have to be interpreted as

interferences. It can be seen that the atom-field resonance frequency is red-

shifted with increasing Nex, and the shift reaches 200 kHz for Nex ¼ 190. Under

these conditions there are roughly 100 photons on the average in the cavity. The

Figure 4. Shift of the maser resonance 63P3=2–61D5=2 for fast atoms ðtint ¼ 35 msÞ. The upper

plot shows the maser line for low pump rate ðNex < 1Þ. The FWHM linewidth (50 kHz) sets an

upper limit of �5 mV/cm for the residual electric stray fields in the center of the cavity. The lower

resonance lines are taken for the indicated large values of Nex. The plots show that the center of the

maser line shifts by about 2 kHz per photon. In addition, there is considerable field-induced line

broadening that is approximately proportional to
ffiffiffiffiffiffiffi
Nex

p
. For Nex � 89 the lines display periodic

structures, which are discussed in the text.
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large red-shift cannot be explained by AC Stark effect, which for 100 photons

would amount to about 1 kHz for the transition used. Therefore it is obvious that

other reasons must be responsible for the observed shift.

It is known from previous maser experiments that there are small static

electric fields in the entrance and exit holes of the cavity. It is supposed that this

field is generated by patch effects at the surface of the niobium metal caused by

rubidium deposits caused by the atomic beam or by microcrystallites formed

when the cavities are tempered after machining. The tempering process is

necessary to achieve high-quality factors. The influence of those stray fields is

only observable in the cavity holes; in the center of the cavity they are

negligible owing to the large atom-wall distances.

When the interaction time tint between the atoms and the cavity field is

increased, the interference structure disappears for tint > 47 ms [11]. This is due

to the fact that there is no nonadiabatic mixing any more between the substates

when the atoms get too slow.

In order to understand the observed structures, the Jaynes–Cummings

dynamics of the atoms in the cavity has to be analyzed. This treatment is more

involved than that in connection with previous experiments, since the higher

maser field requires detailed consideration of the field in the periphery of the

cavity, where the additional influence of stray electric fields is more important.

The usual formalism for the description of the coupling of an atom to the

radiation field is the dressed atom approach [17], leading to splitting of the

coupled atom-field states, depending on the vacuum Rabi-flopping frequency �,

the photon number n, and the atom-field detuning d. We face a special situation

at the entrance and exit holes of the cavity. There we have a position-dependent

variation of the cavity field, as a consequence of which � is position-dependent.

An additional variation results from the stray electric fields in the entrance and

exit holes. Owing to the Stark effect, these fields lead to a position-dependent

atom-field detuning d.

The Jaynes–Cummings Hamiltonian only couples pairs of dressed states.

Therefore, it is sufficient to consider the dynamics within such a pair. In our

case, prior to the atom-field interaction the system is in one of the two dressed

states. For parameters corresponding to the periodic substructures in Fig. 4, the

dressed states are mixed only at the beginning of the atom–field interaction and

at the end. The mixing at the beginning creates a coherent superposition of the

dressed states. Afterwards the system develops adiabatically, whereby the two

dressed states accumulate a differential dynamic phase � that strongly depends

on the cavity frequency. The mixing of the dressed states at the entrance and exit

holes of the cavity, in combination with the intermediate adiabatic evolution,

generates a situation similar to a Ramsey two-field interaction.

The maximum differential dynamic phase � solely resulting from dressed-

state coupling by the maser field is roughly 4p under the experimental
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conditions used here. This is not sufficient to explain the interference pattern of

Fig. 4, where we have at least six maxima corresponding to a differential phase

of 12p. This means that an additional energy shift differently affecting upper

and lower maser states is present. Such a phenomenon can be caused by the

above-mentioned small static electric fields present in the holes of the cavity.

The static field causes a position-dependent detuning d of the atomic transition

from the cavity resonance; as a consequence we get an additional differential

dynamic phase �. In order to interpret the periodic substructures as a result of

the variation of � with the cavity frequency, the phase � has to be calculated

from the atomic dynamics in the maser field.

The quantitative calculation can be performed on the basis of the micromaser

theory. The calculations reproduce the experimental finding that the maser line

shifts to lower frequencies when Nex is increased [11]. The mechanism for that

can be explained as follows: The high-frequency edge of the maser line does not

shift with Nex at all, since this part of the resonance is produced in the central

region of the cavity, where practically no static electric fields are present.

The low-frequency cutoff of the structure is determined by the location where

the mixing of the dressed states occurs. With decreasing cavity frequency, those

points shift closer to the entrance and exit holes, with the difference between

the particular cavity frequency and unperturbed atomic resonance frequency

giving a measure of the static electric field at the mixing locations. Closer to the

holes the passage behavior of the atoms through the mixing locations becomes

nonadiabatic for the following reasons: First, the maser field strength reduces

toward the holes. This leads to reduced repulsion of the dressed states. Second,

the stray electric field strongly increases toward the holes. This implies a larger

differential slope of the dressed state energies at the mixing locations, and

therefore it leads to a stronger nonadiabatic passage. At the same time the

observed signal extends further to the low-frequency spectral region. Because

the photon emission probabilities are decreasing toward lower frequencies, their

behavior finally defines the low-frequency boundary of the maser resonance

line. With increasing Nex the photon number n increases. As for larger values

of n, the photon emission probabilities get larger; also, increasing Nex leads to

an extension of the range of the signal to lower frequencies. This theoretical

expectation is in agreement with the experimental observation.

In the experiment it is also found that the maser line shifts toward lower

frequencies with increasing tint. This result also follows from the developed

model: The red shift increases with tint because a longer interaction time leads to

a more adiabatic behavior in the same way as a larger Nex does.

The calculations reveal that on the vertical steps displayed in the signal the

photon number distribution has two distinctly separate maxima similar to those

observed at the phase transition points discussed above. Therefore, the maser

field should exhibit hysteresis and metastability under the present conditions as
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well. The hysteresis indeed shows up when the cavity frequency is linearly

scanned up and down with a modest scan rate [11]. When the maser is operated

in steady-state and the cavity frequency is fixed to the steep side of one of the

fringes, we also observe spontaneous jumps of the maser field between two

metastable field states.

The calculations also show that on the smooth wings of the more pronounced

interference fringes the photon number distribution PðnÞ of the maser field is

strongly sub-Poissonian. This leads us to the conclusion that we observe

Ramsey-type interferences induced by a nonclassic radiation field. The sub-

Poissonian character of PðnÞ results from the fact that on the smooth wings of

the fringes the photon gain reduces when the photon number is increased. This

feedback mechanism stabilizes the photon number resulting in a sub-Poissonian

photon distribution.

B. Entanglement in the Micromaser

Owing to the interaction of the Rydberg atom with the maser field there is an

entanglement between field and the state in which a particular atom is leaving

the cavity.

This entanglement was studied in several papers, see, for example, Refs. 8

and [18]. Furthermore, there is a correlation between the states of the atoms

leaving the cavity subsequently. If, for example, atoms in the lower maser level

are studied [19], an anticorrelation is observed in a region for the pump

parameter � where sub-Poissonian photon statistics is present in the maser field.

Recently, measurements [20] of these pair correlations have been performed

giving a rather good agreement with the theoretical predictions by Briegel

et al. [21]. Because the cavity field plays an important role in this entanglement,

the pair correlations disappear when the time interval between subsequent atoms

get larger than the storage time of a photon in the cavity.

C. Trapping States

The trapping states are a steady-state feature of the micromaser field peaked in a

single photon number, and they occur in the micromaser as a direct consequence

of field quantization. At low cavity temperatures the number of blackbody

photons in the cavity mode is reduced and trapping states begin to appear

[22,23]. They occur when the atom field coupling, �, and the interaction time,

tint, are chosen such that in a cavity field with nq photons each atom undergoes

an integer number, k, of Rabi cycles. This is summarized by the condition

�tint

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nq þ 1

p
¼ kp ð1Þ

When (1) is fulfilled, the cavity photon number is left unchanged after the

interaction of an atom and hence the photon number is ‘‘trapped.’’ This will
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occur over a large range of the atomic pump rate Nex. The trapping state is

therefore characterized by the photon number nq and the number of integer

multiples of full Rabi cycles k.

The buildup of the cavity field can be seen in Fig. 5, where the emerging

atom inversion is plotted against interaction time and pump rate. The inversion

is defined as IðtintÞ ¼ PgðtintÞ � PeðtintÞ, where PeðgÞðtintÞ is the probability of

finding an excited state (ground state) atom for a particular interaction time tint.

At low atomic pump rates (low Nex) the maser field cannot build up and the

maser exhibits Rabi oscillations due to the interaction with the vacuum field. At

the positions of the trapping states, the field builds up until it reaches the

trapping state condition. This manifests itself as a reduced emission probability

and hence as a dip in the atomic inversion. Once in a trapping state the maser

will remain there regardless of the pump rate. Therefore the trapping states

show up as valleys in the Nex direction. Figure 6 shows the photon number

Figure 5. Inversion of the micromaser field under conditions that the trapping states occur. The

thermal photon number in 10�4. As the pump rate increases, the formation of the trapping states

from the vaccum show up. See also Fig. 6. The trapping states are characterized by ðnq; kÞ whereby

nq is the photon number and k is the number of Rabi cycles.
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distribution as the pump rate is increased for the special condition of the five-

photon trapping state. The photon distribution develops from a thermal

distribution toward higher photon numbers until the pump rate is high enough

for the atomic emission to be affected by the trapping state condition. As the

pump rate is further increased, and in the limit of a low thermal photon number,

the field continues to build up to a single trapped photon number and the

Figure 6. Photon number distribution of the maser field as a function of the atomic flux Nex.

Shown is a numerical simulation. At Nex ¼ 50 a Fock state with rather high purity is achieved.
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steady-state distribution approaches a Fock state. There is in general a slight

deviation from a pure Fock state resulting from photon losses. Therefore the

state with the next lower photon number has a small probability. A lost photon

will be replaced by the next incoming atom; however, there is a small time

interval until this actually happens, depending on the availability of an atom.

Owing to blackbody radiation at finite temperatures, there is a probability of

having thermal photons enter the mode. The presence of a thermal photon in the

cavity disturbs the trapping state condition and an atom can emit a photon. This

causes the photon number of the field to jump to a value above the trapping

condition nq and a cascade of emission events will follow resulting in a build up

of a new photon distribution with an average photon number n > nq (Fig. 7).

The steady-state behavior of the maser field thus reacts very sensitively on the

presence of thermal photons and the number of lower state atoms increases.

Note that under readily achievable experimental conditions, it is possible for

the steady-state field in the cavity to approach Fock states with a high fidelity.

Figure 8 summarizes results of simulations of the micromaser field

corresponding to Fock states from n ¼ 0 to n ¼ 5. The experimental realization

Figure 7. Photon number distribution of the maser field. This simulation shows the strong

influence of thermal photons on the steady-state photon number distribution ðNex ¼ 25Þ.
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requires pump rates of Nex ¼ 25 to Nex ¼ 50, a temperature of about 100 mK,

and a high selectivity of atomic velocity [23].

The results displayed in Fig. 8 show again the phenomenon that is also

evident in Fig. 6: The deviation from the pure Fock state is mainly caused by

losses; therefore a contribution of the state with the next lower photon number is

also present in the distribution. This is caused by the fact that a finite time is

needed in the maser cavity to replace a lost photon.

Experimental evidence that trapping states can be achieved is shown in

Fig. 9a and 9b (see Ref. 23 for details). The measurement was taken at a cavity

temperature of 0.3 K corresponding to a thermal photon number of 0.054. The

plot shows a rescaled inversion that takes the increasing loss of Rydberg atoms

at longer interaction times into account. The shown result gives a good

qualitative agreement with the Monte Carlo simulations performed in Ref. 10.

In Fig. 9a, which displays the results for smaller Nex, the trapping states

corresponding to the vacuum ðnq; kÞ ¼ ð0; 1Þ, one photon (1; 1), and two

photons (2; 1) and (2; 2) are clearly visible while at higher Nex (Fig. 9b) the

vacuum and one-photon trapping states become less visible. With increasing Nex

the width of the trapping states decreases [22] and the influence of detuning and

velocity averaging becomes larger. At higher pump rates it is also important that

Figure 8. Purity of Fock states generated in the micromaser under trapping state conditions.

Shown are computer simulations for Fock states between n ¼ 0 and n ¼ 5. The thermal photon

number in nth ¼ 10�4.
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the proportion of two atom events grows, reducing the visibility of trapping

states.

In the following we would like to mention another method that can be used to

generate Fock states of the field of the one-atom maser. When the atoms leave

the cavity of the micromaser they are in an entangled state with the cavity

field [20]. A method of state reduction was suggested by Krause et al. [24] to

observe the buildup of the cavity field to a known Fock state. By state reduction

of the outgoing atom, also the field part of the entangled atom-field state is

projected out and the photon number in the field either increases or decreases

depending on the state of the observed outgoing atom. If the field is initially in a

state jni, then an interaction of an atom with the cavity leaves the cavity field in

a superposition of the states jni and jn þ 1i and leaves the atom in a

superposition of the internal atomic states jei and jgi.

� ¼ cosðfÞjeijni � i sinðfÞjgijn þ 1i ð2Þ

where f is an arbitrary phase. The state selective field ionization measurement

of the internal atomic state reduces also the field to one of the states jni or

jn þ 1i. State reduction is independent of interaction time; hence a ground-state

Figure 9. Experimental measurement of trapping states in the maser field (Weidinger

et al. [23]). Trapping states appear in a reduced probability of finding ground-state atoms. The

rescaling considers the decay of the Rydberg states on their way from preparation to detection.
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atom always projects the field onto the jn þ 1i state independent of the time

spent in the cavity. This results in an a priori probability of the maser field

being in a specific but unknown number state [24]. If the initial state is the

vacuum, j0i, then a number state created is equal to the number of ground-

state atoms that were collected within a suitably small fraction of the cavity

decay time.

In a system governed by the Jaynes–Cummings Hamiltonian, spontaneous

emission is reversible and an atom in the presence of a resonant quantum field

undergoes Rabi oscillations. That is, the relative populations of the excited and

ground states of the atom oscillate at a frequency �
ffiffiffiffiffiffiffiffiffiffiffi
n þ 1

p
, where � is the atom

field coupling constant. Experimentally, we measure again the atomic inversion,

I ¼ Pg � Pe. In the presence of dissipation a fixed photon number n in a

particular mode is not observed and the field always evolves into a mixture of

such states. Therefore the inversion is generally given by

Iðn; tintÞ ¼ �
X

n

Pn cosð2�
ffiffiffiffiffiffiffiffiffiffiffi
n þ 1

p
tintÞ ð3Þ

where Pn is the probability of finding n photons in the mode, and tint is the

interaction time of the atoms with the cavity field.

The experimental verification of the presence of Fock states in the cavity

takes the form of a pump–probe experiment in which a pump atom prepares a

quantum state in the cavity while the Rabi phase of the emerging probe atom

measures the quantum state. The signature that the quantum state of interest has

been prepared is simply the detection of a defined number of ground-state

atoms. To verify that the correct quantum state has been projected onto the

cavity field a probe atom is sent into the cavity with a variable, but well-defined,

interaction time. Because the formation of the quantum state is independent of

interaction time, we need not change the relative velocity of the pump and probe

atoms, thus reducing the complexity of the experiment. In this sense we are

performing a reconstruction of a quantum state in the cavity using a similar

method to that described by Bardoff et al. [25]. This experiment reveals the

maximum amount of information that can be found relating to the cavity photon

number. We have recently used this method to demonstrate the existence of

Fock states up to n ¼ 2 in the cavity [26].

D. Generation of GHZ States

The following proposal for the creation of states of the Greenberger–Horne–

Zeilinger (GHZ) type [28,29] is an application of the vacuum trapping state. By

the use of the vacuum trapping state a field determination during the

measurement is not necessary, which simplifies strongly the preparation of the
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GHZ states. We assume that the cavity is initially empty, and two excited atoms

traverse it consecutively. The velocity of the first atom, and its consequent

interaction time, is such that it emits a photon with probability ðsinj1Þ
2 ¼

51:8%, where j1 ¼ 0:744 p is the corresponding Rabi angle f of (2) for n ¼ 0.

The second atom arrives with the velocity dictated by the vacuum trapping

condition; for n ¼ 0 it has f ¼ p in (2), so that f ¼
ffiffiffi
2

p
p for n ¼ 1. Assuming

that the duration of the whole process is short on the scale set by the lifetime of

the photon in the cavity, we thus have

j0; e; ei���!first

atom
j0; e; eicosðj1Þ � ij1; g; eisinðj1Þ

���!second

atom
�j0; e; eicosðj1Þ � j2; g; gisinðj1Þsinð

ffiffiffi
2

p
pÞ

� ij1; g; eisinðj1Þcosð
ffiffiffi
2

p
pÞ ð4Þ

where, for example, j1; g; ei stands for ‘‘one photon in the cavity and first atom in

the ground state and second atom excited.’’ With the above choice of

sinðj1Þ ¼ 0:720, we have cosðj1Þ ¼ sinðj1Þsinð
ffiffiffi
2

p
pÞ ¼ �0:694, so that the

two components with even photon number (n ¼ 0 or n ¼ 2) carry equal weight

and occur with a joint probability of 96.3%. The small 3.7% admixture of

the n ¼ 1 component can be removed by measuring the parity of the photon

state [30] and conditioning the experiment to even parity. The two atoms and the

cavity field are then prepared in the entangled state:

�GHZ ¼ 1ffiffiffi
2

p ðj0; e; ei þ j2; g; giÞ ð5Þ

which is a GHZ state of the Mermin kind [31] in all respects.

E. The One-Atom Maser and Ultracold Atoms

In this section we discuss the case where the micromaser is pumped by

ultracold atoms; in this limit the center-of-mass motion has to be treated

quantum mechanically, especially when the kinetic energy ð�hkÞ2= 2M of the

atoms is of the same order or smaller than the atom–field [32] interaction

energy �h�.

For simplicity, we consider here the situation where an atom in the excited

state jei is incident upon a cavity that contains n photons so that the combined

atom–field system is described by the state je; ni ¼ ðjgþnþ1i þ jg�nþ1iÞ=
ffiffiffi
2

p
. The

dressed-state components j gþnþ1i and j g�nþ1i, which are the eigenstates of the

atom–field interaction Hamiltonian, encounter different potentials giving rise to
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different reflection and transmission of the atom. Appropriate relative phase

shifts between the dressed-state components during the atom–field interaction

may result in the state ðj gþnþ1i� j g�nþ1iÞ=
ffiffiffi
2

p
¼j g; n þ 1i, which corresponds

to the emission of a photon and a transition to the lower atomic level j gi.
Likewise, changes in the relative reflection and transmission amplitudes may

lead to a de-excitation of the atom.

For thermal atoms, the emission probability shown in Fig. 10 displays the

usual Rabi oscillations as a function of the interaction time t. For very slow

atoms, however, the emission probability is a function of the interaction length L

and shows resonances such as the ones observed in the intensity transmitted by a

Figure 10. Emission probability for (a) thermal atoms with k=k ¼ 10 versus the interaction

time �t and (b) ultracold atoms with k=k ¼ 0:1 versus the interaction length kL, and the

corresponding repulsive (dashed lines) and attractive (dotted lines) atom–field potential. The

constant k is defined by ð�hkÞ2=2m ¼ �h�.
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Fabry–Perot resonator. The resonances occur when the cavity length is an

integer multiple of half the de Broglie wavelength of the atom inside the

potential well.

Figure 11 illustrates the reflection and transmission of the atom for a cavity

whose mode function is a mesa function, which approximates the lowest TM

mode of a cylindrical cavity. For very cold atoms, the dressed-state component

that encounters the potential barrier is always reflected. In general, the other

dressed-state component is also reflected at the well. The situation changes

dramatically if the cavity length is an integer multiple of half the de Broglie

wavelength. In this case, the j g�nþ1i is completely transmitted, which implies a

50% transmission probability for the atom. A detailed calculation [32] shows

that in such a situation the emission probability for a photon is 1=2 for each of

the two dressed-state components, yielding an overall emission probability

Pemission ¼ 1=2.

So far, we have discussed the motion and atom–field interaction of a single-

atom incident upon the cavity. Due to the unusual emission probability, a beam

of ultracold atoms can produce unusual photon distributions such as a shifted

thermal distribution. For details about this microwave amplification by

z-motion-induced emission of radiation (mazer), the reader is referred to the

trilogy [33–35].

In order to see the mazer resonances for atoms with a certain velocity spread,

the interaction length L has to be small. Whereas in the usual cylindrical

micromaser cavities the smallest cavity length is given by half the wavelength

of the microwaves, cavities of the reentrant type, as depicted in Fig. 12, allow

for an interaction length much smaller than the wavelength. With such a device,

an experiment with realistic parameters seems possible [34].

Figure 11. Reflection and transmission of the atoms at the potential barrier for the jgþnþ1i
and at the potential well for the jg�nþ1i component (a) out of the mazer resonance and (b) on

resonance.
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III. ION TRAP EXPERIMENTS

Besides the experiments performed with atoms in a cavity the trapped ion

techniques provide another way to investigate quantum phenomena in radiation

atom interaction. In the following recent experiments and new proposals for

experiments will be reviewed.

A. Resonance Fluorescence of a Single Atom

Resonance fluorescence of an atom is a basic process in radiation–atom

interactions and has therefore always generated considerable interest. The

methods of experimental investigation have changed continuously due to the

availability of new experimental tools. A considerable step forward occurred

when tunable and narrow band dye laser radiation became available. These laser

sources are sufficiently intense to easily saturate an atomic transition. In

addition, the lasers provide highly monochromatic light with coherence times

much longer than typical natural lifetimes of excited atomic states. Excitation

spectra with laser light using well-collimated atomic beam lead to a width being

practically the natural width of the resonance transition; therefore it became

possible to investigate the frequency spectrum of the fluorescence radiation with

high resolution. However, the spectrograph used to analyze the reemitted

radiation was a Fabry–Perot interferometer, the resolution of which did reach

the natural width of the atoms, but was insufficient to reach the laser linewidth

(see, e.g., Hartig et al. [36] and Cresser et al. [37]). A considerable progress in

this direction was achieved by investigating the fluorescence spectrum of

Figure 12. Possible experimental setup with a reentrant cavity.
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ultracold atoms in an optical lattice in a heterodyne experiment [38]. In these

measurements a linewidth of 1 kHz was achieved; however, the quantum

aspects of the resonance fluorescence such as antibunched photon statistics

cannot be investigated under these conditions becasue they wash out when more

than one atom is involved.

Thus the ideal experiment requires a single atom to be investigated. For some

time it has been known that ion traps enable us to study the fluorescence from a

single laser-cooled particle practically at rest, thus providing the ideal case for

the spectroscopic investigation of the resonance fluorescence. The other

essential ingredient for achieving a high resolution is the measurement of the

frequency spectrum by heterodyning the scattered radiation with laser light as

demonstrated with many cold atoms [38]. Such an optimal experiment with a

single trapped Mgþ ion is reviewed in the following. The measurement of the

spectrum of the fluorescent radiation at low excitation intensities is presented.

Furthermore, the photon correlation of the fluorescent light has been

investigated under practically identical excitation conditions. The comparison

of the two results shows a very interesting aspect of complementarity because

the heterodyne measurement corresponds to a ‘‘wave’’ detection of the

radiation, whereas the measurement of the photon correlation is a ‘‘particle’’

detection scheme. It will be shown that under the same excitation conditions the

wave detection provides the properties of a classic atom (i.e., a driven

oscillator), whereas the particle or photon detection displays the quantum

properties of the atom. Whether the atom displays classic or quantum properties

thus depends on the method of observation.

The spectrum of the fluorescence radiation is given by the Fourier transform

of the first-order correlation function of the field operators, whereas the photon

statistics and photon correlation is obtained from the second-order correlation

function. The corresponding operators do not commute, and thus the respective

observations are complementary. The present theory on the spectra of

fluorescent radiation following monochromatic laser excitation can be

summarized as follows: Fluorescence radiation obtained with low incident

intensity is also monochromatic owing to energy conservation. In this case,

elastic scattering dominates the spectrum, and thus one should measure a

monochromatic line at the same frequency as the driving laser field. The atom

stays in the ground state most of the time, and absorption and emission must be

considered as one process with the atom in principle behaving as a classic

oscillator. This case was treated on the basis of a quantized field many years ago

by Heitler [39]. With increasing intensity upper and lower states become more

strongly coupled leading to an inelastic component, which increases with the

square of the intensity. At low intensities, the elastic part dominates since it

depends linearly on the intensity. As the intensity of the exciting light increases,

the atom spends more time in the upper state and the effect of the vacuum
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fluctuations comes into play through spontaneous emission. The inelastic

component is added to the spectrum, and the elastic component goes through a

maximum where the Rabi flopping frequency � ¼ �=
ffiffiffi
2

p
(� is the natural

linewidth) and then disappears with growing �. The inelastic part of the

spectrum gradually broadens as � increases and for � > �=2 sidebands begin to

appear [37,40].

The experimental study of the problem requires, as mentioned above, a

Doppler-free observation. In order to measure the frequency distribution, the

fluorescent light has to be investigated by means of a high-resolution

spectrometer. The first experiments of this type were performed by Schuda

et al. [41] and later by Walther [42], Hartig et al. [36], and Ezekiel and co-

workers [43]. In all these experiments, the excitation was performed by single-

mode dye laser radiation, with the scattered radiation from a well-collimated

atomic beam observed and analyzed by a Fabry–Perot interferometer.

Experiments to investigate the elastic part of the resonance fluorescence

giving a resolution better than the natural linewidth have been performed by

Gibbs and Venkatesan [44] and Cresser et al. [37].

The first experiments that investigated antibunching in resonance fluores-

cence were also performed by means of laser-excited collimated atomic beams.

The initial results obtained by Kimble, Dagenais, and Mandel [45] showed that

the second-order correlation function gð2ÞðtÞ had a positive slope that is

characteristic of photon antibunching. However, gð2Þ (0) was larger than gð2ÞðtÞ
for t ! 1 due to number fluctuations in the atomic beam and to the finite

interaction time of the atoms [46,47]. Further refinement of the analysis of the

experiment was provided by Dagenais and Mandel [47]. Rateike et al. [48] used

a longer interaction time for an experiment in which they measured the photon

correlation at very low laser intensities (see Cresser et al. [37] for a review).

Later, photon antibunching was measured using a single trapped ion in an

experiment that avoids the disadvantages of atom number statistics and finite

interaction time between atom and laser field [49].

As pointed out in many papers, photon antibunching is a purely quantum

phenomenon (see, e.g., Cresser et al. [37] and Walls [50]). The fluorescence of a

single ion displays the additional nonclassic property that the variance of the

photon number is smaller than its mean value (i.e., it is sub-Poissonian) [49,51].

The trap used for the present experiment was a modified Paul trap, called an

endcap trap [52]. The trap consists of two solid copper–beryllium cylinders

(diameter 0.5 mm) arranged collinearly with a separation of 0.56 mm. These

correspond to the cap electrodes of a traditional Paul trap, whereas the ring

electrode is replaced by two hollow cylinders, one of which is concentric with

each of the cylindrical endcaps. Their inner and outer diameters are 1 and 2 mm,

respectively, and they are electrically isolated from the cap electrodes. The

fractional anharmonicity of this trap configuration, determined by the deviation
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of the real potential from the ideal quadrupole field, is below 0.1% (see Schrama

et al. [52]). The trap is driven at a frequency of 24 MHz with typical secular

frequencies in the xy-plane of approximately 4 MHz. This required a radio-

frequency voltage with an amplitude on the order of 300 V to be applied

between the cylinders and the endcaps.

The measurements were performed using the 32S1=2 – 32P3=2 transition of

a 24 Mgþ ion at a wavelength of 280 nm. The heterodyne measurement is

performed as follows. The dye laser excites the trapped ion while the

fluorescence is observed in a direction of about 54 to the exciting laser beam.

However, both the observation direction and the laser beam are in a plane

perpendicular to the symmetry axis of the trap. A fraction of the laser radiation

is removed with a beamsplitter and then frequency-shifted [by 137 MHz with an

acousto-optic modulator (AOM)] to serve as the local oscillator. An example of

a heterodyne signal is displayed in Fig. 13. The signal is the narrowest optical

heterodyne spectrum of resonance fluorescence reported to date. Thus our

experiment provides the most compelling confirmation of Weisskopf’s

prediction of a coherent component in resonance fluorescence. The linewidth

observed implies that exciting laser and fluorescent light are coherent over a

length of 400,000 km. Further details on the experiment are given in Refs. 53

and 54.

Investigation of photon correlations employed the ordinary Hanbury–Brown

and Twiss setup. The setup was essentially the same as described by Diedrich

and Walther [49]. The results are shown and discussed in Ref. 53 also.

The presented experiment describes the first high-resolution heterodyne

measurement of the elastic peak in resonance fluorescence of a single ion. At

identical experimental parameters we also measured antibunching in the photon

correlation of the scattered field. Together, both measurements show that, in the

limit of weak excitation, the fluorescence light differs from the excitation

radiation in the second-order correlation but not in the first-order correlation.

However, the elastic component of resonance fluorescence combines an

extremely narrow frequency spectrum with antibunched photon statistics,

which means that the fluorescence radiation is not second-order coherent as

expected from a classic point of view [55]. The heterodyne and the photon

correlation measurement are complementary because they emphasize either the

classical wave properties or the quantum properties of resonance fluorescence,

respectively.

B. The Ion-Trap Laser

There have been several theoretical papers on one-atom lasers in the past

[56–60]. This system provides a testing ground for new theoretical concepts and

results in the quantum theory of the laser. Examples are atomic coherence

effects [61] and dynamic (i.e., self-generated) quantum-noise reduction
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[59,62,63]. All these aspects are a consequence of a pump process whose

complex nature is not accounted for in the standard treatment of the laser. So far

there is one experiment where laser action could be demonstrated with one atom

at a time in the optical resonator [6]. A weak beam of excited atoms was used to

pump this one-atom laser.

Figure 13. Heterodyne spectrum of a single trapped 24 Mgþ ion. Left: Resolution bandwidth

0.5 Hz. The solid line is a Lorentzian fit to the experimental data; the peak appears on top of a small

pedestal being 4 Hz wide. The latter signal is due to random phase fluctuations in the spatially

separated sections of the light paths of local oscillator and fluorescent light; they are generated by

variable air currents in the laboratory. Right: Heterodyne spectrum of the coherent peak with

sidebands generated by mechanical vibrations of the mount holding the trap. The vibrations are due

to the operation of a rotary pump in the laboratory. For details see Ref. 54.
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A formidable challenge for an experiment is to perform a similar experiment

with a trapped ion in the cavity. Mirrors with an ultrahigh finesse are required,

and a strong atom–field coupling is needed. After the emission of a photon, the

ion has to be pumped before the next stimulated emission can occur. Similar to

what occurs in the resonance fluorescence experiments that show antibunching

[45,49], there is a certain time gap during which the ion is unable to add another

photon to the laser field. It has been shown [59] that this time gap plays a

significant role in the production of a field with sub-Poissonian photon statistics.

We have investigated the theoretical basis for an experimental realization of

the ion-trap laser. Our analysis takes into account details such as the multilevel

structure, the coupling strengths, and the parameters of the resonator. It has been

a problem to find an ion with an appropriate level scheme. We could show that it

is possible to produce a laser field with the parameters of a single Caþ ion. This

one-atom laser displays several features, which are not found in conventional

lasers: the development of two thresholds, sub-Poissonian statistics, lasing

without inversion, and self-quenching. The details of this work are reported in

Refs. 64 and 65. In a subsequent paper [66], also the center-of-mass motion of

the trapped ion was quantized. This leads to additional features of the ion trap

laser, especially a multiple vacuum Rabi-splitting is observed.

The Caþ scheme is sketched in Fig. 14a. It contains a 	-type subsystem: The

ion is pumped coherently from the ground state to the upper laser level 4P1=2,

and stimulated emission into the resonator mode takes place on the transition to

3D3=2 at a wavelength of 866 nm. Further pump fields are needed to close the

pump cycle and to depopulate the metastable levels.

Although spontaneous relaxation from the upper laser level to the ground

state takes place at a relatively large rate of 140 MHz and suppresses the atomic

polarization on the laser transition, laser light is generated for realistic

experimental parameters due to atomic coherence effects within the 	
subsystem. The occurrence of laser action is demonstrated in Fig. 14b for a

resonator with a photon damping rate A ¼ 1 MHz and a vacuum Rabi frequency

g ¼ 14:8 MHz on the laser transition. For the numerical calculation of the

realistic scheme, the Zeeman substructure and the polarizations of the fields

have to be taken into account. With increasing coherent pump �, the mean

photon number inside the resonator first increases and then decreases. Both the

increase and decease of the intensity are accompanied by maxima in the

intensity fluctuations, which can be interpreted as thresholds. Laser action takes

place in between these two thresholds. This is confirmed by the Poissonian-like

photon distribution given in the inset of Fig. 14b. In addition, the linewidth of

the output spectrum is in the laser region up to 10 times smaller than below the

first and beyond the second threshold [65]. Note that for a thermal distribution

the solid and dashed curves in Fig. 14b for the intensity and the intensity

fluctuations would coincide.
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For a nonvanishing Lamb–Dicke parameter Z, higher vibrational states will

be excited during the pump and relaxation processes; the amplitude of the

atomic motion will increase. Therefore, the ion will in general not remain at an

antinode of the resonator mode, and the strength of the atom–field coupling will

Figure 14. (a) Schematic representation of the Caþ scheme for the ion-trap laser. (b) Mean

photon number hayai (solid curve) and Fano factor F (dashed curve) versus the coherent pump

strength �. The parameters are A ¼ 1, g ¼ 14:8, �1 ¼ 40, and �2 ¼ 100. The inset shows the photon

distribution for � ¼ 50. All rates are in MHz.
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decrease. However, the atom can be prevented from heating up by detuning a

coherent pump field. The coupling strength is given by the product of a constant

g0 depending on the transition probability and a motion-dependent function that

is determined by an overlap integral involving the motional wavefunction of the

atom and the mode function of the field [66].

In a simple two-level laser model with decay rate RAB and pump rate RBA, the

cooling process may be incorporated by coupling the atomic motion to a

thermal reservoir with cooling rate B and thermal vibron number m. In such a

simple model, the discrete nature of the quantized motion shows up below

threshold in a multiple vacuum Rabi splitting of the output spectrum [66]. This

is illustrated in Fig. 15. The pairs of peaks correspond to different vibrational

states with different atom–field coupling.

The cooling mechanism is most transparent in the special case of resolved-

sideband cooling. The coherent pump may be detuned to the first lower

vibrational sideband so that with each excitation from 4S1=2 to 4P1=2, one vibron

is annihilated and the CM motion is cooled. Eventually, all the population will

collect in the motional ground state of the atomic ground state 4S1=2 and cannot

participate in the lasing process. The coherent pump strength is now given by

�0 times a motion-dependent function. In order to maintain laser action in the

presence of the cooling, an additional broadband pump field � may be applied

to the cooling transition. Figure 16 indicates that a field with a mean photon

Figure 15. Multiple vacuum Rabi splitting in the output spectrum SaðoÞ for the two-level atom

with quantized CM motion. The parameters are A ¼ 0:1, B ¼ 0:05, m ¼ 0:5, RAB ¼ 0:1,

RBA ¼ 0:001, and Z ¼ 0:7. All rates are in units of g0.
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number aya
� �

¼ 2:3 is generated while the mean vibron number is restricted to

a value of byb
� �

¼ 0:5. If a larger mean vibron number is acceptable, the pump

rate � can be increased and more population takes part in the laser action. This

leads to considerably larger mean photon numbers. The calculation shows that it

is possible to incorporate a cooling mechanism in a multilevel one-atom laser

scheme and to obtain significant lasing also for nonperfect localization of the

atom. Although it is difficult to reach the resolved-sideband limit in an

experiment, cooling may still be achieved in the weak-binding regime by

detuning a coherent pump field.

IV. CONCLUSIONS

In this chapter, recent experiments with single atoms in cavities and traps are

reviewed. It is especially pointed out that using ultracold atoms will lead to new

interesting aspects in atom–matter interaction. The possibility that now

ultracold atoms are available bring such experiments into reach in the near

future.

The quantum-mechanical CM motion of the atoms incident upon a

micromaser cavity is equivalent to a scattering problem that involves both a

Figure 16. Time evolution of the mean photon number (solid curve) and the mean vibron

number (dashed curve) in the Caþ ion-trap laser with sideband cooling. The parameters are A ¼ 0:5,

g0 ¼ 14:8, �0 ¼ 100, � ¼ �1 ¼ 40, �2 ¼ 100, and Z ¼ 0:1 on the laser transition. Initially, the

atom is in the ground state and the vibronic distribution is thermal with hbybi ¼ 0:1. All rates are

in MHz.
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repulsive and an attractive potential. The emission probability for an initially

excited ultracold atom exhibits sharp resonances when the de Broglie

wavelength fits resonantly into the cavity. These resonances may be observed

experimentally with the help of a reentrant cavity. Whereas the eigenstates of

the atomic motion are continuously distributed for the maser, the motion is

confined to a trapping potential in the one-atom laser. The discrete nature of the

CM motion in the trap is reflected below threshold by multiple vacuum Rabi

splitting. In order to prevent the atom from being continuously heated by the

pump and relaxation processes, sideband cooling has been incorporated into

the model. The recently proposed Caþ ion-trap laser is used to illustrate the

possibility of one-atom lasing in the presence of a cooling mechanism.

There is one very interesting application of the ‘‘mazer’’ which should be

briefly mentioned here: The device can act as a filter for matter waves and can

thus be used to increase the coherence length of an atomic beam, in the same

way that a Fabry–Perot can be used to increase the coherence length of a light

wave. This application is discussed in Ref. 67.
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I. QUANTUM SUPERPOSITION AND DECOHERENCE

There is a basic difference between the predictions of quantum theory for

quantum systems that are closed (isolated) and open (interacting with their

environments.) In the case of a closed system, the Schrödinger equation and the

superposition principle apply literally. In contrast, the superposition principle is

not valid for open quantum systems. Here the relevant physics is quite different,

as has been shown by many examples in the context of condensed matter physics,

199



quantum chemistry, and so on. The evolution of open quantum systems has to be

described in a way violating the assumption that each state in the Hilbert space of

a closed system is equally significant. Decoherence is a negative selection

process that dynamically eliminates nonclassic states.

The distinguishing feature of classic systems, the essence of ‘‘classic

reality,’’ is the persistence of their properties—the ability of systems to exist in

predictably evolving states, to follow a trajectory which may be chaotic, but is

deterministic. This suggests the relative stability—or, more generally, predict-

ability—of the evolution of quantum states as a criterion that decides whether

they will be repeatedly encountered by an observer and can be used as

ingredients of a ‘‘classic reality.’’ The characteristic feature of the decoherence

process is that a generic initial state will be dramatically altered on a

characteristic decoherence time scale: Only certain stable states will be left on

the scene.

Quantum measurement is a classic example of a situation in which a

coupling of a macroscopic quantum apparatus A and a microscopic measured

system S forces the composite system into a correlated, but usually exceedingly

unstable, state. In a notation where jA0i is the initial state of the apparatus and

jci the initial state of the system, the evolution establishing an A–S correlation

is described by

jcijA0i ¼
X

k

akjskijA0i !
X

k

akjskijAki ¼ j�i ð1Þ

An example is the Stern–Gerlach apparatus. There the states jski describe

orientations of the spin, and the states jAki are the spatial wavefunctions centered

on the trajectories corresponding to different eigenstates of the spin. When the

separation of the beams is large, the overlap between them tends to zero

ðhAkjA0
ki 	 dkk0 Þ. This is a precondition for a good measurement. Moreover,

when the apparatus is not consulted, A–S correlations would lead to a mixed

density matrix for the system S:

rs ¼
X

k

jakj2jskihskj ¼ Trj�ih�j ð2Þ

However, this premeasurement quantum correlation does not provide a sufficient

foundation to build a correspondence between the quantum formalism and the

familiar classic reality. It only allows for Einstein–Podolsky–Rosen quantum

correlations between A and S, which imply the entanglement of an arbitrary

state—including nonlocal, nonclassic superpositions of the localized status of

the apparatus (observer)—with the corresponding relative state of the other

system. This is a prescription for a Schrödinger cat, not a resolution of the
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measurement problem. What is needed, therefore, is an effective superselection

rule that ‘‘outlaws’’ superpositions of these preferred ’’pointer states.’’ This rule

cannot be absolute: There must be a time scale sufficiently short, or an

interaction strong enough, to render it invalid, because otherwise measurements

could not be performed at all. Superselection should become more effective

when the size of the system increases. It should apply, in general, to all objects

and allow us to reduce elements of our familiar reality—including the spatial

localization of macroscopic system—from Hamiltonians.

Environment-induced decoherence has been proposed to fit these require-

ments [1]. The transition from a pure state j�ih�j to the effectively mixed rAS

can be accomplished by coupling the apparatus A to the environment E. The

requirement to get rid of unwanted, excessive, EPR-like correlations (1) is

equivalent to the demand that the correlations between the pointer states of the

apparatus and the measured system ought to be preserved in spite of an

incessant measurement-like interaction between the apparatus pointer and the

environment. In simple models of the apparatus, this can be assured by

postulating the existence of a pointer observable with eigenstates (or, more

precisely, eigenspaces) that remain unperturbed during the evolution of the open

system. This ‘‘nondemolition’’ requirement will be exactly satisfied when the

pointer observable O commutes with the total Hamiltonian generating the

evolution of the system:

½ðH þ HintÞ;O� ¼ 0 ð3Þ

For an idealized quantum apparatus, this condition can be assumed to be satisfied

and—provided that the apparatus is in one of the eigenstates of O—leads to an

uneventful evolution:

jAkijE0i ! jAkijEkðtÞi ð4Þ

However, when the initial state is a superposition corresponding to different

eigenstates of O, the environment will evolve into an jAki-dependent state:

X
k

akjAki
 !

jE0i !
X

k

akjAkijEkðtÞi ð5Þ

The decay of the interference terms is inevitable. The environment causes

decoherence only when the apparatus is forced into a superposition of states,

which are distinguished by their effect on the environment. The resulting

continuous destruction of the interference between the eigenstates of O leads to

an effective environment-induced superselection. Only states which are stable in

spite of decoherence can exist long enough to be accessed by an observer so that

they can count as elements of our familiar, reliably existing reality.
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Effective reduction of the state vector follows immediately. When the

environment becomes correlated with the apparatus,

j�ijE0i !
X

k

akjAkijskijEkðtÞi ¼ j�i ð6Þ

but the apparatus is not consulted (so that it must be traced out), we have

rAS ¼ Trj�ih�j ¼
X

k

jakj2jAkihAkj jskihskj ð7Þ

Only correlations between the pointer states and the corresponding relative states

of the system retain their predictive validity. This form of rAS follows, provided

that the environment becomes correlated with the set of states fjAkig (it could be

any other set) and that it has acted as a good measuring apparatus, so that

hEkðtÞjEk0 ðtÞi ¼ dkk0 (the states of the environment and the different outcomes are

orthogonal).

Let us consider a system S ruled by a Hamiltonian H0 and coupled to the

environment through the term

H0 ¼ nxE ð8Þ

where n is the coupling strength, x is a coordinate of the system, and E is an

environment operator. As we trace the overall density operator over an ensemble

of environments with temperature T , the system’s density matrix in the

coordinate representation, rðx; x0Þ, evolves according to the following master

equation [2]:

dr
dt

¼ 1

i�h
½H0; r� � gðx � x0Þðqx � qx0 Þr� Z

kT

�h2
ðx � x0Þ2r ð9Þ

where Z :¼ n2=2, and g :¼ Z=2m is the drift coefficient that rules the evolution

of the first moments. ‘‘Negative selection’’ consists of the rapid decay of the off-

diagonal elements of rðx; x0Þ. Indeed, for �h ! 0, the last term on the right-hand

side of (9) prevails, providing the solution

rðx; x0; tÞ ¼ rðx; x0; 0Þexp �Z
kT

�h2
ðx � x0Þ2

� �
ð10Þ

With �x ¼ x � x0, we see that an initial offset rðx; x0; 0Þ decays after a

decoherence time

tD ¼ 1

g
lDB

�x

� �2

ð11Þ
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where

lDB ¼ �h

p
¼ �hffiffiffiffiffiffiffiffiffiffiffiffi

2mkT
p ð12Þ

is the thermal de Broglie length. At length scales �x � lDB, we have tD � 1=t,

such that the system decoheres rapidly and then continues with the standard

Brownian decay on the time scale 1=g.

II. OPTICAL IMPLEMENTATION OF MESOSCOPIC
QUANTUM INTERFERENCE

The possibility of interference between macroscopically distinct states (the

so-called Schrödinger cats [3]) has been suggested by Leggett [4–6] for the case

of two opposite magnetic flux states associated with a SQUID.

Recently, two experiments on Schrödinger cats have been demonstrated. In

the first one [7] the two different states j� ai are coherent states of the

vibrational motion of a 9Beþion within a one-dimensional ion trap. The

maximum separation reported between the two states corresponds to about

2jaj ¼ 6. In the second one [8] the two different states are coherent states of a

microwave field, with a maximum separation up to about 3.3.

An optical experiment would consist of generating the superposition of two

coherent states of an optical field and detecting their interference. Generating a

superposition of coherent states requires some nonlinear optical operations, and

different proposals have been formulated, based respectively on wð3Þ and wð2Þ

nonlinearities. In the first one [9] a coherent state, injected onto a wð3Þ medium,

evolves toward the superposition of two coherent states 180� out of phase with

each other. However, for all practically available wð3Þ values, the time necessary

to generate the superposition state, which scales as 1=wð3Þ, is always much

longer than the decoherence time. We recall that for a superposition

ðjai þ j � aiÞ=
ffiffiffi
2

p
of two coherent states, the decoherence time is given by

the damping time of the field, divided by the square distance ð4jaj2Þ [9].

The second proposal, by Song, Caves, and Yurke (SCY) [10], consists of an

optical parametric amplifier (OPA) pumped by a coherent field, generating an

entangled state of signal ðSÞ and readout ðRÞ modes. Passing the S mode through

a further OPA, and measuring its output field conditioned upon the photon

number on the R mode, should yield interference fringes, associated with the

coherent superposition of two separate states. However, the fringe visibility is

extremely sensitive to the R detector efficiency, and as a result the SCY

interference has not been observed so far.

We have recently introduced a modified version of SCY, whereby fringes can

still be observed at the efficiencies of currently available detectors [11]. The
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price to be paid is a very low count rate, which is, however, compensated for by

the use of a high-frequency pulsed laser source. Our setup is shown in Fig. 1.

Choosing the back-evasion condition of Ref. 12 it can be shown that the state

of the two field modes at the output of the first OPA apparatus is

jci ¼ e�iTX̂SŶR j0; 0i ð13Þ

where T ¼ 2sinhðrÞ, r being proportional to the product of the pump laser

amplitude and the nonlinear susceptibility wð2Þ of the parametric amplifier [13],

and X̂S ¼ ðâS þ âþ
S Þ=

ffiffiffi
2

p
; ŶR ¼ ðâR � âþ

R Þ=ði
ffiffiffi
2

p
Þ.

Figure 1. Layout of the proposed experiment: SHG, second harmonic generation; OPA, optical

parametric amplifiers (including polarization rotators); PBS, polarizing beam splitter; R, readout

channel; S, signal channel; D, detectors; LO, local oscillator for homodyne. The homodyne detection

is performed via a balanced scheme. The dashed–dotted box on the S channel (magnified in the

inset) denotes the optional insertion of a Mach–Zehnder interferometer with two inputs, a and c, and

one output, b. Branch c include a phase adjustment in order to build the superposition state given by

Eq. (25). When no interferometer is inserted, a coincides with b.
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In the representation of the eigenstates jxS; yRi of X̂S e ŶR; jci is written as

cðxS; yRÞ ¼ hxS; yRjci ¼ e�iTxSyRcoðxS; yRÞ ð14Þ

where coðxS; yRÞ is the wavefunction of the vacuum state.

By a photodetection measurement on mode R, we obtain the (not

normalized) state cS
n of mode S conditioned upon the photon number n on R,

that is,

cS
nðxSÞ ¼

ð1
�1

dyRcðxS; yRÞc�
nðyRÞ ð15Þ

where n is the photon number detected on R and cnðyRÞ is the number state jni in

the yR representation of the R mode.

The integral

PðnÞ ¼
ð1
�1

jcS
nðxÞj

2
dx ð16Þ

gives the probability that n photons are in mode R.

The probability distribution of xs, conditioned on the photon number in mode

R, is [13]

PðxSjnÞ ¼
jcS

nðxSÞj2

PðnÞ

¼ ð2nÞ!!ð1 þ T2=2Þð2nþ1Þ=2

p1=2n!ð2n � 1Þ!! x2n
S e�ð1þT2=2Þx2

S ð17Þ

Both the dependence of PðnÞ upon n [Eq. (16)] and the dependence of PðxjnÞ
upon x [Eq. (17)] for n between 0 and 10 have been visualized in Figs. 1 and 2 of

Ref. 11.

For n > 0 the conditional probability (17) is approximated by the sum of two

Gaussians whose distance increases with n. The width of each of the two peaks

is smaller than that corresponding to a coherent state. SCY suggested to increase

the peak separation by passing the S signal through a degenerate OPA, described

by the evolution operator

U1ðr1Þ ¼ e�r1ðâSâS�âþ
S

âþ
S
Þ ð18Þ

The output of this second OPA consists of the superposition of two near-

coherent states.
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When measuring the quadrature YS at the output of the second OPA for a

fixed photon number n detected on the R channel, interference fringes should

appear as a result of the superposition.

The probability distributions PðySjnÞ of YS for n that goes from 0 to 10 and

for T ¼ 3 are reported in Fig. 5 of Ref. 11. Of course, if we sum up several of

them with their weights PðnÞ, the interference fringes cancel out. From this fact,

it is easily understood how critical the quantum efficiency of the R

photodetector is.

Let us suppose that the R photodetector has an efficiency ZR < 1. For the

time being, we refer to a single photomultiplier detector. Selecting the laser

wavelength, the quantum efficiency of the photocatode can be ZR ¼ 0:05. If n

photons impinge on it, the probability of detecting m photons is given by the

binomial distribution

PðmjnÞ ¼ n

m

� 	
Zm

R ð1 � ZRÞn�m ð19Þ

Thus, the probability of yS conditioned by the detection of m photons on R is

given by

PZðySjmÞ ¼
X
n�m

PðySjnÞPðnjmÞ

¼
X
n�m

PðySjnÞPðmjnÞPðnÞ
NðmÞ ð20Þ

where PðnÞ is given by Eq. (16) and the normalization factor in the denominator

is NðmÞ ¼
P

n PðmjnÞPðnÞ.
The PZ are reported in Fig. 2, using the parameters chosen in [13] (T ¼ 3),

for some values of the efficiency and for m that goes from 1 to 5. With ZR ¼ 0:7
the fringes practically disappear, and therefore no superposition is observed.

The last term of Eq. (20), based on Bayes theorem, says that in order to get

the distribution of yS, conditioned by the detection of m photons, we must

consider all distributions PðySjnÞ for n � m, each one weighted by the

probability PðnjmÞ of n photons when m of them have been counted. With the

parameters considered in Ref. 13, Pðnj4Þ has the behavior reported in Fig. 3a

(we have set m ¼ 4). The uncertainty on n implies a reduction of the fringe

visibility on yS.

We aim at reducing the width of the distribution PðnjmÞ, based on the

available efficiency of commercial detectors. The only parameter that we can

change is the gain T of the first OPA. Reducing the value of gain T , the

distribution PðnÞ decays faster for increasing n. In Fig. 3b we have reported
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Pðnj4Þ for ZR ¼ 0:3 and for T ¼ 2; 1, and 0.4. In this last case we note a sharp

reduction of the probability for n > m; therefore if the detector counts m, there

is a very small probability of having n > m photons.

To confirm such a guess, we report in Fig. 4 the distributions PZðySjmÞ for

some values of T and for ZR ¼ 0:3.

The very remarkable fact is that for T ¼ 0:4, the fringe visibility is not

practically affected by lowering the quantum efficiency. An alternative detection

scheme replaces the single photomultiplier with an array of single-photon

detectors [14,15]. In such a case the binomial distribution (8) no longer holds,

and one should instead recur to Eq. (11) of Ref. 12. This change does not affect

the fringe visibility.

Lowering T has no practical influence on the separation of the two near-

coherent states at the exit of the second OPA for the same photon number m in

mode R.

However, there is a price to pay, indeed: A small T lowers the probability of

photon detection on mode R. In Fig. 5 of Ref. 9 we have reported the

distribution NðmÞ, for ZR ¼ 0:05 and T ¼ 0:4. Nð4Þ is less than 10�10; thus

even if we utilize a pulsed laser with frequency 80 MHz and select m ¼ 4, we

have less than one favorable event every 100 seconds.

Thus, we must compromise between the fringe visibility and the counting

rate.

Figure 2. Probability distribution PZðyS jmÞ of yS for T ¼ 3 and different efficiencies of the

readout detector:ZR ¼ 0:7 (dashed line), ZR ¼ 0:5 (solid line).
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A much higher counting rate is obtained by using an array of diodes

following the proposal by Paul et al. [14,15]. For four photons, the count rate is

now on the order of 10�6, thus yielding 20–80 counts per second with a laser

pulsed at an 80-MHz rate.

Figure 3. Conditional probability of an impinging photon number n when the detector registers

m ¼ 4 for (a) different efficiencies ZR at a fixed OPA gain T ¼ 3 and (b) different gains T at a fixed

efficiency ZR ¼ 0:3.
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The YS quadrature is measured via a homodyne detector. The mode S is

superposed to a reference field at frequency o, with appropriate phase, and we

measure the intensity of the superposition.

The probability that the S detector counts N photons in the resulting field, if

its efficiency is 1, is given by

PoðNÞ ¼
ðþ1

�1
hNjySicðyS � AÞ dyS

����
����
2

ð21Þ

Accounting for the photodetector efficiency ZS < 1, the count probability

becomes

PZ
o ðMÞ ¼

X
N�M

PoðNÞPðMjNÞ ð22Þ

where

PðMjNÞ ¼ N

M

� �
ZM

S ð1 � ZSÞN�M ð23Þ

In Fig. 5a we report the distributions PZ
o ðMÞ for some values ZS of the homodyne

detector efficiency in the case of a superposition of two coherent states of

opposite phase with separation 2jaj ¼ 2
ffiffiffi
5

p
. For ZS ¼ 0:8 the fringes are barely

visible.

Figure 4. As Fig. 2 but with fixed ZR ¼ 0:3; T ¼ 1 (dashed line), and T ¼ 0:4 (solid line).
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Figure 5. Photocount distribution after the homodyne detection for an input field of two

coherent states j � ai where jaj2 ¼ 5 for different homodyne detector efficiencies ZS and with a pre-

OPA set at different gains l: (a) l ¼ 1 (no pre-OPA), (b) l ¼ 0:3, (c) l ¼ 0:15. The different

horizontal scales correspond to different LO intensity for the three cases.
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We expect that use of PIN diodes should provide a high detection efficiency

[16]. However, we devise a way to improve the fringe visibility as if the

efficiency were very close to unity.

PðMjNÞ has the effect of rounding off the distribution PoðNÞ. By spreading

the distribution PoðNÞ, it becomes less sensitive to this roundoff. This can be

done by incorporating in the detection system a pre-OPA whose role consists in

separating the fringes.

Indeed, the decoherence rate is proportional to the square root of the distance

between the two states in the phase plane; thus an auxiliary OPA before the

homodyne, with gain less than unity for the xS quadrature, reduces the

separation and therefore reduces the effect of the losses.

If l ð<1Þ is the shrinking factor for xS in the auxiliary OPA, then the

probability PoðNÞ of Eq. (21) changes to

PoðNÞ ¼
ðþ1

�1
hNjySic½lðyS � AÞ� dyS

����
����
2

ð24Þ

The corresponding distributions PZ
o ðMÞ are reported for l ¼ 0:3 and 0.15 in

Figs. 5b and 5c, respectively, for the case jaj2 ¼ 5. With l ¼ 0:3 and ZS ¼ 0:7 the

fringes are well visible, confirming the validity of the proposed strategy.

Figure 5. (Continued)

quantum superpositions and decoherence 211



Notice that Fig. 5 is evaluated for a photon number around 100, for sake of

demonstration; in fact, the experiment is carried with a much higher LO

intensity.

To summarize, the opposite roles of second and third OPA consist, res-

pectively, of putting the two states of the superposition away and then

reapproaching them. This means that a measurement done in the intermediate

space region would resolve two widely separate states. The setup here proposed

is an optical implementation of the ideal experiment suggested for the same

purpose by Wigner in the case of two spin 1=2 particles, by use of two Stern–

Gerlach apparatuses [17].

III. ‘‘WHICH PATH’’ EXPERIMENT WITH A
LARGE PHOTON NUMBER

The availability of an intermediate spatial region suggests a way of transforming

the phase-space separation of the two states of the superposition into a real space

separation. Precisely, we might insert a Mach–Zehnder interferometer between

second and third OPA. The two inputs of the first beam splitter are fed,

respectively, by the superposition state ðjai þ j � aiÞ=
ffiffiffi
2

p
and by a coherent state

jgi with jgj ¼ jaj and adjustable phase. By a suitable choice of this phase, the two

separate arms A and B of the interferometer have a field given by the

superposition

jb1iAj0iB þ j0iAjb2iB ð25Þ

where jb1j ¼ jb2j ¼
ffiffiffi
2

p
jaj.

Thus, a photodetection performed on the two arms of the interferometer

would provide a photon number 2jaj2 on one arm and 0 on the other or

viceversa; however, if no measurement is performed within the interferometer,

the homodyne system at the output will detect an interference between the two

alternative paths. Adjusting the two interference arm lengths, we recover the

input states at interferometer output. This final measurement is a ‘‘which path’’

experiment, upgraded to a packet of 2jaj2 photons. So far this experiment had

been performed with only one photon, whereas in our setup it is scaled to a large

photon number.

The corresponding experiment is being carried at the National Institute of

Applied Optics (INOA) in Florence, Italy.

A first run, with an Nd:YAG mode locked laser at l ¼ 1:06 mm, was

hampered by the low efficiency of available avalanche Si detectors at that

wavelength. An improved version, using a Ti:Sa laser at l ¼ 800 nm, provides a

much better matching within the peak efficiency of the Si detectors. Preliminary

reconstructions of the Wigner function of the superposition state have already

tested the soundness of the proposed scheme.
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I. INTRODUCTION

In the present chapter we investigate a general model of quantum system

interacting with a bosonic reservoir via a Hamiltonian of the form

H ¼ H0 þ lHI

where H0 is called the free Hamiltonian and HI is called the interaction

Hamiltonian.

The stochastic golden rules, which arise in the stochastic limit of quantum

theory as natural generalizations of Fermi golden rule [1,2], provide a natural

tool to associate a stochastic flow, driven by a white noise (stochastic

Schrödinger) equation, with any discrete system interacting with a quantum
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field. This white noise Hamiltonian equation, when put in normal order,

becomes equivalent to a quantum stochastic differential equation. The Langevin

(stochastic Heisenberg) and master equations are deduced from this white noise

equation by means of standard procedures that are described in Ref. 1.

We use these equations to investigate the decoherence in quantum systems.

In Ref. 3, extending previous results obtained with perturbative techniques in

Ref. 9, it was shown in the example of the spin–boson Hamiltonian that the

decoherence in quantum systems can be controlled by the following constants

(c.f. Section 2 for the definition of the quantities involved):

ReðgjgÞþo ¼
ð

dk jgðkÞj22pdðoðkÞ � oÞNðkÞ

In this chapter we extend the approach of Ref. 3 from two-level systems to

arbitrary quantum systems with discrete spectrum. Our results show that the

stochastic limit technique gives us an effective method to control quantum

decoherence.

We find that in the above-mentioned interaction, all the off-diagonal matrix

elements, of the density matrix of a generic discrete quantum system, will decay

exponentially if ReðgjgÞ are nonzero. In other words, we obtain the asymptotic

diagonalization of the density matrix.

Moreover, we show that for the generic quantum system the off-diagonal

elements of the density matrix decay exponentially as expð�N ReðgjgÞtÞ, with

the exponent proportional to the number N of particles in the system. Therefore

for generic macroscopic (large N) systems the quantum state will collapse into

the classic state very quickly. This effect was built in by hands in several

phenomenological models of the quantum measurement process. In the

stochastic limit approach it is deduced from the Hamiltonian model.

This observation contributes to the clarification of one of the old problems of

quantum theory: Why do macroscopic systems usually behave classically? That

is, why do we observe classic states although the evolution of the system is a

unitary operator described by the Schrödinger equation?

The quantum Markov semigroup we obtain leaves invariant the algebra

generated by the spectral projections of the system Hamiltonian; and the

associated master equation, when restricted to the diagonal part of the density

matrix, takes the form of a standard classic kinetic equation. This master

equation describes the convergence to equilibrium (Gibbs state) of the system,

coupled with the given reservoir (quantum field).

Summing up: The convergence to equilibrium is a result of quantum

decoherence.

If we can control the interaction so that some of the constants ReðgjgÞ are

zero, then the corresponding matrix elements will not decay in the stochastic
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approximation—that is, in a time scale that is extremely long with respect to the

slow clock of the discrete system. In this sense the stochastic limit approach

provides a method for controlling quantum coherence.

The general idea of the stochastic limit (see Ref. 1) is to make the time

rescaling t ! t=l2 in the solution of the Schrödinger (or Heisenberg) equation

in the interaction picture U
ðlÞ
t ¼ eitH0 e�itH , associated to the Hamiltonian H,

that is,

q
qt

U
ðlÞ
t ¼ �ilHIðtÞUðlÞ

t

with HIðtÞ ¼ eitH0 HIe
�itH0 . This gives the rescaled equation

q
qt

U
ðlÞ
t=l2 ¼ � i

l
HIðt=l2ÞUðlÞ

t=l2 ð1Þ

and one wants to study the limits, in a topology to be specified,

lim
l!0

U
ðlÞ
t=l2 ¼ Ut; lim

l!0

1

l
HI

t

l2

� �
¼ Ht ð2Þ

The limit l ! 0 after the rescaling t ! t=l2 is equivalent to the simultaneous

limit l ! 0, t ! 1 under the condition that l2t tends to a constant (interpreted

as a new slow time scale). This limit captures the dominating contributions to

the dynamics, in a regime of long times and small coupling, arising from the

cumulative effects, on a large time scale, of small interactions ðl ! 0Þ. The

physical idea is that, when observed from the slow time scale of the atom,

the field looks like a very chaotic object: a quantum white noise, that is, a

d-correlated (in time) quantum field b	ðt; kÞ; bðt; kÞ also called a master field.

The structure of the present chapter is as follows.

In Section II we introduce the model and consider its stochastic limit.

In Section III we derive the Langevin equation.

In Section IV we derive the master equation for the density matrix and show

that for nonzero decoherence the master equation describes the collapse of the

density matrix to the classic Gibbs distribution and discusses the connection of

this fact with the procedure of quantum measurement.

In Section V, using the characterization of quantum decoherence obtained in

Section IV and generalizing arguments of Ref. 3, we find that our general model

exhibits macroscopic quantum effects (in particular, conservation of quantum

coherence). These effects are controllable by the state of the reservoir (that can

be controlled by filtering).
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In Section VI we apply our general scheme to the model of a quantum system

of spins interacting with a bosonic field and derive a quantum extension of the

Glauber dynamics.

Thus our stochastic limit approach provides a microscopic interpretation, in

terms of fundamental Hamiltonian models, of the dynamics of quantum spin

systems. Moreover, we deduce the full stochastic equation and not only the

master equation. This is new even in the case of classic spin systems.

II. THE MODEL AND ITS STOCHASTIC LIMIT

In the present paper we consider a general model, describing the interaction of a

system S with a reservoir, represented by a bosonic quantum field. Particular

cases of this general model were investigated in [3–5]. The total Hamiltonian is

H ¼ H0 þ lHI ¼ HS þ HR þ lHI

where HR is the free Hamiltonian of a bosonic reservoir R:

HR ¼
ð
oðkÞa	ðkÞaðkÞ dk

acting in the representation space F corresponding to the state h�i of bosonic

reservoir generated by the density matrix N that we take in the algebra of spectral

projections of the reservoir Hamiltonian. The reference state h�i of the field is a

mean zero gauge invariant Gaussian state, characterized by the second-order

correlation function equal to

haðkÞa	ðk0Þi ¼ ðNðkÞ þ 1Þdðk � k0Þ
ha	ðkÞaðk0Þi ¼ NðkÞdðk � k0Þ

where the function NðkÞ describes the density of bosons with frequency k. One of

the examples is the (Gaussian) bosonic equilibrium state at temperature b�1.

The system Hamiltonian has the following spectral decomposition:

HS ¼
X

r

erPer

where the index r labels the spectral projections of HS. For example, for a

nondegenerate eigenvalue er of HS the corresponding spectral projection is

Per
¼ jeriherj

where jeri is the corresponding eigenvector.
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The interaction Hamiltonian HI (acting in HS �F) has the form

HI ¼
X

j

ðD	
j � AðgjÞ þ Dj � A	ðgjÞÞ; AðgÞ ¼

ð
dk�gðkÞaðkÞ

where AðgÞ is a smeared quantum field with cutoff function (form factor) gðkÞ. To

perform the construction of the stochastic limit, one needs to calculate the free

evolution of the interaction Hamiltonian: HIðtÞ ¼ eitH0 HIe
�itH0 .

Using the identity

1 ¼
X

r

Per

we write the interaction Hamiltonian in the form

HI ¼
X

j

X
rr0

Per
D	

j Pe0r

ð
dk�gjðkÞaðkÞ þ h:c: ð3Þ

Let us introduce the set of energy differences (Bohr frequencies)

F ¼ fo ¼ er � er0 : er; er0 2 Spec HSg

and the set of all energies of the form

Fo ¼ fer : 9er0 ðer; er0 2 Spec HSÞ such that er � er0 ¼ og

With these notations we rewrite the interaction Hamiltonian (3) in the form

HI ¼
X

j

X
o2F

X
er2Fo

Per
D	

j Per�o

ð
dk�gjðkÞaðkÞ þ h:c:

¼
X

j

X
o2F

E	
oðDjÞ

ð
dk�gjðkÞaðkÞ þ h:c: ð4Þ

where

EoðXÞ :¼
X
er2Fo

Per�oXPer
ð5Þ

It is easy to see that the free volution of EoðXÞ is

eitHS EoðXÞe�itHS ¼ e�itoEoðXÞ
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Using the formula for the free evolution of bosonic fields

eitHR aðkÞe�itHR ¼ e�itoðkÞaðkÞ

we obtain the following for the free evolution of the interaction Hamiltonian:

HIðtÞ ¼
X

j

X
o2F

E	
oðDjÞ

ð
dk�gjðkÞe�itðoðkÞ�oÞaðkÞ þ h:c: ð6Þ

In the stochastic limit the field HIðtÞ gives rise to a family of quantum white

noises, or master fields. To investigate these noises, let us suppose the following:

1. oðkÞ � 0; 8 k.

2. The (d � 1)-dimensional Lebesgue measure of the surface fk : oðkÞ ¼ 0g
is equal to zero (so that dðoðkÞÞ ¼ 0) (e.g., oðkÞ ¼ k2 þ m with m � 0).

Now let us investigate the limit of HIðt=l2Þ using one of the basic formulae

of the stochastic limit:

lim
l!0

1

l2
exp

it

l2
f ðkÞ

� �
¼ 2pdðtÞdð f ðkÞÞ ð7Þ

which shows that the term dð f ðkÞÞ in (7) is not identically equal to zero only if

f ðkÞ ¼ 0 for some k in a set of nonzero (d � 1)-dimensional Lebesgue measure.

This explains condition (2) above.

The rescaled interaction Hamiltonian is expressed in terms of the rescaled

creation and annihilation operators

al;oðt; kÞ ¼ 1

l
e
�i t

l2 ðoðkÞ�oÞ
aðkÞ; o 2 F

After the stochastic limit, every rescaled annihilation operator corresponding to

any transition from er0 to er with the frequency o ¼ er � er0 generates nontrivial

quantum white noise

boðt; kÞ ¼ lim
l!0

al;oðt; kÞ ¼ lim
l!0

1

l
e
�i t

l2 ðoðkÞ�oÞ
aðkÞ

with the relations

½boðt; kÞ; b	
oðt0; k0Þ� ¼ lim

l!0
½al;oðt; kÞ; a	

l;oðt0; k0Þ�

¼ lim
l!0

1

l2
e
�it�t0

l2 ðoðkÞ�oÞdðk � k0Þ

¼ 2pdðt � t0ÞdðoðkÞ � oÞdðk � k0Þ
½boðt; kÞ; b	

o0 ðt0; k0Þ� ¼ 0

ð8Þ
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[c.f. (7)]. This shows, in particular that quantum white noises, corresponding to

different Bohr frequencies, are mutually independent.

The stochastic limit of the interaction Hamiltonian is therefore equal to

hðtÞ ¼
X

j

X
o2F

E	
oðDjÞ

ð
dk�gjðkÞboðt; kÞ þ h:c: ð9Þ

The state on the master field (white noise) boðt; kÞ, corresponding to our

choice of the initial state of the field, is the mean zero gauge invariant Gaussian

state with correlations:

hb	
oðt; kÞboðt0; k0Þi ¼ 2pdðt � t0ÞdðoðkÞ � oÞdðk � k0ÞNðkÞ

hboðt; kÞb	
oðt0; k0Þi ¼ 2pdðt � t0ÞdðoðkÞ � oÞdðk � k0ÞðNðkÞ þ 1Þ

and vanishes for noises corresponding to different Bohr frequences.

Now let us investigate the evolution equation in the interaction picture for

our model. According to the general scheme of the stochastic limit, we obtain

the (singular) white noise equation

d

dt
Ut ¼ �ihðtÞUt ð10Þ

whose normally ordered form is the quantum stochastic differential equation [6]

dUt ¼ ð�idHðtÞ � GdtÞUt ð11Þ

where hðtÞ is the white noise Hamiltonian (9) given by the stochastic limit of the

interaction Hamiltonian and

dHðtÞ ¼
X

j

X
o2F

ðE	
oðDjÞdBjoðtÞ þ EoðDjÞdB	

joðtÞÞ ð12Þ

dBjoðtÞ ¼
ð

dk�gjðkÞ
ðtþdt

t

boðt; kÞ dt ð13Þ

According to the stochastic golden rule (11) the limit dynamical equation is

obtained as follows: The first term in (11) is just the limit of the iterated series

solution for (1)

lim
l!0

1

l

ðtþdt

t

HI

t

l2

� �
dt
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The second term, Gdt, called the drift, is equal to the limit of the expectation

value in the reservoir state of the second term in the iterated series solution for (1)

lim
l!0

1

l2

ðtþdt

t

dt1

ðt1

t

dt2 HI

t1

l2

� �
HI

t2

l2

� �� �

Making in this formula the change of variables t ¼ t2 � t1 we get

lim
l!0

1

l2

ðtþdt

t

dt1

ð0

t�t1

dt HI

t1

l2

� �
HI

t1

l2
þ t

l2

� �� �
ð14Þ

Computing the expectation value and using the fact that the limits of oscillating

factors of the form liml!0eict1=l
2

vanish unless the constant c is equal to zero, we

see that we can have a nonzero limit only when all oscillating factors of a kind

eict1=l
2

(with t1) in (14) cancel. In conclusion we obtain

G ¼
X

ij

X
o2F

ð0

�1
dt

ð
dkgiðkÞgjðkÞeitðoðkÞ�oÞðNðkÞ þ 1ÞE	

oðDiÞEoðDjÞ
�

þ
ð

dkgiðkÞgjðkÞe�itðoðkÞ�oÞNðkÞEoðDiÞE	
oðDjÞ

�

and therefore from the formula

ð0

�1
eitodt ¼ �i

o� i0
¼ pdðoÞ � i P:P:

1

o
ð15Þ

we obtain the following expression for the drift G:

X
ij

X
o2F

ð
dkgiðkÞgjðkÞ

�
�iðNðkÞ þ 1Þ
oðkÞ � o� i0

E	
oðDiÞEoðDjÞ

þ
ð

dkgiðkÞgjðkÞ
iNðkÞ

oðkÞ � oþ i0
EoðDiÞE	

oðDjÞ
�

¼
X

ij

X
o2F

ððgijgjÞ�oE	
oðDiÞEoðDjÞ þ ðgijgjÞ

þ
oEoðDiÞE	

oðDjÞÞ ð16Þ

Let us note that for (16) we have the following Cheshire Cat effect found in

Ref. 3: Even if the frequency o is negative and therefore does not generate a

quantum white noise, the corresponding values ðgjgÞ�o in (16) will be nonzero. In

other words, negative Bohr frequencies contribute to an energy shift in the

system, but not to its damping.
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Remark. If F is any subset of Spec HS and Xr are arbitrary bounded operators

on HS, then for any t 2 R we have

eitHS

X
er2F

Per
XrPer

¼
X
er2F

eiter Per
XrPer

¼
X
er2F

Per
XrPer

eitHS

In other words,
P

er2F Per
XrPer

belongs to the commutant L1ðHSÞ0 of the abelian

algebra L1ðHSÞ, generated by the spectral projections of HS.

A corollary of this remark is that, for each o 2 F, for any bounded operator

X 2 L1ðHSÞ0 and for each pair of indices ði; jÞ the operators

EoðDiÞXE	
oðDjÞ; E	

oðDiÞXEoðDjÞ ð17Þ

belong to the commutant L1ðHSÞ0 of L1ðHSÞ. In particular, if HS has

nondegenerate spectrum so that L1ðHSÞ is a maximal abelian subalgebra of

BðHSÞ, the operators (17) also belong to L1ðHSÞ.

III. THE LANGEVIN EQUATION

Now we will find the Langevin equation, which is the limit of the Heisenberg

evolution, in interaction representation. Let X be an observable. The Langevin

equation is the equation satisfied by the stochastic flow jt, defined by

jtðXÞ ¼ U	
t XUt

where Ut satisfies Eq. (11) in the previous section, that is,

dUt ¼ ð�idHðtÞ � GdtÞUt ð18Þ

To derive the Langevin equation we consider

djtðXÞ ¼ jtþdtðXÞ � jtðXÞ ¼ dU	
t XUt þ U	

t XdUt þ dU	
t XdUt ð19Þ

The only nonvanishing products in the quantum stochastic differentials are

dBioðtÞdB	
joðtÞ ¼ 2ReðgijgjÞ�o dt; dB	

ioðtÞ dBjoðtÞ ¼ 2Re ðgijgjÞþo dt ð20Þ

Combining the terms in (19) and using (18), (12), (16), and (20), we get the

Langevin equation

djtðXÞ ¼
X
a

jt � yaðXÞ dMaðtÞ ¼
X

n¼�1;1; jo

jt � ynjoðXÞdMnjoðtÞ þ jt � y0ðXÞ dt

ð21Þ
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where

dM�1; joðtÞ ¼ dBjoðtÞ; y�1; joðXÞ ¼ �i½X;E	
oðDjÞ� ð22Þ

dM1; joðtÞ ¼ dB	
joðtÞ; y1; joðXÞ ¼ �i½X;EoðDjÞ� ð23Þ

and

y0ðXÞ ¼
X

ij

X
o2F

�i ImðgijgjÞ�o ½X;E	
oðDiÞEoðDjÞ�

�

þ i ImðgijgjÞþo ½X;EoðDiÞE	
oðDjÞ�

þ 2 ReðgijgjÞ�o E	
oðDiÞXEoðDjÞ �

1

2
fX;E	

oðDiÞEoðDjÞg
� �

þ 2 ReðgijgjÞþo EoðDiÞXE	
oðDjÞ �

1

2
fX;EoðDiÞE	

oðDjÞg
� ��

ð24Þ

is a quantum Markovian generator. The structure map y0ðXÞ has the standard

form of the generator of a master equation [7]:

y0ðXÞ ¼ �ðXÞ � 1

2
f�ð1Þ;Xg þ i½H;X�

where � is a completely positive map and H is self-adjoint. In our case �ðXÞ is a

linear combination of terms of the type

E	
oðDiÞXEoðDjÞ

Remark. A corollary of the remark at the end of Section II is that the

Markovian generator y0 maps L1ðHSÞ0 into itself. Moreover, if X in (24) belongs

to the L1ðHSÞ, then the Hamiltonian part of y0ðXÞ vanishes and only the

dissipative part remains. In particular, if HS has nondegenerate spectrum, then

y0ðXÞ maps L1ðHSÞ and has the form

y0ðXÞ ¼
X

ij

X
o2F

ð2ReðgijgjÞ�o ðE	
oðDiÞXEoðDjÞ � XE	

oðDiÞEoðDjÞÞ

þ 2ReðgijgjÞþo ðEoðDiÞXE	
oðDjÞ � XEoðDiÞE	

oðDjÞÞÞ

for any X 2 L1ðHSÞ.

In Ref. 8 the following theorem was proved.
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Theorem. For any pair of operators in the system algebra X, Y , the structure

maps in the Langevin equation (21) satisfy the equation

yaðXYÞ ¼ yaðXÞY þ XyaðYÞ þ
X
b;g

cbga ybðXÞygðYÞ

where the structure constants cbga is given by the Ito table:

dMbðtÞdMgðtÞ ¼
X
a

cbga dMaðtÞ

The conjugation rules of dMaðtÞ and ya are connected in such a way that

formula (21) defines a 	-flow (	 � jt ¼ jt � 	).

Let us now investigate the master equation for the density matrix r.

We will show that if the reservoir is in the equilibrium state at temperature

b�1, then for the generic system with decoherence the solution of the master

equation rðtÞ with t ! 1 tends to the classic Gibbs state with the same

temperature b�1. This phenomenon realizes the quantum measurement

procedure: The quantum state (density matrix) collapses into the classic state.

To show this we use the control of quantum decoherence that was found in

the stochastic approximation of quantum theory (see Ref. 3 and discussion

below).

Let us consider the evolution of the state (positive normed linear functional

on system observables) given by the density matrix r; rðXÞ ¼ tr r̂X. The

evolution of the state is defined as follows:

rt ¼ j	t ðrÞ ¼ r � jt

Therefore from (21) we obtain the evolution equation:

drtðXÞ ¼ r � djtðXÞ ¼ r �
X
a

jt � yaðXÞ dMaðtÞ ¼
X
a

rtðyaðXÞ dMaðtÞÞ

Only the stochastic differential dt in this formula will survive and we obtain the

master equation

d

dt
rtðXÞ ¼ rt � y0ðXÞ � y	0ðrtÞðXÞ ð25Þ

Let us consider the density matrix r̂ ¼ r̂S � r̂R,

r̂S;t ¼
X
m;n

rðm; n; tÞjmihnj

where jmi; jni are eigenvectors of the system Hamiltonian HS.

quantum decoherence and the glauber dynamics 225



Using the form (24) of y0, the master equation (25) will take the form

X
m;n

d

dt
rðm; n; tÞjmihnj ¼

X
m;n

rðm; n; tÞ

X
ij

X
o2F

�
�i ImðgijgjÞ�o ðjmihnjwoðenÞD	

i Pen�oDjPen�woðemÞPemD	
i Pem�oDjjmihnjÞ

þ 2ReðgijgjÞ�o
�
woðem þ oÞwoðen þ oÞPemþoD	

i jmihnjDjPenþo

� 1

2
ðjmihnjwoðenÞD	

i Pen�oDjPen þ woðemÞPemD	
i Pem�oDjjmihnjÞ

�
þ i ImðgijgjÞþo ðjmihnjwoðen þ oÞDiPenþoD	

j Pen � woðem þ oÞ

� PemDiPemþoD	
j jmihnjÞ þ 2ReðgijgjÞþo

�
woðemÞwoðenÞPem�oDijmihnjD	

j Pen�o

� 1

2
ðjmihnjwoðen þ oÞDiPenþoD	

j Pen þ woðem þ oÞPemDiPemþoD	
j jmihnjÞ

��
ð26Þ

where woðemÞ ¼ 1 if em 2 Fo and equals 0 otherwise.

IV. DYNAMICS FOR GENERIC SYSTEMS

Let us investigate the behavior of a system with dynamics defined by (26). This

dynamics will depend on the Hamiltonian of the system.

We will call the Hamiltonian HS generic, if:

1. The spectrum Spec HS of the Hamiltonian is nondegenerate.

2. For any Bohr frequency o there exists a unique pair of energy levels e,

e0 2 Spec HS, such that

o ¼ e� e0

We investigate (26) for generic Hamiltonian. We also consider the case of one

test function giðkÞ ¼ gðkÞ, although this is not important. In this case the

Markovian generator y0 takes the form

y0ðXÞ ¼
X
s;s0

jhs0jDjsij2
�
�i ImðgjgÞ�ss0 ½X; jsihsj� þ 2ReðgjgÞ�ss0

� jsihsjhs0jXjs0i � 1

2
fX; jsihsjg

� �
þ i ImðgjgÞþss0 ½X; js0ihs0j�

þ 2ReðgjgÞþss0

�
js0ihs0jhsjXjsi � 1

2
fX; js0ihs0jg

��
ð27Þ
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Here we use the notion

ðgjgÞms ¼ ðgjgÞem�es

Notice that the factors ReðgjgÞ�ss0 are > 0 only for es > es0 and vanish for the

opposite case.

It is easy to see that the terms in (27) of the form

jsihsjhs0jXjs0i

for off-diagonal elements of the density matrix X ¼ jmihnj are equal to zero. We

will show that in such case Eq. (26) will predict fast damping of the states of the

kind jmihnj.
In the nongeneric case one can expect the fast damping of the state jmihnj

with different energies em and en.

With the given assumptions the action of y0 on the off-diagonal matrix unit

jmihnj; em 6¼ en is equal to Amnjmihnj, where the number Amn is given by the

following:

Amn ¼
X
s

ð�i ImðgjgÞ�msjhsjDjmij2 þ i ImðgjgÞ�nsjhsjDjnij2

þ i ImðgjgÞþsmjhmjDjsij2 � i ImðgjgÞþsnjhnjDjsij2 � ReðgjgÞ�msjhsjDjmij2

� ReðgjgÞ�nsjhsjDjnij2 � ReðgjgÞþsmjhmjDjsij2 � ReðgjgÞþsnjhnjDjsij2Þ
ð28Þ

The map y0 multiplies off-diagonal matrix elements of the density matrix r̂S

by a number Amn. Let us note that

ReAmn � 0

We will prove in the present section that for generic Hamiltonian the map y	0
mixes diagonal elements of the density matrix but does not mix diagonal and

off-diagonal elements (the action of y	0 on-diagonal element is equal to the

linear combination of diagonal elements). Therefore

j	t ðjmihnjÞ ¼ expðAmntÞjmihnj

We see that if any of the ReðgjgÞjhbjDjaij2 in (28) is nonzero, then the

corresponding off-diagonal matrix element of the density matrix decays. We

obtain an effect of the diagonalization of the density matrix. This gives an

effective criterium for quantum decoherence in the stochastic approximation:

The system will exhibit decoherence if the constants ReðgjgÞ� are nonzero.
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Now we estimate the velocity of decay of the density matrix jmihnj for a

quantum system with N particles. The eigenstate jmi of the Hamiltonian of such

a system can be considered as a tensor product over degrees of freedom of the

system of some substates. Let us estimate from below the number of degrees of

freedom of the system by the number of particles that belong to the system (for

each particle we have few degrees of freedom). To obtain the estimate from

below for the velocity of decay we assume that jhsjDjmij2 in (28) is nonzero

only if the state s differs from the state m only for one degree of freedom.

Then the summation over o (or equivalently over s) in (28) can be estimated

by the summation over the degrees of freedom, or over particles belonging to

the system. If we have total decoherence, [i.e., all ReðgjgÞ are nonzero] then,

taking all corresponding jhsjDjmij2 ¼ 1, we can estimate (28) as �NReðgjgÞ,
where N is the number of particles in the system, or

j	t ðjmihnjÞ ¼ expð�NReðgjgÞtÞjmihnj ð29Þ

The off-diagonal element of the density matrix decays exponentially, with the

exponent proportional to the number of particles in the system. Therefore for

macroscopic (large N) systems with decoherence the quantum state will collapse

into the classic state very quickly.

This observation clarifies why macroscopic quantum systems usually behave

classically. Equation (29) describes such a type of behavior, predicting that the

quantum state damps at least as quickly as expð�NReðgjgÞtÞ. Therefore a macro-

scopic system (large N) will become classic in a time of order ðNReðgjgÞÞ�1
.

In the final section of this chapter we will illustrate the collapse

phenomenon (29) using the quantum extension of the Glauber dynamics for a

system of spins.

We see that the stochastic limit predicts the collapse of a quantum state into

a classic state and, moreover, allows us to estimate the velocity of the

collapse (29). One can consider (29) as a more detailed formulation of the Fermi

golden rule: The Fermi golden rule predicts exponential decay of quantum

states; formula (29) also relates the speed of the decay to the dimensions

(number of particles) of the system.

Consider now the system density matrix r̂S 2 C, where C is the algebra

generated by the spectral projections of the system Hamiltonian HS, and

consider the master equation (27) (we consider the generic case). We will find

that the evolution defined by this master equation will conserve the algebra C
and therefore will be a classic evolution. We will show that this classic evolution

in fact describes quantum phenomena.

For r̂S;t 2 C we define the evolved density matrix of the system

r̂S;t ¼
X
s

rðs; tÞjsihsj
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For this density matrix the master equation (25) takes the form

d

dt
rðs; tÞ ¼

X
s0

ðrðs0; tÞð2ReðgjgÞ�s0sjhsjDjs0ij2 þ 2ReðgjgÞþss0 jhs0jDjsij2Þ

� rðs; tÞð2ReðgjgÞþs0sjhsjDjs0ij2 þ 2ReðgjgÞ�ss0 jhs0jDjsij2ÞÞ
ð30Þ

Let us note that if rðs; tÞ satisfies the detailed balance condition

rðs; tÞ2ReðgjgÞ�ss0 ¼ rðs0; tÞ2ReðgjgÞþss0 ð31Þ

then rðs; tÞ is the stationary solution for (30).

Let us investigate (30) and (31) for the equilibrium state of the field. In this

case

2ReðgjgÞ�ss0 ¼ 2p
ð

dk jgðkÞj2dðoðkÞ þ es0 � esÞ
1

1 � e�boðkÞ

¼ 2p
ð

dk jgðkÞj2dðoðkÞ þ es0 � esÞ
1

1 � e�bðes�es0 Þ

¼ Css0

1 � e�bðes�es0 Þ
2ReðgjgÞþss0 ¼

Css0

ebðes�es0 Þ � 1

Equation (30) takes the form

d

dt
rðs; tÞebes ¼

X
s0

Css0 jhs0jDjsij2 � Cs0sjhsjDjs0ij2

1 � e�bðes�es0 Þ

� ðrðs0; tÞebes0 � rðs; tÞebesÞ ð32Þ

Let us note that Css0 are nonzero (and therefore positive) only if denominators in

(32) are positive, and Cs0s are nonzero only if the corresponding denominators

are negative.

If the system possesses decoherence, then Css0 and Cs0s are nonzero and the

solution of Eq. (32) for t ! 1 tends to the stationary solution given by the

detailed balance condition (31)

rðs; tÞ
1 � e�bðes�es0 Þ

¼ rðs0; tÞ
ebðes�es0 Þ � 1

or

rðs; tÞebes ¼ rðs0; tÞebes0
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This means that the stationary solution (31) of (30) describes the equilibrium

state of the system

rðs; tÞ ¼ e�besP
s0 e�bes0

For a system with decoherence the density matrix will tend, as t ! 1, to the

stationary solution (31) of (30). In particular, as t ! 1, the density matrix

collapses to the classic Gibbs distribution.

The phenomenon of a collapse of a quantum state into a classic state is

connected with the quantum measurement procedure. The quantum uncertainty

will be concentrated at the degrees of freedom of the quantum field and vanishes

after the averaging procedure. One can speculate that the collapse of the

wavefunction is a property of open quantum systems: We can observe the

collapse of the wavefunction of the system averaging over the degrees of

freedom of the reservoir interacting with the system. Usually the collapse of a

wavefunction is interpreted as a projection onto a classic state (the von

Neumann interpretation). The picture emerging from our considerations is more

general: The collapse is a result of the unitary quantum evolution and

conditional expectation (averaging over the degrees of freedom of quantum

field). This is a generalization of the projection: It is easy to see that every

projection P generates a (nonidentity preserving) conditional expectation

EPðXÞ ¼ PXP; more generally, a set of projections Pi generates the conditional

expectation X
i

aiEPi
; ai � 0

but not every conditional expectation could be given in this way.

We have found the effect of the collapse of density matrix for

rðtÞ ¼ hUtrU	
t i, where Ut ¼ liml!0eitH0 e�itH is the stochastic limit of

interacting evolution. The same effect of collapse will be valid for the limit

of the full evolution e�itH , because the full evolution is the composition of

interacting and free evolution. The free evolution leaves invariant the elements

of diagonal subalgebra and multiplies the above-considered nondiagonal

element js0ihsj by the oscillating factor eitðes0 �esÞ. Therefore for the full

evolution we obtain the additional oscillating factor, and the collapse

phenomenon will survive.

V. CONTROL OF COHERENCE

In this section we generalize the approach of Ref. 3 and investigate different

regimes of qualitative behavior for the considered model.
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The master equation (30) at first sight looks completely classic. In this

chapter we derived this equation using quantum arguments. Now we will show

that (30) in fact describes a quantum behavior. To show this we consider the

following example.

Let us rewrite (30) using the particular form (16) of ðgjgÞ�. Using (15)

and (16), we obtain

d

dt
rðs; tÞ¼

X
s0

2p
ð

dk jgðkÞj2ððNðkÞ þ 1Þðrðs0; tÞdðoðkÞ þ es � es0 ÞjhsjDjs0ij2

� rðs; tÞdðoðkÞ þ es0 � esÞjhs0jDjsij2Þ
þ NðkÞðrðs0; tÞdðoðkÞ þ es0 � esÞhs0jDjsij2

� rðs; tÞdðoðkÞ þ es � es0 ÞjhsjDjs0ij2Þ ð33Þ

The first term (integrated with NðkÞ þ 1) on the right-hand side of this

equation describes the emission of bosons, and the second term (integrated

with NðkÞ) describes the absorption of bosons. For the emission term the part

with NðkÞ describes the induced emission, and the part with 1 describes the

spontaneous emission of bosons.

Let us note that the Einstein relation for probabilities of emission and

absorption of bosons with quantum number k

probability of emission

probability of absorption
¼ NðkÞ þ 1

NðkÞ

is satisfied in the stochastic approximation.

Formula (33) describes a macroscopic quantum effect. To show this let us

take the spectrum of a system Hamiltonian (the set of system states � ¼ fsg) as

follows: Let � contain two groups �1 and �2 of states with the energy gap

between these groups (or, for simplicity, two states s1 and s2 with es2
> es1

).

This type of Hamiltonian was considered in different models of quantum optics;

for a review see Ref. 10 (for the case of two states we get the spin–boson

Hamiltonian investigated in [3] using the stochastic limit). Let the state h�i of

the bosonic field be taken in such a way that the density NðkÞ, of quanta of the

bosonic field, has support in a set of momentum variables k such that

0 < oðkÞ < o0 < jes1
� es2

j; k 2 supp NðkÞ ð34Þ

This means that high-energetic bosons are absent. It is natural to consider the

state h�i as a sum of an equilibrium state at temperature b�1 and an

nonequilibrium part. Therefore the density NðkÞ will be nonzero for small k

because the equilibrium state satisfies this property.
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Under the considered assumption (34) the integral of d-function dðoðkÞþ
es1

� es2
Þ with NðkÞ in (33) is identically equal to zero. Therefore the right-

hand side of (33) will be equal toX
s0

2p
ð

dk jgðkÞj2ðrðs0; tÞdðoðkÞ þ es � es0 ÞjhsjDjs0ij2

� rðs; tÞdðoðkÞ þ es0 � esÞjhs0jDjsij2Þ

It is natural to consider this value (corresponding to the spontaneous emission of

bosons by the system) as small with respect to the induced emission (for

NðkÞ � 1). In this case the density matrix rðs; tÞ will be almost constant in time.

This is an effect of conservation of quantum coherence: In the absence of bosons

with the energy oðkÞ equal to es1
� es2

the system cannot jump between the

states s1 and s2 (or, at least, this transition is very slow), because in the

stochastic limit such a jump corresponds to quantum white noise that must be on

a mass shell.

At the same time, the transitions between states inside the groups �1 and �2

are not forbidden by (34), because these transitions are connected with the soft

bosons (with small k) that are present in the equilibrium part of h�i. In the above,

the assumptions equation (33) describes the transition of the system to

intermediate equilibrium, where the transitions between groups of states �1 and

�2 are forbidden.

If the state h�i does not satisfy the property (34), then the system undergoes

fast transitions between states s1 and s2. We can switch on such a transition by

switching on the bosons with the frequency oðkÞ ¼ es2
� es1

.

In conclusion, Eq. (33) describes a macroscopic quantum effect controlled by

the distribution of bosons NðkÞ which can be physically controlled, for example,

by filtering.

VI. THE GLAUBER DYNAMICS

In the present section we apply the master equation (30) to the derivation of the

quantum extension of the classic Glauber dynamics. The Glauber dynamics is a

dynamics for a spin lattice with nearest-neighbor interaction (see Refs. 11 and

12). We will prove that the Glauber dynamics can be considered as a dynamics

generated by the master equation of the type (30) derived from a stochastic limit

for a quantum spin system interacting with a bosonic quantum field.

We take the bosonic reservoir space F corresponding to the bosonic

equilibrium state at temperature b�1. Thus the reservoir state is Gaussian with

mean zero and correlations given by

ha	ðkÞaðk0Þi ¼ 1

eboðkÞ � 1
dðk � k0Þ
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For simplicity we only consider the case of a one-dimensional spin lattice,

but our considerations extend without any change to multidimensional spin

lattices.

The spin variables are labeled by integer numbers Z; and for each finite

subset � � Z with cardinality j�j, the system Hilbert space is

HS ¼ H� ¼ �r2�C2

and the system Hamiltonian has the form

HS ¼ H� ¼ � 1

2

X
r;s2�

Jrssz
rs

z
s

where sx
r , sy

r , sz
r are Pauli matrices ðr 2 �Þ at the rth site in the tensor product

si
r ¼ 1 � � � � � 1 � si � 1 � � � � � 1

For any r, s 2 �

Jrs ¼ Jsr 2 R; Jrr ¼ 0

We consider for simplicity the system Hamiltonian that describes the interaction

of spin with the nearest neighbors (Ising model):

Jrs ¼ Jr;rþ1

The interaction Hamiltonian HI (acting in HS �F) has the form

HI ¼
X
r2�

sx
r � cðgrÞ; cðgÞ ¼ AðgÞ þ A	ðgÞ; AðgÞ ¼

ð
dk �gðkÞaðkÞ

where c is a field operator, and AðgÞ is a smeared quantum field with cutoff

function (form factor) gðkÞ.
The eigenvectors jsi of the system Hamiltonian HS can be labeled by spin

configurations s (sequences of �1), which label the natural basis in HS

consisting of tensor products of eigenvectors of sz
r (spin-up and spin-down

vectors jeri, corresponding to eigenvalues er ¼ �1)

jsi ¼ �r2�jeri

In the present section we denote er the energy of the spin at site r and denote

EðsÞ the energy of the spin configuration s:

EðsÞ ¼ � 1

2

X
r;s2�

Jrseres
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The action of the operator sx
r on the spin configuration s is defined using the

action of sx
r on the corresponding eigenvector jsi, so the operator sx

r flips the

spin at the rth site in the sequence s (i.e., it maps the vector jeri in the tensor

product into the vector j� eri). From the form of HS and HI it follows that in

(30) the matrix element hsjDjs0i of any two eigenvectors, corresponding to the

spin configurations s, s0, will be nonzero only if the configurations s, s0 differ

exactly at one site. If the configurations s, s0 differ exactly at one site, then

hsjDjs0i ¼ 1.

The (Classic) Glauber dynamics will be given by the master equation for the

density matrix after using the algebra of spectral projections of the system

Hamiltonian (30):

d

dt
rðs; tÞ ¼

X
r2�

ðrðsx
rs; tÞð2ReðgjgÞ�sx

rs;s
þ 2ReðgjgÞþs;sx

rs
Þ

� rðs; tÞð2ReðgjgÞþsx
rs;s

þ 2ReðgjgÞ�s;sx
rs
ÞÞ ð35Þ

which gives the Glauber dynamics of a system of spins (see Refs. 11 and 12).

Here

2ReðgjgÞ�s;sx
rs

¼ 2p
ð

dk jgðkÞj2dðoðkÞ � Jr�1;rer�1 � Jr;rþ1erþ1Þ
1

1 � e�boðkÞ

ð36Þ

and analogously all the other ðgjgÞ�.

Up to now we have investigated the dynamics for the diagonal part of the

density matrix. The master equation for the off-diagonal part of the density

matrix (25) will give the quantum extension of the Glauber dynamics. We

consider now this off-diagonal part:

X
m 6¼n

rðm; n; tÞjmihnj

From (25) and (28) we obtain the equation for the off-diagonal elements of the

density matrix:

d

dt
rðm; n; tÞ ¼ Amnrðm; n; tÞ ð37Þ

Amn ¼
X
r2�

ð�i ImðgjgÞ�m;sx
rm
þ i ImðgjgÞ�n;sx

rn
þ i ImðgjgÞþsx

rm;m

� i ImðgjgÞþsx
rn;n

� ReðgjgÞ�m;sx
rm
� ReðgjgÞ�n;sx

rn

� ReðgjgÞþsx
rm;m

� ReðgjgÞþsx
rn;n

Þ ð38Þ
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Equations (35), (37), and (38) describe the quantum extension of the classic

Glauber dynamics (35). As was already noted in Section IV, the coefficient Amn in

(38) is proportional to j�j (the number of particles in the system). Due to the

summation on r 2 � the coefficient Amn will diverge for large j�j (the real part of

Amn will tend to �1). Therefore the density matrix will collapse to the diagonal

subalgebra (the classic distribution function) very quickly.

Let us consider now the particular case of a one-dimensional system with a

translationally invariant Hamiltonian:

Jrs ¼ Jr;rþ1 ¼ J > 0

The translationally invariant Hamiltonian does not satisfy the generic

nondegeneracy conditions on the system spectrum that we have used in the

derivation of Eqs. (35) and (37), and therefore we cannot apply these equations to

describe the dynamics for this Hamiltonian.

However, in the translation invariant one-dimensional case we can

investigate these equations by direct methods.

In this case the ðgjgÞ�, given by (36), are nonzero only if er�1 ¼ erþ1 ¼ 1,

and we get for (36)

2 ReðgjgÞ�s;sx
rs

¼ 2p
ð

dk jgðkÞj2dðoðkÞ � 2JÞ 1

1 � e�2bJ
¼ C

1 � e�2bJ
ð39Þ

Therefore for one-dimensional translation invariant Hamiltonians we obtain

for (35) (compare with Refs. 11 and 12)

d

dt
rðs; tÞ ¼ C

1 � e�2bJ

� X
r2�;EðsÞ>Eðsx

rsÞ
ðe�2bJrðsx

rs; tÞ � rðs; tÞÞ

þ
X

r2�;EðsÞ<Eðsx
rsÞ

ðrðsx
rs; tÞ � e�2bJrðs; tÞÞ

�
ð40Þ

The detailed balance stationary solution of (40) satisfies the following: For two

spin configurations s, sx
rs that differ by the flip of spin at site r, the energy of

corresponding configurations differ by 2J. The expectation rðmÞ, m ¼ s;sx
rs of

configuration with the higher energy will be e�2bJ times less.

For the off-diagonal part of the density matrix for the case of one-

dimensional translation invariant Hamiltonian, the terms in the imaginary part

of (38) cancel and using (39) we get for (38)

Amn ¼ �
X
r2�

2C

1 � e�2bJ
þ 2C

e2bJ � 1

� �
¼ �2C

X
r2�

1 þ e�2bJ

1 � e�2bJ
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This sum, over r, of equal terms diverges with j�j ! 1. Therefore the off-

diagonal elements of the density matrix that satisfy (37) will decay very quickly;

and for sufficiently large t, j�j the dynamics of the system will be given by

classic Glauber dynamics.

For the master equation considered above we used the master equation for

generic (nondegenerate) Hamiltonian. This gives us the Glauber dynamics. But

the translation invariant Hamiltonian is degenerate. Therefore in the translation

invariant case we will obtain some generalization, of the Glauber dynamics. To

derive this generalization, let us consider the general form (26) of the master

equation. For the considered spin system this gives

X
m;n

d

dt
rðm; n; tÞjmihnj ¼

X
m;n

rðm; n; tÞ
X

a;b2�

�
� iðjmihPEðnÞs

x
aPn�sx

bnj

� jPEðmÞs
x
aPm�sx

bmihnjÞ þ
C

1 � e�2bJ

�
jPEðmÞþJs

x
amihPEðnÞþJs

x
bnj

� 1

2
ðjmihPEðnÞs

x
aPEðnÞ�Js

x
bnj þ jPEðmÞs

x
aPEðmÞ�Js

x
bmihnjÞ

�

þ iðjmihPEðnÞs
x
aPnþsx

bnj � jPEðmÞs
x
aPmþsx

bmihnjÞ þ
C

e2bJ � 1

�
�
jPEðmÞ�Js

x
amihPEðnÞ�Js

x
bnj �

1

2
ðjmihPEðnÞs

x
aPEðnÞþJs

x
bnj

þ jPEðmÞs
x
aPEðmÞþJs

x
bmihnjÞ

��
ð41Þ

Here C is given by (39), operator PEðmÞ is a projector onto the states with the

energy EðmÞ, and operator Pn� is given by

Pn� ¼ ImðgjgÞ��1PEðnÞ�J þ ImðgjgÞ�0 PEðnÞ þ ImðgjgÞ�1 PEðnÞþJ

ðgjgÞ�a ¼ P:P:

ð
dk jgðkÞj2 1

oðkÞ þ aJ

1

1 � e�boðkÞ ; a ¼ �1; 0; 1

For the operator Pnþ we obtain the analogous expression

Pnþ ¼ ImðgjgÞþ�1PEðnÞ�J þ ImðgjgÞþ0 PEðnÞ þ ImðgjgÞþ1 PEðnÞþJ

with the coefficients ðgjgÞþa :

ðgjgÞþa ¼ P:P:

ð
dk jgðkÞj2 1

oðkÞ � aJ

1

eboðkÞ � 1
; a ¼ �1; 0; 1
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Equation (41) gives the quantum generalization of the Glauber dynamics. The

matrix elements rðm; n; tÞ of the density matrix corresponding to the states m, n
with different energies will decay quickly. But for the translation invariant

Hamiltonian there exist different m, n with equal energies. Corresponding matrix

elements will decay with the same speed as the diagonal elements of the density

matrix. Moreover, one can expect nonergodic behavior for this model. Therefore

the generalization (41) of the Glauber dynamics is nontrivial.

VII. EVOLUTION FOR SUBALGEBRA OF LOCAL OPERATORS

In this section, to compare with the results of [4] we consider the dynamics of

spin systems, described in the previous section, for Hamiltonian with not

necessarily a finite set of spins � but for local observable X.

The observable X is local if it belongs to the local algebra—that is, UHF

algebra (uniformly hyperfinite algebra):

A ¼
[

� is finite

A�

where A� is the 	-algebra generated by the elements

�iXi; Xi ¼ 1 for i 62 �

Consider now the action of y0 on local X:

y0ðXÞ ¼
X

ij

X
o2F

�
� i ImðgijgjÞ�o ½X;E	

oðDiÞEoðDjÞ�

þ i ImðgijgjÞþo ½X;EoðDiÞE	
oðDjÞ�

þ 2ReðgijgjÞ�o E	
oðDiÞXEoðDjÞ �

1

2
fX;E	

oðDiÞEoðDjÞg
� �

þ 2ReðgijgjÞþo EoðDiÞXE	
oðDjÞ �

1

2
fX;EoðDiÞE	

oðDjÞg
� ��

ð42Þ

For EoðDiÞ we obtain

EoðDiÞ ¼
X

EðrÞ2Fo

PEðrÞ�oDiPEðrÞ

¼ 1 � jei�1ihei�1j � j �eiiheij � jeiþ1iheiþ1j � 1 þ 1 � j �ei�1i
� h�ei�1j � jeiih�eij � j � eiþ1ih�eiþ1j � 1 ð43Þ
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with the frequency o of the following form:

o ¼ Ji�1;iei�1 þ Ji;iþ1eiþ1

Therefore the operator Eo given by (43) is local; moreover, the correspond-

ing map y0 given by (42) maps A into itself.

Formula (43) explains the physical meaning of the operator EoðDiÞ. For

positive o it flips the spin at site i along the direction of the mean field of its

neighbors (for negative o it flips the same spin into the opposite direction).
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I. INTRODUCTION

At my presentation at Solvay XXI, I showed that my operator trigonometry

provided a natural geometry for the analysis of quantum probabilities in certain

spin systems—for example, as related to Bell’s inequality. These results have

since been published in recent papers [1,2]. Therefore here I will only summarize
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those results, with further details available from those papers. Then I want to

move forward and present my more recent finding that the operator trigonometry

may also be intrinsically connected to certain Kaon systems. I only briefly

mentioned this fact at the end of Refs. 1 and 2. In particular here I will show that

CP violation may be seen as a certain slightly unequal weighting of the CP

antieigenvectors. The results presented here are preliminary, and it is hoped that

their refinements may be pursued elsewhere.

II. OPERATOR TRIGONOMETRY

My operator trigonometry came into being 35 years ago in a question about

multiplicative perturbation of contraction semigroup infinitesimal generators.

The setting was the functional analysis of partial differential equation initial

value problems. Although that setting was one of abstract mathematics, in

hindsight it may be seen that one of the questions which I addressed at that time,

that of multiplicative perturbation BA of a given semigroup generator A,

naturally led to both of the key entities of the operator trigonometry: the cosfðAÞ
and the sinfðAÞ of an arbitrary linear operator A. Here fðAÞ denotes what I

called the angle of A: the maximum (or supremum) angle through which the

operator A may turn vectors in its domain DðAÞ.

A. Brief History of the Operator Trigonometry

For more details see Refs. 3 and 4, where the developments of the operator

trigonometry are brought up to 1995, and see Ref. 5 for an update to 2000. Also I

will refer to Ref. 6 for some other recent developments of the operator

trigonometry.

The origins of the operator trigonometry can be traced back to 1966 and

three theorems characterizing contraction semigroup generators.

Theorem 1 (Hille–Yosida–Phillips–Lumer). In a Banach space X, a densely

defined linear operator A is the infinitesimal generator of a contraction

semigroup etA iff it is dissipative and RðI � AÞ ¼ X.

Theorem 2 (Rellich–Kato–Sz.Nagy–Gustafson). If A is a contraction semigroup

generator and B is A-small, then A þ B is a generator iff A þ B is dissipative.

Theorem 3 (Gustafson). If A is a generator and B is bounded and strongly

accretive, then BA is a generator iff BA is dissipative.

Of course there are a number of generalizations of these results to bounded

semigroups, left and right perturbations, and so on (see the literature). Recall that

A dissipative means that Re ½Ax; x�<¼ 0 for all x in the domain of A, for some
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given semi-inner product, A accretive means �A is dissipative, B m-accretive

(also called B strongly accretive) means that Re ½Bx; x�>¼ mkxk2
for some m > 0,

and B is A-small means kBxk<¼ akxk þ bkAxk for some b < 1.

Theorem 1 may be usefully viewed in the control theory context. Generators

of stable evolutions must have their spectra in the left half-complex plane.

Theorem 2 is, as is well known, essential to the proof of the spectral

completeness of the Hamiltonians of quantum physics. For example, you may

take A ¼ �� and B ¼ �1=r—that is, A the self-adjoint Laplacian diffusion

operator and B the Coulomb potential. Then iðA þ BÞ is the hydrogen operator,

here arranged with its spectrum placed on the imaginary axis, which still counts

as being dissipative, although in the nonstrict sense. Theorem 3 also has

physical applications (e.g., to stochastic time changes), but it is the least

important of the above three theorems in the abstract semigroup generator

theory. Nonetheless, it was Theorem 3 which led to the operator trigonometry.

Theorem 2 may be proved from Theorem 1, and Theorem 3 may be proved

from Theorem 2 (see Ref. 3 and 4. What is missing from Theorem 3 is a criteria

for BA to be dissipative when A is dissipative and B is accretive. This question is

the origin of the operator trigonometry. Consider in particular the question of

when bounded operators A and B are both m-accretive and you want BA to be

accretive. From that question in 1966–1968, I found the following four results.

Theorem 4. For bounded A and B which are both m-accretive on a Banach

space X, a sufficient condition for BA to be accretive is

sinfðBÞ 	 cosfðAÞ ð1Þ

In (1), fðAÞ denotes the angle of an operator A, defined through the first

antieigenvalue m of A

m ¼ cosfðAÞ ¼ inf
x 6¼0

Re½Ax; x�
kAxkkxk ð2Þ

and sinfðBÞ denotes the entity

n ¼ sinfðBÞ ¼ inf
E>o

kEB � Ik ð3Þ

That n deserves to be called sinfðBÞ follows from the following important result.

Theorem 5. For any bounded strongly accretive operator B on a Hilbert space X,

n2ðBÞ þ m2ðBÞ ¼ 1 ð4Þ
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I mention that (4) is no longer true for X a general Banach space. I refer to

Theorem 5 as the min–max theorem of the operator trigonometry because I

proved it that way.

Theorem 6. For any bounded strictly positive selfadjoint or Hermitian operator

A on a Hilbert space X,

cosfðAÞ ¼ 2
ffiffiffiffiffiffiffiffi
mM

p

m þ M
; sinfðAÞ ¼ M � m

M þ m
ð5Þ

In (5) M ¼ kAk ¼ the upper bound of A and m ¼ kA�1k�1 ¼ the lower bound of

A. One more important result from the early days is the following Euler equation

of the variational functional (2).

Theorem 7. For A a strongly accretive bounded operator on a Hilbert space, the

functional in (2) has Euler equation

2kAxk2kxk2ðRe AÞx � kxk2
RehAx; xiA�Ax � kAxk2

RehAx; xix ¼ 0 ð6Þ

The Euler equation (6) is satisfied by the first antieigenvectors (see below). When

A is self-adjoint, Hermitian, unitary, or normal, all of A’s eigenvectors also

satisfy (6). Thus (6) generalizes the Rayleigh–Ritz variational characterization of

eigenvectors to also include antieigenvectors. The antieigenvectors minimize the

functional (2), whereas the eigenvectors maximize it.

All of the above became known in the period 1966–1968. However, we were

able to show that for unbounded accretive operators A in a Hilbert space,

cosfðAÞ ¼ 0. This in itself is an interesting geometrical characterization of the

topological distinction between bounded and unbounded strongly accretive

operators A: The unbounded operators can turn vectors as close to 90� as you

like, whereas the bounded ones cannot. However, from the point of view of

differential equations in Hilbert spaces (e.g., see Ref. 7), the most interesting

contraction semigroup generators (e.g., heat equation, Schrödinger equation,

etc.) are unbounded. For unbounded operators, criterion (1) is not very

interesting. So I lost interest in the operator trigonometry for awhile.

Later (the 1980s) my interests turned to computational fluid dynamics (e.g.,

see Refs. 3 and 7. One learns quickly that in those applications about 80% of

your computer time is used doing linear solvers Ax ¼ b. Here A is a very large

sparse matrix, often symmetric positive definite (called SPD in the following).

As an important widely computed example, A will be a discretized Laplacian or

related potential operator. One set of methods for solving very large linear

systems Ax ¼ b are the so-called iterative methods. Classic versions of these are

the Jacobi, Gauss–Seidel, and Successive Overrelation schemes, but there are
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interesting faster, more recent algorithms too. See my discussion in Ref. 5.

Often the convergence rates of these algorithms depend significantly, although

not totally on A’s largest and smallest eigenvalues ln and l1. In a series of

papers (see Ref. 5) in the 1990s I was able to provide an alternate, new theory of

convergence of many of these methods, in terms of my operator trigonometric

entities sinfðAÞ and cosfðAÞ. Such a geometrical understanding of linear

solver iterative convergence, notwithstanding the intensive development for

industry of these computational methods over the last 30 years, had not been

evident before the operator trigonometry came along.

B. Essentials of Operator Trigonometry

It is possible that the abstract operator trigonometry theory discussed above will

find applications elsewhere in operator-theoretic abstract models. However, in

this section I restrict A to be a real SPD n � n matrix with simple eigenvalues. In

this way we can fix ideas and summarize the essentials of the operator

trigonometry. Besides, A (an SPD matrix) is probably the most important

situation for applications. Remember that the operator trigonometry is concerned

with an operator’s critical turning angles, analogous to the standard spectral

theory which is concerned with an operator’s critical stretchings—that is, a

matrix A’s eigenvalues and corresponding eigenvectors. Accordingly, I gave the

names antieigenvalues and their corresponding antieigenvectors to A’s critical

angles (cosines thereof) and the vectors which are turned those amounts,

respectively. For a symmetric n � n positive definite matrix A with eigenvalues

0 < l1 < l2 � � � < ln and corresponding normalized eigenvectors x1; . . . ; xn, we

then have [3,4] the following fundamental matrix-trigonometric entities:

m1 ¼ cosfðAÞ ¼ min
x 6¼0

hAx; xi
kAxkkxk ¼ 2

ffiffiffiffiffiffiffiffiffiffi
l1ln

p

l1 þ ln

n1 ¼ sinfðAÞ ¼ min
E>0

kEA � Ik ¼ ln � l1

ln þ l1

fðAÞ ¼ the ðmaximum turningÞ angle of A

x1
� ¼ � ln

l1 þ ln

� �1=2

x1 þ
l1

l1 þ ln

� �1=2

xn

ð7Þ

The first antieigenvectors x1
þ and x1

� are turned by A the maximal turning angle

fðAÞ, and m1 is called the corresponding first antieigenvalue. Higher

antieigenvalues and antieigenvectors were originally defined variationally, but

later it was seen that it is more natural to define them as

xi
� ¼ � li

li þ ln�iþ1

� �1=2

xn�iþ1 þ
ln�iþ1

li þ ln�iþ1

� �1=2

xi ð8Þ
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These are the vectors most turned by A on the reducing subspaces

spfxi; . . . ; xn�iþ1g as one excludes the preceding antieigenvectors already

accounted for. The cases when the li are not simple eigenvalues pose no

problem, and then the eigenvector components of the corresponding antieigen-

vectors just inherit those higher eigenvector multiplicities (see Ref. 6). The

important early result (1968) was that in Hilbert space one has the relationship

(4), written more graphically as cos2fðAÞ þ sin2fðAÞ ¼ 1. The same relation-

ship holds on the reducing subspaces for the reduced turning angles fiðAÞ.
Without (4), in my opinion, there is no operator trigonometry.

I have normalized the antieigenvectors in (7) and (8) to norm one, but clearly

any scalar multiple of an antieigenvector is also an antieigenvector. Obviously

any (real, nonzero) scalar multiple of A or A�1 has the same operator

trigonometry as A. However, it is important to note that the two antieigenvectors

xi
� do not determine a corresponding antieigenspace. Notice that sp fxi

þ; xi
�g is

just the span sp fxn�iþ1; xig of the two constituent eigenvectors.

Early on in the operator trigonometry I defined a ‘‘total’’ operator turning

angle for arbitrary operators A by

cosftotalðAÞ ¼ inf
Ax 6¼0

jhAx; xij
kAxkkxk ð9Þ

For A a diagonalized normal operator, the total antieigenvectors are the same as

in (7) and (8) except that the li must be replaced by jlij throughout those

expressions. One property of ftotalðAÞ that I want to point out for use later in this

chapter is the following. Letting A be a unitary operator U, it follows directly

from (9) that cosftotalðUÞ ¼ minl2WðUÞjlj, where WðUÞ denotes the numerical

range of U. (See Ref. 4.) For U, a unitary operator, its numerical range WðUÞ is

just the closure of the convex hull of its spectrum. Thus for a strongly accretive

unitary matrix U, cosftotalðUÞ is the distance from the origin of the complex

plane to the nearest point of WðUÞ—or, stated another way, the distance to the

nearest chord between U’s eigenvalues on the unit circle.

C. Extended Operator Trigonometry

With a view toward extending the rather complete operator trigonometry known

for A (an SPD matrix) to arbitrary invertible n � n matrices A for the

computational linear solver problem Ax ¼ b, recently in Ref. 6, I extended

the operator trigonometry to arbitrary (i.e., beyond A positive self-adjoint)

invertible operators A via A’s polar decomposition A ¼ UjAj via the fact that jAj
is positive self-adjoint. Then I set feðAÞ ¼ fðjAjÞ. This is not entirely

satisfactory because I ignore the unitary part U of A’s polar factorization. Of

course I was originally interested in the critical relative turnings, just as in the

eigenvalue theory one is interested in the critical relative stretchings. So the
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uniform turnings that one would find in a unitary operator U were not what was

sought. I will return to this point later in this chapter.

In my extended operator trigonometry, one changes definition (3) to

sinfeðAÞ ¼ inf
E
kEA � Uk ð10Þ

Then, considering, for example, A to be arbitrary n � n nonsingular matrix with

singular values s1
>¼ s2

>¼ � � � >¼ sn > 0, we obtain from (7) that

sinfeðAÞ ¼ min
E>0

kEjAj � Ik ¼ s1ðAÞ � snðAÞ
s1ðAÞ þ snðAÞ

ð11Þ

One may check that the key min–max identity (4) is then satisfied if one modifies

(2) to

cosfeðAÞ ¼ min
x 6¼0

hjAjx; xi
kjAjxkkxk ð12Þ

Cos feðAÞ is then given as in (7) with l1 and ln replaced by sn and s1,

respectively.

Because more details on the extended operator trigonometry are available in

the recent paper [6], I will just summarize the main points in the following

theorem.

Theorem 8. Let A be an arbitrary invertible operator on a complex Hilbert

space X. From A ¼ UjAj polar form define the angle fðAÞ according to (10) and

cosfðAÞ according to (12). Then the min–max identity

sin2feðAÞ þ cos2feðAÞ ¼ 1 ð13Þ

holds, and a full operator trigonometry of relative turning angles obtains for A

from that of jAj. In this extended operator trigonometry, the Euler equation (6) is

replaced by the simpler expression, with kxk ¼ 1 for simplicity:

jAj2x

hjAj2x; xi
� 2jAjx
hjAjx; xi þ x ¼ 0 ð14Þ

Now a few remarks. As concerns my extended operator trigonometry, surely

one could have instead used the singular value decomposition of A, left polar

form, or other factorizations of A. However, after I tried several alternatives, I

preferred the right polar form. Remember that this exists for arbitrary closed
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operators in a Hilbert space. However, that choice comes at the price of ignoring

any trigonometric effects of the unitary factor of A. Until recently I had little

need for some finer operator trigonometry of unitary operators, since intuitively

one can view them as block uniform rotations or block mirror symmetries.

However, when considering quantum computing, it became clear [5] that I now

need a better operator trigonometry for unitary operators. This also became

clear as concerns the treatment of quantum spin probabilities [1,2]. It also

becomes clear from this chapter. I am not going to try to remedy this lacuna in

my theory here, but I hope to do so elsewhere.

The operator trigonometry is at once both generally defined and quite

incomplete. Even in the A SPD case where I have a ‘‘complete’’ theory, one finds

new things. For example, I showed in Ref. 6 that the angle f� between the two

first antieigenvectors x1
þ and x1

� is always fðAÞ þ p=2. This finding led to other

new facts and questions [5,6]. As another example, recently I wondered: Can I

make the antieigenvectors x1
� orthogonal? That would make them more

resemble the setting for eigenvectors. Let me observe here that the answer is

yes, and quite immediate. Define a new inner product hx; yiA ¼ hAx; yi. Then

you may quickly verify that

hx1
þ; x1

�iA ¼ hAx1
þ; x1

�i ¼
ln

l1 þ ln

� �
l1 �

l1

l1 þ ln

� �
ln ¼ 0 ð15Þ

This orthogonality extends to various combinations of the higher antieigenvec-

tors as well. For example, one may confirm that hxi
þ; xj

�iA ¼ 0 for any

1 <¼ i <¼ n=2, 1 <¼ j <¼ n=2, by a similar computation. However, for i 6¼ j that

fact was already a consequence of xi
þ and xj

� being in orthogonal reducing

subspaces of A. The same pairwise orthogonality holds for the extended operator

antieigenvectors using the jAj inner product. However, it is not a property of the

total antieigenvectors.

III. QUANTUM PROBABILITY

About 5 years ago (1996) I noticed a connection between my operator

trigonometry and certain issues occurring in or related to quantum spin system

probabilities. Essentially, the result became that certain inequalities obtained by

Bell and Wigner for consideration of hidden variables in quantum mechanics,

and certain inequalities obtained by Accardi and Fedullo for the existence or

nonexistence of quantum or classic probability logics, can all be embedded

naturally into my operator trigonometry, which then also extends those earlier

results. See Refs. 1 and 2 for full details.

In this section I will refer to the papers [1,2] for all bibliographical citations

that I mention here. Also I will be brief. For the purposes of this chapter, this
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section may be regarded as the bridge between the operator trigonometry of

Section II and its new application to CP violation in Section IV. It was my

finding [1,2] that my operator trigonometry provides a natural and more general

geometry for these quantum probability spin systems that prompted me to look

further into quantum elementary particle theory and, in particular, into the CP-

violation models.

A. Bell’s Inequality

The following is well known, so I will summarize. In 1935 Einstein, Podolsky,

and Rosen created a gedanken experiment which they claimed demonstrated that

conventional quantum mechanics cannot provide a complete description of

reality. In 1951 David Bohm addressed this issue and formulated his version of a

hidden variable theory which could conceivably provide a more complete

description within quantum mechanics. In 1964 Bell presented his famous in-

equality and exhibited certain quantum spin measurement configurations whose

expectation values could not satisfy his inequality. Bell’s analysis assumes that

physical systems (e.g., two measuring apparatuses) can be regarded as physically

totally separated, in the sense of being free of any effects one from the other.

Thus his inequality could provide a ‘‘test’’ that could be failed by measurements

performed on correlated quantum systems. In particular, he argued that local

realistic hidden variable theories could not hold. As is well known, the 1982

physical experiments of Aspect et al. demonstrated that beyond any reasonable

doubt the Bell inequalities are violated by certain quantum systems, and papers

continue to appear with further demonstrated violations. However, it should be

stressed that these experiments show the violation of certain locality assumptions

and do not really deal with the hidden varable issues.

In a 1970 paper, Wigner simplified and clarified in several ways the argument

of Bell. Wigner assumed that all possible measurements are predetermined,

even if they involve incompatible observables; moreover, any measurement on

one of two apparatuses does not change the present outcomes of measurements

on the other apparatus. Thus the meanings of locality and realism are made

more clear, and both assumptions are present in the model setup. It is helpful to

imagine, for example, that the ‘‘hidden variable’’ is just the directional

orientation of each of the two apparatuses, each of which can be thought of as

just a three-dimensional possibly skew coordinate system. Then two spin 1=2

particles are sent to the apparatuses, each to one, both coming simultaneously

from a common atomic source, with perfect anticorrelation and singlet pro-

perties. Nine measurements are then needed to simultaneously measure the

direction vectors o1;o2;o3 of the two spins. Each spin has two possible values

1=2 � þ, �1=2 � �, so each measurement can permit four relative results:

þþ;��;þ�;�þ. Therefore there are 49 possible outcomes. Wigner then

assumes that the spins are not affected by the orientation of the particular

cp violation as antieigenvector-breaking 247



measuring apparatus. This reduces the outcomes to 26 possibilities. For

example, if the hidden variables are in the possibility domain ðþ;�;�;�þ�Þ,
then the measurement of the spin component of the first particle in the o1

direction will yield value spin ¼ þ, no matter what direction the spin of the

second particle is measured.

I will come back to Bell’s original inequality below. However, it is less

interesting than Wigner’s version, because Bell’s considerations evolved from

thinking in terms of Kolmogorovian classic probabilities, whereas Wigner

placed the question squarely in quantum mechanical Hilbert space. To continue,

Wigner reformulates Bell’s setup and reduces the outcomes to 26 possibilities—

for example, the instance in which the hidden variables are in the domain

ðþ;�;�;�;þ;�Þ that I mentioned above. Then he shows that these 64

possibilities can be grouped by sixteens, with most terms canceling. In the first

of the four resulting spin measurement possibilities—that is, that of þþ for the

first particle in direction o1 and for the second particle in direction o3—Wigner

then arrives at the conclusion that the hidden parameters can reproduce the

quantum mechanical probabilities only if the three directions o1;o2;o3 in

which the spins are measured are so situated that

1

2
sin2 1

2
y23 þ

1

2
sin2 1

2
y12

>¼
1

2
sin2 1

2
y31 ð16Þ

Then to make the point very clear, he specializes to the case in which the three

directions o1;o2;o3 in 3 space are coplanar and with o2 bisecting the angle

between o1 and o3. Then y12 ¼ y23 ¼ y31=2 and inequality (16) becomes

sin2 1

2
y12

� �
>¼

1

2
sin2ðy12Þ ¼ 2sin2 1

2
y12

� �
cos2 1

2
y12

� �
ð17Þ

from which cos2ð1
2
y12Þ<¼1=2 and hence y31 ¼ 2y12

>¼p. Thus condition (16),

which is necessary for appropriate quantum mechanical spin probabilities for the

hidden variable theories, is violated for all y31 < p. Wigner then assets (without

giving the details) that the same conclusion may be drawn for all coplanar

directions. He also similarly considers the other three spin measurement

configurations and in each case reduces them to inequalities analogous to (16),

with similar conclusions. I treat all of these in [1,2], so we will look only at this

first of the four spin configuration possibilities here.

B. A General Triangle Inequality

In the early operator trigonometry we needed the following general triangle

inequality (e.g., see Refs. 3 and 4). It does not seem to be well known. Its ‘‘truth’’

is geometrically ‘‘self-evident,’’ but we never found a proof so we had to provide

one ourselves.
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Let x; y; z be any three vectors in a real or complex Hilbert space of any

dimension. For convenience take them to be of norm 1, although that is not

necessary. Let hx; yi ¼ a1 þ ib1, hy; zi ¼ a2 þ ib2, hx; zi ¼ a3 þ ib3. Define the

angles fxy;fyz;fxz in ½0; p� by cosfxy ¼ a1, cosfyz ¼ a2, and cosfxz ¼ a3.

Theorem 9. There holds the general triangle inequality

fxz
<¼ fxy þ fyz ð18Þ

The easiest proof of (18) seems to arrive via the Gram matrix

G ¼
hx; xi hx; yi hx; zi
hy; xi hy; yi hy; zi
hz; xi hz; yi hz; zi

2
4

3
5 ð19Þ

A Gram matrix is positive semidefinite in any number of dimensions, and it is

definite iff the given vectors are linearly independent. Let me prove (18) here so

that you may get the feel of Theorem 9 and, more importantly, so that it will

become clear that Wigner’s results are a special case of (18).

It suffices to show

cosfxz
>¼ cosðyxy þ fyzÞ ð20Þ

which by the sum formula for cosines is equivalent toffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � a2

1

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � a2

2

q
>¼a1a2 � a3 ð21Þ

The desired result (18) follows trivially when the right-hand side of (21) is

negative. In the other case we need

ð1 � a2
1Þð1 � a2

2Þ>¼ða1a2 � a3Þ2 ð22Þ

which is equivalent to

1 � a2
1 � a2

2 � a2
3 þ 2a1a2a3

>¼ 0 ð23Þ

But for unit vectors the determinant of the Gram matrix (19) becomes (using

complex cancellations)

jGj ¼
1 a1 a3

a1 1 a2

a3 a2 1

						
						 ¼ 1 þ 2a1a2a3 � ða2

1 þ a2
2 þ a2

3Þ>¼ 0 ð24Þ

which is equivalent to (23).
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Let us now look at Wigner’s inequalities (16) and (17) above from the

operator trigonometric perspective. The Gram determinant G of (24) vanishes if

and only if the three directions are coplanar, no matter what their frame of

reference. Then we may write the equality (24) as follows:

ð1 � a2
1Þ þ ð1 � a2

2Þ � ð1 � a2
3Þ ¼ 2a3ða3 � a1a2Þ ð25Þ

or in the terminology of Wigner

sin2 1

2
y12

� �
þ sin2 1

2
y23

� �
� sin2 1

2
y13

� �

¼ 2 cos
1

2
y13

� �
cos

1

2
y13

� �
� cos

1

2
y12

� �
cos

1

2
y23

� �
 �
ð26Þ

Wigner’s situation for avoidance of probability violation in the coplanar case is

equivalent to the right-hand side of (26) being nonnegative. Because all half-

angles in (26) do not exceed p=2, except for the trivial case when 1
2
y13 ¼ p=2, the

nonnegativity of (26) means that of its second factors. By choosing the direction

o2 to be the ‘‘one in between’’ among the half-angles, we can without loss of

generality assume that 1
2
y12 þ 1

2
y23 ¼ 1

2
y13. The required nonnegativity of (26)

then reduces by the elementary cosine sum formula to

cos
y12 þ y23

2

� �
>¼

1

2
cos

y12 þ y23

2

� �
þ cos

y12 � y23

2

� �
 �
ð27Þ

that is, cosððy12 þ y23Þ=2Þ>¼cosððy12 � y23Þ=2Þ, which is false for positive y23.

This completes Wigner’s argument and is the meaning of coplanar quantum

probability violation.

Theorem 10. The Wigner hidden variable geometric considerations are special

cases of the operator trigonometry.

C. Classic and Quantum Probabilities

Motivated partially by Bell’s and Wigner’s inequalities and also by related

classic versus quantum probability issues, Accardi and Fedullo (and others)

developed certain key inequalities upon which their results as to whether certain

spin systems could support Kolmogorov classic probabilities or Hilbert-space

quantum probabilities depended. I don’t want to reproduce all the details of how I

showed that these inequalities may also be seen as special cases of the general

triangle inequality (18), so see Refs. 1 and 2 for those details. However, to make
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the point clear here, note that the key inequality of Accardi and Fedullo (1982),

namely

cos2aþ cos2bþ cos2 g� 1 <¼ 2 cosa cos bcosg ð28Þ

a necessary and sufficient condition for the angles a; b; g of a quantum spin

model in a two-dimensional complex Hilbert space, is precisely the same as the

operator trigonometry relation (23) for the real cosines a1; a2; a3 of the angles

between arbitrary unit vectors in any complex Hilbert space. The angles of

inequality (28) are related to transition probability matrices PðAjBÞ;PðBjCÞ;
PðCjAÞ for three observables A;B;C which may take two values. See Refs. 1 and

2 for more specifics.

Theorem 11. The Accardi–Fedullo probability geometric considerations are

special cases of the operator trigonometry.

There is one comment I would like to add here. It is that the embedding of

the Accardi–Fedullo et al. results within my operator trigonometry is to this date

only established for the case of three observables that may take on two values.

Via Pauli spin matrices, in that case the issues concerning quantum probabilities

then reduce to questions about 2 � 2 matrices. Moreover, in that situation the

necessary inequalities for the existence of classic Kolmogorov probabilities may

be seen to be included within the same inequalities needed for the quantum

case. If one goes to, say, two observables with four possible values, one has an

open question. Obviously there are many other related open questions. I hope to

address some of those matters in a later publication.

Finally, let’s look at Bell’s Inequality, as I promised above. There is of course

a huge literature on Bell-type inequalities, and I have cited some sources for that

in Refs. 1 and 2. However, keep in mind that our real interest in this chapter is

with quantum probabilities, whereas Bell’s model evolved from Kolmogorovian

probability concepts. The original Bell inequality is

jPða; bÞ � Pða; cÞj<¼ 1 þ Pðb; cÞ ð29Þ

Here Pða; bÞ is the expectation value of the product of the spin components along

unit vector directions a and b. Bell showed that if one considers expectation

values, for which Pða; bÞ ¼ �cosyab, then some direction combinations will

violate (29). Let us cast that situation into the operator trigonometric frame of

this chapter. Let a3 ¼ cosyac, a1 ¼ cosyab, a2 ¼ cosybc. Square Bell’s inequality

(29), which then becomes the two cases

a2
1 þ a2

2 þ a2
3 þ 2½a3a2 � a3a1 � a2a1�<¼ 1

a2
1 þ a2

2 þ a2
3 þ 2½a2a1 � a3a1 � a3a2�<¼ 1

ð30Þ
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Consider the first case, and the second may be similarly examined. Insert the

Grammian expression (24) into (30) to obtain

1 � ða2
1 þ a2

2 þ a2
3Þ þ 2a1a2a3 � 2a1a2a3 � 2a3a2 þ 2a3a1 þ 2a2a1

>¼ 0 ð31Þ

that is,

jGj>¼ 2½a1a2a3 þ a3a2 � a3a1 � a2a1� ð32Þ

When the directions a; b; c are coplanar, jGj ¼ 0 and the right-hand side of (32)

will tell you exactly the violating directions—that is, those for which the right-

hand side is positive. Similar violating and nonviolating directional delineations

may in principle be obtained for the general noncoplanar case jGj > 0 in the

same way. Such Bell inequality constraints appear to give rise to some interesting

new trigonometric algebraic–geometry inequalities, even in the low-dimensional

case of three space dimensions.

IV. CP SYMMETRY VIOLATION

The principal goal of this chapter is to report the interesting natural occurrence of

the operator trigonometry within the CP elementary particle theory. More details

as well as investigation of possible extensions of this finding to more general

elementary particle considerations will be pursued elsewhere. Also for the

reasons that will become clear below, I hope the elementary particle physics may

help indicate appropriate extensions of the operator trigonometry in the future.

I first noticed this intrinsic connection of the operator trigonometry to the

CP-violation developments when reading the recent review [8] where Bertram

Schwarzschild discusses the most recent [9] experimental results that apparently

finally remove all doubts about physical demonstration that CP violation exists.

See the original experimental finding of CP violation in Ref. 10, the early

theoretical models [11,12], and the extensive experimental work and results

[13,14] about 10 years ago as cited in Ref. 8. Here I want only to attempt a

‘‘thumbnail’’ sketch for the nonspecialist of some of the issues involved. For

that I will lean heavily on Refs. 8–14, and I have also consulted the treatments

in Refs. 15–20.

A. Elementary Particle Physics

The standard model (Glashow–Weinberg–Salam–Yang–Mills et al.) of elemen-

tary particle physics is based upon the gauge group SðUð2Þ � Uð3ÞÞ, which may

be represented as a subset of the 5 � 5 unitary matrices. The goal is to understand

all of the interactions of matter which are seen in the large particle accelerators.

The famous CPT theorem [15] states the necessary invariance of any quantum
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field theory under the combined action of charge conjugation C, parity reversal

P, and time reversal T . That is, if you reverse the sign of charge, the sign of space,

and the sign of time, in any order, the local field theory remains valid. From a

scattering theory point of view, through S-matrix analysis continuation from

positive to negative energies, one is led to formulate the existence of

antiparticles, that correspond to an exact interchange of the outgoing states

with the incoming states.

CP denotes the combined operation of charge conjugation (the replacement

of particles by their antiparticles) and parity inversion (mirror symmetry in

space). The only two undisputed physical manifestations of CP symmetry

violation in nature to date are (a) the predominance of matter over antimatter in

the visible universe and (b) decay of neutral K mesons. The latter was first

demonstrated in Ref. 10. There the K�
L meson in a helium gas was shown to

decay into two charged pions, symbolically K�
L ! pþp�, in about 2 � 10�3 of

the experiments. Here K�
L denotes the longer-lived of the two neutral kaon

eigenstates of lifetime and mass, and K�
S denotes the short-lived eigenstate. Let

K� and �K� be the two (degenerate) mass eigenstates of strangeness. Strangeness

is an added quantum number that is conserved by the strong and

electromagnetic interactions, although not by the weak interaction. For parity

conservation, one needs pair pure states so K� and �K� have assigned eigenvalues

of l1 ¼ þ1 and l2 ¼ �1, respectively. The landmark paper [10] then concluded

on the basis of the experimental evidence that K�
L could not be a pure CP

eigenstate. Let

K1 ¼ K� þ �K�ffiffiffi
2

p ; K2 ¼ K� � �K�ffiffiffi
2

p ð33Þ

be the pure CP eigenstates, with eigenvalues þ1 and �1, respectively. Then

before CP violation was demonstrated, it was assumed that K�
L ¼ K2 and, by

symmetry, also K�
S ¼ K1. The result of Ref. 10 is that K�

L could not be a pure CP

eigenstate due to the presence of a two-pion decay mode. From their

measurements they then proposed that K�
L is a mixture of K2 (predominant)

and a small amount of K1, specifically [10]

K�
L ¼ K2 þ EK1

¼ 2�1=2½ðK� � �K�Þ þ EðK� þ �K�Þ� ð34Þ

where the small CP-violation mixing parameter is about E ¼ 0:0023.

Shortly after Ref. 10, in Ref. 11 it was proposed that CP violation might be

due to a very, very weak interaction—say, 10�7 of the standard weak

interaction. See also the discussion of other models in Ref. 12, where the need
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to introduce new interacting weak fields to implement the CP-violating decays

is put forth. However, according to the recent summary [8], the experiments

[13,14] and especially the most recent experiments [9] support the assertion

that, at least in part, the kaon CP violation may be explained within the standard

model without the need to postulate the existence of some new superweak force.

B. Strangeness Total Antieigenvectors

Let me consider here the more common occurrence of CP symmetry—that is, no

CP violation. Then in the neutral kaon situation we have

K�
L ¼ K2 ¼ K� � �K�ffiffiffi

2
p ¼ 1st strangeness total antieigenvector

K�
S ¼ K1 ¼ K� þ �K�ffiffiffi

2
p ¼ 2nd strangeness total antieigenvector

ð35Þ

where here for convenience I have just moved the � in the earlier antieigenvector

expression (7) to � in the second term; that is, a normal operator’s total first

antieigenvectors are given by [3,4]

x1
� ¼ jlnj

jl1j þ jlnj

� �1=2

x1 �
jl1j

jl1j þ jlnj

� �1=2

xn ð36Þ

Because n ¼ 2 and jl1j ¼ jl2j ¼ 1 for the mass eigenstates K� and �K�, (35) says

that the longer-lived kaon mass eigenstate K�
L, which is the focus of the

experimental studies reported in Refs. 8–10, 13, and 14, would be the first

strangeness total antieigenvector. This is my first observation.

Theorem 12. The two CP eigenstates K2 and K1 are exactly the two strangeness

total antieigenvectors.

Next I want to recall the notion of quark mixing matrix. In Ref. 12 by

appropriate phase convention arguments it was shown that the 4 � 4 re-

presentation matrix of the SUweakð2Þ interaction was of the form � ¼
K 0 U

0 0

� 
K�1; and by ignoring the gauge field, one could focus on the 2 � 2

unitary matrix

U ¼ cosy siny
�siny cosy


 �
ð37Þ

Such matrices and their generalizations are commonly referred to as CKM

(Cabibbo–Kobayashi–Maskawa) matrices or, more commonly, just as the quark
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mixing matrix. Their purpose is to relate the quark mass eigenstates to the (e.g.,

weak) interaction eigenstates. Thus I may write (35) in the form U
�K�

K�

h i
¼ K1

K2

h i
—

that is, specifically,

1ffiffiffi
2

p 1 1

�1 1


 �
�K�

K�


 �
¼ K1

K2


 �
¼ K�

S

K�
L


 �
ð38Þ

in terms of the quark mixing matrix with a phase parameter y ¼ p=4.

A simple computation reveals that the quark mixing matrix U in (37) has

eigenvalues l1 ¼ eiy and l2 ¼ e�iy, corresponding eigenvectors x1 ¼ 1ffiffi
2

p 1
i

� 
and

x2 ¼ 1ffiffi
2

p 1
�i

� 
, and total antieigenvectors x� ¼ 0

i

� 
and xþ ¼ 1

0

� 
, respectively,

according to (36). Of course, U is a uniform rotation matrix and all real vectors

are rotated an angle �y, but I want to single out the two antieigenvectors x�
here. Simple computations verify that

jhUx1
�; x1

�ij
kUx1

�kkx1
�k

¼ RehUx1
�; x1

�i
kUx1

�kkx1
�k

¼ cosy ð39Þ

Thus from (2), (9), (36), and (39) we have verified the following theorem.

Theorem 13. The quark mixing matrix (37) has total antieigenvectors (36).

These are also its usual (real) antieigenvectors. U’s antieigenvalues are

m1 ¼ cosy � mtotal
1 and U’s operator angles are fðUÞ � ftotalðUÞ ¼ y.

Reference 12 also presented an interesting 3 � 3 unitary quark mixing matrix

(which I won’t reproduce here) that results from assuming that there is another

field interaction in the model. The later formulation and finding of top and

bottom quarks and the extension of quartet models to octet models justified this

extension of the CP-violation theory to larger unitary quark mixing matrices. I

don’t want to go into ‘‘all that’’ here, but there seem to be many still unresolved

related issues [16–20]. In principle, we could compute the antieigenvectors and

operator trigonometry for such octet models should that appear to be interesting.

C. CP Violation as Antieigenvector-Breaking

Turning now to the CP-violation case and accepting the Christenson et al. [10]

ansatz that K�
L ¼ K2 þ EK1 is a mixed CP state [see (34) above], immediately we

see that the effect of the mixing parameter E 6¼ 0 is that the kaon longer-lived

mass eigenstate K�
L is no longer a strangeness antieigenvector in the sense of (36).

I don’t know what this really means physically, but from the operator

trigonometry point of view it means that CP violation not only breaks a

fundamental physical symmetry but it also somehow reduces a maximum turning
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angle of a strangeness operator. I will call this phenomena antieigenvector-

breaking. This is my second main observation.

Theorem 14. CP violation with nonvanishing mixing parameter E implies that

the mass eigenstates K�
L and K�

S are no longer the proper strangeness

antieigenvectors.

Let me provide some feeling for Theorem 14 by a small computation. If I

match the K�
L ¼ K2 þ EK1 ansatz [10] with a corresponding assumption that

K�
S ¼ K1 � EK2, we may see the perturbative effect of the CP-violating mixing

parameter. I hasten to say that to my knowledge the K�
S mixing parameter need

not exist, need not be E, and so on, but the computation can proceed anyway.

Then we arrive at the quark mixing relation

1ffiffiffi
2

p 1 1

�1 1


 �
þ E

1 �1

1 1


 �� �
�K�

K�


 �
¼ K�

S

K�
L


 �
ð40Þ

The CP-symmetry quark mixing matrix U has become U þ EUT . The CP-

violating quark mixing matrix U þ EUT has eigenvalues l1;2 ¼ ð1 þ EÞ=
ffiffiffi
2

p
�

ið1 � EÞ=
ffiffiffi
2

p
. Although these eigenvalues lie on a ð1 þ E2Þ1=2

radius and the

matrix is no longer unitary or orthogonal, this broken-symmetry quark mixing

matrix ME of (40) is still a normal operator. Thus its antieigenvectors could be

computed according to the known operator trigonometry, and thus one could

express the CP-violating eigenstates as perturbed antieigenvectors of strange-

ness. This perturbed quark mixing matrix has a slightly smaller operator turning

angle than that of the CP-symmetry quark mixing matrix. This can be ascertained

by plotting the two eigenvalues, drawing the chord between them, and then using

the property I pointed out just after (9), that the cosftotalðMEÞ is the distance from

the origin to this chord. This antieigenvalue property holds for normal operators

as well. From this one finds that instead of ftotalðUÞ ¼ y ¼ p=4, one now has

turning angle ftotalðMEÞ ¼ tan�1ðð1 � EÞ=ð1 þ EÞÞ. For the experimental

E ¼ 0:0023, this turning angle is about 44:868�. Finally I comment that for

both U and ME one obtains the antieigenvalue at real phase; that is, the midpoint

of the chord lies exactly on the real axis.

V. CONCLUSION

A complete treatment of this new connection of the operator trigonometry to

elementary particle physics would necessitate further extension of my operator

trigonometry and will hopefully be pursued elsewhere. Also, there is a lot to

learn about the theoretical physical elementary particle models, both standard

and nonstandard. Moreover, the big business that these experimental efforts
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really constitute must be recognized. Note that there are 49 authors of Ref. 13

and 29 authors of Ref. 14 and 33 additional acknowledged staff workers in

Ref. 13, a total of 111 scientists. The large group [9] that produced the latest

CP-violation measurements is so far unnamed but represents a continuation of a

15 year competition between Fermilab and CERN on the CP-violation question.
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I. INTRODUCTION

It is well known that classic dynamics and quantum mechanics leads to time

reversible and deterministic laws. Still in many fields we discover situations

where this picture of nature is not applicable. There are two obvious examples:

kinetic theory (or nonequilibrium statistical mechanics) and thermodynamics.

Kinetic theory deals with probabilities. As in thermodynamics, it includes a

broken time symmetry. You find in many books that kinetic theory and

thermodynamics are based on approximations. But that is difficult to accept.

Indeed to quote only one example, kinetic theory as developed by Boltzmann and

*This chapter is a revised version of the paper presented at the Solvay conference in 1998.
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others leads to predictions of transport coefficients for dilute gases, which are in

complete agreement with observation. Also nonequilibrium thermodynamics

leads to the prediction of coherent structures, which are in quantitative

agreement with experiment. For this reason, our group has always been

interested to formulate dynamics in such a way that probabilities and time

symmetry breaking are included in the microscopic description.

Classic or quantum mechanics are generally formulated in the Hilbert space

formalism. For such systems, dynamics can be reduced to a set of noninteracting

modes by a canonical or unitary transformation. On the other hand, we know

from Poincaré that most systems are nonintegrable. As we shall see, these

systems break time symmetry and cannot be described by unitary evolution in

the Hilbert space. Integrable systems and nonintegrable systems seem to obey

quite different laws. But we have now obtained a unified formulation of

dynamics, which applies to both (a) the integrable systems for which there

exists a unitary operator U leading to a diagonalization of the Hamiltonian and

(b) nonintegrable systems outside the Hilbert space. As we shall see, this

involves the construction of a nonunitary transformation operator � that

corresponds to an analytic extension of U. Therefore we see that kinetic theory

and thermodynamics, far from being based on any ‘‘falsification’’ of dynamics,

are well-defined extensions of classic or quantum dynamics. For reasons we

shall explain later, our form of dynamics can be called a dynamics of

‘‘correlations.’’

Many years ago, in my monograph of 1962 [1], I introduced the idea of

‘‘dynamics of correlations.’’ However, it is only in recent years that, thanks

mainly to the work of Professor Tomio Petrosky and Dr. Gonzalo Ordonez, the

generality of this approach was made explicit. In a sense, the main point is that

we replace interactions (potential energy) by correlations. For integrable

systems, we shall show that these concepts are equivalent. But for nonintegrable

systems we can now formulate dynamics in terms of correlations, replacing

the potential energy. In this chapter, we shall try to give a simple introduction to

the physical ideas. Calculations can be followed in the original papers [2–6].

II. POINCARÉ’S THEOREM

We consider systems with Hamiltonian

H ¼ H0 þ lV ð1Þ

where H0 is the unperturbed Hamiltonian describing noninteracting particles,

and V is the interaction. The coupling constant l is assumed to be dimensionless.

For integrable systems, Poincaré has shown that the invariants associated with H0

can be extended to H. The interaction V can be eliminated. But Poincaré has also
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shown that for most classic systems there appear divergences in the construction

of invariants of motion. We call these systems ‘‘nonintegrable in the sense of

Poincaré.’’ More precisely, the divergences occur in the perturbation expansion

(i.e., expansion in ln with n � 0) of invariants of motion other than functions of

the Hamiltonian. The divergences are due to vanishing denominators, which

occur when the frequencies of the system obey relations called Poincaré

resonances. Then the interactions cannot be eliminated by unitary (or canonical)

analytical transformations.

An essential condition for the appearance of Poincaré resonances is that the

frequencies are continuous functions of the momenta. This implies that quantum

systems in a finite volume are integrable because they have discrete spectra.

However, the situation changes when we consider systems in the limit of infinite

volume.1 Then we have a continuous spectrum and resonances.

We can still deal with the vanishing denominators if we interpret them as

distributions; for example,

1

w
) 1

w � iE
¼ P

1

w
� pidðwÞ ð2Þ

where E > 0 is an infinitesimal. We shall come back later to the choice of �iE,

which is crucial to obtain well-defined perturbation expansions. For such

situations, the nonunitary transformation � leads to new units of systems that

cannot be reduced to trajectory or wavefunction descriptions.

For nonintegrable systems we have no more ‘‘certainty.’’ We come to a

different description. Indeed, once the regularization of Poincaré’s divergences

is achieved, we find two unexpected new elements: the breaking of time

symmetry and the appearance of intrinsic probabilities. We come to new units or

modes, which are no longer invariants. They obey irreversible kinetic processes

describing their mutual interactions.

The basic problem of classic mechanics or quantum mechanics is the

diagonalization of H. This corresponds to the introduction of a unitary operator

U, such that H is diagonal. For integrable systems, we can always diagonalize

H. For nonintegrable systems, this is generally not possible. Our interest is in

nonintegrable systems.

There is a second aspect, which is clearly exhibited on the level of

probability or distribution functions r in the Liouville–von Neumann space. As

is well known, we have

i
q
qt
r ¼ LHr; LH 	 ½H; � ð3Þ

1 This avoids the introduction of boundary conditions. We never have isolated dynamical systems as

correlations cross the boundaries.
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where we use a unit �h ¼ 1: LH is a ‘‘superoperator’’ (in quantum mechanics, it

acts on the density operator r). Because LH is a Hermitian operator, Eq. (3) has

only real eigenvalues in the Hilbert space for r. To describe dissipative processes,

we need an extension of LH outside the Hilbert space [7]. Therefore the

formulation of dynamics for nonintegrable systems involves an extension of the

statistical description outside the Hilbert space.

The idea that interactions may kick the system out from the Hilbert space

was already introduced by Dirac in the frame of field theory [8].

III. EXTENSION OF UNITARY TRANSFORMATIONS

In order to have a common formulation for both integrable and non-integrable

systems, we study the dynamics in the Liouville space. We shall consider

quantum mechanics. The dynamics is given by the Liouville–von Neumann

equation (3). As for the Hamiltonian (1) we have LH ¼ L0 þ lLV .

Let us consider first the case of noninteracting particles, with l ¼ 0. We

decompose the density operator r into independent components

r ¼
X
n

PðnÞr ð4Þ

where PðnÞ are projectors to orthogonal eigenspaces of L0 [see Eq. (20)]. We have

L0PðnÞ ¼ PðnÞL0 ¼ wðnÞPðnÞ ð5Þ

where wðnÞ are real eigenvalues, which are in quantum mechanics the differences

of energies between the ket and bras of a dyatic operator [e.g., see (24)].

The unperturbed Liouville equation is then decomposed into a set of

independent equations,

i
q
qt

PðnÞr ¼ wðnÞPðnÞr ð6Þ

We associate the diagonal component of r with n ¼ 0. We have wð0Þ ¼ 0; that is

the diagonal density matrices are invariants of motion in the unperturbed case.

The off-diagonal components with n 6¼ 0 simply oscillate with frequencies wðnÞ.
Next we consider the interacting case, with l 6¼ 0. We first assume that the

system is integrable in the sense of Poincaré. This means that we can construct,

by perturbation expansion or otherwise, a superoperator U that puts the

dynamics into the same form as in the unperturbed case. We have

i
q
qt

Ur ¼ ðULHU1ÞUr ð7Þ
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This corresponds to a change of representation,

r ) �r 	 Ur; LH ) �� 	 ULHU1 ð8Þ

(hereafter we use overbars to denote operators defined for integrable systems).

The defining property of this transformation is that the transformed Liouville

operator is diagonal in the unperturbed basis; that is, we have

��PðnÞ ¼ PðnÞ �� 	 �yðnÞ ¼ �wðnÞPðnÞ ð9Þ

where �wðnÞ are the real eigenvalues of ��, corresponding to wðnÞ shifted by the

interaction. As a consequence, the dynamics is reduced to the set of equations

i
q
qt

PðnÞ�r ¼ �wðnÞPðnÞ�r ð10Þ

Let us note that for the integrable case the problem of diagonalization of LH

is reducible to the problem of diagonalization of the Hamiltonian H. As is well

known in quantum mechanics, U is factorizable as

U ¼ u � u1 ð11Þ

where u is the transformation that diagonalizes H (we use the notation

ðA � BÞr ¼ ArB to denote factorizable superoperators). Due to the factoriz-

ability of U, for n ¼ 0 we still have �wð0Þ ¼ 0. This means that there is a one-to-

one correspondence (through the transformation U) between the unperturbed and

the perturbed invariants of motion.

In the nonintegrable case we can no longer construct U, due to Poincaré’s

resonances. However, as mentioned before, we can extend the construction of U

if we interpret the denominators as distributions with suitable analytic

continuations. We shall present an example below.

Our new construction leads to a nonunitary operator �, which is an extension

of U to nonintegrable systems. We have now the transformations

r ) ~r ¼ �r; LH ) ~� 	 �LH�
1 ð12Þ

The transformed Liouville equation is then

i
q
qt
~r ¼ ~�~r ð13Þ

The transformed Liouvillian ~� (now called the ‘‘collision operator’’ in kinetic

theory) is no longer diagonal in the unperturbed basis of projectors (this would
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bring us back to the integrable case). However, we may still require the

commutation with the unperturbed projectors, because

~�PðnÞ ¼ PðnÞ ~� 	 ~yðnÞ ð14Þ

This means that ~� is block-diagonal in the unperturbed basis of PðnÞ. It leads to

transitions inside each PðnÞ subspace.

We can introduce the complete set of PðnÞ projectors and express � and ~� in

this set:

� ¼
X
n

PðnÞ�; ~� ¼
X
n

~yðnÞ ð15Þ

Let us also note that Eq. (14) can be written as

LH�
ðnÞ ¼ �ðnÞLH ð16Þ

where

�ðnÞ ¼ �1PðnÞ� ð17Þ

The projectors �ðnÞ have been used extensively in our approach [9]. The

dynamics is decomposed into a set of independent ‘‘subdynamics.’’

Instead of obtaining a set of equations with invariant or oscillating solutions,

we now obtain a set of Markovian kinetic equations

i
q
qt

PðnÞ~r ¼ ~�ðnÞPðnÞ~r ð18Þ

There is an important point: In the construction of � (instead of U), time

symmetry is broken as a consequence of the analytic continuation of the

denominators. As a consequence, the operator ~� is not Hermitian and leads to

complex eigenvalues. It becomes a dissipative operator that describes

dissipative processes such as decay or diffusion. To lowest order in the

coupling constant, it reduces to Pauli’s collision operator of quantum

mechanics. In classic mechanics it leads to the Fokker–Planck equation. From

the similitude relation of the operator ~� with the Liouville operator, we can

show that LH has the same eigenvalues as ~�. This is only possible if r is not in

the Hilbert space. To introduce time irreversibility, we need to go outside the

Hilbert space: r is then a ‘‘distribution’’ (generalized function). Furthermore,

the appearance of kinetic equations means that the wavefunction description is

not preserved by the transformation �. Indeed, in contrast to U, � is a
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nonfactorizable superoperator. In this representation for nonintegrable systems,

dynamics is described in the Liouville–von Neumann space and not in terms of

wavefunctions.

In both integrable and nonintegrable cases, we transform the Liouville

equation into a set of independent equations. But as already mentioned in the

integrable case, the meaning is quite different from the nonintegrable case.

Indeed, Eq. (7) corresponds to oscillations, while Eq. (18) corresponds to

Markovian kinetic equations. Note that all non-Markovian memory effects are

eliminated in the representation ~r ¼ �r, which describes interacting dressed

particles or modes [10].

Before we go further, let us define more precisely the meaning of the

projection operators PðnÞ. As an example, consider a model of a particle

interacting with a field, the Friedrichs model with Hamiltonian

H ¼ o1j1ih1j þ
X

k

okjkihkj þ l
X

k

Vkðjkih1j þ j1ihkjÞ ð19Þ

The state j1i represents the bare particle (or atom) in its excited level and no field

present, while the state jki represents a bare field mode of momentum k together

with the particle in its ground state. The interaction describes transitions between

these states, corresponding to absorption and emission processes.

For density matrices the diagonal elements provide the probability to find the

particle in the state j1i or the field in a mode jki, while the off-diagonal

elements give information on the quantum correlations between particle and

field, or among field modes. The interaction changes the state of the

correlations. Hence, in the density matrix formulation, there appears naturally

a ‘‘dynamics of correlations’’ [1]. To formulate this more precisely, let us first

introduce the concept of the ‘‘vacuum-of-correlations subspace’’ that is the set

of diagonal dyads jaihaj with a ¼ 1; k. We then introduce an integer d that

specifies the degree of correlation. This is defined as the minimum number d of

successive interactions lLV by which a given dyadic state can reach the vacuum

of correlation. For example, the dyadic states j1ihkj and jkih1j corresponding to

particle–field correlations have d ¼ 1, while the dyads jkihk0j corresponding to

field–field correlations have d ¼ 2. For the Friedrichs model, d ¼ 2 is the

maximum value of the degree of correlation.

The projection operators are written explicitly PðnÞ,

Pð0Þ 	
X
a¼1;k

ja; aiihha; aj

PðabÞ 	 ja; biihha; bj ða 6¼ bÞ
ð20Þ
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which are orthogonal and complete:

PðmÞPðnÞ ¼ PðmÞdmn;
X
n

PðnÞ ¼ 1 ð21Þ

with ðnÞ ¼ ð0Þ or ðabÞ. Here we have introduced a double-ket notation jrii as a

double-bra hhAj for the operators r and A with a definition of an inner product:

hhAjrii ¼ TrðAþrÞ ð22Þ

and we have represented a dyadic operator as ja; bii 	 jaihbj. The projector Pð0Þ

corresponds to the vacuum of correlations subspace, while the projectors Pðk1Þ

and Pð1kÞ correspond to the d ¼ 1 subspace and Pðkk0Þ to the d ¼ 2 subspace. The

complement projectors QðnÞ are defined by

PðnÞ þ QðnÞ ¼ 1 ð23Þ

They are orthogonal to PðnÞ (i.e., QðnÞPðnÞ ¼ PðnÞQðnÞ ¼ 0) and satisfy

½QðnÞ�2 ¼ QðnÞ. As mentioned before, the bare projectors PðnÞ commute with L0

and they are eigenprojectors of L0,

½PðnÞ; L0� ¼ 0; L0PðnÞ ¼ wðnÞPðnÞ ð24Þ

where wðnÞ are the eigenvalues,

wð0Þ ¼ 0; wðabÞ ¼ oa  ob ð25Þ

IV. DYNAMICS OF DISSIPATIVE SYSTEMS

We come now to what we may call the backbone of our approach. For integrable

systems, we have seen that the central problem is the construction of the unitary

operator U in the Liouville–von Neuman space. For nonintegrable systems, we

introduced in our previous papers [5–7] new operators CðnÞ, DðnÞ, wðnÞ

corresponding to the dynamics of correlations. The superoperator CðnÞ is an

‘‘off-diagonal’’ superoperator, because it describes off-diagonal transitions

CðnÞ ¼ QðnÞCðnÞPðnÞ from the PðnÞ correlation subspace to the QðnÞ subspace.

By operating CðnÞ on the n correlation subspace PðnÞ, this operator creates

correlations other than the n correlation. In particular, Cð0Þ creates higher

correlations from the vacuum of correlations. For this reason the CðnÞ are

generally called ‘‘creation-of-correlations’’ superoperators, or creation operators

in short. Conversely, the DðnÞ ¼ PðnÞDðnÞQðnÞ are called destruction operators.
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The superoperator wðnÞ ¼ PðnÞwðnÞPðnÞ is ‘‘diagonal,’’ because it describes a

diagonal transition between states belonging to the same subspace PðnÞ.
In terms of these operators, we may indeed consider dynamics as a dynamics

of correlations. U is expressed in terms of the kinetic operators C, D, and w. The

kinetic operators for integrable systems are given by definition by the relations

�wðnÞ 	 PðnÞU1PðnÞ

�CðnÞ�wðnÞ 	 QðnÞU1PðnÞ
ð26Þ

We also have the Hermitian conjugate components

½�wðnÞ�y 	 PðnÞUPðnÞ

½�wðnÞ�y �DðnÞ 	 PðnÞUQðnÞ
ð27Þ

where �DðnÞ 	 ½�CðnÞ�y. The diagonalization of the Hamiltonian starting with the

projectors PðnÞ is equivalent to the dynamics of correlations. We have

U1PðnÞ ¼ ðPðnÞ þ �CðnÞÞ�wðnÞ

PðnÞU ¼ ½�wðnÞ�yðPðnÞ þ �DðnÞÞ
ð28Þ

As we shall see later, the ‘‘kinetic operators’’ for integrable systems form the

basis used to perform the analytic continuation to nonintegrable systems.

For the integrable case the transformation U relates bare eigenfunctions of L0

to dressed eigenfunctions of LH . The eigenfunctions of LH are given by the

dyads of eigenstates of H as j�fa;
�fbii, where

j�fa;
�fbii ¼ j�faih�fbj ¼ ½hh�fa;

�fbj�y ð29Þ

and Hj�fai ¼ �oaj�fai. The states jai are eigenstates of H0, while j�fai are dressed

eigenstates of H. In terms of the unitary operators U in the wavefunction space

and U1 in the Liouville–von Neumann space we have, respectively [c.f.

Eq. (11)],

j�fai ¼ u1jai; j�fa;
�fbii ¼ U1ja; bii ð30Þ

One can also write the eigenfunctions of LH in terms of the kinetic operators.

Here we use the notation [5,7]

j�F0
aii 	 j�fa;

�faii; j�Fabii 	 j�fa;
�fbii ða 6¼ bÞ ð31Þ
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Then we have

LH j�Fn
j ii ¼ �wðnÞj�Fn

j ii ð32Þ

where �wðabÞ 	 �oa  �ob and �wð0Þ 	 0. From Eq. (28) we obtain

j�Fn
j ii ¼ ðPðnÞ þ �CðnÞÞj f nj ii; hh�Fn

j j ¼ hh f nj jðPðnÞ þ �DðnÞÞ ð33Þ

where j f nj ii 	 �wðnÞjnjii where j is a degenerary index [see an example j ¼ a in

(31)].

Note that PðnÞj�Fn
j ii ¼ j f nj ii and QðnÞj�Fn

j ii ¼ �CðnÞj f nj ii. Hence the QðnÞ

component of j�Fn
j ii is a functional of the PðnÞ component,

QðnÞj�Fn
j ii ¼ �CðnÞPðnÞj�Fn

j ii ð34Þ

Similarly, for the left eigenstates of LH we have

hh�Fn
j jQðnÞ ¼ hh�Fn

j jPðnÞ �DðnÞ ð35Þ

The functional relations expressed by Eqs. (34) and (35) are highly nontrivial. It

is at the basis of the construction of dynamics of nonintegrable systems.

The above construction allows us to give an explicit expression to the

collision operator in (9) in terms of the kinetic operators [7]

�yðnÞ ¼ PðnÞwðnÞ þ ½�wðnÞ�1lLV
�CðnÞ�wðnÞ ð36Þ

The main result is that the dyadic formulation of quantum mechanics can be

expressed in terms of the kinetic operators. This is the starting point for our

transition from integrable to nonintegrable systems.

The time evolution of the density matrix in the unperturbed representation

depends on the correlations. These correlations replace here the interaction V

[see Eq. (8)]. The situation changes for integrable systems when we go to the

unitary representation. Then both interactions and correlations are eliminated

[as the kinetic equation reduces to Eq. (6)]. The elimination of the interaction or

the correlations are equivalent problems for integrable systems (see Ref. 2).

We go now to nonintegrable systems. We have then to eliminate Poincaré’s

divergences. This is done by analytic continuation of the resonances which

appear in the kinetic operators C, D, w. The key point is to choose the sign of iE
depending on whether we have a transition to higher, equal, or lower
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correlations, in each term of the perturbation expansion [4,7,9]. We use the same

formal expression (28) for �

�1PðnÞ ¼ ðPðnÞ þ CðnÞÞwðnÞ

PðnÞ� ¼ ½wðnÞ��ðPðnÞ þ DðnÞÞ
ð37Þ

However, the analytic continuation breaks the unitarity of the transformation. �
has a new property called star-unitarity [9], which is an extension of unitarity. We

have �1 ¼ ��, where � denotes star conjugation. Star conjugation means

Hermitian conjugation plus a change in the role of higher and lower correlations.

Instead of Ur, we now consider �r, which satisfies the same equation as Ur
but now ~� is the ‘‘collision operator’’ of kinetic theory [compare Eq. (10) and

Eq. (18)].

Let us consider an example. We consider again the Friedrichs model (19).

We assume ok � 0. The state j1i is either unstable or stable, depending on

whether its energy o1 is above or below a certain positive threshold energy,

respectively [5]. This threshold depends on the coupling constant and the

potential. We first restrict ourselves to situations where o1 < 0. This condition

ensures that the state j1i is stable and also that all terms in the perturbation

expansion are well-defined (i.e., we have integrability in the sense of

Poincaré [11]).

In addition to the bare states, we can construct dressed states j�fai that are

eigenstates of H. For example, for the particle state we have

Hj�f1i ¼ �o1j�f1i ð38Þ

where �o1 is the (real) shifted energy of the discrete state.

The exact state j�f1i is known and is expandable in perturbation series (see,

e.g., Ref. 11). To first order in l we have

j�f1i ¼ j1i 
X

k

lVk

ok  o1

jki þ Oðl2Þ ð39Þ

which is a superposition of states j1i and jki.
The dressing of the bare particle may be written as the result of a unitary

transformation in the Hilbert space,

u1j1i ¼ j�f1i ð40Þ

To the dressed particle state we associate the density operator

u1j1ih1ju ¼ j�f1ih�f1j ð41Þ
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which is an invariant of motion. We can write the transformation (4.16) as

U1j1; 1ii ¼ j�f1;
�f1ii ð42Þ

The remarkable point is that, as we have already noticed, U can be expressed in

terms of the kinetic operators (�C, �D, �w) we have introduced. This leads to a closed

link between quantum mechanics (or classic mechanics) and kinetic theory.

Now we turn to the case where the energy of the bare particle o1 is above its

threshold of stability. In this case the state j1i becomes unstable and decays

emitting photons. For this case, one can show that the state j�f1i disappears due

to ‘‘Poincaré resonances’’ at ok ¼ o1 in Eq. (39) [3,11]. In other words, there is

no eigenstate of H that can be obtained by a unitary transformation acting on the

bare state j1i. The disappearance of j�f1i may be interpreted as the

disappearance of one of the invariants of motion (i.e., j�f1ih�f1j). The system

is non-integrable in the sense of Poincaré. We come here to an unsolved

problem of quantum mechanics [12,13]: how to define a dressed unstable state.

We have of course the state j1; 1ii as well as the dressed states j�f1;
�f1ii for

integrable systems. In spite of the considerable literature, this problem is not

solved. However, on the level of the Liouville–von Neumann dynamics we can

introduce a dressed particle state through the nonunitary transformation �
obtained by the analytic continuation of U:

�1j1; 1ii ¼ rp
11 ð43Þ

rp
11 corresponds to the dressed unstable particle defined in the Liouville space,

and the superscript ‘‘p’’ stands for the perturbed state. This state is outside the

Hilbert space. This is in agreement with our remark that dissipation is only

meaningful outside the Hilbert space. The properties of rp
11 have been studied in

a recent paper [5], where the analytic continuation of � is given. rp
11 has a strict

exponential decay, while wavefunctions present deviations from exponential

behavior. This deviation is difficult to accept because this would destroy

indiscernibility. Note that our method separates effects due to the preparation of

the unstable state from the decay. According to the preparation we have different

short time behavior. This corresponds to the ‘‘Zeno time’’ [14] as well as other

effects. In contrast, the behavior of rp
11 is universal. Note also that rp

11 no longer

leads to the well-known Lorentz shape, but to a distribution of photons with finite

dispersion.

In Ref. 5 we have presented the exact form of U and � in all orders of l.

Here we present, as an example, specific components of U and �, up to second

order in l

hhk; kjU1j1; 1ii ¼ l2V2
k

ðo1  okÞ2
þ Oðl4Þ ð44Þ
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for the integrable case and present

hhk; kj�1j1; 1ii ¼ 1

2

h l2V2
k

ðo1  ok þ iEÞ2
þ c:c:

i
þ Oðl4Þ ð45Þ

for the nonintegrable case. Equation (44) corresponds to the well-known

Rayleigh–Schrödinger expansion (in Liouville space), while Eq. (45) corres-

ponds to an extension of the Rayleigh–Schrödinger expansion to nonintegrable

dynamical systems. Note that if we insist on keeping a unitary transformation for

the nonintegrable case, we would obtain a diverging distribution as

hhk; kjU1j1; 1iinonint ¼
l2V2

k

jo1  ok þ iEÞj2 þ Oðl4Þ

/ 1

E
dðo1  okÞ /

1

E
~yð0Þ ð46Þ

This is an example of Poincaré’s divergences. It occurs at the resonance ok ¼ o1.

It is related to the collision operator ~yð0Þ [3]. However, for the nonunitary

transformation Eq. (45) we avoid the divergence by a suitable choice of analytic

continuation.

The fourth-order corrections are given by

hhk; kjU1j1; 1ii4 ¼  l2V2
k

ðo1  okÞ2

X
l

l2V2
l

ðo1  olÞ2

 2
l2V2

k

ðo1  okÞ3

X
l

l2V2
l

o1  ol

ð47Þ

for the integrable case and by

hhk; kj�1j1; 1ii4 ¼  1

2

l2V2
k

ðo1  ok þ iEÞ2

X
l

l2V2
l

ðo1  ol þ iEÞ2
þ c:c:

" #

 l2V2
k

ðo1  ok þ iEÞ3

X
l

l2V2
l

o1  ol þ iE
þ c:c:

" #

þ 1

8

l2V2
k

ðo1  ok þ iEÞ2
 c:c:

" # X
l

l2V2
l

ðo1  ol þ iEÞ2
 c:c:

" #

ð48Þ

for the nonintegrable case. The expansion in terms of l can be pursued to all

orders in l, but the radius of convergence of the series is generally not known.
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However, we have an exact compact expression for any value of l for the

Friedrichs model considered here [5]. As already mentioned, the analytic

continuation has been done by separating the transitions from higher correlations

from the transitions to lower correlations [4,9]. The analytical continuation is not

unique. In each term we could replace iE by iE. The possibility of two different

extensions corresponds to the inversion between past and future and is the basis

for dissipative processes. Our method leads to a separation of processes that lead

to equilibrium in the future from processes that lead to equilibrium in the past.

The main point is that we can separate these processes in terms of two different

‘‘semigroups.’’ Which semigroup to choose is a question of coherence. In the

universe as known to us, all dissipative processes have the same direction. This is

by definition the direction from past to future. Anyway the irreversible processes

appear as a result of analytic continuation, and not due to any falsification.

However, the mathematics of irreversible processes is highly nontrivial. For

example, we have in the integrable case

UH2 ¼ ðUHÞ2 ð49Þ

The operator U is ‘‘distributive.’’ In contrast, � is nondistributive:

�H2 6¼ ð�HÞ2 ð50Þ

This difference indicates that there are no more discrete levels, and that we have

an uncertainty relation between energy and lifetime:

�E�t � 1=2 ð51Þ

where �t is the lifetime and �E is given precisely by the difference [4,5]

ð�EÞ2 ¼ h�H2i  hð�HÞ2i ð52Þ

The time energy radiation takes here a clear meaning. The energy shift �E

differs slightly from the usual value [5]. Our approach could be verified

measuring the line shape that differs radically from the classic Lorenz shape.

V. CONCLUDING REMARKS

The dynamical description of dissipative systems has previously led to some

contradictions. On the level of Fokker–Planck or Pauli equations, one retains l2t

terms. In this limit, � � U. If this would be the case, irreversibility would indeed

be only the result of approximations. But � can never be exactly equal to U. The

l2t approximation corresponds only to an asymptotic expansion. It is true that for
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large t, equilibrium would be achieved and there would be no more dissipation.

But for finite l, however small, we have � 6¼ U, and we go outside the Hilbert

space.

Note also that our method also applies to thermodynamic systems with N

particles in a volume V in the limit N ! 1, V ! 1 with the density c ¼ N=V

finite. In general, these systems are nonintegrable. The same applies to field

theory. Free fields are integrable systems. But, in general, interacting fields are

not integrable. The interactions between fields lead again to dissipation and

require an extension of dynamics outside the Hilbert space [15].
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I. INTRODUCTION

Quantum Field Theory was initiated by P. Jordan and developed by P. A. M.

Dirac and by W. Heisenberg and W. Pauli to apply the quantum rules to arbitrary

systems (including fields) and in particular to cope with the problems of radiation

and matter. There have always been questions about mathematical consistency

and physical interpretation. An essential difference with ordinary nonrelativistic

quantum mechanics appeared very soon, when von Neumann proved the

uniqueness of the irreducible representations of the commutation rules for a

system with finite numbers of degrees of freedom, whereas the theorem was

definitely false for infinite systems—that is, for quantum fields. In the first, finite
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case, the commutation rules

½qi; pj� ¼ i �h dij or ½ai; a
y
j � ¼ dij

would imply that there exists an essentially unique vacuum state j 0 i with

aij 0 i ¼ 0

The existence of different, inequivalent vacua, or even the nonexistence of

vacuum at all in the case of infinite degrees of freedom, was pointed out later

and elaborated by Friedrichs, Wightman and Schweber, Segal, van Hove, and

others. This has nothing to do, of course, with the separability of the underlying

Hilbert space, a fact that we physicists assume, but which is not mathematically

necessary; even with a countable infinite number of degrees of freedom, there

are a myriads of inequivalent irreducible representations of the conmutation

relations.

Von Neumann’s theorem as such guaranteed that, for example, Heisenberg’s

matrix mechanics and the Schrödinger equation would produce the same results,

even when they departed from the naive Bohr–Sommerfeld old quantum theory

results, for example in the 1
2
�ho value for the zero point energy for the

oscillator: In fact, Heisenberg’s treatment stressed the energy representation,

whereas Schrödinger used the coordinate representation; that the wave equation

was nothing but a particular representation of Heisenberg–Born–Jordan

commutation rules was something subtle, which even Niels Bohr never

accepted completely.

Dirac’s (and simultaneously Jordan’s) work on the transformation theory

(1927) was the culmination of the axiomatic treatment of Quantum Mechanics

(as distinct from Q.F.T.). Dirac himself was more proud of this development

than any other of his (many) contributions to quantum mechanics. Transforma-

tion theory emphasizes the geometric, frame-independent and invariant

description of quantum mechanics. The underlying quantum reality, somewhat

cryptic, can only be revealed through a particular representation; whichever one

takes, however, breaks the representation independence. One cannot but think

that exactly the same is true in general relativity, where coordinate

independence is dialectically opposed to the necessity of a particular frame to

state a concrete problem and to exhibit the solutions. In modern times, one

assumes that the M-theory is still provisional because we do not know yet the

representation-independence mode of the description of the former string

theory; we only know six corners of the domain, the five allowable string

theories, and the ‘‘crown jewel,’’ namely, supergravity in 11 dimensions.

Dirac’s infinite sea of filled negative energy states was a constructive answer

to the negative side of von Neumann’s theorem for the relativistic electron field;
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the ‘‘natural’’ representation, with all positive and negative levels empty, did not

describe reality, but was in agreement with the (anti-)commutation relations all

the same. But Dirac’s choice was also in agreement with the irreducible

representation which has the lowest energy, because all the negative-energy

levels were filled.

II. SECOND QUANTIZATION

Quantum Field Theory was connected from the beginning with (special)

relativity; in fact, there is a widespread belief that there is no consistent

relativistic description of a single particle because of the phenomenon of pair

creation, the many-body interpretation of the negative energy states, and so on.

However, this is a point of view that R. P. Feynman would have challenged. One

can go a long way with a relativistic quantum mechanics of a particle, with

antiparticles, for example, understood as particles going backwards in time; this

is especially true if one is interested only in an S-matrix description.

However, there is a beautiful description of many-body problems, even in

nonrelativistic mechanics, by means of quantum field theory. This is the second

quantization of Dirac (again!) and Jordan, O. Klein, and E. P. Wigner. Starting,

for example, with the Schrödinger equation (with 2m ¼ �h ¼ 1)

c
00 ðxÞ þ EcðxÞ ¼ VðxÞcðxÞ

one gets a complete set of eigenfunctions; there is first the (possible) discrete

spectrum, bounded from below:

unðxÞ ¼ hxjni ; EðnÞ ¼ En ; n ¼ 1; . . . ;N

and improper ‘‘eigenfunctions’’ of the continuum part

ukðxÞ ¼ hx j ki 0 � k2 ¼ E < 1

So the spectrum is continuous, 0 � E < 1, with possibly several bound

states of negative energy, En < 0.

Now the ‘‘free’’ second quantized field is described by an expansion

�ðxÞ ¼
X

unðxÞ an þ ukðxÞ ak

Of course, one can use two real (hermitean) fields instead of the complex

one,

�ðxÞ ¼ �1ðxÞ þ i�2ðxÞ ¼ f�1ðxÞ,�2ðxÞg
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which is very convenient for many reasons, as emphasized by J. Schwinger and

others.

The time-dependent form of the Schrödinger equation in terms of real

components is

i
q
qt

c1ðtÞ
c2ðtÞ

� �
¼ 0 �r2

þr2 0

� �
c1ðtÞ
c2ðtÞ

� �

where c ¼ c1 þ ic2. Here c1 and c2 contain both signs of frequencies, though

c and c� contains positive and negative frequencies, respectively. c1 and c2 are

real, and only they should be considered as the basic ingredient when we

quantize.

Jordan and Klein determined the conmutation relations to be

½an; a
y
n0 � ¼ dn;n0 ; ½ak; a

y
k0 � ¼ dðk � k0Þ

if there is no restriction on the spectrum of the number operator Nk ¼ a
y
kak, which

fits well with the concept of ‘‘ordinary’’ classic particles. Anticommutation

relations for spinor particles (fields) were soon advanced in the subsequent work

of Jordan and Wigner (1928).

The approach of Jordan went counterintuitive to the eminently ‘‘particle’’

point of view prevailing at the time in the orthodox quarters of Gottingen and

Copenhagen; let us recall that the literal ‘‘wavelike’’ interpretation of the

Schrödinger equation was eventually rejected by the inventor himself, when it

was clear that it makes no sense to think of the electron smeared out throughout

the space: As H. Weyl proved very soon, the probability of simultaneous

detection of ‘‘bits’’ of the electron at two separated points is zero, because it

would correspond to the product of two commuting but different projection

operators. Physically it is clear that the electron is indivisible!

III. CONTINUUM SPECTRUM

Let us mention two perennial conundrums of nonrelativistic quantum mechanics

that show up also in the theory of quantized fields. We refer to the treatment of

the continuum spectrum and the collapse of the wave packet. We shall not have

too much to say about the second topic, because of the fact that for the virtual,

potential, or propensity interpretation of the wavefunction, rooted in the

Aristotelian philosohy and favored by Heisenberg and K. Popper among others,

there is nothing real which collapses. In any case this belongs to the interpretative

program of quantum mechanics, which is beyond the modest aim of this chapter.

The so called ‘‘improper’’ states, necessary to describe scattering, resonance

decay, and so on, are essential. They do have an irreproachable description,
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again due to von Neumann. He completed the proof, due to Hilbert and Schmidt

(1906), of the spectral resolution for self-adjoint operators to the unbounded

case: The corresponding resolution of the identity is

1 ¼
X

n

jnihnj þ
ð

E

PðEÞ dmðEÞ

where PðEÞ is a family of projection-valued measures with Pð�1Þ ¼ 0,

Pðþ1Þ ¼ 1. Likewise, the Hamiltonian resolves as

H ¼
X

n

Enjnihnj þ
ð

E

E dPðEÞ

valid even in the case (which is usual) where H is an unbounded operator, as long

as it is self-adjoint (hypermaximal in the now-obsolete von Neumann

terminology); here jnihnj are the bona fide projectors onto the bound states

jni, whereas PðEÞ is a projector measure, associated to the continuum spectrum

for all values less than E. The theorem guarantees that the usual description with

‘‘eigenfunctions’’ on the continuum with well-defined energy will go through to

describe the scattering situation. In fact, Dirac’s physical way to circumvent the

continuum spectrum problems with tricks like the delta ‘‘function,’’ separated

bra’s and ket’s, and so on, although horrifying the mathematicians at the time, is

seen today as just an anticipation of the perfectly respectable distribution theory

of L. Schwartz (1950). What Dirac does is just to write down

PðEÞ ¼ jEihEj

pretending that jEi is a state. It is not, but the average
P

� jEihEj dmðEÞ always

exists as a bona fide operator.

Nevertheless, there are alternatives; one might as well enlarge the Hilbert

space by introducing the topological dual of a physical subspace, which will

extend itself beyond the limits of the original Hilbert space, in particular beyond

the square-integrable functions in the Lebesgue realization of an abstract Hilbert

space. This is the rigged Hilbert space formalism, pioneered by I. M. Gelfand

for other reasons. In recent times A. Bohm, M. Gadella, and coworkers have

used this consistently for the scattering and resonant states.

The treatment of resonances in quantum theory has a long history, starting

with Dirac’s time-dependent perturbation theory (1926), Gamow’s tunnel effect

description of a-decay in radioactive nuclei, the Weisskopf–Wigner treatment of

radiation damping and line breadth, and the resonance formulae of Breit and

Wigner, and later Kapur and Peierls (developed in the mid-1930) and
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subsequently Peierls himself. The Kapur–Peierls formalism has been ‘‘re-

discovered’’ recently in connection with the rigged Hilbert space approach.

One might reasonably ask, Do resonances correspond to complex energy

eigenvalues? The simple answer is: Yes, if you take the inverse lifetime of the

unstable state as measured by the imaginary part of the ‘‘complex’’ energy. No,

if you remember from your school days that Hermitian operators have only real

eigenvalues. So?

IV. RESONANCES AND POLES

The temptation to study the Schrödinger equation with complex eigenvalues or

alternatively the analytic continuation of the analytic states and the scattering

amplitude to the complex region has been irresistible. The improper

understanding of either approach has led to a lot of nonsense in the physical

literature.

Let us first make a simple remark. For a free particle, the spectrum is

continuous and bounded from below. But we can ask the question, How are the

solutions of the Schrödinger equation for negative energies, or for that matter

for complex values? The mathematical solutions are there, of course; there are

two of them, linearly independent. Are they of any use? Of course! For

example, to construct all the transparent potentials [first found by Kay and

Moses (1955), by the inverse scattering method] one starts with these mock

(¼ unphysical) negative-energy solutions for the free particle (e.g.,

cðxÞ ¼ coshðxÞ), applies the double Darboux isospectral method (developed

in 1885!), and constructs the solitonic potentials by iteration, which are

perfectly well-defined and very important; for example, in the first step one just

obtains VðxÞ ¼ �2 sech2ðxÞ, the paradigm of reflectionless potentials.

To study rigorously the complex continuation of the wavefunction, let us

write the most general solution of the time-dependent Schrödinger equation,

cðtÞ ¼
X

cn expð�iEntÞ þ
ð1

0

gðEÞ expð�iEtÞ dE

On the real axis there are only the poles of any bound states plus a branch cut

for the continuum; of course, in the complex k-plane there is no branch cut, so

one can get around the cut in the energy plane by considering a two-sheeted

Riemann surface, the physical and the unphysical. In the simplest case of a

finite-range potential, in the k-plane there are only ‘‘B’’-type singularities,

corresponding to bound states, which lie in the positive imaginary axis,

‘‘A’’-type singularities, in the negative imaginary axis, called sometimes

antibound states, and ‘‘C’’-type singularities, associated to resonances, which

are complex and appear as pairs in Im k < 0.
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There is nothing to prevent us from modifying the integration contour in

the complex energy plane, as long as we do not cross any singularity when we

move off the real axis. Needless to say, the Hamiltonian operator, assumed to be

analytic, is also continued.

Of course, if we insist on deforming the contour even crossing a new pole

(that should be the analytic concept of resonance), the formula is still correct, as

long as we duly include the residue contribution of that pole. Therefore:

The contributions to the integral on the real axis, which do not include the

resonance contribution, are the same as the contribution on a deformed contour

crossing some poles (resonances), as long as they are properly taken into

account.

What is the time evolution of resonances? If the time evolution is given by

jcðtÞi ¼ expð�iHtÞ jcð0Þi

then the survival amplitude is the overlap

AðtÞ ¼ hc^ð0Þ jcðtÞ i

where hc^j is the dual function; then

hc^ðtÞ; jcðtÞ i ¼ 1 independent of t

Of course, for the analytic continuation the Fourier component should be

written as

gðEÞ ! g�ðE�Þ

as it is clear from the transformation formula.

Now the survival probability is the square of the modulus of the overlap

hc^ðt1Þ jcðt2Þ i. Of course, it does not make sense at all to say that ‘‘the state’’

decays, in the sense of becoming smaller. Because the resonance is a discrete

eigenstate of the analytically continued Hamiltonian, it is stationary. The state

has unit norm and keeps it! We can say that the probability diminishes in a

phenomenological approximation if we overlook the states in which the

decaying systems go into, looking only to the part of the original state that

persists; it is like saying that energy is not conserved in friction because we do

not keep track of the energy lost on the rubbed body!

Physically it is useful to understand the resonances to be associated with

poles. The Hamiltonian evolution preserves scalar products both in the Hilbert

space and in the more general dual space. Note that the ‘‘Hamiltonian’’ that acts

in the dual complex space is not, strictly speaking, the original (Hermitian) one,
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but is its continuation with complex parameters; this reconciles the ‘‘incon-

gruence’’ of the very ‘‘same’’ Hermitian operator getting complex eigenvalues!

Furthermore, the process is even reversible in time [so we do not subscribe

to the philosophy that resonance decay in an essentially irreversible proces;

absorption is as good as spontaneous emission; that much was clear from a very

early discussion between Einstein and Ritz (1908)]. The state has constant (unit,

in fact) norm, and hence the survival probability cannot exceed one. So if one

looks back in time, it does not make sense to say that the resonance was

‘‘arbitrarily big’’ in the past. In fact, the time evolution is symmetric under time

reversal, if one properly takes into account the transition to the dual state of the

decaying state. Reversibility holds, of course, only if the Hamiltonian itself is

time-reversal invariant, which is usually the case but by no means always.

If H is the original space, H0 is the dual, and K,K0 are the continued

spaces in the complex domain, only a dense set in H maps into H0; a delta

function maps into a distribution in H0, not in H. In H0 it is the Weisskopf–

Wigner resonance written as a Lorentz line shape:

ðE � z0Þ�1 ¼ ðE � E0 � i�=2Þ�1

V. SPIN-STATISTICS AND CPT

Prigogine has raised the question of the statistics of the unstable particles. We are

able to give a precise answer to this, in the dual space formalism. That is, the

continued operators aðzÞ and ayðzÞ satisfy the same canonical commutation

relations, namely ½aðzÞ; ayðz0Þ� ¼ dzz0. So, for example, in the two-resonance state

we have a
y
1 a

y
2j 0 i ¼ a

y
2 a

y
1 j 0 i; scalar resonances obey Bose statistics.

The disentanglement of quantum field theory from it’s relativistic heritage is

shown also in that some of the crowning results of the relativistic situation, the

connection between spin and statistics and the CPT theorem, can be seen to

remain valid also in the nonrelativistic situation. Here we are going only to show

some results.

The key issue in the spin-statistics theorem turns out to be merely the

structure of the equations of motion under the three-dimensional rotation group,

with the attendant spin (¼ double-valued) representations. The stable homotopy

of the fundamental groups starts precisely at dimension three, namely,

p1ðSOðnÞÞ ¼ Z2; n > 2

This is naturally true of the rotation group itself, SO(3); it is also true of its

inclusion in the Galilei group or, for that matter, in the Lorentz or the Poincaré

group. This has been shown in detail only recently, but was hinted at already by

Bacry and others.
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The projective nature of the space of rays of quantum mechanics makes it

possible for the half-integral spin representations to exist. The spin-statistics

theorem then merely signals the price: They have to have the antisymmetric

property, with the attendant Pauli ‘‘Auschliessprinzip,’’ which is the key to

understand structures in the Universe; were it not for this principle, the matter

would appear amorphous, with all the particles in the ground state—no

chemical valence, no chemical bond, no molecules, no life, no ourselves,

nothing!

The spin-statistics connection holds also for arbitrary dimension (greater

than 2 þ 1); witness the modern treatment of supersymmetric charges and

transformations with Grassmann numbers.

It applies, mutatis mutandis, to the CPT theorem. There is no problem in

defining P and T for any spacetime situation, whether relativistic or not. One

writes routinely, for any field

P�ð~x; tÞP�1 ¼ Zpb�ð�~x; tÞ

for the parity operation, where, for example, b is needed for Fermi fields; and

T�ð~x; tÞ T�1 ¼ expði p J2Þ��ð~x;�tÞ

recalling the antilinear nature of time reversal, as discovered by Wigner in 1932.

As for charge conjugation, for any quantized field one can define

C�ðxÞC�1

from the expansion of �ðxÞ in terms of creation and annihilation operators as

CakC�1 ¼ bk; Ca
y
kC�1 ¼ b

y
k

for a general complex field. Or, more to the root the matter, for purely Hermitian

fields the natural definitions are

CakC�1 ¼ �ak; etc:

Recall that the C operation is antilinear in the first quantized formalism, but

linear in second quantization, whereas time reversal is always antilinear. With

these definitions, it is not difficult to show that any Hermitian (¼ real)

Lagrangian for nonrelativistic fields as well as for relativistic quantized fields

has to be CPT invariant. Again, the result holds with generality because P and T

do not have a relativistic origin; as for C, it is characteristic of the quantum

theory.
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I. INTRODUCTION

As is well known (see, e.g., Ref. 1) in quantum mechanics, there is no Hermitian

time operator t̂ conjugate to a Hamiltionian H bounded from below, such that

½H; t̂� ¼ �i. Indeed, the operator t̂ would imply the existence of a displacement

operator expði�Eq=qEÞ that could shift the energy of physical states to arbitrary

negative values.

As noted by Prigogine [2], the nonexistence of t̂ in the usual formulation of

quantum theory is connected to the dual role of the Hamiltonian, both as energy

and time translation operator. This ‘‘degeneracy’’ can be lifted by going to the

Liouvillian formulation of quantum dynamics.
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In the Liouvillian formulation the fundamental objects are density operators,

and the generator of motion is the Liouville superoperator LH ¼ ½H; �. We use

the term ‘‘superoperator’’ to indicate that LH acts on ordinary quantum-

mechanical operators [2].

Assuming that the spectrum of H is in the positive real line, the spectrum of

the Liouville superoperator will be in all the real line, because the eigenvalues

of LH are differences of energies. As a result, one can introduce [2,3] a

Hermitian superoperator T that satisfies

½LH ; T � ¼ �i ð1Þ

In other words, the time superoperator can be constructed if there is a continuous

spectrum of energy and no discrete energy levels. This situation occurs, for

example, in systems having resonances associated with unstable states.

As shown by Misra, Prigogine, and Courbage [4,5] (see also Refs. 6 and 7) in

classic mechanics, the existence of a time operator may be linked to the

appearance of instabilities in dynamics, leading to dissipative processes. Once

the time operator is constructed, one can define a microscopic ‘‘entropy’’

operator M as a monotonic function of T (this is a Lyapounov function

analogous to Boltzmann’s H function). The entropy operator indicates the

‘‘distance’’ of the system to its final asymptotic state, which emerges as a result

of dissipation. Both T and M can only be defined in terms of ensembles, and not

in terms of trajectories.

As in classic mechanics, in quantum mechanics we can construct an entropy

superoperator once we have T . Both the time and entropy superoperators do not

preserve the purity of states, and hence they have to be formulated in the space

of density operators. In short, for both classic and quantum mechanics the

existence of instabilities, resonances, or dissipation is connected to the existence

of time and entropy operators acting on ensembles [2].

The time operator has been previously constructed for classic systems such

as the baker map [2,5], free relativistic fields with energy unbounded from

below [6,8], and nonconservative systems described by the diffusion equation

[9]. Here we present the explicit construction of T for a Hamiltonian quantum

system, the Friedrichs model, with energy bounded from below (C. Lockhart [3]

has constructed a time operator t̂ acting on wave functions for the Friedrichs

model with no lower bound on the energy).

In Section II we outline a general procedure to construct the time

superoperator for systems with a continous spectrum.1 In Section III we apply

this construction to the Friedrichs model. We estimate the average age of the

1 Many of the derivations in the present chapter have been included in Ref. 10. Therefore here we

shall omit some details.
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excited state in the case of weak coupling. The main result is that the average

age coincides with the lifetime of the excited state. In Section IV we estimate

the age fluctuations of the excited state. It is found that these fluctuations are

large, on the order of the lifetime. In Section V we make a few comments on the

entropy superoperator. This operator is formulated in terms of a nonunitary

transformation � [5] that leads to a nonlocal representation of dynamics with

broken time symmetry [11].2

II. CONSTRUCTION OF THE TIME SUPEROPERATOR

Let us consider the Hamiltonian

H ¼
X
a

ð1
y

dwjfw; aiwhfw; aj ð2Þ

where w is the energy and a is a degeneracy index. The energy eigenstates satisfy

the usual orthonormality and completeness relations,

X
a

ð1
0

dwjfw; aihfw; aj ¼ 1

hfw0 ; a0jfw; ai ¼ dðw � w0Þda;a0
ð3Þ

In the Liouville space [10,14] the dyads jfw; aihfw0 ; a0j are eigenstates of LH

with eigenvalues w � w0. It is convenient to introduce the variables n and �w,

n � w � w0; �w � w þ w0

2
ð4Þ

as well as the notation

j�n; �w; a; a0ii � jfw; aihfw0 ; a0j ð5Þ

Then the eigenvalue equation of LH is written as

LH j�n; �w; a; a0ii ¼ nj�n; �w; a; a0ii ð6Þ

2 In recent years an alternative approach to obtain representations of dynamics with broken time

symmetry has been developed. This approach is based on the construction of complex spectral

representations of LH both in classic [12,13] and quantum [14] mechanics. The relation between this

approach and the approach based on the time superoperator is an interesting question we shall

consider in a separate publication (see the comment at the end of Section V.)
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The spectrum of n runs from �1 to þ1. As the eigenstates of LH are density

operators, we need to define their inner product in order to introduce the linear

space structure. The inner product of two operators A and B is defined trough the

trace hhAjBii � TrðABÞ. Now, similar to the usual position and momentum

operators, the solution of the commutation relation (1) is constructed for the time

superoperator T by taking the Fourier transform of the states j�n; �w; a; a0ii over

the variable n. However, some care is necessary because the variable n cannot

vary independently of �w. Indeed, we have w ¼ �w þ n=2 � 0 and w0 ¼ �w�
n=2 � 0, so we have �w � jnj=2. In the (n=2; �w) plane the allowed region is the

shaded region shown in Fig. 1 (see Ref. 15 for a discussion on the spectrum of

LH). For given �w, the variable n is restricted between the values �2�w and 2�w, as

indicated by path I of Fig. 1. In order to remove this restriction, we choose

integration paths such as II in Fig. 1 [3]. Along this path the vertical distance

E � �w � jnj=2 ð7Þ

to the lower edge of the shaded region remains constant.

Introducing the set x � ðE; a; a0Þ, which consists of all the parameters that

are constant along path II, we relabel the eigenstates of LH as j�n; xii. Then we

arrive at the expression of the eigenstates of T :

j�ðtÞ; xii ¼
ð1
�1

dnffiffiffiffiffiffi
2p

p e�intj�n; xii ð8Þ

Figure 1. Spectrum of LH and integration paths for Fourier transform.
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Note that we may write the unit superoperator as

1 ¼
X
x

ð1
�1

dnj�n; xiihh�n; xj ¼
X
x

ð1
�1

dtj�ðtÞ; xiihh�ðtÞ; xj ð9Þ

where X
x

�
X
a;a0

ð1
0

dE ð10Þ

We shall refer to the states (8) as ‘‘age eigenstates’’ [9]. The time superoperator is

then

T ¼
ð1
�1

dt
X
x

j�ðtÞ; xiithh�ðtÞ; xj ð11Þ

Similar to the position operator, we may represent the time superoperator in

terms of its conjugate variable as t ) iq=qn:

T ¼
ð1
�1

dn
X
x

j�n; xiii
q
qn

hh�n; xj ð12Þ

We define the expectation value (or average) of T associated with a state r as

hTir �
hhrjT jrii
hhrjrii ð13Þ

As shown in Refs. 2 and 10 we have dhTirðtÞ ¼ dt; that is, the ordinary time t is

the average of T . This allows us to interpret hTir as the ‘‘average age’’ of the

state r and justifies the names ‘‘time superoperator’’ and ‘‘age eigenstate’’ for T

and its eigenstates.3

The time superoperator is Hermitian in the Liouville space, and it does not

preserve the purity of states [10]. This last property is easily seen in terms of the

superoperator expðinTÞ, which is an energy-difference shift operator. Acting on

a pure state jfw; aihfw; aj, we obtain

expðinTÞjfw; aihfw; aj ¼ yðnÞjfwþn; aihfw; aj þ yð�nÞjfw; aihfw�n; aj ð14Þ

where y is the usual step function. Equation (14) is no longer a pure state.

3 The zero of time plays no special role as we can always shift this point to t ¼ t0 by defining a new

operator T 0 ¼ T þ t0. This new operator still satisfies the commutation relation (1) as t0 is a constant

that commutes with LH . Ages are always measured with respect to the zero of time.
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The construction we have shown here is quite general, and it can even be

applied to free particles. The interest of our construction, however, is in cases

where the dynamics is unstable, as we show next.

III. AVERAGE AGE OF AN EXCITED STATE

Now we apply the results obtained in the previous section to the one-dimensional

Friedrichs model [16] with Hamiltionian

H ¼ j1iw1h1j þ
X
a

ð1
0

dwjw; aiwhw; aj

þ l
X
a

ð1
0

dw f ðwÞðjw; aih1j þ j1ihw; ajÞ ð15Þ

This model describes a bare atom with two discrete states: a ground state and an

excited state. The atom interacts with a set of field modes of frequencies w (we

use units with �h ¼ 1 and c ¼ 1). The interaction f ðwÞ is assumed to be real. The

state jw; ai represents a field mode (or ‘‘photon’’) in the presence of the bare atom

in its ground state. The index a is again a degeneracy index. The degeneracy is

given by

n �
X
a

ð16Þ

For example, for a one-dimensional massless scalar field we have w ¼ jkj and

a ¼ �1, depending on the sign of the momentum k. The state j1i represents the

bare atom in its excited state with no photons present. We assume the states j1i
and jw; ai form a complete orthonormal basis in the wavefunction space, namely,

X
a

ð1
0

dwjw; aihw; aj þ j1ih1j ¼ 1

h1jw; ai ¼ hw; aj1i ¼ 0; hw0; a0jw; ai ¼ dðw � w0Þda;a0
ð17Þ

The Hamiltonian (15) can also be interpreted as a simple model of an

unstable particle. In this alternative interpretation the state j1i represents the

bare particle and the states jw; ai represent the decay products.

We shall assume that the potential is of the form

f ðwÞ ¼ w1=2

½1 þ ðw=wMÞ2�r
ð18Þ
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where r is a positive integer and wM is the ultraviolet cutoff of the interaction

with

wM � w1 ð19Þ

For the interaction satisfying

w1 > l2n

ð1
0

dw
f 2ðwÞ

w
ð20Þ

the excited state becomes unstable due to resonances [17].

The exact eigenstates of H are known [16] and are given by4

jfw;ai � jw; ai þ l f ðwÞ
ZþðwÞ

�
j1i

þ
X
a0

ð1
0

dw0 l f ðw0Þ
w � w0 þ i0

jw0; a0i
�

ð21Þ

where Z�ðwÞ � Zðw � i0Þ, with

ZðzÞ � z � w1 � n

ð1
0

dw
l2 f 2ðwÞ

z � w
ð22Þ

We assume that the function ½ZþðwÞ��1
continued to the lower half-plane has

one pole (with g > 0) at

z1 � ~w1 � ig=2 ð23Þ

where g is the decay rate.

The eigenstates (21) form a complete orthonormal set as in Eq. (3). As a

result of the resonance instability, the excited state (corresponding to the point

spectrum) disappears from the complete set of eigenstates of H [16].

We shall calculate the average hTir1
¼ hhr1jTjr1ii where

jr1ii � j1ih1j ð24Þ

4 The states (21) correspond to the ‘‘in’’ states of scattering theory—that is, the asymptotic time-

evolved free states for t ! þ1. We may obtain ‘‘out’’ states by taking the complex conjugate of

(21). This corresponds to the change to T ) �T in the time superoperator constructed from these

states.
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is the bare excited state [we have hhr1jr1ii ¼ 1]. For simplicity we shall consider

the case of weak coupling l � 1 and assume that ~w1 � g. Under these

assumptions we may focus on the exponential region of the decay of the excited

state, where we can neglect the deviations from exponential decay (note that the

average value of T involves the complete ‘‘history’’ of the evolution of r1).

Going back to the original variables w;w0 and using (21), we find the exact

form of the states j�n; xii ¼ j�n;E; a; a0ii as

j�n;E; a; a0ii ¼ jfw; aihfw0 ; a0j ¼
jfEþn; aihfE; a

0j for n > 0

jfE; aihfE�n; a
0j for n < 0

�
ð25Þ

Defining

gðn;EÞ � hhr1j�n; xii ¼
l2 fEþn fE½ZþðE þ nÞZ�ðEÞ��1

for n > 0

l2 fE fE�n½ZþðEÞZ�ðE � nÞ��1
for n < 0

(

ð26Þ

we obtain [see Eq. (12)]

hTir1
¼ hhr1jT jr1ii ¼ n2

ð1
�1

dn
ð1

0

dE gðn;EÞi q
qn

g�ðn;EÞ ð27Þ

A few manipulations lead to [10]

hTir1
¼ �il4n2

ð1
0

dn
ð1

0

dE
f 2ðE þ nÞ

jZþðE þ nÞj2

� f 2ðEÞ
jZþðEÞj2

Z�ðE þ nÞ0

Z�ðE þ nÞ �
ZþðE þ nÞ0

ZþðE þ nÞ

� 	
ð28Þ

where Z�ðwÞ0 � qZ�ðwÞ=qw. Using the relation

n

2pi

l2 f 2ðwÞ
jZþðwÞj2

¼ 1

ZþðwÞ �
1

Z�ðwÞ

� �
ð29Þ

and the approximations

Z�ðwÞ0 ¼ 1 þ Oðl2Þ; ½ZþðwÞ��1 ¼ ½w � z1��1 þ Oðl2Þ ð30Þ

which are valid for l � 1, we get

hTir1
�
ð1

0

dE

2p
g

ðE � ~w1Þ2 þ g2=4

ð1
0

dn
2p

g2

½ðE þ n� ~w1Þ2 þ g2=4�2
ð31Þ
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Using ~w1 � g this leads to the average age of the excited state

hTir1
� 1

g
ð32Þ

which in our approximation is the same as the lifetime g�1.

IV. AGE FLUCTUATIONS

Because the bare excited state is not an eigenstate of T , we expect that its average

age will have fluctuations. We define the time fluctuation associated with a state

r as �Tr with

ð�TÞ2
r � hT2ir � ðhTirÞ

2 ð33Þ

Due to the commutation relation in Eq. (1), the fluctuations of T and LH must

obey the relation

ð�TÞrð�LHÞr � 1=2 ð34Þ

(with �h ¼ 1). For pure states r normalized as TrðrÞ ¼ 1, the fluctuations of the

Liouvillian are easily shown to be related to the fluctuations of the Hamiltonian

as

ð�LHÞ2
r ¼ 2ð�HÞ2

r ð35Þ

where

ð�HÞ2
r � TrðH2rÞ � ½TrðHrÞ�2 ð36Þ

as usual. In the following we shall calculate the time fluctuation for the bare

excited state and verify that it satisfies the relation (34).

The operator T2 may be written as [c.f. Eq. (12)]

T2 ¼ �
ð1
�1

dn
X
x

j�n; xii
q2

qn2
hh�n; xj ð37Þ

Therefore we have [c.f. Eq. (26)]

hT2ir1
¼ �n2

ð1
�1

dn
ð1

0

dE gðn;EÞ q2

qn2
g�ðn;EÞ ð38Þ
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Integrating by parts, we obtain

hT2ir1
¼ n2

ð1
�1

dn
ð1

0

dE
q
qn

gðn;EÞ











2

ð39Þ

Using Eq. (26) and the relations (29) and (30), we obtain

hT2ir1
� 2

ð1
0

dE

2p
g

ðE � ~w1Þ2 þ g2=4

ð1
0

dn
2p

g

ðE þ n� ~w1Þ2 þ g2=4

� f ðE þ nÞ0

f ðE þ nÞ

� 	2

� f ðE þ nÞ0

f ðE þ nÞ
1

E þ n� z1

þ c:c:

� 	"

þ 1

ðE þ n� ~w1Þ2 þ g2=4

#
ð40Þ

where f ðwÞ0 � q f ðwÞ=qw. For the potential (18), one can show that the first two

terms in brackets in Eq. (40) give contributions on the order of 1=w2
1 and

1=ðw1gÞ, respectively. These contributions can be neglected as compared with

the contribution of the third term, which gives

hT2ir1
� 2

g2
ð41Þ

Inserting this result and Eq. (32) in Eq. (33), we obtain

�Tr1
� 1

g
ð42Þ

Therefore the age fluctuation of the bare excited state is as large as its average

age.

The energy fluctuation of the bare state is given by

ð�Hr1
Þ2 ¼ n

ð1
0

dw l2 f 2ðwÞ ð43Þ

Therefore we obtain

ð�TÞr1
ð�LHÞr1

¼ 1

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n

ð1
0

dwl2 f 2ðwÞ

s
ð44Þ

The square root is of the order of lwM , while the decay ray g is of the order l2w1.

Therefore [c.f. Eq. (19)] we obtain ð�TÞr1
ð�LHÞr1

� 1=2. This verifies Eq. (34).
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Before closing this section we remark that, in general, higher powers of T

(i.e., Tl with l � 3) may have diverging expectation values, due to the branch-

point singularity at n ¼ 0 (corresponding to the edge of path II in Fig. 1).5 The

branch point appears as a consequence of the positivity of energy. As is well

known, this leads to deviations in the exponential decay of the excited state for

long times. For long times the decay follows an inverse power-law decay in time

as t�p with p positive integer [18]. Therefore, the integral over time in the

expectation value of Tl will diverge if l > p � 2. In spite of this divergence, one

can still define other functions of T such as the energy-difference shift operator

expðinTÞ.6

V. ENTROPY SUPEROPERATOR

We first define a superoperator � ¼ FðTÞ as

� ¼
ð1
�1

dt
X
x

j�ðtÞ; xiiFðtÞhh�ðtÞ; xj ð45Þ

where FðtÞ is an arbitrary nonincreasing and bounded function of t. This is a

nonunitary transformation, first introduced by Misra et al. [5,11] for unstable

dynamical systems such as the baker transformation. In our case, � acts on

density operators as ~r � �r. The transformed density operators ~r evolve

according to a Markovian equation that breaks time symmetry. Through � we

define the entropy superoperator as M ¼ �y�. This satisfies M � 0 and

d

dt
hMirðtÞ � 0 ð46Þ

The expectation value of M then gives the negative of an entropy function. This

expectation value may be put in the form [5,11] hMir ¼ Trð~ry~rÞ.
As shown in Ref. 11, there is a close relation between entropy and

nonlocality. For example, for the baker map, � transforms points in phase space

into ensembles corresponding to nonlocal distributions ~r [11]. In quantum

mechanics, � has an analogous properties. First of all (similar to T) it does not

preserve the purity of states. This is analogous to the nonpreservation of

trajectories in classic mechanics. Second, the transformation � introduces

delocalization of states in the space representation. To see this we take as an

example FðtÞ ¼ yð�tÞ. Associated with the photons we introduce the position

5 We thank S. Tasaki for pointing this out.
6 The situation is quite similar to what happens with the integral

Ð1
�1 dx f ðxÞðx2 þ x2

0Þ
�2

. This

diverges for f ðxÞ ¼ x2l with l > 1. However, for f ðxÞ ¼ expðikxÞ the integral is well-defined.
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kets jxi, which are related to the momentum states as hxjw; ai ¼ ð2pÞ�1=2

expðiawxÞ, for k ¼ ajwj and a ¼ �. The density operator corresponding to the

position kets is rx ¼ jxihxj. Because in the bare state r1 there are no photons,

we have hxjr1jxi ¼ hhrxjr1ii ¼ 0. On the other hand, for the transformed states
~r1 ¼ �r1 and ~rx ¼ �rx we obtain a nonvanishing overlap [10]

hh~rxj~r1ii ¼ hhrxjMjr1ii � ge�gjxj ð47Þ

This demonstrates the delocalization induced by the � transformation and the

entropy operator.

We remark that the choice of the decreasing function FðtÞ is not unique. The

main point is that the existence of the time superoperator implies the existence

of an entropy superoperator. The function FðtÞ should be linked to the intrinsic

decay rates of the system (i.e., to g). One possibility to achieve this is to relate

the construction we have presented here with the construction based on the

complex spectral representation of the Liouville operator [14, 16, 19, 20]. This

will be considered elsewhere.

VI. CONCLUDING REMARKS

Through the time superoperator we have introduced the concepts of age, age

fluctuation, and entropy for the Friedrichs model describing a single excited

atom or unstable particle.

There is a close relation between (a) the existence of instabilities and

resonances and (b) the existence of the time superoperator. This can be seen

explicitly in the Friedrichs model. In this model one can obtain a stable

configuration when the inequality (20) is not satisfied. In this case there is no

resonance between the discrete state and the continuous states. The discrete

state does not decay (it has an infinite lifetime as we have g ¼ 0). In this case

one can show that the time operator cannot be constructed because there appears

an isolated point in the spectrum of H. This isolated point spoils the possibility

of obtaining a complete set of age eigenstates by Fourier transformation of the

continuous states [c.f. Eq. (9)].

The time superoperator leads to a formulation of quantum unstable dynamics

where time and ensembles play a fundamental role [2]. In the future we hope to

extend this formulation to relativistic field theories.
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I. RESONANCES AND DECAY

A. Introduction

This is the first time that I find in one room together many people from whom I

have learned and who got me interested in irreversibility and who provided

advice and criticism: Ilya Prigogine, Manolo Gadella, Ioannis Antoniou, and

Nico van Kampen. And there are of course others who are not here. To express

my appreciation and pay my respect to them, I shall include some personal

remarks after I have introduced the subject.

But the real heroine in this story is the mathematics of the Rigged Hilbert

Space, which led to an idea so foreign to my upbringing that I could have never

dreamt of it.

* Proceedings of the XXI Solvay Conference, 1998.
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B. From the Golden Rule to the Gamow Kets

For me the story of (quantum mechanical) irreversibility started with the Golden

Rule of Dirac:

_Pð0Þ ¼ 2p
�h

ð
dE
X

all b
b 6¼bD

jhb;EjVj f Dij2dðE � EDÞ ð1Þ

Here _Pð0Þ is the initial decay rate or transition rate for the decaying state

WD ¼ j f Dih f Dj with energy ED, which decays into the decay products described

by the projection operator:

� ¼
X

all b
b 6¼bD

ð1
0

dEjE; bihE; bj ; where H0jE; bi ¼ EjE; bi ð2Þ

V is the interaction Hamiltonian for the decay, and the total Hamiltonian is

H ¼ H0 þ V . Example: f D is a K0
S decaying into the channels pþp�, p0p0,

pþp�g, and so on, which we label by the channel quantum number Z. E is the

energy and b ¼ b1b2 . . . bn stands for all other quantum numbers (e.g.,

directions) of all asymptotic decay products. If one chooses in place of

� ¼
P

Z �Z only the �Z of the decay channel, Z (e,g., Z ¼ pþp�), then the sum

over all b in (1) and (2) is replaced by the sum over the bZ for the Zth decay

channel only. The rate in (1) will then become the partial initial decay rate _PZð0Þ
and _Pð0Þ ¼

P
Z
_PZð0Þ.

According to the fundamental postulates of quantum mechanics, the

transition or decay probability at the time t—that is, the probability to find

the observable � in the state

WDðtÞ ¼ e�iHtWDeiHt or f DðtÞ ¼ e�iHtf D ð3Þ

at the time t—is

PðtÞ ¼ Trð�WDðtÞÞ ¼ TrðeiHt�e�iHtWDÞ ¼ h f DðtÞj�j f DðtÞi ð4Þ

The decay rate (transition probability per unit time) at t should then be given by

the time derivative _PðtÞ ¼ dPðtÞ=dt of PðtÞ, and the right-hand side of (1)

should be obtained by taking the time derivative of the right-hand side of (4) and

then setting t ¼ 0.

This is how I wanted to derive the Golden Rule (1) from the fundamental

quantum mechanical probabilities (4) for my quantum mechanics class in the
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1970s. The mathematical restrictions of the Hilbert space (HS) were no

considerations, because Dirac kets

HjE; b�i ¼ EjE; b�i ; eiHtjE; b�i ¼ eiEtjE; b�i ð5Þ

and the Lippmann–Schwinger equation

jE; b�i ¼ jE; bi þ 1

E � H � iE
V jE; bi ð6Þ

were freely used.

It turned out that (1) cannot be derived from (4), certainly not if f D is an

eigenvector of H0, H0 f D ¼ ED f D or if f D is an eigenvector of H. Also, taking

any arbitrary element of the HS for f D or more complicated mixed states WD of

the HS does not allow us to derive something like (1) from 4.1 The reason is that

Dirac’s Golden Rule [1] (and also the method of Weisskopf and Wigner [2] or

Lee–Oehme–Yang’s effective theory with a two-dimensional complex Hami-

ltonian matrix [3]) are approximate methods. And ‘‘there does not exist . . . a

rigorous theory to which these methods can be considered as approxi-

mations’’ [4].

In order to derive a Golden Rule, an eigenvector cG ¼ jER � i�=2i
ffiffiffiffiffiffiffiffiffi
2p�

p
of

the (self-adjoint, semibounded) Hamiltonian H with complex eigenvalue

ðER � i�=2Þ, that is,

HjER � i�=2�i ¼ ðER � i�=2ÞjER � i�=2�i; ð7Þ

and the exponential time evolution

cGðtÞ ¼ e�iHtcG ¼ e�iERte�
�
2
tcG ð8Þ

had to be postulated. Such vectors do not exist in the HS, but this was not a big

issue, because Dirac-Lippmann-Schwinger kets (5) and (6) are not in HS.

In the meanwhile, both the well-accepted Dirac kets (5) [7] and the much less

popular Gamow kets (7) [8] have been given a mathematically precise meaning

as functionals of a rigged Hilbert space (RHS):

�þ  H  ��
þ ð9Þ

1 At that time the theorem [5]—which states that the probabilities like (4) are identical to zero, under

the ususal assumptions for decay probabilities and for the Hamiltonian H, if f D 2 HS and � is a

positive operator in HS—was not available. But it was pretty obvious that a HS vector f D would not

do the job. However, it was well known that the exponential law could not hold for the survival

probability (1 �PðtÞ) if f D was in HS [6].
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The eigenvalue equation (5) as well as (7) and (8) are understood as a generalized

eigenvalue equation in RHSs (of Hardy class).

A generalized eigenvector of an operator A is defined to be that F 2 ��
þ

which fulfills

hAfjFi � hfjA�Fi ¼ ohfjFi for all f 2 �þ ð10Þ

where the number o is called the generalized eigenvalue. The first equality in (10)

defines (uniquely) the conjugate operator A� of any continuous operator A in the

space �þ. Equation (10) is also written as

A�jFi ¼ ojFi ; jFi 2 ��
þ ð11Þ

Therefore, to be precise, in (5) and (7) the operator H� should have been used,

whereas Dirac just wrote H. The conjugate operator for the unitary operator

UðtÞ ¼ eiHt in �þ is the operator in ��
þ:

U�
þðtÞ ¼ eiHt

� ��
þ¼ e�iH�t

þ ð12Þ

where the subscript þ is the label of the space �þ (Hardy class of upper half-

plane).

Thus the Rigged Hilbert Space (9) is already needed for the Dirac kets (5)

and the new Gamow kets (7) do not require a new mathematical theory.2

A resonance and decaying state is associated with an S-matrix pole at the

position zR ¼ ER � i�=2 on the second sheet of the analytically continued jth

partial S-matrix element (j ¼ angular momentum of the decay products or spin

of the resonance), and has a Breit–Wigner energy distribution. The decaying

state vector f D in (1), though a problematic notion in the HS theory, should

therefore have a Breit-Wigner energy wave function:

f D ¼ 1

i

ð1
0

dEjE; b�i

ffiffiffiffi
�
2p

q
ER � i �

2
� E

ð13Þ

Using (7), (8), and cG ¼ f D of (13) as postulates, one can obtain in a

heuristic way something like (1) from the fundamental probabilities (14).

However, postulates cannot be made arbitrarily; instead, they have to be

consistent with each other. But there is no way that one can derive (7) for the

vector f D of (13), not to speak of justifying (8).

2 Except that the Dirac kets can be defined on a larger dense subspace � of H (Schwartz space) and

the Gamow kets only on the Hardy space �þ because these require continuation to negative and

complex energies.
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However, one can modify (13) a little bit and postulate a vector cG:

cG ¼ 1

i

ðþ1

�1II

dEjE; b�i

ffiffiffiffi
�
2p

q
ER � i �

2
� E

ð14Þ

(where �1II means integration along the negative semiaxis in the second

sheet3). For practical purposes, (13) and (14) differ very little when �=2ER is

small. But for cG of (14) one can prove the following:

1. cG, if considered as functional over the Hardy class space �þ, can be

derived as pole term at zR ¼ ER � i�=2 in the lower half-plane of the

second sheet of the analytically continued S-matrix element.

2. Equation (7) is fulfilled in the sense of (10) or (11), as a generalized

eigenvalue equation with cG 2 ��
þ.

In order to obtain statement 1, the Hardy class property of the spaces �þ is

needed. In order to prove statement 2 and a similar equation for all powers Hn of

H, the Schwartz space property is needed. Therefore we chose for �þ the space

of ‘‘very well behaved’’ vectors, which means the following:

1. c� 2 �þ is well-behaved (i.e., the energy wavefunction h�Ejc�i 2
Schwartz space).

2. c� 2 �þ has some analyticity properties (precisely h�Ejc�i is a Hardy

class function analytic in the upper half-plane).3

Gadella has shown that, with this property of �þ, the triplet of spaces (9) is

indeed an RHS [9], which is needed in order to justify (5) and the Dirac basis

vector expansion [c.f. (26) below (Dirac bra-ket formalism)].

For this RHS (9) of Schwartz and Hardy class, we now have to derive (8) as a

generalized eigenvalue equation [in the sense of (10) with f ¼ c�, F ¼ cG,

A ¼ UðtÞ ¼ eiHt] for the vector cG given by (14). The surprising, totally

unforeseen and unintended result was that for cG 2 ��
þ (Hardy class) one can

show that (8) cannot hold for t < 0, but one can prove it as a generalized

eigenvalue equation for t � 0:

e�iH�t
þ cG ¼ e�iERte�

�
2
tcG for t � 0 only ð15Þ

This means that the time evolution operators (12) on the space ��
þ form only a

semigroup, not a reversible unitary group like the UðtÞ in the Hilbert space H.

3 For the theory of resonances the first sheet of the S-matrix is irrelevant; when we talk of analytic

functions we will always mean the second (or higher) sheet of the S-matrix.
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With equations (5), (7), (14), and (15) mathematically well established, one

can obtain the Golden Rule from the fundamental postulate (4) of quantum

mechanics. For the decaying state WD, one takes the Gamow state

WG ¼ 1

f 2
jcGihcGj ð f is a normalization factorÞ ð16Þ

and derives for

PðtÞ ¼ Trð�WGðtÞÞ ¼ hcGðtÞj�jcGðtÞi ð4Þ

using (15) and the Lippmann–Schwinger equation (6), with some mathematical

qualifications, the result [10]:

PðtÞ ¼ 1 � e��t

ð1
0

dE
X
b6¼bD

jhE; bjV jcGij2 1

ðE � ERÞ2 þ ð�=2Þ2
; t � 0 ð17Þ

This is the probability for the transition of the decaying state WG into all

mixtures of decay products � of (2). We have normalized4 WG such that

Pð1Þ ¼ 1 (at t ! 1 the probability for the decay products is certainty).

Taking the time derivative of (17), one obtains the decay rate

_PðtÞ ¼ e��t2p
ð1

0

dE
X
b 6¼bD

jhE; bjVjcGij2 �=2p

ðE � ERÞ2 þ �=2
2
; t � 0 ð18Þ

The time directedness of the decay (increase of the probability for the decay

products), t � 0, is a consequence of the semigroup property (15). The initial

decay rate is then obtained from (18) as

_Pð0Þ ¼ 2p
ð1

0

dE
X
b 6¼bD

jhE; bjV jcGij2 �=2p

ðE � ERÞ2 þ ð�=2Þ2
ð19Þ

We will call formulas (18), (19), and also (17) the exact Golden Rule.

Comparing (19) with (17) for Pð0Þ ¼ 0 (at t ¼ 0 the decay is to begin and

the probability for the decay products is zero), one finds

_Pð0Þ ¼ � ð¼ �=�hÞ ð20Þ

4 The kets jER � i�=2i inherit their normalization from the d-function normalization

h�bE0jEb�i ¼ dðE0 � EÞ of the Dirac kets; the other factors in (14), including the phase factor,

are arbitrary. Then f in (16) is chosen such that Pð1Þ is normalized to unity.

306 a. bohm



From the exponential time dependence in (17) or (18), we obtain that the lifetime

tR [which is defined by the exponential law as the time during which the rate went

down to 1
e

of its initial value, and therefore precisely defined only if the

exponential law (1.18) holds] is given by

tR ¼ 1

�
ð¼ �h=�Þ ð21Þ

The results (20) and (21) mean that the imaginary part of the complex energy

in (7), which is also the imaginary part of the S-matrix pole position and the

width of the Breit–Wigner energy distribution (14) is equal to the initial rate _Pð0Þ
of the decay probability (4) and also equal to the inverse lifetime. All the

equations (17), (18), (19), (20), (21) are exact, [although (19) is not of much

practical use for the calculation of _Pð0Þ ¼ � because � appears on both sides of

the equations].

To obtain the very useful Golden Rule of Dirac, one makes the following

(Born) approximation:

hb;EjV jcDi � hb;EjVj f Di ð22aÞ
�

2ER

! 0 ð22bÞ

ER � ED ð22cÞ

The Breit–Wigner energy distribution (natural line shape) has the property

lim
�

2ER
! 0

�=2p

ðE � ERÞ2 þ ð�=2Þ2
¼ dðE � ERÞ ð22dÞ

Using (22), one obtains from (19) the initial decay rate in this Born

approximation:

_Pð0Þ ¼ 2p
�h

ð
dE
X

b

jhb;EjV j f Dij2dðE � EDÞ ð1Þ

which is the Dirac Golden Rule (1).

Summarizing, to satisfy our desire to ‘‘derive’’ Dirac’s Golden Rule (1), we

had to postulate the existence of a new generalized vector cG with the

properties (7) and (8). These Gamow vectors come in pairs. To every Gamow

vector cG ¼ jER � i�=2�i
ffiffiffiffiffiffiffiffiffi
2p�

p
2 ��

þ, there is also another Gamow vector
~cG ¼ jER þ i�=2þi

ffiffiffiffiffiffiffiffiffi
2p�

p

H�~cG ¼ ðER þ i�=2Þ~cG ; jER þ i�=2þi 2 ��
� ð23Þ

time asymmetric quantum mechanics 307



in another RHS

��  H  ��
� ð24Þ

with the same HS H but with a space �� that is Hardy class in the lower half-

plane.

There can be several Gamow vectors of given angular momentum j in a

particular quantum physical system cG
i ¼ jER � i�i=2i, i ¼ 1; 2; � � � ; N

corresponding to N poles of the jth partial S-matrix. The Gamow vectors

have the following features, some of which we have not yet mentioned above:

1. They are derived as functionals of the resonance pole term at

zR ¼ ER � i�=2 (and at z�R ¼ ER þ i�=2Þ in the second sheet of the

analytically continued S-matrix [11].

2. They are given by (14) and have a Breit–Wigner energy distribution

jh�EjcGij2 ¼ �
2p

1

ðE�ERÞ2þ �=2ð Þ2 which extends to negative energy values on

the second sheet indicated in the representation (14) by �1II [11].

3. The decay probability PðtÞ ¼ Trð�jcGihcGjÞ of cGðtÞ; t � 0, into the

final non-interacting decay products described by � can be calculated as a

function of time, and from this the decay rate _PðtÞ ¼ dPðtÞ
dt

is obtained by

differentiation [10,12] This leads to an exact Golden Rule (with the

natural line shape given by the Breit–Wigner) and the exponential decay

law

_PZðtÞ ¼ e��t��Z ; t � 0 ð25Þ

where ��Z is the partial width (or partial initial decay rate) for the decay

products �Z (��Z ¼ branching ratio � �). In the Born approximation

(cG ! f D ¼ an eigenvector of H0 ¼ H � V ; �=ER ! 0; ER ! ED ¼ a

discrete eigenvalue of H0 in its continuous spectrum) this exact Golden

Rule goes into Fermi’s Golden Rule No. 2 of Dirac.

4. The Gamow vectors cG
i are members of a ‘‘complex’’ basis vector

expansion [11]. In place of the well-known Dirac basis system expansion

(Nuclear Spectral Theorem of the RHS) given by

fþ ¼
X

n

jEnÞðEnjfþÞ þ
ðþ1

0

dEjEþihþEjfþi ð26Þ

(where the discrete sum is over bound states, which we henceforth

ignore), every state vector fþ 2 �� can also be expanded as

fþ ¼ �
XN

i¼1

jcG
i ihc

G
i jf

þi þ
ð�1II

0

dEjEþihþEjfþi ð27Þ
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where �1II indicates that the integration along the negative real axis (or

other contour) is in the second Riemann sheet of the S-matrix).3 N is the

number of resonances in the system (partial wave), each occurring at the

pole position zRi
¼ ERi

� i�i=2. This allows us to mathematically isolate

the exponentially decaying states cG
i .

The ‘‘complex’’ basis vector expansion (27) is rigorous. The

Weisskopf–Wigner approximate methods are tantamount to omitting the

background integral in (27), that is,

fþ ¼W�W
XN

i¼1

jcG
i ici ; ci ¼ �hcG

i jf
þi ð28Þ

For instance, for the K0
L � K0

S meson system with N ¼ 2,

fþ ¼ cG
S bS þ cG

L bL ð29Þ

For the case of a single decaying state, N ¼ 1 (27) becomes

fþ ¼ �jcGihcGjfþi þ
ð�1

0

dEjEþihþEjfþi ð30Þ

and a prepared state fþ 2 �� is only approximately represented by an

exponentially decaying Gamow vector cG 2 ��
þ:

fþ ¼W�W cGci ð31Þ

5. The time evolution of every state prepared by a macroscopic apparatus is

obtained from (30) as

fþðtÞ ¼ e�iHtfþ ¼ � e�iERte��=2tjcGihcGjfþi

þ
ð�1

0

dEe�iEtjEþihþEjfþi ð32Þ

In addition to the exponential time dependence, it has the time

dependence given by the ‘‘background integral,’’ which is nonexponential.

Theoretically, such a background term is always present in the prepared

state vector fþ 2 ��  H, but it could be arbitrary small.

The properties (7), (14), (15), (25), (26), (27), and (32) are not independently

postulated conditions for the Gamow vectors but are, instead, derived from each

other in the mathematical theory of the RHS. These are properties that one

would require of a vector which is to represent the ‘‘state’’ of an unstable

particle or of a resonance. In fact the Gamow vector combines features which

one has observed as different aspects of the phenomena associated with

resonance scattering and decay and which were in the past only vaguely and
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approximately related to each other in a collision theory [13]5 based on

Weisskopf–Wigner’s approximate methods [2].

For instance, the exponential decay law (25) and (17), which allows the

definition of a lifetime tR, has been observed and confirmed with high accuracy

for numerous radioactive decays and other decay phenomena with �h=tRER (or

�h=tRMR in the relativistic case) � 10�14 and less [14]. To describe this

phenomenon, one needed a vector with the property (7) and (8).6 Because such

vectors were not available in the standard theory, one postulated a finite

dimensional complex Hamiltonian matrix and used its eigenvectors [3,15].

However, it remained unclear how this finite matrix could be a submatrix of the

infinite-dimensional self-adjoint Hamiltonian. Now (27) explains this as the

approximation (28).

The converse problem of the mathematically derived deviations from the

exponential law for any vector [e.g., also f D of (13)] in the Hilbert space

evolving with a self-adjoint semibounded Hamiltonian f DðtÞ ¼ e�iHtf D [6] is

also overcome by cG because cG 2 ��
þ and cG is not in H, thus allowing the

exponential law (8). This exponential law (8) for the vector leads to the

exponential law (17) and (25) for the decay rates. This, in turn, permits us to

define a lifetime tR. From (17) or (25) it follows that tR ¼ �h=�, where � is the

imaginary part of the energy eigenvalue of (8), which, in turn, is the same as the

� of the Breit–Wigner energy distribution in (14).

However, in spite of the exponential law for the decaying state per se,

deviations from the exponential law, as may have been observed in Ref. 16,

(c.f. Fig. 1), can be explained in our theory if one interprets fþ 2 �� as the

state prepared by the (macroscopic) experimental apparatus. Due to the

background term in (32), there are deviations from the exponential law for a

prepared state. And according to (32), these deviations change with the energy

distribution hþEjfþi—that is, with the experimental conditions of state

preparation. The nonexponential background term can become substantial.

But the time evolution of the unstable particle cG will always be exponential

with the same lifetime tR ¼ �h=� because this is according to (32) independent

of experimental changes in state preparation. An unstable particle is something

defined by its mass (or ER) and its lifetime and independent of the experimental

preparations.7

In scattering experiments, one observes a different aspect of the resonance:

unstable particle phenomenon for a different range of the resonance parameter

�=ER ðor �=MRÞ > 10�7 (e.g., Z boson, hadron resonances). One sees a bump

5 Using Dirac kets and the Lippmann–Schwinger equation but not Gamow kets [13].
6 For N ¼ 2 ½3� or N ¼finite [15], one needs the superpositions (29) or (28), respectively.
7 If more than one unstable particle is involved as in (29), the rate _PðtÞ may not be exponential as in

(18) due to the interference of the two (or more) Gamow states.
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in the cross section which one analyzes in terms of a Breit–Wigner amplitude

B.W. and a background term B (or a resonant and a background phase shift). For

a resonance in this range of the parameter �=ER, one fits the cross-section data

to jB þ B:W:j2 and determines ER as the position of the maximum and � as the

width of the Breit–Wigner. Because of the ever-present background B, which is

related to the second term in (30), and other corrections, this is not without

ambiguities. It is certainly impossible to distinguish experimentally between an

‘‘ideal’’ Breit–Wigner that extends over E from �1 to þ1 as in (14) and a

Breit–Wigner of (13) which is zero for ‘‘unphysical’’ values E < 0.

The width � and the lifetime tR have a completely different origin. � is the

width of a Breit–Wigner amplitude, which together with the background give

the scattering amplitude (or S-matrix element). For the S-matrix definition of a

resonance, one does not need a vector; but if one wants to associate with the

resonance a ‘‘resonance state vector,’’ f D of (13) would do fine.8 tR is the

lifetime measured by a fit of the experimental counting rate _NZðtÞ=N
� �

�
_PZðtÞ=� to the exponential e�t=tR of (25) (log _NðtÞ=N

� �
¼ �t=tR). Thus

8 f D is in the Hilbert space H, but it is not in the domain of the Hamiltonian HðkH f Dk ! 1Þ; so it

could, in particular, not be an energy eigenvector in the Hilbert space sense.

Figure 1. The logarithm of the survival probability ð1 �PðtÞÞ as a function of time shows

some deviations from linearity. (From Ref. 16, with permission of the author.)
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observationally the width � and the inverse lifetime 1=tR are different

quantities: One comes from the Breit–Wigner distribution for the energy,

whereas the other comes from the (linear) time dependence (of the logarithm) of

the counting rate. These observationally different quantities � and 1=tR become

the same only through the Gamow vector (14). And it is important that cG is a

generalized vector cG 2 ��
þ (14) and not the Hilbert space vector f D 2 H (13).

Changing the integration from 0 � E < 1 to �1II < E < þ1 is

important [17]—mathematically because it changes a Hilbert space vector

into a Rigged Hilbert Space vector, and physically because it makes the

observationally different quantities � and 1=tR the same ð� ¼ �h=tRÞ, not only

approximately and vaguely, but precisely.

For this, one needs the Rigged Hilbert Space quantum mechanics. Gamow

vectors cG have all the properties that one heuristically wanted for unstable

particles and resonances. They are the central ingredients of a mathematical

theory of which the Weisskopf–Wigner approximate method, the effective

theories with finite complex Hamiltonian (e.g., the Lee–Oehme–Yang theory [3]

and many in nuclear physics [15]), and Dirac’s Golden Rule are approximations.

But, in addition, they have an unwanted and mostly undesired feature, the

semigroup time evolution (15)—which is in contrast to the reversible unitary

group evolution of the Hilbert space and expresses something like irreversibility

on the microphysical level. Without the Gamow vector and without the RHS

there is no rigorous theory in which (18) can be derived and for which (20), (21),

and (23) hold. But, in welcoming these results, one also has to contend with the

semigroup time evolution (15). We want to discuss this feature next, and we

shall see that it is, after all, not as bad as one may have thought.

II. PROBABILITY AND TIME ASYMMETRY

A. Introduction

Because I did not know what to do with the puzzling mathematical result (15)

that I obtained when I asked the question about the relationship between the

quantum mechanical probabilities (4) and the decay rate (1), I showed my

paper [11] to Ilya Prigogine. But I could not get him interested in it; and because

I also had a lot of difficulty in getting the paper published, I kept working on my

other subject using unitary group representations, for which not reversing time

(or any other parameter) is abominable. In the meanwhile, Gadella, working by

himself, established the mathematics of the Rigged Hilbert Space of Hardy class

functions. About 10 years later, when also Gadella had given up on this subject,

I happened to hear a talk at a conference by Ioannis Antoniou. To my surprise,

he had not only understood the idea of quantum mechanics in Rigged Hilbert

Space, but had also learned the mathematics and was using it for the intrinsic
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irreversibility of the Brussels group. Antoniou’s talk convinced me to return to

the subject of resonances, decaying states, and their time evolution, and I also

persuaded my Rigged Hilbert Space collaborator Gadella to rejoin me. In order

to study irreversibility and to learn about the arrows of time, I started my visits

to Dr. Prigogine’s office and in these sessions he got me really sold on this

subject with such statements as ‘‘all irreversibility comes from the time

evolution of resonances.’’

At that time Nico van Kampen was visiting Texas and I wanted to get a

second opinion. I remember that we talked for some time on the phone and we

did not seem to understand each other, but then he must have finally caught on,

because he remarked something like ‘‘O there are people who say that there is

irreversibility on the microphysical level, but that is heresy.’’

I liked his choice of words and quoted van Kampen in my talk at a

subsequent conference so that the audience would not mistake this semigroup

irreversibility for the conventional irreversibility in quantum statistical

mechanics due to external influences of a reservoir or measurement apparatus

upon an open quantum system. But then this came back to me in a referee’s

report in which the referee—who must have been in the audience—rejected the

paper saying among others that ‘‘the authors themselves call this heresy.’’ When

I showed this report to Ilya Prigogine, his reaction was something like ‘‘I am

proud to be a superheretic.’’ In the meanwhile I have learned that the semigroup

evolution (15) is not that heretic after all.

The irreversibility of (15) is the time asymmetry of the solutions of a time-

symmetric dynamical equation with time-asymmetric boundary conditions. In

classic physics, there are several well-known examples of time-asymmetric

boundary condition for time-symmetric dynamical equations (the radiation

arrow of time, the cosmological arrow of time). It is the peculiarity of the Hilbert

space9 which disallows time-asymmetric boundary conditions for solutions of

the time-symmetric Schrödinger equation. But time-asymmetric, specifically

purely outgoing boundary conditions were suggested a long time ago [18].

B. From Gamow Kets to Microphysical Irreversibility

Time-asymmetric quantum theory is mathematically described by the appro-

priate choice of spaces for the solutions of the usual time-symmetric

Schrödinger equation with asymmetric boundary conditions. This is done with

the aid of the two Rigged Hilbert Spaces (9) and (24).10 The questions then are,

What is the physical interpretation of the two rigged Hilbert spaces, are there

9 In HS the exponential eiHt is not defined by the converging exponential series but by the Stone–von

Neumann calculus.
10 And also by the Lippmann–Schwinger (integral) equation. Vaguely, the Gamow kets jER � i�=2�i
of (7) and (23) are just an analytic continuation of the Lippmann–Schwinger–Dirac kets (6).
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fundamental reasons for boundary conditions that lead to the two rigged Hilbert

spaces, and what is the basis and the physical evidence for quantum mechanical

irreversibility of the kind described by (15)?

In quantum physics one measures probabilities (4). In experiments, the state

W [or the pure (idealized) state f] is prepared by a preparation apparatus, and

the observable � (or the idealized observable jcihcj) is registered by a

registration apparatus (e.g., a detector). For instance, f can be the in-states fþ

of a scattering experiment, and the observables c can be the detected out-states

c� of a scattering experiment.

The measured (or registered) quantities are ratios of (usually) large numbers

NZðtÞ=N, the detector counts. They are interpreted as probabilities (e.g., as the

probability to measure the observable �Z in the state W at the time t) and

represented in the theory according to (4) by PWð�ZðtÞÞ ¼ Trð�ZWðtÞÞ:

NZðtÞ=N � PðtÞ � Trð�ZðtÞWð0ÞÞ ¼ Trð�Zð0ÞWðtÞÞ ¼ jhc�ðtÞjfþij2 ð33Þ

In Hilbert space quantum mechanics the theoretical probabilities can be

calculated at any time using the unitary reversible group evolution

WðtÞ ¼ e�iHtWð0ÞeiHt ; fðtÞ ¼ UyðtÞf0 ¼ e�iHtfð0Þ
where �1 < t < 1 ð34aÞ

or, in the Heisenberg picture,

�ðtÞ ¼ eiHt�0e�iHt; where �1 < t < 1 ð34bÞ

The probabilities PZðtÞ ¼ NZðtÞ=N cannot be observed at any arbitrary

positive or negative time t. The reason is the following:

A state needs to be prepared before an observable can be measured, or

registered in it.

We call this truism the preparation ) registration arrow of time [19]; it is an

expression of causality. Let t0 ð¼ 0Þ be the time at which the state has been

prepared. Then, PðtÞ is measured as the ratio of detector counts:

Pexp
Z ðtÞ � NZðtÞ

N
for t > t0 ¼ 0 ð35Þ

If there are some detector counts before t ¼ t0, they are discounted as noise

because the experimental probabilities

can not fulfill PexpðtÞ 6� 0; for t < t0 ¼ 0 ð36Þ

Though in the Hilbert space theory PWð�ðtÞÞ ¼ PWðtÞð�Þ can be calculated at

positive or negative values of t � t0 using the unitary group evolution (34a) or

314 a. bohm



(34b), an experimental meaning can be given to PðtÞ only for t > t0. The

preparation ) registration arrow of time clearly sets states apart from

observables. In standard quantum mechanics the same set of vectors H (usually

the whole HS) is used for states W ¼ jfihfj as well as observables � ¼ jcihcj
(and the jci are usually called ‘‘eigenstates’’ even if they are observables). In

scattering theory the vectors controlled by the preparation apparatus fin, fþ are

called in-states and the vectors controlled by the registration apparatus (e.g.,

detector) are called out-states cout, c�, though jcoutihcoutj is really an

observable defined by the detector [c.f. Eq. (38) below]. Thus in scattering

theory, one at least introduces the set of (pure) states ffþg and the set of

observed ‘‘properties’’ fc�g separately, though soon one makes the hypothesis

ffþg ¼ fc�gð¼ HÞ, in exceptional cases realizing that this is not quite in

agreement with our intuition of causality [20]. Based on the preparation )
registration arrow of time, we will distinguish meticulously between states and

observables by choosing for the in-state vectors the space �� of (24),

ffþg � �� and choosing for the out-observable vectors the space �þ of ð9),

fc�g � �þ. Thus we make the following hypothesis: Each species of quantum

physical systems has a pair of Rigged Hilbert Spaces: fþ 2 ��  H  ��
�

defined by the preparation apparatus and c� 2 �þ  H  ��
þ defined by the

registration apparatus. Both have the same H. One can then see [21] that the

Hardy class properties of �þ and �� are such that prepared states fþ 2 �� must

be there before observables jc�ihc�j 2 �þ can be measured in them.

The vectors cG with the semigroup time evolution (15) describe quantum

physical states in nature that evolve only into the positive direction of time,

t > t0. Resonances and unstable particles have this property, though the

irreversible character of quantum mechanical decay has rarely been mentioned

in the literature. There are, however, exceptions [22].

We shall now demonstrate the time asymmetry of the quantum mechanical

decay process and explain the meaning of the time t0, using the neutral kaon

state K0
S as an example. Its time evolution is entirely due to the Hamiltonian of

the neutral kaon system and free of external influences.11

The process (idealized, because in the real experiment one does not use a p�

but a proton beam) that prepares the neutral kaon state is

p�p ) �K0; K0 ) pþp� ð37Þ

K0 is strongly produced with a time scale of 10�23 sec and it decays weakly, with

a time scale of 10�10 sec; which is roughly equal to the lifetime tKS
of K0

S . Thus

t0, the time at which the preparation of the K0 state WK0

is completed and the

11Because here we are only interested in the fundamental concepts of decay, we discuss a simplified

K0 system for which the K0
L as well as the CP violation is ignored [23].
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registration can begin, is very well-defined (within 10�13tK). A schematic

diagram of a real experiment [24] is shown in Fig. 2. The state WK0

is created

instantly (at t0 � 10�13tK) at the baryon target T (and the baryon B is excited

from the ground state (proton) into the � state, with which we are no further

concerned). We imagine that a single particle K0 is moving into the forward

beam direction, because somewhere at a distance, say at d2 from T , we ‘‘see’’ a

decay vertex for pþp�; that is, a detector (registration apparatus) has been built

such that it counts pþp� pairs that are coming from the position d2. The

observable registered by the detector is the projection operator for the pþp�

decay channel (Z ¼ pþp�)

�Zðt2Þ ¼ pþp�; t2ihpþp�; t2j j ¼ jcoutðt2Þihcoutðt2Þj ð38Þ

for those pþp� which originate from the fairly well-specified location d2. From

the position (in the lab frame) dlab
2 , the momentum p of the K0 ð¼ the z

component of the momentum of the pþp� system), and the mass mK of K0, one

obtains the time trest
2 (in the K0 rest frame) that the K0 has taken to move from T

to dlab
2 . This is given by the simple formula of relativity dlab

2 ¼ trest
2

p
mK

, which we

write d2 ¼ t2
p

mK
.

We do not have to focus at only one location d2 but can count decay vertices

at any distance d. The detector (described by the projection operator

�ZðtÞ � pþp�; tihpþp�; tj j counts the pþp� decays at different times

Figure 2. Schematic diagram of the neutral K-meson decay experiment.
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t ¼ t1; t2; t3; . . . (in the rest frame of the K0), and these correspond to the

distances from the target d1 ¼ pt1=mK ; d2 ¼ pt2=mK ; . . . (in the lab frame).

One ‘‘sees’’ the decay vertex di for each single decay and imagines a single

decaying K0 microsystem that had been created on the target T at time t0 ð¼ 0Þ
and then traveled for a time ti until it decayed at the vertex di. We give the

following interpretation to these observations: A single microphysical decaying

system K0 described by WK0

has been produced by a macroscopic preparation

apparatus and a quantum scattering process, at a time t ¼ 0. Each count of the

detector is the result of the decay of such a single microsystem. This particular

microsystem has lived for a time ti—the time that it took the decaying system to

travel from the scattering center T to the decay vertex di. The whole pþp�

detector registers the counting rate 	NZðtiÞ=	t � N _PðtÞ as a function of di—

that is, of ti ¼ mk

p
di, for � � � ti > � � � t2 > t1 > t0 ¼ 0: (N is the total number of

counts.)

Figure 3 shows the counting rate 	NZðtiÞ=	t plotted as a function of time t

(in the K0 rest frame). (It is normalized to _Pð0Þ = 1, i.e., to
	NZð0Þ

	t
1
N
= 1.)

No pþp� are registered for t < t0 ¼ 0 — that is, clicks of the counter for

pþp� that would point to a decay vertex at the position d�1 in front of the target

T are not obtained (if there were any, they would be discarded as noise). One

finds for the counting rate

	NZðtiÞ
	t

� 0; t < t0 ¼ 0 ð39Þ

in agreement to the preparation ) registration arrow of time (36). This is so

obvious that one usually does not mention it.

For t > 0 one expects the following from the prediction (18) or (25):

1

N

	NðtiÞ
	t

� e��t; t > 0 ¼ t0 ð40Þ

From Fig. 3 one can see that this is indeed fulfilled to a high degree of accuracy.

More importantly, we see that the state WK0ðtÞ ¼ jcG
S ðtÞihc

G
S ðtÞj or the

Gamow vector cG
S ðtÞ of (15) (with ER ¼ MS and � ¼ �S) describes the state of

an ensemble of single microsystems K0 created at an ‘‘ensemble’’ of times t0,

all of which are chosen to be identical to the initial time t ¼ 0 for the

(mathematical) semigroup. The decay probabilities are the statistical prob-

abilities for this ensemble of individual K0 systems, and t in WK0

is the time in

the ‘‘life’’ of each single decaying K0 system that had started at t ¼ 0. It is not

the time in the experimentalists life in the laboratory or the time of a ‘‘wave

packet’’ of K0’s. The mathematical semigroup time t ¼ 0 and the physical

time t0 at which the preparation of the state is completed can be thought of as
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the ensemble of times t0 at which each single quasistable particle described by

the state cG has been created. If this time of preparation t0 can be accurately

identified (e.g., for K0 within 10�13tK), then the decaying Gamow state can be

experimentally isolated as a quasistationary microphysical system. The experi-

mental time ordering (35) for the observed probabilities are the same as the time

ordering of (17) calculated for the probabilities PðtÞ ¼ Trð�ZjcGðtÞihcGðtÞjÞ
from the semigroup evolution (15) of cG.

The semigroup time evolution of Gamow kets describes the irreversible

character of microphysical decay. The time asymmetric boundary condition of

the RHSs, the preparation ) registration arrow of time, and the time ordering of

the quantum mechanical probabilities are manifestations of a fundamental time

asymmetry in quantum physics.
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I. INTRODUCTION

As is well known, the present formalism of physics contains Planck constant �h,

light speed c, and gravitation constant G, as given universal constants, but never

ask their origins. Besides, we have no theory to give the elementary charge e (of

an electron) in terms of other fundamental parameters. They must be

unsatisfactory from the fundamental point of view [1].

In this chapter we discuss possible origins of the quantum fluctuation, within

the framework of new quantization schemes such as stochastic and

microcanonical quantizations, to give quantum mechanics in the infinite limit

of an additionally introduced time (i.e., fictitious time) different from the

ordinary one, assuming that G ¼ 0. This work also leads us to another view that

‘‘a D-dimensional quantum system is equivalent to a (D þ 1)-dimensional

classic system.’’
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For this purpose, it would be better to start this chapter from the following

formula:

�h � mc2tffiffiffiffi
N

p ð1Þ

which was given by Hayakawa and Tanaka [2] under the following assumptions:

1. The universe is composed of N (� 1) fundamental particles, with mass m

and lifetime t.

2. The universe is an open system put in a bigger space–time world to give

�N=N � 1=
ffiffiffiffi
N

p
.

3. The quantum mechanical energy–time uncertainty relation still holds: We

remark that, at least, this prepares a consistency check of modern physics

theory and the structure of the universe or, at most, a doorway to deeper

dynamics beyond quantum mechanics.

The original authors found a nice order of magnitude by identifying the

fundamental particle with neutrino 40 years ago [2]. Nevertheless, everything

(in particular, neutrino mass 6¼ 0) should be improved by recent observations,

and the above three assumptions should be examined by new information of

cosmology and particle physics. However, we can hardly go further beyond

quantum mechanics unless we have a deeper dynamics.

In this chapter we examine a few quantization schemes (such as stochastic

and microcanonical quantizations) as a preliminary step to future dynamics, as

to whether they can suggest possible origins of the quantum fluctuation or of

Planck constant, and also show another view that a D-dimensional quantum

system is equivalent to a (D þ 1)-dimensional classic system. Remember that

we keep �h as a given universal constant and assume G � 0.

One may expect to find a doorway to new future dynamics beyond quantum

mechanics, in recent cosmic ray observations—anomalies of high-energy

particle distributions, the nonvanishing neutrino mass, and so on.

II. CANONICAL QUANTIZATION AND BOHM’S THEORY

As is well known, the canonical quantization brings quantum mechanics into an

operator theory, in which every dynamical quantity is represented by an

operator on a Hilbert space. Its operator nature is specified by canonical

commutation relations. Note that the reasoning that �h is a measure of the classic

random motion can hardly be derived from the canonical quantum mechanics

itself. On the other hand, we know that the path-integral method (which is

equivalent to the conventional canonical quantum mechanics) is a sort of

c-number quantization, but never asks a deeper origin of the quantum

fluctuation. In order to avoid the mathematically ill-posed nature of the original
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path-integral method, we are sometimes recommended to use a Euclid measure

expð	S=�hÞ (S being the Euclid action) introduced by means of transformation

x0 ! 	ix0 (x0 standing for the real time). Remember that the final goal of the

stochastic or microcanonical quantizations is to give quantum mechanics of this

type. These theories have introduced �h as a given measure of the quantum

fluctuation, but never ask its deeper origins.

As far as we know, Bohm’s theory of quantum mechanics is a nice example

to discuss a possible origin of the quantum fluctuation [3]. For the sake of

simplicity, let us discuss Schrödinger equation in the one-dimensional

nonrelativistic case. He reformulated the Schrödinger equation in terms of

R and S defined by

c ¼
ffiffiffi
R

p
exp

iS

�h

� �
; R ¼ jcj2; p ¼ rS ð2Þ

as a ‘‘Newtonian equation,’’ that is,

dp

dx0

¼ 	rðV þ VQÞ ð3Þ

with the quantum mechanical potential

VQ  	 �h2

2m

r2jcj
jcj ð4Þ

Bohm planned to eliminate quantum mechanics within this fomulation: A

quantum mechanical particle (originally obeying classic Newtonian equation of

motion) moves in unknown ether that makes random fluctuating forces,

fQ ¼ 	rVQ [3].

This line of thought, if turned inversely, is considered to be a sort of

quantization method. Actually, Nelson formulated his way of stochastic

quantization analogously to this idea [3].

According to Bohm–Nelson’s idea, the quantum fluctuation is rooted in the

classic random process in the real space–time world, where �h is introduced as a

given measure. As is well known, every quantum property must come from

the classic fluctuating forces. In order to reproduce quantum mechanics,

therefore, we have to ascribe all strange properties, such as the nonlocal long-

distance correlations, to the classic random forces, for example, fQ ¼ 	rVQ in

the Bohm’s theory. Mathematically it may be accepted, but physically not.

In order to avoid this kind of difficulty, we have only to introduce

the stochastic or microcanonical quantization method, which quantizes

D-dimensional quantum systems through classic motions in the (D þ 1)-

dimensional space–time world [4,5]. To do this, we have to introduce an

additional dependence of dynamical quantities on a fictitious time (say, t) but

not only on the ordinary one (say, x0).
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III. STOCHASTIC AND MICROCANONICAL QUANTIZATIONS

We briefly describe a basic nature of these new quantization schemes, such as

stochastic and microcanonical quantizations, by introducing the above

additional dependences of dynamical quantities on the fictitious time t.

1. The former (i.e., SQ) is based on the idea that a D-dimensional quantum

system is equivalent to a hypothetical (D þ 1)-dimensional classic

stochastic process [4]. We assume that the Planck constant �h is a measure

of magnitude of the fluctuation to generate the stochastic process, but

never ask its deeper origins. This idea was not quite new, because Suzuki

invented a new calculation method for quantum spin systems by making

use of Trotter’s formula [6].

2. The latter (i.e., MCQ) is based on the idea that a D-dimensional quantum

system is equivalent to a (D þ 1)-dimensional classic deterministic

motion [5]. Note that the Planck constant is defined with a statistical

average of (D þ 1)-dimensional kinetic energy over fictitious-time initial

values. One might expect that a sort of chaotic behavior in this case would

be regarded as the quantum fluctuation. Recently, however, we have

shown that the average over the initial values is also essentially important

(in the harmonic oscillator case) [7].

Someone may be interested in the second, because we would expect that a

sort of chaotic behavior of the surrounding classic systems would provoke the

quantum fluctuation. We could also suppose that such a classic system should

usually provoke any fluctuation by means of a huge number of constituents. In

an opposite way to this conventional idea, however, we have to mention a

possibility that an appropriate classic system with a few degrees of freedom can

provoke dephasing (or irreversibility) to give the wavefunction collapse in

quantum measurements [8]. Also note that this kind of idea cannot quantize any

linear system without chaotic behavior—for example, the harmonic oscillator

system. For this reason, we do not expect any direct connection between the

quantum fluctuation and such a chaotic behavior in any quantization scheme.

A. SQ in a (Dþ1)-Dimensional Space–Time World

The SQ is formulated in terms of the following basic equation and the statistical

properties:

qqðx; tÞ
qt

¼ 	 dS

dq

����
q¼qðx;tÞ

þ Zðx; tÞ ð5Þ

hZðx; tÞi ¼ 0; hZðx; tÞZðx0; t0Þi ¼ 2�hdðt 	 t0Þdðx 	 x0Þ ð6Þ
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(see Ref. 4). It is true that the SQ is completed by (5) and (6); but in order to

discuss a possible relation to the conventional quantum mechanics, it is more

convenient to replace the Langevin method with the Fokker–Planck method, by

which we obtain

P½q; t� 			!t!1
N exp 	S½q�=�hð Þ ð7Þ

The last equation tells us that the SQ is equivalent to quantum mechanics of the

Feynman type, as mentioned before [4]. Also remember that �h is a given

universal constant.

In the case of a one-dimensional harmonic oscillator [7], we describe the SQ

in terms of qnðtÞ, a Fourier component of qðx; tÞ on funðxÞ ¼ ð1=
ffiffiffiffi
X

p
Þ expðknxÞg

with kn ¼ 2pn=X for period X. Thus we are led to the basic Langevin equation

and the statistical property

dqnðtÞ
dt

¼ 	m�2
nqn þ ZnðtÞ; �2

n ¼ o2 þ k2
n ð8Þ

hZnðtÞi ¼ 0; hZnðtÞZ�
n0 ðt0Þi ¼ 2�hdnn0 dðt 	 t0Þ ð9Þ

whose solution is given by

qnðtÞ ¼ qð0Þ
n e	m�2t þ

ðt

0

dt0e	m�2
nðt	t0ÞZnðt0Þ ð10Þ

The last equation tells us that qnðtÞ should have a definite fluctuation, irrespective

of fictitious-time initial values, for sufficiently large t, so that we can safely

neglect these fictitious-time initial values. Note that we can obtain the continuous

limit of the discretized Fourier representation through

1

X

X
n

1

�2
n

Gðk2
nÞ !

1

2p

ð1
	1

Gðk2Þ
o2 þ k2

dk ð11Þ

Apart from the fictitious initial values, we obtain

ð�qÞ2
t  hq2

t i ¼
�h

2mo
I ðtÞ ð12Þ

ð�pÞ2
t ¼ m

dq

dx0

� �2
* +

¼ �hmdðEÞ 	 �hmo
2

IðtÞ ð13Þ

with a small but finite E and

IðtÞ  2ffiffiffi
p

p
ð ffiffiffiffiffiffiffiffiffi2mo2t
p

0

e	z2

dz ð14Þ
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We easily understand that the first term of (13) vanishes for finite E, and the

negative value of ð�pÞ2
t comes from the use of Euclidean measure. Here we

should notice that the neglect of dðEÞ is also obtained by replacing k2=�2
n with

	o2=�n. An additional ansatz is that the k integral in (11) can be evaluated only

from the pole, k ¼ io, and written as

1

X

X
n

1

�2
n

Gðk2
nÞ !

1

2p

ð1
	1

Gðk2Þ
o2 þ k2

dk ¼ Gðk ¼ ioÞ
2o

ð15Þ

in the continuous limit [7]. Remember that the same replacement rule can also

work in the MCQ.

Finally we obtain the following formula for the uncertainty products:

�ðtÞ  ð�qÞ2
t jð�pÞ2

t j ¼
�h2

4

2ffiffiffi
p

p
ð ffiffiffiffiffiffiffiffiffi2mo2t
p

0

e	z2

dz ð16Þ

which implies that for increasing t, �ðtÞ starts from an unlikely value, say

zero, and reaches the quantum mechanical one �h2=4 (see Fig. 1). This is a

possible model to generate the quantum fluctuation by means of fictitious-time

evolution.

Figure 1. The SQ-temporal change of the uncertainty product �  ð�qÞ2
x;tð�pÞ2

x;t, starting

from 0, for increasing t.
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B. MCQ in a (Dþ1)-Dimensional Space–Time World

The MCQ is formulated in terms of the following basic equation:

H  K½pðtÞ� þ S½qðtÞ�; K 
X

n

1

2m
p�nðtÞpnðtÞ ð17Þ

dqnðtÞ
dt

¼ fqn;Hg ¼ pnðtÞ
m

;
dpnðtÞ

dt
¼ fpn;Hg ¼ 	 qS½q�

qqn

ð18Þ

which are to be supplemented by the quantization rule

�h ¼ lim
t!1

2hK½pðtÞ�i ð19Þ

(see Ref. 6). h� � �i stands for the statistical average over fictitious time initial

values, q
ð0Þ
n and p

ð0Þ
n .

In the case of one-dimensional harmonic oscillator, we have the effective

‘‘Hamiltonian" and ‘‘potential’’ as follows:

HMCQ ¼ K½pðtÞ� þ SE ð20Þ

K½pðtÞ� ¼
X

n

1

2m
p�nðtÞpnðtÞ; S ¼

X
n

q�
nðtÞ

1

2
m�2

n qnðtÞ ð21Þ

for the (D þ 1)-dimensional classic motion. This basic equation yields

qnðtÞ ¼ qð0Þ
n cos�nt þ 1

m�n

pð0Þn sin�nt ðexact solutionÞ ð22Þ

pnðtÞ ¼ pð0Þn cos�nt 	 m�nqð0Þ
n cos�nt ðexact solutionÞ ð23Þ

�h ¼
X

n

hHð0Þ
n i ðquantizationÞ ð24Þ

where q
ð0Þ
n and p

ð0Þ
n stand for the fictitious-time initial values, and H

ð0Þ
n ¼

ð1=2mÞpð0Þ�n pð0Þn þ ðm�2
n=2Þqð0Þ�

n q
ð0Þ
n . Furthermore, we introduce an additional

ansatz that those which destroy the fluctuation virial theorem or are vanishingly

small in the infinite X be neglected.

For hqð0Þ
n i ¼ 0, hpð0Þn i ¼ 0, hqð0Þ�

n q
ð0Þ
n0 i / hpð0Þ�n pð0Þn0 i / dnn0, an  hqð0Þ�

n q
ð0Þ
n i,

and bn  hpð0Þ�n pð0Þn i, we obtain

ð�qÞ2
x;t ¼

1

X

X
n

anð1 þ cos2�ntÞ þ bn

m2�2
n

ð1 	 cos2�ntÞ
	 


ð25Þ

ð�pÞ2
x;t ¼ 	ðmoÞ2ð�qÞ2

x;t ð26Þ
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Here we have used the same replacement (as in the SQ case) and the above

ansatz. Noting that cos2 2�nt			!t!1 1
2

and cosðor sinÞ2�nt			!t!1
0, we know that

ð�qÞ2
x;t ¼ ð�QÞ2 þ 1

2X

X
n

an 	
1

m2�2
n

bn

� �
cos2�nt ð27Þ

ð�pÞ2
x;t ¼ ð�PÞ2 	 ðmoÞ2½ð�qÞ2

x;t 	 ð�QÞ2� ð28Þ

where ð�QÞ2  limt!1ð�qÞ2
x;t ¼ ð�h=2moÞ, ð�PÞ2  limt!1ð�pÞ2

x;t ¼
	ð�hmo=2Þ, and �  ð�QÞ2jð�PÞ2j ¼ ð�h2=4Þ.

For an ¼ 0, we obtain

ð�qÞ2
x;t¼0 ¼ 0; ð�pÞ2

x;t¼0 ¼ 0 ð29Þ

For details, see Ref. 7. The uncertainty product starts from an unlikely value,

zero, and reaches the quantum mechanical one, �h2=4. The situation is similar to

the SQ case (Fig. 1), so that we can also regard this process as another model to

generate the quantum fluctuation in fictitious-time evolution.

IV. CONCLUSION

We have suggested possible origins or mechanisms of the quantum fluctuation,

by means of stochastic and microcanonical quantization methods. We have also

showed that a D-dimensional quantum system is equivalent to a (D þ 1)-

dimensional classic one, in both quantization schemes.

Almost all theories can only explain the situation that �h is a measure of the

fluctuation, but never ask its deeper origins. Only the Hayakawa–Tanaka

formula might suggest a possible reasoning of �h within a deeper (cosmological

and/or particle-physical) framework, even though we have some questions. At

least this theory might suggest that neutrino would become one of the most

important particles in the twenty-first century.

In addition to the quantum fluctuation mentioned above, we left many other

interesting problems unanswered. For example, we do not know a deeper

reasoning of the quantum correlations (i.e., of Bose and Fermi statistics), which

are very difficult to understand physically. It seems that the problem would be

closely related to the fundamental EPR question. On the other hand, the

Weinberg–Salam and electroweak theories would indicate that only a special

choice of fundamental particles could give us the renormalizability. If so, we

can hardly know whether we can discuss the fundamental questions, such as the

quantum fluctuation and quantum correlation, irrespective of the renormaliz-

ability. In this context, we should understand the recent development as if the

renormalizability should become the first principle to cover the whole physics in
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terms of fundamental particles. We are therefore interested in the following

questions: ‘‘How deep a level of matter or what kind of particle model is enough

to discuss a deeper origin of the quantum fluctuation and the quantum

correlation? Besides these kinds of problems, we are also interested in another

question, as to whether we can find a deeper origin of the quantum fluctuation in

a classic chaotic behavior of the surrounding atmosphere. These questions must

be related to a rather philosophical question, reductionism. We have to say that

quantum mechanics is still developing.
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Szépfalusy, P., 50(6-13), 51(11-12), 51

Tasaki, S., 34(4,7-9,12-14,18), 36(7-9,12-14,18),

38(8-9), 42-43(7), 46, 78(9), 79(31,37),

80(31,37), 81(37), 85(31,37), 87(31,37),

88(46-47), 90(37), 97(9), 105–107,

110(19,23-24), 113(19), 118(43), 119(52),

121-122(19), 125–126, 271-272(11), 275,

292-293(16), 298(16,19), 299

Tél, T., 49(3), 50(8), 51, 79(24,32,34,38-40,42),

80(32,34,38-40,42), 81(39), 89(50),

106–107, 110(22), 126

Theodosopulu, M., 131(22), 133(25), 159

Thompson, R. J., 168(5), 195

Tolstikhin, O. I., 310(15), 312(15), 319

Torma, P., 207-208(14-15), 213

Tsuda, I., 55(4), 58(4,19), 59(19), 61(33),

72–73

Turchette, Q. A., 168(5), 195

336 author index



Turing, A. M., 54(1), 72

Turley, R., 252-255(10), 257, 316(24), 320

van Beijeren, H., 110(9), 125, 129(9,14),

132(14), 159

van der Hoer, M. A., 129(17), 159

Van Leeuwen, J., 129(1,7), 134(7), 157(1), 159

Varcoe, B., 176(20,23), 180(23), 181(20),

182(26), 196

Vattay, G., 120(60), 127

Vaugham, J. M., 188(46), 196

Venkatesan, T. N. C., 188(44), 196

Viola, L., 118(51), 126

Virasoro, M. A., 57(8), 72

Vogel, K., 185(35), 196

Vollmer, J., 79(24,32,34,38-40,42),

80(32,34,38-40,42), 81(39), 106–107,

110(22), 126

Volovich, I. V., 215(1-2), 216(1,3), 217(1),

218(3), 221(6), 222(3), 230(3), 238

von Neumann, J., 278(3), 281(3), 286

Vulpiani, A., 57(13), 72

Wagner, C., 169(7,10), 276(18), 180(10), 195

Wainwright, T., 129(2), 158(2), 159

Walls, D. F., 188(50), 189(61), 190(62),

196–197, 204-206(13), 213, 231(10), 238

Walther, H., 168(1-4), 169(3-4,7-11,13),

170(4,9,13), 171(13), 172(9,11),

173-174(9), 175(9,11), 176(8,11,18-23),

180(10,22-24), 181(20,24), 182(24,26),

183(30,32), 185(33-35), 186(36-37),

188(37,42,48-49,52), 189(49,52-54),

190(63), 191(49,64-66), 193(66), 195(67),

195–197

Watson, J. D., 66(42), 73

Watson, K. M., 310(13), 319

Weber, J., 118(48), 126

Weidinger, M., 176(20,23), 181(20,23), 182(26),

196

Weisskopf, V., 303(2), 310(2), 319

Westbrook, C. I., 187(38), 196

Weyl, H., 280

Weyland, A., 129(1), 157(1), 159

White, R. B., 4(4), 14(4), 19

Wightman, A. S., 278(9), 286

Wigner, E. P., 212(17), 213, 279, 303(2), 310(2),

319

Wilkinson, S. R., 311(16), 319

Wilmut, I., 71(47), 73

Wineland, D. J., 203(7), 213

Winslow, R. L., 57(18), 72

Wolfenstein, L., 252-253(11), 257

Wu, F. Y., 188(43), 196

Wu, Y., 323(4), 325(4), 329

Wunderlich, C., 203(8), 213

Yamanaska, Y., 324(8), 329

Yang, C. N., 303(3), 310(3), 312(3), 319

Yip, S., 110(4), 125

Yomo, T., 62(2-3,35), 66(3), 72–73

Yorke, J. A., 89(50), 107

Yurke, B., 203(9-10), 204(12-13), 205-206(13),

207(9,12), 213

Zeilinger, A., 182(28-29), 196

Zoller, P., 189(61), 197

Zubarev, D. N., 122(67-68), 127

Zumino, B., 286

Zurek, D., 201(1), 213

author index 337





SUBJECT INDEX

Accardi-Fedullo probability, operator

trigonometry, 251–252

Accessibility, biological irreversibility, cell

differentiation, 69

Accretive bounded operator, operator

trigonometry, 242–243

Acoustic-optic modulator (AOM), single-atom

ion trapping, resonance fluorescence,

189

Age eigenstates, unstable systems

excited state, average age, 292–295

time superoperator construction, 291–292

Age fluctuations, unstable systems, 295–297

Antibunching, single-atom ion trapping,

resonance fluorescence, 188–189

Anticommutation relations, quantum field

theory, 280

Antieigenvectors

CP symmetry violation

breaking mechanisms, 255–256

strangeness total antieigenvectors,

254–255

operator trigonometry, symmetric positive

definite (SPD) matrix, 243–244

Antilinear functionals, irreversibility in

multibaker maps, broken time reversal

symmetry, spectral theory, 97–99

A priori probability, micromaser experiments,

trapping states, 182

Arnold diffusion, log-Weibull distribution,

163–164

Asymmetric conditions, quantum mechanics,

probability and time asymmetri, 312–

318

Atom-cavity interaction time

micromasers, quantum jumps and atomic

interference, 169–176

single-atom ion trapping, ion-trap lasers,

190–194

Atomic interference, micromasers, 169,

172–176

Attractor ruins, biological irreversibility, chaotic

itinerancy, 58–59

‘‘Auschliessprinzip’’ (Pauli), quantum field spin-

statistics, 285

Backward time evolution, irreversibility in

multibaker maps, time reversal

symmetry, 91–95

Baker’s transformation, unstable system

harmonic analysis, spectral

decomposition and probabilistic

extension, 42–43

Banach space

operator trigonometry, 240–243

unstable system harmonic analysis, spectral

decomposition and probabilistic

extension, Renyi maps, 39

Bandtlow-Coveney equation, iterative maps, 5

non-Markovian/Markovian evolution

equations, 6–9

Bayes theorem, mesoscopic quantum

interference, 206–212

Bell’s inequality, operator trigonometry,

quantum probability, 247–248

classical probability and, 251–252

Bernoulli polynomial, unstable system harmonic

analysis, spectral decomposition and

probabilistic extension, 38–39

tent maps, 40–41

Bessel function, iterative maps, master equation,

standard map, 10–11

Bilateral shift, unstable system harmonic

analysis, time operator, 43–46

Binary correlation components, moderately

dense gas transport, spectral

representation, 135–138

Biological irreversibility

cell differentiation

dynamic system development, 62–64

dynamic system representation, 67–69

macroscopic stability, 67

339



Biological irreversibility (Continued)

microscopic stability, 66–67

scenario, 64–67

chaotic itineracy

characteristics, 58–59

Milnor attractors, 57–58

collective dynamics, 60–62

high-dimensional chaos, 55–57

phenomenology theory of development,

70–72

physical properties, 53–55

thermodynamics, irreducibility to, 69–70

Blackbody radiation, micromaser experiments,

trapping states, 176–182

Bohm’s theory, canonical quantization,

322–323

Bohr frequencies, stochastic limit, bosonic

reservoir model, 219–223

Boltzmann approximation, moderately dense

gas transport, theoretical background,

132–133

Boltzmann entropy, cat map thermodynamics,

work estimation, isothermal operations,

28–29

Boltzmann-Lorentz operator

moderately dense gas transport, 141–146

velocity autocorrelation function,

148–150

Bona fide operators, quantum field theory,

281–282

Born approximation, time asymmetric quantum

mechanics, Dirac Golden rule-Gamow

ket transition, 307–312

Bosonic reservoirs, stochastic limit

basic equations, 215–218

coherence control, 231–232

Glauber dynamics, 232–237

model, 218–223

Breit-Wigner energy distribution, time

asymmetric quantum mechanics, Dirac

Golden rule-Gamow ket transition,

304–312

Broken time reversal symmetry, irreversibility in

multibaker maps, 96–102

Burnett coefficients, chaotic systems, Poincaré-
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Poincaré’s theorem, 262–264

unitary transformation, 264–268

multibaker maps, reversible maps,

irreversibility in, 78–80

stochastic limit

generic systems, 226–230

Glauber dynamics, 232–237

Eigenvalues

chaotic systems, Poincaré-Birkhoff mapping,
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diffusion, eigenvalue problem,

119–120

collective transport, 157–158

Hilbert space

canonical quantization, 322–323

integrable/nonintegrable dynamic systems

correlation dynamics, 262

dissipative systems, 271–274
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spatially periodic systems, 117–119

iterative maps, non-Markovian/Markovian

evolution equations, 6–9

operator trigonometry, 241

Lasers

single-atom ion trapping, 189–194

‘‘which path’’ experiments, 212

Lebesgue measure

chaotic systems, Poincaré-Birkhoff mapping
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Poincaré’s theorem, 264

unstable systems

entropy superoperator, 297–298

time superoperators, 287–289

Symmetric positive definite (SPD) matrix,

operator trigonometry, 242–243

extended operators, 244–246

properties of, 243–244

Tent maps, unstable system harmonic analysis,

spectral decomposition and probabilistic

extension, 39–41

Ternary correlation subspace, collective

dynamics, 150–152

Thermodynamics

biological irreversibility

irreducibility of, 69–70

phenomenology theory, 70–72

subject index 353



Thermodynamics (Continued)

Hamiltonian chaotic system

basic properties, 21–23

cat map, 24–31

external operations, 25–26

Hamiltonian equation, 24–25

large system recovery, 31

probability density, time evolution,

26–27

Second Law thermodynamics, 29–31

work estimation, 27–29

Time asymmetric quantum mechanics,

microphysical irreversibility

Gamow kets, 313–318

Golden rule and Gamow kets, 302–312

probability, 312–318

resonances and decay, 301–312

Time-dependent Hamiltonian

cat map, 24–25

quantum field theory, 282–285

Time-dependent Schrödinger equation, quantum

field theory, 282–285

Time evolution

cat map thermodynamics, probability density,

26–27

Second Law thermodynamics, 29–31

irreversibility in multibaker maps

backward time evolution and reversal

symmetry, 91–95

decay states, 88–91

forward time evolution, 85–91

measures, 83–85

steady states, 85–88

single-atom ion trapping, ion-trap lasers,

193–194

time asymmetric quantum mechanics, Dirac

Golden rule-Gamow ket transition,

305–312

velocity autocorrelation function, 148–150

Time operators, unstable system harmonic

analysis

operator theory, 35–36

shift-represented evolution, 43–46

Time reversal symmetry, irreversibility in

multibaker maps

backward time evolution, 91–95

broken time, 96–102

unidirectional measures evolution, 95–96

Time superoperator, unstable systems,

construction of, 289–292

Total operators, operator trigonometry,

symmetric positive definite (SPD)

matrix, 244

Transfer coefficients, irreversibility research,

79–80

Transient chaos, critical states, 49–51

Transition probability, time asymmetric

quantum mechanics, Dirac Golden rule-

Gamow ket transition, 302–312

Trapping states

micromaser experiments, 176–182

single-atom ion trapping

ion-trap lasers, 189–194

resonance fluorescence, 186–189

Triangle inequality, operator trigonometry,

quantum probability, 248–250

Turbulent phase, biological irreversibility, high-

dimensional chaos, 56–57

Twiss protocols, single-atom ion trapping,

resonance fluorescence, 189

Ultracold atoms, micromaser experiments,

183–186

Unidirectional measures evolution,

irreversibility in multibaker maps, time

reversal symmetry, 95–96

Uniformly hyperfinite (UHF) algebra, stochastic

limit, 237–238

Unilateral shift, unstable system harmonic

analysis, time operator, 43–46

Unitary operator

integrable/nonintegrable correlation

dynamics, 264–268

dissipative systems, 271–274

operator trigonometry

extended operators, 244–246

symmetric positive definite (SPD) matrix,

244

Unstable systems

age fluctuations, 295–297

aging in excited states, 292–295

entropy superoperator, 297–298

harmonic analysis

operator theory, 34–36

spectral decomposition and probabilistic

expansion, 36–43

Baker’s transformations, 42–43

logistic map, 41–442

Renyi maps, 38–39

tent maps, 39–41

354 subject index



time operator and shift-represented

evolution, 43–46

cusp map, 45–46

Renyi map, 44–45

physical properties, 287–289

quantum field theory, 284–285

time superoperator construction, 289–292

Vacuum components

moderately dense gas transport, spectral

representation, 135–138

quantum field theory, 278–279

trapping states, micromaser experiments,

182–183

Vanishing denominators, integrable/

nonintegrable correlation dynamics,
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