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Abstract

Several simple mathematical models for the turbulent di!usion of a passive scalar "eld are developed here with an
emphasis on the symbiotic interaction between rigorous mathematical theory (including exact solutions), physical
intuition, and numerical simulations. The homogenization theory for periodic velocity "elds and random velocity "elds
with short-range correlations is presented and utilized to examine subtle ways in which the #ow geometry can in#uence
the large-scale e!ective scalar di!usivity. Various forms of anomalous di!usion are then illustrated in some exactly
solvable random velocity "eld models with long-range correlations similar to those present in fully developed turbulence.
Here both random shear layer models with special geometry but general correlation structure as well as isotropic rapidly
decorrelating models are emphasized. Some of the issues studied in detail in these models are superdi!usive and
subdi!usive transport, pair dispersion, fractal dimensions of scalar interfaces, spectral scaling regimes, small-scale and
large-scale scalar intermittency, and qualitative behavior over "nite time intervals. Finally, it is demonstrated how
exactly solvable models can be applied to test and design numerical simulation strategies and theoretical closure
approximations for turbulent di!usion. ( 1999 Elsevier Science B.V. All rights reserved.

PACS: 47.27.Qb; 05.40.#j; 47.27.!i; 05.60.#w; 47.27.Eq; 02.70.Lq
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1. Introduction

In this review, we consider the problem of describing and understanding the transport of some
physical entity, such as heat or particulate matter, which is immersed in a #uid #ow. Most of our
attention will be on situations in which the #uid is undergoing some disordered or turbulent
motion. If the transported quantity does not signi"cantly in#uence the #uid motion, it is said to be
passive, and its concentration density is termed a passive scalar "eld. Weak heat #uctuations in
a #uid, dyes utilized in visualizing turbulent #ow patterns, and chemical pollutants dispersing in
the environment may all be reasonably modelled as passive scalar systems in which the immersed
quantity is transported in two ways: ordinary molecular di!usion and passive advection by its #uid
environment. The general problem of describing turbulent di!usion of a passive quantity may be
stated mathematically as follows:

Let *(x, t) be the velocity "eld of the #uid prescribed as a function of spatial coordinates x and
time t, which we will always take to be incompressible (+ ' *(x, t)"0). Also let f (x, t) be a
prescribed pumping (source and sink) "eld, and ¹

0
(x) be the passive scalar "eld prescribed at

some initial time t"0. Each may have a mixture of deterministic and random components, the
latter modelling noisy #uctuations. In addition, molecular di!usion may be relevant, and is
represented by a di!usivity coe$cient i. The passive scalar "eld then evolves according to the
advection}di+usion equation

R¹(x, t)/Rt#*(x, t) '+¹(x, t)"iD¹(x, t)#f (x, t) ,

¹(x, t"0)"¹
0
(x) . (1)

The central aim is to describe some desired statistics of the passive scalar "eld ¹(x, t) at times
t'0. For example, a typical goal is to obtain e!ective equations of motion for the mean passive
scalar density, denoted S¹(x, t)T.

While the PDE in Eq. (1) is linear, the relation between the passive scalar "eld ¹(x, t) and the
velocity "eld *(x, t) is nonlinear. The in#uence of the statistics of the random velocity "eld on the
passive scalar "eld is subtle and very di$cult to analyze in general. For example, a closed equation
for S¹(x, t)T typically cannot be obtained by simply averaging the equation in Eq. (1), because
S*(x, t) '+¹(x, t)T cannot be simply related to an explicit functional of S¹(x, t)T in general. This is
a manifestation of the `turbulence moment closure problema [227].

In applications such as the predicting of temperature pro"les in high Reynolds number turbu-
lence [196,227,247,248], the tracking of pollutants in the atmosphere [78], and the estimating of
the transport of groundwater through a heterogeneous porous medium [79], the problem is further
complicated by the presence of a wide range of excited space and time scales in the velocity "eld,
extending all the way up to the scale of observational interest. It is precisely for these kinds of
problems, however, that a simpli"ed e!ective description of the evolution of statistical quantities
such as the mean passive scalar density S¹(x, t)T is extremely desirable, because the range of active
scales of velocity "elds which can be resolved is strongly limited even on supercomputers [154].

For some purposes, one may be interested in following the progress of a specially marked
particle as it is carried by a #ow. Often this particle is light and small enough so that its presence
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only negligibly disrupts the existing #ow pattern, and we will generally refer to such a particle as
a (passive) tracer, re#ecting the terminology of experimental science in which #uid motion is
visualized through the motion of injected, passively advected particles (often optically active dyes)
[227]. The problem of describing the statistical transport of tracers may be formulated as follows:

Let *(x, t) be a prescribed, incompressible velocity "eld of the #uid, with possibly both a mean
component and a random component with prescribed statistics modelling turbulent or other
disordered #uctuations. We seek to describe some desired statistics of the trajectory X(t) of
a tracer particle released initially from some point x

0
and subsequently transported jointly by the

#ow *(x, t) and molecular di!usivity i. The equation of motion for the trajectory is a (vector-
valued) stochastic di!erential equation [112,257]

dX(t)"*(X(t), t) dt#J2idW(t) , (2a)

X(t"0)"x
0

. (2b)

The second term in Eq. (2a) is a random increment due to Brownian motion [112,257]. Basic
statistical functions of interest are the mean trajectory, SX(t)T, and the mean-square displace-
ment of a tracer from its initial location, SDX(t)!x

0
D2T.

It is often of interest to track multiple particles simultaneously; these will each individually obey
the trajectory equations in Eqs. (2a) and (2b) with the same realization of the velocity "eld * but
independent Brownian motions. The advection}di!usion PDE in Eq. (1) and the tracer trajectory
equations in Eqs. (2a) and (2b) are related to each other by the theory of Ito di!usion processes
[107,257], which is just a generalization of the method of characteristics [150] to handle second-
order derivatives via a random noise term in the characteristic equations. We will work with both
of these equations in this review.

In principle, the turbulent velocity "eld *(x, t) which advects the passive scalar "eld should be
a solution to the Navier}Stokes equations

R*(x, t)/Rt#*(x, t) '+*(x, t)"!+p(x, t)#lD*(x, t)#F(x, t) ,

+ ' *(x, t)"0 , (3)

where p is the pressure "eld, l is viscosity, and F(x, t) is some external stirring which maintains the
#uid in a turbulent state. But the analytical representation of such solutions corresponding to
complex, especially turbulent #ows, are typically unwieldy or unknown.

We shall therefore instead utilize simpli"ed velocity "eld models which exhibit some empirical
features of turbulent or other #ows, though these models may not be actual solutions to the
Navier}Stokes equations. Incompressibility + ' *(x, t)"0 is however, enforced in all of our velocity
"eld models. Our primary aim in working with simpli"ed models is to obtain mathematically
explicit and unambiguous results which can be used as a sound basis for the scienti"c investigation
of more complex turbulent di!usion problems arising in applications for which no analytical
solution is available. We therefore emphasize the aspects of the model results which illustrate
general physical mechanisms and themes which can be expected to be manifest in wide classes of
turbulent #ows. We will also show how simpli"ed models can be used to strengthen and re"ne the
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arsenal of numerical methods designed for quantitative physical exploration in natural and
practical applications. First of all, simpli"ed models o!er themselves as a pool of test problems
to assess the variety of numerical simulations schemes proposed for turbulent di!usion
[109,180,190,219,291,335]. Moreover, we shall explicitly describe in Section 6 how mathematical
(harmonic) analysis of simpli"ed models can be used as a basis to design new numerical simulation
algorithms with superior performance [82,84}86]. Accurate and reliable numerical simulations in
turn enrich various mathematical asymptotic theories by furnishing explicit data concerning the
quality of the asymptotic approximation and the signi"cance of corrections at "nite values of the
small or large parameter, and can reveal new physical phenomena in strongly nonlinear situations
unamenable to a purely theoretical treatment. Physical intuition, for its part, suggests fruitful
mathematical model problems for investigation, guides their analyses, and informs the develop-
ment of numerical strategies. We will repeatedly appeal to this symbiotic interaction between simpli-
"ed mathematical models, asymptotic theory, physical understanding, and numerical simulation.

Though we do not dwell on this aspect in this review, we wish to mention the more distant goal
of using simpli"ed velocity "eld models in turbulent di!usion to gain some understanding in the
theoretical analysis and practical treatment of the Navier}Stokes equations in Eq. (3) in situations
where strong driving gives rise to complicated turbulent motion [196,227]. The advection}di!u-
sion equation in Eq. (1) has some essential features in common with the Navier}Stokes equations:
they are both transport equations in which the advection term gives rise to a nonlinearity of the
statistics of the solution. At the same time, the advection}di!usion equation is more managable
since it is a scalar, linear PDE without an auxiliary constraint analogous to incompressibility. The
advection}di!usion equation, in conjunction with a velocity "eld model with turbulent character-
istics, therefore serves as a simpli"ed prototype problem for developing theories for turbulence
itself.

Our study of passive scalar advection}di!usion begins in Section 2 with velocity "elds which
have either a periodic cell structure or random #uctuations with only mild short-range spatial
correlations. We explain the general homogenization theory [12,32,148] which describes the
behavior of the passive scalar "eld at large scales and long times in these #ows via an enhanced
`homogenizeda di!usivity matrix. Through mathematical theory, exact results from simpli"ed
models, and numerical simulations, we examine how the homogenized di!usion coe$cient depends
on the #ow structure, and investigate how well the observation of the passive scalar system at large
but "nite space}time scales agrees with the homogenized description. In Section 3, we use simple
random shear #ow models [10,14] with a #exible statistical spatio-temporal structure to demon-
strate explicitly a number of anomalies of turbulent di!usion when the velocity "eld has su$ciently
strong long-range correlations. These simple shear #ow models are also used to explore turbulent
di!usion in situations where the velocity "eld has a wide inertial range of spatio-temporal scales
excited in a statistically self-similar manner, as in a high Reynolds number turbulent #ow. We also
describe some universal small-scale features of the passive scalar "eld which may be derived in an
exact and rigorous fashion in such #ows. Other aspects of small-scale passive scalar #uctuations are
similarly addressed in Section 4 using a complementary velocity "eld model [152,179] with
a statistically isotropic geometry but very rapid decorrelations in time. In Section 5, we present
a special family of exactly solvable shear #ow models [207,233] which explicitly demonstrates the
phenomenon of large-scale intermittency in the statistics of the passive scalar "eld, by which we
mean the occurrence of a broader-than-Gaussian distribution for the value of the passive scalar
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"eld ¹(x, t) recorded at a single location in a turbulent #ow [155,127,146,147,191]. Next, in
Section 6, we focus on the challenge of developing e$cient and accurate numerical `Monte Carloa
methods for simulating the motion of tracers in turbulent #ows. Using the simple shear
models from Section 3 and other mathematical analysis [83,87,140], we illustrate explicitly some
subtle and signi"cant pitfalls of some conventional numerical approaches. We then discuss the
theoretical basis and demonstrate the exceptional practical performance of a recent wavelet-
based Monte Carlo algorithm [82,84}86] which is designed to handle an extremely wide
inertial range of self-similar scales in the velocity "eld. We conclude in Section 7 with a brief
discussion of the application of exactly solvable models to assess approximate closure theories
[177,182,196,200,227,285,286,344] which have been formulated to describe the evolution of the
mean passive scalar density in a high Reynolds number turbulent #ow [13,17].

Detailed introductions to all these topics are presented at the beginning of the respective
sections.

2. Enhanced di4usion with periodic or short-range correlated velocity 5elds

In the introduction, we mentioned the moment closure problem for obtaining statistics of the
passive scalar "eld immersed in a turbulent #uid. To make this issue concrete, consider the
challenge of deriving an equation for the mean passive scalar density S¹(x, t)T advected by
a velocity "eld which is a superposition of a mean #ow pattern V(x, t) and random, turbulent
#uctuations *(x, t) with mean zero. Angle brackets will denote an ensemble average of the included
quantity over the statistics of the random velocity "eld. Since the advection}di!usion equation is
linear, one might naturally seek an equation for the mean passive scalar density by simply
averaging it:

RS¹(x, t)T/Rt#V(x, t) '+S¹(x, t)T#S*(x, t) '+¹(x, t)T"iDS¹(x, t)T#S f (x, t)T ,

S¹(x, t"0)T"S¹
0
(x)T . (4)

Eq. (4) is not a closed equation for S¹(x, t)T because the average of the advective term, S* '+¹T,
cannot generally be simply related to a functional of S¹(x, t)T.

An early idea for circumventing this obstacle was to represent the e!ect of the random advection
by a di!usion term:

S*(x, t) '+¹(x, t)T"!+ ' (KM
T
'+¹(x, t)) , (5)

where KM
T

is some constant `eddy di!usivitya matrix (usually a scalar multiple of the identity
matrix I) which is to be estimated in some manner, such as mixing-length theory ([320],
Section 2.4). From assumption (5) follows a simple e!ective advection}di!usion equation for the
mean passive scalar density

RS¹(x, t)T/Rt#V(x, t) '+S¹(x, t)T"+ ' ((iI#KM
T
) '+S¹(x, t)T)#S f (x, t)T ,

S¹(x, t"0)T"S¹
0
(x)T ,
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where the di!usivity matrix (iI#KM
T
) is (presumably) enhanced over its bare molecular value by

the turbulent eddy di!usivity KM
T

coming from the #uctuations of the velocity. The closure
hypothesis (5) is the `Reynolds analogya of a suggestion "rst made by Prandtl in the context of the
Navier}Stokes equations (see [227], Section 13.1). It may be viewed as an extension of kinetic
theory, where microscopic particle motion produces ordinary di!usive e!ects on the macroscale.
There are, however, some serious de"ciencies of the Prandtl eddy di!usivity hypothesis, both in
terms of theoretical justi"cation and of practical application to general turbulent #ows (see [227],
Section 13.1; [320], Ch. 2). First of all, kinetic theory requires a strong separation between the
microscale and macroscale, but the turbulent #uctuations typically extend up to the scale at which
the mean passive scalar density is varying. Moreover, the recipes for computing the eddy di!usivity
KM

T
are rather vague, and are generally only de"ned up to some unknown numerical constant `of

order unitya. More sophisticated schemes for computing eddy viscosities based on renormalization
group ideas have been proposed in more recent years [243,300,344], but these involve other ad hoc
assumptions of questionable validity.

In Section 2, we will discuss some contexts in which rigorous sense can be made of the eddy
di!usivity hypothesis (5), and an exact formula provided for the enhanced di!usivity. All involve
the fundamental assumption that, in some sense, the #uctuations of the velocity "eld occur on
a much smaller scales than those of the mean passive scalar "eld. These rigorous theories therefore
are not applicable to strongly turbulent #ows, but they provide a solid, instructive, and relatively
simple framework for examining a number of subtle aspects of passive scalar advection}di!usion in
unambiguous detail. Moreover, they can be useful in practice for certain types of laboratory or
natural #ows at moderate or low Reynolds numbers [301,302].

Overview of Section 2: We begin in Section 2.1 with a study of advection}di!usion by velocity
"elds that are deterministic and periodic in space and time. Generally, we will be considering
passive scalar "elds which are varying on scales much larger than those of the periodic velocity "eld
in which they are immersed. Though the velocity "eld is deterministic, one may formally view the
periodic #uctuations as an extremely simpli"ed model for small-scale turbulent #uctuations.
Averaging over the #uctuations may be represented by spatial averaging over a period cell. After
a convenient nondimensionalization in Section 2.1.1, we formulate in Sections 2.1.2 and 2.1.3 the
homogenization theory [32,149] which provides an asymptotically exact representation of the
e!ects of the small-scale periodic velocity "eld on the large-scale passive scalar "eld in terms of
a homogenized, e!ective di!usivity matrix KH which is enhanced above bare molecular di!usion.
Various alternative ways of computing this e!ective di!usivity matrix are presented in Sec-
tion 2.1.4. We remark that, in contrast to usual eddy di!usivity models, the enhanced di!usivity in
the rigorous homogenization theory has a highly nontrivial dependence on molecular di!usivity.
We will express this dependence in terms of the PeH clet number, which is a measure of the strength of
advection by the velocity "eld relative to di!usion by molecular processes (see Section 2.1.1). The
physically important limit of high PeH clet number will be of central interest throughout Section 2.

In Section 2.2, we apply the homogenization theory to evaluate the tracer transport in a variety
of periodic #ows. We demonstrate the symbiotic interplay between the rigorous asymptotic
theories and numerical computations in these investigations, and how they can reveal some
important and subtle physical transport mechanisms. We "rst examine periodic shear #ows with
various types of cross sweeps (Sections 2.2.1 and 2.2.2), where exact analytical formulas can be
derived. Next we turn to #ows with a cellular structure and their perturbations (Section 2.2.3), and
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the subtle e!ects which the addition of a mean sweep can produce (Section 2.2.4). We discuss how
other types of periodic #ows can be pro"tably examined through the joint use of analytical and
numerical means in Section 2.2.5.

An important practical issue is the accuracy with which the e!ective di!usivity from homogeniz-
ation theory describes the evolution of the passive scalar "eld at "nite times. We examine this
question in Section 2.3 by computing the mean-square displacement of a tracer over a "nite
interval of time. For shear #ows with cross sweeps, an exact analytical expression can be obtained
(Section 2.3.1). The "nite time behavior of tracers in more general periodic #ows may be estimated
numerically through Monte Carlo simulations (Section 2.3.2). In all examples considered, the rate
of change of the mean-square tracer displacement is well described by (twice) the homogenized
di!usivity after a transient time interval which is not longer than the time it would take molecular
di!usion to spread over a few spatial period cells [230,231].

In Section 2.4, we begin our discussion of advection}di!usion by homogenous random velocity
"elds. We identify two di!erent large-scale, long-time asymptotic limits in which a closed e!ective
di!usion equation can be derived for the mean passive scalar density S¹(x, t)T. First is the `Kubo
theorya [160,188,313], where the time scale of the velocity "eld varies much more rapidly than that
of the passive scalar "eld, but the length scales of the two "elds are comparable (Section 2.4.1). The
`Kubo di!usivitya appearing in the e!ective equation is simply related to the correlation function
of the velocity "eld. Next we concentrate on steady random velocity "elds which have only
short-range spatial correlations, so that there can be a meaningfully strong separation of scales
between the passive scalar "eld and the velocity "eld. A homogenization theorem applies in such
cases [12,98,256], and rigorously describes the e!ect of the small-scale random velocity "eld on
the large-scale mean passive scalar "eld through a homogenized, e!ective di!usivity matrix
(Section 2.4.2). Homogenization for the steady periodic #ow "elds described in the earlier Sec-
tions 2.1, 2.2 and 2.3 is a special case of this more general theory for random "elds. We present
various formulas for the homogenized di!usivity in Section 2.4.3, and discuss its parametric
behavior in some example random vortex #ows in Section 2.4.4.

We emphasize again that high Reynolds number turbulent #ows have strong long-range
correlations which do not fall under the purview of the homogenization theory discussed in
Section 2. The rami"cations of these long-range correlations will be one of the main foci in the
remaining sections of this review.

2.1. Homogenization theory for spatio-temporal periodic -ows

Here we present the rigorous homogenization theory which provides a formula for the e!ective
di!usion of a passive scalar "eld at large scales and long times due to the combined e!ects of
molecular di!usion and advection by a periodic velocity "eld. We "rst prepare for our discussion
with some de"nitions and a useful nondimensionalization in Section 2.1.1. Next, in Section 2.1.2,
we state the formula prescribed by homogenization theory for the e!ective di!usivity of the passive
scalar "eld on large scales and long times, and show formally how to derive it through a multiple
scale asymptotic analysis [32,205]. We indicate in Section 2.1.3 how to generalize the homogeniz-
ation theory to include large-scale mean #ows superposed upon the periodic #ow structure
[38,230]. In Section 2.1.4, we describe some alternative formulas for the e!ective di!usivity,
involving Stieltjes measures [9,12,20] and variational principles [12,97]. These representations can
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be exploited to bound and estimate the e!ective di!usivity in various examples and classes of
periodic #ows [40,97,210], as we shall illustrate in Section 2.2.

2.1.1. Nondimensionalization
We begin our discussion of convection-enhanced di!usivity with smooth periodic velocity "elds
*(x, t) de"ned on Rd which have temporal period t

v
, and a common spatial period ¸

v
along each of

the coordinate axes:

*(x, t#t
v
)"*(x, t) ,

*(x#¸
v
eL
j
, t)"*(x, t) ,

where MeL
j
Nd
j/1

denotes a unit vector in the jth coordinate direction. More general periodic velocity
"elds can be treated similarly; the resulting formulas would simply have some additional notational
complexity. We also demand for the moment that the velocity "eld have `mean zeroa, in that its
average over space and time vanishes:

¸~d
v

t~1
v P

tv

0
P
*0,Lv+d
*(x, t) dx dt"0 .

In Section 2.1.3, we will extend our discussion to include the possibility of a large-scale mean #ow
superposed upon the periodic velocity "eld just described.

It will be useful to nondimensionalize space and time so that the dependence of the e!ective
di!usivity on the various physical parameters of the problem can be most concisely described. The
spatial period ¸

v
provides a natural reference length unit. To illuminate the extent to which the

periodic velocity "eld enhances the di!usivity of the passive scalar "eld above the bare molecular
value i, we choose as a basic time unit the cell-di!usion time ti"¸2

v
/i, which describes the time

scale over which a "nely concentrated spot of the passive scalar "eld will spread over a spatial
period cell. This will render the molecular di!usivity to be exactly 1 in nondimensional units.

The velocity "eld is naturally nondimensionalized as follows:

*(x, t)"v
0
*3(x/¸

v
, t/t

v
) ,

where *3 is a nondimensional function with period 1 in time and in each spatial coordinate
direction, and v

0
is some constant with dimension of velocity which measures the magnitude of the

velocity "eld. The precise de"nition of v
0

is not important; it may be chosen as the maximum of
D*(x, t)D over a space}time period for example.

The initial passive scalar density ¹
0
(x) will be assumed to be characterized by some total `massa

M
0
"PRd

¹
0
(x) dx

and length scale ¸
T
:

¹
0
(x)"

M
0

¸d
T

¹3
0
(x/¸

T
) .
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We choose M
0

as a reference unit for the dimension characterizing the passive scalar quantity
(which may, for example, be heat or mass of some contaminant), and we nondimensionalize
accordingly the passive scalar density at all times:

¹(x, t)"
M

0
¸d

v

¹3(x/¸
v
, t/t

v
) .

Passing now to nondimensional units x3"x/¸
v
, t3"t/t

v
, in the advection}di!usion equation, and

subsequently dropping the superscripts 3 on all nondimensional functions, we obtain the following
advection}di!usion equation:

R¹(x, t)
Rt #

v
0
¸
v

i
*(x, t(¸2

v
/it

v
)) '+¹(x, t)"D¹(x, t) ,

¹(x, t"0)"(¸
v
/¸

T
)d¹

0
(x(¸

v
/¸

T
)) . (6)

We now identify several key nondimensional parameters which appear in this equation. The "rst is
the Pe&clet number

Pe,v
0
¸

v
/i , (7)

which formally describes the ratio between the magnitudes of the advection and di!usion terms
[325]. It plays a role for the passive scalar advection}di!usion equation similar to the Reynolds
number for the Navier}Stokes equations. Next, we have the parameter

q
v
"it

v
/¸2

v
,

which is the ratio of the temporal period of the velocity "eld to the cell-di!usion time. Thirdly, we
have the ratio of the length scale of the velocity "eld to the length scale of the initial data, which we
simply denote

d,¸
v
/¸

T
. (8)

Rewriting Eq. (6) in terms of these newly de"ned nondimensional parameters, we obtain the "nal
nondimensionalized form of the advection}di!usion equation which we will use throughout
Section 2:

R¹(x, t)/Rt#Pe *(x, t/q
v
) '+¹(x, t)"D¹(x, t) ,

¹(x, t"0)"dd¹
0
(dx) . (9)

Notice especially how the PeH clet number describes, formally, the extent to which the advec-
tion}di!usion equation di!ers from a pure di!usion equation.

We note that the nondimensional velocity "eld *(x, t/q
v
) has period 1 in each spatial coordinate

direction and temporal period q
v
. It will be convenient in what follows to de"ne a concise notation

for averaging a function g over a spatio-temporal period:

SgT
p
,q~1

v P
qv

0
P
*0,1+d

g(x, t) dx dt .
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2.1.2. Homogenization theory for periodic yows with zero mean
We now seek to describe the evolution of the passive scalar "eld on length scales and time scales

large compared to those of the periodic velocity "eld. It is natural in this regard to take the initial
length scale ratio d between the velocity and passive scalar length scales to be very small. From
experience with kinetic theory in which microscopic collision processes give rise to ordinary
di!usive transport on macroscales, we can expect that the joint action of the mean zero velocity
"eld and molecular di!usion will give rise to a net di!usion on the large scales. We therefore rescale
time with space according to the standard di!usive relation xPdx, tPd2t, and the passive scalar
density according to

¹(d)(x, t),d~d¹(dx,d2t) . (10)

The amplitude rescaling preserves the total mass of the passive scalar quantity. We note that the
choice of di!usive rescaling is appropriate here only because of the strong separation of scales
between the velocity "eld and the passive scalar "eld; when this scale separation fails to hold, other
`anomalousa space}time scaling laws may be required (see Section 3.4).

The rescaled form of the advection}di!usion equation (9) reads

R¹(d)(x, t)/Rt#d~1Pe *A
x
d
,

t
d2q

v
B '+¹(d)(x, t)"D¹(d)(x, t) ,

¹(d)(x, t"0)"¹
0
(x) . (11)

On these large space}time scales (d;1), the advection by the velocity "eld has a large magnitude
(O(d~1)) and is rapidly oscillating in space and/or time. Because the velocity "eld has mean zero,
the strong and rapidly #uctuating advection term has a "nite di!usive in#uence on ¹(d)(x, t) in the
dP0 limit, i.e. on large scales and long times. This is the content of the homogenization theory for
advection}di!usion in a periodic #ow, which we now state [205].

2.1.2.1. Homogenized ewective diwusion equation for periodic velocity xelds. In the long time, large-
scale limit, the rescaled passive scalar "eld converges to a "nite limit

lim
d?0

¹(d)(x, t)"¹M (x, t) , (12)

which satis"es an e!ective di!usion equation

R¹M (x, t)/Rt"+ ' (KH+¹M (x, t)) , (13a)

¹M (x, t"0)"¹
0
(x) , (13b)

with constant, positive de"nite, symmetric e+ective di+usivity matrix KH. This e!ective di!usivity
matrix can be expressed as

KH"I#KM ,

where I is the identity matrix (representing the nondimensionalized molecular di!usion) and KM is
a nonnegative-de"nite enhanced di+usivity matrix which represents the additional di!usivity due to
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the periodic #ow. The enhanced di!usivity matrix KM can be computed as follows. Let v(x, t) be the
(unique) mean zero, periodic solution to the following auxiliary parabolic cell problem (in the
unscaled nondimensional space}time coordinates):

Rv(x, t)/Rt#Pe *(x, t/q
v
) '+v(x, t)!Dv(x, t)"!Pe *(x, t/q

v
) . (14)

Then the components of the enhanced di!usivity matrix may be expressed as

KM
ij
"S+s

i
'+s

j
T
p

. (15)

For the special case of a steady, periodic velocity "eld, the cell problem (14) becomes elliptic,
again with a unique mean zero, periodic solution:

Dv(x)!Pe *(x) '+s
j
(x)"Pe *(x) . (16)

The convergence (12) of the passive scalar "eld rescaled on large scales and long times to the
solution of the e!ective di!usion equation (13) can be rigorously established in the following sense:

lim
d?0

sup
0ytyt0

sup
x|Rd

D¹(d)(x, t)!¹M (x, t)D"0

for every "nite t
0
'0, provided that ¹

0
and * obey some mild smoothness and boundedness

conditions [205]. We will sketch the derivation of the above results in a moment, but "rst we make
a few remarks on the nature of the equation and the e!ective di!usivity matrix.

The e!ective large-scale, long-time equation (13) is often called a `homogenizeda equation
because the e!ects of the advection by the relatively small-scale (heterogeneous) velocity "eld
#uctuations (along with molecular di!usion) have been replaced by an overall e!ective di!usivity
matrix KH which is a constant `bulka property of the #uid medium. Note that this homogenized
di!usivity need not simply be a scalar multiple of the identity; anisotropies in the periodic #ow can
de"nitely in#uence the large scales. The homogenization procedure was "rst developed for
problems such as heat conduction in a medium with periodic, "ne-scale spatial #uctuations in
conductivity (see for example [32]), and was adapted to advection}di!usion problems in [229,263].

We emphasize that the e!ective di!usivity is truly enhanced over the (nondimensionalized) bare
molecular di!usion because KM is evidently a nonnegative-de"nite, symmetric matrix. The en-
hanced di!usivity matrix KM is always nontrivial when the #ow has nonvanishing spatial gradients,
and it depends, in our nondimensional units, on both the PeH clet number and the temporal period
q
v
. Of particular interest is its behavior at large PeH clet number, and we develop some precise results

along these lines in Paragraph 2.1.4.1 and in Section 2.2.
We "nally remark that the homogenized e!ective equation (13a) also describes the long-time

asymptotic evolution of the passive scalar density evolving from small-scale or even concentrated
initial data [149]. The point is that even a delta-concentrated source will, on time scales O(d~2),
spread over a large spatial scale O(d~1) due to molecular di!usion. Since the probability distribu-
tion function (PDF) of the position X(t) of a single tracer initially located at x

0
obeys the

advection}di!usion equation with initial data ¹
0
(x)"d(x!x

0
), it follows that the PDF for the

tracer's location becomes Gaussian in the long-time limit, with mean x
0

and covariance matrix
growing at an enhanced di!usive rate:

lim
t?=

S(X(t)!x
0
)?(X(t)!x

0
)T&2KHt .
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Note in particular that the asymptotic behavior of the tracer is independent of its initial position;
the reason is that molecular di!usion will in time smear out the memory of the initial position.

We next sketch, following [32,149,205,263], how the homogenized e!ective equation for the
rescaled passive scalar density ¹(d)(x, t) arises from a multiple scale asymptotic analysis. Sub-
sequently, we will o!er some physical interpretations for the homogenization formulas (14) and (15)
for the e!ective di!usivity matrix.

2.1.2.2. Derivation of homogenized equation. We seek an asymptotic approximation to ¹(d)(x, t) of
the following form in the dP0 limit:

¹(d)(x, t)"¹
!11,0Ax,

x
d
, t,

t
d2B#d¹

!11,1Ax,
x
d
, t,

t
d2B#d2¹

!11,2Ax,
x
d
, t,

t
d2B#2 . (17)

In accordance with the usual prescription for multiple scale analysis [158], we have explicitly
accounted for the fact that the terms in the asymptotic expansion may su!er rapid oscillations in
the dP0 limit due to the rapid oscillations in the coe$cient of the advection term in the rescaled
advection}di!usion equation (11). We label the arguments corresponding to the rapid oscillations
as n"x/d and q"t/d2. In the functions appearing in the multiple scale asymptotic expansion (17),
the variables (x, n, t, q) may be treated as varying independently of one another, provided we replace
space and time derivatives as follows:

R
RtP

R
Rt#d~2

R
Rq ,

+P+x#d~1+n .

Substituting now Eq. (17) into the rescaled advection}di!usion equation (11), and separately
equating terms of the three leading orders results in the following PDEs:

O(d~2) : Q(1%3)¹
!11,0

"0 , (18a)

O(d~1) : Q(1%3)¹
!11,1

"!Pe * '+x¹!11,0
#2+x '+n¹!11,0

, (18b)

O(d0) :Q(1%3)¹
!11,2

"!

R¹
!11,0
Rt !Pe * '+x¹!11,1

#2+x '+n¹!11,1
#Dx¹!11,0

, (18c)

where the di!erential operator Q(1%3) is de"ned:

Q(1%3),R/Rq#Pe *(n, q/q
v
) '+n!Dn .

Note that it involves only the variables n and q, and that we may view Q(1%3) as operating on
functions with spatial period 1 in m and temporal period q

v
in q. From the uniform parabolicity of

this operator and the incompressibility of the velocity "eld, it follows from classical linear PDE
theory ([105], Ch. 7) that we have the following solvability condition for Q(1%3):

Given any smooth space}time periodic function f (n, q), the equation

Q(1%3)g(n, q)"f (n, q) (19)
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has a smooth periodic solution g(n, q) if and only if f (n, q) has mean zero. This solution is
moreover unique up to an arbitrary additive constant.

It follows in particular that the only functions of n and q annihilated by Q(1%3) are constants, so
Eq. (18a) implies that ¹

!11,0
in fact only depends on the large-scale variables x and t:

¹
!11,0

(x, n, t, q)"¹M (x, t) . (20)

Eq. (18b) therefore satis"es the solvability condition, since the right-hand side may be written as

!*(n, q) '+x¹M (x, t) ,

and * has mean zero. We can consequently express ¹
!11,1

as

¹
!11,1

(x, n, t, q)"v(n, q) '+x¹M (x, t)#C , (21)

where C is some constant and v(n, q) is the unique, periodic, mean zero solution to

Q(1%3)v(n, q)"!Pe *(n, q) . (22)

Next, applying the solvability condition to Eq. (18c), we "nd that a necessary condition for the
solution ¹

!11,2
(x, n, t, q) to exist is that

T!
R¹

!11,0
Rt !Pe * '+x¹!11,1

#2+n '+x¹!11,1
#Dx¹!11,0U

1

"0 . (23)

The third term, which is the average of a divergence with respect to the variable n, vanishes by the
divergence theorem. Substituting Eqs. (20) and (21) into this solvability relation, we have

!

R¹M (x, t)
Rt !Pe

d
+

i,j/1

Ss
i
(n, q)v

j
(n, q)T

1

R2¹M (x, t)
Rx

i
Rx

j

#Dx¹M (x, t)"0 .

Symmetrizing the coe$cient of the Hessian of ¹M in the second term, we can rewrite this as

R¹M (x, t)/Rt"+ ' (KH+¹M (x, t)) , (24)

where the e!ective di!usivity matrix is expressed

KH"I#KM ,

KM
ij
"!1

2
Pe(Ss

i
(n, q)v

j
(n, q)T

1
#Ss

j
(n, q)v

i
(n, q)T

1
).

(25)

This is the content of the homogenization theorem, except that the formula for the enhanced
di!usivity KM must still be massaged a bit more to bring it in the form stated in Eq. (15). Note that
the e!ective di!usion equation for ¹M (x, t) arises from a solvability condition for a higher-order
(O(d2)), rapidly #uctuating term; this re#ects the fact that the e!ective di!usivity is determined by
how the small-scale passive scalar #uctuations equilibrate under the in#uence of the small-scale
periodic variations in the velocity "eld (see below).
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To show that Eq. (25) is equivalent to Eq. (15), use Eq. (22) to express v
j
in terms of s

j
:

!1
2
PeSs

i
v
j
#s

j
v
i
T
1
"1

2
Ss

i
Q(1%3)s

j
#s

j
Q(1%3)s

i
T
1
"1

2
SQ(1%3)(s

i
s
j
)#2+nsj '+nsiT

"S+nsi '+nsjT .

The "rst term in the average in the penultimate equality vanishes because SQ(1%3)gT"0 for any
function g (see the discussion near Eq. (19)).

The derivation we have presented shows that, at least formally, there exist functions ¹
!11,1

and
¹

!11,2
so that

A
R
Rt#d~1*A

x
d
,

t
d2B!DB[¹(d)(x, t)!¹(d)

!11
(x, t)]"O(d) ,

where

¹(d)
!11

(x, t),¹M (x, t)#d¹
!11,1Ax,

x
d
, t,

t
d2B#d2¹

!11,2Ax,
x
d
, t,

t
d2B

and ¹M (x, t) solves Eq. (24). Using energy estimates and the maximum principle, it can be rigorously
shown from this development that ¹

!11,1
and ¹

!11,2
are bounded and limd?0

D¹(d)(x, t)!
¹(d)

!11
(x, t)D"0, with both the boundedness and convergence uniform over all of space and over "nite

time intervals [149,205]. It follows from this that the ¹(d)(x, t) converges to ¹M (x, t) in maximum
norm as dP0. The gradient of ¹(d)(x, t), however, does not converge (strongly) to the gradient of
¹M (x, t) because of rapid oscillations [264]; note from Eq. (21) that d+¹

!11,1
does not vanish in the

dP0 limit.

2.1.2.3. Physical meaning of homogenization formulas and relation to eddy diwusivity modelling. We
pause to remark upon the physical meaning of the cell problem (14) and the formula (15) for the
homogenized di!usivity matrix which arose rather mechanically through self-consistent solvability
conditions in the asymptotic expansion just presented. Note "rst that the passive scalar "eld will
evolve much more rapidly on the small scales than the large, so the small-scale #uctuations of the
passive scalar "eld will quickly reach a quasi-equilibrium state which depends on the local
large-scale behavior of the passive scalar "eld. (This quasi-equilibrium state will be periodic in time,
rather than steady, when the velocity "eld has periodic temporal #uctuations.) According to
Eq. (21), the quasi-equilibrium behavior of the small-scale #uctuations is determined to leading
order by the local gradient +¹(x, t) of the large-scale variations of the passive scalar "eld. This is
formally obvious from the advection}di!usion Eq. (11) rescaled to large space and time scales.
From Eqs. (21) and (22), we see that s

j
(x, t) is exactly the response of the small-scale passive scalar

#uctuations to a large-scale gradient of ¹(x, t) directed along eL
j
. Further discussion of this point

may be found in [97,264].
We now show how the e!ective di!usivity formula (15) can be understood from a direct

consideration of the advection}di!usion equation along with the multiple scale representation of
the passive scalar "eld. When we view the passive scalar "eld on large scales, we are e!ectively
taking a coarse-grained average over small scales. As the small-scale #uctuations are periodic,
this coarse-graining is equivalent to (local) averaging over a spatio-temporal period cell. The

A.J. Majda, P.R. Kramer / Physics Reports 314 (1999) 237}574252



coarse-grained and rescaled advection}di!usion equation therefore reads

RS¹(d)(x, t)T
1

Rt #d~1PeT*A
x
d
,

t
d2q

v
B '+¹(d)(x, t)U

1

"DS¹(d)(x, t)T
1

,

S¹(d)(x, t"0)T
1
"¹

0
(x) . (26)

According to both formal intuition and the multiple scale analysis, the coarse-grained passive
scalar "eld S¹(d)(x, t)T

1
is, in the limit of strong scale separation (dP0), well approximated by

a function ¹M (x, t) varying only on the large scales and independent of d. The main challenge is to
represent the coarse-grained average of the advective term in terms of ¹M (x, t). This di!ers from the
simple factorization into averages over * and ¹(d) because of the coupling between the small-scale
#uctuations of the velocity "eld and the small-scale #uctuations they induce in the passive scalar
"eld. Though the small-scale #uctuations of the passive scalar "eld are O(d) weak in amplitude
relative to the main large-scale variation, they are relevant in determining the large-scale transport
because they are integrated over large space and time scales.

We mentioned at the beginning of Section 2 an ad hoc approach to estimate the coarse-grained
advective term as an eddy di!usivity. For the present case in which the velocity "eld has periodic
spatio-temporal variations on scales strongly separated from those characterizing the leading-
order passive scalar "eld, the closure hypothesis (5) is in fact precise and may be constructed from
the multiple scale representation of the passive scalar "eld which was obtained in the derivation of
the homogenization theorem:

¹(d)(x, t)"¹M (x, t)#d¹
!11,1Ax,

x
d
, t,

t
d2B#O(d2) ,

¹
!11,1

(x, n, t, q)"v(n, q) '+x¹M (x, t)#C .

(27)

Using the incompressibility of the velocity "eld to re-express the average of the advective term in
Eq. (26), and substituting the asymptotic expansion (27) into it, we obtain

d~1PeT*A
x
d
,

t
d2q

v
B '+¹(d)(x, t)U

1

"d~1Pe+ 'T*A
x
d
,

t
d2q

v
B¹(d)(x, t)U

1

"d~1Pe+ 'T*A
x
d
,

t
d2q

v
B¹M (x, t)U

1

#Pe+ 'T*A
x
d
,

t
d2q

v
B¹!11,1Ax,

x
d
, t,

t
d2BU

1

#O(d) . (28)

The remainder term is indeed O(d), not withstanding the divergence acting on the expectation S ) T
1
,

because the averaging over the period cell removes the rapid oscillations. The "rst term appearing
after the last equality in Eq. (28) vanishes because * is the only rapidly oscillating factor in the
argument, and has zero average over the period cell. Therefore, we are left with an expression which
takes the form of an enhanced di!usion term involving the coupling of the small-scale #uctuations of
the velocity "eld with the small-amplitude, small-scale #uctuations induced in the passive scalar "eld

d~1PeT*A
x
d
,

t
d2q

v
B '+¹(d)(x, t)U

1

"Pe+ 'T*A
x
d
,

t
d2q

v
B¹!11,1Ax,

x
d
, t,

t
d2BU

1

"Pe
d
+
i/1

R
Rx

i
ASv

i
s
j
T
1

R¹M (x, t)
Rx

j
B"!Pe

d
+
i/1

KM
ij

R2¹M (x, t)
Rx

i
Rx

j

,
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with the enhanced di!usivity

KM
ij
"!1

2
(Sv

i
s
j
T
1
#Sv

j
s
i
T
1
) .

This agrees with expression (25), which was subsequently shown to be equivalent to formula (15).

2.1.3. Generalization of homogenization theory to include large-scale -ows
We now show how the homogenization for periodic #ows described above can be extended to

allow for the presence of certain kinds of large-scale mean #ow components in the velocity "eld. We
treat in turn the cases of a steady periodic #ow with a constant mean drift, and then a superposition
of a weak, large-scale mean #ow with small-scale, periodic spatio-temporal #uctuations.

2.1.3.1. Constant mean yow. In several applications, #uid is driven along a speci"c direction by
a large-scale pressure gradient, and the resulting #ow pattern consists of some mean constant
motion and #uctuations induced either by #ow instability or by variations in the properties of the
medium through which the #uid is drawn [223]. A simple but instructive idealization of such #ows
is a superposition of a constant, uniform velocity V with a mean zero, steady periodic #ow *(x)
representing the #uctuations. This can serve as a prototype model for hydrological #ows through
porous media [130]. We will often refer to a spatially constant mean #ow such as V as a mean
sweep. Now we show how the homogenization theory can be generalized to incorporate the mean
sweep V.

The nondimensionalized form of the advection}di!usion equation (9) is modi"ed to

R¹(x, t)/Rt#Pe(V#*(x)) '+¹(x, t)"D¹(x, t) ,
(29)

¹(x, t"0)"dd¹
0
(dx) .

An immediate large-scale, long-time rescaling (10) of this equation would produce a term
d~1PeV '+¹(d)(x, t). This term is singular in the dP0 limit, and would create di$culties at the
O(d~1) level in the multiple scale analysis of Paragraph 2.1.2.2 because V does not have zero
average over a period cell.

A preliminary Galilean transformation to a frame comoving with the mean #ow,

¹I (x, t),¹(x#Vt)

however, averts this obstacle. The advection}di!usion equation for ¹I (x, t) reads

R¹I (x, t)/Rt#Pe *(x!Vt) '+¹I (x, t)"D¹I (x, t) ,

¹I (x, t"0)"dd¹
0
(dx) .

Now, if each component of V is an integer multiple of a common real number j, then *(x!Vt)
would be mean zero with spatial period 1 in each coordinate direction and temporal period j~1.
The homogenization theory of Section 2.1.2 can then be directly applied, yielding the following
statement.

Homogenized e+ective di+usion equation for steady, periodic velocity ,elds with constant mean
-ow: The large-scale, long-time limit of the passive scalar "eld,

¹M (x, t),lim
d?0

¹(d)(x, t), ¹(d)(x, t),d~d¹I (dx, d2t) ,
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obeys an e!ective di!usion equation

R¹M (x, t)/Rt"+ ' (KH+¹M (x, t)) , (30)

¹M (x, t"0)"¹
0
(x) . (31)

The e!ective di!usivity matrix KH in this equation can be expressed as

KH"I#KM

with the enhanced di!usivity KM given by

KM
ij
"S+s

i
'+s

j
T
1

, (32)

where v(x) is the (unique) mean zero, periodic solution to the following parabolic cell problem:

Rv(x, t)
Rt #Pe *(x!Vt) '+v(x, t)!Dv(x, t)"!Pe *(x!Vt) .

It is helpful to note that the period cell average in Eq. (32) is unchanged if v(x, t) is replaced by
v(x!Vt, t), so the cell problem can be replaced by the purely spatial, elliptic PDE [210,230]:

Pe(V#*(x)) '+v(x)!Dv(x)"!Pe *(x) . (33)

When the components of V cannot be expressed as integer multiples of a common real number,
then the velocity "eld *(x#Vt) is quasiperiodic rather than periodic. It can still be argued through
more sophisticated means [38], however, that the homogenization formulas presented above carry
over for general V without change.

2.1.3.2. Weak large-scale mean -ow. It would be very interesting to describe the large-scale,
long-time evolution of the passive scalar "eld in the more general situation in which the mean #ow
varies on large spatial and slow time scales. Such a velocity "eld could be a heuristically useful (but
greatly simpli"ed) idealization of an inhomogenous turbulent #ow in which some mean large-scale
#ow pro"le is disturbed by turbulent #uctuations represented as small-scale periodic #uctuations.
Unfortunately, there does not appear to be a homogenization theory which generally describes the
net large-scale transport properties arising from the interaction between the large-scale mean #ow,
the periodic #uctuations, and molecular di!usion. The goals of such a program, however, can be
concretely illustrated by consideration of large-scale mean #ows which are weak in a sense which
we now describe.

For simplicity, we shall assume that the length scale of the large-scale velocity "eld coincides
with that of the initial passive scalar "eld ¸

V
"¸

T
and that the time scale of the large-scale velocity

"eld is given by d~2¸2
v
/i, which is O(d~2) slow relative to the natural molecular di!usion time

scale. We do not assume that the large-scale velocity "eld is periodic. As important special cases, we
allow the large-scale velocity "eld to be steady and/or spatially uniform. The large-scale mean #ow
will further be assumed weak in that its amplitude is O(d) relative to the amplitude of the
small-scale periodic velocity "eld. In units nondimensionalized according to the prescription in
Section 2.1.1, the total velocity "eld (mean #ow with periodic #uctuations) has the form

Pe[dV(dx,d2t/q
v
)#*(x, t/q

v
)] .
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The advection}di!usion equation for the passive scalar "eld ¹(d)(x, t) (10) rescaled to large scales
and long times then becomes (cf. (11))

R¹(d)(x, t)
Rt #PeCV(x, t/q

v
)#d~1*A

x
d
,

t
d2q

v
BD '+¹(d)(x, t)"D¹(d)(x, t) ,

¹(d)(x, t"0)"¹
0
(x) .

Because the mean #ow was assumed to be O(d) weak, it produces a regular, order unity advection
term in the rescaled coordinates. The multiple scale analysis of Paragraph 2.1.2.2 can now be
directly generalized to include the e!ects of the weak mean #ow, which only modi"es the O(d0)
equation in Eq. (18c). If V(x, t/q

v
) is smooth and bounded, the homogenization theorem for purely

periodic velocity "elds can be rigorously extended [209] to state that in the present case, ¹(d)(x, t)
converges as dP0 to a nontrivial limit ¹M (x, t) which satis"es the following large-scale, e!ective
`homogenizeda advection}di!usion equation:

R¹M (x, t)/Rt#V(x, t/q
v
) '+¹M (x, t)"+ ' (KH+¹M (x, t)) , (34)

¹M (x, t"0)"¹
0
(x) . (35)

The homogenized di!usivity KH is determined through the same formula and cell problem (14) as
in the case of no mean #ow. In other words, KH is completely independent of V(x, t/q

v
).

The homogenized equation (35) is a rigorous realization of the goal of large-scale modelling of
passive scalar transport by a velocity "eld with a macroscopic mean #ow component and
small-scale #uctuations. The small-scale periodic #uctuations a!ect the large-scale passive scalar
dynamics purely through an enhancement of di!usivity, while the mean #ow appears straightfor-
wardly in the advection term. We stress that this simple picture relies crucially on the assumptions
that the mean #ow is weak and that there is a strong separation between the scales of the
#uctuating and mean components of the velocity "eld. Neither of these assumptions is generally
valid in realistic turbulent #ows, and the e!ective description of the large-scale passive scalar
dynamics can be expected to be considerably more complicated [182,286]. Moreover, homogeniz-
ation theory is only valid on su$ciently large (O(d~2)) time scales; we explore the practical
relevance of this condition in Section 2.3. Nonetheless, since no precise theories analogous to
homogenization theory have yet been developed for realistic turbulent #ows, there is much we can
learn about passive scalar transport by careful study of small-scale periodic velocity "elds, for
which we can obtain certain results rigorously.

McLaughlin and Forest [232] have recently investigated the e!ects of another kind of large-scale
variation on the transport of a passive scalar "eld in a periodic velocity "eld. In this work, the
velocity "eld is chosen as a large-scale, compressible modulation of a periodic, incompressible,
small-scale #ow. The weak compressibility of the #ow models the response to a large-scale
strati"cation of the density of the #uid (as in the atmosphere) through the anelastic equations.
A homogenized equation for the evolution of the passive scalar "eld on large scales and long times
is derived through a modi"cation of the multiple scale analysis described in Paragraph 2.1.2.2. This
homogenized equation has variable coe$cients re#ecting the large-scale variation in the #uid
density, and its solutions can exhibit focusing and the formation of nontrivial spatial structures.
Several numerical simulations in [232] compare the evolution of these solutions to those of the
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standard di!usion equations resulting from the homogenization of purely incompressible, periodic
velocity "elds.

We proceed next to develop some tools for characterizing the e!ective di!usivity arising from
homogenization theory, which we will apply in Section 2.2 to several instructive classes of #ows.
We will in particular underscore the subtle in#uence which a constant mean #ow can have on the
e!ective passive scalar di!usivity [210]. Some aspects of passive scalar transport at "nite (non-
asymptotic) time scales will be illustrated explicitly in Section 2.3.

2.1.4. Alternative representations and bounds for ewective diwusivity
Homogenization theory rigorously reduces the description of the large-scale, long-time dynam-

ics of the passive scalar "eld to the determination of a constant e!ective di!usivity matrix KH,
which however still requires the solution of a nontrivial cell problem (14). This cell problem can be
solved explicitly for some special #ows (see Sections 2.2.1 and 2.2.2), but must in general be treated
by some approximate analytical or numerical methods. We present here some alternative analyti-
cal representations of the e!ective di!usivity which are useful for obtaining rigorous, computable
estimates, particularly concerning its asymptotic dependence on large PeH clet number. We will
discuss the numerical solution of cell problems for some speci"c #ows in Sections 2.2.3, 2.2.4
and 2.2.5.

2.1.4.1. Stieltjes integral representation. One way to attempt to analyze the cell problem in general
is to treat Pe as a small parameter, and to construct a perturbative solution for v(x, t) as an
ascending power series in Pe [181,224]. This is not di$cult to construct, since the zeroth-order
equation is just the ordinary heat equation in periodic geometry. The drawback to this approach is
that the resulting series has a very limited radius of convergence [9,12,181], making this approach
limited for typical applications in which the PeH clet number is substantial or very large. Some formal
diagramatic resummation techniques have been proposed in the context of turbulence and "eld
theory to attempt to extract meaningful information from a formal power series at parameter
values (i.e. high PeH clet number) where they diverge [181]. The validity of these methods is open to
question, however, since they typically neglect a wide class of terms in the power series, without
clean justi"cation. Fortunately, an exact and rigorous diagrammatic resummation is possible for
the homogenized e!ective di!usivity matrix KH of a periodic velocity "eld, and gives rise to
a Stieltjes measure representation which is valid for arbitrary PeH clet number [9,11,12]. Here we will
formally sketch a more direct way [9,12,39,210] of achieving the Stieltjes measure representation
formula, focusing on the case of a steady periodic velocity "eld with a constant (possibly zero) mean
sweep V.

The cell problem for each component s
j
(x) in this case may be expressed as follows

(cf. Eq. (33)):

Ds
j
(x)!Pe(V#*(x)) '+s

j
(x)"Pe v

j
(x) .

This equation can be rewritten as an abstract integral equation for +s
j
(x) by application of the

operator +D~1 to both sides. We then obtain

(I!PeAV ) '+s
j
"PeAeL

j
, (36)
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with I the identity matrix. The other operators are de"ned on the Hilbert space ¸2(Td) of periodic,
square-integrable functions as follows:

Au"+D~1(*(x) ' u) , (37a)

AV
u"+D~1((V#*(x)) ' u) . (37b)

A key property of these operators, which follows from incompressibility of the velocity "eld, is that
they are compact [281] and skew symmetric when restricted to the subspace ¸2+(Td) of square-
integrable (generalized) gradients of periodic functions

¸2+(Td)"Mu"+f :SD f D2T
1
#SDuD2T

1
(RN . (38)

These properties are more apparent when the operators are reformulated in terms of the stream
function (or stream matrix), see [12]. The spectral theory of compact, skew-symmetric operators
[281] guarantees the existence of an orthonormal basis of functions in ¸2+(Td) which are eigenfunc-
tions ofAV with purely imaginary eigenvalues. Moreover, the eigenvalues and eigenfunctions come
in complex conjugate pairs, with the magnitude of the eigenvalues clustering asymptotically near
zero. We may therefore index the eigenvalues by M$ik(n)N=

n/1
where k(n) is a real, positive sequence

decreasing toward zero; there may also possibly be a zero eigenvalue of AV.
The cell problem (36) may now be solved by expanding +s

j
(x) and AeL

j
(which is in ¸2+(Td)) in

terms of the eigenfunctions of the operator AV. Substituting the result into the e!ective di!usivity
formula (32), we thereby achieve the Stieltjes Integral Representation Formula for the enhanced
di!usivity along any given direction eL in a steady periodic velocity "eld with a possible constant
mean sweep:

eL 'KM ' eL"Pe2E* ' eL E2
~1Ca(0)#2

=
+
n/1

a(n)

1#Pe2(k(n))2D . (39)

The parts of this formula which remain to be explained are:

f An order unity prefactor measuring the magnitude of the nondimensionalized velocity "eld in
a certain (Sobolev) norm ([105], Ch. 6),

E* ' eL E2
~1

,SDAeL D2T
1
" +

k|Zd

D*L k ' eL D2
4p2DkD2

, (40)

where *L k are the Fourier coe$cients of *(x).
f The mean square a(0)"SDg(0)D2T

1
of the projection g(0) of the normalized functionAeL /SDAeL D2T1@2

1
onto the null space of AV in ¸2+(Td).

f The mean square a(n)"SDg(n)D2T
1
of the projection g(n) of the normalized function AeL /SDAeL D2T1@2

1
onto the eigenspace of AV in ¸2+(Td) corresponding to eigenvalue ik(n) (or equivalently to !ik(n)).

The normalization by the factor SDAeL 2T
1

implies that

=
+

n/~=

a(n)"a(0)#2
=
+
n/1

a(n)"1 ,
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so the Ma(n)N may be interpreted as the weights of a normalized discrete measure,

do*,V"Ca(0)d(k)#
=
+
n/1

a(n)(d(k!k(n))#d(k#k(n)))Ddk .

The summation appearing in Eq. (39) therefore has the form of a Stieltjes integral against this
discrete measure:

eL 'KM ' eL"Pe2E* ' eL E2
~1P

=

~=

do*,V
1#Pe2k2

. (41)

The Stieltjes integral representation for the e!ective di!usivity in a periodic velocity "eld was
derived by Avellaneda and the "rst author [9,12] and in a slightly di!erent form by Bhattacharya
et al. [39]. Similar, but more notationally complex, formulas for o!-diagonal elements of KM may be
found in [39]. A similar Stieltjes integral representation was derived by Avellaneda and Vergassola
[20] for spatio-temporal periodic velocity "elds with no mean sweep. The only di!erence is that the
de"nition (37b) of the operator AV is to be replaced by

AV
u"+D~1(*(x, t/q

v
) ' u)#(R/Rt)D~1u , (42)

which is still real, compact and skew-symmetric on the subspace of square-integrable gradients of
spatio-temporal periodic functions, ¸2+(Td][0, q

v
]).

Note that the formal expansion of the summands in Eq. (39) in powers of Pe will recover a formal
power series which converges only for DPe D((k(1))~1 [9,12]. The Stieltjes integral representation
may be interpreted as a rigorous resummation of this series which is valid for all Pe; this is
demonstrated explicitly in [11]. The Stieltjes integral is admittedly too di$cult to evaluate directly
in general because the full spectral information of the operator AV is required. Nonetheless, as we
shall now describe, much practically useful information can be deduced from the Stieltjes integral
representation.

Rigorous bounds through Pade& approximants: The Stieltjes integral representation (41) "rst of all
permits the construction of rigorous upper and lower bounds on the e!ective di!usivity for all
Pe& clet number. By noting that do*,V is a nonnegative measure with total integral equal to unity, we
can immediately deduce the following elementary lower and upper bounds on the e!ective
di!usivity [12]:

14eL 'KH ' eL41#Pe2E* ' eL E2
~1

. (43)

The Stieltjes integral representation also makes it possible to construct sharper bounds on the
e!ective di!usivity using information from a "nite number of terms in a small Pe&clet number
expansion, which can be determined by a straightforward formal perturbation procedure [12,181].
Suppose one has obtained in this way a small PeH clet number asymptotic expansion of eL 'KHeL :

eL 'KH ' eL"1#
M
+

m/1

Pe2mb
2m

#O(Pe2m`2) , (44)
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where b
2m

are some constants involving explicit integrals which can be evaluated or at least
estimated numerically [12,40]. Comparing with a formal small PeH clet number expansion of the
Stieltjes integral representation (41), we "nd that each b

2m
is proportional to the moment of order

2(m!1) of the measure do*,V. The knowledge of these moments implies rigorous restrictions for the
values which eL 'KH ' eL , given by the Stieltjes integral representation (41), may attain for arbitrary
values of PeH clet number. More precisely, it has been shown [12,337] that eL 'KH ' eL is rigorously
bounded above and below, for all PeH clet number, by certain PadeH approximants, which are rational
functions of Pe explicitly constructed from the coe$cients of the perturbation series (44) (see for
example [30]). PadeH approximants were applied to construct rigorous bounds for the e!ective
di!usivity in certain periodic #ows in [40]; some of this work will be brie#y discussed in
Section 2.2.5. The PadeH approximant bounds may also be used to rigorously extrapolate the value
of KH over a range of Pe, given its measured value at a "nite set of Pe, and to check the validity of
Monte Carlo simulations for the e!ective di!usivity [12,40].

Maximal and minimal enhanced di+usivity: While the PadeH approximants can produce sharp
estimates of the e!ective di!usivity for small and moderate values of the PeH clet number, they
eventually deteriorate at su$ciently large Pe [40]. One "nds only that the e!ective di!usivity in the
asymptotic regime of large PeH clet number must exceed some constant independent of Pe, but
cannot grow more quickly than Pe2, which is indicated already by the simplest bounds (43). The
high PeH clet number asymptotics of the e!ective di!usivity are however of considerable practical
interest, since the PeH clet number can be quite large in a number of natural and experimental
situations.

One important question is how rapidly the e!ective di!usivity grows with PeH clet number.
Following the work of McLaughlin and the "rst author in [210], we classify two extreme
situations. We say that #ows produce

f maximally enhanced di+usion in a certain direction eL when the di!usivity along this direction
grows quadratically with Pe as PePR. This is the most rapid growth possible, according to
Eq. (43).

f minimally enhanced di+usion in the direction eL if the e!ective di!usivity remains uniformly
bounded in this direction for arbitrarily large Pe.

Explicit shear #ow examples will be presented in Section 2.2.1 which demonstrate the realizability
of both of these extreme behaviors. Other large Pe number behavior can be realized by various
#ows (see Section 2.2.3); the classes of #ow which are maximally or minimally di!usive in a given
direction are not exhaustive.

The Stieltjes integral representation provides some simple general criteria for determining
whether a given #ow will be maximally or minimally di!usive in a given direction eL . It is evident
from Eq. (39) that maximally enhanced di!usion is equivalent to a(0)O0. This is rigorously veri"ed
in [39,210], where it is moreover demonstrated that maximal di!usivity along eL is equivalent to the
existence of a complex periodic function h(x) which is constant along streamlines,

(V#*(x)) '+h(x)"0 , (45)

has a nontrivial projection against *(x) ' eL ,

Sh* ' eL T
1
O0 ,
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and is su$ciently smooth that it belongs to the Sobolev space H1(Td) of complex periodic,
square-integrable functions with square-integrable (generalized) derivatives ([105], Ch. 6).

These conditions for maximal di!usivity along a direction eL have been interpreted in a rigorous,
geometric manner by MezicH et al. [239] as indicating a lack of ergodicity of * ' eL ; that is, the average
value of * ' eL along streamlines is not everywhere zero. The reason why this situation gives rise to
maximally enhanced di!usion is that, in the absence of molecular di!usion, particles on streamlines
with a nonzero average value of * ' eL would proceed in the direction eL at a ballistic rate (distance
linearly proportional to time) [168]. Such streamlines are often manifested as open channels [210],
as we shall see concretely in Section 2.2. Molecular di!usion acts as an impediment to the rapid
transport along these open channels by knocking tracers into other streamline channels with
average values of * ' eL with the opposite sign. (Such compensatory channels must exist since * ' eL has
mean zero). The net result at long time is a di!usive motion along eL (on top of any constant mean
drift V ' eL ), with the e!ective di!usivity constant growing rapidly with PeH clet number, since a high
PeH clet number permits particles to travel a long way along open channels before getting knocked
away from them by molecular di!usion.

If a(0)"0, then the Stieltjes integral representation (39) implies that the tracer di!usion is not
maximally di!usive, but does not necessarily imply that the tracer motion is minimally di!usive.
Even though the contribution from each term in the sum from n"1 to R individually approaches
a "nite constant in the PePR limit, the full sum can still diverge in the PePR limit depending
on how rapidly the eigenvalues k(n) approach zero. More information is needed to determine
whether a #ow produces minimally enhanced di!usion or not. One su$cient condition for
minimally enhanced di!usion along a direction eL established in [39,210] is the existence of
a periodic function u3H1(Td) which satis"es the equation

(V#*(x)) '+u(x)"!*(x) . (46)

Whereas maximally enhanced di!usion along a direction eL is associated with open channels,
minimally enhanced di!usion along eL appears to be related to the presence of a layer of streamlines
which block #ow along the eL direction [210], as we shall illustrate in Sections 2.2.3 and 2.2.4. The
e!ective di!usivity along blocked directions eL remains bounded in proportion to the molecular
di!usivity, regardless of how large Pe becomes, because the transport rate is always limited by the
need for the tracer to cross the layer of blocked streamlines, which only molecular di!usion can
accomplish. Indeed, in the limit of no molecular di!usivity, the motion of the tracer along a blocked
direction eL would remain forever trapped.

We caution the reader that our care in stating the function spaces to which solutions of Eqs. (45)
and (46) is quite essential. If one were to naively treat these equations in the same way as
"nite-dimensional linear algebra problems, one would wrongly conclude that any #ow produces
either maximally or minimally enhanced di!usion. Such a supposition is falsi"ed by the example
of steady cellular #ows which are neither maximally nor minimally di!usive, as we shall discuss
in Section 2.2.3. In particular, even though the nice streamline structure of this #ow (Fig. 2)
permits a formal construction of a function h constant along streamlines and thereby satisfying
Eq. (45), it turns out that any such function is not smooth enough at the corners of the period cell to
be in H1(Td). Therefore, the condition for maximally enhanced di!usion is not satis"ed by the
steady cellular #ow, but one could be misled if the smoothness considerations are not taken into
account.
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The above rigorous criteria for maximal and minimal di!usivity have been gainfully applied by
McLaughlin and the "rst author [210] to categorize the e!ects of a nonzero constant mean #ow on
e!ective transport, and we shall describe some of these results in Section 2.2.4. Some other
applications of the critera for maximal and minimal di!usivity to some special classes of #ows,
particularly involving special kinds of streamline blocking, may be found in [39].

2.1.4.2. Variational principles. Another useful representation of the homogenized di!usivity is
through a variational principle. Avellaneda and the "rst author [12] introduced the "rst such
variational principle for steady, periodic velocity "elds *(x) with no mean sweep:

For all vectors eL3Rd, the e!ective di!usivity along direction eL may be expressed as the following
minimization problem:

eL 'KH ' eL" min
u>u~eL |L2+(Td)

SDuD2#Pe2u 'K ' uT
1

, (47)

where the nonnegative, self-adjoint operator K is de"ned

K"(A)sA

and ¸2+(Td) is the Hilbert space of square-integrable gradients de"ned in (38).

This variational principle allows us to generate rigorous upper bounds on the e!ective di!usivity
by substituting arbitrary functions u with u!eL3¸2+(Td) into the functional on the right-hand side
of Eq. (47). Note that the functional to be minimized involves the nonlocal operator K. Fortunate-
ly, in certain cases, the calculation can be greatly simpli"ed by a suitable choice of trial "elds u.

A related dual (nonlocal) maximal variational principle was later derived by Fannjiang and
Papanicolaou [97]. By carefully using the minimal and maximal variational principles in tandem,
the e!ective di!usivity can be estimated in a fairly sharp manner for certain tractable classes of
#ows. These authors also formulate some local minimax variational principles as well as variational
principles for the e!ective di!usivity of time-dependent periodic velocity "elds.

We mention in passing that another, philosophically di!erent, variational approach to deriving
rigorous upper bounds for the e!ective di!usivity of a passive scalar "eld over "nite regions has
been developed by Krommes and coworkers [161,187]. Also, a rigorous bound on the e!ective
di!usivity depending on the maximum of the stream function (or stream matrix) has been obtained
by Tatarinova et al. [314] for arbitrary velocity "elds which are con"ned to "nite regions. This
result is a di!erent weaker interpretation of the upper bound in Eq. (43).

2.2. Ewective diwusivity in various periodic yow geometries

We now demonstrate the utility of the rigorous formulas for the e!ective di!usivity of a tracer
over long times by applying them to a various speci"c classes of periodic #ows. Explicit formulas
for the e!ective di!usivity can be derived for shear #ows with spatially uniform cross sweeps, as we
will show in Sections 2.2.1 and 2.2.2; in other cases one can turn to a numerical solution of the cell
problem [40,165,210]. We will for the most part, however, be concerned with the asymptotic
behavior of the e!ective di!usivity in the case of large PeH clet number Pe, which arises in many
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practical situations. We will show in the rest of Section 2.2 how the variational and the Stieltjes
measure representation for the e!ective di!usivity can be utilized to rigorously determine its exact
scaling behavior with respect to large Pe, even when the cell problem (14) cannot be analytically
solved. By such means, we shall study in Section 2.2.3 the tracer transport in a special one-
parameter family of two-dimensional, steady, periodic #ows which interpolate between a cellular
#ow and a shear #ow, and we shall describe in Section 2.2.4 the subtle e!ects which arise upon the
addition of a constant mean sweep V. The e!ective di!usivity scales as EKHE&Pe1@2 in the pure
cellular #ow [67], but the presence of a mean sweep can produce either maximally enhanced
di!usion (eL 'KH ' eL&Pe2) along most directions eL or minimally enhanced di!usion in all directions
(EKHE&Pe0), depending on such sensitive criteria as whether the components of V are rationally
related, whether V is transverse to a mean shear #ow pattern, and whether the total #ow has
stagnation points [210]. Numerical evaluations of the e!ective di!usivity [210] con"rm these
mathematically derived asymptotics, and reveal a variety of interesting crossover behavior at large
but "nite PeH clet number which demonstrate the practical relevance of the criteria for maximally
and minimally enhanced di!usion just listed. The numerical and mathematical analysis of the
long-time e!ective di!usivity of a tracer in some other periodic #ows using the formulas from
Section 2.1.4 will be discussed brie#y in Section 2.2.5. We stress that the results to be presented
throughout Section 2.2 all deal with the asymptotic long-time behavior of the passive scalar "eld.
Some issues concerning the observation of the tracer motion and passive scalar "eld evolution at
"nite times will be discussed in Section 2.3.

We shall endeavor throughout Section 2.2 to supplement the rigorous homogenization theory
results with intuitive physical explanations for the large PeH clet number behavior of the e!ective
di!usivity through consideration of the streamline geometry. A common qualitative theme which
will emerge is that, in steady #ows at large PeH clet number, open channels are associated with
greatly enhanced di!usion and blocked streamlines with only moderately enhanced di!usion. This
notion will become clearer through discussion and pictures of streamlines for the speci"c examples
we shall discuss. Another way of intuitively understanding the behavior of the e!ective di!usivity is
through an informal consideration of Taylor's formula [317] for the mean-square tracer displace-
ment in terms of the correlation function of the tracer (Lagrangian) velocity. We will emphasize the
geometric perspective here, and elaborate upon the heuristic use of Taylor's formula in Section 3,
where we examine tracer di!usion in random shear #ows.

2.2.1. Periodic shear yows with constant (or zero) cross sweep
Shear #ows are a very useful class of examples for the examination and illustration of general

theories for turbulent di!usion, as we shall see now and in much greater depth in a random context
in Section 3. They arise naturally in various physical applications, and they are quite tractable
analytically due to their simple structure. A two-dimensional spatio-temporal shear velocity "eld
aligned along the y-axis has the general form

*(x, t)"*(x, y, t)"C
0

v(x, t)D .

In particular, it is completely described by a scalar function v(x, t) which depends on only one
spatial variable x in addition to time for nonsteady #ows. In this sense, shear #ows play the role of
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a one-dimensional model for incompressible #ows. This feature often permits explicit solution
and analysis for various passive scalar and tracer statistics with quite general v(x, t), as we
shall show at greater length in Sections 2.3.1 and 3 (see also other mathematical developments
for shear #ows in [10,206]). A particularly useful extension of the shear #ow model which
preserves much of its exact solvability is the inclusion of a purely time-dependent cross
sweep w(t):

*(x, t)"*(x, y, t)"C
w(t)

v(x, t)D . (48)

One could also allow a purely time-dependent sweeping component along the shear #ow, but this is
less interesting because the resulting tracer motion would simply be the sum of its motion due to
Eq. (48) and due to this additional shear-parallel sweep. On the other hand, a cross sweep w(t), as
appears in Eq. (48), interacts nonlinearly with the shear #ow convection by dragging the tracer
across its spatial variations.

In our present discussion, we will be able to write down explicit formulas for the e!ective
di!usivity of a tracer in a periodic, mean zero, spatio-temporal shear #ow v(x, t) with periodic,
constant, or vanishing cross sweep w(t), and thereby identify the in#uence of the various para-
meters. We will moreover be able to explicitly relate these formulas to their abstract Stieltjes
measure representation. To "x the main ideas, we concentrate in Section 2.2.1 on the case of
constant or zero cross sweep. We treat in turn a steady periodic shear #ow with no cross sweep
(v"v(x), w(t)"0), a steady periodic shear #ow with a nonzero constant cross sweep (v"v(x),
w(t)"wN O0), a spatio-temporal periodic shear #ow with no cross sweep (v"v(x, t), w(t)"0), and
a spatio-temporal periodic shear #ow with nonzero constant cross sweep (v"v(x, t), w(t)"wN O0).
The interesting features created by a periodically #uctuating w(t) will be elaborated upon in
Section 2.2.2.

2.2.1.1. Steady shear yow with no cross sweep. A steady, mean zero, periodic shear #ow (48) with
v"v(x) and w(t)"0 has been used as a simple model for #ow in a strati"ed porous medium [130].
The cell problem (16) reads

!Ds
x
(x, y)#Pe v(x)

Rs
x
(x, y)
Ry "0 ,

!Ds
y
(x, y)#Pe v(x)

Rs
y
(x, y)
Ry "!Pe v(x) .

(49)

Clearly s
x
(x, y)"0, and we can seek a solution for s

y
(x, y) which is independent of y in terms of

a Fourier series expansion:

v(x)" +
kE0

vL
k
e2p*kx ,

s
y
(x)"!Pe +

kE0

vL
k

4p2k2
e2p*kx .
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Substituting the functions s
x
and s

y
into Eq. (15), we "nd the following expression for the e!ective

di!usivity matrix:

KH"C
1 0

0 1#KM
yy
D . (50)

It di!ers from the molecular di!usivity matrix only through the enhancement

KM
yy
"KM (0)

yy
"Pe2 +

kE0

DvL
k
D2

4p2k2
"Pe2

=
+
k/1

DvL
k
D2

2p2k2
(51)

along the shearing direction. This formula was "rst derived by Zeldovich [348] through a direct
computation, and later by Gupta and Bhattacharya [130] through the homogenization approach
put forth here. We see explicitly that di!usion is maximally enhanced along all directions eL which
are not transverse to the shear #ow.

This can be easily understood from the streamline structure, which in this case corresponds
to straight lines parallel to the y-axis. In the absence of molecular di!usion, tracers would
move along the streamlines at a ballistic rate (meaning that the distance travelled grows linearly
in time). The addition of molecular di!usion knocks the tracer o! of its original streamline
and eventually onto streamlines with velocity in the opposite direction, destroying the ballistic
motion and producing a di!usive transport behavior instead. Since molecular di!usion is therefore
an impediment to transport in a steady shear #ow with no cross sweep, the e!ective di!usivity
grows very rapidly as Pe (which is inversely proportional to the molecular di!usivity) becomes
large.

Another physical interpretation for the e!ective di!usivity formula (51) can be found in Sec-
tion 3.2.1 in the context of a steady random shear #ow, for which a closely related formula applies
when the the statistical correlations are su$ciently short-ranged.

2.2.1.2. Steady shear yow with constant cross sweep. We now add a constant cross sweep
w(t)"wN O0 to the shear #ow. In the context of porous media, this cross sweep can model a mean
#ow through a strati"ed aquifer due to gravity (where x is taken as the vertical direction) [130,223].
The cell problem (49) is then altered only by the addition of the term wN (Rs

x,y
(x, y)/Rx) on the

left-hand side of each equation. The solution method proceeds as before, yielding the e!ective
di!usivity matrix (50) with enhanced di!usivity along the shear now given by [130]

KM
yy
"KM (w)

yy
"2Pe2

=
+
k/1

DvL
k
D2

4p2k2#Pe2wN 2
. (52)

The cross sweep wN causes KM (wN )
yy

to remain uniformly bounded in Pe, corresponding to minimally
enhanced di!usion.

The reason for this drastic change from maximally enhanced di!usion is that the cross sweep
blocks streamlines along the shearing direction [210]; see Fig. 1. Without molecular di!usion, the
tracers would simply be swept along the x direction at a constant rate and oscillate within
a bounded interval along the y direction. Molecular di!usion is thus necessary for e!ective
transport along the shearing direction, as is generally the case for situations of minimally enhanced

A.J. Majda, P.R. Kramer / Physics Reports 314 (1999) 237}574 265



Fig. 1. Streamlines for v(x)"sin2px and w(t)"wN "1 (from [210]).

di!usion. The molecular di!usion along the y direction of course induces a standard tracer
di!usion along the y direction, but the enhancement KM (wN )

yy
due to the convection comes only from its

interaction with the x component of the molecular di!usion. Indeed, the net tracer displacement
along the shear over any time interval 1/wN would be exactly zero without molecular di!usion, but
becomes a nonzero random number when molecular di!usion is active. Part of this randomness
comes directly from the molecular di!usion along the y direction. The more interesting component
of the random displacement along the shear results from the randomness induced by the molecular
di!usion in the cross-shear tracer motion, which breaks up the exact periodicity of its motion along
the shear. It is these extra random displacements which produces the shear-assisted di!usion
enhancement KM (wN )

yy
. A similar formula for the enhanced di!usivity applies for the case of a random

steady shear #ow with su$ciently short-ranged correlations and a constant cross sweep; see
Paragraph 3.2.5.2. Another perspective on the qualitative dependence of KM (wN )

yy
with respect to the

various parameters is provided there.
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We pause to remark that Eq. (52) provides a concrete example of the Stieltjes measure repres-
entation for the e!ective di!usivity. This is better seen by rewriting Eq. (52) slightly:

KM
yy
"KM (wN )

yy
"Pe2 +

kE0

DvL
k
/(2pk)D2

1#Pe2(wN /(2pk))2
. (53)

The eigenvalues $iMk(n)N=
n/1

and eigenfunctions M/(n),/(n)N=
n/1

of the operator AV (Eq. (37b)), after
some rearranging, can be shown to be determined by the equations

/(n)"+t(n) ,

wN
Rt(n)(x, y)
Rx #v(x)

Rt(n)(x, y)
Ry "ik(n)Dt(n)(x,y) ,

where t(n)3H1(T2). It is readily seen that a subset of eigenvalues and eigenfunctions is given by

k(nk)"wN /2pk, t(nk)(x, y)"e~2p*kx .

The square of these eigenvalues appear in the denominator of Eq. (53), and the square modulus of
the projection of AyL "+D~1v(x) against these eigenfunctions appears in the numerator. By
factoring out EAyL E2, we obtain exactly the Stieltjes measure formula (39) for the enhanced
di!usivity along the shear direction yL . Of course, we have not found all the eigenfunctions and
eigenvalues of AV, but since AyL depends only on x and the eigenfunctions we have found provide
a complete (Fourier) basis for such functions in the Hilbert space ¸2+(Td) with mean zero, the
projection of AyL against the remaining eigenfunctions of AV must be zero.

As can be seen, it is more cumbersome in the present case to use the Stieltjes measure formula to
obtain explicit formulas than it is to solve to cell problem. The Stieltjes measure formula, however,
becomes extremely useful in analyzing the high PeH clet number behavior of tracer transport in
situations where explicit solutions are not available, as we shall show in Section 2.2.4.

2.2.1.3. Spatio-temporal periodic shear -ow with no cross sweep. We now brie#y consider how the
tracer transport is in#uenced by temporal oscillations in a periodic shear #ow v"v(x, t), "rst with
no cross sweep w(t)"wN "0. The cell problem (49) now becomes parabolic with the addition of the
term Rs

x,y
(x, y, t)/Rt on the left-hand sides, but can still be solved in terms of the space}time Fourier

series of the shear velocity "eld:

v(x, t)" +
(k,m)E(0,0)

vL
k,m

e2p*(kx`mt@qv) . (54)

Again, the e!ective di!usivity matrix assumes the form (50), with the enhanced di!usivity along the
shear given by

KM
yy
"KM (t)

yy
"Pe2 +

(k,m)E(0,0)

k2DvL
k,m

D2
4p2k4#m2q~2

v

. (55)

This formula was "rst computed by direct calculation (with no appeal to homogenization theory)
by Zeldovich [348].
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We note that, as for the steady shear #ow, each Fourier mode of the shear contributes additively
to the e!ective di!usivity, and therefore we may discuss them on an individual basis. The
spatio-temporal Fourier modes with m"0 are steady, and their presence produces maximally
enhanced di!usion for the reasons presented in our discussion of the steady shear #ow. The
di!usivity contributed by the temporally oscillating Fourier components (mO0), is depleted
however, particularly when the (nondimensional) temporal period q

v
is small. The ine$ciency of

transport by the temporally oscillating shear modes relative to the steady shear modes is related to
the fact that, in the absence of molecular di!usion, the temporally oscillating Fourier shear modes
induce bounded tracer oscillations rather than a unidirectional ballistic drift. Molecular di!usion is
therefore necessary for e!ective tracer transport, and interacts with the periodically oscillating
shear #ow to produce enhanced di!usivity along the shear by the same type of phase-randomizing
mechanism as we discussed above for the case of a constant cross sweep in a steady shear #ow.

2.2.1.4. Spatio-temporal periodic shear -ow with constant cross sweep. The inclusion of a constant
cross sweep w(t)"wN O0 in a spatio-temporal shear #ow v(x, t) is straightforward, either by direct
calculation (as in [348] or in Section 3) or by homogenization. The enhanced di!usivity along the
shear has the form

KM
yy
"KM (w,t)

yy
"Pe2 +

(k,m)E(0,0)

k2DvL
k,m

D2
4p2k4#(PewN k#mq~1

v
)2

.

The new phenomenon here is the possibility of resonances between the cross sweep and the
temporal oscillations of the #ow. When PewN k#mq~1

v
is near zero, the contribution from the

temporally oscillating mode vL
k,m

(with mO0) can be boosted far above what it would be without
the mean sweep.

2.2.2. Steady periodic shear yow with periodic cross sweep
We now consider how tracer transport is in#uenced when a cross sweep w(t/q

v
) acting across the

shear #ow (see Eq. (48)) has periodic variations in time (with period q
v
). We focus the case of

a steady periodic shear #ow v"v(x) in which the main features are all manifest.
The cell problem involved in the homogenization theory can be solved exactly in a manner

similar to that described in Section 2.2.1, but as the computations are a bit lengthier, we defer their
presentation until after we discuss the results. The e!ective di!usivity matrix will in general have
the form (50), with di!usivity enhanced along the shear above its bare molecular value (1) by an
amount KM

yy
. There is no enhanced di!usivity across the shear; the cross-shear motion is simply

a sum of a drift due to the mean of wN "Sw(t/q
v
)T, a periodic motion due to the periodic temporal

variations of w(t/q
v
), and a Brownian motion due to molecular di!usion. There is no interaction

between these cross-shear advection and di!usion processes because they are all independent of
spatial location.

We saw in Section 2.2.1 that the enhanced di!usivity along the shear is maximal
(lim

P%?=
KM

yy
&Pe2) when the cross sweep vanishes (w(t/q

v
),0) and the #ow streamlines are

unbounded along the y direction, and that the enhanced di!usivity is minimal (lim
P%?=

KM
yy
&Pe0)

when a nonzero, constant cross sweep w(t/q
v
)"wN O0 is active which blocks streamlines along the

y direction.
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In our current study, where w(t/q
v
) is periodic, we can expect the shear-enhanced di!usivity to

behave in a way intermediate to the w,0 and w,wN O0 cases. If we take instantaneous snapshots
of the streamlines of the #ow, then, we will see that they are almost always blocked along the
y direction. But as w(t/q

v
) oscillates, there may be times when it passes through zero. Near these

times, the amplitude of the streamline oscillations in the y direction will grow unboundedly until
the instant tH at which w(t/q

v
)"0, when the streamlines will form parallel lines along the

y direction. Thus, the #ow will sometimes act on the tracer like a shear #ow blocked by a cross
sweep (where enhanced di!usivity is bounded in PeH clet number), and other times like a shear #ow
without cross sweep (where enhanced di!usivity grows quadratically with PeH clet number).

The rigorous homogenization theory bears out this intuition. Let us assume that w(t/q
v
) vanishes

at most to "nite order at a "nite number of times in each period. Then the enhancement of the
di!usivity along the shear #ow has the high PeH clet number asymptotics

lim
P%?=

KM
yy
&C

KM
(Pe, q

v
)Pe2N@(N`1) , (56)

where N is the order of the highest zero of w(t), and C
KM
(Pe, q

v
) is a positive function bounded strictly

away from zero and in"nity when the temporal oscillation period q
v

is held ,xed. The order n of
a zero tH of w(t/q

v
) is de"ned to be the unique positive integer n for which

w(tH/qv)"w@(tH/qv)"2"w(n~1)(tH/qv)"0 ,

w(n)(tH/qv)O0 ,

where w(j) denotes the jth derivative of w. If the cross sweep never vanishes, then one should take
N"0.

We see that indeed the enhanced di!usivity is some sort of compromise between the Pe2 scaling
associated to the zero cross sweep case and the Pe0 scaling associated to a constant cross sweep.
Note that the asymptotic scaling exponent a"2N/(N#1) of KM

yy
as function of PeH clet number

increases from 0 to 2 as the maximal order of vanishing, N, increases. This can be understood by
noting that a function with a high-order zero at tH is #atter and `stays closer to zeroa in the vicinity
tH than a function with a simple zero would. Thus, a higher-order zero of w(t) should permit the
shear #ow to contribute more strongly toward tracer di!usion because the cross sweep is more
nearly vanishing over a broader time interval. We can formally think of the case of an identically
vanishing cross sweep w(t/q

v
)"0 as an NPR limit.

Note that the scaling exponent is set only by the behavior of w(t) near times (if any) at which it
vanishes. This is in accordance with the intuition that, at high PeH clet number, di!usivity along
a shear is much more e!ective when there is no cross sweep, so most of the transport will occur in
narrow time intervals about those moments at which w(t/q

v
) vanishes and the streamline blocking is

released. These time intervals of e$cient di!usion are responsible for the main contribution to the
e!ective di!usivity KM

yy
. We remark that this relation relies crucially on the fact that the occasions of

rapid transport occur periodically without fail. There is an important distinction here from the case
of an isotropic material with random, inhomogenous di!usivity in which the regions of low
di!usivity percolate. In this case, the passive scalar entity will get `trappeda for long times by the
regions of slow motion, and the e!ective long-time di!usivity is likely to feel a strong e!ect from the
presence of regions of ine!ective transport. There is no such feedback in the present situation.

A.J. Majda, P.R. Kramer / Physics Reports 314 (1999) 237}574 269



2.2.2.1. Computation of ewective diwusivity. We now indicate how homogenization theory pro-
duces the results described above. The parabolic cell problem reads

Rs
x
(x, y, t)
Rt #Pew(t/q

v
)
Rs

x
(x, y, t)
Rx #Pe v(x)

Rs
x
(x, y, t)
Ry !Ds

x
(x, y, t)"!Pew

f
(t/q

v
) , (57a)

Rs
y
(x, y, t)
Rt #Pew(t/q

v
)
Rs

y
(x, y, t)
Rx #Pe v(x)

Rs
y
(x, y, t)
Ry !Ds

y
(x, y, t)"!Pe v(x) , (57b)

where w
f
(t/q

v
)"w(t/q

v
)!wN is the periodically #uctuating part of the cross sweep. Since the

right-hand side of Eq. (57a) is purely time-dependent, we can readily "nd a mean zero periodic
solution for s

x
:

s
x
"s

x
(t)"!PeP

t

0

w
f
(s/q

v
) ds . (58)

The solution of Eq. (57b) requires a little more work, but is still straightforward. As the in-
homogeneity depends only on x and t, we are led to seek a solution s

y
"s

y
(x, t). Taking a partial

Fourier transform with respect to x,

s
y
(x, t)"

=
+

k/~=

sL
y,k

(t)e2p*kx ,

v(x, t)"
=
+

k/~=

vL
k
(t)e2p*kx ,

we reduce this part of the cell problem to a system of decoupled ODEs:

dsL
y,k

(t)
dt

#2piPe kw(t/q
v
)sL

y,k
(t)#4p2k2sL

y,k
(t)"!Pe vL

k
(t) .

These linear ODEs may be solved directly to produce the following time-periodic solutions:

sL
y,k

(t)"!PeP
t

~=

vL
k
(t@) e~2p*P%k: t

t{w(s@qv) $se~4p
2k2(t~t{)dt@ for kO0 , (59a)

sL
y,0

(t)"!PeP
t

0

vL
0
(t@) dt@ . (59b)

We used the usual trick that the periodic solution of a periodically forced, dissipative equation may
be represented by using Duhamel's formula with the initial data formally taken at t"!R (so
that all nonperiodic transients have died out by any "nite time). Substituting the solutions (58) and
(59) of the cell problem into formula (15) for e!ective di!usivity, we "nd an enhancement only for
the component KH

yy
"1#KM

yy
, which may be expressed as

KM
yy
"KM (w)

yy
"8p2

=
+
k/1

k2q~1
v P

qv

0

DsL
y,k

(t@)D2dt@ . (60)
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In the high PeH clet number limit, the integrand in Eq. (59a) becomes a rapidly oscillating function of
time. The asymptotic behavior of the integral may be rigorously evaluated through the method of
stationary phase (see [250] or [312]). The dominant contribution to the integral comes from the
vicinity of those points at which the phase Pe :t

t{
w(s/q

v
) ds has zero derivative, and these points are

precisely the zeroes of w(t). The contribution to sL
y,k

(t) from integration near a nth-order zero tH of
w(t/q

v
) is given by [250]

!2Pen@(n`1)qn@(n`1)
v A

(n#1)!
2p B

1@(n`1)C(1/(n#1))
n#1

k~1@(n`1)

]
s
n
vL
k
(tH)

Dw(n)(tH)D1@(n`1)
e2p*P% k: t

tHw(s@qv) $se~4p
2k2(t~tH) (61)

where

s
n
"G

e*p@2(n`1)sgnw(n)(tH) for n51 and odd ,

cos
p

2(n#1)
for n52 and even .

Note that the magnitude of this contribution is an increasing function of the order n of the zero.
The high PeH clet number asymptotics of sL

y,k
are obtained by summing the contributions 61 from

each zero tH of w(s/q
v
) on the interval (!R, t], and the high PeH clet number asymptotics (56) of

KM (w)
yy

then follow from Eq. (60).
The e!ective di!usivity can be computed in a similar manner when the shear velocity "eld has

temporal #uctuations in time. We do not provide details; it su$ces to say that the high PeH clet
number asymptotics can be understood by putting together the principles which we described
separately above for the case of a spatio-temporal periodic shear #ow with constant cross sweep
and for a steady shear #ow with periodic cross sweep.

2.2.3. Steady cellular and related yows
A natural periodic #ow which has received much attention is the steady two-dimensional cellular
#ow, which is de"ned through a stream function t(x, y) as follows:

*(x, y)"C
Rt(x,y)
Ry

!

Rt(x,y)
Rx D , (62a)

t(x, y)"t
#%--

(x, y)"sin(2px)sin(2py) . (62b)

The streamlines of this #ow are plotted in Fig. 2. No exact solution is known to the homogeniz-
ation cell problem (16). A number of authors [260,287,294,303], starting with Childress [67], have
instead endeavored to compute the e!ective di!usivity of the passive scalar "eld by various
matched asymptotic expansion techniques applied directly to the advection}di!usion equation.
The homogenized cell problem is not used in these works. The basic idea is that at high PeH clet
number, the tracer is rapidly transported across any given cell, but is then trapped to remain in that
cell for a while until molecular di!usion allows it to leak across the boundary to an adjacent cell.
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Fig. 2. Contour plot of stream function t
#%--

(x, y) (62) of cellular #ow (from [210]).

The communication of the passive scalar "eld between cells is the rate-limiting process deter-
mining the e!ective di!usivity, and this #ux is determined by the sharp gradient of the
passive scalar "eld formed in a thin layer (with width &Pe~1@2) near the separatrices between the
cells. The common conclusion of all the matched asymptotic expansions [67,260,287,294,303] is
that, in the limit of large PeH clet number, the e!ective di!usivity matrix is isotropic with diagonal
entries scaling as Pe1@2, though there is some slight disagreement as to the precise value of the
prefactor of the scaling law [260,287,294,303]. The predicted asymptotic Pe1@2 scaling of the
e!ective di!usivity was later rigorously con"rmed by Fannjiang and Papanicoloau [97,99]
through the use of variational principles within the framework of homogenization theory (see
Paragraph 2.1.4.2).

This implies in particular that steady cellular #ows are neither maximally di!usive nor minimally
di!usive. The reason they are not maximally di!usive is quite apparent; there are no open channels,
and molecular di!usion is crucially relevant for the tracer to hop from one cell to the next. But the
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streamline barrier between the cells is not of the same blocking character as in Fig. 1 for a shear
#ow with a transverse cross sweep. Only a single streamline separates the two cells in a cellular
#ow, and the tracer must only move an in"nitesimal amount across it before it can be carried
a great distance by the convection of the neighboring cell. By contrast, a tracer moving in"nitesimal
amounts across the streamlines in Fig. 1 gets no help from the #ow itself in making further
headway. This helps explain why the e!ective di!usion in the cellular #ow is more than minimally
enhanced. But molecular di!usion is clearly still a facilitator, rather than a disruptor, of transport
in a steady cellular #ow, and this is re#ected in the fact that the dimensionalized e!ective di!usivity
is directly proportional to the square root of the molecular di!usion coe$cient.

McCarty and Hortshemke [226] investigated the e!ective di!usivity of the passive
scalar "eld in the cellular #ow (62) at "nite PeH clet numbers to ascertain the range of validity of
the asymptotic Pe1@2 scaling law and the corrections thereto. These authors computed the
homogenized e!ective di!usivity through a "nite mode Fourier truncation of the cell problem
(16). They "nd that the Pe1@2 scaling is well satis"ed for Pe'500, with a leading order correction
of magnitude O(Pe1@3), in accordance with an earlier theoretical estimate [287]. Similar con-
clusions were reached by Biferale et al. [40] through other numerical approximations for the
homogenized di!usivity; we discuss these further in Section 2.2.5 below. Tracer transport in the
steady cellular #ow (62) at "nite PeH clet number was numerically studied in a quite di!erent way
by Rosenbluth et al. [287] and Biferale et al. [40] using direct Monte Carlo simulations; see
Paragraph 2.3.2.1 below.

Solomon and Gollub [302] experimentally measured the transport rates of dyes and latex
spheres in a laboratory Rayleigh}BeH nard steady convection cell with a #ow pattern similar to
Eqs. (62a) and (62b). They found e!ective di!usivities in general accord with the high PeH clet
number theoretical predictions for 103[Pe[107.

In addition to the studies of the steady cellular #ow (62), there are also a number of theoretical
and numerical investigations of various periodic modi"cations of it which elucidate other types of
transport mechanisms. We discuss brie#y three such lines of inquiry.

2.2.3.1. Childress}Soward -ows. A useful one-parameter family of steady two-dimensional #ows
which interpolate between a shear #ow and a cellular #ow were introduced and analyzed by
Childress and Soward [68]. The stream functions t(e)

CS
(x, y) of this `Childress}Sowarda family of

#ows is de"ned as

t(e)
CS

(x, y)"sin(2px) sin(2py)#e cos(2px) cos(2py) , (63)

with the parameter e chosen from the range 04e41. For e"0, we recover the steady cellular
#ow (62), while for e"1, the Childress}Soward #ow is a shear #ow directed parallel to the vector
(1,1)s. For 0(e(1, the #ow takes the form of a mixture of `cat's eyea vortices and open channels
parallel to (1,1)s on the whole (Fig. 3). As e increases, the width of the channels increase at the
expense of the cat's eyes. Inspection of the streamline structure of the Childress}Soward #ows with
0(e(1 suggests that tracer motion should be easy along open channels in the (1,1)s direction,
but must work against streamline blocking in the (1,!1)s direction. Based upon our discussion in
Paragraph 2.1.4.1, we may therefore expect that di!usion is maximally enhanced along any
direction with a nonzero component along the open channels, but only minimally enhanced in the
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Fig. 3. Contour plot of stream function t(e)
CS

(x, y) of Childress}Soward #ow (63) with e"0.5 (from [231]).

orthogonal, blocked direction. We may therefore hypothesize for 0(e(1 the high PeH clet number
scalings

lim
P%?=

eL 'KM ' eL&O(Pe2) for eLO(1/J2)C
1

!1D ,

lim
P%?=

eL 'KM ' eL&O(1) for eL"(1/J2) C
1

!1D .

(64)

An elaborate boundary layer analysis by Childress and Soward [68] produces the same predictions
with speci"c values for the scaling prefactors, and Fannjiang and Papanicoloau [97] recover the
general scaling relations (64) through variational methods.
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Fig. 4. Log}log plot of enhanced di!usion coe$cient KM
xx

versus Pe for Childress}Soward #ows (63) (from [210]). Upper
curve: e"0.9, middle curve: e"0.5, lower curve: e"0. Also shown is a line with slope 2 for reference.

Numerical computation [210] of the homogenized e!ective di!usivity matrix con"rm the
maximally enhanced di!usion along the x direction when 0(e(1. The e!ective di!usivity for
Childress}Soward #ows with e"0, 0.2, and 0.5 are plotted in Fig. 4; the contrast of the maximally
enhanced di!usion (KM

xx
&O(Pe2)) for eO0 with the KM

xx
&O(Pe1@2) scaling for the cellular #ow

e"0 is evident.
Crisanti et al. [77] investigated a family of #ows with the same essential features of the

Childress}Soward #ows (63), and predicted the same kind of high PeH clet number behavior of the
e!ective di!usivity through intuitive scaling arguments. These predictions were supported by
Monte Carlo numerical simulations [77].

We will use the Childress}Soward #ows in Section 2.2.4 to illustrate some of the dramatic e!ects
which the addition of a constant mean sweep to a periodic velocity "eld can cause.

2.2.3.2. Checkerboard yows. Fannjiang and Papanicoloau [97] considered a `checkerboard #owa
variation of the steady cellular #ow (62) in which the #ow is active only in every other cell, so that
transport is dominated by passage through the corners of diagonally adjacent cells. Through the
use of variational principles, they rigorously show that the e!ective di!usivity can have a high
PeH clet number asymptotic form lim

P%?=
EKM E&O(Pea), with any 1

2
4a41, by further modifying

the checkerboard #ow so that the corners are suitably widened.

2.2.3.3. Temporally yuctuating cellular yows. A few interesting studies of the e!ective di!usivity
have been undertaken concerning cellular #ows with periodic temporal #uctuations. Knobloch and
Merry"eld [165] numerically investigated the e!ective di!usion of a passive scalar "eld in
a standing wave obtained by multiplying the cellular #ow (62) by a periodic time factor cos ut. The
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e!ective di!usivity was found to decrease as a function of the temporal frequency u. This
phenomenon was also manifested in the analytical formula (55) for the e!ective di!usivity in a shear
#ow with periodic temporal variations, and is due to the diminishing persistence of tracer motion
as the temporal oscillations become more rapid. Knobloch and Merry"eld [165] also examined the
e!ective di!usivity in a travelling wave with stream function

t
TW

(x, y, t)"sin(2p(x!;t))sin(2py) ,

where ; is the phase speed. Note that the velocity "eld averaged over a temporal period still
vanishes everywhere. Through some numerical experiments, it was found in [165] that tracer
transport is faster in a travelling wave than in a standing wave. This was attributed to the action of
the Stokes drift of the travelling wave, and to the trapping and dragging of particles within the
cores of the moving cells. Note, however, that there is no long-term net drift of the tracer along any
direction [165].

Another interesting question is how tracer transport is modi"ed when a periodic time-dependent
perturbation is added to the steady cellular #ow (62). Solomon and Gollub [301] measured how
the e!ective di!usivity of the dyes and latex spheres in their laboratory convection cells changes
when the Rayleigh number is increased to a point at which the steady cellular #ow becomes
unstable via a Hopf bifurcation to a temporally periodic oscillation. They found the e!ective
di!usivity to be enhanced by several orders of magnitude over that for a steady cellular #ow, and
attributed this increase to the chaotic transport of tracers across the cellular boundaries due to the
temporal #uctuations. Such a conclusion was supported by various numerical computations of the
homogenized di!usivity in a simple model by Biferale et al. [40]. They found that the (dimen-
sionalized) e!ective di!usivity is independent of molecular di!usion at large PeH clet number,
consistent with the notion that chaotic advection is the dominant transport mechanism.

2.2.4. Ewects of constant mean sweep on transport in steady periodic yow
We next consider the dramatic and subtle e!ects which a constant mean #ow can have on

the e!ective di!usivity of a periodic #ow, with particular attention to the special class of
Childress}Soward #ows (63) discussed in Paragraph 2.2.3.1. Our discussion draws primarily from
the results and ideas in the original study by McLaughlin and the "rst author [210]. We "rst
formulate some general mathematically rigorous criteria to decide when the addition of a mean
#ow to a two-dimensional, steady, periodic #ow will give rise to maximal or minimal di!usivity.
Roughly speaking for the moment, a mean #ow V with rationally related components will
`genericallya give rise to maximally enhanced di!usion along all directions other than those
perpendicular to V, whereas a mean #ow with components forming an irrational ratio will create
minimally enhanced di!usion along all directions eL if there are no stagnation points in the #ow
[210]. Through numerical evaluation of the e!ective di!usivity, we next demonstrate that this
sensitive dependence of the large PeH clet number asymptotics of the e!ective di!usivity on the ratio
of the components of the mean #ow and other features manifests itself clearly at accessibly large but
"nite PeH clet numbers. The numerical experiments moreover reveal some striking crossover phe-
nomena for the behavior of the e!ective di!usivity as a function of Pe which re#ect the competing
in#uences of various #ow qualities suggested by the mathematical asymptotic theory [210]. All
these phenomena indicate subtle, complex, and mathematically rigorous behavior for eddy di!us-
ivity modelling in such #ow "elds.
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2.2.4.1. Conditions for maximal or minimal enhanced diwusion in presence of constant mean sweep. In
Paragraph 2.1.4.1, we stated general conditions for maximally enhanced and minimally enhanced
di!usion which can be deduced from the Stieltjes integral representation of the e!ective di!usivity
[39]. In [210], some rigorous corollaries of these conditions were derived which provide some
further general insights into how the large PeH clet number behavior of the e!ective di!usivity of
a two dimensional, steady, periodic #ow

*(x)"*(x, y)"C
v
x
(x, y)

v
y
(x, y)D

is a!ected by the presence of a constant mean #ow (sweep)

V"C
<

x
<

y
D .

These results were later rederived in slightly di!erent form in [97], using variational principles
mentioned in Paragraph 2.1.4.2.

We consider separately the cases where the ratio of the components of the mean sweep <
x
/<

y
(or its inverse) is rational and irrational.

E+ect of a mean sweep with rationally related coe.cients. If the constant mean #ow has rationally
related components, then the e!ective di!usivity is maximally enhanced in all directions eL with
V ' eLO0, provided that there exists a real number j and a positive integer p so that:

f j<
x

and j<
y
are each integers, and

f PT2

e~2p*j(Vyx~Vxy)tp(x, y) dx dyO0 , (65)

where t(x, y) is the stream function corresponding to the velocity "eld, i.e. v
x
"Rt/Ry and

v
y
"!Rt/Rx [210].

The e!ective di!usion is always minimally enhanced in the direction eL perpendicular to the mean
#ow V when it has rationally related components [97].

The technical condition (65) is clearly satis"ed by `mosta #ows, with the signi"cant exception
of shear #ows aligned perpendicularly to V. In the generic case, therefore, a mean sweep
with rationally related coe$cients will induce maximally enhanced di!usion in all directions
other than the one perpendicular to itself, along which di!usion will instead be minimally
enhanced. Shear #ows directed perpendicularly to the mean sweep fail to adhere to this para-
digm quite simply because they have no velocity component parallel to the mean sweep, and
therefore cannot induce any additional di!usion in this direction. We will return below to discuss
crossover e!ects in the e!ective di!usivity produced by #ows which are small perturbations of
shear #ows.
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It is shown in [210] that the condition (65) is satis"ed for the family of Childress}Soward #ows
(63) described in Paragraph 2.2.3.1, provided that 04e(1. Recall that for e"1, the
Childress}Soward #ow degenerates to a shear #ow; the e!ect of the addition of a constant mean
sweep for this case was discussed in Paragraph 2.2.1.2. We now discuss the e!ects of the addition of
a mean sweep with rationally related components to Childress}Soward #ows in the parameter
range 04e(1, for which the theorem stated above can be applied.

The special value e"0 corresponds to a cellular #ow which gave rise to an e!ective di!usivity
scaling at large PeH clet number as Pe1@2 in all directions, when no mean #ow is present. The addition
of a mean sweep with rationally related coe$cients however dramatically changes the large PeH clet
number asymptotics: the e!ective di!usivity is now maximal, scaling as Pe2, in all directions eL other
than the one perpendicular to V, along which it is bounded in Pe. The intuitive reason for this
change is that the mean #ow has opened up channels which facilitate transport parallel to itself, but
which block transport in the perpendicular direction [304]. The rational relation between the
components of the mean sweep V is, however, critical to this conclusion, as we shall explain below
when we consider mean sweeps V with irrationally related components.

For 0(e(1, the Childress}Soward #ow without a mean sweep has a mixture of open channels
and cats-eye trapping regions, and asymptotic analysis indicates maximally enhanced di!usion
along all directions except orthogonally to the channel direction, along which the di!usion is
minimally enhanced. The addition of a mean sweep maintains the generally maximally di!usive
character of the #ow, but shifts the direction of minimal di!usivity to be orthogonal to the mean
sweep V, rather than orthogonal to the direction of the original channels (in the absence of the
mean sweep). The change in the streamline structure for various Childress}Soward #ows under the
addition of a mean sweep is graphically illustrated in [210].

E+ect of a mean sweep with irrationally related coe.cients. By contrast to the generally maximally
enhanced di!usion promoted by the presence of a mean sweep with rationally related components,
we have the following result for the case of a mean sweep with irrationally related components
[210]:

If the ratio<
x
/<

y
(or its inverse) is irrational, and the total #ow has no stagnation points (that is,

DV#*(x, y)D vanishes nowhere), then no direction eL is maximally di!usive. Moreover, if the
irrational ratio <

x
/<

y
(or its inverse) can be normally approximated by rationals, then the

e!ective di!usion is only minimally enhanced in all directions.

The proof of this statement is given in [210], and relies on Kolmogorov's theorem for dynamical
systems on the torus which permits a convenient global change of coordinates ([297], Ch. 11). The
number theoretic property of an irrational number being `normally approximateda by rationals is
discussed in ([297], p. 95). It su$ces for our present purposes merely to mention that the set of
irrational numbers having this property has full Lebesgue measure, i.e. almost every irrational
number has the normal approximation property.

It is readily checked that the above statement can be applied to Childress}Soward #ows,
provided that the mean sweep with irrationally related components is strong enough to preclude
stagnation points. We therefore have for these #ows (and in fact, quite generically) a very sensitive
dependence of the e!ective di!usivity on the ratio of the components of the mean sweep. A rational
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ratio implies maximally enhanced di!usion in almost all directions, whereas an irrational ratio
usually implies minimally enhanced di!usion in all directions (provided there are no stagnation
points). In particular, while the e!ective di!usivity for the cellular #ow described in Section 2.2.3
scales at high PeH clet number as Pe1@2, the addition of a mean #ow with rationally related
coe$cients will further enhance di!usion with Pe2 scaling in almost all directions, whereas the
addition of a su$ciently strong mean #ow with irrationally related coe$cients will usually interfere
with the enhanced transport mechanism of the cellular #ow, and limit the e!ective di!usivity to
a "nite constant no matter how large Pe becomes.

Similar results were obtained by Koch et al. [168] and Mauri [224] in asymptotic computations
for the special case of a #ow drawn by a large-scale pressure gradient through a periodic array of
small spheres, and by Soward and Childress [304] for the case of a weak mean sweep past a steady
cellular #ow (62). Golden, Goldstein, and Lebowitz [125] found an analogous phenomenon in the
di!usion of a particle through a oscillatory potential with two characteristic wavelengths; the
e!ective di!usivity takes di!erent values depending on whether the ratio of the wavelengths is
rational or irrational.

An intuitive reason to understand why a mean sweep with rational ratios generally produces
much more e!ective transport than mean sweeps with irrational ratios is that the former can set up
resonant open channels of "nite width extending forever periodically in a given direction. The
addition of a mean #ow with irrationally related components, by contrast, gives rise to an aperiodic
total stream function with "ne structures which will not support these clean open channels [304].
This explains, in a heuristic way, why one should not generally expect maximally enhanced
di!usion when the mean sweep has irrationally related components, but falls short of explaining
why the di!usion should be so inhibited as to be only minimally enhanced. Some mechanism other
than streamline blocking must be playing an active role in this regard. It may possibly be related to
a dense sampling of the period cell by every streamline which leads to a rapid averaging over the
mean zero velocity "eld [168]. It would be interesting to concretely identify and clarify the relevant
mechanism producing minimally enhanced di!usion in this situation.

2.2.4.2. Numerical evaluations of ewective diwusivity at large but xnite PeH clet number. The math-
ematical theorems presented above concerning the addition of a mean sweep to a periodic #ow
describe the asymptotic scaling of the e!ective di!usivity in the limit of large PeH clet number. They
neither provide a numerical value for the prefactor in the scaling law, nor do they designate how
large the PeH clet number must actually be for these asymptotic scalings to be observed. Such
questions generally require speci"c computation through either numerical solution of the cell
problem (33) or Monte Carlo simulations of the tracer motion (see Section 2.3.2). We describe here
some numerical computations of the enhanced di!usivity for certain Childress}Soward #ows with
mean sweep which are suggested by the asymptotic mathematical theory to display potentially
interesting `crossovera behavior at "nite PeH clet number. These computations, reported in [210],
solve the cell problem (33) using a "nite Fourier mode truncation scheme similar to the one used in
[226].

Perturbed shear -ow with transverse cross sweep: We recall that the rigorous mathematical
theory proceeding from the Stieltjes integral representation stated that the addition of a mean #ow
with rationally related components to a Childress}Soward #ow (63) with 04e(1 produces
maximally enhanced di!usion in all directions with eL 'VO0. On the other hand for e"1, the
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Fig. 5. Contour plot of stream function t(e)
CS

(x, y) of Childress}Soward #ow (63) with e"0.9 (from [210]).

Childress}Soward #ow reduces to a shear #ow parallel to the vector (1, 1)s, and we know from
Paragraph 2.2.1.2 that the addition of a mean sweep in any other direction will produce minimally
enhanced di!usion in all directions. Therefore, in particular, the addition of a mean #ow parallel to
(!1, 1)s will produce maximally enhanced di!usion for Childress}Soward #ows with 04e(1,
but only minimally enhanced di!usion for the limiting shear #ow case e"1. This motivates a study
of how the enhanced di!usivity varies at "nite PeH clet number when e is slightly below 1.

We therefore choose a Childress}Soward #ow with e"0.9, which, in the absence of any mean
#ow, has the structure of a perturbed shear #ow, with long and narrow cat's eyes interspersed
between wide channels (see Fig. 5). For comparison and contrast, we present in Fig. 6 the
numerical computations for the enhanced di!usivity along the x direction, KM

xx
, which results when

the mean #ow V"(2, 2)s or V"(!2, 2)s is added. In both situations, the asymptotic theory
predicts maximally enhanced di!usion (lim

P%?=
KM

xx
&O(Pe2)), and this is con"rmed by the

numerical computations, but a substantial di!erence between the two cases is manifest at "nite
PeH clet number.
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Fig. 6. Log}log plot of enhanced di!usion coe$cient KM
xx

versus Pe for Childress}Soward #ow (63) with e"0.9 (from
[210]). Upper curve: mean #ow V"(2, 2)s, lower curve: V"(!2, 2)s. Also shown is a line with slope 2 for reference.

In the case V"(2, 2)s, the mean #ow is aligned parallel to the overall shearing direction, and has
almost no e!ect on the enhanced di!usivity of the #ow. (Compare with the e!ective di!usivity
computed for this #ow in the absence of any mean #ow in Fig. 4.) The second case, in which the
mean sweep is directed orthogonally to the shearing direction, exhibits instead two distinct scaling
crossovers in the plot of lnKM

xx
vs. lnPe. For small Pe, the curve has slope 2, a general consequence

of the Stieltjes integral representation (39) for arbitrary periodic #ows [12]. As Pe increases
through the range 10 to 103, the enhanced di!usivity temporarily plateaus to a constant level, then
"nally turns back to a quadratic rate of growth. The intermediate regime of constancy of KM

xx
is

clearly attributable to the presence of the mean sweep transverse to the shearing direction. In fact,
one may infer that for Pe[103, the tracer di!usion behaves in the same way as if the velocity "eld
were a superposition of a shear #ow (e"1) with a transverse cross sweep. The enhanced di!usivity
temporarily saturates at a "nite level in accordance with the minimal enhancement of di!usion in
such a #ow. The reason why the perturbation to the shear #ow (i.e. the di!erence of e from 1) may
not yet be noticable is that the "niteness of the PeH clet number implies a su$cient amount of
molecular di!usion which could blur out the sensitivity of the tracer to the rather small-amplitude
deviations to the shear #ow. For PeZ103, the departure of *(x) from a parallel shear #ow begins to
be felt, and the enhanced di!usivity correspondingly turns over to a maximally di!usive character.
The association of the intermediate plateau regime 10[Pe[103 with a regime in which the shear
#ow plus transverse sweep dominates the e!ects of the eO1 perturbations is also borne out by
a computation of the eigenvectors of the enhanced di!usivity matrix [210]. Based on this numerical
evidence and the rigorous asymptotic theory, we can conjecture that as e61, the intermediate
plateau regime in the plot of lnKM

xx
vs. lnPe extends ever further to the right, pushing the transition

to the ultimate KM
xx
&O(Pe2) growth stage to ever higher PeH clet number.
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The present study of the e!ective di!usivity in a perturbed shear #ow with transverse cross sweep
exempli"es the symbiotic interaction between mathematical theory, physical intuition, and numer-
ical computations. The mathematical theory furnished some general asymptotic statements,
which left open some details concerning the behavior of the e!ective di!usivity at "nite PeH clet
number, but brought out some of the essential physical features of the #ow which determine how
e!ectively di!usion is enhanced. These considerations suggested some illustrative problems and
questions to address numerically, and we thereby uncovered some interesting "nite PeH clet number
crossover behavior which is beyond the reach of the asymptotic theory. On the other hand, the
asymptotic theory plays a crucial role in checking the inferences we make from numerical
simulations. If we had only computed the enhanced di!usivity up to Pe"100, we would have
missed the second transition in the curve in Fig. 6 corresponding to V"(!2, 2)s. The empirical
evidence alone might misleadingly suggest that the enhanced di!usivity had reached a permanent
"nite limit, but the rigorous asymptotic theory would inform us that this could not possibly be the
case, and that we would "nd another transition if we pushed our computations to higher PeH clet
number.

Contrast between mean sweeps with rational and irrational ratio of components: One particularly
intriguing conclusion from the rigorous asymptotic theory is that the e!ective di!usivity can
display diametrically opposite behavior, i.e. minimally or maximally enhanced di!usion in most
directions, depending on whether a mean #ow with rationally or irrationally related components is
superposed. This is, taken at face value, a statement applicable only at enormously large PeH clet
number, since it is clear the e!ective di!usivity at any "nite but large PeH clet number cannot be
much a!ected by an in"nitesimal shift of the mean #ow between rational and irrational ratios.
Nonetheless, we understood above that this asymptotic statement had some apparent physical
content, in that mean sweeps with rationally related components can be expected to open more
e$cient channels of rapid transport than mean #ows with irrationally related components. Clearly,
the practical issue suggested by both the asymptotic theory and this physical intuition is whether
there can be a strong di!erence at "nite PeH clet number between the e!ective di!usivities when the
ratio of the components of a mean #ow pointing in a general direction is well approximated or is
not well approximated by a low-order rational number (one with small integers in the numerator
and denominator) [304].

This question was strikingly answered in the a$rmative by [210] using a Childress}Soward #ow
(63) with e"0.9, and comparing the e!ects of two di!erent mean sweeps, both generally transverse
to the overall shearing direction. The "rst mean sweep is de"ned V"(7.1,!7.1)s, which clearly has
a low order rational ratio (!1) of components. The tracer transport in this case is guaranteed by
the rigorous asymptotic theory to be maximally di!usive at large PeH clet numbers, and the
numerical simulation results presented as the upper curve in Fig. 7 con"rm this behavior. The
enhanced di!usivity in this case exhibits a crossover at intermediate PeH clet numbers 1[Pe[10 in
just the same way as the same Childress}Soward #ow with rationally related mean sweep
V"(!2, 2)s which we discussed following Fig. 6. The reason for this crossover is that the
perturbations to the shear #ow play a subdominant role to the gross shear plus cross sweep
structure until PeH clet number is su$ciently large.

The enhanced di!usivity was next computed for a mean sweep V"(7.14142, 7.1)s, which has the
same general direction as the "rst mean sweep, but is clearly not well approximated by any
low-order rational. We therefore expect the enhanced di!usivity to behave for accessibly large
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Fig. 7. Log}log plot of enhanced di!usion coe$cient KM
xx

versus Pe for Childress}Soward #ow (63) with e"0.9 (from
[210]). Upper curve: mean #ow V"(7.1,!7.1)s, lower curve: V"(7.14142,!7.1)s. Also shown is a line with slope 2 for
reference.

values of Pe as if the mean #ow had irrationally related components. Since the #ow is readily shown
to have no stagnation points, the mathematical theory predicts that the di!usivity should be
only minimally enhanced for V"(7.14142, 7.1)s, in stark contrast to the maximally enhanced
di!usion for V"(7.1, 7.1)s. This distinction is clearly manifested by the numerical computations in
Fig. 7 at "nite but large values of the PeH clet number. The enhanced di!usivity behave identically
for the two mean #ows up to Pe&103, at which point the #ow with irrationally related mean
sweep exhibits a second crossover to a minimally di!usive regime in which the enhanced di!usivity
remains constant at least up to Pe&105. This crossover may clearly be interpreted as a fairly
sudden onset of sensitivity of the tracer transport to the "ne structure of the #ow created by the
departure of the mean sweep V"(7.14142, 7.1)s from a low-order rational. For smaller values of
PeH clet number, the molecular di!usion is su$ciently strong to coarse-grain the discrepancy
between the two mean sweeps, but at larger values of PeH clet number, the di!erences in the
streamline structure are acutely felt by the tracer [304]. Similar crossover behavior is also exhibited
in approximate analytical formulas for the enhanced di!usivity in #ow drawn past a cubic array of
small spheres [168].

Role of stagnation points: Recall that the theorem guaranteeing that mean #ows with irrationally
related components produce minimally enhanced di!usion required the absence of stagnation
points of the total #ow. This condition was needed in the proof of [210] to employ a theorem of
Kolmogorov to e!ect a helpful change of coordinates. To examine whether this condition might be
truly necessary or is just an artifact of the method of proof, those authors conducted some
numerical studies of the e!ective di!usivity of a tracer in a #ow with an irrationally related mean
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sweep and stagnation points. They found that the presence of stagnation points did a!ect the large
PeH clet number behavior of the tracer transport so that it no longer had a minimally di!usive
character [210]. Some discussion on the role of stagnation points in tracer transport also may be
found in [97].

General implications: The examples presented above alert us to be cautious in inferring asymp-
totic scaling behavior of the e!ective di!usivity from computations at "nite PeH clet number because
multiple crossovers can and do occur. They also explicitly demonstrate how the e!ective di!usivity
can truly be exquisitively sensitive to "ne details of the #ow, particularly at high PeH clet number. For
instance, the two mean sweeps just considered di!er by less than one percent, yet the enhanced
di!usivity which results di!ers by orders of magnitude for moderately large values of Pe (see Fig. 7).
We will see in Paragraph 2.3.2.1 that these di!erences are moreover manifested on practical, "nite
time scales [231]. These examples raise important concerns for the modelling of the e!ective
di!usivity of a #ow by nonrigorous, approximate, or ad hoc arguments, and provide simple,
natural, and instructive test problems which can help determine whether these approximate
theories are rich enough to capture the substantial variations in e!ective di!usivity produced by
subtle changes in the #ow.

2.2.5. Other spatio-temporal periodic -ows
We have focused our above discussion of homogenized di!usivity to #ows of shear and cellular

type, but quite general periodic #ows can be studied through a concerted use of numerical methods
with the mathematical tools described in Paragraph 2.1.4.1. Such an approach is exempli"ed in the
work of Biferale et al. [40], in which they compute the e!ective di!usivity of tracers in various
interesting kinds of #ows through three di!erent numerical approaches. One is the numerical
solution of the cell problem (14) through a conjugate gradient algorithm (rather than through the
"nite mode Fourier truncation method adopted in [210,226]. The second is through the construc-
tion of suitable PadeH approximants from the numerical computation of a "nite number of terms of
a low PeH clet number expansion of the e!ective di!usivity. As described in [9,12] and Paragraph
2.1.4.1, these PadeH approximants can be used to bound the e!ective di!usivity rigorously and
tightly over "nite ranges of PeH clet number, provided the coe$cients of the low PeH clet number
expansion are computed with su$cient precision [40]. Finally, the e!ective di!usivity is computed
through direct Monte Carlo simulations of the motion of a large number of tracers, which we will
discuss at further length in Section 2.3.2.

For all #ows considered, the e!ective di!usivities computed by the various methods agreed well
over several decades of PeH clet number. The computation by PadeH approximants has some peculiar
advantages and disadvantages. On the one hand, only a "nite number of quantities must be
computed to obtain rigorous bounds for all PeH clet number, whereas the other approaches can
compute the e!ective di!usivity for only one PeH clet number at a time. Unfortunately, it is di$cult
to obtain good numerical precision with PadeH approximants at high PeH clet number [40], and this
practically restricts the method to moderate and low PeH clet number (Pe[O(102)). The numerical
solution of the homogenization cell problem (14) was found to be the most e$cient means of
computing the e!ective di!usivity at large PeH clet number. One important consequence of the good
agreement between this computation and those of the Monte Carlo simulations is that the
asymptotic predictions of homogenization theory are realized on practical, "nite time scales. We
return to this point in Section 2.3.
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Besides the steady cellular #ow and its time-dependent perturbation mentioned in Section 2.2.3,
Biferale et al. [40] considered a quite di!erent, steady, three-dimensional `ABC #owa:

*(x)"*
ABC

(x, y, z)"C
v
x
(y, z)

v
y
(x, z)

v
z
(x, y) D ,

v
x
(y, z)"sin z#cos y ,

v
y
(x, z)"sinx#cos z ,

v
z
(x, y)"sin y#cos x .

This ABC #ow is an exact steady solution of Euler's equations. The streamlines form regular open
tubes surrounded by chaotic regions. The transport is expected to be dominated by the open tubes,
producing maximally enhanced di!usion, and this is veri"ed numerically [40].

2.3. Tracer transport in periodic yows at xnite times

The homogenization theory presented in Sections 2.1 and 2.2 for the e!ective di!usion of
a passive scalar "eld by a periodic velocity "eld is an asymptotic theory guaranteed to be valid only
at su$ciently large space and long time scales. In practical applications, it is important to know the
time scale on which this asymptotic e!ective di!usive behavior is attained and the nature of the
corrections to the di!usive behavior over "nite intervals of time. We now address these questions
by computing the statistical behavior of a single tracer in several classes of periodic #ows at "nite
times.

First, we return to the periodic shear #ows with constant or zero cross sweep, which we
introduced in Section 2.2.1. Due to the special geometry of these #ows, the equations of motion for
tracers can be exactly integrated, and exact formulas for the moments of the tracer displacement
can be derived for arbitrary time. From these, we can directly read o! the rate of relaxation to the
homogenized, long-time di!usive behavior as well as the character of the "nite-time corrections.
We will "nd that the homogenized description is accurate after a "xed time of order unity
(nondimensionalized with respect to molecular di!usion scales as in Section 2.1.1), irrespective of
PeH clet number [230].

For general periodic #ows, the tracer equations are too di$cult to integrate exactly. The passive
scalar evolution over pre-homogenized time scales for some special #ows other than shear #ows
have been addressed through various approximate analytical techniques. As examples, we refer the
reader in this regard to the "nite time analysis by Young et al. [346] (and also [47]) for a high
PeH clet number steady cellular #ow, and to Camassa and Wiggins' [52] treatment of tracer
advection in a temporally oscillating cell #ow by dynamical systems techniques which neglect
molecular di!usion. Methods such as these rely upon a su$ciently simple geometry of the
streamlines, as well as other asymptotic or ad hoc assumptions.

An alternative and e!ective way to study the motion of a tracer with quantitative accuracy over
"nite time intervals in a general periodic #ow with complex geometry is by careful Monte Carlo
numerical simulations. A Monte Carlo simulation is simply an integration of the particle trajectory
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equations for a large number of particles undergoing independent random molecular di!usion in
addition to advection by the #ow. Averages computed from this "nite sample are then used to
estimate statistics of the full ensemble, such as the mean-square tracer displacmeent. We report on
several Monte Carlo simulations [40,231] which show very good quantitative agreement with the
predictions of homogenization theory after an initial transient stage extending at most over
a (nondimensionalized) time interval of order unity. In particular, the subtle crossover behaviors
predicted by homogenization theory for the class of Childress}Soward #ows with a mean sweep in
Section 2.2.4 are explicitly manifested over "nite time intervals. This underscores the care which is
required in formulating e!ective di!usivity models for practical applications, even in the relatively
simple case of a periodic velocity "eld varying on spatial scales well separated from the macroscale.
On the positive side, the good agreement between homogenization theory and the Monte Carlo
simulations indicate that the e!ective di!usivity of tracers in a periodic #ow on practical time scales
can be computed through the numerical solution of a single cell problem (such as Eq. (33)), rather
than through the generally more expensive simulation of the motion of a large number of tracers [40].

2.3.1. Periodic sinusoidal shear yow
We mentioned in Section 2.2.1 that many nontrivial aspects of passive scalar transport can be

illuminated through explicit formulas within the class of shear #ows. Here, we present exact
formulas for the evolution at all times of the "rst and second spatial moments of a passive scalar
"eld immersed in a steady, periodic shear #ow with constant (possibly zero) cross sweep,

*(x)"*(x, y)"C
wN

v(x)D .

These formulas for the behavior of the passive scalar "eld momentsat "nite times will be compared
to the predictions of homogenization theory worked out in Section 2.2.1.

We shall adopt a tracer-centered perspective to complement the "eld-centered perspective
emphasized so far in Section 2. These are related in that the probability distribution function
(PDF) for a single tracer in an incompressible velocity "eld obeys the advection}di!usion equation
with initial data delta-concentrated at the initial tracer location; see the discussion in Section 1.
The location (X(t),>(t)) at time t of a single tracer (2) originating from (x

0
,y

0
) in the presence of

a periodic shear #ow with constant cross sweep obeys the following nondimensionalized stochastic
equations of motion:

dX(t)"PewN dt#J2 d=
x
(t), X(t"0)"x

0
,

d>(t)"Pe v(X(t)) dt#J2d=
y
(t), >(t"0)"y

0
.

(66)

The random increments d=
x
(t) and d=

y
(t) are di!erentials of independent Brownian motions

[112,257] arising from molecular di!usion. Brownian motion has the following formal properties
(for=(t)"=

x
(t) or =(t)"=

y
(t)):

f =(t) is a continuous random function.
f =(t)!=(s) is a Gaussian random variable with mean zero and variance Dt!sD.
f Increments of=(t) over disjoint time intervals are independent of one another.
f =(t"0)"0.
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Due to the spatially decoupled dynamics induced by a shear #ow, the stochastic trajectory
equations (66) can be integrated successively by quadrature:

X(t)"x
0
#PewN t#J2=

x
(t) , (67a)

>(t)"y
0
#PeP

t

0

v(X(s)) ds#J2=
y
(t) . (67b)

Note that the tracer position is random due to the Brownian motions arising from molecular
di!usion.

Two statistics of fundamental interest are the mean displacement of the tracer,

k
X
(tDx

0
, y

0
),SX(t)!x

0
T
W

,

k
Y
(tDx

0
, y

0
),S>(t)!y

0
T
W

,
(68)

and the variance of its location,

p2
X
(tDx

0
,y

0
),S(X(t)!k

X
(t))2T

W
,

p2
Y
(tDx

0
,y

0
),S(>(t)!k

Y
(t))2T

W
.

(69)

The brackets S ) T
W

denote an averaging over the Brownian motion statistics. Because the PDF of
the tracer displacement is identical to the solution of the advection}di!usion equation with initial
data

¹
0
(x, y)"d(x!x

0
)d(y!y

0
) ,

the spatial moments of the passive scalar "eld evolving from such initial data are directly related to
the tracer statistics (68) and (69) as follows:

P
=

~=
P

=

~=

(x!x
0
)¹(x, y) dxdy"k

X
(tDx

0
, y

0
) ,

P
=

~=
P

=

~=

(y!y
0
)¹(x, y) dx dy"k

Y
(tDx

0
, y

0
) ,

(70)

P
=

~=
P

=

~=

(x!x
0
)2¹(x, y) dx dy"S(X(t)!x

0
)2T"p2

X
(tDx

0
, y

0
)#(k

X
(tDx

0
, y

0
))2 ,

P
=

~=
P

=

~=

(y!y
0
)2¹(x,y) dxdy"S(>(t)!y

0
)2T"p2

Y
(tDx

0
, y

0
)#(k

Y
(tDx

0
, y

0
))2 .

In particular, k
X
(tDx

0
, y

0
) is the mean displacement of the center of mass and p2

X
(tDx

0
, y

0
) is the

mean-square radius of a cloud of passive scalar particles initially released at (x
0
, y

0
).

The tracer motion across the shear #ow is very simple to describe: X(t) is a Gaussian random
variable with mean

k
X
(tDx

0
, y

0
)"x

0
#PewN t
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and variance

p2
X
(tDx

0
, y

0
)"2t ,

as may be checked from the fundamental properties of the Brownian motion=
x
(t).

The statistics of tracer motion along the shear direction is naturally much richer. The main
features for a periodic shear #ow can be illustrated in the simple context of a single-mode sinusoidal
shear #ow:

v(x)"sin 2px .

The shear-parallel tracer displacement in a more general periodic shear velocity "eld can be
computed in a similar manner by decomposing the shear #ow into a sum of Fourier modes,
see [230].

2.3.1.1. Mean tracer displacement along sinusoidal shear. For the single-mode case under current
consideration, the mean displacement of the tracer along the shear is given by

k
Y
(tDx

0
, y

0
)"PeP

t

0

Ssin(2pX(s))T
W

ds#S=
y
(t)T

W

"Pe P
t

0

Ssin(2p(x
0
#wN s#J2=

x
(s)))T

W
ds . (71)

The expectation in the integrand may be computed by expressing it as a complex exponential:

Ssin(2p(x
0
#wN s#J2=

x
(s)))T

W
"ISexp(2pi(x

0
#wN s#J2=

x
(s)))T

W
, (72)

where I denotes the imaginary part of the subsequent expression. The right-hand side now involves
the expectation of the exponential of a Gaussian random variable 2piZ, which can be explicitly
computed according to the following general formula [257]:

Se2p*ZT"e2p*WZXe~2p
2W(Z~WZX)2X for Gaussian Z . (73)

Evaluating Eq. (72) in this way, using the fact that=
x
(s) is a Gaussian random variable with mean

zero and variance s, substituting the result into Eq. (71), integrating the resulting complex
exponential, and taking the imaginary part of the resulting expression, we achieve the following
exact formula for the mean displacement of the tracer along the shear:

k
Y
(tDx

0
, y

0
)"Pe2

wN [cos(2px
0
)!e~4p

2tcos(2p(x
0
#PewN t))]

2p(4p2#Pe2wN 2)

#Pe
[sin(2px

0
)!e~4p

2tsin(2p(x
0
#Pe wN t))]

4p2#Pe2wN 2
. (74)

The mean displacement is essentially characterized by exponentially decaying sinusoidal #uctu-
ations. Clearly, the oscillations are induced by the sweeping of the tracer across the sinusoidal shear
#ow. Indeed, in the presence of a cross sweep wN O0 and in the absence of molecular di!usion,
tracers would simply follow the deterministic streamlines

y"y
0
#

1
2pwN

(cos(2px
0
)!cos(2px))

A.J. Majda, P.R. Kramer / Physics Reports 314 (1999) 237}574288



and forever oscillate in a regular manner. Molecular di!usion breaks up the phase coherent motion
of the tracer by pushing it randomly across di!erent streamlines, and thereby causes the periodic
component of the tracer's motion to decay exponentially. If we view k

Y
(tDx

0
, y

0
) as the mean center

of mass (along the y direction) of a cloud initially released from (x
0
, y

0
), then we can say that

molecular di!usion causes the cloud to spread out and eventually sample many period cells. The
cloud's center of mass motion along the shear will therefore decay to zero by the law of large
numbers, since the mean velocity along the shear is zero. Similar considerations apply when wN "0,
except that the coherent motion in the absence of molecular di!usion would be ballistic motion
along straight streamlines aligned parallel to the y direction.

We note that in the long-time limit, the mean tracer displacement along the shear settles down to
a constant:

lim
t?=

k
Y
(tDx

0
, y

0
)"

2p Pe sin(2px
0
)#Pe2wN cos(2px

0
)

2p(4p2#Pe2wN 2)
.

This is consistent with the above reasoning that the mean tracer velocity along the shear should
eventually vanish due to the averaging e!ects of molecular di!usion. The "nite net displacement is
determined by the accumulated transient momentum from early times where the tracer motion is
still largely coherent. Indeed, the long-time net displacement is manifestly sensitive to the initial
location x

0
of the tracer.

2.3.1.2. Variance of tracer displacement along shear. An exact formula can also be derived for

p2
Y
(tDx

0
, y

0
),S(>(t)!S>(t)T

W
)2T

W
"S(>(t)!y

0
)2T

W
!(S>(t)T

W
!y

0
)2 ,

the variance of the tracer displacement along the shearing direction. The second term in the
rightmost expression is just the square of k

Y
(tDx

0
, y

0
), which was evaluated above (see Eq. (74)). The

"rst term may be evaluated similarly, starting from Eq. (67b) and using the standard properties of
the independent Brownian motions=

x
(t) and =

y
(t):

S(>(t)!y
0
)2T

W
"2t#Pe2P

t

0
P

t

0

Ssin(2pX(s))sin(2pX(s@))T
W

dsds@

"2t#
1
2
Pe2P

t

0
P

t

0

Scos(2p(X(s)!X(s@)))!cos(2p(X(s)#X(s@)))Tds ds@

"2t#
1
2
Pe2P

t

0
P

t

0

Scos(2p(wN (s!s@)#=
x
(s)!=

x
(s@))

!cos(2p(2x
0
#wN (s#s@)#=

x
(s)#=

x
(s@)))T

W
dsds@.

The integrand in the last expression is now in the form of a di!erence of the real parts of complex
exponentials of Gaussian random variables, and may be evaluated using Eq. (73). The resulting
integrand is again a complex exponential, which may be integrated over time in a straightforward
albeit tedious manner. We "nally "nd that the variance of the tracer displacement along the shear
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may be expressed as follows:

p2
Y
(t)"2(1#KM

yy
)t#Pe2B

1
(PewN )(1!e~4p

2tcos(2pPewN t))

#Pe2B
2
(PewN ) e~4p

2t sin(2pPewN t)

#Pe2B
3
(PewN ) e~4p

2t[cos(4px
0
)!cos(2p(2x

0
#PewN t))]

#Pe2B
4
(PewN ) e~4p

2t[sin(4px
0
)!sin(2p(2x

0
#PewN t))]

#Pe2B
5
(PewN ) e~16p

2t[cos(4px
0
)!cos(4p(x

0
#PewN t))]

#Pe2B
6
(PewN ) e~16p

2t[sin(4px
0
)!sin(4p(x

0
#PewN t))]

#Pe2B
7
(PewN )[sin(2px

0
)!e~4p

2t sin(2p(x
0
#PewN t))]2

#Pe2B
8
(PewN )[cos(2px

0
)!e~4p

2t cos(2p(x
0
#PewN t))]2 , (75)

where

KM
yy
"

Pe2
2(4p2k2#Pe2wN 2)

(76)

is the enhanced di!usivity predicted by homogenization theory (cf. (52)) and each B
j

satis"es
B
j
(z)4C

j
/(1#z2) for some numerical constant C

j
independent of PeH clet number. Precise formulas

for these constants may be found in [231]. We note that the variance of the tracer displacement
consists of a sum of a linear, di!usive growth, a constant, and some decaying, oscillating terms.
Their presence may be explained in a similar way to analogous terms in the mean tracer
displacement. Another method of derivation of the mean-square displacement of a tracer in a shear
#ow with cross sweep and some numerical plots of its behavior may be found in [131].

2.3.1.3. Relaxation to asymptotic homogenization regime. Homogenization theory predicts that at
su$ciently long times, the PDF for the tracer displacement along the shear direction y will obey an
e!ective di!usion equation with e!ective di!usivity 1#KM

yy
given by Eq. (76). In conjunction with

Eq. (70), this implies that the mean of the tracer displacement along the shear, k
Y
(tDx

0
, y

0
) should

settle down to a constant (since there is no advective term in the homogenized di!usion equation),
and that its variance p2

Y
(tDx

0
, y

0
) should grow at an asymptotically linear rate

lim
t?=

p2
Y
(tDx

0
, y

0
)&2(1#KM

yy
)t .

The exact "nite-time calculations (74) and (75) are in agreement with these homogenization
asymptotic predictions. The tracer displacement departs at "nite times from the e!ective di!usion
description through some constant terms and transient, exponentially decaying, oscillatory terms.
These "nite-time corrections to the homogenized behavior do depend sensitively on initial data, in
contrast to the e!ective di!usivity KM

yy
.

An important question for applications is how much time must pass before the tracer displace-
ment is accurately described by the homogenized di!usion equation. It is readily seen from
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Eqs. (74) and (75) that for a steady, periodic shear #ow with constant or zero cross sweep, the mean
and variance of the tracer displacement relax to their homogenized limits on an order unity time
scale which is independent of Pe. Recalling our reference units for nondimensionalization
(Section 2.1.1), we conclude that for a periodic shear #ow with constant or zero cross sweep, the
homogenization theory becomes valid on a time scale comparable to that over which molecular
di!usion, acting alone, would cause an initially concentrated cloud of tracers to disperse over
several period cells. That this should be the governing time scale for the validity of the homogen-
ized equations may be understood from the fact that homogenization theory appeals to an
averaging over the periodic #uctuations of the velocity "eld. Without molecular di!usion, tracers
would forever move along neatly ordered, periodic streamlines. One must therefore wait for
molecular di!usion to bu!et the tracer across all the streamlines in a period cell before the tracer
has e!ectively sampled the velocity "eld over several period cells. We shall discuss in Paragraph
2.3.2.1 some types of periodic velocity "elds for which homogenization is achieved on faster time
scales.

2.3.2. Monte Carlo simulations over xnite times
We now discuss the statistical behavior of tracers over "nite-time intervals in more general #ows.

The general stochastic equations of motion for a tracer are, in nondimensionalized units (see
Eqs. (2a) and (2b)):

dX(t)"Pe(V#*(X(t), t)) dt#J2dW(t) , (77a)

X(t"0)"x
0

, (77b)

where W(t) is a vector-valued random process with each component an independent Brownian
motion. We showed in Section 2.3.1 how to integrate these equations in an exact closed form for
the case in which *(x, t) is a shear #ow, but this is not generally possible. Instead, Eq. (77a) can be
quantitatively studied over "nite-time intervals through Monte Carlo numerical simulations. By
this we simply mean a numerical discretization of these equations of motion, along with an arti"cial
random number generator to simulate the discretized in#uence of the random Brownian motion
term J2 dW(t) in (77a). In this way, one can numerically integrate the equations of motion (77a)
and (77b) to produce a simulation of a single random realization of a tracer trajectory. To compute
statistical quantities associated with the tracer motion, one simply performs a large number N of
simulations of the tracer trajectory MX(j)(t)NN

j/1
, using independent simulations of the Brownian

motion for each case, and then averages over the sample. For example, one can numerically
simulate the evolution of the mean-square displacement p2X(t),SDX(t)!x

0
D2T over a "nite-time

interval by computing the average

p2X,!11
(t),

1
N

N
+
j/1

DX(j)(t)!x
0
D2

over the squared-displacements of the N independent runs.
The two numerical concerns in Monte Carlo simulations are the accurate discretization of the

equations of motion (77a), (77b) and the choice of a su$ciently large sample size N to obtain
accurate statistics re#ecting the in#uence of the Brownian motion. Standard generalizations of the
Euler and Runge}Kutta schemes for the stochastic equations (77a) may be found in [163]; one
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must take care that a su$ciently small step size is chosen [231]. The random number gen-
erator must also be of su$cient quality to avoid spurious artifacts in the simulation of the
Brownian motion [230]. Other substantial numerical challenges must be faced when conducting
Monte Carlo simulations of the advection}di!usion of a tracer by a random velocity "eld with
long-range correlations; we address this problem at length in Section 6.

2.3.2.1. Realization of homogenized behavior at xnite time. Monte Carlo simulations have been
utilized by McLaughlin [231] and Biferale et al. [40] to examine the extent to which the e!ective
di!usion behavior predicted by homogenization theory describes the evolution of the mean square
tracer displacement over "nite time intervals in some interesting classes of #ows. In both of these
works, it was found that, after some transient period, the homogenized di!usivity does accurately
describe (half) the rate of growth of the mean-square tracer displacement computed from the
Monte Carlo simulations.

In particular, McLaughlin [231] showed in this way that the strong sensitivity of the e!ective
di!usivity to the rationality or irrationality of the ratio of the components of a mean sweep across
a two-dimensional steady periodic #ow (see Section 2.2.4) is a relevant e!ect at "nite times. He
considered a Childress}Soward #ow (63) with e"0.5, with two alternative mean sweeps,
V"(!15, 15) and V"(!15.5, 15). The former clearly has a lower order rational ratio of
coe$cients than the latter, so greater enhanced di!usion is expected for the former in almost all
directions. In Fig. 8, the enhanced di!usivity (along the x direction) computed by numerical
solution of the homogenization cell problem (33) and by the Monte Carlo simulations are shown to
agree to excellent accuracy. The actual de"nition used in [231] for the enhanced di!usivity as
simulated by the Monte Carlo method over "nite time is:

KM (MC)
xx

"

1
5P

10

5
A
N~1+N

j/1
(X(j)(t)!x

0
)2

2t
!1Bdt ,

where N"1000 independent realizations of the tracer paths were simulated. The initial time
interval 04t45 was excluded from the average to reduce contamination by transient e!ects.

It is evident from Fig. 8 that the slight di!erence between the mean sweeps V"(!15,15) and
V"(!15.5,15) creates an order of magnitude di!erence between the transport rate for "nite
PeH clet number Pe&102 after a "nite interval of time t&10 (in units nondimensionalized with
respect to molecular di!usion). Examination of the simulated mean-square displacement as
a function of time further revealed that the transient period of adjustment to the homogenized
behavior was very rapid, on the order t&10~2 and decreasing further as PeH clet number is
increased [231]. This may be compared with the order unity time of adjustment found for the shear
#ow with cross sweep discussed in Section 2.3.1. The di!erence is apparently due to the better
mixing properties of the Childress}Soward #ow with mean sweep; the velocity "eld cooperates with
the molecular di!usion to accelerate the rate at which a tracer fully samples a period cell and
thereby attains its ultimately homogenized behavior [231].

Monte Carlo simulations have also been utilized by Crisanti et al. [77] for #ows closely akin to
Childress}Soward #ows without mean sweep (see Paragraph 2.2.3.1). The simulated di!usivities
are found to behave in a manner consistent with maximally enhanced di!usion along the direction
of the open channels and minimally enhanced di!usion in the transverse direction where transport
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Fig. 8. Log}log plot of enhanced di!usion coe$cient KM
xx

versus Pe (from [231]). Solid curves: numerical solutions of cell
problem from homogenization theory, discrete markers: Monte Carlo simulations. Upper curve and crosses: mean sweep
(!15, 15)s, lower curve and circles: mean sweep (!15.5, 15)s.

is blocked by streamlines. Finally, we note that Rosenbluth et al. [287] employed Monte Carlo
simulations to check and extend their analytical high PeH clet number predictions for the e!ective
di!usivity of a passive scalar "eld in a cellular #ow (62), which they obtained through matched
asymptotic expansions rather than through homogenization theory.

2.4. Random yow xelds with short-range correlations

The periodic #ows we have been considering so far have a precisely ordered structure. Many
#ows in nature and in the laboratory, however, are at su$ciently high Reynolds number that
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turbulent #uctuations are strongly excited, and these impart a disordered and chaotic character to
the #ow pattern. A convenient way to approximate the complex spatio-temporal structure of such
turbulent #ows is by modelling the velocity "eld as a random function. The typical realizations
(particular random choices) of velocity "elds in such random models display a disordered structure
which is quite di$cult to achieve through deterministic models. The stochastic nature of random
velocity "eld models is also appropriate because of the unpredictability of the precise microstruc-
ture which a turbulent #ow will develop in systems where only large-scale information can be
observed or speci"ed, as is always the case in practice. We will exclusively consider random
incompressible #ows (+ ' *(x, t)"0), but will not otherwise insist that the random velocity "elds are
actual statistical solutions of the Navier}Stokes or Euler hydrodynamic equations. For reference,
we provide an appendix in Section 2.4.5 discussing some fundamental de"nitions, notations, and
facts about random functions which we will need throughout this report.

We begin our exploration of the advection of a passive scalar "eld by a random velocity "eld by
considering two large-scale, long-time rescalings which rigorously lead, in certain asymptotic
limits, to e!ective di!usion equations for the mean passive scalar "eld (averaged over the statistics
of the velocity "eld). One of these, which we discuss in Section 2.4.1, corresponds to a limit in which
the spatial scale of the velocity "eld is scaled up in proportion to the spatial scale of the passive
scalar "eld. The e!ective di!usivity in this limit is given by the relatively simple Kubo formula
[188]. Next, in Section 2.4.2, we consider the same sort of large-scale, long-time limit of a passive
scalar "eld advected by a steady random velocity "eld as we did in the context of periodic velocity
"elds in Section 2.1.2. A similar homogenized description results, provided that the velocity "eld
has su$ciently short-ranged correlations so that a strong separation can exist between the
observed macroscale and the spatial scale of the velocity "eld #uctuations [12]. Throughout
Section 3, we will explore examples of random shear #ows which have strong long-range correla-
tions which violate the conditions for the applicability of the homogenization theory, and the tracer
motion is explicitly shown in such examples to proceed superdi!usively at long times.

Stieltjes measure formulas and variational principles for the e!ective di!usivity, analogous to
those presented for periodic #ows in Section 2.1.4, will be developed for steady, homogenous
random "elds in Section 2.4.3. In Section 2.4.4, we discuss the application of the homogenization
theory to some example random #ows.

2.4.1. Kubo theory
Before presenting the homogenization theory for random velocity "elds, we consider another

type of large-scale, long-time asymptotic rescaling which also leads to an e!ective di!usion
equation, but with a much simpler formula for the e!ective di!usivity. We will express this rescaling
in terms of dimensional functions and variables.

We consider a given homogenous, stationary, mean zero, incompressible random velocity "eld
*(x, t). We rescale the passive scalar "eld to large scales and long times

¹(dI )(x, t),dI ~d¹(dI x, dI 2t) ,

with dI P0, and simultaneously rescale the length scale of the random velocity "eld to remain on
the same order as that of the passive scalar "eld:

*(dI )(x, t)"*(dI x, t) .
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This rescaling of the length scale of the velocity "eld distinguishes the present asymptotic rescaling
from that leading to homogenization theory; see Section 2.4.2 below. In particular, dI is not the ratio
between the spatial scales of the velocity and passive scalar "elds; it may rather be thought of as the
ratio between some "xed reference scale and the common scale of the velocity and passive scalar
"eld. The rescaled advection}di!usion equation reads

R¹(dI )(x, t)/Rt#dI ~1*(x, dI ~2t) '+¹(dI )(x, t)"iD¹(dI )(x, t) ,

¹(dI )(x, t"0)"¹(dI )(x) .
(78)

We now seek a simpli"ed description for the mean statistics S¹(dI )(x, t)T in the limit that dP0; angle
brackets denote a statisical average over all randomness. The general obstacle to obtaining an
e!ective equation for the mean passive scalar density is the di$culty in evaluating the average of
the nonlinear term S* '+¹T in terms of S¹T or other simple statistical objects (see Section 1). As
dI P0, however, one can hope to approximate

SdI ~1 *(x, dI ~2t) '+¹(dI )(x, t)T

accurately by accounting for the velocity "eld in some averaged way, since there is a strong
separation between the time scales characterizing the rate of change of the velocity "eld and the
passive scalar "eld. To have any hope of achieving this program, the original velocity "eld must
have some su$ciently strong decorrelation in time. In particular, *(x, t) cannot be steady or have
very long-term memory. In mathematical terminology, the velocity "eld *(x, t) must have certain
mixing properties in time [143].

Provided that the unscaled velocity "eld *(x, t) does obey certain mixing and other technical
regularity conditions, it can be shown [44,159,262] that for bounded and su$ciently smooth initial
data ¹

0
(x), the passive scalar "eld ¹(dI )(x, t) converges uniformly over "nite intervals of (rescaled)

time to a nontrivial limit

lim
dI ?0

¹(dI )(x, t)"¹M (x, t)

which obeys an e!ective di!usion equation

R¹M (x, t)/Rt"+ ' (KH+¹M (x, t)) ,

¹M (x, t"0)"¹
0
(x) , (79)

with e!ective di!usion tensor

KH"I#K
K6"0

given by the Kubo formula [188]

K
K6"0

"P
=

0

RI (0, t) dt ,

RI (x, t)"S*(x@#x, t@#t)?*(x@, t@)T . (80)

The matrix K
K6"0

is guaranteed, by general properties of correlation functions ([341], Section 4),
to be non-negative de"nite, and therefore represents an enhanced di!usivity. Note that the Kubo
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di!usivity K
K6"0

depends only the amplitude of the velocity "eld and its integrated temporal
structure; there is no dependence on the spatial structure of the random "eld *(x, t).

Kubo formally argued this result for the case of a purely time-dependent random velocity "eld
*"*(t) and no molecular di!usion in his pioneering paper [188]. In this case the spatial rescaling
of the velocity "eld is trivial, and one concludes from the above that the long-time asymptotics of
the mean passive scalar "eld in a spatially uniform velocity "eld with short-ranged temporal
correlations is, under appropriate conditions, governed by some positive e!ective di!usivity, even
in the absence of molecular di!usion. Stratonovich [313] formulated the more general result stated
above for the case of random velocity "elds with spatio-temporal #uctuations, and Khas'minskii
[159] was the "rst to provide a rigorous derivation of these asymptotics, though under somewhat
restrictive conditions on the random velocity "eld model. Later work widened the applicability of
Khas'minskii's theorem to a broader class of random velocity "elds (see [44,262], and the
references in [134]). We note these theorems are generally stated without accounting for molecular
di!usion, but their proofs can be easily extended to include it.

Note that the Kubo theory requires no fundamental restriction (other than regularity) on the
spatial structure of the velocity "eld, and thus can be applied under certain circumstances to
velocity "elds with long-range spatial correlations. It has indeed been shown [15] that a slightly
generalized form of Kubo theory describes the large-scale, long-time behavior of the mean passive
scalar "eld in a certain natural class of random velocity "eld models with qualitative features
similar to those of fully developed turbulence. We discuss this point brie#y in Paragraph 3.4.3.3.

As with homogenization theory, we must remember that Kubo theory is a long-time asymptotic
theory, and the description of the evolution of the passive scalar "eld by an e!ective di!usion is
only valid at su$ciently long times. Over "nite time intervals, the passive scalar "eld may behave in
a radically di!erent way. For example, very simple models can be formulated for which the passive
scalar "eld has an e!ectively negative di!usion over "nite time intervals (see Section 3.4.4 and
[18,131,141]). Also, Kubo theory crucially requires that the velocity "eld not have long-range
memory. Superdi!usion can result from random, purely time-dependent velocity "elds with
long-range temporal correlations [18], as we will demonstrate in Section 3.1.2.

We "nally remark that the asymptotically rescaled advection}di!usion equation (78) can also be
interpreted as describing a limit in which the correlation time of the velocity "eld is very fast
compared to the advection time scale, without any large-scale, long-time rescaling. We discuss this
perspective in Paragraph 4.1.3.1.

2.4.2. Homogenization theory for random yows
We now revisit the large-scale, long-time rescaling of the passive scalar "eld introduced in the

context of periodic velocity "elds in Section 2.1.2 and apply it to the case of advection by a steady,
random, incompressible, homogenous velocity "eld. In this rescaling, the velocity "eld is held"xed
while the length scale of the initial passive scalar "eld is made large relative to the length scales
characterizing the random velocity "eld. A simpli"ed, homogenized description of the passive
scalar is sought in the asymptotic limit, with the idea that over large scales, the random velocity
"eld ought to have some averaged bulk e!ect. There is, however, an important distinction between
periodic and random velocity "elds that comes into play here. Periodic velocity "elds have
a well-de"ned, single length scale which can be de"nitely separated by a factor d from the large
length scale characterizing the passive scalar "eld. Random velocity "elds, on the other hand, can
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in general have a continuum of actively excited scales which can moreoever extend to arbitrarily
large scales. Homogenization requires the notion that the velocity "eld #uctuates on much smaller
scales than the passive scalar "eld, and this may never happen in a meaningful sense under a formal
large-scale, long-time rescaling (10) of the passive scalar "eld if the velocity "eld has strong
long-range correlations.

A simple and general criterion for the applicability of a homogenized di!usive behavior for the
passive scalar "eld on large scales and long times was formulated in [12] in terms of the "niteness
of the following Pe& clet number de"ned for random velocity "elds:

Pe,i~1APRd

TrRK (k)
4p2DkD2B

1@2
, dk"i~1A

1
2p2P

=

0

E(k)k~2dkB
1@2

, (81)

where RK is the spectral density of the velocity "eld:

RK (k)"PRd

e~2p*k ' xR(x) dx ,

R(x)"S*(x@#x)?*(x@)T ,

and

E(k)"
1
2P

Sd~1

TrRK (k-K ) d-K

is the energy spectrum (integrated over spherical shells of constant wavenumber). It is readily
checked that if the random velocity "eld has #uctuations sharply concentrated near a single length
scale ¸

v
, then the PeH clet number (81) is proportional to ¸

v
SD*D2T1@2/i, which is comparable to the

de"nition (7) of PeH clet number for a periodic velocity "eld.
A "nite value of the PeH clet number is equivalent to a su$ciently weak distribution of energy at

low wavenumbers (large scales), which implies that the random velocity "eld's spatial correlations
are su$ciently short ranged. In particular, a characteristic length scale

¸
v
"iPe/SD*D2T1@2 (82)

can be associated to any random velocity "eld with "nite PeH clet number; ¸
v
formally describes the

largest length scale of the velocity "eld with substantial energy. An in"nite value of the PeH clet
number may be viewed as a manifestation of strong long-range correlations; examples of such #ows
will be studied in Section 3.

It was shown in [12] that a rigorous homogenized large-scale, long-time description of the
passive scalar "eld advected by a random velocity "eld is possible whenever the PeH clet number is
"nite. We shall present this homogenized theory in terms of variables and functions nondimen-
sionalized in a similar way as in Section 2.1.1, using now the length scale (82) and time scale ¸2

v
/i.

The nondimensionalized advection}di!usion equation reads

R¹(x, t)/Rt#Pe *(x) '+¹(x, t)"D¹(x, t) ,

¹(x, t"0)"dd¹
0
(dx) ,
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where d denotes a ratio between the length scale ¸
v
of the random velocity "eld and the length scale

¸
T

of the initial passive scalar "eld.
De"ning the rescaled passive scalar "eld as before (10),

¹(d)(x, t),d~d¹(dx,d2t) ,

we obtain the following advection}di!usion equation, rescaled to large spatial scales and long
times

R¹(d)(x, t)/Rt#d~1Pe *A
x
dB '+¹(d)(x, t)"D¹(d)(x, t) ,

¹(d)(x, t"0)"¹
0
(x) .

(83)

For incompressible random, homogenous, ergodic velocity "elds with "nite values of the PeH clet
number (81), the following homogenization theorem can be established.

2.4.2.1. Homogenized ewective diwusion equation for random velocity xelds with short-range
correlations. In the long time, large-scale limit, the rescaled passive scalar "eld converges to a "nite
limit

lim
d?0

¹(d)(x, t)"¹M (x, t) , (84)

which satis"es an e!ective di!usion equation

R¹M (x, t)
Rt "+ ' (KH+¹M (x, t)) , (85a)

¹M (x, t"0)"¹
0
(x) , (85b)

with constant, positive-de"nite, symmetric di!usivity matrix KH. This e!ective di!usivity matrix
can be expressed as

KH"I#KM ,

where I is the identity matrix (representing the nondimensionalized molecular di!usion) and KM is
a nonnegative-de"nite enhanced di+usivity matrix which represents the additional di!usivity due to
the random #ow. The enhanced di!usivity matrix KM can be computed as follows. Let v(x) be the
(unique) random "eld with the following properties:

f v(0)"0,
f +v(x) is a homogenous, random tensor "eld with SE+v(x)E2T(R,
f v solves the following random elliptic equation on Rd (in unscaled coordinates):

Pe *(x) '+v(x)!Dv(x)"!Pe *(x) . (86)
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Then the components of the enhanced di!usivity matrix may be expressed as

KM
ij
"S+s

i
'+s

j
T , (87)

where the angle brackets denote an ensemble average over the statistics of the velocity "eld.

A homogenization theorem of this form was established by Avellaneda and the "rst author [12],
using the framework of homogenization of equations with random coe$cients developed by
Papanicolaou and Varadhan [264], and by OelschlaK ger [256] using a somewhat di!erent probabil-
istic approach. Some additional technical conditions required in these proofs were later removed
by Fannjiang and Papanicolaou [98].

The "nite PeH clet number condition for the homogenization theorem is essential. Explicit shear
#ow examples [10] rigorously demonstrate that when the PeH clet number (81) is in"nite, the mean
passive scalar "eld will generally not be described by an e!ective di!usion equation at large scales
and long times; see Section 3. The "nite PeH clet number condition for the applicability of the
homogenization theorem for random velocity "elds cannot therefore be weakened unless some
explicit reference is made to the #ow geometry.

The homogenization theorem for random "elds is very similar to that which was stated for
periodic velocity "elds in Section 2.1.2. Indeed, modulo some technicalities, `periodicitya has
simply been converted to `statistical homogeneitya, and averages over the period cell have been
replaced by ensemble averages over the velocity "eld. Indeed, the homogenization theorem for
steady, periodic velocity "elds can be essentially embedded into the random homogenization
theorem by de"ning a homogenous random "eld as periodic velocity "eld with the origin of the
period lattice uniformly distributed over a "xed period cell. A homogenization theorem for
spatio-temporal random velocity "elds may be found in [245,244].

2.4.2.2. Comparison between Kubo theory and homogenization theory for random velocity
xelds. Before moving on to develop the homogenization theory for random velocity "elds, we
pause to compare it to the Kubo theory presented in Section 2.4.1. The principal di!erences in the
asymptotic setup are that

f the Kubo theory rescales the spatial scale of the velocity "eld in tandem with the spatial scale of
the passive scalar "eld, while the homogenization scaling leaves the velocity "eld "xed, and leads
to a strong formal separation of the spatial scales of the velocity and passive scalar "eld;

f the homogenization theory is formulated for steady velocity "elds, whereas the Kubo theory
relies crucially on su$ciently rapid decorrelation of the velocity "eld in time.

The Kubo and homogenization theories may therefore be viewed as complementary coarse-
grained averaging theories. The e!ective averaging in homogenization theory of steady random
velocity "elds with short-range correlations occurs because a large spatial volume contains many
regions between which the velocity #uctuations are essentially independent. Therefore, any coarse
volume will sample and average over the full statistics of the velocity "eld, assuming it is ergodic
with short-ranged correlations. Under the Kubo rescaling, on the other hand, the spatial scale of
the velocity "eld is scaled up along with the coarse scale of the passive scalar "eld, so there is no
averaging over space. Instead, the e!ective averaging occurs because a coarse-grained time interval
can be broken up into many subintervals over which the velocity "eld #uctuations are essentially
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independent, provided that the random velocity "eld has su$ciently strong mixing (forgetting)
properties as a function of time. We can therefore associate the homogenization theory of steady
random velocity "elds to spatial averaging, and the Kubo theory to temporal averaging. This
explains why the homogenization theory requires short-range correlations in space, but no
temporal decorrelation, whereas the Kubo theory requires short-range correlations in time
(through the mixing assumption), but not necessarily any spatial decorrelation.

One interesting question is why the Kubo e!ective di!usivity formula (80) is so much simpler
than the homogenized e!ective di!usivity formula (87). The answer is that spatial averaging by
a tracer is much more complex than temporal averaging. Indeed, the temporal coordinate of
a tracer marches in a trivial linear manner as time proceeds, whereas the variation of its spatial
coordinate depends intricately on the properties of the velocity "eld. Under Kubo rescaling, the
velocity "eld varies slowly in space but rapidly in time, so the #uctuations in a tracer's velocity
come primarily from the intrinsic (Eulerian) temporal decorrelation of the velocity "eld, rather than
due to the tracer's motion across the velocity "eld. Indeed, the tracer e!ectively feels a velocity "eld
which is (locally) constant in space but #uctuating in time. Therefore, the averaged motion of the
tracer may, in the asymptotically rescaled Kubo limit, be simply expressed in terms of time
averages of the statistics of the velocity "eld (80). A tracer moving in a steady #ow, on the other
hand, samples the velocity "eld in a nonuniform way; it will, for example, spend a disproportionate
amount of time near stagnation points. Hence, the homogenized e!ect of the steady velocity "eld
felt by the tracer cannot be expressed in terms of a straightforward volume average of the velocity
"eld. The e!ective bulk averaging of the tracer transport in homogenization theory is instead
intricately dependent on the velocity microstructure and the e!ects of molecular di!usion, as
expressed through the cell problem (86).

2.4.3. Alternative representations for ewective diwusivity in random yows
A Stieltjes integral representation and some variational principles can be formulated for the

e!ective di!usivity of a passive scalar "eld in a random velocity "eld with short-range correlations,
in analogy to the periodic velocity "eld case discussed in Paragraph 2.1.4.1. The formulas have
a similar appearance in both the periodic and random settings, though their derivation is more
technically involved in the random case.

2.4.3.1. Stieltjes integral representation. The e!ective di!usivity KH of the passive scalar "eld in
a steady random velocity "eld with Pe(R was shown by Avellaneda and the "rst author [9,12]
to be expressible as a Stieltjes integral,

eL 'KM ' eL"Pe2E* ' eL E2
~1P

=

~=

do*
1#Pe2k2

(88)

with respect to a certain measure do* which is nonnegative and normalized to have total integral
equal to one. The Stieltjes integral formula (88) is formally identical to that for the periodic case
(41); only the de"nition of its components are modi"ed. For example, the de"nition of the Sobolev
norm E ) E

~1
in the prefactor involves now an average over the random ensemble of velocity "elds

rather than over a period cell (40). Most importantly, the operator AV de"ned by

AV
u"+D~1((V#*(x)) ' u)
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which arises in the formal derivation of the Stieltjes integral representation is now a random
operator acting on homogenous random "elds with "nite variance de"ned over Rd. The measure
do* which appears in the Stieltjes integral representation is consequently no longer a discrete
measure concentrated on a countable number of points, but is instead generally a continuous
distribution (with possibly some discrete components). Therefore, the Stieltjes integral representa-
tion will not generally be reducible to a discrete sum (39) as in the periodic case.

Moreover, the support of do* may be unbounded, in which case, Eq. (88) implies that a small
PeH clet number expansion of the e!ective di!usivity will be divergent for all PeH clet number. The
work of Kraichnan [181] suggests that this does indeed occur for velocity "elds with Gaussian
statistics. The Stieltjes integral representation therefore represents in these cases a rigorous
resummation of a formal perturbative power series with zero radius of convergence [9,11]. We
stress, however, that this rigorous resummation is valid only when the notion of an e!ective,
homogenized di!usivity is itself meaningful, i.e. when there is a strong separation of scales between
the velocity and passive scalar "eld. Passive scalar transport in fully developed turbulence, in
particular, cannot be handled in this manner (see Section 3.4.3).

As in the periodic case, the existence of the Stieltjes integral representation implies that certain
PadeH approximants can be built from the coe$cients of a formal (but divergent) small PeH clet
number series which rigorously bound the e!ective di!usivity at all PeH clet numbers. Criteria for
maximal and minimal di!usivity are more di$cult to formulate for the case of random velocity
"elds due to the loss of discreteness of the measure do* appearing in the Stieltjes integral
representation formula (88). Generalizations of the Stieltjes integral representation to time-depen-
dent random velocity "elds with Pe(R were derived by Avellaneda and Vergassola [20]; the
modi"cation is parallel to that of the periodic case discussed in Paragraph 2.1.4.1 (see in particular
Eq. (42)).

2.4.3.2. Variational principles. The e!ective di!usivity in a homogenous random "eld can be
represented through a variational principle (47) just as in the periodic case. The only di!erences are
that:

f the trial functions u are now homogenous random "elds de"ned on Rd, with u!eL a generalized
gradient of a homogenous random "eld with "nite variance, and

f the average of the functional DuD2#Pe2u 'K ' u over the period cell is replaced by an average
over the statistical ensemble of the random velocity "eld.

The original variational formulation for homogenous random velocity "elds was derived by
Avellaneda and the "rst author in [12]. Other types of variational principles for random velocity
"elds, particularly with a cellular structure, were later put forth by Fannjiang and Papanicolaou
[99]. These variational principles can be used to obtain rigorous bounds and estimates for the
e!ective di!usivity in random velocity "elds [12,99] in a similar way to periodic velocity "elds, but
they are a bit more di$cult to implement in practice since the fundamental spatial domain is
in"nite space rather than a compact period cell [99].

2.4.4. Examples of ewective diwusivity for random yows
Most of the studies of tracer transport in random velocity "elds with short-range correlations

appear to focus on #ows with vortex or cellular structures, and we mention a few of these here.
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Avellaneda and the "rst author [12] derived an exact formula for the e!ective di!usivity in a #ow
consisting of a random tiling of two-dimensional space by a family of circular vortices of various
sizes but common shape and direction of rotation. The special structure of this random #ow
permitted the reductionof the cell problem (86) to an exactly solvable, radially symmetric PDE on
a single disk. It was found in this way that the the e!ective di!usivity scales as Pe1@2 at high PeH clet
number, just as in the case discussed in Section 2.2.3 where the vortices are arranged as periodic
cells.

Avellaneda et al. [19] studied two other kinds of random vortex models, in which vortices of
"xed shape and size were thrown down onto the plane according to a random Poisson process,
either with a common or randomly chosen orientation. The e!ective di!usivity in these #ows
increased as a function of the vortex density, but was only enhanced by a factor of 2.5 at the highest
density simulated, with Pe"100. An approximate Lagrangian analysis (see Section 3.1.3) of these
random vortex #ows is also o!ered in [19].

Isichenko et al. [144] formulated an interesting conjecture, based on some scaling laws from
percolation theory, that the e!ective di!usivity in a generic (or `common-positiona) random,
homogenous, #ow with short-range correlations should scale at high PeH clet number as Pe10@13.
Using variational principles along with some scaling hypotheses from percolation theory,
Fannjiang and Papanicoloau [99] verify this result for certain #ows obtained by a random
perturbation of the canonical steady cellular #ow (62). These authors [99] also study tracer
transport in randomized checkerboard #ows (in which the #ow in each cell is randomly turned on
or o!).

2.4.5. Appendix: Random velocity ,elds
An extensive and accessible treatment for the rigorous formulation of random functions may be

found in [341,342]. We restrict ourselves here to formally setting forth some elementary notions
which we will use throughout our discussion of random velocity "elds. For concreteness, we will
introduce the de"nitions of various aspects of random functions in the context of random velocity
"elds, but they clearly apply to other random functions, such as the passive scalar "eld.

A random function may be described quite simply as a random variable taking values in some
given function space. In practice, the probability measure on the function space is described
implicitly through a su$ciently precise speci"cation of the statistical properties of the random
function.

A generic way of describing a random function, such as the random velocity "eld *(x, t), is to
present all its ,nite-dimensional distributions and to declare * to be separable. A "nite-dimensional
distribution of *(x, t) is just the (joint) probability law for the values of * at a given "nite collection of
points. Knowing all the "nite-dimensional distributions is equivalent to a rule for computing

ProbM*(x(j), t(j))3A
j
, j"1,2, NN

for every "nite collection of space}time points M(x(j), t(j))NN
j/1

and Borel subsets A
j
of the range space

of F. If one wishes to prescribe these, the rules must obey some simple consistency conditions ([41],
Section 36). The separability condition is technical ([41], Section 38), but in practice means that we
want the realizations of * to be as nice as possible, given the "nite-dimensional distributions.

Random functions de"ned over a multidimensional spatial domain (and possibly time) are often
referred to as random ,elds, and we will use this terminology hereafter.
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2.4.5.1. Homogenous and stationary random xelds. Many of the random "elds arising in our models
have statistical space}time symmetries, and we now de"ne the most basic of these. A more detailed
discussion may be found in ([341], Ch. 4).

A random "eld *(x, t) is called:

f stationary if all "nite-dimensional distributions are invariant under time translation:

ProbM*(x(j), t(j))3A
j
, j"1,2, NN"ProbM*(x(j), t(j)#t@)3A

j
, j"1,2,NN

for any real t@.
f homogenous if all "nite-dimensional distributions are invariant under rigid translations in space:

ProbM*(x(j), t(j))3A
j
, j"1,2, NN"ProbM*(x(j)#x@, t(j))3A

j
, j"1,2,NN

for any x@3Rd.

Colloquially, a homogenous random "eld looks statistically the same at every point of space, and
a stationary random "eld looks statistically the same at every moment of time.

Another important statistical symmetry which we will discuss in Section 4 is isotropy, which is
statistical equivariance under arbitrary rotations and re#ections. We refer to ([341], Section 22) for
a detailed discussion of the meaning and implications of statistical isotropy for a random "eld.

2.4.5.2. Mean and two-point correlation function. Two fundamental statistical functions associated
to a random "eld are the mean l(x, t)"S*(x, t)T and the two-point correlation tensor
RI (x, x@, t, t@)"S*(x, t)?*(x@, t@)T, where angle brackets denote statistical averages. So long as there is
no danger of ambiguity with reference to higher-order correlation functions, we will often refer to
the `two-point correlation tensora as simply the `correlation tensora (or `correlation functiona for
scalar random "elds). The arguments of the correlation tensor (function) will be called observation
points (or sites, locations).

When *(x, t) is a homogenous, stationary, random "eld, then all statistical descriptors, including
the mean statistics S*(x, t)T and the two-point correlation function S*(x, t)?*(x@, t@)T must be
invariant under space and time translation. The mean must therefore be constant, and the
two-point correlation function must depend only on the di!erences between the space and time
coordinates of the observation points:

S*(x, t)?*(x@, t@)T"RI (x!x@, t!t@) .

2.4.5.3. Spectral density. The structure of a homogenous, stationary, random "eld is in some ways
more directly expressed in terms of the Fourier transform of the correlation tensor

RIK (k,u)"PRdP
=

~=

e~2p*(k 'x`ut)RI (x, t) dtdx (89)

than in the correlation tensor itself. We shall call RIK (k, u) the spectral density tensor of the random
"eld. For a scalar random "eld, the spectral density tensor is just a scalar function.
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An important theorem due to Khinchine states that the class of correlation tensors of
homogenous, stationary random "elds coincides with the class of tensor functions for which the
Fourier transform is everywhere a non-negative de"nite, Hermitian matrix ([341], Section 9). This
means that for any homogenous, stationary random "eld, the spectral density tensor RIK (k,u) is
guaranteed to be a non-negative-de"nite, Hermitian matrix for each k and u.

It is often convenient to condense the spectral density tensor of the velocity "eld *(x, t) by
integrating over shells of constant wavenumber DkD; this produces the spatio-temporal energy spectrum:

EI (k,u)"
1
2P

Sd~1

TrRIK (kuK , u) duK ,

where Sd~1 is the (d!1)-dimensional sphere of unit radius. This function speci"es the density of
energy E"1

2
SD*D2T in wavenumber-frequency space: the amount of energy contained in the band

k$Dk, u$Du is :k`Dk
k~Dk

:u`Duu~DuE(k,u) dkdu. The usual &&energy spectrum'' E(k) is the integral of the
spatio-temporal energy spectrum over frequency space,

E(k)"P
=

~=

EI (k, u) du ,

and describes the statistical spatial structure of the velocity "eld at any given moment of time.
The full spectral density tensor RIK (k,u) provides a more detailed resolution of the random "eld
*(x, t) into #uctuations of various wavenumbers k and frequencies u, including correlations
between various components of the velocity "eld ([341], Sections 9, 22.1 and 22.2).

2.4.5.4. Gaussian random xelds. Gaussian random ,elds are the extension of Gaussian random
variables to the random function setting. By de"nition, all "nite-dimensional distributions of
a Gaussian random "eld are Gaussian. Gaussian random "elds are therefore completely described
by their mean and correlation tensor [341,342]. Homogenous, stationary, Gaussian random "elds
*(x, t), may also be de"ned through their spectra, using the Khinchine theorem ([341], Section 9).
One simplify chooses an arbitrary constant mean and an arbitrary spectral density tensor RIK (k, u)
which is everywhere a non-negative de"nite, Hermitian matrix such that the entries of RIK (k,u) and
RIK (!k,!u) are complex conjugates of one another. Then, by the Khinchine theorem, there exists
a well-de"ned Gaussian random "eld with the speci"ed constant mean and correlation tensor

RI (x, t)"PRdP
=

~=

e2p*(k ' x`ut)RIK (k,u) du dk .

3. Anomalous di4usion and renormalization for simple shear models

In Section 2, we have discussed some general mathematical theories for the computation of the
e!ective di!usion of a passive scalar "eld at large scales and long times. The underlying theory
relies on the velocity "eld being periodic or having short-range correlations so that a strong scale
separation between velocity and passive scalar scales can exist. While such theories can work well
for moderately turbulent #ows with su$ciently simple spatial structures, they may not furnish
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a good description for tracer di!usion in afully developed turbulent #ow at high Reynolds number.
As we shall discuss in more detail in Section 3.4.3, fully developed turbulent #ows are characterized
by strong spatio-temporal correlations extending over a wide range of scales, all the way up to the
scale of the external forcing. In many applications particularly in atmospheric science [78,196], this
forcing scale is on the same order of magnitude as the macroscales on which scientists wish to
explicitly describe the #ow. Consequently, there is no clean separation between the active scales of
the velocity "eld and the scales of observational interest. Homogenization theory may not therefore
be adequate to describe the macroscale passive scalar dynamics in these situations.

The development of simpli"ed e!ective equations for the large-scale passive scalar statistics is,
however, of particular practical importance in the numerical simulation of transport processes in
highly turbulent environments. It is often not possible, even on the largest contemporary super-
computers, to explicitly resolve all the active scales of turbulence [154]. A scheme is therefore
needed for assessing the e!ects of the continuum of energetic but unresolved turbulent small scales
of motion on the resolved scales, without having to compute them in full detail. The simplest
modelling strategies account for the unresolved small scales by replacing the molecular di!usivity
with a larger `eddy di!usivitya. The value of this eddy di!usivity may be estimated by some ad hoc
procedure such as mixing length arguments or through approximate, analytical theories based on
perturbation expansions in a small parameter [182], ideas from renormalization group (RNG)
theory [227,243,300,344], or simplifying assumptions concerning higher-order correlations be-
tween the velocity and scalar "eld [31,196]. It has been pointed out by several authors
[166,182,286], however, that such an eddy di!usivity model may not be su$cient to capture the
e!ects of the unresolved scales of the velocity "eld when they are not well separated from the cuto!
scale. More complex e!ective large-scale equations for the passive scalar "eld have been proposed
based on the renormalization group [286] or perturbation expansions [166], often resummed
according to various renormalized perturbation theories from "eld theory [177,227,285]. These
equations are typically nonlocal in space and time, re#ecting large-scale interactions mediated by
the unresolved small scales [286] and/or memory e!ects coming from the signi"cant spatio-
temporal correlations of the unresolved scales [166,177,285]. The investigation of the relative
merits and shortcomings of these various approximate closure theories for turbulent di!usion is
still very much an active area of research [227].

In response to the above issues, Avellaneda and the "rst author [10,14] have developed
a mathematically rigorous theory for turbulent transport in a class of Simple Shear Models in which
the velocity "eld has a strati"ed geometry:

*(x, t)"*(x, y, t)"C
w(t)

v(x, t)D .

The shearing component v(x, t) is taken as a homogenous and stationary, mean zero random "eld,
and the spatially uniform transverse sweeping component w(t) is taken as a stationary random
process with possibly nonzero mean. The case of no cross sweep w(t)"0 was analyzed in [10], and
the case of a constant mean cross sweep w(t),wN was studied in [14,141]. The inclusion of
randomness in w(t) in the present work is new.

The virtue of the Simple Shear Model is that the tracer trajectory equations may be exactly
integrated for all times, as we saw in Section 2.3.1 for the case of deterministic, periodic velocity
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"elds. In the present case of random velocity "elds, these formulas still provide a representation of
the tracer position in terms of explicit random variables which are open to mathematical analysis
from a variety of angles [10,14,18,141,207,233]. The random tracer trajectories maintain a very rich
and subtle statistical behavior [10,14,141], as will be demonstrated throughout Section 3. The
Simple Shear Model therefore provides a means of studying various nontrivial aspects of turbulent
di!usion in a precise manner. Versions of shear #ow models also have been utilized to study
horizontal mixing in the ocean [347].

While the mathematical analysis of the Simple Shear Model relies heavily on the special
geometric structure, it can include several statistical features of a realistic turbulent #ow, such as
spatial correlations extending over a wide range of scales along with a reasonable temporal
structure. Moreover, many #ow "elds in geophysical applications do have an underlying shear
structure. We will discuss another turbulent di!usion model in Section 4 which instead drastically
simpli"es the temporal correlation structure of the random velocity "eld, but permits a more
general geometry [152,179]. Our purpose in investigating these simpli"ed models is that through
unambiguous computations and analysis, we can obtain insight concerning subtle physical features
of turbulent transport which might be missed by crude reasoning on a `realistica turbulent velocity
"eld model. Throughout Section 3 we will examine a rich variety of Simple Shear #ows with an
emphasis on describing #ows which generate anomalous di+usion of tracers, and on identifying the
physical mechanisms responsible. By anomalous di!usion, we mean statistical tracer motion which
departs from the standard situation in which its coarse-scale, long-time behavior resembles an
ordinary Brownian motion. We will also at times mention some "nite-time anomalies in which the
tracer acts as if it had a temporarily negative di!usion coe$cient (Sections 3.4.4 and 3.5.1).

Exactly solvable models also provide excellent test problems [13,17,300] for assessing the
strengths and weaknesses of the approximate closure theories mentioned above which seek to
furnish simpli"ed descriptions of turbulent di!usion on the macroscale. We will brie#y discuss this
use of simpli"ed models in Section 7.

Overview of Section 3: We will approach the study of the Simple Shear Model through submodels
of increasing complexity. First we consider in Section 3.1 the Random Sweeping Model in which
v(x, t)"0, and the tracer is advected only by the time-dependent random "eld w(t). Even in this
extremely simpli"ed model, the tracer motion can behave anomalously, depending on the long-
range (low-frequency) statistical characterization of w(t). We classify the various forms of anomal-
ous di!usion, and discuss their origin on a heuristic level. We then show from a Lagrangian
viewpoint how this intuition gleaned from the Random Sweeping Model can be applied to
understand qualitatively the circumstances under which anomalous tracer di!usion may arise in
general #ows. This theme will be invoked repeatedly in later subsections as we interpret the
mathematically derived turbulent di!usion formulas in the Simple Shear model.

Next, in Section 3.2, we develop the Random Steady Shear (RSS) Model, in which the shear "eld
is taken as a random steady #ow v(x, t)"v(x) with Gaussian statistics and correlation function

Sv(x@)v(x@#x)T,R(x),P
=

~=

E(DkD) e2p*kxdk ,

with

E(k)&A
E
DkD1~e (90)
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at low wavenumbers k. Such a velocity "eld could model #ow through a strati"ed porous medium.
The exponent e(2 measures the strength of the long-range correlations of velocity "eld. As
e increases towards e"2, the long-range spatial correlations become more pronounced. We
concentrate on how the transport of tracers along the shearing direction y depends on the
long-range spatial structure of v(x), the presence of molecular di!usion, and various types of cross
sweeps w(t). Following [10,141], we derive exact formulas for the mean-square tracer displacement
along the shear and analyze their physical content.

The e!ects of temporal #uctuations in the shear #ow v(x, t) are studied within the random
spatio-temporal shear (RSTS) Model in Section 3.3. We take v(x, t) to be statistically stationary in
time, with the idea of qualitatively mimicing turbulent #ows which have reached a quasi-
equilibrium state in response to some statistically stationary external driving and internal viscous
dissipation. Motivated by the inertial-range theory of turbulence (see, for example, [320]), we
associate a wavenumber-dependent correlation time q(k) to shear #ow #uctuations with spatial
wavenumber k, where lim

k?0
q(k)&AqDkD~z. The exponent z50 describes how slowly the large

scales (low wavenumbers) of the shear #ow vary in time; zPR corresponds to a steady limit in
which the large scales are frozen, whereas z"0 describes the opposite limit in which arbitrarily
large scales decorrelate at a uniformly rapid rate. We explore how the temporal structure of the
large scales, as described by z, in#uences the shear-parallel transport of tracers.

We next consider the full probability distribution function (PDF) for the shear-parallel motion of
a single tracer, which is equivalent to the description of the evolution of the mean S¹(x,y, t)T of
the passive scalar "eld density. For velocity "elds with su$ciently localized spatial correlations,
the homogenization theory discussed in Section 2 shows that the PDF for the position of a single
tracer approaches a Gaussian distribution at long times. Equivalently, the mean statistics are
governed by an ordinary di!usion equation with an enhanced di!usion coe$cient. In Section 3.4,
we demonstrate through explicit examples how the PDF for a tracer can forever deviate strongly
from a Gaussian distribution in Simple Shear Models with su$ciently strong long-range correla-
tions [10]. A related feature is that the large-scale, long-time evolution of the mean statistics is
not described by a standard di!usion PDE, but rather by a nonlocal di!usion equation. This
anomalous large-scale long-time behavior actually manifests itself in a broad range of models with
a nearly strati"ed structure [16].

In Section 3.4.3 we develop a modi"cation of the Simple Shear Model which permits the study of
velocity "elds with a statistically self-similar inertial range of scales ¸

K
;r;¸

0
, an important

feature manifest in real fully developed turbulence [10,14]. According to Kolmogorov's theory
[169], the energy spectrum within the inertial range of wavenumbers ¸~1

0
;k;¸~1

K
scales as

k~5@3. This is largely con"rmed by experimental data [307], though some question remains
whether there are `intermittency correctionsa [34,309] which alter the exponent slightly from 5/3.
The k~5@3 scaling of the energy spectrum formally corresponds to a value of e"8/3 in the Simple
Shear Model (see Eq. (90)), but the cuto! of this scaling on the low wavenumber (infrared) end at
¸~1
0

is essential for the total energy to be "nite and the #ow to be well-de"ned in the standard sense.
Kolmogorov theory also predicts that the decorrelation times for the turbulent #uctuations in the
inertial range scales as q(k)&k~2@3, corresponding to a z"2/3 value in the RSTS Model.
A competing point of view [319] suggests instead the value z"1. We modify the RSTS Model to
permit the study of velocity "elds with scalings corresponding to such values of e and z by
introducing an explicit infrared cuto! [10,14]. We then formulate the problem of computing
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e!ective large-scale equations for the mean passive scalar density in the presence of such a turbu-
lent shear #ow, and concretely indicate some of the inherent di$culties. Large-scale e!ective
equations for the mean passive scalar density in the Simple Shear Model have in fact been
rigorously derived by Avellaneda and the "rst author [10,14], and they display a rich variety of
qualitative structure depending on the value of the scaling exponents e and z. We brie#y mention
some of the "ndings of these rigorous renormalization computations.

Up to this point in the paper, we have for the most part concentrated on describing the statistical
motion of a single tracer and the intrinsically related evolution of the mean passive scalar density
S¹(x, t)T. These dynamics are strongly determined by the large-scale features of the turbulent
system, simply because these are the most energetic in most realistic circumstances. In Sections 3.5
and 4, we shift our focus to the small-scale #uctuations of the passive scalar "eld. These are
intimately related to the dynamics of the separation between pairs of tracers. While the large-scale
properties of the passive scalar "eld are of more obvious observational and applied physical
interest, the small-scale features are crucial in estimating the size of clouds of pollutants [78,132]
and the progress of mixing processes and combustion in turbulent environments [43,339]. More-
over, the small-scale statistics of turbulent systems are of particular theoretical interest because
they are thought to exhibit a variety of universal features which are independent of the particular
large-scale con"guration (see [309]).

We explicitly examine in Section 3.5 various aspects of the small-scale passive scalar statistics in
the Simple Shear Model in the absence of molecular di!usion (i"0). We lay the foundations of
our study with the development of an exact equation for the pair-distance function introduced by
Richardson [284], which describes the PDF for the separation of a pair of tracers. From the
pair-distance function, we can deduce some important properties about the evolution of interfaces
between regions in which the passive scalar "eld is present or absent. The way in which these
interfaces wrinkle plays a crucial role in turbulent combustion and mixing [43,310,305,339]. We
characterize the roughness of interfaces through their fractal dimension [215], which may be
explicitly computed within the Simple Shear Model. We relate the exact results to experimental
measurements and other theoretical work, and state some open problems concerning the inclusion
of the e!ects of molecular di!usion. Our study of the small-scale features of the passive scalar "eld
in a turbulent #ow continues in Section 4 with the analysis of a di!erent simpli"ed turbulent
di!usion model.

3.1. Connection between anomalous diwusion and Lagrangian correlations

Before analyzing the statistical tracer motion in the Simple Shear Model, we set up a general
framework for the discussion of anomalous tracer di!usion. We de"ne the terminology we shall
use in Section 3.1.1. Next, we provide an extremely simple example of anomalous di!usion in
the Random sweeping Model, which consists of a spatially uniform random #ow #uctuating in
time (Section 3.1.2). Finally, we emphasize in Section 3.1.3 that tracer motion is determined by the
statistics of its ¸agrangian velocity, and show how it is connected to but di!erent from the velocity
"eld de"ned in the Eulerian (laboratory) frame of reference [317]. The Lagrangian perspective
provides a basis for the intuitive understanding of the exact mathematical formulas which we will
develop for the simple shear models in Sections 3.2 and 3.3.
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3.1.1. Qualitative classes of anomalous diwusion
To "x vocabulary, we say that the tracer motion (usually along a certain direction) is:

f Ballistic if the mean-square displacement is growing quadratically in time, corresponding to
coherent unidirectional motion.

f Di+usive if the mean-square displacement is growing linearly in time, corresponding to `normala
behavior of a tracer which executes a mean zero, random back and forth motion, with
su$ciently rapid decorrelation of its velocity in time. (This is of course the category in which
Brownian motion, due to molecular di!usion alone, falls.)

f ¹rapped if the mean-square displacement remains bounded for all time.
f Superdi+usive if the mean-square displacement is growing faster than linearly in time.
f Subdi+usive if the mean-square displacement is growing at a sublinear rate.

Note that according to these de"nitions, `ballistica is a subcategory of superdi!usive, and
`trappeda is a subcategory of subdi!usive. We will endeavor, however, to be explicit when ballistic
or trapped behavior actually occurs.

Other forms of anomalous di!usion will be described through rigorous examples in Section 3.4.
One is the decrease of the mean-square tracer displacement over a certain time interval, so that the
e!ective di!usivity is (temporarily) negative (Section 3.4.4). Therefore, even if an e!ective equation
for the mean statistics can be derived in such #ows, it will be ill-posed over some time interval. This
phenomenon creates di$culties for conventional numerical Monte Carlo schemes (see Section 6)
for turbulent di!usion. Another interesting way in which anomalous di!usion manifests itself is
through the higher order statistics. We discuss in Sections 3.4.1 and 3.4.2 an explicit, nontrivial
class of examples in which the tracer displacement is neither Gaussian nor self-averaging at large
times, in strong contrast to tracers in #ows for which the homogenization theory of Section 2 is
valid.

3.1.2. Anomalous diwusion in the random sweeping model
To provide a concrete illustration of the variety of anomalous di!usion behavior possible for

a tracer, we de"ne the extremely simple yet fundamental Random Sweeping Model. The velocity
"eld in this model is de"ned to be a spatially uniform #ow which #uctuates randomly in time
according to a stationary, Gaussian random process. For the sake of simplicity of notation and
coherence with the turbulent di!usion models to be discussed in Sections 3.2 and 3.3, we shall
restrict attention to the case in which the velocity "eld always points along a single direction, and
the spatial domain is two-dimensional. Then the random velocity "eld in the Random Sweeping
Model is de"ned:

*(x, t)"*(x, y, t)"C
w
f
(t)

0 D ,

where w
f
(t) is a stationary, Gaussian random process with mean zero and correlation function:

R
w
(t),Sw

f
(t@)w

f
(t#t@)T . (91)

Such a model was considered by Kubo [188] as an example of how randomly #uctuating velocity
"elds can act as e!ective di!usion processes when viewed on large scales and long times. A more
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general Random Sweeping Model for arbitrary dimensions without the constraint that the velocity
"eld point along a single direction was analyzed in great detail in [18]. We will present some
pertinent results here.

We will "nd it convenient to express the correlation function in terms of the power spectrum
E
w
(u) of the velocity "eld:

R
w
(t)"P

=

~=

e2p*utE
w
(DuD) du"2P

=

0

cos(2put)E
w
(DuD) du . (92)

The power spectrum E
w
(u) describes precisely the spectral density of the energy 1

2
SDw

f
(t)D2T resolved

with respect to frequency. That is, :u`Du
u~Du

E
w
(u) du is the amount of energy residing within the

frequency band u$Du. The power spectrum is a manifestly non-negative function, which in our
applications we assume quite reasonably to be smooth (see Paragraph 2.4.5.3).

Consider the location (X(t),>(t)) of a tracer particle advected by the Random Sweeping Model
#ow, "rst without molecular di!usion i"0. Starting from position (x

0
, y

0
), the (random) tracer

position at later times is given by

X(t)"x
0
#P

t

0

w
f
(s) ds ,

>(t)"y
0

.

The displacement X(t)!x
0

along the sweeping direction is a mean zero Gaussian random
variable, since it is a linear functional of the mean zero Gaussian random process w

f
(t). Conse-

quently, it is completely described by its variance, which is nothing but the mean-square tracer
displacement along the x direction:

p2
X
(t)"S(X(t)!x

0
)2T"P

t

0
P

t

0

Sw
f
(s)w

f
(s@)Tdsds@"P

t

0
P

t

0

R
w
(s!s@) dsds@

"2P
t

0

(t!s)R
w
(s) ds , (93)

where the last equality used a change of variables and the fact that, by its very de"nition (91), R
w
(t)

is an even function. Eq. (93) manifestly relates the turbulent di!usion of the tracer to the statistical
correlations of the sweeping velocity "eld w

f
(t). Strong and persistent correlations are clearly

associated with rapid di!usion.
It is quite convenient mathematically to express the mean-square displacement in terms of the

power spectrum of the sweeping velocity "eld. Substituting Eq. (92) into Eq. (93) and performing
the integration over s, we obtain

p2
X
(t)"4P

=

0

E
w
(u)

1!cos 2put
4p2u2

du . (94)

The qualitative long-time behavior p2
X
(t) depends sensitively on the nature of the low frequency

component of w
f
(t), as we now describe. Suppose that the power spectrum is smooth for u'0,

absolutely integrable, and has power law behavior near u"0

E
w
(u)"A

E,w
u~bt

w
(u) . (95)
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Here, A
E,w

is a positive constant and t
w
( ) ) is a smooth function on the positive real axis with

t
w
(0)"1 and Dt@

w
(0)D(R. To ensure integrability, the exponent b must be a real number less

than 1. We will see that the long-time behavior of the tracer can then be categorized as dif-
fusive, superdi!usive, or subdi!usive according to the value of this exponent. Note that all power
spectra with "nite low-frequency limits are included within the class b"0.

3.1.2.1. Diwusive sweep. Consider "rst the case b"0, corresponding to the generic case of a "nite,
nonzero distribution of energy at the lowest wavenumbers. By changing integration variables
uPut in Eq. (94) and passing to the tPR limit via Lebesgue's dominated convergence theorem
([288], Section 4.4), we "nd that

lim
t?=

p2
X
(t)&2KH

x
t ,

with the positive constant

KH
x
"

1
2
A

E,w
"P

=

0

R
w
(s) ds . (96)

This formula shows that, on long time scales, the random velocity #uctuations serve to induce an
e!ective di!usion of the tracer with the ordinary linear growth of the mean-square displacement.
The e!ective large-scale di!usivity is given by the constant KH

x
, which is just the integral of the

correlation function of the velocity "eld. Because the tracer displacement is always Gaussian
distributed, all its higher moments scale in the same way as those of ordinary di!usion processes.
The PDF for the tracer position, or equivalently, the mean statistics, therefore exactly satisfy
a di!usion equation with di!usivity constant KH

x
on large space}time scales [18].

The b"0 class of Random Sweeping Model velocity "elds comprises the simplest (and original)
example of Kubo's theory [188] for how transport by a randomly #uctuating, mean zero velocity
"eld induces an e!ective di!usion on large scales (see Section 2.4.1). We emphasize that the
standard di!usion of Kubo type arises in the Random Sweeping Model when the velocity "eld has
the `generica property that its integrated correlation function is nonzero and "nite

0(P
=

0

R
w
(s) ds(R , (97)

which is exactly equivalent to b"0 in Eq. (95). For other values of b, the condition (97) fails, and
the tracer will di!use anomalously on long time scales, as we now show.

3.1.2.2. Superdiwusive sweep. For the exponent values 0(b(1, the power spectrum diverges at
low frequencies, corresponding to an in"nite value of :=

0
R

w
(s) ds. This means that the velocity "eld

exhibits a very long-term memory. Changing variables uPut in Eq. (94) and using the dominated
convergence theorem to evaluate the long-time limit results in the following asymptotic formula:

lim
t?=

p2
X
(t)&(2/(1#b))KA

x
t1`b , (98)
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where the positive constant in the prefactor may be expressed:

KA

x
"

1
2
A

E,w
pb~(1@2)

C((1!b)/2)
C((2#b)/2)

, (99)

and C is the standard Gamma function [195]. The tracer motion is superdi+usive because p2
X
(t)

grows faster than linearly at long times. Because the tracer motion is Gaussian in the Random
Sweeping Model, it can be shown [18] that the mean passive scalar density satis"es a time-
dependent di!usion equation:

RS¹(x,y, t)T/Rt"D
wf

(t) R2S¹(x,y, t)T/Rx2 ,

S¹(x,y, t"0)T"S¹
0
(x, y)T , (100)

where the e!ective di!usion coe$cient

D
wf

(t),
1
2

dp2
X
(t)

dt

diverges in time as

D
wf

(t)&KA

x
tb . (101)

3.1.2.3. Subdiwusive sweep. For exponent values b(0, the power spectrum E
w
(u) vanishes at the

origin. We consider in this paragraph the case in which !1(b(0. A direct asymptotic
calculation as in the previous cases produces

lim
t?=

p2
X
(t)&(2/(1#b))KA

x
t1`b ,

where KA

x
is given by Eq. (99). But now the scaling exponent 1#b is between 0 and 1, correspond-

ing to subdi+usive motion of the tracer. The mean passive scalar density again satis"es a time-
dependent di!usion PDE (100) with e!ective di!usion coe$cient D

wf
(t) obeying the law (101),

which now decays in time.
The value b"!1 leads to a logarithmic growth of p2

X
(t).

3.1.2.4. Trapping sweep. Finally, for b(!1, we can take the tPR limit in (94) directly, without
rescaling the integration variable. The oscillatory term vanishes in the tPR limit due to the
integrability of E

w
(u)u~2 and the Riemann}Lebesgue lemma [172]. There results:

lim
t?=

p2
X
(t)"K3

x
,

where

K3
x
"

1
p2P

=

0

E
w
(u)u~2du . (102)

The mean-square tracer displacement never exceeds a "nite limit, and the tracer is statistically
trapped. There is no e!ective long-range transport.
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Table 1
Long-time asymptotics of mean-square tracer displacement in Random Sweeping Model, with i"0. Scaling coe$cients
are given by Eqs. (96), (99) and (102)

Parameter regime Asymptotic mean square displacement Qualitative behavior
lim

t?=
p2
X
(t)

b(!1 K3
x
t0 Trapping

!1(b(0 2
1`b

KA

x
t1`b Sub-di!usive

b"0 2KH
x
t Di!usive

0(b(1 2
1`b

KA

x
t1`b Super-di!usive

3.1.2.5. Summary. We collect the anomalous di!usion results stated above for the Random
Sweeping Model in Table 1.

3.1.2.6. Ewects of molecular diwusion. We now brie#y consider how the above tracer behavior is
modi"ed under the addition of molecular di!usion i'0. The equations of motion now become
stochastic:

dX(t)"v(t) dt#J2i d=
x
(t) ,

d>(t)"J2i d=
y
(t) ,

where (=
x
(t),=

y
(t)) is a two-dimensional Brownian motion. The interaction between the molecular

di!usion and a spatially uniform velocity "eld is completely linear, and the integrated trajectory
equations are

X(t)"x
0
#P

t

0

v(s) ds#J2i=
x
(t) ,

>(t)"y
0
#J2i=

y
(t) .

The mean-square tracer displacement in each direction is modi"ed from Eq. (93) only by the
addition of 2it due to the molecular e!ects

p2
X
(t)"2it#2P

t

0

(t!s)R
w
(s) ds ,

p2
Y
(t)"2it .

Molecular di!usion will therefore produce an ordinary di!usive character for all b40. The
random sweep will have relatively negligible e!ects at long times when b(0, corresponding to the
regimes of subdi!usive or trapping behavior due to random sweeping alone. On the other hand,
molecular di!usion plays a negligible role in the superdi!usive regime 0(b(1 at long times.

The simple additivity of the contributions from turbulent di!usivity and molecular di!usivity is
a consequence of the absence of spatial structure in the Random Sweeping Model. We will see that
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molecular di!usivity can in#uence the tracer motion in much more subtle ways when the velocity
"eld has spatial variations, even in some very simple models (see Section 3.2).

3.1.3. Eulerian vs. ¸agrangian statistics
The Random Sweeping Model is quite simplistic, yet already gives us some qualitative under-

standing of what circumstances can lead to anomalous di!usion in general statistically
homogenous turbulent di!usion models. Speci"cally, suppose we are given an arbitrary two-
dimensional, incompressible, mean zero, spatially homogenous, statistically stationary random
velocity "eld (which need not be Gaussian)

*(x, y, t)"C
v
x
(x, y, t)

v
y
(x, y, t)D .

The equations of motion for the tracer are then

dX(t)"v
x
(X(t),>(t), t) dt#J2id=

x
(t) ,

d>(t)"v
y
(X(t),>(t), t) dt#J2i d=

y
(t) .

Now, we de"ne the ¸agrangian velocity of the tracer

*(L)(t)"C
v(L)
x

(t)

v(L)
y

(t)D"C
v
x
(X(t),>(t), t)

v
y
(X(t),>(t), t)D ; (103)

this is nothing but the random velocity "eld evaluated at the current location of the tracer. In terms
of this Lagrangian velocity, the equations of motion take an exceptionally simple form

dX(t)"v(L)
x

(t)dt#J2id=
x
(t) ,

d>(t)"v(L)
y

(t)dt#J2id=
y
(t) .

(104)

In fact, these equations are identical to those of the Random Sweeping Model, without the
restriction of the velocity pointing in a single direction, and with the ¸agrangian velocity appearing
as the advective term instead of the externally prescribed sweep velocity w

f
(t).

The Lagrangian velocity can be shown to be a mean zero, statistically stationary random
process; see ([247], Section 9.5) for a formal argument and [270,350] for rigorous derivations. This
is not a simple consequence of *(x, y, t) being a mean zero, stationary random process, but relies
crucially on incompressibility and statistical homogeneity. By repeating the computations in
Eq. (93), which did not require w

f
(t) to be Gaussian, we obtain the following general formula for the

mean-square displacement of a tracer along the coordinate axes:

p2
X
(t),S(X(t)!x

0
)2T"2P

t

0

(t!s)R(L)
x

(s) ds ,

p2
Y
(t),S(>(t)!y

0
)2T"2P

t

0

(t!s)R(L)
y

(s) ds .
(105)
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The functions appearing in the integrand are the ¸agrangian correlation functions:

R(L)
x

(t),Sv(L)
x

(t@)v(L)
x

(t#t@)T ,

R(L)
y

(t),Sv(L)
y

(t@)v(L)
y

(t#t@)T .

(106)

The general formula (105) was originally derived by Taylor [317]. By direct analogy with the
analysis presented in the Random Sweeping Model, we can in principle categorize whether the
tracer motion is, at long times, di!usive, superdi!usive, subdi!usive, or trapped. The main criterion
is the low frequency behavior of the power spectra associated to the Lagrangian correlation
functions (106). A trivial secondary criterion is the presence of molecular di!usion, which precludes
subdi!usive or trapping behavior.

The practical obstacle to a quantitative treatment along these lines, however, is the computation
of the Lagrangian correlation function. What is explicitly speci"ed are the so-called Eulerian
statistics of the velocity "eld, which are just the probability distributions of the velocity "eld
evaluated at ,xed points (x, y, t) in the laboratory frame. The Lagrangian velocity, on the other
hand, requires the evaluation of the velocity "eld at the random tracer locations (X(t),>(t), t). It is, in
general, extremely di$cult to describe quantitative statistical features of the Lagrangian velocity
"eld, such as its correlation function [227,350]. In some sense, it requires us to have already solved
the problem of describing the statistics of the tracer position! There are special exceptions of course;
the Lagrangian velocity v(L)

x
(t) in the Random Sweeping Model is exactly the speci"ed sweeping

velocity w
f
(t). But in general, we cannot gainfully use Taylor's formula (105) to compute the

mean-square displacement quantitatively.

3.1.3.1. Lagrangian intuition. The Lagrangian perspective does provide intuition for the qualitat-
ive behavior of a tracer. Based on the results of the Random Sweeping Model in Section 3.1.2 and
Taylor's formula (105), we can deduce the following connections between anomalous tracer
di!usion (say in the x direction) and properties of the Lagrangian velocity:

f Ordinary di!usion occurs when the correlations of the Lagrangian velocity "eld are of "nite
range, in that :=

0
R(L)

x
(s) ds is nonzero and "nite.

f Superdi!usion is associated with long-range correlations of the Lagrangian velocity "eld, so that
:=
0

R(L)
x

(s) ds is a divergent integral.
f Subdi!usion and trapping are associated to oscillations in the Lagrangian velocity, which

cause the Lagrangian correlation function to have a substantial negative region (so that
:=
0

R(L)
x

(s) ds"0).

Though we cannot in general compute :=
0

R(L)
x

(s) ds, we can often infer, based on the spatio-temporal
#ow structure, whether the Lagrangian velocity ought to have long-range correlations or oscilla-
tions, so that superdi!usion or subdi!usion may be expected. For example, long-range correlations
of the Lagrangian velocity of a tracer can generally be associated to #ows with long-range
spatio-temporal correlations. The connections between long-range spatio-temporal correlations
and superdi!usion have been explored in the context of Levy walks by Zumofen et al. [352] and
through renormalization group analysis [45] and various forms of probabilistic analysis [47] by
Bouchaud and others. We aim here to concentrate on continuum, incompressible, random #uid
#ow models which can be analyzed unambiguously and which reveal a number of subtle features
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concerning anomalous di!usion. In interpreting the exact mathematical results which we present in
Sections 3.2 and 3.3, we will refer repeatedly to the qualitative paradigm outlined above.

3.1.3.2. Lagrangian description of standard tracer diwusion. It is helpful in this connection to
describe a standard scenario in which the random velocity "eld gives rise to ordinary di!usive
behavior at long times. Suppose the Lagrangian correlation function (of the x component of the
tracer motion) can be expressed as

R(L)
x

(t)"<2o(t/q
L
) ,

where o( ) ) is some smooth, rapidly decaying numerical function with o(0)"1 and :=
0

o(t) dt"1.
This corresponds to a model in which the Lagrangian velocity has mean-square velocity <,
a single, "nite Lagrangian correlation time scale q

L
, and no strong oscillatory behavior. We readily

"nd formulas for the mean-square tracer displacement in two asymptotic limits, using Taylor's
formula (105)

p2
X
(t)&G

<2t2 for 04t;q
L

,

2<2q
L
t for t<q

L
.

(107)

The initial quadratic growth in t corresponds to a ballistic phase in which the mean-square tracer
displacement is growing quadratically in time. This can be understood as the e!ect of a push
coherent over the time t;q

L
, which steadily moves the tracer in a certain direction at a certain

speed. After q
L
, the initial push has become incoherent and the tracer is moving primarily under the

in#uence of another independent #uctuation in the velocity "eld. Once many of these renewals
have occurred, one can see that the motion of the particle will have some properties in common
with ordinary Brownian motion, representing the cumulative e!ect of many independent kicks.
Thus, the mean-square displacement grows now linearly instead of quadratically.

Observed over times long compared with the Lagrangian correlation time q
L
, the tracer random

velocity "eld appears to move with an e!ective di!usivity of <2q
L
. The di!usivity naturally

increases with the magnitude of the velocity #uctuations <, but also grows with the Lagrangian
correlation time q

L
. The latter dependence can be understood from the fact that a particle will make

more progress in a time t if its motion is composed of fewer random changes of direction, since
there will be fewer cancellation of displacements.

We will use this standard di!usion picture as a benchmark in our discussion of anomalous
di!usion behavior in the simple shear models of Sections 3.2 and 3.3.

3.2. Tracer transport in steady, random shear -ow with transverse sweep

The "rst class of #ows for which we shall explicitly compute the mean-square tracer displace-
ment is the Random Steady Shear (RSS) Model [10,14,141]. The #ow is de"ned in two spatial
dimensions as a superposition of a steady random shear #ow v(x) and a spatially uniform, possibly
random, cross sweep w(t)

*(x, t)"*(x, y, t)"C
w(t)

v(x)D .
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The steady shear #ow v(x) is taken as a mean zero, Gaussian, homogenous, random "eld.
Its correlation function R(x) and energy spectrum E(k) are related by a Fourier trans-
formation

Sv(x@)v(x@#x)T,R(x),P
=

~=

E(DkD)e2p*kxdk"2P
=

0

E(k)cos(2pkx) dk . (108)

Note that the energy spectrum here is resolved with respect to spatial wavenumber k rather
than with respect to frequency u; otherwise, it has the same physical meaning as the
power spectrum de"ned in the Random Sweeping Model (Section 3.1.2). We assume the energy
spectrum to be smooth for k'0, absolutely integrable, and to behave like a power law at low
wavenumbers

E(k)"A
E
k1~et(k) , (109)

where t(k) is a smooth function on k'0 with t(0)"1. We will sometimes call e the infrared
scaling exponent of the energy spectrum since it describes the low wavenumber properties of
E(k). Integrability at k"0 requires e(2. Note that energy spectra with "nite kP0
limits correspond to e"1. As e increases, more energy is concentrated at low wave-
numbers, corresponding to an increase in the strength of long-range correlations. By considering
#ows with energy spectra which diverge at low wavenumber (1(e(2), we attempt to gain an
understanding of some of the e!ects of long-range spatial correlations on tracer transport. This
is of particular relevance to realistic turbulent di!usion, though we hasten to add that the
long-range correlations in a fully developed turbulent #ow manifest themselves much more
strongly; see Section 3.4.3.

The cross sweep

w(t)"wN #w
f
(t)

is taken as a superposition of deterministic constant wN and a mean zero, Gaussian, stationary
random "eld w

f
(t) with correlation function

R
w
(t),Sw

f
(t@)w

f
(t@#t)T .

Note that the #uctuating component of the cross sweep is of exactly the same form as in the
Random Sweeping Model of Section 3.1.2. The shear "eld v(x) and sweep "eld w(t) are statistically
independent of each other.

The stochastic equations of motion for the location of a tracer particle X(t),>(t) in an RSS Model
#ow are

dX(t)"w(t) dt#J2id=
x
(t) ,

X(t"0)"x
0

,

d>(t)"v(X(t)) dt#J2id=
y
(t) ,

>(t"0)"y
0

,
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where M=
x
(t),=

y
(t)N is a pair of independent Brownian motions. This system of equations can be

successively integrated by quadrature:

X(t)"x
0
#P

t

0

w(s) ds#J2i=
x
(t) , (110a)

>(t)"y
0
#P

t

0

v(X(s)) ds#J2i=
y
(t) . (110b)

Up to the addition of a constant mean sweep, the statistics of the shear-transverse position, X(t), is
just that of a tracer in the Random Sweeping Model which was discussed in Section 3.1.2 and in
[18]. We have that X(t) is a Gaussian random process with mean displacement

SX(t)T"x
0
#wN t

and cross-shear displacement variance

p2
X
(t),S(X(t)!SX(t)T)2T"2it#2P

t

0

(t!s)R
w
(s) ds . (111)

We concentrate therefore on the shear-parallel motion >(t) of the tracer. While it can be explicitly
represented in the fairly simple form (110b), its statistics are highly nontrivial owing to the
nonlinear interaction between the shear velocity "eld v(x) and the shear-transverse tracer position
X(t). For example,>(t) is not in general a Gaussian random process, even though all random "elds
(v(x), X(t), and=

x
(t)) appearing on the right-hand side of Eq. (110b) are Gaussian. We will return

to this issue in Section 3.4. Within Section 3.2, we will focus on the (absolute) mean-square
shear-parallel displacement

p2
Y
(t)"S(>(t)!y

0
)2T .

The mean displacement S>(t)!y
0
T vanishes identically because of the mean zero assumption on

v(x).
As we will demonstrate in Paragraph 3.2.6.1, the mean-square displacement along the shear is

given by the following formula:
Mean-square shear-parallel tracer displacement for RSS model:

p2
Y
(t)"2it#2P

=

0

E(k)R(k, t) dk , (112a)

R(k, t)"2P
t

0

(t!s)cos(2pkwN s)e~2p
2k2p2

X (s)ds . (112b)

This formula remains valid when v(x) is non-Gaussian.
Expression (112) explicitly resolves the mean-square displacement along the shear into contribu-

tions from #uctuations of various wavenumbers. The function R(k, t), which we will call the
shear-displacement kernel, contains the e!ects of cross-shear transport due to the deterministic
mean #ow wN , the #uctuating velocity "eld w

f
(t), and molecular di!usion i. The random cross-shear

motion is accounted for by p2
X
(t); see Eq. (111). The shear-displacement kernel R(k, t) may be

interpreted as the response of p2
Y
(t) to the presence of a component A cos(2pkx)#B sin(2pkx) of the
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random shear velocity "eld along with any cross-shear transport processes, where A and B are
a pair of standard, independent Gaussian random variables (zero mean, unit variance). The actual
random shear #ow may be thought of as a superposition of independent random #uctuations of
various wavenumbers k, with amplitude given by J2E(k). Since these #uctuations are independent
and do not act across the gradient of the velocity "eld, the shear-parallel tracer motion>(t) may be
expressed as a superposition of independent contributions coming from each wavenumber k of the
shear velocity "eld v(x). This will be a useful heuristic perspective in interpreting the exact
mathematical results.

Some general observations are already apparent. For w(t)"0 and i"0, we have no cross-shear
motion (wN "p2

X
(t)"0) so the shear-displacement kernel is simply

R(k, t),t2 ,

and the mean-square displacement along the shear grows quadratically in time

p2
Y
(t)"2t2P

=

0

E(k) dk"Sv2Tt2 ,

signalling ballistic motion in the shear-parallel direction. This is readily understood: with no
cross-shear motion, tracers stay on the original striated streamlines of the shear #ow and proceed
at the constant (but random) velocity v(x

0
) of the streamline on which they were originally situated.

Much richer behavior arises when tracers do move across the shear #ow streamlines due to
molecular di!usion i and/or the sweeping velocity w(t), thereby breaking up the monotonic motion
along the streamlines of the shear. This is re#ected in the suppression of the shear-displacement
kernel R(k, t) (112b) through an oscillatory term due to the mean sweep and an exponential
damping factor due to random cross-shear motion. We note moreover that the suppression e!ects
become weaker at low wavenumber k. Hence, if there is su$cient energy in the low-wavenumber
modes, we may expect that the shear-parallel transport is dominated by them, particularly at long
times.

In what follows, we will develop these ideas in detail, through exact formulas and accompanying
explanations of the relevant physical mechanisms. We will "nd that the shear-parallel tracer
motion can have a wide variety of long-time behaviors, depending on the nature of the shear-
transverse tracer motion X(t) and on the strength of the long-range correlations of the random
velocity "eld v(x).

We shall "rst consider in turn the individual e!ects of each cross-shear motion on tracer
transport along the shear: molecular di!usion in Section 3.2.1, a constant deterministic cross sweep
w(t)"wN in Section 3.2.2, and a purely random cross sweep w(t)"w

f
(t) in Section 3.2.3. They will

be compared in Section 3.2.4, and collective e!ects will be discussed in Section 3.2.5.
After presenting these asymptotic results and some heuristic discussion, we indicate the means of

their derivation in Section 3.2.6.

3.2.1. Ewects of molecular diwusion
We "rst consider tracer motion along a random steady shear when molecular di!usion is active

(i'0) and there is no cross sweep velocity w(t)"0. This problem has been considered in the
context of the #ow of groundwater through a strati"ed porous medium [119,223]; in these
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applications i represents local dispersion coe$cients of the medium rather than microscopic
di!usion. The general results presented here were derived in [10]. The mean-square cross-shear
displacement is just

p2
X
(t)"2it ,

and the general formula (112) can be simpli"ed to the following expression:

p2
Y
(t)"2it#2P

=

0

E(k)Ri(k, t) dk ,

Ri(k, t)"t2F
1
(t/qi(k)) .

We use here a specially de"ned universal function:

F
1
(u),2(e~u#u!1)/u2 ,

and a natural wavenumber-dependent time scale

qi(k),(4p2ik2)~1 , (113)

which we will call the i-persistence time scale. The important properties of F
1
(u) for our purposes

are that it approaches a constant value 1 at small u, and that it decays for large positive u like 2u~1.
Matheron and de Marsily [223] obtain an alternative formula for p2

Y
(t) in terms of the Laplace

transform of the correlation function R(x), and present some numerical plots indicating the growth
of p2

Y
(t) over "nite time intervals. We focus now on the long time asymptotics of p2

Y
(t).

Recalling that the shear-displacement kernel Ri(k, t) represents the in#uence of #uctuations of
wavenumber k on the shear-parallel tracer transport, we see that the contribution of wavenumber
k is ballistic for t;qi(k) and di!usive for t<qi(k)

Ri(k, t)&G
t2 for t;qi(k) ,

Ki(k)t for t<qi(k) .

The asymptotic shear-parallel tracer di!usivity due to a normalized mode of wavenumber k is

Ki(k),lim
t?=

Ri(k, t)/2t"1/4p2ik2 . (114)

This can be understood physically through the Lagrangian perspective developed in Section 3.1.3,
where qi(k) plays the role of a Lagrangian correlation time for the shear-parallel transport
contribution from random shear #uctuations of wavenumber k. The persistent motion of the tracer
toward a given direction along a steady shear #ow is broken up over time by the molecular
di!usion, which allows the tracer to hop across streamlines. Since the shear #ow has zero mean, the
tracer will be stochastically bu!eted from streamlines carrying it one way to streamlines carrying it
the other. The shear-parallel Lagrangian velocity of the tracer will consequently decorrelate on
a time scale on the order of the time it takes for molecular di!usion to move the tracer across one
wavelength &k~1 of the #uctuation. This is readily computed to have the parameteric scaling
&(k~2)/i, which is identical to qi(k) up to numerical constant. This justi"es the interpretation of
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Table 2
Long-time asymptotics of mean-square tracer displacement along the shear in Random Steady Shear Model, with
i'0, wN "w

f
(t)"0. Scaling coe$cients are given by Eq. (115)

Parameter regime Asymptotic mean square displacement Qualitative behavior
lim

t?=
p2
Y
(t)

e(0 2KHi t Di!usive
0(e(2 4

2`e
KA

i t1`e@2 Superdi!usive

qi(k) as the Lagrangian correlation time due to the molecular di!usion across the streamlines. And,
consistently with the general heuristic picture outlined in Paragraph 3.1.3.2, the tracer displace-
ment due to the #uctuation of wavenumber k is ballistic for shorter times and di!usive for longer
times. Moreover, the asymptotic di!usivity Ki(k) is proportional to (in fact equal) to the Lagran-
gian correlation time qi(k). Therefore, the tracer motion induced by a single wavenumber k of the
steady shear #ow completely follows the paradigm of standard di!usion.

Summing up the contributions from all wavenumbers in the shear #ow is quite subtle, however,
because the Lagrangian correlation time qi(k) diverges as kP0. This is clearly physical: it takes
much longer for molecular di!usion to break up the coherent shear-parallel tracer transport of
large wavelength #uctuations. Because of the slow decorrelation of the low wavenumber modes, it
is not necessarily true that the tracer transport is asymptotically di!usive at long times, even though
the contribution from each individual wavenumber k'0 does eventually become di!usive. The
long-time limiting behavior of the tracer motion along the shear depends crucially on the low
wavenumber properties of the random shear spectrum, or equivalently, the strength of the
long-range correlations in the shear #ow. A careful asymptotic calculation, indicated in
Section 3.2.6 and originally by [10], reveal the results reported in Table 2. The preconstants of the
scaling laws are

KHi"i#2P
=

0

E(k)Ki(k) dk ,

KA

i"!CA!
e
2BAE

(4p2i)~(2~e)@2 .

(115)

As we see, for e(0, the steady shear #ow has su$ciently weak long-range correlations so
that at long times, the shear-parallel tracer motion behaves di!usively with "nite e!ective
di!usion constant KHi obtained by simply integrating the long time e!ective single-mode di!usivi-
ties (114)

Ki(k),lim
t?=

Ri(k, t)/2t"qi(k)"1/4p2ik2

against twice the energy spectral density. Results of this type with a similar formula for enhanced
di!usivity were pioneered by Taylor [318]. The particular result noted here was originally derived
by Gelhar et al. [119], and can be seen to be a natural extension of the e!ective di!usivity of
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a periodic shear #ow (51). An important class of shear velocity "elds which fall in the class e(0 are
those with wavenumbers excited only above some threshold k

.*/
'0, i.e., E(k)"0 for 04k(k

.*/
.

Velocity "elds given by a "nite superposition of random sinusoidal oscillations are a particular
example.

For 0(e(2, the long-range correlations in the shear #ow are su$ciently strong to cause this
simple picture to break down. The tracer's motion is dominated for arbitrarily large times t by
#uctuations of very large scales with qi(k)Zt, which act coherently and persistently on the tracer.
These produce a long-term memory in the Lagrangian velocity of a tracer particle and give rise to
a superdi!usive transport for exactly the same reason as we discussed in Section 3.1.3. Put another
way, for 0(e(2, the cross-shear transport induced by Brownian motion is not fast enough to
completely break up the coherent advection by the strong, large-scale shear #uctuations. This is
re#ected in the fact that the e!ective di!usion constant KHi for e(0 would diverge if used for e'0.
Note moreover that this division between di!usive and superdi!usive behavior is in exact accord
with the rigorous homogenization criterion described in Section 2.4.2; the PeH clet number (81) of the
random shear #ow with energy spectrum (109) is "nite precisely when e(0.

It is interesting to note that superdi!usion arises for quite typical shear velocity "elds, namely
those with "nite kP0 limits of the energy density E(k) (which correspond to e"1). These are
precisely those random velocity "elds for which the integral of the correlation function is "nite and
positive

0(P
=

0

R(x) dx(R . (116)

That superdi!usion could occur in steady shear #ows of this type was suggested by Gelhar et al.
[119] and precisely demonstrated by Matheron and de Marsily [223]. A special example of
a steady random shear #ow with e"1 which has been considered by Mazo and Van den Broeck
[225] and others [46,279,280,353,354] consists of in"nite array of parallel channels of common
width, with a constant random velocity along each channel chosen independently to be $v

0
with

equal probability. (The criterion (116) is manifestly satis"ed by this and any other random shear
#ow with a "nite-range, purely nonnegative correlation structure.) An explicit formula for p2

Y
(t)

valid for all "nite times is derived in [225], from which an asymptotic t3@2 scaling may be read o!.
The authors [46,279] furnished the following physical-space heuristic explanation for the
p2
Y
(t)&t3@2 superdi!usive scaling law: The molecular di!usion across the channels causes a tracer

to sample &t1@2 channels over a time interval t, so the tracer spends a typical time &t1@2 in each
channel. Consequently, the total mean-square displacement over a time interval t is the number of
channels explored &t1@2 multiplied by the mean-square displacement produced by each channel
&(t1@2)2"t. Phrased more generally, the reason for the anomalous di!usion is that the number of
di!erent channels sampled grows sublinearly in time, so there is a long-term memory e!ect due to
preferential resampling of channels previously visited.

Viewing the scaling exponent l in p2
Y
(t)&tl as an order parameter, we can say that there is

a formal phase transition [126] in the long-time tracer behavior with respect to the infrared scaling
exponent e of the energy spectrum. The phase transition occurs at e"0; below this value l"1, and
above this value, l bifurcates continuously to the curve l"(e#2)/2. We indicate this graphically
in Fig. 9. At the phase transition value e"0 itself, there are logarithmic corrections.
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Fig. 9. Scaling exponent l in p2
Y
(t)&tl as a function of e in Random Steady Shear Model with i'0, wN "w

f
(t)"0.

Finally, we note that the long-time tracer behavior is singular in limit of zero molecular di!usion;
the scaling coe$cients (115) diverge as iP0. The reason for the drastic di!erence between i"0
and i small is that tracers are permanently stuck on their original streamline in the former case, but
can over time move arbitrarily far across the shear in the latter case, no matter how small i is.

3.2.2. Ewects of constant cross sweep
We now consider the e!ects of a deterministic sweeping of tracers across streamlines, as

manifested by a constant (in space and time) mean drift w(t)"wN O0 across the random, steady
shear v(x)

*(x, y, t)"C
wN

v(x)D . (117)

The behavior of a tracer in such a #ow was studied in detail by Horntrop and the "rst author [141].
We consider for now the case without molecular di!usion.

Then p2
X
(t)"0, and the formula for the mean-square tracer displacement along the shear may be

written

p2
Y
(t)"2P

=

0

E(k)R
wN
(k, t) dk ,

R
wN
(k, t)"t2F

2
(t/q

wN
(k)) .

We have de"ned another universal function

F
2
(u),2(1!cos u)/u2 ,

and a wavenumber-dependent time scale

q
wN
(k),(2pkwN )~1 , (118)

which we call the wN -persistence time scale. It plays a role similar to qi(k) in Section 3.2.1, with some
important distinctions due to the lack of randomness of the sweep wN . As we shall see, q

wN
(k) has some

but not all of the standard properties of a (wavenumber-dependent) Lagrangian correlation time.
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The time scale q
wN
(k) does have the same property as qi(k) in measuring persistence of the tracer

motion, in that q
wN
(k) describes the time scale on which the cross sweep wN disrupts the ballistic

motion due to a random oscillatory mode of wavenumber k in the shear velocity "eld. Indeed, over
times t;(kwN )~1, the tracer motion is predominantly unidirectional. Over longer times tZ(kwN )~1,
the tracer is dragged by the mean sweep across several wavelengths of the oscillating shear #ow, so
the tracer motion assumes an oscillatory character along the shear rather than a ballistic one. The
key point of departure of the present model from the standard di!usion picture enunciated in
Paragraph 3.1.3.2 is that each #uctuation of the shear #ow with wavenumber k contributes an
oscillatory, rather than a di+usive component to the shear-parallel tracer motion at times long
compared to the natural wN -persistence time scale q

wN
(k). This is re#ected in the fact that the

shear-displacement kernel R
wN
(k, t) is, for each k, a bounded oscillatory function of time. We

therefore call q
wN
(k) a Lagrangian persistence time scale, which is a more generally applicable notion

than a Lagrangian correlation time scale. In Section 3.2.4, we will compare and contrast the above
described behavior of the kernel associated to a constant mean sweep, R

wN
(k, t), with those arising

from other cross-transport mechanisms.
We note now that the mean-square displacement in a statistically homogenous, random steady

shear #ow with constant cross sweep is given by the same formula as in the Random Sweeping
Model (94), except that u is replaced by kwN in the kernel, and the energy spectrum resolved with
respect to wavenumber appears instead of the energy spectrum resolved with respect to frequency.
This is readily understood from the formula (110b) for the shear-parallel tracer motion, which for
i"0 and w(t)"wN reads

>(t)"y
0
#P

t

0

v(x
0
#wN s) ds .

The Lagrangian velocity of the tracer is therefore exactly v(x
0
#wN t), which is manifestly a mean

zero, statistically stationary random process, just as the sweeping "eld w
f
(t) in the Random

Sweeping Model. We can therefore immediately deduce the long-time asymptotics of the mean-
square displacement across the shear from the results of the Random Sweeping Model (see Table 1
and [141]); these are displayed in Table 3. The scaling coe$cients are

KH
wN
"1

2
A

E
wN ~1 , (119a)

KA

wN
"1

2
A

E
pe~(3@2)wN e~2C((2!e)/2)/C((1#e)/2) , (119b)

K3
wN
"

1
p2wN 2P

=

0

E(k)k~2dk . (119c)

The long-time tracer behavior is a smooth function of e as it varies over 0(e(2, even though it
falls into di!erent qualitative categories. There is however, a phase transition at e"0 between
trapping behavior and subdi!usive behavior (Fig. 10). This is manifested both in the sharp change
in the scaling exponent, and in the fact that the long time tracer motion depends on the whole
energy spectrum for e(0 through K3

x
(see Eq. (119c)), whereas only the infrared parameters

A
E

and e appear in the preconstants for e'0.
The simplicity of the Random Steady Shear model with constant cross sweep and the wide

variety of resulting tracer behavior make this model an excellent candidate for testing numerical
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Table 3
Long-time asymptotics of mean-square tracer displacement along the shear in Random Steady Shear Model, with
i"0, w(t)"wN O0 (from [141]). Scaling coe$cients are given by (119)

Parameter regime Asymptotic mean square Qualitative behavior
displacement lim

t?=
p2
Y
(t)

e(0 K3
wN
t0 Trapping

0(e(1 2eK
A

wN
te Sub-di!usive

e"1 2KH
wN
t Di!usive

1(e(2 2eK
A

wN
te Super-di!usive

Fig. 10. Scaling exponent l in p2
Y
(t)&tl as a function of e in Random Steady Shear Model with wN O0, i"w

f
(t)"0.

methods for simulating turbulent di!usion. It has been applied toward this end in [83], and we
present an extensive discussion in Section 6.2.

3.2.2.1. Streamline analysis. Consideration of the streamlines of the steady velocity "eld gives
a pictorial way to understand how the cross sweep wN impedes di!usion along the shear #ow (see
Section 2.2). Without a cross #ow, the streamlines of the shear are of course straight lines parallel to
the x

2
axis. The e!ect of the velocity "eld alone is to transport any tracer along its own streamline

forever along a single direction.
When a nonzero cross sweep is added wN O0, the streamlines display a more interesting behavior.

We de"ne the stream function W(x, y) of the resulting incompressible steady #ow in the standard
way:

*(x, y)"C
wN

v(x)D"C
!

RW(x, y)
Ry

RW(x, y)
Rx D .

An obvious solution is

W(x, y)"!wN y#WI (x) , (120)
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where

dWI (x)/dx"v(x) . (121)

As v(x) is a homogenous, mean zero, Gaussian random process, it may be expressed as a stochastic
Fourier integral ([341], Section 9)

v(x)"P
=

~=

e2p*kxJE(DkD) d=I (k) , (122)

where the integration measure is complex white noise, which is a Gaussian random quantity with
the formal properties

d=I (!k)"d=I (k) ,

Sd=I (k)T"0 ,

Sd=I (k)d=I (k@)T"d(k#k@) dkdk@

(An overbar denotes complex conjugation.) The stochastic Fourier integral expresses v(x) as
a continuum limit of a sum of independent random Fourier modes, with amplitudes weighted by
the square root of their energy density. It is readily checked that v(x) de"ned by Eq. (122) is a mean
zero, Gaussian random process with correlation function in agreement with Eq. (108).

Now, it is tempting to de"ne WI (x) as

WI (x)"P
=

~=

e2p*kx
JE(DkD)
2pik

d=I (k)"
JA

E
2pi P

=

~=

e2p*kxsgn(k)DkD~(1`e)@2Jt(DkD)d=I (k) , (123)

so that Eq. (121) is formally satis"ed. For the stochastic Fourier integral (123) to be well-de"ned,
however, the integrand must be square-integrable [341]. The division by k introduces a possible
singularity at k"0, which is square-integrable only for e(0.

For this range of infrared scaling exponents, we have successfully de"ned a good stream function
W(x, y) by Eqs. (120) and (123). In particular, when e(0, WI (x) is a real, homogenous, Gaussian
random "eld with "nite variance:

SWI 2(x)T"P
=

~=

DJA
E
sgn(k)(2pi)~1DkD~(1`e)@2Jt(DkD)D2dk"

A
E

4p2P
=

~=

DkD~1~et(DkD) dk(R .

Now, the streamlines are given by level sets of the stream function

W(x, y)"!wN y#WI (x)"C , (124)

or equivalently

y"WI (x)/wN #(C/wN ) . (125)

Since WI (x) is a homogenous random "eld with "nite variance, the shear-parallel displacement of
the streamline, y, is randomly distributed, but smoothly and with "nite variance. There are no large
excursions o! to in"nity (almost surely), and the streamlines are blocked in a statistical sense along
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the shearing direction. Because we are not including molecular di!usion at the moment, tracers
follow the streamlines, and will consequently remain trapped along the shearing direction for e(0.

When 0(e(2, these arguments no longer hold (due to the singularity of the integral (123) at
k"0); it is not possible to de"ne a statistically homogenous stream function with bounded
variance. The streamlines instead wander o! to in"nity, yielding subdi!usive, di!usive, or super-
di!usive behavior on large scales and long times.

3.2.3. Ewects of temporally yuctuating cross sweep
The third and "nal mechanism of cross-shear transport which we will consider is that of

a randomly #uctuating, spatially uniform, mean zero velocity "eld w
f
(t):

*(x, y, t)"C
w

f
(t)

v(x) D .

The shear-transverse component of the velocity "eld w
f
(t) is taken to be a mean zero, Gaussian,

stationary, random process with correlation function:

R
w
(t),Sw

f
(t@)w

f
(t#t@)T"2P

=

0

cos(2put)E
w
(DuD) du .

We assume the power spectrum of the random sweeping is smooth for u'0, absolutely integrable,
and has the same form as that assumed in the Random Sweeping Model discussed in Section 3.1.2

E
w
(u)"A

E,w
DuD~bt

w
(DuD) . (126)

Here, A
E,w

'0, b(1, and t
w
( ) ) is a smooth function on the non-negative real axis with t

w
(0)"1

and Dt@
w
(0)D(R.

The mean-square displacement of a tracer across the shear due to the random sweeping is given
by Eq. (93)

p2
X
(t),S(X(t)!x

0
)2T"2P

t

0

(t!s)R
w
(s) ds .

We saw in Section 3.1.2 that the exponent b determines the long-time behavior of the tracer
motion in the x direction:

lim
t?=

p2
X
(t)&G

2
1`bK

A

x
t1`b for !1(b(1 ,

K"

x
for b(!1 ,

(127)

where

KA

x
"1

2
A

E,w
nb~(1@2)C((1!b)/2)/C((2#b)/2) ,

K3
x
"

1
p2P

=

0

E
w
(u)u~2du .

To avoid needless complications, we will not treat the phase transition value b"!1, in which
logarithms arise.
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Table 4
Long-time asymptotics of mean-square tracer displacement along the shear in Random Steady Shear Model, with
i"0, w(t)"w

f
(t)O0. Scaling coe$cients are given by (129)

Parameter regime Asymptotic mean square Qualitative behavior
displacement lim

t?=
p2
Y
(t)

!1(b(1
e(

2b
1#b

2KH
wf

t Di!usive

2b
1#b

(e(2
4

2#e!b(2!e)
KA

wf
t1`e@2~b(2~e)@2 Superdi!usive

b(!1 e(2 Kv

wf
t2 Ballistic

The mean-square displacement of a tracer along the shear is obtained by setting i"wN "0 in
Eqs. (112a) and (112b)

p2
Y
(t)"2P

=

0

E(k)R
wf

(k, t) dk ,

R
wf

(k, t)"2P
t

0

(t!s)e~2p
2k2p2

X(s) ds .

(128)

We see that the random cross sweeping decorrelates the tracer motion along the shear through
the exponentially decaying factor. It acts in a manner quite similar to molecular di!usion in
bu!eting tracers randomly onto di!erent streamlines of the pure shear #ow; indeed, the case of pure
molecular di!usion is recovered by simply setting p2

X
(t)"2it. The random cross sweeping,

however, can have a variety of long-time scaling behavior, depending on its low-frequency scaling
exponent b. The shear-parallel transport depends sensitively on the e!ectiveness of the random
cross sweep, as illustrated in Table 4, which displays the long time asymptotics of p2

Y
(t) for various

parameter values. The scaling coe$cients are

KH
wf
"2P

=

0

E(k)K
wf

(k) dk , (129)

KA

wf
"

C((2!e)/2)A
E

((e(1#b)/2)!b)A
1#b
4p2KA

x
B

(2~e)@2
,

Kv

wf
"2P

=

0

E(k)e~2p
2k2Kx

3 dk ,

where

K
wf

(k),lim
t?=

R
wf

(k, t)
2t

"P
=

0

e~2p
2k2p2

X(s)ds (130)

is the asymptotic shear-parallel di!usivity contribution from a normalized mode of wavenumber k.
These results are derived in Paragraph 3.2.6.3.
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Fig. 11. Scaling exponent l in p2
Y
(t)&tl as a function of e in Random Steady Shear Model with w

f
(t)O0, i"wN "0. The

value b"1/2, corresponding to a random cross sweep which induces superdi!usive cross-shear transport, is used in this
drawing. Varying b slides the transition value horizontally along l"1.

Consider "rst the case in which the mean-square displacement across the shear grows unbound-
edly with time (!1(b(1). The value b"0 corresponds to a di!usive cross sweep, and the
behavior of p2

Y
(t) is much the same at long times as it is for the case of molecular di!usion; see

Section 3.2.1. In particular, there is a phase transition at e"0, below which the tracer displacement
along the shear is di!usive, and above which it grows superdi!usively as p2

Y
(t)&KA

wf
t1`e@2. As b is

varied within the range !1(b(1, the situation is qualitatively the same. The key changes are
that

f The phase transition value between superdi!usive and di!usive shear-parallel transport is
shifted to e"2b/(1#b).

f The superdi!usive scaling exponent is modi"ed to 1#e/2!b(2!e)/2.

These are indicated graphically in Fig. 11.
We note that increasing b increases the strength of the low-frequency, long-range temporal

correlations in the sweep, and thus increases the rate at which the tracer is swept across the
streamlines. We see that an increase of b is associated with an increase in the range of values of e for
which the shear-parallel transport is di!usive rather than superdi!usive, and is also associated with
a depression of the scaling exponent in the superdi!usive regime. This explicitly demonstrates that
an increase in the strength of cross-shear transport decreases the rate of shear-parallel transport.
The reason is simply that the Lagrangian correlation time for the tracer motion along the shear will
be reduced if it is swept across the shear at a faster rate; see Section 3.1.3. One can associate the
Lagrangian correlation time in the present model with a natural w

f
-persistence time q

wf
(k) for each

wavenumber k in the shear by the implicit relation

p2
X
(q

wf
(k))"(2p2k2)~1 .

This is suggested mathematically by the exponential damping term in Eq. (128), and physically
(up to numerical factor) by the typical time taken to cross one wavelength &k~1 of the shear
#ow. For low wavenumbers k, which have the longest Lagrangian decorrelation times
and therefore often dominate the long-time asymptotics of tracer motion, we can use the
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asymptotic formula (127) to obtain

lim
k?0

q
wf

(k)&C
wf

(KA

x
k2)~1@(1`b) , (131)

where C
wf

is an unimportant numerical constant. The rate of divergence of the Lagrangian
correlation time q

wf
(k) is shallower when b increases and the cross-sweep transport is more e!ective,

as we claimed. It can be checked that the asymptotic single-mode di!usivity K
wf

(k) is on the order
of q

wf
(k), as would be expected by the standard Lagrangian analysis (Paragraph 3.1.3.2).

The case b(!1 has a distinctive character. The low-frequency component of the random
sweep is so weak in this regime that the tracer motion across the shear is trapped. Thus, at long
time scales, the tracer remains statistically localized about its original streamline, and therefore
exhibits permanent memory e!ects. In fact, the Lagrangian correlation time associated to each
wavenumber is e!ectively in"nite. Consequently, the shear-parallel transport is ballistic, in accord-
ance with the cartoon Lagrangian description in Section 3.1.3.

It is interesting to note that the scaling coe$cient Kv

wf
for the ballistic regime depends on the

energy spectrum at all wavenumbers, a feature in common with the di!usive regime and distinct
from the superdi!usive regime. The reason is that each mode of the shear #ow has an in"nite
Lagrangian correlation time associated to it due to the trapped cross shear transport. Hence, the
contribution of even large wavenumbers remains ballistic at arbitrarily long times, and never
becomes subdominant to the total ballistic scaling.

3.2.4. Comparison of ewects of various cross-shear transport processes
We now make some general observations regarding the competing e!ects of cross-shear

transport due to molecular di!usion i (Section 3.2.1), a constant cross sweep wN (Section 3.2.2), or
a randomly #uctuating cross sweep w

f
(t) (Section 3.2.3).

First of all, we have noticed that shear velocity "elds with long-range correlations (e relatively
large) can exhibit superdi!usive shear-parallel transport for all cross-shear transport mechanisms
considered. The reason is that the mode-by-mode contribution to the shear-parallel tracer motion
has an e!ective Lagrangian persistence time scale diverging at low wavenumber. When there is
enough energy in the low wavenumber modes, the total motion of the tracer also has an in"nite
Lagrangian persistence time, so the standard di!usive situation of Paragraph 3.1.3.2 does not
apply.

Another trend which can be observed is the fact that shear-parallel transport is generally
diminished as cross-shear transport becomes more e$cient. This was demonstrated explicitly in
Section 3.2.3 by consideration of how the long-time asymptotics of p2

Y
(t) depend on the exponent

b characterizing the low-frequency behavior of the randomly #uctuating cross sweep w
f
(t). The

sense in which this qualitative trend is supported by all cases considered is that the superdi!usive
regime of exponent values e shrinks as the cross-shear transport becomes more rapid. Indeed, the
superdi!usive regime is minimal (1(e(2) for the case of a constant (ballistic) cross sweep, and
expands smoothly for a randomly #uctuating cross sweep as b is decreased so that the cross-shear
transport is superdi!usive, then di!usive, then subdi!usive, then trapped. Moreover, the case of
a constant cross sweep can be thought of as a limit with b61 of the randomly #uctuating cross
sweep insofar as superdi!usive tracer motion is concerned. Speci"cally, as b61, the boundary
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value between di!usive and superdi!usive behavior, 2b/(1#b), and the superdi!usive scaling
exponent 1#e/2!b(2!e)/2 for the randomly #uctuating cross sweep tend to the values 1 and e,
respectively, which are those corresponding to a constant cross sweep (cf. Figs. 10 and 11).

There is, however, a strong distinction between the case of a constant cross sweep and the case of
a random cross-shear transport (whether by molecular di!usion or by a randomly #uctuating cross
sweep) insofar as subdi!usive tracer behavior is concerned. There is no subdi!usive nor trapping
regime for random cross-shear transport, whereas these do exist with a constant cross sweep when
the energy spectrum of the shear #ow vanishes at the origin. The reason for the distinction may be
understood by a consideration of the contribution R(k, t) of a single mode of wavenumber k of
the random shear #



the two. Therefore, the more rapid cross-shear transport process will determine the character of the
long-time asymptotics of the shear-parallel transport. Note that the above superposition laws
indicate that the scaling exponent for p2

Y
(t) is always the smaller of the exponents associated to each

individual, active random cross-shear transport mechanism operating in isolation.
When the tracer motion is superdi!usive, the scaling coe.cient in the asymptotics for p2

Y
(t) will

depend only the dominant cross-shear mechanism. But when the tracer motion is di!usive, the
e!ective di!usion coe$cient will generally depend on all cross-shear transport processes involved.

It must always be kept in mind that long-time asymptotic results are only valid when t is larger
than all relevant time scales, and that there may in practice be important "nite time corrections.
For example, even though the e!ects of molecular di!usion will eventually dominate those of
a subdi!usive cross sweep w

f
(t), there may well be a long intermediate interval of time over which

the cross-shear transport is dominated by the e!ects of the #uctuating cross sweep, because i is
typically small relative to the macroscopic units of the system. Therefore, the shear-parallel
transport may, in such a case, exhibit the scaling associated to a subdi!usive cross sweep for a while
(Table 4), then ultimately cross over to the asymptotic scaling associated to the e!ects of molecular
di!usion (Table 2).

3.2.5.2. Superposition of constant cross sweep with random cross-shear transport process. The
situation is more subtle when a constant cross sweep wN is superposed with a random cross-shear
transport process (i or w

f
(t)). On the one hand, it is true that the fastest cross-shear transport

mechanism (in the present case, wN ) determines whether the tracer motion is superdi!usive, and if so,
how its mean-square displacement scales in time. Therefore, the superdi!usive regime is 1(e(2
and has the same scaling law as for a constant cross sweep with no other random mechanisms
(Table 3). But for e(1, we must take into account the fact that the random cross-shear transport
will break up the coherence present when the constant cross sweep is acting alone. Therefore, when
the constant cross sweep wN is superposed with molecular di!usion i and/or random cross-shear
#uctuations w

f
(t) with !1(b(1, the subdi!usive and trapping regimes (e(1) become dif-

fusive.
We now explicitly illustrate some of these subtle e!ects of superposition by reporting some basic

formulas, worked out in detail in [141], for the mean-square shear-parallel transport for the case in
which a constant cross sweep wN O0 and molecular di!usion iO0 are both present. We take
w
f
(t)"0 for this discussion.
The mean-square displacement of the tracer along the shear is given by the following formula

[141], specialized from Eq. (112)

p2
Y
(t)"2it#2P

=

0

E(k)Ri,wN (k, t) dk , (132a)

Ri,wN (k, t)"t2F
3A

t
qi(k)

,
t

q
wN
(k)B . (132b)

Here, F
3
(u, u@) is the following universal function

F
3
(u, u@)"2C

u
u2#u@2

!

(1!e~u cos u@)(u2!u@2)#2uu@e~u sin u@
(u2#u@2)2 D , (133)
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Table 5
Long-time asymptotics of mean-square tracer displacement along the shear in Random Steady Shear Model, with
i'0, wN O0, w

f
(t)"0. Scaling coe$cients are given by Eq. (134)

Parameter regime Asymptotic mean square Qualitative behavior
displacement lim

t?=
p2
Y
(t)

e(1 2KHi,wN t Di!usive
e"1 2K@Hi,wt Di!usive
1(e(2 2eK

A

i,wN te Superdi!usive

and

qi(k)"(4p2ik2)~1 ,

q
wN
(k)"(2pwN k)~1

are the Lagrangian persistence times associated to the molecular di!usion and to the constant cross
sweep, respectively. A more compact formula for p2

Y
(t) in terms of the Laplace transform of the

velocity correlation function R(x) was derived by Matheron and de Marsily [223]; the spectral
representation has been developed here because of its #exibility in handling randomly #uctuating
components w

f
(t) in the cross sweep. Some numerical plots of p2

Y
(t) over "nite intervals of time for

special choices of correlation functions R(x) can be found in [223].
The long-time asymptotics of p2

Y
(t) are worked out rigorously in [141], and the results displayed

in Table 5. The scaling coe$cients are

KHi,wN "i#2P
=

0

E(k)Ki,wN (k) dk , (134)

K@*i,wN "i#KA

i,wN ,e/1
#2P

=

0

E(k)Ki,wN (k) dk ,

KA

i,wN "
A

E
ne~3@2C((2!e)/2)
2C((1#e)/2)

,

where

Ki,wN (k),lim
t?=

1
2t

Ri,wN (k, t)"
q~1i (k)

q~2i (k)#q~2
wN

(k)
"

i
4p2i2k2#wN 2

(135)

is the asymptotic di!usivity contributed by a single normalized Fourier mode of the shear #ow.
These results have some interesting relations to the asymptotics for a random steady shear #ow

with either molecular di!usion i or a constant cross sweep wN acting individually (see Sections 3.2.1
and 3.2.2, respectively). First, we note that the superdi!usive regime and scalings are identical to
those in which wN O0 but i"0. This is in accordance with the general principle described above
that the fastest cross-shear transport mechanism determines whether the tracer behaves super-
di!usively, and if so, how. Recall that if the random shear #ow has the generic property

A.J. Majda, P.R. Kramer / Physics Reports 314 (1999) 237}574 333



Fig. 12. Scaling exponent l in p2
Y
(t)&tl as a function of e in Random Steady Shear Model with i'0, wN O0, w

f
(t)"0.

0(:=
0

R(x) dx(R (which corresponds to e"1), then the mean-square tracer displacement along
the shear grows superdi!usively in time in the presence of molecular di!usion but with no cross
sweep: p2

Y
(t)&t3@2. The addition of a constant cross sweep wN restores a di!usive character to the

shear-parallel transport, as was noted by Matheron and de Marsily [223] in a hydrological
context. One way to understand this for the case of the independent channel models of [46,279,353]
is that a mean sweep across the channels destroys the oversampling of old channels. Over a time
interval t, a tracer samples only O(Jt) di!erent channels if it only moves di!usively across
channels, but will sample a full O(t) di!erent channels when a constant cross-drift is added [47].

A second outcome of the combination of molecular di!usion with the constant cross sweep is the
elimination of the subdi!usive and trapping regimes which were present when wN O0 but i"0.
This is not simply because molecular di!usion contributes an independent shear-parallel di!usive
transport process. Indeed, even if molecular di!usion were only to act across the shear, the only
change to the asymptotics stated above is that the additive i term in the scaling constants KHi,wN and
K@*i,wN would disappear. The fundamental reason the subdi!usive and trapping behavior disappears
is that the addition of molecular di!usion randomizes the cross-shear transport, and disrupts the
coherent cross-shear motion which produces the persistent oscillations of the Lagrangian velocity.
Interestingly, the boundary between the di!usive and superdi!usive regimes is located at e"1, as
for the case of pure constant cross sweep, but manifests a sharp phase transition as for the case of
pure molecular di!usion (Fig. 12). (Recall that the di!usive}superdi!usive transition is smooth for
the case of a pure constant cross sweep.)

We "nally remark upon the need for mathematical care which the current example demon-
strates. Note that the asymptotic mode-by-mode di!usivity Ki,wN (k) (135) is a bounded function.
Consequently, if one were to blindly compute lim

t?=
p2
Y
(t)/2t by moving the tPR limit under the

integral over k in Eq. (132a), one would arrive at a "nite answer for all e(2, which would coincide
with a naive extrapolation of formula (52) for the e!ective di!usivity in a periodic shear #ow to the
case of a random shear #ow. It would be incorrect to conclude, however, that this result described
the asymptotic shear-parallel di!usivity for 14e(2. The commutation of the tPR limit with
the integral over k is patently invalid for this range of parameters, and leads to a misleading and
incorrect result. The reason is a subtle nonuniform convergence of the integrand to its asymptotic
limit at small wavenumbers; a formally transient contribution to the integral is in fact signi"cant or
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dominant for 14e(2. Mathematically correct computations of the asymptotic di!usivity can be
ensured by proper application of the dominated convergence theorem to interchange limits and
integration and by explicit accounting of the troublesome nonuniformities at small wavenumber.
We illustrate this procedure in Paragraph 3.2.6.3 below; see [141] for the rigorous computation of
the asymptotic results just discussed.

3.2.6. Derivation
We now indicate how the exact asymptotic formulas for the mean-square tracer displacement in

the Random Steady Shear #ow are mathematically obtained. First, we derive the fundamental
formula (112) for the mean-square tracer displacement at all "nite times. Next, we indicate in
general terms how the long-time asymptotics may be deduced both heuristically and rigorously
from this formula. We provide details for the case of a randomly #uctuating cross sweep w

f
(t); the

other cases have been thorougly addressed in previous publications [10,141].

3.2.6.1. Derivation of general formula. The mean-square tracer displacement of a tracer along the
shear may be written in the following primitive form using the integrated equations for the tracer
trajectories (110)

p2
Y
(t),S(>(t)!y

0
)2T , (136a)

>(t)!y
0
"P

t

0

v(X(s)) ds#J2i=
y
(t) , (136b)

X(t)"x
0
#P

t

0

w(s) ds#J2i=
x
(t) . (136c)

Using the mutual independence of v(x) and=
y
(t) and the fact they each have mean zero, we may

write

p2
Y
(t)"2iS(=

y
(t))2T#P

t

0
P

t

0

Sv(X(s))v(X(s@))Tdsds@

"2it#P
t

0
P

t

0

SR(X(s)!X(s@))Tdsds@ . (137)

The remaining averaging is over the statistics of=
x
(t) and w(t), which determine X(t). Invoking the

spectral representation (108) for the correlation function R(t) of the shear velocity "eld, we write

p2
Y
(t)"2it#P

t

0
P

t

0
P

=

~=

E(DkD)Se2p*k(X(s)~X(s{))Tdk dsds@ . (138)

Now, X(s)!X(s@) is the random tracer displacement between times s and s@. By statistical
homogeneity and stationarity of the advection processes, this must have the same statistics as the
tracer displacement over a general time interval s!s@

dX(s!s@) .
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Furthermore, as can be checked from Eq. (110a), this is an integral of a Gaussian random
process and therefore a Gaussian random variable. Its characteristic function is therefore readily
evaluated:

Se2p*k(X(s)~X(s{))T"Se2p*kdX(s~s{)T"e2p*kWdX(s~s{)X~2p
2k2p2

X(@s~s{@)"e2p*kwN (s~s{)~2p
2k2p2

X (@s~s{@) ,

where

p2
X
(t),S(X(t)!SX(t)T)2T"2it#2P

t

0

(t!s)R
w
(s) ds .

Substituting this equation into Eq. (138), we complete the derivation

p2
Y
(t)"2it#P

t

0
P

t

0
P

=

~=

E(DkD) e2p*kwN (s~s{)~2p
2k2p2

X(@s~s{@)dk dsds@

"2it#2P
t

0
P

t

0
P

=

0

E(k) cos(2pkwN (s!s@)) e~2p
2k2p2

X(@s~s{@)dkds ds@

"2it#4P
=

0
P

t

0

(t!s)E(k) cos(2pkwN s) e~2p
2k2p2

X(s)dsdk .

This may be rewritten in the form stated in Eqs. (112a) and (112b)

p2
Y
(t)"2it#2P

=

0

E(k)R(k, t) dk , (139a)

R(k, t)"2P
t

0

(t!s) cos(2pkwN s) e~2p
2k2p2

X(s) ds . (139b)

3.2.6.2. General asymptotic considerations. The long-time limit of Eqs. (139a) and (139b) may be
computed through consideration of the behavior of the shear-displacement kernel R(k, t). We "rst
discuss the asymptotics on a heuristic level, then indicate how to make these arguments rigorous.
Subsequently, we will provide a detailed computation of the asymptotic shear-parallel transport
rate when a randomly #uctuating cross sweep w

f
(t) is active.

For a given superposition of cross-shear transport processes, there is a naturally de"ned
Lagrangian persistence time q

L
(k) associated to transport by the shear mode with wavenumber k.

Expressions for q
L
(k) for various cross-shear transport mechanisms were given in Eqs. (113), (118)

and (131). When multiple cross-shear transport processes are present, q
L
(k) is taken as the smallest

of the corresponding persistence time scales. For the moment, we will discuss only random
cross-shear transport processes (i and w

f
(t)); the presence of a constant cross sweep wN O0 requires

some special consideration, and we return to it later. When t;q
L
(k), the contribution of the shear

mode of wavenumber k is ballistic, and

R(k, t)+t2 for 04t;q
L
(k) .
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The shear-parallel transport due to shear #uctuations of wavenumber k becomes di!usive for
t<q

L
(k), and

R(k, t)+2K(k)t for t<q
L
(k) ,

K(k),lim
t?=

R(k, t)/2t .

This corresponds, for a "xed wavenumber k, to the generic situation described in Paragraph 3.1.3.2.
The Lagrangian persistence time q

L
(k) generally decreases with k and diverges as kP0, because

a tracer must move far across the shear before the persistent motion due to long-wavelength (low k)
modes of the shear is broken up. We can therefore de"ne a time-dependent wavenumber scale k

$"
(t)

as the inverse function of q
L
(k), and this will demarcate a gradual transition between low-

wavenumber modes which each contribute ballistically (04k[k
$"

(t)) and the modes which each
contribute di!usively (k

$"
(t);k). The di!usive-ballistic transition wavenumber k

$"
(t) shrinks to

zero as tPR, and there are essentially two possibilities

f The total e!ect of all the modes of the shear is to induce an ordinary di!usive behavior with
e!ective di!usivity equal to the integral of the asymptotic di!usivity K(k) contributed by each
normalized mode, weighted by the energy spectrum

p2
Y
(t)"2KHt , (140a)

KH"i#2P
=

0

E(k)K(k) dk . (140b)

This situation prevails when the energy spectrum E(k) is su$ciently weak near the origin (e
su$ciently small) so that the contribution from the low-wavenumber ballistic modes
04k[k

$"
(t) is negligible.

f There is su$cient energy at low wavenumbers k (e su$ciently large) so that the collective
contribution from the low-wavenumber ballistic modes 04k[k

$"
(t) produces superdi!usive

transport. In this case, the asymptotics of p2
Y
(t) are determined only by the low-wavenumber

characteristics of E(k); the di!usive contribution from high wavenumbers is negligible.

There is also an intermediate case in which the contribution from the ballistic modes 04k[k
$"

(t)
contributes a linear function of t, so that the shear-parallel transport is di!usive, but with an extra
term in the formula for the enhanced di!usivity (140b). An explicit example of this special case,
which we discuss no further here, arises at the phase transition value e"1 for a random shear #ow
with constant cross sweep wN O0 and molecular di!usion i'0; see Table 5.

Rigorous approach. To decide mathematically whether the total shear-parallel transport is
di!usive or superdi!usive, one "rst derives a bound of the following form on the shear-displace-
ment kernel

DR(k, t)D4Cq
L
(k)t , (141)

where C is some numerical constant. This can be done through integration by parts in Eq. (139b) or
by direct consideration of the damped exponential. Then one can use this equality along with the
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dominated convergence theorem ([288], Section 4.4) to prove that if

P
=

0

E(k)q
L
(k) dk(R , (142)

then p2
Y
(t) grows linearly in time with e!ective di!usion coe$cient given by Eqs. (140a) and (140b).

When Eq. (142) is violated, this indicates that the ballistic behavior of the modes k[k
$"

(t)
is producing a nonuniformity near k"0. To compute the contribution from this region,
one rescales the integration wavenumber to k@"k/k

$"
(t). We illustrate this procedure explicitly

below.
A mathematically equivalent approach [141] to computing the asymptotics of p2

Y
(t) is to posit

general space-time rescalings >I (tI )"a>(tI /o(a)2) and to choose o(a) in such a way that >I (tI )
approaches a "nite nontrivial limit as aP0.

We emphasize that our continual appeal to the dominated convergence theorem to justify our
computations in what follows is not simply an exercise in mathematical pedantry. As we pointed
out through a counterexample at the end of Paragraph 3.2.5.2, it is patently wrong to say that
ordinary di!usion occurs with di!usion coe$cient KH whenever the expression (140b) for this
quantity is "nite. Discrepancies between this formal quantity and the true asymptotics of p2

Y
(t) can

and do arise from a formally transient contribution to the integral which is however quantitatively
signi"cant or dominant at long times. By establishing bounds for which the dominated conver-
gence theorem applies, we ensure that the transient terms do not contribute signi"cantly. Transient
contributions which are important can, in the present context, be isolated and evaluated by an
appropriate rescaling of the integration variables. This will be explicitly illustrated in our detailed
presentation of the long-time asymptotics of p2

Y
(t) for the case of a randomly #uctuating cross sweep

w
f
(t) below.
Subtle features of constant cross sweep. We now mention how the above discussion is modi"ed in

the presence of a constant cross sweep wN O0.
If the only cross-shear transport mechanism is the constant cross-sweep (wN O0, i"0, w

f
(t)"0),

then the single-mode contribution is trapped, rather than di!usive, in the long time limit. That is,
for each k'0, R(k, t) is a bounded function of t. Therefore, the long-time limit of p2

Y
(t) is trapping

when the energy spectrum is su$ciently weak at low wavenumber (e(0) so that dominated
convergence applies. The shear-displacement kernel for the case of a purely constant cross sweep
R(k, t)"R

wN
(k, t) can be written in terms of elementary functions, thereby permitting a completely

explicit and direct analysis (see Section 3.2.2 and [141]).
When the constant cross sweep is superposed upon another random transport mechanism, the

Lagrangian persistence time as we have de"ned it is q
L
(k)"q

wN
(k)"(2pwN k)~1, but there is an

additional important time scale which we call the randomization time q
3
(k). This is the time scale

over which the phase of the oscillations of the Lagrangian velocity is forgotten due to the presence
of the random component of the cross-sweep. It may be equated to the shortest Lagrangian
persistence time scale of the random processes included, which is just the time taken for the
randomness to give the cross-shear tracer location an uncertainty equal to the wavelength k~1 of
the shearing mode under consideration. It is readily checked that for all random cross-shear
transport mechanisms considered, q

L
(k)"q

wN
(k);q

3
(k) at small k. The contribution R(k, t) to the

shear-parallel transport is ballistic for t;q
L
(k), trapped subsequently for an intermediate interval
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q
L
(k);t;q

3
(k) due to oscillations in the Lagrangian velocity, then di!usive t<q

3
(k) when the

random cross-shear processes "nally become e!ective and destroy the phase coherence of the
Lagrangian velocity oscillations. One notable consequence of the long intermediate interval of
trapping behavior at low wavenumber k is that the asymptotic di!usivity K(k) contributed by
a single normalized shear mode is much less than q

L
(k), in contrast to the typical behavior indicated

for Lagrangian velocities with a single relevant time scale discussed in Paragraph 3.1.3.2. (See in
particular Eq. (135).)

3.2.6.3. Derivation of asymptotics for case of randomly yuctuating cross sweep. Detailed derivations
for the long-time asymptotics of p2

Y
(t) may be found in the published literature for the case of pure

molecular di!usion [10], pure constant cross sweep [141], and a superposition of a constant cross
sweep with molecular di!usion [141]. We provide here an explicit derivation of the long-time
behavior of p2

Y
(t) for the case of a #uctuating cross sweep w

f
(t), with no deterministic component

(wN "0) and no molecular di!usion (i"0). The superposition of these extra cross-shear transport
mechanisms can be handled through the general plan of attack outlined above, but we do not
provide the details here.

For i"0 and wN "0, the formula (139) for the shear-parallel mean-square displacement may be
written

p2
Y
(t)"2P

=

0

E(k)R
wf

(k, t) dk , (143a)

R
wf

(k, t)"2P
t

0

(t!s)e~2p
2k2p2

X(s)ds , (143b)

where the cross-shear displacement variance is expressed in terms of the correlation function R
w
(t)

of w
f
(t) as

p2
X
(t),S(X(t)!x

0
)2T"2P

t

0

(t!s)R
w
(s) ds .

Recall that the energy spectrum E(k) of the shear #ow and the power spectrum E
w
(u) of the random

cross-sweep are assumed to be smooth on the positive real axis, absolutely integrable, and of the
following forms:

E(k)"A
E
DkD1~et(DkD) ,

E
w
(u)"A

E,w
DuD~bt

w
(DuD) ,

where b(1, e(2, A
E
'0, A

E,w
'0, and t

w
( ) ) and t( ) ) are each smooth function on the positive

real axis with t
w
(0)"t(0)"1.

We know from Section 3.1.2 that

lim
t?=

p2
X
(t)&G

2
1`bK

A

x
t1`b for !1(b(1 ,

K3
x

for b(!1 ,
(144)
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where

KA

x
"

1
2
A

E,w
nb~(1@2)

C((1!b)/2)
C((2#b)/2)

,

K3
x
"

1
p2P

=

0

E
w
(u)u~2du .

=eak sweeping regime. We dispense "rst with the case b(!1. Here the cross-shear #uctu-
ations are trapped, and the Lagrangian persistence time q

L
(k)"q

wf
(k) is e!ectively in"nite for each

wavenumber. Consequently, every mode contributes forever ballistically

lim
t?=

t~2R
wf

(k, t)"lim
t?=

2P
1

0

(1!u) e~2p
2k2p2

X(tu)du"2P
1

0

(1!u) e~2p
2k2K3x du"e~2p

2k2K3x .

Moreover, t~2R(k, t) is uniformly bounded by unity, and we may therefore take the tPR limit
under the integral over wavenumber by the dominated convergence theorem and conclude

lim
t?=

p2
Y
(t)&2t2P

=

0

E(k)lim
t?=

t~2R
wf

(k, t) dk&2t2P
=

0

E(k)e~2p
2k2K3x dk ,

as indicated in Table 4.
Di+usive regime. We now turn to the more interesting cases in which !1(b(1 and the tracer

travels ever farther across the shear streamlines. The single-mode normalized contribution R
wf

(k, t)
is then asymptotically di!usive

lim
t?=

R
wf

(k, t)&2K
wf

(k)t ,

K
wf

(k)"P
=

0

e~2p
2k2p2

X(s)ds .

We are therefore led to consider situations in which the total shear-parallel transport p2
Y
(t) is

di!usive. By noting the asymptotics of p2
X
(t) in Eq. (144), we can bound R

wf
(k, t) as follows

04R
wf

(k, t)4C
1
q
wf

(k)t , (145)

where q
wf

(k) is some positive, decreasing function with low-wavenumber asymptotics

q
wf

(k)&C
wf

(KA

x
k2)~1@(1`b) , (146)

where C
1

and C
wf

are some positive numerical constants depending on b but not on k nor t. The
dominating function q

wf
(k) obeys the same properties as the Lagrangian w

f
-persistence time, and

we identify it symbolically as such.
The dominated convergence theorem allows us to conclude that provided

P
=

0

E(k)q
wf

(k) dk(R , (147)
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the long-time shear-parallel transport is di!usive

lim
t?=

p2
Y
(t)&2KH

wf
t ,

KH
wf
"2P

=

0

E(k)K
wf

(k) dk .

The condition (147) is satis"ed whenever e(2b/(1#b), and we thereby obtain the results for the
di!usive regime stated in Table 4.

Superdi+usive regime. We next consider the regime 2b/(1#b)(e(2 where the above argu-
ment fails due to the nonuniform convergence of E(k)R

wf
(k, t) to 2K

wf
(k)E(k)t near k"0. (Here we

do not treat the transition value e"2/(1#b) which involves logarithmic corrections.) According
to the general considerations discussed above, we should expect that p2

Y
(t) grows superlinearly and

is dominated at large time by low wavenumbers 04k[k
$"

(t), where

k
$"

(t)"A
4p2KA

x
1#bB

~1@2
t~(1`b)@2

is the inverse function to Eq. (146) (up to an unimportant numerical factor). We will therefore zoom
in on this region by rescaling the integration variable in Eqs. (143a) and (143b) to

q"k/k
$"

(t) (148)

First, for technical reasons, we separate the formula (143a) for p2
Y
(t) as follows

p2
Y
(t)"pN 2

Y
(t)#pJ 2

Y
(t) ,

pN 2
Y
(t)"2P

k1

0

E(k)R
wf

(k, t) dk ,

pJ 2
Y
(t)"2P

=

k1

E(k)R
wf

(k, t) dk ,

where k
1

is an arbitrary positive cuto! wavenumber. The contribution pJ 2
Y
(t) is clearly (at most)

di!usive since the range of active k is bounded below by k
1
'0. We can therefore neglect pJ 2

Y
(t) if

pN 2
Y
(t) is superdi!usive, and we now show this is indeed the case.
Rescaling pN 2

Y
(t) according to Eq. (148), we obtain

pN 2
Y
(t)"2k

$"
(t)P

k1@k$"(t)

0

E(qk
$"

(t))R
wf

(qk
$"

(t), t) dq . (149)

Now, it is readily shown that

lim
t?=

t~2R
wf

(qk
$"

(t), t)"lim
t?=

2P
1

0

(1!u) e~2p
2q2k2$"(t)p2

X(tu)du"2P
1

0

(1!u)e~q2u1`b du .

The "niteness of this limit re#ects the fact that we have zoomed in on the low wavenumbers
k[qk

$"
(t) for which the mode-by-mode contribution R

wf
(k, t) to the shear-parallel tracer motion is
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ballistic. The long-time limit of the other factor in the integrand is described by

lim
t?=

(k
$"

(t))e~1E(k
$"

(t)q)"A
E
q1~e ,

since lim
t?=

k
$"

(t)"0.
Now, we would like to evaluate the tPR limit of pN 2

Y
(t) in Eq. (149) by taking the tPR limits

of the integrands and the upper cuto!. To do this, we "rst establish the uniform bounds

04t~2R
wf

(qk
$"

(t), t)H(k
1
/k

$"
(t)!q)4

C
2

1#q2@(1`b)
, (150a)

04ke~1
$"

(t)E(k
$"

(t)q)H(k
1
/k

$"
(t)!q)4C

3
q1~e , (150b)

where C
2

and C
3

are constants independent of k and t (but possibly depending on the "xed cuto!
k
1
), and H( ) ) is the Heaviside function

H(q)"G
1 if q'0 ,

0 if q(0 ,

1
2

if q"0 .

(151)

Inequality (150a) follows from Eq. (145) and the easy bound 04R
wf

(k, t)4t2; inequality (150b) is
a consequence of the low wavenumber asymptotics of E(k).

Using Eqs. (150a) and (150b) and the fact that q1~e(1#q2@(1`b))~1 is an absolutely integrable
function on q3[0,R) for 2b/(1#b)(e(2, we can apply the dominated convergence theorem to
conclude that

lim
t?=

pN 2
Y
(t)&2k2~e

$"
(t)t2P

=

0

lim
t?=

(ke~1
$"

(t)E(qk
$"

(t))(t~2R
wf

(qk
$"

(t), t)) dq

"2k2~e
$"

(t)t2P
=

0

A
E
q1~eA2P

1

0

(1!u)e~q2u1`b duB dq

"

4
2#e!b(2!e)

KA

wf
t1`e@2~b(2~e)@2 , (152)

where

KA

wf
"(2#e!b(2!e))A

EA
4n2KA

x
1#bB

(e~2)@2

P
1

0

(1!u)P
=

0

q1~ee~q2u1`b dqdu .

By a change of variables p"q2u1`b, the integral may be evaluated exactly in terms of Gamma
functions [195], leading to the expression for p2

Y
(t) in the superdi!usive regime displayed in Table 4.

3.3. Tracer transport in shear yow with random spatio-temporal -uctuations and transverse sweep

We next explore the e!ects of introducing temporal #uctuations into the random shear #ow v

*(x, y, t)"C
w(t)

v(x, t)D .
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This model will be referred to as the Random Spatio-¹emporal Shear Model (RSTS) Model. The
cross-shear sweeping #ow w(t) is de"ned with the same properties as in the Random Steady Shear
Model of Section 3.2.

The random spatio-temporal shear #ow v(x, t) is assumed to be a Gaussian, homogenous,
stationary, mean zero random "eld. We now need to describe v by a correlation function depending
on space and time

RI (x, t),Sv(x@, t@)v(x#x@, t#t@)T .

As in the steady case, we de"ne the velocity correlation function through its Fourier transform,

RI (x, t)"P
=

~=
P

=

~=

e2p*(kx`ut)EI (k, u) dudk . (153)

The spatio-temporal energy spectrum EI (k,u) appearing here resolves the energy of the #uid
simultaneously into spatial wavenumber and temporal frequency;

P
k`Dk

k~Dk
P

u`Du

u~Du
EI (k,u) du dk

is the amount of energy associated to #uctuations with spatial wavenumbers k$Dk and temporal
frequencies u$Du. The spatio-temporal energy spectrum EI (k,u) is necessarily a nonnegative
function with EI (k,u)"EI (!k,!u). (See Paragraph 2.4.5.3.) For the sake of simplifying some
formulas, we shall restrict attention to random #ows which are statistically invariant under time
reversal, so that RI (x, t)"RI (x,!t) and consequently EI (k,u)"EI (k,!u). This requirement ex-
cludes random travelling wave motion. With this extra condition, we can express the velocity
correlation function entirely in terms of the energy at nonnegative wavenumbers and frequencies

RI (x, t)"4P
=

0
P

=

0

cos(2p(kx#ut))EI (k, u) dudk .

By de"nition, the energy spectrum E(k) (resolved with respect to spatial wavenumber) is just the
integral over frequencies of the spatio-temporal energy spectrum

E(DkD)"P
=

~=

EI (k,u) du"2P
=

0

EI (k,u) du .

We shall make the same assumptions on the energy spectrum E(k) as we did for a steady random
shear #ow in Section 3.2. Namely, E(k) is assumed to be smooth on k'0 and absolutely integrable,
with

E(k)"A
E
k1~et(k) , (154)

where e(2, A
E
'0 and t(k) is a smooth function on the positive real axis with t(0)"1.

We are left to describe the behavior of EI (k, u) with respect to u. To this end, we shall assume that
the #uctuations of any given wavenumber k decay on a single wavenumber-dependent time scale
q(k). Mathematically, this implies that

EI (k,u)"E(DkD)/
k
(uq(DkD))q(DkD) ,

where the M/
k
( ) ), 0(k(RN is a family of nondimensional even functions with :=

~=
/
k
(u@) du@"1.

A.J. Majda, P.R. Kramer / Physics Reports 314 (1999) 237}574 343



The important point is that u only appears in the combination uq(k). We shall call q(k) the Eulerian
correlation time scale since it describes the rate of decay of (a single wavenumber component of) the
velocity "eld as observed at a "xed point, as in the Eulerian perspective. (See Section 3.1.3) It is to
be contrasted with the ¸agrangian persistence time q

L
(k), introduced in Section 3.2, for the rate of

decay of the Lagrangian velocity (due to #uctuations of wavenumber k) observed by a moving
tracer in the #ow. The Lagrangian and Eulerian correlation times coincide when the tracer moves
purely along the streamlines of the shear #ow, but the Lagrangian persistence time will be shorter
in the presence of a cross sweep w(t) or molecular di!usion which transports the tracer across
streamlines.

We will assume that

f q(k) is a decreasing, smooth function of k, with

lim
k?0

q(k)&Aqk~z , (155)

with Aq'0 and 04z(R.
f /

k
(-) are even, nonnegative, smooth functions of both - and k, and obey a mild, uniform bound

04/
k
(-)4

C
(

1#D-Dc
, (156)

with 0(C
(
(R and c'1. Moreover, we assume that /

0
(0)'0, meaning that the spatio-

temporal random shear has some nontrivial zero frequency component at low wavenumbers.

It is quite satisfactory to consider the special case with q(k),Aqk~z and /
k
( ) ),/

0
( ) ). Our

purpose in stating the assumptions in greater generality is solely to emphasize that it is only the
low-wavenumber properties of EI (k,u) which determine whether the tracer motion along the shear
has an anomalous di!usion law, and if so, what that law is.

The reason we demand that q(k) decrease with k is that #uctuations at higher wavenumbers
(smaller spatial scales) naturally have faster dynamics than those of lower wavenumbers. Note that
the Eulerian correlation time scale diverges more severely in the low wavenumber limit as
z increases. Since the low wavenumbers often play a central role in determining the long-time
behavior of a tracer, we can expect that the zPR limit should exhibit features in common with
a random steady shear #ow. This will be borne out in what follows. In the other extreme z"0, the
low wavenumbers decorrelate at a uniformly "nite time. This may be viewed as a rapid decorrela-
tion limit in a weak sense; we will discuss turbulent di!usion models with rapid decorrelations in
a strong sense in Section 4.

A decreasing, power law dependence for the Eulerian decorrelation time scale q(k) is natural for
describing the self-similar inertial range of scales in fully developed turbulence at a high Reynolds
number. As we shall discuss in Section 3.4.3, the standard Kolmogorov theory for the inertial range
statistics of a turbulent velocity "eld corresponds formally to e"8/3 and z"2/3 in the Random
Spatio-Temporal Shear (RSTS) Model de"ned above. The value e"8/3 is actually outside the
admissible domain e(2 of infrared scaling exponents allowed in the present model because it would
result in an in"nite amount of energy residing at small wavenumbers. We will discuss in Sections 3.4.3
and 3.5 how the RSTS Model can be extended to incorporate an inertial range of scales.

A.J. Majda, P.R. Kramer / Physics Reports 314 (1999) 237}574344



At the present, we will restrict attention to the mean-square displacement p2
Y
(t),S(>(t)!y

0
)2T

of a tracer along the shear in the RSTS Model with e(2 and z50. An exact formula for this
quantity is obtained in Paragraph 3.3.6.1:

Mean-Square Shear-Parallel ¹racer Displacement for RS¹S Model

p2
Y
(t)"2it#4P

=

0
P

=

0

EI (k,u)RI (k,u, t) dudk , (157a)

RI (k,u, t)"2P
t

0

(t!s) cos(2pkwN s) cos(2pus)e~2p
2k2p2

X(s)ds . (157b)

This formula remains valid when v(x, t) is non-Gaussian. Note that it properly reduces to the
formula (112) when the spatio-temporal energy spectrum has the form EI (k, u)"E(k)d(u) asso-
ciated to a steady random shear #ow.

The shear-displacement kernel RI (k, u, t) represents the response of p2
Y
(t) to the presence of

a component

A cos(2pkx) cos(2put)#B cos(2pkx) sin(2put)

#C sin(2pkx) cos(2put)#D sin(2pkx) sin(2put)

in the random shear #ow, where A, B, C, and D are independent, standard Gaussian random
variables. The formula for RI (k, u, t) di!ers from that of its counterpart R(k,u, t) (112b) for the steady
shear #ow only in the presence of an oscillatory term cos(2pus) in the integrand, naturally
manifesting the temporal #uctuations of the shear #ow.

An alternate formula for p2
Y
(t), which is at "rst perhaps easier to understand, involves the spectral

temporal correlation function Ex (k, t), which provides an intermediate representation between the full
physical space spatio-temporal correlation function RI (x, t) and the spatio-temporal spectrum
EI (k, u)

RI (x, t)"P
=

~=

e2p*kxEx (k, t) dk"2P
=

0

cos(2pkx)Ex (k, t) dk ,

Ex (k, t)"P
=

~=

e2p*utEI (k, u) du"2P
=

0

cos(2put)EI (k,u) du .

(158)

As such, Ex (k, t) describes the temporal correlations of turbulent shear modes of wavenumber k in
terms of the physical time variable; Ex (k, t"0) is simply equal to E(k). The mean-square shear-
parallel displacement can be expressed in terms of Ex (k, t) by formula similar to Eqs. (112a) and
(112b) in the RSS Model

p2
Y
(t)"2it#4P

=

0
P

t

0

(t!s) cos(2pkwN s)e~2p
2k2p2

X(s)Ex (k, s) dsdk . (159)

For the special case of a steady shear #ow, Ex (k, t),E(k). We will work here with the representation
(157), since it cleanly separates the in#uence of the particular shear #ow structure EI (k,u) from
a kernel RI (k,u, t) which depends only on the active cross-shear transport mechanisms. In Sec-
tion 3.5, we will make use of a semi-spectral representation similar to Eq. (159).

A.J. Majda, P.R. Kramer / Physics Reports 314 (1999) 237}574 345



We will consider the long-time behavior of p2
Y
(t) in the RSTS Model in a manner parallel to our

study of the Random Steady Shear Model in Section 3.2. First, we consider in Section 3.3.1 the
motion of a tracer in the randomly #uctuating shear #ow with no molecular di!usion and no cross
sweep. Next, we consider separately the e!ects when molecular di!usion i (Section 3.3.2), a con-
stant cross sweep wN (Section 3.3.3), or a randomly #uctuating cross sweep w

f
(t) (Section 3.3.4) are

added to the #uctuating shear #ow. The qualitative scaling behavior for p2
Y
(t) in each case may be

classi"ed into three categories determined by the exponents e and z characterizing the low-
wavenumber (infrared) scaling behavior of the energy spectrum E(k) and the Eulerian correlation
time q(k). These will be graphically described by phase diagrams, indicating the regions of the (e, z)
diagram associated to each type of qualitative scaling behavior.

In Section 3.3.5, we discuss how the shear-parallel transport of a tracer behaves under superposi-
tions of the various cross-shear transport mechanisms. It turns out that the superposition rules are
completely straightforward here; the subtleties discussed in Section 3.2.5 for the Random Steady
Shear Model are absent here. The method of derivation for all the results in the RSTS Model is
indicated in Section 3.3.6.

3.3.1. Tracer behavior in absence of cross-shear transport
We begin by considering the rather simple case of a tracer in a random shear #ow with

spatio-temporal #uctuations with no molecular di!usion (i"0) or cross sweep (w(t)"0). A tracer
then forever stays on its original streamline, and its Lagrangian velocity is the same as the Eulerian
velocity observed at any given point on that streamline. Consequently, the tracer behaves exactly
as in the Random Sweeping Model; the spatial structure of the shear #ow is irrelevant. The
long-time asymptotics of the shear-parallel tracer displacement could be worked out as in
Section 3.1.2 by considering the low-frequency behavior of the energy spectrum of the velocity
resolved with respect to temporal frequency, which can be expressed as :=

0
EI (k,u) dk. We will,

however, proceed in a fashion which better maintains continuity with our analysis of the Random
Steady Shear Model in Section 3.2 and our later discussion of the RSTS Model where the spatial
structure of the shear plays a crucial role.

For i"w(t)"0, the shear-displacement kernel RI (k, u, t) in Eq. (157b) takes the simple,
wavenumber-independent form,

RI
0
(k,u, t)"t2F

2
(2put) ,

F
2
(-),2(1!cos-)/-2 .

(160)

It is readily seen that the tracer displacement due to a single random spatio-temporal Fourier mode
of the shear with wavenumber k and frequency u is ballistic for short times t;u~1 and trapped for
long times t<u~1. The long-time trapping behavior is a consequence of the exact periodicity of
the tracer motion induced by a mode with a single frequency u. We can expect from these
considerations that shear-parallel tracer transport will be dominated at long times by contribu-
tions from low frequency modes.

In the RSTS Model, we are always assuming that a continuous spectrum of frequencies are
associated to any given spatial wavenumber k, and that this spectrum of frequencies is nonvanish-
ing at u"0 at least for small k. We will therefore never see trapping behavior for the tracer in the
total random spatio-temporal shear #ow. Our heuristic discussion therefore becomes a bit more
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direct if we break up the shear-parallel transport into contributions from a shear mode of a single
wavenumber k, with temporal #uctuations coming from all frequencies, rather than disintegrating
the motion into modes of single wavenumber and single frequency.

We accordingly rewrite Eqs. (157a) and (157b) as an integral of the energy spectrum E(k) against
a kernel R

(,0
(k, t) which has already accounted for the temporal structure of the #uctuating shear

#ow

p2
Y
(t)"2P

=

0

E(k)R
(,0

(k, t) dk , (161a)

R
(,0

(k, t),2P
=

0

RI
0
(k,u, t)/

k
(uq(k))q(k) du . (161b)

With Eq. (160), it is clear that R
(,0

(k, t) may be expressed as

R
(,0

(k, t)"t2F
(
(t/q(k)) ,

F
(
(u),2P

=

0

F
2
(2pu-)/

k
(-) d- .

(162)

This representation re#ects the fact that the temporal #uctuations of a single wavenumber mode
k of the velocity "eld has a characteristic time scale q(k). Since the Lagrangian velocity coincides
with the Eulerian velocity in the present instance, the Lagrangian persistence time q

L
(k) of the tracer

is readily identi"ed with q(k). According to the standard intuition of Paragraph 3.1.3.2, we therefore
expect that the shear-parallel tracer displacement due to a single wavenumber k of the shear is
ballistic for t;q(k) and di!usive for t<q(k), with e!ective di!usion coe$cient proportional to the
product of q(k) and the mean-square velocity of the shear mode. This is borne out mathematically
by Eq. (162), provided that /

k
(-) is nonvanishing in a neighborhood of -"0. We do indeed

assume that this is the case in the RSTS Model for at least su$ciently small k, and for our heuristic
discussion we will assume for simplicity that this is true for all k.

We will now apply this qualitative perspective to understand the long-time asymptotics of the
mean-square shear-parallel displacement p2

Y
(t). The exact results, as computed rigorously accord-

ing to the prescription in Section 3.3.6, appear in Table 6. The scaling coe$cients which appear
may be expressed as follows:

KI H
0
"P

=

0

EI (k, 0) dk"P
=

0

E(k)q(k)/
k
(0) dk , (163a)

KI A

0
"z~1p(2e`z~4)@2z

C((2!e)/2z)
C((e#3z!2)/2z)

A
E
A(2~e)@zq P

=

0

-(e~2)@z/
0
(-) d- . (163b)

In contrast to the Random Sweeping Model, there is no subdi!usive or trapping behavior here
because EI (k, u"0) is by assumption positive for small k, so the velocity of a streamline always has
a nonvanishing zero frequency limit. We observe that the di!usion coe$cient KI *

0
in the di!usive

regime only depends on the zero frequency modes of the shear #ow. We stress that this does not
imply that the tracer behavior is therefore the same as in the Random Steady Shear Model. In
a steady shear #ow, the spatio-temporal energy spectrum is singularly concentrated at u"0,
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Table 6
Long-time asymptotics of mean-square tracer displacement along the shear in Random Spatio-Temporal Shear Model,
with i"wN "w

f
(t)"0. Scaling coe$cients are given by Eq. (163)

Parameter regime Asymptotic mean square Qualitative behavior
displacement lim

t?=
p2
Y
(t)

z50 e(2!z 2KI *
0
t Di!usive (D)

z50 2!z(e(2 2z

2z#e!2
KI A

0
t(2z`e~2)@z Superdi!usive (SD-u)

namely EI (k,u)"E(k)d(u), and the shear-parallel tracer motion is ballistic in the absence of
cross-shear transport. In the Random Spatio-Temporal Shear Model, the di!usive shear-parallel
tracer transport (for e#z(2) comes from the continuous distribution of energy at low frequencies.

To understand the criterion e#z(2 for di!usive behavior, we formally sum up the shear-
parallel transport contributions from each wavenumber k. A straightforward argument generalized
from the discussion of the RSS Model in Paragraph 3.2.6.2 suggests that the statistical tracer
motion should, at long times, be di!usive and characterized by a di!usion coe$cient on the order
of the integral of the di!usivities contributed by each mode, provided that

P
=

0

E(k)q
L
(k) dk (164)

is "nite. For the present case of no cross-shear transport mechanisms, q
L
(k)"q(k), the Eulerian

correlation time for each spatial Fourier mode of the random shear. The "niteness of expression
(164) is determined by the behavior of the integrand near k"0; integrability at high wavenumbers
is ensured by the physical assumption that q(k) decreases with k. At small k, the Eulerian correlation
time q(k)&Aqk~z. Recalling that E(k)&A

E
k1~e for small k, we see that the criterion that Eq. (164)

be "nite is just e#z(2, which is exactly the di!usive regime described in Table 6. Note moreover
that since /

k
(0) is an order unity dimensionless constant (with a possible but unimportant mild

variation with k), the formula for the shear-parallel di!usivity (163a) states that the asymptotic
di!usivity contributed by a normalized mode of wavenumber k (with prescribed temporal #uctu-
ations) is proportional to the Lagrangian correlation time q

L
(k). This is in agreement with the

general relation which we have seen to hold in standard di!usive situations (see Paragraph 3.1.3.2
and Section 3.2). For e#z'2, the shear-parallel tracer motion is superdi!usive because the
product E(k)q

L
(k) diverges too strongly at low wavenumber.

The two regimes of long-time behavior of p2
Y
(t) are indicated on a phase diagram in Fig. 13. Such

phase diagrams are two-dimensional versions of the pictures of phase transitions with respect to
the single parameter e which we presented for the RSS Model in Section 3.2. Each regime of
qualitatively di!erent long-time behavior for p2

Y
(t) may be viewed as a `phasea with a distinct

algebraic law for the long-time scaling exponent of p2
Y
(t). The boundaries between these phases

correspond to phase transitions, and are associated with more complicated formulas for the
long-time behavior of p2

Y
(t). We shall not present the special formulas characterizing the phase
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Fig. 13. Phase diagram for long-time asymptotics of p2
Y
(t) in Random Spatio-Temporal Shear Model with i"wN "

w
f
(t)"0.

boundaries, as these would be a distraction from our main endeavor on developing physical insight
from the simpli"ed model.

We see from the phase diagram that when z"0, corresponding to a "nite correlation time of the
low wavenumber modes, the shear-parallel tracer motion is di!usive for any energy spectrum E(k).
To facilitate later discussion, We label the di!usive regime with the symbol D and the other regime
with the symbol SD-u, indicating a superdi!usive tracer behavior determined by temporal
#uctuations of the shear #ow.

3.3.2. Ewects of molecular diwusion
We now consider the e!ects of positive molecular di!usion i'0 on the shear-parallel transport

of a tracer. We continue for the moment to assume no cross sweep (w(t)"0). The shear-
displacement kernel (157b) may then be expressed in the closed form

p2
Y
(t)"2it#4P

=

0
P

=

0

EI (k,u)RI i(k,u, t) dudk , (165a)

RI i(k,u, t)"t2F
3
(t/qi(k), 2put) , (165b)

where qi(k)"(4p2ik~1)~1 is the Lagrangian persistence time associated to molecular di!usion,
and the universal, dimensionless function F

3
is de"ned in Eq. (133). Upon integration over the

frequency variables, we discover that the shear-parallel tracer motion due to each spatial
wavenumber k is naturally determined by the time scales qi(k) and q(k), corresponding to the
decorrelation mechanisms due to molecular di!usion across the shear and temporal #uctuations of
the shear #ow, respectively.

The long-time behavior of the mean-square shear-parallel displacement, obtained from a rigor-
ous asymptotic computation of Eqs. (165a) and (165b), is classi"ed according to the parameter
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Table 7
Long-time asymptotics of mean-square tracer displacement along the shear in Random Spatio-Temporal Shear Model,
with i'0, wN "w

f
(t)"0. Scaling coe$cients are given by Eq. (166)

Parameter regime Asymptotic mean square Qualitative behavior
displacement lim

t?=
p2
Y
(t)

04z42 e(2!z 2KI Hi t Di!usive (D)
z52 e(0
04z(2 2!z(e(2 2z

2z#e!2
KI A

0
t(2z`e~2)@z Superdi!usive (SD-u)

z'2 0(e(2 4

2#e
KA

it1`e@2 Superdi!usive (SD-i)

values e and z in Table 7. The coe$cients appearing in the scaling laws are as follows

KI *i"i#4P
=

0
P

=

0

EI (k,u)KI i(k,u) dudk , (166a)

KI A

0
"z~1n(2e`z~4)@2z

C((2!e)/2z)
C((e#3z!2)/2z)

A
E
A(2~e)@zq P

=

0

- (e~2)@z/
0
(-) d- , (166b)

KA

i"!CA!
e
2BAE

(4p2i)~(2~e)@2 , (166c)

where

KI i(k,u)"lim
t?=

RI i(k, u, t)
2t

"

q~1i (k)
q~2i (k)#(2pu)2

"

ik2

4p2i2k4#u2
(167)

is the asymptotic di!usivity due to a single spatio-temporal Fourier mode of the shear with
wavenumber k and frequency u. The three regimes of long-time behavior of p2

Y
(t) are also indicated

on a phase diagram in Fig. 14. We shall now explain on a heuristic level why the phase diagram
takes the form it does.

There are two natural time scales associated to the tracer motion due to each spatial wavenum-
ber of the shear #ow: an Eulerian temporal decorrelation time q(k) due to temporal #uctuations of
the shear #ow and a decorrelation time qi(k) due to molecular di!usion bu!eting the tracer across
the shear #ow. One therefore naturally associates a Lagrangian persistence time of the tracer
motion q

L
(k) with the smaller of these two time scales. The same standard argument as was given in

Section 3.3.1 indicates that di!usive or superdi!usive behavior should result according to whether
q
L
(k)E(k) is integrable or not-integrable at k"0. (See the discussion around Eq. (164).)
The Lagrangian persistence time q

L
(k) is set by the smaller of q(k) and qi(k). As q(k)&k~z for

small k and qi(k)&k~2, we see that for z(2, Lagrangian persistence time for the low wavenumber
modes is determined by the Eulerian correlation time scale q(k), and molecular di!usion has
a negligible e!ect. Consequently, the criterion for di!usive behavior for z(2 should be expected to
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Fig. 14. Phase diagram for long-time asymptotics of p2
Y
(t) in Random Spatio-Temporal Shear Model with i'0 and

wN "w
f
(t)"0.

be the same as that for a random shear #ow with spatio-temporal #uctuations and no molecular
di!usion: e#z(2 (see Section 3.3.1). This is con"rmed in the phase diagram (Fig. 14). Moreover,
when this di!usivity condition is violated for z(2, the resulting asymptotic superdi!usive
behavior is exactly the same as for the case of a shear #ow with spatio-temporal #uctuations and no
molecular di!usion. The reason is that superdi!usion is determined solely by the low wavenumber
modes of the shear #ow, and we have noted that molecular di!usion is asymptotically irrelevant for
such modes relative to the intrinsic temporal decorrelation of the shear #ow. We have therefore
identi"ed the region 04z(2, e#z'2 as the same SD-u regime introduced in Section 3.3.1.

A complementary situation arises for the portion of the phase diagram corresponding to z'2,
for which molecular di!usion plays the dominant role at low wavenumber. The criterion for
di!usivity, e(0, is identical to that for transport in a steady random shear #ow with molecular
di!usion. We also note from Table 7 that the long-time tracer behavior for z'2, e'0 is identical
to the superdi!usive regime e'0 for a random steady shear #ow with molecular di!usion
(cf. Section 3.2.1). The temporal #uctuations of the shear #ow are not manifested in any way in this
regime, because they are asymptotically irrelevant for the low wavenumbers driving the super-
di!usive tracer motion. We call the phase region z'2, e'0 the SD-i regime, indicating
superdi!usive tracer behavior with molecular di!usion as the dominant Lagrangian decorrelation
mechanism.

All told, we may understand the phase diagram (Fig. 14) for shear-parallel tracer transport in an
RSTS #ow with i'0 as a gluing together of a portion of the phase diagram (Fig. 13) for an RSTS
#ow with i"0 and a portion of the phase diagram for an RSS #ow with i'0. The former applies
for 04z(2, and the latter for z'2; the dividing line z"2 is determined by the balance at low
wavenumbers between the decorrelation time scale q(k) due to temporal #uctuations of the shear
#ow and the decorrelation time scale qi(k) set by di!usion across streamlines due to molecular
di!usion.
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There is a similar subtlety in the formula for the di!usivity constant in terms of the single
spatio-temporal mode di!usivities (167) as in the RSS Model with molecular di!usion and
a constant cross sweep. Namely, the single-mode di!usivity does not obey the standard relation of
being proportional to the Lagrangian persistence time of a single spatio-temporal shear mode,
which here would be identi"ed as min(qi(k),u~1). The reason for this aberrant behavior is that the
retardation of the tracer's net motion due to temporal #uctuations of a shear mode with a single
frequency is periodic and coherent. Integration over the frequency variables, however, produces
a formula for the di!usivity in terms of the energy spectrum which does conform to standard
Lagrangian intuition. Speci"cally,

KI *i"i#2P
=

0

E(k)K
(,i(k) dk ,

K
(,i(k)"2P

=

0

KI i(k, u)/
k
(uq(k)) q (k) du"q(k)P

=

0

2ik2

4p2i2k4#u2
/

k
(uq(k)) du ,

and the di!usivity K
(,i(k) due to a single wavenumber k (with the full spectrum of temporal

#uctuations) is approximately proportional to q
L
(k)"min(qi(k), q(k)). A related fact is that the

iP0 limit of the asymptotic di!usivity KI i(k,u) of a single spatio-temporal Fourier mode behaves
singularly in the iP0 limit, re#ecting the change from di!usive to ballistic (u"0) or trapped
(u'0) behavior. Integration over frequencies regularizes the limit however: the iP0 limit of
K
(,i(k) converges to 1

2
q(k)/

k
(0). Therefore, as iP0, the di!usion constant KI *i smoothly approaches

the limiting value KI H
0

(163a) characterizing the case of no molecular di!usion.

3.3.3. Ewects of constant cross sweep
We next consider the e!ects of a constant cross sweep w(t)"wN O0 on the shear-parallel

transport of a tracer in an RSTS #ow, with no molecular di!usion. The shear-displacement kernel
can again be expressed in closed form

RI
0
(k,u, t)"1

2
t2(F

2
(2p(u#wN k)t)#F

2
(2p(u!wN k)t)) ,

F
2
(u),2(1!cos u)/u2 .

It is interesting to note that, for a "xed wavenumber k, a strong contribution to the shear-parallel
tracer motion comes from frequencies u+wN k. This is in contrast to the general situation without
a mean cross sweep wN , for which the shear-displacement kernel typically decays with u away from
u"0. The presence of the mean sweep wN creates a type of `resonancea with spatio-temporal shear
modes for which u!wN k"0. These resonant modes have a component which appears steady from
the point of view of a tracer swept across the shear at speed wN , and consequently contribute
ballistically to the shear-parallel tracer motion for all times. The o!-resonance modes u!wN kO0,
on the other hand, each contribute an oscillatory, trapped motion in the long-time limit. It is thus
natural to expect that the long-time behavior of p2

Y
(t) should be dominated by the modes along the

resonance line u"wN k. Note that since energy is distributed continuously in wavenumber-
frequency space, the ballistic contribution of single spatio-temporal Fourier modes along the
resonance line does not imply ballistic transport of the total random shear #ow.
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Fig. 15. Phase diagram for long-time asymptotics of p2
Y
(t) in Random Spatio-Temporal Shear Model with wN O0 and

i"w
f
(t)"0.

Table 8
Long-time asymptotics of mean-square tracer displacement along the shear in Random Spatio-Temporal Shear Model,
with wN O0, i"w

f
(t)"0. Scaling coe$cients are given by Eq. (168)

Parameter regime Asymptotic mean square Qualitative behavior
displacement lim

t?=
p2
Y
(t)

04z41 e(2!z 2KI H
wN
t Di!usive (D)

z51 e(1
04z(1 2!z(e(2 2z

2z#e!2
KI A

0
t(2z`e~2)@z Superdi!usive (SD-u)

z'1 1(e(2 2

e
KA

wN
te Superdi!usive (SD-wN )

The long-time asymptotic behavior of p2
Y
(t) is described in Table 8 and the phase diagram in

Fig. 15. The scaling coe$cients are given by

KI *
wN
"P

=

0

EI (k,wN k) dk"P
=

0

E(k)q(k)/
k
(wN kq(k)) dk , (168a)

KI A

0
"z~1n(2e`z~4)@2z

C((2!e)/2z)
C((e#3z!2)/2z)

A
E
A(2~e)@zq P

=

0

- (e~2)@z/
0
(-) d- , (168b)

KA

wN
"

1
2
A

E
ne~3@2wN C((2!e)/2)/C((1#e)/2) . (168c)
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We note that, in the di!usive regime, the di!usion coe$cient is indeed determined by the energy
spectrum along the resonance line u"wN k, as suggested by our previous discussion.

The phase boundaries may again be explained by simple consideration of the behavior of the
Lagrangian persistence time q

L
(k). In the present case, it is the minimum of the Eulerian correlation

time q(k) of the shear #ow and the sweeping persistence time q
wN
"(2pwN k)~1. For 04z(1, the

low-wavenumber modes of the shear-parallel transport are dominated by the temporal decorrela-
tion of the shear #ow, and the e!ects of the cross sweep wN are asymptotically negligible. Conse-
quently, the phase diagram and behavior of the superdi!usive regime for 04z(1 is identical to
the case of an RSTS #ow with no cross sweep (Section 3.3.1). On the other hand, for z'1, the
low-wavenumber contribution to the tracer motion is limited primarily by the sweeping across
streamlines. Upon comparison with the results of Section 3.2.2, we see that for z'1, the boundary
e"1 marking the onset of the superdi!usive regime, as well as the tracer behavior within the
superdi!usive regime, are the same as those for the case of a constant cross sweep in a steady
random shear #ow. We label the regime e'1, z'1 the SD-wN regime, within which p2

Y
(t) grows

superdi!usively according to a law depending only on wN and the low-wavenumber behavior of E(k),
but not on the temporal #uctuations of the shear.

One important distinction between the long-time asymptotic shear-parallel transport
with a constant cross sweep for z'1 in the RSTS model from that of the RSS model is
that the tracer motion is never subdi!usive or trapping. The reason is that the spatio-
temporal #uctuations of the shear #ow break up the phase coherence of the shear-parallel trans-
port from individual spatial Fourier modes k, so the long-time contribution from each
wavenumber k becomes di!usive rather than trapped. We saw a similar phenomenon when
molecular di!usion was superposed on a constant cross sweep in the RSS Model; see Para-
graph 3.2.5.2. Crucial to the obliteration of the subdi!usive and trapping regimes is the assump-
tion that the spatio-temporal energy spectrum EI (k, u) is nonzero for k'0 and small.
Random shear #ows violating these conditions can give rise to subdi!usive shear-parallel tracer
transport. Other types of anomalous behavior can also arise if energy is singularly concentrated at
certain wavenumbers and frequencies, but we shall not explore these issues in any further detail
here.

One unusual feature of the present situation is that the contribution from wavenumber k to the
di!usion constant KI H

wN
in the D regime is not proportional to q

L
(k)&q

wN
(k) for wavenumbers k for

which sweeping e!ects dominate (q
wN
(k);q(k)). The reason can be traced to the fact that the

interaction of a pure, constant cross sweep with a shear mode of a single wavenumber k induces
a shear-parallel trapping motion at long times. Therefore, the asymptotic di!usivity must rely
somehow on the phase-randomizing e!ects of the random temporal #uctuations of the shear #ow,
even though the sweeping acts faster to break up the persistent motion of the tracer. The
single-mode di!usivity in the RSS Model with i'0, wN O0, and w

f
(t)"0 su!ers from a similar

anomaly, as we discussed brie#y in Paragraph 3.2.5.2.

3.3.4. Ewects of temporally yuctuating cross sweep
Just as for the Random Steady Shear Model, a mean zero, randomly #uctuating cross sweep

w(t)"w
f
(t) in#uences the shear-parallel transport in the RSTS Model in a manner similar to

molecular di!usion, but with a wide range of behavior depending on the exponent b describing the
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Table 9
Long-time asymptotics of mean-square tracer displacement along the shear in Random Spatio-Temporal Shear Model,
with w

f
(t)O0, i"wN "0. Scaling coe$cients are given by Eq. (169)

Parameter regime Asymptotic mean square Qualitative behavior
displacement lim

t?=
p2
Y
(t)

For !1(b(1:

04z4
2

1#b
e(2!z 2KI H

wf
t D

z5
2

1#b
e(

2b
1#b

04z(
2

1#b
2!z(e(2

2z

2z#e!2
KI A

0
t(2z`e~2)@z SD-u

z'
2

1#b
2b

1#b
(e(2

4

2#e!b(2!e)
KA

wf
t1`e@2~b(2~e)@2 SD-w

f

For b(!1:
z50 e(2!z 2KI @H

wf
t D

z50 2!z(e(2 2z

2z#e!2
KI A

0
t(2z`e~2)@z SD-u

low-frequency scaling of its power spectrum

R
w
(t),Sw

f
(t@)w

f
(t#t@)T"2P

=

0

cos(2put)E
w
(DuD) du ,

E
w
(u)"A

E,w
u~bt

w
(u) .

The long-time behavior of the mean-square shear-parallel tracer displacement p2
Y
(t) in an

RSTS #ow with randomly #uctuating cross sweep w
f
(t) is detailed in Table 9 and in the phase

diagram in Fig. 16. The preconstants appearing in the asymptotic scaling laws have the following
expressions:

KI *
wf
"4P

=

0
P

=

0

EI (k,u)KI
wf

(k,u) dkdu , (169)

KI A

0
"z~1n(2e`z~4)@2z

C((2!e)/2z)
C((e#3z!2)/2z)

A
E
A(2~e)@zq P

=

0

-(e~2)@z/
0
(-) d- ,

KA

wf
"

C((2!e)/2)A
E

(e(1#b)/2!b)A
1#b
4p2KA

x
B

(2~e)@2
,

KI @*
wf
"P

=

0

EI (k, 0)e~2p
2k2Kx

3dk"P
=

0

E(k)q(k)/
k
(0)e~2p

2k2K3x dk .
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Fig. 16. Phase diagram for long-time asymptotics of p2
Y
(t) in Random Spatio-Temporal Shear Model with w

f
(t)O0 and

i"wN "0. The value b"1/2, corresponding to a random cross sweep which induces superdi!usive cross-shear
transport, is used in this drawing. Varying b simply slides the `triple pointa of intersection of the phase boundaries along
the e#z"2 line.

In the D regime for !1(b(1, the single wavenumber-frequency mode contribution to the
di!usivity constant is

KI
wf

(k,u),lim
t?=

RI
wf

(k,u, t)
2t

"P
=

0

cos(2pus)e~2p
2k2p2

X(s)ds .

A rigorous derivation of these results is presented in detail in Paragraph 3.3.6.2.
We see the same qualitative structure of the phase diagram here in Fig. 16, for !1(b(1, as

for the case of molecular di!usion or a constant cross sweep acting in concert with a randomly
#uctuating spatio-temporal shear #ow (cf. Figs. 14 and 15). The phase diagram may be analyzed in
exactly the same manner through consideration of the Lagrangian persistence time q

L
(k) of the low

wavenumber modes. Here it is the minimum of the Eulerian correlation time q(k)&k~z and the
w
f
-persistence time q

wf
(k)&k~2@(1`b); see Eq. (131). For 04z(2/(1#b), the intrinsic decorrela-

tion of the random shear determines the shear-parallel tracer motion due to low-wavenumber
shear modulations, and the phase diagram and superdi!usive scaling laws are indi!erent to the
presence of w

f
(t)O0. On the other hand, for z'2/(1#b), the random sweeping w

f
(t) sets the

decorrelation rate of the shear-parallel tracer motion, and the superdi!usive regime along with its
boundary take the same form as in the Random Steady Shear Model (see Section 3.2.3). We label
the superdi!usive regime within this portion of the phase diagram the SD-w

f
regime. Varying

b from 0 to 1 increases the cross-shear transport from di!usive to superdi!usive to almost ballistic,
and the phase diagrams and superdi!usive scaling exponents for p2

Y
(t) correspondingly interpolate

between those associated to molecular di!usion i acting across the shear (Section 3.3.2) to those
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associated with a constant sweep wN across the shear (Section 3.3.3). The di!usivity constant KI *
wf

in
the D regime may be heuristically understood in terms of the contributions from modes of various
wavenumbers and frequencies in a similar fashion to the case in which molecular di!usion is the
cross-shear transport mechanism (Section 3.3.2).

For b(!1, the cross-shear motion is trapped, and consequently never competes with the
temporal #uctuations of the shear in determining the tracer dynamics due to low wavenumber
components of the shear. The phase diagram and superdi!usive scaling laws are consequently
identical for all z to those for the case in which there is no cross-shear transport (see Section 3.3.1).
The trapping cross sweep does have a mild in#uence on the di!usion constant within the di!usive
regime.

3.3.5. Superposition of cross-shear transport mechanisms
For the RSTS Model, the behavior of shear-parallel transport under a combination of cross-

shear transport processes is simple to describe. The phase diagram, along with the scaling laws for
the indicated superdi!usive regimes, are exactly those corresponding to the mechanism which
moves the tracer across the shear most rapidly (at long times). Therefore, any time that a mean
cross sweep wN O0 is active, the phase diagram appears as in Fig. 15, and the asymptotic behavior
of p2

Y
(t) in superdi!usive regimes is insensitive to any other cross-shear transport mechanisms

which may be present. Similarly, if wN "0 but a superdi!usive (0(b(1) random cross sweep w
f
(t)

is active, then the phase diagram and superdi!usive scaling laws are just as described in Sec-
tion 3.3.4, whether or not molecular di!usion is present or not. Molecular di!usion, in like manner,
dominates randomly #uctuating cross sweeps w

f
(t) with subdi!usive or trapping behavior.

It should be noted that in any case, the di!usion coe$cient in the di!usive regime D will depend
on all cross-shear transport mechanisms present.

Another way to summarize the above results is that the criterion for superdi!usive shear-parallel
tracer motion, and the asymptotic behavior of p2

Y
(t) in the superdi!usive regime, depend only on

the low-wavenumber behavior of the energy spectrum E(k)&A
E
DkD1~e and the low-wavenumber

behavior of the Lagrangian persistence time q
L
(k). The Lagrangian persistence time is in turn

determined by the shortest of the individual persistence times (q(k), qi(k), q
wN
(k), and q

wf
(k)) which

correspond to active processes. Di!usive behavior results when E(k)q
L
(k) is integrable at low

wavenumber. The region of superdi!usive behavior may from this argument be deduced to be the
intersection of the superdi!usive regions associated to each cross-shear transport process acting
separately.

With the assumptions of the RSTS Model, there is never any subdi!usive or trapped shear-
parallel tracer motion, and the associated subtlelty in the RSS Model concerning superposition of
cross-shear transport mechanisms is not an issue (see Paragraph 3.2.5.2). We emphasize that this is
a consequence of the assumption that energy is distributed continuously in wavenumber-frequency
space, with some nontrivial contribution at low frequencies and wavenumber. This is illustrated by
the behavior of the shear-displacement kernel RI (k,u, t) when wN O0 in the limit in which the
random components of the cross shear motion vanish, i.e. iP0 and w

f
(t)P0. For any "xed kO0

and u, the long-time asymptotics of RI (k,u, t) behaves singularly in this limit, just in the RSS Model.
The integration against the spatio-temporal spectrum EI (k,u) satisfying the assumptions of the
RSTS Model, however, completely regularizes the limit in which the random cross-shear compo-
nents vanish. Irregular limiting behavior of the type described in the Random Steady Shear Model
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can result for random shear #ows with spatio-temporal #uctuations which do not satisfy the basic
assumptions of the RSTS Model.

3.3.6. Derivations
We indicate here how to establish the results concerning the statistics of shear-parallel tracer

motion in the RSTS Model which were stated throughout Section 3.3. First, we derive the basic
formula (157) for p2

Y
(t) at "nite times. Next, we illustrate in detail how the long-time asymptotics of

p2
Y
(t) can be rigorously computed for the case in which only a randomly #uctuating cross sweep is

present (as in Section 3.3.4). We "nally sketch without details how to compute the long-time
asymptotics of p2

Y
(t) with general cross-shear transport mechanisms.

3.3.6.1. Derivation of general formula. The derivation of formula (157) proceeds in exactly the same
way as in the Random Steady Shear Model (see Paragraph 3.2.6.1), except that the time depend-
ence of the shear velocity "eld must be accounted for. We start with the following modi"cation of
formula (137)

p2
Y
(t)"2iS(=

y
(t))2T#P

t

0
P

t

0

Sv(X(s), s)v(X(s@), s@)T dsds@

"2it#P
t

0
P

t

0

SRI (X(s)!X(s@), s!s@)Tdsds@ ,

which is obtained by simply replacing v(X(s)) in the trajectory equation (136b) for >(t) with
v(X(s), s).

Substituting the spectral representation (153) for RI (x, t) into this last expression, we have

p2
Y
(t)"2it#P

t

0
P

t

0
P

=

~=
P

=

~=

EI (k,u)Se2p*k(X(s)~X(s{))Te2p*u(s~s{)dudkdsds@ .

The remaining average may now be computed in the same way as in Paragraph 3.2.6.1:

p2
Y
(t)"2it#P

t

0
P

t

0
P

=

~=
P

=

~=

EI (k,u)e2p*kwN (s~s{)~2p
2k2p2

X(@s~s{@)e2p*u(s~s{)dudkdsds@ .

Using "nally the four-way symmetry EI (k,u)"EI (k,!u)"EI (!k,u)"EI (!k,!u) which is
a consequence of the assumed time reversal symmetry of the shear #ow, we can condense the
wavenumber-frequency integration to the "rst quadrant

p2
Y
(t)"2it#4P

t

0
P

t

0
P

=

0
P

=

0

EI (k,u) cos(2pkwN (s!s@)) cos(2pu(s!s@))

]e~2p
2k2p2

X(@s~s{@)dudk dsds@

"2it#8P
t

0
P

=

0
P

=

0

EI (k, u)(t!s) cos(2pkwN s) cos(2pus)e~2p
2k2p2

X (s)dudk ds .
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Reversing the order of integration and decomposing the formula into an explicit integration
against the shear-displacement kernel RI (k,u, t), we arrive at the desired formula (157)

p2
Y
(t)"2it#4P

=

0
P

=

0

EI (k,u)RI (k,u, t) dudk , (170a)

RI (k,u, t)"2P
t

0

(t!s) cos(2pkwN s) cos(2pus)e~2p
2k2p2

X(s)ds . (170b)

3.3.6.2. Derivation of asymptotics for case of randomly yuctuating cross sweep. We present here
a rigorous computation of the long-time asymptotics for p2

Y
(t) for the case considered in Sec-

tion 3.3.4 in which w
f
(t)O0, i"0, and wN "0. The general "nite-time formula (170) specializes to

p2
Y
(t)"4P

=

0
P

=

0

EI (k,u)RI
wf

(k, u, t) du dk , (171a)

RI
wf

(k, u, t)"2P
t

0

(t!s)cos(2pus)e~2p
2k2p2

X(s) ds , (171b)

where

p2
X
(t),S(X(t)!x

0
)2T"2P

t

0

(t!s)R
w
(s) ds ,

R
w
(t),Sw

f
(t@)w

f
(t#t@)T"2P

=

0

cos(2put)E
w
(DuD) du ,

E
w
(u)"A

E,w
u~bt

w
(u) .

This is the case for which we also presented a detailed derivation for the Random Steady Shear
Model in Paragraph 3.2.6.2. The general procedure is similar in spirit, though the extra integration
over the frequency variable creates the need for some extra work.

We shall "rst deal with the range of exponent values !1(b(1 for which the random cross
sweep produces unbounded motion across the shear. The e!ects of a trapping cross sweep
(b(!1) is handled separately at the end.

Di+usive regime. For !1(b(1, the long-time asymptotics of the shear-displacement kernel
are di!usive

lim
t?=

RI
wf

(k,u, t)&2KI
wf

(k,u)t ,

KI
wf

(k,u)"P
=

0

cos(2pus)e~2p
2k2p2

X (s)ds . (172)

We now show that for the range of parameters de"ning the D regime in Fig. 16, the shear-parallel
tracer motion is described by a "nite di!usion coe$cient given by the integral of the single-mode
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di!usivity against the spatio-temporal energy spectrum

lim
t?=

p2
Y
(t)&2KI *

wf
t ,

KI *
wf
"4P

=

0
P

=

0

EI (k,u)KI
wf

(k,u) dudk . (173)

To do this, we need only show that t~1RI
wf

(k,u, t) is bounded uniformly in time by a function which
is integrable against EI (k, u), and then apply the dominated convergence theorem. Noting that
DRI

wf
(k,u, t)D4RI

wf
(k, 0, t)"R

wf
(k, t), we can utilize the bound (145) obtained in our previous

analysis in the RSS Model

DRI
wf

(k, u, t)D4C
1
q
wf

(k)t .

Here q
wf

(k) is some positive, decreasing function with the low-wavenumber asymptotics (146)

q
wf

(k)&C
wf

(KA

x
k2)~1@(1`b) , (174)

and may be thought of as the Lagrangian w
f
-persistence time. The constant KA

x
is de"ned in

Eq. (129); MC
j
N and C

wf
are positive numerical constants which do not depend on k,u, or t.

Next we establish a second bound

DRI
wf

(k, u, t)D4C
2
u~1t , (175)

with positive numerical constant C
2

depending only on b. We "rst integrate RI
wf

(k,u, t) by parts

RI
wf

(k, u, t)"2u~1tP
t

0

e~2p
2k2p2

X(s)sin(2pus)C(2pt)~1#pk2
dp2

X
(s)

ds A1!
s
tBDds . (176)

As stated in Eq. (144), lim
s?=

p2
X
(s)&2KA

x
/(1#b)s1`b. It may be veri"ed through an integration by

parts of the formula

dp2
X
(s)

ds
"P

t

0

R
w
(s) ds"P

=

0

A
E,w

DuD~bt
w
(DuD)

sin2put
2pu

du

that the derivative has the naturally expected bound

Ddp2
X
(s)/dsD4C

3
KA

x
(1#sb)

for !1(b(1 and some positive numerical constant C
3

depending only on b. Using these facts
about p2

X
(s) and its derivative, the desired bound (175) follows from Eq. (176).

We therefore have that

DRI
wf

(k, u, t)D4C
4
min(q

wf
(k),u~1)t . (177)

This sensibly generalizes the natural bounds (141) which one obtains in the RSS Model, since
min(q

wf
(k),u~1) acts as a Lagrangian persistence time for the shear-parallel tracer motion asso-

ciated to a #uctuation of a single wavenumber and frequency.
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We make even stronger contact with the analysis of the RSS Model when we perform the
integration of Eqs. (171a) and (171b) over frequency. Recalling that the spatio-temporal spectrum
in the RSTS Model has the form

EI (k,u)"E(k)/
k
(uq(k))q(k) ,

we can write

p2
Y
(t)"2P

=

0

E(k)R
(,wf

(k, t) dk , (178a)

R
(,wf

(k, t)"2P
=

0

RI
wf

(k,u, t)/
k
(uq(k))q(k) du . (178b)

The kernel R
(,wf

(k, t) may be interpreted as the mean-square shear-parallel displacement of a tracer
due to a single normalized random Fourier mode of wavenumber k (with temporal #uctuations at
all frequencies); it directly generalizes the RSS shear-displacement kernel R

wf
(k, t). Using the

assumed bound (156) on /
k
( ) ) along with Eq. (177), we infer the following bound:

DR
(,wf

(k, t)D4C
5
min(q

wf
(k), q(k))t . (179)

Realizing that min(q
wf

(k), q(k)) represents the Lagrangian persistence time q
L
(k) of spatial wavenum-

ber k, we see that this directly generalizes the physically motivated bounds (141) we obtained for the
RSS shear-displacement kernel. With Eq. (179) and the dominated convergence theorem, we have
demonstrated a rigorous version of the criterion

P
=

0

q
L
(k)E(k) dk(R (180)

for ordinary di!usive growth of p2
Y
(t) at long times. We have only proven it here for the special case

i"wN "0, but as we shall discuss below, it holds rigorously for iO0 and wN O0 as well, provided
that q

L
(k) is interpreted in the appropriate fashion. We have already indicated in Section 3.3.4 how

Eq. (180) de"nes the boundaries of the di!usive regime D in the phase diagram in Fig. 16.
Superdi+usive regimes. For values of e and z outside the closure of the D regime, the integral in

Eq. (180) diverges at low wavenumber. We therefore expect superdi!usion which is driven by the
low wavenumber modes of the shear #ow, and zoom in on this region with a strategy similar to that
developed for the RSS Model in Section 3.2.6. We introduce a wavenumber cuto! k

1
and frequency

cuto! u
1
, and separate the formula (171a) into a low wavenumber-frequency piece pN 2

Y
(t) and the

remainder pJ 2
Y
(t):

p2
Y
(t)"pN 2

Y
(t)#pJ 2

Y
(t) ,

pN 2
Y
(t)"4P

k1

0
P

u1

0

EI (k,u)RI
wf

(k,u, t) du dk ,

pJ 2
Y
(t)"4PP

kzk1 03 uzu1

EI (k,u)RI
wf

(k,u, t) du dk .
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The contribution pJ 2
Y
(t) is clearly at most di!usive by Eq. (177), since it has no contribution from

modes with both small u and small k.
We next rescale pN 2

Y
(t) by

q"k/k
$"

(t)

where k
$"

(t) scales with the inverse function to the Lagrangian persistence time q
L
(k) at small k.

(For the motivation, see our discussion in Paragraph 3.2.6.2 in the context of the RSS Model.)
Noting that

lim
k?0

q
L
(k)"lim

k?0

min(q
wf

(k), q(k))

&G
q
wf

(k)&C
wf

(KA

x
k2)~1@(1`b) for z'2/(1#b) ,

q(k)&Aqk~z for 04z(2/(1#b) ,

we choose

k
$"

(t)"GA
4p2KA

x
1#bB

~1@2
t~(1`b)@2 for z'2/(1#b) ,

A1@zq t~1@z for 04z(2/(1#b) .

(Numerical prefactors in k
$"

(t) have been chosen for convenience.) Because the frequency variable
u appears in Eqs. (178a) and (178b) in conjunction with the single time scale q(k) with q(k)&Aqk~z

at small wavenumbers, it is natural (and actually quite necessary) to rescale the frequency variable
along with the wavenumber variable according to

-"u/u
$"

(t) , (181a)

u
$"

(t),A~1q (k
$"

(t))z . (181b)

Note that u
$"

(t)"t~1 for z(2/(1#b), where the decorrelation of the shear #ow #uctuations
itself is dominant at low wavenumbers.

Performing the rescalings indicated above, we obtain

pN 2
Y
(t)"4k

$"
(t)u

$"
(t)P

k1@k$"(t)

0
P

u1@u$"(t)

0

EI (qk
$"

(t),-u
$"

(t))RI
wf

(qk
$"

(t),-u
$"

(t), t) d-dq . (182)

The rescaled shear-displacement kernel in the integrand converges, for each "xed q and - to a "nite
multiple of t2 in the long-time limit, re#ecting the fact that the modes in the band k[k

$"
(t),

u[u
$"

(t) are still contributing ballistically:

lim
t?=

t~2RI
wf

(qk
$"

(t),-u
$"

(t), t)"G
2:1

0
(1!u)e~q2u1`b du for z'2/(1#b) ,

(1!cos 2p-)/(2p2-2) for 04z(2/(1#b) .
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The long-time limit of the rescaled spatio-temporal energy spectrum in the integrand may be
expressed through the low-wavenumber asymptotics of EI :

lim
t?=

EI (qk
$"

(t),-u
$"

(t))"lim
t?=

E(qk
$"

(t)) /
qk$" (t)

(-u
$"

(t) q(qk
$"

(t)))q(qk
$"

(t))

&A
E
(qk

$"
(t))1~e/

0
(-u

$"
(t)Aq(qk

$"
(t))~z)Aq(qk

$"
(t))~z

"(k
$"

(t))1~e~zA
E
Aqq1~e~z/

0
(-q~z) .

To deduce the limit of the integral (182) as the integral of the limit of the integrand, we establish
uniform integrable bounds on the integrand. From the inequality (177) and DRI

wf
(k,u, t)D42t2, we

can deduce that

Dt~2RI
wf

(qk
$"

(t),-u
$"

(t), t)H(k
1
/k

$"
(t)!q)H(u

1
/u

$"
(t)!-)D (183)

4G
C

6
1#q2@(1`b)

for z'2/(1#b) ,

C
7

1#-
for 04z(2/(1#b) ,

(184)

where H is the Heaviside function (151). The low wavenumber asymptotics E(k)&A
E
k1~e and

q(k)&Aqk~z along with the uniform bound (156) on /
k
( ) ) imply

(k
$"

(t))~(1~e~z)EI (qk
$"

(t),-u
$"

(t))H(k
1
/k

$"
(t)!q)H(u

1
/u

$"
(t)!-)

4C
8
q1~e~z/(1#D-q~zDc) , (185)

where c'1. The bounds provided by the product of the right-hand sides of Eqs. (183) and (185) are
indeed absolutely integrable over 04q4R, 04-4R, provided that (e, z) fall within the
interior of either of the superdi!usive regimes indicated in Fig. 16. The dominated convergence
theorem thus guarantees that we may safely evaluate the long-time limit of Eq. (182) by replacing
the integrand by its long-time limit.

Within the SD-w
f

regime, de"ned by the inequalities

z'2/(1#b), 2b/(1#b)(e(2 ,

we obtain

lim
t?=

p2
Y
(t)&lim

t?=

pN 2
Y
(t)&4k

$"
(t)u

$"
(t)t2k1~e~z

$"
(t)

]P
=

0
P

=

0

A
E
Aqq1~e~z/

0
(-q~z)A2P

1

0

(1!u)e~q2u1`b duBd-dq

"4k2~e
$"

(t)t2P
=

0

A
E
q1~eA2P

1

0

(1!u)e~q2u1`b duBP
=

0

/
0
(-) d-dq

"2k2~e
$"

(t)t2P
=

0

A
E
q1~eA2P

1

0

(1!u)e~q2u1`b duBdq .
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We used :=
0

/
0
(-) d-"1

2
:=
~=

/
0
(-) d-"1

2
in the last equality. We thereby arrive at the same

long-time asymptotic expression for pN 2
Y
(t) as in the RSS Model; see Eq. (152). This rigorously proves

that the long-time asymptotics of p2
Y
(t) in the SD-w

f
regime is una!ected by the presence of

temporal #uctuations in the shear #ow.
For the SD-u regime in Fig. 16, de"ned by

0(z42/(1#b), 2!z(e(2 ,

we compute instead

lim
t?=

p2
Y
(t)&lim

t?=

pN 2
Y
(t)&4k

$"
(t)u

$"
(t)t2k1~e~z

$"
(t)P

=

0

]P
=

0

A
E
Aqq1~e~z/

0
(-q~z)

1!cos 2p-
2p2-2

d-dq

"

2z
2z#e!2

KI A

0
t(2z`e~2)@z ,

where

KI A

0
"

(2z#e!2)
z

p~2A
E
A(2~e)@zq P

=

0
P

=

0

q1~e~z(1!cos 2p-)-~2/
0
(-q~z) d-dq

"

(2z#e!2)
z

p~2A
E
A(2~e)@zq z~1P

=

0
P

=

0

p(e~2)@z(1!cos 2p-)-(2~e~3z)@z/
0
(p) d-dp

"z~1p(2e`z~4)@2z
C((2!e)/2z)

C((e#3z!2)/2z)
A

E
A(2~e)@zq P

=

0

p(e~2)@z/
0
(p) dp .

This is exactly what is stated in Table 9 and Eq. (169).
=eak sweeping regime. We "nally treat the case in which the randomly #uctuating cross sweep

w
f
(t) produces only trapped motion across the shear (b(!1). The following calculation will also

be valid for the special case of no cross sweep w
f
(t)"0 (and no other cross-shear transport

mechanisms), thereby yielding the results stated in Section 3.3.1 as a by-product.
To understand how to proceed, we notice that for no cross sweep (p2

X
(t)"0), the shear-

displacement kernel in Eq. (171b) has the explicit form

RI
wf

(k, u, t)"RI
0
(k, u, t)"t2F

2
(2put) ,

F
2
(-)"

2(1!cos-)
-2

.
(186)

In particular, the shear-parallel tracer displacement generated by a single wavenumber-frequency
mode with uO0 is oscillatory and trapped. This suggests that most of the tracer action at long
times will come from low frequency modes, and the rescaling -"ut is suggested to zoom in on
them. We follow this strategy also if a trapping cross sweep w

f
(t) is present, since we can expect that

this should only produce a weak perturbation of the case of no cross-shear transport.
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We thereby arrive at the following expression for p2
Y
(t):

p2
Y
(t)"4t~1P

=

0
P

=

0

EI (k, -t~1)RI
wf

(k,- t~1, t) d-dk .

The long-time limit of the rescaled shear-displacement kernel has a clean form when the cross
sweep w

f
(t) is trapped:

lim
t?=

t~2RI
wf

(k,-t~1, t)"2 lim
t?=

P
1

0

(1!u)cos(2p- u)e~2p
2k2p2

X(tu)du

"2P
1

0

(1!u)cos(2p-u)e~2p
2k2Kx

3du"e~2p
2k2K3xF

2
(2p-) .

We used the fact (144) that p2
X
(t) has the "nite long-time limit K3

x
for b(!1. The rescaled

spatio-temporal energy spectrum clearly converges to its zero-frequency limit:

lim
t?=

EI (k,-t~1)"EI (k, 0) .

With DRI
wf

(k,-t~1, t)D4t2 and EI (k,-t~1)4C
9
E(k)q(k)&

k?0
C

9
A

E
Aqk1~e~z (due to the uniform

bound (156) on /
k
), we can apply the dominated convergence theorem when e#z(2 to deduce

lim
t?=

p2
Y
(t)"4tP

=

0
P

=

0

EI (k, 0)e~2p
2k2Kx

3F
2
(2p-) d-dk"2tP

=

0

e~2p
2k2Kx

3EI (k, 0) dk ,

where we have used the integral formula :=
0
F

2
(2p-) d-"1

2
. This covers the di!usive regime D.

For e#z'2, there is a nonintegrable divergence of the limiting integrand at k"0, so we
rescale the wavenumber along with the frequency variable

q"k/k
$"

(t) .

Since the Lagrangian persistence time q
L
(k) is clearly just the Eulerian correlation time q(k) of the

shear #ow, and q(k)&Aqk~z for low wavenumbers, an appropriate choice of the rescaling is

k
$"

(t)"A1@zq t~1@z .

Note that the indicated wavenumber and frequency rescaling is the same as that in the SD-u
regime described above in our discussion of the case of random sweeps with !1(b(1. Under
this rescaling, the random cross sweeping there became asymptotically irrelevant in the long time
limit; the same clearly must be true when the cross sweep is trapping. Therefore, the long-time
asymptotics of p2

Y
(t) obeys the SD-u scaling law for e#z'2 when the random cross sweep motion

is trapping.

3.3.6.3. Sketch of general derivation of asymptotics. We have just computed in detail the asymptotic
results presented in Section 3.3.4 for the shear-parallel transport in the presence of a randomly
#uctuating cross sweep w

f
(t) and no molecular di!usion i"0 or mean cross sweep wN "0. We

covered, as a special case of a trapping cross sweep, the derivation of the results of Section 3.3.1
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where no cross-shear transport process is active. The approach developed above extends easily to
handle iO0; indeed molecular di!usion may be treated in the above analysis in exactly the same
way as a di!usive cross sweep (b"0). Therefore, only the case of a nonzero mean cross sweep
remains to be discussed. We shall simply sketch how to modify the above approach to compute the
asymptotics for p2

Y
(t) when wN O0.

First of all, if no other cross-shear transport process is active (i"w
f
(t)"0), as in our discussion

in Section 3.3.3, then the shear-displacement kernel takes the explicit form

RI
wN
(k,u, t)"1

2
t2[F

2
(2p(u!wN k)t)#F

2
(2p(u#wN k)t)] ,

F
2
(-)"2(1!cos(-))/-2 .

This is essentially just a sum of Doppler shifts of the kernel RI
0
(k, u, t) in Eq. (186) for the case of no

cross-shear transport. The single-mode wavenumber-frequency contributions away from the reson-
ance line u"wN k are trapped, so the main contribution to the total shear-parallel transport at long
times comes only from modes near this resonance line. The asymptotics of p2

Y
(t) are therefore

computed by rescaling the frequency variable in Eqs. (170a) and (170b) as u"wN k#- t~1, and
then proceeding similarly as in our discussion of a trapping cross sweep above. This will work out
the D and SD-u regime in Fig. 15. Within the SD-wN regime, only the low wavenumbers are relevant
at long times, and the e!ects of the cross sweep dominate those of the temporal #uctuations in the
shear #ow. The wavenumber-frequency rescaling must therefore be chosen in accordance with the
fact that the e!ective Lagrangian persistence time is q

L
(k)"q

wN
(k)"(2pwN k)~1, namely

k
$"

(t)"(2pwN t)~1, u
$"

(t)"A~1q (k
$"

(t))z .

When a mean cross sweep is superposed with molecular di!usion i or a randomly #uctuating cross
sweep w

f
(t), the only substantial change is that the frequency variable should not be rescaled in the

computation within the D regime. The reason is that the random component of the cross shear-
transport will render RI (k,u, t) di!usive at all nonzero wavenumbers and frequencies, so the whole
wavenumber-frequency domain contributes to the e!ective di!usion constant.

For the bene"t of the reader interested in some of the mathematical details of the computation,
we remark that the rigorous asymptotic computation of p2

Y
(t) with wN O0 is more arduous than in

the wN "0 case presented in detail above. There are transient contributions in the integral
representation (170) for p2

Y
(t) which cannot be controlled by a uniform, time-independent bounding

function. Their contribution must instead be separately estimated and shown to be subdominant.
This can be accomplished with su$cient care, but we do not present these details here because it
would require too much space.

3.4. Large-scale e+ective equations for mean statistics and departures from
standard eddy di+usivity theory

We now shift our focus from the description of the mean-square displacement of a single tracer to
the mean concentration of tracers (or other passive scalar quantity). These points of view are
related in that the mean passive scalar density S¹(x, t)T evolving from a concentrated source at x

0
is

exactly equal to the full probability distribution function (PDF) for the location X(t) of a single
tracer starting from x

0
[164]. The mean passive scalar density S¹(x, t)T is therefore determined not
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only by the mean-square displacement of a single tracer, but by the higher order statistics of its
motion as well.

We recall that it is not possible in general to obtain a closed PDE for S¹(x, t)T by naively
averaging the advection}di!usion equation

R¹(x, t)/Rt#*(x, t) '+¹(x, t)"iD¹(x, t) ,

because of the statistically nonlinear coupling between *(x, t) and ¹(x, t). We did show through
homogenization theory in Section 2, however, that for certain periodic velocity "elds and random
velocity "elds with short-range correlations, the mean passive scalar density does obey an e!ective
di!usion equation at large scales and long times. Namely, if the initial data is rescaled to vary on
large scales:

¹(d)
0

(x),¹
0
(dx)

(with d'0 small), then the mean of the resulting passive scalar "eld ¹(d)(x, t) converges under
a di+usive rescaling,

¹M (x, t)"lim
d?0

S¹(d)(x/d, t/d2)T . (187)

This large-scale, long-time limit is in these cases the unique solution of a constant-coe$cient
di!usion equation

R¹M (x, t)/Rt"+ ' (K*+¹M (x, t)), ¹M (x, t"0)"¹
0
(x) , (188)

where K* is a constant, symmetric, positive-de"nite matrix depending on the velocity "eld *(x, t)
and the molecular di!usivity i, and can be obtained from the solution of an associated `cell
problema (86).

It can be shown, using the arguments in the appendices to [10,14], that such a homogenized
description holds throughout the di!usive regimes in both the Random Steady Shear Model
(Section 3.2) and the Random Spatio-Temporal Shear Model (Section 3.3), at least when i'0 and
the cross sweep velocity w(t) is a (zero or nonzero) deterministic constant. It is an open problem
whether the Simple Shear Models do or do not adhere to a homogenized description at large scales
and long times within the di!usive regimes when i"0 or a randomly #uctuating cross sweep w

f
(t)

is present.
We explore now some ways in which the e!ective di!usivity picture is altered when the velocity
"eld has long-range spatial correlations which violate the conditions needed to apply standard
homogenization theory. The Simple Shear Models developed in Sections 3.2 and 3.3 will be used
for explicit illustrations. First of all, the di!usively linked rescaling of space and time in (187) clearly
will not do for superdi!usive regimes. Instead, the large-scale, long-time behavior is captured by an
appropriate choice of rescaling function o(d) which vanishes as dP0, and for which

¹M (x, t)"lim
d?0
T¹(d)A

x
d
,

t
o2(d)BU

has a nontrivial limit. Di!usive rescaling corresponds to o(d)"d.
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As we shall see in Sections 3.4.1 and 3.4.2, the rescaled (or `renormalizeda) limit ¹M (x, t) of the
mean passive scalar "eld cannot in general be expressed as the solution of a (local) PDE [10,16].
Therefore, we sometimes utilize the more general framework of Green's functions. Because of the
linearity of the advection}di!usion equation and the prevailing assumption that the initial passive
scalar data is independent of the statistics of the velocity "eld, we can always express the mean of
passive scalar statistics as an integral of the mean initial data against some kernel, or Green's
function, P(t):

S¹(d)(x, t)T"PRd

P(t)(x, x@)S¹(d)
0

(x@)Tdx@ . (189)

When the velocity "eld is statistically homogenous, as we shall assume here, the Green's function
only depends on the di!erence between the spatial locations of the `sourcea and the `targeta, and
we can express P(t)(x, x@) more simply as P(t)(x!x@). The reason we write the Green's function in this
way is that P(t)(x) is exactly the probability distribution function (PDF) of the displacement
X(t)!x

0
of a single tracer. The renormalized mean statistics are described by a renormalized

Green's function

¹M (x, t)"PRd

PM (t)(x!x@)S¹
0
(x@)Tdx@ ,

and this renormalized Green's function characterizes the long-time asymptotic PDF for the
displacement of a single tracer:

PM (t)(x)"lim
d?0

d~1P(t@o2(d))A
x
dB . (190)

The renormalized Green's function associated with the homogenized PDE (188) is the standard
Gaussian heat kernel:

PM (t)(x)"
e~x ' (K*)~1 'x@4t

(4pt)d@2(DetK*)1@2
,

re#ecting the fact that the tracer displacement relaxes to a Gaussian distribution at long times.
In Section 3.4.1, we present the long-time, large-scale limit of a passive scalar "eld evolving

under the Random Steady Shear (RSS) model with positive molecular di!usion i'0. For the
parameter range 0(e(2, the tracer motion is superdi!usive and an anomalous scaling o(d)"dl,
lO1 is needed to obtain a "nite limit. The associated large-scale, long-time Green's function may
be represented as the average of an explicit functional of Brownian motion, but is not the solution
to any (local) PDE [10]. Moreover, as we shall discuss in Section 3.4.2, this anomalous Green's
function behavior persists when these steady shear #ows are perturbed by a general class of
short-ranged two-dimensional random #ows [16].

In Section 3.4.3 we modify the Random Spatio-Temporal Shear (RSTS) model to include an
important feature of real-world turbulence at high Reynolds number: a self-similar inertial range of
scales. We discuss some issues pertaining to the computation of e!ective large-scale passive scalar
behavior in high Reynolds number turbulent #ows in the context of these shear #ow models, and
report on the results of some rigorous work along these lines [10,14]. Finally, in Section 3.4.4 we
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provide some explicit examples in which the Green's function for the mean passive scalar density
solves a time-dependent di!usion equation in which the di!usion coe$cient is negative over "nite
time intervals.

3.4.1. Large-scale, long-time Green's functions in steady random shear -ow
We return to the Random Steady Shear Flow Model from Section 3.2, with no cross sweeping
#ow:

*(x, y, t)"C
0

v(x)D ,

where the random shear #ow v(x) has energy spectrum (109), in which the low wavenumber
asymptotics of E(k) are given by lim

k?0
E(k)&A

E
k1~e with e(2. Molecular di!usion i'0 is

assumed to be active.
We computed in Section 3.2.1 that the shear-parallel tracer displacement p2

Y
(t)"S(>(t)!y

0
)2T

is di!usive for e(0 and superdi!usive for 0(e(2; see Table 2. We now consider aspects of the
full probability distribution function (PDF) P(t)(x, y) of the tracer displacement at long time, as
re#ected in the renormalized Green's function (190).

3.4.1.1. Diwusive regime. For the di!usive regime e(0, the condition

P
=

0

E(k)
k2

dk(R

is satis"ed, and the homogenization theory for incompressible velocity "elds with short-range
correlations applies (see Section 2.4.2). Consequently, the renormalized Green's function (with
di!usive rescaling o(d)"d) is a Gaussian:

PM (t)(x, y)"
exp(!(x2/4it)!(y2/4K*i t))

4pJiK*i t
, (191)

where the di!usivity in the x direction is the bare molecular value i, whereas the di!usivity in the
y direction is the turbulence-enhanced value K*i stated in Eq. (115). The mean passive scalar
density therefore rigorously satis"es an ordinary, constant-coe$cient di!usion equation when
rescaled to large scales and long times as in Eq. (187):

R¹M (x, y, t)
Rt "i

R2¹M (x, y, t)
Rx2

#K*i
R2¹M (x, y, t)
Ry2

,

¹M (x, y, t"0)"¹
0
(x, y) .

Moreover the behavior of a single tracer is self-averaging for e(0, in that the large-scale, long-time
PDF of a tracer, conditioned on a single realization of the velocity "eld, is (almost) always identical
to the asymptotic Gaussian distribution (191) characterizing the ensemble-averaged behavior [16].
In other words, the tracer's motion in (almost) any given environment e!ectively samples the
statistics of the entire ensemble after some "nite time.
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3.4.1.2. Superdiwusive regime. The behavior of a tracer in a random shear #ow with 0(e(2 has
many anomalies which contrast sharply with this simple homogenized picture. Recall that the
`typicala class of random shear #ows with "nite energy at low wavenumbers correspond to e"1,
and belong to this anomalous class. First of all, we have shown in Section 3.2.1 that the
shear-parallel tracer motion is superdi!usive for 0(e(2:

lim
t?=

p2
Y
(t)&

4
2#e

KA

it1`e@2 ,

where the constant KA

i is described in Eq. (115). The appropriate rescaling of time to capture the
large-scale behavior of the tracer displacement in Eq. (190) is therefore o(d)"d2@(2`e). Under this
space}time rescaling, the di!usive tracer motion along the x direction is negligible, and it factors
out of the renormalized Green's function as a delta function:

PM (t)(x, y)"d(x)PM (t)
Y
(y) .

One could of course retain the cross-shear dynamics by choosing an anisotropic scaling of space,
but our interest here is only on the PDF for the tracer displacement along the shear, which at long
times is described by PM (t)

Y
(y).

An explicit formula for this renormalized Green's function was derived rigorously in [10]:

PM (t)
Y
(y)"T

expC!
y2

4(2/(2#e))KA

iat1`e@2D
J4p(2/(2#e))KA

iat1`e@2 U
a

. (192)

The outer brackets denote an expectation over the random variable

a,
2e@2~2

C(!(e#2)/2)P
1

0
P

1

0

Fe(=(s)!=(s@)) dsds@ ,

where=(t) is a standard Brownian motion. The function Fe(y) appearing in the integral is given by

Fe(y)"P
=

~=

e*qyDqD1~edq"G
Ce

sgn(y)
DyD2~e

for 0(e(1 or 1(e(2 ,

Ce/1
d(y) for e"1 ,

where

Ce"G
!S

2
p
sinA

(1!e)p
2 BC(2!e) for 0(e(1 or 1(e(2 ,

1

J2p
for e"1 .

Without the ensemble average over a, the renormalized Green's function PM (t)
Y
(y) would be a Gaus-

sian distribution. But the averaging over a implies that PM (t)
Y
(y) is in fact the probability distribution

for a mixture of (mean zero) Gaussian random variables, and is therefore necessarily a broader-
than-Gaussian distribution (see Paragraph 5.2.2.1). That is, the tracer is more likely to make large
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excursions along the shear, relative to its root-mean-square displacement, than a Gaussian random
process with the same mean-square displacement law would. Through analytical considerations
and numerical simulations, Zumofen et al [353,354] identify the source of non-Gaussianity more
speci"cally as coming from the variability in the range of the Brownian motion across the shear.

The renormalized Green's function given by Eq. (192) cannot be represented as the solution to
a PDE of di!usion type or even any local PDE of the form

RPM (t)
Y
(y)/Rt"Q(R/Ry)PM (t)

Y
(y) ,

where Q( ) ) is a polynomial. Therefore, we say that the renormalized mean statistics ¹M (x, y, t) obey
a nonlocal equation within the regime 0(e(2.

One appealing formulation of this nonlocal equation for ¹M (x, y, t) uses the notion of a random
di!usivity. The conditional Green's function

PM (t)
Y
(yDa),

expC!
y2

4(2/(2#e))KA

iat1`e@2D
J4p(2/(2#e))KA

iat1`e@2
(193a)

is the fundamental solution of the constant coe$cient di!usion equation

RPM (t)
Y
(yDa)/Rt"KA

iate@2 R2PM (t)
Y
(yDa)/Ry2 , (193b)

PM (t/0)
Y

(yDa)"d(y) (193c)

with di!usion coe$cient KA

ia. Therefore, the renormalized Green's function may be viewed as an
average over solutions to constant-coe$cient di!usion equations with a random factor a appearing
in the di!usivity. The behavior of the PDF of a as a function of e is discussed in [10].

While Eq. (192) is an explicit representation of the renormalized Green's function, it would be
interesting to identify some properties of PM (t)(y), such as the form of the tail region y2<KA

it(1`e@2),
in a more transparent manner. Some numerical simulations and formal large deviation arguments
[46,280,353], as well as some partial exact results from a quantum mechanical analogy [194]
suggest that, for e"1, the tails of the renormalized Green's function have a stretched exponential
form

lim
@y@@K

A
it(2`e)@4?=

PM (t)
Y
(y)&t~(2`e)@4 exp(!(DyD/t(2`e)@4)d) ,

with d"4
3
and possibly some power-law prefactor in the large parameter. It would be interesting to

rigorously derive such a result using the method of large deviations [331], and to describe the
shape of the tails of PM (t)(y) as a function of e. We note that explicit quantitative expressions for
several moments of the renormalized Green's function for e"1 may be extracted from the exact
"nite-time formulas in [353,354] for the moments of the shear-parallel displacement in a limiting
version of the independent channel model with in"nitely thin channels.

Departure from self-averaging. This representation of the renormalized Green's function sug-
gests, but does not prove, that at long times, the squared tracer displacement along the shear in
a single realization may grow as t1`e@2, but with a realization-dependent prefactor. In other words,
the motion of a single tracer may not be self-averaging, in that the behavior of a typical single
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realization does not resemble the ensemble-averaged behavior. This issue has been explored in
more depth by [46,280] for a random shear #ow which takes the form of an array of independent
channels, as discussed in Section 3.2.1. These models have energy spectra which are "nite at the
origin and so belong to the class e"1.

Bouchaud et al. [46,280] demonstrated that the motion of a single tracer is not self-averaging for
the independent strati"ed channel model by computing the quantity

lim
t?=

SS>(t)!y
0
T2
W
T
v
&(J2!1)(4A

E
/3Jpi)t3@2 . (194)

This is to be compared with the formula for the mean-square displacement for e"1:

lim
t?=

p2
Y
(t),lim

t?=

S(>(t)!y
0
)2T"(4A

E
/3Jpi)t3@2 . (195)

To interpret Eq. (194), note "rst that M
Y
(tDv, y

0
)"S>(t)!y

0
T
W

is the mean displacement of
a tracer, averaged over Brownian motion but in a "xed realization of the random shear environ-
ment and "xed starting location y

0
. This random variable M

Y
(tDv,y

0
) describes exactly the

displacement of the center of mass of a cloud of tracers initially concentrated at the speci"ed point
y
0
, then subsequently moving in a common random shear environment but with independent

Brownian motions. Clearly, M
Y
(tDv, y

0
) has mean zero when averaged over all random shear

con"gurations v(x).
The important point of the above results is that the displacement of the center of mass of the

cloud, in a given realization of the random shear environment, will be of the same order of
magnitude as the typical displacement of a tracer. On the other hand, the mean tracer concentra-
tion density, averaged over the ensemble of random shears, will have its center of mass "xed at
y
0

and spread symmetrically about it. Therefore, the evolution of an initially concentrated cloud
observed in a given environment does not resemble the ensemble-averaged behavior, and we
therefore say that the evolution of a concentrated cloud (and also of a single tracer) is not
self-averaging. This conclusion is also reached from a di!erent direction for any value of e with
0(e(2 in [10], in which it is demonstrated that the renormalized Nth order moments of the
rescaled passive scalar "eld d~1¹(x/d, y/d, t/o2(d)) do not coincide with ¹M N(x, y, t). The loss of
self-averaging may be attributed to the long-range correlations of the Lagrangian tracer velocity
which arise due to su$ciently strong long-range spatio-temporal correlations in the random shear #ow.

This violation of self-averaging for an initially concentrated cloud lends some support to the idea
that the tracer may indeed behave at long times in a given realization as if it had a time-dependent
di!usivity KA

iate@2 with a random factor a, as suggested by the representation (193). It would be
interesting to determine whether this random di!usivity picture is literally valid.

3.4.2. Persistence of non-Gaussian Green's function for nearly strati,ed steady -ows
We next report on some work which indicates the robustness of the anomalous renormalized

Green's function (192) under perturbations of the Random Steady Shear Model. As we now discuss,
this renormalized Green's function actually characterizes the large-scale, long-time behavior of the
statistics of a tracer in a rather broad class of random steady #ows with an approximately strati"ed
structure.
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First of all, the assumption of Gaussian statistics of the random shear #ow can be considerably
relaxed. It has been demonstrated rigorously in [14], that the long-time PDF of a tracer position
converges to Eq. (192) for several classes of non-Gaussian shear models with energy spectra as in
Eq. (109). Included in these classes of non-Gaussian models is the independent channel model
[46,279,353] discussed in Section 3.2.1 and shear #ow versions of models with translational
disorder as studied in [12,19,167]. In e!ect, there is a central limit theorem in operation as the
tracer explores its random environment.

Secondly, Avellaneda and the "rst author established [16] that renormalized Green's functions
of the form (192) arise generically for a class of steady random velocity "elds which are `nearly
strati"eda, in the sense that they have the structure

*(x, y)"C
0

v(x)D#u(x, y)

of a Gaussian homogenous random steady shear #ow v(x) with energy spectrum (109) perturbed by
a two-dimensional random homogenous velocity "eld

u(x,y)"C
u
x
(x, y)

u
y
(x, y)D

of the type with short-range correlations discussed in Section 2. More precisely, the random
perturbation "eld u(x, y) is assumed to be periodic in y (with period 1) and statistically homogenous
along the x direction, and the Fourier transform of its correlation tensor,

RK
m
(k),P

=

~=
P

1

0

e~2p*(kx`my)R(x,y) dydx ,

R(x, y),Sv(x@, y@)v(x@#x, y@#y)T

is assumed to satisfy the condition

=
+

m/0
P

=

~=

ERK
m
(k)E

k2#m2
dk(R .

This last condition guarantees that u(x, y) obeys the conditions for homogenization theory, so that
the statistical motion of a tracer due to the perturbation "eld u(x, y) alone would be Gaussian and
di!usive at long times. Note that u(x, y) is allowed to be a deterministic, periodic #ow as a special
case.

The superposition of the random shear with the two-dimensional perturbation u(x, y) corres-
ponds to #ow in a strati"ed heterogenous porous medium, with the perturbations u(x, y) varying
only over short wavelengths. Intuitively, we expect the solution of the equations of motion for the
tracer

dX(t)"u
x
(X(t),>(t)) dt#J2id=

x
(t) ,

d>(t)"v(X(t)) dt#u
y
(X(t),>(t)) dt#J2i d=

y
(t)
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to behave as follows: on a coarse scale, the cross-shear component of the path, X(t), will approach
(statistically) a Brownian motion. In this case, the cross-shear transport would be of di!usive type,
and from our discussion in Sections 3.2.1 and 3.2.3, the random shear should produce superdif-
fusive scaling p2

Y
(t)&t1`e@2 for 0(e(2. The contribution from u

y
to the shear-parallel transport

can be expected to be di!usive, and thus negligible relative to the contribution from the random
shear. Therefore, the tracer in this nearly strati"ed system should behave in much the same way as
in the Random Steady Shear Model with molecular di!usion, and the renormalized Green's
function, using the same rescaling function o(d)"d2@(2`e), should be of the same form (192). One
change, however, is that the presence of the perturbation "eld u

x
(x, y) will enhance the cross-shear

motion so that the e!ective shear-transverse di!usion constant at long time will be some value
K*

x
greater than the bare molecular value i. The factors of i appearing in the formula for the

renormalized Green's function stem from the shear-transverse di!usion, so they should self-
consistently be replaced by the enhanced shear-transverse di!usivity K*

x
.

This picture is rigorously justi"ed in [16]. Moreover, the e!ective shear-transverse di!usivity
K*

x
can be obtained by solving a cell problem in the sense of homogenization theory, as in

Section 2. Namely, let s
x
(x, y) be a suitable solution of

iDs
x
(x, y)!u

x
(x, y)

Rs
x
(x, y)
Rx ![v(x)#u

y
(x, y)]

Rs
x
(x, y)
Ry "u

x
(x, y) .

Then K*
x

is given by

K*
x
"i(1#SD+s

x
D2T) .

The proof hinges on showing that an e!ective separation of scales between the di!usive cross-shear
motion X(t) and the superdi!usive shear-parallel motion >(t) exists. Namely, the superposition
models should have the property that the X(t) motion achieves its asymptotic statistical behavior
on a time scale which is short with respect to the time scale on which superdi!usion occurs.
Moreover, a crucial ingredient in this self-consistency argument is that sample-to-sample #uctu-
ations in the velocity statistics should not a!ect the X(t) motion; that is, the cross-shear motion
should be completely self-averaging.

Some of the above technical assumptions can be relaxed without a change in the conclusion; see
[16] for full details. It is also shown in that paper how the superdi!usive space}time scaling of the
renormalized Green's function may be calculated for nearly strati"ed #ows through a rigorous
diagrammatic resummation of a perturbation expansion of the advection}di!usion equation with
respect to the advective term. There is also interesting theoretical and computational work by
Avellaneda et al. [8] with non-Gaussian eddy di!usivity equations for special steady random
velocity "elds de"ned by the `Manhattan grida.

3.4.3. Renormalized Green's functions for turbulent shear -ows with very long-range
spatio-temporal correlations

We have so far been considering tracer transport in a variety of random shear velocity "elds, and
found that the character of the long-range spatial and temporal correlations in the velocity "eld
play a crucial role in determining the long-time behavior of an immersed tracer. Fully developed
turbulent velocity "elds at high Reynolds number have very strong long-range spatio-temporal
correlations, and we have seen from explicit shear #ow examples that tracers can exhibit a variety
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of subtle and anomalous behavior in such #ows. Long-range correlations are manifested in fully
developed turbulence in a distinctive way: a wide range of scales, known as the inertial range, over
which the velocity "eld exhibits statistical self-similarity. We "rst describe this feature, then seek to
mimic it within our general class of Gaussian random shear #ows.

3.4.3.1. Inertial range of fully developed turbulent yow. The inertial range was "rst predicted
theoretically by Kolmogorov [169] in 1941 as a characteristic of a fully developed turbulent system
which is maintained in a statistically stationary state (or `quasi-equilibriuma) through external
forcing at some characteristic length scale ¸

0
and dissipation by viscosity l. Kolmogorov utilized

an intuitive picture of turbulence, introduced by Richardson [284], in which energy cascades from
the relatively large scales at which it is injected down to ever smaller scales until viscous dissipation
of energy ultimately sets in. The cascade process arises from nonlinear interactions between various
turbulent velocity #uctuations, or `eddiesa, which tear apart large-scale structures into smaller
ones. Kolmogorov introduced the key hypothesis that, away from boundaries, the small-scale
structure of the #ow should be largely independent of the large scale details, due to the mixing
nature of the cascade. More precisely, he hypothesized that the only information communicated
from the large scales is the rate of energy injection, which must be equal to the rate of energy
dissipation eN in a statistically stationary state. The small-scale statistics r;¸

0
of turbulence are

therefore said to be universal in the Kolmogorov theory, since they do not depend on any of the
large scale details other than the overall energy #ux. From this universality hypothesis he deduced
the existence of a distinguished length scale ¸

K
"(l3/eN )1@4, which we will call the Kolmogorov

dissipation length scale. He hypothesized that viscosity l plays an important role only on scales
smaller than or comparable to ¸

K
; on larger scales r<¸

K
, the velocity statistics should be

independent of l. The Kolmogorov dissipation length scale ¸
K

scales with Reynolds number Re
as ¸

0
Re~3@4, so at su$ciently large Reynolds number there exists an inertial range of scales

¸
K
;r;¸

0
within which the velocity "eld statistics should depend only on the scale of interest

r and the energy dissipation rate eN .
From these hypotheses and dimensional analysis follows the Kolmogorov's `two-thirds lawa:

SD*(x#r, t )!*(x, t)D2T"CI
K
eN 2@3DrD2@3 for ¸

K
;DrD;¸

0
, (196)

where CI
K

is a universal numerical constant. The fact that the mean-square velocity di!erence over
a distance r vanishes at a slower rate than r2 implies that the velocity #uctuations are not smooth
when viewed with a resolution within the inertial range of scales. The velocity "eld is in fact
a fractal "eld [215,305] on scales within the inertial range. We return to this fractal aspect of
turbulence in Sections 3.5 and 6.

It is often convenient to formulate the Kolmogorov theory in terms of the spectral density of
energy E(k) in wavenumber space. This energy spectrum is de"ned for general multidimensional
#ows with the same physical meaning as in our models with scalar random "elds: :k`Dk

k~Dk
E(k@) dk@ is

the energy of the velocity "eld which would be measured if all #uctuations were "ltered out except
those with wavevector magnitudes within the band k$Dk (see Paragraph 2.4.5.3). By analogous
arguments, or through Fourier scaling, one arrives at Kolmogorov's `"ve-thirds lawa:

E(k)"C
K
eN 2@3k~5@3 for ¸~1

0
;k;¸~1

K
. (197)
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The universal numerical constant C
K

appearing in this law is called the Kolmogorov constant. When
the Reynolds number is large, the regime of power law scaling extends over a range of wavenum-
bers proportional to Re3@4. This means that the velocity #uctuations are active and self-similar over
a wide range of scales. The Kolmogorov inertial range scaling predictions (197) and (196) are quite
well established experimentally, with a Kolmogorov constant C

K
+1.5 (see [307] for a review).

Another consequence of Kolmogorov's theory is the association of an eddy turnover time scale

q
%
(k)"eN ~1@3k~2@3 (198)

to each inertial-range wavenumber k. This is just the natural advective time scale of an eddy of size
k~1, with velocity on the order of eN 1@3k~1@3. It may also be thought of as an estimate for the time it
takes for an inertial range eddy to be torn up into smaller eddies. According to the Kolmogorov
hypotheses, the eddy turnover time is the only relevant time scale for an inertial range eddy, and so
the spatio-temporal energy spectrum must have the following universal inertial-range form:

EI (k,u)"E(k)/(uq
%
(k))q

%
(k)"C

K
eN 1@3k~7@3/(ueN~1@3k~2@3) for ¸~1

0
;k;¸~1

K
, (199)

where /( ) ) is a universal, nonnegative function with :=
~=

/"1. This complete spatio-temporal
Kolmogrov inertial-range theory is much more di$cult to assess empirically. A competing theory
for the temporal dynamics for the inertial range will be mentioned below.

Mathematical modelling of spatio-temporal spectrum of Kolmogorov type. For the moment, we
proceed to construct a mathematical model for an energy spectrum which contains an inertial
range conforming to Kolmogorov's theory. The inertial range is described by Eq. (199), and we
must only specify the form of EI (k,u) outside the self-similar scaling range. At very large wavenum-
bers k<¸~1

K
, the velocity #uctuations are rapidly dissipated by viscosity, and the energy spectrum

decays rapidly. The energy spectrum must vanish at su$ciently small wavenumbers k;¸~1
0

because of the "nite size of the system.
We are therefore motivated to de"ne the following model for the spatio-temporal energy

spectrum corresponding to a turbulent #ow with a Kolmogorov inertial range:

EI (k,u)"E(k)q(k)/(uq(k)) , (200a)

where

E(k)"C
K
eN 2@3k~5@3t

0
(k¸

0
)t

=
(k¸

K
) , (200b)

q(k)"q
%
(k)"eN ~1@3k~2@3 . (200c)

The new parameters and auxiliary functions appearing here have the following meaning and
properties:

f t
0

is the infrared (low wavenumber) cuto!, a smooth, nonnegative function on the positive real
axis vanishing in a neighborhood of the origin,

f t
=

is the ultraviolet (high wavenumber) cuto!, a smooth, nonnegative function on the positive
real axis, decaying faster than any power, with t

=
(k@)"1#O(k@2) near the origin,

f /(-) describes the temporal component, and is assumed to be a non-negative, bounded, smooth,
even function, decaying at least as fast as D-Dc for some c'1. Moreover, we demand that /(0)'0
and :=

~=
/(u@) du@"1.
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The model assumes that the velocity "eld statistics continue to be isotropic on the large scales,
which certainly is not true; but we are not attempting to account for system-dependent large-scale
features of the velocity "eld here. Also, q(k) should cross over to a di!erent dependence on
wavenumber outside the inertial range, but there is little point in introducing this extra complexity
here. To maintain the parlance of physical discussions of turbulence, we will sometimes refer to ¸

0
as

the `integral length scalea of the velocity "eld, though in our model it di!ers from the technical
de"nition [320] of this term by a constant of order unity in the high Reynolds number limit.

We can build a simple shear model with a Kolmogorov type inertial range by simply de"ning
a Gaussian random shear #ow v(x, t) using the spatio-temporal energy spectrum (200) through the
formula (153). It can be checked explicitly that such the velocity di!erences will exhibit the
Kolmogorov inertial range scaling:

S(v(x@#x, t )!v(x@, t))2T"CI
K
eN 2@3DxD2@3 for ¸

K
;x;¸

0
,

for some universal constant CI
K

proportional to C
K
. Of course, such a shear model di!ers

geometrically from fully developed turbulence in that the latter is usually modelled as statistically
isotropic. The shear model has the advantage, however, of being mathematically tractable in the
context of turbulent di!usion, and we will see that it sheds light on a number of physically relevant
issues regarding the e!ects of a wide inertial range on turbulent di!usion.

The reader will note the formal similarity between the Kolmogorov model spectrum (200) and
the Random Spatio-Temporal Shear (RSTS) Model in Section 3.3 with parameter values e"8/3
and z"2/3. The key di!erence is that the power law scaling of the Kolmogorov energy spectrum
has e'2, and is cut o! at the low wavenumber ¸~1

0
. This cuto! is essential for the energy

E"

1
2
S(v(x, t))2T"P

=

0

E(k) dk

to be "nite; the ¸
0
P0 limit is singular.

We will next widen the spatio-temporal energy spectrum model for fully developed turbulence
from the strict Kolmogorov picture (200) to include intermittency corrections and alternate
theories for the temporal correlations. This will motivate the consideration of modi"ed RSTS
models with more general values of e'2 and z'0.

Intermittency corrections. Although the Kolmogorov form for the spatial energy spectrum E(k)
mentioned above agrees quite well with experimental data, it is of theoretical interest to consider
a more general self-similar inertial-range power law behavior of the form

E(k)"C
K
eN 2@3k~5@3(k¸

0
)a1(k¸

K
)a2 for ¸~1

0
;k;¸~1

K
. (201)

Here, the asymptotically small parameters (k¸
0
)~1 and (k¸

K
) are permitted to enter the inertial-

range asymptotic form via power laws with exponents a
1
and a

2
, which if nonzero, are referred to as

anomalous exponents. In the terminology of Barenblatt [24,25], Kolmogorov's hypothesis (200) is
completely self-similar with respect to the inertial range limit while the more general hypothesis
(201) is incompletely self-similar. The anomalous exponents will always be assumed to satisfy

!4
3
(a

1
#a

2
(2

3
, (202)
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which ensures that energy is concentrated at low wavenumber, dissipation is concentrated at high
wavenumber, and a physical-space self-similar inertial range scaling regime exists within
¸
K
;r;¸

0
.

In real-world turbulence, the issue of anomalous scaling is much more important in discussions
of higher-order statistics of the velocity "eld than in the second-order statistics (as re#ected in E(k))
[309]. There remain, however, suggestions [34,72] that the inertial range form of the energy
spectrum may have `intermittency correctionsa of the form (201), with a

2
"0 and a

1
small (on the

order of 0.03). A di!erent incomplete self-similarity hypothesis for the inertial-range has recently
been formulated [26], but we will not consider it here. Our purpose is only to introduce the #avor
of anomalous corrections to inertial range scaling into our shear #ow models, and examine their
e!ects on turbulent di!usion.

In the presence of intermittency corrections, the natural eddy turnover time q
%
(k), de"ned as the

ratio of the length scale k~1 and velocity scale of the eddy, is altered from the Kolmogorov
de"nition (198). The mean-square velocity of an inertial-range eddy of length scale k~1 scales as
E(k)k, so with Eqs. (200a), (200b) and (200c), we de"ne the eddy turnover time in the presence of
intermittency corrections as

q
%
(k)"

k~1

JC
K
eN 2@3k~2@3(k¸

0
)a1(k¸

K
)a2
"C~1@2

K
eN ~1@3k~2@3(k¸

0
)~a1@2(k¸

K
)~a2@2 . (203)

Alternative temporal decorrelation theories. Whether the eddy turnover time q
%
(k) truly sets the

decorrelation rate of inertial range eddies has come into question, starting with some papers of
Kraichnan [176] and Tennekes [319]. It is pointed out that beyond the inertial breakdown of
eddies, the velocity "eld observed at a given point will see a decorrelating in#uence from the
sweeping of eddies by strong, large-scale velocity components. The in#uence of an eddy of
wavenumber k on a given point in space will, according to this notion, e!ectively cease once the
eddy is carried away through advection by large scale eddies. An estimate for this sweeping time
scale is

q
4
(k)"(v

0
k)~1 , (204)

where v
0

is the single-point root-mean-square magnitude of the turbulent velocity "eld. If we
extrapolate the Kolmogorov inertial-range scaling of the velocity of eddies, we would expect v

0
to

typically be on the order of eN 1@3¸1@3
0

, in which case the sweeping time q
4
(k) would be shorter than the

eddy turnover time q
%
(k). This would appear to suggest that sweeping is the dominant decorrelation

mechanism, so that the eddy correlation time q(k) should be set equal to q
4
(k) instead of q

%
(k) in the

inertial range of wavenumbers. The same conclusion holds true in the presence of intermittency
corrections, as will be clear when we nondimensionalize later.

Whether the sweeping e!ect really has this decorrelating in#uence has not been conclusively
decided; we refer the reader to [60,273,345] for theoretical, numerical, and experimental investiga-
tions along this line. We only wish to mention this issue here, but will not dwell on it. To cover both
possibilities, we will simply assume that q(k), the correlation time of an eddy of wavenumber k, has
some scaling law:

q(k)"Aqk~z ,
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where z'0 and Aq is some positive constant. The exponent z"2/3 corresponds to the strict
Kolmogorov theory, and z"1 corresponds to the decorrelation by large-scale sweeping. Because
we have embedded both possibilities into our model, we can draw distinctions concerning how the
passive scalar statistics will di!er under these two competing hypotheses. Our results are only
guaranteed to be true for the model #ows considered, but one can hope to obtain some understand-
ing for the physical mechanisms and qualitative e!ects at work, and consider which of these may
apply in more general situations. We note that for a shear #ow, there is no direct physical
mechanism for decorrelation by large-scale sweeping unless a cross-shear sweep, such as w

f
(t), is

present.

3.4.3.2. Basic considerations concerning large-scale e+ective di+usivity. To illustrate some of the
issues involved in computing the e!ective evolution of a passive scalar "eld in a turbulent #ow, we
construct a cartoon model founded on shear #ows. We will refer to this model as the Random
Spatio-¹emporal Shear -ow with Inertial Range, or RSTS-I Model for short. The velocity "eld is
taken to be a parallel superposition of a two-dimensional steady, large-scale mean shear #ow;(x)
and a turbulent small-scale component v(x, t), with a temporally #uctuating cross sweep w

f
(t):

*(x, z, t)"C
w

f
(t)

;(x)#v(x, t)D . (205)

The cross-sweep w
f
(t) will be modelled as a mean zero, Gaussian, stationary random process as in

the Random Sweeping Model of Section 3.1.2, with

R
w
(t),Sw

f
(t@)w

f
(t#t@)T"2P

=

0

cos(2put)E
w
(DuD) du ,

E
w
(u)"A

E,w
u~bt

w
(u) .

The turbulent shear #ow v(x, t) is a Gaussian, homogenous, stationary, mean zero random "eld
with correlation function

RI (x, t),Sv(x@, t@)v(x#x@, t#t@)T"P
=

~=
P

=

~=

e2p*(kx`ut)EI (k,u) dkdu

and spatio-temporal energy spectrum EI (k,u) taken to be of the high Reynolds number form, with
intermittency corrections, discussed above:

EI (k,u)"E(DkD)q(DkD)/(uq(DkD)) , (206a)

E(k)"C
K
eN 2@3k~5@3(k¸

0
)a1(k¸

K
)a2t

0
(k¸

0
)t(k¸

K
) , (206b)

q(k)"Aqk~z . (206c)

Finally, the mean shear #ow is taken to be either linear or a sinusoid:

;(x)"G
cx ,

vN sin(2px/ M̧ ) .
(207)
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It will be helpful to think of the linear shear coe$cient c as the ratio of a certain velocity vN and
length scale M̧ characterizing the turbulent system.

The shear-parallel tracer motion due to the mean shear and the turbulent shear "eld are simply
additive, since they do not act across each other's gradient. To better assess their relative
magnitude, it is helpful to "rst nondimensionalize with respect to the (large) scale of the turbulent
system.

Nondimensionalization. We think of the mean shear #ow ;(x), the #uctuating cross-sweep w
f
(t),

and the turbulent shear #ow v(x, t) as being produced by forces of comparable scale. It is therefore
natural in our model to equate the mean-square turbulent velocity v

0
"Sv2(x, t)T1@2 with the

velocity scale vN of the mean #ow, and to equate the outer length scale ¸
0

of the turbulent #ow with
the length scale M̧ of the mean #ow. The turbulent #uctuations will then be active over a wide range
of scales extending from the system scale ¸

0
" M̧ down to the Kolmogorov dissipation scale ¸

K
. We

are assuming a high Reynolds number #ow so that ¸
K
;¸

0
, and a substantial inertial range exists.

Moreover, we equate the magnitude of the cross-sweep velocity w
f
(t) with vN and the time scale of its

#uctuations with the natural time macroscale M̧ /vN . The initial passive scalar density is assumed to
vary on the macroscale M̧ , and to have total mass M. We then use ¸

0
" M̧ , vN"v

0
, and M as our

reference units for nondimensionalization. This implies that the reference time scale is q
0
"¸

0
/v

0
.

Temporarily, we will use a superscript @ to denote a nondimensionalized variable and a super-
script " to denote a nondimensionalized function. To nondimensionalize the turbulent shear #ow,
we note "rst that

v2
0
"2P

=

0

E(k) dk"c
1
C

K
eN 2@3¸2@3

0
(¸

K
/¸

0
)a2 , (208)

where symbols c
j
will denote dimensionless positive numerical constants depending only weakly on

Reynolds number in the sense that they approach "nite positive limits as RePR. The constants
c
j
also depend on the scaling exponents a

1
, a

2
, and z, and on the dimensionless auxiliary functions

t
0
, t

=
, and /. As a consequence of Eq. (208), the energy spectrum may be written in terms of

¸
0

and v
0

as

E(k)"c~2
1

v2
0
¸~2H

0
k~1~2Ht

0
(k¸

0
)t

=
(k¸

K
) , (209)

where we have de"ned the Hurst exponent as

H"1
3
!(a

1
#a

2
)/2 .

The reason we call H the Hurst exponent is that S(v(x@#x)!v(x@))2T scales self-similarly as DxD2H
over the inertial range of scales ¸

K
;x;¸

0
, and the Hurst exponent is de"ned in just this way for

self-similar (or more properly `self-a$nea) fractal random "elds (see [215,216]). The restriction on
the intermittency exponents (202) is equivalent to 0(H(1. From Eq. (209), it follows that the
energy spectrum nondimensionalized to large scales takes the appealingly simple form

E3(k@)"(v~2
0

¸~1
0

)E(k@¸~1
0

)"c~2
1

(k@)~1~2Ht
0
(k@)t

=
(k@l

K
) ,

where

l
K
,¸

K
/¸

0
.
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It is often desirable to relate this ratio of the Kolmogorov dissipation length scale ¸
K

and the
integral length scale ¸

0
to the Reynolds number:

Re"v
0
¸
0
/l

characterizing the #ow, where l is the kinematic viscosity. In the Kolmogorov theory, Re is
proportional to (¸

0
/¸

K
)4@3; this law must however be modi"ed in the presence of intermittency

corrections. To compute Re, we need an expression for l in terms of the model parameters. This is
obtained by using the de"nition of the mean energy dissipation rate eN

eN,lTK
Rv(x, t)
Rx K

2

U"4p2lP
=

0

k2E(k) dk .

Substituting Eq. (206b) into this expression, we "nd

l"c
2
C~1

K
eN 1@3¸4@3

K
(¸

K
/¸

0
)a1 .

The Reynolds number is now computed to scale with l
K
,¸

K
/¸

0
as follows:

Re"c
3
C3@2

K
l~4@3~a1`a2@2
K

. (210)

We now only need to nondimensionalize the eddy decorrelation time q(k). To estimate how
Aq relates to the system scale, we consider the two natural cases in which q(k) is the eddy turnover
time q

%
(k) (203) or the sweeping time q

4
(k) (204). Using Eq. (208), we can express these time scales as

q
%
(k)"c1@2

1
¸H

0
v~1
0

k~1`H, (211a)

q
4
(k)"v~1

0
k~1 , (211b)

and their large-scale nondimensionalizations are

q3
%
(k@)"(v

0
/¸

0
)q

%
(k@¸~1

0
)"c1@2

1
k@~1`H ,

q3
4
(k@)"(v

0
/¸~1

0
)q

4
(k@¸~1

0
)"k@~1 .

Since q(k) is supposed to generalize the behavior of these natural sweeping times, we can take its
nondimensionalized form as

q3(k@)"k@~z ;

we do not bother with a possible order unity preconstant.
We can "nally write the spatiotemporal energy spectrum, nondimensionalized to the system

space}time scales ¸
0

and q
0
"¸

0
/v

0
, dropping the @ and " superscripts, as

EI (k,u)"E(DkD)q(DkD)/(uq(DkD)) , (212a)

E(k)"c~2
1

k~1~2Ht
0
(k)t(kl

K
) , (212b)

q(k)"k~z , (212c)

where l
K

may be related to the Reynolds number through Eq. (210).
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The nondimensionalization of the mean shear #ow (207) is directly seen to be

;(x)"G
x

sin(2px) .
(213)

Since the cross-sweep w
f
(t) is assumed to vary also on the same scales, its nondimensionalized

correlation function R
w
(t) has amplitude and scale of variation both of order unity. The nondimen-

sionalized initial data ¹
0
(x, y) is similarly an order unity function.

The molecular di!usion coe$cient, nondimensionalized to the macroscale, may be identi"ed as
the inverse of the Pe& clet number,

Pe"¸
0
v
0
/i .

This de"nition of PeH clet number is consistent with the one used in Section 2.4 (see Eq. (81)), up to
a factor which approaches a constant of order unity in the high Reynolds number limit.

Challenges of modelling e+ective large-scale passive scalar behavior. We can now write down the
advection}di!usion equation, nondimensionalized with respect to the system length macroscale
¸
0

and time macroscale q
0
:

R¹(x, y, t)
Rt #w

f
(t)
R¹(x, y, t)
Rx #;(x)

R¹(x, y, t)
Ry #v(x, t)

R¹(x, y, t)
Ry "Pe~1D¹(x,y, t) , (214)

¹(x, y, t"0)"¹
0
(x, y) .

The nondimensionalized mean #ow ;(x) is given by Eq. (213), the nondimensionalized spatio-
temporal energy spectrum of the turbulent shear #ow v(x, t) is given by Eqs. (212a), (212b) and
(212c), and the nondimensionalized correlation function R

w
(t) of the random cross sweep w

f
(t) is an

order unity function. A key observation from this nondimensionalization is that the advective
processes due to both the mean and turbulent components of the #ow are of order unity with
respect to the system macroscales. The Reynolds number enters only in the energy spectrum (212b)
through the nondimensionalized Kolmogorov dissipation scale l

K
and weakly through the non-

dimensional preconstant c
1
. On the other hand, the PeH clet number Pe can often be large in fully

developed #ows, making the molecular contribution formally subdominant (away from bound-
aries) to the turbulent advection in Eq. (214). We know, however, from our discussions in
Sections 2 and 3 that the presence of even a small amount of molecular di!usion can have subtle
e!ects on large-scale passive scalar transport in certain #ow con"gurations.

A key goal of turbulence modelling is obtaining an e!ective equation for the mean concentration
density S¹(x, y, t)T which is at least approximately valid on the system scale. One wishes to account
for the important e!ects which the random #uctuations have on the system scale, without resolving
the #uctuations explicitly in detail. We can make some partial progress toward this end in the
presently stated model, because we can exactly compute the e!ective di!usivity of a single tracer,
de"ned as half the time rate of change of its variance in position (along a given direction). The
e!ective di!usivity in the cross-shear direction is determined by the sweeping (111):

D
x
(t),

1
2
dSp2

X
(t)T

dt
"Pe~1#P

t

0

R
w
(s) ds .
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The e!ective di!usivity along the shearing direction is obtained by simply summing the contribu-
tions of molecular di!usion, the mean shear #ow, and the random shear #ow, taking into account
the cross-shear transport:

D
y
(t),

1
2
dSp2

X
(t)T

dt
"Pe~1#DM

y
(x, t)#DI

y
(t) .

A linear mean shear #ow ;(x)"x contributes a shear-parallel di!usivity [31,258]:

DM
y,-*/

(t)"Pe~1t2#tP
t

0

(t!s)R
w
(s) ds , (215)

whereas a sinusoidal mean shear #ow ;(x)"sin 2px contributes

DM
y,4*/

(x
0
, t)"

1
2P

t

0

e~2p
2p2

X (s)ds!
1
2

(cos 4px
0
)e~2p

2p2
X (t)

]P
t

0

expC!2p2Ap2
X
(s)#4Pe~1s#2P

t

0
P

s

0

R
w
(s@!sA) ds@ dsABDds

!

1
2

(sin2 2px
0
) e~2p

2p2
X (t)P

t

0

e~2p
2p2

X (s)ds , (216)

both of which may be computed by a generalization of the method presented in Section 2.3.1.
Finally, the e!ective di!usion due to the turbulent shear #uctuations (157) is

DI
y
(t)"i#4P

=

0
P

=

0

EI (k, u)KI (k,u, t) dudk ,

KI (k,u, t)"P
t

0

e~2p
2k2p2

X(s)cos(2pus) ds .

(217)

All these e!ective di!usivities are time-dependent and of order unity in units nondimensionalized
to the macroscale. Observe, however, that the di!usivity along a linear mean shear (215) grows
unboundedly in time whereas the di!usivity due to a sinusoidal mean shear (216) saturates to
a "nite positive value for large nondimensional times t<1. The turbulent di!usivity (217) also
saturates to a "nite value for t<1 by virtue of the energy spectrum having a low wavenumber cuto!
at a length scale of order unity in nondimensionalized units; see Eqs. (212a), (212b) and (212c).

It is also important to note that the mean position of a tracer will respond to the presence of
a mean shear. For a linear mean shear #ow,

<
Y
(t),dS>(t)T/dt"x

0
,

whereas for a sinusoidal mean shear #ow,

<
Y
(t),dS>(t)T/dt"sin 2px

0
e~2p

2p2
X (t) .

The mean tracer velocity in this latter cases rapidly decays, and the mean tracer displacement
saturates to a "nite value.

A.J. Majda, P.R. Kramer / Physics Reports 314 (1999) 237}574 383



Now, it may be tempting to formulate an advection}di!usion equation for the mean passive
scalar "eld S¹(x, y, t)T of the form

RS¹(x,y, t)T
Rt #<

Y
(t)
RS¹(x, y, t)T

Ry "D
x
(t)
R2S¹(x,y, t)T

Rx2
#D

y
(x, t)
R2S¹(x,y, t)T

Ry2
,

S¹(x,y, t"0)T"S¹
0
(x, y)T .

Or perhaps one may explicitly retain the mean #ow ;(t) in the advection, and simply include the
turbulent contributions to D

x
(t ) and D

y
(x, t) in the di!usion coe$cients in the PDE. Indeed, we saw

in Section 2 that e!ective equations of this type, with time-independent di!usion coe$cients, do
rigorously describe the e!ective behavior of the mean passive scalar "eld on large scales at long
times for random #ows with short-range correlations. Also, we saw in Section 3.1.2 that the
evolution of the mean statistics were precisely described, even in anomalous di!usion regimes, by
a time-dependent di!usion equation in the Random Sweeping Model.

In the present situation, however, the reasoning leading to such simpli"ed e!ective evolution
equations for the mean statistics S¹(x, y, t)T break down. The key di$culty is that the excited scales
of turbulent motion extend over a continuous range from the small scale l

K
&Re~3@4`IC (where

`ICa denotes intermittency corrections) up to the macroscale of the system. It is on this macroscale
that we wish to pose the e!ective evolution equation, and there is no scale separation between it
and the active scales of the turbulence. This is why homogenization theory cannot be directly
applied. The failure of separation of scales is particularly acute for turbulence spectra with e'2
(which includes the Kolmogorov value e"8/3), because these have very strong long range
correlations and require the presence of the infrared cuto! t

0
( ) ) to keep the energy "nite.

Another delicate issue is that the time scale at which the turbulent di!usivity saturates to its
asymptotic value is comparable to the natural time-scale associated to the macroscale dynamics.
This suggests that any e!ective turbulent di!usivity should generally be expected to be time-
dependent, as in the Random Sweeping Model described in Section 3.1.2. Because of the spatial
variability of the shear interacting with the #uctuating cross-sweep, however, the tracer displace-
ments cannot be expected to obey an approximately Gaussian distribution after order unity times.
A proper e!ective evolution equation for S¹(x,y,t)T therefore need not be a standard di!usion
equation with time-dependent di!usivities.

In e!orts to address the challenge of modelling the large-scale e!ects of turbulence active over
a wide range of scales, a wide variety of renormalized perturbation theories [177,285] involving
partial summation of divergent perturbation series which mimic ideas from "eld theory and
renormalization group (R-N-G) theories [300,286,344] inspired from critical phenomena have
been proposed. We shall now brie#y discuss some rigorous mathematical work concerning e!ective
evolution equations for the mean statistics in a simplifed shear model [10,14] which can be used as
a basis for testing the various renormalized perturbation theories [13,17,300].

3.4.3.3. Renormalized Green's functions for random shear -ows on large scales within inertial
range. Avellaneda and the "rst author considered the problem of computing the large-scale
e!ective turbulent di!usion for a family of random spatio-temporal shear #ows with energy spectra
of the type (206), parametrized by scaling exponents e and z. They found it convenient to
nondimensionalize with respect to the Kolmogorov dissipation length scale ¸

K
and dissipation
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time scale, rather than with respect to the system macroscales as above. In this formulation, the
nondimensionalized value d~1 of the integral length scale ¸

0
of the turbulent velocity "eld diverges

with Reynolds number: d~1&Re3@4`IC. Since the macroscale of the passive scalar "eld naturally
coincides with the macroscale of the velocity "eld in most applications, the (nondimensionalized)
initial data is rescaled along with the integral length of the velocity "eld:

¹(d)
0

(x, y),¹
0
(dx, dy) . (218)

The central goal in turbulent di!usion modelling at high Reynolds number is to obtain an e!ective
description of the evolution of S¹(d)(x,y, t)T on the system macroscale in the dP0 limit, where
¹(d)(x, y, t) is the passive scalar "eld evolving from initial data (218) in a turbulent velocity "eld with
integral length scale d~1.

The "rst issue is "nding the proper space}time rescaling. Clearly, the nondimensionalized space
variable must be rescaled by d, the macroscale of both the velocity "eld and the initial data. But
unlike standard homogenization theory, the proper time rescaling is not necessarily linked to this
spatial rescaling through the usual di!usive relation. Instead, one seeks a more general temporal
rescaling function o(d) for which a "nite and nontrivial limit,

¹M (x, y, t),lim
d?0
T¹(d)A

x
d
,
y
d
,

t
o2(d)BU ,

exists. The usual di!usive rescaling corresponds to o(d)"d. Note that the renormalization di!ers
here from that discussed generally at the beginning of Section 3.4 in that the turbulent velocity "eld
also depends on d, which is equated to its nondimensionalized integral length scale.

Once the proper choice of o(d) is established, one strives to compute the equation satis"ed by
¹M (x, y, t). This may be viewed as a generalized `eddy di!usivitya equation for the high Reynolds
number limit, since the e!ect of all the small scales d[k[1 of the velocity "eld on the macroscale
have been incorporated into an e!ective equation involving only the large scales. To stress that the
equation for ¹M (x, y, t) is not always of the form of a standard di!usion equation, we will refer to it by
the general appellation of `eddy-renormalized equationa. In any event, the fundamental solution to
this eddy-renormalized equation may be identi"ed as the renormalized Green's function.

This program has been rigorously carried out for the spatio-temporal shear #ow models (206),
with zero cross sweep [10] and a constant cross sweep [14]. The e!ects of molecular di!usion are
also taken into account. A variety of possible e!ective equations arise, depending on the para-
meters !R(e(4 and z'0 of the turbulent spatio-temporal energy spectrum, and these can
be described by a phase diagram similar to those displayed in Section 3.3. The rigorous renormaliz-
ation theory for the case of no cross sweep (w(t)"0) involves "ve distinct phase regions in the e, z
plane. To each phase region corresponds a temporal rescaling function o(d)"df with a distinctive
algebraic law for the exponent f in terms of e and z, and an eddy-renormalized equation for the
mean passive scalar density. It is readily checked that the renormalized mean-square tracer
displacement

S>M 2(t)T"lim
d?0

d~2TA>dA
t

o2(d)BB
2

U ,
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scales as t1@f. Therefore, as in Section 3.3, the exponent f may be viewed as an order parameter
describing `phase transitionsa across the boundaries of the phase regions. The e!ective equation within
each phase region has a distinctive form, though the coe$cients within each region depend smoothly on
the parameters e and z. We will simply sketch the main qualitative points, and later, in Section 3.5.4,
illustrate the renormalization procedure itself in the simpler context of the pair distance function.

One phase region in the phase diagram for the renormalized mean passive scalar density
corresponds to a situation in which ordinary homogenization theory applies: o(d)"d, the eddy-
renormalized di!usivity equation for ¹M (x, y, t) is an ordinary di!usion equation with a constant,
turbulence-enhanced di!usion coe$cient (166a), and the renormalized Green's function is Gaus-
sian. This is exactly the region D of Fig. 14 in which the long-range correlations of the velocity "eld
are not strong enough to create anomalous behavior. Note in particular that this di!usive regime
lies exclusively outside the parameter range 2(e(4 corresponding to velocity "elds with
a physical-space inertial scaling range.

All the other phase regions support superdi!usion of the passive scalar "eld (f(1). One of the
phase regions for the renormalized mean passive scalar "eld coincides exactly with the SD-i phase
region of Fig. 14. The renormalized Green's function for this region is exactly the one discussed for
a steady random shear #ow with 0(e(2 in Paragraph 3.4.1.2. Indeed, the decorrelation of
shear-parallel transport is set in the SD-i region by molecular di!usion, and the role of temporal
#uctuations in the shear #ow plays a negligible role at large space and time scales. It is therefore not
surprising that the eddy-renormalized equation coincides over this whole region with that for the
steady case. The eddy-renormalized equation corresponding to this non-Gaussian renormalized
Green's function is nonlocal. The presence of the infrared cuto! t

0
plays no role in the renormaliz-

ation for the SD-i phase region, and does not appear in the eddy-renormalized equation.
The situation is a bit more subtle for the other three superdi!usive phase regions. The

eddy-renormalized equations for these regions take the form of di!usion equations with constant
or time-dependent di!usion coe$cients. The presence of molecular di!usion is irrelevant on
the large scales for all three of these regions. At the boundaries between the phase regions,
the eddy-renormalized equation takes special forms which cross over between those on each side of
the boundary. It is very interesting that the analogue of the Kolmogorov spectrum in the shear
model occurs at the point e"8/3, z"2/3, which lies on the boundary between two of the
superdi!usive regimes. In one of these regimes, the Eulerian temporal decorrelation of the velocity
"eld is the dominant in#uence on the large-scale, long-time tracer transport, and the superdi!usive-
ly renormalized Green's function satis"es an e!ective di!usion equation with di!usion coe$cient
given by a Kubo formula; see Section 2.4.1. The point (e, z)"(8/3, 1) corresponding to the
alternative sweeping temporal decorrelation hypothesis falls in this Kubo region. In the other
superdi!usive regime adjacent to the Kolmogorov point (e, z)"(8/3, 2/3), the temporal dynamics of
the velocity "eld are by contrast completely irrelevant in determining the large-scale, long-time
motion of the tracer. This is the regime corresponding to an energy spectrum with intermittency
corrections reducing the value of e (this matches the conventional wisdom for the sign of
intermittency corrections, if they exist [34]). More generally, we see that the renormalized mean
passive scalar statistics in the RSTS-I Model are very sensitive to intermittency corrections of the
Kolmogorov theory. In [15], it was rigorously shown that these features of the phase diagram for
the renormalized Green's function near the Kolmogorov point carry over rigorously to random,
isotropic turbulent #ows with spatio-temporal energy spectrum (206).
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Note that there is no contradiction in the fact that the renormalized Green's function in the
superdi!usive `Kuboa regime is described by an ordinary di!usion equation. The reason for the
di!erence between the superdi!usive space}time scaling relations of the renormalization group and
the di!usive space}time scaling of the renormalized equation can be traced to the linking of the
infrared cuto! t

0
(dk) de"ning the energy spectrum with the observation scale d~1. This infrared

cuto! breaks the symmetry of the renormalized equations with respect to the renormalization
group of scalings [10]. The sensitivity of the large-scale behavior of the mean passive scalar density
to the infrared cuto! is consistent with the well-known fact that the mean passive scalar statistics
are strongly in#uenced by the large scales of a turbulent velocity "eld [196]. For an explicit
numerical demonstration in a simple context, the reader may consult [141]. Only second order
statistical quantities, such as the `pair distance functiona which involve relative di!usion of a pair
of tracers, can be expected to exhibit universal behavior which is independent of the details of the
large scales. We discuss this issue in greater length in Section 3.5.

The presence of the infrared cuto! in Eqs. (206a), (206b) and (206c) also leads to a departure of
the renormalized phase diagram from that presented in Fig. 14 for the mean-square tracer
displacement in a random shear #ow with no infrared cuto! in the spatio-temporal energy
spectrum. Namely, the SD-u region of Fig. 14 does not renormalize as a single unit with the
temporal rescaling o(d)&dz@(e`2z~2). This choice of temporal rescaling leads to a proper high
Reynolds number renormalization only for part of the SD-u region; the rest falls within another
phase region (corresponding to the Kubo-like regime) with a distinct temporal rescaling law and
sensitive dependence of the renormalized equation on the infrared cuto!.

The e!ects of the addition of a constant cross sweep to the random spatio-temporal turbulent
shear #ow (206) are considered in [14]. The renormalization phase diagram is altered in some ways;
in particular the phase region corresponding to a nonlocal eddy-renormalized equation is elimi-
nated. The renormalization is una!ected by the constant cross sweep in the vicinity of the
Kolmogorov point (e"8/3, z"2/3). The eddy-renormalized equations are also shown in [14] to
hold without change for a variety of random shear velocity models with energy spectra (206) but
non-Gaussian statistics.

The rigorous renormalization theory for the simple shear model [10,14] has been used by
Avellaneda and the "rst author as an unambiguous means of assessing the performance of a variety
of R-N-G methods and renormalized perturbation theories for predicting eddy di!usivity
[13,17,300]. We summarize some of these "ndings in Section 7.

3.4.4. Comment on the eddy diwusivity modelling at xnite times
In our above discussion concerning the mean passive scalar density, we have focused on the

behavior at large scales and long times, which is usually of the main practical interest. There is,
however, still an important practical concern regarding the transient period of adjustment to
long-time asymptotic behavior, both for observations and for numerical simulations. In particular,
if the numerical simulation of the tracer dynamics becomes unstable or inaccurate during any
phase of the evolution, a substantial error may be incurred which permanently contaminates
results at large times, even if the numerics are well behaved in the large-time asymptotic regime. We
point out here some simple, explicit examples in which the tracer exhibits an e!ective negative
di!usivity over some "nite interval of time, but eventually settles down to a positive di!usivity at
long times. As it is quite di$cult for numerical Monte Carlo schemes (see Section 6) to simulate
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periods of negative di!usion accurately, one must be on the alert for such a contingency. The
appearance of an e!ective negative di!usivity is not a pathological feature of our mathematical
models; Taylor [317] recognized such a phenomenon in chimney smoke experiments by
Richardson [283] in 1920.

As was pointed out in [18], negative di!usivity can already be observed in the extremely simple
Random Sweeping Model described in Section 3.1.2. Recall that the velocity "eld is de"ned to be
spatially uniform and directed always along a single direction:

*(x, y, t)"C
w

f
(t)

0 D ,

with w
f
(t) #uctuating in time according to a Gaussian, mean zero, stationary stochastic process.

The correlation function of the sweeping "eld is de"ned:

R
w
(t),Sw

f
(t@)w

f
(t#t@)T .

The tracer displacement is at all times a Gaussian random variable, and it can therefore be
shown [18] that the mean tracer concentration density S¹(x, t)T obeys an exact PDE of di!usive
type:

RS¹(x,y, t)T/Rt"iDS¹(x, y, t)T#D
wf

(t)
R2S¹(x, y, t)T

Rx2
,

S¹(x,y, t"0)T"S¹
0
(x, y)T .

(219)

The e!ect of the random #uctuations is to augment the di!usivity along the sweeping direction
x above its bare molecular value i by the time-dependent quantity:

D
wf

(t),P
t

0

R
w
(s) ds . (220)

At large times, the enhanced di!usivity D
wf

(t) must be nonnegative, but there may well be "nite
intervals of time over which it is negative. Explicit examples may be found by de"ning the velocity
"eld w

f
(t) through statistically homogenous solutions to a damped and stochastically driven

harmonic oscillator problem [18]:

d(dw
f
(t)/dt)#2adw

f
(t)#u2

0
w
f
(t) dt"Ad=(t) , (221)

where u
0
'0 describes the sti!ness of the oscillator, a'0 describes the damping, and d=(t) is

white noise. For the underdamped range of parameters, u
0
'a, the correlation function has

oscillations:

R
w
(t)"(A2/4au2

0
)e~a@t@[cos(u

1
t)#(a/u

1
)sin(u

1
DtD)] ,

where u
1
"Ju2

0
!a2. The criterion for D

wf
(t) (220) to be always nonnegative may be shown [141]

to be exactly equivalent to the inequality u2
0
4C

I
a2, where C

I
is a numerical constant which may

be computed to be approximately 27.197. Therefore, for su$ciently strong restoring forces on the
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oscillations driving the random sweeping (u2
0
/a2'C

I
) and su$ciently small i, there are "nite

intervals of time over which

i#D
wf

(t)(0 ,

and the PDE (219) for the mean passive scalar density is ill-posed.
This fact is not of great concern within the Random Sweeping Model itself, because its simplicity

permits the mean statistics S¹(x,y, t)T to be unambiguously represented in closed form [18], and
there is no need to actually solve (219). But the potential for ill-posed behavior does raise practical
concerns for numerical simulations in more complex #ows where no exact solution is available.
When the e!ective di!usivity becomes negative, approximate PDEs for the mean statistics cannot
be numerically integrated by ordinary means, and the numerical simulation of even the mean-
square displacement of a tracer faces severe di$culties [140].

An example with nontrivial spatial variations which exhibits ill-posed behavior for the mean
passive scalar density can be constructed for the Random Steady Shear (RSS) Model with constant,
nonzero cross sweep:

*(x, y, t)"C
wN

v(x)D .

The mean passive scalar density in such a #ow can be shown to obey a time-dependent di!usion
equation of the same form as Eq. (219), except that the time-dependent di!usivity enhancement is
in the shearing direction y, and is expressed as

D(t)"P
t

0

R(wN s) ds ,

where R(x) is the correlation function of the Gaussian, homogenous, random shear #ow v(x). For
a random shear #ow v(x) generated as the homogenous solution of a stochastically damped and
driven harmonic oscillator (221) (but with spatial rather than temporal variations), it has been
similarly shown that for su$ciently strong restoring forces u2

0
/a2'C

I
+27.197 and su$ciently

small molecular di!usivity i, the PDE for the mean tracer density S¹(x,y, t)T is ill-posed over some
"nite interval of time [141]. In particular, negative di!usion over "nite time intervals arises in the
degenerate limiting case, studied by GuK ven and Molz [131], in which the random shear #ow v(x) is
an undamped periodic oscillation with random phase and the molecular di!usion i is su$ciently
small.

3.5. Pair-distance function and fractal dimension of scalar interfaces

A common theme in the various shear #ow examples which have been presented is that the
motion of a single tracer is determined to a great extent by the details of the large-scale features of
the velocity "eld. This is particularly true for random velocity "elds with long-range correlations
characteristic of fully developed turbulence (such as the 2(e(4 simple shear models), in which
the energy is concentrated at small wavenumbers. In practical situations, this means that the
motion of a tracer, and therefore the evolution of the ensemble-averaged mean passive scalar
concentration, in a turbulent environment depends strongly on the geometry and the details of the
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large-scale stirring. Therefore, there can be no single law describing the behavior of a tracer's
position in an arbitrary turbulent system.

The situation can be quite di!erent for the separation between a pair of tracers in a fully
developed turbulent #ow with a wide inertial range. The rate of separation between a pair of tracers
is not governed by the typical velocity of the #ow, but by the di+erence between the velocity at the
two tracer locations. Therefore, a turbulent eddy with large size relative to the separation between
the two tracers will sweep them both with roughly the same velocity, and contribute to their relative
motion only through its velocity gradient (primarily the strain component). Recall that in the
Kolmogorov picture, the root mean square velocity of a turbulent eddy of length scale ¸ in
the inertial range scales as ¸1@3. Therefore, an inertial range eddy of size ¸ large compared to the
separation l of a tracer pair will contribute to the absolute motion of either of them (or their center
of mass) in proportion to ¸1@3, but will contribute to their relative motion in proportion to
¸1@3(l/¸)&l¸~2@3. Consequently, large-scale eddies are seen to dominate the absolute motion of
a tracer, but to contribute little to their relative motion (separation). In other words, the process of
separation of a tracer pair can be expected to be insensitive to large-scale details so long as the
separation remains small compared to the system size.

By noting that inertial-range eddies on scales small compared to the distance between the
tracers contribute their full velocity to the relative tracer motion, we arrive at the follow-
ing heuristic principle: When the tracer pair separation lies within the inertial range of scales of
a fully developed turbulent #ow, its evolution should be primarily governed by inertial-range
eddies of size comparable to the momentary separation. As we have discussed in Section 3.4.3, the
statistics of a turbulent velocity "eld well within the inertial range of scales is thought to have
a number of universal properties which are independent of many of the details of the physical
system. Combining the previous two statements, we see that the separation l(t) between a pair of
tracers may obey universal laws as it evolves through the inertial range of scales. The most famous
proposed universal relation of this type is Richardson's law [252,253,284] Sl2(t)T&t3, which has
been observed in a wide variety of laboratory experiments [248,258,261,315] and numerical
simulations using synthetic turbulent velocity "elds (see Section 6 of this review and
[86,109,291,351]). Like the Kolmogorov theory of turbulence, universal inertial-range theories for
turbulent di!usion in multidimensional velocity "elds with realistic spatio-temporal structure are
based on extra physical assumptions which do not follow directly from the advection}di!usion
equation.

As we have seen in Sections 3.2, 3.3 and 3.4, many mechanisms and subtleties of turbulent
di!usion can be explored in a clear and unambiguous fashion in shear #ows. Here, we will
mathematically investigate universal inertial-range aspects of turbulent di!usion in shear #ows,
using the family of models with reasonably realistic spatio-temporal energy spectra introduced in
Paragraph 3.4.3.2. For simplicity in exposition, we will not consider any active cross-shear
transport processes, so the only decorrelation of the Lagrangian tracer motion is due to the
temporal #uctuations of the random shear #ow itself. It is consequently a little more direct to work
here with the spectral temporal correlation function Ex (k, t) de"ned earlier in Eq. (158) instead
of the spatio-temporal energy spectrum EI (k, u). The function Ex (k, t) describes the temporal cor-
relation structure of the shear modes of wavenumber k, and is related to the physical-space
correlation function RI (x, t) and the spatio-temporal correlation function EI (k,u) through the
Fourier transform relations (158).
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The representation of the RSTS-I Model (206) in terms of Ex (k, t) reads

RI (x, t)"P
=

~=

Ex (DkD, t)e2p*kxdk"2P
=

0

Ex (k, t)cos(2pkx) dk , (222a)

Ex (k, t)"E(DkD)/K (t/q(DkD)) , (222b)

E(k)"A
E
k~1~2Ht

0
(k¸

0
)t

=
(k¸

K
) , (222c)

q(k)"Aqk~z , (222d)

where /K (u) is just the Fourier transform of /(-) in Eqs. (206a), (206b) and (206c). We have collected
the various constant prefactors into the single coe$cient A

E
. The cuto! functions t

0
and t along

with /K are smooth functions on the positive real axis with the assumed technical properties listed
under (200). The exponent H characterizing the inertial-range scaling exponent of the energy
spectrum is formally related to the infrared scaling exponent e used in the RSTS Model in
Section 3.3 by H"(e!2)/2. The appropriate parameter range for which a universal scaling range
arises in real space is 0(H(1, or 2(e(4. The value with H"1/3 (and z"2/3) corresponds to
Kolmogorov-type statistics. It is easily checked that the heuristic considerations suggesting
universal inertial-range behavior for pair separation formally apply throughout the range
0(H(1. By `universal inertial-range behaviora in the context of this family of mathematical
models for turbulence, we mean statistical behavior which depends only on parameters describing
the inertial range (A

E
, e, and z), but not on viscous-scale or large-scale properties (¸

0
, ¸

K
, t

0
, t

=
).

We also by no means imply that these laws are universal with respect to #ow geometry; the
anisotropic geometry of the shear #ow can of course lead to departures in the speci"c appearance of
certain laws from their formulation for statistically isotropic #ows. For example, the mean-square
pair separation will be found in Paragraph 3.5.2.1 to grow in the inertial range according to
a power law with exponent di!erent from that appearing in Richardson's t3 law for isotropic
turbulence, even for Kolmogorov values of the exponents H"1/3 and z"2/3. We will return to
Richardson's t3 law later when we discuss an exactly solvable statistically isotropic mathematical
model (Paragraph 4.2.2.4) and numerical methods for accurately simulating tracer pair dispersion
over a wide inertial range in a synthetic statistically isotropic turbulent #ow (Section 6.5).

Our present study of pair separation in the simple shear model begins in Section 3.5.1 with
a derivation of an exact solution for the PDF (probability distribution function) of the separation
between a pair of tracers in a shear #ow with arbitrary spatio-temporal statistics, in the absence of
molecular di!usion (i"0). This PDF of the separation will be called the pair-distance function,
a term introduced by Richardson in his pioneering work on relative di!usion [284]. We show that
the pair-distance function satis"es a linear PDE of di!usive type, and indicate an explicit example
in which the di!usion coe$cient is negative over some "nite time interval, leading to ill-posedness
[141]. We then specialize in Section 3.5.2 to the Random Spatio-Temporal Shear Models with
Inertial Range (RSTS-I) introduced in Section 3.4.3, and show that the pair-distance function has
an explicit, universal form on scales well within the inertial range.

We then subsequently utilize the formula for the pair-distance function to study the properties of
the boundary of a region marked by a passive scalar quantity as it evolves in an RSTS-I #ow in the
absence of molecular di!usion i"0. Of particular natural and engineering interest [199,305,339]
is the turbulent wrinkling of the interface between the scalar-occupied and the scalar-free region.
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The notion of fractal dimension [215] provides a useful measure of the geometric convolution of
a surface with scale invariance, such as the scalar interface in the inertial range of scales. By
combining the explicit formula for the pair-distance function with a mathematical theorem of Orey
[259] concerning the fractal dimension of the graph of a Gaussian random process, we compute in
Section 3.5.3 the local fractal dimension of the scalar interface in the RSTS-I model within the
inertial range of scales. There is also a distinct global fractal dimension describing the roughness of
the passive scalar level set above some time-dependent length scale determined by the rate of
temporal decorrelations of the shear #ow. We next study fully scale-invariant properties of the
pair-distance function which emerge after an isotropic renormalization to large space and time
scales within the inertial range. The fractal dimensions which emerge from the isotropically
renormalized passive scalar "eld are in quite good agreement with experimentally observed fractal
dimensions of interfaces in a variety of turbulent systems [305]. We conclude in Section 3.5.5 by
posing the open problem of including the e!ects of molecular di!usion i'0 on the pair-distance
function and the fractal dimension of scalar interfaces in the RSTS-I Model. Unambiguous results
along these lines could provide useful insights concerning general mathematical and physical
theories for fractal dimensions of interfaces in turbulent #ows [74,75,128,132,310].

3.5.1. Pair-distance function in shear -ow
The pair-distance function is de"ned for our purposes to be the PDF for the separation between

a pair of tracers, given a certain initial separation. We will specialize the notation for convenience in
our study of pair dispersion in a two-dimensional shear #ow with constant cross sweep:

*(x, y, t)"C
wN

v(x, t)D . (223)

Here v(x, t) is a homogenous, Gaussian, mean zero random "eld with correlation function

Sv(x@, t@)v(x#x@, t#t@)T"RI (x, t) ,

and wN is a deterministic constant (which may be zero). Within Section 3.5.1, we do not specify
a particular model for RI (x, t).

Consider two tracers released at the points (x@
0
, 0) and (x

0
#x@

0
, 0) in the random shear #ow (223),

with no molecular di!usion (i"0). Let>
x@

0
(t) and>

x0`x@
0
(t) denote their y positions at time t. Then

we de"ne the pair-distance function Q(t)(yDx
0
) as the probability density function satisfying

P
y`

y~

Q(t)(yDx
0
) dy"ProbMy

~
4>

x0`x@
0
(t)!>

x@
0
(t)4y

`
N (224)

for all y
~
(y

`
. In words, then, Q(t)(yDx

0
) gives the probability density that two tracers with initial

shear-transverse separation x
0

will have developed a relative shear-parallel displacement of y at
time t.

A few comments on this de"nition are in order. First, by statistical homogeneity, the statistics of
pair separation depends only on the relative position of the tracers, and are therefore independent
of x@

0
. Furthermore, the constancy of the cross-shear velocity preserves the shear-transverse

separation x
0

of the tracers, so there is no need to separately account for the shear-transverse
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separation at later times in the pair-distance function. Since there is no variation of the #ow along
the y direction, there is no loss in taking both tracers to start at y"0; the PDF for pair separation
starting from arbitrary locations (x@

0
, y@

0
) and (x@

0
#x

0
, y@

0
#y

0
) is obtained straightforwardly from

the PDF Q(t)(yDx
0
) de"ned for y@

0
"y

0
"0. Finally, we note that Richardson's original de"nition

[284] of the pair-distance function is more general in a literal sense, but equivalent in essence to the
simpler de"nition used here.

We will now proceed to give an exact formula for the pair-distance function in a general shear
#ow with constant cross sweep (223). The relative shear-parallel separation is given by the explicit
formula (see Eqs. (110a) and (110b))

>
x0`x@

0
(t)!>

x@
0
(t)"P

t

0

(v(x
0
#x@

0
#wN s, s)!v(x@

0
#wN s, s)) ds . (225)

This expression is an integral over a Gaussian random "eld, and thus a Gaussian random variable.
Since Q(t)(yDx

0
) is the probability density for the random variable (225), it is completely determined

by the mean and variance of the relative displacement. Since v has mean zero, it is easy to see that

S>
x0`x@

0
(t)!>

x@
0
(t)T"0 . (226)

The variance of the shear-parallel separation can be computed as an integral of the velocity
correlation function:

p2DY
(tDx

0
),S(>

x0`x@
0
(t)!>

x@
0
(t))2T"P

t

0
P

t

0

S(v(x
0
#x@

0
#wN s, s)!v(x@

0
#wN s, s))

]S(v(x
0
#x@

0
#wN s@, s@)!v(x@

0
#wN s@, s@))Tdsds@ (227)

"P
t

0
P

t

0

[2R(wN (s!s@), s!s@)!R(!x
0
#wN (s!s@), s!s@)

!R(x
0
#wN (s!s@), s!s@)] dsds@ . (228)

Then the pair-distance function can then be expressed as the following Gaussian:

Q(t)(yDx
0
)"

exp[!y2/(2p2DY
(tDx

0
))]

J2pp2DY
(tDx

0
)

. (229)

It is instructive to note that Q(t)(yDx
0
) satis"es a di!usion PDE:

RQ(t)(yDx
0
)

Rt "DD(x0
, t)
R2Q(t)(yDx

0
)

Ry2
,

Q(0)(yDx
0
)"d(y) .

(230)

The initial condition comes from the fact that at time t"0, the tracers have a deterministically
zero displacement. The time-dependent di!usion coe$cient D(x, t) is obtained by di!erentiating
Eq. (227):

DD(x0
, t),1

2
Rp2DY

(tDx
0
)/Rt . (231)
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A simple way to derive the di!usion equation (230) is to compute the characteristic function of
Eq. (225), which is just the Fourier transform of the pair-distance function:

QK (t)(kDx
0
),Sexp(2pik(>(x#x@, t)!>(x@, t)))T"exp(!2p2k2p2DY

(tDx
0
)) , (232)

and to note that it satis"es the Fourier transform of Eq. (230).

3.5.1.1. Possible ill-posedness of pair-distance PDE. While the pair-distance function has been
shown to always obey a fairly simple, time-dependent di!usion equation, the PDE (230) is not
necessarily well-posed. It is shown in [141] that for the case of a steady shear #ow (v(x, t)"v(x) and
RI (x, t)"R(x)), this PDE is well-posed for all time t'0 and initial separations x

0
if and only if one

of the following two conditions holds:

f there is no cross sweep wN "0, or
f the velocity correlation function R(x) is a nonincreasing function of x on 0(x(R.

If both of these conditions are violated, then the formal di!usion coe$cient DD(tDx0
) is negative for

some values of x
0

and t, leading to an ill-posed problem for Q(t)(yDx
0
).

Explicit examples of a random shear velocity "elds giving rise to ill-posedness for the pair-
distance function may be found within the class of statistically homogenous solutions to a damped
and stochastically driven harmonic oscillator problem [141]:

d(dv(x)/dx)#2adv(x)#k2
0
v(x) dx"Ad=(x) ,

where k
0
'0 describes the sti!ness of the oscillator, a'0 describes the damping, A'0 is the

driving amplitude, and d=(x) is white noise. We introduced this stochastic model before in
Section 3.4.4. For the underdamped range of parameters, k

0
'a, the correlation function has

oscillations:

R(x)"(A2/4ak2
0
)e~a@x@[cos(k

1
x)#(a/k

1
)sin(k

1
DxD)] ,

with k
1
"Jk2

0
!a2. Thus by the general fact quoted above from [141], the formal di!usion

coe$cient DD(x0
, t) is negative over some range of values of x

0
and t whenever the oscillations

exceed the damping. Note that DD(x0
, t) is just half the rate of the mean-square shear-parallel tracer

separation; its negativity implies time intervals over which the tracers are actually decreasing their
separation on average.

Of course, for the present model we have an exact expression (229) for the pair-distance function
so the ill-posedness of the PDE (230) does not thwart our analytical progress here. The potential for
ill-posed behavior of the relative tracer displacement, as explicitly demonstrated in our simple
model, however does raise practical concerns for numerical integration of tracer trajectories in
more complex #ows where no exact solution is available [140].

3.5.2. Inertial range behavior of the pair-distance function in the simple shear model
We will now study the pair-distance function in detail when the random shear #ow is an RSTS
#ow with an inertial range and no cross sweep (w(t)"0).
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Substituting the expression (222) for the spatio-temporal correlation function of this velocity
"eld into the general formula for the mean-square shear-parallel separation (227) with wN "0, we
have

p2DY
(tDx

0
)"P

t

0
P

t

0
P

=

~=

2(1! cos (2nkx
0
))E(DkD)/K A

s!s@
q(DkD) Bdkdsds@

"4t2P
=

0

(1! cos (2nkx
0
))E(k)U(t/q(k)) dk

"4t2P
=

0

(1! cos (2nkx))A
E
k~1~2Ht

0
(k¸

0
)t

=
(k¸

K
)U(tA~1q kz) dk . (233)

We have de"ned

U(u)"
2
u2P

u

0

(u!u@)/K (u@) du@ (234)

and used a change of variables to re-express the double time integral in the second equality above.
We collect here some basic properties of U which will be useful in our later analysis of p2DY

(tDx
0
):

U(0)"1 , (235a)

lim
u?=

U(u)&/(0)u~1 , (235b)

DU(u)D4CU/(1#DuD) , (235c)

where CU is some "nite positive constant. These results follow from the Fourier relation between
/K (u) and /(-), and the assumed properties of /(-) stated near Eq. (156).

It is instructive at this point to compare and contrast the formulas we have developed for the
mean-square relative displacement p2DY

(tDx
0
) between a pair of tracers and the mean-square absolute

displacement p2
Y
(t) of a single tracer along the shear. We represent the latter using formula (159) for

the special case in which there is no cross-shear transport and Ex (k, t) is given by Eq. (222b):

p2
Y
(t)"2t2P

=

0

A
E
k~1~2Ht

0
(k¸

0
)t

=
(k¸

K
)U(tA~1q kz) dk . (236)

The formulas for the absolute and relative tracer displacements di!er in only two regards:
a multiplicative factor of 2, and the appearance of a factor (1! cos 2nkx

0
) in the integrand for

p2DY
(tDx

0
). The prefactor of 2 simply re#ects the fact that the mean-square relative distance between

two tracers undergoing some independent statistical motion will simply be the sum of their
individual absolute mean-square displacements. There is, however, a de"nite coupling between the
motion of two tracers in our model due to the spatial correlations of the shear #ow. The e!ects of
this coupling are completely contained in the factor (1! cos 2nkx

0
).

For k;1/x
0
, this factor is small (O((kx

0
)2)), re#ecting the fact that the motion of two tracers due

to a shear mode with wavenumber k is highly correlated when their cross-shear separation x
0

is
much less than the wavelength k~1. Their relative velocity is on the order of their cross-shear
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separation x
0

multiplied by the gradient of the shear mode, which is proportional to k times the
root-mean-square velocity of the shear mode. The rate of relative mean-square separation due to
a shear mode of wavenumber k;1/x

0
is thus depressed by a factor of (kx

0
)2 from the absolute

mean-square displacement of either tracer. The exact formula (233) for p2DY
(tDx

0
) thereby explicitly

manifests the general principle that the low wavenumber modes contribute weakly to the process of
tracer separation on small scales (see our discussion at the beginning of Section 3.5).

For shear modes with high wavenumbers k<1/x
0
, the spatial correlation factor 1! cos 2nkx

0
is generally of order unity. The e!ect of the cosine becomes negligible when integrated over
a su$ciently wide band of wavenumbers k, due to incoherent phase cancellation. Therefore, any
wide band of random shear modes with wavenumbers k<1/x

0
contribute essentially independent-

ly to the motion of each tracer in a pair with cross-shear separation x
0
.

We now proceed to study the inertial-range behavior of p2DY
(tDx

0
) for the parameter range

0(H(1. By this we mean that the (constant) shear-transverse separation satis"es ¸
K
;x

0
;¸

0
;

the shear-parallel separation has no in#uence on the tracer dynamics in our shear #ow model. We
may straightforwardly take the asymptotic inertial-range limit in Eq. (233), and the integral scale
and dissipation scale cuto!s disappear:

p2DY,I
(tDx

0
), lim

x0@LK?=,x0@L0?0

p2DY
(tDx

0
)"4t2P

=

0

(1! cos (2nkx
0
))A

E
k~1~2HU(tA~1q kz) dk . (237)

This is mathematically justi"ed by the dominated convergence theorem after a rescaling of the
integration variable q"kx

0
, owing to the boundedness of the function U and the integrability of

the function (1! cos 2nq)q~1~2H over q3[0,R). Therefore, we have expressed the relative
mean-square displacement of tracers on scales within the inertial range purely in terms of inertial
range quantities; there is no dependence on either the integral or dissipation length scales. The
same is true for the full pair-distance function Q(t)

I
(yDx

0
) for inertial-range separations of x

0
, since it

is determined entirely by p2DY,I
(tDx

0
) (see (229)). The pair-distance function is therefore truly universal

in the inertial range of scales in the RSTS-I Model.
In contrast, we remark that the mean-square absolute displacement of a single tracer p2

Y
(t)

depends vitally on the factor t
0
(k¸

0
). Taking ¸

0
PR in Eq. (236) would give an in"nite value for

p2
Y
(t), simply because the total energy of the shear #ow would become in"nite. Energy spectra with

inertial ranges (0(H(1) are therefore said to manifest an infrared divergence. A direct conse-
quence is that the motion of a single tracer in a turbulent #ow is strongly sensitive to the large-scale
structure of the #ow. The reason that the relative tracer displacement has a "nite inertial-range
limit, notwithstanding the infrared divergent energy spectrum, is that low wavenumber shear
modes contribute quite weakly to the separation process due to their small gradients. Mathemat-
ically, this is manifested by the factor (1! cos (2nkx

0
)) in Eq. (233), which contributes a factor k2 to

tame the infrared divergence k~1~2H at small k.
The ability to remove the Kolmogorov dissipation length cuto! t(k¸

K
) from Eq. (233) is less

subtle; it is simply a consequence of the `ultraviolet convergencea of energy spectra with inertial
range.

The heuristic component of our above discussion concerning absolute and relative tracer motion
in a high Reynolds number shear #ow can be generalized through similar scaling arguments to
isotropic turbulence. The exact mathematical formulas, however, are special to shear #ows. These
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Table 10
Long-time asymptotics of mean-square relative tracer displacement along the shear within Inertial Range of Random
Spatio-Temporal Shear Model. Scaling coe$cients are given by Eq. (238)

Parameter regime Asymptotic mean square Phase region
displacement lim

t?=
p2DY,I

(tDx
0
)

z50
0(H(

2!z

2
2KI HD Dx

0
D2H`zt R-1

z50 2!z

2
(H(1

z

z#H!1
KI A

DDx0
D2t2(z`H~1)@z R-2

permit us to examine various aspects pertaining to tracer dynamics within the inertial range of
scales in much more detail than is generally possible, as will be shown in what follows.

3.5.2.1. Evolution of relative separation between a xxed pair of tracers. The long-time asymptotics
of the mean-square shear-parallel tracer pair separation p2DY

(t) are described in Table 10, with
scaling coe$cients

KI HD"2P
=

0

(1!cos (2nkx
0
))/(0)A

E
Aqk~1~2H~zdk"2n2H`z`1@2

!C(!H!z/2)
C(H#(z#1)/2)

AqAE
/(0) ,

(238a)

KI A
D"

8n2(z#H!1)
z2

A
E
A(2~2H)@zq P

=

0

u(2~2H~z)@zU(u) du . (238b)

These results are very similar to those found for the mean-square shear-parallel displacement of
a single tracer in an RSTS #ow with no cross shear transport (Section 3.3.1), and the method of
derivation is very similar. One only needs to account for the extra factor (1! cos 2nkx

0
), and we

remark only on the changes this produces.
First of all, the integrand for the long time relative di!usivity (238a) in the linear growth regime

(R-1 in Fig. 17) is peaked at k&x~1
0

, rather than at the lowest wavenumbers where energy is
concentrated. This re#ects the idea discussed at the beginning of Section 3.5 that relative di!usion
is driven primarily by velocity #uctuations (eddies) with wavelength comparable to the current
tracer separation. This notion, however, is violated in the present model when the correlation time
diverges su$ciently rapidly at low wavenumber, in which case the long-time relative di!usion is
driven at a superlinear rate by these slow, low wavenumber shear modes (regime R-2 in Fig. 17).
Care is therefore required in analyzing this regime at long times and large but "nite integral length
scales ¸

0
; the limits tPR and ¸

0
PR do not commute. In our present discussion, we are always

assuming that ¸
0

is extremely large so that the limit ¸
0
PR is appropriately taken "rst.

Note that when the temporal correlation times of the shear modes are chosen as the natural
eddy turnover times so that z"1!H (see Eq. (211a)), the relative di!usion is always linear and
driven primarily by modes of wavenumber k&x~1

0
. This includes the Kolmogorov values
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Fig. 17. Phase diagram for long-time asymptotics of p2DY
(t) in Random Spatio-Temporal Shear Model with Inertial

Range, no cross shear transport. This phase diagram also applies to the local fractal dimension of level sets of ¹(x,y, t)
(see Paragraph 3.5.3.2).

H"1/3, z"2/3. These results for the Random Spatio-Temporal Shear Model contrast strongly
with Richardson's law predicting a t3 growth of p2DY

(t) for relative di!usion through the inertial
range of scales in isotropic turbulence. The shear geometry destroys a fundamental premise in the
similarity argument [252,253] behind Richardson's law: the initial pair separation x

0
is never

forgotten because the shear turbulence does not act along the x direction. Therefore, the most
relevant turbulent eddies driving the separation of the tracer pair are those with wavelengths
comparable to the initial separation x

0
, rather than to the current separation scale.

3.5.3. Fractal dimension of scalar interfaces
In this subsection, we will apply the exact formulas for the pair-distance function which we

worked out in Sections 3.5.1 and 3.5.2 to provide a measure of smoothness of level sets of the
passive scalar density ¹(x, y, t). This is of practical importance in determining mixing rates.
Consider "rst two initially distinguishable #uids, such as a salty #uid and a freshwater #uid, a dyed
#uid and an undyed #uid, or a warm #uid and a cold #uid which are brought together to mix. If
e!ects such as buoyancy and chemical reactions between the #uids can be neglected, then the
evolution of the #uid mixture may be expressed in terms of a passive scalar "eld ¹(x, y, t) which
re#ects the local concentration density of one #uid or the other. For example, in the above-
mentioned examples, ¹(x, y, t) could be chosen as salinity, dye concentration, and temperature,
respectively. After a suitable rescaling and translation of physical units, one may characterize the
initial state of the passive scalar "eld by ¹

0
(x, y),1 in the region occupied by the "rst #uid,

¹
0
(x, y),0 in the region occupied by the second #uid, and ¹

0
(x, y),1

2
at the initial interface. If we

neglect molecular di!usion for the moment, then the passive scalar concentration density is
unchanged along Lagrangian trajectories, so the #uid is characterized thereafter by mobile regions
where ¹(x, y, t),1 and ¹(x, y, t),0 separated by the level set ¹(x, y, t)"1

2
demarcating the

evolving interface between the two #uids. The action of molecular di!usion will smooth the
variation of ¹(x, y, t) across the #uid interface, but it is readily seen that the level set ¹(x, y, t)"1

2
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still provides a good representation for the location of the interface between the #uids where mixing
is occurring, particularly when the PeH clet number is large so that the interface region is thin.

One major feature of turbulent di!usion is that it roughens interfaces on small scales both within
the inertial range and the viscous range [54,305]. This is in strong contrast to the smoothing nature
of molecular di!usion. The source of the di!erence is the interface structure created by spatial
correlations in turbulent velocity "elds. Only when viewed on scales large compared to the largest
correlation length of the velocity "eld do these undulations blur out, and the mixing action of
turbulent di!usion appear to be smoothing. The reason that molecular di!usion is smoothing on
all scales is that its correlation length is strictly zero, so all scales are large enough for the mixing to
appear smoothing!

The turbulent wrinkling of the #uid interface permits the #uids to contact each other over
a greater surface area than if it were a #at plane as in laminar #ow conditions. This increases the
#ux of temperature, salinity, dye, etc., across the interface, and speeds the process of mixing.

Another context in which level sets of a scalar "eld are of great practical interest is in the progress
of di!usion #ames in turbulent combustion [305,339]. A di!usion #ame is characterized by the fact
that the fuel and the oxidant are supplied separately, and the #ame appears at the boundary of the
fuel and oxidant zones where the necessary molecular mixing takes place. When the reaction rate is
large compared with the di!usion coe$cients of the chemical species involved, the #ame can be
idealized as an in"nitesimally thin surface where all the reaction takes place. From the physical
equations governing the combustion process one can deduce that at the #ame front the temper-
ature ¹(x, y, t) attains its maximum value corresponding to the adiabatic stoichiometric temper-
ature ¹

c
(for the algebraic details of the derivation consult [339]). Therefore the location of the

di!usion #ame can be characterized by the level surface ¹(t,x, y)"¹
c
, under the approximation

that the #ame front is in"nitesimally thin. If the combustion is occurring in a turbulent environ-
ment, the #ame surface will be wrinkled into a larger surface area, thereby increasing the speed at
which the #ame burns through the fuel [339]. In combustion, the temperature "eld is not a passive
scalar "eld, but one might to a "rst approximation suppose that the wrinkling of the interface may
be governed by a similar process. Indeed, laboratory measurements indicate that di!usion #ames
have a quantitatively similar small-scale geometry to that of passive scalar interfaces, provided that
certain conditions are met [305]. We mention here that the "rst author with Souganidis have
studied the enhanced #ame speed in premixed turbulent combustion with the e!ects of nonlinear
reaction and di!usion, as well as small-scale turbulence [90,88,89,211}213]. In particular,
[212,213] contain a rigorous analysis of renormalized #ame fronts in a steady shear #ow with an
inertial range of scales.

In the above examples, the extent of mixing and burning enhancements relies sensitively on the
degree of wrinkling of the #ame front. We now discuss one way of quantifying this wrinkling.

3.5.3.1. Elements of fractal theory. In a high Reynolds number #ow, the small-scale turbulent
#uctuations have a self-similar statistical structure over a wide inertial range of scales. It is
reasonable to expect that the small-scale contortions of the scalar interface produced by these
inertial range eddies will also exhibit a self-similar structure over a subregion of the inertial range of
scales where molecular di!usion is formally negligible relative to advection. A useful framework for
describing objects with a statistical scaling invariance is fractal geometry [215]. The roughness of
such fractal objects can be quantitatively represented through the notion of fractal dimension. For
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an extensive discussion of theory and applications of fractal geometry, see [215]. Here we state only
the essentials for our purposes.

The intuitive notion of fractal dimension is a measure of how well a set "lls up space. There are
several ways to de"ne and compute fractal dimensions of an object A; these yield identical results
under certain caveats [217,218]. A useful operational de"nition that can be computed e$ciently in
practice [305] is that of local box-counting dimension d

L,B
. One partitions the ambient space Rd in

which the object resides into boxes of size d, and counts how many boxes Nd intersect the object.
The local box-counting dimension of A is then de"ned as

d
L,B

,lim
d?0

logNd/log d~1. (239)

This local box-counting dimension clearly coincides with the ordinary Euclidean dimension of any
smooth, recti"able object. But it also assigns a useful geometric dimension to very rough curves,
such as the graph of Brownian motion =(t) versus time, which has d

L,B
"1.5 (see [215]). The

fractional value of this dimension indicates that the small-scale wrinkles in the Brownian graph
cause it to have space-"lling properties intermediate between that of a curve and of a solid region in
a plane. Curves of arbitrary local box-counting fractal dimension from 1 to the dimension of the
embedding space can be constructed [215]; greater values indicate wilder local #uctuations.

When we speak of the fractal dimension of a physical entity like a front, we do not mean the
technical fractal dimension of the front, de"ned by the behavior on the smallest scales. We are
rather interested in the structure of the curve over some "nite range of scales with both an upper
and lower cuto!, particularly ranges of self-similarity such as the inertial range. For these purposes,
the size of the boxes d in the de"nition of the local box-counting dimension must be restricted to lie
within the range of desired scales. When the front possesses approximate self-similarity over
a substantial portion of this range, then a graph of logNd versus log d~1 will produce points lying
nearly along a straight line. A more robust and meaningful assessment of the fractal dimension of
the front on this range of scales is obtained in empirical measurements [305] through the slope of
the best-"t line, rather than through a literal implementation of Eq. (239).

In our mathematical analysis, we have computed the second-order statistics after having taken
the limit of zero Kolmogorov dissipation length and no molecular di!usion, so there is no lower
limit to the inertial range behavior of the passive scalar interface. We can therefore equate the
fractal dimension for the inertial range in our model with that computed from a dP0 mathemat-
ical limit. To this end, we will appeal to a theorem of Orey [259].

If (x, f (x)) is the graph of a statistically homogenous Gaussian random "eld, and

c
1
DxD2a4S( f (x@#x)!f (x))2T4c

2
DxD2a (240a)

for DxD;1 and positive constants c
1
, c

2
, then for almost every realization, this graph has

(Hausdor!) fractal dimension

d
L,H

"2!a . (240b)

The de"nition of the Hausdor+ fractal dimension referred to in this theorem is somewhat technical,
and we refer the reader to [249] for a complete discussion. It su$ces for our discussion to note that
the Hausdor! fractal dimension coincides with the more intuitive local box-counting dimension in

A.J. Majda, P.R. Kramer / Physics Reports 314 (1999) 237}574400



standard situations [215]. There are caveats and counterexamples to this statement [218,332]
which we do not wish to dwell on here, since we see no reason why they should arise in our
application to passive scalar interfaces produced in a shear #ow. We will therefore simply refer to
the Hausdor! dimension as the local fractal dimension d

L
. The adjective `locala is important,

however, since the scalar level set in the RSTS-I Model exhibits a crossover to a di!erent
self-similar structure at large scales which is characterized by a di!erent fractal dimension, as we
will explain in detail later.

The exponent a appearing in Eq. (240a) is just the Hurst exponent of the graph [215], and acts as
a HoK lder exponent for almost every realization of the random graph [1]. Smooth random curves
have Hurst exponent a"1, and fractal dimension d

L
equal to their topological dimension of unity.

Rougher random curves have smaller Hurst exponents a and, according to Eq. (240b), larger values
of fractal dimension d

L
.

3.5.3.2. Local fractal dimension of passive scalar level sets. We now show how the local fractal
dimension of passive scalar level sets on the inertial range of scales may be exactly computed in the
RSTS-I model through the exact formula for the pair-distance function in the inertial range and
Orey's theorem (240). We assume that the level set of ¹(x, y, t) of interest is initially a #at line lying
along y"0. Because there is no molecular di!usion, the level set at any later time is simply given
by the image of the initial level set y"0 under the (random) mapping of Lagrangian tracers
induced by the motion of the shear #ow. (This follows mathematically from the method of
characteristics applied to the "rst order PDE which results from setting i"0 in the advection-
di!usion PDE.) Therefore, the scalar level set of interest at time t is described by the graph

(x,>
x
(t)) ,

where

>
x
(t)"P

t

0

v(x, s) ds

is the y position at time t of the tracer starting from (x, 0) at time zero.
Now, >

x
(t) is a statistically homogenous Gaussian random "eld in x, since it is just a time

integral over the statistically homogenous Gaussian random "eld v(x, t). In Section 3.5.2, we
computed that, within the inertial range of scales,

S(>
x`x{

(t)!>
x{
(t))2T,p2DY,I

(tDx)"4t2P
=

0

(1! cos (2nkx))A
E
k~1~2HU(tA~1q kz) dk . (241)

Since the passive scalar level set is the graph of a homogenous Gaussian random "eld, we can
compute its local fractal dimension from the small x asymptotics of this quantity, using Orey's
theorem. The results are presented in Table 11. The phase diagram coincides with that for the
relative mean-square displacement p2DY,I

(tDx
0
) (Fig. 17).

The small x asymptotics of the integral appearing in Eq. (241) are computed as follows. Within
Region R-2, one can simply replace (1! cos 2nkx) by its small x limit 2n2k2x2, and appeal to the
dominated convergence theorem using the fact (235c) that (1#u)U(u) is a bounded function.
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Table 11
Local fractal dimension of scalar level sets within inertial range of scales in Random Spatio-Temporal Shear Model

Parameter regime Local fractal dimension d
L

Phase region

z50
0(H(

2!z

2
d
L
"2!H!

z

2
R-1

z50 2!z

2
(H(1 d

L
"1 R-2

Dominated convergence using this approach would fail in Region R-1, and one must instead
rescale integration variables q"kDxD, yielding

S(>
x`x{

(t)!>
x{
(t))2T,p2DY,I

(tDx)

"4t2DxD2HP
=

0

(1! cos (2nq))A
E
q~1~2HU(tA~1q qzDxD~z) dq .

If z"0, then this quantity is clearly proportional everywhere to DxD2H, yielding a fractal dimension
d
L
"2!H"2!H!z/2. For z50, one must use the large-argument asymptotics (235b) of U.

To establish that the limiting value of the integral is obtained by replacing the U factor in the
integrand by its asymptotic limit, we apply the dominated convergence theorem to the integral
multiplied by DxD~z, using the bound (235c).

Note from Table 11 that an increase of the exponent z at "xed value of H results in a smoother
interface; we next explain the physical reason for this. We must "rst of all note that, for the purposes
of local smoothness, it is clearly the dynamics of the small scales (large wavenumbers) which play
the dominant role. The temporal decorrelation rate of the shear modes scales as Aq(k)"Aqk~z in
the RSTS-I Model, so that the temporal correlations of high wavenumbers are weaker as
z increases. That is, zPR implies very rapid decorrelation of high wavenumbers whereas zP0
corresponds to a slow decorrelation. This is the opposite of the statement made in Section 3.3
concerning the relation of z to the low wavenumber dynamics. One physical implication of
Table 11, therefore, is that the passive scalar level sets become smoother as the temporal correla-
tions of the high wavenumber velocity #uctuations decay more rapidly.

To understand this, consider "rst the case of a steady shear #ow. This can be incorporated in our
analysis by setting /K (u),1, which renders the temporal decorrelation factor U in Eq. (241) to be
simply equal to unity. It is then readily seen that

S(>
x`x{

(t)!>
x{
(t))2T,p2DY,I

(tDx)"4t2DxD2HP
=

0

(1! cos (2nk))A
E
k~1~2Hdk ,

so that by Orey's theorem, the scalar level sets would have a local fractal dimension d
L
"2!H.

This also coincides with the fractal dimension resulting from slow decorrelation of the high
wavenumbers at a constant rate (z"0). We see that the fractal structure of the velocity "eld is
directly impressed upon the scalar interface; the Hurst exponent of the interface is exactly the Hurst
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exponent H of the velocity "eld. Suppose now that z'0 so that the rate of decorrelation increases
unboundedly at high wavenumbers. This means that after any "nite time t, the velocity #uctuations
at su$ciently high wavenumber k<(Aq/t)1@z will have passed through many correlation times. The
structure of the scalar interface viewed in the corresponding range of scales DxD;(Aq/t)~1@z is
therefore the result of many roughly independent pushes in time. The temporal #uctuations in the
small-scale advection serve to at least partially wash out the in#uence of the fractal spatial structure
of the velocity "eld on the interface, leading to a smaller interface fractal dimension than in the
steady case. The rapid temporal #uctuations of the small-scale velocity components appear to
produce a self-averaging, smoothing e!ect. This is somewhat reminiscent of molecular di!usion,
which serves to smooth interfaces and has microscopically small spatio-temporal correlations. For
z'2!2H, the high wavenumber shear velocity modes #uctuate rapidly enough in time to
produce smooth passive scalar level sets.

3.5.3.3. Global fractal dimension of passive scalar level sets. Our above physical description of how
temporal correlations in#uence the roughening of the scalar interface by the turbulent shear #ow
applies only in the time-dependent range of scales DxD;(Aq/t)~1@z. Here the wrinkling of the scalar
interface has an anisotropically self-similar (or self-a.ne [216]) structure which coincides with the
long-time asymptotic reported in Table 10:

S(>
x`x{

(t)!>
x{
(t))2T,p2DY,I

(tDx)

&G
2KI *D DxD2H`zt if z50, 0(H(

2!z
2

z
z#H!1

KI A
DDxD2t2(z`H~1)@z if z50,

2!z
2

(H(1
for DxD;(Aq/t)~1@z .

On the other hand, for DxD<(Aq/t)~1@z, it can be shown directly by rescaling the integration variable
q"kx in Eq. (241) that

S(>
x`x{

(t)!>
x{
(t))2T,p2DY,I

(tDx)&K*Dt2DxD2H for DxD<(Aq/t)~1@z , (242a)

KA
D"2n2H`1@2

!C(!H)
C(H#1

2
)

A
E

, (242b)

which is identical to what a steady random shear velocity "eld would produce (/K (u),1). That is,
the scalar interface has a distinct anisotropically self-similar structure for DxD;(Aq/t)~1@z and for
DxD<(Aq/t)~1@z, provided z'0. The crossover length scale

¸
#
(t),(Aq/t)~1@z (243)

describes the spatial scale below which the interface has settled statistically into its long-time
asymptotic structure and above which the interface has not yet substantially felt the e!ects of
temporal decorrelation of the shear #ow.

The scalar level set can therefore be described as having two fractal dimensions: a local fractal
dimension d

L
given in Table 11 for the structure on small scales DxD;¸

#
(t), and a global fractal

dimension

d
G
"2!H (244)
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(by formal analogy with Eqs. (240a) and (240b)) on su$ciently large scales DxD<¸
#
(t). The strict

computation of Hausdor! fractal dimension by Orey's theorem (240) involving the xP0 limit will
always focus on the small scales and produce the local fractal dimension. For the case where z"0
(wavenumber-independent decorrelation time scale q(k)"Aq), there is no crossover between fractal
dimensions; the passive scalar level set is, for all times, exactly (anisotropically) self-similar with
a single fractal dimension d

L
"d

G
"2!H:

S(>
x`x{

(t)!>
x{
(t))2T,p2DY,I

(tDx)"4t2DxD2HP
=

0

(1! cos (2nk))A
E
k~1~2HU(t/Aq) dk .

3.5.3.4. Comparison of model fractal dimensions with experimental results. We pause now to relate
the fractal dimensions computed for the passive scalar level sets in our RSTS-I model to the local
box-counting fractal dimensions measured within the inertial range of scales in laboratory turbu-
lence. At the Kolmogorov point (H"1/3, z"2/3), the local fractal dimension is d

L
"4/3 while the

global fractal dimension is d
G
"5/3. These values agree extremely well with fractal dimensions

computed by Sreenivasan and coworkers using box-counting on two-dimensional section images
obtained in a variety of dyed turbulent #ows using laser-induced #uorescence [272,305]. In
particular, they "nd a common fractal dimension of 1.36$0.05 for the interface between the dyed
turbulent and un-dyed quiescent region in jets, wakes, mixing layers, and boundary layers [271],
and a fractal dimension of 1.67$0.04 for level sets of the dye concentration within the interior of
the dyed turbulent region [75]. The interface fractal dimension from these experiments is very close
to the value 1.35 observed by Lovejoy to govern the boundary of cloud and rain areas over three
decades of scales [199].

We hasten to mention that the agreement between the experiments and the model predictions is
not direct. In particular, the experiments do not report a crossover of fractal dimensions within the
inertial-convective range for a single passive scalar level set; the di!erent values reported corres-
pond to fractal dimensions in di!erent parts of the #ow. We only wish to point out that the
numerical fractal dimensions computed in the model do appear in the real world. The model may
be suggesting, though, that the reason for observing di!erent fractal dimensions for di!erent level
sets may have something to do with the temporal dynamics of the turbulent #ow; we come back to
this point in Paragraph 3.5.5.2.

3.5.4. Fractal dimension of scalar interfaces after isotropic renormalization
We will now consider large-scale, long-time properties of the pair-distance function within the

inertial range of scales. We proceed via a renormalization process similar to that used for the mean
passive scalar density in Section 3.4.3, with the important distinction that the integral length scale
has already been removed to in"nity, and need not be linked with the spatial rescaling. Recall that
the presence of an integral length scale is necessary for analysis of the mean passive scalar density to
prevent an infrared divergence of energy. The pair-distance function, however, "lters the e!ects of
large-scale #uctuations so that the low-wavenumber cuto! can be removed from consideration
forthwith.

We therefore simply need to rescale the spatial arguments x
0
Px

0
/j, yPy/j, and the time

variable tPt/o(j) in the pair-distance function in a suitably linked fashion so that a nontrivial
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limiting `"xed pointa

QM (t)(yDx
0
)" lim

j?=

j~1Q(t@o(j))
I A

y
jK

x
0
j B (245)

is achieved. Since the pair-distance function is a PDF for the spatial location of the tracer along the
shear direction y, we have also rescaled its amplitude by j~1 to preserve the law of total probability

P
=

~=

Q(t)
I
(yDx

0
) dy"1

throughout the renormalization.
We note that the inertial-range pair-distance function enjoys an exact scaling invariance

Q(t)
I
(yDx

0
)"(b(j))~1Q(t@o(j))

I A
y

b(j)K
x
0
j B , (246a)

with

o(j)"jz ,

b(j)"jz`H .
(246b)

This may be directly checked from the explicit formula for the pair-distance function (see Eq. (229))
and

Q(t)
I
(yDx

0
)"

exp(!y2/(2p2DY,I
(tDx

0
)))

J2np2DY,I
(tDx

0
)

,

p2DY,I
(tDx

0
)"4t2P

=

0

(1! cos (2nkx
0
))A

E
k~1~2HU(tA~1q kz) dk .

The scaling invariance (246) is anisotropic except when z#H"1, whereas the renormalization
(245) involves an isotropic rescaling. In the case where H#z"1, the rescaling (246b) may be used
for the renormalization, and the renormalized pair-distance function QM (t)(yDx

0
) will coincide with

Q(t)
I
(yDx

0
). For the other cases, the renormalized pair-distance function will di!er from the `barea

pair-distance function Q(t)
I
(yDx

0
).

One key feature of the renormalized pair-distance function is that it will enjoy an isotropic
scaling invariance de"ned by the renormalization group leading to it

QM (t)(yDx
0
)"j~1QM (t@o(j))A

y
jK

x
0
j B for all j'0 .

A crucial fact behind this statement is that the renormalization does not a!ect any other
fundamental length scales; the renormalized mean passive scalar density discussed in Paragraph
3.4.3.3 does not necessarily enjoy a similar scaling invariance because the integral length scale is
rescaled along with space [10,14,141].

The present renormalization of the pair-distance function is quite similar in spirit to the
renormalization group in critical phenomena [126,204]. In that context, the Hamiltonian for the
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Table 12
Properties of pair distance function and fractal dimension of level sets under isotropic renormalization within inertial
range of scales in Random Spatio-Temporal Shear Model

Parameter
regime

Temporal
rescaling function o(j)

Renormalized
mean-square
relative displacement
pN 2DY(tDx0

)

Fractal
dimension
dM

Phase region

z50 0(H(1!z j2~2H~z 2KI HD Dx
0
D2H`zt 2!H!z/2 R-I1

z50 1!z(H(0 j1~H KA
DDx0

D2Ht2 2!H R-I2
z50 H"1!z j1~H p2DY,I

(tDx
0
) 2!H!z/2 Boundary

microscopic physics is coarse-grained in a certain scale-invariant fashion to produce a Hamiltonian
purported to give a macroscopic picture of the physical system under consideration. In the
coarse-graining procedure, certain physical quantities need to be rescaled by some power law, and
one initially leaves the exponents unspeci"ed. One discovers, however, that only for special values
of these critical exponents does the renormalization procedure tend toward a nontrivial macro-
scopic Hamiltonian. For these special values, the limiting Hamiltonian is itself scale-invariant and
"xed under successive application of the renormalization group. Such a Hamiltonian is thus
naturally called a ,xed point (of the renormalization group #ow). We can similarly view QM (t)(yDx

0
) as

a "xed point of the renormalization de"ned by Eqs. (246a) and (246b).

3.5.4.1. Results of renormalization. In Table 12, we report the unique temporal rescaling power law
o(j) necessary for the isotropic renormalization to converge to a nontrivial "xed point, as well as
the properties of the resulting renormalized pair-distance function QM (t)(yDx). The Gaussian form of
the pair-distance function is preserved under the renormalization, so QM (t)(tDx) is completely charac-
terized in all cases by the renormalized mean-square relative displacement

pN 2DY(tDx0
),lim

j?0

j2p2DY,IA
t

o(j)K
x
0
j B .

One may directly write the pair-distance function as

QM (t)(yDx
0
)"

exp(!y2/(2pN 2DY(tDx0
)))

J2npN 2DY(tDx0
)

,

or equivalently as the solution of a di!usion equation

RQM (t)(yDx
0
)

Rt "DM D(x0
, t)
R2QM (t)(yDx

0
)

Ry2
,

QM (0)(yDx
0
)"d(y) .

with renormalized relative di!usion coe$cient

DM D(x0
, t),

1
2
Rp2DY

(tDx
0
)

Rt . (247)
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Fig. 18. Phase diagram for renormalized pair distance function in Random Spatio-Temporal Shear Model with Inertial
Range, no cross shear transport.

The scaling laws for pN 2DY(tDx0
) have coe$cients given by Eqs. (238a) and (242b). In each case, the

renormalized pair-distance function self-consistently enjoys an isotropic scaling invariance corre-
sponding to the rescalings in the renormalization which produced it:

QM (t)(yDx
0
)"j~1QM (t@o(j))A

y
jK

x
0
j B .

The renormalized behavior of the pair-distance function has some sharply di!erent features on
either side of the phase boundary H#z"1, drawn in Fig. 18. The formulas for the renormalized
relative mean-square displacement pN 2DY(tDx0

) and the fractal dimension dM jump discontinuously
across the phase boundary. We now explain why this happens, then derive the results stated in
Table 12.

It is readily checked that Region R-I1 has the same properties as the long-time asymptotics of
Region R-1 in the phase diagram before renormalization presented in Fig. 17. The reason is that for
this range of parameters, the appropriate temporal rescaling function o(j) is such that
j¸

#
(t/o(j))PR as jP0, where ¸

#
(t) is the crossover length de"ned in Eq. (243). Consequently,

the isotropic renormalization zooms in on the passive scalar level set structure below the crossover
length, where it has settled down to its long-time asymptotic statistics and is governed by the local
fractal dimension d

L
reported in Table 11. Note that Region R-I1 of Fig. 18 lies entirely within

Region R-1 of Fig. 17.
Region R-I2, on the other hand, corresponds to temporal rescalings in which j¸

#
(t/o(j))P0, so

that the isotropic renormalization zooms in on the structure of the passive scalar set on scales
above the crossover. Here, the e!ects of temporal #uctuations of the velocity "eld are not felt; the
passive scalar level set is evolving as in a steady shear #ow. The fractal dimension characterizing the
renormalized "xed point is given in Region R-I2 by the global value d

G
"2!H; see the discussion

around Eq. (244).
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The discontinuity of the behavior of the renormalized "xed point across the phase boundary
H#z"1 is thereby shown to result from a jump between zooming in on the level set structure
above and below the crossover length ¸

#
(t).

On the phase boundary H#z"1 itself, the unrenormalized pair-distance function within the
inertial range Q(t)

I
(yDx

0
) obeys the exact isotropic scaling symmetry

Q(t)
I
(yDx

0
)"j~1Q(t@o(j))

I A
y
jK

x
0
j B

for o(j)"j2~2H~z, and therefore persists unchanged under the isotropic renormalization:
QM (t)(yDx

0
)"Q(t)

I
(yDx

0
). The renormalized mean-square relative tracer displacement pN 2DY(tDx0

) and the
renormalized relative di!usion coe$cient DM D(tDx0

) remain equal to their bare values p2DY,I
(tDx

0
) (237)

and 1
2
(Rp2DY,I

(tDx
0
))/(Rt), which do not have a simple scaling form in x

0
and t.

Interestingly, the phase boundary H#z"1 for the renormalized pair-distance function is
exactly the locus of parameters for RSTS-I models with temporal correlations dictated by the
natural eddy turnover time scale (see 211a). In particular, the Kolmogorov point (H"1/3, z"2/3)
falls on the phase boundary. One interesting implication of this in the model is that the fractal
dimension of the level set on large scales within the inertial range is very sensitive to perturbations
of the exponents H and z from the exact Kolmogorov exponents, since the fractal dimension
dM jumps discontinuously across the phase boundary. In particular, while the Kolmogorov point
itself is associated with a level set fractal dimension of dM "4/3, a small perturbation of H or z can
give rise to a fractal dimension of dM "5/3.

3.5.4.2. Renormalization computation. We "rst of all seek the scaling law o(j) for which

QM (t)(yDx
0
),lim

j?0

j~1Q(t@o(j))
I A

y
jK

x
0
j B

is nontrivial, i.e., neither zero nor in"nity. We will operate under the assumption that o(j) must be
a power law,

o(j)"jf

with f'0; we leave it to the reader to verify that there is in fact no other suitable scaling for the
renormalization. In the course of our computation, it will be seen that the scaling exponent f is
uniquely determined by H and z. From the explicit formula (229) for the pair-distance function, we
see that our task is equivalent to "nding the scaling law o(j) so that

pN 2DY(tDx0
),lim

j?0

j2p2DY,IA
t

o(j)K
x
0
j B

is nontrivial. The renormalized pair distance function will then be simply

QM (t)(yDx
0
)"

exp (!y2/(2pN 2DY(tDx0
)))

J2npN 2DY(tDx0
)

. (248)
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Now, by a rescaling of the integration variable in Eq. (237), we have the following expression for
the renormalized mean-square relative tracer displacement:

pN 2DY(tDx0
)"lim

j?0

4A
E
o~2(j)j2~2Ht2Dx

0
D2HJUAjzo~1(j)

t
AqDx0

DzB , (249a)

JU(u),P
=

0

(1!cos (2nq))q~1~2HU(uqz) dq . (249b)

We now try various choices of rescaling o(j)"jf, and see for which values of H and z a nontrivial
limit is self-consistently produced. We will "nd that only one choice of f will work for each (H, z). It
is helpful to separately consider three possible cases: f"z, f'z, and 0(f(z.

f"z: When f"z, the argument of JU in Eq. (249a) remains "xed as jP0, and therefore
a nontrivial renormalized limit requires that the prefactors balance, i.e., o(j)"j1~H. Since
o(j)"jf"jz is assumed, self-consistency requires that z"1!H, which is exactly the phase
boundary in Fig. 18. Here, the renormalization leaves p2DY,I

(tDx
0
) "xed, which is not surprising

because the scaling invariance (246) which this quantity enjoys is isotropic for z"1!H.
f'z: For temporal rescalings with f'z, the argument of JU in (249a) diverges as jP0. We

therefore require the large u asymptotics of JU(u):

lim
u?=

JU(u)&/(0)u~1P
=

0

(1!cos (2nq))q~1~2H~zdq

"1
2
n2H`z`1@2

!C(!H!z/2)
C(H#(z#1)/2)

/(0)u~1 , (250)

which follows formally from the large argument asymptotics (235b) of U, provided that
H(1!z/2 so that the integral appearing in the middle expression is "nite. The dominated
convergence theorem in conjunction with Eq. (235c) guarantees (250) rigorously in this case.
Therefore, for f'z,

pN 2DY(tDx0
)"lim

j?0

2A
E
j2~2H~z~ftDx

0
D2H`z/(0)Aqn2H`z`1@2

!C(!H!(z/2))
C(H#(z#1)/2)

,

and the existence of a nontrivial limit requires that we choose f"2!2H!z. Self-consistency
with the assumption f'z means that this scaling can only work when H(1!z, which is just
Region R-I1 in Fig. 18. The other required condition in the computation, H(1!z

2
, is automati-

cally satis"ed within Region R-I1, and therefore the renormalization developed here is indeed valid
for that regime of parameters.

f(z: When f(z, the argument of JU in Eq. (249a) converges to zero, and we need instead the
small argument asymptotics:

lim
u?0

JU(u)"P
=

0

(1!cos (2nq))q~1~2Hdq"1
2
n2H`(1@2)

!C(!H)
C(H#1

2
)

,
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which follows from Eq. (235a) and the boundedness of U. The renormalized limit of the mean-
square relative tracer displacement then takes the form

pN 2DY(tDx0
)"lim

j?0

2A
E
j2~2H~2ft2Dx

0
D2Hn2H`(1@2)

!C(!H)
C(H#1

2
)

.

A nontrivial limit requires that we choose f"1!H, and self-consistency with f(z means that
this renormalization is valid precisely for Region R-I2.

Self-similarity and fractal dimension of renormalized passive scalar ,eld. Having computed the
appropriate rescaling o(j) and renormalized mean-square shear-parallel displacement pN 2DY(tDx0

) for
each value of H and z, we obtain the renormalized pair distance function from Eq. (248). Its scaling
invariance under the isotropic rescaling de"ning the renormalization group can be directly
checked. The renormalization preserves the Gaussianity of the graph describing the level set of the
passive scalar "eld initially lying along y"0, so the fractal dimension of this level set for the
renormalized passive scalar "eld may be obtained from Orey's theorem. The exponent a to be used
in Eq. (240) is readily read o! from the formulas for pN 2DY(tDx0

), which have pure power law scaling in
x
0
. This concludes the derivation of the results stated in Table 12.

3.5.5. Open problem: fractal dimension of scalar interfaces with small but nonvanishing
molecular di+usivity

The simple methodology used to compute the rich inertial-range behavior of the pair-distance
function and the passive scalar level set fractal dimensions in Section 3.5 has relied fundamentally
on the neglect of molecular di!usion. Its inclusion signi"cantly complicates matters. Instead of
Eq. (225), we would have (for no cross sweep wN "0)

>
x0`x@

0
(t)!>@

x0
(t)"P

t

0

(v(x
0
#x@

0
#J2i=

x
(s), s)!v(x@

0
#J2i=

x
(s), s)) ds#J2i=

y
(t) ,

where (=
x
(t),=

y
(t)) is a Brownian motion. The appearance of =

x
(s) in the argument of v(x, s)

destroys the Gaussianity, and thereby the resulting development of the pair-distance function
hinging on this property. Nonetheless, there are more sophisticated tools available for handling the
e!ects of molecular di!usion on a spatio-temporal random shear #ow in a mathematically rigorous
fashion [10,14]. Furthermore, any moments of the pair distance function with di!usion can be
treated explicitly by following the procedure utilized in Section 3.2.

We pose as an open problem the mathematical examination of the properties of the pair-distance
function and the structure of passive scalar level sets within the inertial-convective range of scales
in the RSTS-I Model when molecular di!usion is present but weak compared to the large
scale turbulent advection (high but "nite PeH clet number). By inertial-convective range of scales,
we mean the portion of the inertial range over which the e!ects of molecular di!usion
are formally subdominant to turbulent di!usion, in the sense that i;q

L
(x)S(dv(x))2T, where

S(dv(x))2T&A
E
DxD2H denotes the mean-square velocity #uctuation measured over a distance

x across the shear and q
L
(x)&min(x2/i, Aqxz ) is an approximate Lagrangian correlation time

associated to this scale. The inertial-convective range can be equivalently de"ned as the asymptotic
regime

¸
K
,¸

$
;x;¸

0
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where ¸
$

is a length scale above which molecular di!usion is formally subdominant to turbulent
advection (see Paragraph 4.3.3.1).

Since we are concerned with scales x<¸
$
, the e!ects of molecular di!usion might naively be

assumed to be negligible. The limit of vanishing molecular di!usion, however, has a number of
singular features which require it to be studied carefully [74]. For example, without molecular
di!usion, a sharp interface between distinct #uids will forever remain sharp, while any molecular
di!usion, however small, will smooth the variation of the passive scalar "eld across the interface.
The thickness of the resulting front can be expected to be on the order of ¸

$
, which is very small

compared to the scales of interest, but the geometric structure along the front at all length scales
could be signi"cantly a!ected by the fact that the passive scalar "eld has been smoothed across the
front. The fractal dimension of passive scalar level sets within the inertial-convective range of scales
may therefore well assume di!erent values in the presence of molecular di!usion than those
computed in Section 3.5.3 for i"0.

Experimental measurements [271,272] of the fractal dimensions of interfaces generally involve
#ows such as wakes and jets and layers, wherein the large-scale shear in these #ows is directed
along the coarse-grained interface. The passive scalar level set emanating from y"0 which we
considered in Section 3.5.3 on the other hand gets hit head-on by the shear #ow. To bring the
model closer to the experimental setup, it would be preferable to consider the fractal dimension of
a passive scalar level set evolving from x"0. For i"0, such a level set remains forever straight,
but for i'0, the interaction of molecular di!usion and the shear will wrinkle it. An interesting
question is how the fractal dimensions of the level sets evolving from x"0 and y"0 compare to
each other when i'0.

The inclusion of the e!ects of molecular di!usion into the RSTS-I Model would put it in
a position to interact with various physical and mathematical theories which have been put forth
concerning the fractal dimension of passive scalar level sets over the inertial-convective range of
scales. We brie#y mention some of these now, along with some questions concerning them raised
by the RSTS-I Model as developed here.

3.5.5.1. Theories and bounds for fractal dimensions of passive scalar level sets. Several theories have
been put forward to explain either the observed fractal dimension of 1.36$0.05+4/3 for scalar
level sets at turbulent interfaces [271] or the dimension 1.67$0.04+5/3 for scalar level sets
immersed well within a turbulent #uid [75]. That the fractal dimension of the interface between
dyed and non-dyed region of a turbulent #ow should be 4/3 (modulo intermittency corrections) has
been argued in several ways. One, o!ered independently by Sreenivasan et al. [235,310] and by
Gouldin [128]), proceeds from the experimental observation that the #ux of dye across the
interface depends only on the large-scale parameters and not on molecular di!usivity, which
demands that the interface must increasingly contort itself to provide the surface area to maintain
this constant #ux as the PeH clet number is increased. Another approach, due to Hentschel and
Procaccia [132], analyzes Richardson's pair-distance function in the limit of zero molecular
di!usion by positing a di!usion PDE for this quantity with relative di!usivity depending as
a power law on current tracer separation and elapsed time. If the exponents for the relative
di!usivity are chosen in accordance with Kolmogorov}Obukhov completely self-similar theory,
then the fractal dimension of any level set as computed from the pair-distance function and the
assumption that Eqs. (240a) and (240b) holds also for non-Gaussian graphs produces d"4/3.

A.J. Majda, P.R. Kramer / Physics Reports 314 (1999) 237}574 411



More recently, Constantin et al. [75] have predicted an interface fractal dimension of

d"1#H (interface) , (251)

based on a certain rigorous mathematical bound they derived and some further assumptions
concerning the sharpness of this upper bound and the nature of turbulent velocity #uctuations near
the interface. The parameter H is, as usual, the Hurst exponent characterizing the inertial-range
spatial structure of the velocity "eld. For Kolmogorov turbulence, H"1/3, and the theory (251)
predicts an interface fractal dimension of 4/3. The interface fractal dimension formula (251) also
follows from a direct generalization of the phenomenological arguments of [235,310]. There is
some interesting experimental data in [75] showing fairly good agreement with the prediction (251)
for various moderate Reynolds number experiments in which the inertial-range is not fully
developed but characterized in some e!ective sense by a Reynolds-number-dependent Hurst
exponent 04H(Re)(1/3.

Mandelbrot [214,215] suggested a simple possible reason for why a passive scalar level set in
a fully turbulent region should have fractal dimension 5/3: almost every level set of a two-
dimensional self-similar (or more properly, self-a$ne) Gaussian fractal random "eld with Hurst
exponent a has fractal dimension 2!a. Passive scalar #uctuations in the inertial-convective range
of scales within a statistically homogenous region of turbulence are thought to have Hurst
exponent H

T
"1/3, both from similarity theory [76,254] and from experimental measurements

[308]; see Paragraph 4.3.4.1 for further discussion. If the passive scalar "eld were Gaussian, it
would then follow that their level sets would have fractal dimension 5/3. The passive scalar
#uctuations in the inertial-convective range of scales are however, known to be highly non-
Gaussian [309]. Constantin et al. [75], on the other hand, deduce from a rigorous estimate an
upper bound

d41
2
(3#H) (within homogenous turbulence) (252)

for the fractal dimension of a passive scalar level set immersed in a homogenous turbulent #ow with
velocity Hurst exponent H. If this upper bound is assumed to be sharp, then a fractal dimension of
5/3 is predicted for the Kolmogorov value H"1/3. We note that, strictly speaking, the fractal
dimension upper bound (252) applies to a short time average of the level set, rather than an
instantaneous level set. A rigorous su$cient condition for Eq. (252) to be sharp was obtained in
[74]; unfortunately it is di$cult to decide in practice whether this technical condition holds. We
emphasize that the rigorous mathematical theory of [74,75] includes the e!ects of small but
nonvanishing molecular di!usivity.

3.5.5.2. Questions raised by the RSTS-I Model concerning theories for fractal dimension of scalar level
sets. It would be interesting to compare some of these theories with exact results from the RSTS-I
Model, once the e!ects of molecular di!usion were properly taken into account. As it stands, the
exact fractal dimensions deduced from the simpli"ed model with i"0 con#ict rather sharply with
the conclusions of some of these theories. For example, the model predicts that both local and
global fractal dimensions should decrease with the Hurst exponent of the velocity "eld, H, whereas
the above theories predict an increase for passive scalar level sets both at turbulent interfaces (251)
and within a region of homogenous turbulence (252). Moreover, one readily checks from Table 11
and Eq. (244) that the mathematical upper bound (252) for passive scalar level sets is violated by
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both local and global fractal dimension in the RSTS-I Model for su$ciently small values of H. We
emphasize that, in and of itself, this is no contradiction because the above mathematical and
physical theories all assume the presence of a small amount of molecular di!usion (except for
[132]). It does, however, motivate the computation of e!ects of molecular di!usion in the RSTS-I
Model to address questions such as: Do the inertial-convective range fractal dimensions change to
fall in line with the theoretical predictions and inequalities? If not, can the physical mechanism
creating the disagreement be identi"ed? Might there be subtle issues concerning the time averaging
of level sets used in the derivation of the upper bound (252) in [75]? Is the technical condition from
[74] which establishes the sharpness of Eq. (252) satis"ed in the RSTS-I Model?

One possible objection to the relevance of the RSTS-I Model to these theories is the strong
anisotropy of the model. Indeed, this prevents quantitative comparison with [132], which relies on
the isotropy of the turbulence in its analysis. But the other theories are formulated in a quite
general way which should apply to anisotropic situations. We have also noted above that
experimental measurements [271,272] are performed in settings with strong large-scale anisotropic
shear.

We recall "nally our discussion in Section 3.5.3 in which we demonstrated the strong relevance
of the temporal correlation structure of the RSTS-I #ow in determining the fractal dimension of
scalar level sets. First of all, the local fractal dimension depends on the value of z, with more rapid
decay of the correlation time at high wavenumber (z large) leading to smoother scalar level sets.
Secondly, the scalar level sets exhibit two regimes of di!erent self-similarity which are determined
by the relative scales which have strongly or barely felt the e!ects of temporal #uctuations. Of the
above-mentioned theories, however, only [132] makes explicit reference to the temporal correla-
tion structure of the velocity "eld. The mathematical inequalities of [74,75] may depend implicitly
on the velocity temporal structure through their assumptions about the degree of (HoK lder)
smoothness of the passive scalar "eld and on their temporal averaging of scalar level sets. It would
be interesting to know whether the qualitative e!ects of temporal structure on the passive scalar
sets in the RSTS-I Model persist when i'0. If so, the following questions could be pursued: Do
the mathematical and physical theories apply for the RSTS-I Model as both Hurst exponent H and
temporal scaling exponent z are varied? If not, can they be modi"ed to explicitly account for the
nature of the temporal correlations in the velocity "eld? Could the di!erence between the fractal
dimension of passive scalar interfaces and level sets in fully turbulent regions be due to a di!erence
in the local temporal structure of the turbulence?

4. Passive scalar statistics for turbulent di4usion in rapidly decorrelating velocity 5eld models

In Section 3, we studied tracer transport in a velocity "eld model with a simpli"ed shear #ow
geometry. For such a #ow, the nonlinearity of the trajectory equations simpli"es to the point that
they may be integrated by quadrature, leading to an explicit statistical expression for the location
of a tracer particle at any moment of time. We could then proceed directly to analyze a rich variety
of behavior for the statistical motion of a tracer particle in response to various properties of the
environment.

In this section, we will consider a complementary simpli"cation which again permits a tractable
analysis of the tracer trajectories. Rather than restricting the geometrical structure of the #ow, we
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will prescribe a convenient statistical structure. Namely, the velocity "eld will be taken to be
a mean zero, homogenous, stationary Gaussian random "eld with no memory

S*(x, t)?*(x#r, t#q)T,R
4
(r)d(q) ,

where the tensor R
4
(r) describes the spatial correlation structure, and the Dirac delta function

describes the temporal correlation structure. For clarity, in this paper we shall call this the Rapid
Decorrelation in ¹ime (RDT) model. It is also known in the literature as the `delta-correlateda
model, the `white-noiseamodel, or the `Kraichnan modela after one of its original proposers [179].
(Kazantsev [152] independently suggested such a model for a magnetohydrodynamic turbulent
#ow.)

The key simpli"cation a!orded by the Rapid Decorrelation in Time model is that each of the
tracer particles in such a #ow undergoes an e!ective Brownian motion. Unlike an ordinary Fickian
di!usion process, the Brownian motions of a collection of particles moving simultaneously in the
#ow are coupled to one another. Through the standard relation between the mean of a passive
scalar "eld and the equations of motion for a single tracer particle (see, for example, [185,196], or
[244]), it follows that the mean S¹(x, t)T obeys a closed di!usion PDE. That is, the moment closure
problem [227] is averted in the RDT model. One can go further and write down a closed equation
of di!usion type for the equal-time, second-order passive scalar correlation function

S¹(x, t)¹(x@, t)T ,

a fundamental statistic re#ecting the small-scale spatial structure of the passive scalar "eld. In fact,
as "rst shown by the "rst author [206], the equal-time correlation functions of all orders

T
N
<
j/1

¹(x( j), t)U
obey di!usion equations with variable coe$cients. Hence, the statistical spatial structure of the
passive scalar "eld in the RDT model is represented precisely through the solutions to deterministic
PDEs. There is no need to handle random variables explicitly.

Overview of Section 4
RD¹ model setup: The di!usion equations for the mean passive scalar density and second-order

correlation function are presented in Section 4.1. The mean passive scalar density in the RDT
model obeys a standard constant-coe$cient di!usion equation (255); the e!ect of the velocity "eld
is simply to boost the di!usivity constant. Therefore, we shall focus for the most part on the
second-order passive scalar correlation function. In the RDT model, it obeys a variable coe$cient
di!usion PDE (256) which admits some explicit special solutions showing how the small-scale
#uctuations of the passive scalar "eld respond to the turbulent velocity "eld. To illuminate the
behavior of the passive scalar "eld #uctuations, we only consider statistically homogenous systems.
We furthermore restrict attention to #uctuations with length scales much smaller than the integral
length of the velocity "eld. The main physical aspects are most clearly seen in asymptotic regimes in
which the passive scalar statistics exhibit universal features independent of particular model details,
and we shall concentrate our attention on these regimes.

Evolution through the inertial range: In Section 4.2, we examine the evolution of the passive scalar
correlation function over time intervals during which the correlation length of the passive
scalar #uctuations lies within the inertial range of scales. In this asymptotic regime, the passive scalar
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correlation function obeys some universal laws which depend only on the inertial-range scaling law
for the turbulent energy spectrum. We "rst consider, in Section 4.2.1, the rate of decay of the
passive scalar variance S(¹(x, t))2T with time in a turbulent shear #ow of the type discussed in
Section 3, but with a delta-correlated temporal structure. The passive scalar variance is an
analogue of the energy of the velocity "eld, and is just the value of the second-order correlation
function at coinciding points. For a turbulent #ow with short-range spatial correlations, the
passive scalar variance decays according to a power law with an exponent equal to that describing
dissipation by molecular di!usion alone; only the decay rate is enhanced due to the turbulent
activity. On the other hand, in a turbulent #ow with long-range spatial correlations, the passive
scalar variance decays anomalously at long times according to a more rapidly vanishing power law.
We obtain an exact expression for the evolution of the passive scalar variance by relating the
variable-coe$cient di!usion equation satis"ed by the passive scalar correlation function to an
associated quantum-mechanical SchroK dinger equation. The potential function appearing in this
SchroK dinger equation re#ects the spatial correlations of the turbulent shear #ow.

Next, in Section 4.2.2, we consider a statistically isotropic turbulent #ow with long range
correlations, and develop a self-similar solution which describes the evolution of the passive scalar
correlation function through the inertial range of scales. From the form of this solution, we will
deduce the anomalous relative di!usion of a pair of tracers while they are separated by a distance
lying within the inertial range of scales. The mean-square distance between the particles grows
according to a superlinear power law, rigorously manifesting a version of Richardson's law [284]
for the RDT model which re#ects the acceleration of di!usion as the particles separate. We
illustrate this dispersion of a pair of tracer particles over several decades through a Monte Carlo
numerical simulation. The explicit self-similar solution indicates another interesting contrast
between the decay of passive scalar #uctuations under the in#uence of a turbulent #ow and under
ordinary molecular di!usion. Whereas rough #uctuations are smoothed out by molecular di!u-
sion, the self-similar spatial correlations in a turbulent #ow actually introduce a rough fractal
structure which spreads out in space even as the passive scalar "eld is decaying in amplitude.

Statistically stationary state of driven passive scalar: In Section 4.3, we turn to the statistics of
a passive scalar "eld which is advected by an RDT turbulent #ow, dissipated by molecular
di!usion, and directly driven by a `pumpinga "eld f (x, t) representing external agitation:

R¹(x, t)
Rt #*(x, t) '+¹(x, t)"iD¹(x, t)#f (x, t) ,

¹(x, t"0)"¹
0
(x) .

In the RDT model, the pumping is represented as a mean zero, Gaussian, homogenous random
"eld with a delta-correlated temporal structure, and a spatial structure characterized by a single
large length scale ¸

f
:

S f (x, t) f (x#r, t#q)T"U(r)d(q) . (253)

With pumping, the advection}di!usion equation has both driving and damping. The passive scalar
"eld may then be expected to settle down after a suitable period of time to a statistically stationary
state in which production of new #uctuations by the pumping is balanced by destruction via
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molecular dissipation. Sometimes we will refer to such a statistically stationary state as a `quasi-
equilibriuma, with the `quasia pre"x distinguishing the strongly damped and driven equilibrium
described here from ordinary thermal equilibrium.

For pumping of the form (253), the mean and correlation functions of the passive scalar function
still obey closed equations of di!usion type (with an inhomogeneity arising from the pumping)
(Section 4.3.1). The statistically stationary state is characterized by the steady solutions to these
equations. The mean of this state is zero by symmetry, but the correlation function of the passive
scalar "eld in quasi-equilibrium:

PH
2
(r),S¹(x, t)¹(x#r, t)T

*
will re#ect the spatial structure of the passive scalar "eld set up by the input of #uctuations at large
scales and dissipation at small scales. The asterisks decorating the above expression indicate that
the statistics of the passive scalar "eld are to be taken as those of the quasi-equilibrium state, which
inherits statistical homogeneity from its environment. For the case in which the velocity and
pumping "eld is statistically isotropic, Kraichnan [179] showed how the correlation function of the
passive scalar "eld could be represented via quadrature in terms of the functions R

4
(x) and U(x)

characterizing the spatial correlations of the velocity and pumping "elds (Section 4.3.2).
We shall be particularly interested in the small-scale spatial structure of the quasi-equilibrium

passive scalar "eld, which one might expect to display universal features independent of the
particulars of the large scale pumping or the large-scale structure of the velocity "eld. The
second-order statistics of the small scales do indeed exhibit universal behavior in the RDT model,
but we hasten to mention that there does appear to be some sensitivity to the large scale velocity
"eld in real turbulent #ows [306,309]. Some striking features of the small-scale statistics are
brought out in the passive scalar spectrum E

T
(k), which resolves the strength of the passive scalar

#uctuations as a function of their wavenumber k and parallels the energy spectrum for the velocity "eld.
Perhaps the most interesting feature of E

T
(k) is that it can support a variety of universal

self-similar scaling regimes at high wavenumbers. These are analogous to the Kolmogorov
k~5@3 inertial-range scaling of the energy spectrum of a turbulent velocity "eld at high Reynolds
number (see Paragraph 3.4.3.1). Theoretical predictions for three di!erent scaling regimes in the
passive scalar spectrum E

T
(k) have been proposed from a number of directions [28,29,76,120,254].

Like the Kolmogorov prediction, each of these theories predicts a universal scaling law for E
T
(k)

within some range of wavenumbers, provided the physical conditions are such that the delimiting
wavenumbers are su$ciently widely separated. Though each theory has some experimental data
which purportedly support it, none are unequivocally con"rmed and some are under active
controversy. Moreover, in one range of scales (the inertial-di!usive regime), two competing theories
predict di!erent scaling laws, and experiments have not decided the issue de"nitively.

We will utilize the RDT model to investigate the nature of scaling regimes of the passive scalar
spectrum, with a view to making contact with the real-world issues when we can. First, in
Section 4.3.3, we report the rigorous existence of three universal scaling regimes in the passive
scalar spectrum in the RDT model, corresponding to those predicted for the real world. Two of
these scaling laws were computed by Kraichnan [179,183]. Then, in Section 4.3.4, we examine
whether straightforward adaptations of the approximate real-world theories to the RDT model
make the correct predictions. The theories based on Kolmogorov-type dimensional analysis
produce the correct scaling predictions for two of the regimes. In the inertial-di!usive regime,

A.J. Majda, P.R. Kramer / Physics Reports 314 (1999) 237}574416



where naive dimensional analysis is insu$cient to produce a unique prediction, we "nd that the
theory of Batchelor, Howells, and Townsend [29] carries over successfully to the RDT model, but
the theory of Gibson [121] does not.

Higher-order statistics: Finally, in Section 4.4, we survey some recent work concerning the higher
order quasi-equilibrium statistics of the passive scalar "eld in the RDT model. We focus particular
attention on the passive scalar structure functions

S*
N
(r),S(¹(x#r)!¹(x))NT ,

and the issue of whether they display anomalous scaling properties in the inertial-convective range.
By anomalous scaling is meant that the structure functions have a power law form

S*
N
(r)JrfN

over a common interval of scales r much larger than the dissipation scales and much smaller than
the macroscopic system scale, but that the exponents have a nontrivial relation, i.e.

f
2N

ONf
2

.

This phenomenon is often called an instance of `small-scale intermittencya or `inertial range
intermittencya, as it re#ects a tendency for the passive scalar #uctuations on these scales to burst to
large values from time to time with a much greater frequency than would arise from a Gaussian
random "eld.

We shall state some theories for the values of the exponents f
2N

in the RDT model
[64,116,183,343], often with con#iciting predictions. The predictions are compared to the results of
some recent numerical simulations in some simpli"ed settings where accurate resolution is possible
and unambiguous anomalous scaling can be demonstrated [33,334].

In Section 5, we will utilize a variant of the RDT model to study large-scale intermittency of the
passive scalar "eld.

4.1. Dexnition of the rapid decorrelation in time (RD¹) model and governing equations

First we restate in Section 4.1.1 the de"nition of the RDT model and indicate a sound
mathematical interpretation of the Gaussian, delta-correlated velocity "eld. Then, in Section 4.1.2
we develop the di!usion PDEs for the mean and second-order correlation function of the passive
scalar "eld, and remark on their structure. The equation for the second-order correlation function
will be studied through applications in Sections 4.2 and 4.3. We discuss in Section 4.1.3 the sense in
which the RDT model describes the limiting behavior of the passive scalar "eld in a velocity "eld
with short but "nite correlation time relative to the time scales characterizing advection. While the
RDT model equations do in fact describe a particular short correlation time limit of a broad class
of velocity "elds, we illustrate through a cautionary example that other limiting nontrivial passive
scalar dynamics can be realized. Finally, in Section 4.1.4, we de"ne the particular form of the
velocity spatial correlation function we will use in applications.

4.1.1. Dexnition of model
The velocity "eld *(x, t) is formally de"ned in the Rapid Decorrelation in Time (RDT) model

as an incompressible, Gaussian, homogenous, stationary, random "eld with mean zero and
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second-order correlation function

S*(x, t)?*(x#r, t#q)T"R
4
(r)d(q) . (254)

The tensor-valued function R
4
(r) describes the spatial structure of the velocity "eld; incompressibil-

ity implies + 'R
4
(r),0 (see [341], Section 22.4). One readily observes that the velocity "eld so

de"ned is not an ordinary random "eld, since the variance of such a "eld is in"nite. This divergence of
the mean-square velocity is necessary for a nontrivial advection in a model with zero correlation time.

Random "elds with delta correlations arise naturally in a variety of simpli"ed physical models,
and they can be given a clear mathematical meaning as generalized, or distribution-valued, random
"elds (see [118] or [341], Ch. 24,25). The complication in the current context is the appearance of
such a random "eld as a coe$cient in the advection}di!usion PDE

R¹(x, t)/Rt#*(x, t) '+¹(x, t)"iD¹(x, t) ,

¹(x,t"0)"¹
0
(x) .

We can avoid the di$culty of making sense of the solution of a PDE with random, distribution-
valued coe$cients by reformulating the mathematical problem in terms of the -ow of the #uid.
That is, we can specify the mapping of the location of #uid elements from one time to another, and
not make explicit reference to the velocity "eld. The RDT velocity "eld induces a random Brownian
-ow of the #uid, in which every #uid element undergoes a Brownian motion, but the motions of
di!erent #uid elements are correlated with one another according to the spatial structure tensor
R

4
(r) [189]. A Brownian #ow makes rigorous mathematical sense of a #uid #ow with a Gaussian,

delta-correlated velocity "eld just as mathematical Brownian motion makes sense out of the
evolution of a particle with a Gaussian, delta-correlated velocity. Through the mathematical
framework of a Brownian #ow, one can make rigorous sense of the advection of a passive scalar
"eld in the RDT velocity "eld and derive all the results in this section without having to deal
directly with the distribution-valued velocity "eld itself. We only wish to indicate that a rigorous
formalism is possible, though we will not dwell on it here. The reader may consult [185] or [349]
for the technical implementation of these ideas.

4.1.2. Closed equations for mean and correlation function of passive scalar xeld
Though the RDT velocity "eld model is limited in simulating physical reality through its lack of
inertia or memory e!ects, it has the virtue of having closed equations for the mean and correlation
functions of the passive scalar "eld. The usual turbulence moment closure problem [227] does not
arise in the RDT model. Thus, one has the opportunity for much more precise mathematical
analysis of the passive scalar "eld statistics than is generally possible. In particular, one can study
the advection of a passive scalar "eld in a velocity "eld with long-range spatial correlations and an
inertial range of self-similar behavior.

We can think of the Simple Shear Model and RDT Models as complementary simpli"ed models
which permit a mathematical study of various aspects of turbulent di!usion in velocity "elds. The
Simple Shear Model restricts the geometry of the #ow, but permits an arbitrary speci"cation of the
spatio-temporal statistics. The RDT Model assumes a special (and unphysical) temporal structure,
but permits a multi-dimensional #ow geometry with an arbitrary speci"cation of the spatial
statistics.
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We will present the PDEs for the mean and second-order correlation function of the passive
scalar "eld in turn. The fact that closed equations could be written down for these statistical
functions was "rst pointed out by Kraichnan [179] and Kazantsev [152] through formal argu-
ments. Since then, these equations have been derived in several contexts by various techniques,
some mathematical and rigorous [185,206,208,246,244,349] and some formal [95,117,164].

4.1.2.1. Mean passive scalar density. In the RDT model, the mean passive scalar "eld S¹(x, t)T
obeys an ordinary di!usion equation with enhanced coe$cient:

RS¹(x, t)T/Rt"+ ' ((iI#1
2
R

4
(0))+S¹(x, t)T) ,

S¹
0
(x, t"0)T"S¹

0
(x)T . (255)

Here I denotes the identity matrix, and R
4
(r) is the spatial structure tensor of the velocity "eld; see

Eq. (254). R
4
(0) is a nonnegative-de"nite tensor since S*(x@, t)?*(x@, t)T"R

4
(0)d(t).

For a statistically isotropic velocity "eld, R
4
(0) will simply be a multiple of the identity, say

R
4
(0)"R

0
I, with R

0
'0, and one can simply say the scalar di!usion constant for the mean

passive scalar density is enhanced from i to i#1
2
R

0
. The turbulent enhancement R

0
is simply

a measure of the strength of the velocity "eld, which may be formally thought of as the product of
the (very small) velocity correlation time and the (very large) single-point velocity variance.
(Smooth the delta function in the expression (254) over a very small time interval q

#
to see this). This

is in agreement with what Taylor's formula for the turbulent di!usivity would produce in the zero
correlation time limit (Section 3.1.3).

The reason that the mean passive scalar density obey a simple di!usion equation is that the
trajectory of a single tracer particle in the RDT model is given as a sum of two independent
Brownian motions: one with di!usivity i from molecular di!usion, and one with di!usivity
1
2
R

0
from advection by the RDT velocity "eld. The superposition of these independent motions

produces an e!ective Brownian motion with di!usivity i#1
2
R

0
. The equation for the mean passive

scalar density then follows from its relation to the statistics of a single tracer trajectory (see
Section 3.4).

None of these comments should lead the reader to conclude that the white noise velocity "eld
leads to trivial behavior for the passive scalar. It is only the mean passive scalar density (or
equivalently, the statistics of the motion of a single tracer) which has this simple e!ective behavior.
When we turn to statistics of the #uctuations, the situation is much more interesting.

4.1.2.2. Second-order passive scalar correlation function. Until now, we have focused for the most
part on the behavior of the mean concentration of the passive scalar, or equivalently, the motion of
a single tracer particle. (An exception was in our discussion of the pair-distance function and fractal
interfaces in Section 3.5.) We wish in this section to focus on the nature of the #uctuations of the
passive scalar "eld. This is particularly relevant when considering the transport of dangerous
quantities (pollutants or hazardous chemicals). In these cases one is more interested in the
probability of the passive scalar density exceeding some certain safety threshold, rather than simply
the (presumably) very low mean value. (See for example the environmental science books [78,265].)
Knowledge of the statistics of the #uctuations are important in general geophysical and engineer-
ing applications, as they give information about how rapidly a passive scalar becomes `well-mixeda
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in a turbulent #uid and about the rate of growth of a cloud of passive scalar released into
a turbulent environment, as we saw in Section 3.5.

From a fundamental physical viewpoint, the statistics of the #uctuations of the passive scalar
"eld reveal much more about the small-scale structure of the velocity "eld than the mean does. This
is particularly interesting in fully developed turbulence, which we shall be considering, in which the
turbulent velocity "eld has its energy distributed over a wide range of scales. The mean passive
scalar density is most sensitive to the large-scale #uctuations of the velocity "eld, in which most of
the energy resides (see Section 3.5). The e!ects of the small-scale velocity #uctuations are manifes-
ted primarily in the small-scale passive scalar #uctuations. This is particularly interesting in
physical turbulence theory, where the statistics of the velocity #uctuations on small scales are at
least approximately universal. That is, while the large-scale structure of a turbulent velocity "eld
depends strongly on the system con"guration (pipe #ow, jet #ow, shear #ow, boundary layer #ow),
the small scales have several common features in these di!erent settings. (See [309] for a recent
review.) One might expect the passive scalar #uctuations on small scales to be universal as well. It is
thus of interest to discover to what extent this is true, and, furthermore, to describe these universal
statistics of the passive scalar "eld.

A fundamental statistic of the passive scalar "eld from which one can determine some basic
properties about the spatial structure of the #uctuations is the (equal-time) second-order passive
scalar (PS) correlation function:

S¹(x, t)¹(x@, t)T .

For simplicity, we shall assume that the passive scalar "eld is a statistically homogenous random
"eld with mean zero, so that in particular, the second-order PS correlation function depends only
on time and the relative displacement of the observation points x!x@:

P
2
(r, t),S¹(x, t)¹(x#r, t)T .

We will discuss the evolution of the passive scalar variance,

P
2
(0, t)"S(¹(x, t))2T ,

which gives the simplest measure of the amplitude of the passive scalar #uctuations, in an RDT
model with shear #ow geometry in Section 4.2.1. Subsequently, we elaborate upon the spatial
structure of the passive scalar "eld revealed by the full second-order PS correlation function in an
isotropic RDT model. These analyses are possible due to the fact that in the RDT model, the PS
correlation function obeys a closed PDE, which we now present.

We shall assume that the passive scalar "eld is at all times a mean zero, statistically homogenous
random "eld; the self-consistency of this assumption is easily checked. Then the second-order
passive scalar correlation function P

2
(r, t),S¹(x#r, t)¹(x, t)T obeys the following variable-

coe$cient di!usion PDE:
Evolution of second-order passive scalar correlation function

RP
2
(r, t)
Rt "+ ' ((2iI#D

4
(r))+P

2
(r, t)) ,

P
2
(r, t"0)"P0

2
(r) . (256)
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The function P0
2
(r) is just the correlation function of the initial data:

P0
2
(r),S¹

0
(x)¹

0
(x#r)T .

The turbulent contribution to the di!usivity of P
2
(r, t) is given by the tensor

D
4
(r)"R

4
(0)!1

2
(R

4
(r)#Rs

4
(r)) . (257)

We call this tensor D
4
(r) the velocity structure tensor. It is just (half) the correlation tensor of the

velocity di+erences at locations with relative spatial separation r:

1
2
S(*(x#r, t#q)!*(x, t))?(*(x#r, t#q)!*(x, t))T"D

4
(r)d(q) , (258)

as may be checked by expansion of the binomial product and the de"nition (254) for the velocity
correlation tensor R

4
(r). It is readily seen that D

4
(r) is a nonnegative de"nite tensor for each r.

Connection with relative di+usivity. The appearance of the velocity structure tensor as the
enhanced turbulent di!usivity in Eq. (256) may be understood through the well-known connection
between the evolution of the second-order correlation function (of a statistically homogenous
random "eld) and the relative di!usion of a pair of tracer particles. This connection parallels that
between the mean passive scalar density and the absolute di!usion of a single tracer trajectory;
further discussion may be found, for example, in [164]. Here it su$ces to observe that if the passive
scalar correlation function obeys a di!usion equation, as it does in the RDT model, then the
di!usion coe$cient of the PDE corresponds exactly to the relative di+usivity of a pair of tracer
particles. That is, in the RDT model, if X(1)(t) and X(2)(t) denote the random tracer trajectories
for particles starting at x(1) and x(2) at time 0, then under the current conditions of statistical
homogeneity:

1
2

d
dt

S(X(1)(t)!X(2)(t))?(X(1)(t)!X(2)(t))TK
t/0

"2iI#D
4
(x(1)!x(2)) .

In particular, the rate of growth of the mean-square distance between a pair of tracers momentarily
separated at time 0 by displacement vector r"x(1)!x(2) is

1
2

d
dt

SDX(1)(t)!X(2)(t)D2TK
t/0

"2di#TrD
4
(r) . (259)

The "rst term arises from the independent Brownian motions which the tracers undergo due to
molecular di!usion. The second contribution to the relative di!usivity is proportional to the
mean-square velocity di+erence at two points displaced by r. Due to spatial correlations in the
velocity "eld, this mean-square velocity di!erence will start at zero for zero displacement, and
generally grow as the displacement is increased, and saturate at some constant value when the
displacement greatly exceed the correlation length of the velocity "eld. Turbulent di!usion is thus
more e!ective at separating tracers which are farther apart than those which are closer together.

The RDT model explicitly re#ects Richardson's hypothesis that the relative di!usivity should
depend only on the current separation of the particles [284]. Richardson deduced that this feature
can give rise to a strongly superlinear rate of growth of the mean-square separation of a pair of
tracers in a turbulent #ow. We shall discuss this issue at more length in Section 4.2.2. Batchelor
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[27] suggests that the relative di!usivity should actually depend on the time since the tracer release
in real-world turbulent di!usion. As the RDT model velocity "eld has no memory, this consid-
eration does not arise here. The reader may refer to [132] for a nice unifying discussion of
Richardson's and Batchelor's ideas.

We have thus far indicated why the enhanced di!usion of the PS correlation function
P
2
(r, t) is given by D

4
(r), provided that P

2
(r, t) obeys a di!usion equation. The fact that P

2
(r, t)

obeys a (variable-coe$cient) di!usion equation in the "rst place relies mathematically on the
fact that a pair of tracer particles in the RDT model undergo a coupled Brownian motion.
The coupling is due to spatial correlations in the #ow, and is completely described by the tensor
D

4
(r).

4.1.2.3. Dependence of passive scalar mean and correlation function on velocity xeld spatial struc-
ture. We mentioned above the general fact that the mean passive scalar density is sensitive
primarily to the large-scale features of the velocity "eld, and that the small-scale structure of the
velocity "eld is much more strongly re#ected in the #uctuations of the passive scalar "eld. The RDT
model brings this out quite clearly.

The mean passive scalar density S¹(x, t)T obeys an ordinary di!usion equation (255), with the
di!usivity enhanced by the nonnegative de"nite tensor R

4
(0) associated to the absolute strength

(i.e., the single-point variance) of the velocity "eld. In turbulence, most of the energy is contained in
the largest scales of the velocity "eld, so R

4
(0) primarily depends upon the macroscopic features of

the velocity "eld. On the other hand, in a statistically homogenous setting, the second-order PS
correlation function P

2
(r, t)"S¹(x, t)¹(x#r, t)T evolves according to a variable coe$cient di!u-

sion PDE. The di!usivity tensor is enhanced by the velocity structure tensor D
4
(r), which describes

velocity di!erences separated by arbitrary distances r. Thus, the second-order statistics of a statist-
ically homogenous passive scalar "eld will be directly sensitive to the small-scale spatial structure
of the velocity "eld.

We will explore in Sections 4.2 and 4.3 how universal small-scale features of the velocity "eld are
transmitted to universal small-scale features of the passive scalar "eld in the RDT model.

4.1.3. Velocity xeld model with two distinct short correlation time limits
Before proceeding with the applications of the RDT model, we wish to remark upon the domain

of its validity. Certainly, the equations apply for the Gaussian delta-correlated velocity "eld (or its
mathematical interpretation as a Brownian #ow). One might further ask, though, in what sense the
RDT model equations also furnish an asymptotic description of the statistics of a passive scalar
"eld advected by a velocity "eld with a "nite but short correlation time relative to the advection
time scales. While the RDT model does describe a particular limit with short correlation time of
a large class of random velocity "elds, we will present an example of a velocity "eld for which two
di!erent short correlation time limits can be taken. The mean and correlation function of the
passive scalar "eld converge in one limit to solutions of the RDT model equations, and converge in
the other limit to solutions of spatially nonlocal pseudo-di!erential equations (Eqs. (264) and
(265)). Thus, the possibility of writing closed di!usion equations for the passive scalar statistics is
not merely a consequence of the correlation time being very short relative to the advection time
scales.
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4.1.3.1. Central limit rescaling. We state "rst a positive way in which the RDT model describes
a certain short correlation time limit: If one is given a (generally non-Gaussian) random velocity
"eld *(x, t) satisfying suitable mixing and regularity conditions, then under the particular rescaling

*(e)(x, t),e~1@2*(x, t/e) , (260)

the statistics of the passive scalar "eld advected by *(e)(x, t) converge as eP0 to the solutions of the
RDT model equations [53,185]. Note that the particular rescaling in Eq. (260) is of a `central limita
type, and is moreover mathematically equivalent to (but somehwat conceptually distinct from)
the Kubo rescaling discussed in Section 2.4.1. Over an order unity time interval, the advection
process formally becomes a sum of a large number N&O(e~1) of roughly uncorrelated, mean
zero, identically distributed pushes with duration dq&O(e) and displacement magnitude
dDxD&D*(e)Ddq&O(e1@2)&O(N~1@2). We may say therefore that a `central limit theorem in the
environmenta holds; that is, as eP0, the non-Gaussian velocity "eld *(e)(x, t) acts more and more
like a Gaussian, rapidly decorrelating velocity "eld as far as passive scalar advection is concerned.
The result that central limit scaling of a broad class of velocity "elds gives rise to passive scalar
dynamics described by di!usion equations is in accord with the well-known fact that central limit
scaling of discrete random walks generally leads to continuum processes with di!usive behavior,
such as Brownian motion ([102], Section 14.6).

4.1.3.2. An explicit alternative short correlation time limit. The limit theorem stated above may
tempt one to conclude that the RDT model universally describes the advection of a passive scalar
"eld by a velocity "eld with very short correlation time. That is, one might suppose that the
speci"cation that the RDT velocity "eld is Gaussian is gratuitous, since the equations of the RDT
model also describe the short correlation time limit of a large class of non-Gaussian models. In fact,
we now show by example that there exist limits in which the velocity correlation time scale is much
smaller than the advection time scale, but which do not give rise to the RDT model equations for
the passive scalar statistics.

For this purpose, we use a simple shear Poisson blob velocity "eld model, introduced by
Avellaneda and the "rst author in [14]. The velocity "eld is taken as a random two-dimensional
shear #ow:

*(x, y, t)"C
0

v(x, t)D .

The random "eld v(x, t) is de"ned as

v(x, t)"+
n

W(x!m
n
, t!q

n
)

where (m
n
, q

n
) denumerates a space}time Poisson process of unit intensity [151], and W is some

smooth, compactly supported `bloba structure function with zero integral:

P
=

~=
P

=

~=

W(x, t) dxdt"0 . (261)
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That is, the velocity "eld is a superposition of the blob functions distributed according to
a space}time Poisson process. It has mean zero and a "nite correlation function:

RI (x, t),Sv(x@, t@)v(x@#x, t@#t)T"P
=

~=
P

=

~=

W(x@, t@)W(x@#x, t@#t) dx@dt@ .

We now de"ne two families of Poisson blob velocity "eld models generated from the given Poisson
blob velocity "eld under two di!erent rescalings, each describing a di!erent limit process in which
the correlation time becomes small. The family of velocity "elds under central limit rescaling is
de"ned:

v(e)
CL

(x, t)"+
n

e~1@2W(x!m(e)
n

, (t!q(e)
n

)/e) , (262)

where the intensity of the Poisson process (m(e)
n

, q(e)
n

) is taken as e~1. It can be shown that this
de"nition is statistically equivalent to the rescaling (260).

The family of velocity "eld models generated under the ,xed intensity rescaling of the original
Poisson blob model is de"ned:

v(e)
FI

(x, t)"+
n

e~1W(x!m
n
, (t!q

n
)/e) , (263)

with the intensity of the Poisson process (m
n
, q

n
) "xed at unity and the amplitude of the blob

functions rescaled from the prototype W more strongly than in the central limit rescaling.
At e"1, both families coincide with the unscaled Poisson blob velocity "eld:

v(x, t)"+
n

W(x!m
n
, t!q

n
) ,

where the Poisson process (m
n
, q

n
) has unit intensity. As eP0, the second-order correlation function

of each rescaled family approaches the same delta-correlated form:

lim
e?0

Sv(e)
CL

(x@, t@)v(e)
CL

(x@#x, t@#t)T"lim
e?0

Sv(e)
FI

(x@, t@)v(e)
FI

(x@#x, t@#t)T"RI
s
(x)d(t) ,

RI
s
(x),P

=

~=

RI (x, t) dt .

Moreover, both rescalings give rise to a limit in which the correlation time is O(e) and short
compared with the advection time scale J1/S(v(e)(x, t))2T1@2&O(e1@2).

Now we de"ne ¹(e)
CL

(x, y, t) and ¹(e)
FI

(x, y, t) to be the random passive scalar "elds solving the
advection-di!usion equation with rescaled velocity "elds v(e)

CL
(x, t) and v(e)

FI
(x, t), respectively. In

accordance with the above discussion, under central limit rescaling, the passive scalar statistics
converge to those governed by the RDT model. Thus, as eP0, the mean S¹(e)

CL
(x, y, t)T and the

correlation function S¹(e)
CL

(x@, y@, t)¹(e)
CL

(x@#x, y@#y, t)T converge to solutions of the di!usion
equations associated to an RDT model velocity "eld vJ (x, t) with correlation function
SvJ (x@, t@)vJ (x@#x, t@#t)T"RI

s
(x)d(t).
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On the other hand, one can show [186] that the mean S¹(e)
FI

(x, y, t)T and correlation function
S¹(e)

FI
(x@, y@, t)¹(e)

FI
(x@#x, y@#y, t)T of the family generated by "xed intensity rescaling converge as

eP0 to "nite limits PM
1,FI

(x, y, t) and PM
2,FI

(x, y, t) which solve pseudo-di+erential equations:

RPM
1,FI

(x, y, t)
Rt "iDPM

1,FI
(x, y, t)#;

1,FIA
R
RyBPM 1,FI(x, y, t) ,

PM
1,FI

(x, y, t"0)"S¹
0
(x, y)T , (264)

and

RPM
2,FI

(x, y, t)
Rt "2iDPM

1,FI
(x, y, t)#;

2,FIAx,
R
RyBPM 1,FI(x, y, t) ,

PM
2,FI

(x, y, t"0)"S¹
0
(x@, y@)¹

0
(x@#x, y@#y)T . (265)

The pseudo-di!erential operators are speci"ed by

;
1,FI

(k)"P
=

~=

(e~2n*kWM (m)!1) dm ,

;
2,FI

(x, k)"P
=

~=

(e~2n*k(WM (x`m)~WM (m))!1) dm ,

with

WM (x),P
=

~=

W(x, t) dt .

Since;
1,FI

(k) and;
2,FI

(x, k) are, in general, transcendental functions of k, the mean and correlation
function of the limiting passive scalar "eld under the "xed intensity rescaling cannot be expressed
as solutions of PDEs. Their governing equations are intrinsically nonlocal.

The upshot is that under central limit rescaling, a central limit theorem `in the environmenta
applies, and the trajectories of tracer particles begin to resemble a coupled Brownian motion as the
correlation time becomes short. But in the short correlation limit of the Poisson blob model which
produces a distinct limiting behavior, the tracer trajectories retain a Poissonian character and do
not converge to Brownian motions. The validity of the RDT model equations speci"cally requires
that the tracers di!use according to Brownian motion processes with no Poissonian components.

Put another way, in the short correlation time limit under central limit rescaling (262), the
Poisson blob velocity "eld acts on the tracer trajectories like a Gaussian random, delta-correlated
velocity "eld, whereas under "xed intensity rescaling, it acts on the tracer trajectories like
a non-Gaussian delta-correlated velocity "eld and the RDT model equations do not apply. These
examples are due to the second author and further discussion may be found in [185,186].

4.1.4. Energy spectra with inertial range for RDT model
Thus far, we have discussed the RDT model in a general manner; for applications we must

specify the spatial correlation tensor R
4
(x) appearing in the velocity correlation function:

S*(x, t)?*(x#r, t#q)T"R
4
(r)d(q) .
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As usual, we de"ne the velocity correlation function through its spectrum. For simplicity and
continuity with our discussion in Section 3, we consider "rst the case where the RDT velocity "eld
is a simple two-dimensional shear #ow

*(x, y, t)"C
0

v(x, t)D ,

so that the velocity correlation function is simply described by a scalar function:

Sv(x@, t@)v(x@#x, t@#t)T"R
4
(x)d(t) . (266)

Then we write the spatial correlation function in terms of its spectral density:

R
4
(x)"P

=

~=

e2n*kxEI (DkD) dk"2P
=

0

cos(2nkx)EI (k) dk .

Please note that even though EI (k) depends only on wavenumber, it is really the spatio-temporal
energy spectrum EI (k,u) discussed in Section 3.3. It is simply independent of the frequency variable
u, as is characteristic of delta-correlated `white noisea processes.

We would like to simulate a fully developed turbulent #ow as closely as possible with the RDT
model velocity "eld, but of course we must respect the short correlation time inherent in the model.
A natural way to produce such a model, given our discussion in Paragraph 4.1.3.1, is to start with
a velocity "eld model with a reasonable spatio-temporal energy spectrum EI (k,u), and then pass to
a short correlation time limit through the central limit rescaling (260). Thus, we posit a spatio-
temporal energy spectrum corresponding to the Kolmogorov similarity hypotheses stated in
Paragraph 3.4.3.1, in which the energy spectrum has the inertial range form E(k)+C

K
eN 2@3k~5@3

and the correlation time of an inertial range velocity #uctuation of wavenumber k scales as
q
%
(k)+eN~1@3k~2@3. The spatio-temporal energy spectrum is then constructed from these quantities

as follows (199):

EI (k,u) " E(k)/(uq
%
(k))q

%
(k)

" C
K
eN 2@3k~5@3t

0
(k¸

0
)t

=
(k¸

K
)/(ueN~1@3k~2@3)(eN~1@3k~2@3)

" C
K
eN 1@3k~7@3/(ueN~1@3k~2@3)t

0
(k¸

0
)t

=
(k¸

K
) ,

where ¸
0

is the integral length scale, ¸
K

is the Kolmogorov dissipation length scale, C
K

is the
Kolmogorov constant, t

0
and t

=
are infrared and ultraviolet cuto!s, respectively, and / is the

temporal structure function ( :=
~=

/(u) du"1). Performing the central limit rescaling

*(e)(x, t),e~1@2*(x, t/e)

induces the following rescaling of the spatio-temporal energy spectrum:

EI (e)(k,u)"EI (k, eu) .

Passing to the eP0 limit, we see that the RDT model velocity "eld induced by a central limit
rescaling of a Kolmogorov-type turbulent model is speci"ed by the spatio-temporal energy
spectrum:

EI
RDT

(k)"C
K
/(0)eN 1@3k~7@3t

0
(k¸

0
)t

=
(k¸

K
) .
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We note that in the RDT model, after central limit rescaling, the Kolmogorov spectrum formally
corresponds to the exponent 7/3.

As we did in Section 3, we imbed this particular spectrum in a more general family of models
with the same qualitative features:

EI (k)"A
E
k~1~2Ht

0
(k¸

0
)t

=
(k¸

K
) , (267)

and we have dropped the `RDTa su$x. The parameter H(1 describes the inertial-range scaling,
with H"2/3 corresponding to the central limit rescaling of Kolmogorov velocity "eld, and A

E
is

some prefactor of appropriate dimensions. We will be most interested in the case 0(H(1, which
describe velocity "elds with long-range spatial-correlations typical of turbulence (2(e(4 in the
parameterization of Section 3). If we imagine replacing the delta function in Eq. (266) by a smooth
approximation, then the parameter H would be exactly the Hurst exponent ([215], Section 27)
characterizing the fractal spatial structure of the velocity "eld in the inertial-range of scales (see
Eq. (269) and subsequent discussion). The Hurst exponent of a true Kolmogorov velocity "eld is
1/3; the reason the value H"2/3 arises from a central limit of this velocity "eld is because
#uctuations decorrelate in time at a wavenumber-dependent rate.

One can specify similar turbulent spectra for velocity "elds with multi-dimensional geometry
through the use of tensors, and the general remarks above persist without change. We shall in
particular construct a multi-dimensional velocity "eld with isotropic statistics in Paragraph 4.2.2.1.

4.2. Evolution of the passive scalar correlation function through an inertial range of scales

We now utilize the explicit PDE (256) for the second-order passive scalar correlation function in
the RDT model to explore the statistical evolution of passive scalar #uctuations. It is clear from the
di!usive form of the equation that, in general, the amplitude of the #uctuations in a freely evolving
passive scalar "eld will be damped, and the typical length scale of the #uctuations will increase due
to turbulent spreading. It is instructive to examine a situation in which a universal description is
possible. We thus consider a fully developed turbulent #ow with well-developed inertial range, and
focus on a time interval during which the predominant length scale of the #uctuations lies within
the inertial range and is much larger than the length scale of the initial disturbance. In such an
asymptotic regime, one might plausibly expect that most of the details about the initial structure of
the PS correlation function are irrelevant, and that the dynamics are driven primarily by the
inertial-range turbulent #uctuations which have universal, self-similar properties. We will see that
this is indeed the case in the RDT model. The asymptotic regime just described is the same as that
for which we computed fractal dimensions of scalar interfaces in Section 3.5. Another theme we will
emphasize is the distinction between the action of turbulent di!usion and bare molecular di!usion
on the passive scalar "eld, particularly when the turbulent velocity "eld has very strong long-range
correlations (H'0).

We "rst revisit turbulent di!usion in a shear #ow, now with rapid decorrelation in time, and
derive formulas for the rate of dissipation of the passive scalar #uctuations as they evolve through
the inertial range of scales (Section 4.2.1). When the velocity "eld has long-range spatial correla-
tions typical of fully developed turbulence, the amplitude of the passive scalar #uctuations will
decay anomalously according to a power law with the exponent di!ering from that corresponding
to ordinary di!usion. The methodology involves the relation of solutions of the RDT model
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di!usion PDE to an associated quantum mechanics SchroK dinger problem with potential related to
the spatial structure of the shear #ow [206]. This strategy will play a central role in the derivation
of results concerning large-scale passive scalar intermittency in a closely related model to be
discussed in Section 5.

Next, in Section 4.2.2, we investigate more extensively the spreading of passive scalar #uctu-
ations through the inertial range of scales in an isotropic RDT model. A completely self-similar
solution for the second-order PS correlation function may be obtained in this asymptotic regime,
and from it we may deduce the rate of decay of the passive scalar variance, the rate at which the
length scales of the #uctuations grow with time, and the fractalizing (roughening) properties of
turbulent di!usion.

4.2.1. Anomalous decay of passive scalar yuctuations
We begin our study of passive scalar #uctuations in the RDT model with a two-dimensional

RDT shear #ow with statistics described in Section 4.1.4. The RDT model equation (256) for the
second-order PS correlation function P

2
(x, y, t)"S¹(x@, y@, t)¹(x@#x, y@#y, t)T can then be ex-

pressed in terms of scalar functions:

RP
2
(x, y, t)/Rt"2iDP

2
(x, y, t)#D

4
(x)R2P

2
(x, y, t)/Ry2 ,

P
2
(x, y, t"0)"P0

2
(x, y) , (268)

with the turbulent di!usion coe$cient given by

D
4
(x)"R

4
(0)!R

4
(x) .

Note that this PDE is very similar to the PDE for the pair-distance function in a turbulent shear
#ow which we derived in Section 3.5.1. Indeed, it is a general fact that the second order PS
correlation function and pair-distance function satisfy the same PDE (see for example [185] or
[196]). The PDE derived in Section 3.5.1 permitted nontrivial temporal correlations, while here we
have accounted for the presence of molecular di!usivity. Including both e!ects simultaneously is
a more challenging and interesting task, as we indicated at the end of Section 3.5.

Now, we describe the behavior of the passive scalar correlation function P
2
(x, y, t) as it evolves

through the inertial range of scales. For such a regime to exist, we must have that ¸
K
;¸

0
and that

the length scale ¸ of the passive scalar correlation function satis"es ¸
K
;¸;¸

0
. As we indicated

in Section 3.5.1, the ¸
0
PR limit may be directly taken in Eq. (268) for all H(1. Even though

the spatial correlation function of the velocity "eld R
4
(x) for 0(H(1 approaches in"nity in this

limit, these divergences cancel in the expression for D
4
(x), and

DM
4
(x), lim

L0?=

D
4
(x)"2A

EP
=

0

(1!cos(2pkx))k~1~2Ht
=

(k¸
K
) dk

is "nite.
Having taken the ¸

0
PR limit, we then need to restrict our attention to time scales su$ciently

large so that the length scale of the PS correlation function is much larger than both ¸
K

and its
initial length scale. We do this through a large-space, long-time rescaling chosen so that the
asymptotic evolution PS correlation function is faithfully and "nitely expressed in terms of these
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rescaled variables. We call this rescaling an `inertial range renormalizationa; in the language of the
renormalization group we are looking for rescalings leading to a nontrivial `"xed pointa. A similar
renormalization was carried out for a spatio-temporal shear #ow in Section 3.5.4, but we will not
enforce isotropy of the renormalization group here. The qualitative character of the renormaliz-
ation depends on whether H(0 or H'0. We shall consider each case in turn, "rst deriving the
PDE describing the inertial-range evolution of the PS correlation function and then computing the
rate of decay of the passive scalar variance S(¹(x,y, t))2T"P

2
(0, 0, t). Further details may be found

in the original work [206], and the statements presented here can be veri"ed rigorously through the
Feynman-Kac representation developed in that paper.

4.2.1.1. Inertial range renormalization for H(0. In the parameter regime with H(0, the turbu-
lent velocity "eld does not have very strong long-range correlations, and the turbulent di!usion
coe$cient DM

4
(x) approaches a "nite limit as the spatial scale x becomes arbitrarily large:

lim
x?=

DM
4
(x)"RM

4
(0)"2P

=

0

A
E
k~1~2Ht

=
(k¸

K
) dk .

Thus, the inertial-range evolution for the PS correlation function may be described by the standard
di!usive renormalization:

P(j)
2

(x, y, t)"j~2P
2A

x
j
,
y
j
,

t
j2B .

The limiting function PM
2
(x, y, t),limj?0

P(j)
2

(x, y, t) (which may be viewed as a "xed point of the
renormalization) obeys a constant-coe$cient di!usion PDE with enhanced di!usion coe$cient
along the shearing direction:

RPM
2
(x, y, t)
Rt "2i

R2PM
2
(x, y, t)
Rx2

#(2i#RM
s
(0))
R2PM

2
(x, y, t)
Ry2

,

PM
2
(x, y, t"0)"M0

2
d(x)d(y) ,

where M0
2
":R2P0

2
(x, y) dx dy. The renormalized PS correlation function PM

2
(x, y, t) thus assumes

a standard (but anisotropic) Gaussian form. In particular, the variance S(¹M (x, y, t))2T of the
renormalized passive scalar "eld ¹M (x, y, t) decays according to a power law with the same exponent
as it would under molecular di!usion alone:

S(¹M (x, y, t))2T"PM
2
(0, 0, t)"M0

2
(4p)~1(2i#RM

s
(0))~1@2(2i)~1@2t~1 .

For the case H(0 just discussed, the only role of the random velocity "eld in the decay of the
passive scalar variance is to decrease the coe$cient through the term RM

4
(0).

4.2.1.2. Inertial range renormalization for H'0. Turbulence typically has very long-range spatial
correlations, however, and corresponds to the class H'0 which we now discuss. The standard
di!usive renormalization fails in this case to produce a "nite limiting inertial-range behavior,
because the turbulent di!usion coe$cient DM

4
(x) diverges as xPR:

lim
@x@?=

DM
4
(x)"DIDxD2H . (269)
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The numerical coe$cient in Eq. (269) is given by

DI"2A
EP

=

0

(1!cos(2pk))k~1~2Hdk"!A
E
p2H`1@2

C(!H)
C(H#1

2
)
,

where C( ) ) is the Gamma function [195]. The power law growth of DM
4
(x) in Eq. (269) manifests the

property that, within the inertial range of scales, the turbulent separation of particles becomes
stronger and stronger as their relative distance increases.

To capture the behavior of the PS correlation function through the inertial range of scales, we
must renormalize according to the following prescription [206]:

P(j)
2

(x, y, t),j~2~HP
2A

x
j
,

y
j1`H

,
t
j2B . (270)

With Eq. (269), one then readily checks that the renormalized inertial-range limit PM
2
(x, y, t),

limj?=
P(j)

2
(x, y, t) obeys the variable-coe$cient di!usion PDE:

RPM
2
(x, y, t)
Rt "2i

R2PM
2
(x, y, t)
Rx2

#DIDxD2H
R2PM

2
(x, y, t)
Ry2

,

PM
2
(x, y, t"0)"M0

2
d(x)d(y) .

(271)

The inertial-range limit which we have just derived is completely self-similar in the terminology of
Barenblatt [25]. All length scales have disappeared in this asymptotic regime, and the only
remnant of the initial data is the total spatial integral of the initial PS correlation function, M0

2
,

which is an exactly conserved quantity. A related fact is the invariance of the PDE (271) under the
rescalings de"ning the renormalization (270). Therefore, in the RDT model under discussion, the
second order PS correlation function is universal and scale-invariant within the inertial range of
scales, when the random velocity "eld has very long range correlations H'0. We will examine
the self-similarity properties of the passive scalar correlation function in an isotropic version of the
RDT model in Section 4.2.2. Here, we shall simply examine the rate of decay of the variance of
the renormalized passive scalar "eld S¹M (x, y, t)2T, and show that it decays anomalously with
a power law t~1~H@2.

The fact that the turbulent #ow is a shear #ow along the y direction puts the PDE (271) for
PM
2
(x, y, t) in a form well suited for a partial Fourier transform in the y variable [206]:

PMK
2
(x, k, t)"P

=

~=

e2p*kyPM
2
(x, y, t) dy .

The resulting PDE for PM K
2
(x, k, t) takes the form of a quantum mechanical SchroK dinger equation (in

imaginary time):

RPMK
2
(x, k, t)
Rt "2i

R2PMK
2
(x, k, t)
Rx2

!4p2DIk2DxD2HPMK
2
(x, k, t) ,

PMK
2
(x, k, t"0)"M0

2
d(x) .

(272)
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Since the e!ective potential function 4p2DIk2DxD2H grows su$ciently rapidly as DxDPR, the
operator on the right-hand side has pure point spectrum [323], and the solution to Eq. (272) may
be represented as a superposition of orthonormal eigenfunctions corresponding to `bound statesa
of the corresponding quantum mechanical system. This is in contrast with the situation for H(0,
in which the e!ective potential would be a constant function, and the quantum mechanical
operator would correspond to a free particle and have purely continuous spectrum.

De"ne now Mt
j
(x)N to be the normalized eigenfunctions of a nondimensionalized SchroK dinger

operator corresponding to the right-hand side of Eq. (272):

!

d2t
j
(x)

dx2
#DxD2Ht

j
(x)"k

j
t

j
(x) ,

P
=

~=

(t
j
(x))2dx"1 .

We only need to account for the even real eigenfunctions due to the parity invariance of the
potential and the evenness of our initial data. The `energya eigenvalues are k

1
(k

2
(k

3
(2,

and k
1
'0 is guaranteed by the positivity of the potential. Through the rescaling:

tI
j
(x)"(2p2DIk2)1@(4`4H)i~1@(4`4H)t

j
((2p2DIk2)1@(2`2H)i~1@(2`2H)x) ,

kJ
j
"2iH@(H`1)(2p2DIk2)1@(H`1)k

j
,

the eigenfunction expansion of the solution to Eq. (272) reads

P1K
2
(x, k, t)"

=
+
j/1

e~kJ jt tI
j
(x)P

=

~=

tI
j
(x)d(x) dx"

=
+
j/1

e~kJ jttI
j
(x)tI

j
(0) .

Now, the passive scalar variance is determined by this partial Fourier transform as follows:

S(¹M (x, y, t))2T"P1K
2
(0, 0, t)"P

=

~=

P1K
2
(0, k, t) dk .

We compute this quantity by expressing P1K
2
(x, k, t) in terms of the parameter-free eigenfunctions

and eigenvalues t
j
(x) and k

j
:

S(¹M (x, y, t))2T"P
=

~=

P1K
2
(0, k, t) dk"P

=

~=

=
+
j/1

(2p2DIk2)1@(2`2H)i~1@(2`2H)Dt
j
(0)D2

]exp(!2iH@(H`1)(2p2DIk2)1@(H`1)k
j
t) dk"C

H
i~(H`1)@2(2p2DI)~1@2t~(H`2)@2 ,

where the numerical constant:

C
H
"2~(H`2)@2(H#1)C((H#2)/2)

=
+
j/1

k~(H`2)@2
j

Dt
j
(0)D2 .

In particular, we see that the passive scalar variance decays through the inertial range according to
an anomalous power law t~(H`2)@2 for H'0, whereas for H(0, the passive scalar variance decays
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according to the ordinary di!usive power law t~1. Note that the passive scalar variance decays
more rapidly at long times due to the presence of long-range correlations (H'0), and that the
decay rate is self-consistent with the self-similar inertial range scaling (270) of the amplitude and
time argument of the PS correlation function. As we will see more clearly in Section 4.2.2, the faster
decay is due to the rapid dispersal of the passive scalar #uctuations by the energetic long-
wavelength #uctuations of the turbulent #ow.

4.2.2. Self-similar spreading of passive scalar -uctuations
For the rest of Section 4, we will explore further issues concerning the passive scalar corre-

lation function within the context of an RDT model with statistical isotropy, i.e., no
preferred direction. This is a natural geometry for describing `generica fully developed turbu-
lence, particularly since the small-scale #uctuations may be expected in many circumstances
to be insensitive to the large scale con"guration. The assumption of statistical isotropy further-
more simpli"es the mathematical analysis by reducing the dimensionality of the di!usion
PDE (256) for the PS correlation function. This a!ords us the possibility of describing the
second order passive scalar statistics in a rather explicit fashion. Here we give a complete
description of the PS correlation function during the same `inertial-rangea phase of evolution just
considered for the shear RDT model, during which the length scale of the passive scalar #uctu-
ations lies within the inertial range of scales and is much larger than the length scale of the initial
disturbance.

We begin by de"ning the correlation function for the isotropic RDT velocity "eld through
a spatio-temporal energy spectrum with inertial-range scaling, and conduct an inertial-range
renormalization in the same manner as we did for the shear RDT model. The PDE describing the
renormalized PS correlation function is then exactly solved, and we read o! from this solution
some properties concerning the evolution of passive scalar #uctuations and the separation of a pair
of particles on length scales within the inertial range.

4.2.2.1. Setup for isotropic RDT model. As the velocity "eld is now multi-dimensional (with d"2
or 3 denoting the spatial dimension), its correlations must be described by a tensor rather than
a scalar function. The general relation between the correlation tensor and the scalar spatio-
temporal energy spectrum (k) describing the strength of the velocity #uctuations at various
wavenumbers k is given by (see [341], Sections 9 and 22):

S*(x@, t@)?*(x#x@, t#t@)T,R
4
(x)d(t) ,

R
4
(x)"PRd

e2p*k >x(I!kK ? kK )
2EI (DkD)

(d!1)A
d~1

DkDd~1
dk .

(273)

The tensor factor I!kK ?kK , where I is the identity matrix and kK "k/DkD, is a projection which
enforces incompressibility. The constant A

d~1
is the area of the (d!1)-dimensional sphere. We

take the same inertial-range form of the spatio-temporal energy spectrum as that which we have
been using for a shear geometry:

EI (k)"A
E
k~1~2Ht

0
(k¸

0
)t

=
(k¸

K
) .
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Because of statistical isotropy and incompressibility, the turbulent di!usion tensor D
4
(r)"

R
4
(0)!R

4
(r) appearing in Eq. (256) may be expressed in terms of a scalar function of a single

variable ([341], pp. 380}383):

D
4
(r)"D

4E
(r)rL?rL#D

4M
(r)(I!rL?rL ) ,

D
4M

(r)"
(rd~1D

4,
(r))@

(d!1)rd~2
. (274)

D
4,

(r) is half the mean-square longitudinal velocity di!erence, and D
4M

(r) is half the mean-square
lateral velocity di!erence observed at two points separated by a distance r.

If we assume that the passive scalar statistics are initially statistically isotropic, then by symmetry
the passive scalar statistics remain statistically isotropic, and the PS correlation function may be
expressed for all time as a function of a single space variable r"DrD and a single time variable:

S¹(x, t)¹(x#r, t)T"P
2
(DrD, t) ,

S¹
0
(x)¹

0
(x#r)T"P0

2
(DrD) .

With Eq. (274), we can then write the PDE (256) for the second-order PS correlation function in the
following form:

Isotropic evolution of second-order passive scalar correlation function

RP
2
(r, t)
Rt "

1
rd~1

R
RrArd~1(2i#D

s,
(r))
RP

2
(r, t)
Rr B ,

P
2
(r, t"0)"P0

2
(r) . (275)

4.2.2.2. Inertial-range renormalization of isotropic RD¹ model. Now we are in a position to analyze
the evolution of P

2
(r, t) through the inertial range of scales through a similar type of renormaliz-

ation procedure as in our earlier discussion of the shear RDT model. It is readily checked that for
H(0, the renormalized PS correlation function obeys, as in the shear case, a constant coe$cient
di!usion equation with the di!usion coe$cient enhanced by the presence of the random velocity
"eld. The PS correlation function thus assumes a standard Gaussian shape and spreads and decays
according to ordinary di!usive laws.

We shall focus on the case of very long-range correlations H'0, which exhibits more interesting
behavior and has qualitative similarities to real-world turbulence. By taking ¸

0
PR and renor-

malizing the PS correlation function according to the law:

P(j)
2

(r, t)"j~dP
2
(r/j, t/j2~2H) ,

we "nd formally that the inertial range limit PM
2
(r, t),limj?0

P(j)
2

(r, t) obeys the PDE

RPM
2
(r, t)
Rt "

1
rd~1

R
RrADI

L
r2H`d~1

RP
2
(r, t)
Rr B ,

PM
2
(r, t"0)"

M0
2

A
d~1

rd~1
d(r) . (276)
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We have used the fact that within the inertial range of scales, D
s,

(r) grows as a power law

lim
L0@r?=,r@LK?=

D
s,

(r)"DI
L
r2H ,

DI
L
"

2C(!H)C(d/2)
C((2#2H#d)/2)

p2H`2A
E

.

The inertial-range limit for the isotropic RDT model is completely self-similar, just as for the shear
RDT model in Section 4.2.1. The only memory of the initial data is the spatial integral of the initial
PS correlation function

M0
2
"P

=

0

A
d~1

rd~1P0
2
(r) dr .

Rigorous veri"cation of this complete self-similarity and of the convergence of the passive scalar
correlation function to the solution of Eq. (276) under the inertial-range renormalization is more
subtle than in the shear case; see [208] for some positive mathematical results and a discussion.

4.2.2.3. Exact solution of renormalized PDE. We now proceed with the development of an exact
solution for the renormalized PS correlation function PM

2
(r, t), from which we will be able to deduce

a number of properties concerning the statistics of passive scalar #uctuations as they evolve
through the inertial range of scales.

The assumption of statistical isotropy has reduced the complexity of the PDE (276) for PM
2
(r, t) to

the point that it can be solved by dimensional analysis [24]. There are three independent
dimensions: length, time, and the passive scalar density. Five di!erent parameters and variables
appear in the PDE de"ning PM

2
(r, t), so by general principles of dimensional analysis [24,25], we can

re-express the PDE in terms of 5!3"2 dimensionless variables. One natural way to choose these
dimensionless variables is to nondimensionalize the dependent quantity PM

2
and one of the

independent variables (say r) with respect to the remaining variables and parameters (t, DI
L

and
M0

2
). Thus, we de"ne the nondimensional quantities:

m"
r

(DI
L
t)1@(2~2H)

,

Q
H
"

PM
2

M0
2
(DI

L
t)~d@(2~2H)

.

As dimensional analysis guarantees, the PDE (276) is equivalent to an ODE for the nondimen-
sionalized function Q

H
"Q

H
(m):

!

d
2!2H

Q
H
(m)!

1
2!2H

m
dQ

H
(m)

dm
"m1~d

d
dmAm2H`d~1

dQ
H
(m)

dm B . (277)

This ODE is to be solved with the auxiliary condition

P
=

0

Q
H
(m)A

d~1
md~1dm"1 , (278)
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which expresses the fact that the spatial integral of the correlation function PM
2
(r, t) is conserved and

equal to its value M0
2

at time t"0.
This ODE problem may be exactly solved by quadrature. After multiplying Eq. (277) through by

md~1, it becomes a perfect derivative:

d
dmAm2H`d~1

dQ
H
(m)

dm
#

mdQ
H
(m)

2!2HB"0 .

Integrating once, we have

m2H`d~1
dQ

H
(m)

dm
#

mdQ
H
(m)

2!2H
"C,

and it is readily checked that the integration constant C must vanish for the integral in Eq. (278) to
be "nite. The remaining "rst-order ODE is thus separable and easily integrated to give

Q
H
(m)"C

H
expA!

m2~2H

(2!2H)2B . (279)

The normalization constant C
H

must be chosen so that Eq. (278) holds; this gives

C
H
"

C(d/2)
2 pd@2 (2!2H)(d`H~1)@(1~H)C(d/(2!2H))

.

Re-expressing this result in the original dimensional variables through Eq. (277), we obtain the
following.

Exact solution for the renormalized passive scalar correlation function:

PM
2
(r, t)"

M0
2

(DI
L
t)d@(2~2H)

Q
HA

r
(DI

L
t)1@(2~2H)B , (280)

with Q
H

given by Eq. (279) for H'0.

4.2.2.4. Inertial-range properties of passive scalar -uctuations and relative di+usion of particle
pairs. With this exact solution, we can read o! several features concerning the evolution of the
passive scalar #uctuations on length scales which lie within the inertial-range and are much larger
than the correlation length scale of the initial passive scalar "eld. First, we see that, as with the
shear RDT model in Section 4.2.1, the passive scalar variance decays anomalously for H'0:

S¹(x,y, t)2T&PM
2
(0, t)&t~d@(2~H) .

Under ordinary di!usive decay, the scaling exponent would be !d/2, corresponding to slower
decay of variance.

We now proceed to use the explicit form of the shape of the PS correlation function to infer
properties of relative tracer di!usion and the roughness of the passive scalar "eld.

Relative tracer di+usion. Below we will see that the length scale of the passive scalar #uctuations
grows with time in proportion to t1@(2~2H). Our discussion of this property will be facilitated by the
general relation between the second order PS correlation function and the probability distribution
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for the relative separation of a pair of tracer particles ([196], Section 8.5). In the present case,
PM
2
(DrD, t) is proportional to the probability distribution over Rd of the relative displacement r of

a pair of tracers at large times t for which the tracer separation distance o
3%-

(t) is statistically
concentrated within the inertial range of scales and is much larger than the initial separation. The
constant of proportionality is M0

2
, the integral of the initial PS correlation function.

The fact that the length scale of the correlation function scales as t1@(2~2H) means precisely, then,
that the typical relative separation between a pair of tracers grows in time proportionally to
t1@(2~2H) as they evolve through the inertial range. In particular, the mean-square relative tracer
displacement may be computed as

So
3%-

(t)2T"(M0
2
)~1PRd

DxD2P
2
(DxD, t) dx"(M0

2
)~1P

=

0

r2(A
d~1

rd~1P
2
(r, t)) dr"C

R
(DI

L
t)1@(1~H)

with the numerical constant given by

C
R
"(2!2H)2@(1~H)

C((d#2)/(2!2H ))
C(d/(2!2H))

.

Under ordinary di!usion, the mean-square displacement grows linearly with time. The presence of
the rapidly decorrelating velocity "eld with very long-range spatial correlations (H'0) causes
particles to separate within the inertial range at a more rapid rate. In fact, the exponent of the
power law of the relative separation becomes arbitrarily large as HP1.

In 1926, Richardson [284] predicted a law of this type for real-world turbulent di!usion as
a consequence of the increase of relative di!usivity of a pair of tracers with separation distance.
Through a "tting of available data from observation of balloon motion, Richardson found the
relative di!usivity to scale as the 4/3 power of the separation distance and postulated a PDE of
a form similar to that which we have been discussing Eq. (276) with H"2/3. Solving the equation,
Richardson deduced that the mean-square separation of a pair of tracers should grow as t3.
Richardson's prediction has found a good amount of numerical and experimental con"rmation, as
we shall later discuss in Section 6. Here, we can say that Richardson's reasoning is exactly valid for
a Gaussian velocity "eld with rapid decorrelation in time. Furthermore, with the central limit
rescaling discussed above (267), the familiar Kolmogorov spectrum corresponds in the RDT model
exactly to the value H"2/3!!

As a concrete illustration of this theoretical result, we present in Fig. 19 the results of a numerical
Monte Carlo simulation of the relative dispersion of a pair of tracers in a rapidly decorrelating,
isotropic velocity "eld with Hurst exponent H"1/3. Through use of a multiwavelet method
[84,85], which will be discussed later in Section 6, the numerically synthesized random velocity
"eld supports a wide inertial range extending from scales 3]10~2 to 106. For all times plotted, the
tracer separation lies well within the inertial range of the simulated velocity "eld.

In the upper plot, we see that the root-mean-square relative tracer displacement So
3%-

(t)2T1@2
settles down to the predicted t3@4 power law growth over two decades of spatial scales. We plot the
logarithmic derivative of the mean-square relative displacement dSo

3%-
(t)2T/d ln t as a function of

time in the lower part of the "gure as a more stringent test of the apparent power law behavior. The
theoretically predicted scaling behavior corresponds to a constant logarithmic derivative of 3/2,
and indeed the numerically computed logarithmic derivative hovers quite closely to this value after
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Fig. 19. Monte Carlo simulation of tracer pair dispersion through inertial range of isotropic, rapidly decorrelating
velocity "eld with H"1/3. Upper graph: log}log plot of root-mean-square tracer separation as a function of time. Lower
graph: logarithmic derivative of the mean-square relative separation as a function of time.

an initial transient period. Besides producing a manifest realization of the inertial-range asymptotic
theory for relative tracer di!usion in the RDT model, these numerical results also demonstrate the
capacity of the underlying Monte Carlo method to generate accurate statistical scaling behavior
over several decades. This is not an easy task, as we shall discuss in Section 6.

Thus far, we have discussed only the variance of the relative displacement of a pair of tracers,
but our exact solution PM

2
(r, t) in fact gives the full probability density function (PDF) for this
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random quantity. The relative displacement between two tracers undergoing independent
Brownian motion is described by a Gaussian PDF. From Eq. (280), we see that when a pair of
tracers are separated within the inertial range of scales of an isotropic RDT velocity "eld with long
range correlations H'0, their relative displacement has a PDF which has a broader-than-
Gaussian shape. That is, the PDF decays more slowly at large values than a Gaussian with the
same mean and variance does. The tangible manifestation of a random quantity with a broader-
than-Gaussian PDF is an unusually high probability for large #uctuations. The reason why the
relative tracer displacement should exhibit large #uctuations within the inertial range can be
understood from a positive feedback e!ect arising from the fact that turbulent di!usion is more
e!ective in separating particles the further apart they already are. If a random #uctuation causes
a pair of particles momentarily to be separated by a distance greater than average, then they will be
predisposed to be separated even more rapidly at later times.

¹urbulent roughening of passive scalar ,eld: We draw a "nal contrast between molecular
di!usion and turbulent di!usion from the isotropic RDT model through a consideration of the
smoothness of the passive scalar "eld. One measure of this smoothness, viewed on the inertial range
of scales, is given by the behavior of the structure function of the renormalized passive scalar "eld
¹M (x, t):

SM
2
(DrD, t)"S(¹M (x#r, t)!¹M (x, t))2T

as rP0. Noting that this quantity is nothing other than 2(PM
2
(0, t)!PM

2
(DrD, t)), we have from the

exact solution (280) that

SM
2
(r, t)"

2C
H
M0

2
(DI

L
t)d@(2~2H)A1!expA!

r2~2H

(2!2H)2DI
L
tBB .

One now readily checks that there exist positive numerical constants C
~

, C
`

, and r
0

so that

C
~

r2~2H

(DI
L
t)(d`2~2H)@(2~2H)

4S(¹M (x#r, t)!¹M (x, t))2T4C
`

r2~2H

(DI
L
t)(d`2~2H)@(2~2H)

over the expanding region

04r4r
0
(DI

L
t)1@(2~2H) .

The structure function of a smooth, isotropic random "eld vanishes as O(r2) for small r, but we see
that the structure function of ¹M (x, t) vanishes according to a slower power law as rP0, indicating
a rough fractal structure of the passive scalar "eld in the inertial range of scales. Moreover, this
fractal structure spreads to larger length scales as time evolves. The formal fractal Hurst exponent
of this passive scalar "eld structure is 1!H, but because the passive scalar "eld is non-Gaussian,
we cannot use Orey's theorem (discussed in Paragraph 3.5.3.1) to say this exponent characterizes
the fractal structure of individual realizations.

Under ordinary molecular di!usion, sharp features are damped out and the passive scalar "eld
would appear smooth on any given length scale l after a su$ciently large time &l2/i. On the
other hand, turbulent di!usion by an isotropic, rapidly decorrelating velocity "eld creates a rough
fractal structure on the passive scalar "eld over an increasing band of scales within the inertial-
range even as the amplitude of the #uctuations decay. As we have discussed in Section 3.5 in the
context of scalar interfaces, the reason for this distinction is the long-range correlations of the
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turbulent velocity "eld. Through advection, the fractal inertial-range spatial structure of the
velocity "eld is impressed upon the passive scalar "eld. We note from our results of Section 3.5 that
the rapid decorrelation limit smooths out the passive scalar level sets on the inertial range of scales
in a shear #ow. We see here, by contrast, that rough fractal structure persists throughout the
inertial range of scales of the passive scalar "eld in an isotropic turbulent #ow, even when it
decorrelates rapidly in time.

4.3. Scaling regimes in spectrum of yuctuations of driven passive scalar xeld

In Section 4.2, we have discussed some physical characteristics of the di!usion and free decay of
passive scalar #uctuations advected by a turbulent RDT model velocity "eld. For large times
during which the length scale of the #uctuations passed through the inertial range of scales, we were
able to describe a number of universal properties of the passive scalar "eld. Another situation in
which one may hope to observe universal features in the passive scalar "eld is in a damped and
driven statistically stationary state analogous to that of a fully developed turbulent velocity "eld.
That is, we envision some external mechanisms stirring the #uid and agitating the passive scalar
"eld at some large length scales. This directly creates large wavelength (small wavenumber)
#uctuations in the velocity and passive scalar "eld, which then break up into smaller scale (higher
wavenumber) #uctuations through nonlinear interactions. Su$ciently small #uctuations are dam-
ped out by viscosity and molecular di!usion. One can generally expect that if the driving is applied
in a statistically steady fashion, that the turbulent system will achieve a statistically stationary state
in which the input of energy at large scales is balanced by dissipation at very small scales, and the
statistics of the velocity and passive scalar "eld settle down to a time-independent form. For
conciseness, we will often refer to such a statistically stationary state as `quasi-equilibriuma, with
the `quasi-a pre"x di!erentiating the present strongly damped and driven statistical equilibrium
from a thermal equilibrium system weakly coupled to its surroundings.

We recall that for the velocity "eld, Kolmogorov formulated the well-known hypotheses that (see
Paragraph 3.4.3.1 and [169,196]):

1. the statistics of the velocity #uctuations and wavenumbers much greater than those characteriz-
ing the driving should be independent of the large scales, and that

2. if the system is driven su$ciently strongly (Reynolds number is high enough) so that there is
a wide separation between the scale of the driving ¸

0
and the scale of dissipation ¸

K
, then the

dynamics of the velocity "eld well within the intervening inertial-range of scales is completely
self-similar and independent of both the large scales and viscosity. From this follows the famous
k~5@3 prediction for the energy spectrum in the inertial range of wavenumbers ¸~1

K
;k;¸~1

0
.

These hypotheses have been largely con"rmed with important provisos; see [309] for a recent
review of theoretical and experimental developments. Here we shall only be concerned with these
basic concepts, particularly as they apply to the structure of the passive scalar ,eld in the
statistically stationary, damped and driven state described above.

The passive scalar "eld responds directly to the turbulent #uctuations in the velocity "eld. As the
statistics of the velocity "eld are believed to be universal to some degree on scales well below the
scale ¸

0
at which the turbulence is driven, it is natural to suppose that the passive scalar

#uctuations should also be universal at small scales. Furthermore, one might expect there to exist
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self-similar scaling regimes for the spectrum of passive scalar #uctuations just as the energy
spectrum of the velocity "eld exhibits the Kolmogorov k~5@3 scaling in the inertial range. Indeed
various theories have been formulated predicting a variety of passive scalar spectral scaling regimes
over certain asymptotic ranges of wavenumbers [28,29,76,120,254]. None of the theoretical
predictions for the scaling regimes of the velocity or passive scalar spectra makes use of the exact
PDEs describing the physics. Mathematically understanding the statistics of the velocity "eld as
a solution to the Navier}Stokes equations with random initial data is extremely di$cult due to the
nonlinearity. Even solving for the passive scalar statistics advected by a random velocity "eld with
"nite correlation time is a challenging problem.

The RDT model, however, provides us an opportunity to study directly the connection between
the exact advection}di!usion PDE and the scaling regimes of the passive scalar spectrum, as "rst
observed by Kraichnan [179,183]. If the random external driving of the passive scalar "eld is
Gaussian and delta-correlated in time, then exact, closed evolution equations can still be written
for the mean passive scalar density and correlation function of the passive scalar "eld (Sec-
tion 4.3.1). The statistics of the passive scalar "eld in quasi-equilibrium are given as steady
solutions of these equations. In a statistically isotropic environment, the quasi-equilibrium sec-
ond-order PS correlation function may be represented by an explicit quadrature formula in terms
of the spatial structure of the turbulent velocity "eld and driving (Section 4.3.2). The passive scalar
spectrum is then expressed as a Fourier transform of this explicit formula. Through asymptotic
analysis of these exact formulas, three di!erent scaling regimes in the passive scalar spectrum can
be rigorously shown to exist in the RDT model under suitable conditions (Section 4.3.3). These
scaling regimes correspond qualitatively to those predicted for a realistic turbulent system, and we
shall use the exact results of the RDT model to comment upon some of the approximate real-world
theories, particularly those under current controversy (Section 4.3.4).

4.3.1. RDT model with driving

4.3.1.1. Model of large-scale driving force. To establish a statistically stationary state of the passive
scalar "eld, we introduce an external driving, or `pumpinga, "eld f (x, t) as a source/sink term in the
advection}di!usion equation:

R¹(x, t)/Rt#*(x, t) )+¹(x, t)"i*¹(x, t)#f (x, t) ,

¹(x, t"0)"¹
0
(x) .

For the RDT model, we shall assume that the pumping "eldis a mean zero, Gaussian, random,
homogenous, stationary, random "eld which is delta-correlated in time:

S f (x, t) f (x#r, t#q)T"U(r)d(q) , (281)

where U(r) is the (scalar) spatial correlation function of the pumping "eld.
This is admittedly quite arti"cial from a physical perspective. First of all, it is rather di$cult to

envision a system in which an external agency is directly introducing heat or concentration
#uctuations homogenously throughout the bulk of the #uid. One would more naturally suppose
that the external sources and sinks are con"ned to the boundary or some localized region. The
rapidly decorrelating temporal structure is also inappropriate for a macroscale driving; it is
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assumed in order to achieve closed equations for the passive scalar statistics. Nonetheless, we have
the freedom to choose the spatial structure U(r) to correspond to pumping on a large length scale
¸
f
, in which case the RDT model pumping "eld at least provides a cartoon for the generation of

large-scale passive scalar #uctuations due to external driving.
Speci"cally, we de"ne the pumping correlation function through its spectrum E

f
(k), which plays

the analogous role of the energy spectrum for the random velocity "eld:

U(r)"PRd

e2p*k > r E
f
(DkD)

A
d~1

DkDd~1
dk ,

We choose for the pumping spectrum E
f
(k) a smooth form which is maximized at wavenumber

k"¸~1
f

, vanishes for k41
2
¸~1
f

, and decays rapidly for k<¸~1
f

. Note that we are assuming
isotropic pumping statistics.

4.3.1.2. RDT model equations with pumping. The assumption of a delta-correlated pumping
preserves the closure properties of the RDT model for a freely advected passive scalar "eld.
Eq. (255) for the mean passive scalar density S¹(x, t)T is unchanged because the pumping has mean
zero. Thus, we may and do self-consistently assume the passive scalar "eld has mean zero for all
time. The di!usion equation (256) for the second-order PS correlation function is modi"ed only
through the addition of an inhomogeneous term U(r) representing the e!ects of the pumping.

Evolution of second-order correlation function for driven passive scalar

RP
2
(r, t)
Rt "+ ) ((2iI#D

s
(r))+P

2
(r, t))#U(r) ,

P
2
(r, t"0)"P0

2
(r) .

(282)

With the driving included in this way in the RDT model, we can search for solutions corresponding
to a quasi-equilibrium state for the passive scalar "eld, in which the statistics of the passive scalar
"eld are time-independent. In particular, the quasi-equilibrium second-order PS correlation
function P*

2
(r),S¹(x, t)¹(x#r, t)T

*
is a steady solution of Eq. (282). The asterisks decorating

ensemble averages and statistical functions indicate that the statistics are those corresponding to
quasi-equilibrium. Because of the dissipation provided by molecular di!usivity, all solutions with
su$cient spatial decay will approach a unique statistically stationary state at long times.

We note here an important relation implied by Eq. (282) for the quasi-equilibrium passive scalar
dissipation rate sN "2iS(+¹(x, t))2T

*
. This is just the rate at which the passive scalar variance

S(¹(x, t))2T would decay in the absence of external driving, as is readily checked (not just for the
RDT model) by multiplying the undriven advection}di!usion equation by ¹(x, t) and averaging. In
a statistically stationary state, the passive scalar dissipation rate is exactly balanced by the rate at
which passive scalar #uctuations are introduced into the system by the external driving. For the
RDT model, this can be quanti"ed:

sN "U(0) ,

as follows by realizing that sN "!2i*P*
2
(r)Dr/0

and evaluating the steady form of Eq. (282) at
r"0.
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4.3.1.3. Alternative driving through linear background passive scalar proxle. Before proceeding with
our analysis of the model we have just set up, we pause to mention that another way to introduce
driving into the advection}di!usion equation is to impose a linear background pro"le on the
passive scalar "eld through the initial data [156,277]: ¹

0
(x)"u ) x. This linear pro"le will persist

in time and the turbulence will interact with it to perpetually drive #uctuations of the passive
scalar "eld about this background pro"le, eventually leading to a nontrivial statistically stationary
state of the passive scalar "eld. A background linear pro"le with a mean gradient for the
passive scalar "eld is rather natural for strati"ed #uids in a geophysical setting, and can be readily
arranged in the laboratory [127,145]. It is not di$cult to show [185] that all the results that we
will derive here for the passive scalar spectrum of the statistically stationary state of the passive
scalar "eld driven by external pumping of the form (281) carry over to the case where passive scalar
#uctuations are driven instead by turbulent interaction with a background linear passive scalar
pro"le. One need only equate ¸

f
"¸

0
and the passive scalar dissipation rate sN in the formulas

with g2R
0
, where the constant R

0
is a measure of the strength of the turbulent #uctuations:

R
0
"(1/d )TrR

4
(0).

4.3.2. Exact quadrature solution for quasi-equilibrium passive scalar correlation function
Now, the model we have adopted has isotropic pumping and velocity statistics, so by symmetry

and uniqueness of solutions, the quasi-equilibrium passive scalar "eld must also be statistically
isotropic. Hence, the quasi-equilibrium second-order PS correlation function is radial
P*
2
(r)"PH

2
(DrD), and Eq. (282) simpli"es to a one-dimensional ODE:

r1~d
d
drA(2i#D

,
(r))rd~1

dPH
2
(r)

dr B"!U(r) . (283)

The boundary conditions that go with this second-order di!erential equation on the positive real
axis r3[0,R) are:

f PH
2
(r) is continuous and "nite near r"0, re#ecting "nite variance of the passive scalar #uctu-

ations,
f PH

2
(r) decays to zero as rPR since the passive scalar "eld is uncorrelated at large enough

distances.

Eq. (283) can be solved exactly by quadrature, with the integration constants determined by the
boundary conditions:

Exact solution for quasi-equilibrium passive scalar correlation function

PH
2
(r)"P

=

r

r@~d`1
:r{
0
rAd~1U(rA) drA
2i#D

,
(r@)

dr@ . (284)

This formula was derived by Kraichnan [183]. Its importance is that it gives an exact formula for
the passive scalar correlation function in terms of the velocity and pumping correlation functions,
and that it was deduced in a precise fashion from the advection}di!usion equation. One could
proceed to study the properties of this PS correlation function [183,185], but we will concentrate
our attention on a related function, the passive scalar spectrum, which reveals the small-scale
structure of the passive scalar "eld in a clearer fashion.

A.J. Majda, P.R. Kramer / Physics Reports 314 (1999) 237}574442



4.3.3. Passive scalar spectral scaling regimes in RDT model
The (radial) passive scalar (PS ) spectrum E

T
(k) is de"ned to be the spectral resolution of the

variance of the passive scalar "eld S(¹(x, t))2T
*

with respect to wavenumber magnitude k ([320],
pp. 280}281). That is, E

T
(k) measures the strength of the #uctuations of wavenumber k, and

:=
0

E
T
(k) dk"S(¹(x, t))2T

*
. Its relation to the passive scalar "eld is essentially the same as that of

the energyspectrum to the velocity "eld. Not only is the PS spectrum an object with appealing
theoretical meaning, but it is closely related to what experimentalists actually measure when
observing a signal from a turbulent system. (In most experiments, measurements are taken only
along a single line, and thus a `one-dimensional passive scalar spectruma is recorded. This is closely
related to the radial passive scalar spectrum discussed when the turbulence is statistically isotropic.
(See ([320], Ch. 8) for further discussion.)

The radial PS spectrum E
T
(k) can be computed from the Fourier transform of the passive scalar

correlation function

PK *
2
(k)"PRd

e~2p*k >xP*
2
(x) dx . (285)

For the statistically isotropic case of interest in this section, PK *
2
(k)"PK *

2
(DkD) and the PS spectrum

can be simply expressed:

E
T
(k)"A

d~1
kd~1PK *

2
(k) . (286)

Through Eqs. (284)}(286), we have an exact integral formula for the PS spectrum E
T
(k), which we

can analyze for our speci"c choice of velocity and pumping statistics.
We will in particular look for universal scaling regimes analogous to the Kolmogorov

k~5@3 inertial-range law for the energy spectrum of the velocity "eld. Recall that this self-similar
region fell within an asymptotic regime intermediate to the fundamental wavenumbers ¸~1

0
at

which energy is fed into the #uid, and ¸~1
K

above which energy is strongly dissipated by viscosity.
By general intermediate asymptotic principles [25], we can also anticipate self-simliar scaling
regimes in the PS spectrum at wavenumbers well-separated from the fundamental wavenumbers
characterizing the passive scalar "eld.

To proceed, we shall "rst identify in Paragraph 4.3.3.1 the fundamental length scales (and
associated wavenumbers) characterizing the quasi-equilibrium passive scalar "eld. Next, in Para-
graphs 4.3.3.2 and 4.3.3.3, we report three possible PS spectrum scaling regimes which rigorously
arise in the RDT model when certain fundamental length scales are su$ciently widely separated.
We will compare the exact self-similar scaling forms of the RDT model PS spectrum with the
predictions of approximate theories for real-world turbulent systems in Section 4.3.4.

4.3.3.1. Fundamental length scales and wavenumbers. There are four natural length scales which
partially characterize the passive scalar "eld, both in the RDT model and in the real world. Two
length scales are inherited from the advecting turbulent velocity "eld: the integral length scale ¸

0
at

which the #uid is driven, and the Kolmogorov dissipation length scale ¸
K

below which velocity
#uctuations are strongly damped by viscosity. Next, we have the correlation length ¸

f
of the

pumping "eld, which sets the (large) length scale at which passive scalar #uctuations are externally
introduced. Finally, it is natural to identify a passive scalar dissipation length scale ¸

$
, analogous

to the Kolmogorov dissipation scale of the velocity "eld, at which convection and di!usion e!ects
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are in balance. Below such a scale, di!usive e!ects rapidly damp passive scalar #uctuations, and
above ¸

$
, the passive scalar dynamics are convection-dominated and molecular di!usion e!ects are

formally negligible.
To see how this scale should be determined in the RDT model, recall from Eq. (259) that the

relative di!usion rate of two particles separated by distance DrD is 2i#TrD
4
(r). The contribution

from the turbulent di!usion, TrD
4
(r), is proportional to the mean-square #uid velocity di!erence

between the particles, and generally grows as a function of DrD. (By isotropy TrD
4
(r) is independent

of the orientation of r.) It thus becomes appropriate to de"ne ¸
$
as the length scale at which relative

turbulent di!usion and molecular di!usion are in balance: 2i"TrD
4
(¸

$
eL ), where eL is a unit vector.

Let us now discuss how the various length scales are typically ordered. In general, turbulent
systems,¸

0
and ¸

f
are large length scales characteristic of the macroscopic system size, whereas the

Kolmogorov velocity dissipation length ¸
K

and the passive scalar dissipation length ¸
$

are
considerably smaller:

¸
K
,¸

$
(¸

0
,¸

&
.

The disparity between the length scales is often several orders of magnitude. Now, we will be
considering the passive scalar structure on scales small compared with the scale of the driving, so
the ordering of ¸

0
and ¸

&
will not concern us. The relation between the velocity and passive scalar

dissipation lengths is more interesting.
The relative magnitude of these dissipation length scales is set by the Schmidt number Sc of the
#uid, which is the ratio of the kinematic viscosity l of the #uid to the molecular di!usivity i of the
passive scalar:

Sc"l/i . (287)

This ratio is called the Prandtl number Pr when the passive scalar "eld corresponds to weak
temperature #uctuations, but we will generally use the term `Schmidt numbera. Note that the
Schmidt number measures the relative e!ectiveness of microscopic #uid momentum transport
relative to microscopic passive scalar transport.

A common situation for transport of light particles or heat in ordinary #uids like air (Pr+0.7)
is for the Schmidt number to be order unity. In this case, ¸

$
&¸

K
because the e$ciency of

microscopic momentum and passive scalar transport are comparable, and the length scales at
which the microscopic e!ects become relevant are about the same. Another fairly prevalent
situation is that of high Schmidt number, for which the passive tracer is di!used much less
e!ectively than the momentum of the #uid. The transport of heavy dyes or complex #uorocarbons
with large molecular weights as utilized in contemporary laser-induced #ourescence measurements
(Sc&103) provide important practical examples. In these situations, ¸

$
;¸

K
because one must go

to much smaller scales than ¸
K

to feel the relatively feeble in#uence of molecular di!usion. The
third possibility of low Schmidt number exists in some exotic cases like electron plasmas
(Pr&10~1) and thermal #uctuations in liquid mercury (Pr+0.02). The regime ¸

$
<¸

K
occurs at

low Schmidt number, because the molecular di!usion becomes relevant at a larger length scale
than viscosity.

To each of the four physical length scales just discussed, we naturally associate their correspond-
ing wavenumber for the purpose of discussing the PS spectrum E

T
(k): k

0
"¸~1

0
, k

K
"¸~1

K
, k

&
"

¸~1
&

, and k
$
"¸~1

$
.
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4.3.3.2. Passive scalar spectral scaling regimes. Subject to the natural ordering of the length scales
discussed above, three natural intermediate asymptotic regimes where one may expect self-similar
scaling of the passive scalar spectrum are suggested. These regimes, which we now enumerate, have
meaning in both the real world and the RDT model.

f inertial-convective regime:

k
0
, k

&
;k;k

K
, k

$
. (288)

This is present in the case of a wide separation between the system macroscale and dissipation
microscales (high Reynolds number and high PeH clet number). Passive scalar #uctuations on this
range are driven by inertial-range turbulent eddies, and molecular di!usion plays a subdominant
role.

f viscous-convective (high Schmidt number) regime:

k
0
, k

&
, k

K
;k;k

$
. (289)

This is present when Sc<1, and there is no strict need for a high Reynolds number or an
extended inertial range. Fluctuations of the passive scalar on these scales are too "ne to be driven
directly by the active scales of turbulence; they are rather produced by straining by velocity "eld
gradients. Molecular di!usion is ostensibly unimportant in the dynamics of the passive scalar in
this range of scales since k;k

$
.

f inertial-di+usive (low Schmidt number) regime:

k
0
, k

&
, k

$
;k;k

K
. (290)

This is present when Sc;1 and Re<1. Molecular di!usion now transports the passive scalar
more e!ectively than the turbulence, but the passive scalar "eld is still su!ering deformations
from the inertial-range eddies of the turbulent velocity "eld.

The convention in the above discussion is that a regime is called inertial or viscous according to
whether the wavenumber k is on the inertial k

0
;k;k

K
or viscous k<k

K
range of scales, and is

called convective or di!usive according to whether the dynamics are formally convection-domin-
ated k;k

$
or di!usion dominated k<k

$
. There is of course also a viscous-di!usive regime

k<k
$
, k

K
, k

0
, k

&
but the PS spectrum falls o! very rapidly at these very high wavenumbers and does

not exhibit scaling.
In the RDT model, the form of the passive scalar spectrum in each of the three above-mentioned

asymptotic regimes may be rigorously computed, and is presented in Table 13. In each case,
a scaling law emerges, with the prefactor consisting of the fundamental physical parameters:

f The passive scalar dissipation rate, sN .
f The parameter A

E
describing the amplitude of the inertial-range turbulent eddies (recall

EI (k)&A
E
k~1~2H for k

0
;k;k

K
).

f The small-scale strain rate c which describes the dynamics of the passive scalar "eld in the viscous
range of scales r;¸

K
(or k<k

K
). The relative turbulent di!usion of tracers separated by such

a small distance comes primarily through straining by gradients of inertial-range eddies. The
de"nition for the strain rate which we adopt here is

c,(d/dt)lnSDX (1)(t)!X (2)(t)D2T1@2,

A.J. Majda, P.R. Kramer / Physics Reports 314 (1999) 237}574 445



Table 13
Universal scaling regimes for passive scalar spectrum in RDT model

Asymptotic regime E
T
(k)

Inertial-convective C
IC
sN A~1

E
k2H~3

k
&
, k

0
;k;k

K
, k

$

Viscous-convective C
VC

sN c~1k~1

k
&
, k

0
, k

K
;k;k

$

Inertial-di!usive C
ID

A
E
sN i~2k~3~2H

k
&
, k

0
, k

$
;k;k

K

where X (1)(t) and X (2)(t) denote the locations of two tracers separated by a distance
DX (1)(t)!X (2)(t)D;¸

K
, and the e!ects of molecular di!usion are omitted in this computation. In

the RDT model, c is related to the energy spectrum through

c~1"16dp2P
=

0

EI (k)k2dk .

The dimensionless numerical constants appearing in the formulas have the values:

C
IC
"

2H2

p2d
B(d/2, 1#H)B(d/2, 1!H) ,

C
VC

"(d#2)/d, C
ID
"1/8dp2

where B( ) , ) ) denotes the special beta functions [195].
The scaling forms for the inertial-convective and viscous-convective regime were formally

computed by Kraichnan [179,183]. Rigorous derivations for all scaling regimes may be found in
[185].

4.3.3.3. Complete self-similarity of passive scalar spectral scaling regimes. One immediate observa-
tion from the exact scaling laws presented in Table 13 is that they are all completely self-similar in
the terminology of Barenblatt [25]. That is, in each asymptotic regime of wavenumbers presented
above, the PS spectrum depends only on physical parameters which are obviously relevant for that
range of scales. There is no dependence on physical parameters associated to remote length scales,
and no `anomalous scalinga of the PS spectrum. (See Section 4.4 for further discussion on this
topic.)

In all the regimes, the PS spectrum depends on the passive scalar dissipation rate sN . This quantity
measures the #ux of passive scalar `energyawhich is injected at low wavenumbersand travels up to
high wavenumbers where it is dissipated. sN simply sets the amplitude of the PS spectrum. In
addition to sN , the PS spectrum in the inertial-convective regime depends only on the local
wavenumber k and the parameter A

E
which measures the strength of the inertial-range eddies. This

is exactly the set of parameters which one would expect to appear in the inertial-convective
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asymptotics of the PS spectrum, where the inertial-range eddies play a dominant role, and
molecular di!usivity is negligible. Similarly, the viscous-convective form of the PS spectrum
depends only on sN , k, and c, the strain rate characterizing the advective e!ects of the velocity "eld in
the viscous range of scales. Finally, the inertial-di!usive regime depends on four parameters
sN , k, A

E
, and i, because the inertial-range eddies are the predominant cause of distortions on this

range of scales, and molecular di!usivity is playing a strong role. Thus, the passive scalar spectrum
in each of the ranges reported depends only on the parameters which one would naively expect.

It turns out, therefore, that the kind of reasoning which Kolmogorov used to formulate his
k~5@3 inertial-range scaling prediction works correctly in the RDT model when applied to the
inertial-convective and viscous-convective range of scales. One simply hypothesizes which para-
meters should be naturally relevant in each of these ranges of wavenumbers, applies dimensional
analysis, and "nds that only a unique scaling combination of these parameters is dimensionally
self-consistent. One would thereby arrive at the scaling laws presented in Table 13, except of course
that the numerical constants C

IC
and C

VC
would not be determined by this approach. Obukhov

[254] and Corrsin [76] independently formulated such a similarity theory for the inertial-
convective regime in a real-world turbulent system. The inertial-di!usive regime, on the other
hand, involves too many parameters which have a priori relevance so that dimensional analysis
alone will not produce a unique scaling prediction.

4.3.4. Connections to theory and experiments concerning real-world scaling regimes
We wish now to use the exact results for the scaling regimes of the passive scalar spectrum in the

RDT model as a point of reference for discussing some physical theories formulated for analogous
scaling regimes in the real world. Recall that we could impose a fairly realistic spatial structure on
the turbulent RDT model; the primary de"ciency in the model is the lack of memory in the velocity
"eld. Thus, we can anticipate qualitative similarities in the PS spectral scaling regimes in the real
world and the RDT model, but there will of course be quantitative discrepancies due to the
di!erent temporal structures. We will probe the ideas behind the physical theories for the real world
to see if they can be successfully adapted to the RDT model.

We now brie#y discuss each of the passive scalar scaling regimes in turn. We present the main
theoretical predictions for the real-world PS spectrum, and summarize their experimental status.
Then we indicate whether these theories can be adapted to the RDT model, and if so, whether they
predict the correct scaling law. Details can be found in [185].

4.3.4.1. Inertial-convective regime. The prediction for the inertial-convective regime of the passive
scalar spectrum in the real world is based on Kolmogorov-type dimensional analysis, and was
formulated independently by Obukhov [254] and Corrsin [76]. It reads

E
T
(k)+C

OC
sN eN ~1@3k~5@3 for k

0
, k

&
;k;k

K
, k

$
,

where eN is the energy dissipation rate and the other parameters have the same physical meaning as
in the RDT model. C

OC
is supposed to be a universal numerical constant, called the

Obukhov}Corrsin constant.
A number of experiments over the last three decades have reported a decade or two of

k~5@3 scaling behavior in #ows with su$ciently large Reynolds numbers, with fairly consistent
values of the reported Obukhov}Corrsin constant near 0.4. A recent review of the data for the
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inertial-convective regime from experiments may be found in [308]. In this paper, it is pointed out
that the Reynolds number (based on the Taylor microscale) required to see a k~5@3 scaling region is
approximately 50 in isotropic #ows, but about 1000 for anisotropic #ows. Experiments conducted
in anisotropic settings which report departures from k~5@3 scaling in the inertial-convective range
[81,145,242] may simply have too low a Reynolds number to manifest the universal Obuk-
hov}Corrsin behavior.

There are still some unexplained mysteries, however. The k~5@3 law seems to be more robust
than it should be. In particular, it sometimes arises in #ows for which the inertial-convective scales
are not locally isotropic [113,236,306]. Moreover, the k~5@3 scaling in the PS spectrum can extend
over a range larger than that for which the velocity "eld exhibits inertial-range k~5@3 scaling.
Indeed, a k~5@3 scaling in the PS spectrum is reported in some cases where the Reynolds number is
insu$cient for the velocity "eld to have any k~5@3 inertial range at all! [145,309] Although the
prediction of the Obukhov}Corrsin similarity theory appears to be well borne out by experiments,
the reason behind the k~5@3 scaling is not satisfactorily understood.

The Obukhov}Corrsin inertial-convective scaling prediction has a good deal of formal similarity
to that of the RDT model:

EOC
T

(k)+C
IC
sN A~1

E
k2H~3 for k

0
, k

&
;k;k

K
, k

$
.

The strength of the inertial range eddies is measured by the energy dissipation rate eN in the real
world and by A

E
in the RDT model (see Section 4.1.4). The dimensional analysis reasoning behind

the Obukhov}Corrsin prediction works perfectly in the RDT model. Consequently, a number of
other simple heuristic considerations (based on spectral #ux considerations, for example) will also
automatically predict the correct inertial-convective scaling form in the RDT model, provided they
only involve the inertial-range form of the turbulent energy spectrum and the passive scalar
dissipation rate!

4.3.4.2. Viscous-convective (high Schmidt number) regime. The PS spectrum was predicted by
Batchelor [28] to have the following viscous-convective scaling form in a real turbulent system:

EB
T
(k)+sN /ck for k

K
;k;k

$
. (291)

He argued, based on empirical considerations, that it would be su$cient to consider the passive
scalar dynamics on this range of scales in a steady uniform strain #ow, and deduced Eq. (291) where
c is the maximum strain rate. Kraichnan [179] investigated the e!ect of #uctuations in the velocity
"eld through consideration of his Rapid Decorrelation in Time model, arriving at the same
prediction as Batchelor, up to a numerical multiplicative constant (see Table 13). Chertkov et al.
[65] generalize the prediction of a k~1 law to "nite correlation times as well by reducing the
problem to that of the stretching of lines by a spatially uniform straining "eld in the presence of
weak molecular di!usion. We see thus that there exists strong theoretical support for
a k~1 viscous-convective scaling of the PS spectrum. Note that the scaling law (291) could also be
predicted (up to numerical constant) through an accounting of the obviously relevant parameters
and simple dimensional analysis, in a fashion entirely parallel to the Obukhov}Corrsin theory for
the inertial-convective regime.

Until recently, the k~1 scaling prediction also enjoyed experimental con"rmation for a number
of passive physical quantities in various turbulent systems [123,129,251,271]. Some of these
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"ndings [123,129,251] were later criticized [113,242], however, and some recent high Schmidt
number experiments [171,242,338] fail to "nd k~1 spectral scaling despite their ability to resolve
the viscous-convective scales. The viscous-convective k~1 scaling law is thus under current
controversy.

4.3.4.3. Inertial-di+usive (low Schmidt number) regime. As we mentioned before, in the inertial-
di!usive regime there are too many `obviously relevanta parameters to predict a unique scaling law
by an assumption of complete self-similarity, as was possible in the other regimes previously
discussed. There is in fact a controversy over the scaling exponent in the inertial-di!usive range.
Batchelor et al. (BHT) [29] argue through an approximate consideration of the passive scalar
dynamics in Fourier space, that the passive scalar spectrum (for a turbulent velocity "eld with
realistic temporal correlations) has the following inertial-di!usive scaling form:

EBHT
T

(k)"(C
K
/16dp4)sN eN 2@3i~3k~17@3 for k

$
;k;k

K
, (292)

where C
K

is the Kolmogorov constant (E(k)+C
K
eN 2@3k~5@3 for k

0
;k;k

K
). A competing theory

by Gibson [121], which argues that the small-scale strain rate is important for the inertial-di!usive
range dynamics, arrives instead at a prediction of a di!erent scaling in a subrange of the
inertial-di!usive regime:

EG
T
(k)&C

G
sN i~1k~3 for k

$
;k;k

B
,

C
G

is a numerical constant undetermined by the theory, and k
B

is the `Batchelor wavenumbera,
de"ned as the inverse of the length scale ¸

B
at which the molecular di!usion time balances the

straining of the velocity "eld.
Measurements of temperature #uctuations in mercury (Pr&0.02) [73,290], and numerical

simulations [56] are consistent with a k~3 spectrum for k
$
;k;k

B
. Furthermore, [56,73] also

show evidence for a k~17@3 range over k
B
;k;k

K
. The spectra of both theories decay rapidly and

are di$cult to measure con"dently, however, especially since su$ciently low Schmidt or Prandtl
numbers are di$cult to achieve experimentally [136,137,196]. Indeed the reported scaling regimes
extend over less than a decade. Moreover, it has been pointed out in [22] that apparent but false
k~3 scaling regimes can result from noisy physical-space observations when the true spectral
scaling is steeper (such as k~17@3). Finally, the experimental data are too scant to check the
predicted dependence of the coe$cient of the inertial-di!usive scaling laws on various physical
parameters.

In [185], the arguments of the BHT and Gibson theories are examined by the second author in
the context of the RDT model. Both the BHT and Gibson theories have versions which appear to
be sensibly applicable to the RDT model insofar as the theoretical arguments are concerned. The
BHT arguments lead to the correct inertial-di!usive asymptotics for the RDT model:

E
T
(k)"C

ID
A

E
sN i~2k~3~2H for k

&
, k

0
, k

$
;k;k

K
,

C
ID
"1/8dp2 .

Indeed, the BHT real-world prediction has a strong formal similarity with the exact RDT model
result, recalling that A

E
in the RDT model plays a similar role as C

K
eN 2@3 in the real world. On the

other hand, the adapted version of Gibson's theory fails in the RDT model. The dynamics of the
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passive scalar in the inertial-di!usive range of scales does not seem to be sign"cantly in#uenced by
straining in the RDT model.

This is by no means an invalidation of Gibson's ideas or prediction in a real world setting. Rather
it gives us an opportunity to illuminate some ingredients which are essential in the Gibson theory.
The straining mechanism envisioned by Gibson has at least a crude analogue in the RDT model,
but perhaps the fact that the RDT velocity "eld is Gaussian and delta-correlated makes the strain
ine!ective in in#uencing the inertial-di!usive range passive scalar dynamics. Indeed, numerical
simulations [122] indicate that sustained compression events and anomalously long-range strain-
ing correlations appear to be necessary for the straining to have a strong e!ect on these scales. The
outcome of the RDT model calculation might then be viewed as an analytical complement to these
numerical "ndings.

Even allowing for this source of discrepancy, there is an assumption made in Gibson's theory
which is surprising in light of the exact results of the RDT model. From the premise that straining
plays an important role in the passive scalar dynamics in the inertial-di!usive range, Gibson
formulates a pair of similarity hypotheses which leads to a prediction for the PS spectrum in
a subrange of the inertial-di!usive spectrum which involves fewer parameters than the exact scaling
form for the RDT model in this range. Given that the RDT model is a simpli"cation of real world
turbulence, this is a puzzling outcome, especially since Gibson's prediction comes not from explicit
computation, but from soft self-similarity arguments. Indeed, there seems to be a gap in the logical
arguments leading up to the k~3 prediction. A full discussion may be found in [185].

4.4. Higher-order small-scale statistics of passive scalar ,eld

It is a remarkable feature of the RDT model that closed linear PDEs can be written not only for
the mean passive scalar density and second-order correlation function, but for all higher-order
correlation functions

P
N
(Mx(j)NN

j/1
, t),T

N
<
j/1

¹(x(j), t)U
as well. That this could be done in principle was pointed out in [244,246]. The "rst explicit use of
these equations for the study of higher-order statistics of passive scalar #uctuations within the
inertial range of scales of a turbulent #ow was accomplished by the "rst author [206] for the case of
a freely decaying passive scalar "eld in a turbulent shear #ow. The one-point statistics of the
decaying passive scalar (without pumping) were shown to be broader than Gaussian in this setting,
and the multipoint statistics within the inertial range were demonstrated to be non-Gaussian.

4.4.1. Anomalous scaling of turbulence structure functions
Kraichnan [183] subsequently proposed that the passive scalar structure functions in quasi-

equilibrium

SH
N
(r),S(¹(x#r, t)!¹(x, t))NT

*
(293)

should exhibit anomalous scaling within the inertial-convective range of scales in the RDT model.
By anomalous scaling in this context is meant that

SH
N
(r)JrfN for ¸

K
,¸

$
;r;¸

0
,¸

&
,
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where the exponents f
N

are not equal to the values which would be predicted by a complete
self-similarity hypothesis [24,25]. A manifestation of anomalous scaling which is observed in
experimental inertial-range measurements of both temperature and velocity in high Reynolds
number #ows with fully developed turbulence [5,309] is that f

2N
ONf

2
.

As we now explain, the violation of the scaling relation f
2N

"Nf
2

implies that the small-scale
passive scalar #uctuations both manifest strong non-Gaussianity (`intermittencya) and depart
strongly from Kolmogorov's and Obukhov's original completely self-simliar theory. Using real-
world parameters for the moment, the only dimensionally consistent inertial-range asymptotic
form of SH

N
(r) which depends purely on the scalar dissipation rate sN , the separation distance r, and

the energy dissipation rate eN is

SH
N
(r)&C

N
sN N@2eN ~N@6rN@3 for ¸

K
,¸

$
;r;¸

0
,¸

&
, (294)

with dimensionless universal constants C
N
. The asymptotics (294) correspond to the normal scaling

relation f
2N

"Nf
2
. For normal scaling to be violated, some additional parameter must be involved

in the inertial-convective range statistics. This extra parameter is expected to be a physical length
scale ¸, which permits the following dimensionally consistent inertial-range anomalous scaling law
for the passive scalar structure functions:

SH
N
(r)&C

N
sN N@2eN ~N@6rN@3A

r
¸B

aN
for ¸

K
,¸

$
;r;¸

0
,¸

&
, (295)

where a
N
"f

N
!N/3 and the MC

N
N=
N/1

are a sequence of dimensionless, universal constants.
Natural candidates for the length scale ¸ entering the asymptotics are the integral length scale ¸

0
,

the pumping length scale ¸
&
, the passive scalar dissipation length scale ¸

$
, and the Kolmogorov

dissipation length scale ¸
K
; more exotic possibilities are mentioned in [64]. The current conven-

tional wisdom, based on experimental observations and numerical simulations at various Reynolds
numbers, is that ¸"¸

&
(and ¸"¸

0
for velocity structure functions, but ¸

0
and ¸

&
are typically of

the same order.) HoK lder inequalities ([288], Section 6.2) imply in this case that a
2N

40, or
equivalently, f

2N
4Nf

2
. We remark that, at least in principle, there could be several length scales

appearing as anomalous scaling factors [201]. The inertial-range form (295) is said to be incom-
pletely self-similar in the terminology of Barenblatt [24,25], in that the length scale parameter
¸ enters into the asymptotics, but only through a power law, even though it is not an `obviously
relevanta parameter in the asymptotic regime of interest. Indeed, the inertial-convective range of
values of r is, by de"nition, far removed from any physical length scale (¸

0
, ¸

K
, ¸

$
, etc.).

One implication of Eq. (295) with ¸"¸
&
is that the temperature #uctuations becoming increas-

ingly intermittent (broader-than-Gaussian) on smaller length scales throughout the inertial range
since the #atness factors

S(¹(x#r, t)!¹(x, t))2NT
S(¹(x#r, t)!¹(x, t))2TN

"

SH
2N

(r)
((SH

2
(r))N

&

C
2N

(C
2
)NA

r
¸

&
B

f2N~Nf2
for ¸

K
,¸

$
;r;¸

0
,¸

&

diverge as r/¸
&
is made small (since f

2N
(Nf

2
), whereas they assume constant values (2N)!/2NN! for

Gaussian random "elds. The physical mechanism generally believed to underlie this small-scale
intermittency in both the velocity and passive scalar "elds is a spatially nonuniform transfer of
energy or passive scalar variance from large to small scales, producing intricately interlaced regions
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of strong and weak turbulent dissipation. A variety of phenomenological cascade models encoding
variations of this notion have been proposed to predict the manner in which f

N
should vary as

a function of the order of the moment N; see the references in [309]. None of these models is,
however, directly connected to the Navier}Stokes equations or advection}di!usion equation.
Indeed, it is still unknown how to derive analytically the inertial-convective scaling laws for the
second-order structure function of the passive scalar and velocity "elds from the primitive
equations, and the higher-order statistics provide an even greater challenge.

The fact that the RDT Model permits closed PDEs to be written for passive scalar correlation
functions to all order, however, gives hope that perhaps anomalous inertial-range scaling could be
mathematically derived from the basic equations in this model. The second-order structure
function can be written as an explicit quadrature using Eq. (284) and the simple relation

S*
2
(r)"2(P*

2
(0)!P*

2
(r))

obtained by binomial expansion of the de"nition of Eq. (293). A direct asymptotic analysis [183]
produces the rigorous inertial-convective range scaling formula:

SH
2
(r)&

2
d(2!2H)

sN (DI
L
)~1r2~2H for ¸

$
,¸

K
;r;¸

0
,¸

&
, (296)

which is completely self-similar because it only involves the obviously relevant parameters sN , DI
L
,

and r (see Paragraph 4.3.3.3). The challenge raised in [183,206] is to compute the higher-order
structure functions from the basic RDT model equations and to unambiguously demonstrate an
anomalous scaling formula such as

SH
2N

(r)&C
2N

sN N(DI
L
)~NrN(2~2H)A

r
¸B

f2N~N(2~2H)

"C
2N

sN N(DI
L
)~N¸N(2~2H)~f2Nrf2N for ¸

$
,¸

K
;r;¸

0
,¸

&
, (297)

where the length scale ¸ appearing in the anomalous correction is to be identi"ed and C
N

is
a universal sequence of constants. Of course, the truth could be even more complicated than
Eq. (297) through, say, the anomalous appearance of multiple length scales, a nonuniversal
dependence of C

N
on details of the pumping, or a dependence of S*

N
(r) on r/¸ which does not reduce

to a power law in the inertial-convective range. The problem of anomalous scaling in the RDT
model has been since attacked through a wide variety of means, some of which we will brie#y
summarize in Sections 4.4.2 and 4.4.3. There is some controversy regarding these computations,
since di!erent groups proceeding from di!erent assumptions predict con#icting values of the
anomalous scaling exponents. A clearcut demonstration of anomalous scaling proceeding directly
from the basic governing equations without additional assumptions has thus far only been
accomplished in further simpli"ed versions of the RDT Model. We brie#y discuss this work in
Section 4.4.5, after reporting the results of some numerical simulations in Section 4.4.4.

4.4.2. Exact equations for scalar structure functions in RDT model
We now describe three basic mathematically exact representations for the passive scalar

structure functions S*
N
(r) which have been used as the basis of quantitative investigations of

anomalous scaling.
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4.4.2.1. Representation through solution of the closed PDE. The "rst proceeds by expressing SH
N
(r) via

binomial expansion of Eq. (293) as a sum of Nth-order quasi-equilibrium PS correlation functions

P*
N
(Mx(j)N),T

N
<
j/1

¹(x(j), t)U
*
,

with spatial arguments Mx(j)NN
j/1

evaluated at either x or x#r. These quasi-equilibrium PS
correlation functions in turn obey a recursively solvable, linear system of elliptic PDEs:

M
N
PH
N
(x(1),2, x(N))"! +

1ym:nyN

U((x(m)!x(n))/¸
&
)P*

N~2
(Mx(j)N

jEm,n
) , (298)

where P*
0
,1, P*

~1
"0 and the elliptic operators M

N
have the form

M
N
,i

N
+
j/1

D
j
! +

1yj:j{yN

+
j
' (D

4
(x(j )!x(j{)p) '+

j{
) . (299)

The subscripts on the di!erential operators indicate the label of the observation point x(j) on which
they act. The velocity structure tensor D

4
(r) was de"ned in Eq. (257), and we assume it to have the

same wide inertial-range structure as de"ned in Paragraph 4.2.2.1. The PDE (298) is accompanied
by some large-scale boundary condition or decay condition to render the problem well-posed. Of
course, we really want to identify P*

N
with the long-time asymptotic solution of the evolution

equation obtained by adding a R/Rt operator to the left-hand side of Eq. (298). Various mathemat-
ical [185,206,208,244,246,349] and formal [95,117,164,198,295] derivations of Eq. (298) and special
cases thereof have been o!ered.

Though the equations are explicit, this description of the PS structure functions involves
a number of subtleties and technical di$culties in any practical computation with N'2. First of
all, the fundamental PDE (298) is of very high dimension. The symmetries implied by the statistical
homogeneity and isotropy of all the random "elds help only somewhat [64]. The structure of the
di!erential operator M

N
also poses analytical di$culties; the components of the variable coe$cient

tensor D
4
(x(j)!x(j{)) vary from zero when the observation points coincide (x(j)"x(j{)) to large

quantities of order DI
L
¸2H

0
when the observations points are well separated (Dx(j)!x(j{)DZ¸

0
). The

expression of the structure function in terms of the correlation function has the unfortunate feature
of weights of mixed sign; for example,

SH
4
(r)"2P*

4
(x, x, x, x)!8P*

4
(x#r, x, x, x)#6P*

4
(x#r, x#r, x, x) . (300)

This means that one must be cautious about assuming that dominant contributions to P*
N

are
dominant contributions to the structure function S*

N
(r); there are cancellations possible. Deducing

the inertial-convective asymptotics of S*
N
(r) also involves some technical delicacy. Because we are

concerned with r<¸
$
, one may wish to remove molecular di!usion from consideration, but note

that the structure function involves evaluation of the multipoint correlation functions P*
N

in regions
where points coalesce and the molecular di!usion operators dominate some of the turbulent
di!usion operators. It has been rigorously shown [92,93] that Eq. (298) does have a iP0 limit
which behaves regularly in the space of mean-square integrable functions (¸2). Since the structure
function involves evaluation of P*

N
at special points, however, this regularity result does not rule out
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singular or subtle behavior of SH
N
(r) in the iP0 limit. To our knowledge, there are not any other

rigorous results concerning the properties of solutions to the PDE (298).

4.4.2.2. Single radial variable representation. Since S*
N
(r) is a function of a single variable, it is

natural to want to work with equations of one variable rather than the delicate many-dimensional
PDEs described above. This is in fact the approach adopted in Kraichnan's paper [183], in which
he deduces a relatively simple equation for S*

2N
(r):

1
rd~1

d
drArd~1D

,
(r)

dS*
2N

(r)
dr B"iJ

2N
(r) , (301a)

where

J
2N

(r),2NS(d¹(r))2N~1H(d¹(r))T . (301b)

In this last expression,

d¹(r),¹(x#r)!¹(x)

(for any choice of x, by spatial homogeneity), and

H(d¹(r)),2SDr(d¹(r))Dd¹(r)T (301c)

is de"ned as the expected value of 2Dr(d¹(r)), conditioned upon a given value of the scalar
increment d¹(r). (The function H(d¹(r)) is akin to, but more complicated than, the conditional
dissipation rate [268] which will be discussed in Paragraph 5.4.1.1.) The di!erential equation (301)
for the structure function can be deduced from Eq. (298), but a more direct route proceeds through
the Fokker}Planck equation for the probability density function (PDF) for the passive scalar
increment d¹(r) [184]. The main drawback to the one-dimensional representation (301) of the
structure functions is that it is not fully closed; J

2N
(r) cannot be expressed in terms of S*

2N
(r) in any

known exact way.

4.4.2.3. Representation through Lagrangian trajectories. Finally, the passive scalar structure func-
tions S*

2N
(r) may be expressed in terms of the statistical trajectories of 2N tracers initially

distributed at two points separated by a distance r. Indeed, for any velocity "eld model, the passive
scalar correlation function P

N
(Mx(j)N, t) of any order N may be precisely related to the joint statistics

of the Lagrangian trajectories of N tracers starting from Mx(j)NN
j/1

and moving simultaneously
through the random #ow [36,62,115,185]. The simpli"cation a!orded by the RDT model is that
the tracer trajectories obey (coupled) stochastic di!erential equations with deterministic coe$-
cients [108,185]. The advantage to this Lagrangian approach is that one must analyze a "nite
system of stochastic ordinary di!erential equations rather than a PDE. On the other hand, one
must explicitly deal with random processes and study the parametric dependence of the tracer
trajectory statistics on the initial separation distance r. Some authors [23,62] set up their
Lagrangian framework in terms of functional integrals instead of stochastic di!erential equations.

4.4.3. Calculation of anomalous scaling exponents in RDT model
A large number of theoretical approaches, based on additional assumptions or formal approxi-

mations, have been proposed which permit a tractable computation yielding quantitative
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predictions for the anomalous scaling exponents of the PS structure functions in the RDT model.
Unfortunately, the results produced from some of the approximate methods disagree with one
another. We shall now brie#y summarize some of the main lines of this theoretical research.

4.4.3.1. Closure by linear ansatz for H(d¹(r)). Kraichnan [183] put forth a simple closure proposal
for Eq. (301) which is equivalent [184] to assuming that H(d¹(r)) is a linear function of d¹(r)
(multiplied by a uniquely determined function of r). This implies that J

2N
(r) is proportional to

NS*
2N

(r) times a function of r which is independent of N. If S*
2N

(r) has an inertial-convective scaling
law of the form (297), it then follows that the scaling exponents must satisfy the following
anomalous law:

f
2N

"

1
2
J4Ndf

2
#(d!f

2
)2!

1
2
(d!f

2
) . (302)

Note that the exponent f
2N

is proportional to JN for large N, rather than a linear function of N as
in the case of normal scaling. Fairhall et al. [95] supported Kraichnan's closure hypothesis through
the formal derivation of `fusion rulesa [202] for how a scaling exponent characterizing the
inertial-convective range scaling properties of the multipoint correlation function P*

2N
(Mx(j)N) is

related to its local behavior when two or more of the spatial arguments are made to coalesce. These
authors also argued that ¸"¸

&
was the only length scale which could self-consistently enter the

anomalous scaling formula (297). Other analytical support for the anomalous scaling law (302),
proceeding from deeper assumptions about nice behavior of certain statistical functions, was given
in [184].

4.4.3.2. Perturbative analyses. A series of later works by various groups attacked the computation
of the scaling exponents through various perturbation expansions in the PDE (298). Leading order
anomalous deviations of the exponents f

2N
from normal scaling were calculated in the asymptotic

limits of small Hurst exponent [35,116,275] HP0, large dimensionality [63,64] dPR, and large
Hurst exponent [278] HP2. We note that the large d expansion is motivated by the representa-
tion of the di!erential operator M

N
for large d in terms of N(N!1)/2 distances between its various

arguments, which takes the form of a sum of a relatively simple di!erential operator of order d2 and
a more complicated di!erential operator of order d. A common theme of these perturbative
calculations is that they seek `zero-modea solutions Z

N
(Mx(j)N) of M

N
, by which is meant that M

N
Z

N
approximately vanishes when the observation points Mx(j)NN

j/1
all have separations within the

inertial-convective range of scales, and is some unspeci"ed but regular function otherwise. The idea
is that a particular solution with normal scaling can be subtracted from P*

N
to cancel (to leading

order) the inhomogeneity on the right-hand side of Eq. (298) when the separations between the
observation points all fall within the inertial-convective range. Each zero mode for a given order
N is then assumed to have inertial-range scaling characterized by a single exponent, which is
computed by perturbation about some limit in which the homogenous solutions of M

N
can be

explicitly constructed. An argument based on either crude matching or continuity with the
unperturbed limit [64,116] is then made to show that a certain zero mode provides the dominant
contribution to the structure function S*

N
and determines its inertial-convective scaling exponent

f
N
. The general conclusion is that there is anomalous scaling for the passive scalar structure
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function of the form (297), with the length scale ¸"¸
&
. The Kolmogorov dissipation length ¸

K
is set

equal to zero from the start in all these works, and anomalies with respect to the scalar dissipation
length scale ¸

$
are thought not to occur based on rough matching arguments to small scales

indicating su$ciently regular behavior of P*
N

as ¸
$

is made small relative to the largest separation
between the observation points, even when some points coalesce [64]. The results from the
perturbation theories are mutually consistent with each other in their domains of overlap, but
contradict the law (302) for the scaling exponents deduced from the hypothesis of the linearity of H(dr).

These perturbation theory analyses of zero modes have recently been interpreted in terms of the
statistics of Lagrangian tracer trajectories by Bernard et al. [36] as well as Gat and Zeitak [115].
The zero modes are associated to statistical `shapea con"gurations of a "nite number of Lagran-
gian tracers which relax slowly in time to their asymptotic shapes [36,115]. A large dimension
dPR perturbation analysis carried out directly on the stochastic equations of motion for the
Lagrangian tracers [115] recovers the same results as the dPR perturbation theory based on
zero modes of the PDE's for the PS correlation functions [63,64].

We "nally mention a perturbative approach for HP0 pursued within a renormalization group
framework by Adzhemyan et al. [2], which recovers the results of the anomalous scaling predic-
tions from the perturbative zero mode analyses in [35,116,275].

4.4.3.3. Theories predicting constant asymptote of anomalous scaling exponent. A distinct theory,
motivated by studiesof the randomly driven Burgers equation [267], has been o!ered by Yakhot
[343]. This work puts forth an approximate closure for the Fokker}Planck PDE for the probabil-
ity density function (PDF) for the scalar increment d¹(r), and seeks a solution for this PDF with
a scale-invariant form over the region

¸
$
,¸

K
;DrD;¸

0
, Dd¹(r)D;S¹2(x)T1@2 .

The resulting prediction is that the passive scalar structure functions S*
2N

(r) exhibit normal scaling
(f

2N
"Nf

2
) up to some value N

#
, after which the scaling exponents remain approximately

constant, asymptoting to a "nite value lim
N?=

f
2N

"f
=
. This prediction does not agree with either

Eq. (302) or the results of the perturbation theories. The discrepancy with the latter is attributed in
[343] to assumptions in that work which are not uniformly valid over all H and d and which
require modi"cation in the asymptotic regimes considered by the perturbation theories.

The conclusion in [343] that the structure function scaling exponents f
2N

should asymptote to
a constant for large N is supported for 1

2
(H(1 by asymptotic `instantona calculations of

Chertkov [62] and Balkovsky and Lebedev [23], though all three papers disagree as to the value of
this constant and other quantitative details. The instanton procedure, put forth in a general
turbulence context in [96], seeks to describe the tails of the PDF (and thereby the high-order
moments) of statistical quantities such as d¹(r) through a functional path-integral formalism
inspired by the mathematical theory of quantum mechanics. A similar quantum mechanical
analogy had previously been exploited by the "rst author in [206] to analyze higher-order passive
scalar correlation functions in a random shear #ow. The high-order moments in the instanton
formalism are governed by a sort of semi-classical limit in which the dominant contributions to the
functional integral are determined by saddle points in function space of a certain action functional
I(d¹). These saddle points correspond in the quantum mechanical analogy to classical trajectories
and are sometimes referred to as instantons; in turbulence applications, the instantons represent
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certain motions of Lagrangian #uid elements. The identi"cation of the instanton formally indicates
the physical process responsible for the shape of the tails of the PDF of d¹(r) and the intermittency
in structure functions of very large order. Completely di!erent physical processes, however, may
play the dominant role in producing intermittency of passive scalar structure functions of acces-
sibly low order [61]. The saddle-point equations are generally much too di$cult to solve in
general, and one typically proceeds by constructing special approximate instanton solutions,
arguing by some auxiliary means which of these should be the dominant contribution, and
assessing whether #uctuations about the instanton solutions are relevant [62,96]. Another ap-
proach is to seek to solve the instanton equations in some perturbative limit, such as large
dimension dPR [23].

4.4.3.4. Discussion of approximate theoretical approaches. All of the above analytical arguments for
anomalous scaling of the passive scalar structure functions involve a number of assumptions of
varying degrees of plausibility which are di$cult to verify with full con"dence. Anomalous scaling
is an inherently subtle subject, and may well involve the violation of certain `reasonablea beliefs.
Indeed, some of the above theories produce con#icting predictions for the anomalous scaling
exponents, and it is still unclear which of the theories' plausible assumptions fail and why. Some
possibilities are suggested in [114]. The situation would clearly be clari"ed by some unambiguous
results involving no assumptions subject to dispute.

4.4.4. Empirical assessment of theoretical predictions concerning anomalous scaling
The usual means of testing physical theories are di$cult to apply to the issue of anomalous

scaling in the RDT model. As we have indicated in Paragraph 4.4.2.1, the fundamental equations
(298) for the high-order passive scalar correlation functions in the RDT model are very di$cult to
quantitatively analyze in a mathematically rigorous fashion, and we are not aware of any such
work which bears directly on the anomalous scaling of the scalar structure functions S*

N
(r).

Comparison with experiments is not really feasible, since the RDT model velocity "eld has
unphysical temporal correlations, though we note that Ching et al. [69,70] found some support for
the hypothesis [95,183,184] that H(d¹(r)) is a linear function of d¹(r) in a real turbulent wake. An
accurate numerical solution of the closed PDEs (298) for N'2 is too expensive for modern
machines both due to the high-dimensionality and the wide range of scales which must be resolved.
(Gat et al. [114] and Pumir [276] solve numerically for the scaling exponent characterizing the
zero modes of Eq. (298) for N"3, and "nd good agreement with the HP0 and HP1 perturba-
tion theories. While this work is instructive, it still involves the introduction of additional
assumptions and does not directly compute the PS structure functions.)

Direct numerical simulation (DNS) of the passive scalar advection}di!usion equation with
a rapidly decorrelating velocity "eld is di$cult even in d"2 dimensions due to the need to handle
the rapid temporal #uctuations, resolve a wide range of spatial scales, and to collect statistics with
su$cient quality to compute the higher order scalar structure functions S*

N
(r) accurately as r varies

throughout the wide inertial-convective range [61,340,334]. Some DNS studies have been conduc-
ted by Kraichnan et al. [61,184] and Fairhall et al. [94], in which a two-dimensional velocity "eld is
constructed by rapidly sweeping a superposition of two steady random velocity "elds past each
other. The spatial structure of the steady component "elds is generated by a hierarchical version
of the Fourier method which is discussed in Section 6.2.2. The DNS studies [61,94,184] show
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qualitative agreement with the predictions of Kraichnan's linear closure ansatz for structure
functions up through order 10 and Hurst exponents ranging from 0.3 to 0.75, but there are some
statistically signi"cant quantitative discrepancies. The function H(d¹(r)) obtained from this data
is indeed approximately linear for Dd¹(r)DZ(S*

2
(r))1@2, but manifests a noticable bump for

Dd¹(r)D[(S*
2
(r))1@2 [184]. This particular "nding is in qualitative agreement with one prediction of

Yakhot's anomalous scaling theory [343], and could indicate a possible departure from the more
general fusion rules formulated for the RDT model [95,202] as well as Kraichnan's linear closure
hypothesis. The scaling exponents, even of the fourth-order structure function, are shown in [61] to
be very sensitive to slight changes in H(d¹(r)) from a linear form. Unfortunately, some of the
asymptotic regimes studied by perturbation theories are not amenable to DNS studies: the dPR

and NPR limits are inaccessible for obvious reasons [61], and the quality of scaling within the
inertial-convective range is seriously degraded as HP0 because the di!usion length ¸

$
invades the

inertial range [33,340].
A more e$cient means of numerically computing the passive scalar structure functions in the

RDT model, realized and developed by Frisch et al. [108] (and independently proposed in [115]), is
the Monte Carlo numerical simulation of the tracer trajectories (see Section 6). The passive scalar
structure functions S*

2N
(r) can be numerically computed at any value r by a Monte Carlo simulation

of 2N particles, starting from N#1 di!erent initial clusterings at two locations separated by
a distance r. The computational advantage of this trajectory-based approach is that one need only
track a "nite system of stochastic di!erential equations with deterministic coe$cients rather than
resolve a PDE on a full spatial grid. One ostensible drawback is the need to repeat the simulations
to compute S*

2N
(r) for each new value of r. Frisch et al. [108] however circumvent this expense by

noting that the inertial-convective scaling exponent f
2N

of the structure function (297) can be
obtained by observing the scaling with respect to the length scale ¸ breaking complete self-
similarity, which is widely believed to be the pumping length scale ¸

&
. The other main concern, in

common all Monte Carlo simulations, is the need to simulate a large number of independent
realizations so that good statistics can be obtained [115]. The fourth-order structure function was
computed in [108] by simulating millions of tracer trajectories in d"3 dimensions, with the Hurst
exponent of the velocity "eld ranging from H"0.1 up to values very near H"1. The method was
validated by comparison of the simulated second-order structure function against the exactly
known result (see Section 4.3.2). The numerically computed scaling exponents of the fourth order
structure function depart strongly from the prediction (302) of Kraichnan's linear closure ansatz.
(The disagreement is not as bad for values H+1 which were previously computed by direct
numerical simulations of the advection}di!usion equation [94,184].) The numerical result from
Monte Carlo simulations for the fourth-order structure function with H"0.1 is roughly consistent
with the prediction of the HP0 theory, but this limit could not be resolved numerically.

4.4.5. Anomalous scaling in further simplixed versions of RDT model
In an e!ort to obtain clear and unambiguous results regarding several controversial issues

regarding anomalous scaling in the RDT model, some researchers have studied related models
which are simpler to analyze. Vergassola and Mazzino [334] realized that a one-dimensional
version of the RDT model could be sensibly formulated, provided that the incompressibility
condition on the velocity "eld is removed. The velocity "eld is chosen to be delta-correlated in time
with an inertial-scaling range just like the RDT shear #ow in Section 4.1.4, except that the velocity
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is directed along the x-axis rather than transverse to it. One may worry that the removal of
incompressibility may fundamentally change the character of the model, but the rapid #uctuations
of the velocity "eld help to mitigate compressibility e!ects. Indeed, it may be shown by a quadra-
ture computation that the second-order passive scalar structure function S*

2
(r) scales in the 1-D

RDT model as r2~2H in the inertial-convective range of scales, just as in the incompressible RDT
model. The one-dimensional advection}di!usion equation with a rapidly decorrelating velocity
"eld was numerically simulated by [334] for H"1

2
using a pseudo-spectral code, producing clean

scaling behavior for S*
2
(r), S*

4
(r), and S*

6
(r) over one to two decades of scales. The scaling exponents

obtained from the slope of log-log plots exhibited anomaly (f
2N

ONf
2
). The values of these scaling

exponents were found moreover to agree well at H"1
2

with a PadeH approximation constructed
from the small Hurst exponent expansion technique in [35,116] adapted to the 1-D compressible
analogue of Eq. (298).

Vergassola [333] also considered an RDT model version of the kinematic dynamo equations for
the magnetic "eld, and showed that the second-order structure function in this model already
possesses an anomalous scaling exponent f

2
in the sense that it is not related to H by standard

dimensional analysis considerations (as it is in Eq. (296)). He derived an exact expression f
2

as
a function of H, and showed that it was consistent in the HP0 limit with a prediction based on
a small Hurst exponent expansion [35,116] for the scaling exponent of the zero modes of a closed
equation for the correlation function analogous to Eq. (298). These results provide some support
for the anomalous scaling predictions based on expansions of the Hurst exponent [35,116,278], but
the reason for the disagreement with the competing theory [95,183,184] based on the linearity of
H(d¹(r)) remains to be clari"ed [114].

We "nally make mention of an RDT `shell modela of Benzi et al. [33,340] in which Fourier space
is discretized into geometrically distributed shells, and the nonlinear advective interaction between
velocity and passive scalar Fourier shell modes is truncated to nearest neighbors. The Fourier
components of the passive scalar correlation functions then satisfy band-diagonal systems of
ordinary di!erential equations with respect to time. The equations for the second- and fourth-order
correlation functions can be solved numerically, with the result that the second order structure
function S*

2
(r) scales normally in the inertial-convective range with exponent f

2
"2!H whereas

the fourth order structure function S*
4
(r) scales anomalously [340]. Direct Monte Carlo simulations

of the advection}di!usion equations in the RDT shell model con"rm these conclusions [340].
Stability analysis of the equations for the PS correlation functions shows that the e!ects of
molecular di!usion and large-scale pumping have negligible e!ects in the RDT shell model on the
scaling properties of the passive scalar correlation function deep within the inertial-convective
range [33]. This is in agreement with the conventional wisdom for the continuous RDT model
[64,95]. However, the insensitivity to molecular di!usion in the RDT shell model is not uniform in
the HP0 limit, because the scalar dissipation length scale ¸

$
strongly invades the inertial range [33].

4.4.6. Other applications of RDT model to higher-order scalar statistics
The simpli"cation of the temporal structure in the RDT model permit a number of other issues

concerning the small-scale structure of the passive scalar "eld to be examined quantitatively. We
refer the reader to the papers [164,292,295] wherein statistical properties of the gradient and level
set contours of the passive scalar "eld are studied in an RDT velocity "eld without an inertial
range.
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5. Elementary models for scalar intermittency

Small-scale intermittency, of the type just discussed in Section 4.4, has been a recognized feature
of turbulence since 1962, when Kolmogorov [170] and Obukhov [255] modi"ed the original 1941
turbulence theory to account for its e!ects. The small-scale intermittency in both the velocity and
advected scalar "elds in a turbulent #ow is typically associated with the patchiness and irregularity
of regions of strong vorticity and scalar gradients [72,309]. Statistics which involve evaluation of
the turbulent "eld at two closely spaced points are sensitive to small-scale intermittency, and can
exhibit anomalous scaling with respect to Reynolds number or separation distance between the
observation points.

Single-point recordings, on the other hand, measure the total #uctuation coming from all scales,
and are dominated by contributions from the large scale #uctuations because they have the larger
amplitude. They are therefore insensitive to small-scale intermittency. It was long thought that, at
su$ciently high Reynolds number, the single-point measurements of the velocity "eld and of the
passive scalar "eld in homogenous turbulence ought to exhibit the Gaussian statistics typical of
noisy processes with many degrees of freedom. Indeed, nearly Gaussian behavior for these
quantities was observed in several experiments [106,311,316,324,326] dating back to 1947.

An intriguing development came in the late 1980s with the report that single-point temperature
measurements in a Rayleigh}Benard convection cell experiment at the University of Chicago
exhibited large #uctuations with greater frequency than what would arise from a Gaussian
distribution [55,135]. More precisely, the single-point probability density function (PDF) p

T
(o) for

the temperature ¹, de"ned by

ProbMa(¹(bN"P
b

a

p
T
(o) do

was found to decay only exponentially &C
1
e~C2@o@ for large values of o, and not like a Gaussian

&C
1
e~C2o2. Broad tails in the single-point PDF indicate unusual activity occurring at the

large scales, such as large random coherent structures amidst the turbulent `noisea. This
property of large #uctuations in the single-point statistics of a turbulent #ow occurring with
a signi"cantly super-Gaussian probability is therefore often referred to as large-scale intermittency.
To understand how this might come about, recall that in a Rayleigh}Benard convection cell, the
lower face of a cube of #uid is maintained at a temperature hotter than that of the upper face, while
the side walls are insulated. When the applied temperature di!erential is signi"cantly strong, the
temperature pro"le becomes unstable to a large-scale convection rolling pattern, with hot #uid
rising on one side of the cell and cold #uid descending on the other [293]. Superposed on this mean
circulation are turbulent #uctuations, and one may envision the large-scale intermittency of the
measured temperature as coming from the occasional passage of ascending (descending) plumes of
hot (cold) #uid past the probe [135]. Another striking feature about the temperature PDF
measured in this experiment beyond its exponential tails is its universality with respect to Rayleigh
number (a nondimensionalized measure of the vigor of buoyant convection relative to dissipative
processes).

These "ndings stimulated theoretical inquiry into whether the departure of the temperature from
Gaussian behavior was due to the complex #ow and velocity}temperature interactions in the
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convection cell, or whether it might arise more generally. Pumir et al. [277] analyzed a phenom-
enological turbulent mixing model, and predicted that exponential tails should be observed in the
PDF of a passive scalar advected by a moderate Reynolds number #ow when a constant mean
scalar gradient is imposed by the boundary conditions. That is, neither buoyancy nor a wide
inertial range ought to be necessary for the appearance of large-scale scalar intermittency. Sinai
and Yakhot [298] considered the general evolution of a freely decaying passive scalar in a statist-
ically stationary velocity "eld (with no mean scalar gradient imposed). Through a closure approxi-
mation, they predicted that the scalar PDF would develop broad, algebraic tails (p

T
(o)&C

1
o~b for

large o) in the long time limit.
These theoretical developments in turn prompted experimental investigation of the statistics of

temperature #uctuations small enough in magnitude to be considered passive. Gollub and
coworkers [127,191] conducted an experiment directly suggested in [277]. A weak temperature
di!erential was applied to opposite sides of a desktop cell in which the #uid was stirred by
a oscillating grid. For Reynolds numbers &103, the temperature displays broad exponential tails
in its PDF, while the turbulent velocity "eld has a short inertial range and a Gaussian PDF.
Meanwhile, Jayesh and Warhaft [146,147] studied the PDF of the temperature and velocity in
a wind tunnel with grid-generated turbulence. A mean temperature gradient is impressed on the
#ow only at the inlet, and the velocity and temperature #uctuations decay freely in the tunnel.
Despite the di!erences from the setup of Gollub et al., similar results were found: at comparable
Reynolds number, the velocity PDF quickly relaxes to a Gaussian form, while the temperature
PDF exhibits broad exponential tails far downstream of the grid. The temperature PDF in both
experiments, however, reverts to a Gaussian form if the Reynolds number does not exceed some
moderate value. Jayesh and Warhaft also observed Gaussian behavior for the temperature when
a mean temperature gradient is not impressed on the #ow.

Large eddy [237,238] and direct numerical simulations [91,111,153,155], which were pursued
even earlier and in a di!erent spirit than the above-mentioned laboratory experiments, also
indicate a similar variety of both Gaussian and non-Gaussian behavior for turbulently advected
active and passive scalars. We shall quickly review some of the main results from physical and
numerical experiments in Section 5.1.

In order to investigate some of the issues regarding large-scale passive scalar intermittency raised
by the above-mentioned laboratory and numerical experiments, the "rst author designed a turbu-
lent di!usion model for which the single-point passive scalar PDF could be computed exactly
[207]. The velocity "eld in this Random ;niform Jet model was taken as a superposition of two
parallel uniform shear #ows, one with deterministic variation in time modelling a mean #ow, and
the other with random and rapid #uctuations modelling the e!ects of moderate Reynolds number
turbulence. Beyond the speci"cation of the form of the velocity "eld, no further assumptions are
introduced; the advection}di!usion equation can be analyzed in its exact form. Though the model
velocity "eld is relatively simple, the single-point statistics of the advected passive scalar "eld
display a rich behavior. For example, the scalar PDF approaches a Gaussian or non-Gaussian
form at long times, depending on the dynamics of the mean shear #ow. The long-time limiting
shape of the scalar PDF is universal in a restricted sense: it depends on three parameters involving
only the large-scale features of the initial data and one parameter involving both the #ow
parameters and the large-scale features of initial data. We will present the Random Uniform Jet
model in Section 5.2, and point to some qualitative connections between its "ndings and the results
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of numerical and laboratory experiments. This discussion draws from the original paper [207] and
subsequent elaborations by McLaughlin and the "rst author [233] and by Resnick [282].

Further issues concerning passive scalar intermittency were studied by Bronski and McLaughlin
[51] in a variation of the Random Uniform Jet model in which the random shear #ow is taken to be
periodic, rather than uniform, in space. While this Random, Spatially Periodic Shear model is
not exactly solvable in the same sense as the original Random Uniform Jet model, the passive
scalar PDF can still be analyzed in the long-time limit through precise asymptotic expansions.
The results of these direct computations can be compared with the predictions of homogenization
theory (see Section 2), which applies rigorously in a certain long-time asymptotic limit in which
the initial data is simultaneously rescaled to larger scales. As we shall discuss in Section 5.3,
the scalar PDF in the Random, Spatially Periodic Shear model displays substantial qualitative
di!erences from the homogenized description when evaluated at large but "nite times with the
initial data varying on a large but ,xed length scale [51]. This is the appropriate limit procedure
for studying the long-time characteristics of a particular system, and its departures from homo-
genization theory indicate some subtleties about the nature of the limit process involved in
the latter.

We conclude in Section 5.4 with a brief discussion of some other recent theoretical studies which
shed light on other aspects of large-scale passive scalar intermittency beyond those present in the
exactly solvable simple models described above. Most of this work is based upon phenomenologi-
cal or formal approximations, in contrast to the exact analysis of the basic advection}di!usion
equation presented in Sections 5.2 and 5.3.

5.1. Empirical observations

As we have mentioned in the introduction, the PDF of a turbulently advected scalar has been
empirically found to have exponential tails in some circumstances and to be Gaussian in others. It
would be interesting to establish criteria classifying the ingredients and parameter ranges asso-
ciated with large-scale scalar intermittency, but much more investigation appears necessary. (See
[147] for the suggestion of such a criterion, which however does not appear to explain the results of
[238] and [316].) The physical experiments and direct and large eddy numerical simulations do at
least suggest, though, that the shape of the scalar PDF depends on the following features and
parameters:

1. whether the turbulence is driven or freely decaying [153,238],
2. whether buoyancy e!ects are important [55,135,155,238],
3. the presence of a mean scalar gradient [147],
4. the presence of a mean shear #ow (compare [147,316]),
5. Reynolds number [147,191],
6. the relative magnitude of the integral length scale of the velocity "eld and the correlation length

of the passive scalar "eld [191,311],
7. the time at which the scalar is measured when it is freely decaying.

With regard to the last point, the scalar PDF in some freely decaying turbulent systems exhibits
strong skewness [311] or broad tails [91] for a while, but slowly relaxes to a Gaussian distribution
after a long time.
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We are not aware of any positive experimental results concerning the universality of the scalar
PDF other than those reported in the Chicago convection experiments [55], but there does not
seem to have been much systematic investigation in this direction.

5.2. An exactly solvable model displaying scalar intermittency

We shall now introduce a simpli"ed turbulent di!usion model in which the scalar PDF can be
exactly analyzed without the need for any further ad hoc approximations or assumptions. Within
the model, we will be able to characterize precisely the conditions under which the scalar PDF
displays Gaussian or non-Gaussian features, and touch on the issues 4, 6 and 7 listed in Section 5.1.
We can also describe the extent to which the limiting shape of the PDF in the long-time limit is
universal.

5.2.1. Random uniform jetmodel
For our mathematical investigation of passive scalar intermittency, we consider velocity "eld

models from a class of three-dimensional jet #ows:

*(x, t)"*(x, y, z, t)"C
0

c
.
(t)z#c

3
(t)<

3
(x)

0 D . (303)

Here, <
3
(x) is a deterministic spatial pro"le, c

.
(t) is a deterministic function of time, and c

3
(t) is

a stationary, Gaussian random function of time with mean zero and correlation function:

Sc
3
(t)c

3
(t#q)T"R(q) .

The velocity "eld is directed only in the single direction y, and is composed of a deterministic shear
#ow c

.
(t)z and a random shear #ow c

3
(t)<

3
(x) varying in transverse directions. The deterministic

component c
.
(t)z is supposed to model a mean shearing motion which responds to some regular,

external forcing. The random component <
3
(x)c

3
(t) represents a spatially coherent motion with

random temporal #uctuations, qualitatively modelling an excited instability in the #uid #ow. The
class of models (303) thereby mimics some features of a #ow with a moderate Reynolds number not
far above the onset of the turbulent activity. To model a high-Reynolds number jet #ow, we could
superpose a further shear velocity "eld with random spatio-temporal #uctuations over a wide
inertial range of scales (as in Section 3). The empirical evidence suggests, however, that the issue of
passive scalar intermittency is already interesting for moderate Reynolds number #ows [147,191].

We will consider the evolution of passive scalar initial data of the form

¹
0
(x, y, z)"¹M

0
(x, y)#¹I

0
(x, y) ,

where ¹M
0
(x, y) is a deterministic mean pro"le and ¹I

0
(x, y) is a mean zero, homogenous, Gaussian

random "eld of #uctuations about this pro"le, with correlation function

P0
2
(x, y)"S¹I

0
(x@, y@)¹I

0
(x@#x, y@#y)T"PR2

e2p*(gx`ky)PK 0
2
(g,k) dgdk . (304)
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If the mean pro"le is nontrivial, it will be assumed to have a "nite nonzero integral:

MM
0
"PR2

¹M
0
(x, y) dxdyO0 . (305)

If random #uctuations are present in the initial data, their spectrum PK 0
2
(g, k) will be assumed to have

the following low-wavenumber asymptotics:

lim
g?0,k?0

PK 0
2
(g, k)&DkD~a/(g,k) , (306)

where /(g, k) is a smooth function with /(0, 0) "nite and positive. The restriction that the initial
data vary only in the x and y directions eases the complexity of the formulas; all the qualitative
features we shall discuss carry over to case in which the initial data also varies in the z direction
[207,233].

We will presently consider a uniform pro"le for the random shear (<
3
(x)"x), and prescribe the

random temporal #uctuations c
3
(t) to be either

f a white noise process, with correlation function

R(q)"A
0
d(q) , (307)

or
f a superposition of Ornstein};hlenbeck processes, with correlation function

R(q)"
M
+
j/1

A
j
e~q@qj . (308)

The Mq
j
NN
j/1

are the correlation time scales of the Ornstein}Uhlenbeck processes, while A
0

and
MA

j
NN
j/1

determine the amplitude of the associated shear #ows. The white noise process may be
thought of as a certain rapid decorrelation limit of the Ornstein}Uhlenbeck process (q

j
Peq

j
and

A
j
Pe~1A

j
with eP0).

The passive scalar "eld will evolve freely in the statistically stationary turbulent velocity just
de"ned, and no mean scalar gradient nor boundary conditions are imposed. The advec-
tion}di!usion model we have just de"ned will be called the Random ;niform Jet model:

R¹(x, y, z, t)
Rt #(c

.
(t)z#c

3
(t)x)
R¹(x, y, z, t)
Ry "iD¹(x, y, z, t) ,

¹(x, y, z, t"0)"¹M
0
(x, y)#¹I

0
(x, y) .

(309)

The assumptions made concerning the spatial pro"le of the shear and the temporal dynamics
permit the single-point statistics S¹N(x,y, t)T of the passive scalar "eld to be expressed by explicit
quadrature formulas. Later, in Section 5.3, we shall consider a periodic spatial pro"le <

3
(x) for the

random shear.
We present the large-scale scalar intermittency properties of the Random Uniform Jet model in

Section 5.2.2 and qualitatively relate them to the empirical observations. The derivation of these
results, in which the passive scalar correlation functions are represented through the solutions of
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quantum-mechanical SchroK dinger equations, will be sketched in Section 5.2.3. In the present case,
these SchroK dinger equations describe precisely the motion of a system of particles subject to
a harmonic oscillator potential, and may be solved in fully explicit form through Mehler's formula
[296]. This methodology was developed by the "rst author [207] and extended together with
McLaughlin [233] for the white noise temporal structure of the random shear. Resnick [282]
generalized the analysis to handle the Ornstein}Uhlenbeck temporal stucture.

5.2.2. Exact results for models and relation to physical themes
Despite the relative simplicity of the Random Uniform Jet model (309), the PDF p(x,y,z,t)

T
( ) ) for

the single-point passive scalar statistics:

ProbMa4¹(x, y, z, t)4bN"P
b

a

p(x, y, z, t)
T

(o) do

displays a variety of interesting features. First, the scalar PDF has a

f broader-than-Gaussian distribution at all ,nite times 0(t(R and spatial locations, when the
initial data is a mean zero, Gaussian, homogenous random "eld.

In the long-time limit, the scalar PDF will become concentrated at zero because of dissipative
processes, but it will converge to a nontrivial shape (independent of spatial location (x, y, z)) which
exhibits the following features:

f broader-than-Gaussian tails when the mean shear #ow c
.
(t)z is weak or absent,

f a Gaussian distribution when the mean shear #ow c
.
(t)z is su$ciently persistent,

f dependence on the relative magnitude of initial velocity and passive scalar length scales (as
measured by the parameter a in Eq. (306)), with the PDF becoming more Gaussian as the
long-range correlations in the initial data become stronger,

f permanent skewness with memory of the sign of the integral of the mean initial scalar pro"le, MM
0
,

f a phase transition with respect to the parameter a when the initial data has both deterministic and
random components,

f dependence on molecular di+usivity at the phase transition value a"3/4,
f universality with respect to small-scale features of initial data,
f universality with respect to the random temporal correlation structure of the velocity ,eld, whether

it be a white noise process or a superposition of Ornstein}Uhlenbeck processes.

The fact that our exactly solvable model produces scalar intermittency with this wide range of
features makes it an attractive candidate for testing approximate closure schemes [269]. We shall
now elaborate upon the above results for the model, and connect them with the experimental and
numerical "ndings presented in Section 5.1.

5.2.2.1. Finite-time intermittency. Suppose that the initial data is purely a mean zero, homogenous,
Gaussian random "eld ¹

0
(x, y)"¹I

0
(x, y). Then, when c

3
(t) is white noise in time, one can show

through explicit formulas that the scalar PDF p(x,y,z,t)
T

( ) ) is broader-than-Gaussian at all "nite
positive times [207]. That is, the #atness factor

F(x, y, z, t),
S(¹(x,y, z, t))4T
S(¹(x, y, z, t))2T2
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strictly exceeds the Gaussian value of 3 for all (x, y, z)3R3 and 0(t(R. A similar result can be
rigorously deduced through the analysis of quantum mechanical analogies (see Section 5.2.3) when
the shear #ow pro"le <

3
(x) is periodic in space (Section 5.3 and [51]) or contains a more general

spatio-temporal randomness [206].
Fe!erman [101] pointed out that broader-than-Gaussian scalar PDFs should in fact arise at
"nite times for quite general models with random advection and molecular di!usion, when the
initial data is a mean zero, homogenous, Gaussian random "eld. His argument sharpens some
related observations of Kimura and Kraichnan [162]. Observe "rst that since the advection}
di!usion equation is linear:

R¹(x, t)/Rt#*(x, t) '+¹(x, t)"iD¹(x, t) ,

¹(x, t"0)"¹
0
(x) ,

we may represent its solution as the integral of the initial data against a Green's function p(t) (x, x@):

¹(x, t)"PRd

p (t) (x, x@)¹
0
(x@) dx@ .

The Green's function appearing here is random because it depends on the random velocity "eld *.
Consider now a solution of the advection}di!usion equation which is conditioned upon a particu-
lar realization of the velocity "eld * chosen from the statistical ensemble. This conditioned passive
scalar ,eld, which we denote ¹(x, tD*), is expressible as the integral of the initial data against
a deterministic Green's function, since the velocity "eld is "xed at a given realization. Being
a deterministic linear functional of the mean zero, Gaussian random "eld ¹

0
(x), the conditioned

passive scalar "eld ¹(x, tD*) must also be a mean zero, Gaussian random "eld. The original,
unconditioned passive scalar "eld ¹(x, t) can therefore be described as a random mixture of the
mean zero, Gaussian random "elds ¹(x, tD*).

We now show that this implies that ¹(x, t) must have a broader-than-Gaussian single point PDF
at all space}time points, unless the conditional passive scalar variance

p2
T
(x, t; *),S¹(x, tD*)2T

0

is independent of the particular realization of the velocity "eld * which is held "xed in the average
over the initial data. Recall our convention that the su$x `0a on the expectation brackets indicate
an averaging only over the statistics of the initial data, while a su$x `va will indicate an average
only over the velocity statistics. (We assume these are statistically independent.)

Note "rst that S¹(x, t)T"SS¹(x, tD*)T
0
T
v
"S0T

v
"0. The #atness factor of the passive scalar

"eld may then be written:

F(x, t),
S(¹(x, t)!S¹(x, t)T)4T
S(¹(x, t)!S¹(x, t)T)T2

"

S¹4(x, t)T
S¹2(x, t)T2

"

SS¹4(x, tD*)T
0
T
v

SS¹2(x, tD*)T
0
T2
v

.

Because ¹(x, tD*) is a Gaussian random "eld for each "xed realization of *, we have

S¹4(x, tD*)T
0
"3S(¹(x, tD*))2T2

0
"3(p2

T
(x, t; *))2 .
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Therefore,

F(x, t)"3
S(p2

T
(x, t; *))2T

v
Sp2

T
(x, t; *)T2

v

.

But by the simplest moment inequality

S(p2
T
(x, t; *))2T

v
Sp2

T
(x, t; *)T2

v

51 ,

with equality holding only when the functional of the random velocity "eld, p2
T
(x, t; *), has zero

variance, i.e., behaves deterministically. We have shown that the passive scalar "eld will have
a broader-than-Gaussian distribution at all space}time points (x, t) for which p2

T
(x, t; *) has some

nontrivial dependence on *.
Therefore, the question of "nite-time intermittency reduces to the question of whether the

conditional variance of the passive scalar "eld at a certain location depends on the particular
realization of the velocity "eld. If the velocity "eld were deterministic or absent, then there
tautologically would be only one realization of the velocity "eld, and the passive scalar "eld must
be exactly Gaussian at all times. On the other hand, if the passive scalar "eld were advected by an
arbitrary incompressible random velocity "eld with no molecular di!usion, then the passive scalar
"eld is simply advected along characteristics. Consequently, in every realization of the velocity
"eld, the single-point scalar PDF will everywhere be identical to that of the homogenous, Gaussian
random initial data ¹

0
(x). Hence, as was also shown by Kimura and Kraichnan [162], the passive

scalar "eld arising from homogenous, Gaussian random initial conditions will remain Gaussian
unless both random advection and molecular di!usion are active.

While these transport mechanisms in isolation always preserve Gaussianity of the initial,
homogenous, random passive scalar "eld, their interaction generically will produce intermittent
passive scalar "elds at all "nite times. Consider, for example, the Random Uniform Jet Model, in
which the random component of the velocity "eld is the stochastic process c

3
(t) multiplying

a uniform shear #ow spatial structure. Scalar intermittency will arise provided that the conditional
variance of the passive scalar "eld p2

T
(x, t; *) depends on the particular realization of c

3
(t). This is

clearly true: the shear #ow interacts with the molecular di!usion to produce enhanced di!usion
[31,258], and in each realization of the random shear, the mean-square displacement of a tracer
along the shear is

D
3
(tDc

3
)"2iP

t

0
P

t

0

c
3
(s)min(s, s@)c

3
(s@) ds ds@ , (310)

as follows from computations similar to those described in Section 2.3.1. The greater the resulting
transport, the more rapidly the passive scalar #uctuations will average out and their variance
decrease.

In general, velocity "elds with regions of stronger strains and shears give rise to more e!ective
di!usion of the passive scalar "eld and consequently faster dissipation of the passive scalar variance
than those with gentler gradients. Thus, in a generic random velocity "eld model in which the
realizations of the statistical ensemble have di!erent shearing and straining behavior, one can
expect broader-than-Gaussian scalar PDF's at all "nite space-time locations (x, t), when the initial

A.J. Majda, P.R. Kramer / Physics Reports 314 (1999) 237}574 467



passive scalar "eld is a mean zero, homogenous, Gaussian random "eld. The assumption of
statistical homogeneity is, in fact, inessential.

Note that the argument just presented does not suggest that the scalar PDF should generally
remain broader-than-Gaussian in the long-time limit. The passive scalar variance p2

T
(x, t)"

Sp2
T
(x, t; *)T

v
"S¹2(x, t)T will decay to zero as tPR, so one must consider instead the normalized

conditional variance:

R2
T
(x, t; *),p2

T
(x, t; *)/p2

T
(x, t) .

By the same arguments as above, the scalar PDF approaches a broader-than-Gaussian shape in
the long-time limit when R2*

T
(x; *),lim

t?=
R2
T
(x, t; *) is a nontrivial functional of the random

velocity "eld, and will asymptotically become Gaussian when R2*
T

(x; *) is almost surely a determin-
istic constant (which must be unity). Intuitively, we might associate relaxation to a Gaussian
distribution (R2*

T
(x),1) with #ows in which the passive scalar "eld has a `self-averaging property,a

so that the long-time properties of the passive scalar "eld are the same in each individual
realization of the velocity "eld. But it is not clear how to decide which case holds for a general,
given nontrivial model.

For the Random Uniform Jet Model, we can actually compute the moments of the scalar PDF
through explicit formulas, and thereby directly characterize when the scalar PDF is Gaussian or
broader-than-Gaussian in the long-time limit.

5.2.2.2. Gaussianity and non-Gaussianity of the asymptotic scalar PDF. As we have just discussed,
the single-point passive scalar PDF p(x,y,z,t)

T
( ) ) is broader-than-Gaussian at "nite times in the

Random Uniform Jet Model. The question of whether this PDF relaxes to a Gaussian in the
long-time limit is determined [207] through the long-time behavior of the following function
related to the temporal structure of the deterministic mean shear #ow c

.
(t)z:

I
.
(t)"iP

t

0
AP

s

0

c
.
(s@) ds@B

2
ds .

f If t~2I
.
(t) is bounded in time, then as tPR, the passive scalar PDF p(x,y,z,t)

T
( ) ) converges to

a broader-than-Gaussian shape which is completely independent of the mean shear #ow,
f If t~2I

.
(t)PR as tPR, then the passive scalar PDF p(x,y,z,t)

T
( ) ) approaches a Gaussian

distribution in the long-time limit.

(If neither of these cases hold, then the passive scalar PDF never settles down to a limit, but forever
oscillates in response to variations in the mean shear #ow c

.
(t)z.)

In particular, in the absence of the mean shear #ow (c
.
(t)"0), the passive scalar PDF in our

model converges to a broader-than-Gaussian limiting form in the long-time limit. The addition of
a uniform mean shear #ow c

.
(t)z with c

.
(t) a periodic function of time will not in#uence this

limiting distribution. On the other hand, the addition of a steady mean shear #ow (c
.
(t) a nonzero

constant) will cause the passive scalar PDF to relax to a Gaussian form. More generally, the
asymptotic scalar PDF will be Gaussian or not according to whether or not the mean shear #ow is
su$ciently persistent, as measured by whether t~2I

.
(t) diverges or stays bounded. Large values of

I
.
(t) correspond to temporal dynamics c

.
(t) of the mean shear #ow which tend su$ciently strongly

toward one direction or the other.
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It can be readily checked that the above conclusions hold without change if the mean shear #ow
were to be given instead by c

.
(t)x, with its gradient directed parallel to that of the random shear

#ow c
3
(t)x.

One might understand why a persistent mean shear #ow is associated with Gaussianity of the
limiting passive scalar PDF through a `self-averaging e!ecta. From Section 3, we know that
molecular di!usion interacts with shear #ows to produce enhanced di!usion of the passive scalar
"eld along the direction of the shear. As discussed above, the interaction of the molecular di!usion
with the random shear #ow c

3
(t)x is a source of scalar intermittency due to the variability of the

resulting shear-enhanced di!usion and dissipation. On the other hand, the interaction of the
molecular di!usion with a deterministic shear #ow will lead to a rapid di!usion along the shearing
direction which will tend to average out the passive scalar #uctuations over space in a regular,
nonrandom fashion. By a central limit argument, one can expect that this averaging e!ect will tend
to restore Gaussianity to the passive scalar statistics.

This intuition is re#ected by the exact criterion concerning I
.
(t) described above. This quantity

can be rewritten in a form

I
.
(t)"iP

t

0
P

t

0

c
.
(t!s)min(s, s@)c

.
(t!s@) dsds@ (311)

which has a good deal of similarity with the formula for the mean-square tracer displacement along
a time-dependent, deterministic uniform shear #ow (cf. (310)):

p2
Y,.

(t)"2iP
t

0
P

t

0

c
.
(s)min(s, s@)c

.
(s@) dsds@ .

The mean-square displacement along a randomly #uctuating shear #ow c
3
(t)x with white noise

correlations can also be calculated by similar means:

p2
Y,3

(t)"2iP
t

0
P

t

0

min(s, s@)Sc
.
(s)c

.
(s@)Tdsds@"it2 ,

and a quadratic expression in t also results upon averaging the formula (311) for I
.
(t) with c

3
(t)

replacing c
.
(t). Therefore, the criterion for whether the asymptotic scalar PDF is Gaussian or not is

related in some sense to whether the mean or random shear di!use the passive scalar "eld more
e!ectively.

The `Gaussianizinga property of the mean shear revealed in the Random Uniform Jet model
might be responsible for the di!erent properties of the temperature observed in wind tunnel
experiments by Jayesh and Warhaft [147] and by Tavoularis and Corrsin [316]. In both experi-
ments, a mean temperature gradient is impressed on the #uid at the inlet, after which it freely
decays. Jayesh and Warhaft generate turbulence by passing a uniform #ow through a grid, whereas
Tavoularis and Corrsin introduce a nearly uniform mean shear #ow into the tunnel, where
turbulence develops due to #ow instabilities. In the former experiment, broad tails in the temper-
ature PDF persist far downstream. In the latter, the temperature PDF is very well approximated by
a Gaussian, even though the Reynolds number is higher. A satisfactory investigation of this point
would of course require a comparison between two experiments in which all conditions are held
"xed, other than the presence of the mean shear.
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5.2.2.3. Properties of the non-Gaussian asymptotic PDF. From now on, we shall focus on the
characterization of the broader-than-Gaussian shape of the scalar PDF which arises in the
long-time limit when t~2I

.
(t) is bounded. Its asymptotic shape will not depend on the mean shear

#ow, nor does it depend on whether the random shear is #uctuating in time according to a white
noise or Ornstein}Uhlenbeck process. Rather, it depends only on some large-scale features of the
initial passive scalar data ¹

0
(x, y). That is, one can de"ne universality classes of the initial data,

dependingonly on a few large-scale parameters, so that all initial data belonging to a particular
universality class will approach a common broader-than-Gaussian PDF in the long-time limit.

First, we will "rst separately consider the cases of purely random initial data and purely
deterministic initial data. Subsequently, we will examine the long-time form of the scalar PDF
when the initial data has both deterministic and random components. Finally, we describe the
universality properties of the long-time scalar PDF shape in a little more detail.

Purely random initial data. If the initial data is a mean zero, homogenous, Gaussian random "eld
¹

0
(x, y)"¹I

0
(x, y), then by linearity of the advection}di!usion equation, the scalar PDF will have

a symmetric form with mean zero at all times. The simplest characterization of the shape of the
long-time asymptotic scalar PDF is thus the ("rst) #atness factor:

F*"lim
t?=

S¹4(x, y, z, t)T
S¹2(x, y, z, t)T2

.

A Gaussian PDF has a #atness of 3, while the #atness of the asymptotic scalar PDF in the Random
Uniform Jet model is given by the explicit formula [233]:

FI *a"3
PR2

Dk(1)D~aDk(2)D~a((k(1))2#(k(2))2)1@4

(sinhJ(k(1))2#(k(2))2)1@2
dk(1)dk(2)

PR2

Dk(1)D~a`1@2

(sinhDk(1)D)1@2
(Dk(2)D)~a`1@2

(sinhDk(2)D)1@2
dk(1)dk(2)

. (312)

The parameter a appearing here describes the low-wavenumber behavior of the spectrum of the
initial passive scalar #uctuations:

P0
2
(x, y)"S¹I

0
(x@, y@)¹I

0
(x@#x, y@#y)T"PR2

PK 0
2
(g, k) dgdk ,

lim
g?0,k?0

PK 0
2
(g, k)&DkD~a/(g,k) ,

where /(g,k) is a smooth function with /(0, 0) "nite and positive.
One can rigorously show through calculus inequalities [207,233] that the asymptotic #atness

FI *a is greater than 3, and that the asymptotic scalar PDF is therefore strictly broader-than-
Gaussian. In Table 14, we report some numerical computed values of FI *a .

The value a"0 is the most natural, since it corresponds to initial data for which

0(PR2

P0
2
(x, y) dxdy(R .
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Table 14
Flatness of asymptotic scalar PDF in Random Uniform Jet Model (from [233])

a FI Ha

!8.0 265.02
!4.0 22.84
!1.5 6.01
!0.8 4.46

0.0 3.44
0.4 3.16
0.8 3.02

This condition is satis"ed for the typical case in which the initial data is predominantly positively
correlated, with "nite integral length scale. As we see from the table, the #atness for this class of
`ordinarya initial data is 3.44, which indicates a scalar PDF which is slightly broader than
a Gaussian shape but not as broad as an exponential distribution (F"6).

Varying the parameter a corresponds, in a sense, to varying the ratio between the (initial) length
scale of the passive scalar "eld and the length scale of the velocity "eld. Now, the length scale of the
velocity "eld in the Random Uniform Jet model is strictly in"nite, so one cannot literally de"ne
such a length scale ratio. But the parameter a does describe the strength of the large-wavelength
(low-wavenumber) #uctuations in the initial data. Clearly, as a increases, the initial data is
becoming more strongly correlated over larger length scales. In particular, for 0(a(1, the
integral length scale of the initial data is in"nite, and one can relate this range of parameter values
to situations in which the velocity and passive scalar "eld have comparable length scales. We see
from Table 14 that as the long-range correlations of the passive scalar initial data strengthen
(aP1), the #atness factor approaches the Gaussian value of 3. On the other hand, for negative
values of a, the long-wavelength #uctuations of the passive scalar "eld are depleted, and the passive
scalar "eld is initially correlated on much smaller length scales than the integral length scale of
the velocity "eld. The #atness factor diverges rapidly as a decreases. Indeed, if the spectrum of
passive scalar #uctuations vanishes in a neighborhood of the origin (formally, a"R), the #atness
factor is in"nite: the asymptotic scalar PDF has algebraic tails [207,233].

The qualitative paradigm we infer from the previous paragraph is that the passive scalar PDF
relaxes at long times to an approximately Gaussian distribution when the length scale of the
passive scalar "eld is comparable or greater than that of the velocity "eld, but that strong scalar
intermittency will persist if the passive scalar "eld is correlated on a much smaller length scale than
that of the turbulent velocity "eld.

From an intuitive standpoint, one can imagine that a turbulent velocity "eld will be able to
e!ectively mix up a passive scalar "eld with larger-scale variations and produce a di!usive
averaging over a wide area after a su$cient amount of time. A central limit argument suggests that
the passive scalar statistics ought to then become Gaussian (see also [162]). On the other hand,
when the passive scalar variations occur on scales smaller than that of the velocity "eld, the mixing
is less e$cient because the energetic large scales of the #ow will mostly drag passive scalar
structures around rather than chop them up. The passive scalar "eld will instead be distorted
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through irregular small-scale straining and shearing processes, which are likely to produce or at
least preserve intermittent features. This is the situation in Rayleigh}Benard convection cells,
where thin plumes of hot #uid rise and cold #uid fall through a relatively regular circulation
pattern. In the `hard turbulencea regime, the temperature is found to be intermittent in the central
region through which these plumes pass [55,135,155,293]. Temperature is of course not a passive
scalar in these convection cells, but buoyancy plays no role in the intuitive argument.

Purely deterministic initial data. We now describe some characteristics of the asymptotic scalar
PDF which arises from purely deterministic initial data ¹

0
(x, y)"¹M

0
(x, y). We assume that the

total mass of the initial data is nonzero and "nite:

MM
0
,PR2

¹M
0
(x, y) dxdyO0 .

In this setting, the single-point PDFs p(x,y,z,t)
T

will vary with spatial location and will not necessarily
be broader-than-Gaussian at "nite times. In the Random Uniform Jet model [233], however, the
passive scalar PDF at each point approaches a common and universal broader-than-Gaussian
shape with #atness FM *+3.52. Moreover, the scalar PDF will exhibit a persistent asymmetry,
which we may characterize by its skewness:

SM (x, y, z, t),
S(¹(x, y, z, t)!S¹(x, y, z, t)T)3T

S(¹(x, y, z, t)!S¹(x, y, z, t)T)2T3@2
.

In the long-time limit, the skewness everywhere approaches a common value [233]:

lim
t?=

SM (x, y, z, t)"SM * sgnMM
0

,

where SM *+0.76. Thus, the passive scalar PDF will forever remember the sign of the mass of the
initial data, and will not converge to a symmetric shape.

Persistent skewness of temperature was observed in wind tunnel experiments by Sreenivasan and
others [311]. The turbulence is generated by a grid, and temperature #uctuations are introduced by
heating wires on the same grid, or another screen downstream. The temperature showed signi"cant
skewness relatively far downstream of the heated grid, relaxing to an approximately symmetric
distribution only after 40}100 thermal mesh sizes.

Initial data with deterministic and random components. We shall "nally discuss the asymptotic
shape of the scalar PDF in the long-time limit when the initial data ¹

0
(x, y)"¹M

0
(x, y)#¹I

0
(x, y) is

a superposition of a mean pro"le ¹M
0
(x, y) with random #uctuations ¹I

0
(x,y) with the same

properties as above. As the advection}di!usion PDE is linear, the passive scalar "eld arising from
this combined initial data will be a simple sum of the individual contributions. Because these
summands are statistically correlated, the PDF p(x,y,z,t)

T
( ) ) of the total passive scalar "eld will,

however, not be related to the individual PDFs in such a simple fashion.
Through explicit computations [233], we "nd that the long-time limit of the passive scalar PDF

approaches at every point a common shape, which depends on the parameter a. Its skewness and
#atness are as follows:

f If !3
2
(a(1, the asymptotic skewness S* is zero, and the asymptotic #atness is F*"FI *a , just

as in the case of purely random initial data.
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f If a(!3
2
, the asymptotic skewness SH"SM H sgn MM

0
and the asymptotic #atness F*"FM *, just

as in the case of purely deterministic initial data.
f If a"!3

2
, then the asymptotic skewness is given by

lim
t?=

S(x, y, z, t)"S*
#

sgnMM
0

,

S*
#
"

C
31

MM 3
0
#C

32
(i/A

0
)1@4MM

0
/(0, 0)

(C
21

MM 2
0
#C

22
(i/A

0
)1@4/(0, 0))3@2

.

The asymptotic #atness is given by

lim
t?=

F(x, y, z, t)"F*
#
"

C
41

MM 4
0
#C

42
(i/A

0
)1@4MM 2

0
/(0, 0)#C

43
(i/A

0
)1@2(/(0, 0))2

(C
21

MM 2
0
#C

22
(i/A

0
)1@4/(0, 0))2

.

The numerical constants appearing in these formulas may be computed by quadrature:
C

21
+0.27, C

22
+0.50, C

31
+0.10, C

32
+0.74, C

41
+0.25, C

42
+2.55, and C

43
+1.52. The

function /(g, k) is part of the low-wavenumber description of the spectrum of initial passive
scalar #uctuations (306).

We thus see a phase transition in the shape of the scalar PDF in the long-time limit. For a'!3
2
,

the long-wavelength random #uctuations in the initial data are su$ciently strong that they
alone determine the long-time skewness and #atness (as well as all the higher-order statistics [233]).
For a(!3

2
, the mean initial scalar pro"le instead plays the dominant role. At the transition

boundary a"!3
2
, both the mean and #uctuating components of the initial data are relevant.

Moreover, for this special value of a, the long-time scalar PDF depends upon an additional
parameter:

/(0, 0)i1@4/MM 2
0
A1@4

0

which is irrelevant for all other a. This parameter involves the relative magnitude of the large-scale
variations in the mean and random components of the initial data, through MM

0
and /(0, 0)

respectively, and further depends on the strength of the advection A
0

(see Eq. (307)) and of
molecular di!usion i. If the random temporal #uctuations are governed by a superposition of
Ornstein}Uhlenbeck processes (308), then A

0
should be replaced by +M

j/1
A

j
q
j
.

The reason for the appearance of these factors is that at the special value of a"!3
2
, the variance

of the contribution to the passive scalar "eld from the deterministic initial data ¹M
0
(x, y) and

from the random initial data ¹I
0
(x, y) decay at long times according to power laws Kt~b, with

a common exponent b"3 but di!erent prefactors K. The statistics of the total passive scalar "eld
will clearly depend on the relative magnitude of these prefactors, which in turn depends on the
relative magnitude of the initial data as well as the advection}di!usion parameters. When aO!3

2
,

the contributions from the mean and random components of the initial data decay according to
power laws with distinct exponents, and thus one will asymptotically dominate the statistics of
their sum.

5.2.2.4. Universality of asymptotic PDF shape. With the results on the long-time limiting form of
the passive scalar PDF presented, we review the extent to which its shape is universal. We found
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that the skewness and #atness depend in the long-time limit only on the following parameters in the
model:

f the boundedness or divergence of the quantity t~2I
.
(t), which determined whether the mean

shear #ow is persistent enough to drive the passive scalar PDF to Gaussianity,
f the parameter a characterizing the strength of the long-wavelength #uctuations of the random

initial data (306) (and which roughly represents a ratio of the length scales of the velocity and
passive scalar "eld),

f the sign of mass of the mean pro"le of initial data MM
0
":R2¹0

(x,y) dx dy,
f the following combination involving the strength of the random advection, the molecular

di!usion, and the relative size of the low-wavenumber components of the mean and random
components of the initial data:

/(0, 0)i1@4/MM 2
0
A1@4

0
.

This parameter is only relevant when a"!3
2
, a special value at which the random and mean

components of the initial data decay at comparable rates at long times.

(It can be shown that the higher-order statistics depend on this same set of quantities [233].)
The asymptotic shape of the scalar PDF is universal with respect to all other features of the

model, namely:

f The small-scale features of the initial data, i.e., anything other than the low-wavenumber
asymptotics of its Fourier spectrum.

f The temporal correlation structure c
3
(t) of the random shear, whether it be governed by a white

noise process or a superposition of Ornstein}Uhlenbeck processes [282]. It is of course possible
that if c

3
(t) has long-range temporal correlations, the asymptotic scalar PDF may be altered.

f The details of the temporal dynamics of the mean shear c
.
(t), other than through the criterion

involving the single parameter I
.
(t) mentioned above.

5.2.3. Derivation of results
The basis for all of the above results concerning the single-point passive scalar PDF in the

Random Uniform Jet model is the ability to express the equal-time, multipoint passive scalar
correlation functions

P
N
(M(x(j), y(j), z(j))NN

j/1
, t),T

N
<
j/1

¹(x(j),y(j), z(j), t)U
to all orders in terms of explicit integrals of elementary functions. In particular, all the single-point
moments of the passive scalar "eld S(¹(x,y, z, t))NT can be computed by numerical quadrature.

The derivation of the explicit formulas for the passive scalar statistics will now be illustrated for
the case in which the random temporal process c

3
(t) is white noise in time, and the initial data varies

only in the shearing direction y:

¹(x, y, z, t"0)"¹
0
(y)"¹M

0
(y)#¹I

0
(y) . (313)

Our presentation will be taken for the most part from the original paper [207]. We will, at the end,
indicate Resnick's modi"cation [282] for treating Ornstein}Uhlenbeck temporal dynamics.
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The reader may well note that the initial data (313) which we assume for the derivation is not
actually a special case of the initial data considered in the main discussion of Section 5.2. (The
quantities MM

0
and PK 0

2
(g, k) de"ned by Eqs. (304) and (305) would be in"nite because of the absence

of decay in the x direction.) One consequence is that the numerical values of the asymptotic
skewness and #atness factors which would be computed from the formulas derived below will di!er
from those presented above. We have opted to present the derivation for initial data varying in the
single direction y because it illustrates all the main ideas and yields formulas which are more easily
derived than those which arise when the initial data varies in both the x and y direction. The
formulas for the latter case may be found in [233].

To ease notation, we will write the coordinates of the observation points as components of
a vector:

x( )"C
x(1)

x(2)

F

x(N)D , (314)

y( )"C
y(1)

y(2)

F

y(N)D ,

z( )"C
z(1)

z(2)

F

z(N)D .

To avoid confusion with our standard use of the symbol x for the vector of spatial coordinates of
a single point, we have a$xed the superscript `( )a as a reminder that the indices of the vectors x( ),
y( ), and z( ) run over the labels of the observation points 1,2, N, and not over spatial directions. In
the following derivation, di!erential operators such as + and D will always refer to vectors of the
type (314).

5.2.3.1. PDE for multipoint correlation functions. As the random component of the Random
Uniform Jet #ow has white noise correlations in time, the passive scalar multipoint correlation
functions of all orders obey closed di!usion equations (see Section 4.4):

RP
N
(x( ), y( ), z( ), t)
Rt #c

.
(t)z( ) '+y( )PN

"i(Dx( )#Dy( )#Dz( ))PN

#

1
2
A

0

N
+

j,j{/1

<
3
(x(j))<

3
(x(j{))

R2P
N

Ry(j)Ry(j{)
, P

N
(x( ), y( ), z( ), t"0)"T

N
<
j/1

¹
0
(y(j))U

0

. (315)
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The advective contribution from the mean velocity "eld c
.
(t)z and the molecular di!usion term can

be formally obtained by expanding the time derivative RP
N
/Rt"(R/Rt)S<N

j/1
¹(x(j), y(j), z(j), t)T and

substituting in the advection}di!usion equation. The additional di!usion operator arising from the
random white noise advection<

3
(x)c

3
(t) can be derived through the same techniques as used in the

Rapid Decorrelation in Time model (Section 4.4), once one notes that the correlation function of
the random shear is

S(<
3
(x)c

3
(t))(<

3
(x@)c

3
(t@))T"A

0
<

3
(x)<

3
(x@)d(t!t@) .

Because the random advection is a shear #ow, we could alternatively proceed by Fourier
transforming the advection}di!usion equation with respect to y, as in Section 3.5. The molecular
di!usion term is then handled through the Feynman}Kac formula. This is the approach adopted in
the original paper [207].

5.2.3.2. Reformulation as quantum mechanical problem. We now transform the di!usion PDE (315)
for P

N
into the form of a SchroK dinger equation (in imaginary time) describing the evolution of

a system of N quantum-mechanical particles. We defer writing<
3
(x) as its linear form x assumed in

the Random Uniform Shear layer until later, because the quantum-mechanical formulation holds
for general spatial pro"les of the random shear.

We begin by isolating the e!ects of the mean shear c
.
(t)z through the de"nition of a new variable

y@"y!zC
.
(t), with

C
.
(t)"P

t

0

c
.
(s) ds , (316)

so that (x, y@, z) are Lagrangian variables associated to the mean shear #ow. In these `mean-
Lagrangiana variables, the advection term vanishes:

RPI
N
(x( ), y@( ), z( ), t)
Rt "i(Dx( )#Dy@( )#Dz( ))PI N#iC2

.
(t)Dy@( )PI N

#

1
2
A

0

N
+

j,j{/1

<
3
(x(j))<

3
(x(j{))

R2PI
N

Ry(j)Ry(j{)
, PI

N
(x( ), y@( ), z( ), t"0)"T

N
<
j/1

¹
0
(y@(j))U

0

. (317)

The last two terms of the PDE explicitly indicate the enhanced di!usion along the shearing
direction (in mean-Lagrangian coordinates) due to the interaction of the molecular di!usion with
the mean shear and to the randomly #uctuating shear. Each of these operators is easily checked to
be nonnegative de"nite.

Note now that neither the initial data nor any coe$cients of the PDE depend on z( ). By
symmetry, this implies that the solution is in fact independent of this set of variables:
PI
N
"PI

N
(x( ), y@( ), t), and the Dz( ) term may be dropped.

Owing to the special shear structure of the model, we can see that a partial Fourier transform
with respect to the y(j) variables would conveniently convert the enhanced di!usion operators into
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multiplicative factors. We cannot, however, apply the ordinary Fourier transform when the initial
data has homogenous random #uctuations, because then ¹

0
(y) and PI

N
will not decay at in"nity.

We must use a more general spectral representation, which for the initial data reads

¹
0
(y)"¹M

0
(y)#¹I

0
(y) ,

¹M
0
(y)"PR

¹MK
0
(k)e2p*kydk , (318)

¹I
0
(y)"PR

¹IK
0
(k)e2p*kyd=I (k) .

The Fourier integral for ¹I
0
(y) is a stochastic white noise integral ([341], Section 9), which we

already encountered in Paragraph 3.2.2.1. For computational purposes, the white noise di!erential
d=I (k) acts as a complex Gaussian random quantity with the formal properties:

d=I (!k)"d=I (k) , Sd=I (k)T"0 , Sd=I (k)d=I (k@)T"d(k#k@) dkdk@ . (319)

(An overbar denotes complex conjugation.) The Fourier coe$cient of the random initial data is
linked to its spectrum PK 0

2
(k) (304) by the relation

¹I K
0
(k)"JPI 0

2
(DkD) .

The initial data for the passive scalar multipoint correlation function can now be generally
written as a superposition of exponentials:

PI
N
(x( ), y@( ), t"0)"PRN

e2p*k( ) ' y @ ( )T
N
<
j/1

(¹MK
0
(k(j)) dk(j)#¹IK

0
(k(j)) d=I

j
(k))U

0

. (320)

The expectation brackets S ) T
0

denote an average over the initial data, which here just amounts to
averaging over the independent complex white noise di!erentials Md=I

j
(k)NN

j/1
. This average can be

evaluated in general through a cluster expansion and the rules (319). Because of the linearity of the
PDE (317), PI

N
can be represented in a similar fashion to Eq. (320) at all later times:

PI
N
(x( ), y@( ), t)"PRN

e2p*k( ) ' y @( )Q
N
(x( ), k( ), t)T

N
<
j/1

(¹MK
0
(k(j)) dk#¹IK

0
(k(j)) d=I

j
(k))U

0

,

where Q
N

satis"es the Fourier transformed PDE:

RQ
N
(x( ), k( ), t)
Rt "iDx( )QN

!4p2iDk( )D2Q
N
!4p2iC2

.
(t)Dk( )D2Q

N
!2p2A

0A
N
+
j/1

k(j)<
3
(x(j))B

2
Q

N
,

Q
N
(x( ), k( ), t"0)"1 .
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The undi!erentiated terms with spatially constant coe$cients can now be removed by an integrat-
ing factor e4p

2(I.(t)`it)@k( )@2, with

0)I
.
(t)"iP

t

0

C2
.
(s) ds"P

t

0
AP

s

0

c
.
(s@) ds@B

2
ds . (321)

Through the above transformations, we "nd in the end that the passive scalar multipoint
correlation function can be represented by

P
N
(x( ), y( ), z( ), t)"PRN

e2p*k( )v(y( )~C
m(t)z( ))e~4p

2@k( )@2(I.(t)`it)t
N
(x( ), k( ), t)

]T
N
<
j/1

(¹1K
0
(k(j)) dk#¹1K

0
(k(j)) d=(j)(k))U

0

, (322)

where C
m
(t) and I

.
(t) are given by Eqs. (316) and (321), respectively, and t

N
(x( ), k( ), t) solves the PDE:

Rt
N
(x( ), k( ), t)
Rt "iDx( )tN

!2p2A
0A

N
+
j/1

k(j)<
3
(x(j))BtN

,

t
N
(x( ), k( ), t"0)"1 .

(323)

Note that the e!ects of the mean shear have been explicitly accounted for by C
.
(t) and I

.
(t) in

Eq. (322); t
N

depends only on the molecular di!usivity and the spatial structure of the random
shear. Moreover, the equation for t

N
has the form of a quantum-mechanical SchroK dinger equation

(in imaginary time)

!

Rt
N
(x( ), k( ), t)
Rt "!iDx( )tN

#;
N
(x( ), k( ))t

N
,

t
N
(x( ), k( ), t"0)"1 ,

with potential

;
N
(x( ), k( ))"2p2A

0A
N
+
j/1

k(j)<
3
(x(j))B

2
.

We shall only discuss hereafter the case of purely random initial data (¹
0
(y)"¹I

0
(y)), but the ideas

carry over to handle initial data with a deterministic component as well [233]. Because ¹1K
0
(k)

vanishes, the cluster expansion of S ) T
0

becomes a simple Wick contraction, with the wavenumbers
Mk(j)NN

j/1
matched in pairs [207]. We are particularly interested in the single-point moments of the

passive scalar "eld S¹N(x, y, z, t)T, and for these we "nd

S¹2N`1(x,y, z, t)T"0 ,

S¹2N(x, y, z, t)T"
(2N)!
2NN!PRN

e~8p
2@k( )@2(I.(t)`it)t

2N
(x( )R, k( )B, t)

N
<
j/1

PK 0
2
(k(j)) dk( ) . (324)
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The arguments x( )R and k( )B of t
2N

are shorthand notation for the following collections of 2N
variables:

x( )R"C
x

x

F

xD ,

k( )B"C
k(1)

k(2)

F

k(N)

!k(1)

!k(2)

F

!k(N)

D .

5.2.3.3. Solution of quantum mechanical problem. We have shown how to explicitly represent the
moments of the passive scalar "eld in terms of the solution t

N
to the quantum-mechanical problem

(323). We now insert the explicit form of the random shear pro"le <
3
(x)"x in the Random

Uniform Jet model into this equation:

Rt
N
(x( ), k( ), t)
Rt "iDx( )tN

!2p2A
0
(k( )vx( ))2t

N
,

t
N
(x( ), k( ), t"0)"1 . (325)

The potential in the SchroK dinger operator on the right-hand side is thus quadratic, corresponding
to a certain harmonic oscillator potential for the collective motion of N quantum particles. The
potential is e!ectively one-dimensional, depending only on the weighted sum of the spatial
coordinates k( )vx( ), so Eq. (325) can be mapped onto the one-dimensional harmonic oscillator
problem:

Rt(x, t)
Rt "

R2t
Rx2

!x2t ,

t(x, t"0)"1 .

An exact solution to this PDE in terms of elementary functions is given by Mehler's formula [296]:

t(x, t)"(cosh(2t))~1@2 e~(1@2)5!/)(2t)x2 .

The solution to the N-particle equation (325) is then expressed in terms of t as follows:

t
N
(x( ), k( ), t)"t( (2p2i~1A

0
)1@4Dk( )D~1@2(k( )vx( )), J2p2iA

0
Dk( )Dt) .
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Substitution of this exact solution into Eq. (324) then yields the following exact formulas for the
single-point scalar moments:

S¹2N`1(x,y, z, t)T"0,

S¹2N(x, y, z, t)T"
(2N)!
2NN!PRN

e~8p
2@k( )@2(I.(t)`it)(cosh(2pJ2iA

0
Dk( )Dt))~1@2

N
<
j/1

PK 0
2
(k(j)) dk( ) .

(326)

5.2.3.4. Derivation of properties of scalar PDF. The explicit formula (326) now permits direct
analysis of the passive scalar moments in the Random Uniform Jet model. The fact that the scalar
PDF is broader-than-Gaussian at "nite times follows from the following calculus inequality:

(sech(DkD))1@25
N
<
j/1

(sech(Dk(j)D))1@2 ,

as established in [207]. The long-time limit of the #atness factor

F*"lim
t?=

S¹4(x, y, z, t)T
S¹2(x, y, z, t)T2

follows from a straightforward asymptotic consideration of Eq. (326):

F*"G
3 if t~2I

.
(t)PR as tPR ,

FI *a'3 if t~2I
.
(t) is bounded ,

where

FI *a"3
PR2

Dk(1)D~aDk(2)D~a
(cosh ((Dk(1)D2#Dk(2)D2)1@2))1@2

dk(1)dk(2)

PR2

Dk(1)D~a
cosh( Dk(1) D)1@2

Dk(2)D~a
cosh( Dk(2)D)1@2

dk(1) dk(2)

.

Recall that a describes the behavior of the initial passive scalar spectrum PK 0
2
(k) near k"0 (see

Eq. (306)). The #atness factors FI *a may be readily and accurately evaluated through a numerical
quadrature calculation.

The procedure described above for deriving explicit formulas for the single-point moments of the
passive scalar "eld can be generalized to handle initial data varying in the x and z as well as
y directions, and with deterministic and random components. The formulas will di!er in some
details (cf. Eq. (312)); see [207,233] for details.

5.2.3.5. Ornstein};hlenbeck temporal -uctuations. We shall "nally indicate how exact formulas for
the passive scalar statistics can be obtained when the temporal #uctuations c

3
(t) are given by

a superposition of Ornstein}Uhlenbeck processes, rather than a white noise process as assumed
above. Complete details may be found in the thesis of Resnick [282]. To communicate the main
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idea, it su$ces to consider c
3
(t) as a single Ornstein}Uhlenbeck process, with correlation function

Sc
3
(t)c

3
(t#q)T"A

1
e~@q@@q# . (327)

The process c
3
(t) may be described as the solution to the linear stochastic di!erential equation

dc
3
(t)"!q~1

#
c
3
(t) dt#pcd=c(t) ,

with =c(t) a standard Brownian motion, c
3
(0) a Gaussian random variable with mean zero and

variance A
1
, and pc"(2A

1
q~1
#

)1@2.
As discussed in Section 4, the reason closed equations can be written down for the passive scalar

multipoint correlation functions when the velocity "eld is Gaussian and delta-correlated in time is
that the random advection of tracer trajectories can be expressed as coupled Brownian motions. In
the Random Uniform Jet model with white noise correlations, for example, the equations of motion
for the locations M(X(j)(t),>(j)(t),Z(j)(t))NN

j/1
of N tracers are:

dX(j)(t)"J2i d=(j)
x

(t) ,

d>(j)(t)"c
.
(t)Z(j)(t) dt#<

3
(X(j)(t)) d=c(t)#J2id=(j)

y
(t) ,

dZ(j)(t)"J2id=(j)
z

(t) ,

where =c(t) and M=(j)
x

(t),=(j)
y

(t),=(j)
z

(t)NN
j/1

are independent Brownian motions describing the
random shear #ow and the molecular di!usion, respectively. The di!usion equation (315) follows
by the general relation between the statistics of N tracer trajectories and the Nth order passive
scalar correlation function (see, for example, [185,244]).

With an Ornstein}Uhlenbeck law for the #uctuating shear, the trajectory equations instead read

dX(j)(t)"J2i d=(j)
x

(t) ,

d>(j)(t)"c
.
(t)Z(j)(t) dt#<

3
(X(j)(t))c

3
(t) dt#J2id=(j)

y
(t) ,

dZ(j)(t)"J2id=(j)
z

(t) ,

dc
3
(t)"!q~1

#
c
3
(t) dt#pcd=c(t) .

Note that these equations are again described in terms of independent Brownian motions =c(t)
and M=(j)

x
(t),=(j)

y
(t),=(j)

z
(t)NN

j/1
, and therefore we can still write down a closed di!usion equation for

the passive scalar multipoint correlation function. The main di!erence from the white noise case is
that an extra stochastic di!erential equation is required to describe the dynamics of c

3
(t) in terms of

a Brownian motion. This fact manifests itself in the need to introduce an additional variable in the
di!usion PDE. Namely, with the random shear #uctuating according to an Ornstein}Uhlenbeck
process (327), the passive scalar multipoint correlation function may be expressed as follows [282]:

P
N
(x( ), y( ), z( ), t)"PR

W
N
(x( ), y( ), z( ), f, t)

e~f2@2A1

J2pA
1

df , (328)
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where W
N

satis"es the di!usion equation

RW
N
(x( ), y( ), z( ), f, t)
Rt #c

.
(t)z( )v+y( )WN

#

N
+
j/1

f<
3
(x(j))
RW

N
Ry(j)

#q~1
#

f
RW

N
Rf

"i(Dx( )#Dy( )#Dz( ))WN
#

1
2
p2c
R2W

N
Rf2 ,

W
N
(x( ), y( ), z( ), f, t"0)"T

N
<
j/1

¹
0
(y(j))U

0

.

The auxiliary variable f keeps track of the dynamics of the temporal process c
3
(t), and Eq. (328)

comes from a weighting with respect to the distribution of c
3
(0).

One can now proceed with the same transformations as in the white noise case to represent W
N

as
follows:

W
N
(x( ), y( ), z( ), f, t)"PRN

e2p*k( )v(y( )~C
m(t)z( ))e~4p

2@k( )@2(I.(t)`it)t(OU)
N

(x( ), k( ), f, t)

]T
N
<
j/1

(¹MK
0
(k(j)) dk#¹IK

0
(k(j)) d=(j)(k))U

0

,

where

Rt(OU)
N

(x( ), k( ), f, t)
Rt #q~1

#
f
Rt(OU)

N
Rf "iDx( )t(OU)

N
#

1
2
p2c
R2t(OU)

N
Rf2 !A2pif

N
+
j/1

k(j)<
3
(x(j))Bt(OU)

N
,

t(OU)
N

(x( ), k( ), f, t"0)"1 .

After a further transformation designed to clear the "rst derivative term from the PDE,

t(OU)
N

(x( ), k( ), f, t)"exp[(t#f2/p2c )/2q
#
]tI (OU)

N
(x( ), k( ), f, t) ,

we arrive at a PDE in quantum-mechanical SchroK dinger form

RtI (OU)
N

(x( ), k( ), f, t)
Rt "iDx( )t(OU)

N
#

1
2
p2c
R2tI (OU)

N
Rf2 #C!A2pif

N
+
j/1

k(j)<
3
(x(j))B!

f2
2p2cq2#Dt(OU)

N
,

tI (OU)
N

(x( ), k( ), f, t"0)"e~f2@(2p2c q#) (329)

In the Random Uniform Jet model <
3
(x)"x, and the e!ective potential in the SchroK dinger

operator,

;(OU)
N

(x( ), k( ), f)"C(2pifk( )vx( ))#
f2

2p2cq#D ,

is again a quadratic form which varies only along a single direction in (x( ), f) space. Hence, after
a (complex) rotation of coordinates, Eq. (329) may be mapped onto the one-dimensional harmonic
oscillator problem, and thus expressed in terms of Mehler's formula. Details and generalizations
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may be found in Resnick's thesis [282]. It is also shown there that the long-time limit of the
single-point passive scalar moments are independent of whether the random temporal #uctuations
c
3
(t) are governed by white noise (307) or a superposition of Ornstein}Uhlenbeck processes (308).

(One need only equate the quantity A
0

for the white noise case to +M
j/1

A
j
q
j
for a superposition of

Ornstein}Uhlenbeck processes.)

5.3. An example with qualitative xnite-time corrections to the homogenized limit

We have seen how the exactly solvable Random Uniform Jet model permits the exploration of
a number of issues pertaining to large-scale intermittency, such as the degree of universality of the
scalar PDF in the long-time limit and the sensitivity to parameters such as the relative length scales
of the velocity and passive scalar "elds. As the uniform shear velocity "eld has an in"nite length
scale, we have up to now only been considering situations in which the length scale of the passive
scalar "eld is small or comparable to the length scale of the velocity "eld. We shall now modify the
spatial structure <

3
(x) of the random velocity "eld in the general jet model (303) to be a periodic

function, so that we may also study long-time scalar intermittency properties when the length scale
of the passive scalar "eld is much larger than that of the velocity "eld.

This is a realm in which homogenization theory, as discussed in Section 2, can be applied. Given
a velocity "eld with "nite periodicity and/or short-ranged randomness, homogenization theory
furnishes a rigorous asymptotic description of the passive scalar "eld under a large-scale rescaling of
the initial data ¹

0
(x)P¹

0
(ex) and a di!usively linked long-time limit tPt/e2, with eP0. While this

is a particularly relevant asymptotic limit to consider in many applications in which the velocity
varies on much smaller scales than the scalar "eld, the real issue is the behavior of the passive scalar
"eld at large but ,nite times and length-scales. The rigorous asymptotic theory guarantees a certain
abstract mode of convergence of the rescaled passive scalar statistics to the homogenized limit, but
this by no means implies that homogenization theory describes the large-scale, long-time passive
scalar statistics in a uniformly approximate way. We examined this question for the mean and
variance of the displacement of a single tracer in some deterministic periodic #ows in Section 2.3,
and did "nd good agreement with the homogenized description at "nite times [231].

The accuracy of the homogenization approximation at "nite time for a quite di!erent statistical
aspect, the one-point scalar PDF, was explored by Bronski and McLaughlin [51] in a spatially
periodic version of the Random Uniform Jet model discussed in Section 5.2. This Random Spatially
Periodic Shear model will be de"ned in detail in Section 5.3.1.

In this random velocity "eld model, two qualitative departures of the scalar PDF from
a straightforward homogenization picture emerge. In the Random Spatially Periodic Shear model,
the passive scalar statistics become Gaussian in the homogenized large-scale, long-time limit, as
one might expect from a central limit argument. The long-time limit of the scalar PDF evolving
from initial data with large but ,xed length scale, however, can become increasingly intermittent
with #atness factors diverging in the long-time limit. The disagreement with the homogenized
result implies that the limits of long-times tPt/e2 and large-scale variation in the initial data
¹

0
(x)P¹

0
(ex) do not commute (Section 5.3.2). Moreover, even when the moments of the scalar

PDF do approach their Gaussian values in the long-time limit, their convergence is very nonuniform.
The relaxation time grows quadratically with the order of the moment, indicating that while the
scalar PDF develops a Gaussian core at long times, it will always exhibit broader-than-Gaussian tails
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su$ciently far out (Section 5.3.3). The Random, Spatially Periodic Shear model teaches us that the
passive scalar statistics evolving from "xed initial data can exhibit qualitative departures from
homogenization theory at large but "nite times.

The passive scalar statistics in the Random, Spatially Periodic Shear model cannot be represent-
ed as fully explicit quadrature expressions in the same way as in the Random Uniform Shear model.
Nonetheless, the moments of the single-point scalar PDF at large but "nite times may be computed
precisely through a perturbation theory applied to quantum-mechanical analogies similar to those
discussed in Section 5.2.3. In this way, it can be directly proved that the scalar PDF arising from
mean zero, Gaussian, homogenous, random initial data is broader-than-Gaussian at all later "nite
times. The calculations for this and the other results we shall describe are presented in full detail in
[51], and will not be reproduced here other than for a few brief remarks in Section 5.3.4.

5.3.1. Random, Spatially Periodic Shear Model
The Random, Spatially Periodic Shear velocity "eld model considered by Bronski and McLaugh-

lin is a shear #ow:

*(x, t)"*(x, y, t)"C
0

c
3
(t)<

3
(x)D ,

with a deterministic spatial pro"le <
3
(x) of period one (in nondimensionalized units), and white

noisetemporal #uctuations:

Sc
3
(t)c

3
(t#q)T"A

0
d(q) .

The pro"le<
3
(x) will be assumed to be suitably normalized; the amplitude of the shear #ow will be

measured by A
0
. Like the Random Uniform Jet model, the Random, Spatially Periodic Shear Flow

is an element of the class of general jet models (303), but there is no mean shear, and the z dimension
has been omitted. The most fundamental di!erence between the two models is that the Random
Uniform Jet velocity "eld has an in"nite length scale of variation, while the Random, Spatially
Periodic Shear #ow has "nite period length scale. The advection}di!usion equation for the present
model reads

R¹(x, y, t)
Rt #c

3
(t)<

3
(x)
R¹(x, y, t)
Ry "iD¹(x, y, t) ,

¹(x, y, t"0)"¹
0
(y) ,

where ¹
0
(y) is a mean zero, Gaussian, homogenous random "eld, and is assumed for simplicity to

only vary in the shearing direction. We shall now consider two types of spectra for the random
initial data which will illustrate some possibilities for the long-time behavior of the single-point
passive scalar PDF.

5.3.2. Persistent intermittency for initial data with no long-wavelength -uctuations
We shall "rst show that the long-time limit of the passive scalar "eld arising from "xed initial

data can di!er sharply from the homogenized limit in which the long-time limit is linked with
a large-scale rescaling of the initial data. Suppose that the initial data ¹

0
(y) is a mean zero,
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Gaussian, homogenous, random "eld with spectrum supported above a "xed, positive wavenum-
ber k

0
:

P0
2
(y)"S¹

0
(y@)¹

0
(y@#y)T"PR

e2p*kyPK 0
2
(k) dk ,

PK 0
2
(k)G

"0 for DkD4k
0

,

'0 for k'k
0

.
(330)

We will consider the long-time limiting shape of the single-point scalar PDF.
To diagnose the deviation of this PDF from a Gaussian form, we will use not only the
#atness factor F(x, y, t) discussed in Section 5.2, but all the higher order -atness factors F

N
(x, y, t) as

well:

F
N
(x, y, t),

S(¹(x, y, t)!S¹(x, y, t)T)2NT
S(¹(x, y, t)!S¹(x, y, t)T)2TN

"

S¹2N(x,y, t)T
S¹2(x, y, t)TN

,

with the last equality holding because the mean passive scalar "eld vanishes. Note that
F
1
(x, y, t),1 and F

2
(x, y, t)"F(x, y, t). The values of the #atness factors for a Gaussian distribu-

tion is

FG
N
"(2N)!/2NN! .

An asymptotic computation for the long-time behavior of the #atness factors yields [51]:

F
N
(x, y, t)"FG

N
edjNt[1#O(A

0
i~1k2

0
)#O(e~4p

2it)] , (331)

with

dj
N
"C

V
N(N!1)A2

0
i~1k4

0
#O(A3

0
i~2k6

0
)

and C
V

is a positive numerical constant depending only on the structure of the periodic shear
pro"le <

3
(x). For su$ciently small but nonzero k

0
, the #atness factors are clearly growing without

bound as time progresses, so the passive scalar PDF is approaching a shape with broad algebraic
tails.

Initial data of the form (330) also give rise to diverging #atness factors of the scalar PDF in the
long-time limit of the Random Uniform Jet model (when the mean shear is weak) (see Section 5.2).
There, we could intuitively understand this strong scalar intermittency as arising from an extreme
(a"R) situation in which the passive scalar "eld is correlated on much smaller scales than the
velocity "eld. This interpretation does not explain the scalar intermittency in the present Random,
Spatially Periodic Shear model, because the ratio of the passive scalar length scale k~1

0
to the

velocity length scale 1 is assumed large! According to our discussion in Section 5.2 as well as the
prediction of homogenization theory, we might well have expected the passive scalar statistics to
approach a Gaussian distribution when k

0
is taken very small.

The resolution of this seeming paradox is as follows. If we homogenize the passive scalar "eld by
rescaling the initial data ¹

0
(y)P¹

0
(ey) and time by tPt/e2, then the lowest wavenumber of the
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initial passive scalar spectrum is decreased as k
0
Pk

0
e. Formula (331) applies perfectly well as

eP0, and with these replacements:

dj
N
(e)"C

V
N(N!1)e4A2

0
i~1k4

0
#O(e6A3

0
i~2k6

0
) .

Consequently,

lim
e?0

F
N
(x, y, t/e2)"lim

e?0

FG
N

edjN(e)t@e2(1#O(e2A
0
i~1k2

0
)#O(e~4p

2e~2it))"FG
N

.

Thus, the homogenized result is indeed consistent with the formula for the #atness factors (331).
The strong qualitative discrepancy between their predictions is due to the fact that homogenized

limit links the large time with the large space scale of variation of the initial data. In an actual
experiment or simulation, however, one is usually interested in ,xing a large space scale for the
initial data, and then looking at the long-time limit. The fact that these limit processes disagree
means that the long-time limit does not commute with the limit of large scale spatial variation of
the initial data. Homogenization theory studies a particular large-scale, long-time limit, which may
or may not describe the large-scale, long-time limit of interest in a certain application. We have
seen explicitly how the passive scalar statistics may manifest strong and persistent intermittency
despite the fact that their homogenized limit is Gaussian.

5.3.3. Non-uniform relaxation to Gaussian PDF for initial data with ,nite, nonzero
intensity of long-wavelength -uctuations

We now present another way in which the long-time statistical behavior of the passive scalar
"eld may di!er qualitatively from that predicted by homogenization theory. Suppose the initial,
Gaussian, homogenous random passive scalar data has a spectrum PK 0

2
(k) which is smooth and

nonvanishing at the origin:

P0
2
(y)"S¹

0
(y@)¹

0
(y@#y)T"PR

e2p*kyPK 0
2
(k) dk ,

PK 0
2
(0)O0 .

The initial passive scalar data then has #uctuations at arbitrarily large wavelengths, while the
velocity "eld has a "xed period length ¸

v
"1. One may therefore expect that the passive scalar

statistics should relax to a Gaussian form in the long-time limit, either by the homogenization
result or by letting k

0
P0 in Eq. (331). A precise calculation shows that indeed, the #atness factors

converge to their Gaussian values in the long-time limit:

lim
t?=

F
N
(x, y, t)"FG

N
.

To examine how rapidly the scalar PDF converges to the asymptotic Gaussian shape in the
long-time limit, we keep the leading-order correction [51]:

F
N
(x, y, t)"FG

N
#

N(N!1)CI
V

it
#O(t~2) ,
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where CI
V

is a positive numerical constant depending on A
0
/i and the periodic velocity "eld

structure <
3
(x). (The further O(t~2) corrections also depend on the low-wavenumber spectrum of

the initial passive scalar data.)
An important observation is that the correction is not uniformly small with respect to the order

of the #atness factor N. The time scale needed for F
N
(x, y, t) to approach its Gaussian value grows

quadratically with the order of the moment N. Thus, at any large but "nite time, the low-order
#atness factors of the scalar PDF will be close to their Gaussian values, but moments of su$ciently
high order (NZJiCI ~1

V
t) will have signi"cantly super-Gaussian values. Pictorially, this means that

the scalar PDF at large times has a Gaussian core with broader-than-Gaussian tails. As time
evolves, the broad tails become ever more remote relative to the core, that is, become noticable
beginning at an ever-larger number of standard deviations away from the origin. As tPR, these
broader-than-Gaussian tails get squeezed o! to in"nity, leaving behind a purely Gaussian limiting
distribution. The convergence of the scalar PDF to its homogenized Gaussian limit is thus very
nonuniform in the tail regions. This exact result for the present model is consistent with general
conclusions drawn by Gao [111] through consideration of a mapping closure approximation to
the evolution of the scalar PDF (see Paragraph 5.4.1.1).

We remark that CI
V

is an increasing, bounded function of the ratio A
0
/i, which characterizes the

relative strength of turbulent advection and molecular di!usion, and thus serves as a PeH clet number
in the Random, Spatially Periodic Shear Model. The "nite-time corrections to homogenization
theory are thus most evident in this model at high PeH clet number.

An instance of slow convergence of higher order #atness factors to their Gaussian values is
reported in the direct numerical simulations of Eswaran and Pope [91]. The passive scalar "eld is
initialized as a random "eld assuming values $1 over patches of a speci"ed length scale, and
allowed to evolve in a statistically stationary turbulent #ow. The second and third order #atness
factors F

2
(t) and F

3
(t) of the scalar PDF relax to their Gaussian values only after 6 to 8 large-scale

eddy turnover times, by which point the scalar variance has decayed to a small fraction of its initial
value.

5.3.4. Remarks on associated quantum mechanics problem
We close with some brief comments concerning the derivation of the above results. As we showed

in Section 5.2.3, the quantum mechanics problems which arise in analysis of the scalar moments
S(¹(x,y, t))2NT in the Random, Spatially Periodic Shear Model involve 2N particles and read

Rt
2N

(x( ), k( ), t)
Rt "iDx( )t2N

(x( ), k( ), t)!;(P)
2N

(x( ), k( ))t
2N

(x( ), k( ), t) , (332a)

t
2N

(x( ), k( ), t"0)"1 , (332b)

with potentials

;(P)
N

(x( ), k( ))"2p2A
0A

N
+
j/1

k(j)<
3
(x(j))B

2
.

The solution to the PDE (332) cannot be written in explicit form, as in the Random Uniform Jet
model. Instead, one expands t

2N
(x( ), k( ), t) as a superposition of eigenfunctions of the SchroK dinger

operators on the right-hand side of Eq. (332a). See [51] for details.
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We have been considering above the passive scalar "eld at large scales at long-times, so the
relevant wavenumbers k( ) are small. The potentials ;(P)

N
(x( ), k( )) are thus weak, and the eigenfunc-

tions of the SchroK dinger operators may be analyzed perturbatively. The exponents dj
N

describing
the extent of scalar intermittency in Eq. (331) arise from a computation of the shifts in the energy of
the ground state due to the potential ;(P)

2N
relative to N copies of the potential ;(P)

2
.

One can also study the opposite limit in which the potential becomes very strong (relative to the
`kinetic energya Laplacian term iDx( )). In this situation, the particles are well localized near minima
of the potential ;(P)

N
, and therefore they e!ectively feel a quadratic harmonic oscillator potential.

One can therefore plausibly replace ;(P)
N

by a quadratic form obtained by Taylor expansion about
the minima; this is known in solid state physics as the `tight-binding approximationa [6]. Two
situations in which this tight-binding approximation would be relevant in the Random, Spatially
Periodic Shear model are:

f passive scalar initial data with spectrum supported only at wavenumbers DkD5k
0
as in Eq. (330),

but now with k
0
<1,

f high PeH clet number Pe"A
0
/i<1 at times su$ciently short t;(i(1#Pe~1)) so that the

passive scalar statistics are still dominated by high-wavenumber #uctuations in the initial data.

The passive scalar statistics under either of these asymptotic conditions ought to at least qualitat-
ively be describable by the Random Uniform Jet model considered above, as the tight-binding
approximation results in a quadratic harmonic oscillator potential of the type which arises in that
model (see [51] and Section 5.2.3).

5.4. Other theoretical work concerning scalar intermittency

The special structure of the velocity "eld in the Random Uniform Jet model (Section 5.2) and the
Random Spatially Periodic Shear model (Section 5.3) has permitted a detailed and exact analysis of
the advected passive scalar statistics, without the need for any ad hoc approximations. These
models explicitly elucidate one mechanism by which large-scale scalar intermittency can be created,
and indicate some features of a turbulent system which may suppress the intermittency or
otherwise in#uence its nature.

We conclude this section on intermittency by summarizing the main "ndings of some other
recent theoretical studies of non-Gaussian features of the scalar PDF. We "rst discuss some formal
considerations of the passive scalar statistics in a generic turbulent #ow, and then turn to the
analysis of some discrete, phenomenological, mixing models.

5.4.1. General scalar intermittency considerations

5.4.1.1. Conditional dissipation rate formalism. A main theme in the theoretical investigation of
large-scale scalar intermittency has been the variability of the local rate of scalar dissipation. Pope
[268] had shown much earlier that, in a statistically spatially homogenous setting, the evolution of
the scalar PDF p(x,t)

T
(o)"p(t)

T
(o) is described by a PDE:

Rp(t)
T
(o)
Rt "!

1
2
R2
Ro2

(s(o, t)p(t)
T
(o)) . (333)
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The only coe$cient appearing in this PDE is the conditional scalar dissipation rate
s(o, t)"2iSD+¹(x, t)D2D¹(x, t)"oT, which is de"ned as the statistical average of 2iD+¹(x, t)D2,
conditioned upon ¹(x, t) assuming the particular value o. Recall from Paragraph 4.3.1.2 that the
full (unconditioned) average sN (t)"2iSD+¹(x, t)D2T is the rate at which S(¹(x, t))2T decays in the
absence of external driving.

As discussed previously, the scalar PDF p(t)
T
(o) can be expected to concentrate at o"0 in the

long-time limit when the passive scalar "eld is freely decaying. The shape of the PDF in the
long-time limit can be studied, however, by normalizing it to zero mean and unit variance. This
normalized PDF pA(t)

T
(oA) is just the PDF of the quantity

¹
A(x, t)"

¹(x, t)!S¹(x, t)T
S(¹(x, t))2T1@2

.

Sinai and Yakhot [298] adapted Pope's formalism to describe the evolution of the normalized
scalar PDF in terms of the normalized conditional dissipation rate

sA(oA, t)"T
2iD+¹(x, t)D2

sN (t) K¹A(x, t)"oAU .

They furthermore found an explicit solution for the normalized PDF in terms of the normalized
conditional dissipation rate in which both are independent of time:

pA(t)
T

(oA)"C
T

1
sA(oA)

expC!P
oA

0

oA{

sA(oA{)
doA{D . (334)

C
T

is a normalization constant. This stationary solution is assumed (without proof) to describe the
long-time limiting shape of the one-point PDF of a freely decaying passive scalar "eld.

If sA(oA) is constant, meaning that the (normalized) local scalar dissipation rate is independent of
the (normalized) local value of the passive scalar "eld, then a Gaussian limiting distribution is
indicated. A precise description of the tails of the PDF requires knowledge of the behavior of the
normalized conditional scalar dissipation rate sA(oA) for large oA, but no useful exact formula for this
quantity appears to be available. Sinai and Yakhot suggested a quadratic approximation for sA(oA),
which yields algebraic tails for the scalar PDF. This is not in agreement with empirical results; see
[147] for some discussion.

A more elaborate approximation which permits progress in the conditional dissipation rate
formalism is the mapping closure procedure developed by Chen et al. [58], wherein the passive
scalar "eld is assumed to be representable as a distortion of a Gaussian random "eld. Gao [111]
"nds that within the mapping closure approximation, the conditional dissipation rate s(o) forever
assumes a nontrivial shape with lasting memory of the initial data. Because the passive scalar
variance is decaying to zero, however, the normalized conditional dissipation rate sA(oA) will
approach unity over an interval of oA which expands as tPR. Since constancy of the conditional
scalar dissipation rate is associated with Gaussianity of the scalar PDF, Gao concludes that the
scalar PDF has a Gaussian core with non-Gaussian tails at long-times. The crossover between the
Gaussian core and non-Gaussian tails occurs at a ,xed value of o in the unnormalized scalar PDF
p(t)
T
(o) but at an ever-increasing value of oA in the normalized scalar PDF pA(t)

T
(oA). That is, the

non-Gaussian features of the PDF are always present, but become increasingly remote relative to
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the shrinking variance of the scalar PDF as tPR. Therefore, the shape of the scalar PDF does
converge to a Gaussian form in the long-time limit, but nonuniformly in the tails. This is consistent
with the results reported in Section 5.3.3 for a certain class of initial data in the Random Spatially
Periodic Shear model.

5.4.1.2. Lagrangian formalism. In the work described above, departures of the scalar PDF from
Gaussianity are attributed to the nonconstancy of the conditional dissipation rate, which appears
naturally in some exact formulas and equations (see Eqs. (333) and (334)). This object is a precise
measure of the correlation between the local value of the passive scalar "eld and its gradient, but is
quite challenging to model. A more intuitive perspective on how this correlation creates non-
Gaussianity of the scalar PDF is set forth by Kimura and Kraichnan [162] through consideration
of the history of the scalar "eld within a Lagrangian #uid element. The value of the scalar "eld in
such a #uid element evolves only through molecular dissipation; advection alone would leave it
unchanged. The rate of molecular dissipation in the Lagrangian #uid element depends however, on
the local scalar gradient and this does depend very strongly on the advection. Regions of strong
compressive strain in the #ow will build large scalar gradients, and consequently rapid scalar
dissipation. Therefore, the value of the scalar "eld in a Lagrangian #uid element at a time t'0
depends on its initial value and the history of the local #uid straining.

When the scalar "eld is measured at some given point in the "xed (Eulerian) laboratory frame,
one observes the value of the scalar "eld in the Lagrangian #uid element which happens to be there
at the time. If the initial passive scalar "eld is statistically homogenous (with zero mean), then the
originating location of the Lagrangian #uid element is unimportant. Then the measured scalar
value will depend only on the initial scalar value (speci"ed by a common PDF) and the strain
history of the Lagrangian #uid element which is passing by the probe. The scalar PDF at times
t'0 is thus modi"ed from the initial PDF solely because the scalar is dissipated more rapidly in
Lagrangian #uid elements in which greater scalar gradients have been generated due to stronger
straining by the #uid.

Kimura and Kraichnan illustrate this perspective for a #ow in which the velocity "eld is
a spatially uniform straining #ow #uctuating randomly in time and the initial scalar data is
a homogenous, Gaussian random "eld. The passive scalar "eld observed at a given point at later
times is shown to be a random mixture of mean zero Gaussian random variables, with variance
depending on the realization of the velocity "eld (or equivalently, the straining history of a #uid
element). The scalar PDF is consequently broader-than-Gaussian. We showed in Paragraph 5.2.2.1
through a line of reasoning suggested by Fe!erman [101] that this result in fact applies to quite
general random #ows.

The Lagrangian point of view was utilized by Shraiman and Siggia [295] in their formal
approximate analysis of the scalar PDF advected by a single-scale turbulent #ow at high PeH clet
number with a constant mean scalar gradient imposed. Recall from Paragraph 4.3.1.3 that
turbulent interaction with a mean scalar gradient provides a means of driving passive scalar
#uctuations, so the scalar PDF will settle down at long times to a form with "nite variance, in
contrast to a freely decaying situation. One might expect scalar intermittency in the presence of
a constant mean scalar gradient because the length scale of the scalar #uctuations will be naturally
comparable to that of the velocity "eld. And indeed, Shraiman and Siggia derive exponential tails
for the scalar PDF through a representation of the scalar value observed at a given location as
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a functional integral over Lagrangian tracer trajectories. The large #uctuations are computed to
come predominantly from situations in which a Lagrangian #uid element enjoys an unusually mild
strain during its voyage. In particular, the shape of the tails is not primarily determined by the most
obvious class of events in which a Lagrangian #uid element moves unusually persistently across the
scalar gradient, with typical straining along the way (see Section 5.4.2 below). Exponential tails for
the scalar PDF in the presence of a constant mean scalar gradient were observed in numerical
simulations by Holzer and Siggia [139] in which the two-dimensional velocity "eld was evolved
according to inviscid dynamics truncated to a "nite band of Fourier modes.

Another functional integral approach by Falkovich et al. [96] and a Lagrangian formalism
based on the analysis of line stretching by Cherktov et al. [65,66] indicate that the scalar PDF
exhibits similar exponential tails if the driving of the #uctuations comes from an external, rapidly
decorrelating pumping "eld rather than by turbulent interaction with a background scalar
gradient. This conclusion was rigorously established by Bernard et al. [36] for the case in which
both the pumping and velocity "elds are smooth in space and rapidly decorrelating in time (as in
the RDT model described in Section 4.3.1, with Hurst exponent H"1 for the velocity "eld).
Low-strain trajectories are again suggested to be the dominant contributors to the large-scale
intermittency of the scalar "eld [96].

5.4.1.3. Nonlinear mean scalar proxles. Non-Gaussian scalar PDFs can also arise quite simply
from Gaussian random initial data when the mean pro"le is nonlinear or the single-point variance
is not constant, as pointed out by Kimura and Kraichnan [162] through theoretical arguments and
numerical simulations with a synthetic velocity "eld. Even without molecular di!usion, the passive
scalar value observed at a later time at a given point will in such instances be a mixture of Gaussian
random variables with di!erent means and variances, which is not generally Gaussian. One
experimental example with a nonlinear initial mean pro"le is a thermal mixing layer, in which half
of the #uid in a wind tunnel is heated to a constant level, with the other half remaining at room
temperature. The temperature PDF observed downstream is found to be strongly non-Gaussian at
the edges of the evolving turbulent mixing layer [193,203]. Exponential tails have likewise been
found in the single-point PDF for the concentration of a dye in jet #ow experiments [272].

A situation in which a nonlinear mean scalar pro"le is imposed through boundary conditions
rather than initial data was investigated by Ching and Tu [71] through "nite-di!erence numerical
simulations with a single-scale Gaussian random velocity "eld. They "nd that both nearly
Gaussian and broader-than-Gaussian scalar PDFs can be obtained in the long-time limit, whether
the imposed mean scalar pro"le is linear or nonlinear. They "nd for all cases considered that the
scalar PDF develops broader-than-Gaussian tails at su$ciently high PeH clet numbers, in agreement
with laboratory experiments [191].

5.4.2. Phenomenological discrete mixing models
As it is di$cult to directly analyze the advection}di!usion equation with a general turbulent

velocity "eld model, or to conduct a properly resolved numerical simulation over long-time
intervals, some physicists and engineers have invented simpli"ed phenomenological equations for
the purposes of studying turbulent di!usion. These phenomenological models seek to capture the
essential physics of turbulent advection and molecular di!usion without resolving the full dynam-
ics. Notable among these is the linear eddy model of Kerstein [156]. Though originally developed
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for engineering applications, it has been adopted in various forms in the theoretical investigation of
large-scale scalar intermittency.

The linear eddy model is formulated on a one-dimensional discrete lattice, imagined to represent
a one-dimensional cut through a turbulent #ow [156]. Molecular di!usion is implemented directly
through a "nite-di!erence discretization of the ordinary di!usion equation, with constant time
step. Turbulent advection is represented in the model by random exchanges of the scalar values at
di!erent sites. Both the times at which the exchange occurs and the sites a!ected are prescribed
according to a random process with speci"ed mapping structure. A standard numerical implemen-
tation of the linear eddy model with a mean scalar gradient imposed produced a scalar PDF with
exponential tails [156].

Pumir et al. [277] considered an even simpler phenomenological model in which turbulent
mixing is similarly represented by a superposition of a random exchange process and an averaging
of neighboring passive scalar values, and showed analytically that exponential tails in the scalar
PDF occur in the presence of a mean scalar gradient. Their model was subsequently demonstrated
by Holzer and Pumir [138] to be essentially a mean-"eld approximation to the linear eddy model.
These latter authors also formulated a simpli"ed variation of the linear eddy model which can be
analytically solved without the need to pass to the mean "eld limit. Nearly exponential tails in the
scalar PDF are again predicted in the presence of a background gradient, and their origin is traced
to the Poisson process governing the times at which random exchange events occur in the model.
More precisely, the exponential tails of the PDF are associated with events in which a series of
random exchanges occur in rapid succession, e!ectively dragging a parcel of #uid far along the
gradient before molecular di!usion has time to equilibrate the associated scalar "eld to the local
value at its new location.

Kerstein and McMurtry [157] introduced another mean "eld theory of the linear eddy model
based on a Langevin approximation, and it again predicts exponential tails in the scalar PDF when
a constant mean scalar gradient is present. They also point out that other plausible mean "eld
theories can be constructed which lead to Gaussian tails for the scalar PDF. The exponential tails
only come about in the above theories because they are built on the assumption that #uid parcels
are transported across the scalar gradient according to a Poisson process. Thus, while these
discrete models provide some insight into the nature of turbulent mixing, the mechanism by which
they generate scalar intermittency is not general enough to relate directly to real world turbulent
di!usion. Indeed, Shraiman and Siggia [295] indicate that scalar intermittency in a continuous
turbulent #ow is due to events in which Lagrangian #uid elements have a history of low straining.
None of the above discrete models account for variability in the strain rate, though Kerstein and
McMurtry suggest that its e!ects can be phenomenologically included in their Langevin mean "eld
theory [157].

Finally, the linear eddy model was used by McMurtry, Gansuage, Kerstein, and Krueger [234] to
simulate numerically the statistics of a decaying passive scalar "eld in statistically stationary
turbulence (with no mean scalar gradient imposed). Through appropriate speci"cation of the random
exchange events, a high Reynolds number #ow with inertial-range scaling properties can be
modelled. The #exibility and economy of the linear eddy model permits a study of the e!ects of both
Reynolds number and Schmidt number on the shape of the scalar PDF. It is found that the scalar
PDF is not much changed as the model Reynolds number increases beyond 100 (up to 104), but that
the scalar PDF is very sensitive to variations in the model Schmidt number (over the range 0.1}104).
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6. Monte Carlo methods for turbulent di4usion

For the most part, we have been discussing mathematical passive scalar advection models with
certain simplifying features which permit exact analysis. These special models play an important
role in unambiguously elucidating various fundamental physical aspects of turbulent di!usion. In
addressing speci"c applications and questions concerning complex turbulent #ows, however, one
wants to investigate tracer transport in a random velocity "eld model for which exact solutions are
not available. It is natural to explore such models through computer simulations.

We discussed simulations of tracer trajectories in deterministic, periodic velocity "elds with
molecular di!usion in Section 2.3.2. Here we consider in detail the numerical simulation of the
motion of tracers in a steady, random velocity "eld *(x). (Examples of numerical simulations of
tracers in the opposite extreme of rapidly decorrelating random velocity "elds were described
earlier in Paragraph 4.2.2.4; also see [108].) A typical problem is the computation of the (absolute)
mean-square displacement p2X(t),SDX(t)!x

0
D2T of a tracer, where X(t) is the tracer trajectory and

x
0
"X(t"0). Let us suppose i"0 for simplicity. The statistical average in p2X(t) is then an average

over the full (usually in"nite) ensemble of velocity "elds *(x) described by the given statistical model.
In a numerical Monte Carlo simulation, this averaging operation is discretized as an average over
a "nite number N of independent samples generated `pseudo-randomlya using a random number
generator on the computational machine [274].

More explicitly, an algorithm for producing a random velocity "eld *
!11

(x) is prescribed which
approximates *(x) in some statistical sense, but which can be fully described by a "nite number
of operations involving a "nite number of random variables. The N independent realizations
M*(j)

!11
NN
j/1

of the approximate velocity "eld are then generated through successive calls to the
random number generator. In each of these realizations of the velocity "eld, the equations of
motion for the tracer particle,

d X(j)(t)"*(j)
!11

(X(j)(t), t) dt , (335)

are solved numerically. Finally, a numerical approximation to the mean-square displacement of the
tracer as a function of time is obtained by averaging over the "nite sample size generated:

p2X,!11
(t)"

1
N

N
+
j/1

DX(j)(t)!x
0
D2 .

By the Law of Large Numbers ([102], Ch. 10), p2X,!11
(t) will approximate p2X(t) if N is su$ciently large

and the discretized random velocity "eld *
!11

(x) is a su$ciently accurate approximation to the true
velocity "eld *(x). In principle, the Monte Carlo approach can be used in a similar way to compute
numerical approximations to the statistical average of any functional of the particle trajectory.

One can account for the e!ects of molecular di!usion through the addition of a stochastic term
J2idW(t) to the trajectory equation (335). This requires the generation of additional random
variables at each time step, but its treatment is straightforward because this e!ect has a constant
coe$cient [163]. To keep focus on the more demanding main issues involving the simulation of the
random velocity "eld, we will ignore molecular di!usion (i"0) for the duration of Section 6. The
interested reader can consult Section 2.3.2 for Monte Carlo simulations with periodic velocity
"elds and i'0.
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Overview of Section 6: We begin in Section 6.1 with a brief summary of general accuracy
considerations in Monte Carlo simulations. Then, in Section 6.2, we consider a class of three
Monte Carlo methods for generating general Gaussian, homogenous, random "elds. We assess
their utility for turbulent di!usion studies by applying them to the exactly solvable Random Steady
Shear (RSS) Model [141], which we discussed in Section 3.2. This model includes #ows leading to
a wide variety of statistical tracer motion, and thereby provides a simple test for the performance of
the Monte Carlo methods in simulating turbulent di!usion under various conditions. Comparison
of the numerical simulations with the exact results illustrates certain strengths and inherent
limitations of the methods, particularly in properly simulating long-range correlations in the
random shear velocity "eld.

Next, we turn to the numerical simulation of turbulent di!usion in random velocity "elds with
a statistical self-similarity characteristic of the inertial range of scales of a turbulent #ow. We
continue in Section 6.3 to consider steady shear #ows so that the velocity "eld is still speci"ed by
a random scalar function v(x). We seek to simulate a mean zero, Gaussian random "eld v(x) which
has an inertial-range scaling law:

S(v(x@)!v(x))2T"SI
v
Dx!x@D2H, (336)

with 0(H(1 and a constant prefactor SI
v
, over a wide range of scales. To simulate the wide range

of active scales of such a random velocity "eld e$ciently, it is natural to formulate hierarchical
Monte Carlo schemes in which the random velocity "eld is expressed as a superposition of
independently generated random "elds varying on di!erent length scales. We "rst examine one
popular hierarchical simulation method, Successive Random Addition [336], and cite results from
a rigorous demonstration [87] that this method is fundamentally incapable of simulating a station-
ary random "eld obeying the self-similar scaling (336) with any quantitative accuracy. We next
describe a pair of hierarchical Monte Carlo methods using wavelets, introduced by Elliott,
Horntrop, and the "rst author [82,84], which have been shown to be capable of generating
a random "eld v(x) with accurate self-similar scaling (336) over 12 decades of scales. By contrast,
previous simulations using (variations of) the nonhierarchical Monte Carlo methods discussed in
Section 6.2 have only achieved one to two decades of inertial-range scaling behavior. Moreover,
the wavelet-based Monte Carlo methods have low variance (see Section 6.1); 100}1000 sample
realizations are su$cient for statistical averages to be computed within a few percent error. We
compare the wavelet-based Monte Carlo methods with the Randomization Method, the non-
hierarchical Monte Carlo method with the greatest capacity for simulating velocity "elds with an
extended inertial range, and demonstrate their quantitative accuracy in simulating tracer transport
on an exactly solvable model problem.

In Section 6.4, we describe a general method of approximating any statistically isotropic,
incompressible, multi-dimensional Gaussian random velocity "eld as a superposition of Gaussian
homogenous random shear #ows [85]. In this way, any of the Monte Carlo methods for simulating
scalar random "elds can be used to simulate statistically isotropic multi-dimensional vector "elds
as well. We show that this technique can be used with the wavelet-based Monte Carlo methods
discussed in Section 6.3 to generate a statistically isotropic, incompressible, two-dimensional
Gaussian random velocity "eld with an inertial range extending over twelve decades of scales.

In Section 6.5, we study tracer pair dispersion in two-dimensional synthetic turbulent velocity
"elds generated in this manner. Temporal dynamics are induced by sweeping the frozen random
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"eld past the laboratory frame at a constant speed, corresponding to the picture underlying
Taylor's hypothesis ([320], p. 253). The mean-square separation between a pair of tracers as it
evolves through the inertial range of this synthetic turbulent velocity "eld is found to obey the
classical Richardson's t3 law

p2DX(t),SDX(1)(t)!X(2)(t)D2T&t3

over eight decades of spatial scales. We relate these numerical results to experimental "ndings,
other numerical simulations, and some theoretical work.

6.1. General accuracy considerations in Monte Carlo simulations

An examination of the error in the numerically evaluated Monte Carlo average brings out two
main practical accuracy concerns in a Monte Carlo simulation. For speci"city, we focus on the
mean-square tracer displacement p2X(t), though these considerations are completely general. The
discrepancy between the numerically computed Monte Carlo approximation p2X,!11

(t) and the true
p2X(t) can be expressed as a sum of:

f a systematic error (bias) due to numerical discretization of the velocity "eld and the trajectory
equations, and

f a random sampling error because p2X,!11
(t) is computed using a "nite number of samples.

Mathematically, let

p2X,!11,N/=
(t),S(X

!11
(t)!x

0
)2T*

!11

be the mean-square tracer displacement as would be computed (in principle) by a complete
averaging over all the random variables appearing in the discrete numerical approximation *

!11
(x)

of the velocity "eld. Then we can write the error in the numerical computation of p2X(t) as

p2X(t)!p2X,!11
(t)"E

4:4
(t)#E

4!.1
(t) ,

E
4:4

(t)"p2X(t)!pX,!11,N/=
(t) ,

E
4!.1

(t)"p2X,!11,N/=
(t)!p2X,!11

(t) ,

where E
4:4

(t) is a deterministic, systematic error, and E
4!.1

(t) is a purely random sampling error.
There are two sources of the systematic error E

4:4
(t):

f the di!erence between the statistics of the true velocity "eld *(x) and the numerically speci"ed
random velocity "eld *

!11
(x) involving only a "nite number of random variables, and

f the discretization error in the numerical integration of the tracer trajectories.

The accurate and e$cient numerical integration of the tracer trajectory equations (335) requires
a suitable (sometimes adaptive) choice of time step. We will not dwell on this technical but
important issue here; see [84,86,140] for explicit examples of the kind of considerations involved,
particularly when several particles are being simultaneously tracked. We will concentrate here on
the issues pertaining to the simulation of the random velocity "eld *(x). To minimize the systematic
error in the numerical approximation of the velocity "eld, the probability law of *

!11
(x) should be

close in some sense to that of *(x) [163]. For example, the mean and correlation tensor of *
!11

(x)
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should approximate that of *(x). If *(x) is a Gaussian random "eld, then it is often desirable for
*
!11

(x) also to be a Gaussian random "eld.
The random sampling error E

4!.1
(t) arises solely because the mean-square tracer displacement is

numerically computed using only a "nite number of realizations. It has mean zero with respect to
the statistics of the numerical scheme, SE

4!.1
(t)T*

!11
"0, and its variance may be computed as

S(E
4!.1

(t))2T*
!11
"TA

+N
j/1

DX(j)
!11

(t)!x
0
D2

N
!SDX

!11
(t)!x

0
D2T*

!11B
2

U"
1
N

R2(DX
!11

(t)!x
0
D2) ,

where

R2(DX
!11

(t)!x
0
D2),S(DX

!11
(t)!x

0
D2!p2X,!11,N/=

(t))2T*
!11

is just the variance of the numerical quantity DX
!11

(t)!x
0
D2 whose Monte Carlo average we are

seeking. The random sampling error therefore decreases as the sample size becomes larger, but at
the relatively slow rate E

4!.1
(t)&N~1@2. Typically, the sample size is restricted to moderate values

(say, a few thousand or million in turbulent di!usion applications), due to computational cost.
Therefore, one would like to minimize R2(DX

!11
(t)!x

0
D2) to reduce sampling error. This quantity

must perforce be at least on the order of the variance of the true random variable DX(t)!x
0
D2 whose

mean we are trying to estimate. The practical numerical issue is to avoid numerical approximation
schemes which add on a lot of extra variability and lead to excessively large values of the variance,
R2(DX

!11
(t)!x

0
D2). An intuitive rule of thumb for designing a low variance Monte Carlo method is

that each individual realization generated by the numerical scheme should have `typicala proper-
ties of the true random velocity "eld *(x).

We will now proceed to examine various Monte Carlo methods for turbulent di!usion with the
above considerations in mind.

6.2. Nonhierarchical Monte Carlo methods

A simple context in which to discuss numerical Monte Carlo methods for turbulent di!usion is
the class of steady, two-dimensional shear #ows with constant cross sweep uN :

*(x, t)"*(x, y, t)"C
wN

v(x)D .

Then the numerical simulation of the velocity "eld reduces to the generation of v(x), a scalar
random "eld of a single variable, which we will further assume to be Gaussian and statistically
homogenous, with mean zero and correlation function

Sv(x@)v(x@#x)T"R(x) .

In Section 3.2, we discussed a particular one-parameter family of such #ows as part of the Random
Steady Shear (RSS) Model [141]. The elements of this model have a simple structure, the
mean-square displacement of a tracer in these #ows can be expressed by exact analytical formulas,
and the tracer motion exhibits a wide variety of anomalous scaling behavior. These three properties
make this model an excellent means of assessing the performance of numerical approximation
schemes for turbulent di!usion. For convenience, we recapitulate in Section 6.2.1 the de"nition of
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the Random Steady Shear (RSS) Model and the exact formulas for the mean-square displacement
of a tracer advected by such #ows [141]. We state the numerical values of the parameters used in
the Monte Carlo simulations of this model in Paragraph 6.2.1.1.

Several numerical procedures for generating a Gaussian, homogenous random "eld are directly
suggested by two general expressions of the random "eld in terms of stochastic integrals. We have
already encountered the Fourier stochastic integral representation

v(x)"P
=

~=

e~2p*kxE1@2(DkD) d=I (k) (337)

in Paragraph 3.2.2.1. The integration measure d=I (k) is a complex Gaussian white noise with the
formal properties:

d=I (!k)"d=I (k) ,

Sd=I (k)T"0 , (338)

Sd=I (k) d=I (k@)T"d(k#k@) dkdk@ ,

where an overbar denotes complex conjugation. The integrand E(k) is the energy spectrum of the
velocity "eld:

R(x)"P
=

~=

e~2p*kxE(DkD) dk"2P
=

0

cos(2pkx)E(k) dk . (339)

The Fourier stochastic integral (337) formally represents the random "eld as a superposition of
independent random #uctuations of various wavenumbers, with the amplitude of each #uctuation
proportional to the square root of the energy spectral density at its wavenumber.

One way of numerically simulating the random "eld v(x) is to truncate this stochastic integral to
a "nite interval, and discretize it according to a midpoint rule with equispaced grid points. The
random "eld v(x) is thereby expressed as a discrete Fourier transform of a "nite set of Gaussian
random variables. This direct algorithm, which has been used by Viecelli and Can"eld [335] and
Voss [336] in the generation of fractal random "elds, will be called the (standard) Fourier Method.
It will be discussed in Section 6.2.2. Variations of this scheme have been adopted by Kraichnan
[180] and by Sabelfeld and coworkers [190,240,291], in which the grid points of the discretization
of the stochastic integral (337) are chosen randomly according to some appropriate probability
distribution. We shall refer to the strategy of Sabelfeld's group as the Randomization Method, and
discuss it in Section 6.2.3.

Another explicit expression for the random "eld v(x) is given in terms of a physical-space
stochastic integral ([341], Section 26.2):

v(x)"P
=

~=

G(x!r) d=(r)"P
=

~=

G(r) d=(x!r) . (340)

The integration measure d=( ) ) is now a real white noise measure, with formal properties:

Sd=(r)T"0 ,

Sd=(r) d=(r@)T"d(r!r@) drdr@ . (341)
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This white noise is convolved against the function G(x), which is proportional to the inverse
Fourier transform of the square root of the energy spectrum:

G(x)"P
=

~=

e~2p*kxE1@2(DkD) dk"2P
=

0

cos(2pkx)E1@2(k) dk . (342)

The function G(x) provides another real-space description of the spatial correlations of the
random "eld v(x) in addition to the standard correlation function R(x). Like R(x), the function
G(x) is even, assumes its maximal value at x"0, and generally decays for large x. The
stochastic integral expression (340) represents the random "eld as a local average of an under-
lying white noise "eld on the same physical-space domain. One can intuitively imagine laying
down a random white noise "eld on the real-space domain R, and then computing the random
"eld v( ) ) at a given point x by summing up the values of the white noise "eld with weights
speci"ed by the value of the function G centered at x. The value of the random "eld v( ) ) at any
other point x@ is obtained by simply moving the weighting function G so that it is centered at x@,
and then summing as before. For this reason, the real-space expression (340) is often called
a `moving-averagea representation. Note that the averaging procedure produces nontrivial cor-
relations in v( ) ) starting from the uncorrelated "eld d=( ) ) because the evaluation of v( ) ) at
di!erent points involves the same random values of d=( ) ); the weighting function is simply
centered at di!erent locations.

In a manner parallel to that of the Fourier Method, the real-space stochastic integral expression
(340) can be implemented numerically through a straightforward truncation of the integration
domain and a midpoint-rule discretization with equispaced grid points. This physical-space based
method for simulating the random velocity "eld will be called the Moving Average Method. It was
"rst studied in the thesis of McCoy [228], and we shall treat it in Section 6.2.4. There is no sensible
analogue of the Randomization Method in physical space.

For each of the three Monte Carlo methods we have mentioned, the Fourier Method, the
Randomization Method, and the Moving Average Method, we will "rst give some details about
their implementation. Then we will discuss their performance for the family of Random Steady
Shear Model #ows summarized in Section 6.2.1. In this fashion, we will uncover certain inherent
numerical artifacts of these methods, and obtain some understanding of circumstances in which
they may be expected to perform well or not so well. We "nd, in particular, that the built-in
periodicity of the direct Fourier Method creates strong systematic errors after a certain time
(Section 6.2.2). The Randomization Method cures this periodicity problem, and performs quite
well when the velocity "eld has strong, positive long-range correlations so that the tracer's motion
is di!usive or super-di!usive. It su!ers the drawback, however, that the simulated velocity "eld can
be substantially non-Gaussian. Also, the Randomization Method does not perform as well in the
class of test models for which the correlation function of the velocity "eld has slowly decaying
negative tails and the tracer motion is sub-di!usive (Section 6.2.3). In contrast, the Moving
Average Method can simulate sub-di!usive and di!usive tracer motion reasonably e$ciently, but
cannot accurately represent super-di!usive tracer motion because of an intrinsic shortcoming in
handling strong long-range correlations in the velocity "eld (Section 6.2.4). The numerical studies
discussed here were originally reported in the thesis of Horntrop [140] and in a paper by Elliott
et al. [83].
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Each of the methods discussed above can be extended directly to simulate a multi-dimensional,
vectorial velocity "eld by discretizing vector-valued versions ([341], Sections 20}22) of the stochas-
tic integral representations (337) and (340). We will discuss a multi-dimensional version of the
Randomization Method in Section 6.4, and will "nd better results from a less direct multi-
dimensional implementation! The methods presented here are also capable, in principle, of
simulating non-Gaussian random "elds. The stochastic integral representations of the random
"elds would then involve non-Gaussian random measures dZI (k) and dZ(r) in place of the white
noise measures d=I (k) and d=(r) ([341], Section 8). Of course, the non-Gaussian random variables
in the discretized sums would have to be simulated in some fashion. Here we will restrict our
attention to the simulation of Gaussian random "elds.

6.2.1. Exact formulas for mean-square tracer displacement in Random Steady Shear Model
In our evaluation of Monte Carlo methods for turbulent di!usion, we will use a speci"c family of

Random Steady Shear (RSS) Model #ows with constant cross sweep, which was discussed in detail
in Section 3.2.2 and the original paper [141]. The velocity "eld in this model is a steady,
two-dimensional shear #ow:

*(x, t)"*(x, y, t)"C
wN

v(x)D ,

where wN O0 and v(x) is a mean zero, Gaussian random "eld with correlation function

R(x)"Sv(x@)v(x#x@)T .

We now de"ne a special, explicit one-parameter family of correlation functions in terms of their
energy spectra:

R(x)"P
=

~=

e~2p*kxE(DkD) dk"2P
=

0

cos(2pkx)E(k) dk , (343a)

E(k)"(2p)2~eA
E
k1~e e~2nLKk, !R(e(2 , (343b)

where e is the infrared scaling exponent, A
E

is a constant amplitude, and ¸
K

is a dissipation length
scale de"ning the ultraviolet cuto! of the power law scaling at high wavenumber (small spatial
scales). The special choice of ultraviolet cuto!made in Eq. (343b) permits the following closed-form
expression for the correlation functions [141]:

R(x)"2C(2!e)A
E
(¸2

K
#x2)(e@2)~1cosA(2!e) arctanA

DxD
¸

K
BB .

The form of the correlation function R(x) in the RSS Model for various values of the infrared
scaling exponent e is shown in Fig. 20. A successful Monte Carlo method must generate a velocity
"eld which closely reproduces the correct correlation function, because the mean-square displace-
ment of a tracer particle along the shear p2

Y
(t)"S(>(t)!y

0
)2T at long times involves an integration

of R(x) over a large interval (137):

p2
Y
(t)"2P

t

0

(t!s)R(wN s) ds . (344)
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Fig. 20. Plots of the velocity correlation function for the Random Steady Shear (RSS) Model for various values of e (from
[83]). Upper graph: e"!1 (solid line) and e"1

2
(dashed line). Lower graph: e"1 (solid line) and e"3

2
(dashed line).
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Table 15
Summary of long-time scaling behavior for the mean-square tracer displacement in Random Steady Shear (RSS) Model,
with wN O0 and i"0

Parameter regime Mean square displacement Qualitative behavior

e(0 p2
Y
(t)&t0 Trapping

0(e(1 p2
Y
(t)&te Sub-di!usive

e"1 p2
Y
(t)&t Di!usive

1(e(2 p2
Y
(t)&te Super-di!usive

Two features of R(x) in the RSS Model present challenges to numerical modelling in this regard.
First, for e(1, the correlation function R(x) has negative tails which decay only algebraically for
large DxD. Secondly, as e62, the tails of the correlation function are positive but decay ever more
slowly (R(x)&DxDe~2 for DxD<¸

K
), re#ecting the strong long-range correlations in the velocity "eld.

The RSS Model therefore tests the capacity of Monte Carlo methods to simulate negative
correlations and long-range correlations of a random "eld.

The exact solutions for the mean-square displacement p2
Y
(t) of a tracer in the various RSS Model

#ows were worked out in Section 3.2 and [141], and we will use these in graphical comparisons
with the numerically simulated mean-square tracer displacement. For the purposes of our general
discussion, we simply remind the reader in Table 15 of the long-time scaling behavior of p2

Y
(t) for

various values of the infrared scaling exponent e, when the cross sweep is nonzero wN O0 and
molecular di!usion is absent i"0. Note the wide range of long-time behavior assumed by the
tracer in the RSS Model as the parameter e is varied. The reason we do not include molecular
di!usion is that it would override the sub-di!usive and trapping behavior of the RSS #ows for
e(1. For i"0, the RSS Model can test how faithfully Monte Carlo methods replicate both
sub-di!usive and super-di!usive tracer motion.

6.2.1.1. Numerical parameter values in Monte Carlo simulations. In the numerical simulations, the
tracer is always started at the origin (x

0
,y

0
)"(0,0), and space and time are nondimensionalized so

that ¸
K
"1 and wN "1. The tracer displacement along the shear:

>(t)"P
t

0

v(wN s) ds

is computed in every realization according to a trapezoidal rule with time step su$ciently small
(*t"0.1) to resolve the #uctuations in the simulated velocity "eld v

!11
(x). The value of

p2
Y
(t)"S>2(t)T is then obtained by averaging over a large number of independent simulations of

the velocity "eld. It has been checked [140] that the error due to the "nite time step in the
integration of the trajectories is negligibly small relative to the errors arising from the "nite sample
size in the Monte Carlo average and discrepancies between the statistics of the simulated velocity
"eld v

!11
(x) and of the true velocity "eld v(x).
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6.2.2. Fourier space-based method
We shall now de"ne the Fourier Method in more detail, and apply it to the RSS Model. We will
"nd inherent limitations of the method in simulating turbulent di!usion [83,140].

6.2.2.1. Derivation of Fourier method. We shall provide two simple derivations of the basic
simulation formula for the Fourier Method. One is a direct discretization of the stochastic Fourier
integral representation of the random "eld v(x). The second circumvents the stochastic integral
representation, and provides a useful framework for comparing the underpinnings of the Fourier
Method with those of the Randomization Method to be discussed in Section 6.2.3.

Discretization of stochastic Fourier integral. A natural means of obtaining numerical schemes is
through the truncation and discretization of exact continuum formulas. We apply this approach to
the stochastic Fourier integral representation (337)

v(x)"P
=

~=

e~2p*kxE1@2(DkD) d=I (k)

by a Riemann sum approximation over a "nite symmetric partition of 2M#1 intervals, with equal
widths *k. This partition extends over a "nite segment [!k

.!9
, k

.!9
], with k

.!9
"(M#1

2
)*k.

Evaluating the integrand at the midpoint of the intervals, we arrive at the following random
Riemann}Stieltjes sum for the approximating velocity "eld:

v
!11

(x)"
M
+

j/~M

e~2p*j*kxE1@2(D jD*k)*=I
j
, (345)

where the complex random variables *=I
j
(k) are de"ned in terms of the complex white noise

process:

*=I
j
(k)"P

j`*k@2

j~*k@2
d=I (k) .

From the formal rules (338) for the statistics of the white noise process, we "nd that M*=I
j
NM
j/1

are
statistically independent complex Gaussian random variables with the properties:

*=I
j
"*=I

j
, S*=I

j
T"0, S(*=I

j
)2T"0, S*=I

j
*=I

j
T"*k .

Also, *=I
0

is independent of all these variables, and is itself a mean zero, real Gaussian random
variable with variance *k. We can therefore rewrite Eq. (345) as

v
!11

(x)"E1@2(0)*=I
0
#2Re

M
+
j/1

E1@2(D jD*k) e~2p*j*kx*=I
j
,

where Re denotes the real part of the following expression. Expanding the complex random
variable *=I

j
into real and imaginary parts, we obtain a concise expression for the approximate

velocity "eld as a discrete random sum of real Fourier modes.
We will call its numerical implementation the Fourier Method. The approximate velocity "eld is

written:

v
F063

(x)"
M
+
j/0

J2E(k
j
)*k

j
[m

j
cos(2pk

j
x)#g

j
sin(2pk

j
x)] , (346)
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Fig. 21. Partition of a "nite segment [0, k
.!9

] of Fourier space into M#1 intervals in the Fourier Method.

where the wavevectors k
j
"j*k denote the locations of the equispaced grid points, and *k

j
"*k

for j"1,2, M and *k
0
"1

2
*k. The Mm

j
, g

j
NM
j/0

are a collection of independent standard Gaussian
random variables (mean zero and unit variance). (If E(k) diverges at k"0, as for the RSS Models
with 1(e(2, then the j"0 term requires some special treatment.)

The equal spacing of the grid points permits a rapid passage from the set of random Fourier
coe$cients to the random values of v

!11
(x) on the (equi-spaced) physical space grid through the

Fast Fourier Transform ([50], Ch. 18). The Gaussian random coe$cients can be simulated by
applying a Box}Muller transformation ([163], Section 1.3) to uniformly distributed random
variables on the unit interval, which can be supplied by standard computer random number
generators.

The Fourier Method with equispaced grid points has been utilized by Voss [336] in the
production of fractal sceneries and by Viecelli and Can"eld [335] in the simulation of a fully
developed turbulent velocity "eld with about one decade of an inertial range.

An important numerical feature of the Fourier Method is that the simulated random velocity
"eld is periodic with period (*k)~1 in every realization. The true velocity "eld v(x), however, has no
such periodicity when the spectrum E(k) is continuous.

Derivation by random Fourier sum ansatz. We now o!er another means of arriving at the
simulation formula (346) for the Fourier Method which has enough #exibility to yield the
simulation formula for the Randomization Method as well. Rather than proceeding deductively
from the stochastic Fourier integral representation for the random "eld v(x), we simply declare that
we will seek a "nite spectral approximation. We begin by cutting o! Fourier space to a "nite
segment [0, k

.!9
], and partitioning this segment into M#1 disjoint intervals, which need not be of

equal width (see Fig. 21). We de"ne k
0
"0 and *k

0
as the width of the interval abutting this point,

and take Mk
j
NM
j/1

as the midpoints and *k
j
as the widths of the remaining intervals comprising the

partition, ordered from left to right. We think of k
j
as a representative wavenumber from its interval

of wavenumber space. We then form a Fourier sum with these wavenumbers:

v
!11

(x)"
M
+
j/0

a
j
cos(2pk

j
x)#b

j
sin(2pk

j
x) , (347)

with real, random coe$cients Ma
j
NM
j/0

and Mb
j
NM
j/0

. We wish to choose the probability distribution
of these random variables so that v

!11
(x) approximates the random "eld v(x).

First, v
!11

(x) should be a Gaussian, homogenous random "eld with mean zero. The fact that
linear combinations of mean zero Gaussian random variables are mean zero and Gaussian
suggests that Ma

j
, b

j
NM
j/0

should be taken according to a jointly Gaussian distribution with zero
mean. By substituting the right-hand side of Eq. (347) into Sv

!11
(x@)v

!11
(x@#x)T, and noting that

this expression must be independent of x@ by statistical homogeneity, we "nd that the random
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variables Ma
j
, b

j
NM
j/0

must all be mutually independent of one another, and that Sa2
j
T"Sb2

j
T,v2

j
for 04j4M. We therefore express our random Fourier sum as:

v
!11

(x)"
M
+
j/0

v
j
[m

j
cos(2pk

j
x)#g

j
sin(2pk

j
x)] , (348)

where Mm
j
, g

j
NM
j/0

is a collection of independent, standard Gaussian random variables, and Mv
j
NM
j/0

are constant amplitudes which we are left to choose.
We pick these amplitudes by requiring that the correlation function

R
!11

(x)"Sv
!11

(x@)v
!11

(x@#x)T

of v
!11

(x) approximates the true correlation function (339):

R(x)"Sv(x@)v(x@#x)T"2P
=

0

cos(2pkx)E(k) dk . (349)

Expanding the double sum and computing the averages in R
!11

(x), we "nd that the correlation
function of the approximate random "eld v

!11
(x) is

R
!11

(x)"
M
+
j/0

v2
j
[cos(2pk

j
x@) cos(2pk

j
(x#x@))#sin(2pk

j
x@) sin(2pk

j
(x#x@))]

"

M
+
j/0

v2
j
cos(2pk

j
x) . (350)

A discrete sum of this form can be obtained by a Riemann sum approximation of the integral on the
right-hand side of Eq. (349), using the partition de"ned in Fig. 21:

R
!11

(x)"
M
+
j/0

2E(k
j
)*k

j
cos(2pk

j
x) . (351)

Note that we have implicitly dropped the contribution of the integral from k5k
.!9

, but this should
not be a serious matter if the energy spectrum E(k) decays rapidly for large k and k

.!9
is chosen

su$ciently large. Upon comparison with Eq. (350), we "nd that

v
j
"(2E(k

j
)*k

j
)1@2

will make v
!11

(x) a consistent approximation to the random "eld v(x). We arrive therefore at exactly
the same Fourier Method simulation formula (346) as before, but the wavenumbers Mk

j
NM
j/0

need
not be equispaced.

We note from Eqs. (349) and (350) that the energy spectrum of the velocity "eld simulated by the
Fourier Method is the following discrete approximation:

E
!11

(k)"
M
+
j/0

E(k
j
)*k

j
d(k!k

j
) (352)

to the continuous energy spectrum E(k).
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There are at least two reasons one might want to choose unequally spaced wavenumbers, even
though one thereby loses the possibility of using the fast Fourier transform. First, when the
wavenumbers in the discrete sum are equispaced, then all the random Fourier modes are harmon-
ically aligned, and the simulated random "eld will be exactly periodic (with period k~1

1
). This can

have undesirable consequences, as we shall explicitly see in the RSS Model application below.
Secondly, one may wish to re"ne the partition of wavenumber space near regions of large values or
rapid variation of E(k). In particular, for the RSS Model with 1(e(2, E(k) diverges at k"0, and
one might want to place extra points near k"0 to improve the accuracy of the simulated velocity
"eld at large scales. In Section 6.2.3 below, we will investigate the e!ects of using nonuniformly
spaced wavenumber grid points k

j
within the Randomization Method, wherein these wavenumbers

are chosen randomly. For our subsequent discussion of the Fourier Method, we restrict attention to
equispaced wavenumber grid points Mk

j
NM
j/0

.
We remark that we could also have handled nonuniformly spaced wavenumbers through

discretization of the stochastic Fourier integral (337). The present procedure generalizes more
readily, however, to allow a random choice of wavenumbers Mk

j
NM
j/0

, as we will discuss in
Section 6.2.3.

6.2.2.2. Fourier Method applied to RSS turbulent transport model. Examples of random "elds
generated by the (equispaced) Fourier Method can be found in the papers of Voss [366] and
Viecelli and Can"eld [335]. With su$ciently "ne wavenumber spacing *k, the method su$ces to
produce visually appealing fractal "elds [336], with about a decade of statistically self-similar
scaling [335]. The authors of each paper complain of the large amount of wavenumbers needed to
produce a satisfactory fractal "eld, and prefer the Successive Random Addition Method, which will
be discussed in Section 6.3.1.

We shall examine the practicality of the Fourier Method for the particular application of
simulating turbulent transport by trying it in the RSS Model [83,140]. We will emphasize the
consequences of the inherent periodicity of the velocity "eld simulated by the random Fourier
Method. These are clearly brought out in a simulation of a sub-di!usive RSS Model (e"1

2
). In

Fig. 22, the mean-square tracer displacement is shown for a Monte Carlo simulation for a Fourier
sum with M"200 wavenumbers, spaced by *k"1/40p, and averaged over 2000 realizations. (The
error from truncating the wavenumbers k5k

.!9
"(M#1

2
)*k+10 is then less than 0.1%.) We see

a systematic downward turning of the Fourier Method simulation from the exact result for times
tZ15. This can readily be traced to the fact that the simulated velocity "eld has period 1/*k+125.
From the exact formula for the trajectory:

>(t)"P
t

0

v(wN s) ds ,

and the fact that v
!11

(x) has a vanishing coe$cient of the k
0
"0 mode, we see that (up to numerical

integration error) the simulated value of p2
Y
(t)"S>2(t)T must also be periodic and vanish at

t"(wN *k)~1+125. The true value of p2
Y
(t), on the other hand, continues to grow according to

a t1@2 power law for t<1. The simulated mean-square displacement must therefore turn down
from the true solution. The departure becomes noticeable in Fig. 22 after roughly an eighth of
a period.

A.J. Majda, P.R. Kramer / Physics Reports 314 (1999) 237}574 505



Fig. 22. Mean-square tracer displacement along the shear for RSS Model with e"1/2 (from [83]). Thin line: exact
formula. Thick line: Fourier Method simulation with M"200 wavenumbers, *k"1/40p, and 2000 realizations.

To verify that this discrepancy is due to periodicity e!ects, and not due to "nite sample size or
truncation error, the simulation was repeated with *k"1/160p and M"800 wavenumbers. This
increases the inherent periodicity of the velocity "eld and p2

Y
(t) to 160p+500, a factor of 4 greater

than before. The results are plotted in Fig. 23. The agreement between the simulated mean-square
displacement and the exact result is now good through time t[60, again an eighth of the arti"cial
period. (The simulated curve starts turning down at times greater than that shown the "gure [140].)
Therefore, we see that the periodicity of the Fourier Method is a de"nite obstacle in the accurate
simulation of turbulent di!usion over long time scales. To contend with it, one would need to
choose a wavenumber spacing so small that the tracer does not cross more than an eighth of the
period of the simulated velocity "eld, and this may require an enormous amount of computational
labor, even with the fast Fourier transform. As we shall discuss in Section 6.2.4, the Moving
Average Method appears to be a preferable choice for simulating random velocity "elds without
strong long-range correlations, such as the RSS Model with e"1

2
.

The Fourier Method has a further di$culty when simulating super-di!usive tracer motion in
a velocity "eld with strong long-range correlations. In Fig. 24, we show a simulation of the RSS
Model with e"3

2
, with the same choice of other numerical parameters as in Fig. 23. The j"0 term

in the random Fourier series (346) is problematic because of the infrared divergence of energy; in
the present simulations it is just dropped. We see that the Fourier Method simulation undershoots
the exact result even though the plotted times extend only up to an eighth of the arti"cial period. If
we were to somehow retain a nontrivial j"0 term in the random Fourier series (346), the
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Fig. 23. Mean-square tracer displacement along the shear for RSS Model with e"1
2

(from [83]). Thin line: exact
formula. Thick line: Fourier Method simulation with M"800 wavenumbers, *k"1/160p, and 2000 realizations.

Fig. 24. Mean-square tracer displacement along the shear for RSS Model with e"3
2

(from [140]). Thin line: exact
formula. Thick line: Fourier Method simulation with M"800 wavenumbers, *k"1/160p, and 2000 realizations.
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mean-square tracer displacement would instead show a ballistic overshoot of the true superdif-
fusive behavior at long times. The actual superdi!usive behavior of the tracer displacement is very
sensitive to the way in which energy is concentrated at low wavenumbers, but the Fourier Method
with equispaced grid points cannot adequately resolve the k~1@2 singularity in E(k) at k"0. We
will see in Section 6.2.3 that appropriately randomizing the wavenumbers in the discrete sum can
overcome the de"ciencies of the direct Fourier Method for the #ows in the RSS Model with
long-range correlations (1(e(2).

6.2.2.3. Conclusions regarding Fourier Method. The Fourier Method (with equispaced grid points)
has been unambiguously shown to fail in e$ciently producing accurate statistics for the motion of
a tracer over long-time intervals in the simple RSS Model. The main di$culty is the strong
systematic error induced by the arti"cal periodicity of the simulated #ow. The Fourier Method
furthermore cannot resolve su$ciently strong long-range correlations when they are present. These
de"ciences are inherent to the Fourier method in general for the simulation of turbulent di!usion.
Some better options for various applications will be discussed throughout the remainder of
Section 6.

6.2.3. Randomization Method
One way in which various investigators have sought to overcome the numerical artifacts of the

equispaced Fourier Method is to choose randomly the wavenumbers Mk
j
NM
j/1

appearing in the "nite
Fourier sum approximation:

v
!11

(x)"
M
+
j/1

a
j
cos(2pk

j
x)#b

j
sin(2pk

j
x) .

For example, Kraichnan [180] deterministically assigned the magnitudes of the wavevectors
appearing in a simulated multidimensional velocity "eld, but selected their direction according to
a random uniform distribution on the sphere. Sabelfeld and other scientists at the Computing
Center at Novosibirsk [190,240,291] later developed a more substantial variation in which the
magnitudes of the wavevectors are also randomly chosen. We shall call this latter algorithm the
Randomization Method, and apply it to the problem of simulating the turbulent di!usion of a tracer
in the RSS Model. We will see that it eliminates the periodicity problem intrinsic to the direct
Fourier Method, and performs quite well for the di!usive and super-di!usive class of models
14e(2, which include velocity "elds with strong long-range correlations. The Randomization
Method is not very successful, however, in simulating sub-di!usive tracer motion in the RSS
Models with slowly decaying negative correlations (0(e(1).

We shall "rst de"ne the Randomization Method precisely, then present the results of the
simulations in the RSS Model.

6.2.3.1. Dexnition of Randomization Method. In a manner similar to our second derivation of the
Fourier Method (Paragraph 6.2.2.1), the prescription of the random velocity "eld in the Randomiz-
ation Method begins with a deterministic partition of wavenumber space into M disjoint subinter-
vals MI

j
NM
j/1

(Fig. 25). We do not, however, con"ne the partition to a "nite segment; I
M

extends all
the way to #R. We now choose a representative wavenumber k

j
in each interval according to
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Fig. 25. Partition of the Fourier space into M intervals in the Randomization Method.

a probability density function (PDF) p
j
(k) weighted by the energy density E(k):

ProbMk
j
3AN"P

A

p
j
(k) dk,

p
j
(k)"G

2E(k)
v2
j

for k3I
j
,

0 for kNI
j
,

(353)

where

v
j
"A2P

Ij

E(k) dkB
1@2

. (354)

The random velocity "eld v(x) is then simulated as a random Fourier sum using these wavenum-
bers:

v
R!/$

(x)"
M
+
j/1

v
j
[m

j
cos(2pk

j
x)#g

j
sin(2pk

j
x)] , (355)

where Mm
j
, g

j
NM
j/1

is a collection of independent standard Gaussian random variables.
Upon comparison with Eq. (346), we see that the random Fourier sum has the same form in the

Randomization Method as in the direct Fourier Method. An inessential di!erence is the particular
expression (354) for the amplitudes Mv

j
NM
j/1

; one could consistently use these expressions for the
standard Fourier Method as well. The important distinction is that the wavenumbers Mk

j
NM
j/1

appearing in the sum are chosen randomly within their associated interval in the Randomization
Method, rather than at the midpoint as in the Fourier Method.

The amplitudes of the Fourier modes v
j
and probability distribution p

j
(k) for the wavenumbers

which were described in Eqs. (353) and (354) are uniquely speci"ed by insisting that the simulated
random "eld v

R!/$
(x) have the same covariance as the desired random "eld v(x), as we now

demonstrate. We begin by positing a general random Fourier sum approximation of the same form
that arose in our alternate derivation of the Fourier Method (348):

v
!11

(x)"
M
+
j/1

v
j
[m

j
cos(2pk

j
x)#g

j
sin(2pk

j
x)] , (356)

where Mm
j
, g

j
NM
j/1

is a collection of independent, standard Gaussian random variables. We further
suppose the wavenumbers k

j
to be randomly distributed within their intervals I

j
. We desire to

choose the PDFs Mp
j
(k)NM

j/1
of these wavenumbers as well as the constant nonnegative amplitudes
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v
j
so that the correlation function R

!11
(x) of the simulated random "eld v

!11
(x) approximates the

correlation function of v(x),

R(x)"Sv(x@)v(x@#x)T"2P
=

0

cos(2pkx)E(k) dk , (357)

as well as possible.
The correlation function of the random Fourier sum (356) may be computed by "rst averaging

over the Gaussian random variables Mm
j
, g

j
NM
j/1

as in our derivation of the standard Fourier
Method, and then taking another average over the distribution of the wavenumbers Mk

j
NM
j/1

:

R
!11

(x)"Sv
!11

(x@)v
!11

(x@#x)T"SSv
!11

(x@)v
!11

(x@#x)Tm,gTk

"T
M
+
j/1

v2
j
cos(2pk

j
x)U

k

"

M
+
j/1
P
Ij

cos(2pkx)v2
j
p
j
(k) dk .

(See Eq. (350) for the derivation of the third equality.) Comparing with Eq. (357), we see that in fact
we can make R

!11
(x) identically equal to R(x) by choosing p

j
(k)"2v~2

j
E(k) for k3I

j
, j"1,2, M.

The formula for v
j
(354) then follows simply from the normalization :

Ij
p
j
(k) dk"1.

6.2.3.2. General comments on the Randomization Method. The above calculation points out another
advantage of the Randomization Method over the Fourier Method besides solving the periodicity
problem. Whereas the correlation function of the velocity "eld v

F063
(x) simulated by the Fourier

Method was only a discrete Riemann sum approximation of the true correlation function R(x), the
correlation function of the velocity "eld v

R!/$
(x) simulated by the Randomization Method is exactly

R(x). The Randomization Method is therefore free of systematic truncation and discretization
errors, at least insofar as second-order statistics are concerned. The reason this is possible is that
the wavenumbers Mk

j
NM
j/1

are allowed to vary over a continuum, so that an ensemble average can
lead to the desired continuous energy spectrum E(k). With "xed wavenumbers, as in the Fourier
Method, the simulated spectrum can at best be a discrete approximation to E(k) (352). Improved
computational e$ciency can be expected for the Randomization Method because of its preferential
distribution of wavenumbers toward the most energetic parts of the spectrum. In particular, the
Randomization Method should resolve strong concentrations of energy in wavenumber space
much better than the equispaced Fourier Method.

However, the Randomization Method does have some drawbacks in practical implementation.
First of all, the fast Fourier transform cannot be used because the wavenumbers are not con"ned to
a regular grid. If one is interested in the turbulent transport of a small number of tracers, however,
then the random velocity "eld v

R!/$
(x) need only be evaluated at their momentary positions, so the

loss of the fast Fourier transform is of no great concern. A potentially more serious disadvantage is
the fact that the velocity "eld simulated by the Randomization Method is non-Gaussian, due to the
randomness of the wavenumbers Mk

j
NM
j/1

. The single-point PDF of v
R!/$

(x) is Gaussian, but the
PDF of any two-point velocity increment v

R!/$
(x)!v

R!/$
(x@) is broader-than-Gaussian because

such increments are mixtures of mean zero Gaussian random variables of di!erent variances. (See
the discussion in Section 5.2.2.) The Gaussianity of the simulated random "eld can be improved in
principle by taking the intervals MI

j
NM
j/1

of the partition su$ciently "ne in a certain sense [240,291].
It is not clear, however, whether the improved Gaussianity would require an inordinately large
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M in practice, particularly for velocity "elds with a wide range of active scales. A more promising
approach, suggested by Kraichnan in a multi-dimensional context [180], is to produce MI indepen-
dent approximate velocity "elds Mv(j)

R!/$
NMI
j/1

of the form (355), and then take the simulated "eld as
a suitably normalized sum:

v
R!/$

(x)"
1

JMI
MI
+
j/1

v(j)
R!/$

(x) . (358)

The resulting random "eld v
R!/$

(x) has mean zero and the appropriate correlation function R(x).
Moreover, by the Central Limit Theorem, the statistics of the random "eld v

R!/$
(x) will approach

a Gaussian form if MI is taken su$ciently large. We will return to the issue of non-Gaussianity of
the Randomization Method in Section 6.4.

We "nally remark that although the Randomization Method has no formal truncation or
discretization errors, it does not magically avoid the error incurred in approximating a random
"eld with continuous spectrum by a "nite sum of Fourier modes. This source of error rather
becomes transferred to the Monte Carlo sampling error. The degree to which the statistics of
a "nite sample size will accurately resemble those of the entire ensemble depends on how closely the
realizations of the simulated random "eld mimic the properties of the true random "eld. For
example, in a turbulent velocity "eld with a power law inertial-range spectrum, the number of
intervals (M) in the partition of wavenumber space must be chosen su$ciently large to ensure that
each simulated velocity "eld contains a typical distribution of scales [140,291]. A helpful strategy
toward this end is to choose the intervals MI

j
NM
j/1

of the partition to contain equal amounts of
energy:

v2
j
"2P

Ij

E(k) dk"
2
MP

=

0

E(k) dk"
1
M

S(v(x))2T .

Note that this partition is naturally associated to a Lebesgue integration of the energy spectrum
E(k), whereas the equispaced Fourier Method is built from a standard Riemann sum approxima-
tion to the integral of E(k).

6.2.3.3. Randomization Method applied to RSS Turbulent Transport Model. The Randomization
Method has been used by Sabelfeld and coworkers [190,240,291] to simulate the motion of tracers
and pairs of tracers in a fully developed turbulent velocity "eld with a small inertial range. We will
discuss the Randomization Method in this more demanding context later in Section 6.3.2. Here, we
apply the Randomization Method to the RSS Model to assess how well it simulates various types
of turbulent tracer transport behavior. We are particularly interested in examining the extent to
which the Randomization Method alleviates some of the inherent di$culties of the Fourier
Method. The results presented here for the Randomization Method originate in the thesis of
Horntrop [140]. These simulations adopt a simple incarnation of the Randomization Method, in
which the random Fourier series of the simulated velocity "eld v

R!/$
(x) consists of 32 wavenumbers

chosen independently from [0,R), with PDF given by p
1
(k)"2v~2

1
E(k) and v2

1
"2:=

0
E(k) dk. For

the energy spectra in the RSS Model (343b), the random wavenumbers are then distributed
according to a gamma distribution [103], and can be e$ciently generated on a computer. In the
above general notation, this setup corresponds to taking a trivial partition of wavenumber space
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(M"1 in Eq. (355)) and building the simulated "eld by summing up MI "32 independent
realizations of single-mode velocity "elds (see Eq. (358)).

The superiority of the Randomization Method over the Fourier Method is clearly demonstrated
in the super-di!usive regime of the RSS Model. In Fig. 26, the mean-squared tracer displacement
produced by the Randomization Method for e"3

2
is indistinguishable from the exact result. The

relative error is less than 8% throughout the simulation, and actually settles down to about 1% for
304t4200 [142]. The favorable comparison between the results of the Randomization Method
(Fig. 26) and the Fourier Method (Fig. 24) for e"3

2
becomes even more striking when it is noted

that the Randomization Method uses only MI "32 wavenumbers (relative to M"800 for the
Fourier Method), and the Randomization Method is plotted over a longer time interval. The
success of the Randomization Method in simulating super-di!usive tracer motion can be attributed
to its (random) selection of wavenumbers over a continuous range, with preferential weighting
toward low wavenumbers where the energy is strongly concentrated (E(k)+A

E
k1~e for kW0). At

least within the RSS Model, the Randomization Method takes proper account of the long-range
correlations in the velocity "eld which give rise to super-di!usive tracer motion. The periodicity
problem of the Fourier Method is also completely avoided. A su$ciently large sample size,
however, is necessary to obtain the good agreement observed in Fig. 26. The sampling error
becomes quite noticeable if the average involves only 500 independent realizations [140].

The Randomization Method also produces good results for RSS Models with di!usive (e"1)
and trapping behavior (e(0) [140], but does not fare so well in the sub-di!usive regime
(0(e(1). In Fig. 27, we see that the simulated tracer motion persistently overshoots the correct
behavior for e"1

2
. Evidently, the Randomization Method is not adequately accounting for the

slowly decaying negative tail in the correlation function R(x) (see Fig. 20), even with 2000 samples.
One concern which should be addressed when using the Randomization Method is the extent to

which the simulated "elds deviate from Gaussianity. The ensembles generated in the above
simulations did exhibit signi"cantly non-Gaussian sample statistics [140]. This issue plays no role,
however, in the simulation of the mean-square tracer displacement in the RSS Model, since this
quantity only depends on the second-order statistics of the velocity "eld (344).

6.2.3.4. Conclusions regarding Randomization Method. The above simulations show the Random-
ization Method to be a superior variation of the Fourier Method in the simulation of turbulent
tracer transport. Its #exible choice of wavenumbers alleviates the periodicity problem and properly
incorporates long-range correlations in the simulated velocity "eld, at least in the RSS Model. The
Randomization Method, however, demonstrates some di$culties in simulating random "elds
which have a correlation function with slowly decaying negative tails. One must also be aware that
the Randomization Method generally produces random "elds with non-Gaussian statistics.

To summarize, the Randomization Method appears to be a good candidate for Monte Carlo
simulation of random "elds which have long-ranged positive correlations. We shall return to it in
Section 6.3.2 when we consider the numerical simulation of turbulent velocity "elds which have even
stronger positive long-range correlations than those present in the super-di!usive RSS Models.

6.2.4. Physical space-based method
The Fourier Method and the Randomization Method presented above are based on the

stochastic Fourier integral representation (337) of the random velocity "eld v(x). The "nal
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Fig. 26. Mean-square tracer displacement along the shear for RSS Model with e"3
2

(from [140]). In the upper graph,
the thin line describes exact formula whereas the (nearly coincident) thick line describes the Randomization Method
simulation with MI "32 wavenumbers, and 2000 realizations. The lower graph shows the ratio of the simulated to true
mean-square tracer displacement.

nonhierarchical Monte Carlo method for simulating random "elds which we will consider is the
Moving Average Method, the simplest of another class of methods which are derived from the
physical-space stochastic integral representation (340) of the random "eld. After a brief general
discussion of the Moving Average Method, we will apply it to the RSS Model and compare the
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Fig. 27. Mean-square tracer displacement along the shear for RSS Model with e"1
2

(from [140]). In the upper graph,
the thin line describes exact formula whereas the thick line describes the Randomization Method simulation with MI "32
wavenumbers, and 2000 realizations. The lower graph shows the ratio of the simulated to true mean-square tracer
displacement.

outcomes with those of the Fourier-spaced methods discussed above [83,140]. We "nd an intrinsic
obstacle for the Moving Average Method in simulating velocity "elds with strong long-range
correlations. In fact, utilizing it in such situations can lead to ostensibly plausible scaling behavior
which is in fact incorrect! The Moving Average Method, however, simulates tracer transport in
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those RSS Models without strong long-range correlations (e(1) more e$ciently than the Fourier
method.

In Section 6.3, we will present a hierarchical version of the Moving Average Method which
performs extremely well in simulating tracer transport in a fractal random "eld with very strong
long-range correlations [84,85].

6.2.4.1. Dexnition of Moving Average Method. The Moving Average Method is the direct physical-
space based analogue of the Fourier Method. It is obtained from the general physical-space
stochastic integral representation (340) of the random "eld v(x):

v(x)"P
=

~=

G(x!r) d=(r) (359)

in much the same way that the Fourier Method was derived from the stochastic Fourier integral
representation (337). In Eq. (359), d=( ) ) is a real white noise measure with properties stated in
Eq. (341), and

G(x)"P
=

~=

e~2p*kxE1@2(DkD) dk"2P
=

0

cos(2pkx)E1@2(k) dk (360)

is a symmetric function peaked at the origin.
To implement Eq. (359) numerically, we de"ne a symmetric partition of the real line into

intervals of equal width *x, and use these to construct a Riemann sum approximation (with
in"nitely many terms) using a midpoint rule discretization:

v
$*4#

(x)"
=
+

j/~=

G(x!j*r)*=
j
,

(361)

*=
j
"P

(j`1@2)*r

(j~1@2)*r
d=(r) .

It is readily checked from Eq. (341) that M=
j
N=
j/~=

is an in"nite collection of independent
Gaussian random variables with mean zero and variance *r.

We do not simply truncate Eq. (361) into a "xed, "nite sum, as in the Fourier method, because
here the magnitude of the integrand peaks at the variable point x. Instead, we specify a bandwidth b,
and restrict the summation in Eq. (359) to D j!xx/*ry D4b, where xxy denotes the greatest integer
not exceeding x.

This completes the de"nition of the Moving Average Method:

v
MA

(x)"
xx@*ry`b

+
j/xx@*ry~b

G(x!r
j
)m

j
J*r , (362)

where Mr
j
"j*rN=

j/~=
are the equispaced grid points in the integration and Mm

j
N=
j/~=

is a collection
of independent, standard, Gaussian random variables.
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Note that the truncation corresponds to an integration over the mobile segment [xxy*r!
r
.!9

, xxy*r#r
.!9

], where r
.!9

"(b#1
2
)*r and xxy*r denotes the grid point r

j
lying closest to and

left of x.
The Moving Average Method was applied by McCoy [228] in turbulent di!usion simula-

tions. Mandelbrot and Wallis [220}222] and Feder [100] simulated one-dimensional fractal
random "elds using an analogous algorithm based on a one-sided moving average representation
[219].

Note that there is no sensible implementation of the Moving Average Method using random or
unequally spaced physical-space grid points r

j
, because the computation of the convolution would

become extremely complicated. In any case, there is no motivation for randomizing the physical-
space grid points. First of all, the Moving Average Method does not su!er from the false periodicity
of the equispaced Fourier Method. Secondly, the random "eld is statistically homogenous in
physical space, so there is no need to resolve special regions as there is in Fourier space when the
spectrum is strongly concentrated near k"0.

6.2.4.2. General comments on the Moving Average Method. We can already discern a general
disadvantage of the Moving Average Method relative to the Fourier-space based methods
in that the random "eld simulated by the Moving Average Method is built out of an
in"nite number of random variables. To be sure, the restriction of the random "eld to any "nite
region refers to only "nitely many of these variables. The practical di$culty in simulating tur-
bulent tracer transport is keeping track of the random variables needed to evaluate the
velocity "eld at the current tracer location. When the x position of the tracer moves across
a grid point r

j
which it has never visited before, then a new independent random variable m

j`b
(or m

j~b
) must be generated to evaluate v(x). But if, as the tracer meanders, its x position

turns around and crosses a grid point r
j
which it has already visited, then the previously gene-

rated value of m
j~b

(or m
j`b

) must be recalled. Consequently, in a standard implementation,
one would either need to precompute all the random variables which would be needed over
a speci"ed domain, or dynamically store and index all the random numbers generated as the tracer
moves into new territory. Computer memory limitations will necessarily restrict the spatial region
which the tracer is allowed to explore. An alternative procedure is to utilize a reversible random
number generator (such as a linear congruential generator) with an indexing scheme which allows
any particular random number m

j
to be obtained on demand [84]. The sequence of random

numbers Mm
j
N=
j/~=

is not explicitly stored in this implementation, so the memory limitations are
averted. Of course, for time-dependent random velocity "elds, such considerations become less
sign"cant.

Another disadvantage of the Moving Average Method relative to the Fourier-space-based
methods is that the simulated random "eld v

MA
(x) is not precisely statistically homogenous. The

statistics of v
MA

(x) are generally invariant only under shifts v
MA

(x)Pv
MA

(x#h) for h an integrable
multiple of the grid spacing *r. The statistics of v

MA
(x) do depend, through the weighting factors

G(x!r
j
), on the location of x relative to the grid points. We will examine this issue in more

detail in the context of a much improved, hierarchical version of the Moving Average Method in
Section 6.3.2.

A more pressing concern regarding the Moving Average Method is revealed by a comparison of
the correlation function of the simulated "eld with the true correlation function. We "nd that for
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x"q*r'0 and x@"q@*r,

Sv
MA

(x@#x)v
MA

(x@)T"
q`q{`b

+
j/q`q{~b

q{`b
+

j{/q{~b

G((q#q@)*r!r
j
)G(q@*r!r

j{
)*rSm

j
m
j{
T

"

q{`b
+

j/q`q{~b

G(r
q{~j

#x)G(r
q{~j

)*r"
b~q
+

j/~b

G(x#r
j
)G(r

j
)*r (363)

whereas the correlation between the true velocity "eld at these same points is, from Eqs. (359) and
(341):

Sv(x@#x)v(x@)T"R(x)"P
=

~=
P

=

~=

G(x@#x!r)G(x@!r@)Sd=(r) d=(r@)T

"P
=

~=

G(x@#x!r)G(x@!r) dr"P
=

~=

G(x#r)G(r) dr . (364)

The correlation function (363) of the velocity "eld v
MA

(x) is a quadrature approximation of the
correlation function (364) of the true velocity "eld v(x). The most serious di!erence between the
approximate and exact correlation functions is the truncation of integration interval. In fact, for
x'2r

.!9
, the correlation function of the simulated velocity "eld vanishes, because the two

observation points x#x@ and x@ make use of disjoint subsets of the random variables Mm
j
N=
j/~=

.
The Fourier Method involved a similar truncation of wavenumber space to a "nite segment

[0, k
.!9

], and this was also re#ected in expression (351) for the simulated correlation function
Sv

F063
(x@#x)v

F063
(x@)T. There, the truncation was not a big concern because the energy spectrum

E(k) typically decays very rapidly (say, exponentially) at large wavenumber. The moving average
weighting function, G(x), however, will not necessarily manifest such rapid decay. In fact, if the
velocity "eld has long-range correlations, these must be re#ected in slowly decaying, long-range
tails of G(x). The Moving Average Method must be expected to su!er a severe systematic
truncation error in such circumstances.

6.2.4.3. Moving Average Method applied to RSS Model. We shall now use the RSS Model to
illustrate explicitly that the Moving Average Method's inherent physical-space truncation makes it
inadequate in simulating tracer transport in a velocity "eld with strong long-range correlations (so
that R(x) and G(x) have very slow decay) [83,140]. We will "nd, however, that the Moving Average
Method performs relatively e$ciently for velocity "elds with milder correlations [140]. An earlier
study of the Moving Average Method in simulating turbulent di!usion may be found in McCoy's
thesis [228]. For the RSS Model simulations presented here, we use a bandwidth b"800 and grid
spacing *r"0.1, so that the convolution in the moving average representation is e!ectively cut o!
at a distance r

.!9
"(b#1

2
)*r+80 from the maximum of the weighting function G.

We consider "rst the e"3/2 RSS model, which has strong long-range correlations and falls in
the superdi!usive regime. The e!ects of the truncation of the moving average representation to
a "nite bandwidth b in Eq. (362) are already apparent in a plot of the correlation function R

MA
(x)"

Sv
MA

(x@)v
MA

(x@#x)T (with x@"j@*r) along with the correlation function R(x)"Sv(x@)v(x@#x)T of
the true velocity "eld (Fig. 28). The simulated correlation function R

MA
(x) is drastically underrep-

resenting the long-range r~1@2 tail of the true correlation function R(x). This re#ects the fact that

A.J. Majda, P.R. Kramer / Physics Reports 314 (1999) 237}574 517



Fig. 28. Correlation function of the velocity "eld for RSS Model with e"3
2

(from [83]). In the upper graph, the thin line
describes true velocity correlation function R(x), whereas the thick line describes the simulation by the Moving Average
Method with bandwidth b"800, grid spacing *r"0.1, and integration cuto! r

.!9
+80. The lower graph shows

the ratio of the simulated to true velocity correlation function.
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Fig. 29. Mean-square tracer displacement along the shear for RSS Model with e"3
2

(from [83]). Thin line: exact
formula, thick line: Moving Average Method simulation with bandwidth b"800, grid spacing *r"0.1, and integration
cuto! r

.!9
+80.

correlations on scales large compared to r
.!9

have been arti"cially "ltered out. Recall that the exact
mean-square displacement p2

Y
(t) of a tracer in the RSS Model is expressible as an integral of R(x)

over an interval of length wN t (344). Therefore, the truncation in the Moving Average Method must
necessarily lead to a systematic underprediction of p2

Y
(t) at large time, apart from any additional

random errors due to "nite sampling in Monte Carlo simulations. An actual simulation of p2
Y
(t)

using N"2000 realizations of the velocity "eld just described, is shown in Fig. 29. The Moving
Average Method severely undershoots the correct behavior, and even worse, produces an apparent
scaling behavior at long time with the wrong exponent. Note that the error of the Moving Average
Method already appears at t"40, when the tracer has only moved across half the width r

.!9
+80

of the integration window in the convolution. Similar results are found [140] when the bandwidth
is increased to b"2000 (r

.!9
+200). The Moving Average Method is therefore dangerous to use in

simulating turbulent di!usion in velocity "elds with signi"cant long-range correlations, since it can
produce erroneous scaling behavior. Simulations of a one-dimensional fractal random "eld using
a related one-sided Moving Average Method [220}222] with similarly large bandwidths and
sample size can also predict incorrect scaling exponents for statistics of the random "eld itself
([100], Fig. 9.8).

The Moving Average Method, however, performs adequately for the e41 RSS Models, in which
the tracer motion is di!usive, subdi!usive, or trapped. The subdi!usive motion of a tracer in the
e"1

2
RSS Model can be tracked with reasonable accuracy over a time interval 04t[130

(Fig. 30), whereas a Fourier Method simulation of comparable cost (described in Fig. 23 and [140])
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Fig. 30. Mean-square tracer displacement along the shear for RSS Model with e"1
2

(from [83]). In the upper graph, the
thin line describes exact formula, whereas the thick line describes the Moving Average Method simulation with
bandwidth b"800, grid spacing *r"0.1, and integration cuto! r

.!9
+80. The lower graph shows the ratio of the

simulated to true mean-square tracer displacement.

starts to systematically turn down due to arti"cial periodicity after t+60. The Randomization
Method, on the other hand, had a tendency to overshoot the correct subdi!usive tracer behavior
(Fig. 27).
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6.2.4.4. Conclusions regarding Moving Average Method. The Moving Average Method intrinsically
cannot represent correlations of the velocity "eld on scales larger than the integration cuto! r

.!9
,

and this fact can lead to a grossly misleading simulation of the long-time tracer motion in a velocity
"eld with strong long-range correlations. Based on the results for the 1(e(2 RSS Models
(Figs. 26 and 29), the Randomization Method appears to be a much more economical and accurate
Monte Carlo Method for this kind of turbulent di!usion problem. On the other hand, the Moving
Average Method performed reasonably well and more e$ciently than the Fourier Method for the
RSS Models without strong long-range correlations e41, in which the tracer motion is di!usive,
subdi!usive, or trapped.

The Moving Average Method can be improved signi"cantly by a proper hierarchical formula-
tion, as we shall discuss in Section 6.3.2.

6.3. Hierarchical Monte Carlo methods for fractal random xelds

We have analyzed three Monte Carlo methods for the simulation of turbulent di!usion in a class
of steady, random shear #ows. For the rest of Section 6, we will develop and examine Monte Carlo
methods with a view toward simulating tracer motion in synthetic #ows with some features in
common with fully developed turbulence at high Reynolds number.

One characterizing feature of such #ows is the existence of a self-similar inertial range of scales
¸
K
;r;¸

0
, where ¸

K
is the Kolmogorov dissipation length and ¸

0
is the integral length scale.

A random steady shear #ow with such an inertial range was analyzed in Section 3.4.1. Its energy
spectrum was expressed as

E(k)"A
E
k1~et

0
(k¸

0
)t

=
(k¸

K
), 2(e(4 , (365)

where t
0

is an infrared cuto! and t
=

is an ultraviolet cuto!. While the energy spectrum has
a self-similar form between ¸~1

0
;k;¸~1

K
for all e(4, it is only for 2(e(4 that the velocity

"eld v(x) exhibits statistical self-similarity within an inertial range ¸
K
;r;¸

0
in physical space. In

particular, for 2(e(4, the mean-square velocity di!erence (also called the structure function of
the velocity "eld) has the following inertial-range scaling:

S(v(x@#x)!v(x@))2T"SI
v
DxD2H , (366)

where H"(e!2)/2 is the Hurst exponent, and

SI
v
"!2A

E
p1@2`2HC(!H)/C(H#1

2
) . (367)

(See Section 4.2.1 for a closely analogous discussion in the context of a random shear velocity "eld
with rapid decorrelation in time.)

Simulation of such a random "eld faces two main di$culties. First of all, the rapid growth of the
mean-square velocity di!erence (366) with separation x between the observation points manifests
the very strong long-range correlation of the velocity "eld v( ) ). We saw in Section 6.2 how poorly
the Fourier Method and Moving Average Method simulated random "elds of the type (365) (with
¸
0
"R) for spectral exponents 1(e(2, because of their inability to represent accurately the

long-range correlations in those "elds. The velocity "elds with inertial ranges we are now
considering (2(e(4) have even higher values of e, and the long-range correlations become even
more pronounced. A further challenge for numerical simulation of these velocity "elds is to ensure
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that the simulated velocity "elds exhibit clean inertial-range scaling (366). This is particularly
pertinent to applications in which one is seeking to determine how the inertial-range scaling of the
velocity "eld is re#ected in scaling properties of the passive scalar "eld on length scales within the
inertial range. We already considered some of these relations in Section 4 for a velocity "eld with
rapid decorrelation in time. High-quality numerical simulations permit investigations of scaling
properties for the passive scalar "eld in #ows with more complex features, as we shall illustrate in
Section 6.5.

To keep focus on the two central issues, the very strong long range correlations and the
inertial-range scaling properties, we will remove the cuto!s from explicit consideration as much as
possible. That is, we formally take the ideal "eld we are trying to simulate as having a vanishingly
small Kolmogorov dissipation length ¸

K
"0 and an in"nitely large integral length scale ¸

0
"R.

This limit, taken at face value, requires some care in interpretation (Section 3.4.1). For the purposes
of our discussion of Monte Carlo numerical methods, however, this is of no concern since computer
limitations will impose de"nite upper and lower cuto! length scales to the inertial range of any
simulated "eld. In what follows, it is only important to remember from Section 3.5 that as the
cuto!s are removed,

f the velocity increments v(x)!v(x@) are statistically homogenous, meaning that their PDF
depends only on x!x@,

f the velocity increments are mean zero Gaussian random variables, with variance converging to
the "nite inertial-range scaling limit SI

v
Dx!x@D2H, and

f the statistical dynamics of the separation between a pair of tracer particles converges to
a well-de"ned limiting evolution.

We remark for our later discussion in Section 6.4 that these facts remain true for multidimen-
sional velocity "elds.

We shall therefore pose the Monte Carlo simulation problem of Section 6.3 as follows. We wish
to generate a numerical random (steady shear #ow) velocity "eld v(x) for which the increments
v(x)!v(x@) are homogenous and Gaussian distributed, with mean zero and variance obeying
a speci"ed inertial-range scaling law:

S(v(x@)!v(x))2T"SI
v
Dx!x@D2H , (368)

with 0(H(1, over an extensive range of scales. Secondly, we also wish the separation between
a pair of tracers advected by such a velocity "eld to be simulated accurately.

With all the cuto!s removed from explicit consideration, the desired velocity "eld is in fact
a fractal random ,eld [215,100]. This simply means that the velocity "eld enjoys a statistical
self-similarity (or, more precisely, statistical self-a.nity [216]) under dilations. Namely, v(x)!v(x@)
has the same PDF as j~H(v(jx)!v(jx@)), as may be checked from Eq. (368) and the fact that
a Gaussian random variable is fully determined by its mean and variance. Fractal random "elds
have applications in a diversity of "elds beyond turbulent di!usion, such as solute transport in
groundwater [79], turbulent combustion [339], random topography in statistical physics [100],
and many others [215,336]. We remark that the problem of simulating the random, one-dimen-
sional shear velocity "eld v(x) described above is equivalent to the simulation of a stochastic
process known as fractional Brownian motion [100,215,219].
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Of the nonhierarchical Monte Carlo methods discussed in Section 6.2, the Randomization
Method is evidently the best choice for simulating fractal random "elds. The Fourier and Moving
Average Methods were shown to be incapable of e$ciently representing long-range correlations. In
Section 6.3.3, we will compare the performance of the Randomization Method with another class
of hierarchical Monte Carlo methods, which we now introduce.

These hierarchical methods are designed to respect the statistical self-similarity of the fractal
random "eld. The simulated velocity "eld v

!11
(x) is represented as a superposition of random "elds

associated to a hierarchy of scales:

v
!11

(x)"
m/m.!9

+
m/m.*/

2~mHv
m
(2mx) . (369)

Each v
m
( ) ), m

.*/
4m4m

.!9
is an independent, identically distributed, mean zero Gaussian

random "eld, which can be computed e$ciently. Their precise speci"cation characterizes the
particular hierarchical Monte Carlo method. The integers m

.*/
and m

.!9
represent large scale and

small scale cuto!s, as can be seen by noting that if the random "elds Mv
m
( ) )N have characteristic

length scale ¸, then v
m
(2mx) has characteristic length scale 2~m¸.

In the idealized situation in which the truncation to a "nite number of scales may be ignored
(m

.*/
"!R and m

.!9
"#R), any hierarchical method will automatically simulate a velocity

"eld with the discrete scaling symmetry:

S(v
!11

(x)!v
!11

(x@))2T"2~2HS(v
!11

(2x)!v
!11

(2x@))2T.

Therefore, some of the inertial-range scaling property (368) is built in to the hierarchical method,
and this is the main theoretical motivation for representing the simulated velocity "eld by
Eq. (369). It is important to note, however, that the increments of the simulated fractal random "eld
v
!11

(x) are not thereby guaranteed to have the continuous scaling symmetry and statistical homo-
geneity of the increments of the true fractal velocity "eld v(x).

One intuitively appealing hierarchical Monte Carlo method for generating fractal random "elds
is the method of Successive Random Addition (SRA), developed by Voss [336]. This method has
become quite popular in the physics community, due to its speed, e$ciency, and #exibility in
generating various random fractal surfaces and processes [100,336]. Viecelli and Can"eld [335]
have moreover shown how to exploit the local recursive nature of SRA to compute rapidly the
fractal "eld at a given point. They therefore suggest SRA as a promising method to apply to the
simulation of the turbulent di!usion of a small number of tracers.

Unfortunately, the random "elds simulated by SRA have recently been shown to be rigorously
inconsistent with the statistical homogeneity and full inertial-range scaling properties of the
increments of a truly homogenous fractal random "eld [87]. We discuss this de"ciency of SRA in
Section 6.3.1 through explicit and rigorous numerical estimates, which demonstrate that it fails in
very practical ways to simulate a truly fractal random "eld. Of course, this says nothing about its
capability of producing qualitatively convincing graphical representations of fractal surfaces and
landscapes [100,336]. But to simulate turbulent di!usion in the inertial-range of scales with
quantitative precision, the simulated velocity "eld must have quantitatively accurate statistical
scaling properties, and SRA is intrinsically incapable of meeting this need.

In Section 6.3.2, we present a pair of hierarchical methods recently developed by the "rst author
with Elliott and Horntrop for the simulation of fractal random "elds. The Multi-=avelet Expansion
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(M=E) Method [84] is based on the same physical-space stochastic integral representation (340)
as the Moving Average Method discussed earlier. The Fourier-=avelet Method [82] is a Fourier-
space based analogue. They are carefully designed to permit e$cient local computation of the
random "eld, so that the velocity "eld v(x) may be evaluated rapidly at whatever positions
x"X(j)(t) a small number of tracers happen to be at a certain moment of time. The MWE Method
is designed speci"cally for fractal random "elds, while the Fourier-Wavelet method is #exible
enough to be applied in more general situations [82].

Some simulations of the velocity "eld v(x) by the MWE, Fourier-Wavelet, and Randomization
Methods are reported in Section 6.3.3. The wavelet approaches are able to generate a high-quality
inertial range extending over an unprecedented twelve decades of scales using less than 2500 active
computational elements [87,84]. The inertial-range scaling law (368) is accurately reproduced in
detail from an average over only 100 or 1000 realizations. Among other things, this stresses the low
variance of the wavelet-based Monte Carlo methods. We will explicitly contrast the scaling and
homogeneity properties of the random "elds generated by the MWE method and SRA method.
The Randomization Method is next compared with the wavelet methods. We "nd that the
Fourier-Wavelet Method is the best choice when one wishes to simulate very wide inertial ranges
with more than 4}5 decades of scaling behavior, or when it is important for the simulated velocity
"eld to be truly Gaussian. Due to the relatively high "xed overhead of the wavelet methods, the
Randomization Method is more computationally e$cient when only 4}5 decades of scaling
behavior are desired and the statistical quantities of interest do not depend sensitively on the higher
order statistics of the velocity "eld [82]. Finally, we apply the wavelet methods and the Randomiz-
ation Method to the simulation of the relative turbulent di!usion of a pair of tracers in a steady
fractal shear #ow for which the exact statistics of the tracer separations can be expressed
analytically. The numerical simulations are shown to match closely the exact results.

6.3.1. Successive Random Addition
We begin by formulating the Successive Random Addition (SRA) Method [336] as a hierarchi-

cal method as described in Eq. (369). Successive Random Addition constructs a random "eld by
dyadic expansion. By de"nition, a dyadic rational number x satis"es x"2~mn for some integers
m and n, the octave and the translate, respectively. For each octave m, SRA constructs a piecewise
linear "eld, v

m
( ) ) as follows. First, at each integer x"n, this "eld is assigned an independent

random value m
m,n

drawn from a standard Gaussian distribution (mean zero, unit variance):

v
m
(n)"m

m,n
, n"0,$1,$2,2 .

Next, the method extends v
m
( ) ) to all other points by linear interpolation:

v
m
(x)"m

m,xxy
(1![x])#m

m,xxy`1
[x] .

Here xxy is the greatest integer less than x, and [x]"x!xxy is the fractional part of x. The
simulated "eld is "nally built up by summing a suitably rescaled "nite collection of such indepen-
dently generated random "elds:

v
SRA

(x)"
m.!9

+
m/m.*/

2~mHv
m
(2mx) .

The SRA algorithm can be readily generalized to multidimensional random "elds [100,335,336].

A.J. Majda, P.R. Kramer / Physics Reports 314 (1999) 237}574524



We note that in practice SRA can be implemented in a more e$cient way than this literal
description [335]. Namely, the computation of v

SRA
(x) requires the simulation and interpolation of

only the two random variables m
m,n

at each octave m which are associated to the dyadic numbers
2~mn bracketing x. Our concern here, however, is not with the e$ciency of the SRA method, but
with the nature of the random "eld which it would simulate even in the ideal limit in which all
errors due to computational constraints can be neglected.

The problem with the SRA method, as explicitly demonstrated in [87], is that it produces
a random "eld with strong deviations from the statistical self-similarity and homogeneity of the
increments which a fractal random "eld is supposed to possess. For the fractal random "eld v(x),
the following scaled variance of velocity #uctuations is an absolute constant

S(v(x)!v(x@))2T
Dx!x@D2H

"SI
v

;

see Eq. (368). Consistency would require that the corresponding ratio for the random "eld
simulated by SRA:

S(v
SRA

(x)!v
SRA

(x@))2T
Dx!x@D2H

"SI
SRA

(x,x@)

should settle down to approximately constant behavior for appropriately chosen simulation
parameters. The function SI

SRA
(x,x@) however, always has order unity variations as a function of

x and x@. This variability in SI
SRA

(x,x@) is systematic, and not due to "nite sample sizes; SI
SRA

(x, x@) as
de"ned is a property of the simulated random "eld averaged over the full statistical ensemble.
Moreover, there is no way to choose the parameters in the algorithm to reduce the variations in
SI
SRA

(x,x@) to a desired tolerance. Substantial variations are present for any "nite choice of m
.*/

and
m

.!9
, and persist in the ideal limit m

.*/
P!R, m

.!9
P#R. Consequently, the SRA method

cannot consistently simulate a fractal random "eld with statistically homogenous increments. The
random "eld simulated by SRA does not even approximately obey the inertial range scaling law
(368) with a constant prefactor. We now summarize some of the results from [87] which quantify
the systematic inconsistency of SRA.

Rigorous numerical lower bounds on the variation of SI
SRA

(x,x@) are obtained by exact evaluation
of this function at specially chosen points. The ratio

maxSI
SRA

(x,x@)/minSI
SRA

(x, x@)

is thereby found strictly to exceed unity for all Hurst exponents 0(H(1, and to exceed 2 for
a wide range of Hurst exponents 0.30(H(0.85, including the value H"1/3 associated to
a turbulent velocity "eld with Kolmogorov scaling [87]. These numerical estimates hold not only
for "nite values of the cuto!s m

.*/
and m

.!9
, but remain valid as these cuto!s are removed:

m
.*/

P!R and m
.!9

P#R. Note that due to the discrete self-similarity of the random "eld
simulated by SRA, SI

SRA
(x,x@)"SI

SRA
(2x, 2x@), and the order unity variations in SI

SRA
(x,x@) occur at

every scale.
It might still be conceivable that the variations in SI

SRA
(x,x@) uncovered by the mathematical

analysis are concentrated tightly around special points, and that for most values of (x, x@), the
function SI

SRA
(x, x@) is nearly constant. To demonstrate that this is not the case, we plot in Fig. 31
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Fig. 31. Distributions for the normalized scaling coe$cient for simulations of a fractal random "eld with Hurst exponent
H"1

3
(from [87]). The broader distribution plots SI

SRA
(x, x@)/M

D
for an ideal random "eld (m

.*/
"!R, m

.!9
"#R)

generated by Successive Random Addition. The thinner distribution plots SI
MWE

(x,x@)/SI
v
for a random "eld generated by

the MWE Method (to be discussed in Section 6.3.2) with M"40 scales, wavelet order q"4, and bandwidth b"5.

a histogram for H"1
3

describing the distribution of SI
SRA

(x,x@) in the ideal case in which cuto!s can
be neglected (m

.*/
"!R and m

.!9
"R) [87]. Recall that SI

SRA
(x,x@) is a statistical quantity fully

averaged over the entire statistical ensemble, so these distributions also are associated with the
ideal limit in which #uctuations due to "nite sampling are negligible. The values of SI

SRA
(x,x@) are

normalized in the plot by the exactly computable constant M
D
,max

x,x{|R2SI
SRA

(x,x@). The area
under the histogram between two points h

1
and h

2
represents the relative area in (x,x@)3R2 for
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which h
1
4SI

SRA
(x, x@)/M

D
4h

2
. By self-similarity, one may equivalently restrict attention to the

unit square 04x, x@41. This histogram is calculated numerically from exact discrete summation
formulas, evaluated on a 32]32 discrete grid on the unit square [87]. The distribution of the values
of the putative scaling coe$cient SI

SRA
(x, x@) is rather broad. There are no parameters in the SRA

algorithm which may be tuned to tighten these distributions so that SI
SRA

(x,x@) becomes approxim-
ately constant in space. Similar results are found for other values of the Hurst exponent [87].

SRA is therefore demonstrated to be an inconsistent algorithm for generating quantitatively
accurate homogenous random fractal "elds, both in theoretical and practical terms.

6.3.2. Wavelet approaches
We will next describe a pair of recently developed low variance Monte Carlo methods which can

e$ciently simulate fractal random "elds over a large range of scales [82,84]. These are based on
hierarchical discretizations of the basic stochastic representation formulas (340) and (337):

v(x)"P
=

~=

G(x!r) d=(r) , (370a)

v(x)"P
=

~=

e~2p*kxE1@2(DkD) d=I (k) (370b)

through specially designed orthonormal wavelet expansions.
To motivate the introduction of wavelets in these methods, we "rst discuss the inadequacy of

a more primitive hierarchical attempt to improve upon the Moving Average Method. This method
and the Fourier Method are based on straightforward, equispaced discretizations of Eqs. (370a)
and (370b), and were shown in Section 6.2 to fail seriously in representing long-range correlations
in random "elds. It is natural to try hierarchical versions of these methods, however, in the
simulation of fractal random "elds, since a hierarchical structure naturally treats every simulated
scale on an approximately evenhanded basis.

Recall that the algorithm for the Moving Average Method was expressed:

v
MA

(x)"
xx@*ry`b

+
j/xx@*ry~b

G(x!r
j
)m

j
J*r ,

where Mr
j
"j*rN=

j/~=
are the equispaced grid points in the integration and Mm

j
N=
j/~=

is a collection
of independent, standard, Gaussian random variables. The main di$culty of the Moving Average
Method was that it could not accurately represent long-range correlations with a reasonable
bandwidth b. One way to address this problem is to go back to the exact moving average
representation on which the method is based:

v(x)"P
=

~=

G(x!r) d=(r) , (371)

and use the scaling properties of the weighting function G( ) ) to make a more e$cient discrete
approximation. For a fractal random "eld with Hurst exponent H as expressed by the structure
function scaling (366), G( ) ) may be computed from its relation (360) to the energy spectrum
E(k)"A

E
k~1~2H, yielding [84]

G(x)"K
H
DxDH~1@2 , (372)
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with preconstant

K
H
"

p~(2`H)C(2#H)
C((1#2H)/4)

JA
E

.

(The relation between the prefactor A
E

in the energy spectrum and the prefactor in the structure
function scaling (366) is given by Eq. (367).) As with all our discussions of fractal random "elds,
formula (371) with convolution kernel (372) only gives well-de"ned velocity di!erences v(x)!v(x@).
Finite numerical approximations to this moving average formula will necessarily introduce cuto!s
and be entirely well-de"ned.

Now, the weighting function G( ) ) is very long-ranged; it even grows with distance for H'1
2
!

Based on our numerical demonstrations in Section 6.2.4, we have no hope of representing these
long-range correlations with a reasonable bandwidth if we use a straightforward equispaced
discretization of the convolution integral (371). The scaling property of G( ) ), however, suggests
a much more economical way of evaluating this integral. Note that the derivative of G( ) ) decreases
with distance according to a power law. Thus, it is clearly wasteful to try and integrate Eq. (371)
over a large segment with an equispaced partition. The integration step can be made coarser with
Dx!rD to maintain a given level of accuracy, and the numerical integration interval can thereby be
greatly increased without additional cost. More speci"cally, the self-similarity of the fractal "eld
indicates that the integration step used to resolve correlations on a given scale should be
proportional to that length scale. This suggests a hierarchical method in which an integration step
2j*r is used for 2j~1b*r(Dx!rD42jb*r, with a suitable positive integer b. Note that this keeps
all evaluations on an equispaced grid. While this method will certainly improve upon the Moving
Average Method, the bandwidth required for an accurate simulation is still much too large for
practical purposes [84].

The underlying idea of using a variable numerical resolution proportional to the length scale
being considered is clearly promising, however. What is needed is a more #exible means of
constructing a "nite hierarchical approximation to the moving average stochastic integral (371),
and this is provided by the theory of orthonormal wavelet bases [80]. We will describe how to write
the moving average representation as an exact discrete expansion with respect to an orthonormal
wavelet family, and discuss the mathematical properties which the wavelet family should have so
that "nite truncations will be e$cient approximations. The Alpert}Rokhlin multi-wavelet bases
[3,4] meet the criteria, and their use in the orthonormal expansion produces what we call the
Multi-Wavelet Expansion (MWE) Method [84].

We will then discuss the Fourier-Wavelet Method [82], another wavelet-based Monte Carlo
method with certain improvements in simplicity, speed, #exibility. It is derived from an analogous
orthonormal wavelet expansion in Fourier space using a Meyer wavelet as a `mother waveleta
[80]. While the Fourier-Wavelet Method is formulated in Fourier space, it is not a hierarchical
Fourier Method because the simulated random "eld is not represented as a random Fourier sum. It
can be naturally understood as a spectral implementation of an orthonormal wavelet expansion of
the moving average representation.

We will only describe the theory and algorithms for the MWE and Fourier-Wavelet Methods
here. Some demonstrations of their performance in practice will be given in Section 6.3.3 and
throughout the remainder of Section 6.
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6.3.2.1. Multi-=avelet Expansion Method. We begin by showing how the moving average stochas-
tic integral representation (371) may be expressed through an orthonormal basis as a randomly
weighted sum of functions. The truncation of this sum permits a `"nite elementa type of discretiz-
ation as an alternative to the `"nite di!erencea discretizations of the stochastic integrals which led
to the Moving Average Method and the Fourier Method. The MWE Method is based on such an
orthonormal expansion using a wavelet basis which we will describe subsequently.

Orthonormal expansion of moving average representation. Let M/
j
N=
j/0

be a (complete) orthonor-
mal basis for

¸2(R)"GgKEgE
2
"AP

=

~=

Dg(x)D2dxB
1@2

(RH ,

the Hilbert space of square integrable complex functions on the real line with inner product

(g, h)"P
=

~=

g(x)h(x) dx .

The orthonormal property means that

(/
j
, /

j{
)"d

jj{
"G

1 if j"j@ ;

0 otherwise .

Moreover, any square integrable function g3¸2(R) can be expanded as a countably in"nite and
convergent sum of orthonormal basis functions [80]:

g"
=
+
j/0

(g, /
j
)/

j
. (373)

An orthonormal basis can be used to rewrite any stochastic integral with respect to white noise as
an in"nite sum of weighted independent standard Gaussian random variables:

P
=

~=

g(r) d=(r)"P
=

~=

=
+
j/0

(g, /
j
)/

j
(r) d=(r)"

=
+
j/0

(g,/
j
)m

j
, (374)

where

m
j
"P

=

~=

/
j
(r) d=(r) .

By the properties (341) of real white noise d=(r), it is easily checked from the orthonormality of
the /

j
(r) that the Mm

j
N=
j/0

is a sequence of independent, standard, real Gaussian random variables
(mean zero, variance one). Because Eq. (374) holds for any g3¸2, we can de"ne a general rule for
representing the white noise measure in stochastic integrals:

d=(r)"
=
+
j/0

m
j
/

j
(r) , (375)
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where M/
j
(r)N=

j/0
is an orthonormal basis of ¸2(R) and Mm

j
N=
j/0

is a collection of independent,
standard real Gaussian random variables.

Applying this orthonormal expansion to the moving average representation (371), we obtain

v(x)"P
=

~=

G(x!r) d=(r)"
=
+
j/0

Gw/
j
(x)m

j
,

where the convolution operation is denoted by a star:

fwg(x)"P
=

~=

f(x!r)g(r) dr .

Multi-wavelet orthonormal bases. To use the orthonormal expansion to construct a discrete
hierarchical approximation for v(x), we shall consider multi-wavelet orthonormal bases [80].
A multi-wavelet (a generalized wavelet) is a set of functions M/pqNqp/1

that has the special property
that its discrete translates and dilates:

M/pq
mn

(x)"2m@2/pq(2mx!n) D p"1,2,q; m, n"0,$1,$2,2,N

form an orthonormal basis for ¸2(R). We will use the term wavelet to refer to a function from
a multi-wavelet, although the term usually refers to a single function whose dilates and translates
form a basis for ¸2(R) [80]. The double subscript notation /pq

mn
(x) for dilation and translation is

standard for multi-wavelets. The superscript q denotes the order of the multi-wavelet basis. The "rst
subscript m is called the octave and the second subscript is called the translate. The expansion of the
moving average representation in terms of the multi-wavelet basis is written:

v(x)"
q
+

p/1

=
+

m,n/~=

Gw/pq
mn

(x)mp
mn

, (376)

where Mmp
mn

D p"1,2q; m, n"0,$1,$2,2N is a collection of independent, standard, Gaussian
random variables.

Now we make use of the self-similar scaling (372) of the convolution kernel G to write this
expansion in an explicitly hierarchical form. By simple rescalings, one can check that

Gw/pq
mn

(x)"2~mHGw/pq(2mx!n) .

Therefore, we have the following hierarchical representation for the random fractal velocity "eld
v(x):

v(x)"
=
+

m/~=

2~mHv
m
(2mx) , (377a)

v
m
(x)"

q
+
p/1

=
+

n/~=

Gw/pq(x!n)mp
mn

. (377b)

We note that for a suitable choice of a multi-wavelet (including the Alpert}Rokhlin multi-wavelet
which we will use), the convolution Gw/pq is perfectly well-de"ned without cuto!s. The only
divergence is in the sum over m, which as usual, will be cut o! by any numerical implementation.
See [84] for a rigorous mathematical treatment.
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The multi-wavelet representation (377) is an exact formula for the fractal random "eld v(x),
equivalent to the moving average representation (371). A numerical implementation will of course
require a truncation of the in"nite sums over m and n. The cost of such a wavelet-based algorithm
will clearly be proportional to the number of terms retained in the sums. We can consequently keep
more octaves (more terms in the m summation) at a given cost if we keep fewer terms in the sums
over translations (index n). The issue, then, is how to minimize the number of translates which must
be summed over in each octave to meet a given accuracy.

¸ocalization of sum over translates. The errors incurred in truncating the sum

=
+

n/~=

Gw/pq(x!n)mp
mn

(378)

may appear at "rst glance to be as devastating as those which result in truncating the physical-
space stochastic integral in the moving average representation:

v(x)"P
=

~=

G(x!r) d=(r) .

Indeed, this latter expression may be written in a similar form to Eq. (378):

v(x)"
=
+

n/~=

Gws
*0,1+

(x!n)m
n
, (379)

where

s
*0,1+

(x)"G
1 for 04x41 ,

0 otherwise ,

and Mm
n
N=
n/~=

is a collection of independent, standard Gaussian random variables. Both Eqs. (378)
and (379) involve a sum over convolutions of the slowly decaying (or even increasing!) function
G( ) ). The Moving Average Method is essentially derived by truncating the sum in Eq. (379) (with
the step size rescaled to *r), and we saw in Section 6.2.4 that this led to gross inaccuracies even for
large bandwidths.

There is however a crucial di!erence between the two expressions: Eq. (378) is a convolution of
G with multi-wavelets which we are still free to choose, whereas the summands in Eq. (379) are
completely determined. The success of a wavelet-based Monte Carlo Method relies crucially upon
choosing the multi-wavelets M/pqNqp/1

in an intelligent manner so that Gw/pq decays rapidly and the
sum (378) may be well approximated by only a relatively small number of terms with n+x. To see
what properties the multi-wavelets should have to make this possible, we work out the far-"eld
asymptotics of the convolution [84] by binomially expanding G(x!r)"GDx!rDH~1@2 for large x:

Gw/pq(x)&C
B

K
H
I
Q
DxDH~(1@2)~Q as xP$R

where C
B

are some explicitly computable combinatorial constants, and Q is the minimal non-
negative integer q so that the wavelet moment:

I
q
,P

=

~=

rq/pq(r) dr
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is nonvanishing. The decay of the convolution Gw/pq is therefore determined by the number of
moments I

q
which vanish for all wavelets in the multi-wavelet M/pqNqp/1

. We are thus led to look for
a multi-wavelet with good moment cancellation properties [37].

The Alpert}Rokhlin basis [3,4] meets our need. For each q51, there exists an Alpert}Rokhlin
multi-wavelet M/pqNqp/1

consisting of piecewise polynomial functions supported in the unit interval
[0,1] with moments vanishing through order q!1:

P
1

0

/pq(x)xqdq"0 for q"0,2, q!1 .

Their essential properties for our purposes are summarized concisely in [84]. With a larger choice
of q, the convolution Gw/pq decays more rapidly and fewer terms are needed in the sum over n to
meet a speci"ed accuracy. This consideration must be balanced by the cost of maintaining
q di!erent wavelets.

Description of multi-wavelet expansion (M=E) method. According to the analysis in [84], the
Alpert}Rokhlin multiwavelet of order q"4 is found to be su$cient for accurate simulation for
Hurst exponent H"1

3
, the Kolmogorov value. One now chooses a suitable bandwidth b so that the

sum over n is well represented by a sum over Dn!xxy D4b, and imposes cuto!s m
.*/

and m
.!9

on
the summation over the octaves m in Eq. (377a). By scale invariance, we can generally put m

.*/
"0,

and let m
.!9

"M!1, where M is the number of octaves simulated. The Multi-=avelet Expansion
(MWE) Method then takes the form

v
MWE

(x)"
M~1
+

m/0

2~mHv
MWE,.

(2mx) , (380)

v
MWE,.

(x)"
xxy`b
+

n/xxy~b

q
+

p/1

f
MWE,p(x!n)mp

mn
,

f
MWE,p(x)"Gw/pq(x) ,

where Mmp
mn

D p"1,2, q;m"0,2,M!1; n"0,$1,$2,2N is a collection of independent
Gaussian standard random variables.

It may be desirable in certain applications to let the bandwidth depend on the octave b"b
m
; see

[84]. In any case, rigorous estimates are available for the error in truncating the summation over n,
and these can be used to choose b according to the accuracy desired. Such analysis may be found in
the original paper [84]. We note that with the q"4 Alpert}Rokhlin multi-wavelet, bandwidths on
the order of b"5 are already su$cient to guarantee excellent accuracy [84].

One feature which the Multi-Wavelet Expansion Method shares with the Moving Average
Method is its reference to an in"nite collection of independent random variables. While only
"nitely many need to be evaluated to determine v

MWE
(x) over any "nite region, there is still the

practical di$culty of storing and keeping track of the random numbers as they are generated. This
problem can be overcome through the use of a reversible random number generator and an
indexing scheme exploiting the hierarchical structure of the MWE Method. This procedure,
developed and described in [84], completely avoids the enormous memory cost which would be
required if the random numbers needed to be precomputed and stored.
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We "nally remark that the q"1 Alpert}Rokhlin multi-wavelet /11 is nothing more than the
simplest of all wavelets, the Haar wavelet [80]:

/11(x)"G
!1 if 0(x(1

2
,

1 if 1
2
(x(1 ,

0 otherwise .

It can be checked that the MWE Method using these Haar wavelets is equivalent to
the straightforward hierarchical version of the Moving Average Method which we described near
the beginning of Section 6.3.2. As only the zeroth-order moment of the Haar wavelet vanishes,
the summation over n is not so well localized in this case: Gw/11(x)&C

B
DxDH~3@2 as xP$R.

Computations in [84] using rigorous truncation error estimates show that to obtain good
accuracy, the bandwidth b must be orders of magnitude larger if Haar wavelets were used instead of
the q"4 Alpert}Rokhlin multi-wavelets. This emphasizes the importance of the choice of multi-
wavelet basis in the success of the MWE Method; the fact that it is hierarchical is not su$cient unto
itself.

6.3.2.2. Fourier-wavelet method. We now describe the Fourier-Wavelet Method, a variation
of the MWE Method which is easier to implement, faster, and more #exible. The Fourier-
Wavelet Method is based on the same general orthonormal multi-wavelet expansion (377)
as the MWE Method, but is implemented spectrally. As we shall show in a moment, a single
Meyer wavelet / [80] is su$cient to generate an orthonormal wavelet basis with the desired
properties, so we will drop the multi-wavelet indices p and q in our discussion of the Fourier-
Wavelet Method:

v(x)"
=
+

m,n/~=

Gw/
mn

(x)m
mn

, (381)

/
mn

(x)"2m@2/(2mx!n), m, n"0,$1,$2,2 .

The Mm
mn

N=
m,n/~=

is a collection of independent, standard, real Gaussian random variables. For
fractal random "elds v(x), the power law form of G permits the following self-similar hierarchical
expression:

v(x)"
=
+

m/~=

2~mHv
m
(2mx) , (382)

v
m
(x)"

=
+

n/~=

Gw/(x!n)m
mn

.

At the end we will show how the Fourier-Wavelet Method can be applied to generate more general
random "elds without self-similarity properties, but at the moment we focus on fractal random
"elds.

The Fourier-Wavelet Method departs from the MWE Method in that the convolutions in the
sum are handled spectrally. The convolution theorem from Fourier analysis ([50], p. 108) states
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that for any square-integrable functions g, h3¸2(R):

gwh(x)"F~1(FgFh)(x)"P
=

~=

e~2p*kxgL (k)hK (k) dk ,

where hats and the operator F each denote a Fourier transform:

gL (k)"(Fg)(k),P
=

~=

e2p*kxg(x) dx ,

and F~1 denotes the inverse of the Fourier transform:

(F~1t)(x)"P
=

~=

e~2p*kxt(k) dk .

Now, from the relation (342), the Fourier transform of G(x) is the square root of the energy
spectrum: (FG)(k)"E1@2(DkD). De"ning /K "F/, we have

Gw/(x)"F~1(E1@2/K )(x) ,

where E(k) is understood here to be extended as an even function to the negative k axis. The
orthonormal wavelet expansion (382) may then be written:

v(x)"
=
+

m/~=

2~mHv
m
(2mx) ,

v
m
(x)"

=
+

n/~=

f (x!n)m
mn

, (383)

f (x)"F~1(E1@2/K )(x) .

This expression for the random "eld v(x) may also be derived from its stochastic Fourier integral
representation (337) by expanding the complex white noise d=I (k) with respect to the orthonormal
basis M/K

mn
"F/

mn
N=
m,n/~=

in a manner similar to Eq. (375) (see [82]). Note that regardless of the
method of derivation of Eq. (383), the underlying wavelet basis M/

mn
"2m@2/(2mx!n)N=

m,n/~=
is

de"ned in physical space. Its Fourier transform is an orthonormal basis by the Plancherel theorem
([50], p. 113), but not (in general) a wavelet basis since the M/K

mn
N=
m,n/~=

are not related to each
other by dilation and translation.

We now tackle the problem of localizing the summation over n in Eq. (383) from the spectral
perspective. What is required is that f decay rapidly. But decay of f in physical space is linked to the
smoothness of its Fourier transform fK"Ff. Namely, if

D2pD~pP
=

~=
K
dpfK (k)
dkp Kdk"C

p
(R ,

then (see [50], p. 117):

D f (x)D4C
p
DxD~p .
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We are therefore led to choose the wavelet / so that

fK (k)"E1@2(k)/K (k)

has a su$ciently large number of bounded derivatives for the energy spectrum of interest. For the
fractral random "eld currently under consideration, E(k)"A

E
DkD~1~2H has a nasty singularity at

k"0, but is otherwise smooth. We can therefore guarantee fK (k) to have p bounded derivatives if the
Fourier transform of the wavelet / is compactly supported away from the origin, and has
p classical derivatives. The Meyer wavelet / based on a pth-order perfect B-spline satis"es these
properties in an optimal fashion; see [7,80,82] for the details.

Numerical studies in [82] indicate that a second order (p"2) perfect B-spline is a good practical
choice in de"ning the Meyer wavelet / for a fractal random "eld with H"1

3
. The Fourier-=avelet

Method is then implemented by keeping only a "nite number of octaves m"0,2, M!1 and
using the rapid decay of f (x) to approximate the sum over its translates to high accuracy using
a reasonable bandwidth b:

v
FW

(x)"
M~1
+

m/0

2~mHv
FW,m

(2mx) ,

v
FW,m

(x)"
xxy`b
+

n/xxy~b

f
FW

(x!n)m
mn

, (384)

f
FW

(x)"F~1(E1@2/K )(x) .

The Mm
m,n

; m"0,2, M!1; n"0,$1,$2,2N are standard Gaussian independent random
variables. The functions f

FW
(x) are evaluated by fast Fourier transform and interpolation. Rigorous

estimates for the numerical errors incurred in this computation as well as for the truncation error in
the summation over n are given in [82].

Extension of Fourier-=avelet Method to random ,elds without self-similarity. One appealing
feature of the Fourier-Wavelet Method is that it may be applied without signi"cant change to the
simulation of random "elds with a wide range of active scales where perhaps the energy spectrum
E(k) is not a simple power law. To see this, let us return to the general orthonormal wavelet
expansion (381) which did not assume self-similarity of G:

v(x)"
=
+

m,n/~=

Gw/
mn

(x)m
mn

,

/
mn

(x)"2m@2/(2mx!n), m, n"0,$1,$2,2 .

Using the scaling properties of the wavelets, this can always be cast in a hierarchical form:

v(x)"
=
+

m/~=

v
m
(2mx) , (385a)

v
m
(x)"

=
+

n/~=

f
m
(x!n)m

mn
, (385b)
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but the functions f
m

do not in general satisfy the scaling relation f
m
(x)"2~mHf (x), which held

for fractal random "elds with Hurst exponent H. They must instead be computed separately for
each m:

f
m
(x)"G

m
w/(x), G

m
(x)"2~m@2G(2~mx) . (386)

The spectral representation of these functions is (see Eq. (383))

f
m
(x)"F~1(E1@2

m
/K )(x) , (387)

E
m
(k)"2mE(2mk) . (388)

Localization of the summations of translates of these functions in Eq. (385b) requires that the
wavelet / be chosen so that each of the f

m
decay rapidly. Viewed in physical space (386), this

appears to be a complicated task, but it can be done quite simply in the spectral framework (387).
We simply need to ensure that

fK
m
(k)"(Ff

m
)(k)"E1@2

m
(k)/K (k)

has su$ciently many bounded derivatives for all octaves m retained in the simulation. The Meyer
wavelet based on a pth-order perfect B-spline still works well for this purpose [82]. Because it is
compactly supported away from the origin and has p bounded classical derivatives, fK

m
(k) will have

p bounded derivatives for any smooth spectrum E(k) which may even have strong algebraic
singularities at k"0 and k"R.

The form of the Fourier-=avelet Method for general random "elds can therefore be written:

v
FW

(x)"
M~1
+

m/0

v
FW,m

(2mx) ,

v
FW,m

(x)"
xxy`b
+

n/xxy~b

f
FW,m

(x!n)m
mn

, (389)

f
FW,m

(x)"F~1(E1@2
m

/K )(x) ,

E
m
(k)"2mE(2mk) ,

where Mm
m,n

; m"0,2, M!1; n"0,$1,$2,2N is a collection of standard Gaussian indepen-
dent variables, and / is a Meyer wavelet constructed from a perfect B-spline of order p. Practical
choices of p may depend on the application. The functions f

FW,m
(x) are computed by fast Fourier

transform and interpolation.

6.3.2.3. Comparison of the Fourier-=avelet and Multi-=avelet Expansion Methods. We have
already pointed out one advantage of the Fourier-Wavelet overthe Multi-Wavelet Expansion
(MWE) Method, in that the Fourier-Wavelet Method is applicable to random "elds with general
spectra E(k). In localizing the summation over translates of f

MWE,p(x) in the MWE Method
Eq. (380), a moment cancellation criterion was used to choose the Alpert}Rokhlin multi-wavelet.
This criterion arose from a far-"eld expansion of the speci"c moving average weighting function
G(x)"K

H
DxDH~1@2 associated to fractal random "elds. The criterion used for localizing the

summation over the analogous functions f
FW,m

(x) in the Fourier-Wavelet Method (389), on the
other hand, does not rely on speci"c assumptions about the energy spectrum E(k). Furthermore,
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because the Fourier-Wavelet Method is a spectral method, it is compatible with spectral techniques
for solving partial di!erential equations. The MWE Method has no such compatibility with
anisotropic spectra generated by solutions of partial di!erential equations.

The Fourier-Wavelet Method is also much simpler to implement and faster than the MWE
Method, as detailed in [82,84].

6.3.3. Comparison of simulation results
We now demonstrate the excellent performance which results from the careful mathematical

design of the MWE and Fourier-Wavelet methods. We will also discuss the relative merits of these
wavelet-based methods and the nonhierarchical Randomization Method in simulating fractal
random "elds. First we will focus on the simulation of the random velocity "eld v(x) itself, and then
turn to the simulation of the relative turbulent di!usion of a pair of tracers being swept at
a constant rate across a steady, fractal random shear #ow.

Recall that a Gaussian fractal random "eld is characterized by the velocity increment between
two points v(x)!v(x@) being a mean zero, Gaussian random variable, with variance varying as
a power law of the separation distance between the observation points:

S(v(x)!v(x@))2T"SI
v
Dx!x@D2H . (390)

6.3.3.1. Consistency of Wavelet Methods. The "rst issue we check is that the wavelet methods will
indeed generate random "elds with clean scaling behavior in the ideal limit in which "nite Monte
Carlo sampling error can be ignored. We test whether the rescaled mean-square velocity di!erence
of the velocity "eld simulated by the MWE method:

SI
MWE

(x,x@)"
S(v

MWE
(x)!v

MWE
(x@))2T

Dx!x@D2H

is indeed approximately constant, as it should be for a consistent approximation to a fractal
random "eld satisfying Eq. (390). We plot in Fig. 31 a histogram of this function for a MWE
random "eld with M"40 octaves, wavelet order q"4, and bandwidth b"5 alongside the
corresponding histogram for the SRA algorithm with in"nitely many octaves [87]. (In the
histogram, SI

MWE
(x, x@) is normalized by SI

v
rather than a maximum of SI

MWE
(x,x@) over the sampled

unit square, but as can be seen from the histogram, these values are very nearly the same.) The
histogram for the MWE Method is much narrower than that of the SRA Method, showing only
a 6% variation of SI

MWE
(x,x@) for the sampled values in the square 04x,x@41. Note that only

"nitely many octaves are retained for the MWE computation, so the histogram is broadened
somewhat by the breakdown of scaling for Dx!x@D+1, the largest retained scale. Even sharper
constancy for SI

MWE
(x, x@) can be expected on scales well separated from the cuto!s. In any case,

Fig. 31 demonstrates that the MWE Method consistently generates a fractal random "eld with
accurate scaling (390) and homogeneity of its increments in the limit of in"nitely many realizations.

6.3.3.2. Simulations of velocity xeld structure function. A striking feature of the wavelet Monte
Carlo methods is their low variance: averaging over an accessibly small number of realizations still
produces phenomenally clean statistical scaling. In Fig. 32, we present the numerically computed
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Fig. 32. Monte Carlo simulations for the structure function S
v
(x) of a fractal velocity "eld with Hurst exponent H"1

3
using MWE Method with M"40 octaves, wavelet order q"4, and bandwidth b"5. The simulated structure functions
are plotted with#symbols, computed from averages over 10 (upper graph), 100 (middle graph), and 1000 (lower graph)
realizations. The structure function of the true fractal random "eld is plotted with a solid line (from [87]).
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structure function of the velocity "eld:

S
v
(x)"S(v(x#x@)!v(x@))2T

for x@"0, averaged over 10, 100, and 1000 independent realizations of H"1
3

fractal random "elds
v(x) generated by the MWE method. For all three sample sizes, including the one with only 10
realizations, this structure function obeys a power law with exponent 0.66, in very good agreement
with the correct value 2H"2

3
. Moreover, the scaling coe$cient SI

MWE
(x,x@) remains within 8% of

the correct constant value SI
v
over the entire 12 decades of scaling. Only 2500 active computational

elements are needed to generate each realization. The use of the Alpert}Rokhlin wavelets to
localize the computation is crucial to this e$ciency. With Haar wavelets, orders of magnitude more
wavelets would have to be retained for comparable accuracy [84]. Many more practical numerical
details about the MWE method may be found in [84].

The Fourier-Wavelet Method also enjoys great practical success. The plots in Fig. 33 depict the
velocity "eld structure function simulation results using the Fourier-Wavelet Method with M"40
octaves and bandwidth b"10. We observe quite good agreement with the fractal scaling law (390)
over nine decades. A log}log least-squares power law "t produces a scaling exponent 0.668 versus
a true value of 2

3
, while the "t of the scaling coe$cient is 0.635 versus a true value of SI

v
"0.639 in

this simulation. The statistics of the sample were shown in [82] to be highly Gaussian, in that the
#atness factor of the two-point velocity di!erence

F
FW

(x)"
S(v

FW
(x)!v

FW
(0))4T

S(v
FW

(x)!v
FW

(0))2T2

remains within 0.5 of the Gaussian value F(x)"3 over the nine decades of accurate scaling. The
deviations from Gaussianity are purely due to "nite sample size; the underlying simulation
formulas for the wavelet methods describe Gaussian random "elds.

Finally, we apply the Randomization Method to the simulation of a fractal random "eld with
a Hurst exponent H"1

3
(see Section 6.2.3 for an introduction to the Randomization Method). The

Randomization Method makes explicit reference to the energy spectrum, which for the present
fractal random "eld is formally

E(k)"A
E
DkD~5@3 .

For the formulas of the Randomization Method to be well de"ned, the total energy :=
0

E(k) dk must
be "nite, so we introduce a numerical cuto!:

E(k)"0 for DkD4k
.*/

.

We subdivide wavenumber space into M"256 compartments MI
j
N256
j/1

containing equal amounts
of energy:

P
Ij

E(k) dk"
1
MP

=

0

E(k) dk ,

and construct the simulated velocity "eld as a superposition of Fourier modes with one wavenum-
ber selected randomly from each of these M"256 bands. We are thereby able to obtain a random
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Fig. 33. Monte Carlo simulations for the structure function S
v
(x) of a fractal velocity "eld with Hurst exponent H"1

3
using the Fourier-Wavelet Method with M"40 octaves, bandwidth b"10 for 2000 realizations (from [82]). The upper
graph shows the simulated structure function as dots and the structure function of the true fractal random "eld as a solid
line. The lower plot shows the ratio of the simulated to the true structure function.

"eld with roughly 4 decades of accurate scaling behavior in the structure function when averaged
over 2000 independent realizations (Fig. 34). Unlike the wavelet methods, the simulation formula
for the Randomization Method does not describe a Gaussian random "eld, so one may well expect
signi"cant departures from Gaussianity in the simulated sample. As shown in [82], the #atness
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Fig. 34. Monte Carlo simulations for the structure function S
v
(x) of a fractal velocity "eld with Hurst exponent H"1

3
using the Randomization Method with M"256 compartments in the partition and 2000 realizations (from [82]). The
upper graph shows the simulated structure function as dots and the structure function of the true fractal random "eld as
a solid line. The lower graph shows the ratio of the simulated to the true structure function.
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factor computed from the above sample of 2000 "elds simulated by the Randomization Method,

F
R!/$

(x)"
S(v

R!/$
(x)!v

R!/$
(0))4T

S(v
R!/$

(x)!v
R!/$

(0))2T2
,

is within 0.5 of the Gaussian value 3 only for the upper three decades of its four decade scaling
regime. Over the lowest decade of scaling, the #atness factor becomes very large, and the simulated
"eld on these scales is strongly non-Gaussian. This sort of behavior was also observed for other
Randomization Method simulations with other choices of parameters; see [82] for further details
and discussion.

6.3.3.3. Simulations of relative tracer diwusion in fractal random steady shear yow. We have seen
above that the wavelet Monte Carlo methods and the Randomization Method are each capable of
generating random "elds with several decades of self-similar scaling behavior. Our particular
interest is to apply these methods to simulating tracer motion in velocity "elds with wide
inertial-ranges. Therefore, it is prudent to check directly that the tracer motion is simulated
accurately in an exactly solvable model. Even though we have veri"ed the quality of the simulated
velocity "elds in several ways, we attempt to understand subtle discrepancies which may have
strong cumulative e!ects on the simulation of tracer motion.

To this end, we introduce an extension of the Random Steady Shear (RSS) Model, which we used
as a benchmark problem for nonhierarchical Monte Carlo methods in Section 6.2. As in the RSS
Model, we take the velocity "eld as a two-dimensional steady random shear #ow with constant
cross sweep:

*(x, t)"*(x, y, t)"C
wN

v(x)D ,

where v(x) is a mean zero, homogenous, Gaussian random "eld with correlation function expressed
through its energy spectrum:

R(x)"Sv(x@#x)v(x@)T"P
=

~=

E(DkD)e2p*kxdk"2P
=

0

E(k)cos(2pkx) dk .

In the Fractal Random Steady Shear (FRSS) Model, we shall choose the steady shear #ow as
a fractal random "eld with formal energy spectrum

E(k)"A
E
DkD~1~2H ,

with Hurst exponent 0(H(1. As we mentioned above, there is some technical di$culty in this
de"nition because of the infrared divergence of the energy spectrum at k"0, but in any numerical
implementation there will be some e!ective cuto!s imposed at both large and small wavenumbers.
For practical purposes, then, it is only important that the statistical quantities we consider are
insensitive to such cuto!s when they are su$ciently remotely separated from the scales of interest.
The velocity structure function is one such statistical quantity, and the mean-square relative
displacement of a pair of tracers is another; see Section 3.5. The structure functions of the simulated
velocity "elds have been examined above, and we now turn to the problem of correctly simulating
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the mean-square relative displacement of a pair of tracers along the direction of the shear:

p2*Y(t),S(>(1)(t)!>(2)(t))2T .

We assume in the following that the cross sweep is nontrivial wN O0, and that there is no molecular
di!usion (i"0). By the same methods used in [141] and Section 3.2, one can compute an exact
formula for p2*Y(t) in the FRSS Model [84]:

p2*Y(t)"
SI
v

(1#H)(1#2H)DwN D2
(DwN tD2`2H#D*xD2`2H!1

2
D*x!wN tD2`2H!1

2
D*x#wN tD2`2H) ,

(391)

SI
v
"!2A

E
p1@2`2H

C(!H)
C(H#1

2
)

Here *x"X(2)(t)!X(1)(t)"X(2)(0)!X(1)(0), and we have assumed that >(2)(0)">(1)(0). In the
numerical studies, the Hurst exponent is chosen as the Kolmogorov value H"1

3
, and space and

time are nondimensionalized so that wN "1 and A
E
"1. The largest resolved scale (or lowest

wavenumber) in the velocity "eld is taken as 1 in these nondimensionalized units.
In [82,84], it is shown that the mean-square tracer displacement in an FRSS #ow simulated by

the MWE, Fourier-Wavelet, and Randomization Methods do all closely follow the exact relation
over several decades, provided that su$ciently many octaves are included, a su$ciently small
integration step size is taken, and a su$ciently large sample size is used in the average. We will
simply present a few illustrative results, and refer the reader to [82,84] for a much more thorough
exploration and for practical guidelines concerning choices of parameters. Because of the extra
expense of integrating particle trajectories, a smaller number of octaves are retained in the
simulated velocity "eld in these validation studies than in the above demonstrations of the capacity
of the wavelet methods to simulate velocity "elds with extraordinarily wide self-similar inertial
ranges (Figs. 32}34).

In Fig. 35, we show that the mean-square relative tracer displacement p2*Y(t) can be simulated by
the MWE Method [84] over "ve decades of length scales with error never exceeding 3.5%. These
results were obtained by averaging over 1000 realizations, with M"30 octaves in the simulated
velocity "eld and a specially chosen octave-dependent bandwidth yielding a total of 792 active
wavelets. The integration step size *t for the particle trajectory is set to a suitable value of one-"fth
of the initial separation x"100d of the tracers. The plot uses units rescaled by the parameter
d"2~25; note that the smallest length scale in the velocity "eld is 21~M"2~29"2~4d. It is
shown in [84] that the dominant contribution to the error comes from the "nite sample size.
Moreover, in contrast to the systematic errors generated by some of the nonhierarchical Monte
Carlo Methods in Section 6.2, the errors in MWE simulations typically #uctuate about zero.
Similarly solid results are found for the Fourier-Wavelet Method. With M"16 octaves and
bandwidth b"10, the mean-square relative tracer separation p2*Y(t) can be simulated with 6%
accuracy as it increases through a decade of scales [82]. The Randomization Method also gives
similar results [82]. Note, however, that as in the RSS Model, p2*Y(t) depends only on the second
order statistics of the velocity "eld and is thus insensitive to the fact that the Randomization
Method generates a velocity "eld with strong departures from Gaussianity over some length scales.
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Fig. 35. Monte Carlo simulations for tracer pair dispersion in FRSS Model with Hurst exponent H"1
3
using the MWE

Method with M"30 octaves, wavelet order q"4, a total of 792 wavelets, averaged over 1000 realizations (from [84]).
The upper graph compares the simulated relative mean-square tracer displacement p2*Y(t) (dotted line) with the exact
analytical value (solid line). The vertical axis is rescaled by a factor d"2~25, the initial tracer separation is x"100d, and
the integration time step h"0.2x. The lower plot displays the ratio of the simulated p2*Y(t) to its exact value.

6.3.3.4. Relative advantages of wavelet and randomization Monte Carlo methods. Our above dis-
cussion is a brief synopsis of the validation studies in [82,84] which demonstrate that the MWE,
Fourier-Wavelet, and Randomization Methods are each capable of generating ensembles of
steady random shear #ows with several decades of inertial-range scaling and su$cient accuracy
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for turbulent di!usion simulations. We will now brie#y mention some of the relative
merits in e$ciency and power of these three methods. A more complete discussion may be found
in [82].

Both wavelet methods generate fractal random "elds of comparable quality. As we discussed in
Section 6.3.2, the Fourier-Wavelet Method has some advantages in simplicity, speed, and #exibility
over the MWE Method, and we therefore consider it as the wavelet method of choice.
The Fourier-Wavelet Method generates random "elds which are much closer to Gaussian than
those generated by the Randomization Method. Therefore, if the statistical quantities of interest are
sensitive to the higher order statistics of the random "eld, then the Fourier-Wavelet Method is the
preferred method. If it is only required that the second-order structure function of the random "eld
exhibit several decades of self-similar scaling, then the decision in using the Fourier-Wavelet
method or Randomization Method comes down mostly to computational cost and di$culty which
we discuss brie#y next.

Being hierarchical and local in nature, the memory cost of the wavelet methods grows only
linearly with the number of simulated decades of the fractal random "eld. The cost of the
Randomization Method, on the other hand, is exponential in the number of scaling decades [82].
The wavelet methods, however, have a much higher overhead, and there is a crossover in the
relative computational e$ciency between the wavelet and Randomization Methods. The rule of
thumb enunciated in [82] is that if 4}5 or fewer decades of scaling behavior are needed in the
random "eld, the Randomization Method is more computationally e$cient (and simpler to
implement). If a wider scaling regime is desired, then the Fourier-Wavelet Method has superior
e$ciency. To avoid serious memory limitations, it is important that the random numbers in the
Fourier-Wavelet Method be generated on demand using a reversible random number generator, as
described in [84,85].

6.4. Multidimensional simulations

Thus far, we have been considering one-dimensional random "elds, appropriate for turbulent
di!usion in random, steady shear #ows. General turbulent velocity "elds will be multidimensional
vector "elds, so we need to extend the successful one-dimensional Monte Carlo methods to
multiple dimensions.

The Randomization Method has a straightforward multidimensional implementation. One need
only partition the multidimensional wavenumber space into compartments and de"ne probability
distributions for the wavenumber selected within each according to the same principle as that
described for the one-dimensional case in Section 6.2.3. A minor and easily handled complication is
that the amplitudes of the Fourier modes are now Gaussian random vectors rather than Gaussian
random scalars, and one must account for correlations between the various components of the
velocity "eld ([163], Section 1.4).

Developing a multidimensional version of the wavelet methods appears a bit more daunting.
While the abstract wavelet expansions behind both the MWE and Fourier-Wavelet Methods have
direct vector-valued analogues, one is faced with the task of choosing a vector-valued wavelet basis
which will e$ciently localize the computation. Fortunately, there is a simpler approach for the
special but important case in which the turbulent velocity "eld *(x) is Gaussian, incompressible,
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and statistically isotropic (see Section 4.2.2). Such a velocity "eld can be well approximated by an
appropriate "nite superposition of random shear waves rotated in various directions, and these
random shear waves are in turn built out of one-dimensional Gaussian homogenous random "elds
[85,208]. This Rotated Random Shear=ave Approximation therefore supplies a means of numer-
ically simulating a Gaussian, incompressible, statistically isotropic vector "eld using any of the
Monte Carlo methods for generating one-dimensional Gaussian homogenous random "elds
described in Sections 6.2 and 6.3.

Elliott and the "rst author [85] have utilized this idea to construct a numerical approximation
of a two-dimensional, Gaussian, isotropic, incompressible fractal random velocity "eld *(x)
out of one-dimensional random shear #ows generated by the wavelet methods. The
resulting multidimensional synthetic random velocity "eld inherits the wide scaling ranges gener-
ated by the one-dimensional wavelet methods, and 1000 realizations are su$cient to yield nearly
Gaussian and isotropic sample statistics. We will mention some explicit numerical validation
results from [82,85] in Section 6.4.2. We also brie#y discuss the application of the Rotated Random
Shear Wave Approximation to the one-dimensional Randomization Method, which in fact
produces two-dimensional random velocity "elds with statistical properties superior to those
generated by the direct multi-dimensional formulation of the Randomization Method indicated
above.

We note that incompressibility is not an essential constraint. An arbitrary, Gaussian, statistically
isotropic random vector "eld (which need not be incompressible) can be well approximated by
a superposition of one-dimensional random "elds through a more general random Radon plane
wave decomposition. The interested reader may "nd the necessary modi"cations to the Rotated
Random Shear Wave Approximation in [85].

6.4.1. Rotated random shear wave approximation
We shall now demonstrate how an incompressible, statistically isotropic, Gaussian random

velocity "eld can be well approximated by a superposition of Gaussian random shear #ows
pointing in various directions. Let the given incompressible, statistically isotropic, Gaussian
random velocity "eld *(x) have mean zero and correlation tensor R(x). It can be represented in
terms of the (scalar) energy spectrum E(k) in the following way (273):

S*(x#x@)?*(x@)T"R(x)"PRd

e2p*k ' x
2E(DkD)

(d!1)A
d~1

DkDd~1
P(k) dk . (392)

Here A
d~1

is the area of the unit sphere Sd~1 in Rd. The tensor P(k) is the projection operator onto
the plane perpendicular to k:

P(k)"I!(k?k/DkD2) ,

and enforces incompressibility of *(x).
Next we introduce some useful notation. The symbol eL

j
in what follows denotes a unit

vector in the jth coordinate direction. U-K 3SO(d) is de"ned as the unique rotation matrix
which maps eL

1
to the unit vector -K 3Sd~1, and leaves all vectors orthogonal to -K and eL

1
invariant.
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The Rotated Random Shear Wave Approximation is motivated by writing the Fourier integral
(392) as an iterated integral over the magnitude and direction of the wavevector k:

R(x)"
1

A
d~1
P
Sd~1

R
SW,-K

(x) d-K ,

R
SW,-K

(x)"P
=

0

cos(2pk-K ' x)
2E(k)
d!1

P(-K ) dk .
(393)

We now observe that R
SW,-K

(x) is the correlation tensor of a certain superposition of d!1 simple
random shear layers all varying along the direction -K and directed orthogonally to -K and one
another.

Speci"cally, let Mv
j
(x)Nd

j/2
be a collection of independent, homogenous, Gaussian random scalar

"elds with mean zero and common correlation function:

Sv
j
(x#x@)v

j
(x@)T"R

1
(x),P

=

~=

e2p*kx
E(DkD)
d!1

dk"P
=

0

cos(2pkx)
2E(DkD)
d!1

dk .

Next, we form the canonical shear wave velocity ,eld *
SW

(x) in Rd varying along the "rst coordinate
direction, with components built from these random "elds:

*
SW

(x)"
d
+
j/2

v
j
(x

1
)eL

j
. (394)

In d"2 dimensions, *
SW

(x) is just a standard shear layer. In d"3 dimensions, *
SW

(x) takes the form
of a random planar shear wave, in which the velocity "eld is directed within planes of constant
x
1

and is uniform within each of these shearing planes. The canonical random shear wave *
SW

(x) is
a Gaussian random vector "eld with mean zero and correlation tensor:

R
SW

(x),S*
SW

(x#x@)?*
SW

(x@)T"
d
+
j/2

R
1
(x

1
)eL

j
?eL

j
"R

1
(x

1
)(I!eL

1
?eL

1
)"R

1
(x

1
)P(eL

1
) .

Next, we de"ne *
SW,-K

as the random shear wave obtained by rotating the vector "eld *
SW

(x) (via U-K )
to the de"nite (deterministic) direction -L 3Sd~1:

*
SW,-K

(x),U-K *(Us-K x) .

This rotated velocity "eld is also a mean zero Gaussian random vector "eld, and its correlation
tensor is obtained by the following transformation:

S*
SW,-K

(x#x@)?*
SW,-K

(x@)T"U-K RSW
(Us-K x)Us-K

"R
1
(eL

1
'Us-K x)U-K P(eL

1
)Us-K "R

1
(-K ' x)P(-K )"R

SW,-K
(x) .

Thus,R
SW,-K

(x) is exactly the correlation tensor of a Gaussian random shear wave varying along the
direction -K .

Since the correlation tensor of the desired statistically isotropic vector "eld *(x) is expressed as an
average (393) of R

SW,-K
(x) over all directions -K , we are led to the following means of statistically

approximating *(x) in terms of random shear waves. First choose a set of M
$*3

deterministic
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directions -K (j)3Sd~1, j"1,2, M
$*3

at least approximately equally spaced around Sd~1. De"ne the
Rotated Random Shear =ave Approximation:

*
RRSW

(x)"
1

JM
$*3

M$*3

+
j/1

*
SW,-K (j)

(x) ,

where the M*
SW,-K (j)

(x)NM$*3
j/1

are random shear waves obtained from rotating M
$*3

statistically indepen-
dent realizations of the canonical random shear wave *

SW
(x) (394) to the directions M-K (j)NM$*3

j/1
.

The random velocity "eld described by this Rotated Random Shear Wave Approximation is
a Gaussian random vector "eld with mean zero and correlation tensor:

R
RRSW

(x),S*
RRSW

(x#x@)?*
RRSW

(x@)T"
1

M
$*3

M$*3

+
j/1

R
SW,-K (j)

(x) .

If the directions M-K (j)NM$*3
j/1

are chosen to be roughly equally spaced, then the simulated correlation
tensor R

RRSW
(x) is a "nite quadrature approximation to formula (393) for the correlation tensor for

the true, statistically isotropic, incompressible, Gaussian random velocity "eld *(x). Since a mean
zero Gaussian random "eld is determined entirely by its correlation tensor, the statistical accuracy
of the approximation of the velocity "eld *(x) by *

RRSW
(x) is entirely determined by the explicitly

computable error of this "nite quadrature approximation. In particular, by suitable choices of
directions M-K (j)NM$*3

j/1
, the velocity "eld *

RRSW
(x) obtained by superposition of random shear waves

can be made approximately statistically isotropic.

6.4.2. Numerical implementation of Rotated Random Shear Wave Approximation
The Rotated Random Shear Wave Approximation suggests an immediate way to simulate

numerically a given statistically isotropic, incompressible, Gaussian random vector "eld *(x) with
correlation tensor R(x). Namely, we can use one of the e$cient methods discussed in Section 6.3 to
generate the independent Gaussian random "elds Mv

j
(x)Nd

j/2
which comprise the canonical shear

wave *
SW

(x) (394). M
$*3

independent realizations of such a shear wave are then rotated to the
directions M-K (j)NM$*3

j/1
to give *

RRSW
(x), which will have mean zero and correlation tensor approxim-

ately equal to that of *(x).
The main issue in this multi-dimensional extension of the Monte Carlo Methods is the choice of

the set of directions M-K (j)NM$*3
j/1

. In d"2 dimensions, it is natural and practical to distribute them
with equiangular spacing about the unit circle. The task is a bit trickier in d"3 dimensions, since
there is no way to distribute more than 20 directions in an exactly equispaced fashion. In either
case, the deviation of the simulated "eld from statistical isotropy can be quanti"ed and bounded by
explicit quadrature formulas [85].

We will here give an explicit description of the method of generating an approximately
statistically isotropic, incompressible Gaussian velocity "eld using the Rotated Random Shear
Wave Approximation for the case of d"2 dimensions. In this case, the random shear waves
*
SW,-K

(x) are just random shear layers:

*
SW,-K

(x)"-K Mv(-K ' x) ,
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where

-K M"C
!-

2
-

1
D

is a vector perpendicular to -K . The approximate velocity "eld is then symbolically written [85]:

*
RRSL

(x)"
1

JM
$*3

M$*3

+
j/1

-K M(j)v
j
(-K (j) ' x) ,

where M
$*3

is the number of directions used, M-K (j)NM$*3
j/1

is a collection of unit vectors regularly spaced
around the unit circle S1, and Mv

j
NM$*3
j/1

is a collection of independent realizations of a random
homogenous scalar one-dimensional "eld with energy spectrum E(k) equal to that of the two-
dimensional velocity "eld *(x) being simulated. These random scalar "elds can be computed using
any simulation technique. It is shown in [85] that M

$*3
516 is needed for the simulated velocity

"eld to be approximately (within 8%) isotropic according to a natural energy criterion, regardless
of the method of simulation used for the random scalar "elds Mv

j
NM$*3
j/1

.
We now report the results obtained by using the Rotated Random Shear Wave Approximation

in conjunction with the Multi-Wavelet Expansion (MWE) Method to simulate a two-dimensional,
statistically isotropic, incompressible, fractal Gaussian random "eld with energy spectrum
E(k)"2k~5@3. (We by no means imply that this energy spectrum is appropriate for a high Reynolds
number two-dimensional #ow in nature.) We will apply this method in Section 6.5 in our numerical
study of pair dispersion in a velocity "eld with a wide inertial range.

The simulation of the scalar "elds includes M"52 octaves, and the bandwidth is chosen so that
only 10~8 of the energy is lost by the truncation [85,84]. The computation uses 46 592 active
elements. In Fig. 36, we plot the simulated velocity structure function:

S
v
(r)"SD*(x@#reL )!*(x@)D2T

averaged over 10, 100, and 1000 realizations, for eL directed midway between two of the M
$*3

"32
directions M-K (j)N used for the shear layers. The simulated structure function is found to match the
exact analytical formula

S
v
(r)"SI

v
r2@3,

SI
v
"!2C(!1/3)p7@6/C(5/6)

accurately over 12 decades of scales. Only one to two decades of approximate scaling behavior
have been achieved in previous simulations of fractal "elds in two dimensions by Viecelli and
Can"eld [335] using Successive Random Addition and the Fourier Method on a 256]256 grid,
and in three dimensions by Fung et al. [109] using a variant of Kraichnan's method [180] of
randomly directed sinusoidal shear waves with 84 computational elements.

Power law "ts to the structure function evaluated along "ve di!erent directions (including the
one plotted in Fig. 36) reveal excellent quantitative accuracy for the MWE-based simulation
method. With only 100 realizations, the error in the "tted exponent is never more than 1.1%, and
the error in the "tted prefactor SI

v
is never more than 6%. Moreover, relative measures of deviations

from Gaussianity and isotropy are only a few percent for a sample size of 1000. We refer to [85] for
the details of the stringent tests of the quality of the simulated velocity "eld.
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Fig. 36. Structure function of the two-dimensional velocity "eld with energy spectrum E(k)"1
2
k~5@3, simulated by the

MWE Method (M"52 octaves) with Rotated Random Shear Wave Approximation (M
$*3
"32 directions). The

structure function is evaluated along the radial direction h"p/32. The Monte Carlo statistics for (A) 10, (B) 100, and (C)
1000 realizations are plotted with diamond symbols (from [85]).

The Rotated Random Shear Wave Approximation also works successfully when the one-
dimensional scalar "elds are simulated by the Fourier-Wavelet Method or the Randomization
Method. Details may be found in [82]. We note only that the velocity "elds simulated using the
Randomization Method in conjunction with the Rotated Random Shear Wave Approximation are
smoother and have longer scaling regimes than those simulated by a straightforward generalization
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of the Randomization Method to two dimensions [142]. This points out once again that one must
pay heed to the relative variance of Monte Carlo Methods in practice, and not just their theoretical
accuracy in the asymptotic limit of in"nitely many realizations.

Another closely related way of simulating statistically isotropic random vector "elds by a super-
position of shear waves is to choose the directions M-K (j)NM$*3

j/1
randomly from a uniform distribution

over the sphere Sd~1 (see [208]). There would be two main disadvantages to this variation as
compared to a regularly spaced, deterministic choice of directions. First, the simulated velocity "eld
would be non-Gaussian. More importantly, the variance of the Monte Carlo Method would be
greater, and a larger number of realizations would be required to achieve a desired accuracy.

6.5. Simulation of pair dispersion in the inertial range

We close our section on Monte Carlo methods for turbulent di!usion with a numerical study of
the turbulent dispersion of a pair of tracers in a synthetic, statisticallyisotropic turbulent #ow with
a wide inertial range of scales. We have already analyzed this problem theoretically in two
simpli"ed contexts. In Section 3.5, we developed exact formulas for the pair distance function, the
PDF for the separation between a pair of tracers, in an anisotropic turbulent shear #ow (with no
molecular di!usion). We also derived (following Kraichnan [179]) an explicit PDE in Section 4.2.1
for the pair-distance function in a statistically isotropic velocity "eld with extremely rapid
decorrelations in time; see Eq. (268) and the ensuing discussion. No exact solutions, however,
appear available for pair dispersion in multi-dimensional turbulent #ows decorrelating at a "nite
rate. Such a problem is of signi"cant applied interest in engineering and atmosphere-ocean science,
since the relative di!usion of a pair of tracers is connected with the growth of the size of a cloud of
tracers released in a #uid.

6.5.1. Richardson's law
We concentrate, as in our previous treatments of pair dispersion, on the growth of the separation

distance l(t),DX(1)(t)!X(2)(t)D between a pair of tracers as it evolves through a wide inertial range
of scales. We will further specialize our attention to the mean-square tracer separation
p2*X(t)"Sl2(t)T rather than the full pair-distance function. As we mentioned in Section 4.2.1,
Richardson [284] empirically observed that the mean-square separation between balloons released
into the atmosphere grows according to a cubic power law: p2*X(t)&t3.

Obukhov [252,253] later showed that such a result could be theoretically deduced through an
inertial-range similarity hypothesis and dimensional analysis, and formulated it as the following
universal inertial-range prediction:

p2*X(t)+C
R
eN t3 for ¸

K
;(p2*X(t))1@2;¸

0
. (395)

Here eN is the energy dissipation rate, and C
R

represents the universal Richardson+s constant. The
statement (395) is generally referred to as Richardson's t3 law. There has been a large e!ort to
derive this law and predict its associated constant C

R
by turbulence closure theories

[178,192,200,241,322] and to empirically con"rm it and measure C
R

through actual experiments
[248,258,261,315] and numerical simulations [109,291,351]. We note that Richardson [284] also
formulated a considerably stronger statement (see [31]) that the relative di!usivity of a pair of

A.J. Majda, P.R. Kramer / Physics Reports 314 (1999) 237}574 551



tracers is proportional to the 4/3 power of their momentary (unaveraged) separation, and this has
been called Richardson's 4/3 law. In what follows, we will strictly discuss Richardson's t3 law.

6.5.2. Monte Carlo simulation of pair dispersion
Here we describe the "rst numerical experiments, performed by Elliott and the "rst author [86],

which exhibited Richardson's t3 law over many decades of pair separation. Synthetic, two-
dimensional incompressible, Gaussian random velocity "elds were generated through the Multi-
Wavelet Expansion (MWE) Method and the Rotated Random Shear Wave Approximation which
we described in Section 6.4.2. Recall that this method is capable of simulating approximate
statistically isotropic, incompressible, Gaussian random velocity "elds which support an accurately
self-similar inertial range:

SD*(x#r)!*(x)D2T"SI
v
r2H , (396)

extending over 12 decades of scales. The basic algorithm was validated for applications in turbulent
di!usion on an exactly solvable steady shear layer model (see Section 6.3.3), and on an exactly
solvable statistically isotropic model in which the velocity "eld is rapidly decorrelating in time (see
Section 4.2.2).

The simulated velocity "eld *(x) varies only in space, and is frozen in time. Pair dispersion
proceeds very di!erently in a frozen, random two-dimensional velocity "eld than in realistic,
temporally evolving turbulent #ows. To introduce temporal #uctuations in the numerical simula-
tion, we sweep the frozen velocity "eld past the laboratory frame by a constant velocity "eld w. This
corresponds exactly to Taylor's hypothesis ([320], p. 253) for relating experimental time-series
measurements to the spatial structure of the turbulence. The tracers are not transported by the
constant sweep in the numerical simulation, and we also ignore molecular di!usion i"0. The
equations of motion for the tracers are then

dX(j)(t)/dt"*(X(j)(t)!wt) ,

X(j)(t"0)"x(j)
0

. (397)

Note how the constant sweeping explicitly induces temporal #uctuations in the velocity "eld seen
by the tracers.

It is natural to associate the sweep velocity w with the magnitude of the velocity #uctuations at
the largest simulated scale ¸

u
of the inertial range:

w+S((*(x#¸
u
eL )!*(x)) ' eL )2T1@2 . (398)

The numerical length scale ¸
u
is roughly equivalent to the integral length scale ¸

0
in our theoretical

studies. As usual, eL denotes any unit vector. Using the inertial-range relation for the root-mean-
square longitudinal velocity di!erence appearing on the right-hand side of Eq. (398):

S((*(x#r)!*(x)) ' (r/DrD))2T"SI
v,,

DrD2H , (399)

we are led to set

w"JSI
v,,

¸H
u

.
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Fig. 37. Plot of the root-mean-square tracer pair separation p2*X(t) versus time (from [86]). Hurst exponent H"1
3
, initial

separation l
0
"10~14, averaged over 1024 realizations.

Statistical isotropy (in d"2 dimensions) implies that SI
v
"(2H#2)SI

v,,
. Quantities are next

nondimensionalized with respect to the length scale ¸
u

and the time scale ¸
u
/DwD. In these

nondimensionalized units, ¸
u
, w, and SI

v,,
are all equal to unity.

6.5.3. Pair separation statistics obtained from Monte Carlo simulation
Here we present the results of the Monte Carlo simulations [86] for the pair separation statistics

which utilize the algorithm described above with the Hurst exponent chosen as the Kolmogorov
value H"1

3
. The initial particle separation is chosen as l

0
"10~14, which is well within the

resolution capabilities of the Monte Carlo algorithm being used. The adaptive time step strategy is
described and validated in [86]. Averages are computed over 1024 realizations.

The graph of the root mean-square pair separation p2*X(t)"SD*XD2(t)T in Fig. 37 indicates
a power law behavior after about t"100 and persists for eight decades of pair separation. The
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Fig. 38. Plot of the logarithmic derivative of root-mean-square tracer pair separation, c"d ln p2*X(t)/d ln t versus time
(from [86]). Solid line indicates c"3 predicted by Richardson's t3 law. Hurst exponent H"1

3
, initial separation

l
0
"10~14, averaged over 1024 realizations.

graph of the logarithmic derivative of p2*X(t) versus time in Fig. 38 oscillates mildly with a mean
value 3, providing an independent and much more stringent con"rmation of Richardson's t3 law.

Finally, in Fig. 39, we graph the variation of A*(t)"p2*X(t)t~3, which is just the prefactor in the
Richardson's t3 law. Remarkably, as the reader can see by comparing Figs. 37 and 39, the prefactor
settles down over more than 7.5 decades of pair separation to the constant value 0.031$0.004.

We recall that one of the main computational devices in the Monte Carlo algorithm used above
is the approximation of an isotropic incompressible Gaussian random velocity "eld by a superposi-
tion of a large (M

$*3
"32) number of independent simple shear layers oriented in various directions

with equiangular spacing. If instead only a small number of independent shear layer directions are
utilized, then the simulated random "eld is anisotropic but with a similar energy spectrum as in the
isotropic case. Pair dispersion simulations using only M

$*3
"2 or 4 directions were conducted in
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Fig. 39. Plot of the scaling prefactor in the root-mean-square tracer pair separation, A*(t),p2*X(t)t~3 versus time (from
[86]). Hurst exponent H"1

3
, initial separation l

0
"10~14, averaged over 1024 realizations.

[83] to investigate the e!ects of anisotropy on Richardson's t3 law. It was found that Richardson's
t3 law remains valid over many decades of separation. Moreover, the prefactor A*(t) is approxim-
ately constant over the scaling regime and nearly universal. For both M

$*3
"2 and M

$*3
"4, with

various angles between the constant sweep w and the directions of the shear #ows comprising the
velocity "eld, the best "t constant values for the scaling coe$cient A*(t) fell within the range of
0.029}0.032, which includes the isotropic value 0.031 computed above. These results give strong
evidence that the Richardson constant C

R
in (395) is universal for Gaussian random "elds with

a wide self-similar inertial range, whether they are isotropic or anisotropic. The adjustment time to
achieve the scaling behavior can vary however with the degree of anisotropy.

Other statistics are measured in [86] which quantify the intermittency of the pair separation
process. In particular, the separation distance *X(t) is found to have a broader-than-Gaussian
distribution, and Richardson's t3 law is crudely obeyed by the mean-square particle separation
averaged over only two realizations.
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6.5.4. Relation to other work concerning Richardson's t3 law
In addition to providing a numerical demonstration of Richardson's t3 law over many decades of

scales, the results of the above Monte Carlo simulation pose some interesting challenges for various
theories which seek to predict the statistics of pair separation in the inertial range. We shall
separately discuss issues pertaining to the t3 scaling of the mean-square particle separation and the
computed value of the scaling preconstant.

6.5.4.1. Open problem: ¹heoretical explanations for Richardson's t3 law for velocity ,eld satisfying
¹aylor's hypothesis. The mean-square pair separation p2*X(t) has been demonstrated to obey
Richardson's t3 law in an extraordinarily clean way over eight decades of scales, and the underlying
numerical algorithm has been extensively validated for simulating turbulent di!usion [84,85]. It is
therefore most remarkable that no theory of which we are aware clearly predicts that Richardson's
t3 law should hold for the velocity "eld with the spatio-temporal dynamics used in the simulation!

Recall that the velocity "eld in the laboratory frame *
LAB

(x, t) is given by sweeping a frozen
random velocity "eld *(x, t), at a constant velocity w:

*
LAB

(x, t)"*(x!wt) .

The frozen "eld *(x) is Gaussian random, statistically isotropic, incompressible #ow with a wide
inertial range with the Kolmogorov value H"1

3
for the Hurst exponent. The tracers are advected

by *
LAB

(x, t); see Eq. (397). A key di!erence between the simulated "eld *
LAB

(x, t) and the usual
random velocity models assumed in turbulence theories is that the temporal decorrelation for
*
LAB

(x, t) is explicitly set through Taylor's hypothesis by a constant sweep velocity w (which is
naturally equated in magnitude with the large-scale velocity #uctuations in *(x)).

Physical scaling considerations [86] indicate that the sweep velocity w should be included along
with eN and t in the list of a priori relevant parameters describing the inertial-range dynamics of pair
separation in the simulation described above. Dimensional analysis is then insu$cient to predict
a unique inertial-range scaling behavior for p2*X(t). Obukhov's inertial-range similarity arguments
therefore do not even explain qualitatively Richardson's t3 law for a velocity "eld with spatial
statistics given by Kolmogorov theory and temporal statistics set by Taylor's hypothesis. We now
brie#y mention some other modern theories which suggest why Richardson's t3 law should be
observed in various contexts, and indicate why none of these, as they stand, provide a clear
explanation for the scaling behavior observed in the Monte Carlo numerical simulations.

Some researchers [21,258,351] have pointed out that a cubic growth of the mean-square
displacement could arise for reasons having nothing to do with inertial-range scaling. For example,
Babiano and coworkers [21,351] show that a cubic growth of the mean-square distance between
a pair of tracers will occur over ranges of scales in which the accelerations of the tracers are
independent of one another and statistically stationary. These considerations may well describe
reasons why Richardson's t3 law is observed in experimental situations and numerical simulations
(such as [108]) where Obukhov's similarity arguments do not apply or on scales extending outside
the inertial range of the velocity "eld.

The p2*X(t)&t3 scaling behavior in the Monte Carlo simulation reported in Section 6.5.3,
however, cannot be explained so simply. This is demonstrated by other similar numerical simula-
tions in [86] with di!erent values of the Hurst exponent H describing the inertial-range scaling of
the velocity "eld (396). It is found for H"0.2, 0.3, and 0.4 that the mean-square particle separation
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has power law scaling p2*X(t)&tc over several decades, with c+2/(1!H) within the small error
0.03. Therefore, the scaling behavior of the pair dispersion in the Monte Carlo simulations under
discussion is fundamentally related to the Hurst exponent H, and cannot be explained by the above
class of theories which does not take the scaling properties of the inertial range into account.

It is moreover interesting to note that the dependence of the scaling exponent c"2/(1!H) is in
accord with a variety of theories [178,192,351] which assume that the only relevant time scale
describing the pair separation dynamics at a scale ¸ in the inertial range is the eddy turnover time:

q
%
(¸)"

¸

*v
,
(¸)

+(SI
v,,

)~1@2¸1~H . (400)

Here *v
,
(¸)+JSI

v,,
¸H is the mean-square longitudinal velocity di!erence observed between

points separated by a distance ¸. As seen in Eq. (400), the eddy turnover time is simply a natural
advective time scale at scale ¸. Consequently, any analytical or phenomenological theory for
inertial-range pair dispersion (such as that described in [351]) which involves only length scales and
the mean-square (longitudinal) velocity di!erence across such scales is implicitly assuming that the
only relevant time scale is the eddy turnover time. For a #ow satisfying Taylor's hypothesis, there is
however another relevant time scale set by the time taken for the constant sweep to travel a distance ¸:

q
4
(¸)"¸/DwD .

When the sweep velocity is matched to the magnitude of the large-scale velocity #uctuations, as it is
in the Monte Carlo simulations described above, then the sweeping time scale q

4
(¸) is much shorter

than the eddy turnover time q
%
(¸) for all scales within the inertial range [86,319]. Therefore, the

sweeping time scale has an a priori importance in the dynamics of tracers in a #ow satisfying
Taylor's hypothesis. Formally, it appears that q

4
(¸) should be setting the Lagrangian correlation

time, which as we have discussed in Section 3, plays a crucial role in determining the statistical
dynamics of a tracer.

It is far from clear why pair separation in a #ow satisfying Taylor's hypothesis should obey the
scaling laws predicted by theories which ignore the presence of any large-scale sweeping mecha-
nism. Indeed, there is unambiguous mathematical evidence [14,208] that the nature of the
spatio-temporal energy spectrum can have a substantial in#uence on pair dispersion. Moreover, if
the Lagrangian History Direction Interaction Approximation (LHDIA) used by Kraichnan [178]
or the Eddy-Damped Quasi-Normal Markovian Approximation (EDQNM) used by Larcheve( que
and Lesieur [192] are crudely modi"ed to account for the sweeping by replacing the appearance of
the eddy turnover time q

%
(¸) by the sweeping time scale q

4
(¸), they will predict pair dispersion

behavior very di!erent from Richardson's t3 law for H"1
3

and its generalization p2*X(t)&t2@(1~H)
for general H. It would be most interesting to see whether and how these or other [200] turbulence
closure theories could properly take sweeping e!ects into account in a more sophisticated way, and
to obtain a clear understanding for why Richardson's t3 (or more general t2@(1~H)) law should still
be observed within the inertial-range of a velocity "eld with temporal decorrelations set by Taylor's
hypothesis. Some subtle consequences of sweeping have been explicitly and rigorously demon-
strated for random shear #ow models in [14,141], and were discussed in Section 3. The importance
of sweeping e!ects is not limited to #ows satisfying Taylor's hypothesis; tracer pairs in any
turbulent #ow are subjected to (nonconstant) sweeping by the large scales of the #ow [319,320].
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6.5.4.2. Theoretical overprediction of Richardson constant. Since the value of the Richardson
constant C

R
in his t3 law (395) has been the object of extensive experimental [248,261,315],

theoretical [124,178,192,200,241,299,322], and numerical [109,291] investigation in various con-
texts, we relate the results reported in Section 6.5.3 to those developed elsewhere. By comparing
Eq. (399) with the prefactor SI

v,,
"1 to the theoretical Kolmogorov relation for the longitudinal

velocity #uctuation:

S((*(x#r)!*(x)) ' (r/DrD))2T"CI
,
eN 2@3DrD2H,

with experimentally measured dimensionless constant CI
,
+2.0 (in three dimensions), we can

associate an e!ective value of eN"(CI
,
)~3@2+2.8 to the simulation. The Monte Carlo simulations

presented here therefore predict a Richardson constant of

C
R
"0.09$0.01

in the scaling law (395) for pair dispersion in a two-dimensional, incompressible, Gaussian,
random, isotropic velocity "eld which possesses an isotropic Kolmogorov spectrum and satis"es
Taylor's hypothesis.

This value agrees reasonably well with the one obtained by Tatarski [315], C
R
"0.06 in his

experiments. Ozmidov [261] has argued from his experimental data that the appropriate range for
C

R
is O(10~2). Sabelfeld [291] used the Randomization Method (Section 6.2.3) to study pair

dispersion over one decade of scales in a three-dimensional, statistically isotropic synthetic
turbulent #ow satisfying Taylor's hypothesis, and obtained the value C

R
"0.25$0.03. Fung et al.,

in an interesting paper [109], did not study pair dispersion in a #ow satisfying Taylor's hypothesis,
but instead built synthetic three-dimensional turbulent velocity "elds with Kolmogorov spatio-
temporal statistics as in Section 3.4.3. Inertial-range scaling (396) was satis"ed for less than one
decade (in contrast to the 12 decades in the methods [84}86] utilized above); nevertheless, the
Richardson's t3 law was observed for 1.5 decades of pair separation with a Richardson constant
C

R
"0.1. All of the empirical work just mentioned points to a small value of the Richardson

constant, C
R
, and the direct simulations spanning many decades of pair separation reported in [86]

and Section 6.5.3 con"rm a small value C
R
"0.09$0.01 for pair dispersion in a #ow which has

a wide inertial scaling range and satis"es the assumptions of Taylor's hypothesis.
On the other hand, turbulence closure theories produce values of C

R
that are a full order of

magnitude larger. With LHDIA, Kraichnan [178] predicted C
R
"2.42; with another Lagrangian-

history closure, Lundgren [200] predicted C
R
"3.06; an EDQNM procedure [192] leads to

C
R
"3.50; a stochastic, Markovian two-particle model [322] has C

R
"1.33; some quasi-Gaussian

approximations predicted C
R
"0.534 [241] and C

R
"2.49 [57]; and some Langevin equation

models [124,299] produced C
R
"0.667. What are the reasons for the wide discrepancies between

these closure theories and the results mentioned in the previous paragraph regarding the value of C
R
?

One source may be the way in which the closure theories treat the temporal dynamics of the
tracers [86]. Kraichnan [178] found that under a certain rapid decorrelation in time limit within
his LHDIA calculation, the pair separation would continue to obey Richardson's t3 law but with
a scaling constant 50 times larger. Another possibility for the depression of Richardson's constant
below theoretically predicted values is the #ow topology. The theories may not be taking into
account the slowing of the relative di!usion of a tracer pair as it passes through regions in which
vorticity dominates strain [109].
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6.5.4.3. General remarks on the role of Monte Carlo simulations. We have seen in the above
discussion an excellent instance of the valuable interaction between mathematics, reliable numer-
ical simulations, and physical theories. Mathematical considerations suggested the basis of an
e$cient and accurate Monte Carlo algorithm for simulating turbulent di!usion in #ows with
a wide inertial range, and exactly solvable mathematical model problems and other considerations
were used to validate and scrutinize the method (Section 6.3). This numerical algorithm was then
utilized to explore turbulent di!usion in more realistic #ows which are still described in a math-
ematically straightforward fashion (inertial-range scaling, Gaussian statistics, statistical isotropy),
but for which exact solutions are no longer available. The results from these Monte Carlo
simulations (Section 6.5.3) then pose new test problems for approximate physical theories for
turbulent di!usion. One advantage of numerical simulations with synthetic velocity "elds over
laboratory experiments in this regard is the fact that the turbulent environment is speci"ed in
a mathematically transparent fashion, so the challenge for physical theories can be posed with
a suitable degree of complexity. For example, the predictions of turbulent di!usion theories can be
"rst examined for accuracy without taking into account intermittency and other nonideal features
of a turbulent velocity "eld. Furthermore, as we discussed in Sections 4 and 5 above, Gaussian
velocity "elds can often induce similar non-Gaussian statistics in a passive scalar "eld at long times
as more complex non-Gaussian velocity "elds. For Richardson's t3 law, such expected behavior has
been con"rmed recently [42].

7. Approximate closure theories and exactly solvable models

We have demonstrated throughout this report how simple mathematical models can illustrate
various subtle physical mechanisms involved in turbulent di!usion. In Section 6, we also discussed
how simple models manifesting a complex variety of behavior can be used to assess the virtues and
shortcomings of numerical simulation methods, and how they can lead to and validate the design
of more powerful and e$cient algorithms. In this concluding section, we mention how the simple
mathematical models can be used in a similar spirit to test the robustness of various approximate
theoretical closure theories for turbulent di!usion. We will be intentionally brief because the reader
may "nd extensive discussions of these applications in the original work of Avellaneda and the "rst
author [13,17] and the recent review paper of Smith and Woodru! [300].

We discussed at the beginning of Section 3 the inherent di$culty of deriving e!ective large-scale
equations for the mean passive scalar density due to the active #uctuations of the velocity "eld
over a wide inertial range of scales. The rigorous homogenization theory described in Section 2
cannot be applied in general because there is usually no strong scale separation between the length
scales of the passive scalar and velocity "eld. Various schemes for deriving approximate large-scale
equations for the mean passive scalar density in the absence of scale separation have been proposed
proceeding from a diverse collection of frameworks and formal assumptions [48,49,57,175,177,182,
227,285,286,321,327,328,344].

However, the equations produced by di!erent theories are generally distinct, and it is usually
di$cult to determine whether the formal hypotheses are satis"ed on which the di!erent theories are
founded. Tests of the theoretical predictions against laboratory experiments and direct numerical
simulations are therefore crucial [133]. Experimental assessments however face certain limitations
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concerning both the extent to which the input parameters can be faithfully matched between the
theory and the laboratory setup, and the extent to which accurate and comprehensive data can be
collected in high Reynolds number #ows. Direct numerical simulations, on the other hand, are
constrained by hardware limitations to moderate Reynolds numbers [59,154], particularly if
nontrivial macroscale variations are present. Simpli"ed mathematical models therefore provide an
important complementary means of examining the accuracy and content of approximate closure
theories. We have seen how exact characterization of the passive scalar statistics may be achieved
in a variety of nontrivial mathematical models. These often allow precise characterization of
turbulent di!usion in important asymptotic limits as well as at "nite parameter values and over
"nite time intervals.

We particularly mention in this regard the Simple Shear Models described in Section 3 for which
exact equations describing the high Reynolds number behavior of the mean passive scalar density
have been derived using a rigorous renormalization procedure [10]. It is particularly instructive to
compare these exact equations with the predictions of approximate closure theories to gain some
insight into their strengths and shortcomings. Such a study was carried out by Avellaneda and the
"rst author [13] for closures based on the renormalization group theory (RNG) [300,344] and
renormalized perturbation theory (in particular, Kraichnan's Direct Interaction Approximation
[173}175,177,197,285] and the "rst-order smoothing (quasi-normal) approximation [48,49]). Each
of the approximate closure theories recovers the correct large-scale equations for a subset of the
phase diagram of scaling exponents (e, z) (see Section 3.4.3), but predicts incorrect equations in
other substantial regions [13].

In particular, the RNG theory is exact for those Simple Shear Models in which the correlation
time of the velocity "eld is much shorter than the dynamical time scale of the passive scalar "eld,
but fails otherwise [13,17,300]. The RNG theory always predicts a local e!ective di!usion equation
with some enhanced eddy di!usivity, but the rigorous results of the Simple Shear Model indicate
that this is inappropriate in a wide variety of situations [10]. The RNG theory also predicts
incorrect space}time rescalings for certain regimes. The renormalized perturbation theories, by
contrast, predict the correct scaling exponents (after an elaborate analysis) for all phase regimes in
the Simple Shear Model, but sometimes mistakenly suggest nonlocal evolution equations when the
exact equations are in fact local [13]. (Other examples of this latter phenomenon in simple
stochastic problems are presented in [328]). Both the RPT and RNG theories predict correct
large-scale equations in one phase region abutting the Kolmogorov values ((e, z)"(8/3, 2/3)), but
introduce discrepancies from the exact renormalized equation at this point and in the other
neighboring regime. Note that the Eulerian and Lagrangian versions [177] of the renormalized
perturbation theories are equivalent for the Simple Shear Model without a sweep as discussed in
[13] because the Eulerian and Lagrangian velocity correlations coincide. We see in this way how
simple mathematical models can yield both quantitative and qualitative insight into the strengths
and shortcomings of approximate closure strategies.

Recently, van den Eijnden and the current authors have investigated how various closure
theories, including a new `modi"ed direction interaction approximationa [328,329], fare under the
introduction of a temporally #uctuating cross sweep to a shear #ow (Section 3). This is the simplest
model problem with complex behavior where the Eulerian and Lagrangian correlations are
unequal. These results will be reported in a forthcoming paper [330]. Our hope, in the long run, is
to learn the strengths and weaknesses of various existing closure theories by applying them to the
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simpli"ed mathematical models described in this report, and thereby be instructed in the formula-
tion of new and improved closure approximations.
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