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Fakultät Maschinenbau, Elektrotechnik
und Wirtschaftsingenieurwesen
Brandenburgisch Technische Universität Cottbus
03013 Cottbus

Gerd Pfister
Institut für Experimentelle und Angewandte Physik
Universität Kiel
Olshausenstrasse 40
24098 Kiel, Germany

Cover picture: Plots of the velocity vectors of the spiral TG vortex flow, see K.Nakabayashi,
W. Sha, Spiral and wavy vortices in the spherical Couette Flow, this issue.

Library of Congress Cataloging-in-Publication Data applied for.

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Physics of rotating fluids : selected topics of the 11th International
Couette Taylor Workshop, held at Bremen, Germany, 20 - 23 July 1999 /
Christoph Egbers ; Gerd Pfister (ed.). - Berlin ; Heidelberg ; New
York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ;
Tokyo : Springer, 2000
(Lecture notes in physics ; Vol. 549)
(Physics and astronomy online library)
ISBN 3-540-67514-0

ISSN 0075-8450
ISBN 3-540-67514-0 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustra-
tions, recitation, broadcasting, reproduction on microfilm or in any other way, and
storage in data banks. Duplication of this publication or parts thereof is permitted only
under the provisions of the German Copyright Law of September 9, 1965, in its current
version, and permission for use must always be obtained from Springer-Verlag. Violations
are liable for prosecution under the German Copyright Law.

Springer-Verlag is a company in the BertelsmannSpringer publishing group.
© Springer-Verlag Berlin Heidelberg 2000
Printed in Germany

Theuse of general descriptive names, registerednames, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera-ready by the authors/editors
Cover design: design & production, Heidelberg

Printed on acid-free paper
SPIN: 10719300 55/3144/du - 5 4 3 2 1 0



Preface

“Lecture Notes in Physics”, having a strong publishing history in fundamental
physics research, has devoted a special volume to recent developments in the field
of physics of rotating fluids and related topics. The present volume will comprise
23 contributed papers on the different aspects of rotating fluids, i.e. Taylor–
Couette flow, spherical Couette flow, plane Couette flow, as well as rotating
annulus flow.

In the seminal paper by G.I. Taylor, a powerful combination of theory and
experiment was brought to bear on the stability of flow between rotating cylin-
ders, now referred to as Taylor–Couette flow. The significance of his work lies in
the fact that here, for the first time, an experiment in fluid dynamics and the
theory, using the Navier–Stokes equations, could be compared and led to excel-
lent agreement. Since that time ideas associated with rotating flows have been
extended and have resulted in classic texts such as Greenspan’s “The theory of
rotating fluids”.

In this present book we report on modern developments in the field where
new mathematical ideas have been applied to experimental observations on a
variety of related flow fields.

The aim of this volume is to provide the reader with a comprehensive overview
of the current state of the art and possible future directions of the Taylor–Couette
community and to include related topics and applications.

The first part of this volume is devoted to several new results in the classical
Taylor–Couette problem covering diverse theoretical, experimental and numeri-
cal works on bifurcation theory, the influence of boundary conditions, counter-
rotating flows, spiral vortices, time-periodic flows, low dimensional dynamics, ax-
ial effects, secondary bifurcations, spatiotemporal intermittency, Taylor–Couette
flows with axial and radial flow, Taylor vortices at different geometries and trans-
port phenomena in magnetic fluids.

The second part of this volume focuses on spherical Couette flows, including
isothermal flows, vortical structures, spiral and wavy vortices, the influence of
throughflow, thermal convective motions, intermittency at the onset of convec-
tion, as well as magneto-hydrodynamics in spherical shells.

Further parts are devoted to Goertler vortices and flows along curved sur-
faces, rotating annulus flows, as well as superfluid Couette flows, tertiary and
quarternary solutions for plane Couette flows with thermal stratification and
rotating disk flows.



VI Preface

We hope that the readers will find this volume useful, giving an overview of
the latest experimental and theoretical studies on the physics of rotating fluids.

It is a pleasure for us to thank all those who contributed to the conference
“11th International Couette–Taylor Workshop” and, by the same token, to this
volume. We would like to thank the Dipl. Phys. Oliver Meincke, Markus Junk,
Arne Schulz and Jan Abshagen for their invaluable and indispensable help in
editing this book.

Last, but not least, we are grateful to Dr. Christian Caron for offering to
publish this volume in the Springer Series “Lecture Notes in Physics” and for
the patient assistance of Mrs. Brigitte Reichel-Mayer.

Bremen, Kiel
August 2000 Christoph Egbers

Gerd Pfister
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Zentrum für Technomathematik
Universität Bremen
Postfach 33 04 40
28334 Bremen
Germany
baensch@math.uni-bremen.de

Carlo F. Barenghi
Dept. of Mathematics and Statistics
The University of Newcastle Upon
Tyne
Newcastle Upon Tyne NE1 7RU
United Kingdom
C.F.Barenghi@newcastle.ac.uk

John H. Bolstad
Laurence Livermore National
Laboratory
L-23, University of California
POB 808
Livermore, CA 94550
USA
bolstad@lll-crg.llnl.gov

Friedrich Busse
Universität Bayreuth

Physikalisches Institut
95440 Bayreuth
Germany
busse@uni-bayreuth.de

Pascal Chossat
Université de Nice
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Abstract. We present a discussion of steady bifurcation phenomena in Taylor–Couette
flow. The emphasis is on the role of pitchfork bifurcations in mathematical models and
their relevance to the physical problem. The general features of such bifurcations are
reviewed before we discuss the numerical and experimental techniques used to ex-
plore their properties. New results are then presented for a wide-gap small aspect ratio
version of Taylor–Couette flow. We find good agreement between numerical and exper-
imental results and show that the qualitative features of the bifurcation sequence are
the same as those found with other radius ratios.

1 Introduction

The application of ideas from singularity theory to bifurcation phenomena in vis-
cous fluid flows was pioneered by Benjamin[1,2]. He decided to focus his study on
a well established hydrodynamic stability problem and hence selected the flow
between concentric cylinders which is commonly called Taylor–Couette flow. The
brilliant pioneering work of Taylor [22] on this problem is regarded as a milestone
in the subject of hydrodynamic stability theory. Taylor used the powerful com-
bination of theory and experiment to test the viscous formulation of Rayleigh’s
stability criterion for circulating flows. He established the principle of exchange
of stability between two fluid states and obtained remarkable agreement between
theory and experiment for stability limits. His success spawned a new subject
area and to this date there have been over one thousand papers written on
the subject. A comprehensive listing of references on the topic can be found in
[20,21].

The onset of cells in the Taylor–Couette problem is widely believed to be
an example of a simple planar pitchfork bifurcation. While evidence suggests
that this is a good description, the connection between mathematical models
and observations was shown by Benjamin to be very subtle. In particular, the
symmetry of the abstract model is one of translation of the cellular pattern and
this is not readily achievable in the physical system. As a result the onset of cells
remains sharp but the second branch of the pitchfork is removed to Reynolds
numbers far in excess of those required for the first appearance of cells. We will
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discuss these issues below and also review other important simple geometrical
symmetry breaking bifurcations in the problem.

A pitchfork bifurcation is so named because of its shape i.e. it resembles a
three pronged hayfork. The handle and central prong correspond to the trivial
solution or zero state and the outer prongs relate to the bifurcating branches. A
familiar physical example of this mathematical entity is the Euler strut where
an initially straight elastic beam is buckled by the action of a compressive load.
The straight configuration is the trivial solution which loses stability to a pair of
buckled states as the load is increased. This phenomenon can readily be demon-
strated by applying an end loading to a plastic ruler using your hands. The
ruler will bend up or down (say) above a critical compression. Here we have an
example of a simple symmetry breaking pitchfork bifurcation where the sym-
metry of the originally straight ruler is destroyed above a critical load. It will
soon become apparent to anyone who tries this demonstration that the ruler
will prefer to buckle in a particular direction. This is because the ruler and the
application of the load is not symmetric. In fact it can never be so even in a lab-
oratory where a high precision version of the plastic ruler experiment could be
made. This important aspect of the physical system can be modelled by includ-
ing an imperfection term in the model equations as discussed by Golubitsky and
Schaeffer[12]. The result is that there is a smoothly evolving state together with
a disconnected branch which is terminated at its lower end by a saddle–node
bifurcation.

We will now consider the Taylor–Couette problem in the context of pitchfork
bifurcations. In the Taylor–Couette geometry the region between the surfaces
of two concentric cylinders is filled with fluid. We consider the case where flow
is driven by the inner cylinder which rotates with a constant angular velocity,
while the outer cylinder is held stationary. In the configuration of interest here
the flow is terminated with fixed horizontal plates which span the gap between
the cylinders at the ends of the fluid annulus. A sketch of the Taylor–Couette
geometry is presented in Fig. 1. The coordinates system is cylindrical polar
(r, θ, z) with the origin located along the central axis and midway between the
end boundaries.

The Reynolds number for this system is :

Re =
Ωrid

ν
(1)

where ν is the kinematic viscosity of the fluid.
Two further independent dimensionless parameters may be defined for the Taylor–
Couette geometry. These are the ratio of the length l of the fluid annulus to the
gap width d, known as the aspect ratio :

Γ =
l

d
, (2)

and the radius ratio of the cylinders :

η =
ri
ro

. (3)
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Ω

ri

ro

d

l

Fig. 1. The Taylor–Couette geometry. Fluid contained between the surfaces of two
concentric cylinders is driven by a rotating inner cylinder.

The Reynolds number and aspect ratio are continuously variable parameters.
The radius ratio, on the other hand, is not easily adjusted and is therefore fixed
throughout an experiment. At small Re the flow is observed to be mainly feature-
less along most of the cylindrical gap except for some three dimensional motion
at the ends. In practice, the laboratory flow appears to provide a reasonable ap-
proximation to rotary Couette flow where the principal action is shear between
the rotating cylinders. It is this flow that is often considered to be related to
the trivial state of the mathematical model where the cylinders are taken to be
infinitely long. The connection is appealing since it appears reasonable that the
distant ends in a long apparatus will act as small perturbations. This suggests
that the pitchfork in the model will be disconnected by a small amount. Hence
one branch would be continuously connected and show a sharp change in gradi-
ent close to the bifurcation point of the perfect system while the other branch
would be disconnected and have a lower limit defined by a saddle–node. How-
ever, experimental evidence gathered over the last twenty years suggests that
this view is misleading.
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It is an experimental fact that when Re is increased above a certain well
defined value then cellular motion sets in rather quickly. This is found to be
the case even when the aspect ratio of the system is as small as four. If we
consider the onset of cells as a bifurcation then we must ask if it can be described
as a simple disconnected pitchfork. One fact which would test this idea is an
observation of the second branch of the pitchfork and a measure of its lower
limit of stability. Surprisingly, Benjamin appears to be the first person to have
attempted this and in doing so he discovered that the second branch exists
but it is far away from the first onset of cells. He termed these new solutions
‘anomalous modes’ and they have been the subject of a great deal of subsequent
study [3,10]. Included in these investigations is direct numerical evidence [7]
of the connection between the ‘periodic’ model and experimental observations
using the Schaeffer [19] homotopy parameter. This clearly elucidates the origin
and role of anomalous modes.

The range of Re between the saddle-node and that for the onset of cells can
be as much as an order of magnitude and appears to be independent of aspect
ratio. This suggests that ‘end effects’ are dominant in the Taylor–Couette prob-
lem in practice no matter what the aspect ratio is. One half of a simple planar
pitchfork appears to provide a good model of the onset of cells. However, the
symmetry involved is one of translation [1] and since the physical system does
not easily permit this action the other half of the pitchfork is far removed from
the mathematical idealisation of the model. This finding has important conse-
quences for the onset of low–dimensional chaos and in particular codimension–2
organising centres [16,17].

Pitchfork bifurcations which give rise to pairs of solutions that break the
mirror plane Z2 symmetry are now known to be important in the organisation
of the dynamics found at higher Re [17]. These are found on nontrivial symmetric
cellular flows where one half of the pattern grows at the expenses of the other as
Re is varied. As in any physical system the effects of imperfections are present
but, unlike the onset of cells, the disconnection is small and is generally of the
order of a few percent of the range of the control parameter.

A feature of the Taylor–Couette experiment which can be readily observed is
that there is a large multiplicity in the steady solution set [4]. This feature was
highlighted in the time–dependent regime by Coles [11] and also commented
on in [5] for steady flows. Thus if one wishes to explore important details of
the bifurcation structure it can be difficult if the aspect ratio is large. Since
‘end effects’ are important for all aspect ratios it seems appropriate to carry
out such investigations at small or modest aspect ratios where the solution set is
manageable. This strategy has been adopted in several investigations which have
provided an exacting challenge for comparison between the results of numerical
calculation and experiment [9].

The simplest example of a symmetry breaking pitchfork bifurcation in the
Taylor–Couette problem is found when the aspect ratio isO(1). In this case it was
shown [3] that a two-cell state can bifurcate into a pair of single-cell anomalous
modes. This is the only known example of a continuously connected anomalous
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mode and has been the subject of a great deal of subsequent numerical and
experimental study, as discussed in [18,23]. We will use this flow as our example
to highlight a numerical bifurcation approach used to explore these and related
problems. Then, we will present some new experimental results on a wide gap
version of the problem which shows the robustness of the basic mechanisms.

2 A numerical bifurcation method

Before proceeding to discuss the equations of motion and a numerical bifurcation
method used in their study we will first discuss those symmetries which are
important in the physical system. The Taylor–Couette problem is invariant under
reflections about the midplane or rotations through the azimuthal angle. These
symmetries are embodied in the symmetry groups Z2 and SO2, respectively,
that map :

(r, θ, z)→ (r, θ,−z) (4)

and

(r, θ, z)→ (r, θ + φ, z) (5)

where φ is an arbitrary phase.
The numerical methods used to calculate the Taylor–Couette flow make full

use of these symmetries. The SO2 symmetry is used implicitly since all calcu-
lations are performed over the two-dimensional vertical cross-section. The Z2
symmetry, on the other hand, is used to reduce the computational effort by
approximately half using a half-grid discretisation.

2.1 Governing equations

The velocity components (u∗
r , u

∗
θ, u

∗
z), where

∗ denotes dimensional quantities,
are made non-dimensional by scaling with the inner cylinder velocity :

(ur, uθ, uz) =
(u∗
r , u

∗
θ, u

∗
z)

Ωri
. (6)

Dimensionless quantities r, z, p and t are similarly defined :

r =
r∗

d
− β, z =

z∗

l
, p =

dp∗

µΩri
, t =

νt∗

d2
. (7)

where β is the ratio of inner cylinder radius to gap width :

β =
ri
d

=
η

1− η
. (8)
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With this notation, the dimensionless Navier–Stokes equations for an incom-
pressible Newtonian fluid are :

∂ur
∂t

+Re

{
ur

∂ur
∂r

+ uz
∂ur
∂z

− u2θ
(r + β)

}
+

∂p

∂r

− 1
(r + β)

∂

∂r

(
(r + β)

∂ur
∂r

)
− 1

Γ 2

∂2ur
∂z2

+
ur

(r + β)2
= 0 (9a)

∂uθ
∂t

+Re

{
ur

∂uθ
∂r

+ uz
∂uθ
∂z

+
uruθ

(r + β)

}
− 1
(r + β)

∂

∂r

(
(r + β)

∂uθ
∂r

)
− 1

Γ 2

∂2uθ
∂z2

+
uθ

(r + β)2
= 0 (9b)

∂uz
∂t

+Re

{
ur

∂uz
∂r

+ uz
∂uz
∂z

}
+

1
Γ 2

∂p

∂z

− 1
(r + β)

∂

∂r

(
(r + β)

∂uz
∂r

)
− 1

Γ 2

∂2uz
∂z2

= 0 (9c)

1
(r + β)

∂

∂r
((r + β)ur) +

∂uz
∂z

= 0 (9d)

Equations (9a) - (9d) hold in the region of vertical cross-section D :

D =
{
(r, z) | 0 ≤ r ≤ 1,−1

2
≤ z ≤ 1

2

}
. (10)

The boundary conditions for domain D are :

ur = uz = 0 on r = 0, 1 and on z = ± 1
2 (11)

and

uθ =


1 on r = 0
0 on r = 1
F (r) on z = ± 1

2

(12)

Thus ur and uz are zero on the entire boundary, and uθ = 1 at the inner
cylinder and uθ = 0 at the outer cylinder. At the ends of the annulus uθ has
the dependence F (r) shown in Fig. 2. This is the smooth function originally
suggested [3] as a model for the corner singularity at (r, z) = (0,± 1

2 ) where
the rotating inner cylinder meets a stationary end-boundary. The dissipation
rate in the fluid resulting from the singularity would otherwise be infinite, and
therefore physically unrealistic. The particular form for F (r) used in this case
is a quadratic fitted to uθ from r = 0 to r = ε. Cliffe and Spence[8] report their
numerical results to be insensitive to the precise value of ε, and conclude that
any sufficiently small value is adequate.
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0 1
0

1

ε r

uθ

Fig. 2. The continuous function F (r) used as a model for the corner singularities.

2.2 The finite element technique

The discrete two-dimensional version of the Navier–Stokes equations for the
Taylor–Couette flow were calculated on a Silicon Graphics Power Challenge us-
ing the numerical bifurcation package ENTWIFE. This is the same technique
originally used by Cliffe [9] to calculate the 4/6 cell exchange mechanism for a
Newtonian fluid at radius ratios η = 0.6 and η = 0.507. he found good agree-
ment with experimental results and also showed the importance of symmetry
breaking bifurcations. We now present an overview of the techniques used to
calculate these bifurcations and details of the basic numerical method may be
found in Cliffe and Spence [8] and Jepson and Spence [13].

The steady version of equations (9a) - (9d) is solved using a primitive variable
Galerkin formulation. The pressure terms p are required to lie in the space L2(D),
the space of functions that are square integrable over the domainD. Similarly the
velocity components ur, uθ and uz are each required to lie in the space W 1,2(D),
the space of functions whose generalised first derivatives lie in L2(D).W 1,2(D)3
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is then the space of three-dimensional vector valued functions with components
existing in W 1,2(D). This space is a natural setting for the problem, since the
total rate of viscous dissipation by the fluid is incorporated in the square of the
norm of the vector (ur, uθ, uz).

On the boundary of D the elements of W 1,2(D)3 must vanish, and the sub-
space with this property is writtenW 1,2

0 (D)3. We therefore seek an axisymmetric
solution U + Û where U = (ur, uz, uθ, p) ∈ H ≡ W 1,2

0 (D)3 × L2(D) and the
function Û = (0, ûθ, 0, 0) ∈W 1,2(D)3×L2(D) matches the boundary conditions
on the azimuthal component of velocity.

The domain D is covered with a finite-element mesh, the length of the longest
edge of which is denoted h. W h and Mh are two finite-dimensional subspaces
such that W h ∈ W 1,2(D)3 and Mh ∈ L2(D). The continuous solution U ∈
H is then approximated to a finite-dimensional Uh ∈ Hh, where the finite-
dimensional Hilbert space Hh =W h,0 ×Mh, W h,0 ⊂W 1,2

0 (D)3.
The steady finite-dimensional weak form of the Navier–Stokes equations are

expressed in D as a nonlinear operator f in finite-dimensional Hilbert space :

f(x;Re, Γ, η) = 0; f :X ×R×R×R→X (13)

where x is a vector containing all the velocity and pressure degrees of freedom.
The space X is the set of all possible x and is equivalent to RN , where N is
the total number of degrees of freedom. Solutions to (13) are known as weak
solutions.

In principle equations (13) may be solved directly using Euler-Newton contin-
uation. However, in practice numerical problems are associated with this method
when a turning point is encountered, as the equations become singular. To avoid
this difficulty the arclength continuation process proposed by Keller[14] is used.
Consider the problem of solving a one parameter equation :

g(u, λ) = 0;u ∈ Rn, λ ∈ R. (14)

If an arclength s is used to parametrise the solution then equation (14) may
be written : {

g(u(s);λ(s)) = 0
N(u(s);λ(s), s) = 0 (15)

where

N(u(s);λ(s), s) =
∂u

∂s
(s0)T (u(s)− u(s0)). (16)

The augmented system (15) is not singular at a turning point, and therefore
allows continuation of a solution around a limit point. Euler’s method supplies
a prediction at each step si, and Newton’s method is used to locate the solution
accurately. The same parametrisation applies equally to the continuation of so-
lutions in Re, Γ or η. In this way paths of limit points in parameter space may
be computed. The continuation procedure also extends naturally to the com-
putation of bifurcations using the extended systems to be introduced in section
2.5.
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2.3 Spatial discretisation and symmetry

The finite-dimensional spaceW h,0 is generated using the nine-node isoparamet-
ric quadrilateral elements shown in Fig. 3. Each element has three components
of velocity at each node, totalling 27 velocity degrees of freedom in all, with each
component of velocity being approximated by biquadratic polynomials. Mh is
generated by piecewise linear interpolation on the same elements. In addition,
three pressure degrees of freedom p, px and py are associated with the central
node and the interpolation is, in general, discontinuous across element bound-
aries.

In order to compensate for the rapid variation in velocity experienced near
(r, z) = (0,± 1

2 ), the corner elements are refined, as shown in Fig. 4. The main
element is successively subdivided into smaller elements as the corner is ap-
proached. Cliffe [6] shows that the numerical results are insensitive to any num-
ber of subdivisions greater than four. Here the number of subdivisions used for
the calculations is five.

The full domain D was discretised using a 24×40 mesh. The mesh is symmet-
rical about the line z = 0 and, with the the exception of the corners, is uniform
over the domain. As Cliffe and Spence [8] point out, this is an important con-
sideration if the symmetry of the physical problem is to be correctly modelled.
It has already been noted that the Taylor–Couette geometry is Z2 symmetric,
and therefore the Navier–Stokes equations in D are invariant under the following
operation S :

S {ur(r, z), uθ(r, z), uz(r, z), p(r, z)}
= {ur(r,−z), uθ(r,−z), uz(r,−z), p(r,−z)} (17)

The effect of S is to partition the Hilbert space H into symmetric and
antisymmetric subspaces :

H =Hs ⊕Ha (18)

where U ∈ Hs if SU = U and U ∈ Ha if SU = −U . Û is such that
SÛ = Û .

Cliffe and Spence [8] calculate the form for the symmetry operator S∗, as
the discretised analogue of the continuous symmetry operator S, and obtain the
relation

S∗f(x;Re, Γ, η) = f(S∗x;Re, Γ, η) (19)

where S∗ = I and S∗2 = I.
Just as the symmetry operator S partitions Hilbert space into symmetric

and antisymmetric subspaces Hs and Ha in the continuous case, the symmetry
operator S∗ partitions the spaceX into symmetric and antisymmetric subspaces
Xs and Xa in the discrete case :

X =Xs ⊕Xa (20)
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Fig. 3. A nine-node quadrilateral element.

Fig. 4. The five-fold corner refinement.
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where

Xs :=
{
x ∈X|S∗x = x

}
,Xa :=

{
x ∈X|S∗x = −x} , (21)

The symmetry of the problem may be utilised in order to reduce the com-
putational effort. Flows that are symmetric about z = 0 can be calculated more
efficiently using the half domain :

D+ =
{
(r, z) | 0 ≤ r ≤ 1, 0 ≤ z ≤ 1

2

}
. (22)

Thus two cell flows and symmetry breaking bifurcations from them are cal-
culated on half domains. The full two-dimensional flow field is obtained upon
reflection of the half-grid solution about z = 0. The result is a reduction in the
number of degrees of freedom from 19124 for the full grid to just 9562 for the
half grid.

2.4 Stability

The weak form of the Navier–Stokes equations in D may be expressed as a set
of differential equations in t, with the pressure and velocity degrees of freedom
as dependent variables. They are written in the form :

M
dx

dt
+ f(x(t);Re, Γ, η) = 0 (23)

whereM is the mass matrix.
If a small axisymmetric perturbation ξ is introduced then the behaviour is

governed to first order by :

Mξ̇ + fx(x;Re, Γ, η)ξ = 0. (24)

where fx ≡ ∂f

∂x
is the Jacobian matrix. Solving the differential equation

using characteristic functions, let :

ξ = εe−γt (25)

where ε ∈X and γ = σ + iω. Substituting into equation (23) :

−γMε+ fx(x;Re, Γ, η)ε = 0 (26)

Thus the linear stability of solutions x to (13) is dependent upon solutions
of the generalised eigenproblem :

fx(x;Re, Γ, η)ε = γMε (27)

where γ is the generalised eigenvalue and ε the corresponding eigenvector.
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If σ > 0 the perturbation ξ decays with time, otherwise if σ < 0 the per-
turbation ξ grows. For the solution to be stable all generalised eigenvalues γ of
(27) must have positive real part. However, the Jacobian matrix can in practice
be very large and it is not efficient to calculate all the generalised eigenvalues.
The sign of the determinant of the Jacobian matrix, though, may be calculated
with very little additional computational cost. A necessary but not sufficient
condition for stability, then, is that the sign of the determinant of the Jacobian
matrix fx is positive. On the other hand, a solution is necessarily unstable if the
determinant of fx is negative.

For symmetric solutions x ∈ Xs, the Jacobian fx maps Xs → Xs and
Xa → Xa. Therefore the Jacobian matrix fx evaluated at x ∈ Xs may be
written in the block diagonal form :

fx|fx∈Xs =

[
fx
s 0

0 fx
a

]
. (28)

The eigenvectors are exclusively elements of Xs or Xa :

ε =
(
εs

εa

)
. (29)

For the symmetric solution to be stable, it must be stable to both symmetric
and antisymmetric disturbances. Thus all the generalised eigenvalues γs corre-
sponding to eigenvectors εs ∈ Xs must have positive real part, and therefore
the sign of the determinant fx

s must be positive. In addition, all the generalised
eigenvalues γa corresponding to eigenvectors εa ∈ Xa must have positive real
part, and therefore the determinant of fx

a must also be positive.
Thus for symmetric solutions the determinants of fx

s and fx
a are calcu-

lated on the half grid at each step of the continuation procedure. The sign of
the determinant indicates the stability of the solution with respect to symmetric
and antisymmetric disturbances respectively. For asymmetric solutions x ∈Xa,
however, the Jacobian fx does not map Xs → Xs nor Xa → Xa, since eigen-
vectors are not exclusively elements of Xs or Xa, and fx cannot be partitioned
into block diagonal form. Thus the stability of these solutions cannot be obtained
by finding the determinant of fx

s and fx
a, since these matrices do not exist.

The asymmetric solutions must therefore be computed on the full grid.
For asymmetric solutions the Jacobian fx may be expressed in the Jordan

form :

fx =
[
B 0
0 C

]
(30)

where B is a (2 × 2) matrix and C is a ((N − 2) × (N − 2)) matrix with
positive eigenvalues. The eigenvalues of B are those closest to the imaginary
axis. This is a useful construct since the stability of the solution is dependent
upon the eigenvalues of B alone, and it is therefore used to indicate the stability
of asymmetric solution branches.
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2.5 Bifurcation points and extended systems

The linear stability analysis (24) fails whenever σ = 0. This occurs, for example,
at a simple singular point x0 where the Jacobian matrix fx has a single real
eigenvalue γ0 = σ0 + iω0 such that σ0 = ω0 = 0. At such a point there exists a
unique null eigenvector φ0. If x0 ∈Xs then the null eigenvector φ0 is either an
element of Xs or an element of Xa. Thus if the determinant of fx

s is zero then
the bifurcation is symmetry-preserving, otherwise if the determinant of fx

a is
zero then the bifurcation is symmetry-breaking.

In order to compute such bifurcation points it is necessary to use extended
versions of the equations. Moore and Spence [15] show that a limit point may
be characterised as an isolated solution of the following extended system :

F (y;Γ, η) ≡
 f(x;Re, Γ, η)
fx(x;Re, Γ, η)φ

lφ− 1

 = 0 (31)

where y = (x,φ, Re) ∈X ×X ×R and l ∈X ′ (the dual of X). In order to
calculate a path of limit points in the two-dimensional space (Re, Γ ) for instance
the Keller arc-length continuation method (15) is applied to (31) with u = y,
λ = Γ and g(., .) = F (., .).

Werner and Spence [24] show that a pitchfork bifurcation may be charac-
terised as an isolated solution of the extended system :

F (y;Γ, η) ≡
 f(x;Re, Γ, η)
fx(x;Re, Γ, η)φ

lφ− 1

 = 0 (32)

where y = (x,φ, Re) ∈ Xs ×Xa × R. This is similar to equation (31) but
there is an essential difference since now x must belong toXs and φ must belong
to Xa. Thus the basic solution is symmetric but the eigenvector, and thus the
bifurcating branch, is asymmetric. Other symmetry-breaking points include the
C+ and C− coalescence points and quartic bifurcation points which can occur at
certain singularities of the system (32). Extended systems for these singularities
may be found in Cliffe and Spence [8].

The numerical problem is such that all of the symmetry-breaking bifurca-
tions are perfect, and therefore on perfectly symmetric boundary conditions
there is no possibility of distinguishing between asymmetric solution branches.
One practical point here is that it is possible to step on to an asymmetric solu-
tion branch by perturbing the pitchfork bifurcation so that all solutions become
slightly asymmetric. It is then possible to step along the connected solution
branch through the point at which the pitchfork occurs in the symmetric case.
This solution is used as a first approximation to the perfectly symmetric prob-
lem, which converges to the true value when the boundary conditions are reset
to their original configuration. In this way the paths of fold bifurcations along
asymmetric solution branches may be computed.
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Since bothM and fx are real matrices it follows that the eigenvalues γ0 are
either real or exist as complex conjugate pairs. If at a simple singular point x0
the real part σ0 is zero and the imaginary part ω0 is non-zero, then a purely
imaginary pair of eigenvalues and corresponding complex conjugate eigenvectors
must exist. In this case x0 is a Hopf bifurcation point.

At a Hopf bifurcation point γ = ±iω and equation (27) becomes :

fxε = iωMε. (33)

Letting ε = a+ ib, and equating real and imaginary parts :

fxa+ ωMb = 0

fxb− ωMa = 0. (34)

Then, Hopf bifurcation points are isolated solutions of the following extended
system :

F (y;Γ, η) ≡


f(x;Re, Γ )

fx(x;Re, Γ, η)a+ ωMb

fx(x;Re, Γ, η)b− ωMa

cTa− 1
cT b

 = 0 (35)

where y = (x, Re, ω,a, b) ∈ (X ×R×R×X ×X).
We will not calculate Hopf bifurcations here but refer the reader to [18] where

a discussion of Hopf bifurcations in small aspect ratio Taylor–Couette flows is
given.

3 Results

We will now discuss the application of the numerical techniques discussed above
to the study of pitchfork bifurcations in a wide-gap Taylor–Couette system. Our
results are concerned with two-cell and single-cell flows and the exchange of
stability between these flows as the aspect ratio is varied. We will first present a
brief description of the experimental apparatus before discussing the numerical
and experimental results.

3.1 Experimental apparatus

The fluid was contained in the annular gap between two concentric cylinders. The
outer cylinder was a precision bore glass tube with inner diameter 74.6±0.02mm.
The inner cylinder was machined stainless steel with a diameter 25.3± 0.02mm
so that the radius ratio was 0.339. It was located in bearings and driven round
by a stepping motor via a gear box and belt drive system. The motor speed was
controlled by an oscillator and its speed was monitored. The ends of the annular
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gap were defined by two stationary PTFE collars which bridged the annular
gap. The upper collar was attached to a pair of posts so that it could be moved
accurately up and down. The aspect ratio was measured using a cathetometer
which was also used to measure the flow structure.

The fluid used was a water glycerol mixture whose viscosity was measured
to be 5.69 cSt. The cylinders were surrounded by a water bath whose tempera-
ture was controlled to 0.02oC by fluid pumped through commercial temperature
controller. The flow was visualised using Mearlmaid AA pearlessence and illu-
mination was provided by a plane of light from a slide projector. The cellular
structure was then clearly visible and the respective heights of cells were used to
distinguish between flow states. Estimates of the symmetry breaking bifurcation
points were obtained by measuring the saddle–node points where the asymmetric
states collapsed to the symmetric ones by reduction in Re. All other bifurcation
points correspond to catastrophic changes in the flow structure with change in
Re and so reliable estimates could be obtained.

3.2 Numerical and experimental bifurcation set

We show in Fig. 5 the bifurcation set in the (Re,Γ ) plane for the one-cell,
two-cell interaction.The solid lines have been calculated using the methods dis-
cussed above and the crosses are the measured points. In general, there is very
good agreement between the numerical and experimental results. Some ‘typical’
streamline plots for these flows are shown in Fig. 6 where we show both symmet-
ric and asymmetric flows. As discussed in [3] we call the asymmetric states single
cell flows since this the form they would have in a model problem where the end
boundary conditions match Couette flow. In the laboratory and in the numerical
calculations with stationary end–conditions there are always weak recirculations
present in the corners. Since these will be present for all cellular flows on finite
domains we choose to define the flow states in this way.

We next show in Fig. 7 a sequence of schematic bifurcation diagrams which
we will now use in our discussion of Fig. 5. In Fig. 5 AB is the locus of symmetry
breaking bifurcations from the two-cell state to a pair of single cell flows. The
corresponding bifurcation diagram is given in Fig. 7(a) where we see a simple
pitchfork. A ‘typical’ pair of streamline plots for such states are presented in
Fig. 6 (a) and (c) respectively. As the aspect ratio is increased towards B there is
an interaction with a second pitchfork which restabilises the two-cell branch. This
second pitchfork is shown in Fig. 7(b) where it can be seen that the bifurcation
to the pair of one single-cell states has become quartic. The path of second
pitchforks is denoted by BC in Fig. 5.

As the aspect ratio is increased further the interaction increases such that
there is hysteresis in the development of the single-cell states as shown schemat-
ically in Fig. 7(c). The hysteresis is very small and is hardly detectable on the
numerical results on the scale used in Fig. 5. The influence of imperfections in
the experiment may be clearly seen in Fig. 5 for the hysteresis is larger than
in the numerics and all points lie below the calculated ones. Nevertheless, the
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Fig. 5. Comparison between experimental and numerical results for the bifurcation set
for one and two steady cell flows. ABC is a locus of symmetry breaking bifurcation
points and BD is a path of saddle–nodes.

qualitative nature of the events is clear and we attribute the quantitative differ-
ence to the sensitivity of this feature to experimental imperfections. Yet further
increase in aspect ratio causes the disconnection of the single-cell states through
a coalescence of the pitchforks between Figs. 7 (c) and (d). Thus along BD in
Fig. 5 the pair of single-cell states are disconnected and this is the locus of limit
points for these states.

4 Discussion

The bifurcation sequence described above is consistent with those previously dis-
cussed by [3,6,18] for other values of the radius ratio. These new results therefore
confirm that these qualitative features are robust when the radius ratio is varied.
It is known [16] that pitchfork symmetry breaking bifurcations form organising
centres for complicated dynamical motion in the Taylor–Couette problem and
hence the robustness of the underpinning steady solution structure gives hope
that features such as Silnikov dynamics may also be relevant over a wide param-
eter range.
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(a) (b)

(c)

Fig. 6. Streamline plots for single and two-cell states. a) Re = 420 Γ = 0.66, b) Re =
420 Γ = 1.30 c) Re = 150 Γ = 0.66
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Abstract. We report on a study on stability, bifurcation scenarios and routes into
chaos in Taylor–Couette flow. By increasing the Reynolds number with the angular
velocity of the driving inner cylinder, the flow bifurcates from laminar mid-plane-
symmetric basic flow via a pitchfork bifurcation to mid-plane-symmetric Taylor vortex
flow. Both flow states are rotationally symmetric. We now compare the dynamical
behaviour in a system with symmetric boundary conditions with the effects in an
asymmetric system. We also could vary the gap widths. The different flow states can
be detected by visualization with small aluminium flakes and also measured by Laser
Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV). The dynamical
behaviour of the rotating flow is discussed by time series analysis methods and velocity
bifurcation diagrams and then compared with numerical calculations.

1 Introduction

The subject of hydrodynamic instabilities and the transition to turbulence is
important for the understanding of nonlinear dynamic systems. A classical sys-
tem to investigate such instabilities is besides the Rayleigh–Bénard system the
Taylor–Couette system. It consists of two concentric cylinders where the so
formed gap is filled with the working fluid. The system was first examined the-
oretically and experimentally by Taylor [16]. Here, only rotation of the inner
cylinder is considered and the outer one is held at rest. By increasing the speed
of the inner cylinder, the azimuthal Couette flow becomes unstable and is re-
placed by a cellular pattern in which the fluid travels in helical paths around the
cylinder in layers of vortices (Taylor vortex flow). By a further increase of the
rotation speed the system undergoes several bifurcations before the flow struc-
ture becomes more complicated. Different routes to chaos are possible by further
increasing the rotation rate. One model was described by Ruelle & Takens [13].
Benjamin [3], [4] showed the importance of the finite size of the cylinders and its
effects upon the bifurcation phenomena. A summary of the current state of re-
search was published by Ahlers [1], Chossat [6], Koschmieder [9], Meyer–Spasche
[10] and Tagg [15].

In this work, short systems are investigated to reduce the multiplicity of
possible solutions. Some new aspects of the dynamical behaviour of the Taylor–
Couette flow during the transition to turbulence for the case of symmetric and
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asymmetric boundary conditions and the small (η = 0.85) and the wide gap
width (η = 0.5) are presented in this study.

2 Experimental setup

Most of our experiments were carried out by increasing the Reynolds number
of the inner cylinder in a quasistationary way from rest. However, since the
occuring flow structures could depend on initial conditions, it is possible to vary
the acceleration rate for the cylinder. The temperature was precisely controlled
and measured to allow the determination of a well defined Reynolds number of
the flow. The Taylor–Couette flow is characterized by the following three control
parameters: The aspect-ratio (Γ = H/d), the radius ratio (η = Ri/Ra) and the
Reynolds number Re = RidΩi

ν , where H, d, Ri, Ra, Ωi and ν are the height, the
gap width, the inner and outer radii, the angular velocity of the inner cylinder
and the kinematic viscosity respectively. The symmetric experimental setup is
illustrated in Fig. 1a. It is only possible to obtain different aspect ratios by
integrating different inner cylinders due to the constant length of the system.
The radius ratios we used during this work were (η = 0.5) to realize a wide
cylindrical gap and (η = 0.85) a small one. To realize asymmetric boundary
conditions, a new setup consisting of an inner cylinder with an attached bottom
plate is available (Fig. 1b). In this system the radius ratio is (η = 0.5) and the
aspect ratio is variable.

3 Measurement techniques

To observe the behaviour of the flow, two different techniques were used. Using
the PIV-technique one gets a 2–D vector map of the flow field whereas LDV leads
to time series with high resolution containing information about one component
of velocity at a special location in the working fluid depending on time.

3.1 PIV

In our system a pulsed double cavity, frequency doubled Nd:YAG-Laser is used
for the Particle Image Velocimetry. The second cavity is required to get a very
short time delay between the two pulses. A single laser achieves only a repetition
frequency of about 15Hz. This time delay is too long for high flow rates and no
correlation between the records would be achieved. The emitted laser beam is
frequency doubled and then spread with a cylindrical lense to get a green light
sheet, because the original wavelength of a Nd:YAG-Laser is in the infrared.
To get two images in a short time-interval, a fast CCD-camera is used. In Fig.
2 a sketch of the Taylor–Couette system with the applied PIV-setup is shown.
With the two recorded images one gets a light intensity distribution which shows
the particles suspended into the measuring fluid. The recorded images are di-
vided into smaller subareas, so called ‘interrogation areas’. The cross correlation



24 O. Meincke et al.

rotating bottom plate

moving top plate

outer cylinder

inner cylinder

linear slider

tank to control temperature

working fluid

a) photograph of the symmet-
ric experimental setup

b) principle sketch of the asymmetric setup with ro-
tating bottom plate

Fig. 1. The two different experimental setups which were used during this work

algorithm (see Eqn. 1) calculates for every interrogation area a vector of the
movement of the particles so that at least a 2–D vector map of the flow in the
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interrogation area (B)interrogation area (A)

light sheet

cylindrical lense

camera

laser

image A

image B

crosscorrelation

Fig. 2. Taylor–Couette system with the applied PIV-setup

gap is displayed. ∑∑
I(m,n)I�(m+ i, n+ j) = C(i, j) (1)

I and I� describe the light intensities within the interrogation areas at the time t
and ∆t due to the spatial coordinates m and n. The cross correlation C(i, j) has
its maximum, if many particles correlate with their spatial shifted equivalent →
true correlation. To get more information about the PIV-technique the reader is
refered to the book by Raffel et al. [11].

3.2 LDV

Laser-Doppler-Velocimetry is a widely accepted tool for fluid dynamic investi-
gations, as it gives information about flow velocity without influencing the fluid.
For the application of the Laser-Doppler-Velocimetry on the rotating system a
special traversing system has been constructed, which allows the traversing of
the LDV-system in axial direction. Figure 3 shows a principle sketch of a LDV-
system. The LDV-system used in our experiments consists of a He-Ne-Laser,
whose beam is split and then one laser beam is shifted in its frequency. Sus-
pended particles create a signal by scattering light when passing the interference
fringes formed by the intersected beams in the measuring volume. From these
Doppler bursts information of the direction and the quantity of the velocity can
be obtained. As tracer particles for the LDV-measurements polysterene spheres
with a diameter of 1.6µm were used. By using different algorithms, for example
described in [18], it is possible to calculate the power spectrum, the attractors
and bifurcation diagrams out of the obtained time series, measured with the
LDV-system. Both systems we used are distributed by DANTEC–Electronics,
Denmark
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Fig. 3. Sketch of LDV, [12]

4 Numerical method

The mathematical model to describe the system are the incompressible Navier–
Stokes equations. Since we are mainly interested in the first bifurcations and to
limit the required cpu–times, we use a 2.5–D approach. This means we assume
that all dependent variables are constant in the azimuthal direction ϕ. Numerical
computations for the full 3–D problem will be reported in a forthcoming paper.

The 2.5–D incompressible Navier–Stokes equations read in dimensionless
form: We are looking for a velocity field u = urer +uzez +uϕeϕ and a pressure
field p fulfilling

∂tur + ur∂rur + uz∂zur − 1
r
u2ϕ = −∂rp+ 1

Re

(1
r
∂r(r∂rur) + ∂2zur −

1
r2

ur
)

∂tuz + ur∂ruz + uz∂zuz = −∂zp+ 1
Re

(1
r
∂r(r∂ruz) + ∂2zuz

)
∂tuϕ + ur∂ruϕ + uz∂zuϕ +

1
r
uruϕ =

1
Re

(1
r
∂r(r∂ruϕ) + ∂2zuϕ −

1
r2

uϕ
)

1
r
∂r(rur) + ∂zuz = 0

for t > 0, η
1−η = ri < r < ra = 1

1−η , 0 < z < Γ and 0 ≤ ϕ < 2π together with
the no–slip boundary conditions

ur = uz = 0, uϕ = 1 at ri =
η

1− η

ur = uz = uϕ = 0 at ra =
1

1− η

ur = uz = 0 at z = 0 and z = Γ

and either

uϕ = 0 at z = 0 and z = Γ (symmetric case)
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or

uϕ = r
1− η

η
at z = 0 and uϕ = 0 at z = Γ (asymmetric case).

Here we have used dimensionless velocities, pressures and coordinates.
To solve this problem numerically, we use a code based on the method de-

scribed in [2] and in [17] for the 2.5–D case. The method uses the so called
fractional step θ–scheme for the time discretization in a variant as an opera-
tor splitting to decouple the incompressibility condition from the nonlinearity,
see also [8]. For the space discretization the Taylor–Hood element, i.e. piece-
wise quadratic finite elements for the velocity and piecewise linear ones for the
pressure, are used.

5 Results

5.1 Symmetric system

In this section the influence of the gap width on the flow is investigated. On
this account experiments on bifurcation scenarios in the Taylor–Couette system
were carried out for two different radius ratios, η = 0.85 (small gap) and η = 0.5
(wide gap). The velocity bifurcation diagrams as illustrated in Fig. 4 and 5 were
obtained by collecting the extrema of the velocity time series measured with
the LDV-technique with a quasi-stationary increase of the Reynolds number.
As it can be seen from the bifurcation diagram (Fig. 4), the flow undergoes a
bifurcation from the laminar basic state to a steady Taylor vortex flow via a
pitchfork bifurcation. This is an imperfect pitchfork bifurcation perturbed by
the boundary conditions. By smoothly increasing the Reynolds number only one
branch is reachable, which is the normal mode with inward flow adjacent to
the end plates. The anomalous mode may be reached by changing the Reynolds
number instantaneously. After this pitchfork bifurcation, the flow bifurcates via
a Hopf bifurcation into the Wavy–Mode. With a further increase of the Reynolds
number, the flow bifurcates via a second Hopf bifurcation into the modulated
wavy mode before chaotic motion occurs. The second critical Reynolds number
for the onset of the wavy mode is about 2.5 times higher as the first critical one.
In contrast to small cylindrical gaps (η = 0.85) just mentioned, the experiments
on bifurcation scenarios in the wide gap Taylor–Couette system η = 0.5 show a
different bifurcation scenario and a different route into chaos, which is illustrated
in Fig. 5. The basic flow bifurcates via a pitchfork bifurcation into Taylor vortex
flow. The onset of the Wavy–Mode is shifted to higher Reynolds numbers in
comparison to η = 0.85 because the vortices at the end-plates cannot oscillate
due to the boundary conditions. This state is only stable over a small range of
Reynolds numbers and it seems that the flow bifurcates directly into chaotic
motion.



28 O. Meincke et al.

WVF MWVFC

TVF

Fig. 4. Bifurcation diagram in the Taylor–Couette system as a function of the Reynolds
number. The meridional velocities are normalized by the velocity of rotation
(η = 0.85, Γ = 13.2, z = 0.40L, (r −Ri)/(Ra −Ri) = 0.6)
C: Couette flow TVF: Taylor vortex flow WVF: Wavy vortex flow
MWVF: Modulated Wavy vortex flow

TVF WVF

QPF

Fig. 5. Bifurcation diagram in the Taylor–Couette system as a function of the Reynolds
number. The meridional velocities are normalized by the velocity of rotation.
(η = 0.5, Γ = 3.97, z = 0.37L, (r −Ri)/(Ra −Ri) = 0.91)
TVF: Taylor vortex flow WVF: Wavy vortex flow
QPF: Quasiperiodic flow
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a)

Re = 1220

b)

Re = 1500

Fig. 6. Power spectrum and attractor in case of two different Reynolds numbers
(η = 0.5, Γ = 3.97, z = 0.37L, (r −Ri)/(Ra −Ri) = 0.91)

Figure 6 shows the frequency spectrum and the attractor for two different
Reynolds numbers. The spectrum of Fig. 6a shows one characteristic frequency.
All diagrams correspond to the Wavy vortex flow state. The reconstruction of
the flow yields a limit cycle which is perturbed by noise. In the flow state in Fig.
6b a second frequency occurs at higher Reynolds numbers. The attractor is not a
limit cycle anymore. It is pointed out that it is a quasiperiodic flow state and not
a chaotic one. The further research is now focussed on the exact investigation of
the dynamics of Reynolds numbers higher than Re = 1500.

In Fig. 7 three experimental flow states obtained with the PIV-technique
are shown. Fig. 7b shows the normal 4-vortex state which could be reached
by increase the Reynolds number in a quasistationary way. Figures 7c and 7d
represent the two different anomalous modes which could be obtained in this
system with a constant Γ = 3.97. These two flow states could be adjusted by
a sudden increasing of the Reynolds number. In contrast to the stretched 3-
vortex state the 5 vortices are squeezed into the system. In comparison with
the experimental results a normal flow state is calculated and shown in 7a.
The cores of the vortices are shifted to the outer cylinder but not as much as
in the experimental result. In the experiment the cores seem to be closer to
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the outer cylinder due to the optical way through curved surfaces with different
refraction indices. This distortion is reduced in the new experimental setup using
a rectangular tank filled with silicon oil enclosing the whole setup, which in
addition keeps the working temperature constant.

a) b) c) d)

Ra Ri Ra Ri Ra Ri Ra Ri

4-vortex state 4-vortex state 3-vortex state 5-vortex state
normal mode anomalous modes

numeric experiments

Fig. 7. Experimental and numerical results in case of the following parameters: η = 0.5,
Γ = 3.97 and Re = 500. Experimental results obtained by using different acceleration
rates.

To investigate the influence of the boundary conditions in the Taylor–Couette
system an asymmetric experimental setup with a rotating bottom plate was
constructed. First results are described in Section 5.2.

5.2 Asymmetric system

In this section we also only consider the situation where the outer cylinder is
held at rest and the inner rotates. In this part of our research the effects of
end conditions should be investigated. In contrast to the previous section the
bottom end plate is allowed to rotate with the inner cylinder. As a result of
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the rotating bottom plate always outward flow is found adjacent to the rotating
plate, whereas at the stationary top plate inward flow occurs. This leads to an
odd number of cells in such an experimental setup, when only normal modes are
considered.

In 1986, Cliffe & Mullin [7] investigated both experimentally and numerically
the interaction between 5-cell and 3-cell modes in the asymmetric system. They
investigated the stability of the flow states in a range of Γ = 4.2 − 5.0 and
Re = 50− 300.

Stability of 3-cell and one cell modes

onset Osz. (exp.)
3 to 1 (exp.)
1 to 3 (num.)
3 to 1 (num.)

Reynolds number

Γ

350300250200150100

3.4

3.3

3.2

3.1

3

2.9

2.8

2.7

2.6

Fig. 8. Numerical and experimental stability diagram. Squares represent the transition
from three vortices to one vortex by increasing the Reynolds number. Stars point out
an onset of a oscillation (exp.). Circles indicate the change from 1-cell state to 3-cell
state when decreasing the Reynolds number (only numerical).

In this section the investigations were focussed on the 3-cell and 1-cell modes.
A result of this work is the stability diagram of steady solutions shown in Fig. 8.
The bordered squares represent the transition from steady 3-cell flow to steady
one cell flow by numerical calculations using the numerical method described in
Sect. 4. In consideration of the fact that a 2.5–D-Code was used, no transitions
to time dependent states were found. The experimental stability limit (filled
squares) was investigated by smoothly increasing the Reynolds number at a
fixed Γ . The two stares at lower Γ indicate a transition from steady 3-cell flow
to a time dependent 1-cell state. A transition from steady 1-cell to steady 3-
cell flow by decreasing the Reynolds number was found numerically at the line
consists of circles. Experimentally, time dependence occurs by decreasing the
Reynolds number at higher values so that this line could not be found in the
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experiments [5]. In 1997, Blohm [5] in cooperation with Mullin obtained similar
results.

As an example of the two occuring flow states the calculated 3-vortex- and
1-vortex states are shown in Fig. 9 for Γ = 3.2 and two different Reynolds
numbers. The visualization of the numerical results was realized with GRAPE
[14]. The arrows represent the velocity components in r- and z-direction in the
whole cylindrical gap. The inner cylinder on the left side and the bottom plate
are rotating. The top plate and the outer cylinder on the right side are fixed.

Ri Ra Ri Ra

Re = 220 Re = 300

Fig. 9. Numerical results for Γ = 3.2 Left side and bottom are rotating. The velocity
components in r- and z-direction in the whole cylindrical gap are shown respectively.

Growth of bottom vortex

During these investigations it was found numerically that the size of the cell ad-
jacent to the rotating bottom plate is depending on the Reynolds number. For
different Γ the size of the bottom vortex in percent of the height of the cylinder
was investigated depending on the Reynolds number. The results are shown in
Fig. 10. The effect of the growing bottom vortex could be seen clearer in the case
of higher values of Γ . At the time these predictions are verified experimentally.
Blohm [5] in cooperation with Mullin obtained qualitative similar results ex-
perimentally during his diploma thesis. To illustrate these results, different flow
states depending on the Reynolds number for two different Γ were calculated.
Figure 11 and Fig. 12 show the development of the bottom vortex in the case of
Γ = 2.975 and Γ = 3.225. These calculations confirm that in the case of a large
Γ the effect of growing is considerably more noticeable.



Asymmetric Taylor–Couette flow 33

Γ 3,275
Γ 3,175
Γ 3,075
Γ 3,025

Reynolds number

V
ortex

boundary
in

%
of

height

350300250200150100

56

52

48

44

40

Fig. 10. Numerical results for the growth of the bottom vortex depending on the
Reynolds number due to different values of Γ .

Ri Ra Ri Ra Ri Ra Ri Ra Ri Ra

Re = 100 Re = 120 Re = 130 Re = 140 Re = 145

Fig. 11. Numerical results for Γ = 2.975 depending on Re.
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Fig. 12. Numerical results for Γ = 3.225 depending on Re.

Results by decreasing Re: Γ = 3.15

In this Section an example for the onset of a time dependent flow in the numerical
calculations by decreasing the Reynolds number in the case of Γ = 3.15 is
shown. The two graphics in Fig. 13 represent the difference in the flow state
in arbitrary units (a.u.) for consecutive time steps. Calculations at Re = 173
converge straightly so that a steady state is reached very fast. At Re = 172 the
flow shows an oscillating behaviour in the difference which is an indication for
an oscillating flow in the system although only a 2.5–D-Code was used. Blohm
found these oscillations by decreasing the Reynolds number in his experiments.

6 Conclusions

In this work experimental and numerical investigations considering different
boundary conditions for the Taylor–Couette system are presented. First the ex-
perimental results in a very short annulus due to two different aspect ratios in
the symmetric system were described. It could be shown that the gap width in-
fluences the dynamic of the flow, which could be seen in the measured bifurcation
scenarios.

Then the effect of a rotating bottom plate was investigated. The numerical
and the experimental stability boundaries show a very good agreement. The
results measured by Blohm and calculated by Mullin [5] are in accordance with
our results. Both calculations show a stability limit by decreasing the Reynolds
number, which could not be found in the experiments due to a occuring time
dependence.
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Fig. 13. Difference between two calculated flow states at t and t + ∆t depending on
time for two different Reynolds numbers

The measurements to distinguish the growth of the bottom vortex show qual-
itatively a good agreement with our calculation. It could be pointed out that
the effect depends on the value of Γ .

Indications for the onset of an oscillation were found in our numerical cal-
culations by decreasing the Reynolds number as much as in the experimental
investigations of Blohm, [5].

Now we focus our work on comparative experimental investigations with the
new built setup and on numerical calculations for the full 3–D problem.
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Bifurcation and structure of flow
between counter-rotating cylinders

Arne Schulz and Gerd Pfister

Institute of Experimental and Applied Physics,
University of Kiel, 24098 Kiel, Germany

Abstract. The properties of fluid flow in the Taylor–Couette experiment between
weakly counter-rotating cylinders are investigated experimentally. Attention has been
focused on the first instabilities and the detailed structure of the occurring flow states.
Modern measurement techniques like LDV and PIV have been used together with visual
observations to examine the flow patterns and the stability thresholds very precisely.
Our experimental results had been compared with theoretical investigations.

1 Introduction

Much work has been done on the flow states between two concentric rotating
cylinders since Taylors [1] landmark paper on this topic. While the different flow
patterns occuring between independently rotating cylinders in the small gap case
are examined very well experimentally (e.g. by Andereck, Liu and Swinney in
1986 [2]) and can be treated theoretically in form of a small gap approximation,
the wide gap case remains up to now over wide parameter ranges unexplored.

If the two cylinders are rotating in the same direction, then the more com-
plex flow patterns appear only for high values of Reynolds numbers. But if one
considers counter-rotating cylinders, complex time-dependent flow states may
be seen at relatively low Reynolds numbers.
Our experimental investigations were performed in the parameter range from
−310 < Reo ≤ 0, the case of weakly counter-rotating cylinders.
This paper deals with the detailed examination of the structure and the dynamic
properties of the occuring flow states like Taylor vortex flow, two different kind
of spiral vortices, wavy vortex flow and with the transitions between them.

2 Experimental setup

The Taylor–Couette experiment, that we report here, consists of two concentric
independently rotating cylinders (Fig. 1). The end boundaries are at rest in the
laboratory frame.

The inner cylinder of our apparatus has been machined from stainless steel
and has a radius of ri = 12.5 mm. The outer one was machined from Duran-glass
and its radius is ro = 25.0 mm. Thus the radius ratio is η = ri/ro = 0.5 - the
so-called wide gap case.

C. Egbers and G. Pfister (Eds.): LNP 549, pp. 37–54, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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Motor

Top plate

Outer cylinder
Inner cylinder

Motor 
(PC controlled)

(PC controlled)

(PC controlled)
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Motor-driven lift

Silicone oil
(Controlled temperature)

Bottom plate

Fig. 1. The Taylor–Couette apparatus.

The dynamic parameters are the inner and outer cylinder Reynolds numbers,
which are defined as Rei/o = (ωi/o ∗ d ∗ ri/o)/ν, where ωi, ωo are the inner and
outer cylinder rotation frequencies, d = ro − ri the gap width and ν the kine-
matic viscosity of the silicone oil in the gap, which is temperature controlled to
within (21± 0.01)◦C. The angular frequency of rotation of the inner and outer
cylinder can be adjusted independently with an accuracy better than one part
in 10−4 per revolution and in direction.

The gap-length to gap-width ratio (aspect ratio) Γ = l/d is continuously
adjustable between 0.5 and 16.
For the investigations reported here, we fixed l at l = 150 mm (Γ = 12). Gerdts
et al. [11] showed for a system with an outer cylinder at rest and η = 0.5, that
there is only a little change in the dynamic properties of the flow for increasing
gap-length, if there are six or more vortices in the gap. Just the two- and four-
cell systems have a very different behavior due to end effects. So all the resulting
flow states are governed by two control parameters: Rei and Reo.

We perform high precision Laser-Doppler measurements (LDV) to character-
ize one component of the velocity field of the flow. Especially for counter-rotating
cylinders in the wide gap case the interesting dynamics is located in a region
close to the inner cylinder and is not well accessible to visual observations. It
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is the rich opportunity of LDV performing experiments with independently ro-
tating cylinder, that the measurement volume of the LDV system can be placed
anywhere in the gap, especially at any radial or axial position. The outer cylin-
der has to be machined at a very high precision for this type of measurement
technique, otherwise the quality of the detected signals runs rapidly down.
In addition to this we carry out visual observations to get an overall view of the
appearing flow states. So they can be classified more easier.
Our measurement techniques are completed by the use of a Particle-Image-
Velocimetry system (PIV), which fills the gap between the LDV measurements
and the visual observations. We will show first results here.

3 Stability diagram

The case with an outer cylinder at rest and η = 0.5 has been treated since many
years and is still an actual field of research (e.g. see J. Abshagen and G. Pfister
[3]). Many different flow states and interesting dynamics have been uncovered,
showing the reach variety of the wide gap Taylor–Couette system (e.g. [4], [5]
and papers cited therein).

−300 −200 −100 0
Reo

50

100

150

200

R
e i

Couette flow

Counterpropagating
spirals

Spirals

TVF

Wavy−Mode

Fig. 2. Stability diagram for counter-rotating cylinders with η = 0.5. Recorded is the
inner cylinder Reynolds number Rei versus Reo, the outer cylinder one.
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In this presentation we show new flow structures occurring in the Taylor–
Couette apparatus with a rotating outer cylinder. Fig. 2 shows a diagram of
experimentally observed flow states between counter-rotating cylinders for the
selected range of Reynolds numbers.

Recorded is the inner cylinder Reynolds number Rei versus Reo, the outer
cylinder one. The transition boundaries were located by fixing the outer cylinder
Reynolds number Reo first and then slowly increasing Rei within 0.01 ≤ ∆Rei ≤
0.1. The time between two steps is about 15 minutes.

In the selected parameter range the laminar Couette flow becomes unstable
for stationary Taylor vortex flow and for stronger counter-rotation rates it gives
way directly to time periodic spiral vortices, which are traveling waves in the
azimuthal and axial direction.
This transition takes place for rotation rates of the outer cylinder Reo ≤ −77.54
and is directly connected to the region, where the Couette flow becomes unstable
for Taylor vortices.

So there is a point, at which modes of two different azimuthal wavenumbers
are unstable at the same time (this is called a bicritical point). The first one
results from a Hopf bifurcation, the other from a steady state bifurcation.

For Reo ≤ −160 the spatio-temporal characteristics of the spiral flow changes
and we get counter-propagating spirals.

As Rei is increased, we found a Wavy-Mode (Fig. 2), which consists of mod-
ulated waves on the Taylor vortices with an azimuthal wavenumber m = 2 for
Reo ≥ −158, which was predicted theoretically by Jones [6] as the strongly pre-
ferred mode there. A lower azimuthal wavenumber (m = 1) could be observed
for stronger counter-rotation rates (Reo < −158).

There still is a region in the parameter space (Reo ≤ −200 and above the
stability threshold of the counter-propagating spirals), that has not been ex-
plored in detail up to now, but we find interesting phenomena there, which we
will discuss later.

4 Primary instabilities

First of all we consider the primary instabilities, that loses the laminar Couette
flow stability for: Taylor vortex flow, spiral flow and counter-propagating spiral
flow.

4.1 Transition to Taylor vortex flow (TVF)

For low rotation rates Reo ≥ −77.54 a transition to Taylor vortices occurs. It
is well known, that end effects in a finite Taylor–Couette apparatus are very
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important ([7–10]). The transition from Couette flow to TVF is a continuous
process and not an instability. The Ekman vortices induce Taylor vortices, that
build up gradually from the end plates.
So we put the measurement volume of the LDV system in the midplane of the
cylinder. Then we increase the inner cylinder Reynolds number Rei and record
the amplitude of the detected signal. Finally we fit a square root function,that
gives the transition point to TVF.

With this scenario we could find the transition point for an outer cylinder
at rest (Reo = 0) as Rei = 68.4. This value agrees well with those obtained
experimentally and theoretically (see e.g. [10] and papers cited therein).

A rotation of the outer cylinder is seen here to be at first weakly destabiliz-
ing, but soon becomes stabilizing. The minimal value of the transition point is
for an outer cylinder Reynolds number Reo = −15.26 and could be determined
to Rei = 66.05 .
For an outer cylinder at rest, the Taylor vortices fill the whole gap between the
outer and inner cylinder. This changes if one considers the counter-rotating case:
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Fig. 3. A typical time series of spiral vortex flow measured with a LDV system at
Reo = −94.71 and Rei = 111.01.

The size of the vortices shrinks for stronger counter-rotation. The vortices
themselves appear only near the inner cylinder, while there is a weak circulation
of the fluid in the area near the outer cylinder in the opposite direction. G.I.
Taylor himself [1] was the first one who did experimental and theoretical work
on this phenomena, concerning the size of individual vortices at the onset of
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instability as a function of the angular speed ratio. Although he worked in the
small gap case, his results agree qualitatively with the ones reported here.

Due to the fixed aspect ratio we observed that the number of Taylor vortices
N , that develop when the laminar Couette flow becomes unstable, increases from
N = 12 at Reo = 0 to N = 14 at Reo ≈ −30.

4.2 Transition to time–dependent flow states

For stronger counter-rotating rates (Reo ≤ −77.54) the laminar Couette flow
gives way to time-periodic spiral vortex flow.
In the selected parameter range from −310 < Reo ≤ −77.54 we found two kinds
of spirals: The first one we call just Spirals which are either up- or downwards
traveling waves, located in the center of the cylinder. This flow state is taken
over from the other one, which we call Counter-propagating Spirals. They start
from the top and the bottom of the cylinder and travel towards the midplane.
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Reo=−96.69
Reo=−142.06

Fig. 4. Normalized frequencies of the spirals for increasing Rei above its critical values.
The onset of the spirals is marked by an arrow.

Spirals:

Figure 3 shows a typical time series of the Spirals at Reo = −94.71 and
Rei = 111.01 obtained by Laser-Doppler velocimetry. The spirals are time-
periodic and appear as an oscillation of the radial velocity component. The
measurement volume of the LDV system is placed in the midplane at a distance
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of 4.5 mm from the inner cylinder. The azimuthal wavenumber of the spirals is
m = 1. This could be specified by visual observations and with two LDV systems
placed on both sides of the inner cylinder.

Figure 4 presents the frequency of the spirals normalized to the frequency of
the rotation rate of the inner cylinder fnorm versus the inner cylinder Reynolds
number Rei. It shows the development of the normalized frequencies from their
onset (marked by an arrow) for three different outer cylinder Reynolds numbers
Reo = −78.12, Reo = −96.69 and Reo = −142.06. The frequencies decrease for
increasing Rei monotonously until suddenly a transition to stationary Taylor
vortex flow occurs (see Fig. 2).
The axial wavenumber k = 2π/λ∗, with the dimensionless wavelength λ∗ = λ/d,
increases for stronger counter-rotating rates. So we determined experimentally
the values of k to k = 3.57 at (Reo = −94.71, Rei = 111.01) and k = 4.16 at
(Reo = −142.06, Rei = 125.88). A more detailed study is in progress.
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Fig. 5. Radial velocity profiles of the spiral vortex flow at Reo = −112 and Rei = 115,
while scanning from bottom to top with (a) 1 mm/s and (b) 0.1 mm/s. Recorded is
the radial velocity component versus the axial position within the cylinder (0 mm is
the bottom plate, 150 mm the top plate).

The interesting dynamics in the wide gap case for counter-rotating cylinders
takes place near the inner cylinder. The LDV system enables us to examine it
very well all over the gap.
To get informations about the spatio-temporal characteristics of the flow states
we recorded velocity profiles. Fig. 5a and 5b show profiles of the radial velocity
component versus the axial position within the cylinder. We got these profiles by
setting the measurement volume of the LDV system at the bottom plate of the
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cylinder and move it towards the the top plate at a fixed distance to the inner
cylinder and with a given recording velocity vrec. So the measurement volume
moves through the whole cylinder and we can imagine which flow state is spread
out.

The recording velocity in Fig. 5a is vrec = 1 mm/s. The axial position z = 0
mm is the bottom plate and z = 150 mm the top plate. The spiral waves ap-
pear in the velocity profile as an oscillation of the radial velocity component (see
Fig. 3) and are spread out in the center from z ≈ 30 mm to z ≈ 120 mm. At the
end boundaries we find stationary Ekman vortices with a strong outflow, that
appears as large peaks at z ≈ 15 mm and z ≈ 135 mm.

If one moves the measurement volume more slowly (vrec = 0.1 mm/s), as
shown in Fig. 5b, the scan through the entire length of the apparatus takes 25
minutes. In this time more spiral waves move through the volume and the region,
where the spirals exist, appears as black area. The Ekman vortices are shown
even clearer here.
These spirals move in one direction, either up- or downwards as seen by visual
observations.

Inner cylinder
�
�
��

Fig. 6. The velocity field of the spiral vortex flow measured with a PIV system at
Reo = −100 and Rei = 115.

Figure 6 shows a snapshot of the velocity field of the spiral flow obtained by
PIV measurements at Reo = −100 and Rei = 115. The left-hand edge is at the
inner, the right-hand edge at the outer cylinder. This spiral moves from the top
to the bottom plate. Obvious there is a steep outward flow. This is in a good
agreement with numerical calculations (see Fig. 3b in [18]).
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Counter-propagating spirals:

For stronger counter-rotation (Reo ≤ −160) a transition from Couette flow to
counter-propagating spirals occurs.
This flow state consists of two different spiral waves, one starts at the bottom
plate, the other at the top plate. These spiral vortices have the same frequency
(same propagation velocity) and travel towards the midplane.

Figure 7 shows profiles of the radial velocity component and demonstrates
the growth of counter-propagating spirals at an outer cylinder Reynolds number
of Reo = −309 for increasing Rei.
For values less than the critical Reynolds number Rei,crit for the first instability
the laminar Couette flow is present. This can be seen in Fig. 7a at Rei = 164.56.
There just appears an Ekman vortex at the top and bottom plate in each case.
If one increases the inner cylinder Reynolds number (Fig. 7b to 7e) the counter-
propagating spirals spread out into the upper and lower thirds of the cylinder.
The two spirals approach to each other step by step and finally meet in the
midplane at Rei = 171.72 (Fig. 7f), forming a complex flow state. So it is a weak
onset analogous to the one of Taylor vortex flow, but it is yet not understood in
detail.

These velocity profiles were recorded while moving the measurement volume
of the LDV system from the bottom to the top. One travels in the same direction
as one spiral and against the other. So one oscillation appears widened, the other
shrunk. When the spirals have met another (Fig. 7f), the wavelength of the spiral
vortices in the midplane shrinks, while the frequency has to be the same. It is
obvious, that these counter-propagating spirals have another spatio-temporal
characteristic than the spirals.
While the codimension-2-point, that separates the Taylor vortex flow from the
spirals is sharp and could be determined as Reo = −77.54, we could not find
an exact point at which the transition takes place from Couette flow to either
spirals or counter-propagating spirals. It is rather a region in the parameter space
of about 20 Reynolds numbers of the outer cylinder, where the two flow states
coexist.
No hysteresis occurs in traversing the line, that separates the Couette flow from
the spirals or the counter-propagating spirals, in any direction.

5 Transition from Spirals to TVF

For outer cylinder Reynolds numbers Reo ≥ −150 the spirals become directly
unstable to stationary Taylor vortices (Fig. 2), that appear over the entire length
of the apparatus.
This transition is a more complex one, e.g. we found hysteresis in traversing the
stability threshold. We still work on it and won’t discuss it in this paper any
further.
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Fig. 7. Counter-propagating spirals at Reo = −309. Recorded is the radial velocity
component versus the axial position within the cylinder. Rei increases from
Rei = 164.56 (a) to Rei = 171.72 (f) showing the formation of the flow state.

6 Wavy–vortex flow

With an outer cylinder at rest and radius ratio η = 0.5, several different flow
states occur, that loses Taylor vortex flow stability for: the so-called Small-jet
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Fig. 8. Bifurcation diagram for the wavy mode at Reo = −112. The Reynolds number
is scanned quasistatically from Rei = 160 to Rei = 218 with ∆Rei/∆t = 0.09 s−1 .
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Fig. 9. A typical time series of the wavy flow measured with a LDV system at
Reo = −100 and Rei = 262.6.
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mode, which is an oscillation of the outward flow while the inward flow remains
almost stationary, the antijet mode, which has its strongest oscillation in the
inward flow, the core mode, oscillations of the vortex core and a wavy mode, an
oscillation of the entire vortex. Gerdts et al. [11] explored the stability diagram
for the onset of time dependence for the normal four- to 16-vortex flow. They
normalized the aspect ratio Γ by the number of Taylor cells N in the cylinder.
Γ/N ≈ 1 is for Taylor vortices having a wavelength twice the gap width d - so
the vortices fill the whole gap. This normalisation has been done for reason of
classifications of the different time dependent flows.

The wavy mode can be found as the first time periodic instability in a sys-
tem with extended wavelengths (1.1 ≤ Γ/N ≤ 1.7). Different from the classic
narrow-gap wavy mode (e.g. [12–14]) the wavy mode one finds in the wide gap
Taylor–Couette system with only the inner cylinder rotating has an azimuthal
wavenumber m = 1 and is characterized by a relatively small amplitude of the
oscillation.

In the case of counter-rotating cylinders a new type of wavy mode occurs
over a wide parameter range (Fig. 2). Its appearance via a Hopf bifurcation is
similar to a wavy mode in the small gap case, with the exception of the lower
azimuthal wave number that we find here.
This wavy mode was described for the first time by Snyder [15], who did his ex-
periments in a Taylor–Couette apparatus with η = 0.5 and an upper free surface.
He found that a variation of the wavelength λ with Rei and Reo held constant,
which he performed by increasing or decreasing the level of the fluid, has a large
effect on the drift velocity of the wave form.

Starting from the Taylor vortices the flow undergoes a Hopf bifurcation at
higher Reynolds numbers. A typical bifurcation diagram is shown in Fig. 8.
Recorded is the radial velocity component versus the Reynolds number of the
inner cylinder, with is scanned quasistatically from Rei = 160 to Rei = 218
with ∆Rei/∆t = 0.09 s−1. Here the outer cylinder Reynolds number is equal
to Reo = −112. The wavy mode has an azimuthal wavenumber of m = 2 for
Reo ≥ −158 as shown by visual observations and with two LDV systems, and a
lower one (m = 1) for Reo < −158. The amplitude of oscillation is small at its
onset and grows in the selected parameter range continously for increasing Rei.
The lowest value at which the wavy-mode with m = 2 appears is Rei = 151.3.

The time series of the wavy mode obtained by Laser Doppler velocimetry
shows a time-periodic oscillation with a relatively low frequency (Fig. 9). The
characteristics of the time series depends strongly on the position of the mea-
surement volume of the LDV system. This can be realized from Fig. 10, which
results from particle image velocimetry measurements.

The velocity-vector plots (Fig. 10) show one half the cycle of the wave-form
at Reo = −100. Starting from a state, where both vortices of a pair have nearly
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Fig. 10. Results of PIV measurements on the m = 2 wavy-mode at Reo = −100 and
Rei = 306 showing one half of a period.

the same size and their cores have nearly the same distance to the inner cylinder
(Fig. 10a), one finds a strong outflow that tends to one side. One vortex spread
out into that direction, the other one gets smaller and the core of that vortex
moves to the outer cylinder (Fig. 10b, 10c). If the first vortex has extended to
his maximum, the other is hardly visible (Fig. 10d). This is a quarter of the
period. In the next quarter the sequence reverses. A small vortex appears near
the inner cylinder and begins to grow, until both vortices have the same size
(Fig. 10e - 10h). The scenario, that is described up to now, starts in the oppo-
site direction, forming so a complete period of the flow state. All vortices in the
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gap are unstable against the wavy mode, even the Ekman vortices.
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Fig. 11. Frequencies of the wavy mode (normalized to the rotation rate of the inner
cylinder) as function of the outer cylinder Reynolds number Reo. Rei is for all cases
just above its critical value.

The frequencies of the wavy mode, normalized by the rotation rate of the
inner cylinder and measured at their onset, is recorded versus Reo, the outer
cylinder Reynolds number (Fig. 11). One finds clearly a minimum of the nor-
malized frequencies at Reo ≈ −100, while the wavy mode appears first at an
outer cylinder Reynolds number of Reo = 51 (see Fig. 2). There is no connection
between these two minima.

For Reo ≥ −45 a second m = 2-mode has been found. The amplitude is
much smaller than in the case of stronger counter-rotation rates. Its properties
are close to the wavy-mode with Reo = 0.

Above the onset of the wavy-mode the frequency decreases for increasing
Rei, reaches a minimum and increases again. Finally a transition to modulated
wavy vortex flow occurs. This scenario is similar to the one reported by King
[16] in the case of an outer cylinder at rest.

7 Observation of propagating Taylor vortices

The region in the stability diagram (Fig. 2) above the onset of the counter-
propagating spirals and for counter-rotation rates Reo ≤ −200 has not been
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examined in detail up to now. We just describe the flow states, that we found
there, for Reo = −210 exemplarily.
As described in section 3 the laminar Couette flow loses its stability at Rei = 145
and counter-propagating spirals spread out. This flow state is taken over by prop-
agating Taylor vortices with m = 0 at Rei ≈ 160. These Taylor vortices arise
near the top and the bottom plates and travel in pairs towards the midplane,
where they are compressed and finally the outward flows of two neighbouring
vortex pairs meet each other and only one pair remains. This flow state is time-
dependent, but not periodic.
A further increase in Reynolds number leads to a wavy mode at Rei ≈ 210. In
contrast to the wavy mode found at lower counter-rotating rates, this one has
an azimuthal wavenumber m = 1. The wavy mode with m = 2 can be found as
well, but it appears at higher Reynolds numbers (Rei ≈ 350), after the m = 1
mode became modulated.

8 Comparison to theoretical investigations

−300 −200 −100 0
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R
e i

TVF
Spirals
Counter. Spirals
Computations (m=0)
Computations (m=1)

Fig. 12. Critical values of Rei as function of Reo for the onset of the first instability.
Experimental values compared with theoretical ones [17], [18].
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We compared our experimental results to numerical calculations of W.F.
Langford, R. Tagg, E.J. Kostelich, H.L. Swinney, M. Golubitsky [17] and Chr.
Hoffmann and M. Lücke [18].

There is a good agreement concerning the onset of the first instability. This
is shown in Fig. 12 : Recorded is the Reynolds number of the inner cylinder
Rei versus the outer cylinder one Reo. The symbols are our experimentally
determined critical points for TVF, Spirals and Counter-propagating spirals. The
solid curve is the calculated stability threshold for m = 0 (TVF), the dashed
one for m = 1 (Spirals). Langford et al. and Hoffmann and Lücke get the same
results for the critical values of Rei as function of Reo for the onset of the first
instability in the selected parameter space (−300 ≤ Reo ≤ 0).
Although the counter-propagating spirals are not considered in the theoretical
analysis, there is a good qualitative agreement. Theoretical and experimental
results differ only within a few percent.
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Fig. 13. Normalized frequencies of the spiral flow versus the outer cylinder Reynolds
number. As long as there are spirals there is a good agreement between theory (solid
line) and experiment (symbols).

The experimentally observed frequencies of the spiral vortices normalized to
the rotation rate of the inner cylinder are in good agreement with the theory
for outer cylinder Reynolds numbers Re0 ≤ −160 (Fig. 13). These values were
obtained by Langford et al. [17].
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For stronger counter-rotating rates they differ from the computations. Lang-
ford et al. considered the spirals up to Reo = −300 in their calculations, while
we found the counter-propagating spirals for Reo ≤ −160 as indicated by the
small pictures inside Fig. 13. At the onset of the counter-propagating spirals the
experimentally obtained frequencies differ from theory.

9 Conclusion

We investigated bifurcations and structure of flow between weakly counter-
rotating cylinders with η = 0.5. We could determine the stability thresholds
for the occuring flow states Taylor vortex flow, spirals, counter-propagating spi-
rals and wavy mode. Laser-Doppler velocimetry and particle image velocimetry
as two modern measurement techniques were used to get precise insight to the
flow structure. This becomes necessary especially because with counter-rotating
cylinders in the wide gap case the interesting dynamics takes place near the inner
cylinder.

We were able to carry out the spatio-temporal characteristics of the two dif-
ferent kinds of spiral flows by use of velocity profiles obtained by LDV. The
measurement volume of the LDV system can be placed anywhere in the gap. So
the precise properties of the flow become accessible for the first time.

We explored the development of frequencies for the different time-periodic
flow states and moreover, we found new interesting flow states like propagating
Taylor vortices with m = 0, that start at the top and bottom plate and travel
towards the midplane, where they collaps. We still work on this phenomena.
Our experimental results concerning critical points and azimuthal wave speed
values were compared to theoretical investigations of Langford et al. [17] and
Hoffmann and Lücke [18]. They show good agreement over a wide parameter
range.
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ical critical values for the first instability, co-operation and helpful discussions
and thank J. Langenberg for help with the PIV measurements.

References

1. G.I. Taylor: Phil. Trans. Roy. Soc. London A 223 (1923)
2. C.D. Andereck, S.S. Liu, H.L. Swinney: J. Fluid Mech. 164 (1986)
3. J. Abshagen, G. Pfister: this book (2000)
4. J. Abshagen, A. Schulz, G. Pfister: ‘The Couette-Taylor flow: A paradigmatic sys-

tem for instabilities, pattern formation and routes to chaos’. In: Nonlinear physics
of complex systems - Current status and future trends, ed. by J. Parisi, S.C. Müller,
W. Zimmermann (Springer, Heidelberg 1996) pp. 63 – 72



54 A. Schulz and G. Pfister

5. F.H. Busse, G. Pfister, D. Schwabe: ‘Formation of dynamical structures in ax-
isymmetric fluid systems’. In: Evolution of spontaneous structures in dissipative
continuous systems, ed. by F.H. Busse, S.C. Müller (Springer, Berlin 1998) pp. 86
– 126

6. C.A. Jones: J. Fluid Mech. 120 (1982)
7. D. Coles: J. Fluid Mech. 75 (1976)
8. T.B. Benjamin: Proc. R. Soc. (London) 359 (1978)
9. D.G. Schaeffer: Math. Proc. Camb. Phil. Soc. 87 (1980)
10. G. Pfister, I. Rehberg: Phys. Lett. A 83 (1981)
11. U. Gerdts, J. von Stamm, T. Buzug, G. Pfister: Phys. Rev. E 49 (1994)
12. D. Coles: J. Fluid Mech. 21 (1965)
13. M. Gorman, H.L. Swinney: J. Fluid Mech. 117 (1982)
14. T. Mullin: Physical Review A 31 (1985)
15. H.A. Snyder: J. Fluid Mech. 35 (1968)
16. G.P. King, Y. Li, W. Lee, H.L. Swinney, P.S. Marcus: J. Fluid Mech. 141 (1984)
17. W.F. Langford, R. Tagg, E.J. Kostelich, H.L. Swinney, M. Golubitsky: Phys. Fluids

31 (1988)
18. Chr. Hoffmann, M. Lücke: this book (2000)



Spiral vortices and Taylor vortices in the
annulus between counter-rotating cylinders

Christian Hoffmann and Manfred Lücke
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Universität des Saarlandes, D-66041 Saarbrücken, Germany

Abstract. Vortices in the Taylor-Couette system with counter-rotating cylinders are
investigated numerically in a set up with radius ratio η = 0.5. The full, time dependent
Navier-Stokes equations are solved with a combination of a finite difference and a
Galerkin method. Structure, dynamics, and bifurcation behavior of Taylor vortices
and of spiral vortex solutions are elucidated. Some of their properties obtained for
axially periodic boundary conditions are compared with recent experimental results.

1 Introduction

Vortex flow in the Taylor-Couette system with counter-rotating cylinders has
attracted an ever increasing research interest since in 1966 Krueger et al. [1] pre-
dicted primary transitions to nonaxisymmetric rotating-wave flow which then
were observed in experiments by Snyder [2] who had presented experimental
evidence for different types of stable helical flow (referred to as ’spirals’) a few
years earlier. In 1985, an experimental survey was published by Andereck et al.
[3] which classified a large variety of different flow states, including some spiral
types like linear, modulated, interpenetrating, and wavy spirals etc. An extensive
numerical linear stability analysis was then performed for a wide range of radius
ratios by Langford et al. [4]. At this time, Tagg et al. [5] experimentally observed
a transition from the basic circular Couette flow (CCF) to axially standing and
azimuthally traveling waves (ribbons) and found numerically calculated wave
speeds to be in accord with experimental results. Edwards [6] studied the tran-
sition from CCF to traveling waves. A literature survey has been compiled by
Tagg [7] and a review of the bifurcation theory can be found in ref. [8].

Recently, Antonijoan et al. [9] presented an extensive numerical analysis of
spiral flow in a system with a relatively narrow gap subject to axially periodic
boundary conditions. They used a pseudospectral discretization of the Navier-
Stokes equations (NSE) in a co-rotating frame of reference with helical coordi-
nates which were adapted to the expected spiral pattern. In this contribution, we
present numerical results obtained with a finite differences algorithm combined
with a Galerkin spectral code. The focus of our study is on comparing the spatio
temporal structure and the bifurcation behavior of Taylor Vortex Flow (TVF)
and Spiral Vortex Flow (SPI), being competing primary vortex patterns that
bifurcate out of the CCF basic state.

C. Egbers and G. Pfister (Eds.): LNP 549, pp. 55–66, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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2 System

We report results obtained numerically for a Taylor-Couette system with counter-
rotating cylinders. The ratio η = r1/r2 of the radii r1 and r2 of the inner and
outer cylinders was fixed at the value η = 0.5 for which also experiments have
been performed recently [10]. We consider the fluid in the annulus between the
cylinders to be isothermal and incompressible with kinematic viscosity ν. The
gap width d = r2− r1 is used as the unit of length and the momentum diffusion
time d2/ν radially across the gap as the time unit so that velocities are reduced
by ν/d. To characterize the driving of the system, we use the Reynolds numbers

R1 = r1Ω1d/ν ;R2 = r2Ω2d/ν . (1)

They are just the reduced azimuthal velocities of the fluid at the inner and outer
cylinder, respectively, where Ω1 and Ω2 are the respective angular velocities.
Within this scaling, the Navier-Stokes equations (NSE) take the form

∂tu = ∇2u− (u ·∇)u−∇p (2)

with p denoting the pressure field that is reduced by ρν2/d2 where ρ is the mass
density of the fluid. Using cylindrical coordinates, the velocity field

u = u er + v eϕ + w ez (3)

is decomposed into a radial component u, an azimuthal one v, and an axial one
w. We have solved the resulting equations subject to no slip conditions at the
cylinders. Axially, we imposed periodic boundary conditions at z = 0 and z = Γ
where Γ is the reduced periodicity length. In this work, we mostly considered
Γ = 1.6. Then, the wave number of the TVF and the SPI was k = 2π/Γ = 3.927.

For the numerical calculations, we use a combination of a finite differences
formulation in the r − z plane with a spectral decomposition in ϕ. Since we are
studying also finite length cylinders with rigid lids closing the annulus vertically,
we do not use a code with an axial Fourier decomposition which for axially
periodic systems would be an interesting alternative. The discretization (a FTCS
- Forward Time, Centered Space algorithm) has been done on staggered grids
in the r − z plane, following the procedure of ref. [11]. In this way, one obtains
simple expressions for derivatives in r and z — especially when the derivative,
e.g., ∂r of a field, e.g., u, has to be calculated in the balance equation of another
field, e.g. v. Furthermore, since u, v, and w lie on different grids, we never have
to impose boundary conditions for more than one velocity field component at the
same position. Moreover, the pressure field does not require additional boundary
conditions (cf. below). Mostly we used homogeneous grids with discretization
lengths ∆r = ∆z = 0.05 and time steps ∆t < 1/3600.

To allow also nonaxisymmetric flow structures in our code, we expand all
fields in azimuthal Fourier modes eimϕ, e.g.,

u(r, ϕ, z, t) =
mmax∑

m=−mmax

ûm(r, z, t) eimϕ. (4)



Spiral vortices and Taylor vortices 57

The pressure is expanded similarly. For the flows investigated here a truncation
of the mode expansion at mmax = 8 was sufficient to properly resolve the anhar-
monicities in the fields. Inserting these expansions into the NSE and projecting
onto the respective normal modes eimϕ, we obtain a system of coupled equations
for the mode amplitudes ûm(r, z, t) that is solved with the FTCS algorithm. To
that end, all modes −mmax ≤ m ≤ mmax have to be evaluated at time t before
any mode can be calculated at the next timestep t+∆t. Having stepped up the
velocity field with the FTCS algorithm, the pressure p is determined with the
method of ’artificial compressibility’ [12]

dp(n) = −β ∇ · u(n) (0 < β < 1) (5)
p(n+1) = p(n) + dp(n) (6)
u(n+1) = u(n) −∆t∇(dp(n)) . (7)

With this relaxation method, pressure and velocity fields are iteratively adjusted
to each other. The pressure correction dp(n) in the n-th iteration step is propor-
tional to the divergence of u which should be zero in the relaxed case, satisfying
the continuity equation. The corrected pressure is then used to adapt the veloc-
ity field. The iteration loop (5-7) is executed for each azimuthal Fourier mode
separately. It is iterated until ∇·u has become sufficiently small for each m mode
considered. After that the next FTCS time step is executed.

3 Linear stability analysis of CCF

We have also performed a linear stability analysis of the basic CCF state using a
shooting algorithm with a fourth order Runge-Kutta integration method. Fig. 1
shows for R2 = −100, as a representative example, the marginal stability thresh-
olds R1,stab of the CCF state against perturbations with axial wave number k
and azimuthal wave number M = 0, 1, 2, respectively. Note that these curves in
the k −R1 plane of Fig. 1 are bifurcation thresholds for rotationally symmetric
TVF (M = 0) and SPI (M = 1, 2) solutions, respectively. The linear analysis
shows that for wave numbers k > 5.1 the M = 0 instability to TVF occurs
first when increasing R1. For k < 5.1, however, a spiral solution with azimuthal
wave number M = 1 bifurcates out of the CCF state, first, when increasing R1,
while M = 0 perturbations can grow only at larger R1. The marginal stability
thresholds for perturbations with M ≥ 2 lie substantially above those for M = 0
and M = 1 perturbations.

Note that the wave number k = 2π/1.6 = 3.927 for which we have explored
nonlinear TVF and SPI states is close to the critical ones for M = 0 and M = 1
perturbations. This does not hold only for R2 = −100 but also for the wide range
of R2-values covered in Fig. 2: the marginal stability thresholds R1,stab plotted in
Fig. 2a versus R2 are very similar to the correponding critical ones, R1,c, shown
in Fig. 2b. For completeness, we show in Fig. 2c the critical axial wave numbers
for M = 0, 1, 2 perturbations and in Fig. 2d the critical frequencies ωc/M for
M = 1, 2.
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2 4 6 8
k

100

110

120

130

140

R
1,

st
ab

M=2

M=0

M=1

k=3.927

Fig. 1. Stability thresholds of the CCF basic state against perturbations with
different azimuthal wave numbers M as indicated. Marginal stability curves
R1,stab are shown versus axial wave number k. Points denote the critical values.
Parameters are η = 0.5, R2 = −100.

4 Bifurcation properties of Taylor vortex and spiral flow

Here we present results concerning the bifurcation behavior of the M = 0 TVF
and of SPI solutions with azimuthal wave numberM = 1 as functions of the inner
cylinder’s Reynolds number R1. We have not tried to locate and investigate the
M = 2 SPI solution. Parameters are fixed in this section at η = 0.5, R2 = −100,
and the axial periodicity length is Γ = 1.6. In order to display the structural
differences between TVF and SPI flow, we show in Fig. 3a, for both patterns, the
velocity field in the r−z plane and in Fig. 3b the velocity field in the cylindrical
ϕ− z plane at mid gap, r1 + 0.5.

Figure 4a shows the bifurcation diagrams of maximal radial flow velocity
versus R1 for M = 1 SPI (lozenges) and for TVF (circles). Both flow states
bifurcate supercritically out of the basic CCF state. The numerical bifurcation
thresholds lie slightly below the respective ones, R1,stab(M = 1) = 106.4551 and
R1,stab(M = 0) = 108.9988, obtained in Sec. 3 within the linear stability analysis
due to the discretization errors of the FTCS numerical code. The SPI solution
is stable throughout the driving range shown in Fig. 4. Beyond it, the SPI state
loses stability to a more complicated time dependent pattern that we shall not
discuss here. TVF, on the other hand, is unstable (open circles) close to onset,
becomes stable between R1 = 120 and R1 = 125, and finally
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Fig. 2. Results of a linear stability analysis of the CCF basic state for η = 0.5
as functions of R2 for perturbations with different azimuthal wave numbers M
as indicated: (a) stability threshold R1,stab for axial wave number k = 3.927,
(b) critical Reynolds number R1,c, (c) critical axial wave number kc, (d) critical
frequency ωc/M .
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Fig. 3. Structure of TVF and of a left handed SPI state with axial wave numberM = 1.
Snapshots of the velocity field uer + wez in the r − z plane are shown in (a) for TVF
and in (b) for SPI. The field veϕ + wez in the cylindrical ϕ − z plane at mid gap,
r1 +0.5, is shown in (c) for TVF and in (d) for SPI together with a grey scale plot of u
with dark grey denoting maximal radial inflow and light grey denoting maximal radial
outflow, respectively. See Fig. 6 for axial profiles of u and section 5 for a discussion of
the fact that Taylor vortices appear more compressed than spiral vortices. Parameters
are η = 0.5, Γ = 1.6, k = 3.927, R1 = 140, and R2 = −100.
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loses stability around R1 � 150. Here, stability of the rotationally symmetric
TVF solution refers to the situation covered by our code that allows the devel-
opment of M = 0 perturbations which break the rotational symmetry of TVF.
The unstable TVF solution (open circles) close to onset was obtained by dis-
carding any azimuthal mode with m = 0, thus enforcing rotational symmetry.
The TVF solution, marked by open circles, is stable against M = 0 but unstable
against M = 0 perturbations with the prescribed axial periodicity of Γ = 1.6.
Beyond the last filled circle at R1 � 150 in Fig. 4, the TVF state loses stability
even in the M = 0 subspace against a time dependent state that we shall not
discuss here further. We have not determined the TVF solution that is unstable
in the M = 0 subspace beyond R1 � 150 since this requires a different procedure.
Therefore our TVF solution branch ends in Fig. 4 at R1 � 150.

So, in the driving range 125 ≤ R1 ≤ 150, we found in our axially periodic
system bistability between TVF and SPI. At the low driving end, R1 <∼ 125,
of the stability range of TVF the system undergoes a transition to a stable
M = 1 SPI flow. On the other hand, when increasing R1 beyond the high
driving stability boundary of TVF at R1 >∼ 150, the Taylor vortices typically
develop an oscillatory time dependence.

It is instructive to compare our numerically obtained bifurcation behavior of
TVF and SPI with recent experiments for η = 0.5 despite the fact that they
were done in a relative short system of length Γ = 12 with rigid, stationary
end plates closing the annulus [10]. For R2 = −96.69 being close to our value
of R2 = −100, the authors observed M = 1 SPI flow in the center part of
the systen with axial wave number k = 3.57 which differs somewhat from our
k = 3.927. However, this SPI flow was seen only in the driving range 106 <∼
R1 <∼ 118. Beyond R1 � 118 the SPI flow underwent a transition into stable
TVF. This TVF state lost its stability to wavy vortex flow at a driving value of
R1 � 168 that lies above the upper stability boundary for TVF, R1 >∼ 150, in our
axially periodic system. The significant downwards (upwards) shift in the upper
stability boundary of experimental SPI (TVF) compared to the axially periodic
numerical result is presumably related to the fact that the rigid end plates with
adjacent stationary, rotationally symmetric Ekman vortices suppressing axial
phase propagation tend to destabilize SPI and stabilize TVF. This stabilizing
effect on TVF is presumably also responsible for the downwards extension of
experimental TVF down to R1 � 118, i.e., below the lower stability boundary
of TVF under axially periodic bondary conditions at R1 <∼ 125.

In Fig. 5a, we show the bifurcation diagrams of the axial mean flow 〈w〉 of
our spiral states shown in Fig. 4. And Fig. 5b displays the axial phase velocities
wph of the spirals versus R1. The open lozenges therein refer to the experimental
results for the phase velocity [10]. For our SPI states the axial mean flow (i.e. w
integrated over the annular cross section at a fixed z) is independent of z and t
since all spiral fields

fSPI(r, ϕ, z, t) = FSPI(r, φ)

depend only via the phase variable φ = kz +Mϕ− ωt on ϕ, z and t.
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While for our periodic boundary conditions, Reynolds stresses of the SPI
velocity field generate a finite 〈w〉 the rigid end plates of the experimental set up
suppress any axial net flow 〈w〉. However, it should be noted that the difference
between experimental and numerical axial phase velocities cannot be explained
by wph−〈w〉. For the spirals discussed here 〈w〉 is directed opposite to the axial
phase velocity, wph.
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Fig. 4. Bifurcation diagrams of M = 1 SPI (lozenges) and TVF (circles) order pa-
rameters versus R1. Filled (open) symbols refer to stable (unstable) solutions; see text
for further explanations. (a) maximal radial flow velocity, (b) inflow/outflow asymme-
try measured by the ratio of axial ranges ∆in (∆out) of radial inflow (outflow) in the
middle of the gap. Parameters are η = 0.5, k = 3.927, R2 = −100.
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Fig. 5. Axial mean flow (a) and phase velocity (b) of left handed SPI states
with azimuthal wave number M = 1 versus R1. Filled triangles show results
from our simulations with axially periodic boundary conditions. Open lozenges
are experimental results [10]; see text for further explanations. Simulation
parameters were η = 0.5, k = 3.927, and R2 = −100.
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5 Structure of Taylor vortex and spiral flow

Spirals bifurcate out of the CCF state in a Hopf bifurcation. They break the
rotational symmetry, the axial mirror symmetry, the axial translational invari-
ance, and the time translational invariance of the NSE. Their spatio temporal
structure in ϕ, z, t, depending only on the combined phase φ = kz +Mϕ − ωt,
is effectively one dimensional.

All spirals reported here rotate in positive ϕ direction. Depending on initial
conditions, the flow either evolved into a right handed spiral (R-SPI) or into a
left handed (L-SPI) being the mirror image of an R-SPI under the operation
z → −z of axial inversion. The rotation in positive ϕ direction implies for the
R-SPI (L-SPI) an axial translation of the phase with negative (positive) phase
velocity wph. At onset, wph agrees within the numerical accuracy of our code
with the phase velocity ω/k resulting from the linear stability analysis.

Finally we want to discuss the axial structure of TVF and of spiral flow. To
that end we show in Fig. 6 how the axial profile of the radial velocity u at mid
gap position evolves with R1. Here, positive (negative) u implies radial outflow
(inflow). First, one observes that the mirror symmetry of the TVF profiles in
Fig. 6a around the position, z = 0.5, of maximal radial outflow is broken in the
spiral waves that are propagating in Fig. 6b to the right. The axial wave profiles
of these travelling SPI states become more and more anharmonic as R1 increases
such that the waves become steeper before (flatter behind) the crests. Measuring
the axial anharmonicity of the vortex structures by the difference of the axial
ranges of radial inflow and outflow,∆in and∆out, respectively, one sees that TVF
is much more anharmonic than SPI flow. This is also corroborated by a direct
axial Fourier analysis of u. The bifurcation behavior of ∆in/∆out − 1 is shown
in Fig. 4b. This quantity measures the anharmonicity of u via the asymmetry
in the inflow/outflow ranges and also – because of the continuity constraint –
the asymmetry of the respective radial flow amplitudes. Thus, Taylor vortices
appear to be smaller in size than spiral vortices that seem to fill almost the whole
gap in Fig. 3.

6 Summary

For a counter-rotating system with radius ratio η = 0.5, we have numerically
determined the spatio temporal properties and the bifurcation behavior of TVF
and of M = 1 SPI states that bifurcate with increasing R1 supercritically out of
the basic CCF. We investigated in particular outer cylinder Reynolds numbers
R2 where the bifurcation to stable SPI occurs first and the bifurcation to initially
unstable TVF is located at a higher value of the inner cylinder Reynolds number
R1. For axially periodic boundary conditions, SPI remained stable for a wide
range of R1 while the TVF solution becomes stable slightly above onset. Thus,
there is a substantial range of R1 with bistable coexistence and competition
of TVF and of the two mirror symmetry degenerated L-SPI and R-SPI states
with left handed and right handed spiral vortices, respectively. In the parameter
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Fig. 6. Axial profiles of the radial velocity field at mid gap location for TVF
(a) and L-SPI (b) with azimuthal wave number M = 1. The phase velocities
in (b) are positive. Parameters are η = 0.5, k = 3.927, R2 = −100, and R1 as
indicated.

range investigated here the two latter rotate both in positive ϕ direction so that
the axial phase velocity wph of the L-SPI (R-SPI) wave is positive (negative).
The axial mean flow generated by the SPI wave is directed opposite to wph.
Typically spiral vortices are for our η = 0.5 less anharmonic than Taylor vortices.
A comparison with recent experimental results suggests that rigid endplates tend
to reduce (enlarge) the stability range of SPI (TVF).
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Stability of time-periodic flows
in a Taylor–Couette geometry

Christiane Normand

C.E.A/Saclay, Service de Physique Théorique,
F-91191 Gif-sur-Yvette Cedex, France.

Abstract. The flows generated by the time-periodic forcing of one or both cylinders of
the Taylor-Couette system are of two types: either modulated or pulsed flows whether
or not there exists a mean rotation. Their linear stability is analysed within the frame
of Floquet theory which predicts synchronous or subharmonic instability modes, a
phenomenon known as parametric resonance. The non linear dynamics of time-periodic
Taylor vortex flow has been examined both by numerical simulations and through
model equations. We shall report on the results of two analytical approaches. The first
one due to Hall [18] is based on an amplitude equation which was then modified by
Barenghi and Jones [5] to account for imperfections in the system. The second one is
a Lorenz model derived by Kuhlmann et al. [22].

1 Introduction

Since the discovery of the transition between steady circular Couette flow and
axisymmetrical Taylor vortices [1] various aspects of Taylor-Couette flow have
been considered, including the effect of time-periodic forcing of the cylinders
rotation rates. The stability of time-dependent circular Couette flows is repre-
sentative of a larger class of problems that originated in the nineteenth century
with the discovery of Faraday instability [15]. The appearance of a regular pat-
tern of standing waves on the surface of water in a vertically vibrating vessel,
the waves having half the frequency of the periodic forcing, is often quoted to
illustrate parametric instability [12]. This phenomenon also known as paramet-
ric resonance is encountered in various hydrodynamic systems when one of the
parameters of the equilibrium state is subject to periodic modulation. This sit-
uation occurs in convective systems when the equilibrium temperature or accel-
eration of gravity is modulated in time. The effect of parameter modulation on
convective instability has been reviewed in the book by Gershuni and Zhukhovit-
skii [16], showing in particular that the instability may be in the synchronous or
subharmonic mode. More recently, Ahlers et al. [1] investigated the non linear
dynamics of modulated convection above threshold.

In his enlarged review of the stability of periodic states, Davis [10] also dis-
cussed the case of plane parallel shear flows. Examples include Stokes layers in-
duced by the oscillations of a flat plate bounded by a semi-infinite fluid medium
that is stable to small disturbance [19], [31]. For plane Poiseuille flow driven
by a sinusoidal pressure gradient Hall [17] found that rapid modulation slightly
destabilizes the flow. Plane Couette flow that is stable according to linear the-
ory cannot be made unstable through modulation of the wall speeds. Davis also
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reported on the pioneering investigations of centrifugal instability under param-
eter modulation but since then the problem has received increasing attention
and recent contributions have led to a much better understanding into the effect
of time-periodic forcing in the Taylor-Couette problem. The aim of the present
contribution is to provide an up-to-date review of the subject.

The stability of the flow between concentric circular cylinders when the outer
cylinder is at rest and the inner has angular velocity Ω(1 + ε cosωt) has been
first investigated experimentally by Donnelly [11] who concluded that tempo-
ral modulation of the inner cylinder angular velocity stabilizes circular Couette
flow at low frequency and for small modulation amplitudes (ε < 0.25). Later
on, Thompson [30] reported contradictory data with modulation superimposed
on the steady rotation of the inner cylinder being destabilizing. Concomitantly
there were theoretical attempts to deal with the experimental configurations of
Donnelly and Thompson but the first conclusive results came from the linear
stability analyses due respectively to Hall [18] and Riley and Laurence [25] both
performed in the narrow-gap approximation.

Hall [18] used asymptotic methods and considered two limits. In the limit
in which the amplitude ε and the frequency ω of the modulation tend to zero,
he found that the critical Taylor number at which instability first occurs is
decreased by an amount of order ε2 from its unmodulated value. Considering
then the limit in which ω tends to infinity with ε arbitrary, Hall found in this case
that the critical Taylor number is decreased by an amount of order ε2ω−3 from
its unmodulated value. Investigating the non linear behavior of perturbations
under supercritical conditions, Hall [18] found that small but finite amplitude
perturbations can exist in both the high and low frequency limits.

Riley and Laurence [25] used a different approach in which the governing
equations for the disturbances are solved by a Galerkin expansion with time-
dependent coefficients, and the stability of the motion determined by Floquet
theory. They found that modulation in general destabilizes the flow which is
consistent with Hall’s results. Riley and Laurence [25] also considered modula-
tion of the inner cylinder about zero mean. As the frequency increases the flow
becomes confined to a thin boundary layer of the Stokes type close to the inner
cylinder. Thus, the critical parameters become independent of the gap width
and tend to the values found by Seminara and Hall [26] for the instability of the
flow induced by a circular cylinder oscillating in an infinite viscous fluid.

An extensive study of more complex configurations in which the angular
velocities of the inner and outer cylinder are respectively Ω1 + ε1 cosωt and
Ω2 + ε2 cosωt was conducted by Carmi and Tustaniwskyj [8]. They considered
four cases of modulated Couette flow about a zero mean (Ω1 = Ω2 = 0) that
correspond to modulation of the inner cylinder only (ε1 = 0, ε2 = 0) or the outer
cylinder only (ε1 = 0, ε2 = 0), modulation of both cylinders with equal amplitude
in the same direction (ε1/ε2 = 1) or in the opposite direction (ε1/ε2 = −1).
When addressing the non-zero mean modulation problem they focused on the
case where the steady component of the flow has the inner cylinder rotating,
while the outer is at rest (Ω1 = 0, Ω2 = 0). Two values of the amplitude ratio
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ε1/Ω1 = 5.0 and 0.5 were considered and the smaller one was associated to the
cases ε2 = 0 or ε1/ε2 = ±1. Carmi and Tustaniwskyj [8] argued that the small-
gap approximation used in previous theoretical studies [18], [25] is not justified
for unsteady flows since terms are neglected which are not small for all time.
Thus, they considered gaps of finite length and derived a closed-form analytic
solution for the unsteady part of the basic flow in terms of modified Bessel
functions. Their study was restricted to two values of the non-dimensional gap
size δ = 0.0444 and 0.444. For modulation of the inner cylinder about a zero mean
their results are in good agreement with the experimental findings of Thompson
[30] while their stability boundary lies below that of Riley and Laurence [25].
For non-zero-mean modulation of the inner cylinder they found that at high
frequency the critical Taylor number asymptotically approaches the limit for
steady mean flow and that low-frequency modulation produces a destabilizing
effect larger compared to the results of Riley and Laurence [25] and Hall [18].
Tustaniwskyj and Carmi [29] also used energy method to obtain a condition for
stability. They found that the difference between the energy and the linear limits
are more pronounced in the case of zero mean modulation. For the three cases
ε1/ε2 = ±1 and ε1 = 0 the neutral curves are flatter than the corresponding
linear boundaries and for ε2 = 0 the stability boundary in the high frequency
limit does not increase as rapidly as the linear curve.

For modulation of the inner cylinder, subsequent experimental results by
Walsh and Donnelly [32] were in support of a large negative shift of the thresh-
old for instability which did not end up the controversy for a long time since the
non linear investigation of Kuhlmann et al. [22] yielded the result that modula-
tion weakly destabilizes the flow at low frequency. By analogy with the Lorenz
model for Rayleigh-Bénard convection they used a truncation of the Navier-
Stokes equation that led to a four-mode model thus improving the previous
severely truncated models by Battacharjee et al. [6] and Kuhlmann [21]. In addi-
tion, as a check for their model, they did finite-difference numerical simulations
of the full axisymmetric Navier-Stokes equations. The smallness of the down-
wards threshold shift was explained as the result of two counteracting effects.
They suggested that symmetry-breaking experimental imperfections might ac-
count for the differences between the theoretical threshold for onset of Taylor
vortex flow and experiments. Parallel to this assertion a similar idea was devel-
opped by Barenghi and Jones [5] who discussed imperfections in the modulated
Taylor-Couette flow by means of an amplitude equation, modified by including
a constant term. They identified transient vortices as being the source of the
large destabilization seen in some experiments. They also performed numerical
calculations with an initial-value code using a spectral method with colloca-
tion. As they failed to reproduce the large negative threshold shifts of Carmi
and Tustaniwskyj [8] they suspected the source of disagreement to be numerical
and performed several tests. They first investigated the effects of severe mode
truncation on their collocation scheme but their results remain consistent with
high-resolution runs until the truncation was reduced to a very small number
of modes. Finally they discovered that varying the time step in the numerical
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code has a critical effect on the stability boundary especially at low modulation
frequency where they showed that 500 steps per cycle are needed while Carmi
and Tustaniwskyj [8] used a time step 2π/30 which was not sufficient to ensure
convergence at all values of the frequency. They concluded that having too large
a time step produces a similar effect to physical imperfections.

Barenghi and Jones [5] considered a second configuration in which the inner
cylinder is rotated at a constant angular velocity (Ω1 = 0, ε1 = 0) and the outer
cylinder is oscillating about a zero mean rotation (Ω2 = 0, ε2 = 0). For this
case, Walsh and Donnelly [33] conducted experiments in the parameter range,
0.3 ≤ ε2/Ω1 ≤ 2.0, and found that modulation of the outer cylinder delays
the onset of secondary flow beyond the critical Reynolds number for a steady
outer cylinder in contrast to the prediction of Carmi and Tustaniwskyj [8]. The
calculations of Barenghi and Jones [5] for ε2/Ω1 = 0.5, confirmed Walsh and
Donnelly observations [33]. Moreover, they noted that the result of stabilization
in the case of oscillation of the outer cylinder is in accord with the stability curve
for the steady problem as demonstrated by Taylor [1]: as Ω2 is varied at fixed
Ω1 the flow becomes more stable whether Ω2 is positive or negative. This argu-
ment was also given by Wu and Swift [34] who calculated the onset conditions
for small amplitudes. The first theoretical results for modulation amplitudes of
the outer cylinder as large as ε2/Ω1 = 1.5, were obtained by Murray et al. [24]
using two distinct implementations of Floquet theory. In the first approach, the
time-periodic part of the disturbance was represented by a truncated Fourier
series in time following a procedure introduced by Seminara and Hall [26]. The
second approach consisted of approximating the spatial behavior of the distur-
bance solutions by an expansion in terms of Chebyshev polynomials. For small
modulation amplitude (ε = 0.5) their stability curves have a shape similar to
that of Wu and Swift [34] and are in agreement with the maximum stabilization
predicted by the calculations of Barenghi and Jones [5] at low values of the fre-
quency while a slight discrepancy with their results occurs at larger frequency
values. For large modulation amplitude (ε = 1.5) they found that the stability
curve consists of two distinct branches. The low frequency branch corresponds to
a subharmonic response while the high frequency branch is for the synchronous
mode. Murray et al. [24] performed calculations for two values of the radius
ratio η, 0.719 and 0.88, and found that the larger is the gap the better is the
agreement between theory and experiment.

In the past several years two of the configurations initially considered by
Carmi and Tustaniwskyj [8] from a theoretical point of view were revisited and
for the first time experiments were achieved. They correspond to the case of
no mean rotation (Ω1 = Ω2 = 0) with the two cylinders oscillating at the
same frequency with equal amplitude either in phase (ε1 = ε2) or out of phase
(ε1 = −ε2). Introducing ε = ε1/ε2, the case ε = 1, was first re-examined by
Aouidef et al. [2]. The results of their experimental investigation are in good
agreement with their linear stability analysis and both showed that the stability
curve lies above that predicted by Carmi and Tustaniwskyj [8]. For the case
ε = −1, considered by Tennakoon et al. [28] the agreement between theory
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and experiment was less satisfactory in the low-frequency range. In particular
as ω → 0, the experimental threshold approaches a value which is higher than
the critical value for two steady counter-rotating cylinders whereas the stability
analysis in the narrow gap approximation as well as the wide-gap analysis of
Carmi and Tustaniwskyj [8] predict a stronger stabilization. The discrepancy was
resolved by taking into account the finite length of the gap [4] which confirms
that the too large stabilization found in the wide gap calculations of Carmi and
Tustaniwskyj [8] are likely due to insufficient temporal resolution.

Only recently was considered the effect of an overall mean rotation (Ω1 =
Ω2 = Ωm) when otherwise the two cylinders are oscillating in phase (ε = 1). In
the frame rotating at the angular velocity Ωm the competition between Coriolis
and centrifugal effects induced by temporal modulation has an influence on the
stability boundary of the system. Both flow visualization [13], [14] and Floquet
stability analysis [4] showed that increasing the mean rotation first destabilizes
and then stabilizes the flow.

To make an exhaustive review we ought to mention the study by Braun et
al. [7] of modulated Taylor-Couette system when the inner cylinder consists of
a crystalline solid-liquid interface. For materials with moderately large Prandtl
number, the two-phase system under pure torsional oscillation about the cylin-
drical axis is found to be less stable than the analogous rigid-walled system. In
the limit of large Prandtl number simplification occurs in the stability problem
that allows for an asymptotic expansion of the solution yielding at leading order
a time-independent system.

In the three following sections we shall first review the different types of mod-
ulated flows so far encountered in the literature. Then, the different approaches
for investigating their linear stability will be presented. Finally, the non linear
dynamics of modulated Taylor vortex flow will be discussed within the frame of
appropriate model equations.

2 Modulated base flow

Consider an incompressible fluid of density ρ and kinematic viscosity ν between
two infinitely long concentric cylinders of radii R1 and R2 = R1+d, gap width d,
radius ratio η = R1/R2. The basic flow is generated by the rotation of the inner
and outer cylinders about their common axis with respective angular velocity
Ω1+ε1 cosωt and Ω2+ε2 cosωt. Dimensionless variables are used, the scales for
length, time and velocity being respectively d, d2/ν and ν/d. Two distinct time
scales are present in the system, the viscous diffusion time tν = d2/ν and the
period of the modulation T = 2π/ω. Their relative importance is measured by
the frequency parameter σ = ωd2/ν which is proportional to the ratio tν/T . In
cylindrical polar coordinates, the velocity vector in the basic state has a non-zero
azimuthal component V (r, t) solution of

∂V

∂t
=

∂2V

∂r2
+

1
r

∂V

∂r
− V

r2
, (1)
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The boundary conditions at the inner and outer cylinders, r1 = η/(1 − η) and
r2 = 1/(1− η) respectively, are one of the following sets

• outer cylinder at rest

V (r1, t) = Re(1 + ε cosσt) and V (r2, t) = 0 (2a)
Re = Ω1R1d/ν and ε = ε1/Ω1 (2b)

• steady rotation of the inner cylinder and pure torsional oscillation of the
outer cylinder

V (r1, t) = Re and V (r2, t) = [εRe/η] cosσt (3a)
Re = Ω1R1d/ν and ε = ε2/Ω1 (3b)

• when there is no mean rotation

V (r1, t) = Re cosσt and V (r2, t) = [εRe/η] cosσt (4a)
Re = ε1R1d/ν and ε = ε2/ε1 . (4b)

In the last case the Reynolds number Re is defined in terms of the modulation
amplitude ε1 of the inner cylinder instead of Ω1 in the two previous cases. The
velocity field is decomposed into steady and periodic parts

V (r, t) = Vs(r) + Vp(r, t) .

For the first two sets of boundary conditions (2a) and (3a) the steady part is

Vs(r) =
Reη

(1− η2)

(
r2
r
− r

r2

)
. (5)

The time periodic part has one of the following expressions according to the
choice of boundary conditions (2a), (3a) or (4a)

Vp(r, t) =
Re exp iσt

∆(r1, r2)
×


ε∆(r, r2)
(ε/η)∆(r1, r)
[∆(r, r2) + (ε/η)∆(r1, r)]

+ c.c. (6)

where c.c. denotes the complex conjugate expression and

∆(ri, rj) = I1(κri)K1(κrj)− I1(κrj)K1(κri) ,

is a notation introduced by Carmi and Tustaniwskyj [8] in which I1 and K1 are
modified Bessel functions and κ =

√
iσ = γ(1 + i). The parameter γ = (σ/2)1/2

is the ratio of two lengths, the gap width d and the thickness of the Stokes
layer (2ν/ω)1/2. When γ is large the time-periodic part of the flow is confined
in boundary layers near the cylinders and asymptotic methods can be used to
solve the stability problem [18].
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2.1 Narrow gap approximation

Experiments have been conducted for values of the radius ratio η ranging from
0.719 [33] to 0.9623 [11]. When η → 1, the narrow gap approximation can be
used and simplified expressions of steady and periodic parts of the base flow
velocity are obtained. In this case the following change of variable is made

r = r1 + x with r1 =
R1

d
=

1
δ
.

As δ → 0, the steady part of the velocity (5) becomes Vs(x) = Re(1− x). When
terms of order δ are neglected in (1) the solution for the time-periodic part of
the base flow expresses as

Vp(x, t) = Re [V1(x) cos(σt) + V2(x) sin(σt)] .

When there is no mean rotation and for ε = ±1 the expressions for V1(x) and
V2(x) are given by

Vi(x, ε) = [fi(x) + εfi(1− x)] /W (ε) , i = 1, 2 (7)

with

f1(x) = cos(γx) cosh γ(1− x) , f2(x) = sin(γx) sinh γ(1− x) , (8a)
W (ε) = f1(0) + εf1(1) . (8b)

The corresponding expressions for Vi(x) when ε = 0 are deduced from the pre-
vious ones by

Vi(x, ε = 0) =
1
2
[Vi(x, ε = 1) + Vi(x, ε = −1)] .

When the set of boundary conditions (2a) is used the above expression, once
multiplied by ε1/Ω1 describes the periodic part of the basic flow [25]. Consid-
ering the evolution of the velocity profile with the frequency parameter σ (or
equivalently γ), the limiting cases of respectively low and high frequency will
be examined. In the low frequency limit (σ or γ → 0) the time periodic part of
the velocity is given by an expansion in ascending powers of σ [3], [18], with the
two first terms given below in the case of no mean rotation and for ε = ±1 or
ε = 0

Vp(x, t) = Re
[
χ1(x) cos(σt) + σχ2(x) sin(σt) +O(σ2)

]
, (9a)

χ1(x) = 1− (1− ε)x , χ2(x) =
1
6
x(1− x) [3− (1− ε)(1 + x)] . (9b)

The leading order term is in-phase with the periodic forcing, its x-dependence is
that of a steady Couette flow. In the high frequency limit, the behavior f1(x) ∼
f2(x) ∼ exp(−γx) shows that the time-periodic part of the base flow decays to
zero when x ∼ γ−1 and (1− x) ∼ γ−1 defining respectively the inner and outer
Stokes layers.
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3 Stability problem

Almost all stability analyses were restricted to axisymmetric perturbations ex-
cept the analysis by Carmi and Tustaniwskyj [8] who considered the first non-
axisymmetric mode. In general it is argued that for the unmodulated problem
the instability thresholds for axi- and nonaxisymmetric disturbances are close
and this is expected to remain true for time-periodic flows. On the experimental
side, nonaxisymmetric flow patterns were observed when the two cylinders are
oscillating in opposite directions with no mean rotation. In this configuration,
Tennakoon et al. [28] reported on spiral-like patterns occurring at high oscillation
frequencies.

In the perturbed state assumed to be axisymmetric, the velocity and pres-
sure fields are written as the sum of the base state (0, V = ReVB , 0, P ) and a
perturbation field

(u, p) = [u(r, t), v(r, t), w(r, t), p(r, t)] exp(ikz) ,

where k is the wave number in the axial direction. The evolution equations for
the amplitudes of the velocity components u, v, w and the pressure p are the
dimensionless Navier-Stokes equations linearized around the basic state:

∂u

∂t
− 2Re

VB
r

v +Dp = DD∗u− k2u , (10a)

∂v

∂t
+ReD∗VBu = DD∗v − k2v , (10b)

∂w

∂t
+ ikp = D∗Dw − k2w , (10c)

D∗u+ ikw = 0 , (10d)

with D = ∂/∂r and D∗ = D+1/r. The boundary conditions are u = v = w = 0
at r1 = η/(1− η) and r2 = 1/(1− η).

The set of partial differential equations with time periodic coefficients is
solved by applying Floquet theory which has been implemented in two distinct
ways. In the first approach, [2] [4], [24], [26], a perturbed quantity χ(r, t) is
written as the product of an exponential factor and a periodic function in time

χ(r, t) = exp(µt)χ̂(r, t) ,

in which χ̂(r, t) is a periodic function in the time variable with the same period
2π/σ as VB(r, t) and µ the Floquet exponent is complex equal to µr + iµi, µr
is the growth rate and µi is a second frequency associated with quasi-periodic
motion of the system. For the condition of neutral stability (µr = 0) and when
the time-periodic part of the solution is represented by a truncated Fourier series
in time, the perturbed quantities are sought as

{u, v, w, p} = exp(iµit)
n=N∑
n=−N

{un(r), vn(r), wn(r), pn(r)} exp inσt . (11)
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Since a solution of (10a)-(10d) expresses always in real form this imposes re-
striction on the value of µi which is either µi = 0 (synchronous solutions) or
µi = 1/2 (subharmonic solutions). In this approach the set of partial differential
equations becomes a set of coupled ordinary differential equations for the com-
plex quantities un(r), vn(r), and wn(r) which is recasted in the form of a first
order system for 12(N + 1) real quantities. It is solved by superposition of nu-
merically integrated solutions satisfying the boundary conditions at r = r1. The
requirement that a combination of independent solutions satisfies the boundary
conditions at r = r2 leads to an homogeneous algebraic system which has non
trivial solution if the associated determinant vanishes. The neutral curves are
obtained by locating the zeros of the determinant as a function of Re, all the
other parameters being fixed.

The second approach includes Galerkin as well as pseudo-spectral methods
[8], [24], [25]. It is advantageous in this case to eliminate w and p from the set of
equations (10a)-(10d) to obtain a reduced set in terms of u and v alone which
are expanded in truncated series

u(r, t) =
N∑
n=1

An(t)φn(s) , v(r, t) =
N∑
n=1

Bn(t)φ̂n(s) , (12)

where the new radial variable s = 2(r − r1)− 1 varies in the range [−1, 1]. The
functions φn(s) and φ̂n(s) are orthogonal eigenfunctions of elementary operators,
for instance (DD∗)2 and DD∗ respectively [13]. The Galerkin procedure gives
rise to a system of 2N ordinary differential equations for the coefficients An(t)
and Bn(t) which is written

Ẋi = GijXj with Xi =
{
Ai if 1 ≤ i ≤ N
Bi if N + 1 ≤ i ≤ 2N

where the dot denotes time differentiation and the Gij are the elements of a
2N × 2N matrix G(t) which is 2π/σ periodic. A set of 2N linearly independent
solutions X

(m)
i is built by numerical integration over one period, starting with

the initial conditions X(m)
i (0) = δim. The values X

(m)
i (2π/σ) are the elements of

a 2N×2N matrix P. The eigenvalues λ1, ....λ2N of P are the Floquet multipliers
which are related to the Floquet exponents µm by λm = exp(2πµm/σ). Order-
ing the Floquet exponents such that �(µn) < �(µn+1) where � denotes the real
part, the stability of the system is controlled by the sign of �(µ1). The critical pa-
rameters are determined by finding �{µ1(kc, Rec)} = 0. When pseudo-spectral
methods are used the main change in the method described above concerns the
functions φn(s) and φ̂n(s) which are replaced by Chebyshev polynomials Tn(s)
with the requirement that the governing equations are satisfied at specific collo-
cation points si.
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3.1 Perturbative analysis

In the narrow gap approximation the perturbation equations (10a)-(10d) can be
put in the form

σ∂τNΨ − LΨ + TaMΨ = 0 , (13)

with τ = σt, Ta = Reδ1/2 and Ψ = {u, v}. The differential operators N , L and
the time-periodic operator M are 2× 2 matrices

N =
∣∣∣∣D 0
0 1

∣∣∣∣ , L =
∣∣∣∣D2 0
0 D

∣∣∣∣ , M =
∣∣∣∣ 0 2k2VB
DVB 0

∣∣∣∣ , (14)

with D = ∂2x − k2. In the low frequency limit, the base flow velocity admits the
following expansion in powers of σ

VB = χ0(x) + εχ1(x) cos τ + εσχ2(x) sin τ + . . . . (15)

For modulation of the inner cylinder χ0(x) = χ1(x) = (1−x). Hall [18] considered
the limit of small amplitude of modulation, ε → 0, together with σ = αε. As a
consequence, M admits an expansion as:

M =M0 + ε cos τM1 + ε2 sin τM2 + . . . , (16)

where the Mi’s depend only on the x-variable. Following the perturbative ap-
proach of Hall [18] (13) is solved by expanding the unknown quantities Ψ and
Ta in powers of ε

Ψ = Ψ0 + εΨ1 + ε2Ψ2 + . . . , (17a)
Ta = T0 + εT1 + ε2T2 + . . . . (17b)

At the lower order, one obtains an homogeneous differential equation

LΨ0 − T0M0Ψ0 = 0 , (18)

whose solution is sought in the form

Ψ0 = B0(τ)Φ0(x) ,

where Φ0(x) is the eigenvector of the steady Taylor-Couette problem associated
to the eigenvalue T0. At the next order, one obtains an inhomogeneous equation

LΨ1 − T0M0Ψ1 = α∂τB0NΦ0 + T1B0M0Φ0 + T0B0 cos τM1Φ0 . (19)

The integrability condition requires that the right-hand-side of (19) be orthog-
onal to the solution Φ∗

0 of the adjoint problem

α∂τB0〈Φ∗
0NΦ0〉+ T1B0〈Φ∗

0M0Φ0〉+ T0B0 cos τ〈Φ∗
0M1Φ0〉 = 0 . (20)
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The bracket notation denotes here integration over the x-variable. The ordinary
differential equation (20) has a periodic solution if T1 = 0. The function B0(τ)
is given by

B0(τ) = A exp(−Γ sin τ/α) ,

where
Γ = T0〈Φ∗

0M1Φ0〉/〈Φ∗
0NΦ0〉 ,

and the amplitude A is a constant which can only be determined by a non linear
analysis. The solution of (19) is

Ψ1 = B0(τ) cos τΦ1(x) +B1(τ)Φ0(x) ,

where Φ1(x) satisfies an equation not reproduced here which has to be solved
numerically. At the order ε2

LΨ2 − T0M0Ψ2 = α∂τNΨ1 + T2M0Ψ0 + T0 cos τM1Ψ1 + T0 sin τM2Ψ0 .
(21)

The integrability condition gives an ordinary differential equation for B1(τ). The
condition that the solution is periodic in τ gives the value of T2

T2 =
1
2
[T0〈Φ∗

0M1Φ1〉 − Γ 〈Φ∗
0NΦ1〉]

〈Φ∗
0M0Φ0〉 . (22)

For modulation of the inner cylinder, the value of T2 has been calculated by Hall
[18] who found a negative value. For steady rotation of the inner cylinder and
oscillation of the outer cylinder about zero-mean Wu and Swift [34] performed
the calculation of T2 for a finite value of the gap, without the small frequency
assumption, and they found in this case a positive value.

4 Nonlinear models

4.1 Amplitude equations

In the limit in which the amplitude and frequency of the modulation tend to
zero (ε → 0, σ → 0) with σ/ε held fixed, Hall [18] has derived an amplitude
equation for modulated Taylor-Couette flow of the form

dA

dt
= {µ+ εsin(σt)}A−A3 , (23)

where µ is the distance from the threshold of instability for the modulated flow.
The general solution is

[
A−2φ(x)

]t
ti
= 2

∫ t

ti

φ(x)dx , (24)
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where ti is an initial value and

φ(x) = exp
{
2µx− 2ε

σ
cos(σx)

}
.

If µ < 0, A2 behaves like φ(t) and any initial disturbance decays exponentially
as t→∞. When µ > 0 but small the behavior of A as t→∞ is given by

A(t) ∼ µ
1
2 exp {−ε/σ cos(σt)}

[I0(2ε/σ)]
1
2

,

where I0 is the modified Bessel function of order zero. Hall [20] and later Barenghi
and Jones [5] pointed out that when ε/σ is large, the amplitude takes the form
of pulses and is exponentially small over part of the cycle. They also noticed
that in practice this is unrealistic since weak imperfections always present in
the system will drive low-amplitude motion. There are two ways to remedy this
situation. On one way, considering σ << ε, Hall [20] has shown that the quasi-
steady solution of (23) fails in the vicinity of any instant t∗ where the flow is
locally neutrally stable µ + εsin(σt∗) = 0. In a short time interval of length
O [

(σ/ε)1/2
]
around t∗ it is a non periodic solution which prevails. Hall used

this solution to show that the amplitude of the Taylor vortices varies linearly
with Ω as for the subcritical transient vortices observed by Donnelly [11]. On
the other way, Barenghi and Jones [5] considered a modified amplitude equation
which takes into account the effect of imperfections by the addition of a constant
term in the right-hand-side of (23)

dA

dt
= {µ+ εsin(σt)}A−A3 + c . (25)

This equation was used by Barenghi and Jones [5] to explain why in experiments
transient vortices have been observed when the maximum Reynolds number
Re(1 + ε) exceeds the critical value Rec0 for the steady problem. This is in
contradiction with the perfect bifurcation theory for which the threshold value
µ = 0 corresponds to a critical Reynolds number Rec which differs from Rec0
by an amount of order ε2 [18]. Considering equation (25) for µ < 0 Barenghi
and Jones [5] have shown that under certain conditions amplified solutions can
exist. Since the two cases µ + ε < 0 and µ − ε > 0 correspond respectively
to damped and amplified solutions over the whole cycle, the case of interest is
when µ+ ε > 0 and µ− ε < 0. The solution is obtained by asymptotic matching
between two regions which differ by the order of magnitude of A. The first region
corresponds to A ∼ O(1) and it follows the phase of growth characterized by a
positive instantaneous growth rate µ+εsin(σt) > 0 for t ∈ [t1, t3]. In this region
the solution is given by (24) where ti is taken equal to t1 the time at which the
growth rate changes its sign from negative to positive, leading to

1
A2 =

1
φ(t)

[
K1φ(t3) +

∫ t

t1

φ(x)dx
]

. (26)
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The constant term in (25) has been written as K1φ(t3) where K1 is a constant to
be determined by matching. Owing to the periodicity the solution has to repeat
at time t + T where expression (26) still holds provided t1 and t3 are replaced
by t1 + T and t3 + T respectively. Between this two regions there is a region
where A is small and neglecting the term A3 in the governing equation (25), the
solution is given by

A = exp
{
µt− ε

σ
cos(σt)

}[
K2 + c

∫ t

t3

exp
{
−µx+

ε

σ
cos(σx)

}
dx

]
,

where K2 is an unknown constant which is determined with K1 by the matching
conditions. The matching equation obtained by Barenghi and Jones [5] gives a
criterion for the occurrence of O(1) transient vortices which will be seen only if
c ≈ c− or larger, with c− = σ1/2K−1 exp(−∆/σ), where K and ∆ are numbers
of order unity calculated in [5].

4.2 Lorenz model

The Lorenz model was first introduced as an approximation to the Boussinesq
equations for Rayleigh-Bénard convection under a steady driving [23]. Then,
it has been generalized to the case of an external modulation [1]. Parallel to
modulated convection, the same approach was used to described the non linear
dynamics of modulated Taylor vortex flow. The two-mode model of Battacharjee
et al. [6] provided an approximation for the critical parameters at the instability
threshold. At least three modes are needed to allow for non linear effects above
threshold [21]. Using the narrow-gap approximation and mixed boundary con-
ditions Kuhlmann [21] derived a three-mode model which was then improved by
the four-mode model of Kuhlmann et al. [22] we shall give here a brief account. In
the derivation of their model the Navier-Stokes equations for the perturbations
are written using the streamfunction ψ(r, z, t) such that u = ∂zψ and w = −D∗ψ.
According to Galerkin method the following expansions are introduced

ψ(r, z, t) =
∑
n

∑
m

ψ̂nm(t)ψn(r) cosmkz , (27a)

v(r, z, t) =
∑
n

∑
m

v̂nm(t)vn(r) sinmkz , (27b)

where ψn(r) and vn(r) belong to two distinct sets of orthogonal functions [13].
From linear stability analyses of the unmodulated problem it is known that the
critical modes can be approximated with a good accuracy by taking n = m = 1.
Non linear interactions between these modes occurs via modes with m = 0, 2.
Since modes with m = 2 are linearly damped only modes with m = 0 are kept in
the expansion. Finally a four-mode truncation was proposed by Kuhlmann et al.
[22] with one mode for the streamfunction with amplitude ψ̂11 and three modes
for the v-component of the velocity with respective amplitudes v̂11, v̂20 and v̂10.
The standard projection operation leads to the system of first-order ordinary
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differential equations for the temporal evolution of the amplitudes

τ

σ
Ẋ = −X +

t̂

s
Y [p(t) + ρ1W + ρ2Z] , (28a)

τ Ẏ = −Y +X [q(t) + ρ3W − Z] , (28b)
τŻ = −b2Z +XY , (28c)
τẆ = −b1W +XY , (28d)

where X(t), Y (t), Z(t), and W (t) are rescaled amplitudes of ψ̂11, v̂11, v̂20 and v̂10.
Here t̂ = T/Tc(ε = 0) is the Taylor number defined as T = Re2
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For small ε the stability boundary is given by

αc(ε, ω → 0) = ε2
β2

2mΓ 2 +O(ε4) (30)

Expansion of t̂c up to second order in ε gives

t̂c = 1− ε2

2
+ ε2

2
mΓ 2 .

The threshold shift consists of two opposite contributions of the same order of
magnitude. Kuhlmann et al. have shown that the destabilizing effect is slightly
larger than the stabilizing one thus yielding as a net effect a small destabilization.
A comparison with the modulated Rayleigh-Bénard system has been made since
(29) with the condition (30) still hold but now the quantities α and β express
in terms of the reduced Rayleigh number r̂ with α = r̂− 1 and β = r̂. Thus it is
straightforward to conclude that in convective systems only the stabilizing effect
of modulation is present.

5 Conclusions

In the past decade, important progress has been made in the understanding of
time-periodic Taylor vortex flow. It was due both to constructive interactions
between theory and experiments and to an enhanced efficiency of numerical
schemes.

Given the first impulse by Donnelly [11] who considered modulation of the
inner cylinder when the outer cylinder is at rest, most of the contributions have
been concerned with the onset of Taylor vortex flow and how the threshold pa-
rameter departed from its unmodulated value. The controversy about the order
of magnitude of the threshold shift in the low frequency limit has been resolved
by considering non linear theories. The perfect bifurcation theory [18] predicted
a negative threshold shift of order ε2 while it was known that transient vortices
appeared as soon as the maximum instantaneous Reynolds number Re(1 + ε)
exceeds its unmodulated value. Using the amplitude equation he had previously
derived Hall [20] found that near the instant at which the instantaneous growth
rate vanishes non-periodic solutions exist which are connected to the transient
vortices seen by Donnelly. Considering a modified amplitude equation where a
constant term has been added to account for imperfections, Barenghi and Jones
[5] have shown that a criterion for the existence of transient vortices is that the
constant term exceeds a certain minimum value which depends on the frequency.
By analogy with the Lorenz model for convection, a four-mode model was in-
troduced by Kuhlmann et al. [22] which describes the non linear dynamics of
modulated Taylor vortex flow above threshold. Its numerical integration gives
a valuable insight in the complex behavior of the flow when the forcing is not
supercritical over all the period of modulation.

A second configuration corresponding to steady rotation of the inner cylinder
and pure oscillation of the outer cylinder was then investigated both experimen-
tally [33] and theoretically [5], [24], [34]. It was found that modulation of the
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outer cylinder has a stabilizing effect and that for large amplitude of modulation
and low frequencies the response is subharmonic.

The case of zero-mean rotation, often referred as pulsed flows is more difficult
to handle analytically because perturbative theories cannot be implemented.
Oscillation of the inner cylinder alone [25] and out-of-phase oscillation of the
two cylinders [4], [28] are known to bear some analogy. In particular in the
low frequency limit the critical Taylor number tends to a finite value which
is somehow higher than its value for a steady rotation of the cylinders. The
difference is not yet completely understood and there is some evidence that
the result is sensitive to the value of the gap size [4]. When the two cylinders
are oscillating in phase the maximum of instability is found for a value of the
frequency for which the thickness of the Stokes layer is half the gap width.

The behavior of time-periodic Taylor vortex flow (TVF) near instability
threshold is now well understood for a variety of configurations. In the future,
one can expect that more works will considered the development of TVF at
values of the Taylor number significantly beyond its critical value. For in-phase
oscillations of the cylinders, experiments [2] have shown that a turbulent regime
develops very quickly for a Taylor number which is one-third higher than its
critical value. It will be interesting to know how time-periodic TVF loses stabil-
ity to more complicated types of flow and to identify the scenario for the onset
of turbulence.
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Low-dimensional dynamics of axisymmetric
modes in wavy Taylor vortex flow

Jan Abshagen and Gerd Pfister

Institute of Experimental and Applied Physics,
University of Kiel, 24098 Kiel, Germany

Abstract. The dynamics of the ‘very-low-frequency’ (VLF) mode in moderate aspect
ratio flow is experimentally investigated. The VLF mode is an axisymmetric, time-
dependent mode that occurs in wavy Taylor vortex flow at η = 0.5 [25]. For normalised
aspect ratios Γ/N < 0.89 a ‘universal’ sequence of states from stationary Taylor vortex
flow to chaotic VLF mode has recently been discovered for the 10- to 50-vortex flow
[26]. We show that a qualitatively different transition to chaos occurs in the 12-vortex
flow compared with flow states having 14 and more vortices. A symmetry-breaking
bifurcation that appears within this ‘universal‘ sequence of states is found to be crucial
for this new scenario. The onset of chaos via an intermittency route is accompanied
with the restoring of the original Z2-symmetry of the system leading to a ‘symmetric’
chaotic attractor for a wide range of aspect ratio. The formation of Shil’nikov-type
attractor associated with the unstable symmetric fixed point could be found as well.
Further investigations show that a new type of VLF mode appears in the Small-jet
regime via a Hopf-bifurcation for slightly larger aspect ratio. We present additionally
an examination of the VLF mode in a modulated wavy Taylor vortex flow consisting
of Small-jet and axially localised Large-jet mode. The transition to chaos in these two
VLF regimes is briefly discussed.

1 Introduction

Despite of its ubiquitous appearance in fluid flows and its importance for tech-
nical processes are the mechanisms for the onset of turbulence still only poorly
understood. A huge amount of work has been done to analyse the successive
stages of complexity that arise in fluid flow confined in well-defined experimen-
tal configurations driven by external forces (see e.g. [1]). Taylor–Couette flow is
one of the classical hydrodynamic systems for the study of instabilities and the
transition to turbulence [2–5]. In contrast to the difficulties concerning turbulent
Taylor vortex flow is the transition to chaotic or ‘weakly turbulent’ flow in some
situations better understood. Though low-dimensional chaos in a flow is of much
less complexity than the intrinsic spatio-temporal dynamics of fully developed
turbulence it provides a mechanism for the onset of irregularity governed by
deterministic laws.

Chaos had been first observed in Taylor–Couette flow by Gollub and Swinney
[8] and Fenstermacher, Swinney and Gollub [9]. They showed that turbulence is
not due to a multiperiodic motion with many incommensurate frequency accord-
ing to Landaus hypothesis but irregular flow appears after a few time-dependent
instabilities. Strange attractor behaviour in Taylor–Couette flow was first found
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c© Springer-Verlag Berlin Heidelberg 2000
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by Brandstäter et al. [10] and Brandstäter and Swinney [11] in a chaotic flow
resulting from a breakup of a T 2-torus of modulated Wavy vortex flow according
to the Ruelle-Takens scenario. Their experiments where performed in an appa-
ratus with a radius ratio η = ri

ro
= 0.875 and an aspect ratio, which is the ratio

of cylinder length L to gap width d, of Γ = L
d = 20. The chaotic behaviour was

proved with means of nonlinear time-series analysis.
Studying low-dimensional dynamics in a large aspect ratio system may be-

come very intricate because of the high multiplicity of states especially at higher
Reynolds number. To overcome these difficulties Pfister et al. [12] investigated
the flow in a very small aspect ratio system in order to reduce the multiplicity of
steady solutions. The time-dependent behaviour, however, is found to be quite
complex as well. They observed e.g. a period doubling cascade in a restabilised
2-vortex flow [13,14] and homoclinicity in a 1-vortex flow [15].

A close connection to Navier-Stokes equation in order to identify a mech-
anism for the onset of chaos was done by Mullin [19]. The location of steady
bifurcation due to cell number changes were examined experimentally as well as
numerically [6,7]. Mullin, Cliffe and Pfister [16] found that time-dependent flow
can result from the interaction of a fold point originating from a cell number
change process and a symmetry-breaking bifurcation. Chaos was investigated by
Mullin and Price [17,18] in a modified Taylor–Couette system with rotating inner
cylinder. It was found to be organised by the interaction of the time-dependent
bifurcation and the symmetry-breaking bifurcation giving rise to Shil’nikov chaos
[17]. Additionally they observed a new type of intermittency [18]. Their work
stresses the importance of the reflection symmetry for the onset of chaos in
Taylor–Couette flow.

Recently, a new transition to chaos that occurs in a wavy Taylor vortex flow
(η = 0.5) at large aspect ratios could be observed [26]. For this radius ratio
different time-dependent instabilities can occur in stationary Taylor vortex flow
depending on the aspect ratio [25]. Therefore we call the regime of time-periodic
flow in the wide gap case ‘wavy Taylor vortex flow’ in contrast to the classical
Wavy vortex flow which is associated with a certain type of time-dependent insta-
bility occuring especially in a small-gap Taylor vortex flow. In order to compare
the different time-dependent instabilities at η = 0.5 of flow states having differ-
ent numbers of vortices it is found useful to normalise the aspect ratio Γ with the
vortex number N giving a normalised aspect ratio Γ/N = L

Nd . The transition
reported in [26] was observed in a 10- to 50-vortex flow for Γ/N ≤ 0.89. The
sequence of states from stationary Taylor vortex flow to chaotic flow is found
to be ‘universal’. Taylor vortex flow becomes time-dependent with the onset of
the Small-jet mode which is a rotating wave with an azimuthal wave number
m = 1 and an oscillation frequency of nearly half of the inner cylinder [25].
Oscillations in adjacent vortex pairs are out of phase. Accompanied with the on-
set of time-dependence the system undergoes a symmetry-breaking bifurcation
leading to two asymmetric time-dependent states. A second time-dependent in-
stability occurs at higher Reynolds number on each asymmetric branch leading
to a time evolution on a T 2-torus. The very-low-frequency (VLF) mode is a very
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slow, axisymmetric (m = 0) time-periodic mode. It has been observed in Taylor
vortex flow for nearly all aspect ratios as a second or higher time-dependent
instability. The oscillation frequencies range for 2 ∗ 10−2 to 3 ∗ 10−5 times the
inner cylinder’s angular velocity. For Γ/N ≤ 0.89 the VLF mode appears via a
homoclinic bifurcation on each asymmetric branch. For higher Reynolds number
each doubly periodic asymmetric state becomes chaotic via a period-doubling
cascade on a torus.

In this work the influence of the symmetry-breaking bifurcation on the tran-
sition to chaos in the VLF regime is analysed. Therefore we have investigated
again in great detail the transition to chaotic VLF mode for moderate aspect
ratios. While for the 14-vortex flow our observations are in accordance with the
previous results a new scenario could be found for the 12-vortex flow. The ex-
perimental results concerning this scenario will be presented in section 3 after a
brief description of the experimental setup in the next section (2). Additionally,
we report on a new observation of VLF mode occuring in a flow consisting of
Small-jet and axially localised Large-jet mode. The results will be presented in
section 4. A discussion is given in the last section (5).

2 Experimental setup

The Taylor–Couette experiment we used consists of two high-precision concentric
cylinders. The inner one is machined from stainless steel having a radius of
ri = 12.5mm. The stationary outer cylinder is made of optical polished glass
with a radius of ro = 25mm. The accuracy is better than 0.01mm over the entire
length of 640mm. The top and bottom plates are at rest. In axial direction we
are able to vary the position of the top plate continously with a stepper motor
having an accuracy of 0.01mm. As a working fluid we used silicon oil with
different viscosities. The temperature of the oil is thermostatically controlled
within 0.01K by circulation through a surrounding square box. A phase-locked-
loop (PLL) circuit controls the speed of the inner cylinder. The accuracy is
better than on part in 10−4 per revolution and one part in 10−7 in the long term
average. The local velocity is measured by a real-fringe laser-Doppler velocimeter
(LDV) and recorded by a PLL analog tracker. The signal is filtered by an analog
Bessel filter of fourth order and then converted with a resolution of 14-bit. The
position of the measurement volume can be varied continously. Details can be
found e.g. in [26].

3 An intermittency route to chaos

In [26] it has been shown that the symmetry-breaking which occurs together with
the onset of the Small-jet mode influences both the distribution of the vortex
size and the amplitude distribution of the Small-jet and VLF mode. For larger
systems an amplitude distribution of the VLF mode that is nearly localised in
either half of the cylinder was found. In these systems the transition to chaos
occurs separately on each asymmetric branch and no interaction between the
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two branches has been observed. For decreasing number of vortices the degree
of asymmetry is reduced while the sequence of states remains unchanged.

3.1 Onset of ‘symmetric’ chaos

This is true for systems having 14 vortices or more. The transition to chaos in
the 12-vortex state is qualitatively different. Instead of period doubling, that
appears for larger system, we found a transition to chaos via intermittency.
Fig. 1 shows a typical time series of a chaotic VLF mode very close after its
onset. It was recorded in the 12-vortex state at Γ/N = 0.84 and Re = 412.
The time series is low-pass filtered with a cut-off frequency of fc = 0.1Hz to
filter out the ‘fast’ Small-jet oscillations. Though the interaction between the
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Fig. 1. Chaotic VLF mode at Γ/N = 0.84 slightly after onset of chaos in a 12-vortex
state (Re = 412) measured at L/2. The ‘fast’ Small-jet oscillation is filtered out. An
intermittent behaviour and a connection between the two asymmetric branches can be
recognised.

non-axisymmetric ‘fast’ Small-jet mode and the axisymmetric ‘slow’ VLF mode
is not completely understood there is strong evidence that they interact on the
‘slow’ time scale of the VLF. Previous measurement have shown that in the
VLF regime the oscillation frequency of the underlying time periodic mode is
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(a)

(b)

Fig. 2. Delay-embedding reconstruction of (a) periodic (Re = 411) and (b) chaotic
(Re = 412) attractor of VLF mode recorded at Γ/N = 0.84. The chaotic attractor
corresponds to the time series depicted in Fig. 1. The two periodic orbits correspond
to oscillatory VLF mode on the asymmetric branches

not influenced but the phases of the oscillation located in adjacent vortex pairs.
The evolution of the phase takes place on the same time scale of the VLF mode
but it has not been clarified whether the a change in phase is caused by the
VLF mode or the phase change causes this mode [25,26]. This implies that
the relevant information is gained by measuring the slow evolution. The ‘carrier’
frequency of the Small-jet mode does not contain any additional information and
is therefore omitted in all time series shown in this paper. It should be kept in
mind, however, that the dynamics of the original flow is doubly periodic leading
to a evolution on a T 2-torus. To ensure a correct detection of the VLF oscillation
the measurement volume of the LDV is always positioned in the middle of the
cylinder (L/2) at a distance of 3mm from the inner cylinder. We measure the
axial component vz of the flow velocity. Because for a 12-vortex flow an inward
flow boundary is located at L/2 if the flow is symmetric the axial velocity vz
is proportional to the axial displacement ∆z (for small ∆z). From the time
series in Fig. 1 the two characteristic properties of the chaotic VLF mode in
the 12-vortex state can be seen. The first point is that ‘laminar’ phases of VLF
oscillation can clearly be recognised giving rise to an intermittency route to
chaos. Secondly, the time series is symmetric at least at average [32,33]. The
unstable symmetric state is located between the two branches in the time series
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(a) (b)

Fig. 3. Reconstruction of parts of chaotic attractor shown in Fig. 2: a) four different
views of attractor corresponding to a ‘laminar’ phase in the time series (Fig. 1). This
part of the attractor is located close to the original periodic orbit of the VLF mode in
phase space. b) ‘symmetric’ attractor

shown in Fig. 1. This means that accompanied with the onset of chaos the original
Z2-symmetry of the Taylor–Couette system that is broken at symmetry-breaking
bifurcation point at lower Reynolds number is restored. In order to illustrate this
behaviour a reconstructed attractor in phase space is shown in Fig. 2. We use
time-delay embedding with optimal reconstruction parameters [20–22]. In Fig.
2 (a) two separated periodic orbits corresponding to the VLF oscillation on the
two asymmetric branches at Re = 411 and Γ/N = 0.84 are depicted. The chaotic
attractor shown below in Fig. 2 (b) correspond to the chaotic time series of Fig.
1. The region in phase space where the two stable periodic orbits are located at
Re = 411 can be recognised. To illustrate the two different ‘phases’ of chaotic
behaviour Fig. 3 shows reconstructions of small parts of the time series depicted
in Fig. 1 corresponding to a ‘laminar’ phase (Fig. 3, a) and jumping between the
two asymmetric branches (Fig. 3, b). The merging of the two separated attractor
basins of these periodic orbits at Re = 411 leading to an increase of symmetry at
the transition to chaos is clearly visible. It should be stressed that no hysteresis
has been found within the experimental accuracy of ∆Re = 0.2 though the
duration of chaotic transients increases up to 48 hours. To ensure ‘asymptotic’
stability of the chaotic state in the vicinity of the critical point we waited up to
96 hours before the data were recorded. The scenario found at Γ/N = 0.84 could
be identified as well at different aspect ratios in the 12-vortex flow. For smaller
aspect ratios we followed the transition point down to Γ/N = 0.76. For larger
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aspect ratios we observed the attractor crisis occuring up to Γ/N = 0.868. For
Γ/N ≥ 0.87 the two attractor basins remains separated at the onset of chaos.
It should be stressed that the appearance of a ‘symmetric’ attractor is found to
depend only on the cylinder length and not on the Reynolds number. We found
no attractor-merging-crisis within the chaotic regime for increasing Reynolds
number at fixed aspect ratio. Therefore it might be useful in this context to
speak of a ‘critical’ aspect ratio Γc. A slightly irregular, slow modulation of the
periodic VLF mode could be observed in the vicinity of Γc close to the onset
of chaos. It should be mentioned that the experimental scenario described here
has some similarities with chaos found in low-dimensional dynamical systems,
e.g. in the Lorenz system [31], though a complete description is not available at
the moment. In order to gain more insight in the dynamics of the chaotic VLF
mode we have examined the properties of intermittency.

3.2 Type of intermittency

The different kinds of intermittent behaviour in the Pomeau-Manneville route
to chaos are usually characterised by the way the periodic orbit becomes un-
stable [34–36]. This leads to three different main types depending on whether
the Flouquet mutiplier crosses the unit circle at 1 (Type I), at -1 (Type III),
or a complex conjugated pair crosses the unit circle (Type II). Additionally,
two new types of intermittency have been observed which are both related to
a cyclic fold bifurcation. Mullin and Price found a hysteretic type of intermit-
tency which they called Type X [18]. The different behaviour compared with
Type I intermittency is caused by a different reinjection mechanism. Another
type of intermittency called Type V [40] occurs due to a discontinuous point in
the return map. To determine the type of intermittency occuring in the VLF
regime we have constructed a return map of laminar phases. Fig. 4 shows (a)
long laminar phases of the intermittent VLF mode observed at Γ/N = 0.84
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Fig. 4. (a) Long laminar phases of intermittent VLF mode measured at Re = 411.6
and Γ/N = 0.84. (b) Experimental return map of the first (•) and second (◦) laminar
phase of time series (a). The N + 1 maxima is plotted vs. the N maxima.
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and Re = 411.6 and (b) an experimental return map plotting the subsequent
maxima Nmax +1 vs. Nmax of the first two laminar phases taken from (a). The
lower branch of the cusp shaped curve in the return map represents the injection
into the laminar phase. The system remains for some time in the vicinity of the
original fixed point before a ‘burst’ occurs indicated by the upper branch. A
cusp shape return map has been observed before in an intermittency scenario in
Rayleigh-Bénard convection by [37]. This kind of behaviour was explained with
the existence of a stable direction where the reinjection takes place. A compar-
ison between the two scenarios shows a resemblance both in the shape of the
laminar phases and of the return map. The scenario described in [37] is viewed
as a prototype of Type I intermittency where the limit cycle disappears via a
saddle-node bifurcation. The characteristic properties of a time series associated
with Type II and Type III intermittency leading to the onset of an unstable
oscillation or an unstable subharmonic, respectively, is not present in the time
series depicted in Fig. 4. It should be noticed that the resemblance of the time
series to Type III intermittency originates from a strong second harmonic that
is present in the periodic regime as well. However, the disappearance of the limit
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Fig. 5. (a) Distribution of laminar phases of intermittent VLF mode in 12-vortex state
slightly after onset of chaos (Re = 594, Γ/N = 0.87). The number of phases is plotted
vs. the duration ∆t (s) of the phases. (b) log-log plot of average length of laminar
phases < τ > obtained at Γ/N = 0.84. The dashed line is plotted to guide the eyes.

cycle in Type I intermittency in contrast to the appearance of an unstable limit
cycle in Type II and Type III intermittency influences the scaling behaviour
of the average length and the distribution of the laminar phases (see e.g.[36]).
Fig. 5 (a) depicts an experimentally obtained distribution of laminar phases of
the intermittent VLF mode at Γ/N = 0.87 and Re = 594. The smooth decay
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from the maximum to longer laminar phases is clearly visible. This is character-
istic for an intermittency type related to an unstable limit cycle, like Type II
or Type III. In these types a reinjection very close to this cycle is responsible
for very long laminar phases. Type I intermittency is characterised in contrast
by a sharp low-frequency cut-off representing the longest time a ‘walk’ through
the channel can take. This is because the fixed point has disappeared in the
saddle-node and only the ‘ghost’ of this fixed pont is still present. Fig. 5 (b)
shows a log-log plot of the average duration of laminar phases < τ > versus the
relative distance from the critical point ε = Re−Recrit

Recrit
. It is related to a scenario

recorded at Γ/N = 0.84. The slope in this case is −0.81. To get a more profound
result we investigated on the one hand the influence of the uncertainty in the
measurement of the critical point on the scaling and on the other hand two other
scenarios were recorded. One is measured at the same aspect ratio, the other at
Γ/N = 0.82. We found a scaling of < τ >= ε−(0.74±0.05). This is in contradic-
tion to the behaviour of the standard type of intermittency where < τ >= ε−0.5

is found for Type I and < τ >= ε−1 for Type II and Type III. Recent work
on the dependence of the exponent on the reinjection probability shows that a
behaviour of < τ >= ε−0.75 may occur in Type II and Type III intermittency
for a different reinjection probability [39]. Such a scaling behaviour cannot be
associated with Type I intermittency [38].

The intermittency route to chaos that occurs in the VLF regime of the 12-
vortex state cannot obviously be related to neither the three types of the Pomeau-
Manneville scenarios nor to the two new types. Though the distribution and the
average length of the laminar phases corresponds the existence of an unstable
periodic orbit after the onset of chaos, no clear hind on the type of bifurcation
is given from the time series and the return map.

3.3 Observation of Shil’nikov attractor

With intermittency it is usually meant that the dynamics consists of two dis-
tinct parts. The first one concerns the behaviour close to the original limit cycle
which is determined by the type of the local bifurcation. The chaotic ‘bursts’
between the laminar phases together with the reinjection mechanism depends
on the whole phase space structure. Therefore the transition to chaos via in-
termittency is a global phenomena which is not completely understood by the
local behaviour in the vicinity of the limit cycle. It can be seen from the time
series depicted in Fig. 1 and the related chaotic attractor (Fig. 2) that two dif-
ferent kinds of ‘bursting’ are possible at the end of a laminar phase. Either the
trajectory remains close to the original limit cycle leading to a very fast and
regular reinjection or the trajectory moves away for the region in phase space
where the laminar phases are located. Then it may come close to the unstable
symmetric fixed point and possibly jump to the other branch. We have anal-
ysed this behaviour in detail for different aspect ratios. We found that especially
close to the ‘critical’ aspect ratio and for normalised aspect ratios Γ/N ≈ 0.8
a second type of regular phase related to a second type of oscillation can be
observed. In Fig. 6 (a) a chaotic VLF mode recorded in the 12-vortex state at
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Fig. 6. (a) VLF mode at Γ/N = 0.8 slightly after onset of chaos in a 12-vortex state
recorded at Re = 366. Intermittent VLF and ‘spiking’ oscillations are visible. (b) ‘spik-
ing’ part of time series recorded at larger aspect ratio Γ/N = 0.87 due to the stronger
oscillatory behaviour close to the unstable symmetric fixed point.(c) Shil’nikov-type
attractor reconstructed from time series (b)

Re = 366 and Γ/N = 0.8 is depicted. The original intermittent state is in-
terrupted by long-lasting periods of ‘spiking’ oscillations. It can be seen that
these oscillations results from a direct reinjection from the unstable manifold of
the symmetric fixed point in the vicinity of this point. To illustrate this kind
of behaviour Fig. 6 (b) shows a single phase of ‘spiking’ oscillation. They were
measured at a normalised aspect ratio Γ/N = 0.87 and Re = 594 where the at-
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tractor basins remains separated. A reconstructed attractor is depicted in Fig. 6
(c). It can be seen that the trajectory leaving the unstable symmetric fixed point
is directly reinjected in the vicinity of the fixed point having an inward spiraling
dynamics in the stable direction. For illustration we have taken a time series
from a flow recorded at a larger aspect ratio because the spiraling behaviour is
found to become stronger with increasing aspect ratio. The attractor of Fig. 6
(c) is very similar to a homoclinic orbit of Shil’nikov-type. We observed that
while approaching the Γc an decrease of the frequency of the spiking oscillation
though they occur irregular. However, no clear scenario could be identified. It
has to been clarified whether or not the transition to chaos in the VLF regime
is related to the appearance of a Shilnikov-type attractor. It is well-known that
close to a Shil’nikov homoclinic orbit chaotic dynamics can appear [28–30].

3.4 Transition to Hopf regime

We have shown in the last section that the scenario observed in VLF regime of
the 12-vortex state is qualitatively the same for a wide range of aspect ratio. It
can be observed, however, that the shape a of periodic VLF oscillation changes
for normalised aspect ratios slightly below Γ/N ≤ 0.907. Fig. 7 shows three
different time series and reconstructed attractors of periodic VLF oscillations
measured at (1) Γ/N = 0.9 and (2, 3) Γ/N = 0.907. A second type of oscillatory
mode becomes visible leading to an inward spiraling behaviour. The attractor
has again some similarities with a Shil’nikov-type attractor though the periodic
orbit is located on the asymmetric branch away from the unstable symmetric
fixed point. For normalised aspect ratios Γ/N > 0.907 the large VLF oscillation
that is dominant at smaller aspect ratios disappears and another type of VLF
mode becomes supercritical. This second type occurs via a Hopf bifurcation in
contrast to the homoclinic bifurcation that leads to the onset of VLF mode at
smaller aspect ratios. It should be stressed that this new type of VLF mode is
not due to a change in the type of the underlying ‘fast’ time-dependent mode,
but the Small-jet mode is still present.

Figure 8 (1a) shows a typical time series of the new type of VLF mode
recorded at Γ/N = 0.913 and Re = 804.4 in the 12-vortex flow. The ‘fast‘
Small-jet oscillation are filtered out again. This type is of smaller amplitude
having an oscillation frequency about a magnitude larger than the type of VLF
mode that appears via a homoclinic bifurcation at smaller aspect ratios. The
typical square-root behaviour of the amplitude in case of a Hopf bifurcation
could be proofed, as shown in Fig. 8 (1b). The oscillation frequency is found to
be finite at onset. Our observations give rise to the conjecture that the Hopf-type
onset of the VLF mode observed in flows having a larger number of vortices [26]
correspond to this type of VLF mode.

We found no aspect ratio where the Hopf and the homoclinic stability line
meets. Within the small interval between 0.907 < Γ/N < 0.913 no time-depen-
dent axisymmetric mode occurs until the flow is restabilised by a different mod-
ulated wavy Taylor vortex flow. The onset of the Large-jet mode is described
in section 4. The appearance of the second type of VLF mode at Γ/N ≈ 0.9
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Fig. 7. Three (a) time series and (b) reconstructed attractors of periodic VLF mode
measured in the 12-vortex state: Typical VLF mode oscillation (1) recorded in the
‘homoclinic’ regime at Re = 660 and Γ/N = 0.9. Two time series recorded very close
to the Hopf regime at Γ/N = 0.907 and (2) Re = 784 and (3) Re = 817. A noise
reduction algorithm has been applied to the reconstructed attractor (2,b) [23].

destroys the clear intermittency scenario observed for smaller cylinders in the
homoclinic regime. In the Hopf regime which occurs for the 12-vortex flow at
Γ/N ≥ 0.913 a completely different transition to chaos has been observed. To
illustrate the chaotic VLF mode in the Hopf regime a typical time series is shown
in Fig. 8 (2a). This time series was recorded in a Hopf regime of the 10-vortex
flow at Γ/N = 0.88 and Re = 675. The reconstructed attractor of time series
(Fig. 8, 2a) is depicted in Fig. 8 (2b). The transition is found to be related to in-
termittency as well, but the complete bifurcation sequence is more complicated.
A detailed description is given in [27].
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Fig. 8. Periodic and chaotic VLF mode in the Hopf regime: (1) a: Time series obtained
in the 12-vortex state at Re = 804.4 and Γ/N = 0.913, b: Amplitude vs. Reynolds
number at Γ/N = 0.913, (2) Chaotic time series obtained in the Hopf regime of the
10-vortex state at Re = 742 and Γ/N = 0.888 close to onset of chaos, b: Reconstructed
attractor of time series 2a).

4 A T 3-torus in spatial inhomogeneous flow

In the last section we have reported on a scenario that occurs in wavy Taylor
vortex flow. The single time-periodic (m = 1) flow becomes doubly periodic
by the onset of a axisymmetric (m = 0), time-dependent mode. Here, we will
describe a scenario where a modulated wavy Taylor vortex flow that consists of
two non-axisymmetric (m = 1) modes becomes triply periodic by the onset of
an axisymmetric time-dependent mode.

4.1 Axially localised Large-jet mode

The modulated wavy Taylor vortex flow considered here consists of the Small-
jet mode and the Large-jet mode. The Large-jet mode is an oscillation of the
outward flow having an azimuthal wave number m = 1 like the Small-jet mode.
It differs from the latter by a slightly higher oscillation frequency, a larger am-
plitude, and the fact that the oscillation in adjacent vortex pairs are in phase in
contrast to the out-of-phase oscillations of the Small-jet mode. The interaction
between Small-jet mode and Large-jet mode has been described in [24]. They
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Fig. 9. (a): Stability diagram of non-axisymmetric time dependent instabilities of the
12-vortex state. The onset of Small-jet, Antijet, Large-Jet (below c)), and localised
Large-jet (12LJ4,8) mode (above c)) as well as the lower stability boundary of 12LJ4,8

is depicted. The arrows indicate hysteresis. (b): Flow profiles of localised Large-jet
mode 12LJ4 and 12LJ8. The localised Large-jet oscillation in the middle of the cylinder
is clearly visible.

found for example frequency locking between the two modes. We will focus on
flow states where the Large-jet mode appears not in every vortex pair but only
axially localised in some. Pfister [41] was the first who described the appearance
of the axially localised Large-jet mode in the Small-jet regime. Other axially
localised wavy and modulated wavy Taylor vortex flows has been observed for
a radius ratio η = 0.5. A detailed description of the different types of axially lo-
calised modes and their properties is given in [43]. In the case of independently
rotating cylinders the formation of dynamical domains was first described by
Baxter and Andereck [42]. The stability diagram of the two non-axisymmetric
time-periodic modes is shown in Fig. 9. The different axisymmetric instabilities
in the Small jet regime are omitted for clarity. Fig. 9 shows the onset of the
the Small-jet and the Antijet mode as the first time-dependent instabilities of
stationary Taylor vortex flow depicted for the 12-vortex flow. The Antijet mode
corresponds to an oscillation of the inward flow and is considered in [25]. The on-
set of the Large-jet mode which is depicted as well leads to a doubly periodic flow
that consists of two non-axisymmetric modes. The axisymmetric time-dependent
modes have disappeared. Below Γ/N = 0.89 the Large-jet mode appears in every
vortex pair except of the end vortex pairs. The flow is symmetric with respect
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to reflections on the midplane. However, for Γ/N > 0.89 the Large-jet mode
does not occur in every vortex pair, but axially localised only in some. This
corresponds to a symmetry-breaking leading to two asymmetric branches. We
always observed both states with axially localised oscillations which are symmet-
ric to each other. The flow states considered in this work appear for Γ/N ≥ 0.92
which correspond to point c) in Fig. 9. The flow profiles are shown in Fig. 9
(b). They are obtained by a quasistatically shift of the measurement volume of
the LDV through the cylinder while recording the axial velocity component at
a fixed distance from the inner cylinder. The position of the localised Large-jet
oscillation in the middle of the cylinder is clearly visible. We use a binary code
for describing the different states with axially localised oscillations. 12LJ4 means
e.g. that in the 12-vortex state the Large-jet mode oscillates in third vortex pair
counted from the bottom (12LJ000100). This approach is very useful especially
for larger systems where many different states having localised oscillations could
been observed [43]. The lower stability boundary of the two states 12LJ4,8 can
be found in Fig. 9 (a). The arrows indicate a hysteresis and above point a) a
transition to the 10-vortex state occurs. Point b) in Fig. 9 indicates the region
where a VLF mode have been observed which was only in the small interval
0.9 ≤ Γ/N ≤ 0.91.

4.2 Onset of VLF mode and transition to chaos
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Fig. 10. (a) Amplitude of the VLF oscillation vs. Reynolds number measured in 12LJ4

at Γ/N = 0.9. The VLF mode appears at Re = 940.5 while reducing Re with a large
amplitude. (b): Oscillation frequency of VLF mode vs. Reynolds number

The VLF mode appears in 12LJ4,8 while reducing the Reynolds number
within this interval. Fig. 10 shows the amplitude and oscillation frequency ω of
the VLF mode measured in 12LJ4 at Γ/N = 0.9. The VLF oscillation appears
with a large amplitude and a very low frequency that increases if the distance to
the critical point increases. We observed no hysteresis. This indicates an inverse
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Fig. 11. Transition to chaos in VLF regime of 12LJ4 in the 12-vortex state at Γ/N =
0.9. (a) Time series and (b) reconstructed attractors of (1, Re = 924) periodic, (2,
Re = 866.2) slightly irregular, and (3, Re = 849.8) chaotic VLF mode are depicted.

homoclinic bifurcation like the onset of the VLF mode in the Small-jet regime
though the indication are not so striking. The dynamics evolves in the VLF
regime of 12LJ4 on a T 3-torus of Small-jet, Large-jet, and VLF mode. Fig. 11
shows a scenario for the break-up of the T 3-torus while approaching the lower
stability boundary of 12LJ4 at Γ/N = 0.9. Again only the ‘slow’ VLF mode is
shown and the ‘fast’ Small-jet and Large-jet oscillations are filtered out. The
periodic times series (1a) is recorded at Re = 924. The small irregularities found
in the time series are probably not due to any dynamical effect but caused by
experimental inaccuracies. It should be kept in mind that the amplitude of the
VLF mode is much smaller then the amplitude of Small-jet and Large-Jet oscil-
lations. The dynamics at Re = 866.2 (Fig. 11.2a,b) corresponds still to the same
periodic regime but the dynamics is more irregular. The periodic orbit seems
to approach a fixed point (Fig. 11, 2b). At Re = 849.8 we observed a chaotic
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dynamics of the VLF mode that is shown in Fig. 11 (3a,b). The transition from
the periodic to the chaotic state correspond to a break-up of a stable T 3-torus.
A further decrease of Reynolds number leads to a transition to flow state with
a different axial distribution of Large-jet mode oscillations.

5 Discussion

We reported on an experimental investigation of the dynamics of the ‘very-low-
frequency’ mode in the Small-jet regime of Taylor vortex flow for η = 0.5. The
‘universal’ sequence of states recently observed in this regime [26] is found to be
modified if the number of vortices is reduced. For a flow having twelve vortices
the symmetry-breaking occuring at lower Reynolds number is found to be crucial
for the onset of chaos in the VLF regime. The two asymmetric branches merge
at the onset of chaos leading to a ‘symmetric’ chaotic attractor that restores
the original Z2-symmetry of the system for a wide range of aspect ratio. The
transition to chaos is accompanied with an intermittent behaviour in contrast to
the period-doubling cascade found in system having 14 or more vortices. Though
the intermittency scenario could not be related to one of the known types there
is strong evidence that it caused by a local bifurcation of the VLF mode rather
than a global event associated with the complete phase space of Taylor–Couette
flow. However, we found evidences that global events occur in the reduced phase
space related to the axisymmetric behaviour of the wavy Taylor vortex flow
which we have dealt with exclusively in this work. We observed a Shil’nikov-
type attractor associated with the unstable symmetric fixed point. Though a
complete description of the scenario is not available it has become apparent
that ideas from low-dimensional dynamical system are helpful and applicable to
describe the behaviour of a fluid flow for large aspect ratio and higher Reynolds
number. The observations of the two new VLF regimes stresses the crucial role
of the VLF mode for the dynamical organisation of wavy and modulated wavy
Taylor vortex flow at η = 0.5.
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(Eds.): Bifurcation and Symmetry, Birkhäuser (1992)
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Abstract. Spatiotemporal intermittency manifests itself by the coexistence of lami-
nar and turbulent domains for the same value of the control parameter. In the Taylor-
Dean system, the distributions of laminar domains size after algebraic and exponential
regimes allow for a determination of critical properties in an analogy with directed per-
colation. In the Couette-Taylor system, only algebraic distribution of laminar domains
size has been evidenced. A turbulent spiral coexists with laminar spiral destroying the
occurrence of exponential regime.

1 Introduction

The spatiotemporal intermittency (STI) represents a special scenario of transi-
tion to turbulence in extended systems: it is characterized by the coexistence
of laminar (ordered) and turbulent (disordered) domains that occur randomly
in different places of the system for the same values of the control parame-
ters [1]. The intermittency occurs in many hydrodynamic systems: it has been
observed in boundary layer flows [2], in plane Poiseuille flow [3], in plane Cou-
ette flow [4–6], in pipe flow [7], in counter-rotating Couette flow [8,9], in the
Taylor-Dean system [10]. In one-dimensional extended systems, spatiotemporal
intermittency has been observed in rectangular and annular Rayleigh-Bénard
cells at large values of the Rayleigh number [11,12], in the electromagnetically
induced line vortices [13] and in the film flow between eccentric cylinders (so
called printer instability experiment) [14]. The spatiotemporal intermittency has
also been evidenced in numerical simulations of discrete systems such as coupled
map lattices [15] or probabilistic cellular automata [16] and of nonlinear par-
tial differential equations such as damped Kuramoto-Sivashinsky equation [17]
or Ginzburg-Landau equation [18–20]. The spatiotemporal intermittency occurs
via a subcritical bifurcation from purely laminar state and the coexistence of
two different stable states can be described phenomenologically using an am-
plitude equation derived from a Lyapunov functional [21]. The large interest of
the spatiotemporal intermittency was risen by Pomeau’s conjecture [21] which
states the existence of a striking analogy of STI with the directed percolation:
turbulent bursts correspond to active or contaminating phase and laminar zone
to passive or absorbing phase. This analogy suggests the existence of a second-
order phase transition from laminar to turbulent regime with well defined critical
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properties: in particular, there must exist a net threshold below which turbulent
patches decay in time and above which they invade the laminar domains. Recent
experimental and numerical studies have reported the main features of the spa-
tiotemporal intermittency, such as the spontaneous nucleation of the turbulent
bursts when the number of laminar domains of a given size decay algebraically
and the contamination phase in which the number of laminar domains of a given
size decay exponentially. However, contrary to the direct percolation which has
universal critical properties, the spatiotemporal intermittency does not bear a
universal character in the sense that the critical exponents differ from an ex-
periment to another[1,22]. The non universality of STI is related to differences
between laminar phases in the different systems [22].

In this paper, after a brief review of the Pomeau model of STI, we will il-
lustrate the properties of spatiotemporal intermittency, and in particulary its
non universality character, with help of experimental systems in which centrifu-
gal instability induces the primary roll pattern. In the Taylor-Dean system, we
will show that the analogy with directed percolation works quite well, while
in the Couette-Taylor system, there is no similarity with the directed percola-
tion. In fact, the spatiotemporal intermittency observed in the Couette-Taylor
system reveals special features : for small values of the control parameter, tur-
bulent bursts (Fig.1-a) occur erratically in time and space in the laminar phase
of interpenetrating spiral, while for a finite range of large values of the control
parameter, turbulent spiral (Fig.1-b) coexists with a spiral of laminar base flow
[8,9]. The transition to turbulent bursts from interpenetrating spiral pattern has
been investigated numerically by Coughlin and Marcus [23] and experimentally
by Colovas and Andereck [24] who have measured their turbulent fraction and
the statistical properties of laminar domains as function of the control parameter.
The latter noticed the lack of a region of exponential decay of laminar domains
length which would correspond to the supercritical transition analogous to the
contamination phase of the directed percolation. In fact, above a given value of
the control parameter, the turbulent bursts connect each other to form a turbu-
lent spiral. The resulting flow state called spiral turbulence is characterized by
coexistence of stable turbulent and laminar spirals for finite range of the control
parameter. Hegseth et al. [25] have investigated experimentally the kinematics
of a turbulent spiral and explained some of its properties (pitch and azimuthal
velocity) using a phase dynamics equation. Later on, Hayot and Pomeau [26]
explained the stabilization of turbulent spiral together with a laminar one using
the quintic Ginzburg-Landau equation in which they included a nonlocal term
that serves to prevent the expansion of the turbulent domain.

2 Pomeau model of spatiotemporal intermittency

The spatiotemporal intermittency is a special form of the manifestation of weak
turbulence in extended systems: it consists of a space-time fluctuating mixture
of coherent laminar domains and disordered turbulent bursts in the flow for the
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a) b)

Fig. 1. Pictures of intermittent states in the Couette-Taylor system: a) Turbulent
burst spontaneously nucleated in the interpenetrating spiral (Ro = −1420, Ri = 550),
b) Spiral turbulence (Ro = −1482, Ri = 650)

same values of the control parameters. Pomeau, in his seminal paper [21], con-
jectured the analogy of spatiotemporal intermittency with directed percolation,
giving this way to STI a more strict sense [1]. Spatiotemporal intermittency
in the strict sense, implies a strong asymmetry between two local states in ex-
tended systems: disordered turbulent state can spontaneously decay to regular
laminar state because of intrinsic fluctuations, while laminar state cannot decay
spontaneously, it can only be triggered by neighboring turbulent domains.

2.1 Analogy with the directed percolation

The directed percolation can be realized in probabilistic cellular automaton
which models various contamination processes [16]: it iterates synchronously
at discrete time steps, the sites of a lattice according to transition probabilities
which depend on the configuration of the sites neighborhood. Each site is on one
of two possible states: an active state or an absorbing state. In case of directed
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bond percolation in one space dimension, the control parameter is the probabil-
ity p for a bond to be open. The density d of active sites in directed percolation
is given by

d

{
= 0 if p < pc
∼ (p− pc)β if p > pc

(1)

where pc is the threshold and β = 0.277 is the critical exponent of the directed
percolation in one dimension [1]. The absorbing state corresponds to the laminar
part of the flow and the active state to the disordered turbulent bursts. The
transition from the regular laminar domains to turbulent patches might have the
same critical behaviour as the directed percolation. The turbulent fraction that
is the analog of the probability for an open bond must vanish continuously when
approaching the threshold of spatiotemporal intermittency as does the density
d of active sites in directed bond percolation. The transition to spatiotemporal
intermittency should then be a second-order phase transition: below a critical
value of the control parameter, turbulent bursts are transient and decay in the
laminar phase and above the critical value, the turbulent domains become active
and contaminate the flow.

In order to achieve such a comparison, it is necessary to make a binary
reduction of the space-time diagrams with an artificial cutoff [4,10]: turbulent
domains are represented by black pixel and laminar domains by white pixel. One
defines the turbulent fraction f as the ratio of the total area of turbulent patches
to the total area of the space-time diagram. The temporal turbulent fraction
called also intermittency factor is defined as the ratio of the mean duration of
turbulent patches to the total measurement time.

¿From binarized space-time diagrams, one can also compute the histograms
of distribution of laminar domains with their size N(l) or with their duration
N(t). If the N(l) ∼ l−γ or N(t) ∼ t−γ

′
, we have algebraic decay of laminar

domains, if N(l) ∼ e−l/λ or N(t) ∼ e−l/τ , we have exponential decay of laminar
domains. In the latter case, it is possible to define a coherence length λ or a
coherence time τ . These quantities can be obtained also from the correlation
function C(x) or C(t) of the space-time signal I(t,x):

C(x) =
< I(t, x′ + x)I(t, x′) >

< I(t, x′)2 >
or C(t) =

< I(t′ + t)I(t′, x′) >
< I(t′, x′)2 >

The correlation length λ and correlation time τ are obtained from the best fit
of these correlation functions to exponential functions as follows: C(x) ∼ e−x/λ

or C(t) ∼ e−t/τ . The transition between algebraic and exponential regimes of
laminar size histograms occurs at a critical value µc of the control parameter, this
value is taken as the threshold of spatiotemporal intermittency in the strict sense
[1]. Since the scales of laminar domains become small and those of turbulent
domains increases, the coherence length of the laminar domains might have
critical behavior near the onset of the spatiotemporal intermittency, i.e. λ ∼
|µc − µ|−α, where α is a critical exponent.
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2.2 Ginzburg–Landau amplitude equation

Spatiotemporal intermittency can be considered as the hydrodynamic (no ther-
mal fluctuations) partner of the first-order transitions in thermodynamics with
a two-phase state existing for the same value of the temperature (for example a
liquid-gas transition in Van der Waals fluids). In fact, one of two phases of the
STI is metastable while the other is stable, the stability depends on the con-
trol parameter µ, the analog of the temperature in equilibrium thermodynamic
systems. The main properties of spatiotemporal intermittency can be retrieved
from a fifth order real Ginzburg-Landau equation [26]:

∂A

∂t
= µA+ β|A|2A− δ|A|4A+ ξ20

∂2A

∂x2
= − δV

δA∗ + ξ20
∂2A

∂x2
(2)

where A is the amplitude of the perturbations and A∗ its complex conjugate, µ
is the distance from the onset of the turbulence (i.e. µ < 0 in the laminar regime
and µ > 0 in the completely turbulent state), ξ20 is a characteristic coherence
length of the perturbations, the Landau nonlinear constants β and δ are positive
in order to ensure nonlinear saturation of the amplitude at the fifth order of
expansion. To evidence the analogy with thermodynamics, the equation (2) is
represented in variational form: the quantity V [A,A∗] called Lyapunov functional
is the analog of a thermodynamic potential such as the free energy. In order
to describe the spatiotemporal intermittency, the ”potential” V may have two
minima corresponding to stable and metastable states in a given range of the
control parameter. From the above amplitude equation, V [A,A∗] is obtained by
straightforward integration and reads:

V [A,A∗] =
δ

6
|A|6 − β

4
|A|4 − µ

2
|A|2 (3)

This potential has two minima corresponding to stationary states in the
range: µ0 = −β2/4δ < µ < 0. The laminar phase is given by A = 0 and the
turbulent phase corresponds to a finite amplitude perturbation A = 0. The two
minima acquire the same value for µc = −3β2/16δ = 3µ0/4. For this value of the
control parameter, turbulent and laminar phases have the same stability and can
coexist in the flow system for the same value of the control parameter. When
the two minima are different, one phase called active or stable phase invades
the other one which is metastable: for µ0  µ < µc, the laminar phase A = 0
is stable and the turbulent bursts are metastable, they decay after a transient
time. For µc  µ < 0, the laminar phase is metastable and decay into the
turbulent stable phase. The critical value µc of the control parameter separates
therefore two different domains of stability and can be considered as the onset
of spatiotemporal intermittency similar to the onset of directed percolation (pc).
Stationary amplitudes corresponding to the minima of the potential are given
by:

As =

{
0, for laminar phase
β+
√
β2+4µδ
2δ for turbulent phase

(4)
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The complex counterpart of the equation (3) was investigated in detail by
Hakim-Pomeau who have shown that fifth order complex Ginzburg-Landau equa-
tion possess stable solutions describing stable localized states in extended sys-
tems [27].

Fig. 2. The stationary amplitude as a function of the control parameter µ for β = 1.15
and δ = 1. Solid lines represent the stable and metastable states, dashed line represents
unstable state. The laminar state (A = 0) and the turbulent state (A �= 0) coexist for
−0.33 < µ < 0. The threshold of STI in the strict sense occurs at µc = −0.24

3 STI in the Taylor–Dean system

We illustrate the main ingredients of Pomeau model with results obtained in the
Taylor-Dean system. The latter consists of two coaxial horizontal cylinders in
differential rotation, with a partially filled gap [28]. Spatiotemporal intermittency
has been observed in this system when the inner cylinder is fixed and only
the outer cylinder is rotating [10]. The control parameter is the outer cylinder
Reynolds number defined as follows: Ro = Ωobd/ν, where Ω0 is the rotation
angular velocity, b = 5.08 cm is the outer cylinder radius, d = 0.590 cm is the
gap between the cylinders and ν is the kinematic viscosity.

3.1 Main results on critical properties

We summarize the main results obtained in this system since they reproduce
the main properties of STI developed above. The laminar state consists of a
roll pattern oscillating with 2 frequencies. This pattern exhibits a continuous
nucleation of spatiotemporal defects which reduce its correlation length and
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induce locally a chaotic behavior that generate transient turbulent bursts. The
STI was observed in the range of the control parameter Ro ∈]649, 769[. The
increase of the control parameter Ro leads to the coexistence of spatially ordered
oscillating roll pattern with turbulent bursts which appear irregularly in time at
different positions of the flow (Fig. 3-a, b). The turbulent fraction increases with
the control parameter Ro following the law f(Ro) ∼ εβ , β = 1.30 ± 0.26 where
ε = (Ro − R∗

o)/R
∗
o where R∗

o = 649 is the onset of turbulent bursts. Statistical
analysis was made on data files consisting of 5000 frames of total duration of
12 minutes. Analyzing the distribution of laminar domains with their length, we
have distinguished two different regimes: for Ro < Ro,c = 675, the number N of
domains having a length l is given byN(l) ∼ l−γ with γ = 1.7±0.1(Fig. 4-a) , this
regime is called algebraic regime; for Ro > Ro,c = 675, the number of laminar
domains of size l is given by N(l) ∼ e−l/λ (Fig.4-b) where the characteristic
length of laminar domains λ decreases with the control parameter as follows:
λ(Ro) ∼ (Ro − Ro,c)−α with α = 0.64. Therefore, this value Ro,c of the control
parameter which separates algebraic and exponential regimes of the distribution
of laminar domains versus their length, is considered as the threshold of a second-
order type transition [10]. Hence, the spatiotemporal intermittency in the Taylor-
Dean system is defined in the strict sense i.e. in the analogy with the directed
percolation. Below Ro,c, turbulent bursts decay in the laminar pattern and above
Ro,c, turbulent bursts contaminate the laminar pattern. It corresponds to the
value µc � 0.122 in the Pomeau model, while the onset of turbulent bursts
Ro = 649 corresponds to µ0 � −0.156.

3.2 STI in other extended systems

There are different experimental extended systems in which the two different
regimes of spatiotemporal intermittency have been observed and well character-
ized, for example: the Rayleigh-Bénard convection in rectangular and annular
cells [11,12], the linear vortices induced by electromagnetic field [13] and the
printer instability experiment [14]. All these systems enter into the framework of
the Pomeau model although measured critical exponents are different from an
experiment to another. The existence of different critical exponents in hydrody-
namic experiments (Table 1) illustrates the non universality of the spatiotempo-
ral intermittency.

Table 1. Critical exponents measured from few experiments

Experimental System β γ α

Convection in chanel [12] 0.30±0.05 1.6±0.2 0.50
Printer instability [14] 0.45±0.05 0.63±0.02 0.50
Taylor-Dean system [10] 1.30±0.26 1.67±0.14 0.64
Line of Vortices [13] 0.50 1.7 0.5
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Fig. 3. Space-time diagrams of the pattern observed in the Taylor-Dean system and
binarized versions: a) Ro = 669: turbulent bursts are metastable in the laminar phase,
b) Ro = 683: turbulent bursts are active in a metastable laminar phase.

4 STI in the Couette–Taylor system

The intermittent states in the Couette-Taylor were observed by D. Coles [8] and
C.D. Andereck et al. [9] who mapped them into a phase diagram (Ro, Ri). The
spatiotemporal intermittency in the Couette-Taylor system is of particular in-
terest since it does not enter into the Pomeau model described above. In fact,
as shown by Colovas and Andereck [24] from analysis of histograms distribution
of laminar domain size, STI in the Couette-Taylor system has no exponential
regime. This is due to the existence of the spiral turbulence regime in which
a stable turbulent spiral coexists with a laminar one. We describe in this sec-
tion some of properties of STI obtained in the counter-rotating Couette-Taylor
system.

4.1 Experimental setup

The Couette-Taylor system consists of two coaxial horizontal counter-rotating
cylinders in the gap of which flows a newtonian liquid. The inner cylinder is
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Fig. 4. Distribution of the laminar domains with their size: a) algebraic decay (Ro =
664), b) exponential decay (Ro = 675).
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made of black Delrin with a radius a = 4.459 cm. The outer cylinder is made of
transparent plexiglass with a radius b = 5.050 cm. The gap between the cylinders
is d = b − a = 0.591 cm over a length L = 27.5 cm. Hence the system has a
radius ratio η = a/b = 0.88, and an aspect ratio Γ = L/d = 46. The both
cylinders are driven independently in opposite direction by two DC servomotor.
Thus the control parameters of the Couette-Taylor system are the Reynolds
numbers defined for the inner and outer cylinders respectively: Ri = Ωiad/ν
and Ro = Ωobd/ν, where Ωi and Ωo are angular frequencies of inner and outer
cylinder respectively and ν the kinematic viscosity of the fluid. We have used
distilled water (ν = 10−2cm2/s at T = 210C) with 2% Kalliroscope AQ1000 for
visualization. With a light from a fluorescent tube, the flow was visualized on
the front side. To obtain spatial information about the flow dynamics, a linear
1024-pixel charge coupled device (CCD) array records the intensity distribution
I(x) of the light reflected by Kalliroscope flakes from a line along the axis at the
middle of the cylinders. The recorded length is from 20 to 25 cm in the central
part of the system, corresponding to a spatial resolution of 41 to 51 pixels /cm.

4.2 Results

We describe the weak turbulent states observed for outer cylinder rotation fixed
at Ro = −1375 and increasing the inner cylinder rotation (Fig.5 a-d). The tur-
bulent bursts occur as a result of subcritical bifurcation of the interpenetrating
spirals to finite amplitude perturbations. They appear irregularly in time at dif-
ferent positions of the pattern. In the wake of a turbulent burst, there is no
periodic structure of interpenetrating spirals. This disappearance of roll pattern
in the wake of a burst is a consequence of a strong energy dissipation by the
bursts. The generation of burst occurs, not in the wake of previous one, but
either at the left or the right of this wake where the energy is less dissipated. A
similar structureless wake has been observed in the turbulent spots occurring in
boundary-layers [2].

The average number per unity time, the lifetime and the size of turbulent
bursts increase with Ri. As Ri increases, the turbulent bursts acquire an axial
velocity component, smaller than the azimuthal velocity component, and hence
they are inclined with respect to the cylinder axis. When the length of a turbulent
burst becomes comparable with the half circumference of the cylinder, the bursts
connect to form a turbulent spiral (Fig. 5-c). The pattern is then composed of
alternating turbulent and laminar spirals (Fig. 5-d). The laminar spiral has no
periodic structure, it does not contain any interpenetrating spirals. The turbulent
spiral and the laminar spiral coexist in the flow for a long time without cancelling
each other. For very large values of Ri, the turbulent spiral spreads in width while
the laminar spiral decays giving rise to completely turbulent flow.

The mean turbulent fraction of bursts increases with Ri (Fig.6) and is sensi-
tive to the value of Ro in agreement with results obtained previously [24]. With
an increase of Ri, the turbulent bursts occur more frequently and grow in size
until they connect each other and form a turbulent spiral. The fraction of the
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Ri = 551 Ri = 569

Ri = 584 Ri = 656

Fig. 5. Spatio-temporal diagram of representative states observed for Ro = −1375: a)
Spontaneous nucleation of turbulent bursts in the laminar phase, b)Turbulent bursts
occur frequently in the flow, c) Turbulent bursts are connecting to form a turbulent
spiral, d) Laminar-turbulent spiral.

turbulent spiral is a linear function of Ri and is not sensitive to the variation of
Ro.

4.3 Physical origin of turbulent bursts

The strong dependence of turbulent fraction on Ri suggests that the inner cylin-
der is more responsible than the outer cylinder for the energy transfer to the
fluctuation that will dissipate it in the turbulent regime. This is due to the fact
that the centrifugally unstable region is close to the inner cylinder. According to
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Fig. 6. Turbulent fraction in the Couette-Taylor system as a function of µ = (Ri −
Ri,c)/Ri,c for Ro = −1375.

numerical simulations of Coughlin and Marcus [23], the bursting phenomenon
is governed by space distribution of energy transferred from the rotating cylin-
ders to the pattern of interpenetrating spirals, i.e. to the laminar phase. The
interpenetrating spirals (coherent structures) are destabilized by an azimuthal
traveling wave (induced by a secondary instability). This azimuthal wave per-
turbs drastically the inner region which is dominated by the centrifugal insta-
bility and induces an explosive occurrence of turbulence that collapses after a
short time. The nonlinear stability analysis of the interpenetrating spirals [29]
shows that azimuthal and axial mean field velocities possess inflexion points.
According to Rayleigh criterion for parallel flows [30], such a flow is unstable to
time-dependent perturbations which may lead to the occurrence of transverse
waves. The azimuthal waves, reported in the numerical simulations of Coughlin
and Marcus might originate from the axial mean flow velocity and play impor-
tant role in the generation of turbulent bursts. The inflexion point is located in
the inner region whose extent depends on the inner rotation speed and that is
the reason for a strong dependence of turbulent fraction upon Ri.

4.4 Kinematics of turbulent spiral

The lifetime of turbulent bursts increases with Ri, while the period of turbulent
spirals does not depend on Ri. For a fixed Ro, the axial velocity of turbulent
spiral does not vary significantly with Ri. The frequency of turbulent spirals
increases with Ro while their lifetime decreases. The axial velocity of turbulent
spiral increases with Ro (Fig. 7). The azimuthal velocity which is the same order
as the axial velocity (Fig. 8) was deduced from measurement of the inclination
angle of turbulent spiral also called pitch angle which was found to vary from
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21◦ to 40◦. The azimuthal velocity of the turbulent spiral is a linear function of
Ro and does not depend on Ri in agreement with previous results [9].

,

Fig. 7. Axial velocity of turbulent spirals in units of the diffusion velocity ν/d as a
function of Ro.

Fig. 8. Ratio ρ of the azimuthal velocity to the axial velocity of the turbulent spiral
in the Couette-Taylor system.
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We found that the axial velocity of turbulent spiral is a linear function of Ro
but does not depend on Ri. This behavior may be explained if one considers that
the turbulent and laminar spirals form a pattern with a selected wavelength and
drifting at the same velocity. The period of the turbulent spiral increases with
Ri while that of laminar spiral decreases keeping constant the mean period of
the turbulent-laminar front. Therefore, the fraction of turbulent spirals increases
with Ri but their axial velocity remains constant. For fixed Ri, the period of
turbulent-laminar spirals increases and since its average size is constant, the
axial velocity of spirals increases with Ro.

4.5 Hayot–Pomeau model for spiral turbulence

After Hayot and Pomeau [26], the existence of a mean azimuthal Poiseuille flow
in the counter-rotating Couette-Taylor system [29,31] is the main key of the exis-
tence of stable turbulent spirals. In fact, this mean azimuthal velocity component
is responsible for a regulatory mechanism of the turbulent and laminar domains
size. In order to describe quantitatively this regulatory mechanism, Hayot and
Pomeau introduced a nonlocal term due to this mean azimuthal velocity into
the real fifth order Ginzburg-Landau (3) that then reads:

∂A

∂t
= µA+ ξ20

∂2A

∂x2
+ β(|A|2 − I)A− δ|A|4A (5)

where the new term I∼ 1
L

∫ L
0 |A|2dx is the mean energy of the perturbation in the

system where L is the length of the circumference [26]. In the experiments, the
quantity I is related to the mean turbulent fraction. When the turbulent fraction
increases, the perturbation amplitude decreases due to larger friction and the
expansion of the turbulent domain is reduced. For µ0 < µ < µc, turbulent
bursts are metastable and decay in the absorbing laminar phase, the turbulent
fraction is very small and so is the nonlocal term I. The increase of the rotation
rate of the inner cylinder is accompanied by a large transfer of energy to the
flow, therefore it gives large contribution of the nonlocal term I. For µ ≥ µc,
the contribution to I reduces the value of the nonlinear coefficient β, and then
µc decreases until the value of µ0, reducing the local expansion of the burst. In
numerical simulations of the equation (5), Hayot and Pomeau [26] have shown
that for µ ≥ µc, the expansion of turbulent domains saturates in time and in size
leading to a stable turbulent spiral that coexists with a laminar spiral. A similar
model using a pressure gradient of mean flow was developed by Stassinopoulos
in order to describe periodic states of intermittency observed in pipe flows [32].

In order to describe the kinematics of the turbulent spiral observed in a
system with an aspect ratio Γ = 73, Hegseth et al. [25] suggested a phase
equation compatible with the symmetries of the problem:

∂φ

∂t
+ v

∂φ

∂x
= D

∂2φ

∂x2
(6)

where φ is a phase describing the mean azimuthal position of the spiral at the
height x and time t, D is a phase diffusion coefficient, v is the axial velocity of
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spiral in the laboratory frame of reference. The phase φ is related to the pitch
angle by ∂φ/∂x. The solution of this phase equation reads [25]

φ(t, x) = A(x− vt) +Bevx/D, A = Bv/D − α,B =
D

v

α− β

1− exp(vL/D)
(7)

where α and β are the pitch angle at the bottom and the top of the sys-
tem. For asymmetric boundary conditions at the ends (α = β), the pitch angle
varies continuously between α and β. These boundary conditions are realized in
most experiments with finite aspect ratio ([25,33]) and therefore the behavior of
spiral turbulence is much influenced by the boundary conditions. In the case of
symmetric boundary conditions at the ends (α = β), then B = 0 and the phase
equation is invariant under reflection symmetry and therefore can possess in
particularly stable solutions of turbulent spirals of opposite helicity (i.e. propa-
gating in opposite directions along the cylinder axis). Such symmetric boundary
conditions at the ends can be achieved only in infinite aspect ratio system like
that one has been built recently in CEA at Saclay (Γ = 400), in fact, in this
case the ends effects are confined inside a layer of characteristic length D/v.

5 Conclusion

The spatiotemporal intermittency observed in most extended hydrodynamic sys-
tems exhibits critical properties analog to those of the directed percolation al-
though no universality cannot be established because of differences in the laminar
phase. We have illustrated these properties with the Taylor-Dean system in which
it was possible to define the spatiotemporal intermittency in the strict sense. In
the counter-rotating Couette-Taylor system, the mean azimuthal Poiseuille flow
induces a stabilization of turbulent-laminar front and inhibits the exponential
decay of laminar domains size. Therefore, in the Couette-Taylor system, the
spatiotemporal intermittency has no analogy with directed percolation.
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Spiral–Couette and Spiral–Poiseuille flows
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Abstract. A comprehensive study of the linear stability of the Taylor–Couette prob-
lem with imposed axial effects is examined. The study will be focused on two different
flows: Spiral Couette (SCF) and Spiral Poiseuille (SPF) flows. In SCF flow, the axial
effect is introduced by an inertial axial sliding mechanism between the cylinders. In
the SPF, the axial effect is introduced via an imposed axial pressure gradient. For both
problems, a wide range of parameters has been explored. In both systems, zeroth order
discontinuities are found in the critical stability surface; they are explained as a result
of the competition between the centrifugal and shear instability mechanisms, which
appears only in the co–rotating case, close to the rigid body rotation region. In both
problems, good agreement with the experimental results has been obtained.

1 Introduction

We consider an incompressible viscous fluid which is contained in the gap be-
tween two concentric cylinders that rotate independently about a common axis
at constant angular velocities. An axial motion is induced by an inertial sliding
of the cylinders relative to one another along the pipe axis in the SCF, and by
an imposed axial pressure gradient in the SPF case. The basic motions whose
linear stability will be studied are, therefore, a superposition of the Couette flow
in the azimuthal direction and the axial velocity field induced by the relative
sliding, in the former case or by the axial pressure gradient in the second, [13].

The SCF problem was first studied in [15] and [14], where an inviscid stability
criteria in the narrow gap case was obtained. The experiments carried out in [14]
are, as far as we know, the only experiments made in this problem until now. The
general problem was studied in [22] and in [12] with special emphasis in energy
methods; an excellent review can be found in [13], chapter VI. In a recent work,
[2], a linear stability analysis of the Spiral Couette flow was carried out, in the
stationary outer cylinder case, in the so called enclosed geometry, which includes
end effects. The more general problem of oscillatory sliding has been recently
considered in [11] and [17], whose numerical simulations are in good agreement
with the experimental results reported in [28].

The first approaches to the study of the stability of the SPF were carried
out in [6] and in [10]. In a more recent study, reported in [25], both numerical
and experimental, it was demonstrated that the axial effects may stabilize or

C. Egbers and G. Pfister (Eds.): LNP 549, pp. 118–136, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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destabilize the basic flow depending on the sign of the speed rotation ratio of
the cylinders. Our study provides the first comprehensive numerical exploration
of the linear stability of the SPF flow, covering a wide range of angular velocities,
being focused on the co-rotation situations because of the presence of new phe-
nomena not observed before. The numerical computations reported here were
carried out for the same experimental parameters used in [25].

We have found that SCF and SPF exhibit zeroth order discontinuities in their
critical surface, a result recently reported by the authors in [20] for the SCF.
In both cases, this pathology is due to a common fact; the competition between
centrifugal and shear instability mechanisms. Mathematically, the spectra of
the linear stability operators exhibit radical changes in the space of physical
parameters. In other words, the spectra may be, in both problems, split up
in two independent subsets, associated to the two instability mechanisms. The
behaviour of both subsets is independent of each other, swapping radically their
dominance in the transition in different parts of the space of physical parameters.

An understanding of the stability of these flows could have applications in
some industrial processes like the purification of industrial waste water, the
production of wire and cables and the optical fibre fabrication techniques, see
[23], [26] and [4]. In all of them, axial sliding and axial pressure gradients in a
cylindrical annulus takes place, and the rotation of one or both cylinders may
change the stability and properties of the flow.

The work is structured as follows. Section 2 is devoted to the SCF. In Sec.
2.1 the linear stability in the standard normal mode analysis is formulated. In
Sec. 2.2 the difficulties encountered when computing the neutral stability curves,
and the algorithms we have used, are described. The linear stability analysis for
η = 0.5 is explained in detail in Sec. 2.3. The mechanism of competition between
centrifugal and shear instability mechanisms is explained mathematically as an
abnormal behaviour of the topological structure of the neutral stability curves.
Comparisons with experimental results for η = 0.8 are reported in Sec. 2.4.
Section 3 is devoted to the linear stability analysis of the SPF. In Sec. 3.1,
the stability analysis for η = 0.5 is reported and comparisons with previous
numerical and experimental works are provided.

2 Spiral–Couette flow

Spiral-Couette flow is the term used to describe fluid motion between two con-
centric rotating cylinders, whose radius and angular velocities are r∗

i , r
∗
o and Ωi,

Ωo respectively. The annular gap between the cylinders is d = ro − ri. In addi-
tion, the inner cylinder is moving parallel to the common axis with a constant
velocity Uc (see Fig. 1). The independent nondimensional parameters appearing
in this problem are: the radius ratio η = r∗

i /r
∗
o , which fixes the geometry of the

annulus; the Couette flow Reynolds numbers Ri = driΩi/ν and Ro = droΩo/ν
of the rotating cylinders and the axial Reynolds number Rz = dUc/ν measuring
the translational velocity of the inner cylinder. Henceforth, all variables will be
rendered dimensionless using d, d2/ν, ν2/d2 as units for space, time and the
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Fig. 1. Physical description of the Spiral-Couette problem. The basic axial-azimuthal
flow has also been depicted

reduced pressure (p∗/O∗). The Navier–Stokes equation and the incompressibility
condition for this scaling become

∂tv + (v · ∇)v = −∇p+∆v, ∇ · v = 0 . (1)

Let (u, v, w) the physical components of the velocity v in cylindrical coordinates
(r, θ, z). The boundary conditions for the flow described above are:

u(ri) = u(ro) = 0 , (2)
v(ri) = Ri, v(ro) = Ro , (3)
w(ri, t) = Rz, w(ro) = 0 , (4)

where ri = η/(1− η) , ro = 1/(1− η) .
In order to compare with experiments and also with previous works, we are

going to consider the usually termed open flow case. The only experiments of
the Taylor–Couette flow with axial sliding of the inner cylinder known to us are
those of [14] which were carried out in an annulus with open endwalls. The steady
velocity field vB , independent on the axial and azimuthal variables, satisfying
(1), (2), (3) and , (4) is

uB = 0, vB = Ar +B/r , wB = C ln(r/ro) , (5)

as can be seen in [13]. The constants A, B, C are given by

A =
Ro − ηRi
1 + η

, B =
η(Ri − ηRo)

(1− η)(1− η2)
, C =

Rz
ln η

. (6)
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2.1 Linear stability of the SCF

In the preceding section the basic flow was obtained. We now perturb this ba-
sic state by a small disturbance which is assumed to vary periodically in the
azimuthal and axial directions:

v(r, θ, z, t) = vB(r) + u(r)ei(nθ+kz)+λt , (7)
p(r, θ, z, t) = pB(r, z) + p′(r)ei(nθ+kz)+λt , (8)

where vB = (0, vB , wB) is given by (5), n ∈ N, k ∈ R, λ ∈ C and the boundary
conditions for u are homogeneous, u(ri) = u(ro) = 0. Linearizing the Navier–
Stokes equations about the basic solution, we obtain the eigenvalue problem

λu = −∇p′ +∆u− vB · ∇u− u · ∇vB . (9)

In order to solve (9) numerically, a spatial discretization of the problem is accom-
plished by a solenoidal Petrov-Galerkin scheme [19]. A comprehensive analysis
of the method can be found in [21] or [3]. The discretization scheme leads to a
generalized eigenvalue problem of the form

λGx = Hx , (10)

where matrices G and H explicitly depend on the physical parameters of the
problem (see [20], for details).

Let us consider the symmetries of our problem. The Navier–Stokes equations
are invariant with respect to the specular reflections {z → −z, w → −w} and
{θ → −θ, v → −v}. They are also invariant with respect to rotations around the
axis, axial translations and time translations. The boundary conditions break
some of these symmetries. Ri or Ro different from zero breaks the specular
reflection θ → −θ, and Rz = 0 breaks the specular reflection z → −z. In order
to keep the invariance we must change the sign of these Reynolds numbers, and
of the corresponding wavenumbers n and k in the solutions of the linearized
system (10). Therefore the symmetries allow us to restrict the computations to
the cases Rz > 0 and Ri > 0. Furthermore, since the Navier–Stokes equations
are real, the complex conjugate of a perturbation (7, 8) is also a solution, and
we can change simultaneously the sign of n, k and the imaginary part of λ. Then
we can restrict the computations to the case k ≥ 0.

When n and k are nonzero, the eigenvector of the linear problem has the
form of a spiral pattern (see Fig. 9, showing an experimentally observed spiral
flow). The wavenumbers n and k fix the shape of the spiral. The angle α of the
spiral with a z–constant plane is given by tanα = −n/(rok) = −(1− η)n/k.

If Rz = 0, the symmetry z → −z is not broken, and at the bifurcation point,
in the n = 0 case, we get two pairs of purely imaginary eigenvalues bifurcating
at the same time, representing spirals with opposite slope –or angle– [5]. These
spirals have opposite values of n. For Rz = 0, the corresponding eigenvalues split
apart, and one of the two spirals ±n becomes dominant. Therefore we expect
mode competition and switching between +n and −n for Rz close to zero.
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2.2 Computation of the neutral stability curves

It has long been known that whenever two or more control parameters repre-
senting different physical mechanisms for instability compete, one can observe
stability turning points, islands of stability, multiple minima, and large changes
in the critical azimuthal wavenumber. Examples include the competition between
buoyancy–induced shear and rotation in radially Couette–flow [1], between ro-
tation and axial sliding in modulated Taylor–Couette flow [17]. In the present
problem, the competition between wall–driven shear and centrifugal instability
mechanisms will lead to possible hysteresis experimental phenomena.

Let σ be the real part of the first eigenvalue of the linear system (10) which
crosses the imaginary axis. The stability of the basic flow is determined by the
sign of σ. For negative values of σ, the basic flow is stable under infinitesimal
perturbations. When σ is zero or slightly positive, the steady flow becomes un-
stable and bifurcated secondary flows may appear. It should be remarked that
σ(n, k, η,Ri, Ro, Rz) is a function of the physical parameters which play an es-
sential role in the dynamics of the system. For fixed η, Ro, Rz, and given n, k
the inner Reynolds number Ri,c(n, k) such that σ = 0 is computed. The critical
inner Reynolds number is given by Ri,crit = minn,k Ri,c(n, k), and the corre-
sponding values of n, k are the critical azimuthal and axial wavenumbers ncrit,
kcrit which will dictate the geometrical shape of the critical eigenfunction, which
may be a spiral flow or travelling Taylor vortices.

The curves in the (k,Ri) plane given by σ(k,Ri) = 0 are commonly termed
Neutral Stability Curves (NSC). The main goal at this stage is to compute the ab-
solute minimum of the NSC, which will give the critical parameters (kcrit, Ri,crit)
– in fact, the absolute minimum of the set of the NSC corresponding to integer
values of n will be found. As it will be seen later, the NSC curves for this problem
may have multiple extrema (maxima and minima), exhibit disconnected parts
and sharp geometrical forms. Furthermore, these curves may exhibit multival-
ued branches as functions of k, and these features can change abruptly in some
parameter ranges (see Fig. 2). Standard methods applied to a regular grid in the
plane (k,Ri) require exorbitantly high accuracy computations. Consequently, an
alternative 2-dimensional Newton-Raphson method has been used; see [19] for
details.

2.3 Stability analysis for η = 0.5

The computation of Ri,c(Rz, Ro) for the wide gap η = 0.5, gives as a first striking
result the presence of a zeroth–order discontinuity in Ri,c, in the co–rotating case
(Ro > 0). Although this behavior has been considered possible by some authors,
[7], specific examples showing this kind of discontinuity are very unusual in the
fluid mechanics literature.

For Ro = 200 the discontinuity appears for Rz = 82.63. We have shown in
Fig. 2a the critical Ri as a function of k. For Rz = 80 the dominant mode is
n = −1, giving Ri,c = 373.43 and kc = 1.68; but for Rz = 82.63 the marginal
stability curve of the n = −4 mode develops an island of instability for a much
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lower Ri,c = 119.13, introducing a discontinuity in Ri,c. Notice too that the
change in ncrit is not ±1 as usual, but it changes in three units. The island of
instability is very small (Fig. 2a, Rz = 84), becoming larger when we move away
of the discontinuity. All these features make the numerical computation of the
critical parameters very difficult from the algorithmic point of view. For these
reasons we have developed specific numerical methods, outlined in [20], in order
to detect the islands as soon as they appear. Similar islands of instability have
been found in [17]. Before crossing the Ri,c discontinuity, the marginal stability
curve for n = −4 has a single extremum, a minimum (Fig. 2a, Rz = 80), giving
the critical parameter values (Ri,c, kc). After crossing, and due to the appearance
of the island, we have three extrema, two minima and a maximum, and the
marginal stability curve has two disconnected branches. If we move to higher Rz
values, the island grows until it merges with the other branch (Fig. 2a, Rz =
120, 122); the marginal curve has now a single minimum. Plotting the position
of all the extrema as a function of Rz, we get an S-shaped curve, displayed
in Fig. 2b; the solid curve gives the absolute minimum, and the dashed curve
corresponds to the other extrema. The critical Reynolds number Ri,c becomes
discontinuous (zeroth order discontinuity) as soon as the island of instability
appears for Rz = 82.64; experiments made by increasing Ri and Rz held fixed
would report the solid curve in Fig. 2b. The whole critical surface is multivalued
and continuous, but is folded in such a way that a cusp develops; Fig. 3a shows
a perspective view of the critical surface. Fig. 3b shows the same critical surface
with the curves corresponding to a change in the critical azimuthal wavenumber
n, where the surface is not smooth (the tangent plane is discontinuous along these
curves). The projection of the curves corresponding to a change in the azimuthal
wavenumber n are plotted in Fig. 4. The edges of the cusp region are plotted
as thick lines in both Figs. 3b and 4. These discontinuities and fold structure
may have important consequences which could be detected experimentally, like
hysteresis phenomena, as well as the discontinuity in Ri,c.

Figure 5 shows Ri,c and α as a function of Ro for different values of Rz.
The critical Reynolds number Ri,c (Fig. 5a) is almost independent of Rz in the
counter–rotating region Ro < 0. But in the co–rotating region, where the cusp
develops, we have two well–separated kinds of behavior. This figure is a front
view of the cusp structure (Fig. 3) along the Rz axis. For small axial sliding Rz,
before the discontinuity, Ri,c is very close to the values without sliding (Taylor–
Couette flow). For higher axial sliding, after the discontinuity, Ri,c falls to much
lower values. The axial sliding is destabilizing, except in the small region where
the axisymmetric mode (n = 0) is dominant. The destabilizing effect becomes
significant only in the co–rotating case, after the discontinuity. The centrifugal
instability seems to be the dominant mechanism (as in Taylor–Couette, Rz = 0)
except after the discontinuity, where a shear instability due to the axial sliding
becomes dominant; the cuspidal zone can be thought as the transition region
between both mechanisms. This qualitative change can also be noticed in the
angle of the spiral pattern α (Fig. 5c), which jumps from values less than 0.2
radians (10o) to values close to 1.2 radians (70o). We also notice that the shear–



124 A. Meseguer and F. Marquès

(a)

2 5 8
k

2 5 8
k

2 5 8
k

50

150

250

350

450

550

Ri
c

2 5 8
k

Rz = 80 Rz = 84 Rz = 120 Rz = 122

(b)

0 50 100 150
Rz

50

150

250

350

450

Ric

0
-1

-2

-3

-4 -3

Fig. 2. (a) Formation and evolution of an island of instability for η = 0.5 and the
dashed one to n = −1. (b) The corresponding critical inner Reynolds number Ri,c as a
function of Rz (solid line); the dashed line is a section (Ro = 200) of the critical surface
(Fig. 5). The labels refer to the dominant azimuthal mode number n; the hollow circles
are the transitions between different n. Ri,c is discontinuous for Rz = 82.64
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Fig. 4. Dominant azimuthal mode n at criticality, as a function of Ro, Rz; η = 0.5.
The shaded region corresponds to the fold, whose edges are plotted as thick dashed
lines

instability dominated branch is very close to the solid body rotation line (see
Fig. 5a), where the centrifugal instability does not play a significant role; see
[16]. Figure 6 shows Ri,c and α as a function of Rz for different values of Ro
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Fig. 5. Critical parameters for η = 0.5, as functions of the outer Reynolds number Ro.
(a) Critical inner Reynolds number Ri,c; the solid straight line is the rigid rotation line
Ri = ηRo. (b) Angle of the spiral pattern α in radians

in the co–rotating case. In Fig. 6a sections of the cusp region are displayed; the
critical Ri,c is in fact the minimum of the values in the multivalued region, so
we have a discontinuity which grows when increasing Ro. The discontinuity has
been displayed in Fig. 6b.

The bicritical points where the azimuthal wavenumber n changes and two
eigenvalues bifurcates simultaneously are distinguished with a vertical bar. The
effect of the sliding on these axisymmetric modes is slightly stabilizing, in con-
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trast to their destabilizing effect on the non-axisymmetric modes, mainly in the
co–rotating region, an effect also reported by Ali et al. [2].

2.4 Comparison with experimental results (η = 0.8)

Some previous experimental studies have been reported on the stability of the
spiral Couette flow. In fact, in an excellent study done in [14], both theoretical
and experimental, a stability analysis has been devoted to an specific zone on
the parameter space, inside the cusp region. The experimental apparatus has
a gap η = 0.8, with open ends, corresponding to our open flow case. The ro-
tational speed of the external cylinder is held fixed at Ro ≈ 750. Ludwieg’s
experimental device needed high external rotation speeds in order to avoid pre–
turbulent stages induced by transients. The unique design of the experimental
apparatus enforced a linear dependence between axial velocity and azimuthal
rotation speed of the inner cylinder moving relative to an outer stationary cylin-
der (without axial velocity but rotating). As a result, the experimental paths in
the parameter space (Ri, Rz) were straight lines, as can be seen both in Figs. 7,
8. Ludwieg’s experimental results (Fig. 7) are given in terms of two nondimen-
sional parameters c̃φ and c̃z which describe the motion of the fluid. As in [12],
we have used the values of c̃φ, c̃z to compare with Ludwieg’s results. A more
detailed discussion about the parameters used by different authors is given in
[20]. The dependence between c̃φ, c̃z and our variables Ri, Ro, Rz are given by
the following equations (for η = 0.8):

c̃φ =
1 + η

1− η

Ro −Ri
Ro +Ri

, c̃z =
1 + η

1− η

Rz
Ro +Ri

. (11)

For the η = 0.8 case the narrow gap approximation is not clearly justified. This
can be a source of error in the experimental values given by [14]. It would be
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Fig. 7. Ludwieg experiments. Experimental results, from [14]; η = 0.8, Ro = 750

necessary to know the original experimental results in terms of the Reynolds
numbers in order to work with the true control parameters Rz and Ri.

The experimental results of Ludwieg are summarized in Fig. 7. The shaded
area is the error bandwidth experimentally obtained. These errors are very large
in the fold region of the critical surface, and the reasons will be analyzed shortly
thereafter. Figure 7 also shows several stability criteria. Three of them, labelled
Ludwieg (nur rot. Stöc), Chandrasekhar and Howard und Gupta, were obtained
assuming axisymmetric perturbations, and using physical considerations as in
the Rayleigh’s criterion (labelled Chandrasekhar in Fig. 7). All of them are in
very poor agreement with the experimental data. Instead, Ludwieg’s stability
criterion, obtained by exactly solving the linearized Euler equations in the narrow
gap limit, is reasonably close to the experimental data.

A linear stability analysis of the Spiral Couette problem was reported by
Hung, Joseph & Munson (1972) (referred from now on as HJM), where only
particular regions in parameter space where considered. Their results are in good
agreement with some of Ludwieg’s results, although there where some unexplored
zones that the present work has studied in detail. We have computed the critical
curve for Ro = 750, which is single–valued considering Rz(Ri), but it is well
within the cusp region. The joint results of the three analyses have been sketched
in Fig. 8, which corresponds to the section Ro = 750 of the critical surface. Our
results are fully coincident with the previous computations of HJM, except for
two points on the left of the minimum of our critical curve in Fig. 8, where
the results of HJM clearly diverge from the experimental results. It is apparent
that the results of HJM are confined to the intermediate branch of the critical
surface fold, where the changes in Rz,c are small. The other branches shows
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Fig. 8. Comparison between the experimental and theoretical results of Ludwieg
(1964), Hung, Joseph & Munson (1972) and the present work. Parameters: η = 0.8,
Ro = 750

very high slopes of Rz,c(Ri); furthermore, the change in the critical azimuthal
wavenumber n is of more than 15 units in this range. This is an indication of the
difficulties HJM encountered outside the intermediate branch, which explains the
discrepancy of their two computed points in the high slope region of the stability
curve. The experimental results of Ludwieg show remarkable agreement with our

Fig. 9. Ludwieg experiments. Picture of the spirals, from [27]

numerical results. The best experimentally defined bifurcation points correspond
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to the vertical branch (where shear is the dominant instability mechanism), and
on this curve the discrepancies with our results are less than 4%; we must mention
that this is the first time the vertical branch has been computed numerically.
In the region close to the minimum of the critical curve, the onset of instability
is in very good agreement with the experiments, but some points on the right
side of the minimum clearly deviate from the numerical predictions. Notice that
the points A and B, marked with a black and white circle, where Ludwieg could
not decide about their stability, are very close to the hysteresis region, strongly
suggesting that the bifurcation could be subcritical in this region of parameter
space. Ludwieg acknowledged the experimental uncertainties in this parameter
region; Fig. 7b shows the estimated uncertainty as a dashed area. For a detailed
explanation of Ludwieg’s experimental procedure, see [14] or [20] .

3 Spiral–Poiseuille flow

The first study of the stability of the spiral Poiseuille problem against three-
dimensional perturbations, was carried out in [6] and in [10]. In [6], a monotonical
dependence between the critical parameters was assumed for axisymmetric and
non-axisymmetric perturbations. In a more recent study, reported by Takeuchi &
Jankowski in 1981, [25], both numerical and experimental, it was demonstrated
that the axial effects may stabilize or destabilize the basic flow depending on
the sign of the speed rotation ratio of the cylinders. Takeuchi & Jankowski (TJ)
experiments, are, as far as we know, the most recent ones and they were carried
out for the wide gap η = 0.5 case and for three different azimuthal angular speed
ratios of the cylinders (µ = Ωo/Ωi = 0, 0.2,−0.5).

A comprehensive numerical exploration of the linear stability of the spiral
Poiseuille flow is presented, covering a wide range of angular velocities, and being
focused on the co-rotation situations because of the presence of new phenomena
not observed before experimentally. The numerical computations were carried
out for the same wide gap case (η = 0.5) studied in [25] in order to compare our
numerical results with the experimental ones.

The independent nondimensional parameters appearing in this problem are
the same described SCF, where the axial sliding effect Rz is no longer present,
but replaced by the Poiseuille number, P = (∂zP ∗)(ro − ri)3/Oν2, measuring
the imposed axial pressure gradient. A physical description of the problem can
be found in Fig. 10. As in the SCF, the azimuthal component of the basic
vector field is dictated by the Couette flow. The axial basic flow, represented
in Fig. 10, is now a superposition of logarithmic and parabolic profiles. The
explicit expressions for the basic flow can be obtained under the same symmetry
assumptions that in SCF; see [13]:

uB = 0, vB = Ar +
B

r
, wB = C ln(

r

ro
) +

P

4
(r2 − r2o), (12)
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Fig. 10. Physical description of the Spiral-Poiseuille problem. The basic axial-
azimuthal flow has also been depicted

where the constants A, B and C are

A =
Ro − ηRi
1 + η

, B =
η(Ri − ηRo)

(1− η)(1− η2)
, C =

1
ln η

P (1 + η)
4(1− η)

. (13)

3.1 Linear stability results (η = 0.5)

As before, the basic spiral Poiseuille flow vB = (0, vB , wB) is perturbed by a
small disturbance which is assumed to be periodic in the azimuthal and ax-
ial variables. The linear stability analysis is carried out by the same solenoidal
Petrov-Galerkin scheme, [19], already used in the analysis of the sliding case,
SCF, Sec. 2. The linear stability of the SPF has been explored in the range of
values Ro ∈ [0, 450], P ∈ [0, 1500] and Ri ∈ [0, 900]. The numerical algorithm
used to compute the neutral stability curves and their minima is the same that
was used in [20]. For each pair of values (P,Ro), the critical inner Reynolds
number Ri,c and the critical axial wavenumber kc are computed for different
values of the azimuthal wave-number n. The selection of the minimum Ri value
leads to a functional dependence Ri,c = f(P,Ro). Geometrically, the function
f defines a surface in the parameter space which is usually termed marginal
or critical surface. This surface is not regular, being not differentiable in the
points were the change of azimuthal dominance take place. This is a common
feature in hydrodynamic stability. In Fig. 11, Ro-constant sections of the criti-
cal surface have been depicted for low outer rotations. It can be observed that
the axial pressure gradient has a stabilization effect over the axisymmetric and
non-axisymmetric perturbations with low azimuthal wave number (|n| ≤ 3).
Nevertheless, for higher values of Ro, the transition curves exhibit multiplicity
with respect to the variable P and zeroth-discontinuities due to the competi-
tion between centrifugal and shear instability mechanisms. Mathematically, this
phenomenon has the same explanation as in the SCF.
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Figures 12a-d show the formation of an island of instability as long as the
Poiseuille number is increased, for a fixed outer rotation Reynolds number (Ro =
450). Initially, for P = 1000, the dominant azimuthal mode is n = −3, see Fig.
12a. For P = 1100, an island of instability appears. This island is associated
to another azimuthal mode (n = −6), being dominant and lowering radically
the critical Ri value in a factor of four approximately, see Fig. 12b. As long as
P is increased, the island grows in size, and eventually merges with the upper
branch of the n = −6 mode, as shown in Fig. 12c and Fig. 12d. Altogether,
this mechanism leads to the presence of a folding in the critical surface, in the
same way as it appeared in the SCF. As it can be observed in Fig. 13, the
critical curves exhibits a folding as long as the outer rotation Ro parameter is
increased. Figure 13 is a cross section of the critical surface plotted in Fig. 14
for different values of Ro. For Ro > 250, the critical curves exhibit a multivalued
branch which can not be computed as a function of P . Therefore, Ri is the
fixed parameter in those branches, being Pcrit. the sought value for instability.
The whole phenomena can be observed globally in Fig. 14. This anomalous
behaviour has been already reported numerically in [20] and experimentally in
[14] for the spiral Couette flow. Apparently, this anomaly was not detected in
TJ experiments because they worked in restricted planes Ro = µηRi. In Fig.
14, we have indicated two curves, named TJ1 and TJ2, which correspond to
the numerical and experimental exploration made by Takeuchi & Jankowski for
their cases µ = 0 and µ = 0.2, respectively. As depicted in Fig. 14, TJ numerical
and experimental exploration range is far away from the cuspidal zone where
the folding appears. The projection of the transition curves between different
azimuthal wavenumbers n has been plotted in Fig. 15. The projection of the
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Fig. 12. Formation of an island of instability in the SPF for Ro = 450

curves of maxima (M) and minima (m) of Fig. 14, which are the boundary
of the cuspidal zone, and where hysteresis phenomena may appear, are also
included in Fig. 15. Similar computations, not reported here, were done in the
counter-rotation (RiRo < 0) situations. Due to the dominance of the centrifugal
instability mechanism in this region, the critical surface exhibits a quite regular
behaviour, as in the SCF.

4 Conclusions

A comprehensive exploration of the linear stability of the Taylor–Couette flow
with imposed axial effects has been done. The study has been focused in two
particular problems, the Spiral Couette and Spiral Poiseuille flows. In both prob-
lems, complex critical behaviour has been detected for co-rotation situations.
The critical surfaces Ri,c = f(Rz, Ro) and Ri,c = f(P,Ro) exhibit zeroth order
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discontinuities which can only be detected making use of a specifically tailored,
efficient and robust numerical scheme for the computation of the neutral sta-
bility curves. This unusual phenomena in hydrodynamical stability problems
has been explained in terms of competition between two independent instability
mechanisms: in the current problems the centrifugal instability, dominant in the
counter–rotating regime and also for small axial effect, competes with the shear
instability induced by the axial motion. For the Spiral Couette flow, experimen-
tal evidences confirm this anomalous behaviour. For this problem, our numerical
computations are in complete agreement with the experimental results and with
previous numerical approaches. For the Spiral Poiseuille flow, additional exper-
iments would be required to confirm the presented computations. Overall, both
problems would require suitable experimental procedures (i.e. independence be-
tween axial and azimuthal speeds) in order to properly detect the first instability
of the basic spiral flow, and explore the competition between the different insta-
bility mechanisms in the fold region.
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Stability and experimental velocity field in
Taylor–Couette flow with axial and radial flow

Richard M. Lueptow

Northwestern University, Evanston, IL 60208, USA

Abstract. The imposition of a radial or axial flow on cylindrical Couette flow alters
the stability of the system and modifies the velocity field. An axial flow stabilizes cylin-
drical Couette flow. The supercritical flow includes a rich variety of vortical structures
including helical and wavy vortices. An axial flow also results in translation of the vor-
tices with the axial flow. A radial flow through porous cylinders stabilizes cylindrical
Couette flow, whether the radial flow is inward or outward. An exception is that a small
radial outward flow destabilizes the flow slightly. The radial flow results in displacing
vortex centers toward the cylinder from which fluid exits the annulus. For combined
axial and radial flow, the axial flow stabilizes the cylindrical Couette flow regardless
of the radial flow. In addition, the radial flow stabilizes the flow compared to the sit-
uation with no radial flow. Above the supercritical transition a wide variety of flow
regimes occur in the case where the inner cylinder is porous and the outer cylinder is
nonporous. The velocity field for cylindrical Couette flow with axial flow and a radial
inflow at the inner cylinder is altered very little for small radial flows. However, the
vortices shrink in size as they translate in the annulus as fluid is lost through the inner
cylinder.

1 Introduction

The stability of Taylor vortex flow is altered when an additional flow is superim-
posed on the cylindrical Couette flow. In particular, the superposition of axial
flow in the annulus or radial flow through a porous wall of the cylinders as shown
in Fig. 1 can modify the conditions at which supercritical transition occurs and
can modify the nature of the supercritical vortex structure. The effect of axial
flow, radial flow, and combined axial and radial flow on the stability of the flow,
the nature of the vortex structure, and the resulting velocity field are discussed
in this chapter. We restrict this discussion to the cases where the inner cylinder
rotates within a fixed outer cylinder in the presence of an axial flow, a radial
flow through both cylinders, combined axial flow and radial flow through both
cylinders, or combined axial flow with radial sink flow through the inner cylinder.

Pressure-driven axial flow in an annulus between a rotating inner cylinder and
a fixed outer cylinder has several important engineering applications including
journal bearings, biological separation devices, and rotating machinery. Two
potential instabilities are present when an axial flow is imposed on cylindrical
Couette flow with the inner cylinder rotating and the outer cylinder fixed. First,
a centrifugal instability related to the curved streamlines of the flow results in
vortices in the annulus. Upon reaching a critical speed of the inner cylinder, the
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Fig. 1. Sketch of the flow configuration. The radial flow can be inward as shown or
outward [1]. (Reprinted with permission of AIP)

vortices that appear are toroidal, but higher order vortical flows including wavy
and turbulent vortices can appear at rotational speeds above the critical speed
for vortices to appear. The second instability that can occur is a shear instability
related to Poiseuille channel flow as the fluid flows axially in the annulus. This
instability appears as turbulence. Of course, the two instabilities interact with
one another so that the flow that appears depends on both the rotational speed
of the inner cylinder and the axial flow velocity.

Radial flow in the annulus between differentially rotating porous cylinders
occurs during dynamic filtration using a rotating filter. In these filtration de-
vices, a suspension is contained between a rotating porous inner cylinder and a
stationary nonporous outer cylinder. Filtrate passes radially through the porous
wall of the rotating inner cylinder, while the concentrate is retained in the an-
nulus. It is thought that the supercritical vortices wash particles off of the filter
surface preventing the plugging of pores of the filter medium with particles. The
imposition of a radial flow in addition to cylindrical Couette flow can alter the
nature of the unstable flow regimes that appear. However, the situation is dif-
ferent from that for an imposed axial flow. For a radial flow, the only instability
that is present is the centrifugal instability. However, the imposed radial flow
can alter the nature of this instability substantially.

Of course, both axial and radial flow in the annulus of a cylindrical Couette
flow cell can be imposed simultaneously, as shown in Fig. 1. In this case, both
the centrifugal instability and the shear instability can occur. But both can be
altered by the presence of a radial flow.

Before proceeding, it is helpful to define three dimensionless parameters re-
lated to the flow. The cylindrical Couette flow is characterized by a Taylor num-
ber. Although the Taylor number, which relates the centrifugal forces to the
viscous forces, has several different forms, we use Ta = riωd/ν, where ri is the
radius of the inner cylinder, ω is the rotational speed of the inner cylinder, d
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is the width of the annular gap, and ν is the kinematic viscosity. This form of
the Taylor number, often called a rotating or inner Reynolds number, is used
because it is simple and consistent with the form used in several recent studies
[2], [3], [4], [5], [6]. The axial flow is characterized by the axial Reynolds
number, which is defined as Rea = wd/ν, where w is the average axial velocity
based on the axial volume flow rate. The radial flow is described by the radial
Reynolds number, α = ud/ν, where u is the radial velocity at the inner cylinder
based on the radial volume flow rate divided by the surface area of the inner
cylinder. A single geometric parameter, the radius ratio, η = ri/ro, where ro is
the radius of the outer cylinder, is also necessary to fully specify the flow.

2 Cylindrical Couette flow with an imposed axial flow

2.1 Stability

The linear stability of circular Couette flow in the annulus between a rotating
inner cylinder and a concentric, fixed outer cylinder has been studied from both
theoretical and experimental standpoints. The instability appears as pairs of
counter-rotating, toroidal vortices stacked in the annulus. Taylor [7] conducted
a simple flow visualization experiment to confirm his analytic prediction for the
onset of the instability. At higher rotational speeds of the inner cylinder the vor-
tices become wavy and, eventually, turbulent. Chandrasekhar [8], DiPrima and
Swinney [9], Kataoka [10], and Koschmieder [11] provide extensive summaries
of the abundant research on this topic since Taylor’s pioneering work.

Taylor’s analysis of the stability of cylindrical Couette flow can be extended
to include an axial flow in the annulus for the transition from stable Couette-
Poiseuille flow to axial flow with Taylor vortices. The first such analyses were
for the case of axisymmetric disturbances in a narrow annular gap [12], [13].
The analysis was later extended to arbitrarily wide annular gaps [14], [15].
In all cases the analysis was the standard linear stability analysis: The velocity
and pressure are expressed as the sum of the stable flow plus a small perturba-
tion. Upon substitution into the unsteady, incompressible, axisymmetric Navier–
Stokes equations, the higher order terms are discarded and the equations for the
stable motion subtracted leaving equations in terms of the perturbations. The
perturbations are expressed as normal modes in terms of a radially-dependent
amplitude function, an axial wavenumber, and an amplification factor. Upon
appropriate manipulation of the equations, a sixth order ordinary differential
equation for one of the amplitude functions results. The resulting eigenvalue
problem is solved with the ultimate goal being the determination of the mini-
mum Taylor number and associated wavenumber and amplification factor that
satisfy the ordinary differential equation for specified axial Reynolds number
Rea and geometry η. The amplification factor is directly related to the axial
velocity of the vortices in the annulus. Several methods have been used to solve
the eigenvalue problem.

The results of the axisymmetric stability analysis indicates that an axial
flow in the annulus stabilizes the circular Couette flow, so that the transition to
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supercritical Taylor vortex flow occurs at a higher Taylor number. These results
have been experimentally confirmed [16], [17]. In addition, the theory predicts
that the vortices translate axially in the annulus in the same direction as the bulk
axial flow. More recent analyses have indicated that the vortices travel axially at
about 1.17 times the average axial velocity of the imposed axial flow [2], [15],
[18] [19], [20].

The axisymmetric analysis described above fails to properly predict the flow
for Rea > O(10). Above this axial Reynolds number, non-axisymmetric modes
dominate [2], [5], [17], [18], [21], [22]. The non-axisymmetric modes are in
the form of a pair of helical vortices. The helix angle of the vortices corresponds
to that of the vortex being shifted by one vortex pair for each revolution of
the vortex [6]. Experimental results show that the inclination of the vortices
is opposite that of the flow and that the spiral vortices translate axially with
the flow [6]. Chung and Astill [2] contend that this inclination is logical based
on the nature of the asymmetric perturbation. Takeuchi and Jankowski [21]
indicate that there is no theoretical basis upon which to select the sign of the
helical vortex angle.

Recently, cylindrical Couette flow with an axial flow has been used as a
model for the study of the distinction between absolutely unstable flow and
convectively unstable flow. Early experiments did not differentiate between these
flow regimes. But at low axial Reynolds number and Taylor numbers very near
the transition to vortical flow, the spatio-temporal behavior of the flow can be
classified absolutely stable, convectively unstable, and absolutely unstable. A
stability diagram is shown in Fig. 2 [20]. The flow regimes can be described as
follows:

1. In the absolutely stable flow regime, any perturbation to the flow decays,
and the flow vortices do not form. The boundary of absolute stability is
computed using the standard linear stability analysis described earlier in
this section. When there is no axial flow, the flow is absolutely stable below
the critical Taylor number and absolutely unstable above it.

2. In the convectively unstable flow regime, a localized perturbation cannot
propagate upstream, but it will grow as it is advected downstream. Even-
tually the perturbation is carried downstream out of the system. Without
a permanent source of perturbations, the system returns to the basic, sta-
ble state everywhere. Convectively unstable flow is evident experimentally
in two forms [19], [23], [24]. In the first form, a localized perturbation is
introduced experimentally by rotating both cylinders back and forth once
through a small angle or by moving the inlet boundary forward and back
one time. The resulting pulse consists of two or three vortex pairs that ap-
pear near the upstream end of the test cell where no vortices are otherwise
present. The vortex pairs propagate axially with the axial flow growing in
amplitude and number as they proceed downstream. In the second form, the
perturbation is noise inherent in the system. In this case, no vortices appear
near the inlet, but far enough downstream axially propagating vortices ap-
pear. At a given Reynolds number, the distance downstream from the inlet
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that the propagating vortices appear increases with decreasing Taylor num-
ber. Although experiments are necessarily restricted to a finite aspect ratio,
it is likely that far enough downstream the noise-sustained propagating vor-
tices will always appear, as long as the system is above the limit for absolute
stability in the convectively unstable flow regime [19]. The convectively un-
stable flow regime occurs at larger driving conditions (higher Taylor number)
and smaller through-flow conditions (lower axial Reynolds number) than the
absolutely stable flow regime.

3. In the absolutely unstable flow regime, a localized perturbation grows and
propagates both upstream and downstream. This flow regime occurs at larger
driving conditions and smaller through-flow conditions than convectively
unstable flow. The flow itself appears similar to that for noise-sustained
propagating vortices in the convectively unstable regime [19], [24]. Near
the inlet vortices are not evident, because the flow enters the system with
negligible azimuthal velocity. Farther downstream propagating vortices oc-
cur. However, there are several differences with convectively unstable regime
[24]. First, the boundary between the nonvortical flow and the propagating
vortices is stationary for absolutely unstable flow, but is time dependent for
convectively unstable flow. Second, the distance from the inlet to the bound-
ary between nonvortical and vortical flow scales differently in the two flow
regimes. Third, the power spectrum of the propagating vortices velocity is
much noisier for the convectively unstable regime than for the absolutely
unstable regime.

Fig. 2. Bounds for convective and absolute instability at η = 0.85 based on [20].

All of the studies mentioned to this point were concerned with the first insta-
bility transition from stable Couette-Poiseuille flow to translating toroidal vortex
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flow or helical vortex flow at relatively low Re and Ta near the critical values.
For instance, the stability map shown in Fig. 2 is only valid at relatively low Re.
At higher Re nonaxisymmetric spiral modes grow [19]. In fact, a rich variety of
flow regimes occur at higher Taylor and Reynolds numbers. The earliest study of
higher order instability transitions was undertaken by Kaye and Elgar [16] and
extended by others [25], [26]. Kaye and Elgar varied the flow over a wide range
of Taylor numbers and axial Reynolds numbers and found two flow regimes in
addition to stable Couette-Poiseuille flow and translating Taylor vortex flow.
At high Taylor numbers they found a flow regime consisting of turbulent Taylor
vortices. At high axial Reynolds numbers they found fully turbulent channel flow
with no vortices. Their results indicate that the transition from nonvortical flow
to vortex flow is stabilized by the axial flow, while the transition from stable
flow to turbulent flow is destabilized by the cylindrical Couette flow.

In the absence of axial flow, several other unstable flow regimes consisting
of toroidal vortices have been experimentally observed as the Taylor number is
increased. These flow regimes include wavy vortex flow, modulated wavy vortex
flow, and turbulent vortex flow [3], [4]. However, as a result of the experimental
techniques that they used, the Kaye and Elgar study and its extensions did
not differentiate between these different flow regimes. Nevertheless, Schwartz et
al. [27] identified the appearance of wavy vortex flow for non-zero axial flow.
They found that, like the first instability, the transition from Taylor vortex
flow to wavy vortex flow is delayed to a higher Taylor number when an axial
flow is imposed. Other studies have mentioned higher-order transitions. Kataoka
et al. [28] presented a map of flow regimes in the Taylor number-Reynolds
number plane, although they offered minimal explanation of their experimental
methodology or their results. Bühler and Polifke [5] also presented a map of flow
regimes for a limited range of Taylor and Reynolds numbers. Since their emphasis
was on helical vortex flow at low Taylor numbers, they did not differentiate
between nonwavy and wavy vortex flow or other higher order instabilities.

Lueptow et al. [6] used visual and optical detection to map the vortical flow
regimes over a wide range of Tayor numbers and axial Reynolds numbers. They
identified eleven flow vortical flow regimes, depending on Taylor number and
Reynolds number, seven of which are shown in Fig. 3. Several types of nonwavy
and wavy vortices that appeared (LV, WV) are similar to those that exist for no
axial flow, except that the vortices are carried downstream with the axial flow.
Translating helical vortices appear at low Taylor number and high Reynolds
number. At the lowest Taylor number the helical vortices are nonwavy (HV).
But at higher Taylor number the helical vortices become wavy (HWV). At still
higher Taylor numbers the vortices are helical and wavy but quite random and
disordered in character (RWV). An odd helical flow resulted in a very narrow
range of conditions in which the vortices were stationary and had an inclination
angle opposite that of all other helical vortex flows (SHV). No explanation could
be found for this flow regime, although others have found similar anomalous
helical flow regimes [5]. At high Taylor number, the vortices are no longer
helical. Interestingly, the number of waves for the wavy vortex regimes decreases
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with increasing axial Reynolds number and Taylor number. More recent studies
indicate a wide range of translation velocities for the vortices ranging from nearly
zero for ”stationary vortices” to over two times the average axial velocity [29].
Furthermore, there seems to be no overall trend in the vortex translation velocity
with respect to axial Reynolds number or Taylor number. Nevertheless, there
seems to be a very strong linear relation between the frequency of axial vortex
passage past a point and the frequency of the inner cylinder for helical vortices.
The axial vortex passage frequency is exactly two times the rotational frequency
of the inner cylinder. There seems to be no theoretical explanation for this result.

Fig. 3. Flow regimes for cylindrical Couette flow with an imposed axial flow
for η = 0.85 [6]. Symbols represent measurement points: CP=stable Couette
Poiseuille flow; LV=laminar vortices; HV=helical vortices; HWV=helical wavy vor-
tices; SHV=stationary helical vortices; WV=wavy vortices; RWV=random wavy vor-
tices. (Reprinted with permission of AIP)

2.2 Velocity field

Although the stability of the flow and the variety of flow regimes for cylindrical
Couette flow with an imposed axial flow have been studied in depth, the velocity
field has not been studied in detail until recently. Very limited hot-wire and
laser Doppler velocimetry (LDV) measurements of the time-averaged axial and
azimuthal velocities have been performed [30], [31], [32]. Recently extensive
measurements of the instantaneous axial and radial velocity fields have been
measured using Particle Image Velocimetry (PIV) [29].
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The hot-wire measurements, which were performed at high axial Reynolds
numbers (Rea > 100) using air as the working fluid, indicate that the average
axial velocity profile is generally parabolic when vortices are present in the annu-
lus [30], [31]. These measurements were made prior to the understanding that a
variety of vortical flows could occur, as indicated in Fig. 3. However, more recent
Particle Image Velocimetry (PIV) measurements confirm that the axial velocity
profile is nearly parabolic, at least at lower axial Reynolds numbers (Rea = 23)
regardless of the nature of the vortical state. The normalized time- and space-
averaged axial velocity profile is shown in Fig. 4 for five different vortical flow
states along with the theoretical axial velocity profile for stable, laminar annular
Poiseuille flow. The averaged velocity profiles for unstable flow are remarkably
similar to the stable theoretical velocity profile. The only difference seems to be
the slightly fuller velocity profile near the inner cylinder resulting from a slight
shift of the velocity profile toward the inner cylinder, apparently due to vortical
transport of axial momentum toward the inner cylinder. This result is consistent
with previous hot-wire studies. Also noteworthy is that the velocity profiles for
the five different vortical flow states are quite similar to one another. Together
these two results indicate that the vortical flow has only a very small effect on
the axial velocity profile and that the effect is largely independent of the details
of the vortical flow state.

Fig. 4. The normalized average axial velocity profile [29]. Circles: nonwavy vortex
flow, Ta=123, Rea = 5.3, η = 0.83; wavy vortex flow, Ta=139, Rea = 5.0; Triangles:
nonwavy helical vortex flow, Ta=129, Rea = 14.2; wavy helical vortex flow, Ta=167,
Rea = 14.2; Diamonds: random wavy vortex flow, Ta=215, Rea = 23.2; Heavy solid
curve is the theoretical velocity profile for stable, laminar Poiseuille flow. (Reprinted
with permission of AIP)

The averaged azimuthal velocity profile is similar to that for Taylor–Couette
flow with no axial flow [33]. An example is shown in Fig. 5. Rather than a
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linearly varying azimuthal velocity that occurs for nonvortical flow, the velocity
profile has steep gradients near both walls of the annulus and a relatively uni-
form velocity across the middle third of the annular gap. This is a result of the
transport of high momentum fluid from near the inner cylinder and low momen-
tum fluid from near the outer cylinder toward the center of the annulus. The net
effect is a region near the center of the annulus with a nearly flat azimuthal ve-
locity profile with steep gradients in azimuthal velocity near the walls to achieve
the necessary no-slip boundary condition at the walls. Hot-wire measurements
of the azimuthal velocity profile at higher axial Reynolds numbers are consistent
with this result [30], [31].

Fig. 5. Average azimuthal velocity profile at Ta=140 and η = 0.85. Squares: Rea = 5.3;
Circles: Rea = 16.6 [32].

Perhaps more interesting are the PIV measurements of the velocity in a
meridional plane [29]. Fig. 6 shows the azimuthal velocity contours superposed
on the velocity vector field for the non-wavy, non-helical vortices. Fig. 6(a) shows
the axial-radial velocity vectors as measured in the frame of reference attached
to the apparatus. The left-to-right axial flow is evident as a strong stream of fluid
winding around vortices that do not fill the annular gap and appear alternately
displaced toward the inner and outer cylinders. This has been called a ”winding”
flow [34], [35]. However, removing the axial velocity profile, shown in Fig. 6(b),
results in vortices that fill the gap, are centered in it, and have stronger outflow
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regions than inflow regions. In fact, these vortices appear nearly the same as they
would with no axial flow imposed. As indicated in Fig. 4, the spatially averaged
axial velocity profile that has been removed in going from Fig. 6(a) to Fig. 6(b)
is nearly identical to the velocity profile for stable laminar Poiseuille flow in an
annulus. Thus, it appears that winding flow is nearly a linear superposition of
annular Poiseuille flow and non-wavy Taylor vortex flow.

Fig. 6. Radial and axial velocity vectors with azimuthal velocity contours for nonwavy
vortical flow at Ta=123, Rea = 5.3, η = 0.83 [29]. The upper line in each frame is
the rotating inner cylinder; the lower line is the stationary outer cylinder. (a) Velocity
field including the axial velocity profile. (b) Velocity field with the axial velocity profile
removed. (Reprinted with permission of AIP)

The azimuthal velocity component for non-wavy flow can be calculated nu-
merically from the radial and axial velocity components using the azimuthal
momentum equation and noting the axisymmetry of the flow [36]. The resulting
azimuthal velocity contours in Fig. 6 are distorted from the straight horizontal
contours that would appear if no vortices were present. The cause of the dis-
tortion is the advection of high azimuthal momentum fluid from near the inner
cylinder outward and low azimuthal momentum fluid from near the outer cylin-
der inward. When an axial flow is present, the extrema are somewhat downstream
of the inflow or outflow regions. This result is different from that for non-wavy
Taylor vortex flow with no axial flow [36] where the extrema in the bulges
of the contours are exactly aligned with the inflow or outflow regions between
vortices. The imposed axial flow transports azimuthal momentum downstream
at the same time that it is being carried radially, shifting the extrema in the
azimuthal velocity contours downstream from the radial outflow regions.
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Fig. 7. Radial and axial velocity vectors for wavy vortical flow at Ta=139, Rea = 5.0,
and η = 0.83 [29]. Frames are shown for nine time steps (from top to bottom) spanning
the period of one traveling wave, with the first and last frames representing the same
phase in the wave. The upper line in each frame is the rotating inner cylinder; the
lower line is the stationary outer cylinder. The axial velocity profile has been removed.
(Reprinted with permission of AIP)

The situation for vortices that are wavy is much more complicated as shown in
Fig. 7 [29]. The velocity field with the axial velocity profile removed is shown at 9
time instants progressing from top to bottom. Eight time instants correspond to
the period of one azimuthal wave of the wavy vortex, so that the first and ninth
frames depict the same phase of the azimuthal wave. Comparison of the first and
last (ninth) frames illustrates the axial translation of the vortices over the period
of one azimuthal wave, but the vortices do not translate at a uniform speed. For
instance, the counter-clockwise vortex on the left side of the first frame moves
downstream (right) in frames 1-4, but then moves upstream in frames 5 and 6,
before continuing downstream in frames 7-9. The retrograde motion is related to
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the azimuthal waviness. The axial oscillations related to the azimuthal traveling
wave add to the axial translation of the vortex due to the axial flow. Thus, the
vortices oscillate axially due to the passage of the azimuthal waviness of the
wavy vortex, while continually making progress in the same direction as the
net axial flow. A fundamental difference between wavy vortex flow and toroidal
vortex flow, each with no imposed axial flow, is that a significant portion of fluid
is transferred from one vortex to another for wavy vortices [36], [37] whereas
toroidal vortices are essentially closed cells. The cyclic transfer of fluid between
vortices is also apparent when an axial flow is imposed.

3 Cylindrical Couette flow with an imposed radial flow

Taylor’s analysis of the stability of cylindrical Couette flow can also be extended
to include a radial through flow in which it is assumed that the walls of the
concentric cylinders are porous. Both radial inflow (toward the axis of rotation)
and radial outflow (away from the axis of rotation) can be considered. Again
the analysis is the standard linear stability analysis. However in this case, the
amplification factor is set to zero at the onset of the instability, as is done with
the linear stability analysis of Taylor–Couette flow with no axial or radial flow.
The resulting eigenvalue problem is solved with the ultimate goal being the
determination of the minimum Taylor number and associated wavenumber that
satisfy the sixth order ordinary differential equation for specified radial Reynolds
number α and radius ratio η.

Chang and Sartory [38], [39] first considered the hydromagnetic stability
of an electrically conducting fluid between porous concentric cylinders with a
wide gap between the cylinders. Although they were primarily concerned with
the asymptotic behavior of the flow at large radial Reynolds numbers, they
predicted that radially inward flow through the porous cylinders should stabilize
the flow. Radially outward flow should destabilize the flow for weak radial flows
but stabilize the flow for strong radial flows. Bahl [40] considered the linear
hydrodynamic stability for the case where the gap between the cylinders is small
compared to the radius of the cylinders and the axial wavenumber is fixed, rather
than being a result of the analysis. His stability analysis indicated that an inward
radial velocity stabilizes the flow, while an outward radial velocity destabilizes
the flow. Bühler [41], found a similar result in the narrow gap approximation.
Reddy and Reddy [42], and Reddy et al. [43] extended Bahl’s linear stability
analysis to non-Newtonian fluids. In contrast to other results, they concluded
that for Newtonian fluids radial inflow destabilizes the flow, and radial outflow
stabilizes the flow. But several ambiguities in their analysis hint that their results
may be unreliable.

The most recent and thorough analyses of the stability problem are presented
by Min and Lueptow [44] and Kolyshkin and Vaillancourt [45]. In both cases,
the narrow gap restriction was not imposed. Min and Lueptow considered only
axisymmetric perturbations, while Kolyshkin and Vaillancourt considered both
axisymmetric and non-axisymmetric perturbations. Non-axisymmetric pertur-
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bations are the most unstable ones only for the situation where the cylinders
are rotating in opposite directions. For the situation of the outer cylinder fixed,
which is of interest here, the axisymmetric perturbations are most unstable.

Figure 8 shows the dependence of the critical Taylor number for the onset
of vortical flow on the radial Reynolds number. Radial inflow, corresponding to
negative radial Reynolds numbers, increases the critical Taylor number for the
four radius ratios considered, ranging from 0.5 to 0.95. Min and Lueptow [32],
[44] attributed the stabilizing effect of radial inflow to the location of the ap-
pearance of the incipient Taylor vortex. The incipient motion leading to a vortex
for cylindrical Couette flow with no imposed radial flow appears first near the
inner cylinder and progresses radially outward as the Taylor number increases
[14], [46]. The imposition of a radial inflow at the inner cylinder washes the
incipient vortex into the porous inner cylinder and out of the annulus delaying
the onset of vortical flow. It is also evident from Fig. 8 that a radial outflow
(positive radial Reynolds number) also stabilizes the flow. However, expanding
the vertical scale of Fig. 8 at small positive radial Reynolds numbers indicates
that a small radial outflow destabilizes the flow slightly so that transition to
vortical flow occurs at a value a few percent less than the critical Taylor number
with no radial flow. Again Min and Lueptow [44], [45] attribute this to the
location of the incipient vortical motion near the inner cylinder. A weak radially
outward flow carries the incipient vortical motion from near the inner cylinder
outward across the annulus, resulting in the supercritical transition at a lower
Taylor number. If the outflow is stronger, it overwhelms the incipient vortical
motion delaying the onset of supercritical vortical motion to higher Taylor num-
bers. The axial wavenumber increases with either inflow or outflow [44], [45]
resulting in vortices with a longer axial length than radial width.

The radial flow has a significant impact on the position of vortices in the
annulus in supercritical flow. Based on the mode shapes of the perturbations
in their linear stability analysis, Min and Lueptow [44] were able to create
velocity vector plots of the vortices at the point of supercritical transition. For
no radial flow, the vortices are centered in the annulus. A radial inflow shifts the
vortex centers inward, and a radial outflow shifts the vortex centers outward.
This results in a larger axial velocity in the vortex on the side of the vortex that
is compressed against the wall.

There appear to be no experimental studies of either the stability or velocity
field for cylindrical Couette flow with an imposed radial flow between two porous
cylinders. This is probably a consequence of the difficulty of making such mea-
surements. The requirement that both cylinders be porous, and consequently
opaque, makes many traditional visual and optical methods of detecting the
transition to supercritical flow quite difficult. In addition, devising a flow cell to
provide a uniform radial flow at both the inner and outer cylinders is challenging.
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Fig. 8. The effect of radial Reynolds number α on the critical Taylor number Tac

normalized by the critical Taylor number for no radial flow [44]. Curves are for η=0.5,
0.75, 0.85, 0.95 from top to bottom. (Reprinted with permission of AIP)

4 Combined radial and axial flow

The linear stability analysis of cylindrical Couette flow with an imposed axial
and radial flow is substantially more difficult than the analysis for either axial or
radial flow alone. The analysis follows generally the same approach as that for
axial or radial flow individually, but their appearance simultaneously complicates
the analysis. The first attempt at the linear stability analysis for this case was
performed by Bahl and Kapur [47]. They considered the narrow gap case for co-
rotating porous cylinders with an axial flow, but they made several problematic
simplifying assumptions in their analysis by prescribing a simplistic axial velocity
profile and fixed values for the axial wave number and amplification factor.

Kolyshkin and Vaillancourt [45] and Johnson and Lueptow [1] simultane-
ously improved the analysis of the absolute stability limit for cylindrical Couette
flow with both an axial and a radial flow. Kolyshkin and Vaillancourt consid-
ered both axisymmetric and nonaxisymmetric perturbations at a radius ratio of
0.5 and 0.85. Johnson and Lueptow considered only axisymmetric perturbation
at radius ratios of 0.65, 0.75, and 0.85. Both studies conclude that both radial
inflow and radial outflow stabilize the flow resulting in transition to vortical flow
at a higher Taylor number than with no radial flow as shown in Fig. 9. Johnson
and Lueptow noted that a weak radial outflow destabilizes the flow. Both stud-
ies concluded that as the radial Reynolds number increases, the critical Taylor
number is nearly independent of the axial Reynolds number, as is evidenced
by the negligible difference in the curves at different axial Reynolds numbers
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in Fig. 9. At small radial Reynolds numbers, Kolyshkin and Vaillancourt found
that the nonaxisymmetric modes can be important. Both studies indicate that
the wavenumber increases with radial Reynolds number.

Fig. 9. The effect of radial Reynolds number α on the critical Taylor number Tac [1].
Curves are for η=0.65, 0.75, 0.85 from top to bottom. Dashed curves are for Rea = 0;
Solid curves are for Rea = 10. (Reprinted with permission of AIP)

An interesting effect of the radial flow is that it increases the velocity at
which the vortices translate for radial inflow and strong radial outflow [1]. The
vortex translation velocity decreases slightly for a weak radial outflow.

Of course the stability analysis is only valid for the first transition from
nonvortical to vortical flow. No measurements have been made for the case of
radial flow between two porous cylinders with an imposed axial flow. However,
the case of a single rotating inner porous cylinder has been studied in some
detail [32]. In this case, the source for the fluid exiting the annulus radially at
the inner cylinder is the axial flow. Consequently, the axial flow decreases along
the length of the annulus as fluid is removed through the porous inner cylinder.

Like the case of pure axial flow, higher order transitions occur in the case of a
rotating porous inner cylinder with axial flow as shown in Fig. 10. The stability
map is quite different from that for no radial flow (shown in Fig. 3). Although
helical vortices are the most stable state for the initial transition from stable
flow to vortical flow at Rea > O(10) for axial flow only, the radial flow seems
to prevent the appearance of this helical vortex structure. Apparently the radial
inflow alters the stability such that toroidal vortices are stable even at high axial
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flow rates. Since the mechanism for the appearance of helical vortices is unclear,
it is difficult to speculate on why a radial flow should prevent helical vortices.
Nevertheless, this result is consistent with the nonsymmetric linear stability
analysis of Kolyshkin and Vaillancourt [45] indicating that the axisymmetric
(toroidal) mode is most stable for radial inflow. They also find a satisfactory
comparison between their stability analysis and the experimental results of Min
and Lueptow [32], in spite of the differences between the radial through-flow
condition of the analysis and the non-porous outer cylinder condition for the
experiments.

Fig. 10. Flow regimes for cylindrical Couette flow with an imposed axial and ra-
dial flow (α = 0.05), η = 0.85) [32]. Symbols represent measurement points:
CP=stable Couette Poiseuille flow; LV=laminar vortices; ALT=alternating helical vor-
tices; ALTW=alternating helical wavy vortices; WV=wavy vortices; RWV=random
wavy vortices.

Helical vortices appear at higher Taylor numbers, denoted as ALT in Fig. 10.
In this case, there is not a single pair of helical vortices as occurs for the case
with no radial flow. Instead, groups of helical vortices appear with an alternating
sign for the helix angle. Typically, vortices of both signs appear in the annulus
simultaneously, each in different axial portions of the annulus. Each helix group
consists of five or six vortex pairs. The dislocation between the helix groups
translates in the same direction as the axial velocity. New dislocations appear
at the inlet to the annulus maintaining the system of alternating helical vortex
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groups. At higher Taylor number the vortices of the helical vortex groups become
wavy (ALTW).

The wavelength of a vortex decreases as it travels axially in the annulus. In
the case studied by Min and Lueptow [32], the vortex wavelength decreased
from 2.0d to 1.4d for laminar vortices (LV). The most likely explanation for this
is the removal of fluid from an individual vortex due to the radial flow into the
inner cylinder. If the vortices translate without intermixing, the removal of fluid
necessarily reduces the vortex size. It is unclear what would happen to the vortex
structure if the annulus were longer and fluid is continued to be removed from
the vortices as they translate axially.

The stability of flow with an inner porous cylinder and an outer non-porous
cylinder with an axial flow has not been studied analytically because of the
difficulty in obtaining a stable solution for the flow. However, Marques, Sanchez,
and Weidman [48] have recently made substantial progress toward a solution
based on a generalized similarity formulation. Unfortunately, they point out that
determining the stability with respect to three-dimensional perturbations is still
quite difficult.

The velocity field in cylindrical Couette flow with an axial and radial through-
flow has not been measured, again due to the difficulty in measurements with
porous inner and outer cylinders. However, LDV measurements of the azimuthal
velocity for the case of a nonporous outer cylinder have been made [32]. For
small radial Reynolds numbers, the effect of the radial flow on the azimuthal
velocity profile is virtually unmeasureable. The measurement of the velocity
field is, however, important to the understanding of the flow field in rotating
filter separators.

5 Summary

While stability of Taylor–Couette flow has been studied in great detail, little
research has been performed on the effect of relatively small axial and radial flow.
The transition from stable to toroidal or helical flow has been studied for the case
of an imposed axial flow. But there appears to be no clear explanation for the
physics of the origin of helical vortices, although nonaxisymmetric linear stability
analysis predicts that nonsymmetric vortices are the most stable configuration
under certain conditions. Higher order transitions for an imposed axial flow
have not been considered at all except for a handful of experimental studies.
Likewise, measurements of the velocity field in Taylor–Couette flow with an
imposed axial flow are quite limited. Clearly, much work is necessary to fully
understand the stability and velocity field for conditions of high Taylor and
axial Reynolds numbers.

The effect of radial flow on cylindrical Couette flow has been studied even less
than the effect of axial flow. This is probably a result of the difficulty in mak-
ing observations or measurements of the flow through porous cylinders. Con-
sequently, the only research on the effect of radial flow has been been linear
stability theory. The theory predicts that radial inflow and strong radial out-
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flow stabilize the flow, while a weak radial outflow destabilizes the flow slightly.
Although a mechanism based on washing out the incipient vortical structure
has been proposed to explain this result, it has not been shown that this is the
case either analytically or experimentally. In fact, experiments have not been
performed to confirm the theoretical prediction that a radial flow enhances sta-
bility. Likewise, no measurements or computational results have been published
on the velocity field for cylindrical Couette flow with an imposed radial flow.

The combination of axial and radial flow stabilizes Taylor–Couette flow based
on linear stability theory. This has not been confirmed by experiments because
of the difficulty with observation through porous outer cylinder. However, a few
measurements have been made for the case of a porous inner cylinder rotating
within a nonporous outer cylinder. In this case, measurements indicate that the
stabilizing effect predicted from linear stability theory occurs. Above the critical
Taylor number a wide variety of vortical flows occur including helical and helical
wavy vortices with dislocations between group of helical vortices of opposite
signs. The only velocity measurements that have been made were at a very low
radial Reynolds number. These results indicate that the velocity field is nearly
the same as that without radial flow.

Much room is available for further work on cylindrical Couette flow with a
radial or axial flow. While a practical motivation for such research is the appli-
cation of rotating filtration, a wide variety of other important issues arise. These
include explaining the physical basis for the stabilizing effect of either axial or
radial flow, predicting higher order transitions to wavy or helical flow, explain-
ing the wide range of velocities at which vortices translate in axial flow, making
measurements of stability and velocity for the case of radial flow through two
porous cylinders, determining the effect of suspended particles on the stability
and velocity field, and determining the degree of chaotic advection in cylindri-
cal Couette flow with an axial or radial flow. Finally, Taylor–Couette flow with
an axial or radial flow offers a unique system in which the stable base flow is
easily described analytically, but for which the instability of the flow greatly
complicates the character of the system.
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Transport phenomena in magnetic fluids
in cylindrical geometry
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1 Introduction

Flow and properties of suspensions of magnetic nanoparticles - commonly called
magnetic fluids or ferrofluids - can significantly be controlled and influenced by
the action of weak magnetic fields with a strength below 100 mT. This makes
them an interesting medium for various investigations in hydrodynamic research.
In particular transport phenomena like the transport of heat, momentum or
matter will depend qualitatively as well as quantitatively on the strength and
direction of magnetic fields applied to the magnetic fluids under investigation.
Due to the usual technique for generation of variable magnetic fields by means
of solenoids - providing a homogeneous axial magnetic field - or straight current
leading wires - generating an azimuthal field with radial gradient - such investi-
gations are preferably carried out in cylindrical geometry (see Fig. 1), matching
the geometry of the magnetic fields applied.

Fig. 1. General sketch of a cylindrical magnetic fluid layer with the magnetic field
directions corresponding to the systems symmetries.

In principle coupled experiments, combining rotation of one of the fluid layer
boundaries with temperature gradients are possible and will be discussed later
on. Following the main topic of this issue we will now focus on the transport
of momentum - i.e. on the magnetic field effects in Taylor rotation in magnetic
fluids. Beside this we will also shortly discuss the mentioned coupled situation
of a magnetic fluid between rotating cylinders subjected to a radial tempera-
ture gradient since interesting phenomena have been predicted therefor. This
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will be discussed in the last chapter of this review. Nevertheless, before starting
the description of the mentioned transport phenomena an introduction concern-
ing magnetic fluids and their properties as far as they concern the transport
phenomena will be given.

1.1 Magnetic fluids

In the early 60ies a lot of effort has been spend to the development of a liquid
material which can strongly be influenced by moderate magnetic fields. Such a
material, enabling the control of it’s flow and physical properties over a wide
range by means of a controllable magnetic force, was expected to give rise to nu-
merous new applications. All known ferromagnetic materials have a Curie point
well below their melting temperature. Thus, they loose their ferromagnetic prop-
erties before getting liquid. The only exception, undercooled melts of Co-Pd al-
loys, found to show a magnetic phase transition in 1996 [19,20], is of no technical
importance concerning magnetic field controlled flows and related applications.
Paramagnetic salt solutions exhibit force densities in the order of 50 N/m3 in
magnetic fields of about 40 kA/m with gradients around 106 A/m2. These values
for the field strength and it’s gradient are typical for controllable magnetic fields
produced with coils. The mentioned force density on paramagnetic salt solutions
is about three orders of magnitude smaller than the gravitational force density.
Thus they are also not applicable for technical use. Therefore a completely new
class of materials had to be developed to meet the necessities of the prospected
use of a magnetic fluid. The final breakthrough was made by S. Pappell’s suc-
cess in producing stable suspensions of magnetic nanoparticles in appropriate
carrier liquids [13]. These suspensions show liquid behavior coupled with super-
paramagnetic properties. That means that moderate magnetic fields can exhibit
magnetic forces to the liquid, which are comparable to gravitational forces.

Intense efforts undertaken shortly after the discovery of a method of prepa-
ration of ferrofluids - as these suspensions are commonly called - forced the
development of fluids exhibiting longtime colloidal stability and reproducible
properties. Parallel to further development and improvement of the liquids them-
selves, applications have been published, some of them gaining high commercial
importance.

Commercially available ferrofluids contain magnetic nanoparticles with a
mean diameter of about 10 nm. To ensure colloidal stability of the liquid, the
thermal motion of the magnetic particles has to avoid their sedimentation in the
gravitational field and in magnetic field gradients, as well as agglomeration due
to magnetic interaction. For particles with a diameter of about 10 nm one can
easily calculate that the thermal energy of the particles kT (k denoting Boltz-
mann’s constant and T the absolute temperature) is sufficient to ensure these
stability requirements. Nevertheless, colloidal stability of bare magnetic particles
of this size in a carrier liquid can not be guaranteed, since agglomeration due
to van der Waals attraction will occur as soon as particles come into contact.
To avoid irreversible agglomeration of the particles, they have to be protected
from coming into contact. This is usually done by means of a surfactant layer
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Fig. 2. Schematic sketch of ferrofluid particles with surfactant (for reasons of clearness,
particles and surfactant molecules are not shown in scale)

consisting of long chain molecules with a polar head and an unpolar tail (see Fig.
2). The head is attached to the particle, while the tail reaches into the carrier
liquid. The molecules have to be chosen in a way, that the dielectric properties
of the tails match those of the carrier liquid. Modern ferrofluids contain usu-
ally magnetite (Fe3O4) as magnetic component. Carrier liquids can be different
oils, water, kerosene, heptane or some esters. The surfactant is always chosen to
match the dielectric properties of the carrier liquid. As an example acidic acid
can be used for magnetite in water, but in general the composition of surfactants
in commercial ferrofluids is a secret of the producers. The volume concentration
of the magnetic component is usually in the order of 5 vol.% - 15 vol.%.

1.2 Magnetic properties of ferrofluids

The most important feature of magnetic fluids is the combination of normal liq-
uid behavior with superparamagnetic properties. The magnetic particles, having
a mean diameter of about 10 nm, can be assumed to be magnetic single domain
particles [4]. Thus, their alignment with an external magnetic field will be de-
termined by a counteraction of thermal energy with the magnetic energy of the
particle - which can be described as a dipole - in the field. Therefore the mag-
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netization M of a ferrofluid follows the well known Langevin law

M = Ms(coth(α)− 1/α) (1)

α =
µomH

kT

where Ms denotes the saturation magnetization of the fluid, m the magnetic mo-
ment of a single particle, H the applied magnetic field, k Boltzmann’s constant,
T the absolute temperature and µo the vacuum permeability. For small values
of α, i.e. for weak magnetic fields, one can approximate the expression for M in
(1) by

M ≈Ms
1
3
µomH

kT
=

Ms

3
µoπd̄

3Mo

6kT
H = χH (2)

with d̄ the mean diameter of the particles, the spontaneous magnetization of the
magnetic material Mo and the initial susceptibility χ of the fluid. This approx-
imation is valid up to H ≈15 kA/m in a fluid with a saturation magnetization
of about Ms =32 kA/m containing particles with mean diameter d̄ = 10 nm.

Using equations (1) and (2) one can obtain important information on the
composition of a ferrofluid from a measured magnetization curve like that shown
in Fig. 3. First of all one can determine the saturation magnetization of the
fluid by extrapolation to H → ∞. Using Ms = φMo one can deduce the vol-
ume concentration φ if the spontaneous magnetization of the particles mag-
netic material is known. For magnetite the spontaneous magnetization equals
Mo = 4.5 · 105 A/m [4]. In addition, using the information on saturation magne-
tization, the initial susceptibility provides the information on the mean size of
the particles using equation (2).

Fig. 3. Typical magnetization curve of a ferrofluid containing approximately 7 vol.%
of magnetite particles with a mean diameter of about 10 nm.
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The relaxation of magnetization in a ferrofluid is determined by two different
processes. On the one hand the magnetization can relax by Brownian motion
of the particles in the fluid, on the other hand the magnetic moment can relax
inside the particle without a movement of the particle itself - the so called Néel
relaxation process [2]. The Brownian relaxation time is given by

τB =
3Ṽ η

kT
(3)

where Ṽ denotes the volume of the particles including the surfactant layer and
η the dynamic viscosity of the liquid. For the Néel relaxation time it holds

τN = f−1
o exp

(
K1V

kT

)
(4)

with the crystal anisotropy constant of the magnetic material K1 and a relax-
ation frequency fo that is given by the Larmor frequency of the magnetization
vector in the anisotropy field of the particle. For the standard ferrofluid described
in the appendix, the Brownian relaxation time will be about τB = 1.1 · 10−5 s,
while the Néel relaxation will take place in τN = 2.8 · 10−10 s (for 10 nm parti-
cles). One can easily see, that the Néel process will dominate for small particles,
while the relaxation will be due to Brownian particle motion for large ones. Par-
ticles relaxing by the latter process are called magnetically hard. For magnetite
the transition size between both processes is about 20 nm.

The possibility to exert strong forces on ferrofluids is due to the high initial
susceptibility which is in the order of χ ≈ 1 compared to χ ≈ 10−4 for param-
agnetic salt solutions. That means, that the magnetization of the fluid is about
three orders of magnitude higher at weak magnetic fields, than it is known from
usual paramagnetic liquids. Thus one can easily calculate, that the magnetic
force density

|Fmag| = µoM∇H (5)

is comparable to the gravitational force for a standard ferrofluid in moderate
magnetic field gradients. For example a magnetic field of about H = 20 kA/m
with a gradient of about ∇H = 7 · 105 A/m2 as it is typically present some
5 cm from a pole of an electromagnet (see Fig. 4) will exert a force density of
about 14 kN/m3 to the standard fluid, while the gravitational force density on
the same fluid is approximately 13 kN/m3.

Thus the magnetic field is able to produce a force strong enough to lift the
fluid out of the pool towards the pole of the magnet as shown in the photograph
in Fig. 4. This magnetic force enables the control of the flow of magnetic fluids.
In addition it gives rise to significant changes in their physical properties.

1.3 Viscous properties of ferrofluids

The most famous field induced property of magnetic fluids is the change of their
viscosity. Assuming, that the fluid is subjected to a shear flow with vorticity Ω,
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Fig. 4. The attraction of a ferrofluid towards the pole of an electromagnet. The typical
spike structure is determined by the strength of the magnetic field, it’s gradient, the
surface tension of the fluid and earth’s gravitational acceleration.

a mechanical torque will be exerted to the particles due to viscous friction at
the solid liquid interface. This torque will cause the particle to rotate (see Fig.
5).

It is assumed in the following, that the magnetic moment is fixed in the
particle, i.e. the Brownian process determines the relaxation of magnetization
in the fluid. If, in this case, a magnetic field is applied to the fluid under shear,
it’s interaction with the magnetic moment of the particles will give rise to a
magnetic torque trying to align the moment - and thus the particle - with the
magnetic field direction. If the magnetic field is parallel to the vorticity of the
flow, no hindrance of the rotation of the particle will occur (see Fig. 5). In
the opposite case, i.e. for H ⊥ Ω , the viscous flow will twist the particles
magnetic moment out of the field direction. This will create a magnetic torque
counterdirected to the mechanical torque (see Fig. 5). This magnetic torque
hinders the free rotation of the particles, and produces an increase of the fluid’s
viscosity. This increase is anisotropic, since it depends on the mutual orientation
of vorticity and magnetic field. The phenomenon, called rotational viscosity, was
theoretically investigated by M. Shliomis [15] in 1972. He found, that for non
interacting particles of spherical shape, the viscosity increase ηr = η(H)−η(H=0)
can be written in the form

ηr =
1
2
φ′η(H=0) < sin2(β) >

α− tanh(α)
α+ tanh(α)

(6)

where φ′ denotes the volume concentration of the magnetic particles including
their surfactant and β the mean angle between vorticity Ω = 1

2 rotv and mag-
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Fig. 5. On the origin of rotational viscosity in a magnetic fluid under magnetic field
influence. Explanation see text.

netic field direction. The effect of rotational viscosity has first been observed in
highly diluted magnetic suspensions by McTague [6].

In this case good agreement has been found with respect to the theoretical
model. Later on experiments have been performed using commercial, concen-
trated ferrofluids [3,1,10]. In this case strong quantitative differences between
experiment and theoretical prediction (6) have been observed (see Fig. 6). These
discrepancies can be related to the formation of agglomerates of magnetic par-
ticles in the fluid, which first of all would explain the strong rotational viscosity
and which would be magnetically hard. This second point overcomes the prob-
lem, that single magnetite particles of 10 nm diameter would relax by the Néel
relaxation process, and a fluid containing such particles should therefore not
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Fig. 6. Magnetoviscous effect in a ferrofluid at low shear rate.

show any rotational viscosity. Such agglomerates are usually formed during the
preparation process [12]. In any way Fig. 6 shows clearly, that the magnetovis-
cous effect in a fluid of reasonable concentration of magnetic particles is strong
enough to be necessarily considered in investigations, and in the design of appli-
cations of magnetic fluids.

2 Taylor vortex flow in magnetic fluids

2.1 Taylor vortex flow as a tool for magnetic fluid characterization

We will now discuss the problem of an isothermal magnetic fluid contained be-
tween two concentric cylinders with the inner cylinder rotating. As it was men-
tioned before, magnetic fields may change the viscosity of a magnetic fluid due
to hindrance of the free rotation of the particles in a shear flow. Thus the flow
between concentric cylinders might be used as tool for the determination of
rotational viscosity in magnetic fluids.

In principal there are two different approaches to realize viscosity measure-
ment on this basis. On the one hand a typical rheometer setup with a Couette
cell could be used. In this case the vorticity of the flow points in axial direction
and thus would be parallel to an axial magnetic field. Therefore only radial or az-
imuthal magnetic fields would be sufficient to induce a change of viscosity in such
a measuring set up (see Fig. 7). Azimuthal and radial magnetic fields are - due to
the techniques that have to be used for their generation - usually of significantly
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Fig. 7. Vorticity and field direction in Couette flow.

lower field strength than axial fields that may be generated by long solenoids
[1]. Thus they are obviously not preferable for the investigation of field induced
changes of magnetic fluid viscosity over a wide range of magnetic field strength.
Furthermore a prove of the above mentioned theory by Shliomis would require
a comparison of results on rotational viscosity obtained for various mutual di-
rections of magnetic field and vorticity. Thus a flow restricting to distinguished
field directions decreases the possibility for a check of the < sin2 β >-law.

The second possible way is the observation of the transition from Couette
to Taylor vortex flow. It is obvious, that for given temperature, geometry of the
fluid layer and rotation frequency f of the inner cylinder, the Reynolds number
of the system

Re =
2πfRia

ν
(7)

(with a: thickness of the fluid layer, Ri: Radius of inner cylinder and ν the
viscosity of the fluid) will change with direction and strength of an applied
magnetic field since the viscosity is field dependent. Since the critical Reynolds
number for the transition from Couette to Taylor vortex flow is constant for
fixed geometry of the cylindrical cell, the change of viscosity will cause a change
in the critical frequency at which the transition occurs. Thus a determination
of the change of the transition frequency will provide a direct measure of the
viscosity changes by

ν(H)
νo

=
f∗(H)
f∗
o

(8)

where ν(H) denotes the viscosity in a magnetic field, νo the viscosity without
field and f∗(H) and f∗

o the respective transition frequencies.
Independent from the direction of the magnetic field this will cause an in-

crease of the critical frequency for the transition from Couette to Taylor vortex
flow. This can immediately be understood, if one remembers, that the vorticity
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of Taylor vortex flow varies spatially in a way that it’s angle to each of the three
field directions discussed before differs from π/2 in most positions, thus the fac-
tor < sin2 β > is larger than zero for each of the field directions. It’s actual value
can be computed from numerical flow profiles for Taylor vortex flow [5] and one
finds for an axial magnetic field < sin2 β >= 0.68, for a radial field 0.69 and for
the azimuthal case 0.63.

Since magnetic fluids are optically opaque, the transition from Couette to
Taylor vortex flow (TVF) can not be observed by the usual optical means as e.g.
direct flow visualization with tracers or LDA. The alternate measuring technique
used with magnetic fluids is the determination of the torque forcing the rotation
of the inner cylinder as a function of it’s rotation frequency. The linear relation
that holds for the dependence of the torque on frequency as well for the Couette
as for the TVF region has different slopes in both regions. If the viscosity of the
fluid changes due to the action of a magnetic field, the critical frequency, and
thus position of the slope change will vary too (see Fig. 8).

Fig. 8. The change of critical frequency in Taylor Couette flow due to the increase of
viscosity in a magnetic fluid caused by the action of a magnetic field.

It is obvious that the determination of the frequency where the slope of the
torque-frequency relation changes provides immediately the critical frequency
for the onset of TVF. An experimental realization of this concept, providing
the possibility to apply magnetic fields in all three mentioned field directions
requires a double gap system as it was used in [1]. Such a system ensures that no
additional friction due to sealing between the rotating cylinder and e.g. current
feedthroughs in the inner cylinder for production of the azimuthal field will
occur. This reduction of friction is necessary to ensure proper determination of
the critical frequency and it’s field induced shift from the torque curves.
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Fig. 9. Viscosity increase in an axial magnetic field measured by means of the shift of
critical frequency in TVF [1].

Using this technique, the increase of viscosity in a magnetic fluid has been
determined for all three field directions [1,10]. Fig. 9 shows the increase of vis-
cosity measured this way for the case of an axial field. The absolute value of
the increase is significantly lower than in the situation shown for the rheome-
ter measurement (Fig. 6). This is due to the fact, that the results shown here
were obtained with a much higher shear rate of about 500 s−1. The increase of
shear rate causes a break of magnetically induced structures in the fluid and
thus leads to a reduction of the magnetoviscous effects. The advantage of this
break of structures and thus of measurements at high shear rates is given by the
fact, that the theory by Shliomis deals with independent particles and not with
structures. Therefore higher shear rates provide data more sufficient for a com-
parison with the theoretical predictions. In particular the possibility to apply
magnetic fields in three different directions allows a proof of the < sin2 β >-law
in equation (6).

The definition of a reduced rotational viscosity, given by

S∗(H) =
ηr(H)

ηo < sin2 β >
(9)

makes the results independent from the relative orientation of field and vorticity
and thus allows a direct comparison of the results for different field geometries.
Due to the fact that radial and azimuthal magnetic fields can only be generated
with relatively low field strength, Fig. 10 shows this comparison for the three
mentioned field directions in the region of weak magnetic fields. Obviously all
three curves coincide within the margin of error, giving a good proof for Shliomis’
theory.
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Fig. 10. Viscosity changes for various mutual directions of field and vorticity. Full line:
axial field, dashed line: azimuthal field, dotted line: radial field. All curves are given
with representative error bars.

2.2 Changes of the flow profile in magnetic fields

As it was shown, the appearance of rotational viscosity forces a shift of the
critical frequency of Taylor–Couette flow. Beside this the change of the viscous
properties of ferrofluids under influence of magnetic fields causes changes in the
flow profile of TVF. As it was already mentioned, the viscosity changes have
strongly anisotropic character, varying with the angle between vorticity of the
flow and magnetic field direction. In a complex flow like TVF with spatially
varying vorticity this will force a preference of those flow directions causing a
contribution to vorticity which is as parallel to the magnetic field direction as
possible.

For a simplified discussion of the influence of magnetic fields on the structure
of TVF we divide the flow into an azimuthal contribution and a superimposed
circular contribution in the z − r-plane (z: direction along the cylinder axis, r:
radial direction). The azimuthal component of the flow will cause a contribution
to the total vorticity which is vertical to the field for radial and azimuthal fields
and parallel to an axial field. For azimuthal magnetic fields the vorticity of
the superimposed circular flow is parallel to the field direction and thus no
deformation of the profile will appear. If a radial field is applied, the vorticity
for the azimuthal base flow and the superimposed flow are both perpendicular
to the field and the combination of the effects results finally in a reduction of
wavelength. Contrary to this an axial magnetic field will cause an increase of
wavelength since only the circular flow is influenced by the field.

These changes of the flow profile have been independently predicted by Niklas
[7] and Vislovich et al. [8]. To observe them experimentally a measuring tech-
nique for the determination of isothermal flow profiles in opaque fluids is needed.
A technique enabling such kind of investigations is the use of pulsed ultrasound
Doppler velocimetry (PUDV) providing position dependent velocity information
from a liquid containing tracers scattering the ultrasound waves. This technique
has been introduced by Takeda [17] for use with liquid metals. As it was shown,
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even weak scatterers like impurities in liquid mercury provide sufficient scat-
tered ultrasound intensity to allow a reliable velocity determination. In the case
of ferrofluids, the suspended particles themselves can be used as appropriate
scatterers [9]. Using Takeda’s ultrasound equipment, we’ve carried out a test
experiment to check the use of PUDV for the determination of field induced
wave-length changes in magnetic fluid TVF. Therefore the ultrasound trans-
ducer was mounted on the bottom of the fluid gap with the ultrasound beam
parallel to the cylinder axis (see Fig. 11).

Fig. 11. Test experiment for the determination of the influence of a magnetic field on
the flow profile of magnetic fluid TVF and of the suitability of PUDV for the detection
of velocities in ferrofluids.

The velocity was taken as a function of time at 128 vertical positions in
the fluid gap and plotted as a time series using white for velocities towards the
transducer and black for velocities in the opposite direction, i.e. in positive z-
direction. As it is seen from Fig. 11., a periodic pattern is observed, indicating
normal undisturbed TVF. At a certain instant of time a permanent magnet was
attached to the wall of the outer cylinder, providing a radial magnetic field in a
small region of the flow. As it can be observed in Fig. 11., the application of this
radial field forces the flow profile to change and induces a smaller wavelength in
the region of the magnetic field as it was predicted in [7,8]. Even this rough test
shows, that the PUDV is suitable for the investigation of magnetic fluid TVF
and that interesting effects of magnetic fields on this flow phenomenon have to
be expected.
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3 Taylor vortex flow in magnetic fluids
with radial heat gradient

In various experiments it has been shown, that not only TVF of ferrofluids can
be influenced by magnetic fields. In particular a lot of effort has been spend to
investigate the changes of heat transfer processes in ferrofluids due to magnetic
field action, and various new effects like the appearance of thermomagnetic con-
vection [11] and it’s influence on thermal convection [14] were discovered. Until
now a combination of both effects, i.e. TVF in a ferrofluid under influence of
magnetic fields and a radial temperature gradient has only theoretically been
discussed [16]. Assuming a radial magnetized commercial ferrofluid with a pyro-
magnetic coefficient (variation of magnetization with temperature) in the order
of 50 A/Km in a small gap one has in general to distinguished two different
cases. For the situation of a weak magnetic field in the order of several 10 mT
the critical Reynolds number is practically independent from the radial temper-
ature gradient for temperature differences of several Kelvin over a 1 mm gap.
This corresponds well to the weak dependence of stability of Couette flow against
radial temperature gradients, that has been found for nonmagnetic fluids earlier
[18]. In contrary a strong magnetic field will significantly influence the stability
of Couette flow subjected to a radial temperature gradient. It was shown in [16],
that increasing temperature difference will reduce the critical Reynolds number
to zero, i.e. the fluid layer will be destabilized by thermomagnetic convection
only. Up to now no predictions concerning the flow profile of TVF and it’s de-
pendence on superimposed thermomagnetic convection have been made for the
interesting intermediate range where thermomagnetic convection and TVF are
coupled.

4 Conclusion and outlook

As it was discussed above transport phenomena in magnetic fluids may strongly
be influenced by the action of magnetic fields. For the special case of TVF in
ferrofluids the characteristics of the changes are not yet experimentally proved
due to the difficulties in the determination of the flow profile in a magnetic
fluid. Nevertheless this field provides a variety of new and interesting effects
that could be investigated. Especially the work of Niklas [7] provides numerous
calculations concerning asymmetries of the flow profile, changes in the velocity of
wave propagation after sudden changes of Reynolds number and time dependent
changes of the flow profile. Beside this the calculations of Stiles show that further
interesting problems appear as soon as the coupling between different transport
mechanisms is considered [16]. Thus, the use of magnetic fluids in TVF opens
the possibility to investigate various new effects which can directly be controlled
by means of strength and direction of the applied magnetic fields. Beside the
basic interest in this question, such investigations have high importance for the
optimization of applications of magnetic fluids since numerous applications - like
e.g. the often used sealing of rotating shafts with a ferrofluid - have comparable
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geometries to TVF and subject the fluid to external influences due to magnetic
fields and temperature differences similar to those discussed above.
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Abstract. Numerical investigations of stationary Taylor vortex flows with periodic
boundary conditions led Meyer-Spasche/Wagner [13] to speculate that there is a curve
of loci of secondary bifurcations in the (period, Reynolds number)-plane which connects
two double points, i.e. two intersection points of neutral curves of flows with different
numbers of vortices (n-vortex flows, n = 2, 4, and a double vortex flow). Lortz et al.
[12] proved analytically the existence of such a curve for a model problem derived from
the equations of the Boussinesq approximation, and also the existence of a second such
curve.

It remained unclear then if the results carry over to the full Boussinesq system
and thus to the narrow-gap approximation, and how the results generalize to flows
with other numbers of vortices. These questions were treated in [14]. In the present
contribution we continue these investigations and present computations that justify
speculations in [14] about the structure of other secondary interactions. We also present
a curve of Hopf bifurcation points which was found in the course of computations
discussed here, as a by-product.

1 Stationary Taylor-vortex flows

Consider steady axisymmetric flows in a wide gap between long concentric cylin-
ders, neglecting end effects (periodic boundary conditions). With both cylinders
rotating, there are four parameters in the problem: The Reynolds number Re,
the axial period λ, the radius ratio η, and the rotation rate µ. The code TAYPE-
RIO solves the Navier–Stokes equations for such flows with µ = 0 numerically,
using the very reliable methods described in [13,14]. The code allows systematic
variation of Re and λ (method of continuation with Gauss-Newton iterations).

Numerical investigations of stationary Taylor vortex flows with this code
led the authors of [13] to speculate that there is a curve of loci of secondary
bifurcations in the (λ, Re)-plane which connects two double points. One of them
is the intersection point of the neutral curve of the basic 2-vortex flow with its
periodic repetition (4-vortex flow), called ‘the (2,4)-double point’. The other one
is the intersection point of the neutral curve of the 4-vortex flow with that of
the double-vortex flow (2 vortices in radial direction), called ‘the (d,4)-double
point’.

Lortz et al. [12] proved analytically the existence of such a curve for a model
problem: a system of 7 ordinary differential equations derived from the equations
of the Boussinesq approximation for infinitely large Prandtl number. They also
showed the existence of a second, unbounded, curve starting in the analog of the
(2,4)-double point.

C. Egbers and G. Pfister (Eds.): LNP 549, pp. 171–193, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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A comparison of the model system of [12] with the 3rd order approximation
of the Boussinesq equations used by Knobloch et al. [10] showed mainly the
following differences [14]:

• The bifurcation analysis of [10] is done locally, in a neighborhood of the
(2k, 2k + 2)-double point, k = 1, 2, . . . , with a system of 9 equations. The
analysis of [12] applies globally, i.e. for varying wave number and Rayleigh
number, in a region of the (wave number, Rayleigh number)-plane which
covers several intersection points of neutral curves, not only the (2, 4)-double
point.

• In the case k = 1, the systems of equations used in [10] and [12] are the
same except that two modes are neglected in [12] which must be kept in a
3rd order perturbation approach.

Though the system treated in [12] has its own interest as a model problem (it is
a generalized Lorenz system in the sense of Curry [7]), it was desirable to know if
the results obtained carry over to the full Boussinesq system with rigid boundary
and thus to the narrow-gap approximation. This question is approached here in
two steps:

First we review analytical and numerical investigations of the model prob-
lems with 7 and 9 equations. We report that a detailed comparison showed
that both systems essentially yield the same results, i.e. the numbers computed
are different, but the maximum absolute errors caused by neglecting those two
equations are small enough to be neglected. This simplifies the analysis of inter-
actions caused by other double points and thus led to predictions of which two
double points are connected by curves of secondary bifurcations. Details of these
investigations are given in ([14], p.160ff).

Then we report in detail on investigations of those curves of secondary bifur-
cations for the full Boussinesq system with rigid boundaries on top and bottom.
In particular we show that one of the predictions of [14] could be verified. The
Rayleigh–Bénard code used for these investigations was constructed from the
Taylor–Couette code developed by Bolstad [1] for steady, axisymmetric, incom-
pressible flow. This code performs one-parameter continuation for computing
solutions (flows) and two-parameter continuation for computing paths of criti-
cal points (pitchfork bifurcation points, transcritical bifurcation points or fold
points).

2 Convection rolls with stress-free boundaries

Consider steady convection rolls between infinitely extended horizontal planes,
the lower one heated. Let x denote the horizontal and z the vertical direction.
The temperature deviation from the conduction solution is denoted by θ, and the
velocity by v. We introduce the stream function ψ satisfying vx = −∂zψ, vz =
∂xψ, and get from the Boussinesq approximation in dimensionless form [6]

(∂zψ∂x − ∂xψ∂z)∆ψ = −Pr Ra ∂xθ − Pr ∆2ψ, (1)
(∂zψ∂x − ∂xψ∂z)θ = −∂xψ −∆θ. (2)
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Here Ra is the Rayleigh number and Pr the Prandtl number. We first consider
the perfect problem, i.e. the problem with stress-free boundary conditions (no
tangential stresses) on top and bottom and periodic boundary conditions in the
horizontal direction. With the period 2π/α the boundary conditions then read

∂zzψ(x, 0) = ∂zzψ(x, 1) = 0,

ψ(x, 0) = ψ(x, 1) = 0, 0 ≤ x ≤ 2π
α

,

θ(x, 0) = θ(x, 1) = 0, (3)

∂zψ(0, z) = ∂zψ(
2π
α

, z),

∂xψ(0, z) = ∂xψ(
2π
α

, z), 0 ≤ z ≤ 1,

θ(0, z) = θ(
2π
α

, z).

The configuration and the equations allow a reflection symmetry with respect
to the mid-plane z ≡ 1/2 which we can formulate as [5]

∂xψ(x, z − 1
2
) = −∂xψ(π

α
− x,−z + 1

2
). (4)

The usual Fourier expansion of the stream function ψ and the temperature
deviation θ in both spatial directions [7,10,12,14]

ψ(x, z) =
M∑
i=1

N∑
j=1

ψij sin(iαx) sin(jπz), (5)

θ(x, z) =
M∑
k=0

N∑
l=1

θkl cos(kαx) sin(lπz), (6)

produces a system

G(Ra,Pr, ψij , θij , aij , bij , ci;M,N) = 0 (7)

of infinitely many equations for the Fourier coefficients if N = M =∞. For finite
M and N we obtain a system of MN + (M +1)N = N(2M +1) equations. For
sufficiently large M and N this is a satisfactory Galerkin approximation to eqs.
(1) – (3). Here we used the abbreviations

aij := i2α2 + j2π2, bij :=
iαjπ

4
, ci := iα. (8)

Detailed forms of system (7) are given in ([14],eqs. (4.74)– (4.76) for general
N,M and eqs. (4.78)–(4.91) for N = 2,M = 3).

It should be noted, however, that this ansatz restricts the solution manifold
to solutions which are skew-symmetric with respect to x ≡ 0. According to Busse
and Or [5], we are actually losing solutions that way. In the present contribution
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we are interested in curves similar to the curve of secondary bifurcations shown
in ([14], Fig. 3.24). The related solutions are skew-symmetric in the horizontal
direction. This justifies the approach (5). As is seen from eq. (2), ψ and θ are
phase-shifted by π/2 in the x-direction, and this explains the ansatz (6). With
the ansatz (5), (6), the boundary conditions (3) are identically satisfied.

2.1 Critical curves of the primary solution

System (7) depends on three parameters: Rayleigh number Ra, Prandtl number
Pr and the wave number α, which is hidden in the coefficients defined in (8). For
the following, letN andM be large. For small values of Ra the system is uniquely
solvable by the conduction solution ψij = 0, θij = 0 for all values of Pr and α.
For larger Ra, this conduction solution is unstable, and convection occurs. To
compute the critical values for the bifurcation of the convection solutions from
the conduction solution, we linearize system (7) at the conduction solution and
require that the determinant vanishes. We obtain a linear system which depends
only on Ra and α, but not on Pr. The system is reducible with respect to the
unknowns ψij and θij . The quantities ψ11 and θ11 occur only in two equations.
We thus get the critical values Ra11cr (α) for the lowest modes ψ11, θ11 from a 2x2
determinant. The critical curve reads

R11
cr (α) :=

a311
c21

=
(α2 + π2)3

α2
. (9)

It gives the loci in the (α,Ra)-plane where the 2-roll convection solutions bifur-
cate from the conduction solution ([6], p. 35).

Along the same lines we get the critical curves for the other modes ψpq, θpq
since these formulas reproduce the periodicity of the boundary conditions and are
independent of the truncation parameters N and M , as long as p < M, q < N .
Thus the determinant reads in general∣∣∣∣a2pq −cpRacp −apq

∣∣∣∣ (10)

and leads to

Rpqcr (α) =
a3pq
c2p

=
(p2α2 + q2π2)3

(pα)2
(11)

for the p, qth critical curve. At this curve convection solutions of eq. (7) with
p pairs of rolls in the horizontal direction and q rolls in the vertical direction
bifurcate from the basic conduction solution, p < M, q < N . All these bifur-
cations are of the pitchfork type (Z2-symmetry preserving). The first six curves
(p ≤ 3, q ≤ 2) are shown in Fig. 1.
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Fig. 1. The six critical curves Rpq
cr (α), (p ≤ 3, q ≤ 2), in the (2π/α,Ra)-plane for

the case of stress-free boundary conditions. The solid curves were obtained from for-
mulas (11), the dashed curves (in this scale visible only in the cases p = 1, 2, q = 2)
were obtained numerically using the two-parameter continuation algorithm described
in section 4.1

Several of these curves intersect. Some α-values of intersection points are

α1121 = π

(
41/3 − 1
4− 41/3

)1/2

; α1221 = π

(
4 · 41/3 − 1
4− 41/3

)1/2

;

α1222 = π

(
4 · 41/3 − 4
4− 41/3

)1/2

= 2α1121; (12)

α1131 = π

(
91/3 − 1
9− 91/3

)1/2

; α2231 = π

(
4 · 91/3 − 41/3

9 · 41/3 − 4 · 91/3
)1/2

.

In general, we get from Rijcr(α) = Rmncr (α) the expression

αijmn = π

(
i2/3 · n2 − j2 ·m2/3

m2/3 · i2 −m2 · i2/3
)1/2

, i = m. (13)

For i = m, j = n the curves do not intersect. Also, they do not intersect if (13)
produces non-real complex numbers, as for instance α1122 = π

√−1.

2.2 Pure-mode solutions

To find pure-mode 2-roll solutions of system (7), we first assume that the coeffi-
cients of all modes vanish, except ψ11 and θ11. To obtain a nontrivial solution, θ02
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has to be non-zero as well. Under these assumptions, we obtain the pure-mode
solution

ψ2
11(α,Ra) =

8
a211(α)

(Ra−R11
cr (α)) =

a02c
2
1

4b11b12a211
(Ra−R11

cr ),

θ211(α,Ra) =
8a211(α)

α2
Ra−R11

cr (α)
Ra2

=
a02a

2
11

4b11b12
Ra−R11

cr

Ra2
, (14)

θ02(α,Ra) = −Ra−R11
cr (α)

π Ra
= − c1

2b12
Ra−R11

cr

Ra
.

Similarly we assume ψ21, θ21, θ02 = 0 and compute the Fourier coefficients of the
4-roll solutions:

ψ2
21(α,Ra) =

8
a221(α)

(Ra−R21
cr (α)) =

a02c
2
2

4b21b22a221
(Ra−R21

cr )

θ221(α,Ra) =
2a221(α)

α2
Ra−R21

cr (α)
Ra2

=
a02a

2
21

4b21b22
Ra−R21

cr

Ra2
, (15)

θ02(α,Ra) = −Ra−R21
cr (α)

πRa
= − c2

2b22
Ra−R21

cr

Ra
.

Assuming that only ψp1, θp1, θ02 = 0 we get similarly

ψ2
p1 =

a02c
2
p

4bp1bp2a2p1
(Ra−Rp1cr )

θ2p1 =
a02a

2
p1

4bp1bp2
Ra−Rp1cr

Ra2
, (16)

θ02 = − cp
2bp2

Ra−Rp1cr
Ra

.

The solutions ψ11 and ψ21 are shown in ([14], Fig. 4.5) as functions of α−1

for fixed Ra values. The solution (14) is known as steady state of the Lorenz
equations [11]. Also solution (15) was computed earlier for a truncated system
of 7 equations [12]. Solution (16) was found under the assumption that only
ψp1, θp1, θ02 = 0 for M > p ≥ 1 fixed, but without truncating the system other-
wise. The periodicity of the solutions of the full system is preserved by the solu-
tions given in (14) – (16): ψ21(α−1) = ψ11(2α−1), and ψp1(α−1) = ψ11(pα−1) in
general, for p < M . This follows from definitions (8) of the coefficients and from
the periodicity behavior of the critical curves (11).

If we now try to find similarly pure-mode solutions bifurcating at the critical
curves Rap2cr (α) from the trivial solution, we do not succeed: As shown in ([14],
pp. 168f), the assumption that ψ12 and θ12 do not vanish forces θ01, ψ11, θ11 and
θ02 to be non-zero for a non-trivial solution, and this forces ψ21 = 0, and so on.
We thus do not obtain a small closed subset of the full equations because the
equations for ψp2 and θp2 involve a different mix of indices than the equations
for ψp1 and θp1.
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3 Secondary bifurcations on pure mode solutions

System (7) is too complicated to be solved explicitly for the loci of secondary bi-
furcation points on solutions (16) in the same way as for the primary bifurcation
points. We are now going to discuss alternative methods.

To investigate the hypothesis that the nonlinear interaction of pure-mode
solutions of different numbers of rolls generates curves of secondary bifurcations
connecting intersection points of critical curves, the first question is: is there any
system with such a curve of secondary bifurcations? This question was studied
analytically by Lortz et al. [12] for the interaction of the pure-mode 2-roll so-
lution with the pure-mode 4-roll solution in a 7x7 model problem. Matern and
Meyer-Spasche re-did these calculations and then investigated similarly the in-
teraction of the pure-mode 2-roll solution with the pure-mode 6-roll solution in a
different 7x7 model problem. The 2-roll,4-roll interaction was found to behave as
expected from the results for Taylor-vortex flows. We review here those findings
and further investigations. Details are given in ([14], pp. 160ff).

3.1 The 2-roll,4-roll interaction in a model problem

Truncating system (7) by a Galerkin approach with N = M = 2 gives a 10x10
system. This system was further reduced using perturbation arguments. With
these simplifications, the following 7x7 system was obtained:

(b11 − b22)(a21 − a12)ψ12ψ21 − Pr Ra c1θ11 + Pr a211ψ11 = 0,
(b11 + b12)(a11 − a12)ψ11ψ12 − Pr Ra c2θ21 + Pr a221ψ21 = 0,
(b11 + b21)(a21 − a11)ψ11ψ21 − Pr Ra c1θ12 + Pr a212ψ12 = 0,
−2b12ψ11θ02 + (b11 − b22)(ψ21θ12 + ψ12θ21)− c1ψ11 + a11θ11 = 0, (17)
−2b22ψ21θ02 − (b11 + b12)(ψ11θ12 − ψ12θ11)− c2ψ21 + a21θ21 = 0,
(b11 + b21)(ψ21θ11 + ψ11θ21)− c1ψ12 + a12θ12 = 0,
2b11ψ11θ11 + 2b21ψ21θ21 + a02θ02 = 0.

A necessary condition for secondary bifurcation is that the determinant of the
Jacobian of this system vanishes on the solution branch under consideration.

Calculation of secondary bifurcation points on the 2-roll solutions: We
first consider bifurcation from the 2-roll solution (14). In this case elementary
changes of rows and columns allow us to reduce the 7x7 determinant of the
Jacobian to a 6x6 determinant ∣∣∣∣A 0

0 B

∣∣∣∣ , (18)

where A is a 2x2 matrix which is computed to be non-singular for all Ra ≥
R11
cr (α), i.e. in the domain of existence of solution (14). Thus those parameter

values have to be found for which B turns singular. Expansion of det(B) is a
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bit cumbersome, but allows us to find a formula relating the parameters Pr, α
and Ra. It is given in ([14], eq. (4.118)). With respect to Pr and Ra it is a
polynomial of second order, a rational function with respect to α. For each
given α and Pr the formula thus gives the Ra value R11

pr(α) for which there is a
secondary bifurcation on the 2-roll solution. These are the bifurcation points of
the mixed-mode solutions described by Busse and Or [5] and discussed earlier.
The resulting curve is shown in Fig. 2 for Pr = 1. It was obtained through
eigenvalue computation as explained in the section 3.2.

For the limiting cases Pr → 0 and Pr → ∞ the formula simplifies consider-
ably: For Pr = 0 we obtain R11

0 (α) = R11
cr (α) for all appropriate α, i.e. the curve

of secondary bifurcations coincides with the neutral curve. The expression for
Pr → ∞ is obtained by neglecting all terms that do not contain a factor Pr2.
With the abbreviations

γ1 :=
(b12 + b11)2a02c1

4b11b12
(a212 − a211)(c2 + c1

a221
a211

) (19)

δ1 := c21c
2
2(R

11
cr −R21

cr )

we obtain

R11
∞(α) =

γ1(α) + δ1(α)R12
cr (α)/R

11
cr (α)

γ1(α) + δ1(α)
R11
cr (α). (20)

If we evaluate eq. (20) at α = α1121, we find that δ1 vanishes. We thus can see
analytically that R11

∞(α1121) = R11
cr (α

11
21) = R21

cr (α
11
21), i.e. that the curve R11

∞(α)
emanates from the intersection of R11

cr with R21
cr . In the present approach, we

cannot make any statement, however, about “where this curve goes” for large
Ra (note that R11

cr and R12
cr do not intersect).

Calculation of secondary bifurcation points on the 4-roll solutions:
Starting from system (17) again, we evaluate the Jacobian now on the 4-roll
solution involving ψ21, θ21 and θ02. Again, relatively simple elementary changes
of rows and columns allow us to obtain a 6x6 determinant with the structure
shown in (18). This time matrix A contains expressions in ψ21, θ21 and θ02, and
its determinant can be shown to be non-zero for all Ra and α for which solution
(15) exists. Thus we are left with a 4 x 4 matrix, which is nearly full and thus
produces a lengthy expression which can be found in ([14], eq. (4.121)). Again,
it is a polynomial of second order in Pr and Ra, and a rational function with
respect to α. Figure 2 shows the curve R21

pr versus α−1 for Pr = 1, obtained
through computation of eigenvalues, see paragraph 3.2.

The limiting cases Pr → 0 and Pr → ∞ can be obtained analytically again.
We find again that the curve coincides with the neutral curve for Pr = 0 and
the appropriate α-values, and that the expression for Pr → ∞ is obtained by
neglecting all terms that do not contain a factor Pr2. With the abbreviations

γ2 :=
(b11 + b21)(b22 − b11)a02

4b21b22

(
c1c2(a212 + a211) + c21a

2
21 + c22

a211a
2
12

a221

)
(21)

δ2 := c41(R
21
cr −R11

cr )
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we obtain

R21
∞(α) =

γ2(α) + δ2(α)R12
cr (α)/R

21
cr (α)

γ2(α) + δ2(α)
R21
cr (α). (22)

R21
∞(α) is the locus of secondary bifurcation points on the 4-roll solution for

Pr = ∞. If we evaluate eq. (22) at α = α1121, we find that δ2 vanishes. We thus
can see analytically that R21

∞(α1121) = R21
cr (α

11
21) = R11

cr (α
11
21), i.e. that the curve

R21
∞(α) emanates from the intersection of R11

cr with R21
cr .

If we evaluate eq. (22) at α = α2112, we find that R21
∞(α2112) = R21

cr (α
21
12) = R12

cr (α
21
12),

i.e. that the curve R21
∞(α) emanates also from the intersection of R21

cr with R12
cr .

The curve R21
∞(α) thus connects the intersection point of R11

cr (α) and R21
cr (α)

with the intersection point of R21
cr (α) and R12

cr (α), as was speculated in the case
of the Taylor problem [13].

3.2 The perturbation approach

If the full system (7) is reduced for local investigations of mode interactions
by a perturbation approach to third order in (λ − λo)1/2 and (Ra − Rao)1/2,
λ = 2π/α, the resulting system involves the 7 modes and equations used in the
model problem (17), plus two more: the modes ψ32 and θ32 and their equations.
Interactions of the kth and the (k + 1)st mode were investigated by Knobloch
and Guckenheimer [10] in a neighborhood of the intersection point P

(k+1)1
k1 :=

(α(k+1)1k1 ,Ra(k+1)1k1 ). In the case k = 1, the system of equations they used ([10],
eqs. (15), (16)) is identical with the 9x9 system we get from system (17) by
including ψ32 and θ32. Note, however, that the coefficients of the system vary
with α in the approach discussed here, but not with time t.

Knobloch and Guckenheimer did not calculate loci of secondary bifurcation
points. Indeed, we doubt that the 9x9 system could be treated the way the
7x7 system was treated: not even when using such a device as Mathematica.
Both first calculations of the 7x7 determinants did contain minor errors which
were eliminated in [14]. In [14] the methods to be discussed next were used
to reproduce the results on the 7x7 model problem, and then it was checked
how much the results change when the two additional modes and equations are
included.

The methods employed avoid the computation of determinants: for given
wave number and Rayleigh number, all eigenvalues of the Jacobians were com-
puted with standard software (RG of Eispack). The critical values were found
by iteration for a zero eigenvalue (bisection or Newton iterations), using contin-
uation in α and Ra. The curves of critical points were then obtained by linear
interpolation between the computed points.

For both curves of secondary bifurcation points emanating from the double
point P 21

11 it was found that the two curves corresponding to the 7x7 model and to
its 9x9 companion do differ, but that the deviations are so small that they cannot
be seen in the scale of Fig. 2. A change of Prandtl number, however, is clearly
visible. For several points in the parameter plane all eigenvalues of corresponding
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matrices were compared in detail, both for Pr = 1 and for Pr = 1000 ([14], p.
175–178). This confirmed that neglecting the modes ψ32, θ32 does not change
the eigenvalues noticeably. This is probably due to the fact that the influence
of matrix entries on the eigenvalues very much depends on the position of the
entry in the matrix [16].

3.3 A Hopf curve

When computing all 7 or 9 eigenvalues of these Jacobians for many parameter
values, i.e.when producing the dashed curves in Fig. 2, we happened to notice a
pair of conjugate complex eigenvalues moving through the imaginary axis. This is
the condition for Hopf bifurcation. Systematically searching for those parameter
values at which the real part of a conjugate pair of eigenvalues changes sign we
found the Hopf curve shown dotted in Fig. 2. At each point on this curve the
real part of a pair of eigenvalues vanishes.

Fig. 2. Curve of bifurcation points in the stress-free case in the (α−1,Ra)-plane for
Pr = 1. Solid: neutral curves R11

cr , R
21
cr and R12

cr ; Dashed: curves of secondary bifurca-
tions emanating from the double point P 21

11 , obtained through eigenvalue computation;
Dotted: Hopf curve

When producing this curve we expected that it would end in some double
point, as the other curves do and as Hopf curves do under certain circumstances
[8]. We were surprised to see that the curve does end on one of the curves of
secondary bifurcations with three vanishing eigenvalues, but ‘in the middle of
nowhere’ on this curve. Why at (1/αe,Rae) ≈ (0.36708, 3024.87) in the 9x9 case
and not at some other values? To make sure that the curve actually ends there
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we performed further computations on three sides of a rectangle surrounding the
end point found, both for the 7x7 case and for the 9x9 case. No continuation of
the curve was found.

3.4 The 2-roll, 6-roll interaction in a model problem

To investigate the interaction of the 2- and 6-roll solutions, there are now the
same two ways for obtaining a simplified model problem as in the 2-roll,4-roll
case:

• make a perturbation approach as just discussed for the 2-roll,4-roll case. A
3rd order perturbation analysis of the interaction of the (k,1)-mode with
the (m,1)-mode shows that the modes (k,1), (m,1), (k+m,2), (m-k,2), (0,2)
should be taken into account [15,10]. For k = 1, m = 3 this leads to a model
with the modes

ψ11, ψ22, ψ31, θ02, θ11, θ22, θ31, ψ42, θ42.

• truncate system (7) at N = 2, M = 3 and use perturbation arguments to
further simplify this system.

This second approach leads to the following model:

(b21 − b32)(a31 − a22)ψ22ψ31 − Pr Ra c1θ11 + Pr a211ψ11 = 0,
(b12 + b21)(a11 − a22)ψ11ψ22 − Pr Ra c3θ31 + Pr a231ψ31 = 0,
(b11 + b31)(a31 − a11)ψ11ψ31 − Pr Ra c2θ22 + Pr a222ψ22 = 0,
−2b12ψ11θ02 + (b21 − b32)(ψ31θ22 + ψ22θ31)− c1ψ11 + a11θ11 = 0, (23)
−2b32ψ31θ02 + (b12 + b21)(ψ22θ11 − ψ11θ22)− c3ψ31 + a31θ31 = 0,
(b11 + b31)(ψ31θ11 + ψ11θ31)− c2ψ22 + a22θ22 = 0,
2b11ψ11θ11 + 2b31ψ31θ31 + a02θ02 = 0.

The situation is very similar to the 2-roll,4-roll case, and we expect that the
more accurate results obtained with the 9x9 model will differ only slightly from
the results obtained with the 7x7 model, which we will discuss next.

Calculation of secondary bifurcation points on the 2-roll solutions: A
necessary condition for secondary bifurcation on a branch of solutions of (23)
is that the determinant of the Jacobian vanishes. As in the 2-roll,4-roll interac-
tion, this determinant simplifies considerably on both solution branches under
consideration, leads again to a 6x6 determinant of the form (18) and to a 4x4
determinant which actually has to be computed. In the case of the 2-roll solu-
tion, obtained is thus a quadratic polynomial in Ra and in Pr and a rational
function in α, with a structure very similar to the one in the 2-roll,4-roll case.
Figure 4.9 of [14] shows curves for 6 different values of Pr which were obtained by
numerically evaluating this formula with a root-finding algorithm. Again, there
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are simple expressions for the limiting cases: for Pr = 0, the curve coincides with
R11
cr , and for Pr→∞ we get

R11
31(α; Pr→∞) =

γ3 + δ3R
22
cr/R

11
cr

γ3 + δ3
R11
cr (24)

with

γ3 :=
(b12 + b21)(b11 + b31)a02

4b11b12
(c1a222 − c2a

2
11)(c3 + c1

a231
a211

) (25)

δ3 := c22c
2
3(R

11
cr −R31

cr ).

Note that δ3 vanishes at α = α1131, i.e. the curve R11
31(α; Pr→∞) emanates from

the double point (α1131,Ra
11
31), as was to be expected. R22

cr plays a prominent role
in formula (24), but R22

cr (α) and R11
cr (α) do not intersect. As in the case of the

2-roll,4-roll interaction, we cannot say anything about ‘where this curve goes’.
Maybe it continues to infinity, maybe it ends in some other singular point which
has been neglected in this simplified model.

Calculation of secondary bifurcation points on the 6-roll solutions: To
find the secondary bifurcation points on the 6-roll solutions, we start from the
determinant of the Jacobian of system (23) again. Quite a number of terms turn
into zero when solution (16), p = 3, is inserted. The resulting pattern of zeros
is inconvenient, but very similar to the pattern in the 4-roll case. Interchanges
of columns and rows, elimination of an entry and one expansion produce again
a 6x6 determinant of form (18), and the 2x2 matrix A can be shown to be
nonsingular in the (α,Ra) domain of existence of the 6-roll solutions. Thus a
4x4 determinant has to be computed again and leads to a formula very similar
to the one in the 2-roll,4-roll case. The curves for Pr = 1 and for Pr → ∞
are shown in ([14], Fig. 4.10). Again, the curve for Pr = 1 had to be obtained
numerically, while there are simple expressions for the limiting cases: for Pr = 0
the curve coincides with R31

cr , and for Pr→∞ it becomes

R31
11(α; Pr→∞) =

γ4 + δ4R
22
cr/R

31
cr

γ4 + δ4
R31
cr (26)

with

γ4 :=
(b32 − b21)(b11 + b31)a02

4b31b32

(
c2c3a

2
11 + c1c3a

2
22 + c1c2a

2
31 + c23

a222a
2
11

a231

)
δ4 := c21c

2
2(R

31
cr −R11

cr ).

The curve given in (26) connects the two double points P 11
31 = (α1131,Ra

11
31) and

P 22
31 = (α2231,Ra

22
31).
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3.5 Other interactions

As we have seen, the modes (k, 1), (m, 1), (k+m, 2), (m− k, 2), (0, 2) have to
be taken into account in a perturbation approach to 3rd order to investigate the
interaction of the (k, 1)-mode with the (m, 1)-mode. Comparison of the 7x7 and
9x9 models approximating the full Rayleigh–Bénard problem showed that modes
(k + m, 2) did not change results qualitatively. For finding the basic pattern,
it thus seems to be sufficient to investigate systems of 7 equations composed
by the modes (k, 1), (m, 1), (m − k, 2), (0, 2). The structures of the resulting
determinants were found to be very similar for the 2-roll,4-roll and the 2-roll,6-
roll cases, because the underlying equations (7) have the same structure with
respect to the different modes.

So we think that the general case (1, 1) with (m, 1) will follow the pattern
found here. We expect that there are two curves emanating from each of the
double points P 11

m1 = (α11m1,Ra
11
m1), m > 1. One of the curves connects P 11

m1 with
Pm−1,2
m1 the other curve either goes to infinity, or interacts with a double point

excluded by the simplified analysis using only 9 or 7 equations.
Other interactions can be investigated in a very similar way if it turns out that

the computed curves of secondary bifurcations stay close to the critical curves,
as they do in the cases investigated here: remember that they merge with the
critical curves for Pr → 0. So we expect from the foregoing analysis that there
will be two curves emanating from P k1m1, m > k, and that they will be found
to go to the double point Pm−k,2

m1 and to infinity, respectively. This means that
one of the two curves emanating from P 21

31 will go to the double point P 12
31 . This

was confirmed for a numerical model of the full Rayleigh–Bénard problem with
rigid boundary conditions. These results will be reported in the next section, see
especially Figs. 5 and 9.

As we have seen, the curves of secondary bifurcation points are generated by
intersections of neutral curves, i.e. by intersections of curves of bifurcation points.
The question thus arises if these curves of secondary bifurcation points intersect
with other curves of bifurcation points and thus generate additional curves of
(tertiary) bifurcation points. Many intersection points in the figures presented
here are due to projection. Some intersection points in the parameter plane,
however, correspond to actual intersections: this is so if the projected curves lie
on the same solution surface. The curves given in eqs. (20) and (24) both lie
on the surface of the 2-roll solutions. As was reported in [14] near Fig. 4.11,
these curves intersect, and not only for Pr → ∞, but for all Prandtl numbers.
Generalizing we find that from all double points P 11

p1 , p ≥ 2 presumably emanates
a curve of secondary bifurcation points lying on the surface of the 2-roll solutions.
We cannot exclude that all these curves intersect each other, producing further
curves of bifurcation points.

There are also intersections in the other families of secondary bifurcation
curves. An example are the curve connecting P 11

31 with P 22
31 and the curve con-

necting P 21
31 with P 12

31 . Both curves lie on the surface of the 6-roll solutions. As
we can see from Fig. 1, both thus can reach their destination only by intersect-
ing the other curve. The analysis presented in the next section shows that these
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curves do not only intersect for the small model problems with 9 or 7 modes, but
also for the numerical approximation of the full system with no-slip boundary
conditions on top and bottom, see Figs. 5 – 8.

If the calculations presented in this section are further generalized, the ques-
tion if neglecting the (k + m, 2)-modes is appropriate has to be newly investi-
gated. It should be kept in mind that this strict truncation to systems of 7 or
9 equations was done to find basic patterns. There probably are higher order
interactions which got excluded in the simplified models studied here. But even
when restricting the analysis to these basic patterns, coalescence of three and
more points of secondary bifurcation has to be expected, and this will give rise
to new patterns of solutions. A glimpse into the zoo to be expected for Taylor
vortex flows is given by Fig. 10 and by some of the figures in ([14], Chapter 3).

4 Numerical investigations

4.1 The Rayleigh–Bénard code used

Now we briefly describe the Rayleigh–Bénard code used for the numerical inves-
tigations. As before, let vx and vz be the velocity components in the x and z
directions, respectively, ψ the stream function satisfying vx = −∂zψ, vz = ∂xψ,
and θ the temperature deviation. Ra is the Rayleigh number, and Pr the Prandtl
number. In addition we introduce the (negative of the) vorticity ω = ∆ψ. Then
we obtain the coupled set of three second-order differential equations

∂zψ ∂xω − ∂xψ ∂zω + PrRa ∂xθ + Pr∆ω = 0,
∂zψ ∂xθ − ∂xψ ∂zθ + ∂xψ +∆θ = 0, (27)
ω −∆ψ = 0.

We solve them on the region

0 ≤ x ≤ 2π
α

, 0 ≤ z ≤ 1. (28)

The boundary conditions on the sides are

ψ(0, z) = ψ(2π/α, z) = 0,
∂xψ(0, z) = ∂xψ(2π/α, z), 0 ≤ z ≤ 1, (29)
θ(0, z) = θ(2π/α, z).

The boundary conditions on the top and bottom are, for 0 ≤ x ≤ 2π/α,

ψ(x, 0) = ψ(x, 1) = 0, (30)
θ(x, 0) = θ(x, 1) = 0,

and

∂zψ(x, 0) = ∂zψ(x, 1) = 0 (31)
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for rigid boundaries; or

∂zzψ(x, 0) = ∂zzψ(x, 1) = 0 (32)

for stress-free boundaries.

Discretization: A uniform mesh in the coordinate directions is introduced;
the boundaries of region (28) coincide with grid lines. The equations (27) are
discretized in the interior of this region using centered second order finite differ-
ences. The boundary conditions are implemented in the following way:
Stress-free case: from eq. (30) we see that ∂xxψ(x, z) = 0 for z = 0, 1 and all x.
Thus eq. (32) yields that ω(x, z) = 0 for z = 0, 1 and all x. In the code, ψ and
ω are set to zero on top and bottom of the computational region (28).
Rigid case: again, the only nontrivial boundary conditions are those for ω. We
now discuss how to use eq. (31) at the bottom; the top is treated similarly, and
also conditions (29) are treated similarly.

Let hx and hz be the grid sizes in the x and z directions, let (i, j) denote a grid
point near or at the bottom, i ≥ 0, 0 ≤ j ≤ 2, and let ψi,j be an approximation
to the exact value ψ(ihx, jhz). We extrapolate from interior values of the stream
function in the following way: we approximate ψ with a cubic polynomial in the
three intervals normal to the boundary, say ψ(ihx, jhz) = A+Bhz+Ch2z+Dh3z,
j = 0, 1, 2 (A,B,C,D depend on i). Using (30) and (31) gives A = B = 0.
Applying this formula for i = 1 and i = 2, one finds C in terms of ψi,1 and ψi,2
and then uses ∂zzψ(ihx, 0) = 2C. This leads to

ω(ihx, 0) = ∂zzψ(ihx, 0) ≈ 4ψi,1 − ψi,2/2
h2z

. (33)

This is called Jensen’s, Wilkes’, or Pearson’s method.

Numerical model: We thus obtain a block-tridiagonal system of equations,
G(u) = 0. Here u is a vector consisting of the unknown values of ψ, θ, ω at the
interior grid points. Before we report on how the system G(u) = 0 is solved, we
compare the equations for the stress-free case treated here with equations (1)–
(3) treated above. Both deviations between the two systems are theoretically
unimportant and were introduced for purely numerical reasons.

The introduction of the vorticity in eqs. (27) avoids direct discretization
of derivatives of 4th order. For a fixed number of grid points, the number of
equations and of unknowns is increased by 50% by the introduction of ω, but
all three differential equations in (27) are second order now. This allows us to
use 5-point stencils in the interior throughout. It thus yields a system with
block tridiagonal instead of (quite complicated) block pentadiagonal structure,
and also it makes the boundary treatment much simpler. Moreover, away from
singular points, the Jacobian matrix Gu has better numerical properties: its
condition number is reduced from O(h−2

x h−2
z ) to O(h−1

x h−1
z ). (Previous versions
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of this (Taylor) code used one fourth order equation and one of second order
[1].)

Differentiation of ψ(x0, z) = 0, 0 ≤ z ≤ 1 with respect to z leads to
∂zψ(x0, z) = 0, 0 ≤ z ≤ 1. The fourth equation in (3) thus follows from the
first equation in (29). Solutions of system (1)– (3) which are excluded by the
first equation in (29) are also excluded by our Fourier expansion (5). Note that
all solutions satisfying the ansatz (5) satisfy also ψ(0, z) = ψ(2π/α, z) = 0,
0 ≤ z ≤ 1. The Dirichlet boundary conditions in (29) are easier to implement
than the periodic Neumann boundary conditions in (3).

Taylor–Couette code: This Rayleigh–Bénard code was constructed from a
Taylor–Couette code for steady, axisymmetric, incompressible flow. This code
performs one-parameter continuation for computing solutions (flows) and two-
parameter continuation for computing paths of critical points (pitchfork bifur-
cation points, transcritical bifurcation points or fold points). The details of the
algorithms and of their implementations are explained in [1–4].

The Taylor–Couette code is conceptually divided into two parts: the dis-
cretized system of equations, together with first and second derivatives with
respect to the unknowns and with respect to the parameters, computed either
analytically or with finite differences; and the continuation apparatus itself, which
involves Newton’s method, repeated solutions of systems of linear algebraic equa-
tions, and combinations of the above derivatives. Only the first part changes
in converting from the Taylor–Couette system to the Rayleigh–Bénard system.
Since the two systems are intimately related to each other and have very similar
structure ([14], Sect. 4.2.3), it was relatively easy to replace the Taylor–Couette
system by the Rayleigh–Bénard system. The Taylor–Couette system contains
repeated references to the radial coordinate, however, but the Rayleigh–Bénard
system is autonomous.

Continuation in one parameter is implemented using the techniques in [9,14].
Branches of solutions are parameterized by pseudo-arclength, a numerical ap-
proximation to the intrinsic parameter arclength. This allows us to compute
tangents to solution branches and thus to follow such branches around fold
points with respect to control parameters. Also, it is possible to detect bifur-
cation points and to compute the tangent direction of the other bifurcating
branch. If the Jacobian Gu is of size n by n, one repeatedly solves ‘inflated’
(n+ 1) by (n+ 1) systems. The ‘bordering algorithm’ nevertheless allows us to
take advantage of the block-tridiagonal structure of the Jacobian. Once a fold
point or bifurcation point is located, we can follow a (two-parameter) fold or
bifurcation path in any two of the parameters Ra,Pr, or aspect ratio 2π/α. One
repeatedly solves inflated systems of (2n + 3) equations in (2n + 2) unknowns.
Orthogonal projections reduce this to a consistent system, and the bordering
algorithm is repeatedly used at each step to reduce this system to one involving
a linear system with matrix Gu or its transpose [1–4].
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Fig. 3. The six critical curves Rpq
cr (α), (p ≤ 3, q ≤ 2), in the (2π/α,Ra)-plane for the

case of rigid boundary conditions (29)–(31). The curves were obtained numerically

Numerical tests: For debugging of the new Rayleigh–Bénard code and for
finding adequate mesh sizes we first compared computed results for system (27)
with stress-free boundaries to analytical results. Figure 1 shows such a com-
parison. Four pairs of curves overlay each other to graphical accuracy; there is
a slight discrepancy in the other two pairs of curves. This is a measure of the
discretization error of our approximation, and was found to be small enough.

Numerical results for the rigid boundary version of the code were compared to
the results given in [6]. Satisfactory agreement was found between the bifurcation
curves computed by Chandrasekhar/Elbert and those computed with our code.
During these runs we produced Figs. 3 and 4.

Figure 4 shows a comparison of the critical curves with rigid and stress-free
boundary conditions in the (2π/α,Ra)-plane. Same curves as in Figs. 3 and
1. The minimum of the R11

cr -curve for rigid-boundary is located at (α,Ra) =
(3.117, 1707.762) and for stress-free it is located at (α,Ra) = (π/

√
2, 657.5), ([6],

pp. 36 and 38). Here, the rigid-boundary curve is shown in its proper scale. For
the stress-free boundary curves, the true Rayleigh numbers have been divided
by 0.3850, and the true aspect ratios 2π/α have been divided by 1.39.

4.2 Convection rolls with rigid boundaries on top and bottom

We now investigate the curves of secondary bifurcations for rigid boundaries at
top and bottom, i.e. with boundary conditions (29)–(31) and for Pr = 1. This
analysis was done numerically, using the code just described.

Figure 5 shows the loci of the secondary bifurcations in the (2π/α,
√

Ra/Rc)-
plane, Rc = 1708, Pr = 1. The curve connecting the double point P 21

11 =
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Fig. 4. Comparison of critical curves with rigid (—–) and stress-free ( - - - ) boundary
conditions in the (2π/α,Ra)-plane. The curves for rigid boundaries are shown in their
proper scale. The scales for the stress-free curves are changed such that the minima of
the two R11

cr -curves coincide
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 crR  cr

 22R  12
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Fig. 5. Loci of secondary bifurcation points in the (2π/α,
√

Ra/Rc)-plane, Rc = 1708,
Pr = 1, rigid boundary conditions (29)–(31). The curves marked with ‘p’ are projec-
tions of paths of pitchfork bifurcation points; those with ‘t’ are projections of paths of
transcritical bifurcation points
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(2π/α2111, R
21
11) with the double point P 21

12 = (2π/α2112, R
21
12) consists of pitchfork

bifurcation points. The curve connecting the double point P 31
11 with the dou-

ble point P 31
22 consists of transcritical bifurcation points. The curve connecting

the double point P 31
21 with the double point P 31

12 consists of pitchfork bifurca-
tion points. These curves were computed using the two-parameter continuation
algorithm described earlier.

1.50 2.00 2.50 3.00 3.50

-10.00

0.00

10.00

v
m

t

p

p

t

Fig. 6. Vertical velocity at midpoint, vm, versus
√

Ra/Rc for the rightmost two sec-
ondary bifurcation curves shown in Fig. 5

Let vm be the value of the vertical component of the velocity at the midpoint
of the computational domain, i.e. vm := vz(π/α, 1/2). Figure 6 shows vm versus√

Ra/Rc for the two secondary bifurcation curves of Fig. 5 generated in the
double points P 31

11 and P 31
21 , respectively. The curve generated in the double

point P 31
11 is identified by its existence at lower values of

√
Ra/Rc. Two points

symmetric with respect to the line vm ≡ 0 in Fig. 6 correspond to the same point
in Fig. 5. That is, each secondary bifurcation curve in Fig. 5 is a projection
of two paths. Following [14] we call such flows twins. Both curves of Fig. 5
also shown in Fig. 6 lie on the surface of the 6-roll solutions. Figure 6 shows
that the two curves do not coincide as much as suggested by Fig. 5. They are
different from each other, but there are two possible intersection points. As we
are going to show next, the intersection just to the left of

√
Ra/Rc = 2.5 is

a proper intersection point and thus a secondary double point, while the other
intersection at

√
Ra/Rc ≈ 3.5 is due to the projection used. We now consider a

different projection of the same two curves.
Figure 7 shows a projection of these curves for vm versus 2π/α. Again, the

two twin flows can both be seen. In this figure we identify the curve originating
at the double point P 31

21 by noticing that it exists at larger aspect ratios 2π/α
than the other curve does. Again, we find two possible intersection points of the
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Fig. 7. Vertical velocity at midpoint, vm, versus 2π/α for the rightmost two secondary
bifurcation curves shown in Fig. 5

two curves, not counting twins. The one for 2π/α ≈ 2.5 was identified as a proper
intersection point. A projection of its neighborhood onto the (2π/α,

√
Ra/Rc)-

plane is shown in Fig. 8. The possible intersection at minimum aspect ratio in
Fig. 7 corresponds to the possible intersection at maximum Rain Fig. 6. A closeup
of a neighborhood of the intersection points of the three curves R22

cr , R31
cr and

R12
cr clearly shows that the two curves of secondary bifurcations do not intersect

again.

2.44 2.45 2.46

2.39

2.39

2.40

2.40

2.41

sqrt (R/R_c) t

p

t

p

Fig. 8. Enlargement of Fig. 5 for 2π/α ∈ [2.435, 2.465],
√

Ra/Rc ∈ [2.39, 2.41], Rc =
1708, showing the intersection point of the two secondary bifurcation curves

Summarizing, we thus see that the curve of secondary bifurcations starting
at P 31

21 (see Fig. 5) crosses the curve starting at P 31
11 (see Fig. 8) and ends at the
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Fig. 9. Enlargements of Fig. 5 for 2π/α ∈ [1.65, 1.75],
√

Ra/Rc ∈ [3.45, 3.50], a neigh-
borhood of the intersections of the R31

cr , R12
cr , and R22

cr critical curves

double point P 31
12 while the curve starting in P 31

11 goes to P 31
22 . This is a special

case of the general rule formulated speculatively in section 3.5.

4.3 Secondary bifurcations in the Taylor problem revisited

These investigations should be complemented by a short report on computations
of Taylor vortex flows. Using the Taylor-version of the code described in section
4.1, the loci of secondary bifurcations and folds were computed for several η-
values. In Fig. 10 we show computations for the 2-vortex, 4-vortex interaction
for η = 0.727, µ = 0. Similar computations for η = 0.615 are shown in ([2], Fig.
2) (Re ≤ 340) and ([3], Fig. 2) (Re ≤ 1100), Re := Ω1R1(R2 −R1)/ν. Here R1
and Ω1 are the radius and the angular velocity of the inner cylinder, R2 and Ω2
of the outer, η = R1/R2, µ = Ω2/Ω1, and ν is the kinematic viscosity.

The curve marked by (6) in Fig. 10 is a curve of fold points. It corresponds
to the curve of secondary bifurcation points emanating from the double point
P 11
21 and going to infinity in Fig. 2 [14]. The curves marked (4) and (5) in

Fig. 10 correspond to the two λ/2-shifted twins of the secondary bifurcation
curve connecting the double points P 11

21 and P 12
21 (see Figs. 2 and 5). As explained

in ([14], p. 110ff), they got shifted to different parameter values by breaking of
the midline symmetry (4). We thus expected that these curves would meet at
the point (Red4, λd4) corresponding to the point P 12

21 . In Fig. 10 we see that
they actually do so. A detailed analysis showed that the curves are connected
smoothly, both at (Red4, λd4) and at the point (Re24, λ24) corresponding to P 11

21 .
The intersection of the curves is due to the projection. Unexpected is the detour
of curve (4) to the regime of flows with three vortices in the radial direction
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corresponding to flows bifurcating from Rp3cr in the Rayleigh–Bénard case. We
do not know which other double point causes it. Also, we did not investigate
and thus cannot explain the fold emanating from curve (4) near its relative
minimum.

Fig. 10. The 2-vortex, 4-vortex interaction for η = 0.727, µ = 0: projections of paths
of bifurcation points and of fold points in the (λ,Re)-plane, Re = Ω1R1(R2 −R1)/ν.
Computations with the Taylor-version of the code described in section 4.1

The curves for η = 0.615 shown in ([3], Fig. 2) look quite similar to the ones
for η = 0.727 up to Re-values corresponding to P 12

21 . But then curve (4) takes
several other detours, meets the double points corresponding to P 13

21 and P 14
21 ,

respectively, and disappears to higher Re-values. This was found to be due to a
bifurcation between (4) and another secondary curve for η ≈ 0.707, µ = 0.

Secondary curves generated by the 2-vortex, 6-vortex and the 4-vortex, 6-
vortex interactions for η = 0.615, µ = 0 are shown in ([4], Figs. 1,3,4). These
computations do not confirm our results on these interactions. But they also do
not contradict them: as we have just seen, the perturbation of the Rayleigh–
Bénard problem is too massive for these parameter values to draw any conclu-
sions for the Rayleigh–Bénard problem.
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Taylor vortices at different geometries

Manfred Wimmer1

Fachgebiet Strömungsmaschinen, Universität (TH) Karlsruhe,
Kaiserstr. 12, D-76128 Karlsruhe, Germany

Abstract. Flow fields between differently shaped bodies of revolution are studied.
These bodies are rotating cones with different apex angles, cylinder-cone combinations,
disks as well as oblate and prolate ellipsoids. The basic flows are fully three-dimensional
and influence the occurring instabilities. The dependence of the occurrence and the
development of Taylor vortices, Görtler vortices and cross-flow instabilities on the de-
scribed geometries are discussed. By separating the influence of the dynamics and the
geometry on the vortices the effect of both parameters can be studied separately. Due
to the simultaneous existence of sub- and supercritical flows the development at the
threshold can be studied very clearly. Furthermore, the rich variety of occuring flow
patterns - often existing side by side - offers new insides in unstable flows. A possible
transition from counter-rotating Taylor vortices to unidirectional-rotating cross-flow
instabilities is described. The influence of the governing parameters, like acceleration,
gap width etc. are discussed.

1 Introduction

The existence of Taylor vortices is not confined to the flow between straight
rotating circular cylinders. They may also occur for other geometries, different
from the classical Taylor [1] arrangement. Taylor vortices can be detected for
instance between rotating spheres, as described by Wimmer [2] and in this book
by Bühler, and as it is displayed in Fig. 1. An extensive study of the behaviour
of various vortical instabilities near differently shaped rotating bodies may be
found in Wimmer [3]. The occurrence of Taylor vortices between rotating coni-
cal cylinders and between rotating ellipsoids will be discussed in the following.
The flow between conical cylinders represents only a slight geometrical variation
with respect to the classical Couette–Taylor experiment. Between cones we have,
however, already a three-dimensional basic flow field, influencing the vortices to
be generated. We can also investigate combinations of circular and conical cylin-
ders. In the gap between these combinations a rich variety of flow patterns can
be obtained. By changing the apex angle of the cones consequently from Φ = 0◦

(cylinder) to Φ = 180◦ (disk) the change from counter-rotating Taylor vortices
to unidirectional-rotating cross-flow vortices can be demonstrated. Finally the
flow between oblate and prolate ellipsoids represents the transition from the flow
between disks to the flow between spheres or that one from the flow between
spheres to the flow between cylinders, respectively.

C. Egbers and G. Pfister (Eds.): LNP 549, pp. 194–212, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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Fig. 1. Taylor vortices between spheres

2 Flow between cones with a constant width of the gap

2.1 Experimental set-up

The test arrangement consists of an inner rotating cone and an outer one at
rest, as previously described by Wimmer [4]. Both cones have the same apex
angle of Φ = 16.03◦, resulting in a constant width of the gap between the two
coaxial cones. For all experiments silicone oils as working fluids are used with
some aluminium flakes acting as tracers. The flows are characterized by the
following parameters: the Reynolds number Re = R2

1maxω/ν and the Taylor
number T = R1maxs

3ω2/ν2, where R1max is the largest radius of the inner
rotating body, s the width of the gap and ω and ν denote the angular velocity
and the kinematic viscosity, respectively.

2.2 Flow field and Taylor vortices

Since the radius changes now linearly with the length of the cylinder, we obtain
a linear distribution of the centrifugal forces in the gap. The imbalance of the
centrifugal forces causes the three-dimensional flow field even in the subcritical
state. The fluid is centrifuged at the largest radius, moves in spirals towards the
smaller radius in the vicinity of the stationary cone and flows back to the larger
radius near the rotating cone, still in spirals. They join and form a closed flow,
as it is illustrated in Fig. 2.

The three-dimensional basic flow and especially the meridional component
of the flow has a crucial influence on the Taylor vortices.
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Fig. 2. Three dimensional basic flow

Taylor vortices appear first at the largest radius - in the upper part - whilst
in the lower part - at the smaller radius - the undisturbed basic flow is still
preserved. Hence, we obtain regions with sub- and supercritical flows in the gap,
similar to the situation between rotating spheres (cf. Wimmer [2]). The still weak
vortices at the beginning are most influenced by the three-dimensional flow and
are floating upwards with the meridional flow. Such a situation is displayed in
Fig. 3.

The occurrence of travelling closed toroidal vortex cells is astonishing, since
we have here a closed system. The travelling can only happen, if the upper
cells are compressed to such an extent that one of them vanishes, while the two
neighbouring vortices join together, forming one large cell. The adjacent vortex
pair follows up. At the same time, in the lower part a new pair is generated and
the periodic process starts again. For more details see Wimmer [4]. The velocity
of the floating vortices depends on the ratio of the strength of the meridional
flow and the rotation of the vortices. The strength of the meridional flow and
hence the velocity of the travelling vortices depends upon i) the apex angle φ,
ii) the angular velocity ω, iii) the width of the gap s and iv) the axial location
z.

As Fig. 4 shows, the travel velocity diminishes linearly with growing Reynolds
number until a steady state is reached. The stationary vortices, too, are still
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Fig. 3. Sketch and photo of sub- and supercritical regions. Toroidal vortices travel
upwards.

Fig. 4. Travel velocity of toroidal vortices.

influenced by the meridional flow, resulting in a deformation of single vortex
cells. Vortices rotating in the direction of the meridional flow become stronger
and are stretched, those rotating opposite to it are compressed. Since Taylor
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vortices appear as pairs of counter-rotating cells, we obtain alternately big and
small vortex cells in the gap between conical cylinders, as displayed in Fig. 5.

Fig. 5. Sketch and photo of the steady state with five vortex pairs.

Furthermore, because of the interaction of the locally different strength of
the meridional flow and the vortices we observe, that a ”large” cell at the bottom
has a greater axial extension than a ”large” one at the top, also demonstrated
by Fig. 5. Measurements of the wavelength, described by Wimmer [4], give a
difference of more than 100%.

2.3 Influence of initial and boundary conditions

For different initial conditions, e. g. in the experiment different rates of acceler-
ation of the inner cone to supercritical flows, different final steady states can be
obtained, showing the non-uniqueness of the process. A quasi-steady accelera-
tion generates five pairs of vortices (see Fig. 5), while higher acceleration rates
produce six or even seven pairs of vortices in the same gap at the same Reynolds
numbers.
By applying another rate of acceleration an unsteady state with helical vortices
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appear in the gap with a stationary outer cone. The helix winds around the inner
rotating cone like a coil, as illustrated in Fig. 6a.

Fig. 6. Taylor vortices between coaxial cones. a) Propagating helical vortices (left), b)
combination of toroidal and helical vortices (right).

For a clockwise rotation of the inner cone, the present helix with a right-hand
orientation moves downwards to the smaller radius. For again another accelera-
tion rate a combination of steady toroidal and unsteady helical vortices can be
observed. Fig. 6b shows, that downwards moving helical vortices are e.g. con-
fined between steady toroidal ones. Thus, we have the rare effect, that unstable
steady and unstable unsteady flows exist side by side.
Different boundary conditions influence the occurrence of Taylor vortices as well.
Different end plates, which limit the annulus, affect and modify the flow either
by their geometry or by their dynamic effects. End plates may bridge the gap
either completely or only partially, being either rotating or stationary. Combi-
nations of stationary and rotating end plates generate asymmetric conditions
in the gap, which results normally in an odd number of vortex cells. Another
interesting boundary condition is impressed by an upper free surface and the
filling rate of the fluid column. A detailed description of the various occurring
flow configurations caused by the free surface effect can be found in Noui-Mehidi
and Wimmer [5].
The size of the gap between the cones is another important parameter. For all
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gap sizes, the first Taylor vortices appear at the largest radius. The critical
Taylor number is smaller for smaller gap widths and the toroidal vortices start
later to travel upwards. The regime of existence, i.e. the Taylor numbers where
toroidal vortices appear or disappear, is shifted to smaller characteristic num-
bers with growing gap widths. Furthermore, the different axial extension of anti-
and co-rotating vortex cells is the more pronounced the larger the gap width. A
detailed study of the effect of different end plates and gap sizes on the vortices
has been published by Denne and Wimmer [6].

3 Combinations of circular and conical cylinders

In the foregoing the width of the gap has been kept constant. It has also been
demonstrated, that the geometry crucially affects the flow and the occurring
vortices. By a combination of circular and conical cylinders the geometric effect
can be studied very clearly.
Fig. 7 illustrates the idea and shows the possible combinations of cylinders and
cones.

Fig. 7. Possible combinations of cylinders and cones.

If a cylinder rotates in a conical shell or a cone in a cylindrical container, the
width of the gap is no longer constant. Since the Taylor number T = Rs3ω2/ν2

contains the influence of dynamics and geometry, the effect of the geometric
particularity on the flow can be separated. If we ensure for all cases, that the
dynamic part ω2/ν2 is constant -which is easily practicable by controlling the
angular velocity and the fluid’s temperature- then the Taylor number depends
only on the geometric parameters of the radius R and gap size s. The alteration
of these geometric quantities is specified for each case in Fig. 7. Considering that
the Taylor number depends linearly on the radius R and to the third power on
the gap size s, it is apparent that the alteration must have an influence on the
behaviour of the vortices.
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3.1 Rotating cylinder in a cone

For the combination of a rotating cylinder in a stationary cone, we obtain, in spite
of a constant radius, a three-dimensional flow, caused by the non-constant gap
width. In this case, first vortices appear, according to T ∼ s3, at the location
of the largest gap size. Thus, as for coaxial cones, regions with and without
vortices may be observed within the gap. Finally, for higher Taylor numbers, the
whole annulus is filled with vortices. Due to the meridional flow and the non-
constant gap width the Taylor vortices are deformed, having larger differences in
their axial extension. Measurements, previously described byWimmer [7], clearly
show the linear increase of the vortex extension with increasing gap width. This
behaviour was also confirmed by Abboud’s [8] numerical calculations.

3.2 Rotating cone in a cylinder

If a cone rotates in a stationary cylindrical container, the situation is more com-
plicated because now neither the radius R nor the gap size s remain constant.
Naturally, the basic flow is again three-dimensional. The meridional flow, which
considerably influences the vortices, is not uniform, because of the different gap
cross-sections.
For the present configuration first vortices are observed at middle axial positions
with medium seized gap widths, according to T ∼ Rs3. A simple calculation for
the local Taylor number is presented in Wimmer [7] and [9]. At the threshold the
vortices are very weak and move therefore upwards along with the meridional
flow. Thus, they come into regions where locally the critical conditions are not
yet fulfilled, because of the smaller gap size. They decay. Only by increasing the
angular velocity, vortices can be generated also here and adjacent vortices below
become stronger. The whole system travels, however, upwards as for the coax-
ial cones, until a steady state is reached. The velocity of the travelling toroidal
vortices again decreases linearly with increasing Reynolds numbers. The steady
state is again not unique, but depends on different parameters, as for instance,
on the end plates, the apex angle of the cone, the rate of acceleration and the
Reynolds number.

For a constant apex angle of e.g. Φ = 16.03◦ we obtain for different acceler-
ation rates, four steady states with two, three, four and five toroidal vortices in
the upper part and the swirl of the remaining secondary flow in the lower part.
The different modes of flow can be obtained either by different initial accelera-
tions directly out of the basic flow or by a change from one mode into the other.
Consequently, the different modes can only exist in a limited Reynolds number
range - their regimes of existence.

Figure 8 illustrates the different Reynolds number regimes and the way in
which one mode changes into another. The mode with three vortices, which is
generated by a quasi-steady acceleration, is the most stable one. It appears first
and exists longest, even for very high Reynolds numbers after all other modes
have merged into it. For different widths of the gap and for different apex angles
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Fig. 8. Regimes of existence of different modes and possible transitions.

of the cone, we obtain other Reynolds numbers for the regimes of existence. In
general, the smaller the apex angle, i.e. the more the cone resembles a cylinder,
the smaller the number of modes.

Fig. 9. Taylor vortices between a rotating cone in a cylinder. a) Steady state with
three Taylor vortices and the remaining secondary flow (left), b) helical vortices in a
non-constant gap and stationary outer cylinder (right).
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As an example for the different modes of flow, Fig. 9a shows the most stable
configuration with three toroidal vortices and remaining secondary flow in the
lower part. The different axial extension of the Taylor vortices is apparent.
Also for the non-constant gap between a cone and a cylinder, a configuration
with helical vortices exists, displayed in Fig. 9b. The mode is again unsteady
for all Reynolds numbers and the helical vortices propagate downwards from the
larger to the smaller radius. This is the first evidence of the existence of helical
vortices in a non-constant gap and a stationary outer shell.

The flow between cone-cylinder combinations is also of interest to the pro-
cess of wave-number selection, which is accomplished by a spatial variation of
the Taylor number. For this purpose Dominguez-Lerma et al. [10] used conical
ramps to combine the subcritical part of the gap with the supercritical one. The
combining conical part can either be established in the outer stationary shell -
called ramps - or at the inner rotating body - called tapered cylinder. Hence,
we have exactly the same geometric combination as described above. As soon as
Taylor vortices are generated in the section of the conical ramps, they influence
- together with the meridional flow in this section - the just occurring vortices in
the so far subcritical part of the smaller gap width. In order to learn something
about the influence during the generation of these vortices, it is necessary to
study the conditions within the conical ramps.

4 Flow between cones with different apex angles

Now we consider again flows between cones with a constant width of the gap;
but the apex angle of the cones is permanently enlarged. As a result, the merid-
ional flow becomes stronger and stronger with all consequences for the occurring
vortices.
For all instabilities, described above, we always obtain vortex systems of the
Taylor-Görtler type with pairs of alternately counter-rotating vortices. They oc-
cur either as closed toroidal cells or as propagating helical vortices. There exists,
however, another widespread form of unstable flow: the cross-flow instabilities.
They exist only in the presence of a three-dimensional basic flow. Cross-flow
instabilities produce vortices rotating all in the same direction and in rotating
systems having axes in form of spirals.

With the following set of six cones with different apex angles, already used by
Wimmer and Zierep [11], it can be demonstrated, that one vortex system may be
transformed in another one. For this purpose we imagine, that the unidirectional-
rotating cross-flow instabilities may be generated by a superimposed cross-flow
acting on the equidistant, counter-rotating Taylor vortices.

Figure 10 elucidates and explains the idea. All Taylor vortex cells, rotating in
the direction of the cross-flow are strengthened and enlarged and those rotating
opposite to it are weakened and compressed. Now it depends only on the ratio
of the strength of the cross-flow and the vortex rotation how far this effect is
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Fig. 10. Superposition of a cross-flow and Taylor vortices.

pronounced. It may result in only a small deformation of the Taylor cells or in
enlarged co-rotating cells while anti-rotating cells are extinct. Thus, every second
cell is compressed to such an extent that it vanishes and a system of vortices
rotating all in the same direction remains. Such a development can be verified
experimentally by changing the geometry of the cones, as it is demonstrated in
Fig. 11.

If the inclination of the cylindrical walls is increased step by step, the con-
figuration changes from the coaxial circular cylinder to finally a rotating disk in
a housing - with passing intermediate stages of conical geometries. The change
from counter-rotating to unidirectional-rotating vortices is only possible since
the variation of the cone’s apex angle allows the variation of the strength of the
cross-flow. Between rotating cylinders we have no cross-flow and hence regular
Taylor vortices of the same size appear, as it is displayed in Fig. 13a. The merid-
ional flow between the cones represents the cross-flow for the Taylor vortices.
With increasing apex angle it grows stronger and stronger until at Φ = 180◦ the
meridional flow between cones becomes the radial flow between a rotating disk
in a housing. For moderate apex angles of Φ = 16◦ and 32◦, the toroidal Taylor
vortices appear with different axial extensions of the cells as described in section
2 and shown in Fig. 13b.

For larger apex angles between Φ = 32◦ and 60◦ the propagating helical
vortices are the preferred states with more or less large differences for co- and
anti-rotating vortex cells as is evident by the photos of Fig. 13c and 13d. In
Fig. 13d it is manifested that only two helical vortex pairs remain. For an apex
angle of Φ = 60◦ the difference between adjacent vortices is so big, that for high
Reynolds numbers only one pair of helical, deformed Taylor vortices is left, as it
is shown in Fig. 12.

Looking from above we see in the plainview the spiral form of the vortex
system. For cones with an apex angle larger than Φ = 60◦ no Taylor vortices
could be detected. Finally at Φ = 180◦ we have the configuration of a rotat-
ing disk in a housing. Here the well-known cross-flow instabilities appear, as
shown in Fig. 13f, with unidirectional-rotating vortices. The axes of the vortices
form logarithmic spirals with an angle of 14◦ with respect to the circumferential
direction, as it was already mentioned by Gregory, Stuart and Walker [12].
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Fig. 11. Transition from cylinder to disk with growing apex angle Φ.

More details about intermediate stages of flow patterns between the cones
for various apex angles and Reynolds numbers can be found in Wimmer and
Zierep [11]. It should be pointed out that the method of a transition from Taylor
vortices to cross-flow instabilities is only practicable as long as helical Taylor
vortices exist. In the present investigation this is the case up to an apex angle
of Φ = 60◦. This fact is also in accordance with resent calculations of Hoffmann
and Busse [13].
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Fig. 12. One pair of helical vortices for Φ = 60◦. Front- and plainview.

5 Flow between rotating ellipsoids

Another variation of the geometry is represented by rotating coaxial ellipsoids.
During the last years it could repeatedly be demonstrated (e.g. Wimmer [2]),
that in the neighbourhood of the equator between concentric spheres the flow
conditions are similar like those between coaxial cylinders and in the vicinity of
the poles like those between rotating disks. There was, however, the unanswered
question, up to which latitude of the spheres the similarity to the cylinders is
guaranteed and how far the analogy to the rotating disks is valid. In order to
clarify these regimes of validity, we investigate rotating bodies with a shape
between cylinder and sphere or between sphere and disk, respectively, as it was
suggested by Wimmer [14].
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Fig. 13. Transition from counter-rotating cylinder Taylor vortices to unidirectional-
rotating cross-flow instabilities. From left to right and top to bottom: a) Taylor vortices
between cylinders; b) toroidal Taylor vortices between cones, Φ = 16◦; c) helical trav-
elling Taylor vortices, Φ = 45◦; d) different size of helical travelling vortices, Φ = 60◦;
e) spiral instability, Φ = 90◦; f) cross-flow instability between disks, Φ = 180◦.

These bodies are, as Fig. 14 shows, ellipsoids rotating about their shorter or
longer axes to give oblate or prolate rotating ellipsoids, respectively. A the-
oretical treatment of the elliptical geometry has already been published by
Hocking [15].
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Fig. 14. Ellipsoids between disk, sphere and cylinder.

So far we have studied ellipsoids with an axis ratio of A : B = 2 : 1 for the
outer, stationary oblate ellipsoid and axis ratios between a : b = 2.0519 : 1 and
2.1149 : 1 for the inner, rotating oblate ellipsoid, to give constant gap widths
between s = 2.0 mm and 4.175 mm. For the prolate ellipsoids the axis ratio of
the outer ellipsoid is A : B = 1 : 2 and for the inner, rotating one a : b is between
1 : 2.0158 and 1 : 2.1441, resulting in gap sizes between s = 1.24 and s = 10.075
mm. Here A and a denote the horizontal axes of the ellipsoids. The adaptation
of the axis ratios of the inner ellipsoids for different gap widths is necessary to
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produce same gap sizes at the equator and the poles. The basic flow field between
rotating ellipsoids is again fully three-dimensional. It is however more complex
than that between concentric rotating spheres because of the different curvature
of the ellipsoids in circumferential and meridional direction. This effect will have
an influence on the vortices to be generated.

5.1 Oblate rotating ellipsoids

Fig. 15. Oblate ellipsoid with A : B = 2 : 1.a) Two Taylor vortices on each hemisphere
(top), b) spiral instability around the pole (bottom).

The oblate ellipsoids illustrate the transition of geometric and fluid mechani-
cal conditions from a sphere to a disk. At the equator of oblate ellipsoids with an
axes ratio of A : B = 2 : 1, there is only a very small region that resembles the
cylindrical geometry; and hence we expect only a small number of Taylor vor-
tices, if at all. For the smallest investigated gap size of s = 2.0 mm one obtains -
at the maximum - four Taylor vortices on each side of the equator, by applying
the adequate initial acceleration. For a gap size of s = 4.175 mm only one regular
Taylor vortex is generated on each hemisphere. Here we observe again a radial
inward jet at the equator, as in the spherical case for medium sized gap widths
(cf. Wimmer [2]).

Figure 15a shows a situation with two straight Taylor vortices on each side of
the equator for a gap width of 2.0 mm. The number of Taylor vortices depends
on the gap size and initial accelerations. It can be stated, that the smaller the
gap width and the higher the rate of acceleration, the higher the number of gen-
erated Taylor vortices. For higher Reynolds numbers the Taylor vortices become
disturbed and take a wavy form and often some vortex fragments are hurled off
to the poles. For gap sizes larger than 6.0 mm no regular Taylor vortices can be
detected. Thus, Taylor vortices exist in the present case only in a small region
in the equator’s vicinity.
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Since the oblate ellipsoid resembles more the configuration of a disk, the flow
conditions are alike. The largest part of the elliptical surface is therefore occu-
pied by a spiral cross-flow instability. Fig. 15b shows these spirals at moderate
Reynolds numbers. The arms of the spirals may already influence eventually ex-
isting Taylor vortices in the equator region. For higher Reynolds numbers the
spirals become stronger, reaching entirely down to the equator and leaving no
chance for the generation of Taylor vortices.

Fig. 16. Vortex configuration between prolate ellipsoids, A : B = 1 : 2. Inner one
rotates, outer one at rest. From left to right and top to bottom: a) Taylor vortices for
narrow gap sizes, s = 1.24mm, T = 2075; b) broader Taylor vortices for broader gap
sizes, s = 4.90mm, T = 6000; c) wavy Taylor vortices, s = 4.90mm, T = 26500; d)
Taylor vortices near the equator and spirals around the poles; inbetween both systems
overlap each other, s = 6.35mm, T = 1311000.

5.2 Prolate rotating ellipsoids

The prolate ellipsoids represent the transition from the spheres to the cylinders.
We obtain, therefore, a situation as if the section around the equator between
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the spheres is stretched; and hence we expect vortex configurations looking more
like those between coaxial cylinders. For very small gap sizes between the prolate
ellipsoids the analogy to the coaxial cylinders matches nearly ideally. For a gap
width of s = 1.24 mm on obtains for example a broad band of small Taylor
vortices beneath and above the equator, as it is displayed in Fig. 16a.

By increasing the angular velocity, more vortices are added in the direction of
the poles, because also here the centrifugal forces are a function of the latitude.
The pole regions remain always free of Taylor vortices. For the small gap sizes
the Taylor vortices in the neighbourhood of the equator are only slightly inclined.
The inclination grows with growing distance from the equator and growing gap
widths. For larger gap sizes the wavelength of the vortices becomes larger, too,
as it is shown in Fig. 16b. The angle of inclination of the axes of the vortices also
grows with the gap size, and the occurrence of the Taylor vortices resembles more
those between spheres rather than those between cylinders. When the Reynolds
number is increased, the vortices become wavy as for the spheres and cylinders.
Fig. 16c shows such a regular, aesthetic pattern, caused by a secondary instability
in circumferential direction. For even larger gap widths the number of vortices
diminishes and they are limited to a region near the equator. For these gap sizes
and high Reynolds numbers a spiral instability around the poles appears, like
for the rotating spheres. The arms of the spirals grow towards the equator with
increasing angular velocity and reduce the Taylor vortices in this region. Fig. 16d
shows a situation, where the remaining Taylor vortices near the equator are
influenced by the spiral cross-flow instability. Both systems overlap each other,
forming in this region another system with a new, not clearly defined structure.

6 Conclusions

By a variation of the geometry one can study the influence of geometric pa-
rameters very clearly by separating the geometric and the dynamic part of the
Taylor number. The effect of the three-dimensional basic flow on the instabilities
depends on the ratio of the strength between the basic flow and the vortices.
The varying centrifugal forces in the gap produce sub- and supercritical regions
existing side by side. This fact allows to study the gradual spatial transition
from sub- to supercritical flows. It has been demonstrated that a non-constant
gap width - together with the three-dimensional basic flow - crucially influences
the onset and the shape of the vortices. Most recently, Rafique [16] contributed
to this problem by rotating a sinusoidally shaped inner rotating cylinder in a
straight stationary outer one. For certain geometries it is possible to have si-
multaneously two different types of instability in the gap, e.g. counter-rotating
Taylor vortices and unidirectional-rotating cross-flow vortices. They are either
separated or they influence and overlap each other, forming this way own, not
clearly defined flow patterns. It has also been demonstrated that a change from
one instability system into another is possible by gradually changing the geome-
try. By varying the geometry one can learn a lot about the onset and the further
development of vortex configurations and pattern forming systems.
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Abstract. We summarise different types of instabilities and flow patterns in isother-
mal spherical Couette flows as a function of the aspect ratio. The flow of a viscous
incompressible fluid in the gap between two concentric spheres was investigated for the
case, that only the inner sphere rotates and the outer one is stationary. Flow visualisa-
tion studies were carried out for a wide range of Reynolds numbers and aspect ratios to
determine the instabilities during the laminar-turbulent transition and the correspond-
ing critical Reynolds numbers as a function of the aspect ratio. It was found, that the
laminar basic flow loses its stability at the stability threshold in different ways. The
instabilities occurring depend strongly on the aspect ratio and the initial conditions.
For small and medium aspect ratios (β ≤ 0.25), experiments were carried out as a func-
tion of Reynolds number to determine the regions of existence for basic flow, Taylor
vortex flow, supercritical basic flow. For wide gaps, however, Taylor vortices could not
be detected by quasistationary increase of the Reynolds number. The first instability
manifests itself as a break of the spatial symmetry and non-axisymmetric secondary
waves with spiral arms appear depending on the Reynolds number. For β = 0.33, spiral
waves with an azimuthal wave number m = 6, 5 and 4 were found, while in the gap
with an aspect ratio of β = 0.5 spiral waves with m = 5, 4 and 3 spiral arms exist.
For β = 1.0, we could detect spiral waves with m = 4, 3 and 2 arms. We compare the
experimental results for the critical Reynolds numbers and wave numbers with those
obtained by numerical calculations. The flow modes occurring at the poles look very
similar to those found in the flow between two rotating disks. Effects of non-uniqueness
and hysteresis are observed in this regime.

1 Introduction

The subject of hydrodynamic instabilities and the transition to turbulence is
of importance for the understanding of nonlinear dynamic systems. Progress in
understanding instabilities, bifurcations and routes into chaos has been made
primarily by focusing attention on a small number of relatively simple hydro-
dynamic systems like Rayleigh-Bénard convection and the flow between two
concentric rotating cylinders (Taylor-Couette flow). Furthermore, a consider-
able progress in understanding the first instability in the form of Taylor vortices
of a viscous incompressible fluid flow between two concentric rotating spheres
for small and medium gap widths has been achieved over the last decades. The
three examples just reviewed are examples of transition to turbulence through a
repeated finite number of symmetry-breaking bifurcations. Especially the study
of instabilities and turbulence in spherical Couette flow is of basic importance
for the understanding of global astrophysical and geophysical motions. Much of
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the universe is filled with fluids in turbulent motion, and instabilities are quite
common in planetary atmospheres. But the study of spherical Couette flow is
also important for general theory of hydrodynamic stability since this flow is a
natural combination of circular Couette flow at the equator and the flow between
rotating disks at the poles. Another important feature of the spherical geometry
is that the basic flow involves two types of symmetry, the reflection symmetry
with respect to the equator and the translational symmetry with respect to the
axis of rotation. Depending on the aspect ratio, both types of symmetry-breaking
bifurcations can exist in the spherical Couette flow.

In this work, we consider the flow between two concentric spheres with the
inner sphere rotating and the outer one at rest as illustrated in Fig.1. This
flow can be characterised by the following control parameters: The aspect ratio
β = (R2 −R1)/R1 and the Reynolds number Re = (R2

1Ω)/ν, where R1 and R2
are the inner and outer radii, Ω is the angular velocity of the inner sphere and
ν is the kinematic viscosity. Another important control-parameter coming into
account is the acceleration rate, because the occurring flow pattern during the
transition to turbulence are also determined by the history of the flow, i.e. it
depends on whether the Reynolds number is increased or decreased, quasista-
tionary or fast.

Fig. 1. Principle sketch of the spherical Couette flow model

The problem of the flow between concentric rotating spheres is similar to
the flow between coaxial cylinders, but nevertheless, there are some important
differences: In the cylindrical case, there are often unwanted effects because
the necessary end plates lead to boundary conditions with discontinuities, while
there are no boundary effects in the spherical Couette flow. The basic flow in the
spherical case is three-dimensional and consists of an azimuthal motion super-
posed by a meridional flow which forms a large vortex in the meridional plane.
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This meridional flow is caused by the so-called Ekman pumping due to the cen-
trifugal forces at the pole. It leads to the formation of an outward-flow region
at the equator. Its strength increases with the Reynolds number and the gap
width: for low Reynolds numbers, it is rather weak and in the limit Re→ 0, the
basic flow is the purely azimuthal Stokes flow. A principal sketch of a meridional
section of the basic flow and of some typical supercritical flow structures can
be seen in Fig. 2. Another decisive difference between cylindrical and spherical
Couette flow is the meridional dependence of the centrifugal force in the spher-
ical geometry which can lead to the spatial coexistence of different flow states
in the sphere at a fixed Reynolds number. Two limiting cases allow comparisons
with other flow geometries: The equatorial region resembles a region between
two cylinders, while in the pole regions, there are some similarities to the flow
induced by a rotating disk.

Fig. 2. Illustration of typical flow structures in the isothermal spherical Couette flow:
basic state, Taylor vortex flow and spiral vortex flow (higher instability)

Most of previous experimental investigations on spherical Couette flow were
restricted to small and medium gap widths, where the first instability of the
basic flow leads to the formation of Taylor vortices in the equatorial region, as
reported e.g. by Khlebutin (1968), Sawatzki & Zierep [34], Munson & Menguturk
[29], Wimmer [39,40] , Yavorskaya et al.[48], Bühler [12], Bühler & Zierep [14,15].
Although spherical Couette flow is more relevant to astrophysical and geophys-
ical applications, in comparison with the Taylor-Couette flow system, the dy-
namic behaviour during the laminar-turbulent transition of the flow between
two concentric spheres has been studied less (e.g. Belyaev et al. [9], Nakabayashi
& Tsuchida [31], Egbers [19]).

Some different aspects of the dynamic behaviour of the spherical Couette
flow during the transition to turbulence for a wide range of Reynolds numbers
and for the case of a wide gap width are presented in this article. The insta-
bilities arising are in contrast to Taylor instabilities. They occur in the form
of non-axisymmetric secondary waves with spiral arms, which break the spatial
symmetry behaviour of the basic flow. With increasing Reynolds number, the
number of secondary waves with spiral arms decreases, before the flow loses its
stability. The flow seems to become chaotic with increasing the Reynolds number
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(Egbers & Rath [20]). In early studies of the flow in wide gaps, this transition
was thought to be a direct transition into turbulence without the existence of
pattern-forming instabilities (Munson & Menguturk [29]); the first observations
of the mentioned supercritical spiral waves in wide gaps are reported by Ya-
vorskaya, Belyaev et al. [47,7].

With the means of time series analysis of the LDV measurements some addi-
tional quantitative estimates for the existence of a transition region from laminar
basic flow to chaotic motion and for the onset of turbulence in the wide gap width
were given. Experimental results connected with the problems of stability, bi-
furcation, non-axisymmetry, periodicity, quasi-periodicity, chaotic and turbulent
motions in the spherical Couette flow are discussed in a paper by Wulf et al. [41]

2 Summary of previous investigations

In this chapter, we summarise previous results on the spherical Couette flow
and present a stability diagrams showing the critical Reynolds numbers of the
flow as a function of the aspect ratios for smaller and medium gaps as well as
for wide gaps (Fig. 3), making use of data available in the literature and from
own investigations. Frequent experimental investigations on spherical Couette
flow with the inner sphere rotating and the outer sphere at rest were carried
out in the region of small and medium aspect ratios, where Taylor vortices exist
like in circular Couette flow [37]. The existence of Taylor vortices in spherical
gaps was first discovered experimentally by Khlebutin [24]. For aspect ratios
β ≤ 0.19, he calculated a good fit of the critical Reynolds number for the onset
of Taylor instability to give Rec = 49β−3/2; later, this power law was improved
to Rec = 41.3(1 + β)β−3/2. He carried out flow visualisation experiments and
torque measurements in the range of 0.037 ≤ β ≤ 1.515, but for β > 0.44, he
did not find Taylor vortices in his experiments. Further investigations of Taylor
instability in spherical Couette flow were carried out by Sawatzki & Zierep [34],
Yakushin [42], Munson & Menguturk [29], Wimmer [39], Yavorskaya et al. [48]
and Nakabayashi [30]. Bühler & Zierep [14] found new secondary instabilities for
higher Reynolds numbers and medium sized gap widths. A survey of the work
so far on Taylor vortex flow in small and medium sized gap widths is enclosed in
the work of Bühler [12]. For the case of large aspect ratios, however, only a few
experimental investigations were carried out: Sorokin [36] experimentally tested
the validity of Bratukhins [11] linear stability analysis for the case of a large
gap (β = 1.0) and they found a continuous change with Reynolds number, but
not a sudden transition. Munson & Menguturk [29] and Waked & Munson [38]
reported that the laminar basic flow becomes unstable by transforming directly
into turbulent flow and not by Taylor instability, while Yavorskaya et al. [47]
could detect a transition region for β = 0.54, where secondary waves exist before
the flow becomes turbulent. Similar phenomena could later be observed in other
wide gaps. However, their description of the behaviour of these secondary waves
was not very detailed. Only a few investigations on spherical Couette flow were
extended to the case that both spheres can rotate independently. Experiments
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on the stability of co- and counter- rotating spheres were carried out by Wimmer
[40], Yavorskaya et al. [48] and Monakhov [28] for small aspect ratios, and by
Waked & Munson [38] for wide gaps. Furthermore, the flow between eccentric
rotating spheres was investigated experimentally and numerically both for co-
and counter-rotating spheres by Bar-Yoseph et al. [5,6].

Fig. 3. Stability diagram: Overview of observed critical Reynolds numbers as a function
of the aspect ratio

Numerical investigations of the supercritical spherical Couette flow in wide
gap widths are rare, as well as simulations of higher instabilities in small gaps,
because of the difficulties arising to simulate non-axisymmetric flows. On the
other hand, for small and medium sized gap widths, especially for β = 0.18,
several steady axisymmetric flows with 1 or 2 Taylor vortices in each hemi-
sphere were calculated by Bonnet & Alziary de Roquefort [10], Bartels [10],
Dennis & Quartapelle [16] and Marcus & Tuckerman [27], who also examined
the transitions between the different flow modes and the bifurcations. Bühler
[13] discovered an 1-vortex mode asymmetric with respect to the equator. The
bifurcation behaviour of this asymmetric mode was investigated by Mamun &
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Tuckerman [26]. Yang [46] applied in his simulations of the axisymmetric flow
fictitious symmetric boundary conditions to find all possible flow modes.

Three-dimensional simulations of flow states in the spherical Couette sys-
tem were for the first time reported by Dumas & Leonard [18] who successfully
calculated spiral Taylor vortices as observed by Nakabayashi [30] in his experi-
ments. This flow mode was also calculated by Zikanov [49] with co-rotating and
counter-rotating spheres as well. Sha et al. [32] studied thoroughly the structure,
evolution process and formation mechanism of this flow.

Dumas [17] also performed calculations for the wide gap case. For several
gap widths, he presented slightly supercritical flow modes and determined critical
Reynolds numbers for the wide gap transition from his calculations; furthermore,
he proposed a mechanism for this instability.

Schrauf [35] investigated the influence of β on the first appearance of a pair
of Taylor vortices in the spherical Couette flow by calculating steady, but not
necessarily stable axisymmetric solutions with a continuation method. He con-
cluded that Taylor vortices can exist up to β = 0.45− 0.48, but they can not be
generated in the usual way (only inner sphere rotation) for β > 0.24, where no
bifurcation point was found and the basic state remains stable until the three-
dimensional wide gap instability occurs. Experimentally, Taylor vortices could
be generated in this gap width regime by Belyaev et al. [8] for β = 0.3038 and
by Liu et al. [25] for β = 0.33; in the latter work, the authors also could generate
Taylor vortices numerically up to β = 0.483. Motivated by this work, a detailed
numerical study of the Taylor vortices for β = 0.336 was presented by Hollerbach
[22].

Recently, Yamaguchi et al. [43–45] published a series of papers (experiments
and numerics, inner and outer sphere rotation) extending the investigations of
the flow in the spherical Couette system to viscoelastic fluids.

3 Experimental methods

3.1 Spherical Couette flow apparatus

Two different experimental setups for spherical Couette flow were constructed,
consisting of an inner sphere rotating concentrically inside another rotating
outer spherical shell. In the former experimental apparatus, the outer sphere
(R2 = 40.00± 0.02mm) is composed of two transparent acrylic plastic hemi-
spheres. The upper hemisphere has a spherical outer surface of about 0◦ < Θ <
110◦ to investigate whether the occurring flow patterns are symmetric with re-
spect to the equatorial plane or not. The inner sphere is made out of aluminium
having the five various radii R1, to vary the aspect ratio β from 0.08, 0.18, 0.25,
0.33 to 0.5.

Another experimental setup was constructed to investigate the different types
of instabilities for larger aspect ratios of β = 1.0 and β = 2.0. The outer sphere of
the second apparatus is much larger than the first one (R2 = 120.00± 0.05mm)
and is composed of two transparent acrylic plastic hemispheres, too. Two differ-
ent inner spheres exist with radii of (R1 = 60.00 ± 0.05mm and R1 = 40.00 ±
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0.05mm), to vary the aspect ratio β from 1.0 to 2.0. Photographs of this labora-
tory experimental setup are shown in Fig. 4. To cool the outer shell, the whole
sphere can be enclosed by a rectangular box filled with cooling fluid.

Fig. 4. Laboratory experimental setup spherical gap flow

Generally, both spheres can be rotated independently by means of two belt-
drives. The eccentricity between outer and inner sphere could be minimised to
±0.015mm using high precision bearings and shafts. Two different synchronous
motor drives were adapted, which provide a uniform and stable rate of rotation
up to n=850 rev/min with fluctuations of less than 1.5%. They vary the Reynolds
numbers of the inner and outer sphere respectively in a range from Re = 0 to
Re = 106. The revolutions were calibrated using an optical tracking system
(optical coupling). Most of our experiments were carried out by increasing the
Reynolds number quasistationary from zero. However, because the occurring
flow structures depend also on initial conditions, the acceleration rate for both
spheres could be varied. Experiments with the spherical Couette flow system
were carried out in a laboratory condition, where the temperature could be
kept uniformly up to ±0.3◦C. Since the viscosity of the silicone oils, which were
used as working fluids, vary by approximately 2%/◦C, the temperature must
be precisely controlled and measured in order to have a well-defined Reynolds
number. A temperature accuracy of±0.15◦C was achieved for all six temperature
sensors (PT 1000) used in the experiments: For measuring the fluid temperature,
three temperature sensors are installed just below the outer surface of the inner
spheres. These temperature data are transferred from the rotating sphere to
the stationary part by a slip-ring system. For investigations with only the inner
sphere rotating three other temperature sensors are installed at the inner surface
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of the outer sphere. Our measurements were carried out with the silicone oil M3
at a constant temperature of 25◦C. As tracer particles small aluminium flakes
or polystyrene spheres were used. The concentration by weight was 0.05%. An
effect of the tracer particles on the viscosity of the fluid was not detected.

3.2 LDV measuring system and visualisation methods

Because the investigated flow structures appearing in the spherical Couette flow
during the laminar-turbulent transition are non-axisymmetric, it was necessary
to use an observation-technique, which provides a simultaneously flow visualisa-
tion of both the azimuthal and the meridional flow. Therefore, a combination of
the following two visualisation methods was used: To investigate the flow struc-
tures occurring in the meridional cross-section of the spherical annulus, a slit
illumination technique is employed. In addition, a system with a fibre-optic is
applied to visualise the polar region with the azimuthal waves. In this way, the
cellular structure of the occurring vortices in the meridional plane as well as
the azimuthal and polar behaviour of the arising flow pattern can be obtained.
Photographs or prints from video records were taken.

For the application of laser-Doppler-velocimetry (LDV) on the spherical Cou-
ette flow experiment, a special traversing system has been constructed to mount
the LDV optic probe on the spherical Couette flow experiment, while the laser
is mounted apart from the experiment on a mounting bench. The traversing
system consists of a high-precision bow with a traversing sledge and a traversing
table. The traversing sledge is capable of moving the optic probe in meridional
direction (0◦ < Θ < 110◦) and the traversing table is capable of moving in radial
direction over a range of 60 mm in order to determine the meridional dependence
of the velocity and to obtain velocity profiles. The laser-Doppler-velocimeter sys-
tem used in our experiments, consists of a 20 mW He-Ne laser and a 1-D fibre
flow optic probe (DANTEC Electronics, Denmark). A frequency shift is added
by the Bragg cell to one of the beam pair to allow for measurements of reversing
flows. The optic probe with a fibre optic cable is connected to the transmitter
via manipulators. The backscattered light is focused on a photomultiplier tube.
As tracer particles for the LDV measurements we use polystyrene spheres with
a diameter of 1.6 µm. The concentration of tracers in the working fluid was 0.01
Vol.%. The application of the LDV technique on the spherical Couette flow ex-
periment requires an optical correction for the accurate determinations of the
probe volume locations and for the interference fringe spacing due to refraction
effects of the spherical outer surface. Because the probe is adjusted in radial
direction, the optical axis of the front lense of the probe passes perpendicular
through the spherical outer surface. Thus, the correction for the two laser beams,
which are in the same plane, could be calculated for a cylindrical surface. How-
ever, the fact, that a small probing volume is needed to produce sufficient spatial
resolution, which could be obtained only by a large intersection angle, the small-
angle approximation cannot be used in this case. The correction method used
in this work for the case of large intersection angles was derived in our previous
work [21].
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Fig. 5. Principle sketch of the experimental apparatus with the applied LDV measuring
technique and the observation technique with CCD-camera
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4 Transitions

4.1 Small and medium gap instabilities

The flow in the gap between two rotating spheres, where only the inner sphere
rotates and the outer one is at rest, is not only a function of Reynolds number
and aspect ratio β, but it also depends on the initial or boundary conditions.
The different types of instabilities can be described as follows: Below a critical
Reynolds number, the laminar basic flow is a steady axisymmetric and equa-
torially symmetric three-dimensional flow. Above a critical Reynolds number,
however, the occurring flow structure depends strongly on the aspect ratio β.
For small aspect ratios, the flow conditions near the equator are similar to the
flow between concentric rotating cylinders. Hence, the first instability occurs in
the form of a pair of Taylor vortices on each hemisphere for small β.
For β = 0.25, the initial and/or boundary conditions become most important:
The resulting different flow modes are illustrated in Fig. 6 as a function of the
Reynolds number. If the rotation rate of the inner sphere is increased quasista-
tionary, the basic state is stable up to very large Reynolds numbers (Re ≈ 3800),
before spiral waves occur as the first instability, which are typical for wide gaps.
But small disturbances, which are realized in the experiment by short-time coun-
terrotating of the outer sphere, can lead to instabilities of the Taylor vortex type.
In this way, one Taylor vortex on each side of the equator as depicted in Fig. 7
can be produced by exceeding the Reynolds number Rec = 420. Up to Re ≈ 4200
this mode is very stable, before it becomes wavy up to Re ≈ 4350. The wavy
mode only exists up to Re ≈ 4700 where the flow becomes turbulent. In the
same way (short-time counterrotating of the outer sphere), a pair of two Taylor
vortices could be produced in the region of about 900 ≤ Re ≤ 1000, while with
further increase of Reynolds number spiral Taylor vortices occur (Re ≈2000).

For β = 0.33, a comparable dependence on the boundary conditions can
be observed (see Fig. 8): The laminar basic state is stable up to very large
Reynolds numbers (Re = 2860), before spiral waves occur, if the Reynolds num-
ber is increased quasistationary. But one pair of Taylor vortices (symmetric and
asymmetric with respect to the equator) can be produced by short-time coun-
terrotating the outer sphere. This Taylor vortex pair coexists in the range of
about 470 ≤ Re ≤ 1850 before the flow merges into supercritical basic flow with
further increasing the Reynolds number (see the paper of Liu et al. [25] for a
detailed description).

For the aspect ratio β = 0.18, however, Taylor vortices form at the onset
of instability. States with one or two toroidal Taylor vortex pairs are possible,
which can also exist as instationary modes [34]. A detailed study of the flow
in this gap width can be found in a paper by Wimmer [39] who classified the
observed modes. With decreasing aspect ratio, the number of possible Taylor
vortices increases with increasing Reynolds number as illustrated in Fig. 9 for
the case of β = 0.08. As can be seen there, the flow with slightly inclined vortices
is replaced by additional spiral vortices with increasing Reynolds number. This
flow loses its stability to a time-periodic flow beginning at the equator and then
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Fig. 6. Observed flow modes in the aspect ratio β = 0.25

Fig. 7. Taylor vortices in a gap with β = 0.25 generated by counterrotation of the
outer sphere: one-vortex state at Re = 520, two-vortex state at Re = 900

to a wavy vortex flow. By increasing the Reynolds number, this flow changes
into a turbulent one.

The critical Reynolds number Rec is a function of the aspect ratio β. In the
range of very small aspect ratios (β < 0.08), the stability curve is in a good
agreement with the cylindrical theory of Taylor [37]. For the region of aspect
ratios 0.08 ≤ β ≤ 0.25 Yavorskaya et al. [48] found empirically, that Rec for
spherical Couette flow is larger than in the cylindrical and can be approximated
as Rec = 41.3(1 + β)β−3/2, which is in a good agreement with our and other
experimental results for β < 0.25. Experiments with increasing the Reynolds
number were also carried out to determine the maximum possible number of
Taylor vortices as a function of the aspect ratio. The best fit for the maximum
number i of Taylor vortex pairs could be obtained by i = 0.21β−4/3.
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Fig. 8. Flow modes in the aspect ratio β = 0.33

Fig. 9. Visualisation of flow states in a small gap β = 0.08: slightly inclined vortex at
Re = 1954, spiral vortex flow at Re=2259, time-periodic vortex flow at Re = 2606,
wavy vortex flow at Re = 6516
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4.2 Bifurcation behaviour

Several studies, experimental and numerical as well, concentrated on β = 0.18.
Especially the experiments of Wimmer [39] and the numerical work by Marcus
& Tuckerman [27] and Schrauf [35] led to a deeper understanding of the bi-
furcation phenomena of the axisymmetric flow states in this gap width regime.
Before any transition to a supercritical flow state occurs, a so-called pinching
of the meridional vortex of the basic flow is observed, that is the formation of
a stagnation point in each hemisphere located about one gap width from the
equator; between the stagnation points and the outflow regime at the equator
there are closed streamlines (which are no Taylor vortices) with circulation in
the same direction as in the adjacent meridional basic vortex.
Two axisymmetric (and reflection-symmetric with respect to the equator) Taylor
vortex states exist which both can be generated from the basic state: a 1-vortex
state with just one Taylor vortex in each hemisphere next to the equator, and a
2-vortex state. Among the possible transitions between the three axisymmetric
states, the transitions to the 1-vortex state (from the base flow and from the 2-
vortex state) break the equatorial symmetry, with the final 1-vortex equilibrium
state showing this symmetry again.
The 2-vortex state can be generated by fast acceleration of the inner sphere from
the basic state to a sufficiently high supercritical Reynolds number. It is shown
in the numerical studies that these two solutions lie on the same equilibrium
curve, and with increasing Reynolds number the flow develops steadily from the
pinched basic state to the 2-vortex state.
If the acceleration is sufficiently slow, above a critical Reynolds number (Re ≈
651 for β = 0.18) a transition from the basic state to a 1-vortex state occurs. The
basic flow is unstable to antisymmetric eigenmodes, hence during the temporal
evolution of the transition, the flow is not reflection-symmetric. This transition
exhibits a slight hysteresis, however small enough that it could not be resolved
in all experiments.
The observed phenomena can be understood from the calculated bifurcation
diagram: the equilibrium curve of the 0-2-vortex flow is linearly unstable to
non-equatorial-symmetric perturbations over a certain range of Reynolds num-
bers (651 < Re < 775 in case of β = 0.18). If the perturbations can grow,
finally the 1-vortex state develops. On the other hand, when the acceleration
is fast enough that the flow can follow the 0-2-equilibrium curve up to the sta-
ble regime of this curve but the perturbations do not have the time to grow,
the 2-vortex state is observed. The unstable range of the 0-2-solution is limited
by two pitchfork bifurcations (subcritical at the lower limit and supercritical
at the upper limit respectively) with bifurcating unstable solutions which are
asymmetric with respect to the equator. The 1-vortex state originates from a
saddle-node-bifurcation [33] at a Reynolds number (Re = 645 for β = 0.18)
slightly below the critical Reynolds number of the basic state. This explains the
slight hysteresis in the transition which is even smaller for smaller gaps.

Schrauf extended his studies of the bifurcation behaviour in the (Re, β)-plane
and predicted that the basic state does not become unstable (to axisymmetric
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Fig. 10. Schematic graph of the bifurcation behaviour in the gap β = 0.18 (after [27])
as desribed in the text. Solid lines represent stable solutions, dashed lines unstable
branches. The numbers denote the number of Taylor vortices per hemisphere in this
flow state.

perturbations) for β > 0.24 (Yavorskaya et al. [48] could detect in their exper-
iments a transition to 1-vortex flow up to β = 0.2413). Above this limit gap
width, the basic Couette flow remains stable to axisymmetric perturbations and
the flow with one Taylor vortex exists as an isolated solution, which can only
be produced by special initial conditions (as successfully done by Belyaev et al.
[8] and Liu et al. [25]). Above a limit gap, where the Taylor vortex solution is
unstable to three-dimensional perturbations for all Re, no Taylor vortices can
be observed; the estimate of Schrauf for this limit gap width is β ≈ 0.45− 0.48.

4.3 Wide gap instabilities

In comparison to the rather large number of studies dealing with the instabilities
in small and medium spherical gaps, there are considerably less investigations
of the flow in wide gaps. In this case, the basic flow is stable to axisymmetric
perturbations, and no Taylor vortices arise. Experimental descriptions of the su-
percritical flow are given by Yavorskaya and Belyaev for β = 0.398, 0.54, 1.0, 1.33
[47,7,9] and by Egbers [20] and Wulf [41] for β = 0.33 and β = 0.5. Addition-
ally, there are investigations by Munson and Menguturk [29] of the flow in large
gaps with β = 1.27 and β = 2.29; however, as it was pointed out by Yavorskaya
and Belyaev, these latter results need some interpretation, because Munson and
Menguturk did not observe visually any supercritical flow. Instead, they reported
some break-points in the torque-Re relation without pattern formation, and fi-
nally they assumed a transition to turbulent flow. In fact, this transition is the
transition to the typical supercritical wave flow, as described below, not the
transition to turbulence.
In these experiments, the following common features of the transition and the
supercritical flow could be found: The basic flow is linearly unstable to three-
dimensional perturbations. The supercritical flow consists of a number m equally
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spaced secondary waves which spread from the pole to the equatorial region. The
number of these waves depends on the gap width. In the gap widths, which we
realized experimentally, there are m = 6 for β = 0.33, m = 5 for β = 0.5 and
m = 4 for β = 1.0. The equatorial region is sinusoidally perturbed. The whole
pattern propagates with an angular velocity which decreases slightly with the
Reynolds number. The patterns exist in both hemispheres, but they are shifted
to each other; thus, the azimuthal symmetry and the equatorial symmetry as
well are broken in this transition. When the Reynolds number is increased fur-
ther, higher order transitions are observed, which show a clear hysteresis. In the
sequence of these transitions, similar flow states with a lower number of spiral
waves (e.g. m = 4 and m = 3 for β = 0.5) are observed, before the flow becomes
turbulent at sufficiently high Reynolds number.
A somewhat different transition behaviour was described by Wulf et al. [41]. In
this paper, he investigated the dynamical behaviour with chaos analysing tech-
niques applied on time series from LDV measurements; furthermore, he gave an
extensive description of all flow modes up to the transition to turbulence. While
he observed the same flow as first instability for β = 0.5, he found for β = 0.33
a corotating spiral vortex and a ring vortex as first supercritical flow structures,
before at higher Reynolds numbers, the spiral wave pattern (m = 6) forms.
Flow visualisation pictures of some supercritical wide gap flows are shown in
Fig. 11; the character of the spiral wave flow and the different number of vor-
tices is clearly visible.

Fig. 11. Flow visualisation of the wide gap flow structures for β = 0.5 (view on the
polar region): spiral wave flow with m = 5 (Re = 1320), m = 4 (Re = 1575) and m = 3
(Re = 1680)

Only a few numerical studies of these phenomena exist, mainly because of
the complex three-dimensional nature of the occurring flows. The first work was
published by Dumas [17], who successfully calculated by numerical simulation
with a pseudo-spectral code some critical Reynolds numbers. The flow structures,
which he calculated for β = 1.27 for slightly supercritical values of Re, show
the described characteristic properties. He assumed that the transition results
from a jet instability of the radial outflow region near the equator, which is
rather distinct in wide gaps. With a model based on this assumption, he could
qualitatively predict some of the properties of the supercritical flow. Hollerbach
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[23] calculated the spiral wave flow structures and critical Reynolds numbers for
the gap widths β = 0.33 and β = 0.5 which were used by Egbers. For the latter
gap width, Araki [2] performed a numerical stability analysis. The results of both
works are in perfect agreement with the experimental data. Critical Reynolds
numbers for some wide gaps were also calculated by Astafyeva [3]. See Tab. 1
for a survey of all determined critical values for the first transition.

With the numerical code of Hollerbach, we calculated the critical Reynolds
numbers for a wide range of gap widths. The code uses a spectral method; it
was originally developed for the calculation of magneto-convective phenomena
in spherical geometry (see the contribution of Hollerbach in this book) and is
described in [23]. For the calculation of the critical Reynolds numbers, the lin-
earised equations for a perturbation (with a given azimuthal wave number m)
to a precalculated axisymmetric basic equilibrium state are numerically treated.
From the growth rates of the perturbation for different Reynolds numbers and
azimuthal modes, the critical Reynolds number and critical wave number can be
determined. The results in cases where other data are available for comparison
are listed in the table below. A complete description will be given in a future
paper.

β 0.33 0.398 0.5 0.54 1.0 1.27 1.33 2.0 2.29

Belyaev 1900 1120 463 406
(5) (5) (4) (3)

Munson 407 425

Egbers 2628 1244
(6) (5)

Wulf 2395 1190
(5)

Dumas 1122 489 406
(5) (4) (3)

Araki 1245
(5)

Astafyeva 1150 493 457
(6) (4) (3)

Hollerbach 2684 1244
(6) (5)

our study 1937 1245 1115 489 405 395 383
(5) (5) (5) (4) (3) (3) (3)

Table 1. Comparison of available values (upper part: experimental, lower part: nu-
merical) for the critical Reynolds numbers and wave numbers (in parenthesis) in the
wide gap regime
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5 Conclusion

In this overview, we reported several flow states in the spherical Couette system
which is investigated experimentally and numerically. The kind of instability of
the basic flow depends strongly on the gap width: for small gaps, Taylor vortices
in the equatorial region are found, while in wide gaps, we observe time-dependent
spiral vortices.

Present investigations concentrate on this wide gap regime. Experimentally,
the transitions are analysed by means of time series analysis of velocity data
from LDV measurements. Thus, the critical values and the route to chaos are
determined. Numerically, we could calculate critical Reynolds numbers for a wide
range of gap widths in good agreement with the experimental observations. Now
we focus on comparison between experiments and numerical simulation of the
supercritical spiral wave flow.

Acknowledgements. The financial support of Deutsche Forschungsgemein-
schaft (DFG) is gratefully acknowledged.
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1 Introduction

Due to the spherical geometry and rotating effect in the spherical Couette
flow(SCF) situation, understanding the dynamics of the fluid motion (vortices
and waves) within such a spherical shell is relevant to both global astrophysical
and geophysical processes and engineering applications. Most of previous exper-
imental investigations on the spherical Couette flow were restricted to the cases
of small and medium gap widths in which the first instability occurred as Taylor
vortices at the equator (e.g., Munson & Menguturk [13]; Wimmer [22],[23]; Ya-
vorskaya et al. [25]; Nakabayashi [14]; Bühler [4]; Bar-Yoseph et al. [2]; Egbers
& Rath [6]). Some experimental and theoretical studies were also conducted re-
cently on the case of wide gap widths in which the first instability appeared in a
form of non-axisymmetric spiral waves (Egbers & Rath [6]; Araki et al. [1]; Wulf
et al. [24]). When the outer sphere is held stationary, the spherical Couette flow
between two spheres with the inner sphere rotating can be characterized by three
control parameters. There are the Reynolds number, clearance ratio and rota-
tive acceleration rate. Usually, the spherical Couette flow between two concentric
rotating spheres shows dynamical behaviors analogous to the classical circular
Couette flow between two concentric rotating cylinders in the equatorial regions,
and the flow between two plane rotating disks in the polar regions, respectively.
A series of our experimental work have been carried out on the spherical Couette
flow between two concentric spheres for a range of the clearance ratio where the
Taylor instability occurs in the equatorial region (Nakabayashi [14]; Nakabayashi
& Tsuchida [15],[16]), and our previous experimental investigations on the spher-
ical Couette flow showed a similar laminar-turbulent transition to that in the
circular Couette flow(CCF).

In this lecture note, we give a review on the laminar-turbulent transition
phenomena for the cases of various gap widths in SCF, among which we mainly
focus on the vortical structures and velocity fluctuations of spiral and wavy vor-
tices occurred in the transition processes. In next Sect. 2, the onset Reynolds
numbers of different kinds of disturbances for various clearance ratios are pre-
sented first. The results on the spiral TG vortex flow are presented in Sect. 3, in
which the vortical structure and formation mechanism of the spiral TG vortices
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are discussed from the experimental work and numerical simulation. Section 4
gives the results on fluid motion of the wavy vortices, and the velocity fluctu-
ations of the spiral and wavy vortices are analyzed systematically in Sect. 5.
In Sect. 6, a particular relaminarization phenomenon observed in intermediate
clearance ratio cases is represented and discussed in detail, and a explanation
for this particular phenomenon is also made. Concluding remarks are given in
Sect. 7.

2 Onset Reynolds numbers of various disturbances

In Fig. 1, results of the present and previous investigations on the relationship
between clearance ratio β and onset Reynolds numbers Ret of SCF disturbances
for β < 0.6 are illustrated in the form of a stability diagram. The clearance ratio
β is defined as (R2 −R1)/R1, where R1, R2 are the radii of the inner and outer
spheres, respectively. The critical Reynolds number of Taylor instability for SCF
is given by Rec = 41.3(1 + β)−3/2 for β < 0.3 (Nakabayashi [14]). Its tendency
is similar to that of CCF for β < 0.3. Concerning the rotating cylinder-type
disturbances, Ret of the spiral TG vortex decreases in close relation to the Taylor
instability curve with increasing β for β < 0.3. The Ret curve of traveling waves
also decreases almost parallel to the Rec curve with increasing β , but suddenly
increases above β < 0.13. According to Bühler [4], traveling waves occur for
β = 0.154, but not for β = 0.178, so we can conjecture that an upper limit of β,
i.e., βc2, for the occurrence of traveling waves exists between 0.154 and 0.178 in
SCF.

With respect to rotating disk-type disturbances, Yavorskaya et al. [25], Büh-
ler and Zierep [3], and Nakabashi & Tsuchida [15] reported the occurrence
of shear waves for β = 0.14 and 0.177, but not at β = 0.11. Egbers & Rath
[6] reported non-axisymmetric secondary waves due to cross-flow instability at
β = 0.5. The lower limit values of Ret of shear waves, Stuart vortex and ring
vortex are located on the curve of cross-flow instability. No disk-type disturbance
can be observed for β < 0.11, because the Ret for the occurrence of turbulence
is lower than that of rotating disk-type disturbances for β < 0.14. Accordingly,
there exists a lower limit of β (i.e., βc1), where the disk-type disturbances are
observable. Here, βc1 is given by a value between 0.11 and 0.14. The relaminar-
ization reported previously by Nakabashi & Tsuchida [15] exists in the range of
βc1 < β < βc2 . The occurrence of relaminarization can obviously be linked to
the disappearance of traveling waves due to the occurrence of rotating disk-type
disturbances.

From the foregoing discussion, the following conclusions can be made. For
β < 0.3 there are two critical values of β : βc1 and βc2 . For 0 < β < βc1 , only
cylinder-type disturbances (spiral TG vortices and travelling waves) can occur,
and their onset Reynolds numbers decrease with increasing β . In the region of
βc1 < β < βc2 , both cylinder-type and disk-type disturbances occur, so the
two types of disturbance interact, and the relaminarization phenomenon may
emerge.
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Fig. 1. Clearance ratio dependence of the onset Reynolds number of various distur-
bances. The onset Reynolds number for shear waves, Stuart vortex, spiral TG vortex,
ring vortex, relaminarization, traveling waves and turbulence are indicated by the data
obtained from the present experiment and previous work of Sawatzki & Zierep [20];
Munson & Menguturk [13]; Yavorskaya [25]; Nakabayashi [14]; Khlebutin [10]; Itoh [9];
Bühler [4]; Egbers & Rath [6]; Araki et al.[1].

3 Structure and formation of the spiral TG vortices

As described in last section, a fascinating vortex formation in the spherical Cou-
ette flow was observed at a higher Reynolds number, and the induced vortices
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were called spiral Taylor-Görtler (TG) vortices by Nakabayashi [14]. Then a di-
rect numerical simulation, which can provide a feasible source of information, is
considered as a suitable tool for a more detailed investigation of the spiral TG
vortices. With a spectral method Dumas & Leonard [5] have been successful in
numerical simulation of the spiral TG vortices in the spherical Couette flow be-
tween two concentric spheres with the inner sphere rotating, and their simulated
spiral TG vortex flow was in very good agreement with our previous experi-
mental flow in a narrow gap case (Nakabayashi [14]). Later Zikanov [26] was
able to compute the spiral TG vortices in the co-rotating and counter-rotating
cases by using a pseudospectral method, and his numerical results provided a
detailed description of the three dimensional flows and the pattern of transitions
among various regimes. Recently, we considered a numerical algorithm designed
for three-dimensional, time-dependent incompressible Navier–Stokes fluids, and
the numerical method, which is second-order accurate in time and space based
on the finite-difference scheme, was used to compute the spherical Couette flow
between two spheres with the inner sphere rotating, and we successfully sim-
ulated the subcritical and critical flows, i.e., 0-vortex flow, 0-vortex flow with
pinch and 1-vortex flow (Marcus & Tuckerman, [11], [12]), and the supercritical
flows (spiral TG vortex flow) (Sha et al. [18]). For comparison with our previous
experiments, a moderate gap case with clearance ratio β = 0.14 was chosen in
the numerical study. With adequate initial and boundary conditions, we have
successfully simulated the supercritical spiral TG vortex flow in this spherical
Couette flow system.

Figure 2 shows the plots of the velocity vectors on the (θ, φ) spherical cross-
section at mid-gap viewed from φ = 310◦. The pattern rotates in the same
direction as that of the inner sphere (counterclockwise). The contour of the zero
radial velocity in the section is also drawn with two types of thin and thick solid
lines, which are the boundaries between existing inflow and outflow regions.
Thin solid lines indicate the center positions of the two toroidal TG vortices.
The thick ones, which are counted by every two thick lines from each side of the
equator, correspond to the center lines of the TG spiral vortices. The lines of the
center positions of the toroidal TG vortices are nearly parallel to the equator
while the center lines of the spiral TG vortices are inclined with respect to the
azimuthal direction. The flow fields, portrayed in mid-latitude regions, appear to
wrap the spherical cross-section with three converging/diverging zones in each
hemisphere. The features of the spiral TG vortex flow are of the rotational and
equatorial asymmetries.

In order to gain more insight in the three-dimensional structure of the spiral
TG vortices, visualizations of the azimuthal vorticity are shown in Fig. 3. Here,
grey colors represent the azimuthal vorticity iso-surfaces: the dark color denotes
positive and the light color is for negative. In the spiral TG vortex flow there ex-
ists one toroidal TG vortex, one toroidal vortex cell and three spiral TG vortices
in each hemisphere. This spiral flow in each hemisphere is identical except for a
change sign of the vorticity. So in the following text we mainly focus our discus-
sion in the northern hemisphere only. In Fig. 3 (d), the toroidal TG vortex, the
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Fig. 2. Plots of the velocity vectors of the spiral TG vortex flow in the spherical cross-
section at the radial position r = 1 + d/2 (the mid-gap radius) viewed from φ = 310◦.
The Reynolds number is Res = 1100 in the numerical simulation. The contour of the
zero radial velocity (ur = 0) on the section is also drawn with two types of thin and
thick solid lines. The thin solid lines indicate the center positions of the two toroidal
TG vortex. The thick ones, which are counted by every two thick lines from each side
of the equator, correspond to the center lines of the spiral TG vortices.

toroidal vortex cell A, the two spiral vortices B and C, the fore portion D of the
same class as C and the thin vorticity layer E adjacent to the outer sphere are
indicated in the northern hemisphere. There is a toroidal vortex cell A on one
side of the toroidal TG vortex. The toroidal vortex cell A is essentially different
from the toroidal TG vortex. They have the opposite sign of circulation to each
other in the north hemisphere, and the toroidal vortex cell A is connected with
the spiral vortex C. Furthermore, the toroidal TG vortex near the equator is
caused by the Taylor-type first instability while the toroidal vortex cell A is a
strengthened axisymmetric azimuthal vorticity cell in the secondary flow circula-
tion. Next, two spiral vortices B and C are observed to coexist. The spiral vortex
C is found to be connected to the toroidal vortex cell A. The part at which the
spiral vortex C splits from the toroidal vortex cell A is the vortex-branch re-
ported by Dumas & Leonard [5]. The vortex D represents the fore portion of the
same class as the spiral vortex C at higher latitude. The spiral vortex B between
the toroidal vortex cell A and the spiral vortex C is a counter-rotating pairing
vortex to the spiral vortex C. The spatial helical pairing of the spiral vortex B
and the spiral vortex C forms the spiral TG vortices which were defined in our
previous experimental study (Nakabayashi [14]). It is found that the spiral TG
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Fig. 3. Iso-surfaces of positive and negative azimuthal vorticity components of levels
0.9 for the spiral TG vortex flow at Res = 1110. Dark implies the positive value and
light implies the negative one. They are viewed from (a) φ = 310◦; (b) φ = 220◦; (c)
φ = 130◦; (d) φ = 40◦. ’A’ denotes the toroidal vortex cell in the neighborhood of the
toroidal TG vortex. ’C’ is the spiral vortex being connected with the toroidal vortex
cell A. ’B’ between A and C is an accompanying spiral vortex of C, and has an opposite
sign to the vorticity of the toroidal vortex cell A and spiral vortex C. ’D’ indicates a
fore portion of another spiral vortex. ’E’ represents a thin vorticity layer adjacent to
the outer spherical boundary.

vortices are a pair of two counter-rotating helical vortices. Actually, there are
three pairs of these spiral vortices in each hemisphere. For each pair, a stronger,
larger helical vortex (spiral vortex C) is accompanied by its counterpart of a
relatively weaker, small helical vortex (spiral vortex B). The spiral TG vortices
are rotational and equatorial asymmetric and travel in the azimuthal direction
as the same as the inner rotating sphere. It is estimated that the spiral TG vor-
tices incline to the azimuthal direction approximately by an angle of 4◦. It can
be also estimated from the simulation results that the phase speed of the spiral
TG vortices is about half of the inner sphere rotation speed. The thin vorticity
layer E is caused by the rapid variation of the meridional velocity near the outer
spherical surface.
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Table 1. Summary of some characteristics for the spiral Taylor-Görtler(TG) vortices
in the spherical Couette flow between two spheres with the inner sphere rotating and
the outer sphere fixed. The clearance ratio is 0.14 in laboratory experiments and in
this numerical study.

Dynamical Characteristics Geometrical Characteristics
Previous Experiments

(Nakabayashi [14];
Nakabayashi & Tsuchida [15])

R∗ = 1.13 (Res = 1017)
Move in direction of rotation
Phase speed about half of
the inner sphere rotation
speed

Three pairs of spiral vortices
in the northern hemisphere
Rotational asymmetry
Inclination angle 3◦

Present Numerical Study R∗ = 1.18 (Res = 1110)
Move in rotating direction
Phase speed about half of
the inner sphere rotating
speed

Three pairs of spiral vortices
in each hemisphere
Rotational and equatorial
asymmetries
Inclination angle 4◦

In Tab. 1, we summarize the characteristics of the spiral TG vortices obtained
from the previous experiments (Nakabayashi [14]; Nakabayashi & Tsuchida [15])
and the present numerical study. Obviously, the present numerical simulation
on the spherical spiral TG vortex flow gives good agreement with the previous
experiments. Finally, an illustration of the three-dimensional structure of the
spiral TG vortex flow in the northern hemisphere is given in Fig. 4.

Fig. 4. An illustration of the three-dimensional structure of the spiral Taylor-
Görtler(TG) vortex flow in the spherical Couette flow. The sketch is drawn for the
north hemisphere. The outer sphere is held stationary and the inner sphere is con-
strained to rotate about the vertical axis. The clearance ratio is 0.14 for a moderate
gap case, and the Reynolds number Re is quasi-statically increased to obtain this super-
critical vortex flow at Res = 1100. The labels A, B, C and D have the same indications
as those in Fig. 3.
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To investigate the formation mechanism of the spiral TG vortex flow, we
consider the vorticity production by analyzing the physical quantities in the
vorticity equation (Sha & Nakabayashi, [19]). It was shown that the impor-
tant vorticity tilting and stretching terms play different roles in the formation
process of these two counter-rotating spiral vortices. The effect of the vorticity
tilting term is responsible for generating both of the spiral vortices. The vorticity
stretching term acts to stretch one of the spiral vortices from the inner sphere
to the outer sphere while suppressing the stretching of the other spiral vortex
in the azimuthal direction. The different formation mechanisms with respect to
these two counter-rotating spiral vortices lead to the structure of the spiral TG
vortices.

4 Motion of the azimuthally travelling waves

After the occurrence of spiral TG vortices, travelling waves appear on the spiral
and toroidal TG vortices, with increasing Re. For the wavy vortices, modal anal-
ysis of unmodulated and modulated travelling waves on the toroidal TG vortices
were investigated experimentally and theoretically for β = 0.138 by Nakabayashi
& Tsuchida [16]. When Re increases quasi-statically, no modulation occurs on
the travelling waves. However, when Re is increased from zero to a particular
value with a specific acceleration of the inner sphere, modulation occurs on the
wavy toroidal TG vortices. The necessary condition for the occurrence of mod-
ulation is the prevention of spiral TG vortices. The travelling wave corresponds
to the motion of the inflow or outflow boundary, which can be measured by the
oscillation of source and/or sink on the outer and inner spheres, respectively.
Figure 5 shows the schematic representation of the sources and sinks labelled
j = a2 ∼ a2s and i2 ∼ i2s on the outer and inner spheres at the meridian cross-
section of the spherical annulus, respectively, for four toroidal vortex cells N=4.
Here N stands for the number of TG vortex cells.

Firstly, let us see the unmodulated travelling waves. j = a1 and a1s which
are sources on the outer sphere barely show any oscillation, but sinks on the
outer sphere and both sources and sinks on the inner sphere show entirely sinu-
soidal oscillations with same frequency f1, as shown in Fig. 6. Here f1 stands for
the fundamental frequency of the travelling wave. Figure 6 shows the schematic
representation of colatitude θj(φ′) = θj − θj(φ′), for each j except for a1 and
a1s in the rotating frame, which rotates with angular speed 2πf1/m. m stands
for wave number of the travelling waves. θj is the average meridian angle, and
φ′ and φ′

j are the reference azimuthal angle and the azimuthal angle for each
j, respectively, which are measured with respect to the rotating frame and in-
crease in the direction of the inner sphere rotation. And ∆φ′

j = φ′ − φ′
j is the

azimuthal phase difference between φ′ and φ′
j . Let θj(φ

′) be assumed to the form
θj(φ′) = Aj sin(mφ′

j), where Aj is the constant amplitude. Since the relation be-
tween the azimuthal angles φ′ in the rotating frame and φ in the laboratory
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Fig. 5. Schematic representation of streamlines, sources and sinks labelled j = a2 −a2s

and i2 − i2s on the outer and inner spheres at the meridian cross-section, respectively,
for the toroidal vortex flow state with four cells (N=4);◦, source; •, sink. (Nakabayashi
& Tsuchida, [17])

Fig. 6. Schematic representation of the fluctuating colatitude θj(φ′) given by Eq. 1
(Nakabayashi & Tsuchida, [17]).

frame is given by φ′ = φ− 2πf1t/m:

θj(φ′) = Aj sin[m(φ′ −∆φ′
j)] (1)

θj(t, φ) = θj − θj(t, φ) = Aj sin[m(φ− 2πfi(t−∆tj)/m)], (2)
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where ∆φ′
j = −2πf1∆tj , and ∆tj is the temporal phase difference. The above

equation gives the wave motion of the wavy toroidal TG vortices in the labo-
ratory frame. Reynolds number dependence of the amplitude Aa0 (at j = a0)
and the rotation frequency of the travelling azimuthal waves f1/m are shown in
Fig. 6 (Nakabayashi & Tsuchida, [16]), respectively. Generally speaking about
the case for the clearance ratio around β = 0.14, the amplitude decreases with
increasing R∗ = Re/Rec, where Rec stands for critical Reynolds number of Tay-
lor instability. And the travelling waves disappear for R∗ > 7. This tendency is
due to the relaminarization described later. The wave speed also decreases with
increasing R∗ for β =0.138.

Fig. 7. Schematic representation of the evolution in time of the modulation in a refer-
ence frame rotating with the waves (Nakabayashi & Tsuchida, [17]).

For the modulation of the travelling waves, Fig. 7 shows a schematic di-
agram showing the temporal evolution of modulation patterns in a reference
frame rotating with the speed of the travelling azimuthal waves 2πf1/m. t in-
creases downward and the azimuthal angle φ′ increases leftward. This diagram
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was obtained by analyzing successive photographs of the whole spherical sur-
faces taken at the time interval 1/f2 = 7/f1. The waves with the bar and hat
over the number are the flattened and S-shaped waves, respectively. Both ampli-
tude and frequency modulations occur simultaneously for SCF similar to CCF.
The modulation frequency f ′

2 for both of them in the rotating frame is given by
f ′
2 = f1/42 (at R∗ = 2.2). So that f ′

2 = 0.065 is obtained, because f1 = 2.73 at
R∗ = 2.2.

Table 2. Comparison of characteristics of the modulated wavy-vortex flow state with
m = 6 and k = −1 for the same β between SCF (Nakabayashi & Tsuchida, [17]) and
CCF (Gorman & Swinney, [8])

SCF CCF
β 0.138 0.133
m 6 6
k -1 -1
R∗ 1.77 ∼ 2.64 10.5(onset)
f1 2.730 ± 0.066 2.03
f1/m 0.445 ± 0.011 0.34
f2 0.387 ± 0.009 0.21
f ′
2 0.066 ± 0.018 0.55
Relation f ′

2 = −f2 − kf1/m f ′
2 = f2 − kf1/m

Table 2 shows comparison of the characteristics of the wavy toroidal vortex
with m = 6 and k = −1 for SCF with those for CCF. Here k stands for a mod-
ulation parameter of the superposed modulation just as for CCF (Swift et. al,
[21]). R∗ range of the occurrence of the modulation for SCF is very different from
that for CCF. Although the values of the wave speed f1/m and the modulation
frequency in the laboratory f2 for SCF are approximately similar to those of
CCF, the values f ′

2 differ very much, because the relations among f ′
2, f2 and f1

are different.

5 Spectral analysis of velocity fluctuations

Hot-wire measurements of azimuthal velocity components were done at θ = 80◦

and 90◦ by Nakabayashi & Tsuchida [15] for β = 0.14. Non-dimensional profiles
of the mean azimuthal velocity component measured in the clearance at θ = 90◦

show great dependence on R∗. Especially the non-dimensional profiles in the
center region of the clearance go up and down with increasing R∗ for the super-
critical flow region, although a non-dimensional profile for the laminar basic flow
agrees well with the theoretical one. Such a Reynolds number dependence is cor-
responding to the exchange of outflow-and inflow-boundaries near the equator,
which is caused by the movement of the toroidal TG vortex with increasing R∗.
When R∗ is increased to 57.3, the profile approaches that of a turbulent Couette
flow.
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Fig. 8. Schematics of the flows in typical flow regimes and the three fundamental
frequency components fS , fW and fH (Nakabayashi & Tsuchida, [15])

Velocity fluctuations are observed simultaneously with the occurrence of the
spiral TG vortices. In the quasi-static laminar-turbulent transition, three typi-
cal vortical flow patterns (flow regimes) were observed. The quasi-static transi-
tion means the condition that the Reynolds number is increased stepwise by a
quasi-static increase of the rotation of the inner sphere from zero, since the flow
mode depends on the rate of increase of the Reynolds number (Nakabayashi &
Tsuchida, [17]). Figure 8 shows schematics of these vortex structures and the
three fundamental frequency components fS , fW and fH for the flow regimes:
II TS or III TS with fS (toroidal and spiral TG vortices), the flow regime III
WTS with fS and fW (wavy toroidal and spiral TG vortices)and the flow regime
IV WTSH with fW and fH (wavy toroidal TG vortex and shear waves). The
number of toroidal TG vortex cells N, that of spiral TG vortex pairs SP , the
wave number of the travelling azimuthal waves on the toroidal TG vortex m and
the wave number of shear waves SH were measured from the flow visualization
and the simultaneous spectral measurements by the scattered laser-light inten-
sity. The fundamental frequency components for the spiral TG vortex fS , the
travelling azimuthal waves fW and the shear waves fH found as peaks in the
power spectra obtained by the hot-wire measurements were also identified by
the simultaneous spectral measurements, respectively.

Figure 9 shows Reynolds number dependence of the fundamental frequencies
of the spiral TG vortices, the travelling azimuthal waves and the shear waves,



246 K. Nakabayashi, W. Sha

Fig. 9. Reynolds number dependence of the fundamental frequency components of the
velocity fluctuations. ◦,×,+ etc. indicate the data obtained from the power spectra by
Nakabayashi & Tsuchida [15]. ν1 and ν2 indicate the data obtained by Bühler & Zierep
[3]. ωW , ωMW and ωB , data, and R∗

cy1 − R∗
cy5 , transition Reynolds numbers for the

regime transition, respectively, obtained in the circular Couette flow for β = 0.14 and
Γ = 20.0 by Fenstermacher et al. [7]

compared with those of the travelling waves in CCF. The fundamental frequency
decreases stepwise with the decrease of the number of SP , m and SH with in-
creasing R∗. In the range of R∗ = 6 ∼ 10, there are no fundamental frequencies,
because the velocity fluctuation becomes zero, where we can observe the disap-
pearance of both spiral TG vortex and travelling wave. We shall discuss later
about this phenomenon which is called as the relaminarization. Rotation fre-
quencies i.e. wave speeds fS/SP , fW /m and fH/SH are nearly constant with
increasing R∗ and differ slightly from one another. The value of the wave speed
for the travelling azimuthal waves decreases with an increase of the clearance
ratio. This tendency is similar to that in CCF. At the case of same clearance
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ratio, however, the wave speed in SCF is higher than that in CCF, although
the toroidal TG vortex structure observed near the equator in SCF is same as
Taylor vortex in CCF. The ranges of R∗ where the travelling azimuthal waves
occur are also very different from those in CCF. These differences are caused by
the Ekman boundary-layer effect on the toroidal TG vortex .

The occurrence of the disturbances or vortices are spatially restricted. The
meridian ranges of θ where the fundamental frequency components of the dis-
turbances could be measured by the power spectra of the scattered laser-light
intensity extend over the meridian ranges where the corresponding disturbances
were clearly observed. The values of the frequency components are constant inde-
pendently of colatitude θ and the distance from the walls, although the powers
at the fundamental frequency components of the disturbances depend on the
distance from the walls.

6 Relaminarization

Fig. 10. Evolution of RMS values of Vφ/Uo and Vθ/Uo

Table 3 shows the radius of the inner sphere R1 and the critical Reynolds
number of Taylor instability Rec measured for each clearance ratio β . Figure 10
shows the evolution of non-dimensional RMS (root mean square) values of Vφ and
Vθ divided by U0 against R∗. Vφ and Vθ stand for fluctuations of azimuthal and
meridian velocity components, respectively. U0 stands for peripheral velocity of
rotating inner sphere. Solid and open circles indicate for Vφ and Vθ, respectively.
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Table 3. Radius of inner sphere and critical Reynolds number for each β

Clearance ratio Inner sphere Critical Reynolds
β R1 (mm) number Rec

0.06 82.55 ± 0.04 2760
0.10 79.74 ± 0.03 1440
0.14 76.88 ± 0.03 900
0.158 75.71 ± 0.03 760
0.206 72.57 ± 0.04 554

The RMS values sharply increase with the occurrence of the spiral TG vortices.
With increasing R∗, they keep approximately constant. But beyond around R∗ =
6.5, they suddenly decrease, because the velocity fluctuations attenuate and
become zero. We shall call this phenomena as the relaminarization. Here it is
notable that the RMS data for Vφ are much greater than for Vθ.

Fig. 11. Evolution of correlation dimension and scenario of the transition.

Figure 11 shows the evolution of correlation dimension d, the non-dimensional
fundamental frequencies of disturbances (spiral TG vortex fS , travelling waves
fW and shear waves fH ; see Fig. 9) and the scenario leading up to the relaminar-
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ization against R∗. Open and closed circles indicate the correlation dimensions
for Vφ and Vθ which were measured in the center of the gap at the equator, respec-
tively. They are in agreement with each other, although their values of intensities
are different. The scenario up to the occurrence of the relaminarization is ex-
plained on the attractor of the flow as follows. In the region of 1.0 < R∗ < 1.20,
the attractor is a fixed point (S, steady state), which corresponds to the toroidal
TG vortex. After the first Hopf bifurcation at R∗ = 1.20 (the occurrence of
fS1), the attractor is a limit cycle (P, periodic state) for 1.20 < R∗ < 1.74, while
the transition from fS1 to fS2 occurs at R∗ = 1.60. At R∗ = 1.74, the second
Hopf bifurcation (the occurrence of fW1) takes place, leading to the appearance
of the quasiperiodic regime (QP2) with two fundamental frequencies fS2 and
fW1. At the bifurcation near R∗ = 1.95, the frequency fS2 changes to fS3 and
d increases from 2 to 5. Therefore, the attractor is characteristic of a strange
attractor corresponding to low-dimensional chaos (C). The value of d decreases
with increasing R∗ after the transition from fW1 to fW2 at R∗ = 2.95, where
the fourth bifurcation occurs. The bifurcation around R∗ = 6.0 re-transforms
the chaotic regime into the periodic regime with fS3, where the attractor has a
noisy limit cycle. At R∗ = 6.50, the value of d becomes zero and the successive
attractor is a fixed point (S). Then the relaminarization occurs in the region
of 6.50 < R∗ < 10.02. When R∗ increases further more after the relaminaliza-
tion, shear waves fH1 occur at R∗ = 10.02 and the attractor is a noisy limit
cycle. At R∗ = 10.79, travelling wave fW3 occurs suddenly up to about 5. For
R∗ > 12.8, the attractor has a strange attractor which has the degree of freedom
higher than that in the range of 2.95 < R∗ < 6.03, because the convergence of
the correlation dimension regarding the embedding dimension is worse and we
could not get exact value of d. Accordingly, the scenario of the transition to the
turbulent flow is following. From a fixed point, through a limit cycle, a T2 torus,
a chaos, a noisy limit cycle, a fixed point, a noisy limit cycle, to a chaos.

Figure 12 shows the dependence of β on the relationship between d and R∗.
The curve of Rec and the region of relaminarization (shaded region) are shown
on the β −Re surface. For smaller β cases, i.e. β = 0.06 and 0.10, and larger β
case, i.e. β = 0.206, the values of d increase sharply with Re after the first Hopf
bifurcation, where no relaminarization occur. But for intermediate β cases, i.e.
β = 0.14 and 0.158, the relaminarization occurs.

Figure 13 shows the relation among onset Reynolds number of disturbances,
contour lines of d and the region of relaminarization. d = 1 and 2 lines agree
with the onset Reynolds number Ret of spiral TG vortex and travelling waves,
respectively. Around β = 0.135 ∼ 0.17, contour lines turn twice. This is the
reason why the relaminarization occurs around the intermediate β range.

Figure 14 shows power spectra of azimuthal velocity fluctuation components
for β = 0.06 ∼ 0.158. The evolutions of the power spectra for β = 0.06 and
0.10 are mimic each other as well as for β = 0.14 and 0.158. Let us divide the
power of the disturbances into two parts, higher and lower frequency regions than
f = 2. Figure 15 (a), (b) and (c) show the power of disturbances

{∫
E(f)df

}
contained in the lower and higher frequency regions against R∗ for β = 0.06,
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Fig. 12. Re dependence of correlation dimension for each β.

0.14 and 0.158, respectively. For β =0.06 (no relaminarization case), the power
of disturbances increases with R∗ in the higher frequency region, but decreases
with increasing R∗ in the lower frequency region. For β = 0.14 and 0.158 (relam-
inarization cases), however, the tendency is opposite to the former. The power
in the higher frequency region decreases three times preceding the occurrence of
relaminarization. Rise of the power in the lower frequency region with increas-
ing R∗ is caused by the reappearance of line spectra. Drop of the power in the
high frequency region is caused by the attenuation of background noise level.
When the relaminarization occurs, the energy of disturbances in the higher fre-
quency region decreases with increasing R∗, but it in the lower frequency region
increases with R∗.
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Fig. 13. Region of velocity fluctuation destruction.
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Fig. 14. Power spectra.
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Fig. 15. Powers of disturbances contained in the higher and lower frequency regions.
(a)β = 0.006, (b)β = 0.14, (c)β = 0.158.
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7 Concluding remarks

The laminar-turbulent transitions for cases of the narrow and medium gap widths
in SCF shows quasiperiodic transitions similar to those in CCF. But the tran-
sition phenomena for SCF depend on the clearance ratio very much. We have
clarified the clearance ratio dependence of the onset Reynolds number of various
disturbances, and showed the characteristics of the disturbances depended on
the acceleration of Reynolds number, the initial flow mode and the history of
Reynolds number increase or decrease.

We have also discussed the vortical structures and velocity fluctuations of the
disturbances, i.e., the spiral and wavy vortices observed near the equator for the
narrow and medium gap widths. The experimental and numerical results on the
vortical structure and formation of the spiral and wavy vortices are presented. It
is shown that there are very difference in the vortical structures between these
gap widths and the wide gap width. We further divide the narrow and medium
gap widths into three cases, i.e., the small, intermediate and large clearance
ratios. For the case of intermediate clearance ratio case, the relaminarization
phenomenon occurs. Although the formation mechanism has not been clarified
yet, a locking of wave motion can be conjectured to be due to, and further
experimental, theoretical and numerical studies are needed.
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Spherical Couette flow
with superimposed throughflow
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Abstract. This work deals with the generalization of the spherical Couette flow from
a closed flow into an open flow system. A superimposed throughflow in meridional
direction leads to novel flow structures and stability behaviour. A analytical solution
for the superposition of the spherical Couette and the source-sink flow is given for
the creeping flow. Numerical simulations for steady and time-dependent rotationally
symmetric solutions are presented for a large Reynolds number range. These solu-
tions represents the non-uniqueness of the supercritical spherical Couette flows. Their
symmetry with respect to the equator and time-behaviour depends strongly on the
throughflow Reynolds number. The experiments show the rich variety of supercritical
solutions depending on the rotation and throughflow parameters. Rotationally symmet-
ric vortices and spiral vortices are realized in steady and time-dependent form. For the
pure source-sink flow the instabilities are formed like banana shaped structures. The
existence regions and transitions between the different modes of flow are presented in
maps. For the rotationally symmetric states there is a good agreement between theory
and experiments.

1 Introduction

Hydrodynamic instabilities in spherical gap flows are important in nature and
technology. The stability, structure development and dynamics of these flows
have an direct influence on the momentum and energy transfer. The closed spher-
ical gap is treated in many theoretical and experimental investigations [1–5]. We
extend this closed flow into an open flow problem by superimposing a mass flux
in meridional direction [6,7].

A principal sketch of the geometry is given in Fig.1. The important non-
dimensional parameters are the gap width σ for the geometry, the Reynolds
number Re for the rotation of the inner sphere and the throughflow Reynolds
number ReD describing the superimposed mass flux in meridional direction. The
mean meridional velocity in the equatorial plane is characteristic for the mass
flux.

Analytical solutions can be obtained for low Reynolds numbers. Figure 2
displays some elementary velocity distributions and streamlines. The spherical
Couette-flow is realized by a rotation of the inner sphere about the vertical axes,
while the outer sphere is at rest. For the limiting case Re→ 0 the streamlines are
concentric circles. For finite Reynolds numbers the flow has three non vanishing
velocity components with a induced secondary flow in meridional plane.

C. Egbers and G. Pfister (Eds.): LNP 549, pp. 256–268, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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σ = R2−R1
R1

Re = R2
1ω1
ν

ReD = ū(R2−R1)
ν

Fig. 1. Principal sketch of the spherical geometry and definitions of non- dimensional
parameters: gap width σ, rotation Reynolds number Re and throughflow Reynolds
number ReD.

A source-sink flow in the spherical gap is realized by superimposing a mass
flux in meridional direction from pole to pole as shown in the middle of Fig.2.
These flow is decelerated in the lower and accelerated in the upper hemisphere.
A superposition of the spherical Couette and the source-sink flow results in spiral
streamlines shown in the lower part of Fig.2. The velocity distributions of these
basic solutions are shown in Fig.3.

An analytical solution for superposition of rotation and throughflow is de-
veloped in [7]. The lines of constant streamfunction in the meridional plane are
plotted in Fig.4 for the single solutions and there superposition. A characteristic
asymmetry with respect to the equator occurs. These analytical solutions are
important as initial flows for the development of the flow structures at higher
Reynolds numbers.
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Fig. 2. Streamlines of the basic solutions. From top to bottom: a) spherical Couette
flow , b) source-sink flow and, c) superposition of spherical Couette-flow and source-sink
flow for different rotation to throughflow rates
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Fig. 3. Velocity distributions of the single and combined basic solutions

Fig. 4. Analytical solution for the superposition of rotation and throughflow, Lines of
constant streamfunction in the meridional plane
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2 Numerical simulations

The supercritical spherical gap flow is non-unique with respect to the number
of Taylor vortices. These fact was shown experimentally for medium sized gaps
by Sawatzki and Zierep [1] and studied in detail by Wimmer [2] and Bühler
[7]. Numerical simulations of the supercritical flows are also done by different
methods and described in the papers [3–5,7].

An initial value code, based on a finite difference method, is used to ob-
tain rotationally symmetric solutions of the Navier–Stokes equations in terms
of the streamfunction-vorticity formulation. The results for the closed spherical
gap flows concerning non-uniqueness, symmetric and asymmetric transitions,
symmetry behaviour with respect to the equator and existence ranges of the
supercritical solutions. A comprehensive description is given in the review arti-
cle [8].

Numerical solutions with superimposed mass flux are shown in Fig.4. We
start with the four-vortex solution, which is symmetric with respect to the equa-
tor. Then the flow becomes asymmetric by superimposing a mass flux in merid-
ional direction and the shape of the vortices changes into larger and smaller size,
depending on the direction of rotation. A further increase of the throughflow
changes the flow into a two vortex state by disappearing of two vortices. If the
throughflow is increased further again, the vortices completely disappear and we
find the asymmetric supercritical basic flow without any vortices.

A periodic oscillating mode of flow can be realized with other special condi-
tions of the rotation and throughflow parameters. The flow structure during the
oscillation is given in Fig.6 and shows the time-dependent variation between the
asymmetric two-vortex and four-vortex state. The torque oscillates during the
period as shown in Fig.7.The marked positions for the different times t corre-
spond to the flow structures plotted in Fig.6. There is a significant influence of
the number of vortices. A more stronger modulation during the oscillation period
is shown on the maximum values of the streamfunction plotted in Fig.5. These
result depends on the fact, that the vortex development in the lower hemisphere
and the disappearance of vortices in the upper hemisphere occurs pairwise.

3 Experiments

The experiments are done to study the stability behaviour of the flow system by
different measuring techniques and flow visualization. For closed spherical gap
flows experimental results are described in the papers [1,2,9–12].

Figure 9 gives a overview of the flow structures in spherical gap flows with
and without superimposed mass flux. Depending on the different initial and
time- dependent boundary condition symmetric and asymmetric modes of flow
can be realized. Some special flow structures are shown in Fig.9. Starting with
the spherical Couette flow the three rotationally symmetric supercritical solu-
tions are realized by different accelerations of the inner sphere from rest to a
supercritical Reynolds number. These modes become asymmetric with respect
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Fig. 5. From symmetric to asymmetric modes of flow by superimposed mass flux, gap
width σ = 0, 154, Reynolds number Re = 2600. From left to right and top to bottom:
a) Mode IV, ReD = 0, b) Mode IV, ReD = 0.3, c) Mode III, ReD = 0.6, d) Mode I,
ReD = 2.4
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Fig. 6. Flow structure in the meridional plane during the periodic oscillation between
the two-vortex and four-vortex mode, Re = 1000, ReD = 0, 7
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Fig. 7. time-dependent variation of the torque of the periodic solution, Re = 1000,
time of one period tp = 60, 8

Fig. 8. Time-dependent variation of the maximum value of the streamfunction

to the equator by superimposing a mass flux in meridional direction. Transitions
between these modes of flows are also realized.

Interesting steady and time-depending modes of flows occur with a spiral ba-
sic flow as initial condition as shown in the middle of Fig.9. A lower throughflow
leads to the time-dependent vortices, which are rotationally symmetric with
respect to the equator. Spiral vortices with discrete inclination angles occur
at higher throughflow in steady or time-dependent form. The time-behaviour
strongly depends on the values of the rotation and throughflow. An explanation
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of the motion of spiral vortices in the direction of throughflow or in opposite
direction is given in [13].

The pure source-sink flow becomes unstable with respect to Görtler vortices
in meridional direction as shown in the lower part of Fig.9. The structure of
these vortices is like banana-shaped. A superimposed throughflow changes the
Görtler vortices significantly in the upper part of the gap in the direction of
rotation. The diameter of the vortices changes in meridional direction.

Visualizations of three typical modes of flows are shown in Fig.6 on the
left and the principal structure on the right. The Taylor vortices with superim-
posed mass flux in Fig.6a are shifted into the upper hemisphere in direction of
throughflow. The flow structure is then typically asymmetric with respect to the
equator.The torque decreases significantly with the asymmetry. With a further
increase of the mass flux the vortices disappear and the supercritical basic flow
without any vortices is established.

The spiral vortices in Fig.6b are non-axisymmetric and can be realized with
different discrete inclination angles depending on the parameters of rotation and
throughflow. A special combination of both parameters Re and ReD leads to
a steady state of the spiral vortex system. The neighboring solutions are time-
dependent in a way, that the vortex system moves in the direction of throughflow
with increasing ReD and in opposite direction with decreasing ReD while the
rotation Reynolds number is held constant. An explanation for this interesting
behaviour is given by Bühler and Polifke [13].

In the lower part of Fig.6 the instabilities of the pure source-sink flow are
shown in form of Görtler vortices. The size of the banana-shaped structure of
the vortices changes in longitudinal direction. The behaviour of these instability
is strongly influenced by the fact, that the meridional flow is decelerated from
the south-pole toward the equator in the lower hemisphere and accelerated from
the equator toward the north-pole in the upper hemisphere.

The existence regions and transition boundaries are shown in the map of
Fig.7 as function of the rotation rate given by the Taylor number and the mass
flux described by the throughflow Reynolds number. For low Taylor number and
throughflow Reynolds numbers the stable spiral basic flow occurs. In the upper
left part of the map in Fig.7 the steady Taylor vortices occur. A superimposed
mass flux leads to the transitions into the modes III and I with and without
vortices. The ranges of the time-dependent ring vortices and for the steady spiral
vortices with different inclination angles δ are also marked in the map of Fig.7.
At low rotation rates and high throughflow is the region of the Görtler vortices.
The dashed line marks a stability boundary, for which no theoretical results is
known.
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Fig. 9. Overview of possibilities of flow structures in spherical gaps with and without
superimposed mass flux
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Fig. 10. Experimental realization of different types of vortices, visualized flow structure
on the left and principal sketch on the right. From top to bottom: a) asymmetric Taylor
vortices Re = 5250, ReD = 0, 6, b) spiral vortices Re = 980, ReD = 2, 6 c) Görtler
vortices Re = 0, ReD = 275
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Fig. 11. Existence regions and transitions of supercritical modes of flow

4 Conclusion

The extension of the closed flow between two concentric rotating spheres into
an open flow system with superimposed mass flux in meridional direction ex-
hibits a rich number of novel flow structures. The results of the theoretical and
experimental investigations show a good agreement within the limits of the used
analytical and numerical methods. The results are of interest in practical appli-
cations of rotating flow systems.
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Three-dimensional natural convection
in a narrow spherical shell
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Abstract. The convective motions in a shallow fluid layer between two concentric
spheres in the presence of a constant axial force field have been studied numerically. The
aspect ratio of the fluid layer to inner radius is β = 0.08, the Prandtl number Pr = 37.5.
A three-dimensional time-dependent numerical code is used to solve the governing
equations in primitive variables. Convection in the spherical shell has then a highly
three-dimensional nature. Characteristic flow patterns with a large number of banana-
type cells, oriented in north-south direction and aligned in the azimuthal direction, are
formed on the northern hemisphere, which grow gradually into the equatorial region
accompanied by the generation of new cells as the Rayleigh number is increased. Various
characteristics of these flows as well as their transient evolution are investigated for
Rayleigh numbers up to 20 000.

1 Introduction

In this paper we consider thermal convection in the gap between two concentric
spheres under the action of an axial force field downward from the north pole to
the south pole, corresponding to experiments under terrestrial conditions. The
inner sphere is heated homogeneously, while the outer sphere is maintained at
a lower temperature. This problem is of some practical interest in engineering
applications such as nuclear reactor design, thermal storage systems, and solar
energy collectors.

Previous investigations on thermal convection in spherical shells have con-
centrated on central force fields due to its geophysical application (e.g. Chan-
drasekhar [4]; Busse [3]; Hart, Glatzmaier & Toomre [18]; Liu [25]; Schu-
bert [36]). Natural convection in an axially stratified spherical fluid shell has
been studied only sparsely. The problem was first investigated experimentally
by Bishop, Mack & Scanlan [1] from the point of view of heat transfer with two
isothermal concentric spheres of various diameter ratios filled with air. The nat-
ural convective heat transfer for other fluids (water and silicone oils) in spherical
shells of medium aspect ratio was studied experimentally by Scanlan, Bishop &
Powe [35], and a corresponding study of the flow patterns was performed by Yin
et al. [40]. The problem was also studied by Powe, Warrington & Scanlan [32]
by considering the natural convective flow between a body and its spherical en-
closure. Linear stability of natural convection in narrow spherical annuli was
analysed by Gardner, Douglass & Trogdon [12] using the basic flow expressed as
a truncated power series in gap width. Pattern formation of convective motions
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in a narrow spherical shell was studied experimentally by Nakagawa et al. [29].
Further experimental investigations on natural convection in different spherical
shells have been carried out by Egbers [6].

The majority of theoretical investigations on natural convection in spherical
shells under an axial force field has been carried out based on the assumption
of axial symmetry of the flow, which is, as known from experiments (Bishop
et al. [1]; Yin et al. [40]), valid for not too high Rayleigh numbers in moderate
to large aspect ratios. For small Rayleigh numbers, Mack & Hardee [27] obtained
analytical solutions by expanding the dependent variables in a power series with
respect to the Rayleigh number. Numerical calculations have been performed for
steady convection of a Boussinesq fluid enclosed between two concentric rotating
spheres by Dallman & Douglass [5], for free-convection in a sphere by Geoola &
Cornish [14], Fujii, Honda & Fujii [10] and Fujii, Takamatsu & Fujii [11], and
recently by Garg [13] and Chu & Lee [2]. A three-dimensional numerical analysis
of natural convection in a wide spherical shell but under non-symmetric thermal
boundary conditions was presented by Ozoe et al. [30], in which however only one
parameter was considered. For narrow gaps, where the convective flow becomes
highly three-dimensional, theoretical investigation has not yet been made.

2 Mathematical formulation

We consider a viscous incompressible fluid in the gap between two concentric
spheres. The inner and outer spheres with the radii Ri and Ro (gap width d =
Ro−Ri) are maintained at different temperatures Ti and To (< Ti), respectively.
A uniform gravitational acceleration is assumed to be present and parallel to
the vertical axis ez as g = −g0ez. The fluid is assumed to follow the Oberbeck–
Boussinesq approximation.

The mathematical formulation of the problem uses spherical coordinates (r,
θ, φ). The equations governing the three-dimensional unsteady flow and temper-
ature field in the spherical shell are the continuity equation, the Navier–Stokes
equations and the energy equation:

∇ · v = 0, (1)
∂v
∂t

+ (v · ∇)v = −∇p+ RaPrT ez + Pr∇2v, (2)

∂T

∂t
+ (v · ∇)T = ∇2T, (3)

where ez = (cos θer − sin θeθ) and v = (vr, vθ, vφ). In these equations, all vari-
ables are non-dimensionalised by using scales d for length, d2/κ for time, κ/d
for velocity, ρ0κ2/d2 for pressure and ∆T = Ti−To for temperature, where ρ0 is
the reference density and κ the thermal diffusivity of the fluid. The natural con-
vection in the spherical shell is then characterised by the following dimensionless
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parameters:

Rayleigh number: Ra =
g0 γ d3∆T

κν
, (4)

Prandtl number: Pr =
ν

κ
, (5)

aspect ratio: β =
d

Ri
, (6)

where γ is the thermal expansion coefficient and ν the kinematic viscosity of the
fluid.

As initial conditions, a quiescent state with a homogenous temperature field
was applied for all calculations presented in this paper, viz.

v = 0, T = 0 at t = 0. (7)

The boundary conditions are no-slip rigid boundaries on both spherical sur-
faces and free-slip conditions on the vertical axis z. Furthermore, for numerical
calculations, the spherical shell is cut at the longitude φ = 0, where periodic
boundary conditions are applied. In summary these are

v = 0, T = 1 at r = 1/β, (8)
v = 0, T = 0 at r = 1 + 1/β, (9)
∂v/∂θ = 0, ∂T/∂θ = 0 at θ = 0, π, (10)
v(φ=0) = v(φ=2π), T(φ=0) = T(φ=2π) at φ = 0, 2π. (11)

With our numerical calculations, some advanced diagnostic studies have been
made. The efficiency of the heat transfer due to convection can be measured by
the Nusselt number, which is the ratio of total heat flux in the presence of
convection to that in the conductive state. In the pure conductive state the
radial distribution of the spherically symmetric temperature field can be found
from the energy equation:

T (r) =
Ri
d

(
Ro
r
− 1

)
. (12)

The Nusselt numbers at the inner and outer spheres are then defined by:

Nui =
−1

4π (1 + β)

∫ 2π

0

∫ π

0

(
∂T

∂r

)
r=Ri

sin θ dθ dφ, (13)

Nuo =
− (1 + β)

4π

∫ 2π

0

∫ π

0

(
∂T

∂r

)
r=Ro

sin θ dθ dφ. (14)

In the steady state, the total heat is conserved and these two Nusselt num-
bers must be equal. Because of the numerical approximations, this condition is
not necessarily fulfilled. A comparison of these values provides a quantitative
measure of the accuracy of a solution.
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The azimuthally averaged heat fluxes at the inner and outer spheres are

Hi,o = −
(
∂ 〈T 〉φ
∂r

)
r=Ri,Ro

, (15)

where the bracket with the subscript φ defines the average over longitude.
The kinetic energy and temperature (entropy) variance are

Ev =
1
2V

∫ 2π

0

∫ π

0

∫ 1+1/β

1/β
v2 r2 sin θ dr dθ dφ, (16)

ET =
1
2V

∫ 2π

0

∫ π

0

∫ 1+1/β

1/β
T 2 r2 sin θ dr dθ dφ, (17)

with V = 4
3π

[
(1 + 1/β)3 − (1/β)3

]
standing for the volume of the fluid shell.

For some diagnostic studies, the three-dimensional modes obtained numer-
ically are decomposed into an azimuthally averaged (axisymmetric) and a φ-
dependent (non-axisymmetric) part:

v = v̄ + ṽ, (18)
T = T̄ + T̃ . (19)

In this way, the total kinetic energy and temperature variance can be divided into
axisymmetric and non-axisymmetric parts by replacing v and T in Eqs. (16)-
(17) correspondingly. For the non-axisymmetric flow the kinetic energy balance
is given by

∂

∂t
Ẽv = RaPr

〈
cos θ ṽrT̃

〉
− RaPr

〈
sin θ ṽθT̃

〉
−
〈
ṽ2r

∂v̄r
∂r

+
ṽ2θ
r

∂v̄θ
∂θ

+ ṽrṽθ

(
1
r

∂v̄r
∂θ

+
∂v̄θ
∂r

)〉
− PrΦ, (20)

with the angle brackets indicating the average over the spherical fluid shell.
On the right hand side, the first two terms are the work done by the radial and
latitudinal buoyancy forces, respectively. The third term is the nonlinear transfer
of energy from the axisymmetric flow to the non-axisymmetric perturbations.
The last term is the viscous dissipation by friction. For later reference, we denote
these four terms as Ẽr, Ẽθ, Ẽn, Ẽν , respectively. Further, we define Ẽ∗ = Ẽr +
Ẽθ + Ẽn. Note that the curvature terms appearing in the momentum equations
do not contribute to the total kinetic energy.

For solving the partial differential Eqs. (1)–(3) in primitive variables (vr, vθ,
vφ, p, T ) associated with the initial and boundary conditions given above, a
numerical code based on finite-difference techniques has been developed. Briefly,
the continuity equation at each time step is satisfied through the solution of a
Poisson equation for the pressure. The momentum equations are split by using
the projection technique and fractional-step procedure, which is also applied to
the energy equation. These equations are expressed in finite-difference form on
a staggered grid. The scheme used is essentially implicit.
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3 Results and discussion

In the numerical investigation to be discussed in the following we used the aspect
ratio β = 0.08, although computations with other aspect ratios (β = 0.18, 0.25,
0.33, 0.5) have been carried out too. The Prandtl number of the fluid was set at
Pr = 37.5, corresponding to a silicone oil of medium viscosity. These parameters
were chosen in connection with the experiments of Egbers [6]. For all calculations
presented here, a uniform staggered grid of 25(r) × 151(θ) × 180(φ) points was
used for the whole domain of the spherical shell, and a dimensionless time step
of 10−5 was chosen. The Rayleigh number ranged from 1500 to 20 000.

3.1 Axisymmetric basic flow

Different from the situation with a central gravity field, the flow in a spherical
shell under an axial force field cannot be in equilibrium for non-zero temperature
difference between both spheres. By heating the inner sphere, the fluid near
the inner sphere becomes lighter and moves upward along the inner sphere.
The continuity condition imposes the fluid to move downward along the outer
sphere. In this way, an axisymmetric single vortex of crescent shape is formed as
the basic flow in spherical shells under an axial force field. Generally speaking,
the nonlinear equations must be solved to find a steady solution of the system.

For small Rayleigh numbers, Mack & Hardee [27] analysed the problem by
using a perturbation expansion of the dependent variables in terms of power
series of the Rayleigh number. The solutions up to the third power of Ra for
steady axisymmetric convection were considered. In the first approximation for
the creeping-flow, applicable in the limit of infinitesimal Rayleigh number, the
conductive isotherms are concentric circles and the vortex centre is at θ = 90◦,
i.e.the vortex is symmetric to the equatorial plane. The higher order approxi-
mation improves the solution for larger Rayleigh numbers with the centre of the
crescent-vortex shifted northward. Their reliability analysis showed that steady
axisymmetric solutions are valid from about Ra = 9300 to 2200 as the aspect
ratio increases from β = 0.15 to 2. No comment was made for smaller gaps. For
comparison, we have solved the problem analytically following the way of Mack
& Hardee, but with the help of a symbolic solver (Maple V).

From our numerical simulation for β = 0.08, it has been found that the
convective flow remains axisymmetric up to Ra = 1500, and becomes slightly
three-dimensional at the computed next higher Rayleigh number Ra = 2000.
The velocity vector field and the temperature field at a meridional cross-section
is shown in Fig. 1 for Ra = 1500. For comparison, streamlines obtained from the
analytical solution have been also included. Good agreement between the numer-
ical and analytical solutions at this Rayleigh number is achieved. The velocity
field indicating an elongated crescent-type vortex is essentially symmetric with
respect to the equatorial plane. From the maximum values of the three velocity
components, the meridional flow is characterised by strong latitudinal motions
along both spheres. The radial velocity component is almost two orders smaller
than the latitudinal component. The very weak azimuthal component, although



274 M. Liu and C. Egbers

(a) (b) (c)

Fig. 1. Axisymmetric basic flow for β = 0.08, Ra = 1500: a) Contour lines of stream
function (the maximum stream function is 50.57) from the analytical solution up to
third order approximation; b) Meridional velocity field (the maximum values of the
velocity components are vrmax = 0.6107 and vθmax = 11.64) and c) isotherms from the
numerical solution. For clarity, the velocity vectors are drawn on each second node,
and the gaps are exaggerated in the radial direction, the real aspect ratio of β = 0.08
is indicated by two bars on the left side of vertical axis. This convention will also be
used in the following cross-section graphics.

not equal to zero, represents a negligible disturbance. In the temperature field a
minor shift of the essentially concentric isotherms in the vicinity of both poles
along the meridional flow can be seen.

3.2 Three-dimensional convective motions

For Rayleigh numbers Ra ≥ 2000 convection in a spherical shell under an axial
force field becomes three-dimensional for β = 0.08. This is consistent with the
fact that the onset of the classical Rayleigh-Bénard convection in a horizontal
layer heated from below is at Rac ≈ 1708, and for Ra > Rac the flow often
becomes three-dimensional. In general, the characteristics of the flow patterns are
broadly similar with increasing Rayleigh number. The convection concentrates
more and more in the northern hemisphere, where new secondary vortices will
be generated, while in the southern hemisphere, the axisymmetric basic vortex
remains essentially unchanged due to the stable stratification.
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Fig. 2. For caption see next page.
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vr vθ vφ

Ra =
20 000

Fig. 2. Three-dimensional perspectives of the flow pattern in the form of contour lines
of the radial (vr), latitudinal (vθ) and azimuthal (vφ) velocity component on a spherical
surface midway through the shell at the different Rayleigh numbers indicated. The
contour lines are normalised by the absolute maximum value of the component on
the relevant spherical surface (not in the whole spherical shell) given below. The solid
lines correspond to positive values and the dotted lines to negative values. The sphere
is mapped by dash-dot lines, with 30◦ interval in longitude and 15◦ in latitude (the
equator is indicated by the solid line). The north pole is additionally depicted by an
outward axis.

Patterns of convection Figure 2 shows several typical configurations of such
convective cells at different Rayleigh numbers at t = 1 (the unit thermal diffusion
time from the inner to outer sphere). The contour lines of the three velocity
components are drawn on a spherical surface midway through the shell (i.e.(r−
Ri)/d ≈ 1/2). Due to the staggered grid arrangement the actual radial level is
displaced by a half grid between the radial velocity component and the other
two components. The main feature emerging from these plots is the formation
of banana-type cells in the northern hemisphere. It is interesting that at first
glance the flow patterns shown by the three velocity components are not well
related to each other. The banana-cells are most pronounced in the latitudinal
velocity component vθ. In the radial velocity component vr the cell structure is
additionally characterised by new branches in the direction to the equator. The
contour lines of the azimuthal velocity component vφ display a rather irregular
three-dimensional structure. However, a close examination reveals that a good
correlation between patterns shown by the three velocity components can be
recognised. The solid contour lines of the radial velocity component correspond
essentially to the dashed lines of the latitudinal velocity (i.e.the radial outflow
is accompanied by a latitudinal upward flow) and vice versa, and the small
vortices shown in the azimuthal velocity are located in the vicinity of both ends of
banana-cells. The temperature field corresponds essentially to the radial velocity,
and is therefore not shown here separately.

At Ra = 2000, the flow is still essentially axisymmetric, although the az-
imuthal component, which is two to three orders smaller than the other two
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components, already shows small vortices in the northern hemisphere. A weak
disturbance can be seen in the radial component at θ ≈ 35◦, where the con-
tour line becomes wavy. The velocity vector field and the temperature field on
the meridional plane are similar to those for Ra = 1500 in Fig. 1. At the com-
puted next Rayleigh number Ra = 2500, no essential change in the latitudinal
and the azimuthal velocity component can be recognised, but the radial compo-
nent shows a concentration of (axisymmetric) contour lines close to the north
pole and a weak disturbance outside develops to a visible grain-like structure.
It can be seen from the meridional velocity vectors (not shown here) that a
small vortex (pinching) adjacent to the north pole is formed. This axisymmetric
secondary vortex will be referred to as the ring vortex. Its formation can be
explained as follows. At the north pole the vertical temperature gradient is in a
first approximation uniform, with a small latitudinal gradient. According to the
standard Rayleigh-Bénard problem, convection should set in at the pole, where
dT/dz is largest, when the critical temperature gradient is reached. Convection
should then be axisymmetric and have the form of circular rolls as shown by
Koschmieder [22], see also the discussion in §4.4.

As the Rayleigh number is increased to 3000, a dramatic transformation of
the flow pattern to a three-dimensional structure occurs. A pair of ring vortices
is formed around the north pole, and outside the rings a flame-like pattern arises
in the radial velocity component. The contour lines of the latitudinal velocity,
on the other hand, display a pattern with banana-like cells. The cells have differ-
ent length and are, although accompanied by some defects, well ordered in the
azimuthal direction. The azimuthal velocity component grows in strength with
increasing Rayleigh number and becomes comparable to the other two compo-
nents as the banana-cells are formed.

With increasing Rayleigh number, the banana-cells grow in the direction to
the equator, and simultaneously, new cells are generated through branches (the
branches are displayed by dashed lines in the latitudinal component, which are,
in these plots, not so apparent as the solid lines in the radial component). By
increasing the Rayleigh number up to 5000, the banana-cells approach quickly
the equator. After that the growth rate decreases. This is obviously due to the
stable stratification in the lower hemisphere, which stops the further growth of
the cells into the southern hemisphere. In fact, the three-dimensional structure
of the radial velocity component does not exceed the equatorial plane. The ring
vortices around the north pole are gradually disturbed by banana-cells and dis-
appear at Ra ≥ 104. With the disappearance of the ring vortices, the flow pattern
in the neighbourhood of the north pole becomes less ordered, the banana-cells
in the front region close to the equator are accompanied by increasing defects
and the contour lines of the radial velocity component behind the banana-cells
(θ < 45◦) display some azimuthally oriented structures.

In Tab. 1 the number of cells and their latitudinal position at different
Rayleigh numbers are listed (the data are to some extent subjective, as the
cells are not always distributed regularly in the azimuthal direction, especially
at high Rayleigh numbers). The dependence of the number of banana-cells on the
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Table 1. Number of cells and their latitudinal position at different Rayleigh numbers,
and ratios of the circumference to the gap width with respect to the inner (σi) and
outer sphere (σo)

Ra 3000 4000 5000 8000 10 000 15 000

Number of cells (n) 32 58 68 80 80 ∼80

Lat. expansion of cells (deg.) 10–30 20–65 30–75 40–80 45–85 45–90

Latitudinal angle θ (deg.) 15 30 45 60 75 90

σi = 2πRi sin θ/d 20.32 39.26 55.53 68.01 75.86 78.53

σo = 2πRo sin θ/d 21.95 42.41 59.97 73.45 81.93 84.82

Rayleigh number can be explained as follows. In the slightly supercritical state,
the cells tend to have a unit size in radius and azimuth. When the banana-cells
are located near the north pole, the short circumference (2πr sin θ) can there-
fore contain only small numbers of cells. As the cells grow to the equator with
increasing Rayleigh number, more cells have to be branched to fit the larger
circumferential length. For comparison, the ratios of the circumference (relating
to the inner and outer sphere) to the gap width are also given in Tab. 1 for
several latitudinal positions. A good correlation between the cell number and
the circumferential length can be found.

In order to reveal features at different radial levels, Fig. 3 shows contour lines
at two other radii for Ra = 5000, the one near the inner sphere by (r−Ri)/d =
1/4 and the other one near the outer sphere by (r − Ri)/d = 3/4. Compared
to those in Fig. 2 for the mid-plane, most changes of the flow structure with
regard to the radial position can be seen from the latitudinal velocity compo-
nent. Near the inner sphere, the flow is dominated by an upward movement, as
shown by dense dotted contour lines, while the dense solid contour lines near the
outer sphere indicate the main flow downward along the outer sphere. Further-
more, the contour line of the azimuthal velocity component near both spheres
display a more banana-cell like structure, whereas they are rather irregular in
the mid-plane. The pattern of the radial velocity component remains essentially
unchanged.

In order to see the inner structure of the global three-dimensional flow pat-
terns described above, velocity vector fields of the radial and latitudinal compo-
nents at six (longitudinally equidistant) meridional cross-sections in the region
0◦ ≤ θ ≤ 20◦ for Ra = 5000 are plotted in Fig. 4. As can be seen from the
contour plots in Fig. 2, this azimuthal portion involves about 4 banana-cells
with different length and is characteristic for the whole spherical shell. It should
be realised that for three-dimensional flows one can not draw streamlines on a
meridional plane as in the axisymmetric case, and the vector fields show in some
cases a very curious fluid motion.
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Fig. 3. Flow patterns seen at two different radial levels at Ra = 5000. Conventions as
in Fig. 2.

It is obvious that the fluid in the northern hemisphere up to about θ = 75◦

is convecting in a very vigorous fashion. Near the north pole, two small vortices
can be seen in all plots, although they are not axisymmetric. The majority of
the gap is filled by the basic vortex extending to the south pole, where the flow
remains essentially axisymmetric for θ ≥ 75◦. In the region of about 10◦ ≤ θ ≤
30◦ (near the north pole), various vortices are generated. Compared with the
contours in Fig. 2, it can be seen that in the region (about 30◦ ≤ θ ≤ 75◦),
where most banana-cells are visible, the meridional flow essentially represents
an extension of the basic vortex with the fluid moving upward near the inner
sphere and downward near the outer sphere. However, the boundary of these two
flow streams (as depicted in the vector plots by the light line lying approximately
in the middle of the gap at the equator) does not remain at a fixed radius, but
changes very quickly from plane to plane.

Another aspect of the flow patterns is shown in Fig. 5, where velocity vector
fields of the radial and azimuthal components on the azimuthal cross-section
at two latitudinal angles within the northern hemisphere for Ra = 5000 are
presented. It can be seen that the velocity fields vary also very dramatically in the
latitudinal direction. In the banana-cells there also exist azimuthal circulations.
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φ = 0◦ φ = 4◦ φ = 8◦

φ = 12◦ φ = 16◦ φ = 20◦

Fig. 4. Velocity vectors on the meridional cross-section (r, θ) at different azimuthal
angles (φ) for Ra = 5000, c.f.Fig. 2. The southern spherical shell is cut off as the flow
there is essentially the axisymmetric basic flow as shown in Fig. 1.

Near the north pole at θ = 15◦, 10 pairs of vortices are well ordered in the
azimuthal direction corresponding to the 10 long banana-cells formed there (see
Fig. 2). Note that for this latitudinal position, the circumference is almost equally
enlarged as the gap width, and therefore, the vortices appear in a nearly unit
size. With increasing latitudinal angle, the enlargement of the circumference
decreases, and the vortices are stretched more in the radial direction.

From the above examination, we have learned that, with increasing Rayleigh
number, the convective flow in a narrow spherical shell of β = 0.08 becomes
three-dimensional in form of banana-type cells aligned in the direction of the
basic vortex flow. The dominant motion in the banana-cells is still of basic char-
acter, i.e.upward near the inner sphere and downward near the outer sphere,
but the boundary of the two streams changes in the azimuthal direction, which
gives the main impression of the banana-cells. Within the banana-cells also ra-
dial and azimuthal circulations take place. It is clear that there is no closed
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θ = 15◦ θ = 30◦

Fig. 5. Velocity vectors on the azimuthal cross-section (r, φ) at two latitudinal angles
(θ) for Ra = 5000, c.f.Fig. 2. Note that the gaps between inner and outer sphere
are enlarged uniformly in the radial direction as in Fig. 1, but non-uniformly in the
azimuthal direction for different latitudes.

circulation between the north pole and the equator, as it might be derived from
the experimental observation of Nakagawa et al. [29].

Heat transport As mentioned before, the isotherms on a spherical surface
correspond essentially to the contour lines of the radial velocity component,
as shown in Fig. 2. The vertical structure of temperature fields are shown in
Fig. 6 where azimuthally-averaged temperature profiles for various Ra at dif-
ferent latitudinal positions (θ) are displayed. The characteristics are wholly dif-
ferent between the northern and southern hemisphere. As the Rayleigh number
increases, a large central portion of the shell in the northern hemisphere becomes
more stably stratified as the boundary layers narrow. The profile in the south-
ern hemisphere is however continuously shifted downward with increasing Ra.
An increasing portion of the fluid near the outer sphere approaches the temper-
ature of the outer sphere and the temperature gradient between both spheres
is essentially established within the boundary layer near the inner sphere. The
temperature drop there is comparable with that in the northern inner boundary
layer. We note that on average the thermal boundary layers are resolved by at
least five grid points.

Figure 7 shows azimuthally-averaged heat flux profiles for various Ra on the
outer and inner sphere. The curves near the north pole at low Rayleigh numbers
(e.g. Ra = 3000 and 5000) are characterized by a wavy form indicating an ax-
isymmetric radial flow occurred there (c.f. Fig. 2). This characteristic disappears
as the Rayleigh number is increased. On the inner sphere convection contributes
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〈T 〉φ

〈T 〉φ

(r −Ri)/d (r −Ri)/d

Fig. 6. Azimuthally-averaged radial temperature profiles at different latitudinal posi-
tions θ = 6◦ (✷), 36◦ (◦), 72◦ (�), 126◦ (), 180◦ (✸) for Ra = 3000, 5000, 10 000
and 20 000.

to an overall increase of the heat flux (Hi > 1 everywhere) with the regime
around θ = 75◦ remaining nearly conductive. On the outer sphere, however, the
heat is mainly transferred within the northern hemisphere, while the southern
hemisphere is in the conductive state (HT < 1). This is consistent with the char-
acteristics of the radial temperature profile discussed before. It is also reasonable
that the heat flux rate on the northern outer hemisphere is higher than that on
the inner sphere.

For the global characteristics of the heat flow, the dependence of the averaged
Nusselt number Nu = (Nui + Nuo)/2, and its deviation between both spheres
∆Nu = |Nui − Nuo|/Nu, upon the Rayleigh number is shown in Fig. 8. The
analytical solution for small Rayleigh numbers is also included, which to second-
order approximation is given by

Nu = 1.0 + 0.21491346× 10−8Ra2. (21)

(We note that the third order approximation of the temperature field does
not contribute to the total heat transfer). We see that the computed results at
small Rayleigh numbers are consistent with the analytical solutions, as long
as the flow remains axisymmetric (i.e.Ra < 2000). When the flow becomes
three-dimensional, however, the curvature of Nu vs. Ra changes from concave
to convex. It can be seen that the banana-cells are significantly more efficient
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Ho

Hi

θ

Fig. 7. Azimuthally-averaged heat flux profiles on the inner (Hi) and outer (Ho) surface
as a function of the latitudinal angle for Ra = 2000 (✷), 3000 (◦), 5000 (�), 10 000
() and 20 000 (✸).

in enhancing heat transfer than the axisymmetric basic vortex. In the range of
Ra = 3000–20 000 the curve can be well fitted by

Nu = 0.135Ra0.256, (22)

as indicated in Fig. 8. The exponent in Eq. (22) lies well within the experimental
estimates of Bishop et al. [1] and Scanlan et al. [35]. With air in (wide) spherical
shells, Bishop et al.established an overall relationship of Nu ∼ Ra0.276. For vari-
ous fluids with different Prandtl numbers, an overall relationship of Nu ∼ Ra0.226

is given by Scanlan et al.(this was said to be valid for 0.09 < β < 1.81).
The deviation of the Nusselt number obtained on both spheres ∆Nu increases

quickly as the flow becomes three-dimensional. This indicates a growing numeri-
cal error. For Ra = 20 000, ∆Nu = 0.136. Therefore, higher resolution is required
at large Rayleigh numbers.

Energetics Figure 9 shows different aspects of the kinetic energy versus the
Rayleigh number in the Ra range of this study. The total kinetic energy in-
creases monotonously with increasing Rayleigh number, as both the axisym-
metric and non-axisymmetric parts do. The non-axisymmetric part increases
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Nu = 0.135Ra0.256

analytical
∆Nu

Ra

Fig. 8. Averaged Nusselt number Nu (✷) and its deviation ∆Nu (◦) as a function of
the Rayleigh number. The dashed line is the least-square fit of the Nu–Ra-relationship
for the range of Ra = 3000–20 000. The dotted line is the analytical solution for the
axisymmetric basic flow up to the second order approximation.

sharply as the banana-cells are generated from Ra = 2500, and then remains
from about Ra = 10 00 nearly constant at 32% of the total kinetic energy. Look-
ing at contributions of each velocity component in Fig. 9(b), it can be seen that
the largest contribution (over 90%) of the total kinetic energy is made by the
latitudinal components (north-south movement), which however decrease with
the increasing Rayleigh number. In the range from Ra = 2500 to 5000 the ra-
dial and the azimuthal components grow sharply at nearly the same rate. After
that the azimuthal part increases steadily with the Rayleigh number, while the
radial part essentially remains at about 2% of the total kinetic energy. The in-
crease of the azimuthal kinetic energy indicates that the flow becomes more
three-dimensional.

Figure 10 shows the temperature variance versus Rayleigh number. The
volume-averaged temperature variance is an integral scale of thermal energy
of the fluid shell. It is interesting that as the Rayleigh number increases, the
total temperature variance first increases slightly and then decreases. The initial
increase is due to the temperature increase in the interior of the spherical shell.
But then, as the Rayleigh number increases further, the temperature bound-
ary layers on both spheres build up, which leads to a decrease of the volume-
averaged temperature variance. A major contribution comes from the portion in
the southern hemisphere near the outer sphere where the fluid is of nearly the
same temperature of the outer sphere. The axisymmetric part of the tempera-
ture variance changes in a similar way as the total variance for the same reason.
The non-axisymmetric part of the temperature variance is generally very weak.
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Fig. 9. Kinetic energies as a function of the Rayleigh number: (a) The total kinetic
energy Ev and its axisymmetric Ēv and non-axisymmetric Ẽv parts. (b) Relative scales
of three components normalized by the total kinetic energy.

It increases sharply as the banana-type cells are generated, and remains nearly
constant for Ra > 10 000.

Figure 11 shows the kinetic energy balance of the three-dimensional (non-
axisymmetric) perturbations as a function of the Rayleigh number. The first
three terms on the right-hand site of Eq. (20) are considered, as the dissipation
just balances these three terms. For comparison, each term is also represented in
units of their sum by the dashed curve with the same symbol. The scale for the
solid curves is given on the left-hand axis, and the scale for the dashed curves is
on the right axis.

The absolute values of the three terms increase monotonically with the
Rayleigh number. Looking at the dashed curves, at low Rayleigh numbers the
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Fig. 10. Temperature variance ET and its axisymmetric ĒT and non-axisymmetric ẼT

part as a function of Rayleigh number.
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Fig. 11. Kinetic energy balance of the three-dimensional perturbations as a function of
the Rayleigh number, see Eq. (20). Ẽr and Ẽθ are the energy driven by the radial and
meridional component of the buoyancy, respectively. Ẽn is the nonlinear transfer rate
of energy from the mean axisymmetric to non-axisymmetric part of velocity. The solid
curves are to scale with the left-hand axis, and the dashed curves with the right-hand
axis. The dashed curves are corresponding quantities normalized by their sum Ẽ∗.
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kinetic energy is mainly generated by the radial buoyancy force. In the transient
stage into the banana-type mode up to Ra ≈ 5000, the radial and latitudinal
part of the buoyancy change its role. At high Rayleigh number (Ra > 5000), the
largest kinetic energy generation (∼ 80%) is through the action of the latitudinal
buoyancy force, about 18% of the kinetic energy comes from the radial buoy-
ancy. This change can be understood by the fact that the banana-type mode
is generated at low Ra near the north pole where the radial component of the
buoyancy is largest. As the banana-cells grow into the equator with increasing
Ra, the meridional component of the buoyancy becomes stronger and makes a
dominant contribution. Note that in the whole Ra range the energy transferred
from the mean axisymmetric flow is no more than 2% and, therefore, plays a
negligible role in the process. Therefore, banana-cells result from the buoyancy
driven convective instability.

3.3 Transient evolution

The above discussion is related to the (nearly) steady state at the unit thermal
diffusion time. As an example at Ra = 5000, we want to show how the banana-
type patterns develop with time. We recall that the calculation was started from
a quiescent initial state at a constant temperature of the outer sphere (v = 0,
T = 0). For t > 0, the inner sphere is now set at a constant higher temperature
Ti = 1, while the outer sphere is still maintained at To = 0. Some typical flow
configurations up to 1.5 thermal diffusion times are shown in Fig. 12 in grey-
scaled contour plots of the radial and latitudinal velocity components, to give a
more qualitative impression comparable to experimental observations.

As already observed above in the steady states, each of the three velocity
components displays some special characteristics of the three-dimensional con-
vection. At the beginning up to t ≈ 0.2, the convective flow in the spherical
shell is essentially axisymmetric. A small axisymmetric ring vortex is formed
around the north pole. The rings around the north pole grow in strength and
size with time. At t = 0.3, a pair of rings expanding to θ ≈ 15◦ can be seen
from the contour plot of the radial velocity component. Outside of the rings,
the flow becomes three-dimensional. The wavy structure is more pronounced in
the latitudinal velocity component than in the radial component. At t = 0.4,
the contour lines of the radial velocity outside of the ring vortices display a nice
flame-like pattern, while small banana-cells can be seen from the contour lines
of the latitudinal velocity.

In the following time, the growth of the flame-like patterns in the direction
to the equator and the formation of banana-type cells dominates the evolution
of the flow pattern. On the other hand, the ring vortices around the north pole
are disturbed by banana-cells and transform gradually to wavy and finally to
entirely three-dimensional cells. As the banana-cells grow into the equator, new
cells are generated to fit the increasing circumferential space. In the nearly steady
state, 10 pairs of banana-cells are present at θ ≈ 15◦, 22 pairs at θ ≈ 30◦, and
34 pairs at θ ≈ 60◦. After a unit thermal diffusion time (compare with t = 1 for
Ra = 5000 in Fig. 2), most changes can be seen in the contour lines of the radial
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Fig. 12. For caption see next page.
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vr vθ

t = 0.7

t = 1.5

Fig. 12. Contour plots of the radial (vr) and latitudinal (vθ) velocity component on
the mid-gap surface at different times for Ra = 5000 showing some typical stages of the
unsteady evolutions of banana-type flow pattern. All components are normalised by the
absolute maximal value of the component as given below. The dark area corresponds
to negative values, and the light area to positive values.

velocity component near the north pole, while the banana-cell structure near
the equator remains essentially steady, and the cells do not grow further with
time (a check of the steadiness of the flow structure up to another characteristic
thermal diffusion time from equator to pole is desirable but not feasible with the
present numerical code).

Comparing Fig. 12 with Fig. 2, we see a close resemblance of the flow patterns
with increasing time in Fig. 12 to those with increasing Rayleigh number in Fig.
2. In fact, the time development for other Rayleigh numbers is also similar. For
smaller Rayleigh numbers, the onset of the visible structure (rings or banana-
cells) begins later and the evolution with time is slower. At higher Rayleigh
numbers, the scenario described above is practically compressed into a short
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initial phase and a regular banana-type structure is always established, although
the flow patterns after some time may become irregular. For example, similar
flow structures as shown in Fig. 12 up to t = 1.5 for Ra = 5000 occur within
t = 0.25 for Ra = 20 000.

Ev

Ēv

ẼvEv

Ēv

Ẽv

t

Fig. 13. Ev, total, Ēv, axisymmetric and Ẽv, non-axisymmetric energy as a function
of time at Ra = 5000.

Figure 13 shows the total energy as well as its axisymmetric and non-axisym-
metric part as a function of time at Ra = 5000. The scale for the total and
axisymmetric energy is given on the left-hand axis, and the scale for the non-
axisymmetric energy (which is much smaller than the axisymmetric energy) is on
the right-hand axis. The units between tick marks on the both axes are the same,
but the origin on the right has been shifted so that the sum of the axisymmetric
and non-axisymmetric part just gives the total energy.

At the beginning the flow is axisymmetric, so the total energy is equal to the
axisymmetric part. Although the three-dimensional structure becomes clearly
visible from t = 0.3 in Fig. 12, a sharp increase of the non-axisymmetric energy
begins at about t = 0.4 first. At the same time, the axisymmetric energy drops
down less intensely, so that the total energy still increases. From about t = 1.0,
all components remains nearly constant.

Up to now, we considered evolution from a quiescent initial state. In order to
examine the pure energy flux during the transition towards banana-type modes,
a calculation is made for Ra = 5000 starting from an initial state which is the
azimuthally averaged axisymmetric part of the steady flow at the same Rayleigh
number. Figure 14 shows energy balances with time up to 0.25. To this time the
steady mode with banana-cells as shown in Fig. 2 is essentially reestablished.
We see from Fig. 14 that the same energy profiles as in Fig. 11 at steady state
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Fig. 14. Kinetic energy balance of the three-dimensional perturbations as a function
of the time at Ra = 5000 from an (averaged) axisymmetric initial state. The abscissa
for the time is scaled logarithmically to emphasise the evolution in the initial period.
The symbols are used in the same manner as in Fig. 11.

are reestablished already at about t = 0.01. In fact, Fig. 14 just represents a
portion of the corresponding graph obtained from a quiescent initial state (not
shown here). Therefore, the same dynamics takes place during this transition as
from a quiescent initial state.

4 Concluding remarks

In this paper, natural thermal convection in a narrow spherical shell with the
aspect ratio β = 0.08 is studied numerically. Detailed characteristics of the
convective motions have been presented and discussed. A novel feature repre-
sentative for thermal convection in narrow spherical shells is the formation of
banana-type cells in the northern hemisphere, as the Rayleigh number exceeds
about Ra = 2000.

The development of the flow patterns with increasing Rayleigh number is
similar to the development with time at a fixed Ra. An axisymmetric basic
circulation extending through the whole spherical shell, with the fluid moving
upward near the inner sphere and downward near the outer sphere, is generated
at low Rayleigh numbers. As the Rayleigh number increases or the time elapses,
a ring vortex or ring vortices are formed around the north pole. Outside the
rings, the flow becomes unstable and transforms to banana-cells, which grow in
the direction to the equator. Simultaneously, the ring vortices near the north
pole are disturbed and disappear gradually. The banana-cells are, in contrast to
ring vortices, still part of the basic circulation extending to the south pole. At
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high Rayleigh numbers (Ra ≥ 104), the flow structure becomes less ordered. The
banana-cells are the result of an instability of buoyancy driven convection.

The numerical results presented here are in qualitative agreement with the re-
sults of previous experiments (Bishop et al. [1]; Nakagawa et al. [29]; Egbers [6]).
Compared to laboratory experiments, the main advantage of direct numerical
simulations is the possibility to explore various aspects of the flows, which can
help us in understanding the dynamics. While experiments can primarily re-
veal some broad characteristics of these fascinating convective phenomena, the
numerical simulation allows us to examine the detailed inner structure of the pat-
tern formations. It was not clear, for example, what exactly happens in the flow
when the banana-cells were observed experimentally for the first time. Through
this numerical study, various phenomena observed in different experiments (the
“falling-vortices” seen in a cross-section by Bishop et al. [1], and the banana-cells
seen in the global visualisation by Egbers [6]) are combined to give a complete
picture of these very complicated flows.
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Magnetohydrodynamic flows in spherical shells
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Abstract. After reviewing the derivation of the equations governing the evolution of
magnetic fields in electrically conducting fluids, I consider two largely distinct classes
of such phenomena in spherical shells. The first is kinematic dynamo theory, in which
a flow is prescribed, and one searches for self-excited magnetic fields. The second is
magnetic Couette flow, in which a magnetic field is imposed, and one solves for the
flow and the induced field. In both cases existing results are reviewed; in the latter case
some new results are also presented.

1 Introduction

Magnetohydrodynamics is the study of the flow of electrically conducting fluids
in the presence of magnetic fields. To understand why such flows should be so
distinct from ordinary, non-magnetic hydrodynamics as to constitute a separate
subject, one must understand the nature of the interaction between the field
and the flow. We recall from basic physics that moving a conductor through a
magnetic field induces electric currents, which in turn create new magnetic fields.
We thus see how the flow will modify the original field. In addition, we again
recall from basic physics that the combination of electric currents and magnetic
fields leads to forces, which then modify the original flow. It is this mutual
interaction between the flow and the field that makes magnetohydrodynamics
such a fascinating subject, and gives it an even greater richness than that already
found in ordinary hydrodynamics.

In addition to its intrinsic interest, magnetohydrodynamics also has a huge
variety of applications, ranging from the industrial control of liquid metals to
understanding the origin of planetary and stellar fields. Because these geo- and
astrophysical applications typically involve spherical shells of various aspect ra-
tios, I will focus attention on that geometry in this review. Nevertheless, I will
endeavour to concentrate more on the abstract and generally applicable aspects,
and less on the specific geo- or astrophysical applications. For recent reviews
devoted specifically to planetary magnetic fields, readers are referred to any one
of [1-3], and for stellar fields, to [4-5]. Finally, with an eye to stimulating greater
interaction between experimentalists and theoreticians, I will also discuss a num-
ber of interesting configurations that could be set up in a laboratory.
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2 The induction equation

To go beyond a mere qualitative description of how the fluid flow might be
expected to influence the magnetic field, we need to derive the so-called induction
equation. To do that we will need first of all Maxwell’s equations

∇ ·E = ε−1ρc , ∇×E = −∂B
∂t

, (1a, b)

∇ ·B = 0 , µ−1∇×B = J+ ε
∂E
∂t

, (1c, d)

and later also Ohm’s law in a conductor moving with velocity U,

J = σ(E+U×B) . (2)

Here E and B are the electric and magnetic fields, ρc and J are the charge and
current densities, ε and µ the permittivity and permeability, and finally σ the
conductivity.

In their complete form, we know of course that Maxwell’s equations support
wave solutions travelling at a speed c = 1/

√
εµ, which turns out to be the speed of

light, and indeed Maxwell’s great accomplishment was precisely to demonstrate
that light is an electromagnetic wave. However, if one is interested in studying
the relatively slow phenomena that we will be considering here, it is extremely
inconvenient to have to deal with equations that also support such very fast
phenomena. For example, if we are developing a numerical solution, the well-
known Courant condition [6] states that the largest timestep one can use must
be less than the time it takes for the fastest wave allowed by the equations to
travel one spatial gridspace. For comparison, the time it would take light to
travel the entire diameter of the Earth’s core is a small fraction of a second,
and yet its magnetic field evolves over timescales of tens of thousands of years.
If we really insisted on including light waves, we would thus have to take an
unpleasantly large number of timesteps!

It is thus clear that we must approximate Maxwell’s equations in such a way
as to filter light waves out again. We do that by neglecting the displacement
current ε ∂E/∂t in (1d) and reverting to the pre-Maxwell Ampere’s law

µ−1∇×B = J . (1d′)

Of course, we cannot throw away certain terms simply because it is convenient
to do so; we must justify neglecting them. So, we compare typical magnitudes
of ε ∂E/∂t versus µ−1∇×B,

ε∂E/∂t
µ−1∇×B ∼ εE/T

µ−1B/L
= εµ

L

T

E

B
= εµU

E

B
,

where L and T are typical length and time scales, and U is thus a typical velocity
scale. From (1b), we obtain further

E

L
∼ B

T
, so

E

B
∼ L

T
= U ,
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and so finally
ε∂E/∂t

µ−1∇×B ∼ εµU2 =
U2

c2
.

We thus see that in order to justify the neglect of the displacement current,
the typical velocity scale must be very small compared with the speed of light,
hardly a very onerous condition. We note in particular that if U ever did become
comparable to c, then much of our original motivation for wanting to neglect
the displacement current in the first place, namely the disparity between the
timescales T and L/c, evaporates completely. The requirement U % c is thus
quite acceptable.

There is, however, another condition that must also be satisfied for the ne-
glect of the displacement current to be justified. Returning for the moment to
Maxwell’s equations in their complete form, if we take the divergence of (1d)
and use (1a) to replace ε∇ ·E by ρc, we obtain

∂ρc
∂t

+∇ · J = 0 , (3)

which we recognize as a statement of conservation of charge. In fact, historically
(3) was not derived from (1d) and (1a) as we did here. Quite the reverse: charge
conservation was known long before the complete form of Maxwell’s equations,
and Maxwell added the displacement current to Ampere’s law precisely because
he recognized that doing so would make it consistent with conservation of charge.
That the resulting equations suddenly supported wave solutions whose speed
agreed with the experimentally measured speed of light was merely an added
bonus.

Well, if we are then proposing to neglect the displacement current again, we
will have to consider carefully what implications that might have in terms of
charge conservation. If we take the divergence of (1d’) now, we obtain simply
∇ · J = 0, and since we still do believe in conservation of charge, that implies
∂ρc/∂t = 0. This in turn implies ρc = 0, since it is simply not plausible that a
charge imbalance inside a conductor could maintain itself indefinitely in such a
way that ρc = 0 but ∂ρc/∂t = 0. We thus see that another condition that must
be satisfied for the neglect of the displacement current to be justified is that
there can be no separation of positive and negative charges. For the phenomena
we will be discussing, this condition is well satisfied, but it is important to
realize that there could conceivably be phenomena where U % c is satisfied, but
one nevertheless cannot neglect the displacement current because ρc ≈ 0 is not
satisfied.

Having considered the conditions under which the so-called magnetohydro-
dynamic approximation of neglecting the displacement current may be justified
(see also [7-9] for far more detailed discussions), we use (1b), (2), and (1d’) to
obtain

∂B
∂t

= −∇×E

= −∇× (σ−1J−U×B)
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= −∇× (σ−1µ−1∇×B) +∇× (U×B) ,

and assuming the magnetic diffusivity η ≡ 1/σµ is constant, we obtain finally

∂B
∂t

= η∇2B+∇× (U×B) , (4)

the magnetic induction equation governing the evolution of the field B under
the action of the flow U.

An important parameter in (4) is then the ratio of the inductive term ∇ ×
(U ×B) to the diffusive term η∇2B. This ratio defines the magnetic Reynolds
number

Rm ≡ UL

η
,

where U and L are again typical velocity and length scales. This magnetic
Reynolds number is sufficiently important that we want to get a feel for its
typical size in some of the applications we will be dealing with. The diffusivity
η of course is a material property of whatever fluid we happen to be dealing
with; typical values are around 1m2/s for most liquid metals, and even for many
plasmas. Variations in Rm are thus primarily due to variations in U and L; for
example, in the Earth’s core one has L ≈ 106m and U ≈ 10−4m/s, so Rm ≈ 102,
whereas in a lab one might have L ≈ 0.1m and U ≈ 0.1m/s, so Rm ≈ 10−2.
Rm is thus typically small to moderate in lab configurations, but large to very
large in planetary and stellar applications.

In view of these potentially large values of Rm, we want to explore a few
properties of the Rm =∞ limit. We begin by noting the extremely close analogy
between the perfectly conducting induction equation

∂B
∂t

= ∇× (U×B) (5a)

and the inviscid vorticity equation

∂Ω

∂t
= ∇× (U×Ω) (5b)

of ordinary hydrodynamics. A familiar result found in any textbook is then that
vortex lines evolve as material lines, a result known as Helmholtz’s vortex theo-
rem. While (5a) and (5b) are clearly not identical, sinceB andU are independent
in (5a) whereas Ω = ∇ ×U in (5b), readers are invited to check the proof of
Helmholtz’s theorem and convince themselves that nowhere does it rely on any
particular relationship between Ω and U. We therefore immediately obtain the
analogous result that magnetic field lines also evolve as material lines, a result
known as Alfvén’s frozen flux theorem.

An immediate consequence of Alfvén’s theorem is that the flux through any
material surface remains constant. When applied to most material surfaces, this
result is not very useful, since these surfaces typically become very convoluted
very quickly under the action of the flow. There is one material surface, however,
which always maintains its original shape, namely the boundary of the domain.
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We can thus conclude that the flux through the boundary remains constant.
Of course, this result isn’t very useful either, since we already know from ∇ ·
B = 0 that the flux through the boundary is in fact zero, and concluding that
zero remains constant is hardly a publishable result. However, by considering
separately those parts of the boundary where the flux is positive and those
parts where it’s negative, one finds that because these separate parts are again
material surfaces, these equal and opposite fluxes must also remain constant.
Taking absolute values and adding these various parts up again, we can thus
conclude that the so-called pole strength∫

∂V

|B · n̂| dS (6)

remains constant (again only in the Rm =∞ limit though). And this result was
not only publishable [10], it is sufficiently important that it is referred to as the
Bondi-Gold theorem. We will see an interesting consequence of it in the next
section.

While we’re on the subject of B on the boundary, we should also discuss
the appropriate boundary conditions. It is convenient to begin by making the
so-called toroidal-poloidal decomposition

B = ∇× (gr̂) +∇×∇× (hr̂) , (7)

thereby automatically satisfying ∇ ·B = 0. Conversely, any solenoidal field can
indeed be decomposed in this way [11]. If g and h are then further expanded in
spherical harmonics,

g =
∑
l,m

glm(r, t)Pml (cos θ) eimφ , h =
∑
l,m

hlm(r, t)Pml (cos θ) eimφ ,

the decomposition (7) yields

Br =
∑
l,m

l(l + 1)
r2

hlm Pml (cos θ) eimφ ,

Bθ =
∑
l,m

1
r

d

dr
hlm

d

dθ
Pml (cos θ) eimφ +

1
r
glm

im

sin θ
Pml (cos θ) eimφ , (8)

Bφ =
∑
l,m

1
r

d

dr
hlm

im

sin θ
Pml (cos θ) eimφ − 1

r
glm

d

dθ
Pml (cos θ) eimφ ,

for the individual field components. To obtain then the boundary conditions we
should impose on g and h, we must first consider the nature of the exterior region
r > ro.

If we take this region to be an insulator, then in terms of the physics the
condition we want to impose there is that the current density must vanish. We
thus have,

Jext = 0 =⇒ ∇×Bext = 0 =⇒ Bext = ∇ψ ,
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for some field potential ψ. We also need to satisfy ∇ · Bext = 0 though, so ψ
must satisfy ∇2ψ = 0, which has suitably decaying at infinity solutions

ψ =
∑
l,m

Clm r−(l+1) Pml (cos θ) eimφ ,

and so
Bext,r =

∑
l,m

−(l + 1)Clm r−(l+2) Pml (cos θ) eimφ ,

Bext,θ =
∑
l,m

Clm r−(l+2) d

dθ
Pml (cos θ) eimφ ,

Bext,φ =
∑
l,m

Clm r−(l+2) im

sin θ
Pml (cos θ) eimφ ,

are the individual components of this so-called potential field.
Of course, what we really wanted were boundary conditions on the toroidal

and poloidal parts of the internal field, so we need to consider which field com-
ponents must be continuous across the boundary. Well, ∇ ·B = 0 implies that
the normal component must certainly be continuous, so

Clm = −l rlo hlm(ro) , (9)

which determines the external field, but doesn’t yet give us any conditions on
the internal field. So, we turn next to the tangential components. If these were
discontinuous, according to J = µ−1∇×B that would imply infinite current den-
sities. Now, in the perfectly conducting limit, such current sheets are acceptable,
and so in the Rm = ∞ limit there are simply no boundary conditions on the
internal field — which is why we didn’t need to consider any in our derivation of
the Bondi-Gold theorem. In the finitely conducting limit, however, such current
sheets are not acceptable, and so, using also (9), we additionally require

1
r

d

dr
hlm

d

dθ
Pml +

1
r
glm

im

sin θ
Pml = − l

r2
hlm

d

dθ
Pml

∣∣∣∣
r=ro

1
r

d

dr
hlm

im

sin θ
Pml −

1
r
glm

d

dθ
Pml = − l

r2
hlm

im

sin θ
Pml

∣∣∣∣
r=ro

which finally yield

glm = 0 ,
d

dr
hlm +

l

r
hlm = 0 , (10)

as the appropriate boundary conditions to impose at r = ro.
One can then obviously go through similar considerations, now using bounded

at zero solutions for ψ, and derive similar boundary conditions to impose at
r = ri. However, in terms of the physics taking the interior region r < ri to be
an insulator is often not justifiable; in planetary or stellar applications this region
is typically also a conductor. In this case, one cannot simply impose boundary
conditions at r = ri; one must solve for the field in the interior as well, and apply
appropriate matching conditions across the interface. See, for example, [12] for
a discussion of these matching conditions and their numerical implementation.
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3 Kinematic dynamo action

Having derived the induction equation and the appropriate boundary conditions,
we next consider those solutions most relevant in planetary or stellar contexts,
namely so-called dynamo solutions, in which the magnetic field is not externally
imposed, but is instead spontaneously generated. On an abstract level, this dy-
namo process is simply an instability, just like Rayleigh-Bénard convection, for
example. That is, in convection, U ≡ 0 is always a solution of the governing
equations, but once the forcing — as measured by the Rayleigh number — ex-
ceeds some critical value, this non-convecting solution becomes unstable, and
infinitesimal disturbances begin to grow. Similarly, B ≡ 0 is always a solution
of the induction equation, but once the forcing — as measured by the magnetic
Reynolds number now — exceeds some critical value, this non-magnetic solution
may become unstable, and infinitesimal seed fields may begin to grow.

Ultimately, of course, the field must equilibrate at some finite amplitude, just
as convection ultimately equilibrates. We will explore the equilibration mecha-
nism in the next section, but for now we will consider only so-called kinematic
dynamo action, in which the flow is prescribed, and no back-reaction from the
field is included. The dynamo process then becomes an eigenvalue problem, with
the eigenvalue λ being the (generally complex) exponential growth or decay rate.
That is, one looks for solutions of the form B = eλtB̂, where B̂ has the same
time-dependence — stationary or periodic — as U does. (If U has a more com-
plicated time-dependence, the definition of λ is not so precise.) The question
that kinematic dynamo theory then asks is, is it possible to choose U such that
at least one of the eigenmodes is exponentially growing rather than decaying,
and if so, what is the lowest Rm for which this occurs?

Unfortunately, all of the early results were negative, beginning with Cowl-
ing’s theorem [13] stating that no fluid flow, whatever its structure, and however
large its amplitude, can amplify a purely axisymmetric field. Quite a number of
individuals have subsequently strengthened and extended this result; for exam-
ple, whereas Cowling’s original proof only applies to steady fields, Braginsky’s
[14] applies to time-dependent fields as well. Similarly, whereas Braginsky’s proof
(reproduced in [1]) only applies to incompressible flows, Hide & Palmer [15] and
also Lortz & Meyer-Spasche [16] independently showed that Cowling’s theorem
remains valid even if compressibility is allowed, and even if variations in the
diffusivity are allowed (note how (4) would have to be modified if η is no longer
constant). These last results are particularly important, as the huge pressure
variations found in planetary and stellar contexts make variations in the ma-
terial properties of the fluid potentially far more important than they are in a
laboratory context. However, it seems that Cowling’s theorem holds true under
just about any conceivable generalization (see also [17] for some more of these
results), and so we must conclude that — if it is possible at all — dynamo action
is an inherently three-dimensional process.

Another early negative result is the so-called toroidal theorem, first suggested
by Elsasser [18], and rigorously proved by Bullard & Gellman [11], stating that no
purely toroidal flow can act as a dynamo, where the distinction between toroidal
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and poloidal flows is just like the distinction (7) between toroidal and poloidal
fields. If the flow must therefore be at least partly poloidal, the equivalent of
(8) implies it must have all three components non-zero. That is, we previously
found that dynamo action must be three-dimensional in the sense that the field
must depend on all three coordinates; we now find that it must also be three-
dimensional in the sense that the flow must have all three components. The
toroidal theorem has also subsequently been extended by Busse [19], who derived
a lower bound on the poloidal part of the flow in terms of the ratio between the
poloidal and toroidal parts of the field. This in turn suggests that a purely
toroidal field should perhaps also be impossible, a result formally proved by
Kaiser et al. [20]. We thus find that the field must also have all three components.

Yet another necessary, but unfortunately not sufficient, condition for dynamo
action is that Rm must exceed certain O(1) – O(10) lower bounds [21-23]. The
physical interpretation of all of these bounds is that the advective timescale must
be more rapid than the diffusive timescale, that is, the flow must be stretching
and thereby amplifying the field more rapidly than diffusion is damping it. As
plausible and reasonable as this condition undoubtedly is, it does make it difficult
to achieve dynamo action in the lab, where we previously saw how difficult it is
to achieve even Rm = O(1) – O(10), let alone the O(10) – O(100) that realistic
dynamos turn out to require. In planetary and stellar contexts, however, these
lower bounds on Rm should pose no problems.

The first attempt at providing a more positive result was by Bullard & Gell-
man [11], who prescribed a certain flow consisting of an m = 0, l = 1 toroidal
part and an m = 2, l = 2 poloidal part, and solved the resulting eigenvalue prob-
lem numerically. They claimed that for Rm >∼ 50 or so, they obtained a growing
mode, that is, dynamo action. However, the resolution they used, only including
spherical harmonics up to m = l = 6, and only including ten finite difference
grid points in r, was hardly sufficient to resolve the O(Rm−1/2) structures one
expects to find in the field [24], and so this claim to have obtained dynamo
action was not entirely convincing. And indeed, a subsequent recalculation by
Lilley [25] at a higher resolution showed that the Bullard-Gellman flow fails as
a dynamo. Lilley then went on to propose a different flow that he claimed did
succeed, but another recalculation by Gubbins [26] showed that this flow too
fails! One must thus be very careful about claiming dynamo action on the basis
of numerical results that are not necessarily fully resolved.

In fact, the first successful proof of dynamo action in a sphere, by Backus
[21], did not rely on numerical calculations at all. Instead, Backus chose his flow
so cleverly that it was possible to prove dynamo action entirely analytically.
The trick turned out to be to take the flow to be time-dependent, with pulses of
flow separated by stationary intervals. During these stationary intervals the field
simply decays of course, and since the higher harmonics decay more quickly than
the lower ones, one can adjust the length of these intervals so that the higher
harmonics decay away whereas the lower ones remain. And once one only has
a small number of low harmonics to deal with, one can show analytically that
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the effect of these periodic flow pulses is to amplify them from one pulse to the
next, thereby proving dynamo action.

It is also of interest to note how Gubbins [26] not only showed that the
earlier Bullard-Gellman and Lilley numerical solutions were not sufficiently well
resolved to be even qualitatively correct, but also provided probably the first
convincingly resolved numerical dynamo. In particular, the reason he succeeded
where they had failed is not only due to the increased computing power in the
intervening years, it is once again largely due to a clever choice of flow: besides
the Bullard-Gellman and Lilley flows, Gubbins also considered a purely axisym-
metric flow, for which the field conveniently decouples into distinct azimuthal
modes. Cowling’s theorem of course tells us that the m = 0 mode cannot be a
dynamo, but it says nothing about the m = 0 modes. That is, Cowling’s theo-
rem only states that the field must depend on all three coordinates, but the flow
may still depend on only two, in which case the dependence of the field on the
third coordinate is sufficiently trivial that effectively one is still solving only a
two-dimensional problem.

In recent years, the available computing power has increased so much further
that even genuinely three-dimensional fields can now be fully resolved, and the
kinematic dynamo problem continues to attract a surprising amount of attention.
For example, Love & Gubbins [27] show that there is no corresponding “poloidal
theorem”, by presenting an example of a purely poloidal flow that does act as a
dynamo. However, given that a poloidal flow already has all three components
non-zero, it is perhaps not so surprising that a purely poloidal flow could succeed
where a purely toroidal flow necessarily fails. Also of interest is the work of
Gubbins et al. [28], who show that dynamo action is surprisingly delicate, in
that a relatively slight change in the flow can completely destroy its dynamo
properties. In the next section we will very briefly mention some of the possible
implications of this result. In this context it is also worth mentioning Love &
Gubbins [29], who have come up with an ingenious method of systematically
adjusting the flow to optimize its dynamo properties, by solving a related inverse
problem rather than the direct forward problem.

Having demonstrated that dynamo action in general is possible, we end this
section with a brief discussion of the so-called invisible dynamo. That is, is
it possible to have a dynamo that is completely contained within the sphere,
with no external field at all? The possible existence of such dynamos would
obviously have considerable geo- and astrophysical implications, as we can only
ever observe the external fields of such bodies. Remembering our matching and
boundary conditions (9) and (10), where we found that only the poloidal field
extends outside the sphere, whereas the toroidal field always remains inside,
we see that the most obvious way to have an invisible dynamo would simply
be to have a purely toroidal field. However, remembering also the result [20]
that a purely toroidal field dynamo is impossible, we realize that this option
is not available. One should be careful not to conclude from this, though, that
an invisible dynamo is necessarily also impossible. After all, [20] show that one
cannot have a dynamo with the poloidal field zero everywhere, but not that one
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cannot have a dynamo with the poloidal field zero everywhere on the boundary,
which is all that we require.

Now, at this point one might legitimately object that such a configuration is
highly contrived. After all, why should the dynamo just happen to arrange its
poloidal field in such a way that the single boundary condition (10b) is effectively
replaced by the much more stringent double condition hlm = dhlm/dr = 0? Well,
it turns out that there is in fact a very good reason why the dynamo might be
compelled to tend toward such a configuration, namely the constraint imposed
by the Bondi-Gold theorem. We saw earlier that the Bondi-Gold theorem states
that the pole strength (6) can only change through diffusion, so if there is a dy-
namo operating inside the sphere, it can only generate an external field through
diffusion. But that means that in the limit of increasingly large Rm, as diffu-
sion becomes weaker and weaker, it becomes increasingly difficult to generate
an external field, and so one should expect the field to become increasingly con-
tained within the sphere, that is, to tend to an invisible dynamo. This hypothesis
has been verified in a direct numerical simulation by Hollerbach et al. [30], who
were able to go up to Rm = 105 by using the same trick as Gubbins [26] did
of choosing a purely axisymmetric flow. Furthermore, this same result was also
conjectured by Rädler [31], and proved by Rädler & Geppert [32], in the context
of so-called mean-field dynamics, in which the flow is assumed to be turbulent,
and certain large-scale averages are taken. A discussion of mean-field dynamics
is obviously beyond the scope of this review, but readers are referred to [33].

It is certainly gratifying to find that two such radically different approaches
both lead to the same conclusion, that in the limit of sufficiently large Rm
invisible dynamos are not only possible but almost inevitable, but it does raise
the question as to how the Sun, for example, does manage to have an external
field? The answer is that the Sun is not operating as a kinematic dynamo, with
no influence of the field back on the flow. If one does include this effect, one
finds that there are powerful forces, such as magnetic buoyancy [34], that act to
bring the field to the surface, where the solar wind can then also help to extend
it outward. However, these results about the invisible dynamo do illustrate two
points. First, it is not enough to generate a field inside some object; one also has
to be able to extend it outward. And second, for many objects, including the
Sun, it is still quite likely that the internal field is many times stronger than the
external field.

4 The Lorentz force

Turning next to this influence of the field back on the flow, we note that the
combination of electric currents and magnetic fields gives rise to the so-called
Lorentz force J×B, which can also be written as

J×B = µ−1(∇×B)×B = −µ−1∇|B|2/2 + µ−1(B · ∇)B,

using first (1d’) and then a standard vector identity. It is in this latter form
that this force is particularly amenable to physical interpretation; we recognize
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right away that the term −µ−1∇|B|2/2 amounts to an isotropic magnetic pres-
sure. For the largely incompressible flows in planetary interiors this part of the
Lorentz force is relatively unimportant, but for the highly compressible flows in
stellar interiors it is enormously important. For example, this magnetic buoyancy
alluded to above [34] is caused by the magnetic pressure force: regions of strong
field respond to their high magnetic pressure by expanding; the resulting lower
density then gives rise to an upward buoyancy force. The physical interpretation
of the term µ−1(B · ∇)B is not quite so straightforward, but it can be shown
(see for example [7-9]) that it amounts to an anisotropic magnetic tension, in
which the magnetic field lines act like elastic bands. This part of the Lorentz
force is important in virtually all situations; we will see some interesting effects
of it and its highly anisotropic nature in the next section.

This tension in the field lines also allows us another interpretation of dynamo
action, which we have previously thought of from a purely kinematic point of
view as simply the stretching and hence amplification of field in accordance with
Alfvén’s frozen flux theorem. We now realize that from a dynamic point of view,
stretching the field lines in this way will require us to do work against the mag-
netic tension, and assuming conservation of energy, this work will presumably
reappear as an increase in the magnetic energy, that is, an amplification of the
field.

Of course, we shouldn’t simply assume conservation of energy; we should be
able to derive it from the governing equations, and prove that the work done
against the magnetic tension really does reappear as magnetic energy. We can
do so easily enough by adding the dot products of the induction equation with
µ−1B and the momentum equation with U to obtain

∂

∂t

( 1
2
ρU2 +

1
2
µ−1B2

)
= µ−1[B · ∇ × (U×B) +U · (∇×B)×B]+ . . . ,

where we’re focussing attention only on the two terms coupling U and B. Again
using standard vector identities, one can then show that

B · ∇ × (U×B) +U · (∇×B)×B = ∇ · [(U×B)×B].
Integrating over the volume and using the divergence theorem, these terms thus
contribute

µ−1
∫
∂V

[
(U×B)×B] · n̂ dS (11)

to the global energy balance. So if our boundary conditions are U = 0, we
obtain the desired result immediately. Of course, the boundary conditions aren’t
alwaysU = 0 — the Couette flows considered in the next section for example are
driven entirely by inhomogeneous boundary conditions on U. However, in that
case one can show with only a little more effort that (11) corresponds precisely
to the external work done against a possible magnetic torque on the boundary,
so once again we obtain the desired result.

This magnetic tension also provides the equilibration mechanism that pre-
vents a dynamo field from growing indefinitely; eventually the field must surely
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become so great that its tension simply prevents the flow from stretching it any
further. In fact, the precise details of this equilibration mechanism are poten-
tially extremely complicated, and are the subject of most current research in
dynamo theory. For example, the Lorentz force could simply reduce the ampli-
tude of the flow everywhere until the magnetic Reynolds number is just critical.
Alternatively, it could leave the amplitude of the flow largely unchanged, but
subtly alter its structure and thereby its dynamo properties to the point where
the field stops growing — we recall from our discussion of kinematic dynamo
theory that only very slight changes in the flow are needed for this to happen.

Finally, and most dramatically, the Lorentz force could cause the whole sys-
tem to switch to a completely different state. This possibility is particularly
relevant in planetary dynamos, where it is generally believed that the extremely
rapid rotation leads to the existence of distinct weak and strong field regimes,
characterized by very different amplitudes and structures for both the field and
the flow. A detailed discussion of the dynamics leading to these two states is
beyond the scope of this review, but see Jones [35], who also estimates just how
rapid the rotation must be for these two states to emerge. And as if this wasn’t
complicated enough, Zhang & Gubbins [36] then speculate — again on the basis
of the known fragility of a flow’s dynamo properties — that neither of these
states will be stable, so that the system might oscillate between the two.

In fact, one need not go to such extreme parameter values to observe a system
switching between completely different states in response to the Lorentz force;
Fuchs et al. [37] provide very nice examples of what they call “self-killing” and
“self-creating” dynamos. In the first scenario one starts with a flow that is a
dynamo, but the Lorentz force switches it to a flow that is not, and even after
the field then decays away, one does not switch back to the original flow. In the
second scenario one starts with a flow that is not a dynamo, but if one starts it
off with the right finite amplitude field, the Lorentz force switches it to a flow
that is a dynamo.

We thus see that although the general principles whereby the Lorentz force
must ultimately equilibrate a dynamo field are well understood, the details of
how this may come about are surprisingly subtle and varied. There is undoubt-
edly much still to be learned in this area, not just on specific planetary or stellar
applications, but also in terms of more abstract, general principles.

5 Magnetic Couette flow

We end with a discussion of various phenomena that occur when magnetic fields
interact with Couette flows. Although this subject dates back to Chandrasekhar
[38], it has rather languished since then. However, given that this volume is
devoted primarily to Couette flows of various kinds, and given the range of
interesting phenomena that can occur in magnetic Couette flow, it seems ap-
propriate to discuss it here, and in the process perhaps arouse further interest
in it. We will present two configurations; in the first both spheres are rapidly
rotating, with a slight differential rotation between them, in the second only the
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inner sphere is rotating. In both cases we will consider the effects that imposing
magnetic fields with various orientations and amplitudes has on the previously
non-magnetic solutions.

If both spheres are rapidly rotating about the same axis at almost the same
rate, the non-magnetic solution consists of the so-called Stewartson layer situated
on the tangent cylinder C, the cylinder circumscribing the inner sphere and
parallel to the axis of rotation. The reason this particular cylinder is singled
out is because of the Taylor-Proudman theorem, stating that in rapidly rotating
systems the flow must be independent of the coordinate along the axis of rotation.
As a result of this requirement, the tangent cylinder naturally separates the flow
into two distinct regions, with the fluid outside C in solid-body rotation at a rate
Ωo, and the fluid inside C in almost solid-body rotation at a rate intermediate
between Ωo and Ωi.

Since there is a slight difference between Ωo and Ωi, this implies that there
must be a jump in angular velocity across C, proportional to the differential
rotation ∆Ω. The detailed structure of the shear layer that resolves this jump
was deduced by Stewartson [39], and consists of three intricately nested layers,
an innermost one of thickness E1/3, and two outer ones of thicknesses E2/7 just
inside C, and E1/4 just outside C. The Ekman number E = ν/ΩoL

2 is an inverse
measure of the overall rotation rate. The Stewartson layer has been reproduced
numerically by Hollerbach [40] down to E = 10−5, and by Dormy et al. [41]
down to E = 10−8, who both obtained results in excellent agreement with the
asymptotic scalings.

So, the obvious next question to ask is, what effect might a magnetic field
have on this layer? The first to address this question were Ingham [42] and
Vempaty & Loper [43], who considered the effect of imposing a uniform field
aligned with the axis of rotation. (Actually, they considered a very similar shear
layer in cylindrical rather than spherical geometry. However, the non-magnetic
layers in the two geometries are virtually identical, the main difference being
that what was the E2/7 layer in spherical geometry becomes another E1/4 layer
in cylindrical geometry. Given this similarity, it is then likely that the magnetic
adjustments are also similar.) They found that the field has no effect at all until
Λ >∼ 1, where the Elsasser number Λ = σB2

0/ρΩo is a measure of the strength of
the imposed field B0. There is then a transition regime 1 <∼ Λ <∼ E−1/3 in which
the E1/3 layer is unchanged, the E1/4 layers become thinner (E/Λ)1/4 layers,
and a new Λ−1 layer emerges. All three of these layers merge when Λ ≈ E−1/3,
and for Λ >∼ E−1/3 there is a single thinner (E/Λ)1/4 layer.

We thus find that imposing an axial field has relatively little effect until its
strength becomes quite large, and even then it acts to enhance the shear, that is,
to reinforce the effect of the rapid overall rotation. On reflection, that is hardly
surprising, since the tension in the field lines is acting to couple the same re-
gions that were already coupled by the Taylor-Proudman theorem, namely these
nested cylindrical shells each undergoing essentially solid-body rotation. This
does suggest, though, that we could achieve very different results if we imposed
a different field, one coupling regions not previously coupled. In particular, if
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we chose a field with a component perpendicular to the Stewartson layer, the
magnetic tension should surely act to suppress the shear.

The first to explore this possibility was Hollerbach [40], who imposed a dipole
field, and showed numerically that it does indeed suppress the shear, and at
quite small field strengths. The asymptotic scalings of this configuration were
subsequently deduced by Kleeorin et al. [44], and are in complete agreement
with the numerical results. Their main results are: first, the E2/7 and E1/4

layers become thinner (E/Λ)1/2 layers once Λ exceeds E3/7 for the E2/7 layer
and E1/2 for the E1/4 layer. However, even though these layers become thinner,
the shear is already starting to be suppressed, because the jump across them
decreases even faster. Once Λ ≈ E1/3 then, these layers merge with the E1/3

layer, which is thus far unaffected. And finally, once Λ exceeds E1/3, there is a
single thicker Λ layer.

So we see that imposing different fields does indeed lead to radically different
results; in one case a thinner (E/Λ)1/4 layer once Λ >∼ E−1/3, in the other a
thicker Λ layer once Λ >∼ E1/3. But again, both of these results are only to be
expected, since in one case the field does not have a component perpendicular to
the Stewartson layer, whereas in the other it does; so in one case the tension in
the field lines has no tendency to oppose the shear whereas in the other it does.

For the dipole configuration, once Λ = O(1), this Λ layer then fills the whole
shell, that is, the shear layer is completely suppressed, and the whole fluid is in
essentially solid-body rotation, with all of the adjustment to the imposed differ-
ential rotation occurring in the Ekman-Hartmann boundary layers. Increasing
Λ still further though, it turns out that entirely new shear layers arise once
Λ >∼ E−1/3, as Starchenko [45] was the first to realize. He noted first that for
any given imposed field there could be some field lines that only connect to the
inner sphere, some that only connect to the outer sphere, and some that connect
to both. And given that at such large field strengths the magnetic analog of the
Taylor-Proudman theorem states that the flow should be constant along field
lines — essentially the frozen flux theorem in reverse, with the fluid frozen to
the field rather than vice versa — we should expect those field lines that only
connect to the inner sphere to co-rotate with it, those that only connect to the
outer sphere to co-rotate with it, and those that connect to both to rotate at
some intermediate rate. So the location of these new shear layers will be wherever
we switch from one type of field line to another. Starchenko went on to show that
the thickness of these new layers is once again (E/Λ)1/4. We thus realize that
our previous (E/Λ)1/4 layer is really nothing more than a special case of these
new layers; it just so happens that for an axial field you switch from one type
of field line to another in the same place as you previously had the Stewartson
layer, so it’s not so obvious that it’s really a fundamentally different layer.

In fact, if we examine the thickness of these layers in more detail, we find
that since (E

Λ

)1/4
=
( ν/ΩoL

2

σB2
0/ρΩo

)1/4
=
( νρ

σB2
0L

2

)1/4
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doesn’t actually involve the overall rotation Ωo at all, it should be possible to
obtain the same layers in our second configuration, in which only the inner
sphere is rotating. The advantage of this is that we thereby have one parameter
less to deal with; that is, instead of having one parameter measuring viscous
to Coriolis forces (E), and another measuring Lorentz to Coriolis forces (Λ),
we dispense with the Coriolis force entirely, and simply have one parameter
measuring Lorentz to viscous forces, the so-called Hartmann number M2 =
σB2

0L
2/νρ. In terms of this parameter, we then expect these layers to scale as

M−1/2.
Since we will be considering this configuration in some detail, we note the

precise equations we will be solving. In the limit of small Rm, the momentum
and inductions equations can be simplified to

∂U
∂t

+ReU · ∇U = −∇p+∇2U+M2(∇× b)×B0 , (12)

0 = ∇2b+∇× (U×B0) , (13)

where the Hartmann number is as above, and the Reynolds numberRe = ΩiL
2/ν

is a measure of the inner sphere’s rotation rate. The total magnetic field is then

B = B0 +Rmb ,

where B0 is the externally imposed field, and Rmb the induced field. That is,
Rm no longer appears at all in the equations to be solved, only in the meaning
we subsequently ascribe to the solution b. This is precisely why we’re willing
to limit ourselves to small Rm in this way, to effectively eliminate yet another
parameter from the problem.

The boundary conditions associated with (12) are of course just the usual
spherical Couette flow boundary conditions, namely matching to U = r sin θ êφ
at r = ri and to U = 0 at r = ro, where we will take ri = 1 and ro = 2.
The boundary conditions associated with (13) depend on whether we take the
regions r < ri and r > ro to be insulators or conductors. Since it will turn
out that this choice has a surprisingly large effect on the solutions we obtain,
we will systematically consider all four possibilities II, CI, IC, and CC, where
the first letter denotes the inner boundary and the second the outer. Also, we
might just note that in this small Rm limit, where the field adjusts to the flow
instantaneously, it is possible to simply impose boundary conditions even at
conducting boundaries. See, for example, [46] for a detailed derivation of these
simplified equations and boundary conditions.

For our externally imposed field B0, we will consider in turn axial (A), dipole
(D) and quadrupole (Q) fields, normalized so that |B0| = 1 at r = ro, θ = 0.
Figure 1 then shows the angular velocity of the steady-state solutions, at a
Hartmann number M2 = 105 and a Reynolds number Re = 0, corresponding to
a very strong field and an infinitesimally weak rotation. From left to right we see
the three field configurations A, D and Q, respectively, and from top to bottom
the four boundary configurations II, CI, IC, and CC.
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Fig. 1. Contours of the angular velocity, for the three field configurations A, D and
Q (from left to right), and the four boundary configurations II, CI, IC, and CC (from
top to bottom). M2 = 105, Re = 0, and a contour interval of 0.2Ωi throughout.
The regions of counter-rotation are indicated by the dashed contour lines; the regions
of super-rotation by the gray-shading. The maximum values in the bottom row are
−1.67, 3.87, and 4.06, respectively. Finally, all of these solutions are symmetric about
the equator
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Focussing attention on II first, we note that these results are exactly as we
expected, with the shear layers occurring on precisely those field lines separating
regions magnetically coupled only to one boundary or the other from those
coupled to both. Furthermore, if we were to vary M2, we would find that the
thickness of these layers does indeed scale as M−1/2. We can already see some
hint of this in the D and Q results, where the field strengths, and hence the local
Hartmann numbers, vary considerably throughout the shell, and sure enough
the shear layers are much thinner at ri than at ro.

Turning next to CI and IC, we note that the primary effect of switching either
boundary from insulating to conducting is to lock the fluid to that boundary.
This is particularly apparent for the axial field, where all the fluid inside the
tangent cylinder, which was rotating at a rate Ωi/2 for II, is now completely
locked to the inner boundary for CI, and to the outer boundary for IC. The
reason for this behaviour is that across an insulating boundary forces can only
be transmitted viscously, whereas across a conducting boundary they can also be
transmitted magnetically, and since the Hartmann number measuring magnetic
to viscous forces is large, one should expect the coupling across a conducting
boundary to be so much stronger that it completely overwhelms the coupling
across an insulating boundary.

We also note two other curious effects in the CI and IC configurations: For
DCI and QCI, there are small regions of super-rotating fluid, fluid rotating faster
than Ωi. This super-rotation, which at this aspect ratio amounts to ∼40% in
both cases, has previously been obtained numerically by [41] and analytically by
[45], and is largely independent of M2 (although the region in which it occurs
becomes thinner and thinner as M2 increases). Similarly, for AIC, there is a very
small region of counter-rotating fluid, fluid rotating in the opposite direction
from Ωi. This ∼25% counter-rotation has not previously been obtained, but it
too is largely independent of M2. Both of these phenomena obviously require
explanation. However, because we will encounter far more dramatic examples of
both in the CC configuration, we defer discussion until after presenting those
results.

Turning to CC then, we note that one reason why one might be interested in
considering it is that it is not so obvious where the adjustment to the imposed ro-
tation will now occur. That is, we was previously that switching either boundary
from I to C will completely suppress the Hartmann layer at that boundary, so
presumably CC shouldn’t have any boundary layers at all, and yet somewhere
in the fluid the adjustment from a rotation rate of Ωi at ri to 0 at ro must
take place. The results in the bottom row of Fig. 1 show that there are indeed
no Hartmann layers now; the adjustment occurs throughout the whole of the
interior instead.

Far more dramatically, though, what was previously a relatively weak counter-
or super-rotation is now a powerful jet far exceeding Ωi. Furthermore, the
strength of these jets is no longer independent of M2, but instead increases
with increasing Hartmann number, roughly as M0.6 for all three. These jets,
reported here for the first time, clearly do require explanation now. In order to
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understand the origin of both, we need to consider not the angular velocity, but
the meridional electric current instead. Figure 2 shows this, just for the II and
CC configurations now.

Fig. 2. Streamlines of the meridional electric current, for the three field configurations
A, D and Q (from left to right), and the boundary configurations II (top row) and CC
(bottom row). The sense of circulation is counter-clockwise for A and D, clockwise for
Q, with the recirculation through the outer boundary not shown in the bottom row.
Finally, A and D are antisymmetric about the equator, Q is symmetric.

Focussing attention on A first, we note that the overall pattern is strikingly
similar for both II and CC, consisting of a broad downward flow inside C and a
narrow upward flow just outside C. The most obvious difference of course is that
for II the current must recirculate through the Hartmann layers, whereas for CC
it may recirculate through the interior and exterior regions. This difference turns
out to be crucial in terms of its effect on the amplitude of the current; having it
recirculate through the boundaries is so much easier than having it recirculate
through the boundary layers that the CC current is 24 times greater than the II
current. Indeed, the scalings with M are completely different; if both boundaries
are conducting, the current is independent of M , whereas if either boundary is
insulating, it becomes increasingly difficult to recirculate the current through an
increasingly thin — scaling as M−1 — Hartmann layer, with the result that it
then also scales as M−1. And this difference in current amplitudes is precisely
what explains the counter-rotating jet for CC but not for II; we note that in both
cases the current right at the equator of the inner sphere is radially outward, so
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in both cases the Lorentz force j×B0 is in the −êφ direction, but only in one
case is it sufficiently strong to overwhelm the effect of the rotation in the +êφ
direction.

Turning to D and Q next, the overall current patterns are again similar for
II and CC, but the amplitudes are completely different, with CC independent of
M but II scaling as M−1. By working out which way j and B0 are oriented, one
can show that the Lorentz force at the appropriate places is in the +êφ direction
now, but once again it is only for CC that it is sufficiently strong to induce
such a powerful super-rotating jet. Finally, the reason we already had a slight
super-rotation for CI is that the much smaller and thinner inner Hartmann layer
poses a far greater limitation to the recirculation of current than the larger and
thicker outer layer does, so switching it alone already increases the current by
close to an order of magnitude. However, because the existence of the outer layer
still limits the scaling of the current to M−1, this slight super-rotation does not
increase with M .

We thus realize that switching the boundary conditions from insulating to
conducting has very substantial — and initially completely unexpected — effects,
but that once we explore all aspects of the solutions, we can make sense of the
results. Nevertheless, there are still a great many questions to be answered, such
as, why do these jets scale as M0.6? The detailed scalings in the regions where
they are tangential to the boundary clearly enter into this, but how precisely?
And is this M0.6 scaling a general result, or does it depend on these specific
choices of B0? Indeed, what is it about these choices of B0 that yielded counter-
rotation for one but super-rotation for the other two? Is it possible, for example,
to impose a B0 that will simultaneously yield counter-rotation in some regions
and super-rotation in others? So although we understand the results presented
here, there is still a great deal of work to be done on these shear layers and jets.

All of the results presented so far were in the limit of infinitesimally weak ro-
tation, so we might consider next what happens as we gradually increase Re. (In-
cidentally, we note that one can go to quite large Re before the above assumption
of smallRm breaks down, because the ratio of the two,Rm/Re = ν/η = O(10−6)
for most liquid metals.) At some point inertial effects must surely lead to insta-
bilities of some kind. The (non-axisymmetric) instabilities of the AII and ACC
configurations have been computed by Hollerbach & Skinner [46], who found
that the critical Reynolds number for onset scales as M0.66 for AII and as M0.16

for ACC. But again, there is a great deal more work to be done on the instabilities
of some of the other configurations.

Instead of considering only very large Hartmann numbers, we could also
consider more moderate values. In particular, the limit M2 = 0 corresponds to
non-magnetic spherical Couette flow, and given the huge range of interesting
phenomena found in that problem (see, for example, the contribution by Junk
& Egbers in this volume), it might be worthwhile to see what effect including a
moderate magnetic field would have. For example, Fig. 3 shows an initially non-
magnetic Taylor vortex pair being distorted by imposing a D or Q field. The
effects of the two fields are evidently quite different, with the (predominantly
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vertical) D field suppressing the vortices, but the (predominantly horizontal)
Q field enhancing them. And perhaps not surprisingly, applying CC boundary
conditions again has a greater influence than II. Of course, these are just sample
calculations, and no significance should be attached to these particular parameter
values, but the magnetohydrodynamic extension of classical spherical Couette
flow is clearly another promising area of research, both theoretically and ideally
also experimentally.

Fig. 3. Streamlines of the meridional circulation, showing the effect of various field
configurations on a Taylor vortex pair. From left to right, the initial non-magnetic
solution, then DII, QII, DCC, QCC. All at an aspect ratio (ro−ri)/ri = 1/3, Re = 1000,
and M2 = 250 for the four magnetic solutions

Finally, uniting the two thus far largely separate aspects of this review, one
might wonder whether spherical Couette flow could act as a dynamo. Well, re-
membering first that dynamo action requires Rm to exceed O(10), and remem-
bering also that Rm/Re = O(10−6), we realize that Re would have to exceed
O(107). While that might just be feasible experimentally, numerically it is not,
as such a flow would be fully turbulent. It certainly would be interesting to see
how the Lorentz force would ultimately equilibrate such a dynamo though. For
example, would the field also be largely small-scale, or would large-scale struc-
tures emerge, perhaps aligned with the rotation axis? And would the tension in
the field lines perhaps suppress some of the turbulence again? The one thing we
can be sure of is that something interesting would emerge!
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Abstract. I present a joint work with Guyard and Lauterbach [4] which shows the
existence and stability of a robust heteroclinic cycle near onset of convection in a
self-gravitating, slowly rotating spherical shell filled with a fluid. The consequence of
this is the existence of a regime characterized by long periods of time spent near an
axisymmetric steady-state followed by sudden bursts of “turbulent flow” which settles
down to another axisymmetric state with fluid flow moving in the opposite direction
to the previous one. The process repeats indefinitely but non-periodically.

1 Introduction

Can thermal convection in a rotating spherical shell sustain flows whose dynam-
ics is characterised by long periods of time of quasi-stationary and axisymmetric
pattern aligned with the axis of rotation, followed by sudden bursts of “tur-
bulence” which relax after a while to a quasi-stationary, axisymmetric pattern,
however with reversed direction of flow? A positive answer to this question may
have some implications in geo- and astrophysics. It has been recently shown by
Chossat and Guyard[3] that it is indeed the case, at least when the rate
of rotation of the system is low, that is, when the buoyancy forces dominate
the inertial ones. This behaviour is associated with the existence of a dynami-
cally invariant object for the model equations which is specific to systems with
symmetry and which is called a “robust heteroclinic cycle”. The occurrence of
such objects and their experimental interpretation are now well-known in hy-
drodynamics. The first and most famous example was found by (Busse and
Clever[2], in the problem of the intermittent exchange of roll patterns in ro-
tating planar convection (the so-called Küpper-Lortz instability). The simple -
but illuminating - mathematical analysis of Guckenheimer and Holmes[7])
for this problem, led to a new and quite successful activity in bifurcation theory
and its applications for systems with symmetry. We shall explain below what is
meant by “robust heteroclinic cycles”.

The symmetries which are responsible for such a behaviour in fluid flows can
be quite simple (like O(2), the symmetry group of the circle). In our case of
interest, however, the situation is more intricate. We are interested by the onset
of convection in a spherical, self-gravitating fluid layer. As a first approximation,
the domain is set at rest and perfectly spherical. Then, the standard model
(Navier–Stokes and heat equations coupled in the Boussinesq approximation)
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is invariant under any orthogonal transformation of the domain (invariance by
the action of the group O(3)). This implies a high degree of degeneracy which
makes the analysis more involved, but also which gives a much richer bifurcation
diagram and dynamics. When the domain is allowed to rotate around an axis,
the Coriolis force which enters in the momentum equation breaks part of that
symmetry. The strategy will then be to look first for the existence (bifurcation)
and stability of robust heteroclinic cycles in the non-rotating case, then to study
their perturbation as slow rotation is set in. The methods are those of equivariant
bifurcation theory (see Chossat and Lauterbach[5]). Numerical simulations
on the center manifold confirm this dynamics.

2 Heteroclinic cycles in systems with O(3) symmetry
and the spherical Bénard problem

In a paper which appeared in 1986, Friedrich and Haken[6] reported on
a thorough numerical investigation of the dynamics on an approximate center
manifold for the onset of convection in a fixed spherical, self-gravitating shell of
fluid. They considered the classical model in Boussinesq approximation, which
assumes that the density of the fluid is an affine function of the temperature
difference across the domain in the term of buoyancy force, but is constant ev-
erywhere else. Their model was set to the case when the radius ratio η of the
inner boundary sphere by the outer one is close to a critical value ηc at which
the linear center manifold is the sum of the irreducible representations of dimen-
sions 3 and 5 of the group SO(3). We shall denote these spaces by V1 and V2
respectively. These can be viewed as the linear spans of the spherical harmonics
Y1k(ϑ, ϕ), −1 ≤ k ≤ 1, and Y2m(ϑ, ϕ), −2 ≤ m ≤ 2 respectively. The exact
value of ηc depends on the physical parameters in the model, especially on the
boundary conditions (which are assumed to be homogeneous in order to have
a spherically symmetric basic state of pure conduction). Typically, η ∼ 0.15.
Friedrich and Haken used a set of equations truncated at order 3 in the ”ampli-
tudes” to approximate the dynamics on the center manifold. The dependence of
these equations with respect to the various parameters in the problem can be
found in their paper. The typical bifurcation parameter is the Rayleigh number
which characterises the strength of buoyancy forces. The other important param-
eters in the mathematical analysis are η and the Taylor number, proportional to
the square of the angular speed Ω of rotation of the domain. In Friedrich and
Haken’s paper, Ω is set equal to 0. The other characteristic quantities (like e.g.
the Prandtl number) are supposed fixed.
In their simulations they found, for a ”wide” range of parameter values, an
intermittent-like dynamics between two different kinds of steady axisymmetric
states which they named α-cells and β-cells and which correspond to solutions
of the amplitude equations with a vanishing component on the space V1.
In Chossat and Armbruster[1], I proposed in 1990 an explanation for this
behaviour, which I will expose below. However it turns out that this was not suf-
ficient to fully explain the phenomenon observed by Friedrich and Haken. The
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complete explanation will be given in the next section.
The following facts are well-known.

(i) The reduction to the center manifold can be set up so that the resulting ODE
in V = V1 ⊕ V2 is invariant under the action of the symmetry group (namely
O(3) in our case). Therefore we are dealing with an equation

ż = F (z, µ) (1)

where z = (x, y) ∈ V1 × V2 and µ is a multi-parameter. We allow to freely vary
the Rayleigh number (proportional to the temperature difference across the shell
and responsible for the convective instability) and the radius ratio η which we
assume close to ηc. Moreover, if we denote by

T (g)z = (T 1(g)x, T 2(g)y), g ∈ O(3)

the representation of O(3) in V , then F (T (g)z, µ) = T (g)F (z, µ) for all g ∈ O(3),
(z, µ) ∈ V ×R2. F is said O(3)-equivariant.

(ii) Given a z ∈ V , the subgroup Gz of O(3) which consists of all the elements
in O(3) which let z fixed, is called the isotropy group of z. Given an isotropy
group H, we can define the subspace Fix(H) of V which consists of all points in
V which are fixed by H (this is a linear space because the action of the group is
linear). Notice that certain elements of Fix(H) may have isotropy group larger
than H. If H and H ′ are isotropy groups such that H ⊂ H ′, then Fix(H) ⊃
Fix(H ′). Now the basic property of symmetric ODE’s is that if z0 is an initial
condition in some Fix(H), then the corresponding trajectory z(t) lies in Fix(H)
for all t. This is because F is O(3)-equivariant. Clearly, if H ′ = gHg−1 for some
g ∈ O(3), then Fix(H ′) = gF ix(H), and if z(t) is a solution in Fix(H), then
z′(t) = gz(t) is another solution lying in Fix(H ′). We say that z and z′ belong
to the same group orbit. Physically these solutions are identical.

Up to group conjugation, Fig. 1 shows the containment relations between
isotropy groups and corresponding fixed-point subspaces for the action of O(3)
in V . The coordinates in the spaces V1 and V2 are defined as follows. We note
x = (x−1, x0, x1) ∈ V1, where xj is the coordinate along the spherical harmonic
Y1,j . Note that x−1 = x̄1. In particular the ”axisymmetric component” x0 is real.
Similarly, we note y = (y−2, . . . , y2) ∈ V2, where yk is the coordinate along the
spherical harmonic Y2,k. Note that y−k = (−1)kȳk. Also, y0 is ”axisymmetric”
and real.

We denote by L the axis {y0}, by P1 the plane {y0, y2 + y−2}, by P2 the plane
{x0, y0} and by S the 3-space P1 + P2. All these subspaces are flow-invariant.
Another important fact about these subspaces is that P1 contains overall three
copies of L: L itself plus L′ and L′′, where L′ is obtained from L by a rotation
by 2π/3 in P1, and L′′ is obtained from L by a rotation of angle 4π/3. These
rotations in the space P1 correspond to physical rotations of the spherical shell
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O(3)

D∞h
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✏✏✏✏✏✏
C∞ν D2h

C2ν

CS

✏✏✏✏✏✏

������

{Id}

{y0}

{y0, y2 + y−2}{x0, y0}

{x0, y0, y2 + y−2}

{x0, x1 − x−1, y0, y1 − y−1, y2 + y−2}

Fig. 1. Containment relations of the isotropy subgroups for the action of O(3) in V
(Schönflies notation for the subgroups of O(3))

by ±π/2 along the vertical axis and by π/2 along an axis in the equatorial plane
(the first coordinate axis). On the other hand, there is only one copy of L in P2
and only one copy of P1 and P2 in S.
The following bifurcation and dynamical features were proved to exist for an
open set of parameter values. The proofs rely on the knowledge of the equivariant
structure of the map F (z, µ) and the fact that coefficients of the linear, quadratic
and cubic terms (in the Taylor expansion in z) satisfy certain relations thanks to
the special form of the nonlinearity in the Bénard problem (see Chossat and
Guyard[3]).

(i) Two equilibria bifurcate in L, one with negative y0 is called α and the other
with positive y0 is called β. These two states are axisymmetric and consist
of two identical ”cells” separated by the equatorial plane (Fig. 2).
They are stable along the axis L, but they do not belong to the same group
orbit: they are not mapped one onto the other by an orthogonal transfor-
mation. Corresponding to these equilibria in L, there are two other pairs of
equilibria in P1, lying respectively in L′ and in L′′. We note them α′, β′ and
α′′, β′′ respectively. Hence α′ and α′′ belong to the group orbit of α while
β′ and β′′ belong to the group orbit of β.

(ii) The α, α′ and α′′ equilibria are stable in P1, while the β, β′ and β′′ equilibria
are unstable in P1. Moreover there exist heteroclinic connections from the
β’s to the α’s as shown in Fig. 3.

(iii) α is unstable in P2 while β is stable. Moreover there exists heteroclinic
trajectories in P2 from α to β (see Fig. 3).
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α β-cells -cells

Fig. 2. The α and β-cells (schematic view in a meridian plane).

There are two crucial observations to be made here. Firstly, the heteroclinic
trajectories in P1 and P2 are robust against O(3)-equivariant perturbations, be-
cause these are saddle-sink connections in flow-invariant subspaces. Secondly,
these connections realize a cycle. Indeed, starting for example from α, we have
a succession of connections to β in P2, then to α′ and α′′ in P1. However α′

and α′′ belong to the group orbit of α, hence by symmetry they must connect
to β′ and to β′′ by robust heteroclinic trajectories which are the symmetric to
those trajectories in P2, but now lying in planes P ′

2 and P ′′
2 . Now, β′ and β′′

themselves are connected back to α in P1. The invariant set so realized is called
a heteroclinic cycle.

P

P

L

L L

2

1

’’’

α β

αβ’’
’

y0

Fig. 3. Dynamics in the space S (an example of trajectory connecting α to α′ in S is
shown in dashed line).



322 P. Chossat

The interesting property of a heteroclinic cycle is the following. Suppose this
invariant set is asymptotically stable. Starting in some neighbourhood of the
cycle, a forward trajectory will therefore get closer and closer to the equilibria
in the cycle as t grows, and therefore it will spend more and more time in the
vicinity of these equilibria. Ideally, this time will grow to infinity so that the
dynamics dies out. However in physical applications, small and unpredictable
fluctuations are always present, so that a state which is inside a very small
neighbourhood of an equilibrium will undergo some excursion (slightly) away
from this neighbourhood and involving components along the unstable manifold
of that equilibrium. These components will grow exponentially and after finite
time, the solution will therefore follow the corresponding heteroclinic connection
and jump to the next equilibrium. Asymptotic stability insures that the solu-
tion will not diverge outside some neighbourhood of the heteroclinic cycle. The
resulting dynamics will exhibit intermittency, with jumps from one equilibrium
to the next at times which typically follow a random statistical distribution (see
Stone and Holmes[9]).

Unfortunately the usual conditions of asymptotic stability for this kind of
heteroclinic cycles are not met in this case (see krupa and Melbourne[8]
or Chossat and Lauterbach[5] for an exposition of the stability analysis
of robust heteroclinic cycles). This is due to the fact that at the equilibrium
point β′′ for example, the direction transverse to the plane P1 in S is unstable.
Moreover a closer look at their report shows that in fact the trajectories they have
computed do not exactly follow our heteroclinic cycle. Therefore a more careful
analysis must be undergone in order to understand this behaviour. This task was
achieved by Chossat et al.[4]. They showed that all the unstable directions
at β (and at its symmetric images under O(3)) correspond to heteroclinic orbits
which connect β to the O(3)-orbit of α. For example a two dimensional manifold
of trajectories connects β′′ to α′ in S (see one such trajectory in Fig. 3). The
resulting set of connections realises a “generalised” heteroclinic cycle. It was
shown that this rather complicated object was asymptotically stable under the
conditions of Friedrich and Haken numerical set-up.

3 Perturbation induced by a slow rotation of the domain

The relevant effect of the rotation on the model is to induce a Coriolis force.
This force has the form k × v, where k = (0, 0, 1), and it is easy to check that
it commutes with rotations of axis k and reflection through the plane perpen-
dicular to k. Therefore the perturbation provokes a forced symmetry-breaking
O(3) → C∞h. We assume that the speed of rotation is close to 0, so that the
center manifold reduction is still valid. We also assume that the generalized het-
eroclinic cycle exists (the bifurcation parameters are fixed), and moreover that
the stability condition derived in the previous section is satisfied.

The first question to ask is what happens to the flow-invariant subspaces?
The answer is that some of them persist, like the plane P2 and the space W , S
disappears completely, and P1 disappears too, but it is important to notice that



Intermittency of convection 323

y0

y
2
r

Fig. 4. Projection on P1 of a trajectory near the heteroclinic cycle for the perturbed
system

P1 is a slice, under the action of C∞h, of the space S̃ = {(y0, y2, ȳ2). Hence S̃
is now a fixed-point subspace for the isotropy group C2h = D2h ∩ C∞h and is
therefore flow-invariant.
Clearly α and β are fixed under C∞h and therefore, by hyperbolicity argument
in S̃, these equilibria persist after perturbation. On the other hand, the C∞h-
orbits of α′ and β′ are circles inside S̃, and it can be shown that the flow on
these circles is non trivial (rotating waves with a slow drift frequency when the
perturbation is not zero). Hence part of the equilibria that we had before the
perturbation have disappeared and are replaced by periodic orbits, which we
denote by RWα and RWβ .
It remains to see which heteroclinic connections persist. The connection α→ β
in P2 persists because this plane persists. The connection β → α′ (or α′′) in P1
is replaced by a robust connection β → RWα in S. It can be shown that the
connection α′ → β′ (and similarly with ′′ replacing ′) is generically not replaced
by robust connections RWα → RWβ . However, in the persisting invariant space
W , the unstable manifold of RWα is included into the stable manifold of the
equilibrium α (see Chossat et al.[4] for a more precise statement and for a
proof). This insures the existence of a heteroclinic cycle which now follows the
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following path:
α→ β → RWα → α.

An additional argument allows us to insure that this object is asymptotically
stable if the generalized heteroclinic cycle was so before perturbation. Figure 4
shows a trajectory following this heteroclinic cycle in projection on the plane P1.
The rotating wave RWα is visualized by the thick vertical segment (it is seen
from the side).

References

1. D. Armbruster, P. Chossat. Heteroclinic orbits in a spherically invariant system,
Physica D 50 (1991) 155-176.

2. F. H. Busse and R.M. Clever. Nonstationary convection in a rotating system, in Re-
cent Development in Theoretical and Experimental Fluid Mechanics, Eds U. Müller
and K. G. Roesner and B. Schmidt, Springer Verlag, Berlin (1979), 376-385.

3. P. Chossat, F. Guyard. Heteroclinic cycles in bifurcation problems with O(3) sym-
metry, J. of Nonlin. Sci., 6, 201-238 (1996).

4. P. Chossat, F. Guyard and R. Lauterbach. Generalized Heteroclinic Cycles in
Spherically Invariant Systems and their Perturbations, J. Nonlinear Sci. 9, p. 479-
524 (1999).

5. P. Chossat, R. Lauterbach. Methods in equivariant Bifurcation and Dynamical Sys-
tems, to appear in Advanced Series in Nonlinear Dynamics, World Scientific Pub-
lishing, Singapur (1999).

6. R. Friedrich, H. Haken. Static, wavelike and chaotic thermal convection in spherical
geometries, Phys. Rev. A 34 (1986), 2100-2120.

7. J. Guckenheimer and P. Holmes. Structurally stable heteroclinic cycles, Math. proc.
Cambridge Phil. Soc. 103 (1988), 189-192.

8. M. Krupa, I. Melbourne. Asymptotic stability of heteroclinic cycles in systems with
symmetry, Ergod. Th. Dyn. Sys. 15, 1 (1995), 121-147.

9. E. Stone, P. Holmes. Noise induced Intermittency in a Model of a Turbulent Bound-
ary Layer, Physica D 37 (1989), 20-32.



Control of secondary instability of the crossflow
and Görtler-like vortices (Success and problems)
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Abstract. The secondary instability on a group of crossflow vortices developing in a
swept wing boundary layer is described. It is shown that, for travelling waves, there
is a region of linear development, and the growth rate of disturbances appreciably
depends on the separation between the vortices. Methods of controlling the secondary
instability of the vortices by a controlled wave and local suction are proposed and
substantiated. The stability of a flat plate boundary layer modulated by Görtler-like
stationary vortices is described. Vortices were generated inside the boundary layer
by means of roughness elements arranged in a regular array along the spanwise (z)
direction. Transition is not caused directly by these structures, but by the growth of
small amplitude travelling waves riding on top of the steady vortices. This situation is
analogous to the transition process in Görtler and cross-flows. The waves were found
to amplify up to a stage where higher harmonics are generated, leading to turbulent
breakdown and disintegration of the spanwise boundary layer structure. For strong
modulations, the observed instability is quite powerful, and can be excited “naturally”
by small uncontrollable background disturbances. Controlled oscillations were then
introduced by means of a vibrating ribbon, allowing a detailed investigation of the wave
characteristics. The instability seems to be associated with the spanwise gradients of the
mean flow, ∂U/∂z, and at all z-positions, the maximum wave amplitude was found at a
wall-normal position where the mean velocity is equal to the phase velocity of the wave,
U(y) = c, i.e., at the local critical layer. Unstable waves were observed at frequency well
above those for which Tollmien-Schlichting (TS) waves amplify in the Blasius boundary
layer. Excitation at lower frequencies and milder basic flow modulation showed that
TS-type waves may also develop. Study of the transition control in that flow by means
of riblets shows that the effect of the riblets is to suppress longitudinal vortex structures
in a boundary layer. The boundary layer becomes stable with respect to high-frequency
travelling waves, which cause the transition in the absence of the riblets.

Part I. Active control over secondary instability
in a swept wing boundary layer

1. Introduction

Most methods of controlling the laminar-turbulent transition in near-wall flows,
which are well developed for two-dimensional flows, are passive, since, as they are
used, there is no feedback path for monitoring and varying the flow structure,
i.e., there is no possibility to change the degree of the action exerted on the
flow. The best known among these methods are boundary-layer suction, wall
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cooling or heating, and employing favourable pressure gradients. Thus, it was
shown in [1] that the slot suction is able to considerably decrease the amplitude
of a two-dimensional instability wave, the TS wave, and delay the transition
to turbulence. The influence of suction was found to be appreciable only at the
stage of linear growth of the waves; and if nonlinear interactions are observed and
three-dimensional structures form in the flow, the slot suction appears to be less
effective. Riblet-type devices are also often used [2–4], they are placed into the
boundary layer to suppress formation of or interaction between ordered three-
dimensional structures, for example, Λ-vortices [4]. An immediate action on the
TS waves arising in the flow is an alternative method for solving the problem
of interest. In this approach, the disturbances are to be cancelled or, at least,
suppressed due to superposition of linear waves. Various methods of generation
of controlling waves in a boundary layer can be used. For this purpose, it is
required to construct an actuating device which is able to effectively generate
another wave of the same amplitude but the opposite phase. For example, in [5–8]
the disturbances in a boundary layer are generated by a vibrating ribbon or wire,
a system of heating elements, sound, blowing-suction through perforated holes,
etc. The cancelling wave generated by either a second wave generator located
downstream or a vibrating surface is used to minimize the amplitude of the initial
TS wave. These experiments proved it possible to break two-dimensional TS
waves in a boundary layer by generation of a controlling wave of an appropriate
amplitude. However, in a number of cases, the stage of development of a two-
dimensional instability can be too short or even absent. Three-dimensional flows
over a swept wing, a rotating disk, or a concave surface serve as examples. In
these cases, the developing instability strongly depends on the local conditions
in the stationary vortices arising: the waves originating in neighbouring vortices
can differ in amplitudes [9]. The nonuniformity of the field of disturbances results
in that, normally, the laminar-turbulent transition occurs in each of the vortices
independently, which gives rise to a typical tooth-shaped transition line. For such
flows, the use of two-dimensional passive methods proved to be ineffective since
it results in different effects for different points in the flow. To exert the control
over instability in such three-dimensional flows, active methods can be also used.
The schematic diagram illustrating the active control over instability consists in
the following [10]. Receiving signals from sensitive elements placed in the flow,
an analyzing device processes them and determines the amplitudes, phases and
other parameters of the disturbances. Next, an actuating device either generates
in the flow three-dimensional disturbances of the same characteristics but of the
opposite phase, or implements local suction or other spatially local actions on the
flow. The sensitive elements and the actuating devices should be installed close
to each other to avoid as completely as possible any variation of flow properties
in the gap between them.

Elaboration of such control methods necessitates a special, e.g., microfabrica-
tion technology to be used [10,11], which permits fabrication of separate devices
or even integral aggregates of extremely small dimensions. Moreover, an inter-
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active distributed control is possible over an assembly which combines on one
surface sensitive elements, actuating devices and microprocessors.

The study [12] presented below continues previous studies [2,13,14] of the
properties of waves and mechanisms of origination of secondary instability of
crossflow stationary vortices in a swept wing boundary layer. Two methods are
proposed to actively control the transition to turbulence in this flow: mutual sup-
pression of waves and local suction. This study presents also the characteristics
of disturbances that arise in the system of crossflow vortices.

2. Experimental procedure and equipment

The experiments were carried out in a subsonic, low-turbulent closed-layout wind
tunnel. The wind tunnel had a 4 m-long test section with the cross-sectional area
1x1 m. The turbulence level of the flow in the test section of the tunnel did not
exceed 0.04% of the free-stream velocity (U0 = 8.5 m/s).

Fig. 1. Schematic of the experiment.1 - loud-
speaker for wave generation by blowing-
suction; 2 - phase rotation; 3 - orifice; 4 -
loudspeaker for wave generation by sound; 5
- audio-signal generator

As a test model (see Fig.1), a C-12 high-lift airfoil was chosen, which had the
slip angle of 30◦ and the wing chord length of 500 mm. The airfoil consisted of a
56 mm-long symmetrical ogival nose with the largest thickness amounting to 16%
of the chord. The nose gradually transformed into two equal converging plane
surfaces. Special tests [12,13] showed that, in the measurement region (X > 130
mm), the streamwise velocity gradient was absent, and the mean velocity profile
U(Y ) was close to the Blasius form. All measurements of the mean velocity as
well as of its fluctuations were carried out in the region of linear development of
travelling waves.

Stationary disturbances were generated by roughness elements fixed to the
surface. Their arrangement on the wing is shown in Fig.1, and their shape and
dimensions were the same as in [13]. In the majority of the measurements, the
distance between the roughness elements was 13 mm, which, as special tests
showed, was close to the characteristic scale of natural vortices arising over this
oblique airfoil under the conditions adopted.

To generate travelling waves within the range of instability of stationary
vortices with controlled amplitude and phases, the sound was used produced by
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a dynamic loudspeaker installed downstream of the model. The frequency and
amplitude of the sound were set by an audio-signal generator.

To introduce a suppressing signal, wave generation by blowing-suction through
a round orifice 0.8 mm in diameter was used, the orifice being located at a dis-
tance X = 170 mm along the crossflow coordinate, under one of the vortices.
Through a pneumatic pipeline, the orifice was connected to the loudspeaker,
which produced periodic pressure oscillations. The amplitude of these signals
was set by the same audio-signal generator, with the possibility provided to vary
the phase of the disturbances being introduced, by varying the length of the
pipeline within certain limits. The same orifice was used to organize local suc-
tion. The mean (U) and fluctuating (u′) streamwise velocities were measured by
a single-wire probe of the constant-temperature type connected with hot-wire
anemometer. To measure the V -component of the mean-velocity vector, an X-
shaped double-wire probe was used. In this case, the voltages across the wires
were determined by a pair of independent hot-wire anemometers.

3. Measurement results

3.1. Characteristics of waves developing on a group of vortices
As noted above, a stationary streamwise vortex formed behind each rough-

ness element, on which travelling waves developed. The distributions of the
streamwise-velocity defect as compared to the undisturbed boundary layer
∆U/U0 and those of oscillations at the frequency of the sound excited are shown
in Fig.2.

The solid curve shows conventional contours of the vortices, the distance be-
tween which amounted to 13 mm. The distribution of the streamwise-velocity

Fig. 2. Distributions of the streamwise-
velocity defect (a) and those of oscillations at
the frequency of excitation by sound (b) in
a system of vortices. The ovals schematically
outline the vortices.
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defect consists of pairs of an excess and deficit of the velocity, each pair char-
acterizing one stationary vortex. Their amplitudes ∆U = (Umax − Umin)/U0
fall in the range 0.30–0.35, the values of the defects for different vortices being
nearly the same. Nevertheless, the intensities of the oscillations in the neighbour-
ing vortices differ appreciably (Fig. 2, b). This difference can be explained by
different conditions brought about by stationary vortices, the difference being
in qualitative agreement with previously reported experimental results [9]. The
question of the linearity of the waves arising on a set of vortices was studied
under controlled wave excitation [12]. The curves of growth of the wave inten-
sity for the wave excitation amplitude at the end of measurements equal to 0.87
and 0.27% were measured. In both cases the curves of growth coincide, which is
indicative of the amplitude independence of the growth. No evidence for origi-
nation of the difference harmonics or occurrence of other nonlinear effects was
obtained. From the distribution of the fluctuating-velocity phases, it was shown
that, for the both amplitudes of the induced sound, the propagation velocity of
natural disturbances along the vortex remains unchanged (as in the case of an
isolated vortex), amounting to 0.6 of the free-stream velocity. The growth rate
of the disturbances was found to be sensitive to the change of the crossflow shift
of the mean velocity depending on the distance between the stationary vortices.
Results of measurements showed that, a s the vortices approach one another, the
amplitude of oscillations decreases throughout the whole spectrum of instability.
For example, when the distance between the stationary vortices (∆Z) changes
from 16 to 8 mm, the growth factor of the most unstable wave in the packet
decreases from 0.08 down to 0.03. It should be noted that, despite this change
in the amplitude, the packet of disturbances behaves as an integrity, and the
change in the growth amplitude is observed in the whole range of instability.

3.2. Interaction between the neighbouring vortices
To analyze the obtained dependence of the increments on ∆Z, double-wire

measurements were carried out. The X-shaped probe measured the U and V
velocity components in a system of vortices. The measurements were conducted
by the probe, which travelled parallel to the surface (at constant Y ) along the Z
axis with a 1-mm step for ten values of Y . The intermediate values were obtained
by interpolation of the data by cubic splines. Figure 3 shows distributions of the
defect of the mean streamwise velocity U (a) and those of the normal velocity V
(b) for ∆Z = 13 and 16 mm in the cross-section X = 245 mm. The velocity V is
seen to decrease as the vortices come close together. For instance, for ∆Z = 16
and 13 mm, its maximum equals 2.98 and 1.76%, respectively. This suppression
of the velocity V results in a decreased defect of the velocity U0, or, in other
words, as the vortices approach each other, they begin to interact. However, the
approach of t he vortices to each other only slightly influences the shape of the
distributions of the velocity defect.

A comparison between Figs.3,I,a and 3,II,b shows nearly identical distribu-
tions of the maxima and minima of the velocity U0, which characterize the vor-
tices, as well as the ascending and descending fluxes of the velocity V that give
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Fig. 3. Distributions of the defects of the U (a) and V (b) velocities in a set of stationary
vortices in the cross-section X = 245 mm for ∆Z = 13 mm (I) and 16 mm (II).

rise to the extrema at the preserved general shape of the isolines. For instance,
for ∆Z = 16 mm, the negative velocity defect (a maximum) amounts to 0.31,
whereas for ∆Z = 13 mm it equals 0.27 of the free-stream velocity. When the
vortices come as close tog ether as (∆Z = 8 mm, this quantity decreases down
to 0.23U0. Thus, the amplitude of the vortex decreases and, hence, the “intense”
velocity shear layers, which have a predominant influence on the evolution of
instability in the flow, diminish. The latter impedes the growth of secondary
disturbances at the preserved general pattern of the flow, which can appreciably
delay the transition. In view of the above, it can be concluded that a change in
the distance between the neighbouring vortices in a “natural” case can play an
important part in the development of secondary waves.

3.3. Propagation of travelling disturbances in a system of vortices
The possibility of passage of disturbances from one vortex to another and in-

teraction between the waves that develop on different vortices are important
aspects of the instability pattern. To study this matter, the generation of insta-
bility waves with the help of a periodic blowing-suction was used and compared
with the case of wave generation by sound. The measurements were carried out
in the cross-section X = 270 mm, 100 mm away from the orifice. The distri-
butions of the fluctuating velocity in the system of vortices at the frequency of
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wave excitation upon wave generation by an acoustic field and by a periodic
blowing-suction are shown in Fig.4. It is seen that an instability wave during
blowing-suction arises only on one (central) vortex, under which the orifice is
located. The distribution fluctuations for the two method of wave generation is
identical to the case of an isolated vortex [14].

Fig. 4. Distributions of disturbances in a
set of vortices at wave excitation by sound
(a) and by blowing-suction (b). The ovals
schematically outline the vortices.

4. Study of mutual cancellation of the waves

Based on the wave properties studied in the previous section, a method of ex-
erting local control over the instability on one of the vortices can be proposed:
with a proper choice of the phase and amplitude of a disturbance generated by
a periodic blowing-suction, one can control the development of waves excited by
an external factor, e.g., sound.

The measured spectra of the fluctuating velocity in the central part of one
of the vortices studied are illustrated the possibility of changing the amplitude
of disturbances for interfering waves of equal frequencies generated by different
sources. The spectra of disturbances for the waves generated at the frequency
f=320 Hz by sound and periodic blowing–suction through the orifice separately
and in combination for antiphasal and cophasal excitation showed that at the
antiphasal generation, the amplitude of the resulting signal is 0.14%, which is
lower than its initial value (0.2 and 0.23% for the cases of generation by sound
and by blowing-suction, respectively), i.e., the amplitude of the sound-induced
waves is seen to have decreased. And, on the contrary, in the case of cophasal
generation, the resulting amplitude increases noticeably to 0.45% (the ampli-
tudes of the waves generated by sound and by blowing-suction were 0.2 and
0.27%, respectively) [12].
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Fig. 5. Distribution of disturbances in a set
of vortices during a combined excitation of
waves with opposite phases: by sound and by
blowing-suction. The ovals schematically out-
line the vortices.

A more detailed interaction pattern for the waves generated by the two
sources for the case of antiphasal generation is depicted in Fig.5. The parameters
of the waves generated singly were identical to those in Fig.4. The amplitude of
the sound-induced waves, which was equal to 0.6% (see Fig.4,a), has decreased
throughout the entire region occupied by the vortex in accordance with the
0.3%-amplitude of the suppressing signal (see Fig.4,b) and was found to equal
0.3% (see Fig.5). It is worth noting that t he subtraction of the waves occurs
throughout the entire region occupied by the vortex, which is clear from in-
spection of the second side maximum. The amplitude of this maximum has also
decreased from 0.2% at blowing-suction down to 0.15% at the combined gener-
ation. At the same time, the amplitude of the disturbances on the neighbouring
vortices remained unchanged, since no disturbances on them were generated by
blowing-suction. With a more exact adjustment of the phases, one can gain a
more pronounced suppression of disturbances. Thus, in the three-dimensional
flow under study, it was shown possible to control the instability through mu-
tual cancellation of the disturbances by an additional generation of waves with
opposite phases. Provided that the source to be used can reproduce the whole
wave packet with preset amplitude-frequency characteristics, full suppression of
waves is possible, and the laminar-turbulent transition can be delayed.

5. Localized continuous suction

In all the experiments described below the measurements were carried out for
the suction run immediately behind one of the vortices. The dependence of the
amplitude of waves of secondary instability on the suction rate showed that the
suction to noticeably affect the amplitude of the oscillations in the vortex core,
and the more intense the suction, the stronger the action (see Fig.9 [12]). Even
for the weakest suction, when its rate was comparable with the suction used
in a two-dimensional flow [1], the difference in the wave amplitudes was quite
appreciable. This shows that even weak suction can be successfully implemented
in the case when several successive orifices are used.

Spectral measurements in the vortex core showed that suction affects the
entire spectrum of wave instability. For this reason, it is apparent that the action
of suction, as in the case of a Blasius boundary layer, is exerted indirectly,
through changes in the characteristics of the flow in stationary vortices. The
experimental results for the case with suction are shown in Fig.6.
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Fig. 6. Distribution of the mean-velocity de-
fect (a) and that of travelling disturbances (b)
in a system of vortices during suction. The
mean mass-low velocity ∆U/U0 in the orifice
is 1.2.

Comparing them with Fig.2, which shows the experimental results without
suction, one can see that the local action of suction results in a tenfold decrease
in the amplitude of oscillations on the middle vortex. At the same time, the
action on the neighbouring vortices proved to be insignificant, being comparable
with the overall measurement error or with the action exerted on the vortices
situated in the neighbourhood at a high intensity of suction.

As expected, the suction strongly affects the mean-velocity distribution in
the vortex situated just over the orifice, the effect on the vortex structure being
asymmetric. The largest effect is exerted on the value of the negative velocity
defect, which decreases by 0.15U0, whereas the positive defect decreases only by
0.02U0. This asymmetry can be explained, for example, by a more intense action
on the crossflow velocity component in the near-wall region than in the outside
zone. The resulting velocity shift caused by the vortex decreases from 0.61U0.
down to 0.49U0, i.e., by 25% of its initial value.

Thus, the vortex structure can be strongly influenced at the stage of linear
development of travelling waves. As in the two-dimensional case [1], this leads
to changing conditions of stability in the flow and, as a result, to a decreased
level of oscillations. This dependence of the growth rate of disturbances on the
velocity shift caused by a vortex was studied in [14]. It is clearly seen that the
most pronounced effect is observed for the central vortex, and it is practically
undetectable in the neighbouring vortices, being smaller than 0.02U0. As a re-
sult, as Fig. 6 shows, the influence on the disturbances in neighbouring vortices
appears to be insignificant even for such a high rate of suction.
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The above-described locality of the effect of suction necessitates studying the
effect of suction location on the reduction of disturbances. Such measurements
were conducted for the point of suction displaced by half the transversal period
of the sequence of vortices and thus falling in the gap between them. The results
of these measurements showed that although the mean velocity field remained
distorted, the amplitude of the travelling waves was found to be practically
unchanged (see Fig.11 [12]). It seems that the action exerted on the vortices
does not affect the part of the flow responsible for the origination of instability
[14]. In particular, the value of the velocity shift at the centre of the vortex
remained unchanged, despite a certain distortion of the flow observed at its
periphery.

Thus, for a group of vortices developing in a boundary layer, it is found that
the travelling waves, growing in amplitude, possess the same amplitude and
phase characteristics as the waves on an isolated vortex; in addition, there is a
region of linear development of the waves. It is also shown that the growth rate
is largely dependent on the distance between vortices, which can be explained by
interaction between them. Secondary-instability control methods for stationary
streamwise vortices are proposed and substantiated. It is shown that, with the
help of a controlled wave generated by a periodic blowing-suction through an
orifice, one can actively influence the evolution of natural waves at the stage of
their linear development or to prolong their growth, which is indicative of the
possibility to employ the MEMS technology; this influence is localized within
one of the vortices. The suction is shown to be able to suppress the secondary
instability through a localized action exerted on the flow structure. The effect
depends on the location of suction relative to the core of the vortex system; the
strongest influence is observed for the location of suction just in front of the
vortex.

Part II. Transition and control experiments
in a boundary layer with Görtler-like vortices

1. Introduction

Spanwise modulation of the boundary layer flow may result in a variety of flow
situations of practical interest. In flat plate boundary layers, localized three-
dimensional (3D) disturbances, such as surface roughness [15] or transient dis-
turbances, [16,17] give rise to longitudinal vortex structures which locally alter
the spanwise structure of the flow, and provide conditions for the instability
[15,17,18]. In the presence of free stream turbulence, the continuous impinge-
ment of transient disturbances onto the boundary layer generates longitudinal
structures, which locally modulate the boundary layer [19]. The transition to
turbulence in this flow is significantly promoted by the presence of TS waves
[20]. Other examples are the regular array of streamwise vortices generated by
body forces, such as Görtler vortices, rotation-induced vortices or crossflow vor-
tices. In these cases, transition is initiated by the appearance of finite-dependent
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waves, which travel along the steady vortices. Few details have so far been re-
ported about their characteristics, the mechanism by which they are generated
on critical conditions for onset of a time-dependent instability. The objective of
the present study is to cast some light over the characteristics of time-dependent
instabilities and their role in the transition to turbulence.

The flow past a single roughness element with a half-spherical shape has
been studied extensively in the literature. It is dominated by a large scale vortex
which wraps around the element and extends its legs downstream of it. Flow
visualizations [15], show that transition is caused by arc-shaped eddies, which
appear in the wake past the element. The onset of transition seems to depend
critically on the appearance of such eddies. By correlating frequencies observed
for different roughness sizes, shapes , and Reynolds numbers, authors [21] showed
that the vortex shedding frequency, scaled with the displacement thickness and
the local mean velocity at the roughness, was 0.3. For most flow cases, this
corresponds to a frequency well above unstable TS-waves frequencies.

Cross-flow vortices occur in accelerated flows over swept wings, and on rotat-
ing axisymmetric bodies, such as spheres, cones, and disks (see [22] for a review).
The primary vortices are inclined in the direction of the cross-flow component,
and they may co-rotate or counter-rotate, depending on the strength of the
centrifugal force [23,24]. Flow visualizations [25,26] have shown that transition
to turbulence is preceded by the appearance of secondary vortices, which seem
to spiral around the primary ones, as they propagate along them. In hot-wire
measurements, this is seen as a high-frequency oscillations. This instability is
believed to be caused by an inflectional instability in the core of the primary
vortex [27]. However, quantitative information on the wave characteristics is so
far scarce.

In boundary layers along curved walls, or boundary layers subjected to sys-
tem rotation, the centrifugal and/or Coriolis forces induce steady streamwise
vortices which develop a symmetric mushroom-like shape in the cross-stream
plane [28]. Transition is preceded by travelling high frequency instabilities which
appear locally at each vortex pair, without being visibly affected by neighbour-
ing vortices. Two types of instabilities have so far been pin-pointed. The so-
called varicose mode is seen in flow visualizations as small, horseshoe-like eddies
which form between two neighbouring vortices. Another type, called the sinu-
ous mode, manifests itself as an unsteady meandering of the basic vortices. The
latter is believed to be most important in the transition to turbulence. Both
types were observed in the experiments [9], and have reproduced numerically
by performing stability analysis based on simulations of the experiment [29,30].
The varicose mode coincides with the regions of large (∂U/∂y) at the mushroom
hat, whereas the sinuous mode instability is driven by the spanwise gradients
(∂U/∂z) near the mushroom stem. Both modes propagate at speed of about 0.65
U0. The dominant frequency is proportional to ∂U/∂z [30], and is in the range
F = 1062πν/U2

0 = 200− 800, well above typical TS wave frequencies. However,
waves at lower frequencies may also cause transition in the Görtler flow. In the
work [31] used a vibrating ribbon to excite waves at F=135. Initially, the y
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distribution of the wave was the similar at all spanwise positions and displayed
some TS-type features, but further downstream, the amplitude increased most
rapidly near the outflow regions (stems), and the y maximum in the wave am-
plitude shifted further out into the boundary layer. Similar observations have
been made in flat plate boundary layers in works [32–34]. In these studies, trav-
elling waves were excited with a vibrating ribbon at frequencies we re TS-waves
would be unstable in the Blasius boundary layer (F between 85 and 170), and
waves with TS-type mode shapes were found to propagate at 0.35–0.4U0. How-
ever, these waves did not amplify. When they increased the intensity of the basic
flow modulation, they observed the rapid amplification at the middle position
between the high- and low-velocity regions, i.e., at the maximum in |∂U/∂z|
Subsequent nonlinear phenomena in the transition to turbulence [33] lead to a
further concentration of travelling vorticity layers near the spanwise gradients
in U .

Thus, the laminar-turbulent transition in boundary layers is in many in-
stances caused by the breakdown of longitudinal streak or vortex structures, such
as Görtler vortices, crossflow vortices, or vortices caused by roughness elements
or free-stream disturbances. An important factor that promotes this mechanism
is the strength of the spanwise of the mean velocity in the boundary layer, i.e.,
the normal vorticity. A recent experimental study presented above shows that
such flows are unstable with respect to high-frequency travelling waves, which
can cause rapid transition.

As for the effect of riblets, many studies [35–37] performed in turbulent
boundary layers show that riblets can give drag reduction. One reason for this
may be that the riblets prevent the lateral motion of so-called coherent struc-
tures in the near wall region of the boundary layer. A similar effect may also
be found in the transitional boundary layer. A recent works shows that riblets
can delay the development of so-called Λ structures in the transitional regime
[3] and to stabilize f low in the wake behind the roughness element [4].

The aim of the present work, is investigations of the transition in a boundary
layer with Görtler-like vortices and its riblets control.

2. Transition experiments in a boundary layer
with Görtler-like vortices

2.1. Experimental setup and flow parameters
The experiments were performed in a closed circuit low-turbulence wind tunnel,
which is identical to that used in PART I . The free stream turbulence level in
the test section is 0.03–0.04%, measured in the band 0.5-500 Hz at velocities
near 10 m/s.

The general outline of the experimental setup is shown in Fig.7. A rectangular
100x150 cm2 flat plate made of 10 mm thick Plexiglas was mounted. Fourteen
10 mm long roughness elements, with a rectangular cross section of 1.8x2.0 mm,
were pasted on the flat plate surface periodically in the spanwise direction at a
distance of 285 mm from the leading edge. The spanwise spacing of the elements
was 10 mm (see Fig.1). Controlled oscillations were introduced into the flow by
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Fig. 7. Experimental set-up: (1) flat plate; (2) roughness elements; (3) riblet plate -
150x150 mm; (4) hot-wire probe; (5) loud speaker; (6) vibrating ribbon position.

means of a vibrating ribbon (0.05 mm thick and 3 mm wide), mounted 0.15
mm from the wall at 350 mm downstream of the leading edge. The streamwise
velocity component was measured with a hot-wire anemometer and a single hot
wire probe. Measurements were undertaken between x=395 and 750 mm, along
wall normal (y) and spanwise (z) directions, at free stream velocities between 5
and 10 m/s.

For reference, critical values of Rek for transition caused by single rough-
ness elements range between 300 and 1000, depending on roughness shape and
wind tunnel conditions [21]. By decreasing U0, δ in increased and the effective
roughness height becomes smaller, giving a milder spanwise modulation of the
boundary layer flow. An increase in U0 has the opposite effect.

If, as suggested above, the instability is associated with ∂U/∂z, another rel-
evant parameter is the spanwise spacing of the elements [30]. In the present
setup, the distance between the elements was kept fix at λ = 10 mm, giving a
nondimensional wave number β (defined as 2πδ/λ) of 0.45 at the position of the
roughness elements. This value approximately matches typical spanwise wave-
lengths in Görtler flows [9,38], and is also in the same order as the spanwise scale
of boundary layer fluctuations in the presence of free stream turbulence [19].

3. The effect of roughness–induced vortices

In the absence of the roughness elements, a Blasius-type boundary layer with
stability characteristics in close agreement with 2-D linear theory developed over
the plate. With the elements installed, the boundary layer was seen to become
unstable with respect to “natural” background disturbances at free stream ve-
locities above 8 m/s. Upon increasing U0, the oscillations rapidly amplified and
caused breakdown of the flow to a turbulence state. Transition could be observed
within the downstream range of measurements at free stream velocities above 9
m/s. These observations will be described in more detail in the following subsec-
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tions. The undisturbed flow was studied at the free stream velocity 8.2 m/s in
detail in work [39]. The maximum growth of TS waves within the studied region
occurs at F between 100 and 150, however the amplification rates are rather
small , with maximum N factors of about 1. Note that for frequencies above
F=130, the ribbon lies downstream of the unstable region.

The roughness elements give rise to a spanwise modulation of U with the
same period as the spacing between the elements. Whereas single roughness
elements usually gives a significant wake past the element [15,21], the roughness
array in the present case gives wakes which are limited to a small region in the
immediate vicinity of the elements. Within the region x=350–700 mm, both the
spanwise and the normal U distributions were fairly self-similar.

Fig.8(a) shows the spanwise distribution of U , measured at η=2.5, at R=525,
with a free stream velocity U0=8.2 m/s. The spanwise position of the elements
is also shown for reference. The velocity is highest at positions downstream of
the elements (in the following termed zmax positions) and lowest at z positions
between the elements (zmin positions). Similar U distributions as in Fig.8(a)
have been observed far downstream of a single roughness element, when the wake
immediately past the element has relaxed [21]. This situation may be thought
of as caused by a downrush of velocity at the edges of the elements and an
upwelling in the regions between them.

A conceptual picture of the vortices induced by the elements is shown in
Fig.2(b), suggesting that each element sets up a pair of counter-rotating longi-

Fig. 8. Boundary layer at the presence of the roughness elements: (a) Spanwise velocity
distribution at η = 2.5, R = 525 (x = 505 mm, U0 = 8.2 m/s); (b) Conceptual view of
roughness-induced vortices; (c) Velocity profiles at R = 525, different z positions; (d)
Velocity difference (∆U) between zmin and zmax positions at R = 470, 525 and 575.
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tudinal vortices. The profiles of U(η) are shown in Fig.2(c). The profile at zmax
is more full than the undisturbed boundary layer profile, whereas the wall shear
is lower at zmin positions, and the profile has a clearly visible inflection point
in the middle part of the boundary layer. The profile is less distorted at zmiddle
positions , although it also has a minor inflection point in the middle part of
the boundary layer. The difference (∆U) between profiles measured at zmin and
zmax, is shown in Fig.2(d) for three different x positions. The shape of ∆U(η) is
seen to be roughly self-similar at all x positions its maximum amounts to about
0.35 U0 at η = 2.2. This distribution is strikingly similar to that observed for
the root mean square (RMS) of the streamwise velocity in boundary layers sub-
jected to free stream turbulence [19]. The similarity is maybe not surprising, if
one considers that the fluctuation velocity in the latter case produced by passage
of similar longitudinal structures, generated randomly in time and space. A RMS
value of 10% would in that case correspond to a maximum velocity difference of
∆U = 0.28, which is of a similar magnitude as that in Fig.2(a).

3.1. Instability and breakdown to turbulence
The downstream development of “natural” background disturbances is demon-
strated in the spectra (see Fig. 5. in [39]). They were obtained at zmiddle, and
at y position corresponding approximately to η = 2.5. At 8.2 m/s, a broad wave
packet with frequencies between 100 and 200 Hz can be seen. As the wave packet
amplifies downstream, it shifts towards slightly lower frequencies. The develop-
ment of high frequency waves is even stronger when U0 is increased. At 10 m/s,
waves in a band between 1 50 and 300 Hz are seen to amplify. Also in this case,
a downstream shift towards lower frequencies can be observed. The spectra con-
tain some distinct spectral peaks (e.g., at f=125, 135, 165 Hz for 8 m/s, and
f=165, 260 Hz for 10 m/s) which do not appear in the absence of the roughness
elements. The frequency which gives a value of 0.3 for the parameter fδ∗/Uk is
160 Hz at 8.2 m/s and 215 Hz at 10 m/s, which coincides quite well with the
central frequencies of the wave packets observed in Fig.5. In the absence of the
elements, the boundary layer is stable with respect to these frequencies. It can
be noticed that most of the observed unstable frequencies are in a range well
above those at which TS waves are unstable in the Blasius boundary layer. If
the waves can initially be thought of as small perturbations superimposed on
the modulated boundary layer, their strong amplification leads to a stage where
nonlinear interactions generate higher harmonics. This is followed by an increase
of energy in all spectral components, and finally breakdown to turbulence and
disintegration of the basic spanwise structure. In Fig.5, the amplification of the
second harmonic (400–450 Hz) is clearly seen. The wave amplitude is largest at
zmiddle, however, higher harmonics are seen at all three z positions. Downstream
of x=500 mm, the spectrum becomes broader, and at x=735 mm, it reflects a
fully turbulent signal.

This process could also be provoked by forcing oscillations with the vibrat-
ing ribbon at a lower velocity. For U0=8.2 m/s, where the forcing amplitude
was intentionally raised so as to produce the nonlinear phenomenon. The non-
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linear development also affects the basic flow. A gradual increase of the ribbon
amplitude gave a gradual increase of U at zmin and zmiddle.

4. Controlled excitation of the instability

In this section we will give some quantitative characteristics of the time-depen-
dent instability, when the waves are excited in a controlled way. The waves were
generated with the vibrating ribbon technique. The filtered RMS amplitude is
denoted u′

f , and the phase is denoted by ϕ. Different forcing frequencies and
free stream velocities were investigated. In all cases, the forcing amplitude was
chosen small enough to keep the maximum amplitude of u′

f well below 1% at all
studied x stations.

4.1. Development of small amplitude travelling waves
Fig.3 shows the spanwise distributions of U , and u′

f , measured in the middle
of the boundary layer. The free stream velocity was 8.2 m/s and the forcing
frequency 165 Hz, giving F=230, close to the central frequency of the natural
wave packet. Near the roughness elements (Fig.9), u′

f is largest at zmin, and its
spanwise periodicity is the same as that of U . There are distinct phase shifts near
each zero crossing of u′

f (see [39]). Further downstream, this distribution under-
goes a change, so that the maxima in u′

f coincide with the gradients |∂U/∂z|.
The phase becomes less regular [39]. Another interesting observation to be made
from Fig.3 is that the waves grow faster at z-positions where |∂U/∂z| is en-
hanced by minor irregularities in the size and/or arrangement of the roughness
elements, e.g., between z=0 and 10 mm, where the variation in U is somewhat
larger than at the neighbouring elements, the wave amplification is also larger.

Amplitude profiles across the boundary layer are shown in Fig.10, for differ-
ent z-positions. The amplitude of the wave is relatively small at zmax, and no
downstream amplification is observed there. At zmin, the amplitude starts to
grow past R=500, and it increases rapidly at zmiddle. The maximum is located
at different y, depending on the z position – it is at η ≈ 1.5, 2 and 3 at zmin,
zmiddle, and zmax, respectively. An interesting observation which can be made
by comparing Fig.10 with Fig.8(d), is that at all three z positions the y maxima
in u′

f occur where U/U0 = 0.6.

Fig. 9. Spanwise velocity distribution
at different downstream positions: (a)
x = 400 mm (R = 470); (b) x = 505
mm (R = 525); (c) x = 640 mm
(R = 590); solid lines represent U/U0,
dotted lines represent u′

f/U0 (%).

Near the boundary layer edge, there is a phase shift by about π at zmin
and zmiddle (see [39]). The phase then smoothly shifts back inside the boundary
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Fig. 10. Amplitude profiles for oscillation forced at F = 230, U0 = 8.2 m/s, x = 400
mm (R = 470), x = 505 mm (R = 525), x = 610 mm (R = 575).

layer. Amplitude and phase distributions at a lower frequency (F=95) and the
same free stream velocity (U0 =8.2 m/s) are presented in [39] (see Fig.10). This
frequency is in the range where TS waves would b e unstable in the absence
of the roughness elements, but below that of the naturally amplifying wave
packet. At all three z positions, there is a near-wall part, which is possibly a
contribution from a 2-D TS wave, and a part which has its maximum near the
middle of the boundary layer. Far downstream, the latter clearly dominates. The
amplitude grows at zmiddle and zmax, whereas it decreases at zmin. This might
be interpreted as a competition between a TS-type mode and a “center” mode ,
a view which is supported by the fact that the near-wall peak is represented at
all z positions.

A few measurements were also carried out at a lower velocity (U0 =5.4 m/s),
with the aim of bringing out some features of TS-type waves excited in the
modulated boundary layer. In this case, the roughness Reynolds number is only
half as large as for 8.2 m/s, and the maximum difference between zmin and zmax
positions amounts to 15% of U0. The mode shapes were obtained at forcing
frequency of 47 Hz (F=150). At zmax, the mode shape (both amplitude and
phase) is quite similar to that of a 2-D TS wave, but at zmin, the profile also has
maximum further out in the boundary layer, and the phase shift occurs closer to
the boundary layer edge. The mode shape at zmiddle is similar to that at zmin.
As in Fig.10 [39] the amplitude increases at zmax, and decreases at zmin. We
may note that these observations are in agreement with previous observations
[32,34].

4.2. Amplification and phase characteristics
The 3-D structure of the excited waves makes it necessary to define a way of

measuring the wave amplification. Amplification curves for F=230 and U0=8.2
m/s (see [39]), obtained in the different ways showed that the measured wave
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amplitude was approximately proportional to forcing amplitude, and did not
exceed 0.6% of U0 at any of the x stations (from 400 to 610 mm). Similar curves
for other frequencies corresponding to F=125–270, and U0=8.2 m/s showed that
initially, at R < 525, there is no amplitude increase (at low F , it actually de-
creases), however, all frequencies give a strong amplification past R=525. In the
absence of the roughness elements, these frequencies are either damped or much
less amplified (cf. Fig.3 in [39]). The corresponding phase evolution demonstrated
that initially, the phase velocity is between 0.4, and 0.5U0 but it increases down-
stream, and R < 525, it has a constant value near 0.6U0. This value coincides
with the value of U/U0 at the y position of maximum amplitude, showing that
the instability may be connected with the critical layer at each local z position.

In an attempt to capture the downstream development of TS-type waves, the
near wall evolution was followed for waves excited at low frequencies. Amplitude
evolution for F=95, U0=8.2 m/s and F=150, U0=5.4 m/s, were obtained. The
amplitudes for F=95, U0=8.2 m/s are evaluated at the near wall maximum (η =
0.85) of y profiles at different x. The phase velocity at 5.4 m/s was 0.52U0 at all
z. In both cases the amplitude slowly decreases at zmin, but at zmax it increases
at l east as rapidly as a 2-D TS wave. This behaviour is quite remarkable, since
from the point of view of 2-D linear stability, the U(y) profiles at zmax are more
stable than those at zmin. Evidently, such a quasi-2-D approach is not applicable.
The fact that different growth rates are obtained at different z positions can
not be explained by linear stability arguments, but may rather point towards a
three-wave interaction as described in [40].

Discussion

In summary, when the boundary layer flow is modified periodically along the
span, its stability characteristics are altered, and new instabilities appear, which
are not present in the 2-D boundary layer. The detailed measurements reported
above give some indications on the nature of instability waves excited both
naturally and in a controlled way. In some cases, there seems to be a competition
between simultaneously excited instabilities, of which the strongest one way be
assumed to dominate far downstream. At least two different types of modes can
be distinguished in the present experiment; one which is similar to TS waves in
a 2-D boundary layer, and one which occurs at higher frequencies.

The first type develops at similar frequencies and amplification rates as TS-
waves in a 2-D boundary layer, and was here found to propagate with c=0.5.
The wave front has the same spanwise periodicity as the basic flow, and the
amplitude appears to grow faster at zmax than at zmin, which is in contrast
to what might be expected one the basis of quasi-2-D linear stability. These
observations are in agreement with those made by both in [32] and [34]. The
similarity to TS-waves in a 2-D boundary layer becomes clearly, the more mildly
the flow is modulated [32,34]. Far downstream, the TS-type mode was overtaken
by an instability with features which are clearly different from both 2-D and
3-D TS waves – it occurs at higher frequencies, the phase velocity is higher,
and it seems to be of a local, inviscid character associated with the spanwise
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gradients of U . The shift from one type of instability to the other is indicated
by a spanwise shift of the amplitude maximum towards zmiddle, a change in the
spanwise periodicity (see Fig.8a), and an increase in the phase velocity. Such a
shift can also be seen in other experiments, both on a flat plate [32] and in the
Görtler flow [31]. The experiments in [32], in which the vortex spacing was varied,
indicates that the high frequency instability is favoured by a narrow spacing. It
should be pointed out, however, that in their experiment the wave amplitude
was > 1%. In the present study, the amplitudes were kept well below 1%, and
the amplification of the high frequency instability did not depend on the forcing
amplitude, indicating that it can develop within the linear regime, i.e., not as a
product of nonlinear wave interactions.

The high-frequency instability observed here is similar to the meandering (or
sinuous) mode of the time-dependent instability in the Görtler flow [9,29] (e.g.,
the phase velocity is similar, and it is associated with the spanwise gradients of
U), and is also compatible with the conceptual view of the secondary instability
in cross flows given in [26]. Some studies [17,18] indicate that a high-frequency
instability can develop in flows modulated by a controlled transient disturbance.
Also in these cases, the instability is associated with ∂U/∂z, and propagates
faster than TS wave. In boundary layers subjected to free stream turbulence
[19,20], this has not been observed, however, TS waves seem to play an important
role in the transition process. The present experiments show that spanwise-
modulated boundary layers may be unstable with respect to TS-type waves, and
it is reasonable to believe that this occurs also in flows modulated by transient
disturbances. This matter certainly deserves further investigation.

The present study demonstrates a relatively simple method by which the
transition mechanisms in spanwise-modulated flows can be studied, and provides
data for a flow case which may serve as a model for a variety of similar flow
situations. The basic flow studied here has a smooth periodic distribution of
U along the span, which is invariant in the downstream direction. This flow is
subjected to a powerful instability in the form of high-frequency travelling waves,
which cause the transition to turbulence. Schematic diagram of a boundary layer
transition with embedded streamwise vortices investigated here is presented in
Fig.11.

Thus, the characteristics of the high-frequency instability are presented above
can be summarized as follows:

1. The wave amplifies rapidly at z positions between the high- and low- velocity
regions (zmiddle), i.e., where |∂U/∂z| is maximum.

2. The phase velocity of the wave is 0.6U0. At all z positions, the maximum of
u′
f with respect to y occurs where U(y) = c. This adjustment of the mode

shapes to the local critical layer may indicate that the underlying mechanism
is inviscid.

3. The observed range of unstable frequencies is between F=100 and 300. Nat-
urally developing frequencies are centered at fδ∗/Uk=0.3, in agreement with
the correlation studies in [21] for instabilities past a single roughness element.
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Fig. 11. Schematic diagram of a boundary layer transition with embedded streamwise
vortices.

4. The breakdown to turbulence is initiated by the appearance of higher har-
monics of the fundamental wave frequency, which gradually fill the spectrum.
The spanwise structure of the mean flow is dissolved in this process.

PART III. Influence of riblets on a boundary layer
with Görtler-like vortices

The experimental setup is identical to that used above or in [39], the only new
feature being a removal riblet surface, which was mounted, as shown in Fig.7.
Triangular riblets with a square section, as shown in Fig.7 were used. These
are identical to the ones used in [3,4]. Longitudinal vortices were generated by
periodically arranged roughness elements. Fourteen 10 mm long elements with
a rectangular cross section of 1.8x2.0 mm2 were distributed along the spanwise
direction, as shown in Fig.7. A dynamic loudspeaker placed after the plate was
used to generate controlled high-frequency travelling waves. The streamwise ve-
locity was measured with constant temperature anemometer using a single hot
wire probe. All results presented in here were obtained at free-stream velocity
of U=9 m/s, which is the lowest velocity could be observed within the stud-
ied region [39]. The roughness array gives a strong modulation of the boundary
layer mean velocity (U) in the z direction. With the present arrangement, U
is maximum at z position downstream of an element, and minimum between



Control of secondary instability 347

two elements. These two position are in the following termed zmax and zmin,
respectively.

Fig. 12. Mean velocity distri-
bution along the spanwise (z)
direction at x = 473 mm.

Fig.12 shows how the riblet surface affects the spanwise modulation. Here
we compare the cases with and without riblets at two different downstream
position, corresponding to the upstream end (x = 320 mm) and a position just
downstream (x=473 mm) of the riblet surface. The y position is approximately in
the middle of the boundary layer. The effect of the riblets cannot be distinguished
at x=320 mm, while it is quite clear at x = 473 mm; after introducing the riblet
surface, the amplitude of the spanwise modulation of U is reduced to half its
size. This effect can also be seen in Figs.9(a) and 9(b) [41], which show velocity
profiles in the y direction at x=473 mm, with and without riblets, respectively.
The y coordinate is normalized with the boundary layer thickness (δ), while δ
is the y position where U=0.99 (different δ’s are used for the cases with and
without riblets). y is taken to be zero at the level of the smooth surface. Each
figure shows the profiles at zmax and zmin. The difference in u between zmin and
zmax, ∆u, is plotted in Fig.9(c). Without the riblets, ∆u amounts to, at most,
35% at y/δ=0.2. With the riblets, the profiles are shifted away from the wall by
a distance of about 0.15δ, due to the blocking effect of the riblet surface near
the wall (see Fig.6 in [3]). In this case, the maximum difference between the min
and max positions is less than 20%.

The spectra presented in Fig.5 of [39] show that the fluctuations are domi-
nated by low frequencies, but there are also contributions in a band of higher
frequencies (at 9 m/s, the naturally excited frequency band is centered at about
200 Hz). The low- frequency band can be thought of as an irregular meandering
of the basic vortex structure, while the high frequencies are due to travelling
waves that grow in the downstream direction and eventually cause the break-
down to turbulence.

Figure 10 (see Fig.6 in [41]) shows the broadband fluctuations (uRMS along
the span at x=473 mm, with and without riblets, respectively). In both cases,
the uRMS is maximum at positions between zmin and zmax , i.e., where ∂U/∂z
has its maximum. In the case with riblets, the RMS level is at least two times
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lower in the case without riblets: the uRMS maximum is about 0.5% in the case
without riblets.

Fig. 13. The z distribution of
u′
f at x = 473 mm, f =

225Hz.

Travelling waves with an easily detectable amplitude were generated using
the loudspeaker, using a frequency of 225 Hz. This is approximately the fre-
quency where maximum amplification occurs in the case without riblets. After
calibration, the hot wire signal was digitally filtered in a narrow band near the
forcing frequency. The filtered signal is denoted uf . Fig.13 compares the spanwise
distribution of uf at x = 473 mm, with and without riblets. In both cases, the
amplitude maxima coincide with the maxima in ∂U/∂z , the waves are clearly
damped by the presence of the riblets. Without riblets, the amplitude is rather
irregular in the spanwise direction. It was observed in [39] that this is due to the
sensitivity of the amplification to small irregularities in ∂U/∂z.

Fig. 14. Downstream development of
u′
Σ and u′

f at z = 17 mm (cf.Fig.13.).

The downstream development of the waves was studied in great detail in
[39] and presented above. It was found that the wave amplitude has a smooth
y profile with a maximum slightly below the middle of the boundary layer. The
downstream development of u′ with and without riblets is shown in Fig.14.

The signals were collected at the z position, where u′
f is maximum (see

Fig.13), and were followed downstream at y constant y position. The figure
shows both the broadband RMS (u′

Σ) and the signal when it is filtered near the
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forcing frequency (u′
f ). In the case without riblets, the waves amplify by a factor

of 10 between x=390 and 500 mm, in the region downstream of 450 mm, the
growing difference between u′

Σ and u′
f indicates the growth of harmonics of the

forcing frequency, as observed above and in [39]. The decrease downstream of
500 mm is due to transition to turbulence. In the case with riblets, on the other
hand, the waves are slowly damped, and the flow remains laminar throughout
the studied region.

Thus, the present study shows that the effect of the riblets is to suppress
longitudinal vortex structures in a boundary layer. The boundary layer becomes
stable with respect to high-frequency traveling waves, which cause the transi-
tion in the absence of the riblets. This finding should also be relevant for other
boundary layers with embedded longitudinal vortices, in particular crossflow and
Görtler-like flow [39]. In these flows, it is known that transition to turbulence
is caused by high-frequency traveling waves, much as in the case studied here.
The present result opens the interesting perspective of being able to control the
transition in such flows by means of surface manipulation.

In summary, it is necessary to note, that results of the given researches
on transition in flows with Görtler and crossflow vortices have shown, that it is
connected to development secondary, high-frequency disturbances on the given
stationary vortices, modulated boundary layer flow in spanwise direction. The
secondary disturbances development depends on a spanwise velocity gradient
(∂U/∂z), i.e., from vortices intensity. The various methods of control by tran-
sition in such flows showed above, allow to delay the transition suppressing the
vortices intensity or decreasing of the secondary, high-frequency waves ampli-
tude. Possibilities of as of both the given control methods and new (for example,
use of active control methods with using of the MEMS technology) is obvious. It
is obvious as well necessity of more detailed study of the transition mechanism
for the given flows as from the point of view of its clearer understanding, and,
hence, opportunity to control them.

This study was supported by Russian Foundation for Basic Research under
Grants No.96-15-96310 and No.99-01-00591.
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Higher order dynamics of baroclinic waves

Bernd Sitte and Christoph Egbers

Center of Applied Space Technology and Microgravity
University of Bremen, Germany

Abstract. Instabilities in the form of baroclinic waves occur in a rotating cylindrical
annulus cooled from within. Flow visualisation studies and LDV-measurements of the
radial velocity component were carried out in an annulus with an aspect ratio of 4.4.
The flow undergoes transitions from the laminar stable state through baroclinic waves,
both stable and time-varying, to an irregular state. Based on the time series of the radial
velocity at fixed point in the rotating annulus, the attractors of the flow match previous
results based on temperature measurements. The bifurcation diagram of extrema in
the radial velocity shows the existence of low dimensional chaos at the transition from
the axisymmetric flow to periodic baroclinic waves. This bifurcation scenario at low
rotation rates is substantially different from the nonlinear behaviour of Taylor–Couette
flow.

1 Introduction

In the last decades, rotating cylindrical annulus experiments have been car-
ried out to obtain laboratory simulations of the large-scale circulation of the
atmosphere, with the cool polar regions at the center of rotation. In contrast
to Taylor–Couette flow, the flow in the cylindrical gap is driven by a temper-
ature difference between the inner and the outer cylinder. Both cylinders are
co-rotating at the same speed. The flow is caused by a baroclinic instability, the
planes of constant pressure are not parallel to the planes of constant density.
The resulting waves are called baroclinic waves, sometimes also thermal Rossby
waves.

As an example for atmospheric and oceanographic flows and since a lot of
basic research was done in the last 40 years, baroclinic waves are a topic in
standard literature of fluid mechanics, e.g. [28] [16].

In 1958, Hide [13] visualised baroclinic waves in a rotating cylindrical annulus
cooled from within. He confined a fluid in a rotating, cylindrical gap with a free
surface, cooled the inner wall and heated the outer one. With an aspect ratio
of Γ = 2.9, a stable axisymmetric basic flow is guaranteed. The axisymmetric
basic flow is characterized by an upward flow of the warm fluid at the outer wall
and a downward flow at the cooler inner wall. The resulting radial flow, mainly
close to surface and bottom, is deflected by the Coriolis force (see Fig. 1 a,b). At
higher rotation rates, this azimuthal flow becomes dominant. If the rotation rate
is increased, the azimuthal flow shows a wavy behaviour, the axial symmetry is
broken. Hide observed waves with different wave numbers m, traveling slowly
around the cylinder (see Fig. 1 c). Basically, with increasing rotation rates higher
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wave numbers are stable. At high rotation rates, the transition to turbulence
takes place.

In 1965, Bowden and Eden [2] were able to measure the temperature field
and the heat flux for the axisymmetric case in an experiment very similar to
Hides. They used ink to visualize the flow structures.

In the following years a lot of work was done to investigate the complex
behaviour of the waves in various geometries and under different boundary con-
ditions. Fowlis and Hide [10] investigated the effect of the Prandtl-number on the
stability of the waves. They also closed the free upper surface with a plate. This
did not change the basic flow types, but shifted the stability diagram and slowed
down the drift speed of the waves. Fein and Pfeffer [9] also varied the viscosity.
In 1970, Hide and Mason [14] were able to do experiments with internal heating.
With alternating currents, the fluid itself is heated. This is a better analogy to
heating processes in the atmosphere. Busse and Carrigan [3] tried conical upper
and lower end walls. Pfeffer et al. [22] measured the temperature gradients for
different flow types.

With the development of analyzing methods which are powerful enough to
describe bifurcation scenarios and chaotic properties of fluid flows, in the last
decade new investigations have been carried out and new insight into the complex
behaviour of baroclinic instabilities was gained.

In 1989, Morita and Uryu [19] were able to examine the transition from baro-
clinic waves to geostrophic turbulence in an experiment very similar to Hide’s.
They found the characteristic decay of the energy spectrum proportional to f−3,
where f is the frequency. Lorenzen et al. [17] made LDV measurements and de-
scribed the Hopf bifurcation from the basic flow to baroclinic waves. Read et al.
[25] used the method of time delayed coordinates to analyse their thermocouple
data. By taking long temperature time series with a temperature sensor in the

Fig. 1. Sketch of (a) lateral view and (b) top view of the axisymmetric basic flow, (c)
top view of a m = 4 wave pattern.
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middle of the cylindrical gap they were able to reconstruct the phase space of the
system and to analyse the nonlinear behaviour. Früh and Read [11] deepened
these investigations. Different flow types of baroclinic waves were found. At the
transition from the axisymmetric basic flow to stable baroclinic waves so called
’amplitude vacillation’ (AV) waves occur. The AV waves have an oscillating am-
plitude. Further on, ’modulated amplitude vacillation’ (MAV) waves have been
found, where the amplitude oscillation does not have a constant frequency. In
this terminology, the structural disturbance of the waves towards the transition
into turbulence is called ’structural vacillation’ (SV). Früh and Read [11] were
able to show that low dimensional chaotic states occur not only at the transition
to turbulence, but also slightly above the critical point in the MAV waves. The
transition to turbulence has been examined by Pfeffer et al. [23] for the case of
a wide gap. They used the data of earlier experiments by Buzyna et al. [5] to
calculate the Lyapunov exponents. In contrast to the experiments of Früh and
Read, they did not find chaotic behaviour in the wide gap case.

In the beginning, theoretical work was based on Eadys theory of baroclinic
instability, published in 1949 [7], before the first experiments were made. Eadys
linear stability analysis neglected viscosity, but is, transfered to the rotating
cylinder, valid for the transition from the axisymmetric flow to baroclinic waves
in the case Ta → ∞. Davies [6] made a linear stability analysis of the waves.
In an expanded Eady model, Hide and Mason were able to calculate the correct
shape of the two dimensional stability diagram [15].

Pedlosky was in 1970 the first to do an analysis with nonlinear aspects. He
enhanced his theory subsequently in the following years [21]. In his simulations,
he was able to show, that the amplitude of baroclinic waves can oscillate. He
also found parameter regions, where these oscillations are aperiodic. For a sim-
pler geometry, Mundt et al. [20] did a nonlinear stability analysis using a two
layer model with no-slip boundary conditions at the sidewalls. They were the
first to find aperiodic waves at parameters which might correspond to the MAV
waves described by Früh and Read. Herrmann and Busse [12] integrated the full
nonlinear equations for the case of conical endwalls, with periodic varying fluid
depth d. They also found pulsating waves in this case and, further on, standing
waves which have not been found in experiments with constant depth d.

Beside the special case of the rotating annulus, a lot of numerical work has
been done to understand the basic mechanisms of baroclinic instabilities, mostly
in direct application to atmospheric or oceanographic scales, see [24] for an
overview.

2 The rotating annulus experiment

The flow in the rotating annulus cooled from within can be characterized by the
following control parameters: The geometry can be described by the radius ratio
η = a/b and the aspect ratio Γ = d/(b − a), where a and b are the inner and
the outer radii of the cylindrical gap, d is the depth. Further parameters may be



358 B. Sitte and C. Egbers

defined, such as the Taylor number

Ta =
4Ω2 (b− a)5

ν2 d
(1)

and

Ro =
g d∆ρ

ρ̄ Ω2 (b− a)2
(2)

which is known as the thermal Rossby number. Ω is the angular velocity, ν
is the kinematic viscosity and ρ the density of the fluid. The Taylor number
describes the rotational influence while the thermal Rossby number characterises
the influence of the density gradient due to temperature differences and the
influence of rotation.

Fig. 2. Experimental setup

Figure 2 shows the experimental setup. The cylindrical tank has three concen-
tric chambers. The inner and outer chambers are filled with water and connected
with two thermostats. They control the wall temperatures of the cylindrical gap
between these two chambers. Both temperature baths are strongly mixed during
rotation, to avoid vertical temperature differences. The surfaces of all chambers
are free. The outer two walls are made of acrylic glass to enable visual inves-
tigations and LDV measurements from lateral directions. The temperature is
controlled by thermocouples at both walls of the gap. A co-rotating camera
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Table 1. Parameters of the experiment

a = 45 mm Inner radius of the cylindrical gap

b = 95 mm Outer radius of the cylindrical gap

d = 220 mm Depth of the fluid

η = a/b = 0.47 Radius ratio

Γ = d
b−a

= 4.4 Aspect ratio

Ta = 19.0◦C Temperature of the inner wall

Tb = 22.8◦C Temperature of the outer wall

ν = 1.004 mm2/s Kinetic viscosity (water, 21◦ Celsius)

ρ̄ = 0.998 kg/l Average density (water, 21◦ Celsius)

∆ρ = 0.000823 kg/l Maximum density difference

Pr = 8.0 Prandtl number

0.25 rad/s < Ω < 6.0 rad/s Variation of the angular velocity

Ro = g d∆ρ

ρ̄ Ω2 (b−a)2 > 0.004 Variation of the thermal Rossby number

106 < Ta = 4Ω2 (b−a)5

ν2 d
< 108 Variation of the Taylor number

is mounted on top of the experiment. The whole experiment is installed on a
turntable, the maximum rotation frequency is 1 Hz. As the time scales of baro-
clinic waves are of the order of 103 seconds, automation of the experiment is
necessary. Therefore all components and parameters of the setup, including ro-
tation rate, the LDV system, thermostats and VCR, are controlled by a main
computer. LDV time series measurements took about 7 to 9 hours for one pa-
rameter point.

The parameters of the experiment are given in table 1. Distilled water was
used as the fluid. The temperature difference between the inner and the outer
walls was kept constant for all measurements. This reduces the parameter space
to a line, with the rotation speed Ω left as the only free parameter.

3 Stability

The fluid motion on the free surface of the annulus is visualised by aluminium
flakes suspended in the working fluid. The reflecting flakes allow no LDV mea-
surements during the visual investigations.

Beside the axialsymmetric basic flow of wave number m = 0, waves of differ-
ent wave numbers m = 0 occur in the non-axisymmetric flow regime. However,
m is limited. Hide and Mason [14] determined the lowest and highest existing
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wave numbers mmin ≤ m ≤ mmax for different geometries of the annulus and
found the empirical law

mmin = 0.25
π(b+ a)
(b− a)

, mmax = 0.75
π(b+ a)
(b− a)

. (3)

For this geometry, mmin = 2 and mmax = 6. However, m = 6 did not occur if
Ω is increased or decreased quasi-stationarily. m = 6 waves only emerge in case
of rapid speed changes. Therefore the following investigations are only focused
on m = 2, 3, 4, 5.

Fig. 3. Different wave numbers m = 3, 4, 5 at identical Parameters f = 0.167 Hz,
Ta = 6.32 · 106, Ro = 0.585

The flow shows a very strong hysteresis. Figure 3 shows three different wave
numbers at identical parameters. Each of the flow patterns is stable, no spon-
taneous jumps between wave numbers occured within the investigated region of
the parameter space. The wave patterns are propagating around the cylindrical
gap, with a positive drift velocity c relative to the rotating system. The drift
velocities are two orders of magnitude smaller than the rotational velocity and
are very sensitive to small variations of the boundary conditions. Basically, c
decreases with increasing Taylor number. At low Taylor numbers, waves with
a higher wavenumber are slightly faster than waves of lower mode. At higher
Taylor numbers this relation is inverse [26].

Figure 4 shows the different flow regimes as a function of the Taylor number
Ta. At the critical point Ta = 1.76 · 106, Ro = 2.11, the axisymmetric basic
flow becomes unstable. This critical point is very close to the results of Hide and
Mason [14] and their measurements with water as a fluid. Since only one of two
possible parameters was varied, Figure 4 is not a complete stability diagram,
because the temperature difference was kept constant. It represents a straight
line in the two dimensional stability diagram of Hide and Mason, that crosses the
regions where we hoped to find interesting transitions between different regimes.

At Taylor numbers slightly above the critical point the amplitude of the
waves begins to oscillate. These are the AV and MAV waves described by Read
et al. and Früh & Read. Figure 5 shows an example of an amplitude oscillation.
While the wave slowly drifts with a velocity c = 0.013 rad/s faster than the
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Fig. 4. Stability diagramm for ∆T = 3, 5◦C, stable wave numbers at different Taylor
numbers Ta and videoprints of the surface flow.

rotating annulus, its amplitude oscillates with a period of t ≈ 1000 s. In case of a
MAV wave this period and the amplitude of the oscillation itself is not constant.
At medium Taylor numbers, the waves show no fluctuations. The amplitude
is constant, their structure is stable. With higher Taylor numbers, structural
vacillations occur. The onset of the structural vacillations at Taylor numbers
Ta > 2 · 107 mark the begin of the transition to turbulence. The vacillations
grow stronger with increasing Ta. Finally, at Taylor numbers Ta > 7 · 107, no
periodic structure can be identified.

Visual investigations alone are not sufficient to classify these flow regimes.
Therefore an extensive time series analysis of the different flows is presented in
the next section.
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Fig. 5. Amplitude vacillation (AV) wave, m = 3, Ta = 2.86 · 106, Ro = 1.29. The
videoprints were taken at different times t.

4 Nonlinear dynamics

4.1 Measurement technique

To analyse the flow described in section 3, Laser Doppler velocimetry (LDV)
was used to measure the flow velocities. The same LDV-techniques were used as
described in a previous work of our group [8]. To detect the dynamic behaviour
of the occuring waves in the rotating annulus using linear signal processing tech-
niques, the most common and very useful way is to analyse the time series of a
representative velocity component. In this case, the radial component is chosen.
The Fourier spectrum and the autocorrelation are constructed. The spectrum
gives a measure of the amount of power in a given frequency band over a selected
frequency range. The autocorrelation function for a periodic signal is itself peri-
odic and can often give a less confusing representation of the data. Irregularity
in the data gives rise to a decay in the autocorrelation function, and the rate of
decay gives a measure of the degree of irregularity.

However, in case of chaotic dynamic behaviour of the system, these linear
methods are not sufficient to describe the complex flows. Therefore, the attractor
of the system is reconstructed by the method of Takens [27]. In the reconstructed
phase space, the topological properties of the attractor can be calculated. The
methods used for this nonlinear time series analysis are described in more detail
in the work of Wulf [29] and Wulf et al. [30].
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Fig. 6. LDA-data time series and its power spectrum (left) and the and the calculated
time series in the co-rotating system and its spectrum (right), m = 3, Ta = 4.1 · 106,
Ro = 0.91, frot = 0.135 Hz.

The LDV measurement system is not co-rotating with the cylinder. There-
fore, the raw data is collected at a circle in the rotating annulus. It is not possible
to analyse the dynamic behaviour of the baroclinic waves directly from this series.
However, one can determine the dominant modes of the waves from its power
spectrum (see i.e. [1]), due to the fact, that the drift velocity c of the waves is
very small compared to the rotation velocity. The spectrum of the LDV-data
shown in figure 6 has the dominant peak at f = 3 · frot, the dominant wave
number is m = 3. To analyse the full dynamic motion of the wave, one needs
to investigate a time series at a fixed point in the rotating coordinate frame.
This information is embedded in the LDV-data. If the rotation rate is known
precisely, a series at a fixed point can be calculated from the raw data using only
the data points at the beginning of a new rotation cycle.

Figure 6 shows the unfiltered LDV-data, the calculated time series in the
co-rotating system and their Fourier spectra. One should note the different time
scales, the time scale of the time series in the co-rotating system is two orders
of magnitude larger than that of the raw LDV-data. This big difference in the
time scales is a stringent condition for this kind of transformation.

The method demonstrated above is limited in two ways. First, by the rotation
frequency, because ∆t = 1/frot is the minimum time step between two points
in the calculated time series. Therefore, frot/2 is the upper limit of frequency
detection. However, the time scales of the baroclinic waves are large compared
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to 1/frot in this case, so the detectable frequency domain is sufficient. Second,
the rotation frequency has to be known very precisely. A small error results
in a large distortion of the calculated time series. In the experimental setup,
a counter registers 1500 pulses per rotation cycle and allows to determine the
mean rotation frequency frot over a longer time period with nearly arbitrary
precision. But small variations of frot during the measurements broaden the
frequency peaks in the power spectrum. In this setup the variation is limited to
0.05%. To take care of this effect, artificial breaks are inserted into the LDV data,
marking each rotation period. These breaks can be seen in the LDV data time
series of figure 6 (top, left), they are used to calculate the time series in the co-
rotating system. Nevertheless, the effect of small errors in frot is not negligible.
The frequency peaks of the co-rotating time series in figure 6 are broadened
compared to the spectrum of the raw LDV-data.

For the LDV analysis of the time series, as many data points as possible
are needed for exact results. The LDV-data time series was taken for at least
7 hours. In the co-rotating system this time series has about 3000 up to 10000
data points, depending on the rotation rate. The radial velocity component is
measured 20 mm under the surface.

4.2 Flow characterization

The phase space was reconstructed using time delayed coordinates. The fill-
factor method and the integral local deformation method were used to estimate
the time delay and the embedding dimension [4], [30]. A low pass filter and a
singular value filter were applied to smoothen the data.

In phase space, the correlation integrals and the correlation dimension D2
were calculated for different embedding dimensions. In the following figures, the
dimensions are calculated for the embedding dimensions 1-10 as a function of
ε = R/Rmax, where R is the radius of a hypersphere in phase space and Rmax
is the extension of the attractor. In addition, the pointwise dimension Dp and
the largest Lyapunov exponent λ1 were determined.

Figure 7 shows the development of λ1 for different Taylor numbers at con-
stant temperature difference between inner and outer cylinder (Compare with
the stability diagram in figure 4). In the area of the modulated amplitude vacil-
lation, small, but significantly positive Lyapunov exponents occur. For the stable
baroclinic waves, represented by a limit cycle in phase space, the largest expo-
nent decreases to zero. With the onset of the structural vacillations, λ1 increases
to relatively high values, indicating the transition to turbulence.

The pointwise dimension Dp shows the same dependency (see figure 8). At
low Taylor numbers, just above the critical point in the regime of AV and MAV
waves, dimensions Dp > 2 occur. For the limit cycle of stable waves the pointwise
dimension Dp has values just above 1. At the onset of structural vacillation, the
values of Dp increase significantly. Values of Dp = 4 mark the upper limit of
the analysing method; higher dimensions cannot be determined, because of the
restricted number of points in the velocity time series.
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Fig. 7. Lyapunov exponent λ1 for different Taylor numbers Ta, ∆T = 3.5◦C.
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Fig. 8. Pointwise dimension D2 for different Taylor numbers Ta, ∆T = 3.5◦C.

Figure 9 shows a m = 3 AV wave, where the amplitude vacillation frequency
is coupled to the drift frequency. The drift frequency fc is the main peak in the
power spectrum, corresponding to a drift velocity of c = 0.13 rad/s, which is in
good agreement with visual measurements (see [26]). This peak is surrounded
by harmonics of 1/5 · fc. Fr/”uh and Read [11] observed this coupling between
the two frequencies in their experiments, too. However, since the coupling has
not been encountered in numerical simulations, they could not rule out the
possibility that their temperature sensors in the fluid or irregularities of the tank
itself might be the reason for this weak coupling. This LDV measurement shows
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Fig. 9. Wave with amplitude vacillation, the vacillation frequency is coupled to the
drift frequency.

at least that the temperature sensors are not responsible for the coupling. The
largest Lyapunov exponent is significantly greater than zero, indicating chaotic
fluctuations in the periodic flow.

Figure 10 shows a totally different behaviour than the flow in figure 9, though
the parameters are exactly the same. First, it is a m = 2 wave instead of m = 3.
Second, the vacillation frequency is decoupled from the drift frequency. There-
fore, the attractor is a torus and Dp ≈ 2. The largest Lyapunov exponent is
0. Both of these two flows are very sensitive to small changes of the boundary
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Fig. 10. Wave with amplitude vacillation, the vacillation frequency is decoupled from
the drift frequency.

conditions. Small disturbances (e.g. a small variation of the rotation frequency)
can cause a transition from one flow to the other. This is the main indicator,
that the coupling observed in figure 9 is a weak effect. We did not find a pulsing
state with coupled frequencies and λ1 = 0. This, too, might be a hint that the
coupling is just strong enough to overcome the steady disturbances within the
error tolerances of our system.

At slightly different parameters than in figures 9 and 10, figure 11 shows a
more complex flow. The autocorrelation function decays. The spectrum shows
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Fig. 11. Modulated amplitude vacillation wave.

broadened peaks, the Lyapunov exponent is greater than zero, indicating chaotic
flow. The correlation dimension has a plateau at Dc = 3, indicating low dimen-
sional chaos.

Figure 12 exhibits a stable m = 3 baroclinic wave, the attractor shows just
the dominant drift frequency and the upper harmonics. The Lyapunov exponent
is 0 within the error tolerance.

With higher Taylor numbers, the steady waves of figure 12 become unstable.
The m = 4 wave in figure 13 shows the onset of structural vacillations. These
vacillations have a small amplitude compared to the steady baroclinic wave and
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Fig. 12. Stable baroclinic wave.

are not large enough to be seen in the visual investigations. They can hardly
be seen in the Fourier spectrum nor in the autocorrelation function, because of
their very local nature. But the attractor shows the vacillations, their amplitude
is significantly higher than the noise level. They cause a divergence of the corre-
lation dimension for small ε = R/Rmax. The Lyapunov exponent is greater than
zero, showing the chaotic nature of the fluctuations.

Figure 14 shows strong vacillations. Still, the periodic nature is evident in
the Fourier spectrum. The fluctuations result in a higher ’noise’ level in the
spectrum, compared to a stable wave (see figure 12). The attractor is a highly



370 B. Sitte and C. Egbers

Fig. 13. Wave at the onset of structural vacillations.

disturbed limit cycle. The dimensions and the high Lyapunov exponent underline
the chaotic nature of the vacillations.

With increasing Taylor numbers, the structural vacillations result in turbu-
lent flow, shown in figure 15. No single significant peaks can be identified in the
spectrum, the Lyapunov exponent is high, the correlation dimension does not
converge.
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Fig. 14. Wave with structural vacillations.

4.3 Bifurcation scenario

The bifurcation diagrams were taken to investigate the interesting transition
from the axisymmetric basic flow (a fixed point in phase space) to stable baro-
clinic waves (a limit cycle). One might think of an ordinary Hopf bifurcation, but
the the different flow patterns at Taylor numbers just above the critical point
(see section 4.2) make this transition more complex.

From the filtered LDV data, the local minima and maxima values of the radial
velocity time series were determined. For each Taylor number, the histogram
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Fig. 15. The onset of turbulence

distributions of these extrema were fitted with Gauss curves. The medians of
the Gauss curves are plotted in the diagramms shown in figure 16. The time
series for a steady baroclinic wave has saddle points at v(t) = 0 (see figure
12). These saddle points are the reason for the line at v = 0 in the bifurcation
diagrams.

The first dotted line in figure 16 denotes the transition from the axisymmetric
basic flow to baroclinic waves with wave number m = 2. The critical Taylor
number is the same, both for the increasing and the decreasing case, it shows no
hysteresis. This is a supercritical Hopf bifurcation from a fixed point in phase
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Fig. 16. Bifurcation diagram of the extrema of the velocity time series, for increasing
(top) and decreasing Taylor number (bottom).

space (the axisymmetric basic flow) to a limit cycle (steady waves). However,
with increasing Taylor number, the amplitude of the wave begins to oscillate.

The dotted lines at the right denote the transition between the wave numbers
m = 2 and m = 3, determined by the dominant mode in the Fourier spectra
of the LDV data. The hysteresis between the diagram for increasing (figure 16,
top) and decreasing Taylor numbers (figure 16, bottom) is clearly visible in the
difference between the two lines. The amplitude of the flow has a significant
jump at this point, because the jetstream crosses the r-direction at a different
angle if the wave number jumps from m = 2 to m = 3.

At high Taylor numbers, two subcritical Hopf bifurcations occur, this is the
transition from AV waves to steady waves. The dynamical characteristics of
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the flow in between the supercritical bifurcation on the left and the subcritical
bifurcation on the right is not completely resolved by the diagrams. In this area,
periodic flow (see figure 10) occurs as well as low dimensional chaotic flow (see
figure 11).

4.4 Comparison to Taylor–Couette flow

Similar experiments on bifurcation scenarios in the classical Taylor–Couette sys-
tem (rotating inner cylinder, fixed end plates) with corresponding geometrical
data to the baroclinic wave tank were carried out for a radius ratio of η = 0.5
(wide gap) and Γ = 3.97 (short annulus). Flow visualization studies and investi-
gations on the different routes into chaos of the isothermal Taylor–Couette flow
with increasing Reynolds numbers for η = 0.5 were carried out in comparison
to η = 0.85 [18]. In contrast to small cylindrical gaps, the experiments on bifur-
cation scenarios in the wide gap Taylor–Couette system η = 0.5 show another
bifurcation scenario and another route into chaos as illustrated in the article
”Taylor–Couette system with asymmetric boundary conditions” by Meincke et
al. in this volume. In small gaps the flow becomes wavy, modulated wavy and
then chaotic with increasing Reynolds number. In wide cylindrical gaps with
small aspect ratios the Taylor vortex flow shows small scale disturbances and a
much smaller modulated wavy flow regime due to the strong influence of the end
plates and then it becomes chaotic.

The basic flow bifurcates via a Pitchfork bifurcation to Taylor vortex flow.
There is no complex transition process comparable to the bifurcation diagrams
in figure 16. In this point, the two systems are substantially different. This
is no surprise, because the underlying mechanisms, heat transfer on the one
hand and momentum transport on the other hand, are different. But, however,
both systems show a similar variety of flow regimes, e.g. the periodicity, quasi-
periodicity and stochastic regions.

5 Conclusions

Supplemental to the temperature measurements of Read et al. [25] and Früh
and Read [11], contact free LDV measurements on baroclinic instabilities have
been carried out. The LDV measurement method is good enough to apply non-
linear methods to the velocity time series. The results confirm the temperature
measurements of Früh and Read [11] and Read et al. [25], in particular, the cou-
pling between the amplitude vacillation frequency and the drift frequency was
observed, too. The locality of the onset of the structural vacillations is evident.

The transition from the axisymmetric basic flow to steady baroclinic waves
is documented by bifurcation diagrams of the extrema of the velocity time se-
ries. The diagrams prove the complexity of this transition. Supercritical and
subcritical Hopf bifurcations occur during the transition to steady waves. But
though the topological properties of some of the flow patterns are very similar
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to the flow types found in Taylor–Couette systems, the bifurcation scenario is
not comparable.
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Superfluid Couette flow

Carlo F. Barenghi
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Abstract. The stability of the Couette flow of superfluid helium is discussed using
a generalized form of Landau’s two-fluid model. It is showed that the tension of the
superfluid vortex lines has a great influence in determining the critical wavenumber and
the critical Reynolds number of the transition from azimuthal Couette flow to Taylor
vortex flow. The resulting Taylor vortex flow pattern is different from ordinary Taylor
vortex flow and tends to be very elongated in the axial direction. Since the vortex
tension is proportional to Planck’s constant, the observed difference is a manifestation
of quantum effects on the macroscopic scale. The aim of this article is to review the
current understanding of superfluid Couette flow and point to the issues which are still
unsolved, the directions of future development and the new link with current turbulence
research.

1 Liquid helium

Helium is a gas at room temperature and becomes liquid only if it is cooled
to temperatures of few Kelvin degrees (the boiling point is 4.2 K). At these
low temperatures any other substance is solid, while helium remains liquid even
if the temperature is further reduced to absolute zero. Liquid helium is thus
essential in engineering applications in which a liquid is required to make good
contact with another body to cool it. Some examples are: cooling samples in solid
state physics, cooling infrared detectors in astrophysics, cooling superconducting
magnets in hospitals and particle physics accelerators. Fluid dynamicists use liq-
uid helium to perform experiments which exploit some of its physical properties
which make it attractive in the study of ultra-high turbulence [1] [2]. For exam-
ple, the kinematic viscosity of liquid helium (ν ≈ 10−4 cm2/sec) is two orders of
magnitude smaller than water’s, so, for given speed U and size L, it is possible
to achieve a much higher Reynolds number Re = UL/ν. Similarly, the quan-
tity α/νκ in liquid helium is more then three orders of magnitude larger than
in water, so it is possible to study convection at very large Rayleigh numbers
Ra = gα∆TL3/νκ, where g is the acceleration due to gravity, α is the ther-
mal expansion coefficient, κ is the thermal diffusivity and ∆T is the imposed
temperature gradient.

2 Helium II and Landau’s two-fluid model

What makes liquid helium particularly interesting, however, are the phenom-
ena which take place in the temperature range 0 ≤ T ≤ Tλ where Tλ is the

C. Egbers and G. Pfister (Eds.): LNP 549, pp. 379–398, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



380 C. F. Barenghi

temperature of a phase transition called the lambda transition (Tλ = 2.17 K at
saturated vapour pressure). Below Tλ liquid helium stops being just an ordinary
(albeit cold) liquid and acquires the remarkable physical property of superfluidity
(motion without friction) and a new name, helium II. What causes the peculiar
behaviour of helium II is Bose–Einstein condensation, the macroscopic quantum
ordering which is also responsible for superconductivity. Liquid helium above Tλ
is called helium I. Hereafter we shall be concerned only with helium II.

The relation between fluid dynamics and helium II dates back to the times of
Landau and Tisza who developed the so called two -fluid model [3]. The model
describes helium II as the intimate mixture of two separate but compenetrating
fluid components, the normal fluid and the superfluid. Each fluid component has
its own density and velocity field, ρn and vn for the normal fluid and ρs and vs
for the superfluid. The total density of helium II is ρ = ρn + ρs. The superfluid
is related to the quantum ground state and has zero viscosity. The normal fluid
consists of thermally excited states (called phonons and rotons) and is viscous.
Essentially, the superfluid is like a classical, inviscid Euler fluid and the normal
fluid is like a classical, viscous Navier–Stokes fluid. The relative proportion of
normal fluid and superfluid depends on the temperature. At absolute zero he-
lium II is entirely superfluid (ρs/ρ = 1, ρn/ρ = 0). If the temperature is raised
the superfluid fraction decreases and the normal fluid fraction increases until, at
T = Tλ, ρs/ρ = 0 and ρn/ρ = 1 and helium II becomes helium I. It is important
to remark that the temperature dependence of ρn and ρs is nonlinear, and for
T < 1 K helium is almost entirely superfluid, see Figure 1.

Fig. 1. Relative proportion of superfluid and normal fluid as a function of temperature.



Superfluid Couette flow 381

Finally, Landau’s model assumes that the motion of the superfluid is poten-
tial, ωs = ∇ × vs = 0. This property follows from the fact that the superfluid
velocity is proportional to the gradient of the phase of the quantum mechanical
wave function.

Landau’s model predicts many observed nonclassical phenomena such as the
existence of first sound, second sound and thermal counterflow. It is useful to re-
view these phenomena briefly, since they are examples of the rich hydrodynamics
of helium II and are relevant to what follows. First sound corresponds to ordinary
sound in a classical liquid: it is a wave in which normal fluid and superfluid move
together in phase, entropy and temperature remain approximately constant and
density and pressure oscillate. Viceversa second sound is a wave in which the
normal fluid and the superfluid move in antiphase, density and pressure remain
approximately constant and temperature and entropy oscillate. Second sound
can be easily generated by applying an AC voltage to a resistor and can be de-
tected using a thermometer. Another popular way to generate second sound is
to vibrate a membrane which is covered by microscopic holes: the normal fluid,
clamped by its own viscosity, cannot move through the holes and is pushed back
and forth by the membrane; on the contrary the superfluid, which is inviscid,
moves through the holes. In this way a relative motion between normal fluid
and superfluid is set up. Second sound is important in superfluid Couette flow
because it is used to detect directly the superfluid vortex lines. Finally, thermal
counterflow is linked to the special heat transfer properties of helium II. In an
ordinary liquid, if care is taken to prevent convection, heat is transfered by con-
duction, so the heat flux W is proportional to the temperature gradient ∆T and
there is a well defined thermal conductivity. In helium II the heat is carried away
by the normal fluid only (W = ρSTvn where S is the entropy per unit mass)
and the condition of zero mass flux ρnvn + ρsvs = 0 makes the superfluid to
flow towards the source of heat, vs = −(ρn/ρs)vn. In this way a relative velocity
vn− vs = W/ρsST is set up between the two fluids which is proportional to the
applied heat flux W . An example of this ability to transfer heat is the following.
Consider a sample of helium I which is cooled by pumping the vapour above the
surface; when the lambda point is crossed and helium I becomes helium II the
violent boiling ceases because thermal gradients cannot be set up any longer.
The presence of vortex lines in turbulent flows however limits this perfect heat
conducting property [4], with implications for the engineering applications.

3 Vortex lines and the breakdown of Landau’s model

If the heat flux W in thermal counterflow exceeds a critical value then helium II’s
ability to conduct heat breaks down with the appearance of superfluid vor-
tex lines. Vortex lines also appear when helium II rotates at angular velocities
which exceed a critical value, or when it flows in a pipe faster than some criti-
cal speed [5]. A superfluid vortex line is characterized by the Onsager–Feynman
condition that the circulation around its axis is quantized:
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∫
C
vs · dl = Γ, (1)

where Γ = h/2πm = 9.97 × 10−4 cm2/sec is the quantum of circulation, h is
Planck’s constant, m is the mass of one helium atom and C is a path around the
core of the vortex line. Using cylindrical coordinates r, φ and z and assuming
that the vortex line is set on the z axis, it follows from equation (1) that the
superfluid velocity field around the vortex line is

vs =
Γ

2πr
êφ, (2)

where êφ is the unit vector in the azimuthal direction. The singularity at r → 0
is only apparent because the superfluid density decreases from its bulk value
to zero as r → 0, thus keeping the momentum finite. The characteristic length
scale over which ρs → 0 as r → 0 near the vortex core is called the vortex core
radius a0 ≈ 10−8 cm. Since the length of a vortex line can be few centimeters
(the height of a Couette apparatus for example), the aspect ratio of the vortex
line can be of nine orders of magnitude: no other vortex structure in Nature has
such a relatively thin core.

The existence of vortex lines was first established by studying the motion of
helium II in a vessel which rotates at constant angular velocity Ω. It was found
that the vortex lines form an uniform array aligned along the axis of rotation,
and that the number of vortex lines per unit area is

n =
2Ω
Γ

, (3)

a relation called Feynman’s rule. The vortex line density is typically high (n ≈
2000 vortices per square centimeter at the angular velocity of 1 radiant per sec-
ond). The superfluid velocity field which results from the presence of so many
vortex lines is microscopically complex. However, if one averages over the in-
dividual vortices, one finds a macroscopic superfluid velocity field which is the
same velocity v = Ωrêφ of classical solid body rotation. The creation of vortex
lines is therefore the superfluid’s way to mimic classical rotation. Note also that,
since the vortex core is hollow, the superfluid becomes multiply connected when
in rotation. In conclusion, although Landau’s condition that ∇ × vs = 0 holds
true at the microscopic level, at the macroscopic level the rotating superfluid
has the same average vorticity 2Ω of an ordinary rotating fluid; the superfluid
vorticity is discretized and consists of nΓ vortices per unit area, each vortex
carrying one quantum of circulation.

As mentioned in the previous section, second sound absorption is a sensitive
technique to measure the length L of superfluid vortex lines per unit volume.
The average superfluid vorticity is then defined as ωs = ΓL. The technique can
detect values of L as low as L ≈ 10 cm−2. Values as high as L ≈ 5× 105 cm−2

are observed in turbulent helium II.
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4 The generalized Landau equations

The breakdown of the original two-fluid model led to the development of a new
theory which generalizes the two-fluid equations to situations in which a large
number of superfluid vortex lines are present in the flow [6] [7] [8]. This theory
is essentially a continuum approximation in which a fluid particle is a small but
macroscopic region of volume ∆3 centered around a point r and threaded by a
high density of superfluid vortex lines which are almost parallel to each others.
The number of superfluid vortex lines pointing in a given direction defines that
component of the average superfluid vorticity field ωs at the point r. The theory
is limited to situations in which ∆lines << ∆ << ∆flow where ∆lines is the
average distance between the vortex lines, ∆ is the size of the fluid particle and
∆flow is the smallest scale of interest in the flow. Assuming incompressibility, the
theory consists of the following Hall–Vinen–Bekharevich– Khalatnikov (HVBK)
equations:

ρn(
∂vn
∂t

+ vn · ∇vn) = −ρn
ρ
∇p− ρsS∇T + µ∇2vn + Fmf , (4)

ρs(
∂vs
∂t

+ vs · ∇vs) = −ρs
ρ
∇p+ ρsS∇T + Ften − Fmf , (5)

∇ · vn = 0, (6)

∇ · vs = 0, (7)

where p is the pressure and µ is the viscosity. Hereafter we define the kinematic
viscosity as νn = µ/ρn, using the normal fluid density rather than the total
density.

Equations (4) and (5) differ from the original two-fluid equations of Landau
in two ways. The first difference is the interpretation of the fields vn, vs and
ωs = ∇ × vs as macroscopic rather than microscopic. The second difference is
the presence of two extra forces per unit volume, the mutual friction force Fmf ,
and the tension force Ften. Microscopically, the mutual friction force arises from
the fact that the superfluid vortex lines scatter the phonons and the rotons which
make up the normal fluid [9]; macroscopically, Fmf is essentially a drag which
acts simultaneously on the two fluids [10]. Its actual form is

Fmf =
ρsρnB

2ρ
ω̂s × (ωs × (vn − vs − νs∇× ω̂s))

+
ρsρnB

′

2ρ
ωs × (vn − vs − νs∇× ω̂s), (8)

where B and B′ are known temperature dependent coefficients. The tension force
is present if the vortex lines are bent and has the form

Ften = −νsρsωs × (∇× ω̂s), (9)
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where

ω̂s =
1
|ωs|ωs, (10)

is the unit vector in the direction of the superfluid vorticity and

νs =
Γ

4π
log (

∆lines
a0

), (11)

is the vortex tension parameter. Note that νs is proportional to the quantum of
circulation, hence to Planck’s constant.

Equations (4) and (5) have three interesting limits. If T → Tλ then ρs → 0
and the normal fluid equation (4) becomes the Navier–Stokes equation for a
classical viscous fluid:

∂vn
∂t

+ vn · ∇vn = −1
ρ
∇p+ νn∇2vn, (12)

If T → 0 then ρn → 0 and the superfluid equation (5) becomes the equation of
motion of a pure superfluid:

∂vs
∂t

+ vs · ∇vs = −∇ps − νsωs × (∇× ω̂s), (13)

where −∇ps = −1/ρ∇p + S∇T . Finally, if Planck’s constant h is set equal to
zero, then νs = 0 and the superflow equation (13) becomes Euler’s equation for
a classical inviscid fluid:

∂vs
∂t

+ vs · ∇vs = −∇ps, (14)

Since the vortex tension force plays an important role in the stability of
Couette flow, it is worth discussing its physical meaning [11] in more detail. A
superfluid vortex line is stiff because it has energy per unit length, that is to say
tension. Let us assume first that T = 0 K. If the vortex line is straight along
the z axis then the tension is the kinetic energy per unit length

E =
1
2
ρs

∫ 2π

0
dφ

∫ ∆lines

a0

drrv2s , (15)

where the cutoffs a0 and ∆lines prevent a singularity at r → 0 and a divergence
at r →∞. Using equation (2) it follows that

E =
ρsΓ

2

4π
log (

∆lines
a0

), (16)

A vortex line which is bent with radius of curvature r suffers a straightening
force per unit length F′

ten which has magnitude Ften = E/r. For example, for
a vortex ring of radius r, F′

ten = E(ω̂s · ∇)ω̂s where ω̂s is the unit vector along
the vortex ring, hence F′

ten has magnitude E/r in the negative radial direction
towards the centre of the ring.
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Suppose now that instead of a single superfluid vortex we have a tube con-
taining many vortices, and that the number of vortices per unit area of the
tube is ωs/Γ . Then the straightening force per unit volume of superfluid is
Ften = (ωs/Γ )F′

ten

Ften =
ωs
Γ

E(ω̂s · ∇ω̂s) = −νsρsωs × (∇× ω̂s), (17)

which agrees with (9).
If the temperature is not zero then the normal fluid must be taken into

account. Let us consider the conservation law for vortex lines

∂ωs
∂t

+∇× (ωs × vL) = 0, (18)

where vL is the velocity of a tube containing vortex lines of average vorticity
ωs. Since ωs = ∇× vs we have

∂vs
∂t

+ ωs × vL = ∇Φ, (19)

where Φ is some scalar function. The velocity vL of the tube is obtained by
neglecting the inertia of the vortex core and setting equal to zero all forces
acting on the superfluid tube: we get

Fdrag + Ften + FMag = 0, (20)

where the drag force on the superfluid is

Fdrag = −Fmf , (21)

the tension force Ften is given by equation (9), and the Magnus force arises from
the superfluid circulation about the tube:

FMag = ρsωs × (vL − vs), (22)

Since ω̂s × (ωs × c) = −ωs × (c× ω̂s) it follows that

ρsωs × (vL − vs − νs∇× ω̂s + B

2
ρn
ρ
c× ω̂s − B′

2
ρn
ρ
c) = 0, (23)

where we have defined

c = vn − vs − νs∇× ω̂s, (24)

Therefore the velocity of the tube is

vL = vs + νs∇× ω̂s − Bρn
2ρ

c× ω̂s + B′ρn
2ρ

c, (25)

From (25) we get
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ωs × vL = −∇(
v2s
2
) + vs · ∇vs − 1

ρs
Ften +

1
ρs
Fmf , (26)

hence equation (19) becomes

∂vs
∂t

+ vs · ∇vs = −∇(Φ+
v2s
2
) +

1
ρs
Ften − 1

ρs
Fmf , (27)

which is equation (5) after a suitable identification of Φ.
A very strict test which can be performed on proposed fluid equations is the

prediction of a hydrodynamical instability. The transition from azimuthal Cou-
ette flow to Taylor vortices is therefore an ideal test of the HVBK equations.
Some of the early experiments were performed in order to measure the viscosity
of helium II - the Couette apparatus is indeed a viscometer. These experiments
showed that the stability of helium II is very different from the stability of a clas-
sical fluid, but no clear picture emerged from the experiments [12]. This is partly
because the experiments were performed at a number of different temperatures,
and helium’s properties vary greatly with temperature. More important was the
lack of a theoretical framework to interpret the results, despite the pioneering
attempts of Chandrasekhar and Donnelly [13] and later of Snyder [14]. As de-
scribed in Section 6, contact between the HVBK equations and the experiments
was only achieved when Barenghi and Jones [15] discovered the temperature de-
pendence of the critical wavenumber and Swanson and Donnelly [16] confirmed
the predictions of Barenghi [17]. This progress opened the way to the study of
the nonlinear Couette flow of helium II.

5 The basic state

We consider liquid helium II contained between two concentric cylinders of height
h, inner radius R1 and outer radius R2. We call δ = R2 − R1 the width of the
gap between the cylinders and assume that the inner and outer cylinder rotate
at constant angular velocities Ω1 and Ω2 around the z axis. We call η = R1/R2
the radius ratio and h/δ the aspect ratio of the cylinders. Hereafter, unless
otherwise indicated, we make the infinite cylinder approximation that h >> δ.
Most experiments and calculations are done in the narrow gap limit (η → 1),
so this is the typical situation which we discuss unless otherwise stated. Finally,
for the sake of simplicity, in the following discussion we assume that the outer
cylinder is held fixed (Ω2 = 0). The case of rotations of the outer cylinder is
discussed separately in Sections 9 and 10.

Superfluid vortex lines represent vorticity in discrete amounts, so if helium II
does not rotate fast enough to create the first vortex line (or, more precisely,
to create by symmetry the first row of vortices in the middle of the gap), then
the flow of the superfluid is potential. The nucleation of the first quantized
vortex line is a major problem of condensed matter physics which is still not
well understood and requires a quantum description, but some progress has
been made using general arguments. Two theories exist. The first theory was
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developed by Fetter [18] and is based on thermodynamics and the minimization
of the free energy. Fetter’s theory was extended to the Couette problem by
Swanson and Donnelly [19] who determined that the critical velocity Ω∗

1 at
which the first row of vortices appears is

Ω∗
1 =

(1− η2)Γ
η2πδ2

log (
2δ
πa

), (28)

Using a very different approach (local conservation of momentum rather than
minimization of free energy) Jones et al [20] developed a second theory which
yields the critical velocity (1 + ρs/ρn)Ω∗

1 . The second theory is in quantitative
agreement with the observation of metastability (which is not explained by the
theory of Fetter) and differs from the Fetter–Swanson–Donnelly theory because
of the presence of the factor (1 + ρs/ρn) which gives better agreement with the
experiments at temperatures T > 2 K. The second theory however fails if the
temperature is reduced below T ≈ 1.85 K. Jones et al also investigated whether
the first row of vortices (once it has appeared) is also linearly stable. They
found that for T < 1.85 K the vortices are unstable, in disagreement with the
observations. The theoretical issues of the appearance of the first row of vortices
and of its stability in the presence of normal fluid azimuthal Couette flow is thus
still open.

If Ω1 is increased past Ω∗
1 more and more rows of superfluid vortices are

quickly created, until a uniform array of vortices aligned along the z direction
fills the gap, see Figure 2.

/noindent At this point both the normal fluid and the superfluid are in the
Couette state

vn = vs = (Ar +
B

r
)êφ, (29)

where the usual Couette parameters A and B are

A =
R2
2Ω2 −R2

1Ω1

R2
2 −R2

1
, (30)

B =
R2
1R

2
2(Ω1 −Ω2)
R2
2 −R2

1
, (31)

The existence of the Couette state for the normal fluid is verified experi-
mentally by measuring the torque induced on the stationary cylinder, which,
for consistency, must yield the correct viscosity of helium II as determined by
another method (eg using the vibrating wire technique).

The Couette state of the superfluid is checked by measuring the attenuation
of second sound (hence the vortex line density) across the gap and testing that it
is proportional to Ω1, hence to the axial vorticity 2A. It is also possible to make
the measurement of superfluid vorticity absolute by calibration against the case
of solid body rotation (Ω2 = Ω1) and using Feynman’s rule (3). Barenghi and
Jones [15] found a solution of (3) and (4) in which the normal fluid is in the
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Fig. 2. Schematic representation of superfluid vortex lines in the Couette state.

Couette state but the superfluid is not; this solution corresponds to potential
flow for vs but is not isothermal, unlike the Couette solution. Since no radial
temperature gradient has yet been detected, it is justified to assume the basic
state (29).

In using the HVBK equations to study Couette flow there are some assump-
tions which one should bear in mind. The HVBK equations are based on a
continuum approximation in which the intervortex spacing is small compared
with length scales of the apparatus (eg δ) and the flow. For some experiments
this approximation is satisfactory, but for some others there may be only two or
three rows of vortices across the gap when the instability takes place, which may
be too few for the continuum approximation to be valid. Another problem is the
uncertainty about the effects of the endwalls. In classical Couette flow the top
and bottom walls create a weak meridional Ekman circulation which is always
present even at very low angular velocities. The same effect must be present in
helium II. The effects of this circulation are neglected using the infinite cylinder
approximation.

Before applying the HVBK equations to Couette flow it is important to
review the boundary conditions. The normal fluid is viscous and obeys no-slip
boundary conditions at the walls: vnr = vnz = 0 at r = R1 and r = R2,
vnφ = Ω1R1 at r = R1, vnφ = Ω2R2 at r = R2. The superfluid’s boundary
conditions are more delicate. Evidently vs must satisfy vsr = 0 at r = R1 and
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r = R2. In the absence of vortices (the original Landau model) there are no
other boundary conditions and the superfluid is free to slip at the walls.

6 Rotations of the inner cylinder: absolute zero

Despite the fact that no experiment can achieve absolute zero, the study of the
stability of pure superfluid Couette flow (T = 0 K) is the key to understand the
role played by the quantized vortex lines. Barenghi and Jones [21] studied the
linear stability of the Couette state (29) with respect to axisymmetric (m = 0)
and nonaxisymmetric (m = 0) perturbations of the form exp(imφ + ikz) gov-
erned by equation (13) where m and k are respectively the azimuthal and axial
wavenumbers. The superfluid boundary conditions required in this calculation is
that there is no flow into the walls (vsr = 0 at r = R1 and R2). Figure 3 shows
the calculated stability boundary, where the Donnelly number D1 = Ω1R1δ/νs
is the dimensionless velocity of the inner cylinder and the wavenumber k is made
dimensionless using the gap δ. The figure shows that axisymmetric perturbations
are stable below a certain critical velocity, but nonaxisymmetric perturbations
are always unstable to long wavelength (k → 0) instabilities. Barenghi and Jones
discussed the results in terms of the combined effects of rotation and vortex ten-
sion: the vortex tension plays a key role as it makes bent vortex lines to rotate at
angular velocity νsk

2 in the direction opposite to the vorticity. The conclusion
of their work is that a pure superfluid follows Rayleigh’s criterion of a classical
inviscid fluid in the sense that any rotation of the inner cylinder is destabilizing.
This result clarifies the relation between equation (13) and equation (14).

Fig. 3. Stability boundaries for rotations of the inner cylinder: Donnelly number D1

versus square of the wavenumber k2 for m = 0, 1, 2, 30 at radius ratio η = 0.99.
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7 Rotations of the inner cylinder: finite temperatures

We now consider what happens at nonzero temperatures. It is known from the
experiments that if Ω1 is increased from Ω∗

1 and exceeds some critical value Ω1c
then a transition takes place. Typically, what is observed in the experiments is
a break in the linear relation between Ω1 and the torque induced on the outer
stationary cylinder, or a break in the relation between Ω1 and the attenuation
of second sound.

The transition from azimuthal Couette flow to Taylor vortex flow at nonzero
temperature was studied by Barenghi and Jones [15] and Barenghi [17]. They
found that the m = 0 mode is the first to become unstable. The main result of
their investigation is that, if the temperature is reduced below Tλ, the critical
wavenumber kc decreases from its classical value and tends to zero in the limit
T → 0, which is consistent with the result described in the previous section.
Figure 4 shows the stability boundaries of the m = 0 mode at various tempera-
tures (only the bottom part of each curve is showed for clarity). The velocity of
rotation of the inner cylinder is expressed as a Taylor number

Ta =
2Ω2

1δ
4

ν2n

η2

(1− η2)
, (32)

Fig. 4. Stability boundaries of the m = 0 mode for rotations of the inner cylinder at
η = 0.95: critical Taylor number Ta versus wavenumber k; (a): the classical Taylor–
Couette case; (b): T = 2.16 K; (c): T = 2.1 K; (d): T = 2.05 K; (e): T = 1.5 K

Note that the critical wavenumber (the value of k which corresponds to the
minimum of each curve of Figure 4) moves to the left at decreasing temperature.
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In the classical Taylor–Couette problem the critical wavenumber is kclass ≈ π/δ,
as showed by curve (a) of Figure 4. Therefore the axial extension of the classical
Taylor vortex cell is the same as the gap’s width. The smaller wavenumbers
in helium II mean that the Taylor cells are elongated in the axial direction.
Barenghi and Jones found that the effect is due to the vortex tension. Figure
5 shows the dramatic effect on the stability boundary caused by the reduction
of the vortex tension parameter νs to half of its value - see curve (b) - or to
zero - see curve (c). These arbitrary changes are equivalent to halving Planck’s
constant h or setting h = 0 respectively.

Fig. 5. Effects of artificially changing the vortex tension νs: Taylor number Ta versus
wavenumber k. (a): stability curve of the m = 0 mode at T = 2.1 K and η = 0.95; (b):
same curve as in (a) but νs is halved; (c): same curve as in (a) but νs is set equal to
zero.

The elongation of the Taylor cells in helium II is so strong that many early ex-
periments were dominated by ill defined and temperature dependent end effects,
so it is not surprising that results were not very consistent with each others. To
appreciate this issue it is important to remark that the flow of helium II cannot
be visualized easily (the Couette cylinders are hidden inside a low temperature
apparatus), so, by default, the early investigators incorrectly assumed that the
pattern of the Taylor vortex flow had the same wavelength of the pattern in a
classical fluid.

Once the issue of the wavenumber was understood, Swanson and Donnelly [19]
performed an experiment which confirmed the theoretical prediction of Barenghi
[17] of the critical angular velocity Ω1c at which the Taylor transition takes place.
Figure 6 compares the experimental and theoretical values of Ω1c as a function
of reduced temperature log10((Tλ − T )/Tλ)). The reduced temperature is used
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to make the figure more clear, since the properties of helium II change rapidly
with temperature and the effect is concentrated in the temperature region above
T = 2 K. The critical angular velocity of the figure is expressed in terms of the
Reynolds number Re1 = Ω1R1δ/νn. The agreement between the theory (which
makes the infinite cylinder approximation) and the data is good at high tem-
peratures but worsen at low temperatures, which is expected since fewer and
fewer Taylor cells are present in the apparatus and end effects become impor-
tant. The dashed line represents the critical Reynolds number Reclass = 268 in
a classical fluid at the same radius ratio. Note that the critical Reynolds number
in helium II, Re1c, tends to the classical limit Reclass as T → Tλ, as expected.

Fig. 6. Critical Reynolds number Re1c versus reduced temperature at η = 0.976.
Dashed line: critical Reynolds number Reclass = 268 of the classical Couette problem
at this radius ratio. Error bars: experimental data of Swanson and Donnelly. Solid dots:
theory of Barenghi

Figure 6 shows that, if the temperature is reduced (that is to say, if we
move from left to right), the Couette flow of helium II is more stable than
classical Couette flow. At lower temperature however helium II is less stable
than an ordinary fluid. The same temperature dependence was also observed by
Bielert and Stamm [22]. Figure 7 shows how the flow pattern changes with the
temperature: as T becomes smaller kc becomes smaller, hence the wavelength
becomes larger.

A physical explanation for the temperature dependence of the transition is
the following. We have seen in Section 6 that in the limit of a pure superflow
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Fig. 7. Contour plots of the vorticities ωnφ at T = Tλ (a) and of ωsφ at T = 2.16 K
(b), T = 2.14 K (c), T = 2.10 K (d) and T = 2.08 K (e).

(T → 0) Couette flow is unstable to long wavelength (k → 0) perturbations; the
stability boundary is a curve with vertex at the origin and the critical velocity
increases rapidly if k is increased (see Figure 3). Viceversa, in the limit of pure
normal flow (T → Tλ), Couette flow is unstable to perturbations of wavelength
comparable to the gap’s width. What happens between T = 0 and T = Tλ
depends on the relative amount of superfluid and normal fluid. Just below Tλ
the dynamics of helium II is dominated by the normal fluid, which is like a
classical viscous fluid. If Re1 ≈ Reclass then the normal fluid would like to
overturn on the length scale 2π/kclass ≈ 2δ, but the superfluid vortex lines are
very stiff on this short scale - their stability boundary increases rapidly with
k. A compromise is reached between the two effects and the instability sets in
at higher velocity than in the classical case, Re1c > Reclass, but at shorter
wavenumber, kc < kclass, hence helium II is more stable than a classical fluid.
If the temperature is reduced the superfluid becomes more important and the
balance is struck at smaller Re1c and smaller kc so the Taylor cells become more
elongated. The rapid drop of the critical Reynolds number for T < 2 K is due
to the rapidly decreasing normal fluid fraction (ρn/ρ ≈ 0.5 at T = 2 K).
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8 Rotations of the inner cylinder: nonlinear effects

Henderson, Barenghi and Jones [23] studied the nonlinear development of ax-
isymmetric Taylor vortex flow for Re1 > Re1c in the weakly nonlinear regime.
The major difficulty in their study was the identification of the extra boundary
conditions required to determine the superfluid velocity vs: the linearized super-
fluid equations are of the second order in r, while the fully nonlinear equations
are of the sixth order. The extra conditions are not determined by the HVBK
equations themselves, and there is no general agreement about what these con-
ditions should be. Ultimately the correct boundary conditions are a matter to
be decided by better understanding of the physics involved and by the exper-
iments. The choice of boundary conditions made by Henderson et al, namely
ωsφ = vsφ = 0 at r = R1 and r = R2, implies vanishing mutual friction at the
boundary and is consistent with the Couette state since the vorticity is purely
axial at the walls. However other boundary conditions have been proposed in
the literature [8] [11]: smooth boundary conditions in which the superfluid vor-
tices slide freely at the walls’ surfaces, rough boundary conditions, in which the
vortices are pinned to the walls’ imperfections, and partially sliding boundary
conditions in which the vortices are partially pinned. Until now there is no exper-
imental evidence for any of these conditions, but the issue clearly requires further
work. In particular it would be interesting to analyze the nonlinear boundary
layer which must form near the Taylor transition, whose length scale depends
on the amplitude of the solution.

Henderson et al then compared their nonlinear steady state solution against
measurements of the attenuation of second sound and obtained order of mag-
nitude agreement. They were however able to explain why the second sound
attenuation of an axial resonance mode was observed to be greater than the
attenuation of an azimuthal mode. Later Henderson and Barenghi [24] com-
puted the torque which is induced on the outer cylinder and compared it with
the measured torque, finding quantitative agreement, within the experimental
errors.

9 Rotations of the outer cylinder

The stability of the Couette flow of helium II under rotations of the outer cylinder
(Ω1 = 0, Ω2 = 0) is still an unsolved problem. The experiments show that, unlike
what happens in classical Couette flow, for which rotations of the outer cylinder
are centrifugally stable, helium II becomes unstable if Ω2 exceeds a critical value.
Figure 8 shows the viscosity obtained by Heikkila and Hollis Hallet [25] using the
torque method: the departure from the linear relation marks the critical velocity.

Attempting to explain this result, Barenghi and Jones[21] studied the linear
stability of pure superfluid Couette flow (T = 0 K). They found that the vor-
tex tension makes any rotation of the outer cylinders always unstable to long
wavelength nonaxisymmetric perturbations k → 0, so that the critical velocity
is Ω2 = 0, as showed in Figure 9. The result of Barenghi and Jones is therefore
consistent with the experimental finding of Heikkila and Hollis Hallet.
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Fig. 8. Rotations of the outer cylinder: experiments of Heikkila and Hollis Hallet at
T = 1.82 K. Effective viscosity µ versus velocity V2 of the outer cylinder with the inner
cylinder at rest.

Fig. 9. Rotations of the outer cylinder: theory of Barenghi and Jones at T = 0 K.
Stability boundaries for the m = 1, 2, 3 and m = 10 mode at η = 0.99 expressed as
Donnelly number D2 = Ω2R2δ/νs versus dimensionless axial wavenumber k.
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It can be speculated then the transition observed at nonzero temperature by
Heikkila and Hollis Hallet at nonzero value of Ω2 is a compromise between the
nature of the normal fluid (which, by itself, is always stable under rotations of
the outer cylinder)) and the nature of the superfluid (which, by itself, is always
unstable as showed by Barenghi and Jones). The stability of helium II when the
outer cylinder rotates is clearly still a major issue open to investigation.

10 Co-rotations and counter-rotations of the cylinders

The stability of Couette flow under counter-rotations was studied experimentally
and theoretically by Barenghi, Swanson and Donnelly [26]. At fixed rotation of
the outer cylinder (measured by the Reynolds number Re2 = Ω2R2δ/νn) they
determined the critical rotation Re1c of the inner cylinder at which Couette flow
becomes unstable using the second sound technique. Theory and experiments
agreed very well over the range −4000 ≤ Re2 ≤ 0, 0 ≤ Re1c ≤ 1250 explored.
The critical wavenumbers ranged from kc = 1.7 at Re2 = −250 to kc = 4.5 at
Re2 = −4000. They found that helium II is more stable than a classical fluid.

Co-rotations of the cylinders were explored theoretically by Barenghi [27]
at the temperature T = 2.16 K. He found that at this temperature helium II
is always more stable than a classical fluid, but the difference decreases if Re2
increases. The first mode to become unstable is always m = 0.

11 Finite aspect ratios and end effects

It is apparent from the previous discussion that end effects in the Couette flow of
helium II can be more important than in the ordinary classical Couette problem
because the Taylor vortex cells in helium II tend to be elongated axially. It
is therefore interesting to study Couette flow at small aspect ratio in order
to understand the effects induced by the ends. Henderson and Barenghi [28]
considered unit aspect ratio (h/δ = 1) and made comparison with the classical
work of Pfister et al [29]. They found two surprising results. The first result
is that, because of the vortex tension, the superfluid tends to rotate in the
azimuthal direction almost like a column of liquid. The superfluid azimuthal
velocity component vsφ, in fact, slips at the top and bottom ends, while the
superfluid vortices, which are stiff and do not like to bend too much on short
scale, keep the superfluid motion almost z independent.

The second finding was the discovery of the anomalous direction of the mo-
tion of helium II when compared with the motion of a classical liquid. In the
classical case the Ekman circulation induced by the ends has an outflow jet at
the midplane and two inflow jets near z = 0 and z = h. In the case of helium II
the circulation can be reversed by the action of the mutual friction force.
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12 Discussion and outlook

Couette flow has proved to be a useful benchmark to test the HVBK equations
which generalize Landau’s model to the general situation in which vortex lines
are present in the flow. Because of the existence of two separate, coupled fluids,
the fluid dynamics of helium II is particularly rich and there are still phenom-
ena which are not understood. In our view the major issues which are worth
investigating are:

1. Wavy modes Using the second sound technique, Wolf et al [30] observed
many transitions for Re1 > Re1c. It is natural to assume that these tran-
sitions refer to the onset of various wavy modes. The linear analysis of
Barenghi and Jones show that nonaxisymmetric modes become unstable
if Re1 is made sufficiently large. What is needed is clearly more theoretical
work in the nonlinear regime to interpret the existing experimental data.

2. Rotations of the outer cylinder The observation of Heikkila and Hollis
Hallet that the Couette flow of helium II is unstable when Ω1 = 0 and Ω2 is
sufficiently large is striking, because it is in total contrast to what happens
in a classical fluid. At the moment the only theoretical explanation is offered
by the theory of Barenghi and Jones, which unfortunately refers only to the
case of zero temperature. What is necessary is to study what happens to the
transition at nonzero temperature, in the presence of the normal fluid.

3. Appearance and stability of the first row of vortices The issue of the
appearance of the first row of vortices is still open as the current theories
do not agree quantitatively with the experimental data. The problem of
the appearance of the vortices may require a more fundamental quantum
approach, but the issue of the stability of a row of superfluid vortices at
temperatures T < 1.85 K should be understandable using the methods of
classical hydrodynamics.

4. Axial flow The study of what happens to the Taylor instability when an ax-
ial flow is superimposed to the rotation is a classical variation of the Taylor–
Couette problem [31]. In the case of helium II the case of axial flow is par-
ticularly important in the view of the current developments in the study
of turbulence. It is known that waves on superfluid vortex lines become
unstable in the presence of a sufficiently large normal flow parallel to the su-
perfluid vorticity. If vortex waves become unstable then a superfluid vortex
tangle is generated [32] which mimics the vorticity of the normal fluid [33].
This phenomenon was first noticed experimentally by Cheng, Cromar and
Donnelly [34], and it was explained by Ostermeier and Glaberson [35]. It
is now thought that this Ostermeir– Glaberson instability is important [36]
in turbulence. Couette flow with superimposed axial flow is therefore an
ideal configuration to study this instability, because the basic state consists
exactly of superfluid vortices set parallel to the normal flow.
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Couette flow with thermal stratification
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Abstract. Numerical solutions describing steady wavy rolls are obtained for a hor-
izontal Couette layer heated from above. Two different Prandtl numbers have been
investigated, P = 0.71 and P = 7, but most of the results depend only on the Grashof
number G. The stability of wavy solutions is analyzed with respect to disturbances
that do not change the horizontal periodicity interval. Oscillatory quaternary solutions
bifurcating from the steady wavy rolls have been obtained through forward integrations
in time.

1 Introduction

The shear layers of a fluid between two parallel plates moving in opposite direc-
tions corresponds to the simplest configuration described by the Navier–Stokes
equations. Despite its conceptional simplicity it has given rise to some of the
most challenging problems of theoretical fluid dynamics. The basic or primary
solution in the form of a constant shear has been found to be stable with respect
to infinitesimal three-dimensional disturbances for all Reynolds numbers (see, for
example, [10]). The existence of states of flow which are not connected through
a bifurcation with the basic state of plane Couette flow has thus received con-
siderable attention. Three-dimensional solutions describing such states of flow
can be obtained through a bifurcation analysis if more general problems are con-
sidered which include the plane Couette configuration as a special case. Nagata
[11,12] obtained steady solutions in this way through the consideration of the
problem in a system that is rotating with the angular velocity Ω about an axis
parallel to the plates but perpendicular to their direction of motion. In this case
two-dimensional Taylor vortices are obtained at finite values of Ω from which
wavy vortices are bifurcating which continue to exist in the limit of vanishing Ω.
Clever and Busse [6] obtained the same solutions when a Rayleigh number Ra is
introduced as additional parameter. They considered a horizontal Couette layer
heated from below and cooled from above for which convection in the form of
longitudinal rolls bifurcates from the basic state of constant shear when Ra ex-
ceeds the critical value Rac of about 1708. Steady solutions describing wavy rolls
bifurcate from the longitudinal rolls when the shear Reynolds number Re ex-
ceeds a critical value depending on the Rayleigh- and the Prandtl number. While
this bifurcation of a tertiary solution from the secondary solution is supercritical
for relatively low Reynolds numbers it becomes subcritical as Re increases. As
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the sub-criticality strengthens, wavy roll solutions become possible for Ra = 0.
A schematic diagram of the bifurcation structure is shown in figure 1.

S 

Ra 

Couette flow 

R
e
 

1
7
0
8
 

1
 

longitudinal rolls 

w a v y o l l s r 

0
 

Fig. 1. Sketch of the bifurcation diagram for the thermally stratified plane Couette
system. The shear Nusselt number S is shown as a function of the Rayleigh number
Ra and the Reynolds number Re. The primary solution of plane Couette flow, the
secondary solution in the form of longitudinal rolls and the tertiary solution in the
form of wavy rolls are indicated by thick (thin) lines where they are stable (unstable).
Wavy rolls are also unstable, however, in part in the region where they are indicated
by thick dashed lines. The shaded region indicates the plane Ra = 0.

It should be mentioned that besides the tertiary solutions of the form of
wavy rolls or wavy vortices there also exist two-dimensional solutions for the
plane Couette layer problem as has been shown by Cherhabili and Ehrenstein
[4]. In a more recent paper these authors have extended their analysis to solutions
with a dependence on the spanwise coordinate [5]. But the Reynolds numbers for
these types of solutions are much higher than those for which the bifurcations
illustrated in figure 1 occur.
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Clever and Busse [6,7] also studied the stability of the tertiary wavy roll so-
lutions and followed the steady and time dependent quaternary solutions that
evolve from them. Similar work has been done by Nagata [13]. Neither experi-
ments (Dauchot and Daviaud, [9]; Bottin et al., [1]) nor general numerical simula-
tions (Schmiegel and Eckhardt, [14]) have exhibited stable tertiary or quaternary
states of flow. The tertiary solutions are unstable with respect to infinitesimal
disturbances in most of their domain of existence if not in the entire domain and
the same property is likely to hold for the quaternary solutions as well. There
exists the possibility, however, that these solutions could be stabilized in the case
of a stably stratified layer. With this possibility in mind the analysis of Clever
and Busse [6,7] is extended in this paper to the case of a horizontal shear layer
heated from above and cooled from below.

T1

T2

1
2 U0-

1
2 U0

x

y

z

g

Fig. 2. Sketch of the wavy roll solution in the thermally stratified plane Couette layer.

2 Mathematical formulation of the problem

We consider a horizontal fluid layer between two horizontal rigid plates separated
by the distance d and moving in opposite directions with the relative velocity U0.
Constant temperatures T1 and T2 are prescribed at the upper and at the lower
boundary. Using d as length scale, d2/ν as timescale where ν is the kinematic
viscosity, and (T2 − T1)Ra−1 as scale for the temperature we write the Navier–
Stokes equations in the Boussinesq approximation for the velocity vector u and
the heat equation for the deviation Θ from the temperature distribution of pure
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conduction in dimensionless form:

∇2u+ kΘ −∇π = u · ∇u+
∂

∂t
u, (1a)

∇ · u = 0, (1b)

∇2Θ +Rak · u = (u · ∇+
∂

∂t
)Θ, (1c)

where k is the unit vector in the vertical direction and the Rayleigh, Prandtl
and Reynolds number are defined by

Ra =
γg(T2 − T1)d3

κν
, P =

ν

κ
, Re =

U0d

ν
(2)

γ is the thermal expansivity, g is the acceleration of gravity and κ is the thermal
diffusivity. The solution of pure conduction is compatible with the solution of
plane Couette flow of equations (1a,b),

u0 = Rezi (3)

As indicated in figure 2, we are assuming a Cartesian system of coordinates
with the z-coordinate in the direction of the applied shear, and the origin of
the midplane of the layer. For more general solutions of (1) we introduce the
representation

u=Rezi+Uxi+Uyj+∇× (∇× kφ)+∇× kψ ≡ U+δφ+εψ with ū=U , (4)

where the bar indicates the average over the (x, y)-plane. The component δφ of
the velocity field is called the poloidal part while εψ is referred to as the toroidal
part of the velocity field. By operating with δ and ε onto equation (1a) we obtain
equations for φ and ψ:

∇4∆2φ−∆2Θ=δ · [(δφ+εψ) · ∇(δφ+εψ)]+(U · ∇+∂t)∇2∆2φ−∂2zzU · ∇∆2φ,
(5a)

∇2∆2ψ = ε · [(δφ+ εψ) · ∇(δφ+ εψ)] + (U · ∇+ ∂t)∆2ψ − ∂zU · ε∆2φ, (5b)

∇2Θ −Ra∆2φ = [(δφ+ εψ) · ∇Θ + (U · ∇+ ∂t)Θ]P, (5c)

We have also rewritten equation (1c) in the form (5c). In addition equations for
the components Ux,y of the mean flow U(z, t) are needed,

(∂2zz − ∂t)Ux = −∂z(∆2φ(∂2xzφ+ ∂yψ)), (5d)

(∂2zz − ∂t)Uy = −∂z(∆2φ(∂2yzφ− ∂xψ)), (5e)

where the bar indicates the horizontal average and the symbol ∆2 stands for
∇2 − ∂2zz. The boundary conditions for the variables φ, ψ,Θ and Ux,y are given
by

φ = ∂zφ = ψ = Θ = Ux = Uy = 0 at z = ±1
2
. (6)
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For the solution of equations (5) the Galerkin method will be employed. The
dependent variables are expanded in complete systems of functions satisfying
the respective boundary conditions,

φ =
∑
l,m,n

almn(t) exp{ilαxx+ imαyy}gn(z), (7a)

ψ =
∑
l,m,n

clmn(t) exp{ilαxx+ imαyy} sinnπ(z +
1
2
), (7b)

Θ =
∑
l,m,n

blmn(t) exp{ilαxx+ imαyy} sinnπ(z +
1
2
), (7c)

Ux,y =
∑
n

U (x,y)
n (t) sinnπ(z +

1
2
), (7d)

where the Chandrasekhar (1961) functions gn(z) are defined by

gn =
coshλnz
coshλn 12

− cosλnz
cosλn 12

for odd n, gn =
sinhλnz
sinhλn 12

− sinλnz

sinλn
1
2

for even n, (8a)

and the numbers λn are determined such that the conditions g(z) = g′(z) = 0
at z = ± 1

2 are satisfied,

tanh
1
2
λn + tan

1
2
λn = 0 for odd n, coth

1
2
λn − cot

1
2
λn = 0 for even n. (8b)

In order that real expressions (7) are obtained, the conditions almn = a∗
−l−mn,

blmn = b∗
−l−mn, clmn = c∗

−l−mn must be imposed where the asterisk indicates the
complex conjugate. After representations (7) have been inserted into equations
(5) and these are multiplied by the expansion functions and averaged over the
fluid layer, a system of ordinary differential equations in time is obtained for
the coefficients almn, blmn, clmn and U

(x,y)
n . These equations can be solved after

a truncation scheme has been established. We shall neglect all coefficients and
corresponding equations for which

l +m+ n ≥ NT (9)

holds, where NT is a natural number which will be chosen sufficiently high such
that the physically relevant properties of the solution do not change significantly
when NT is replaced by NT − 2. A typical value of NT which has been used for
most of the computations reported in the following is 18.

Steady solutions of equations (5) with constant coefficients almn, blmn, clmn,
U
(x)
n are of special interest since they can be obtained through the use of a

Newton-Raphson method. The coefficients U
(y)
n vanish for these steady solu-

tions. The stability of the steady three-dimensional solutions can then be studied
through the superposition of infinitesimal disturbances of the form

φ̃ = exp{idx+ iby + σt}
∑
l,m,n

ãlmn exp{ilαxx+ imαyy}gn(z), (10a)
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ψ̃ = exp{idx+ iby + σt}
∑
l,m,n

c̃lmn exp{ilαxx+ imαyy} sinnπ(z +
1
2
), (10b)

Θ̃ = exp{idx+ iby + σt}
∑
l,m,n

b̃lmn exp{ilαxx+ imαyy} sinnπ(z +
1
2
). (10c)

When equations (5) are linearized in the disturbances φ̃, ψ̃, Θ̃, a homogeneous
system of linear algebraic equations for the unknown coefficients ãlmn, c̃lmn, b̃lmn
is obtained with the growth rate σ as eigenvalue. Whenever there exists an
eigenvalue σ with positive real part as a function of b and d for a given steady
solution of the form (7) with constant coefficients almn, blmn, clmn, U

(x)
n , then the

latter is regarded as unstable. Otherwise it will be considered as stable. There
is no need to consider a disturbance of the mean flow since the righthand side of
(5d,e) vanishes when the terms linear in φ̃, ψ̃ are considered as long as d or b is
finite. In fact the disturbances of the mean flow are included in the representation
(10a,b) where the sum includes the case l = m = 0 in contrast to the summation
in (7a,b). Because of a smooth dependence of σ on the Floquet wavenumbers
b, d, there is no need to consider the special case d = b = 0 separately.

S-1

600

Nu-1

Re
800 1000

0.5

1.5

1.0

Fig. 3. Shear Nusselt number S [solid (dashed) line in the case A(B)] and Nusselt
number Nu [dash-dotted (dotted) line in the case A(B)] as a function of Re for Ra =
−2000, P = 0.71 with case A(B) corresponding to αx = 1.2(1.6), αy = 2.2(3.0).

3 Steady three-dimensional wavy roll solutions
in an air layer

In the Bénard-Couette problem longitudinal rolls are the preferred solution bifur-
cating from the basic solution in the form of a constant shear when the Rayleigh
number Ra exceeds the critical value, Rac = 1708. When the Rayleigh number
is increased, the longitudinal rolls become unstable to wavy disturbances as the
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Reynolds number Re exceeds a critical value. Steady solutions in the form of
wavy rolls bifurcate from the two-dimensional secondary solutions (Clever et al.,
[8]). As has already been pointed out in the introduction, this bifurcation is su-
percritical if the Reynolds number is not too high, but for increasing values of
Re the bifurcation becomes subcritical [6]. For Reynolds numbers of the order
500 and higher the wavy roll solutions extend to Ra = 0 and to negative val-
ues of Ra as indicated in figure 1. A sketch of the steady wavy roll solution is
shown in figure 2. This solution can be represented in the form (7) with constant
coefficients almn, blmn, clmn which exhibit the following symmetry properties:

almn = (−1)m+na−lmn, almn = (−1)lal−mn, (11a)

blmn = (−1)m+nb−lmn, blmn = (−1)lbl−mn, (11b)

clmn = (−1)m+nc−lmn, clmn = (−1)l+1cl−mn, (11c)

Among the physical properties that characterize this solution the shear Nusselt
number S is of primary interest since it measures the ratio between the momen-
tum transport in the presence of the wavy rolls and in their absence. In terms
of the representation (7) its definition is given by

S ≡ 1 +Re−1
∑
n

nπU (x)
n (12)

which is analogous to the definition of the heat transport Nusselt number

Nu = 1 +Ra−1
∑
n

nπb00n (13)

In figure 3 the shear Nusselt number S and the ordinary Nusselt numberNu have
been plotted in the particular case Ra = −2000, P = 0.71 which corresponds to a
stratified layer of air. As must be expected on the basis of the schematic figure 1,
there exist an upper and a lower branch of wavy roll solutions. The wavy rolls on
the upper branch show a higher amplitude in terms of the Nusselt numbers than
those on the lower branch and the contrast between the two solutions increases
with distance from the saddle node where the two branches merge. The kinetic
energies Emf of the mean flow and Etor of the toroidal component of the velocity
field, however, are lower on the upper branch as can be seen in figure 4. The
kinetic energies Emf , Etor and Epol are defined by

Emf =
1
2
〈(Re z + Ux(z))2〉, Etor=

1
2
〈| ∇ × kψ |2〉, Epol=

1
2
〈| ∇ × (∇× kφ |2〉

(14)

where the angular brackets indicate the average over the fluid layer. As the vigor
of the roll motion increases the shear in the interior of the layer decreases and
with it the energy of the mean flow. The strength of the toroidal component of
motion decreases at the same time since it is generated through the advection
of the mean shear by the vertical component of the velocity field.
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Fig. 4. Energies Epol, Etor, Emf of the poloidal (dashed), toroidal (dash-dotted) and
mean flow (solid) components of the velocity field, respectively, as function of Re in
the case Ra = −2000, P = 0.71, αx = 1.2, αy = 2.2. Thin (thick) lines correspond to
the lower (upper) branch.

Fig. 5. Lines of constant velocity ux in the planes x = 0, x = π/2αx, x = π/αx
(from top to bottom). The lowermost plots show the average of ux over x. The z-
coordinate is the direction of the ordinate, y increases from left to right. The left (right)
plots correspond to the lower (upper) branch solution in the case Re = 1000, Ra =
−2000, P = 0.71, αx = 1.6, αy = 3.0. Positive (negative) values of ux are indicated by
solid (dashed) lines. The solid line next to the dashed lines corresponds to ux = 0.
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Figures 5, 6 and 7 show the typical differences between the two solution
branches. While the basic Couette flow is only somewhat distorted in the case of
the lower branch solution, the distortions caused by the upper branch solutions
are so strong, that the shear is nearly confined to the boundary layers at the
planes z = ±0.5 as shown in figure 5. The difference in the profiles of the mean
flow for the lower and the upper branch solutions is also clearly exhibited in
figures 8a and 8b. As is evident from figure 8b the mean shear even reverses in the
interior of the layer in the case Re = 1000. The profile of the mean temperature
shows a similar structure as the mean flow. Since the Prandtl number is less
than unity, thermal diffusion exceeds viscous friction and as a result the mean
temperature profile deviates less from the linear slope than the mean flow profile.
In general, it is remarkable to see how little the structure of the wavy roll solution
in the stably stratified case is changed in comparison with the isothermal case
studied by Clever and Busse [7]. Only the Reynolds number is increased a bit
through the effects of stratification.

Fig. 6. Isotherms in the planes x = 0, x = π/2αx, x = π/αx (from top to bottom)
in the same case as in figure 5. Positive (negative) isotherms are indicated by dashed
(solid) lines. The short-dashed line indicates the zero isotherm.

The lowest Reynolds numbers that can be reached in the particular case
Ra = −2000, P = 0.71 have been plotted in figure 9 in dependence on the two
wavenumbers, αx and αy, that characterize wavy rolls. The absolute minimum
Remin ≈ 600 is reached near αx = 1.1, αy = 2.2. These values can be compared
with the corresponding values Remin ≈ 512, at αx = 1.15, αy = 2.3, in the
case Ra = 0. As in the latter case, the lowest values of Re are reached along a
valley stretching along the line αx ≈ 0.5 · αy. A plot analogous to figure 9 for
the case Ra = 0 has been published as figure 3 in [2]. Inadvertently αx and αy
are exchanged in that figure. In order to give an impression of the wavenumber
range for which steady wavy roll solutions can be obtained, we have plotted the
shear Nusselt number S for upper and lower solutions for fixed values of Re,Ra



408 R.M. Clever and F.H. Busse

Fig. 7. Isotherms in the plane z = 0 (uppermost plots) and lines of constant vertical
velocity in the planes z = −0.4, z = 0, and z = 0.4 (second through fourth plots
from top) for the same solutions as in figure 5. Solid (dashed) lines indicate positive
(negative) values of the vertical velocity uz and negative (positive) isotherms. The
ordinate corresponds to the y-coordinate, x increases towards the right.

and P in figure 10. It is clear from this figure that solutions exist on a ellipsoidal
surface stretched from left to right of which only two perpendicular cross sections
are shown in the figure.

4 Wavy roll solutions in dependence
on the Grashof number

A remarkable property of the steady wavy roll solutions is that the influence
of stratification depends mainly on the combination G ≡ Ra/P of parameters
where G is the Grashof number. In figure 11a through 11e the results obtained
for Ra = −2000, P = 0.71 are plotted together with those obtained for Ra =
−2 · 104, P = 7 in the case of two different Reynolds numbers. As can be seen,
the curves for the kinetic energies are always close together for negative as well
as positive Rayleigh numbers. At the point Ra = G = 0 the results obtained for
the different Prandtl numbers coincide as must be expected for the case of an
isothermal Couette layer.

The Nusselt number plotted in figure 11b differs strongly for the two Prandtl
numbers, however, in that much higher values are attained in the high Prandtl
number fluid than in the low P fluid. Actually for given values of Ra and Re
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Fig. 8. Profiles of the mean flow U(z) (thick lines) and of the mean temperature T (z)
(thin lines) for Re = 700 (solid lines) and Re = 1000 (dashed lines) for the lower
(upper) branch solution in upper (lower) figure 8a(b). The values αx = 1.2, αy =
2.2, P = 0.71, Ra = −2000 have been used in all cases.

the convective heat transport is nearly independent of P . But since the heat
transport by conduction varies in proportion to P−1,Nu−1 varies approximately
like P . There is no coincidence for the Nusselt numbers at G = 0, because the
Nusselt number looses its meaning for an isothermal layer. But since the Nusselt
number is defined as the ratio between two heat transports it depends smoothly
on G through the point G = 0 as shown in figure 11b. The low influence of
thermal diffusion in the case P = 7 manifests itself also in the mean temperature
profile as shown in figure 12. While the profiles of the mean flow do not differ
much from those plotted in figure 8b, the temperature profile has now become
close to an isothermal one in the interior of the layer.
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Fig. 9. Lowest Reynolds numbers for which steady wavy roll solutions can be obtained
as a function of the horizontal wavenumbers αx and αy in the case Ra = −2000,
P = 0.71.
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Fig. 11. a) Shear Nusselt number S as a function of the Grashof number G = Ra/P in
the cases P = 7, R = 800 (dotted curve); P = 7, R = 700 (dash-dotted); P = 0.71, R =
800 (dashed) and P = 0.71, R = 700 (solid) with αx = 1.4, αy = 2.8 in all cases.

Fig. 11. b) Nusselt number Nu as function of G for the same cases as in figure 11a.
The left (right) ordinate applies in the case P = 0.71 (7).

The Grashof number can be introduced into equations (5) through the mul-
tiplication of (5c) by P−1. As a result Ra is replaced by G and P drops from the
equation except that the term ∇2Θ is now multiplied by P−1. The fact that the
results displayed in figures 11 are nearly independent of P except for the Nusselt
number indicates that thermal diffusion plays a rather minor role, at least for
values of P of the order unity of larger.

It is also of interest to interprete the results displayed in the plots of figure
11 in terms of the Richardson number J which is defined by

J = −GRe−2 = −Ra/PRe2 (15)

in terms of the dimensionless parameters of the present analysis. The minimum
values of G for which wavy roll solutions exist in the cases Re = 700 and 800
correspond to the following values of J

J = 1.04 · 10−2( or 1.31 · 10−2) for Re = 700( or 800) in the case P = 7 (16a)
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Fig. 11. c) Energy Epol of the poloidal component of the velocity field as a function
of G for the same cases as in figure 11a.

Fig. 11. d) Energy Emf of the mean flow component of the velocity field as a function
of G for the same cases as in figure 11a.

Fig. 11. e) Energy Etor of the toroidal component of the velocity field as a function
of G for the same cases as in figure 11a.



Tertiary and quaternary solutions for plane Couette flow 413

Fig. 12. Profiles of the mean flow U(z) (thick lines) and of the mean temperature
T (z) (thin lines) in the cases Re = 700 (solid lines) and Re = 1000 (dashed lines).
Ra = −2 · 104, P = 7, αx = 1.2, αy = 2.2 have been used in all cases.

J=1.16 · 10−2( or 1.40 · 10−2) for Re=700( or 800) in the case P =0.71 (16b)

These values are rather small compared to the limiting value for J of the order
0.25 [10]. Undoubtedly the attainable values for J will increase with increasing
values of Re. But because of the limits posed by the numerical resolution this
aspect of the problem has not been pursued any further.

5 Transition to quaternary states of fluid flow

An analysis of the stability of the steady solutions discussed in the preceding
sections has been performed based on the representation (10) for general in-
finitesimal disturbances. But for reasons of limited computer capacity only the
case of disturbances preserving the horizontal periodicity interval of the steady
solutions has been investigated, i.e. d = b = 0 has been assumed in representa-
tion (10). In this particular case the general class (10) of disturbances can be
separated into four subclasses which either exhibit the same or the opposite of
each of the two symmetries (11) of the steady wavy roll solutions. Growing dis-
turbances are found for almost all steady solutions. The lower branch solutions
are always unstable with respect to symmetry preserving disturbances, i.e. the
coefficients in the representation (10) exhibit the same symmetry

ãlmn = (−1)m+nã−lmn, ãlmn = (−1)lal−mn (17a)

b̃lmn = (−1)m+nb̃−lmn, b̃lmn = (−1)lbl−mn (17b)

c̃lmn = (−1)m+nc̃−lmn, c̃lmn = (−1)l+1cl−mn (17c)
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as the steady solution. The imaginary part of the growthrate vanishes in this
case. As must be expected the lower branch thus acts as a repellor in the solution
space of the problem. The upper branch solutions are stable with respect to
disturbances of the restricted set with b = d = 0 considered here if Re and G
are not too far from their minimum values in the parameter space. Otherwise
an oscillatory instability with the symmetry (16) grows or an instability with
vanishing imaginary part σi of the growthrate occurs which is characterized by
the property that both symmetries are opposite to that of the steady solution,
i.e.

ãlmn = (−1)m+n+1ã−lmn, ãlmn = (−1)l+1al−mn (18a)

b̃lmn = (−1)m+n+1b̃−lmn, b̃lmn = (−1)l+1bl−mn (18b)

c̃lmn = (−1)m+n+1c̃−lmn, c̃lmn = (−1)lcl−mn (18c)

In order to follow the evolution of disturbances of this kind, integrations in time
have been performed with time dependent coefficients in the representation (7)
and with the admission of coefficients that obey the symmetries (17) and (18).
The results of the integrations show, however, that all coefficients with the latter
property (18) decay and that a time periodic state is reached asymptotically. In
these integrations in time it is important that the noise that is superimposed onto
the steady solution is of sufficiently low amplitude since otherwise the integration
in time may lead to the vanishing solution, i.e. asymptotically the primary state
of plane Couette flow is reached.

An example of the time periodic state is shown in figure 13. Even though the
measures of the amplitude, S − 1 and Nu − 1, vary approximately sinusoidally
by more than 10 percent around their mean value, the structure of the oscil-
lating wavy roll hardly changes at all. This oscillation appears to be similar to
the amplitude oscillations discussed in [7] where the solution tends to oscillate
between the steady solutions on the upper and lower branches. Since upper and
lower branch solutions are close to the saddle node in the case of the parameters
of figure 13, the changes in the structure of the solution is rather minimal. The
amplitude of oscillation increases with increasing Reynolds number. When the
computations of figure 13 are repeated for Re = 805 a period doubling bifur-
cation has taken place, but variations in the structure of the solution can still
hardly be discerned.

6 Concluding remarks

The analysis of this paper has been performed with the goal of finding even sim-
pler tertiary and quaternary solutions than in the case of an isothermal plane
Couette layer. Although the computations of steady wavy roll solutions have
been extended far into the regime of negative Rayleigh numbers, the structure
of the flow field does not differ much from the case of an isothermal Couette
layer. But the temperature field offers a new way of identifying states of fluid



Tertiary and quaternary solutions for plane Couette flow 415

Fig. 13. Time sequence of plots (from left to right) for oscillating wavy rolls in the
case Re = 800, Ra = −5600, P = 0.71, αx = 1.4, αy = 2.8. The uppermost row of
plots shows the isotherms in the plane z = 0, the second and third rows show lines of
constant vertical velocity in the plane z = 0 and z = 0.4, respectively, and the lowest
row shows lines of constant ψ in the plane z = 0. The time interval between the plots
is one third of the period Tp = 0.39 of oscillation such that a fourth plot would be
identical to the first one. The x-direction is to the left, the y-direction is upward.

motion which is not available in the case of an isothermal layer. The shadowgraph
method (see, for example, [3]) could be used for the experimental visualisation
of flow states in a horizontal plane Couette layer heated from above and cooled
from below. This method would eliminate some of the problems associated with
suspensions of ceramic powder which have been used in experiments on isother-
mal Couette flow [9,2]. Experiments on stratified plane Couette flow have not
been performed up to now in the parameter regime of the analysis of this paper.

Since a stably stratified fluid layer supports the propagation of internal waves
it could have been expected that some instabilities of the steady wavy roll solu-
tions would lead to propagation of disturbances in the form of traveling internal
waves. Such a mechanism does not seem to operate in the parameter regime that
has been studied in this paper. The possibility exists, however, that traveling
internal waves are associated with larger horizontal scales which are not included
in the stability analysis carried out in this paper.
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On the rotationally symmetric laminar flow
of Newtonian fluids induced by rotating disks

Antonio Delgado

Technische Universität München, Weihenstephaner Steig 23, D-85350 Freising,
Germany

Abstract. This paper deals with the flow induced by rotating disks. Such flows are
subject of a large number of contributions in the twentieth century. Most of them are
based on the famous von Kármán transform. In the last three decades the applica-
bility of this transform has been proved in sophisticated experimental and theoretical
investigations. The present paper focuses on theoretical investigations treating a pair
of disks rotating concentrically. In addition to classical solutions given by Batchelor
and Stewartson, the problem of solutions being multiple, unstable and even aphysical
is briefly addressed. Furthermore, some approaches dealing with moderate Reynolds-
numbers are presented for which the equations of motion are linearized starting from
a known creeping flow solution. A comparison of the results with those obtained from
the solution of the complete Navier–Stokes equation is carried out.

1 Introduction

Fluid driven by rotating flows have represented a major field of study in fluid
mechanics for a large part of the twentieth century. This results from the fact
that they are not only of special interest in research but also of high relevance for
a large number of applications. This is the case e.g. in rotating machines, lubrica-
tion, droplet generators, filtering systems, rheometry, computer storage devices
and operation units for heat and mass transfer, as well as in the simulation of
astro- and geophysical phenomena. Most of these applications can be considered
classical ones. But, further fields of application became increasingly important
with the progress in space technology, i.e. with the increasing in importance of
processes in a gravity compensated environment. In the absence of gravity effects
the centrifugal forces induced by the rotating disks can be used very efficiently
e.g. for positioning and handling fluids, removing gas bubbles from molten ma-
terials, spinning and despinning of orbital vehicles, crystal growth processes and
control of thermocapillarity effects.

From the theoretical point of view, rotating disk flows represent one of the
few examples for which there is an exact solution to the Navier–Stokes equations.
This was recognised very early for flows with a relatively simple kinematics such
as the rigid body motion which occurs in the steady, isothermal case, when the
fluid is enclosed by two concentrical infinite disks rotating with the same angular
velocity ω. Thus, the boundary conditions are homogeneous. In this case there
is no movement of the fluid relative to the disks and, therefore, no effects due
to fluid friction take place. The flow kinematics is described completely by the
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circumferential velocity component and the centripetal acceleration. The latter
produces a centrifugal field which generates a radial pressure distribution.

When friction occurs the flow field is substantially more complex. Thus, solu-
tions for the equations of motion were found only in special cases. For example,
Hort [34] studied the flow in a bounded cylindrical region whereby the parallel
circular areas limiting the cylinder in the axial direction z as well the cylindrical
surface r = r0 are allowed to rotate with different velocities. By neglecting iner-
tial effects this author was able to give some analytical solutions on the basis of
Bessel functions.

When considering inertial effects in a viscous fluid the full equations of motion
must be treated. But even in this case exact solutions of the Navier–Stokes
equations can be found. This was recognised first by von Kármán [1] who studied
the problem of a disk of infinite radius rotating with a constant angular velocity
ω in a unbounded, quiescent fluid. By applying his celebrated transform this
author was able to reduce the full equation of motion to a pair of non-linear
ordinary differential equations.

But, solving these non-linear equations is a non-trivial problem. Thus, Coch-
ran [2] was the first investigator who was able to obtain an accurate numeri-
cal solution to von Kármán’s equations. Later Batchelor [3] and Stewartson [4]
pointed out that the same transform can be applied to the problem of steady
flow between two infinite rotating disks. Batchelor [3] argued that for infinite
Reynolds numbers the main body of the fluid would rotate with constant angu-
lar velocity, and that boundary layers would develop at both disks. In contrast to
this Stewartson [4] predicted that the main body of the fluid outside the friction
dominated layers at the disks would be at rest for the case of counterrotating
disks. This would be also the case when one disk remains at rest. This means
that the velocity vector outside the friction dominated layers has only an axial
component.

Picha & Eckers [5] obtained experimental results very similar to that pre-
dicted by Stewartson for disks rotating in opposite direction but with the same
angular velocity. But most remarkable they found that for a disk being at rest the
experimental velocity distribution corresponds to the Batchelor solution when a
housing is available. In contrast to this, they observed a Stewartson flow when
the disks are free.

From a academic point of view the interest on rotating disks flows has even
increased significantly in the last three decades. This is certainly due to the fact,
that the non-linear behaviour of the flow admits a large variety of solutions.
Besides so-called multiple-cell solutions, branching of solution, instable and even
aphysical solutions [13,14,18,23] have been found. However, some authors didn’t
observe experimentally certain solutions predicted theoretically, see e.g. Dijkstra
& van Heijst [9].

Therefore, some authors have focused their interest on solutions which ap-
pear to be physical. Furthermore, some efforts have been made to reduce signif-
icantly the very high efforts required when using classical numerical methods.
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In [10,11,19–21] a method is proposed which allows to reduce the numerical work
to be done or even to find full analytical solutions.

Very concise overviews on the field of rotating fluids are given by Greenspan
[12], van Wijngaarden [13], Zandbergen & Dijkstra [14] and Parter [15]. Thus,
some well-known features of the flow induced by rotating disks are treated here
only in a way that they can be understood basically. However, the present paper
focuses on theoretical investigations done more recently in the field of rotating
disks. New applications of rotating disks flow such as mentioned above have influ-
enced recent research work significantly, including considerations on permeable
disks, turbulence, non-isothermal flows, free surface flows and non-newtonian
fluid flow, but they are considered to be outside of the framework of the present
survey.

2 Isotherm, steady flow of a Newtonian fluid

Here, the motion of a pure, single-phase, incompressible, non-polar, and newto-
nian fluid induced by rotating impermeable disks is considered. The flow field is
assumed to be steady, isotherm, laminar and rotational symmetric.

2.1 Governing equations

For convenience, the flow field in question is treated in cylindrical co-ordinates,
where r indicates the radial, ϕ the circumferential and z the axial direction. The
fluid motion is described by the Navier–Stokes equation

O
Dv
D t

= −grad p+ divT+ f (1)

and the continuity equation

divv = 0 . (2)

Hereby, O denotes the density, p the pressure, t the time, v = uer+veϕ+wez the
velocity vector, T the stress tensor, and f a conservative volume force. The term
Dv/D t is the total derivation of the velocity, which expresses only the convective
acceleration in the steady case assumed. In the Navier–Stokes equation the fluid
is postulated to be newtonian and, therefore, depends linearly from the velocity
gradient tensor L = gradv according to the relation T = µ (L+LT ). The symbol
µ represents the dynamic viscosity.

A general solution of the equations of motion has not been found yet. There-
fore, the solutions available in literature correspond to the specific physical cases
considered. Here, the boundary conditions are formulated in the section in ques-
tion, for convenience.

The basic features of the large diversity of rotating disks flows reported in
literature are dominated either by inertial effects or the boundary conditions.
With increasing inertial effects the non-linear character of the Navier–Stokes
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equations becomes more and more important. Therefore, typical non-linear phe-
nomena such as multiple or bifurcating solutions appear. On the other hand,
the observable flow type depends strongly on the conditions pre-described at the
boundaries of the fluid domain. In this context it is of crucial importance that
the Navier–Stokes equations are not only non-linear but also of elliptical type in
space.

2.2 Von Kármán’s solution for a single rotating disk

Though the single infinite disk flow is not considered here extensively it is of
interest because it behaves - in some cases - very similar to the flow between two
infinite disks. It is e.g. very remarkable that Reshotko & Rosenthal [27] were able
to construct a large Reynolds number solution for the flow in the gap between
a rotating and a quiescent disk by matching together two single infinite disk
solutions.

As argued by Batchelor [3], the single impermeable disk flow is characterised
by a single parameter s = ω2/ω1 which describes the ratio of the angular velocity
of the disk to that of the flow for large values of z. For convenience ω1 is the
higher angular in question. This allows to consider only the bounded domain
|s| ≤ 1 .

The von Kármán’s transform assumes the flow motion to be axisymmetric
with respect to the axial co-ordinate z. Furthermore, von Kármán postulates that
the axial velocity component w depends on z only. As a consequence of this, the
radial velocity component v depends linearly on the radial co-ordinate r when
mass continuity holds. Furthermore, fulfilling the non-slip condition requires the
circumferential velocity component to be a linear and the pressure a quadratic
function in r. Thus, in accordance to von Kármán the equations of motion can be
transformed to a set of non-linear, ordinary differential equations by the ansatz:

v = u er + v eϕ + w ez = rωG(z) er + rωH(z) eϕ + δωF (z) ez (3)

p = Oω2
(
δ2Q(z) +

λ

2
r2
)

. (4)

Herein, δ =
√

ν/ω represents a scale for the thickness of the shear dominated
layer in the vicinity of the rotating disk. G(z), H(z) and F (z) can be considered
as dimensionless velocity components which depends only on z. The parameter λ
characterises the radial pressure distribution. In the case of a single disk rotating
in an unbounded, quiescent fluid it can be shown that it has to vanish, i.e. λ = 0.

The von Kármán solution is depicted graphically in Fig. 1. As a result of wall
adhesion and friction the fluid in the vicinity of the disk is pumped outwards
by the centrifugal force. Due to continuity fluid suction towards the disk occurs.
The flow is fully threedimensional but rotationally symmetric.

It is not appropriate to present the transformed equations here (see for ex-
ample [25]). But instead, some interesting consequences which follow from the
transform are discussed. First the transform from partial to ordinary differential
equations is only possible when the solutions are self-similar. This means for the
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Fig. 1. Flow in a close region around an impermeable disk rotating in a fluid at rest.
Velocity components: u - radial; v - azimuthal; w - axial, see also equation (3)

flow induced by a single disk that the velocity distribution for two different values
of the radial co-ordinate only differs by a constant mapping factor. From this, it
follows that the von Kármán transform holds only for an infinite disk radius R.
But this poses a substantial theoretical problem as the conditions to be fulfilled
for R → ∞ can not be pre-described a priori. And apart from this they must
be compatible with the kinematics of the flow. Furthermore, mass conservation
is required. Thus, at infinity the existence of an adequate distribution of sinks
and sources must be postulated (of course, self-similarity can be also achieved
when the distribution of sinks for a given, finite value of R is compatible to the
kinematics of the flow as described by the von Kármán solution).

Furthermore, when considering a single infinite disk the problem arises that
the radius R can not be considered as the characteristic length of the flow field.
As a consequence of this the commonly used definition of the Reynolds number
(ν = µ/O: kinematic viscosity)

Re =
uc · Lc

ν
, (5)

which requires a characteristic velocity uc and length Lc , can not be applied.
Here, an analogy to flows with boundary layer character is obvious. For example,
the Blasius solution for the flat plate (see e.g. [25]) is based on a transform which
provides a self-similar solution, too. But physically a self-similarity of the flow
can be expected only for a plate of infinite length or, at least, when for a given
finite length L the boundary conditions at L are fulfilled identically by the
Blasius solution.

Usually, it is postulated that the self - similar solution (see Fig.1) is valid
also for finite disk radii R when R ) δ (this is in agreement with the similar
assumption done in the case of the flat plate). However, this can be only an
approximation in which the elliptical type of the Navier–Stokes equations are
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altered in a parabolic type. In fact the von Kármán transform has the same effect
on the friction term divT in the Navier–Stokes equations as the basic assump-
tion in boundary layer theory that for Re→∞ any changes of the shear stress
in the main flow direction can be neglected as compared to those in a perpen-
dicular direction. This is very particular as the boundary layer considerations
hold only for very large Reynolds numbers, but the von Kármán transform does
not prescribe any similar requirement. Furthermore, the von Kármán solution
is valid even for very slowly rotating disks or high viscosity and, thus, when the
extension of the friction dominated layer δ is very large.

The effect of the parabolisation of the Navier–Stokes equation in the case of
a single disk by application the von Kármán transform are treated sparsely in
literature in contrast to the situation for the case of two co-rotating disks (see
below). But one-parameter flows have been studied extensively analysing regions
of uniqueness, non-existence and multiplicity of solutions [13,18,23].

Roger & Lance [16] obtained solutions for each positive value of s (fluid at
infinity (z → ∞) rotating in the same sense as the disk), but they were not
able to find results for s < −0.2 . A further remarkable observation of these
authors was that their solutions were oscillatory with the exception of that for
s = 0 . This was in agreement with the findings of Bödewadt [17] who calculated
oscillating solutions for the flow above a stationary disk with the outer flow in
solid body rotation.

Zandbergen & Dijkstra [14] gave an explanation for the non-existence of solu-
tions for s < −0.2 . These authors find not only a limit point in s at s = −0.1605
but also at s = 0.07453 . After this basic finding several authors extended the
investigations of [14]. Of decisive importance was the understanding achieved
that for s = 0 there is an infinite number of solutions.

From this it became obvious that some solutions should be unstable or even
aphysical. Bodonyi & Ng [18] showed that only the classical von Kármán solution
is temporally stable.

In the next sections the behaviour of the flow between two co-rotating disks
is discussed, which is the main subject of this paper.

2.3 Flow between co-rotating disks

There is also a large amount of publications regarding this case [3–12,19–24].
Most of them consider impermeable disks of infinite radii whereby the flow mo-
tion is described by the non-linear von Kármán equations. In contrast to the
case of a single disk with the gap width b a characteristic length is available.
Therefore, the fluid motion is described by a two-parameter family of solutions.
In addition to the ratio of the angular velocities s, a Reynolds number

Re =
ω · b2
ν

(6)

appears.
The discussion given in section 2.2 regarding the required kinematic compat-

ibility of boundary conditions to the von Kármán transform can be extended to
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the flow between co-rotating disks. But the analogy to boundary layer theory is
not obvious, although the von Kármán transform leads to a similar parabolisa-
tion of the Navier–Stokes equations as in the case of the single disk.

Similarity to boundary layer flows, but also the effects on the non-linear
character of the fluid motion such as multiplicity, non-existence and stability of
solutions become more pronounced for high values of Re. On the other hand,
some applications i.e. in viscometry and space technology make it necessary to
have access to the physics of flows at moderate Reynolds numbers and, therefore,
there are some new publications in this field [10,11,20,21].

In contrast to the single disk flow, in literature more interest has been devoted
to the influence of boundary conditions existing at the outer region of disks with
finite radii. Usually finite disks are assumed to be closed by a cylindrical container
being at rest or moving with a constant angular velocity ωE . In this case further
parameters sE = ωE/ω1 and b̂ = b/R which characterise the ratio of the angular
velocities and the aspect ratio, respectively, must be taken into consideration.
Therefore, it is convenient to present also some results in this field, whereby the
discussion will focus on the validity of self-similar two-parameter solutions.

Self-similar solutions for infinite co-rotating disks
at high values of Re

Two disks of infinite extension R are separated by a gap of the width b. In
order to guarantee |s| < 1, ω1 should correspond to the faster rotating disk.
The considered problem is illustrated in Fig. 2. Mellor et al. [7] found solution

Fig. 2. Schematic representation of coaxially rotating disks with infinite radius

multiplicity for s = 0 and high Reynolds numbers. They demonstrate that both
the Batchelor and the Stewartson solution, as well as many others, exist. The
Batchelor solution evolves from the creeping flow solution. At Re ≈ 217 , two
new solutions appear and both extend to high Reynolds numbers, one of these
being the Stewartson flow. Furthermore Mellor et al. [7] observed an alternation
in the sign of the axial velocity in the gap. This corresponds to the existence
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of multiple cell flows in the meridional plane. Robert & Shipman [6] generated
numerically up to five cells. It is remarkable, that they found at high values of
Re regions of uniqueness, non-existence and multiplicity of solution.

Holodniok et al. [8] showed with the help of the Newton-Raphson method,
that the non-linear von Kármán equations accept for s = 0.8 only one solution
for small Reynolds numbers (Re < 205 ). But with increasing Re the number of
solutions found by these authors becomes three ( 205 < Re < 330 ), and, finally,
five (Re > 330 ).

In Fig. 3(a) results of these authors for s = 0.8 and Re up to 104 are depicted
graphically. As can be seen the radial pressure coefficient λ obtains different
values depending on Re. In this context multiplicity in solution is characterised
by the fact that different values of λ are obtained for the same Re.

Coming back to the von Kármán ansatz for the pressure (4) it should be
stated that the value of λ is not known a priori. Instead, it must be calculated
from the boundary conditions which are for the infinite, co-rotating, impermeable
disks considered here:

z = 0 : v = rω eϕ , (7)
z = b : v = srω eϕ . (8)

Taking into consideration the three components of the velocity vector v these are

Fig. 3. Dependence of λ (a) on the Reynolds number Re for s = 0.8 and (b) on the
parameter s for Re = 625

six boundary conditions. Five of them are required for completing the non-linear
von Kármán equations. The sixth is used for determining λ.
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In a further work Holodniok et al [26] investigated the influence of s on λ.
For Re = 625 they found up to 20 solution branches each corresponding to a
different number of cells, see Fig. 3(b).

These authors did not investigate the stability of the solution they found.
Most of them appear to be unstable or even aphysical. However, Holodniok et
al. [26] were able to show that most of the results published in literature were
consistent with those of the own numerical calculation.

On the other hand, Dijkstra & van Heijst [9] investigate the flow generated
by a pair of finite, impermeable disks enclosed by a cylindrical surface. They
found that in such a case the solution is unique for all value of the parameters
studied. From this it can be concluded, that the diversity of the theoretical results
obtained is at least partly connected to the use of the von Kármán transform.

Self-similar solutions for disks
rotating at moderate Reynolds numbers

As already mentioned in the introduction this case is of substantial importance
for example in rheometry and space technology where slowly rotating disks or
highly viscous fluids are considered. But, additionally, studying the case of mod-
erate Re numbers some basic features of the flow induced by the disks become
obvious. Furthermore, the costs required for calculating the flow field can be
reduced substantially when restricting to moderate Reynolds numbers. Last but
not least, it can be stated that flows which develop from the kinematics obtained
for small Reynolds numbers are free from the uncertainties discussed above such
as multiple, unstable or aphysical solutions.

In [10,11,20,21] a method is proposed which allows to calculate the flow field
for moderate Reynolds numbers very efficiently. The basic ideas of this method
is

(i) to linearise the Navier–Stokes equations by perturbing a known solution for
the creeping flow (Re→ 0) by means of low order perturbations p+, u+, v+

and w+;
(ii) to transform the perturbed equations of motion into a set of linear, ordinary

differential equations with the help of the von Kármán ansatz;
(iii) to integrate these set of differential equations numerically or analytically.

The first step is in agreement to the linearisation method proposed by Oseen
for the treatment of the flow around a sphere for small Reynolds numbers, see
i.e. [25]. It is based on the assumption that the magnitude of the perturbing
velocities u+, v+, and w+ is much smaller than that of a reference azimuthal
velocity v0 , i.e.

v0 ) u+, v+, w+ . (9)

The perturbed solution is introduced into the equations of motion. The linearised
equations of motion are obtained by neglecting the second order terms consisting
of products of the perturbing velocities and their derivatives.
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In accordance to the non-linear case the transform from the linearised equa-
tions of motion (which are partial differential equations) to a set of ordinary
differential equations holds only for self-similar flows. This is not given generally
but the von Kármán transform fulfils the perturbed equations of motion when
a suitable creeping flow is used.

Such a creeping flow field is described by

v = rωΦ(z)eϕ (10)
p = p0 (11)

with Φ(z) = 1 +
s− 1
b

· z . (12)

This flow can be considered as a member of the family of steady, pure shear
flows characterised by the fact that the kinematics depend only on a measure
for the deformation rate (shear rate). Furthermore, the Rivlin-Ericsen tensors

An+1 = LTAn +AnL with A1 = L+ LT (13)

of the order n ≥ 3 have to vanish.
Regarding the restriction (9) it should be mentioned that it can be kept

in a large number of flows induced by generated disks but it is violated by
the classical von Kármán single disk case. This is due to the fact that in von
Kármán’s problem the flow far from the disk is assumed to be normal to the
disks and to be induced by the rotation of the disk. Therefore, from a physical
point of view the only creeping flow situation compatible is such of a vanishing
axial component. From this follows that v = v+ . But it is well known that there
is an extended region in the neighbourhood of the axis of rotation in which the
order of magnitude of the axial velocity component is similar to that of the
circumferential velocity v and, thus, restriction (9) does not hold.

Returning to the method proposed in [10,11] the perturbation of the creeping
flow (10) - (12) and the linearisation of the momentum equations lead to the
expression (p+ and T+ denote the perturbing pressure and stress tensor):

(−rω2Φ2 − 2ωΦv+)er + (2ωΦu+ + rωΦ′w+)eϕ = −1
O
grad p+ +

1
O
divT+ .(14)

Herein, the stroke (′) denotes differentiation with respect to z. In the mass bal-
ance (2) the velocity vector v can be simply substituted by the perturbing vector
v+ as from (10) it follows u+ = u and w+ = w . The azimuthal velocity com-
ponent does not appear in (2) for rotationally symmetric flows. The application
of the von Kármán ansatz

v+ = rωg(z)er + rωh(z)eϕ + δωf(z)ez (15)

p+ = Oω2
(
δ2q(z) +

λ

2
r2
)

; λ =
1
r

∂p+

∂r
(16)
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to (14) and (2) leads to the following set of linear, ordinary differential equations

−Φ2 − 2Φh = −λ+ g′′ (17)
2gΦ+ fΦ′ = h′′ (18)
0 = f ′′ − q′ (19)
0 = 2g + f ′ . (20)

For convenience the axial co-ordinate z has been made non-dimensional by di-
viding it by δ, and, therefore, the stroke (′) denotes differentiation with respect
to ζ = z/δ . For the impermeable disks considered here the boundary conditions
(7) and (8) transform to

ζ = 0 : g = h = f = 0 (21)
ζ = ζb := b/δ : g = h = f = 0 . (22)

From the set (17) - (22) some basic statements on the behaviour of the flow
can be derived. From the continuity equation (20) and the boundary conditions
(21) and (22) it can be deduced that not only the transformed axial perturb-
ing velocity f but also its first derivative f ′ must vanish at the impermeable
disks. The axial perturbation pressure coefficient q can be directly determined
when the distribution of the transformed axial perturbing velocity f is known.
On the other hand calculating f requires the simultaneous solution of the mo-
mentum equations in circumferential (18) and radial direction (17) as well as
the continuity equation (20). This interdependence expresses the redistribution
of momentum in the flow. The momentum is generated by the rotating disks.
The wall adhesion of the fluid is responsible for the momentum transfer to the
perturbing velocity component h. The momentum connected to this component
is the source of the formation of the radial pressure gradient λ (see also (16)).
This can be directly deduced from the radial momentum (17) but more concisely
from

−4Φ3h+ φ′h′′′ − ΦhIV = 2Φ4 − 2λΦ2 , (23)

which is equivalent to (17), (18) and (20). Unfortunately, no analytical solution
of (23) has been found yet (compare [10,11]). On the other hand it can be
solved numerically whereby five boundary conditions have to be fulfiled since λ
is unknown, too.

It appears not convenient to give details of the numerical solution of (23)
here. Instead, the discussion of the set (17) - (21) is continued. Assuming h
and λ to be known, the redistribution of momentum can be traced easily from
these equations. Obviously, (17) and (18) expresses respectively the transfer of
momentum from the mainflow component h to the dimensionless radial and axial
perturbing velocities g and f . For elucidating more concisely the transfer to f
the term 2g on the left hand of (18) can be replaced by −f ′ in accordance to
the mass balance (20). Doing so the direct interdependence of f and h becomes
evident.
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Starting the linearisation of the equations of motion from the creeping flow
(10) - (12) has the advantage that a good approximation can be expected for very
different values of the angular velocity ratio s. This is due to the fact that the
basic assumption (9) is preserved. On the other hand a significant numerical work
has to be carried out when treating the system (17) - (22). However, in [10,11]
full analytical solutions are presented for some special cases and, therefore, it
seems to be of high educational value to analyse them before presenting some
numerical results from (17) - (22).

As shown in [10,11] full analytical solutions of the equations of motion can
be obtained starting the linearisation from a rigid body flow. Formally this flow
is obtained by setting s = 1 in (12) whereby (becomes equals to unity. Then
the radial and circumferential momentum balances (17) and (18) simplify to:

−1− 2h = −λ+ g′′ (24)
2g = h′′ . (25)

The boundary condition (21) remains unchanged but (22) translates into

ζ = ζb : g = f = 0 ; h = s− 1. (26)

Doing so, it becomes obvious that (24) and (25) can be treated separately from
the axial momentum balance (19) and mass conservation (20). This represents
a substantial simplification in finding solutions describing the fluid movement
induced by the co-rotating disks. After some algebraic manipulations (24) and
(25) can be reduced even to a single linear differential equation (which can be
also found by setting Φ = 1 in (23), of course)

hIV + 4h = 2λ− 2 . (27)

In [10,11] it is shown that the set (24), (25), (19) - (21), and (26) accepts the
general solution

g(ζ) = eζ(C1 cos ζ − C2 sin ζ) + e−ζ(C3 cos ζ + C4 sin ζ) (28)

h(ζ) = eζ(C2 cos ζ + C1 sin ζ) + e−ζ(C4 cos ζ − C3 sin ζ) +
λ

2
− 1

2
(29)

f(ζ) = −C1e
ζ(sin ζ + cos ζ) + C2e

ζ(sin ζ − cos ζ)
−C3e

−ζ(− cos ζ + sin ζ) + C4e
−ζ(sin ζ + cos ζ) + C5 (30)

q(ζ) = −2g(ζ) + C6 . (31)

It is important to mention that h is antisymmetric with respect to a co-ordinate
system with the origin at (ζ/ζb = 0.5 ; h = hm = (s − 1)/2) whereby hm
denotes the average perturbating circumferential velocity. Furthermore, g and
f are, respectively, antisymmetric and symmetric with respect to a horizontal
axis going through (ζ/ζb = 0.5 ; 0) . In the general solution (28) -(31), C1 - C6
represent constants; C6 can be set to zero without the loss of generality . The
values of these constants are given in [10,11]. But it is of importance to emphasise
that they depend on ζb.
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As a consequence of this the solution (28)-(31) are functions of ζ and ζb or
in other words functions of the global and the local Reynolds numbers Re and
Rez, as

ζ =
z

δ
=

√
z2 · ω
ν

=
√

Rez . (32)

In [10,11] it is shown that the solution (28) - (31) agrees excellently with those
calculated by Holodniok et al. [8] for Re = 275 and s = 0.8 starting from the
non-linear von Kármán equations. This results from two different facts. At first
the isorotation (Φ = 1 , i.e. s = 1 ) is a solution of the full Navier–Stokes equa-
tion. Therefore, it is valid for arbitrary Reynolds numbers. Thus, a low order
perturbation of the isorotation must be expected to provide a good approxima-
tion of the flow field at least in laminar flow regime as far as the flow remains
stable. The second reason is connected to the s-value studied in [8]. As long as
the deviation from s = 1 is only moderate the basic assumption (9) is preserved.
In [11] it is estimated that even when the deviation of s is 0.5 the error to be
expected should be not larger than 12, 5%.

The influence of Re on the velocity components for s = 0.6 is illustrated in
Fig. 4. For convenience, the velocity distributions are depicted graphically as
functions of ζ/ζb. In Fig. 4 the lower, faster rotating disk is represented by the
velocity co-ordinate axis characterised by ζ/ζb = 0 . The parallel line intersect-
ing the ζ/ζb-axis at 1 is considered to describe the surface of the upper disk.
In accordance to the results of different authors [8,22] the solution (28)-(31) de-
scribes a flow of Batchelor type. In [8] it has been observed that the Batchelor
flow develops continuously from the flow at low Reynolds numbers. This is con-
firmed by Fig. 4(b). But in contrast to the prediction of Batchelor, a core region
rotating at a nearly constant angular velocity (1 − s)ω/2 is only available for
sufficiently large Re. This can be deduced from Fig. 4. This figure shows the
characteristic core rotation only for Re ≥ 49.

For very low Re numbers the distribution of the circumferential velocity
component h is nearly linear in ζ. This can be deduced immediately from the
solution (29). The order of magnitude of Re determines also that of Rez and ζ,
see (32). This allows to replace in (29) eζ and cos ζ by unity and sin ζ by ζ. As
a consequence of this, h can be rewritten as (B1, B2 are constants)

h(ζ) = B1 +B2 · ζ . (33)

Similar considerations require the radial and axial perturbing velocity compo-
nents to vanish for very low Re numbers, compare Fig. 4(b).

The nearly linear dependence of h on ζ/ζb can only hold up to a flow situation
in which the inertia and shear forces are of the same order of magnitude, i.e.
up to Re = 1 . For higher values of Re the momentum transfer due to inertia
dominates and the velocity distributions change not only quantitatively but also
qualitatively. As shown in Fig. 4(b), for Re = 9 the circumferential perturbing
velocity h decreases monotonously with ζ/ζb. At ζ/ζb = 0.5 the graph shows a
point of inflexion the existence of which can be derived from the circumferential
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Fig. 4. Influence of Re on the transformed axial perturbing velocity component g(ζ/ζb)
(radial), h(ζ/ζb) (azimuthal) and f(ζ/ζb) (axial)

momentum (25) when taking also into consideration the symmetry properties of
g mentioned above which requires g to vanish but not its first derivative.

When Re is further increased the graph of h shows additional extrema, as
demonstrated in Fig. 4(b) for Re = 49 . Obviously, in a large distance away from
the rotating disks the friction forces are not longer able to balance the inertial
forces. Similar to the single disk, shearing effects dominate only in a layer of the
magnitude of

√
ν/ω. This behaviour becomes more pronounced with increasing

Re. But, as shown in Fig.4(b) for Re = 100 , not only the thickness of the
shear dominated layer becomes smaller but also the core region in which the
flow rotates nearly with the mean velocity vm = rω(1 + hm) = r(1 + (s− 1)/2)
extends for large values of Re.

This is typical for the Stewartson flow type which is also supported by the
behaviour of the radial and axial velocity components, see Fig. 4(a),(c). In agree-
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ment with the prediction of Stewartson the lower, faster rotating disk acts as a
fan which carries the fluid in the radial direction outwards. This is connected
to positive values of g in the neighbourhood of this disk. Continuity requires a
suction of the fluid at the upper, slower rotating disk, i.e. negative values of g.
Increasing values of Re generate high velocity gradients in the vicinity of the
disks whereby the local velocity extrema are shifted towards the disks. When
the inertia effects dominate absolutely (see the data for Re = 100 in Fig. 4)(a)
the radial perturbing velocity component tends to zero in the core region, too.
Stewartson [4] argued that in spite of the mass transport taking place along
the disks in opposite direction the secondary flow generated in the meridional
section is characterised by the presence of a single cell in the sense as defined
by Mellor et al. [7]. This can be deduced also from the behaviour of the axial
perturbing velocity component f as depicted graphically in Fig. 4(c). The axial
velocity has on negatives values in the whole gap, i.e. it does not change its sign.
This indicates the existence of a single cell whereby the fluid moves from the
slower disk to the faster one.

This can be shown more conclusively when introducing a perturbing stream
function Ψ+ which fulfils identically the continuity equation (20) (but also (2)
as u+ = u and w+ = w) when the linearisation is started from isorotation:

u+ = −1
r

∂Ψ+

∂z
(34)

w+ =
1
r

∂Ψ+

∂r
. (35)

When using the von Kármán transform for u+ and w+ mass conservation leads
to (dimensionless) transformed stream function

ξ =
Ψ+

δωr2
=

f

2
. (36)

This relationship shows that the sign of the stream function ξ agrees to that of
f . As it remains unaltered in the whole gap it is obvious that in the meridional
section only one movement cell exists.

Studying the interdependence of the perturbing velocity components in a
more detailed manner provides a better insight in the basic features of the flow. In
this context it appears convenient to come back to the interdependence between
the axial and the radial component resulting from the continuity equation as
already used in the discussion above. The relation between g and the derivative
of f expresses that the number of extrema of f must be equal to the number
of roots of g. This can be also seen immediately when comparing in Fig. 4.
While for small values of Re g becomes zero only at ζ/ζb = 0.5 zero in the gap
(apart from the disks at which wall adhesion requires vanishing values of g), the
graph of g intersects the ζ/ζb-axis three times for Re = 100 this generating an
equivalent number of extrema in the distribution of f .

There is also a similar closed relationship between the circumferential and the
axial component. From an algebraic manipulation of (20) and (25) one obtains

f + h′ = B3 . (37)
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This means that the sum of f and the first derivative h′ is equal to a constant
value B3 in the whole gap. In [11] it is shown that for large values of Re

B3 = h′(0) = hm . (38)

Both equations are of great importance when discussing the behaviour of f as
shown in Fig. 4(c). At first it must be stated that the symmetry of f mentioned
above demands f ′ = 0 and in accordance to (37) h′′ = 0 at ζ/ζb = 0.5 . This is a
necessary and, obviously, a sufficient condition for the inflection point appearing
at half the gap width as demonstrated in Fig. 4(b). Furthermore, from (37) it
can be deduced that the existence of maxima of h requires the condition to be
fulfiled that the local value of f must exceed that of hm. For the angular velocity
ratio s = 0.6 considered in Fig. 4 this condition is already preserved when a
characteristic Reynolds number of Rec ≈ 22.3 is achieved. Though this value is
relatively small the difference between B3 and hm is smaller that 2%. Thus for
Re > Rec the validity of (37) can be assumed to be given. This also means in
accordance to (37) and (38) that

fc ≈ hm (39)

and, therefore, that the position of the maxima of azimuthal perturbing ve-
locity are located at those points at which the line parallel to the ζ/ζb-axis
going through fc intersects the function f(ζ/ζb) . For completeness, it should
be mentioned that due to (38) B3 = hm represents also the wall shear rate of
the circumferential velocity component. Thus, in accordance to the discussion
above, local extrema of h can only exist if the wall shear rate exceeds the values
corresponding to that available at Rec.

As demonstrated in this section, linearising the equations of motion starting
from the isorotational flow proposed in [10,11,19,20] permits to get an detailed
insight into the basic features of the flow induced by co-rotating, impermeable
disks with a comparably small effort. On the other hand, the restriction (9)
permits to study flows in which the ratio of the angular velocities deviates only
slightly from s = 1 . For other values of s, specially for the case of counter-
rotating and for disk at rest it is necessary - and somewhere physically evident -
to start the linearisation from the creeping flow described by (10)-(12). Therefore,
it appears more appropriate not to discuss the dependence of the flow dynamics
on s with the aid of the full analytical solution (28) - (31) but with numerical
results obtained for the set (17) - (21).

Details on the numerical method used for solving this system are given
in [10,11,19]. Here, it should be mentioned, that due to linearisation the numer-
ical work is substantially smaller than when solving the non-linear von Kármán
equations. Fig. 5 shows data for the case of the upper disk being at rest (s = 0).
As already discussed this flow was studied by Batchelor [3] first. He argued by
qualitative reasoning that for high values of Re the core region should rotate
with a constant angular velocity. Furthermore, the fluid should move axially to-
wards the rotating disk, but a formation of boundary layer should occurs at both
disks. In contradiction to this Stewartson [4] concluded on the base of a series
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expansion for small Re numbers that the boundary layer formation should take
place only on the rotating disk. Other authors [2,7] have shown that both flow
types fulfil the non-linear von Kármán equations.

The experimental results of Mellor et al. [7] as well as of Schulz-Grunow [7,28]
but also the theoretical results found in [22,24] give strong evidence that the flow
is of Batchelor type for s = 0 . In [10,11] it is shown that also for a steady disk
only a single cell is present in the gap. Furthermore, in the neighbourhood of
the rotating disk the meridional flow is nearly radial as the (big) peak in the
radial velocity distribution, see Fig. 5, is relatively close to the wall but not the
(low) peak (not shown in the present survey) of the axial velocity component.
The first derivative is additionally zero at the wall due to mass conservation.

As discussed in [10,11] (see also Fig. 5) the deviation from the creeping flow
(10) - (12) is very small for values of Re up to unity. With increasing Re numbers
substantial velocity gradients arise at both disks. This indicates the formation
of boundary layers. The largest gradients appear at the rotating disk. When
comparing the behaviour of the function g(ζ/ζb) for Re = 49 and Re = 100
in Fig. 5(a), it is evident that the gradient of g becomes smaller for Re = 100 .
Furthermore, for this Re number a flow zone (0.45 < ζ/ζb < 0.75) appears, in
which g depends only very slightly on ζ/ζb. This can be attributed to the linear
dependence of f on ζ/ζb observed in this region by [10,11] as mass conservation
requires g to be constant in this case. From this it can be deduced that g does
not participate on the momentum balance (17) in this region. In other words any
shear effect due to gradients of g vanishes there due to g′′ = 0 . As a consequence
of this, the inertia terms on the left side of (17) must provide a constant value at
each position ζ/ζb, as λ is constant, too, for given s and Re. Considering that Φ
is linear in ζ/ζb this condition is satisfied only if h is also a linear function in the
region in question. Furthermore, the graphs of Φ2 and −2Φh must be parallel
this being only possible if

d h

d(ζ/ζb)
=

1
2

dΦ

d(ζ/ζb)
=

1
2

. (40)

As Fig. 5(b) demonstrates this represents in fact a good approximation of the
h(ζ/ζb) .

In connection to the contradictory predictions of Batchelor and Stewartson
the appearance of a point of inflection for Re = 100 in the core region as shown
in Fig. 5(b) seems to be essential. Taking v = rωH = rω(Φ+ h) into account,
this means that the dependence of the circumferential velocity on ζ/ζb diminishes
when Re is sufficiently large. This in connection to the discussed behaviour of
g indicates that the flow tends to rotate with a constant angular velocity as
predicted by Batchelor. Stewartson [4] was not able to find this point of inflection
as his serial expansion diverges for Re > 10 . For completeness, the case of
counter-rotating disks is discussed briefly here. The results found in [10,11,21]
for moderate Reynolds number up to 100 agree excellently with those of other
authors who used the non-linear von Kármán equation, see for example [22,24].
In literature the prediction of Stewartson [4] is well accepted. In accordance
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Fig. 5. The transformed perturbing velocity components g (radial) and h (azimuthal)
for the flow induced by co-rotating disks one those being at rest (s = 0) for different
values of Re

with this author boundary layers are formed at both disks which carries the
fluid outwards. Due to mass conservation an inflow occurs in the core region
from which the disks are supplied with the same flow rate this requiring the axial
component to flow into opposite directions. Thus, the perturbing stream function
Ψ+ changes its sign (compare also (36)). A two-cell flow is available in the
meridional section. Szeto [29] shows that a solution of the non-linear von Kármán
equation (Branch 1 in [29]) with similar characteristics develops continuously
from the creeping flow and extends to Re → ∞ (this author does not study
the appearance of turbulence!). This solution is found to be temporally stable.
For Re = 199.8 it bifurcates supercritically into two asymmetrical solutions
(Branches 2 and 3 in [29]).

Finite disks and limitations of self-similar solutions

The influence of a housing of the flow field induced by rotating disks or, more
general, of boundary conditions at r = 1 has been subject of intensive investiga-
tions, as yet [5,21–23,28]. Furthermore, the number of parameters which affects
the flow is so large, that the considerations given here can not be more than just
an example.

When studying theoretically the flow induced by disks of the finite radius R
three main ideas are followed in literature. Among others, Brady and Durlof-
sky [22] calculate the flow numerically on the base of a parabolisation of the
equations of motion. Furthermore, for moderate values of Re in [20,21] it is sug-
gested to solve directly the linearised equations of motion (14) and (2). Other
authors - especially those of most recent investigations - [9,11,21,30] seek solu-
tions of the full Navier–Stokes equations with the aid of sophisticated numerical
algorithms.
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At the beginning of the present section it was mentioned that in the presence
of a housing the influence of sE must be taken into consideration additionally
to the Re and s. Furthermore, the flow depends on R. This encourages some
authors to introduce a further ReR number with R as characteristic length.
However, the meaning of ReR is obviously restricted as e.g. for very small gap
width the flow will remain shear dominated even when Re is large due to a large
values of R. In fact, the flow is influenced directly by the aspect ratio b̂ = b/R .
Furthermore, for simplification it is convenient to introduce r̂ = r/R .

Parabolising the equations of motion requires formulating conditions at R
which match the flow in the gap. Finding such conditions is not trivial. In most
cases they can not be connected directly to a real physical case [24].

When treating finite disks the question is often addressed how reliable self-
similar solutions can describe the flow induced by finite disks enclosed by a
cylindrical wall [11,22,24,30]. This question arose originally from the experimen-
tal findings of Picha & Eckert [5] that a housing performs a selection in the sense
that only certain self-similar solutions are observable. Dijkstra & van Heijst [9]
found in similar experiments and in numerical simulations only a unique flow
type in the presence of a housing.

Fig. 6 shows a comparison of results of the method proposed in [10,11] for
moderate Reynolds numbers, of Brady & Durlofsky [22] for parabolised equations
of motion, and those calculated by Bhattacharyya & Pal [30] by treating the full
Navier–Stokes equations. In this figure the radial pressure gradient coefficient,
see (16) is depicted graphically as a function of Re for the case of counter-
rotating disks. Brady and Durlofsky [22] evaluated the results of the non-linear

Fig. 6. Comparison of the radial pressure coefficient data given in literature for counter-
rotating disks, r = 0.1 and half the gap width (Stewartson flow type)

von Kármán equation with those provided by the parabolisation of the equations
of motion for disks of the radius R. These authors investigate among others so-
called ”open end” boundary conditions at R which have to match the flow field in
the gap. This boundary conditions prescribe an angular velocity of zero, an radial



436 A. Delgado

outflow in the vicinity of the disks due to the effects of the boundary and a mass
conserving flow which transports fluid with an uniform radial component in the
negative r-direction. Concerning the radial velocity component they found that
the discrepancies in the solutions based on the parabolisation and the non-linear
von Kármán equations were not greater than 2% in the region 0 ≤ r̂ ≤ 0.85
when Re = 40 and in the region 0 ≤ r̂ ≤ 0.7 for Re = 100.

The data shown in Fig. 6 are valid for r̂ = 0.1 and b̂ = 0.2. Brady and Durlof-
sky [22] demonstrated that the values of λ for different boundary conditions they
investigated when using the parabolised equations of motion and those of the
self-similar Stewartson flow type coincide within a small error range. Therefore,
the data of these authors are depicted graphically by a single curve for simpli-
fication. The results of Bhattacharyya & Pal [30] were calculated by assuming
the housing rigid and steady, i.e. sE = 0 .

As can be seen, the data presented in Fig. 6 are in excellent agreement
for values of Re up to 200. Bhattacharyya & Pal [30] make the end effects
at higher Reynolds numbers responsible for the deviation occurring at higher
Reynolds numbers. Fig. 7 illustrates these end effects for the case of counter-
rotating disks for large values of b̂. It demonstrates stream lines of the meridional
flow found by [30] for different Re numbers. At the housing re-circulation zones
exist which are symmetrical regarding the half gap width for each Re number
depicted grahically, but the streamline contours exhibit waviness. This could
lead to the formation of a new flow system with a higher number of cells. The

Fig. 7. End effects for disks with small radius R and large gap width b

data shown in Fig. 8 illustrate that for small values of b̂ the end effects influence
significantly the axial velocity component which even changes its sign for large
values of r̂ but not the radial component (Re = 100; b̂ = 0.2). This permits
different interpretations. At first, the radial transport effect due to the shear
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layers remains nearly unaltered in the case of a housing in a large region of r̂. In
fact, the radial flow is deviated only in the vicinity of the cylinder enclosing the
disks. Concerning the von Kármán ansatz this fact is of substantial importance,
as it holds even for large values of r̂, see Fig. 8. In contrast to this, a basic
assumption of the von Kármán ansatz which requires the axial velocity f to be
a function of z only is violated at relatively small values of r̂.

Fig. 8. Velocity of self-similar solution in a gap with the aspect ratio b̂ = 0.2 (counter-
rotating disks)

3 Conclusions and future investigations

Although rotating disk flows can be considered as classical subject of research
in fluid mechanics, the understanding of the physics of the fluid is far from be
complete. For the newtonian, one-phase fluids in a steady, laminar flow field
treated here, the variety of the problems arising when treating co-rotating disks
is due to inertia effects and the boundary conditions available in the physical
case in question. In other words, non-linearity and the elliptical character of the
Navier–Stokes equations are the sources for a large number of problems occurring
in the mathematical description of the flow.

The von Kármán transform [1] has been applied to a large number of flow
situations up to now. In this context stable as well as unstable, multiple and even
aphysical solutions have been calculated. For the validation of these solutions
one must consider especially that the boundary conditions for r̂ = 1 can not be
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prescribed a priori. This is a consequence of the transformation of the equations
of motion with the aid of the von Kármán ansatz: the equations of motion are not
only parabolised but also they provide self-similar solutions which accept only
such boundary conditions at r̂ = 1 which are compatible to their kinematics.

In the last three decades of theoretical and experimental investigations the
potential as well as the limitations of self-similar solutions became substantially
clearer [5,8,9,11,22,29]. Furthermore, most of the investigations have been driven
by the increasing number of applications for rotating disks flows. For applica-
tions in which a pair of disks rotates slowly or a high viscosity fluid is used the
application of the von Kármán ansatz on the linearised equations of motion rep-
resents a powerful mean of investigation [10,11,20,21] which facilitates a better
access to the physics of the flow with less mathematical work. In certain cases
even full analytical solutions have been found.

On the other hand, in the most recent literature [21,30] there is a trend to
solve the full Navier–Stokes equations by using sophisticated numerical methods
where also turbulence is considered. This represent a huge work but avoids some
uncertainties connected to the simplification of the equations of motion such as
when parabolising them.

The author of the present contribution foresees that at least in the near fu-
ture the use of numerical algorithms will increase substantially but the more
”classical” methods of solution will keep their relevance, too. This has been de-
duced from the known and expected fields of applications of rotating disks which
are specially characterised by a large spectrum of chemo-physical processes to be
studied [11,31–33,35–38]. Poly-phases as well as -components fluids, rheological
substances and last, but not least, flow with chemical reactions will require the
availability of well suitable means.
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