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1.6 The Basic Euler–Poincaré Equations. . . . . . . . . . . . . . . . . . . . . . . . 13
1.7 Lie–Poisson Reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.8 Symplectic and Poisson Reduction. . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Symplectic Reduction 27
2.1 Presymplectic Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Symplectic Reduction by a Group Action . . . . . . . . . . . . . . . . . . . . 31
2.3 Coadjoint Orbits as Symplectic Reduced Spaces . . . . . . . . . . . . . . . . . 38
2.4 Reducing Hamiltonian Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5 Orbit Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6 Foliation Orbit Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.7 The Shifting Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.8 Dynamics via Orbit Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.9 Reduction by Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Reduction of Cotangent Bundles 53
3.1 Reduction at Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Abelian Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Principal Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Cotangent Bundle Reduction—Embedding Version . . . . . . . . . . . . . . . 66
3.5 Cotangent Bundle Reduction—Bundle Version . . . . . . . . . . . . . . . . . 67
3.6 The Mechanical Connection Revisited . . . . . . . . . . . . . . . . . . . . . . 69
3.7 The Poisson Structure on T ∗Q/G. . . . . . . . . . . . . . . . . . . . . . . . . 71
3.8 The Amended Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.9 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.10 Dynamic Cotangent Bundle Reduction . . . . . . . . . . . . . . . . . . . . . . 77
3.11 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.12 Additional Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.13 Hamiltonian Systems on Coadjoint Orbits . . . . . . . . . . . . . . . . . . . . 86
3.14 Energy Momentum Integrators . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.15 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.16 Geometric Phases for the Rigid Body . . . . . . . . . . . . . . . . . . . . . . . 96

v



vi Contents

3.17 Reconstruction Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.18 Dynamics of Coupled Planar Rigid Bodies . . . . . . . . . . . . . . . . . . . . 100

4 Semidirect Products 117
4.1 Hamiltonian Semidirect Product Theory . . . . . . . . . . . . . . . . . . . . . 117
4.2 Lagrangian Semidirect Product Theory . . . . . . . . . . . . . . . . . . . . . 121
4.3 The Kelvin-Noether Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.4 The Heavy Top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5 Semidirect Product Reduction and Reduction by Stages 129
5.1 Semidirect Product Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2 Reduction by Stages for Semidirect Products . . . . . . . . . . . . . . . . . . 130



Chapter 1

Introduction and Overview

Reduction is of two sorts, Lagrangian and Hamiltonian. In each case one has a group of
symmetries and one attempts to pass the structure at hand to an appropriate quotient
space. Within each of these broad classes, there are additional subdivisions; for example, in
Hamiltonian reduction there is symplectic and Poisson reduction.

These subjects arose from classical theorems of Liouville and Jacobi on reduction of
mechanical systems by 2k dimensions if there are k integrals in involution. Today, we take
a more geometric and general view of these constructions as initiated by Arnold [1966]
and Smale [1970] amongst others. The work of Meyer [1973] and Marsden and Weinstein
[1974] that formulated symplectic reduction theorems, continued to initiate an avalanch
of literature and applications of this theory. Many textbooks appeared that developed
and presented this theory, such as Abraham and Marsden [1978], Guillemin and Sternberg
[1984], Liberman and Marle [1987], Arnold, Kozlov, and Neishtadt [1988], Arnold [1989],
and Woodhouse [1992] to name a few. The present book is intended to present some of the
main theoretical and applied aspects of this theory.

With Hamiltonian reduction, the main geometric object one wishes to reduce is the
symplectic or Poisson structure, while in Lagrangian reduction, the crucial object one wishes
to reduce is Hamilton’s variational principle for the Euler-Lagrange equations.

In this book we assume that the reader is knowledgable of the basic principles in me-
chanics, as in the authors’ book Mechanics and Symmetry (Marsden and Ratiu [1998]). We
refer to this monograph hereafter as IMS.

1.1 Lagrangian and Hamiltonian Mechanics.

Lagrangian Mechanics. The Lagrangian formulation of mechanics can be based on the
variational principles behind Newton’s fundamental laws of force balance F = ma. One
chooses a configuration space Q (a manifold, assumed to be of finite dimension n to start
the discussion) with coordinates denoted qi, i = 1, . . . , n, that describe the configuration of
the system under study. One then forms the velocity phase space TQ (the tangent bundle of
Q). Coordinates on TQ are denoted (q1, . . . , qn, q̇1, . . . , q̇n), and the Lagrangian is regarded
as a function L : TQ → R. In coordinates, one writes L(qi, q̇i, t), which is shorthand
notation for L(q1, . . . , qn, q̇1, . . . , q̇n, t). Usually, L is the kinetic minus the potential energy
of the system and one takes q̇i = dqi/dt to be the system velocity. The variational principle
of Hamilton states that the variation of the action is stationary at a solution:

δS = δ

∫ b

a

L(qi, q̇i, t) dt = 0. (1.1.1)

1



2 Chapter 1 Introduction and Overview

In this principle, one chooses curves qi(t) joining two fixed points in Q over a fixed time
interval [a, b], and calculates the action S, which is the time integral of the Lagrangian,
regarded as a function of this curve. Hamilton’s principle states that the action S has a
critical point at a solution in the space of curves. As is well known, Hamilton’s principle is
equivalent to the Euler–Lagrange equations:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, . . . , n. (1.1.2)

Let T (2)Q ⊂ T 2Q denote the submanifold which at each point q ∈ Q consists of second
derivatives of curves in Q that pass through q at, say, t = 0. We call T (2)Q the second
order tangent bundle. The action defines a unique bundle map

EL : T (2)Q→ T ∗Q

called the Euler-Lagrange operator such that for a curve c(·) in Q,

[δS(c) · δc](t) = 〈EL · c′′(t), δc(t)〉 .

Thus, the Euler-Lagrange equations can be stated intrinsically as the vanishing of the Euler-
Lagrange operator: EL(c(·)) = 0.

If the system is subjected to external forces, these are to be added to the right hand side
of the Euler-Lagrange equations. For the case in which L comprises kinetic minus potential
energy, the Euler-Lagrange equations reduce to a geometric form of Newton’s second law.
For Lagrangians that are purely kinetic energy, it was already known in Poincaré’s time
that the corresponding solutions of the Euler-Lagrange equations are geodesics. (This fact
was certainly known to Jacobi by 1840, for example.)

Hamiltonian Mechanics. To pass to the Hamiltonian formalism, one introduces the
conjugate momenta

pi =
∂L

∂q̇i
, i = 1, . . . , n, (1.1.3)

and makes the change of variables (qi, q̇i) 7→ (qi, pi), by a Legendre transformation. The
Lagrangian is called regular when this change of variables is invertible. The Legendre
transformation introduces the Hamiltonian

H(qi, pi, t) =
n∑
j=1

pj q̇
j − L(qi, q̇i, t). (1.1.4)

One shows that the Euler–Lagrange equations are equivalent to Hamilton’s equations:

dqi

dt
=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

, (1.1.5)

where i = 1, . . . , n. There are analogous Hamiltonian partial differential equations for field
theories such as Maxwell’s equations and the equations of fluid and solid mechanics.

Hamilton’s equations can be recast in Poisson bracket form as

Ḟ = {F,H}, (1.1.6)

where the canonical Poisson brackets are given by

{F,G} =
n∑
i=1

(
∂F

∂qi
∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
. (1.1.7)
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Associated to any configuration space Q is a phase space T ∗Q called the cotangent
bundle of Q, which has coordinates (q1, . . . , qn, p1, . . . , pn). On this space, the canonical
Poisson bracket is intrinsically defined in the sense that the value of {F,G} is independent
of the choice of coordinates. Because the Poisson bracket satisfies {F,G} = −{G,F} and
in particular {H,H} = 0, we see that Ḣ = 0; that is, energy is conserved along solutions of
Hamilton’s equations. This is the most elementary of many deep and beautiful conservation
properties of mechanical systems.

1.2 The Euler–Poincaré Equations.

Poincaré and the Euler equations. Poincaré played an enormous role in the topics
treated in this book. His work on the gravitating fluid problem, continued the line of
investigation begun by MacLaurin, Jacobi and Riemann. Some solutions of this problem
still bear his name today. This work is summarized in Chandrasekhar [1967, 1977] (see
Poincaré [1885, 1890, 1892, 1901a] for the original treatments). This background led to
his famous paper, Poincaré [1901b], in which he laid out the basic equations of Euler type,
including the rigid body, heavy top and fluids as special cases. Abstractly, these equations
are determined once one is given a Lagrangian on a Lie algebra. It is because of the
paper Poincaré [1901b] that the name Euler–Poincaré equations is now used for these
equations. The work of Arnold [1966a] was very important for geometrizing and developing
these ideas.

Euler equations provide perhaps the most basic examples of reduction, both Lagrangian
and Hamiltonian. This aspect of reduction is developed in IMS, Chapters 13 and 14, but
we shall be recalling some of the basic facts here.

To state the Euler–Poincaré equations, let g be a given Lie algebra and let l : g→ R be
a given function (a Lagrangian), let ξ be a point in g and let f ∈ g∗ be given forces (whose
nature we shall explicate later). Then the evolution of the variable ξ is determined by the
Euler–Poincaré equations. Namely,

d

dt

δl

δξ
= ad∗ξ

δl

δξ
+ f.

The notation is as follows: ∂l/∂ξ ∈ g∗ (the dual vector space) is the derivative of l with
respect to ξ; we use partial derivative notation because l is a function of the vector ξ and
because shortly l will be a function of other variables as well. The map adξ : g → g

is the linear map η 7→ [ξ, η], where [ξ, η] denotes the Lie bracket of ξ and η, and where
ad∗ξ : g∗ → g∗ is its dual (transpose) as a linear map. In the case that f = 0, we will call
these equations the basic Euler–Poincaré equations.

These equations are valid for either finite or infinite dimensional Lie algebras. For fluids,
Poincaré was aware that one needs to use infinite dimensional Lie algebras, as is clear in
his paper Poincaré [1910]. He was aware that one has to be careful with the signs in the
equations; for example, for rigid body dynamics one uses the equations as they stand, but
for fluids, one needs to be careful about the conventions for the Lie algebra operation adξ;
cf. Chetayev [1941].

To state the equations in the finite dimensional case in coordinates, one must choose a
basis e1, . . . , er of g (so dim g = r). Define, as usual, the structure constants Cdab of the Lie
algebra by

[ea, eb] =
r∑
d=1

Cdabed, (1.2.1)
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where a, b run from 1 to r. If ξ ∈ g, its components relative to this basis are denoted ξa.
If e1, . . . , en is the corresponding dual basis, then the components of the differential of the
Lagrangian l are the partial derivatives ∂l/∂ξa. The Euler–Poincaré equations in this basis
are

d

dt

∂l

∂ξb
=

r∑
a,d=1

Cdab
∂l

∂ξd
ξa + fb. (1.2.2)

For example, consider the Lie algebra R
3 with the usual vector cross product. (Of

course, this is the Lie algebra of the proper rotation group in R
3 .) For l : R3 → R, the

Euler–Poincaré equations become

d

dt

∂l

∂Ω
=

∂l

∂Ω
×Ω + f ,

which generalize the Euler equations for rigid body motion.
These equations were written down for a certain class of Lagrangians l by Lagrange

[1788, Volume 2, Equation A on p. 212], while it was Poincaré [1901b] who generalized them
(without reference to the ungeometric Lagrange!) to an arbitrary Lie algebra. However, it
was Lagrange who was grappeling with the derivation and deeper understanding of the
nature of these equations. While Poincaré may have understood how to derive them from
other principles, he did not reveal this.

Of course, there was a lot of mechanics going on in the decades leading up to Poincaré’s
work and we shall comment on some of it below. However, it is a curious historical fact
that the Euler–Poincaré equations were not pursued extensively until quite recently. While
many authors mentioned these equations and even tried to understand them more deeply
(see, e.g., Hamel [1904, 1949] and Chetayev [1941]), it was not until the Arnold school that
this understanding was at least partly achieved (see Arnold [1966a,c] and Arnold [1988])
and was used for diagnosing hydrodynamical stability (e.g., Arnold [1966b]).

It was already clear in the last century that certain mechanical systems resist the usual
canonical formalism, either Hamiltonian or Lagrangian, outlined in the first paragraph.
The rigid body provides an elementary example of this. In another example, to obtain a
Hamiltonian description for ideal fluids, Clebsch [1857, 1859] found it necessary to introduce
certain nonphysical potentials1.

The Rigid Body. In the absence of external forces, the rigid body equations are usually
written as follows:

I1Ω̇1 = (I2 − I3)Ω2Ω3,

I2Ω̇2 = (I3 − I1)Ω3Ω1,

I3Ω̇3 = (I1 − I2)Ω1Ω2,

(1.2.3)

where Ω = (Ω1,Ω2,Ω3) is the body angular velocity vector and I1, I2, I3 are the moments
of inertia of the rigid body. Are these equations as written Lagrangian or Hamiltonian in
any sense? Since there are an odd number of equations, they cannot be put in canonical
Hamiltonian form.

One answer is to reformulate the equations on TSO(3) or T ∗SO(3), as is classically done
in terms of Euler angles and their velocities or conjugate momenta, relative to which the

1For modern accounts of Clebsch potentials and further references, see Holm and Kupershmidt [1983],
Marsden and Weinstein [1983], Marsden, Ratiu, and Weinstein [1984a,b], Cendra and Marsden [1987],
Cendra, Ibort, and Marsden [1987] and Goncharov and Pavlov [1997].
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equations are in Euler–Lagrange or canonical Hamiltonian form. However, this reformula-
tion answers a different question for a six dimensional system. We are interested in these
structures for the equations as given above.

The Lagrangian answer is easy: these equations have Euler–Poincaré form on the Lie
algebra R

3 using the Lagrangian

l(Ω) =
1
2

(I1Ω2
1 + I2Ω2

2 + I3Ω2
3). (1.2.4)

which is the (rotational) kinetic energy of the rigid body.
One of our main messages is that the Euler–Poincaré equations possess a natural vari-

ational principle. In fact, the Euler rigid body equations are equivalent to the rigid body
action principle

δSred = δ

∫ b

a

l dt = 0, (1.2.5)

where variations of Ω are restricted to be of the form

δΩ = Σ̇ + Ω×Σ, (1.2.6)

in which Σ is a curve in R
3 that vanishes at the endpoints. As before, we regard the reduced

action Sred as a function on the space of curves, but only consider variations of the form
described. The equivalence of the rigid body equations and the rigid body action principle
may be proved in the same way as one proves that Hamilton’s principle is equivalent to the
Euler–Lagrange equations: Since l(Ω) = 1

2 〈IΩ,Ω〉, and I is symmetric, we obtain

δ

∫ b

a

l dt =
∫ b

a

〈IΩ, δΩ〉 dt

=
∫ b

a

〈IΩ, Σ̇ + Ω×Σ〉 dt

=
∫ b

a

[〈
− d

dt
IΩ,Σ

〉
+ 〈IΩ,Ω×Σ〉

]
=
∫ b

a

〈
− d

dt
IΩ + IΩ×Ω,Σ

〉
dt,

upon integrating by parts and using the endpoint conditions, Σ(b) = Σ(a) = 0. Since Σ is
otherwise arbitrary, (1.2.5) is equivalent to

− d

dt
(IΩ) + IΩ×Ω = 0,

which are Euler’s equations.
Let us explain in concrete terms how to derive this variational principle from the standard

variational principle of Hamilton.
We regard an element R ∈ SO(3) giving the configuration of the body as a map of

a reference configuration B ⊂ R
3 to the current configuration R(B); the map R takes a

reference or label point X ∈ B to a current point x = R(X) ∈ R(B). When the rigid body
is in motion, the matrix R is time-dependent and the velocity of a point of the body is
ẋ = ṘX = ṘR−1x. Since R is an orthogonal matrix, R−1Ṙ and ṘR−1 are skew matrices,
and so we can write

ẋ = ṘR−1x = ω × x, (1.2.7)
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which defines the spatial angular velocity vector ω. Thus, ω is essentially given by right
translation of Ṙ to the identity.

The corresponding body angular velocity is defined by

Ω = R−1ω, (1.2.8)

so that Ω is the angular velocity relative to a body fixed frame. Notice that

R−1ṘX = R−1ṘR−1x = R−1(ω × x)

= R−1ω ×R−1x = Ω×X, (1.2.9)

so that Ω is given by left translation of Ṙ to the identity. The kinetic energy is obtained
by summing up m‖ẋ‖2/2 (where ‖·‖ denotes the Euclidean norm) over the body:

K =
1
2

∫
B
ρ(X)‖ṘX‖2 d3X, (1.2.10)

in which ρ is a given mass density in the reference configuration. Since

‖ṘX‖ = ‖ω × x‖ = ‖R−1(ω × x)‖ = ‖Ω×X‖,

K is a quadratic function of Ω. Writing

K =
1
2
ΩT

IΩ (1.2.11)

defines the moment of inertia tensor I,which, provided the body does not degenerate to
a line, is a positive-definite (3× 3) matrix, or better, a quadratic form. This quadratic form
can be diagonalized by a change of basis; thereby defining the principal axes and moments
of inertia. In this basis, we write I= diag(I1, I2, I3). The function K is taken to be the La-
grangian of the system on TSO(3) (and by means of the Legendre transformation we obtain
the corresponding Hamiltonian description on T ∗SO(3)). Notice that K in equation (1.2.10)
is left (not right) invariant on TSO(3). It follows that the corresponding Hamiltonian is
also left invariant.

In the Lagrangian framework, the relation between motion in R space and motion in
body angular velocity (or Ω) space is as follows: The curve R(t) ∈ SO(3) satisfies the
Euler-Lagrange equations for

L(R, Ṙ) =
1
2

∫
B
ρ(X)|ṘX |2 d3X, (1.2.12)

if and only if Ω(t) defined by R−1Ṙv = Ω× v for all v ∈ R3 satisfies Euler’s equations

IΩ̇ = IΩ×Ω. (1.2.13)

An instructive proof of this relation involves understanding how to reduce variational
principles using their symmetry groups. By Hamilton’s principle, R(t) satisfies the Euler-
Lagrange equations, if and only if

δ

∫
Ldt = 0.

Let l(Ω) = 1
2 (IΩ) ·Ω, so that l(Ω) = L(R, Ṙ) if R and Ω are related as above.
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To see how we should transform Hamilton’s principle, define the skew matrix Ω̂ by
Ω̂v = Ω×v for any v ∈ R3 , and differentiate the relation R−1Ṙ = Ω̂ with respect to R to
get

−R−1(δR)R−1Ṙ + R−1(δṘ) = δ̂Ω. (1.2.14)

Let the skew matrix Σ̂ be defined by

Σ̂ = R−1δR, (1.2.15)

and define the vector Σ by

Σ̂v = Σ× v. (1.2.16)

Note that

˙̂Σ = −R−1ṘR−1δR + R−1δṘ,

so

R−1δṘ = ˙̂Σ + R−1ṘΣ̂ . (1.2.17)

Substituting (1.2.17) and (1.2.15) into (1.2.14) gives

−Σ̂Ω̂ + ˙̂Σ + Ω̂Σ̂ = δ̂Ω,

that is,

δ̂Ω = ˙̂Σ + [Ω̂, Σ̂]. (1.2.18)

The identity [Ω̂, Σ̂] = (Ω×Σ)̂ holds by Jacobi’s identity for the cross product and so

δΩ = Σ̇ + Ω×Σ. (1.2.19)

These calculations prove the following:

Theorem 1.2.1 Hamilton’s variational principle

δS = δ

∫ b

a

Ldt = 0 (1.2.20)

on TSO(3) is equivalent to the reduced variational principle

δSred = δ

∫ b

a

l dt = 0 (1.2.21)

on R
3 where the variations δΩ are of the form (1.2.19) with Σ(a) = Σ(b) = 0.

This sort of argument applies to any Lie group as we shall see shortly.
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1.3 The Lie–Poisson Equations.

Hamiltonian Form of the Rigid Body Equations. If, instead of variational principles,
we concentrate on Poisson brackets and drop the requirement that they be in the canonical
form, then there is also a simple and beautiful Hamiltonian structure for the rigid body
equations that is now well known2. To recall this, introduce the angular momenta

Πi = IiΩi =
∂L

∂Ωi
, i = 1, 2, 3, (1.3.1)

so that the Euler equations become

Π̇1 =
I2 − I3
I2I3

Π2Π3,

Π̇2 =
I3 − I1
I3I1

Π3Π1,

Π̇3 =
I1 − I2
I1I2

Π1Π2,

(1.3.2)

that is,

Π̇ = Π×Ω. (1.3.3)

Introduce the following rigid body Poisson bracket on functions of the Π’s:

{F,G}(Π) = −Π · (∇ΠF ×∇ΠG) (1.3.4)

and the Hamiltonian

H =
1
2

(
Π2

1

I1
+

Π2
2

I2
+

Π2
3

I3

)
. (1.3.5)

One checks that Euler’s equations are equivalent to Ḟ = {F,H}.
The rigid body variational principle and the rigid body Poisson bracket are special cases

of general constructions associated to any Lie algebra g. Since we have already described
the general Euler–Poincaré construction on g, we turn next to the Hamiltonian counterpart
on the dual space.

The Abstract Lie-Poisson Equations. Let F,G be real valued functions on the dual
space g∗. Denoting elements of g∗ by µ, let the functional derivative of F at µ be the unique
element δF/δµ of g defined by

lim
ε→0

1
ε

[F (µ+ εδµ)− F (µ)] =
〈
δµ,

δF

δµ

〉
, (1.3.6)

for all δµ ∈ g∗, where 〈 , 〉 denotes the pairing between g∗ and g. Define the (±) Lie-Poisson
brackets by

{F,G}±(µ) = ±
〈
µ,

[
δF

δµ
,
δG

δµ

]〉
. (1.3.7)

Using the coordinate notation introduced above, the (±) Lie-Poisson brackets become

{F,G}±(µ) = ±
r∑

a,b,d=1

Cdabµd
∂F

∂µa

∂G

∂µb
, (1.3.8)

2See IMS for details, references, and the history of this structure.
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where µ =
∑r
d=1 µde

d.
The Lie-Poisson equations, determined by Ḟ = {F,H} read

µ̇a = ±
r∑

b,d=1

Cdabµd
∂H

∂µb
,

or intrinsically,

µ̇ = ∓ ad∗∂H/∂µ µ. (1.3.9)

This setting of mechanics is a special case of the general theory of systems on Poisson
manifolds, for which there is now an extensive theoretical development. (See Guillemin
and Sternberg [1984] and Marsden and Ratiu [1998] for a start on this literature.) There
is an especially important feature of the rigid body bracket that carries over to general
Lie algebras, namely, Lie-Poisson brackets arise from canonical brackets on the cotangent
bundle (phase space) T ∗G associated with a Lie group G which has g as its associated Lie
algebra.

For a rigid body which is free to rotate about its center of mass, G is the (proper)
rotation group SO(3). The choice of T ∗G as the primitive phase space is made according to
the classical procedures of mechanics described earlier. For the description using Lagrangian
mechanics, one forms the velocity-phase space TSO(3). The Hamiltonian description on T ∗G
is then obtained by standard procedures.

The passage from T ∗G to the space of Π’s (body angular momentum space) is determined
by left translation on the group. This mapping is an example of a momentum map; that
is, a mapping whose components are the “Noether quantities” associated with a symmetry
group. In this case, the momentum map in question is that associated with right translations
of the group. Since the Hamiltonian is left invariant, this momentum map is not conserved.
Indeed, it is the spatial angular momentum π = RΠ that is conserved, not Π.

The map from T ∗G to g∗ being a Poisson (canonical) map is a general fact about mo-
mentum maps. The Hamiltonian point of view of all this is again a well developed subject.

Geodesic motion. As emphasized by Arnold [1966a], in many interesting cases, the
Euler–Poincaré equations on a Lie algebra g correspond to geodesic motion on the cor-
responding group G. We shall explain the relationship between the equations on g and on
G shortly, in theorem 1.6.1. Similarly, on the Hamiltonian side, the preceding paragraphs
explained the relation between the Hamiltonian equations on T ∗G and the Lie–Poisson
equations on g∗. However, the issue of geodesic motion is simple: if the Lagrangian or
Hamiltonian on g or g∗ is purely quadratic, then the corresponding motion on the group is
geodesic motion.

More History. The Lie-Poisson bracket was discovered by Sophus Lie (Lie [1890], Vol.
II, p. 237). However, Lie’s bracket and his related work was not given much attention
until the work of Kirillov, Kostant, and Souriau (and others) revived it in the mid-1960s.
Meanwhile, it was noticed by Pauli and Martin around 1950 that the rigid body equations
are in Hamiltonian form using the rigid body bracket, but they were apparently unaware
of the underlying Lie theory. It would seem that while Poincaré was aware of Lie theory,
in his work on the Euler equations he was unaware of Lie’s work on Lie-Poisson structures.
He also seems not to have been aware of the variational structure of the Euler equations.
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1.4 The Heavy Top.

Another system important to Poincaré and also for us later when we treat semidirect product
reduction theory is the heavy top; that is, a rigid body with a fixed point in a gravitational
field. For the Lie-Poisson description, the underlying Lie algebra, surprisingly, consists of
the algebra of infinitesimal Euclidean motions in R3 . These do not arise as actual Euclidean
motions of the body since the body has a fixed point! As we shall see, there is a close
parallel with the Poisson structure for compressible fluids.

The basic phase space we start with is again T ∗SO(3). In this space, the equations are
in canonical Hamiltonian form. Gravity breaks the symmetry and the system is no longer
SO(3) invariant, so it cannot be written entirely in terms of the body angular momentum
Π. One also needs to keep track of Γ, the “direction of gravity” as seen from the body
(Γ = R−1k where the unit vector k points upward and R is the element of SO(3) describing
the current configuration of the body). The equations of motion are

Π̇1 =
I2 − I3
I2I3

Π2Π3 +Mg` (Γ2χ3 − Γ3χ2),

Π̇2 =
I3 − I1
I3I1

Π3Π1 +Mg` (Γ3χ1 − Γ1χ3), (1.4.1)

Π̇3 =
I1 − I2
I1I2

Π1Π2 +Mg` (Γ1χ2 − Γ2χ1),

or, in vector notation,

Π̇ = Π×Ω +Mg`Γ× χ , (1.4.2)

and

Γ̇ = Γ×Ω, (1.4.3)

where M is the body’s mass, g is the acceleration of gravity, χ is the unit vector on the
line connecting the fixed point with the body’s center of mass, and ` is the length of this
segment.

The Lie algebra of the Euclidean group is se(3) = R
3 × R

3 with the Lie bracket

[(ξ,u), (η,v)] = (ξ × η, ξ × v− η × u). (1.4.4)

We identify the dual space with pairs (Π,Γ); the corresponding (−) Lie-Poisson bracket
called the heavy top bracket is

{F,G}(Π,Γ) = −Π · (∇ΠF ×∇ΠG)
− Γ · (∇ΠF ×∇ΓG−∇ΠG×∇ΓF ). (1.4.5)

The above equations for Π,Γ can be checked to be equivalent to

Ḟ = {F,H}, (1.4.6)

where the heavy top Hamiltonian

H(Π,Γ) =
1
2

(
Π2

1

I1
+

Π2
2

I2
+

Π2
3

I3

)
+Mg`Γ ·χ (1.4.7)

is the total energy of the body (see, for example, Sudarshan and Mukunda [1974]).
The Lie algebra of the Euclidean group has a structure which is a special case of what

is called a semidirect product . Here it is the product of the group of rotations with the
translation group. It turns out that semidirect products occur under rather general cir-
cumstances when the symmetry in T ∗G is broken. In particular, there are similarities in
structure between the Poisson bracket for compressible flow and that for the heavy top. The
general theory for semidirect products will be reviewed shortly.
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A Kaluza-Klein form for the heavy top. We make a remark about the heavy top
equations that is relevant for later purposes. Namely, since the equations have a Hamiltonian
that is of the form kinetic plus potential, it is clear that the equations are not of Lie-Poisson
form on so(3)∗, the dual of the Lie algebra of SO(3) and correspondingly, are not geodesic
equations on SO(3). While the equations are Lie–Poisson on se(3)∗, the Hamiltonian is not
quadratic, so again the equations are not geodesic equations on SE(3).

However, they can be viewed in a different way so that they become Lie-Poisson equations
for a different group and with a quadratic Hamiltonian. In particular, they are the reduction
of geodesic motion. To effect this, one changes the Lie algebra from se(3) to the product
se(3) × so(3). The dual variables are now denoted Π,Γ,χ. We regard the variable χ as a
momentum conjugate to a new variable, namely a ghost element of the rotation group in
such a way that χ is a constant of the motion; in Kaluza-Klein theory for charged particles
one thinks of the charge this way, as being the momentum conjugate to a (ghost) cyclic
variable.

We modify the Hamiltonian by replacing Γ · χ by, for example, Γ · χ + ‖Γ‖2 + ‖χ‖2,
or any other terms of this sort that convert the potential energy into a positive definite
quadratic form in Γ and χ. The added terms, being Casimir functions, do not affect the
equations of motion. However, now the Hamiltonian is purely quadratic and hence comes
from geodesic motion on the group SE(3) × SO(3). Notice that this construction is quite
different from that of the well known Jacobi metric method.

Later on in our study of continuum mechanics, we shall repeat this construction to
achieve geodesic form for some other interesting continuum models. Of course one can also
treat a heavy top that is charged or has a magnetic moment using these ideas.

1.5 Incompressible Fluids.

Arnold [1966a] showed that the Euler equations for an incompressible fluid could be given
a Lagrangian and Hamiltonian description similar to that for the rigid body. His approach3

has the appealing feature that one sets things up just the way Lagrange and Hamilton would
have done: one begins with a configuration space Q, forms a Lagrangian L on the velocity
phase space TQ and then Legendre transforms to a Hamiltonian H on the momentum phase
space T ∗Q. Thus, one automatically has variational principles, etc. For ideal fluids, Q = G
is the group Diffvol(D) of volume preserving transformations of the fluid container (a region
D in R

2 or R
3 , or a Riemannian manifold in general, possibly with boundary). Group

multiplication in G is composition.
The reason we select G = Diffvol(D) as the configuration space is similar to that for the

rigid body; namely, each ϕ in G is a mapping of D to D which takes a reference point X ∈ D
to a current point x = ϕ(X) ∈ D; thus, knowing ϕ tells us where each particle of fluid goes
and hence gives us the current fluid configuration . We ask that ϕ be a diffeomorphism to
exclude discontinuities, cavitation, and fluid interpenetration, and we ask that ϕ be volume
preserving to correspond to the assumption of incompressibility.

A motion of a fluid is a family of time-dependent elements of G, which we write as x =
ϕ(X, t). The material velocity field is defined by V(X, t) = ∂ϕ(X, t)/∂t, and the spatial
velocity field is defined by v(x, t) = V(X, t) where x and X are related by x = ϕ(X, t). If
we suppress “t” and write ϕ̇ for V, note that

v = ϕ̇ ◦ ϕ−1 i.e., vt = Vt ◦ ϕ−1
t , (1.5.1)

3Arnold’s approach is consistent with what appears in the thesis of Ehrenfest from around 1904; see Klein
[1970]. However, Ehrenfest bases his principles on the more sophisticated curvature principles of Gauss and
Hertz.
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where ϕt(x) = ϕ(X, t). We can regard (1.5.1) as a map from the space of (ϕ, ϕ̇) (material
or Lagrangian description) to the space of v’s (spatial or Eulerian description). Like the
rigid body, the material to spatial map (1.5.1) takes the canonical bracket to a Lie-Poisson
bracket; one of our goals is to understand this reduction. Notice that if we replace ϕ by ϕ◦η
for a fixed (time-independent) η ∈ Diffvol(D), then ϕ̇ ◦ϕ−1 is independent of η; this reflects
the right invariance of the Eulerian description (v is invariant under composition of ϕ by
η on the right). This is also called the particle relabeling symmetry of fluid dynamics.
The spaces TG and T ∗G represent the Lagrangian (material) description and we pass to
the Eulerian (spatial) description by right translations and use the (+) Lie-Poisson bracket.
One of the things we shall explain later is the reason for the switch between right and left
in going from the rigid body to fluids.

The Euler equations for an ideal, incompressible, homogeneous fluid moving in the
region D are

∂v
∂t

+ (v · ∇)v = −∇p (1.5.2)

with the constraint div v = 0 and boundary conditions: v is tangent to ∂D.
The pressure p is determined implicitly by the divergence-free (volume preserving) con-

straint div v = 0. The associated Lie algebra g is the space of all divergence-free vector
fields tangent to the boundary. This Lie algebra is endowed with the negative Jacobi-Lie
bracket of vector fields given by

[v,w]iL =
n∑
j=1

(
wj

∂vi

∂xj
− vj ∂w

i

∂xj

)
. (1.5.3)

(The subscript L on [· , ·] refers to the fact that it is the left Lie algebra bracket on g. The
most common convention for the Jacobi-Lie bracket of vector fields, also the one we adopt,
has the opposite sign.) We identify g and g∗ by using the pairing

〈v,w〉 =
∫
D

v ·w d3x. (1.5.4)

Hamiltonian structure for fluids. Introduce the (+) Lie-Poisson bracket, called the
ideal fluid bracket , on functions of v by

{F,G}(v) =
∫
D

v ·
[
δF

δv
,
δG

δv

]
L

d3x, (1.5.5)

where δF/δv is defined by

lim
ε→0

1
ε

[F (v + εδv) − F (v)] =
∫
D

(
δv · δF

δv

)
d3x. (1.5.6)

With the energy function chosen to be the kinetic energy,

H(v) =
1
2

∫
D
|v|2 d3x, (1.5.7)

one can verify that the Euler equations (1.5.2) are equivalent to the Poisson bracket equa-
tions

Ḟ = {F,H} (1.5.8)
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for all functions F on g∗. For this, one uses the orthogonal decomposition w = Pw +∇p
of a vector field w into a divergence-free part Pw in g and a gradient. The Euler equations
can be written as

∂v
∂t

+ P(v · ∇v) = 0. (1.5.9)

One can also express the Hamiltonian structure in terms of the vorticity as a basic
dynamic variable and show that the preservation of coadjoint orbits amounts to Kelvin’s
circulation theorem. Marsden and Weinstein [1983] show that the Hamiltonian structure in
terms of Clebsch potentials fits naturally into this Lie-Poisson scheme, and that Kirchhoff’s
Hamiltonian description of point vortex dynamics, vortex filaments, and vortex patches can
be derived in a natural way from the Hamiltonian structure described above.

Lagrangian structure for fluids. The general framework of the Euler–Poincaré and the
Lie-Poisson equations gives other insights as well. For example, this general theory shows
that the Euler equations are derivable from the “variational principle”

δ

∫ b

a

∫
D

1
2
‖v‖2 d3x = 0

which should hold for all variations δv of the form

δv = u̇ + [u,v]L

where u is a vector field (representing the infinitesimal particle displacement) vanishing
at the temporal endpoints. The constraints on the allowed variations of the fluid velocity
field are commonly known as “Lin constraints” and their nature was clarified by Newcomb
[1962] and Bretherton [1970]. This itself has an interesting history, going back to Ehrenfest,
Boltzmann, and Clebsch, but again, there was little if any contact with the heritage of Lie
and Poincaré on the subject.

1.6 The Basic Euler–Poincaré Equations.

We now recall the abstract derivation of the “basic” Euler–Poincaré equations (i.e., the
Euler–Poincaré equations with no forcing or advected parameters) for left–invariant La-
grangians on Lie groups (see Marsden and Scheurle [1993a,b], Marsden and Ratiu [1998]
and Bloch et al. [1996]).

Theorem 1.6.1 Let G be a Lie group and L : TG→ R a left (respectively, right) invariant
Lagrangian. Let l : g→ R be its restriction to the tangent space at the identity. For a curve
g(t) ∈ G, let ξ(t) = g(t)−1ġ(t); i.e., ξ(t) = Tg(t)Lg(t)−1 ġ(t) (respectively, ξ(t) = ġ(t)g(t)−1).
Then the following are equivalent:

i Hamilton’s principle

δ

∫ b

a

L(g(t), ġ(t))dt = 0 (1.6.1)

holds, as usual, for variations δg(t) of g(t) vanishing at the endpoints.

ii The curve g(t) satisfies the Euler-Lagrange equations for L on G.
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iii The “variational” principle

δ

∫ b

a

l(ξ(t))dt = 0 (1.6.2)

holds on g, using variations of the form

δξ = η̇ ± [ξ, η], (1.6.3)

where η vanishes at the endpoints (+ corresponds to left invariance and − to right
invariance).4

iv The basic Euler–Poincaré equations hold

d

dt

δl

δξ
= ± ad∗ξ

δl

δξ
. (1.6.4)

Basic Ideas of the Proof. First of all, the equivalence of i and ii holds on the tangent
bundle of any configuration manifold Q, by the general Hamilton principle. To see that ii
and iv are equivalent, one needs to compute the variations δξ induced on ξ = g−1ġ = TLg−1 ġ
by a variation of g. We will do this for matrix groups; see Bloch, Krishnaprasad, Marsden,
and Ratiu [1994] for the general case. To calculate this, we need to differentiate g−1ġ in the
direction of a variation δg. If δg = dg/dε at ε = 0, where g is extended to a curve gε, then,

δξ =
d

dε
g−1 d

dt
g,

while if η = g−1δg, then

η̇ =
d

dt
g−1 d

dε
g.

The difference δξ − η̇ is thus the commutator [ξ, η].
To complete the proof, we show the equivalence of iii and iv in the left-invariant case.

Indeed, using the definitions and integrating by parts produces,

δ

∫
l(ξ)dt =

∫
δl

δξ
δξ dt =

∫
δl

δξ
(η̇ + adξη) dt

=
∫ [
− d

dt

(
δl

δξ

)
+ ad∗ξ

δl

δξ

]
η dt ,

so the result follows.
There is of course a right invariant version of this theorem in which ξ = ġg−1 and the

Euler–Poincaré equations acquire appropriate minus signs as in equation (1.6.4). We shall
go into this in detail later.

1.7 Lie–Poisson Reduction.

We now recall from IMS some of the key ideas about Lie–Poisson reduction.
Besides the Poisson structure on a symplectic manifold, the Lie–Poisson bracket on g∗,

the dual of a Lie algebra, is perhaps the most fundamental example of a Poisson structure.
4Because there are constraints on the variations, this principle is more like a Lagrange d’Alembert

principle, which is why we put “variational” in quotes. As we shall explain, such problems are not literally
variational.
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If P is a Poisson manifold and G acts on it freely and properly, then P/G is also Poisson
in a natural way: identify functions on P/G with G-invariant functions on P and use this
to induce a bracket on functions on P/G. In the case P = T ∗G and G acts on the left
by cotangent lift, then T ∗G/G ∼= g∗ inherits a Poisson structure. The Lie–Poisson bracket
gives an explicit formula for this bracket.

Given two smooth functions F,H on (g∗), we extend them to functions, FL,HL (respec-
tively, FR,HR) on all T ∗G by left (respectively, right) translations. The bracket {FL,HL}
(respectively, {FR,HR}) is taken in the canonical symplectic structure Ω on T ∗G. The
result is then restricted to g∗ regarded as the cotangent space at the identity; this defines
{F,H}. We shall prove that one gets the Lie–Poisson bracket this way. In IMS, Chapter
14, it is shown that the symplectic leaves of this bracket are the coadjoint orbits in g∗.

There is another side to the story too, where the basic objects that are reduced are not
Poisson brackets, but rather are variational principles. This aspect of the story, which takes
place on g rather than on g∗, will be told as well.

We begin by studying the way the canonical Poisson bracket on T ∗G is related to the
Lie–Poisson bracket on g∗.

Theorem 1.7.1 (Lie–Poisson Reduction Theorem) Identifying the set of functions on
g∗ with the set of left (respectively, right) invariant functions on T ∗G endows g∗ with Poisson
structures given by

{F,H}±(µ) = ±
〈
µ,

[
δF

δµ
,
δH

δµ

]〉
. (1.7.1)

The space g∗ with this Poisson structure is denoted g∗− (respectively, g∗+). In contexts where
the choice of left or right is clear, we shall drop the “ −” or “+” from {F,H}− and {F,H}+.

Following Marsden and Weinstein [1983], this bracket on g∗ is called the Lie–Poisson
bracket after Lie [1890], p. 204. There are already some hints of this structure in Jacobi
[1866], p.7. It was rediscovered several times since Lie’s work. For example, it appears
explicitly in Berezin [1967]. It is closely related to results of Arnold, Kirillov, Kostant, and
Souriau in the 1960s. See Weinstein [1983a] and IMS for more historical information.

Before proving the theorem, we explain the terminology used in its statement. First,
recall how the Lie algebra of a Lie group G is constructed. We define g = TeG, the tangent
space at the identity. For ξ ∈ g, we define a left invariant vector field ξL = Xξ on G by
setting

ξL(g) = TeLg · ξ (1.7.2)

where Lg : G → G denotes left translation by g ∈ G and is defined by Lgh = gh. Given
ξ, η ∈ g, define

[ξ, η] = [ξL, ηL](e), (1.7.3)

where the bracket on the right-hand side is the Jacobi–Lie bracket on vector fields. The
bracket (1.7.3) makes g into a Lie algebra, that is, [ , ] is bilinear, antisymmetric, and satisfies
Jacobi’s identity. For example, if G is a subgroup of GL(n), the group of invertible n × n
matrices, we identify g = TeG with a vector space of matrices and then as we calculated in
IMS, Chapter 9,

[ξ, η] = ξη − ηξ, (1.7.4)

the usual commutator of matrices.
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A function FL : T ∗G→ R is called left invariant if, for all g ∈ G,

FL ◦ T ∗Lg = FL, (1.7.5)

where T ∗Lg denotes the cotangent lift of Lg, so T ∗Lg is the pointwise adjoint of TLg. Given
F : g∗ → R and αg ∈ T ∗G, set

FL(αg) = F (T ∗e Lg · αg) (1.7.6)

which is the left invariant extension of F from g∗ to T ∗G. One similarly defines the
right invariant extension by

FR(αg) = F (T ∗eRg · αg). (1.7.7)

The main content of the Lie–Poisson reduction theorem is the pair of formulae

{F,H}− = {FL,HL} |g∗ (1.7.8)

and

{F,H}+ = {FR,HR} |g∗, (1.7.9)

where { , }± is the Lie–Poisson bracket on g∗ and { , } is the canonical bracket on T ∗G.
Another way of saying this is that the map λ : T ∗G → g∗− (respectively, ρ : T ∗G → g∗+ on
T ∗G) given by

αg 7→ T ∗e Lg · αg (respectively, T ∗eRg · αg) (1.7.10)

is a Poisson map.
Note that the correspondence between ξ and ξL identifies F(g∗) with the left invariant

functions on T ∗G, which is a subalgebra of F(T ∗G) (since lifts are canonical), so (1.7.1)
indeed defines a Poisson structure (although this fact may also be readily verified directly).

To prove the Lie–Poisson reduction theorem, first prove the following.

Lemma 1.7.2 Let G act on itself by left translations. Then

ξG(g) = TeRg · ξ. (1.7.11)

Proof. By definition of infinitesimal generator,

ξG(g) =
d

dt
Φexp(tξ)(g)

∣∣∣∣
t=0

=
d

dt
Rg(exp(tξ))

∣∣∣∣
t=0

= TeRg · ξ

by the chain rule. H

Proof of the Theorem. Let JL : T ∗G → g∗ be the momentum map for the left action.
From the formula for the momentum map for a cotangent lift (IMS, Chapter 12, we have

〈JL(αg), ξ〉 = 〈αg, ξG(g)〉
= 〈αg, TeRg · ξ〉
= 〈T ∗eRg · αg, ξ〉 .
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Thus,

JL(αg) = T ∗eRg · αg,

so JL = ρ. Similarly JR = λ. However, the momentum maps JL and JR are equivariant
being the momentum maps for cotangent lifts, and so from IMS §12.5, they are Poisson
maps. The theorem now follows.

Since the Euler-Lagrange and Hamilton equations on TQ and T ∗Q are equivalent in
the regular case, it follows that the Lie-Poisson and Euler–Poincaré equations are then also
equivalent. To see this directly, we make the following Legendre transformation from g to
g∗:

µ =
δl

δξ
, h(µ) = 〈µ, ξ〉 − l(ξ).

Note that

δh

δµ
= ξ +

〈
µ,
δξ

δµ

〉
−
〈
δl

δξ
,
δξ

δµ

〉
= ξ

and so it is now clear that the Lie-Poisson equations (1.3.9) and the Euler–Poincaré equations
(1.6.4) are equivalent.

Lie-Poisson Systems on Semidirect Products. As we described above, the heavy top
is a basic example of a Lie-Poisson Hamiltonian system defined on the dual of a semidirect
product Lie algebra. The general study of Lie-Poisson equations for systems on the dual of
a semidirect product Lie algebra grew out of the work of many authors including Sudarshan
and Mukunda [1974], Vinogradov and Kupershmidt [1977], Ratiu [1980], Guillemin and
Sternberg [1980], Ratiu [1981, 1982], Marsden [1982], Marsden, Weinstein, Ratiu, Schmidt
and Spencer [1983], Holm and Kupershmidt [1983], Kupershmidt and Ratiu [1983], Holmes
and Marsden [1983], Marsden, Ratiu and Weinstein [1984a,b], Guillemin and Sternberg
[1984], Holm, Marsden, Ratiu and Weinstein [1985], Abarbanel, Holm, Marsden, and Ratiu
[1986] and Marsden, Misiolek, Perlmutter and Ratiu [1997]. As these and related references
show, the Lie-Poisson equations apply to a wide variety of systems such as the heavy top,
compressible flow, stratified incompressible flow, and MHD (magnetohydrodynamics).

In each of the above examples as well as in the general theory, one can view the given
Hamiltonian in the material representation as one that depends on a parameter; this pa-
rameter becomes dynamic when reduction is performed; this reduction amounts in many
examples to expressing the system in the spatial representation.

Rigid Body in a Fluid. The dynamics of a rigid body in a fluid are often modeled
by the classical Kirchhoff equations in which the fluid is assumed to be potential flow,
responding to the motion of the body. (For underwater vehicle dynamics we will need to
include buoyancy effects.)5 Here we choose G = SE(3), the group of Euclidean motions of
R

3 and the Lagrangian is the total energy of the body-fluid system. Recall that the Lie
algebra of SE(3) is se(3) = R

3 × R
3 with the bracket

[(Ω, u), (Σ, v)] = (Ω× Σ,Ω× v − Σ× u).

5This model may be viewed inside the larger model of an elastic-fluid interacting system with the con-
straint of rigidity imposed on the elastic body and with the reduced space for the fluid variables (potential
flow is simply reduction at zero for fluids).
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The reduced Lagrangian is again quadratic, so has the form

l(Ω, v) =
1
2

ΩTJΩ + ΩTDv +
1
2
vTMv.

The Lie–Poisson equations are computed to be

Π̇ = Π× Ω + P × v
Ṗ = P × Ω

}
where Π = ∂l/∂Ω = JΩ +Dv the “angular momentum” and P = ∂l/∂v = Mv +DTΩ, the
“linear momentum”.

Again, we suggest that the reader work out the reduced variational principle. Relevant
references are Lamb [1932], Leonard [1996], Leonard and Marsden [1997], and Holmes,
Jenkins and Leonard [1997].

KdV Equation. Following Ovsienko and Khesin [1987], we will now indicate how the
KdV equations may be recast as Euler-Poincaré equations. The KdV equation is the
following equation for a scalar function u(x, t) of the real variables x and t:

ut + 6uux + uxxx = 0.

We let g be the Lie algebra of vector fields u on the circle (of length 1) with the standard
bracket

[u, v] = u′v − v′u.

Let the Gelfand-Fuchs cocycle be defined by6

Σ(u, v) = γ

∫ 1

0

u′(x)v′′(x)dx,

where γ is a constant. Let the Virasoro Lie algebra be defined by g̃ = g × R with the
Lie bracket

[(u, a), (v, b)] = ([u, v], γΣ(u, v)).

This is verified to be a Lie algebra; the corresponding group is called the Bott-Virasoro
group. Let

l(u, a) =
1
2
a2 +

∫ 1

0

u2(x)dx.

Then one checks that the Euler-Poincaré equations are

da

dt
= 0

du

dt
= −γau′′′ − 3u′u

so that for appropriate a and γ and rescaling, we get the KdV equation. Thus, the KdV
equations may be regarded as geodesics on the Bott-Virasoro group.

Likewise, the Camassa-Holm equation can be recast as geodesics using theH1 rather than
the L2 metric (see Misiolek [1997] and Holm, Kouranbaeva, Marsden, Ratiu and Shkoller
[1998]).

6An interesting interpretation of the Gelfand-Fuchs cocycle as the curvature of a mechanical connection
is given in Marsden, Misiolek, Perlmutter and Ratiu [1998a,b].
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Lie–Poisson Reduction of Dynamics. If H is left G-invariant on T ∗G and XH is its
Hamiltonian vector field (recall from IMS that it is determined by Ḟ = {F,H}), then XH

projects to the Hamiltonian vector field Xh determined by ḟ = {f, h}− where h = H|T ∗eG =
H|g∗. We call ḟ = {f, h}− the Lie-Poisson equations .

As we have mentioned, if l is regular; i.e., ξ 7→ µ = ∂l/∂ξ is invertible, then the Legendre
transformation taking ξ to µ and l to

h(µ) = 〈ξ, µ〉 − l(ξ)

maps the Euler-Poincaré equations to the Lie-Poisson equations and vice-versa.
The heavy top is an example of a Lie-Poisson system on se(3)∗. However, its inverse

Legendre transformation (using the standard h) is degenerate! This is an indication that
something is missing on the Lagrangian side and this is indeed the case. The resolution is
found in Holm, Marsden and Ratiu [1998a].

Lie-Poisson systems have a remarkable property: they leave the coadjoint orbits in g∗

invariant. In fact the coadjoint orbits are the symplectic leaves of g∗. For each of exam-
ples 1 and 3, the reader may check directly that the equations are Lie-Poisson and that
the coadjoint orbits are preserved. For example 2, the preservation of coadjoint orbits is
essentially Kelvin’s circulation theorem. See Marsden and Weinstein [1983] for details. For
the rotation group, the coadjoint orbits are the familiar body angular momentum spheres,
shown in figure 1.7.1.

Π3

Π2

Π1

Figure 1.7.1: The rigid body momentum sphere.

History and literature. Lie-Poisson brackets were known to Lie around 1890, but ap-
parently this aspect of the theory was not picked up by Poincaré. The coadjoint orbit
symplectic structure was discovered by Kirillov, Kostant and Souriau in the 1960’s. They
were shown to be symplectic reduced spaces by Marsden and Weinstein [1974]. It is not
clear who first observed explicitly that g∗ inherits the Lie-Poisson structure by reduction as
in the preceding Lie-Poisson reduction theorem. It is implicit in many works such as Lie
[1890], Kirillov [1962], Guillemin and Sternberg [1980] and Marsden and Weinstein [1982,
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1983], but is explicit in Holmes and Marsden [1983] and Marsden, Weinstein, Ratiu, Schmid
and Spencer [1983].

1.8 Symplectic and Poisson Reduction.

The ways in which reduction has been generalized and applied has been nothing short
of phenomenal. We now sketch just a few of the highlights (eliminating many important
references). We shall be coming back to develop many of these ideas in detail in the text.
What follows is an overview that can be returned to later on.

First of all, in an effort to synthesize coadjoint orbit reduction (suggested by work of
Arnold, Kirillov, Kostant and Souriau) with techniques for the reduction of cotangent bun-
dles by Abelian groups of Smale [1970], Marsden and Weinstein [1974] developed symplectic
reduction; related results, but with a different motivation and construction were found by
Meyer [1973]. The construction is now well known: let (P,Ω) be a symplectic manifold and
J : P → g∗ be an equivariant momentum map; then avoiding singularities, J−1(µ)/Gµ = Pµ
is a symplectic manifold in a natural way. For example, for P = T ∗G, one gets coadjoint
orbits. We shall develop the theory of symplectic reduction in Chapter 2.

Kazhdan, Kostant and Sternberg [1978] showed how Pµ can be realized in terms of orbit
reduction Pµ ∼= J−1(O)/G and from this it follows (but not in a totally obvious way) that
Pµ are the symplectic leaves in P/G. This paper was also one of the first to notice deep links
between reduction and integrable systems, a subject continued by, for example, Bobenko,
Reyman and Semenov-Tian-Shansky [1989].

The way in which the Poisson structure on Pµ is related to that on P/G was clarified in
a generalization of Poisson reduction due to Marsden and Ratiu [1986], a technique that has
also proven useful in integrable systems (see, for example, Pedroni [1995] and Vanhaecke
[1996]).

The mechanical connection. A basic construction implicit in Smale [1970], Abraham
and Marsden [1978] and explicit in Kummer [1981] is the notion of the mechanical connec-
tion. The geometry of this situation was used to great effect in Guichardet [1984] and Iwai
[1987, 1990].

Assume Q is Riemannian (the metric often being the kinetic energy metric) and that
G acts on Q freely by isometries, so π : Q → Q/G is a principal bundle. If we declare
the horizontal spaces to be metric orthogonal to the group orbits, this uniquely defines a
connection called the mechanical connection . There are explicit formulas for it in terms
of the locked inertia tensor; see for instance, Marsden [1992] for details. The space Q/G is
called shape space and plays a critical role in the theory.7

Tangent and cotangent bundle reduction. The simplest case of cotangent bundle
reduction is reduction at zero in which case one has (T ∗Q)µ=0 = T ∗(Q/G), the latter with
the canonical symplectic form. Another basic case is when G is abelian. Here, (T ∗Q)µ ∼=
T ∗(Q/G) but the latter has a symplectic structure modified by magnetic terms; that is, by
the curvature of the mechanical connection.

The Abelian version of cotangent bundle reduction was developed by Smale [1970] and
Satzer [1975] and was generalized to the nonabelian case in Abraham and Marsden [1978].
It was Kummer [1981] who introduced the interpretations of these results in terms of the
mechanical connection.

7Shape space and its geometry plays a key role in computer vision. See for example, Le and Kendall
[1993].
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The Lagrangian analogue of cotangent bundle reduction is called Routh reduction and
was developed by Marsden and Scheurle [1993a,b]. Routh, around 1860 investigated what
we would call today the Abelian version.

The “bundle picture” begun by the developments of the cotangent bundle reduction the-
ory was significantly developed by Montgomery, Marsden and Ratiu [1984] and Montgomery
[1986] motivated by work of Weinstein and Sternberg on Wong’s equations (the equations
for a particle moving in a Yang-Mills field).

This bundle picture can be viewed as follows. Choosing a connection, such as the me-
chanical connection, on Q→ Q/G, one gets a natural isomorphism

T ∗Q/G ∼= T ∗(Q/G)⊕ g̃∗

where the sum is a Whitney sum of vector bundles over Q/G (fiberwise a direct sum) and
g̃∗ is the associated vector bundle to the co-adjoint action of G on g∗. The description of
the Poisson structure on this bundle (a synthesis of the canonical bracket, the Lie-Poisson
bracket and curvature) may be found in Cendra, Marsden and Ratiu [1998].

Lagrangian reduction. The Lagrangian analogue of the bundle picture is the dual iso-
morphism

TQ/G ∼= T (Q/G)⊕ g̃

whose geometry is developed in Cendra, Marsden and Ratiu [1998]. In particular, the
equations and variational principles are developed on this space. For Q = G this reduces
to the Euler-Poincaré picture we had previously. For G abelian, it reduces to the Routh
procedure.

If we have an invariant Lagrangian on TQ it induces a Lagrangian l on (TQ)/G and hence
on T (Q/G)⊕g̃. Calling the variables rα, ṙα and Ωα, the resulting reduced Euler-Lagrange
equations (implicitly contained in Cendra, Ibort and Marsden [1987] and explicitly in Mars-
den and Scheurle [1993b]) are

d

dt

∂l

∂ṙα
− ∂l

∂rα
=

∂l

∂Ωα
(−Bααβ ṙβ + ξaαdΩ

d)

d

dt

∂l

∂Ωb
=

∂l

∂Ωa
(−ξaαβ ṙα + CadbΩ

d)

where Baαβ is the curvature of the connection Abα, Cabd are the structure constants of the Lie
algebra g and where ξaαd = CabdAbα.

Using the geometry of the bundle TQ/G = T (Q/G)⊕g̃, one obtains a nice interpretation
of these equations in terms of covariant derivatives. One easily gets the dynamics of particles
in a Yang-Mills field (these are called Wong’s equations) as a special case; see Cendra, Holm,
Marsden and Ratiu [1998] for this example. Methods of Lagrangian reduction and the Wong
equations have proven very useful in optimal control problems. It was used in Koon and
Marsden [1997] to extend the falling cat theorem of Montgomery [1990] to the case of
nonholonomic systems.

Cotangent bundle reduction is very interesting for group extensions, such as the Bott-
Virasoro group described earlier, where the Gelfand-Fuchs cocycle may be interpreted as the
curvature of a mechanical connection. This is closely related to work of Marsden, Misiolek,
Perlmutter and Ratiu [1998a,b] on reduction by stages. This work in turn is an outgrowth of
earlier work of Guillemin and Sternberg [1980], Marsden, Ratiu and Weinstein [1984a,b] and
many others on systems such as the heavy top, compressible flow and MHD. It also applies to
underwater vehicle dynamics as shown in Leonard [1997] and Leonard and Marsden [1997].
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Semidirect Product Reduction. In semidirect product reduction, one supposes that G
acts on a vector space V (and hence on its dual V ∗). From G and V we form the semidirect
product Lie group S = GsV , the set G× V with multiplication

(g1, v1) · (g2, v2) = (g1g2, v1 + g1v2).

The Euclidean group SE(3) = SO(3)sR
3 , the semidirect product of rotations and transla-

tions is a basic example. Now suppose we have a Hamiltonian on T ∗G that is invariant under
the isotropy group Ga0 for a0 ∈ V ∗. The semidirect product reduction theorem states
that reduction of T ∗G by Ga0 gives reduced spaces that are symplectically diffeomorphic to
coadjoint orbits in the dual of the Lie algebra of the semi-direct product: (gsV )∗.

This is a very important construction in applications where one has “advected quantities”
(such as density in compressible flow). Its Lagrangian counterpart, which is not simply the
Euler-Poincaré equations on gsV , is developed in Holm, Marsden and Ratiu [1998a] along
with applications to continuum mechanics. Cendra, Holm, Hoyle and Marsden [1998] have
applied this idea to the Maxwell-Vlasov equations of plasma physics.

If one reduces the semidirect product group S = GsV in two stages, first by V and
then by G, one recovers the semidirect product reduction theorem mentioned above.

A far reaching generalization of this semidirect product theory is given in Marsden, Mi-
siolek, Perlmutter and Ratiu [1998a,b] in which one has a group M with a normal subgroup
N ⊂M and M acts on a symplectic manifold P . One wants to reduce P in two stages, first
by N and then by M/N . On the Poisson level this is easy: P/M ∼= (P/N)/(M/N) but on
the symplectic level it is quite subtle. Cendra, Marsden and Ratiu [1998] have developed a
Lagrangian counterpart to reduction by stages.

Singular reduction. Singular reduction starts with the observation of Smale [1970] that
z ∈ P is a regular point of J iff z has no continuous isotropy. Motivated by this, Arms,
Marsden and Moncrief [1981] showed that the level sets J−1(0) of an equivariant momentum
map J have quadratic singularities at points with continuous symmetry. While easy for
compact group actions, their main examples were infinite dimensional! The structure of
J−1(0)/G for compact groups was developed in Sjamaar and Lerman [1990], and extended
to J−1(µ)/Gµ by Bates and Lerman [1996] and Ortega and Ratiu [1997a]. Many specific
examples of singular reduction and further references may be found in Bates and Cushman
[1997].

The method of invariants. An important method for the reduction construction is
called the method of invariants. This method seeks to parameterize quotient spaces by
functions that are invariant under the group action. The method has a rich history going
back to Hilbert’s invariant theory and it has much deep mathematics associated with it. It
has been of great use in bifurcation with symmetry (see Golubitsky, Stewart and Schaeffer
[1988] for instance).

In mechanics, the method was developed by Kummer, Cushman, Rod and coworkers
in the 1980’s. We will not attempt to give a literature survey here, other than to refer to
Kummer [1990], Kirk, Marsden and Silber [1996] and the book of Bates and Cushman [1997]
for more details and references. We shall illustrate the method with a famous system, the
three wave interaction, based on Alber, Luther, Marsden and Robbins [1998b].
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The three wave interaction. The quadratic resonant three wave equations are
the following ode’s on C

3 :

dq1
dt

= is1γ1q2q̄3

dq2
dt

= is2γ2q1q3

dq3
dt

= is3γ3q̄1q2

Here, q1, q2, q3 ∈ C , i =
√
−1, the overbar means complex conjugate, and γ1, γ2 and γ3 are

nonzero real numbers with γ1 + γ2 + γ3 = 0. The choice (s1, s2, s3) = (1, 1,−1); gives the
decay interaction, while (s1, s2, s3) = (−1, 1, 1) gives the explosive interaction.

Resonant wave interactions describe energy exchange among nonlinear modes in con-
texts involving nonlinear waves (the Benjamin-Feir instability, etc. ) in fluid mechanics,
plasma physics and other areas. There are other versions of the equations in which coupling
associated with phase modulations appears through linear and cubic terms. Much of our
motivation comes from nonlinear optics (optical transmission and switching). The three
wave equations are discussed in, for example, Whitham [1974] and its dynamical systems
aspects are explored in Guckenheimer and Mahalov [1992].

The methods we develop work rather generally for resonances—the rigid body is well
known to be intimately connected with the 1:1 resonance (see, for example, Cushman and
Rod [1982], Churchill, Kummer and Rod [1983]). The three wave interaction has an interest-
ing Hamiltonian and integrable structure. We shall use a standard Hamiltonian structure
and the technique of invariants to understand it. The decay system is Lie-Poisson for
the Lie algebra su(3) – this is the one of notable interest for phases (the explosive case is
associated with su(2, 1)). This is related to the Lax representation of the equations—the
n-wave interaction is likewise related to su(n). The general picture developed is useful for
many other purposes, such as polarization control (building on work of David, Holm and
Tratnik [1989] and David and Holm [1990]) and perturbations of Hamiltonian normal forms
(see Kirk, Marsden and Silber [1996]).

The canonical Hamiltonian structure. We describe how the three wave system is
Hamiltonian relative to a canonical Poisson bracket. We choose (primarily a matter of
convenience) a γi-weighted canonical bracket on C 3 . This bracket has the real and imaginary
parts of each complex dynamical variable qi as conjugate variables. Correspondingly, we will
use a cubic Hamiltonian. The scaled canonical Poisson bracket on C

3 may be written
in complex notation as

{F,G} = −2i
3∑
k=1

skγk

(
∂F

∂qk
∂G

∂q̄k
− ∂G

∂qk
∂F

∂q̄k

)
.

The corresponding symplectic structure can be written

Ω((z1, z2, z3), (w1, w2, w3)) = −
3∑
k=1

1
skγk

Im(zkw̄k).

The (cubic) Hamiltonian is

H = −1
2

(q̄1q2q̄3 + q1q̄2q3) .
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Hamilton’s equations for a Hamiltonian H are

dqk
dt

= {qk,H} ,

and it is straightforward to check that Hamilton’s equations are given in complex notation
by

dqk
dt

= −2iskγk
∂H

∂q̄k
,

One checks that Hamilton’s equations in our case coincide with the three wave equations.

Integrals of motion. Besides H itself, there are additional constants of motion, often
referred to as the Manley-Rowe relations:

K1 =
|q1|2
s1γ1

+
|q2|2
s2γ2

,

K2 =
|q2|2
s2γ2

+
|q3|2
s3γ3

,

K3 =
|q1|2
s1γ1

− |q3|
2

s3γ3
.

The vector function (K1,K2,K3) is the momentum map for the following symplectic
action of the group T 3 = S1 × S1 × S1 on C

3 :

(q1, q2, q3) 7→ (q1 exp(iγ1), q2 exp(iγ1), q3),
(q1, q2, q3) 7→ (q1, q2 exp(iγ2), q3 exp(iγ2)),
(q1, q2, q3) 7→ (q1 exp(iγ3), q2, q3 exp(−iγ3)).

The Hamiltonian taken with any two of the Kj are checked to be a complete and inde-
pendent set of conserved quantities. Thus, the system is Liouville-Arnold integrable.

The Kj clearly give only two independent invariants since K1 −K2 = K3. Any combi-
nation of two of these actions can be generated by the third reflecting the fact that the Kj

are linearly dependent. Another way of saying this is that the group action by T 3 is really
captured by the action of T 2.

Integrating the equations. To carry out the integration, one can make use of the Hamil-
tonian plus two of the integrals, Kj to reduce the system to quadratures. This is often
carried out using the transformation qj = √ρj exp iφj to obtain expressions for the phases
φj . The resulting expressions are nice, but the alternative point of view using invariants is
also useful.

Poisson reduction. Symplectic reduction of the above Hamiltonian system uses the sym-
metries and associated conserved quantitiesKk. In Poisson reduction, we replace C 3 with
the orbit space C

3/T 2, which then inherits a Poisson structure. To obtain the symplectic
leaves in this reduction, we use the method of invariants. Invariants for the T 2 action
are:

X + iY = q1q̄2q3

Z1 = |q1|2 − |q2|2

Z2 = |q2|2 − |q3|2
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These quantities provide coordinates for the four dimensional orbit space C
3/T 2. The

following identity (this is part of the invariant theory game) holds for these invariants and
the conserved quantities:

X2 + Y 2 = β(δ − Z2)(Z2 + s3γ3K2)(s2γ2K2 − Z2)

where the constants β, δ are given by

β =
s1γ1s2γ2s3γ3

(s2γ2 + s3γ3)3
, δ = s2γ2K1 + s3γ3(K1 −K2).

This defines a two dimensional surface in (X,Y, Z2) space, with Z1 determined by the values
of these invariants and the conserved quantities (so it may also be thought of as a surface
in (X,Y, Z1, Z2) as well). A sample of one of these surfaces is plotted in Figure 1.8.1.

Z2

Y

X

Figure 1.8.1: The reduced phase space for the three-wave equations.

We call these surfaces the three wave surfaces. They are examples of orbifolds. The
evident singularity in the space is typical of orbifolds and comes about from the non-freeness
of the group action.

Any trajectory of the original equations defines a curve on each three wave surface, in
which the Kj are set to constants. These three wave surfaces are the symplectic leaves in
the four dimensional Poisson space with coordinates (X,Y, Z1, Z2).

The original equations define a dynamical system in the Poisson reduced space and on
the symplectic leaves as well. The reduced Hamiltonian is

H(X,Y, Z1, Z2) = −X

and indeed, Ẋ = 0 is one of the reduced equations. Thus, the trajectories on the reduced
surfaces are obtained by slicing the surface with the planes X = Constant. The Poisson
structure on C

3 drops to a Poisson structure on (X,Y, Z1, Z2)-space, and the symplectic
structure drops to one on each three wave surface—this is of course an example of the
general procedure of symplectic reduction. Also, from the geometry, it is clear that
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interesting homoclinic orbits pass through the singular points—these are cut out by the
plane X = 0.

A control perspective allows one to manipulate the plane H = −X and thereby the
dynamics. This aspect is explored in Alber, Luther, Marsden and Robbins [1998a].



Chapter 2

Symplectic Reduction

The classical Noether theorem provides conservation laws for mechanical systems with sym-
metry. The conserved quantities collected as vector valued maps on phase space are called
momentum maps. Momentum maps have many wonderful properties; one of these is that
they are Poisson maps from the phase space (either a symplectic or a Poisson manifold) to
the dual of the Lie algebra of the symmetry group, with its Lie-Poisson structure, as was
proved in IMS.

The main goal of this chapter is to study the procedure of reducing the size of the
phase space by taking advantage of the conserved momentum map and the invariance of
the system under the given symmetry group. The results obtained generalize the classical
theorems of Liouville and Jacobi on reduction of systems by 2k dimensions if there are k
integrals in involution. The general reduction method also includes Jacobi’s elimination of
the node, fixing the center of mass in the n-body problem, as well as the coadjoint orbit
symplectic structure. This procedure plays a crucial role in many related constructions,
both mathematical and physical. Some key examples are given in the text along with the
theory; beside the basic examples using linear and angular momentum, one may treat other
more sophisticated examples, such as the Maxwell equations in vacuum and the equations
for a charged particle in an electromagnetic field. Appropriately combining them leads
to the Maxwell-Vlasov system, as in Marsden and Weinstein [1982]. Another interesting
example is the dynamics of coupled rigid bodies, rigid bodies with flexible attachments, etc.
Later on, we will also consider reconstruction—the opposite of reduction—and how it can
be used to give insight to geometric phases. The basic idea of geometric phases was already
discussed in the introduction to IMS.

This Chapter begins with the study of reduction in the context of presymplectic struc-
tures. Then it goes on to the case of symplectic reduction and then later on links this up
with Poisson reduction (the beginnings of Poisson reduction were started in Chapter 10 of
IMS. Of course the reduction of cotangent bundles is a very important situation and so it
is given special attention.

2.1 Presymplectic Reduction

A general setting for symplectic reduction (going back to Cartan [1922]) is the following.
Suppose ω is a presymplectic form ; i.e., a closed two-form on a manifold N . Let Eω be
the characteristic (or null) distribution of ω, defined as the distribution whose fiber at
x ∈ N is

Eω,x = {u ∈ TxN | ω(u, v) = 0 for all v ∈ TxN}.

27
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If X is a vector field on N , note that it takes values in Eω iff iXω = 0. Call ω regular if Eω
is a subbundle of TN . The latter condition holds in finite dimensions iff ω has constant rank;
see Abraham, Marsden and Ratiu, Manifolds, Tensor Analysis and Applications, hereafter
referred to as MTA, §4.4 for this and a corresponding result for the infinite dimensional case.
We assume ω is regular in the following discussion. We begin with the following important
observation.

Lemma 2.1.1 The characteristic distribution Eω of a regular presymplectic form ω is an
involutive distribution; that is, that sections of Eω are closed under the Jacobi-Lie bracket.

Proof. We will use the following general identity about differential forms:

i[X,Y ]ω = £X iY ω − iY £Xω

which is proved, for example, in MTA. Suppose X and Y are vector fields on N that take
their values in Eω; then,

i[X,Y ]ω = £X iY ω − iY £Xω = 0− iY (iXdω + diXω) = 0,

so [X,Y ] also takes its value in Eω . �

By Frobenius’ theorem (see MTA), Eω , being an integrable distribution, defines a folia-
tion Φ on N , called the null foliation of ω. Thus, Φ is a disjoint collection of submanifolds
whose union is N and whose tangent spaces are, at every point x,Eω,x, the fiber of Eω over
x. Assume, in addition, that Φ is a regular foliation, i.e., the space N/Φ of leaves of the
foliation is a smooth manifold and the canonical projection π : N → N/Φ is a submersion.
Necessary and sufficient conditions for this to hold are that the graph of Φ in N × N is a
closed submanifold and the projection p1 : graph Φ→ N onto the first factor is a surjective
submersion; see MTA §3.5 for details. Under these hypotheses, the tangent space to N/Φ
at [x], the leaf through x ∈ N , is isomorphic to the vector space quotient TxN/Eω,x, the
isomorphism being implemented by the projection π (see Figure 2.1.1).

We wish to define a two-form ωΦ on N/Φ by

ωΦ([x])([u], [v]) = ω(x)(u, v) (2.1.1)

where u, v ∈ TxN and [u], [v] denote their equivalence classes in TxN/Eω,x. For this defi-
nition to make sense, we need to prove that ωΦ is well-defined, that is, is independent of
choices of representatives of equivalence classes. While doing this, refer to Figure 2.1.2.

Lemma 2.1.2 Formula (2.1.1) defines a two form on N/Φ.

Proof. If [x] = [x′], then (by the proof of Frobenius’ theorem) there is a vector field
X with values in Eω such that x′ = ϕ(x), where ϕ is the time one map for X . Let
u′ = Txϕ · u, v′ = Txϕ · v, and let [u′′] = [u′] and [v′′] = [v′], so that u′′ − u′ and v′′ − v′
both belong to Eω,x′ . Thus,

ω(x′)(u′′, v′′) = ω(x′) ((u′′ − u′) + u′, (v′′ − v′) + v′) = ω(x′)(u′, v′)
= ω(ϕ(x))(Txϕ · u, Txϕ · v) = (ϕ∗ω)(x)(u, v).

Since dω = 0 and iXω = 0, we have £Xω = 0, so that ϕ∗ω = ω; i.e., ω(x′)(u′′, v′′) =
ω(x)(u, v), showing that ωΦ is well-defined. �

From the construction of ωΦ, it follows that

ω = π∗ωΦ. (2.1.2)

Since π is a surjective submersion, ωΦ is uniquely determined by property (2.1.2).
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N/Φ

π

N

leaves of N

Figure 2.1.1: N is foliated by the leaves of the foliation Φ, the null foliation of a closed two
form ω.

Lemma 2.1.3 The form ωΦ is closed.

Proof. From dω = 0, we get 0 = dπ∗ωΦ = π∗dωΦ, and since π is a submersion, dωΦ = 0.
�

Lemma 2.1.4 The form ωΦ is (weakly) non-degenerate.

Proof. Indeed, if ωΦ([x])([u], [v]) = ω(x)(u, v) = 0 for all v ∈ TxN , then u ∈ Eω,x i.e.,
[u] = [0]. �

Summarizing these results, we have thus proved the following.

Theorem 2.1.5 (Foliation Reduction Theorem) Let N be a smooth manifold and ω a
closed 2-form on N . Assume that the characteristic distribution Eω ⊂ TN of ω is regular,
that the foliation Φ it defines is regular, and let π : N → N/Φ denote the canonical pro-
jection. Then ω induces a unique (weak) symplectic structure ωΦ on N/Φ by the relation
π∗ωΦ = ω. The manifold N/Φ of leaves is called the reduced space.

For the next corollary, recall that in a symplectic manifold (P,Ω), the Ω-orthogonal
complement of a subbundle E ⊂ TP is the bundle EΩ whose fiber at z ∈ P is the linear
space

EΩ
z = {v ∈ TzP | Ω(v, w) = 0 for all w ∈ Ez}.

Corollary 2.1.6 Let (P,Ω) be a symplectic manifold and N ⊂ P a submanifold. Suppose
that TN ∩ (TN)Ω is a subbundle of TN . Then

i TN ∩ (TN)Ω is an integrable subbundle of TN ;

ii TN/[TN ∩ (TN)Ω] is a symplectic vector bundle over N ; that is, each fiber has an
induced symplectic structure varying smoothly over N ;
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leaf of Φ

N/Φ[x]

ϕ

x'v''

u''
v'

u'

v u

Figure 2.1.2: Showing that there is a well defined two form on the quotient space.

iii if the foliation Φ determined by TN ∩ (TN)Ω is regular, then N/Φ is a symplectic
manifold.

Proof Let i : N → P be the inclusion and ω = i∗Ω. The characteristic distribution of ω
at z ∈ N equals

Eω,z = {v ∈ TzN | Ω(z)(v, u) = 0 for all u ∈ TzN} = TzN ∩ (TzN)Ω,

so that the assertions of the corollary follow from the foliation reduction theorem. �

Notice that when N is coisotropic, i.e., when (TN)Ω ⊂ TN , the foliation Φ is deter-
mined by the distribution (TN)Ω.

Exercises

2.1-1

(a) If (E,Ω) is a symplectic vector space and if N ⊂ E is a subspace, show directly that
N/(N ∩NΩ) is a symplectic vector space.

(b) If (N,Ω) is a presymplectic vector space, show that N/NΩ is symplectic.

2.1-2 Let L ⊂ E be a Lagrangian subspace of a symplectic vector space (E,Ω) i.e., LΩ = L.
If N ⊃ L, show that N is coisotropic, whereas if N ⊂ L, N is isotropic.

2.1-3

(a) Let X be a divergence free vector field in R
3 and let µ = dx∧dy∧dz be the standard vol-

ume element. Show that ω = iXµ is a presymplectic form. Describe the characteristic
foliation and the reduced phase space for this example.

(b) Carry out this construction for the vector field X(x, y, z) = (1/yz, 1/xz, 1/xy).
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2.2 Symplectic Reduction by a Group Action

One of the most important situations in which reduction occurs is when the foliation is
determined by a group action, and the set N is a level set of a momentum map. This
section deals with this case.

Let Φ : G × P → P be a (left) symplectic action of a Lie group G on the symplectic
manifold (P,Ω) with an Ad∗-equivariant momentum map J : P → g∗. Let µ ∈ g∗ be a
regular value of J. (As we shall see in the remarks below, this condition can be weakened
somewhat and cases where it fails are important, but we assume for the moment that µ is a
regular value.) Thus, J−1(µ) is a submanifold of P and, if G and P are finite dimensional,
then dim J−1(µ) = dim P − dim G. Let

Gµ = {g ∈ G | Ad∗gµ = µ}

be the isotropy subgroup at µ for the coadjoint action. Its Lie algebra is

gµ = {ξ ∈ g | ad∗ξµ = 0}.

Lemma 2.2.1 The set J−1(µ) is invariant under the action of Gµ.

Proof. We are asserting that for z ∈ J−1(µ), then Φg(z) ∈ J−1(µ) for all g ∈ Gµ. Indeed,
this follows from the following calculation in which the appropriate group action is denoted
by concatenation and in which equivariance of the momentum map is used in the first
equality:

J(gz) = gJ(z) = gµ = µ �.

Definition 2.2.2 The quotient space Pµ = J−1(µ)/Gµ, is called the reduced phase space
at µ ∈ g∗.

The reduced space is a manifold if Gµ acts freely (i.e., if, for each z ∈ J−1(µ), g · z = z
implies g = e) and properly (i.e., (g, z) 7→ (g, g ·z) is a proper map) on J−1(µ). Under these
hypotheses, Pµ is a manifold, and the canonical projection πµ : J−1(µ)→ Pµ is a surjective
submersion. We alluded to theorems of this type above and refer to MTA for proofs.1

The symplectic reduction theorem states that Pµ is a symplectic manifold, the sym-
plectic form being naturally induced from Ω. It has a second part dealing with how a
Hamiltonian system drops to the reduced space that will be treated in §1.3. The symplec-
tic reduction theorem was formulated in this way by Marsden and Weinstein [1974] (see
also Meyer [1973]). Related earlier special but important versions of these theorems were
given by Arnold [1966], Smale [1970], and Nehoroshev [1970]. These results are inspired by
classical cases of Liouville and Jacobi (see, for example, Whittaker [1925]).

Theorem 2.2.3 (Symplectic Reduction Theorem) Consider a symplectic manifold (P,Ω)
on which there is a Hamiltonian left action of a Lie group G with an equivariant momentum
map J : P → g∗. Assume that µ ∈ g∗ is a regular value of J and that the isotropy group Gµ
acts freely and properly2 on J−1(µ). Then the reduced phase space Pµ = J−1(µ)/Gµ has a
unique (weak) symplectic form Ωµ characterized by

π∗µΩµ = i∗µΩ, (2.2.1)

1In the infinite dimensional case one uses special techniques to prove that the quotients are manifolds,
based on slice theorems (see Ebin [1970], Isenberg and Marsden [1983] and references therein.)

2In infinite dimensions, assume that Ω is weakly non-degenerate and add the hypothesis that the map
from the group to the orbit is an immersion, or replace the properness and immersion hypothesis by the
assumption that there is a slice theorem available to guarantee that the quotient is a manifold.
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where πµ : J−1(µ)→ Pµ is the canonical projection and iµ : J−1(µ)→ P is inclusion. (See
Figure 2.2.1) Finally (in the infinite dimensional case), if Ω is a strong symplectic form, so
is Ωµ.

Pµ

πµ

orbits of Gµ

J–1(µ)

Figure 2.2.1: In the symplectic reduction theorem, the orbits of Gµ give the characteristic
foliation of J−1(µ).

To prove the symplectic reduction theorem, we prepare a few more lemmas.

Lemma 2.2.4 Let (V,Ω) be a weak symplectic Banach space and W ⊂ V be a closed sub-
space. Then

(WΩ)Ω = W. (2.2.2)

Proof That there is a natural inclusion W ⊂ (WΩ)Ω follows directly from the definitions.
We first prove the converse inclusion in the finite dimensional situation and prove the general
case below.

First we show that

dimV = dimW + dimWΩ, (2.2.3)

even though V 6= W ⊕ WΩ in general. To prove (2.2.3), let r : V ∗ → W ∗ denote the
restriction map, defined by r(α) = α|W , for α ∈ V ∗ and note that r is onto (since it is the
dual of the inclusion map). Since Ω is non-degenerate, Ω[ : V → V ∗ is also onto and thus
r ◦Ω[ : V → W ∗ is onto. Since ker(r ◦Ω[) = WΩ, we conclude that V/WΩ is isomorphic to
W ∗, whence we get from linear algebra that dimV − dimWΩ = dimW , so (2.2.3) holds.

Applying (2.2.3) to W and then to WΩ, we get

dimV = dimW + dimWΩ = dimWΩ + dim(WΩ)Ω,

i.e.,
dimW = dim(WΩ)Ω.
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This and the inclusion W ⊂ (WΩ)Ω proves W = (WΩ)Ω. H

Optional Proof of Lemma 2.2.4 in the Infinite Dimensional Case
We start by recalling the Hahn-Banach theorem in the setting of locally convex topological
spaces. The proof may be found in MTA, Choquet [1969, §21], or Yosida [1971].

If V is a locally convex Hausdorff topological vector space, W is a closed subspace, and
v 6∈ W , then there is a continuous linear functional α : V → R such that α|W = 0 and
α(v) = 1 .

Now let (V,Ω) be a weak symplectic Banach space. With respect to the family of
seminorms py(x) = |Ω(x, y)|, V becomes a locally convex topological vector space; it is
verified to be Hausdorff since Ω is nondegenerate. Let us call this the Ω-topology. We also
require the following result.

The dual of V as a locally convex topological space is V ∗Ω = Ω[(V ) ⊂ V ∗. That is, a
linear map α : V → R is continuous in the locally convex Ω- topology of V if and only if
there exists a (unique) y ∈ V such that α(x) = Ω(x, y) for all x ∈ V .

This is proved, as in Choquet [1969, §22] as follows. Uniqueness of y is clear by nonde-
generacy of Ω. For existence, note that since α : V → R is continuous in the Ω-topology on
V , there exist y1, . . . , yn ∈ V such that |α(x)| ≤ C max

1≤i≤n
|Ω(x, yi)| for C a positive constant.

Consequently, α vanishes on

D =
n⋂
i=1

ker Ω[(yi) = (span{yi, . . . , yn})Ω;

E is clearly closed and has codimension at most n. Let F be an algebraic complement to
E in V ; F being finite dimensional, is closed and hence V = E ⊕ F , a Banach space direct
sum (MTA, Supplements 2.1B and 3.2C). It is clear that Ω[(y1)|F, . . . ,Ω[(yn)|F span F ∗

and thus we can write

α |F =
n∑
k=1

αkΩ[(yk) |F = Ω[
(

n∑
k=1

αkyk

)
|F.

Since both sides of this equality vanish on E, we get α = Ω[ (
∑n
k=1 akyk), so the claim is

proved. H

Now we return to Lemma 2.2.4. Suppose that v ∈ V \W . By the Hahn-Banach theorem,
there is an α ∈ V ∗Ω such that α = 0 on W and α(v) = 1. By the preceding result applied
to α, there exists a unique u ∈ V such that α(z) = Ω(z, u) for all z ∈ V . Thus, Ω(v, u) 6= 0
and Ω(z, u) = 0 for all z ∈ W . In other words, Ω(v, u) 6= 0 and u ∈ WΩ, i.e., v 6∈ (WΩ)Ω.
Thus we have shown that (WΩ)Ω ⊂ W ; combined with the trivial inclusion W ⊂ (WΩ)Ω,
we get the equality (WΩ)Ω = W . �

In what follows, we denote by G · z and Gµ · z the G and Gµ-orbits through the point
z ∈ P ; note that if z ∈ J−1(µ) then Gµ · z ⊂ J−1(µ). Next we prove a lemma that is useful
in a number of situations.

Lemma 2.2.5 (Reduction Lemma) Let P be a Poisson manifold and let J : P → g∗ be
an equivariant momentum map of a Hamiltonian Lie group action of G on P . Let G · µ
denote the coadjoint orbit through a regular value µ ∈ g∗ of J. Then

i J−1(G · µ) = G · J−1(µ) = {g · z | g ∈ G and J(z) = µ};

ii Gµ · z = (G · z) ∩ J−1(µ);
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iii J−1(µ) and G · z intersect cleanly , i.e.,

Tz(Gµ · z) = Tz(G · z) ∩ Tz(J−1(µ));

iv if (P,Ω) is symplectic, then Tz(J−1(µ)) = (Tz(G · z))Ω ; i.e., the sets

Tz(J−1(µ)) and Tz(G · z)

are Ω-orthogonal complements of each other.

Refer to Figure 2.2.2 for one way of showing the geometry associated with this lemma.

Gµ • z

J–1(µ)

G • z

• z

symplectically 
orthogonal spaces

Figure 2.2.2: The geometry of the reduction lemma.

Proof of the Reduction Lemma

i z ∈ J−1(G·µ) iff J(z) = Ad∗g−1µ for some g ∈ G, which is equivalent to µ = Ad∗gJ(z) =
J(g−1 · z), i.e., g−1 · z ∈ J−1(µ) and thus z = g · (g−1 · z) ∈ G · J−1(µ).

ii g · z ∈ J−1(µ) iff µ = J(g · z) = Ad∗g−1J(z) = Ad∗g−1µ iff g ∈ Gµ.

iii First suppose that vz ∈ Tz(G · z) ∩ Tz(J−1(µ)) . Then vz = ξP (z) for some ξ ∈ g and
0 = TzJ(vz) = 0 which, by infinitesimal equivariance gives ad∗ξµ = 0; i.e., ξ ∈ gµ. If
vz ∈ ξP (z) for ξ ∈ gµ then vz ∈ Tz(Gµ · z). The reverse inclusion is immediate since
by ii Gµ · z is included in both G · z and J−1(µ).

iv The condition vz ∈ (Tz(G · z))Ω means that Ωz(ξP (z), vz) = 0 for all ξ ∈ g. This is
equivalent to 〈dJ(z) · vz , ξ〉 = 0 for all ξ ∈ g by definition of the momentum map.
Thus, vz ∈ (Tz(G · z))Ω if and only if vz ∈ kerTzJ = Tz(J−1(µ)). �

We notice from iv that Tz(J−1(µ))Ω ⊂ Tz(J−1(µ)) provided that Gµ · z = G · z. Thus,
J−1(µ) is coisotropic if Gµ = G; for example, this happens if µ = 0 or if G is abelian.
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We now give two proofs of the symplectic reduction theorem. The first obtains it as
a special case of Corollary 2.1.6, while the second gives a direct proof that bypasses the
terminology and results on foliations.

First Proof of the Symplectic Reduction Theorem (This proof assumes that Gµ is
connected.) In Corollary 2.1.6, let N = J−1(µ) and z ∈ N . Then

TzN ∩ (TzN)Ω = TzJ−1(µ) ∩ (TzJ−1(µ))Ω

= TzJ−1(µ) ∩ Tz(G · z) (by the reduction lemma iv and 2.2.4)
= Tz(Gµ · z) (by the reduction lemma iii).

Thus the foliation Φ has as leaves the Gµ orbits in J−1(µ), since Gµ is connected. Hence
N/Φ is just J−1(µ)/Gµ, and so the result follows by the corollary to the foliation reduction
theorem. �

Second Proof of the Symplectic Reduction Theorem Since πµ is a surjective sub-
mersion, if Ωµ exists, it is uniquely determined by the condition π∗µΩµ = i∗µΩ. This relation
also defines Ωµ in the following way. For v ∈ TzJ−1(µ), let [v] = Tzπµ(v) denote its
equivalence class in TzJ−1(µ)/Tz(Gµ · z). We can use πµ to identify T[z](J−1(µ)/Gµ) with
Tz(J−1(µ))/Tz(Gµ · z), where [z] = πµ(z). Then π∗µΩµ = i∗µΩ is equivalent to saying

Ωµ([z])([v], [w]) = Ω(z)(v, w)

for all v, w ∈ TzJ−1(µ). To see that this relation defines Ωµ, let y = Φg(z), v′ = TzΦg · v,
and w′ = TzΦg ·w, where g ∈ Gµ. If, in addition [v′′] = [v′] and [w′′] = [w′], then

Ω(y)(v′′, w′′) = Ω(y)(v′, w′) (by the reduction lemma iv)
= Ω(Φg(z))(TzΦg · v, TzΦg ·w)
= (Φ∗gΩ)(z)(v, w)
= Ω(z)(v, w) (since the action is symplectic).

Thus Ωµ is well-defined. It is smooth since π∗µΩµ is smooth. Since dΩ = 0,

π∗µdΩµ = dπ∗µΩµ = di∗µΩ = i∗µdΩ = 0.

Since πµ is a surjective submersion, we conclude that dΩµ = 0.
For (weak) nondegeneracy of Ωµ, suppose Ωµ([z])([v], [w]) = 0 for all w ∈ Tz(J−1(µ)).

This means that Ω(z)(v, w) = 0 for all w ∈ Tz(J−1(µ)), i.e., that v ∈ (Tz(J−1(µ)))Ω = Tz(G·
z) by lemma 2.2.4 and the reduction lemma iv. Hence v ∈ Tz(J−1(µ))∩Tz(G·z) = Tz(Gµ ·z)
by the reduction lemma iii so that [v] = 0, thus proving the weak nondegeneracy of Ωµ.

Finally, if Ω is a strong symplectic form, let α ∈ T ∗[z]Pµ be represented by the one-
form α : TzJ−1(µ) → R vanishing on the closed subspace Tz(Gµ · z) i.e., α([w]) = α(w)
for all w ∈ TzJ−1(µ). Since Ω is strongly nondegenerate, there is a v ∈ TzP such that
Ω(z)(v, w) = α(w) for all w ∈ TzJ−1(µ). From the reduction lemma iv, it follows that
v ∈ (Tz(Gµ · z))Ω ⊂ TzJ−1(µ) and so Ωµ([z])([v]), [w]) = α([w]) for all w ∈ TzJ−1(µ). �

If µ is a regular value of J then the action is automatically locally free, so the prior
construction can be carried out locally. To prove this, consider the symmetry algebra at
z ∈ P defined by

gz = {ξ ∈ g | ξP (z) = 0}.
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Proposition 2.2.6 An element µ ∈ g∗ is a regular value of J iff gz = 0 for all z ∈ J−1(µ)
.

In other words, points are regular points precisely when they have trivial symmetry alge-
bra. In examples, this is a remarkably easy way to recognize regular points. For example,
in the double spherical pendulum, one can say right away that the only irregular points are
those with both pendula pointing straight down, or both pointing straight up.

Proof By definition, z is a regular point iff TzJ is surjective. This is equivalent to saying
that its annihilator is zero:3

{0} = {ξ ∈ g | 〈ξ, TzJ · v〉 = 0, for all v ∈ TzP}

But

〈ξ, TzJ · v〉 = Ωz(ξP (z), v)

by definition of the momentum map. Therefore, z is a regular point iff

{0} = {ξ ∈ g | Ωz(ξP (z), v) = 0 for all v ∈ TzP}

which, as Ωz is nondegenerate, is equivalent to gz = {0}. �

This result, connecting the symmetry of z with the regularity of µ, suggests that points
with symmetry are bifurcation points of J. This observation turns out to have many impor-
tant consequences. A related result is that if G is compact (or if a slice theorem is valid)
then the singularities of J−1(µ) at symmetric points are necessarily quadratic. We refer
to Smale [1970], Abraham and Marsden [1978, §4.5], Arms, Marsden and Moncrief [1981],
[1982], Atiyah [1982], Guillemin and Sternberg [1982], [1984] and Kirwan [1984a,b]. See also
Arms, Gotay and Cushman [1989] and Sjamaar and Lerman [1991].

Remarks on the Reduction Theorem

1. Even if Ω = −dθ and the action of G leaves θ invariant, Ωµ need not be exact. An
explicit example is the coadjoint orbit of SO(3), a sphere. This is shown to be a
symplectic reduced space in the next section.

2. The assumption that µ is a regular value of J is never really used in the proof. The
only hypothesis needed is that µ be a clean value of J, i.e., J−1(µ) is a manifold
and TzJ−1(µ)) = kerTzJ. This generalization will be used later in this section for
zero angular momentum in the three dimensional two body problem, as was noted by
Marsden and Weinstein [1974] and Kazhdan, Kostant and Sternberg [1978]; see also
Guillemin and Sternberg [1984]. The general definitions are as follows. If f : M → N
is a smooth map, a point y ∈ N is called a clean value if f−1(y) is a submanifold
and for each x ∈ f−1(y), Txf−1(y) = kerTxf . We say that f intersects a submanifold
L ⊂ N cleanly if f−1(L) is a submanifold of M and Tx(f−1(L)) = (Txf)−1(Tf(x)L).
Note that regular values of f are clean values and that if f intersects the submanifold
L transversally, then it intersects it cleanly.

3In the infinite dimensional case we will not necessarily choose g
∗ to be the Banach space dual, but rather

a suitable Sobolev function space in duality with g. The assertion that A∗z is onto requires the Fredholm
alternative. In many examples, such as gravity and the Yang-Mills equations, this holds because A∗z is
elliptic. See Arms, Marsden and Moncrief [1981], [1982], references therein, and remark 3 following the
orbit reduction theorem in §1.5 below.
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3. The freeness and properness of the Gµ action on J−1(µ) are used only to guarantee
that Pµ is a manifold; these hypotheses can thus be replaced by the requirement that
Pµ is a manifold and πµ : J−1(µ) → Pµ a submersion; the proof of the symplectic
reduction theorem remains unchanged. For example, a slice theorem would often
suffice for this hypothesis.

4. Even if µ is a regular value, it need not be a generic point in g∗, that is a point
whose coadjoint orbit is of maximal dimension. Note that the reduction theorem does
not require this assumption. For example, if G acts on itself on the left by group
multiplication and if we lift this to an action on T ∗G by the cotangent lift, then the
action is free and so all µ are regular values, but such values (for instance, the zero
element in so3) need not be generic.

5. If G acts on P on the right in a Hamiltonian manner,the same theorem holds; i.e.,
J−1(µ)/Gµ is still symplectic in a canonical way. Sometimes it is necessary to dis-
tinguish the left and right quotients in the notation. When necessary one could use
µP = Gµ\J−1(µ) for left quotients and Pµ = J−1(µ)/Gµ for right quotients. Normally
there is no danger of confusion, so we simply write J−1(µ)/Gµ = Pµ in either case.

6. Here is a simple example of reduction. It consists of the manifold of solutions of
constant energy. Let P be a symplectic manifold, H ∈ F(P ) and e ∈ R a regular
value of H. Then H−1(e) is a codimension one submanifold of P . Assume that the
Hamiltonian vector field XH has a complete flow. The flow determines a symplectic
action for R on P with momentum mapping H. Thus by the Symplectic Reduction
Theorem, H−1(e)/R, if a manifold, is symplectic. �

Exercises

2.2-1

(a) Construct the symplectic reduced space for the standard action of S1 on T ∗R2 .

(b) Construct the symplectic reduced space for the action of S1 on T ∗R3 obtained by taking
the cotangent lift of the action of S1 on R

3 given by rotations about the z-axis.

(c) Examine the construction of the symplectic reduced space for the standard action of
SO(3) on T ∗R3 at the zero level of angular momentum.

2.2-2 One can imagine carrying out reduction for a nonequivariant momentum map as-
sociated with a group G by extending the group to the central extension Σ as was described
in “An Introduction to Mechanics and Symmetry” (IMS). In doing so, one would need to
compute the isotropy for the action of Σ. Describe this isotropy. Carry out this construction
for the action of SE(2) on R

2 ×R2 × ...×R2 given by n copies of the standard action (where
n is a given positive integer). Consult §12.6 of IMS for some related remarks.

2.2-3 Is it true that if a Lie group G acts on a product of two symplectic manifolds, then
the reduced space of the product is the product of the reduced spaces ?



38 Chapter 2 Symplectic Reduction

2.3 Coadjoint Orbits as Symplectic Reduced Spaces

We now show that coadjoint orbits may be realized as reduced spaces. This provides an
alternative proof that they are symplectic manifolds (IMS, Chapter 14). The strategy is to
show that the (minus) coadjoint symplectic form on a coadjoint orbit O at a point ν ∈ O,
namely

ω−ν ({ad∗ξν, ad∗ην) = −〈ν, [ξ, η]〉 (2.3.1)

may be obtained by means of the symplectic reduction theorem. The following theorem
formulates the result for left actions; of course there is a similar one for right actions.

Theorem 2.3.1 (Coadjoint Orbit Reduction) Let G be a Lie group and let G act on G
(and hence on T ∗G by cotangent lift) by left multiplication. Let µ ∈ g∗ and let JL : T ∗G→ g∗

be the momentum map for the left action. Then µ is a regular value of JL, the actions of G
are free and proper, the symplectic reduced space J−1

L (µ)/Gµ is identified via left translation
with Oµ, the coadjoint orbit through µ, and the reduced symplectic form coincides with ω−.

Proof. Recall that JL is given by right translation to the identity:

JL(αg) = T ∗eRg · αg (2.3.2)

Thus, J−1
L (µ) consists of those αg ∈ P = T ∗G such that αg = T ∗gRg−1 · µ. In other words,

if we extend µ to a right invariant one form αµ on G, then its graph is J−1
L (µ). It is clear

that the G action is free and proper on G and hence on T ∗G. From this or directly, we see
that each µ is a regular value (to see this directly, note that the derivative of JL restricted
to g∗ is already surjective).

Recall from the Lie-Poisson reduction theorem (IMS, Chapter 13) that the reduction
of T ∗G by the left action of G is implemented by the right momentum map. Consistent
with this, we claim that the map ϕ : J−1

L (µ)→ Oµ defined by αg 7→ Ad∗gµ = T ∗e Lgαg, i.e.,
ϕ = JR|J−1

L (µ), induces a diffeomorphism ϕ between J−1
L (µ)/Gµ and Oµ. There is indeed

a map ϕ defined because if αhg = TgLh · αg for h ∈ Gµ, then

ϕ(αhg) = Ad∗hgµ = Ad∗gµ = ϕ(αg).

Thus, ϕ is well defined and it is readily checked to be a bijection. It is smooth since it is
induced on the quotient by a smooth map. The derivative of ϕ induces an isomorphism at
each point, as is readilly checked (see the calculations below). Thus, ϕ is a diffeomorphism.

The reduced symplectic form on Oµ ≈ J−1
L (µ)/Gµ is induced by the canonical symplectic

form Ω on T ∗G pulled-back to J−1
L (µ). Let ad∗ξν and ad∗ην be two tangent vectors to Oµ at

a point ν = Ad∗gµ. They are tangent to the curves

cξ(t) = Ad∗exp(tξ)Ad∗gµ = Ad∗g exp(tξ)µ

and

cη(t) = Ad∗g exp(tη)µ

respectively. Now notice that if we define

dξ(t) = αg exp(tξ) = T ∗g exp(tξ)Rexp(−tξ)g−1µ,

then ϕ(dξ(t)) = cξ(t) and similarly for η. Now

dξ(t) = T ∗Lg−1T ∗Rexp(−tξ)ν = ΨgΦexp(tξ)ν
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where Ψ denotes the left action and Φ denotes the rght action. By the chain rule,

d′ξ(0) = TΨg · ξP (ν).

Thus,

Ω(d′ξ(0), d′η(0)) = Ω(ξP (ν), ηP (ν)),

since Ψg is a symplectic map. Next, recall that Ω = −dΘ where Θ is the canonical one
form, so

Ω(X,Y ) = −X [Θ(Y )] + Y [Θ(X)] + Θ([X,Y ])

for vector fields X and Y on T ∗G. Thus,

Ω(ξP (ν), ηP (ν)) = −ξP [Θ(ηP )](ν) + ηP [Θ(ξP )](ν) + Θ([ξP , ηP ])(ν).

Since we have a right action, [ξP , ηP ] = [ξ, η]P . The definition of the canonical one form
shows that on infinitesimal generators, it is given by Θ(ηP ) = 〈JR, η〉, so the preceding
displayed expression equals

−{〈JR, η〉 , 〈JR, ξ〉}(ν) + {〈JR, ξ〉 , 〈JR, η〉}(ν) + Θ([ξ, η]P )(ν).

By equivarance of JR, the first and last (or second and last) cancel, leaving

−〈JR(ν), [ξ, η]〉 = −〈ν, [ξ, η]〉 ,

which is the coadjoint orbit symplectic structure ω−. �

Remarks.

1. Notice that this result does not require µ to be a regular point in g∗; that is, arbitrarily
nearby coadjoint orbits may have a different dimension.

2. The form ω− on the orbit need not be exact even though Ω is. The example of SO(3),
whose orbits are spheres shows this. �

Exercises.

2.3-1 Show that (under the assumptions of the symplectic reduction theorem) if O ⊂ g∗ is
a coadjoint orbit, then J−1(O) is coisotropic.

2.3-2 Let SO(3) act on the space Q = SO(3)× S1 by acting by left multiplication on the
first factor and acting trivially on the second factor. (This space comes up in the dynamics
of a rigid body with a single rotor). Lift the action to P = T ∗Q by cotangent lift. Compute
the reduced space Pµ at each regular point µ ∈ so(3)∗.

2.3-3 Suppose that G acts on a symplectic manifold P and that this action has an equiv-
ariant momentum map and that the assumptions of the symplectic reduction theorem hold.
Consider the product space P̃ = P × T ∗G with the product symplectic structure. Let G act
on P̃ with the diagonal action and let O denote the coadjoint orbit through µ. Show that
the symplectic reduced space P̃µ need not be any of Pµ × T ∗G, P ×O, or Pµ ×O.
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2.4 Reducing Hamiltonian Systems

Let (P,Ω) be a symplectic manifold, Φ : G × P → P a symplectic Lie group action and
J : P → g∗ an equivariant momentum mapping for this action. Let µ ∈ g∗ and Gµ be the
isotropy subgroup for µ. In this section, assume that µ is a regular (or weakly regular) value
and that Gµ acts freely and properly so that the reduced phase space Pµ = J−1(µ)/Gµ is
a symplectic manifold. Let πµ : J−1(µ) → Pµ and iµ : J−1(µ) → P denote the canonical
projection and inclusion.

Theorem 2.4.1 (Symplectic Reduction of Dynamics) Let H : P → R be a G-invariant
Hamiltonian, i.e.,

H ◦ Φg = H,

for all g ∈ G. Then the flow Ft of XH leaves the set J−1(µ) invariant and commutes with
the Gµ-action on J−1(µ), so it induces a flow Fµt on Pµ that satisfies

πµ ◦ Ft = Fµt ◦ πµ.

This flow is Hamiltonian on Pµ with Hamiltonian function Hµ : Pµ → R defined by

Hµ ◦ πµ = H ◦ iµ.

We call Hµ the reduced Hamiltonian. Furthermore, the vector fields XH and XHµ are
πµ-related.

Proof Since J is conserved by the flow of XH , J−1(µ) is invariant under Ft. In addition,
since H is G-invariant, the flow Ft commutes with the action and thus there is a well-defined
flow Fµt on Pµ characterized by Fµt ◦ πµ = πµ ◦ Ft. Using this, the relationships

F ∗t Ω = Ω, iµ ◦ Ft |J−1(µ) = Ft ◦ iµ, and π∗µΩµ = i∗µΩ,

we get
π∗µ(Fµt )∗Ωµ = F ∗tπ

∗
µΩµ = F ∗t i

∗
µΩ = i∗µF

∗
t Ω = i∗µΩ = π∗µΩµ,

whence (Fµt )∗Ωµ = Ωµ, since πµ is a surjective submersion. Thus the flow Fµt preserves the
symplectic form Ωµ.

The relation Hµ ◦ πµ = H ◦ iµ plus G-invariance of H defines Hµ : Pµ → R uniquely.
Let z ∈ J−1(µ), and write its class in Pµ as [z] = πµ(z) ∈ Pµ, and similarly for a vector
v ∈ Tz(J−1(µ)), write [v] = Tzπµ(v) ∈ T[z]Pµ. Then

dHµ([z]) · [v] = dHµ(πµ(z))(Tπµ(v)) = π∗µ(dHµ)(z)(v)
= d(Hµ ◦ πµ)(z)(v) = d(H ◦ iµ)(z)(v) = i∗µ(dH)(z)(v)
= i∗µ(iXHΩ)z(v) = (iXHπ

∗
µΩµ)z(v)

= (π∗µΩµ)z(XH(z), v),

since i∗µXH = XH and i∗µΩ = π∗µΩµ. Let Y denote the vector field on Pµ whose flow is
Fµt ; Y is, by construction, πµ-related to XH , i.e., Tπµ ◦XH = Y ◦ πµ, so that from the last
equality above we get

dHµ[z]([v]) = (π∗µΩµ)z(XH(z), v) = (Ωµ)[z](Tzπµ(XH(z)), Tzπµ(v))
= Ωµ[z](Y [z], [v]),

and therefore Y is the Hamiltonian vector field whose Hamiltonian function is Hµ. �

The behavior of Poisson brackets under reduction is given by the following result.
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Corollary 2.4.2 If H,K : P → R are G-invariant functions, then {H,K} is also G-
invariant and

{H,K}µ = {Hµ,Kµ}Pµ ,

where { , }Pµ denotes the Poisson bracket on Pµ and {H,K}µ is the function induced on Pµ
by {H,K}.

Proof. Since the action Φ is symplectic, and H and K are G-invariant functions, we
get

Φ∗g{H,K} = {Φ∗gH,Φ∗g} = {H,K}.

If z ∈ J−1(µ), the symplectic reduction of dynamics theorem, the definition of the Poisson
bracket, and the tangency of XH , XK to J−1(µ), give

({Hµ,Kµ}Pµ ◦ πµ)(z) = Ωµ(πµ(z))(XHµ(πµ(z)), XKµ(πµ(z))
= Ωµ(π(z))(Tzπµ(XH(z)), Tzπµ(XK(z)))
= (π∗µΩµ)(z)(XH(z), XK(z))
= (i∗µΩ)(z)(XH(z), XK(z)) = Ω(XH , XK)(iµ(z))
= ({H,K} ◦ iµ)(z),

i.e., {H,K}µ = {Hµ,Kµ}Pµ . �

This corollary is important because it gives a method for computing reduced Poisson
brackets. If the reduced manifold Pµ is determined, even without the explicit computation
of Ωµ, the Poisson brackets on Pµ can be determined directly as follows. Let h and k be
functions on Pµ and let h = h ◦πµ and k = k ◦πµ be their lifts to J−1(µ). Now extend both
h and k arbitrarily to G-invariant functions (not Gµ-invariant ones!) H and K on P . By
construction, Hµ = h and Kµ = k, so that

{h, k}Pµ = {Hµ,Kµ}Pµ = {H,K}µ.

It follows that the right hand side is independent of the extensions. This says: compute
{H,K} on P and re-express the results on Pµ to get the function {h, k}Pµ.

Exercises.

2.4-1

(a) Compute the symplectic reduced spaces and the reduced symplectic forms for the action
of S1 on C

2 given by (z1, z2) 7→ (eiθz1, e
iθz2). (See §10.7 of IMS). Repeat the problem

using the action (z1, z2) 7→ (eiθz1, e
−iθz2).

(b) Verify directly that the symplectic reduced spaces you found in (a) are the symplectic
leaves in the Poisson reduced space C

2/S1.

2.4-1 Give an example of a reduced space Pµ for which the brackets cannot be computed
by pulling back functions to J−1(µ) and extending them to Gµ invariant functions.
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2.5 Orbit Reduction

Consider a coadjoint orbit O = G · µ through a fixed regular element µ and endowed with
the “+′′ orbit symplectic form. If J : P → g∗ is an equivariant momentum map, we claim
that

PO := J−1(O)/G is in one-to-one correspondence with Pµ = J−1(µ)/Gµ.

To see this, first note that by equivariance of J, G leaves the set J−1(O) invariant, so
J−1(O)/G is defined. If we denote elements of J−1(µ)/Gµ by [z]µ for z ∈ J−1(µ) and
elements of J−1(O)/G by [z] for z ∈ J−1(O), we claim that we have a well defined map

Lµ : [z]µ 7→ [z]

of Pµ to PO determined by the inclusion lµ : J−1(µ)→ J−1(O). To see that it is well defined,
we must show that the class [z] obtained is independent of the representative z ∈ J−1(µ)
chosen. To do this, suppose that [z]µ = [z′]µ for z and z′ in J−1(µ) implies z = g · z′ for
some g ∈ Gµ. This clearly implies that we also have equivalence in G; that is, [z] = [z′] and
so the map Lµ is well defined.

The map Lµ is one-to-one by a similar argument. Indeed, suppose that [z] = [z′] for z
and z′ in J−1(µ). This implies z = g · z′ for some g ∈ G; by equivariance of J, g ∈ Gµ
and so [z]µ = [z′]µ. Likewise, by i of the Reduction Lemma, this map is onto. Thus, set
theoretically, the reduced phase space Pµ equals PO .

The symplectic form on PO is a little trickier to sort out intrinsically. What we want
to do is to find an intrinsic description of the symplectic form on the orbit reduced space
PO and then show that the above map between it and the symplectic reduced space Pµ is
a symplectic diffeomorphism. It is characterized by the following result of Marle [1976] and
Kazhdan, Kostant, and Sternberg [1978]. We follow the exposition of Marsden [1981].

Theorem 2.5.1 (Orbit Reduction Theorem) Let µ be a regular value of an equivariant
momentum map J : P → g∗ of a left symplectic action of G on the symplectic manifold
(P,Ω) and assume that the symplectic reduced space Pµ is a manifold with πµ a submer-
sion. Let O be the coadjoint orbit in g∗+ containing µ. If (in the infinite dimensional case)
(TzJ)−1(TJ(z)O) splits in TzP for all z ∈ J−1(O), then

i J is transversal to O so J−1(O) is a manifold (if µ is only a clean value of J, assume
in addition that J intersects O cleanly);

ii J−1(O)/G has a unique differentiable structure such that the canonical projection πO :
J−1(O)→ J−1(O)/G is a surjective submersion;

iii there is a unique symplectic structure ΩO on J−1(O)/G such that

i∗OΩ = π∗OΩO + J∗Oω
+
O

where iO : J−1(O)→ P is the inclusion, JO = J|J−1(O) regarded as a map of J−1(O)
to O and ω+

O is the “+” orbit symplectic structure on O.

iv the map Lµ is a symplectic diffeomorphism of Pµ to PO.

We illustrate these maps in the following diagram:
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J−1(µ)/Gµ = Pµ J−1(O)/G = PO

J−1(µ) J−1(O)

P

g∗+
inclusion = lµ

Lµ

πµ πO

iµ iO

JO-

-
? ?

�
�
�
�
��>

Z
Z
Z
Z
ZZ}

-

Proof. i Let

z ∈ J−1(O), i.e., J(z) = Ad∗g−1µ

for some g ∈ G. By equivariance, g−1 · z ∈ J−1(µ) and, as µ is a regular value, the mapping
Tg−1·zJ : Tg−1·zP → g∗ is onto. Writing Φ(g, z) = Φg(z) = g · z, we find

Tg−1·zJ ◦ TzΦg−1 = Tz(J ◦ Φg−1) = Tz(Ad∗g ◦ J) = Ad∗g ◦ TzJ : TzP → g∗

is also onto and thus TzJ is onto. Thus, necessarily (TzJ)(TzP ) + TJ(z)(O) = g∗. Since by
hypothesis (TzJ)−1(TJ(z)(O)) splits in TxP , it follows that J is transversal to O.

Next we prove ii. If there is a differentiable structure on J−1(O)/G such that the
canonical projection πO is a submersion, then as in MTA §3.5, the map Lµ is smooth. To
show that its inverse is also smooth, consider the map z ∈ J−1(O) 7→ [g−1 · z]µ ∈ Pµ, where
g ∈ G is such that J(z) = Ad∗g−1µ. One checks that this map is well-defined, constant
on G-orbits and thus induces a map on the quotient J−1(O)/G → Pµ ; this induced map
is Lµ. The following argument shows that this map is also smooth. Locally, J−1(µ) is
diffeomorphic to Pµ × Gµ, and locally J−1(O) is diffeomorphic to J−1(µ) × (G/Gµ), i.e.,
to Pµ × Gµ × (G/Gµ) which locally is diffeomorphic to Pµ × G. These local maps can be
chosen to be Gµ-equivariant, so the composition of z 7→ [Φg−1(z)]µ with them equals the
projection Pµ × G → Pµ. Consequently, the induced map on the quotient is also smooth.
Thus the differentiable structure of J−1(O)/G is uniquely determined by the requirement
that Lµ be a diffeomorphism.

For the proof of iii we need the following.

Lemma 2.5.2 Under the hypotheses of 2.5.1, we have

i Tz(J−1(O)) = Tz(G · z) + ker(TzJ);

ii J∗Oω
+
O restricted to Tz(G · z)× Tz(G · z) coincides with Ω restricted to the same space.

Proof. First we prove i. Since J intersects O cleanly, J−1(O) is a submanifold whose tan-
gent space at z equals Tz(J−1(O)) = (TzJ)−1(TJ(z)O). Thus by infinitesimal equivariance
of J,

TJ(z)O = {−(adξ)∗J(z) | ξ ∈ g} = {TzJ(ξP (z)) | ξ ∈ g}
= {TzJ(v) | v ∈ Tz(G · z)} = (TzJ)(Tz(G · z)).

Applying (TzJ)−1 gives the desired result.
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To prove ii, we use i and let v = ξP (z) + v′ and w = ηP (z) + w′, where ξ, η ∈ g, and
v′, w′ ∈ ker(TzJ), be two arbitrary vectors in Tz(J−1(O)). We have

(J∗Oω
+
O(z)(v, w) = ω+

O(J(z))(TzJ(v), TzJ(w))
= ω+

O(J(z))(TzJ(ξP (z)), TzJ(ηP (z))
= ω+

O(J(z))((ad∗ξ)J(z), (adη)∗J(z))
= 〈J(z), [ξ, η]〉 = J([ξ, η])(z) = {J(ξ), J(η)} (z)
= Ω(z)(XJ(ξ)(z), XJ(η)(z)) = Ω(z)(ξP (z), ηP (z))

which proves ii. H

Now we are ready to prove iii of the theorem. Using 1.5.2i, consider ξP (z) + v, ηP (z) +
w ∈ Tz(J−1(O)), where v, w ∈ ker(TzJ), which are two arbitrary vectors tangent to J−1(O)
at z. By 1.5.2ii, the defining relation for ΩO in the statement of iii is

Ω(z)(ξP (z) + v, ηP (z) + w) = ΩO([z])([v]), [w]) + Ω(z)(ξP (z), ηP (z))

or, by Ω-orthogonality of Tz(G · z) and ker(TzJ) (see the reduction lemma iv)

Ω(z)(v, w) = ΩO([z])([v], [w])

for all v, w ∈ ker(TzJ), where

[v] = TzπO(v) ∈ Tz(J−1(O))/Tz(G · z) ∼= T[z](J−1(O)/G),

[z] = πO(z), and similarly for w. It is shown as in the Symplectic Reduction Theorem that
this relation defines ΩO. Since Ω and ω+

O are closed and πO is a surjective submersion, it
follows that ΩO is also closed. It can be shown directly that ΩO is (weakly) nondegenerate
as in the symplectic reduction theorem but since this follows from iv, we will not give this
direct proof.

To prove iv, notice that the relation L∗µΩO = Ωµ is equivalent to π∗µL
∗
µΩO = i∗µΩ. Since

Lµ ◦ πµ = πO ◦ lµ, this says that l∗µπ
∗
OΩO = i∗µΩ. By iii we have

l∗µπ
∗
OΩO = l∗µ(i∗OΩ− J∗Oω

+
O) = (iO ◦ lµ)∗Ω− (JO ◦ lµ)∗ω+

O = i∗µΩ

since iO ◦ lµ = iµ and JO ◦ lµ = µ on J−1(µ). �

Remarks.

1. A similar result holds for right actions.

2. In this proof the freeness and properness of the Gµ-action on J−1(µ) were not used.
In fact these conditions are sufficient but not necessary for Pµ to be a manifold. All
that is needed is for Pµ to be a manifold and πµ to be a submersion and the above
proof remains unchanged. For example, as we remarked earlier, a slice theorem for
the Gµ action can be used to show that Pµ is a manifold.

3. The hypothesis that (TzJ)−1(TJ(z)Oµ) splits in TzP for all z ∈ J−1(O) can be dropped
for Hilbert (and hence finite dimensional) manifolds since this subspace is always
closed. In the Banach space case or when g∗ does not literally mean the Banach
space dual, this condition is most naturally obtained via elliptic regularity from a
Fredholm alternative theorem. We shall now sketch in an abstract setting, the most



§2.5 Orbit Reduction 45

common situation. Let E,F be Banach spaces and assume that on both of them there
are continuous bilinear inner products 〈· , ·〉 , 〈· , ·〉. The norm given by these inner
products is possibly not complete, so gives a topology weaker than the original one.
Consider a continuous linear operator A : E → F . Suppose it has a continuous linear
adjoint A∗ : F1 ⊂ F → E, where F1 is a Banach space continuously included in F ;
thus, 〈Ae, f〉 = 〈e,A∗f〉 for e ∈ E and f ∈ F1.

We say that A is E-splitting if, whenever F = S ⊕ T where S ⊥ T , for S and T
closed subspaces of F , we have

E = A−1(S)⊕A∗(T ∩ F1).

Likewise, A is F -splitting if, whenever E = U ⊕V where U and V are closed orthog-
onal subspaces of E, we have

F = A(U)⊕ (A∗−1)(V ).

Notice that A−1(S) and A∗(T ∩ F1) are automatically orthogonal; however, it is not
automatic that A∗(T ∩ F1) is closed nor that the direct sum is E. In many cases, E
and F are spaces of functions or tensors, and 〈· , ·〉 is the L2 inner product. Then the
splitting property can be proved if either A of A∗ is an elliptic operator. See Marsden
and Hughes [1983], p. 320.

4. Although the description of the symplectic structure on J−1(O)/G is not as simple as
it was for J−1(µ)/G, we shall see later that the description in terms of Poisson brackets
is simpler on J−1(O)/G. We shall also see that the symplectic structure depends only
on the orbit O and not on the choice of a point µ on it.

5. (Homogeneous symplectic manifolds) Assume that P is a symplectic manifold
on which the Lie group G acts transitively and has an equivariant momentum map J.
Then J(P ) = Oµ, where µ = J(x0), and x0 ∈ P , and J : P → Oµ is a symplectic local
diffeomorphism; if J is proper, then it is a symplectic covering map. By the Orbit
Reduction Theorem, the reduced space Pµ = J−1(Oµ)/G = P/G is a point.

We want to investigate the structure of P further, taking advantage of the transitive
Lie group action. Fix a point p ∈ P and define a map Φp : G/Gp → P by Φp[g] = g ·p,
where Gp = {g ∈ G | g · p = p} and [g] = γp is an element of the quotient G/Gp.
The map Φp is well-defined, onto, and smooth, since g 7→ g · p is a smooth map of
G onto P . It is easy to check that Φp is also one-to-one thus defining a bijective
continuous map of G/Gp onto P . If in addition Φp is open or closed (e.g. proper),
then it is a homeomorphism. It can be shown that Φp is in fact always an immersion
(See Abraham and Marsden [1978], p. 265) and hence, if in addition Φp is open or
closed, it is a diffeomorphism.

In this manner we are led to the study of homogeneous symplectic manifolds, i.e., of
manifolds of the type G/H, H a closed Lie subgroup of G, where G/H is symplectic.
We refer the reader to Guillemin and Sternberg [1984], Chapter 2, for an account of
the known facts about these manifolds. �

Exercises.

2.5-1 Specialize the equation

i∗OΩ = π∗OΩO + J∗Oω
+
O

to the case of Abelian groups.
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2.5-2

(a) Show directly that for P = T ∗G, the space PO is diffeomorphic to the orbit O itself .

(b) Specialize the equation

i∗OΩ = π∗OΩO + J∗Oω
+
O

to the case P = T ∗G.

2.6 Foliation Orbit Reduction

We now discuss how to get the symplectic structure on J−1(O)/G starting from the foliation
reduction theorem or its corollary (2.1.6). Let O be a coadjoint orbit in g∗ and let N =
J−1(O) and z ∈ N . By 1.5.2, TzN = TzG · z + ker(TzJ), so

(TzN)Ω = (Tz(G · z) + ker(TzJ)Ω

= (Tz(G · z))Ω ∩ ker(TzJ)Ω

= kerTzJ ∩ Tz(G · z) (by 2.2.4 and the Reduction Lemma iv)
= Tz(Gµ · z) (by the Reduction Lemma iii)

where µ = J(z). Therefore, the characteristic distribution of j∗Ω, where j : N → P is the
inclusion, equals

TzN ∩ (TzN)Ω = (Tz(G · z) + kerTzJ) ∩ Tz(Gµ · z) = Tz(Gµ · z)

and hence the leaves of the null-foliation Φ are the Gµ-orbits in N . Since the groups Gµ
as µ ranges in O are conjugate, N/Φ is a manifold and the projection Π : N → N/Φ is a
submersion. Thus, N/Φ is the reduced symplectic manifold. Note that it is obtained by
identifying all points which are in the same orbit level set of J and, simultaneously, on the
same G- orbit in P . We claim that there is a symplectic diffeomorphism

ϕ : N/Φ→ PO ×O+,

where PO = J−1(O)/G. Indeed, denoting the equivalence classes in N/Φ by [[z]], the map
ϕ : N/Φ→ PO ×O+, defined by ϕ([[z]]) = ([z], J(z) is well-defined and has inverse

ψ : PO ×O+ → N/Φ given by ψ([z], ν) = [[g · z]], (2.6.1)

where g ∈ G is such that Ad∗g−1ν = J(z) . By the general submersion arguments (see MTA),
these maps are smooth.

To show that ϕ is symplectic, let µ ∈ O so that O = Oµ = Orb(µ) and denote by ΩO
the symplectic form on N/Φ. Since the diagram

N N ×O

N/Φ PO ×O

id× JO

ϕ

π πO × idO

-

-
? ?
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is commutative, the formula

i∗OΩ = π∗OΩO + J∗Oω
+
O (2.6.2)

from the orbit reduction theorem implies

π∗ϕ∗(ΩO + ω+
O) = (πO × JO)∗(ΩO + ω+

O)
= π∗OΩO + J∗Oω

+
O = i∗OΩ. (2.6.3)

It follows from the foliation reduction theorem that ϕ∗(ΩO + ω+
O) = ΩO and so ϕ is sym-

plectic.

Theorem 2.6.1 (Foliation Orbit Reduction Theorem) Assume that the hypothesis in
the symplectic reduction theorem hold and let N/Φ be the foliation reduced symplectic space of
J−1(O) ⊂ P as constructed in §1.1. By construction, the map ϕ defined by ϕ : N/Φ→ PO⊕
O, ϕ([[z]]) = ([z],J(z)), where PO⊕O+ = PO×O+ with the sum symplectic structure, is a
symplectic diffeomorphism. Moreover, the symplectic structure on PO is uniquely determined
by the requirement that ϕ be a symplectic diffeomorphism.

Proof. We have proved all but the last statement. Let Σ be another symplectic form
on PO such that ϕ is a symplectic diffeomorphism. Then

ϕ∗(Σ + ω+) = ΩO, (2.6.4)

so that

i∗Ω = π∗OΩO = π∗ϕ∗(Σ + ω+
O) = (πO × JO)∗(Σ + ω+

O)
= π∗OΣ + J∗Oω

+
O. (2.6.5)

By the orbit reduction theorem, we conclude from (1.5.5) that

π∗O(Σ− Ω+
O) = 0

which implies Σ = Ω+
O because πO is a surjective submersion. �

2.7 The Shifting Theorem

We shall explain how reduction at a general point µ ∈ g∗ can be replaced by reduction
at 0 ∈ g∗ at the expense of enlarging the symplectic manifold. We assume we are in the
situation of the Symplectic Reduction Theorem so that we can form the reduced phase
space Pµ. Let O be the coadjoint orbit through µ endowed with the + orbit symplectic
structure. The group G acts canonically on the left on O via the coadjoint action, and the
equivariant momentum map of this action is the inclusion map i : O → g∗ . Let P 	 O
denote P ×O with the symplectic structure Ω−ω+

O := π∗1Ω− π∗2ω+
µ where π1 : P ×O → P

and π2 : P ×O → O are the projections. Then G acts canonically on P 	O by

(z, ν) 7→ (Φg(z),Ad∗g−1ν), where z ∈ P and ν ∈ O.

This action has an equivariant momentum map given by J− i : P 	O → g∗.

Theorem 2.7.1 (Shifting Theorem) Under the hypotheses of the orbit reduction theo-
rem, the reduced manifolds Pµ and (P 	O)0 are symplectically diffeomorphic.
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Proof. The smooth map ϕ : J−1(O)→ (J− i)−1(0) defined by ϕ(z) = (z,J(z)) is easily
seen to be G-equivariant, i.e.,

ϕ(Φg(z)) = (Φg ×Ad∗g−1ν)(ϕ(z)) (2.7.1)

so that it induces a smooth map Φ : J−1(O)/G → (J − i)−1(0)/G. Similarly, the smooth
map ψ : (J − i)−1(0) → J−1(O) defined by ψ(z, ν) = z is also equivariant so it induces a
smooth map Ψ : (P 	O)0 → J−1(O)/G which is easily seen to be the inverse of Φ, so Φ is
a diffeomorphism. By remark 4 following the symplectic reduction theorem and 2 following
the orbit reduction theorem, (P 	O)0 is a symplectic manifold.

We summarize the mappings involved in this proof in the following commutative diagram.

PO = J−1(O)/G (P 	O)0

J−1(O) (J− i)−1(0)

J−1(µ)

g∗+O+
JOi

P 	O

Φ

Ψ

ϕ

ψ

π0πO

iµ

i0-�

-�
? ?

?
�- -

To show that Φ is symplectic, let i0 : (J − i)−1(0) → P 	 O be the inclusion and
π0 : (J − i)−1(0)→ (P 	O)0 the projection. Let σ0 be the symplectic form on (P 	O)0 .
With the notations of the orbit reduction theorem, the defining relation for ΩO is

π∗OΩO = i∗OΩ− J∗Oω
+
O.

By the symplectic reduction theorem, σ0 is characterized by

π∗0σ0 = i∗0(Ω− ω+
O);

therefore, since π0 ◦ ϕ = Φ ◦ πO,

π∗OΦ
∗σ0 = (Φ ◦ πO)∗σ0 = (π0 ◦ ϕ)∗σ0 = ϕ∗π∗0σ0 = ϕ∗i∗0(Ω− ω+

O),

so that Φ is symplectic if and only if

i∗OΩ− J∗Oω
+
O = ϕ∗i∗0(Ω− ω+

O). (2.7.2)

Formula (2.7.2) is proved in the following way. For z ∈ J−1(O) and u, v ∈ Tz(J−1(O)) =
(TzJ)−1(TµO), where µ = J(z), we have

(i∗OΩ− J∗Oω
+
O)z(u, v) = Ωz(u, v)− (ω+

O)J(z)(TzJ(u), TzJ(v))

= (Ω− ω+
O)(z,J(z))((u, TzJ(u)), (v, TzJ(v)))

= (ϕ∗i∗0(Ω− ω+
O))z(u, v).

The stated result now follows. �

Since P	O+ is obviously symplectically diffeomorphic to P⊕O−, we have the symplectic
diffeomorphisms

Pµ ≈ J−1(O)/G ≈ (P 	O+)0 ≈ (P ⊕O−)0

where the reductions are on the left. For right actions and right reductions, this sequence
of symplectic diffeomorphisms becomes

Pµ ≈ J−1(O)/G ≈ (P ⊕O−)0 ≈ (P 	O−)0.
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2.8 Dynamics via Orbit Reduction

The dynamic counterpart of the Orbit Reduction Theorem is the following. Recall that
πO : J−1(O+) → J−1(O+)/G and iO : J−1(O+) → P denote the canonical projection and
inclusion.

Theorem 2.8.1 (Dynamic Orbit Reduction Theorem) Let H : P → R be G-invariant
and O ⊂ g∗ be a coadjoint orbit. Then the flow of XH leaves J−1(O) invariant and it
commutes with the G-action on J−1(O), so it induces a flow on J−1(O)/G. With respect to
the reduced symplectic structure on J−1(O)/G, this flow is Hamiltonian, with Hamiltonian
function HO determined by HO ◦πO = H ◦ iO. The Hamiltonian vector fields XH and XHO

are πO-related. Moreover, if K : P → R is another G-invariant function, then {H,K} is
also G-invariant and

{H,K}O = {HO,KO}PO ,

where { , }PO denotes the Poisson bracket on PO = J−1(O)/G.

Proof. If µ ∈ O = Oµ, recall that Pµ is symplectically diffeomorphic to J−1(O+)/G;
a symplectic diffeomorphism is the map Lµ : Pµ → J−1(O)/G defined by Lµ([z]) = [z],
where [z] denotes an element of J−1(O)/G and lµ : J−1(µ)→ J−1(O) is the inclusion. The
theorem is proved once we show that the induced flow on J−1(O)/G and the function HO
are the push-forwards of Fµt and Hµ by Lµ. Referring to the commutative diagram in 2.5.1,
we get

HO ◦ Lµ ◦ πµ = HO ◦ πO ◦ lµ = H ◦ iµ = Hµ ◦ πµ,

so that HO ◦ Lµ = Hµ. Similarly, if the flow Ft of XH on P induces the flow FOt on
J−1(O)/G, we have

Ft ◦ lµ = lµ ◦ Ft|J−1(µ)

since Ft(J−1(µ)) = J−1(µ), so that

FOt ◦ Lµ ◦ πµ = FOt ◦ πO ◦ lµ = πO ◦ Ft ◦ lµ
= πO ◦ lµ ◦ Ft = Lµ ◦ πµ ◦ Ft = Lµ ◦ Fµt ◦ πµ,

i.e.,
FOt ◦ Lµ = Lµ ◦ Fµt . �

As before, to compute the Poisson bracket on J−1(O)/G, one takes two functions h, k :
J−1(O)/G→ R, lifts them to h = h◦πO, k = k◦πO : J−1(O)→ R, extends them arbitrarily
to G-invariant functions H,K : P → R, computes their Poisson bracket {H,K} on P , and
finally re-expresses the result purely in terms of J−1(O)/G; the theorem guarantees that
this last step is always possible.
The conclusion in the result about brackets has an important consequence.

Theorem 2.8.2 (Stratification-Reduction Theorem) Under the conditions of the or-
bit reduction theorem, the symplectic leaves of the Poisson manifold P/G are given by the
orbit reduced spaces PO = J−1(O)/G.

Proof Obviously PO embeds naturally into P/G and, as we have seen, PO is symplectic.
To complete the proof, we just need to show that if f, k are functions on PO and they are
extended arbitrarily to functions f, k on P/G, then {F,K} = {f, k} at points of PO. But
this follows directly from the property of brackets given in the dynamic orbit reduction
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theorem. �

In IMS we gave a direct proof of this result for the case P = T ∗G in which case P/G ∼= g∗

is stratified by the coadjoint orbits.
Next we look at dropping dynamics from the point of view of the shifting theorem.

Theorem 2.8.3 (Dynamic Shifting Theorem) Let H : P → R be a G-invariant Hamil-
tonian and O ⊂ g∗ a coadjoint orbit. Then H induces Hamiltonian functions H : P 	O+ →
R by H(x, ν) = H(x), for all x ∈ P, ν ∈ O+ and H0 on (P 	 O+)0. If Ft is the flow of
XH on P , then F t(x, ν) = (Ft(x), ν) is the flow of XH on P 	O+ and the flow F

◦
t of H0

is determined by Φ ◦ Ft = F
0

t ◦ Φ. Moreover, if K is another G-invariant function, then
{H,K} is G-invariant and {H,K}0 = {H0,K0}0.

Proof. From the Shifting Theorem, the map Φ : J−1(O+)/G→ (P 	O+)0 is a symplectic
diffeomorphism induced by φ(z) = (z,J(z)). The statements regarding H and XH are
obvious. The theorem is proved if we show that the flow FOt and the Hamiltonian HO are
pushed forward to F

0

t and H0 on (P 	O+)0. Referring to the commutative diagram in the
proof of 2.5.1 and recalling that FOt ◦ πO = πO ◦ Ft , we get

Φ ◦ FOt ◦ πO = Φ ◦ πO ◦ Ft = π0 ◦ φ ◦ Ft,

and
F

0

t ◦ Φ ◦ πO = F
0

t ◦ π0 ◦ φ = π0 ◦ F t ◦ φ.

Thus,
Φ ◦ FOt = F

O
t ◦ Φ,

since for any z ∈ P ,

(φ ◦ Ft)(z) = (Ft(z),J(Ft(z))) = (Ft(z),J(z)) = F t(z,J(z)) = (F t ◦ φ)(z),

J being a conserved quantity. Similarly, if H : P → R is G-invariant, then

H0 ◦ Φ ◦ πO = Ĥ0 ◦ π0 ◦ φ = H ◦ φ = HO ◦ φ,

by 1.3.1 and 1.7.1, so that H0 ◦ Φ = HO. �

2.9 Reduction by Stages

Theorems on reduction by stages have been given in various special instances by a number
of authors, starting with Marsden and Weinstein [1974, p. 127]. This early version, which
was a very simple yet basic result stated that for two commuting groups, one could reduce
by them in succession and in either order and the result is the same as reducing by the
direct product group. We state this result in the following theorem.

Theorem 2.9.1 (Commuting Reduction Theorem) Let P be a symplectic manifold,
K be a Lie group acting symplectically on P and having an equivariant momentum map
JK : P → k∗. Assume that ν ∈ k∗ is a regular value of JK and that the action of Kν is free
and proper (so that the relevant quotient will be a smooth manifold). Let Pν = J−1

K (ν)/Kν

denote the symplectic reduced space. Let G be another group acting on P with an equivariant
momentum map JG : P → g∗. Suppose that the actions of G and K commute. Then
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i JK is invariant under the connected component of the identity of G and JG is invariant
under the connected component of the identity of K.

ii If JK is G-invariant and JG is K invariant, then G induces a symplectic action on
Pν and the map Jν : Pν → g∗ induced by JG is an equivariant momentum map for
this action.

iii The reduced space (assuming it exists) for the action of G on Pν at µ is symplectically
diffeomorphic to the reduction of P at (µ, ν) by the action of G×K.

For example, in the dynamics of a rigid body with two equal moments of inertia in a
gravitational field moving with a fixed point there are two commuting S1 symmetry groups
acting on the space (which are responsible for the complete integrability of the problem).
One can reduce these groups either together or one following the other with the same final
reduced space.

Proof

i Since the actions commute, we have [ξP , ηP ] = 0 for all ξ ∈ g and η ∈ k, where ξP
denotes the infinitesimal generator for the action of G on P . Thus, using the definition
of the momentum map, we have

0 = [ξP , ηP ] = [X〈JG,ξ〉, X〈JK ,η〉] = X−{〈JG,ξ〉,〈JK ,η〉}

and hence,

0 = {〈JG, ξ〉 , 〈JK , η〉} = d 〈JG, ξ〉 ·X〈JK ,η〉 = d 〈JG, ξ〉 · ηP .

Thus, JG(expK(tη) · p) = JG(p) for all real t, all p ∈ P , and all η ∈ k. Since the image
of the exponential map generates the connected component of the identity, the result
for JG follows; a similar argument applies to JK .

ii Let the action of g ∈ G on P be denoted by Ψg : P → P. Since these maps commute
with the action of K and leave the momentum map JK invariant by hypothesis, there
are well defined induced maps Ψν

g : J−1
K (ν)→ J−1

K (ν) and Ψg,ν : Pν → Pν , which then
define actions of G on J−1

K (ν) and on Pν .

Letting πν : J−1
K (ν) → Pν denote the natural projection and iν : J−1

K (ν) → P be the
inclusion, we have by construction, Ψg,ν ◦ πν = πν ◦Ψν

g and Ψg ◦ iν = iν ◦Ψν
g . Recall

also from the reduction theorem that i∗νΩ = π∗νΩν . Therefore,

π∗νΨ∗g,νΩν = (Ψν
g)∗π∗νΩν = (Ψν

g)∗i∗νΩ = i∗νΨ∗gΩ = i∗νΩ = π∗νΩν .

Since πν is a surjective submersion, we may conclude that

Ψ∗g,νΩν = Ων .

Thus, we have a symplectic action of G on Pν .

Since JG is invariant under K and hence under Kν, there is an induced map Jν :
Pν → g∗ satisfying Jν ◦ πν = JG ◦ iν . We now check that this is the momentum map
for the action of G on Pν . To do this, first note that for all ξ ∈ g, the vector fields ξP
and ξPν are πν-related. Denoting the interior product of a vector field X and a form
α by iXα, we have

π∗ν
(
iξPνΩν

)
= iξP i

∗
νΩ = i∗ν (iξP Ω) = i∗ν (d 〈JG, ξ〉) = π∗ν (d 〈Jν , ξ〉) .
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Again, since πν is a surjective submersion, we may conclude that

iξPνΩν = d 〈Jν , ξ〉

and hence Jν is the momentum map for the G action on Pν . Equivariance of Jν
follows from that for JG, by a diagram chasing argument as above, using the relation
Jν ◦ πν = JG ◦ iν and the relations between the actions of G on P , J−1

K (ν) and on Pν .

iii First note that the equivariant momentum map for the action of the product group
G×K is given by JG × JK : P → g∗ × k∗. We begin with the natural inclusion map

j : (JG × JK)−1(µ, ν)→ J−1
K (ν).

Composing this map with πν gives the map

πν ◦ j : (JG × JK)−1(µ, ν)→ Pν .

This map takes values in J−1
ν (µ) because of the relation Jν ◦ πν = JG ◦ iν . Using the

same name, we get a map:

πν ◦ j : (JG × JK)−1(µ, ν)→ J−1
ν (µ).

This map is equivariant with respect to the action of Gµ ×Kν on the domain and Gµ
on the range. Thus, it induces a map

[πν ◦ j] : P(µ,ν) → (Pν)µ.

Diagram chasing, as above, shows that this map is symplectic.

We will show that this map is a diffeomorphism by constructing an inverse. We begin
with the map

φ : J−1
ν (µ)→ P(µ,ν)

defined as follows. Choose an equivalence class [p]ν ∈ J−1
ν (µ) ⊂ Pν for p ∈ J−1

K (ν).
The equivalence relation is that associated with the map πν ; that is, with the action
of Kν . Observe that for each such point, we have p ∈ (JG × JK)−1(µ, ν) since by
construction p ∈ J−1

K (ν) and also

JG(p) = (JG ◦ iν)(p) = Jν([p]ν) = µ.

Hence, it makes sense to consider the class [p](µ,ν) ∈ P(µ,ν). The result is independent
of the representative, since any other representative of the same class has the form
k · p where k ∈ Kν . But this produces the same class in P(µ,ν) since for this latter
space, the quotient is by Gµ ×Kν . The map φ is therefore well defined.

This map φ is Gµ invariant, and so it defines a quotient map

[φ] : (Pν)µ → P(µ,ν).

Chasing the definitions shows that this map is the inverse of the map [πν◦j] constructed
above. Thus, either is a symplectic diffeomorphism. �



Chapter 3

Reduction of Cotangent Bundles

The goal of this chapter is to discuss symplectic reduction for cotangent bundles and to
illustrate the theory in numerous examples of mechanical interest. In some cases the reduc-
tion gives another cotangent bundle; for example, we will show in the first section below
that if G acts on T ∗Q by cotangent lift from Q, then the reduced phase space at µ = 0 is

(T ∗Q)0 = T ∗(Q/G)

and T ∗(Q/G) carries the canonical symplectic structure. If µ 6= 0, then (T ∗Q)µ need not
equal T ∗(Q/G). However, if G is Abelian, then as sets, (T ∗Q)µ = T ∗(Q/G), but even in
this case, the symplectic structure need not be the canonical one; rather, it is canonical
plus a “magnetic” term. This magnetic term has an interpretation as a magnetic or Coriolis
force and can be realized as the curvature of an associated connection often choosen to
be a special one we will define called the mechanical connection. As we shall also see, for
µ 6= 0, (T ∗Q)µ is a synthesis of the case µ = 0 and Lie-Poisson reduction.

From the point of view of Poisson reduction, the main result on cotangent bundle re-
duction can be stated this way: the Poisson reduced space (T ∗Q)/G is a bundle over the
cotangent bundle of shape space T ∗(Q/G) with fiber g∗. That is, we have a bundle:

(T ∗Q)/G→ T ∗(Q/G)

where the fibers are copies of g∗. The description of the Poisson structure on this bundle is
quite interesting and as well, the bundle is, in general, not trivial. To enable us to handle
this general case, we shall make use of the theory of principal connections; this theory will
be summarized in §2.3. The symplectic leaves in this bundle are obtained by restricting to
symplectic leaves in the fibers; that is, to coadjoint orbits.

There are special cases of this general theorem that should be kept in mind. The first is
the case of Lie-Poisson reduction in which case Q = G and the base is trivial and the bundle
is all fiber. Another special case is the case of Abelian groups in which case the bundle “is
all base” in the sense that the symplectic leaves are just points in the fiber. Another case
in which we get a point in the fiber is when the momentum value at which we are reducing
is µ = 0. We shall begin the exposition in this chapter by considering these latter cases.

The cotangent bundle reduction theorem by itself is a powerful tool, but it can also
be combined with other results. For example, it may be combined with the semidirect
product reduction theory discussed in the last chapter. For example, the semidirect product
reduction theory says that the reduction of T ∗G by an isotropy subgroup Ga for the action
of G on a vector space V is isomorphic to a coadjoint orbit in the dual of the semidirect
product gsV . Suppose, for simplicity, that Ga is abelian. In this case, the cotangent

53



54 Chapter 3 Reduction of Cotangent Bundles

bundle reduction theorem tells us that the reduction of T ∗G by Ga is T ∗(G/Ga) with a
symplectic structure given by the canonical structure plus a magnetic term. Thus, when
Ga is abelian, the corresponding coadjoint orbits in the semidirect product are cotangent
bundles, possibly with magnetic terms. For example, the generic coadjoint orbits in SE(3)
are cotangent bundles of spheres (see IMS, Chapter 14).

3.1 Reduction at Zero

The strategy for understanding the general case is to first deal with the case of reduction
at zero and then to treat the general case using a momentum shift. Let Φ : G×Q→ Q be
a smooth (left) action of G on Q and let J : T ∗Q → g∗ be the associated momentum map
defined by

J(αq) · ξ = 〈αq, ξQ(q)〉

where ξ ∈ g, be the corresponding equivariant momentum map of the (left) cotangent lift
of Φ.

The reduced space at µ = 0 is, as a set,

(T ∗Q)0 = J−1(0)/G

since, for µ = 0, Gµ = G. Notice that in this case, there is no distinction between orbit
reduction and symplectic reduction.

Theorem 3.1.1 (Reduction at Zero). Assume that the action of G on Q is free and
proper, so that the quotient Q/G is a smooth manifold. Then 0 is a regular value of J
and there is a symplectic diffeomorphism between (T ∗Q)0 and T ∗(Q/G) with its canonical
symplectic structure.

Proof. Since the action of G on Q is free, so is the action of G on T ∗Q. Thus, since all
phase space points have no symmetry, they are all regular. The action of G being proper
on Q implies that it is proper on T ∗Q (and hence on J−1(0)) as well. Thus, (T ∗Q)0 and
T ∗(Q/G) are smooth symplectic manifolds.

To show that they are symplectically diffeomorphic, first note that from the definition
of J,

J−1(0) = {αq ∈ T ∗Q | 〈αq, ξQ(q)〉 = 0 for all ξ ∈ g}. (3.1.1)

The equivalence relation on J−1(0) is by the G-action;

αq ∼ T ∗Φg−1 · αq (3.1.2)

and we write [αq] for the equivalence class of αq.
To understand how to construct a diffeomorphism between J−1(0)/G and T ∗(Q/G) we

first need to understand the tangent spaces to T (Q/G). We claim that one can identify
T[q](Q/G) with the equivalence classes of vectors in TQ at points along the orbit [q] = G · q,
where the equivalence relation is

vq ∼ TΦg · (vq + ξQ(q)) (3.1.3)

(without the ξQ(q), we would be forming (TQ)/G).
One way to see this is to consider a curve in Q/G represented by an equivalence class

[q(t)] where q(t) is equivalent to g(t) · q(t). Thus, their tangent vectors, vq = q̇(0) and
TΦg · (vq + ξQ(q)) where g = g(0) and ξ = g−1ġ represent the same tangent vector to Q/G.
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It is convenient to introduce the following maps. Define the map πQ,G : Q → Q/G
taking q to its equivalence class. Its tangent is a map

TπQ,G : TQ→ T (Q/G).

At a point q ∈ Q, the kernel of TπQ,G(q) is the set of infinitesimal generators

g(q) = {ξQ(q) | ξ ∈ g}

at q. With q fixed, we can identify [vq] with TπQ,G · vq. As indicated above, and again with
q fixed, we can identify T[q](Q/G) with TqQ/g(q) and this identification is consistent with
the G-action.

We claim that the following equation determines a diffeomorphism ϕ0 : J−1(0)/G →
T ∗(Q/G):

ϕ0([αq]) · [vq] = 〈αq, vq〉. (3.1.4)

To see that ϕ0 is well-defined, let

αq′ = T ∗Φg−1 · αq and vq′ = TΦg · (vq + ξQ(q)). (3.1.5)

Then,

〈αq′ , vq′〉 = 〈T ∗Φg−1 · αq, TΦg · (vq + ξQ(q))〉
= 〈αq, vq + ξQ(q)〉 = 〈αq, vq〉

Thus, ϕ0 is well-defined. Notice that on the right-hand side of (3.1.5), the same point q ∈ Q
is chosen for the representative of each equivalence class.

In terms of the quotient map πQ,G : Q→ Q/G we can write

〈φ0([αq ]), (TπQ,G · vq)〉 = 〈αq, vq〉 . (3.1.6)

The arbitrariness of vq in (2.1.5) shows that ϕ0 is one-to-one and a dimension count (or
in the infinite dimensional case the Hahn-Banach theorem) shows ϕ0 is onto; it is essentially
the vector space isomorphism V 0 ∼= (E/V )∗, where V is a vector subspace of a Banach space
E and V 0 = {α ∈ E∗ | α(V ) = 0} denotes the annihilator of V . (See Abraham, Marsden
and Ratiu [1988, Supplement 2.2].) Thus ϕ0 is a diffeomorphism. � This argument is
not complete �.

To show that ϕ0 is canonical, by the characterization of the reduced symplectic form it
suffices to show that

π∗0ϕ
∗
0θ = i∗0Θ, (3.1.7)

where

• θ is the canonical one form on T ∗(Q/G),

• Θ is the canonical one form on T ∗Q,

• i0 : J−1(0)→ T ∗Q is the inclusion map, and

• π0 : J−1(0)→ J−1(0)/G is the projection.
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Taking the exterior derivative gives

π∗0ϕ
∗ω = i∗0Ω (3.1.8)

where ω is the canonical form on T ∗(Q/G) and Ω is that on T ∗Q. Equation (3.1.8) implies
that

ϕ∗0ω = Ω0 (3.1.9)

where Ω0 is the reduced symplectic form at the level J = 0. This is because of the general
unique characterization of the reduced form at level J = µ given by

π∗µΩµ = i∗µΩ (3.1.10)

that we saw in the last chapter.
It remains to prove (3.1.7). To do this, let αq ∈ J−1(0) and let v ∈ TαqJ−1(0). Then

(π∗0ϕ
∗
0θ)(αq) · v = ϕ∗0θ([αq ]) · (tπ0 · v) = θ(ϕ0[αq]) · (Tϕ0 · Tπ0 · v) (3.1.11)

Letting πQ/G : T ∗(Q/G)→ Q/G be the projection, and using the definition of θ, equa-
tion (3.1.11) becomes〈

ϕ[αq], TπQ/G · Tϕ0 · Tπ0 · v
〉

=
〈
ϕ0[αq], T (πQ/G ◦ ϕ0 ◦ π0) · v

〉
.

However,

πQ/G ◦ ϕ0 ◦ π0 = πQ,G ◦ πQ ◦ i0 (3.1.12)

as both sides map a point αq ∈ J−1(0) to [q] ∈ Q/G.
Using (3.1.12) and (3.1.6), we get

(π∗0ϕ
∗
0θ)(αq) · v = 〈ϕ0([αq]), TπQ,G · TπQ · T i0 · v〉

= 〈αq, TπQ · T i0 · v〉
= i∗0Θ(αq) · v.

Thus, (3.1.7) holds and so the theorem is proved. �

Example. Consider the heavy top with a fixed point. That is, choose P = T ∗SO(3) and
let G = S1 act on Q = SO(3) by left multiplication where we regard S1 as the subgroup of
SO(3) given by rotations about the z-axis. The reduction of P at µ = 0 is thus given by
T ∗S2, since the shape space is given by SO(3)/S1 = S2.

Exercises

3.1-1 Calculate the reduction at zero of T ∗SE(3) by the subgroup of translations.

3.1-2 If, in the theorem on reduction at zero, there is another group H acting on Q that
commutes with the G action, then the H action on T ∗Q induces an action on the reduced
space (by the theorem on commuting reduction) that is given by the cotangent lift of the
induced action of H on Q/G.



2.2 Abelian Reduction 57

3.2 Abelian Reduction

A second noteworthy situation is when G is Abelian, or more generally, when G = Gµ. In
this case, the reduced space (T ∗Q)µ will, as a manifold be T ∗(Q/G), but the symplectic
form will be the canonical one plus a magnetic term. For µ = 0, we do have G = Gµ and in
addition, this magnetic term will be zero, so this case agrees with the result on reduction
at zero given in the preceding section.

Theorem 3.2.1 (Abelian or Fully Isotropic Cotangent Bundle Reduction). Let G
act freely and properly on Q. Let µ ∈ g∗ and assume that G is Abelian, or more generally
that Gµ = G. Also assume that there is a G-invariant one form αµ on Q which takes values
in J−1(µ); that is, we have the identity J(αµ(q) = µ for all q ∈ Q. Then there is a unique
closed 2-form βµ on Q/G such that

π∗Q,Gβµ = dαµ

and a symplectic diffeomorphism ϕµ between the symplectic manifolds ((T ∗Q)µ,Ωµ) and
(T ∗(Q/G), ω − Bµ), where Bµ = π∗Q/Gβµ.

Before beginning the proof, we point out that there is a specific way to construct αµ
using connections that is given in the next section. This construction will turn out to be
very important for us later on.

Proof. First of all, we verify that βµ, a two form on Q/G, is well defined. Note that αµ
itself is not assumed to drop to a one form on Q/G and indeed, a study of examples shows
that it generally will not.

For ξ ∈ g and q ∈ Q, observe that

(iξQαµ)(q) = 〈αµ(q), ξQ(q)〉
= 〈J(αµ(q)), ξ〉
= 〈µ, ξ〉

by definition of J and our assumption that αµ takes values in J−1(µ). Thus, iξQαµ is a
constant function on Q. Since αµ is G-invariant, £ξQαµ = 0 and so

iξQdαµ = £ξQαµ − diξQαµ = 0. (3.2.1)

The preceding condition and G-invariance implies that dαµ drops as a two form to Q/G.
This process is of course similar to what we used to drop symplectic forms to the quotient.

It remains to construct the symplectic diffeomorphism ϕµ. The key idea is to use the
given one form αµ to shift to zero. Indeed, we define the diffeomorphism τµ : T ∗Q→ T ∗Q
by

τµ(αq) = αq − αµ(q) (3.2.2)

and note that τµ gives a diffeomorphism τµ : J−1(µ) → J−1(0) such that i0 ◦ τµ = τµ ◦ iµ;
this is simply the statement that if αq has momentum µ, then τµ(αq) has momentum value
zero. Moreover, by the momentum shifting lemma (see IMS, §6.6),

(τµ)∗Ω = Ω + π∗Qdαµ,

which implies that

τ∗µi
∗
0Ω = i∗µ(Ω + π∗Qdαµ). (3.2.3)
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By G-invariance, we get an induced diffeomorphism

τµG : J−1(µ)/G→ J−1(0)/G.

Notice that it is at this point that we are using the hypothesis that G = Gµ. Now define

ϕµ = ϕ0 ◦ τµG : J−1(µ)/G→ T ∗(Q/G).

To show that ϕ∗µ(ω − Bµ) = Ωµ, we shall check that ϕ∗µ(ω − Bµ) satisfies the property
uniquely characterizing Ωµ, namely

π∗µϕ
∗
µ(ω −Bµ) = i∗µΩ. (3.2.4)

Now we shall use the definition of ϕµ and the identity τµG ◦ πµ = π0 ◦ τµ, to rewrite the left
hand side of (3.2.4) as follows:

(ϕµ ◦ πµ)∗(ω −Bµ) = (ϕ0 ◦ τµG ◦ πµ)∗(ω −Bµ)
= (ϕ0 ◦ π0 ◦ τµ)∗(ω −Bµ)
= τ∗µπ

∗
0ϕ
∗
0(ω −Bµ). (3.2.5)

However, Bµ = π∗Q/Gβµ and ϕ∗0ω = ω0, so (3.2.5) becomes

τ∗µπ
∗
0ω0 − τ∗µπ∗0ϕ∗0π∗Q/Gβµ (3.2.6)

But

τ∗µπ
∗
0ω0 = τ∗µi

∗
0Ω = i∗µ(Ω + π∗Qdαµ)

by (3.2.3). Also, from our work on reduction at zero, we recall the identity πQ/G ◦ π0 =
πQ,G ◦ πQ ◦ i0 and so the last term in (3.2.6) becomes

τ∗µπ
∗
0π
∗
Q/Gβµ = τ∗µi

∗
0π
∗
Qπ
∗
Q,Gβµ = τ∗µi

∗
0π
∗
Qdαµ.

But, πQ ◦ iµ = πQ ◦ i0 ◦ τµ so (3.2.6) becomes i∗µΩ as required. �

Coordinate Form of the Magnetic Terms We now discuss the coordinate form for
the reduced symplectic structure for the case in which G is a connected Abelian group. In
particular, G must be the product of a torus with a Euclidean space. We introduce a local
trivialization of Q by writing a G-invariant open set in Q as the product Q/G×G in which
the action of G is in the second factor only and the action in that factor is the standard one
of left multiplication—in this case, translation. The phrase “local in the base” Q/G is used
since the open set used corresponds to the product of an open set in the base with the fiber
for the bundle πQ,G : Q → Q/G. Under the conditions of a free and proper action that we
have been making, such a local trivialization always exists.

Such a local trivialization thus has the form U × G in which U ⊂ Q/G is an open set.
Introduce coordinates (q1, q2, . . . qn) in which (q1, . . . qm) are coordinates for Q/G and for
which the remainder are coordinates for G. We shall write the full set of coordinates on Q
as qi, i = 1, . . . , n and those on Q/G as qγ , γ = 1, . . .m. Coordinates on G will be written
as (θ1, . . . θp), or θa, a = 1, . . . p, so that n = m+ p. In summary, we write

qi = (qγ , θa)

for the coordinates on Q, with the first batch being for Q/G and the second being for G.
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We use the notation θa for the coordinates on G since we are thinking primarily of the
case in which G is a torus and so (θ1, . . . θp) are literally angle variables.

As we have seen above, after reduction, the phase space is

T ∗(Q/G), ω −Bµ).

In the local trivialization coordinates just introduced, we can write the given G-invariant
one form αµ as

αµ = αγdq
γ + αadθ

a.

In this expression, the fact that αµ is G-invariant means that the coefficients αγ and αa are
independent of θa since the group acts simply by translation in the second factor and not
in the first factor. Thus, taking the exterior derivative, we get

dαµ =
∂αγ
∂qδ

dqδ ∧ dqγ +
∂αa
∂qγ

dqγ ∧ dθa

Now we want to use the fact that the form αµ takes values in J−1(µ). Since the action is
by translation in the angles, the momentum map is given in the above coordinates by

J(qγ , θa, pγ , pa) = pa

and so the condition that αµ take values in J−1(µ) is simply that αa = µa. In particular,
this means that αa is a constant and so we get

dαµ =
∂αγ
∂qδ

dqδ ∧ dqγ =
∑
γ<δ

(
∂αγ
∂qδ
− ∂αδ
∂qγ

)
dqδ ∧ dqγ

It is evident from these expressions that the one form αµ need not drop to a one form on
the quotient space (with coordinates qγ) whereas its exterior derivative does. Thus, the
coordinate expression for the reduced symplectic form is

ω −Bµ = dqγ ∧ dpγ −
∑
γ<δ

Bγδ dq
γ ∧ dqδ (3.2.7)

where

Bγδ =
∂αγ
∂qδ
− ∂αδ
∂qγ

.

In these coordinates, the space J−1(µ) is described by the conditions pa = µa and the
quotient space J−1(µ)/G is coordinatized by simply eliminating the angles as coordinates;
the projection from J−1(µ) to J−1(µ)/G is simply

(qγ , θa, pγ , µa) 7→ (qγ , pγ)

and the map ϕµ is given by

(qγ , pγ) 7→ (qγ , pγ − αγ(q)).

Hamilton’s equations for the symplectic form (3.2.7) are given by

q̇γ =
∂Hµ

∂pγ

ṗγ = −∂H
µ

∂qγ
−Bγ,δ

∂Hµ

∂pδ

where Hµ is the reduced Hamiltonian and the Poisson bracket is given by

{F,K} =
∂F

∂qγ
∂K

∂pγ
− ∂K

∂qγ
∂F

∂pγ
−Bγδ

∂F

∂pγ

∂K

∂pδ
.
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Exercises

2.2-1 Verify the preceding assertions about Hamilton’s equations and the Poisson bracket.

2.2-2 Calculate the reduction at a general µ of T ∗SO(3) by S1, where S1 is regarded as
the subgroup of SO(3) given by rotations about the z-axis. In this situation, show explicitly
that αµ does not drop to the quotient, but that its exterior derivative does.

2.2-3 Show that

a TQ/G is a g bundle over T (Q/G).

b T (Q/G) is diffeomorphic to (TQ)/(TG).

3.3 Principal Connections

In preparation for the general cotangent bundle reduction theorem we now give a review
and summary of facts that we shall need about principle connections. The main things to
keep in mind are that the magnetic terms in the cotangent bundle reduction theorem will
appear as the curvature of a connection and that the theory of connections gives us a useful
formalism for constructing the G-invariant one forms αµ that were used in the preceding
section.

Principal Connections Defined We consider the following basic set up, as above. Let
Q be a manifold and let G be a Lie group acting freely and properly on the left on Q. We
let

πQ,G : Q→ Q/G

denote the bundle projection from the full configuration space to shape space. As earlier,
the Lie algebra of G is denoted g. We refer to πQ,G : Q→ Q/G as a principal bundle.

Of course, one can use right actions too and indeed in the principal bundle literature,
it is more common to use right actions. However, following our tradition, we shall use
left actions for the main exposition, with the understanding that the reader shall note the
needed changes for the case of right actions.

Vectors that are infinitesimal generators, namely those of the form ξQ(q) are called
vertical since they are sent to zero by the tangent of the projection map πQ,G.

Definition 3.3.1 A connection, also called a principal connection on the bundle πQ,G :
Q→ Q/G is a Lie algebra valued one form

A : TQ→ g

with the following properties:

i the identity A(ξQ(q)) = ξ holds for all ξ ∈ g; that is, A takes infinitesimal generators
of a given Lie algebra element to that element, and

ii we have A(TqΦg · v) = Adg(A(v))
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for all v ∈ TqQ, where Φq : Q → Q denotes the given action for g ∈ G and where Adg
denotes the adjoint action of G on g. This second property is referred to as equivariance
of the connection.

A remark is noteworthy at this point. Namely, recall the following general fact for
infinitesimal generators:

TΦg · ξQ(q) = (Adgξ)Q(gq).

Thus, if the first condition for a connection holds, then the second condition holds automat-
ically on vertical vectors.

Associated One Forms. Since A is a Lie algebra valued one form, for each q ∈ Q, we
get a linear map Aq : TqQ→ g and so we can form its dual A∗q : g∗ → T ∗qQ. Evaluating this
on µ produces an ordinary one form:

αµ(q) = A∗q(µ).

We assert that this one form satisfies the two crucial properties we needed in the last
section.

Proposition 3.3.2 For any connection A and µ ∈ g∗, the corresponding one form αµ
defined by the preceding equation takes values in J−1(µ) and satisfies the following G-
equivariance property:

Φ∗gαµ = αAd∗gµ.

Proof. First of all, notice that from the first property of a connection,

〈J(αµ(q)), ξ〉 = 〈αµ(q), ξQ(q)〉
=

〈
A∗q(µ), ξQ(q)

〉
= 〈µ,Aq(ξQ(q))〉
= 〈µ, ξ〉 .

Thus, we conclude that J(αµ(q)) = µ and so αµ takes values in J−1(µ). To show invariance
of the form αµ we compute in the following way using the equivariance of a connection. Let
v ∈ TqQ and g ∈ G. Then

(Φ∗gαµ)(v) = αµ(gq) · (TΦg · v)

=
〈
A∗gq(µ), TΦg · v

〉
= 〈µ,A(TΦg · v)〉
= 〈µ,Adg(A(v))〉
=

〈
Ad∗gµ,A(v)

〉
,

so that we get the required equivariance property. �

Notice in particular, if the group is Abelian or if µ is G-invariant, then αµ is an invariant
one form. Thus, in the Abelian case, or the case in which G = Gµ we have the hypotheses
needed for the one form αµ in the last section.
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Horizontal and Vertical Spaces. Associated with any connection are vertical and hor-
izontal spaces defined as follows.

Definition 3.3.3 Given the conncetion A, its horizontal space at q ∈ Q is defined by

Hq = {vq ∈ TqQ | A(vq) = 0}

and the vertical space at q ∈ Q is, as above,

Vq = {ξQ(q) | ξ ∈ g}.

The map

vq 7→ verq := [A(vq)]Q(q)

is called the vertical projection while the map

vq 7→ horq := vq − verq

is called the horizontal projection .

Because connections map infinitesimal generators of a Lie algebra elements to that Lie
algebra element, the vertical projection is indeed a projection for each fixed q onto the
vertical space and likewise with the horizontal projection.

By construction, we have

vq = verq(vq) + horq(vq)

and so

TqQ = Hq ⊕ Vq

and the maps horq and verq are projections onto these subspaces.
It is sometimes convenient to define a connection by the specification of a space Hq

complementary to Vq at each point, varying smoothly with q and respecting the group
action in the sense that Hgq = TΦgHq. Clearly this is equivalent to our definition.

The Mechanical Connection As an example of defining a connection by the specifi-
cation of a horizontal space, suppose that the configuration manifold Q is a Riemannian
manifold. Of course, the Riemannian structure will often be associated with the kinetic
energy of a given mechanical system. We define the horizontal space at a point simply to
be the metric orthogonal to the vertical space. This therefore defines a connection called
the mechanical connection . In the next section we shall develop an explicit formula for
the associated Lie algebra valued one form in terms of an inertia tensor and the momentum
map.

Curvature The curvature B of a connection A is defined as follows.

Definition 3.3.4 The curvature of a connection A is the Lie algebra valued two form on
Q defined by

B(uq, vq) = dA(horq(uq),horq(vq))

where d is the exterior derivative.
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When one replaces vectors in the exterior derivative with their horizontal projections, then
the result is called the exterior covariant derivative and one writes it as

B = DA.

Given a point q ∈ Q, the tangent of the projection map πQ,G restricted to the hori-
zontal space Hq gives an isomorphism between Hq and T[q](Q/G). Its inverse is called the
horizontal lift to q ∈ Q. Since B depends only on the horizontal part of the vectors, it
defines a Lie algebra valued two form on the base Q/G. The expression on the right hand
side of the definition of the curvature is independent of the point representing [q] because
of G-equivariance.

Curvature measures the lack of integrability of the horizontal distribution in the following
sense.

Proposition 3.3.5 On two vector fields u, v on Q one has

B(u, v) = −A([hor(u),hor(v)]).

Proof. We use the formula of Cartan relating the exterior derivative and the Lie bracket
of vector fields:

B(u, v) = hor(u)[A(hor(v))]− hor(v)[A(hor(u))]−A([hor(u),hor(v)]).

But the first two terms vanish since A vanishes on horizontal vectors. �

Given a general distribution D ⊂ TQ on a manifold Q one can also define its curvature
in an analogous way directly in terms of its lack of integrability. Define vertical vectors at
q ∈ Q to be the quotient space TqQ/Dq and define the curvature acting on two horizontal
vector fields u, v (that is, two vector fields that take their values in the distribution) to
be the projection onto the quotient of their Jacobi-Lie bracket. One can check that this
operation depends only on the point values of the vector fields, so indeed defines a two form
on horizontal vectors.

We now derive an important formula for the curvature of a principal connection.

Theorem 3.3.6 (Cartan Structure Equations) For any vector fields u, v on Q we have

B(u, v) = dA(u, v) + [A(u),A(v)]

where the bracket on the right hand side is the Lie bracket in g. We write this equation for
short as

B = dA+ [A,A].

To prove this theorem we prepare a lemma.

Lemma 3.3.7 We have the identity dA(hor(u), ver(v)) = 0 for any two vector fields u, v
on Q .
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Proof. Since this identity depens only on the point values of u and v, we can assume that
ver(v) = ξQ identically. Then, as in the preceding proposition, we have

dA(hor(u), ver(v)) = (hor(u))[A(ξQ)]− ξQ[A(hor(u))]−A([hor(u), ξQ])
= hor(u)[ξ]− ξQ[0] +A[ξQ,hor(u)]
= A[ξQ,hor(u)]

since ξ is constant. However, the flow of ξQ is Φexp(tξ) and the map hor is equivariant and
so

[ξQ,hor(u)] =
d

dt

∣∣∣∣
t=0

Φ∗exp(tξ)hor(u)

= hor
d

dt

∣∣∣∣
t=0

Φ∗exp(tξ)(u)

= hor[ξQ, u]

Thus, [ξQ,hor(u)] is horizontal and so it is annihilated by A and so the lemma follows. �

Proof of the Cartan structure equations Use of the lemma and writing u = hor(u) +
ver(u) and similarly for v, shows that

dA(u, ver(v)) = dA(ver(u), ver(v))

and so we get

B(u, v) = dA(u, v)− dA(ver(u), ver(v)).

Again, the second term on the right hand side of this equation depends only on the point
values of u and v and so we can assume that hor(u) = ξQ and that hor(v) = ηQ for ξ ∈ g

and η ∈ g. Then

dA(ξQ, ηQ) = ξQ[A(ηQ)]− ηQ[A(ξQ)]−A([ξQ, ηQ])
= A([ξ, η]Q) = [ξ, η]
= [A(u),A(v)]. �

The Mauer-Cartan Equations . A consequence of the structure equations relates cur-
vature to the process of left and right trivialization and hence to momentum maps.

Theorem 3.3.8 (Mauer-Cartan Equations). Let G be a Lie group and let ρ : TG→ g

be the map that right translates vectors to the identity:

ρ(vg) = TgRg−1 · vg.
Then

dρ− [ρ, ρ] = 0.

Proof. Note that ρ is literally a connection on G for the left action. In considering this,
keep in mind that for the action by left multiplication we have ξQ(q) = TeRg · ξ. On the
other hand, the curvature of this connection must be zero since the shape space G/G is a
point. Thus, the result follows from the structure equations. �

Another proof of this result is given in IMS, §9.1. Of course there is a similar result for
the left trivialization λ and we get the identity

dλ+ [λ, λ] = 0.
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Bianchi Identities. In geometry the Bianchi identities are a famous set of identities for
the Riemann curvature tensor of a given Riemannian metric. In fact, this set of identities is
valid for more general notions of connection as well, such as affine connections. The relation
between the Levi-Cevita connection with the present formalism is to use the frame bundle
as the bundle Q and think of it as a principal bundle over the underlying manifold M and
the group SO(n) as the structure group. Then the curvature as defined here coincides with
the Riemann curvature tensor. We will not go into this in detail here as it is not needed
for our present purposes, and instead we refer to Spivak [19xx] or Kobayashi and Nomizu
[1964] for an exposition of this. It is interesting that in the context of principal connections,
the general proof is rather easy.

Theorem 3.3.9 (Bianchi Identities.) We have the identity DB = 0, that is, for any
vector fields u, v, w on Q

dB(hor(u),hor(v),hor(w)) = 0.

Proof. From the structure equations and the fact that d2A = 0 we find that dB = d[A,A].
Using the identity relating the exterior derivative and the Jacobi-Lie bracket of vector fields,
we get

(d[A,A])(hor(u),hor(v),hor(w)) = hor(u)[ [A,A](hor(v),hor(w))] + cyclic
− ([A,A])([hor(u),hor(v)],hor(w)) − cyclic.

But all the terms in this expression are zero since A vanishes on horizontal vectors. �

Coordinate Formulae. Needs to be filled in.

Exercises

2.3-1 Recall from Exercise 2.2-3 that TQ/G is a g bundle over T (Q/G). Put a natural
G-connection on this bundle and compute its curvature.

2.3-2 In the rigid body, show that J−1(µ) ∼= SO(3) is a circle bundle over S2. Show that the
canonical one form defines a principal S1 connection on this bundle. Compute its curvature.

2.3-3 In the Kaluza Klein approach to the dynamics of a particle in a magnetic field (IMS,
§7.6), show that if the magnetic potential is A, then ω = dθ + A can be interpreted as a
connection and that the magnetic field is its curvature. Show that the Kaluza-Klein metric
is determined by requiring that the associated mechanical connection be ω.
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3.4 Cotangent Bundle Reduction—Embedding Version

Assume that µ ∈ g∗ is a regular (or clean) value of J, that Qµ = Q/Gµ is a smooth manifold
and that the canonical projection π : Q → Qµ is a surjective submersion. Recall that this
is assured if we assume that the coadjoint isotropy group Gµ acts freely and properly on Q;
then Gµ acts freely and properly on J−1(µ) so that the reduced phase space ((T ∗Q)µ,Ωµ)
is a symplectic manifold.

For µ ∈ g∗ , let µ′ := µ|gµ ∈ g∗ be the restriction of µ to gµ and consider the Gµ-
action on Q and its lift to T ∗Q. The equivariant momentum map of this action is the
map Jµ : T ∗Q → gµ obtained by restricting J, i.e., Jµ(αq) = J(αq)|gµ. Assume there is a
Gµ-invariant one-form αµ on Q with values in (Jµ)−1(µ′). We saw how to construct αµ in
terms of connections in the last section.

For ξ ∈ gµ and q ∈ Q,

(iξQαµ)(q) = J(αµ(q)) · ξ = 〈µ, ξ〉

so iξQαµ is a constant function on Q . Therefore, for ξ ∈ gµ ,

iξQdαµ = £ξQαµ − diξQαµ = 0,

since the Lie derivative is zero by Gµ-invariance. It follows that there is a unique two form
βµ on Qµ such that π∗βµ = dαµ. We saw this sort of argument when we studied the Abelian
cotangent bundle reduction theorem. Since π is a submersion, βµ is closed (it need not be
exact). Let

Bµ = π∗Qµβµ

where π∗Qµ : T ∗Qµ → Qµ is the cotangent bundle projection.

Theorem 3.4.1 (Cotangent Bundle Reduction Theorem) Under the above hypothe-
ses, there is a symplectic embedding

ϕµ : ((T ∗Q)µ,Ωµ)→ (T ∗Qµ, ω −Bµ), (3.4.1)

where ω is the canonical symplectic structure on the cotangent bundle T ∗Qµ, onto a vector
subbundle over Qµ. The map ϕµ is onto T ∗Qµ if and only if g = gµ.

Remarks.

1. This version of the theorem is due to Satzer [1977] for abelian groups and Marsden
(Abraham and Marsden [1978, §4.2]) in the general case. It is an outgrowth of the
work of Smale [1970] and the reduction theory of Marsden and Weinstein [1974].
An important interpretation in terms of principal bundles due to Kummer [1981]
and its relation to the bundle picture of Montgomery, Marsden and Ratiu [1984] and
Montgomery [1986] will be discussed briefly below.

2. Note that the version of the theorem with the hypothesis G = Gµ we proved earlier
in this chapter is a special case of this result.
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Proof. To prove the general case, we will reduce the problem to reduction at zero using
the momentum shifting lemma. We shall use the fact that there is a natural inclusion

J−1(µ) ⊂ (Jµ)−1(µ′) (3.4.2)

and µ′ is Gµ-invariant. Thus, we get a symplectic inclusion of reduced spaces

J−1(µ)/Gµ ⊂ (Jµ)−1(µ′)/Gµ. (3.4.3)

By Gµ-invariance of both J−1(µ) and (Jµ)−1(µ′), this inclusion is an equality precisely when
g = gµ.

Since we can think of the right hand side of the preceding inclusion as reduction at
the value µ′ which is Gµ invariant, we are reduced to the proof in the case where µ is G-
invariant and in this case ϕµ will be a symplectic diffeomorphism of (J−1(µ)/G, Ωµ) with
(T ∗(Q/G), Ω0 −Bµ). However, we have already proved this case in §3.2. �

Example. Consider the reduction of a general T ∗Q by G = SO(3). Here Gµ = S1 and so
the reduced space gets embedded into the cotangent bundle T ∗(Q/S1). A specific example
is the case of Q = SO(3). Then the reduced space is S2, a coadjoint orbit in so(3). In this
case, Q/Gµ = SO(3)/S1 = S2 and the embedding of S2 into T ∗S2 is the embedding into
the zero section. The symplectic form in this case is “all magnetic”. �

Using the results of the preceding section, we can interpret the magnetic term Bµ as
the curvature of a connection on a principal bundle. Following this, we give a little more
information on the bundle point of view following Montgomery, Marsden and Ratiu [1984];
see also Montgomery [1986] and references therein.

We saw in the preamble to the Cotangent Bundle Reduction Theorem that iξQdαµ = 0
for any ξ ∈ gµ, which was used to drop dαµ to the quotient. In the language of prin-
cipal bundles, this says that dαµ is horizontal and thus the covariant exterior derivative
of αµ coincides with dαµ. Thus, dαµ is the µ-component of the curvature two-form. We
summarize:

Proposition 3.4.2 If the principal bundle Q→ Qµ with structure group Gµ has a connec-
tion A, then αµ(q) can be taken to equal A∗qµ′ and Bµ is induced on T ∗Qµ by the µ-component
dαµ of the curvature of A.

The term Bµ on T ∗Q is usually called a magnetic term. This terminology comes from
the Hamiltonian description of a particle of charge e moving according to the Lorentz force
law in R

3 under the influence of a magnetic field B. This motion takes place in T ∗R but
with the non-standard symplectic structure dqi ∧ dpi − e

cB, i = 1, 2, 3, where c is the speed
of light and B is regarded as a closed two form: B = Bxdy ∧ dz − Bydx ∧ dz + Bzdx ∧ dy
(see IMS.

The Cotangent Bundle Reduction Theorem gives a realization of the reduced space
Pµ = J−1(µ)/G in case P = T ∗Q. The left side of the following diagram summarizes the
situation:

3.5 Cotangent Bundle Reduction—Bundle Version

The version of the theorem presented above says that Pµ embeds as a vector subbundle of
T ∗(Q/Gµ) — this is the injection in the above figure. The orbit reduction theorem can be
viewed as saying that Pµ ∼= PO is a coadjoint bundle over T ∗(Q/G) with fiber the coadjoint
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T ∗Q T ∗Q

Q Q

J−1(µ) J−1(O)

Pµ PO

T ∗(Q/Gµ) T ∗(Q/G)

Q/Gµ Q/G

⊃ ⊂ ⊂

∼=

Gµ G

injection surjection

? ?

?

?

?

?

?

?
- - �

orbit O through µ. We state this version as follows. As above, we choose a one form αµ
that is induced by a choice of connection A.

Theorem 3.5.1 (Cotangent Bundle Reduction—Bundle Version) The reduced space
Pµ is a bundle over T ∗(Q/G) with fiber O.

Proof.

Step 1 Reduction at zero Recall that we have already shown that reduction at zero is
given by

(T ∗Q)0
∼= T ∗(Q/G). (3.5.1)

Here (T ∗Q)0 = J−1(0)/G and the symplectic form on T ∗(Q/G) is, as before, the
canonical one.

Step 2 Orbit reduction We have also shown in the preceding chapter that the reduced
space (T ∗Q)µ = J−1(µ)/Gµ can be identified with the quotient J−1(O)/G, where O
is the coadjoint orbit through µ.

Step 3 Shifting Use the shift map Σ : T ∗Q→ T ∗Q defined by Σ(z) = z−αJ(z)(q) where
q = πQ(z) to map J−1(O) to J−1(0).

Notice that the map Σ is nothing more than the horizontal projection map for the
connection. Letting αz ∈ T ∗qQ be defined by αz = αJ(z)(q), we can write Σ(z) = z − αz.
We claim that Σ is equivariant with respect to the G-action. To see this, let h ∈ G and
vq ∈ TqQ and note that

〈T ∗q Φh · αh·z, vq〉 = 〈αh·z, TqΦh · vq〉 = 〈J(h · z),A(TqΦh · vq)〉
= 〈Ad∗h−1J(z),AdhA(vq)〉 = 〈αz , vq〉.

Thus, T ∗q Φh · αh·z = αz and so Σ is equivariant and hence drops to the quotient, producing
the desired map

(T ∗Q)µ = J−1(O)/G→ J−1(0)/G = T ∗(Q/G). (3.5.2)

This map has fiber O, i.e., Σ ◦ αµ = 0 for all µ ∈ O, so our assertion is proved. �

This same type of arguement shows the following
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Theorem 3.5.2 The Poisson reduced space (T ∗Q) is diffeomorphic to a g∗ bundle over
T ∗(Q/G).

Below we will calculate the Poisson structure on (T ∗Q)/G following Marsden, Montgomery,
and Ratiu [1984] and Montgomery [1986]. (See also Lewis, Marsden, and Ratiu [1987] for
an application to the dynamics of systems with free boundaries.)

3.6 The Mechanical Connection Revisited

In this section we amplify in the connection used in the cotangent bundle reduction theorem
in the context of a simple mechanical G-system. We assume that G acts freely on Q so we
can regard Q→ Q/G as a principal G-bundle.

For each q ∈ Q, define the locked inertia tensor I(q) on g to be the map I(q) : g→ g∗

defined by

〈I(q)η, ζ〉= 〈〈ηQ(q), ζQ(q)〉〉 . (3.6.1)

Since the action is free, I(q) is nondegenerate, so (3.6.1) defines an inner product. The
terminology comes from the fact that for coupled rigid or elastic systems, I(q) is the classical
moment of inertia tensor of the rigid body obtained by locking all the joints of the system.
In coordinates,

Iab = gijK
i
aK

j
b . (3.6.2)

where [ξQ(q)]i = Ki
a(q)ξa define the action functions Ki

a.
Define the map A : TQ → g which assigns to each (q, v) the corresponding angular

velocity of the locked system:

A(q, v) = I
−1(J(FL(q, v))), (3.6.3)

where L is the kinetic energy Lagrangian. In coordinates,

αa = IabgijK
i
bv
j (3.6.4)

since Ja(q, p) = piK
i
a(q).

Earlier we defined the mechanical connection by declaring its horizontal space to be the
metric orthogonal to the vertical space. We claim that the above definition coincides with
that.

Proposition 3.6.1 The map defined by (3.6.3) coincides with the mechanical connection
on the principal G-bundle Q→ Q/G.

Proof. First notice that A is G-equivariant and satisfies A(ξQ(q)) = ξ, both of which are
readily verified. In checking equivariance, one uses invariance of the metric; i.e., equivariance
of FL : TQ → T ∗Q, equivariance of J : T ∗Q → g∗, and equivariance of I in the sense of a
map I : Q× g→ g∗; I(gq) · Adgξ = Ad∗g−1I(q) · ξ. Thus, A is a connection.

The horizontal space of A is given by

horq = {(q, v) | J(FL(q, v)) = 0}; (3.6.5)

i.e., the space of states with zero momentum. This space is, from the definition of the
momentum map clearly the same as the orthogonal space to the infinitesimal generators;
i.e., the vertical space. However, any two connections with the same horizontal spaces are
equal. �
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Proposition 3.6.2 The one form αµ associated with the mechanical connection is charac-
terized by

K(αµ(q)) = inf{K(q, β) | β ∈ J−1
q (µ)} (3.6.6)

where Jq = J|T ∗qQ and K(q, p) = 1
2‖p‖2q is the kinetic energy function. See Figure 3.6.1.

J-1(µ)     T
q
*Q

T
q
*Q

Q

q

αµ(q)

∪

Figure 3.6.1: The extremal characterization of the mechanical connection

The horizontal-vertical decomposition of a vector (q, v) ∈ TqQ is given by the general
prescription

v = horq v + verqv (3.6.7)

where

verq v = [α(q, v)]Q(q) and horq v = v − verq v.

In terms of T ∗Q rather than TQ, we define a map ω : T ∗Q→ g by

ω(q, p) = I(q)−1J(q, p) (3.6.8)

i.e.,

ωa = IabAibpi,

and, using a slight abuse of notation, a projection hor : T ∗Q→ J−1(0) by

hor(q, p) = p− αJ(q,p)(q) (3.6.9)

i.e.,

(hor(q, p))i = pi − gijAjbpkAkaIab.

This map hor plays a fundamental role in what follows. We also refer to hor as the shifting
map. This map was used in the proof of the cotangent bundle reduction theorem; it is
also an essential ingredient in the description of a particle in a Yang-Mills field via the
Kaluza-Klein construction, generalizing the electromagnetic case p− e

cA
The curvature curvα of the connection α is the covariant exterior derivative of α; also,

curv α measures the lack of integrability of the horizontal subbundle. At q ∈ Q,

(curv α)(v, w) = dα(hor v,horw) = −α([hor v,hor w]), (3.6.10)
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where the Jacobi-Lie bracket is computed using arbitrary extensions of v, w to vector fields.
One can compute curv α by substituting (2.3.2)′ and (2.3.9)′ into (2.3.10). Taking the
µ-component of (2.3.10), we get a 2-form 〈µ, curv α〉 on Q given by

〈µ, curv α〉 (v, w) = αµ([hor v,hor w]) = −αµ([v − α(v)Q, w − α(w)Q])
= −αµ([v, α(w)Q]− αµ([w,α(v)Q]
−αµ([v, w]) + 〈µ, [α(v), α(w)]〉 (3.6.11)

In (2.3.11) we may choose v and w to be extended by G-invariance. Then α(w)Q = ζQ for
a fixed ζ, so [v, α(w)Q] = 0, so we can replace this term by v[αµ(w)], v[〈µ, ξ〉] = 0, as 〈µ, ξ〉
is constant. Thus, (2.3.11) gives

〈µ, curv α〉 = dαµ + [α, α]µ (3.6.12)

where [α, α]µ(v, w) = 〈µ, [α(v), α(w)]〉, the bracket being the Lie algebra bracket. Formula
(2.3.12) is, of course, standard for curvatures of principal connections.

3.7 The Poisson Structure on T ∗Q/G.

Insert here from Marsden, Montgomery and Ratiu [1984]

3.8 The Amended Potential

The ammended potential Vµ of Smale [1970] is defined by

Vµ = H ◦ αµ; (3.8.1)

this function also plays a crucual role in what follows. In coordinates,

Vµ(q) = V (q) +
1
2
Iab(q)µaµb (3.8.2)

or, intrinsically

Vµ(q) = V (q) +
1
2
〈
µ, I(q)−1µ

〉
. (3.8.3)

In the setting of the cotangent bundle reduction theorem, given a Hamiltonian of the
form, kinetic plus potential, we get a reduced Hamiltonian system on Pµ ∼= PO obtained
by restricting H to H−1(µ) or J−1(O) and passing to the quotient producing an induced
hamiltonian Hµ. Let us compute Hµ in each of the pictures Pµ and PO. In either case the
shift by the map hor is basic, so we first compute the function on J−1(0) given by

Hα,µ(q, p) = H(q, p+ αµ(q)). (3.8.4)

Indeed,

Hα,µ(q, p) =
1
2
〈〈p+ αµ, p+ αµ〉〉q + V (q)

=
1
2
‖p‖2q + 〈〈p, αµ〉〉q +

1
2
‖αµ‖2q + V (q) (3.8.5)

If p = FL · v, then 〈〈p, αµ〉〉q = 〈αµ, v〉 = 〈µ, α(q, v)〉 = 〈µ, I(q)J(p)〉 = 0 since J(p) = 0.
Thus, on J−1(0),

Hα,µ(q, p) =
1
2
‖p‖2q + Vµ(q). (3.8.6)
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3.9 Examples

Here we consider a few examples of cotangent bundle reduction.

1. The Spherical Pendulum
Here Q = S2, the sphere on which the bob moves, the metric is the standard one, the

potential is the gravitational potential and G = S1 acts on S2 by rotations about the vertical
axis. The momentum map is simply the angular momentum. See Figure 2.4.1.

θ

ϕ

R

x

y

e
r

eϕ

eθ

z

Figure 3.9.1: The Spherical Pendulum

Relative to coordinates θ, ϕ as in Figure 2.4.1, we have V (θ, ϕ) = −mgR cos θ. The
mechanical connection α : TQ→ R is given by (2.3.2). We claim that

α(θ, ϕ, θ̇, ϕ̇) = ϕ̇ (3.9.1)

To see this, note that

ξQ(θ, ϕ) = (θ, ϕ, 0, ξ) (3.9.2)

since G = S
1 acts by rotations about the z-axis: (θ, ϕ) 7→ (θ, ϕ+ ψ). The metric is

〈〈(θ, ϕ, θ̇1, ϕ̇1), (θ, ϕ, θ̇2, ϕ̇2)〉〉 = mR2θ̇1θ̇2 +mR2 sin2 θϕ̇1ϕ̇2 (3.9.3)

which is m times the standard inner product of the corresponding vectors in R
3 .

The momentum map is

J : T ∗Q→ R; J(θ, ϕ, pθ, pϕ) = pϕ (3.9.4)

and the Legendre transformation is

pθ = mR2θ̇, pϕ = (mR2 sin2 θ)θ̇. (3.9.5)

〈I(θ, ϕ)η, ζ〉 = 〈〈(θ, ϕ, 0, η)(θ, ϕ, 0, ζ)〉〉 = (mP 2 sin−2 θ)ηζ (3.9.6)
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Thus, (2.3.2) gives (2.4.1) as claimed.
In this example, we identify Q/S1 with the interval [0, π]; i.e., the θ-variable. In fact, it

is convenient to regard Q/S1 as S1 mod Z2, where Z2 acts by reflection θ 7→ −θ. This helps
to desingularize the quotient space.

For µ ∈ g∗ ∼= R, the one form αµ is given by (2.3.5) as

αµ(θ, ϕ) = µdϕ. (3.9.7)

From (2.4.4), note that Proposition 2.3.2 is clear. The shifting map is given by

hor(θ, ϕ, pθ, pϕ) = (θ, ϕ, pθ, 0). (3.9.8)

The curvature of the connection α is zero in this example. The amended potential is

Vµ(θ) = V (θ, ϕ) +
1
2
〈µ, I(θ, ϕ)−1µ〉 = −mgR cos θ +

1
2

µ2

mR2 sin2 θ

and so the reduced Hamiltonian on T ∗S1 is

Hµ(θ, pθ) =
1
2

p2
θ

mR2
+ Vµ(θ). (3.9.9)

The reduced Hamiltonian equations are

θ̇ =
pθ
mR2

,

and

ṗ = mgR sin θ − cos θ
sin2 θ

µ2

mR2
.

Note that the extra term is singular at θ = 0. �

2. Coupled Rigid Bodies
Here we have two rigid bodies in R

3 coupled by a ball in socket joint. We choose
Q = R

3 × SO(3) × SO(3) describing the joint position and the attitude of each of the
rigid bodies relative to a reference configuration B. The Hamiltonian is the kinetic energy,
which defines a metric on Q. Here G = SE(3) which acts on the left in the obvious way by
transforming the positions of the particles xi = AiX+w, i = 1, 2 by Euclidean motions. The
momentum map is the total linear and angular momentum. If the bodies have additional
material symmetry, G is correspondingly enlarged. The cotangent bundle reduction theorem
states that (T ∗Q)µ is a sphere bundle over T ∗(R3 × SO(3)). We refer to Patrick [1990] for
details. �

3. Coadjoint Orbits
Let G be a Lie group. The lift to T ∗G of the left action of G on itself has the equivariant

momentum map JL : T ∗G → g∗+, J(αg) = T ∗eRg(αg). Each µ ∈ g∗ is a regular value
of JL and J−1

L (µ) is the graph of the right invariant one-form µ̃ whose value at e is µ,
i.e., µ̃(g) = µ ◦ TgR−1

L . It is easy to see that Gµ = {g ∈ G | L∗gµ̃ = µ̃}, so Gµ acts on
J−1
L (µ) by (g, µ̃(h)) 7→ µ̃(gh), i.e., by left translation on the base point. Thus, formally

(T ∗G)µ = J−1
L (µ)/Gµ ∼= G/Gµ ∼= Oµ ⊂ g∗. In fact, taking into account that J−1

L (µ) is
identified with G as the graph of a right invariant one-form and the action of G on J−1

L (µ)
is on the left , the prior string of diffeomorphisms can be traced in the following way. The
map µ̃(g) 7→ Ad∗gµ is onto Oµ and is Gµ-left invariant so it factors, inducing the smooth
map φµ : (T ∗G)µ → Oµ, φµ[µ̃(g)] = Ad∗gµ, where [µ̃(g)] denotes the Gµ-orbit through µ̃(g)
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Figure 3.9.2: Coupled Rigid Bodies

in T ∗G. It is easily checked that Ad∗gµ ∈ Oµ 7→ [µ̃(g)] ∈ (T ∗G)µ is the inverse to φµ and
that φµ is a local diffeomorphism, proving that φµ is a diffeomorphism of (T ∗G)µ with Oµ.
A direct calculation shows that the push-forward of the symplectic form Ωµ of (T ∗G)µ by
φµ gives the “−” coadjoint orbit symplectic form on Oµ. In the next section, after we have
studied Poisson brackets on reduced manifolds, we will give a simple proof by showing that
φµ is the equivariant momentum map of the right G-action on (T ∗G)µ. �

4. Reduction to Center of Mass Coordinates
Consider the configuration space for N+1 particles in R

3 , namely Q = R
3(N+1) regarded

as (N + 1)-tuples (qO, . . . ,qN ) of vectors in R
3 . The abelian group G = R

3 acts on Q by
(x,qO, . . . ,qN ) 7→ (x + qO, . . . , x + qN ). The cotangent lift to T ∗R3(N+1) = R

3(N+1) ×
R

3(N+1) = {(qj ,pj) | (qj ,pj ∈ R3} of this R3 -action has an equivariant momentum map

J : R3(N+1) × R
3(N+1) → R

3

given by the total linear momentum

J(qj ,pj) =
N∑
j=0

pj .

This formula shows that any value of R3 is a regular value of J and since R3 acts freely
and properly on R

3(N+1) × R
3(N+1) , the reduced phase space J−1(µ)/R3 is a symplectic

manifold for any µ ∈ R3 . This manifold coincides with T ∗(R3(N+1)/R3 ) with values in

J−1(µ) =

(qj , pj) | qj ,pj ∈ R3 ,
N∑
j=0

pj = µ

 .

Clearly αµ(q0, . . . ,qN ) = (q0, . . . ,qN , µ/(N+1), . . . , µ/(N+1)) is such a choice, and thus
dαµ = 0, i.e., T ∗(R3(N+1)/R3) is endowed with the canonical symplectic structure.

One convenient way to put coordinates on this reduced manifold is with respect to its
center of mass. If m0, . . . ,mN are the masses of the (N+1) particles and m = m0+. . .+mN

is the total mass, the vector

c =
1
m

(
N∑
i=0

miqi

)
∈ R3
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is the center of mass of the system. With respect to c, introduce the new coordinates
q̂i = qi − c and note that (q̂0, . . . , q̂N ) lies on the codimension 3 hyperplane

M =

(q0, ...,qN )

∣∣∣∣∣∣
N∑
j=0

miqi = 0

 ,

which can be identified with R
3(N+1)/R3 since every R

3 orbit intersects M in exactly one
point. Consequently, the reduced manifold is T ∗M = {((q̂j , p̂j)) |

∑N
i=0miq̂i = 0, and∑N

i=0 p̂i = 0} with its canonical symplectic structure; the relation between pi and p̂i is
given by p̂i = pi − m/(N + 1). Note that the reduced manifold T ∗M makes precise the
intuitive idea that during the motion it is not the position and the momenta that really
count, but only the relative positions and relative momenta. The advantage of coordinatizing
everything relative to the center of mass become apparent when the dynamical aspects of
reduction are discussed for the (N + 1)-body problem. It should be noted however that any
other coordinate system, e.g. singling out a particular particle such as q0, p0, would have
worked, but the formulas will then lose their symmetry.

An even better way of coordinatizing T ∗(R3(N+1)/R3 ) is due to Jacobi [1843]; we shall
present it following Haretu’s [1878] generalization. Let Qi, i = 1, . . . , N denote the coor-
dinates of the i-th particle relative to the coordinate system whose axes are parallel to the
original one and whose origin is at the center of mass of the first i− 1 particles. We shall
express the qj , j = 0, . . . , N in terms of the Qi, i = 1, . . . , N and c . For this purpose,
let ci, i = 0, . . . , N be the center of mass of the first i particles in the original coordinate
system and put µi = m0 + . . .+mi; note that µN = m, c0 = qO, and cN = c. Substituting
the values of ci given by µici = m0q0 + . . .+miqi in qi = ci−1 + Qi, we get

qi = q0 +
m1

µ1
Q1 + . . .+

mi−1

µi−1
ci−1 + Qi, i = 1, . . . , N.

Substituting this last relation in µnc = m0q0 + . . .+mNqN yields

q0 = c−
(
m1

µ1
Q1 + . . .+

mi−1

µi−1
QN

)
,

which together with the foregoing expression for qi gives the linear invertible change of
coordinates

q0 = c− m1

µ1
Q1 −m2

µ2
Q2 · · · · · · −mN−1

µN−1
QN−1 −mN

µN
QN

q1 = c− m0

µ1
Q1 −m2

µ2
Q2 · · · · · · −µN−1

µN−1
QN−1 −mN

µN
QN

q2 = c +
µ0

µ1
Q2 · · · · · · −mN−1

µN−1
QN−1 −mN

µN
QN

...
...

...

qN−1 = c +
µN−2

µN+1
QN−1 −mN

µN
QN

qN = c +
µN−1

µN
QN
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It can be easily checked that every R
3 -orbit intersects the codimension 3 subspace c = 0 in

exactly one point, so that R3(N+1)/R3 is identified with R
3N = {(Q1, · · · ,QN )}. Moreover,

if d,P1, · · · ,PN denote the conjugate variables, representing the momenta of c and of the
last N particles in the corresponding systems, a similar calculation shows that

p0 =
m0

µN
d− m0

µ1
P1 − m0

µ2
P2− · · · · · · − m0

µN−1
PN−1 −m0

µN
PN

p1 =
m1

µN
d +

m0

µ1
P1 − m1

µ2
P2− · · · · · · − m1

µN−1
PN−1 −m1

µN
PN

p2 =
m2

µN
d +

µ1

µ2
P2− · · · · · · − m1

µN−1
PN−1 −m2

µN
PN

...
...

...

pN−1 =
mN−1

µN
d +

µN−2

µN−1
PN−1 −mN−1

µN
PN

pN =
mN

µN
d +

µN−1

µN
PN

Note that
∑N
i=0 pi = d = µ, s so that, as expected, the constraint manifold J−1(µ) repre-

sents the total momentum of the center of mass. Thus, the Jacobi-Haretu change of variables
not only gives the reduced manifold, but also its canonical coordinates. �

5. Jacobi’s Elimination of the Nodes in the One Body Problem
The lift to T ∗R3 = R

3 × R
3 of the usual SO(3) action on R

3 , namely (A,q) 7→ Aq, has
the equivariant momentum map J : T ∗R3 → so(3)∗ = R

3 given by J(q,p) = q × p. The
singular set of J is σ(J) = {(q,p) ∈ R

6 | q and p are collinear} and its projection on the
q-space is the entire space; this is in accordance with Remark C following the Cotangent
Bundle Reduction Theorem since the dimension of the isotropy group SO(3)q equals one
if q 6= 0 and equals three if q = 0. Consequently, any µ = 0 is a regular value of J and
the level set J−1(µ) for µ 6= 0 is the codimension three submanifold in R

2 × R
3 formed

by vectors q and p such that q× p = µ. Note that SO(3)µ equals the circle group fixing
µ ∈ R3 and that the projection of J−1(µ) on the q-space equals R3\{0}. Since the SO(3)µ
action on R3 is not free, the cotangent Bundle Reduction Theorem is not literally applicable.
However, Montgomery’s generalization does apply. His result shows that the reduced space
is the cotangent bundle of a ray. In what follows we shall show this explicitly (we follow an
argument of Montgomery); see Exercise 2.3-1 for µ = 0.

Note that if (q,p) ∈ J−1(µ) then q and p regarded as vectors in R
3 must lie in the

plane in R
3 perpendicular to µ. The isotropy group SO(3)µ = S1 acts freely and properly

on this plane (minus the origin). Moreover, q× p = µ implies that ‖q‖ ‖p‖ sin(θ(q,p)) =
‖µ‖, where θ(q,p) denotes the angle between q and p. Thus ‖q‖ and q · p determine
(q,p) ∈ J−1(µ) up to the angle between q and p. This suggests that the map ϕ : J−1(µ)→
]0,∞[× R, φ(q,p) = (‖q‖,q · p), which is clearly invariant under the SO(3)µ = S1-action,
induces a diffeormorphism φ̂ : (T ∗R3 )µ → ]0,∞[ × R. The inverse of φ̂ is easily seen to be
given by πµ◦ψ where ψ : ]0,∞[×R → J−1(µ) is defined by ψ(r, x) = (re1, (xe1 +‖µ‖e2)/r),
for (e1, e2, e3) an orthonormal basis of R3 such that µ = ‖µ‖e3 and e1× e2 = e3. Denoting
as usual the reduced symplectic form by Ωµ and the canonical one and two-forms on T ∗R3

by θ0 =
∑3
i=1 piq

i, Ω0 = −dθ0 =
∑3
i=1 dq

i ∧ dpi, the symplectic form on ]0,∞[×R is given
by φ∗Ωµ = ψ∗πµ

∗Ωµ = ψ∗i∗µΩ0 = −dψ∗iµ∗θ0. Since ψ∗q1 = r, ψ∗qi = 0, i = 2, 3, and
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ψ∗p1 = x/r, it follows that ψ∗i∗µθ0 = xdr/r = xd(log r), so that φ̂∗Ωµ = −d(xd(log r)) =
d(log r) ∧ dx.

Summarizing, we have shown that the reduced phase space (T ∗R3 )µ, µ 6= 0 by the lift of
the natural SO(3) action on R

3 is ]0,∞[×R with the symplectic form d(log r) ∧ dx. �

Exercises.

2.4-1 Elimination of the nodes for µ = 0.

3.10 Dynamic Cotangent Bundle Reduction

Finally, the dynamic analog of the cotangent bundle reduction Theorem is obtained by
taking a G-invariant Hamiltonian on T ∗Q, reducing at µ ∈ g∗ to obtain Hµ on (T ∗Q)µ and
then pushing forwards Hµ, XHµ and Fµt by φµ onto its image in (T ∗Qµ, ω0− β̂µ). All these
push-forwards are in the correct relationships, since the embedding φµ is symplectic.
♥ Needs to be completed with reduced H = K.E.+ Vµ calculation. ♥

3.11 Reconstruction

Here we consider the general reconstruction procedure; i.e., the determination of orbits in
the original phase space in terms of those in the reduced space.

Let P be a Poisson manifold on which a Lie group acts in a Hamiltonian manner and
which has a momentum map J : P → g∗. For a weakly regular value µ ∈ g∗ of J, assuming
that J−1(µ)/Gµ is a smooth manifold with the canonical projection a surjective submersion,
Pµ := J−1(µ)/Gµ is a Poisson manifold. Given f, h : Pµ → R, lift them to J−1(µ) by πµ,
then extend them to G-invariant functions on J−1(Oµ), where Oµ is the coadjoint orbit of
µ in g∗, and then extend these functions arbitrarily to f, h : P → R. The Poisson bracket
of f and h in the Poisson structure of Pµ is given by {f, h} ◦ πµ = {f |Oµ, h|Oµ}. If P
is symplectic, then Pµ is also symplectic. If H : P → R is a G-invariant Hamiltonian, it
induces a Hamiltonian Hµ : Pµ → R and the flow of the Hamiltonian vector field XHµ on
Pµ is the Gµ-quotient of the flow of XH on J−1(µ), as we have seen.

Assume that the flow Fµt of XHµ on Pµ is known. If cµ(t) = Fµt ([p0]), for p0 ∈ J−1(µ),
we search for the integral curve c(t) = Ft(p0) of XH such that πµ(c(t)) = cµ(t), where
πµ : J−1(µ) → Pµ is the projection and Ft is the flow of XH . Pick a smooth curve d(t) in
J−1(µ) such that d(0) = p0 and πµ(d(t)) = cµ(t). Write c(t) = Φg(t)(d(t)) for some curve
g(t) in Gµ to be determined. We have

XH(c(t)) = c′(t)
= Td(t)Φg(t)(d′(t)) (3.11.1)

+Td(t)Φg(t) ·
(
Tg(t)Lg(t)−1(g′(t))

)
P

(d(t)).

Since Φ∗gXH = XΦ∗gH = XH , (2.6.1) gives

d′(t) + (Tg(t)Lg(t)−1(g′)(t))P (d(t)) = TΦg(t)−1XH

(
Φg(t)(d(t))

)
= (Φ∗g(t)XH)(d(t)) = XH(d(t)).

(3.11.2)

This is an equation for g(t) written in terms of d(t) only. We solve it in two steps:
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Step 1 Find ξ(t) ∈ gµ such that

ξ(t)P (d(t)) = XH(d(t)) − d′(t); (3.11.3)

Step 2 With ξ(t) determined, solve the following non-autonomous ordinary differential
equation on Gµ:

g′(t) = TeLg(t)(ξ(t)), with g(0) = e. (3.11.4)

We call (2.6.4) the reconstruction equation. Step 1 is typically of an algebraic nature.
In fact, as in Marsden, Montgomery and Ratiu [1990], ξ(t) can be computed if a connection
is given on J−1(µ)→ Pµ. Step 2 gives an answer “in quadratures” and represents the main
technical difficulty in the reconstruction method.

Proposition 3.11.1 With g(t) determined by the reconstruction equation, the desired in-
tegral curve c(t) is given by c(t) = Φg(t)(d(t)).

The same construction works on P/G, even if the G-action does not admit a momentum
map.

A particular case in which Step 2 can be carried out explicitly is when G is abelian. Here
the connected component of the identity of G is a cylinder Rp × T

k−p and the exponential
map

exp(ξ1, . . . , ξk) = (ξ1, . . . , ξp, ξp+1(mod 2π), . . . , ξk(mod 2π)

is onto, so we can write g(t) = exp η(t), η(0) = 0. Therefore ξ(t) = Tg(t)Lg(t)−1(g′(t)) = η′(t)
since η′ and η commute, i.e., η(t) =

∫ t
0 ds. Thus the solution of (2.5.4) in Step 2 when G is

abelian is

g(t) = exp
∫ t

0

ξ(s) ds. (3.11.5)

Often, ξ(t) has the interpretation as the angular velocity, so g(t) is the expected accu-
mulated phase due to it. One calls it the dynamic phase . However, as we shall see, an
additional contribution can arise from d itself and this will be of geometric origin.

3.12 Additional Examples

To illustrate the methods of reduction and reconstruction, we consider some classical ex-
amples. In some cases there is no particular economy in using reduction over the classical
“bare hands” approach. However, there is an advantage when we come to more sophisticated
cases. Here we do the reconstruction of dynamics directly.

1. Energy Surface
Let H−1(e)/R, if a manifold, be the symplectic manifold obtained by collapsing every

orbit of XH on P to a point. The induced Hamiltonian He is the constant function equal
everywhere to e. This is consistent with the fact that the quotient operation has removed
the dynamics of H. Notice that at saddle points or other critical points of H, the set H−1(e)
need not be a manifold and taking the quotient and H−1(e)/R may also have singularities.
�

2. Jacobi-Liouville Theorem
Let H1, . . . ,Hk be smooth functions defined on a symplectic manifold P that are in
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involution, i.e., {Hi,Hj} = 0, for all i, j = 1, . . . , k. If all the Hamiltonian vector fields XHi

are complete, then since the flows F is of XHi all commute,

(t, . . . , tk) · p = (F 1
t1 ◦ · · · ◦ F

k
tk)(p), where p ∈ P,

defines a symplectic action of Rk on P . This action has a momentum map given by J(p) =
(H1(p), . . . ,Hk(p)) where Rk∗ is identified with R

k . Let µ ∈ Rk be the range of J : P → R
k

and assume that the differentials dH1, . . . ,dHk are linearly independent at every point of
J−1(µ) i.e., assume that µ is a regular value of J, so that, J−1(µ) is a submanifold of P . If
the quotient Pµ = J−1(µ)/Rk is a manifold, it is symplectic (by the symplectic reduction
theorem) and has dimension equal to dimP − 2k. Obviously the induced functions (Hi)µ
are all constant on Pµ. Moreover, if H is another Hamiltonian on P such that {H,Hi} = 0
for all i = 1, . . . , k, it induces a Hamiltonian Hµ on Pµ. Therefore, k independent integrals
involution for a Hamiltonian system determine a new Hamiltonian system in which 2k
variables have been eliminated. This is the statement of the classical Jacobi-Liouville
Theorem. Of course, the full global assertion assumes not only that µ is a regular value,
but that the quotient J−1(µ)/Rk is a manifold if, e.g., the action is free and proper.

If 2k = dimP , then Pµ is zero dimensional and the system is called completely inte-
grable. In general,if G is a Lie group acting symplectically on a manifold P , the action is
called completely integrable if the reduced manifolds Pµ are zero dimensional for almost all
µ ∈ g∗. We shall not study completely integrable systems or associated questions involving
action-angle variables to any great extent in this book. For this, we direct the reader to
Abraham and Marsden [1978], Chapter 5, Arnold [1978], Mischenko and Fomenko [1978],
Duistermaat[1979], Cushman and Knörer [1983], Guillemin and Sternberg [1984], Knörer
[1985], Fomenko and Trofimov [1988], Bobenko, Reyman and Semenov-Tian- Shansky [1989]
and references therein. �

3. The Kepler-Newton Central Force Problem in the Plane
The problem of the motion of two bodies in space, under the influence of mutual gravi-

tational attraction is reduced to the problem of one body moving in the plane in a central
force potential by utilizing conservation of angular momentum and the reduction to the
center of mass (see Example 4 below). The equivalent problem is that of a body of mass in
moving the plane in the field of a mass M fixed at the origin with the force field

F (q) = −GMm
q
‖q‖3 = −Cm q

‖q‖3 = ∇
(
Cm

‖q‖

)
,

where C = GM and G is Newton’s universal gravitational constant. By Newton’s Second
law, the equations of motion are

mq̈ = ∇
(
Cm

‖q‖

)
,

which are the Euler-Lagrange equations, for the Lagrangian

L(q, q̇) =
1
2
m‖q̇‖2 +

CM

‖q‖ .

The Legendre transformation (qi, q̇i) 7→ (qi, ∂L/∂q̇i) = (qi, pi = mq̇i) transforms these
equations to Hamilton’s equations on T ∗(R2 \ {0}) ;

q̇i =
pi
m

ṗi = Cm
∂

∂qi

(
1
‖q‖

)
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with Hamiltonian

H(q,p) = q̇ · p− L(q, q̇) =
‖q‖2
2m

− Cm

‖q‖ .

Let S1 = SO(2) act on R
2 \ {0} by counterclockwise rotation:

θ · q =
[

cos θ − sin θ
sin θ cos θ

]
q.

The lift of this action to T ∗(R2 \ {0}) is given by

θ · (q,p) = (θ · q, θ · p).

Note that H is invariant under this S1-action. Since our final goal is to determine the motion
of the body of mass m by utilizing reduction, taking quotients by S1 is greatly simplified
by the passage to polar coordinates.

The diffeomorphism ρ : ]0,∞[ × S1 → R
2 \ {0} given by ρ = ρ(r, θ) = (r cos θ, r sin θ)

induces the symplectic diffeomorphism of T ( ]0,∞[×S1) = P → T ∗(R2 \ {0}) given by
(r, θ, pr, pθ) 7→ (q,p), where

pr = p1 cos θ + p2 sin θ; p1 = pr cos θ − 1
r
pθ sin θ

pθ = −p1r sin θ + p2r cos θ; p2 = pr sin θ +
1
r
pθ cos θ.

The symplectic form on P is given by dr ∧ dpr + dθ ∧ dpθ, the S1 action on ]0,∞[×S1 is
given by

θ · (r, φ) = (r, θ + φ)

and its cotangent lift to P = T ∗( ]0,∞[×S1) is

θ · (r, φ, pr, pθ) = (r, θ + φ, pr, pθ).

If ξ ∈ R, the infinitesimal generator of the S1-action on ] 0,∞[×S1 is given by

(r, θ) 7→ (r, θ, 0, ξ),

so that the momentum map J : P → R has the expression

J(r, θ, pr, pθ) = pθ.

Clearly J is a submersion and for µ ∈ R, J−1(µ) = {(r, θ, pr, pθ) ∈ P | pθ = µ}. Moreover,
the reduced phase space Pµ = J−1(µ)/S1 equals T ∗(] 0,∞[ ) = {(r, pr) | r ∈ ] 0,∞[ , pr ∈ R},
a fact to be expected by the Cotangent Bundle Reduction Theorem. The symplectic form is
easily seen to be the standard one, dr∧ dpr, either by using the definition or by noting that
]0,∞[ is one-dimensional, so βµ must be zero. We can compute αµ(r, θ) as the minimum of

1
2m

(
p2
r +

p2

r2

)
subject to the constraint pθ = µ. This minimum is achieved for pr = 0, so that αµ(r, θ) =
µdθ which is closed, so once again, βµ = 0.

In polar coordinates, the Hamiltonian has the expression

H(r, θ, pr, pθ) =
1

2m

(
p2
r +

p2
θ

r2

)
− Cm

r
,
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so that the reduced Hamiltonian equals

Hµ(r, pr) =
1

2m

(
p2
r +

µ2

r2

)
− Cm

r
.

Hamilton’s equations on Pµ = T ∗ ]0,∞[ are

ṙ =
∂Hµ

∂pr
=
pr
m

ṗr =
−∂Hµ

∂r
=

µ2

mr3
− Cm

r2
.

The first of these equations combined with conservation of energy H = E yields

ṙ2 = (2mEr2 + 2Cmr − µ2)m2r2,

i.e.,

t− t0 = m

∫ r(t)

r0

s ds√
2mEs2 + 2Cms− µ2

(3.12.1)

which is an elliptic integral. Inverting it gives r as a function of t. Therefore, pr(t) = mṙ(t),
with r(t) determined implicitly by (2.7.1).

To solve the original differential equations in (r, θ, pr, pθ), consider initial conditions
(r0, θ0, p

0
r, p

0
θ) ∈ J−1(µ), i.e., p0

θ = µ and let the corresponding integral curve of the orig-
inal Hamiltonian system be denoted by (r(t), θ(t), pr(t), pθ(t)). Choose a curve d(t) =
(r(t), θ(t), pr(t), pθ(t)) ∈ J−1(µ) which projects to the integral curve (r(t), pr(t)) of Hµ and
which has initial conditions (r0, θ0, p

0
r, p

0
θ). This implies that r(t) = r(t), pr(t) = pr(t),

and pθ(t) = µ. Since no conditions are imposed on θ(t), we may choose it to equal θ0 for
convenience, so there is an angle φ(t) such that

(r(t), θ(t), pr(t), pθ(t)) = φ(t) ·
(
r(t), θ(t), pr(t), pθ(t)

)
= (r(t), θ0 + φ(t), pr(t), µ) ,

i.e.,
θ(t) = θ0 + φ(t),

with φ(0) = 0. Next, we solve the differential equation on S1 given by conservation of
angular momentum:

φ′(t) =
µ

mr(t)2
, where φ(0) = 0.

This has the solution

φ(t) =
µ

m

∫ t

0

r(s)−2 ds. (3.12.2)

The solution of the Kepler-Newton planar central force problem with initial conditions
(r0, θ0, p

0
r, p

0
θ = µ) is given by inverting (2.7.1) to find r(t) and letting pr(t) = mṙ(t), θ(t) =

θ0 + φ(t) with φ(t) given by (2.7.2), and pθ(t) = p0
θ = µ.

To describe the trajectory of the body of mass m geometrically, we need the relation
between r(t) and θ(t). To obtain it, we proceed as in the classical treatments: intersect the
energy surface H(r, θ, pr, pθ) = E with the level set of the momentum map pθ = µ. This
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requires us to eliminate t and pr in H(r, θ, pr, µ) = E. From θ̇ = µ/mr2 and ṙ = pr/m, we
get

pr = mṙ = m
dr

r2
θ̇ =

µ

r2

dr

dθ
,

so that H(r, θ, pr, µ) = E becomes

1
2m

[
µ2

r4

(
dr

dθ

)2

+
µ2

r2

]
− Cm

r
= E,

or changing the variable r to ρ = 1/r, we get(
dρ

dθ

)2

+ ρ2 =
2m
µ2

(Cmρ+E). (3.12.3)

Taking the derivative of this relation with respect to θ and canceling dρ/dθ yields the second
order constant coefficient equation

d2ρ

dθ2
+ ρ =

Cm2

µ2

whose solution is given by

ρ(θ) =
Cm2

µ2
+A cos(θ + θ0) (3.12.4)

with A an arbitrary constant. Substitution of (2.7.4) into (2.7.3) determines the constant A

A = ± 1
µ2

(2mµ2E + C2m4)
1
2 ,

so that again by (2.7.4) we have

ρ(θ) =
Cm2

µ2

[
1±

(
1 +

2Eµ2

C2m3

) 1
2

cos(θ + θ0)

]
. (3.12.5)

We need not consider signs in (2.7.5) since this is accomplished by the phase shift θ 7→ θ+π.
Replacing θ by θ − θ0, we can put (2.7.5) into the form

ρ(θ) =
Cm2

µ2

[
1 +

(
1 +

2Eµ2

C2m3

) 1
2

cos θ

]
,

i.e.,

r(θ) =
µ2

Cm2

1

1 +
(

1 +
2Eµ2

C2m3

) 1
2

cos θ

. (3.12.6)

The equation of a conic in polar coordinates with one of the foci at the origin is

r(θ) =
`

1 + e cos θ
,
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where e is the eccentricity and ` is the distance from a focus to the conic in the direction
transverse to the line joining the foci. The cases e > 1, e = 1, and 0 ≤ e < 1 correspond to
a hyperbola, parabola, and ellipse, respectively. Thus, we get the classical result that the
orbit of the body of mass M around the body of mass M moving under the influence of the
Newtonian gravitational potential is a conic of eccentricity

e =
(

1 +
2Eµ2

C2m3

) 1
2

.

Note that the sign of e − 1 is determined by the sign of E. For example, the conic is an
ellipse if and only if E < 0, in which case −e2m3/mu2 ≤ E < 0. �

4. Reduction to Center of Mass Coordinates
Let R3 act on R3(N+1) by translation on every factor. The lift of this action to T ∗R3(N+1)

is given by

x · (q0, . . . ,qN , p0, . . . ,pN ) = (q0 + x, . . . ,qN + x,p0, . . . ,pN)

so that the infinitesimal generator determined by ξ ∈ R3 has the expression

ξT∗R3(N+1)(q0, . . . ,qN , p0, . . . ,pN ) = ξ ·
(

∂

∂qo
+ · · ·+ ∂

∂qN

)
.

The momentum map of this lifted action is thus given by

J(q0, . . . ,qN , p0, . . . ,pN ) = p0 + · · ·+ pN .

The reduced manifold (T ∗R3(N+1) )µ is symplectically diffeomorphic to T ∗R3N endowed with
the canonical symplectic structure. We take

(Q1, . . . ,QN , P1, . . . ,PN )

to be canonically conjugate coordinates on T ∗R3N given by the Jacobi-Haretu change of
variables. Therefore, the projection J−1(µ)→ T ∗R3N is given by

Qi =
m0

µi−1
q0 − · · · −

mi−1

µi−1
qi−1 + qi,

Pi = − mi

µi−1
(p0 + · · ·+ pi−1) + pi,

p0 + · · ·+ pN = µ.

Consider on T ∗R3(N+1) a Hamiltonian H invariant under the R3 − action, i.e.,

H(q0 + x, · · · ,qN + x,p0, · · · ,pN ) = H(q0, · · · ,qN ,p0, · · · ,pN )

for any x ∈ R
3 . Denote by (q0(t), . . . ,qN (t), p0(t), . . . ,pN (t)) a solution of the Hamilto-

nian system with Hamiltonian H and with initial condition qi(0) = qi, pi(0) = pi, i =
0, 1, . . . , N. By conservation of linear momentum,

p0(t) + · · ·+ pN (t) = µ,

where µ ∈ R3 is a constant vector. Since pi = miq̇i, it follows that

m0q0(t) + · · ·+mNqN (t) = µt+ (m0q0 + · · ·+mNqN ),
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so the center of mass moves in a straight line during motion. On the reduced manifold, the
center of mass is fixed at the origin.

We will determine the solution (qO(t), . . . ,qN (t), p0(t), . . . ,pN (t)) in terms of a known
solution (Q1(t), . . . ,QN (t), P1(t), . . . ,PN (t)) of the reduced Hamiltonian system given by
Hµ on T ∗R3N . To do so, let

(u0(t), . . . ,uN (t), v0(t), . . . ,vN (t))

be a curve in J−1(µ) projecting onto

(Q1(t), . . . ,QN (t), P1(t), . . . ,PN (t)),

i.e.,

Qi(t) = − m0

µi−1
u0(t)− · · · − mi−1

µi−1
ui−1(t) + ui(t),

Pi(t) = − mi

µi−1
(v0(t) + · · ·+ vi−1(t)) + vi(t),

and
v0(t) + · · ·+ vN (t) = µ,

for i = 1, . . . , N . The last N + 1 equations can be solved for vj(t), j = 0, 1, . . . , N to yield

vj(t) =
mi

µN
µ+

µj−1

µj
Pj(t)− mj

µj+1
Pj+1(t)− · · · − mj

µN
PN (t).

The right hand side equals pj(t) and thus vj(t) = pj(t) for all j = 0, 1, . . . , N . We seek a
vector ξ(t) ∈ R3 such that

ξ(t) =
∂H

∂pj
(ui(t),vi(t)) − uj(t)′, j = 1, . . . , N.

and
0 = − ∂H

∂qj
(ui(t),vi(t)) − vj(t)′.

The first equation says that ξ(t) is the velocity of the center of mass and that we have
Hamilton’s equations relative to this motion. The second group of N + 1 equations is
automatically satisfied since vj(t) = pj(t). A solution of

x(t)′ = ξ(t), x(0) = 0,

is x(t) =
∫ t

0 ξ(s)ds. Then the solution (qj(t),pj(t)), j = 0, 1, . . . , N is given by

qj(t) = x(t) + uj(t), pj(t) = vj(t).

This process of recovering q and p in terms of reduced variables is a special instance of
the reconstruction process. �

5. Coupled Harmonic Oscillations (cf. Ermentrout and Kopell [1984]).
We prove that in a chain of coupled oscillators one can average over a single S1-action

representing the “fast” variables and that the resulting averaged equations are still Hamil-
tonian in the “slow” variables. The results are related to the important averaging procedure
and the realization of averaged equations as equations on a center or sub-center manifold;
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see Arnold [1978], §3.8, Forest, McLaughlin and Montgomery [1986] and Mielke [1991] for
more information.

Start with the phase space of N + 1 oscillators

T ∗Q = T ∗(S1 × · · · × S1) (N + 1 factors)

with (action angle) coordinates (θ1, I1), . . . , (θN+1, IN+1), and a Hamiltonian of the form

Hε = H0 + εH1 +O(ε2), ε a small parameter

where
H0 = G1(I1) + · · ·+GN+1(IN+1)

and G1, . . . , GN+1 and functions of one variable. Thus if ε = 0, we have N + 1 independent
oscillators and H1(θ1, . . . , θN+1, I1, . . . , IN+1) is a general coupling term. The dynamics
on T ∗Q is given by Hamilton’s equations:

θ̇i =
∂Hε

∂Ii
= G′i(Ii) + ε

∂H1

∂Ii
+O(ε2)

İi = −∂Hε

∂θi
= −ε∂H1

∂θi
+O(ε2).

Let ωi := ∂Gi/∂Ii, the (uncoupled) frequency of the ith oscillator. Assume that the fre-
quency differences are O(ε); for simplicity, assume that

ωi+1 − ωi = ε∆i.

Thus, while the θi evolve as “fast” variables, the differences are “slow”: let

φi = θi+1 − θi so that φ̇i = ε

(
∆i +

∂H1

∂Ii+1
− ∂H1

∂Ii

)
.

We will find the equations of motion for the slow variables by averaging over the fast
variables. This is accomplished by considering the following S1-action on Q

(θ, θ1, . . . , θN ) ∈ S1 ×Q 7→ (θ1 + θ, . . . , θN+1 + θ) ∈ Q

and then lifting it to T ∗Q to get

θ · (θ1, I1, . . . , θN , IN ) = (θ1 + θ, I1, . . . , θN+1 + θ, IN+1).

Coordinatize Q/S1 by (φ1, . . . , φN ), the projection Q→ Q/S1 being given by φi = θi+1 −
θi, i = j, . . . , N . Let

Hε(θi, Ii) =
1

2π

∫ 2π

0

Hε(θi + θ, Ii) dθ,

the average of Hε over the S1-action. (The Averaging Theorem guarantees that we get a
“good” approximation to the Hε dynamics from that of Hε for ε small — see Arnold [1978]).

Can one express the dynamics given byHε only in terms of the “slow” variables φ1, . . . , φN
and their (as yet to be determined) conjugate variables p1, . . . , pN? The answer is affirma-
tive and this is accomplished by reduction in the following manner. SinceHε is S1-invariant,
the momentum map of the S1-action

J : T ∗Q→ R given by J(θi, Ik) = I1 + · · ·+ IN+1
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is a constant of the motion for the Hε-dynamics. By the Cotangent Bundle Reduction
Theorem, the reduced manifold J−1(I)/S1 is diffeomorphic to T ∗(Q/S1) since S1 is abelian.
The symplectic structure on T ∗(Q/S1) is the canonical one since the one-form

(θ1, . . . , θN+1) 7→
(
θ1, . . . , θN+1,

1
N + 1

I, . . . ,
1

N + 1
I

)
has values J−1(I), is S1 -invariant, and being constant, is closed. By reduction and recon-
struction, no information is lost by dropping to T ∗(Q/S1). To find the conjugate variables pj
of φj , we set

∑N
k=1 dφκ∧dpk =

∑N+1
i=1 dθi∧dIi on J−1(I). This gives coordinates analogous

to the Jacobi-Haretu coordinates for center of mass:

p1 = −I1, so I1 = −p1

p2 = −I1 − I2, so I2 = p1 − p2

p3 = −I1 − I2 − I3, so I3 = p2 − p
...

...
pN = −I1 − · · · − IN , so IN = pN−1 − pN

Now write Hε as a function of φ1, . . . , φN , p1, . . . , pN and call the resulting function H
I
,

the reduction of Hε. Reduction tells us we should end up with Hamilton’s equations. This
can be checked explicitly: a chain rule argument shows that

φ̇k =
∂H

I

ε

∂pk
, ṗk = −∂H

I

ε

∂φk
, k = 1, . . . , N

which is the Hamiltonian version of the equations for the evolution of phase differences.
Reconstruction can be carried out as in the preceding example. �

3.13 Hamiltonian Systems on Coadjoint Orbits

For a Lie group G, the reduced phase space (T ∗G)µ (using the left action by G) coincides
with the coadjoint orbit Oµ with the “−” orbit symplectic structure. Let H be a left G-
invariant Hamiltonian on T ∗G. Since the projection πµ : J−1

L (µ) → (T ∗G)µ is given by
πµ(T ∗gRg−1(µ)) = Ad∗gµ, the induced Hamiltonian Hµ : Oµ → R is given by Hµ(Ad∗gµ) =
H(T ∗gRg−1(µ)) = H(Ad∗gµ) by left invariance of H; i.e., Hµ = H|Oµ. The Hamiltonian
vector field defined by Hµ on Oµ has the expression

XHµ(ν) = ad
(
δH

δν

)∗
ν

for any ν ∈ Oµ. We now determine the flow of XH on

J−1
L (µ) = {graph of the one-form g 7→ µ ◦ TgRg−1},

in terms of the flow of XHµ on Oµ.
To do this, trivialize T ∗G by λ : αg 7→ (g, T ∗eLg(αg)) mapping T ∗G to G × g∗ and note

that the induced action of G on G × g∗ is given by g · (h, µ) = (gh, µ). The momentum
map JL induces an equivariant momentum map Jλ : G × g∗ → g∗ given for each ξ ∈ g by
Jλ(ξ) = JL(ξ) ◦ λ−1. Therefore, for any g ∈ G, µ ∈ g∗ we have

〈Jλ(g, µ), ξ〉 = Jλ(ξ)(g, µ) = JL(ξ)(λ−1(g, µ)) = 〈JL(T ∗cLg−1(µ)), ξ〉
= 〈T ∗gRg ◦ T ∗eLg−1)µ, ξ〉 = 〈Ad∗g−1µ, ξ〉,
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so that
Jλ(g, µ) = Ad∗g−1µ.

Therefore, J−1
λ (µ) = G×Oµ and the projection on the manifoldOµ is given by the projection

on the second factor. Next, we explicitly determine λ∗XH = XH◦λ−1 ∈ X(G×g∗); the latter
Hamiltonian vector field is with respect to the symplectic form λ∗Ω0 on G × g∗, Ω0 being
the canonical sympletic form on T ∗G. We have

λ∗XH(g, µ) = (X(g, µ), µ, Y (g, µ)) ∈ TgG× {µ} × g∗

with g 7→ X(g, µ) a vector field on G for each µ ∈ g∗. Since the derivative of left translation
by g on G× g∗ is given by

g · (vh, µ, ν) = (ThLg(vh), µ, ν),

left invariance of XH implies left invariance of λ∗XH , i.e., the vector field g 7→ X(g, µ) is
left invariant on G for any µ ∈ g∗ and Y (g−1h, µ) = Y (g, µ) for any g, h ∈ G. Therefore
Y (g, µ) = Y (e, µ), i.e., Y is independent of G and thus letting X(g, µ) = Xµ(g), we have

(λ∗XH)(g, µ) = (Xµ(g), µ, Y (µ)),

with Xµ ∈ X(G) left invariant and Y : g∗ → g∗.
If Ft denotes the flow of XH , then λ ◦ Ft ◦ λ−1 is the flow of λ∗XH . Letting gµ(t) =

(πG ◦ Ft)(µ), where πG : T ∗G→ G is the cotangent bundle projection, left invariance of Ft
gives

(λ ◦ Ft ◦ λ−1)(g, µ) = (λ ◦ Ft ◦ T ∗g )Lg−1(µ) = (λ ◦ T ∗gLg−1)(Ft(µ))
= (ggµ(t), (T ∗eLggµ(t) ◦ T ∗gLg−1 ◦ Ft)(µ))
= (ggµ(t), Ft(µ) ◦ TeLgµ(t)).

In particular t 7→ ggµ(t) is the flow of Xµ; taking its derivative at t = 0 yields

Xµ(g) = TeLg(TµπG ◦XH)(µ).

We claim that
(TµπG ◦XH)(µ) =

δH

δµ
.

This is proved in the following manner. Let i : g∗ → T ∗G denote the inclusion of g∗ in
T ∗G as the fiber T ∗eG and let αµ ∈ T ∗µ(T ∗G) . Denote by α]µ ∈ Tµ(T ∗G) the symplectically
associated vector ; i.e.

Ω0(µ)(α]µ, uµ) = 〈αµ, uµ〉
for any uµ ∈ Tµ(T ∗G). A straightforward local computation shows that

TµπG(α[]µ) = T ∗µi(αµ)

whence [
(T ∗µπG)(ν)

]] = −Tµi(ν)

which in turn implies that for any ν ∈ g∗

〈ν, TµπG(XH(µ)〉 =
〈
(T ∗µπG)(ν), XH(µ)

〉
= Ω0(µ)([(TµπG)(ν)][, XH(µ)) = 〈dH(µ), Tµi(ν)〉

= 〈d(H ◦ i)(µ), ν〉 =
〈
ν,
δH

δµ

〉
.



88 Chapter 2 Reduction of Cotangent Bundles

This proves our claim. As a consequence, we have

Xµ(g) = TeLg

(
δH

δµ

)
.

To compute Y , we use conservation of JL:

〈dJL(ξ) · µ,XH(µ)〉 =
d

dt

∣∣∣∣
t=0

〈J(ξ), Ft(µ)〉

=
d

dt

∣∣∣∣
t=0

〈
Ft(µ), TeRgµ(t)(µ)

〉
=

d

dt

∣∣∣∣
t=0

〈
Ft(µ) ◦ TeLgµ(t),Adgµ(t)−1(ξ)

〉
= 〈Y (µ), ξ〉+

〈
µ,

d

dt

∣∣∣∣
t=0

Adgµ(t)−1(ξ)
〉

= 〈Y (µ), ξ〉 −
〈
µ,

[
dgµ(t)
dt

∣∣∣∣
t=0

ξ

]〉
since t 7→ Ft(µ) ◦ TeLgµ(t) is the flow of Y . Since

d

dt

∣∣∣∣
t=0

gµ(t) = (Tµτ ◦XH)(µ) =
δH

δµ
,

we get

Y (µ) = ad
(
δH

δµ

)∗
µ.

Therefore, we have proved the following proposition.

Proposition 3.13.1 Let H : T ∗G → R be left invariant, Ft be the flow of XH and let
gµ(t) = (πG ◦Ft)(µ), where πG : T ∗G→ G is the projection. If λ : T ∗G→ G× g∗ defined by
λ(αg) = (g, T ∗eLg(αg)) denotes the left trivialization of T ∗G, then

(λ∗XH) (g, µ)−
(
TeLgad

(
δH

δµ

)∗
, µ, ad

(
δH

δµ

)∗
µ

)
.

The flow of the vector field in the first component is (t, g) 7→ ggµ(t) and in the second
component is (t, µ) 7→ Ft(µ) ◦ TeLgµ(t).

LAGRANGIAN COUNTERPART TO BE INSERTED.
Now assume that the flow Fµt of XHµ is known. Since XHµ is the second component

of λ∗XH , this proposition shows that Fµt (ν) = Ft(ν) ◦ TeLgν(t). To reconstruct the flow
of λ∗XH , fix (g0, µ0) ∈ G × Oµ and let (g(t), µ(t)) be a curve that projects to the integral
curve of XHµ = Y with initial condition µ0. Thus, µ(0) = µ0 and µ(t) is an integral curve
of Y . In fact, g(t) is arbitrary satisfying the condition g(0) = g0, so take g(t) = g0 for all t
for definiteness. According to the expression for λ∗XH , the equation

ξ(t)G×g∗ (g0µ (t)) = λ∗XH (g0, µ (t))− (0, µ′ (t))

is equivalent to

ξ(t) = Adg0

(
δH

δµ(t)

)
.
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Therefore, the reconstruction equation for h(t) ∈ Gµ is

h′(t) = TeLh(t)Adg0

(
δH

δµ(t)

)
, where h(0) = e

and thus the integral curve of λ∗XH through (g0, µ0) is t 7→ (h(t)g0, µ(t)).

The Free Rigid Body Let us apply these ideas to the motion of the free rigid body.
In this case, G = SO(3) and Y (Π) = Π × ω has the solution discussed in §16.8. The
reconstruction equation for h′(t) becomes a system of three ordinary differential equations
in the Euler angles φ, ψ, θ, namely θ̇ cosψ + φ̇ sinψ sin θ

−θ̇ sinψ + φ̇ cosψ sin θ
θ̇ cos θ + ψ̇

 = P (φ0, ψ0, θ0)ω(t)

where P (φ0, ψ0, θ0) is given by §16.6 and ωi(t) = Πi(t)/Ii, with Πi(t), i = 1, 2, 3, the
solution of the Euler equations with given initial conditions. �

The analysis above can be repeated on the tangent bundle TG, using an invariant
(weakly) nondegenerate symmetric bilinear form (· , ·). Note that the map ξ ∈ g 7→ (ξ, ·) ∈ g∗
is equivariant with respect to the adjoint and coadjoint actions by bi-invariance of (· , ·), so
that by differentiating the equivariance condition, we get

([η, ξ], ·) = −ad∗(η) · ξ.

Letting ∇E denote the gradient of the function E : g → R with respect to (· , ·) and
E : g∗ → R denote the function defined by E((ξ, ·)) = E(ξ), we have

δE

δ(ξ, ·) = ∇E(ξ).

Therefore, the (−) Lie-Poisson bracket and Hamiltonian vector field are given by

{F,H} (ξ) = −(ξ, [∇F (ξ),∇H(ξ)])
and

XH(ξ) = [ξ,∇H(ξ)] = −ad(∇H(ξ)) · ξ.

Note the change in sign in the Hamiltonian vector field formula. As before, if E : TG→ R is
a left invariant function, its reduction to (TG)(ξ,·) = {the adjoint orbit through ξ ∈ g} =: Oξ,
is simply the restriction E|Oξ. Observe that Oξ is a (weak) symplectic manifold with weak
symplectic form given by

ωξ(η)([η, ζ1], [η, ζ2]) = −(η, [ζ1, ξ2])

for η ∈ Oξ, where ζ1 and ζ2 ∈ g are arbitrary.
Trivializing TG by left translation,

λ : TG→ G× g, λ(vg) = (g, TgLg−1(vg))

we get a left invariant vector field

(λ∗XE)(g, ξ) = (Xξ(g), ξ, Y (ξ)),
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where Xξ ∈ X(g) is left invariant and Y : g→ g. But on the tangent bundle XE ∈ X(TG)
has an additional property: it is a second order equation, i.e. (TτG ◦XE)(vg) = vg for all
vg ∈ TgG, where τG : TG→ G is the tangant bundle projection. Finally note that ρ◦λ = λ,
where ρ : G× g→ G is the projection on the first factor. Therefore

Xξ(g) = Tρ(λ∗(XE)(g, ξ) = (Tρ ◦ Tλ ◦XE ◦ λ−1)(g, ξ)
= (TτG ◦XE)(λ−1(g, ξ)) = TeLg(ξ)

so that
(λ∗XE)(g, ξ) = (TeLg(ξ), ξ, [ξ,∇E(ξ)]);

the expression for Y is obtained by invoking the fact that on T ∗G, Y was the Hamiltonian
vector field in the (−) Lie-Poission structure given by the restriction of the Hamiltonian to
g∗. Finally, note that the form of λ∗XE is already appropriate for the reconstruction of
solutions. First one solves the equation ξ̇ = [ξ,∇E(ξ)] and then the equation ġ = TeLg(ξ)
with ξ(t) found previously. Thus, we have proved the following:

Proposition 3.13.2 Let E : TG→ R be a left invariant function on a Lie group G that has
a weak bi-invariant pseudo-metric. If λ : TG→ G× g defined by λ(vg) = (g, TgLg−1(vg)) is
the left trivialization of T ∗G, we have:

(λ∗XE)(g, ξ) = (TeLg(ξ), ξ, [ξ,∇E(ξ)]).

To solve the differential equations associated to the vector field λ∗XE, one first solves the
reduced equations ξ̇ = [ξ,∇E(ξ)], and then the equation on G given by ġ = TeLg(ξ).

3.14 Energy Momentum Integrators

Sometimes one may wish to preserve the energy and the momentum map in a scheme rather
than the symplectic structure and the momentum map. For the actual implementation of
schemes like this, we refer to Simo and Wong [1990] and Austin and Krishnaprasad [1990].
We present here an abstraction of this process.

We now turn to some basic remarks on the construction of algorithms that conserves
the Hamiltonian and the momentum map, but will not, in general, conserve the symplectic
structure.

A class of algorithms satisfying this requirement can be obtained through the steps
outlined below. The geometry of the process is depicted in Figure 2.9.1.

i Formulate an energy-preserving algorithm on the symplectic reduced phase space
Pµ = J−1(µ)/Gµ or the Poisson reduced space P/G. If such an algorithm is interpreted
in terms of the primitive phase space P , it becomes an iterative mapping from one
orbit of the group action to another.

ii In terms of canonical coordinates (q, p) on P , interpret the orbit-to-orbit mapping
described above and if P/G was used, impose the constraint J(qk, pk) = J(qk+1, pk+1).
The constraint does not uniquely determine the restricted mapping, so we may obtain
a large class if iterative schemes.

iii To uniquely determine a map from within the above class, we must determine how
points in one Gµ-orbit are mapped to points in another orbit. There is still an ambigu-
ity about how phase space points drift in the Gµ-orbit directions. This drift is closely
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projection constant energy
surfaces

reduced space

Gµ-orbits

J-1(µ)

∆t

Figure 3.14.1: An energy preserving algorithm is designed on the reduced space and is then
lifted to the level set of the momentum map by specifying phase information.

connected with geometric phases (Chapter 6)! In fact by discretizing the geometric
phase formula for the system under consideration we can specify the shift along each
Gµ-orbit associated with each iteration of the map.

The papers of Simo and Wong [1989] and Krishnaprasad and Austin [1990] provide
systematic methods for making the choices required in steps ii and iii. The general con-
struction given above is, in fact, precisely the approach advocated in ref Simo, Tarnow and
Wong [1991]. There it is shown that projection from the level set of constant angular mo-
mentum onto the surface of constant energy can be performed implicitly or explicitly leading
to predictor/corrector type of algorithms. From a numerical analysis standpoint, the nice
thing is that the cost involved in the actual construction of the projection reduces to that
of a line search (i.e., basically for free). The algorithm advocated in Simo and Wong [1989]
is special in the sense that the projection is not needed for Q = SO(3): the discrete flow
is shown to lie in the intersection of the level set of angular momentum and the surface of
constant energy. This algorithm is singularity–free and integrates the dynamics exactly up
to a time reparametrization, consitent with the restrictions on mechanical integrators given
in §9.2. Extensions of these schemes to elasticity, rods and shells suitable for large-scale
calculation and amenable to paralelization are given in Simo, Fox and Rifai [1991], and
Simo and Doblare [1991].

3.15 Maxwell’s Equations

In this section we apply the techniques of reduction to the case of Maxwell’s equations. Here
we shall study the Maxwell equations, possibly with a time-independent charge source; they
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can be coupled with the Vlasov equation, which provides a time-dependent charge and
current source; see Marsden and Weinstein [1982].

The Maxwell equations are

1
c

∂B
∂t

= −curl E (3.15.1)

1
c

∂E
∂t

= curlB− j
c

(3.15.2)

div E = ρ (3.15.3)
div B = 0 (3.15.4)

where E(x, t) is the electric field, B(x, t) is the magnetic field, x ∈ R
3 , c is the velocity

of light j(x) is a given current and ρ(x) is a given charge density. For simplicity we take
the equations to be defined in all of space R3 with suitable fall off conditions at infinity to
justify integration by parts. [Incorporation of boundary conditions, radiation, etc., is very
important but is not treated here.] To begin with, we will assume j = 0.

As the configuration space for Maxwell’s equations, take the space A of one forms A on
R

3 . (These are the “vector potentials.” In more general situations involving Yang- Mills
fields, one can replace A by the set of connections on a principal bundle over configuration
space.) The corresponding phase space is the cotangent bundle T ∗A, with the canonical
symplectic structure. Elements of T ∗A are identified with pairs (A, Y ), where Y is a vector
field density on R

3 . (We do not distinguish Y and Y d3x.) The pairing between A’s and Y ’s
is given by integration, so that the canonical symplectic structure ω on T ∗A is given by

ω((A1,Y1), (A2,Y2)) =
∫

(Y2 ·A1 −Y1 ·A2) d3x, (3.15.5)

with associated Poisson bracket

{F,G} =
∫ (

δF

δA
δG

δY
− δF

δY
δG

δA

)
d3x. (3.15.6)

We will want to set B = ∇×A in accordance with (2.9.4) and customary practice.
The Hamiltonian density for Maxwell’s equations is H = 1

2 (‖E‖2+‖B‖2) and the Hamil-
tonian is

H =
∫
cH d3x (3.15.7)

— we have inserted a factor of c to conform to the dynamical formulation in relativity (see
Misner, Thorne and Wheeler [1972], p. 523). Thus we take

H(A,Y) =
∫
c

[
1
2
(
‖Y ‖2 + ‖curl A‖2

)]
d3x. (3.15.8)

Hamilton’s equations are

∂A
∂t

=
δH

δY
= cY (3.15.9)

and

∂Y
∂t

= −δH
δA

= −c curl curl A. (3.15.10)
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The calculation of δH/δA is as follows: first,

DH(A, Y ) · δA = c

∫
R3

(curl A) · (curl A) d3x.

The operator “curl” is symmetric, as is seen using the vector identity

div (X×Y) = X · curl Y −Y · curl X

and the divergence theorem. Hence

δH

δA
= c curl curl A = c[grad div A−∇2A],

so (2.10.10) follows.
If we let B = curl A and Y = −E, then (2.10.10) reduces to (2.10.2) and the curl of

(2.10.9) gives (2.10.1).
The remaining two Maxwell equations will appear as a consequence of gauge invariance.

Notice that we work directly with three-dimensional fields. Four dimensionally, one has an
extra “degree” of gauge freedom associated with the time derivative ∂tψ . We have already
eliminated this freedom and the corresponding non-dynamical field A4 (whose conjugate
momentum vanishes). This is the standard Dirac procedure for a relativistic field theory
such as Maxwell’s equations (see Gimmsy [1991] for details). In the context of principal
bundles, G is defined to be the group of bundle automorphisms (covering the identity). The
gauge group G consists of real valued functions on R

3 ; with the group operation being
addition. An element ψ ∈ G acts on A by

A 7→ A +∇ψ. (3.15.11)

This “translation” of A extends by cotangent lift to a canonical transformation of T ∗A given
by

(A,Y) 7→ (A +∇ψ,Y). (3.15.12)

Since the Hamiltonian is invariant under these transformations, we can use the gauge
symmetries to reduce the degrees of freedom of our system. The action of G on T ∗A has a
momentum map J : T ∗A → g∗ , where g, the Lie algebra of G, is identified with the real
valued functions on R

3 . This map may be determined by our formula for the momentum
map of a cotangent lift: for φ ∈ g,

〈J(A,Y), φ〉 =
∫

(Y · ∇φ) d3x = −
∫

(div Y)φ d3x. (3.15.13)

Thus, we may write

J(A,Y) = −div Y. (3.15.14)

If ρ is an element of g∗ (the densities on R
3 ), J−1(ρ) = {(A,Y) ∈ T ∗A | div Y = −ρ}. In

terms of E, the condition div Y = −ρ becomes the Maxwell equation div E = ρ, so we may
interpret the elements of g∗ as charge densities .

Now we apply symplectic reduction to P = T ∗A, with µ = ρ and G and J as above.

Theorem 3.15.1 The reduced symplectic manifold J−1(ρ)/G can be identified with Maxρ =
{(E,B) | div E = ρ, div B = 0}, and the induced Poisson bracket on Maxρ is given in
terms of E and B by the Born-Infeld-Pauli bracket

{{F,G}} =
∫ (

δF

δE
curl

δG

δB
− δG

δE
curl

δF

δB

)
d3x. (3.15.15)

Moreover, Maxwell’s equations with an ambient charge density ρ are Hamilton’s equations
for the Hamiltonian on the space Maxρ.
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Proof. To each (A,Y) in J−1(ρ), associate the pair (B,E) = curl A,−Y/c) in Maxρ.
Since two vector fields A1 and A2 on R

3 have the same curl if and only if they differ by a
gradient, and every divergence-free B is a curl, this association gives a 1−1 correspondence
between J−1(ρ)/G and Maxρ.

Let F and G be functions on Maxρ. To compute their Poisson bracket {{F,G}} we pull
them back to J−1(ρ), extend them to T ∗A as G-invariant functions, take the canonical Pois-
son bracket in T ∗A, restrict to J−1(ρ), and “push down” the resulting G-invariant function
to Maxρ. The result does not depend upon the choice of extension made, and in fact we can
do the computation without mentioning the extension again. This follows by the general
theory, but we can see it directly here. Given F (B,E), define the pull back F̂ (A,Y) by

F̂ (A,Y) = F (curl A,Y).

Using the canonical bracket on T ∗A, we have

{{F,G}} = {F̂ , Ĝ} =
∫ (

δF̂

δA
δĜ

δY
− δĜ

δA
δF̂

δY

)
dx

= −
∫ (

δF̂

δA
δĜ

δE
− δĜ

δA
δF̂

δE

)
dx. (2) (3.15.16)

The chain rule, the definition of functional derivatives, and integration by parts give the
identity ∫

δF̂

δA
·A′ dx =

∫
δF

δB
· curl A′ dx =

∫
A′ · curl

δF

δB
dx. (3) (3.15.17)

Substituting (2.10.17) into (2.10.16) produces the desired bracket (2.10.15).
The final statement on dynamics follows from the reduction of dynamics theorem . �

Remarks.

1. As c→∞, Maxwell’s equations formally turn from electrodynamics to electrostatics;
the time dependence becomes undetermined. This is consistent with (7) of §3.5A in
which H → ∞. Alternatively, one could move the c in H to include a factor of c in
the Poisson structure.

2. Since G is abelian, the cotangent bundle reduction theorem implies that Maxρ is
symplectically diffeomorphic to T ∗(A/G) with the canonical structure (one can check
that there is no “magnetic term” in this case). As above, A/G is the space of B’s with
div B = 0. A variable conjugate to B, however, is not E (since the bracket (2.10.15)
is not canonical). Instead, write E = −∇ϕ+ 1

c∇×π for a fixed function ϕ determined
by ∇2ϕ = ρ and a vector field π. Then B and π are conjugate variables on T ∗(A/G).
Notice that E+∇ϕ acts like the momentum shift that appears in the cotangent bundle
reduction theorem. Another procedure is to use a gauge fixing condition to identify
A/G with A’s satisfying, for example, div A = 0. Then the canonical variables are
A and Y + 1

c∇ϕ. However, (2.10.15) seems to be more useful than either of these
alternatives.

3. In calculating, for example, δF/δB, one must remember the div B = 0 constraint.
For example, if F (B) =

∫
B · ∇ϕd3x for fixed ϕ, then as F is zero, δF/δB = 0, so

that δF/δB 6= ∇ϕ.
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4. From the point of view of Poisson reduction one can also construct Max = (T ∗A)/G ∼=
{(E,B) | div B = 0} and (2.10.15) defines the induced Poisson structure. The spaces
Maxρ for each ρ define the symplectic leaves. This is a special case of the relation
between symplectic and Poisson reduction (see Marsden and Ratiu [1986]). �

Poynting’s vector is related to the momentum map on T ∗A for the action of translations.
Let G = R

3 and for a ∈ R3 , let

(a ·A)(x) = A(x− a). (3.15.18)

The momentum map for this action is determined by the cotangent lift formula:

〈J(A,Y), ξ〉 = −
∫
〈Y(x),DA(x) · ξ〉 =

∫
Ei
δAi
δxj

ξjd3x

=
∫
Ei
(
δAi
δxj

ξj − δAj
δxi

ξj
)
d3x

−
∫
ρAjξ

jd3x (3.15.19)

since div E = ρ. Hence,

〈J(A,Y), ξ〉 =
∫

E · (B× ξ) d3x−
∫
ρAiξ

jd3x =
∫
ξ · [(E×B)− ρA] d3x.

Thus,

〈J(A,Y)〉 =
∫

[E×B− ρA] d3x. (3.15.20)

This is interpreted as the linear momentum of the electromagnetic field and E×B is called
the Poynting vector. One can verify directly from Maxwell’s equations that dJ/dt = 0.

This action does not commute with the G-action, so we must compute the momentum
map for the translation action of R3 on Max separately. We claim that if ρ = 0, then

J(E,B) =
∫

E×B d3x. (3.15.21)

To check this, write Jξ(E,B) =
∫
ξ · (E×B) d3x and compute using the Born-Infeld-Pauli

bracket:

{F, Jξ} =
∫ (

δF

δE
curl (ξ ×E) + (ξ ×B) · curl

δF

δB

)
d3x

and

ξMax [F ] =
∫ (

δF

δE
·DE(x) · ξ +

δF

δB
DB(x) · ξ

)
d3x.

Now
{F, Jξ} =

∫
δF

δE
· [ξ · ∇E] d3x+

∫
δF

δB
· [ξ · ∇B] = ξMax [F ]

using symmetry of “curl,” div E = 0 and div B = 0. Thus, (2.10.21) is proved. The reader
can work out conservation of angular momentum in a similar way.

Aside If the metric is treated as a variable (whose evolution is not specified) then the
entire diffeomorphism group becomes a symmetry group. The corresponding momentum
map yields the stress energy tensor and this approach is closely related to the classical
Belinfante-Rosenfeld formula: stress = ∂(Lagrangian)/∂(metric); cf. Simo and Marsden
[1984], Hughes and Marsden [1983] and Hawking and Ellis [1972] for more information, and
Gimmsy [1991] for a modern proof of this basic theorem.
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3.16 Geometric Phases for the Rigid Body

In this section we derive Montogomery’s [1990] formula for the phase of a rigid body. We
will do this in two ways. First, it is derived by a “bare hands” method and second, it is
obtained as the holonomy of a connection on the bundle J−1(µ)→ Pµ.

It will be useful to recall some notation concerning the rigid body. Let A(t) ∈ SO(3)
be the configuration of the body and αA ∈ T ∗ASO(3) the momentum. The body angular
momentum Π ∈ R3 is related to αA by〈

αA, Ȧ
〉

= Π · V = −1
2

tr(Π̂V̂ )

where V̂ = A−1Ȧ. Similarly, the spatial angular momentum π satisfies〈
αA, Ȧ

〉
= π · v = −1

2
tr(π̂v̂)

where v̂ = ȦA−1 . Thus,

tr(Π̂A−1Ȧ) = tr(π̂ȦA−1) = tr(A−1π̂Ȧ)

and since Ȧ is arbitrary, we get

Π̂A−1 = A−1π̂, i.e., π = AΠ.

Now suppose that Π undergoes a periodic motion with period T so Π(T ) = Π(0) while
π is constant; thus,

π = A(T )Π(T ) = A(0)Π(0)

gives
A(T )−1π = A(0)−1π or A(T )A(0)−1π = π.

Thus, A(T )A(0)−1 is a rotation about the axis π. The angle of rotation, denoted ∆θ is the
geometric phase. Thus, by definition,

A(t)A(0)−1 = exp[(∆θ)π̂].

Our aim is to derive a formula for ∆θ. To obtain this formula, we will apply Stokes’ theorem
to a surface S with bounding curve C and the canonical one form Θ; i.e.,∫

S

Ω = −
∫
C

Θ.

The curve C and the surface S are to be chosen in J−1(π). We choose C = C1 −C2, where
C1 is the curve starting at α(0) ∈ T ∗A(0)SO(3), ending at α(t) ∈ T ∗A(t)SO(3) and given by
the dynamics. The curve C2 is the curve σ2(λ) in the set {αA ∈ T ∗ASO(3) | π is fixed and
Π = Π(0) = Π(T )} given as follows. Let

A(λ) = exp[(λ∆θ)π̂]A(0) and c2(λ) ∈ T ∗A(λ)SO(3)

be given by 〈
c2(λ), Ȧ

〉
= −1

2
tr(Π̂A(λ)−1Ȧ)

i.e., c2(λ) is left translation of Π̂ to the point A(λ). Since

tr(Π̂A(λ)−1Ȧ) = tr(A(0)−1π̂A(0)A(λ)−1Ȧ)
= tr(A(λ)−1 exp[−(λ∆θ)π̂]π̂ exp[(λ∆θ)π̂]
= tr(A(λ)−1π̂Ȧ) = tr(π̂ȦA(λ)−1)
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Figure 3.16.1: The curves used in the geometric phase formula

we see that c2(λ) ∈ J−1(π).
If S is a surface spanning C in J−1(π) and projecting to the spherical cap D enclosed

by the curve Π(t), then ∫
S

Ω =
∫
D

ω

where ω is the reduced symplectic form on S2. However, ω is −‖Π‖ times the area element
on the sphere, so ∫

S

Ω = −‖Π‖Λ SIGN?

where Λ is the solid angle determined by D. (If Λ > 2π, one has to be careful with the
sign). Next we turn to the evaluation of∫

C

Θ =
∫
C1

Θ−
∫
C2

Θ.

In general, if a Hamiltonian is pure kinetic energy and we integrate the canonical one form
along a dynamic curve, we get∫

c

p dq =
∫
c

(gij q̇i)q̇jdt = 2ET.

Thus, ∫
C1

Θ = 2ET

where E is the energy of the trajectory α(t) , i.e., the energy of Π(t), and T is the period,
as before.

Finally, ∫
C2

Θ =
∫ 1

0

〈c2(λ), A′(λ)〉 dλ

=
∫ 1

0

−1
2

tr(π̂A′(λ)A(λ)−1)

=
∫ 1

0

−1
2

tr(π̂ ·∆θπ̂)

= ∆θ‖π‖2 = ∆θ‖Π‖2.

Putting this together,
−‖Π‖Λ = 2ET −∆θ‖Π‖2
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so
∆θ =

Λ
‖Π‖ +

2ET
‖Π‖2 ,

which is the desired formula.
In the argument above, we assumed that there is a surface that spans the closed curve

constructed and to which Stokes theorem was applied. Here we show that there really is
such a surface, following an argument of Montgomery.

We note right away that there are other proofs that do not use or need this fact, but get
around a similar point in other ways. In particular, the proof given in Marsden, Montgomery
and Ratiu [1990] (pages 16 and 41, and also page 47), which is based on formulas from
the geometry of bundles for holonomy, uses the fact that the curvature of a connection
drops to the base and the fact that there is a local section of the principal bundle over the
contractible spherical cap bounding the closed orbit on the sphere (chosen not to cross any
separatrices). In this argument, Stokes’ theorem is applied to the closed curve on the base,
so that this question of spanning does not arise. We note that in both this proof, as well as
in the argument below, one uses that fact from topology that the principle bundle over the
contractible spherical cap is trivial.
Proof of spanning for rigid body phases Let J be the standard momentum map (given
by right translation to the identity) of the left SO(3) action on T*SO(3), and µ be a fixed
nonzero value of J . Let π : J−1(µ)→ S2 be the projection to the two-sphere (given as usual
by left translation to the identity).

Let z1 be a given point in J−1(µ) whose projection p1 = π(z1) to the sphere does not
lie on a separatrix. Let γ be the orbit of p1 under the reduced flow (as defined by Euler’s
equations) and T1 the period of this orbit. Note that γ bounds a disc D ⊂ S2 which does
not intersect any seperatrix. This disc contains a unique stable fixed point p0 on the sphere.
Let z0 be such that π(z0) = p0.

Let Gθ : T ∗SO(3) → T ∗SO(3) be the action of the one-parameter subgroup generated
by −n, where n is the unit vector along the direction of the constant chosen value µ of J .
Thus, µ = ‖µ‖n. (Note the minus sign in the definition of Gθ).

Let Ft : T ∗SO(3)→ T ∗SO(3) be the flow of the rigid body Hamiltonian. Consider the
curve C1(t) = Ft(z1) for 0 ≤ t ≤ T1. Since π ◦ C1 = γ is closed and since the sphere is
the quotient of J−1(µ) by the G action, we know that there exists an angle θ1 such that
Gθ1(C1(T1)) = z1. Our goal is to compute this angle. Here, θ1 is an angle computed mod
2π. Note that Gθ = Gθ+2π.

To do this computation, we close up C1 by adding a curve generated by G and then
applying Stokes’ theorem to the resulting closed curve. To apply Stokes’ theorem, we will
choose this closing up curve in such a way that it bounds a disc that lies in π−1(D). As we
will see, this choice is tantamount to choosing the correct “branch” for the angle θ1.

Let k be an integer (positive or negative) to be determined below. Let θ∗1 be branch of
θ1 corresponding to this choice of k, i.e., a real number representing the angle θ1 lying in
the interval (2kπ, 2(k + 1)π]. Thus, if we represent the angle θ1 by a real number θ0

1 lying
in the interval (0, 2π] then θ∗1 = θ0

1 + 2πk. To emphasize the dependence on k, we will write
θ∗1 = θk.

Let C0,k denote the curve C0,k(t) = Gt(C1(T1)), 0 ≤ t ≤ θk. Let σk = C0,k ∗ C1 denote
the concatenation of the curves C0,k and C1. Thus σk(t) = C1(t) for 0 ≤ t ≤ T1 and
σk(t) = C0,k(t− T1) when T1 ≤ t ≤ T1 + θk.

By definition of the angle θ1, all of the loops σk are closed. Let L(t) = Gt(z1), 0 ≤ t ≤ 2π
denote one orbit of the circle through our base point and let kL denote the kth iterate of such
an orbit. If k is negative then kL(t) = G−t, 0 ≤ t ≤ |k|2π. Observe that C0,k = kL ∗ C0,0.
This also gives meaning to C0,k for k a negative integer. It also follows that

σk = kL ∗ σ0.
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Lemma 3.16.1 The closed loop σk lies in the set π−1(γ), which is a two-torus. For appro-
priate choice of the integer k, this closed loop σk bounds a disc which lies entirely in the set
M = J−1(µ).

Proof of the lemma The first statement follows immediately from the definitions of the
curve and the commutivity of the flows F and G.

To prove the second fact, let [σk] ∈ H1(M,Z) denote the integer homology class rep-
resented by our closed loop σk. Recall that the reduction map π : J−1(µ) → S2 gives
J−1(µ) the structure of a principal circle bundle with the circle action being G. Since D is
contractible, it follows that M = π−1(D) is equivariantly diffeomorphic to the solid torus
S1 ×D. Now the homology of S1 ×D is isomorphic to the group of integers and any circle
orbit S1 × {point} represents the generator. Thus the homology class [L] represented by
the loop L defined above generates the homology of M . Consequently [σ0] = −k[L] for
some integer k. But then [σk] = [σ0] + k[L] = 0. (This equality follows from the relation
σk = kL ∗ σ0 and the relation between the first homotopy and homology groups.) But this
means that σk bounds a disc. �

Remarks The integer k is interesting and has the physical meaning of how many full
revolutions the rigid body made about the axis n during the period T1. Since its axis of
rotation varies with time, it takes a bit of thought to make sense of this statement–to begin,
one can imagine p1 very close to p0, in which case z1 is close to z0, the relative equilibrium.
At the relative equilibrium the motion is simply rotation about the axis n with constant
angular velocity. Near equilibrium, its instantaneous axes of rotation are near n and so we
can view it as approximately rotating about n. Mathematically, one says all this precisely
by defining θk to be a winding number relative to the solid torus M . Cushman and Levi
have shown how to calculate the integer k and hence the number θk.

3.17 Reconstruction Phases

The general setting is as follows. Consider a symplectic manifold P , a group action with
an (equivariant) momentum map J : P → g∗ and a G -invariant Hamiltonian H. Suppose
µ is a regular value of J, and the reduced space Pµ is smooth. We consider the problem of
reconstructing trajectories in P from those in Pµ.

Assume πµ : J−1(µ) → Pµ is a principal Gµ-bundle with connection A, so A is a gµ-
valued one form on J−1(µ) satisfying

(a) Ap · ξP (p) = ξ for ξ ∈ gµ

and
(b) Φ∗gA = Adg ◦A for g ∈ Gµ

where Φg : J−1(µ)→ J−1(µ) is the Gµ action.
Let cµ(t) be an integral curve on Pµ and let p0 ∈ J−1(µ) project to cµ(0). Proceed as

follows:

1. Horizontally lift cµ(t) from p0 to get a curve dµ(t) in J−1(µ); i.e., A ·
[
d
dtdµ(t)

]
=

0, dµ(t) projects to cµ(t) and dµ(0) = p0.

2. Let ξ(t) = A ·XH(d(t)) ∈ gµ.

3. Solve ġ(t) = g(t) · ξ(t); g(0) = e.

Theorem 3.17.1 c(t) = g(t)dµ(t) is the integral curve of XH on P with initial condition
p0.
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Proof.

c′(t0) =
d

dt

[
Φg(t)dµ(t)

]∣∣
t=t0

=
d

dt

[
Φg(t0)Φg(t0)−1g(t)dµ(t)

]∣∣
t=t0

= TΦg(t0) · ξ(t0)P (dµ(t0)) + TΦg(t0)d
′
µ(t0)

=
[
Ad

g
(t)
0
ξ
]
P

(c(t0)) + TΦg(t0)d
′
µ(t0)

– TO BE COMPLETED
– END WITH A DISCUSSION AND REFERENCE TO MEMOIRS

3.18 Dynamics of Coupled Planar Rigid Bodies

Here we apply reduction techniques to the study of coupled rigid bodies moving with-
out friction in the plane. We begin with two bodies and then discuss the situation for
three bodies. See Sreenath et al . [1988], Oh et al . [1989], Grossman, Krishnaprasad and
Marsden[198♥] and Patrick[1989,1990] for further details and for the three dimensional case.
Related references are Krishnaprasad[1985], Krishnaprasad and Marsden[1987] and Bloch,
Krishnaprasad, Marsden and Sanchez[1992].

Summary of Results

Refer to Figure 2.13.1 and define the following quantities, for i = 1, 2:

di distance from the hinge to the center of mass of body i
ωi angular velocity of body i
θ joint angle from body 1 to body 2
λ(θ) = d1d2 cos θ
m1 mass of body i
ε = m1m2/(m1 +m2) = reduced mass
Ii moment of inertia of body i about its center of mass
Ĩ1 = I1 + εd2

1; Ĩ2 = I2 + εd2
2 = augmented moments of inertia

γ = ελ′/(Ĩ1Ĩ2 − ε2λ2), ′ = d/dθ.

As we shall see, the dynamics of the system is given by the Euler-Lagrange equations
for θ, ω1, and ω2 :

θ̇ = ω2 − ω1,

ω̇1 = −γ(Ĩ2ω2
2 + ελω2

1) (3.18.1)
ω̇2 = γ(Ĩ1ω2

1 + ελω2
2)

For the Hamiltonian structure it is convenient to introduce the momenta

µ1 = Ĩ1ω1 + ελω2, µ2 = Ĩ2ω2 + ελω1, (3.18.2)

that is, (
µ1

µ2

)
= J

(
ω1

ω2

)
, where J =

(
Ĩ1 ελ

ελ Ĩ2

)
(3.18.3)
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θ
d2

d1

center of
mass of
body 1

body 1

center of
mass of
body 2

body 2

Figure 3.18.1:

(this will be done via the Legendre transform). The evolution equations for µi are obtained
by solving (2.13.3) for ω1, ω2 and substituting into (2.13.1). The Hamiltonian is

H =
1
2

(ω1, ω2)J
(
ω1

ω2

)
(3.18.4)

that is,

H =
1
2

(µ1, µ2)J−1

(
µ1

µ2

)
, (3.18.5)

which is the total kinetic energy for the two bodies. The Poisson structure on the (θ, µ1, µ2)-
space is

{F,H} = {F,H}2 − {F,H}1, (3.18.6)

where

{F,H}i =
∂F

∂θ

∂H

∂µi
− ∂H

∂θ

∂F

∂µi
.

The evolution equations (2.13.1) are equivalent to Hamilton’s equations Ḟ = {F,H}.
Casimirs for the bracket (2.13.6) are readily checked to be

C = Φ(µ1 + µ2) (3.18.7)

for Φ any smooth function of one variable; that is, {F,C} = 0 for any F . One can also
verify directly from (2.13.1) that, correspondingly, (dµ/dt) = 0, where µ = µ1 + µ2 is the
total system angular momentum.

The symplectic leaves of (2.13.6) are described by the variables ν = (µ2−µ1)/2, θ which
parametrize a cylinder. The bracket in terms of (θ, ν) is the canonical one on T ∗S1 :

{F,H}i =
∂F

∂θ

∂H

∂ν
− ∂H

∂θ

∂F

∂ν
. (3.18.8)

This canonical structure on T ∗S1 is consistent with the cotangent bundle reduction theorem
(♥♥♥); there is no magnetic term (a two form) because the base S1 is one dimensional. XREF



102 Chapter 2 Reduction of Cotangent Bundles

Kinematics for two coupled planar rigid bodies

In this section we set up the phase space for the dynamics of our problem. Refer to
Figure 2.13.2 and define the following quantities:

d12 the vector from the center of mass of body 1 to the hinge
point in a fixed reference configuration

d21 the vector from the center of mass of body 2 to the hinge
point in a fixed reference configuration

R(θi) =
(

cos θi − sin θi
sin θi cos θi

)
the rotation through angle θi giving the

current orientation of body i (written as a matrix relative to
the fixed standard inertial frame)

ri current position of the center of mass of body i
r current position of the system center of mass
r0
i the vector from the system center of

mass to the center of mass of body i
θ = θ2 − θ1 joint angle
R(θ) = R(θ2) ·R(−θ1) joint rotation

body 2

reference
pointcenter of mass

of the system

r2r1

r0

r0

R(θ1)d12

R(θ2)d21

θ

2

1

body 1

Figure 3.18.2:

The configuration space we start with is Q, the subset of SE(2)×SE(2) (two copies of the
special Euclidean group of the plane) consisting of pairs (R(θ1), r1), (R(θ2), r2)) satisfying
the hinge constraint

r2 = r1 +R(θ1)d12 −R(θ2)d21. (3.18.9)

Notice that Q is of dimension 4 and is parametrized by θ1, θ2 and, say r1; that is, Q ≈
S1 × S1 × R

2 . We form the velocity phase space TQ and momentum phase space T ∗Q.
The Lagrangian on TQ is the kinetic energy (relative to the inertial frame) given by

summing the kinetic energies of each body. To spell this out, let Xi denote a position vector
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in body 1 relative to the center of mass of body 1, and let ρ1(X1) denote the mass density
of body 1. Then the current position of the point with material label X1 is

x1 = R(θ1)X1 + r1. (3.18.10)

Thus ẋ1 = Ṙ(θ1)X1 + ṙ1, and so the kinetic energy of body 1 is

K1 =
1
2

∫
ρ1(X1)‖ẋ1‖2d2X1

=
1
2

∫
ρ1(X1)

〈
ṘX1 + ṙ1, ṘX1 + ṙ1

〉
d2X1

=
1
2

∫
ρ1(X1)

[〈
ṘX1, ṘX1

〉
+ 2

〈
ṘX1, ṙ1

〉
+ ‖ṙ1‖

]
d2X1.

(3.18.11)

But 〈
ṘX1, ṘX1

〉
= tr(ṘX1, ṘX1)T = tr(ṘXT

1 X1Ṙ
T ) (3.18.12)

and ∫
ρ1(X1)

〈
ṘX1, ṙ1

〉
d2X1 =

〈
Ṙ

∫
ρ1(X1)X1d

2X1, ṙ1

〉
= 0 (3.18.13)

since X1 is the vector relative to the center of mass of body 1. Substituting (2.13.12) and
(2.13.13) into (2.13.11) and defining the matrix

I1 =
∫
ρ(X1)X1XT

1 d
2X1 (3.18.14)

we get

K1 =
1
2

tr(Ṙ(θ1)I1(Ṙ(θ1)T ) +
1
2
m1‖ṙ1‖2; (3.18.15)

with a similar expression for K2. Now let

L : TQ→ R be defined by L = K1 +K2. (3.18.16)

The equations of motion then are the Euler-Lagrange equations for this L on TQ. Equiva-
lently, they are Hamilton’s equations for the corresponding Hamiltonian.

For later convenience, we shall rewrite the energy (2.13.16) in terms of ω1 = θ̇1, ω2 =
θ̇2, r0

1 and r0
2. To do this note that, by definition,

mr = m1r1 +m2r2, (3.18.17)

where m = m1 +m2, and so, using r1 = r + r0
2,

0 = m1r0
1 +m2r0

2 (3.18.18)

and, subtracting r from both sides of (2.13.9),

r0
2 = r0

1 +R(θ1)d12 −R(θ2)d21. (3.18.19)

From (2.13.18) and (2.13.19) we find that

r0
2 =

m1

m
(R(θ1)d12 −R(θ2)d21) (3.18.20)
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and

r0
1 = −m2

m
(R(θ1)d12 −R(θ2)d21). (3.18.21)

Now we substitute

r1 = r + r0
1 so ṙ1 = ṙ + ṙ0

1 (3.18.22)

and

r2 = r + r0
2 so ṙ2 = ṙ + ṙ0

2 (3.18.23)

into (2.13.16) to give

L =
1
2

tr(Ṙ(θ1)I1Ṙ(θ1)T + Ṙ(θ2)I2Ṙ(θ2)T )

+
1
2

[m1‖ṙ + ṙ0
1‖2 +m2‖ṙ + ṙ0

2‖2]. (3.18.24)

But m1

〈
ṙ, ṙ0

1

〉
+ m2

〈
ṙ, ṙ0

2

〉
= 0 since m1ṙ0

1 + m2ṙ0
2 = 0 from (2.13.18). Thus (2.13.22)

simplifies to

L =
1
2

tr(Ṙ(θ1)I1Ṙ(θ1)T + Ṙ(θ2)I2Ṙ(θ2)T )

+
(
p2

2m

)
+

1
2
m1‖ṙ0

1‖2 +
1
2
m2‖ṙ0

2‖2, (3.18.25)

where p = m‖ṙ‖ is the magnitude of the system momentum.
Now write

Ṙ(θ1) =
d

dt

(
cos θ1 − sin θ1

sin θ1 cos θ1

)
=

(
− sin θ1 − cos θ1

cos θ1 − sin θ1

)
ω1

=: R(θ1)
(

0 −ω1

ω1 0

)
:= R(θ1)ω̂1, (3.18.26)

so that (2.13.20) gives

ṙ0
2 =

m1

m
(R(θ1)ω̂1d12 − (R(θ2)ω̂2d21), ṙ0

1 = −m2

m
(R(θ1)ω̂1d12 − (R(θ2)ω̂2d21).

(3.18.27)

Substituting (2.13.25) and (2.13.24) into (2.13.23) gives

L =
1
2

tr((ω̂1I1ω̂T1 ) + ω̂1I2ω̂T2 )) +
p2

2m
+
m1m2

m
‖ω̂1d12 −R(θ2 − θ1)ω̂2d21‖2. (3.18.28)

Finally we note that

tr(ω̂1I1ω̂T1 ) = tr(ω̂T1 ω̂1I1) = tr
((

ω2
1 0

0 ω2
1

)
I1

)
= ω2

1tr I1 := ω2
1I1, (3.18.29)



2.13 Dynamics of Coupled Planar Rigid Bodies Phases 105

where

I1 =
∫
ρ(X1, Y1)(X2

1 + Y 2
1 )dX1dY1

is the moment of inertia of body 1 about its center of mass. One similarly derives an
expression – call it (2.13.27′) – where 1 is replaced by 2 throughout. The final term in
(2.13.26) is manipulated as follows: for future reference

‖ω̂1d12 = −R(θ)ω̂2d21‖2

= ‖ω̂1d12‖2 − 2 〈ω̂1d12, R(θ)ω̂2d21〉+ ‖ω̂2d21‖2

= ω2
1d

2
1 + ω2

2d
2
2 − 2 〈ω̂1d12, ω̂2R(θ)d21〉

= ω2
1d

2
1 + ω2

2d
2
2 − 2ω1ω2 〈d12, R(θ)d21〉 (3.18.30)

Substituting (2.13.27), (2.13.27′) and (2.13.28) into (2.13.26) gives

L =
1
2

[(ω2
1 Ĩ1 + ω2

2 Ĩ2 + 2ω1ω2ελ(θ)] +
p2

2m
, (3.18.31)

where

λ(θ) = −〈d12, R(θ)d21〉 = −[d12 · d21 cos θ − (d12 × d21) · k sin θ]. (3.18.32)

Remarks

i If d12 and d21 are parallel (that is, the reference configuration is chosen with d12 and
d21 aligned), then (2.13.30) gives λ(θ) = d1d2 cos θ, as in §3.6A. how do we reference thi

ii The quantities Ĩ1, Ĩ2 are the moments of inertia of “augmented” bodies; for example
Ĩ1 is the moment of inertia of body 1 augmented by putting a mass ε at the hinge
point.

Reduction to the center of mass frame
Now we reduce the dynamics by the action of the translation group R

2 . This group acts
on the original configuration space Q by

v · ((R(θ1), r1), (R(θ2), r2)) = ((R(θ1), r1 + v), (R(θ2), r2 + v)). (3.18.33)

This is well defined since the hinge constraint (2.13.9) is preserved by this action. The
induced momentum map on TQ is calculated by the standard formula

Jξ =
∂L

∂q̇i
ξiQ(q), (3.18.34)

or on T ∗Q by

Jξ = piξ
i
Q(q), (3.18.35)

where ξiQ is the infinitesimal generator of the action on Q (see §2.2). To implement (2.13.32) XREF
we parametrize Q by θ1, θ2 and r, with r1 and r2 determined by (2.13.20) and (2.13.21).
From (2.13.23) we see that the momentum conjugate to r is

p =
∂L

∂ṙ
= mṙ (3.18.36)
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and so (2.13.32) gives

Jξ = 〈p, ξ〉 , ξ ∈ R2 . (3.18.37)

Thus J = p is conserved since H is cyclic in r and so H is translation invariant. The
corresponding reduced space is obtained by fixing p = p0 and letting

Pp0 = J−1(p0)/R2 .

But Pp0 is isomorphic to T ∗(S1 × S1), that is, to the space of θ1, θ2 and their conjugate
momenta. The reduced Hamiltonian is simply the Hamiltonian corresponding to (2.13.29)
with p0 regarded as a constant.

In this case the reduced symplectic manifold is a cotangent bundle, in agreement with
the Cotangent Bundle Reduction Theorem. The reduced phase space has the canonical
symplectic form; one can also check this directly here.

In (2.13.29), we can adjust L by a constant and thus assume that p0 = 0; this obviously
does not affect the equations of motion.

That the reduced system is given by geodesic flow on S1×S1 since (2.13.29) is quadratic
in the velocities. Indeed the metric tensor is just the matrix J given by (1.6) so the conjugate
momenta are µ1 and µ2 given by (1.6).EF]

We remark, finally, that the reduction to center-of-mass coordinates here is somewhat
simpler and more symmetric than the Jacobi-Haretu reduction to center-of-mass coordinates
for n point masses. (Just taking the positions relative to the centre of mass does not achieve
this since this does not reduce the dimension at all!) What is different here is that the two
bodies are hinged, and so by (2.13.20), r0

1 and r0
2 are determined by the other data.

Reduction by rotations

To complete the reduction, we reduce by the diagonal action of S1 on the configuration
space S1 × S1 that was obtained in §3.6C . The momentum map for this action isEF]

J((θ1, µ1), (θ2, µ2)) = µ1 + µ2. (3.18.38)

To facilitate stability calculations, form the Poisson reduced space

P := T ∗(S1 × S1)/S1 (3.18.39)

whose symplectic leaves are the reduced symplectic manifolds

Pµ = J−1(µ)/S1 ⊂ P.

We coordinatize P by θ = θ2 − θ1, µ1 and µ2; topologically, P = S1 × R
2 . The Poisson

structure on P is computed as follows: take two functions F (θ, µ1, µ2) and H(θ, µ1, µ2).
Regard them as functions of θ1, θ2, µ1, µ2 by substituting θ = θ2 − θ1 and compute the
canonical bracket. The asserted bracket (2.13.6) of is what results. The Casimirs on P are
obtained by composing J with Casimirs on the dual of the Lie algebra of S1; that is, with
arbitrary functions of one variable; thus (2.13.7) results. This can be checked directly.

If we parametrize Pµ by θ and ν = (µ2−µ1)/2, then the Poisson bracket on Pµ becomes
the canonical one. This is consistent with the Cotangent Bundle Reduction Theorem which
asserts in this case that the reduction of T ∗(S1×S1) by S1 is symplectically diffeomorphic to
T ∗((S1 × S1)/S1) ∼= T ∗S1. There are no “magnetic” terms since the reduced configuration
space S1 is one-dimensional, and hence carries no non-zero two-forms.
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The realization of Pµ as T ∗S1 is not unique. For example we can parametrize Pµ by
(θ2, µ2) or by (θ1, µ1), each of which also gives the canonical bracket. (In the general theory
there can be more than one one-form αµ (i.e., connection) by which one embeds Pµ into
T ∗S1, as well as more than one way to identify (S1 × S1)/S1 ∼= S1. The three listed above
correspond to three such choices of αµ.)

The reduced bracket on T ∗(S1×S1)/S1 can also be obtained from the general formula for
the bracket on (P × T ∗G)/G ∼= P × 3∗ (see Krishnaprasad and Marsden [1987] and §3.6G;
it produces one of the variants above, depending on whether we take G to be parametrized
by θ1 or θ2, or θ2 − θ1.

The reduced Hamiltonian on P is (2.13.5) regarded as a function of µ1, µ2 and θ:

H =
1

2∆
(µ1, µ2)

(
Ĩ2 −ελ
−ελ Ĩ1

)(
µ1

µ2

)
, (3.18.40)

where ∆ = Ĩ1Ĩ2 − ε2λ2. Substituting µ1 = (µ/2)− ν and µ2 = ν + (µ/2) gives

H =
1

2∆
(Ĩ1 + Ĩ2 + 2ελ)ν2 +

1
2∆

[(
Ĩ1 − Ĩ2

)
µ
]
ν +

1
2∆

(
1
4
µ2
(
Ĩ1 + Ĩ2 − 2ελ

))
. (3.18.41)

Thus, the Euler-Lagrange equations (2.13.1) are equivalent to Ḟ = {F,H} for the re-
duced bracket. We can also obtain a Hamiltonian system on the leaves, parametrized by
say (θ, ν) with H given by (2.13.38).

The linear term in ν in (2.13.38) can be eliminated by completion of squares: it is
not there in the general theory because reduced coordinates adapted to the metric of the
kinetic energy are used; these are produced by the completion of squares. Notice that the
Hamiltonian now is of the form kinetic plus potential energy but that the metric now on S1

is θ-dependent and, unless d1 or d2 vanishes, it is a non-trivial dependence. The potential
piece is the amended potential .

We summarize as follows:

Theorem 3.18.1 The reduced phase space for two coupled planar rigid bodies is the three-
dimensional Poisson manifold P = S1 × R with the bracket (2.13.6); its symplectic leaves
are the cylinders with canonical variables (θ, ν). Casimirs are given by (2.13.7).

The reduced dynamics are given by Ḟ = {F,H} or equivalently,

θ̇ =
∂H

∂µ2
− ∂H

∂µ1
, µ̇1 =

∂H

∂θ
, µ̇2 = −∂H

∂θ
, (3.18.42)

where H is given by (2.13.5). The equivalent dynamics on the leaves is given by

∂θ

∂t
=
∂H

∂ν
,

∂ν

∂t
= −∂H

∂θ
, (3.18.43)

where H is given by (2.13.38).

Equilibria and stability by the energy-Casimir method

We now use Arnold’s energy-Casimir method, (see the introduction and overview) to de-
termine the equilibrium points and their stability. An equivalent alternative to this method
is to look for critical points of H given by (2.13.38) in (θ, ν)-space and test δ2H for defi-
niteness at these equilibria.

To search for equilibria we look directly at Hamilton’s equations on P . From (2.13.39),
the conditions µ̇1 = µ̇2 = 0 become

∂H

∂θ
= 0; (3.18.44)
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that is,

−1
2

(µ1, µ2)J−1 ∂J
∂θ

J−1

(
µ1

µ2

)
= 0. (3.18.45)

Clearly,

dJ
dθ

=
(

0 ελ′

ελ′ 0

)
(3.18.46)

from (2.13.3), so (2.13.42) becomes

−1
2

(ω1, ω2)
(

0 ελ′

ελ′ 0

)(
µ1

µ2

)
= 0; (3.18.47)

that is,

−ελ′ω1ω2 = 0. (3.18.48)

The equilibrium condition θ̇ = 0 becomes Ĩ1µ1 − ελµ2 = Ĩ2µ2 − ελµ1 or, equivalently,
ω1 = ω2. Thus, the equilibria are given by

i ω1 = ω2 = 0, or

ii ω1 = ω2 6= 0, λ′ = 0.

For simplicity, choose the reference configuration so that d12 and d21 are parallel. Then

λ′(θ) = d12 · d21 sin θ

so the equilibria in case ii occur when

ii′ either (a) d12 = 0 or d21 = 0, or (b) θ = 0 or π. The case in which θ = π corresponds
to the case of folded bodies, while θ = 0 corresponds to extended (stretched out)
bodies.

The first step in the energy-Casimir method is to realize the equilibria as critical points
of H + C. We calculate that

∂H

∂θ
= ελ′ω1ω2

∂H

∂µ1
= ω1;

∂H

∂µ2
− ω2,

(3.18.49)

where (
ω1

ω2

)
= J−1

(
µ1

µ2

)
=

1
∆

 Ĩ2µ1 − ελµ2

Ĩ1µ2 − ελµ1

 .

The first variation is

d(H + C) =
∂H

∂θ
dθ +

(
∂H

∂µ1
+ Φ′

)
dµ1 +

(
∂H

∂µ2
+ Φ′

)
dµ2, (3.18.50)

from which we see that critical points of H + C correspond to equilibria provided

Φ′(µe) = −
(
∂H

∂µ1

)
e

= −
(
∂H

∂µ1

)
e

, (3.18.51)
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where the subscript e means evaluation at the equilibrium. As in other examples such as
the rigid body and heavy top from the introduction, Φ′′(µe) is arbitrary.

The matrix of the second variation of H + C at equilibrium is

δ2(H + C) =



∂2H

∂θ2

∂2H

∂θ∂µ1

∂2H

∂θ∂µ2

∂2H

∂θ∂µ1

∂2H

∂µ2
1

+ Φ′′
∂2H

∂µ1∂µ2
+ Φ′′

∂2H

∂θ∂µ2

∂2H

∂µ1∂µ2
+ Φ′′

∂2H

∂µ2
2

+ Φ′′


(3.18.52)

where 
∂2H

∂µ2
1

∂2H

∂µ1∂µ2

∂2H

∂µ1∂µ2

∂2H

∂µ2
2

 = J−1 =
1
∆

(
Ĩ2 −ελ
−ελ Ĩ1

)
,

∂2H

∂θ∂µ1
= −ελ

′

∆2
(Ĩ2ω2 − ελω1),

∂2H

∂θ∂µ2
= −ελ

′

∆2
(−ελω2 + Ĩ1ω1),

and

∂2H

∂θ2
=

∂

∂θ

[
−ελ′ ∂H

∂µ1

∂H

∂µ2

]
= −ελ′′ω1ω2 − ελ′

∂2H

∂θ∂µ1
ω2 − ελ′ω1

∂2H

∂θ∂µ2
.

At equilibrium, λ = ±d1d2(+ if θ = 0,− if θ = π) and so

J−1 1
(Ĩ1Ĩ2 − ε2d2

1d
2
2)

[
Ĩ2 ∓εd1d2

∓εd1d2 Ĩ1

]
,

∂2H

∂θ∂µ1
= 0 =

∂2

∂θ∂µ2
, and

∂2H

∂θ2
= −ελ′′ω2

e = ±εd1d2ω
2
e ,

where ωe = ω1 = ω2 6= 0 at equilibrium. Thus (2.13.48) becomes

δ2(H + C) =

 ±ελd1d2ω
2
e 0

0 J−1 + Φ′′
(

1 1
1 1

)  . (3.18.53)

This matrix is clearly positive definite if d1 6= 0, d2 6= 0 if θ = 0(+ sign) and Φ′′(µe) ≥ 0 and
is indefinite for any choice of Φ′′(µe) if θ = π.

Another way to do the stability analysis is to use the reduced Hamiltonian on T ∗S1.
After completing squares, H will have the form of kinetic plus potential energy with effective
potential given by

V (θ) =
1

2∆

[
1
4
µ2(Ĩ1 + Ĩ2 − 2ελ) +

(Ĩ1 + Ĩ2)2µ2

4(Ĩ1 + Ĩ2 + 2ελ)

]
. (3.18.54)

Minima of V are then the stable equilibria while maxima are unstable. The following
theorem summarizes the situation.
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Theorem 3.18.2 The dynamics of the 2-body problem is completely integrable and contains
one stable relative equilibrium solution (θ = 0 - the stretched-out case) and one unstable
relative equilibrium solution (θ = π - the folded-over case). The reduced dynamics contains
a homoclinic orbit joining the unstable equilibrium to itself.

For three or more bodies, this method of looking for minima of the potential will not
work in a naive way because the symplectic structures on the symplectic leaves will have
magnetic terms. The general theory for dealing with this situation is given in Simo, Lewis
and Marsden [1991].

Multibody problems

The Hamiltonian formulation of the previous sections extends to systems of N planar
rigid bodies connected to form a tree structure. Since the general statement of this result
requires significant additional notation we limit ourselves to the special case of a chain of
N bodies.

Theorem 3.18.3 The total kinetic energy (Hamiltonian) for an open chain of N planar
rigid bodies connected together by hinge joints has the form

H = µT · J−1 · µ (3.18.55)

where µ = (µ1, µ2, . . . , µN )T is the momentum vector and J is the corresponding N × N
inertia matrix which is a function of the set of relative (or joint) angles between adjacent
bodies. The reduced dynamics takes the form

µ̇1 =
∂H

∂θ2,1

µ̇2 =
∂H

∂θ3,2
− ∂H

∂θ2,1

µ̇i =
∂H

∂θi+1,i
− ∂H

∂θi,i−1

µ̇N = − ∂H

∂θN,N−1

θ̇i+1,i =
∂H

∂θi+1
− ∂H

∂µi
for i = 1, . . . , N − 1) (3.18.56)

where θi+1,i is the joint angle between body i+ 1 and body i.
The associated Poisson structure is given by

{f, g} =
N−1∑
i=0

(
∂f

∂µi
− ∂f

∂µi+1

)
∂g

∂θi+1,i
− ∂f

∂θi+1,i

(
∂g

∂µi
− ∂g

∂µi+1

)
. (3.18.57)

This is proven in a way similar to the two-body case. The structure of equilibria and
the associated stability analysis become quite complex and interesting as the number of
interconnected bodies increases. A mixture of topological and geometric methods may be
necessary to extract useful information on the phase portraits.

In the remainder of this section, we illustrate some of the complexities of multibody
problems by discussing of the equilibria and stability for a system of three planar rigid
bodies connected by hinge joints (see Figure 2.13.3).
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body 1

body 2

body 3

R(θ3)d32

θ3,2

R(θ2)d23θ2,1

R(θ1)d21

R(θ1)d12

Figure 3.18.3: Planar three-body system

The Hamiltonian of the planar three-body problem is given by equation (2.13.51) with
the momentum vector µ and the coefficient of inertia matrix J being defined as follows:

µ = (µ1, µ2, µ3)T ,

J =


Ĩ1 λ̃12(θ2,1) λ̃31(θ2,1 + θ3,2)

λ̃12(θ2,1) Ĩ1 λ̃23(θ3,2)

λ̃31(θ2,1 + θ3,2) λ̃23(θ3,2) Ĩ3

 (3.18.58)

Here θ2,1 and θ3,2 are the relative angles between bodies 2 and 1, and bodies 3 and 2,
respectively. The coefficients of inertia Ĩi and λ̃ij are given by

Ĩ1 = [I1 + (ε12ε31) 〈d12,d12〉],
Ĩ2 = [I2 + ε12 〈d21,d21〉+ ε23 〈d23 − d23〉

+ε31 〈(d23 − d21), (d23 − d21)〉]
Ĩ3 = [I3 + (ε23 + ε31) 〈d32,d32〉]

λ̃12(θ2,1) = [ε12λ(−d21,d12)(θ2,1) + ε31λ(d23,−d21,d12))(θ2,1)]

λ̃23(θ3,2) = [ε23λ(−d32,d23)(θ3,2) + ε31λ(−d32,d23,d21))(θ3,2)]

λ̃31(θ2,1) + θ3,2) = ε31λ(d32,d12)(θ2,1 + θ3,2)

εij =
mimj

m1 +m2 +m3
, i 6= j and i, j = 1, 2, 3

λ(x,y)(α) = x · y cosα+ [x× y] sinα,

where the mi and Ii are the mass and inertia respectively of the body i, and the dij are
defined as in Figure 2.13.3.
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The dynamics of a three-body system of planar, rigid bodies in the Hamiltonian setting
is given by:

µ̇1 =
∂H

∂θ2,1

µ̇2 = − ∂H

∂θ2,1
+

∂H

∂θ3,2

µ̇3 = − ∂H

∂θ3,2
(3.18.59)

θ̇2,1 =
∂H

∂µ2
− ∂H

∂µ1

θ̇3,2 =
∂H

∂µ3
− ∂H

∂µ2

From (2.13.55) note that the sum µ1 + µ2 + µ3 of momentum variables is constant in time.
In Sreenath et al . [1988] and Oh et al . [1988], it is shown that for three coupled

rigid bodies there are either 4 or 6 relative equilibria and the bifurcations between these
are determined as a function of the system parameters. It is also shown that near the
stable stretched out relative equilibrium, there are relative periodic orbits distinuished by
symmetry type. This is done using the Stewart et. al. [198♥] symmetric version of theEF]
Moser-Weinstein theorem (Weinstein [1973], and Moser [1978]). Also, it is shown that the
dynamics is, in general, not integrable by using the Poincaré-Melnikov method.

Coupled Rotating Systems

Some general complements to reduction theory motivated by the dynamics of rotat-
ing system are given here. They are taken from Krishnaprasad and Marsden [1987]; this
reference and Patrick [1990] should be consulted for further information and applications.

Assume G is a Lie group acting by canonical (Poisson) transfomations on a Poisson
manifold P . Define φ : T ∗G× P → 3∗ × P by

ϕ(αg, z) = (TL∗g · αg, g−1 · z) (3.18.60)

where g−1 · z denotes the action of g−1 on z ∈ P . For our example, G = SO(3) and αg is a
momentum variable which is given in coordinates on T ∗SO(3) by the momentum variables
pφ, pθ, pψ conjugate to the Euler angles φ, θ, ψ. The mapping ϕ in (2.13.56) transforms αg
to body representation and transforms z ∈ P to g−1 · z, which represents z relative to the
body.

As usual, for ξ ∈ 3, we let ξP denote its infinitesimal generator on P , so ξP is the vector
field on P given by

ξP (z) =
d

dt
(exp(tξ) · z)

∣∣∣∣
t=0

.

For F,G : 3∗ × P → R, let {F,G} stand for the minus Lie-Poisson bracket holding the P
variable fixed and let {F,G}P stand for the Poisson bracket on P with the variable µ ∈ 3∗

held fixed.
Endow 3∗ × P with the follwing bracket:

{F,G} = {F,G} + {F,G}P − dzF ·
(
δG

δµ

)
P

+ dzG ·
(
δF

δµ

)
P

(3.18.61)

where dzF means the differential of F with respect to z ∈ P and the evaluation point (µ, z)
has been suppressed.
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Proposition 3.18.4 The bracket (2.13.57) makes 3∗ × P into a Poisson manifold and
ϕ : T ∗G × P → 3∗ × P is a Poisson map, where the Poisson structure on T ∗G × P is
given by the sum of the canonical bracket on T ∗G and the bracket on P . Moreover, φ is
G-invariant and induces a Poisson diffeomorphism of (T ∗G× P )/G with 3∗ × P .

Proof For F,G : 3∗×P → R, let F̄ = F ◦ φ and Ḡ = G ◦ φ. We show that {F̄ , Ḡ}T∗G +
{F̄ , Ḡ}P = {F̄ , Ḡ} ◦ ϕ. This will show ϕ is canonical. Since it is easy to check that φ
is G-invariant and gives a diffeomorphism of (T ∗H × P )/G with 3∗ × P , it follows that
(2.13.57) represents the reduced bracket and so defines a Poisson structre.

To prove our claim, write ϕ = ϕG × ϕP . Since ϕG does not depend on x and the group
action is assumed canonical, {F̄ , Ḡ}P = {F,G} ◦ ϕ. For the T ∗G bracket, note that since
φG is a Poisson map of T ∗G to 3∗, the terms involving ϕG will be {F,G} ◦ ϕ. The terms
involving ϕP (αγ , z) = g−1 · z are found by noting that the bracket of a function K of g with
a function L of αg is

dgK ·
δL

δαg

where δL/δαg means the fiber derivative of L regarded as a vector at g. This is paired with
the covector dgK. Letting Ψz(g) = g−1 · z, we find by use of the chain rule that missing
terms in the bracket are

dzF · TΨz ·
δG

δµ
− dzG · TΨz ·

δF

δµ
.

However, TΨz · (δG/δµ) = −(δF/δµ)P ◦Ψz, so the preceeding expression reduces to the last
two terms in equation (2.13.57). �

Suppose the action of G on P has an Ad∗-equivariant momentum map J : P → 3∗.
Consider the map α : 3∗ × P → 3∗ × P given by

α(µ, z) = (µ+ J(z), z). (3.18.62)

Let the bracket { , }0 on 3∗ × P be defined by

{F,G}0 = {F,G}− + {F,G}P . (3.18.63)

Thus { , }0 is (2.13.57) with the coupling or interaction terms dropped. We claim that the
map α eliminates the coupling:

Proposition 3.18.5 α : (3∗ × P, { , })→ (3∗ × P, { , }0) is a Poisson diffeomorphism.

Proof For F,G : 3∗ × P → R, let F̂ = F ◦ α and Ĝ = G ◦ α. Letting ν = µ+ J(z), and
dropping evaluation points, we conclude that

δF̂

δµ
=
δF

δν
and dzF̂ =

(
δF

δν
,dzJ

)
+ dzF.

Substituting into the bracket (2.6) , we get [XREF]

{F̂ , Ĝ} = −
{
µ,

[
δF

δν
,
δG

δν

]}
+ {F,G}P +

{(
δF

δν
,dzJ

)
,

{(
δG

δν
,dzJ

)}}
P

+
{[

δF

δν
,dzJ

]
,dzG

}
P

+
{

dzF,
[
δF

δν
,dzJ

]}
P

−
{
δF

δν
,dzJ ·

(
δG

δν

)
P

}
− dzF ·

(
δF

δν

)
P

+
{
δG

δν
,dzJ ·

(
δF

δν

)
P

}
+ dzG ·

(
δF

δν

)
P

. (3.18.64)
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However, {dzF, [(δG/δν),dzJ]}P means the pairing of dzF with the Hamiltonian vector
field associated with the one form [(δF/δν,dzJ] which is (δG/δν)P by definition of the
momentum map. Thus the corresponding four terms in (2.13.60) cancel. Let us consider
the remaining terms. First of all, consider{[

δF

δν
,dzJ

]
,

[
δF

δν
,dzJ

]}
P

. (3.18.65)

Since J is equivariant, it is a Poisson map to 3∗+ Thus, (2.13.61) becomes {J, [(δF/δν), (δG/δν)]}.
Similarly each of −[(δF/δν),dzJ · {(δG/δν}P ] and −[(δG/δν),dzJ · {(δF/δν)}P ] equals
−{J, [(δF/δν), (δG/ν)]}, so these three terms collapse to −{J, [(δF/δν), (δG/δν)]} which
combines with −{µ, [(δF/δν), (δG/δν)]} to produce −{ν, [(δF/δν), (δG/δν)]} = {F,G} .
Thus, (2.13.60) collapses to (2.13.59). �

Remarks This result is of course intimately related to the momentum shift in the reduc-
tion theorem and to the isomorphism between the “Interaction” and “Universal” represen-
tations of a reduced principal bundle. (See §3.2F). �EF]

Recall that a Casimir function is a function whose Poisson bracket with any other func-
tion is zero. From Proposition 2.13.5 we get

Corollary 3.18.6 Corollary Suppose C(ν) is a Casimir function on 3∗. Then

C(µ, x) = C(µ+ J(x))

is a Casimir function on 3∗ × P for the bracket (2.13.57).

We conclude with some consequences of the preceding Proposition. The first is a con-
nection with semi-direct products. Namely, we notice that if h is another Lie algebra and
G acts on h, we can reduce T ∗G× h∗ by G.

Corollary 3.18.7 Giving T ∗G × h∗ the sum of the canonical and the “−” Lie-Poisson
structure on h∗, the reduced space (T ∗G× h∗)/G is 3∗ × h∗ with the bracket

{F,G} = {F,G}3∗ + {F,G}3∗ − dνF ·
(
δG

δµ

)
3∗

+ dνG ·
(
δF

δµ

)
3∗

(3.18.66)

where (µ, ν) ∈ 3∗ × h∗, so (2.13.62) is the Lie-Poisson bracket for the semidirect product
3sh.

This is compatible with, and reproduces some of the semidirect product reduction results
of Marsden et. al. [1983], and Marsden, Ratiu and Weinstein [1984a, b] (see also Holm,
Kupershmidt and Levermore [1983]). Of course such structures are important for examples
like a rigid body with a fixed point in the presence of a gravitational field (see Holmes and
Marsden [1983]).

Here is another result similar to Proposition 2.13.4 which reproduces the symplectic
form on T ∗G written in body coordinates (Abraham and Marsden [1978, p. 315}). We
phrase the result in terms of brackets.

Corollary 3.18.8 The map of T ∗G to 3∗×g given by αg 7→ (TL∗gαg, g) maps the canonical
bracket to the following bracket on 3∗ ×G:

{F,G} = {F,G} + dgF · TLg
(
δG

δµ

)
− dgG · TLg

(
δF

δµ

)
(3.18.67)

where µ ∈ 3∗ and g ∈ G.
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Proof This is proved by the same method as in Proposition 2.13.4. For F : 3∗×G→ R,
let F̄ (αg) = G(µ, g) where µ = TL∗gαg. The canonical bracket of F̄ and Ḡ will give the (−)
Lie-Poisson structure via the µ dependence. The remaining terms are(

dgF̄ ,
δḠ

δp

)
−
(

dgḠ,
δF̄

δp

)
where (δF̄ /δp) means the fiber derivative of F̄ regarded as a vector field and dgF̄ means
the derivative holding µ fixed. Using the chain rule, one gets (2.13.63). �

We now combine this corollary with Proposition 2.13.4 to produce a Poisson structure
on 3∗ × 3∗ ×G. This structure is relevant for the motion of two rigid bodies coupled with
a ball in socket joint.

Corollary 3.18.9 The Poisson reduced space (T ∗G × T ∗G)/G may be identified with the
space 3∗ × 3∗ ×G, equipped with the Poisson bracket

{F,G}(µ1, µ2, g) = {F,G}−µ1
+ {F,G}−µ2

−dgF · TRg ·
(
δG

δµ1

)
+ dgG · TRg ·

(
δF

δµ1

)
+dgF · TLg ·

(
δG

δµ2

)
− dgG · TLg ·

(
δF

δµ2

)
(3.18.68)

where {F,G}−µ1
is the “−” Lie–Poisson bracket with respect to the first variable µ1, and

similarly for {F,G}−µ2
.

Proof The isomorphism of (T ∗G×T ∗G)/G with 3∗×3∗×G is implemented by the map

(αg, βh) 7→ (TL∗gαg, TL
∗βh, g

−1h). (3.18.69)

We map this in two steps. First, map

T ∗G× T ∗G→ T ∗G× 3∗ ×G

using Corollary 2.13.8. Now regard G as acting on 3∗×G by left multiplication on the last
factor alone. Then map T ∗G× (3∗×G) to 3∗×3∗×G by Proposition 2.13.4. Noting that
at the point (µ1, µ2, g) (

δF

δµ1

)
3∗×G

=
(

0, TRg ·
δF

δµ1

)
we get (2.13.64). This bracket (2.13.64) can also be verified by a direct calculation using
the map (2.13.65). �

Finally, we remark that the theory in this section can be applied to a variety of situations
besides those in this paper. For example, Sanchez de Alvarez [1986] uses these ideas to obtain
some of the results of Krishnaprasad [1985]; cf §♥♥♥ [REF]
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Chapter 4

Semidirect Products

4.1 Hamiltonian Semidirect Product Theory

We first recall how the Hamiltonian theory proceeds for systems defined on semidirect
products. We present the abstract theory, but of course historically this grew out of the
examples, especially the heavy top and compressible flow.

Generalities on Semidirect Products. We begin by recalling some definitions and
properties of semidirect products. Let V be a vector space and assume that the Lie group
G acts on the left by linear maps on V (and hence G also acts on on the left on its dual
space V ∗). As sets, the semidirect product S = GsV is the Cartesian product S = G× V
whose group multiplication is given by

(g1, v1)(g2, v2) = (g1g2, v1 + g1v2), (4.1.1)

where the action of g ∈ G on v ∈ V is denoted simply as gv. The identity element is (e, 0)
where e is the identity in G. We record for convenience the inverse of an element:

(g, v)−1 = (g−1,−g−1v). (4.1.2)

The Lie algebra of S is the semidirect product Lie algebra, s = gsV , whose bracket
has the expression

[(ξ1, v1), (ξ2, v2)] = ([ξ1, ξ2], ξ1v2 − ξ2v1) , (4.1.3)

where we denote the induced action of g on V by concatenation, as in ξ1v2.
Below we will need the formulae for the adjoint and the coadjoint actions for semidirect

products. We denote these and other actions by simple concatenation; so they are expressed
as (see, e.g., Marsden, Ratiu and Weinstein [1984a,b])

(g, v)(ξ, u) = (gξ, gu− (gξ)v), (4.1.4)

and

(g, v)(µ, a) = (gµ+ ρ∗v(ga), ga), (4.1.5)

where (g, v) ∈ S = G×V , (ξ, u) ∈ s = g×V , (µ, a) ∈ s∗ = g∗×V ∗, gξ = Adgξ, gµ = Ad∗g−1µ,
ga denotes the induced left action of g on a (the left action of G on V induces a left action
of G on V ∗ — the inverse of the transpose of the action on V ), ρv : g→ V is the linear map
given by ρv(ξ) = ξv, and ρ∗v : V ∗ → g∗ is its dual.

117
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Important Notation. For a ∈ V ∗, we shall write, for notational convenience,

ρ∗va = v � a ∈ g∗ ,

which is a bilinear operation in v and a. Using this notation, the above formula for the
coadjoint action reads

(g, v)(µ, a) = (gµ+ v � (ga), ga).

We shall also denote actions of groups and Lie algebras by simple concatenation. For
example, the g–action on g∗ and V ∗, which is defined as minus the dual map of the g–action
on g and V respectively, is denoted by ξµ and ξa for ξ ∈ g, µ ∈ g∗, and a ∈ V ∗.

Using this concatenation notation for Lie algebra actions provides the following alter-
native expression of the definition of v � a ∈ g∗: For all v ∈ V , a ∈ V ∗ and η ∈ g, we
define

〈ηa, v〉 = −〈v � a , η〉 .

Left Versus Right. When working with various models of continuum mechanics and
plasmas it is convenient to work with right representations of G on the vector space V (as
in, for example, Holm, Marsden and Ratiu [1986]). We shall denote the semidirect product
by the same symbol S = GsV , the action of G on V being denoted by vg. The formulae
change under these conventions as follows. Group multiplication (the analog of (4.1.1)) is
given by

(g1, v1)(g2, v2) = (g1g2, v2 + v1g2), (4.1.6)

and the Lie algebra bracket on s = gsV (the analog of (4.1.3)) has the expression

[(ξ1, v1), (ξ2, v2)] = ([ξ1, ξ2], v1ξ2 − v2ξ1), (4.1.7)

where we denote the induced action of g on V by concatenation, as in v1ξ2. The adjoint
and coadjoint actions have the formulae (analogs of (4.1.4) and (4.1.5))

(g, v)(ξ, u) = (gξ, (u+ vξ)g−1), (4.1.8)

(g, v)(µ, a) = (gµ+ (vg−1) � (ag−1), ag−1), (4.1.9)

where, as usual, gξ = Adgξ, gµ = Ad∗g−1µ, ag denotes the inverse of the dual isomorphism
defined by g ∈ G (so that g 7→ ag is a right action). Note that the adjoint and coadjoint
actions are left actions. In this case, the g–actions on g∗ and V ∗ are defined as before to be
minus the dual map given by the g–actions on g and V and are denoted by ξµ (because it
is a left action) and aξ (because it is a right action) respectively.

Lie-Poisson Brackets and Hamiltonian Vector Fields. For a left representation of
G on V the ± Lie-Poisson bracket of two functions f, k : s∗ → R is given by

{f, k}±(µ, a) = ±
〈
µ,

[
δf

δµ
,
δk

δµ

]〉
±
〈
a,
δf

δµ

δk

δa
− δk

δµ

δf

δa

〉
(4.1.10)

where δf/δµ ∈ g, and δf/δa ∈ V are the functional derivatives of f . The Hamiltonian
vector field of h : s∗ → R has the expression

Xh(µ, a) = ∓
(

ad∗δh/δµ µ−
δh

δa
� a, − δh

δµ
a

)
. (4.1.11)
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Thus, Hamilton’s equations on the dual of a semidirect product are given by

µ̇ = ∓ ad∗δh/δµ µ±
δh

δa
� a , (4.1.12)

ȧ = ± δh

δµ
a , (4.1.13)

where overdot denotes time derivative. For right representations of G on V the above
formulae change to:

{f, k}±(µ, a) = ±
〈
µ,

[
δf

δµ
,
δk

δµ

]〉
∓
〈
a,
δk

δa

δf

δµ
− δf

δa

δk

δµ

〉
, (4.1.14)

Xh(µ, a) = ∓
(

ad∗δh/δµ µ+
δh

δa
� a, a δh

δµ

)
, (4.1.15)

µ̇ = ∓ ad∗δh/δµ µ∓
δh

δa
� a , (4.1.16)

ȧ = ∓ a δh
δµ

. (4.1.17)

Symplectic Actions by Semidirect Products. To avoid a proliferation of signs, in this
section we consider all semidirect products to come from a left representation. Of course if
the representation is from the right, there are similar formulae.

We consider a symplectic action of S on a symplectic manifold P and assume that this
action has an equivariant momentum map JS : P → s∗. Since V is a (normal) subgroup of
S, it also acts on P and has a momentum map JV : P → V ∗ given by

JV = i∗V ◦ JS ,

where iV : V → s is the inclusion v 7→ (0, v) and i∗V : s∗ → V ∗ is its dual. We think of this
merely as saying that JV is the second component of JS .

We can regard G as a subgroup of S by g 7→ (g, 0). Thus, G also has a momentum map
that is the first component of JS but this will play a secondary role in what follows. On the
other hand, equivariance of JS under G implies the following relation for JV :

JV (gz) = gJV (z) (4.1.18)

where we denote the appropriate action of g ∈ G on an element by concatenation, as before.
To prove (4.1.18), one uses the fact that for the coadjoint action of S on s∗ the second
component is just the dual of the given action of G on V .

The Classical Semidirect Product Reduction Theorem. In a number of interesting
applications such as compressible fluids, the heavy top, MHD, etc., one has two symme-
try groups that do not commute and thus the commuting reduction by stages theorem of
Marsden and Weinstein [1974] does not apply. In this more general situation, it matters in
what order one performs the reduction, which occurs, in particular for semidirect products.
The main result covering the case of semidirect products has a complicated history, with
important early contributions by many authors, as we have listed in the introduction. The
final version of the theorem as we shall use it, is due to Marsden, Ratiu and Weinstein
[1984a,b].
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The semidirect product reduction theorem states, roughly speaking, that for the semidi-
rect product S = GsV where G is a group acting on a vector space V and S is the
semidirect product, one can first reduce T ∗S by V and then by G and thereby obtain the
same result as when reducing by S. As above, we let s = gsV denote the Lie algebra of
S. The precise statement is as follows.

Theorem 4.1.1 (Semidirect Product Reduction Theorem.) Let S = GsV , choose
σ = (µ, a) ∈ g∗ × V ∗, and reduce T ∗S by the action of S at σ giving the coadjoint orbit Oσ
through σ ∈ s∗. There is a symplectic diffeomorphism between Oσ and the reduced space
obtained by reducing T ∗G by the subgroup Ga (the isotropy of G for its action on V ∗ at the
point a ∈ V ∗) at the point µ|ga where ga is the Lie algebra of Ga.

Reduction by Stages. This result is a special case of a theorem on reduction by stages
for semidirect products acting on a symplectic manifold (see Marsden, Misiolek, Perlmutter
and Ratiu [1997] for this and more general results and see Leonard and Marsden [1997] for
an application to underwater vehicle dynamics).

As above, consider a symplectic action of S on a symplectic manifold P and assume that
this action has an equivariant momentum map JS : P → s∗. As we have explained, the
momentum map for the action of V is the map JV : P → V ∗ given by JV = i∗V ◦ JS

We carry out the reduction of P by S at a regular value σ = (µ, a) of the momentum
map JS for S in two stages using the following procedure. First, reduce P by V at the value
a (assume it to be a regular value) to get the reduced space Pa = J−1

V (a)/V . Second, form
the group Ga consisting of elements of G that leave the point a fixed using the action of G
on V ∗. One shows (and this step is not trivial) that the group Ga acts on Pa and has an
induced equivariant momentum map Ja : Pa → g∗a, where ga is the Lie algebra of Ga, so one
can reduce Pa at the point µa := µ|ga to get the reduced space (Pa)µa = J−1

a (µa)/(Ga)µa .

Theorem 4.1.2 (Reduction by Stages for Semidirect Products.) The reduced space
(Pa)µa is symplectically diffeomorphic to the reduced space Pσ obtained by reducing P by S
at the point σ = (µ, a).

Combined with the cotangent bundle reduction theorem (see Abraham and Marsden
[1978] and Marsden [1992] for an exposition and references), the semidirect product reduc-
tion theorem is a useful tool. For example, using these tools, one sees readily that the generic
coadjoint orbits for the Euclidean group are cotangent bundles of spheres with the associ-
ated coadjoint orbit symplectic structure given by the canonical structure plus a magnetic
term.

Semidirect Product Reduction of Dynamics. There is a technique for reducing dy-
namics that is associated with the geometry of the semidirect product reduction theorem.
One proceeds as follows:

• We start with a Hamiltonian Ha0 on T ∗G that depends parametrically on a variable
a0 ∈ V ∗.

• The Hamiltonian, regarded as a map H : T ∗G × V ∗ → R is assumed to be invariant
on T ∗G under the action of G on T ∗G× V ∗.

• One shows that this condition is equivalent to the invariance of the function H defined
on T ∗S = T ∗G× V × V ∗ extended to be constant in the variable V under the action
of the semidirect product.
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• By the semidirect product reduction theorem, the dynamics of Ha0 reduced by Ga0 ,
the isotropy group of a0, is symplectically equivalent to Lie-Poisson dynamics on
s∗ = g∗ × V ∗.

• This Lie-Poisson dynamics is given by the equations (4.1.12) and (4.1.13) for the
function h(µ, a) = H(αg, g−1a) where µ = g−1αg.

4.2 Lagrangian Semidirect Product Theory

Despite all the activity in the Hamiltonian theory of semidirect products, little attention has
been paid to the corresponding Lagrangian side. Now that Lagrangian reduction is maturing
(see Marsden and Scheurle [1993a,b]), it is appropriate to consider the corresponding La-
grangian question. We shall formulate four versions, depending on the nature of the actions
and invariance properties of the Lagrangian. (Two of them are relegated to the appendix.)

It should be noted that none of the theorems below require that the Lagrangian be nonde-
generate. The subsequent theory is entirely based on variational principles with symmetry
and is not dependent on any previous Hamiltonian formulation. We shall, however, show
that this purely Lagrangian formulation is equivalent to the Hamiltonian formulation on
duals of semidirect products, provided an appropriately defined Legendre transformation
happens to be a diffeomorphism.

The theorems that follow are modelled after the reduction theorem for the basic Euler–
Poincaré equations given earlier. However, as we shall explain, they are not literally special
cases of it. To distinguish the two types of results, we shall use phrases like basic Euler–
Poincaré equations for the equations (1.6.4) and simply the Euler–Poincaré equations or
the Euler–Poincaré equations with advection or the Euler–Poincaré equations with advected
parameters, for the equations that follow.

The main difference between the left (right) invariant Lagrangians considered in the
theorem above and the ones we shall work with below is that L and l depend in addition
on another parameter a ∈ V ∗, where V is a representation space for the Lie group G and L
has an invariance property relative to both arguments. As we shall see below, the resulting
Euler–Poincaré equations are not the Euler–Poincaré equations for the semidirect product
Lie algebra gsV ∗ or on gsV , for that matter.

Upcoming Examples. As we shall see in the examples, the parameter a ∈ V ∗ acquires
dynamical meaning under Lagrangian reduction. For the heavy top, the parameter is the
unit vector in the direction of gravity, which becomes a dynamical variable in the body rep-
resentation. For compressible fluids, the parameter is the density of the fluid in the reference
configuration, which becomes a dynamical variable (satisfying the continuity equation) in
the spatial representation.

Left Representation and Left Invariant Lagrangian. We begin with the following
ingredients:

• There is a left representation of Lie group G on the vector space V and G acts in the
natural way on the left on TG× V ∗: h(vg, a) = (hvg, ha).

• Assume that the function L : TG× V ∗ → R is left G–invariant.

• In particular, if a0 ∈ V ∗, define the Lagrangian La0 : TG→ R by La0(vg) = L(vg, a0).
Then La0 is left invariant under the lift to TG of the left action of Ga0 on G, where
Ga0 is the isotropy group of a0.
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• Left G–invariance of L permits us to define l : g× V ∗ → R by

l(g−1vg, g
−1a0) = L(vg, a0).

Conversely, this relation defines for any l : g × V ∗ → R a left G–invariant function
L : TG× V ∗ → R.

• For a curve g(t) ∈ G, let

ξ(t) := g(t)−1ġ(t)

and define the curve a(t) as the unique solution of the following linear differential
equation with time dependent coefficients

ȧ(t) = −ξ(t)a(t),

with initial condition a(0) = a0. The solution can be written as a(t) = g(t)−1a0.

Theorem 4.2.1 With the preceding notation, the following are equivalent:

i With a0 held fixed, Hamilton’s variational principle

δ

∫ t2

t1

La0(g(t), ġ(t))dt = 0 (4.2.1)

holds, for variations δg(t) of g(t) vanishing at the endpoints.

ii g(t) satisfies the Euler–Lagrange equations for La0 on G.

iii The constrained variational principle1

δ

∫ t2

t1

l(ξ(t), a(t))dt = 0 (4.2.2)

holds on g× V ∗, using variations of ξ and a of the form

δξ = η̇ + [ξ, η], δa = −ηa, (4.2.3)

where η(t) ∈ g vanishes at the endpoints.

iv The Euler–Poincaré equations2hold on g× V ∗

d

dt

δl

δξ
= ad∗ξ

δl

δξ
+
δl

δa
� a. (4.2.4)

Proof. The equivalence of i and ii holds for any configuration manifold and so, in
particular, it holds in this case.

1As with the basic Euler–Poincaré equations, this is not strictly a variational principle in the same sense
as the standard Hamilton’s principle. It is more of a Lagrange d’Alembert principle, because we impose the
stated constraints on the variations allowed.

2Note that these equations are not the basic Euler–Poincaré equations because we are not regarding
g × V ∗ as a Lie algebra. Rather these equations are thought of as a generalization of the classical Euler-
Poisson equations for a heavy top, written in body angular velocity variables, as we shall see in the examples.
Some authors may prefer the term Euler-Poisson-Poincaré equations for these equations.
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Next we show the equivalence of iii and iv. Indeed, using the definitions, integrating
by parts, and taking into account that η(t1) = η(t2) = 0, we compute the variation of the
integral to be

δ

∫ t2

t1

l(ξ(t), a(t))dt =
∫ t2

t1

(〈
δl

δξ
, δξ

〉
+
〈
δa,

δl

δa

〉)
dt

=
∫ t2

t1

(〈
δl

δξ
, η̇ + adξ η

〉
−
〈
ηa,

δl

δa

〉)
dt

=
∫ t2

t1

(〈
− d

dt

(
δl

δξ

)
+ ad∗ξ

δl

δξ
, η

〉
+
〈
δl

δa
� a , η

〉)
dt

=
∫ t2

t1

〈
− d

dt

(
δl

δξ

)
+ ad∗ξ

δl

δξ
+
δl

δa
� a , η

〉
dt

and so the result follows.
Finally we show that i and iii are equivalent. First note that the G–invariance of

L : TG× V ∗ → R and the definition of a(t) = g(t)−1a0 imply that the integrands in (4.2.1)
and (4.2.2) are equal. However, all variations δg(t) ∈ TG of g(t) with fixed endpoints induce
and are induced by variations δξ(t) ∈ g of ξ(t) of the form δξ = η̇ + [ξ, η] with η(t) ∈ g

vanishing at the endpoints; the relation between δg(t) and η(t) is given by η(t) = g(t)−1δg(t).
This is the content of the following lemma proved in Bloch et al. [1996]. 3

Lemma 4.2.2 Let g : U ⊂ R
2 → G be a smooth map and denote its partial derivatives by

ξ(t, ε) = TLg(t,ε)−1(∂g(t, ε)/∂t)

and

η(t, ε) = TLg(t,ε)−1(∂g(t, ε)/∂ε).

Then

∂ξ

∂ε
− ∂η

∂t
= [ξ, η] . (4.2.5)

Conversely, if U is simply connected and ξ, η : U → g are smooth functions satisfying (4.2.5)
then there exists a smooth function g : U → G such that ξ(t, ε) = TLg(t,ε)−1(∂g(t, ε)/∂t)
and η(t, ε) = TLg(t,ε)−1(∂g(t, ε)/∂ε).

Thus, if i holds, we define η(t) = g(t)−1δg(t) for a variation δg(t) with fixed endpoints.
Then if we let δξ = g(t)−1ġ(t), we have by the above proposition δξ = η̇ + [ξ, η]. In
addition, the variation of a(t) = g(t)−1a0 is δa(t) = −η(t)a(t). Conversely, if δξ = η̇ + [ξ, η]
with η(t) vanishing at the endpoints, we define δg(t) = g(t)η(t) and the above proposition
guarantees then that this δg(t) is the general variation of g(t) vanishing at the endpoints.
From δa(t) = −η(t)a(t) it follows that the variation of g(t)a(t) = a0 vanishes, which is
consistent with the dependence of La0 only on g(t), ġ(t). �

Cautionary Remarks. Let us explicitly show that these Euler–Poincaré equations (4.2.4)
are not the Euler–Poincaré equations for the semidirect product Lie algebra gsV ∗. Indeed,
by (1.6.4) the basic Euler–Poincaré equations

d

dt

δl

δ(ξ, a)
= ad∗(ξ,a)

δl

δ(ξ, a)
, (ξ, a) ∈ gsV ∗

3This lemma is simple for matrix groups, as in Marsden and Ratiu [1998], but it is less elementary for
general Lie groups.
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for l : gsV ∗ → R become

d

dt

δl

δξ
= ad∗ξ

δl

δξ
+
δl

δa
� a, d

dt

δl

δa
= −ξ δl

δa
,

which is a different system from that given by the Euler–Poincaré equation (4.2.4) and
ȧ = −ξa, even though the first equations of both systems are identical.

The Legendre Transformation. As we explained earlier, one normally thinks of passing
from Euler–Poincaré equations on a Lie algebra g to Lie–Poisson equations on the dual g∗

by means of the Legendre transformation. In our case, we start with a Lagrangian on g×V ∗
and perform a partial Legendre transformation in the variable ξ only, by writing

µ =
δl

δξ
, h(µ, a) = 〈µ, ξ〉 − l(ξ, a). (4.2.6)

Since

δh

δµ
= ξ +

〈
µ,
δξ

δµ

〉
−
〈
δl

δξ
,
δξ

δµ

〉
= ξ ,

and δh/δa = −δl/δa, we see that (4.2.4) and ȧ(t) = −ξ(t)a(t) imply (4.1.11) for the minus
Lie–Poisson bracket (that is, the sign + in (4.1.11)). If this Legendre transformation is
invertible, then we can also pass from the the minus Lie–Poisson equations (4.1.11) to the
Euler–Poincaré equations (4.2.4) together with the equations ȧ(t) = −ξ(t)a(t).

Right Representation and Right Invariant Lagrangian. There are four versions of
the preceding theorem, the given left-left version, a left-right, a right-left and a right-right
version. For us, the most important ones are the left-left and the right-right versions. We
state the remaining two in the appendix.

Here we make the following assumptions:

• There is a right representation of Lie group G on the vector space V and G acts in
the natural way on the right on TG× V ∗: (vg, a)h = (vgh, ah).

• Assume that the function L : TG× V ∗ → R is right G–invariant.

• In particular, if a0 ∈ V ∗, define the Lagrangian La0 : TG→ R by La0(vg) = L(vg, a0).
Then La0 is right invariant under the lift to TG of the right action of Ga0 on G, where
Ga0 is the isotropy group of a0.

• Right G–invariance of L permits us to define l : g× V ∗ → R by

l(vgg−1, a0g
−1) = L(vg, a0).

Conversely, this relation defines for any l : g × V ∗ → R a right G–invariant function
L : TG× V ∗ → R.

• For a curve g(t) ∈ G, let ξ(t) := ġ(t)g(t)−1 and define the curve a(t) as the unique
solution of the linear differential equation with time dependent coefficients ȧ(t) =
−a(t)ξ(t) with initial condition a(0) = a0. The solution can be written as a(t) =
a0g(t)−1.

Theorem 4.2.3 The following are equivalent:
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i Hamilton’s variational principle

δ

∫ t2

t1

La0(g(t), ġ(t))dt = 0 (4.2.7)

holds, for variations δg(t) of g(t) vanishing at the endpoints.

ii g(t) satisfies the Euler–Lagrange equations for La0 on G.

iii The constrained variational principle

δ

∫ t2

t1

l(ξ(t), a(t))dt = 0 (4.2.8)

holds on g× V ∗, using variations of the form

δξ = η̇ − [ξ, η], δa = −aη, (4.2.9)

where η(t) ∈ g vanishes at the endpoints.

iv The Euler–Poincaré equations hold on g× V ∗

d

dt

δl

δξ
= − ad∗ξ

δl

δξ
+
δl

δa
� a. (4.2.10)

The same partial Legendre transformation (4.2.6) as before maps the Euler–Poincaré
equations (4.2.10), together with the equations ȧ = −aξ for a to the plus Lie–Poisson equa-
tions (4.1.16) and (4.1.17) (that is, one chooses the overall minus sign in these equations).

Generalizations. The Euler–Poincaré equations are a special case of the reduced Euler-
Lagrange equations (see Marsden and Scheurle [1993b] and Cendra, Marsden and Ratiu
[1997]). This is shown explicitly in Cendra, Holm, Marsden and Ratiu [1997]. There is,
however, an easy generalization that is needed in some of the examples we will consider.
Namely, if L : TG × V ∗ × TQ and if the group G acts in a trivial way on TQ, then one
can carry out the reduction in the same way as above, carrying along the Euler-Lagrange
equations for the factor Q at each step. The resulting reduced equations then are the Euler–
Poincaré equations above for the g factor, together the Euler-Lagrange equations for the
q ∈ Q factor. The system is coupled through the dependence of L on all variables. (For
a full statement, see Cendra, Holm, Hoyle and Marsden [1997], who use this extension to
treat the Euler–Poincaré formulation of the Maxwell-Vlasov equations for plasma physics.)

4.3 The Kelvin-Noether Theorem

In this section, we explain a version of the Noether theorem that holds for solutions of the
Euler–Poincaré equations. Our formulation is motivated and designed for ideal continuum
theories (and hence the name Kelvin-Noether), but it may also of interest for finite dimen-
sional mechanical systems. Of course it is well known (going back at least to the pioneering
work of Arnold [1966a]) that the Kelvin circulation theorem for ideal flow is closely related
to the Noether theorem applied to continua using the particle relabelling symmetry group.

There is a version of the theorem that holds for each of the choices of conventions, but
we shall pick the left-left conventions to illustrate the result.
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The Kelvin-Noether Quantity. We start with a Lagrangian La0 depending on a pa-
rameter a0 ∈ V ∗ as above. We introduce a manifold C on which G acts (we assume this is
also a left action) and suppose we have an equivariant map K : C × V ∗ → g∗∗.

As we shall see, in the case of continuum theories, the space C will be a loop space and
〈K(c, a), µ〉 for c ∈ C and µ ∈ g∗ will be a circulation. This class of examples also shows
why we do not want to identify the double dual g∗∗ with g.

Define the Kelvin-Noether quantity I : C × g× V ∗ → R by

I(c, ξ, a) =
〈
K(c, a),

δl

δξ
(ξ, a)

〉
. (4.3.1)

We are now ready to state the main theorem of this section.

Theorem 4.3.1 (Kelvin-Noether.) Fixing c0 ∈ C, let ξ(t), a(t) satisfy the Euler–Poincaré
equations and define g(t) to be the solution of ġ(t) = g(t)ξ(t) and, say, g(0) = e. Let
c(t) = g(t)−1c0 and I(t) = I(c(t), ξ(t), a(t)). Then

d

dt
I(t) =

〈
K(c(t), a(t)),

δl

δa
� a
〉
. (4.3.2)

Proof. First of all, write a(t) = g(t)−1a0 as we did previously and use equivariance to
write I(t) as follows:〈

K(c(t), a(t)),
δl

δξ
(ξ(t), a(t))

〉
=
〈
K(c0, a0), g(t)

[
δl

δξ
(ξ(t), a(t))

]〉
.

The g−1 pulls over to the right side as g (and not g−1) because of our conventions of always
using left representations. We now differentiate the right hand side of this equation. To
do so, we use the following well known formula for differentiating the coadjoint action (see
Marsden and Ratiu [1998], page 276):

d

dt
[g(t)µ(t)] = g(t)

[
− ad∗ξ(t) µ(t) +

d

dt
µ(t)

]
,

where, as usual,

ξ(t) = g(t)−1ġ(t).

Using this coadjoint action formula and the Euler–Poincaré equations, we obtain

d

dt
I =

d

dt

〈
K(c0, a0), g(t)

[
δl

δξ
(ξ(t), a(t))

]〉
=

〈
K(c0, a0),

d

dt

{
g(t)

[
δl

δξ
(ξ(t), a(t))

]}〉
=

〈
K(c0, a0), g(t)

[
− ad∗ξ

δl

δξ
+ ad∗ξ

δl

δξ
+
δl

δa
� a
]〉

=
〈
K(c0, a0), g(t)

[
δl

δa
� a
]〉

=
〈
g(t)−1K(c0, a0),

[
δl

δa
� a
]〉

=
〈
K(c(t), a(t)),

[
δl

δa
� a
]〉

.

where, in the last steps, we used the definitions of the coadjoint action, as well as the
Euler–Poincaré equation (4.2.4) and the equivariance of the map K. �
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Corollary 4.3.2 For the basic Euler–Poincaré equations, the Kelvin quantity I(t), defined
the same way as above but with I : C × g→ R, is conserved.

For a review of the standard Noether theorem results for energy and momentum conser-
vation in the context of the general theory, see, e.g., Marsden and Ratiu [1998].

4.4 The Heavy Top

In this section we shall use Theorem 4.2.1 to derive the classical Euler–Poisson equations
for the heavy top. Our purpose is merely to illustrate the theorem with a concrete example.

The Heavy Top Lagrangian. The heavy top kinetic energy is given by the left invariant
metric on SO(3) whose value at the identity is 〈Ω1,Ω2〉 = IΩ1 ·Ω2, where Ω1,Ω2 ∈ R3 are
thought of as elements of so(3), the Lie algebra of SO(3), via the isomorphism Ω ∈ R3 7→
Ω̂ ∈ so(3), Ω̂v := Ω × v, and where I is the (time independent) moment of inertia tensor
in body coordinates, usually taken as a diagonal matrix by choosing the body coordinate
system to be a principal axes body frame. This kinetic energy is thus left invariant under the
full group SO(3). The potential energy is given by the work done in lifting the weight of the
body to the height of its center of mass, with the direction of gravity pointing downwards.
If M denotes the total mass of the top, g the magnitude of the gravitational acceleration, χ
the unit vector of the oriented line segment pointing from the fixed point about which the
top rotates (the origin of a spatial coordinate system) to the center of mass of the body, and
` its length, then the potential energy is given by −Mg`R−1e3 · χ, where e3 is the axis of
the spatial coordinate system parallel to the direction of gravity but pointing upwards. This
potential energy breaks the full SO(3) symmetry and is invariant only under the rotations
S1 about the e3–axis.

However, for the application of Theorem 4.2.1 we are supposed to think of the Lagrangian
of the heavy top as a function on TSO(3)×R3 → R. That is, we need to think of the potential
energy as a function of (uR,v) ∈ TSO(3) × R

3 . This means that we need to replace the
vector giving the direction of gravity e3 by an arbitrary vector v ∈ R3 , so that the potential
equals

U(uR,v) = Mg`R−1v · χ.

Thought of this way, the potential is SO(3)–invariant. Indeed, if R′ ∈ SO(3) is arbitrary,
then

U(R′uR,R′v) = Mg` (R′R)−1R′v ·χ
= Mg`R−1v · χ
= U(uR,v)

and the hypotheses of Theorem 4.2.1 are satisfied. Thus, the heavy top equations of mo-
tion in the body representation are given by the Euler–Poincaré equations (4.2.4) for the
Lagrangian l : so(3)× R

3 → R.

The Reduced Lagrangian. To compute the explicit expression of l, denote by Ω the
angular velocity and by Π = IΩ the angular momentum in the body representation. Let
Γ = R−1v; if v = e3, the unit vector pointing upwards on the vertical spatial axis, then
Γ is this unit vector viewed by an observer moving with the body. The Lagrangian l :
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so(3)× R
3 → R is thus given by

l(Ω,Γ) = L(R−1uR,R−1v)

=
1
2
Π ·Ω + U(R−1uR,R−1v)

=
1
2
Π ·Ω +Mg`Γ · χ .

The Euler–Poincaré Equations. It is now straightforward to compute the Euler–Poincaré
equations. First note that

δl

δΩ
= Π,

δl

δΓ
= Mg`χ .

Since

ad∗Ω Π = Π×Ω , v � Γ = −Γ× v ,

and

ΩΓ = −Γ×Ω ,

the Euler–Poincaré equations are

Π̇ = Π×Ω +Mg`Γ× χ ,

which are coupled to the Γ evolution

Γ̇ = Γ×Ω .

This system of two vector equations comprises the classical Euler–Poisson equations, which
describe the motion of the heavy top in the body representation.

The Kelvin-Noether theorem Let C = g and let K : C × V ∗ → g∗∗ ∼= g be the map
(W,Γ) 7→W. Then the Kelvin-Noether theorem gives the statement

d

dt
〈W,Π〉 = Mg` 〈W,Γ× χ〉

where W(t) = R(t)−1w; in other words, W(t) is the body representation of a space fixed
vector. This statement is easily verified directly. Also, note that 〈W,Π〉 = 〈w,π〉, with
π = R(t)Π, so the Kelvin-Noether theorem may be viewed as a statement about the rate
of change of the momentum map of the system (the spatial angular momentum) relative to
the full group of rotations, not just those about the vertical axis.



Chapter 5

Semidirect Product Reduction
and Reduction by Stages

5.1 Semidirect Product Reduction

In some applications (such as compressible fluids, the heavy top, MHD, etc.), one has two
symmetry groups that don’t commute and thus the preceding theorem does not apply.
Then it matters in what order one performs the reduction. This occurs, in particular for
semidirect products. The main result covering the case of semidirect products is due to
Marsden, Ratiu and Weinstein [1984ab] (see this paper for further references, but briefly,
important previous versions were due to Vinogradov and Kupershmidt [1977], Ratiu [1980],
Guillemin and Sternberg [1980], Ratiu [1981], [1982], Holm and Kupershmidt [1983] and
Guillemin and Sternberg [1984]). The semidirect product reduction theorem states, roughly
speaking, that for the semidirect product S = GsV where G is a group acting on a vector
space V and S is the semidirect product, one can first reduce T ∗S by V and then by G and
one gets the same result as reducing by S. We will let s denote the Lie algebra of S so that
s = gsV .

We now state this semidirect product reduction theorem precisely.

Theorem 5.1.1 Semidirect Product Reduction Theorem Let S = GsV as above
and choose σ = (µ, a) ∈ g∗×V ∗ and reduce T ∗S by the action of S at σ giving the coadjoint
orbit Oσ through σ ∈ s∗. There is a symplectic diffeomeorphism between Oσ and the reduced
space obtained by reducing T ∗G by the subgroup Ga (the isotropy of G at the point a ∈ V ∗)
at the point µ|ga where ga is the Lie algebra of Ga.

The commuting reduction theorem for the case in which K is a vector space is a special
case of this result in which we take the action of G on K to be trivial. This already suggests
that there is a generalization of the semidirect product reduction theorem to the case in
which V is replaced by a general group. We shall see that this is indeed the case later
on. Note that in the commuting reduction theorem, what we called ν is called a in the
semidirect product reduction theorem.

We refer to the original papers (Marsden, Ratiu and Weinstein [1984ab]) for a direct
proof. In this paper we shall obtain the theorem as a special case of more general results.
The main idea linking reduction by stages with semidirect product reduction is the following:
we regard the reduction of T ∗G by Ga as the successive reduction of T ∗S by V followed by
reduction by Ga.

129
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Combined with the cotangent bundle reduction theorem, the semidirect product reduc-
tion theorem is a very useful tool. For example, using these tools, one sees right away
that the generic coadjoint orbits for the Euclidean group are cotangent bundles of spheres
with the symplectic structure given by the canonical structure plus a magnetic term. We
also point out that the theory of semidirect products was motivated by several examples
of physical interest, such as the Poisson structure for compressible fluids and MHD. These
examples are discussed in the original papers.

There is a technique for reducing dynamics that is associated with the geometry of the
semidirect product reduction theorem. In effect, one can start with a Hamiltonian on either
of the phase spaces and induce one (and hence its associated dynamics) on the other space in
a natural way. For example, in many applications, one starts with a Hamiltonian Ha on T ∗G
that depends parametrically on a variable a ∈ V ∗; this parametric dependence identifies the
space V ∗ and hence V . The Hamiltonian, regarded as a map H : T ∗G× V ∗ → R should be
invariant on T ∗G under the action of G on T ∗G × V ∗. This condition is equivalent to the
invariance of the corresponding function on T ∗S = T ∗G × V × v∗ extended to be constant
in the variable V under the action of the semidirect product.

5.2 Reduction by Stages for Semidirect Products

Although it was not shown explicitly in Marsden, Ratiu and Weinstein [1984ab], the semidi-
rect product reduction theorem generalizes to the setting of semidirect products acting on
any symplectic manifold, not merely the natural (left) action on T ∗S. We shall concentrate
on this case in this section and focus on the problem of generalizing further to the context
of a group M with a normal subgroup N in the following sections.

To recap the setting, we start with a semidirect product, S = GsV where V is a vector
space and the Lie group G acts on V (and hence on its dual space V ∗). Recall that as sets,
S = G× V and that the group multiplication is given by

(g1, v1) · (g2, v2) = (g1g2, v1 + g1v2),

where the action of g ∈ G on v ∈ V is denoted simply as gv. The Lie algebra of S is the
semidirect product of Lie algebras: s = gsV . The bracket is given by

[(ξ1, v1), (ξ2, v2)] = ([ξ1, ξ2], ξ1v2 − ξ2v1)

where we denote the induced action of g on V by concatenation, as in ξ1v2.
Below we will need the formulas for the adjoint and the coadjoint actions for semidirect

products. Denoting these and other actions by simple concatenation, they are given by (see,
eg, Marsden, Ratiu and Weinstein [1984ab]):

(g, v)(ξ, u) = (gξ, gu− ρv(gξ)).

and

(g, v)(µ, a) = (gµ+ ρ∗v(ga), ga),

where (g, v) ∈ S = G × V , (ξ, u) ∈ s = g× V , (µ, a) ∈ s∗ = g∗ × V ∗ and where ρv : g→ V
is the derivative of the map g 7→ gv at the identity and ρ∗v : V ∗ → g∗ is its dual. The
infinitesimal action of g on V will often be denoted by ξv; note that ξv = ρv(ξ).

Next we consider a symplectic action of S on a symplectic manifold P and assume that
this action has an equivariant momentum map JS : P → s∗. Since V is a (normal) subgroup
of S, it also acts on P and has a momentum map JV : P → V ∗ given by

JV = i∗V ◦ JS
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where iV : V → s is the inclusion v 7→ (0, v) and i∗V : s∗ → V ∗ is its dual. We think of this
merely as saying that JV is the second component of JS .

We can regard G as a subgroup of S by g 7→ (g, 0). Thus, G also has a momentum map
that is the first component of JS but this will play a secondary role in what follows. On the
other hand, equivariance of JS under G implies the following relation for JV :

JV (gz) = gJV (z)

where we denote the appropriate action of g ∈ G on an element by concatenation, as before.
To prove this formula, one uses the fact that for the coadjoint action of S on s∗ the second
component is just the dual of the given action of G on V .

We can carry out reduction of P by S at a regular value σ = (µ, a) of the momentum
map JS for S in two stages using the following procedure (see figure 5.2.1).

• First reduce P by V at the value a (assume it to be a regular value) to get the reduced
space Pa = J−1

V (a)/V . Here the reduction is by an abelian group, so the quotient is
done by the whole of V . We will let the projection to the reduced space be denoted
πa:

πa : J−1
V (a)→ Pa.

• Form the group Ga consisting of elements of G that leave the point a fixed using the
action of G on V ∗. The group Ga acts on Pa and has an induced momentum map
Ja : Pa → g∗a, where ga is the Lie algebra of Ga, as is shown below, so we can reduce
Pa at the point µa := µ|ga to get the reduced space (Pa)µa = J−1

a (µa)/(Ga)µa .

Some comments are in order before we proceed. We need to check that indeed the group
Ga acts on the reduced space Pa and that it has a momentum map Ja. We shall do this in
a series of steps.

Lemma 5.2.1 The group Ga leaves the set J−1
V (a) invariant.

Proof. First note that the group Ga leaves the set J−1
V (a) invariant. Indeed, suppose that

JV (z) = a and that g ∈ G leaves a invariant. Then by the equivariance relation noted
above, we have JV (gz) = gJV (z) = ga = a. Thus, Ga acts on the set J−1

V (a). We denote
this action by Ψa

g : J−1
V (a)→ J−1

V (a). �

Lemma 5.2.2 The action Ψa of Ga on J−1
V (a) induces an action Ψa on the quotient space

J−1
V (a)/V .

Proof. If we let elements of the quotient space be denoted by [z], regarded as equivalence
classes, then we claim that g[z] = [gz] defines the action. We only need to show that it
is well defined; indeed, suppose that v ∈ V so that [z] = [vz]. Identifying v = (e, v) and
g = (g, 0) in the semidirect product, we have,

[gvz] = [(g, 0)(e, v)z] = [(e, gv)(g, 0)z] = [(gv)(gz)] = [gz].

Thus, the action Ψa of Ga on the V -reduced space Pa is well defined. The action of a group
element g ∈ Ga will be denoted by Ψg,a : Pa → Pa. �

Lemma 5.2.3 The action Ψa on the quotient space J−1
V (a)/V is symplectic.
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V-orbits

J−1(a)
V

P

P/ V

J−1(a)/V = PaV

(Ga)µa-orbits

reduction by S reduction by V

reduction by Ga

J−1(µa)a

= J−1(µa)/(Ga)µa     a
P(µ,a)

Figure 5.2.1: A schematic of reduction by stages for semidirect products.

Proof. Letting πa : J−1
V (a) → Pa denote the natural projection and ia : J−1

V (a) → P be
the inclusion. By construction, Ψg,a ◦πa = πa ◦Ψa

g and Ψg ◦ ia = iν ◦Ψa
g, where Ψg : P → P

denotes the action of g ∈ G. Recall also from the reduction theorem that i∗aΩ = π∗aΩa.
Therefore,

π∗aΨ∗g,aΩa = (Ψa
g)∗π∗aΩa = (Ψa

g)∗i∗aΩ = i∗aΨ∗gΩ = i∗aΩ = π∗aΩa.

Since πa is a surjective submersion, we may conclude that

Ψ∗g,aΩa = Ωa.

Thus, we have a symplectic action of Ga on Pa. �

Lemma 5.2.4 The symplectic action Ψa on the quotient space J−1
V (a)/V has an equivariant

momentum map.

Proof. We first show that the momentum map of the G action restricted to ga, namely
JS projected to g∗a induces a well defined map of Pa to g∗a. First of all, we restrict JS to



1.10 Semidirect Product Reduction 133

the set J−1
V (a) and project it to g∗a. We claim that this map drops to the quotient space.

To check this, note that for z ∈ J−1
V (a), and ξ ∈ ga, equivariance gives us

〈JS(vz), ξ〉 = 〈vJS(z), ξ〉 = 〈(e, v)JS(z), ξ〉 =
〈
JS(z), (e, v)−1(ξ, 0)

〉
Here, the symbol (e, v)−1(ξ, 0) means the adjoint action of the group element (e, v)−1 =
(e,−v) on the Lie algebra element (ξ, 0). Thus, (e, v)−1(ξ, 0) = (ξ, ξv), and so, continuing
the above calculation, and using the fact that JV (z) = a, we get:

〈JS(vz), ξ〉 =
〈
JS(z), (e, v)−1(ξ, 0)

〉
= 〈JS(z), (ξ, ξv)〉

= 〈JG(z), ξ〉+ 〈JV (z), ξv〉 = 〈JG(z), ξ〉 − 〈ξa, v〉 = 〈JG(z), ξ〉 .

In this calculation, the term 〈ξa, v〉 is zero since ξ ∈ ga. Thus, we have shown that the
expression

〈Ja([z]), ξ〉 = 〈JG(z), ξ〉

for ξ ∈ ga is well defined. This expression may be written as

Ja ◦ πa = ι∗a ◦ JG ◦ ia,

where ιa : ga → g is the inclusion map and ι∗a : g∗ → g∗a is its dual.
To show that the map Ja is the momentum map, we first note that for all ξ ∈ ga, the

vector fields ξP |(J−1
a (a)) and ξPa are πa-related. Thus,

π∗a
(
iξPaΩa

)
= iξP i

∗
aΩ = i∗a (iξP Ω) = i∗a (d 〈JG, ξ〉) = π∗a (d 〈Ja, ξ〉) .

Again, since πa is a surjective submersion, we may conclude that

iξPaΩa = d 〈Ja, ξ〉

and hence Ja is the momentum map for the Ga action on Pa.
Equivariance of Ja follows from that for JG, by a diagram chasing argument as above,

using the relation Ja ◦ πa = ι∗a ◦ JG ◦ ia and the relations between the actions of G on P ,
J−1
V (a) and on Pa. �

Having established these preliminary facts, we can state the main reduction by stages
theorem for semidirect products.

Theorem 5.2.5 (Reduction by Stages for Semidirect Products) The reduced space
(Pa)µa is symplectically diffeomorphic to the reduced space Pσ obtained by reducing P by S
at the point σ = (µ, a).

Proof. Start with the natural inclusion map

j : J−1
S (σ)→ J−1

V (a)

which makes sense since the second component of σ is a. Composing this map with πa, we
get the map

πa ◦ j : J−1
S (σ)→ Pa.

This map takes values in J−1
a (µa) because of the relation Ja◦πa = ι∗a◦JG◦ia and µa = ι∗a(µ).

Thus, we can regard it as a map

πa ◦ j : J−1
S (σ)→ J−1

a (µa).
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Letting σ = (µ, a), there is a group homomorphism ψ : Sσ → (Ga)µa defined by projec-
tion onto the first factor. The first component g of (g, v) ∈ Sσ lies in (Ga)µa because

(µ, a) = (g, v)(µ, a) = (gµ+ ρ∗v(ga), ga)

implies that, from the second component, that g ∈ Ga and from the first component and
the identity ι∗aρ∗va = 0 that g also leaves µa invariant.

The map πa ◦ j is equivariant with respect to the action of Sσ on the domain and (Ga)µa
on the range via the homomorphism ψ. Thus, πa ◦ j induces a map

[πa ◦ j] : Pσ → (Pa)µa .

Diagram chasing, as above, shows that this map is symplectic.
We will show that this map is a diffeomorphism by finding an inverse. We begin with

the construction of a map

φ : J−1
a (µa)→ Pσ

To do this, we first choose an equivalence class [p]a ∈ J−1
a (µa) ⊂ Pa for p ∈ J−1

V (a). The
equivalence relation is that associated with the map πa; that is, with the action of V . For
each such point, we consider a new point vp and will choose v such that vp ∈ J−1

S (σ). For
this to hold, we must have

(µ, a) = JS(vp)

By equivariance, the right hand side equals

vJS(p) = (e, v)(JG(p),JV (p))
= (e, v)(JG(p), a)
= (JG(p) + ρ∗v(a), a).

Thus, we require that

µ = JG(p) + ρ∗v(a).

This follows from the next lemma.

Lemma 5.2.6 Denoting the annihilator of ga by goa, we have

goa = {ρ∗va | v ∈ V }

Proof. The identity we showed above, namely ι∗aρ∗va = 0 shows that

goa ⊃ {ρ∗va | v ∈ V }

Now we use the following elementary fact from linear algebra: Let E and F be vector
spaces, and F0 ⊂ F be a subspace. Let T : E → F ∗ be a linear map whose range lies in the
annihilator F o0 of F0 and that every element f ∈ F that annihilates the range of T is in F0.
Then T maps onto F o0 . 1

1We are phrasing things this way so that the basic framework will also apply in the infinite dimensional
case, with the understanding that at this point one would invoke Fredholm type alternative arguments. In
the finite dimensional case, the result may be proved by a dimension count.
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In our case, we choose E = V , F = g, F0 = ga, and we let T : V → g∗ be defined by
T (v) = ρ∗v(a). To verify the hypothesis, note that we have already shown that the range of
T lies in the annihilator of ga. Let ξ ∈ g annihilate the range of T . Thus, for all v ∈ V ,

0 = 〈ξ, ρ∗va〉 = 〈ρvξ, a〉 = 〈ξv, a〉 = −〈v, ξa〉

and so ξ ∈ ga as required. Thus, the lemma is proved. H

We apply the lemma to µ−JG(p), which is in the annihilator of ga because ι∗a(JG(p)) =
µa. Thus, by the lemma, there is a v such that µ− JG(p) = ρ∗va.

The above argument shows how to construct v so that vp ∈ J−1
S (σ). We continue with

the definition of the map φ by mapping vp to [vp]σ, its Sσ-equivalence class in Pσ.
To show that the map φ so constructed is well defined, we replace p by another represen-

tative up of the class [p]a; here u is an arbitrary member of V . Then one chooses v1 so that
JS(v1up) = σ. Now we must show that [vp]σ = [v1up]σ. In other words, we must show that
there is a group element (g, w) ∈ Sσ such that (g, w)(e, v)p = (e, v1)(e, u)p. This will hold
if we can show that (g, w) := (e, v1)(e, u)(e, v)−1 ∈ Sσ. However, by construction, JS(vp) =
σ = JS(v1up); in other words, we have σ = (µ, a) = (e, v)JS(p) = (e, v1)(e, u)JS(p). Thus,
by isolating JS(p), we get (e, v)−1σ = (e, u)−1(e, v1)−1σ and so our (g, w) satisfies the
required condition. Thus, our map φ is well defined.

Next we must show that the map φ is invariant under (Ga)µa . Thus, let [p]a ∈ J−1
a (µa)

and let g0 ∈ (Ga)µa . Let v be chosen so that vp ∈ J−1
S (σ) and let u be chosen so that

ug0p ∈ J−1
S (σ). We must show that [vp]σ = [ug0p]σ. In other words, we must find a

(g, w) ∈ Sσ such that (g, w)(e, v)p = (e, u)(g0, 0)p. This will hold if we can show that
(g, w) := (e, u)(g0, 0)(e, v)−1 ∈ Sσ. But we know that σ = JS(vp) = JS(ug0p) or, in other
words, by equivariance, σ = (e, v)JS(p) = (e, u)(g0, 0)JS(p). By isolating JS(p), this implies
that (e, v)−1σ = (g0, 0)−1(e, u)−1σ which means that our (g, w) is indeed in Sσ. Hence φ is
invariant, and so gives a well defined map

[φ] : (Pa)µa → Pσ.

Chasing the definitions shows that [φ] is the inverse of the map [πν ◦ j]. Thus, either is
a symplectic diffeomorphism. �

In this framework, one can also reduce the dynamics of a given invariant Hamiltonian;
we will discuss this in a later section.

In the preceding theorem, choose P = T ∗S where S = GsV is a semidirect product
as above, with the cotangent action of S on T ∗S induced by left translations of S on itself.
Reducing T ∗S by the action of V gives a space naturally isomorphic to T ∗G. Thus, the
reduction by stages theorem gives as a corollary, the semidirect product reduction theorem,
5.1.1. The original proof of this result in Marsden, Ratiu and Weinstein [1984ab] essen-
tially used the map [φ] constructed above to obtain the required symplectic diffeomorphism.
However, the generalization here to get semidirect product reduction by stages requires an
essential modification of the original method.
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Bloch, A.M., P.S. Krishnaprasad, J.E. Marsden, and T.S. Ratiu [1996] The Euler-Poincaré
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