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Preface

One of the most influential works in Fluid Dynamics at the edge of the 19-
th century was a short paper [130] written by Henry Selby Hele-Shaw
(1854–1941). There Hele-Shaw first described his famous cell that became
a subject of deep investigation only more than 50 years later. A Hele-Shaw
cell is a device for investigating two-dimensional flow of a viscous fluid in
a narrow gap between two parallel plates. This cell is the simplest system
in which multi-dimensional convection is present. Probably the most impor-
tant characteristic of flows in such a cell is that when the Reynolds number
based on gap width is sufficiently small, the Navier-Stokes equations averaged
over the gap reduce to a linear relation similar to Darcy’s law and then to a
Laplace equation for pressure. Different driving mechanisms can be consid-
ered, such as surface tension or external forces (suction, injection). Through
the similarity in the governing equations, Hele-Shaw flows are particularly
useful for visualization of saturated flows in porous media, assuming they are
slow enough to be governed by Darcy’s low. Nowadays, the Hele-Shaw cell is
used as a powerful tool in several fields of natural sciences and engineering,
in particular, matter physics, material science, crystal growth and, of course,
fluid mechanics.

The next important step after Hele-Shaw’s work was made by Pelageya
Yakovlevna Polubarinova-Kochina (1899-1999) and Lev Aleksandro-
vich Galin (1912-1981) in 1945 [88], [199], [200], who developed a complex
variable method to deal with non-gravity Hele-Shaw flows neglecting sur-
face tension. The main idea was to apply the Riemann mapping from an
appropriate canonical domain (the unit disk in most situations) onto the
phase domain to parameterize the free boundary. The equation for this map,
named after its creators, allows to construct many explicit solutions and to
apply methods of conformal analysis and geometric function theory to inves-
tigate Hele-Shaw flows. In particular, solutions to this equation in the case
of advancing fluid give subordination chains of simply connected domains
which have been studied for a long time in the theory of univalent functions.
The Löwner-Kufarev equation [164], [175] plays a central role in this study
(Charles Loewner or Karel Löwner originally in Czech, 1893–1968; Pavel
Parfen’evich Kufarev, 1909–1968). The Polubarinova-Galin equation and
the Löwner-Kufarev one, having some evident geometric connections, are
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not closely related analytically. The Polubarinova-Galin equation is essen-
tially non-linear and the corresponding subordination chains are of rather
complicated nature.

Among other remarkable contributions we distinguish the discovery of the
viscous fingering phenomenon by Sir Geoffrey Ingram Taylor (1886–1975)
and Philip Geoffrey Saffman [224], [225], and the first modern description
of the complex variable approach and the study of the complex moments
made by Stanley Richardson [215]. Contributions made by scientists from
Great Britain (J. R. Ockendon, S. D. Howison, C. M. Elliott, S. Richardson,
J. R. King, L. J. Cummings) are to be emphasized. They have substantially
developed the complex variable approach and actually converted the Hele-
Shaw problem into a modern challenging branch of applied mathematics.

The last couple of decades the interest to Hele-Shaw flows has increased
considerably and such problems are now studied from different aspects all
over the world.

In the present monograph, we aim at giving a presentation of recent and
new ideas that arise from the problems of planar fluid dynamics and which are
interesting from the point of view of geometric function theory and potential
theory. In particular, we are concerned with geometric problems for Hele-
Shaw flows. We also view Hele-Shaw flows on modelling spaces (Teichmüller
spaces). Ultimately, we see the interaction between several branches of com-
plex and potential analysis, and planar fluid mechanics.

For most parts of this book we assume the background provided by grad-
uate courses in real and complex analysis, in particular, the theory of confor-
mal mappings and in fluid mechanics. We also try to make some historical
remarks concerning the persons that have contributed to the topic. We have
tried to keep the book as self-contained as possible.
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1. Introduction and background

1.1 Newtonian fluids

A fluid is a substance which continues to change shape as long as there is a
small shear stress (dependent on the velocity of deformation) present. If the
force F acts over an area A, then the ratio between the tangential component
of F and A gives a shear stress across the liquid. The liquid’s response to this
applied shear stress is to flow. In contrast, a solid body undergoes a definite
displacement or breaks completely when subjected to a shear stress. Viscous
stresses are linked to the velocity of deformation. In the simplest model,
this relation is just linear, and a fluid possessing this property is known as
a Newtonian fluid. The constant of the proportionality between the viscous
stress and the deformation velocity is known as the coefficient of viscosity
and it is an intrinsic property of a fluid.

Certain fluids undergo very little change in density despite the existence
of large pressures. Such a fluid is called incompressible (modelled by taking
the density to be constant). In fluid dynamics we speak of incompressible
flows, rather than incompressible fluids. A laminar flow, that is a flow in
which fluid particles move approximately in straight parallel lines without
macroscopic velocity fluctuations, satisfies Newton’s Viscosity Law (or is said
do be Newtonian) if the shear stress in the direction x of flow is proportional
to the change of velocity V in the orthogonal direction y as

σ :=
dF

dA
= µ

∂V

∂y
.

The coefficient of proportionality µ is called the coefficient of viscosity or
dynamic viscosity. Many common fluids such as water, all gases, petroleum
products are Newtonian. A non-Newtonian fluid is a fluid in which shear
stress is not simply proportional solely to the velocity gradient, perpendicular
to the plane of shear. Non-Newtonian fluids may not have a well-defined
viscosity. Pastes, slurries, high polymers are not Newtonian. Pressure has only
a small effect on viscosity and this effect is usually neglected. The kinematic
viscosity is defined as the quotient

ν =
µ

ρ
,
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where ρ stands for density of the fluid. All these considerations can be made
with dimensions and their units taken into account or else be made dimen-
sionless.

1.2 The Navier-Stokes equations

Important quantities that characterize the flow of a fluid are

• m – mass;
• p – pressure;
• V – velocity field;
• Θ – temperature;
• ρ – density;
• µ – viscosity.

Various approaches to the equations of the fluid motion can be summarized
in the so-called Reynolds’ Transport Theorem (Osborne Reynolds 1842–
1912). From a mathematical point of view this simply means a formula for the
derivative of an integral with respect to a parameter (e.g., time) in the case
that both integrand and the domain of integration depend on the parameter.

We always assume that a fluid system is composed of the same fluid
particles. Let us consider a fluid that occupies a control volume V (t) bounded
by a control surface S(t). Let N(t) be an extensive property of the system,
such as mass, momentum, or energy. Let x = (x1, x2, x3) be the spatial
variable and let t be time. We denote by η(x , t) the corresponding intensive
property which is equal to the extensive property per unit of mass, η =
dN/dm,

N(t) =

∫

V (t)

ηρ dv, dv = dx1dx2dx3.

Reynolds’ Transport Theorem states that the rate of change of N for a system
at time t is equal to the rate of change of N inside the control volume V plus
the rate of flux of N across the control surface S at time t:

(
dN

d t

)

sys

=

∫

V (t)

∂

∂ t
(ηρ) dv +

∮

S(t)

ηρV · n dS. (1.1)

Here V = (V1, V2, V3), and n is the unit normal vector in the outward direc-
tion. The Gauss theorem implies

(
dN

d t

)

sys

=

∫

V (t)

[ ∂
∂ t

(ηρ) + ∇ · (ηρV )
]
dv.

Let us introduce a derivative D
D t which is called the convective derivative, or

Eulerian derivative, and which is defined as
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D

D t
=

∂

∂t
+ V · ∇,

or in coordinates

D

D t
=

∂

∂t
+ V1

∂

∂x1
+ V2

∂

∂x2
+ V3

∂

∂x3
.

Then we have
(
dN

d t

)

sys

=

∫

V (t)

(
D(ηρ)

Dt
+ ηρ(∇ · V )

)
dv.

1.2.1 The continuity equation

If we take the mass as the extensive property, then N ≡ m, η ≡ 1 and
Reynolds’ Transport Theorem (1.1) becomes

(
dm

dt

)

sys

=

∫

V (t)

∂ ρ

∂ t
dv +

∮

S(t)

ρV · n dA.

The law of conservation of mass states that
(
dm
dt

)
sys

= 0. Therefore,

∫

V (t)

(
∂ ρ

∂ t
+ ∇ · (ρV )

)
dv = 0.

The latter equation is known as the continuity equation. Since this equation
holds for any control volume, we get

∂ρ

∂t
+ ∇ · (ρV ) = 0.

When ρ is constant, the fluid is said to be incompressible and the above
equation reduces to

∇ · V = 0. (1.2)

1.2.2 The Euler equation

Let us consider only incompressible fluids. Linear momentum of an element
of mass dm is a vector quantity defined as dP = V dm, or for the whole
control volume,

P =

∫

V (t)

ρV dv.

Applying Reynolds’ Transport Theorem we get
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(
dP

d t

)

sys

=

∫

V (t)

ρ
DV

Dt
dv =

∫

V (t)

DV

Dt
dm,

which infinitesimally is DV

Dt dm, i.e., just the product of the mass element and
acceleration.

Newton’s second law for an inertial reference frame states that the rate
of change of the momentum P equals the force exerted on the fluid in V (t):

dF =
DV

D t
dm =

(
∂

∂t
V + (V · ∇)V

)
dm, (1.3)

where F is the vector resultant of forces. Suppose for a moment that there are
no shear stresses (inviscid fluid). If the surface forces F s on a fluid element are
due to pressure p and the body forces are due to gravity in the x3-direction,
then we have dF = dF s + dF b, or

dF = −(∇p) dv − g(∇x3)(ρ dv), (1.4)

where F b is the gravity force per unit of mass and g is the gravity constant.
Substituting (1.4) into (1.3) we obtain

−1

ρ
∇p− g∇x3 =

∂V

∂t
+ (V · ∇)V ,

or

−∇p− ρg∇x3 = ρ
DV

D t
. (1.5)

The equation (1.5) is known as the Euler equation.
In terms of control volume we have

(
d

dt

)

sys

∫

V (t)

ρV dv = −
∫

V (t)

(∇p+ ρg∇x3)dv,

or (
d

dt

)

sys

∫

V (t)

ρV dv =

∮

S(t)

σ · n dA−
∫

V (t)

ρg∇x3dv, (1.6)

where σ = (σij)
3
i,j=1, σjj = −p, σij = 0, i 6= j, is the stress tensor. In general,

the stress tensor (σij)
3
i,j=1 is defined by the relationship dFi =

∑3
j=1 σijnj dA

between the surface force dF on an infinitesimal area element dA and the
normal vector n of it (F = (F1, F2, F3), n = (n1, n2, n3)).

1.2.3 The Navier-Stokes equation

The first term in the right-hand side of the Euler equation (1.6) is due to
the surface forces and the second one is due to the body forces (or forces
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per unit mass in (1.5)). Let us consider the shear and normal stresses σij in
a mass element dm = ρ dv = ρ dx1dx2dx3 that occupies a volume bounded
by a parallelepiped such that its principal diagonal joins the points x =
(x1, x2, x3) and x + dx = (x1 + dx1, x2 + dx2, x3 + dx3). We call the xi-
surface, that surface with one of the vertices at the point x and with the
normal vector parallel to the xi axis. The surface parallel to the xi-surface is
the one with a vertex at x + dx . We denote by σjj the normal stress on the
xj-surface in the outward direction. The normal stress on the parallel surface

is σjj+
∂ σjj

∂ xj
dxj . By σij , i 6= j, we denote the shear stress on the xi-surface in

the direction xj and similarly for the parallel surface. The shear and normal
stresses are given by a stress-velocity relation which is more general than
Newton’s law and which is known as Stokes’ viscosity law for incompressible
fluids. It states that the stress tensor (σij)

3
i,j=1 is given by

σii = −p+ 2µ
∂Vi
∂xi

, σij = µ

(
∂Vi
∂xj

+
∂Vj
∂xi

)
, i 6= j,

where µ is the viscosity coefficient. The Navier-Stokes equation is just a gener-
alization of the Euler equation when allowing both normal and shear stresses
for surface forces. Replacing the stress tensor in (1.6) by the above expres-
sion we obtain the Navier-Stokes equation. The Gauss theorem leads to a
point-wise equation in vector form for a Newtonian incompressible fluid with
constant viscosity

DV

D t
= F b +

1

ρ
(−∇p+ µ∆V ). (1.7)

If body forces negligible, then we can put F b = 0. The equations (1.2) and
(1.7) are called the Navier-Stokes equations for incompressible fluids.

1.2.4 Dynamical similarity and the Reynolds number

Letting L be a representative scale (that can be thought of as the distance
between enclosing boundaries), U be a representative velocity (that can be
thought of as the steady speed of a rigid boundary), we change variables

x → Lx , V → UV , t→ L

U
t.

Let us choose a scaling for the pressure as

p→ ρU2p.

Substituting these new values into the Navier-Stokes equation (with F b = 0)
we have

DV

D t
= −∇p+

1

R
∆V , (1.8)
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where R = ρUL/µ is the Reynolds number. This equation is just the Navier-
Stokes equation in dimensionless variables. Taking into account units

ρ =
kg

m3
, U =

m

s
, L = m, µ =

kg

ms
,

we reach the conclusion that the Reynolds number is a non-dimensional num-
ber.

Nondimensionalization, being a seemingly superficial step, becomes im-
portant when considering different flows with the same Reynolds number.
A three-parameter family of solutions for a specific flow is equivalent to a
just one-parameter family for some modelling flow. Two flows with the same
Reynolds number and the same geometry are called dynamically similar.

There are two different types of real fluid flow: laminar and turbulent.
A well-ordered flow, free of macroscopic velocity fluctuations, is said to be
laminar. Fluid layers are assumed to slide over one another without fluid
being exchanged between the layers. In turbulent flow, secondary random
motions are superimposed on the principal flow and there is an exchange
of fluid from one adjacent segment to another. More important, there is an
exchange of momentum such that slowly moving fluid particles speed up and
fast moving particles give up their momentum to the slower moving particles
and slow down themselves.

In an experiment in 1883, Reynolds demonstrated that, under certain
circumstances, the flow in a tube changes from laminar to turbulent over a
given region of the tube. He used a large water tank that had a long tube
outlet with a tap at the end of the tube to control the flow speed. The tube
went smoothly into the tank. A thin filament of coloured fluid was injected
into the flow at the mouth as is shown in Figure 1.1. When the speed of

water

dye

Fig. 1.1. Reynolds’ experiment

the water flowing through the tube was low, the filament of colored fluid
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maintained its identity for the entire length of the tube. However, when the
flow speed was high, the filament broke up into the turbulent flow that existed
throughout the cross section. Thus, laminar flow occurs when the Reynolds
number R is not too large. When R is sufficiently large, then turbulence
comes into consideration. It is observed empirically that the flow becomes
turbulent whenever the Reynolds number exceeds a certain value R

∗ which
is critical. The Landau theory of the transition from steady laminar flow to
turbulence suggests another limiting critical number R

∗∗ > R
∗. Passing R

∗

the flow becomes unstable and bifurcations occur until it arrives at turbulence
passing R

∗∗. For the water flow R
∗ = 2, 300 and R

∗∗ = 40, 000 in Reynolds’
experiment.

1.2.5 Vorticity, two-dimensional flows

When the Reynolds number is rather large, the distribution of vorticity proves
to be an important entity to be taken into account. Let us consider two-
dimensional flow with the velocity field V = (V1, V2, 0), subject to the restric-
tion of incompressibility ∇·V = 0, from which it follows that V1dx2 −V2dx1

is (locally) an exact differential dψ. Then V1 = ∂ψ/∂x2 and V2 = −∂ψ/∂x1

or V = ∇× (ψ∇x3). If γ is a curve in the (x1, x2)-plane with the rightward
normal vector n = (n1, n2, 0), then

∫

γ

dψ =

∫

γ

V1dx2 − V2dx1 =

∫

γ

V · n ds.

Hence the flux of volume across any curve joining two points is equal to
the difference between the values of ψ at these points, the function ψ is
constant along a streamline, and it is called the stream function. The curl
∇×V = ω is called the vorticity of the fluid. In terms of the stream function,
ω = −∇x3∆ψ. Taking the curl of Navier-Stokes equation (1.8) the term ∇p
disappears and one gets an equation in ω alone

Dω

Dt
=

1

R
∆ω,

or for the stream function

D∆ψ

D t
=

1

R
∆(∆ψ). (1.9)

Equation (1.9) has several benefits. For example, it is a scalar equation rather
than a vector one.

As we have remarked, the flow is laminar until the Reynolds number
reaches its first critical value, or it can be thought of as a “slow” flow. When
the Reynolds number passes its second critical value the flow becomes turbu-
lent and it can be either steady or unsteady. Even though it may be generated
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by a globally steady process, such as a steady volume flow through a pipe,
turbulent flow is never a locally steady flow. We can see that V can be
considered to be the sum of a time-averaged value Ṽ and a time variable in-
crement V ′ that is usually significantly smaller than the time-averaged value:
V = Ṽ + V ′,

Ṽ =
1

T

t+T∫

t

V (x , τ)dτ.

Note that the time-averaged value of V ′ is automatically zero. The random
component V ′ of the velocity has some of the characteristics of random
noise signals, such as electrical noise in electronic circuits. Obviously, there
are small amplitude, high frequency, random motion involved in turbulent
flow, the details of which are very difficult to calculate or to predict.

Adding the so called Reynolds turbulent stress into the Navier-Stokes
equation gives the equation of turbulent flow

DV

D t
= −∇p+

1

R
∆V − V ′ · ∇V ′,

where V ′ · ∇V ′ means the vector with k-th coordinate V ′ · ∇V ′
k, k = 1, 2, 3.

10 20 30 40

10

20

30

40

Fig. 1.2. Kolmogorov’s flow

An external force F ext added to equation (1.8) or (1.9) in different forms
can generate interesting flows. For example, Andrei Nikolaevich Kol-
mogorov (1903–1987) presented in 1959 a seminar in which he suggested
a toy problem with which theorists might explore the transition to fluid tur-
bulence in two dimensions. The flow is conceptually simple, and exhibits
several shear instabilities before becoming fully turbulent. This flow is gov-
erned by the incompressible Navier-Stokes equation (1.8) in two dimensions
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with a forcing term that is periodic in one spatial direction and steady in
time: F ext = F0 sin(2πx2)∇x1. Periodic boundary conditions are assumed in
both directions of the a rectangular box [0, 1]× [0, 1]. Equation (1.9) with the
term corresponding to Fext added becomes

D∆ψ

D t
=

1

R
∆(∆ψ) + F0

8π3

R
cos(2πx2).

The stationary solution is just ψst = − 1
2π cos(2πx2). For small values of

the forcing parameter F0 the fluid develops a steady state spatial profile
corresponding to the spatial profile of the forcing. This flow has been named
the Kolmogorov flow. Above a critical value of the forcing parameter F0, the
flow becomes unstable to small velocity perturbations perpendicular to the
direction of forcing. The resulting flow is a steady cellular pattern of vorticies.
More generally, the external force can be chosen to be

F = F0

(
sin(2πnx1) cos(2πmx2)

− cos(2πnx1) sin(2πmx2)

)

For a weak forcing, i.e., for a small value of F0, the 2n×2n array of counterro-
tating vortices (for the case n = m see Figure 1.2) is the only time-asymptotic
state.

1.3 Riemann map and Carathéodory kernel convergence

In this section we present some background on conformal maps, in partic-
ular, two basic instruments that we will use throughout this monograph:
the Riemann mapping theorem and the Carathéodory kernel convergence. A
map of one domain (or surface) onto another is said to be conformal if it
preserves angles between curves. The unit sphere S2 without its north pole
admits stereographic projection onto the complex plane C which is conformal.
Adding the north pole we obtain a compactification of S2, and consequently,
a compactification C of C which is called the Riemann sphere or the extended
complex plane. Any analytic map from C to C is conformal at a point where
the derivative is non-zero. Let D be a domain in C. A map f is called univa-
lent in D if it is injective (one-to-one) in D. A meromorphic function f(ζ) is
univalent in D if and only if it is analytic in D except for at most one pole
and f(ζ1) 6= f(ζ2) whenever ζ1 6= ζ2 in D. Univalence in D implies univalence
in every subdomain in D. A univalent map is a conformal homeomorphism.
The starting point of many considerations in this monograph is the Riemann
Mapping Theorem (Georg Friedrich Bernhard Riemann, 1826–1866).
Riemann had formulated his mapping theorem already in 1851, but his proof
was incomplete. Carathéodory and Koebe (Paul Koebe, 1882–1945) proved
the mapping theorem around 1909.
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Theorem 1.3.1. Let Ω be a simply connected domain in C whose boundary
contains at least two points and let a ∈ Ω, |a| < ∞. Then there exists a real
number R and a unique conformal univalent map ζ = f(z) that maps Ω onto
UR = {ζ : |ζ| < R} and satisfies f(a) = 0, f ′(a) = 1.

Remark. Generally, a domain whose universal covering is conformally equiva-
lent to the unit disk is called hyperbolic. So the domain in the above theorem
is hyperbolic

If f : Ω → UR is the map in Theorem 1.3.1 (or the Riemann map), then
the number R = R(Ω, a) is called the conformal radius of the domain Ω with
respect to the point a.

In the case a = ∞ it is more natural to let f map Ω onto the exterior
of a disk |ζ| > R. Then R = R(Ω,∞) is uniquely determined by taking the
expansion at infinity as f(z) = z + a0 + a1/z + . . . .

One of the principal tools to study evolution of domains is the Carathéodory
kernel convergence. Constantin Carathéodory (1873–1950) gave in 1912
[36] a complete characterization of convergence of univalent maps in terms
of convergence of the images of a canonical domain under these maps. Its
formulation is found also in [8], [65], [206].

Let {Ωn}∞n=1 be a sequence of domains in the Riemann sphere C such
that a fixed point z0 belongs to all Ωn excluding possibly a finite number of
them. A domain Ω is said to be the kernel of {Ωn}∞n=1,

Ω = Ker z=z0{Ωn},

if Ω satisfies the following three conditions:

• z0 ∈ Ω;
• any compact set of Ω belongs to all Ωn starting with certain number N ;
• any domain Ω̃ satisfying the preceding conditions is a subset of Ω.

If the point z0 belongs to all Ωn, starting with certain number N(z0), but
there is no neighbourhood of z0 that is contained in all Ωn for n > N , then
Ker z=z0{Ωn} = z0 and the kernel degenerates. For the kernel with respect
to the origin we write simply Ω = Ker {Ωn}.

A sequence {Ωn}∞n=1 is said to converge to the kernel Ω with respect to z0
if every subsequence {Ωnk

}∞k=1 has Ω as its kernel. This type of convergence
is called kernel convergence. If Ωn is decreasing and Ω0 be the set of interior
points of Ω =

⋂∞
n=1Ωn, 0 ∈ Ω, then Ωn converges to the component of Ω0

that contains 0 if 0 ∈ Ω0, or to {0} if 0 6∈ Ω0.

Theorem 1.3.2. (Carathéodory kernel theorem) Let the functions fn(ζ) be
analytic and univalent in U ≡ U1, fn(0) = 0, f ′n(0) > 0, and let Ωn = fn(U).
Then the sequence fn converges locally uniformly in U if and only if Ωn
converges to its kernel Ω, Ω 6= C, with respect to the origin. If KerΩn 6= {0},
then the limiting function is a univalent map of U onto Ω. If KerΩn = {0},
then limn→∞ fn(z) ≡ 0.
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The kernel convergence can be generalized to continuous intervals as fol-
lows. Let {Ω(t)}, t ∈ [a, b] be a one-parameter family of domains in the
Riemann sphere C such that a fixed point z0 belongs to all Ω(t). Consider
first the case t0 ∈ [a, b], and let there be a neighbourhood of z0 that belongs
to all Ω(t), t 6= t0. A domain Ω is said to be the kernel of {Ω(t)} with respect
to z0, if Ω satisfies the following three conditions:

• z0 ∈ Ω;
• for any compact set D of Ω there is a small positive number ε, such that
D ⊂ Ω(t) for all 0 < |t− t0| < ε;

• any domain satisfying the preceding conditions is a subset of Ω.

If there is no such neighbourhood, then we say that the kernel degenerates
and Ker z=z0{Ω(t)} = {z0}.

A generalized Carathéodory kernel theorem states that if the functions
f(ζ, t) are analytic and univalent in U , f(0, t) = 0, f ′(0, t) > 0, Ω(t) =
f(U, t), then the family f(ζ, t) converges locally uniformly in U if and only if
Ω(t) converges to its kernel Ω, Ω 6= C, as t → t0 with respect to the origin.
If KerΩ(t) 6= {0}, then the limiting function is a univalent map of U onto
Ω. If KerΩ(t) = {0}, then limt→t0 f(z, t) ≡ 0.

1.4 Hele-Shaw flows

First, let us give some historical remarks. Around 1770 Charles Augustin
Coulomb (1736–1806) studied the motion of a disk suspended by a torsion
wire to oscillate in a vessel of liquid. He observed that the resistance of the
liquid under a slow motion is proportional to the velocity. Later Beaufoy [14]
in 1834 and William Froude (1810–1879) found that at higher velocities
the resistance varied as the square of the velocity. Colonel Mark Beaufoy
(1764–1827) (who founded the Society for the Improvement of Naval Archi-
tecture in 1791) described in [14] his Nautical Experiments on the resistance
to propulsion through water of variously shaped solids, carried out in Green-
land Dock, Rotherhithe, in 1793-1798, under the direction of the Society for
the Improvement of Naval Architecture. Reynolds, about 1883, investigated
the critical velocity at which the change of state occurred and a liquid flowed
quite steadily until a certain velocity was reached.

Henry Selby Hele-Shaw (1854–1941), an English mechanical and naval
engineer, was working during the period 1885–1904 at the Engineering De-
partment of the University of Liverpool. He was a fellow of The Royal Society
(see his biography in [123]). In 1898 he published in Nature [130], see also
[131], a short note where he started to study the following situation. For a
liquid flow in a tube or in a channel with wetted sides, the velocity reaches
its maximum in the middle and vanishes at the sides. Thus, the transition
from laminar flow to turbulent can be observed somewhere between. To make
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the separation interface visible Hele-Shaw proposed to inject a gas (an invis-
cid fluid) into the system. This injection can be interpreted a suction of the
original viscous fluid. To avoid gravity effect he suggested to consider a flow
between two parallel horizontal plates with a narrow gap between them.

Later a model with slightly different geometry appeared in [88], [199],
[200], [215], see Figure 1.3. In this model the viscous fluid occupies a
bounded phase domain with free boundary and more fluid is injected or
removed through a point well. The free boundary starts moving due to in-
jection/suction. Similar problems appear in metallurgy in the description of
the motion of phase boundaries by capillarity and diffusion [186]; in the dis-
solution of an anode under electrolysis [85]; in the melting of a solid in a
one-phase Stefan problem with zero specific heat [49], etc.

injection/suction of fluid

Fig. 1.3. A Hele-Shaw cell

This book will expose some of the developments in two-dimensional Hele-
Shaw theory that have taken place the last few decades. Several other models,
methods, and applications exceed the scope of our work. Therefore, we men-
tion here some free boundary problems originating from: the treatment of the
rectangular dam by Polubarinova-Kochina [201] who gave solutions in terms
of the Riemann P -function [50], [143]; mathematical treatment of rotating
Hele-Shaw cells [46], [77]; some nice analytical and numerical results found in
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[38], [39], [40], [190]; a study of Hele-Shaw flows on hyperbolic surfaces [128]
[129]; applications to electromagnetic problems [52], [85]; models of diffusion-
limited aggregation [37], [263], [264]; Hele-Shaw flows with multiply connected
phase domains [217]; development of singularities in non-smooth free bound-
ary problems [134], [155], [156]; connections between Stokes and Hele-Shaw
flows [51] (a large collection of references on Hele-Shaw and Stokes flows is
found in [93]), two phase Muskat problem [1], [142], [240]; some applications
of quasiconformal maps are found in [29], [181]. Recently, it was shown [3],
that the semiclassical dynamics of an electronic droplet confined in the plane
in a quantizing inhomogeneous magnetic field in the regime when the elec-
trostatic interaction is negligible is similar to the Hele-Shaw problem in the
plane. Further development of these ideas and applications to the complex
moments are found in [162], [180], [262].

1.4.1 The Stokes-Leibenzon model

(Leonid Samuilovich Leibenzon, 1879-1951, see [174]). We consider a
slow parallel flow of an incompressible fluid between two parallel flat plates
which are fixed at a small distance h. The reference velocity V is generated
by some external pumping mechanism. A vertical section is given in Figure
1.4. We agree that the flow attains its maximal velocity at the middle of the
cell and the velocity vanishes at the sides. We follow Lamb’s method [169] of

x3

x10

h

Fig. 1.4. The section of a Hele-Shaw cell in the x1-direction

deriving the Hele-Shaw equation starting from the Navier-Stokes equations
(1.2), (1.7), which neglecting gravity become
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∂V

∂t
+ (V · ∇)V =

1

ρ
(−∇p+ µ∆V ), ∇ · V = 0. (1.10)

We assume that the injection of fluid is slow enough for the flow to be
approximately steady and parallel. This means that

∂V

∂t
= 0, V3 = 0.

These assumptions reduce (1.10) to

(
V1

∂
∂x1

+ V2
∂
∂x2

)
V1 = − 1

ρ
∂p
∂x1

+ µ
ρ∆V1,(

V1
∂
∂x1

+ V2
∂
∂x2

)
V2 = − 1

ρ
∂p
∂x2

+ µ
ρ∆V2,

0 = − 1
ρ
∂p
∂x3

,

with boundary conditions

V1

∣∣∣∣
x3=0,h

= V2

∣∣∣∣
x3=0,h

= 0.

If h is sufficiently small and the flow is slow, then we can assume that the
derivatives of V1 and V2 with respect to x1 and x2 are negligible compared
to the derivatives with respect to x3. Therefore, we can simplify the system
by putting

∂V1

∂xj
=
∂V2

∂xj
=
∂2V1

∂x2
j

=
∂2V2

∂x2
j

= 0, j = 1, 2,

which gives the system
∂p

∂x1
= µ

∂2V1

∂x2
3

,

∂p

∂x2
= µ

∂V2

∂x2
3

,

0 =
∂p

∂x3
.

The last equation in the system shows that p does not depend on x3, whence
V1, V2 are polynomials of degree at most two as functions of x3. The boundary
conditions then imply

V1 =
1

2

∂p

∂x1

(
x2

3

µ
− hx3

µ

)
, V2 =

1

2

∂p

∂x2

(
x2

3

µ
− hx3

µ

)
.

The integral means Ṽ1 and Ṽ2 of V1 and V2 across the gap are

Ṽ1 =
1

h

h∫

0

V1 dx3 = − h2

12µ

∂p

∂x1
, Ṽ2 =

1

h

h∫

0

V2 dx3 = − h2

12µ

∂p

∂x2
,
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so the integral mean Ṽ of V satisfies

Ṽ = − h2

12µ
∇p. (1.11)

Here Ṽ and p depend only on x1 and x2, so we may consider (1.11) as
a purely two-dimensional equation. Thus equation (1.11) describes a two-
dimensional potential flow for which the potential function is proportional to
the pressure. By incompressibility (1.2) the pressure is a harmonic function.
Equation (1.11) is called the Hele-Shaw equation. It is of the same form as
Darcy’s law, which governs flows in porous media.

In the sequel we write just V instead of Ṽ . The Stokes-Leibenzon model
suggests a point sink/source (x0

1, x
0
2) of constant strength within the system.

The rate of area (or mass) change is given as
∫

∂Uε

ρV · n ds = const,

where Uε = {(x, y) : (x1 − x0
1)

2 + (x2 − x0
2)

2 < ε2} for ε sufficiently small.
Equality (1.11) and Green’s theorem imply

∫∫

Uε

(−h
2ρ

12µ
)∆p dx1dx2 = const,

for any ε. So ∆p = Qδ(x0
1,x

0
2)

for some constant Q, where δ(x0
1,x

0
2)

is Dirac’s
distribution, and the potential function p has a logarithmic singularity at
(x0

1, x
0
2).

On the fluid boundary the balance of forces in the three dimensional view
gives that

p = exterior air pressure + surface tension.

The air pressure can be taken to be constant while the surface tension is
roughly proportional to the curvature of the boundary. If the gap h is suffi-
ciently small, then the curvature in the x1, x2 plane is negligible compared to
the curvature in the x3 direction. Due to capillary forces the boundary profile
in the x3 direction will be somewhat similar to the graph in Figure 1.4 which
is more or less the same everywhere. Hence, the surface tension effect to p is
more or less constant (at least with respect to x1, x2). Finally, rescaling p we
can take p = 0 on the boundary.

1.4.2 The Polubarinova-Galin equation

Now we pass from the local situation described in the preceding subsection
to the global configuration. Galin [88] and Polubarinova-Kochina [199], [200]
first proposed a complex variable method by introducing the Riemann map-
ping from an auxiliary parametric plane (ζ) onto the phase domain in the
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(z)-plane and derived an equation for this parametric mapping. So the re-
sulting equation is known as the Polubarinova-Galin equation (see e.g. [141],
[135]) (see a survey on the Polubarinova-Kochina contribution and its influ-
ence in natural sciences and industry in [195]).

We denote by Ω(t) the bounded simply connected domain in the phase
z-plane occupied by the fluid at instant t, and we consider suction/injection
through a single well placed at the origin as a driving mechanism (Figure
1.5). We assume the sink/source to be of constant strength Q which is pos-

0

y

x

Ω(t)

Γ (t)

Fig. 1.5. Ω(t) is a bounded simply connected phase domain with the boundary
Γ (t) and the sink/source at the origin

itive (Q > 0) in the case of suction and negative (Q < 0) in the case of
injection. The dimensionless pressure p is scaled so that 0 corresponds to
the atmospheric pressure. We put Γ (t) ≡ ∂Ω(t) and assume that it is given
by the equation φ(x1, x2, t) ≡ φ(z, t) = 0, where z = x1 + ix2. The initial
situation is represented at the instant t = 0 as Ω(0) = Ω0, and the boundary
∂Ω0 = Γ (0) ≡ Γ0 is defined by an implicit function φ(x1, x2, 0) = 0. The
potential function p is harmonic in Ω(t) \ {0} and

∆p = Qδ0(z), z = x1 + ix2 ∈ Ω(t), (1.12)

where δ0(z) is the Dirac distribution supported at the origin. The zero surface
tension dynamic boundary condition is given by

p(z, t) = 0 as z ∈ Γ (t). (1.13)

The resulting motion of the free boundary Γ (t) is given by the fluid velocity
V on Γ (t). This means that the boundary is formed by the same set of
particles all the time. The normal velocity in the outward direction is
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vn = V

∣∣∣∣∣
Γ (t)

· n (t),

where n (t) is the unit outer normal vector to Γ (t). Rewriting this law of
motion in terms of the potential function and using (1.11) after suitable
rescaling we get the kinematic boundary condition

∂p

∂n
= −vn, (1.14)

where ∂p
∂n = n · ∇p denotes the outward normal derivative of p on Γ (t).

Let us consider the complex potential W (z, t), Re W = p. For each fixed
t it is a multivalued analytic function defined in Ω(t) whose real part solves
the Dirichlet problem (1.12), (1.13). Making use of the Cauchy-Riemann con-
ditions we deduce that

∂ W

∂ z
=

∂ p

∂ x1
− i

∂ p

∂ x2
,

Since Green’s function solves (1.12), (1.13), we have the representation

W (z, t) =
Q

2π
log z + w0(z, t), (1.15)

where w0(z, t) is an analytic regular function in Ω(t).
To derive the equation for the free boundary Γ (t) we consider an auxiliary

parametric complex ζ-plane, ζ = ξ + iη. The Riemann Mapping Theorem
yields a unique conformal univalent map f(ζ, t) from the unit disk U = {ζ :
|z| < 1} onto the phase domain f : U → Ω(t), f(0, t) = 0, f ′(0, t) > 0. The
function f(ζ, 0) = f0(ζ) parameterizes the initial boundary Γ0 = {f0(eiθ), θ ∈
[0, 2π)} and the moving boundary is parameterized by Γ (t) = {f(eiθ, t), θ ∈
[0, 2π)}. The normal velocity vn of Γ (t) in the outward direction is given by
(1.14). From now on and throughout the monograph we use the notations
ḟ = ∂f/∂t, f ′ = ∂f/∂ζ. The normal outward vector is given by the formula

n = ζ
f ′

|f ′| , ζ ∈ ∂U.

Therefore, the normal velocity is obtained as

vn = V · n = −Re

(
∂W

∂z
ζ
f ′

|f ′|

)
.

Because of the conformal invariance of Green’s function we have the super-
position

(W ◦ f)(ζ, t) =
Q

2π
log ζ,

and by taking the derivative we get
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∂W

∂z
f ′(ζ, t) =

Q

2πζ
.

On the other hand, in general for a moving boundary, we have vn =
Re [ḟ ζf ′/|f ′|], and finally deduce that

Re
[
ḟ(ζ, t)ζf ′(ζ, t)

]
= − Q

2π
, ζ = eiθ. (1.16)

Galin [88] and Polubarinova-Kochina [199], [200] first derived the equation
(1.16), so (1.16) is known as the Polubarinova-Galin equation (see e.g. [141],
[135], [195]).

From (1.16) one can derive a Löwner-Kufarev type equation by the
Schwarz-Poisson formula:

ḟ(ζ, t) = −ζf ′(ζ, t)
Q

4π2

2π∫

0

1

|f ′(eiθ, t)|2
eiθ + ζ

eiθ − ζ
dθ, (1.17)

where ζ ∈ U . The equation (1.17) is equivalent to the kinematic condition
(1.16) on the free boundary. Namely, one can take a limit in (1.17) as ζ
tends to a point on the unit circle, and implementing the Sokhotskĭı-Plemelj
formulae [187], the equation (1.17) reduces to (1.16).

We call (1.17) a Löwner–Kufarev type equation because of the analogy
with the linear partial differential equation that describes monotone defor-
mations of simply connected univalent domains (see e.g. [8], [65], [206]). In the
classical Löwner-Kufarev equation the integral in the right-hand side of (1.17)
is to be replaced by an arbitrary time dependent analytic function with pos-
itive real part. This equation produces subordination Löwner chains whose
properties have been deeply studied. Unlike the classical Löwner-Kufarev
equation, the equation (1.17) even is not quasilinear and produces a special
type of chains.

1.4.3 Local existence and ill/well-posedness

Under some assumptions on smoothness of ∂Ω(0) it is known that in the case
of an expanding fluid (Q < 0) there exists a unique solution to the problem
(1.12–1.14), or (1.16), in terms of analytic functions f(ζ, t) (strong or classical
solution), locally forward in time. The first proof appeared in 1948 [259] by
Yurii P. Vinogradov and Pavel Parfen’evich Kufarev(1909–1968). This
proof was rather difficult, and later, Gustafsson [108] gave a simple proof in
the case when a polynomial or a rational univalent function f0 parameterizes
the initial phase domain. In 1993 Reissig and Von Wolfersdorf [214] made
clear that this model could be interpreted as a particular case of an abstract
Cauchy problem and that the strong solvability (locally in time) could be
proved using a nonlinear abstract Cauchy-Kovalevskaya Theorem (see [192]).



1.4 Hele-Shaw flows 19

More precisely, they proved that if the initial function f0(z) is analytic and
univalent in the disk Ur = {ζ : |ζ| < r} for some r > 1, then there exists
t0 > 0, such that the solution f(ζ, t) to the Polubarinova-Galin equation
exists and is unique in some time interval t ∈ [0, t0). In the multidimensional
case a proof of local existence and uniqueness can be found in, e.g., [251].

Various aspects of planar Hele-Shaw viscous flows with zero surface ten-
sion have been investigated by a number of scientists. We note that the prob-
lem (1.12–1.14) is formally time reversible by changing Q → −Q, p → −p,
t → −t. However, the cases of suction and injection differ considerably. One
of the main features of the problem (1.12–1.14) is that starting with an ana-
lytic boundary Γ0 we obtain a one-parameter (t) chain of the solutions p(z, t)
(and equivalently f(ζ, t)) that exists during an interval t ∈ [0, t0), developing
possible cusps or double points (the boundary meets itself) at the boundary
Γ (t) in a blow-up time t0. In the suction case the fluid can be completely
removed from a finite region without blow-up when Ω0 is a disk centered on
the origin (see [135]). Let us note here that cusps or double points can be
developed even in the problem with injection.

The zero surface tension Hele-Shaw model (1.12–1.14) with suction is
Hadamard illposed. The blow-up time t0 corresponds in the simplest cases
(e.g., polynomial solutons) to the moment of cusp formation. The situation is
quite subtle. Polynomial solutions that develop cusps of order (4n−1)/2 at t0
always blow-up and the solution does not exist beyond t0. The solutions that
develop cusps of order (4n + 1)/2 can sometimes continue to exist beyond
t0 (see [139] and [228] for complete classification). Moreover, if the initial
function is a polynomial of degree n ≥ 2, then cusp formation is guaranteed
before the moving boundary reaches the sink [135]. Nonpolynomial solutions
can produce other scenarios of evolution of the free boundary where, for
instance, the blow-up time occurs at the moment when the free interface
reaches the sink or the solution breaks down because Γ (t) develops a corner
or simply becomes nonanalytic in virtually anyway.

An attempt to classify the solutions to the zero surface tension model for
the Hele-Shaw flows in bounded and unbounded regions with suction has been
launched by Hohlov, Howison [135] and Richardson [216]. They also described
cusp formation. Another typical scenario is fingering that was first described
in the classical work by Saffman, Taylor [224]. Recently it has became clear
that in the model with injection fingering does not occur in time [111].

1.4.4 Regularizations

There are several proposals for regularization of the illposed problem. One of
them is the “kinetic undercooling regularization” [136], where the condition
(1.13) is replaced by

β
∂p

∂n
+ p = 0, on Γ (t), β > 0.
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It has been shown in [136] that there exists a unique solution locally in time
(even a strong solution) in both the suction and injection cases in a simply
connected bounded domain Ω(t) with an analytic boundary. We remark that
at the conference about Hele-Shaw flows, held in Oxford in 1998, V. M. Entov
suggested to use a nonlinear version of this conditions motivated by applica-
tions.

Another proposal is to introduce surface tension as a regularization mech-
anism. The model with nonzero surface tension is obtained by modifying the
boundary condition for the pressure p to be the product of the mean curva-
ture κ of the boundary and surface tension γ > 0. Let us rewrite the problem
(1.12–1.14) with this new condition:

∆p = Qδ0(z), in z ∈ Ω(t), (1.18)

p = γκ(z), on z ∈ Γ (t), (1.19)

vn = − ∂p

∂n
, on z ∈ Γ (t). (1.20)

A similar problem appears in metallurgy in the description of the mo-
tion of phase boundaries by capillarity and diffusion [186]. The condi-
tion (1.19) is found in [183] (it is known as the Gibbs-Thomson law or
the Laplace-Young condition). Pierre-Simon Laplace (1749–1827) and
Thomas Young (1773-1829) obtained independently this law in 1805. Later
Josiah Willard Gibbs (1839–1903) and William Thomson (Lord Kelvin)
(1824–1907) in the 1870-s derived an analogous relation. It takes into account
how the surface tension modifies the pressure through the boundary interface.

The problem of existence of a solution in the non-zero surface tension
case is more difficult. Duchon and Robert [64] proved the local existence
in time for weak solution for all γ. Recently, Prokert [209] obtained even
global existence in time and exponential decay (in the case of flow driven
by surface tension) of the solution near equilibrium for bounded domains.
The results are obtained in Sobolev spaces Hs with sufficiently big s. We
refer the reader to the works by Escher and Simonett [78], [79] who proved
the local existence, uniqueness and regularity of strong solutions to one- and
two-phase Hele-Shaw problems with surface tension when the initial domain
has a smooth boundary. The case of the initial domain bounded by a non-
smooth boundary was considered in [10], [80]. The global existence in the
case of the phase domain close to a disk was proved in [81]. If the domain
occupied by the fluid is unbounded and its boundary extends to infinity,
then the corresponding result about short-time existence and uniqueness for
positive surface tension has been obtained by Kimura [153] (he also shows
that the problem is illposed in the case of suction). More results on existence
for general parabolic problems can be found in [82]. Most of the authors
work with weak formulation of the problem (see this formulation in Chapter
3 and in [58], [74], [109]). It is worth to remark that the weak solution to the
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problem with injection exists all the time and coincides with the strong one
if the latter exists.

1.5 Complex moments

Let us consider the problem with injection (Q < 0) and let the strong solution
to the Polubarinova-Galin equation (1.16) exist for t ∈ [0, t0). Since the free
boundary moves in the normal direction and the the normal velocity on the
boundary never vanishes, we have Ω(t) ⊂ Ω(s) for 0 < t < s < t0. Richardson
[215] introduced the complex moments

Mn(t) =

∫∫

Ω(t)

zndσz =

∫∫

U

fn(ζ, t)|f ′(ζ, t)|2dσζ ,

where dσz and dσζ denote area elements in the z- and ζ- planes respectively.
He proved that

M0(t) = M0(0) −Qt,
Mn(t) = Mn(0), for n ≥ 1.

More generally, let us consider the area integral

MΦ(t) =

∫∫

Ω(t)

Φ(z)dσz,

for any function Φ analytic in a neighbourhood of Ω(t). The Reynolds Trans-
port Theorem together with Green’s formula imply

d
dtMΦ(t) =

∫
Γ (t)

Φ(z)(V · n )ds

= −
∫
Γ (t)

Φ(z) ∂p∂n ds

= −
∫
Γ (t)

p ∂Φ∂n ds−
∫∫
Ω(t)

Φ(z)∆pdσz = −QΦ(0).

Integrating we obtain

∫∫

Ω(t)

Φ(z)dσz =

∫∫

Ω(0)

Φ(z)dσz −QtΦ(0), (1.21)

for all t ∈ [0, t0). It is easy to see that one can run the above arguments
backward (see, e.g., [109]) to show that a smooth family Ω(t) of simply con-
nected domains is a strong solution to the Hele-Shaw problem if and only
if the equality (1.21) holds for any analytic and integrable function Φ(z) in
z ∈ Ω(t0).
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1.6 Further remarks on the Polubarinova-Galin equation

Writing ζ = eiθ on ∂U we have ∂f
∂θ = iζ ∂f∂ζ . Therefore the Polubarinova-Galin

equation (1.16) can be written as

Im

(
∂f

∂t

∂f

∂θ

)
=

Q

2π
.

Decomposing f into its real and imaginary parts, f = u + iv, the equation
becomes

∂(u, v)

∂(θ, t)
=

Q

2π
, (1.22)

where
∂(u, v)

∂(θ, t)
=
∂u

∂θ

∂v

∂t
− ∂v

∂θ

∂u

∂t

is the Jacobi determinant of the map (θ, t) 7→ (u, v), or, from another point
of view, the Poisson bracket of u and v as functions of (θ, t).

Equation (1.22) can be regarded as a differential equation for the two
realvalued functions u and v defined on the circle. As such it expresses that
the map (θ, t) 7→ (u, v) shall be area preserving up to a constant factor.
The two functions u and v in (1.22) are, however, not independent of each
other, but are linked via the condition that, as a function of eiθ, u + iv has
an analytic continuation to all of U . In other words, v is to be the Hilbert
transform of u.

Remarkably enough it is possible to write down the “general solution” of
(1.22). To this end, following [43] (Anhang zum ersten Kapitel) we introduce
new independent variables α and β and regard all of θ, t, u and v as functions
of these. Then

∂(u, v)

∂(α, β)
=
∂(u, v)

∂(θ, t)
· ∂(θ, t)

∂(α, β)

and (1.22) becomes
∂(u, v)

∂(α, β)
=

Q

2π

∂(θ, t)

∂(α, β)
. (1.23)

Now, if Q < 0 the general solution of (1.23) is
{
θ = α+ ∂ω

∂β , u = k · (β + ∂ω
∂α )

t = β − ∂ω
∂α , v = k · (α− ∂ω

∂β ),

where ω = ω(α, β) is an arbitrary function satisfying

1 − (
∂2ω

∂α∂β
)2 +

∂2ω

∂α2
· ∂

2ω

∂β2
6= 0, (1.24)

and where k2 = −Q/2π. The expression in the left member of (1.24) is simply
∂(θ,t)
∂(α,β) . (If Q > 0 the general solution is obtained by modifying some signs

above.)
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The Poisson bracket point of view and its relation to integrable systems
has recently been developed in a number papers in which the Hele-Shaw
problem (often named the Laplacian growth model) is embedded into a larger
hierarchy of domain variations for which all the complex moments Mn (see
Section 1.5) are treated as independent variables (generalized time variables).
For us all of them are frozen except M0, which is essentially ordinary time.
See [3], [162], [180], [262].

1.7 The Schwarz function

This function appeared explicitly in a paper by Grave [103] in 1895, and
was later employed by Gustav Herglotz in 1914 [133]. In the works by
Hermann Amandus Schwarz (1843–1921) it does not seem to appear
explicitly, whereas this designation (due to Philip Davis) is now immutably
connected with his name. The definition of the Schwarz function is based
on the Schwarz reflection principle. Let Γ be a non-singular analytic Jordan
curve in C, that is Γ possesses a real-analytic bijective parametrization with
a non-vanishing derivative. Then there is a neighbourhood Ω of Γ and a
uniquely determined analytic function S(z), z ∈ Ω, such that S(z) = z̄ for
z ∈ Γ . This function is called the Schwarz function. Thorough treatments of
the Schwarz function are found in [57], [237].

A connection with the Hele-Shaw problem is as follows. Let φ(x1, x2, t) =
0 be an implicit representation of the free boundary Γ (t) which is supposed
to be smooth analytic. Substituting x1 = (z + z̄)/2 and x2 = (z − z̄)/2i into
this equation and solving it for z̄ we obtain

z̄ = S(z, t), (1.25)

where the function S(z, t) is defined and analytic in a neighbourhood of Γ (t).
This function satisfies the consistency condition S(S(z, t), t) ≡ z̄. Differenti-
ating (1.25) with respect to an arc length parameter s on ∂Ω(t) for fixed t
gives the expression

dz

ds
=

1√
S′(z, t)

,

for the unit tangent vector on ∂Ω(t).
The map z → S(z, t) has the interpretation of being the anticonformal

reflection in Γ (t). Therefore, if Γ (t) moves with the normal velocity vn, then

the point S(z, t) moves, for fixed z, with the double speed | ˙̄S| = 2vn. Taking
also the direction into account this gives

vn =
iṠ(z, t)

2
√
S′(z, t)

.
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In the Hele-Shaw case the velocity vector 1
2

˙̄S is equal to −dW/dz, where
W (z, t) is the complex potential, hence the Hele-Shaw equation becomes

dW

dz
= −1

2
Ṡ(z, t).

In general, one way to construct the Schwarz function is to consider the
Cauchy integral

g(z) =
1

2πi

∫

∂Ω

ζ̄dζ

ζ − z
.

It defines one analytic function, ge(z), in the exterior of Ω and one, gi(z), in
the interior. On ∂Ω the jump condition

gi(z) − ge(z) = z̄, z ∈ ∂Ω (1.26)

holds for the boundary values. When ∂Ω is analytic both gi and ge extend
analytically across the boundary so that gi(z) − ge(z) is analytic in a full
neighbourhood of ∂Ω. Then the Schwarz function is defined as

S(z) = gi(z) − ge(z), (1.27)

(see, e.g., [215]). Note also that, for z ∈ C \Ω,

ge(z) =
1

π

∫∫

Ω

dσζ
ζ − z

(1.28)

is the Cauchy transform of Ω. Similarly, gi(z) is (for z ∈ Ω) a renormalized
version of the Cauchy transform of C \Ω.



2. Explicit strong solutions

In this chapter we will construct several explicit solutions to the Hele-
Shaw problem, more precisely, to the Polubarinova-Galin equation, starting
with the classical ones of Polubarinova-Kochina [199], [200], Galin [88] and
Saffman, Taylor [224], [225]. Some properties of polynomial and rational so-
lutions will be stated. In particular, we prove the existence theorem. Then we
will consider angular Hele-Shaw flows and give some new families of explicit
solutions in terms of hypergeometric functions that contain, as particular
cases, those constructed earlier by Ben Amar et al.[22], [23], [24], Arnéodo et
al. [12], Kadanoff [147], etc.

2.1 Classical solutions

It is possible to construct many explicit solutions to the Hele-Shaw problem
using the nonlinear Polubarinova-Galin equation (1.16). The main idea is to
use a special form of the parametric univalent function f(ζ, t). The simplest
solution is the expansion/shrinking of the disk centered on the sink/source.
This is the only case when the fluid can be completely removed (see [88],
[135]). The solution has the obvious form

f(ζ, t) =

√
|Ω0| − tQ

π
ζ.

Here Ω0 is a disk centered on the origin and t ∈ [0,∞) in the case of injection
(Q < 0) and t ∈ [0, |Ω0|/Q] in the case of suction Q > 0. In the case of
injection it is possible to start with Ω0 = Ø.

2.1.1 Polubarinova and Galin’s cardioid

The first non-trivial solution for the problem with suction (Q > 0) was con-
structed by Polubarinova-Kochina [199], [200] and Galin [88]. They chose a
quadratic mapping

f(ζ, t) = a1(t)ζ + a2(t)ζ
2,

ζ ∈ U , with real coefficients a1(t) and a2(t). This mapping being substituted
into equation (1.16) gives the following system for the coefficients
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a2
1(t)a2(t) = a2

1(0)a2(0),

a2
1(t) + 2a2

2(t) = a2
1(0) + 2a2

2(0) −
Qt

π
.

For any initial condition such that |a2/a1| < 1/2 the solution f(ζ, t) is a
univalent map locally in time t ∈ [0, t0). The blow-up time t0 occurs exactly
when the equality |a2/a1| = 1/2 is reached that corresponds to the vanishing
boundary derivative of f and cusp formation at the boundary. This evolution
is shown in Figure 2.1. As is observed, cusp formation occurs before the mov-

-7.5 -5 -2.5 0 2.5 5 7.5

-7.5

-5

-2.5

0

2.5

5

7.5

Fig. 2.1. Polubarinova and Galin’s cardioid

ing boundary reaches the sink. This phenomenon is general for all polynomial
solutions. It seems that Galin knew that, but did not prove it correctly. A
correct proof appeared in [135]. Considering a general polynomial form of f

f(ζ, t) =

n∑

k=1

ak(t)ζ
k, an(0) 6= 0, a1(t) > 0,

one substitutes it in equation (1.16). By rotation eiαf(e−iαζ, t) we make the
coefficient an(0) real. This leads to a system of n equations for the coefficients
ak(t). The first one is
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d

dt

n∑

k=1

k|ak|2 = −Q
π
.

The last one is

Re

(
nān

d a1

dt
+ a1

d ān
dt

)
= 0.

Since f is univalent for all t ∈ [0, t0) and a1(t) > 0, this equation is equivalent
to

d

dt
Re (āna

n
1 ) = 0,

where t0 is the blow-up time. The initial conditions imply

n∑

k=1

k|ak(t)|2 =
n∑

k=1

k|ak(0)|2 −
Qt

π
, (2.1)

Re (ān(t)a
n
1 (t)) = an(0)a

n
1 (0). (2.2)

If the boundary reaches the sink at the moment t0, then the kernel of the
family Ω(t) degenerates: Ker {Ω(t)} = {0} for t → t0. The Carathéodory
kernel theorem implies that limt→t0 f(ζ, t) ≡ 0 which contradicts (2.1–2.2)
(an(0)a

n
1 (0) 6= 0).

Some sufficient conditions for the initial data (a1(0), . . . , an(0)) for a poly-
nomial strong solutions to exist for all time were given in [167]. Several ex-
plicit solutions similar to Polubarinova-Galin’s cardioid were obtained by
Vinogradov and Kufarev in 1947 [260] but their work was wrongly forgotten.

2.1.2 Rational solutions of the Polubarinova-Galin equation

After this first non-trivial Polubarinova-Galin solution many other explicit
solutions were constructed. Among them we distinguish a solution by Saffman
and Taylor that will be discussed in the next section. It deals with a flow in
a narrow channel. In this section we will give examples of solutions by means
of rational univalent functions. One finds them, e.g., in a paper by Hohlov
and Howison [135]. The first explicit rational solutions were obtained by
Kufarev in 1948-1950 [165], [166]. Unlike the previous case rational solutions
can produce such evolution that the free boundary reaches the sink under
suction before the total fluid is removed.

Let Q > 0 and consider the map

f(ζ, t) = a(t)
ζ(1 − b(t)ζ)

1 − c(t)ζ
, (2.3)

where

a(t) = −2α4 − α2 − Qt
π

2α3
, b(t) =

α3 − αQt
π

2α4 − α2 − Qt
π

, c(t) =
1

α
,
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and α = α(t) is the root of the algebraic equation

2α6 −
(

5 − 2Qt

π

)
α4 +

(
Qt

π

)2

= 0,

satisfying the condition limt→π/Q α(t) = −1. The initial domain is given by
the mapping

f(ζ, 0) =
ζ(4 −

√
5
2ζ)

2ζ −
√

10
.

The solution f(ζ, t) exists and is univalent during the time interval [0, π/Q).
At this moment the moving boundary reaches the sink at the origin and the
residual fluid occupies the disk |z + 1| < 1, see Figure 2.2.

0

y

x

Ω

Fig. 2.2. Rational solution

The next example is a rational map

f(ζ, t) = a(t)
ζ(1 − b(t)ζ2)

1 − c(t)ζ2
,

with the parameters a, b, c chosen so that the final domain in a blow-up time
consists of two equal disks touching at the sink. Due to complicated details
we give only a sketch in Figure 2.3.
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0
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x

Ω

Fig. 2.3. Symmetric rational solution

Let us now discuss rational solutions in general. When speaking about
a strong, or classical, solution of a differential equation one generally means
that all functions and boundaries appearing should be smooth enough and
that the equations involved should hold in a pointwise sense. For the Hele-
Shaw problem it is convenient to introduce the notion of a smooth family of
domains [251]. We call a family of domains {Ω(t)} smooth if the boundaries
∂Ω(t) are smooth (C∞) for each t, and the normal velocity vn continuously
depends on t at any point of ∂Ω(t).

Then a strong solution of the Hele-Shaw problem is defined to be a smooth
family {Ω(t) : 0 ≤ t < t0} such that (1.12–1.14) hold in a pointwise sense
(the function p will be uniquely determined by Ω(t) and will be smooth up
to ∂Ω(t)). If the domains Ω(t) are simply connected it is equivalent to ask
the Polubarinova-Galin equation (1.16) to hold.

In the above definition the interval [0, t0) may be replaced by any open,
closed or half-open interval.

Given a domain Ω(0) with smooth boundary it is known that in the well-
posed case Q < 0 there exists a strong solution of (1.12–1.14) on some interval
[0, t0). In the illposed case Q > 0 such a statement is true only if ∂Ω(0) is
analytic (see, e.g., [251]).

Since we do not know any reasonably short proof of these general exis-
tence results we shall not include any such proof here, but just refer to the
literature: [80], [214], [259]. Instead we shall discuss some general properties of
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solutions in the simply connected case, and also provide an elementary proof
of existence of solutions when the initial domain is the conformal image of U
under a rational function. We shall first make some general observations.

Assume that f(ζ, t) is analytic and univalent in a neighbourhood of U for
each t and is normalized by

f(0, t) = 0, f ′(0, t) > 0. (2.4)

It is useful to set

g(ζ, t) =
ḟ(ζ, t)

ζ
.

In view of (2.4), g is holomorphic in U with g(0, t) > 0. The Polubarinova-
Galin equation (1.16) becomes

Re[g · f ′] = − Q

2π
. (2.5)

On dividing by |f ′|2 we get

Re[
g(ζ, t)

f ′(ζ, t)
] = − Q

2π|f ′(ζ, t)|2 (ζ = eiθ). (2.6)

Here the left member is a harmonic function in U and (2.6) gives its
boundary values on ∂U . This Dirichlet problem can be solved explicitly in
terms of a Poisson integral, and taking also the imaginary part into account
we get g solved in terms of f ′ as

g = G(f ′),

where G is nonlinear operator defined by

G(f ′)(ζ) =
−Qf ′(ζ)

4π2

∫ 2π

0

|f ′(eiθ)|−2 e
iθ + ζ

eiθ − ζ
dθ (2.7)

(We suppress t from notation whenever convenient.)
Now we observe the following properties of G(f ′):

1. If f ′ is holomorphic in UR for some R > 1 then also G(f ′) is holomorphic
in UR.

2. If f ′ is a rational function with poles of order kj at some points zj (outside
U) then the same is true for G(f ′). One of the points may be the point
of infinity.

It is important for these conclusions that f ′ is holomorphic in a neighbour-
hood of U and has no zeros there (whereas the univalency of f is not needed
in itself).

To prove 1) and 2) we first write (2.7) as
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G(f ′)(ζ) = − Q

4π2i
f ′(ζ)

∫

∂U

1

f ′(z)f ′( 1
z )

z + ζ

z − ζ

dz

z
. (2.8)

With ζ ∈ U the integrand above is holomorphic in some neighbourhood of ∂U .
It follows that the path of integration can be replaced by a contour slightly
outside ∂U . This shows that g = G(f ′) is analytic in some neighbourhood of
U (to start with).

Next we go back to (2.5) and write it as

Re

(
g · f ′ + Q

2π

)
= 0

holding on ∂U . Spelling out the real part and using that ζ = 1/ζ on ∂U gives
that

g(1/ζ)f ′(ζ) + g(ζ)f ′(1/ζ) +
Q

π
= 0 (2.9)

on ∂U . But here the left member is a holomorphic function in some neigh-
bourhood of ∂U , hence (2.9) remains to hold identically in any such neigh-
bourhood. Since now both g and f ′ are holomorphic in a neighbourhood of
U and f ′ has no zeros there it follows from (2.9) that the singularities of g

outside U , i.e., the singularities of g( 1
ζ
) for ζ ∈ U , are no worse than the

singularities of f ′( 1
ζ
) for ζ ∈ U . This proves 1) and 2).

From the above remarks we easily deduce the following theorem.

Theorem 2.1.1. Assume f(ζ, 0) is a rational function which is holomorphic
and univalent in some neighbourhood of U and is normalized by (2.4). Then
in some time interval around t = 0 there exists a rational solution f(ζ, t)
of (1.16). Each f(ζ, t) is analytic and univalent in a neighbourhood of U
and normalized by (2.4). The pole structure of f(ζ, t) is the same as that
of f(ζ, 0), but all poles except the one at infinity may move around. Poles
can not collide or disappear, with sole exception that the pole at infinity may
disappear for one value of t.

Remark. We shall see later (see Theorem 3.4.1) that, in the wellposed case
Q < 0, the radius of analyticity R(t) of f(ζ, t), i.e., the largest number R such
that f(ζ, t) is holomorphic in UR is a strictly increasing function of t. If the
solution exists for all 0 ≤ t <∞ we shall even have that R(t) → ∞ as t→ ∞.
Thus, the poles of f(ζ, t) will not cause any break down of the solution. If
the solution breaks down in finite time it will be because univalency will be
lost, either due zeros of f ′(ζ, t) reaching ∂U or of f(ζ, t)) taking the same
value twice on ∂U ≡ S1.

This remark applies in general to strong solutions of (2.6), not only when
f(ζ, 0) is rational.

Proof. In order to avoid too many summation signs, let us assume that f(ζ, 0)
has only two poles, one finite pole and one pole at infinity:
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f(ζ, 0) =

m∑

k=1

bk
(ζ − a)k

+

n∑

j=0

cjζ
j ,

where bm 6= 0, m,n ≥ 1. The general case is obtained by replacing a by al,
letting m depend on l and summing over l. Then we make the “Ansatz”, for
f(ζ, t),

f(ζ, t) =

m∑

k=1

bk(t)

(ζ − a(t))k
+

n∑

j=0

cj(t)ζ
j . (2.10)

Here it is necessary to postulate n ≥ 1, even if c1 = 0, because the Hele-Shaw
injection/suction will in any case create a pole at infinity. This gives

f ′(ζ, t) = −
m∑

k=1

kbk(t)

(ζ − a(t))k+1
+

n∑

j=1

jcj(t)ζ
j−1,

ḟ(ζ, t) =

m∑

k=1

ḃk(t)

(ζ − a(t))k
+

m∑

k=1

kȧ(t)bk(t)

(ζ − a(t))k+1
+

n∑

j=0

ċj(t)ζ
j

=
mȧ(t)bm(t)

(ζ − a(t))m+1
+

m∑

k=1

ḃk(t) + (k − 1)ȧ(t)bk−1(t)

(ζ − a(t))k
+

n∑

j=0

ċj(t)ζ
j .

By the properties 1), 2) of G, G(f ′) will be of the form

G(f ′)(ζ, t) =

m+1∑

k=1

Bk(t)

(ζ − a(t))k
+

n∑

j=1

Cj(t)ζ
j−1

for suitable coefficients Bk(t) and Cj(t). It is not hard to see, for example
from the formula (2.8), that these finitely many coefficients depend smoothly
on the coefficients of f ′ (see [108] for details).

Now the Polubarinova-Galin equation in terms of present notation is

ḟ(ζ, t) = ζG(f ′)(ζ).

Inserting here the above expressions for ḟ and f ′ (or rather G(f ′)) and identi-
fying coefficients gives a system of differential equations for a(t), bk(t), cj(t),

and one sees immediately from the last expression for ḟ that this system can
be solved for the time derivatives ȧ(t), ḃk(t), ċj(t) as long as bm(t) 6= 0. Thus,
the Polubarinova-Galin equation reduces to a finite dimensional system of or-
dinary differential equations of standard form, which by Picard’s theorem has
a unique solution, at least for a short two-sided interval around t = 0. This
means that the “Ansatz” (2.10) was successful so that the rational solution
(2.10) survives of the same form for a little while. This proves the theorem,
except for the statement about collision, which will be discussed in Section
3.7 (Theorem 3.6.3). 2
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2.1.3 Saffman-Taylor fingers

The most famous solutions to the original Hele-Shaw problem are the
travelling-wave fingers of Saffman and Taylor (1958) [224], [225]. When a
low viscosity fluid (for example, water) is injected into a more viscous one,
such as glycerin, an instability occurs. In fact, Hele-Shaw (1898) [130] pro-
posed the model of the air injection into a narrow channel. An important
reason for studying this problem is that it is closely related to many techno-
logically relevant ones, such as a flow in porous media. One of the features
of the channel model is that we should change the Dirichlet problem (1.12),
(1.13) to a mixed boundary problem for the potential function p. These type
of boundary conditions, known also as Robin’s boundary conditions, named
so after the French mathematical physicist Gustave Robin (1855–1897)
by Bergman and Schiffer [25], appeared in connection with the third type of
boundary conditions (after Dirichlet’s and von Neumann’s). Robin completed
a doctoral thesis in 1886 under Emile Picard and it is most probable that
this attribution does not correspond to Robin’s own works (see [106]) though
his name in this context is widely used nowadays.

Let us consider an infinite channel with parallel sides

Re z ∈ (−∞,∞), Im z ∈ (−π, π),

in which an inviscid fluid is injected from the left (or the viscous fluid is
extracted from the right) at a constant rate Q > 0, see Figure 2.4. The

Im z

Re z

Ω(t)

−π

π

Fig. 2.4. The Saffman-Taylor finger

function p(z, t) is harmonic in the region Ω(t) occupied by the viscous fluid
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and vanishes on the free boundary Γ (t). It satisfies the condition of non-
penetration at the walls Im z = ±π. Therefore, we have the following mixed
boundary value problem

∆p = 0 in Ω(t),
p
∣∣
Γ (t)

= 0,
∂p
∂n

∣∣
Im z=±π

= 0,
∂p
∂n

∣∣
Γ (t)

= −vn,

with the normalization at the infinity p ∼ − Q
2πRe z, as Re z → +∞. We

choose an auxiliary parametric domain D = U \ (−1, 0] and construct the
conformal univalent mapping z = f(ζ, t) from D onto Ω(t) assuming that
the slit along the negative axis is mapped onto the walls. For the flow outside
the bubble we require arg f(ζ, t) ∼ − arg ζ. The pressure in terms of this
auxiliary variable ζ is written as just

(p ◦ f)(ζ) =
Q

2π
log |ζ|.

Applying the standard technique, as was done in Section 1.4.2, we come to
the Polubarinova-Galin equation for the free boundary Γ (t):

Re ḟ(ζ, t)ζf ′(ζ, t) = − Q

2π
, ζ = eiθ, θ ∈ (−π, π).

We are looking for travelling-wave solutions f(ζ, t) = At+ h(ζ) with A > 0.
The slit in D is mapped onto the walls of the channel, therefore taking into
account possible singularities at the points ζ = 0, 1 we have h(ζ) ∼ − log ζ
as ζ → 0 and h(ζ) ∼ log(1 + ζ) as ζ → −1. Substituting f(ζ, t) into the
Polubarinova-Galin equation we have

Re (Aζh′(ζ)) = −Q/2π, ζ = eiθ.

Differentiating with respect to θ leads to

Im (ζ(ζh′(ζ))′) = 0.

The singularities of h suggest the form of the function

ζ(ζh′(ζ))′ =
c1ζ

(1 + ζ)2
,

where c1 is some real constant. The solution to this equation, neglecting a
horizontal shift, is

h(ζ) = (c2 − c1) log ζ + c1 log(1 + ζ).

To determine the constants we use the the Polubarinova-Galin equation again
and obtain
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ARe (c2 −
c1
2

) = − Q

2π
.

One can choose the ratio λ ∈ (0, 1) of the width of the finger at Re ζ → −∞
as a parameter and derive c1 = 2(1 − λ), c2 = 1 − 2λ, A = Q

2πλ . Finally,

f(ζ, t) =
Q

2πλ
t− log ζ + 2(1 − λ) log(1 + ζ).

This function gives a travelling-wave solution, moving with the speed Q
2πλ ,

for any value λ ∈ (0, 1). The way in which Saffman and Taylor derived the
solution shows that it is the only possible form for a steady, travelling wave. In
terms of analytic functions this corresponds to the uniqueness of the solution
to the mixed boundary value problem with given singularities.

Curiously enough, Saffman-Taylor’s work seems to have been underesti-
mated when appeared. For example, a MR review says that “...the authors’
analysis does not seem to be completely rigorous, mathematically. Many de-
tails are lacking. Besides, the authors do not seem to be aware of the fact
that there exists a vast amount of literature concerning viscous fluid flow
into porous (homogeneous and non-homogeneous) media in Russian and Ro-
manian”. Nowadays, the Saffman-Taylor fingers are widely known in many
fields of mechanics, chemistry and industry.

Saffman and Taylor found experimentally that an unstable planar inter-
face evolves through finger competition to a steady translating finger with
λ = 1/2. Recently, Tanveer and Xie [246], [247] proved that even a small
surface tension effect implies non-existence of a strong solution when the rel-
ative finger width λ is smaller than 1/2. They also solved [246] the selection
problem for λ > 1/2.

2.2 Corner flows

Having handled these first steps many authors have been constructing non-
trivial solutions. We should say that mostly these explicit solutions are either
polynomials and rational functions, or else, logarithmic solutions linked to
Saffman-Taylor fingers. Another type of explicit solutions has been proposed
by, e.g., Howison, King [143], Cummings [50], who reduced the problem to
solving the Poisson equation eliminating time by applying the Baiocchi trans-
formation. The solutions were given making use of the Riemann P-function
and hypergeometric functions.

Corner flows of an inviscid incompressible fluid have been studied inten-
sively, e.g., in [149], [150], [184], [197], [253] (see also the references therein).
In particular, we mention here papers [12], [22], [23], [24], [147], [218], [219],
[249]. A solution constructed by Kadanoff [147] is directly linked with ours.

In this section we will construct explicit solutions in an infinite corner of
arbitrary angle such that the viscous fluid is glued to one of the walls, the
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interface extends to infinity along it and has fluid-wall angle π/2 at a moving
contact point at the other wall. These solutions will present a logarithmic
deformation of the trivial (circular) solution. In the case of right angle we
get Kadanoff’s solution [147]. Then we present an analogous solution in the
corner with a source at its vertex. Finally, we construct self-similar solutions
in a wedge analogous to Saffman-Taylor fingers.

2.2.1 Mathematical model

In this subsection we deal with a general case of corner flows. We suppose
that the viscous fluid occupies a simply connected domain Ω(t) in the phase
z-plane. The boundary Γ (t) consists of two walls Γ1(t) and Γ2(t) of the corner
and a free interface Γ3(t) between them at a moment t. The inviscid fluid
(or air) fills the complement to Ω(t). The simplifying assumption of constant
pressure at the interface between the fluids means that we omit the effect of
surface tension. The velocity must be bounded close to the contact wall-fluid
point that yields the contact angle between the walls of the corner and the
moving interface to be π/2 (see Figure 2.5). A limiting case corresponds to
one finite contact point and the other tends to infinity. By a shift we can
place the point of the intersection of the wall extensions at the origin. To
simplify matters, we set the corner of angle α between the walls so that the
positive real axis x contains one of the walls and fix this angle as α ∈ (0, π].

Let us mention here that the model can be studied in the presence of
surface tension and the macroscopic contact angle between the walls and the
free interface can then be different from π/2. Let us denote it by β. The
contact angle β at a moving contact line obeys interesting properties that
has been studied by Ablett [2] (see also [44], [72]) in a particular case of
water in contact with a paraffin surface. It turns out that the steady angle β
depends on the velocity of the contact line. The angle β increases with the
velocity increased for the liquid advancing over the surface up to a certain
value β0 and, then, remains the same for a greater velocity. Reciprocally, β
decreases with the velocity increased for the liquid receding over the surface
up to a certain value β1 (different from β0) and, then, remains the same for
a greater velocity.

In our zero surface tension model we have Robin’s boundary value problem
for fluid pressure p(z, t) ≡ p(x, y, t)

∆p = 0 in the flow region Ω(t), (2.11)

and the fluid velocity V averaged across the gap is V = −∇p. The free
boundary conditions

p
∣∣∣
Γ3

= 0,
∂p

∂t

∣∣∣
Γ3

= |∇p|2 (2.12)

are imposed on the free boundary Γ3 ≡ Γ3(t). This implies that the normal
velocity vn of the free boundary Γ3 outwards from Ω(t) is given by
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Fig. 2.5. Ω(t) is the phase domain within an infinite corner and the homogeneous
sink/source at ∞

∂p

∂n

∣∣∣
Γ3

= −vn. (2.13)

On the walls Γ1 ≡ Γ1(t) and Γ2 ≡ Γ2(t) the boundary conditions are given
as

∂p

∂n

∣∣∣
Γ1∪Γ2

= 0. (2.14)

We suppose that the motion is driven by a homogeneous source/sink at in-
finity. Since the angle between the walls at infinity is also α, the pressure
behaves about infinity as

p ∼ −Q
α

log |z|, as |z| → ∞,

where Q corresponds to the constant strength of the source (Q < 0) or sink
(Q > 0). Finally, we assume that Γ3(0) is a given analytic curve.

We introduce Robin’s complex analytic potential W (z, t) = p(z, t) +
iψ(z, t), where −ψ is the stream function. Let us consider an auxiliary para-
metric complex ζ-plane, ζ = ξ+ iη. We set D = {ζ : |ζ| > 1, 0 < arg ζ < α},
D3 = {z : z = eiθ, θ ∈ (0, α)}, D1 = {z : z = reiα, r > 1}, D2 = {z :
z = r, r > 1}, ∂D = D1 ∪ D2 ∪ D3, and construct a conformal univalent
time-dependent map z = f(ζ, t), f : D → Ω(t), so that being continued onto
∂D, f(∞, t) ≡ ∞, and the circular arc D3 of ∂D is mapped onto Γ3 (see
Figure 2.6). This map has an expansion
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Fig. 2.6. The parametric domain D

f(ζ, t) = ζ

∞∑

n=0

an(t)ζ
−πn

α

near infinity and a0(t) > 0. The function f parameterizes the boundary of
the domain Ω(t) by Γj = {z : z = f(ζ, t), ζ ∈ Dj}, j = 1, 2, 3.

The normal unit vector in the outward direction is given by

n = −ζ f
′

|f ′| on Γ3, n = −i on Γ2, and n = ieiα on Γ1.

Therefore, the normal velocity is obtained as

vn = V · n = − ∂p

∂n
=





−Re

(
∂W

∂z

ζf ′

|f ′|

)
for ζ ∈ D3,

0 for ζ ∈ D1,
0 for ζ ∈ D2.

(2.15)

The superpositionW ◦f is the solution to the mixed boundary problem (2.11),
(2.12), (2.14) in D, therefore, it is Robin’s function given by (W ◦ f)(ζ) =
−Q
α log ζ. On the other hand,

vn =





Re (ḟ ζf ′/|f ′|) for ζ ∈ D3,

Im (ḟ e−iα) for ζ ∈ D1,

−Im (ḟ) for ζ ∈ D2.

(2.16)

The first lines of (2.15), (2.16) give that
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Re (ḟ ζf ′) =
Q

α
, for ζ ∈ D3. (2.17)

The remaining lines of (2.15), (2.16) imply

Im (ḟ e−iα) = 0 for ζ ∈ D1, Im (ḟ) = 0 for ζ ∈ D2. (2.18)

One of the typical properties of the problem (2.11–2.14) is that starting
with an analytic boundary component Γ3(0), the one-parameter evolutionary
chain of solutions develops possible cusps at a finite blow-up time t0. Another
typical scenario is fingering. The strong solution exists locally in time in the
case of an analytic boundary Γ3. We only refer the reader to some relevant
works [79], [138], [141], [209], [215], [224].

2.2.2 Logarithmic perturbations of the trivial solution

We consider the case of a sink at infinity (Q > 0). The simplest explicit
solution in this case is

f(ζ, t) =

√
2Qt

α
ζ,

that produces a circular dynamics of the free boundary. Our aim is to perturb
this trivial solution by a function independent of t, say we are looking for a
solution in the form

f(ζ, t) =

√
2Qt

α
ζ + ζg(ζ),

where g(ζ) is regular in D with the expansion

g(ζ) =
∞∑

n=0

an
ζ

πn
α

near infinity. The branch is chosen so that g, being continued symmetrically
into the reflection of D, is real at real points. Equation (2.17) implies that
the function g satisfies

Re (g(ζ) + ζg′(ζ)) = 0, ζ ∈ D3.

Taking into account the expansion of g we are looking for a solution satisfying
the equation

g(ζ) + ζg′(ζ) =
ζ

π
α − 1

ζ
π
α + 1

, ζ ∈ D, (2.19)

although other forms may be possible. The general solution to (2.19) can be
given in terms of the Gauss hypergeometric function F ≡ 2F 1 as

ζg(ζ) = ζ − 2ζF
(α
π
, 1, 1 +

α

π
;−ζ π

α

)
+ C.



40 2. EXPLICIT STRONG SOLUTIONS

We note that f ′ vanishes only when ζ
π
α = (2/(1 +

√
2Qt/α)) − 1, therefore,

the function f is locally univalent, the cusp problem appears only at the
initial time t = 0 and the solution exists during infinite time. The resulting
function is homeomorphic on the boundary ∂D, hence it is univalent in D.
This presents an example (apart from the trivial one) of the long-time ex-
istence of the solution in the problem with suction (illposed problem). To
complete our solution we need to determine the constant C. First of all we
choose the branch of the function 2F 1, so that the points of the ray ζ > 1
have real images. This implies that ImC = 0.

We continue verifying the asymptotic properties of the function f(eiθ, t)
as θ → α− 0. The slope is

lim
θ→α−0

arg[ieiθf ′(eiθ, t)] = α+
π

2
+ lim
θ→α−0

arg

(√
2Qt

α
+
ei

πθ
α − 1

ei
πθ
α + 1

)
= α+ π.

To calculate the shift we choose C such that

lim
θ→α−0

Im [e−iαf ′(eiθ, t)] = 0.

Using the properties of hypergeometric functions we have

lim
γ→0+0

ImF
(α
π
, 1, 1 +

α

π
; eiγ

)
=
α

2
.

Therefore, C = α. We present numerical simulation in Figure 2.7.
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Fig. 2.7. Evolution in the corner of angle: (a) α = 2π/3; (b) α = π/3

The special case with angle α = π/2 has been considered by Kadanoff
[147]. The hypergeometric function reduces to an arctangent and we obtain
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f(ζ, t) = (
√

4Qt/π + 1)ζ + i log
1 + iζ

1 − iζ
+
π

2
, Q > 0.

This function maps the domain {|ζ| > 1, 0 < arg ζ < π/2} onto the infinite
domain bounded by the imaginary axis (Γ1), the ray Γ2 = {r : r ≥

√
4Qt/π+

1} of the real axis and an analytic curve Γ3 which is the image of the circular
arc, see Figure 2.8.
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Fig. 2.8. Kadanoff’s solution

By the analogy with an infinite sink we are able to give solutions for a
finite source (see Figure 2.9). The phase domain is a simply connected finite
domain at the vertex of the corner which is a source. We locate the corner
so that one of the walls lie on the real axis and the other forms the corner
of angle α at the origin. We set G = {ζ : |ζ| < 1, 0 < arg ζ < α}, G3 = {z :
z = eiθ, θ ∈ (0, α)}, G1 = {z : z = reiα, r < 1}, G2 = {z : z = r, r < 1},
∂G = G1 ∪ G2 ∪ G3, and construct a conformal univalent time-dependent
map z = f(ζ, t), f : G→ Ω(t). This map has an expansion

f(ζ, t) = ζ
∞∑

n=0

an(t)ζ
πn
α

near the origin and a0(t) > 0. The equations for this function at the boundary
of G are

Re (ḟ ζf ′) = −Q
α
, for ζ ∈ G3,

where Q < 0, and
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Fig. 2.9. Finite source

Im (ḟ e−iα) = 0 for ζ ∈ G1, Im (ḟ) = 0 for ζ ∈ G2.

We give a solution analogous to the infinite case by

f(ζ, t) =

√
2|Q|t
α

ζ − ζ + 2ζF
(α
π
, 1, 1 +

α

π
;−ζ π

α

)

The numerical simulation is presented in Figure 2.10

Remark. By the proposed method we can perturb several known self-similar
solutions even for more general flows. The idea is as follows. Let f0(ζ, t) =
H(t)F (ζ) be a known solution to the problem, the basic equation of which
is the Polubarinova-Galin equation Re (ḟ ζf ′) =const (positive or negative )
and where ζ belongs to a circular component of the parametric domain. We
are looking for a new solution of the form f(ζ, t) = f0(ζ, t)+g(ζ), where g(ζ)
is an analytic function with an appropriate expansion. Then, on the circular
component this function satisfies the equation

Re
ζg′(ζ)

F (ζ)
= 0.

So one must solve the equation ζg′(ζ) = F (ζ)P (ζ), where P (ζ) is a function
with vanishing real part at the points of the circular component.

2.2.3 Self-similar bubbles

In this subsection we discuss deformation of two-dimensional bubbles in a cor-
ner flow in which there is a replacement of two immiscible fluids one of which
is viscous and the other is effectively inviscid. We shall give self-similar (ho-
mothetic) drop-shaped solutions in a corner that include Ben Amar’s solution
[22] as well as those constructed in [12], [249] as particular cases. Y. Tu [252]
also analyzed of viscous fingering in corners applying the hodograph method
for the complex velocity potential. In the symmetric case this leads to Ben
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Fig. 2.10. Long-pin dynamics of the advancing fluid in the corner of angle: (a)
α = π/2; (b) α = π/3; (c) α = 2π/3

Amar’s solution [22] given in terms of hypergeometric functions, whereas in
the non-symmetric case no explicit solution was given.

The bubbles are assumed to originate at the vertex as in Figure 2.11 and
the bubble-wall contact angles are β ∈ (0, α/2). We let the positive real axis
contain one of the walls and fix the angle between the walls as α ∈ (0, 2π).

Mathematically, this model is described by Robin’s boundary value prob-
lem (2.11–2.14), where the potential function p(z, t) behaves near infinity
as

p ∼ −Q
α

log |z|, as |z| → ∞,
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Fig. 2.11. Ω(t) is the phase domain within an infinite corner and the homogeneous
sink/source at ∞

and where Q is the constant strength of the source (Q < 0) or sink (Q > 0).
Let us consider an auxiliary parametric complex ζ-plane, ζ = ξ + iη. We

set D = {ζ : |ζ| > 1, 0 < arg ζ < π}, D3 = {z : z = eiθ, θ ∈ (0, π)},
D1 = {z : z = −r, r > 1}, D2 = {z : z = r, r > 1}, ∂D = D1 ∪ D2 ∪ D3.
Construct a conformal univalent time-dependent map z = f(ζ, t), f : D →
Ω(t), such that being continued onto ∂D, f(∞, t) ≡ ∞, and the circular arc
D3 of ∂D is mapped onto Γ3 (see Figure 2.12). This map has an expansion
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Fig. 2.12. The parametric domain D

f(ζ, t) = ζα/π
∑∞
k=0 ak(t)ζ

−k near infinity, and a0(t) > 0. The function f
parameterizes the boundary of the domain Ω(t) by Γj = {z : z = f(ζ, t), ζ ∈
Dj}, j = 1, 2, 3.
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The free boundary condition is expressed in terms of the function f as in
preceding subsection by

Re (ḟ ζf ′) =
Q

π
, for ζ ∈ D3, (2.20)

and the wall conditions imply that

Im (ḟ eiα) = 0 for ζ ∈ D1; Im (ḟ) = 0 for ζ ∈ D2. (2.21)

We are going to construct an analogue of the Saffman-Taylor fingers for
the corner flows (self-dilating drops whose interface contains the vertex). An-
alytic solutions were discovered first in the case α = π/2 in [249] and then
for general values of angles in [22], [23], [24]. We give a generalization that,
in fact, presents possible self-similar solutions, and in particular, we obtain
exact solutions for non-symmetric drops.

To simplify matters we scale the angles α, β by α→ απ, β → βπ/2. Let us
analyze the auxiliary mapping f(ζ, t). In the case of self-dilating solutions the
phase domain Ω(t) is a dilation of an initial domain Ω(0). Then the solution
f(ζ, t) to the equations (2.20–2.21) is represented as f(ζ, t) = G(t)F (ζ). Since
Q does not depend on t, the equation (2.20) implies that G(t) = C

√
t, where

C is a constant. Reducing the mapping f to a regular function we represent
it as

f(ζ, t) =
√
tζαg(ζ),

where g(ζ) is an analytic function which is regular at infinity.
The boundary Γ3 starts and ends at the origin under the same bubble-

wall contact angles β ∈ (0, α), and forms a self-similar drop-shaped bubble.
Therefore, the function g(ζ) can be represented as

g(ζ) =

(
1 − 1

ζ2

)β
h(ζ),

where h(ζ) is a regular function in the closure of D. We differentiate equation
(2.20) with respect to θ, taking into account ζ = eiθ, θ ∈ (0, π) and obtain

Im

[
(2α+ 1)

ζg′(ζ)

g(ζ)
+
ζ2g′′(ζ)

g(ζ)

]
= 0, ζ = eiθ.

In terms of the function h we have ImG(ζ) = 0, where

G(ζ) ≡ 2β(2α+ 1)

ζ2 − 1
+

4β(β − 1)

(ζ2 − 1)2
− 6β

ζ2 − 1
+

(
(2α+ 1) +

4β

ζ2 − 1

)
ζh′(ζ)

h(ζ)
+
ζ2h′′(ζ)

h(ζ)
.

Equations (2.21) imply that the equation ImG(ζ) = 0 is satisfied on the
whole boundary D1 ∪D2 ∪D3. The function h(ζ) is regular at ±1, therefore

G(ζ) ∼ 1

(ζ2 − 1)2
as ζ → ±1.
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Taking into account the regularity of h(ζ) near infinity we propose that the
function G has the form

G(ζ) =
4β(β − 1)ζ2

(ζ2 − 1)2
,

although other forms may be possible. Our intention is to obtain a complex
differential equation for which we can construct explicit solutions. So we have
it in the form

4β(α− β)

ζ2 − 1
+

(
(2α+ 1) +

4β

ζ2 − 1

)
ζh′(ζ)

h(ζ)
+
ζ2h′′(ζ)

h(ζ)
= 0.

Changing variables w = 1/ζ2, Y (w) ≡ h(1/
√
w) we come to the hypergeo-

metric equation

(1 − w)wY ′′ + (1 − α− (1 + 2β − α)w)Y ′ − β(β − α)Y = 0. (2.22)

The general solution of (2.22) can be given in terms of the Gauss hyper-
geometric function 2F 1. We thus have two linearly independent solutions

h1(ζ) = F

(
β − α, β, 1 − α;

1

ζ2

)
, h2(ζ) =

1

ζ2α
F

(
β, β + α, 1 + α;

1

ζ2

)
.

Finally, we find f(ζ, t) in the form

f(ζ, t) =
√
tζα

(
1 − 1

ζ2

)β
(C1h1(ζ) + C2h2(ζ)), (2.23)

for real constants C1, C2 and we choose the branch so that f(r) > 0 and
h(r) > 0 for r > 1. Since the primitive

∫
Im

(
|f |2G(eiθ)

∣∣∣∣
h=C1h1+C2h2

)
dθ = Re ḟ(eiθ, t)eiθf ′(eiθ, t)

is constant, we can choose C1, C2 such that it is exactly Q/π > 0 and f(ζ, t)
satisfies the equation (2.20) in the arc {eiθ, θ ∈ (0, π)}. By construction we
have that the function f maps the rays (−∞,−1] and [1,∞) onto the walls
Γ1 and Γ2 respectively. In order to check the univalence of f we note that
given a positive Q and f of the form (2.23), we choose the constants C1, C2

as mentioned above. The function f is starlike with respect to the origin
because Q > 0 and, hence, univalent. If the constant C2 vanishes, then the
equality f(−ζ̄, t) = eiαπf(ζ, t) is easily verified. This means that the solution
is symmetric with respect to the bisectrix of the phase angle, namely the ray
z = reiα/2, r > 0.

In Figures 2.13, 2.14 we present asymmetric drops in angles π/3 and 2π/3
(a,c), as well as the symmetric case (b).
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π/20: (a) C1 = 1, C2 = 0.9; (b) C1 = 1, C2 = 0; (c) C1 = 1, C2 = −1

In the case α = 1/2 the hypergeometric functions reduce to a simpler
form:

h1(ζ) =
1

2

((
1 +

1

ζ

)1−2β

+

(
1 − 1

ζ

)1−2β
)
,
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h2(ζ) =
1

2(1 − 2β)

((
1 +

1

ζ

)1−2β

−
(

1 − 1

ζ

)1−2β
)
,

and we have

f(ζ, t) =

√
t

ζ

(
A(ζ + 1)1−β(ζ − 1)β +B(ζ − 1)1−β(ζ + 1)β

)
, (2.24)

where β ∈ (0, 1/2), Q = 4AB(1 − 2β) sin(π2 (1 − 2β)), A,B > 0. We remark
here that the map f(ζ, t) becomes non-univalent for other choices of A,B, β.

The function f(ζ, t) obviously satisfies the equations (2.20), (2.21). It
maps D onto Ω(t) that is complement of a bubble for any time t. The bound-
ary Γ3 starts and ends at the origin under the same bubble-wall angle πβ/2,
and forms a self-similar drop-shaped bubble. If A = B, then the bubble is
symmetric with respect to the bisectrix of the corner (Figures 2.13(b), 2.14(b)
and 2.15) and the solution is known [12], [249]. If A 6= B, then we have non-
symmetric dynamics (Figures 2.13(a,c), 2.14(a,c), 2.16, 2.17). It is interesting
that although the bubble-wall angles are the same, we have a two-parameter
(A/B, β) continuum of possible developments of fingers.

For angles greater than π the procedure is the same. A corner of angle π
implies other linearly independent solutions of the equation (2.22):

h1(ζ) =
1

ζ2
F

(
β, β + 1, 2;

1

ζ2

)
,

h2(ζ) =
−2 log ζ

ζ2
F

(
β, β + 1, 2;

1

ζ2

)

+

∞∑

k=1

k−2∏
j=0

(β + j)2(β − 1)(β + k − 1)

ζ2k+2(k!)2(k + 1)


2



k−1∑

j=1

1

β + j
−

k∑

j=2

1

j




+
1

β
+

1

β + k
− 1 − 1

k + 1

)
− 1

β(β + 1)
,

that can be treated similarly.
Most of the results presented in this section are found in [178], [179].
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3. Weak solutions and balayage

In the previous chapter we discussed strong solutions, which for their defi-
nition required smooth analytic boundaries. This section is devoted to weak
solutions and their relations to potential theory.

3.1 Definition of weak solution

For the well-posed version (Q < 0) of the Hele-Shaw problem (without surface
tension) there is a good notion of weak solution. It is based on the Baiocchi
transform, replacing the pressure p in (1.12) by

u(z, t) =

∫ t

0

p(z, τ) dτ. (3.1)

This type of transformation, with time t replaced by the vertical coordinate
y, was used by C. Baiocchi in [19] to obtain a variational inequality for-
mulation of the so-called dam problem. For the Hele-Shaw problem, weak
or variational inequality formulations (in somewhat different disguises) were
obtained around 1980 by Elliott, Janovský [74], Sakai [226], [229], Gustafsson
[109]. See also [75].

To arrive at the concept of a weak solution, let Ω(t) be a strong solution
of (1.12–1.14) with Q < 0, i.e., Ω(t) is a smooth family of domains such that
(1.12–1.14) hold. For simplicity we take Q = −1, so that p(·, t) simply is
Green’s function of Ω(t) with the singularity

p(z, t) = − 1

2π
log |z| + harmonic.

Using the Reynolds Transport Theorem and Green’s formula we have

d

dt

∫∫

Ω(t)

ϕdσz =

∫

∂Ω(t)

vnϕds = −
∫

∂Ω(t)

∂p

∂n
ϕds

= −
∫

∂Ω(t)

p
∂ϕ

∂n
ds−

∫∫

Ω(t)

ϕ∆pdσz +

∫∫

Ω(t)

p∆ϕdσz ≥ ϕ(0),
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for any test function ϕ ∈ C∞(C) which is subharmonic in Ω(t). Here we used
that −∆p = δ0 and that p ≥ 0.

We have already remarked that {Ω(t)} is a monotone increasing family.
Integrating the above inequality from s to t, where s < t, gives

∫∫

Ω(t)

ϕdσz −
∫∫

Ω(s)

ϕdσz ≥ (t− s)ϕ(0),

for all ϕ which are subharmonic in Ω(t). In particular,

∫∫

Ω(t)

ϕdσz −
∫∫

Ω(0)

ϕdσz ≥ tϕ(0), (3.2)

which already is the weak formulation given by Sakai [226]. By approximation
any integrable subharmonic function ϕ in Ω(t) is allowed in (3.2). Sakai shows
that given Ω(0) and t > 0 there is a unique, up to null-sets, domain Ω(t)
satisfying (3.2) for these ϕ. If ϕ is harmonic in Ω(t), then both ±ϕ are
subharmonic so we get (3.2) with equality. Therefore, (3.2) contains (1.21)
as a special case (with Q = −1).

To go further, we keep t > 0 fixed and define

u(z, t) =

∫∫

Ω(t)

log |ζ − z|dσζ −
∫∫

Ω(0)

log |ζ − z|dσζ − t log |z|. (3.3)

for any z ∈ C. Notice that this is the difference between the left and the right
member in (3.2) with ϕ chosen to be

ϕ(ζ) = log |ζ − z|.

Since this ϕ is integrable and subharmonic in Ω(t), (3.2) gives that

u ≥ 0 everywhere. (3.4)

For z outside Ω(t) also ϕ(ζ) = − log |ζ − z| is subharmonic in Ω(t), so we
obtain u ≤ 0 outside Ω(t), hence

u(z, t) = 0 for z /∈ Ω(t). (3.5)

Finally, by definition (3.3), u satisfies

χΩ(t) = χΩ(0) + tδ0 +∆u (3.6)

in the sense of distributions.
Equations (3.4)–(3.6) comprise the requirements we shall have on a weak

solution. The function u is a kind of potential (indeed, it is the logarithmic
potential of the measure χΩ(0) − χΩ(t) + tδ) and it is uniquely determined
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by Ω(t), even at every point if the natural representative, given by (3.3), is
chosen. Away from the origin ∆u is a bounded function by 3.6, therefore u is
continuously differentiable in the space variables. Since u attains its minimum
(u = 0) on C\Ω(t), in particular on ∂Ω(t), it follows that also ∇u = 0 there.

On the other hand, as an open set just satisfying (3.4–3.6), Ω(t) is not al-
ways uniquely determined. Indeed, equation (3.6) allows for arbitrary changes
as to null-sets of Ω(t), whereas (3.5) is more sensitive. A point z ∈ Ω(t) may
be removed from Ω(t) only if u(z, t) = 0, while points may be added as long
as the area does not increase and Ω(t) remains an open set. As a matter of
normalization, in order to make Ω(t) uniquely determined as a set, we shall
usually take it to be saturated with respect to area measure. This means that
we add to Ω(t) all discs Ur(z) such that Ur(z) \Ω(t) has area measure zero.
This gives a domain which contains Ω(t), has the same area as Ω(t), and
which cannot be further enlarged keeping these properties.

In summary we state the following definition.

Definition 3.1.1. A weak solution of the Hele-Shaw problem (1.12–1.14)
with Q = −1 is a family {Ω(t) : 0 ≤ t < t0} of bounded open sets containing
the origin such that there exists, for each t, a function u = u(z, t) so that
(3.4)–(3.6) hold.

When u exists satisfying (3.4–3.6) it is given by (3.3), because being = 0
in a neighbourhood of infinity it is the logarithmic potential of (−∇u).

It is clear from the above derivation that a strong solution (if exists)
is always a weak solution. In the case a weak solution is derived from a
strong solution we may differentiate (3.6) with respect to t to obtain that
δ0 + ∆∂u

∂t = 0 in Ω(t). Using that u = |∇u| = 0 on ∂Ω(t), showing that u

grows only quadratically near ∂Ω(t), it also follows that ∂u
∂t = 0 on ∂Ω(t).

Thus, ∂u∂t = p (in (1.12)), so the function u is indeed the Baiocchi transform
of p. Note that u(z, 0) = 0.

There are other types of solutions to Hele-Shaw problem. For example,
Crandall and Lions [45] introduced the notion of viscosity solutions which
was successfully used to study nonlinear elliptic and parabolic equations.
Caffarelli and Vázquez CaffarelliVazquez proved the existence and uniqueness
of the viscosity solution for the porous medium equation, and later, Kim [152]
adapted this notion for the Hele-Shaw problem.

3.2 Existence and uniqueness of weak solutions

For weak solutions we have the following remarkably good existence theorem.

Theorem 3.2.1. Given any bounded open set Ω0 there exists a unique weak
solution {Ω(t) : 0 ≤ t < ∞} with Ω(0) = Ω0 (uniqueness in the strict sense
only if the Ω(t) are required to be saturated).
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Proof. Let t > 0 be fixed. In order to construct Ω(t) we shall relax (3.4–3.6)
further, to

u ≥ 0, (3.7)

χΩ(0) + tδ0 +∆u ≤ 1, (3.8)
∫∫

C

u(1 − χΩ(0) − tδ0 −∆u)dσz = 0. (3.9)

Here Ω(t) has disappeared from the formulation, but u remains and Ω(t) can
finally be recovered again. The system (3.7–3.9) is sometimes called a linear
complementarity problem because it states that two linear inequalities are to
hold and that at each point there shall be equality in at least for one of them.

There are several ways of constructing the solution of (3.7–3.9). The most
direct way of obtaining u is simply to say that u shall be the smallest among
all functions satisfying (3.7), (3.8) alone. This function will satisfy (3.9) as
well.

To see that such a smallest function exists we choose a function ψ satis-
fying

∆ψ = χΩ(0) + tδ0 − 1 in C,

for example,

ψ(z) = − 1

2π

∫∫

Ω(0)

log |ζ − z|dσζ −
t

2π
log |z| − 1

4
|z|2, (3.10)

and set
v = u+ ψ. (3.11)

Then v is to be the smallest among all functions satisfying

{
v ≥ ψ,

−∆v ≥ 0.

We can think of ψ as an obstacle function, and the problem becomes that
of finding the smallest superharmonic function v passing the obstacle. It is
well-known from general potential theory (see, e.g., [11], [213]) that such a v
exists. It is the lower semicontinuous regularization of the pointwise infimum
of all superharmonic functions ≥ ψ. Superharmonic functions are usually
normalized to be lower semicontinuous.

Thus v, and hence u, as above exists. Now we have to show that u sat-
isfies (3.9). For this we continue to work with v. Suppose we have the strict
inequality v(z) > ψ(z) at some point z. Then since v is lower semicontin-
uous and ψ is continuous (outside the origin) there is an ε > 0 and a disk
Ur(z) = {w : |w − z| < r}, (r > 0), such that v ≥ ψ + ε in all Ur(z).
Therefore, if v is not already harmonic in Ur(z), then it can be made smaller
by making a Poisson modification of it (i.e., by replacing v in Ur(z) by the
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harmonic function with the same boundary values on Ur(z)). If the radius
r > 0 is sufficiently small, then the modified v will be ≥ ψ in Ur(z).

From this we realize that ∆v = 0 in the open set {v > ψ}, or that

∆u = ∆ψ = χΩ(0) + tδ0 − 1,

in {u > 0}. This proves (3.9).
Thus we have produced a solution u of (3.7–3.9). One easily sees that

u = 0 outside some large disk UR. In fact, by comparing with an expanding
disk solution one sees that if Ω(0) ⊂ UR0

, then any R > 0 with πR2
0+t < πR2

will do. Thus R depends on t.
To prove that u is unique and to obtain some further properties of it, let

us indicate two other ways of constructing u, or v. By minimizing Dirichlet
integrals (measuring energies) of u and v, keeping one of the inequalities (3.7)
or (3.8) as a side condition, these two problems are:

(i) Minimize
∫
UR

|∇u|2dσz among all u vanishing on ∂UR and satisfying

∆u+ χΩ(0) + tδ0 ≤ 1;

(ii) Minimize
∫
UR

|∇v|2dσz among all functions v which agree with ψ outside
UR and satisfy v ≥ ψ everywhere.

In order to have finite integrals above one should, for the first integral,
smooth out δ0 a little (e.g., to replace δ0 by δ̃ = 1

|Uε|
δUε

for some small

ε > 0). The proper settings then are that one works in the Sobolev space
H1(UR) (or H1

0 (UR) in the case of u). Both problems (i) and (ii) then have
unique solutions which can be characterized by their variational formulations
(variational inequalities).

The variational formulation for (ii) is
∫∫

UR

∇v∇(w − v)dσz ≥ 0,

to hold for all w ≥ ψ having the same boundary values as ψ on ∂UR, or using
Stokes’ theorem ∫∫

UR

∆v (w − v)dσz ≤ 0,

for all w as above. Since any w ≥ v is allowed here, we get ∆v ≤ 0. Choosing
then w = ψ gives ∫∫

UR

∆v (v − ψ)dσz ≥ 0,

hence actually, ∫∫

UR

∆v (v − ψ)dσz = 0.
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Thus, in the two inequalities ∆v ≤ 0 and v ≥ ψ there is nowhere strict
inequalities in both. The problem (i) is treated similarly. In both cases we find
that u and v satisfy linear complementary problems, which expressed in terms
of u are (3.7–3.9). Conversely, one can go backward in the above reasoning,
so the complementary problem (3.7–3.9) is equivalent to the two variational
inequalities and the two minimum problems. In particular, it follows that
the solution u of (3.7–3.9) is unique and that it has finite Dirichlet integral∫∫

|∇u|2dσz (leaving out a neighbourhood of the origin).
Next invoking general regularity theory for the obstacle problem [86],

[154], it follows that u actually is in the higher order Sobolev space H2,p(UR)
for any p <∞. Now define Ω(t) to be the largest open set in which

∆u+ χΩ(0) + tδ0 = 1.

In other words, Ω(t) is the complement of the closed support of the distribu-
tion 1−∆u−χΩ(0)− tδ0. By (3.9), u = 0 outside Ω(t). It is known [154] that
this implies that ∆u = 0 almost everywhere outside Ω(t) (when u ∈ H2,p).
Therefore,

∆u+ χΩ(0) + tδ0 = χΩ(0) + tδ0 < 1

almost everywhere outside Ω(t), hence actually ∆u + χΩ(0) + tδ0 = 0 there
(because χΩ(0) + tδ0 ≥ 1, where it is not zero). Finally, we conclude that

∆u+ χΩ(0) + tδ0 = χΩ(t),

which means that we have established all properties of a weak solution. Note
also that Ω(t) was defined to be saturated. 2

3.3 General properties of weak solutions

It is clear from the way the concept of a weak solution was defined that a
strong solution always is a weak solution. This guarantees the uniqueness of a
strong solution by the uniqueness of the weak one. However, a weak solution
need not be a strong one, e.g., because a weak solution may change topology,
a possibility which is not allowed even in the concept of a strong solution.

A remarkable property of the weak solution is that the time variable t
only occurs as a parameter in it. No derivative with respect to t occurs and
one may jump to compute Ω(t) for only t > 0 directly, without computing it
for any smaller values of t.

The following proposition shows that a weak solution has the monotonic-
ity and semigroup properties one expects.

Proposition 3.3.1. Let {Ω(t)} and {Ω̃(t)} be weak solutions with the initial
domains, or just open sets, {Ω(0)} and {Ω̃(0)} respectively, and let u = ut
and ũ = ũt be the corresponding potentials. Then,
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(a) if Ω(0) is connected, then so is Ω(t) for any t > 0;
(b) if 0 < s < t, then us ≤ ut and Ω(s) ⊂ Ω(t);
(c) if Ω(0) ⊂ Ω̃(0), then Ω(t) ⊂ Ω̃(t) for all t > 0;
(d) if Ω̃(0) = Ω(s) for some s > 0, then Ω̃(t) = Ω(t+ s) for all t > 0.
(e)Inequality (3.2) holds for all integrable subharmonic functions ϕ in Ω(t).

In particular, (taking ϕ = ±1) we have |Ω(t)| = |Ω(0)| + t.

Proof. (a) Let D be a connected component of Ω(t). Then u = 0 on ∂D. If
D does not meet Ω(0), then ∆u = 1 in D, which in view of the maximum
principle contradicts u ≥ 0. Thus every component of Ω(t) intersects Ω(0).

(b) us is the smallest function satisfying us ≥ 0, χΩ(0) + sδ0 +∆us ≤ 1,
and similarly for ut. Since χΩ(0) + sδ0 ≤ χΩ(0) + tδ0, it follows immediately
that us ≤ ut. Outside Ω(t) we have ut = 0, hence also us = 0, and so

χΩ(s) = χΩ(0) + sδ0 +∆us

= χΩ(0) + sδ0 +∆ut

≤ χΩ(0) + tδ0 +∆ut

= χΩ(t) = 0

there. Thus Ω(s) ⊂ Ω(t).
(c) This is proved the same way as (b).
(d) Fix s > 0, t > 0, and set w = us+t − us. Then

∆w = χΩ(s+t) − χΩ(s) − tδ0.

By (b) w ≥ 0 and w = 0 outside Ω(s+ t). Thus {Ω(s+ t), 0 ≤ t <∞} is the
weak solution with the initial domain Ω(s), which is exactly what is stated
in (d).

(e) By (b) Ω(0) ⊂ Ω(t) so (3.2) makes sense. The definition of a weak
solution amounts exact to that (3.2) holds for all ϕ of the form ϕ(ζ) =
log |ζ − z| for z ∈ C, and ϕ(ζ) = − log |ζ − z| for z 6∈ Ω(t) and it is known
[226] that the positive linear combinations of these are dense in the set of
integrable subharmonic functions in Ω(t). Now (e) follows. 2

3.4 Regularity of the boundary

Let {Ω(t) : 0 ≤ t < ∞} be a weak solution. Then Ω(s) ⊂ Ω(t) for all
0 ≤ s < t, but it is not always true that Ω(0) ⊂ Ω(t). If we, for example,
choose the initial domain Ω(0) such that ∂Ω(0) is of positive area measure,
then it will take ∂Ω(t) a finite time to move through ∂Ω(0). Even if Ω(0)
has piecewise smooth boundary containing a corner at z0 with the interior
angle smaller than π/2 it is known [155], [156], [232], that ∂Ω(t) stays at the
corner for some positive time.
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On the other hand, ifΩ(0) is C1-smooth (not only piecewise), thenΩ(0) ⊂
Ω(t). The following regularity theorem is to most parts due to Sakai [227],
[228], and shows that the situation outside Ω(0) is rather pleasant. The last
statement is taken from [116].

Theorem 3.4.1. Assume Ω(0) ⊂ Ω(t). Then ∂Ω(t) consists of finitely many
analytic curves which may have finitely many singularities in the form of
inward cusps or double points, but no other singularities. In case the Ω(t) are
simply connected, the Riemann map f(ζ, t) parameterizing the phase domain
Ω(t) extends analytically to a disk UR(t) where the radius of analyticity R(t) >
1 is nondecreasing as a function of t.

Remark. It is important that Ω(t) is saturated, otherwise the formulation
becomes more complicated. The most difficult part of the proof is actually
to show that Ω(t) is finitely connected. We shall not take this difficulty here,
but just prove the theorem in the case Ω(t) is finitely connected, say simply
connected.

Proof. So assume Ω(t) is simply connected and let f : U → Ω(t) be the
Riemann map, z = f(ζ, t). Using the potential u in (3.4–3.6) we can define a
one-sided Schwarz function, defined in Ω(t) \Ω(0), by

S(z, t) = z̄ − 4
∂u

∂z
.

We see immediately from (3.6) that S(z, t) is analytic in Ω(t)\Ω(0). Since u is
continuously differentiable away from the origin, u ≥ 0 attains its minimum
on C \ Ω(t), and |∇u| = 0 there, S(z, t) is continuous up to ∂Ω(t) with
S(z, t) = z̄ on ∂Ω(t).

The conjugate of S(z) can be interpreted as the anticonformal reflection
in ∂Ω(t) and we use it to extend f in the following way. We extend the
function f by

f(1/ζ̄, t) = S(f(ζ, t)),

for those ζ ∈ U for which f(ζ, t) ∈ Ω(t) \ Ω(0). This defines f analytically
in U and in an annulus 1 < |ζ| < R(t). Here we take R(t) > 1 largest
possible, which means that R(t) = 1/r(t) where 0 < r(t) < 1 is the smallest
radius such that f−1(Ω(0), t) ⊂ Ur(t). Across ∂U we have a certain form of
continuity because of the continuity of S(z, t). Indeed, as |ζ| → 1 with ζ ∈ U
we have

|f(ζ, t) − f(1/ζ̄, t)| = |f(ζ, t) − S(f(ζ, t), t)| → 0, (3.12)

where z = S(z, t) on ∂Ω(t), and therefore, given ε > 0, we have |z−S(z, t)| <
ε for z ∈ Ω(t) in some neighbourhood of ∂Ω(t). By now the function f(ζ, t)
is defined in U as well as in the annulus 1 < |ζ| < R(t), hence, almost every-
where in the disk |ζ| < R(t). Let us prove that the distributional derivative
∂f(ζ, t)/∂ζ̄ vanishes in |ζ| < R(t) using (3.12). Obviously, we must verify
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this across the circle |ζ| = 1. Given a test function ϕ with compact support
in |ζ| < R(t) we have

〈∂f
∂ζ̄
, ϕ〉 = −

∫∫

C

f(ζ, t)
∂ϕ

∂ζ̄
dσζ

= − 1

2i

∫∫

U

f(ζ, t)
∂ϕ

∂ζ̄
dζ̄dζ − 1

2i

∫∫

|ζ|>1

f(ζ, t)
∂ϕ

∂ζ̄
dζ̄dζ

= − 1

2i
lim
ε↓0




∫

|ζ|=1−ε

f(ζ, t)ϕ(ζ) dζ −
∫

|ζ|=1+ε

f(ζ, t)ϕ(ζ) dζ




= − 1

2i
lim
ε↓0

∫

|ζ|=1−ε

(f(ζ, t) − f(1/ζ̄, t))ϕ(ζ) dζ = 0.

In the above curve integrals we take the counterclockwise direction on the
circles. Thus, the function f(ζ, t) is analytic in the disk |ζ| < 1/r(t).

For any pair of numbers s, t such that 0 < s < t ≤ T , we have that
the function h(ζ, s, t) ≡ f−1(f(ζ, s), t) maps the unit disk into itself and
h(0, s, t) ≡ 0. A simple application of the Schwarz Lemma to the function h
shows that

f−1(Ω(0), t) ⊂ Ur(s).

Therefore, r(t) ≤ r(s), hence R(s) ≤ R(t).
We have f(∂U, t) = ∂Ω(t) as sets, f is univalent in U but need not be

univalent on Ū . Therefore, ∂Ω(t) is analytic with possible singularities as
stated. 2

Remark. More generally, the arguments of the proof work for any isolated
component of ∂Ω(t). A different approach to the regularity of ∂Ω(t) was
given in [112]. There it was shown that the analytic continuation of a certain
exponential transform directly gives a real analytic defining function for the
boundary.

3.5 Balayage point of view

At this point it may be apparent that in the treatment of weak solutions
the expression χΩ(0) + tδ0 always appear as one quantity. The weak solution
itself is the family {Ω(t)}, or better {χΩ(t)}. Moreover, time t only plays the
role of a parameter, and for any fixed t > 0 the whole construction really
amounted to the construction of a map

χΩ(0) + tδ0 7→ χΩ(t).
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This map finally came out to be just the addition of the term ∆u, where u
solves the complementary problem (3.7–3.9).

For a further systematic treatment of weak solutions it is really advan-
tageous to take this operator theoretic point of view. Everything looks more
natural if we replace the number one in the right member of (3.8) by a more
general function, say ρ ≥ 0. It will have the interpretation of a density. We
shall use letters µ or similar for what used to be χΩ(0) + tδ0 (also a density,
or a measure denoted as a density).

Assume that µ ≥ 0 is a measure with compact support and that

0 < c1 ≤ ρ ≤ c2 <∞.

Then we define
Bal (µ, ρ) = µ+∆u,

where u is the smallest function satisfying

u ≥ 0 in C, (3.13)

µ+∆u ≤ ρ in C. (3.14)

Such a function exists as before. We also define a corresponding saturated
set Ω (which will be bounded),

Ω = {the largest open set in which µ+∆u = ρ}. (3.15)

Then the complementary condition

{u > 0} ⊂ Ω (3.16)

holds.
The interpretation of Bal is that it performs a kind of balayage – partial

balayage. Indeed, let ν = Bal (µ, ρ), and let

Uµ(z) = − 1

2π

∫∫
log |z − ζ| dµ(ζ)

be the logarithmic potential of µ, and similarly for other measures. Then
since ν = µ+∆u and u = 0 outside Ω (in particular, in a neighbourhood of
infinity) it follows that

u = Uµ − Uν .

The vanishing of u outside Ω, therefore, means that µ and ν are graviequiv-
alent in a certain sense, which explains the word “balayage” (sweeping of
measures without changing exterior potentials). For details we refer to [111],
[119], see also [61].

In view also of the minimization problem (i) in the proof of Theorem 3.2.1,
what the operator µ 7→ ν = Bal (µ, ρ) does, is that it replaces any measure
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µ by a measure ν satisfying ν ≤ ρ (everything denoted as densities) using as
little work ∫∫

|∇u|2dσz = energy of ν − µ

as possible. The result of the whole thing is a measure ν and an open set Ω,
such that

Uν = Uµ outside Ω,

ν = ρ in Ω

(by (3.16) and (3.15) respectively). Thus ν has the desired potential Uµ

outside Ω and the desired density ρ in Ω.
In terms of Bal (µ, ρ), a weak solution of the Hele-Shaw problem now is

just a family of open sets {Ω(t) : 0 ≤ t <∞} satisfying

Bal (χΩ(0) + tδ0, 1) = χΩ(t).

By (d) of Proposition 3.3.1 we also have, for arbitrary s < t,

Bal (χΩ(s) + (t− s)δ0, 1) = χΩ(t).

This is then an instance of a general property of Bal , namely that

Bal (µ1 + µ2, ρ) = Bal (Bal (µ1, ρ) + µ2, ρ).

Take ρ = 1, µ1 = χΩ(0) + tδ0, µ2 = (t − s)δ0 to get the previous statement.
A more general statement is also true:

Bal (µ1 + µ2, ρ1) = Bal (Bal (µ1, ρ2) + µ2, ρ1), (3.17)

whenever ρ1 ≤ ρ2 + µ2.
Similarly, parts (b) and (c) in Proposition 3.3.1 are special cases of the

implication
µ1 ≤ µ2 ⇒ Bal (µ1, ρ) ≤ Bal (µ2, ρ). (3.18)

Given µ, taking here µ1 = min (ρ, µ), µ2 = µ, gives the lower bound in the
estimate

min (ρ, µ) ≤ Bal (µ, ρ) ≤ ρ, (3.19)

because Bal (min (ρ, µ), ρ) = min (ρ, µ). The upper bound is just by definition.
The inequality (3.19) can be reviewed as a regularity statement for the

functions u and v in (i), (ii) (in the proof of Theorem 3.2.1). With, for ex-
ample, ρ = 1, µ = χΩ(0) + tδ0, we get, for u, that 0 ≤ ∆u ≤ 1 away from the
origin, which gives the previously used regularity u ∈ H2,p for all p <∞.

The general structure of Bal (µ, ρ) is

Bal (µ, ρ) = ρχΩ + µχC\Ω . (3.20)

Indeed, (3.20) is true in Ω by definition (3.15) of Ω, and outside Ω we have
u = 0, hence ∆u = 0 there, at least under some regularity assumptions (e.g.,
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µ ∈ L∞); the general case can be handled by an approximation argument
[241]. Thus Bal (µ, ρ) = µ outside Ω.

In the special case of Hele-Shaw dynamics (ρ = 1, µ = χΩ(0) + tδ0) we
have µ ≥ ρ everywhere where µ does not vanish. This guarantees

Bal (µ, ρ) = ρχΩ ,

as is immediate from (3.20) together with the definition (3.15) of Ω. For any
kind of injection Hele-Shaw problem, if the sources are located within the
initial domain Ω(0), and if the accumulated sources up to time t > 0 are
represented by the measure µ(t) ≥ 0, then the weak solution Ω(t) is given by

Bal (χΩ(0) + µ, 1) = χΩ(t).

If there are sources outside Ω(0) and these are sufficiently weak (meaning
that µ(t) < 1 outside Ω(0) and for some time t > 0), then there will also be
the second term in the right member of (3.20),

Bal (χΩ(0) + µ, 1) = χΩ(t) + µχC\Ω(t),

corresponding to some kind of “mushy region”.
As a useful application of (3.17) we have the following. Given t > 0 choose

r > 0 so small that πr2 < t and let

δ̃ =
1

|Ur|
χUr

= Bal (δ0,
1

|Ur|
)

be the Dirac measure swept out to a uniform density on Ur. Then also

tδ̃ = Bal (tδ0,
t

|Ur|
),

for any t > 0. Since t
|Ur|

> 1, (3.17) with ρ1 = 1, ρ2 = t
|Ur|

shows that

Bal (tδ0 + χΩ0
, 1) = Bal (Bal (tδ0,

t

|Ur|
) + χΩ0

, 1)

= Bal (tδ̃ + χΩ0
, 1),

i.e., the Hele-Shaw evolutions with δ0 and δ̃ are exactly the same.

3.6 Existence and non-branching backward of weak

solutions

In this section we discuss the existence and uniqueness of weak and strong
solutions backward in time. For the strong case Tian [250], [251] proved the
local backward existence, uniqueness for an analytic smooth initial boundary,
and the fact that if the initial boundary is not analytic (but still smooth e.g.),
then the backward strong solution will not exist. As to existence of a backward
weak solution {Ω(t)} for some interval −ε < t < 0, satisfying Ω(t) ⊂ Ω(0)
we necessarily need the analyticity of the initial boundary.
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Theorem 3.6.1. Assume that Ω(0) has a smooth analytic boundary and
contains the origin. Then there exists, for some ε > 0, a weak solution {Ω(t)},
−ε < t < 0, with Ω(t) ⊂ Ω(0), such that

Bal (χΩ(s) + (t− s)δ0, 1) = χΩ(t)

holds for any s < t, and in particular,

Bal (χΩ(t) − tδ0, 1) = χΩ(0).

Proof. We first recall that δ0 may be replaced by a smoothed out version of
it, say

δ̃ =
1

|Ur|
χUr

,

where r > 0 is so small that Ur ⊂ Ur ⊂ Ω(0).
Next we construct a domain D satisfying

Ur ⊂ D ⊂ D̄ ⊂ Ω(0),

and a measure µ on D̄ which satisfies dµ = (1 + β)dσz on D̄ for some β > 0,
µ = 0 outside D̄, and for which Bal (µ, 1) = χΩ(0). This is done as follows
(we just outline the construction, more details can be found in [110]). Using
the Cauchy-Kovalevskaya theorem we solve the Cauchy problem





∆u = 1, in Ω(0), near ∂Ω(0),
u = 0, on ∂Ω(0),
∇u = 0, on ∂Ω(0),

in some neighbourhood of ∂Ω(0) in Ω(0). This requires the analyticity of
∂Ω(0). The solution can analytically be gotten directly from the Schwarz
function S(z) of ∂Ω(0) as

u(z) =
1

2
Re

∫
(S(z) − z̄)dz,

where the integration is performed from any point on ∂Ω(0) (and to the point
z in u(z)).

The function u(z) will grow quadratically with the distance from ∂Ω(0)

u(z) ∼ 1

2
dist 2(z, ∂Ω(0))

and we take ∂D to be a level set u = α for u, with α > 0 so small that the
normal derivative in the direction out from D satisfies

∂u

∂n
≤ c1 < 0.

Then in D we take u to solve the Dirichlet problem
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{
∆u = −β, in D,
u = α, on ∂D,

with β > 0 sufficiently small, so that the outward normal derivative of u|D
satisfies

c1 < c2 ≤ ∂u

∂n
< 0.

Extending u by zero outside Ω(0) we have

∆u = χΩ(0) − µ,

where µ is a positive measure on D̄, which has density 1 + β in D and also
has a contribution on ∂D corresponding to the jump of the normal derivative
of u.

Since u ≥ 0, and u = 0 outside Ω(0), we have Bal (µ, 1) = χΩ(0). Now

take ε = πr2β = |Ur|β. Then for −ε ≤ t < 0 we still have µ + tδ̃ ≥ 1 in D.
Therefore,

Bal (µ+ tδ̃, 1) = χΩ(t), (3.21)

for some domains Ω(t), −ε ≤ t < 0, and this will be the weak solution.
One may notice, using (3.17), that

Bal (µ+ tδ̃, 1) = Bal (µ− εδ̃ + (t+ ε)δ̃, 1)

= Bal (Bal (µ− εδ̃, 1) + (t+ ε)δ̃, 1)

= Bal (χΩ(−ε) + (t+ ε)δ̃, 1),

so the family χΩ(t) really is an ordinary weak solution started with Ω(−ε).
By construction of µ, taking t = 0 in (3.21) gives the given initial domain
Ω(0), and for t > 0 one gets the usual forward solution. Thus (3.21) defines
a weak solution on all −ε ≤ t <∞. 2

Remark. By the formula (3.21) we have, for t in a small interval around
t = 0, the solution {Ω(t)} represented by smooth perturbations of a measure
µ, sitting compactly in Ω(0). Moreover, ∂Ω(0) is smooth real analytic. It
is known [34], [234], that the solution {Ω(t)} in such a case also will vary
smoothly in t. Therefore, the solution obtained will in fact be a strong solution
for the Hele-Shaw problem.

A weak solution can branch at any time in the backward direction. This
occurs when a simply connected domain G(t0) = Ω(t0) for some 0 < t0 <∞
appears as a result of a strong simply connected dynamics Ω(t) and at the
same time as a result of a weak dynamics G(t), where G(t) for t < t0 is
multiply connected with some holes to be filled in as t→ t−0 , see Figure 3.1.
Our next result says that branching can take place only when such changes
of topology occur, see [117].
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injection

Fig. 3.1. Branching weak solutions

Theorem 3.6.2. Let G(0) and H(0) be two initial domains in C, and G(t)
and H(t) be the corresponding weak solutions, 0 ≤ t <∞. We assume that

• G(0) ⊂ G(t) and H(0) ⊂ H(t) for all t > 0;
• C \G(t) and C \H(t) are connected for any t > 0;
• there exists 0 < t0 <∞ such that G(t0) = H(t0);
• there exists ε > 0 such that H(0) ⊂ G(t0 − ε).

Then, G(t) = H(t) for all t ∈ (t0 − ε, t0].

Remark. If the initial domain G(0) is bounded by a smooth analytic curve,
then the strong solution exists locally in time and coincides with the weak
one G(t). Since in the strong case the normal velocity at the boundary does
not vanish, the first assumption of the theorem is satisfied whenever the
boundaries of the initial domains are smooth analytic.

Proof. Let us consider t ∈ (t0 − ε, t0) and construct the functions u(z, t) and
v(z, t) that correspond to the domains G(t) and H(t) respectively. Then,

∆u = χG(t) − χG(0) + tδ0,

∆v = χH(t) − χH(0) + tδ0,

u(z, t) ≥ 0, v(z, t) ≥ 0 in C and u(z, t) = 0 in C \ G(t), v(z, t) = 0 in
z ∈ C \H(t).



66 3. WEAK SOLUTIONS AND BALAYAGE

Next consider the function

γ(z, t) = v(z, t0) − u(z, t0) + u(z, t).

One easily calculates

∆γ(z, t) = χG(t) − χH(0) + tδ0.

Under the assumption H(0) ⊂ G(t0 − ε) the function γ(z, t) is harmonic in
C \ G(t) for any t ∈ (t0 − ε, t0), and γ(z, t) = 0 in C \ G(t0). Therefore,
γ(z, t) = 0 in C \ G(t) by harmonic continuation (using that C \ G(t) is
connected).

We have v(z, t) ≥ 0 in C and v(z, t) = 0 in C \H(t). Let us set

w(z, t) = v(z, t0) − v(z, t) − u(z, t0) + u(z, t) = γ(z, t) − v(z, t).

This function is non-positive in C \G(t), and

∆w = χG(t) − χH(t). (3.22)

Therefore, ∆w ≥ 0 in G(t). Hence, w ≤ 0 in C. Moreover, the function w is
subharmonic in the connected set C \H(t). Therefore, w < 0 in C \H(t), or
else, w ≡ 0 in C \H(t) by the maximum principle. Since w(z) = 0 for z of a
sufficiently big norm, only the second option is valid. In particular, ∆w = 0
in C \H(t), which by the equation (3.22) implies that

G(t) ⊂ H(t). (3.23)

By Proposition 3.3.1 (e) we have |H(t)| = |G(t)|. Since G(t) and H(t)
are the saturated sets which satisfy (3.4–3.6) for G(0) and H(0) respectively,
and |∂H(t)| = |∂G(t)| = 0, it follows from (3.23) that G(t) = H(t) for all
t ∈ (t0 − ε, t0). This ends the proof. 2

3.7 Hele-Shaw flow and quadrature domains

Closely related to partial balayage, and hence to Hele-Shaw flow, is the notion
of a quadrature domain. Ideas related to quadrature domain theory have
already been used implicitly in the previous sections. Here we shall spell out
some basic definitions and thus make the connections more explicit.

If µ ≥ 0 is a measure with compact support, then a bounded domain
Ω ⊂ C containing suppµ is called a quadrature domain for subharmonic
functions for µ if the inequality

∫∫

Ω

ϕdσz ≥
∫∫

ϕdµ (3.24)
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holds for all integrable subharmonic functions ϕ in Ω. See [226]. Thus equa-
tion (3.2), says that Ω(t) is a quadrature domain for subharmonic functions
for the measure µ(t) = χΩ(0) + tδ0 and this is an equivalent way of expressing
that the family of domains Ω(t) is a weak Hele-Shaw solution. In general, a
domain Ω (if assumed saturated) is a quadrature domain for subharmonic
functions if and only if Bal (µ, 1) = χΩ . If Bal (µ, 1) is not of this form, i.e., if
there is also a remainder term µχΩc , then there exists no quadrature domain
for subharmonic functions for µ.

In case ϕ is harmonic the inequality (3.24) becomes an equality, be-
cause both ϕ and −ϕ are then subharmonic. Replacing the inequality sign
(3.24) by equality we may also consider analytic (hence complex-valued) test
functions. A particularly rich theory then arises for measures of the form
µ =

∑n
k=1 ckδzk

, i.e., for measures with support in a finite number of points.
Allowing, more generally, µ to be an arbitrary distribution with support in
a finite number of points one arrives at the following classical concept of a
quadrature domain: a bounded domain Ω is called a (classical) quadrature
domain if there exist finitely many points z1, . . . , zm ∈ Ω and coefficients
ckj ∈ C (0 ≤ j ≤ nk−1, 1 ≤ k ≤ m, say), such that the quadrature identity

∫∫

Ω

Φdσz =
m∑

k=1

nk−1∑

j=0

ckjΦ
(j)(zk) (3.25)

holds for every integrable analytic function Φ in Ω. The integer n =
∑m
k=1 nk

is then called the order of the quadrature identity (assuming ck,nk−1 6= 0).
Notions of quadrature domains and identities as above were introduced

in the 1970’s by Davis [57] and Aharonov and Shapiro [4]. For general de-
velopments after that, see e.g., [237], [118]. In [254] quadrature domains as
above are named algebraic domains.

The relationship between classical quadrature domains and Hele-Shaw
flow is immediate from the generalized moment property (ref (1.21)): if Ω(0)
is a quadrature domain as in (3.25), then all domains Ω(t) in a Hele-Shaw
evolution with injection or suction at the origin are quadrature domains as
well. To be precise, if (3.25) holds for Ω(0) and the suction rate is Q, then
the Ω(t) satisfy the quadrature identity

∫∫

Ω(t)

Φdσz =

m∑

k=1

nk−1∑

j=0

ckjΦ
(j)(zk) −QtΦ(0) (3.26)

for any t.

Theorem 3.7.1. Let Ω ⊂ C be a bounded domain. Then the following are
equivalent.

(i) Ω is a (classical) quadrature domain.
(ii) The exterior part ge(z) of the Cauchy transform (1.28) of Ω is a

rational function.
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(iii) There exists a meromorphic function S(z) in Ω, continuous up to
∂Ω, such that

S(z) = z on ∂Ω. (3.27)

If Ω is simply connected a further equivalent property is:
(iv) any Riemann mapping function f : U → Ω is a rational function.

Clearly the function S(z) will be the Schwarz function of ∂Ω. More pre-
cisely, it can be shown [4], [107] that the boundary of a quadrature domain
always is an algebraic curve. This curve may have certain singular points,
namely such points which in the simply connected case are images f(ζ0) of
points ζ0 ∈ ∂U such that f is not univalent in a full neighbourhood of ζ0
(f ′(ζ0) = 0, or f(ζ1) = f(ζ0) for another ζ1 ∈ ∂U). Away from these singular
points S(z) is analytic in a full neighbourhood of ∂Ω, hence is a true Schwarz
function. At singular points S(z) is only a “one-sided Schwarz function”.

Proof. (i) implies (ii): Just choose Φ(ζ) = 1
ζ−z for z ∈ C\Ω in the quadrature

identity.
(ii) implies (iii): Assuming a little regularity of ∂Ω we simply define S(z)

by the formula (1.27) Since ge(z) is rational (by assumption) and gi(z) (see
(1.27)) is always holomorphic in all of Ω, S(z) then is meromorphic in Ω and
the statement follows.

(iii) implies (i): Using the residue theorem we have, when S(z) is mero-
morphic in Ω and Φ is analytic,

∫∫

Ω

Φdσ =
1

2i

∫∫

Ω

Φ(z) dzdz =
1

2i

∫

∂Ω

Φ(z)zdz

=
1

2i

∫

∂Ω

Φ(z)S(z)dz = π
∑

z∈Ω

ResΦ(z)S(z),

which is a quadrature identity of the form (3.25).
(iii) implies (iv): In the presence of S(z) any conformal map f : U → Ω

can be extended to the Riemann sphere by

f(1/ζ) = S(f(ζ)) (3.28)

for ζ ∈ U , i.e., for 1
ζ
∈ U∗ (cf. the proof of Theorem 3.4.1). This makes f

meromorphic in C, hence rational.
(iv) implies (iii): If f is rational we can define S(z) for z = f(ζ) ∈ Ω by

(3.28) and it is easy to see that it becomes meromorphic in Ω with S(z) = z
on ∂Ω.

It is clear from the above proof that when Ω is a quadrature domain the
relationship between the data in (3.25) and the poles of ge(z), S(z) and f(ζ)
is as follows:
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ge(z) =
1

π

m∑

k=1

nk−1∑

j=0

j!ckj
(z − zk)j+1

,

S(z) =
1

π

m∑

k=1

nk−1∑

j=0

j!ckj
(z − zk)j+1

+ regular,

f(ζ) =

m∑

k=1

nk−1∑

j=0

bkj

(ζ − 1/ζk)j+1
+ regular.

Here ζk ∈ U are the points which are mapped onto the quadrature nodes:
f(ζk) = zk. The expressions for the coefficients bkj in terms of ckj and zk
are somewhat complicated because of the nonlinear nature of (3.28) as an
equation for f .

Quadrature domain theory is in many cases helpful for understanding
properties of Hele-Shaw evolutions, and also for construction of explicit solu-
tions. For example, Theorem 3.7.1 gives a new proof of the fact that the
Polubarinova-Galin equation preserves rational mapping functions (Theo-
rem 2.1.1). Indeed, if f(ζ, 0) is a rational function, then Ω(0) is a quadrature
domain, say satisfies (3.25). Hence all the Ω(t) are quadrature domains as
in (3.26), and therefore f(ζ, t) is rational for every t. In addition, from the
above relationships between the poles of f(ζ, t) and the quadrature data {zk},
{ckj}, which by (3.26) remain fixed during the Hele-Shaw evolution (except
for the coefficient at z = 0), it becomes clear that the poles of f(ζ, t) cannot
collide or disappear. The only possible exception here is the pole at infinity
which, being linked to the source/suction point z = 0, may disappear for one
value of t.

Let us next revisit the first example in Section 2.1.2 and try to explain
why it is possible, in the suction case, to have a rational solution f(ζ, t) of the
Polubarinova-Galin equation such that the free boundary reaches the sink,
whereas this is not possible in the pure polynomial case.

In Figure 2.2 the residual fluid domain after suction of fluid at the origin
is the disk Ω = {|z + 1| < 1}, for which the quadrature identity

∫∫

Ω

Φdσz = πΦ(−1)

holds. From this disk the whole Hele-Shaw family may be recovered by in-
jecting fluid at z = 0. This gives a family of quadrature domains Ω(t) with
quadrature nodes at z = −1 (for the original disk) and z = 0 (due to injec-
tion there). Letting the time parameter t be the same as in Section 2.1.2 the
quadrature identities are

∫∫

Ω(t)

Φdσz = πΦ(−1) + (π −Qt)Φ(0),
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0 ≤ t ≤ π/Q. The corresponding mapping functions f(ζ, t) will be the ratio-
nal functions (2.3) with one pole at infinity, corresponding to the quadrature
node z = 0, and one finite pole ζ = 1/c(t) having the property that the
reflected point 1/ζ = c(t) is mapped onto the other quadrature node z = −1.
All this is perfectly fine, and the same argument can be used to show that ra-
tional solutions of the Polubarinova-Galin may end up in virtually any simply
connected quadrature domain Ω with 0 ∈ ∂Ω.

However, these rational solutions can never be of pure polynomial type,
because for polynomial solutions the fluid domains will satisfy quadrature
identities of the kind

∫∫

Ω(t)

Φdσz = (c0 −Qt)Φ(0) + c1Φ
′(0) + · · · + cn−1Φ

(n−1)(0),

and then z = 0 can never be on ∂Ω(t). The corresponding mapping functions
will be of the form f(ζ, t) = a1(t)ζ+ . . . an(t)ζ

n with a1(t) > 0. An important
remark here is that the quadrature identity remains valid for the limiting
domain in the Hele-Shaw evolution, even if the Polubarinova-Galin solution
breaks down there. Notice also that the above coefficient of Φ(0) equals the
area of Ω(t) (choose Φ = 1), hence vanishes only if all fluid has been sucked,
which occurs only in the shrinking disk case.

Returning to quadrature domains in general, let us be a little more explicit
concerning the algebraic boundary of a (classical) quadrature domain. Using
the so-called exponential transform [112] one can show [113] that if Ω is a
quadrature domain such that (3.25) holds, then the equation for ∂Ω can be
written on the form

|Pn(z)|2 =

n−1∑

k=0

|Pk(z)|2, (3.29)

where each Pk(z) is a polynomial of degree k (exactly). The two highest
polynomials Pn(z) and Pn−1(z) make up the rational function ge(z):

ge(z) =

√
|Ω|
π

Pn−1(z)

Pn(z)
,

hence Pn(z) =
∏m
k=1(z − zk)

nk (up to a constant).
It follows in particular that for a rational solution of the Polubarinova-

Galin equation, the fluid fronts ∂Ω(t) are given, in the notations of (3.26),
by equations of the form

|Pn+1(z)|2 =

n∑

k=0

|Pk(z, t)|2,

with Pn+1(z) = z
∏m
k=1(z − zk)

nk and Pn(z, t) determined by
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√
|Ω(0)| −Qt

π

Pn(z, t)

Pn+1(z)
= ge(z, t) =

1

π

m∑

k=1

nk−1∑

j=0

j!ckj
(z − zk)j+1

− Qt

πz
.

To get hold of the remaining polynomials Pk(z, t) (0 ≤ k ≤ n − 1) seems to
be quite difficult in general. See [47] for some studies of such questions. An
overview of applications of quadrature domains to problems in fluid dynamics
is given in [48].





4. Geometric properties

In this chapter we deal with geometric properties of general Hele-Shaw flows.
Special classes of univalent functions that admit explicit geometric interpre-
tations are considered to characterize the shape of the free interface under
injection. In particular, we are concerned with the following question: which
geometrical properties are preserved during the time evolution of the moving
boundary. We also discuss the geometry of weak solutions.

4.1 Distance to the boundary

In this section, using some simple observations found in [135], we shall esti-
mate the minimal distance from the source to the free boundary.

Let us consider the problem of injection (Q < 0) into a bounded domain
Ω(t) parameterized by a univalent function f(ζ, t) that maps the unit disk
U onto Ω(t), normalized as f(ζ, t) = a(t)ζ + a2(t)ζ

2 + . . . , a(t) > 0.
Using the Löwner-Kufarev type equation (1.17) for the function f we

obtain

ȧ(t) = − Q

2π
a(t)

1

2π

2π∫

0

1

|f ′(eiθ, t)|2 dθ.

This immediately gives the inequality

ȧ(t) ≥ − Q

2π

1

a(t)
,

or

a2(t) ≥ a2(0) − Qt

π
.

The 1/4 Koebe theorem (see, e.g., [95]) yields the inequality

dist(∂Ω(t), 0) ≥ 1

4

√
a2(0) − Qt

π
.

A more general result will be given at the end of this chapter.
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4.2 Special classes of univalent functions

Let us define some special classes of univalent functions which will parame-
terize our phase domains.

A domain Ω ⊂ C, 0 ∈ Ω is said to be starlike (with respect to the origin)
if each ray starting at the origin intersects Ω in a connected set. If a function
f(ζ) maps U onto a domain which is starlike, f(0) = 0, then we say that
f(ζ) is a starlike function. If a function f(ζ) maps U onto a domain which
is convex, f(0) = 0, then we say that f(ζ) is a convex function. We denote
the class of starlike functions by S∗ and the class of convex functions by C.
A necessary and sufficient condition for a function f(ζ), ζ ∈ U , f(0) = 0 to
be starlike is that the inequality

Re
ζf ′(ζ)

f(ζ)
> 0, ζ ∈ U (4.1)

holds. Similarly, a necessary and sufficient condition for a function f to be
convex is the inequality

Re

(
1 +

ζf ′′(ζ)

f ′(ζ)

)
> 0, ζ ∈ U. (4.2)

These standard characterizations can be found, e.g., in [8], [65], [98], [206].
A simple way to generalize the class S∗ is to introduce a class of so-called

starlike functions of order α, 0 < α ≤ 1, obtained by replacing 0 in the right-
hand side of (4.1) by the constant α. Let us denote it by S∗

α. It is known that
any convex function is in S∗

1/2 (see [182]). Unfortunately, the classes S∗
α do not

admit any clear geometric interpretation. A more reasonable generalization
has been given by Brannan, Kirwan [32] and Stankiewicz [243]. A function
f : U → C, f(0) = 0 is said to be strongly starlike of order α in U , 0 < α ≤ 1
if for all ζ ∈ U

∣∣ arg ζf ′(ζ)

f(ζ)

∣∣ < α
π

2
. (4.3)

The set of all such functions is denoted by S∗(α). This class of functions has
a better geometric description: every level line Lr = {f(reiθ), θ ∈ [0, 2π)},
f ∈ S∗(α) is reachable from outside by the radial angle π(1− α) (see Figure
4.1).

The inequalities (4.1– 4.3) also give sufficient conditions for an analytic
function f to be univalent (see [13] for a collection of sufficient conditions
of univalence). Kaplan [148] proved that if f(ζ) and g(ζ) are analytic in U ,
g ∈ C, and

Re
f ′(ζ)

g′(ζ)
> 0, ζ ∈ U,

then f is univalent in U . Kaplan gave the name close-to-convex to univalent
functions f that satisfy the above condition. The close-to-convex functions
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π(1 − α)

0

Ω

Fig. 4.1. Strongly starlike functions of order α (S∗(α))

have a nice geometric characterization: every level line Lr of a close-to-convex
function f has no “large hairpin” turns, that is there are no sections of the
curve Lr in which the tangent vector turns backward through an angle greater
than π.

We say that a simply connected hyperbolic domain Ω is convex in the
direction of the real axis R if each line parallel to R either misses Ω, or the
intersection with Ω is a connected set. The study of this class goes back to
Fejér [83] and Robertson [220]. If a function f(ζ) maps U onto a domain
which is convex in the direction of the real axis, f(0) = 0, then we say that
f(ζ) is a convex function in the direction of the real axis and denote the class
of such function by CR (see Figure 4.2). The criterion that characterizes these

0

Ω

Fig. 4.2. Convex functions in the direction of the real axis (CR)
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functions is as follows: the unit disk can be divided into two disjoint arcs I
and J , I = {ζ = eiθ, θ ∈ [0, ϕ] ∪ [ψ, 2π]}, J = {ζ = eiθ, θ ∈ [ϕ,ψ]}, such
that

Re ζf ′(ζ) ≥ 0, for ζ ∈ I,

Re ζf ′(ζ) ≤ 0, for ζ ∈ J.

The harmonic function Re ζf ′(ζ) changes its sign in U . Therefore, the
level lines Lr for 0 < r < 1 need not be convex in the direction of R. Hen-
gartner and Schober [132] proved this in 1973. Their proof used an existence
argument. An example of such a function has been given by Goodman and
Saff [97]. Fejér and Szegö in 1951 [84] proved that if the domain f(U) is
symmetric with respect to the imaginary axis, then the above conditions for
a holomorphic function f , f(0) = 0, are sufficient for its univalence and the
level lines are convex in the direction of R. Prokhorov [210] proved in 1988
that, in general, for any r ∈ (0,

√
2 − 1) the level lines are still convex in the

direction of R. Independently this result (even a more general one) has been
obtained by Ruscheweyh and Salinas [222]. An example by Goodman and
Saff [97] shows that the constant

√
2 − 1 can not be improved.

Now we discuss conformal maps from the right half-plane. A simply-
connected domain Ω with a boundary that contains more than two points
in the extended complex plane C is said to be convex in the negative di-
rection of the real axis R

− if its complement can be covered by a family of
non-intersecting parallel rays starting at the same direction of R

−. A holo-
morphic univalent map f(ζ), ζ ∈ H+, H+ = {ζ : Im ζ > 0}, is said to be
convex in the negative direction if f(H+) is as above. We denote this class
by H−

R
. This is somehow an analogue of the class of starlike functions for the

half-plane. The criterion for this property is

Re f ′(ζ) > 0, ζ = ξ + iη ∈ H+.

We define a subclass H−
R

(α) of H−
R

of functions whose level lines La =
{f(a + iη), η ∈ (−∞,∞)} are reachable by the angles π(1 − α) with their
bisectors co-directed with R

−. We call these functions convex of order α in
the negative direction (see Figure 4.3). The necessary and sufficient condition
for a holomorphic function f to be convex of order α in the negative direction
is that ∣∣ arg f ′(ζ)

∣∣ < α
π

2
, 0 < α ≤ 1, ζ ∈ H+. (4.4)

4.3 Hereditary shape of phase domains

In this section we shall find some geometric properties which are preserved
during the time evolution of the moving boundary.
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Ω

π(1 − α)

Fig. 4.3. Convex functions of order α in the negative direction (H−

R
(α))

4.3.1 Bounded dynamics

Simple examples show that virtually no geometric properties are preserved
in the case of suction, Q > 0. So we henceworth assume that Q < 0.

Starlike dynamics. Let us start with starlike dynamics. We suppose that
the initial function f0 is analytic in the closure of U to guarantee the local
in time existence of solutions (see Section 1.4.3). The following theorem was
proved in [137] (see also [255]). Here we use a slightly modified arguments.

Theorem 4.3.1. Let Q < 0, f0 ∈ S∗, and be analytic and univalent in a
neighbourhood of Ū . Then the family of domains Ω(t) (in the sequel, the
family of univalent functions f(ζ, t)) remain in S∗ as long as the solution to
the Polubarinova-Galin equation exists.

Proof. If we consider f in the closure of U , then the inequality sign in (4.1)
is to be replaced by (≥) where equality can be attained only for |ζ| = 1.

The proof is based on consideration of a critical map f ∈ S∗, such that
the image of U under the map ζf ′(ζ, t)/f(ζ, t), |ζ| ≤ 1 touches the imaginary
axis, say there exist t′ ≥ 0 and ζ0 = eiθ0 , such that

arg
ζ0f

′(ζ0, t
′)

f(ζ0, t′)
=
π

2
(or −π

2 ), (4.5)

and for any ε > 0 there are t > t′ and θ ∈ (θ0 − ε, θ0 + ε) such that

arg
eiθf ′(eiθ, t)

f(eiθ, t)
≥ π

2
(or ≤ −π

2 ). (4.6)
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For definiteness we consider the sign (+) in (4.5). Without loss of generality,
let us assume t′ = 0. Since f ′(eiθ, t) 6= 0, our assumption about the sign in
(4.5) yields that

Im
ζ0f

′(ζ0, 0)

f(ζ0, 0)
> 0, (4.7)

(the negative case is considered similarly).
Since ζ0 is a critical point and the image of the unit disk U under the

mapping ζf ′(ζ,0)
f(ζ,0) touches the imaginary axis at the point ζ0 = eiθ0 , we deduce

that
∂

∂ θ
arg

eiθf ′(eiθ, 0)

f(eiθ, 0)

∣∣∣∣
θ=θ0

= 0,

∂

∂ r
arg

reiθ0f ′(reiθ0 , 0)

f(reiθ, 0)

∣∣∣∣
r=1

≥ 0.

From this we calculate

Re

[
1 +

ζ0f
′′(ζ0, 0)

f ′(ζ0, 0)
− ζ0f

′(ζ0, 0)

f(ζ0, 0)

]
= 0, (4.8)

Im

[
1 +

ζ0f
′′(ζ0, 0)

f ′(ζ0, 0)
− ζ0f

′(ζ0, 0)

f(ζ0, 0)

]
≥ 0. (4.9)

By straightforward calculations one derives

∂

∂t
arg

ζf ′(ζ, t)

f(ζ, t)
= Im

∂

∂t
log

f ′(ζ, t)

f(ζ, t)
= Im

(
∂
∂tf

′(ζ, t)

f ′(ζ, t)
−

∂
∂tf(ζ, t)

f(ζ, t)

)
. (4.10)

We now differentiate the equation (1.16) with respect to θ,

Im

(
f ′(ζ, t)

∂

∂t
f ′(ζ, t) − ζf ′(ζ, t)ḟ(ζ, t) − ζ2f ′′(ζ, t)ḟ(ζ, t)

)
= 0, (4.11)

for |ζ| = 1. This equality is equivalent to the following:

|f ′(ζ, t)|2Im
(

∂
∂tf

′(ζ, t)

f ′(ζ, t)
−

∂
∂tf(ζ, t)

f(ζ, t)

)

= Im (ζf ′(ζ, t)ḟ(ζ, t))

(
ζf ′′(ζ, t)

f ′(ζ, t)
− ζf ′(ζ, t)

f(ζ, t)
+ 1

)
.

Substituting (1.16) and (4.8) in the latter expression we finally have

∂

∂t
arg

ζf ′(ζ, t)

f(ζ, t)

∣∣∣
ζ=eiθ0 ,t=0
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=
Q

2π|f ′(eiθ0 , 0)|2 Im

(
eiθ0f ′(eiθ0 , 0)

f(eiθ0 , 0)
+
eiθ0f ′′(eiθ0 , 0)

f ′(eiθ0 , 0)

)
.

The right-hand side of this equality is strictly negative because of (4.7), (4.9).
Therefore,

arg
eiθf ′(eiθ, t)

f(eiθ, t)
<
π

2

for t > 0 (close to 0) in some neighbourhood of θ0. This contradicts the
assumption that Ω(t) fails to be starlike for some t > 0 and ends the proof
for the class S∗. 2

The property of preservation of starlikeness is especially interesting in
view of Novikov’s theorem [193], that says: if two bounded domains are star-
like with respect to a common point and have the same exterior gravity
potential, then they coincide.

We continue with strongly starlike functions of order α. We shall prove
that starting with a bounded phase domain Ω0 which is strongly starlike
of order α and bounded by an analytic curve we obtain a subordination
chain of domains Ω(t) (and functions f(ζ, t)) under injection at the origin
which remain strongly starlike of order α(t) with a decreasing order α(t).
The following monotonicity theorem is found in [116]. A similar result has
recently and independently been obtained in [168]

Theorem 4.3.2. Let f0 ∈ S∗(α), α ∈ (0, 1], be analytic and univalent in
a neighbourhood of Ū . Then the strong solution f(ζ, t) to the Polubarinova-
Galin equation (1.16) forms a subordination chain of strongly starlike func-
tions of order α(t) with a strictly decreasing α(t) during the time of existence,
α(0) = α.

Proof. Let t0 be such that the strong solution f(ζ, t) exists during the time
t ∈ [0, t0), t0 > 0. Since all functions f(ζ, t) have analytic univalent extension
into a neighbourhood of Ū during the time of the existence of the strong
solution to (1.16), their derivatives f ′(ζ, t) are continuous and do not vanish
in Ū . Moreover, f(ζ, t) are starlike in U (see Theorem 4.3.1). Therefore,
there exists α(t), 0 < α(t) ≤ 1, such that f(ζ, t) ∈ S∗(α(t)) and f(ζ, t) 6∈
S∗(α(t) − ε) for any ε > 0.

Let us fix t′ ∈ [0, t0) and consider the set A of all points ζ, |ζ| = 1 for

which | arg ζf ′(ζ,t′)
f(ζ,t′) | = απ/2. First, we deal with the subset A+ of A where

arg
ζf ′(ζ, t′)

f(ζ, t′)
=
απ

2
. (4.12)

The sets A+ and A− = A\A+ are closed and do not intersect. One of the sets
A+ and A− is allowed to be empty. Without loss of generality we suppose
that A+ 6=Ø. For any point ζ ∈ A+, we have
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Im
ζf ′(ζ, t′)

f(ζ, t′)
> 0. (4.13)

The argument arg ζf ′(ζ,t′)
f(ζ,t′) attains its maximum on ζ ∈ ∂U at the points of

A+. Therefore,

∂

∂ θ
arg

eiθf ′(eiθ, t′)

f(eiθ, t′)
= 0, ζ = eiθ ∈ A+.

The argument arg reiθf ′(reiθ,t′)
f(reiθ,t′)

, eiθ ∈ A+ attains its maximum on r ∈ [0, 1]

at r = 1. Hence,
∂

∂ r
arg

reiθf ′(reiθ, t′)

f(reiθ, t′)

∣∣∣∣
r=1

≥ 0.

We calculate

Re

[
1 +

ζf ′′(ζ, t′)

f ′(ζ, t′)
− ζf ′(ζ, t′)

f(ζ, t′)

]
= 0, (4.14)

Im

[
1 +

ζf ′′(ζ, t′)

f ′(ζ, t′)
− ζf ′(ζ, t′)

f(ζ, t′)

]
≥ 0, (4.15)

where ζ ∈ A+.
Let us represent the derivative

∂

∂t
arg

ζf ′(ζ, t)

f(ζ, t)
= Im

∂

∂t
log

f ′(ζ, t)

f(ζ, t)
= Im

(
∂
∂tf

′(ζ, t)

f ′(ζ, t)
−

∂
∂tf(ζ, t)

f(ζ, t)

)
. (4.16)

Now we differentiate the Polubarinova-Galin equation (1.16) with respect to
θ as

Im

(
f ′(ζ, t)

∂

∂t
f ′(ζ, t) − ζf ′(ζ, t)ḟ(ζ, t) − ζ2f ′′(ζ, t)ḟ(ζ, t)

)
= 0, ζ = eiθ.

(4.17)
This equality is equivalent to

|f ′(ζ, t)|2Im
(

∂
∂tf

′(ζ, t)

f ′(ζ, t)
−

∂
∂tf(ζ, t)

f(ζ, t)

)

= Im

[
ζf ′(ζ, t)ḟ(ζ, t)

((
ζf ′′(ζ, t)

f ′(ζ, t)

)
− ζf ′(ζ, t)

f(ζ, t)
+ 1

)]
.

Substituting (1.16) and (4.14) in the latter expression we have

∂

∂t
arg

ζf ′(ζ, t)

f(ζ, t)

∣∣∣
ζ∈A+,t=t′

=
Q

|f ′(ζ, t′)|2 Im

(
ζf ′(ζ, t′)

f(ζ, t′)
+
ζf ′′(ζ, t′)

f ′(ζ, t′)

)
.

The right-hand side of this equality is continuous on A+ and strictly negative
because of (4.13), (4.15). Therefore,
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max
ζ∈A+

∂

∂t
arg

ζf ′(ζ, t)

f(ζ, t)

∣∣∣
t=t′

= −δ < 0.

There exists a neighbourhood A+(δ) on the unit circle of A+ such that A+(δ)
and A− do not intersect and

∂

∂t
arg

ζf ′(ζ, t)

f(ζ, t)

∣∣∣
ζ∈A+(δ),t=t′

< −δ
2
.

There is a positive number σ such that

max
ζ∈∂U\A+(δ)

arg
ζf ′(ζ, t)

f(ζ, t)

∣∣∣
t=t′

=
απ

2
− σ.

We choose such s > 0 that

(i) t′ + s < t0;

(ii)
∂

∂t
arg

ζf ′(ζ, t)

f(ζ, t)

∣∣∣
ζ∈A+(δ)

< 0, t ∈ [t′, t′ + s];

(iii) max
ζ∈∂U\A+(δ)

arg
ζf ′(ζ, t)

f(ζ, t)
≤ απ

2
− σ

2
, t ∈ [t′, t′ + s].

The condition (ii) implies that

arg
ζf ′(ζ, t)

f(ζ, t)
<
απ

2
, t ∈ (t′, t′ + s], ζ ∈ A+(δ).

Thus, the condition (iii) yields

α+(t) := max
ζ∈∂U

arg
ζf ′(ζ, t)

f(ζ, t)
<
απ

2
= α(t′), for all t ∈ (t′, t′ + s].

This means that α+(t) is strictly decreasing in [0, t0).
If the set A− 6=Ø, then we can define the function

α−(t) := − min
ζ∈∂U

arg
ζf ′(ζ, t)

f(ζ, t)
.

Similar argumentation shows that α−(t) is strictly decreasing.
If A− =Ø (or A+ =Ø), then α(t) = α+(t) (or = α−(t)) for t ∈ [t′, t′ + s],

s sufficiently small.
We set the function α(t) = max{α+(t), α−(t)} in the case A+ 6=Ø and

A− 6=Ø. The so defined function α(t) is strictly decreasing, that ends the
proof. 2
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Directional convex dynamics. We proceed with the class CR and the
dynamics under injection (Q < 0).

Theorem 4.3.3. If the initial domain Ω(0) is convex in the direction of R,
then the family of domains Ω(t) (in sequel, the family of univalent functions
f(ζ, t)) preserves this property as long as the solution of the Hele-Shaw prob-
lem exists and the level lines of the function f(ζ, t) also are convex in the
direction of R in a neighbourhood |ζ| ∈ (1 − ε, 1].

Remark. The last requirement is fulfilled always if the initial domain Ω0 is
symmetric with respect to the imaginary axis due to Fejér and Szegö [84].

Proof. Let us again consider a critical map f ∈ CR, such that the image
of U under the map ζf ′(ζ, t), |ζ| ≤ 1 touches the imaginary axis. In other
words, there exists ζ0 = eiθ0 , which satisfies the equality arg ζ0f

′(ζ0, 0) = π
2

(or −π
2 ) at the initial instant t = 0 and for any ε > 0 there is such t > 0

and θ ∈ (θ0 − ε, θ0 + ε) that arg eiθf ′(eiθ, t) ≥ π
2 (or ≤ −π

2 ). Of course,
arg eiϕf ′(eiϕ, 0) = π

2 and arg eiψf ′(eiψ, 0) = −π
2 . In this case the curve

eiθf ′(eiθ, t) has the intersection with the imaginary axis at the points ϕ, ψ.
Then, ∂

∂ θ arg eiθf ′(eiθ, t) ≥ 0, or Re (1 + ζ f ′′(ζ, 0)/f ′(ζ, 0)) > 0 for ζ = reiθ

for all r ∼ 1, r 6= 1, and θ ∼ ϕ or ψ. Thus, the level lines of the function f are
of positive curvature, therefore, due to the argument of continuity, they are
still of positive curvature locally in time t > 0 and reachable by horizontal
rays. So we suppose that arg ζ0 ≡ θ0 6= ϕ, or ψ on the smooth boundary of
f(U, 0) = Ω0. Let us assume θ0 ∈ [0, ϕ)∪ (ψ, 2π]. For other location of θ0 the
proof is similar. For definiteness, we put

arg ζ0f
′(ζ0, 0) =

π

2
. (4.18)

Since f ′(eiθ, t) 6= 0, we have that Im ζ0f
′(ζ0, 0) > 0. Since ζ0 is a critical

point and the image of the unit disk U under the mapping ζf ′(ζ, 0) touches
the imaginary axis at the point ζ0 = eiθ0 , we deduce that

∂

∂ θ
arg eiθf ′(eiθ, 0)

∣∣
θ=θ0

= 0,

∂

∂ r
arg eiθ0f ′(reiθ0 , 0)

∣∣
r=1

≥ 0.

We calculate

Re

[
1 +

ζ0f
′′(ζ0, 0)

f ′(ζ0, 0)

]
= 0, (4.19)

Im

[
1 +

ζ0f
′′(ζ0, 0)

f ′(ζ0, 0)

]
≥ 0. (4.20)

Let us show that in (4.20) the equality sign is never attained. If it were so,
we would conclude that (ζf ′(ζ, 0))′

∣∣
ζ=ζ0

= 0 because of (4.18). This means
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that the function Re ζf ′(ζ, 0) admits both signs in a neighbourhood of ζ0 in
U . This contradicts the condition that the level lines preserve the property
to be convex in the direction of R. Therefore, there is a strict inequality in
(4.20).

Then we derive

∂

∂t
arg ζf ′(ζ, t) = Im

∂

∂t
log f ′(ζ, t) = Im

∂
∂tf

′(ζ, t)

f ′(ζ, t)
. (4.21)

Now we use the result of differentiating (4.11) and come to the equality

|f ′(ζ, t)|2Im
∂
∂tf

′(ζ, t)

f ′(ζ, t)
= Im (ζf ′(ζ, t)ḟ(ζ, t))

(
ζf ′′(ζ, t)

f ′(ζ, t)
− 1

)
.

Substituting (4.31) and (4.19) in the latter expression we finally have

∂

∂t
arg ζf ′(ζ, t)

∣∣∣
ζ=eiθ0

=
Q

2π|f ′(eiθ0 , 0)|2 Im

(
1 +

eiθ0f ′′(eiθ0 , 0)

f ′(eiθ0 , 0)

)
.

The right-hand side of this equality is strictly negative because of (4.20) and
the remark thereafter. Hence, arg eiθf ′(eiθ, t) < π

2 for t > 0 close to 0 in
a neighbourhood of θ0. This contradicts the assumption that ζ0 is a critical
point and ends the proof for the class CR. 2

Close-to-convex dynamics. Of course, a function from CR is close-to-
convex. But in general, a result analogous to the previous theorem for close-
to-convex functions is not true [137], because the level lines of a close-to-
convex function remain to be close-to-convex but may fail to be CR. Here
we give an example to prove that the solutions of the inner problem do not
preserve the property of the initial flow domain to be close-to-convex.

It is known [148] that close-to-convexity is equivalent to the following
analytic assertion: for any θ1, θ2 such that 0 < θ2 − θ1 < 2π, the inequality

θ2∫

θ1

[
1 + Re

reiθf ′′(reiθ)

f ′(reiθ)

]
dθ ≥ −π, 0 < r ≤ 1,

holds (the equality sign is possible when r = 1). Denote by

H(θ1, θ2, f(ζ, t)) =

θ2∫

θ1

[
1 + Re

(
ζ
∂

∂ ζ
log f ′(ζ, t)

)]
dθ, ζ = reiθ.

Let f(ζ, t′) be a critical close-to-convex mapping, i.e., there are θ1 and θ2,
such that 0 < θ2 − θ1 < 2π and H(θ1, θ2, f(eiθ, t′)) = −π. Without loss of
generality we assume t′ = 0. Therefore, the integrals J1(θ) = H(θ, θ2, f0(e

iθ))
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and J2(θ) = H(θ1, θ, f0(e
iθ)), as differentiable functions of the first and the

second argument of H respectively, have the local maxima J1(θ) at the point
θ1 and J2(θ) at the point θ2, i.e., J ′

1(θ1) = 0 and J ′
2(θ2) = 0. This means

Re

(
eiθ1

f ′′0 (eiθ1)

f ′0(e
iθ1)

)
= Re

(
eiθ2

f ′′0 (eiθ2)

f ′0(e
iθ2)

)
= −1. (4.22)

The function J3(r) = H(θ1, θ2, f0(re
iθ)) locally decreases in r ∈ (0, 1] in the

neighbourhood of 1−, and J3 is differentiable in this semi-interval. Hence,

J ′
3(1

−) = Im

θ2∫

θ1

d

(
eiθf ′′0 (eiθ)

f ′0(e
iθ)

)
= Im

(
eiθ2f ′′0 (eiθ2)

f ′0(e
iθ2)

− eiθ1f ′′0 (eiθ1)

f ′0(e
iθ1)

)
≤ 0.

(4.23)
Checking the sign of

∂ H(θ1, θ2, f0(e
iθ))

∂ t

at the point t = 0+ we come to the decision about close-to-convexity. If it is
negative, then there is a neighbourhood (0, ε) where H(θ1, θ2, f(ζ, t)) < −π,
that contradicts the condition of close-to-convexity.

As in preceding subsections we deduce from the Polubarinova-Galin equa-
tion

∂

∂ t
H(θ1, θ2, f(eiθ, t))

∣∣∣∣∣
t=0

=
−Q

|f ′(eiθ, 0)|2 Im
eiθf ′′(eiθ, 0)

f ′(eiθ, 0)

]θ2

θ1

. (4.24)

We have Q < 0 for injection and consider an example of critical map

f0(ζ) =

ζ∫

0

exp

[
− 1

2π

2π∫

0

(γ(θ) − θ − π

2
)S(θ, ζ)dθ

]
dζ,

where S(θ, ζ) is the Schwarz-Poisson kernel

S(θ, ζ) =
eiθ + ζ

eiθ − ζ
,

γ(θ) = 3
2π(1 + sin (απ (θ − π))), α = π − arcsin 2

3 , θ2 = −θ1 = π − π2

2α . This

function satisfies the condition f0(ζ̄) = f0(ζ), hence |f ′
0(e

iθ1)| = |f ′0(eiθ2)|.
By (4.23) we obtain that the right-hand side in (4.24) is not positive. So it

suffices to prove that Im
eiθf ′′

0 (eiθ)
f ′
0(e

iθ)

∣∣∣∣
θ2

θ1

6= 0.

Calculate integrating by parts

Im
eiθf ′′0 (eiθ)

f ′0(e
iθ)

∣∣∣∣
θ2

θ1

=
−3α2

2π2

2π∫

0

sin(
α

π
(θ − π)) log

[
1 + cos(θ +

π2

2α
)
]
dθ. (4.25)
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From the obvious inequality π
2 <

π2

2α < π it easily follows that the right-hand
side of (4.25) is strictly negative and remains negative for f(ζ, t) in some time
interval t ∈ [0, ε).

To complete the proof we show that f0(ζ) is close-to-convex and univalent
verifying the condition Re f ′

0(ζ) ≥ 0. This condition is equivalent to the
inequality

−π
2
≤ Re

1

2π

2π∫

0

(γ(θ) − θ − π

2
)
eiθ + ζ

eiθ − ζ
dθ ≤ π

2
.

The right-hand side inequality is equivalent to
∫ 2π

0
(γ(θ)−θ−π)P (ζ, θ)dθ ≤ 0,

where P (ζ, θ) ≡ ReS(ζ, θ) is the Poisson kernel. The sign is obviously verified.
The left-hand side inequality can be considered analogously.

4.3.2 Dynamics with small surface tension

As we mentioned in Section 1.4.4, in most practical experiments zero surface
tension process never occurs in the three dimensional case. A 2-D approxima-
tion of the 3-D effect is given by introducing surface tension in the 2-D case.
At the same time the non-zero surface tension model regularizes the illposed
problem.

We recall from Section 1.4.4 that the governing equations for the nonzero
surface tension model are

∆p = Qδ0, in z ∈ Ω(t), (4.26)

p = γκ(z), on z ∈ Γ (t), (4.27)

vn = − ∂p

∂n
, on z ∈ Γ (t), (4.28)

where κ is the curvature of the boundary and γ is surface tension. The prob-
lem of the existence of the solution in the non-zero surface tension case has
been discussed in Section 1.4.4.

Now we obtain the equation for the free boundary using an auxiliary
parametric univalent map. To derive it let us consider the complex potential
W (z, t), Re W = p. For each fixed t this is an analytic function defined in
Ω(t) which solves the Dirichlet problem (4.26–4.27) in the sense that its real
part induces the same distribution as the solution of the problem (4.26–4.27).
In the neighbourhood of the origin we have the expansion

W (z, t) =
Q

2π
log z + w0(z, t), (4.29)

where w0(z, t) is an analytic regular function in Ω(t).
To derive the equation for the free boundary Γ (t) we use the same argu-

ments as in Sections 1.4.1, 1.4.2 and consider the Riemann conformal univa-
lent map f(ζ, t) from the unit disk U = {ζ : |z| < 1} into the phase plane
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f : U → Ω(t), f(0, t) = 0, f ′(0, t) > 0. Then the moving boundary is param-
eterized by Γ (t) = {f(eiθ, t), θ ∈ [0, 2π)}. The normal velocity vn of Γ (t) in
the outward direction is given by vn = −∂p/∂n . The normal outer vector is
given by the formula

n = ζ
f ′

|f ′| , ζ ∈ ∂U.

Therefore, the normal velocity is obtained as

vn = V · n = −Re

(
∂W

∂z
ζ
f ′

|f ′|

)
.

The superposition (W ◦ f)(ζ, t) is an analytic function in the unit disk. Since
the Laplacian is invariant under conformal map, the solution to the Dirichlet
problem (4.26–4.27) is given in terms of the ζ-plane as

(W ◦ f)(ζ, t) =
Q

2π
log ζ +

γ

2π

2π∫

0

κ(eiθ, t)
eiθ + ζ

eiθ − ζ
dθ + iC, (4.30)

where

κ(eiθ, t) =
Re
(
1 + eiθf ′′(eiθ, t)/f ′(eiθ, t)

)

|f ′(eiθ, t)| , θ ∈ [0, 2π).

We calculate
∂κ(eiθ, t)

∂θ
=

−Im e2iθSf (e
iθ, t)

|f ′(eiθ, t)| ,

with the Schwarzian derivative (see e.g. [65], [206], [207])

Sf (ζ) =
∂

∂ζ

(
f ′′(ζ, t)

f ′(ζ, t)

)
− 1

2

(
f ′′(ζ, t)

f ′(ζ, t)

)2

.

Differentiating (4.30) we deduce that

ζ
∂W

∂z
f ′(ζ, t) =

Q

2π
+
γ

π

2π∫

0

κ(eiθ)ζeiθ

(eiθ − ζ)2
dθ, ζ ∈ U.

Integrating by parts we obtain

ζ
∂W

∂z
f ′(ζ, t) =

Q

2π
− γ

2πi

2π∫

0

Im e2iθSf (e
iθ, t)

|f ′(eiθ, t)|
eiθ + ζ

eiθ − ζ
dθ.

On the other hand, we have vn = Re ḟ ζf ′/|f ′|, and applying the Sokhotskĭı-
Plemelj formulae [187] we, finally, get

Re ḟ(ζ, t)ζf ′(ζ, t) = − Q

2π
− γH

[
iIm

ζ2Sf (ζ, t)

|f ′(ζ, t)|
]
(θ), (4.31)
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ζ = eiθ, where the Hilbert transform in (4.31) is of the form

1

π
p.v.θ

2π∫

0

ψ(eiθ
′

)dθ′

1 − ei(θ−θ′)
= H[ψ](θ).

For γ = 0 we just have equation (1.16).
From (4.31) one can derive a Löwner-Kufarev type equation by the

Schwarz-Poisson formula:

ḟ = −ζf ′ 1

2π

2π∫

0

1

|f ′(eiθ, t)|2
( Q

2π
+ γH

[
iIm

e2iθSf (e
iθ, t)

|f ′(eiθ, t)|
]
(θ)
)eiθ + ζ

eiθ − ζ
dθ,

(4.32)
where ζ ∈ U .

An interesting question appears when γ → 0. It turns out that the solution
in the limiting γ-surface-tension case need not always be the correspond-
ing zero surface tension solution (see the discussion in [239], [245], [251]).
This means that starting with a domain Ω(0) = Ω(0, γ) we come to the do-
main Ω(t, γ) at an instant t using surface tension γ and to the domain Ω(t)
at the same instant t in the zero surface tension model. Then the domain
lim
γ→0

Ω(t, γ) = Ω(t, 0) is not necessarily the same as Ω(t) (see numerical evi-

dence in [212]). If the boundary Γ is highly curved, then the condition (4.27)
must be used even though γ is small. Obviously, the non-zero surface tension
model never develops cusps. Thus, solutions and geometric behaviour of the
free boundary for small γ are of particular interest.

4.3.3 Geometric properties in the presence of surface tension

We need the following technical lemma.

Lemma 4.3.1. For the function f : U → C which parameterizes the phase
domain Ω(t) we have the equality

∂

∂θ
H
[ ie2iθImSf (e

iθ)

|f ′(eiθ)|
]
(θ) = −H[iA](θ)

with

A(ζ) =

Re

(
2ζ2Sf (ζ) + ζ

[ (
f ′′(ζ)
f ′(ζ)

)′′
− f ′′(ζ)

f ′(ζ)

(
f ′′(ζ)
f ′(ζ)

)′ ])
+ Im ζf ′′(ζ)

f ′(ζ) Im ζ2Sf (ζ)

|f ′(ζ)| .

Proof. We denote by
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Φ(ζ) =
i

π

2π∫

0

Im e2iθ
′

Sf (e
iθ′)

|f ′(eiθ′ , t)|
eiθ

′

eiθ′ − ζ
dθ′, ζ ∈ U.

Then, by the Sokhotskĭı-Plemelj formulae we deduce that

lim
ζ→(1−0)eiθ

Φ(ζ) = i
Im e2iθ

′

Sf (e
iθ′)

|f ′(eiθ′ , t)| −H
[
i
Im e2iθ

′

Sf (e
iθ′)

|f ′(eiθ′ , t)|
]
(θ).

We note that the second term in the above relation is real, that can be easily
seen by the definition of Φ and the Schwarz integral formula. The left-hand
side in (4.31) is differentiable on θ and that is why one can calculate the
derivative in question as the limit

∂

∂θ
H
[
i
Im e2iθ

′

Sf (e
iθ′)

|f ′(eiθ′ , t)|
]
(θ) = Im lim

ζ→(1−)eiθ
ζΦ′(ζ).

We calculate

Φ′(ζ) =
i

π

2π∫

0

Im e2iθ
′

Sf (e
iθ′)

|f ′(eiθ′ , t)|
eiθ

′

(eiθ′ − ζ)2
dθ′.

Integration by parts leads to the equality

ζΦ′(ζ) =
1

π

2π∫

0

A(eiθ
′

)
ζ dθ′

eiθ′ − ζ
.

Thus, we apply the Sokhotskĭı-Plemelj formulae once again and get the as-
sertion of the Lemma 4.3.1. 2

Theorem 4.3.4. Let Q < 0 and the surface tension γ be sufficiently small.
If the initial domain Ω(0) is strongly starlike of order α, then there exists
t = t(γ) ≤ t0, such that the family of domains Ω(t) (in the sequel, the
family of univalent functions f(ζ, t)) preserves this property during the time
t ∈ [0, t(γ)].

Remark. For γ = 0 we have the result of Theorem 4.3.2.

Proof. If we consider f in the closure of U , then the inequality sign in (4.3)
can be replaced by (≤) where equality can be attained for |ζ| = 1.

We suppose that there exist a critical map f ∈ S∗(α) of exact order α,
that is the image of U under the map ζf ′(ζ, t)/f(ζ, t), |ζ| ≤ 1 touches the
boundary rays l± of the angle arg w ∈ [−απ2 , απ2 ], say there exist such t′ ≥ 0
and ζ0 = eiθ0 , that

arg
ζ0f

′(ζ0, t
′)

f(ζ0, t′)
= α

π

2
(or −απ2 ), (4.33)
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and for any ε > 0 there is such t > t′ and θ ∈ (θ0 − ε, θ0 + ε) that

arg
eiθf ′(eiθ, t)

f(eiθ, t)
≥ α

π

2
(or ≤ −απ2 ).

For definiteness we put the sign (+) in (4.33). Without loss of generality, let
us assume t′ = 0. Since f ′(eiθ, t) 6= 0, our assumption about the sign in (4.33)
yields that

Im
ζ0f

′(ζ0, 0)

f(ζ0, 0)
> 0, (4.34)

(the negative case is considered similarly).
Since ζ0 is a critical point and the image of the unit disk U under the

mapping ζf ′(ζ,0)
f(ζ,0) touches the ray l+ at the point ζ0 = eiθ0 , we deduce that

∂

∂ θ
arg

eiθf ′(eiθ, 0)

f(eiθ, 0)

∣∣∣∣
θ=θ0

= 0,

∂

∂ r
arg

reiθ0f ′(reiθ0 , 0)

f(reiθ, 0)

∣∣∣∣
r=1

≥ 0.

We calculate

Re

[
1 +

ζ0f
′′(ζ0, 0)

f ′(ζ0, 0)
− ζ0f

′(ζ0, 0)

f(ζ0, 0)

]
= 0, (4.35)

Im

[
1 +

ζ0f
′′(ζ0, 0)

f ′(ζ0, 0)
− ζ0f

′(ζ0, 0)

f(ζ0, 0)

]
≥ 0. (4.36)

One can derive

∂

∂t
arg

ζf ′(ζ, t)

f(ζ, t)
= Im

∂

∂t
log

f ′(ζ, t)

f(ζ, t)
= Im

(
∂
∂tf

′(ζ, t)

f ′(ζ, t)
−

∂
∂tf(ζ, t)

f(ζ, t)

)
. (4.37)

We now differentiate the equation (4.31) with respect to θ using Lemma 4.3.1,

Im

(
f ′(ζ, t)

∂

∂t
f ′(ζ, t) − ζf ′(ζ, t)ḟ(ζ, t) − ζ2f ′′(ζ, t)ḟ(ζ, t)

)
= −γH[iA](θ),

(4.38)
for ζ = eiθ. This equality is equivalent to the following:

|f ′(ζ, t)|2Im
(

∂
∂tf

′(ζ, t)

f ′(ζ, t)
−

∂
∂tf(ζ, t)

f(ζ, t)

)

= Im (ζf ′(ζ, t)ḟ(ζ, t))

(
ζf ′′(ζ, t)

f ′(ζ, t)
− ζf ′(ζ, t)

f(ζ, t)
+ 1

)
− γH[iA](θ).

Substituting (4.31) and (4.35) in the latter expression we finally have
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∂

∂t
arg

ζf ′(ζ, t)

f(ζ, t)

∣∣∣
ζ=eiθ0 ,t=0

=
1

|f ′(eiθ0 , 0)|2
(
Q

2π
+ γH

[
iIm

e2iθSf (e
iθ, t)

|f ′(eiθ, t)|
]
(θ0)

)
×

×Im

(
eiθ0f ′(eiθ0 , 0)

f(eiθ0 , 0)
+
eiθ0f ′′(eiθ0 , 0)

f ′(eiθ0 , 0)

)
− γ

H[iA(eiθ)](θ0)

|f ′(eiθ0 , 0)|2 . (4.39)

The right-hand side of this equality is strictly negative for small γ because
of (4.34), (4.36). Therefore,

arg
eiθf ′(eiθ, t)

f(eiθ, t)
< α

π

2

for t > 0 (close to 0) in some neighbourhood of θ0. This contradicts the
assumption that Ω(t) fails to be starlike for t > 0 and ends the proof for the
class S∗(α). 2

4.3.4 Unbounded regions with bounded complement

We now consider a Hele-Shaw cell in which the fluid occupies a full neighbour-
hood of infinity, so that the complementary set is a finite bubble. Injection
or suction is supposed to take place at the point of infinity. This model has
various applications in the boundary problems of gas mechanics, problems of
metal or polymer swamping, etc., where the air viscosity is neglected. More
about this problem is found in [76], [140].

As usual we denote by Ω(t) the fluid domain, i.e., in this case the un-
bounded complement of the bubble in consideration (see Figure 4.4). Let p

0

y

x

Ω(t)

Γ (t)

Fig. 4.4. Ω(t) is the complement to a bounded simply connected bubble with the
boundary Γ (t) and the sink/source at infinity

be the pressure in the domain Ω(t) occupied by the fluid. We construct the
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complex potential W (z, t), Re W = p. For each fixed t this is an analytic
function defined in Ω(t) which solves the problem

∆p = 0, in z ∈ Ω(t), (4.40)

p = 0, on z ∈ Γ (t), (4.41)

vn = − ∂p

∂n
, on z ∈ Γ (t), (4.42)

normalized about infinity by

p ∼ Q

2π
log |z|, as |z| → ∞,

where Q is the rate of bubble release caused by air extraction, Q < 0 in
the case of contracting bubble, Q > 0 otherwise. For this choice of Q the
case of Q < 0 is stable whereas Q > 0 is not. Mathematical treatment for
the case of a contracting bubble was presented in [76]. In particular, the
problem of the limiting configuration was solved. It was proved that the
moving boundary tends to a finite number of points which give the minimum
to a certain potential. There an interesting problem was posed: to describe
domains whose dynamics presents only one limiting point. Howison [140]
proved that a contracting elliptic bubble has a homothetic dynamics to a
point (in particular, this is obvious for a circular one). Entov, Ètingof [76]
(see also [254]) have shown that a contracting bubble which is convex at the
initial instant preserves this property up to the moment when its boundary
reduces to a point. These domains are called “simple” in [76].

Now our parametric domain is the exterior part of the unit disk, and there
exists a unique conformal univalent map F (ζ, t) from the domain U ∗ = {ζ :
|z| > 1} into the phase plane F : U∗ → Ω(t), F (ζ, t) = aζ + a0 + a−1

ζ + . . . ,

a > 0. By a shift we assume 0 6∈ closure(F (U ∗, t)).
We repeat the calculations of the preceding subsections taking into ac-

count that the normal vector is calculated as

n = −ζF ′/|F ′|, |ζ| = 1,

and come to the Polubarinova-Galin equation:

Re Ḟ (ζ, t)ζF ′(ζ, t) =
Q

2π
, (4.43)

The Löwner-Kufarev realization of this equation is easily obtained by analogy
with the equation (1.16).

Hereditary properties. We call the problem with injection at infinity the
outer problem. In other words we consider the stable case of a contracting
bubble, Q < 0. Here we prove that a contracting starlike bubble preserves
the property of starlikeness and directional convexity.
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Let us suppose that the complement of the fluid domain contains the
origin and starlike with respect to the origin at the initial instant. Therefore,
if a function F (ζ) = aζ + a0 + a−1/ζ + . . . is defined outside of the unit disk,
then the function f(ζ) = 1/F (1/ζ) is holomorphic in U . Then the equation
(4.43) can be rewritten in terms of this holomorphic function as

Re ḟ(ζ, t)ζ f ′(ζ, t) = −Q|f(ζ, t)|4
2π

, |ζ| = 1, Q < 0. (4.44)

The condition of starlikeness Re ζF ′/F > 0, |ζ| > 1 is equivalent to
Re ζf ′/f > 0, |ζ| < 1. We must control the sign of the functional ∂

∂ t arg ζf ′/f .
Differentiating (4.44) with respect to θ we obtain

∂

∂ t
arg

ζf ′(ζ, t)

f(ζ, t)
= Im

(
ḟ ′

f ′
− ḟ

f

)

=
1

|f ′|2 Im

(
ḟ ζf ′

(
1 − ζf ′

f
+
ζf ′′

f ′

)
+ 4

ζf ′

f

Q|f |4
2π

)

on the circle |ζ| = 1. At a critical point ζ0 we have

Re
ζ0 f

′(ζ0, 0)

f(ζ0, 0)
= 0, Im

ζ0 f
′(ζ0, 0)

f(ζ0, 0)
> 0,

Re

[
1 +

ζ0f
′′(ζ0, 0)

f ′(ζ0, 0)
− ζ0f

′(ζ0, 0)

f(ζ0, 0)

]
= 0,

Im

[
1 +

ζ0f
′′(ζ0, 0)

f ′(ζ0, 0)
− ζ0f

′(ζ0, 0)

f(ζ0, 0)

]
≥ 0.

Finally, we have

∂

∂ t
arg

ζf ′(ζ, t)

f(ζ, t)
=

Q|f |4
2π|f ′|2 Im

(
(1 − ζf ′

f
+
ζf ′′

f ′
) + 6

ζf ′

f

)
(4.45)

The right-hand side of (4.45) is strictly negative due to the previous chain
of inequalities. Therefore, we have the affirmative answer in the case of an
contracting bubble.

Theorem 4.3.5. Let Q < 0. If the domain of a contracting bubble D0 =
C \ Ω0 is starlike (or strongly starlike) with respect to a point z0 ∈ D0 at
the initial instant, then the family of functions f(ζ, t) and the family of the
domains D(t) = C \Ω(t) preserves the same property as long as the solution
exists and z0 ∈ D(t).

In particular, a convex domain D0 is starlike with respect to any point
from D0, and therefore, the convex dynamics is also preserved, as has been
proved earlier in [76], [254].
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Remark. Let us give a remark concerning the above result. It can be for-
mulated as follows: if we find a point z0 in D0 with respect to which D0

is starlike, then the domains D(t) are also starlike with respect to the same
point z0 during the existence of the solution or up to the time when z0 ∈ Γ (t).
This means that if D0 is simple (in the terminology of [76]), z0 is a limiting
point in which D(t) contracts, and D0 is starlike with respect to z0, then
D(t) remains starlike up to the instant when all air is removed (there exist
non-convex simple domains, see [76], [254]).

Similarly we establish the following.

Theorem 4.3.6. If the initial domain is convex in the direction of R and
symmetric with respect to the imaginary axis, then the contracting bubble
preserves this property as long as the solution exists.

Let us set up in the table the information about the dynamics for bounded
and unbounded domains for the inner and outer stable (well-posed) problems
known at the moment using special univalent functions. Here “yes” means
that the property is preserved whereas “no” means that is not. For the outer
problem we consider the complement to Ω(t).

Class Inner Outer problem
of univalent functions problem

starlike (or strongly starlike) yes yes
convex no yes
close-to-convex no no
convex in the direction of R yes yes
(with the condition for level lines)

For the illposed case less results are known. Injected air forms a bubble
which grows as time increases. It has been shown [140] that three kinds of
behavior can occur. Firstly, the solution may cease to exist in finite time;
secondly, the solution may exist for all time and the free boundary may have
one or more limit points as t tends to infinity; and thirdly, the bubble may
exist for all time and fill the whole space as t tends to infinity. Making use of
quadrature domains it has been proved that the only solutions of the third
kind are those in which the bubble is always elliptical. The multidimensional
case has been treated in [59].

4.3.5 Unbounded regions with the boundary extending to infinity

This model corresponds to the moving fluid front which for definiteness we
suppose to be located to the right. More precisely, we denote by Ω(t) a simply
connected domain in the phase z-plane occupied by the moving fluid and its
moving boundary Γ (t) = ∂Ω(t) contains the point at infinity. With z =
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x+ iy one can construct a parametrization Γ (t) by the equation φ(x, y, t) ≡
φ(z, t) = 0, so that φ(∞, t) ≡ 0. Assuming a natural normalization for Γ (t)
close to ∞, we require that Γ (t) is a vertical straight line near infinity (see
Figure 4.5). The initial situation is represented at instant t = 0 as Ω(0) =

0

Ω(t)

Γ (t)

x

y

Fig. 4.5. Ω(t) is an infinite domain with the boundary Γ (t) extending to infinity
and the sink/source at the infinity

Ω0, and the boundary ∂Ω0 = Γ (0) ≡ Γ0 is defined parameterically by an
implicit function φ(x, y, 0) = 0. We construct the complex potential W (z, t),
Re W = p, where p is, as usual, a pressure field in Ω(t). For each fixed t the
potential W is an analytic function defined in Ω(t) which solves the problem

∆p = 0, in z ∈ Ω(t), (4.46)

p = 0, on z ∈ Γ (t), (4.47)

vn = − ∂p

∂n
, on z ∈ Γ (t). (4.48)

We assume that the velocity tends to a constant value Q as x → ∞, that is
positive when fluid is removed to the right and negative otherwise. In terms
of the potential p we have p(x, y, t)/x → −Q as x → ∞ for any t fixed.
The problem of the existence has been discussed in Subsection 1.4.4. It is
noteworthy that for this case the local solvability and uniqueness was proved
by Kimura [153] in presence of surface tension.

We consider the auxiliary parametric complex ζ-plane, ζ = ξ + iη. The
Riemann Mapping Theorem yields that there exists a conformal univalent
map f(ζ, t) of the right half-plane H+ = {ζ : Re ζ > 0} into the phase
plane f : H+ → Ω(t). The half-plane H+ is a natural parametric domain
for Ω. The function f(ζ, 0) = f0(ζ) produces a parametrization of Γ0. The
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smoothness of the boundary Γ (t) and its behavior in the neighbourhood of
∞ allows us to assume the normalization f(ζ, ·) = aζ + a0 + a−1

ζ + . . . ,
ζ ∼ ∞, a > 0, i.e., the function f has an analytic continuation on the
imaginary axis ∂H+ near ∞. Thus, the moving boundary is parameterized
by Γ (t) = f(∂H+, t). The normal velocity vn of Γ (t) in the outward direction
is given by vn = −∂p/∂n . The normal exterior vector is given by the formula

n = −∂f
∂ζ

∣∣∣∣
∂f

∂ζ

∣∣∣∣
−1

, ζ ∈ ∂H+.

The harmonic function p is a linear one. The normalization about infinity
implies that W ◦ f = −Qζ and the Polubarinova-Galin equation is of the
form

Re
(
ḟ(ζ, t)f ′(ζ, t)

)
= Q, Re ζ = 0, (4.49)

The application of the Schwarz integral formula enables us to deduce a
Löwner–Kufarev type equation in the right-hand half-plane

∂f

∂t
= − 1

π

∂f

∂ζ

∞∫

−∞

Q

|f ′(iη′, t)|2
dη′

iη′ − ζ
, ζ ∈ H+, (4.50)

with the initial condition f(ζ, 0) = f0(ζ). Taking into account surface tension
this equation becomes

Re
(
ḟ(ζ, t)f ′(ζ, t)

)
= Q+ γH

[ iImSf
|f ′|

]
(η), Re ζ = 0,

with the Hilbert transform defined as

1

πi
p.v.η

∞∫

−∞

ψ(iη′)dη′

η′ − η
= H[ψ](η).

Hereditary properties. We are going to prove that if the initial interface
possesses the property to be convex of order α in the negative direction
(H−

R
(α)), then the free boundary remains convex in the negative direction

of the same order in so far as the solution to the Hele-Shaw problem exists
in the case Q < 0 (the liquid moves to the left). An important remark is
that the level lines of a function from H−

R
(α) remain convex in the negative

direction.

We are going to prove the following statement.

Theorem 4.3.7. Let Q < 0 and Ω(0) (and so that for f(ζ, 0)) be a domain
convex in the negative direction of order (α). Let the solutions to the equation
(4.49) exist during the time t ∈ [0, t0]. Then, for all t ∈ [0, t0] the family of
functions f(ζ, t) and the family of domains Ω(t) preserve the same property
of convexity.
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Proof. Let us again suppose the contrary. In other words, there exists ζ0 =
eiθ0 , that satisfies the equality

arg f ′(ζ0, 0) = α
π

2
(or −απ2 ) (4.51)

at the initial instant t = 0 and for any ε > 0 there is such t > 0 and
θ ∈ (θ0 − ε, θ0 + ε) that arg f ′(eiθ, t) ≥ απ2 (or ≤ −απ2 ). For definiteness we
put the sign (+) in (4.51). This means that the mapping f(ζ, 0) is critical for
the property of convexity in the negative direction. Since the free boundary
Γ (t) tends to a vertical line as η → ±∞, we can consider finite critical points
ζ0 = iη0 and the set of such critical points lies in the compact subset on the
imaginary axis.

Γ (t) is analytic, the function f is analytically extendable onto the imag-
inary axis, and the derivative f ′(ζ0, t) 6= 0. Suppose that Im f ′(ζ0, 0) > 0
(for Im f ′(ζ0, 0) < 0 the proof is similar). Now we show that f ′′(ζ0, 0) 6= 0.
If not, then the point ζ0 is a branch point of the function f ′(ζ, 0) and in a
neighbourhood of this point in H+ the quantity arg f ′(ζ, 0) − απ/2 admits
both positive or negative values. This contradicts the assumption that the
function f(ζ, 0) is convex in the negative direction.

The image of the right half-plane H+ under the map f ′(ζ, 0) touches the
ray arg w = απ2 at the point f ′(ζ0, 0). Thus, the following statements are
true

∂

∂η
arg f ′(iη, 0)

∣∣∣
η=η0

= 0,
∂

∂ξ
arg f ′(ξ + iη0, 0)

∣∣∣
ξ=0

≤ 0.

Calculation of the left-hand sides of these formulae leads to the following

Re
f ′′(iη0, 0)

f ′(iη0, 0)
= 0, Im

f ′′(iη0, 0)

f ′(iη0, 0)
< 0. (4.52)

We differentiate (4.49) with respect to η and at the point η0 using (4.52) we
obtain

|f ′(iη, 0)|2Im ḟ ′(iη, 0)

f ′(iη, 0)
= Im ḟ(iη, 0)f ′′(iη, 0) = Im ḟ(iη, 0)f ′(iη, 0)

f ′′(iη, 0)

f ′(iη, 0)
.

(4.53)
From (4.52) and (4.53) it follows that

∂

∂t
arg f ′(iη0, t)

∣∣∣
t=0

= −QIm
f ′′(iη0, 0)

f ′(iη0, 0)
. (4.54)

The inequality in (4.52) with Q < 0 implies that the right-hand side of
(4.54) is strictly negative for t > 0 close to 0 and the inequality arg f ′(iη0, t) <
απ2 holds in some neighbourhood of iη0. This contradicts the assumption that
Ω(t) fails to be convex in the negative direction for t ≥ 0 and ends the proof.
2
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Finally, in this section we should say that there are several other processes
that involve planar dynamics in Hele-Shaw cells. Let us refer the reader, for
example, to the papers [28], [82], [138], [143], [198], [209] and the references
therein. We mention here a 600-paper bibliography of free and moving bound-
ary problems for Hele-Shaw and Stokes flow since 1898 up to 1998 collected
by Gillow and Howison [93]. Let us mention also a recent work [128] where
the authors study the Hele-Shaw flow on hyperbolic surfaces.

Most of the results presented in this section are found in [116], [137], [211],
[258], [255], [257].

4.4 Infinite life-time of starlike dynamics

In this section we prove precisely that starting with a starlike bounded ana-
lytic phase domain Ω0 the Hele-Shaw chain of subordinating domains Ω(t),
Ω0 = Ω(0), exists for all time under injection at the point of starlikeness.
Suppose that at the initial time the phase domain Ω0 occupied by the fluid
is simply connected and bounded by a smooth analytic curve Γ0.

In Section 4.3.1 we proved that starting with a phase domain Ω0 which
is strongly starlike of order α and bounded by an analytic curve we obtain a
subordination chain of domains Ω(t) (and functions f(ζ, t)) strongly starlike
of order α(t) with a decreasing order α(t).

In this section we will first prove that if the strong solution to (1.16) exists
during the time interval [0, t0), then the limiting function lim

t→t0−0
f(ζ, t) ≡

f(ζ, t0) is analytic in some neighbourhood of the unit disk U . Here the limit
is taken with respect to the uniform convergence on compacts of the unit
disk U . It exists because f(ζ, t) is a subordination chain and due to the
Carathéodory Kernel Theorem. Then, we shall give the main result about
the infinite lifetime, see also [116]. Let us normalize the injection rate by
taking Q = −1.

Theorem 4.4.1. Let the strong solution to (1.16) with Q = −1 exist during
the time interval [0, t0), 0 < t0 < ∞, Ω(t) = f(U, t), and let the initial
function f(ζ, 0) be analytic and univalent in a neighbourhood of the closure of
the unit disk U . Then the function f(ζ, t) is analytic in UR(t), where the radius
of analyticity R(t) > 1 is a nondecreasing function in t ∈ [0, t0]. The function
f(ζ, t) is univalent in U , and possibly f(ζ, t0) has a vanishing derivative at
some points of the unit circle ∂U or is not univalent on ∂U . It follows that
Ω(t0) ≡ f(U, t0) is a simply connected domain with an analytic boundary
∂Ω(t0) with possible analytic singularities in the form of finitely many cusps
and double points. In the case there are no singularities the strong solution
can be extended to some time interval [0, t0 + ε).

Proof. By the Carathéodory Kernel Theorem the domain
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Ω(t0) =
⋃

t∈[0,t0)

Ω(t)

is just the same as in the formulation of the theorem and Ω(t0) is a simply
connected domain. It follows from Proposition 3.3.1 that Ω(t0) is also the
same as the domain at time t0 for the weak solution.

We note also that since the normal velocity on the boundary never van-
ishes, we have the strict monotonicity of the subordination chain of domains:

Ω(s) ⊂ Ω(t) for s < t and s, t ∈ (0, t0). (4.55)

Letting t→ t0 we see that 4.55) hold for t = t0, i.e., for Ω(t0) as well.
The strong solution exists in the time interval t ∈ [0, t0) and coincides with

the weak one. Therefore, the statements about f(ζ, t0) and ∂Ω(t0) follows
directly from Theorem 3.4.1.

Let us prove the existence of the extension of the solution to the time inter-
val [0, t0+ε) when there are no singularities on ∂Ω(t0). Construct the subordi-
nation chain of mappings f2(ζ, t) satisfying the Polubarinova-Galin equation
(1.16) with the initial data f2(ζ, 0) ≡ f(ζ, t0). The strong solution exists and
is unique locally in time, say t ∈ [0, ε). Moreover, we have lim

t→t0−0
f(ζ, t) =

lim
t→0+0

f2(ζ, t) = f(ζ, t0) and lim
t→t0−0

f ′(ζ, t) = lim
t→0+0

f ′2(ζ, t) = f ′(ζ, t0) locally

uniformly in U1+η. We recall equation (1.17) (with Q = −1):

ḟ(ζ, t) = ζf ′(ζ, t)
1

4π2

2π∫

0

1

|f ′(eiθ, t)|2
eiθ + ζ

eiθ − ζ
dθ, t ∈ [0, t0), |ζ| < 1.

Similar equation is valid for the chain f2(ζ, t) in the time interval [0, ε).
Taking the limit in the above equation as t → t0 − 0 we observe that there
exists the one-sided limit ḟ(ζ, t0 − 0). Similarly, there exists the one-sided
limit ḟ2(ζ, 0+0) and they are equal. Let us define f(ζ, t) ≡ f2(ζ, t− t0) in the
interval t ∈ [t0, t0+ε). Above observations yield that the so extended function
is continuous in the interval t ∈ [0, t0 + ε), analytic, univalent and starlike in
some neighbourhood of Ū . Moreover, it is differentiable at the point t = t0,
and being extended onto the unit circle, satisfies the equation (1.16). Thus,
it is a unique strong solution in the interval t ∈ [0, t0 + ε). This finishes the
proof of the theorem. 2

Lemma 4.4.1. Under the assumptions of the previous theorem, if Ω0 is star-
like (f0 ∈ S∗) then the limiting domain Ω(t0) has no singularities on the
boundary.

Proof. The function f(ζ, t) belongs to the class S∗(α(t)) with α(t) < 1 for any
t ∈ (0, t0) due to Theorem 4.3.2, where α(t) strictly decreases with respect
to t.
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Define the limiting function f(ζ, t0) = lim
t→t0−0

f(ζ, t), where the limit is

taken locally uniformly in U . The function f(ζ, t0) is univalent, strongly star-
like of order α(t0) = lim

t→t0−0
α(t) < 1. According to the geometric characteri-

zation of the class S∗(α(t0)), the boundary of the domain Ω(t0) = f(U, t0) is
reachable by the radial external angles π(1−α(t0)), which implies that there
is no cusp or a double point on the boundary of Ω(t0). This completes the
proof. 2

Theorem 4.4.2. Starting with a starlike phase domain Ω0 with an analytic
boundary the lifetime of the strong Hele-Shaw starlike dynamics Ω(t) is infi-
nite.

Proof. Indeed, if the strong solution exists during the finite interval t ∈ [0, t0)
and does not in t ∈ [t0, t0 + ε) for any ε > 0, then this contradicts Theorem
4.4.1 and Lemma 4.4.1. 2

4.5 Solidification and melting in potential flows

Another free boundary problem which we consider in this book is the problem
of pattern formation in a forced hydrodynamic flow. The Ivantsov problem of
dendritic solidification [144] and the Saffman-Taylor problem of viscous fin-
gering [224] present a basis for a mathematical treatment of two-dimensional
solidification/melting in a forced potential flow. Such a problem arises, for
example, in models of artificial freezing and thawing of flows in porous media
(see [9], [56], [94], [99], [160], [176], [177]). The behavior of a solution to our
problem have common features with solutions to the one-phase zero surface
tension Hele-Shaw problem, melting corresponds to the stable case of the
injection into the Hele-Shaw cell, and crystallization to the unstable case of
suction. Mathematically, the problem that appears for the complex potential
of the unfrozen flow is governed by Darcy’s low which takes into account
additional equations for the temperature field. One of the typical features of
this problem is that there is not, in general, the uniqueness of the solution.
At the same time the existence can be proved in a usual way.

Let us formulate the governing equations. In the exterior part Ω(t) of the
crystal cross-section we introduce the complex coordinate z = x+ iy and the
complex flow potential W = ϕ+ iψ, where ϕ is the velocity potential and ψ
is the stream function. We consider a dimensionless model such that ϕ = p
refers to the pressure and gravity is neglected. Let us denote the temperature
field by θ(z) ≡ θ(x, y) in Ω(t) and suppose that the phase transition is taken
under the temperature θ = 0 on Γ (t) = ∂Ω(t). A suitable scaling leads to
the condition that θ(x, y) = ±1 if x→ −∞, where we suppose that the fluid
moves to the right and (+) corresponds to melting and (-) to crystallization
with supercooling. Within strong Hele-Shaw assumptions, the mathematical
model is described by the following equations [9], [56], [53], [99], [160]:
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{
∇ · V = 0, V = ∇ϕ, PeV · ∇θ = ∆θ, z ∈ Ω(t);

θ = 0, vn = − ∂ θ
∂ n ,

∂ ϕ
∂ n = 0, z ∈ Γ (t).

(4.56)

In this system the Péclet number Pe is a measure of the intensity of heat
transfer by convection compared with conduction. We note that this model
is time-reversible [53]. In fact, reversing the sign of the temperature changes
only the sign condition for limx→−∞ θ and for the kinematic boundary con-
dition which are both reversed.

4.5.1 Close-to-parabolic semi-infinite crystal

Let us specify the shape of the initial crystal. In this subsection we suppose
that the initial melting crystal is approximately parabolic when x, y ∈ Γ (t),
x → ∞. Let us note that if Γ (0) admits such a normalization, then Γ (t) is
of the same normalization for t > 0. We add to (4.56) the initial conditions

lim
x→−∞

θ = 1, lim
y→±∞

∂θ

∂y
= 0.

The Boussinesq transformation [30] applied to the convective heat transfer
equation (4.56) leads to uncoupling of the problem and permits us to ap-
ply analytic univalent functions. Uncoupling means that the initial problem
(4.56) may be split into two independent tasks ([160], [176], [177]), the first of
which is the problem of heat exchange, the second refers to the free boundary
nature of the problem. In fact, the Boussinesq transformation is equivalent to
the existence of a conformal univalent map from the phase domain Ω(t) onto
the plane of the complex potential W = ϕ + iψ. Under this transformation
the boundary of the crystal cross-section is mapped onto the slit directed
along the positive real axis ψ = 0, ϕ > 0 in the W -plane. Thus, the problem
admits the form:

Pe
∂ θ

∂ ϕ
= ∆θ, W ∈ D, (4.57)

where D = {C \ [0,∞)}. The boundary conditions are

lim
ϕ→−∞

θ = 1, lim
ψ→±∞

∂θ

∂ψ
= 0, θ = 0, W ∈ ∂D. (4.58)

Now let us introduce the auxiliary parametric complex ζ-plane, ζ = ξ +
iη. The Riemann Mapping Theorem yields that there exists a conformal
univalent map f(ζ, t) of the left half-plane H− = {ζ : Re ζ < 0} onto the
phase domain f : H− → Ω(t). The parabolic shape of Γ (t) implies the
normalization f(ζ, ·) = −ζ2 + a1ζ + a0 + a−1/ζ + . . . . Fortunately, for the
problem (4.57–4.58) the method of separating variables is applicable. First
we introduce the map H− → D given by W = −ζ2. Then we are looking for
a similarity solution θ = g(ξ). Elementary calculation leads to the relations
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∣∣∣
∂ θ

∂ ψ

∣∣∣ =
σ√
ϕ

on the slit ∂ D,

where σ =
√
Pe/π, and

∣∣∣
∂ θ

∂ n

∣∣∣ =
σ√
ϕ
|W ′(z)|.

The unit normal outer vector to the moving interface is n = f ′(iη, t)/|f ′(iη, t)|,
and the normal velocity, hence, is of the form

vn = Re ḟ(iη, t)
f ′(iη, t)

|f ′(iη, t)| , η ∈ (−∞,∞).

Besides, we have

±i
∣∣∣
∂ θ

∂ ψ

∣∣∣W ′(z) = −vnn̂, ψ = ±0, ϕ > 0.

Changing variables, W = −ζ2 we come to the Polubarinova-Galin type equa-
tion for the free boundary:

Re ḟ(iη, t)f ′(iη, t) = −2σ, ξ = 0, η ∈ (−∞,∞). (4.59)

Using the same argumentation as in the above subsections we prove the
following statement

Theorem 4.5.1. If the initial crystal interface possesses the property to be
convex of order α in the negative direction (H−

R
(α)), then the free boundary

remains convex in the negative direction of the same order as long as the
solution to the problem (4.57–4.58) (or (4.59)) exists (σ > 0 and the liquid
moves to the right).

The result for α = 1 is obtained in [161].

4.6 Geometry of weak solutions

Some of the results on geometry of solutions to Hele-Shaw flow problems are
most easily discussed in terms of weak solutions, in fact, they will really be
results on the geometry of domains obtained by partial balayage (see Section
3.5). We recall that the weak solution Ω(t) of the one point injection Hele-
Shaw problem with Q = −1 is expressed as

Bal (χΩ(0) + tδ0, 1) = χΩ(t).

in terms of balayage. What will count in the results on geometry is just
the support, or even the convex hull of the support, of the measure µ =
χΩ(0) + tδ0.
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4.6.1 Starlikeness of the weak solution

We already proved via conformal mappings that starting with a domain Ω(0)
which is starlike with respect to the origin, the injection at the origin gives
a strong solution with the starlikeness preserved. In the weak formulation
the preservation of starlikeness is even easier to show. The following result is
originally due to Di Benedetto and Friedman [58].

Theorem 4.6.1. Let Bal (χΩ(0) + tδ0) = χΩ(t), where Ω(0) is starlike with
respect to the origin. Then also Ω(t) is starlike with respect to the origin for
t > 0.

Proof. We write
χΩ(0) + tδ0 +∆u = χΩ(t)

with u ≥ 0, u = 0 outside Ω(t), as usual. Then in terms of polar coordinates

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
= 1 − χΩ(0)

in Ω(t) \ {0}. Multiplying by r2 and then applying 1
r
∂
∂r to both parts gives

1

r

∂

∂r

(
r
∂

∂r

(
r
∂u

∂r

))
+

1

r2
∂2

∂θ2

(
r
∂u

∂r

)
=

1

r

∂

∂r

(
r2(1 − χΩ(0))

)
.

Here the left member is ∆(r ∂u∂r ) and the right member is non-negative due to

the starlikeness of Ω(0). Thus r ∂u∂r is subharmonic in Ω(t)\{0}, and r ∂u∂r = 0
on ∂Ω(t).

At the origin u has the positive singularity u ∼ − t
2π log |z|, hence r ∂u∂r < 0

near the origin, and therefore, in all Ω(t) \ {0}, from which the starlikeness
follows. 2

4.6.2 The inner normal theorem

Next we show that Ω(t) has very good properties outside the convex hull of
Ω(0), e.g., that there are natural bounds on the curvature of ∂Ω(t). So we
consider a weak solution

χΩ(t) = Bal (χΩ(0) + tδ0, 1),

or more generally,
χΩ(t) = Bal (χΩ(0) + ν(t), 1),

for any measure ν(t) ≥ 0 which vanishes outside Ω(0). Let K = convΩ(0)
be the closed convex hull of Ω(0).

Theorem 4.6.2. [111], [114], [115] Under the above assumptions Ω = Ω(t)
has the following properties:
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(i) ∂Ω \K is smooth analytic;
(ii) for any z ∈ ∂Ω \ K the inward normal ray Nz from z intersects K (if
Ω(0) is connected, then it has to intersect Ω(0) itself);

(iii) the normal rays Nz in (ii) do not intersect each other before they reach
K;

(iv)Ω can be expressed as a union of disks with centers on K ∩Ω:

Ω =
⋃

a∈K∩Ω

Ur(a)(a)

for suitable r(a) > 0.

Proof. Set µ = χΩ(0) + ν(t) and write

χΩ = Bal (µ, 1) = µ+∆u,

where u is the smallest function satisfying u ≥ 0, ∆u ≤ 1 − µ.
We first assume that K lies in the lower half-plane K ⊂ {y ≤ 0}, i.e.,

that Ω(0) ⊂ {y < 0}, and we shall study the geometry of

Ω+ = Ω ∩ {y > 0}.

Let u∗ be the reflection of u with respect to the real axis, i.e., u∗(x + iy) =
u(x− iy), and set

v = u− inf(u, u∗) = (u− u∗)+.

Since∆u ≤ 1−µ ≤ 1 everywhere, we have∆u∗ ≤ 1. Therefore,∆ inf(u, u∗) ≤
1 everywhere. Indeed, the infimum of two superharmonic functions is again
superharmonic, so

∆ inf(u, u∗) − 1 = ∆(inf(u, u∗) − 1

4
|z|2) = ∆ inf(u− 1

4
|z|2, u∗ − 1

4
|z|2) ≤ 0.

Since ∆u = 1 in Ω+ it follows that ∆v ≥ 0 in Ω+. Moreover, v = 0 on ∂(Ω+).
The maximum principle now shows that v ≤ 0 in Ω+. This means that

u ≤ u∗ in Ω+, i.e., that u is smaller (or at least not larger) at any point in
the upper half-plane, than in the reflected point in the lower half-plane. On
the real axis this gives

∂u

∂y
(x, 0) ≤ 0, (4.60)

and in general it shows that the reflection of Ω+ in the real axis is contained
in Ω:

(Ω+)∗ ⊂ Ω. (4.61)

Now since ∇u = 0 on (∂Ω)+ and ∆(∂u∂y ) = ∂
∂y∆u = 0 in Ω+ we can apply

the maximum principle again, now to ∂u
∂y , to obtain that ∂u

∂y ≤ 0 in Ω+. This
inequality is everywhere strict because if we had equality at some point, then
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it would follow that u = 0 in a whole component of Ω+; and this is impossible
because 1 = χΩ = µ+∆u = ∆u in Ω+.

The conclusion now is that u(x + iy) is a strictly decreasing function of
y > 0 in Ω+. Therefore, since u = 0 outside Ω, every vertical line L in the
upper half-plane intersects Ω+ in at most one segment (L\Ω+ is connected).
It follows that (∂Ω)+ is a graph of a function, say

(∂Ω)+ = {z = x+ iy, y = g(x)}.

The domain of definition of the function g may consist of more than one
interval. It follows from the general regularity theory (e.g., [33], [228]) that g
is real analytic.

Next, with K still in the lower half-plane we shall obtain a similar con-
vexity statement, but for semicircles instead of vertical lines. Let (r, θ) be the
polar coordinates. In the proof of Theorem 4.6.1 we studied

r
∂u

∂r
= x

∂u

∂x
+ y

∂u

∂y
,

here we shall study
∂u

∂θ
= −y ∂u

∂x
+ x

∂u

∂y
, (4.62)

in Ω+. Since ∆u = 1 in Ω+ and the coefficients in

∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2

do not depend on θ, ∂u∂θ is harmonic,

∆
∂u

∂θ
=

∂

∂θ
∆u = 0 in Ω+.

As to the boundary values of ∂u
∂θ on ∂(Ω+), we have

∂u

∂θ
= 0 on (∂Ω)+.

By (4.60), (4.62) we have that

∂u

∂θ
≤ 0 for x > 0,

∂u

∂θ
≥ 0 for x < 0,

on the real axis.
Now consider a circular arc

CR = {z = reiθ, r = R, 0 < θ < π}
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in the upper half-plane. We shall prove that CR \ Ω+ consists of at most
one segment (more precisely, that it is connected), and we shall argue by
contradiction.

So suppose CR \Ω+ has at least two components. Then there are points
z1 = Reiθ1 and z2 = Reiθ2 with 0 < θ1 < θ2 < π, such that z1, z2 ∈ (∂Ω)+,
and z = Reiθ ∈ Ω+ for all θ1 < θ < θ2. Since u(z1) = u(z2) = 0 and u(z) > 0,
we have, integrating along CR,

z∫

z1

∂u

∂θ
dθ = u(z) − u(z1) > 0,

z2∫

z

∂u

∂θ
dθ = u(z2) − u(z) < 0.

Therefore, there must be points z = Reiθ with θ1 < θ < θ2 arbitrarily
close to θ1 for which ∂u

∂θ > 0. Similarly, there must be points z = Reiθ with

θ1 < θ < θ2 arbitrarily close to θ2 for which ∂u
∂θ < 0.

Now we apply the maximum principle. Every component of { ∂u∂θ > 0}
must reach some part of the negative real axis, because we know that ∂u

∂θ ≤ 0
on all other possible parts of the boundary of that component. Similarly,
every component of { ∂u∂θ < 0} must reach some part of the positive real axis.

But it is obviously topologically impossible to have components of { ∂u∂θ > 0}
stretching from points arbitrary close to z1 (the rightmost end point of the
described component of CR) to the negative real axis, and simultaneously,
components of {∂u∂θ > 0} stretching from points arbitrary close to z2 to the
positive real axis.

This contradiction shows that CR \ Ω+ actually is connected. The same
reasoning applies with the center of the polar coordinates at any point of the
real axis. Thus for any semicircle C in the upper half-plane with the center
on the real axis, C \ Ω+ is connected. Together with the first part of the
proof, saying that L \ Ω+ is connected for any vertical semiline L, what we
have proved can be expressed by saying that the complement of Ω+ in the
upper half-plane is convex with respect to the Poincaré metric in the upper
half-plane.

Next, like for Euclidean convexity, C+ \Ω+ being convex (in the Poincaré
metric) implies that it is the intersection of Poincaré half-planes, or that,
turning to the complements, Ω+ is the union of such. This means that

Ω+ =
⋃

a∈R

Ur(a)(a) (4.63)

for suitable radii r(a) ≥ 0.
Let z ∈ (∂Ω)+ and let Nz be the inward normal ray at z. Since (∂Ω)+ is

a graph of a function, Nz intersects the real axis at a point p(z), which we
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call the foot point of the normal. In terms of the equation y = g(x) for (∂Ω)+

we have z = x + ig(x) and one easily computes p(z) = x + g(x)g′(x). The
fact (4.63) that Ω+ is a union of semidisks (Ur(a)(a))

+ implies that actually

(U|z−p(z)|(p(z)))
+ ⊂ Ω+. (4.64)

Let z1 6= z2. Assume that two normals Nz1 and Nz2 intersect in C
+, say

w ∈ Nz1 ∩Nz2 , where w ∈ C
+. We may assume that |z1 − w| ≤ |z2 − w|, for

example. Then z1 is contained in the closure of the disk with the center at w
and the radius |z2 − w|, and therefore, in the interior of the larger disk

U|z2−p(z2)|(p(z2)).

But z1 ∈ (∂Ω)+, so this disk must contain points outside Ω+ as well. This
contradicts (4.64), and we conclude that Nz1 and Nz2 actually can not inter-
sect in C

+.
One easily sees that the inner ball property (4.63), or the fact that the

inner normal do not intersect in C
+, is equivalent to the foot point p(z) =

x+ g(x)g′(x) being a monotone increasing function of x.
So far we have assumed that K ⊂ {y < 0}. Adapting the results we have

obtained to all half-planes containing K easily gives the statements of the
theorem. We give some details below.

(i) We already know that ∂Ω \K is analytic but with possible singularities.
But since near any point of ∂Ω \K, ∂Ω will be a graph seen from several
different angles (choosing different half-planes containing K) there can be
no singular points.

(ii) If the inward normal Nz at a point z ∈ ∂Ω \K did not intersect K we
could find a half-plane H ⊃ K which does not meet Nz, contradicting that
∂Ω \H is a graph when seen from H.

(iii) Similarly, if w ∈ Nz1 ∩ Nz2 , w ∈ Ω \ K, z1, z2 ∈ ∂Ω \ K, z1 6= z2, we
choose a half-plane H ⊃ K, such that w 6∈ H̄. By (ii), both Nz1 and Nz2
intersect K. This shows that z1 6∈ H̄, z2 6∈ H̄, and we are back in the
situation with H = {y < 0}, i.e., we have a contradiction. Thus Nz1 and
Nz2 do not meet before they reach K.

(iv) From what we already did it follows that

Ω \K =

(
⋃

a∈∂K

Ur(a)(a)

)
\K

for suitable r(a) ≥ 0. Also, by (4.61),
⋃

a∈∂K

Ur(a)(a) ⊂ Ω.

Obviously, r(a) = 0 for a ∈ ∂K \Ω. The points from Ω∩K can be trivially
covered by the disks Ur(a)(a) ⊂ Ω with a ∈ Ω ∩K. Now (iv) follows, and
the proof of the theorem is complete.



4.6 Geometry of weak solutions 107

2

4.6.3 Distance to the boundary (revisited)

Now we discuss the distances from points in the initial domain Ω(0) to points
on the boundary of Ω(t). The following theorem is due to Sakai [231].

Theorem 4.6.3. Let µ ≥ 0 be a measure with a support in the disk UR,
R > 0. Define r(µ) by

π(r(µ))2 =

∫∫
dµ,

and let Ω be the saturated set (3.15) for Bal (µ, 1). Then

Ω ⊂ Ur(µ)+R,

and if r(µ) ≥ 2R, we moreover have

Ur(µ)−R ⊂ Ω.

Proof. First we recall from (3.20) that

Bal (µ, 1) = χΩ + µχC\Ω .

From this it follows that
∫∫

UR

ϕdµ ≤
∫∫

Ω

ϕdσz +

∫∫

C\Ω

ϕdµ

for all functions ϕ in C which are integrable and subharmonic in Ω. In par-
ticular, taking ϕ = ±1, |Ω| ≤

∫∫
dµ.

The upper bound Ω ⊂ UR+r(µ) is actually a direct consequence of the
Inner Normal Theorem. By that theorem Ω is a union of disks with centers
in UR, so ifΩ contained points outside UR+r(µ), then it would contain a disk of
radius greater than r(µ), which is impossible because |Ω| ≤

∫∫
dµ = |Ur(µ)|.

Next assume r(µ) ≥ 2R and let z /∈ Ω. We shall show that |z| ≥ r(µ)−R,
hence that Ur(µ)−R ⊂ Ω. By a rotation we may assume that z = ρ ≥ 0.

If 0 < ρ < R we choose

ϕ(ζ) = G(ζ, ρ) + c,

where G(ζ, ρ) = 1
2π log | R2−ρζ

R(ζ−ρ) | is Green’s function of UR and c > 0. Since

ρ /∈ Ω, ϕ is subharmonic in Ω. The level lines of G(·, ρ) and ϕ are circles, so

{ζ : ϕ(ζ) > 0} = {ζ : G(ζ, ρ) > −c} = Ut(a)

for some disk Ut(a), which contains UR because c > 0.
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Now choose c so that
∫∫

Ut(a)

G(ζ, ρ) dσ = 0.

By a straightforward computation (see section 6 in [231]), this gives R < t <
2R. Thus, using that Ut(a) is exactly the set where ϕ is positive we get

cπr(µ)2 = c

∫∫

UR

dµ ≤
∫∫

UR

(G(ζ, ρ) + c) dµ(ζ) =

∫∫

UR

ϕdµ

≤
∫∫

Ω

ϕdσ +

∫∫

C\Ω

ϕdµ ≤
∫∫

Ut(a)

ϕdσ =

∫∫

Ut(a)

c dσ = cπt2.

Hence r(µ) ≤ t < 2R, contrary to our assumption in the beginning. Thus
there is no 0 < ρ < R with ρ /∈ Ω. So UR ⊂ Ω and Bal (µ, 1) = χΩ

If ρ ≥ R then we take instead ϕ to be the Poisson kernel for the disk
UR+ρ(−R) and with the pole at ρ:

ϕ(ζ) =
(R+ ρ)2 − |ζ +R|2
|(R+ ρ) − (ζ +R)|2 =

(R+ ρ)2 − |ζ +R|2
|ζ − ρ|2 .

Since ρ /∈ Ω, ϕ is subharmonic in Ω. Also in this case the level lines of ϕ are
circles. The circle where ϕ = 1 passes through the center −R of UR+ρ(−R)
and through the pole ζ = ρ, hence ϕ ≥ 1 inside that circle, in particular
ϕ ≥ 1 in UR(0). Moreover, UR+ρ(−R) is exactly the set where ϕ ≥ 0. All
this, combined with the mean value property of ϕ in UR+ρ(−R), gives that

πr(µ)2
∫∫

UR

dµ ≤
∫∫

UR

ϕdµ ≤
∫∫

Ω

ϕdσ

≤
∫∫

UR+ρ(−R)

ϕdσ = |UR+ρ(−R)|ϕ(−R) = π(R+ ρ)2.

Thus ρ ≤ R− r(µ) as required. 2

Corollary 4.6.1. In the one point injection Hele-Shaw case µ = χΩ(0)+tδa.
This gives, if a ∈ UR, Ω(0) ⊂ UR, that

Ω(t) ⊂ U√
(|Ω(0)|+t)/π+R

.

If, in addition, t ≥ 4πR2 − |Ω(0)|, then

U√
(|Ω(0)|+t)/π−R

⊂ Ω(t).



5. Capacities and isoperimetric inequalities

Isoperimetric inequalities has been known since antiquity. The simplest ver-
sion of an isoperimetric theorem reads in two equivalent forms:

• Among all planar shapes with the same perimeter the circle has the largest
area.

• Among all planar shapes with the same area the circle has the shortest
perimeter.

This is the solution of what is sometimes known as Dido’s problem because
of the story that Queen Dido of Tyre bargained for some land bounded on
one side by the (straight) Mediterranean coast and agreed to pay a fixed sum
for as much land as could be enclosed by a bull’s hide. Both statements can
be expressed in a more algebraic form which indeed underlines the fact that
they are equivalent. Denote the perimeter and area of a planar shape by L
and A, respectively. Then, 4πA ≤ L2. The equality only holds for a circle.
In higher dimensional spaces, for example, if S is a surface area while V a
volume of a three dimensional body, then 38πV 2 ≤ S3 (see, e.g., [42], [63]).

Pappus of Alexandria (ca 300 A.D.) wrote: bees, then, know just this fact
which is useful to them, that the hexagon is greater than the square and the
triangle and will hold more honey for the same expenditure of material in
constructing each. But we, claiming a greater share of wisdom than the bees,
will investigate a somewhat wider problem, namely that, of all equilateral
and equiangular plane figures having the same perimeter, that which has the
greater number of angles is always greater, and the greatest of them all is the
circle having its perimeter equal to them.

Probably, the most representative work on isoperimetric inequalities in
various aspects of mathematical physics is the famous monograph [202] writ-
ten by George Pólya (1887–1985) and Gabor Szegö (1895–1985) (see also
[185]). By an isoperimetric inequality we mean an inequality that links a
measure of volume with a measure of its boundary. We shall be concerned
mainly with the following related question: how is the area of the phase do-
main controlled by the capacity of its boundary (or conformal radius of the
domain)?
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5.1 Conformal invariants and capacities

We start by giving some background on quantities we are going to use in
isoperimetric inequalities. These quantities are moduli, reduced moduli and
capacities.

5.1.1 Modulus of a family of curves

The notion of the modulus of a family of curves goes back to early works
of Grötzsch [104], [105]. Later, Ahlfors and Beurling [5], [6] introduced the
notion of extremal length (the reciprocal of the modulus) which stimulated the
active development of the method of extremal lengths. Major contributions to
the subject have been made by Jenkins [145], [146], Strebel [244] and Ohtsuka
[196] who connected the modulus problem with the problem of the extremal
partitioning of a Riemann surface and proved the existence of the extremal
metric by Schiffer’s variations.

Let Ω be a domain in C and ρ(z) be a real-valued, Borel measurable,
non-negative function in L2(Ω). Let this function define a differential metric
ρ on Ω by ρ := ρ(z)|dz|.

Let γ be a locally rectifiable curve in Ω. The integral

∫

γ

ρ(z)|dz| =: lρ(γ) (5.1)

is said to be the ρ - length of γ. If ρ(z) ≡ 1 almost everywhere in Ω, then the
1 - length of any rectifiable γ ⊂ Ω coincides with its Euclidian length. The
integral ∫∫

Ω

ρ2(z)dσz =: Aρ(Ω), dσz = dxdy, (5.2)

is called the ρ-area of Ω.
Let Γ be a family of curves γ in Ω. Denote by

Lρ(Γ ) := inf
γ∈Γ

lρ(γ)

the ρ-length of the family Γ . Then, the quantity

m(Ω,Γ ) = inf
ρ

Aρ(Ω)

L2
ρ(Γ )

is said to be the modulus of the family Γ in Ω where the infimum is taken
over all metrics ρ in Ω.

Another equivalent and suitable (in a view of further applications) defi-
nition of the modulus can be formulated as follows. Denote by P the family
of all admissible (for Γ ) metrics in Ω, that is, metrics ρ ∈ P that satisfy the
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additional condition lρ(γ) ≥ 1 for all γ ∈ Γ . If P 6= Ø, then we can define
the modulus as

m(Ω,Γ ) = inf
ρ∈P

Aρ(Ω).

If there is a metric ρ∗, such that m(Ω,Γ ) = Aρ∗(Ω), then this metric is
called extremal.

Two main properties of the modulus is its conformal invariance and the
uniqueness of the extremal metric (if exists). More precisely, let Γ be a family
of curves in a domain Ω ∈ C, and let w = f(z) be a conformal map of Ω

onto Ω̃ ∈ C. If Γ̃ := f(Γ ), then

m(Ω,Γ ) = m(Ω̃, Γ̃ ).

Let ρ1 and ρ2 be two extremal metrics for the modulus m(Ω,Γ ). Then,
ρ∗ := ρ1 = ρ2 almost everywhere. Moreover, Lρ∗(Γ ) = 1.

The property of monotonicity reads as follows. If Γ1 ⊂ Γ2 in Ω, then
m(Ω,Γ1) ≤ m(Ω,Γ2).

Example 5.1.1. Let Ω be a rectangle {z = x+ iy : 0 < x < a, 0 < y < b} and
Γ be the family of curves in Ω that connect the opposite horizontal sides of
Ω. Then, m(Ω,Γ ) = a/b.

Example 5.1.2. Let Ω be an annulus {z = reiθ : 1 < r < R, 0 < θ ≤ 2π}
and Γ be the family of curves in Ω that separate the opposite boundary
components of Ω. Then, m(Ω,Γ ) = 1

2π logR.

Example 5.1.3. Let Ω be an annulus {z = reiθ : 1 < r < R, 0 < θ ≤ 2π} and
Γ be the family of curves in Ω that connect the two boundary components
of Ω. Then, m(Ω,Γ ) = 2π

logR .

For more information see, e.g., [5], [146], [196], [256].

5.1.2 Reduced modulus and capacity

Let Ω ⊂ C be a simply connected hyperbolic domain, a ∈ Ω, |a| < ∞. We
consider the doubly connected domain Ωε = Ω \ U(a, ε) for a sufficiently
small ε > 0. The quantity

M(Ω, a) := lim
ε→0

(
M(Ωε) +

1

2π
log ε

)

is said to be the reduced modulus of the circular domain Ω with respect to
the point a, where M(Ωε) is the modulus of the doubly connected domain Ωε
with respect to the family of curves that separate its boundary components.

Let a simply connected hyperbolic domain Ω have the conformal radius
R(Ω, a) with respect to a fixed point a ∈ Ω. Then, the quantity M(Ω, a)
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exists, is finite, and is equal to 1
2π log R(Ω, a), see [146], [256]. An immediate

corollary when |a| <∞ says that if f(z) is a conformal map of Ω, such that
|f(a)| <∞, then M(f(Ω), f(a)) = M(Ω, a) + 1

2π log |f ′(a)|.
Now, we define the reduced modulus M(Ω,∞) of a simply connected

domain Ω, ∞ ∈ Ω with respect to infinity as the reduced modulus of the
image of Ω under the map 1/z with respect to the origin,

M(Ω,∞) = − 1

2π
logR(Ω,∞).

So, if Ω is a simply connected hyperbolic domain, a ∈ Ω, |a| < ∞, and
f(z) = a−1/(z − a) + a0 + a1(z − a) + . . . is a conformal map from Ω, then
M(f(Ω),∞) = M(Ω, a) − 1

2π log |a−1|.
We give all further definitions only for compact sets, however, there are

generalizations to the Borel sets as well. Denote by Lip (Ω) the class of func-
tions u(z) : Ω → R satisfying the Lipschitz condition in Ω, i.e., for every
function u ∈ Lip (Ω) there is a constant c such that for any two points
z1, z2 ∈ Ω the inequality |u(z1)−u(z2)| ≤ c|z1−z2| holds. In the case ∞ ∈ Ω
the continuity of u(z) at ∞ is required. Functions from Lip (C) are absolutely
continuous on lines which are parallel to the axes and the integral

I(u) :=

∫∫

C

|∇u(z)|2dσz

exists.
An ordered pair of disjoint compact sets K1, K2 is called a condenser

C = {K1,K2} with the field C \ {K1 ∪K2}. The capacity of a condenser C
is the quantity

cap C := inf I(u)

as u ranges over the class Lip (C) and 0 ≤ u(z) ≤ 1 whenever z ∈ C, u(z) ≡ 0
in K1, u(z) ≡ 1 in K2.

A condenser C is said to be admissible if there exists a continuous real-
valued in C function ω(z), 0 ≤ ω(z) ≤ 1 which is harmonic in C \ {K1 ∪K2}
and ω(z) = 0 for z ∈ K1, ω(z) = 1 for z ∈ K2. This function is said to be
a potential . The Dirichlet principle yields that in the definition of capacity
equality appears only in the case of an admissible condenser and u(z) ≡ ω(z)
almost everywhere for the potential function ω. Then by Green’s formula

cap C =

∫∫

C\{K1∪K2}

|∇ω| dσ =

∫

∂K2

∣∣ ∂ω
∂n

∣∣ ds

Obviously, the capacity is a conformal invariant, that is, if Cf is a con-
denser C \ f(C \ {K1 ∪K2}) for a conformal map f in C \ {K1 ∪K2}, then
cap C = cap Cf .
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If K1 and K2 are two disjoint continua, then we can construct the confor-
mal map w = f(z) of the doubly connected domain C\{K1∪K2} onto an an-
nulus 1 < |w| < R and the potential function for the condenser C = {K1,K2}
is

ω(z) =
log R

|f(z)|

logR
, z ∈ C \ {K1 ∪K2},

ω(z) ≡ 0 in K1, ω(z) ≡ 1 in K2. Therefore, cap C = 2π/ logR.
Let C = {K1,K2} and Ck = {Kk

1 ,K
k
2 }, k = 1, . . . , n be such condensers

that all Ck have non-intersected fields and

K1 ⊂
n⋂

k=1

Kk
1 , K2 ⊂

n⋂

k=1

Kk
2 .

From the definition of capacity and from the Dirichlet principle one can derive
the inequality (Grötzsch Lemma)

1

cap C
≥

n∑

k=1

1

cap Ck
. (5.3)

(possibly with equality, see, e.g., [62]).
Let K be a compact set in C. We consider condensers of special type

CR = {|z| ≥ R,K} for R large. If CR1,R2
= {|z| ≤ R1} ∪ {|z| ≥ R2} for

R1 < R2, then the inequality (5.3) implies

1

cap CR2

≥ 1

cap CR1

+
1

2π
log

R2

R1
.

Therefore, the function 1
cap CR

− 1
2π log R increases with increasing R and the

limit

cap K = lim
R→∞

R exp

(
− 2π

cap CR

)
(5.4)

exists and is said to be the logarithmic capacity of the compact set K ⊂ C.
Equality (5.4) is also known as Pfluger’s theorem (see e.g. [206], Theorem
9.17).

Next we briefly summarize the definition and some properties of the log-
arithmic capacity of a compact set K ⊂ C following Fekete. For n = 2, 3, . . .
we consider

∆n(K) = max
z1,...,zn∈K

n∏

1≤k<j≤n

|zk − zj |.

The maximum exists and is attained for so-called Fekete points znk ∈ ∂K,
k = 1, . . . , n. The value ∆n is equal to the Vandermonde determinant

∆n(K) =
∣∣∣ det
k=1,...,n

(1 znk . . . z
n−1
nk )

∣∣∣.
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Then, the limit

cap K = lim
n→∞

(∆n(K))
2

n(n−1)

exists (see [206]), is known as the transfinite diameter, and is equal to the
logarithmic capacity (see also [202], [223]).

Let K be a continuum (a closed connected set containing at least two
points) in C and Ω = C \ K. Then, from the definition of the logarith-
mic capacity and the reduced modulus it is clear that cap K = cap ∂K =
exp(−2πm(Ω,∞)).

It is well known that for K = [0, 1] the capacity is given by cap K = 1/4.
If we have a condenser C(h) = {K1,K2} of the special type K1 ⊂ U ,

K2 = C \ U , then cap C(h) is said to be the hyperbolic capacity of K1 and
cap (h)K1 = cap C(h). One can define also cap (h)K by means of the hyperbolic
transfinite diameter. Set

∆(h)
n (K) = max

z1,...,zn∈D

n∏

1≤k<j≤n

∣∣∣
zk − zj
1 − zkzj

∣∣∣.

Then,

cap (h)K = lim
n→∞

(∆(h)
n (K))

2
n(n−1) .

Finally, if K is a continuum in U and Ω = U \K, then

cap (h)K = cap (h) ∂K = exp(−2πM(Ω)),

where M(Ω) is the modulus of the doubly connected domain Ω with respect
to the family of separating curves.

5.1.3 Integral means and the radius-area problem

We consider the zero surface tension Hele-Shaw model with injection through
a source at the origin and with a bounded initial phase domain Ω0.

Let f be a univalent function f(ζ) = aζ + a2ζ
2 + . . . defined in the unit

disk U and let S be the area of f(U). An obvious inequality, which we call
the radius-area estimate, is S ≥ πa2. It follows from the formula of the area
S = π(a2 +

∑∞
k=2 k|ak|2). Equality is attained for a trivial map f(ζ) = aζ.

There is no upper estimate of S, namely, the area can be infinite. As for the
perimeter, the classical result by Pólya and Schiffer [203] states that L ≥ 2πa.
The upper estimate is ∞ in general and 8R(f(U),∞) for convex domains.

Let S(t) be the area of the domain Ω(t) in the Hele-Shaw dynamics under
the conditions of Section 1.4.2. A simple application of Green’s theorem im-
plies that the rate of the area change is expressed as Ṡ = −Q under injection
(Q < 0). From (1.17) we deduce that

ȧ = −a 1

4π2

2π∫

0

Q

|f ′(eiθ, t)|2 dθ ≥ −a 1

4π2

2π∫

0

Re
Q

[f ′(eiθ, t)]2
dθ =

−Q
2πa

=
Ṡ

2πa
,



5.1 Conformal invariants and capacities 115

where a = f ′(0, t). In other words the area rate is controlled by the rate of the
conformal radius of the domain Ω(t) with respect to the origin: Ṡ ≤ 2πaȧ.
Equality in the above inequalities is attained for Ω(t) = {z : |z| < a(t)}.

The lower bound for Ṡ in terms of a is much more difficult. One must
estimate the integral mean

2π∫

0

1

|f ′(eiθ, t)|2 dθ (5.5)

from above. The fact that cusps may develop shows that there is no uniform
estimate with respect to t. But one can estimate (5.5) under some geometric
constraints on the domain Ω(t) at an instant t. For example, assume that the
domain Ω(t) is convex. The function f is also convex and, thus, 1

2 -starlike,
i.e., Re ζf ′(ζ, t)/f(ζ, t) > 1/2. Moreover the Koebe covering theorem for the
convex functions says that |f(ζ, t)| ≥ a/2. This implies the estimate

2π∫

0

1

|f ′(eiθ, t)|2 dθ <
32π

a2
, and so Ṡ >

πa

8
ȧ.

Let us give a precise estimate for this integral mean in the case of convex
functions f . If f is convex, then the function g(ζ) ≡ ζf ′(ζ) is starlike in U
and the function h(ζ) ≡ 1/g(1/ζ) = 1

a (ζ + c0 + c1/ζ + . . . ) is starlike in the
complement U∗ of the closure of U . The function h(ζ) is univalent, bounded
in U , and have no zeros in the closure Ū . Therefore,

1

2π

2π∫

0

dθ

|f ′(eiθ)|2 =
1

2π

2π∫

0

|h(eiθ)|2dθ =
1

a2
(1 + |c0|2 +

∞∑

k=1

|ck|2) ≤ (5.6)

≤ 1

a2
(1 + |c0|2 +

∞∑

k=1

k|ck|2).

We have |c0| ≤ 2, and by the Area Theorem (see e.g. [95], [98], [206]) the
right-hand side of (5.6) is ≤ 6/a2. This estimate is sharp. Finally, for domains
Ω(t) which are convex at an instant t we have

Ṡ ≥ πa

3
ȧ.

If the domain Ω(t) is convex, then during the time of the existence of
the solution of (1.16) convexity may be lost at the next instant. It is better
to find a geometric condition that is preserved during some time interval of
the existence of the solution of (1.16) and that permits us to estimate the
integral mean (5.5) from above.
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Let a univalent function f be defined in U , have the non-vanishing finite
angular derivatives almost everywhere at the unit circle, and the boundary of
f(U) be reachable by outer angles > π/2. Then 1/f ′ is from the Hardy class
H2. Generally, we operate with univalent functions with analytic boundaries
of f(U). Of course, we can consider domains with angles on the boundary
and weak solutions. For example, the following theorem was proved in [211].

Theorem 5.1.1. Let a univalent map z = f(ζ) = ζ+a2ζ
2 + . . . be α-convex

in U . Then the angular derivative of f exists almost everywhere on the unit
circle and

1

2π

2π∫

0

1

|f ′(eiθ)|2 dθ ≤
28(1−α)

π
B(

5

2
− 2α,

5

2
− 2α),

where B(·, ·) stands for the Euler Beta-function. The inequality is sharp. In
particular,

1

2π

2π∫

0

1

|f ′(eiθ)|2 dθ ≤
41−4α

2π

(3 − 4α)(1 − 4α)

(1 − α)(1 − 2α)
B(

1

2
− 2α,

1

2
− 2α)

for 0 ≤ α < 1/4.

Proof. If a function f is α-convex in U , then the analytic function g(z) ≡
zf ′(z) is α-starlike (S∗

α, see Section 4.2). Functions from S∗
α admit the fol-

lowing known integral representation

g(z) ∈ S∗
α ⇔ g(z) = z exp{−2(1 − α)

π∫

−π

log(1 − eiθz)dµ(θ)},

where µ(θ) is a non-decreasing function of θ ∈ [−π, π] and
π∫

−π

dµ(θ) = 1.

If µ(θ) is a piecewise constant function, then we have a set of complex
valued functions gn(z) that admit the following representation

gn(z) =
z

n∏

k=1

(1 − eiθkz)2(1−α)βk

∈ S∗
α, θk ∈ [−π, π], βk ≥ 0,

n∑

k=1

βk = 1.

(5.7)
Using known properties of Stieltjes’ integral and Vitali’s theorem it is easy
to show that the set of functions (5.7) is dense in S∗

α, i.e., for every function
g(z) ∈ S∗

α there exists a sequence {gn(z)} satisfying (5.7) that locally uni-
formly converges to g(z) in U . Therefore, we need to prove our result only
for g(z) = gn(z).
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Let us present a chain of inequalities

1
2π

2π∫
0

1
|gn(eiθ)|2

dθ = 1
2π

2π∫
0

n∏
k=1

|1 − ei(θ−θk)|4(1−α)βkdθ

≤ 1
2π

2π∫
0

n∑
k=1

βk|1 − ei(θ−θk)|4(1−α)dθ

= 1
2π

n∑
k=1

βk
2π∫
0

|1 − ei(θ−θk)|4(1−α)dθ

= 1
2π

2π∫
0

|1 − eiθ|4(1−α)dθ

= 41−α

2π

2π∫
0

(1 − cos θ)2(1−α)dθ

= 28(1−α)

π B( 5
2 − 2α, 5

2 − 2α).

The last assertion of the theorem follows from the formulae of reduction of
the Beta-function. 2

We summarize the results of this section in the following theorem.

Theorem 5.1.2. Let Ω(t) be a phase domain occupied by a fluid injected
through the origin, let the area of Ω(t) be S(t), and a(t) be the conformal
radius of Ω(t) with respect to the origin. Then Ṡ ≤ 2πaȧ. If, moreover, Ω(t)
is α-convex at an instant t, then

2π2aȧ

28(1−α)B( 5
2 − 2α, 5

2 − 2α)
≤ Ṡ ≤ 2πaȧ.

In the case of a contracting bubble we have a similar estimate Ṡ ≥ 2πaȧ,
where S(t) means the area of the bubble and a = capΓ (t). The good thing
is that the outer Hele-Shaw problem preserves the convex dynamics. More
about estimates for integral means can be found, e.g., in [207].

5.2 Hele-Shaw cells with obstacles

Recent studies of Robin’s function and Robin’s capacity [66]–[71] showed
their connections with several problems of potential theoretic nature as well
as extremal length and minimal energy considerations. Our goal is to give
another physical interpretation that comes the Hele-Shaw problem with an
obstacle inside. We shall connect the rate of area change of the phase domain
with the rate of change of Robin’s reduced modulus of the free boundary.
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5.2.1 Robin’s capacity and Robin’s reduced modulus

Let Ω be a finitely connected domain in C, and A be an arbitrary closed
set of the boundary ∂Ω. Let us denote by B the complementary part of ∂Ω,
so that ∂Ω = A ∪ B. For a fixed finite point z0 ∈ Ω, the complex Robin’s
function R(z, z0) is defined by the following requirements:

• R(z, z0) is analytic in Ω except at the point z0 where R has a logarithmic
singularity: R(z, z0) = 1

2π log(z − z0) + w0(z), where w0(z) is a regular
function in Ω;

• Re R(z, z0) = 0 for all z ∈ A, while ∂Re R
∂n (z, z0) = 0 for all z ∈ B.

For z0 = ∞ the definition is modified by requiring R(z,∞) − 1
2π log z

to be regular in a neighbourhood of infinity. The real part of this function
Rre(z, z0) = Re R(z, z0) is the classical Robin’s function that has been stud-
ied deeply in [66]–[71]. The main property which we use here is its conformal
invariance. For basic properties of Robin’s function we refer the reader to
[66].

Let us define the Robin’s reduced modulus MΩ(A, z0) of the set A with
respect to the domain Ω and the point z0 ∈ Ω as

MΩ(A, z0) = lim
r→0

Rre(z, z0) +
1

2π
log r, |z − z0| = r

in the case of a finite z0, and

MΩ(A,∞) = lim
r→∞

Rre(z,∞) − 1

2π
log r, |z| = r

otherwise. We note that δΩ(A) := exp(2πMΩ(A,∞)) is Robin’s capacity of
the set A with respect to Ω. In particular, if B = ∂Ω \A = Ø, then Robin’s
capacity coincides with the usual logarithmic capacity d(A) and Robin’s re-
duced modulus is exactly the reduced modulus of the domain Ω with respect
to the finite point z0.

Another description of Robin’s capacity and Robin’s reduced modulus is
provided by means of the modulus of a family of curves.

Let Cr(z0) = {z : |z − z0| = r} and Cr = Cr(0). For r sufficiently small
and a finite z0 ∈ Ω let us consider the family Γ of curves that connect the
set A with Cr(z0). Then the limit

lim
r→0

1

m(Ω,Γ )
+

1

2π
log r

exists and is exactly Robin’s reduced modulus MΩ(A, z0). Analogously, for
z0 = ∞ ∈ Ω and r sufficiently large we define Γ to be the family of rectifiable
arcs that connect A with Cr. Then the limit

lim
r→∞

1

m(Ω,Γ )
− 1

2π
log r
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exists and is Robin’s reduced modulus MΩ(A,∞). From this definition it
follows that Robin’s modulus is changed under a conformal map f : Ω → Ω ′

by the following rule: for finite points w0 = f(z0)

w = f(z) = w0 + a(z− z0) + . . . , MΩ′(f(A), w0) = MΩ(A, z0) +
1

2π
log |a|,

for infinite points (z0 = w0 = ∞):

w = f(z) = az+ a0 +
a−1

z
+ . . . , MΩ′(f(A),∞) = MΩ(A,∞)− 1

2π
log |a|,

and for the mixed case (z0 = ∞, w0 finite):

w = f(z) = w0 +
a

z
+ . . . , MΩ′(f(A), w0) = MΩ(A,∞) +

1

2π
log |a|.

Let us mention some results about distortion of Robin’s capacity under an
“admissible” conformal map f(z) = z + a0 + a−1

z + . . . . Ch. Pommerenke
[207], [204], [206] proved that for an arbitrary closed set A on the unit cir-
cle the sharp estimate d(f(A)) ≥ (d(A))2 holds. Later on, P. Duren and
M. M. Schiffer [68] generalized this result to an arbitrary multiply connected
domain giving Robin’s interpretation to the inequality d(f(A)) ≥ δΩ(A),
which is sharp. Let us give two elementary examples of Robin’s capacity and
Robin’s reduced modulus.

Examples.

• Let Ū be the closed unit disc and A be an arc on the boundary which
subtends an angle 2α at the center. Then d(A) = sin α

2 , while δŪ (A) =(
sin α

2

)2
. Besides, δŪ (A) + δŪ (B) = 1 = d(A ∪B) (see [68]).

• Let U ′ = U \ (−1,−r], r ∈ (0, 1], and A be the unit circle. Then Robin’s
reduced modulus MU ′(A, 0) = 0 of the set A with respect to U ′, whereas
the usual reduced modulus of the domain U ′ with respect to the origin is
1
2π log 4r

(1+r)2 < 0. To see this we use the standard Pick function ζ = ϕ(w)

ϕ(w) =

(
β(1 − w) −

√
β2(1 − w)2 + 4w

)2

4w

=
1

β2
w + . . .

=
4w

(
β(1 − w) +

√
β2(1 − w)2 + 4w

)2 ,

β ≥ 1, that maps the unit disk U onto U ′ with

r =
1

β +
√
β2 − 1

= β −
√
β2 − 1.
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The arc γ = {eiθ, θ ∈ [π − α, π + α]}, cos(α/2) = 1/β, is mapped onto
the slit [−1,−r]. Robin’s modulus of γ is MU (γ, 0) = 1

2π log β2. There-
fore, making use the formula of the modulus transformation we have
MU ′(A, 0) = 1

2π log 1/β2 + 1
2π log β2 = 0.

Sometimes the notion of reduced modulus of the domain Ω with respect to
the point z0 is replaced by the notion of conformal radius. These concepts
are linked by the formula

MΩ(z0) = M(Ω, z0) =
1

2π
log R(Ω, z0).

Similarly we define Robin’s radius of the set A with respect to the domain Ω
and the point z0 as

MΩ(A, z0) =
1

2π
log RΩ(Γ, z0).

5.2.2 A problem with an obstacle

Let a viscous fluid be injected into a Hele-Shaw cell through a point well
producing a simply connected evolution until it meets a straight wall. Then
it starts sliding along the wall. We denote by Ω(t) the bounded plane domain
in the phase z-complex plane occupied by the moving fluid at instant t. The
source is located at the origin and is of strength −Q, Q < 0. The unique force
in consideration is the dimensionless pressure p scaled so that 0 corresponds
to the atmospheric pressure. The initial moment we choose to be when the
fluid reaches the wall. This stationary infinite straight wall placed in the
Hele-Shaw cell so that ∂Ω(t) splits into two parts: Γ (t) is the free boundary
and Π(t) is the complementary arc on the wall. The potential function solves
the mixed boundary value problem

∆p = Qδ0(z), in z ∈ Ω(t), (5.8)

p = 0, vn = − ∂p

∂n
on z ∈ Γ (t), (5.9)

vn = 0, on z ∈ Π(t). (5.10)

The complex potential is exactly given by Robin’s function as W = QR(z, 0)
(of course R depends on t).

Richardson [218], [218], considered a similar problem in a wedge assuming
circular initial evolution.

We consider the case when the boundary Π(t) is an interval during the
time of consideration. Observation of the velocities at the contact point be-
tween Γ (t) and Π(t) suggests the contact angle to be π/2. To derive the equa-
tion for the free boundary Γ (t) we involve an auxiliary parametric complex
ζ-plane, ζ = ξ+iη. The Riemann Mapping Theorem yields that there exists a
unique conformal univalent map f(ζ, t) from the unit disk minus a radial slit



5.2 Hele-Shaw cells with obstacles 121

U ′ = U \ (−1,−r(t)], r(t) ∈ (0, 1], U = {ζ : |ζ| < 1}, onto the phase domain
f : U ′ → Ω(t), f(0, t) = 0, a(t) = f ′(0, t) > 0, so that Γ (t) = {f(eiθ), θ ∈
(−π, π)}, and Π(t) = {f(ζ), ζ ∈ (−1−0i,−r(t)−0i)∪ (−r(t)+0i,−1+0i)}.
The point ζ = r(t) corresponds to a stagnation point at Π(t). The function
f(ζ, 0) = f0(ζ) produces a parametrization of ∂Ω(0) = Γ (0) ∪Π(0). The
moving boundary is parameterized by Γ (t) = f(∂U, t). The normal outer
vector is given by the formula

n = ζ
f ′

|f ′| , ζ = eiθ, θ ∈ (−π, π),

and n = −1 on Π(t). Therefore, the normal velocity at the free boundary is
obtained as

vn = V · n =

{
−Re

(
W ′ζ f ′

|f ′|

)
, for z ∈ Γ , ζ = eiθ, θ ∈ (−π, π),

Re W ′, for z ∈ Π(t).

The superposition (W ◦ f)(ζ, t) ≡ QR ◦ f(ζ, t) is −Q times Robin’s function
of the domain U ′ because of the conformal invariance. The set A for the
function R◦f is the unit circle and the set B is the radial segment [−1,−r(t)].
Robin’s function for U ′ with the chosen A and B is simply 1

2π log ζ. Hence,

W ′f ′ = Q
2πζ . On the other hand, we have vn = Re ḟ ζf ′/|f ′|, for ζ = eiθ,

θ ∈ (−π, π) and

Re
Q

2πζf ′
= ReW ′ = Re ḟ = 0

on the wall. This implies that ḟ and 1/ζf ′ are imaginary or ḟ/ζf ′ is real.
Finally we deduce the Polubarinova-Galin type equations

Re ḟ(ζ, t)ζf ′(ζ, t) =
−Q
2π

, |ζ| = 1, arg ζ ∈ (−π, π), (5.11)

Im ḟ(ζ, t)ζf ′(ζ, t) = 0 on the radial slit [−1,−r(t)]. (5.12)

The length of the radial slit 1− r(t) is such that the conformal radius of the
domain Ω(t) with respect to the origin is equal to 4r(t)a(t)(1 + r(t))−2.

If Π(t) is the union of intervals, then the function f(ζ, t) maps the unit
disk minus several slits onto the phase domain. Each slit corresponds to a
connected component of Π(t).

Now we apply Robin’s reduced modulus to estimate the area growth of the
phase domain of the injecting fluid in the Hele-Shaw problem. First of all, let
us remind that the boundary ∂Ω(t) of the domain occupied by viscous fluid
contains a free part Γ (t) and the solid part Π(t). The fluid is injected through
the origin 0 ∈ Ω(t). The parametric function f(ζ, t) maps U ′ = U\(−1,−r(t)]
onto Ω(t) and satisfies the equations (5.11–5.12).

A simple application of Green’s theorem implies that the rate of the area
change is expressed as Ṡ = −Q, where S(t) is the Euclidean area of Ω(t). For
injection we have Q < 0.
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Let the Pick function ζ = ϕ(w, t) map U onto U ′,

ϕ(w, t) =
4r(t)

(1 + r(t))2
w + b2w

2 + · · · ≡ bw + b2w
2 + . . . , . . . b = 1/β2

so that the arc {eiθ, θ ∈ (−α(t), α(t))} is mapped onto ∂U \ {−1} and the
arc {eiθ, θ ∈ (α(t), 2π − α(t))} is mapped onto the radial slit (−1,−r(t))

Set the analytic function

Φ(w, t) =
ḟ ◦ ϕ

ϕ(f ′ ◦ ϕ)
(w, t),

defined in U . The mixed boundary value problem (5.11–5.12) can be refor-
mulated a the Riemann-Hilbert problem for the analytic function Φ as

Re Φ(eiθ, t) =
−Q

2π|(f ′ ◦ ϕ)(eiθ, t)|2 , θ ∈ (−α, α),

Im Φ(eiθ, t) = 0, θ ∈ (α, 2π − α),

with bounded values of | limθ→±α± Φ(eiθ, t)|. The solution to this problem is
given by the integral representation

Φ(w, t) =
1

2π

√
(w − eiα)(w − e−iα)

w + 1

×
2π∫

0

eiθ + 1√
(eiθ − eiα)(eiθ − e−iα)

h(eiθ, t)
eiθ + w

eiθ − w
dθ,

where the branch of the root is chosen so that
√

1 = 1, and

h(eiθ, t) =
−Q

2π|(f ′ ◦ ϕ)(eiθ, t)|2 , θ ∈ (−α, α),

and vanishes in the complementary arc of ∂U , see, e.g., [87]. We deduce that

ȧ

a
=

1

2π

2π∫

0

√
2 cos θ2√

cos θ − cosα
h(eiθ, t)dθ.

Obviously,
√

2 cos θ2√
cos θ − cosα

≥ 1

sin α
2

= β, for θ ∈ (−α, α).

Therefore,

ȧ

a
≥ −Qβ

4π2

2π∫

0

χ[−α(t),α(t)]
1

|f ′(ϕ(eiθ, t), t)|2 dθ,
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where χ[−α(t),α(t)] is the characteristic function of the segment [−α(t), α(t)],

and ϕ(eiα(t), t) = −1. The Hölder inequality implies

ȧ

a
≥ −Qβ

8π3




2π∫

0

χ[−α(t),α(t)]
1

|f ′(ϕ(eiθ, t), t)|dθ




2

.

In its turn,

−Qβ
8π3




2π∫

0

χ[−α(t),α(t)]
1

|f ′(ϕ(eiθ, t), t)|dθ




2

≥ −Qβ
8π3




2π∫

0

χ[−α(t),α(t)]Re
[ 1

f ′(ϕ(eiθ, t), t)

]
dθ




2

.

But Re f ′(ϕ(eiθ, t), t) = 0 for θ ∈ (α(t), 2π − α(t)). Therefore,

−Qβ
8π3




2π∫

0

χ[−α(t),α(t)]Re
[ 1

f ′(ϕ(eiθ, t), t)

]
dθ




2

=
−Qβ
8π3




2π∫

0

Re
[ 1

f ′(ϕ(eiθ, t), t)

]
dθ




2

=
Qβ

2πa2
.

Finally, we have an estimate 2πȧa sin α
2 ≥ Ṡ, where a = f ′(0, t). The con-

formal radius R(Ω(t), 0) of the domain Ω(t) is just ab = a/β2 = a sin2 α
2 .

Robin’s radius of the arc Γ (t) is RΩ(t)(Γ (t), 0) = a. Therefore, we have our
main isoperimetric inequality

Ṡ ≤ 2πṘΩ(t)(Γ (t), 0)
√
RΩ(t)(Γ (t), 0) R(Ω(t), 0).

In other words this means that the rate of area change of the phase domain
Ω(t) is controlled by Robin’s radius of the free boundary as well as by its
conformal radius.

Finally, let us remark that a general case of disconnected boundary com-
ponent Π(t) can be treated in the same way. The solution to the correspond-
ing Riemann-Hilbert problem yields more complicated formulations, so we
have considered only the simplest case.

5.3 Isoperimetric inequality for a corner flow

In this section we shall obtain an analogue of the right-hand side estimate
given in Theorem 5.1.2 for the corner flow. In Section 2.2 we already con-
sidered such flows and derived the governing equations for the conformal
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map that parameterizes the phase domain. Here we use slightly different
parametrization that fits better for our concrete purpose.

Similarly to the model analyzed in Section 2.2 we consider a Hele-Shaw
cell where the viscous fluid occupies a simply connected domain Ω(t) in the
phase z-plane whose boundary Γ (t) at an instant t consists of two walls Γ1(t)
and Γ2(t) of the corner and a free interface Γ3(t) between them. The inviscid
fluid (or air) fills the complement of Ω(t). The simplifying assumption of
constant pressure at the interface between the fluids means that the surface
tension effect is neglected. We let the positive real axis x contain one of
the walls and fix the angle between walls as α ∈ (0, 2π). The motion of the
boundary Γ3(t) is due to injection of strength Q > 0 through the vertex of
the corner placed at the origin. The initial domain Ω(0) fills the vertex. In
our model we consider the local behavior of Γ3(t) and agree that Γ3(t) is
connected. At the wall-fluid contact points where Γ1 or Γ2 join with Γ3 the
velocity vector is directed along the walls that implies that Γ1 and Γ2 are
perpendicular to Γ3 at these points.

As before, the pressure field p satisfies the Laplacian equation and the
boundary conditions split into the free boundary condition (given on Γ3)
for pressure and the wall conditions for pressure’s normal derivative. The
potential p behaves near the origin as

p ∼ −Q
α

log |z|, as |z| → 0.

Let us consider an auxiliary parametric complex ζ-plane, ζ = ξ + iη. We
set D = {ζ : |ζ| < 1, 0 < arg ζ < π}, D3 = {z : z = eiθ, θ ∈ (0, π)},
D1 = {z : z = −r, r ∈ (0, 1)}, D2 = {z : z = r, r ∈ (0, 1)}, ∂D =
D1 ∪ D2 ∪ D3. Construct a conformal univalent time-dependent map z =
f(ζ, t), f : D → Ω(t), such that being continued onto ∂D, f(0, t) ≡ 0, and
the circular arc D3 of ∂D is mapped onto Γ3. This map has the expansion
f(ζ, t) = ζα/π

∑∞
k=0 ak(t)ζ

k near the origin, and a0(t) > 0. The function f
parameterizes the boundary of the domain Ω(t) by Γj = {z : z = f(ζ, t), ζ ∈
Dj}, j = 1, 2, 3.

Using standard steps of Section 2.2 we arrive at the free boundary condi-
tion expressed in terms of the function f as

Re (ḟ ζf ′) =
Q

π
, for ζ ∈ D3. (5.13)

The wall conditions imply that

Im (ḟ e−iα) = 0 for ζ ∈ D1; Im (ḟ) = 0 for ζ ∈ D2. (5.14)

We note that the derivative of the mapping function f ′(ζ, t) satisfies the
following conditions at D1 and D2

arg(ζf ′(ζ, t)) = π + α for ζ ∈ D1,
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and
Im (ζf ′(ζ, t)) = 0 for ζ ∈ D2.

Hence, we can rewrite the conditions (5.13–5.14) as a mixed boundary value
problem for the analytic function

Φ(ζ, t) :=
ḟ(ζ, t)

ζf ′(ζ, t)
,

given by

Re (Φ(ζ, t)) =
Q

π|f ′(ζ, t)|2 , for ζ ∈ D3, (5.15)

Im (Φ(ζ, t)) = 0, for ζ ∈ D1 ∪D2. (5.16)

Firstly, we solve the mixed boundary value problem (5.15–5.16). Making
use of an auxiliary Joukowski transform

ω(ζ) :=
1

2

(
ζ +

1

ζ

)
, or ζ(ω) := ω −

√
ω2 − 1,

we reduce this problem to a Riemann-Hilbert problem in the upper ω-half-
plane. Applying the Keldysh-Sedov formula (see, e.g., [87]) for the analytic
function Φ(ζ(ω), t) which is bounded at ±1, we get

Φ(ζ(ω), t) =

√
ω2 − 1

πi

1∫

−1

Q

π|f ′(ζ(τ), t)|2
√
τ2 − 1

dτ

τ − ω
.

The analytic function in the right-hand side is defined in C\[−1, 1], therefore,
choosing a suitable branch of the root we can calculate

lim
ω→∞

Φ(ζ(ω), t) =
1

π

1∫

−1

Q

π|f ′(ζ(τ), t)|2
√

1 − τ2
dτ.

Secondly, we return back to the variable ζ and obtain

ȧ0(t)

a0(t)
=
αQ

π3

π∫

0

1

|f ′(eiθ, t)|2 dθ.

Certainly,

ȧ0(t)

a0(t)
≥ αQ

π3
Im

π∫

0

e2iαθ/π

(eiθf ′(eiθ, t))2
ieiθ

dθ

eiθ
,

or
ȧ0(t)

a0(t)
≥ αQ

π3
Im

∫

D1∪D2∪D3

ζ2α/π

(ζf ′(ζ, t))2
dζ

ζ
.
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The function
ζ2α/π

(ζf ′(ζ, t))2

is analytic about the origin and symmetric with respect to the real axis.
Hence, we can take a small circle Sε = {ζ : |ζ| = ε} and write

Im

∫

D1∪D2∪D3

ζ2α/π

(ζf ′(ζ, t))2
dζ

ζ
= Im

∫

D3

ζ2α/π

(ζf ′(ζ, t))2
dζ

ζ

=
1

2
Im

∫

Sε

ζ2α/π

(ζf ′(ζ, t))2
dζ

ζ

=
π3

α2a2
0

.

So we have the inequality Q ≤ αa0ȧ0. The constant Q corresponds to the
rate of the area growth. However, one can obtain this directly using Green’s
theorem. In fact, if S(t) means the area of Ω(t) and Γ = Γ1 ∪ Γ2 ∪ Γ3, then

S(t) =
1

2
Im

∫

Γ

z̄dz =
1

2
Im

π∫

0

f̄f ′ieiθdθ.

Therefore,

Ṡ =
1

2
Im

π∫

0

˙̄ff ′ieiθdθ +
1

2
Im

π∫

0

f̄ ḟ ′ieiθdθ.

Integrating by parts the second term and using (5.13) we come to the equality
Ṡ = Q. Finally, we obtain the desirable inequality

Ṡ ≤ αa0ȧ0, (5.17)

which is known for α = 2π (see Theorem 5.1.2).
To make inequality (5.17) isoperimetric we interpret a0 as a certain entity

related to the free boundary Γ3. Let D be a hyperbolic simply connected
domain in C with three finite fixed boundary points z1, z2, and a on its
piecewise smooth boundary. Denote by Dε the domain D \ U(a, ε) for a
sufficiently small ε, where U(a, ε) = {z : |z − a| < ε}. Denote by M(Dε) the
modulus of the family of arcs in Dε joining the boundary arc of U(a, ε) that
lies in the circumference |z − a| = ε with the leg of the triangle D which is
opposite to a (we choose a unique arc of the circle so that it can be connected
in Dε with the leg (z1, z2) for any ε→ 0). If the limit

M∆(D, a) = lim
ε→0

(
1

M(Dε)
+

1

ϕa
log ε

)
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exists, where ϕa = sup ∆a is the inner angle and ∆a are the Stolz angles
inscribed in D at a, then it is called the reduced modulus of the triangle D.
The conditions for the reduced modulus to exist are found in [208], [242],
[256]. It turns out that the reduced modulus exists if D is conformal at a.
Let there exist a conformal map f(z) of the triangle D onto a triangle D′

such that there is an angular limit f(a) (see definitions in [207]) with the
inner angle ψa at the vertex f(a). If the function f has the angular finite
non-zero derivative f ′(a), then ϕa = ψf(a) and the reduced modulus of D
exists and changes [242], [256] according to the rule

M∆(f(D), f(a)) = M∆(D, a) +
1

ψa
log |f ′(a)|.

If we suppose, moreover, that f has the expansion

f(z) = w1 + (z − a)ψa/ϕa(c1 + c2(z − a) + . . . )

in a neighborhood of the point a, then the reduced modulus of D changes
according to the rule

M∆(f(D), f(a)) = M∆(D, a) +
1

ψa
log |c1|.

Similarly to the connection between the conformal radius and the usual
reduced modulus of a simply connected domain with respect to an inner
point, we introduce the conformal triangle radius R∆(D, a) as

R∆(D, a) = exp[ϕaM∆(D, a)].

The conformal triangle radius of the half-disk {|z| < 1}∩{Im z > 0} with
marked vertices 0,±1 with respect to the origin is 1. The phase domain Ω is
conformal at the origin. Using this interpretation we rewrite inequality (5.17)
as

Ṡ ≤ α R∆(Ω(t), 0)Ṙ∆(Ω(t), 0).

This is the isoperimetric inequality we were looking for.

5.4 Melting of a bounded crystal

In Section 3.4 have already discussed governing equation for a melting crystal.
In this section we consider a bounded initial crystal that is melting in forced
flow. The fluid moves to the right and there are two stagnating points on the
interface of the crystal. The governing equations are the same (4.56) with the
initial conditions

lim
x→±∞

θ = 1, lim
y→±∞

∂θ

∂y
= 0.
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The Boussinesq transformation applied to the convective heat transfer equa-
tion (4.56) leads to uncoupling of the problem. There is a conformal uni-
valent map from the phase domain Ω(t) onto the plane of the complex po-
tential W = ϕ + iψ. Under this transformation the boundary of the crys-
tal cross-section is mapped into the slit along the positive real axis ψ = 0,
ϕ ∈ [−2a, 2, a] in the W -plane. Thus, the problem admits the form:

Pe
∂ θ

∂ ϕ
= ∆θ, W ∈ D, (5.18)

where D = {C \ [−2a, 2a]}. The boundary conditions are

lim
ϕ→±∞

θ = 1, lim
ψ→±∞

∂θ

∂ψ
= 0, θ = 0, W ∈ ∂D. (5.19)

We introduce the auxiliary parametric complex ζ-plane, ζ = ξ + iη. The
Riemann Mapping Theorem yields that there exists a conformal univalent
map f(ζ, t) of the exterior part U∗ of the unit disk U onto the phase domain
f : U∗ → Ω(t), normalized by f(ζ, ·) = aζ + a0 + a−1/ζ + . . . . This problem
does not admit separation of variables as in previous case. In [160] it was
shown that the heat flux density at the slit on the plane of the complex
potential W = ϕ+ iψ can be expressed as |∂ θ/∂ ψ| = (4a2 −ϕ)−1/2µ(ϕ/2a).
The Joukowski function W = a(ζ + 1/ζ) permits us finally come to the
Polubarinova-Galin type equation for the free boundary:

Re ḟ(ζ, t)ζf ′(ζ, t) = −µ(cos θ), ζ = eiθ. (5.20)

The function µ in (5.20) satisfies the integral equation [160] for a crystal that
admits reflection with respect to the real axis and for small Péclet numbers:

∫ 1

−1

µ(ξ)√
1 − ξ2

ln
∣∣ ϕ
2a

− ξ
∣∣dξ = π − Q

2
ln
aeγ Pe

2
,

where ϕ ∈ [−2a, 2a], γ is Euler’s constant, and

Q = 2

∫ 1

−1

µ(ξ)√
1 − ξ2

dξ =

∫ 2π

0

µ(cos θ)dθ

is the total heat flux. Obviously, the sign of the function µ is connected
with the sign of the normal velocity. Therefore, for a melting crystal we have
µ(cos θ) ≥ 0 for all θ ∈ [0, 2π). A simple applications of Green’s Theorem
yields that the rate of the area change of the nucleus Ṡ is exactly equal to
the total heat flux taken with (-): Ṡ = −Q. In fact, we have

2S(t) = −
∫

Γ (t)

Im (fdf̄) = Re

2π∫

0

f(eiθ, t)
∂ f(ζ, t)

∂ ζ

∣∣∣∣
ζ=eiθ

e−iθdθ.
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Then,

2
dS

dt
= −

2π∫

0

µ(cos θ)dθ − Im

2π∫

0

f
∂

∂ t

(
∂ f

∂ θ

)
dθ.

Integrating the last term by parts we obtain that Ṡ = −
∫ 2π

0
µ(cos θ)dθ =

−Q.
The equation (5.20) implies

ȧ =
−a
2π

∫ 2π

0

µ(cos θ)

|f ′(eiθ, t)|2 dθ.

Since we have the inequality |f ′(eiθ, t)| ≤ 2a for functions that map U ∗ onto
a convex domain, the radius-area estimate Ṡ ≥ 8πaȧ can be given.

Theorem 5.4.1. If the initial nucleus is convex, then locally in time we have
the estimate Ṡ ≥ 8πaȧ where a = capΓ (t).





6. General evolution equations

Let us consider the solutions to the Polubarinova-Galin equation (1.16) in the
case of injection (with Q < 0). The fluid is advancing in the normal direction
and the solutions form subordination chains of conformal univalent maps
(and corresponding chain of hyperbolic univalent domains). This particular
case of subordination chains has been considered in the preceding chapters.
The existence theorem makes it natural to assume that at least the initial
domain Ω0 of the Hele-Shaw dynamics Ω(t) is bounded by a smooth analytic
curve. A closed Jordan curve is called a quasicircle (quasidisk) if it is an
image of the unit circle (disk) under a quasiconformal homeomorphism of
C. A piece-wise smooth Jordan curve bounds a quasidisk if and only if it
has no cusp. So all domains Ω(t), t ∈ [0, t0) in a Hele-Shaw evolution are
quasidisks until a cusp or a double point (Theorem 4.4.1) occurs on the
boundary Ω(t0). This chapter is devoted to general subordination dynamics
that corresponds to the Löwner-Kufarev equation. We construct a parametric
method for conformal maps that admit quasiconformal extensions and, in
particular, such that the associated quasidisks are bounded by smooth Jordan
curves. Some applications to Hele-Shaw flows of viscous fluids are given.

As usual, U denotes the unit disk and S1 = ∂U . By S we denote the
class of all holomorphic univalent functions in U normalized by f(ζ) =
ζ+a2ζ

2 + . . . , ζ ∈ U , and by Σ, the class of all univalent meromorphic func-

tions in U∗ normalized by f(ζ) = ζ + c0 +
c1
ζ

+ . . ., ζ ∈ U∗, Σ0 stands for all

functions from Σ with c0 = 0. These classes have been one of the principal
objects of research in complex analysis for a long time. The most inquisitive
problem for the class S, posed by Bieberbach in 1916 [27], was finally solved
in 1984 by de Branges [31] who proved that |an| ≤ n for any f ∈ S and
that equality is attained only for the Koebe function k(z) = z(1 − zeiθ)−2,
θ ∈ [0, 2π). (Ludwig Georg Elias Moses Bieberbach (1886–1982) was
converted to the views of the Nazis soon after Hitler came to power and en-
ergetically persecuted his Jewish colleagues. However, after the end of World
War II in 1945 Ostrowski invited him to lecture at Basel University in 1949. It
is interesting that de Branges became the first winner of the Ostrowski Prize
for solving the Bieberbach conjecture). The main tool of the proof turned
out to be the parametric representation of a function from S by the Löwner
homotopic deformation of the identity map given by the Löwner differential
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equation. This parametric method emerged almost 80 years ago in a sem-
inal paper by Löwner [175]. Löwner studied a one-parameter semigroup of
conformal one-slit maps of U . His main achievement was an infinitesimal de-
scription of the semi-flow of such maps by the Schwarz kernel that led him
to what is now called the Löwner equation. This crucial result was later on
generalized in several ways.

Attempts have been made to derive an equation that allowed to describe
a representation of the whole class S. Nowadays, it is rather difficult to fol-
low the correct historic line of the development of the parametric method
because in the middle of the 20-th century a number of works dedicated
to this general equation appeared independently. In particular, Kufarev [164]
studied a one-parameter family of domains Ω(t), and regular functions f(z, t)
defined in Ω(t). He proved differentiability of f(z, t) with respect to t for z
in the Carathéodory kernel Ω(t0) of Ω(t), and derived a generalization of
the Löwner equation. Pommerenke [204] proposed to consider subordination
chains of domains that led him to a general equation. We mention here also
papers by Gutlyanskĭı [120] and Goryainov [100] in this direction. One can
learn more about this method in the monographs [8], [65], [206] (see also
the references therein). Let us draw reader’s attention to Goryainov’s ap-
proach [100]. He suggested to use a method of semigroups to derive several
other parametric representations of classes of analytic maps and to apply it to
study the dynamics of stochastic branching processes. This approach is based
on the study of one-parameter semi-flows on semigroups of conformal maps
and their infinitesimal descriptions by evolution equations (see also [238]).

In 1959 Shah Dao-Shing [236] suggested a parametric method for qua-
siconformal automorohisms of U . In another form this method appeared in
the paper by Gehring and Reich [92], and then, in [171]. Later, Cheng Qi He
[124] obtained an analogous equation for classes of quasiconformally extend-
able univalent functions (to be more precise, in terms of inverse functions).
Unlike the parametric method for conformal maps, its analogue for quasicon-
formal maps did not receive so much attention.

Several attempts have been launched to specialize the Löwner-Kufarev
equation to obtain conformal maps that admit quasiconformal extensions
(see [15], [16], [17], [121]).

The principal goal of this chapter is to study evolution equations for con-
formal maps with quasiconformal extensions. In particular, we are interested
in maps smoothly extendable onto the unit circle. Our approach is based on
the study of flows on the universal Teichmüller space T and on the manifold
Diff S1/Rot S1 embedded into T . Another question we are interested in is
what a Hele-Shaw evolution looks like in the universal Teichmüller space.



6.1 The Löwner-Kufarev equation 133

6.1 The Löwner-Kufarev equation

We consider a subordination chain of simply connected hyperbolic domains
Ω(t) in the Riemann sphere C, which is defined for 0 ≤ t < t0. This means
that Ω(s) ⊂ Ω(t) when s < t. We suppose that all Ω(t) are unbounded with
∞ ∈ Ω(t) for all t. By the Riemann Mapping Theorem we can construct a
subordination chain of mappings f(ζ, t), ζ ∈ U ∗, where the function f(ζ, t) =

α(t)ζ + a0(t) +
a1(t)

ζ
+ . . . is a meromorphic univalent map of U ∗ onto Ω(t)

for each fixed t. Pommerenke [204], [206] first introduced such chains in order
to generalize Löwner’s equation. His result says that given a subordination
chain of domains Ω(t) with a differentiable decreasing real-valued coefficient
α(t) ( e−t after suitable rescaling), there exists a regular analytic function

p(ζ, t) = p0(t) +
p1(t)

ζ
+
p2(t)

ζ2
+ . . . , ζ ∈ U∗,

such that Re p(ζ, t) > 0 for ζ ∈ U∗ and

∂f(ζ, t)

∂t
= −ζ ∂f(ζ, t)

∂ζ
p(ζ, t), (6.1)

for almost all t ∈ [0, t0). The coefficient α(t) = α(0) exp(−
∫ t
0
p0(τ)dτ) is the

conformal radius of Ω(t). A reciprocal statement is also true. This equation
is known nowadays as the Löwner-Kufarev equation due to the contributions
by Löwner [175] and Kufarev [164].

Geometrically, it readily corresponds to the normal motion of the bound-
ary ∂Ω(t). Indeed, supposing an analytic boundary ∂Ω(t) the normal vector
in the outward direction is n = −ζf ′(ζ, t)/|f ′(ζ, t)|, |ζ| = 1, and defining
p(ζ, t) as (−ḟ(ζ, t))/(ζf ′(ζ, t)) the normal velocity vn is given by

vn = −Re

(
ḟ(ζ, t)ζf ′(ζ, t)

|f ′(ζ, t)|

)
= Re [p(ζ, t)|f ′(ζ, t)|], |ζ| = 1,

and positive. Therefore, Re p(ζ, t) > 0 that is stated in (6.1). Of course, the
general case of nonanalytic boundary requires finer argumentation.

We consider two main questions:

• What does p(ζ, t) look like when ∂Ω(t) is a quasicircle?
• The same question in the case of a smooth ∂Ω(t).

Analogous problems can be posed for the flow of a viscous fluid in a plane
Hele-Shaw cell under injection at infinity. Suppose that at the initial time the
phase domain Ω0 occupied by the fluid is simply connected and bounded by
a smooth curve Γ0. The model can be thought of as a receding air bubble in
a viscous flow and was discussed in Section 4.3.4. The evolution of the phase
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domains Ω(t) is described by an auxiliary conformal mapping f(ζ, t) of U ∗

onto Ω(t), Ω(0) = Ω0, normalized by f(ζ, t) = α(t)ζ + a0(t) + a1(t)
ζ + . . . ,

α(t) > 0. Rescaling Q = −1 this mapping satisfies the Polubarinova-Galin
equation

Re
[
ḟ(ζ, t)ζf ′(ζ, t)

]
= −1, ζ = eiθ. (6.2)

The corresponding Löwner-Kufarev type equation is

ḟ(ζ, t) = ζf ′(ζ, t)
1

2π

2π∫

0

1

|f ′(eiθ, t)|2
ζ + eiθ

ζ − eiθ
dθ, (6.3)

where ζ ∈ U∗.
The equation (6.2) is equivalent to the kinematic condition on the free

boundary and, in particular, implies that the phase domains Ω(t) form a
subordination chain. Unlike the classical Löwner-Kufarev equation (6.1), the
equation (6.3) even is not quasilinear and the problem of the short-time
existence and uniqueness of the solution is much more difficult. The function
p(ζ, t) is not explicitly given as a function of ζ and t. It is the integral operator
in the right-hand side of (6.3). It is known that ∂Ω(t) remains to be a smooth
(even analytic) boundary up to the time t0 when possible cusps develop or
when the domain Ω(t) is no longer simply connected. This means that Ω(t)
fails to be a quasidisk as t → t−0 . Quasidisks can be thought of as elements
of the universal Teichmüller space, which we will use as a general parametric
space.

We ask the following question: given an the initial smooth phase domain Ω0,
and the Hele-Shaw evolution Ω(t), what kind of evolution does it generate in
the universal Teichmüller space?
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Fig. 6.1. General scheme of investigation

A general scheme of the proposed investigation is shown in Figure 6.1
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6.2 Quasiconformal maps and Teichmüller spaces

The theory of quasiconformal mapping emerged at the beginning of the twen-
tieth century. At that time, quasiconformal maps arose by geometric reasons
based on the works of Grötzsch [104], [105] (who introduced so-called regular
quasiconformal maps) and the notion of extremal length suggested by Ahlfors
and Beurling, and also, as solutions of a special type of elliptic systems of
differential equations in the works by Lavrentiev (see e.g. [170]). Important
applications to various fields of mathematics, such as discrete group theory,
mathematical physics, complex differential geometry, have stimulated much
development of the theory of quasiconformal mappings that, nowadays, is an
important branch of Complex Analysis. Major contribution to this theory has
been made by Lavrentiev, Grötzsch, Ahlfors (who was one of the first Fields
laureates (1936)), Bers, Teichmüller, Belinskĭı, Volkovyskĭı, in the past and
many contributors recently.

At the mid-20-th century it was established that the classical methods
of geometric function theory could be extended to complex hyperbolic man-
ifolds. The Teichmüller spaces became the most important of them. In 1939
Teichmüller [248] proposed and partially realized an adventurous program of
investigation in the moduli problem for Riemann surfaces (Paul Julius Os-
wald Teichmüller, 1913–1943, a student of Bieberbach in Berlin was also
an active member of the Nazi party. He died in heavy fighting along the the
river Dnieper, USSR). His main theorem asserts the existence and uniqueness
of the extremal quasiconformal map between two compact Riemann surfaces
of the same genus modulo an equivalence relation.

Teichmüller has brought together the moduli problem, extremal quasi-
conformal maps, and relevant quadratic differentials on Riemann surfaces.
This led him to the well known theory of the Teichmüller spaces. Later on,
Teichmüller’s ideas were thoroughly substantiated by Ahlfors, Bers [7] and
other specialists.

6.2.1 Quasiconformal maps

Let D be a domain in C (possibly equal to C) and w = f(z) be a homeo-
morphism of D onto a domain D′ ⊆ C. We define distributional derivatives
as

fz̄ :=
∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
; fz :=

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
,

which are supposed to be locally square integrable on D, z = x+ iy. A home-
omorphism f is said to be quasiconformal in D if the complex valued function
µf (z) = fz̄/fz satisfies an inequality |µf (z)| ≤ k < 1 almost everywhere in
D. If ‖µf‖∞ = ess sup

z∈D
|µf (z)| ≤ k < 1, then the homeomorphism f is said

to be K-quasiconformal, K = (1 + k)/(1 − k). The function µf (z) is called
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its complex characteristic or dilatation. A quasiconformal map w = f(z) is a
homeomorphic generalized solution w of the Beltrami equation

wz̄ = µf (z)wz, (6.4)

for a given dilatation µf (z). This solution is unique up to a conformal home-
omorphism. Imposing some standard conformal normalization (for instance,
three boundary fixed points for a simply connected domain) implies the
uniqueness of the solution to (6.4). Detailed descriptions of properties of
quasiconformal maps can be easily found in [5], [21], [89], [91], [163].

To give a geometric definition of a quasiconformal map one can consider
the notion of the modulus of a family of curves as a basis of the notion
of quasiconformality. A sense preserving homeomorphism f of a domain D
onto a domain D′ is said to be a K-quasiconformal map if for any doubly
connected hyperbolic domain R ⊂ D the ratio M(f(R))/M(R) is bounded
and the following inequality is satisfied

M(R)

K
≤M(f(R)) ≤ KM(R), (6.5)

where M(R) is the modulus of the family of curves that separate the bound-
ary components of R. The inequality (6.5) we call the property of quasi-
invariance of the modulus. A quasiconformal map is conformal if and only if
K = 1 (or k = 0).

An important point to note here is the dependence of a quasiconformal
map on its dilatation. We let the dilatation µf (z, t) depend on z ∈ U and
on a real or complex parameter t; µf (z, ·) is assumed to be a measurable
function with respect to z, ‖µf‖∞ < 1. If µf is n-differentiable with respect
to z and the n-th derivative is Hölder continuous of order α ∈ (0, 1), then a
quasiconformal solution fµ ∈ UK to the equation (6.4) is (n+1)-differentiable
and the (n+ 1)-th derivative satisfies the same Hölder condition [21], n ≥ 1.
Thus, one could expect that fµ possesses a continuous derivative whenever
µ is continuous. However, this not true, as is shown by the example f(z) =
z(1 − log |z|), f(0) = 0, z ∈ U , where f is even not Lipschitz continuous at
z = 0. Belinskĭı [21] proved that a continuous µ produces a Hölder continuous
f for any 0 < α < 1.

The dependence on the parameter t is much easier. If µ(·, t) is a differen-
tiable or continuous function with respect to t (for instance, holomorphic for
complex t), then the same is true for fµ.

6.2.2 The universal Teichmüller space

Let us consider the family F of all quasiconformal automorphisms of U . Ev-
ery such map f satisfies the Beltrami equation fζ̄ = µf (ζ)fζ in U in the
distributional sense, where µf is a measurable essentially bounded function



6.2 Quasiconformal maps and Teichmüller spaces 137

(L∞(U)) in U , ‖µf‖ = ess supU |µf (ζ)|∞ < 1. Conversely, for each measur-
able Beltrami coefficient µ essentially bounded as above, there exists a qua-
siconformal automorphism of U , that satisfies the Beltrami equation, which
is unique if provided with some conformal normalization, e.g., three point
normalization f(±1) = ±1, f(i) = i. Two normalized maps f1 and f2 are
said to be equivalent, f1 ∼ f2, if being extended onto the unit circle S1, the
superposition f1 ◦ f−1

2 restricted to S1 is the identity map. The quotient set
F/ ∼ is called the universal Teichmüller space T . It is a covering space for all
Teichmüller spaces of analytically finite Riemann surfaces. By definition we
have two realizations of T : as a set of equivalence classes of quasiconformal
maps and, due to the relation between F/ ∼ and the unit ball B ⊂ L∞(U),
as a set of equivalence classes of corresponding Beltrami coefficients.

The normalized maps from F form a group F0 with respect to superpo-
sition and the maps that act identically on S1 form a normal subgroup I.
Thus, T is the quotient of T = F0/I.

If g ∈ F , f ∈ F0, then there exists a Möbius transformation h, such that
h ◦ f ◦ g−1 ∈ F0. Let us denote by [f ] ∈ T the equivalence class represented
by f ∈ F0. Then, one defines the universal modular group M, ω ∈ M,
ω : T → T , by the formula ω([f ]) = [h ◦ f ◦ g−1]. Its subgroup M0 of right
translations on T is defined by ω0([f ]) = [f ◦ g−1], where f, g ∈ F0.

An important fact (see [173, Chapter III, Theorem 1.1]) is that there are
real analytic mappings in any equivalence class [f ] ∈ T .

Given a Beltrami coefficient µ ∈ B ⊂ L∞(U) let us extend it by zero
into U∗. We normalize the corresponding quasiconformal map f , which is
conformal in U∗, by f(ζ) = ζ + a1/ζ + . . . about infinity. Then, two Bel-
trami coefficients µ and ν are equivalent if and only if the corresponding
normalized mappings fµ and fν map U∗ onto one and the same domain in
C. Thus, the universal Teichmüller space can be thought of as the family
of all normalized conformal maps of U ∗ admitting quasiconformal extension.
Moreover, any compact subset of T consists of conformal maps f of U ∗ that
admit quasiconformal extension to U with ‖µf‖∞ ≤ k < 1 for some k.

As we mentioned above, a normalized conformal map f ∈ [f ] ∈ T defined
in U∗ can have a quasiconformal extension to U which is real analytic in
U , but on the unit circle f may behave quite irregularly. For example, the
resulting quasicircle f(S1) can have the Hausdorff dimension greater than 1.

Remark. Given a bounded K-quasicircle Γ , K = (1 + k)/(1 − k), in the
plane let N(ε, Γ ) denote the minimal number of disks of radius ε > 0 that
are needed to cover Γ . Let

β(K) = supΓ limsupε→0 logN(ε, Γ )/log(1/ε)

denote the supremum of the Minkowski dimension of curves Γ where Γ ranges
over all bounded K-quasicircles. The Hausdorff dimension of Γ is bounded
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from above by β(K) (see [18]). In [18] it was also established several explicit
estimates for β(K) , e.g., β(K) ≤ 2 − cK−3.41.

Let us denote by Σqc
0 ⊂ Σ0 the class of those univalent conformal maps f

defined in U∗ which admit a quasiconformal extension to U , normalized by
f(ζ) = ζ + a1/ζ + . . . . Let x, y ∈ T and f, g ∈ Σqc

0 be such that µf ∈ x and
µg ∈ y. Then, the Teichmüller distance τ(x, y) on T is defined as

τ(x, y) = inf
µf∈x, µg∈y

1

2
log

1 + ‖µg◦f−1‖∞
1 − ‖µg◦f−1‖∞

.

For a given x ∈ T we consider an extremal Beltrami coefficient µ∗ such
that ‖µ∗‖∞ = infν∈x ‖ν‖∞. Let us remark that µ∗ need not be unique. A
geodesic on T can be described in terms of the extremal coefficient µ∗ as a
continuous homomorphism xt : [0, 1] 7→ T such that τ(0, xt) = tτ(0, x1). Due
to the above remark the geodesic need not be unique as well.

We consider the Banach space B(U) of all functions holomorphic in U
equipped with the norm

‖ϕ‖B(U) = sup
ζ∈U

|ϕ(ζ)|(1 − |ζ|2)2.

For a function f in Σ the Schwarzian derivative

Sf (ζ) =
∂

∂ζ

(
f ′′(ζ)

f ′(ζ)

)
− 1

2

(
f ′′(ζ)

f ′(ζ)

)2

is defined and Nehari’s [189] estimate ‖Sf (1/ζ)‖B(U) ≤ 6 holds. Given x ∈ T ,
µ ∈ x we construct the mapping fµ ∈ Σqc

0 and have the homeomorphic
embedding T → B(U) by the Schwarzian derivative.

The universal Teichmüller space T is an analytic infinite dimensional Ba-
nach manifold modelled on B(U). The Banach space B(U) is an infinite
dimensional vector space that can be thought of as the cotangent space to
T at the initial point (represented by µ ≡ 0). More rigorously, let the map
fµ be a quasiconformal homeomorphism of the unit disk U . It has a Fréchet
derivative with respect to µ in a direction ν. Let us construct the variation
of fτν ∈ Σqc

0 , µ = τν, with respect to a small parameter τ :

fτν(ζ) = ζ + τV (ζ) + o(τ), ζ ∈ U∗.

Taking the Schwarzian derivative in U ∗ we get

Sfτν = τV ′′′(ζ) + o(τ), ζ ∈ U∗,

locally uniformly in U∗. Taking into account the normalization of the class
Σqc

0 we have (see, e.g., [173])

V (ζ) = − 1

π

∫∫

U

ν(w)dσw
w − ζ

, V ′′′(ζ) = − 6

π

∫∫

U

ν(w)dσw
(w − ζ)4

.
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The integral formula implies V ′′′(A(ζ))A′(ζ)2 = V ′′′(ζ) (subject to the rela-
tion for the Beltrami coefficient ν(A(ζ))A′(ζ) = ν(ζ)A′(ζ)) for any Möbius
transform A. Now let us change variables ζ → 1/ζ̄ and reduce the first
variation to a holomorphic function in the unit disk by changing f τν(ζ) to

gτν(ζ) ≡ fτν(1/ζ̄). Setting Λν(ζ) = Sgτν (ζ) and Λ̇ν(ζ) = 1
ζ4V

′′′(1/ζ̄) we have

(see, e.g., [90, Section 6.5, Theorem 5]) that

Λν(ζ) − τΛ̇ν(ζ) =
o(τ)

(1 − |ζ|2)2 .

So the operator Λ̇ν is the derivative of Λν at the initial point of the universal
Teichmüller space with respect to the norm of the Banach space B(U). The
reproducing property of the Bergman integral gives

ϕ(ζ) =
3

π

∫∫

U

ϕ(w)(1 − |w|2)2dσw
(1 − w̄ζ)4

, ϕ ∈ B(U). (6.6)

The latter integral leads us to the so-called harmonic (Bers’) Beltrami differ-
ential

ν(ζ) = Λ∗
ϕ(ζ) ≡ −1

2
ϕ(ζ)(1 − |ζ|2)2, ζ ∈ U.

Let us denote by A(U) the Banach space of analytic functions with the finite
L1 norm in the unit disk. We have that A(U) ↪→ B(U) is a continuous
inclusion (see, e.g., [188, Section 1.4.2]). On L∞(U)×A(U) one can define a
coupling

〈µ, ϕ〉 :=

∫∫

U

µ(ζ)ϕ(ζ) dσζ .

Denote by N the space of locally trivial Beltrami coefficients, which is the
subspace of L∞(U) that annihilates the operator 〈·, ϕ〉 for all ϕ ∈ A(U).
Then, one can identify the tangent space to T at the initial point with the
space H := L∞(U)/N . It is natural to relate it to a subspace of L∞(U). The
superposition Λ̇ν ◦ Λ∗

ϕ acts identically on A(U) due to (6.6). The space N is

also the kernel of the operator Λ̇ν . Thus, the operator Λ∗ splits the following
exact sequence

0 −→ N ↪→ L∞(U)
Λ̇ν−→ A(U) −→ 0.

Then, H = Λ∗(A(U)) ∼= L∞(U)/N . The coupling 〈µ, ϕ〉 defines A(U) as a
cotangent space. Let A2(U) denote the Banach space of analytic functions ϕ
with the finite norm

‖ϕ‖A2(U) =

∫∫

U

|ϕ(ζ)|2(1 − |ζ|2)2dσζ .

Then A(U) ↪→ A2(U) and Petersson’s Hermitian product [265] is defined on
A2(U) as



140 6. EVOLUTION EQUATIONS...

(ϕ1, ϕ2) =

∫∫

U

ϕ1(ζ)ϕ2(ζ)(1 − |ζ|2)2dσζ .

The Kählerian Weil-Petersson metric {ν1, ν2} = 〈ν1, Λ̇ν2〉 can be defined on
the tangent space to T and gives a Kählerian manifold structure to T .

The universal Teichmüller space is a smooth manifold on which a Lie
group Diff T of real sense preserving diffeomorphisms is defined. The tangent
bundle is defined on T and is represented by the harmonic differentials from
H translated to all points of T . We will consider tangent vectors from H at
the initial point of T represented by the map f(ζ) ≡ ζ. The Weil-Petersson
metric defines a Lie algebra of vector fields on T by the Poisson-Lie bracket
[ν1, ν2] = {ν2, ν1} − {ν1, ν2}, where ν1, ν2 ∈ H. One can define the Poisson-
Lie bracket at all other points of T by left translations from Diff T . To each
element [x] from Diff T an element x from T is associated as an image of the
initial point. Therefore, a curve in Diff T generates a traced curve in T that
can be realized by a one-parameter family of quasiconfromal maps from Σqc

0 .
For each tangent vector ν ∈ H there is a one-parameter semi-flow in

Diff T and a corresponding flow xτ ∈ T with the velocity vector ν. To make
an explicit representation we use the variational formula for the subclass Σqc

0

of Σ0 of functions with quasiconformal extension (see, e.g., [173]) to C. If
fµ ∈ Σqc

0 , ν ∈ H and

µf (ζ, τ) =

{
τν(ζ) + o(τ) if ζ ∈ U ,
0 if ζ ∈ U∗,

then the map

fµ(ζ) = ζ − τ

π

∫∫

U

ν(w)dσw
w − ζ

+ o(τ)

locally describes the semi-flow xτ on T .

6.3 Diff S1/Rot S1 embedded into T

In this section we study a diffeomorphic embedding of the homogeneous man-
ifold Diff S1/Rot S1 into the universal Teichmüller space T .

6.3.1 Homogeneous manifold Diff S1/Rot S1

We denote the Lie group of C∞ sense preserving diffeomorphisms of the unit
circle S1 by Diff S1. Each element of Diff S1 is represented as z = eiφ(θ) with
a monotone increasing, C∞ real-valued function φ(θ), such that φ(θ+ 2π) =
φ(θ)+2π. The Lie algebra for Diff S1 is identified with the Lie algebra Vect S1

of smooth (C∞) tangent vector fields to S1 with the Poisson - Lie bracket
given by
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[φ1, φ2] = φ1φ
′
2 − φ2φ

′
1.

Fixing the trigonometric basis in Vect S1 the commutator relations take the
form

[cos nθ, cos mθ] =
n−m

2
sin (n+m)θ +

n+m

2
sin (n−m)θ,

[sin nθ, sin mθ] =
m− n

2
sin (n+m)θ +

n+m

2
sin (n−m)θ,

[sin nθ, cos mθ] =
m− n

2
cos (n+m)θ − n+m

2
cos (n−m)θ.

There is no general theory of infinite dimensional Lie groups, example of
which is under consideration. The interest to this particular case comes first
of all from the string theory where the Virasoro algebra appears as the cen-
tral extension of Vect S1. Entire necessary background for the construction of
the theory of unitary representations of Diff S1 is found in the study of Kir-
illov’s homogeneous Kählerian manifold M = Diff S1/Rot S1, where Rot S1

denotes the group of rotations of S1. The group Diff S1 acts as a group of
translations on the manifold M with Rot S1 as a stabilizer. The Kählerian
geometry of M has been described by Kirillov and Yuriev in [157]. The man-
ifold M admits several representations, in particular, in the space of smooth
probability measures, symplectic realization in the space of quadratic differ-
entials. We will use its analytic representation that is based on the class Σ̃0 of
functions from Σ0 which being extended onto the closure U

∗
of U∗ are sup-

posed to be smooth on S1. The class Σ̃0 is dense in Σ0 in the local uniform
topology of U∗.

Let S̃ denote the class of all univalent holomorphic maps in the unit
disk g(ζ) = c0 + c1ζ + c2ζ

2 + . . . which are smooth on S1. Then, for each
f ∈ Σ̃0 we have ∞ ∈ f(U∗) and there is an adjoint map g ∈ S̃ such that
C \ f(U∗) = g(U). The superposition g−1 ◦ f restricted to S1 is in M (see
Figure 6.2). Reciprocally, for each element of M there exist such f and g. A

¾
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Fig. 6.2. Representation of M

piece-wise smooth closed Jordan curve is a quasicircle if and only if it has
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no cusps. So any function f from Σ̃0 has a quasiconformal extension to U .
By this realization the manifold M is naturally embedded into the universal
Teichmüller space T . Moreover, the Kählerian structure on M corresponds
to the Kählerian structure on T given by the Weil-Petersson metric.

The Goluzin-Schiffer variational formulae lift the actions from the Lie
algebra Vect S1 onto Σ̃0. Let f ∈ Σ̃0 and let d(eiθ) be a C∞ real-valued
function in θ ∈ (0, 2π] from Vect S1 making an infinitesimal action as θ 7→
θ + τd(eiθ). Let us consider a variation of f given by

δdf(ζ) =
−1

2πi

∫

S1

(
wf ′(w)

f(w)

)2
wd(w)dw

f(w) − f(ζ)
. (6.7)

Kirillov and Yuriev [157], [158] have established that the variations δdf(ζ)
are closed with respect to the commutator and the induced Lie algebra is
the same as Vect S1. Moreover, Kirillov’s result [159] states that there is the
exponential map Vect S1 → Diff S1 such that the subgroup Rot S1 coincides
with the stabilizer of the map f(ζ) ≡ ζ from Σ̃0.

6.3.2 Douady-Earle extension

Let ϕ : S1 → S1 be a circle quasisymmetric homeomorphism, i.e., a homeo-
morphism that possesses a quasiconformal extension into U (for a precise def-
inition see, e.g., [173]). Then ϕ has infinitely many quasiconformal extensions
into U , one of the most remarkable of which is the Beurling-Ahlfors exten-
sion (Arne Karl-August Beurling (1905-1986), Lars Valerian Ahlfors
(1907-1996); this extension appeared in a 1956 paper [26] with the nonalpha-
betic listing of the authors as Ahlfors had insisted because of the contribution
made by Berling. Ahlfors “... felt mostly like a secretary; the main ideas of
the paper were due to Beurling” (see [20]). In 1986 Douady and Earle [60]
defined for any such ϕ : S1 → S1 a conformally natural extension h : U → U
from F . The map h is a homeomorphism which is real analytic in the inte-
rior. The idea was to introduce the concept of a conformal barycenter of a
measure on S1 = ∂U . Douady and Earle proved that w = h(ζ) ∈ F satisfies
the functional equation

F (ζ, w) ≡ 1

2π

∫

S1

(
ϕ(z) − w

1 − wϕ(z)

)
1 − |ζ|2

|ζ − z|2
|dz| = 0. (6.8)

An advantage of this extension is that if σ, τ ∈Möb(U), then the extension of
σ ◦ϕ ◦ τ is given by σ ◦h ◦ τ , what is not true for the Beurling-Ahlfors exten-
sion. The three-point boundary normalization of F0 can be always attained,
and thus, the Douady-Earle extension is compatible with the definition of the
universal Teichmüller space. Later, in 1988, another proof of Douady-Earle’s
result has appeared in [172] where the authors worked with the inverse func-
tion. The functional equation (6.8), in particular, implies that a C∞ mapping
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ϕ representing an element from the manifold M has a real analytic extension
h ∈ F which is C∞ on S1.

Let f ∈ Σ̃0 represent an element from ϕ ∈ M . Let g ∈ S̃ be the adjoint

map, g−1 ◦f
∣∣∣
S1

= ϕ. If h is the Douady-Earle extension of ϕ, then g ◦h
∣∣
S1 ≡

f
∣∣
S1 and g ◦ h is a quasiconformal extension of f ∈ Σ̃0. Given ϕ ∈ M we

construct the mapping fµ that satisfies the normalization of the class Σ̃0 and
whose Beltrami coefficient is

µf (ζ) =
FζFw̄ − Fζ̄Fw

Fζ̄Fw̄ − FζFw
, w = h(ζ), ζ ∈ U, (6.9)

with µf (ζ) = 0 for ζ ∈ U∗. The equivalence class [fµ] is a point of the
universal Teichmüller space T . So the Douady-Earle extension defines an
explicit embedding of M into T .

6.3.3 Semi-flows on T and M

As it was mentioned in Section 6.2, the Weil-Petersson metric defines a Lie
algebra of vector fields on T by the Poisson bracket [ν1, ν2] = {ν2, ν1} −
{ν1, ν2}, where ν1, ν2 ∈ H. One can define the Poisson bracket at all other
points of T by left translations of the universal modular group.

We proceed restricting ourselves to M embedded into T . The complex
form of Green’s formula implies that (6.7) for f(ζ) ≡ ζ is equivalent to

δd ζ =
−1

π

∫∫

U

∂w̄(wd(w))dσw
w − ζ

, (6.10)

where the distributional derivative ∂w̄d(w) is given in the unit disk U , d(w)
is a continuous extension of the C∞ function d(eiθ) ∈ Vect S1 into U that
has Ls(U) distributional derivatives in U , s > 2, and dσw is the area element
in U . Thus, one can extract the elements from H that are of the form ν(ζ) =
ζ∂ζ̄d(ζ), where ∂ζ̄ means ∂/∂ζ̄.

We are going to deduce an exact form of ν using the Douady-Earle ex-
tension. For this we start with the variation of the element

ϕ(eiθ, τ) = eiθ(1 + τid(eiθ)) + o(τ), ϕ ∈M, d ∈ Vect S1,

and τ is small. The Beltrami coefficient of the extended quasiconformal map
h has its variation as µh(ζ) = τν(ζ) + o(τ), where

ν(ζ) =

∂
∂ τ

(
F τζ F

τ
w̄ − F τ

ζ̄
F τw

)

F τ
ζ̄
F τw̄ − F τζ F

τ
w

∣∣∣∣∣
τ=0, w=ζ

, ζ ∈ U, (6.11)

where
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F τ (ζ, w) =
1

2π

∫

S1

(
ϕ(z, τ) − w

1 − wϕ(z, τ)

)
1 − |ζ|2

|ζ − z|2
|dz| = 0. (6.12)

Thus, ν(ζ) depends only on d(eiθ). We will give explicit formulae in the next
section. They can be obtained substituting ϕ(eiθ, 0) = eiθ, and taking into
account that

F τζ F
τ
w̄ − F τζ̄ F

τ
w

∣∣∣
τ=0, w=ζ

= 0.

The Lie algebra Vect S1 is embedded into the Lie algebra of H by (6.11),
(6.12). Hence, a flow given on M corresponding to a vector d ∈ Vect S1 is
represented as a flow on the universal Teichmüller space T corresponding to
the vector ν ∈ H given by (6.11).

6.4 Infinitesimal descriptions of semi-flows

First of all we give an explicit formula that connects the vectors d(eiθ) from
Vect S1 with corresponding tangent vectors ν(ζ) ∈ H to the universal Te-
ichmüller space T making use of the Douady-Earle extension. These vectors
give the infinitesimal description of semi-flows on M and T respectively.

Theorem 6.4.1. Let d(eiθ) ∈ Vect S1 be the infintesimal description of a
flow ϕ in M . Then, the corresponding infinitesmial description ν(ζ) ∈ H of
this flow embedded into T is given by the function

ν(ζ) =
3

2π

2π∫

0

(
1 − |ζ|2

(1 − eiθ ζ̄)2

)2

e2iθd(eiθ)dθ. (6.13)

Proof. Let ϕ(ζ, τ) = ei(θ+τd(e
iθ)) and h(ζ, τ) be the Douady-Earle extension

of ϕ into the unit disk U , ζ ∈ U by means of (6.12). If τ = 0, then h(ζ, 0) ≡ ζ.
We calculate

∂ζF
τ (ζ, w) =

1

2π

2π∫

0

(
ϕ(eiθ, τ) − w

1 − wϕ(eiθ, τ)

)
eiθ(ζ̄ − e−iθ)2

|ζ − eiθ|4 dθ,

∂ζ̄F
τ (ζ, w) =

1

2π

2π∫

0

(
ϕ(eiθ, τ) − w

1 − wϕ(eiθ, τ)

)
e−iθ(ζ − eiθ)2

|ζ − eiθ|4 dθ,

∂wF
τ (ζ, w) =

1

2π

2π∫

0

( −1

1 − wϕ(eiθ, τ)

)
1 − |ζ|2
|ζ − eiθ|2 dθ,

∂w̄F
τ (ζ, w) =

1

2π

2π∫

0

(
ϕ(eiθ, τ)(ϕ(eiθ, τ) − w)

(1 − wϕ(eiθ, τ))2

)
1 − |ζ|2
|ζ − eiθ|2 dθ.
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Substituting τ = 0 and w = ζ we have

∂ζF
τ (ζ, w)

∣∣∣∣
τ=0,w=ζ

=
1

1 − |ζ|2 ,

∂ζ̄F
τ (ζ, w)

∣∣∣∣
τ=0,w=ζ

= 0,

∂wF
τ (ζ, w)

∣∣∣∣
τ=0,w=ζ

=
−1

1 − |ζ|2 ,

∂w̄F
τ (ζ, w)

∣∣∣∣
τ=0,w=ζ

= 0.

We will use the properties of the Douady-Earle extension. Let us fix a
point ζ0 ∈ U and choose two Möbius transformations σ, δ of U such that
δ(0) = ζ0 and σ(0) = h(ζ0, τ). We set g = σ−1 ◦ h ◦ δ. Then, g(0, τ) = 0,
ġ(0, τ) = 0 and

∂ζg(0, τ) = ∂ζh(ζ0, τ)
δ′(0)

σ′(0)
,

∂ζ̄g(0, τ) = ∂ζ̄h(ζ0, τ)
δ′(0)

σ′(0)
.

So we see that
∂ζ̄h(ζ0, τ)

∂ζh(ζ0, τ)
=
∂ζ̄g(0, τ)

∂ζg(0, τ)

δ′(0)

δ′(0)
.

By the property of the Douady-Earle extension we have that the function
g(ζ, τ), ζ ∈ U is the extension of g(eiθ, τ) by means of (6.12). If τ = 0, then
g(ζ, 0) ≡ ζ. Now we put ψ(eiθ, τ) = g(eiθ, τ) in (6.12) and calculate variations
in τ

∂

∂τ
∂ζ̄F

τ (ζ, w)

∣∣∣∣
τ=0,w=ζ=0

=
1

2π

2π∫

0

(
eiθ − ζ

(1 − ζeiθ)3

)
1 − |ζ|2
|ζ − eiθ|2

∂ψ(eiθ, τ)

∂τ

∣∣∣∣
τ=0,ζ=0

dθ

=
1

2π

2π∫

0

eiθψ̇(eiθ, 0)dθ,

∂

∂τ
∂w̄F

τ (ζ, w)

∣∣∣∣
τ=0,w=ζ=0

=
1

2π

2π∫

0

(
2eiθ − ζ − |ζ|2eiθ

(1 − ζeiθ)3

)
1 − |ζ|2
|ζ − eiθ|2

∂ψ(eiθ, τ)

∂τ

∣∣∣∣
τ=0,ζ=0

dθ

=
1

2π

2π∫

0

2eiθψ̇(eiθ, 0)dθ.

Then, we can obtain the explicit form of the variation of the Beltrami coef-
ficient by (6.11) as
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∂

∂τ

∂ζ̄g(0, τ)

∂ζg(0, τ)

∣∣∣∣
τ=0

=
3

2π

2π∫

0

eiθψ̇(eiθ, 0)dθ. (6.14)

The Möbius transformation δ does not depend on τ whereas σ does. Ex-
plicitly, we put

σ−1 ◦ h ◦ δ(ζ) =
h(δ(ζ), τ) − h(ζ0, τ)

1 − h(δ(ζ), τ)h(ζ0, τ)
,

where δ(ζ) = (ζ+ζ0)(1+ζζ̄0)
−1. We denote eiα = δ(eiθ). Therefore, denoting

by

eiα = δ(eiθ) =
eiθ + ζ0
1 + ζ̄0eiθ

,

we have

ġ(eiθ, 0) =
ḣ(eiα, 0)(1 − |ζ0|2) − ḣ(ζ0, 0)(1 − ζ̄0e

iα) + ḣ(ζ0, 0)e
iα(eiα − ζ0)

(1 − ζ̄0eiα)2
.

Then,

eiθdθ =
1 − |ζ0|2

(1 − eiαζ̄0)2
eiαdα,

and changing variables in (6.14), we obtain

∂

∂τ

∂ζ̄g(0, τ)

∂ζg(0, τ)

∣∣∣∣
τ=0

=
3

2π

2π∫

0

(
1 − |ζ0|2

(1 − eiαζ̄0)2

)2

e2iαd(eiα)dα.

Taking into account that δ′(0) = 1 we come to the statement of the theorem.
2

Corollary 6.4.1. If q = max
θ∈[0,2π]

|d(eiθ)|, then

|ν(ζ)| ≤ 3
1 + |ζ|2
1 − |ζ|2 q.

Proof. The formula given in the preceding theorem implies

ν(ζ) =
3

2π

2π∫

0

1 − |ζ|2
(1 − eiαζ̄)2

eiαd(δ(eiθ))eiθdθ.

Changing variables α→ θ we obtain

ν(ζ) =
3

2π

2π∫

0

eiθ + ζ

1 + eiθ ζ̄

(1 + eiθ ζ̄)2

1 − |ζ|2 eiθd(δ(eiθ))dθ. (6.15)

Next, we obviously estimate |ν| as in the statement of the corollary. 2
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As we see, the given estimate is good enough when |ζ| is not close to 1.
Let us now give an asymptotic estimate for |ν(ζ)| in the case |ζ| ∼ 1.

Corollary 6.4.2. There exists a constant M independent of ζsuch that

|ν(ζ)| ≤M
1 − |ζ|2
|ζ|2 .

In particular, |ν(ζ)| = O(1 − |ζ|2) as |ζ| ∼ 1.

Proof. We integrate by parts the right-hand side in the formula (6.13) twice
and come to the following expression

ν(ζ) = − (1 − |ζ|2)
4πζ̄2

2π∫

0

1 − |ζ|2
(1 − eiθ ζ̄)2

(
i
∂[eiθd(eiθ)]

∂θ
+
∂2[eiθd(eiθ)]

∂θ2

)
dθ. (6.16)

The absolute value of the above integral is bounded because of the Poisson
kernel in it and due to the smoothness of the function d. 2

6.5 Parametric representation of univalent maps with

quasiconformal extensions

6.5.1 Semigroups of conformal maps

The basic ideas that we use in this section come from Goryainov’s works
[100], [101] and the monograph by Shoikhet [238].

We consider the semigroup G of conformal univalent maps from U ∗ into
itself with composition as the semigroup operation. This makes G a topo-
logical semigroup with respect to the topology of local uniform conver-
gence on U∗. We impose the natural normalization for such conformal maps:

Φ(ζ) = βζ + b0 +
b1
ζ

+ . . . , ζ ∈ U∗, β > 0. The unit of the semigroup is

the identity. Let us construct on G a one-parameter semi-flow Φτ , that is, a
continuous homomorphism from R

+ into G, with the parameter τ ≥ 0. For
any fixed τ ≥ 0 the element Φτ is from G and is represented by a confor-

mal map Φ(ζ, τ) = β(τ)ζ + b0(τ) +
b1(τ)

ζ
+ . . . from U∗ onto the domain

Φ(U∗, τ) ⊂ U∗. The element Φτ satisfies the following properties:

• Φ0 = id;
• Φτ+s = Φ(Φ(ζ, τ), s), for τ, s ≥ 0;
• Φ(ζ, τ) → ζ locally uniformly in U∗ as τ → 0.

In particular, β(0) = 1. This semi-flow is generated by a vector field v(ζ) if for
each ζ ∈ U∗ the function w = Φ(ζ, τ), τ ≥ 0 is a solution of an autonomous
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differential equation dw/dτ = v(w) with the initial condition w|τ=0 = ζ.
The semi-flow can be extended to a symmetric interval (−t, t) by putting
Φ−τ = Φ−1(ζ, τ). Certainly, the latter function is defined on the set Φ(U ∗, τ).
Admitting this restriction for negative τ we define a one-parameter family
Φτ for τ ∈ (−t, t).

For a semi-flow Φτ on G there is an infinitesimal generator at τ = 0
constructed by the following procedure. Any element Φτ is represented by
a conformal map Φ(ζ, τ) that satisfies the Schwarz Lemma for the maps
U∗ → U∗, and hence,

Re
ζ

Φ(ζ, τ)
≤
∣∣∣

ζ

Φ(ζ, τ)

∣∣∣ ≤ 1, ζ ∈ U∗,

where the equality sign is attained only for Φ0 = id ' Φ(ζ, 0) ≡ ζ. Therefore,
the following limit exists (see, e.g., [100], [101], [238])

lim
τ→0

Re
ζ − Φ(ζ, τ)

τΦ(ζ, τ)
= −Re

∂Φ(ζ,τ)
∂τ

∣∣∣
τ=0

ζ
≤ 0,

and the representation
∂Φ(ζ, τ)

∂τ

∣∣∣
τ=0

= ζp(ζ)

holds, where p(ζ) = p0+p1/ζ+ . . . is an analytic function in U ∗ with positive
real part, and

∂β(τ)

∂τ

∣∣∣
τ=0

= p0. (6.17)

In [102] it was shown that Φτ is even C∞ with respect to τ . The function ζp(ζ)
is an infinitesimal generator for Φτ at τ = 0, and the following variational
formula holds

Φ(ζ, τ) = ζ + τ ζp(ζ) + o(τ), β(τ) = 1 + τp0 + o(τ). (6.18)

The convergence is thought of as local uniform. We rewrite (6.18) as

Φ(ζ, τ) = (1 + τp0)ζ + τ ζ(p(ζ) − p0) + o(τ) = β(τ)ζ + τ ζ(p(ζ) − p0) + o(τ).
(6.19)

Now let us proceed with the semigroup Gqc ⊂ G of quasiconformal au-
tomorphisms of C. A quasiconformal map Φ representing an element of Gqc
satisfies the Beltrami equation in C

Φζ̄ = µΦ(ζ)Φζ ,

with the distributional derivatives Φζ̄ and Φζ , where µΦ(ζ) is a measurable
function vanishing in U∗ and essentially bounded in U by

‖µΦ‖ = ess sup
U

|µΦ(ζ)| ≤ k < 1,
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for some k. If k is sufficiently small, then the function
Φ− b0
β

satisfies the

variational formula (see, e.g., [173])

Φ(ζ) − b0
β

= ζ − 1

π

∫∫

U

µΦ(w)dσw
w − ζ

+ o(k), (6.20)

where dσw stands for the area element in the w-plane.

Now for each τ small and Φτ ∈ Gqc the mapping h(ζ, τ) = Φ(ζ,τ)−b0(τ)
β(τ)

is from Σqc
0 and represents an equivalence class [hτ ] ∈ T . Consider the one-

parameter curve xτ ∈ T that corresponds to [hτ ] and a velocity vector ν(ζ) ∈
H (that is not trivial), such that

µh(ζ, τ) = µΦ(ζ, τ) = τν(ζ) + o(τ).

We take into account that Φ(ζ, 0) ≡ ζ in U ∗ and is extended up to the identity
map of C.

The formula (6.20) can be rewritten for Φ(ζ, τ) as

Φ(ζ, τ) − b0(τ)

β(τ)
= ζ − τ

π

∫∫

U

ν(w)dσw
w − ζ

+ o(τ). (6.21)

Comparing with (6.19) we come to the conclusion about Φ:

Φ(ζ, τ) = β(τ)ζ + τp1 −
τ

π

∫∫

U

ν(w)dσw
w − ζ

+ o(τ). (6.22)

The relations (6.18, 6.19, 6.22) imply that

p(z) = p0 +
p1

ζ
− 1

π

∫∫

U

ν(w)dσw
ζ(w − ζ)

. (6.23)

The constants p0, p1 and the function ν must be such that Re p(z) > 0 for all
z ∈ U∗.

We summarize these observations in the following theorem.

Theorem 6.5.1. Let Φτ be a semi-flow in Gqc. Then it is generated by the
vector field v(ζ) = ζp(ζ),

p(z) = p0 +
p1

ζ
− 1

π

∫∫

U

ν(w)dσw
ζ(w − ζ)

,

where ν(ζ) ∈ H is a harmonic Beltrami differential and the holomorphic
function p(ζ) has positive real part in U ∗.

This theorem implies that at any point τ ≥ 0 we have

∂Φ(ζ, τ)

∂τ
= Φ(ζ, τ)p(Φ(ζ, τ)).
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6.5.2 Evolution families and differential equations

A subset Φt,s of G, 0 ≤ s ≤ t is called an evolution family in G if

• Φt,t = id;
• Φt,s = Φt,r ◦ Φr,s, for 0 ≤ s ≤ r ≤ t;
• Φt,s → id locally uniformly in U∗ as t, s→ τ .

In particular, if Φτ is a one-parameter semi-flow, then Φt−s is an evolu-
tion family. We consider a subordination chain of mappings f(ζ, t), ζ ∈ U ∗,
t ∈ [0, t0), where the function f(ζ, t) = α(t)z+a0(t)+a1(t)/ζ+ . . . is a mero-
morphic univalent map U∗ → C for each fixed t and f(U∗, s) ⊂ f(U∗, t) for
s < t. Let us assume that this subordination chain exists for t in an interval
[0, t0).

Let us pass to the semigroup Gqc. So Φt,s now has a quasiconformal exten-
sion to U and being restricted to U ∗ is from G. Moreover, Φt,s → id locally
uniformly in C as t, s→ τ .

For each t fixed in [0, t0) the map f(ζ, t) has a quasiconformal extension
into U (that can be assumed even real analytic). An important presupposition
is that f(ζ, t) generates a nontrivial path in the universal Teichmüller space T .
This means that for any t1, t2 ∈ [0, t0), t1 6= t2, the mapping f(ζ, t2), ζ ∈ U∗,
can not be obtained from f(ζ, t1) by a Möbius transform, or taking into
account the normalization of f , by multiplying by a constant. We construct
the superposition f−1(f(ζ, s), t) for t ∈ [0, t0), s ≤ t. Putting s = t − τ we
denote this mapping by Φ(ζ, t, τ).

Now we suppose the following conditions for f(ζ, t).

(i) The maps f(ζ, t) form a subordination chain in U ∗, t ∈ [0, t0).
(ii) The map f(ζ, t) is holomorphic in U ∗, f(ζ, t) = α(t)ζ+a0(t)+a1(t)/ζ+
. . . , where α(t) > 0 and differentiable with respect to t.

(iii) The map f(ζ, t) is a quasiconformal homeomorphism of C.
(iv) The chain of maps f(ζ, t) is not trivial.
(v) The Beltrami coefficient µf (ζ, t) of this map is differentiable with re-

spect to t locally uniformly in U , vanishes in some neighbourhood of U ∗

(independently of t).

The function Φ(ζ, t, τ) is embedded into an evolution family in G. It is
differentiable with regard to τ and t in [0, t0), and Φ(ζ, t, 0) = ζ. Fix t and
let Dτ = Φ−1(U∗, t, τ) \U∗. Then, there exists ν ∈ H such that the Beltrami
coefficient µ is of the form µΦ(ζ, t, τ) = τν(ζ, t)+o(τ) in U \Dτ , µΦ(ζ, t, τ) =
µf (ζ, t − τ) in Dτ , and vanishes in Û∗. We make τ sufficiently small such
that µΦ(ζ, t, τ) vanishes in Dτ too. Therefore, ζ = limτ→0 Φ(ζ, t, τ) locally
uniformly in C and Φ(ζ, t, τ) is embedded now into an evolution family in Gqc.
The identity map is embedded into a semi-flow Φτ ⊂ Gqc (which is smooth)
as the initial point with the same velocity vector

∂Φ(ζ, t, τ)

∂τ

∣∣∣
τ=0

= ζp(ζ, t), ζ ∈ U∗,
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that leads to equation (6.1) (the semi-flow Φτ is tangent to the evolution
family at the origin). Actually, the differentiable trajectory f(ζ, t) generates
a pencil of tangent smooth semi-flows with starting tangent vectors ζp(ζ, t)
(that may be only measurable with respect to t). The projection to the uni-
versal Teichmüller space is shown in Figure 6.3.
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Fig. 6.3. The pencil of tangent smooth semi-flows

The requirement of non-triviality makes it possible to use the variation
(6.21). Therefore, the conclusion is that the function f(ζ, t) satisfies the equa-
tion (6.1) where the function p(ζ, t) is given by

p(ζ, t) = p0(t) +
p1(t)

ζ
− 1

π

∫∫

U

ν(w, t)dσw
ζ(w − ζ)

,

and has positive real part. The existence of p0(t), p1(t) comes from the exis-
tence of the subordination chain. We can assign the normalization to f(ζ, t)
controlling the change of the conformal radius of the subordination chain by
e−t. In this case, changing variables we obtain p0 = 1, p1 = 0.

Summarizing the conclusions about the function p(ζ, t) we come to the
following result.

Theorem 6.5.2. Let f(ζ, t) be a subordination chain of maps in U ∗ that
exists for t ∈ [0, t0) and satisfies the conditions (i–v). Then, there are a real
valued function p0(t) > 0, a complex valued function p1(t), and a harmonic
Beltrami differential ν(ζ, t), such that Re p(ζ, t) > 0 for ζ ∈ U ∗,

p(ζ, t) = p0(t) +
p1(t)

ζ
− 1

π

∫∫

U

ν(w, t)dσw
ζ(w − ζ)

, ζ ∈ U∗,

and f(ζ, t) satisfies the differential equation
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∂f(ζ, t)

∂t
= −ζ ∂f(ζ, t)

∂ζ
p(ζ, t), ζ ∈ U∗, (6.24)

in t ∈ [0, t0).

In the above theorem the function ν(ζ, t) belongs to the space of harmonic
differentials. We ask now about another but equivalent form of ν as well as
whether one can extend the equation (6.24) onto the whole complex plane.

Writing w = f(ζ, t− τ), Φ(ζ, t, τ) = f−1(w, t) we calculate the dilatation
of the function Φ(ζ, t, τ) in U . Note that Φ it is differentiable by t, τ .

µΦ =
Φζ̄
Φζ

=
f−1
w wζ̄ + f−1

w̄ w̄ζ̄

f−1
w wζ + f−1

w̄ w̄ζ
=
wζ̄ + µf−1w̄ζ̄
wζ + µf−1w̄ζ

=
w̄z̄
wζ

µw
wz
w̄ζ̄

− µf
fζ
f̄ζ̄

1 − µfµw
fζw̄ζ̄
wζ f̄ζ̄

.

We use that µf−1 ◦ f = −µffζ/f̄ζ̄ . Finally, µf , fζ , fζ̄ are differentiable by t
almost everywhere in t ∈ [0, t0), locally uniformly in ζ ∈ U , and

ν0(ζ, t) = lim
τ→0

µΦ
τ

= −
f̄ζ̄
fζ

∂
∂t

(
µf
fζ
f̄ζ̄

)

1 − |µf |2
,

where the limit exists a.e. with respect to t ∈ [0, t0) locally uniformly in
ζ ∈ U , or in terms of the inverse function

ν0(ζ, t) =


f

−1
w

f̄−1
w̄

∂µf−1

∂t
1 − |µf−1 |2


 ◦ f(ζ, t).

Sometimes, it is much better to operate just with dilatations, avoiding func-
tions, so we can rewrite the last expression as

ν0(z, t) = −µf (z, t)



∂ log µf−1

∂t
1 − |µf−1 |2 ◦ f(z, t)


 .

Remark. The function ν(ζ, t) in Theorem 6.5.2 may be replaced by the func-
tion ν0(ζ, t) that belongs to the same equivalence class in H.

Let us consider one-parameter families of maps in U ∗ normalized by

f(ζ, t) = e−tζ +
a1(t)

ζ
+ . . . . The inverse result to the Löwner-Kufarev equa-

tion states that given a holomorphic function p(ζ, t) = 1 + p1(t)/ζ + . . . in
ζ ∈ U∗ with positive real part the solution of the equation (6.24) presents a
subordination chain (see, e.g., [206]). This enable us to give a condition for
ν0 that guarantees a normalized one-parameter non-trivial family of maps
f(ζ, t) to be a subordination chain
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Theorem 6.5.3. Let f(ζ, t) be a normalized one-parameter non-trivial fam-
ily of maps for ζ ∈ U∗ which satisfies the conditions (ii–v) and is defined in
an interval [0, t0). Let each f(ζ, t) be a homeomorphism of C which is mero-

morphic in U∗, is normalized by f(ζ, t) = e−tζ +
a1(t)

ζ
+ . . . , and satisfies

(6.24). Let the quasiconformal extension to U be given by a Beltrami coeffi-
cient µf = µ(ζ, t) which is differentiable with respect to t almost everywhere
in t ∈ [0, t0). If

‖ν0‖∞ <
π

4
∫ 1

0
sK (s)ds

≈ 0.706859 . . . ,

where ν0(ζ, t) is as above and K (·) is the complete elliptic integral, then
f(ζ, t) is a normalized subordination chain.

Proof. Let |ζ| = ρ, w = reiθ. We calculate
∣∣∣∣∣
1

π

∫∫

U

ν0(w, t)dσw
ζ(w − ζ)

∣∣∣∣∣ ≤
‖ν0‖∞
ρπ

∫∫

U

dσw
|w − z| =

‖ν0‖∞
ρ2π

∫∫

U

dσw
|1 − w/z|

=
‖ν0‖∞
π

1∫

0

2π∫

0

rdr dθ

ρ2|1 − reiθ/z|

=
‖ν0‖∞
π

1∫

0

2π∫

0

rdr dθ

ρ2|1 − reiθ/ρ|

=
‖ν0‖∞
π

1∫

0

2π∫

0

rdr dθ

ρ2
√

1 + r2

ρ2 − 2 rρ cos θ

=
‖ν0‖∞
π

1/ρ∫

0

2π∫

0

sds dθ√
1 + s2 − 2s cos θ

≤ ‖ν0‖∞
π

1∫

0

2π∫

0

sds dθ√
1 + s2 − 2s cos θ

=
4‖ν0‖∞

π

1∫

0

sK (s)ds < 1.

Then Re p(z, t) > 0 that implies the statement of the theorem. 2

Remark. If ‖ν0(·, t)‖∞ ≤ q, then

1 + |µ(ζ, t)|
1 − |µ(ζ, t)| ≤ e2tq

1 + |µ(ζ, 0)|
1 − |µ(ζ, 0)| .
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This obviously follows from the inequality

∂|µf |
∂t

=
∂|µf−1 |
∂t

≤ |µ̇f−1 |.

Remark. Let us remark that the function ν0 can be unilateraly discontinuous
on S1 in U , therefore, it is not possible, in general, to use the Borel-Pompeiu
formula to reduce the integral in p to a contour integral.

The equation (6.24) is just the Löwner-Kufarev equation in partial deriva-
tives with a special function p(z, t) given in the above theorems.

Now we discuss the possibility of extending the equation (6.24) to all of
C. We differentiate the function Φ(ζ, t, τ) with respect to τ when ζ ∈ U ∪U ∗.
It follows that

∂Φ(ζ, t, τ)

∂τ

∣∣∣∣
τ=0

=
−fζ

|fζ |2 − |fζ̄ |2
ḟ +

fζ̄
|fζ |2 − |fζ̄ |2

ḟ =: G(ζ, t).

This formula can be rewritten in the following form

ḟ(ζ, t) = −(fζG(ζ, t) + fζ̄Ḡ(ζ, t)).

Taking into account the equation (6.24) in U ∗ we have in the whole plane

ḟ(ζ, t) =

{
−(fζG(ζ, t) + fζ̄Ḡ(ζ, t)), for ζ ∈ U ,
−ζfζp(ζ, t), for ζ ∈ U∗.

(6.25)

where p(ζ, t) is a holomorphic in U∗ function with the positive real part by
Theorem 6.5.2.

The variational formula (6.22) and differentiation of the singular integral
imply that Gζ̄(ζ, t) = ν0(ζ, t), ζ ∈ U . Now let us clarify what is G. Let us
consider ζ ∈ U . The Pompeiu formula leads to

G(ζ, t) = h(ζ, t) − 1

π

∫∫

U

ν0(w, t)dσw
w − ζ

, ζ ∈ U

where h(ζ, t) is a holomorphic function with respect to ζ. The function G is
continuous in U and by the Cauchy theorem

h(ζ, t) =
1

2πi

∫

S1

G(w, t)

w − ζ
dw.

To obtain the boundary values of the function G(w, t), |w| = 1, we will use
the second line in (6.25). Unfortunately, in general, it is not possible to use
the same function f in both lines of (6.25) to obtain boundary values of G.
Indeed, the mapping f(ζ, t) is differentiable regarding to t a.e. in t ∈ [0, t0)
locally uniformly in ζ ∈ C, and continuous in ζ ∈ C for almost all t ∈ [0, t0).
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Therefore, the function −(fζG(ζ, t) + fζ̄Ḡ(ζ, t)), ζ ∈ U is the extension of
−ζf ′(ζ, t)p(ζ, t), ζ ∈ U∗, whereas fζ , ζ ∈ U is not necessarily an extension
of f ′, ζ ∈ U∗.

A simple example of this situation is as follows. Let us consider the func-
tion

f(ζ, t) =





e−t
(
cζ +

ζ̄

c

)
, for ζ ∈ U ,

e−t
(
cζ +

1

cζ

)
, for ζ ∈ U∗,

where c > 1. This mapping forms a subordination chain with the dilatation
µ(ζ) that vanishes in U∗ and is the constant 1/c2 in U . This chain is trivial,
but it is not important for our particular goal here because we do not use at
this stage the crucial variation. Then,

G(ζ, t) =





ζ, for ζ ∈ U ,

ζ
c2ζ2 + 1

c2ζ2 − 1
, for ζ ∈ U∗,

and it splits into two parts that can not be glued on S1. The same is for the
derivatives fζ in U and f ′ in U∗.

If µ(ζ, t) satisfies the condition (v) in a neighbourhood of S1 in U , then
the derivatives fζ , fζ̄ , ζ ∈ U has a continuation onto S1 and

F (ζ, t) =
fζζf

′p(ζ, t) − fζ̄ζf
′p(ζ, t)

|fζ |2 − |fζ̄ |2
, ζ ∈ S1,

where ζf ′p(ζ, t) is thought of as the angular limits that exist a.e. on S1. More-
over, in a neighbourhood of S1 the derivative fζ̄ vanishes and the function
F (ζ, t) can be written on S1 as F (ζ, t) = ζp(ζ, t). In turn,

h(ζ, t) =
1

2πi

∫

S1

wp(w, t)

w − ζ
dw.

This information allows us formulate the following theorem.

Theorem 6.5.4. Let f(ζ, t) be a subordination non-trivial chain of maps in
U∗ that exists for t ∈ [0, t0) and satisfies the conditions (i–v).

(i) For ζ ∈ U∗ there exists a holomorphic function p(ζ, t) given by Theorem
6.5.2 such that

ḟ(ζ, t) = −ζf ′(ζ, t)p(ζ, t).

(ii) For ζ ∈ U there exists a continuous in ζ function F (ζ, t) given by

F (ζ, t) =
1

2πi

∫

S1

wp(w, t)

w − ζ
dw − 1

π

∫∫

U

ν0(w, t)dσw
w − ζ

,
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ν0(ζ, t) =
f−1
w

f̄−1
w̄

∂µf−1

∂t
1 − |µf−1 |2 ◦ f(ζ, t),

such that
ḟ(ζ, t) = −fζF (ζ, t) − fζ̄F̄ (ζ, t).

6.5.3 The Löwner-Kufarev ordinary differential equation

Dually to the Löwner-Kufarev partial derivative equation there is the Löwner-
Kufarev ordinary differential equation. A function g ∈ Σ0 is represented as a
limit

lim
t→∞

e−tw(ζ, t), (6.26)

where the function w = g(ζ, t) is a solution of the equation

dw

dt
= −wp(w, t), (6.27)

almost everywhere in t ∈ [0,∞), with the initial condition g(ζ, 0) = ζ. The
function p(ζ, t) = 1+p1(t)/ζ+ . . . is analytic in U∗, measurable with respect
to t ∈ [0,∞), and its real part Re p(ζ, t) is positive for almost all t ∈ [0,∞).
The equation (6.27) is known as the Löwner-Kufarev ordinary differential
equation. The solutions to (6.27) form a retracting subordination chain g(ζ, t),
i.e., it satisfies the condition g(U ∗, t) ⊂ U∗, g(U∗, t) ⊂ g(U∗, s) for t > s, and
g(ζ, 0) ≡ ζ.

The connection between (6.24) and (6.27) can be thought of as follows.
Solving (6.24) by the method of characteristics and assuming s as the pa-
rameter along the characteristics we have

dt

ds
= 1,

dζ

ds
= ζp(ζ, t),

df

ds
= 0,

with the initial conditions t(0) = 0, ζ(0) = ζ0, f(ζ, 0) = f0(ζ), where ζ0 is in
U∗. We see that the equation (6.27) is exactly the characteristic equation for
(6.24). Unfortunately, this approach requires the extension of f0(w

−1(ζ, t))
into U∗ because the solution of the function f(ζ, t) is given as f0(w

−1(ζ, t)),
where ζ = w(ζ0, s) is the solution of the initial value problem for the charac-
teristic equation.

Our goal is to deduce a form of the function p on the case of the subclass
Σqc

0 . Let a one-parameter family of maps w = g(ζ, t), g ∈ Σqc
0 , satisfy the

following conditions.

(i) The maps g(ζ, t) form a retracting subordination chain g(U ∗, 0) ⊂ U∗.
(ii) The map g(ζ, t) is meromorphic in U ∗, f(ζ, t) = α(t)ζ+a0(t)+a1(t)/ζ+
. . . , where α(t) > 0 and differentiable with respect to t.

(iii) The map g(ζ, t) is a quasiconformal homeomorphism of C.
(iv) The chain of maps g(ζ, t) is not trivial.
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(v) The Beltrami coefficient µg(ζ, t) of this map is differentiable with respect
to t locally uniformly in U .

Note that in this case we need not a strong assumption (v) in Section
6.5.2.

Set

H(ζ, t, τ) = g(g(ζ, t), τ) = β(τ)w + b0(τ) +
b1(τ)

w
+ . . . ,

where w = g(ζ, t). For each fixed t the mapping g(ζ, t) generates a smooth
semi-flow Hτ in Gqc which is tangent to the path g(ζ, t+ τ) at τ = 0. There-
fore, we use the velocity vector wp(w, t) (that may be only measurable re-
garding to t) with w = g(ζ, t) and obtain

∂H(ζ, t, τ)

∂τ

∣∣∣
τ=0

= g(ζ, t)p(g(ζ, t), t).

As before, the trajectory g(ζ, t) generates a pencil of tangent smooth semi-
flows with the tangent vectors wp(w, t), w = g(z, t). Since g(U ∗, t) ∈ U∗ for
any t > 0, we can consider the limit

lim
τ→0

H(ζ, t, τ) − g(ζ, t)

τg(ζ, t)
.

We have that

∂H(ζ, t, τ)

∂τ

∣∣∣
τ=0

=
∂g(ζ, t)

∂t
= g(ζ, t)p(g(ζ, t), t), (6.28)

where p(ζ, t) = p0(t) + p1(t)/ζ + . . . is an analytic function in U ∗ that has
positive real part for almost all fixed t. The equation defined by (6.28) is an
evolution equation for the path g(ζ, t) and the initial condition is given by
g(ζ, 0) = ζ.

We suppose that all g(ζ, t) admit real analytic quasiconformal extensions
and the family is non-trivial in the above sense. The function g(w, τ) =
(H(ζ, t, τ) − b0(τ))/β(τ) can be extended to a function from Σqc

0 and it rep-
resents an equivalence class [gτ ] ∈ T . There is a one-parameter path yτ ∈ T
that corresponds to a tangent velocity vector ν(w, t) such that

µg(w, τ) = τν(w, t) + o(τ), w = g(z, t).

We calculate explicitly the velocity vector making use of the Beltrami coeffi-
cient for a superposition:

ν(w, t) = lim
τ→0

µg(w,τ) ◦ g(ζ, t)
τ

= lim
τ→0

1

τ

µH(ζ,t,τ) − µg(ζ,t)

1 − µ̄g(ζ,t)µH(ζ,t,τ)

gζ(ζ, t)

ḡζ̄(ζ, t)
,

or
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ν(w, t) =

∂µg(ζ,t)

∂t

1 − |µg(ζ,t)|2
gζ
ḡζ̄

◦ g−1(w, t), ζ ∈ U. (6.29)

It is natural to implement an intrinsic parametrization using the Teichmüller
distance τT (0, [gt]) = t, and assume the conformal radius to be β(t) = et

that implies p0 = 1. The assumption of non-triviality allows us to use the
variational formula (6.22) to state the following theorem.

Theorem 6.5.5. Let g(ζ, t) be a retracting subordination chain of maps de-
fined in t ∈ [0, t0) and ζ ∈ U∗. Each g(ζ, t) is a homeomorphism of C which
is meromorphic in U∗, g(ζ, t) = etζ + b1/ζ + . . . , with a e2t-quasiconformal
extension to U given by a Beltrami coefficient µ(ζ, t) that is differentiable
regarding to t a.e. in [0, t0). The initial condition is g(ζ, 0) ≡ ζ. Then, there
is a function p(ζ, t) such that that Re p(ζ, t) > 0 for ζ ∈ U ∗, and

p(w, t) = 1 − 1

π

∫∫

g(U,t)

ν(u, t)dσu
w(u− w)

, w ∈ g(U∗, t),

where ν(u, t) is given by the formula (1.12), ‖ν‖∞ < 1, and w = g(ζ, t) is a
solution to the differential equation

dw

dt
= wp(w, t), w ∈ g(U∗, t), (6.30)

with the initial condition g(ζ, 0) = ζ.

Remark. Taking into account the superposition we have

p(g(ζ, t), t) = 1 − 1

π

∫∫

U

µ̇gg
2
u(u, t)dσu

g(ζ, t)(g(u, t) − g(ζ, t))
,

where u ∈ U , ζ ∈ U∗.

Remark. The function wp(w, t) has a continuation into g(U, t) given by

dw

dt
= F (w, t),

where the function F (w, t) is a solution to the equation

∂F

∂w̄
=

g2
ζ µ̇g

|gζ |2 − |gζ̄ |2
◦ g−1(w, t).

In contrary to the Löwner-Kufarev equation in partial derivatives, the func-
tion F is the continuation of p in U through S1. The solution exists by the
Pompeiu integral and can be written as
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F (w, t) = h(w, t) − 1

π

∫∫

g(U,t)

g2
ζ µ̇g

|gζ |2 − |gζ̄ |2
◦ g−1(u, t)

d σu
u− w

= h(w, t) − 1

π

∫∫

g(U,t)

ν(u, t)d σu
u− w

,

where w ∈ g(U, t), h(w, t) is a holomorphic functions with respect to w, that
can be written as

h(w, t) =
1

2πi

∫

∂g(U,t)

up(u, t)

u− w
du.

Reciprocally, given a function F (u, t), u ∈ g(U, t), we can write the func-
tion p(w, t) as

p(w, t) = 1 − 1

π

∫∫

g(U,t)

Fū(u, t)dσu
w(u− w)

,

where w ∈ g(U∗, t).

6.5.4 Univalent functions smooth on the boundary

Let us consider the class Σ̃ of functions f(ζ) = αζ + a0 + a1/ζ + . . . , ζ ∈ U∗,
such that being extended onto S1 they are C∞ on S1. Repeating considera-
tions of the preceding subsection for the embedding ofM into the Teichmüller
space T we come to the following theorem.

Theorem 6.5.6. Let f(ζ, t) be a non-trivial subordination chain of maps
that exists for t ∈ [0, t0) and ζ ∈ U∗. Each f(ζ, t) is a homeomorphism U∗ →
C and belongs to Σ̃ for every fixed t. All these maps have quasiconformal
extensions to U and there are a real-valued function p0(t) > 0, complex-valued
functions p1(t), real-valued C∞ functions d(eiθ, t) such that Re p(ζ, t) > 0 for
ζ ∈ U∗,

p(ζ, t) = p0(t) +
p1(t)

ζ
− 1

2π

2π∫

0

ei2θd(eiθ, t)dθ

ζ(eiθ − ζ)
, ζ ∈ U∗,

and f(ζ, t) satisfies the differential equation

∂f(ζ, t)

∂t
= −ζ ∂f(ζ, t)

∂ζ
p(ζ, t), ζ ∈ U∗.

Theorems 6.5.2 and 6.5.6 are linked as follows. For a given subordination
chain of maps f(ζ, t) ∈ Σ̃, that exists for t ∈ [0, t0) and ζ ∈ U∗, there is a C∞

function d(eiθ, t) by Theorem 6.5.6 and we can construct the function ν(ζ, t)
by the Douady-Earle extension and the formula (6.11). Then, the function
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f(ζ, t) satisfies the equation of Theorem 6.5.2 with p(ζ, t) defined by such
ν(ζ, t).

Let us consider the ordinary Löwner-Kufarev equation for the functions
smooth on S1. If the retracting chain g(ζ, t) is smooth on S1, then we use
again the embedding of M into T and reach a similar result.

Theorem 6.5.7. Let g(ζ, t) be a retracting non-trivial subordination chain
of normalized maps that exists for t ∈ [0, t0) and ζ ∈ U∗. Each g(ζ, t) is

meromorphic in U∗, smooth on S1, and g(ζ, t) = β(t)ζ + b0(t) +
b1(t)

ζ
+ . . . ,

β(t) > 0. An additional assumption is that g : U ∗ → U∗ for each fixed
t. Then, there are a real-valued function p0(t), a complex-valued function
p1(t), and a smooth real-valued function d(eiθ, t), such that Re p(ζ, t) > 0 for
ζ ∈ U∗,

p(ζ, t) = p0(t) +
p1(t)

ζ
− 1

2πi

∫

S1

(
zg′(z, t)

g(z, t)

)2
d(z, t)dz

g(z, t) − ζ
, ζ ∈ U∗,

and w = g(ζ, t) is a solution to the differential equation

dw

dt
= wp(w, t), w ∈ g(U∗, t)

with the initial condition g(ζ, 0) = ζ.

Remark. If we work with normalized functions

g(ζ, t) = etζ +
b1(t)

ζ
+ . . . ,

then p0(t) ≡ 1, p1(t) ≡ 0.

6.5.5 An application to Hele-Shaw flows

Theorem 6.5.6 is linked to the Hele-Shaw free boundary problem as follows.
Starting with a smooth boundary Γ0 the one-parameter family Γ (t) consists
of smooth curves as long as the solutions exist. Let us consider the equation
(6.3). Under injection we have a subordination chain of domains Ω(t). The
Schwarz kernel can be developed as

ζ + eiθ

ζ − eiθ
= 1 +

2eiθ

ζ
+

2e2iθ

ζ(ζ − eiθ)
.

Therefore, in Theorem 6.5.6 we can put

p0(t) =
1

2π

2π∫

0

1

|f ′(eiθ, t)|2 dθ, p1(t) =
1

π

2π∫

0

eiθ

|f ′(eiθ, t)|2 dθ,
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and

d(eiθ, t) =
−2

|f ′(eiθ, t)|2 .

Apart from the trivial elliptic case there are no self-similar solutions, and
therefore the Hele-Shaw dynamics f(ζ, t) generates a non-trivial path in T .
Thus, given a Hele-Shaw evolution Γ (t) = f(S1, t) we observe a differentiable
non-trivial path on T , such that at any time t the tangent vector ν is a
harmonic Beltrami differential given by

ν(ζ, t) =
−3

π

2π∫

0

(1 − |ζ|2)2
(1 − eiθ ζ̄)4

e2iθ

|f ′(eiθ, t)|2 dθ.

The corresponding co-tangent vector is

ϕ(ζ, t) =
6

π

2π∫

0

e−2iθdθ

(1 − e−iθζ)4|f ′(eiθ, t)|2 .

6.6 Fractal growth

Benoit Mandelbrot (b. 1924, Warsaw) in 1977, 1983 brought to the world’s
attention that many natural objects simply do not have a preconceived form
determined by a characteristic scale. Many of the structures in space and
processes reveal new features when magnified beyond their usual scale in a
wide variety of natural and industrial processes, such as crystal growth, va-
por deposition, chemical dissolution, corrosion, erosion, fluid flow in porous
media and biological growth a surface or an interface, biological processes. A
fractal (“fractal” from Latin “fractus”) is a rough or fragmented geometric
shape that can be subdivided in parts, each of which is (at least approxi-
mately) a reduced-size copy of the whole. Fractals are generally self-similar,
independent of scale, and have (by Mandelbrot’s own definition) the Haus-
dorff dimension strictly greater than the topological dimension. There are
many mathematical structures that are fractals, e.g., the Sierpinski triangle,
the Koch snowflake, the Peano curve, the Mandelbrot set, and the Lorenz
attractor. One of the ways to model a fractal is the process of fractal growth
that can be either stochastic or deterministic. A nice overview of fractal
growth phenomena is found in [261].

Many models of fractal growth patterns combine complex geometry
with randomness. A typical and important model for pattern formation is
Diffusion-Limited Aggregation (DLA) (see a survey in [125]). Considering col-
loidal particles undergoing Brownian motion in some fluid and letting them
adhere irreversibly on contact with another one bring us to the basics of DLA.
Fix a seed particle at the origin and start another one form infinity letting it
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perform a random walk. Ultimately, that second particle will either escape to
infinity or contact the seed, to which it will stick irreversibly. Next another
particle starts at infinity to walk randomly until it either sticks to the two-
particle cluster or escapes to infinity. This process is repeated to an extent
limited only by modeler’s patience. The clusters generated by this process
are highly branched and fractal (see Figure 6.4).

Fig. 6.4. DLA clusters

The DLA model was introduced in 1981 by Witten and Sander [263],
[264]. It has been shown to have relation to dielectric breakdown [191], two-
phase fluid flow in porous media [41], electro-chemical deposition [96], medical
sciences [233], etc. A new conformal mapping language to study DLA has
been proposed by Hastings and Levitov [126], [127]. They showed that two-
dimensional DLA can be grown by iterating stochastic conformal maps. Later
this method was thoroughly handled in [54].

For a continuous random walk in 2-D the diffusion equation provides the
law for the probability u(z, t) that the walk reaches a point z at the time t,

∂u

∂t
= η∆u,

where η is the diffusion coefficient. When the cluster growth rate per surface
site is negligible compared to the diffusive relaxation time, the time depen-
dence of the relaxation may be neglected (see, e.g., [264]). With a steady flux
from infinity and the slow growth of the cluster the left-hand side deriva-
tive can be neglected and we have just the Laplacian equation for u. If K(t)
is the closed aggregate at the time t and Ω(t) is the connected part of the
complement of K(t) containing infinity, then the probability of the appear-
ance of the random walker in C \Ω(t) is zero. Thus, the boundary condition
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u(z, t)
∣∣
Γ (t)

= 0, Γ (t) = ∂Ω(t) is set. The only source of time dependence

of u is the motion of Γ (t). The problem resembles the classical Hele-Shaw
problem, but the complex structure of Γ (t) does not allow us to define the
normal velocity in a good way although it is possible to do this in the discrete
models.

Now let us construct a Riemann conformal map f : U ∗ → C which is

meromorphic in U∗, f(ζ, t) = α(t)ζ + a0(t) +
a1(t)

ζ
+ . . . , α(t) > 0, and

maps U∗ onto Ω(t). The boundary Γ (t) need not even be a quasidisk, as
considered earlier. While we are not able to construct a differential equation
analogous to the Polubarinova-Galin one on the unit circle, the retracting
Löwner subordination chain still exists, and the function f(ζ, t) satisfies the
equation

ḟ(ζ, t) = ζf ′(ζ, t)pf (ζ, t), ζ ∈ U∗, (6.31)

where pf (ζ, t) = p0(t)+p1(t)/ζ+. . . is a Carathéodory function: Re p(z, t) > 0
for all ζ ∈ U∗ and for almost all t ∈ [0,∞). A difference from the Hele-Shaw
problem is that the DLA problem is well-posed on each level of discreteness
by construction. An analogue of DLA model was treated by means of Löwner
chains by Carleson and Makarov in [37]. In this section we follow their ideas
as well as those from [134].

Of course, the fractal growth phenomena can be seen without randomness.
A simplest example of such growth is the Koch snowflake (Helge von Koch,
1870–1924) (see Figure 6.5). DLA-like fractal growth without randomness can

Fig. 6.5. Koch’s snowflake

be found, e.g., in[55].
A new development, called Schramm-Löwner Evolution (previously called

“Stochastic Löwner Evolution” by O. Schramm [235]) provides another prob-
abilistic view on the Löwner chains and a new interpretation of the traditional
conformal field theory approach. The basic idea is to replace the control func-
tion p in the classical Löwner equation by a function with driving parameter
a one-dimensional Brownian motion (see [221], [235]).

Returning to the fractal growth we want to study a rather wide class of
models with complex growing structure. We note that α(t) = capK(t) =
capΓ (t). Let M(0, 2π) be the class of positive measures γ on [0, 2π]. The
control function pf (ζ, t) in (6.31) can be represented by the Riesz–Herglotz
formula
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pf (ζ, t) =

2π∫

0

eiθ + ζ

eiθ − ζ
dγt(θ),

and p0(t) = ‖γt‖, where γt(θ) ∈M(0, 2π) for almost all t ≥ 0 and absolutely
continuous in t ≥ 0. Consequently, α̇(t) = α(t)‖γt‖. There is a one-to-one cor-
respondence between one-parameter (t) families of measures γt and Löwner
chains Ω(t) (in our case of growing domains C \Ω(t) we have only surjective
correspondence).

Example 1. Suppose we have an initial domain Ω(0). If the derivative of
the measure γt with respect to the Lebesgue measure is the Dirac measure
dγt(θ) ≡ δθ0(θ)dθ, then

pf (ζ, t) ≡
eiθ0 + ζ

eiθ0 − ζ
,

and Ω(t) is obtained by cutting Ω(0) along a geodesic arc. The preimage of
the endpoint of this slit is exactly eiθ0 . In particular, if Ω(0) is a complement
of a disk, then Ω(t) is Ω(0) minus a radial slit.

Example 2. Let Ω(0) be a domain bounded by an analytic curve Γ (t). If the
derivative of the measure γt with respect to the Lebesgue measure is

dγt(θ)

dθ
=

1

2π|f ′(eiθ, t)|2 ,

then

pf (ζ, t) =
1

2π

2π∫

0

1

|f ′(eiθ, t)|2
eiθ + ζ

eiθ − ζ
dθ,

and letting ζ tend to the unit circle we obtain Re [ḟ ζf ′] = 1, which corre-
sponds to the classical Hele-Shaw case, for which the solution exists locally
in time.

In the classical Hele-Shaw process the boundary develops by fluid particles
moving in the normal direction. In the discrete DLA models either lattice or
with circular patterns the attaching are developed in the normal direction
too. However, in the continuous limit it is usually impossible to speak of any
normal direction because of the irregularity of Γ (t).

In [37, Section 2.3] this difficulty was circumvented by evaluating the
derivative of f occurring in γt in the above Löwner model slightly outside
the boundary of the unit disk.

Let Ω(0) be any simply connected domain, ∞ ∈ Ω(0), 0 6∈ Ω(0). The
derivative of the measure γt with respect to the Lebesgue measure is

dγt(θ)

dθ
=

1

2π|f ′((1 + ε)eiθ, t)|2 ,
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with sufficiently small positive ε. In this case the derivative is well defined.
It is worth to mention that the estimate

∂capΓ (t)

∂t
= α̇(t) .

1

ε

would be equivalent to the Brennan conjecture (see [207, Chapter 8]) which
is still unproved. However, Theorem 2.1 [37] states that if

R(t) = max
θ∈[0,2π)

|f((1 + ε)eiθ, t)|,

then

lim sup
∆t→0

R(t+∆t) −R(t)

∆t
≤ C

ε
,

for some absolute constant C. Carleson and Makarov [37] were, with the above
model, able to establish an estimate for the growth of the cluster or aggregate
given as a lower bound for the time needed to multiply the capacity of the
aggregate by a suitable constant. This is an analogue of the upper bound for
the size of the cluster in two-dimensional stochastic DLA given by [151].
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254. A. N. Varchenko, P. I. Ètingof, Why the boundary of a round drop becomes a
curve of order four, University Lecture Series, vol. 3, AMS, 1992.



178 References

255. A. Vasil’ev, Univalent functions in the dynamics of viscows flows, Comp.
Methods and Func. Theory, 1 (2001), no.2, 311-337.

256. A. Vasil’ev, Moduli of families of curves for conformal and quasiconformal
mappings. Lecture Notes in Mathematics, vol. 1788, Springer-Verlag, Berlin-
New York, 2002.

257. A. Vasil’ev, Univalent functions in two-dimensional free boundary problems,
Acta Applic. Math, 79 (2003), no. 3, 249–280.

258. A. Vasil’ev, I. Markina, On the geometry of Hele-Shaw flows with small surface
tension, Interfaces and Free Boundaries, 5 (2003), no.2, 183–192.

259. Yu. P. Vinogradov, P. P. Kufarev, On a problem of filtration, Akad. Nauk
SSSR. Prikl. Mat. Meh., 12 (1948), 181–198. (in Russian)

260. Yu. P. Vinogradov, P. P. Kufarev, On some particular solutions of the problem
of filtration, Doklady Akad. Nauk SSSR (N.S.) 57 (1947), 335–338. (in Russian)

261. T. Viczek, Fractal growth phenomena, World Scientific Publishing Co, Singa-
pore, 1989.

262. P. B. Wiegmann, A. Zabrodin, Conformal maps and integrable hierarchies,
Comm. Math. Phys. 213 (2000), no. 3, 523–538.

263. T. A. Witten, Jr., L. M. Sander, Diffusion-Limited Aggregation, and kinetic
critical phenomenon, Phys. Rev. Letters, 47 (1981), no. 2, 1400–1403.

264. T. A. Witten, L. M. Sander, Diffusion-Limited Aggregation, Phys. Rev. B 27
(1983), no. 9, 5686–5697.

265. S. Wolpert, Thurston’s Riemannian metric for Teichmüller space, J. Differen-
tial Geom., 23 (1986), no. 2, 143–174.



List of Symbols

C complex plane
C Riemann sphere
U unit disk
∂U = S1 unit circle
U∗ exterior part of unit disk
Ur disk of radius r
H+ right half-plane
R real line
R

+ positive real axis
R

− negative real axis
D̄ closure of D
intD interior of D
f ◦ g superposition f and g
δa(z) Dirac’s distribution in z ∈ C supported at a
F ≡ 2F 1 Gauss hypergeometric function
B Euler’s Beta-function
K complete elliptic integral
S(z) Schwarz function
χΩ characteristic function of Ω
dσz area element in z-plane
Bal partial balayage
dist (Γ, a) distance from set Γ to point a
S class of univalent functions in U

normalized by f(ζ) = ζ + a2ζ
2 + . . .

Σ class of univalent functions in U ∗

normalized by f(ζ) = ζ + a0 + a1/ζ + . . .
Σ0 subclass of Σ of functions with a0 = 0

Σ̃ subclass of Σ of functions smooth on the boundary

Σ̃0 subclass of Σ0 of functions smooth on the boundary
Σqc subclass of Σ of functions that admit quasiconformal

extension into U
Σqc

0 subclass of Σ0 of functions that admit quasiconformal
extension into U

S∗ class of starlike functions in U



180 List of symbols

S∗
α class of starlike functions of order α in U
S∗(α) class of strongly starlike functions of order α in U
C class of convex functions in U
CR class of convex functions in U in the direction of R

H−
R

class of convex functions in H+ in the negative direction of R

H−
R

(α) class of convex functions in H+ of order α
in the negative direction of R

m(D,Γ ) modulus of a family of curves Γ in D
M(D) conformal modulus of a doubly connected domain D
R(D, a) conformal radius of D with respect to a
m(D, a) reduced modulus of D with respect to a
capC capacity of a condenser C
cap (h)C hyperbolic capacity of a continuum C
m∆(D, a) reduced modulus of a triangle D with

respect to its vertex a
µf (ζ) dilatation of a quasiconformal map f
F family of all quasiconformal automorphisms of U
F0 family of all quasiconformal automorphisms of U

normalized by f(±1) = ±1, f(i) = i
L∞(U) essentially bounded functions in U
T universal Teichmüller space
Sf (z) Schwarzian derivative
M universal modular group
τ(x, y) Teichmüller distance
B(U) Banach space of all functions holomorphic in U equipped with

the norm ‖ϕ‖B(U) = supζ∈U |ϕ(ζ)|(1 − |ζ|2)2
A(U) Banach space of analytic functions with the finite L1

norm in the unit disk
A2(U) Banach space of analytic functions ϕ

with the finite norm ‖ϕ‖A2(U) =
∫∫
U
|ϕ(ζ)|2(1 − |ζ|2)2dσζ

H tangent space to T at the initial point
Diff S1 Lie group of C∞ sense preserving diffeomorphisms

of the unit circle S1

Rot S1 group of rotations of S1

Vect S1 Lie algebra of smooth tangent vector fields to S1



Index

algebraic domain, 67
Area Theorem, 115

Baiocchi transformation, 35, 51, 53
balayage, 60, 101
Beaufoy, 11
Beltrami coefficient, 138
Beltrami equation, 136
Beurling-Ahlfors extension, 142
Bieberbach, 131
Borel-Pompeiu formula, 154
Boussinesq transformation, 100, 128
branching, 65
Brennan conjecture, 165
Brownian, 161

capacity, 112
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Schwarz Lemma, 59, 148
Schwarz-Poisson formula, 18, 87
Schwarzian derivative, 86, 138
self-dilating drops, 45
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semigroup, 147
shear stress, 1
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Sokhotskĭı-Plemelj formula, 88
starlike function, 74, 77
Stokes-Leibenzon model, 15
stream function, 7
stress tensor, 4
strong solution, 18, 29, 62, 64
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Teichmüller, 135
Teichmüller space, 132, 134, 137, 150
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Thomson, 20
travelling-wave solution, 34, 35
turbulent flow, 6
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variational inequality, 55
Vinogradov, 18
Virasoro algebra, 141



Index 183

viscosity solution, 53
vorticity, 7

weak solution, 51, 53, 56, 59, 62, 102
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