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PREFACE

PREREQUISITES

The Physics Department at Cornell offers two intermediate-level undergraduate
mechanics courses. This book evolved from lecture notes used in the more advanced of
the two courses. Most of the students who took this course were considering postgraduate
study leading to future careers in physics or astronomy. With a few exceptions, they had
previously taken an introductory honors course in mechanics at the level of Kleppner and
Kolenkow.* Many students also had an Advanced Placement physics course in high school.
Since we can assume that a solid background in introductory college-level physics already
exists, we have not included a systematic review of elementary mechanics in the book,
other than the brief example at the beginning of Chapter 1.

Familiarity with a certain few basic mathematical concepts is essential. The student
should understand Taylor series in more than one variable, partial derivatives, the chain rule,
and elementary manipulations with complex variables." Some elementary knowledge of
matrices and determinants is also needed.* Almost all of the students who took the honors
analytic mechanics course at Cornell have either completed, or were concurrently registered
in, a mathematical physics course involving vector analysis, complex variable theory, and
techniques for solving ordinary and partial differential equations. However, a thorough
grounding in these subjects is not essential — in fact some of this material can be learned
by taking a course based on this book.

INTRODUCTION

Our intention in writing this book is to reduce the gap between undergraduate
and graduate physics training. Graduate students often complain that their undergraduate
training did not prepare them for the rigors of graduate school. For that reason we have

* An Introduction to Mechanics, D. Kleppner and R. J. Kolenkow, McGraw-Hill, 1973.

I At the level of Advanced Calculus, 2d ed., W. Kaplan, Addison-Wesley, 1984,

¥ For linear algebra. we recommend a book on the level of Linear Algebra with Applications, 2d edition,
S. 1. Leon, Macmillan, 1986, or one of the many other suitable texts at the intermediate level.
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written a text that emphasizes those concepts that will be useful to know later. We feel that
only tradition stands in the way of teaching Lagrangian and Hamiltonian mechanics at an
earlier stage than has been the case in the education of physicists. In addition to advancing
the stage when these basic concepts are encountered, we have a second purpose in mind.
In many colleges and universities, quantum mechanics is now taught at the intermediate
undergraduate level. As a result of this recent trend, there often is a mismatch between
these courses and the preparatory courses, and student preparation is often inadequate in
the upper-level undergraduate courses. This places a heavy burden on the instructor in the
courses introducing quantum mechanics and modern physics to juniors and seniors. Many
important topics can be more easily visualized if taught in a classical mechanics course
instead. The use of eigenvectors and eigenvalues to solve physical problems is a prime
example.

Classical mechanics 1s an excellent way to introduce the basic tools of theoretical
physics. Lagrangian methods can be used to simplify problems that would be difficult to
solve by other means. Mechanics problems can be written and solved in a few lines using
these powerful techniques. It is usually easier to work with more “advanced” techniques
than with the more complicated “elementary” methods. Deeper insight into the motion of
a mechanical system is obtained with these more sophisticated methods. We cite the role
of conserved quantities derived from symmetries via Noether’s theorem as one example.

A course in classical mechanics need not be justified entirely on the grounds that it
provides a path to something else more glamorous and fashionable. To quote Gutzwiller:

Elementary mechanics, both classical and quantum, has become a growth industry in
the last decade. A newcomer to this flourishing field must get acquainted with some
unfamiliar concepts and get rid of some cherished assumptions. The change in orientation
is necessary because physicists have finally realized that most dynamical systems do not
follow simple, regular, and predictable patterns, but run along a seemingly random, yet
well-defined, trajectory. The generally accepted name for this phenomenon is chaos, a
term that accurately suggests that we have failed to come to grips with the problem.*

Far from being a dead subject, classical mechanics has reemerged in the forefront of
modern physics research! Deterministic chaos is a special topic discussed in Chapter 11.
Since the 1960s chaos has developed as a new branch of classical mechanics. It has wide
applicability to other fields outside of physics as well, although we do not consider this.
Here we confine ourselves to treating two simple dynamical systems, one a conservative
systemn and the other a dissipative system. This text is intended to give a purely introductory,
rather than comprehensive, treatment of chaos. It is not a substitute for textbooks devoted
entirely to this subject but might stimulate the student to investigate the subject more in
future courses.

We have included a final chapter on special relativity. There are many excellent
introductions to this subject, some of which are listed in the bibliography. However we felt
that there may be value in having an introduction that applies the lessons of the previous

* Martin C. Gutzwiller, in Chaos in Classical and Quantum Mechanics.
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chapters. The case of special relativity illustrates the modern viewpoint and shows the
power of Lagrangian mechanics to transcend its original role, which was a reformulation
of Newton’s Laws of Motion,

One word of warning: We believe there is more material in this book than can be
reasonably presented in a one-semester undergraduate course. The teacher must select
those parts which he or she feels comprise a unified course in mechanics. In particular,
there is a natural choice between teaching the material in Chapter 6 (advanced theory) and
Chapter 11 (chaos) on the one hand and teaching special relativity (Chapter 12) on the other.

This book will be much more effective if it serves as part of an experience that directly
involves the student in an active learning process. In a separate publication,* we will
discuss the way in which the course was taught at Cornell, in particular the innovations
made possible by the Sloan Foundation: the seminars and the e-mail questions.” Let us
only say here that a dialogue with the individual students, separately and in groups, is
essential for success in teaching the material. In our previous experience with teaching
mechanics, it was found that relying only on standard lectures, with spontaneous student
questions and discussion in lecture, did not stimulate the kind of individual thought process
needed. The need to cover the material in the lecture tends to reduce thoughtful discussion
to a minimum. Reading the text alone did not fill this gap. Students tended to read the
text rather superficially, accepting what was said, rather than questioning it and working
examples. Problem sets were done “just in time.” This book was designed to provoke a
more thoughtful reading experience, and more continuity in the study process, when it was
used in combination with the seminar and the e-mail questions.

Support by the Sloan Foundation, which has an interest in acceleration of the under-
graduate phase of education, allowed us the freedom to depart from the standard lecture
format to develop the alternative ways to teach this material. Judging by the student re-
action, we were successful in most cases. The use of undergraduate teaching assistants
(TAs), students who had taken the course in the previous year, was particularly successful
and helped provide role models.

ADVICE TO STUDENTS WHO USE THIS BOOK

Learning physics is an active experience,

If you were learning to nide a bicycle or to play the violin, you would expect to practice
the technique until it became second nature. Falling off the bicycle gives you immediate
feedback - it tells you that you need more practice. Exactly the same thing is true of
learning physics. It must become part of you, something intuitive, Almost everyone has
to work very hard to achieve this. Until you can solve problems, your understanding is
not sufficiently deep. It is one thing to watch a lecturer solve a problem, where every step

* 1. D. Finch and L. N. Hand. “Using an Email Tutorial and Student Seminars to Improve an Intermediate-
Level Undergraduate Physics Course.” American Journal of Physics, to be published in 1998.

! The seminar problems are denoted by a **” in the homework problem sections. The e-mail questions are
distributed throughout the text.
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seems to be a logical one, and quite another to tackle a real problem on your own. Do not
think of learning physics as "art appreciation.” It is a “do-it-yourself™ activity.

The key to success is how one studies the subject outside of class. A last minute “all-
nighter” to solve a problem set is an exercise in self-delusion. You are strongly advised
against trying to learn physics in this way, because it inhibits the crucial transition from
short-term to long-term memory. The new concepts have to soak into your consciousness.
Remember that it took about 150 years to develop Hamiltonian dynamics. It can’t be
learned adequately in one night. You should put aside a regular time for studying this
material and concentrate on it without distraction. Do the reading early in the week it is
assigned. Think about the problems more than one day before they are due. Try to isolate
the points you don't understand. Read the material again. Most important: Discuss it
with other students. Don’t hesitate to ask others for an explanation and don’t be satisfied
until you get one. Another tip: Make the effort to memorize what the notation means. By
experience, we have often observed that lack of familiarity with the symbols and what they
stand for is one difference between strong and weak students. Memorizing the meaning
of symbols becomes automatic with trained physicists. Acquiring the skill of learning
physics will serve you well in later years, when most learning must be self-taught.

If you don’t fully understand what your are reading, try to construct a simple example
for yourself. But don’t let the lack of understanding remain. Pester someone - your
teaching assistant, your colleague, or your professor — until your questions are answered.
And don’t assume that it is clear to everyone except yourself.

The questions scattered throughout the text are intended to test your comprehension
as you read the material. Some of them were assigned to our students, and answers were
given and graded by e-mail. Repeated improvements in the answer, following comments
by the teaching assistant, led to repeated improvements in the grade for that particular
question. Most people ended up with nearly perfect scores after a useful dialogue with the
TA via e-mail.
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CHAPTER ONE

LAGRANGIAN MECHANICS

OVERVIEW OF CHAPTER 1

Joseph Louis Lagrange® reformulated Newton's Laws in a way that eliminates the need
to calculate forces on isolated parts of a mechanical system. Any convenient variables
obeying the constraints on a system can be used to describe the motion. If Lagrangian
mechanics rather than Newtonian mechanics is used, it is only necessary to consider a
single function of the dynamical variables that describe the motion of the entire system.
The differential equations governing the motion are obtained directly from this function
without any vector force diagrams. Lagrangian mechanics is extremely efficient: There
are only as many equations to solve as there are physically significant variables.

Lagrange did not introduce new physical principles to mechanics. The physical
concepts are due to Newton and Galileo. But he succeeded in giving a more powerful
and sophisticated way to formulate the mathematical equations of classical mechanics,
an approach that has spread its influence over physics far beyond the purely mechanical
problems.

We will begin by solving some examples that lead us toward this new formulation
of mechanics. We plan to use the concept of virtual work to derive this. We will
consider extended rigid bodies to be made up of collections of massive point particles.
Summing over the constituent particles will lead to an efficient and general method for
obtaining the differential equations of motion for any frictionless mechanical system.

To use Lagrange’s method we have to express the difference between kinetic and
potential energies in terms of the variables we choose to describe the motion. This
gives a single function, called the Lagrangian. After that, there is a straightforward
procedure to follow to find the differential equations of the motion.

EXAMPLE AND REVIEW OF NEWTON'S MECHANICS: A BLOCK
SLIDING ON AN INCLINED PLANE

A block of mass m slides on a frictionless inclined plane, which itself has a mass

M and rests on a flat surface, without any friction between this surface and the inclined

i T36-1813) His treatise on mechanics, Mécanique Analvtique, was published in 1788,
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FIGURE 1.1

plane. as shown in Figure 1.1. There are then two types of motion, or degrees of freedom.
The small block can slide down the plane, and the inclined plane can move horizontally.
Whatever happens, we will assume the block always remains constrained to move along
the upper surface of the inclined plane. A practical question is: If the small block starts at
the top of the inclined plane, how long will it take to reach the bottom?

We assume the reader is well-versed in the standard methods of Newtonian mechanics.
We are taught to isolate each body and then to consider all of the forces acting on that body.
If we first consider the forces on the SB (small block), there is a constraint force F ; exerted
by the /P (inclined plane) on the block. This force is considered a constraint force because
it keeps the motion of the small block constrained to be along the upper surface of the IP.
Therefore, the force F, must be perpendicular to the tilted plane. (In the absence of friction,
F, is the only force exerted by the /P on the SB.) Let the horizontal direction be defined as
the X axis, with aunit vector along the X axis being denoted by i. The vertical direction will
be the Y axis, with the pusitive directiun upwards. A unit vector pointing up is denoted by j.
With this notation, the vector F, is F, = F,(sinal 4+ cos u:;) ( F; without the arrow above
it stands for the magnitude of F,.) Although the force F, is actually distributed along the
bottom of the small block, we will make the usual assumption that we can treat the block as a
point mass so that this force acts through the center of the block, as does the force of gravity,
FmﬂW(SB} = —mgj (where g = 9.8 m/s’ is the acceleration of gravity). Let A be the
acceleration of the IP in an inertial reference system. This is any reference system moving at
a constant velocity and therefore not accelerated itself. With the X axis oriented as we have
done, A has only an x component, A,. Leta+ A be the acceleration of the small block in the
same reference system. Then 4 is the acceleration of the block relative to the inclined plane.
Newton'’s Second Law for the small block is then, according to the law of addition of forces,

F(SB) = F + F yayny(SB) = m(d + A). (1.1)

Equation (1.1) is really two equations. The components of F parallel to the top of the
inclined plane (Fy) and perpendicular to it ( F| ) are
Fy =mgsina = may + mA, cosa, (12)
Fy = F, —mgcosa =ma, +mA,sinc. |
Since the constraint that the small block move along the inclined plane’s top surface means
that @a; = 0, we can solve the second equation in (1.2) for F;, the magnitude of the
constraint force:

Fi = mgcosa + mA, sina. (1.3
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The forces on the inclined plane are a bit more complicated. According to Newton’s
Third Law of action and reaction, there is a reaction force — F i exerted by the block on
the inclined plane. A second constraint force is needed to prevent any downward motion
of the IP. This is F y = F, j. Newton’s Second Law becomes

—

FUP) = —F+ Fy+ F gy (IP) = MA. (1.4)
Forviy(IP) = —Mg j, and F, — Mg just cancels the downward component of ~F Iy
F,— Mg = —F,cosa. (1.5)
The horizontal component of — f-?'i produces a horizontal acceleration of the /P:
MA, = —F, sina. (1.6)

Solve the linear equation obtained by combining (1.6) with (1.3):

AI=_E(E'1I1£I'CDS&)‘ {1?)

sin® ¢ + %

Equation (1.7) determines the motion of the inclined plane.
The acceleration of the small block along the plane, a;, can be obtained by solving (1.2):

ap = gsina — A, cos«. (1.8)

The vertical component of the acceleration of the small block is

M+m
a, = -a,|sina=—gsin1a( rm ) (1.9)
M+msin“a

If the inclined plane has a height A, a block starting at this height will reach the bottom in
a time ¢ given by the solution to —h = a}.% that is, t = ,/—2ha,.

This completes the solution of the problem using the standard methods of Newtonian
mechanics. There were four equations, two for each object, and four unknowns: Fj, Fg ay,
and A.. Next we will see how to use the special properties of the constraint forces Fi, F,
in order to eliminate them from the problem completely.

1.2 USING VIRTUAL WORK TO SOLVE THE SAME PROBLEM

What are the natural variables in the problem solved in the previous section? One
useful choice is X, the horizontal position of the inclined plane, and d, the distance of the
small block from the top of the inclined plane. Notice that d is a coordinate defined with
respect to a noninertial reference frame, since the point d = 0 is accelerated. The first
task is to find expressions in terms of these variables for the kinetic energies of the block
and the plane. Throughout this book, we will denote kinetic energies by the letter 7. As
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always in nonrelativistic mechanics, the kinetic energy of a point mass is mv?, where v is

the magnitude of the velocity as measured in an inertial reference frame. We will treat both
objects as point masses, since they do not rotate. (The proof that this is justified appears
in Chapter 8.) For the inclined plane we have

TIPE%MXE- (1.10)

v (SB) = X +d cosa, v,(SB) = —d sina. (L.11)

{The reader should check that he or she agrees with (1.11).) For the small block we have

l "’ l L L] '2
Tsp = Em(u; +v)) = Em(f +2dX cosa +d). (1.12)
The total kinetic energy is
Pl 1 a i a
T=T33+T;p=%{m+M}X-+Em(d-+2dXCDEH}. (1.13)

With the calculation of the total kinetic energy in terms of our chosen variables finished,
we can now concentrate on the method of virtual work. Imagine that, at some fixed time, we
make a small virtual displacement éd in d and another virtual displacement §X in X. The
displacements are called “virtual” because they are purely imaginary. The requirements
on acceptable virtual displacements are:

The time 15 held fixed.

The displacements are infinitesimal.

There is no change in time derivatives d, X.

There are as many possible virtual displacements as there are variables needed to
describe the motion.

5. The displacements obey the constraints on the motion. This is true in our case
because d and X are defined so that the block always slides on the upper surface of
the plane as d and X change with time.

W -

The concept of a virtual displacement was discovered in 1703 by Jacques Bernoulli as
a tool for understanding static equilibrium but was developed by d’ Alembert beginning in
1743 for use in problems involving motion.

It will be useful to express these virtual displacements as infinitesimal vectors in the
same Cartesian coordinate system we used in the previous section:

8rgg = (8X + 8d cosa)i — 8d sina j, (1.14)

SR;p = 8X7. (1.15)

Equation (1.14) can be obtained by multiplying (1.11) by dt.
In mechanics, work is defined to be the line integral W = [F . dF. In words, work is
the integral of the component of force along the direction of displacement, integrated with
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respect to the displacement. Virtual work is defined in exactly the same way, except that
the displacement is a virtual one:

SW = F . §F. (1.16)

No integration is necessary, because the displacement is an infinitesimal one.

In calculalmg the virtual work, we do not have to take into account the constraint
forces F] . F; we considered in the previous section, because constraint forces always
act in a direction perpendicular to the possible displacements. The only nonconstraint
forces are the gravitational forces on the two bodies (—mgj and — Mg J). Only these two
forces could influence the expression of the virtual work in terms of virtual displacements.
However, only the gravitational force on the small block does any work when inserting
(1.14) and (1.15) into (1.16):

SW(SB) = mgsinadd, SW(IP)=1. (1.17)

The dynamics arises through a connection between the virtual work and partial deriva-
tives of the kinetic energy with respect to X and d. To find these partial derivatives, we
treat X, d as formal variables that are independent of X, d. It is perfectly straightforward
to take partial derivatives of Equation (1.13) with respecttod, X.

As always in classical mechanics, the heart of the dynamics lies in the expression of
Newton’s Second Law: F = p. (p = mv. ma # p if the system’s mass is changing, as
in a rocket problem.) Rewriting (1.16) we obtain

SW —p.8r =0, (1.18)
d’Alembert’s Principle

d(p-87) . d@F)

1.19
dt P dr ( )

péF =

Equation (1.19) is a mathematical identity. It may seem like a contradiction that in making
virtual displacements, 8d = 0,8X = 0, while 22 = §7 could be nonzero. It would
arise if the Cartesian vector virtual displacements 8r in Equations (1.14) and (1.15) had
depended on d or X as well as 4 and § X. The time derivative of dr would not then vanish
in general. In other words, the velocity of each body is a function of the coordinates as well
as the time derivatives of the coordinates. One can see that the kinetic energy T will be a
function of d and X as well as d, X if this had actually happened. We can set 87 = 0 for
the particular case here, treating 87 as a time-independent constant. Later we will extend
our treatment to include the more general case.

To find the equations of motion, we need to obtain expressions for the total p - ér,
adding together the contributions of the small block and the inclined plane. The position
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of the small block, expressed as a vector r g5 is a function of both d and X. (We drop the
subscript SB. since what we will say applies equally well to the inclined plane, although
the position is only a function of X in that case.) Using the chain rule for differentiation
of a fanction rid, X) we get

ar ar
p-8r=p . —8d+ p- —6X. 1.20
p-or 3 +p axﬁx (1.20)

The velocity v = r is given by the general functional relation, again from calculus:

. 9r . ar .
=i+ Zx 1.21
r=-74t3xX (1.21)

Equation (1.11) is Equation (1.21) written out explicitly in component form for the small
block.

Now replace &, 2 in Equation (1.20) by 2, 2, respectively. This is a purely formal
operation, which assumes that the variables and time derivatives of variables can be treated

as formally independent of each other in Equation (1.21). For either body, Equation (1.20)
becomes

ar or
p - 8r = - 8 + p- —6X. 1.22
PrOT=P" 5] 9% (1.22)

The vector p = mr can be expressed in Cartesian coordinates as

aoT aT aT
Pr = T Pi- P: = 7. {123)

ax ay’ a7
Inserting these three exprm-.sinnq into (1.22) and using the chain rule* together with an

analogous relation for 2% 3 x* we obtain an expression for p - ér:

5T 8T
SF = 9o 8d + L 5X. - 1.24
"T%d T ax (1.24)

The formula (1.24) is “boxed” because, when generalized to any number of variables, it
plays a fundamental role in analytical mechanics. Equation (1.24) applies to any mechanical
system described by two variables. Since the kinetic energy is an additive quantity, we can
use (1.24) for either body or else for the total (p - 87 )sz + (p - 67);p. All that remains is
to equate the time derivative of the total p - §7 to the total virtual work, adding together
both bodies. Inserting the specific form of the kinetic energy and the virtual work for this

‘1&

— J& EIT

{ ‘I-

E:J-:'!'

aT
ad
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problem will lead us directly to the equations of motion. Returning to the specific problem
of the small block and the inclined plane, use the expressions (1.24), (1.17), and (1.13) in
(1.18) to obtain

i
5d + d(53) 5X

( 7)
dt

= [{m + M)X + md cosa)8X + m[X cosa + d) 8d. (1.25)

mg sinedd =

The virtual displacements are independent of each other, so it is possible to obtain two
equations of motion from (1.25) by equating the coefficients of éd and § X separately to
zero. When doing so, one obtains (1.7, 1.8).

QUESTION 1: Virtual Work The reader should test his or her understanding by using
(1.25) to get the equations of the motion (1.7, 1.8) in order to prove that this solution
agrees with that of the previous section.

At this point, this procedure may seem more indirect and elaborate than a straightfor-
ward application of Newtonian mechanics. But most of the effort was spent in justifying
the steps involving partial derivatives of the kinetic energy. In future problems, all that will
be required is to express the kinetic energy in terms of the chasen set of variables and their
time derivatives and to find the virtual work, which is usually an easy task. The derivation
presented here needs to be extended to cover the case where the velocities depend on the
dynamical variables* as well as on their time derivatives. Otherwise we have derived an
approach to mechanics that is very close to the spirit of Lagrangian mechanics.

1.3 SOLVING FOR THE MOTION OF A HEAVY BEAD SLIDING
ON A ROTATING WIRE

This example will illustrate the method of the previous section, but it contains a
new feature: The kinetic energy depends on both the dynamical variable and on its time
derivative, instead of on the time derivative alone.

A bead slides without friction on a thin wire which is rotated about a vertical axis by
a motor at a constant angular frequency « as shown in Figure 1.2. The wire 1s tilted away
from the Z axis by a fixed angle «. The bead is constrained to move on the wire. To
describe the motion of the bead, it is only necessary to specify one dynamical variable. We
choose this to be the distance g from the origin. (See Figure 1.2.)

The time dependence of g(t) depends on the solution to a differential equation which
we will derive. To specify this solution we must know the initial position ¢(0) and velocity
of the bead ¢(0) along the wire. There are two initial conditions. The position of the wire

* Dynamical variables are the time-dependent variables needed to describe the motion, such as d(r) and
X (t) for the small block on the inclined plane.
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FIGURE 1.2
Bead on a wire.

is not a dynamical variable because it is a given function of time that does not depend on
specific initial conditions.

Since only one dynamical variable is needed to describe the motion of the bead, this
system is said to have only one degree of freedom. The system of the small block sliding
on the movable inclined plane has two degrees of freedom. If the bead were unconstrained
in free space, it would have three degrees of freedom. The wire provides two constraints,
which reduce the number of degrees of freedomto 3 -2 =1,

To describe the position of the bead in space, use a fixed set of Cartesian coordinates:

r=(x,y2), (1.26)

x(t) = q(t) sino cos wt,
v(t) = g(t) sina sin wt, (1.27)
z(1) = g(t)cosa.

The number of degrees of freedom is an intrinsic property of the system, so there must be
two relations between the three equations above (1.27) to reduce the number to one. These

are ¢* = x* + y* + z? and tana —”"i‘-féﬁ
Calculate the bead velocity in terms of ¢ and § by differentiating the formulas (1.27)
with respect to time:

X(t) = ¢(t)sinx coswt — w q(t) sin « sin wt,
¥(t) = g(t)sina sinwt + w g(t) sine cos wt, (1.29)
(1) = g(t)cos .

Assume that the XY Z reference system is an inertial frame. The kinetic energy of the bead
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2
| P | 1 S .
T=smrr= Em(,i-? +y 4+ = Eml{mzq‘smz a + ¢%). (1.30)
Add a virtual displacement 8¢ to g at a fixed time, as before. Define §7:
- - - ar
or = r(q +5q,r)—r(q.r}=Eﬁq. (1.31)
Likewise
s & | o ar
or=r{g+9dq.q.1)—ri(g.q.t) = 'a?rﬁg (1.32)

Note that in this case, 5r # 0. The reason is the appearance of ¢ in Equations (1.29) above.

Again denote the virtual work by § W using (1.18). What are the forces acting on the
bead? There are two distinct types of force. One is the downward force of gravity: —mg2Z
(Z 1s the unit vector in the z direction); the other is the time-dependent constraint force
exerted by the wire on the bead. Only the force of gravity contributes to the virtual work:

W = —mg cos adq. (1.33)

According to the identity, Equation (1.19), (1.18) can be written as a total time deriva-
tive of p - 67 minus a second term:

d . . . .-
SW = —-(5 - 67) — j - oF. (1.34)

Using formula (1.24) for a system with only one degree of freedom we have

U )
p-8r = ——48g =mqdq. (1.35)
el

The chain rule implies that, if the kinetic energy (T = imr - r) is a function of g, then

aT . ar .
—8a=mr-—3&a="0-8F.
57 q=mr aqﬁq p-or

(We used (1.32) in the last step.) Using the explicit form of T from (1.30), we obtain

(1.36)

p - 8r = m o’ sin® agdq. (1.37)

The differential equation of the motion (abbreviated “EOM”) can be obtained by using
(1.33), (1.35), and (1.37) in (1.34). (Recall that 84 is a constant.) The EOM of the bead
obtained in this way 1s

2

G — w*sin*ag = —g cosa. (1.38)

A homework problem asks you to investigate what this equation implies about the motion
of the bead.
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1.4 TOWARD A GENERAL FORMULA: DEGREES OF FREEDOM
AND TYPES OF CONSTRAINTS

We want to derive general equations of motion from d’ Alembert’s Principle. There
are some preliminary things to discuss before we do this.

Degrees of Freedom

The most general definition of dynamical variables is any set of variables that can
describe completely the configuration of a mechanical system (i.e., the position of its parts)
and that can change under the action of the forces. In what follows we will always make
the assumption that any one of the g; may be varied independently from the others.” The
motion of the system is completely determined by specifying the dynamical variables as
functions of time. Newton’s Laws imply that these functions are found by solving a set of
second-order differential equations. Initial conditions for all of the initial values g,(0) and
g (0) must be known in order to determine a specific solution. (Often we will write ¢; and
q: without explicitly indicating that they are functions of time.)

Usually the dynamical variables are chosen to be positions and/or angles. A mass
point has three degrees of freedom. The motion of a point mass in space, r(1), is therefore
described by three different, independent, dynamical variables. Often they are the Cartesian
coordinates, r(r) = (x(r), v(t), z(t)). Cylindrical polar coordinates could instead be used,
with the variables (r, ¢, z), or else spherical polar coordinates, with the variables (r, 8, ¢),
or perhaps some other convenient definition of coordinates.

Unspecified dynamical variables g, are referred to as generalized coordinates. The
number N of degrees of freedom is an intrinsic property of the system, but the actual
specific choice of dynamical variables is up to us, as long as the number of independent
coordinates is V.

Constraints reduce the number of degrees of freedom. A box confined to the top of a
table has three degrees of freedom — two possible translations and one degree of freedom
for arbitrary rotations about an axis perpendicular to the table top. A mass point confined
to the same table top will have only two degrees of freedom, since the rotational motion is
now not significant.

Consider a collection of M massive point particles. We might think of this collection
as a single dynamical system with 3M degrees of freedom. If there are j independent
constraints, the system has only N = 3M — j degrees of freedom. Some examples of
M = 2, 3 are shown in Figure 1.3. A rigid body with three or more mass points has only
six degrees of freedom, like Figure 1.3C.

QUESTION 2: Degrees of Freedom 1 a) Prove that a rigid body, with three or more
mass points, has six degrees of freedom. Remember to point out what is so special

* Situations in which independent variation of the dynamical variables is not possible would mean that the
number of variables would be greater than the number of degrees of freedom. We will discuss this in
Chapter 2.
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N=5 N=b
"\L'l.
A B C
FIGURE 1.3

Systems with many degrees of freedom. All systems arc point
masses connected by rigid massless rods. Motion can be in three
dimensions. System B has a flexible joint.

about a rigid body and why we need only six dynamical variables to describe the
motion. b) What are these six degrees of freedom explicitly? ¢) Is the choice unique?
With regard to uniqueness, you should consider the choice of coordinate system as
well as the choice of origin.

QUESTION 3: Degrees of Freedom 2 Identify how many degrees of freedom there are
in the following mechanical systems: a) acompact disc in use (i.¢., arigid body rotating
about a fixed axis — all the points in the body that lie along the axis are not moving),
b) a spinning top (i.e., a rigid body rotating about a fixed point - all the points of the
body can rotate except for the point on the body that is fixed), ¢) a bug crawling on the
ground (i.e., a particle moving on a given surface), d) adumbbell (i.e., two particles kept
at a constant distance from each other), ¢) two components of a double star that revolve
in the same plane (note that a double star is in three dimensions, but the force of gravity
between them causes them to be coplanar; also note that a star should be considered
to be a rigid body rather than a point mass). and ) the Earth-Moon-Sun system (note
that a planet should also be considered to be a rigid body rather than a point mass).

Model of a Rigid Body as a Collection of Mass Points

It must be possible to express the spatial position r; of each part of a system as a
function of a finite number of dynamical variables, The subscript “i” is a label that will
identify a specific part of the system, as shown in Figure 1.4. This requirement is indicated
by writing

Fi5Ff[ff|----.tfk,-.”q;.,-,f}. (1.39)

N is an integer indicating the number of degrees of freedom: 1 < k < N. Besides the
time dependence that arises because the g; depend on the time, there can sometimes be an
explicit time dependence due to moving constraints, which we have indicated in Equation
(1.39).

If there is no explicit time dependence, we may indicate this by writing. instead of
(1.39),

ri=rilgu..... Gicr -GN ) (1.40)
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FIGURE 1.4

Equation (1.39) expresses the fact that at any instant we can specify the location of
the system in space by specifying the value of all the g, and the time. Strictly speaking,
this is complete information only if we consider a system consisting of a finite number of
point masses. For truly rigid bodies, we can, in our minds, subdivide the body down to
the atomic level if we wish, still treating the system as a finite number of point masses.
As noted above, there will be only six degrees of freedom. If the body is not a rigid one,
the location of its parts will be considerably more complicated, depending on an infinite
number of dynamical variables. We exclude this possibility from consideration; it lies in
the realm of continuum mechanics.

For example, a chair may have 10** molecules, hence 3 x 10** coordinates. In practical
situations we need only a maximum of six coordinates to describe the motion of the chair.
We imagine that we could know the position of each molecule as a function of these six
variables:

ri=rilq,....q5), i=1,..., M = 10%, (1.41)

We don’t actually have to know the 10°* individual molecular positions, just that it is (in
principal) possible to write a function for each molecule that only depends on the degrees
of freedom for the entire chair.

The Two Types of Constraints: Time-independent or Time-Dependent

A spherical pendulum can be constructed by suspending a mass from a pivot
anchored in the ceiling. The pivot allows the mass to swing in any direction. The length
of the pendulum remains constant. The mass is free to move on the inside surface of an
imaginary sphere. How many dynamical variables does it take to describe the motion of
the pendulum? The answer to this question is two, which could be 6 and ¢, the polar
and azimuthal angles. There are two degrees of freedom. 1t is similar to describing your
location on the face of the Earth. Again two numbers are required to do this: latitude and
longitude.

For the spherical pendulum, the constraint that the distance from the mass to the pivot re-
main constant is a fime-independent constraint. Not all constraints are independent of time.
The bead on a rotating wire is an example of an explicit time dependence in the constraints.
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The difference between the two types of constraints is very important for the physics.
We have already seen that it is necessary to find not only % but also i’;} if the constraints
introduce a ¢ dependence into the kinetic energy. For example, one could have a particle
constrained to slide on the surface of a sphere. This has two degrees of freedom, since the
distance r of the particle from the center of the sphere is constrained to be the radius of the
sphere R. But suppose the radius of this sphere is changing in a predetermined way with
time: R = R(t). You would expect to get a completely different answer for the motion of
the particle in this situation.

When either Equations (1.40) or (1.39) hold for all times, we say the constraints are
holonomic constraints. If (1.40) is the relevant one, the constraints are time-independent.
They are then called scleronomic constraints. For this case, the parts of the system move
only because the dynamical variables change with time.

It could happen that the functional equation between the 7; and the set of generalized
coordinates g, involves the time explicitly, as indicated symbolically by Equation (1.39).
Time-dependent constraints are called rheonomic constraints. Note that an explicit time
dependence means that you can see the time in the constraint equations. For the example
of the bead sliding on a rotating wire, the position in space of the bead was expressed as a
function of the generalized coordinate g as well as ¢ in Equations (1.27). Unlike in the case
of the small block sliding on the inclined plane or the spherical pendulum, the constraint
equations for the bead involve the time explicitly as well as implicitly.

Both rheonomic and scleronomic constraints share a common property: All positions
of all parts of the system are described by functions of the dynamical variables and, in the
rheonomic case, the time. Both types of constraints are holonomic. There are constraints
that are not holonomic. Sometimes we have constraints on the velocities, such as for a ball
rolling without slipping on a table top. We will deal with this situation later. For now we
will only focus on holonomic constraints. The Greek meanings of the two names for the

types of holonomic constraints are

|

scleronomic: *“rigid law,”
rheonomic: “running law.”

QUESTION 4: Rheonomic vs. Scleronomic a) Identify whether or not the following
examples need to be described by generalized coordinates with rheonomic constraints
or scleronomic constraints: i) a point mass sliding on the surface of a bowl, 1) a
pendulum whose support point is driven vertically up and down, 11i) a top spinning
on a table, and iv) a spinning top in free fall. b) Will the kinetic and/or potential
energy contain an explicit time dependence for scleronomic constraints? How about
for rheonomic constraints? Explain.

Some examples of nonholonomic constraints are given in Appendix A of this
chapter.
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1.5  GENERALIZED VELOCITIES: HOW TO “CANCEL THE DOTS”

By generalized velocities, we mean the set of all first time derivatives of the g;.
We can regard g;(r) and §;(r) as independent variables. They are physically independent
since we have independent control over the starting values of g;(0) and §,(0).
Changing the dynamical variables can mean moving all parts of the system. The posi-
tions 7; will change as g, varies. If one particular g, is varied and all the other N — 1 ¢;s
are held constant as well as time, the partial derivative of r; with respect to g is

ar;
o (1.42)
Ok

We relate the “real” velocity of the ith particle, r, to the generalized velocities, §;. By
the chain rule applied to differentiation of Equation (1.39) or (1.40), the velocity of the ith
mass point is

N
ar; Hr,
U, =F = ; E—‘ (1.43)

The last term is absent if we have scleronomic constraints (i.e., constraint equations of the
form of Equation (1.40)). Take the partial derivative with respect to g, of the expression
above to obtain the relation
ar; Ti
ori _ on (1.44)
g gk
It is as if the “dots™ can be cancelled out. This useful identity holds for both types of
holonomic constraints.

QUESTION 5: Dot Cancellation a) Why isn’t Equation (1.44) true if the holonomic
constraint equations represented by Equations (1.39, 1.40} also would have contained
the generalized velocities? What would an application of the chain rule look like in
this case? b) See if “dot cancellation” works for two simple examples: i) a mass
sliding without friction down a stationary inclined plane and ii) the rotating bead on
a wire. These are prototypes of scleronomic and rheonomic constraints respectively.
These are really simple examples, because the coordinate representing the degree of
freedom appears linearly in the equations for the position. But the “dots cancel” even
in more complicated functional relations, as proved above.

1.6  VIRTUAL DISPLACEMENTS AND VIRTUAL
WORK - GENERALIZED FORCES

In this section we will discuss virtual displacements and virtual work from a
completely general point of view,

Observe the motion of a mechanical system. Now “freeze” the motion at some partic-

ular moment in time. Displace only one of the degrees of freedom (¢;s) an infinitesimal
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amount 8g;. (Each coordinate can be varied independently of the other generalized coor-
dinates.) Look at a particular part of the system, called the ith part. The position of this
part, 7;, will change in space by an amount
. O

Due to the nonconstraint forces being exerted on the different parts of the system,
virtual work will be done by this virtual displacement of one of the degrees of freedom.
Now consider the various possible virtnal displacements as acting simultaneously and
independently. If more than one of the ¢y s is changed, then the virtual work is the sum of
the virtual work done by each generalized coordinate variation, Call this total virtual work
8W. By definition:

i=M
SW =Y F, o7, (T‘ = 5?) - (1.46)
i i i=l

Using the formula (1.45), we can obtain partial derivatives connecting the virtual
displacements of the different parts with the virtual displacement of g;:

-  Or
SW; = (ZF,- - —’—’)a‘qk,

qu

SW = ;awﬁ (T EHTN)

k=]

(1.47)

Recall that since constraint forces always act to maintain the constraint, they point in
a direction perpendicular to the movement of the parts of the system. This means that
the constraint forces do not contribute anything to the virtual work. Equation (1.47) can
be rewritten in terms of the nonconstraint forces as a sum over all parts of the system,”
followed by a sum over the N generalized coordinates:

aw:?(iﬁjﬁ?“é&) 3. (1.48)

The generalized force F; associated with the kth degree of freedom is defined:

- Or W
= f— = . 1.49
i 2 d dqu 8 ( )

We have suppressed the superscript “nc™ on F;. From now on we will refer only to the
forces that do virtual work. The dimensions of F; depend on the dimensions of ¢, as can
be seen from the defining equation (1.49). They are not the same as ordinary force unless
gy happens to have the dimensions of length.

* The notation F ;H; stands for the nonconstraint force on part J.
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FIGURE 1.5

1.7 KINETIC ENERGY AS A FUNCTION OF THE GENERALIZED
COORDINATES AND VELOCITIES

Kinetic energy is additive. The most general form for the kinetic energy for any
holonomic system is

R
Tzigm,-r,--ﬁ=i"(q| ..... t?‘n.r,ti'h...,fj'ﬂ,f}; {15{])

The sum over the index ¢ goes from 1 to M (i.e., all parts of the system), but the kinetic
energy is only a function of the 2N variables representing the generalized coordinates and
their first time derivatives. This function can be found for a particular case by summing
over the parts of the system. Even for rheonomic constraints, it is often true that the time
does not appear explicitly in the equation for 7. This was true for the bead on a rotating
wire, for example.

QUESTION 6: Kinetic Energy A ladder of length L and mass M is leaning against a
wall as shown in Figure 1.5. Assuming the wall and the floor are frictionless, the
ladder will slide down the wall and along the floor until the left end loses contact with
the wall. Before the ladder loses contact with the wall there is one degree of freedom
(6, see Figure 1.5). Express the kinetic energy of the ladder in terms of @ and 4. Hint:
Divide the ladder into infinitesimal slices of thickness d's, a distance s away from the
origin. Then note that the mass dm of each slice is dm = %ds. The total kinetic
energy is the sum (i.e., integral) of the kinetic energy of each slice.

QUESTION 7: Virtval Work, Generalized Forces Find the virtual work and generalized
force for the example of the ladder sliding down the frictionless wall. Compare to
what you know about the ladder from Newtonian mechanics.

We need to know partial derivatives of the kinetic energy. Using the definition of T
from Equation (1.50) and the chain rule we have

A o, _ 5, 9 (1.51)
L e & P 0qy |

i
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T . or; . Or;
L=Zm:ﬂ'—:‘l= P"r— (1.52)

The second part of (1.52) is only true for holonomic constraints that allow “dot cancellation™
(1.44).

The virtual work and thus J; can be related by d’ Alembert’s Principle to the partial
derivatives of the kinetic energy on the left sides of Equations (1.51, 1.52). This is the
cruciai step in the development of analytical mechanics. Take the total ime derivative of
27 ag expressed in Equation (1.52). Work it out using the rule for differentiating a product:

e
ar.
— B, 1.53)
(3":?1:) Z Pi ﬂqk P dqi (

i

In the second term on the right-hand side of Equation (1.53), the order of the total time
derivatives and the partial derivatives have been exchanged.

The last step is where the physics enters — use Newton's Second Law to replace p; by the
force on the part i: Only if the r; are referred to an inertial frame, can Newtonian dynamics
be used. The first term on the right-hand side of Equation (1.53) is the generalized force Fy,
as can be seen by comparison with Equation (1.49) above. From Equation (1.51), the last
term on the right of Equation (1.53) was already shown to equal % We have discovered
the basic formula of analytical mechanics, in its most general form:

GOLDEN RULE #1
d (oT aoT
}1 = = (-"_'_) T m
dt \ g, gy (1.54)
generalized equations of motion

k=1,....N

]

Only a single scalar function of the generalized coordinates and velocities, the ki-
netic energy, and the functions JF; of the same coordinates are needed to use the N
Equations (1.54). It is unnecessary to find the constraint forces. Newton's Laws are
not used explicitly, but they are contained in (1.54).

We have obtained a set of general equations that will give the differential equations of
motion for any holonomic system. A major advantage of this method is that the number of
unknowns equals the number of degrees of freedom, unlike for Newton’s vector mechanics,
in which the constraint forces are additional unknowns and more equations must be solved.

If the forces are conservative forces, it is possible to simplify things even more and
eliminate the need to find 7, explicitly. We will do this in the next section.

QUESTION 8: Generalized EOM 1  Using the formula for the generalized EOM (1.54),
find the EOM for a mass sliding without friction down an inclined plane. Assume that
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gravity is present, and explicitly find the generalized forces. Compare your EOMs to
what you would obtain using Newtonian mechanics.

QUESTION 9: Generalized EOM 2 Using the formula for the generalized EOM (1.54),
find the EOM for the ladder example (see Figure 1.5). Assume that gravity is present,
and explicitly find the generalized forces. Compare your EOMs to what you would
obtain using Newtonian mechanics.

1.8  CONSERVATIVE FORCES: DEFINITION OF THE LAGRANGIAN L

If the nonconstraint forces are conservative, then there exists, by definition, a
potential energy function V(q,, ....gx). The nonconstraint force on the ith point mass
part of the system is defined as the gradient of the potential energy with respect to the
coordinates of this part of the system:

—

Fi=—V,V(F\.....Fir .. Fa) (1.55)

For example, the x component of this force is

aV
Fi,= ma—. (1.56)
Xj

Equation (1.55) can be integrated to calculate the work done by a change in the g:

W=f2ﬁ‘..,;fF,.=—zfﬁ;v(ﬂ,i..,ﬂ,..,*FH}-dﬁ
qrl1) . ar, @l gy

Il

o gl k qi(0) gy

In the last line, we have changed from viewing V as a function of the individual parts to

viewing the same V as a function of the generalized coordinates. This is possible only

for holonomic constraints. The work done is a function of the g, at the end points of the

motion, which are denoted ¢;(0), g,(1) in the formula above. This work will not depend

on the specific initial conditions and the actual path g(r), ¢(¢).” If V did depend on the

generalized velocities, there would be a path dependence. We must exclude this possibility.
We can also integrate (1.48), and use (1.49) to obtain

W = fz:}} 8qs. (1.57)
k

Comparing this to (1.56) and noting that we can exchange the sum and integral sign, we
conclude that the generalized force is given by

aVv

-Fi - _E{i‘:l

(1.58)

* See Appendix B for a more detailed discussion of this important point.
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This result tells us that, if there are only conservative forces and constraint forces, we can
bypass the virtual work method and calculate F; directly from the partial derivative of the
potential energy expressed in terms of the generalized coordinates: V(qy.....qn).

QUESTION 10: Component of Force from V' Suppose V is a known function of cylin-
drical polar coordinates r, ¢, z. Find all three x, v, z components of the force in terms

# [ = . ﬂ _ﬁ_lp,-" E.E
of the partial derivatives of V: 5=, 52, 5-.

QUESTION 11: Gravifational Potential Energy Prove that the gravitational potential
energy for a body of arbitrary shape and mass depends only on the height of the center
of mass.

Since we have assumed the potential V is velocity-independent, -f;:— = (. Define the
Lagrangian L:
L=T-YV, (1.39)

Substituting this into the general form of the EOM, Equation (1.54). and using (1.58), we
obtain the Euler-Lagrange equations in their final form:

GOLDEN RULE #2

4(3LN _aL _,
dr ﬂqk { - “,fﬂ)

fork=1,...,N.

Euler-Lagrange equations

This is the second and most useful form of the equations of motion. These are the
fundamental equations of Lagrangian mechanics. The number of these equations equals
the number of degrees of freedom, N. Thus we always have exactly the minimum number
of equations needed to solve the problem. What is more, we have reduced the entire
problem of solving the motion to finding a single scalar function. Of course, the EOM
still need to be solved, but this is a mathematics problem. The physics of the problem is
entirely contained in the Lagrangian function.

How often do we encounter conservative forces? Almost [00% of the cases in me-
chanics texts involve conservative forces. The exception in this book is when we consider
damped simple harmonic oscillators in Chapter 3. In real life, it is very often a useful
approximation to consider that the forces are conservative as a first approximation. Often
that is all you will need, as long as friction plays a minor role.

QUESTION 12: Euler-lagrange EOM 1 Using the formula for the Euler-Lagrange
EOM (1.60). find the Lagrangian and then the EOM for a mass sliding without fniction
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down an inclined plane. Assume that gravity is present. What happens 1if there 1s
friction present between the mass and the plane? Why can’t you use the Lagrange
method?

QUESTION 13: Euler-Lagrange EOM 2 Using the formula for the Euler-Lagrange
EOM (1.60), find the Lagrangian and then the EOM for the ladder example (see
Figure 1.5). Assume that gravity is present.

1.9  REFERENCE FRAMES

The kinetic energy 7" and potential energy V must be evaluated in an inertial
reference frame, where Newton's Laws hold. However, the variables by which we choose
toexpress T and V can be variables with respect to any frame, even anoninertial accelerated
reference frame.

As a simple example of this, consider observing the motion of a ball thrown upwards
from a rapidly ascending or descending elevator, one accelerated with @ = d@eievuior- A person
in an inertial reference frame will see the height of the ball, y(t), obey the Lagrangian

]
L=w2~m:;r3vmgy. (L.61)
The solution i1s
I
wt) = vot — igrg, (1.62)

where v, is the initial velocity of the ball.

We can also chose to express the motion as seen from the elevator, a nonminertial
reference frame. If ¥ is the height of the ball as seen by the person in the elevator, the
differential equation for the motion is

&5
= =—(g+a) (1.63)

The physical trajectory ¥(r), as measured with respect to the accelerated floor of the
elevator, is

5(e) = vot — %@ + ) (1.64)

If you simply calculate T and V using the noninertial frame variables, as in the wrong
column of Table 1.1, the answer will be incorrect, since we derived the Lagrangian for-
malism from Newton’s laws, which are only valid in inertial frames. Therefore, we must
continue to use the Lagrangian (1.61), and substitute into this expression the noninertial
variables as shown in the correct column of Table 1.1. This will give the correct EOM for
v(t) or ¥(t) (1.63).
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TABLE 1.1 COMPARISON OF RIGHT AND
WRONG APPROACHES FOR A
UNIFORMLY ACCELERATED
REFERENCE FRAME

Correct Wrong

T = im(3 + at)* = smy? T = %mj}z

V =mg(3 + 3ar?) = mgy V =mg§y

1.10 DEFINITION OF THE HAMILTONIAN
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A function of the dynamical variables and their time derivatives is said to be
“conserved” if it is a constant of the motion, that is, constant in time as the motion of
the system proceeds. We say that the energy of a system is conserved if the total energy

E =T 4+ V 1s constant.

Without even solving the EOM, we can know that a certain quantity, called the

Hamiltonian and denoted by H, is conserved under very general conditions
nition of H is

To prove H is constant, take <%

dH _~, L d(HL) dL
di ~ P " Tar\og, ) " ar

According to the chain rule for differentiating an implicit function of time:

dL _N~OL, aL§+aL
dt ~ 4=g " L=dg "

. The defi-

(1.65)

(1.66)

(1.67)

Putting these equations together, we see that there are cancellations after we use the Euler—
Lagrange equations (1.60) to eliminate <( %). You should prove for yourself that we get

the simple and completely general result:

dH dL

— = s oe——

di ot

(1.68)

If the time doesn’t appear explicitly in the Lagrangian, % = (). Then and only then is H
conserved. This important quantity A may be calculated once the Lagrangian is known.

There will be much more about the Hamiltonian in Chapter 5.
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For scleronomic constraints, the Lagrangian cannot have any explicit time dependence.
Furthermore, it can be shown (as a homework problem) that in this case T is a quadratic
function of the generalized velocities (quadratic form) and thus H = E = T 4+ V.
Total energy is always conserved for scleronomic constraints. For theonomic constraints,
the Lagrangian may or may not have an explicit time dependence. If it does not, as
in the rotating bead example, then H must be a constant of the motion, but it need not
equal the total energy E. If the energy is not conserved it is because there is an external
source of energy in the problem.

When H is a constant and there is only one degree of freedom, the equations of motion
can be integrated once for “free.” Then only a first-order differential equation needs to be
solved. This can make a big difference, since a first-order equation can always be solved
in terms of quadratures (integrals), whereas that is not true of the original second-order
EOM.

QUESTION 14: Hamiltenian Consider the Lagrangian for a bead on a rotating hori-
zontal wire: L = 3(4* + w’¢®). a) What is H? Is it constant? b) What if angular
speed of rotation @ were not a constant? If w = w(r) what is H? Would it be constant?
¢) In either case does H = E, the total energy?

1.11 HOW TO GET RID OF IGNORABLE COORDINATES

If only the time derivative of a particular coordinate appears in the Lagrangian,
but not the coordinate itself, we say that this coordinate is ignorable.* For example, for
a free particle, the position of the particle is ignorable because it does not appear in the
Lagrangian, which is smv?®. Assuming only the time derivative of a coordinate g appears

2
in the Lagrangian, then from the Euler-Lagrange equations for this coordinate we have

d {oL
This means that
aL '
= 1.70
p ey ( )

is a constant of the motion. We can solve Equation (1.70) as an implicit equation for §
in terms of p and ¢, plus all the other degrees of freedom and their time derivatives:
qg=4(p,...)

The term p is called the canonically conjugate momentum to the coordinate g, whether
or not g is ignorable. We will see later that this generalization of the idea of momentum
plays an important role in mechanics. For a free particle, the momentum conjugate to
x is mx, and thus canonically conjugate momentum reduces to the usual definition of
momentum. This is not always true, however. Canonically conjugate momentum does not
equal ordinary momentum for a charged particle in a magnetic field, for example.

" In some texts, the term “cyclic” is used instead of “ignorable.”
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Itis possible to eliminate ignorable coordinates from the Lagrangian, but the Lagrangian
must be modified to do this. One forms a new Lagrangian, called the Routhian, which 1s

R=L-pq. (1.71)

It isn’t obvious from what has been said, but R can be treated just like a Lagrangian, with
N — 1 degrees of freedom.

1.12 DISCUSSION AND CONCLUSIONS - WHAT’S NEXT AFTER
YOU GET THE EOM?

The basic concepts of virtual displacement and virtual work were used to derive
a general equation of motion for holonomic systems of either type: scleronomic or rheo-
nomic (Equation (1.54)). The Euler—Lagrange equations (1.60) follow after the additional
assumption of conservative forces. A single scalar function, the Lagrangian, contains
all of the information about the possible motions of any system we want to study. After
we determine the kinetic and potential energy functions, we treat the system as a whole.
The coordinate system can be chosen so that it best fits the particular problem being
solved.

Euler found the equations we call his in 1760, but they were discovered as pure math-
ematics, as a tool for solving the calculus of variations. It was Lagrange who first applied
them to physics. He published a general theory of mechanics in the treatise Mécanique
Analytique which he wrote in 1788, about 100 years after Newton’s work. Lagrange was
very proud of the fact that not a single diagram appeared in his book: Mechanics was
“reduced” to pure mathematics. What Lagrange did is purely mathematical. It is not only
beautiful in its mathematical austerity, but guite useful in solving problems, too. Perhaps the
most significant conceptual advance is that we treat the mechanical system as a whole. La-
grange’s formulation of mechanics has become the starting point in practically all branches
of theoretical physics.

The physical content of Newton and Galileo’s mechanics remains intact after Lagrange,
His physics 1s completely equivalent to Newton’s but mathematically much more powerful.
The physics of mechanics did not change until Einstein’s theory of special relativity was
formulated in 1905. The change involves our most basic ideas about time and space.

However, Lagrangian mechanics reveals many things that weren’t obvious in
Newtonian mechanics. For example, we see that conservation of energy is a direct con-
sequence of having a time-independent Lagrangian function: Physical laws are invariant
to time translations. In general you'll see that conservation laws, such as momentum or
angular momentum conservation, follow from symmetries of the Lagrangian function.

Newton’s original version of mechanics can be thought of as “vectorial mechanics.”
Lagrange's mechanics is called “analytical mechanics.” Probably the most important
reason for studying analytical mechanics is that it plays an essential role in quantum
mechanics. In particular, the whole theory of quantum mechanics 1s founded on the notion
of canonically conjugate momentum. Quantum dynamics is based on the Hamiltonian,
rather than the Lagrangian.
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In this chapter it has been proved that L = T — V plays a key role in mechanics.
In the next chapter we will show that the Euler-Lagrange equations imply that the action
S = [L dt is an extremum (minimum or maximum) for the physical path. Indeed, one could
completely avoid using Newton's Laws and make a fresh start in mechanics by postulating
the existence of such a minimum for the action along the physical path. Instead, in Chapter 2
we follow a more traditional route of showing how this minimum principle is equivalent
to the use of Newton’s Laws of motion.

The Euler-Lagrange equations are differential equations that allow us to predict the
motion of a system, that is, know all of the g, (t) for all times. Solving a differential equation
always involves specifying the initial conditions. For a second-order differential equation,
not only the starting point 4,(0) must be specified, but also the starting velocities ,(0). To
see this, think of a Taylor series expansion® in the time dependence of ¢,(¢) nearto ¢ = (:

2
() = gu(0) + 14:(0) + %&k{m b (1.72)

Since the second-order differential equation gives us g in terms of g, ¢, we know g, (0)
once these initial conditions are specified at 1 = (). By differentiating the equation once
we can get the third derivative at ¢t = 0 and so on for the higher derivatives. So we know
all the terms in the Taylor series from the equation of motion once the ¢;(0) and 4,(0) are
given. In principle this gives us the function g, (t) for all times.

In practice nobody does this. Either we recognize a differential equation for which
we know the solution, or else we solve it on the computer. Analytic solutions are much
more useful than numerical solutions, because it is easier to visualize what is happening in
general. Insight comes more quickly, as a rule, from analytic solutions, which explains why
we use numericai techniques only as a last resort. But very few differential equations have
analytic solutions. The most irnportant case is the simple harmonic oscillator. Here we are
very fortunate that the most common situation encountered in practice can be approximated
to this: We can write an analytic solution in terms of sines and cosines. In Chapter 3 we
will study this system in detail.

1.13 AN EXAMPLE OF A SOLVED PROBLEM

< Example: Two-dimensional Central Force

A particle of mass m moves in a plane. Suppose that the potential energy depends
only on the distance from the origin: V = V(r). By taking the gradient it can be
shown that this leads to a force directed along the radius vector from the origin to the
particle. In fact this is the definition of a central force. The kinetic energy is

2
r:%m(ﬁ). (1.73)

* f0) = flx0) + (x — x0)f (o) + EEL £ (xg) + -+ -
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where ds® = dr? 4 r’d¢? is the differential of arc length in plane polar coordinates
(r,¢). Putting the expression for T, Equation (1.73), together with the potential
energy, we get the Lagrangian

L=T -V =207+ - V(). (1.74)

Since there are two degrees of freedom, there will be two Euler-Lagrange equations:

d ., dV
a—;{mr} —mr(¢) + '; = (), (1.75)
and
E{,,, 2$) =0 (1.76)
df F =—3 . % .

The second Euler-Lagrange equation, (1,76), shows that ¢ is an ignorable coordinate
and has the solution mr?¢ = a constant = /.. To find the motion we have to integrate
the one-dimensional equation

2 4v
F = s — . 1.7
mr mr3  dr (1.77)

The first term on the right side of Equation (1.77) is really a kinematic term — it is
part of the kinetic energy. It acts like a “fictitious™ repulsive force that depends on the
constant [.. We will discuss this example in more detail in Chapter 4.

The generalized forces are computed from the potential energy to be

aV
= —— = () 1.78
and
dV
F, = - (1.79)

The dimensions of ¥4 and F, are different, the former having the dimensions of torque,
and the latter of force. In both cases F;dq; has the dimensions of work, (i.e., energy).
With this method, there is no need to work out acceleration in polar coordinates as we
would need to do in the case of vectorial mechanics.

SUMMARY OF CHAPTER 1

* Types of holonomic constraints (N degrees of freedom, r; is location of ith part):

ri=ri{q....,.qy) scleronomic, (1.80)

ri=riq.....qy.1t) rheonomic, (1.81)
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Dot cancellation works for holonomic constraints of both types:

or;, _ OF,
agr  Oqx
Generalized force F;:
SW , o
Fi = — at fixed time, §W is virtual work,
-‘qu
N .o
«FE —_ Fr __'*
; Gk

Generalized equations of motion:

d {oT aT
-ﬁ = “"‘(—'—) ——a—
dl' qu Bq;

Generalized force for a system with a potential energy function V(q,, ..

aV
i e

Definition of the Lagrangian for a holonomic conservative system:
L(ql,...,QN1E?|.+..,l.’i-"p.,r,f}E r—-V.

Euler-Lagrange equations for a conservative system with % = 0:

0
(LY B o g
dt \ 3¢,

Definition of the Hamiltonian:
H = — — L.
Eiﬂ; EYN

H is conserved if the Lagrangian does not explicitly contain time.
H is the total energy E = T + V for scleronomic constraints

PROBLEMS

S qn):

(1.82)

(1.83)

(1.84)

(1.85)

(1.86)

(1.87)

(1.88)

(1.89)

Try to write your problem solutions as an explanation to a colleague, rather than to a
grader who already understands the solution. Imagine that you will want to read through
your solutions before the course exam, or perhaps even several years later. Indicate your



PROBLEMS 27

e

FIGURE 1.6

reasoning at every step. It is a good habit to get into. The object is not only to solve the
problem, but also to be able to explain it. The extra time invested is worth it!

Degrees of Freedom

Problem 1: (Bicycle) Make a simplified model of a bicycle. How many degrees of
freedom are there? Restrict your model to the most important degrees of freedom.

Problem 2: (Flexible chain) A flexible chain of M massive point particles has rigid
weightless rods as M — 1 links as shown in Figure 1.6. Each joint is free to move in
any direction. How many degrees of freedom does the chain.have? If you place the
chain on a flat table, how many degrees of freedom does it then have? Finally, suppose
the chain is lifted off the table and is closed by one more link. How many degrees of
freedom are there then?

Dot Cancellation

Problem 3: (Spherical polar coordinates) Prove that the relation % = E‘E (Equa-
tion (1.44)) holds if you have a one particle system described by spherical polar coor-
dinates: Choose for gy, ¢2, g3 the parameters r, ¢, ¢.

Kinetic Energy

Problem 4: (Spherical pendulum) Consider the spherical pendulum, which consists
of a mass m suspended by a string from the ceiling. The mass is free to swing in both
directions but maintains a constant distance from the point of suspension. Choose
spherical polar coordinates €, ¢ as generalized coordinates for this problem. What is

T(0,6,¢,¢)?

Virtual Work

Problem 5: (Spring pendulum) Imagine that you have a pendulum made of a mass
hanging from a spring. Unlike the previous problem, restrict all motion to take place
in a vertical plane here. At rest the pendulum has a length /;. The spring constant is k.
There are two degrees of freedom, which you can take as 0, the angle from the vertical
of the pendulum, and x, the extension of the spring. (When the spring is extended. the
pendulum length is /y + x.) Find the generalized forces Fy, and F, using the principle
of virtual work,
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Invariance

Problem 6*:" (Physically equivalent Lagrangians)

a)

b)

Prove that adding a constant to the Lagrangian L or else multiplying the Lagrangian
by a constant produces a new Lagrangian L’ that is physically equivalent to L.
What we mean by physically equivalent is that the Euler-Lagrange equations for
the (1) remain the same (i.e., are invariant) under this change of Lagrangian.
There is even more freedom to change the Lagrangian without changing the physics
it describes. A total time derivative of an arbitrary function of the dynamical
variables can be added to the Lagrangian to produce a completely equivalent
Lagrangian. Consider a new Lagrangian L’ which is produced as follows:

dF
L L' =L+ —. (1.90)

dt
We assume that F is an arbitrary function of the ¢s and ¢ but is not a function of
the gs. Prove that the Euler-Lagrange equations for g(¢) are invariant under this
change of Lagrangian. Since one can always make transformations of this sort,

the Lagrangian for a given physical system is not unique.

Problem 7*: (Guessing the Lagrangian for a free particle) Assume that you do not
know about kinetic energy or Newton's Laws of motion. Suppose instead of deriving
the Euler-Lagrange equations, we postulated them. We define the basic law of me-
chanics to be these equations and ask ourselves the question: What is the Lagrangian
for a free particle? (This is a particle in empty space with no forces acting on it. Be
sure to set up an inertial reference system.)

a)

b)

Explain why, on very general grounds, L cannot be a function of x, y, or z. It also
cannot depend on the individual coordinates of velocity in any way except as a
function of the magnitude of the velocity: v’ = v’ + v + tf On what assumption
about the properties of space does this depend? |

The simplest choice might be to guess it must be proportional to v*, where v is the
particle velocity in an inertial frame K. Take L = v®. A second inertial frame K’
moves at the constant velocity —V, with respect to K, so that the transformation
law of velocities 1s

=10 + V. (1.91)

Prove that L' = v” is a possible choice for the Lagrangian in the frame K.
Explain how this proves that all inertial frames are equivalent. You will have to

I The symbol “*” will be used to denote problems used in a weekly student seminar that was part of the
course taught at Cornell in 1994-1996. In the seminar, student groups had an hour to solve an assigned
problem, after which they presented the solution to the class.



PROBLEMS 29

make use of the result of the previous problem to show this. With this approach
we prove the equivalence of inertial frames from the form of the Lagrangian,
instead of postulating this equivalence at the start, which is the usual way of doing
things.

¢) Instead of proving it, adopt the equivalence of inertial frames as a postulate, in
addition to the Euler-Lagrange equations. Explain why this means that

L'(v+ Vp) = L(v) + dFE’ r). (1.92)

L(v) is an unknown function for the free particle that we are trying to deter-
mine from these principles. (Work in one dimension to make things easier.)
Let V, be an infinitesimal quantity. Expand the left side of Equation (1.92)
in a Taylor series and keep only the first two terms. From this prove L(v) ~
v

Problem 8: (Potentials with scaling properties) Let V(r|, ....ry) be the potential
energy of a system of M massive particles which has the scaling property

V(er,, ....o0F ) =" V(F1,.... y) (1.93)

(k is usually an integer, & an arbitrary constant.) Prove that, if the Lagrangian is to
remain invariant (except for multiplication by a constant), and all distances are scaled
by a factor «, then the time must be scaled by a factor 8 = =3, Applications of this
include:

a) If k = 1, the force is constant, like gravity. Prove that distances scale like ¢°.

b) If k = 2, the force is like that of a harmonic oscillator or a system of harmonic
oscillators coupled to each other. Prove that the frequency or frequencies of such
a system are independent of the amplitude of oscillation.

¢) Ifk = —1, we have the Kepler problem (inverse square force law). Prove Kepler's
third law from this scaling law above. (That is, prove d* = t*, where d could be
any distance in the problem. Normally it is the mean distance of a planet from the
sun.)

Hamiltonian Concept/Energy

Problem 9: (Quadratic forms) Prove that, if the constraints are scleronomic (i.e.,
tme-independent), T is a quadratic function (quadratic form) of the generalized ve-
locities. Then prove this implies

Y gl ot (1.94)
k a‘?.t

Assuming that the kinetic energy is a quadratic form in the generalized velocities so
that the formula above is correct, prove that the Hamiltonian H (Equation (1.65)) 1s
the total energy (H =T + V = E). '
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Problem 10: (Bead on a wire of arbitrary shape) A bead slides without friction down
a wire that has the shape y = f(x) (Y is vertical, X is horizontal).

a) Prove that the EOM is
A+ 5+ % +gf =0 (1.95)

(where [’ = 5{. [ = j—g}.

b) Since the Hamiltonian is a constant in this problem, it always equals its value at
t = 0. Use this fact to solve for x(t).

¢) Let 7 be the time to slide down the wire between two heights y, = f(1) and
yo = f(0). Show that this leads to a solution of the form /g v = fl;h{x]dx,

where h(x) is the function you should find in terms of f(x) and its derivatives,

|

Problem 11: (Comparing H and E) Invent a concrete example of each type of the
situation described below:

a) H isconserved, but H # E.
b) H = E,but 2% # 0, so H is not conserved.

Lagrangian/EOM
Problem 12: (L for free particle in plane polar coordinates) Express the
Lagrangian for a free particle moving in a plane in plane polar coordinates. From
this prove that, in terms of radial and tangential components, the acceleration in polar
coordinates 1s

d=(F—ré>e + (6 + 276) &, (1.96)

(where &, and &, are unit vectors in the positive radial and tangential directions).

Problem 13: (Bead on a wire) Discuss the motion of the bead according to the equa-
tion of motion (1.38) as completely as you can. Find explicit solutions. What will
happen if the bead is slightly displaced from the point where it has no acceleration?

Problem 14*: (L for charged particle in a magnetic field) The Lagrange method
does work for some velocity-dependent potentials. A very important case is a charged
particle moving in a magnetic field. The magnetic field B can be represented as the
curl of a “vector potential” A: B =V xA. Auniform magnetic field B, corresponds
to a vector potential A = £ By x F.

—

a) Check that By = V x A.
b) From the Lagrangian

S B

| L - .
L= Emu1 +ev-A (MKSI units) (1.97)

(where e is the charge and m is the mass) show that the EOM derived from the
Euler-Lagrange equations is identical with the result from Newtonian mechanics

i
:
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plus the Lorentz force on a moving charged particle in a magnetic field:
F=eix B. (1.98)

Hint: Use the fact that you can exchange the dot and cross in v - By x F to find
the gradient of this expression. Also use the fact that £* = %ﬁu x v. This result
is a very general one — the Lagrangian takes the simple form of Equation (1.97)
even with an arbitrary magnetic and electric field (in the absence of an electrostatic
potential).

Problem 15*: (Double Atwood machine) Figure 1.7 shows a “double Atwood ma-
chine.” The center pulley is free to move vertically and it has a mass M. The string
connecting the three masses shown is weightless. Masses m, and m, hang on the left
and right respectively from the fixed pulleys. The acceleration of gravity is g. All
three pulleys are frictionless, so that the string slides freely over them.

Prove that, if the virtual work vanishes for the independent variation of the two
degrees of freedom, the conditions for static equilibrium are obtained:

M M = M. (1.99)

This means that m; = my and M = m; + m,, a simple result,
Solve for the dynamics in the event the static equilibrium condition is not satisfied.
Find the Lagrangian, and prove that the equations of motion are

m+M.f+E.i‘“ E—m
| 1 I 4:#32 1] s

’J|Pﬂ',5r'+ri*:+mIr Xy = (M m)
41 2 -1'1—32 21

(1.100)

4

FIGURE 1.7

Double Atwood machine.
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FIGURE 1.8
Physical pendulum.

Equations (1.100) are two simultaneous equations in the two unknown constants X, X,.
It can be seen that the static equilibrium condition is satisfied if the condition on the
masses (1.99) is obeyed.

Problem 16: (A simple oscillator: the physical pendulum) A meter stick of total
length / is pivoted a distance d from one end on a frictionless bearing. The stick
is suspended so that it becomes a pendulum as shown in Figure 1.8. This is called a
“physical” pendulum because the mass is distributed over the body of the stick. Assume
the total mass is m and the mass density of the stick is uniform. The acceleration of
gravity is g. Find T and V as functions of the generalized coordinate € and velocity
6. Do this by considering the stick to be divided into infinitesimal parts of length dl
and integrating to find the total kinetic and potential energy. Set up the Lagrangian
and find the equation of motion.

Problem 17: (Stick on a table) A stick of length | and mass m lies on a frictionless
table. A force parallel to the table top, F(t), is applied to one end of the stick for a
very short time: [ Fdt = I, the “impulse.” Choose a convenient set of two gener-
alized coordinates. In terms of your choice of generalized coordinates, what are the
generalized forces when F # 0? What is the subsequent motion of the stick?

Problem 18: (Governor) A common type of governor for regulating motor speed is
sketched in part A of Figure 1.9. Two masses, each equal to m, are located on arms

A B FIGURE 1.9
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gravity FIGURE 1.10

that pivot at the top and bottom so that the angle € is a function of the angular speed
« of the shaft. Find the function #(w) using Lagrangian methods. The ring mass M at
the bottom can slide up and down on the shaft.

Problem 19: (Inclined stick on a table) A stick is initially held at a vertical angle ¢
as shown in part B of Figure 1.9. First consider a table where the bottom of the stick is
fixed (with a frictionless bearing) to the table top. Is this problem holonomic? Solve
for the motion of the stick after it is released. Next assume that the bottom end is on
a frictionless table instead. How many degrees of freedom are there? Is the problem
holonomic? Again solve for the motion of the stick after it is released.

Problem 20: (Pendulum in an accelerated reference frame) A pendulum with a
weightless string of length D and mass m is attached to a moving car, as shown
in Figure 1.10. The car is continuously accelerated along a horizontal track with con-
stant acceleration a, starting from an initial horizontal velocity vy. Gravity acts in the
vertical direction with acceleration g.

Assume that the (x, v) coordinate system shown is at rest with respect to the ground
(not located in the car). The car is not an inertial frame of reference. There is one
degree of freedom. Use # (see Figure 1.10, which shows 6 < 0) as the generalized
coordinate/dynamical variable. The goal is to find out how the acceleration of the
pendulum support affects the motion of the pendulum as seen by a person in the
car.

a) Find the components of the velocity of the pendulum bob in the laboratory frame
(i.e., the frame at rest with respect to the moving car). Find the kinetic energy as
a function of 6, 4, and the other variables, all of which are known functions.

b) Find the Lagrangian L(#, €, ). Does L depend explicitly on the time?

¢) Prove that the equation of motion for the pendulum is

. 2. a

H+Esmﬂ+-ﬁmsﬂ_ﬂ (1.101)
Notice that the velocity of the car is not detectable by observing the pendulum from
inside the car, but the car acceleration is detectable by the “tilt” of the pendulum
when it is at rest with respect to its support point. This is in accordance with the
Galilean principle of relativity. Explain why this is true.
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d) What is the angle of the pendulum when it remains at rest in stable equilibrium?
Give an expression for the tangent of this angle (call it 6,,).

e) Set 8(r) = 6 + n(t), that is, measure the motion with respect to the equilibrium
point. Use a Taylor series to find the equation of motion for i for small oscillations
around 6,. If 5 is sufficiently small, show that the equation for » is

ii +w'n =0. (1.102)

The solutions to this equation are sin wt and cos wt, which means that the pendulum
makes simple harmonic oscillations about the equilibrium angle with frequency
w. Prove that the angular frequency of these small oscillations is

\/m
w = .

D

Problem 21: (Simple pendulum with driven support) A simple pendulum with a point
mass m suspended from a weightless rod of length / has its support point driven rapidly
up and down with an amplitude of vertical motion

A coswt, (1.103)

where A and @ are independently adjustable constants. Find the Lagrangian for this
system using 6, the angle the pendulum makes with the vertical, as the generalized
coordinate. Is H constant? Is H the total energy?

Problem 22*: (Box sliding horizontally) A box of mass M slides horizontally on a
frictionless surface. The distance of the box’s center of mass from the origin is denoted
by X. Suspended from inside the center of the box is a pendulum of length [ at the
bottom of which is a mass m. All the motion takes place in the XY plane. What is the
Lagrangian for this system? What are the EOMs?

Problem 23: (Bead on a rotating circular hoop) Imagine a vertical circular hoop of
radius R rotating about a vertical axis with constant angular velocity €2 as shown in
Figure 1.11. A bead of mass m is threaded on the hoop, so that it can move without
friction, but is confined to move on the hoop. (Define the angle 8 to be the angle from
the vertical line through the center of the hoop to the bead.) Find the Lagrangian and
the equations of motion. Find the Hamiltonian H explicitly. Is H a constant of the
motion? Is energy (T + V) constant?

Conjugate Momentum/Routhian

Problem 24: (Physical pendulum) For the physical pendulum (see Figure 1.8, using
f# as the generalized coordinate, what is the canonically conjugate momentum to &,
1.e., ps7 What is another name for p, in this case?
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Problem 25: (2-D central force motion) Find the canonically conjugate momentum
po from the Lagrangian for the example of the two-dimensional central force motion
worked out in the text (1.74). Try to eliminate ¢ from the problem, using the fact
that the momentum conjugate to ¢ is a constant of the motion. Does it work to just
substitute it for ¢ in terms of p, and use the result as a new Lagrangian? Find the
Routhian and use it to get equations of motion.

Nonholonomic

Problem 26: (Particle onabowling ball) A pointlike particle of mass m slides without
friction down the surface of a bowling ball of radius R. The particle starts at rest,
arbitrarily close to, but not exactly at the top, of the bowling ball.

a) Find out where the particle leaves the surface of the ball and its velocity at that
point. Hint: The motion takes place in a plane. Why can you assume this?

b) Discuss how the problem would be changed if the bowling ball had a mass M and
were free to move by rolling without slipping along the horizontal table. Are the
constraints holonomic? :

Problem 27: (Ball on a table) As arigid body, a spherical ball must have six degrees
of freedom. Placed on a flat table top, the number of degrees of freedom of the ball
is reduced to five. These could be taken to be the two coordinates of the center of the
ball and the three angles expressing the ball’s orientation. These angles could be the
polar and azimuthal angles of an arbitrary point on the ball, plus an angle of rotation
about this point.

a) Suppose the table provides enough friction so that the ball rolls without slipping.
Prove that this must reduce the number of degrees of freedom to three. (Hint:
What is the velocity of the point where the ball contacts the table?)

b) These three remaining degrees of freedom can be chosen to be x.., ¥, (location of
the ball center), and a rotation ¢» about the vertical axis, perpendicular to the table
surface. Experiment with an actual “ball” on a table to show that the orientation
of the ball at a particular x,, y. depends on the previous history of rolling the ball,
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say around different closed loops. and not just on x., v., ¢. This demonstration
proves that it is impossible to use these three quantities as dynamical variables.
In actual practice since the motion is nonholonomic, we have to embed the three
degrees of freedom in a five-dimensional space. We can never eliminate the other
two parameters.

¢) Finally, prove that if the ball rolls without slipping, it must be true that

U.+ Ro x A=0, (1.104)

where  is parallel to the instantaneous axis of rotation, || is the rate of rotation
around the axis, and 7 is a unit vector along the z direction, perpendicular to the
table. Since this problem involves a constraint on the velocities, the constraints
are not holonomic.

APPENDIX A

ABOUT NONHOLONOMIC CONSTRAINTS

We have emphasized mechanics problems involving holonomic constraints, either sclero-
nomic (time-independent) or rheonomic (time-dependent). Nonholonomic systems require
special treatment.

How Can Constraints be Nonholonomic?

There are at least three types of nonholonomic constraints. They are all characterized by
the fact that we cannot write simple equations connecting the number of degrees of freedom
with the location of all parts of the system. In some fundamental way, we need to know
the previous history of the system in addition to the possible ways it can move at any given
moment.

Conditions on velocities often lead to equations that cannot be integrated until the
solution is known. These are called nonintegrable constraints. This type of nonholonomic
constraint involves M nonintegrable conditions of the form:

Ne
0= wifqi, ..., qn) G5 i=1...,M. (1.105)
j=1

The coefficients w;; can be functions of the generalized coordinates. No = N + M. The
number of generalized coordinates is now greater than N, the number of degrees of freedom.
The problem cannot be described by N-dimensional space, but must be embedded in an
N¢-dimensional configuration space.”

* This is the term for the abstract N-dimensional space spanned by the {gi}.
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Ll

5 FIGURE 1.12

One example of this type of problem is a vertical penny rolling on its edge on a flat
plane, as shown in Figure 1.12. The orientation of the penny, which has a radius r, is
specified by two coordinates €, ¢, so there are two degrees of freedom. The position of
the center of the coin, projected onto the XY plane is specified by (x, y). This is also the
point of contact with the XY plane, since the coin is assumed to be vertical. We have the
equations:

U=r¢
X = —vcosh, (1.106)
y = —vsinf,

If multiplied by dt, Equations (1.106) give the two differential relations with the form of
Equation (1.105):

dx +rcosf dep =0 (1.107)
and

dy +rsinf d¢ = 0. (1.108)

If these could be integrated, they would give two equations fi(x, 8, ¢) =0, fo(y,6,¢) = 0.
You might guess that these equations could then be solved to obtain x (€, ¢), y(@, ¢). Spec-
ifying 8, ¢ would completely determine x. y. But this can’t be done!

To see this, imagine a motion for the penny in which ¢ and 6 are varied but eventually
return to the same ¢, 6 point. In general, x and y will not return to the starting point after
a closed path in ¢, 6 space, as shown in Figure 1.13.

This proves that x and y cannot be eliminated from the problem, because the values
of x and v depend not only on 8, ¢, but also on the history of the system. The “configu-
ration space” has two degrees of freedom but it must be embedded in a four-dimensional
space and cannot be projected onto either the (x, y) or the (¢, 8) planes. The differential
Equations (1.107, 1.108) cannot be integrated unless the solution is known. This is typical
of rolling motion.
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FIGURE 1.13

As a mathematical proof, if (1.107) were the differential of a function f)(x, 8, ¢), it
would be of the form

3h . fi
i __dﬁl-;- % ——d¢ = 0. (1.109)

From the original equation (1.107), we conclude that ‘-:;% = () and %% = rcosf. For

y well-behaved function f;, the Dl‘dﬁtl' nf laking partial derivatives is not significant:
%’a% = —-f'- For the expressions above, 24 e % Lo 5ga6> Which proves that f; does not exist.

Eesrdf.:s rolling motion, there are two other types of constraints that are not holonomic.
One of them involves inequalities. The classic example is a point mass sliding without
friction on a bowling ball, starting from near the top. This example will be worked out in
detail next,

Prablems with friction constitute the last type of nonholonomic problem. These are
most often solved by reverting to Newtonian dynamics. Some examples are the damped
harmonic oscillator and the baseball home run, which is strongly affected by air resis-

tance.

Point Mass Sliding on a Spherical Bowling Ball

This problem is nonholonomic because it involves the constraint r > R. where r 1s the
position of the point of contact of the bead with the sphere of radius R, as shown in
Figure 1.14. Let’s first assume that the bead starts out in the region r = R and find the

FIGURE 1.14
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equation of motion. We have

1

T = imﬁ.‘:él.
V = ~mgR(1 — cosh), (1.110)
L=T-YV,

From the Euler-Lagrange equations, the EOM is

ﬁ-%sinﬂ:ﬂ, (1.111)

Use energy conservation to solve this equation. The kinetic energy T is a quadratic
form in the generalized coordinate 8, so the total energy E is

! .
E=T+V= EmRZH:‘ — mgR(1 — cosB). (1.112)

The total energy must be a constant because the Lagrangian does not contain the time
explicitly, and the constraint is time-independent. The equations are true as long as the
bead remains on the sphere. Assume that the starting pointatt = Ohasf = 6, and 6y = 0.
Since the energy is constant, we can evaluate it at t = 0, where E = —mgR(1 — cos ).

We want to know how long it takes the bead to leave the surface of the sphere. Solving
Equation (1.112) for 6,

6 = ‘/% J[cos By — cos 6], (1.113)

and integrating with respect to the time, we get

Jl}i' Omax de
' fdr ZgL VCOos 8y — cosé (1.114)

(where 7 is the time interval between releasing the bead and when it leaves the sphere.) To
evaluate this, we need to know 6, the point at which the bead leaves the surface of the
sphere. This will happen when the radial constraint force vanishes.

But here we hit a snag. The elimination of the constraint forces is the source of the power
of the methods we have developed. This is a blessing if we have holonomic constraints,
but in this problem it prevents further progress. Blindly solving the equation of motion
(1.111) would lead to the ridiculous conclusion that the bead continues to move on the
bottom part of the sphere instead of falling off, as we know to be the actnal case. This
problem remains holonomic only as long as r = R. We could solve this problem as
two different holonomic problems that must be “joined” by imposing continuity on the
dynamical variables and their time derivatives. The transition occurs at the moment when
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TABLE 1.2 SUMMARY OF ALL TYPES OF CONSTRAINTS DISCUSSED iN
THIS CHAPTER
Constraint Type Example # of DOF
Holonomic
Scleronomic Spherical pendulum 2
Rheonomic Bead on a rotating wire 1
Nonholonomic
Inequality Particle sliding down a bowling
ball (r = R) 2
Rolling motion Coin spinning on an inclined plane 2
Most velocity-dependent
forces Problems involving friction ?

the point mass leaves the surface of the sphere. This occurs when the radial force on the
bead ¥, = 0. Lagrangian mechanics without Lagrange multipliers (see Chapter 2) cannot
reveal this information,

Newtonian mechanics can be used to find 8,,,.. When the constraint force exerted by
the bowling ball vanishes, the centripetal acceleration must be equal to the component of
the acceleration of gravity along the radial direction

RO*| _ = gcos by (1.115)

Inserting (1.113) into (1.115) to eliminate # in the expression (1.112) at t = 7 we obtain
COS By = ECﬂﬁﬂn- (1.116)

The bead leaves the surface of the sphere when cos Oy, = %cﬂs &. The time 7 can then
be calculated using (1.114) and the bead velocity for + = t using (1.113). The second
half of the motion is free fall with these initial conditions. It can also be proved that (6;)
increases logarithmically as &, — 0, so the bead takes an infinite time to fall off the sphere
if started exactly at the top (6y = 0). This problem remains holonomic only while the bead
is in contact with the surface of the sphere. Afterwards, a different EOM is obeyed, with
a different Lagrangian,

QUESTION 15: Holonomic vs. Nonholonomic Consider the ladder sliding down a fric-
tionless vertical wall (see Figure 1.5). The base of the ladder also slides on a frictionless
floor. What happens after the ladder slides far enough to lose contact with the wall?
Find the generalized coordinates before and after contact. In what sense is this situation
nonholonomic? In what sense is it holonomic?
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APPENDIX B

MORE ABOUT CONSERVATIVE FORCES

By definition, if the forces are conservative forces, the net work done by taking the system
from one configuration to another and back again will always be zero. Using the definition
of work, this means that

r——rr— =

M

=]

definition of a conservative force

—

(The symbol “4” stands for the line integral around a closed path. This is taken in real
space for each part of the system and then summed over all of the parts.)

Imagine that you make a series of arbitrary virtual displacements of the generalized
coordinates which change the configuration of the system but eventually restore it to the
starting point. Using the chain rule for differentiating an implicit function, since the r; are
functions of the set g,* we get

—_ - - Al HFJ
F.--dr;:F,--ZT-——qu. {1]]3}

Interchanging the order of summing overi = 1, ..., M parts and over k = 1,.... N
degrees of freedom and using (1.49) yields

iﬁf . dF, :iﬁqu. (1.119)
=1 '

k=1

Since we can vary the g, independently one at a time, it must be possible to obtain special
cases of the general formula from Equations (1.117, 1.119) above that involve changing
only a single degree of freedom:

%ﬁqu-.:n, k=1..... N. (1.120)

conservative force

* Time is held constant, and we assume that the constraints are holonomic.
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The function defined by

gell)

Vig),....,quin=->_ |  Fdg (1.121)

Y aqudld)

is uniquely defined as a function only of the end points ¢;(0) and g,(1), even for arbitrary
variations of the integration path. We usually consider the upper limits to be variables,
while the lower limits are fixed constants. The uniqueness of V for arbitrary paths follows
because the difference between any two different paths from the same starting point to
the same upper limit is just an integral around a closed path, and hence equals zero. For
that reason, V is a function only of the upper limit of the integral and not also of the path
followed to get there:

Fi = —ﬂ. (1.122)

dqy
Conservative force:
generalized force is negative gradient of V.,

= Example; Rubber Band

Consider the force required to stretch a rubber band. A graph of the applied force
as a function of the stretch distance x will look something like Figure 1.15. (You can
try this experiment yourself.)

The work done in a complete cycle of stretching and releasing is | :D“Mx Fdx +

Jorax Fdx. This is the shaded area on the graph. In this case, the integral around
a closed cycle of the coordinate, § Fdx, is greater than zero. The work you do to
stretch the rubber band is more than the work the rubber band does on you when it is
released. Work is a form of energy, so it takes energy to cycle the rubber band and
this energy appears as heat. The rubber band will get hot if you repeat the experiment

rapidly. The heat is generated by the internal friction in the rubber.

Applied Force (F)

-

Stretch Distance (x) FIGURE 1.15
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Applied Force (F)

.x':u Xo+ Ax "
Stretch Distance (x) FIGURE 1.16

The rubber band is an example of a nonconservative force, since the motion 1s not
reversible. It would make no sense to try to define a function

Xp+Ax
V(iAx) = —j Fdx (1.123)

Xy

since the value of the integral would depend on the history of how the rubber is
stretched and not just on the end points x4, xg + Ax.

In contrast, a conservative force versus displacement has a graph that looks like
Figure 1.16. For a conservative force, (1.123) makes perfect sense, since the function
defined is unique. It does not depend on the rate at which we change x. The minus sign
is due to using the force on the object (not the reaction force exerted by the object).

Think of lifting a brick. The force on the brick is the downward force of gravity:
—mg 2 (where £ is a unit vector pointing straight up). So when you lift a brick, work
is done on the brick, and its potential energy increases. Notice that potential energy is
a scalar. For the gravitational force it is just mg times the distance the brick is raised
and does not depend on the path we take to raise it. Only changes in V are physically
significant. V = —W, where W is the work done by the object to change V. To raise
the brick we do positive work, that is, the brick does negative work.on us.



CHAPTER TWO

2.1

VARIATIONAL CALCULUS AND ITS
APPLICATION TO MECHANICS

OVERVIEW OF CHAPTER 2

Nature is found to conspire in just such a way that the time integral of the Lagrangian
is smallest if the motion obeys Newton's Laws. Mechanics can be based on the single
principle: Minimize the time integral of the Lagrangian. Three laws of motion can be
condensed into one universal principle!

The mathematical language needed to provide the framework for this 1s called
variational calculus. The variational calculus can be used as a powerful tool in solving
mechanics problems with explicit constraints. It is also the most general means of
solving nonholonomic problems with constraints on the velocities such as for rolling
motion. This type of problem cannot be solved by choosing coordinates equal to the
number of degrees of freedom but must be embedded in a higher-dimensional space.

The well-known theoretical physicist E. P. Wigner refers to the “unreasonable ef-
fectiveness of mathematics in theoretical physics.” Mathematical beauty is and should
be the chief guiding principle of theorists, according to P. A. M. Dirac, one of the inven-
tors of quantum mechanics. Although it is hard to define exactly what mathematical
beauty is, the search for beauty was the guiding principle in the invention of two ma-
jor advances in physics in the twentieth century: relativistic guantum mechanics and
general relativity. In this chapter, we will discover an elegant formulation of classical
mechanics. The mathematical techniques uncovered here are not only beautiful, but
they have become the language of modern theoreticai physics.

HISTORY

In variational calculus (sometimes called “functional calculus™), we study “func-

tions of functions,” which are called functionals. The history of how the variational
calculus was discovered is fascinating. In 1696, Jean Bernoulli managed to find a solution
to what is now called the “brachistochrone problem.”™ Bernoulli then issued a challenge to

* From two Greek words “brachistos,” meaning “shortest” and “chronos,” meaning “time.”
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FIGURE 2.1
Brachistochrone problem.

the mathematicians of Europe to solve this problem. We give an excerpt from a translation
from the Latin:*

NEW PROBLEM
WHICH MATHEMATICIANS ARE INVITED TG SOLVE

If two points A and B are given in a vertical plane, to assign to a mobile particle M the
path AMB along which, descending under its own weight, it passes from the point A to
the point B in the briefest possible time.

(See Figure 2.1.)
After six months, in which no one except Leibnitz managed to solve this problem,
Bernoulli published his solution:

PROCLAIMATION
MADE PUBLIC AT GRONINGEN JANUARY 1697

(referring to his earlier publication) . . . six months from the day of publication. . ., at the
end of which, if no one had brought a solution to fight, I promised to exhibit my own.. ..

He adds that Leibnitz had solved the problem in the interim. Daniel Bernoulli also
solved it, but Jean didn’t mention this at the time. It is a curious fact that Isaac Newton
only heard about this problem from a friend in France. Receiving the letter on January
29, 1697, Newton had the answer by the next day. Newton had, in fact, come very close
to inventing variational calculus earlier, in 1686, but he had not published. His 1697
solution was published anonymously. Upon reading it, Jean Bernoulli recognized the work
as Newton's. He made the famous remark that one “recognizes a lion from his claw marks.”
At the time, there was an intense rivalry between Newton and Leibnitz. This may have been
the reason Newton chose to publish anonymously. In all, five people eventually solved the
problem: Jean and Daniel Bernoulli, I'Hospital, Leibnitz, and Newton.

* From Acta Eruditorium, Leipzig, June 1696, as discussed in A Source Book in Mathematics by D. E.
Smith, Dover Press,
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The modern form of the variational calculus, derived by Euler, didn’t appear until
1744. Lagrange was the first to apply it to mechanics, and Hamilton’s Principle was for-
mulated by Hamilton 137 years after Bernoulli’s challenge. What we refer to as Hamilton's
Principle is also called the Principle of Least Action. It is impossible to overestimate the
importance of the variational calculus as a mathematical framework for much of modern
theoretical physics. We begin with pure mathematics and later apply this mathematics to
mechanics.

2.2  THE EULER EQUATION

The problem Euler considered was a generalization of the brachistochrone pmb*
lem. He considered it as a problem in pure mathematics: Given a known function F(y , =, x)
of an unknown curve y(x) and its first derivative fi—, find the curve which makes the mtegral
! over the independent variable x an extremum. Since the value of I{y] depends on the
choice of the curve y(x), I[v] is a functional of y:

(D
I[J’]=L F(}hdxrx)dx- (2.1)

To say that the integral is an extremum means that it is either a maximum or a minimum
for a unique curve y(x). This means that small variations in this curve, once it is found,
can produce only second-order variations in the integral. It is analogous to the statement in
calculus that if the tangent to a curve is zero, there 1s a maximum or a minimum. These two
possibilities cannot be distinguished without examining the second or sometimes higher
derivative. The solution to this problem does not exist unless y(x) is required to take on
fixed values at the end points x; and x,.

For any reasonable® arbitrary curve y(x), we can insert it and its first derivative into
the known function F and then calculate the integral /[y]. To find the extremum, a unique
curve y*(x) must be selected from an infinity of possible curves that could connect the
fixed end points.

Euler found the general solution in the form of a differential equation for y*(x). It is

aF d [9F
- | 2.2
oy~ s (ai) o

Note careﬁlll}f the structure nf [his equation. It involves partial derivatives of F' with respect
to both y and —-"‘- One treats ~ as an independent variable, on the same footing as y, when
taking partial denvaUves of F For the partial derivative ' 2+, a total derivative with respect

to the independent variable x must then be taken to nhtam the right side of (2.2). Finally, E
;
3

we solve the equation thus obtained for y*(x).

* “Reasonable” in this context means both continuous and differentiable at almost every x value,
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It 1s very surprising that a local differential equation gives the global result that its
solution y*(x) has I[y*] < I|¥] for all curves v(x) (in the case that the extremum is a
minimum). We will prove below that Equation (2.2) indeed does give the solution curve
leading to the extremum of Equation (2.1). Equation (2.2) can be used to solve a wide
variety of problems.

Derivation of the Euler Equation

The integrand in Equation (2.1) is considered to be a known, but unspecified
function F(v, gf, x). The problem is to find the unknown function y*(x) that minimizes
or maximizes this integral. Here x is the independent variable over which we integrate.
With respect to x, y is a dependent variable. Insofar as the value of F depends on y and
the derivative of y in a way we assume is known, (y, ﬂ}) will be treated as independent
variables in the function F,

Consider the effect on F of making small variations in y and f,-:— at a fixed value of
x. These small variations in the functions v(x), gf{.r) can depend on x. Call them §y and
3% = Lsy. If these quantities are varied, the value of the function F will change, even
if x 1s held constant. By assumption, the values of y(x) must be held constant at the end
points; thus we require that §v(xo) = dy(x;) = 0. Since the variation y(x) can be chosen
to be (almost) arbitrarily different at different x values between the end points, it can be
considered to be an arbitrary function of x, provided that it has a derivative with respect to
x almost everywhere.

It may help to think of the curve y(x) as a rigid wire, whereas the varied curve y(x) 4
dy(x) is a flexible string attached to the end points of the wire. The string can be deformed
in an arbitrary, but small way from the shape of the wire. For each particular deformation
we can use the fact that the difference between the string and the wire 1s small to calcuiate
the change in F and hence /, the integral of F over x.

Consider the change in Equation (2.1) for the “varied path” y + 8y:

dy

d
&l = f[_v-f—ﬁy}-f[y}:fF(y—!—ﬁy, Ix +§d—i,1)d1-

- fF(_v, dj— .r) dx. (2.3)
dx

A Taylor’s series in the two variables y, gf can be used to calculate how much the function
F changes when the curve becomes y + 8y instead of y. The Taylor series is a power
series in both éy and 555 Because we expect to go to the limiting case where 8y, Bj—-} are
infinitesimally small, we keep only the terms of first order in 8y and 8.

> Mathematical reminder: We know from calculus* that if we have an arbitrary well-
behaved function of two variables, F(x, y), and we expand in a Taylor series around

* Kaplan, Advanced Calculus, third edition, p. 445 ff.
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fixed points xy, yo. we get

adF
F(x, vy} = F(xo, yo) + (x — I"jF;

X=Xy, Y=Y

+(y — ynJE + O[A?). (2.4)

dy

J le=xp, y=w

The symbol O[A?] stands for other terms proportional 10 the squares (x — xo)*,
(x — xoXy = yo).{y — yo)’. If the point x, y is sufficiently close to (xy, yo), we can
truncate this series after the first order, as shown in Equation (2.4).

Use the Taylor series expansion above at a fixed value of x. For small vanations close
to the curve y(x):

d dy d dF dF d
F(}’+S}',l+ﬁ-—'t.x)=F(}'+—}',I)+—ﬁy+ 5=

dx  dx dx dy a‘-’l dx
dy
+ higher order terms in 8y, 5.:? (2.5)
X

Integrate F along the varied curve over x and take the difference between this and the result
for the unvaried curve. Obtain the variation in I = 81 = I{y + §y] — I{v] by substituting
(2.5) into (2.3) and taking the limit where dv, é j—-} — () but do not actually vanish. Since
the variations 8y, ﬁi{ become arbitrarily small, higher-order terms in the Taylor series can
be neglected. We obtain

ﬁf:f Eﬁx Eﬁd—y— dx. (2.6)
dy dx

The term proportional to g-:- is now integrated by parts (remember that ﬁﬁ-} = %E}r}
to yield

oF d
fﬁd—fﬁvd.l' —EF[I]

d 3F '
f—-——u—ﬁy dx. Q.7

Contributions at the end points vanish because we have required é v to vanish there, Inserting
the expression (2.7) into the integral over the varied curve (2.6), the variation in the integral
Iis

aF d { OF
81 _j[ﬁ - d_(a*‘ )] dy(x)dx. (2.8)

If the integral / for the path y(x) is an extremum, it means that I does not change
for infinitesimal variations in the curve: y(x) + éy(x). This implies that §/ = O for any
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choice of 8y(x) for which we can neglect terms of order O[4y*] and higher:

51 =0+ O[5y*]. (2.9)

condition for an extremum

To see why this is true, assume that, for a particular choice of variation dy(x), we
find 81 < 0. This would contradict our assumption that y gives the minimum possible
action, since it would mean I[y + 8y] < I[y]. Now suppose we find §/ > 0 instead.
Recalculate the integral with a new variation that has the opposite sign: §y — —d4y. Then
81(new) = —31(old), so there is still a contradiction with the assumption that /{y] is the
minimum value of the integral. The same argument can be used if / is a maximum instead
of aminimum. Itis the same argument used in elementary calculus to prove that the tangent
of a curve has zero slope at a maximum or minimum of that curve.

The variation 87 in (2.8) is expressed as an integral over x of the product of two
functions, one of which is arbitrary (except for being small). Since (within the limits of
integration) 8y is an arbitrary function, for 1 = 0 it must be true that

oF d [ F
8l =08 — - —| — ] =0. 2.10
@ ay dx(ﬂﬁ-}) (10}

This is the proof of Euler’s equation (2.2). The curve y*(x) is the solution to this equation.

= Example

As a very simple example of the calculus of variations, suppose that you want to know
the curve in the XY plane that minimizes the length between the points (0, 0) and
(2, 1).

By the Pythagorean theorem for infinitesimal right triangles, if ds lies along the
tangent to the curve in the XY plane then

ds? = dx* + dy*. (2.11)

The element of arc length in Cartesian coordinates is ds = \/dx? + dy?, as shown
in Figure 2.2. Assuming that x is chosen to be the independent variable, the length of
any curve y(x) with y(0) = 0 and y(2) = 1 is given by the integral

e [ dy\’
syl = I + dc dx. (2.12)
0 X
USEF=1,|H+5'}1tngel

aF aF &

L)
) d
9y 0% 1+ 2

(2.13)

I
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| 2 FIGURE 2.2

In this case, the Euler equation says that the total derivative with respect to x of a
function of g-} vanishes. Therefore that function must be a constant, which implies
that gr} is also a constant. The desired curve must be of the form y(x) = ax + b. The
constants are chosen to satisfy the end point conditions: a = .5, b = 0. Since there is
nothing special about the choice of end points, it has been proved that the extremum
distance between any two points is a straight line. In this case, the extremum must be
a minimum,

In the example it has been proved that, if y(x) is a straight line between any two
fixed points, then any other curve between these points will be longer:

sly + 8yl > slyl, (2.14)

where v + &y is defined in Figure 2.3.

QUESTION 1: Length Minimization ] Keeping in mind that the length of the curve s[y]
involves an integral over x, what kinds of variations éy could we allow? Need they be
continuous to minimize the length?

QUESTION 2: Length Minimization 2 For a very small deviation from the straight line
y(x), calculate the difference s[y + ] — s[y]. How can you be certain it 1s always
positive for an arbitrary, but very small deviation dy(x)?

In a curved space, such as the surface of the Earth for example, the infinitesimal

form of the Pythagorean law (Equation 2.11)) is altered:

ds* = g, du® + 2g12 dudv + gy dv?, (2.15)

FIGURE 2.3
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where du, dv are infinitesimal displacements of two arbitrary coordinates u, v which
describe a position on the surface of the sphere (such as latitude ¢ and longitude ¢).
The g;; are called the components of the “metric tensor.” In general they are functions
of u, v. For spherical polar coordinates on a unit sphere, u = 6, v = ¢, and g|; = 1,
g12 =0, gn =sin’#,

A curve that is the shortest distance between two points in an arbitrarily curved
space is called a “geodesic” curve. The geodesic curve on a sphere is a great circle.
Flying along the great circle in one direction minimizes the distance; in the other
direction, the distance is maximized, but in either case it is an extremurm.

The curve that is the shortest distance between two points does not depend on
the choice of coordinate system. It is an intrinsic property of the space in which the
curve lies. In the example of the minimum distance on a plane surface, you could have
chosen to use plane polar coordinates. The equation describing the straight line looks
different in this coordinate system, but it is still a straight line.

2,3  RELEVANCE TO MECHANICS

What relevance does all this have to mechanics? It leads to a new and elegant way
1o formulate mechanics. A certain functional called the action S can be defined for any path
g(1), ¢(t) taken by a physical system as the time integral of the Lagrangian along this path:

Slql = f Liq(2), q(t), t)du. (2.16)

Here S[q] is a functional of ¢(¢). We assume that L(g, ¢, t) is a known function, while
g(t) is a trial function that we may substitute into L and compute the action integral. Every
trial function g(¢) gives a value for the action §. What distinguishes the physical path from
all others is that this particular path minimizes the action. (Technically, it 1s the path that
makes the action an extremum or, equivalently, “stationary.”) This “least action™ property
of the physical path ts known as Hamilton's Principle.

Hamilton's Principle can be adopted as the basic principle of classical mechanics. To
prove this, we must show that Hamilton's Principle is equivalent to the Euler-Lagrange
Equations we derived in Chapter 1. Since the Euler-Lagrange equations have already
been proved to be the general form of Newton’s Laws of Motion, we are free to adopt
Hamilton’s Principle (instead of Newton’s three laws) as the basic principle, the starting
point, of classical mechanics. All we need to solve any specific problem is the explicit form
of the Lagrangian. Please keep in mind that everything is mathematics and not physics until
we identify F with the Lagrangian L, the independent variable with time, and the integral
I with the action S. Making these substitutions into (2.10) the physical path satisfies

dL d (oL
08§ =0 = = (. 2.17
«~ 3g d:(ﬂcj) ( }

Now we have reproduced the Euler-Lagrange Equation (1.60) derived in Chapter 1,
so the new way to formulate mechanics is completed by seeing that Hamilton's Principle is
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an alternative to using F = ma. The action for the physical curve is an extremum. Notice
that the time derivative in (2.17) 1s a total time derivative, not a partial time derivative,

Suppose there are two runners who follow different paths to the same end point, arriving
at the same time. If one of the runners follows the physical path, the one determined by
Newton’s Laws of Motion, and the other runner follows an arbitrary but nearby path, the
first runner will have slightly less action than the second: 6§ = §, — §: = 0 — €, where
€ is a very small positive quantity. This statement applies only 1n the limit where the path
variation becomes arbitrarily small.

= Example

As an example, imagine a cannon being fired at 1 = ;. Att = r, the cannonball
strikes the ground. The true path for the height y(r) is a parabola as a function of the
time. We will show that any small deviation from this parabolic path, v + 8y, will
increase the value of the action integral (2.16) owing to guadratic terms in the variation,
The Lagrangian (ignoring horizontal motion, since it is independent of vertical motion
here} is

P, .
L = Emj;-* —mgy. (2.18)

where m is the mass, and g the acceleration of gravity. Then

! 1 [\
SL=L(y+8y) = Livy==—m | 23 [ =sv ) +{ S8y ) | —megsy. (219
2 dt dt

This last expression, (2.19), is exact because it includes a second-order term in dy, a
term we have previously neglected. Next rewrite the first term in Equation (2.19) in
terms of a total time derivative:

1 d d _\
8L = Sm I:zd_r (ydy) — 2¥dy + (Eﬁ‘b) :’ — mgay, (2.20)
. d . 2
L = —m(V + g)dy + mm(;fﬁ}'] + (4y)". (2.21)

The second term in Equation (2.21) is a total time derivative, which will not contribute
to the action integral variation, because this will give a part that depends only on the
end points. The other first-order terms proportional to §y in Equation (2.21) vamsh if
v(t) obeys the equation of motion derived from the Euler-Lagrange equation:

= —g. (2.22)

QUESTION 3: Cannon Example Using the expression for §L {(2.19), show that, after
integrating by parts, 8§ has one part that vanishes if ¥ = —g regardless of §y and one
part that depends on (8y)* and thus is always positive or zero. How does this prove
that requiring S to be a minimum implies that ¥ = —g?
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Definition of the Variational Derivative

The combination of total and partial derivatives that enters into the Euler equation
15 called the variational derivative of L with respect to ¢

55:]31,,.9*: Ef‘;iaq;_nm. (2.23)
q

Comparing with (2.8), we have

oL oL (oL 229
dg dg dt \ dq
definmition of a notation for
variational derivative

Note that § is quite different from 3! % is just a notation for the right side of Equa-
tion (2.24) — nothing else. It is not a derivative in the usual sense of partial or total deriva-
tive. The use of a symbol for the right side of Equation (2.24) is a great convenience, but
the reader will have to be aware what is meant by %

It has been proved that the vanishing of the variational derivative is a sufficient condition
for an extremum in the action integral. This means that if the variational derivative vanishes,
then it is implied that §S = 0. Is this condition also a necessary one? In other words, if
88 = 0, does that imply that the variational derivative must vanish? The necessity of the
variational dervative to vanish is guaranteed for the one dependent variable case we have
considered here. With more than one dependent variable, necessity of this condition for
an extremum means that if 85 = 0, all of the variational derivatives must vanish. This can
be true only if the variations 8¢,(r),i = 1, 2, ... are all independent. With more than one
dependent variable, we are not always either at the bottom of a valley or at the top of a
mountain peak. Theoretically there is the additional possibility of a “saddle point,” which,
like a mountain pass, is neither a maximum nor a minimum. The proper terminology
is that the action integral is then said to be “stationary.” A functional that depends on
several functions S[v, z,...] is stationary if there is no variation in its value for small
independent and arbitrary variations in the functions y, z, . ... We wouldn’t know what
kind of extremum it is unless we examine the second derivatives. Strangely, in physics
this is commonly never done. Physicists really only care that the action is stationary, not
whether it represents an actual minimum, maximum, or saddle point.

2.4  SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

Suppose there are N degrees of freedom. Call them g, (1) (k = 1...., N). Forthe
action integral variation, by a straightforward application of Taylor’s series in N dependent
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variables, we have

(To save wnting it out, we've used the notation for the variational derivative (2.24).)
If all the 34;s can be varied independently, 35 = 0 implies that all of the variational
derivatives must vanish. N Euler-Lagrange equations are then obtained from a single
Lagrangian. This 1s only true for the case of holonomic constraints that have the same
number of generalized coordinates as degrees of freedom. No matter how many degrees
of freedom there are, the Euler-Lagrange equations are a consequence of requiring that
the action integral be stationary with respect to independent arbitrary variations of the
time-dependent generalized coordinates. These variations are arbitrary except that they are
required to vanish at the (fixed) end points in time. One equation per degree of freedom is
obtained in this way.

But what do we conclude if the g;s cannor all be varied independently owing to
constraints? This is the kind of situation where we resort to the use of Lagrange multipliers
to restore the apparent independence of the dg;s. Usually one tries to choose coordinates
so that they are all independent, and each one expresses a different degree of freedom.
However, there i1s one situation where Lagrange multipliers cannot be avoided: certian
types of nonholonomic problems. We will discuss this technique later in this chapter.

Still another interesting situation is the case of more than one independent variable. A
stretched string obeys a variational principle with two independent variables, the horizontal
distance x and the time f. One then minimizes a double integral over x and ¢. This case is
also briefly discussed later in the chapter.

2.5  WHY USE THE VARIATIONAL APPROACH IN MECHANICS?

If you had never heard of Newton's Laws, we could have introduced classical
mechanics by postulating that the action be minimized by the physical path. To find
the form of the Lagrangian for a free particle, we would then have only very general
principles to guide us. Yet by imposing the Principle of Galilean Invariance and assuming
that space is the same in all directions, we could show that L ~ v°. For other problems
we would have to guess the correct form of the potential energy. This seems a peculiar
way to introduce classical mechanics, but it is perfectly rigorous. The notion of Galilean
invariance (equivalence of inertial frames) is the essence of Newtonian mechanics. Mass
could be defined as the proportionality constant (or rather twice this constant) of v? in the
Lagrangian. We would probably have to include the additivity of mass in our postulates,
but little else. Imposing very general invariance requirements on the Lagrangian is in fact
what theoretical physicists do in elementary particle physics. All the symmetry principles
we believe in restrict the possible Lagrangians so much that we end up with just a handful
of possible Lagrangians, each of which can be tried and compared with experiment, until
we find the best one that agrees with experimental data.
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If we postulate the action principle instead of deriving it from Newton's Laws, 15
Hamilton’s Principle a law of physics or is it “just” mathematics? The answer is mathe-
matics. The physics is expressed in the form of the Lagrangian we choose. This Lagrangian
must obey the principles we believe are physically correct. The principle of least action
serves as an ideal mathematical platform for expressing these principles.

Historically, the first variational principle to be used in physics came from Fermat, who
derived the laws of refraction by requiring that the “optical path™ for light be minimized.
Maupertuis tried to generalize these ideas to mechanics, arguing that the existence of a
“minimal action” principle was evidence for the existence of God! His physics was not
correct, and he was ridiculed for his religious claims, but it did generate interest in pursuing
the idea of variational calculus as a tool for theoretical physics. Hamilton published the
correct formulation in 1834, many years later. (See the appendix for a discussion of
Maupertuis” Principle.)

Review of Results So Far

Hamilton’s Principle can be taken as the fundamental principle of classical me-
chanics, provided that we specify the form of the Lagrangian, By requiring that Hamilton's
Principle hold, we have given an alternative derivation of the basic equations of the mechan-
ical motion: the Euler-Lagrange equations. The variational approach makes it clear that
the Euler-Lagrange equations will have exactly the same form no matter what coordinate
system we happen to choose to do the problem.

QUESTION 4: Variational Approach How exactly does the variational approach make
it clear that the Euler-Lagrange equations will have exactly the same form no matter
what coordinate system we happen to choose to do the problem?

In more precise mathematical language, we say that any invertible mapping between
the coordinate systems {g;} and another set { Q,} is called a diffeomorphism. “Invertible”
implies that one can always express one set of coordinates in terms of the other. The
coordinate transformation can also depend on the time (but not on the velocities). Even
though we did not explicitly state it, we have already shown that

SL SL

—=0%&
dqx 8 O,

= 0. (2.26)

Here L is the new Lagrangian obtained by substituting the transformation equations
nto L.

There is some freedom as to what we choose for the Lagrangian in a given problem:
We can add a constant, multiply by a constant, change the time scale by a multiplicative
constant, or add the total time derivative of an arbitrary functionof g and r: F(g.1). Any ot
these transformations will lead to a Lagrangian that is perfectly satisfactory for descnbing
the motion,
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QUESTION 5: Invariant Transformations Prove the statements in the paragraph above.
Why is it possible to change the time scale by a constant factor? Why can’t the arbitrary
function F also be a function of § as well as g and the time?

QUESTION 6: Variational Calculus Explain the meaning of the term “variational cal-
culus.”

LAGRANGE MULTIPLIERS

The method of Lagrange multipliers is sometimes useful or even essential to solve

problems in mechanics using Hamilton’s Principle. Lest you think that the method of
Lagrange multipliers is necessarily only used in the calculus of variations, we begin here
with an application in a calculus minimization problem.

< Example: Lagrange Multipliers

The problem is to minimize F(x, y) = x*+y*, subject to the constraint y = 2x+1
as shown in Figure 2.4. The straightforward way to do this problem is to eliminate y
using the constraint and treat it as a problem in a single variable. In order to demonstrate
the method of Lagrange multipliers we won’t do this. Instead, consider modifying F
to F' = x2 4+ y* + A(y — 2x — 1), where A is an initially unknown constant. Since A
multiplies something that vanishes according to the constraint, as long as the constraint
is satisfied, F is minimized when F’ is minimized. If x and y were independent
variables, the minimum value of F’ would necessarily imply % = % = () at this
value of (x, y). We will choose X so that both partial derivatives do vanish (even
though x and y are not independent on the line y = 2x + 1). The three equations for
the three unknowns x, y, and A are:

1—jz2x—21=ﬂ.
1—?:2}’+l=ﬂ, ' (2.27)
y=2x+1.
y
y=2x+1
-X

- minimize this distance

FIGURE 2.4
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The unique solution is x = —2,y = {, 1 = —~£, Fyj, = ;. Check for yourself to see
if this is the same answer you get if, instead, y is expressed in terms of x using the
constraint equation after which the function F(y(x), x) 1s minimized with respect to
x, For a more formal discussion of Lagrange multipliers, see any text on advanced
calculus.*

QUESTION 7: Lagrange Multipliers  Find the equation for the minimum of F = 3x* +
2y? subject to the constraint that x = cos2y using the method of the Lagrange
multipliers. It will be a transcendental equation. Solve it numerically.

2,7  SOLVING PROBLEMS WITH EXPLICIT HOLONOMIC CONSTRAINTS

It may happen that the number of dynamical variables is greater than the number
of degrees of freedom. One should then go back and try to come up with a better set of
coordinates. For example, consider the pendulum of length /, which has only one degree
of freedom. Instead of choosing & as the generalized coordinate, suppose you, stubbornly
and foolishly, insist on choosing x and y instead as your generalized coordinates. You also
have the constraint equation x* + y* = /> = constant. If one looks at the variation of the

action, one gets
sL oL
88 = [{ —8x + —4dy;dt. 2.28
f[tEae s 2y -

Nothing in the derivation of this expression depended on independent variations of x(r)
and y(r). By Hamilton’s Principle, it is still true that §§ = 0. Unfortunately, since dx
and 8y are no longer independent, you cannot then conclude that each coefficient of the
variations §x and §y (i.e., each variational derivative) vanishes by itself. If they did, you
would obtain two Euler-Lagrange equations, one for x and the other for y. But they aren’t
independent. What should you do in this case?

Lagrange’s method for dealing with constrained variables works here too. The method
allows us to treat x and y as if they were independent, provided that we introduce an
unknown constant, the Lagrange multiplier. It is well hidden in the mathematics, but
secretly he is reintroducing the constraint forces we thought we had escaped. (In fact we
have escaped them in most cases, but not in problems of this type with explicit constraint
equations.) Assume there is a constraint equation of the type

G(x, y) = constant = (. (2.29)

Here G is assumed to be a known function of the coordinates but does not involve velocities
—only coordinates and, possibly, also the time. For small variations in x and y, the relation
from differentiating the equation for G is

aG oG
0G = —dbx + —dy =0. (2.30)
ax ay

This is the explicit equation connecting variations in x with variations in y.

* e.g., Kaplan, Advanced Calculus, third edition, pp. 159-160.
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Instead of substituting for y(x) in the action principle, try this equivalent procedure:
Multiply Equation (2.29) by an unknown “constant™ A. (Note that A can be a function of
t, the independent variable, but not x or y.) Since G equals zero, we can add it inside the
action integral (2.16) without changing anything. Then calculate the variation of § with
the time integral of 8(L + A(G — C)) with respect to x and y:

&L aG L aG
585 = — e f—— | — 4+ A— SV i dr. 2.31
f{(ax+ ax) ”(a:.r* a,v) ”} 231

Now since A can be an arbitrary function of 7, we can choose it to make the first term

(coefficient of §x) vanish. Then the least action principle 8§ = 0 means that the coefficient

of 8y must also vanish, since dv is arbitrary. In this way, even though dx and 8y are not

independent, we can conclude that both coefficients vanish in Equation (2.31), just as in the

earlier case (Equation (2.25)), where we drew the same conclusion for a different reason.
This implies that the Euler-Lagrange equations now become the two equations®

8L dG
o Phax =0
3L aG (2.32)
3y ay
with the additional constraint equation
G(x, y) = constant. (2.33)

There are three equations in three unknowns: x, y, and A(#). In principle these can be
solved. You can easily check that this is equivalent to solving for éx in terms of §y.
The most general form of the method would involve more than one Lagrange multiplier.
The number of As you must introduce equals the number of constraint equations.. You
can often avoid complicated substitutions by using the Lagrange multiplier method. This
becomes particularly useful when there are three or more variables. A kind of symmetry
is maintained in this way between the dynamical variables. However, it can be shown that
the number of equations that must be solved is equal to the number of coordinates plus
the number of constraints, even though the number of degrees of freedom in the problem
is the number of coordinates minus the number of constraints. Thus additional equations
and variables are introduced by using the Lagrange multiplier method.

= Example: Solving the Linear Pendulum Using Lagrange Multipliers

To illustrate the Lagrangian multiphier method, we will solve the pendulum shown in
Figure 2.5 this way. This will also demonstrate that physically the Lagrange multipliers
represent constraint forces. We choose the x and y coordinates of the mass as the
dynamical variables instead of 8. The Lagrangian is

m
L= —(x*+y)—mgy. (2.34)
._2 ——
T 'llnl

T

* Recall the definition of the variational derivative, Equation (2.24) above.
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FIGURE 2.5

The constraint is that the length of the pendulum remain constant:

G(x,y) = v/ x? + y? = constant = /. (2.35)

Notice that we use the radical sign in the constraint equation. This is purely a matter
of choice, but it will affect the interpretation of the Lagrange multiplier.

QUESTION 8: Pendulum Example  Using Lagrange multipliers, prove that the following
equations are the EOM for the pendulum with the Lagrangian defined in (2.34) and
the constraint defined in (2.35):

mi = 1;,
(2.36)
my +mg =l{n

There is a force = 7 directed up the length of the pendulum. This is the constraint
force that causes the pendulum mass to swing in the arc of a circle. There is a
direct connection between the Lagrange multiplier, which we introduced for purely
mathematical purposes, and the physical constraint force. The potential energy is
V = mgy. The negative gradient of V is (0, —mg). Using Newtonian mechanics, the
components of the force are (y < 0):

F.=—Tsinf = -TG), (2.37)

[

Comparing Equations (2.37, 2.38) with the EOM derived using the Lagrange multi-
pliers (2.36), we conclude that . = —7. The components of the constraint force are
~)52 and ~2A5Z. Note that if we had chosen another form for the constraint equation
other than (2.35), we would not have obtained the relation A = —7 . But the Lagrange
multiplier would still be proportional to this force.

Fy = —mg — T cosf = -mg—T(E). (2.38)

It is not an accident that this connection between constraint forces and Lagrange
multipliers exists. To prove it in the general case, we must generalize the example above 1o
any number of nonindependent coordinates connected by one or more constraint equations.
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Define the generalized constraint force as

! B
H =
- dr;
: ; gy
definition of generalized constraint force
N; is constraint force on ith part of system

Even though the constraint forces do no work, we can’t in this case conclude that A, = 0.
Since, for example, 8¢, and 84, are not independent, we can only conclude that NV,8¢q, +
N28g, = 0, as in the pendulum example above. Since the coordinates are not independently
variable, we cannot eliminate the constraint forces associated with them from the equations
of motion. Assume that you have N coordinates and N¢ constraints. It is true from (1.53)

that

6T  oT aT ) - OF;

_ o _ 4 ==V 5. (2.40)
8qr  dgn (qu ,Z P Igi

For conservative systems, from Newton’s Law of Motion applied to the ith part, p; =
~V,v + N i» where V is the potential energy function. Note the important mathematical
identity 2~ S = ) v.V. ;—;:7 which follows from the chain rule for differentiating implicit
functions, since V is a function of the r;, which are in turn functions of the g,. Replace
the part of (2.40) involving the applied force by the negative gradient of the potential
energy with respect to g;, making use of this identity. This term is then moved to the
left side of Equation (2.40). Keep the constraint force part on the right-hand side of the
equation. Wriling the left side in terms of the variational derivative of the Lagrangian
{becaus.e: = (), we obtain

— =—=MN, k=1,...,N. ' (2.41)
dqy

The effect of forces not derived from a potential energy function is to give a nonvanishing
right-hand side to the usual Euler-Lagrange equations of motion. This new term is just the
generalized constraint force as defined by Equation (2.39).

Equation (2.41) is also what we obtain by using the Euler-Lagrange equations, incorpo-
rating the Lagrange multipliers and the constraintequations G; =constant(j = 1, ..., N¢).
Since the “augmented” Lagrangianis L’ = L+ Z?’:: A ;G j, the action principle augmented
by one or more Lagrange multipliers (multidimensional version of (2.31)) allows us to as-
sume that all of the coefficients of the separate 3¢, vanish in the variation of the action.
The modified Euler-Lagrange equations (multidimensional verison of (2.32)) obtained
after adding ZN‘ ;G ; can be written as

5 A Tey
SL 3 96, (2.42)
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Comparing Equation (2.42) with Equation (2.41) gives us

Y. G,
Ni=) A, aq:' (2.43)

j=1

This is the explicit connection between the constraint forces on the one hand and the
Lagrange multipliers on the other.

The number of degrees of freedomis thus Np = N — N¢. The number of equations that
must be solved, including the constraints, is N + N¢c = Np + 2N¢. Since the constraints
expressed by a suitable choice of generalized coordinates causes the number of equations
to equal only the number of degrees of freedom, Lagrange multipliers should be introduced
into this type of problem only as a last resort.

Frictional forces or other types of nonconservative forces excluded from the Lagrangian
can also be incorporated into the equations of motion for generalized coordinates in a similar
way. A generalized force can be defined in exactly the same way as was done in Equation
(2.39) above.

= Example

Lagrange multipliers can also be used in problems involving static equilibrium. Imag-
ine a chain stretched across a river. The length of the chain is fixed as D, while the
river has a width of 2a < D. Taking the y coordinate to be vertical and the x co-
ordinate to be horizontal, what curve does the chain follow in order to minimize the
potential energy? (If the chain is at rest, there is no kinetic energy, so maximizing the
Lagrangian is the same as minimizing the potential energy.) If the mass density of
the chain is p, the potential energy is

i
V = pg f yds, (2.44)

=il

where ds = dx./T + (2)? is the element of arc length. Using a Lagrange multiplier
to express the fact that the length of the chain is constant: D = [ /1 + (£)*dx, we
make the expression below an extremum:

,/:,, le -+ (H) 4+ AJI + (E’}) dx. (2.45)

Using the Euler equation, after some algebraic simplification, we arrive at the differ-
ential equation obeyed by the chain:

14 y% =+ 1) (2.46)

(y = %}. Rewrite this equation as

2y _ 4 Y (2.47)

1492 “y+a
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Integrating both sides and exponentiating, we obtain
1+ y* =Cly + 1), (2.48)

where C is an integration constant. By choosing C = % after solving for y' in (2.48),
the equation for x in terms of y 1s (u = f}

xt:-hf du (2.49)
/ 0 Ju+1)P -1

In writing Equation (2.49), we have assumed that y = x = 0 at the center of the river.

The integral gives
f:ing|1+£+\/¥(z+$)l. (2.50)
A A A '

This equation can be inverted to find v(x):

v X
— =coshf - | = 1. 2.51
Y COS (l) ( )

The shape of the chain is a carenary curve. A is clearly a distance scale. j—f = sinh(% ).
From this, we obtain A by calculating the length of the chain:

i

D= f " coshu du = 2 sinh (;) (2.52)

F

The last equation is a transcendental equation that must be solved for A in terms
of the length of the chain and the width of the river, after which the description in
Equation (2.51) is complete.

NONINTEGRABLE NONHOLONOMIC CONSTRAINTS - A METHOD
THAT WORKS

The method we are about to describe for using Lagrange multipliers in nonholo-

nomic problems was only discovered® in 1871. The crucial point is to express the constraint
equations in terms of small variations in the coordinates at constant time, then use the vari-
ational principle. Just sending L' — L + 4G will not work in this case.

Stand a penny up on edge on a sloping table as shown in Figure 2.6. The penny 1s

free to roll down the table, which it has a tendency to do. It is also free to spin on an axis
passing through the point of contact with the table. But the table is rough, so the penny
cannot skid.

* See the references in E. T. Whittaker's Analytical Dvnamics of Particles and Rigid Bodies, p. 215.
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FIGURE 2.6

Here @ is the angle that measures the spinning of the coin around a vertical axis. & = 0
corresponds to having the coin lined up with the v (sloping) direction. Since the velocity
of the rim vy, = R¢, the velocity-dependent constraint equations are 1

X = Repsiné,

, 2.53
y = R¢cost. (2-3)

These constraints are relations between velocities, not coordinates. They do not lead to
equations linking y with the other two coordinates. Just like Equations (1.107, 1.108),
these are nonintegrable equations. Thus it is impossible to describe the penny with only
two coordinates, despite the fact that the penny has only two degrees of freedom. ltis a
case of nonholonomic constraints.

If we freeze the motion, and make small virtual displacements in ¢, ¢, then since the
rolling constraint (2.53) must still hold for every virtual displacement 8¢:

6x = RsinBd¢p, &y = Rcos@dp. (2.54)

As always the Lagrangian is the difference of the kinetic and potential energies. It can
be shown that the kinetic energy is the sum of two terms, one corresponding to rotation
about a vertical axis through the center of the penny and a second term corresponding to
rotations about an axis perpendicular to the plane of the penny through the point of contact
between the penny and the surface of the plane. Without giving the derivation in det-
ail (it is discussed in a problem at the end of the chapter), the result for the kinetic
energy is

3

T = EmRErfaz + %mﬁ'ié*. (2.55)

If the wedge angle of the plane is a, the potential energy due to gravity is

V =mgysina. (2.56)

The correct Lagrangian is

R*(3 ,
L= mz {Eéz + :—LEEI — mgy sina. (2.57)
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Notice that x doesn’t appear in the Lagrangian at all with this particular choice of
coordinates. There are two degrees of freedom, but three coordinates are needed in the
Lagrangian: #, ¢, y. Since there is one relevant constraint equation, we need one Lagrange
multiplier. Under the integral giving the variation of the action (2.25), add the vanishing
quantity A(8y — R cos @ §¢). Variation of the coordinates gives us the corresponding vari-
ation of the action:

3L SL
35 =0= — +A) 8y'+ | — — ARcos#
[1(5 +) o+ (G -nems)

5L .
x 8¢ + (ﬁ) aal dt. (2.58)

Any variation of # in the constraint equations would lead to quantities of the second order
in the variations, so we can ignore this. Using the Lagrange multiplier to make all three
coefficients of the virtual displacements vanish as before, we have three equations of motion
from the action principle:

—mgsina + A = 0,

ImR? .
"’2 é ~ AR cosf = 0, (2.59)
- mR* ..
——6=0.

Notice that y has now been eliminated. These equations can be integrated to find the solution
for the rolling and spinning penny. After the solutions are known, x(t) and y(7) are found by
integrating the constraint Equations (2.54). The integration can be done both analytically
‘and numerically. This problem is a good tutorial for solving systems with nonintegrable,
nonholonomic constraints. You can also graph the rather amazingly complicated motion
that can occur as the penny rolls down the inclined plane. This will be done in a problem
at the end of the chapter.

Instead of using an “effective Lagrangian,” L + 1G, which is only useful with velocity-
independent (holonomic) constraints, we have multiplied by dt to convert linear relations
constraining the velocities (2.53) into linear relations among the variations dg,. Each of
these constraint relations is then multiplied by a Lagrange multiplier* and added to 8§
directly under the time integral. We can then choose the Lagrange multipliers to allow
us to act as if the different coordinates can be varied independently, thus obtaining a set
of Euler-Lagrange equations by imposing Hamilton’s Principle. We use these equations,
plus the constraints on the velocities, to solve the problem. Although the details differ
between handling holonomic and nonholonomic constraints, the net result is the same: We

“can treat all the g, s as if they are independent after we insert the Lagrange multiplier terms
into the integral for 3S.

* Recall that the Lagrange multiplier can depend on the time.
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2.9  POSTSCRIPT ON THE EULER EQUATION WITH MORE THAN ONE
INDEPENDENT VARIABLE

In the mechanics we have discussed so far, time is the only independent variable.
Consider, however, the case of a string stretched along the X axis. The string is clamped
at both ends, but may be displaced vertically, so that y 3 0. In fact, we may choose any
point x and any time ¢ at which to observe the defiection, so y = y(x, r). Now both x and ¢
are independent variables and the action for this system is a double integral over x, t. The
Lagrangian is replaced in these integrals by a function £ = L(y, i; ';: x, ). Exactly as
before, one first does a Taylor series expansion in the small function §y and its derivatives.
Since there are two (partial) derivatives of y, when y is varied, partial integrations are
performed with respect to x for terms with == ‘“‘ and with respect to ¢ for terms proportional to
%2 These partial integrations convert tenm pmportlnnal to the derivatives of the variation
.5 y into terms proportional to §y. The boundary conditions ensure the vanishing of the

additional terms at the end points. A generalized Euler equation is the resuit:

ac d aC ac
ay  ax (a(g.:_)) ( (-‘h)) (2.60)

For more than two independent variables, one just subtracts more terms of the form
above. There is no contradiction between the appearance of ‘f , the total time derivative in
the original form of the Euler~Lagrange equations, and the partlal denvauvcs - and a in
(2.60). With one independent variable, we used the total time derivative to mean thal we
include the explicit time variation of the dependent variable when taking the derivative.
We do the same thing here, but the notation means that ¢ is constant when differentiating
with respect to x and vice versa. The ordipary differential equation of motion obtained
previously for a single independent variable becomes a partial differential equation if there
is more than one independent variable. There remains only a single equation if there is a
single dependent variable y. If there is more than one dependent variable y, instead say y
and z, then we would have also a second equation like (2.60) with y replaced by z.

The function L is derived explicitly in the homework problem on the string. From this
one can deduce the velocity of waves on a stretched string.

SUMMARY OF CHAPTER 2

* All of classical mechanics follows from

Hamilton’s Principle: 8 [L dt =

(with fixed start and finish times and no variation of path at end points).
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* For each degree of freedom:

* 3L
ader=u¢§—{‘-adL d(‘ )=u (2.61)

3q ~ dq dt \ 8¢

(Euler-Lagrange equations).

e [f the number of coordinates exceeds the number of degrees of freedom, use the method
of Lagrange multipliers. For N holonomic constraints of the form G ;(g) = constant,
use

N
L'=sL+) A&G, (2.62)

j=1

as the “effective Lagrangian.” If there are N, degrees of freedom and N constraints,
you can treat all N = Np 4 N¢ coordinates as independent using this method. You solve
for Np + 2N¢ unknowns, using the N Euler-Lagrange equations and the N constraint
equations. The unknowns are the N coordinates and the N Lagrange multipliers.

* The Lagrange multipliers 4 ; for j = 1, ... N¢ are proportional to the constraint forces.
They can be functions of time but not of the g, or g, .

» Lagrange multipliers can also be used to solve nonholonomic problems with velocity-
dependent constraints, such as a penny rolling on an inclined plane. This is done differ-
ently than in the holonomic case; the constraints on virtual displacements are multiplied
by Lagrange multipliers and then added directly to the variation of the action under the
time integral.

» [If the orbit is needed without the time, use Maupertuis’ Principle (see the appendix).

PROBLEMS

Variational Calculus

Problem 1: (Straight line in polar coordinates) Using plane polar coordinates and
the variational calculus, find the minimum distance (i.e., the equation of the straight
line) from the origin to the point (1, 1).

Problem 2: (Geodesic on a sphere) Use spherical coordinates and the variational
calculus to find the geodesic (curve that is the shortest distance between two points)
on a sphere. This is called by airplane pilots “the great circle route.”

Problem 3: (Geodesic on a cylinder) Prove that the geodesic on a circular cylinder
i1s a helix. Roll a piece of lined paper into a cylinder to see the helical curves. Notice
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that rolling up the paper does not change the geodesic property of the curves on the
surface, Why not? Hint: Set up a suitable coordinate system, and find an integral
expression for the length of an arbitrary curve on the surface of this cylinder.

Problem 4: (Geodesic on a cone) Assume you are on the surface of a cone with a half
angle o which is a surface of revolution about the Z axis. Find an equation in plane
polar coordinates for the geodesic curves on this surface. Notice, as in the previous
problem, that you can roll up a piece of paper into a cone and visualize these curves
geometrically. Why can’t you use the “paper roll” to also answer the question about
geodesics on a sphere? What is the essential difference between a cone and cylinder
on the one hand and a spherical surface on the other?

Problem 5: (Variational Principle for quantum mechanics) The quantum mechanics
of a one-dimensional system is described by the Schrédinger equation for the complex
wave function Y (x, 1):
2 a2

";_m% + VW = ih%? (2.63)
where h is Planck’s constant %, m the mass, and V(x) the potential energy. Find a
variational principle for quantum mechanics using the two dependent variables ¥, *
(complex conjugate of yr) and the two independent variables x, 1. You can treat ¢, *
as two independent generalized coordinates, since the real and imaginary parts are
independent variables. Hint: You will try to make the variation of a double integral of
the form below vanish:

_ .Y dy By° ay _
ﬂ-—ﬁffﬁ(w,v 3’ 3r ax 51 ,:-:) dx dt = 0. (2.64)

Furthermore, you can assume that C is real. It might have pieces of the form V(x)y*y
or %’% %’f, for example. See if you can guess the correct form for £ such that the Euler—

Lagrange equations lead to the Schriédinger equation and its complex conjugate. The
potential energy V(x) is a real function.

Problem 6*: (One dependent and three independent variables: an electrostatics prob-
lem)

a) Derive the form of the Euler-Lagrange equation for one dependent variable and
three independent variables. You want to use x, y, z as independent variables and
a function ®P(x, y, z) as the single dependent variable. Suppose there is a “known
Lagrangian™

L(®, VO, x, v, 2). (2.65)

You want to minimize the triple integral

[ = ffdeJ: dydz, (2.66)
v
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where V is the volume of integration. What equation should ® satisfy to accomplish
this? The main difficulty is to know how to do the partial integration we did so
easily with one independent variable. There is a useful vector calculus identity
you can use to do it

V.(FG)=F -VG+ GV .F, (2.67)

where F and G are arbitrary vector and scalar functions of x, y,z. We will
assume the variation of ® on the boundary of the volume V vanishes, in analogy
with the case of one independent variable in the principle of least action. Also,
the divergence theorem is useful here:

fff%.ﬁdxdydz=[fﬁ-d§, (2.68)
v 5

where S is the surface of the volume V. This mathematical result holds for any
vector function of x, y, z. Use the divergence theorem to derive the final form of
the Euler-Lagrange equations for three independent variables in vector calculus
notation.

b) Inelectrostatics, the energy stored in the electric field is proportional to [ff E*dV,
where E is the electric field and dV = dx dydz is the volume element. (We
assume there is no free charge in the volume here.) Show that, if £ = —V,
and the stored energy is minimized, while @ (the electrostatic potential) is held
constant on the boundaries, ® must obey Laplace’s equation (V?® = 0). Do this
in Cartesian coordinates (x, y, z).

Fermat’s Principle

Problem 7: (Fermat’s Principle and the bending of light) A sugar solution with a
nonuniform index of refraction n[y] bends a ray of light passing through the solution,
as shown in Figure 2.7. The index n[y] is a decreasing function of y, y(x) is the
height of the light ray in the tank, and 0 < x < D, the distance along the horizontal.
The physical reason why a light wave is bent downwards can be seen by considering
wavefronts of the light passing through the medium. Because the light velocity is
higher at the top of the wave front than at the bottom, the upper portion travels faster
and gets ahead of the lower part. Since the light ray is defined by the normal to the
wave front, the light bends downward.

FIGURE 2.7
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The motion of a light ray through an inhomogeneous medium can be mathematically
described by Fermat'’s principle of least time, which says

fdr = a minimum. (2.69)

In other words, the light follows the path that minimizes the transit time between two
fixed points (x = 0 and x = D). If we use this principle, we can calculate the light
path taken as a function of the variable index of refraction n{ v] without using the wave
theory of light at all. The paths of light inside fiber optics can be calculated in this way,
for example. The light starts out at x = y = 0 and is initially horizontal: % li=0 = 0.
We know that

velocity of light = — = —, (2.70)

where ds is the arc length and ¢ = 3 x 10° mvs.

a) Use x as the independent variable, and show that Fermat’s Principle is equivalent
to finding the path y(x) that minimizes

D
f Ldx, (2.71)
0

where L = Ly, %] is a function you must derive.
b) Assume that n{y(0)] = ny, and use the Euler-Lagrange equation to prove y(x) is
the solution to the equation (n{y] is a known function)

d’y  dlnn[y)
dx* dy

1+ y?). (2.72)

¢) If y'(0) = 0, prove the solution to Equation (2.72) is given by

2 2
(M) ~ 1+ (52’.) 2.73)
Ro dx
or, equivalently, we get x(y) by solving
¥
‘= f ay___ (2.74)
o ) -

We can then invert this function for y(x) if we wish to.

Problem 8: (More about bending light with a variable refractive index) A tank of
sugar dissolved as a highly concentrated solution in water has an index ny, = 1.5
Suppose the tank is 30 ¢m long. Assume that n{y] = npe™". A deflection of the
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light beam downwards is observed, and it emerges with y(30) = —1 cm. Find the
numerical value of o and the approximate shape of the trajectory of the ray in the
tank.

Problem 9: (Brachistochrone 1) Solve the Brachistochrone problem: Find the func-
tion y(x) that connects two fixed points in the XY plane (as shown in Figure 2.1),
such that a frictionless mass sliding down the curve arrives at the destination in
the least possible time T[v(x)]. (Hint: Make the +x direction downwards and the
+y direction to the right. This choice is to avoid having to solve for x(y), which you
could do instead of turning the axes.) An expression for T, given some trial function

y(x), 18
d dxd
gfd;=f.i= X as (2.75)
v v d:.r

where the velocity v = % and ds = the arc length.

a) Using energy conservation in a constant gravitational field, prove that the form of
the functional integral we want is

*i dx dy 2
V2% Tly] = f (5). (2.76)

b) Prove that the curve y(x) that minimizes T[y] is

yix) = —\/’,::{Zr — x) 4+ 2r arcsin (;) (2.77)

where “r”" is a constant of integration chosen so that the curve passes through the
end point. It is really just a scale factor.

¢) Plot the curve (using a computer would be helpful here). For r = 1, the curve runs
between x = 0 and x = 2. Turn your head 90 degrees to see the Brachistochrone
curve!

Problem 10: (Brachistochrone 2)

a) Derive the differential equation for y(x) by minimizing the expression for the time
using Equation (2.75).

b) Now assume that there is a parameter 6 and that, in terms of 6, x(#) = a(1 —cos ).
(We are still using rotated coordinates, with +x vertically downward, so a is a
negative constant.) Using the equation you have obtained for minimizing the time,
prove that

y(8) = |a|(@ — sinB) (2.78)

is a solution, assuming that the particle starts from the origin 6 = 0.



PROBLEMS 71

¢) Graph this curve, which is a cycloid curve, Explain why it is the curve traced out
by a point on a wheel of radius |a] rolling down the +Y axis.

d) Calculate the time taken to slide down this curve, assuming that ¢ varies from 0
to 5. Compare it to the time taken to slide down a straight line from the onigin to
this end point.

Problem 11: (Ski race) Imagine you are standing on top of a mountain. The altitude
is given by the z coordinate. The shape of the surrounding hills is givenby z = f(x, y),
where f is a known function. You are an Olympic skier in a race to get to the finish
line located down in the valley at a point x;, y;.

a) What route should you choose to win the race? First find a set of differential
equations for x(r), y(t), then explain how you would find the solution you want.
b) Solve the equations if f(x, y) is the function

z = f(x,y) = (sin” 27w x)(sin” 2 y). (2.79)

Start at x = y = 0.25 and ski down to x = y = 0. First make a 3-D plot of the
surrounding hills with a computer and guess which route you should take. (Hint:
Notice that this problem is symmetric under the exchange of x and y.)

Problem 12*: (Snell’s Law) An open question for physics up to the start of the nine-
teenth century was about the nature of light: Does light consist of particles or waves?
By observing the refraction of light at the interface between two media (say vacuum
and glass), and measuring the speed of light in both media, it would have been possible
to decide this question.

a) First assume that light consists of a stream of classical particles and that the light
1s bent towards the perpendicular to the interface as it passes from the vacoum into
the glass. Vucuum = V). Vglass = V7 as in Figure 2.8. Could there be a transverse
force (along the interface plane) exerted on the particles? If not, how is the change
in direction related to the relative speed in the two different media? Derive an
equation of the form

SI,HS _ f(-lig-) (2.80)
sin @ vy

medium | 4 medium |l

velocity v, velocity v,

FIGURE 2.8



72 CHAPTER 2 VARIATIONAL CALCULUS AND TS APPLICATION TO MECHANICS

Find the form of the function f in Equation (2.80). It depends only on the velocity
ratio. Do the particles speed up or slow down upon entering the glass if the ray is
bent as shown in the figure?

b) Now take the point of view that light is a wave. Fermat’s Principle states that
the light ray will minimize the time it takes to go from point A to point B. Since
you know that the light must travel in a straight line in a medium where the wave
velocity is constant (why?), the only thing you can vary is the point where the ray
intersects the interface. Find this point, assuming that the light velocity is given
in terms of the index of refraction n, v = <. Prove Snell's Law and answer the
question: If light is a wave and the ray is bent toward the normal direction as
shown, is the velocity of light in glass, v,, greater or less than the velocity in a
vacuum, v,? Compare with part a.

Hamilton’s Principle

Problem 13: (Stretched string) A string is stretched under tension between two fixed
end points at x =0 and x = L. The string displacement is described by a single
function of two independent variables: y(x, t). (y(0, t) = y(L, ) = 0.) If the density
of the string is p kg/m, the kinetic energy 1s

1 ay
T = E fd.r(ar) (2.81)

To get the potential energy V, consider a small piece of the string of length dx as
shown in Figure 2.9. The tension t acts parallel to the string, so for small deflections

d
. Fia ~ ttané’ —1.'—}l
d_l' r+dx

) Az IJIE (ﬂ) (2.83)

Integrate the force from 0 to dy, holding x constant. The result for the total potential

(2.82)

y
F,xrttanh =1—
" dx

X

dy d
dF}. = yz — f'ﬂ = T( y

dx T dx

x4dx

FIGURE 2.9
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energy of the string is

1 L a y 2
V= - — 1. 2.84
57 j; a'x( BI) (2.84)
Find the equation of motion for the string. Notice that it has traveling wave solutions

of the form y(x, t) = f(x % ct), with f an arbitrary function. Find the wave velocity
c.

Lagrange Multipliers

Problem 14*: (Rolling hoop) A hoop of mass M and radius R rolls without slipping
down an inclined plane which makes an angle o with the horizontal. Gravity acts on
the hoop in the vertical direction. You can assume that the potential energy of the hoop
1s the same as if all of its mass were concentrated at the center of the hoop. Using
Lagrangian mechanics, find the equation of motion of the hoop.

This problem can be done in at least two different ways. Since there 1s only one
degree of freedom, you can choose the angle ¢ through which the hoop has rolled
and write the Lagrangian only in these terms. Or else you can use the distance along
the hypotenuse of the plane d as well as ¢ plus a Lagrange multiplier that expresses
the rolling constraint d = R¢. In this example, the rolling constraint is holonomic
because only one-dimensional motion is involved.

Problem 15: (Rolling penny on an inclined plane) Set up the Lagrangian for the
problem of the penny on the inclined table (2.57). First calculate the kinetic energy
(2.55) for roiling (¢ # 0) and spinning (6 # 0). (Hint: Work out the kinetic energy
as a function of ¢, 8 for a ring of radius r; then integrate to get the kinetic energy for
a uniform disk.) Then set up the Lagrangian and the constraint equations.

Problem 16*: (Maximizing the area under a string of fixed length) This problem
involves an elementary application of the method of Lagrange multipliers. A string of
fixed length / is placed with its ends on the X axis at x = +a as shown in Figure 2.10.
The problem is to find the curve y(x) that maximizes the area between the curve and

-

- area to be maximized FIGURE 2.10
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the X axis:
A =f ydx. (2.85)
—a

The intuitive answer is fairly obvious. What is it? The length of the string is given
by

| = f V1 + y2dx, (2.86)

where / is fixed (i.e., constrained) and ¥’ = gf.

a) Since arbitrary variations dy(x) are not possible (why not?), you can’t use the
calculus of variations directly. But there is a way to do the problem using Lagrange
multipliers. Consider introducing an arbitrary constant A and then maximizing the
functional

Kiyl= A+ AL (2.87)

If, for arbitrary variations 8y(x), you have § K = 0, then for the special variations
3y that leave the string’s length unchanged (57 = 0), it will be true that 6.4 = 0.
(Make sure you understand the logic of this last statement.) Find the differential
equation from the variational derivative:

%[y.um] =0, (2.88)

b) Integrate this equation once to find y'(x) explicitly. Choose the integration constant
so that y'(0) = 0. (Symmetry implies y(x) is an even function of x.)

¢) Integrate a second time to find the most general form of y(x).

d) Evaluate the up-to-now unknown constant A as a function of @ and /. You may
want to use the mathematical integral |

« 4
f Y — arcsine. (2.89)
0

1 — u?

Did this solution agree with your intuition?

Problem 17: (Farticle in a constant magnetic field) Inside a solenoid it is a good
approximation to regard the magnetic field as constant and directed along the Z axis.
Particle motion in such a field is a helical orbit, with particles that start from the axis
eventually returning to the axis. Since in a magnetic field the kinetic energy must
be constant, this would lead erroneously to the conclusion that Maupertuis’ Principle
would mean that § [ds = 0. Explain why this is not true. Minimizing the arc
length gives orbits that are straight lines instead of helices, What is wrong with this
argument?
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APPENDIX

ABOUT MAUPERTUIS AND WHAT CAME TO BE CALLED
"“MAUPERTUIS’ PRINCIPLE”

Starting in 1747, there was a great controversy caused by Maupertuis, who stated the
Principle of Least Action in a way we now know to be incomplete. He claimed that nature
acted in such a way as to minimize the product of mass times velocity times distance.
Furthermore, he said this principle had a divine origin, thus infuriating most scientists of
ms time who believed in science as a purely logical activity. As we said earlier, he was
motivated by Fermat’s Principle in optics, which asserted that light rays always follow the
minimum optical path (minimum transit time for the light). Maupertuis tried to find an
analogous principle that would apply to mechanics. Maupertuis was accused of a) being
wrong and b) stealing the idea from Leibnitz. We quote Voltaire on Maupertuis:

The assertion that the product of the distance and the velocity is always a mini-
mum seems to us to be false, for this product is sometimes a maximum, as Leibnitz
believed and as he has shown. It seems that the young author has only taken half of
Leibnitz's idea; and, in this, we vindicate him of ever having had an idea of Leibnitz in its
entirety.

Of course, the later work by Lagrange and Hamilton developed the correct approach
without any mystical assumptions. Notice that the correct application of variational calcu-
lus to mechanics took place 87 years later, fully 138 years after Newton and others solved
Bernoulli's challenge of the brachistochrone problem.

Nevertheless, Maupertuis has become immortalized by a principle that bears his name.
Suppose we want to know the equation for the path of a particle without specifying the
time. For example, in two-dimensional motion, instead of finding the parametric equations
v(1), x(t), suppose that we would like a differential equation for y(x). We can formulate a
second kind of variational principle, making use of a new Kind of vaniation A.

Note that the action .S can be rewritten as (use the definition of canonical momentum
pi (1.70) and H (1.65))

S = f Ldt = f > pda — f H dt (2.90)

(g,dt = dg:) As shown in Figure 2.11, the A variation varies the path between fixed end
points (xg, ¥o) and (x;, v, ), but the end point times f, #; need not be fixed. Furthermore,
assume A = FE and that all paths have the same energy. This means that the possible varied
paths are more restricted than before. The first integral on the right of (2.90) no longer
involves the time, and the end points do not vary when we compute A S (but the path does
vary). Since we assume H = E = constant, the right-most integral is —E(t — p). So AS
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A actual path -
(X151
E {I[}F}'DJ
-X
FIGURE 2.11
A variation: fixed endpoints.
contains two types of variations:
AS = ﬂprkqu - EAt. (2.91)
_ k _ variation of § due 1o end poimt Ar £0

varies due to path only

This is unlike the 5 § variation discussed previously. Here one term comes from the variation
of the end point time ¢, the other from variations along the path in the integral

So = f > peday. (2.92)
k

Since any variations in the action due to the choice of path must vanish by Hamilton’s
Principle, for this type of variation

ASy = 0. (2.93)

This is known as Maupertuis’ Principle. S, is sometimes called the “extended action”
or, confusingly, the action. The proof here is a subtle one and depends on separating AS
into two types of variation, one due to the path and the other due to the end points. The part
depending only on the path variation must vanish, as a special case of the more general
form of Hamilton’s Principle. We give a more detailed proof below.

We emphasize that this principle holds only for a certain type of variation. All paths
must have the same energy E. They must start and finish at the same point. The arrival
times can vary for different paths, however.

= Example 2-D Example of Maupertuis’ Principle

We consider a two-dimensional problem as a simple example. V(x, y) is the
potential energy. For fixed total energy E, p = +/2m./(E — V(x, y)), and p.dx +
pydy = pds, with ds* = dx* + dy*. Putting all this into

ASy =10 (2.94)
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we get

2
A f v2m/(E - V(x, y}}J 1 + (g) dx = 0. (2.95)

You can apply the calculus of variations with x as the independent variable in the usual
way to find a differential equation for the path y(x).

More About Maupertuis’ Principle
The Lagrangian for the “cannonball” problem is
L = %m{f + y%) — mgy. (2.96)

{We assume the trajectory of the cannonball lies in the XY plane.) A suitable solution to
the Euler-Lagrange equations found by using Hamilton’s Principle is

X(O) =X+ vout, YU = Yot vyt — 517, (2.97)

where vy, vy, Xo, Yo are all constants found from the initial conditions.
We know that the equation for the orbit is a parabola (assume xp = y, = 0 for simplicity):

y(x) = FHI - gl x?, (2.98)
Vo.x 21’]]_;

What we would like to have is a variational principle that would give us this orbit equation
directly, eliminating the time from the problem.

Consider plotting the trajectory of a system (like the cannonball) with two degrees of
freedom. We can use a three-dimensional graph with (X, Y, T) as the axes. The trajectory
then appears as a space curve. The curve we seek is the projection of this curve onto the
XY plane. Let AB denote the physical trajectory between t = f; and t = 1, as shown in
Figure 2.12. The action integral is

I

Sas = [ LGx(0), y(0), £(0), 3(0)) d. (2.99)

iy

FIGURE 2.12
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t=t,

=t Y  gfGURE2.13

Our goal is to calculate the change in the action if instead we consider another curve CD,
not the physical trajectory, “near” to AB,

55 = S.:[;- - SAE. (ZI{K}}

This 1s illustrated in Figure 2.13. We have expressed Hamilton’s Principle previously by
saying 4§ = 0, but a more precise statement would be

88 = O[8%). (2.101)

The right side is a symbolic way of saying the deviations from AB to CD contribute only
in second order to the difference in the action integrals. CD is a curve that differs from AB
by a & type variation. This is a necessary condition for the validity of Hamilton’s Principle.
In order to use Equation (2.101), the definition of a § variation means we have required
that CD must begin and end at the same (x, y) point as AB and at the same starting and
end times. The two curves must look like Figure 2.14.
Assume the system is holonomic and that H = E. Then from (1.65)
aL oL

+ —y—-E=px+py-E. (2.102)

L=
ax " | dy

For the § type variations, the value of the total energy E does not have to be the same for
AB and CD.

-~

FIGURE 2.14
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Below we shall give a more formal version of our previous proof of the variational prin-
ciple we have called Maupertuis’ Principle. First note that for Maupertuis’ Principle, the
allowed type of path vanations differs from Hamilton’s Principle. For these A variations,
by definition, CD must begin and end at the same points as AB, and the total energy must
be the same for both curves. Notice that the departure and arrival times do not have to be
the same. This is different from the set of curves we considered for Hamilton’s Principle.
Using the definition of the A type of variation, if

Axy = xep(ty + At) — xap(ty) = 0, (2.103)
Axo = xcplty + Aty) — xaplte) =0 (2.104)

and
Ay = yeplty + Aty) — yag(ty) = 0, (2.105)
Ayg = yep(ty + Ato) — yap(tp) =0 (2.106)

and also

Ecp = Exp = E, (2.107)

then
f (Pedx + pydy) — | (p:dx + pydy) = O[A’]. (2.108)

cD AB
Maupertuis’ Principle

Here p,. , have their usual meanings as canonically conjugate momenta to x, y.

Proof

This proof relies on the fact that Hamilton’s Principle holds for the odd path
sketched in Figure 2.15. The path ACDB satisfies all of the necessary conditions, although
we note that the ¢,s are discontinuous at C and D as well as at A and B. Calli the physicai
trajectory AB. Start at point A. Now make a varied path that remains at the same x and y
positions but moves forwards or backwards in time to 7, + Afy. (Afy could be negative.)
Then travel along the varied path CD until the time #; + Atf,. Finally, move to the point
B by changing only the time. This variation is of the type for which Hamilton’s Principle
holds. We write this Principle symbolically as

f Ldt — f L dt = O[A?Y]. (2.109)
ACDB AB

On the pieces AC and DB no coordinate changes, so [ 3", pxdq; = 0. Hence using (2.90}
[\ Ldt = —E At,, where E is the common energy of the CD and AB trajectories, and
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=1+l FIGURE 2.15

f;JB Ldt= Eﬂh. We have

f Ldt =—-EAt +f {de-x + F,vd}"]'
ACDB Ch
—E(ty + Aty — 19 — A + EAn, (2.110)

f Ldt = (pdx+ pydy) — Et - t). @.111)
AB AB

Taking the difference between Equations (2.110) and (2.111),we get Maupertuis’ Principle

f ji-d?—-f p - dF = O[AY). (2.112)
I AB

This variational principle involves only the path and not the time. We emphasize that the
varied path must not only have the same end points as the physical path, but also must have
the same total energy £ as the physical path.

Itis left as an exercise for the student to show that another form of Maupertuis’ Principle
is

afﬁa's = O[AY]. (2.113)

Maupertuis’ Principle

-

Here T is the kinetic energy and ds is the element of arc length. Writing T = E — V and
treating £ as constant in the Euler equation derived from the variational calculus applied
to (2.113) guarantees the use of A type variations if the end points are also fixed.

QUESTION 9: Cannonball Orbit Derive the parabolic form of a cannonball orbit y(x)
using Maupertuis’ Principle,



CHAPTER THREE

LINEAR OSCILLATORS

OVERVIEW OF CHAPTER 3

An oscillator is a system with periodic motion. In mechanical systems, there is a

restoring force that can do both positive and negative work as the system moves.

Positive work done by this restoring force changes the kinetic energy into potential

energy. Negative work done by the force turns the potential energy back into kinetic

energy. If the force is linearly proportional to displacement, the oscillator is a lin-

ear or simple harmonic oscillator. Linear oscillators have many special properties.
| In particular, linear oscillators have the important property that the oscillation fre-
: quency is independent of amplitude. (This is not true if the oscillator is nonlinear.)
| The importance of linear oscillators in mechanics lies in the fact that, for small vi-
bration amplitudes, we can approximate the dynamics of most mechanical systems
as linear oscillators. Not only mechanical systems like a vibrating airplane wing, but,
beyond the realm of mechanics, electrical systems and even an electron bound in
an atom can be usefully modeled in this way. To understand large-amplitude oscil-
latory motion, we have to study nonlinear osciliators. The pendulum is an exampie
of an oscillator that is linear at small amplitudes, yet becomes nonlinear at large
amplitudes.

To discuss linear oscillators in a physically realistic way, we must depart from our
dealings with conservative systems and introduce a special “damping” force which
extracts energy from the oscillator. In the case of mechanical oscillators, this occurs
due to friction. Such oscillators are called damped oscillators,

Oscillators, either damped or undamped, can be driven by external forces. It is
possible to calculate the response of a linear oscillator to an arbitrary external force,
if that force depends on the time in a known way and is independent of the oscillator
amplitude. Such an oscillator is called a driven oscillator.

Oscillators of any kind can store energy. They can be driven to large amplitudes
by external driving forces, if these forces are nearly synchronous with the oscillator
frequency. This phenomenon is called resonance. The damping force limits the max-
imum amplitude of the oscillations at the resonant driving frequency. This means that
3 the ability of the oscillator to store energy is limited by the need to supply energy
; constantly being removed by the damping force.
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6=0 0=  pouRe 3.

3.1 STABLE OR UNSTABLE EQUILIBRIUM?

A mechanical system that remains in its initial state of rest is said to be in equilib-
rium. Such a state of equilibrium holds no matter which set of generalized coordinates we
use to describe the motion, since it is a physical condition. Suppose we use the set of coor-
dinatesq; . k = 1,... N. (There are N degrees of freedom.) Given the Lagrangian of a sys-
tem, how could you find the system’s equilibrium points? Lagrange discovered the answer
to this question: Find the points where all of the generalized forces vanish. For a conserva-
tive system, this means you must find all configurations of the system where the potential
energy V(q....,qgn) is stationary, that is, where the first derivatives %, Cee s % vanish.

This makes good physical sense. If the body starts from rest, and there is no force, it
will remain at rest forever. For example, there are two places where the torque due to gravity
acting on a pendulum vanishes, as seen in Figure 3.1. Since the potential V() = mgi(l —
cos 6), the generalized force (which is the torque in this case) is Fy = — ?TE = —mgl sin#.
Therefore, siné vanishes at & = 0, 7. The pendulum will remain motionless forever if
placed at rest in either of these positions.

These two equilibrium points at @ = 0, 7 are very different from each other. What if we
displace the pendulum very slightly from either position? Will it return to the equilibrium, or
will itrunaway? Everyone will recognize from experience that# = Qis a stable equilibrium
point, whereas 0 =  is unstable. We are interested in describing the motion for small
deviations of & in both cases. For the stable case, the motion around the equilibrium point
is oscillatory, whereas for an upside-down pendulum, the motion runs rapidly away from
8 =m.

If the constraints change with time it can make a big difference. Try the following
experiment: Take a pendulum at rest and shake the support point vertically up and down ata
high frequency, gradually increasing the amplitude of the shaking. The configuration with
the pendulum upside down (# = ), which is initially an unstable equilibrium point, will
become stable at some critical amplitude of shaking, so the pendulum will swing with stable
oscillations in the upside-down position! This situation will be discussed quantitatively in
Chapter 10.

= Example

We can discuss the pendulum Lagrangian near one of the two equilibrium points by
making a Taylor series expansion of L around either 8 = 0 or & = . For 8 very close
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to (:
g gt
SO =1 — — 4 — 9%1, 3.1
cos 5+ 24+!‘I§i’[ ] 3.1
2 2 2
L(6,0) = '%ﬁ'z ~mgl(l = cos®) = %l—ﬁil - mg!%— + 0[6%, (3.2)

where (0 = 4¢.)
Near to & = 0 we can drop the #* terms and bring out an overall factor of mgl:

(\/?)2 e

L8, 8) =~ mgl
(B,0) = mg 3

(3.3)

The constant factor mgl doesn’t affect the equation of motion and can therefore be
omitted. For a further simplification, define a unit of time to be /. and change the
time variable (and the meaning of #) to the dimensionless T = t,/%. In these new
units, the approximated Lagrangian near to the equilibrium point becomes L":

L gt 6°
—_—= - & 3.4
mgl 2 2 34

L =

Near the unstable equilibrium point # is very close to or. The Taylor series expan-
sion depends on having a small quantity in order to neglect higher order terms. Define
6 = + Ad. A6 will be small near the unstable equilibrium point. The Taylor series
for cosf = cos(w + Af)is —1 + ;2_;1? + O[A#*). Since m is a constant, 6 = A#.
Again, removing the constant factor and scaling the time in the same way as before,
the Lagrangian near to the unstable equilibrium point becomes

L _A9° (A8

L" =
mgl Z M 2

0 = . (3.5)

The crucial difference between stable equilibrium (Equation (3.4)) and unstable equi-
librium (Eguation (3.5)) is the change of sign in front of the part proportional to the
square of the deviation from the equilibrium point. This changes the force from a
restoring force to an “antirestoring” force when one calculates the equation of motion.

The Most General Form of a Lagrangion Near Static Equilibrium

Why do most physical systems behave similiarly near their equilibrium points?

We will show that this is a consequence of Taylor’s theorem applied to the Lagrangian in
the vicinity of the equilibrium point.

It is a general property of one-dimensional holonomic systems that these two types of

equilibrium, stable or unstable, exist (except for something called “neutral” equilibrium).

This is proved by making a Taylor series expansion of the Lagrangian of the system under
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consideration about an equilibrium point. The equilibrium point of a mechanical system 1s
by definition the point g, where § = 0. This means that, if initially §(0) = 0, the system
never moves: ¢ = gy, § = U for all time. It is no loss of generality to define the constant
geq = 010 simplify the algebra. (If you don’t believe this, carry out the calculation without
this assumption!)

The most general form of the Taylor series expansion of L to second order* about
Geq =018

Loorox = A+ Bg + Cg + Dg* + Eqg + Fg*, (3.6)

where A, B, C, D, E, and F are all unknown constants that depend on the system being
considered and can be found from derivatives of the Lagrangian evaluated at (¢.q, ¢q)- For
example, D = 125, , and F = }ZL|, . . Since B = 2|, .. it must be true by the

definition of equilibrium that B = 0. The EOM is then

d
Ef_rw-}- Eq+2F¢3)=2Dg+ Eg (3.7
or
D
A — —aq = 0. 3.8
49— 44 (3.8)

The motion depends only on the ratio % This is the same EOM we get from the equivalent
Lagrangian

D
Lupprm = ‘?1 + qu (3-9)

The frequency ey of small oscillations is given by the formula

- —I-)- (3.10)

F

w;

(The formula above (3.10), only makes sense if % 18 negative.)
By the choice of a new unit of time, t = ft, the equation of motion can be written

_ D

where 8 must be real, to avoid having an imaginary time unit. Choose

F
B = I-ﬁ‘. (3.12)

* The order of a term in the expansion can be found by multiplying g by a scale factor: ¢ — Aq. All terms
in the Lagrangian that behave like A* are said to be of the nth order. By “second order,” we mean all terms
of the form g2, 42, q4.
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This can always be done if F # 0. In fact, F > 0, because it represents part of the kinetic
energy term in the Lagrangian, and kinetic energy is always positive.

Working backwards from the equations of motion after we've scaled the time to make
it simpler, we find that, by neglecting small terms, the Lagrangian near equilibrium can be
put into one of two forms*:

1

|
thab'i: m— E(qh - q-}

or

(3.13)

1 ,
L unstable = E(cf +47). (3.14)

Comparing (3.13, 3.14) to (3.4, 3.5) we see that almost all holonomic, mechanical systems
with one degree of freedom behave like the pendulum example near to stable/unstable
equilibrium points,

We define “neglecting small terms™ to be the neglect of all terms beyond the second
order. This approximation will be made frequently to render problems soluble. The price
we pay is that we are restricted to discussing only small amplitudes of the motion. The
concept of “small” is left somewhat vague. In any particular case, you should really check
to see that third- and higher-order terms are truly negligible.

To simplify the formulas, we have eliminated as many constants as possible in (3.13,
3.14). It is a common practice in physics to choose the units to simplify the formulas,
including changing the time scale, so we urge you to get used to this technique. It is not
difficult to convert to the normal units when you need 1o do it. There is some practice in
scaling and unscaling units in the problems at the end of the chapter.

Since the Lagrangian is T — V, if we have a conservative, holonomic. scleronomic
system, then T is a quadratic form and the sign of 2 is wholly determined by the curvature
of V (i.e., %} at the equilibrium point. L ., that is, positive curvature of V(g) near
q = geq = 0 gives the equation of motion

3’V
§+q=0¢h%—&?}ﬂ, at g = Gy = 0. (3.15)

L unsanie OF NEgative curvature of the potential energy gives instead the equation of motion

. 'V
j—q=0& — <0, atg=ge,=0. (3.16)
aq*

* Really three forms are possible: 1f the curvature of the potential ‘;‘,%"'-r = () at the equilibrium point. we have

&

“peutral” equilibrium. Higher-order terms arising from nonlinear forces would then have 1o be considered.
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A B

FIGURE 3.2
A) Curvature of V > (), stable equilibrium; B) curvature of V < (), unstable equilibrium,

A change of the sign in front of ¢ makes the difference between stable and unstable
equilibrium. This sign can be determined by examining the curvature of V. As an example
and also as a way to remember this rule, a ball bearing placed in the bottom of a bowl
(curvature of V > 0) is stable, whereas one placed on top of an inverted bowl (curvature
of V < 0) is unstable. This is shown in Figure 3.2.

The equation of motion for stable motion is known to physicists as the equation for the
simple harmonic oscillator, abbreviated “SHO.” This equation occurs so often in physics
as a first approximation that it is worthwhile to study it in detail.

For certain systems with an infinite number of degrees of freedom (like a stretched string
under tension, such as a violin string), Daniel Bernoulli discovered in 1753 that arbitrary
motions of the system can be expressed as addition (superposition) of the “modes” of the
system. The shape of the mode can be discovered only when the details of the system are
given, but, for sufficiently small amplitudes, the amplitude of the mode behaves in time
as a linear oscillator. For example, a stretched string under tension and clamped at both
ends has a denumerable infinity of modes, each of which oscillates with a single frequency
like a linear SHO. Bernoulli's discovery anticipated Fourier analysis but was not accepted
by the mathematicians for 100 years. It has been said that that this discovery marked the
beginning of theoretical physics. (Although Newton and Galileo might object, it was the

beginning of the mechanics of continuous systems with infinite numbers of degrees of
freedom.)

QUESTION 1: Equilibrivm 1 In his 1788 treatise Méchanique Analytigue, Lagrange
provided the first general proof that the solution or solutions to the equation
h%

E:;.-_ = () at equilibriym points (3.17)

were the equilibrium points of the general dynamical system with scleronomic, holo-
nomic constraints. Is (3.17) a necessary condition? Is it sufficient? Is it possible to
generalize this equation (3.17) to an arbitrary number of degrees of freedom?

The rule of thumb is thus, for a potential V(g), the minima are stable equilibria and the
maxima are unstable. This agrees with our intuition. In more than one dimension, we can
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have saddle points that are stable in one direction and unstable in another. We will discuss
> 1-D systems in Chapter 9, where more than one frequency of oscillation is possible near
a stable equilibrium.

QUESTION 2: Equilibrivm 2 Prove by using an approximation for the EOM for the
pendulum that a small deviation from an unstable equilibrium point grows exponen-
tially. Find the time constant for this exponential growth in terms of the mass and the
second derivative of V evaluated at the unstable equilibrium point,

3.2  SIMPLE HARMONIC OSCILLATOR

We begin our study with the frictionless (undamped) simple harmonic oscillator, or
SHO, as we refer to it. Because the equation of motion (3.15) 1s linear in the displacement
and its second time derivative, it is a linear oscillator. The most important property of the
‘inear oscillator is that the frequency of oscillation does not depend on the amplitude of
ascillation. In his work Dialogues Concerning Two New Sciences, completed while he was
under house arrest and smuggled out of Italy in 1638, Galileo has the character Sagredo

say:

Thousands of times I have observed vibrations, especially in churches where lamps,
suspended by long chords, had been inadvertently set into motion . . . ButI never dreamed
that one and the same body, when . .. pulled aside through an arc of 90° or even 1° or

I

EQ, would employ the same time in passing through the least as through the largest of

these arcs, and indeed, it still strikes me as somewhat unlikely.
To which Salviati replies:

First of all, one must observe that each pendulum has its own time of vibration so definite
and determinate that it is not possible to make it move with any other period than that
which nature has given it.*

Galileo was the first to realize that we should consider time as the independent variable
in physics. This is arguably the beginning of physics as a quantitative science. Before that
tume, physics was called “natural philosophy.”

Galileo was probably aware that a pendulum has a longer period for large amplitudes
than for small amplitudes. This is because a pendulum is a linear oscillator only for small
amplitudes near # = 0, as we have shown in the previous example.

* A possibly mythical story about the young Galileo tells of him in the cathedral in Pisa, watching the
chandelier swinging back and forth. After timing the swings with his pulse, Galileo found that the period
of the swing did not depend on the amplitude of the motion. In the story, this is supposed to describe the
dawn of understanding the importance of time in physics and also the invention of the pendulum clock.
Actually, whether or not the story is true, Galileo did not use pendulum clocks. In later life he did invent
an escapement mechanism that would make such a clock possible. The first pendulum clock was built by
Huygens not long after Galileo’s death in 1642.
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Before choosing a new time scale, but after removing a common factor from both parts
of the Lagrangian, the Lagrangian for the simple harmonic oscillator can be put into the
general form

B

| 2
q*  wig

e 3.18
2 2 k- { }

where w; is the coefficient of f.; when one factors the Lagrangian to make the coefficient
of ﬁ;— unity. This form of the Lagrangian gives the EOM

i + wiq = 0. (3.19)

. . z 2 . .
If we then choose a new unit of time T = wyt, then fﬁ = wﬁﬁ. Changing the meamng

of § to mean %4 gives a new form of the EOM:

§+q=0. (3.20)

EOM for free oscillator

This is the generic equation of motion for a simple harmonic oscillator. In these time
units, the oscillator has the period 2. In the new time unit, the frequency of the oscillator
is wy = 1 by definition.

The Hamiltonian H for the SHO is easily calculated from the approximate Lagrangian,
Equation (3.13). From (1.65) H = -:;r%:.f — L. Since the time does not appear explicitly in
the Lagrangian, H is constant as time evolves:

1
H= 3 (g% + g*). (3.21)
The dependence on ¢ is quadratic, so H is also the total energy of the oscillator.

Mathematical Properties of Second-Order, Linear, Homogeneous ODEs

ODE stands for ordinary differential equation, which is a differential equation with
only one independent variable and one dependent variable.

In mathematical language, the equation of motion for a simple harmonic oscillator
(3.20) is a second-order, homogeneous, linear ODE with constant coefficients. It 1s one of
the simplest equations of this type and has solutions of the form sint, cost. The EOM are
of second order because the highest time derivative of ¢ in the equations is §, the second
derivative with respect to time.

The properties of linearity and of homogeneity in the EOM set the harmonic oscillator
apart from many other dynamical systems. The equation is linear because only the first
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power of the dependent variable and its derivatives (g, ¢, ¢, etc.) appear. Because Equation
i3.20) is homogeneous (has zero on the right side, so contains only the dependent variable
and its derivatives), multiplying ¢ by a constant leads to a solution if ¢ is a solution.

Since the SHOs equation of motion is a linear equation in g and ¢, we can “super-
impose” or add solutions together to create a new solution to the EOM. The ability to
add solutions is called the property of superposition. This means that if g,(t) and g.(t)
are solutions to the ODE, so also is aq,(t) + bg»(t) if a, b are arbitrary constants. The
possibility of superposition is a characteristic feature of all linear differential equations.

It is shown in mathematics textbooks® that the number of initial conditions needed to
specify a solution equals the order of the ODE. The most general solution for a second-
order ODE must contain two arbitrary constants, which depend on the initial conditions.
The physics demands that the motion is determined for all time by specifying the initial
displacement and velocity, so the equation of motion must be of second order. This will
be true for any mechanical system,

The general solution to Equation (3.20) can be written in the form

g(t) = Asin(t +¢) = Asingpcost + Acos¢sint = A'cost + B'sint, (3.22)

where A and ¢ are arbitrary constants. A is called the amplitude, and ¢ is the phase. Using
the trigonometric identity above, the most general solution for g(¢) is a linear combination
of the two special cases: sinf and cost. The initial conditions can be expressed in terms
of these constants:

q(0) = Asing,  G(0) = Acosg. (3.23)

Equations (3.23) can be inverted to obtain A, ¢ in terms of the initial position and veloc-
ity. Physically, the superposition property means that any amplitude is possible, and all
amplitudes oscillate with the same frequency.

Complex Solutions for the SHO

The use of complex solutions (i = +/—1) simplifies the algebra considerably when
we consider externally driven simple harmonic oscillators. The most general complex
solution to Equation (3.20) can be written as

Geompex(1) = A€’ = A(cos (1 + @) + i sin(t + ¢)). (3.24)
A, = Ae'? is now a complex constant in Equation (3.24). What is the physical interpreta-
tion of the real and imaginary parts of 4.7 To see this, compute the displacement and the

velocity of the oscillator at ¢ = 0:

g(0) = ReallA.], ¢(0) = Reallid]= —Im[A]. (3.25)

* See, for example, Advanced Calculus, third edition, W. Kaplan, Chapter 8,
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Therefore, the complex constant 4. contains information about both of the necessary initial
conditions:

A = ¢q(0) - iq(0). (3.26)

A shift of the initial conditions to some other time 7y means we multiply the complex
amplitude A, by the complex phase factor e~:

A = [q(ty) — ig(ty)]e ™. (3.27)

Remember to take the real part at the end of the calculation to get the physical solution.
We will usually drop the subscript “complex” on geompiex> S0 You will have to remember
whether or not you are dealing with the real physical ¢ or else the complex solution, also
called q. The real part is the sum (g 4 g*)/2. ¢" is the complex conjugate of the solution
g(t). g* is also a good solution, because the coefficients in the EOM are real.

3.3 DAMPED SIMPLE HARMONIC OSCILLATOR {DSHO)

The Lagrangian formalism we have derived fails to incorporate nonconservative
forces. We have to put the friction force into the EOM ourselves. Again choose the time
units so that the frequency for the free undamped oscillator @y, = 1. Assume that there is
a friction force proportional to the velocity §:

l
Fliction = _Eq (3.28)

definition of Q

This Equation (3.28) defines the dimensionless constant (0, which is called the “quality
factor” of the oscillator. It is related to the way in which the stored energy in the free
oscillator drops as a function of time. We discuss this in more detail below. The “free”
EOM (3.20) becomes

1
g+ Et? +q = 0. (3.29)

DSHO

Why i1s the friction force assumed to be proportional to velocity ¢?7 We chose it so that
the modified EOM remains linear. But reality could be different.! A pendulum immersed

I See A. B. Pippard's The Physics of Vibration, p. 31 for a discussion of the real nature of friction forces.
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in a viscous fluid that moves so slowly that the flow around the pendulum is laminar will
have a retarding force of the form we assumed. For more rapid motion, there may be
turbulence in the fluid. This would give a §* dependence instead, spoiling the linearity
of the Equation (3.29). Rubbing the pendulum against a fixed surface would, by contrast,
lead to a constant force opposed to the motion, but one independent of velocity. Electrical
circunits with resistance obey Equation (3.29) rather well. The mathematical and physical
concepts developed in this chapter can be directly applied to solving many problems in
electrical and radio frequency engineering.

As a guess for a solution to Equation (3.29), one can try the substitution g(t) = &'“
(where « is a constant) into the equation of motion (3.29) above:

(—u‘?‘ +i bl + l)e’“” = 0. (3.30)
Q

The solution for @ must be a root of the quadratic equation obtained by requiring the

coefficient of the exponential in the formula above to vanish. The differential equation has

been converted to an algebraic equation. The roots are found solving for the roots of a

quadratic equation. Notice that they can be either real or complex:

i 1
a=i—éﬂ:\/]—4gz, (3.31)

There are three cases, corresponding to the three types of solutions to (3.31): underdamped,
overdamped, and critically damped. Once we have found a complex solution that works,
mathematics guarantees that there are no other solutions, since ¢ and ¢* are linearly
independent and a second-order ODE must have two independent solutions.

UNDERDAMPED: Q > 3

In this case the formula for the solution of the quadratic Equation (3.31) gives the
square root of a positive number. The general complex solution is

; - |
g(t) = A.e 0 E‘iw!, W = \/17'- I@E (3.32)

In physics only real quantities appear, so the most general physical solution is
g(t) = A e” % sin(w't + ¢). (3.33)

The overall amplitude A and the phase ¢ are arbitrary constants. Notice that the solution is
exponentially damped. Energy is extracted from the oscillator, usually in the form of heat.
This process 1s irreversible. The smaller Q is, the more quickly the oscillations damp out.
There is also a frequency shift, since @’ # 1. The oscillator frequency «' is lower than the
undamped oscillator @y = 1 by a factor H . If Q > 1, this frequency shift is very
small, even negligible.
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OVERDAMPED: Q < 3

In this case there are no oscillations at all because «' is imaginary, making the
exponential parts real. An example of overdamping is a pendulum swinging in very thick
molasses. If we displace it and let go, the pendulum slowly returns to the vertical position
without swinging past it. We obtain two solutions to (3.31), so there are two different
real exponentials. Both of the exponentials have negative coefficients of the time in the
exponent: Both of these are decreasing with time, with no oscillations occurring. The
general overdamped solution has the form

g(t) = Ae*" + Be*' (3.34)

where

=——i‘/-4-é-£—-lc:0 (3.35)

and A and B are arbitrary amplitudes set by the initial conditions:
g0)=A+ B, §0)=—(L, A+ 1r_B). (3.36)

Prove for yourself that both roots, (3.35), are always negative, regardless of Q, if Q < %

CRITICAL DAMPING: Q = }

A third and final possibility exists. If Q = é the roots of the quadratic equation
are equal and we get a single real solution:

gty=¢€", r=-—1I. (3.37)

We know from physical reasoning that two initial conditions, ¢(0) and ¢(0), must be
specified. This means we need to find a second solution to the quadratic equation. This
can be done by assuming we have an overdamped oscillator with Q@ = % — €, where e > 0.
We can look at the two solutions for the overdamped oscillator (3.34). Assume B = —A
and let € — (. In that limit, one gets a solution proportional to te~'. (The details of this
calculation are left to a homework problem.) So the general critically damped solution 1s

gty =Ce™" + Dte™’, (3.38)

where C and D are arbitrary constants to be determined by the initial conditions. If we
wish to build a sensitive galvanometer or seismograph, and want it to return quickly to
equilibrium after an impulse of current or earth tremor is recorded, then we want the
instrument to be critically damped.
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FIGURE 3.3
DSHO responses, The two independent solutions are shown as solid and
dashed lines. A) Q@ = 10, underdamped; B) @ = (.5, critically damped;

C) @ = 0.1, overdamped.
To summarize: A DSHO is underdamped if Q > %, critically damped if Q = %,

and overdamped if Q < —% The two independent snluﬂu:s for each type of oscillator is
shown in Figure 3.3. For the underdamped case (Figure 3.3A), the cosinelike (solid curve)
and sinelike (dashed curve) solutions are the real and imaginary parts of the complex
solution, respectively. Note the difference in time scales for the curves in the figures.
The overdamped oscillator usually has two very different decay time constants, as illus-
trated in Figure 3.3C, If the damping O — %, the two time constants become equal as in

Figure 3.3B.

QUESTION 3: DSHOs Explain why we need two independent solutions for a complete
solution to the second-order differential equation for the DSHO in general (i.e., no
matter what @ is). Provide both a mathematical and a physical reason.

What Is the Physical Meaning of Q?

The amplitude of the underdamped oscillator decays exponentially. From Equa-
tion (3.32), the amplitude is proportional to ¢3¢ times a function that oscillates with unit
magnitude. Since the total energy is proportional to the square of the amplitude, we can cal-
culate the number of periods it takes for the energy to decay to :-_ of its original value. If we
neglect the small frequency shift (assume Q is large), it will take -,g- complete oscillations
to do this.
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TABLE 3.1 SOME REPRESENTATIVE Q VALUES (FROM
INEWTONIAN DYNAMICS, BY R. BEIRLEIN,
EXCEPT FOR THE SUPERCONDUCTING
MICROWAVE CAVITY)
System 0
50-gram mass hanging from coil spring =25
Earth, for oscillations induced by earthquake ~=200
FM radio receiver ~5 x 10°
Tuning fork ~10*
Sodium atom emitting yellow light 5 x 107
Superconducting rf cavity (1,300 MHz) 101
fron nucleus (*’Fe) gamma ray 3 x 10'°

If we call E the energy stored in the oscillator by the impulse at ¢ = 0, then for Q > 1,
the fraction of the stored energy lost per cycle is % = - %’ Thus

— = © (339

exponential decay of stored energy

QUESTION 4: Time Consfant Prove Equation (3.39) and the claim that the time constant
for the energy decrease is -E; oscillation periods. Take the energy of the oscillator to
be Eooc = %{ql +‘?1}-

For real systems we have to deal with an extremely wide range of possible ¢ values,
as seen in Tabie 3.1.

3.4 AN OSCILLATOR DRIVEN BY AN EXTERNAL FORCE

What has been described above in some detail are the free oscillations of the one-
dimensional linear oscillator. Next we will consider the driven, sometimes called forced,
SHO/DSHO - an oscillator with an additional external driving force. Whatever supplies
the driving force is not considered to be a part of the dynamical system. The driving force
1s assumed to be a known function of the time, without any dynamics of its own, and is
independent of the state of the oscillator. This means that we do not consider any effect of
forces the oscillator might exert on the source of the external force. In practice, this is an
approximation, of course. The treatment of undamped and damped oscillators is somewhat
different.

Assume that an undamped simple harmonic oscillator is driven by an external force
F (1), which depends only on the time. We might instead have assumed an arbitrary function
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Fiq. r)of the displacement and the time, but this would make the mathematics too difficuit.
The EOM is

i+q = F(1). (3.40)

SHO with external force

This type of inhomogeneous linear equation arises so often in physics, it is worth
studying how to solve it in several different ways. Energy can be extracted or stored in the
system by means of negative or positive work done by the external force. We would expect
that the system energy would no longer be constant. How much energy did the external
force F put in or take out of the system? How do we find out?

QUESTION 5: Driven SHO 1 Show that Equation (3.40) can be derived from the La-
grangian L = 3(¢*> ~ @*q?) + F(1)g. What is the physical interpretation of the third
term (i.e., F(1)g)? The energy of the oscillator is Eq = 1(¢° + ¢°). Find 2= and
show that this agrees with what you expect from the work done by the external force
F(t). Also find 5. Does H = E,, in this case?

There are several ways to find solutions for the behavior of the forced oscillator. Perhaps
the most direct method is to solve the equations of motion numerically. Because we are
considering linear equations, we have the option of seeking analytic solutions instead of
purely numerical ones. (Numerical methods are often the only means available to solve
nonlinear EOMs.) Although numerical methods usually work for specific cases, they often
do not give sufficient insight into the solution. Thus for linear equations, analytical methods
are superior most of the time.

Start by considering the undamped oscillator. Due to the addition of an external driving
force, the EOM (3.40) has become inhomogeneous (the right side is not zero). It is no
longer true that we can create new solutions by arbitrary linear combinations of solutions.
Instead, if just one solution to Equation (3.40), called the “steady state™ solution @qeady states
is known or guessed, the most general solution to this same equation can be found by
adding in a solution of the free oscillator, called the “transient” solution, Gyansient™:

 most general =— q"ﬁtﬂu]y state + Grransient - (3r41}

This can be seen by substituting Equation (3.41) into Equation (3.40) to prove that gyansient
obeys the homogeneous Equation (3.20) if gqeagy wae 00€Yys Equation (3.40).

* In mathematics texts, the steady state solution is known as the “particular” solution, and the transient
solution is known as the “free” solution. The terms “steady state™ and “transient” are really only appropriate
to the damped oscillator, since what we are calling the transient solution will last forever in the absence
of damping.
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After correctly guessing a steady state solution to the inhomogeneous EOM, one can
then add a general solution of the free oscillator (homogeneocus) equation. The system
can undergo both free and driven oscillations at the same time. Usually these will have
different frequencies. The two arbitrary constants in the transient part can be used to make
the whole solution satisfy the boundary conditions. For example, to fit specified values
of g, ¢ att = 0, adjust the amplitude and the phase of the transient oscillations to match
these initial conditions. The chief drawback of this method is that we have to guess the
steady state solution.

If you cannot or do not want to guess a steady state solution, another method can be
used. This method for handling extemally driven oscillators introduces the concept of a
Green's function.” 1t can be used for any linear inhomogeneous equation in any physical
problem. The Green’s function technique is very common in dealing with electromagnetic
fields, for example. There is a very direct way to find the Green’s function.! It will be seen
that it is just the response of the oscillator to a special driving force: an impulse, such as
a hammer blow. The advantage of using a Green’s function is that the initial conditions
are included from the start. One obtains the whole solution, both steady state and transient
parts, after doing an integral.

First we will solve (3.40) for a “step function” constant force, turned on at ¢ = 0.
We will also consider the DSHO response. These examples will illustrate the method of
guessing the steady state solution and matching boundary conditions. Then we will solve
tor the Green’s function by solving (3.40) for an impulsive force. We will again consider
DSHO responses as well. Next we will show how the Green's function enables us to solve
the case of an arbitrary external force F(t). This general case will then be applied to the
response of SHOs and DSHOs to a sinusoidal drive force.

3.5  DRIVING FORCE IS A STEP FUNCTION

As a very simple example, consider the pendulum oscillator. Assume that the
pendulum is at rest when a horizontal force F; is suddenly turned on at 1 = 0. The force
is either zero (before ¢ = () or a constant value F, (after r = 0) as shown in Figure 3.4.
What we wish to know is the motion of the pendulum after the driving force is turned on.

For t > 0 the equation of motion (3.40) becomes (using scaled variables)

SHO: § +q = Fp. (3.42)
And analogously for the DSHO:
DSHO: § + —Z— +q=F. (3.43)

* The more correct name 1s “Green function,” but this sounds too awkward, so is rarely used.
t Fourier transforms can also be used to find the Green's function, but we will not discuss this here.



35 DRIVING FORCE IS A STEP FUNCTION 97

Ffu

t=0 —

FGURE 3.4
Constant force tumed on at r = 0.

Prior to turning on the driving force term, we have the free oscillator equations, Fy = 0,
with the solutiong = g = 0.

QUESTION 6: Scaling 1 'We chose the unit of time to simplify the EOM. Think about
the scaling of the time units in the EOM when an external force is present. Does the
force have to be scaled? If so, how?

QUESTION 7: Scoling 2 Explain how to obtain Equations (3.42) and (3.43) above
from F = ma.

Before solving this problem, use your physical intuition, Think what will happen if
a horizontal force 1s suddenly exerted on a pendulum at rest. Imagine that a magnet is
suddenly placed on one side, attracting the pendulum bob. The pendulum will start to
oscillate around a new equilibrium point. If the pendulum is damped, the oscillations will
eventually die down, and the pendulum will come to rest tilted to the side. When the
pendulum is again at rest, the only possible solution is g = F, since being at rest implies
that § = ¢ = 0. This is the steady state solution. The additional oscillations that occur
immediately after the force is suddenly applied to the pendulum are the fransient solution.
The mathematics is a little easier in the undamped case, but physically there is always
some damping due to friction, and we consider the SHO to be the limit of the DSHO as
0 — 00.

We might as well take F = 1. Since the EOM is linear, the solution for an arbitrary
magnitude of the driving force is just the solution for Fo = 1 multiplied by F,. Since
the force just after + = 0 has a finite jump, there can be no discontinuity in either g or 4.
Immediately after the force is applied, ¢ and ¢ must remain the same as they were just
before the force is turned on. ¢ will be continuous, but have a “kink,” so that the second time
derivative, ¢, has a jump of 1 at f = 0*. (¢t = 07 stands for a positive time infinitesimally
close to t = 0.) Only in this way can we maintain consistency with the EOM at all times,
A discontinuity in the time derivative ¢(0) would imply an infinite second derivative and
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TABLE 3.2*

Transient DSHO solution q;(t) q;(0) &(0)
g1 =€ 0 cose't ] - ﬁ

q2

-t
e 0 sinw't 0 w

thus, via the EOM, an infinite force at r = (. We will actually consider such a case when
we consider an impulsive force.

These dual requirements of continuity give us two equations in two unknowns which
completely determine the solution for all positive times. This is called the method of
matching boundary conditions.

Use superposition to write the most general solution for ¢t > 0 as

q(1) = Qseady suate + Geransient = 1 + Qreansient- (3.44)

By substituting Equation (3.44) above into the general equation, either (3.42) or (3.43), we
see that the transient solution is a solution to the free oscillator equation.

To know the displacement at all times, we need to know the actual form of the tran-
sient solution. For the SHO, the most general solution is g(f) = 1 +acost + bsinf.
The constants can be found by using the boundary conditions g(0™) = ¢(0%) = 0. Thus
g(0)=1+a=0,¢(0) = b =0, and we obtain

driven SHO: g(t) = 1 — cost. (3.45)

For a damped oscillator, the idea is the same, but the formula for the free oscilla-
tor solutions is a bit more complicated. The free DSHO has two independent solutions
(3.32), which are listed in Table 3.2. Matching the boundary conditions for these transient
solutions, we get the equations

g(0*) =1 4+ aq(0) + bg,(0) = 0 continuity of g(0),

(3.46)
g(0") = ag,(0) + bg,(0) = 0 continuity of ¢(0).
Using the values in Table 3.2, we obtain
1
1 4+ a = ﬂ, —ﬁﬂ +{ﬂ!b = (). (34?}
The result 1s
¢ I
driven DSHO: g(t) = 1 — ¢™ %@ (t:c:-s w't — 500 sinm’f) . (3.48)

In the limit 0 — o0, Equation (3.48) becomes Equation (3.45).

o' = ]—;1—:?;}.
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DSHO response to unit step force (2 = 2). Graph B is the same g(t) as graph A but
with an expanded time scale to show the behavior near ¢t = (.
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uwstat the nitia] slope and displacement f the oscillator are both zero, because the sh
plied force is finite. ap
6  FINDING THE GREEN'S FUNCTION FOR THE SHO 3.

Imagine that the undamped oscillator receives an impulsive force att = t’. Impulse
the time integral of the force. Animpulsive force is defined to be an infinite force applied 1s
r an infinitesimally short time and having a finite time integral. Again assume that the fo
cillator was at rest (g = ¢ = 0) prior to ¢t = t'. The Green’s function G for this system 08
the solution for this special kind of impulsive driven force equation. The EOM to be is
lved is S0

G+G=248t-1). (3.49)
“defining equation for G

re §(x), representing the impulsive force, is called the Dirac delta function, which isn’t  Ht
ally a function at all but shorthand for a limit of a function. The defining characteristics re
8(x) are of

6(x) =0 forx#20 and f&(x}dx = 1. (3.50)

1is means that we can think of 8(x) as the limit of a narrow but strongly peaked function Tl
th a unit area under it, as we let the width go to zero. Wi
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_SIN JL ,

FIGURE 3.6

The & symbol really stands for doing the calculation with a finite and strongly peaked
function, for example a Gaussian. At the end of the calculation, take the limit of the width
going to zero, while the area remains one. In that sense, the “delta function” stands for the
sequence of operations pictured in Figure 3.6.

Within the (vanishing) width, any well-behaved f(x) is essentially constant and equals
f(0) as we let the width of §(x) go to zero. Therefore we write the shorthand expression
below, for any function f(x),

ff{-rflﬁ{r}dx = f(0). (3.51)

Mathematicians can spend considerable time discussing this, but we believe the intuitive
meaning is clear; it is an impulsive force exerted on the oscillator. It describes what happens
when we hit the oscillator with a short but sharp blow from a hammer, for example. The
duration of the hammer blow is so short that the oscillator moves a negligible amount
during the time the force is applied.

QUESTION 8: Driven SHO 2 Assume the oscillator is a pendulum. Hit it with an
impulsive force at ¢’. We will prove mathematically that @ is a continuous function of
time but 6 is discontinuous at £ = '. What is the physical reason for this? (Think of
the impulsive force as a sharp blow by a hammer.)

Response to Impulse Force

One method for finding the impulse response is to approximate the short impulse
by a square pulse of duration £ < 1 and height é As before, define Fep(x) = 1ifx > 0,
Fup(x) = 0if x < 0. Subtract a solution obtained for the step function force shifted in
time by & and multiplied by é from the solution with the step at the origin, also multiplied

by ¢. to obtain

1
quuure pulsu{f) - E[Fﬂ:p{” - Fstcp(f - 'f;'}J (352)
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Likewise,

]
Gsquare pulsc(r} = E{qslﬂp“} - qﬂ:p(t - $]] (353}

The time integral [ Foquure puise(f)dt = 1, even as & — 0. The limits of integration must
include a finite but arbitrarily small interval around the point ¢+ = 0. Taking the limit as
£ — 0, we get

1
Fimpuise (1) = 6(1) = éi_l]% E[Fm(ﬂ — Faep(t — £)], (3.54)
1
Qimpu‘isc{” = G(t) = Eﬂ E[qalﬂp(f} — Gseplt — )}
d
= E;{qﬂ:p{r ) (3.55)

From (3.45),
Gimputse(1) = G (1) = sin¢. (3.56)

The origin can be shifted to an arbitrary time ¢’ by writing G — t') = sin(t — t'). From
now on we assume the impulse occurs at a time ¢'.

Integrating the Discontinuity

There is still another way to find G explicitly without having to guess the solution.
Note that, except at ¢t = t', the force applied is zero. This means that G is a solution of an
equation we already know how to solve: the free oscillator or homogeneous Equation (3.20),
which has sines, cosines, or complex exponentials for solutions. The other thing we need
to know is that the slope of G has a unit discontinuity at t = ¢’, which we now prove.
integrate the defining Equation (3.49) above for a small interval 2¢ which encloses ¢":

£ e . e
f (G + G)dt :-.f 5t —t)dt = 1. (3.57)

e &

Since G is the time derivative ﬁf G, we can do the left integral in Equation (3.57) directly,
giving

e
f Gdt =G’ +€)— Gt — ). (3.58)
;
Also note that

'€
f G(t)dt = 2eG(t'). (3.59)

f =
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FIGURE 3.7 |
Note discontinuity in G vs. ¢ graph att = 1",

Equation (3.59) holds if G is a continuous function and € is sufficiently small, because then
we can write G(t) as a Taylor series near t’: G(t) = G(t") + (t — t)G(t") + - - - . Neglect
all but the first term in the Taylor series if ¢ is sufficiently small. In the limit ¢ — 0, if
G itself is continuous, but has a discontinuous first time derivative, then the left side of
Equation (3.57) yields the amount of the jump in G at t = . By the definition of the delta
function, the right-hand side of Equation (3.57) is equal to 1. Therefore, the jump att = ¢
in G is G — Guigne = 1. For times t # t', G(1) must obey the homogeneous differential
equal;iun G + G =)

Since the oscillator was at rest for all times before ', we can use the above information
to write down G explicitly:

Git—-1tY=0, -t <0

' (3.60)
Gt —-t)=sin(t—1t"), t—t'=0.

This solution for G shown in Figure 3.7 is called the “causal” Green's function because
it reflects causality: The oscillator cannot respond before it receives the impulse at 1 = ¢'.

Summary: How to find G:

1. G = 0fort < t'. Solve the free oscillator equation fort > t'.
2. Make G continnous at f = t'.
3. Make G discontinuous with a unit jump at £ = ',

QUESTION 9: Green’s Functions 1 Is the Green’s function given by (3.60) a unique
solution to the free simple harmonic oscillator, given an impulsive force at t = t',
subject to the boundary conditions that G is continuous at t = ¢’ and G is discontinuous
with a unit jump at r = ¢'? How about if we include the condition that G = 0 for
t < t'7 Why do we chose the “causal” Green’s function (i.e., G(t ~ ') = 0 for
t —t' < 0)? (We are looking for a physical reason.)
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Green'’s Function for an Underdamped DSHO

What is the Green's function for this case? Fort —t' = 00, G 1s a solution to the
free oscillator Equation (3.32). Try

E Gt R e M PO
GDSHD = Ae 10 Efd‘.ﬂ” .!'J'+ Be it e jers' ¥ ”. (3-61)

For t —t' < (), causality demands that G = 0. At =, there is a need to satusty two
equations:

A4+ B=0 continnityof Gattr =1,

o o . (3.62)
iw'(A— B)=1 unitdiscontinuity of G at¢t = 1.
The coefficients A, B must be
—i i
= — B= -, (3.63
20 20 J
Substituting (3.63) into (3.61) we obtain
.E_HI_TH] . ] e
Gpsholt — 1) = ———[—ie™“ " ie™" 1, (3.64)
2¢’
Taking the real part we get
E_EFE}L! & ¥ ¥ ¥
Gostolt — ') = = sinew(t —1t), —1 =0, (3.65)
0, t—t' <Q.

You can take it from here and prove that this solution is the derivative of the solution for
the unit step in the case of an underdamped oscillator.

3.7  ADDING UP THE DELTA FUNCTIONS - SOLVING
THE ARBITRARY FORCE

Now that we have the explicit solution for the “causal” Green’s function, we can
turn our attention back to solving the more general problem of the response of a DSHO to
an arbitrary driving force F(r):

q + . +qg = F(1). (3.66)

0

(To find the SHO solution, take the limit as Q — o¢.)
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Fit)

N

FIGURE 3.8

Just as you did in calculus when calculating the area under a curve, approximate the
force F(t) by a set of square pulses as shown in Figure 3.8:

FU) =&Y Fi Fuae puiselt — 1) (3.67)

By definition, the square puise has the form

—£

I
Fwwcpuisc[-r)—p 15.-1'5'§¢

(3.68)

Fiquare puise(x) = 0,  otherwise.

The value of the constant F; is the average value of F(t) in the small interval of width £
around ;. The r;s are spaced apart by equal distances of £ in width. In the limit § — 0,
the square pulses approach 8(r — ;) and the sum (3.67) approaches an integral over the
continuous variable . We have, in this limit,

+oc
F{r):f F(th(t — ¢ dr'. (3.69)

L]

This equation can be crudely interpreted to mean that the delta function is so sharply peaked
at t = 1’ that the whole contribution to the integral is proportional to the value of F(#') at
the one point, .

If we consider Equation (3.69) as expressing the force F(r) as a superposition of
impulses, then the superposition principle (extended to an infinite sum) gives the solution
to the response as a superposition of Green’s functions weighted by F(’). Knowing the
Green’s function means that we can immediately write the result if we accept the validity
of replacing a sum by an integral in the limit:

g(t) = f F(HG(r — 1) dr'. (3.70)

b ]

general solution
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The finite upper limit is due to the use of the causal Green’s function. For the SHO we have

f
g(t) = f F(t')sin(t —t")dt'. (3.71)

=

simple harmonic oscillator solution

That is all there is to it. The causal Green’s function gives us the solution as an integral
over all of the past. Green’s functions are used throughout physics, wherever the equa-
tion we are trying to solve is linear. They are especially useful in solving wave problems
encountered with the partial differential equations of acoustics or electromagnetic theory.

QUESTION 10: Green’s Functions 2 Notice the upper limit of the integral in Equa-
tion (3.70) is now ¢, instead of 0o. Why do we change the limit from Equation (3.70)?
Why does this express causality? What specifically do we mean by “cause™ and
“effect” here? Can “causes” come later than “effects™?

QUESTION 11: Green’s Funcions 3 The causal Green's function is known in electro-
magnetic radiation theory as the “retarded” Green’s function. The opposite of the
retarded Green’s function is the “advanced” Green’s function. In this case “effects”
come before “causes.” What is the advanced Green’s function for the simple harmonic
oscillator? How would it change (3.71)? Does this advanced Green'’s function seem
to have any physical purpose?

QUESTION 12: Green's Funclions 4 Prove, starting from Equation (3.70), that we have
achieved what we set out to do: Find the solution g(t)to § + g = F(¢).

QUESTION 13: Green’s Functions 5 Explain in your own words the role of the Green's
Function in solving the driven oscillator problem.

3.8  DRIVING AN OSCILLATOR IN RESONANCE

An oscillator can be driven with a sinusoidally varying driving force at a frequency
close to the natural oscillator frequency.
In Galileo’s time the phenomenon of resonance was recognized and appreciated. We
quote from the Dialogues Concerning Two New Sciences. Salviati says:

... one can confer motion upon even a heavy pendulum which is at rest by simply
blowing against it; by repeating these blasts with a frequency which is the same as
the pendulum one can impart considerable motion. Suppose by the first puff we have
displaced the pendulum from the vertical by, say, half an inch; then if, after the pendulum
has returned and is about to begin the second vibration, we add a second puff, we shall
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impart additional motion: and so on with other blasts provided they are applied at the
right instant, and not when the pendulum is coming toward us since in this case the
blast would impede rather than aid the motion. Continuing thus with many impulses we
impart to the pendulum such momentum that a greater impulse than that of a single blast
will be needed to stop it. -

We will consider here the effect of a sinusoidal driving force with a variable fre-
quency w:

F(r) = sinwt. (3.72)

(Remember that the time has been scaled so that the natural frequency of the oscillator is
wo = 1. To return to ordinary time units of seconds, replace w by ;> and replace ¢ by wot
in all the formulas below.)

First consider the case of an undamped SHO. We also simplify to the case where the
driving force starts at t = 0 and has the same frequency as the oscillator, w = wy = 1.
In this particular case we say that the driving frequency is “in resonance” with the free
oscillator frequency:

Ft)=0, <90,
F(t) =sin(t), =0,

(3.73)

Working out the Green'’s function integral (3.71) explicitly with the help of trigonometric
identities, we get

! sin f tcost

)= | sint'sin(t —t)dt' = — - , 3.74
q(1) | gnLs ¢—1) 5 5 (3.74)
ol (] GH_'-’} S —
oscillating part  increasing amplitude
—1
qg(t) — ?cnsr ast — oc. (3.75)

Because the amplitude grows without limit as time increases, an undamped SHO driven
at its natural frequency will store an unlimited, ever-increasing amount of energy. This
situation will prevail until either the large amplitude makes the nonlinearities important
or else the damping, which must exist at some level for real physical oscillators, becomes
important. Real oscillators reach a steady state equilibrium with the driving force after
sufficient time elapses. We will explore how the damping affects an oscillator driven at
resonance next.

Response of an Underdamped DSHO to a Sinusoidal
Driving Force of Variable Frequency w

Suppose that you have a mass suspended by a spring and that the mass is initially
at rest. Take a signal generator that generates a sinusoidally varying current of variable
frequency. Turn it on suddenly and have this current pass through a coil which generates a
periodic vertical force on the suspended mass. Assume this force is proportional to sin wt.



3.8 DRIVING AN OSCILLATOR IN RESONANCE 107

What is the response of the mass to this force? We can guess the answer. The mass—
spring system will start slowly to gain energy, oscillating at two different frequencies, both
the free oscillation frequency of the mass—spring combination and the external driving
frequency. After a while the system reaches an equilibrium steady state in which the
energy supplied by the driving force just balances the losses due to friction. After that,
only a single frequency is present, which is the frequency of the signal generator used to
provide the driving force. The driven system remains synchronous with the source of the
external drive. This means that there will be a constant phase difference between the drive
and the oscillator response in the steady state. Only a single frequency is present in the
final response of the mass—spring system because the EOM is linear.

Next we formulate what we just said in more mathematical terms. Suppose the os-
cillator is driven by a force F(t) = sinwt which starts at r = (0. We want to discover the
response of the oscillator as a function of w. The “natural frequency” of the free, under-
damped oscillator is ' = /T — _;. (The frequency of the free undamped oscillator (wo)
and of the free damped oscillator (') are extremely close if Q > 1.)

As before, to satisfy the boundary conditions (¢(0) = 0, §(0) = 0), the oscillator re-
sponse g(t), just after ¢+ = 0, consists of both a free oscillator and a steady state solution.
Due to damping, the free oscillator part of the response, which oscillates at @’ =~ 1, damps
out exponentially as time increases. It will be proved that, in about % oscillations, the
transient (free) solution damps out, and we are left with the steady state solution, repre-
senting the long-term equilibrium state of the oscillator. From the definition of a Green’s
function (3.70):

I
l?'[f) = qmﬂﬂd}-‘ .-i'mm{'r) +"?unm.:»em|:-f) B f Si“ {&ij} G(f - Ii:ldf*‘ (3?6}
b " - I'"‘-—--.,.,-.—n-l-l-ll" u ""-—-.'.I.-—-"|I
frequency=uw requency =’ Fir

We have written G, rather than the explicit form of the Green’s function, to avoid confusion
with the sinusoidal driving force, which has in general a different frequency from that of
the free DSHO. As a homework problem, you can integrate Equation (3.76) explicitly,
using the correct form of the causal Green’s function for the DSHO (3.65). Integrating
the Green’s function gives both the transient and the steady state parts of the solution
automatically.

Here is a simpler way to carry out the same calculation. We can use a complex driving
force (i.e., replace sin wt by ¢'“'). This is allowed, because we plan to take the real part at the
end anyway. In the steady state, a linear system always responds at the driving frequency,
s0 ¢(t) must also be proportional to ', By substituting F = ¢ and ¢ = gy €' (¢ is a
proportionality constant) into (3.66) we obtain, after solving for gy,

i axif

)= - wsient - 3.77
g(t) ]—ml-}--éjmﬂi_qlm' I ( )

complex solution
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From the solution to the free DSHO (3.32), guansiente = A« e~ which damps out
exponentially. Here the complex notation simplifies everything drastically. The vanishing
of the real part of . ¢ at t = 0 determines the two arbitrary constants (real and imaginary
parts of A,) in Gyunsic- However, we are really only interested in the steady state solution
after ¢yansiem has damped out. Physically, both types of oscillations are actually present.
If we want the stored energy in the system after a sufficiently long time, we need only to
look at 1q(r}|f,my waes Since the energy is proportional to the square of the amplitude.
Per unit driving force, this 1s

I IE _ E.r'ml [3 78}
q .'itﬂﬂd}‘ state ] . {Hz —im Lgm .
1
E ~ 19 eady stue = - (3.79)
T (-0 + 5

QUESTION 14: Energy of Driven DSHO Prove that Equation (3.78) is identical to
Equation (3.79).

Any oscillator response (3.79) plotted as a function of driving frequency has a sharp
peak, known as the resonant frequency w,, as shown in Figure 3.9. We can find this
frequency by requiring that ¢ = 0 at @ = w,. This gives us

1

Notice that w, is not equal to @’ (3.32), the frequency of the free DHSO, nor wy = 1. the
frequency of the free SHO. If Q is large and w = w, = 1, the approximation below is a
valid one:

| — &’ =(1 —w)l +w) = 2(] — ) (3.81)

0.85 0.95 105 15 ¥

FIGURE 3.9
Oscillator energy vs. driving frequency @ in
steady state for a microwave cavity.
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]
0 0

The steady state (long time value) of the stored energy E is, in this approximation,

(3.82)

E ~ ! (3.83)
(1-m)1+4—;? '

stored energy vs. @

Equation (3.83) is easier to use in practice than Equation (3.79), but it is accurate only if
O > 1. The formula (3.83) is the famous Lorentzian line shape for a driven DSHO. It
occurs everywhere in the physics of linear systems with sinusoidal external driving forces.
The width Aw when the energy is at half its maximum value is ému (including the scaling
factor here):

(3.84)

where ay, is the frequency of the free SHO, which we are using as the resonant frequency
since O >> 1, Equation (3.84) is a very useful one in practice. You can excite the oscillator
with an external force, sweep the frequency over the resonance, and measure the frequency
difference between the half peak energy points. The relative frequency difference gives ﬁ
High Qs mean not only slow decay of transient signals, but narrow steady state resonances
in the energy (or amplitude) versus frequency plot.

QUESTION 15: Full Width of Half Max  Prove that the full width {%) when the stored

energy is at half its maximum value (full width half max) is equal to é Provide both
a physical and mathematical explanation.

The graphs in Figure 3.10 plot the oscillator amplitude as a function of the time in
dimensionless units. In all three of the cases illustrated above, the driving force (dotted
curve) is turned on suddenly at ¢ = 0. The transient oscillation beats with a slightly different
driving frequency as seen in the Figures 3.10A and C. On a time scale longer than depicted
in these graphs, the transient will damp out, leaving only the steady state response at the
driving frequency. When driven at its natural frequency, w = 1, the oscillator builds up
steadily to a large steady state amplitude (Figure 3.10B). Notice that the amplitude of
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FIGURE 3.10

Damped harmonic oscillator, with (¢ = 10 and driven near resonance with
driving force F(1) = coswt. A) w = (.8 (below resonance); B) @ = 1.0 (at
resonance); C) w = 1.2 (above resonance).

the oscillator is much larger relative to the driving force for Figure 3.10B than it is for
Figures 3.10A and C. It is also possible to see in the figure that, at resonance, the driving
force and the response are exactly 90° out of phase. The relative phase shifts rapidly as the
driving frequency is varied from below to above the resonance.

3.9  RELATIVE PHASE OF THE DSHO OSCILLATOR
WITH SINUSOIDAL DRIVE

What is the phase of the driven oscillator in the steady state? Does the response [ead
the driving force or lag behind it? As seen in Figure 3.10, the answer depends on whether the
driving frequency is lower or higher than the resonance frequency. It is physically apparent
that, if the drive frequency is very low compared to the natural oscillator frequency, the
response just follows the drive. (Think of a pendulum being driven very slowly.) In this
case, we say that the phase between the drive force and the response is zero. It is not so
obvious that, in the limit of very high driving frequency, the drive and the response are
exactly 180° out of phase. We will now obtain the entire curve of the relative phase as a
function of w, the drive frequency. We will show that the relative phase of the oscillator
drops rapidly and dramatically through —90° as the driving frequency is increased through
and beyond the resonance frequency.

Suppose the driving force has the form

F(t) = Real [¢'™] = cos wi. (3.85)
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(You could use a sine wave to drive the system — then take the imaginary part rather than
the real part. It does not affect the conclusion below, which is a formula for the relative
phase.) From (3.77), the steady state response of the system, g(¢), must have the form

Eiw-' o
9(r) = Reall _mz+émJ=ReauAf{m)e )

= A(w)cos (wt + ¢(w)). (3.86)

Equation (3.86) defines the complex amplitude A (@), which is a strongly varying function
of frequency, but a constant with respect to the time. A. = A ¢'® defines A as the (real)
amplitude, and ¢ as the relative phase angle between the oscillator response and the driving
force. Equation (3.86) shows that the oscillator response “leads” the drive signal by a time
At = E. A negative value of ¢ corresponds to a time lag for the oscillator relative to the
drive signal. We say there is a “phase lag™ in this case.

To obtain ¢(w), rewrite the left side of (3.86) as

(1—-a®— %Je"“”]'

(1-w?+ 5

g(t) = Rea]l: (3.87)

We will do some purely mathematical manipulations with complex numbers. For any
complex number z, with complex conjugate z*, it is an identity that, if z = re'?,

E = l E"m. (388}
i

r

Now r = +/zz* is a real number, by definition. Further, & has a magnitude of unity, so
must equal the phase factor e™?, that is, ¢'® in our case. Comparing (3.87) with the right
side of (3.86) and with (3.88), let z = 1 — &® + 2. We see that

I

A=|A]|=
JU— o+ %

and ¢’ = cos¢ +ising = ™’ = A(l — w’ — %). Thus, taking the ratio of imaginary
1o real parts of this last expression, we get

tan¢g = — 0 . (3.89)

relative phase between ¢ and F
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FIGURE 3.11
@ = 100 for the left-hand plot; Q = 10 for the right-hand plot.

Use the inverse function tan~! to invert Equation (3.89). A plot of ¢ versus @ appears in
Figure 3.11A for ¢ as w is swept through the resonance. Since ¢ < 0, the oscillator always
lags behind the drive signal. At very low drive frequencies the phase lag is small, but near to
the resonance it becomes —90° out of phase with the drive, and at very high frequencies, the
phase lag is —180°. In Figure 3.11B, the Real[.A.], Im[.A_] are plotted on the X and Y axes
parametrically versus w. Here 4. is the complex amplitude for the oscillator response as
defined in Equation (3.86). The trajectory in the complex plane is, to a good approximation
if Q is large, a circle of radius Q/2, with a center at (0, —i Q/2) for0 < w < oo. Itis
evident that ¢(w <« 1) = 0, whereas ¢(w > 1) = —nr = . As the driving frequency is
slowly increased from a value below the resonant frequency, the complex amplitude A,
start to traverse the circle in the figure in a clockwise direction. Little happens until the
resonance is approached. Then the amplitude swings rapidly clockwise around the circle
and returns to the origin as the frequency increases above the resonant frequency.

Figure 3.12 shows an actual measurement of the “out of phase” response (¥ axis =
imaginary part) versus the “in phase” response (X axis = real part) for a microwave cavity

Imag A.

_. resonant amplitude
plus background

Real A,

FIGURE 3.12
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using a commercial network analyzer. The real part of the amplitude A, is the part in phase
with the driving signal, while the imaginary part A, is the part 90° out of phase. In other
words, if A, were purely real, the oscillator would move in phase with the driving force. If
A, were purely imaginary, the phase difference would be 90°. The circle is displaced off
center in this particular case because an additional frequency-independent (slowly varying)
nonresonant amplitude in the system response was present along with the resonant part.
We can see from the figure that the nonresonant part has a complex phase too.

QUESTION 16: Summary Describe: [) the response of underdamped, overdamped,
and critically damped free DSHOs; 2) the response of an SHO to a sinusoidal driving
force: 3) the response of a DSHO to a sinusoidal driving force.

SUMMARY OF CHAPTER 3

* Static equilibrium points are maxima or minima of the potential energy V for sclero-
nomic systems.

* A minimum of the potential at an equilibrium point means it is stable. A maximum means
there is instability. The magnitude of the curvature of V determines the frequency of
small-amplitude oscillations for scleronomic systems.

* The frequency of a linear oscillator is independent of amplitude.

* Solutions to the free SHO are of the form sinf, cosf (w = 1 scaling). Linear combina-
tions of solutions are also solutions (superposition principle).

Free Damped Simple Harmonic Oscillators

* A frictional force equaling -r% retards the motion. This defines the quality factor Q.

* Solutions are of the form ', = 55 + /T~ 5.

* There are three types of DSHOs: underdamped (Q > 3), critically damped (Q = 3),
and overdamped (Q < 3).

* The Q of a DSHO can be found from the exponential decay of the stored energy in the

oscillator that drops to } of its original value after % oscillations.

Driven (or Forced) SHOs and DSHOs

» Forced linear oscillators do not have a constant total energy. The equation of motion
is linear but inhomogeneous. The solution contains both a steady state solution plus a
transient solution, The steady state solution has the same frequency as the driving force;
the transient solution is a solution to the free oscillator equation.

» There are two ways to solve the driven oscillator: 1) Guess the steady state solution and
use the transient solution to match boundary conditions. 2) Use a Green’s Function that
gives the solution to an oscillator driven by an arbitrary external force F(r):

q(t) = j G(t —t')F(t')dr'. (3.90)

0
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The causal Green’s function for the SHO is

Git)=0, <0,
G(t) =sinr, =>0. (3.91)

The causal Green’s function for the DSHO i1s

G(f} s D, t <10
|
G(t) = Ee“fﬁ sinw't, t=>0. (3.92)
Sinusoidally Driven DSHOs

The response of a DSHO with Q >> 1 to a sinusoidal F () of vaniable frequency is a bell-
shaped curve (Lorentzian) strongly peaked at the resonant frequency of the oscillator
w,. The higher the Q value, the narrower is the resonance curve. The full width at
half maximum of the stored energy versus frequency is 22 = X, which gives a direct
. w  Q

method for measuring Q.

The relative phase between the oscillator and a sinusoidal driving force is an “S-shaped”
curve that changes rapidly in the vicinity of the resonance.

I

PROBLEMS

Equilibrium

Problem 1: (Particle in a bowl) A point particle of mass m is confined to the fric-
tionless surface of a spherical bowl. There are two degrees of freedom. Prove that the
equilibrium point is the bottom of the bowl. Does the bowl have to be exactly spheri-
cal for this to be true? Near to the bottom of the bowl, what is the most general form
possible for the shape of the bowl in order to maintain the stability of the equilibrium
point at the bottom? In the general case, with a nonspherical bow] of arbitrary shape,
no analytic solution is known for the motion of the point mass.

Problem 2: (Bead on a rotating hoop) This problem concerns stable and unstable
equilibrium in a system with rheonomic constraints. Consider a bead of mass m moving
without friction on a circular hoop of radius R which rotates at angular frequency €2
about the Z axis as shown in Figure 1.11. There is one degree of freedom, described
by the coordinate 6.

a) Find the kinetic energy T and the potential energy V as functions of 8, 6.
b) Fromthe EOM, show that two cases exist: 1) for 2 < Qcrinica there are two possible
equilibrium points, & = 0, ; 2) for > Q.gica @ third possibility also can exist.
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Find the critical angular speed (£2.54.4) Of the hoop for case 2. Notice that 7, # 0
at the new equilibrium point in case 2, but 3¢ = 0. This proves that Equation
(3.17) doesn’t necessarily hold for rheonomic constraints.

¢) Make a Taylor series expansion of the Lagrangian to second order about the equi-
librium points. Find the stable equilibrium points in both cases and the frequency
of small oscillations about those points. For example, close to the point at 8§ = 0,
prove that, for small excursions in #, an equivalent Lagrangian is

L =6+ [s‘z! - %]93. (3.93)

Is the motion stable or unstable if the bead is put at # = (0? If it is stable, with
what frequency does it oscillate about the equilibrium point? Now do this for the
other possible equilibrium points. Be careful to make the expansion about the
point you want to consider. It is a little tricky about the third equilibrium point
that appears for sufficiently high speed rotation of the hoop, since the location of
the point depends on 2.

d) The bead is placed very near the bottom of the hoop (6 = 0), and the hoop rotation
speed is slowly increased from O to some value above the critical speed. Describe
in words what you would expect to see happen to the bead.

SHOs

Problem3: (Relationberween HandE) H = )_qu5-—L. Is H = E the total energy
for the forced SHO? Also discuss the case where a pendulum’s length is changing as
a known function of time: I(1).

Problem 4: (Gas oscillator) Suppose you have a chamber containing two different
gases, divided by a movable partition of mass m and area A. The partition is moved
a small distance Ax and then released. Assume the gas pressure for Ax = 01s F.
In general, the pressure P will change with displacement of the partition. Find the
frequency of small oscillations if the chamber is a) isothermal with PV = constant
and b) adiabatic with PV" = constant (y = %). For both cases, use the approxi-
mation that the oscillations are small enough to only keep terms of the lowest order.
Also, ignore the effect of the kinetic energy of the gases. You can either solve this
by finding the generalized equation of motion or by finding the force equation di-
rectly.

Problem 5: (Suspended mass) A mass m is attached to an elastic string which has an
unstretched length L and elastic spring constant k and is under tension T as shown in
Figure 3.13.

a) How far down does the mass hang when it is in equilibrium?
b) Now the mass is displaced horizontally from by equilbrium position by a length
Ax. Find the frequency of small oscillations for the mass after it is released. If
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FIGURE 3.13

Elastic string under ten-
sion T', with spring con-
stant k.

necessary use the approximation that the oscillations are small enough to allow
keeping only terms of second order.

DSHOs

Problem 6: (Damped pendulum) A pendulum has a period of 5 seconds. It is damped
so that the amplitude falls to one half of its original value in 100 seconds. What is the
Q7 What would the period be if the damping were not present?

Problem 7: (Self-resonant frequency of a capacitor) At high frequencies, simple
capacitors behave more like resonant systems than capacitances when placed in a
circuit. For a capacitance C, there is also a series inductance L and dielectric loss in
the capacitor, which behaves like a shunt resistance R (see Figure 3.14). In unscaled
variables, the differential equation for the charge g on the capacitor plates can be
written as

d’q L dg

q
+ + 1 = Ve (0). 3.94
dt? RCdt C sl G54

What is the resonant frequency wy if C = 10 picofarads, L = 20 nanohenries, and

Q O

=3

FIGURE 3.14
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R = 10,000 ohms? What is the Q? At very low frequencies the circuit does behave
like a pure capacitance, whereas at very high frequencies it behaves like an inductance,
and at its resonant frequency it acts like a pure resistance. Explain and justify these
statements.

Problem 8: (Tiwwomasses connected by a spring) Two masses m; and m» are connected
by a spring. When m; is held fixed, m, is observed to oscillate with a frequency w.
Find the frequency of linear oscillations when m is held fixed and when both masses
are free to move. You can neglect the effect of gravity.

Problem 9: (Second solution for critical damping) For the case of critical damping,
prove that

et — ' — Dte™, (3.95)

where D is a constant proportional to /€. Assume Q = 3 — e, € — 0. A, are the
two time constants for the overdamped oscillator.

Problem 10: (Critical damping for instruments) Critical damping is important in the
design of instruments. Suppose that, for example, you are designing a seismograph.
This is basically a long-period pendulum that responds to an impulsive force caused
by earth movements. We want the recorded impulse from an earth tremor to return to
the baseiine as quickly as possible. Compute the time for a pendulum excited by an
impulsive force to return to 1% of its maximum amplitude in the cases of underdamping,
overdamping, and critical damping. Choose a Q value to use for each case. Show that
critical damping is what you want to use in this application.

Problem 11: (Numerical simulation) Experiment with a numerical simulation of a
damped SHO on the computer. You can create such a simulation by integrating (3.29)
and plotting the solutions g(t) versus . See how the damping affects the decay of
the solution at very long times. Compare critical damping with overdamping and
underdamping,

Problem 12: (Toward a shorter pendulum) A pendulum consists of a mass M at the
end of a massless string of length D. It is free to swing in one direction only, so has one
degree of freedom, 8. The frequency of small oscillations is @y =,/%, with g being
the acceleration of gravity. Now suppose the string is very sfowly shortened by some
external agent. The length D varies only a little during the oscillation period. You can
assume that 8(r) = A cos wt, where A, w vary slowly with time but can be treated as
constants over times of the order of a single period of the swinging pendulum. D(¢) is
a given function of the time and is not a dynamical variable. To do this problem, you

can treat & as small, so, for example, sin(€) — #, cos(€) — 1 — %
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a) Find the kinetic and potential energies. Find the Lagrangian and prove that the
equation of motion is

. 2D ,
b + %9 + wgb = 0, (3.96)
where
Wl = g (3.97)

D

b) Notice that the total energy of the pendulum E = T + V is no longer constant in
time because there is a term proportional to ¢ in the EOM. The total energy also
does not equal H = t?'z—:;- — L. Explain why this fact could be deduced from the

form of 7. Show that E = H +mD’.

¢) Find "E from <2 "'H . Hint: Use the fact that L contains the time explicitly.

d) The enﬂrgy stnre:d in the pendulum oscillations Epna = Z(D*6* + Dgb?) =
%(gDA?), where A is the amplitude of oscillations and 6 ~ —wAsinwt. E >
E;ena because, even if the pendulum duesn t swing, kinetic and potential energy
both change. Part of your formula fﬂr vamshes if A = 0. This must be d—&'ﬂ
Find it, and average it over one uscﬂlatmn to get “=¢ . Here the “bar” means an
average over one complete period. Prove that

1 dEpm 1D
=—=—, 3.98

Use this formula to show that, for small oscillations, the energy stored in the
oscillations of the pendulum increases as j’uﬁ. no matter how we change D, as long
as we do it sufficiently slowly.

) Show that the amplitude A of oscillations is proportional to D3 .

The importance of this result is that EEE is a constant for any arbitrary variation of
the pendulum length D(¢), as long as it varies slowly enough so that we can assume
A, w are constant for at Jeast one period. Such a quantity, which remains constant
for sufficiently slow variations in a parameter of the problem, is called an adiabatic
invariant. This result played an important role in the early history of quantum theory.
What you have shown applies to any system near its stable equilibrium point and not
only to a pendulum.

Driven SHOs

Problem 13: (Plotting the response of a driven SHO) An SHO starts out at rest:
g =g = 0. Fort > 0, a driving force of the form

F(t) = sinat (3.99)

is applied for a time of 10 periods of the free oscillator (use scaled time units). Make
a plot of the energy stored in the oscillator after 10 periods versus the parameter a,
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solving the problem by numerical methods by integrating the differential equation of
motion. What value of a drives the oscillator to the greatest amplitude? Now assume
that the oscillator initially had some energy (i.e., that the initial amplitude was not
zero). Find out what happens to the stored energy for driving frequencies both slightly
above and below the resonance. Is it possible to extract energy from an oscillator as
well as store energy in it by driving it appropriately? Does your answer depend on the
phase of the drive signal?

Problem 14: (Aluminum chime) A good demonstration that allows us to “listen to
the Green’s function” can be made with a cylindrical rod constructed from a special
low friction aluminum alloy. The rod is supported at two points along its length. The
nature of the lowest frequency mode for transverse elastic vibrations is such that the
amplitude of oscillation vanishes at these two points for all times. If the center of the
bar is struck with a hammer, we hear a piercing note of a single frequency (say =~3.5
kHz), which is damped to a relative amplitude * after 10* oscillations. What is the
time dependence of the amplitude of oscillation at a fixed position along the bar after
the bar is struck? Does it obey the equation for the Green’s function? Explain.

Problem 15: (Checking the driven SHO formula) Prove that the result in Equation
(3.74) is correct. Also find the solution in terms of unscaled units. Find the oscillator
energy (averaged over one period) as a function of time and show that it is proportional
to 12,

Problem 16*: (Pulsed driving force} An undamped simple harmonic oscillator (w =
i, m = 1) is driven by a time-dependent force

Fnh=1, 0<r<T,. (3.100)

In this situation the oscillator is not excited for ¢t < 0.

a) Find q(t) after the force is turned off. Use the Green’s function.

b) Use the method of matching boundary conditions for ¢ and ¢ to find an explicit
form for ¢(t) at all times. Verify your answer to a). Hint #1: A particular solution
to the inhomogeneous equation of motion

§g+g=1 (3.101)

1S Gpaniculr = 1. You will have to match the solution you obtain at ¢t = #) =
Oand t = t, = T by using the solution to the homogeneous equation, with
F = 0. Explain how to do this. Hint #2: For ¢t > T, it is simplest to use the
expression g(f) = Asin(t — 7))+ Bcos(t — T'). Determine the constants A and
B by matching to the solutionfor0 <r < T.

¢) Find a simple expression for the energy E stored in the oscillator (£ = 5(g° +4?))
as a function of the pulse length T. Plot E(T). Give a physical reason why it
behaves the way it does.
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d) The change in the Hamiltonian for a system with a Lagrangian that explicitly
depends on the time is given by using the formula id?i = which was proved
in Chapter 1, Equation (1.68):

Eir

“aL
AH = —[ — dt. (3.102)
Iy

The Lagrangian is L = %{:?3 — g*) + g F(t). Find the relation between H and E.
Use (3.102) to obtain a simple way to calculate the stored energy as a time integral
from ty = 0 to t; = T in the general case of an arbitrary driving force F(¢). How
is your result related to the work [ Fdg done by F on the oscillator? Assume the
force is zero outside of the time interval 0 < r < T. Apply your result to the case
F = 1 and check that you get the same result as in ¢).

Driven DSHOs

Problem 17: (Two frequencies) Prove by solving (3.76) explicitly for the DSHO that
there are two frequencies present initially, but that the free oscillator frequency is
damped out.

Problem 18: (Resonant amplitude is a circle) Prove that, with certain approximations
valid for high Q, the trajectory of the imaginary (out of phase) part of the solution for
the sinusoidally driven DSHO plotted versus the real (in phase) part is a circle in the
complex amplitude plane.

Problem 19: (Superposition)

a) Prove using superposition that the solution g(¢) to the DSHO for a “square” drive

pulse of length T and unit magnitude lasting from —% to Lis, forr > I,

:f(aﬂ+ %I“’[ (’*T)] ZIQ

T
X $in [m’(r + E)“ minus the same thing with T — -T.
(3.103)

b) Find the discontinuity in § at t = —T /2?7 How does it arise?
¢) If the force pulse is very short (i.e., T — 0), prove that g(¢) — T G(¢).

Problem 20: (Green's function for a damped oscillator) Prove that the Green'’s func-
tion for the damped oscillator without scaling the time described by the equation (wy =
the oscillation frequency of the free SHO)

i+ %a + wiq = 8(t) (3.104)
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1S

l n:-lﬂ—qr'!
e sina(t — 1), £t >0,

ﬂ‘l F“IIE”.

where o = mﬂ_‘,fT—%; . Is this the only possible choice for the Green’s function?
Explain.

Problem 21: (Driven critically damped oscillator) A critically damped oscillator has
Q= % The free oscillator obeys the homogeneous equation of motion § +2¢ +g = 0.
The two free oscillator solutions are ¢™ and te™".

a) Drive this oscillator with an external driving force that is a discontinuous step at
the timer = 0, afterwhich F = |, (Fort < 0, F = 0,) Assuming thatg = ¢ =0
for t < 0, find an explicit solution for t = 0.

b) Consider a different external driving force:

0, t <0,
Fi1)= (3.106)
cost, (=10, .

Again, g = § = 0 fort < 0. Find the form of the steady state (t >> 1) solution
by first solving for g(¢) for the complex driving force F(r) = ¢", ¢ > 0, and then
finding the physical displacement of the oscillator g (1) for F(r) = cost. What
is the relative phase between the driving force and the oscillator response m the
steady state?

¢) To find the exact solution for all positive times you could use a Green’s function
or you could match boundary conditions at 1 = 0. Use the boundary condition
method to find the transient sofution. Combine this with the result of part b to find
the oscillator’s total response to suddenly turning on a cos t driving force at t = (.
Make a sketch of ¢(1) for 0 < ¢ < 4. For what time is the response maximized?

d) The derivative of a step function is a delta function. From this fact, find the
response of this oscillator to a delta function impulse at 1 = 0. Then find the
explicit form of the Green’s function G(¢ — t'). Write the oscillator response as
an integral over r'. What are the limits of integration? Explain. (You don't need
to carry out the integral.)

Nonlinear Oscillators:

Problem 22*: (Nonlinear oscillator with cubic restoring force) Find a Lagrangian
that will lead to this equation of motion:

If the mass m = 1, find the kinetic and potential energies. Plot V(g). the potential
energy. Find an expression for the total epergy in terms of ¢, ¢. Is the total energy
constant? Why do we say the oscillator i1s nonlinear?
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Problem 23*: (Cubic potential) Suppose that you have one-dimensional motion with

m = 1. The potential energy V(g) = —10q + q°.

a) Make a graph of this potential for both positive and negative g. Locate the equilib-
rium points and label which are stable (or neuotral) and which are
unstable.

b) Find the period of small oscillations around the stable equilibrium point(s).

¢) Solve the equation of motion numerically. At some point, the trajectory will
become unbounded. Find where this occurs, that is, what initial conditions lead
to instability? What energy?

d) What is the total energy in terms of ¢ and ¢? Is it constant? What do the curves
of constant energy look like?



CHAPTER FOUR

ONE-DIMENSIONAL SYSTEMS:
CENTRAL FORCES AND THE KEPLER PROBLEM

OVERVIEW OF CHAPTER 4

One of the greatest advances in science was Newton’s discovery that the force of
gravity is a universal force that not only causes terrestrial objects to fall but also guides
the Moon around the Earth and the planets around the Sun. It was not previously
understood that the Moon and planets — indeed the universe — obey the same physical
laws as terrestial objects. We take this for granted today, but it was a revolution in
human understanding, one from which there has been no turning back.

Our goal in this chapter is to show how this problem — the Kepler problem of plane-
tary orbits — can be solved using the powerful analytical techniques of Lagrangian me-
chanics. We begin by considering the general solution for motion in a one-dimensional
potential V(g). Next, we consider a six-dimensional system of two isolated point
masses that interact by a mutual force directed along the line between them. This
applies to a wide class of physical problems, with results of general significance. By
using symmetry properties we can drastically simplify the problem down to a single
equation involving only the radial distance between the two masses. At this stage, by
introducing the concept of equivalent potential, the problem is reduced to one with
only one degree of freedom. Proceeding further, we restrict our consideration to the
force of gravity, a force that diminishes according to the inverse of the square of the
distance between the attracting bodies. We derive the possible shapes of curves traced
out by masses that are attracting each other by gravity. These orbits turn out to be
conic sections: ellipses, parabolas, or hyperbolas, a result first shown to follow from
the inverse square force law by Isaac Newton in 1687.

4.1 THE MOTION OF A “GENERIC” ONE-DIMENSIONAL SYSTEM

First let’s deal with the general one degree of freedom problem that has a
Lagrangian L(g, ). Notice we exclude the case of an explicit time dependence in the
Lagrangian. Otherwise our treatment is completely general. Any 1-D problem* can be

* The ﬁbhreviatinn “1-D” will stand for “one degree of freedom,” “2-D” for “two degrees of freedom.” and
S0 0N,
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solved in principle by expressing the answer as an integral. From this integral, the time is
obtained as a function of displacement #(g). It is the inverse of what one usually means by
a “solution” (i. e., an explicit form for ¢(7)). Obtaining the inverse solution as an integral
is called “solution by quadratures.” From this integral for t(g), ¢(t) cannot always be
expressed in analytic terms, however. We will give an example of this for the pendulum.

Qualitative Information About the Solution

Qualitative information about the solution to any such 1-D problem can be deduced
by graphing the potential, and then considering what happens as a function of a variable
parameter: the total energy E. Suppose the energy E is given by (the coefficient of ¢ is
set to % by scaling the time variable appropriately):

[
E=T+V=Ec}z+1"(q}. (4.1)

Since the Lagrangian doesn’t involve the time, the Hamiltonian H is a constant of the
motion. For scleronomic constraints or any constraints in which 7" is a quadratic form
in the generalized velocities, H = E, energy E is a constant that depends on the initial
conditions. Solving Equation (4.1) for the velocity we get |

G = +V2T = +/2(E — V(q)). @

The kinetic energy is the difference E — V(q) between the total energy and the potential
energy. A physically admissible solution with positive kinetic energy is only possible if the
total energy obeys the inequality E = V(g). If T = 0, the motion momentarily stops and
then reverses direction. This is called a “turning point.”

In Figure 4.1, at the turning points C and D, E — V = (; hence ¢ = 0 there. The point
marked A is an unstable equilibrium point, while the point marked B is a stable equilibrium
point. Near the stable equilibrium point, the potential is nearly parabolic. For very low
energies such as E,, the motion is very nearly like a simple harmonic oscillator. As the

Vig)

FIGURE 4.1
A) Unstable equilibrium point; B) stable equilibrium point; C), D)
turming points for E = Eyp. To find the kinetic energyuse T = E- V.



4.2 THE GRANDFATHER'S CLOCK 125

energy increases above Ej, the potential departs from the simple parabolic shape, but the
motion wil] still be oscillatory. The maximum amplitude of the oscillation is determined
by the turning points, hence the total energy E. The period will depend on E only if the
potential deviates from a parabola. For E = E,, one of the turning points is the unstable
equilibrium point, so in principle the period becomes infinite — the system gets stuck forever
at this point. If £ = E,, even slightly, the motion is no longer periodic. As g becomes
larger and more negative, the motion becomes unbounded, since the kinetic energy rapidly
:ncreases. The system “falls off the edge” of the potential and never returns to the vicinity
of the unstable equilibrium point. All this information can be deduced from a graph of
V(g) and the total energy of the system,

QUESTION 1: Potential Graphs Explain the analogy between a particle on a real hill
and the problem of motion in a potential of the same shape as the hill. The particle
on a hill is acted upon by gravity. All motion is frictionless. Is the analogy perfect?
Especially consider whether the two cases have the same acceleration and whether the
mass of the object makes a difference. Now repeat the question for a particle in a real
valley versus a potential in the shape of a valley.

Finding the Solution
Since E is constant, a solution by quadratures is obtained by solving for 4:
g =+J2E - V() so 44 = dt (4.3)
+V2E -V(g)
The time ¢ to move from g = 0 to g(t) is:
q da’
= fn JXE = V@) 9

The prime on ¢' means it is the variable of integration. The expression (4.4) gives the time
as a function of the displacement: #(g). In principle, (4) must be inverted to obtain the
solution g(r). This is not always possible, but we consider the problem to be solved. A
problem solved as an integral is said to be solved by “quadrature.” In the more general case,
Equation (4.4) may not be analytically integrable but can be used to get an approximate
solution. If the potential is symmetric and the integration is from the stable equilibrium
point to a turning point, then r = % equals one quarter of the oscillator period. (Why is
this true?)

4.2  THE GRANDFATHER'S CLOCK

The “grandfather’s clock™ was invented by Huygens. It is a nonlinear pendulum,
that is, one in which the restoring torque is not approximated by €, but the exact form,
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V = l-cos(0)

[ ]

FIGURE 4.2

sin @, is used instead. Thus we no longer assume that 6 is small. For practical purposes we
may wish to know how accurately a grandfather’s clock keeps time when the amplitude of
the motion changes, since its period does depend on its amplitude.

The pendulum has a potential energy proportional to the height of the pendulum above
the point where V = 0. If this is taken to be & = 0, then V(8) = mgl(] — cos 8). Making
use of the fact that E is a constant of the motion, the equation of motion has the general
form of Equation (4.3) above. By choosing appropriate units ﬂf tlme and energy, we can
effectively set mgl = | and work with a scaled Lagrangian L = % — (1 —cos 8). The total
energy in these units is

: 2

E = %— + (1 — cos ). (4.5

The exact curve of (the scaled) V(@) versus @ is shown in Figure 4.2. There are
equilibrium points wherever the generalized force (torque in this case) is zero (i.e., at
& = 0,m, 2n,3m,...etc.). The points at odd multiples of m are unstable equilibrium
points; those at even multiples of 7 are stable equilibrium points. The difference is
whether the restoring force for a small displacement acts either to magnify or to decrease
the displacement, that is, whether 2% ﬂ.ﬂ?_ 1$ <0 (unstable) or >0 (stable). Draw a horizontal
line representing the total energy E across Figure 4.2. Then consider what type of motion
is possible for this value of E. There are three distinct types of motion. For E,, the total
energy >2, and the angle € can increase without limit. This corresponds to a pendulum
swinging freely round and round (called “rotation™). For E;, the total energy <2. Here
the motion in # must be bounded. The pendulum oscillates between the two points where
E =V (T =0) (i.e., the turning points of the motion). This periodic motion is called
“libration.” The regions where T < () are called classically forbidden regions. (In quantum
mechanics, a particle can penetrate these forbidden regions to some extent.) Finally, we
might have E., where E = 2, and the pendulum just manages to reach the top of its swing.
For this case, which is the boundary between periodic and aperiodic motion, the period
becomes infinite. The condition that defines this boundary between oscillation and rotation
is determined by the total energy E. If you picture a pendulum, it is certainly intuitively
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clear that whether it swings round and round or just back and forth is determined by the
initial kinetic and potential energies. It is only the total energy that separates libration from
rotation. The grandfather’s clock is a common example of a nonlinear pendulum.

Phase Portrait of the Nonlinear Pendulum: Curves of Constant £

Next we will make a graph that will give valuable qualitative information about
the motion in a geometric form. For 1-D motion, ¢ is plotted on the } axis and g is plotted
on the X axis. A two-dimensional picture of the motion is the result. This 2-D space is
called phase space, a concept to be more rigorously defined after we introduce Hamiltonian
theory. (Phase space is 2N -dimensional if there are N degrees of freedom.)

For this oscillator, we will be interested in 6 versus 8. First make the approximation
of small amplitude: (8 + 6 = 0). At a certain fixed time, plot a single point on this graph
to represent the current position and velocity of the oscillator as shown in Figure 4.3. This
point will move as the time changes. This is the phase trajectory. This “path” of the system
1s traced out as time increases. Because the total energy of the oscillator H—-!"'-”—I is constant,
the path in the 2-D phase space is a circle. The phase trajectory moves along the circle in
a clockwise direction. Different energies of the SHO correspond to different radii for the
circle in phase space. Now drop the restriction to small angles. For larger amplitudes, the
phase portrait is more complicated.

Figure 4.4 is a plot of the phase trajectories for the three energies: E < 2, E = 2, and
E > 2,

QUESTION 2: Phase Trojectories Two phase trajectories can never cross. Prove this
statement. An exception may occur at an unstable equilibrium point. Why does this
seem possible? This is not true however. If you look closely at the area around an

6 9 6
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__ 8 _;;__q_._._ —}- 6 1'..._._..,,_ __} -0
NG N % N
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0

/\ separatrix

/

FIGURE 4.4

Phase portrait of the nonlinear pendulum (4.5) for
different energies. The separatrix corresponds to
E = 2. It is the boundary between libration and
rotation. Inside the separatrix, £ < 2 and outside
E = 2.

unstable equilibrium you will see hyperbolas instead of an intersection. Now explain
why this is really the case.

How To Calculate the Period for the Grandfather’s Clock

Exact analytic solutions to (4.4) can be found for the nonlinear pendulum using
elliptic functions., These are not so interesting to us, since they are hard to generalize to
other problems. A good approximation to the motion is to assume that the nonlinearity is a
small perturbation, which will aiso reveal how the frequency changes with amplitude. We'll
switch the dependent variable to g from 6 to emphasize the generality of this approach.
For one-dimensional motion (hence 2-D phase space) we have an EOM from (4.1) of

g+ EE = 0, (4.6)

Since we have scleronomic constraints in which 7 is a quadratic form in the generalized
velocity, the total energy E is a constant.

Let’s assume that V(g) = V(—g), that is, that the potential energy is an even function
of the displacement. The Taylor series for a general symmetric (even) nonlinear potential
must have the form:

-
V@) =%+ 29" + 0lg") 4.7)
We can always choose the units such that the coefficient of g is % The unknown constant
€ is a measure of the strength of the nonlinear part of the potential energy versus g. The

term proportional to ¢* is an “anharmonic” term, contributing a nonlinear part to the EOM.
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All terms in V (g) of order higher than g* will be ignored. We will restrict ¢ to amplitudes
where this approximation is valid.

We want to know the variation of the oscillator period with amplitude, first for a generic
nonlinear oscillator of this type, then for the specific case of the grandfather’s clock. If that
is all we want to know, we don’t have to resort to full perturbation theory. (If, on the other
hand, we also want to know the detailed motion as a function of time, we must use the
Lindstedt—Poincaré perturbation theory, which is explained in Chapter 10.) Anharmonic
oscillators play a central role in producing chaos, the subject of Chapter 11. We know that

1 €
E=-@"+¢)+-¢" 4.8
5@ +49)+ 39 (4.8)
Using (4.4), we integrate from ¢ = 0 t0 § = g, t0 get the time for ; of a period. Thus,
without any further approximation, if T is the period

Frma
I _ dq . (4.9)

4 Jo J2E—¢*-54°

Several tricks can be used to simplify this integral. First of all, note that £ = constant, so
E = 3q2.. + $G;.,. Substituting this expression into (4.9), and making the substitution to
a scaled variable x, g = g X, We get

(4.10)

E__f' dx
o do - a4 S - x

If we pass over to the limit of a linear system, € — 0, the period becomes independent of
Gmax. Just as we expect for a SHO. Next, factor the term under the square root: 1 — x* =

(1 — x*)(1 + x?), and make a power series expansion in the parameter ¢’ =

1 1
V1 —x? (ﬁ»l—s’(l +.r.1))

1 (1__{14;-.1'2}4?’
Vv1-—x? 2

Finally, to evaluate the integrals, make the substitution x = sinu, dx = cosu du:

—

- 3;3(1 + x%)%€e” + O{e"]) . 4.11)

: / 3¢”
sz du|1= S0 +sinu)+ (1 sinfuf 0| (@12)
4~ Jo 2 8

The final result for the period of a nonlinear oscillator with a ¢* term in V(gq), after doing
the integrals, is

3 57
T=2r|1l—=€+—€?+-..1}. 4,13
:r( 4E+64£ + ) ( )
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Notice that, if €’ > 0, the period gets shorter for larger amplitudes. This is what we would
expect for a “stiff”” spring (i. e., a system that has a restoring force increasing faster than
linearly with displacement). The method used here is quite general and could be applied
to almost any type of symmetric 1-D motion that deviates only slightly from a simple
harmonic oscillator.

Return to the case of the grandfather’s clock. If # is not too large, we can take the
next term in the Taylor series beyond our “small angle™ approximation, which leads to
the harmonic oscillator equation. The Taylor series for cosf is 1 — t’; + g} + .... Thus
Vo= mg![”—;- -~ "’2‘% + - - -) for the grandfather’s clock. Comparing to (4.13) we see that

l

€ = —¢,80

H?
T=2n~(|+ i":+) (4.14)

The period is longer for large amplitudes because the potential is “soft.” We might have
guessed this from the physical observation that the restoring force, sin#, is less than & for
large angles.

4.3  THE HISTORY OF THE KEPLER PROBLEM

Ptolemy versus Copernicus

The most famous problem ever solved in classical mechanics is the “Kepler Prob-
lem” - the detailed description of two bodies interacting by their mutual gravitational
attraction. This describes planetary motion around the Sun, the Moon orbiting the Earth,
etc. It is probably only a slight exaggeration to say that Newton’s mechanics was invented
to solve this problem.

To obtain a historical perspective on why the solution of this problem was so important
to science, we recall that a geocentric theory of observed motions of the planets with respect
to the stars, based on observations between 127 and 151 A.D., was published by Ptolemy
of Alexandria in a collection of books called the Almagest. Ptolemy invented the idea of
epicyles and the equant, as illustrated in Figure 4.5.

It should be emphasized that this theory, which was taught in universities for more than
1,500 years, gave a rather accurate, but somewhat complicated, way to calculate planetary
orbits around a fixed Earth. Later, the authority of the Church was added, which found
justification in the Holy Scripture for the geocentric point of view.

Heliocentric models had been introduced by the Greeks, but these were rejected on the
grounds that the Earth was “obviously™ at rest, not moving at thousands of miles per hour.
The heliocentric theory also could not explain why the Moon would not be left behind
in space if the Earth were moving. An objective person might wonder why Nicolaus
Copernicus (1473-1543) would invent a new theory in which the planets orbited the Sun
rather than the Earth. His heliocentric theory was published in the year of his death.
Copernicus worked out the relative distances of the planets from the Sun to surprising
accuracy, but he was wrong about absolute distances by more than one order of magnitude.
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FIGURE 4.5
Ptolemy’s theory of planetary orbits.

The usual explanation for why the Copernican theory was preferable to the older Ptolemaic
theory was that the orbits, being circles, were much simpler. But, in order to reproduce
the observations using circles as his basic solar orbits, Copernicus had to introduce a set
of thirty-four circles for the six known planets — a more complex theory than Ptolemy’s.

The forward to Copernicus’s book carefully explained that this theory could be consid-
ered, not as the way things really are, but as a mathematical hypothesis to allow conceptually
easier calculations. There was even a dedication to the Pope, since Copernicus himself
was a canon of the Church. However, this theory was ridiculed and rejected. There is even
a story that Martin Luther himself called Copernicus a fool!*

Kepler and Galileo

This historical background makes it even more astonishing that the work of Kepler
took place at all. Following many years of extremely detailed and careful astronomical
observations by Tycho Brahe, Johann Kepler established three empirical laws, given in
Table 4.1, describing such motion. Kepler, who started in 1601, spent over five years
analyzing the motion of the planet Mars. He worked for almost a year to remove a
discrepancy of only eight minutes of arc between the observations and the Ptolemaic
theory of planetary orbits. The elliptical nature of planetary motion around the Sun
was discovered in 1606 and published in 1609. Kepler's third law was published in
1619.

Galileo was a contemporary of Kepler. After being convinced by observation of
the phases of Venus and the moons of Jupiter, Galileo, contrary to Copernicus, insisted
publically that the heliocentric theory was indeed the actual way the solar system worked.
In the climate of the times, with religious wars spreading throughout Europe, this view was

* See Alioto, A History of Western Science, second edition, p. 184,
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TABLE 4.1 KEPLER'S LAWS

First Law All planetary orbits are ellipses, with the Sun at the focus.

Second Law The line joining the planets to the Sun sweeps out equal areas in
equal times.

Third Law The square of the period of a planet 1s proportional fo the cube

of its mean distance to the Sun.

considered to be dangerous to established authority. Copernicus’s book was placed on the
Index (forbidden books) in 1616. Here is a brief excérpt from an account of the infamous
heresy trial of Galileo in 1633:

On 21 June Galileo was examined as to intention; he stated that until the 1616 decree he
had considered the two world systems to be freely debatable, but that thereafter he had
adhered to the fixed earth and movable sun; in his book he had considered no argument as
conclusive and the decision of *sublime authority” as binding. Asked whether he spoke
truly, on pain of torture, he replied: ‘1 am here to obey, and have not held this opinion
after the determination made, as I said.’

On 22 June the sentence of life imprisonment was read to Galileo at a formal ceremony
in the presence of the cardinals of the Inquisition and witnesses, after which he had to
abjure on his knees before them.”

A Story About Isaac Newton

Isaac Newton was born in the year of Galileo’s death, 1642. The original work on
Newton’s theory of gravitation was developed about fifty years after Kepler's laws were
published, and all of Kepler's purely empirical laws turned out to be consequences of either
a central force or the inverse-square force law of gravity. We quote from the book The
Birth of a New Physics by 1. Bernard Cohen:

... Thus it came about that Robert Hooke, Edmond Halley, and Sir Christopher Wren,
England’s foremost architect, met to discuss the question: Under what law of force
would a planet follow an elliptical orbit?. . .

Hooke and the others thought it might be a force falling off as the inverse of the square
of the distance from the planet to the Sun. Wren offered Hooke forty shillings if he could
prove it within two weeks. Nothing was then heard from Hooke. We continue the quote
from the book by Cohen:

In any event, by January 1684 Halley had concluded that the force acting on planets
to keep them in their orbits ‘decreased in the proportion of the squares of the distances
reciprocally,” but he was not able to deduce from that hypothesis the observed motions
of the celestial bodies. . . In August 1684, Halley decided to go to Cambridge to consult

* 8. Drake, Galileo At Work, p. 35].
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Isaac Newton. On his arrival he learned the *good news’ that Newton *had brought this
demonstration to perfection.” Here is DeMoivre’s almost contemporaneous account of
that visit:

"After they had been some time together, the Dr. [Halley) asked him what he thought
the curve would be that would be described by the planets supposing the force of at-
traction towards the sun to be reciprocal to the square of their distance from it. Sir
Isaac replied immediately that it would be an ellipsis. The Doctor, struck with joy, and
amazement, asked him how he knew it. Why, saith he, I have calculated it. Where-
upon Dr. Halley asked him for his calculation without any further delay. Sir Isaac
looked among his papers but could not find it, but he promised him to renew it and
then to send it to him. Sir Isaac, in order to make good his promise, fell to work
again, but he could not come to that conclusion which he thought he had before ex-
amined with care. However, he attempted a new way which, though longer than the first,
brought him again to his former conclusion. Then he examined carefully what might
be the reason why the calculation he had undertaken before did not prove right, and he
found that, having drawn an ellipsis coarsely with his own hand, he had drawn the two
axes of the curve, instead of drawing two diameters somewhat inclined to one another,
whereby he might have fixed his imagination to any two conjugate diameters, which
was requisite he should do. That being perceived, he made both his calculations agree
together.’

Spurred on by Halley’s visit, Newton resumed work on a subject that had com-
manded his attention in his twenties when he had laid the foundations of his other great
scientific discoveries; the nature of white light and color and the differentitl and integral
calculus. ..

Newton’s theory was published in the 1687 book Philosophiae Naturalis Principia
Mathematica — Mathematical Principles of Natural Philosophy. However, Newton had
actually done the work described above in 1665-66, while Cambridge University was
closed due to the plague. More than twenty years passed, while it lay among his notes. He
only published the work after much urging from his friend Halley. Writing the Principia
took two years. His famous three laws of motion appeared for the first time in this
book.

4.4  SOLVING THE CENTRAL FORCE PROBLEM

Returning to the present, we are interested in applying the tools we developed
earlier in this chapter to the problem of motion due to gravity. The starting point is to
consider two bodies interacting via a central force as shown in Figure 4.6. A central force
is one that depends only on the distance r between the two bodies and is directed along the
line between them. It follows that V = V(r) for this type of force.

M,

M,
.le_‘_ “F ®

FIGURE 4.6
Central force.
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Systems of Mutually Attracting Bodies

Gravity (and any other inverse-square law force) has the property that a spherically
symmetrical mass distribution acts as if all of the mass were concentrated at the center of
the body. This greatly simplifies the problem of planetary motion, since the planets can be
treated as if they are point particles.

Under what conditions can the motion of N point masses be solved exactly? It turns out
that this can be done for N = 2 if the force is a central force between the two mass points.
For a wide variety of different central potentials, the integral obtained can be expressed in
terms of circular or elliptic functions. This is called the “two-body problem.”

But if N > 3, the problem has no solution, even by quadratures. The famous “three-
body problem” (e.g., Earth~Moon—-Sun) was studied before 1900 by Poincaré, who proved
that no analytic solution was possible. This work led Poincaré to a discovery of chaotic
dynamics, the importance of which was not fully realized until the late 1960s, almost 300
years after Newton. (See Chapter 11.)

Nevertheless, we can assume that the two-body problem is a good starting point for
studying three-dimensional motion. We will specialize to a gravitational interaction later.
At the start of solving a problem with more than one degree of freedom, every symmetry of
the problem should be exploited fully to reduce the number of degrees of freedom. We will
show how the symmetries of the problem allow reduction of the degrees of freedom from
the original 6-D down to a 1-D problem, which can then be solved by quadratures. What
we mean by “reduction” is that five of the six degrees of freedom equations of motion will
become trivial,

Motion of the Center of Mass

We can predict the motion of the center of mass of the fragments of an exploding
artillery shell without knowing the internal forces released in the explosion. This is an
example of the general theorem that the center of mass of an entire system behaves as a
single particle under the action of external gravitational forces.

Use the notation r, M, for the position and mass of “particle” number 1 as shown
in Figure 4.7. ry, M, denotes the same for particle number 2. The relative coordinates

FIGURE 4.7
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r = r; — 2. In the most general case, the Lagrangian is

1 ) 1 W, - - - -

EMH', + EM:FE = Vet 1(F1) = Vexr,2(r2)} — Vialry, 72). (4.15)
Any interaction between the two particles V), can depend only on the difference between
their positions, 7y — 7. This is not true for external forces expressed by V. above. If the

interaction force is a central force, V;, can only depend on the magnitude of r, — r,, which
we call r.

QUESTION 4: External versus Inferaction Forces 1 Prove that the statements above are
true: 1) The interaction forces between two particles depend only on the difference be-
tween the particles’ positions. 2) External forces can depend on the particles’ absolute
positions as well.

The Case of No External Forces

Suppose V.u = 0 for both particles, so that the only force is the one between
particle 1 and particle 2. Then it must be true that the Lagrangian does not change if we
arbitrarily translate the origin of our coordinates. This means that we can add a constant
vector to both 7, and 7, without changing the Lagrangian:

=1 +a,
i (4.16)
raz —» Fz‘l‘&;

QUESTION 5: External versus Inferaction Forces 2 'Why would Equations (4.16) change
the Lagrangian of the system if there were external forces? Give an example.

Since the Lagrangian is a function of the coordinates and the velocities of both particles,
and a is an arbitrary constant vector, we have

L =L@, Foty,F2) = L +8,Fs+a,F1,72), 4.17)

definition of translation invariance

Let’s consider a special case of translation invariance: an infinitesimal translation. Add a
vector €a to the coordinates of both particles. Here € will be made arbitrarily small, while
a is an arbitrary constant vector. If we expand the translated L in a Taylor series in €, we
get

LG+ €d, Fr+€d, 71, F2) = L1, Fo Fro Fa) + €8 - (Vy + Vo)L + O[€?]  (4.18)
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(V, = ai; . H::. , ag. , etc.). Since a is arbitrary, the invariance of L (4.17) implies that

Taking only the x component of this equation, for example, we get

al. oL
= 0. 4.20
Dx T 9x; (4.20)

The same equation holds for the y and z components. From the Euler-Lagrange equations
and the definition of momentum p = % (1.70), we get

dpx _ gL dpa, alL

dt  oxi.  dt  9xy 4.21)
Therefore
dpP ” ..
d*:“" =0, Puw=p,+ p» (4.22)

The significance of this proof is that we have used nothing but the transiation invariance
to find the constants of the motion P,,. After you have read Chapter 5, you will recognize
that this is a special case of Noether’s theorem, which is used to find a constant of the
motion from an infinitesimal transformation.

Eliminate the Center of Mass Motion

By the reasoning above, we have conservation of the total system momentum, that
18,

d ﬁ total d - -
I [Mry + Myry) = 0. (4.23)
This means that, using the definition of center of mass,
Rem = 4.24
M+ M, (4.24)

maoves like a free particle (i. e., with constant velocity).
Change variables from 7y, 7> to Ry, T = F| — F». Solving for the inverse relation gives
ri, r2 interms of Rom. F:

FI = E:m + %F, “2 = Ecm - %F* {425}
(Note that M = M, + M,.) Calculate the kinetic energy:
] = 1 f MM\ .
T = EMRﬁm + vanishing cross term + > ( :H E) . (4.26)

—
L
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The reduced mass pu is defined above, Note that

MREm +zur —Vir)=Lem + L rerative. (4.23}

(Remember Vi (lry — r2) = V(r).)

QUESTION 6: Kinetic Energy  Fill in the steps in the derivation of (4.26) and (4.28).
With no external forces, R are ignorable coordinates, since they do not appear in L.

Hence ﬁcm is constant. We will mentally transform into the center of mass frame* and
adopt our new Lagrangian:

1.
L = Lutuive = 5 ur — Vir). (4.29)

From this point of view, we can treat the center of mass as being at rest, thus eliminating
half of the six degrees of freedom at a single stroke. The ability to do this rests on the fact
that we assumed no external forces. However, some special external forces — for instance,
a uniform gravitational field — also allow separation of the center of mass and relative
motion into two unrelated pieces. A uniform gravitational force on both particles allows
this separation because Vegerna = M1 82) + m282: = MgZ.p.

Angular Momentum Is Conserved for Central Forces

If the potential energy of interaction between the two particles depended on the
direction of F, — F, it wouid not be rotationally invariant. This could only happen if there
were a preferred direction in space. Since we’ve already assumed a central force, which
has no preferred direction by definition, we can assume rotational invariance. As a counter
example, if our particles had internal degrees of freedom, like a spin § or a magnetic
moment, rotational invariance would not follow automatically from the assumption of no
external forces. (We could have a term in the Lagrangian like S -7. This is invariant only if
we simultaneously rotate both the spin and the coordinates together.) But we do not want
to consider such complications here. In this case we conclude

no external forces < translational invariance

& Vir, r) = V(r — 1) (4.30)

* The center of mass frame is defined as the reference frame in which the velocity of the center of mass is
ZET0.
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plus only central force <> rotational invariance
& V(Fy —R) = V(F — Rl = V(). (4.31)

The term “central force” thus means that the interaction between the particles doesn’t
depend on either their absolute spatial position or orientation but only on the distance
between them.

In Cartesian coordinates, the square of the velocity is

ds\* .
(3) =7 = +ysd, @32

Going over to spherical polar coordinates (r, 8, ¢), the element of arc length (“line element™)
is

ds’ = dx* +dy’ + dz* = dr* + r*d6* + r’ sin* 0d¢’. (4.33)

We can get the kinetic energy T = %n(j—j]z directly from Equation (4.33). This in turn
enables us to write L (4,29) in the new coordinates without worrying about Jacobians:

[ = %p{iz + 120" + ri¢” sin? 0) — V(r). (4.34)
spherical polar coordinates

We can see from Equation (4.34) that, due to the central force, ¢ does not appear in the
Lagrangian so it is an ignorable coordinate:

py = — = uripsin’ @ = constant = /,. (4.35)

This constant of the motion, I, is the z component of the angular momentum, as can
be seen from Figure 4.8. The orientation of the coordinate system is completely arbitrary
because of the rotational invariance, so we could reorient the system so that the angular
momentum / has the x, v, z components (0, 0, [,). Thus, for this orientation,

I =1, k = constant, (4.36)

where k stands for a unit vector along the z axis. Hence rotational invariance implies that all
components of the relative angular momentum in the center of mass system are constants.
In Chapter 5 we will use Noether’s Theorem to reach the same conclusion from a more
general viewpoint, as a special case.
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X

E!GURE 4.8 _
| = ur x ¥. l. = j,.t.l"gr:* sinfl = ml sin? A,

QUESTION 7: Constant Angular Momentum !  Explain how we used the fact that ¢ is
ignorable to arrive at the conclusion that the total angular momentum is a constant,

QUESTION 8: Constant Angulor Momentum 2 An alternate method of proving that the
relative angular momentum in the center of mass system is a constant is to show that
%{F X p) is zero, where 7 is the distance between the particles and p is defined as
p = ur. Prove that this definition of 7 is consistent with Equation (4.35) and that
I =F x p is constant for the Kepler problem.

There are two consequences of angular momentum conservation:

a) The entire motion takes place in a plane.

b) “Equal areas are swept out in equal times.” This is the second of Kepler's Laws.
As an empirical observation, the second law proved (with a little hindsight) that the
forces between the planets and the Sun are central forces. It has nothing to do with
the specific character of gravitational forces, except that they are central forces.

To prove a), we use the following argument: [ is a constant vector equal to ¥ x p. This
cross product implies that p and r must be perpendicular to both each other and I. Thus
the motion of 7 and 7 must be in a plane perpendicular to I, and remain that way for all
time, i. €., § = 0. Since / is defined to be along the z direction, this also means that§ = 3.

To prove b), we make use of & = 7 for all times. As seen in Figure 4.9, the element
of area swept out in df is

dA = %rzqfrdl; (4.37)

From (4.35) ur’¢ =1 is a constant (sin® = 1), which proves the assertion b).

Angular momentum conservation has been used to find simple equations for two out
of the three remaining degrees of freedom. We have eliminated 6 from the problem, and
we can find ¢(t) by an integration once r(¢) is known. There is still one more equation to
find and solve, however.
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FIGURE 4.9
Note that dr = r¢ dt. Area of shaded region, A = 3’_; (area of parallel-

ogram) = Irlqﬁ dt.
The Equivalent 1-D Problem

We wish to use / = constant to eliminate all reference to 6, ¢ in our Lagrangian.
To summarize, angular momentum conservation has led to the following simplifications:

) , l
ﬁ"ﬂﬂ'i 63'2—, fnﬁ {433)
The order in which you now proceed is important. You can find the energy and eliminate
 using angular momentum conservation. If instead, you find the Euler-Lagrange equations
from the Lagrangian, do not first substitute for ¢ in the Lagrangian. The result will be a
sign error in one of the terms. This is due to the fact that the Euler-Lagrange equations
are derived under the assumption of independent variations of each coordinate. They are
no longer independent, once Equation (4.38) holds.
Since L (4.34) is a quadratic form in 7, §, ¢ and does not contain explicit reference to
the time:

] ] .7 .
H=E=2T~L= E,u(ﬁ + 1260 + rsin? 04°) + V(). (4.39)

Using (4.38), we have

1 2
E=—ui*+ + V(r). (4.40)
2 2ur?
""-'—"""-'-.--_"'
E'l-",,ﬂ

You may have derived instead an “effective potential” V(r) — 2 —— but this would be due
to the sign error caused by the incorrect procedure mentioned abﬁve ~ the minus sign is

wmng' The correct procedure will gwe a plus sign fm' the “angular mﬂmentum barnar

L - force.




4.5 THE SPECIAL CASE OF GRAVITATIONAL ATTRACTION 141

We realize from the derivation that the angular momentum barrier comes from the Kinetic
energy, not from the potential energy. It is responsible for the centrifugal force, which is
not a force at all.

From the Lagrangian we can derive the equation of motion for the separation distance
r in the final form, where we have eliminated five of the six degrees of freedom we started
with:

Y = e — (4.41)

This is as far as we can go without being more specific about the form of V(r). Once we
know V(r), we could always solve this 1-D equation using quadratures (4.4).

QUESTION 9: Kepler Problem Summarize the assumptions needed to obtain
Equation (4.41) above.

4.5 THE SPECIAL CASE OF GRAVITATIONAL ATTRACTION
The potential energy between two gravitating bodies is

vm=uGTM{ (4.42)

where G is the gravitational constant. To simplify the notation, define GM\ M, = k. If we
define % = f, then

k
Velr) = ~~ + :%. (4.43)

We plotted the effective potential versus r in Figure 4.10 for a fixed value of /* to get
a qualitative picture of the possible types of motion. The effective potential V.4 has its
minimum value of *% = —%f;- at ro = ﬁ Five values of the total energy are shown. Es
is physically impossible, since T = E — V < 0. E, corresponds to r = ry = a constant,
so the motion is a circle of this radius.

The actual motion in the plane is determined by both the total energy and the total
angular momentum. But knowing the energy alone, we can distinguish qualitatively dif-
ferent types of motion. For E less than E; there is bounded motion in r, whereas for
E > E,, the motion is unbounded, and the two bodies will eventually become infinitely

far apart.

QUESTION 10: Effective Potential Why do you think we call the expression in Equa-
tion (4.43) V.s? How is it like a potential? How is it not like a potential? Also, when
is the attractive term in (4.43) important? When is the repulsive term important?
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FIGURE 4.10

The equation of motion for gravitational attraction can be derived from the Lagrangian
(4.41):

2

Equation (4.44) says that the inverse-square law attractive force of gravity 1s opposed by
the centrifugal “force,” which is repulsive, increasing as the inverse cube of the distance.

The “Magic” v = * Transformation

To get a quantitative solution, it is very useful to make the substitution
1

=

u = (4.45)
(We could use quadratures instead of the substitution (4.45), but it is more elegant to solve
it this way because we can eliminate the time and obtain the equation for the orbit r(¢)
explicitly by solving a simple differential equation.)

Change the dependent variable from r tou = . Also convert the independent variable
from the time ¢ to ¢ by using (4.38):

urldp = ldr — % = (4.46)

P24
uo de
and

d(L
ar _ () __laduw  ldu (4.47)
= At wdr T ude

This is not something you would necessarily have thought of doing, but it turns out that
solving for the orbit or path of the system is simpler than solving for the time dependence
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of r(t), ¢(t). Go back to the expression for E (4.40), and express everything in terms of

u, 2

* dé

2 2
E = ; [(du) +u{| — K.
2uf \d¢ (4.48)

total energy E(u, fﬁ)

Since E is constant, %’ﬁi = (. Carry out the differentiation on the expression (4.48) above.
This gives a differential equation for the path in terms of u as the dependent variable and
with ¢ as the independent variable. The time is now eliminated:

- O (4.49)
differential equation for the orbit

Equation (4.49) is that of a simple harmonic oscillator with a constant driving force. Since
the coefficient of u on the left side of the equation is 1, the period is 2, that is, the orbit is
a closed one: u(¢ 4+ 27) = u(¢). Closure of the orbit in space is a very special property of
the } potential, which is shared by only one other type of force law: a force that increases
linearly with r.

4.6 INTERPRETATION OF ORBITS
Equation (4.49) can be solved by inspection. The solution is

k + Acos¢. (4.50)

H = — = =
r I*

(An arbitrary phase could be added to ¢. This would rotate the orbit in the plane of motion

by a fixed amount.) Here A is an arbitrary constant related to the total energy. Let us
change to some new parameters and rewrite the solution (4.50) to Equation (4.49):

p I?
pu=;=l+fms¢. E: € = pA. (4.51)

The constant p has the dimensions of length. It determines the actual size of the orbit.
Rewrite Equation (4.51) in Cartesian coordinates:

p=r+ercos¢ = /x2+ y? +¢€x (4.52)
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FIGURE 4.11
Conic sections: a) ellipse, b) parabola,
¢) hyperbola.

or, equivalently,
(1 —ex? 4 2epx + y* = p* =0. (4.53)

If € = 0, the orbit is a circle of radius p. As we saw in Figure 4.10, the circular orbit has the
minimum possible total energy for a system of a given angular momentum, If 0 <€ < 1,
the planet moves in an elliptical orbit around the center of mass (Kepler’s First Law). If
€ = 1, the path is a parabola, whereas if € > 1, the path is a hyperbola, with the two bodies
not bound to each other.

For an elliptical orbit, € is the eccentricity of the ellipse. In every case, the orbit is
described by the curve obtained by the intersection of a surface of a cone with a plane.

QUESTION 11: Orbits I Prove that, if € = [, the orbit is a parabola. Prove that the
planet’s motion is not bounded if ¢ > 1.

QUESTION 12: Orbits 2 What is meant by a “closed” orbit? Explain why an orbital
period for r(¢) of 2 means the orbit is closed. What if the period were 2::'5, with p
and g integers? Describe the general features of the orbit if this were the case.

Substituting Equation (4.51) into the expression (4.48) for the energy (and defining
a = +£5), we get

2
= L;.:%.(EI ~ 1) = %{Ez — 1), (4.54)

E = _i‘._ (4.55)
2a
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TABLE 4.2 SUMMARY OF VARIOUS POSSIBLE TYPES
OF MOTION DUE TO GRAVITATIONAL
ATTRACTION
Energy £ in units of 45 Type of Orbit
E <-1 impossible
E=-1 circular orbit
. —l1<E<0 elliptical
- E=0 parabolic, not bound
E>0 hyperbolic, not bound

For elliptical orbits, the quantity ¢ = £ is the semimajor axis. (This is discussed in the
next section.) The quantity a is defined in the same way for unbounded orbits as well,
where it becomes negative. Equation (4.55) is equivalent to (4.54), but it shows explicitly
that the total energy depends only on a. Negative total energy corresponds to bounded
motion. Positive total energy corresponds to unbounded motion. This makes physical
sense, since the planet can travel arbitrarily far from the sun if the motion is unbounded.
At a sufficiently great distance, the potential energy becomes negligible, and therefore
the total energy, which consists only of kinetic energy, must be positive. For E = 0, two
masses have a “close encounter,” and then fly apart, never to meet again.

Elliptical Orbits

Starting from Equation (4.53), assume that 0 < € < 1. Aftercompleting the square,
you get the equation of an ellipse:

2 2
€
(i*“«'-s!}(.wr+I pz) +yt =L =, (4.56)
—€ | —€
which has the form
RS 2
& — 2 =1 (4.57)

Equation (4.57) is the standard form for an ellipse, centered at x, = — %5, with semimajor

axis @ = X5, and semiminor axis b = —£=. The “apsides” or turning points, are defined
as the values of r for which % = & 22 = (. For motion about the sun, ry,, is known as

the “aphelion” and ry,;, is known as the “perihelion.”

Period of Elliptical Motion

How long does it take a planet to go around the Sun? We could use our general
formula (4.4) to find the period t of the motion. This would involve an integral between
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TABLE 4.3 IMPORTANT QUANTITIES FOR ELLIPTICAL ORBITS*
Quantity Symbol Formula
eccentricity 2 D<e <]
scale factor P ;‘:}
semimajor axis a Ty
Semiminor axis b 7}%
ellipse center Xp — Tf_%
apsides (turning points)

Fmin T%s'

Finax 7=
total energy E %;(EZ ~D<0
*k = GMM>, | = iotal apgular momentum, i = the reduced mass. The
numerical value of G = 6.672(6) x 101! N m?/kg*.

the apsides:

L. ‘/Ef " ar , (4.58)
2 2 Fivim ‘/E—F{F}—— [

2prt

This expression can be used to find the period for any central force. Inourcase, V(r) = — 3

The integral looks rather formidable, though it can be done. However, it can be greatly
simplified by a change of variables. (See the discussion in the next section.)

Fortunately, there is an easier way to obtain the period. Since we know the semimajor
and semiminor axes of the ellipse, we can calculate the area. This information can be
used to find the period directly from Kepler's Second Law, and thus deduce the Third Law.
Since 28 = iIE = constant, it follows that the period is directly given in terms of the area
swept out by the ellipse, wab times 2. Using the expressions for a and b from Table 4.3,

we have

2
T = E—%Jrab il (4.59)
1 [ (1—e?)

Since the semimajor axis a = £,

T = 211'-?1!,':-:13 = 2 ‘/% Jad. (4.60)

Finally, putting in the value of the scale factor p = I{% , we obtain the period in terms of the
semimajor axis and some constants. Notice that the answer does not depend on /. In fact
the period depends only on the semimajor axis of the elliptical orbit. Furthermore, since
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FIGURE 4.12

Planetary orbit with p = 1 and € = 0.6, Both the planet and the Sun
orbit around the center of mass at the focus f of the ellipse, which is the
origin of the coordinates in the figure above. The Sun’s orbit is not shown
here. The center of the ellipse is at x, = ~.9375. The semimajor axis is
a = 1.5625 and the semiminor axis is # = 1.25. The apsides or tuming
potnts are at x = —2.5 and 0.625.

the Sun is much heavier than any of the planets, 1 will be almost the same for every planet:

_ P
' ‘2”\/;” * 4.61)

orbital period (a)

Kepler's Third Law says that t> ~ a* with a proportionality constant which is the
same for all planets. We now examine whether this is in fact true. Recall thatk = GM, M,
and u = 1M Therefore

M+ M
E = G(M, + M)~ GM, if M, > M,. (4.62)

For most cases, the mass of the planet, M|, is negligible compared to the Sun. (The Sun’s
mass is 3.3 x 10° Earth masses.) But for Jupiter the ratio of masses is more like 1,000:1,
so Kepler’s Third Law must be corrected by about 0.1% in this case. One wonders what
would have happened had Kepler's measurements been accurate enough to detect this.
Would he have published his Third Law?

Time Dependence of the Motion

How could we construct the orbit of a comet using only a few observation points
of its position as a function of time? When Sir Edmond Halley observed in 1682 what
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later became known as Halley’s comet, he did not have the luxury of waiting 76 years to
determine the period. Instead, in 1705, following a graphical method developed earlier by
Newton, he reconstructed the complete orbit of this comet from limited data taken over a
relatively brief time period. Halley’s comet reappeared on Christmas Day, 1758, exactly as
he had predicted. Later, in 1801, the young Gauss became famous when he reconstructed
the orbit of the “lost™ asteroid Ceres from only three observations. Ceres was observed
for only a month before it disappeared behind the Sun. It reappeared on New Year’s Day,
1802, exactly where Gauss had predicted.

Even after solving the problem of converting earth-bound measurements of the comet/
asteroid position against the fixed stars into r and ¢ expressed in the inertial frame of the
center of mass, one must then fit the data to the equations for r(r) and ¢(t) as functions of
time. This avoids directly solving the equation of motion (4.44) for r(¢) — although we will
use the method for I-D systems derived at the beginning of this chapter to solve for T, the
elapsed time. First we would like to describe a more geometric way to treat the problem.
Consider a body in its elliptical orbit about the Sun and draw the circle that circumscribes
the ellipse, as shown in Figure 4.13. The radius of the outer circle is a, the semimajor axis
of the ellipse. As indicated in Figure 4.13, drop the perpendicular from the body orbiting
the Sun to the point A on the horizontal line along the major axis of the ellipse. The angle
£ is called the eccentric anomaly. The azimuthal angle ¢ is the true anomaly. From the
geometry of Figure 4.13, the distance O A is

OA =acos&. (4.63)

The distance |x.| from the ellipse center O to the Sun is a¢. (Look at Equation (4.57) and
remember that the Sun is about at the focus of the ellipse.) Therefore the distance from

the point A to the Sun 1s

ale —cos&) =rcos(m — ¢p) = —rcos¢. (4.64)

FIGURE 4.13
Construction of the eccentric anomaly.
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Solve this equation for cos ¢ and put it back into the orbit equation, (4.51). By straightfor-
ward algebra we get

r=a(l —ecosf). (4.65)

It is a short step from here to the equations for x(£) = r cos ¢ and y(€) = +/r* — x*

x=a(cos€& —€), y=a+1—e€e*siné. (4.66)

Next write an expression for the time in terms of an indefinite integral using (4.58):

r= \/E f v (4.67)
2 JE+ -

To simplify the integral over r, note that for elliptic orbits E = —-2"; and make use of the
substitutions ;—1 = pand p = a(1—€*). By factoring constants out from the integral, obtain

fdr \Ff (4.68)
J-E+r~tati-e

Finally, substitute for r from Equation (4.65) to put everything in terms of £, the eccentric
anomaly. The denominator of the r integral becomes ,/5e sin£. Write dr = a€sin€ d€
by differentiating Equation (4.65) and also substitute for » in terms of £ in the numerator.

The result is
3
fdr - 1/% fdm ~ ecos€). (4.69)

The time integral measures elapsed time. It is customary to choose ¢t = 0 when the planet
or orbiting body is at its perihelion, so £ = 0 there. (See Figure 4.13.) If we call T the
elapsed time to any other point on the orbit, we have derived the final result:

_ [we o
T(E) = A (£ — esiné&). (4.70)

Kepler's equation

Given the observed time interval 7" from the perihelion, the transcendental Equation (4.70)
must be solved to obtain £(T). From Equation (4.65) the distance r(£(T)) can then be
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determined. Finally, ¢(£(T)) can be determined from the original orbit Equation (4.51),
which is used to give cos ¢ in terms of r. To follow this procedure, one must know the
constants g and €.

If the orbit period and eccentricity are unknown, they can be determined by obser-
vations of position and time elapsed from the perthelion. From a minimum of two such
observations, knowing r(r,) and aiso r(r,), the eccentric anomaly equation for the time,
(4.70), and the Equation (4.65) can be used to solve for the two unknown constants: a, the
semimajor axis, and ¢, the eccentricity of the ellipse. After that, everything about the orbit
is known. The true anomaly ¢ as well as the eccentric anomaly £ each increase by 2 in
one complete period around the ellipse.

Hyperbolic Orbits: “Close Encounters”

If the total energy E is positive, there is still some kinetic energy when the two
bodies are infinitely far apart, since at sufficiently large distances the potential energy
becomes negligible. The unbounded orbit is one branch of a hyperbola. We could have
something like a comet that appears once and is gone. (All known comets are actually on
periodic elliptical orbits around the Sun, so this is a purely hypothetical case.)

Positive energy implies that the constant ¢ > 1 (see Equation (4.54)). Equation (4.52)
now represents a hyperbolic orbit. Equation (4.53) can again be invoked and rewritten as

(€ — Dx? ~2epx ~ y* + p* =0, (4.71)

Completing the square we get

2 2
{fz—l}(x—EEp ) R S A 4.72)

The general equation for a hyperbola is

(x — -rc}z y
- L =1, (4.73)

Hyperbolic orbits are the only possible solutions for the Kepler problem if the force is
repulsive rather than attractive. This situation arises in the scattering of positively charged
alpha particles from positively charged heavy nuclei.

In Figure 4.14, the left branch of the hyperbola corresponds to an attractive gravitational
force. The curve passes “behind” the center of the force, starting (say) from negative x, y
and emerging towards positive y and negative x. The other branch of the hyperbola arises
because we have to square the orbital equation (4.52) to get the general form (4.72) for a
hyperbola. It is unphysical for an attractive force but is the physical solution for a repulsive
% force, as we will see below. It can be seen that the curve is symmetric for positive and
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FIGURE 4.14

Two kinds of hyperbolic orbits. The planet and Sun
model an attractive force whereas the alpha particle
and nucleus model a repulsive force.

negative y. The minimum distance of apprﬂach to the origin occurs for y = 0, and for
the physical hranch of the hyperbﬂla i8 Fmin = -2~ = a(e — 1). (For hyperbolic orbits, by
definition, p = |r:1 ,a = —£~.) As x — 00, the upper and lower parts of the hyperbola
asymptotically appmach the lines y = +2 2 (X —x) = ket — 1(x — 35).

Since @ = £ now, the total energy can be expressed as E = % > 0. The orbit no
longer represents periodic motion, but rather a one time event. We wil] discuss the question

of the time dependence of the motion on hyperbolic orbits after discussing the case of
repulsive forces.

4.7 REFUI.SWE FORCES

The grawtatmnal force is always attractive, but a repulsive - force can occur be-
tween two positively charged nuclei, such as in the Rutherford scattering of alpha particles
from gold. Once the incident alpha particle penetrates the cloud of orbital electrons, it
“sees” a repulsive }, potential. This experiment established the existence of positive charge
concentrated in a small region at the center of the atom (i. ., the existence of the atomic nu-
cleus). In his experiment, Rutherford used the distribution of backscattered alpha particles
to establish that there was a point charge of magnitude +Z|e|, where Z is the number of
atomic electrons and —|e]| is the electronic charge. The nearly point charge of the nucleus
exerts just the type of force predicted by Coulomb’s Law: a -5 repulsive force. In the
repulsive force case, the orbits are only hyperbolic, since both the potential energy and the
kinetic energy are positive,

A repulsive potential of this form is called a “Coulomb potential.” The sign of k changes
in the expression for the potential. To find the solution, we can use our previous mathe-
matical work, with this change of sign. The equation for u(¢), Equation (4.49), becomes

d’u 1
— U= —— (4.74)
d¢? p
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- X

FIGURE 4.15
Rutherford scattering (repulsive force). b is the impact parameter, and & is
the scattering angle.

The definition of the length scale is p = 1{;—1 Expressed in polar coordinates, withe > 0
by definition, the solution to (4.74) is

{_i = —1 + € cos ¢. (4.73)

Since both p and r are positive, no solutions exist unless € > 1, which gives positive total
energy. In Cartesian coordinates, the equation to be solved for the orbit resembles (4.52)
but the sign of the square root is different:

p=—vx2+y*+ex. (4.76)

The physical hyperbola is now the right-hand branch in Figure 4.14. After squaring, we
obtain the same equation as (4.71) in the previous section. We can take over our conclu-
sions wholesale if we select the opposite branch of the hyperbola to the one selected in
the case of an attractive force. The distance of closest approach can be found by solving
for the root of (4.71) with y = 0, and then checking which is the right root by looking at
(4.76). This procedure reveals that the distance of closest approach to the force center is

P
€ — 1

Fmin =

= a(e + 1). (4.77)

If 6 is the “scattering angle” (see Figure 4.15), tan(*3%) = +/€* — 1, or with the help of
trigonometric identities:

$in — = —, (4.78)
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Time Dependence of Hyperbolic Orbits: Attractive Case

We would like to discover the time dependence of the hyperbolic orbits, the analog
10 Equations (4.66, 4.70), which were derived only for elliptical orbits. To do this, we can
make a transformation of the equation of motion (4.44). This transformation can then be
used to generate new solutions of the equation of motion by transforming the previously
obtained solutions. This is a common and very useful technique in theoretical physics. All
that is needed is to substitute it’ (i = v/—1) for the time in the equations of motion (4.44).
The angular momentum, pr’¢, also undergoes the transformation / — —il, so I* reverses
sign as does F. If the additional transformation & -+ —k is made, we return to the original
equation (4.44) with an attractive force again. The transformationt — it', k — —k’ leaves
the equation of motion invariant but transforms elliptical orbits into imaginary hyperbolic
ones. The length scale p = % remains positive and is unchanged, but %’4‘; does change
sign, so we will have transformed negative energy elliptical orbits into positive energy
hyperbolic orbits.
This transformation is then used to parametrize the time dependence of the hyperbolic

orbits. The result of transforming Kepler’s equation (4.70) is given below:*

jna®
TE) = T{E sinh& — &), (4.79)
r = a(e cosh& — 1), (4.80)
x =a(e —cosh&), y=a+e’— 1sinhf, (4.81)
I

As was previously done for hyperbolic orbits, a = 5, the constant ¢ > 1, and the

energy (4.54) is positive, E = ikE £ 1s now a parameter that equals zero at the point of

closest approach. This is the standard way to describe the coordinates of the attractive
force hyperbolic orbit parametrically as implicit functions of time.

Time Dependence of the Repulsive Hyperbolic Orbit

We merely quote the results here, and leave it to the dedicated reader to verify the
equations below, The definitions of the constants a, € remain the same as for the attractive
hyperbolic case. The equations are

pa®
T = JT(E sinh& + £), (4.82)

r=alecosh& + 1), (4.83)
x =al(cosh& +¢€), y=ave*~1sinhf. (4.84)

* Here we have used the mathematical identity siniar = i sinha for any real a.
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The transformation a — —a, € — —e will convert (4.79, 4.80, 4.81) into (4.82, 4.83,
4.84), but we attach no special significance to this.

Precessing Orbits

Suppose the central force gives a potential that is not proportional to ,l It could be
rl,, n # 1, for example. Bertrand’s Theorem shows that the only values of n giving orbits
that close on themselves in space, so maintain the path indefinitely, are n = 1 (Kepler
problem) and n = —2 (Hooke's Law for a space oscillator). Any other form of attractive
force law results in an orbit that never repeats itself exactly, that is, it precesses in space.
This precession is one of the most sensitive tests of the radial dependence of the force
between two gravitating bodies. For example, precession of the perihelion of Mercury is
one of the major tests of Einstein's General Theory of Relativity. A proof of Bertrand’s
Theorem can be found in the Appendix A, of Goldstein’s Classical Mechanics.

Dark Matter

There is a major puzzle in physics. Spiral galaxies consist of billions of stars
rotating about a center. Astronomers are able to study the motion of the stars in a small
part of one of these galaxies. They can determine the velocities of these stars by studying
the Doppler shifts of the spectral lines in the light emitted. Using experimental data, they
can construct a curve of v(r), where v is the star velocity and r the distance from the
galactic center. The problem is that the motion is not what one would expect to find if the
mass distribution is the same as that of the visible matter. Although the true situation is
actually rather complicated, it will not change the basic mystery if we make the simplifying
assumption that the galaxy is a continuous distribution of matter, with a density p(r). This
density, one could assume, would be large only where the luminous matter of the galaxy
is Jocated, and negligibly small outside the galaxy. Let the radius ry be the outer radius of
this matter. We will also assume circular star orbits about the gravitating mass between the
star and the galactic center. Remember that it is a property of the inverse-square force law,
assuming spherical symmetry of the mass distribution, that only the mass inside the sphere
from the center out to the star contributes to the force on the star. By our assumptions, the
mass M (r) inside the radius r is

4 3
ud g (only if p is constant). (4.85)

M(r)=4n f p(r'yr?dr' =
0

The force divided by the mass of the star equals the radial acceleration, so

v’ GM(r) _ 4nGpr
ro o 3

(4.86)

For radii less than ry, v(r) ~ r. Outside the radius ry, the mass becomes a constant, M(ry),
so that v(r) for stars in the galactic “halo” should fall like T};
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observed behavior
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FIGURE 4.16

For constant density, we expect v to rise linearly with r up to the radius of the galaxy,
rp. This rise is observed experimentally, and r, found in this way agrees pretty well with
rp found by just measuring the distribution of luminous (i. e., visible) matter. If o ~ 0 for
r > ro, we would expect v(r) to fall like —=. Now comes the surprise: Nothing like that is
observed. Instead, v(r) remains rather constant out to 8 or 9 galactic radii ry, as shown in
Figure 4.16. Many galaxies have been measured, and they all show the same etfect.

The estimated additional matter needed to account for this turns out to be 90% of the
total matter in the universe! Only 10% of the matter is visible. What could be the source of
the additional matter? There are many hypotheses, none of which is completely satisfac-
tory. One hypothesis is that there are many small black holes, by their nature invisible, but
contributing strong gravitational fields. A different idea is that there are “brown dwarfs” —
Jupiter-sized burnt-out stars,* which are invisible, due to the great distance between us and
these other galaxies. A more exotic theory is that we live in a “sea” of neutrinos, This must
to some extent be true, since a neutrino once emitted in a radioactive decay cannot easily be
reabsorbed. The Sun, for example, is known to be a source of neutrinos. But the gravita-
tional effects of this primordial neutrino sea won’t be great enough, unless the neutrino has
a small mass. A more radical idea is that dark matter is a sea of ““axions™ — a so far mythical
particle with very low mass, which was suggested for unrelated theoretical reasons. No
axions have ever been detected, despite vigorous experimental attempts to discover them,
attempts that are still being made. The nature of the “dark matter” remains a mystery.

A recent development has been the discovery by the Hubble telescope of an unexpect-
edly large black hole with a mass of three billion suns at the center of galaxy M87. Black

* This is a special case of MACHOS: Massive Compact Halo Objects. Some recent evidence for MACHOS
may have been discovered using gravitational lensing.
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holes may in fact exist at the center of most galaxies, including our own. Although of
great importance to astrophysics, black holes at the center of galaxies would not resolve
the problem of dark matter, because the radial distribution of stellar velocities is consistent
only with distributed dark matter.

For further reading on this subject, one reference 1s Modern Cosmology and the Dark
Matter Problem, by D. W, Sciama, Cambridge Univ. Press, 1993. In the first part of
the book, the author summarizes the evidence for dark matter. In the last part of the
book he proposes a speculative theory that involves decay of heavy neutrinos, with a mass
about .006% of the electron mass. There is no experimental evidence for the existence of
neutrinos of such a mass, but that does not diminish the value of the discussion in the first
part of this book, which can serve as an introduction to those who may become seriously
interested in the dark matter problem. |

SUMMARY OF CHAPTER 4 ‘

* For a one-dimensional, scleronomic, conservative problem with Lagrangian L(q, ),
graph the potential V(g) versus g. Plot E as a horizontal line and look for turning points
as well as stable and unstable equilibrium points. This gives a qualitative picture of the
motion. To get a quantitative solution, calculate the time t(q) as a function of ¢ and
invert the function to get g(t), if possible.

—

General solution of 1-D potential, with total energy E:

@ fﬂ dq' (4.87)
1 — - .
V=] JHE=Vg)

* Phase space (g versus ¢) portraits can give good qualitative information about the 1-D
motion. Plot the curves of constant total energy.

* For a central force V = V(r) between two bodies, the center of mass moves like a free
particle with mass M = M, 4+ M,. This is a consequence of translation invariance.

* See Table 4.4 for a review of the two-body problem.

PROBLEMS

Phase Portraits

Problem 1*: (Sketching and interpreting various phase portraits) Trajectories in the
phase space (¢, ¢) are the contours of constant E.

a) Draw a phase portrait for unstable motion:
g—q=>0. (4.88)

What gquantity is a constant of the motion in this case? Is energy still conserved?
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TABLE 4.4 REVIEW OF STEPS TO SOLVE THE TWO-BODY PROBLEM

Assumption Result

1. No external forces exist 1. Center of mass moves freely,
6 DOF — 3 DOF

2. Force is a central force: 2. Angular momentum is constant,
V = Vir) = motion lies in & plane
3 DOF — 1 DOF

3. Force is gravity: 3. Can solve for elliptical, parabolic,
k . p
V=== or hyperbolic orbits
4. Orbit is stationary in space 4, < Bertrand’s Theorem:

Force is either ;';r orr

b) Look at the nonlinear potential V(¢g)in Figure 4.1. Indicate the region of oscillatory
(bounded) motion on a sketch of this potential. Draw the phase portrait for this
potential and indicate the direction of *“flow™ along the trajectories in phase space.
Also indicate:

1) The stable and unstable equilibrium points.
2) The direction of motion along one of the phase space trajectories.

Problem 2: (Double-well potential) Discuss what types of motion are possible for
the “double-well” potential depicted in Figure 4.17. Draw a “phase portrait™ for this
potential.

Problem 3*: (SHO and physical pendulum)

a) Why can we say that the simple harmonic oscillator is always bounded but that
the physical pendulum is not (for the latter, V(g) = (1 — cos#))? What is the
difference? Use the phase portraits to show what the difference is.

b) Make a “phase portrait” of the physical (nonlinear) pendulum for the three cases
E <2, E =2, and E > 2. Inthe vicinity of E = 2 show how these curves change

V

f

= =+  FIGURE 4.17
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near the unstable equilibrium point. Explain how you can use these curves to dis-
cuss motion near the equilibrium at 6 = 7, ¢ = 0 for £ > 2,

Problem 4*: (Duffing and other nonlinear oscillators) A Duffing oscillator (with
EOM § + g + €g° = 0) is a nonlinear oscillator with a “hard” potential, that is, V(g)
increases more rapidly than a parabola. Approximate the potential by

ql
Vig) = >+ q. (4.89)

|

where € > 0 is a positive constant.

a) For the Duffing oscillator, use a phase portrait to prove that the motion is always
bounded. Why can’t we use the same argument to reach the false conclusion that
physical pendulum motion is always bounded?

b) Suppose instead that € < 0. Discuss the equilibrium points and the phase portrait
for this “soft” potential.

4

¢) Now answer the same questions for V(g) = —% + %4°.

Generic 1-D Problems

Problem 5: (Grandfather’s clock} A grandfather’s clock is adjusted to keep perfect
time if the amplitude is 2°. How many seconds does it lose or gain in a year if instead
the amplitude is 10°?7

Problem 6: (Period of Duffing oscillator) Use an approximate form of the quadrature
solution to find the period of a Duffing oscillator with potential (4.89) as a function
of its maximum amplitude g,,,. Prove that this is given by the formula (dropping
second-order terms in €)

T=2n (1 ~ —%-quﬁm) . (4.90)

Why would it be inconsistent to keep terms O[e?}? For the Duffing oscillator, or any
nonlinear oscillator, we could use measurements of the period versus amplitude to
determine the value of €. The actual motion will be more complicated than a pure sine
wave (i. ¢., it will contain higher harmonics as well).

Problem 7*: (Restoring force of ¢") A certain mechanical system with one degree of
freedom has the equation of motion

Suppose that the maximum amplitude of the oscillator is known to be go. Find an
expression for the time it takes to go from ¢ = 0 to ¢ = g, and show that this time is
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inversely proportional to g,. Find the coefficient A in the formula T = :ﬂ; by numerical
or other means. Finally, generalize this result to a restoring force of the form g" (EOM:

G =-—q").
Gravity

Problem 8*: (Potential energy of a spherical shell) Consider a spherical sheil of
mass M and radius R. Calculate the gravitational potential for a point mass m, in
the gravitational field of the spherical shell. The point mass is located at 7. Find the
potential energy by using spherical polar coordinates and adding up the contributions
to V(7) from infinitesimally small pieces of the spherical shell. Consider two cases
(from the same integral):

a) Suppose r < R. The point test mass is inside the shell. Show that

M
— ﬂGWE — constant. (4.92)

What is the force of gravity on the test mass in this case?
b) Instead, suppose r > R. Show that

Vir) = —Gg. (4.93)

Again, what is the force on the test mass?

¢) What happens when r = R? Plot the potential energy vesus r for all ». Plot the
force. Is there a discontinuity in the force? In the potential energy?

d) There is an analogy here to Gauss’s Law in electrostatics, What 1s it?

Problem 9*: (Potential energy of the Earth)

a) A satellite orbits a spherically symmetric Earth at a radius r = R, (i. e., just above
the tree tops). (R, is the Earth's radius.) Use elementary Newtonian physics
arguments to show that the period of this satellite is the same as that of a pendu-
lum of length R, undergoing small oscillations in a uniform gravitational field of
acceleration g.

b) The gravitational potential energy of a particle of mass m in a hole inside a spher-
ically symmetric Earth of uniform density is given by the formula

2
Vi) = SMem {(—r—) - 3]. (4.94)

2R, R,

where r is the distance to the center of the Earth (r < R,), G is the gravitational
constant, and M, is the total mass of the Earth. Prove that this formula for V()
gives the correct force on a particle inside the Earth at r < R,. Sketch the potential
energy as a function of » from r = 0 out to, say, r = 2R,. Is V(r) continuous at
the Earth’s surface? Does it have to be continuous? Why or why not?
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FIGURE 4.18

¢) A tunnel is bored through the Earth in a straight line that passes within a distance
D from the center. Let x be the distance along this tunnel from the tunnel center
as shown in Figure 4.18. When x = 0, r = D. Using Lagrangian mechanics (not
vectors!), with x as the generalized coordinate, find the equation of motion for
a particle of mass m dropped into the tunnel. The particle moves under gravity
without friction or air resistance. Show that the motion is simple harmonic motion
and that the period 1s the same as that of the satellite in part a) above. If the
particle is dropped into the tunnel from the surface at the moment the satellite
passes overhead, it will return to the starting point just as the satellite completes
one orbit of the Earth.

d) A sloppy physicist known by the initials S. P. makes the following incorrect deriva-
tion of V(r) in part b) above: “Let M(r) stand for the part of the Earth’s mass
inside a sphere of radius r < R,. Then M(r) = M,(;‘;:)'*", so, forr < R,,

Vse(r) = — Gm:f{r) , (4.95)

since the matter outside a sphere of radius r does not contribute to the gravitational
potential.” What equation of motion will S. P. get for part b}, and what is wrong
with this reasoning?

Center of Mass Motion

Problem 10: {Two massive bodies in a constant field) Two massive bodies move in
a constant external gravitational field. Show that their motion can be reduced to an
equivalent one-body problem, just as we did for the Kepler problem.

Problem 11: (N-body wstem} Prove that, for an N-body system, if the external
force on the ith body is F;, the center of mass moves like a single particle of mass
M=M,+... My actcd upun by a force F = F, + F> +. FH Use Lagrangian
methods to prove this and to prove that we can ignore mternal forces as far as center
of mass motion s concerned.
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Problem 12*: (Explosion of projectile) A projectile in outer space subjected to no
external forces suddenly explodes into three pieces, which have Cartesian coordinates
7\, 2. I3 with respect to an inertial reference frame. The three masses are m,, m,, and
m1. Assume that the forces during the explosion are not known, but it is believed that
they can be derived from potentials depending only on the distances between pairs of
the particles:

V = Va(Iry = F2l) + Vi(IF> = Fal) + Ve (s — 7 D. (4.96)

a) Show that the center of mass moves at the same constant velocity it had before the
explosion.

b) Show that, in the center of mass reference frame, the three fragments lie in a plane
after the explosion. Hint: Prove that the total momentum in this reference frame
iS Zero.

¢) Derive what happens to the center of mass after the explosion if instead of being
“external force-free,” the system also had a constant gravitational force on it.
Does the result depend on the force being a constant? Is the total momentum of
the fragments still zero in the noninertial center of mass reference frame?

Central Force Problems

Problem 13: (Massive particle moving ona cone) A massive particle moves under the
acceleration of gravity, g, and without friction on the surface of a cone of revolution
with half angle «. Find the Lagrangian in plane polar coordinates. Also find the
equation of motion for r and the effective potential V.q(r). If the particle is launched
horizontally with velocity vy at a height zq, prove that the condition for circular motion
is v5 = g2o.

Problem 14*: (Two connected masses) Two masses m, and m, are connected by a
weightless string of fixed total length ly. Mass m, rests on a frictionless table, which
has a small hole cut into it. Mass m, hangs down vertically from this hole. Assume
that m, can only move in the vertical direction, so the problem has two degrees of
freedom.

a) Assuming that the acceleration of gravity is g, find the Lagrangian and the equa-
tions of motion for this system. (Use plane polar coordinates.)

b) Thetotal energy E = T + V is a constant of the motion. How can you see this by
inspection of the Lagrangian? There is a second constant of the motion. Explain
how to find it, and prove that it is indeed constant. (Call this constant ). What is
the physical interpretation of /?

¢) Is there a case where the motion of the mass m, is a circle of constant radius ry
from the hole in the table? Find the radius of this circle in terms of [, m,, m», and
g. Let E(ry) be the total energy in this case. Prove that E(ry) = 3magro. Why is

E(ry) the minimum possible total energy E?
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d) For E > E(rg), solve the radial equation of motion. Put the solution in terms of £
and /, the constants of the motion. Express the solution as an integral (“solution
by quadratures™) that gives the time as a function of r. Is this sufficient to specify
the solution completely? How would you find the turning points of the motion?
The period?

e) Suppose you treated the EOM for the radial equation as generated by a
fictitious 1-D potential? What would be this potential? Find the effective one-
dimensional potential V.x(r) and draw a graph of V. versus r,

Problem 15: (Arbitrary central force) Suppose you have an arbitrary central force
potential V(r). Make the r = ;1; transformation and find the differential equation for
u(¢). Work out the explicit form of the differential equation in u if V(r) = — ;*;.; with
k, # constants, J

Problem 16: (Using Maupertuis’ Principle instead of u = * transformation) Mau-
pertuis’ Principle states that A f VT ds = 0, where A is a variation between fixed end
points that leaves the total energy E constant, T is the kinetic energy, and ds 1s the
element of arc length. Recall that, for 2-D motion in the plane, ds* = dr? + r’d¢’.
In the Euler-Lagrange equation it doesn’t matter what the independent variable is,
so use ¢, Prove that Maupertuis’ Principle gives the same equation for the orbit we
obtained by the u = } transformation. The potential is an arbitrary central potential
Vi(r).

Problem 17*: (Tether ball} A massm is attached to a weightless string which initiaily
has the length sp. The other end of the string is attached to a post of radius a. Neglecting
the effect of gravity, suppose the string is set into motion, with an initial velocity
tangential to the string of v. Find the Lagrangian and the equation of motion for
the length s(r) of the string. Prove that the time it takes for the string to wind up on
the post so that 5 = 018 tymp = r'f::? Notice that ¢,,,,, does not depend on the post
radius.

Gravity and Planetary Orbits

Problem 18: (Eiliptic orbits) For elliptic orbits, prove that the distance from the
ellipse center to the focus of the ellipse (position of the Earth—Sun center of mass) is
ae, where q is the semimajor axis and € is the eccentricity.

Problem 19*: (Weighing the Sun, Earth, and Moon) Kepler's Third Law in its exact
form (4.61) allows you to “weigh” the Sun but not the Earth,

a) Determine the solar mass Mg from the length of the year and the mean radius of
the Earth’s orbit, neglecting the small eccentricity. Use R = 1.49 x 10® km, and
the gravitational constant G = 6.67 x 107! N m* kg2,
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b) You can find the mass of the Earth. Evaluate approximately the ratio of masses
of the Sun to that of the Earth, using only the lengths of the year and of the
lunar month (27.3 days) and the mean radii of the Earth’s orbit and of the Moon’s
orbit (3.8 x 10° km). What is the mass of the Earth? What is the Earth’s mean
density, given that the mean radius of the Earth is 6,378 km? Notice that you
can’t also “weigh” the Moon by this method. How is the mass of the Moon
determined?

Problem 20*: (Modifying V(r) for the Kepler problem) How would you modify the
equation (4.51) for the orbit in the Kepler problem if, instead of the gravitational
potential V(r) = ~—f}, you had something of the form V(r) = —% + Br? The Sun’s
gravitational attraction to the Moon makes a small perturbation of the form gr, where
B is very small and is itself of the form y cos ¢. What would you expect for the effect
of the perturbation? Is it oscillatory or is there a cumulative effect? A potential of
this form could also arise in the Earth—-Sun system (with a constant 8), if there were a
uniform density of gravitating matter within the solar system. How could you establish
limits on 87

Problem 21: (Tides)

a) If the tidal force is due to the gravitational pull of the Earth on the Moon, then
why do we have two maximum tides per day? (Once seems to make sense since
a body of water is closest to the Moon once per day.)

b) Also, the time of maximum tide actually lags behind the time when the body of
water 1s closest and furthest from the Moon. Can you account for this?

¢) Note that in reality the Sun also has an effect on the tides. Calculate the ratio of
the tidal force due to the Sun over the tidal force due to the Moon. Hint: The
gravitational force on the Earth from the Sun is about 175 times larger than that
of the Moon. Does this mean that the Sun dominates the tides?

Problem 22: (Hyperbolic kick)

a) Why does an object in a hyperbolic orbit passing close to a planet (which is in
orbit about another large object like the Sun) get a velocity “kick™ from it?
b) Why does it not work for a stationary planet?

(This is known as gravity assist and is often used by spaceships such as Voyager 2.)

Problem 23: (Comets) The comet Hyakutake, which appeared in March-May 1996,
has the following data associated with it: Its eccentricity € is 999846, and its perhelion
is 0.230123 AU (from Sky and Telescope, May 1996). Using this information, and
assuming the comet is small enough so that its mass is negligible compared to the
Sun, calculate when we can predict to see the comet again. Also calculate the aphelion
and compare it to Pluto’s aphelion. You will need to use the table of astrophysical
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data the appendix at the end of this chapter. Then repeat the calculation for the comet
Hale-Bopp, which was very bright in March-May 1997, Hale-Bopp's € is .995075,
and its perhelion is 0.913959 AU (using the March 13, 1997 epoch, since Hale-Bopp’s
eccentricity is somewhat time dependent).

Problem 24*: (Precessing ellipses) Discuss the motion of a particle in a central force
potential

k
Vir)=——+ Ez (4.97)
ror
In particular, show that the equation of the orbit has an exact solution that can be put
in the form
p
o= 1 + € cosad. (4.98)
This is an ellipse for « = 1, but it is a precessing ellipse if « is not equal to 1. The
precessing motion may be described in terms of the rate of precession of the apsides
(turning points). Derive an approximate expression for the rate of precession when o
is close to unity. If § is increased to the point where it is no longer small compared to
the centrifugal term, how does this affect the orbit?

Problem 25: (Parametrization of parabolic orbits} For a parabolic orbit, the total
energy E is zero and the eccentricity € = 1. If we consider the parabolic orbit as the
limit of an elliptic orbit as € — 1, we note that ryy, — £, whereas rp,, — 00 (see
Table 4.3). The formulas (4.65) and (4.70) suggest that £ — 0 as € — 1. After some
experimenting, we arrived at the idea of defining a new parameter # by the equation
£ = n+/1 — €* and taking the limit as € — 1. Prove that the limit ¢ — 1 gives the
equations for r, t, x, y in terms of the parameter #:

3 2
r=20+nh), 1=/E2 (1 + -”—)‘
2 k 2 3 (4.99)

x=20-n), y=pn
This is the parametrization for a parabolic orbit. Notice that obtaining 7(t) involves
solving a cubic equation. Since this can be done in terms of algebraic expressions, the
time dependence of parabolic orbits could in principle be expressed algebraically, in

contrast to the time dependence of elliptical or hyperbolic orbits.

Problem 26: (Parametrization of hyperbolic orbits) You may want to derive Equa-
tions (4.79)—~(4.81) without using the complex time transformation. Prove that these are
the correct parametric equations, by substituting Equations (4.81) into Equation (4.52)
for the attractive branch of the hyperbola. To check Equation (4.79), prove from
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dt = £r*d¢, (4.80) and the identity cosh® £ ~ sinh® £ = 1 that

d¢“dmtmy— €1
dE€ ~ dE x l+ecoshE’ 4.100)
dr ;erdqb
d& 1 dE
Then prove that integrating this last equation gives
T =2aye? ~1(esinh & - £). 4.101)

{
Finally, prove this last equation is equivalent to Equation (4.79).

Rutherford Scattering

Problem 27: (Asymptotes and impact parameter)

a) The asymptotes of the hyperbolic orbits (4.52, 4.76) for both attractive and repul-
sive forces are straight lines. Prove that the equations for these lines in Cartesian
coordinates for a repulsive force will have the general form

y = (/e — 1)x — J:"’__l. 4.102)

The asymptotes for an attractive inverse-square force obey a similar equation
to (4.102), but with € — —e.

b) In Figure 4.15, the impact parameter b is defined as the distance of closest ap-
proach to the origin along the incoming asymptote. Prove that the angular mo-
mentum [/ is given in terms of the reduced mass and the center of mass relative
velocity v, infinitely far away from the origin by the formula [ = pv.b. Then
show that the impact parameter can be written as a function of € for constant
energy:

b(e) = ;ﬁqv’fl - 1. (4.103)

Here E is the total energy in the center of mass, k is defined by V(r) = if, which
includes both the attractive and repulsive inverse-square law cases. By convention
k is always positive.

Problem 28: (Cross section) The scattering of alpha particles (helium nuclei) from
a positively charged nucleus is known as Rutherford Scattering. The essence of the
experiment is that a parallel beam of energetic alpha particles is sent towards a single
gold nucleus.* There is a distribution of angular momenta. For a given alpha particle,

* The experimental results were first reported in 1911. In reality there are many gold nuclei in a foil, but
they scatter independently, so we consider only one nucleus at a time.
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the total angular momentum / is given by ! = pv..b, where u is the reduced mass,
U 1s the initial (and final) magnitude of the relative velocity of the alpha particle and
the nucleus, and b is the impact parameter as defined in the previous problem. All
alpha particles incident at the same impact parameter b(¢) (4.103) scatter through an
angle #(¢) (4.78). Experimentally, one measures a distribution of scattering angles 6
for a known incident energy E. The experimental result is expressed in terms of a
“differential scattering cross section do.” Imagine each gold nucleus puts up a screen
of area do cm?. Knowing the flux of alpha particles and the number of gold nuclei per
cm? in the foil, we can calculate how many ¢ particles will hit this screen per second.
Consider the infinitesimal “ring” of area do = 2wbdb. All of the alpha particles
hitting this area will be scattered into angles between 6 and 8 + df within a solid angle
of dQ = 2nsinfd @. The differential cross section for scattering by a single gold
nucleus into d$2 per solid angle d<2 is thus given by

do 2nbdb bdb

— == - _ 4.104
dQ2 2msinfd#f  sinfde ( )

(Since the sign of <2 is negative, we should really use |42| to avoid negative cross
sections.)

a) Start with the repulsive Coulomb potential:

Z o Zo€
V(r) = Lhula (4.105)

r

where Z,, = 79 is the number of positive charges in the gold nucleus, Z, = 2 is
the number of positive charges in the alpha particle, and e = the electronic charge,
which is also the charge on the proton. Prove this gives the famous Rutherford
differential cross section

do (ZA._*ZE.EE)E i

—_— = : (4.106)
P 4B

as 4F sin” 3

where E is the total energy in the center of mass system, which is close
to, but not quite equal to, the kinetic energy of the incident alpha particles.

b) For numerical calculations, you may find it useful that :ﬁ, is a length called
the classical radius r, of the electron. (r. = 2.817 x 10-13 cm, ¢ = velocity of
light, m.c* = 0.511 MeV = 8.2 x 107" joules, m,c* = 3728 MeV, and m ,c* =
183,471 MeV.) The radius of a gold nucleus is approximately 7.5 fermis (1 fermi
= 1 x 107" cm). How close (minimum distance of approach) will an alpha par-
ticle with 5.3 MeV kinetic energy come to the gold nucleus? (Hint: First assume
that the gold nucleus is infinitely massive so that the lab frame is also the center of
mass frame, and the total energy in the center of mass frame is the alpha particle’s
kinetic energy in the lab frame.) Generalize your result to arbitrary masses. Would
the scattering cross section be different if the potential were attractive instead of
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repulsive? Qualitatively, what would you expect will happen to the angular dis-
tribution of scattering if the alpha particles are sufficiently energetic to penetrate
inside the nucleus?

Bertrand’s Theorem

Problem 29: ( ;1; potential) Write a computer program to find the orbit (by numerical
integration) for an attractive potential of the form -. Verify Bertrand’s theorem “ex-
perimentally” on the computer for yourself. The best way to do this is to use the u = }
transformation, and numerically integrate the differential equation for u(¢). Take units
in which ¢ = 1. Vary /, the angular momentum, and graph the orbit x(¢), y(¢) for
different n values, including n = 1 and n = ~2, integrating 0 < ¢ < 4 or 6x, for
example. Be sure to choose the constant in front of the potential so that the force is
attractive. Try n = 4 to see if you can get the orbit through the origin described in the
next problem.

Problem 30: (Central force F = —=) A particle moves in a central force F(r) =
~ 4, where £ is a positive constant. If the particie’s orbit is circular and passes through
the center of the force, prove that n = 5. Find the total energy E. For Bertrand’s
theorem to apply, it is necessary that a circular orbit of constant r exist, which is
certainly the case here, although this is not an orbit that passes through the origin.
However, Bertrand’s theorem determines the n values for which all orbits are closed
orbits. For other potentials, it is still possible to choose initial conditions so that some
exceptional orbits are closed. Notice that it is the force in this problem that varies as
r~", not the potential as in the previous problem. There is a difference of 1 in the n
value.

APPENDIX

TABLES OF ASTROPHYSICAL DATA*

TABLE 4.5 PHYSICAL CONSTANTS AND UNITS

Name Symbol Value Units
Gravitational constant G 6.672(6) x 1078 N m? kg~!
Speed of light (definition) ¢ 2.99792458 x 10% ms™!

* From the Vade Mecum of the American Institute of Physics and The Astronomy and Astrophysics
Encyclopedia, ed. S. P. Maran, van Nostrand Reinhold, Cambridge Univ. Press, 1992,
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TABLE 4.6 ASTRONOMICAL CONSTANTS AND UNITS

Name Symbol Value Units

Astronomical unit AU 1.4959780 x 10'° cm

Parsec pe 3.085678 x 10'® cm
&28.000 AU
3.261633 light years

Light year 9.460530 x 10V cm

Sidereal year (1900) yr 3.1557 x 107 8

Hubble constant (0.5 < h < 1) Hy 100h km s~! Mpc™!

Hubble time Hy! 9.8~ x 10° yr

Hubble distance i 30004~ Mpc

Density of galactic matter 2 x 1073 gcm™>
1 x 1077 atom cm >

Space density of galaxies 0.02 Mpc 3

TABLE 4.7 PARAMETERS OF THE GALAXY

Name Value Units

Diameter 25 kpc

Width of disk 2 kpe

Number of stars 10!

Distance of Sun from center 8.5(5) kpc

Height of Sun above disk 8 pc

Rotational velocity of Sun 220(10) kms™!

Period of rotation 2.5 x 10° yr

TABLE 4.8 SOLAR DATA

Name Symbol Value Units

Mass M. 1.989(2) x 10*? g

Radius R 6.9599%7) x 109 cm

Gravity at surface g 2.74 x 10° cm s 2
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CHAPTER FIVE

3.1

NOETHER’S THEOREM AND
HAMILTONIAN DYNAMICS

OVERVIEW OF CHAPTER 5

Functions of the dynamical variables and their time derivatives that remain constant
during the motion are called conserved quantities or constants of the motion. Noether’s
Theorem reveals how the symmetries of the Lagrangian can be used to construct
constants of the motion from the Lagrangian. These constants of the motion can then
be used to reduce the number of variables in the differential equations of motion.
For example, angular momentum will no longer appear as a fortuitous combination
of coordinates and momenta, but instead will be the answer to the question: “What
remains constant if the physical problem exhibits symmetry under three-dimensional
rotations?”

There are two distinct forms of analytical mechanics: the Lagrangian formal-
ism and the form developed by Hamilton called Hamiltonian dynamics, which we
introduce in this chapter. Not only is the Hamiltonian form used to obtain an elegant
geometric picture of dynamical motion in phase space, but it also serves as the starting
point for most advanced theoretical physics, most notably quantum mechanics. Prac-
tical problems are often more easily solved by the Lagrangian formalism, whereas
theoretical questions are almost always best stated in terms of the Hamiltonian and the
new variable introduced therein, the canonically conjugate. momentum. The variables
g and ¢ are not functionally independent, since ¢ = %¢. However, the Lagrangian
of each dynamical system will tell us the “other variable,” the dynamically indepen-
dent partner of ¢. This is p(g. §) = %. the momentum canonically conjugate to the
variable g. Use of ¢ and p rather than ¢ and § leads to equations with a symmetric
form in the two variables. This in turn has significant consequences in the theoretical
development of mechanics.

DISCOVERING ANGULAR MOMENTUM CONSERVATION
FROM ROTATIONAL INVARIANCE

Start by forgetting everything you have learned previously about angular momen-

tum. We want to be led to discover anguiar momentum from general principles instead
of assuming it. Suppose that the Lagrangian of a particle of mass m contains an arbitrary
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central force V(r). The kinetic energy is %m(uf + v} + v?), which depends only on the
magnitude and not the direction of the coordinates and velocity. Hence the coordinate sys-
iem can be freely rotated without changing the Lagrangian (as long as the rotation is time
:ndependent). What function of coordinates and velocity is conserved as a consequence of
this symmetry?

Coordinate transformations come in two kinds: discrete and continuous. A mirror
reflection, x — —x, y — =y, z = —z, is an example of a discrete transformation. Rota-
tion and translations are both examples of continuous transformations, since you can rotate
and translate by any amount.

Consider rotations about the Z axis. The rotational symmetry of our Lagrangian allows
as to rename the coordinates or rotate them so that the axis we want is called the Z axis. If
the force were not a central force, different directions would be physically different from
cach other and this renaming procedure would not be allowed. For any value of £, a point
at (x, y) is transformed to a point (x’, ¥') by the formulas

xX'=xcosf — ysind,
(5.1)
¥y = ycosf + xsinf.

1f6 = 0, this is the identity transformation. (This is just mathematical jargon for not rotating
at all.) It is important to notice that velocities transform the same way as the coordinates
do (velocity is, after all, a vector). To “discover” angular momentum, it will be sufficient to
consider only an infinitesimal value of @ = §6. Make 3¢ arbitrarily small, and thus neglect
6% and higher powers. As a limiting case of Equations (5.1), the transformation equation
for an infinitesimal rotation becomes

xX'=x— véf,
(5.2)
y = y+ x46.
Prior to the infinitesimal rotation, the Lagrangian L had the general form
L=L(xyzXyZ1). (5.3)
After the infinitesimal rotation, the Lagrangian is transformed into L'
L'=Lx—yé0,y+xd0,z.% —ydf, y+x680,2,1). (5.4}

Because 6@ is an infinitesimal, we can make a Taylur series expansion of L' in 8¢ and keep
only the first two terms:

ol aL L alL
L'=L+80|{x— —y— |+ | x— — y— } | + 0[867]. (5.5)
dy dx ay X

By definition, the invariance of the Lagrangian under these transformations implies that

L' = L. (5.6)
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From Equation (5.6), it must be true that the terrn multiplied by 8¢ vanishes, since 46 can
take on arbltrary (infinitesimal) values. We use the Euler-Lagrange equations (1.60) to

replace 2= by —* ‘“ and £ by —fL The coefficient of 56 in (5.5) is the total ume derivative
L

of xp, ~ vp‘f The standard definition of 3-D canonical momentum is p, = 5=, p, = 3=
p, = ':" Thus the vanishing coefficient of 3¢ in Equation (5.5) is seen to be the total nmf.:
derivative of a constant function of coordinates and momenta:

dl.

— =0, = XpP, — VPx, 7

7 l.=xp YP: (5.7)
where /, is the z component of the angular momentum. You should prove to yourself
that Equation (5.7) follows from Equations (5.5, 5.6). The same derivation above (Equa-
tions (5.1)—(5.7)) can be repeated for rotations around the X and the Y axes. Equation
(5.7) will turn out be true for any direction in space; hence

dl
- = 0 < rotational invariance of L. (5.8)

The notation for angular momentum will be I. (It is often written in other texts as L. This
should not be confused with L, the Lagrangian, which is a scalar,)

QUESTION 1: Rofational Invariance Rotational invariance about the Z axis leads to
constant total angular momentum /. Prove that this statement is true for a Lagrangian
with an arbitrary number of degrees of freedom, using a method similar to the book’s
method for rotation about the Z axis for one degree of freedom.

QUESTION 2: Translational Invariance Translation invariance in the x direction leads
to constant total momentum p,. Prove that this statement is true for a Lagrangian
with an arbitrary number of degrees of freedom, using a method similar to the book’s
method for rotation about the Z axis in one degree of freedom.

5.2 NOETHER’S THEOREM

In some cases, the choice of the best coordinate system to use isn’t obvious. But if

a symmetry exists, Noether’s Theorem* states that a corresponding constant of the motion

exists. The theorem is a direct generalization of the method we have used in the previous

section for rotational invariance. Each conserved quantity can be used to eliminate one
degree of freedom, bringing us one step closer to a solution of the problem.

To use the theorem, we need to find a continuous family of transformations (like the

example of rotations) for the coordinates of the system. The transformation should depend

* Emmy Noether (1882-1935) was a mathematician. The theorem bearing her name was proved in 1918,
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FIGURE 5.1

on one or more continuously variable parameters (such as angles of rotation), which when
zero, give the identity transformation (i.e., no change in coordinates). If the Lagrangian
is invariant under these transformations (i.e., does not change), Noether’s theorem gives
a guaranteed way to find constants of the motion. There will be as many constants as
there are parameters in the symmetry transformation. For example, rotationally invariant
Lagrangians, no matter how complicated the system, must have three constants of the
motion, which are the three components of the total angular momentum.

Let the parameter characterizing a general transformation of coordinates be defined
as 5. (This is the generalization of # in the previous example.) If s = 0, the coordinates
are not transformed; it is the identity transformation. If g(¢) is a solution of the original
EOM for the Lagrangian, we use the notation Q(s, ¢) for a solution of the Euler-Lagrange
equations for any value of 5, with Q(0, r) = ¢(r). (We suppress all indices for multiple
degrees of freedom, but the whole derivation can be easily applied to any number of degrees
of freedom.) Figure 5.1 shows two possible trajectories, one for s = 0, the other for some
value s # 0.

QUESTION 3: Free Particle Consider the Lagrangian of a free particle in three-dimens-
ional space. This Lagrangian is invariant under rotations around the Z axis. Explain
what is meant by s, g(¢), and Q(s, t) for this case.

L' = L(Q(s. 1), O(s, 1), 1) = L(g,§.t) is the definition of invariance. If the La-
grangian is invariant, L’ must not depend on s (dropping the time dependence for simplic-
iy):

d .
EL{Q{S’ 1, (s, 1)) =0. - (5.9)

According to the chain rule

dL 3LdQ  dLdQ

— = . . 5.10
ds 00 ds * aQ ds =10
From the Euler—Lagrange equations for the transformed solutions Q (1.60),
d o
oL _ ddL (5.11)
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Thus
dL d| oL dQ |
-z : = . 5.12
ds  dt [HQ ds ] ( ‘
This means that
d
I(q,q) = p_@ = a constant, (5.13)
ds | _g
|

where p = f;—i' and d Q /ds is evaluated at s = () for convenience.

Suppose the invariance transformation is described by more than one parameter. For
example, the rotations are specified by three parameters. We need an index subscript on §
to distinguish them: s;, j = 1, 2, 3. ... For each parameter s;, we can repeat the previous
derivation to show there is a conserved I; associated with it. In the formula below, we also
explicitly indicate that there are N degrees of freedom.

=~ dQ

f}{qlql‘.’h...i.q,u1ﬂ'1,ti1....,{i'hr)EZF]I P = a constant, (5.14)
k=1 ’

all =0

where ( p; E‘%}. For the space rotations, [,, {,, I; are the components of the total angular

momentum /.

Equation (3.14) is Noether's Theorem: [f the Lagrangian is invariant under a con-
tinuous symmetry transformation, there are conserved quantities associated with that
symmetry, one for each parameter of the transformation. These can be found by differenti-
ating each coordinate with respect to the parameters of the transformation in the immediate
neighborhood of the identity transformation, multiplying by the conjugate momentum, and
summing over the degrees of freedom.

QUESTION 4: Transformations What is a continuous transformation? Explain. Give
an example of a continuous transformation and a discrete transformation (not already

given). Why do we want only continuous transformations for Noether’s Theorem?

Also why, in Equation (5.13) above, do we use p = %}5 and not %‘?

Often students first encounter this idea of associating a symmetry of the system with
a conserved quantity in connection with quantum mechanics. But this concept has its ori-
gin in classical mechanics, although it continues to play an important role in quantum
mechanics.
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We could speculate on whether the converse of Noether's Theorem holds. For example,
the Laplace-Runge-Lenz vector in the Kepler problem® is a conserved quantity. Does
this imply a continuous symmetry heretofore unknown to us? It does: It is called the
“((4) symmetry.” Like the Lenz vector example, does the existence of conservation laws
necessarily imply hidden symmetries of the Lagrangian?

5.3 HAMILTONIAN DYNAMICS

Up to now, we have used a phase space in which we track the development of g, (r)
and gx(¢) in time. [t will be convenient to use a more general definition of phase space, one
that contains the coordinates q(¢) and the canonically conjugate momenta p(t), which
are defined for the general case of N degrees of freedom by:

L
Dy = — (5.15)

Thus g, and p; will become the basic dynamical variables instead of g, and §;. According
to the definition (5.15), pi is a function of g;, g, which are themselves functions of the
ume via the equations of motion.

The Lagrangian L(g, ¢, t) is replaced by the Hamiltonian H(q, p,t). The Euler-
Lagrange equations which determine the motion of the system are replaced by Hamilton’s
equations. Not only does this procedure lead to symmetric equations involving the dynam-
ical variables g; and p;, but a whole new approach to classical mechanics is introduced,
one that leads to the most powerful and sophisticated tools of theoretical physics. The
concept of canonical momentum is the key concept in Hamilton’s theory. You must be
warned that momentum can lose its familiar definition: p = mv. It will turn out that this
is still true in many simple cases, but it is often not true when generalized coordinates are
used for convenience in solving a problem.

Although we defined canonical momentum in Chapter 1, let us begin again from the
beginning. Our goal is to find a quantity p(q, ¢) that is dynamically independent of the
generalized coordinate ¢. We will explain more precisely what is meant by “dynamical
independence” later. First we have to do some preliminary mathematical spadework to
understand how to eliminate § and replace it with the canonical momentum p for Hamilton's

theory.

5.4  THE LEGENDRE TRANSFORMATION

We begin with a purely mathematical exercise. The Legendre transformation 1s
a recipe for starting with a function of a variable and generating a new function of a new

* The Laplace-Runge-Lenz vector is defined in Problem 2 at the end of this chapter.
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variable. If the transformation is repeated, it restores the old function of the old variable.
Legendre transformations are used in mathematical treatments of partial differential equa-
tions and also are used very extensively in thermodynamics to change from one set of
variables to another, To focus on the mathematical content, we will use a notation that
does not specifically refer to mechanics. Consider the independent mathematical variables:
a passive® variable x and an active variable y. Assume a function A(x, y) of these variables
is known explicitly, Now introduce a third variable z and define the function of these three
initially independent vaniables B(x, y, z) = yz — A(x, y). (The minus sign i$ not essential
but will be convenient.) Small changes dx, dy,dz in x, y, z cause a change dB in the
function B:

9A IA

dB =zd dz ~ —| dx — —| dy. 5.16
z.}'+}'zaxj ayxy (3.16)
Regrouping the terms in Equation (5.16) we get
dA dA
dB::(z——— )d}’ +ydz — —| dx. (5.17)
dy |, ox |,

So far, z has been an arbitrary independent variable. We now define z to be a function of
x and y by the equation

dA
z=1z(x,y) = —

7y (3.18)

X

The coefficient of the term proportional to dy in Equation (5.17) vanishes, The other
partial derivatives of B, which is now only a function of x, z can be computed from
Equation (5.17):

oB
az

dB
ax

dA

. s

= J.19
o x (3.19)

=Yy, .
x z ¥

To compute B explicitly, we have to invert the relation for z (5.18), solving for y =
v(x, z) and then substitute into B(x, y(x, 2), z). With the Legendre transformation, y(x, z)
is also obtained from the partial derivative y = y(x, 2) = ‘:—f,;!},[. This means that, given
B(x, z), the transformation can be inverted. For a Legendre transformation, it is possible
to work either with B(x, z) or with A(x, y) to find the “passive” partial derivative, since
:_f"z = _%l ¥

It is often said that the advantage of the Legendre transformation is that it creates a
function of x, z alone. This is true. But this could also be done by substituting an arbitrary
functional relationship y = y(x, z) into B(x, y(x, z), z) = B(x, 7). However, all infor-
mation about y(x, z) may be lost after the substitution, since the simple relations between

* The meaning of “passive” and “active” will become clear from the contexL.
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y=y*

FIGURE 5.2

Graphical representation of the Legendre
ransformation showing the construction
aof z and B(z) from vy and A(y). At the
maximum separation, é‘;;{:j —-A) = 0, so

— n'-l'.l
ay, E}-' I'i,l_-;]".-

partial derivatives ({5.18), (5.19)) would not be valid. A concrete example may help to
make this clear.

~ Example
)

This is really an exercise. Define A(x, y) = (1 + x?)y*. Prove that B(x, 2) = 37555

for the Legendre transformation. Show that you can invert the transformation using
the partial derivative relations (5.19) and an “inverse” Legendre transformation to find
y(x, z} and A(x, y) from B(x, z). Now try the arbitrary substitution y = 7 and show
that the form of y(x, z) cannot be recovered from knowing B(x, z) = yz — Alx, y) =
—x%z%

Two different, but completely equivalent, geometric interpretations of the Legendre
transformation may help the reader to visualize what the transformation means. In the
first way, the distance between a line of variable slope z: fi(y) = zy and a function
f(y) = A(y) is maximized to find y*(z). (We are suppressing the passive variable x.)
This shows that only convex functions A(y) can be used for the Legendre transformation,
since otherwise the maximum might not exist. To find the maximum distance you must
solve the equation %(zy ~ A(y)) = 0, which is the same equation as (5.18). Figure 5.2
shows this construction. The maximum distance is the function B(z).

A second construction, Figure 5.3, shows the dual nature of the Legendre transforma-
tion. If z is the slope of the tangent to the curve A(y) then B(z) is the intercept of the line
tangent to A at the point v*. The same is true if instead we start from z and the convex
function B(z) and in the same way build y and A(y).

QUESTION 5: Convex versus Concave 'Why does A(y) have to be a convex function?
What happens if it is not? (Try A(y) = y, for example.) Is B(z) convex?
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FIGURE 5.3

Dual nature of the Legendre transformation. 1) Construction of z and B(z) from y
and A(v). Since the slope of A(y)aty = v¥ isequalto z(v*), thenz = ﬂf—’;ﬁ-‘a‘—]’.
2) Construction of y and A(y) from z and B{z). Since the slope of B{(z) at =7z
is equal to y(z*), then y = ﬂﬂ%ﬂﬂ.

Why Transform?

In mechanics, start with the Lagrangian L(q, ) (the possibility of explicit time
dependence in the Lagrangian will be temporarily set aside, just to simplify the notation).
The active variable is ¢, and the passive variable g. By making the Legendre transformation
as described above, we pass to the variable p and the Hamiltonian H(gq, p):

. oL
H=pg-L(4q,q), p=-— : (5.20)

aq constant g

The transformation is invertible as noted above.

Since the Legendre transformation can be made equally well in either direction, why do
we prefer the variable p and the Hamiltonian H (g, p) to the choice of ¢ and L(g, 4)? The
key feature of using the canonical momentum p, which is the tangent to the Lagrangian,
instead of ¢, is that Hamilton’s Principle holds for independent variations of g and p.
The arbitrary variations §p and 8¢ are truly independent at each point in time, unlike the
variations 84 and 84. To see this, recall Hamilton's Principle

dS5(action) = f&L dt = 0. (3.21)

Calculate § L in terms of the variations of g and p from (5.20):

5L = ¢8p + p8g — 8 H. (5.22)
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The chain rule for partial derivatives tells us (remember that §p, §q are arbitrary infinitesimal
functions of the time) that

dH dH
SH = —§ —— 5.23
p q + Py P ( )

Inserting Equation (5.23) into Equation (5.22) and collecting together the coefficients of
dq and dp, we have

dH a H d
SL =lg——}8p—-1p+ — V8a 4+ —(pdg). 5.24
( a.n)"’ (“aq)‘? a1 7o 629

When Equation (5.24) is integrated with respect to time to compute the variation in the ac-
tion, the total time derivative on the right-hand side of the equation will contribute nothing
if g = 0 at the'end points. This has always been a requirement of Hamilton’s Principle.
Thus (5.24) indicates that Hamilton’s Principle will only work for independent arbitrary
variations of p and g if the coefficients of 8p, 8¢ vanish. (The dual transformation already
shows us that the coefficient of §p vanishes automatically.)

To prove that the coefficients do vanish, start again from the basic defining Equat-
ion (5.20) and vary all the variables, p, g, ¢ (this does not imply that they are independent),
to obtain

aL
dH = gd dg — —
gdp + pdq 3

dlL
dg = —
4 99

dg. (3.25)

g

The coefficient of d¢ vanishes due to the definition of p. Varying ¢ for constant p and p
for constant ¢ yields the equations

oH

§=—

ap

OH
dq

d oL

—— S Fm———

dt 94

_oL
dq

= —p. (5.26)

4

q P g

in the last step, on the right, we have made use of the passive nature of g in the Legendre
transformation and the Euler-Lagrange equations of motion.

We have not only derived Hamilton’s canonical equations of motion but have proved
at the same time that independent infinitesimal variations in 8¢ and dp from the physical
path in phase space do not change the action, Equation (5.21). We can summarize our
result in a single equation representing any change in A due to changes in the arguments
of the function H(g, p):

dH = gdp ~ pdq. (5.27)

The symmetry between g and p is evident here. It is a consequence of the Legendre
transformation combined with the Euler-Lagrange equation.

Before, in Chapter 2, we plotted g(7) on the ¥ axis and time ¢ on the X axis, making
small variations from the actual graph of the physical coordinate versus time, and proving



180 CHAPTER 5 NOETHER’S THEOREM AND HAMILTONIAN DYNAMICS

LAGRANGE

[
i

FIGURE 5.4

Two views of the dynamics of a falling body. In the Lagrange case,
the height z versus the time r is plotted. In the Hamilton case, momen-
tum p versus height z is plotted. Dashed curves are variations from the
physical paths.

that the equations of motion follow from making the action integral an extremum on the
physical path. Now we are plotting the pbase trajectory of the moving point g(r), p(1)
in phase space as shown in Figure 5.4. Varying this trajectory by arbitrary infinitesimal
variations in ¢ and p also leaves the action unchanged. Since we take Hamilton’s Principle
to be the basic law of mechanics, the trajectory in phase space with this extremum property
is the solution for the motion. In this view, the time appears as a parameter that we vary
in order to trace out the trajectory. There are rewards for this shift in viewpoint, which we
will discuss below.

5.5 HAMILTON'S EQUATIONS OF MOTION

For N degrees of freedom, the 2N -dimensional phase space becomes {g;, pi} and
the Hamiltonian # is

N
H = Fﬁ'?ﬁ' - L, (5*23}
k=1

H=H(QI~Q'19---~QN:PhPI 11111 pN:r)'

To consider the possibility that the time might appear explicitly in the Hamiltonian, add a
term for this:

N N 3H
dH = ndpy — ), dgy + — di. 5.29
; gk dpy ; Pedqe + — (5.29)
Since the time is also a passive variable in the Legendre transformation we know that
dH dL
—_ = —— (5.30)
Hl L [ AR Fiaee- at L7 .
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The total time derivative of H can be computed:

dH dH al.
et 2 3 J— 3 — = a\--.n---—t------—-_II 5131
di M+ ot dat ( }
=}

If there is no explicit time dependence in L, H will be a constant of the motion. If the
kinetic energy is a quadratic form in the g;s, / is also the total energy £ =T + V.
The final result is

IH 3H dH 8L
= e o=~ =~ 2= 5.32
"= T Tag i ot (5-32)

Hamilton’s equations of motion

These are the fundamental equations of Hamiltonian dynamics.

In Lagrangian dynamics N second-order differential equations must be solved. In
Hamiltonian dynamics there are 2N first-order equations instead. This often makes very
little difference in the difficulty of finding explicit solutions. The factthatg and p are treated
(almost) symmetrically allows for the discovery of some important theorems: Liouville’s
Theorem, which we will discuss later in this chapter, and the Poincaré Recurrence Theorem,
which is discussed in Appendix B. It also makes possible the development of sophisticated
analytical tools such as canonical transformations, as we shall see in Chapter 6.

We can get (g, p) at time 7 + dt from the knowledge of (g, p) at time ¢ by using
Hamilton’s equations. Thus a step by step time integration can be performed. This i1s what
is actually done when the equations of motion are numerically integrated on the computer.

We now summarize what you must do in order to start from a Lagrangian and convert
to the use of Hamilton’s dynamics:

1. Define the momentum canonically conjugate to g by the “tangent” to the Lagrangian:

dL
Dk = —— ) (5.33)

G constant gy
Do this for each degree of freedom, holding the coordinates and velocities for the
other degrees of freedom constant.

2. Define the Hamiltonian H as in Equation (5.28) above. This is now a mixed function
of all the g;, ¢; and p;s. This is still not the final form, since the Hamiltonian must
be expressed as a function only of the q;s and p;s.

3. Invert the function(s) you obtained in Equation (5.33) to get gi(q1, 42, -.-. P,
P2y .-

4. Eliminate the generalized velocities in the temporary form of the Hamiltonian from
Equation (5.28). You should now have the Hamiltonian as a function of the p;s and
gis only. The time will appear explicitly in the Hamiltonian only if it was exphcitly
present (due to time-dependent constraints) in the Lagrangian.

5. Solve the 2N first-order Equations (5.32).
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Gravity

FIGURE 5.5
Mass falling on a parabolic wire,

Examples of Hamiltonian Dynamics

= Example 1: Simple Harmonic Oscillator

Consider the simple harmonic oscillator (SHO), which has the Lagrangian* L =

2i* — §x2. The conjugate momentum is p = 2= = mx. Now write down the

Hamiltonian H:
x“, (5.34)

(We could have guessed that H = E = T 4 V here. Why?) Hamilton’s equations for
g and p become

X=—=—, p=-——=—kx. (5.35)

The right-hand equation is Hooke’s Law. If we like, we can differentiate the left-hand
equation with respect to the time and eliminate p to get mi¥ + kx = 0 as expected.
No obvious practical advantage is gained by making the transition from Lagrangian to
Hamiltonian dynamics in this example, but there are theoretical advantages that will
emerge later.

= Example 2: Particle Sliding on a Parabolic Wire

In Figure 5.5, a particle of mass m slides under the action of gravity and without friction
on a wire shaped into a parabola. We choose x to be the generalized coordinate. The
parabola has the shape y = %. The Lagrangian is L = 2(x* + y%) — mgy =
2(1 + x*)x? — Z2x?. Because the kinetic energy is a quadratic form in %%, we know
immediately that the Hamiltonian is H = T + V = E. The canonically conjugate
momentum is 25 = m(l + x%) = p. Substituting for x in the kinetic energy gives us

2

P mg »
H = . .
]+ 22) —+ > X (5.36)

* Here we do not follow our usual practice of scaling all of the variables to get rid of the constants.
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FIGURE 5.6 I

Contours of constant H = E for Equation
(5.36), where we set m = g = 1 for the
calculation.

From this point we can use Hamiltons equations to find the EOM, which are

P P’
\ —_— & ] - = 5 5-3?
X m(l + x2) P * (m(l + x%)? +m3) 37

Notice that p % mJx in this example.
Since the Hamiltonian is constant in this example, the phase trajectories can be
found as the contours of constant H. Even though the EOM are not linear and cannot

be (easily) integrated analytically, the trajectories in phase space are plotted for several
different values of H = E in Figure 5.6.

= Example 3: Spherical Pendulum

A pendulum is connected at the top to the center of a sphere as shown in Figure 5.7.
The length of the pendulum is R; the mass (at the end) is m. The pendulum is free
to pivot in any direction about the center of the sphere, while it is acted upon by a
constant gravitational field in the z direction. The gravitational acceleration is g.

center
of )

FIGURE 5.7
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The pendulum can “swing,” changing its polar angle 8, with kinetic energy
Im(RG). Tt can also “orbit,” changing the azimuthal angle ¢, with kinetic energy
Im(R sin6¢)? (see (4.33)). The total kinetic energy 7 is

1 .
= -z—m}i'zé"z + %m R’ sin? 6. (5.38)
The potential energy is
V = mgR(l - cos@). (5.39)

and we can drop the constant term mg R. ¢ is missing from L = T — V, s0 we expect
pe = constant,

a) The conjugate momenta are

oL

= — =mR* = [,

Pa ﬂf; m i
3L (5.40)

Pp = —5 = mﬂzsinzﬂfﬁ = ly.
¢
b) The Hamiltonian is
Iy 1y°

H=T+V= + —mgRcosH. (5.41)

2mR?*  2mR2sin’6@

(How do we know immediately that H = E=T + V?)
¢) From the equations of motion, we find that, indeed, [, = constant. The equa-
tions for 8, ¢, Iy are

. dH lg
b= aly, — mR? B42)
. OH Iy
o= — — 5.43
e dly  mRZsin" @ ( )
2
Iy = —?—E = lo”cos 6 — mg R sin 6. (5.44)

960  mR?sin’

Differentiating Equation (5.42) and substituting it into Equation (5.44) gives
ls” cos B g .

— = sin#, 5.45

m2R*sin*@ R (5:43)

The first term is complicated and would be hard to obtain by other methods.
If iy = 0, we have the same equation of motion as for a planar pendulum.
If, at the same time, 6 is very small, @ = ,/§. For other values of [, more
complicated types of motion are possible.

0 =

5.6 LIOUVILLE'S THEOREM

Consider a phase space distribution of identical dynamical systems governed by
identical Hamiltonians. These systems differ only by different initial values of coordinates
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TURN O TURN 25

TURN 400

FIGURE 5.8
Capture of debunched beam with fast turn-on.

and momenta. The state of each of the dynamical systems corresponds to a single point
which traces out a phase trajectory as time evolves.

We consider a large number of such systems, all located within some bounded area in
phase space. Figure 5.8 is an example. 1t is taken from an accelerator physics computer
simulation concerned with the capture of electrons into a circular accelerator. The accel-
eration is accomplished by the longitudinal electric field in a radiofrequency (rf) resonant
cavity. To accelerate the particles to higher energy, the particles must first be “captured”
in an “rf bucket.” What is shown is a numerical simulation of this capture process. Each
point represents the arrival time at the cavity and the energy of a particle in the accelerator.

The dynamics of electron motion are exactly the same as for the large-amplitude
pendulum, each different point representing different initial conditions. Deviation from
a reference energy (Y axis) is equivalent to p, and injection time or rf phase (X axis) is
equivalent to g. The result of the computer simulation is shown after 0, 25, 200, and 400
turns around the machine in Figure 5.8. At turn zero we see electrons injected at all different
times within one rf period, but with a limited energy spread. The distribution of energies
around the reference energy is otherwise uniform. As the number of turns increases, each
particle traces out a trajectory in phase space. We have plotted the separatrix” on the plots
in Figure 5.8 to show which electrons will be captured into oscillating (periodic) orbits.
These stable orbits will be successfully accelerated in a real accelerator. Particles outside
the separatrix will be lost.

Notice in Figure 5.8 that, although the phase space gets progressively more “twisted

up,’ the total area filled with particles remains constant. This is Liouville’s Theorem in

* See Chapter 4 for the definition of separatrix.
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action. It says that, whatever the dynamical equations are, we can’t compress a phase space
distribution into a smaller area. If we have dissipative forces, then Liouville’s Theorem
can be violated. But then we can’t describe the motion using Hamiltonian dynamics.
Hamilton’s equations imply Liouville’s Theorem: The area of any small patch in phase
space is preserved as time progresses. The way in which the phase space distribution
becomes rather complicated and stringy is called filamentation.

If the points in phase space are quite numerous, we can describe them by talking about
the density of points in phase space, just as we talk about the density of molecules in a gas.
The concept of gas density doesn’t make sense for distances on the molecular level, since
the density fluctuates wildly. If we chose volumes on a human scale instead, they are likely
to contain ~10%' gas molecules. In the latter scale, it is a good approximation to ignore
fluctuations and talk about the “density” of a gas as a continuous function of position,
time, etc. The density concept arose before the existence of molecules was discovered, but
it remains useful at times to define density p(x, y, z, t) as if there actually were such a
continuous function to describe the number of gas molecules per unit volume.

The phase space density is the limit

Y

(5.46)

where N = the number of systems in “phase space area” AA = Ag Ap. There is a re-
striction that AA never gets so small that density fluctuations become important, In this
sense only will we treat p(g, p. 1) as a continuous function of the phase space variables
and perhaps the time. The total number of particles (dynamical systems) contained in a
patch of area A is then

Nparticles = fj g, p)dqdp. (5.47)
A

In the most general case with more than one degree of freedom, the phase space has 2N
dimensions. Hence p is then a function of 2N gs and ps.* The phase space area generalizes
to a volume A Vy in a 2N-dimensional space:

AV = AqiApy ... AgyApy. (5.48)

In that case
Mpmliclcs. — ff_ . f .{?dn‘.?[ dﬂj . e qudp:. dpl c e e dFHi {5.49]
AVy

We'll stick with one degree of freedom, N = 1, for our proof of the theorem. An extension
of the proof to N > 1 is straightforward if the Jacobian method is used as explained in
Appendix A.

* The density p could also be an explicit function of the time.
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FIGURE 5.9

Liouville’s Theorem states that p flows over phase space like an incompressible fluid.
In this respect it behaves more like a liquid, say a bucket of water, than a gas. We can
dump a bucket of water on the floor, but since water is (almost) incompressible, the total
volume of water doesn’t change. The same is true of the phase “fluid” p. It may change its
shape in phase space, but if we follow a point ¢*, p* which moves according to Hamilton's
equations and measure p(g*, p*) at that point, we find that the density doesn’t change.
Of course, if we sit still, at a fixed point, the density can change. All this can be seen in
Figure 5.8. What we are describing is just the difference between a total time derivative %,
where we include changes due to changes in ¢ and p, and a partial time derivative %‘f , where
instead we sit at a fixed point with ¢ and p held constant. To prove Liouville’s Theorem,
we need to prove that %E = () is a consequence of Hamilton’s equations of motion. This is
the mathematical way to state that the “fluid” of particles in phase space is incompressible.

Start by dividing the phase space into arbitrarily small rectangles of size Ag, Ap, with
area Ag Ap. Atthe end of the calculation, we will take the limit as the rectangle dimensions
become infinitesimally small. The number of “particles” (i.e., dynamical systems) inside
the little rectangle shown in Figure 5.9A is

dN = pAqAp. (5.50)

Consider what happens after a time dt. Particles enter or leave at the boundaries marked
1, 2, 3, 4. The number entering at boundary 1 is the number in the little rectangle of area
Ap q dt in Figure 5.9:

dN, = (pg), dt Ap. (5.51)

(The subscript ¢ means evaluate this quantity in parentheses at ¢. Strictly speaking, we are
averaging the same quantity over Ap, but remember that Ap is very small.) The number
leaving the rectangle through boundary 2 is

ANy = —(p§)g+ae dt Ap. (5.52)
The net change due to both vertical boundaries is

dN; = [(04)y = (P@)q+aq} dt Ap. (5.53)



188 CHAPTER 5 NOETHER’S THEOREM AND HAMILTONIAN DYNAMICS

Because Agq is also small, we can use a Taylor series expansion of the quantity in curly
brackets, keeping only the first term:

AN, = i‘gl dt Ay Ap. (5.54)

By identical reasoning applied to the horizontal boundaries 3 and 4, we see that

d(pp)

dNM= - Hp

dt AgAp. (5.55)

Inside the rectangle, the number must vary if p depends explicitly on the time:
dp
dM.'mmc = a— dt &qﬁp (5.56)

Since the total number of systems entering must equal the local increase in the number of
systems in the rectangle, we have a differential equation:

0 (4 opp

p, oq) p) _

ot dg ap
continuity equation

0. (5.57)

This is called the continuity equation. It occurs in many branches of physics. For
example, in electromagnetic theory, there is a similar equation that expresses the fact that
charge can neither be created nor destroyed:

-—-I—ﬁ'-f::ﬂ. (5.58)

Here p is the charge density, and j is the current density. Equation (5.58) expresses
the conservation of charge as a differential equation. Continuity equations are really
bookkeeping — nothing more. We have found a differential Equation (5.57) that guarantees
that the total number of “particles” (systems) remains constant — a very reasonable thing
to require. Classical mechanics hasn’t been used yet.

Now make use of the fact that our coliection of identical systems obeys Hamilton’s
equations of motion. Carry out the partial differentiation of the products n (3.57) and
regroup the result to get

dp  [8g Bp)  dp . dp

L e — = (), 5.59

AU AR AT >
The term in curly brackets vanishes, due to Hamilton’s equations (5.32) (since ——::;; =

a*H
dpidg ).
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The rest of the terms are the total time derivative of p (by the chain rule). We have
achieved our proof, which is

dp
dt
Liouville’s Theorem

0. (5.60)

Equation (5.60) means that the area of any distribution in phase space must be preserved. It
turns out that this result has many practical applications, such as in the theory of statistical
mechanics.

QUESTION 6: Liouville’s Theorem 1 The fact that the area of a small patch in phase
space is preserved as time progresses is equivalent to the statement that, if you move
along with a phase trajectory, the local density must remain constant. Why?

QUESTION 7: Liouville’s Theorem 2 Explain in detail how the phase space diagrams of
the accelerator capture process in Figure 5.8 show the aspects of Liouville's Theorem.

Finally, we mention what happens if a system does not obey Hamilton’s equations. A
damped simple harmonic oscillator is an example of dissipative flow. The equations of
motion do not conserve phase space area, and a small patch will shrink to a point at the
origin. We can rewrite (5.59) as

dp 8¢ o9p|
T +p{ o7 g Hp] = (. (5.61)

The solution of this equation is

' ' a¢ ap
plg®), p(t)) = p(g(0), p(ﬂ})exp( - f [aq + 4 ]d:)* (5.62)
0 q op

We see that the sign of %3 + %f determines whether the phase volume expands or contracts
in the case of non-Hamiltonian motion,

5.7 MOMENTUM SPACE

In quantum mechanics much is made of the fact that working in momentum space
and coordinate space are completely equivalent, but, different, ways to formulate a problem.
Sometimes it is easiest to solve the problem in momentum space rather than coordinate
space. In classical mechanics there is an analogous transformation. Starting with the
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Lagrangian L(g, ¢, t), make a “double” Legendre transformation to remove both ¢ and ¢,
substituting instead p, p:

K(p,p,.t)=L(g,q.t)— pg —qp. (5.63)

The function K is called the momentum space Lagrangian. The two kinds of Lagrangian,
K and L, are dynamically equivalent, since they differ only by a total time derivative:
ﬂﬁrﬂ. Any problem in classical mechanics can be reformulated in momentum space. See

d
the homework problems for some examples.

5.8 HAMILTONIAN DYNAMICS IN ACCELERATED SYSTEMS

The Hamiltonian formalism lends itself nicely to solving problems in accelerated
systems. The form of the Hamiltonian in a noninertial frame is simply related to the
Hamiltonian form in an inertial frame. We will demonstrate this with two examples: a
rotating system and a linearly accelerated system.

Physics for a Bug Crawling on a Phonograph Turntable

There are two types of motion for the system in Figure 5.10: the rotation of the
turntable and a possible motion of the bug on the surface of the turntable. A physicist at
rest on the moving turntable wishes to calculate the equations of motion for the bug. The
physicist may have no way to refer to the outside world and observes only the motion of the
bug and the force on the bug. This dynamics is affected by the fact that the bug moves in
a noninertial rotating coordinate system. Use x and y as Cartesian coordinates of the bug
on the surface of the turntable as measured in the physicist’s (rotating) coordinate frame.
Recall, however, that although any coordinates may be used in the Lagrangian, T and V
must be evaluated in an inertial frame. The Lagrangian L written in the inertial frame of
the lab is

m
L= -iu,ih - Vi(x,y) (5.64)
Here V(x, y) is the inertial frame potential energy, which we assume can be expressed

in terms of x and y in the rotating coordinate system, and vy, is the bug’s velocity in

FIGURE 5.10
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the lab frame, which needs to be reexpressed in terms of the physicist’s eye view. The
transformation equations relating turntable-based bug coordinates (x, y) to lab coordinates

(X1ab» Yiap) are
Xigb = X COSE — y8in@, Y = ycos@ + xsind, (5.65)

where @ is defined as shown in Figure 5.10. If the turntable rotates counterclockwise at a
constant angular speed w, then & = wt. To get the components of the lab velocity in terms
of rotating system coordinates, you must differentiate the transformation equations with
respect to the time:

Ve tap = Uy COSE — v, SN — w(x 8ind + y cosf), (5.66)
Uylab = Uy COS& + v, 8In & + aw(x cos@ — ysin ). '

The time dependence occurs both because the bug could be moving relative to the turntable
with velocity (vy, v,), and even if the bug rests, the turntable moves with angular velocity
w. The bug’s velocity v}, after some algebra, is

Uiy = V2 + U5 + 20(vyx — v y) + @'r? (5.67)

(r* = x* 4 y*). Substitute this expression into the Lagrangian above (5.64). Calculate the
canonical momenta in the rotating system:

"—HL"—H'I(U }
Fx“—auj"— x — WYy),

-aL—m(u—i— )
pr_ﬂvj_ y e

(5.68)

Finally, construct the Hamiltonian in the usual way:
H = p.v, + pyv, — L. (5.69)

Express it as a function of p,, p, and'get

_pi+p))
I

H
2

+ a(yp, — xp,)+ Vix, y), (5.70)

Hoso = Homo — 0l (5.71)

where [, is the z component of the angular momentum as seen in the rotating frame.
Equation (5.71) says that to find the Hamiltonian from the physicist’s perspective, we
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only need to subtract w/. from the Hamiltonian we would have had if the rotation of the
coordinates were not present. For any force on the bug, we can calculate the EOM in the
rotating frame without any reference to the outside world. The noninertial frame effects
are all contained in the subtraction of w/., regardless of the actual form of the potential
energy. In principle, experiments performed on the turntable without any reference to the
outside world can detect the presence of such a term and measure the value of w.

The noninertial effects of rotation would lead to a considerably more complicated form
using Lagrangian instead of Hamiltonian dynamics. The simplicity of the Hamiltonian is
not an accident, nor is it accidental that the dynamical quantity /. appears in it.

=> Example: Charged Particle(s) Moving in a Magnetic Field: Larmor’s Theorem

There is an important application of what has just been proved. Larmor’s theorem,
simply stated, says that we can remove the effect of a static magnetic field on a moving
charged particle by going to a rotating frame. The effects of the magnetic field are
removed to first order in the field strength, so the theorem only applies to relatively
weak magnetic fields. It has important applications in atomic physics and elsewhere.
Only an electric current or the presence of magnetic dipoles in a para- or ferromagnetic
material can produce a static magnetic field ﬁ{x. ¥, Z).

Because magnetic monopoles don’t exist, it is shown in a course on electromag-
netic theory that

V.-B=0 (5.72)

Since the divergence of the field vanishes, then by a general theorem about vector
fields, we can represent B as the curl of another field, the vector potential A:

B =V x A. (5.73)

We claim without proof (see the homework problem) that for electric and magnetic
fields (E and B), the Lagrangian for a charged particle moving in those fields is

I
= -my* — e + +u A. (5.74)
2 c

(The units are cgs Gaussian units, e is _t.hc charge, ®(x. y, z} is the electrostatic
potential, v is the particle velocity, and A{J, ¥, 2) i*. the vector potential.) To find

the Hamiltonian, use the usual recipe p = {h . :: . £ to obtain
- ., €=
p=mv+ -A {5.73)
C
(not p = muv?), which gives
I i
H=p-v—-L= Emuz + e® = E (total energy). (5.76)
Eliminating v yields
- =2
~ €A
H = (p - ) + ed. (5.77)

2m

H is a constant only if the fields are static, which we will assume here for simplicity,
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Specializing to the case of a uniform magnetic field, it can be shown that
A= (B x. (5.78)

(You should convince yourself that Equation (5.78) does in fact describe the vector
potential of a uniform magnetic field by working out the curl of A.) In particular, a
magnetic field in the z direction means A, = —2y, A, = £x, A, = 0. Putting in
this actual form of the vector potential for the case of a uniform magnetic field in the
z direction into (5.77) we get

2 2

p e e 1, 1)
H = — I.B + -r°B ed. 5.79
2m  2mc 2mc? (4 i (>.79)

The value of & is arbitrary here, so the particle can be arbitrarily accelerated, but it
must remain nonrelativistic for this form of the Lagrangian to be valid.

Now go into the reference frame that rotates with the constant angular frequency
g .

eB
= 5.80
“r 2me (9.30)
Larmor frequency

Equation (5.80) defines the Larmor frequency. In the rotating frame, if ® = 0, using
(5.71) we see that the Hamiltonian is identical with the Hamiltonian of a 3-D harmonic
oscillator:

pi Elrl BI

Hrrmm,g frame = 3 (5.81)

m 8me?

As promised, the linear term in B is absent. Incidentally, one can make a fine lens for
electron beams using a magnetic solenoid — in fact many older-model TV sets have
such a lens. The focusing comes from oscillations in the rotating frame — a particle
starting from the axis returns to the axis in a time which can be easily calculated from
the Hamiltonian above. In the lab frame, the particle motion is a helix. If the angles
are small, all particles are not only focused at the same time, but also at the same place
down the Z axis.

Linearly Accelerated Systems

A physicist is traveling through intergalactic space in a spaceship without win-

Jows. He suspects that his spaceship is being accelerated by a mysterious external force.
How does he find out whether this is true?

Assume the existence of a test particle inside the spaceship, one whose coordinates

t. ¥, z we can measure with respect to the ship. With reference to an inertial frame, let us
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say that the coordinates of this particle are X, ¥, Z. We know that
X=Xo+x, Y=VY+y Z=Zy+z, (5.82)

where X, Yy, Zo are the coordinates of the ship with respect 1o the hypothetical inertial
frame. By the definition of an inertial frame according to Isaac Newton, the absolute
acceleration with respect to any inertial frame is a physically measurable quantity and
should not depend on which inertial frame we choose. Singling out one such hypothetical
inertial frame, the kinetic energy T of the test particle is

I 2 w2 os2 b . ‘
T = Em(f +¥V 4+ 7= sm((Xo+ 37 + Yo+ 30 +(Zo+2).  (583)

The Lagrangianis L = T — V. If the forces exerted on the test particle come from within
the spaceship, it is most convenient to give the potential energy V as a function of x, y, z
the spaceship coordinates. The value of the potential energy must refer to an inertial frame,
o it may contain an additional time dependence from the coordinate transformation.

To find the Hamiltonian, we follow the standard prescription, with the particle’s space-
ship coordinates as the dynamical variables:

dl. .
pe = = =mli + Xo) (5.84)

and similarly for v and z. The usual definition of the Hamiltonian gives us the Hamiltonian
Hg,ip 1n the spaceship variables:

Hyp =Xp.+yp,+ip.— L, (5.85)
- - pz 5,
Hﬂhip{r! P, r) = ﬂ + V[I-r ¥ E} = 'Rﬂ' " P {5-36]

with 7 = (x, y,2), p = (Pe. Py, P2)s ﬁ.:, = (Xo, Y. Zo). We can use formula (5.86) for
translational motion just as we can use (5.71) for rotational motion.

If there really is a mysterious force on the the spaceship, how do we measure it within
the ship? The Hamiltonian (5.86) contains all the information about the dynamics of a test
particle. In the simplest case the potential energy V(x, y, z) = 0. According to Hamilton’s
equations d’;‘:‘*" = ”;j““" = — fil'ﬂ - p. The Hamiltonian in the spaceship will not be constant,
nor will it be the total energy, since T is not quadratic in %, y, 2. We can also use Hamilton’s

equations to show

%’:— — Xo(), p,=0. (5.87)

X =
The first equation, combined with the second one, shows that the velocity X will be a
function of time if X, # 0, even though the momentum p, is a constant. The astronauts
in the ship will observe the backwards acceleration of a particle which has no external
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forces acting on it. Many other effects of not being in an inertial frame could be demon-
strated. Continuous apparent acceleration of a free particle and the apparent lack of energy
conservation are perhaps the most conspicuous ways to demonstrate the presence of an
accelerated reference frame.

SUMMARY OF CHAPTER 5

e Noether’s Theorem gives a method for using symmetries of the Lagrangian to construct
constants of the motion. It states that if s, ..., 5;, ... are parameters of the symmetry
transformation, then [y, ..., [;, ... are constants of the motion:

Y. do

Ii(g,q) = ZP" ds, = a constant (5.88)

all s=0

where p; = M

O(sy, ... ., 1) 18 the transformed coordinate and Q(O0, ..., 0,1 = g(1).

* The Legendra transfurmalmn gives a general and invertible method for replacing one
variable by another. Start with any convex function A(y). Solve the equation z = j—; for
v = y*(z). Then create the new function B(z) = zy* — A(»*). B is a unique function
of z only.

* Define the canonically conjugate momentum to the coordinate g, as p;y = % The
Hamiltonian is defined by a Legendre transformation in N variables that exchanges the
g dependence for p;, creating a new function of g, p;:

N
H= Z p_l;ih — L, {589)
k=1

H=H(G.q,....9n:, P1, P2y.... PN+ 1)

» Hamilton’s equations of motion, which are equivalent to the Euler-Lagrange equations,
are

dH dH dH dL
T = rm—— Y = ——, it | T — 59‘0

H is a constant of the motion if L doesn’t contain the time explicitly.
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« Phase space may be defined in terms of the q,..... gy, P1. ..., P~ Space. It has 2N
dimensions. Liouville’s theorem is concerned with the motion in phase space of a large
number of identical systems, all governed by the same Hamiltonian. Phase space volume
is conserved, that is, the phase space density is like an incompressible fluid.

« In a rotating coordinate system, with angular velocity w, the Hamiltonian has a simple
relation with the @ = 0 (nonrotating) Hamiltonian:

H,z0 = Hyp — ol,. (5.91)

An application of this is Larmor's theorem, which allows us to transform away the first-
order effects of a magnetic field on a charged particle by going into a frame rotating
with the Larmor frequency.

PROBLEMS

Constants of the Motion
Problem 1: (Constant of the motion for more than one degree of freedom)

a) For N degrees of freedom prove that the constant / defined in Equation (5.13)
becomes Equation (5.14) for a one-parameter continuous transformation (j = I)
that leaves the Lagrangian invariant:

d Oy
f 11111 i § % & & e e
(g g\ ) E P ds

k=1...N

. (5.92)

s=()

b) Consider the example of Z axis rotations and two point masses interacting by a
central potential in three dimensions (N = 6). Find an explicit form for / in this

casc.

Problem 2: (A new constant of the motion for the Kepler problem)

a) Prove by using the equations of motion for the Kepler problem (4.38, 4.41) that
the “Laplace—~Runge-Lenz vector™ A, defined as

A=pxl—puk (5.93)

il

= | ™y

(where [ is the angular momentum, p the momentum, and u the reduced mass), is
conserved for motion in a —% potential. 3

b) Find a geometric interpretation by evaluating A for an elliptical orbit.
(Hint: Since A is a constant of the motion, it is only necessary to evaluate it at one
convenient point on the orbit.) Is there a corresponding symmetry transformation?
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Legendre Transformations

Problem 3: (Routhians are “reduced” Lagrangians) The coordinate gy is ignorable
if the Lagrangian contains only the time derivative of the Nth coordinate,

L=L{g.qgx....5-1:Gq1,G2,....¢n-1,Gn: 1) (5.94)

By using a Legendre transformation, we create a new function, the Routhian R (1.71).

R(Gi,....qx-1,q1, .- gn-1) = L = pygn. (5.95)

Since gy is ignorable in the original Lagrangian, py = ;.= is a constant. Prove that
the problem 1s reduced to N — 1 degrees of freedom by using the Routhian as a new
Lagrangian and showing that the Routhian obeys the Euler-Lagrange equations in the
N — 1 dynamical variables g,, ..., gnv_1.

Examples of Hamiltonian Dynamics

Problem 4*: (Motion along a spiral) A particle of mass m moves in a gravitational
field along the spiral z = k#, r = constant, where k is a constant, and z is the
vertical direction. Find the Hamiltonian H(z, p) for the particle motion. Find and
solve Hamilton’s equations of motion. Show in the limitr — 0, 7 = —g.

Problem 5*: (Two particles connected by a spring) Two particles of different masses
m,; and m, are connected by a massless spring of spring constant k and equilibrium
length d. The system rests on a frictionless table and may both oscillate and rotate.
Find Lagrange’s equations of motion. Are there any ignorable coordinates? What are
the conjugate momenta? Find the Hamiltonian and Hamilton’s equations of motion.

Problem 6: (Changing the independent variable; time as a dependent variable) In
the theory of special relativity, time is treated on the same basis as the space coordi-
nates x, ¥, z. We no longer regard time as the independent variable, but instead we
choose for that role another parameter, which we will call & here. Then, in a par-
ticular reference frame, the trajectory of a particle would be given parametrically as
x(0), y(8), z(#), t(6). This can also be done in prerelativity mechanics, although there
1s no compelling reason to do it. Nevertheless it provides some interesting insights.

a) Let the time be an arbitrary function t(8). If L(g, ¢,t) is the Lagrangian of a
system with one degree of freedom, show that the Lagrangian corresponding to
using & as the independent variable is

L,=1L (q, %, :) (5.96)

(t' = %, ¢’ = ). Show using Hamilton's Principle that this Lagrangian leads

to the (two) Euler-Lagrange equations with # as the independent variable.
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b) The parameter t(#) is now to be regarded as a second dynamical variable. Prove
that the momentum conjugate to ¢ is

p =L +;'E£ = —H, (5.97)
ar’

where A is the ordinary Hamiltonian. The time has as its conjugate momentum
the negative of the Hamiltonian. Phase space has been enlarged to four dimensions
by adding time and energy.

¢) Show that the momentum conjugate to g is unchanged by the transformation of
the independent variable.

d) Find the Hamiltonian and Hamilton's equations of motion assuming that @ 1s the
independent variable.

Problem 7: (Farticle in a 2-D central force) Find the Lagrangian for a point particle
in a 2-D central force. Work in only two dimensions, using plane polar coordinates.
Are there any ignorable coordinates? Find the conjugate momenta. Then find the
Hamiltonian and Hamilton’s equations of motion. Prove that you obtain equations
that are equivalent to (4.38, 4.41).

Problem 8: (Particle on a cylinder) Imagine a particle confined to an open cylinder
of radius R and bound to the origin by a spring with spring constant k, as shown in
Figure 3.11.

a) Prove that the Lagrangian is

1

L= -m({(R8P + ) — %k(ﬁﬂ + z%). (5.98)

b |

b) Next find the conjugate momenta, the Hamiltonian, and Hamilton’s equations of
motion. Based on these equations, what type of motion do you expect for the
particle? Will there be oscillatory motion? How about linear motion?

- e e,
J %
i 4

/

Y RGURE 5.1
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Electrons in a Magnetic Field

Problem 9: (Electrons focused by a solenoid lens) An electron is launched from the
axis (x = y = 0) of a solenoid which has a uniform magnetic field in the z direction
of B = 1 tesla (MKS units) or B = 10* gauss (cgs units). The electrons have a kinetic
energy of 5keV (1 eV = —1.6 x 107"” joules). In cgs units, the charge is 4.8 x 10~'¢
esu, and the kinetic energy is 8 x 107 ergs.

a) Find the ratio of the electron velocity to the velocity of light. Verify that the
electrons are not relativistic (i.e., corrections due to special relativity can probably
be neglected).

b) Find the Larmor frequency.

¢) Show that regardless of v, or v, att = 0 (i.e., the “takeoff angle”) all electrons will
return to the axis (be focused to a point) after a certain distance f. Find a formula
for f and calculate the actual distance to this focal length for this case. (Assume
the takeoff angle is small, i.e., that most of the velocity is in the z direction.)

Solenoid lenses are often used as focusing elements in electron beams. Most newer-
model TV sets use electrostatic lenses however.

Problem 10*: (Lagrangian for slow charged particles) The Lagrangian for a nonrel-
ativistic charged particle in an arbitrary electric and magnetic field is claimed to be
Equation (5.74). (We now include the case of fields changing with time.) ®(x, y, z, 1)
is the electric pulenhai and A(x, ¥, Z, 1) is the vector potential. The magnetic field is
defined as B = V x A. In the general case, the electric field is E = —144 ﬂ*”‘ ~Vo. If

the fields are assumed to be static, 3¢ = 0, ® = ®(x, y, z). If the magnetlc: field is
also a uniform field, A= B X F. Tﬂ do this problem, you can assume that the force
on a charged particle is gwen by the Lorentz force law:

F= E(E + E E). (5.99)

a) Prove thatif there is a spatially uniform constant magnetic field, the curl of ;- B .IE X r
gives B.

b) Assume the magnetic field is constant and uniform, and the electric field is static.
Prove that the Lagrangian (5.74) implies equations of motion identical to those
obtained from the Lorentz force, Equation (5. 99)

¢) Remove all restrictions on the nature of the E and B fields. Prove that Equa-
tion (5.99) still follows from the Lagrangian (5.74). This is the most general
case.

Hints: The total time derivative uf any function F(x, y, z,t) along a particle path
x(t), y(tr), z(¢) is given b}' = + 7 - VF, where 7 is the particle velocity. To do
part c), you will Ile:ecl to usr: lhE: vecmr identity for @ x (b x ), where @ and ¢ are
vector functions and b = V, the gradient operator, which operates on everything to its
right.
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Problem 11: (Relativistic Lagrangian for charged particles of all possible velocities)
You do not need to know the theory of special relativity to do this problem. The Lorentz
force equation remains valid for relativistic particles, provided that we recognize that
the force is p. If the charged particle moves through electric and magnetic fields at
velocities close to the velocity of light, the relativistic form of the Lagrangian is given

by
2 [, V7 e -
L retmivistic = —Mc¢” 1 - = - ed + —-v- A. (51{“}
C c

The reason why this form of the Lagrangian is the correct relativistic Lagrangian will
be discussed in Chapter 12.

a) Show that this equation reduces to the nonrelativistic form (5.74) as v — 0.
(Gaussian units are used here.)

b) Find the canonical momenta p,, p,, p. and the Hamiltonian H in the relativistic
case. Is H = T + V? Find Hamilton’s equations of motion.

Physics in Noninertial Coordinate Systems

Problem 12*: (Motion of a particle in an elevator) A particle of mass m moves in the
vertical (z) direction in an elevator. The elevator is accelerated upward with a constant
acceleration a (a¢ > 0 if upward acceleration). Find the Hamiltonian H(z, p. t) for the
particle motion in a uniform vertical gravitational field. Note that p and z are to be
measured in the elevator reference frame — a noninertial frame stationary with respect
to the elevator. Show that, with the correct choice of a, the particle moves like a free

particle.

Problem 13: (Dynamics inside an orbiting satellite) A satellite is in a circular orbit
of radius R far above the Earth.

a) Neglect gravitational effects due to the finite mass of the satellite. Find the Hamil-
tonian for motion of a point particle inside the satellite with respect to the center
of mass of the satellite under the influence of the Earth’s gravity. Assume that the
satellite dimensions are very small compared to the Earth's radius so that you can
expand the gravitational potential in a Taylor series.

b) Interpret your answer. Particularly consider the application to the possible effects
on astronauts. Why do we not see this when we watch films of astronauts floating
inside a spacecraft?

¢) Would there be any effect due to the gravitational forces between the satellite itself
and the point particle? Explain.

d) How would the Hamiltonian of the point particle be affected if the satellite spins
on an axis tangential to its motion with constant angular velocity ? What visible
effects would you expect on the motion of the test particle?

Problem 14*: (Dynamics on a rotating turntable using polar coordinates) Suppose
a bug 1s crawling on a turntable rotating arbitrarily around an axis perpendicular to
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FIGURE 5.12
A) Relation between two coordinate systems. B) Bug's coordinates in lab frame. C) Bug's
coordinates in rotating frame.

the plane of the turntable. The bug’s position is measured by a physicist standing on
the turntable in terms of coordinates x, y, while we (in an inertial frame) measure its
coordinates Xy, Yiub- 1he polar coordinates of the bug are riy, ¢y in the lab system
and r, ¢ in the rotating system. r = ry,, and ¢ = ¢, — 6(t). 0(1) is the angle between
the two coordinate systems, and the rotating frame is moving counterclockwise. The
situation and relation between the coordinate systems is pictured in Figure 5.12. The
Lagrangian of the bug, in mixed coordinates is

= %u;h ~ Vi, ¢), (5.101)

where v, is the square of the velocity of the bug in the lab system. The bug (mass
m) experiences an arbitrary potential V (r, ¢), which is expressed in terms of its polar
coordinates.

a) Why must we use v}, and not v* in the Lagrangian?
b) Substitute the rotating coordinates into the expression for the lab kinetic energy
in the Lagrangian to find the canonically conjugate momenta (to ¢, r): ps and

pr.
¢) Calculate the bug’s Hamiltonian in terms of r, ¢, p,, ps. Prove that, for arbitrary

variation of 8 with time,
H = Hy,, — f:"Pm (5.102)
where Hyy, is the bug’s Hamiltonian if @ = 0.
Momentum Space

Problem 15%: (Momentum space in classical mechanics)

a) Consider a harmonic oscillator (7n = 1) with the Hamiltonian

1
H = E(pz + w’q®). (5.103)
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Find the explicit form for the harmonic oscillator momentum space Lagrangian
K (5.63) as a function of p and p. Show that K has the same functional form
in mcrmﬂntum space as the Lagrangian L has in coordinate space. Find p and p

using p = §¢ and p = — 5L

b) Justity calimg K the “momentum space Lagrangian” by showing that, in general,
for any dynamical system the equations of motion are

d (0K 0K
=) - —= =0 _
dt(ﬂ;‘:) ap (5.104)

Hint: 'ﬂ‘ﬁﬂ =qgp+4qp.
¢) Check that the momentum space equations of motion for the harmonic oscillator
in part a) derived from (5.104) are correct.

Problem 16°: (A familiar system expressed in momentum space) Find the “momen-
tum space Lagrangian™ K for the case of a particle falling in a gravitational field:

dz m {dz\’
L (Z; E) = E (E) — mgz. (5.105)

Hint: Add the total time derivative } 4z? = z% to the Lagrangian L first; then make
the double Legendre transformation from urdmary space to momentum space. Don't

forget that the definition of p may differ from mz.

APPENDIX A

A GENERAL PROOF OF LIOUVILLE’S THEOREM
USING THE JACOBIAN

It is hard to generalize the proof in Section 5.6 to the case of more than one degree of
freedom. We will give an alternate proof of the theorem, still assuming only one degree
of freedom, which will be much easier to generalize to the case of 2N > 2-dimensional

phase space.
For a given point in the phase space (g, p) we can regard (g, p),,4, as functions of

(g, p);. In other words

p(t +dt) = pt) +dt p = P(p), q(1)),
q(t +dt) = q(t)+dt g = Q(p(1), q(1)).

(5.106)

We know that these functions are related to derivatives of the Hamiltonian, but for now
treat them as arbitrary functions. Calculate a volume element in the new (7 4 dt) variables
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in terms of a volume element in the old variables at ¢;
dVia = dpri-dr dq;+qar = det[J]dp, dq, (5.107)

(*Volume” is used in a generic sense; here it is just area because the space 1s two dimen-
sional.) Equation (5.107) is a purely mathematical statement, holding for any transforma-
tion of variables. J is the Jacobian matrix* for this particular transformation:

3P  aP 8pridr  OPrsd
j= 289 _(w w) _("w Twa). (5.108)
T Ap.g)  \2 2 g Oqesar '
dp g iy g

“det[ J]" stands for the determinant of the matrix J. The partial derivatives of (5.108) will
be computed using Hamilton’s equations (5.32). We will then evaluate the determinant,
letting dt — O while retaining terms of O[dt]. The phase volume changes between ¢ and
t + dt by a term of O|dt]:

dv

We intend to prove that % = (), so that area in phase space is preserved. If you start with
a certain area in phase space, although the shape may be distorted as time passes, the area
itself will not change, even after a finite time interval. By comparing Equations (5.107,
5.109), above, it can be seen that det[J] = 1 is the condition for "E‘f = ().
To prove the phase space volume is constant, substitute Hamilton’s equations (5.32)
into (5.106):
oH dH

Pradt = P — dfﬁt}'- Gr4dt = 4 +d:¥ (5.110)

Taking the necessary partial derivatives, you should find that the Jacobian is the matrix

P H 3*H
I l'—dfﬂpﬂq —dfm G5.111)
0 H #H | '
dr-ﬁf I + dt Sadp

Take the determinant of the 2 x 2 matrix in Equation (5.111). Since we are going to the
limit dt — 0, neglect terms of O[dt?]. The terms of O[dt] cancel due to Hamilton's
equations. Thus the determinant of J is 1 + O[dr?].

Phase space volume is preserved as a consequence of Hamilton’s equations. This is a
completely general result, which is not difficult to generalize to any number of dimensions.
For N degrees of freedom the volume element in phase space is given by the expression

dV =dg,dp,dg,dp, ... dgydpy. {5.112)

* See Kaplan, Advanced Calculus, 3rd ed., p. 99 for a discussion of Jacobians.
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In higher-dimensional spaces (2N > 2) the volumes at r 4 dt and ¢ are still related by a
factor of the determinant of J. Define the matrix S by the equation J = I +dt S+ O[d?].
It can be shown (usually in a course on linear algebra) that for any matrix J sufficiently
close to the identity matrix /:

det[J] = 1 4 dt Trace[S] + O[dr?]. (5.113)

(The trace of a matrix is the sum of its diagonal elements.) This means that Trace[S] = ‘L—f

in the general case. Hamilton’s equations imply that Trace[S] = 0, and hence phase space
volume remains constant for an arbitrary number of degrees of freedom.

APPENDIX B

POINCARE RECURRENCE THEOREM

Liouville’s Theorem can be used to prove a very general result about dynamical systems.
We will use two examples to illustrate this result. First, consider a mass point moving
under the influence of gravity on the arbitrary 2-D surface as pictured in Figure 5.13. The
potential energy V = mgz. The motion is in three dimensions but is constrained to move
on a 2-D surface. Assume that the total energy E is bounded. Since 7 > Qand V > 0, V
must also be bounded, which means that x, y, z are bounded, so the 4-D phase space has
a finite volume.

Since we can’t draw pictures in four dimensions, we will just schematize what happens
in Figure 5.14. Consider any arbitrarily small neighborhood €2, with finite phase volume
V containing a point x(0), y(0), p.(0), p,(0) describing the initial state of the system at
t = (. After some time T, this little neighborhood with volume V is mapped into another
neighborhood §2; of the point x(T'), y(T'), p.(T), p,(T), which has the same volume V in
phase space, with a possibly distorted shape (see Figure 5.14A). Observe the same phase
space volume again and again at discrete time intervals 7. Eventually the whole phase
space must be filled up. There must not exist an integer k£ and a time ¢ = kT such that the
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FIGURE 5.13
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FIGURE 5.14

Poincaré Recurrence Theorem: A) Hamilton’s EOM are used to map the initial state of the system at
¢t = 0 to the state at time ¢ = T. B) After n time steps, we find two regions that overlap. The region of
overlap is called wg . C) If we then map n time steps back to return to r = 0, we find the recurrence of
part of £2p in £24 . This region of overlap is called wy ¢ .

set of points in some previous 2, overlaps a finite portion of £2;. If not, then if k becomes
sufficiently large, the volume &V of all the points {2, 4, ... 2} must become larger
than the allowed total phase space volume. Since our phase volume is finite, there must
be at least one region of overlap between €2, and 2, for some n < k. Call the common
region ay , = w; = w, (see Figure 5.14B). The situation is analogous to filling a circle of
one meter radius with dimes, After a finite, but large number of dimes are placed in the
circle, it is impossible to avoid overlapping one dime with another previously placed in the
circle. The shape of the “dimes” is not constant here, but the area of each dime remains
the same.

Next consider the set of points in phase space w; , that belong both to €2, and £2;.
Let’s reverse the direction of time through n time steps, and trace back from £2; to £2,_,
to locate the subregion wy — wy_,. We can also reverse through the same n time steps
from 2, to €2, to find the subregion w, — @y in the original neighborhood 2. Since
the mapping is invertible and unique, the subspace wy must be identical with @y, (see
Figure 5.14C) and we will call this region wy i, (@wy = @i, = wo_,)- This means if we
discover that two regions £2; and §2, overlap, then some portion of £2,_,, must overlap with
the original region £2y. That we will return arbitrarily close to the original starting point in
phase space after k — n time steps is the Poincaré Recurrence Theorem.® Recall that the
original neighborhood can be arbitrarily small. Of course the smaller the neighborhood of
the original point, the more time must elapse to find the recurrence of some portion of it

* The discussion here closely follows that in V. I. Amold’s, Mathematical Methods of Classical Mechanics.
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at a later ime. For the mass on the 2-D bowl surface, it means that the initial conditions
will be almost exactly repeated eventually. The longer you wait, the closer you will be to
matching the initial conditions.

The second and classic example of this theorem is a box with a partition in the middle.
On the right side, we have a gas, with N molecules, and on the left a vacuum. There are 3N
degrees of freedom, and the phase space is 6N dimensions. It is important to realize that
a single point on the multidimensional phase space specifies the positions and velocities
of all the molecules in the box. If we lift the partition, the gas will fill both sides of the
box uniformly. Assuming all collisions with other gas molecules and with the walls are
not dissipative, the theorem we’ve just proved says that, if we wait long enough, at some
time the molecules will reassemble themselves in the right side of the box! The catch is
that “long enough” could be much longer than the lifetime of the universe, especially with
a large number of degrees of freedom. The theorem gives no information about actual
recurrence times.

QUESTION 8: Recurrence Theorem Is the Poincaré Recurrence Theorem consistent
with the Second Law of Thermodynamics? Must entropy, which is a measure of
randomness or disorder, always increase in light of the Poincaré Recurrence Theorem?

Explain.



CHAPTER SIX
B T T R e

THEORETICAL MECHANICS:

FROM CANONICAL TRANSFORMATIONS
TO ACTION-ANGLE VARIABLES

OVERVIEW OF CHAPTER 6

Canonical transformations are transformations from one set of canonically conjugate
variables ¢, p to another conjugate set Q, P. A transformation is said to be canonical
if, after the transformation, Hamilton’s equations are still the correct dynamical equa-
tions for the time development of the new variables. The new Hamiltonian may look
quite different from the old one. It may prove easier to solve the EOM in terms of the
new variables (2, P. The concept of a generating function is introduced, which gives
an “automatic” method for producing canonical transformations. There are four types
of generating functions for canonical transformations. It will be explained how these
different generating functions are connected by Legendre transformations.

Poisson brackets will be introduced, which are invariant under canonical transfor-
mations. If Hamilton’s dynamics is formulated in terms of Poisson brackets, we have
a coordinate-free way to express the equations of motion. The close resemblance of
Poisson brackets used in classical mechanics to commutators of operators in guantum
mechanics is not an accident, since Poisson brackets played a fundamental roie in the
invention of guantum mechanics.

We proceed from the general notion of a generating function to the special gener-
ating function S, which produces a canonical transformation leading to the Hamilton-
Jacobi equation. The Hamilton—Jacobi equation leads to a geometric picture of dy-
namics relating the dynamics to wave motion. There is a close connection between
the Hamilton—Jacobi equation in mechanics and the Schrédinger equation in quantum
mechanics,

The generating function § turns out to be the time integral of the Lagrangian — the
action. The Hamilton-Jacobi equation for time-independent Hamiltonians describing
periodic motion leads to the concept of a special set of canonically conjugate variables ~
action—angle variables. The action variables are constants of the motion, and the angle
variables increase linearly with time. Thus the time development of the dynamical
system takes a simple form when cast in terms of action-angle variables. These
variables are also important for further theoretical analysis of dynamical systems.

Conservative systems (systems without damping) come in two types: integrable
and nonintegrable. Only the latter type can exhibit chaos. Integrable systems with N



208 CHAPTER 6 THEORETICAL MECHANICS

degrees of freedom by defimtion have N constants of the motion. Each of these con-
stants confines the motion to a (2N — 1)-dimensional subspace of the 2N -dimensional
phase space. The intersection of N of these subspaces requires that all the motion
takes place on an N-dimensional surface embedded in the 2N-dimensional phase
space. Trajectories on this “surface” can either be periodic or quasiperiodic.

Separable systems are a subset of integrable systems. All analytically soluble
mechanics problems are of this type. The Hamilton-Jacobi equation is the most
powerful technique for solving separable systems.

6.1 CANONICAL TRANSFORMATIONS

Up to now we have discussed only coordinate transformations (technically known
as point transformations) between two different sets of space coordinates Q and g:

Q = Q(q(1),1). (6.1)

point transformation

or, with more degrees of freedom,

Qv = 0ilg1,q2,...g5.1) (k=1,..., N). (6.2)

You have probably always referred to point transformations as a change of variables. Notice
that this kind of transformation is in the mechanical system’s configuration space. It is
not the most general mathematical transformation possible in phase space. There could be
more general transformations in which the coordinates and the momenta are interdependent.
Transformations of this general type are called contact transformations:

Q=20(q,pt), P=Pgp1n (6.3)
contact transformation

The terminology originated with projective geometry.

Transformations of the type (6.3) are equivalent descriptions of the dynamics of a given
system if there exists a new Hamiltonian, a function of @, P and perhaps t, that gives equa-
tions of motion in terms of the new variables, which are again Hamilton’s equations (5.32).
Canonical transformations will, by definition, take us from one set of coordinates q and
canonically conjugate momenta p to another set Q, P, in such a way that the structure of
Hamilton's equations for all dynamical systems is preserved by this transformation. The
canonically conjugate relation between Q and P will also be preserved. This means that
Hamilton's equations will continue to describe the motion for a given specific dynamical
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system, but with a new Hamiltonian which is a function of the new variables Q, P. The
new Hamiltonian for any particular system can be derived from the old Hamiltonian by
applying a simple rule. A given canonical transformation does not depend on any spe-
cific problem or Hamiltonian; it necessarily preserves the form of Hamilton’s equations
for all dynamical systems to which it is applied. The main application is towards a better
understanding of the theoretical structure of mechanics.

Canonical transformations may or may not be of practical use in solving problems.
In some cases the equations of motion can be drastically simplified such that the main
features of the motion are more clearly revealed. If the contact transformation were not
canonical, we would sacrifice all of the theoretical advantages that flow out of Hamilton’s
analytical mechanics, such as Liouville's theorem. It is usually not easy to guess the form
of the canonical transformation that will simplify the EOM for a specific dynamical system,
but there is a definite mathematical technique that will guarantee to produce a canonical
transformation, useful or not.

Recall that two different descriptions of the same physical system are equivalent if their
Lagrangians differ by a total time derivative of the form ‘—’F—j,‘}'ﬂ. You may want to review a
proof of this before proceeding further. (See Problem 1.6 and/or Question 2.5. Why can’t
F depend on ¢7) Imagine that we have two ways of describing a physical system. Call
L(Q, Q. 1) the Lagrangian of the system using the *“Q” description, and L(q, §. 1) the
Lagrangian using the “g” description. The two descriptions refer to the same physical
system if

dF(gq, g,t)

7 (6.4)

L(Q, Q.1)=AL(g.g.1) —

Time derivatives of ¢ and/or Q are not allowed to appear in F. (We choose the minus sign
in front of # for convenience.) A is a constant factor. However, by definition, only A = 1|
can be called a canonical transformation. A # 1 is associated with a change of units, which
is not considered to be a canonical transformation in the most common sense of the term.

We will use Hamilton's Principle to prove that the Euler-Lagrange equations still
hold in terms of the new variables for L if they hold in terms of the old variables for L.
Integrating (6.4), we obtain

I b
f Ldt = f Ldt + Flg(), Q(n), 1) — Flg(t), @), ). (6.5)

Since Hamilton’s Principle holds in the old (g) system, it must also hold in the new (Q)
variables. This follows immediately by taking the variation of Equation (6.5) and assuming
that arbitrary variations §¢g(f) imply arbitrary variations § Q(t). It is necessary to replace
our previous assumption that g = 0 at the end points of the action integral with the new
assumption § F = ( at the end points. Then the two descriptions are equivalent, that is,
the physics is the same, independent of which coordinate system we use to describe the
system.
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The function F can be used with any specific Lagrangian to “generate” a new, but
equivalent, description of the particular physical system described by this Lagrangian. We
think of the canonical transformation as associated with a given form for F rather than
with a particular L. There are some restrictions on what you can use for F(g, Q,1). A
necessary and sufficient condition for an acceptable F is that ﬁﬂgﬁ # 0. If the mixed
second derivative vanishes, it can be shown that the transformation will not be invertible.

F is called a generating function. There are four possible types of generating functions,

as will be discussed below. The chain rule for the time derivative of F(g, Q. 1) is

dF 8F  oF . OF
7 —Eq+§EQ+ o (6.6)

Since from (6.4) ¢ does not appear explicitly in L,

— — —_— :{:.1 .‘_.E'_, == — 6!?
2 93 9q e P =5 ©7)
aL aF
P=E—r = -, 6.8
To summarize:
dF aF
P=—, - —, 6.9

Equations (6.9) give two equations for the two unknowns, P(p, q), Q(p, q). To find an
explicit form for the transformation, solve Equation (6.7) to express Q@ = (g, p, 1),
and then insert this relation into Equation (6.8) (after taking the partial derivative) to
get P = P(g, p.t). In some cases this may be difficult or even impossible to carry out
analytically.

= Example

As a rather simple example, suppose we take F = g Q. Then, according to Equa-
tions (6.9), P = —3% = ~gand p = % = (. This particular generating function in-
terchanges the role of coordinate and momentum. To anticipate the result derived below,
the new Hamiltonian H(Q, P) = H(—P, Q). if H(g, p) is the original Hamiltonian.
The reader should check that %‘;; = O and % = — P if these transformations are made.
(Notice that the minus sign in (6.9) is necessary to preserve the form of Hamilton’s
equations.) We emphasize that Hamilton’s equations will always be preserved, since

a generating function will automatically generate a canonical transformation.

What if there is more than one degree of freedom? Then F becomes a function of the
gis and Qs (k = 1,.... N), and possibly the time. Using p, = % and P, = w;%: we
now have the 2N equations like (6.9), which give us the transformation rules implicitly,

since we have to solve 2N equations in 2N unknowns Q;, P;. With more vanables, we
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have to keep track of the indices, but the basic rules for transformation remain the same as

for one degree of freedom.
To find the new Hamiltonian A(Q, P), we need to return to the definition of how the

Hamiltonian is derived from the Lagrangian by a Legendre transformation (5.20):
oF oF oF . BF

H(Q,P,t)= PQ — L'——-——Q L+——-q+—-—Q : (6.10)
00 aQ
(We've used (6.6) fur abnve} Thus
H(Q, P,t) = pg — L+% (6.11)

and so

dF(g(Q, P), Q.1)

Y (6.12)

H(Q,P,1)= H(q(Q, P), p(Q, P),t) +

Equation (6.12) says: “to find the new Hamiltonian, just insert the inverse of the
transformation equations expressing P and Q in terms of p and g into the old Hamiltonian
H. If F had an explicit time dependence, then add % as well.” This procedure will preserve
Hamilton’s equations of motion as the new equations of motion, since we know Hamilton's
Principle is obeyed for either set of variables. It is only rarely the case that we have an
explicitly time-dependent F, so usually H(Q, P) = H(g(Q, P), p(Q, P)).

In summary, the recipe for a canonical transformation involves these steps:

1. Specify a specific generating function F(q, Q, t).
2. Equations (6.9) give a set of implicit equations for the canonical transformation.
3. Use (6.12) to find H(Q, P, 1), expressing p and ¢ in terms of P and Q.

There are methods for finding F that we will discuss in Section 6.5, but often you
simply make an educated guess.

If we start with a contact transformation in the form of Equations (6.3), how do we find
the F which generates it? First, express p, P as functions of g, Q, and ¢. Then consider
Equations (6.9) as partial differential equations to be solved for F(q, Q,t). This may or
not be possible to solve, however. Not every possible contact transformation is a canonical
transformation. The Hamilton—Jacobi equation is a special case of this “inverse” procedure
which we will discuss later.

QUESTION 1: Canonical Transformation Follow the recipe for a canonical transfor-
mation outlined in the previous section for F = g +  (use it on your favorite
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-
Hamiltonian). You will find that you do not obtain Hamilton’s equations in terms
of the new variables. Why. does this happen? What is wrong with our generating
function?

QUESTION 2: Change of Scale A scale change (change of units) clearly does not
change the motion of any dynamics. Let’s look at what happens to the Hamiltonian
and the Lagrangian in this case. 1) Prove that if H(p. g) is the original Hamiltonian,
and you make the scale change Q = ug, P = vp, then H(Q, P) = AH{E. %} is
the new Hamiltonian in Q, P, where A = pv where j¢, v are constants. 2) Knowing
the form of the Hamiltonian above, prove that the new Lagrangian is of the form of
Equation (6.4) with A = uv.

— Example: Harmonic Oscillator Solved by a Canonical Transformation
For this problem (see (5.34))

1 )
H(g. p) = 50" + @'q"). (6.13)
With 20/20 foresight, choose®
1
F(g, Q)= qu: cot2m Q. (6.14)

Carry out the canonical transformation:

aF
p= "HT;- = wq cot 2w Q,

oF Twq*

T30 sinf2nQ’

P =

CHAPTER 6 THEORETICAL MECHANICS

(6.15)

Solve the implicit transformation equations for the explicit (inverse) transformation

(6.16)

equations:
p =2 cos21Q,
i g
P
q = P sin 2w Q
Substitute Equations (6.16) into H:
A=—p (6.17)
2

* Not the most obvious function to choose for F, we admit.
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~
L8

Since Q is an ignorable coordinate in A, P is a constant of the motion. From
Hamilton's equations (5.32): -

0= —. (6.18)

The tnivial integration of this equation gives

)

Finally, the familiar solution (in terms of the constant P) is:*

p =, — coswt,
n

P *
— sinat.

"

(6.20)
q

i
ﬁ
B

(If we wish to be completely general, we could shift the origin of time arbitranily as
well.)

QUESTION 3: Harmonic Oscillator Derive the transformation Equations (6.16) from
the generating function by the procedure outlined in the previous section. Guess another
generating function F(g, ) and try the same procedure as done in the previous section.
What do you get for H? Is this new equation a valid description of the system?

6.2  DISCOVERING THREE NEW FORMS
OF THE GENERATING FUNCTION

All generating functions, of any type, contain one of the old coordinates g or p
and one of the new coordinates Q or P. Thus there are four possibilities for each degree
of freedom. However, the transformation equations will depend on which of these combi-
nations we are using. We have to derive them for each type. A Legendre transformation is
used to replace the dependence on one variable with another, so as to convert one type of
generating function to one of the three others.

All four forms of the generating functions found in this way, by successive Legendre
transformations, will represent the same canonical transformation.

The basic type of generating function is F(g, Q, ). We do not need to know this F
explicitly. We are still assuming that §F = O att = #, and ¢ = 1,, the end points of the
time integral for the action. This will always be satisfied, since we are describing the same
transformation in different ways. Since §F = p g — P, if the end point condition is
satisfied for one generating function, it will be satisfied for all of them.

* H. Goldstein calls this example “cracking a peanut with a sledge hammer™!
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F4(p.F) FIGURE 6.1

QUESTION 4: End Points Prove using (6.9) that 3F = p8q — P 8 Q.

We have previously emphasized that generating functions do not depend on the specific
problem. The generating function used for the harmonic oscillator (6.14) could also be used
for some other problem. The transformations will all be determined by partial derivatives of
F, without reference to any particular Lagrangian or Hamiltonian. Of course, the practical
usefulness of a particular canonical transformation does depend very much on the problem
being considered.

We'll call the type of generating function we've already discussed F,. The other
types will be defined in terms of the independent variables (using a standard notation):
Fx(q, P, 1), Fis(p, Q. 1), Fi(p, P, t). The relations are presented graphically in Figure 6.1.

To get Fi(p, Q, t), make a Legendre transformation on F) to eliminate ¢ and substitute
p instead, assuming that p = 3= as in (6.9):

Fi(p, Q.1) = Fi(q, Q.1) — gp. (6.21)

Since F is not an explicit function of p, it follows that Hﬂ—';l = 0, so from Equation (6.21):

g =23, (6.22)

It is still true from Equation (6.9) that

IFy, _ 9F

30 30’
To derive Equations (6.22) and (6.23), we assumed that g, p, Q, P were all independent
variables and not implicit functions of each other. The transformation that makes Q, P
functions of g, p is defined by then inverting Equations (6.22) and (6.23). It does take some

thought to convince yourself that this procedure of treating the variables as independent
until after the partial derivatives are calculated is perfectly valid.

(6.23)

QUESTION 5: Generating Funcfions 1 Comment on the validity of the procedure used
in deriving Equations (6.22, 6.23). In other words, if @ = Q(qg(¢), p(t)) and P =
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P(g(t), p(1)), explain how to derive Equations (6.22, 6.23). What is being held constant
and when does it become a function of the other variables?

= Example
Start with Fy(g, Q) = 3 L wg? cnt 2 Q for the harmonic oscilator and define Fi(p, Q) =
F; — gp. We know that p = S, Use this relation to solve for g(p, Q) = E tan 2w Q.

This implies F3 - 1’- tan 2?:& Equancrn (6.22) gives g{ p. Q) above. Equatmn (6.23)
gives P = :rEu 'EECEEHQ = :rm—-é'h—g as in Equation (6.15). We see explicitly that
F; and F, represent the same transformation.

F4 depends on p and P (and perhaps f). Eliminate P from Fj to get Fi:

Fip, P.t)= B(p, Q.1)+ PQ. (6.24)

We know this makes a valid F;, which depends only on p, Q if F; depends only on p and
P. Taking partial derivatives to find the transformation rules again, we have

HF4 3F4
. = —, 2
q op o 5P (6.25)
Finally, define
Fi(g, P.t)= Fy(g,Q.1)+ QP, (6.26)
HFI EF‘Q
= — 6.27

QUESTION 6: Generoting Functions 2 Fill in the steps in the proof of the relations
(6.24)-(6.27) for Fy and F>;. Why do you think we changed the sign of the Legendre
transformation in Equations (6.24) and (6.26)? Try the opposite sign. What happens
to H?

<> Example: Famous Examples of Canonical Transformations
Choose F> = ¢ P. By using (6.27), we see that we have the identity transformation

O=¢g, P=p. (6.28)

We already tried another simple one: Fy = ¢ Q. For the transformation rules, we
got

g=p, P=-—g. (6.29)

Except for the minus sign, the roles of coordinates and momenta were exchanged.
The distinct identity of coordinates and momenta lost its meaning with the canonical
transformation. In a general case, the phase space can be transformed at will, possibly
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leading to a simple solution to whatever problem we want to consider, as demonstrated
with the harmonic oscillator.

If there are more degrees of freedom, the examples above can be generalized to
become

N
=) aP (6.30)
k=1
and
N
Fi=Y a0 (6.31)
k=1l

Still another example serves to prove that any point transformation is canonical.
Choose

F, = f(q)P. (6.32)

Here f(g) is an arbitrary function of g. We get the transformation

Q=f(g) p= j—fP. (6.33)
q

QUESTION 7: Point Transformations of Many Degrees of Freedom Try generalizing
Equation (6.33) to allow more than one degree of freedom. Also prove that any point
transformation is canonical for more than one degree of freedom.

= Example: An Infinitesimal Canonical Transformation

Choose F; = g P + €G(q, P). This is very close to the identity transformation if € is
infinitesimally small. So far G is an arbitrary function. Carry out the transformation
equations for an F-type generating function (6.27):

aG
pP= P + E'Er-*
9 (6.34)
Q= +EHG
BT
Now let € = dt, a small time interval. Rearrange the equations above to get P, Q:
dG
= dt—,
oret o (6.35)
G '
P=p—di—.
dq

If Gg, P) = H(q,P) = H(q,p) as di — 0, we see that we have reproduced
Hamilton’s equations, The Hamiltonian can be viewed as generating a series of in-
finitesimal canonical transformations which transform us from (q. p); to (g, p)i+d:.
This point of view on the time development of Hamilton’s equations as the iteration
of a sequence of canonical transformations proves to be very fruitful for the advanced
theory of classical mechanics.
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TABLE 6.1 LOOK-UP TABLE OF ALL POSSIBLE GENERATING
FUNCTIONS FOR CANONICAL TRANSFORMATIONS

Generating function Implicit transformation equations
Filg, @, 1) F=%€ilp=—-%

Fag. P, 1) p=2,0=%

Fi(p. Q. 1) '5"=‘Hafﬁ = -5

Fy(p, P, 1) qz_%_?;{;,: ZF

i -

6.3  POISSON BRACKETS

A certain combination of partial derivatives of two arbitrary functions F and G
with respect to canonically conjugate variables {g.}, {p:]} is called a “Poisson bracket”
'F. Gl,.p and is defined as

N .
dF 9G dF 3G
F,Gl,,= (—---—----~) 6.36
! ks ; dqe Opx  Opr Oqx (6:30)
If there is only one degree of freedom, Equation (6.36) becomes
o0F 3G 0F 3G
= — : 37
LF, Glyp 3¢ 3p  9p dq (6.37)

We will restrict the following discussion to this case of only one degree of freedom, but
the generalization to many degrees of freedom is completely straightforward.

The value of the Poisson brackets does not depend on which set of conjugate variables
are used in the partial derivatives. If Q, P are conjugate variables related by a canonical
transformation to another set ¢, p it is true that

'[F, G]Q.P = [F- G]q,pt (6-38]

where F and G are the transformed functions. For this reason we drop the subscripts and
refer only to [F, G]. Choose any set of variables related by a canonical transformation,
and therefore that are dynamically equivalent, to evaluate this.

The proof of (6.38) is reserved for the homework problems. Here we want to point out
just one very important consequence. Let F = @ and G = P. Then by the fundamental
theorem of Poisson brackets, Equation (6.38),

[Q. Plgr=10(q.p). Plg, Py, = 1. (6.39)

Without knowing the form of the generating function for the canonical transtormation
g, p — Q, P, Equation (6.39) gives to us a test of whether a given relationship is canonical
or not.
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< Example

Consider the harmonic oscillator again. From (6.16) we have the transformation
Q. P — q. p, so we need the partial derivatives for (g, plg.p:

o | P 0 |
9 = 2w,/ —cos2n Q, P = imsin@,
W

d aP 2V napP
¢ g (6.40)
aq | ] ap ,‘wF :
—_— = — —— -—2 —— .
3 3 EFsmier 20 14 - sin 2 Q

By taking the appropriate combinations to form the Poisson brackets, [¢q, p] = 1, as
was inevitable since the transformation was canonical.

In mathematical language, the property (6.39) is sufficient as well as necessary. Not
only do canonical transformations yield conjugate pairs of variables with the property, but
if this property holds, the transformation must be canonical. Had we doubted that the
relations (6.16) could be a canonical transformation, the Poisson bracket test would be
conclusive proof. (We reserve the proof of this for a homework problem.)

The canonical relationship between old and new coordinates and momenta (6.39) can
be shown to be equivalent to requiring that the Jacobian —9—3 is a symplectic matrix.
(See the appendix at the end of the chapter for the dﬂﬁmunn uf “symplectic” and further
discussion.) For one degree of freedom, this means the change of variables preserves phase
volume (i.e., dQ d P = dg dp), which is proved in the homework problems.

The close connection between Poisson brackets and commutators of operators in quan-
tum mechanics is beyond the scope of this book.

6.4 HAMILTON-JACOBI EQUATION

Up to now, the solution to a problem with N degrees of freedom involves solving
Hamilton’s equations of motion; a set of 2N first-order ordinary differential equations
(ODE) with 2N dependent variables and one independent variable, the time. We will show
that the same mechanical problem can be solved by finding a solution S{g;, ..., gy, 1)t0a
single first-order partial differential equation (PDE) containing only the N + 1 first-order
partial derivatives with respect to the g;s, the g;s, and the time. The function § 1s a special
generating function producing a remarkable canonical transformation, as we will explain.

Assume there exists a canonical transformation for which the transformed Hamiltonian
equals zero. By the general rule for transforming a Hamiltonian using any type of generating

TABLE 6.2 COMPARISON OF HAMILTION'S EQUATIONS TO THE
HAMILTON-JACOBI EQUATION

Hamilton’s equations Hamiiton-Jacobi equation
# of independent variables 1: (time 1) N+ 1: ({gx}), 1)
#of dependent variables  2N: (gk. px) 1: (the action §)
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function F (6.12):

- aF
H(Ql‘l-""“'t QN+P11--=-PH-”=U=H(‘-}'lr---;qh’tplm“wph’m”‘i"‘a?‘- (6'41)

All the Ps and Qs will be constants, since Hamilton’s equations for H would give P, =
O, =0, k=1,..., N. Since the new variables are constants, the information about
the time development of the system’s motion is contained in the canonical transformation.
Further, assume there exists a generating function* § = F(qy,....gn. P1, ..., Py, 1) that

produces a canonical transformation with the desired property that H = 0. Then p; = 2

and Q0 = %‘,E-, as we have seen from Equation (6.27). The Equation (6.41) we have to
solve for § becomes

gt ) + 3 =0 (6.42)

H(Qhw-:ﬂh’-""— 11111 E_

Hamilton-Jacobi equation

The solution S to Equation (6.42) is called Hamilton's Principal Function. Equation (6.42)
is a first-order differential equation in N + | independent variables. By the general theory
of differential equations, there will be N + 1 arbitrary constants. There could be one
arbitrary additive constant in S, since S + constant is a solution for (6.42) if § is a solution.
The other N constants are defined as the P,k =1,.... N. These constants are fixed by
the initial conditions, as are also the constant Q;s, which equal % However, there 1s a
great deal of freedom in how these constants P, are defined. It is good to realize that the
Hamilton-Jacobi equation is more of a theoretical framework than a specific algorithm for
solving problems. The art, in fact, lies in how the constant new momenta are defined, if we
wish to solve a given problem. As a tool for theoretical understanding, it isn’t necessary
to be specific, however.

To remind ourselves that the P;s in S(gy, ..., gk, Py, ..., Pi. 1) are constants, let’s
rename the P.s to be a,s. (This notation is used here because it seems to be a standard
convention with other authors, notably Goldstein in Classical Mechanics, second edition,
and Landau and Lifschitz in Mechanics, third edition.) Also, the Qs = dij;— comprise N
additional constants, which we rename to be f;s:

N 0S(gy, ... gGn. Oy, ... 0N T)

= constants. (6.43)
Hﬂk

Q. = b

If we solve (6.43) for the g;s, we have q(a,, ..., an, By, .-, Bx.1). The actual values
of the as and Bs are determined by the initial conditions. Solving the Hamilton—Jacobi

* S must have this form to be an F>-type generating function, Since the Py are constants, we can consider
5 to be a function of only the gxs, if it is convenient to do so.
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equation is equivalent to solving the original mechanical problem, because if you can solve
for S, then (in principle) you have the canonical transformation that gives the full solution
in terms of the initial conditions. To see this explicitly, suppose that you know g.(0), p:(0),
the coordinates and momenta at t = 0. Solve for the o, B; constants of the motion by
solving the 2N implicit equations:

a8 a8
0) = —| . = = 6.44

As a practical matter, solving (6.42) and Equations (6.43, 6.44) may or may not actually
be possible for a given problem. It may be possible in one coordinate system but not in
another. As it is a purely theoretical concept so far, we do not consider such questions at
this stage. However, much better understanding can be gained by following the worked
examples below and by doing the homework problems. The theory at this point is rather
abstract.

Consider the total time derivative of S:

dS as  as
— =) —@+—. 6.45
dt g7 B (6.45)
From Equations (6.27, 6.42) it follows that
dS
=) pi~H=L. (6.46)
&

The generating function § is the time integral of the Lagrangian (which was defined as the
action!):

S = ] Lds. (6.47)

This is an elegant theoretical result, but one soon realizes that the entire problem must first
be solved for gy(1), ... in terms of S in order to know L(g(1), ..., ¢ (1), ..., ). However.
the result (6.47) does show that “least action” (Hamilton's Principle) is a principle that
could lead to the solution of partial differential equations.

QUESTION 8: Homilton-Jacobi Equation Explain why choosing S to satisfy the equa-
tion H = 0 is equivalent to solving the differential equation (6.42) with 1 dependent
variable and N + | independent variables,

=) Example: A Particle of Mass m in a Gravitational Field

The three-dimensional Hamiltonian for a particle of mass m in a gravitational field in
the z direction is
P+ Py + i

H = +mez, 6.48
- £z {
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where p; is the conjugate momentum for the particle in the kth direction. From (6.42),
the Hamilton-Jacobi equation for the generating function § is

1 [ras\* ras\* [as\’ as
— ({2 i il 22— 6.49
2m ((ﬂ.t) +(B}=) +(Hz) )+ng+ ot (6.4)

We can “separate,” this equation, that is, write § as the sum of separate terms,
each depending on a single coordinate or the time:

S5 = Wix) + Wa(y) + Wa(2) — Et, (6.50)

where E is a constant. Writing .5 in this way is called the method of separation of
variables. This form will be justified by showing that it leads to a solution of (6.49). If
the Hamiltonian contains the time explicitly we cannot separate the time dependence
of § in this way. Substituting (6.50) into (6.49) yields

1 AW\ sz{y))E (dwstz})z N
2m (( dx )+( v ) T\ Tz Fme= oy

Since the constant E is the sum of terms which each depend on a separate indepen-
dent variable, the individual terms must themselves be constants: o) + o2 + a3 = E.
Notice that we have defined the meaning of the new momenta o, a3, o3 to be what
are called separation constants. From this argument we obtain a set of three ordinary
differential equations to solve:

i (dwi(x})z 1 (dW:(}'})I
= oy, = 03,

2m dx 2m dy
(6.52)

1 /dWs(2) ez =

2m dz g2 &3
The solutions are
Wilx) = +x/2ma;, Wil(y) = Ly 2ma;,
3 (6.53)
W3(z) = | ooy — mg2)"".
mg

(An additional additive constant can always be included in §.) We have found the
solution in terms of the necessary three constants.

The crucial step in performing the separation of variables to solve the Hamilton—
Jacobi equation is to require the N = 3 constants «,, 42, o3 created by the separation
of variables to be the new “momenta” in a canonical rransformation generated by
§ = S(x, y. z, a1, @3, &3, 1). Notice that we define the a; to be the new momenta. We
also have the constants §; defined by (6.43). From the definition of § in (6.50) and
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Equations (6.53) above, we find

Y m dSs m
= ——=%x [— —1 = — =4y [ — — |
ﬁt 3&-; * 2&'[ )32 3&'1 Y 2&‘1
(6.54)
g 08 _, [2as—mgd
T day mg?

Finally, invert (6.54) to solve for x, y, z in terms of the constants and the time:

X = ,_,‘ B+, y= 1,‘ (B, + 1),
(6.55)

2“;?!}'-‘—(.3 3+ 1),

This is the right form for the motion of a free particle in a gravitational field. The
constants &y, &3, &3, B1. B2, B3 depend on initial conditions, the values of x, y, z, and
their time derivatives at ¢ = 0.

What Can Be Done if the Hamiltonian Does Not Contain
the Time Explicitly

We already know that a Hamiltonian that does not contain the time is constant. H
is usually also the total energy E. Let S have a special time dependence

S(‘?hww'?hfaﬂ![ ----- &'st}EW{Qhn-ﬁfi'N-ﬂh-n-.ﬂN}—EL {6-56}

Since, by assumption, this new function W does not contain the time explicitly, the
Hamilton—Jacobi Equation (6.42) becomes

EIW ow
vy GN , = K, 6.57
H(th gn Bq Hqﬁ) (6.57)

Hamilton~Jacobi equation (second form)

Any solution to Equation (6.57) will define a new function W. Since there are N dependent
variables, there will be N independent constants in the solution W. W is called Hamilton's
Characteristic Function. We can give W a more physical interpretation by noticing that

N
W=5+Et= f(L+H}df pr;,q;,dt=Z[ptdqt, (6.58)
k=1

The function W can serve in its own right as a new generating function of type F;. The
canonical transformation generated by W is different from that generated by § because
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H = E # 0. A set of equations is obtained in which the time appears only once. This
method is valuable for finding constants of the motion and for determining orbit equations
for which the time has been eliminated. In the case of §, all the new momenta and coor-
dinates were constants. With W the situation is somewhat different. The new coordinates
Q. k=1,..., N are all ignorable in the new Hamiltonian (6.57), which implies that the

There is a wide latitude of possible choices available. The simplest choice is to define

P, = E. If we make this choice, then Q; = 3} = J& = 1 and thus

0, =t + constant = H—E (6.59)
JdE
Q) is no longer a constant, as it was with 5. It is the time. The time is the coordinate that
is canonically conjugate to the energy. The atbitrary constant sets the zero of time. It is
a constant of integration and determines the lower limits of the integrals defining W. The
N ~ 1 momenta P,, ..., Py are independent of P,, so differentiating the Hamiltonian with
respect to the other momenta gives zero, and hence the N — 1 new coordinates Q,, ..., Oy
are constants as well. Change the previous definition of the constants «, f to have an index
i whichrunsfroml1toN — 1: a; = Py, B = Q.
The solution to the Hamilton—Jacobi equation (6.57) can be written as a function:

W(gy.....gn. E, 0y, ..., 0ty_)).

There are N — 1 equations that do not involve the time:

ﬁi:"ﬂ* i=1,....N-—-1. (6.60)
do;

The N equations p; = %th can be evalvated at t+ = 0 to give {E£, o;} and {0, £;} for
¢ = 1,... N —1interms of the 2N initial values g;(0), p:(0). The g,(#)s can then be found
at other times t 3 0 by inverting (6.59, 6.60). This 1s almost the same as the procedure
we followed with the S generating function, except that one of the constants is the energy,
and the time has been isolated as one of the new coordinates in the equations.

Since the N — 1 equations for §;, = ‘% do not contain the time, you can choose any
one of the N g, as an independent variable and solve for the other N — 1 g;s as dependent
variables — the orbit. We did this in Chapter 4 for r(¢) in the Kepler problem.

In practice, solving for either the Principal Function S or the Characteristic Function
W can only be done explicitly if the variables can be separated, the general method for
which is described below. This does not diminish the more abstract theoretical value of
S and W, however. Their great value lies in giving a constructive procedure for finding
all the constants of the motion, provided that a solution to the Hamilton-Jacobi equation
exists. The existence of solutions was once considered to be obvious, although as we will
see, it is by no means always a correct assumption!

The preceding discussion about using W instead of S is rather abstract. [t can be put
in more concrete terms by using the same example we have already given above.
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= Example: Parabolic Orbit of a Falling Body Obtained Using W

Consider the previously solved example of the falling body. To carry out this procedure,
we must alter the meaning of the as and fs. The phifosophy has changed, since A
is no longer equal to zero. The actual equations are almost identical with those we
solved before with this example. The first new momentum, Py, is assigned to equal
the Hamiltonian, which means that 0, = r plus an arbitrary integration constant,
The time is separated from the rest of the problem at the beginning. There are now
N — 1 = 2 remaining Ps and Qs to be found from the solution for the generating
function W. After separating the variables, the characteristic function W takes the
form

W(x, y, z,ay, a2) = Wilx, @) + Wa(y, a2) + Wiz, E — a; — a2). (6.61)

The second form of the Hamilton-Jacobi equation is

L (oW \? | (oW, 3“’3)2
— [ { — i e = E. 6.62
Zm((ﬂx)+(3y)+(ﬂz s (6:62)
The solution for S found above also gives the solution for W. Define the new momenta
P =a, P =3

(
(

AWs \ 2
(5

2m

7|

)

o)

EFR

S m—
[

(6.63)

My =

-
=

E—-—ay—a; =

The solutions to Equations (6.63) are

Wilx, oq) = £x/2ma;,
Waly, o2) = Ly 2Zmas, (6.64)

8
Wiz, E — 0y — o) = & | ——(E — o) — @y — mgz)".
Img?

iz = %’; Notice that a; ; appear now in two places. It is necessary to find the
derivative in both places. This is a key difference between using § and using W. We

find
ﬁ[ :':'r J E{E &y —y — ng]-
'I' mg

P2 = E = ;;(E-m-ﬂz-mgz]

(6.65)
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Evaluate the constants & 2, By z using (6.65) and p, = §. p, = P att = 0. To
simplify the algebra, assume specific values x(0) = y(0) = z(0) = 0 and p,(0) = 0
as initial conditions. Equations (6.65), evaluated at r = (), becomes

1‘/2
= F—./ —(E —a; — a3),
B :Fg m{ o — an) (6.66)

B = b

Since it makes no difference, select the upper sign in the equations above. From the
equations for p, ,, obtain

2(0
p(0) = 2may, oy = "’;fn),
6.67)

0= ‘Zlﬂﬂ!'j.. ¥y = 0.

Subtract the two equations (6.66). A contradiction is avoided only if y = 0 for all
times. This makes physical sense as well. Setting y = 0, evaluate

12 piO)  x 1 [2 p3(0)
’Slﬂg\/;(g Em)_v,m} g\/m(E om "’3")‘ (6.68)

where v,(0) = 2% Equation (6.68) is the promised equation for the orbit, but
in rather cm%m!uwd form. After squaring and further manipulation of (6.68), and
using E = P‘[mz':;”gm' and p,(0) = mv,(0), we obtain a recognizable equation for the
parabolic orbit z(x) of a falling body:

_ 1’;[0) IE

z = qu{ﬂ} - 2802(0)' (6.69)

Although (6.69) could easily have been found without solving the Hamilton-Jacobi
equation, it does illustrate how directly constants of the motion can be discovered.
They arise automatically with this method.

The time dependence of the three coordinates was obtained directly using S. If

the time dependence is desired, use r = 3%

Separability
For systems with N > 1 degrees of freedom, if Hamilton’s Principal Function

can be written as the sum of N terms, each depending on a single coordinate including the
tume,

S(q, g2, ... gn,ay, 02, ..., oy, )= Z:w.l:(‘?hﬂ‘h---.ﬂﬁ}“Eh (6.70)

then the Hamilton-Jacobi Equation (6.42) can be separated into N separate equations.
'We write the new momentum variables as «; as before, as a reminder that they are
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constants.) An even simpler form of separability exists if the Hamiltonian itself is a sum
of N independent (“uncoupled”) parts:

N
H(prv oo P Gn) = ) Hipe, q0). (6.71)
k=1

The Hamilton—Jacobi equation then splits into N independent equations

oW N
H, —l=a, E=)Y «. 6.72
k(q* 3-;&) o ; ‘ (0.72)

Each ; term is a constant. Hence the problem dissolves into N separate 1-D problems to be
solved by quadratures, as we have already discussed. The previous example demonstrated
this method.

Whether or not this can be done depends both on the problem and on the coordinate
system we choose. Problems that can be solved by separating the variables include:
1) central force motion, including the Kepler problem (spherical polar coordinates only),
2) the problem of two fixed centers of gravitation (use elliptic coordinates), and 3) a
particle attracted to a fixed center of force and also subjected to a uniform gravitational
field. Ignorable coordinates can always be separated. For orthogonal coordinate systems,
there are certain very general conditions, called the Staeckel conditions, that determine
which kinds of potentials can be separated.” For example, in spherical polar coordinates.
one has a separable problem only for a potential of the form

Ve(0) + Vo)

V=V(r)+ .
D+ =7+ Fnto

(6.73)
A central force is a special case of this, with V, = V,, = 0, Separation of the variables in an
appropriate coordinate system is considered to be the most powerful analytic technique for
solving mechanics problems. But not all problems can be solved in this way. An example
is the “Sun-Earth-Moon” problem — the famous (or infamous) three-body problem, for
which no analytic solution is possible. This is closely connected with the existence of
chaos, which we will discuss in Chapter 11.

= Example

Here is an example of a separable system in the sense of (6.70) but not in the very simple
sense of (6.71). It is the case of a particle attracted by a fixed gravitating body while
also being in a uniform gravitational field oriented along the Z axis. The potential
energy (m = 1)1s

k
Virz)= — + BZ, (6.74:

* For a further discussion of this subject, see H. Goldstein, Classical Mechanics, second edition, p. 453.
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where r is the distance to the origin in spherical coordinates, z is the height above
the XY plane, and £ > 0. This problem involves a noncentral force, with rotational
symmetry around the Z axis.

From the general principles of solving the problem with the second form of the
Hamilton-Jacobi equation, we expect to find four constants of the motion, two a's and
two Bs, since this problem has two non-trivial degrees of freedom.

The first step is to select an appropriate coordinate system, since separability in
one coordinate description does not necessarily imply separability in another. We will
choose parabolic coordinates £, n, which are defined by

E=r+z, n=r—z, r=x24y+2z2 (6.75)
Since r > |z}, both & and » range from 0 to co. Surfaces of constant £ and constant

n are paraboloids of revolution. The third coordinate is the azimuthal angle ¢. In
Cartesian coordinates we have

!
Encosg, y=JEnsing, z=3(—m).

. ' . . ds .
The next step is to find the Kinetic energy from the velocity (57):

= %(ﬁd&+‘/§dr}) cos — /Ensing dg,
e %(\E dE + ‘/%dr;) sing + \/E_r;-::nst# d¢, (6.76)

1
= E{di’ —dn),

ds? =dx* +dy* +d* = i ([1 + g]d.ﬁ + [1 + %]duz) + En do*. (6.77)

By differentiating the kinetic energy with respect to £, 1, ¢, obtain px, p,, pe:

m AT m AW :
PE=E(|+Z__‘)E- FW:E(I+E)H+ pe = mé&ng. (6.78)

To get the Hamiltontan, first express the kinetic energy in terms of canonical momenta:

1 (ds 2 P
— o 6.79
g Zm(dr) m(E + }['Epf+”p"]+2mg (©.79)
In parabolic coordinates, the potential energy is
Vg ) =~ + 28—, (6.80)
E+n 2
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This is an example of a problem where the separation of variables is possible, but the
energy is not a sum of separate terms each involving a single coordinate. To separate
the variables, set the sum T +V equal to the energy E and multiply through by 3 (£ +1n).
We get

3 2
2, 8,0, P8 E 2 _ 8 Ps _E
— e —_— — e =k+ 6*81
fP§+4E +4E ZEJ+IHP.; 411 +4;; 57 (6.81)
:thLmE d:pcnd:-l:-nli

Since ¢ is an ignorable coordinate in the Hamiltonian, p, is a constant of the motion.
We have now reduced the problem to one with two degrees of freedom, and so we can
expect one o and one f# as new constants of the motion. Separating the variables in
Equation (6.81) determines a constant of the motion . Write W = pyo + W + W,
and substitute p; — “‘ =L in the first equation below to get

(6.82)

Do the same for 7 in the second equation. In the nearly identical equation for W, (5,
k —«), only the sign of g is reversed. The new constant of the motion can be written in
more symmetrical form by subtracting the second equation above from the first one:

_ wy Pef(l 1\ _E
2“-—*“'"[5!?; ’}F,,]+ ~(&*+7q }+4(E r;.') 2(5 ?ﬂ- (6.83)

constant of the motion

(If g = O, this problem reduces to the familiar Kepler problem. The constant above is
then proportional to the z component of the Lenz vector, which is a conserved quantity

for an inverse-square force law.) The other new constant of the motion is 8 = %2&
The solution can be written in terms of definite integrals:
g, . o P
Wﬂ&,ﬁ:fp dté = dE E—=f4 —~ = —, (6.84)
: w'/" £0) 27§ 28

o[ g  k—a) Pp;
W, ,k—ar}=f d =—-f d ‘/E+— - - £ 6.85
w1 Pn 5o K , 27 (6.85)

Since our purpose was only to demonstrate the separability of this problem, we will
not go any further. Information about the existence of bounded orbits (E < 0) and the
turning points of the motion can be deduced from the requirement that both quantities
under the square roots in (6.84, 6.85) be positive only for bounded regions in £ and
n. One must therefore examine the possible roots of these quantities as £ and »n are
varied.



6.4 HAMILTON-JACOB! EQUATION 229

The Relation of Hamilton-Jacobi Theory to Quantum Mechanics

Classical mechanics is to quantum mechanics as ray (geometric) optics is to wave
optics. For classical geometric optics the wavelength of the light is irrelevant. One has
only to draw the light rays and propagate them through the medium according to the index
of refraction, using Fermat’s Principle of Least Time. In simple cases this amounts to using
Snell’s Law at the boundaries between different media.

The historical motivation for the Hamilton-Jacobi equation was to exploit this analogy
between optics and mechanics. The momenta p,, ... are proportional to the gradient of
5 in N-dimensional configuration space. Therefore, surfaces on which § is constant are
normal to the possible trajectories g(#), . . . inconfiguration space. The surfaces of constant
phase advance because surfaces on which § is constant move through the configuration
space due to the Et part of S. In classical optics these surfaces are surfaces of constant
phase (i.e., wave fronts) and the trajectories are light rays, which are always perpendicular
to the wave fronts. The way light propagates through a medium with variable index of
refraction is described by an equation exactly like (6.42).

However, the invention of quantum theory showed that the correspondence between
mechanics and optics was more than just an analogy. In quantum mechanics, § is propor-
tional to the phase of the wave function, so we have a definite mathematical connection
berween the Schridinger equation and mechanics. This connection between quantum me-
chanics and classical mechanics must exist, since 1n the limit of Planck’s constant i — 0,
guantum mechanics must reduce to classical mechanics.

Start with the 1-D Schridinger equation

h* 9*w L
2m dx? T

(6.86)

where W i1s a complex function

= /p(x, 1) e ", (6.87)

and p and § are reaf functions of x and 7, where p is the probability density. Substitut-
mng (6.87) into (6.86) above gives

n? [ 9° 250/p8S 1 as\’ a*s
—_— ‘/_“ \/-' hlﬁ(_) h ]ff

2m | dx? h dx odx 31

(6.88)
+ V(x)/pe' o= :Tz{ '/_ -,/'u-}e i,
Assume ﬁl 3| < 1327, (Here R is regarded as small. We will comment on the physical

meaning uf thls assumption below.) Then collecting terms without & dependence to get
the limit of the Schrodinger equation as i — 0, we get

1 /85\° as
— (*) + V(x) + a7 = (6.89)
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Quantum mechanics, in the limit of A — 0, gives the Hamilton—Jacobi equation* (6.42) for
a 1-D particle in a conservative force. Also, inthe i — 0 limit, we may associate the phase
of the wave function as the classical action divided by . This forms the basis for the WKB
method of quantum mechanics. It can be shown that the limit h| %I <4 l%f}z corresponds to
making the potential essentially constant over many de Broglie wavelengths. This defines
the short wavelength limit or semiclassical WKB limit.

6.5  ACTION-ANGLE VARIABLES FOR 1-D SYSTEMS

Assume that we have a 1-D mechanical system undergoing periodic motion. Sup-
pose that we could make a canonical transformation from variables p, ¢ to a different, but
still canonical, set of variables 7, y. Further suppose that in terms of the new variables the
new Hamiltoman lacks any dependence on ¥ (i.e., H = H([I)), so y is then an ignorable
coordinate. Because H is constant and depends only on 7, [ itself must be a constant of
the motion. Hamilton’s equations in the new variables become quite simple:

. dH . 0H
= __H_“l;'}— = (), — ‘E- = constant. (6.90)
The variable ¢ must increase linearly with the time:
. dH
)=y = 37 ¥ = ot -~ ). (6.91)

Here [ plays the role of a momentum and is known as the action variable, while y is the
coordinate conjugate to / and is called the angle variable.

How might we find a transformation that accomplishes this desirable task of trans-
forming us from (p, ¢) to (I, ¥)? We will use a type-F, generating function, W(g, ¥).
which is a function of both old and new coordinate variables. Since we have assumed that
the motion is periodic in p, g, then the motion must also be periodic in ¥, so W(g, ¥) is
a periodic function of ¥r. From the rules (6.9) for generating functions of this type

dW = pdqg — 1dy. (6.92)

(W(q. ¥) is related to Hamilton’s Characteristic Function W(g, I) by a Legendre transfor-
mation.) If we integrate over a single period of the motion, g returns to its original value,
while ¥ advances by an amount that we can choose to be 2z per period:

fdﬁf =0= fpdq -~ frdw. (6.93)

Because / is a constant, it can be taken out of the integral. The integral §dyr gives 2, so

]
=5 pdqg. (6.94)

* Which means that, in this limit, the classical equations of motion are restored.
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FIGURE 6.2

Pendulum phase plane trajectories: The
inner curve is at £ = 0.1, the middle
curve at £ = 2.0, and the outer curve
at £ = 4.0. Note that we scaled the
ume here so that w = |[.

This last equation can be taken as the definition of /, the action variable.” Equation (6.94)
applies to an integral around a single period of the motion. Since the area enclosed by a
closed curve in phase space will always be finite, the integral (6.94) and thus the action
variable will always exist.

Because dW is an exact differential (like the differential of the potential energy), we can
find W(g, ) by doing an indefinite integral of (6.92). In practice this is often unnecessary.

If €2 is the area of phase space enclosed by the closed phase trajectory (C) of a periodic
system, by Stoke’s theorem'

ﬁ pdg = f dp dg = enclosed area in phase space. (6.95)
¢ Q

= Example

The most common example of a periodic 1-D mechanical system is the pendulum.

Phase trajectories for three energies, each of which represents a different type
of motion, are plotted in Figure 6.2 for a “scaled” pendulum with H{p,8) = E;-i-
(1 —cos8). (Note that we made a similar plot in Chapter 4 — see Figure 4.4.) The inner
curve corresponds to an oscillating pendulum, the middle curve is the separatrix, and
the outer curve corresponds to rotary motion. The motion of the pendulum is periodic
in any of these cases, and the action variable is the area enclosed in phase space divided
by 27r. One can imagine the phase space wrapped into a cylinder, since € = 7 is the
same physical angle as 6 = —x. We have to make the “closed curve” in the case of
rotation to be the upper curve from left to right and the lower curve from right to left.
On the cylinder these two physically different curves enclose a finite area. Divided
by 2, this is the generalized action variable for rotation. As the energy grows very
large, E > 2, I — 24/2E.

* Often this is shortened to the action, but since we want to avoid confusion with the action S, we will

always refer to I as the action variable.
I See Kaplan, Advanced Calculus, 3rd ed., p. 328,
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A B FIGURE 6.3

It is important to recognize that the variable ¥ canonically conjugate to the action
is not the physical angle @ of the pendulum, but rather an angle defined in phase space.
We can calculate / analytically for small angles by writing H as

2 E}I
H(p.8)=E = ff +ols (6.96)

Here we use the unscaled Hamiltonian, with w = ﬁ a constant. Then the phase
trajectories are ellipses with the horizontal semiaxis being Opay = :%E and the vertical
semiaxis being pmax = V2E. I is simply the area of this ellipse divided by 27, which
gives us 1 = £. This implies that the frequency of the angle variable is the natural
frequency of the pendulum. We could also have obtained this result by doing the line
integral (6.94),

We plot the energy as a function of the action variable in Figure 6.3A (H = E(/)
here), found by doing the line integral (6.94) for a pendulum without using a small angle
approximation. The graph looks rather unremarkable, with nothing visibly strange
happening as we cross the separatrix. 1If, however, we plot the slope of this curve
€& = w(1) versus the energy, we see clearly in Figure 6.3B that the frequency is zero
very near the separatrix. Physically this corresponds the fact that a pendulum released
from rest with @ = m has an infinite period, that is, w = % = O for £ = 2,

QUESTION 9: Action Find / for Equation (6.96) by doing the line integral (6.94).
Prove that you obtain the same result [ = 5

QUESTION 10: Rofation Physically, when undergoing rotation for £ = 4, the pendu-
lum follows only the upper curve or the lower curve in Figure 6.3. Why then do we
make the “closed curve” for rotation consist of the upper curve from left to right and
the lower curve from right to left? Also prove that as £ > 2, I — 2/2E.

= Example

For the pendulum, we would also like to find the generating function W(#@, y) for the
transformation to action—angle variables implicitly defined by Equation (6.92) above.
It will be sufficient to restrict ourselves to the case of small angles, where the pendulum
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oscillates with the Hamiltonian (6.96). From Equation (6.92), the generating function
18

w(e.¢r}=fdwzfpda~rfd¢=f\/‘2£-aﬂeﬂdﬂ—m. (6.97)

Introducing the dimensionless variable u = j%—' we have the indefinite integral

[Vl —w?du = 3(sin™" u + uy/1 — u?). Using I = £, we can write W as

h'j

= —{(sin"' u — ¥) + uy' 1 — u?]. (6.98)

E

Now W must be periodic in , since § dW = 0. This will happen if u = sin ¥,
since the nonperiodic term (the one in parenthesis on the right side of the equals
sign) in (6.98) will then be zero. This implies that siny = 2= or, equivalently,
E = 30%6* csc” y. Using this last relationship to express W solely in terms of 6, v,
we achieve what we are after: ‘

W@, y) = %wai cot . (6.99)

Originally, this generating function was introduced - see Equation (6.14) - to perform
what may have seemed like a rather magical canonical transformation to what we
now realize are action—-angle variables. Now we see how to derive the appropriate
generating function in a more systematic way.

Adiobatic Invarionts

The action variable plays another role which has historically been very important
in physics. If one of the parameters defining the motion (like the length [ or the acceleration
of gravity g for a pendulum) is varied slowly, the energy is no longer constant in time.
However, the action variable remains almost constant for sufficiently slow variations of
the parameters and is thus an adiabatic invariant. For the pendulum example we found
that / = £ for small angles. If / remains invariant, it is true therefore that the energy is
oroportional to the frequency, even when the parameters / and/or g are slowly changed. The
physical result that the number of quanta remains constant when the parameters of a system
are slowly varied was proposed in 1911 by Einstein to be related to this adiabatic invariance
of the action variable. The original Bohr—Sommerfeld quantization rules specified integer
values for the action variable divided by Planck’s constant. The action variables played a
fundamental role in the transition from classical to guantum mechanics.

Next we will prove the action variable is an adiabatic invariant in the general case. This
proof will also make clear what we mean by “slowly changing.” Suppose the Hamiltonian
depends not only on p, g but also on a parameter* a(t), which is a function of the time.
The motion in phase space will not be a closed curve, but rather a kind of spiral, since

* Remember the difference between a dynamical variable and a parameter.
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the motion is no longer strictly periodic. If we change the parameter o such that the
energy changes by an amount small compared to the energy itself in a single period, and
no resonance is produced, then this is called adiabatic change. We make the assumption
that & is nearly* constant over a period. Previously, the transformation to action-angle
variables was generated by W(g, V). W now becomes a function of « also and hence of
the time. Using the rules for time-dependent canonical transformations (6.12), the new
Hamiltonian H differs from the old one by

—

. oW
H - H{P“- ‘b‘! ':I)'! '?(fﬁ 'J:": {r)t "I) + _a"r_* {ﬁ.lﬂﬂ'}

Hamilton’s equations in the new variables give

Hﬁwﬁﬁﬂp+ﬂﬁﬂq+33ﬁ’ﬁ
Yy  BdpdYy  dq oYy OyYda
~q

—f=

(6.101)

The first two terms on the right side are zero because we assume (6.90) still holds, even
when « is slowly varying. The last term arises because the only explicit time dependence
in W occurs through the dependence on a.

Next average this change in the action variable over a period. This involves integrating
the remaining term in (6.101) over ¢ from 0 to 27 and dividing by 2x:

- | 3*W
(g = — dyr i 6.102
(1) avg er; w“awaa ( )
If we treat o as nearly constant, neglecting second and higher time derivatives of «, we
obtain

o [aﬁf

_{n:wg ™~ E

aw
o (g. ¥ + 2, a(T)) — —;E&-{q. v, n.'(D))] . (6.103)

where T is the period of the motion. Finally, remembering that W is periodic in ¥, we
Taylor-expand the term in (6.103) between the brackets [...] and neglect all but the first
term in the expansion. This gives the final result:

T oW

{.‘f}uvg o~ E « Jar?

~ 0. (6.104)

By changing the parameter « slowly enough, we can make the change in the action
variable extremely small, since the rate at which the action changes is proportional to the
square of the rate at which « changes. Because [ is nearly constant, the energy £(/, o) can
be changed by an amount determined only by the final and initial value of the parameter &

* That is, we neglect terms of order @? and hi gher as well as derivatives of order & and higher.



6.6 INTEGRABLE SYSTEMS 235

QUESTION 11: Pendulum of Variable Length A pendulum consists of a mass on a string
of variable length. For small oscillations, the amplitude of the motion is proportional
to the square root of the total energy. After the pendulum starts to swing, with a total
energy Ey and amplitude Ay, the string is slowly shortened from the original length /,
to the final length /; < [,. Use the adiabatic invariance of the action variable to predict
how the final energy and amplitude depend on the length of the string.

6.6 INTEGRABLE SYSTEMS

Analytical methods have gone somewhat out of fashion in favor of geometric
and topological concepts, which are augmented and guided by numerical work with the
computer. This is due to the limited number of interesting problems that can be solved with
analytic techniques. Action-angle variables remain useful in the wider context, however.

A system of N degrees of freedom is said to be integrable if N constants of the motion
exist. There is a further restriction that these N constants of the motion be in involution, a
concept to be explained below. [t is important to note that these N constants do not have
to be known in analytic form; they just need to exist. Since the Hamiltonian is constant
(if it does not contain the time), N = 1 systems are always integrable,

For integrable systems, the motion in the 2V -dimensional phase space must be confined
toa 2N — N = N-dimensional subspace of phase space. (The N constants reduce the
dimension by N.) If we associate a vector with the tangent to the phase trajectory at each
point, we have what is called a vector field. We can consider that Hamilton’s equations
generate this vector field, with the time as a parameter.

Assuming that the motion is periodic and therefore occupies a finite volume in phase
space, there is an important theorem that tells us that the N-dimensional subspace in 2N -
dimensional phase space cannot have the topology of an N -sphere, but must instead have the
topology of an N-torus (like a doughnut). These topologies are inherently different because
one cannot map a torus onto the surface of a sphere without tearing it. (Topologically
equivalent curves are curves that can either be deformed into each other or else shrunk to
a point.)

If we think of the vector field (for N = 2) of phase trajectory tangents as little hairs,
there is no way to comb hairs onto the surface of a sphere without having a singularity
where the vector field is not defined. The direction of the hair at the pole is not defined,
as seen in Figure 6.4A. This is known informally as the “hairy ball” theorem and more
correctly as the Poincaré—Hopf theorem. We can see intuitively (for N =2 at least) that
the problem is removed if the trajectories move on the surface of a torus instead, as seen
in Figure 6.4B. Figure 6.4C is equivalent to the 2-torus. It is a rectangular patch with
opposite sides connected together so that the two angle variables /|, ¥, obey ¥ + 2m =
Yy and y» + 2w = y,. The motion is doubly periodic with a possible set of phase
space canonical variables being [, i, I,. ¥,. The key property of a 2-torus 1s that two
topologically inequivalent curves can be drawn on its surface. Neither can be deformed
into the other without tearing the surface. Generalizing to N dimensions, we have an
N-torus or, alternatively, an N-dimensional cube with opposite sides joined together.
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A B C
FIGURE 6.4

Even if it cannot be separated, an integrable problem can be reduced to quadratures
in principle. However, it is not sufficient that N constants of the motion exist for N
degrees of freedom. These constants must be compatible with each other (i.e., they are
in involution with each other). Involution means that all mutual Poisson brackets vanish
identically.

To understand why this must be required, we have to digress into a more geometric
picture. Consider only two degrees of freedom and assume that there are two constant func-
tions F = F(qy, p1, q2, p2) and G = G(qy, p1. ¢, p2), each defining three- dimensiﬂnal

subspacee of the four-dimensional phase space. The gradient operator grad,, = (;-

] ‘-EI
E i p "

' omn -2y, when acting on either F or G, defines the local 4-D vector that is orthogonal

m the 3 D surf&ce of constant F or G. We can define a skew gradient as sgrad,, =
{mw a o HFI i -). The vector proportional to the skew gradient of F lies in the 3-D
ﬂurr’ﬁce of constant F —it is constructed to be orthogonal to grad F.* We can then con-

sider two vector fields, again both defined locally at a point: sgrad F and sgrad G. These
could be used to define a local two-dimensional coordinate system as shown in Figure 6.5.
To use the vector fields defined by the skew gradients of F and G as a local coordi-
nate system we must use infinitesimal vectors.! Let € be an infinitesimal scalar quantity.
Use this to define the infinitesimal 4-vector £ = e sgrad F. Along &, the function G
should remain constant and vice versa. This condition can be expressed by the equa-
tion

Er - grad G = AG aiong sgraa 7y = 0. (6.105)
If we write out this expression (6.105) in terms of the partial derivatives with respect to

qi, p; we find only one condition instead of the two we expected (A Fyong sgradcy = 0, t00):

aF 3G dF 3G dF G 9F 3G
- + - e e = (), (6.106

opydq;  0gydp;  Opr g, HQzﬂpz

* There are two more skew vectors that can be constructed to be orthogonal to grad F, but the one we have
mentioned is special in a way we shall see below.

I Taylor’s theorem in four dimensions tells us that moving by an infinitesimal vector £ = (). £, &3. &
away from the reference point changes F by &- grad F, otherwise known as a directional derivative. I
3-D space, the directional or Lie derivative is & - V. See Kaplan, Advanced Calculus, 3rd ed., p. 135.
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il o e -~ line of ¢}, = constant

FIGURE 6.5

QUESTION 12: Skew Gradients Prove that you do get the same equation (6.106) when
ta]-:ing A F[alﬂng sgrad G) instead of ﬁGmmg sgrad F)-

This is immediately recognized as a condition on the Poisson bracket of F and G (6.36).
It is necessary that [F, G] = 0 for us to be able to find a two-dimensional surface along
which the motion develops with both F and G remaining constant. [F, G] = 0 means
that F and G are in involution. Since the Poisson bracket is invariant under canonical
rransformations, the relation [ F, G] = Oholds for any set of phase space variables related by
a canonical transformation to the original set. One is reminded of the quantum mechanical
requirement for compatible observables: They must commute with each other.

It can be shown that if we can find a curvilinear coordinate system in which the com-
ponents of the two vector fields (sgrad F, sgrad G) are always constants, the coordinate
system is the action—angle set of canonical variables. The system is then said to be in-
tegrable. Integrable systems are relatively rare, however. Except for separable systems
solved by the Hamilton—-Jacobi equation, no systematic technique exists for finding con-
stants of the motion that are not directly related to obvious symmetries. (If a symmetry
can be identified, Noether's Theorem generates the relevant constant of the motion.)

Chaotic behavior is a characteristic of nonintegrability, which is a property of most
nonlinear mechanical systems. For example, the motion of stars in the gravitational field
of the galaxy is nonintegrable. It can be regular, following smooth curves in phase space,
or irregular and chaotic. For many initial conditions, the chaotic motion can be confined
to such small regions of phase space and thus be of little actual importance. It was the
study of this stellar galactic motion that first alerted physicists to the importance of chaos
in physics.*

6.7  INVARIANT TORI AND WINDING NUMBERS

As a rather trivial example, we choose two uncoupled linear oscillators, with
frequencies w; and w,. It can be shown (see Chapter 9) that any set of linear coupled

* According to Gutzwiller: “That discovery was crucial in understanding the observed velocity distnbution
of stars in our solar neighborhood” (M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics,
p. 99.)
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oscillators can be transformed into uncoupled oscillators. For two degrees of freedom the
energy can be written as

E =w ) + wl. (6.107)

The action variables [; for k = 1, 2 can be found by integrating

1
Iy = - c.p‘ dg, + p2dq,. (6.108)

The two closed curves C,, C; in 4-D phase space must be topologically inequivalent. The
angle variables are

Vi = wt + By, (6.109)

where the 8, are arbitrary integration constants,

Figure 6.6 shows a slice through two tori, each corresponding to different values of /5:
hence energy. [, is the same for both tori. A phase trajectory is a moving point that traces
out the curve shown winding around the torus. We can take each of the curves C,, C; to
follow the motion of one of the oscillators, yr; or ¥, as indicated, while the other is held
constant.

The time derivatives of ¥, Y, are w,, w». When the angle v, advances by 2, the
angle ¥, will advance by 27 2. The ratio of the two frequencies is called the winding
number 2. The geometric picture is that the trajectory winds = 2 times around the
torus for each complete period of ;. There are two distinct cases: 2 is a rational fraction
of the form *51 with p, g both integers, or €2 is irrational. For the rational winding number
case, the trajectory is periodic, traversing a single curve that winds p times around the torus
in the direction of increasing ¥, for ¢ complete traversals in the direction of increasing
¥;. Most of the surface area of the torus is never encountered in this case. By contrast.
an irrational £2 means that the motion is gquasiperiodic, never exactly repeating itself, and
filling the area of the surface as time progresses (or at least coming arbitrarily close to
every point). This last type of motion is also called almost periodic, since every irrational
number can be arbitrarily well approximated by a rational number. We will make more
use of the concept of winding number in the chapter on chaos, Chapter 11.

FIGURE 6.6
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In Figure 6.7, we contrast the two cases of rational or irrational winding numbers. If
¥ increases by 2rq, there are ¢ trips around the torus. In Figure 6.7A, for @ = 2 = g,
the curve closes and becomes periodic after four traversals of the torus. In Figure 6.7B,

for Q = /5, the curve never closes exactly on itself. g = 12 traversals are shown.

SUMMARY OF CHAPTER 6

« [f we have a suitable generating function Fy(q, Q, t) and require that

aF, R,

P=- . = ——,
aQ dg

(6.110)

the contact transformation obtained by solving (6.110) will be canonical because
Hamilton’s equations of motion are preserved. The new Hamiltonian & in terms of
the new variables becomes

_ aF,
H(P,Q,t)= H(p,q.1)+ ‘d_r! (6.111)

» There are four possible types of generating functions: Fi(g. Q,1). Filg. P. 1), F5(p.
Q.1), and Fy(p, P.1). F>, F;, and F; can be created from F, by Legendre transfor-
mations. The missing variables are proportional to partial derivatives of the generating
functions. Hamilton’s equations are preserved if we start with a function that is one of
these four types and use the rules appropriate to that generating function to obtain the
other variables.

» If the variables Q, P are related to the vaniables ¢, p by a canonical transformation,
then the Poisson bracket [Q(q, p), P(q., p)l;., = 1.

* The Hamilton-Jacobi equation is an alternative approach to analyzing a mechanics
problem, in which Hamilton’s equations are replaced by Hamilton’s Principal Func-
tion S. The equation obeyed by § is a partial differential equation in N + [ independent
variables. § = [L dt, so § is the action.
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* If the Hamiltonian is time-independent, $ =W — E . W is Hamilton’s Characteristic
Function. W is often used to find the orbit equations directly without the time depen-
dence. W(qy,....qn, Pi,..., Py) =Y, [ Pedqy.

* |f a problem is separable, the § function can be written as a sum of functions of only
one g;. This property depends on the choice of coordinate systems. Separating the
Hamilton-Jacobi equation is the most powerful method for finding analytic solutions to
mechanics problems.

» If the motion is periodic, canonical angle-action variables can be defined. The action
variables are

h=x-¢ ) pjdg;, k=1,...N. (6.112)

The closed curves in 2N -dimensional phase space, C;, are topologically independent.
The action variables are constants of the motion. The angle variables have the simple
time dependence ¥, = wi(ly, I, ..., Iy) t + By, with @ = %f and B; an integration
constant.

« More generally, we can classify motion as being either integrable or nonintegrable. If
there are N compatible constants of the motion for N degrees of freedom, the problem
is integrable, even if there is no analytic solution. In the case of integrability, the motion
is confined to an N -dimensional surface in phase space.

* Periodic motion for integrable systems in 2N -dimensional phase space takes place on
an N-torus. Each trajectory in phase space is a curve that winds around the torus. If
N = 2, the winding number £2 is defined as 2. Motion with rational winding numbers
gives a single periodic curve on the torus. If the winding number is irrational, the curve
never exactly repeats and fills the entire surface of the torus.

PROBLEMS

Generating Functions and Canonical Transformations

Problem 1*: (Generating function for the harmonic oscillator interpreted) Consider
the generating function F,(g, Q) for the harmonic oscillator problem with the Hamil-
tonian

1
H = E{pz +w'¢?), m=1. (6.113)
F,; defines the transformation to the new variables Q, P. It is given by
1
Fi(g, Q)= —z-mqlcntZJIQ. (6.114)

Without referring to the worked example in the text:

a) Find expressions for ¢, p in terms of Q, P.
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b) Find the new Hamiltonian H and solve Hamilton’s equations of motion.

c) Interpretthe new canonically conjugate variables 0, P geometrically ing, p phase
space.

d) Check whether the requirement § F; = 0 at the end points of the time integral for
the action is equivalent to p 8¢ — P 8 Q = 0 at the end points.

¢) Find generating functions of the other three types that will generate this same
canonical transformation.

Problem 2: (Generating function produces a canonical transformation) You are
given the generating function F3(p, Q) = —(e? — 1)" tan p. Prove that it generates
the canonical transformation

Q = log(1 + \/q cos p),

(6.115)
P =21 + /g cos p)./q sin p.

(From Goldstein, 1980.)

Problem 3: (Motion in an arbitrary reference frame solved with a canonical trans-
formation) Let z be the position of a particle (mass m) in an inertial frame, and Z be
the position measured from the origin of a possibly noninertial frame displaced by the
function D(t) from the origin of the inertial frame. Then Z = z — D(r). In the inertial
frame, the Hamiltonian is

P

H(z, p)= o + V{(2). (6.116)

Find an explicit form for the generating function Fy(z, P, r) that generates the trans-
formation from z, p to Z, P. What is the canonical transformation Z(z, p), P(z, p)?
Find H(Z, P, t) and Hamilton's equations of motion in terms of Z, P, t. Show that,
in this case, there is a problem with converting F; into F, by the usual method of a
Legendre transformation and explain why this occurs.

(From Percival and Richards.)

Problem 4: (Solve the freely falling body with a canonical transformation) The
Hamiltonian of a freely falling body is, in one dimension (neglect x, y motion),

P2
H=— . 6.117
o +mgz ( )

Find a time-independent generating function Fy(p, P) such that H(Q, P) = P. De-
termine the explicit form of the canonical transformation: Q(z, p) and P(z, p). Solve
for z(p, P). Prove that ¢ 1s the time.

(From Percival and Richards.)

Problem 5: (Jacobians and canonical transformations) For the case of 1 degree of
freedom, the determinant of the Jacobian of dynamical variables related by a canonical
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transformation is

::Ict{ , =1, (6.118)

For any functions F(x, v), G(x, y), the Jacobian 1s defined by

aF.G) _ (5 W) (6.119)
a(x, y) = o

Prove that Equation (6.118) holds for any canonical transformation generated by a
generating function of the type Fi(g, Q) with g, Q considered to be independent
variables. Since we can always produce a generating function of this type by a Legendre
transformation or series of transformations from F;, F3, Fy, proving Equation (6.118)
for F)-generated transformations is completely general.

One consequence of (6.118) is that a closed curve in p, g space encloses the same
area that the image of that curve encloses in P, Q space. An application of (6.118) is
used in the proof of the canonical invariance of Poisson brackets in Problem 8.

Hints: The general chain rule holds for Jacobian matrices* if we transform from the
independent variables x, y to the new independent variables u, v, which are functions

u(x, y), vix, y):
a(F,G) _ d(F,G) du,v)

— ) (6.120
dx,y) 3w, v) 3(x,y) )
matrx mu‘;tiplicm‘etm
As a special case of the general chain rule:
, v) 0(x, ; . .
0w, v) 3x, y) = identity matrix = /. (6.121)

dx, y) du,v)

Problem 6: (Possible generating functions) Use (6.118) to prove whether or not the
two functions below can be used as generating functions:

Fi(q,Q)=gqe°, Filg,Q)=q¢*+ 0" (6.122)
If it is a possible generating function, determine the transformation g, p — Q, P

explicitly.
(Adapted from Percival and Richards.)

* Advanced Calculus, 3rd ed., by Kaplan, pp. 106ff.
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Problem 7*: (Dynamics on a rotating turntable using polar coordinates) This is a
follow-up to Problem 14 in Chapter 5. Consider a generating function of the F>(gq, P, 1)
type: F> = ra Pr + (i — (1)) Ps. The old coordinates p, g are the lab coordinates of
the bug, and the new coordinates P, Q are the rotating coordinates of the bug. There
are two degrees of freedom, so F> contains the sum over these. Using the relations
in Table 6.1 and the rules for finding the new Hamiltonian H, show that the relations
between coordinates (r, ¢) and (r,, ) are correct and H is the Hamiltonian (5.102).
This demonstrates a link between this type of canonical transformation and a change
of coordinate systems.

General Properties of Poisson Brackets

Problem 8: (Poisson brackets are invariant under canonical transformations) Prove
that any canonical transformation leaves the Poisson brackets [ F, ] invariant. That
18, if P and Q are obtained from ¢ and p by a canonical transformation, then

3F 3G 8F3G 09FIG 9F IG
[F,Glopr=———" = -
d0aP dPAQ dq ap Op dg

E[F, G]q.,ﬂ' {6.123)

Hints: For one degree of freedom, the Poisson bracket can be regarded as the determi-
nant of a Jacobian (6.119). The determinant of a product of two matrices is the product
of their determinants.

Problem 9*: (How ro test when a transformation is canonicai)

a) First prove that Equation (6.39) is necessary for canonical transformations.
Sufficiency means that (6.39) is a litmus test for the canonical equivalence of
two sets of dynamical variables. To prove this, we have to show that (6.39)
implies the existence of a generating function that defines the transformation.
This problem also provides a method for finding generating functions, at least in
principle.

b) Explain, using (6.123) for one degree of freedom, why the areas enclosed by cor-
responding closed curves in (g, p) or (Q, P) phase spaces are the same. Also
explain why this implies

%pdq=.t£PdQ. (6.124)

(The symbol ¢ stands for an integral around a closed curve.) Hint: Use Stokes’
theorem.’

¢) Now take the point of view that O, g are the independent variables, and p, P are
dependent variables, as with F;-type generating functions. Then Equation (6.124)

I See Kaplan, Advanced Calculus. 3rd ed., p. 328.
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implies that around any closed curve in (g, Q) space

fp(q, Q)dqg — ff'{m )dQ = 0. (6.125)

Imagine a closed curve in (g, Q) space. Explain why (6.125) means that any path
integral in this space between fixed end points is independent of the path taken,
so can be considered a perfect differential of a function of ¢, Q. Stated as an
equation, this is

fpdq—-PdQﬂfdfl(tL Q). (6.126)

d) Using (6.126), prove that (6.39) implies the correct relationships for generating
functions (p = 52 and P = -5a)-

Problem 10: (Finding generating functions) Suppose you try the contact transforma-
tion

sin
0 = log (%) P =gqcot p. (6.127)

a) Find [Q, Pl, . Is (6.127) canonical?
b) Now show that

pdg — PdQ = d(pq + q cot p). (6.128)
¢) Find F(q, Q) explicitly. Useful information: [sin™' x dx = +/1 — x2+xsin”" x.

Problem 11: (Possible canonical transformation) 1s the transformation below canon-
ical?

Q =log(l + ./q cosp), P =(l+ ./qcosp),/qsinp (6.129)

Problem 12*: (Poisson brackets for many degrees of freedom)

a) Prove, using Hamilton’s equations of motion and the definition of the Poisson
brackets (6.36), that the total time derivative of any function D(q,, ..., P, ...yof
the ps and gs obeys the equation

dD a D
- = Da T ’
i [D, H]+ Py (6.130)

where # is the Hamiltonian of the system. Equation (6.130) can be regarded as
the most general and canonically invariant way to state Hamilton’s equations of
motion. Explain,
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b) For the /; defined by (5.14), if the Lagrangian is invariant under transformations
that generate I;, show [/;, H} = 0. Notice that I; does not contain the time
exphicitly. This in known as the Hamiltonian form of Noether's Theorem.

Problem 13*: (Landau's proof) In their book Mechanics, Landau and Lifshitz give
a proof of the important relation (6.123) as follows (our notation and our formula
references have been used below):

First of all, it may be noticed that the time appears as a parameter in the
canonical transformation(s)... It is therefore sufficient to prove (6.123) for
quantities which do not depend explicitly on time. Let us now formally regard
G as the Hamiltonian of some fictitious system, Then, by formula (6.130),
(F,Glpg = ]E. The derivative % can depend only on the properties of the
motion of the fictitious system, and not on the particular choice of variables.
Hence the Poisson bracket [ F, G is unaltered by the passage from one set of
canonical variables to another.

Comment on whether or not you think this is a valid and completely general proof
of (6.123).

Problem 14*: (Poisson brackets of constants of the motion can generate new con-
stants of the motion} Consider the uniform motion of a free particle of mass m. The
Hamiltonian is a constant of the motion and so is the quantity £ defined as

Fx, p,!):_—=x-££. (6.131)
m

a) Compare [H, F] with %{ Prove from (6.130) that F is also a constant.

b) Prove that the Poisson bracket of two constants of the motion is itself a constant
of the motion, even if the constants F(x, p, t) and G(x, p, ) depend explicitly on
the time. (Part a 15 one example of this.)

¢) Show in general that if the Hamiltonian and a quantity F are constants of the
motion then 3= is a constant of the motion also.

Problem 15: (Poisson brackets with angular momentum)

a) Angular momentum is defined as / = 7 x jp. Prove that {/,, l,] = I, for all cyclic
permutations of 7, [, /,.

b) Calculate all the Poisson brackets of the components of r and p with the compo-
nents of the angular momentum (for example, [x, .}, [ p:, I.], etc.).

Problem 16: (Poisson brackets and spherical symmetry) Let ¢(r, p) be any function
that is spherically symmetric about the origin (invariant under rotations).

a) ¢ can depend only on the components of 7 and p through the combinations r?, p°,
and 7 - p. Why is this true?
b) Evaluate the Poisson bracket [¢, /.] (I, is the z component of the angular momen-

tum) and show that it vanishes.
(Adapted from Landau and Lifshitz, 1986.)
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Hamilton-Jacobi Equation
Problem 17*: (Harmonic oscillator example}

a) Write the Hamilton—Jacobi equation for the 1-D SHO (m = 1) and solve for §.
Use the substitution § = W — at with @ = constant. W(g, a) does not contain
the time explicitly. Leave the expression you get for W in the form of an integral
over gq.

b} Show, by using the equations for the constant £, that the solution to the physical
problem, g(1), is

g(t) = ? sin axXt + B). (6.132)

Hint: fﬁ = arcsin[x].
¢) Recall that « is really P and B is really Q. Show that « is the total energy E.

Action-Angle Variables

Problem 18: (“ran®” potential) A particle of unit mass moves in a potential of the
form

V(g) = U tan’ (aq), (6.133)

where U and a are positive constants. Find the tuming points of the motion. Prove
that the action variable / obeys the relation

I
& VE¥U-VU, (6.134)
V2
where E is the total energy, and thus prove that the frequency @ has the energy
dependence

w
=vE+ U, (6.135
o3 _ )

The increase of the frequency with energy reflects the fact that the restoring force
increases with displacement g faster than linearly, Hint; The substitution x = tan (ag)
helps in doing the integral for the action variable.

(From Percival and Richards.)

Problem 19: (Area in phase space is preserved under a canonical transformation)

a) In (], ) phase space, the infinitesimal area between [ and / 4 87 with ¥ ranging
from zero to ¥ is 8/ yr, because the phase trajectories are lines of constant /.
(Draw a picture.) By substituting £({) in p(g, E) to obtain p(q, 1), prove that this
area 1s

g ]
51y = a.rf ap(: D g (6.136)
NERFY,
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Notice that (6.136) is the same result you would get by applying the rules for a
type F; generating function, so (6.136) tells you how to find a generating function
of this type for the transformation to action-angle variables,

b) By using (6.136) and the expression for £(/) in the previous problem (6.134), find
the angle variable in terms of the displacement in that case:

singr = /1 + gsin (aq). (6.137)
(Adapted from Percival and Richards.)

Problem 20: (A ball bouncing between two hard walls)

a} A ball bounces between two walls separated by a distance d. In between the walls,
no force acts on the ball. Draw a phase trajectory for one complete cycle. Notice
that the momentum changes direction discontinuously when the ball bounces from
the wall. In dimensionless units the energy is £ = 1”; Calculate the action
variable and the area in phase space for one cycle. Then calculate the frequency
by differentiating the energy with respect to the action variable. Does this agree

with an elementary calculation of the frequency w = =X, with T equal to the

=
period? It is not possible to define a Hamiltonian in this case because the force is
discontinunous, but the action variable can still be defined. 1Is this also true of the
angle variable?

b) Notice that this problem can be considered as a limiting case of the potential
in Problem 18. To define the limit, take the results for I(E) and w(E) for
the “tan®” potential (6.134, 6.135) and go to the appropriate limit for U and a.
Check that the answer agrees with what you have calculated here for the bouncing
ball.

(Adapted from Percival and Richards.)

Problem 21: (Particle in combined uniform and % gravitational force) Find an ex-
pression in Cartesian coordinates for the constant in Equation (6.83). See if you
can prove the connection with the Laplace-Runge-Lenz vector. (See Problem 2 in
Chapter 5. Equation (5.93) is the definition of this vector.)

Problem 22: (Hamiltonian in parabolic coordinates; most general form of separable
potentials) Prove that the most general potential separable in parabolic coordinates

has the form

AE)+ B(n) A(r+2z)+ B(r—2)

P > (6.138)

V(E, n) =

where A and B are arbitrary functions.



248 CHAPTER 6 THEORETICAL MECHANICS

APPENDIX

WHAT DOES “SYMPLECTIC” MEAN?

One often sees a reference to the symplectic property of a general canonical transformation.
You can test the Jacobian of an arbitrary transformation of phase space variables for this
property. If it holds, then the transformation is canonical, and thus the Hamiltonian form
of the equations of motion are preserved.

The symplectic property also implies that the sum of projected areas (action) on the
different coordinate—momentum planes in phase space is preserved for any closed cycle in
phase space: |

N N
Eﬁ PidQ; = Z%Ps dqi, (6.139)
=l =]

where A is the number of degrees of freedom. The transformation converts {q;, p;} —
{Q:, Pi}.

A few preliminaries will be needed before defining the symplectic property. Label
the dimensions in phase space by (q,, P1. g2, P2, - - -, gn, Pn). Consider the generalized
phase space gradient vector of the Hamiltonian as a column vector in the 2N -dimensional

space:"

dH
g
dH
i
VeH=| : |. (6.140)
adH

dqx
aH

ﬂp_,q

Let the label z stand for the generic coordinate

qi
4

N
i

(6.141)

dn
P

* We will use boldface notation to denote matrices, including row and column vectors. Multiplication of
boldface quantities will then imply matrix multiplication.



APPENDIX WHAT DOES “SYMPLECTIC” MEAN? 249

Hamilton’s equations of motion can be written in matrix form if the I' matrix is defined
fArst:

0 1 0 0
-1 0 0 0
0O 0 0 1
o 0 -1 0 -.- 0 O
I'= (6.141)
: . . : . 0 0
0O 0 0 1
0O 0 -1 0

In other words, I' consistes of a string of ]iqle 2 x 2 submatrices of the form (9, ) down
the diagonal. Some properties of I' are: I' = —T' (the tilde indicates the transpose),
I’ =TT =1 with I being the identity matrix, and the determinant det{I'] = 1. The
matrix form of Hamilton’s equations is

dz

— =TV ,H. 6.142
dt i 6.042)
The matrix I' acts on the column vector Vo, H in Equation (6.142) to produce the column

vector 4. Equation (6.142) can also be written in differential form:
dz = dt TV ,H. (6.143)

Next we must use the Jacobian J of the transformation to relate the infinitesimal dZ in
the Q, P variables to dz in the g, p variables. The definition of the Jacobian in this context

1s*

10, a0 90,
aq) e " dpy

JEHB{QI‘P"”-}QH’PN)= E E ) {ﬁ,l"“{i}
(G1s P1s -GNy PN) apy 3Py aby
e dpy "t dpw

An elementary application of the definition of the Jacobian and of the partial derivative
gives the relation

dZ = Jdz. (6.145)

We can consider H to be a function of the {g;, p;} or of the {Q;, P;}. In matrix form, the
differential d H is

dH =V Hdz = VpHdZ. (6.146)

* W. Kaplan, Advanced Calculus, 3rd. ed., Addison-Wesley, 1984, p. 95,
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The transpose converts a column vector into a row vector. Using Equation (6.145)
gives us the connection between gradients in the gp variables and gradients in the QP
variables:

Vel = JVopH. (6.147)

Armed with these relations, we can take (6.143) and transform it into a set of 2N eguations
involving only Q, P instead of ¢, p:

dZ = d1 JTJV geH. (6.148)

If the form of Hamilton’s equations is to be preserved under the canonical transformation
to the {Q,, P;} variables, it will be necessary and sufficient that

Irj=r. (6.149)

(Compare (6.148) to (6.143).) If the condition (6.149) is satisfied, the Jacobian J is by
definition a symplectic matrix. By taking the transpose of (6.149) and using the property
[' — —TI, one can show that it is also true that

jri=r. (6.150)

We can view (6.150) or (6.149) as a “litmus test” that every canonical transformation
must pass. This frees us from the need to use a generating function.

It is straightforward to show that the identity matrix I is a symplectic matrix and
that the product of two symplectic matrices is symplectic. We can also see from (6.149)
or (6.150) that the determinant |JJ| = 1, which means that |J| = 21. (Liouville's theorem
is equivalent to |J| = 1, as proved in Appendix A of Chapter 5.) It can also be shown that
at most N(2N + [) elements of J can be independent.

It is possible to obtain a geometric picture of the symplectic property. In the phase
space of the original variables, consider an infinitesimal parallelogram defined by the two
arbitrary (but not parallel) vectors in the q,, py plane with coordinates (8g,(1), 8p;(1))
and (6g,(2), §p,(2)). The area of a parallelogram formed by these vectors is da(12) =
8q(1)8p(2) — 6g,(2)8p,(1). (In three dimensions, the area is just the magnitude of the
cross product of the vectors defining the parallelogram.) This can be written in a more
compact form as

o0z(1) = (8q,(1),6p1(1),0,0,...), 6%(2) = (8¢1(2), 8p:(2),0,0,...), (6.151)
S5a(12) = 82(2)T z(1). (6.152)

It follows immediately from (6.150) that this area is preserved under a canonical transfor-
mation from z — Z variables:

§A(12) = 8a(12). (6.153)
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in terms of the new variables, the infinitesimal parallelogram is not necessarily oriented
completely in any one coordinate—canonical momentum plane, but we have proved that
the quadratic form

N
Y 8q:(1)8pi(2) — 8q:()8pi(1) (6.154)

i=l

15 preserved under a canonical transformation.

Now consider a closed curve in 2N -dimensional phase space. The “interior” of the
projection of the curve onto the N different g;, p; planes can be *“tiled” with infinitesimal
squares (which become parallelograms after the canonical transformation). The sum of
the areas of the projected curve on the different coordinate—canonical momentum planes
is invariant by (6.153):

N N
i=1 1=\

Finally, use Stoke’s theorem to relate (6.155) to the line integrals around the projections
of the closed curve in phase space:

N
i?gﬁdqﬁzfﬁdﬂi- (6.156)
=] i=1

Equation (6.156) is an important result in theoretical mechanics, since these line integrals
differ from the action only by a factor of *an The time development of a system is a special
canonical transformation of the phase space variables (6.35), so we have also proven that
the sum of the actions 1s constant in time.

With the matrix notation we can to prove the invariance of the Poisson bracket [ F, G}
of two arbitrary functions F, G of phase space variables. By the definition of the Poisson
bracket (work itout for N =1 or N = 2):

[F,Glyp = (V)T VG = (VorF) ITI VorG = [F. Glg.p- (6.157)
r

The invariance of [F, G] under canonical transformations follows immediately from the
transformation property of the phase space gradient (6.147) and the symplectic property
of J (6.149).

If the generating function has an explicit time dependence, its partial time derivative
must be added to the old Hamiltonian to obtain the new one. However, the symplectic
property of the Jacobian is not affected by this. A full discussion of this point is beyond
the scope of this book, but a more complete treatment is in the book Classical Mechanics,
2d. ed. by H. Goldstein, p. 394ff.



CHAPTER SEVEN

ROTATING COORDINATE SYSTEMS

OVERVIEW OF CHAPTER 7

As it would be viewed by an observer on the Sun, you are racing along at 66,700 miles/hr
on an elliptical orbit. A different observer, located at the center of the Earth would
see you rotating at 1,038 miles/hr. Yet, in everyday life, we are not normally aware
of this. The description of motion depends on the reference frame. Inertial reference
frames play a special role.

The Earth we live on is not an inertial frame. It is possible for someone on Earth
to detect the Earth’s rotation by detecting small deviations from Newton's Laws.
While he was still an undergraduate, A. H. Compton invented a table-top experiment
which not only demonstrated the Earth’s rotation, but also measured the latitude of the
laboratory. We need to develop a systematic way of translating back and forth between
the description of motion in a rotating frame and the description in an inertial frame.
This is a purely geometric or “kinematic™* mathematical process, because we assume
that the relative motion of the two reference frames is fully specified and is not subject
to change by the action of forces, at least within the time period of the experiments
we wish to do or during the observations we wish to make.

Motion can take place on a rotating body and be observed either with a reference
frame fixed in the body, or from outside (i.e., a coordinate system fixed in “space”).
The problem of describing motion in rotating reference frames can be broken into
three steps.

First: Consider fixed rotations of one frame with respect to another. How do we
convert or transform the coordinates of a vector in frame #1 into the coordinates of
the same physical vector in frame #27 The answer does not depend on the vector, but
only on the relative orientation of the two reference frames. All vectors obey the same
transformation rule.

Second: Understand how to transform the coordinates of a point fixed in frame
#1 into frame #2 if one frame is rotating with respect to another. The point in question
is fixed in the first frame, but not in the second.

* The dictionary definition of Kinematics is “the study of motion exclusive of the influences of mass and
force.”
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Third: Understand how to calculate time derivatives of vectors (examples: veloc-
ities or electric fields) in one frame and find the relation to time derivatives of the same
vector in the second reference frame. The vector need not be fixed in frame #1. The
change in frame #2 comes from two causes: a) the rate of change in frame #1, trans-
formed into the coordinates of frame #2, and b) the changing transformation between
the two reference frames.

After this is worked out, we will find that it is often more useful to consider
“fictitious forces™ and pretend the Earth is an inertial frame than to try to transform
in and out of an inertial reference frame directly. The “Tower of Pisa” problem, in
which a heavy object is dropped from the Leaning Tower, will constitute an example
of how a practical problem is solved using the concept of fictitious forces. We will
also show why hurricanes circulate counterclockwise in the Northern hemisphere and
clockwise in the Southern hemisphere. The precession of a Foucault pendulum will
be explained using a Lagrangian method with coordinates fixed in the Earth. All of
these effects occur because the reference system is rotating. They would be absent
if we viewed the same motion from an inertial reference system, so we say they are
purely kinematic effects not of dynamical origin.

7.1 WHAT IS A VECTOR?

The intuitive definition of a vector is “a quantity that possesses both direction and
magnitude.” When we wish to refer to a physical vector without specifying its coordinates
in any particular reference frame, we put a little arrow above the symbol:* 7.

However, sometimes we need to work with actual coordinates of vectors. Coordinates
are numbers that are defined with respect to a specific set of coordinate axes, say the XY Z
reference frame. The coordinates of a in this frame might be written as (a,, a,, a;) or
(a1, a, as). Even better, but more abstractly, we can write a,, where the subscript & is
understood to run from 1 to 3 in a three-dimensional space. In a different reference frame,
the X'Y'Z’" system, we would write a;. (@’ doesn’t make sense, since the vector notation
doesn’t refer to any particular set of coordinates.)

In terms of unit vectors (7, J, k) along the X, Y, or Z axes, we can also write

d=af+aj+ak. (7.1)

This formula defines the coordinates of @ in the XY Z frame.
The square of the length of @ isa® = @ -a = a} + a} +a} = ¥,_, aya;. A further
simplifying convention, introduced by Einstein, will be used in the rest of this book:

3
a’ = E aray = ady. (7.2)
k=1

The right-hand formula employs the “Einstein summation convention™: Although the sum-
mation symbol is dropped for convenience, repeated indices imply the summation is there.

* This vector notation was invented by J. W. Gibbs late in the nineteenth century.
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The length of a vector is preserved if the reference frame is rotated:
a’ = aqya; = a,a,. (7.3)

The scalar product of two vectors @ and b is written in the Einstein notation as a - b =
apby. The scalar product depends only on the angle between the two vectors and on their
magnitudes. It does not change if the coordinates themselves are changed by a rotation of
the reference system, so

ﬂtbi = ﬂ;bl : _ (7 4)

To find out how to transform coordinates explicitly, choose two reference frames with
the same origin and differing only by a rotation. There are two ways to write the arbitrary
vector a:

.y (7.5)

'

i=ai+aj+ak=ai +dj +ak
XYZ -.J::dimt:s. Xy g E:;!fd'i.nalta
The scalar product i’ - i is the projection of the X’ axis onto the X axis. By taking the
scalar product of (7.5) with i', j', k' one at a time, we obtain three equations for the three
quantities a|, a3, a; interms of a,, a,, a; and the various projections of one set of coordinate
axes onto the other. For example,

a =1 -a=al -i+ail - -j+ai -k,

# - F - & F S -, F A i -

ay=jJ-a=a ] -i+a ] -j+as] -k, (7.6)
Y. - & ~ F ~ F A

ﬂgz.-'k ﬂ=ﬂ|k I+ﬂg.z:~j+ﬂ3 - k.

The primed coordinates are given by linear equations in the unprimed coordinates ay
with coefficients (1" - T, etc.) that do not depend on the particular vector but only on the
relationship between the two coordinate frames. (We have underlined the coefficients in
the linear equations to draw your attention to the fact that these are considered as fixed
coefficients, whereas the a; change depending on the vector being transformed into the
primed frame from the unprimed frame.)

The formulas (7.6) give the transformation rule we were seeking. In fact, we could
define a vector as something that transforms according to (7.6). This definition is preferred
because it distinguishes vectors from tensors, and it avoids the vague concepts of “direction”
and “magnitude,” which are hard to express without introducing a specific coordinate
system. Tensors will be introduced in the next chapter, so we will say nothing more here.
Figure 7.1 summarizes the notation used for vectors.

7.2  REVIEW: INFINITESIMAL ROTATIONS AND ANGULAR VELOCITY

A rigid body can be considered as a collection of point masses held together at
fixed distances from each other. In the limit of infinitely many such point masses, we can
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Coordinate—free Coordinate—specific
XYZ XYz
ﬁ 'i-'"k i-"'k
FIGURE 7.1

Notation used for vectors. Note that the components of
vx # v,. However, the square of the length, vgvx = vjvy.

consider the rigid body to be a continuous distribution of mass without any internal degrees
of freedom. In that case, there are only six degrees of freedom: three translational and three
rotational. We will focus here on the mathematics of describing the rotational motion.

Imagine that you have a rigid body rotating about a fixed axis as shown in Figure 7.2.
All the points in the body that lie along this axis are not moving. We want to know the
motion of an arbitrary fixed point in the body, as seen by a fixed observer located outside of
the body. The origin of the fixed observer’s coordinate system lies on the axis of rotation.
Let the vector between this origin and a point P fixed in the body be called ¥ = r(r).
It will simplify the mathematical description greatly if we initially consider infinitesimal
rotations instead of finite ones.

How much and in what direction does the point P move in an infinitesimal interval of
time df? Assume that the body rotates in that time interval through an angle d¢ around the
(fixed) axis. Let (¢t + df) = r(t) + dr define the infinitesimal vector dr. From the geo-
metry shown in Figure 7.3, the magnitude of this vector, |dF|, is an arc of length r sin 8 d¢.
The direction of dr can be found by noting that d7 must lie along a vector perpendicular
to both the axis of rotation d¢ and the vector 7 itself.

4

rotation axis

.

. _
- OTIgLn

FIGURE 7.2
P = point fixed in body.
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rotation axis

FIGURE 7.3
|dr]| = |r|sin@ d¢.

QUESTION 1: Rofations Explain why |dr| = r siné d¢, and why dr is perpendicular
to both the axis of rotation d¢ and the vector 7 itself. What is meant by “‘rotation about
an axis"?

Let the direction of the axis of rotation be given by the unit vector #. Since it x 7 =
|F] sin @ (in a direction perpendicular to # and 7), it must be true that

dr =d¢ it x r. (7.7)
We can define a “vector™: dqf:-' = 1 d¢p. Using this definition, we then write
dr =d¢ x I. (7.8)

Notice that d7 and d¢ are infinitesimal quantities, whereas # and 7 are not. Formulia (7.8)
is only valid for infinitesimal rotations.

The velocity of the point P for a continuous rotation in time is vp = ‘f . The velocity
of any point P in a rotating body in terms of the angular velocity @ is, from Equation (7.8)
above,

. _d¢ (7.9)
Y=
- dr .
u_»:i:wxr. (7.10)
velocity of point P fixed in the body

The relation (7.10) was derived for a fixed time interval 7 to t + dt. By using the infinites-
imal dt, we can define the instantaneous angular velocity . In some of the problems we
will solve later, the instantaneous axis of rotation is itself varying in both its direction and
its magnitude.
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FIGURE 7.4

Why were quotes placed around the word “vector” when defining d¢? Tt is because
d¢ and @& are not true vectors. An axis of rotation defines a plane in which the rotation
takes place. This rotation possesses a helicity or “handedness,” which is not the same as
a direction to a point located in space. d¢ and @ are examples of pseudovectors, or as a
synonymous term, axial vectors. A pseudovector is something that rotates like a vector,
but is invariant under reflections,* unlike a vector. For E:xamp]e vector cross products @ x b
are pseudovectors because under reflection (@ — — i b— —b} the cross product a x b
remains unchanged. In electromagnetism, the ﬂ]EEH‘lC field E is a true vector, whereas the
magnetic field Bisa pseudovector. We define a direction of rotation for a pseudovector
by using the “right-hand rule” convention.

Instantaneous Axis of Rotation

What if the instantaneous axis of rotation is not constant? As an example, consider
an ice cream cone lying on a flat table as shown in Figure 7.4. Let it roll without shpping
in such a way that the apex (point) of the cone remains fixed, while the large end rolls
without slipping in a circle on the table.

The velocity of any point on the cone that is momentarily in contact with the table
must be zero, since the cone rolls without slipping. This line of contact with the table is
the instantaneous axis of rotation and hence gives the direction of @. From the sense of
rotation indicated in the figure, we can describe @ in mathematical terms using the unit
vectors I', J' in the lab (space) frame along the X', Y’ axes, respectively, and magnitude of
rotation £2 about the Z’ axis (£2 is constant):

w = —|w|(cos Q i’ + sin Q2 j'). (7.11)

You should check to make sure that you understand the signs in Equation (7.11). £ > Oas
shown. A negative value for 2 < 0 would correspond to a cone rolling in the clockwise
direction on the plane in the figure.

* Definition of reflection: X - X, ¥ —- ¥, Z - —-Z7.
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QUESTION 2: Rotating Cone 1  Show that & expressed in a moving coordinate system
rotating at an angular frequency 2 around the Z’ axis is a constant vector along (say)
the X axis in the rotating system. Prove that the central axis of the cone must also
lie in a constant direction in this reference frame. Describe the motion of the cone as
seen by an observer rotating at angular frequency €.

In the example of the rolling ice cream cone, it can be useful to consider w as due
to the combination of two simultaneous rotations. If the cone rotated with respect to the
table at an angular velocity @, = Q k , it would have to slide at the point of contact with
the table. If we add to w, an additional simuitaneous rotation «» around the cone axis of
symmetry, the cone’s axis will be unaffected by the second rotation and will continue to
revolve around the Z’ axis at a uniform rate. We can then choose the magnitude , so that
the velocity of any point on the line of contact between the cone and the table is zero, to
give us rolling without slipping. This is an intuitive argument that the effect of two angular
velocities can be added to equal a third angular velocity. This means that we can replace
the effect of two or more simultaneous rotations by a single rotation that has exactly the
same effect if we consider only a short time interval dt. This equivalence is usually not
true for any finite time interval.

Ordinary velocity refers to the motion of a point in space. Angular velocity refers to the
motion of a point or collection of points relative to an axis of rotation. The dimensions of
velocity are meters second ', of angular velocity second—'. Nevertheless, itis a remarkable
fact that angular velocities add like vectors: @ = @, + @,. This is proved by noting that,
by Taylor's theorem,

e

- - ar d
Fdr, ddy) — 70, 0) = i 7o +dbys - +0[dg}, e}, dbvdga]. (112
JF, drs

L

Divide (7.12) above by dt and go to the limit dr — 0. Second- and higher-order terms in
the infinitesimal angles d¢,, d¢, can then be neglected. Using the defining relations for
w, (7.8)-(7.10), the vector addition property of angular velocities is proved. Try working
out the details of the proof of this vector addition property for yourself.

Figure 7.5 shows the angular velocities from Figure 7.4: @ = @, + @, where @; =
is vertical, along Z', @, is parallel to the cone axis, and @ is along the line of contact. You

FIGURE 7.5
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can determine the directions of the angular velocities by using the right-hand rule. @ and
Q form two sides of a right triangle, with @ parallel to the table (i.e., in the X'Y’ plane
as shown in Figure 7.5). By the Pythagorean theorem for right triangles. w? = w* 4+ Q*.
Knowing the geometry of the cone, you can compute both «» and §2 in terms of @ and the
half-angle of the cone.

Remember that we can find the coordinates of @ in any coordinate system we want to:
the fixed system, the system rotating at frequency £2, or even a system fixed with respect
to the cone itself. Each of these different sets of coordinates describes the same vector in
different reference systems.

QUESTION 3: Rofating Cone 2 Obtain the components of @ in a coordinate system
that is fixed to the ice cream cone. Hint: Express the three unit vectors in the frame
rotating at Qk' in terms of unit vectors 7, 7. k, which are fixed in the cone.

7.3 FINITE THREE-DIMENSIONAL ROTATIONS

The mathematics of finite rotations in three-dimensional space is quite a bit more
complicated than for finite rotations in two-dimensional space, because successive rotations
no longer “commute” — a mathematical term meaning that you obtain a different result if
vou carry out the rotations in a different order. To illustrate this for yourself, do the following
experiment. Take a book and lay it flat on a table with the cover right-side up. Imagine
a set of coordinate axes with the Z axis vertical, the X axis parallel to the bottom edge
of the book, and the Y axis parallel to the binding of the book. Now rotate the book 90°
about the Z axis {(clockwise), followed by a 90° clockwise rotation about the original X
axis. Finally, make a 90° rotation about the original ¥ axis. Notice the final orientation of
the book. Now restore the book to its original position and make the same three rotations,
but in the reverse order. If you've done it correctly, the book will be upside down facing
you at the end of the first sequence and right-side up facing you at the end of the second.
This proves that the order of successive 3-D rotations matters.

A rotation about the Z axis converts a point on the X axis to a point somewhere in
the XY plane. This particular rotation is equivalent to a linear transformation of the x, y
coordinates. In general a single rotation is a linear transformation of the coordinates in a
plane perpendicular to the axis of rotation. A vector directed along the axis of rotation is
left unchanged (i.e., is “invariant under this transformation™).

7.4  ROTATED REFERENCE FRAMES

Fix a coordinate system in a rigid body, called the “body coordinate system”
and align it with a fixed “space coordinate system.” Make the origins of the two systems
coincide. Then make an arbitrary orientation of the body by rotating it a fixed amount
around an axis through the common origin, which is a fixed point in the body as shown in
Figure 7.6. (Usually this fixed point is the center of mass for reasons which will become
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body coordinate system
(solid) N - space coordinate system
L (dashed)

axis of rotation

FIGURE 7.6

clear later.)

Our notation will be:
SPACE = PRIMED,
BODY = UNPRIMED.

Definition of the Space Reference Frame K’

Define a space coordinate system to be an inertial frame, with coordinate axes
labeled by X', ¥', Z'. The Cartesian coordinates of the point P (see Figure 7.7) fixed in
the body are a set of three numbers which we can arrange in a column:

T,
S

n=inl. (7.13}

Definition of the Body Reference Frame K

We also define a rotated or body coordinate system K , which is rotated with respect
to K’. Assume that K is not moving with respect to K'. Think of this new coordinate
system K as attached to a rigid body, while the space coordinates K’ are a fixed inertial
reference frame. In Figure 7.7, you can see the orientation of K with respect to K'. The
origins of the two coordinates coincide.

In the body system or rotated frame K, the same physical point P has different
coordinates:

ry=\\rq. (7.14)

In order to completely specify the orientation of X with respect to K', three numbers
are required. Call them @, ¥, ¢ — we’ll be more explicit later. This agrees with the fact
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FIGURE 7.7
P = point fixed in body.

that a rigid body with a fixed center of mass has three degrees of freedom. To “make”
K from K, first choose an axis (two numbers for the direction), and then rotate by some
definite angle around that axis, giving a requirement to specify three parameters in all.
Once 6, Y, ¢ are specified, they will be the same for all possible points P. An arbitrary
3-D rotation can always be described by three parameters: two for the direction of the axis
of rotation and one for the amount of the rotation about this axis.

The appropriate math to describe rotations is linear algebra.* We have already found
the connection between coordinates of the same physical point P as expressed in two
reference frames, K’ and K (7.6). This transformation can be represented by a 3 x 3
matrix U which describes the linear transformation of any arbitrary point in the space
being rotated, assuming that the origin is located at the fixed point. Define U as

ey
—
=
-
L
>
e
]

{
U= |j-i j-] jk (7.15)
ki k-7 K-k

Since there could be 3° = 9 parameters, when in fact only three independent degrees of
freedom exist, there must be 6 equations relating the 9 matrix elements. For the special kind
of linear transformation, the rotation described by the matrix U, all angles and distances
between vectors 1n the space are preserved. No “stretching” occurs.

From the rule for multiplying a matrix times a column vector, we can rewrite the
formulas (7.6) with the elements of U (7.15) representing the coefficients of the r;s:

r Un Up Uy r
rml=|Un Un Un r2 |- (7.16)
rs Un Uy Us; rs

* See, for example, Linear Algebra with Applications, 2d ed., by Steven J. Leon.
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We can write this either in component form,
F‘; = Uyr;, (7.1

or in the still more efficient form:
]"r = Ur_ (? I 8}

The operation of matrix multiplication is implied in both equations (7.17, 7.18). These are
two different ways of writing the same transformation of coordinates from the unprimed to
the primed system. In (7.18) we introduce a new notation for the vector r from the origin
to the point P: the boldface r’ and r. These are understood to be column vectors of the
coordinates — a vertical column list of the coordinates. Since it will be very convenient
to make use of the properties of matrices to describe rotations, we usually prefer this
notation to that of (7.17). The boldface notation will be used only in the context of matrix
representations of linear coordinate transformations. Repeated linear transformations can
be considered as a single overall linear transformation: If U, is the first rotation and
U, is the second, the net result of these two successive rotations is U = U,U,. (Matrix
multiplication is implied in the last formula.)

QUESTION 4: Linear Transformations Write out the linear transformation correspond-
ing to rotation about the X axis. Also, how can repeated linear transformations be
considered as a single overall linear transformation?

QUESTION 5: Rofations  Think of a rotation, and create an explicit matrix U to describe
such a rotation. This rotation can be anything from a simple rotation about the Z axis

to something more complex and imaginative. Explore the relation between the rotated
frame K and the reference frame K'.

As we explained, all of the matrix elements of the 3 x 3 matrix U are not independent,
since there are nine matrix elements that must depend on only three parameters. Lengths
of vectors are not preserved by arbitrary linear transformations, but they must be preserved
by U, because rotations preserve length by definition. Denote the transpose® of U = U,
by U = Uj. Using (7.13),

F
Fy i
2 2 7o ' r ! — -~ .2 3 9
re+rytry =0, o r)lnl=n rn RUULnR ) =rn+r+rs. (7.19)
3 rs

Since the coordinates are arbitrary, it must be true that U is the inverse of U and that the
product UU is the identity matrix

* In many texts the notation for transpose of U is U7 .
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This being the case, we can write the inverse of Equation (7.18):
r=0r. (7.20)

This takes us backwards from coordinates in the space system to coordinates in the body
system,

The condition that U = U~ means, by definition, that U is an orthogonal matrix. (Ifthe
elements of U were complex instead of real, and if the transpose of the complex conjugate
matrix is the inverse, U is defined as unitary.) The condition for U to be an orthogonal matrix
appears to give nine equations. Because UU is automatically a symmetric matrix, and a
symmetric 3 x 3 matrix has six independent elements, we can reduce the nine equations to
six. To prove this last statement recall that the transpose of a matrix product is the product
of the transposes in the reverse order:

AB = BA. (7.21)

QUESTION 6: UMatrix Prove by explicitly writing out r; in terms of r, for an arbitrary
rotation matrix U that if the length is to be preserved under rotations then UU = 1.

7.5 ROTATING REFERENCE FRAMES

Now assume that the body system K may be rotating. This means that U is a
function of time. Also assume that the point we singled out, P, could be moving within
K. As a simple example, P could be a bug crawling across a rotating turntable as shown
tn Figure 4.10. The unprimed coordinates would be the bug’s coordinates with respect to
the turntable, while the primed coordinates are the bug's coordinates in the fixed reference
system K’. The coordinates of the bug at point P are changing in the body system (X)
only because the bug moves with respect to the coordinate axes. In the space system (K'),
the bug’s coordinates may be changing for two reasons: a) the K system is rotating with
respect to K’ and b) the bug is moving in the body system.

Our goal is to relate the time derivatives of the coordinates of P in the space (fixed)
reference system to the time derivatives of P in the body (rotating) system. We will use
the coordinate-specific boldface notation introduced above which implies matrix multipli-
cation, Denote by v|'. = 4T the time derivative of the space coordinates of P (space ve-

space — g

locity) expressed in the space system K. Use ¥|poqy = gf for the time derivative of the body

coordinates of P (body velocity) expressed in the body system. The chain rule for differ-
entiation of the matrix Equation (7.18) with respect to time gives a formula with two terms:

¥iace = Ur Uv . 22
lspacc Mgl T Ihnd}r )

relative rotation of frames  oncfoemation of body velocity into space coondinates

We denote the time derivative of the matrix U by U, the 3 x 3 matrix that has as its elements
the time derivatives of the elements of U. Insert the identity matrix 1 = UU in between U
and r on the right side of (7.22):

v/l =UU0UUr+ Uy (7.23)

space
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TABLE 7.1 SUMMARY OF THE DIFFERENT NOTATIONS

Quantity Symbol Meaning

dr ¥ibody body velocity in body coordinates

U"—f "H-'--lr body velocity in space coordinates
ar Vlipace space velocity in space coordinates
U4 ¥lspace space velocity in body coordinates

Make use of (7.18):
Vipace = UUT + U¥|poq,. (7.24)

Now everything in (7.24) is expressed in terms of K’ coordinates. Uv|pqy is the transforma-
tion of the coordinates of v|,.qy from the K into the K’ system. Since the coordinate trans-
formation from the body to the space system for any vector can be made by (matrix) multi-
plying the vector by U, we can rename U¥|ppy = Vlp,,, 10 be r:ﬂm-:.ister}t v:'_ith our notation.
We can also express v|,__. in the body coordinates by multiplying by U: le;Fm = V|5pace-

space

QUESTION 7: Nofation Explain the differences between Vivody, Vlpgy» and Ulbody.
Does ¥lj.q, = Vlspace? Also explain why it is meaningless to write rj ;. and ..

We will now show that UU is an antisymmetric matrix, which we will call A’. (The
prime is there because we want to work in K’ coordinates, and the elements of a matrix do
depend on the coordinate system.) The proof of antisymmetry is

U0=1 soU04+U0=0 (7.25)
(chain rule again)
But from (7.21)
UU = UU. (7.26)

Therefore, the proof is complete: A’ = —A’.

7.6  THE INSTANTANEOQOUS ANGULAR VELOCITY &

The most general form of an antisymmetric matrix is

0 - o
=1 W 0 —w (7.27)
—w, W 0
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w), w5, w} are numbers that define the matrix A’ in the K’ system. If the coordinate system
is changed to the unprimed system, the matrix A will not in general be equal to A’. Instead
it can be found by the rule for transforming a matrix from one coordinate system to another
A = UA'U. We can interpret this equation as follows: U converts a vector from its
coordinate expression in the unprimed frame into the primed frame; A’ then acts on the
(unspecified) vector; and finally U converts back to the unprimed frame. This rule applies
to the transformation of any matrix from one coordinate representation to another.

The special feature of A’ is that it is antisymmetric. It can be shown by direct calculation
that (matrix) multiplying A’ into r’ is the same thing as taking @ x r, with the coordinates
of w = (A}, Aly, A}) = (W], w), ®}) evaluated in K'. If 7 is parallel to @, we get zero
from the cross product, as well as from the operation A'r’ in the matrix notation. This
proves that the direction of  is the axis of the rotation. The magnitude of w gives us the
size of the angular velocity. @ is actually called the “instantaneous angular velocity,” since
in general @ will not be constant in time.,

We can use this result to rewrite Equation (7.24) in vector notation:
Ulspace == @ X F + Ulpody- (7.28)

Compare this to (7.10),

QUESTION 8: Cross Product Prove that multiplying A’ into r’ is the same thing as
taking the cross product @ x r. In other words, A’ is the wx operator in matrix
notation.

Let A be the matrix A’ expressed in body coordinates. By the general rules for a change
of coordinates induced by U, as mentioned above,

A =UA'U=UU. (7.29)
We can use this relation to compute the components of @ in the body system.

QUESTION 9: U Matrix Find the form of U for a fixed rotation & about the X axis.
(Positive # means that the Y axis is rotated towards the Z axis.) Now let § = wt.
Check that you get the form above for A’, with @ = (w, 0, 0). Next find @ in the body
coordinates by finding A using the transformation matrix U.

We recall that the definition of a vector is a set of three numbers that transform like
the coordinates of a point in space. The components of any arbitrary vector ¢ transform in
the same way as r by definition:

e = Ue. (7.30)
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Similarly, the time derivative of ¢ in the space system can be found in terms of the time
derivative of € in the body system by applying the operator relation below to e:

ae = I:.:E':x + 4 ]E. (7.31)
At | space dt fpoa

Equation (7.28) is an example of this operator relation being applied to 7. The operator
between square brackets [...] can be applied to any vector to connect time derivatives in
one frame with those in another. The first term gives the effect of relative motion of the
body system with respect to the space system, and the second term arises due to the time
derivative of the vector in the body system. Vectors € and o can be expressed in either the
body or space coordinates when doing the calculation.

The operator form above is completely equivalent to the matrix form (7.24), but it is
often easier to use on €. In particular, we could use this operator form twice to 7 to calculate

the acceleration in the space frame:

lgpace = @ X (@ X T} + 20 X Vlpogty + @ X T + @pody- (7.32)

QUESTION 10: Operator Relotion Compare (7.24) to (7.31). Explain how they are
similar and how they are different. Convince yourself that the relation above (7.32) is
true.

QUESTION 11: Rolating Wheel A wheel of radius r rotates about the Z' axis (see
Figure 7.8), at a constant angular velocity @. Find the velocity ¥|space and acceleration
dlspace (relative to the ground) of any point of the rim. Find v|space and acceleration
@|space in both the body coordinates and the space coordinates and compare. Provide
a physical interpretation for your answers.

FIGURE 7.8
K frame rotating at speed w.
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7.7  FICTITIOUS FORCES

The force on the mass point is F = MAgpae by Newton’s Law of motion. If we
pretended that the body system was an inertial system we could define the apparent force
as

F appurent = Mibody (7.33)
definition of apparent force

By application of what we have learned from (7.32)

Fopparens = F = M@ X (& X F) —2m& X U —ma X T. (7.34)

= "

c:nmfu;n.j force Corjolis force Euler force

The last three terms on the right side above aren’t really forces; they are purely kinematic
consequences of the rotation of the body coordinates. We write ¥ instead of vy, because
it is assumed that we are operating in the body coordinate system. For experiments done
on the Earth, @ &~ 0. We should expect to see only the effects of the centrifugal “force”
and the Coriolis “force.” The prescription for action is thus: “Treat the fictitious forces
like real forces, and pretend that you are in an inertial frame.” This allows you to work
directly in noninertial frames such as the Earth without having to define a separate inertial
reference frame.

QUESTION 12: Bug on the Earth Return to the case of a bug crawling, this time on
the surface of the Earth. For a bug at the North Pole crawling at a velocity v due
south, and a bug at the Equator crawling at a velocity v due east, find the direction
and magnitude of all three fictitious forces. For this purpose, assume @ cannot be
neglected (the Earth’s rotation is slowing down slightly). Describe the directions of
the forces in words.

7.8  THE TOWER OF PISA PROBLEM

There is a very simple set of experiments we can do to show that the Earth is
rotating, even on a cloudy day when we can’t see the stars. Drop a plumb bob from the
leaning tower of Pisa (height # = 50 meters). The gravitational attraction of the Earth
pulls the weight on the end of the plumb bob toward the center of the Earth. This defines
the vertical direction. In fact, there is no other way to define the vertical! Let the Earth be
the body system here. Let us adopt a coordinate system with an origin located at the center
of the Earth and with the Z axis pointing outward in a radial direction. Choose the other
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FIGURE 7.9
Z is in the radial direction; X and ¥ are planar directions.

axes, X and Y, according to Figure 7.9 to make a right-handed coordinate system (+ X
could point east and +¥ could point north, for example). The coordinates of the tower are
(0, 0, R), where R = 6.378 x 10° m is the radius of the Earth.

What effect will the rotation of the Earth have on the location of the plumb bob?
Calculate the two “forces” on the plumb bob from Equation (7.34):

gravitational force: —mgk, (7.35)
centrifugal “force”™: —mm x (@ x ). (7.36)

Note that the other forces in (7.34) are zero. (In what follows, £, J, k will be unit vectors
along the X, Y, and Z axes respectively.) First determine the components of  in this
particular body coordinate system. They are

@ = |w|(0, cos A, sin A), (7.37)
Earth’s angular velocity

where 4 is the latitude.
The latitude A is (° at the equator and 90° at the North Pole, as shown in Figure 7.10.

For Pisa, A = 45° (very approximately). Taking cross products we have

wXr=wRcosil, (7.38)

~@ X (@ X F) = —w R(cos Asin & J ~ cos® A k). (7.39)

We see that the centrifugal force 1) acts to weaken the gravitational force by subtracting
@* R cos® ) from it, and 2) gives a southward deflection by adding a component along the
negative ¥ direction.
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FIGURE 7.10

The tangent of the defiection angle is

2 - 2
w* R cos A sin A LW chslsinl. (7.40)

g — w*Rcos* A ~ g

tan deﬂmlinn =

{Why? How would you prove this last statement?) Substituting numerical values we get

2n | rad
e s = /. H]'_ﬁ"'__ 41
W= g s = 72722 5 (7.41)
]
R
BT = 00344 (g =98ms?). (7.42)

8

The plumb bob at Pisa is thus deflected by 1.7 milliradians and ends up 8.5 cm south
of the coordinate system origin (see Figure 7.11). Unfortunately, there is really no way to
measure this deflection, since we can only define the vertical with a plumb bob or a liquid
level. All the buildings at this latitude must be tilted by 1.7 milliradians from the direction
pointing to the center of the Earth if they were built according to alignment with a plumb
bob,

Those people interested in weight reduction should stand at the equator, where the
reduction in apparent g is maximal, at about 0.34%. At the North Pole your weight as
measured on a bathroom scale will increase by this amount over what it is at the equator.
(There are easier ways to find out your latitude!)

- SN .

X

|
i
v
to center of earth  FIGURE 7.11
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Dropping a Small BB

The second half of this problem consists of dropping a small BB or lead shot from
the tower. We neglect the effects of wind or air resistance, although this might be important
in actual practice. The BB will not land on top of the plumb bob, because there is an extra
velocity-dependent “force” if v # 0: the Coriolis “force.” We can move the origin of our
coordinates to the point of the plumb bob and make that the new origin. We can calculate
the additional deflection due to the Coriolis force using successive approximations, as a
power series in the small quantity T, where T is the time it takes the BB to fall. (We'll
drop the quotes around “force” from now on and pretend these kinematic effects are real.)

Note that the origin here coincides with the origin of a plumb bob (which is not the
radial direction as we just discovered).

For the lowest level of approximation, denoted by a superscript (0), we assume that
there is no Coriolis force, so the velocity is along the Z axis and equals 8¥ = —grk, where
t is the time elapsed since the release of the BB. Then using this as our first approximation,
we calculate the magnitude of the Coriolis force and the added deflection it produces:

= ()

F = —2mad x 1 = 2mwgt cos A 1. (7.43)

Coriolis

The direction 1s determined in Figure 7.12. Integrate the force once with respect to time
to get the change in momentum due to the force. Divide by the mass to get the change in
velocity:

oV =3 + A'Y, (7.44)
AT = wer? cos A 1. (7.45)

The superscript on Av reminds us that this is only a first approximation. Integrate again
to get the displacement (7'*) = 0 by definition):

£
= Ar" = w83 cos Af. (7.46)

™y

N(+Y)

- 'Eﬁ :I{"I.-';PI:II:II]I is east

E(+X)

FIGURE 7.12
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Call the time from the release of the BB until it hits the ground 7. Use the approximate
relation g%z = h, the tower height, to rewrite the formula above (when the BB hits the
ground) as

2
AFY = ihmT cos Al. (7.47)

The deflection from the plumb bob is eastward (4x), about 5.5 mm when we use the
appropriate numbers.

For our second approximation, we use (7.44) as the velocity when calculating the
Coriolis force (7.43) and repeat the calculation, obtaining

- 2 , .
ATH = -3 2gt’sin A cos A J,

(7.48)
|
AF? = —-Eh(wT}z sin A cos A f.

You should prove Equations (7.48) for yourself. This is an additional southward defiection
of about 0.45 microns in this case. An even smaller correction, of order wT “"T”, would
result if we had included the centrifugal effects in the calculation.

QUESTION 13: Tower of Pisa We just found out by using fictitious forces that if you
drop a mass from some height in the Northern hemisphere, it will be deflected eastward.
The Earth is rotating from west to east, so, intuitively, you might expect that the Earth
rotates while the BB falls, and the BB will therefore land to the west of the plumb
bob. Analyze the motion in an inertial frame of reference and show how this simple
argument is wrong. The BB follows an elliptical orbit with respect to the center of the
Earth. (See the homework problem for a more quantitative analysis.)

7.9  WHY DO HURRICANE WINDS ROTATE?

A hurricane is generated by an extremely low pressure area surrounded by high
pressure. If there were no Coriolis forces, you might reasonably expect the wind to blow
inward towards the low pressure. The Coriolis force gives an additional —@ x V = ¥ X @
deflection which causes a deflection to the right in the Northern hemisphere and to the left
in the Southern hemisphere. This gives rise to a counterclockwise circulation of the wind
in the Northern hemisphere (and vice versa for the Southern hemisphere), which is very
clearly visible on satellite photographs of hurricanes. Viscosity forces and other effects
reduce the Coriolis effect such that the wind maintains a 20-30° angle with respect to the
radial direction, as shown in Figure 7.13.

QUESTION 14: Hurricanes Explain in detail why hurricanes rotate counterclockwise
in the Northern hemisphere and clockwise in the Southern hemisphere. Also, just
something to ponder — do you think this is true for other things like bathtubs, toilets,
water fountains, etc.?
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7.10 FOUCAULT PENDULUM

One of the most striking experiments that demonstrates the rotation of the Earth
is the Foucault pendulum as shown in Figure 7.14. This device is a spherical pendulum,
free to swing in both the X and Y directions, and pivoted at the top by a clever bearing
that does not restrict the motion. If there were no effect of the Earth’s rotation, the x and y
motions would be independent and would have the same frequency. For small-amplitude
oscillations the frequency would be /3 in either direction. One possible motion of the
pendulum is in a plane, as shown in Figure 7.14 (zero angular momentum), with x and
y oscillations in phase; another is a circular or elliptical motion with a phase difference
between X and Y projections of the motion. The Earth’s rotation causes a slow rotation of
the XY plane of the pendulum, with a period that depends on the latitude. If you want to
see a Foucault pendulum in action, the National Museum of American History, on the Mall
in Washington D.C,, has a very long and impressive example. The original demonstration
was in Paris by Foucault in 1851, It caused a sensation at the time.

We wish to calculate the additional effects arising from the rotation of the Earth to
which the pendulum is attached through the swivel bearing (which decouples the pendulum
from the Earth). Angular momentum conservation tells us that if we observe the pendufum
in an internal reference frame, the plane of vibration of the pendulum will not change. If

FIGURE 7.14

Foucault pendulum located at the North Pole. K’ is
space frame. K is Earth frame, rotating at angular
velocity w.
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the pendulum were located at the North Pole, then from the viewpoint of an observer at
the Pole the pendulum will appear to rotate the plane of vibration once per day, since no
torque is transmitted by the bearing. This slow rotation of the pendulum’s XY plane of
motion is called precession.

To obtain the precessional motion in the general case of the pendulum at any latitude,
we will resort to Lagrangian methods instead of using the fictitious force approach used
before. (It could be done the other way too.) We need to write the Lagrangian in an inertial
frame, substitute for the inertial frame coordinates and velocities in terms of Earth frame
(noninertial) coordinates and velocities, and find the equations of motion. While doing
this, there is a valuable lesson to learn about problem solving. If one tries to proceed
without approximation, as is often true in physics, an algebraic morass results. If we make
the approximations in the very beginning, when writing the Lagrangian, simple equations
of motion will result. In principle you could do it by doggedly keeping all terms and
approximating at the end, but this turns out to be both hard to do and not very elegant. All
the extra work is also a waste of time, because the physics does not lie in a complicated
formula. When solving many problems in theoretical physics it is often useful to make
your approximations right at the start. Of course, you have to avoid the danger of dropping
truly important terms. Experience helps!

We will locate an inertial frame origin to coincide at 1 = 0 with the equilibrium point
of the pendulum, that is, the point it hits when it is at rest as shown in Figure 7.14. The Z'
direction is vertical; X' and Y’ are the horizontal directions. The Lagrangian in the space
(inertial) coordinates is

T = %muzlﬂm, V=mg:, L=T-YV. (7.49)
The body frame (unprimed) is the same as the frame at rest on the Earth’s surface. Use
(7.28), and neglect * terms in the kinetic energy, since w = 7.3 x 107> s~ is very small.
For the pendulum, z = I(1 —cos ) & [0%/2,and 6 ~ Y2 (small-angle approximation).
Also assume Z is small compared to x, v. Given all these approximations, the Lagrangian,
expressed in the Earth (body) frame in terms of unprimed coordinates x, vy is

x? 4+ ;!-'E
21

L= %{iz + V2 4+ 20(xy — yx)sin A + 2wzk cosd) — mg (7.50)
Finally, we can neglect the term proportional to zx, because it is small compared to the
terms proportional to xy and yx, since most of the motion takes place in the XY plane.
After this breathtaking simplification, we proceed in the usual way to find the equations
of motion. The effect of the Earth’s motion is contained in the term proportional to @ in
Equation (7.50) above. The equations are

: oL
L _ '—'ir:zmsinm _T8,, — = ~ 2 QwsinA)i - E}.‘
dx 2 [ ay 2

(7.51)
dl. m

aL
2 =Pk — Qusind)y), — = 22y + (2wsin A)x).
dx 2 ay 2
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From the above, via the Euler-Lagrange equations, we deduce that the EOM are

i+ (%)x = Qwsin L)y,

(7.52)

¥ + (%) y = —(2w sin ).

The x and y motions are coupled together by a term proportional to the angular velocity
of the Earth’s rotation in Equations (7.52). If @ — 0, these equations become uncou-
pled SHOs. To solve the coupled equations, consider the complex guantity (to make the
mathematics easier)

{=x+iy. (7.53)

Multiply the second equation of motion by i and add it to the first one. You obtain
[ +iQwsinA)¢ + (%){ = 0. (7.54)

This looks just like the EOM for a damped SHO (3.29), except that the damping is complex.
Mathematical solutions can be found by assuming ¢ = &'* as before. This reduces
the differential equation of motion (7.54) to a quadratic equation that must be satisfied by

o

-a-’-—zammm+-f- = 0. (7.55)
Since w* < £, we can approximate the solutions by
: g
o~ —(wsinl) + \/T— (7.56)
So
=X +iy=e """ (X 4+ iy)y=0, (7.57)
where
(X + iY)o = €2V 11, (7.58)

(In (7.58), the actual motion for w = 0 is a linear combination of the positive and negative
exponents. The physical sense of rotation for the plane of swinging, if @ # 0, does not
depend on this choice.) For the physical interpretation, take the real part for the x displace-
ment of the pendulum and the imaginary part for the y displacement. Viewing the motion
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projected into the XY plane, we find that (7.57) tells us that motion when @ # 0 will be
seen to precess clockwise at a rate of @ sin A radians per second. (Both the sign and the
magnitude agree with what we predict at the North Pole, where sinA = 1.)

The period T of this precession depends on the latitude of the pendulum. It is

2
T (precessi 10d) = — 7.59
(p ssion period) ey ( )
In practical units,
24
T = —— hours. (7.60)
Sin A

QUESTION 15: Foucault Pendulum  If you actually build a Foucault pendulum, it turns
out to be very difficult to build a short one. The world record is about 6 inches. Why
do you think this is true? The various experimental problems are explained in two
articles by Crane in Physics Teacher (May 1990, p. 267) and the American Journal of
Physics (1981, vol. 49, pp. 1004-6).

SUMMARY OF CHAPTER 7

* Three-dimensional rotations do not necessarily commute with each other (i.e., the order
of making the rotations matters).

» The most general rotation of a rigid body is described by three parameters. A 3 x 3
orthogonal matrix U describes this unique rotation in three-dimensional space.

« 'We can compute the coordinates of any vector in either the body or the space system. A
linear transformation using the matrix U gives the connection and the inverse between
the two sets of coordinates:

r=Ur, r=0r. (7.61)

r = coordinates in body system K;
r' = coordinates in space system K’

o Uis the transpose of U: U;; = Uj;. U is orthogonal: U= U~".

* For a system whose orientation is changing with time, define the antisymmetric matrix
A’ = UU. The instantaneous angular velocity @ = (A}, A}, A3,). The axis of
rotation is the direction of w, and the magnitude of @ is rate of rotation around the
axis.
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» The time derivative of an arbitrary vector ¢ in the space system can be found in terms
of its time derivative in the body system by the relation

de
dt

= [&J'x + ; :'E— (7.62)
space ! body

* Inanoninertial system rotating with angular velocity « with respect to an inertial system,
the fictitious or apparent force is given by

Fappacent = F — m % (& X F)—2me x U —mo x 7 . (1.63)
. .  —n  —ni
centrifugal force Coriolis force  Euler force
PROBLEMS
Angular Velocity

Problem 1*: (Locomotive)

a)

b)

A locomotive is rounding a curve of radius 1 km at a speed of 80 km/hr in the
counterclockwise direction. The wheels of the locomotive are turning at 1,000
rpm. What are the components of @, the instantaneous axis of rotation, for the
wheels in the space system (i.e., for an observer on the ground)?

What are the components of @ in the body system of the locomotive (i.e., from
the vantage point of the train engineer)? First give an intuitive answer and see
if it agrees with a calculation based on the formula for transforming the angular
velocity vector components into the body frame (7.29). Does the answer contradict

your intuition? How would you explain this result?

The components of the angular velocity in the body system can also be found by
using the vector transformation property of angular velocity. The chain rule (7.12)
implies vector addition of the two angular velocities of the locomotive. Let U, be
the matrix that transforms from wheel body coordinates to train body coordinates.
U, will be the matrix transforming from train body coordinates to space (ground-
based) coordinates. Then U = U, U, transforms from wheel body coordinates
to space coordinates. Starting from the definition of the antisymmetric matrix
A’ = UU, prove that

A’ = U,U, + U, (U, 0)0,. (7.64)

Interpret this result and show how it proves that angular velocities add like vectors.
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Problem 2: (w as pseudovector) How does the matrix A (or, equivalently, the vector

w) transform if all coordinates are reversed as under a space reflection? Prove that @
transforms like a pseudovector rather than a true vector. (A vector reverses sign under
a spatial reflection; a pseudovector does not.)

Problem 3: (Rolling cone) A cone rolls on a flat surface. The instantaneous axis of
rotation lies parallel to the point where the cone touches the surface and the angular
velocity is w. The motion consists of a motion of the center of mass (V. plus a
rotation @, about the center of mass. Describe this motion by finding ‘:’m and @, in
the laboratory (space) system.

Problem 4: (Rolling sphere) A sphere of radius R rolls without slipping on a flat
surface with angular velocity . Since rolling without slipping means that the velocity
of the point of tangency between the sphere and the surface is zero, this gives a relation
between 'F'cm and w. Find this relation, which is a constraint on the motion. How many
degrees of freedom does the sphere have?

Problem 5: (Charged electron) Insome respects an electron is like a charged spinning
top. The electron has internal angular momentum and a magnetic moment, so it behaves

like a magnetic dipole oriented along the spin axis. In a magnetic field the equation of
motion for the spin angular momentum o in a magnetic field B is

o =g'(G x B), (7.65)

where g’ = 1% g, e is the electronic charge, h Planck’s constant divided by 2, m the
electron’s mass, and ¢ the velocity of light. The constant g is called the “gyromagnetic
ratio.” For electrons, g = 2.

a) Show thatin aframe rotating at a certain angular velocity, the effect of the magnetic
field can be made to vanish. Find this angular velnclty awy.

b) Suppose the magm:ht: field has two components: B = Bok + H:_., where B, is
a constant, k =k is a unit vector in thc Z', Z direction, and H, is a rotating

magnetic field of constant magnitude: B, = Bi(coswt i’ + sinwt j’). Regarding
w as a variable parameter, find the equation of motion in a frame rotating with
angular velocity @ and solve it. Describe qualitatively what happens to the spin
if a) @ = wy, b) @ # wy. (This is the basic equation of NMR — nuclear magnetic
resonance — except that the spin is that of an atomic nucleus, not of an electron.)

Orthogonal Matrices
Problem 6: (The most general form)

a) Find the most general form of an orthogonal 2 x 2 matrix. What is the geometric
interpretation of such a matrix? What are the complex eigenvalues of such a
matrix? What special property do they have? What is the determinant of the
general 2-D orthogonal matrix?
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b) Write out the 3 x 3 separate matrices for 90° clockwise rotations about the X, ¥,
and Z axes. Find the products of these rotation matrices about Z first, ¥ next,
and X last. Then find the product for rotating in the reverse order. Interpret the
result in terms of the experiment with the book in Section 7.3. (The corresponding
questions from part a) for 3 x 3 orthogonal matrices are more difficult to answer.
We will develop an explicit form for the 3-D orthogonal matrix U in terms of the
three Euler angles in the next chapter.)

Problem 7*: (General properties of orthogonal matrices) This problem involves
proving some general properties of orthogonal matrices in a space of arbitrary di-
mensions. [t will be necessary to know some facts about determinants that hold for
any arbitrary n x n matrix M:

detM = detM, det(—~M) = (—1)"det M, (7.66)
det(AB) = det(BA) = det A det B. (7.67)

You may wish to review the derivations of (7.66, 7.67) in a book on linear algebra.’
Use the above identities to prove the following:

a) If Uis a real orthogonal n x n matrix, prove
detU = +1. (7.68)

(If detU = 1, U is a proper rotation; if detU = —1, U is an improper rotation,
i.e., a reflection plus a proper rotation.)

b) Fora proper rotation of any odd-dimensionality n, prove that the orthogonal matrix
U has at least one eigenvalue equal to 1; hence there is an “axis” of rotation ~ a
direction that is invariant under the transformation U. (Hint: First prove that if
there is an eigenvalue equal to 1, det(U — 1) = 0, where 1 is the identity matrix.)

¢) The trace of a matrix is the sum of its diagonal elements. Prove that the trace of any
matrix M is invariant under an orthogonal transformation: M’ = UMU. (Hint:
Trace(AB) = Trace(BA). Prove this first; then prove that Trace(M') = Trace M.)

Problem 8*: (Trace of U} If U is a real orthogonal 3 x 3 matrix, show that the trace
of U equals

TraceU = 1 + 2 cos &, (7.69)
where @ is the angle of rotation. (Hint: We proved in Problem 7c¢ that the trace is invari-

ant when the basis vectors are changed to a new set by an orthogonal transformation.
Try moving the axis of rotation to the Z axis by such a transformation.)

! For example: Linear Algebra with Applications, 2d ed., by Steven J. Leon.
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Problem 9: (Inverse operator relation) Find a formula for f-;lmdy that inverts the
operator relation, Equation (7.31). What is the inverse relation to the equation (7.32)
for the acceleration?

Fictitious Forces

Problem 10*: (Fictitious forces on a turntable) A turntable is rotating around the
Z' = Z axis with an angular velocity @. Consider a bug that is free to move without
friction on the turntable surface, which is the X ¥ plane as shown in figure 4.10. The bug
is not acted upon by any forces parallel to the turntable surface. The bug’s Hamiltonian
1 (5.71)

_pitp

= — wl,,

m (7.70)
L.=(r x p),.

(Everything in (7.70) is expressed in terms of the turntable (body) coordinate system.)

a) Find the equations of motion in terms of x, y for the bug by eliminating p, and
Py, the canonical momenta, from Hamilton’s equations of motion.

b) Show that you get the same answer by considering fictitious centrifugal and Cori-
olis forces instead. Hint: To check that you have the sign of w correct, pick a fixed
point on the turntable and use the relation (7.28).

¢) The bug is initially located at x = x4, y = 0, moving with initial velocity vy with
respect to the body and initially experiences no acceleration (in either space or
body frames). What is vy explicitly in body coordinates? Does the acceleration
(both @ |space and @{bogy) Temain zero?

Problem 11*: (WW I Falklands Islands battle) During a 1915 naval battle between
the British and the Germans, which took place in the Falkland Islands (latitude 50°
south), the British shells missed by about 100 yards to the left of the German ships.
Apparently the British gunsights were intended for battles near Europe (latitude 50°
north), and hence they were improperly corrected for the effect of the Coriolis force
in Southern latitudes. The spirit of the calculation in this problem is the same as that
of the Tower of Pisa problem in Section 7.8, except that the first approximation is
constant velocity in a horizontal direction.

a) Derive an approximate formula that gives the amount of deflection for a shell fired
horizontally at an opponent a distance D away, due to the Coriolis effect.

b) Explain why the effect observed by the British Navy was twice what you calculated
from the Coriolis effect.

¢) Assume the velocity of a shell is about 2,000 mph, which is =1km/s, or three
times the speed of sound. Neglect the effect of gravity in the first approximation
— assume the shell travels in a straight line. Estimate how far away the German
ships must have been. How does your estimated value for D depend on the
direction of firing with respect to north? In the second approximation include
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FIGURE 7.15
Compton generator.

the effect of gravity. How does this change the result? Use weym = 7.3 x 107
radians/sec.

Problem 12: (Deflection of object thrown up into the air) A heavy object is thrown
up into the air. Calculate the deflection of the object when it hits the ground due to
the Coriolis force. Compare the results to those of an object dropped at rest from its
maximum height.

Problem 13: (Comprton generator) When he was an undergraduate, the famous physi-
cist A. H. Compton invented a simple way to measure the rotation of the Earth with a
table-top experiment. The “Compton generator,” as it was called, is a circular hollow
glass tube shaped like a doughnut as shown in Figure 7.15. The inside of the tube is
filled with water. Imagine that the “doughnut” lies flat on a table and is then turned over
by rotating it 180° around a diameter, such that it again lies flat on the table surface,
which is horizontal. The result of the experiment is that the water moves with a certain
constant drift velocity around the tube after the doughnut has been rotated. If there
were no friction with the walls, the water would continue to circulate indefinitely.

a) Prove that the axis about which the doughnut is flipped should be oriented east-
west to maximize the drift velocity of the water. What will happen if it is oriented
north-south instead?

b) Let @ be defined as the angle between a small volume of the water and the “flip”
axis. Calculate the component of the Coriolis force parallel to the wall of the
circular tube, Fy, while the circular tube is being flipped 180°. For simplicity,
assume it has been flipped through 90° already and is still moving. Draw little
arrows for different positions in the tube (different 6 values) to show the relative
magnitude of the tangential component of the Coriolis force at that point at time.
Why don’t we have to consider the radial component of this force?

c) Let the angle of rotation about the diameter be ¢. Then ¢ starts at zero, and when
the tube has been flipped over, ¢ = [80°. From the time integral of the tangential
force, calculate the change in the total tangential momentum of the water in the
tube. This means integrating over 8 around the rim of the tube. Show that the total
tangential momentum does not depend on the ¢(7) but only on the total change in
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¢. Evaluate this total momentum for a change of 180° in ¢». You can assume the
water is equidistant from the center of the circle at some constant radius R. Does
the water circulate clockwise or counterclockwise?

d) Since water is incompressible, the water molecules in the tube must all drift with
the same velocity after the tube is flipped. With this assumption, you can calculate
this drift velocity as a function of the Earth’s angular velocity and the latitude.
Prove that

Varip = 2w R sinA. (7.71)

Compton used small droplets of coal oil mixed in the water to measure the drift
velocity under a microscope. The experiment consists of laying the tube flat on
a table until the water in it came to equilibrium, then slowly (in about 3 seconds)
rotating it about an east—west axis until it had turned 180° and was again lying flat
on the table.

e) Compton used this measured drift velocity to determine his latitude. His sin A was
measured to within 3% accuracy, which is pretty good for such a simple device.
Assuming A = T and R = | meter, what is vgin in mm/s?

Problem 14: (Force-free motion as seen from a twrntable) Plot the trajectory of the
force-free motion of a particle as seen from a frame rotating with a constant an-
gular velocity w. Assume the particle starts with an initial outward radial veloc-
ity vy, at an initial position halfway towards the rim. If R is the turntable radius,
let

vo = fwR. (1.72)

Plot this motion for f = 0,0.5,0.7, and 3. Notice that all trajectories are straight
lines in an inertial frame.

Problem 15: (Hurricanes) Prove that the steady-state motion of the wind near a low
pressure area in the atmosphere is a circle along the lines of constant pressure if air
resistance is neglected. Also: Why are there no hurricanes near the equator?

Problem 16: (Foucault pendulum) Here is a different method for solving the Foucault
pendulum. Assume the motion of the pendulum is given by

x(1) = A (1) cos (wpt + P,(1)), 1.73)

y(1) = A (1) cos (wpt + D, (1)), '
where wp = ﬁ is the pendulum frequency. In the absence of Coriolis and centrifugal
“forces” A, . P, , would be arbitrary constants. If these “forces™ are present. they
become slowly changing functions of the time. Insert the expressions (7.73) into the
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equations of motion, (7.52). By averaging over many swings of the pendulum, find
the differential equations for A, ,(¢t) and ®, ,(f). Solve them and show that this gives
the same solution found in the text.

Problem 17: (&) This problem involves the “neglected” term in the transformation
rule for acceleration, Equation (7.32). & # O for the Earth. (We refer here to a change
in the magnitude of the Earth’s angular velocity. The direction of @ also changes slowly
with time. This effect will be discussed in the next chapter.) We know that the Earth’s
rotation is slowing down because of tidal friction and possibly other dissipative effects.
The accumulated effect of this slowing down amounts to 30° of rotation (2 hours) in
1,500 years. What is @? Compare the magnitude of this term in the fictitious force to
the centrifugal force term. In principle, how could this very small term be observed
experimentally? How much has the day lengthened since the age of the dinosaurs (65
million years ago)?



CHAPTER EIGHT

THE DYNAMICS OF RIGID BODIES

OVERVIEW OF CHAPTER 8

Rigid body motion is an important topic in classical mechanics. E. T. Whittaker once
gave a lecture® entitled “Spin in the Universe.” We quote:

Rotation is a universal phenomenon; the earth and all the other members of the
solar system rotate on their axes, the satellites revolve around the planets, the
planets revolve around the Sun, and the Sun himself is a member of the galaxy
or Milky Way system which revolves in a very remarkable way. How did all
of these rotatory motions come into being? What secures their permanence or
brings about their modification? And what part do they play in the system of
the world?

A common simplification for rigid body motion is the separation of the rotational
degrees of freedom from those of the center of mass motion, for which the body behaves
like a point with all of its mass located at the center of mass. All the information about
the mass distribution that we need to solve the rotational dynamics is contained in the
moment of inertia tensor 1.1 This means that two bodies with totally different shapes,
but having the same inertia tensor, will have identical rotational dynamics. The inertia
tensor relates the instantaneous angular velocity @ to the angular momentum L. These
two vectors are proportional in magnitude but are not always in the same direction.
We will see that the inertia tensor determines a natural body coordinate system, called
the principal axis system. Use of this coordinate system usually greatly eases our
calculations.

What is the most general possible motion of a rigid body that has no forces or
torques acting upon it? This leads us to Euler’s equations and the Poinsot construction.
Whenever you throw a football in a forward pass and see the football wobble, you
are observing solutions to Euler’s equations. In this chapter, we will also study the

* Quoted by S. Chandrasekhar in the preface to his book Ellipsoidal Figures of Equilibrium, Dover Press,
1987. Whittaker, a professor of mathematics at Edinburgh University, wrote a famous text on mechanics:
Analytical Dvnamics of Particles and Rigid Bodies, Cambridge University Press, 1904

' See Appendix A for a general discussion of scalars, vectors, and tensors.
! If you travel with the football’s center of mass and neglect aerodynamic effects.
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rotational dynamics of the Earth, which depends on the Earth’s equatorial bulge, a
problem first discussed by Isaac Newton,

Finally, we will consider heavy symmetric tops, which are often called gyroscopes.
These are objects with rotational symmetry about at least one axis, and which both
spin rapidly about the symmetry axis and are also under the influence of a torque from
the force of gravity. To handle this problem and others, we will introduce the notion
of Euler angles. The U matrix defined in the previous chapter can be obtained as an
explicit function of these Euler angles. @ is then obtained as a function of the Euler
angles and their time derivatives. We will also find the kinetic energy in a form that
can be used for any rigid body problem,

8.1 KINETIC ENERGY OF A RIGID BODY

Consider a fixed “space” coordinate system K’ and a collection of mass points
m;,i = 1,..., M. These points are said to form a rigid body if, for any two points, the
distance remains constant:

(7i —7;) =constant, i,j=1,..., M. (8.1)

Attach a set of body coordinate axes K to this arbitrary rigid body. Within K, we can have
relative rotation but no linear velocity since we have a rigid body (i. e., U; |pody = 0).

Generalizing slightly from what we have done previously, we can allow the origin
of K’ (space coordinates) to be located in a different place from the origin of K (body
coordinates). Define R to be the vector from the origin of K’ to the (so far) arbitrary origin
of the rigid body coordinate system (see Figure 8.1). Notice that because the origins are
allowed to differ, r;| ce 1S no longer equal to ri lbody. 1he velocity of the ith point in the
rigid body as expressed in the space system is

Bilspace = R + @ X Filpoay (8.2)

The vector 7; = 0 when the point is located at the origin of the body system K (we will
drop the specific reference to the body system, since from here on we will only work with

Body frame K
VA

FIGURE 8.1
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r; in the body system). The total kinetic energy to an outside observer in the space system

IS

T=%i2m,-vf =%(zmi)ﬁl+ﬁ-cﬁx(;2m,ﬂ)

Space ]
|
+5 Zm;(ﬂ x i), (3.3)
where
Em,— = total mass = M, Zm,ﬁ = Mr,. (8.4)
i i

A great simplification results if we choose the origin in K to be the center of mass, ey = 0.
With this choice, the kinetic energy (8.3) divides neatly into the sum of two separate terms:

T = Tl:mmial.iﬂn + Trﬂatmn {85}

The kinetic energy associated with rotation is

] -
Toowion = 5 ) mi(@ X 7). (8.6)

The translational kinetic energy is the same as if all the mass were concentrated in a point
located at the center of mass of the body:

] 3
Transtation = EM R, (8.7)

From now on, assume the origin of K is located at the center of mass.

As an example, think about the motion of a baton (or pen) thrown into the air. It
follows a rather complicated motion. But, using (8.5) we can separate out the center of
mass motion from the rotational motion. The motion of the center of mass of the baton
follows a parabola (or is up and down if given no initial horizontal velocity). Since the
center of mass motion is just like the motion of a point particle, we want to focus now on
the rotational part — the motion of the baton about the center of mass, @ # 0.

Using vector identities,* we can write

(El!] KFE}'{EJ}{ F,:I =€?J"[F; X {EEI'}{ F,}}zi;..} (rfcﬁ—(-:ﬁ?,}?.) (8.8)

* Kaplan, Advanced Calculus, 3rd ed., p. Sand p. 11.
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It will now pay to use explicit vector component indices instead of the vector notation. We
will use Greek letters for indices. For example, let & = 1, 2, 3 stand for either x, y, or z
coordinates respectively (e.g.,a - b = Y__ a,b,.) In this new notation we have*

3 3 3 3
o = L (z e S wﬂ) Y
i o= f=1 o=

= =1

Convince yourself that the vector notation in Equation (8.8) and the vector index notation
in Equation (8.9) are the same. We can rewrite (8.9) as

1 }
Trotation = Egmqmﬁfm (8.10)

where ) __ , implies Yo, 2;,, and

Iﬂ'ﬁ = Zmi (I'I-Iﬁulg — }";",_-,?'i.ﬁ} {Sill}
i

(8ep = 1 ifa = B; 8,5 = 0 otherwise). If we write out the formula above (8.11) explicitly,
weget(} =) )

Yomi(yF+22) =Y mxy - ) miX;z
I= — Z m;Xx; Vi Zl""l'-j(-'-":;1 + Ef) - Z m;¥;Zi . (8'12)
— Y mix;z —'mej’ﬁ-i Emi(’:il + }'fz)

Prove for yourself that (8.12) comes from (8.11).

8.2 THE MOMENT OF INERTIA TENSOR

I.5 (8.11) is called the moment of inertia tensor. If you are unfamiliar with tensors

or need a review, see Appendix A. (We will use some results from this appendix here.)
With the notation in (8.10), we have separated the intrinsic properties of the rigid body
(I) from the actual motion (@). Because T, .00 15 a scalar (invariant) under rotations of the
space coordinates and @ rotates like a vector, I must rotate like a second-rank tensor (if you

* Note that we have written out the usually implied sums in the equation for clarity.
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do not understand this statement, read Appendix A). We can also very conveniently think
of I as a 3 x 3 symmetric real matrix and the expression (8.10) as matrix multiplication of
a row vector - (3 x 3 matrix) - column vector. But remember that I is a second-rank tensor,
which as explained in Appendix A, is more than just a matrix. In more compact notation,
we can write the rotational part of the kinetic energy as*

T ooemtion = %EJIHJ_ (8.13)

where @ indicates the row rather than column vector w. Using matrix notation instead of
writing out all of the tensor indices is often very useful.

QUESTION 1: Transformation Llaw for |  Since @ rotates like a vector for proper rota-
tions, a fixed change of coordinates (orthogonal transformation U} gives new coordi-
nates: w' = Uw and @' = &U. Prove that, since Tjouion is invariant under a fixed
coordinate change, the transformation law for I must be

I' = UIU. (8.14)
This is the same transformation law found in Question 15 in Appendix A,
Single out 2 mass point in the sum (8.12) that defines I and ask what it contributes to

I. Suppose the mass is dm and the point where dm is located has the coordinates (x, y, z).
Call 41 the contribution to the sum over all of the points:

v+ —xy —XZ
di=dm} —-xy x*+7% —yz }. (8.15)
—xZ ~yz x4y

If the mass distribution is a continuous one, we replace the sum over mass points by
an integral over the differential

dm = pdxdydz, (8.16)

where p is the density and dx dydz = dV is the element of volume. The 53 element
would become, for example,

I3 = fffp{f + v)dxdydz. (8.17)

* Since Trowion 18 the same in both body and space frames you can use either frame to express the coordinates.
We use the body frame here.
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FIGURE 8.2

The inertia tensor is symmetric. If you interchange the indices, the tensor is not changed.
A symmetric tensor defined in n-dimensional space has L";_L! independent quantities. An
imertia tensor in 3-D space is completely specified by six numbers. Question 1 showed
how the form of I can change under coordinate transformations (8.14). There is a very
important theorem for symmetric matrices that uses this fact:

r—

It is always possible to find an orthogonal transformation U that diagonalizes I. This
is called a principal axis transformation.

This will be proved in Appendix B. Making an orthogonal transformation amounts to
choosing a particular set of coordinates. Since this can always be done for any rigid body,
we can write, with the appropriate choice of a U matrix,

I, 0 0
vio=1}{0 4 o01. (8.18)
0 0 &

Physically, this means that an inertia tensor I contains within it information about a special
set of orthogonal coordinate axes. If we choose these “principal axes™ as a body system,
calculations involving the moment of inertia tensor will be simplified since I will be
diagonal. Also, Iy, I, I;, which are called the principal moments, will all be positive. In
matrix language, since all of the eigenvalues of I are positive, [ is called a positive definite
matrix.* This guarantees that the kinetic energy will always be positive, no matter what @
is.

In real problems you can often “intuit™ the directions of the principal axes from the
symmetry of the problem.

If the principal moments of inertia are all different from each other, we say the body
18 an asymmetric top. A good example is a book with different height, width, and breadth
as shown in Figure 8.2.

* Leon, Linear Algebra, 2d ed., Chapter 6.



8.2 THE MOMENT OF INERTIA TENSOR 289

prolate eflipsoid oblate ellipsoid

FIGURE 8.3
The body 3 axis is in the vertical direction for both cases.

A symmetric top has rotational symmetry about one axis. Thisimpliesthat ), = I, # I;
if we choose the 3 axis as the symmetry axis. There are two different kinds of symmetric
tops, as shown in Figure 8.3. A prolate ellipsoid (like a football or an egg) must have
I; < I, = I, with the 3 axis being the long axis of the football. An oblate ellipsoid, on
the other hand, is like the Earth, which is a “squashed” sphere, being flattened at the pole.
In this case, [5 > [, = I;. Of course symmetric tops don’t have to be ellipsoids; they must
only obey the condition that two of the principal moments are equal. A flat disk of almost
zero thickness (like a frisbee) will have I3 & 21,. The 3 axis i1s perpendicular to the surface
of the disk, passing through the center. A baseball bat with a circular cross section will
have its 3 axis along the long dimension of the bat. In this case I, « [} = L. (Try drawing
some pictures and convincing yourself of the truth of these statements.)

An object such as a linear molecule has /3 = 0 (to a good approximation). We call
this type of object a rotator. It has only two rotational degrees of freedom instead of three.

QUESTION 2: Inertia Tensor How do you know that the eigenvalues of the inertia
tensor will be positive? Also, explain the meaning of the moment of inertia tensor in
detail.

Displaced Axis Theorem

The familiar “parallel axis theorem™ is a special case of what we call the “displaced
axis theorem.” It states that, if we know the moment of inertia tensor using the center of
mass as the origin (L.,,), and we wish to know the moment of inertia tensor about an origin
displaced by a, a constant vector, it is given by the formula

I; = Ly + M(a®8,5 — aqap). (8.19)

* The moment of inertia, /,, about an axis parallel to an axis through the center of mass but displaced a
distance a from the center of mass is: I, = f.m + Ma®, where I, is the moment of inertia about the axis
through the center of mass, and M is the mass of the object.
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FIGURE 8.4
The origin is at the center of mass.

QUESTION 3: Displaced Axis Theorem Prove Equation (8.19) from the definition of 1.

= Example

As an example, let’s calculate the moment of inertia tensor for a dumbbell — two
massive spheres M,, M, of different radii a, b respectively, connected by a massless
rod of length R as shown in Figure 8.4. We will set our origin at the center of mass.

When calculating I it is very important to choose a convenient set of axes. Try to
identify the principal axes if you can. Often this involves exploiting the symmetry, If
it 1s not easy to find the principal axis frame, chose the easiest frame you can and then
diagonalize the I obtained.

In our case, choosing an axis to be along the line connecting the masses (call it
the 3 axis) puts us in the principal axis frame. Note that we then have a symmetric
top (/; = I,). Call i, f, k the unit vectors along the 1, 2, 3 axes respectively. For our
coordinate system as shown, M, is at the point 25 k and M, is at the point - k.
The simplest way to calculate the components of { is to first find the moment of inertia
tensor for a sphere and then use the displaced axis theorem.

The moment of inertia tensor for a sphere is most easily calculated in cylindrical
coordinates. For the sphere of radius a (I; = I, = L):

i |
I3 (sphere a) —-f f f or ‘rdrdod:

= Ep]}l‘ﬂ = EMIH (EZ{})

(We have used the fact that M, = jra’p,). Similarly, for the sphere of radius b,
D, cpheret) = § Mab”.
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To find the I for the dumbbell, we make use of the displaced axis theorem (8.19):

f1=f2
2 MR \* 2 MR \*
= “Ma*+ M ) ~M,b? M(———-——) 8.21
ghha+ I(M1+Mz M M o, (821
2
I = %Mlﬂz - EM;:I?:. (8.22)

Once we know I for the principal axis frame, we can find it for any other frame by
transforming I using (8.14). For example, to find I' for a set of axes rotated an angle ¢
from the 1 axis, we need the U matrix:

1 0 0
U=}]0 cosé sind |. (8.23)

0 -—sin@ cos#
Performing the matrix multiplication yields (I} = I5)

I 0 0
I'=10 /cos’0+ Lsin*é sinfcosb(lz—1)}. (8.23)
0 sinfcos@(l— 1) [ sin*8+ lcos?d

8.3 ANGULAR MOMENTUM OF A RIGID BODY

It is very useful to talk about the “intrinsic” angular momentum of a rigid body,
which is the angular momentum it has if the center of mass is at rest. This is usually what
we will mean when we talk about the angular momentum. In general, the total angular
momentum will depend on our choice of origin, but using the center of mass as the origin
simplifies the formulas just as it did for the kinetic energy.”

First we want to prove that it is the inertia tensor that connects intrinsic angular mo-
mentum with angular velocity. By the definition of the total angular momentum

fqmal = Z:Fi * f’i = sz{F.’ X U;). (8.24)

Again use body coordinates with the center of mass as the origin (see Figure 8.1):
Filspace = R + Filbody- (8.25)
From (8.2)

R. (8.26)

Eiisp&m =V t+wXx Fﬂb.nd}r, Vem

* We will use L to denote the angular momentum. This is not to be confused with the scalar L, the Lagrangian.
L refers to the column matrix listing the coordinates of L in a specific coordinate system.
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We calculate (again dropping the reference to the body frame)
Low =R x P+ Y mif; x (@ x F;) (8.27)

(P = MV ). Since the center of mass is the origin, 3. m;7; = 0. Use this fact to prove
for yourself that inserting (8.25) and (8.26) into (8.24) gives (8.27). We can write (8.27) as

Ltotal = Lem + Lot (8.28)

The second term is the intrinsic angular momentum due to the rotation of the body; the
first term {_l'_.,:,,.1 = R x P)isthe angular momentum due to the motion of the center of mass.
From now on, the intrinsic (rotational) angular momentum will be called L. Usually there
is no possibility of confusing this with the total angular momentum. Reducing the double
cross product with standard vector identities (8.8) we get

L=Lu=Y m(r}d—(@ F)F) =) lpws. (8.29)
i #
In the compact matrix notation we have
or
Low =RxP+1 w. (8.31)
Lem Lo

Thus the magnitude of Lis proportional to the magnitude of w. In some special cases
L and @ are also aligned with each other. For example, a uniformly dense sphere has I, =
I, = I;. Any coordinate orientation can be chosen as a principal axis system due to the de-
generacy in the eigenvalues of I. I will be proportional to the identity matrix, giving perfect
alignment between the intrinsic angular momentum and the instantaneous angular velocity.

8.4  THE EULER EQUATIONS FOR FORCE-FREE RIGID BODY MOTION

We will next study the motion of an arbitrary rigid body not subjected to any

torques,” which means by definition that
dL
= (), 8.32
a1 ( )

The total angular momentum with respect to the center of mass is a constant of the motion.
However, this does not imply that the angular velocity @ is constant. The easiest way to
treat the motion of the angular velocity is to use the principal axis coordinate system, which

* There can be forces on it, if they act through the center of mass, but these don't exert torques.
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15 a body coordinate system. Since Lisa vector, from (7.31)

dL .
=0=— + @ x L. (8.33)
dr {poay

di
dt

space
In terms of the principal axis body coordinate system, using (8.30),

f|l‘ll1

Loty = | 120r | (8.34)

EYOR

Write out the three equations obtained from the two formulas above (£ = £ ]m here):

dw
I .Eti = wily — oLy = wan(lz — 1),
day,
I el wy Ly — w3l = wyan(ly — 1)), (8.35)
d
33-5—3 = wyl) — wyly = wyan(l, — h).
Euler’s equations

QUESTION 4: Angular Velocity 1 Why aren’t wy, ay, w3 = 0 in the body frame? That
is, in the body frame we are rotating at angular velocity @, so how can we observe it?
Explain what exactly is meant by @y, w, .

QUESTION 5: Angular Velocity 2 The Euler equations (8.35) are with respect to what
frame? Space or body? What is the difference between w as expressed in the space or

body frame anyway? Finally, explain how we obtained (8.35) from (8.33) and (8.34).

Equations (8.35) are known as Euler’s equations. In the case of a spherically symmet-
rical body, Euler’s equations imply that @ is also constant. The body can rotate at a constant
rotational velocity about a fixed axis. We will discuss a symmetrictopwith ) = L % 5
next. An asymmetric top has none of the moments of inertia I, I, I3 equal to each other.
The motion can be rather complicated. We will solve this problem in Section 8.9.

8.5 MOTION OF A TORQUE-FREE SYMMETRIC TOP

What is the most genera) motion possible for a torque-free symmetric top?
Begin by assuming that the top spins* around the 3 axis with a constant angular velocity
of 2 radians per second. We also assume the top is tilted at an angle 6 from the vertical

* In physics, the term “spin” usually refers to angular momentum. Here we use it in a less technical sense
to mean rotational angular velocity about a principal axis.
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FIGURE 8.5
Body and space coordinate system
for the symmetric top.

direction. Define the space Z’ axis to be along the angular momentum L. The magnitude
of L will be defined by the symbol L = IL|. Taking a “snapshot” in time, also define the
Y’ space axis to be in the plane momentarily defined by the 3 axis of the top and the Z’
axis (see Figure 8.5).

For a symmetric top, having I, = [, means we can choose the 1 and 2 principal axes to
be in any two orthogonal directions in the plane perpendicuiar to the 3 axis. We will take
advantage of this freedom, and rotate the body coordinate system in this instant in time so
that the 1 axis points out of the paper and the 2 axis lies in the space Z'Y’ plane as shown
in Figure 8.5. Then if k' is a unit vector along the Z' space axis, and j, k are unit vectors
along the 2 and 3 body axes, momentarily,

-3

k = cos@k —sinf]. (8.36)

Because the top has no torques acting on it, T and L are fixed constants of the motion.
Consistency of the equations we will derive will reveal that & can be taken as constant as
well. This tilt angle of the top, 6, and the instantaneous direction and magnitude of the
angular velocity, w, as well as €2, will be determined from T and L. Finally, we will give
a unified physical picture of the motion.

Part of the contribution to the total angular velocity o is due to the spin around the body
3 axis, Q k. This part contributes, after matrix multiplication with I, an angular momentum
I;Q2k. At the instant of time pictured in Figure 8.6, I3Qk lies in the Z'Y’ plane of the
space frame. The vector difference between the total angular momentum L = Lk and
[ k must result from matrix multiplying of the inertia tensor by an additional angular
velocity, wp as shown in Figure 8.6A.

By the definition of wp as the “missing piece” of the angular velocity (shown in
Figure 8.6B):

® = Sk + dp. (8.37)

Since wp does not lie along a principal axis, matrix multiplying it by I to get the missing
piece of the angular momentum will give a vector that does not lie in the same direction as
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FIGURE 8.6
Comparison of vector diagrams. A) Angular momen-
tum, B) Angular velocity.

wp. First write @p in terms of its body coordinates:
@p = wp, 1 + wpy ] +wpsk. (8.38)
Now calculate the missing part of the angular momentum. Since L. = lw:
lwp = ljwp; = hiwe 7 +wps J) + haws k= Lk — L,Qk, (8.39)

where we have used the fact that I, = [,. From Figure 8.5, we see that the “missing”
angular momentum must lie in the Z'Y’ plane, which is also momentarily the 23 plane.
Since { is not in this plane, wp; = 0. We have shown that @p, and therefore @, lie in the
plane defined by the top axis and the vertical direction in space.

Now we come to the key point of the analysis. Calculate the kinetic energy 7 = j@lw.
By projecting the components of the angular momentum onto the body coordinates, it can
be shown that

T = f[ﬂ)% + f;fﬂi =

2 s 2 2
L [sm 8 cos H]‘ (8.40)

2

Since I, # I, the kinetic energy is dependent on #. Since the rotational Kinetic energy
is constant, this proves that the top motion cannot change the angle & between the top 3
axis and the angular momentum. Constant # implies that wp y- = 0, since otherwise the
top would precess about the Y’ axis, causing @ to change. There could still be a rotation
(“precession”) of the top 3 axis about the Z' axis (i.e., wp z2 # 0). No inconsistency with
the requirement that  be constant arises, because a rotation of the top spin axis about the
Z' axis leaves 8 unchanged. The direction and magnitude of @ are specified completely
by the need to match the total angular momentum, a precondition, and the need to have a
constant precession of the top axis around the Z' axis.

Equation (8.40) shows that it is possible to calculate 8 = 6(L, T') as a function of these
constants of the motion. A symmetry axis has no “vector” direction associated with it.
This means that we can define cos @ to be positive (i.e., 8 < 90°), removing the ambiguity
in the sign of cos @ as determined from Equation (8.40).
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We can find the precession rate |wp| and the tilt angle 8 as functions of L and Q, by
separately equating components in (8.39) using the trigonometric relation (8.36):

Lcost = I3(52 + wp3),

(8.41)
—~Lsinf = hwp\z.
Solving (8.41) for the components of @p in the body frame, we obtain
L . L
wp) =0, wpr= T sinf, wps= -I—cnsﬂ - Q. (8.42)
| 3

To gain some insight, let us now express wp in the space frame. We again use trigono-
metric relations between the two coordinate systems:

k = cosfk +sin®), j=cosBf —sinbk. (8.43)

Combining Equations (8.38, 8.42) and (8.43) to get an expression for @p in space coordi-
nates we get

sin“@  cos?6
wp.z = L['q 27 227~ Qcoso, (8.44)
I 13
: 1 1 .
wpy =0 = LsmﬂcusH(T — J’-) — 2siné. (8.45)
3 ]

As we've said, for @ to remain constant, it must be true that wp y» = 0. Assuming
that 6 3 0, 7, we obtain from Equation (8.45) an equation determining £2 as a function of
L, #(L, T) and the constants [,, I5:

1
Q= L(—-—- — l) cosd. (8.46)
I I

The “spin,” €2, is defined to be positive if it lies in the direction of the 43 axis, as
determined by the right-hand rule. Since L. > 0 by definition, the sign of €2 is determined
from Equation (8.46) by whether I3 > I} (2 < 0)or I3 < [, (£ > 0). This leads to two
rather different pictures of the spinning object, depending on whether it is like an oblate or
prolate ellipsoid. The next figure illustrates the cases of positive and of negative £2.

The magnitude of @p is now given by Equation (8.44) being just the Z’ component of
wp. After combining terms using Equation (8.46) in Equation (8.44), we get the final result
for the rate of precession:

. L
wp = |wp| = T (8.47)
|
Equations (8.40, 8.46, 8.47) comprise our main results. They show that the tilt angle
d, the spin €2, and the precession angular velocity wp are constants that are functions of the

moments of inertia and the initial conditions: L, T. The “missing piece” of the angular
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i @ symmetry axis k

FIGURE 8.7

A) Oblate case: I3 > 11 (Q < 0). B) Prolate case: I3 < I} (£ > 0). The axis « precesses in the
space frame at angular velocity @y, about the Z’ axis, and in the body frame at angular velocity €,
about the k axis.

velocity points straight along the fixed Z’ axis. The situation is similar to that of the rolling
ice cream cone discussed at the beginning of Chapter 7. The instantaneous axis of rotation
is, by definition, @. This motion consists of combining two separate but simultaneous
rotations: a “spin” of  radians/second around the symmetry axis and a “precession” of wp
radians/second for the top axis around the Z' space axis. The vector @ must also precess
with an angular velocity of wp around the Z' axis, since the vectors -I:., @, and $2 k must lie
in a common plane. If I; s I, this coplanarity would not exist. We will deal with the more
complicated situation of an asymmetric top (with I, 3£ I, # I3) in Section 8.9.

As the top precesses around the Z' axis, « describes a cone with its axis along the Z'
direction. Because @ is an instantaneous axis of rotation, the top “rolls” around @. Thus
there are two cones: a “space cone” centered on the fixed space axis Z’, which is traced
out by  as time evolves, and a “body cone” centered on the top’s 3 axis. This body cone is
also being traced by the locus of @. The line where both cones intersect is the direction of
@. The moving body cone “rolls” on the fixed space cone. This is shown in Figure 8.7. The
precession rate of @ in the body cone is most easily calculated using the Euler equations.
We will call this rate £2,,. It is the rate that keeps the angular velocity vector coplanar with
the top axis and with L.

Calculating ©2, With the Euler Equations

We can get the same answer using the Euler equations (8.35). However, the view-
point is different. With the Euler equations we work in body coordinates. The “view from
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the body™ must be physically equivalent to what was done above. The main difference is
that we do not take a “snapshot,” but rather work with the actual time dependence of @
in body coordinates, w;, @,, w;. The third equation in (8.35) says that «s, the projection
of @ on the 3 axis, is constant since /; = I,. Rewriting the first two Euler equations after
dividing through by I, = I,, we get (defining the constant angular velocity £2,)

i
Q= s (T - 1) , (8.48)
1
dan dw;

Combine these equations to obtain uncoupled second-order differential equations

dzml 2 dlwg
dr? + o =0, dr?

+ Qw, = 0. (8.50)

The solution to these equations is
wy; = Asin(Q,t +¢), @ = Acos(82,t + ¢), (8.51)

where A and ¢ are (so far) arbitrary constants. Since w, and w, are nonzero, uniform
precession occurs about the 3 axis. The components of @ perpendicular to the 3 axis
precess at a uniform rate 2, as we saw earlier. Making w; = 0 to be consistent with our
earlier derivation, if we define ¢ = 0 to be the moment of the “snapshot,” we must choose
¢ = 0. As a test of understanding, we will ask the reader to find the value of the constant
A in Equation (8.51) from this information.

What we have here is a description of the motion in a moving reference frame (body
frame). We've now solved the torque-free symmetric top problem in two quite different
ways. Do these solutions agree?

In summary, the motion can be pictured in terms of two cones rolling on each other. It
is the most general kind of motion possible if no torque is exerted on the top. The vector
@ lies at the common intersection of the body and space cones, which are tangent to each
other. From the point of view of an observer fixed in the body, the vector @ is precessing
around the body with angular velocity £2,. In space, @ precesses around the Z’ axis with
angular velocity wp. For the case I; > I, (Figure 8.7A), the body cone encloses the space
cone and rolls around it, whereas if I3 < I, (Figure 8.7B), the space cone lies outside the
body cone. Visualizing this motion made use of the fact that an angular velocity is at once
both a vector and an instantaneous axis of rotation.

A common example of the motion of a torque-free symmetric top is the “wobble” of
a spinning football thrown in a forward pass. If the football is thrown so that the angular
momentum is slightly off the long axis, the football axis will precess around the fixed
direction of the angular momentum at a rate given by Equation (8.47). The center of mass
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motion is completely independent of the rotational motion and follows a parabolic path
just as if the football were a point mass located at the center of mass. Proving this is the
subject of a homework problem.

QUESTION &: Symmetric Top | Explain the motion of the symmetric top in the space
frame in your own words. Include how the motion will change it the initial value of &
changes. For example, what will it look like if 8 =07 8 = 7 /27

QUESTION 7: Symmetric Top 2 Explain the motion of @ in the body frame. Think
about how the motion in the body frame relates to the motion in the space frame.
Explain why the two derivations are consistent only for a certain value of the constant
A in Equation (8.51) and determine this value.

QUESTION 8: An Apparent Paradox For the torque-free symmetric top we discussed
above, the angular momentum L must be constant. Since the inertia tensor possesses
an inverse, I"', and L = lw, it must be true that w = I"'L. If the inertia tensor (and
its inverse) and L are constants, @ must also be constant. But we have just finished
showing that the angular velocity precesses in space and hence is not a constant vector.
Where does the fallacy lie in this argument?

8.6  FORCE-FREE PRECESSION OF THE EARTH:
THE “CHANDLER WOBBLE"

The Earth bulges at the equator. It is an oblate ellipsoid, rather than a perfect
sphere. This bulge is caused by the rotation of the Earth. It was first estimated by Isaac
Newton. His calculation is discussed in more detail in Appendix C at the end of this
chapter,

Because it is not a perfect sphere, the Earth has (orques exerted on it by the Sun, the
Moon, and the other planets. These torques lead to interesting effects on both the Earth’s
spin axis and on the orbit, which have periods measured in many thousands of years, We
will discuss this in Section 8.11. In addition, there is a small precession, which has a much
shorter period than these effects. To study this “fast wobble™ of the Earth’s axis, we can
consider the Earth (to a very good approximation) as a symmetric top. If we call the 3 axis
the axis through the North Pole (see Figure 8.8), wy = 7.3 x 1073 s, and

I, — L 1
f| 00 305.8 ( )
This means that (from (8.48))
&3
Q= Qearipy & ———. 8.53
P Mt ™ 305.8 (8.33)

Knowing that the Earth spins on its axis once per day, in 1749 Euler predicted from
Equation 8.53 that the precession period due to this effect is 306 days. For 140 vyears,
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FIGURE 8.8

astronomers tried in vain to observe it. In 1891 an amateur astronomer, S. Chandler, used
existing data previously analyzed by others to prove that the spin axis does “wobble,” with
a maximum excursion of about 10 meters around the Earth’s principal axis. The effect
had been missed because the period was 427 days, rather than the predicted 306 days. It
was then realized that the discrepancy in the period is due to the fact that the Earth is not
a perfect rigid body, but instead is deformed due to the tides. This lengthens the predicted
period by about 100 days, giving reasonable agreement with observation. Another mystery
soon arose, however. The calculated damping period is 10-20 years, but little damping has
been observed over what is now a 100-year period of study. This is still not guantitatively
understood. The role of earthquakes deep within the Earth seems the best candidate for an
explanation at the present time. The recent rather sensational discovery that the liquid iron
inner core of the Earth rotates at a different speed than the outer mantle may also lead to
speculation that this motion deep inside the Earth drives the “Chandier wobble.”

8.7  DEFINITION OF EULER ANGLES

Knowledge of the U matnx, (7.15), allows you to convert from body to space
coordinates for any physical point:

r'(space coordinates) = Ur(body coordinates) (8.54)

Or vice versa
r(body coordinates) = l_Ir'{spar:a: coordinates) (8.59)

(U = U™"). We observed previously that U must be a function of three parameters. We
now want to make this dependence explicit and find the actual form of U in terms of three
parameters called the Euler angles: 6, ¢, .
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FIGURE 8.9

Having an explicit form for U and thus U will allow you to write down the kinetic energy
and Lagrangian for any rigid body in terms of the time derivatives of the Euler angles. This
approach will be used to solve the classic problem of the heavy symmetrical top.

Imagine that the space coordinate system, X'Y’'Z’, is initially aligned with the body
coordinate system, X Y Z. Imagine a sequence of three rotations acting on the body coordi-
nates which finally convert this coordinate system into one that has an arbitrary orientation
with respect to the space coordinates, which remain fixed. Start with the two coordinate
systems lined up, so that X' = K.

Step 1: Rotate the body system by an angle ¢ about the Z axis as shown in the U, part
of Figure 8.9, Call the new body coordinates generated in this way &, 7, £.
The U, matrix is

cos¢g sing O

=

Ui(¢)= | —sing cosgp 0], (8.56)
0 0 1

3 r

nl=01r]. (8.57)

¢ ry

For example, the vectorr; = 1,r; =0,r; =0is§ =cos¢, n = —sing, { =
0 in the first body system.

Step 2: Next, rotate this body system through angle # about the £ axis (new X axis)
as shown in the U, part of Figure 8.9:

1 0 0
U,0)=|0 cosé sind |, (8.58)
0 —sinf® cosH
3 §
71 =07 (8.59)
g g



302 CHAPTER 8 THE DYNAMICS OF RIGID BODIES

Step 3: Lastly, rotate the body system through an angle 4 about the ¢’ axis (new Z
axis) as shown in the U, part of Figure 8.9:

cosyr sy O

Us(y) = | —siny cosv O}, (8.60)
0 0 1

r &'

nli=0U{rn1}. (8.61)

LK ¢’

The coordinates ry, ry, r3 are the new body system coordinates in K. From
(8.54),

U=0,0,0,, U=Vy,U,U,. (8.62)

Multiply the matrices above in the order indicated to obtain

U=

cosrcosgh — cosf@singsiny  —sinWcos¢g —cosfsinggcosy  siné sing
. | (8.63)

cosysing +cosfcosgsiny —singsiny + cosfcosgcosy ~—sinfcosg
sin & sin siné cos cos

(The complexity of U is somewhat daunting. It is fairly easy to check this
form using computer algebra.)

QUESTION 9: Euler Angles 1 Explain the meaning of Euler Angles (what they are
explicitly, what they can be used for, how they are obtained, if the order of operations
matter, etc.). Why can you always find Euler angles to describe any kind of rotation?

Figure 8.10 summarizes the operations shown in 8.9,

Physical Interpretation of the Eigenvalues and Eigenvectors of U

Any orthogonal transformation such as U can be represented as a rotation through
an angle about an axis which is left unchanged by U (this will be proved in a homework
problem). This means that U must have an eigenvalue equal to 1. The eigenvector for the
unit eigenvalue gives the direction of the axis of rotation.

Define the angle of rotation about this axis as ¢. How do we find ®? It is a function
of the three Euler angles. If we transform to a new coordinate system where this axis of
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FIGURE 8.10
Definition of Euler angles.

rotation is the new Z axis, the transformed U will take the form of a rotation ® about this
new Z axis:

cos® sind 0
U=CUC=]| -sin® cosd 0]. (8.64)
0 0 1

(C is the orthogonal matrix that effects the coordinate change making the rotation axis the
“Z" axis.) We can use the fact that the trace of a matrix (sum of the diagonal elements) is
invariant under a change of coordinates:

Trace [U'] = Trace [CUC] = Trace [U]. (8.65)
This allows us to find an equation for ® in terms of 8, ¥, ¢ (using (8.63)):
Trace [U] = 1 4+ 2cos @ = Trace [U] = cos @ + cos (¢ + ¥ )(1 + cos ). (8.66)

A trigonometric identity has been used to simplify the expression for Trace [U]. Further
use of trigonometric identities reveals a simple expression for ¢:

LA b+ Y @
COS (-2—) = COS ( 5 )cns (E) . (8.67)
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8.8  FINDING THE ANGULAR VELOCITY

It was shown previously that the angular velocity in space coordinates can be read
off from the elements of the antisymmetric matrix A" = UU (7.27). In body coordinates.
we showed that the same angular velocity can be found by looking at A = UU. Itis a
completely straightforward calculation, which can be done using computer algebra.

The result is (note that the body coordinates are chosen in the principal axis frame):

in body coordinates:

6 cos Y + ¢ sin ¢ siné (8.68)

~0siny + ¢ cos Y sin6 | ;
¥ + ¢ cosé

@

in space coordinates:

6 cos¢ + ¥ sing siné (8.69)

@=|6sing — Y cosgsiné
o + ycoso

There is a less mathematical and more physical way to obtain the components of the
angular velocity in terms of the Euler angle time derivatives and the Euler angles. Referring
to Figure 8.10, we see that the angular velocity component proportional to @ lies along the
line of nodes. Calling the body axes 1, 2, 3, this contribution to the angular velocity has the
components (6 cos ¥, —@ sin ¥r, 0) in the body system. The angular velocity for ¢ lies along
the Z’ axis, so has the body components (¢ sin 6 sin yr, ¢ sin 6 cos ¥, ¢ cos #). (Convince
yourself this is true.) Finally, the angular velocity due to ¥ lies along the 3 axis so had
the components (0, 0, 1). Putting this all together, we have the components of the most
general angular velocity in the body system. Check that this agrees with formula (8.68).

@ Is Not an Integrable Function

Suppose that @ were the total time derivative of a function A8, ¥, ¢). Using the
form given in the previous section for the space coordinate form of @ (8.69), the total time
derivative of the X’ coordinate of w is, for example,

dA dA dA, .  dA, . .
o L 26 . “dh =06co sing sind. 8.70
Wy = — 59 +M1!f+ 3¢¢ cos ¢ + Y sing (8.70)
Therefore
A
3 : =C{}E¢.
a3 (8.71)
* = sin¢sin6.

E2
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If we calculate m = m from either formula, we must get the same answer. The top
formula gives zero, but the second formula gives something that doesn’t always vanish. Soit
cannot be true that & is the total time derivative of something. @ is a nonintegrable function
of the Euler angles and their time derivatives. The nonintegrability is a consequence of the

fact that 3-D rotations do not commute.

The Kinetic Energy of Rotation for a Symmetric Top

The results above can be used to solve nontrivial rigid body problems, such as
a heavy symmetrical top with one point fixed. First use the expression for @ in body
coordinates (8.68) to get the kinetic energy* for the top in terms of Euler angles and their
time derivatives:

T = ';1 [@f + &3] + -{-mg (8.72)

(Note that the body coordinates chosen here will be in the principle axis frame,and [, = [,
for a symmetric top.) After some cancellations and invoking a few trigonometric identities,
we find that

= %{é‘l 4+ ¢ sin?9) + %(1,& + ¢ cos ). (8.73)

symmetric top

This is a universal expression for the kinetic energy of any symmetric top.

QUESTION 10: Kinefic Energy Find the kinetic energy (in the space frame) of an
asymmetric top, with I, # I # I, using body coordinates.

8.9 MOTION OF TORQUE-FREE ASYMMETRIC TOPS:
POINSOT CONSTRUCTION

A top’s motion is controlied by the fact that both the angular momentum L and the
kinetic energy T are constants of the motion. We can watch the top move, following the
change with time in the orientation of the principal axes for one particular choice of these
constants. By changing L and T, we can also observe how the nature of the top’s motion
depends on these values. L and T can be treated as independent variables within certain
limits, to be described below.

* In the space (inertial) frame, of course. We can use (8.10) in any coordinate system to get the kinetic
energy in the space frame.
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Once again we consider a body system attached to the top and aligned with the principal
axes. In that system, the Kinetic energy takes the form

1

T = E(h&lf -+ I;w% + I3m§)i {8?4)

It is no restriction to assume /; < /; < 3. Inthe same principal axis system of coordinates,
the angular velocity @ has the components w = (wy, a1, @3).

Although the magnitude of L can be specified independently of T, the moment of
ineértia tensor sets a limited range for L, which depends on T. For a fixed T, the smallest
possible L occurs for the top rotating about the 1 axis, which has the smallest principal
moment. Conversely, the largest value of L occurs for the top rotating about the 3 axis,
We can say then that the physical top can only have L values as indicated by the equation
below:

Lpin =+v2T1, <L < /2T 1 = L. (8.75)

We are interested in varying the initial condition of L while keeping the initial condition
T constant. Then we will look at how the angular velocity evolves as a function of time
for each different L using L. = Iw, given the constraint that the kinetic energy is always
constant, This can be done using a geometric method first invented by Poinsot.* By using
it we can visualize the rather complicated motion of an asymmetric top without solving
the actual equations for the motion.

Angular velocity space is the three-dimensional space of possible values of the com-
ponents of w. If the kinetic energy is assigned the constant value T, this constraint means
that the motion must take place on a surface in the @ space. The surface is an ellipsoid,
called the “inertia ellipsoid” or sometimes the “momental ellipsoid.” It suffices to prove
that the locus of the angular velocity does lie on this type of surface in the body coordinate
system, since in the space system we view the same surface from a coordinate system that
has only a different orientation.

The equation of an ellipsoid is

w @
5+ 2+:-:
a- b c

=1, (8.76)

where a, b, and ¢ are constants, taken by convention to be positive. They are the semi-axes
of the ellipsoid. By comparing Equation (8.74) with Equation (8.76), we see that constant
kinetic energy does require that the surface containing the tip of @ be an ellipsoid with

semi-axes
2T 2T 2T
s e b=: = —_— e E'??
=V VEh TV (8.77)

* L. Poinsot, Théorie Nouvelle de la Rotation des Corps, Paris, Bachelier, 1851.
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We emphasize that the ellipsoid is not in real space but in the space of the angular velocity —
the instantaneous direction and magnitude of rotation of the top.

Let the angular velocity vector @ point to an arbitrary point on this surface. What is
the angular momentum for this direction and magnitude of @? It is the main point of the
Poinsot method that the angular momentum can be found by taking the gradient V,, of the
kinetic energy with respect to @:

L=V,T. (8.78)
In ordinary 3-D space, the gradient of a function F(x, vy, z) is a vector, denoted VE. If
the surface F(x, vy, z) is a constant, VEF points along the normal to the surface at the point
(x, v, 2), because the gradient vector always points along the direction of maximum change
of the function F at the point where it is evaluated.” In mechanics, the force is minus the
gradient of the potential energy function (1.55). The direction of the force is always
orthogonal to the curves of constant potential energy due to this mathematical property of
the gradient operator.
In any coordinate system, the gradient in angular velocity space is found in an analogous
way to the gradient in ordinary space,

- 3 9 9
vV, = , ‘ 8.79
“ (au.-l dw, ﬂwz) (8.79)

We will give a proof of (8.78) that does not make any reference to a specific coordinate
system. It makes extensive use of the summation convention for the coordinate indices
introduced in Chapter 7. In what appears below, i, j, k all stand for arbitrary vector indices:
x,y,zorl,2 3. The symbol 4;; stands for the Kronecker delta. By definition &;; = 1 if
i=jand§; =0ifi # j. From (8.13),

l
I = Eiﬂ.‘ f,’jiﬂj. {8*30}

Take the partial derivative of T with respect to w,, making use of the identity % = 8

aT 1 1 1 1

m — Eﬂ_jk fﬂ'ﬂ}j + El‘lﬂ; f,-jﬂj_;_. = Ef,tjmj + Em,-!,-k. {EEI)
Since i, j in Equation (8.81) are dummy indices to be summed over, rename i to j in the
last part of Equation (8.81) and make use of the symmetry of the inertia tensor ({;; = I;)

1o wrnte

aT
a—&h = fijwj = I—-i- {382)

Thus (8.78) 1s proved.

* For areview of the general mathematical properties of the gradient vector, see Kaplan, Advanced Calculus,
3rd ed., 1984, p. 183 or an equivalent mathematics textbook.
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Invariable Plane

FIGURE 8.11
Poinsot construction,

QUESTION 11: Proof in Body Coordinates Prove (8.78), using the principal body sys-
tem. It is considerably simpler than our proof above. Is your proof using the principal
body system valid for any frame? Why?

From (8.78), L is normal to the surface of constant T at the point @. The plane normal
to L is called the invariable plane. Since L is constant, so is this plane. Figure 8.11 shows
@ and L at a particular moment in time. The motion of the top must therefore be such that
the ellipsoid rolls on the invariable plane, keeping this plane always tangent to the ellipsoid
at the point .

The rolling motion of the top means that the point of contact where the ellipsoid is
tangent to the plane traces out two curves — one on the inertia ellipsoid itself and the other
on the invariable plane. The curve left on the ellipsoid surface is called the polhode and
the curve on the planar surface is called the herpolhode.

QUESTION 12: Constant Angulor Momentum We have been emphasizing that the angu-
lar momentum is constant as time progresses. But we are now noting that the angular
momentum vector traces out the polhode and herpolhode curves. In what sense is the
angular momentum constant”

A good description of this motion is by E. T. Whattaker:*

It follows that the body moves as if it were rigidly connected to its momental ellipsoid,
and the latter body were to roll about the fixed point on a fixed plane perpendicular to
the invariable line, without sliding; the angular velocity being proportional to the radius
to the point of contact, so that the component of angular velocity about the invariable
line is constant,

* E. T. Whittaker, A Treatise on the Analvtical Dvnamics of Particles and Rigid Bodies, 4th ed., Cambridge
University Press, 1959, p. 153.
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By “invariable line,” Whittaker means L. He asserts that the projection of the angular
velocity onto the angular momentum is constant during the motion. This means that the
height of the center of the ellipsoid, which is tangent to the plane, 1s a fixed constant. Let’s
prove this statement is true and find this height, which we will call 2. From (8.13),

- L = &lw = 2T. (8.83)
Therefore
@-L 2T
h = = . 8.84
3 T ( )

Since T and L are constants, so is &. This completes the qualitative picture of the motion.
Everything in the geometric picture can be deduced from knowing A and the shape of the
ellipsoid (i.e., the values of a, b, ¢, the semi-axes of the ellipsoid defined in Equation (8.77)).
Where the plane touches the ellipsoid, draw the polhode on the body-oriented ellipsoid
and the herpolhode on the invariable space plane in Figure 8.11 as they would appear after
an interval of time has elapsed. Notice that the origin remains at a fixed height above the
plane due to Equation (8.84), although the magnitude and direction of @ are changing.

Poinsot is said to have been revolting against the insistence of Lagrange on purely
analytic solutions. Here we will mount a small counter revolution to obtain analytic forms
for the curves traced out by the tip of the axis of revolution — the angular velocity vector,
(Obtaining the time dependence is much more difficult. The solution involves elliptic
integrals.)

Figure8.12assumesf; =1, b =2, 1, =3, T = l,and L,y = v2 < L < v6 =L s.
Notice that the ellipsoid is longest in the direction of the lowest principal moment, /;. The
first step will be to adopt a set of elliptical polar coordinates in the body system that will

FIGURE B.12

Poinsot construction: Inertia ellipsoid tangent to
invariable plane. The positive end of the principal
axes is indicated by the number of the axis near to
it. The 3 axis is thickest; the 1 axis, the thinnest,
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allow us to roam freely over the surface of the ellipsoid. We call the polar angle in this
system u and the azimuthal angle v. The coordinates of an arbitrary point on the surface
of the ellipsoid are

W, =dsinucosy, @ =>bsinusinv, w;=CCOSH. (8.85)

You can easily check that this parametrization with u, v takes the tip of w(u, v) over the
ellipsoid surface.

The second step, which was used to construct Figure 8.12 is to use the U(¢, 8, ¢)
matrix connecting body and space axes to obtain a relationship between u, v and 8, ¥. In
body coordinates, the angular momentum 1s (/yw;, lhws, [3¢33). In space coordinates it 1s
(0, 0, ~L). We can express the relation between body and space frames in the usual way
as

I[m], 0
1'3&.1'3 -L

The ellipsoid is centered at a distance of h = 2~ above the invariable plane in the space
coordinate system. We not only have to make the correct rotation to satisfy (8.86), but we
have to move the center up by 4. Some thought should convince you that this will achieve
the desired tangency for the ellipsoid and the plane, as well as locate the ellipsoid center
in the right place.

To find the correct Euler angles in U (see Equation (8.63)), multiply both sides of
Equation (8.86) by U, using (8.85) for @. You then obtain three equations in three unknown

angles ¢, 9, Y:
. f Lz
SINWCOS VY = — mmnﬂsmw,
]

LI
sinu sinv = + ﬂ sin @ cos ¢, (8.87)
LE
COSH = — 3T, cosb.

Notice that ¢ does not appear, since we can rotate freely around the Z, Z' axis without
changing the tangent condition, and we obtain a connection between u, v and 8, . Be-
cause there are three Equations (8.87) and only two variables €, ¥, there is a functional
relationship between 6 and y which must be satisfied at all times. After squaring and
adding the three Equations (8.87), we discover that

2T  cos*#d cos’ ¢ sin® ,
in” 6. 88
T A + ( n + 7 ) sin (8.88)
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Solving Equation (8.88) for sin” 6, we obtain

2T 1
g) -1
Chre

sin® A(yr) = (8.89)

Equation (8.89) is the connection between € and y we seek. Taking ¢ as the inde-
pendent variable, the ellipsoid will roll on the invariable plane as ¥ is varied. Notice that,
because € is a polar angle, it only varies between 0 and 7, so that sin € is always positive.
However, there are two solutions for cos @ = ++/1 — sin” 6. Thus, owing to the reflection
symmetry between positive and negative axes of the ellipsoid, two possibilities exist for
the polhode. If we fail to remember this, we will encounter rather mysterious results as
the angular momentum is varied for a constant value of the kinetic energy.

We can see from (8.89) that # will be a constant if [; = >, as with a symmetric top.
The polhode and the herpolhode will both be circles. This is the circular motion of the
angular velocity as viewed from both space and body cones, which we discussed earlier in
Figure 8.7. (The polhode is the locus of the tip of & on the body cone; the herpoihode the
locus of the same point on the space cone.)

There may be restrictions on the possible values of y that are allowed in order that
0 < sin*# < 1. We investigate this possibility next. sin“# < 0 would correspond to
L > /2T I = Ly This case is already forbidden by our previous limit on L. The other
forbidden case of sin’# > 1 would occur if [m-;;'f'- + ’i—";:i} < EL—'T This could happen for
certain values of v when L* < 2T [,. So we must restrict ¥ so that this does not occur for
L < L. where

Leir = V2T L. (8.90)

If we start the top rotating around its 2 axis, L? = 27T /;.

Set (8.89) equal to 1 to find the possible limits on v for a given fixed value of L for
Lmin < L < L. Using half-angle trigonometric formulas, the special limiting value of
¥ = v 15 given by the solution (if one exists) to the equation

+ nd
cos 2y, = L= L (8.91)

In the event L;i;, < L < L., there are two curves. For one of them, ¢y < < m — .
For the otherone m + Yy < ¥ < 2m — Y. Yp 18 a solution to (8.91), while ¥ 1s used
as the independent variable to parameterize the two curves, using Equation (8.89) to solve
for (1) and then Equations (8.87) to actually trace the curves.

The actual surface of the rolling ellipsoid isn’t shown in Figure 8. 13 because it would be
difficult to see the curves (superimpose Figure 8.12 for the more complete picture). We have
elected 10 show both polhodes, but only one of them corresponds to the actual motion for a
given set of initial conditions of the top. Only the bottom curve has a tangent to the invariable
plane in the figures. The herpolhode is also not shown in the figures to keep them simple.



312 CHAPTER 8 THE DYNAMICS OF RIGID BODIES
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FIGURE 8.13
Polhodes for an asymmetric top of varying L, where
Ly = 2.0.

What are the limiting cases? For L — L, the body rotates around the 3 axis. For
L. — Lq. the body rotates around the 1 axis. In both cases, the polhode and the herpolhode
shrink to points. These are degenerate cases.

For L < L (L < 2 in Figure 8.13), there are two disjoint polhode curves, both of
which enclose the 1 axis. Of course, the actual motion of the top must select which of the
two possible curves it is following. For L = L (L = 2 in Figure 8.13), the two curves
cross on the 2 axis. But physically, an intersection is impossible. This is a singular case,
Because of this crossing or “bifurcation,” a top rotating about a principal axis corresponding
to the intermediate moment of inertia, /5, is unstable. The top does not “know” which curve
to follow from the singular crossing point. Itis like an upside-down pendulum being unable
to “decide” whether to fall to the left or to the right. For L > L (L > 2 in Figure 8.13),
the two possible polhode curves enclose the 3 axis.

Our goal of a geometric and analytic description of the general motion of a torque-
free asymmetric top has thus been achieved, at least for the shape of the orbit followed
by the top. Motion about the 1 or the 3 axis is stable. The 2 axis is unstable, because
if w(t = 0) = (0, w,, 0) + €, with € having arbitrarily small components in the 1 and 3
directions, the motion will rapidly move away from the 2 axis. The mathematics required
to do this is not difficult and is left as a homework exercise.
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8.5 " line of nodes

FIGURE 8.14

8.10 THE HEAVY SYMMETRIC TOP

A symmetric top can be mounted so that gravity exerts a torque on it as shown in
Figure 8.14. If the fixed point of the top is a distance [ from the center of mass, and the
top 1s tilted from the vertical (Z') axis by an angle #, there will be a torque mgl sin 8, so
the angular momentum need not remain constant. The motion this causes can be rather
complex. We will see that uniform precession of the top axis rarely occurs.
The total potential energy is given by summing the potential energy of all of the points
in the body:

V=gY mz =Mgzm= Mglcosh. (8.92)

Taking the kinetic energy as (8.73), the Lagrangian is

I ] |
L= —21(93 + ¢ sin0) + %{-ﬁ + dcosf)? — Mgl coso. (8.93)

There are three degrees of freedom. Notice right away that v, ¢ are both ignorable coor-
dinates, so it is possible to reduce the problem to one degree of freedom, since py, py will
be constants of the motion:

al . .
Py = PV = LY + ¢ cos8) = Lw,. (8.94)

The total angular velocity about the symmetry axis, by definition w; — the “spin™ of the
top, is thus a constant. (Notice that w; depends on both ¥ and ¢ from (8.68).) Use the
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notation
!
o= 222 (8.95)
I
to define the constant a. Also,
oL . C
Po =37 = I,¢sin® @ + Ii(y + ¢ cos @) cosb. (8.96)
Define the constant b by
b= L2, 8.97)
I

Since the kinetic energy is a quadratic form in ¢, 8, ¥, H = E. Thus the total energy
E = T + V is constant;

I +
E = 5'-{9’ + ¢ sin’6) + i;ia@ + Mgl cosb. (8.98)

Using (8.94) and (8.97), we can obtain

. b~acost
=" (8.99)
Define another constant:
[
E' =E - —Zim-;-. (8.100)

Substituting (8.99) and (8.100) into (8.98) gives a new constant:

fy » 1 (b—acosé)
E'=—6 4+ — + Mgl cos@ . 8.101
2 2 sin’# § . { }
__""'r
L —

Solution of the One-dimensional Equation of Motion

The problem of a heavy symmetric top has been reduced to a problem with only
one degree of freedom. This problem can be solved by standard analytic means. The
solution comes out in the form of elliptic integrals, which are hard to interpret in physical
terms. Nonetheless, we will try to get a feeling for how the solutions work. First transform
to the new variable u = cos 8. Since it is a cosine of an angle, we know that —1 < u < 1.
In terms of u and &:

L,

E(l—uh)= U+ ‘;—‘{b —au)* + Mglu(l — u?). (8.102)
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FIGURE 8.15
Possible solutions to f(u) = i*: A) three real roots; B) one real and two imaginary roots.

Introduce two new positive constants:
@o=—, f=—"=, (8.103)

You should now obtain
it = (1 — u’)e — Bu) — (b —au)* = f(u). (8.104)

The function f(u) is a cubic polynomial in ¥ which must be positive for a physically
real solution to exist. The problem could be solved now by quadratures, but to get a better
physical grasp of what is going on here, we will proceed more qualitatively instead. If
u — 400, then f(u) ~ Bu’ > 0, since B > 0. Conversely, as u — —o0, f(u) < 0, s0
the shape of the curve resembles those in Figure 8.15. The turning points of the motion
are the roots of f(u), which lie between 1. A cubic polynomial with real coefficients has
either one real root and two complex roots or three real roots. At this point we have two
distinct choices. A cubic curve with three real roots is pictured in Figure 8.15A. Note that,
for this case f(0) = a@ — b* > 0. In Figure 8.15B, we have a curve with one real root and
two imaginary roots. For this curve, f(0) < 0. It is also possible to have f(0) > O and
only one real root by vertically translating the curve in Figure 8.15B upwards.

Since at the points u = 1, f(u) = —(b Fa)’ < 0, only the case where we have
three real roots is physical. Going back to the definition of the constants, this means that
Ps < /2E'T,. Thus we are requiring that the precession be slower than this upper bound.
Since f(%1) < 0, one of the three roots must lie outside the physical region, u; > 1. Call
the two physically possible roots u,, u,. The situation for sufficiently slow precession
(given by the upper bound on p,) must look like Figure 8.15A. Roots u, and u, give the
minimum and maximum angles respectively for the motion of the top as represented in
Figure 8.16.

Between these two limits, what types of motion are possible? Go back to Equa-
tion (8.99). Notice that the average value of ¢ is, in general, nonzero, so there is a net
direction of precession. This can go either way. If the sign of ¢ is always positive, for
example, the motion looks like Figure 8.17A. If ¢ reverses sign as the top’s axis moves
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FIGURE 8.16

The top’s axis (projection
onto the unit sphere) must
lic between these limits,

between 8, and 6,, we have motion like Figure 8.17B. If b — a cos 8, = 0, the motion looks
like Figure 8.17C, in which case the precession in ¢ stops momentarily when the top is at
the maximum value of 8.

The motion that changes €, the “tilt” of the top’s axis is called nutation. In all there
are three frequencies involved in the motion of the top: the spin frequency around the top’s
axis (y), the precession frequency of the top’s axis (¢), and the nutation frequency of the
top’s axis (6).

If initially, atr = 0, there is no precession (¢ = 0), then it must be true thatb—au, = 0,
where u; = cos(@ at r = 0). If, at the same time, there is also no nutation, then & = 0,
which means that ¢ — Bu; = 0 too. In this case, you can write the expression for
flu)= i’ = Bluy — (1 — u?) - ﬂéiul — u)]. Our cubic equation reduces to a quadratic
equation for the turning point u,. If the top starts with its axis in the vertical position,

u; = 1. The possible roots of the quadratic equation are u, = 1 or u; = ‘3; — 1. If it
happens, by the choice of the initial conditions, that % > 2, then the only possible solution

is for u, = 1, (i.e., the top remains with its axis in the vertical position). This is called a
“sleeping” top. If you convert this, using the definitions of @ and § to a condition on the
physical variables, you will have

ol > 3 :f 8! Sleeping top condition on ws. (8.105)

3

For real tops, friction eventually reduces w; 8o that the top starts to precess and nutate.

FIGURE 8.17
Three possible types of motion for the top’s axis (projection onto the unit sphere).
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QUESTION 13: Heavy Symmetric Top Explain how to derive the uniform precession
rate for the top when £ is constant and equal to 5. Base your work on the methods and
answers presented in the text. You should get the result derived in elementary physics
courses — look it up and compare. Consider the plot of f(u). For this case what are
iy and h‘:?

There are several features we haven’t discussed here: the difference between “fast”
and “slow” tops, the applications to gyrocompass guidance systems, etc. There exists a
whole well-developed technology based on the rapidly spinning top.*

8.11 PRECESSION OF THE EQUINOXES

The plane of the Earth’s orbit around the Sun is called the eclipric. The tilt (8) of
the Earth’s axis of rotation with respect to the normal to the ecliptic is 23.445778° (1950).
(The technical term for this is the obliquity.) It is this tilt that causes the variation in the
length of the day between winter and summer and the seasonal change of climate. The
Earth’s axis has been "nearly” constant in direction relative to an inertial frame. The North
Pole currently points in the direction of Polaris, but this has not always been true. Five-
thousand years ago, the Southern Cross could be seen from England.! There is a retrograde
precession (¢) of the Earth’s axis with a period of 25,730 years. The term “retrograde”
means that the axis precesses in a direction opposite to the Earth’s direction of travel around
the Sun. The obliquity angle also changes slightly (¢ # 0), from 22.1° to 24.5° with a
period of 41,000 years. These motions are depicted in Figure 8.18.

Hipparchus of Rhodes observed the longitude (angular height above the ecliptic) of
the star Alpha Virginis, comparing his observation with that made 150 years before by
the Babylonian astronomers. In that time interval, the longitude had changed by about
2°. Hipparchus correctly interpreted this as a precession of the Earth’s axis. The number
obtained by Hipparchus for this was 46.8 seconds of arc/year. (The modern value for his
era is 48 seconds of arc/year.) The subsequent loss of much of this knowledge is often
blamed on Aristotle. Ptolemy (150 A.D.) argued that the heliocentric theory* violated
the laws of (Aristotle’s) physics, since if the Earth moved, people would fall off. The
geocentric Ptolemaic theory was to be unchallenged for almost 1,500 years.

As noted in Section 8.6, the Earth’s rotation is responsible for the bulge at the equator.
This bulge is the reason that the Sun and the Moon can exert torques on the Earth. That
is, the total gravitational potential, integrated over the Earth’s volume, will depend on the
orientation of the Earth, since the Earth is nonspherical. To calculate this, we will assume
that the radius of the Earth is small compared to the distance to the Moon (60.4 Earth radii)
and to the Sun. With that assumption, we can expand the gravitational potentials of the

* Researchers at Stanford University are working on a gyroscope to be tested on the space shuttle. It will
be sensitive enough to detect effects predicted by general relativity, such as frame-dragging. It is known
as Gravity Probe B (see Science, Nov. 15, 1991, pp. 939-941).

I The Rotation Of The Earth, W. H. Munk and G. J. F. Macdonald, Cambridge Univ. Press, 1960.

 Aristarchus of Samos (310-230 B.C.) proposed this heliocentric theory.
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FIGURE 8.18
Period of W = 24 hours, period of ¢ = 23,730 years, and period of & = 41,000
yEars.

Sun and the Moon in a Taylor series to second order in the Earth’s radius. Fortunately,
it is a good approximation that the Moon’s orbit lies in the plane of the ecliptic, because
this simplifies the calculation considerably. Finally, we note that the periods of the Moon
around the Earth and of the Earth around the Sun are much shorter than the time scale of
the precession, so we will average over these motions, also assuming for simplicity that
the Earth’s orbit is circular.

To find the form of the potential energy function for the Earth in the gravitational field
of the Sun or the Moon, choose a point r within the Earth. We won’t assume that the
density of the Earth, p, is constant, because the core of the Earth is more dense than the
outer mantle. We will assume however, that it has spherical symmetry: p = p(r). We will
also assume that the inhomogeneity in density does not contribute to the equatorial bulge.
After making these simplifying assumptions, we will obtain an average potential energy
that depends only on 6 — the angle between the Earth’s axis and the normal to the ecliptic.
We will then analyze the equations of motion in a way very similar to that used for the
heavy symmetrical top. (The potential energy is a different function of 4, however.)

The total gravitational potential energy from either the Sun or the Moon is defined to be

= -MG fff’ﬂfﬂd_v. (8.106)
IR —r]

As shown in Figure 8.19, R is a fixed vector from the geometric center of the Earth to
the Sun or the Moon, 7 is a variable vector from the center to any point within the Earth’s
volume, D(r) is the distance from the variable point to the centers of the Sun or the
Moon, 4V is an element of volume in the Earth, M is the mass of the Sun or Moon, and
G = 6.6726(5) x 107" N m*/kg* is the gravitational constant. The next step is to expand
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FIGURE 8.19

Moon orbiting Earth. Note: The Earth—Sun figure is similar, but the Earth orbits the Sun instead.
This has no effect on V, so you can still use the Earth as the origin as shown for the Earth-Moon
case. o is the rotation frequency of the Moon around the Earth or the Earth around the Sun.

the function I-E-_’:;; as a Taylor series in the three components of F = (ry, r», r3) around the
value at the center, r = (0,0, 0):

1 1 1 R 1fHr ,
—— = — — ———— . , . . ?
b=F 5 R T r TR TlemsOr] (8.107)

1

We have used the vector and tensor notation introduced in Chapter 7 to avoid writing out
all of the componeats. In the matrix notation, ¥R = 7 - R. We will denote the body frame
components of R by (R, R3, R3). The tensor H is defined as the collection of second
derivatives of the reciprocal of the distance, evaluated at the center:

(% |
H; =R ﬂr-(ii[:')- . (8.108)
¥

ri =0

After a somewhat tedious calculation, it is possible to show that

3X* - R’ XY 3XZ
H= 3XY 3¥? - R? 3YZ . (8.109)
3XZ 3YZ 3Z° ~ R?

Equation (8.107) 1s inserted into (8.106) to obtain V. After factoring out all of the
constants, the first integral term gives the mass of the Earth. The second term, proportional
to the triple integral R; [[[7;p dV , gives the Earth’s mass times the coordinates of the center
of mass. If we assume this corresponds with the geometric center, this term vanishes.
The third term involves integrals of the type H;; [[[rir;odV. In a principal axis body
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system, with the North Pole along the 4 Z axis, 1t can be shown that symmetry of the mass
distribution means only the integrals with i = j do not vanish. These can be expressed in
terms of the two distinct moments of inertia for the Earth:

f;sz x*+ yHpdV, I =Ingf x*+2%)pdV, (8.110)
giving
fffpdvr-ﬂr=u, — I)3Z% — RY). 8.111)

Formula (8.111) makes use of the identity R*> = X* 4 ¥?> + Z2. To obtain Z we have
to remember that we evaluated (8.110) in a body system rotated by the Euler angles
¢, 6, ¥ from the ecliptic plane of the Earth-Sun system (or, approximately, the Earth-
Moon system). Assume that the ecliptic plane is the plane Z’ = 0 in the space coordinate
system. Furthermore, assume a circular orbit which has X' = Rcosea, ¥' = Rsina,
Z' = ( at some given moment. We intend to average over the orbital angle ¢, which varies
with time much more rapidly than the effects we are trying to calculate. Using the concept
of the U matrix to take us from body to space frame coordinates, we have the equation

X Rcosa
Y | =09, 6, ¢)]| Rsine |, (8.112)
Z 0

Z = R(Uy, cosa + Us sine). (8.113)

Squaring, averaging over «, and using the explicit form of the matrix elements (8.63), the
average value is

2= —sin” 6. (8.114)

(Using the exact expression instead of the average would give us a time dependence in
the potential, which would lead to short time scale fluctuations for the Euler angles; we
ignore these here, because they are very small.) The expression (8.106) becomes, in this
approximation,

GMM GM 1 —3cos@
V) =— ““‘““+—u;—m( > )

R SR (8.115)

The additional term in the potential energy depends only on the obliquity, 8. It is propor-
tional to /3 — /, and hence vanishes for a spherical Earth, as it must. (Had we calculated
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higher-order terms in the Taylor expansion, these would also have to vanish if I3 = I;. We
don’t have to worry about including the next term here due to the small coefficient of the
term depending on @.)

The actual potential is the sum of the effect of the Sun and of the Moon. Define

_GM GM

Q= -5 = = 12.446 x 10752, (8.116)
—— N2V Imoon
3964 f.482

We used Kepler's Third Law S Man) — 41 46 calculate what we need from the periods
of 365.25 days (Sun) and 27.322 days (Moon), correcting the result only by the mass ratio
between the Moon or Sun and the Earth. Here a is the semimajor axis for the orbit. We see
that the effects of the Sun and the Moon are of comparable size, with the Moon exerting
a little more than twice the torque on the Earth than the torque from the Sun, The tidal
effects on the Earth are also proportional to %. so the Moon is also twice as effective in
creating the ocean tides. The number for 2 should be accurate within our approximations
of treating the orbits of the Sun and the Moon as circular and coplanar.

The torque — %% is %(/,— 1)} sin 26. Since I5 > Iy, if the Earth were not rotating there
would be a decrease in & from this effect until the equatorial plane was parallel to the ecliptic
and thus @ = 0. However, the gyroscopic effect of the Earth’s rotation causes instead a
precession: ¢ # 0. The direction of this precession is determined by the sign of the torque.

The next step is to write the Lagrangian for the rotational part of the Earth’s motion.
Using the formula (8.73) developed previously for the kinetic energy of rotation in terms
of the Euler angles and their time derivatives, the Lagrangian is

L= %(ﬂz + ¢’ sin’6) + 521(.;} + $eos)’

Q- 1 —3cos’ 8
— _.2_.{;3 ~ f,;( cos ) (8.117)

2

First let’s assume we have no nutation, so # and & are zero. We will seek to find the
approximate value of ¢. The equation of motion for € is found in the standard way from
the Euler-Lagrange equation for this variable and the Lagrangian (8.117). @ is found to be

proportional to sin @ times a function of cos @, ¥, and ¢. Define ¢ = 5‘—;—"1 = 00335281,

Setting & = 0 then yields.the formula (after a small amount of algebra)

—ed’ — (1 +E}ﬂ = 0% (8.118)
cos@® 2

Neglecting the quadratic term in ¢ because it is so small, we obtain the approximate formula

- 3 € cos 6
== Qf——,

8.119
21 +¢€ W { )
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This last formula (8.119) shows that the precession rate is proportional to the magnitude
of ;%% and inversely proportional to the rotation rate of the Earth on its axis. The number
calculated, called @ ;maed» 15

Pestimated = —7-96 x 1071 rad/s. (8.120)

From the 25,730 year precession period,” we obtain

¢ = —7.73813 x 107" radss. (8.121)

The minus sign is due to the clockwise rotation of the Earth’s axis compared to the coun-
terclockwise direction of the Earth in its orbit around the Sun, if one takes the + Z direction
to lie in the direction of the Northern hemisphere, while the XY plane is the ecliptic.

The value of the precession obtained from (8.120) is within 3% of the actual rate (8.121),
an excellent agreement, considering the approximations we made. This calculation was
first made by d’Alembert in 1749, although Newton understood the basic reason for the
precession and used the connection with the tides to estimate the precession rate within a
factor of two.

A precession without change in the obliquity corresponds to minimum energy, where
the energy ' = E — lemi, as we defined it for the heavy symmetric top (8.100). We can
refer back to that calculation to see that there are three relevant constants of the motion:

py = Ly = L(yr + ¢ cosb), (8.122)
pe = L. = Lisin’0 + Ly + ¢ cosB)cosb, (8.123)
and
., Lf.2 (L.=— Licos@) Q2 (1 —~ 3cos* 6
E==—|6 —el . .
2( + 1115'11119 )+ 2E l 5 ) (8.124)

E! ., can be evaluated by setting 8 = 0, 8 = 23.45°. Any increasein E’ > E!, will lead to
a periodic change in 8, with turning points and a period dependent on how much the energy
is in excess of the minimum possible energy. Since we know both the approximate turning
points and period of the change in obliquity, we can find out if this effect is consistent with
a “heavy top nutation” type of effect. The will be done in a homework problem, where we
will learn that the gyroscopic motion is not the effect causing the 41,000 year period of 6.
Any true gyroscopic nutation such as we saw with the heavy symmetric top has long since
damped out. The 41,000 year period is caused by a slow change in the plane of the ecliptic
caused by the perturbations of other planets.

There is also a small forced nutation due to the inclination of the Moon’s orbit. This
results in an elliptical motion superimposed on the precession, which has a period of
18.6 years, an east—west amplitude of +6.87 arcseconds, and a north-south amplitude

(semimajor axis) of +9.21 arcseconds.

* K. Jung, “Figur der Erde,” Geophysics I, vol. XLVII, Encyclopedia of Physics, Springer-Verlag, 1956,
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The Ice Ages

In addition to the retrograde precession (¢) and the change in obliquity (¢), there
are periodic changes in the eccentricity ¢ of the Earth’s orbit about the Sun that are caused
by the effect of the other planets, chiefly Jupiter. (The period of this is 105,000 vyears.)
Right now, e = .017, but over time, the eccentricity varies from 0 to .06, at least for the
past two million years.

All three of these small effects can cause profound changes in the Earth’s chimate.
Detailed calculations made by Milutin Milankovitch show that the combined effects may
have caused the ice ages through variations in the intensity of solar radiation. Data 1s
available for the past 500,000 years from records of the oxygen isotope ratio in deep sea
cores. The isotope ratio data is an indirect measurement of average temperature. Since
large-scale ice formation lowers the level of the sea, whenever sea level data is available
it corroborates the more detailed isotope ratio data. The correlation of this evidence for
ancient (and recent) ice ages with the calculations is claimed to be quite good. These
questions are discussed in much more detail in the book Ice Ages; Solving The Mystery
by John and Katherine Palmer Imbrie, Harvard University Press, 1979. More recently,
however, a controversy over the explanation of the ice ages has emerged. A group under
Walter Alvarez at the University of California, Berkeley, has disputed the interpretation of
the isotope data and the ability of the Milankovitch theory alone to explain the ice ages,
attributing them instead to cosmic “dust” particles. The passage of time will hopefully
clarify the answer to this important geophysical question.

8.12 MACH’S PRINCIPLE

We assume that the laws of Newtonian mechanics will be valid in any inertial
frame, but what is the precise definition of an inertial frame? A gyroscope’s* angular
momentum by definition is constant in an inertial frame. It is observed experimentally that
a gyroscope appears to rotate with faraway objects such as stars’ with a high degree of
precision (neglecting effects from general relativity), so they must define an inertial frame.
However, since our galaxy is rotating, how can the faraway stars in our galaxy determine an
inertial frame? The velocity of rotation of the galaxy is almost independent of radius, being
about 220km/s. The Sun is located about Ry, = 8.5 kparsecs from the galactic center
(1 parsec = 3.1 x 10'® m). This galactic rotation corresponds to @ =~ 8.4 x 107" rad/s
A (.5 arcseconds/century at the radial distance of the Sun from the galactic center. (This
can be compared with the general relativity prediction of the precession of Mercury of
43 arcseconds/century.) The corresponding acceleration is @’ Ry, =~ 1.9 x 107"g. Sucha
small acceleration is right at the limit of detection when local inertial frames are compared
with the distant stars. It is in this sense that we refer to these faraway stars in our galaxy
as defining an inertial frame.

* See Problem 18 for the definition of a gyroscope.
t Sufficiently far away such that there is no parallax due to the Earth's motion.
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‘ Tension, T ‘

FIGURE 8.20
Two massive spheres, connected by a
spring.

Another definition of a “local™ inertial frame comes not from a Foucault pendulum,
nor from a gyroscope, but instead from fitting the motions of the innermost planets around
the Sun, which has an uncertainty in its rate of rotation of about .4 arcseconds/century.*

Newton defined an inertial frame by declaring that “absolute acceleration” exists and
can be distinguished from relative acceleration by experiment. One example he gave
was that of two identical massive spheres in empty space. Suppose that these spheres are
connected by a string (see Figure 8.20). If a tension exists in the connecting string, the
spheres are rotating relative to an inertial frame. This gives an experimental way to detect
absolute acceleration (rotation) in a way that is independent of any other reference frame.
One can carry the example further and imagine identical small rockets mounted on each
sphere which are fired until the tension in the string vanishes. By knowing how much
angular momentum was imparted to the spheres by these rockets, we can calculate the
product Iw. w is the absolute angular velocity.

Ernst Mach believed that such a concept was not philosophically tenable. Instead he
proposed that all inertial forces are due to the distributed matter in the universe. The origin
of inertial mass (resistance to acceleration) would then be seen to be dynamical, This point
of view is known as “Mach’s Principle.” In an otherwise empty universe the “two-sphere”
experiment would not lead to observable tension in the string, because the spheres could
not have inertial mass. It would be meaningless to assign a value to w, since there would
be nothing to rotate with respect to. The spheres would not acquire masses until we filled
the empty universe with matter. Rotation with respect to this distant matter would generate
the observed inertial effect.

From Mach’s perspective it is no coincidence that the universe does not rotate — by
Mach’s Principle the aggregate of matter in the universe is by definition an inertial frame.
The plane in which a Foucault pendulum swings appears to rotate with the fixed stars
because there is a dynamical force that occurs if there is any relative rotation of the plane
of the pendulum and the rest of the matter in the universe.

It is a bit surprising that one could do an experiment to distinguish between Newton’s
view and Mach’s, A massive rotating sphere should lead to an apparent small ““centrifugal
force” for objects inside the sphere if Mach is right. Newton would predict no such effect.
Attempts to measure this force experimentally have not succeeded. One complication is an
effect predicted by general relativity called “frame-dragging,” which is similar to the effect

* See Schiff, L. I., “Observational Basis of Mach’s Principle,” Reviews of Modern Physics, Vol. 36, No. 2,
April 1964, pp. 510-511.
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predicted by Mach. However, the theory of general relativity does not incorporate Mach'’s
Principle, despite much effort by theorists to include it.* This subject is interesting and
of the most fundamental importance to physics. Reinhardt has written an article (“Mach’s
Principle — A Critical Review,” Z. Naturforsch. Vol. 28 a., pp. 529-537 (1973)) in which
he discusses the role of Mach’s Principle, including the early history, most notably Newton'’s
rotating water pail experiment. Reinhardt discusses the notion of absolute versus relative
acceleration. He ends by concluding that Mach’s Principle, “...though an extremely
stimulating thought, has at present little claim to be a basic physical principle” (italics
ours).

Mach’s Principle is discussed in a book by D. W. Sciama, which also serves as an intro-
duction to general relativity. The book is The Physical Foundations of General Relativity
(see the bibliography).

It is perhaps worth mentioning that the famous 3° cosmic black body radiation defines
an inertial frame that is independent of the motions of the stars. In fact, recent measurements
on the directional dependence of the Doppler-shifted spectrum of this radiation can be used
to measure the velocity of our galaxy as it moves through this radiation background that
was caused by the Big Bang. Although this means that all inertial reference frames are not
strictly equivalent, in practice nothing exists to prevent our making this assumption as far
as mechanics is concerned.

SUMMARY OF CHAPTER 8

* The moment of inertia I is a second-rank tensor, defined by

Iﬂ.ﬂ = Zm;(rfﬁaﬂ -_ r,-_qr;_ﬁ). (8125)

* For a rigid body, the kinetic energy is the sum of two terms:

I = Tiranstation + Trmal.i:m- (8.126)

These are

-

1 -
Tiotation = z@ - 1w, Ticansiation = EMVCM' (8.127)

* See Brans and Dicke, “Mach’s Principle and a Relativistic Theory of Gravitation,” Phys. Rev., Vol. 124,
No. 3, pp- 925-935.
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* A body coordinate system called the principal axis system can always be found. In
this system the inertia tensor is diagonal. The three diagonal elements are called the
principal moments of inertia.

» The moment of inertia about an axis displaced by a vector a from the center of mass is

I; = Ly + M(a*8. — aqap). (8.128)

* The total angular momentum is

Lom=RxP+1] -w. (8.129)
Lew Leot

* The motion of a force-free rigid body, expressed in a principal axis coordinate system,
is given by Euler’s equations:

dw

I f = w3l — wLs = wyan(l; — h),
d

fzd—“:" = wLs — oLy = 0yw3(fs — 1), (8.130)
day

13? = wyL| — w1y = wyan(l, = 1L).

* The Euler angles are defined as a series of three rotations about the body axes, first the Z
axis, then the new X axis, and finally the newest Z axis. The angular velocity in either
space or body coordinates can be expressed in terms of the Euler angles and their time
derivatives (8.68, 8.69).

* The orthogonal matrix U, which allows for a transformation from body to space coor-
dinates, was derived explicitly in terms of Euler angles in formula (8.63).

PROBLEMS

Orthogonal Matrix U

Problem 1: (Orthogonal linear transformation) Show that if a linear transforma-
tion U is orthogonal, then 1t 1s both necessary and sufficient that the three vectors
Ur,, Ur;, Ur; are mutually orthogonal and normalized to 1 if the basis vectors ry, r», I
are orthogonal and normalized to 1.
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Problem 2: (Orthogonal transformation represented as rotation) Prove that any or-
thogonal transformation U can be represented as a rotation though an angle about an
axis that is left unchanged by U.

Moment of Inertia Tensor

Problem 3: (Moment of inertia tensor) Which of the symmetric 3 x 3 matrices below
could represent a physical moment of inertia tensor?

1 2 1 1.94791 .0347273 -—.394509
I = 0 21, L= 2.42924 — 823746 (8.131)
1 1.62285

Explain. Find the principal axes and principal moments of the ones that are physical.

Problem 4: (I fora circular hoop) What is the moment of inertia tensor for a circular
hoop of radius R and mass M? What are the principal axes and moments? (Neglect
the thickness of the hoop.)

Problem 5: (I for a thin rod) Find the inertia tensor, principal axes, and principal
moments for a thin rod of length /.

Problem 6: (I for a circular cylinder) Find the inertia tensor, principal axes, and
principal moments for a circular cylinder of radius R and height 4.

Problem 7: (I for an ellipsoid) Find the inertia tensor, principal axes, and principal
moments for an ellipsoid of semiaxes a, b, c.

Problem 8: (I for a spherical shell, solid sphere) Calculate the moment of inertia
tensor for a spherical shell of radius R and mass M. Simplify your calculation by
using the symmetry to maximum advantage. From this result calculate I for a sohd
sphere of radius R.

Problem 9*: (I for three mass points) Three equal mass points are located at (a, 0, 0),
(0, a, 2a), and (0, 2a, a). Find the inertia tensor, the principal axes, and the principal
moments.

Problem 10*: (I for a book} A book of mass M has the dimensions a = 10cm by
b = 20cm by ¢ = 3cm. Find the principal axes using a symmetry argument. Find
the inertia tensor in the principal axis system. Indicate on a diagram the direction of
the principal axes and which ones have the least moment of inertia and the greatest
moment of inertia.
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Problem 11: (I for a triangle) Calculate the moment of inertia about the center of
mass of an equilateral triangle (see Figure 8.21) with identical masses m, at the base
located at each end and a mass m; located at the top of the triangle. You can use the
displaced axis theorem to first calculate the moment of inertia for the rotator formed by
the two masses m, with an origin located on the triangle base halfway between them,
and then use the displacement theorem to move the origin to the actual center of mass.
The height of the triangle is assumed to be /1, and the base has length a. The principal
moments you should find are

p _ 2mymyh? I - lm.ﬂ!
S 7 S M (8.132)

Li=hL+6L, M=2m +m-.

Kinetic Energy and Angular Mementum

Problem 12*: (Rolling cylinder) We often need to know how 1o calculate the kinetic
energy of a rolling body in a particular geometry. Consider the case of a cylinder
rolling on a plane (see Figure 8.22). There is one degree of freedom, denoted by the
angle ¢. If we regard the cylinder as rotating about the point of contact with the plane,
it is possible to calculate the kinetic energy knowing only the moment of inertia tensor
and the mass M of the cylinder. Assume that one of the principal axes is parallel to
the axis of the cylinder (principal moment is I) and that the mass is so distributed that
the center of mass is off the central axis a distance a as shown in Figure 8.22.

a) Prove that the kinetic energy of the center of mass motion is

i 2
EM{HE + R* — 2aR cos ¢)d. (8.133)

b) Find the total kinetic energy T(¢, ¢).

Bt , :
LA e 4% R oS
itk et - ks ke LA T T LR L g LY
: . : 1 LA s o R i
1 . - - !
cylinder
SR o - aTT r
M = & i -r e bR ["H]
axis H TR,
‘“_J _.l..‘_.-r“'_i_.:-
. . B ; 5“_1_--\:»'I
P - L]

FIGURE 8.22
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¢) Find the Lagrangian and the frequency of small oscillations about the equilibrium
point.

d) If a — 0 the center of mass moves to the axis of the cylinder. What would you
expect for the frequency of small oscillations in that case? Does your answer for

the general case agree in that limit?
(Landau)

Problem 13: (L and T for symmetric top) Analyze the motion of a symmetric top
(I; = I, # I3) thrown into the air.

a) First assume the top is thrown with initial angular velocity @, along the 3 axis
and initial linear velocity vo. What is the total kinetic energy? The total angular
momentum?

b) Next throw the top into the air with initial angular velocity &y along the 1 axis (or
2 axis) and initial linear velocity v, again. What is the total kinetic energy? The
total angular momentum?

¢) Compare parts a) and b).

Euler’s Equations and Euler Angles

Problem 14*: (Euler equations for components of torque in the body frame) In this
problem we derive the Euler equations for the components of torque in the body frame.
We then apply them to the torque-free motion of a symmetric top.

a) Prove that -, the rate nf change of angular momentum with respect to the center
of mass, is gwen by & =7 = torque = ¥, F; x f;, where f; is the force on the
ith part of the body. ln the principal axis frame prove that

T = f|~‘.’;.11 -+ (fj - fg)&.l‘jwj {8134)

+cyclic permutations: 123 — 312 — 231, (8.135)

These equations are “Euler’s equations™ for a rigid body. Note that they are the
projections of the torque onto the body set of principal axes.

b) Assume that a symmetrical top (I, = I, # I,) is thrown up in a gravitational field.
(One example: a football thrown in a forward pass.) Why is the torque T = 0?
Using the Euler equations, determinine the @ in the principal axis frame.

¢) Suppose that, instead, /, = I, = I;. What does this mean physically? What is &
if the torque on the body is zero?

Problem 15*: (Rotating a rectangular plate) Using Euler's equations from
Problem 14, we will solve for the torque needed to rotate a rectangular plate about a
diagonal with a constant angular velocity @, as shown in Figure 8.23.

a) What is @ in the principal axis frame?



330 CHAPTER 8 THE DYNAMICS OF RIGID BODIES

FIGURE 8.23

b) Why is the (body) coordinate system chosen above useful? Why not have it tilted
at some angle in the XY plane?

¢) Using the fact that @ is constant in the body frame, use the Euler equations to solve
for the torque components. Prove that

Mﬂbﬂ)z(bz — HE}E
12(a® + b*)

E
——
T = =

(You can assume the plate has zero thickness.)

d) Notethat T = 0if a = b. Explain, If b > a draw a vector diagram showing L
and @ in the body system. Then explain why you need to exert a torque about the
plate diagonal axis in order to rotate the plate.

Tops

Problem 16: (Symmetric top — equating reference frames) We derived formulas for
the symmitetric top using angular velocities in the space frame (8.37, 8.44, 8.45, 8.46)
and in the body frame (8.48, 8.51). First find the (time-dependent) linear transformation
that connects the two reference frames. Then prove

= —wpsing, Qp=-—Q. (8.136)

Problem 17: (Symmetric top — using the Lagrangian) Use the expression (8.73) for
the kinetic energy in the Euler-Lagrange equations to solve for the motion of the force-
free symmetric top in the laboratory (space) coordinate system. Show that you get the
same answer as we previously obtained.

Problem 18: (Gyroscope) A gyroscope is a top mounted in a gimbal system such
that there is no net torque on the top’s center of mass. It is a torque-free symmetric
top in the sense we’ve previously discussed. Consider such a gyroscope in its normal
state of uniform precession around the Z axis. Now apply an impulsive torque so
that the gyroscope has a small increment of velocity 86, and 8¢, at t+ = 0. Find
the subsequent motion of the gyroscope, assuming the equations of motion can be
linearized in 46(t), d¢(t). Is the gyroscope stable with respect to its original motion?
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FIGURE 8.24

The answer explains why gyroscopes are used to stabilize ships or video cameras, for
example.

Problem 19: (Routhian for heavy symmetric top) As an alternative approach to find-
ing the Lagrangian for a heavy symmetric top, use the Routhian technique (5.95) to
eliminate two of the three degrees of freedom. Show that this leads to the same answer
as (8.93).

Problem 20: (Tippe top) This simple device appears to defy the laws of classical
mechanics. Start it spinning, and it eventually inverts, raising its center of mass
to a higher position, where it spins happily until it runs down. We will examine
this strange behavior qualitatively here. The top has a mass M and radius R. The
center of mass is a distance a from the center of the sphere as shown in
Figure 8.24.

a) First we will neglect friction. Assuming the top is tilted an initial angle 6, from

the vertical and is given an initial spin wy along the 3 axis, what is the direction of
@ and L as it spins?

b) Now we will add a frictional force F between the top and the surface of the table. In
what direction will it point? What is the torque caused by this frictional force? What
is the change in L due to this torque? How about the change in @? Explain how
this change will cause the top to turn over.

¢) The top will end up in a higher center of mass configuration than it was initially.
Calculate the potential energy required to raise the top’s center of mass in this way.
Assuming that the energy is supplied by the initial rotational energy of the top,
estimate the minimum angular velocity required to make the top stand up.

For an more qualitative analysis of this top, we refer you to an article in the American
Journal of Physics, Vol. 45, No. 1, January 1977, p. 12ff.

Problem 21*: (Book as asymmetric top) A book is an asymmetric top, with no
two moments of inertia equal. Assuming that I, < I, < [, you can demonstrate
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experimentally that the motion is stable if the rotation is started about either the 1 or
the 3 axis but unstable if started about the 2 axis. To prove this, consider three different
situations:

a) @t =0) = (1, 0, 0) + 3. This means that the book is rotating almost around the
| axis at ¢ = O but has a small deviation from this, ;.

b) wit=0)=(0, 1, )+ 30 This means that the book is rotating almost around the
2 axis at ¢ = 0 but has a small deviation from this, 8.

¢) wit=0=(@0,0, 1)+ 3;.. This means that the book is rotating almost around the
3 axis at r = 0 but has a small deviation from this, 3.,.

Write the Euler equations in each case, ignoring terms of order §°. You should obtain
a set of linear first-order equations for 5.8. Now assume a solution of the form
3(t) = 8y ™. Setting a certain determinant equal to zero gives you «. Why? If
a 1s real, you have stable solutions; if @ 1s imaginary, you have unstable solutions.
Why? Finally, prove that the 2 axis is the unstable axis from these “linearized” Euler
equations.

Miscellaneous

Problem 22: (Equatorial bulge) Prove thatthe equation gpoie Rpote = Zequator Reguaror(1—
%} derived in Appendix C is valid if the density of the Earth is constant. Remember
that the centrifugal reduction in the effective value of g is linear with r.

Problem 23: (®) Prove Equation (8.67) using half-angle trigonometric identities.

Problem 24*: (Physical pendulum) Consider a physical pendulum with pivot points
A and B that are a distance L , and L g from the center of mass as shown in Figure 8.25.

a) What is the frequency of oscillation about either pivot point? Express your
answer in terms of I.,, the moment of inertia of the center of mass, and the
distance from the pivot point to the mass center. Hint: Use the displaced axis
theorem (8.19).

b) If the frequency of oscillation is adjusted (by varying the lengths L, and Ly)
so the frequency about each pivot point is equal, show that the moment of in-
ertia about the mass center is [, = ML Lg, where M is the mass of the
pendulum.

Center of mass - x Pivot point
EEE

W

FIGURE 8.25
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¢) Show that in the special case of b) that the frequency of oscillation is that of a
simple pendulum of length L, + L.

d) Discuss why this method may be used as a method to determine g to very high
accuracy.

Problem 25: (Is there gyroscopic nutation of the Earth’s axis?) In our discussion of
the precession of the equinoxes in Section 8.11, we make the approximation that there
was no nutation (6 = € = 0) in order to derive the rate of precession. It is known that
there is a variation in the obliquity of +1.5° with a 41,000 year period. Could this be
nutation? In this problem you will show that this effect cannot arise from effects due
only to the Sun or Moon’s gravity.

a) Express the energy E’ (see (8.100) for the definition) in units of 1,2, the angular
momenta L3, L; in units of 7,2, and the time in units of 5. Prove that this leads
to the simple expression for E':

(8.137)

b fi® + (L, — Lau)? 1 = 3u?
E' = — : .
2( 2 )+E 2

Q2 = 1in these units, and € = .

b) In the same units, show that -
L. = 188.655, L;=205.64, E_ = —.00255637. (8.138)

¢) Prove that E' = 10 for turning points near 22.24° and 24.73°. This would be the
energy needed if the nutation of a heavy top is to explain the variation in obliquity.

d) By doing a numerical integration, prove this leads to a period of approximately
24 hours, rather than 41,000 years. We see that the gyroscopic nutation of the
Earth is negligible (although there is a small nutation forced by the Moon). The
41,000 year period cannot be explained by this effect. It is due to perturbations
from Jupiter and the other planets.

APPENDIX A

WHAT IS A TENSOR?

The concept of a “tensor™ arises as the generalization of “vector.” A tensor in 3-1) space
is a collection of quantities with the same transformation properties under space rotat-
ions as products of vector coordinates: 1 (scalar), r, (vector), r,r; (second-rank tensor)
and so on. More generally, an “nth-rank tensor” in 3-D space is a collection of 3"
quantities that transform in the same way as the products of the components of n
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independent vectors. The easiest way to explain the different “ranks” of tensors is to
start with examples.

Scalars - Zero-Rank Tensors

A scalar, or zero-rank tensor, is anumber. It is invariant under coordinate rotations. Length
is an example — it does not matter which coordinate system we are using to measure the
distance between two points. It is a geometric quantity that is independent of the specific
coordinate system’s orientation. The “dot product” of two vectors is a second example:
g - b, which is also written in various contexts as d, b, (Einstein summation convention) or
i b (matrix notation: “a transpose dot b"). |

Vectors ~ First-Rank Tensors

A vector is by definition a first-rank tensor. The components of a vector change when the
coordinate system is rotated as we have seen in (7.6). However, the vector still has the
same magnitude and direction as it did before the coordinate system was rotated. (The
direction with respect to the coordinate system has changed, but the direction with respect
to any physical object is the same.) The dot product of any two vectors gives a scalar, A
vector dotted with itself also gives a scalar (7.3, 7.4). |

QUESTION 14: Vectors Prove that a two-dimensional vector expressed in coordinates
(a1, az) or in coordinates (ay, a3 ), which are rotated with respect to (a;, a2) by an angle
@, are related such that (@, az) - (@, a2) = (ay. ay) - (a}, a3).

All first-rank tensors (vectors) transform like coordinates under space rotations. Other
examples of vectors include velocity, acceleration, electric field, and (under proper rota-
tions) angular velocity and magnetic field.

Second-Rank Tensors

The next step up is a second-rank tensor, which must be multiplied (dot product again) by
two vectors to obtain a scalar — usually written as: “scalar = vector - second-rank tensor
- vector.” When a second-rank tensor is “dotted into” two vectors, the result is independent
of the orientation of the coordinate system. A second-rank tensor must have two indices:
T.p witha, B = 1, 2, 3. There are nine quantities in all, If 7,3 = T, only six of them are
independent, and we say the tensor is symmetric. In vector notation:

3 3
S = Z Y a,Tusby. (8.139)

=] f=]

T is a second-rank tensor with components T, S is a scalar, and a, b are vectors. Writing
this in matrix notation and using the fact that the scalar S is invariant under rotations we
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get

S={ay a a)|\Ty Ty Tua}|b:

T, Ty Tj\ (¥
=@ a a)|T, T, T A (8.140)
I, Ty, Ts/ \b

or, more compactly,

§ =aTb =aTb. (8.141)

Note that (4, a2, a3), (a], a5, @3), etc., are row (or column) representations of vectors
and therefore obey vector transformation properties under space rotations. The expres-
sion (8.140) is the sum of the products of vector and tensor coordinates. Often a second-rank
tensor in three dimensions is defined as:

Alternate definition of a second-rank tensor. Any set of nine quantities that trans-
forms under space rotations so that (8.141) is a scalar for arbitrary vectors a,, b;.

Since we never refer in this book to higher-rank tensors (of rank >2), we will follow the
common practice of dropping the appellation “second-rank” and refer to them as “tensors.”
It will be clear from the context that we do not mean scalars or vectors. To further distinguish
tensors from vectors when we use the matrix notation we will use bold face capital letters
(T) for tensors and bold face lower case letters (a) for vectors.

Itis easy to generalize this definition to higher-dimensional spaces. In four-dimensional
space, a second-rank tensor will be a set of 16 quantities, for example. (We’ll stick to three-
dimensional “real” space here.)

QUESTION 15: Tensors Starting from the fact that the scalar obtained from each mul-
tiplication is invariant, use (8.40) to derive the transformation law for how tensors
transform under space rotations (i.e., T' = UTU). Hint: To simplify the algebra,
make use of vector transformations in matrix notation such as & = aU and a = Ua.

Note that a vector “dotted” into a tensor gives a vector:
3
by =) Topaa. (8.142)
a=]

(Try to prove (8.142). In other words, use the transformation properties of the tensor T
and the vector a to prove that b transforms like a vector.)
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Besides the inertia tensor other examples of tensors include the stress tensor and the
dielectric tensor (used if the displacement vector D has a different direction from the electric
field vector E). Tensors are needed to describe the propagation of light in anisotropic media.
Remember: Tensors are logically different from components of tensors, just like vectors
are different from components of vectors:

a) The physical tensor itself is independent of coordinates, just like a physical vector
(velocity, direction) is independent of coordinates.

b) Tensor components change when you change coordinates: T = UTU is the matrix
notation for the transformation rule.

APPENDIX B

SYMMETRIC MATRICES CAN ALWAYS BE DIAGONALIZED
BY “ROTATING THE COORDINATES”

We will prove that given a real symmetric n X n matrix M, there exists an orthogonal
transformation (rotation) U of the coordinates that diagonalizes M:

UMU =D, (8.143)
d 0 0
0 d 0
D=]| + (8.144)
0 d,

This fundamental theorem of symmetric real matrices is the mathematical heart of
this chapter. The crucial point is that it 18 an orthogonal transformation that does the
diagonalization. In the case of our 3 x 3 inertia tensor, this means that we can always find a
set of principal axes (eigenvalues of I) that form a coordinate system in which I is diagonal.

To illustrate the method of proof, we will give a specific example. Let

I 1 1
I=y1 2 1},
1 1 3

a real symmetric matrix we choose arbitrarily. The first step is to find the eigenvalues A of
I. If e is an eigenvector of I, by definition this implies that*

* For a review of eigenvalues and cigenvectors see Leon, Linear Algebra, 2d ed., Chapter 6.
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(I — Al)e = O is a set of homogenous equations, and therefore det [I — A1| = 0 (1 is the
identity matrix). The eigenvalues are the roots of this determinant, which is a polynomial
of nth degree, P()), in the variable A. After working out the determinant, we find the
explicit form of the characteristic polynomial in our example:

P(L) =2 — 8i 4+ 6A% — A% (8.146)

The solution to the equation P(A) = 0 may be found by numerical methods. We know in
advance that the roots will be real numbers. If, in addition, all of these roots are positive,
we say that I is a positive definite matrix. If I were not positive definite, it could not
represent a physical inertia tensor (we will prove this later). The roots of Equation (8.146)
are Ay = (0.324869, A, = 1.46081, A, = 4.21432 with an accuracy of five decimal places.

Select one of these eigenvalues, say A;. We need to find the eigenvector e'" corre-
sponding to this eigenvalue. Consider the matrix I — A,1. This is

1 — A, 1 1
1 2~ A 1 . (8.147)

! 1 3 - A

We can then think of (8.145) as three simultaneous equations:

=2, 1 i e\’ 0
12— 1 el =10]1. (8.148)
1 13-/ Lo 0
3

These simultaneous eguations for the eigenvector must have a nonzero solution because
we know that the determinant of the matrix (8.147) vanishes if A, is an eigenvalue. Using
“row reduction” (Gauss—Jordan elimination), multiply a row by the appropriate constant
and combine it with the other rows until the matrix is in the “reduced echelon form™ below:

(1}

1 0 -.525428\ {€ 0
0 1 —.6688902) e =(0]. (8.149)
0 0 0 ot 0

3

The simultaneous equations are now easy to solve, giving ¢}, e}’ in terms of eg”. The
final step is to determine the value of ¢}’ by normalizing the eigenvector; we obtain
eV = (0.397113, 0.520657, 0.755789) for A, = 4.21432,

For a real symmetric matrix, the eigenvalues will always be real numbers. Because
the eigenvalues are real, the coordinates of the eigenvectors are also real, since the Gauss-
Jordan process described above deals only with multiplying and subtracting real numbers.
The reality of eigenvalues 1s a crucial property of symmetric matrices shared by the more
general Hermitian matrices. Real eigenvectors only exist in general for symmetric matrices,
however.
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The proof that the eigenvalues are real for a symmetric real matrix is best made if we
write out the indices that are summed over. Let e be an eigenvector of I with eigenvalue A.
Then

L"ﬁ"j = Ae;. (8.150)

For each value of i we have an equation in (8.150) above. Take the vector dot product with
e*. (The complex conjugate of the eigenvector e):

f”E:E_j = }Lfrfp (3151}

We do not yet assume that the eigenvector has real components. In Equation (8.151) both
i and j are summed over. The complex conjugate of this equation (8.151) is (I is real)

IUEI'-E; = JL‘EI'E:. (3152)
Exchanging the names of the summed indices on the left side, we get
fjf-Ejf: = }'.tf,gf?. {8153)

The symmetry of I means that if you subtract Equation (8.153) from (8.151,) the left sides
are equal, so will be zero after subtraction. Hence A = A", and thus the eigenvalue is a
real number. By using our row reduction technique sketched above, we then see that the
components of the eigenvectors are also real.

The eigenvectors corresponding to different eigenvalues must be orthogonal. For a
proof, assume two eigenvectors with different eigenvalues exist:

Ije; =2 %%;, I;f; =x"f, (8.154)

Multiply the first equation by f; and sum over i. Multiply the second equation by ¢; and
sum over I. e lj; f; = filije; because I is symmetric. Subtract the two equations you
get from (8.154) by this operation to obtain 0 = (A — A))e; f;. If the e and f vectors
correspond to two different eigenvalues, then ¢; f; = 0, which is to say the eigenvectors
are orthogonal.

The last step in the proof is to form a matrix U, whose columns are the normalized
eigenvectors. In the example

U= {0.520657 -0.739239 0.427132
0.755789 0.631781 0.172148

0.397113 -0.233192 —0.88765
. (8.155)

The U matrix is an orthogonal matrix. UU = 1. (Prove this by working it out.). Assuming
that ¢;¢; = 1 from the normalization, and that ¢;e; = 0 as proved above, this proves that
U is a real orthogonal matrix.
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Work out UIU explicitly in our example and you will find we get a diagonal matrix:
UIU = D. (8.156)

We have proved that a real symmetric matrix I can be diagonalized by a real orthogonal
matrix U. This diagonalizing matrix has columns that are the normalized eigenvectors of
I. The diagonal matrix D is just a list of the corresponding eigenvalues along the diagonal,
with zeros everywhere else.

If the real symmetric matrix is the 3 x 3 inertia tensor 1, the eigenvectors are the
direction cosines of the principal axes, while the eigenvalues are the principal moments
Ii, I, I5. The principal axes are tied to the body, so they define a special kind of body
frame. For the inertia tensor, the fact that kinetic energy is always positive implies that
the principal moments are themselves positive, since T = 5‘}—1 if L is directed along the ith
principal axis.

If at least two of the eigenvalues of the symmetric tensor are equal, we say there is
a degeneracy. The proof that eigenvectors are orthogonal breaks down. In our example,
we would have discovered that the equations would not have allowed us to express the

eigenvector in terms of a single constant ¢}, but instead it would have been a function

of two numbers e, ¢i’. We would have to pick two directions in this 2-D subspace
arbitrarily. Since any two orthogonal directions in this space would serve as eigenvectors,

the choice is not unique.

APPENDIX C

UNDERSTANDING THE EARTH'S EQUATORIAL BULGE*

[saac Newton made an ingenious calculation predicting an equatorial bulge for the Earth
of

R —
cquator ~ Rpole 1 , (8.157)

€

The actual value of € = ﬁ corresponds to a difference of about R.quaor — Rpote = 21.7 km.

At the time, Newton's theoretical prediction was hotly disputed by a leading as-
tronomer, Cassini, who claimed that the Earth bulges at the poles instead (see Figure 8.26).
Cassini based this on the best astronomical observations available at the time. The contro-
versy raged for 60 years. It was settled in 1738 in favor of Newton's theory by an expedition
to Lapland by Maupertius, who measured the vanation in g close to the North Pole.

* We follow the works of Newton and Maclaurin as described by S. Chandrasekhar in his book Eifipsoidal
Figures of Equilibrium, Dover Press, 1987,
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Aa
C q
P C Q
pole pole
Cassini Newton
B Vous avez confirmé dans les lieux
pleins d'ennui. Ce que Newton
connut sans sortir de chez lui.
A B

FIGURE 8.26

A) Nustration from the Principia bearing on Newton's arguments for the ro-
tational flattening of the Earth. B) An old time caricature of the controversy
between the opposing schools of Newton and Cassini with respect to the figure
of the Earth. The quote is by Voltaire. A translation: “you have confirmed, in
the desolate wastes, what Newton knew without leaving his place.”

Newton suggested the following: Imagine two holes drilled to the center of the Earth,
one from the North Pole and one from the equator. Fill both holes with water. The pressure
at the center of the Earth must be the same. Since the decrease in g is linear for a spherical
Earth, to a good approximation this pressure 1is % Zaverage PR in both cases. (Here gaverage
refers to the radial average of the “effective g,” corrected for the centrifugal effect.) Setting
the pressures equal we obtain

@R
gpuleRpull: — gnquaturﬂequamr (1 - T) : (B.158)

(We've ignored the variation in R and g for the small centrifugal term.) From the definition
of € (8.157): Ryye = (1 — 5)R; Requator = (1 + 5)R, with R being the average radius. If
€ is positive, the Earth is an oblate ellipsoid. Solve Equation (8.158) for €, ignoring
higher-order terms. You should obtain the equation

E=m+( Bpole “1) (8.159)
8equator
with the definition
2R
m = ‘i”? = 3.44 x 1077, (8.160)

Since Newton knew both the radius of the Earth and the value of g, he was able to compute
m. We also can make a first estimate of € = m. It is purely an accident that this agrees



APPENDIX C UNDERSTANDING THE EARTH'S EQUATORIAL BULGE 341

better with the experimental value than Newton’s prediction (8.157). The discrepancy is
due to the fact that the center of the Earth is considerably more dense than the mantle.

To make a second-order estimate we need to determine the dependence of g on €. The
centrifugal effect m causes € to be nonzero, which in turn causes gpge # Zequator, NEWLON
showed (see below) that

Spole _ 14+ € (8.161)
Lequaror S
which means that
S 3
€= Em = 4,30 x 107", (8.162)

The correct answer is € = 3.40 x 1073,

As we said above, we can regard the bulge as being caused by the rotation of the Earth.
The gravitational force tends to amplify this effect by producing fi > 1, an effect which
is itself proportional to €.

We will next prove (8.161). The attractive force of gravity is the negative gradient of
the potential V evaluated at either the pole or at the equator. For each volume element
dx dy dz in the Earth, the contribution to V is

dxdydz

dV = Gp (8.163)

where G is the gravitational constant, p is the density of the Earth, and d is the distance
between the point x, y, z inside the Earth and the observer on the surface (either at the pole or
the equator). 1f the Earth is considered to be an ellipsoid, the equation of the surface will be

=2 =1 (8.164)

The Z axis passes through the North Pole. The semiminor axis in the direction of the Z axis
is a, in the direction of the equator b. It is useful to adopt scaled dimensionless coordinates:
z=ual,y = bn, x = bE. Then, integrating (8.163), we obtain for an observer at the North
Pole:

bz I o 1=E?
V= Mgy = Gpw—f dEf dn(l, — 1), (8.165)
poke a Joy Y N

where

1

= : (8.166)
J £ VT8 =23 + EE2 4 )

Iy
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In principle, we could evaluate the integral exactly for any values of a, b, but the result is
complicated and not particularly useful. (The exact result was first obtained by Maclaurin
in 1742.) Expanding the double integral above in a power series in € gives two integrals,
which can be evaluated using a trigonometric substitution: &2 4+ n* — r, r — sin2u,
0 <u <%, togive

47 3
Mgooie = -3—Gpﬂ(l + — 5 ) (8.167)

Ife > 0, we have an oblate ellipsoid, because the attraction of gravity is then a little stronger
at the North Pole than would be true for a perfectly spherical Earth of the same density and
average radius.

For gequaer there is less symmetry, but again we can write the answer as a double
integral, and then expand in a power series in € to get

N
Mgﬂquum——cﬂﬂf d{f dl’j{f+— J_) (8.168)
I&H
with
i
Je = - (8.169)
\/{I:b./l -+ 2+ 52
The result 1s

4o
M gequator = 3 GFR(] + lﬂ) (8.170)

The attraction of gravity is stronger at the North Pole than at the equator. If we take the
ratio goole/ Bequator aNd again expand in power series in €, we obtain Newton’s result (8.161).



CHAPTER NINE

THE THEORY OF SMALL
VIBRATIONS

OVERVIEW OF CHAPTER 9

Consider a mechanical system that has N degrees of freedom. Assume also that
the system is close to one of its stable equilibrium points. We will show that this
system acts like N independent SHOs, usually with N different frequencies. One
or more of these independent oscillations can be present depending on the initial
conditions. In a state where only a single oscillation frequency is excited,” the N
different degrees of freedom move synchronously at a common mode frequency. The
ratios between the different displacements for each degree of freedom, known as the
mode displacement ratios, are an intrinsic characteristic of the normal mode that is
oscillating. The amplitude of any particular mode is known as the normal coordinate.
Each normal coordinate oscillates in time like a single SHO. All possible movements
of the system, for sufficiently small displacements from the equilibrium point, can be
described as a linear combination of modes.

Why do we concentrate on “small” vibrations for such a system? By definition,
if the differential equations of motion are linear, the system is then said to be a linear
system. Taylor’s theorem guarantees that most systems are linear if the displacements
are small enough. The motion can then be approximately described by a set of linear
differential equations very similar to the equation for a simple harmonic oscillator.
We allow an arbitrary but finite number of degrees of freedom. Applications of the
theory described in this chapter occur in a wide variety of physical systems, not only
n mechanics.

As a concrete example, consider a set of N point masses spaced at equal distances
apart, which are constrained to move vertically and are all connected by a horizontal
massless string under tension as shown in Figure 9.1, If we observe the vertical motion
of this system for small displacements of these masses from their equilibrium points,
there is the possibility of having up to N different mode frequencies present. (It is
a theorem that the number of possible modes must equal the number of degrees of
freedom. If two or more frequencies are identical, it is called degeneracy.) For

* This is called a normal mode or sometimes just a “mode™ for short.
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FIGURE 9.1
N point masses connected by a string under tension.

example, if we plucked the string into an arbitrary shape at t = 0, the vibration would
be very complicated, containing all of the mode frequencies. On the other hand, we
could also displace the individual masses by just the right ratios such that only one
mode frequency is excited.

Each normal mode is a vibration of all parts of the system at the same frequency.
All displacements remain in fixed ratios, with the transverse displacements of each
point mass oscillating sinusoidally in synchronism, like a chorus line. (But each
leg (degree of freedom) in the chorus line can be in a different position.) For linear
systems only, the different vibrational modes are entirely independent of each other.
This independence means that the system can have a possible motion that is the sum of
the contribution of two or more modes, without any effect of one mode upon another.
Thas is known as superposition. The separate modes will vibrate at their individual
frequencies indefinitely if there is neither damping nor a nonlinearity present. The
importance of superposition was first appreciated by the Bernoullis. The physics of
superposition was understood long before it was fully accepted by the mathematicians.

Not only can different frequencies of small oscillations appear at the same time,
but any possible motion can be described as a linear superposition of the normal modes,
at least for sufficiently small amplitudes. The set of modes therefore forms a “complete
set.”

We will prove all of these results for any system containing a finite number of
coupled linear oscillators. These results can also be generalized to linear systems with
infinitely many degrees of freedom, such as a vibrating string with a continuously
distributed mass, or the theory of the classical electromagnetic field in a resonant
cavity.

9.1  TWO COUPLED PENDULUMS

Before developing the general theory of small vibrations, we will discuss a par-
ticular case with two degrees of freedom. Two identical pendulums of length / and mass
m are suspended side by side as shown in Figure 9.2. They are coupled together with a
spring which has the spring constant k. The spring is connected halfway up the pendulums.
Assuming a massless spring, the kinetic energy is

2
T = '“_;..(9-'; +62). 9.1)
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FIGURE 9.2
#) < () as shown here.

If there were no coupling, the potential energy for small displacements from the equilibrium
at 8, = 6, = 0 would be

V= E;i(af +62). 9.2)

(Where the constant term has been dropped). We would then have two independently
oscillating systems, each with a frequency

Wy = ‘/g (9.3)

Since we have coupling, we can exchange energy between the two systems. If we stretch the
spring, there will be an additional potential energy that depends on the relative displacement

6 — by:
k(1\* )

Veoupling = 543 (6, —61)". (9.4)
After adding this coupling term to the uncoupled potential energy (9.2), standard Lagrangian
methods are used to obtain the equations of motion:
g
{
g

T k
O+ =6, + —(6, — 6,) = 0.
{ 4m

Equations (9.5) are a set of coupled second-order linear differential equations. To make
these equations simpler, define the dimensionless “coupling parameter” 5:

O
n_dvmg'

0+ =6, + Im‘{{?l —6) =0,

(9.5)

(9.6)

The parameter n = 0 if there is no coupling. Rewrite the equations of motion (9.5) before
solving them: |

01 + (1 + n)f — wygnds = 0,
61 + @ (1 + )6, — winby = 0.

(9.7)
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Add and subtract these two equations to obtain two new equations which are not coupled.
These can be solved exactly as was done for the SHO. The “symmetric mode,” called
mode 1, with #; = 6, has the same frequency @, = wy as the uncoupled oscillators. The
spring is not stretched in this mode during the oscillation. In contrast, the “antisymmetric
mode,” called mode 2, has a higher frequency, which is due to an additional restoring force
from the stretched spring. Here 6, = —#6, and @, > wy. Intuition could have been used to
guess the two modes of vibration and that the antisymmetric mode has a higher frequency
than the symmetric mode.

Such a simple case, with this high degree of symmetry, is not always encountered. It
is important to learn a general approach. Matrix techniques have to be used in most cases
if the number of degrees of freedom is greater than two. We will start by introducing a
matriX notation for the problem above. Define a column vector (3; ) and write the equations
of motion (9.7) in matrix form

dl 5‘1 2 1-|-il'] et /| H[ _ 0
Ef(ﬂz)“"“( -1 1+u)'(92)‘(ﬂ)‘ 08

Assume there exists a mode that obeys (9.8). We don’t yet know the mode frequency w.
Then, by the definition of a mode, since there is only a single frequency present we can

assume a solution of the form
6i()\ 91) -
(91(:)) B (92 “ (9:9)

Here ©; and ©, are the mode displacement ratios. Insert this form back into the equations
of motion (9.8). The differential equation of the motion has been converted into a set of
simultaneous linear equations. To simplify the algebra, define

W

= (9.10)

w

A

il

In matrix form, the equations derived by substituting (9.9) into (9.8) become two linear
equations for the two constants ©&;, ©&,:

~A+1+n —1) ey _ (0
( -1 —A+1+n)'(@z)_(ﬂ)' e

An important feature of the two equations implied by (9.11) is that they are homoge-
neous equations, (i.e., the right side is zero). It is a theorem of linear algebra that for
N homogeneous linear equations in N unknowns, the solutions must be identically zero
(&) = ©; = 0) unless the determinant of the matrix on the left side vanishes. The deter-
minant of the matrix in Equation (9.11) is a quadratic function of A. It vanishes only for
two specific values of A. These roots of the determinant are proportional to the squares of
the mode frequencies. By solving for those values of A that make the determinant vanish,
we will determine the mode frequencies:

(—-A+l+n —n

determinant
—1 —~A+ 147

)‘={l+ﬂml]2—ﬂ2=ﬂ. (9.12)
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This gives a quadratic equation for A. (If we have N degrees of freedom, we have to find
the roots of a polynomial of order N, so there are N frequencies.) In the case we have
here, the roots are

M=1, A=1+42n (9.13)
The corresponding mode frequencies are (from (9.10))
Wy = wy, wr=awy 1+ 2n. (9.14)

The mode displacement ratios for the two pendulums can be determined by first noticing
that the two equations written in matrix form (9.11) are no longer independent, since the
determinant vanishes. This means that you can solve one of them, say the second one, for
the ratio of amplitudes:

) I+n—A
—_ = ] (9.15)
®, n
Adding subscripts (1) and (2) to label the modes we get
Irﬂ{i]'.l .
=1 (symmetric mode), (9.16)
©a).2
-
UL | (antisymmetric mode). (9.17)
BOw).2

It is important to realize that a given mode is specified only by the ratio of amplitudes for
the individual oscillators. An overall multiplicative constant is set by the initial conditions.
If the number of degrees of freedom is N > 2, solving for the displacement ratios cor-
responding to a definite mode can be done by the method of cofactors to be described in
Appendix A. You can also use “row elimination” to solve the N homogeneous equations
analogous to (9.11) above.

QUESTION 1: Normal Modes and Coordinates  First of all, explain the physical meaning
of the terms: “normal mode,” “mode displacement ratio,” and “normal coordinates.”
Generalize to N degrees of freedom. How many ratios do you need then? Find or
invent an example not given in the text and illustrate the use of these terms for that
example. Secondly, describe the motion of the coupled pendulums for the symmetric
and antisymmetric modes.

Observe that we started with two identical pendulums. If uncoupled, they would have
identical frequencies of oscillation. When coupled together, the system as a whole stll
has two frequencies of oscillation, but now the frequencies are different. The energy of
oscillation is distributed between the oscillators for each of the two modes.

We can have motion in which both modes are simultaneously present. Consider the
two coupled pendulums of equal mass. Start the pendulums off at 1 = 0 by displacing
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only one of them, say #, away from zero. This means that the initial condition is a sum
of symmetric and antisymmetric modes. These evolve in time independently* and with
different oscillation frequencies. The relative phase between the two modes will be 7 after
a time -, where Aw = @, ~ w, is the beat frequency. At that point, for just an instant,
the first pendulum stops swinging, and all of the energy has been transferred to the second
pendulum, which was initially at rest. As time goes on, the energy will be transferred back
and forth at half the beat frequency between the two modes. Similar beats can be observed
in more complex systems if more than one mode is excited initially.

QUESTION 2: Two Coupled Pendulums I Why is the relative phase between the sym-
metric and antisymmetric modes  after a time -7 Aw = w; — w,.

QUESTION 3: Two Coupled Pendulums 2 Start the two pendulums as follows at ¢t =
0:6,=A,60;, =0,6, =0,6, = 0. What are the normal coordinates for this case?
What are the equations for 8,(r), 62(¢)? Describe the motion of each pendulum as time
goes on.

Small Oscillation Theory

The next few sections will guide the reader through the general theory of small
oscillations by considering the double pendulum, which consists of one pendulum swinging
from the bottom of another. We will do it in a way that can be very easily generalized.

9.2  EXACT LAGRANGIAN FOR THE DOUBLE PENDULUM

The double pendulum system shown in Figure 9.3 will also be used in our later
discussion of chaos. For this reason we begin by finding the exact Lagrangian without any
small-angle approximation. This exact Lagrangian, which has two degrees of freedom,

¢[ﬂnd¢'2,,i5
I S
I = Em(-’:l + 51 + 3%+ ¥3),

V =mg(y + ), (9.18)
L=T-YV,

We can express the Lagrangian in terms of ¢,, ¢, and the time derivatives of these angles,
using the geometric relations

xy=Ising;, y = —lcose¢,,

X2 = x; +1sin(edy; + @),y =y — [cos(¢y + ).

(9.19)

* This is due to the linear property of the equations of motion.
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-.f.:.' @"2 {IE,}'EI

FIGURE 9.3
Origin is at top pivot. Masses are both equal
to m; lengths are both equal to /.

See for yourself, taking time derivatives and substituting into the formulas above, that this
gives the desired formula in terms of the angles:

1 . .. . . :
T = Emf’(Zrﬁ +2¢, (9, + d,)cos @) + (@, + 6,)°),
V = —mgl(2cos ¢, + cos(¢d;, + ¢»)).

Notice that T is a quadratic form in the time derivatives of the angles. This means that
H = E. Because there is no explicit time dependence, the total energy E is a constant of
the motion.

(9.20)

Small-Angle Approximation

To apply the theory of small vibrations, we need to find the linear approximation
to the equations of motion. This is called the “small-angle approximation.”

We assume that ¢, and ¢, are sufficiently small displacements from the equilibrium at
¢ = ¢ = 0. We can then approximate both T and V each by a double Taylor series up
to and including quadratic terms in the angles and their time derivatives. We obtain the
approximations below:

; . : 1 . .
=~ mfz(q&f + ¢ (P, +¢d,) + E(¢1 + "{f’z)i)‘
| (9.21)
V = mg!(qtr.z + E(G“*l + ¢1)2)*
(An unimportant constant in V has been dropped.) Note that there are no linear terms in ¥':

this proves that ¢; = ¢, = 0 is a true equilibrium point. (Why?7)

Use Matrix Notation for Complete Generality

At this point it is useful to introduce matrix notation. Use of this notation allows
us to write down formulas that are true for any number of degrees of freedom and to prove
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general theorems about the mode frequencies and mode displacement ratios when we find
them. Define the column vector containing the generalized coordinates® by

t
o) = (¢'l( )
$a(1)
The state of the system is known if all of the displacements (¢p()s) are known, so ¢ is
called the “state vector” of the system, which is a term borrowed from quantum mechanics,

In the case of the potential energy we then write

), & = (¢, ¢») = transpose of ¢. (9.22)

v =li£"'"¢={¢’h¢z)'*" (;:) = Z@Uﬁﬁ’;* (9.23)
iJ

The formulas in (9.23) above give three equivalent ways of writing the same expression.
The matrix form on the left avoids writing unnecessary subscripts. The symmetric matrix
v can be shown to be

1 9%V
20¢i0; |y, 6,~0

L

(9.24)

!.';J.'

We have taken this last formula as the definition of the matrix v.

QUESTION 4: Small-Angle Approximation 1 Explain why Equations (9.23, 9.24) rep-
resent the Taylor series expansion for the potential energy (9.21). What about the
zeroth- and first-order terms? Why do we ignore these terms? What approximation
has been made?

For the double pendulum we consider here:

_mgl (3 1
v=— (1 I). (9.25)

We intuitively realize that the equilibrium at ¢, = ¢, = 0 is a stable one. To prove that
the equilibrium is stable, any deviation from this position must result in an increase in the
potential energy. This can be expressed mathematically by the condition

d-v-dp>0 (9.26)

for any state vector ¢ in the N = 2 degree of freedom configuration space. (Configuration
space is not real space but the N-dimensional space of small displacements of generalized

* A boldface letter will denote matrix representation just as in Chapters 7 and 8.
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coordinates.) The mathematicians call any matrix that obeys the condition (9.26) a positive
definite matrix. To prove that v is really a positive definite matrix, the eigenvalues of v must
all be positive. If they are both positive, v is positive definite. In our case the eigenvalues
of v are positive constants (2 £ +/2), so the equilibrium is a stable one, and the potential
energy increases for any and all deviations from equilibrium.

Define a matrix of second partial derivatives for the kinetic energy in an analogous

way:
T=¢ -t (9.27)
1 9T
= ~——— . 9.28
7T 204,09, byt (9.28)

QUESTION 5: Small-Angle Approximation i 'Why do positive eigenvalues prove a ma-
trix is positive definite? Why is the left side of Equation (9.26) called a “quadratic
form™? (Multiply it out first.) What are the approximations made in deriving Equa-
tion (9.27) ?

For this example, t is
IE
1= (5 2)+ (9.29)

The matrix t will always be symmetric. Why? The kinetic energy is always positive, so t
is a positive definite quadratic form in the time derivatives of the angles.

‘The approximate Lagrangian for small angles can be written in a general matrix notation
without explicit indices:

L=¢-t-d—¢-v-o. (9.30)

Equations of Motion

From the Lagrangian, it is a short step to the equations of motion for the system.
The number of equations of motion equals the number of degrees of freedom (two in this
case):

aL A ; gL ~
— =2 tyd; =2t Py, — =-2) vd; =2V D). (9.31)
a¢,‘ je=1 a'¢t j=1

The equations of motion are

thd, + tiad, + vy + vy =0,

. . (9.32)
tnd, + tnd, + V3P + vag = 0.
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In more compact matrix form these can be written as
t-dp+v.¢p=0. (9.33)

Go through the derivation of EOM from the Lagrangian, using (9.21) instead of the matrix
notation. Compare to (9.32, 9.33). Try to understand the notation in (9.33) by this com-
parison,

9.3  SINGLE FREQUENCY SOLUTIONS TO EQUATIONS OF MOTION

Normal Modes

Normal modes are defined as the single frequency vibrations of the entire system.
For a certain mode we can write this single frequency condition as

(1) = Be' @9, (9.34)

@(1) is now a complex N-dimensional column vector,* and § is the common phase of the
system determined by the initial conditions. @ is the mode vector containing the mode
displacement ratios. This is a constant vector whose specific values are also determined
by the initial conditions. The real part of Equation (9.34) is the physical solution. This is
similar to what we did in Chapter 3 (see (3.30)). Equation (9.34) states that each part of
the system vibrates with a single common frequency w.

Substitute the form (9.34) into the EOM (9.33) above to obtain the homogeneous linear
equations:

[—w't+v] . ® = 0. (9.35)

This formula stands for N equations in the N unknown constants ®. We repeat: It is a
well-known result of linear algebra that N homogeneous equations in N unknowns have
no solution other than ® = 0 (a column vector of N zeros) unless the determinant of the
N x N coefficient matrix vanishes. To find a mode we must require that

determinant | —w?t 4+ v| = 0. (9.36)

The determinant is a polynomial of order N in the variable w®. The positive real roots of
this polynomial will determine the squares of the mode frequencies. The square root of

* The notation ¢b(t) is used here to indicate the complex state vector.
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each of these values is the mode frequency, which will be denoted by w;,. There should
be N modes for N degrees of freedom. This means that the polynomial defined by (9.36)
will have only positive real roots and not any negative or complex roots. If any two or
more mode frequencies are equal, there is a degeneracy of modes. We will simplify the
theoretical treatment here by assuming that no degeneracy exists.

Notice that solving (9.35) is similar to solving an eigenvalue equation as we did in
Chapter 8 when solving for the principal axes. The difference is that here we are finding
where the determinant of |v — w*t| = 0 instead of where the determinant of [v — A1| = 0.
This is a subtle difference in that t is definitely not the identity matrix 1. However, as
we will show in Section 9.6, we can generalize the procedure of finding eigenvalues and
eigenvectors to apply it to this situation. Therefore, we can refer to the mode frequencies
as generalized eigenvalues and the mode vectors as generalized eigenvectors.

The procedure above will be demonstrated with the double pendulum example. We
have

wt+v= 5 (I—ZA 13 ) (9.37)

where ) = “”'T’ The squares of the mode frequencies are determined by solving for the
values of A that make the determinant of (9.37) vanish. The determinant of the matrix in

(9.37) is proportional to 4> — 4X + 2. The roots are

mode I of, =2 -2 %, 9.38)

mode 2: wh, = (2 + +/2) % (9.39)

The second mode has a much higher frequency than the first one. The overall frequency
scale is set by ﬁ as might be expected.

To make the notation clearer, when we want to refer to a particular mode, we will
use subscripts enclosed in parentheses, such as (/). This avoids confusion between mode
indices and coordinate indices, which will not have parentheses.

How do we know w? will always turn out to be real and positive? A quick intuitive
answer (not a proof however) is that if @’ is complex, the exponent in €'’ will contain a
real part. This gives an exponentially growing or decreasing mode amplitude, which would
imply that the total energy would not be constant. A rigorous proof is given in Section 9.6.

How fo Find the Mode Amplitude Ratios

Now that we have a way to find the mode frequencies, how do we find the “shape”
of each mode? In other words, what are the displacements of the different degrees of
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freedom that are characteristic of this particular mode? The individual displacement ratios
for the ith normal mode can be found by solving the set of homogeneous linear equations

(9.35) for a particular mode frequency @* = wf,:

[~ t+v] ®,,=0, i=1,..N. (9.40)

Remember that ®, is the set of displacement amplitudes for each part of the system
corresponding to a single mode. For the double pendulum, ®, = (®;)1, Py)2). For
the N degree of freedom system, there will be N values for each ®;, of the ith mod