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CHAPTER 1

Introduction®

a. Background

The notion of force is central to al of continuum mechanics. Classicaly, the
response of a body to deformation is described by standard (Newtonian) forces
consistent with balance laws for linear and angular momentum; these forces are
well understood. That additional configurational? forcesmay be needed to describe
phenomena associated with the material itself is clear from the beautiful work of
Eshelby? on lattice defects and is at least intimated by Gibbs* in his discussion of
multiphase equilibria.

1l gratefully acknowledge many valuable discussions with P. Cermelli, E. Fried,
A. I. Murdoch, P. Podio-Guidugli, A. Struthers, and P. Voorhees; much of the research
discussed here was done with them. In particular, the insight afforded by the use of bulk
and interfacial Eshelby tensorswas pointed out to me by P. Podio-Guidugli, acomment that
was central to my understanding of configurational forces. | would like to express my grat-
itude to the National Science Foundation, the Army Research Office, and the Department
of Energy for their support of the research on which much of this book is based.

2] usethe adjective configurational to differentiatetheseforcesfrom classical Newtonian
forces, which | refer to asstandard. In the past | used the terms accretive and deformational
rather than configurational and standard.

8[1951, 1956, 1970, 1975]. Eshelby [1951] remarks that the idea of aforce on alattice
defect goes back to “an interesting paper” of Burton [1892], a work that | am unable
to comprehend. Cf. Peach and Koehler [1950], who discuss the configurational force on a
dislocationloop, and Maugin [1993], whose monograph presentsacomprehensivetreatment
of configurational forces (there called material forces) with alengthy list of references.

Cf. also Nozieres [1989, p. 26], who uses the term chemical rather than configurational
and writes: “ Such aconcept of ‘chemical stresses, although somewhat misleading, is often
useful in assessing equilibrium shapes”

411878, pp. 314-331].



2 1. Introduction

Gibb's discussion is paraphrased by Cahn® as follows: “Solid surfaces can have
their physical area changed in two ways, either by creating or destroying surface
without changing surface structure and properties per unit area, or by an elastic
strain . . . along the surface keeping the number of surface lattice sitesconstant . . . ."
The creation of surface involves configurational forces, while stretching the surface
involves standard forces.

The studies of Gibbs and Eshelby, and most related work, relegate configu-
rational forces to a subsidiary status, because the statical theories are based on
variational arguments and the generalizations to dynamics obtained by manipula-
tion of the standard momentum balances. | take a different point of view. While
| am not in favor of the capricious introduction of “fundamental physical laws,”
| do believe that configurational forces should be viewed as basic objects consis-
tent with their own force balance. To help explain my reasons for this point of
view, | sketch the typical treatment of a two-phase elastic solid within the formal
framework of the calculus of variations.®

b. Variational definition of configurational forces

Consider atwo-phase elastic body’ B, neglecting thermal and compositional in-
fluences and interfacial energy. Suppose that the phases, « and 8, occupy closed
complementary subregions B, and Bg of B, with the interface . = B, N By
a smooth, oriented surface whose continuous unit normal field m points outward
from B, (Figure 1.1). Then, granted coherency, adeformation of B isacontinuous
function y that assigns to each material X in B apoint x = y(X) of space, has
deformation gradient

F =Vy

smooth up to the interface from either side (but generally not across .), has
det F > 0, and for this discussion, is prescribed on 9B.

Consider constitutive equations given the bulk free energy® W at any point X in
B when the deformation gradient F at X is known:

W =U,(F,X) inB,, W=WyF,X) inBy, (1-1)

5[1980].

6Cf. Eshelby [1970], Robin [1974], Larche and Cahn [1978], Grinfeld [1981], James
[1981], Gurtin [1983].

"The body is identified with the region B of Euclidean space it occupies in a fixed
reference configuration; to emphasize this, B is generally referred to as the reference
body. Stresses and body forces are measured per unit area and volume in the reference
configuration.

8] use the term free energy in a generic sense. The thermodynamic potential actually
involved depends on which thermodynamic theory this purely mechanical theory is meant
to approximate. The current theory is independent of such considerations.



b. Variational definition of configurational forces 3

Undeformed Body Deformed Body

FIGURE 1.1. Theregions B, and B occupied by the phases & and g in the undeformed
body; .7 istheinterface and m is the unit normal to the interface.

with response functions ¥, (F, X) and Wg(F, X) defined for all F withdet F > 0
and al X in B. (The notation ¥ = V¥, (F, X), say, is shorthand for ¥(X) =
W, (F(X), X).)
Asis customary in variational treatments, the stress S is defined as the partial
derivative of the energy with respect to F,
S = BF\IJO[(F, X) in By, S = 8F\I‘ﬂ(F, X) in Bﬂ. (1—2)
In conjunction with this, | define abody force g through
g = —BX\I-’Q(F,X) in B,, g = —8X\IJﬁ(F,X) in Bﬁ. (1—3)
The traditional definition of stable equilibrium requires that the deformation of
the body and the position of the interface minimize the total energy

E(7,y) = f Ydv + [ Wdv (1-4)

By Bg

and hence result in a vanishing first variation, s E(.¥, y) = 0, arestriction that |
will use to deduce appropriate field equations and interface conditions.

Thevariation S E(.7, y) isdefined asfollows. assumethat y(X) and .~ arevalues
at ¢ = 0 of one-parameter families y.(X) and %%, with ¢ a small parameter and
y:(X) = y(X) on aB for al ¢; then

d
(SE(y y) _E(%sys) |6 =0’
where E(%, y.) is defined by (1-4) with U (X) = ¥, (Vy.(X), X) in B, = B,(¢)
and similarly in Bg = Bg(e).
To formally compute § E(.¥, y), define the variations §y(X) and 8 F(X) through
ad ad
Sy(X) = ya(X)|€ o SF(X) = —Vys(X)Ig o

so that

sy =0 ondB, 8F = V(8y). (1-5)
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Further, assume that .% admits a parametrization X = X,(c), ¢ = (01, 02), and
define the normal variation 6. (X) of . to be the scalar field

8.7(X) = m(X) - (%) X.(0)] -

Finaly, let [ /] denote the jumpin afield f acrossthe interface (the limit from B
minus that from «), and let { /) designate the average of the interfacial limits of
f. The divergence theorem, the compatibility condition®

[yl = —(8.7)[F]m,
theidentity [ fg] = (f)[g] + (g)[f], and the conditions (1-5) then imply that
—SE(S,y)=—[S-V(©y)dv— [S-V(sy)dv+ [[¥]8.¥ da
S

B, By
= [ DivS-8ydv+ [ DivS-8ydv
B, B,
+ [I(Sm) - 8y)1da + [[V18.¥ da
7 s
= [ DivS-8ydv+ [ DivS - dydv
B, By

+ f {[SIm - (8y) -+ ([¥] — (Sm) - [Fm]) 8.7 }da. (1-6)

Assumethat  E(., y) = Ofor all variationsdy and §.&. Then because 8y can be
specified arbitrarily away from &, while (8y) and 8.7 can be specified arbitrarily
on.%, (1-6) yields the standard equilibrium equation

DivS§ =0 inbulk 1-7)
(that is, in B, and in Bg), the standard force balance
[SIm =0 ontheinterface, (1-8)
and an additional condition
[W] =[Fm-Sm] ontheinterface, (1-9)

often referred to as the Maxwell relation.

Since (1-9) cannot be derived from balance of forces alone, this leads to the
question of whether the Maxwell relation represents an additional “force balance.”
Infact it does. To seethis, consider the “ stress tensor”

C=W1-F'S (1-10)

introduced by Eshelby in his discussion of defects. Interms of the Eshelby tensor,
the Maxwell relation hasthe simpleformm - [CIm = 0. Further, the continuity of y

SCf., eg., Larché and Cahn [1978, eq. (6)]; if the parameter ¢ isviewed as“time;” then
this condition is the classica Hadamard condition for shocks (cf. Truesdell and Toupin
[1960, eg. (189.1)]).
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across the interface implies that [F]¢ = O for any vector ¢ tangent to the interface,
so that (1-8) yields¢ - [C]m = 0. Thus

[Clm =0 ontheinterface, (2-11)

implying continuity of the Eshelby traction across the interface.’® Further, a
computation based on (1-2), (1-3), and (1-7) yields the conclusion

DivC+g =0 inbulk, (1-12)

so that Eshelby tensor C and the body force g satisfy abalance law; in fact, (1-11)
and (1-12) together imply the integral balance

[ Cnda+ [gdv=0 (1-13)
op P

for every subregion P of B,wheren isthe outward unit normal to oP. | will refer
to g astheinternal configurational body force, where, for now, the term internal
can be thought of as arising from the fact that, by (1-3), g isameasure of material
inhomogeneity.

I henceforth use the term standard balance for balances such as (1-7) and (1-8)
involving the standard Piola stress™ §, as opposed to the term configurational
balance, which | reserve for balances of the form (1-13) involving the Eshelby
tensor C and the body forceg.

This analysis leads to the questions:

e Isthereaformulation inwhich C and g are primitive quantities, consistent with
aforce balance of the type (1-13), and in which the Eshelby relation (1-10)
follows as a natural consequence?

o Aside from apossible better understanding of the underlying physics, doesthe
introduction of configurational forces lead to new results?

The chief purpose of thisbook isto answer these questions.

c. Interfacial energy. A further argument for a
configurational force balance

Theargument in support of aconfigurational forcebalanceiseven morecompelling
when the free energy of the interface is accounted for in the total energy (1-4) by
aterm of the form

[V da. (1-14)

10Cf. Kaganova and Roitburd [1988].
1Called Piola-Kirchhoff stress in the terminology of Truesdell and Noll [1965] and
Gurtin [1981].
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Here v, assumed, for convenience, to be constant, represents the interfacial free
energy per unit referential area. The variation of (1-14) is

— [¥ K85 da, (1-15)
7

with K twice the mean curvature of ., and this term results in the following
generalization of the interface condition (1-9):

m-[C]m+ K = 0. (1-16)

Here C isthe bulk Eshelby stress (1-10), and, granted the identification of surface
tension with surface free energy, (1-16) resembles a classical identity for fluids
equating the jump in pressure across an interface to the product of surface ten-
sion and twice the mean curvature. Here, however, this identity takes place in the
configurational system.

Further, (1-16), the argument in the paragraph containing (1-11), and well-
known differential-geometric identities yield the local balance

[CIm + Divy, C =0, (1-17)
where Div .- represents the surface divergence on .7, while C is the tensor
C=vyP,

with P = 1 — m ® m the projection onto the interface; equivalently, relative to an
orthonormal basis {e4, e, e3} withesz = m,

v 0 0
cz(o v o).
0 00

Theidentity (1-17) representsalocal balance law relating the configurational bulk
stress C and the configurational surface stress C; in fact, given any subregion P of
B, if ¢, assumed nonempty, represents the portion of .+ in P, and if n, a vector
field tangent to .7, denotes the outward unit normal to the boundary curve 3¢,
then (1-12) and (1-17) yield the integral balance

[Cnda+ [gdv+ [ ynds =0, (1-18)
aP 4

i

which relatestheforces' exerted by the traction Cr on P and the body forceg on
P tothetensile force yn exerted on P across 9% by surface tension.

Here it is important to note that the balances (1-16)—(1-18) concern config-
urational forces, not standard forces; the introduction of a constant interfacial
energy v, measured per unit areain thereference configuration, leavesthe standard
balance (1-8) unchanged.
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To dlow for surface tension in the standard force system necessitates strain-
dependent surface energies.*? To quote Herring®® on crystalline materials: “The
principal cause of surface tension is the fact that surface atoms are bound by fewer
neighbors than internal atoms; surface tension is therefore mainly a measure of the
change in the number of atomsin the surface layer.” | interpret this asimplying that
surface tension in crystalline materialsis primarily configurational. Compare thisto
fluids, whereinterfacial energy isaconstant when measured in the deformed config-
uration and is hence dependent on F (through the surface Jacobian) when measured
with respect to a fixed reference; for that reason, interfacial energy in fluids gives
rise to surface tension in the standard force system.

d. Configurational forces as basic objects

Itisdifficult to imagine distinct force systems acting concurrently at each point of
a body, which is perhaps why configurational forces have never been considered
more than derived quantities. Unfortunately, the current entrenched, facile view of
forceintermsof “pushes’ and “pulls’ hasled to a sense of security in which force
isseen as areal quantity rather than as a mathematical concept. Such afeeling of
“understanding,” while a natural outgrowth of experience and an aid to pedagogy,
isamajor drawback to the acceptance of new ideas, whose very youth generally
precludes a deep understanding of their physical nature.
In this book | will:

o present aframework inwhich configurational forcesaretreated asbasic objects;
e give adiscussion of configurational forces that provides at least an intuitive
understanding of their physical nature.

In the words of Pierce:4

[Forceis] “the great conception which, developed inthe early part of the seventeenth
century fromtherudeideaof acause, and constantly improved upon since, hasshown
us how to explain all the changes of motion which bodies experience, and how to
think about physical phenomena; which hasgiven birth to modern science; and which
... hasplayed aprincipal part in directing the course of modern thought . ... Itis,
therefore worth some pains to comprehend it.”

Those who believe the notion of force is obvious should read the scientific lit-
erature of the period following Newton. Truesdell*®> notes that “ D’ Alembert spoke
of Newtonian forces as ‘ obscure and metaphysical beings, capable of nothing but
spreading darkness over a science clear by itself, ” while Jammer® paraphrases a

12Cf. Herring [1951], Gurtin and Struthers [1990], Gurtin [1995]; see also the sentence
following (21-17).

13[1951b).

141934, p. 262].

15[1966].

16[1957, pp. 209, 215].
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remark of Maupertuis, “we speak of forces only to conceal our ignorance,” and one
of Carnot, “an obscure metaphysical notion, that of force”*’

What | believe to be a magjor roadblock to the acceptance of a configurational
force balance lies in the fact that Gibbs's'® masterpiece, so central to the subse-
guent development of materials science, is based on variational arguments; forceis
not primitive. But arguments appropriate to the statical setting within which Gibbs
framed his theory seem inappropriate to dynamical situations involving dissipation.

Those reluctant to accept a separate balance for configurational forces should note
that a balance law for moments was not part of Newtonian mechanics. Asremarked
by Truesdell and Toupin,'® “It should be, but unfortunately it is not, unnecessary
to comment that the laws of Newton are ... [not] sufficiently general to serve as
afoundation for continuum mechanics,” Indeed, a balance law for moments—first
stated explicitly by Euler [1776] amost a century after the appearance of Newton's
Principia [1687]—need join balance of forces as a basic axiom.

A framework that considers as fundamental both configurational and classical
forces requires a concept that unifies disparate notions of force. Here the unifying
concept is “the rate at which work is performed” or, more simply, “the work-
ing.” Roughly speaking, to each independent kinematical descriptor | assign an
associated system of forces, and to each density of force, whether it be a surface
traction or abody force, | associate awork-conjugate generalized velocity, therate
of change of the kinematical descriptor, such that

density of working = {force density} - {generalized velocity}.

The paradigm | use requires an answer to the question: What makes a kinemat-
ical quantity independent? The answer isthe need for an independent observer to
measure its generalized vel ocity. Such observers are essential to the devel opment
of the theory, because invariance of the thermodynamics to changes in observer
yieldsthe underlying mechanical balancelaws. Invariationa treatments, indepen-
dent kinematical quantities may be independently varied, and each such variation
yields a corresponding Euler-Lagrange balance. In dynamics with general forms
of dissipation there is no encompassing variational principle; the use of indepen-
dent observers provides a dynamical theory with arational basis for determining
mechanical balance laws.

Thereisalargeliteraturethat usesthe principle of virtual work to derive balance
laws for force. | prefer to not consider such variational forms of balance as basic,
but rather as consequences of more classically formulated balances.?® My reasons
are the following:

e Theprinciple of virtual work, which isvariational in nature, is physically well-
grounded, as the test functions are virtual velocities, but the variational form

17Cf. the remarks of Maugin [1993, p. 4].

18[1878, pp. 55-371].

1911960, §196].

2Byt one should bear in mind that the weaker variational balances are powerful tools of
analysis.
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of other balance laws such as that for energy seem devoid of meaning, chiefly
because the associated test functions have no readily identifiable physical inter-
pretation. | prefer aconsistent presentation in which all of the relevant balances
have classical forms.

e The principle of virtual work requiresan apriori notion of stress, while classi-
cally formulated balances may be based on the more fundamental notion of a
traction, with stress derived via Cauchy’s theorem.?*

e. The nature of configurational forces

Configurational forces are related to the integrity of a body’s materia structure
and perform work in the transfer of material and the evolution of material struc-
tures such as defects and phase interfaces. With this in mind, | introduce three
nonclassical kinematical notions used to capture physics related to the transfer of
material:

e control volumes P(t) that migrate through the reference body B;

e material observers that view the reference configuration and measure, e.g.,
vel ocities associated with migrating control volumes; these observers are used
independently of the classical spatial observers that view motions of B;

o time-dependent changes in reference configuration.

The net working of both standard and configurational forces plays a central
role in the underlying thermodynamics; since much of the theory is mechanical, a
thermodynamics based on work and energy isintroduced, with energy represented
by afree energy density W.?? A standard precept of continuum mechanics is that
when writing basic laws for a control volume P, al that is externa to P may be
accounted for by theaction of forceson P. Consistent withthis, | basethetheory on
anonclassical version of the second law requiring that, for each migrating control
volume P = P(t),

(d/dr){free energy of P(z)} < {rate at which work is performed on P(z)};

in so doing | account for the working of both configurational forces and standard
forces, but only implicitly for aflow of free energy across 9P (r) as it migrates.?®
Thisform of the second law is central to the theory:

o the Eshelby relation (1-10) is derived as a consequence of the requirement that
the second law be independent of the choice of velocity field describing the
migration of dP;

2But because this derivation is well known, | here assume the existence of stress.

2 Also discussed is amore general formulation based on balance of energy and growth
of entropy.

2Gurtin [1995, §3c].
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e invariance of the working under changes in spatial observer results in the
standard force balance;

e invariance under changesin material observer yields an additional balance for
configurational forces.?*

Animportant featureof thetheory aspresented hereisthat all basic equationsand
thermodynamic inequalities are derived without recourseto constitutive equations,
a feature not present in variational treatments and one that renders the theory
applicable to the dynamics of ageneral class of dissipative materials.

f. Configurational stress and residual stress. Internal
configurational forces

Configurational stress is often confused with residual (standard) stress, which
is the stress in the reference configuration when the body is undeformed. In the
absence of deformation F = 1 and the Eshelby relation (1-10) yieldsC = w1-S§;
in particular, C need not vanish when § vanishes, becausethen C = w1.

A mgjor difference between the standard and configurational force systemsis
the presence of internal configurational forces such as the body force g. These
forces are related to the material structure of the body B; to each configuration of
B there correspond a distribution of material and internal configurational forces
that act to hold the material in placein that configuration. Such forces characterize
the resistance of the material to structural changes and are basic when discussing
temporal changesassociated with phenomenasuch asthe breaking of atomic bonds
during fracture.

To better understand the role of internal forces, note the difference between the
body’s reference configuration and the deformed (actual) configurations assumed
by the body during a motion. In the latter the body is free to move about in a
manner dictated by the standard (Newtonian) forces acting on it, forces that result
from the interaction of separate parts of the body and from the interaction of the
body with its environment. There are no internal forces. But the body is not free to
move about in the reference, and abasic presumption of thetheory isthat there are
internal configurational forces that pin, in place, the material points of the body,
thereby maintaining itsinternal structure.®

%This derivation of the standard balance is due to Noll [1963] (cf. Green and Rivlin
[1964]), that of the configurational balance is dueto Gurtin and Struthers [1990].

Pedagogically, | prefer to postulate force balances as consequences of invariance, chiefly
because of the nonintuitive nature of configurational forces and because of the opposition
| have encountered to the introduction of a configurational force balance.

|nternal configurational forces will be discussed in more detail in §5a.
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g. Configurational forces and indeterminacy

Indeterminateforcesarise asaresponseto kinematic constraintsand are essentially
irrelevant to the underlying thermodynamics because they are not generally found
in local forms of the second law. For that reason such forces are not specified
congtitutively. Classical indeterminateforcesarethose associated with the pressure
in an incompressible fluid and the stressin arigid body.?

Indeterminacy arisesin the configurational system whenever thereisno change
in material structure. For example, consider the equilibrium of ahyperelastic body
B that is free of defects. Within this classical framework, configurational forces
are indeterminant, in fact, superfluous; granted appropriate boundary data, if the
problem has a solution, then the stress S and the free energy W are known, and the
configurational stress C and internal body force g can be computed using (1-3)
and (1-10).

More illuminating, assume that dB is free of applied standard and configura-
tional tractions.?” Then, neglecting surface stresses within B, Sk = 0, with n
the outward unit normal to daB. Hence, by the Eshelby relation, there is a config-
urational traction Cn = —Wn exerted at the free surface by the bulk material. If
configurational forces areto be balanced, there must be an internal configurational
surfaceforceg® distributed over dB that opposesthistraction. Theforceg® isin-
determinate, because aB isfixed; g? is, infact, trivially equal to Wn. On the other
hand, were | to allow material to be (freely) added and removed at the boundary,
then 8B would not be amaterial surface. In thiscase (the normal part of) g?® would
not be indeterminate; in fact, its constitution would help to characterize temporal
changes of 0B.

Similarly, the internal configurational force associated with an interface in a
composite material isindeterminate, since such interfaces do not migrate, but the
analogousforce associated with amoving phaseinterface or grain boundary would
have a constitutive specification. Asageneral rule,

the bulk material and all material structures such as free surfaces and in-
terfaces have associated internal configurational forces, with such forces
indeter minate when and only when the associated structures are fixed in the
material.

Another exampleisfurnished by apropagating crack: Thetip migratesand hence
has an associated internal configurational force that characterizes its kinetics; the
crack faces behind the tip also have associated internal configurational forces, but
these are indeterminate because the faces are fixed in the material.

2Cf. Truesdell and Noll [1965, §30] and Gurtin and Podio-Guidugli [1973] for general
discussions of the classical theory of constraints.

27 An example of null configurational tractionsis furnished by an environment composed
of afluid with vanishing enthalpy (cf. 86d).
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h. Scope of the book

The book begins with a discussion of configurational forces within a classical
context; this allows an acquaintance with their physical nature and provides the
derivation of several important relations.

Asafirst departurefrom aclassical context, | consider migrating material struc-
tures such as phase interfaces; here, so as to not introduce too much new material
at once, | neglect configurational stresses, such as surface tension, that act within
theinterface, and focus, instead, on theinternal configurational forcesthat charac-
terize the exchange of material at theinterface. In subsequence sections | consider
more general theoriesthat include surface stress; here the underlying mathematical
structureis differential geometry, and to keep the book reasonably self-contained,
| discuss in some detail the main geometric concepts and results on which the
theory is based.

Configurational forces are also relevant in purely thermal situations, a central
exampl e being solidification as described by the Stefan problem and itsgeneraliza-
tionsto include surface distributions of energy and entropy. | discuss such theories
in detail. A magjor and somewhat surprising consequence of the treatment of the
Stefan problem within the framework of configurational forcesis that the classi-
cal free-boundary condition equating the temperature to the melting temperature
is not a constitutive assumption but instead a consequence of the configurational
force balance applied acrosstheinterface, at least in those situations for which the
energy and entropy of the interface are negligible.

The book closes with a discussion of fracture, concentrating on the configura-
tional forces most influential in the motion of the crack tip. Discussed at length
are the propagation of arunning crack, crack initiation with and without kinking,
and crack curving. In particular, acriterion for determining the direction of arun-
ning crack is proposed; in contrast to previous criteria based on minimizing the
energy release rate, the criterion proposed here chooses directions that maximize
dissipation.

Most of the presentation is based on finite deformations, as the underlying con-
ceptsaremost transparent within aframework that di stinguishesbetween reference
and deformed configurations. However, because many applications of configura-
tional forces presume infinitesimal deformations, | also discuss the theory within
that context.

I. On operational definitions and mathematics

Many of the concepts concerning configurational forces are nonstandard. For that
reason | have tried to give simple interpretations of these concepts, fully realizing
that such explanations are strongly prejudiced by my background. What is im-
portant is the mathematical framework, and that is what the reader should take
most seriously, supplying hisor her own metaphysical “footnotes’ whenever mine
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seem inappropriate. In this regard note that the early explanation of gravitational
forcesin terms of transmission through an all-pervasive ether is no longer tenable
to most scientists; but even so, the mathematical (nonrelativistic) description of
these forces remains as set down by Newton more than three centuries ago.

]. General notation. Tensor analysis

j1. On direct notation

| generally use notation and terminology standard in continuum mechanics.?® In
particular, | use direct (coordinate-free) notation, and for two reasons:

o Direct notation makes the statement of physical laws transparent and, in so
doing, helpsto underline their beauty.

e Thephysical senseof, say, stress seemsmost clearly conveyed when considered
as a linear transformation T that assigns to the normal n of a surface .# the
force T'n transmitted across ..

j2. Vectors and tensors. Fields

Scalarsare denoted by lightface | etters, vectors (and points) by lowercase bol dface
letters (although X, Y, and Z denote vectors). A dot, asinu - v, designatestheinner
product, irrespective of the spacein question. Tensorsarelinear transformations of
vectorsinto vectors and are denoted by uppercase boldface | etters. The unit tensor
1 isdefined by 1u = u for every vector u; the tensor product a ® b of vectorsa
and b isthe tensor defined by

(@a®bu= (b ua for al vectorsu;

AT, tr A, A71, and det A, respectively, denote the transpose, trace, inverse, and
determinant of a tensor A; the inner product of tensors A and C is defined by
A - C = tr(A7C). In Cartesian components with summation over repeated indices
|mp||6d, (Ad),‘ = Aijaj, (a®b),-j = a,-b_j, (AT),'J' = A_,-,-,trA =A;,A-C= AijCij-
The transpose is defined by the requirement that

u-Av=A"u) v for all vectorsu and v.

An identity bearing formal similarity to this definition concerns the inner product
of tensors and has the form

U-AV)=A"U)-V for all tensorsU and V;

thisidentity will be used repeatedly.
The term field signifies a function of position X (in this subsection) or, more
generaly, afunction of position X and time . The symbols V and Div denote the

8Cf., e.g., Truesdell and Noll [1965], Gurtin [1981].
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gradient and divergence. It ismost convenient to definethese operations abstractly,
as such definitions extend naturally to surfaces. For ¢ a smooth?® scalar field, the
gradient Vg, a vector field, is defined by the chain-rule: for any vector function
z(«) of ascalar variable «,

—dd Pz(e) = [Ve(@))] - 2(e), (1-19)
o
or, more succinctly,

¢(@) = Vo(z) - z.

(Here and for the remainder of this subsection the superposed dot denotes ordi-
nary differentiation with respect to a scalar variable, but in the body of the text a
superposed dot denotes differentiation with respect to time holding material points
fixed.)

A sketch of the proof that, given any X, (1-19) defines a unique vector Vo(X)
proceeds as follows. One shows that, for z(e) = X + aa, ¢(z) @ o« = Oisalinear
function of a; onethen usesthefact that any such scalar-valued linear function can be
written as the inner product of a unique fixed vector, written Vo(X), witha. Similar
arguments apply to the gradients of vector and tensor fields, but there only linearity
need be shown.

For u avector field, Vu isthe tensor field defined by
u(z) = Vu(z)z
for all vector functionsz(w), and Divu isthe scalar field
Divu = trvVu.

The divergence of a tensor field T is the vector field DivT defined by the
requirement that

a-DivT = Div(T a)

for al constant vectorsa. The Cartesian components of these fields are

(V)i = 0¢/0X;, (Vu)i; = 0u;/oX;,
Divu = du;/dX;, (DivT), = 0dT,;/dX;.
Classical identities, which will generally be used without mention, are
Div(ou) = ¢ Divu +u - Vo, (1-20a)
Div(T'u) =u-DivT + T - Vu, (1-20b)
Div(u ® v) = (Divv)u + (Vu)v, (1—20c)
Div(Vu'") = V Divu. (1-20d)

2 Assumptions of smoothness and regularity are generally left as tacit, although precise
assumptions are specified for defects such as interfaces and crack tips, where they are
crucial.
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The verification of (1-20b) is an excellent example of direct tensor analysis.
Assumethat T is constant. The definition of Vu then yields

[Tu)] =T'[ui)] = T'[Vuz)z] = [T Vu(z)]z;

thus, by definition, V(T7u) = T" Vu. Dropping the assumption that 7' be constant,
by the product rule for differentiation, which holds for al “products’ involving
vectorsandtensors, Div(T "u) isequal tothedivergenceof T7u holding T fixed plus
the divergence of T"u holding u fixed. For T fixed, V(T u) = T Vu; therefore
Div(T"u) = tr V(T"u) = tr(T"Vu) = T - Vu. On the other hand, the definition
of Div T impliesthat, for u fixed, Div(T"u) = u - DivT.

Various consequences of the divergence theorem, for u and T smooth fields on
asufficiently regular region P, take the form

fu-nda= [Divudv, (1-214)
op P
[ Tnda = [DivT dv, (1-21b)
op P
JTn-uda= [(u-DivT +T - Vu)dv. (1-21c)
op P

The identities (1-21bc) are consequences of the standard identity (1-21a). For
example, taketheinner product of theleft sideof (1-21b) with an arbitrary constant
vector a and apply (1-21a) withu = T"a.

j3. Third-order tensors (3-tensors). The operation T: A

Thetensorsunder consideration are generally of second order, and it would burden
the text to repeatedly use the term second-order tensor. Since third-order tensors
areoccasionally needed, | adopt the convention that theterm tensor by itself signify
atensor of second order (i.e., alinear transformation of vectorsinto vectors), and
that third-order tensors always be referred to as 3-tensors.

Precisely a 3-tensor A isalinear transformation of vectorsinto (second-order)
tensors: for any fixed vector a, Aa is alinear transformation that assigns to each
vector b avector (Aa)b. In components, (Aa);; = A;jrax. (This definition is most
convenient; third-order tensors could a so be defined astrilinear forms or aslinear
transformations of second-order tensors into vectors.)

An example of a 3-tensor is furnished by the values of the gradient VT of a
(second-order) tensor field T, where VT is defined by the chain rule:

Ti) =[VT@R)z (1-22)
for any vector function z(«). The following three identities, in which @ and b are
constant vectorsand F = Vy, are useful:

[V(T a)]b = [(VT)b]a, (1-2349)
[(VF)bla = [(VF)alb, (1-23b)
(VF)a = V(F a). (1-23c)
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In these identities the placement of parentheses and bracketsis crucial.

To verify (1-23a), let a(X) = T(X)a for al X. Fix apoint X and a vector b,
and let B denote a scalar variable. Then the left side of (1-23a), at X, is given by
[Va(X)]b, and this, in turn, isequa to

G d
% a(X + pb)|,_o = [% T(X + Bb)| ,3:0} a = [(VT(X))b]a,

which is the right side of (1-23a). Consider (1-23b). Fix apoint X and let « and
B dencte scalar variables. Then

2
IBda

But (assuming that y is smooth) the order of the « and g differentiationsisirrele-
vant, and thisyields (1-23b). Theresult (1-23c) isthe consequence of (1-23a) and
(1-23b), because these relations imply the identity [(VF)alb = [V(F a)]b for al
vectors b. (In components, (VF);jx = 9 F;j /9 X, and the symmetry (1-23b) may
be established asfollows: (VF),‘]‘]( = Bzy,-/anan = 32y,~/8Xk8Xj = (VF)ikj )

Let T be atensor and A a 3-tensor; then AT, a3-tensor, and T': A, avector, are
defined by

y(X + aa + pb)| _ 50 = [% F(X + pb)| ,3:0] a = [(VF(X))b]a.

(AT)a = A(T a), (1-242)
(T:A)-a =T - (Aa) (1-24b)

for @l vectors a. In components, (AT)jx = Ajjm Tk, (T:A)e = T;jAiji. The
following identities, for T atensor field and F = Vy, are useful:

(T:VF)-a=T -V(Fa) (1-25)
for all constant vectorsa, and
Div(F'T)=F ' DivT + T:VF. (1-26)

Equation (1-25) is a consequence of (1-23c). To verify (1-26), choose a constant
vector a. Then, by (1-20b) (withu = F a) and (1-25),

a-Div(F'T) =Div(T"Fa) = (Fa)-DivT+T-V(Fa) =a-F' DivT+(T:VF)-a,

which implies (1-26), becausea isarbitrary. Note that (T:VF), = T;;(3 F;j /3 X),
sothat T:VF isthegradient of T - F holding T fixed.
Finally, for G and T tensors and A a 3-tensor,

G(T:A) = T:(AG"). (1-27)

j4. Functions of tensors
The derivative of a scalar function ®(T) of atensor T is written 9y ®(T) and is
defined by the chain rule: For any tensor function T'(«) of ascalar variable «,

% O(T(@)) = [0rS(T(@))] - T(w),
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or, more succintly,

O(T) = 0;d(T) - T. (1-28)
In components, (ar®);; = dP/37;;. A consequence of this definition is that, for
T =T(X),

VO(T) = 0y 9(T):VT (1-29)
(where the gradient on the left is the gradient of ®(T(X)) with respect to X).

For functions ®(a, b, .. .) of scalar, tensor, and vector variables, 3,®(a, b, .. .),
say, will denote the partial derivative with respect to the variable a.



Part A

Configurational Forces
within a Classical Context

Much is to be gained by a discussion of configurational forces within a context
that neglects evolving material structures such as defects and phase interfaces,
even though within that context such forces are extraneous to the sol ution of actual
boundary-value problems.



CHAPTER 2

Kinematics

a. Reference body. Material points. Motions

| write & for three-dimensional Euclidean space and restrict attention to a given
open time interval. To avoid cumbersome statements | use the phrase “al ¢” to
mean “all ¢ in that interval,” and so on.

| consider a body identified with the region B of Euclidean space & it occupies
in a fixed configuration; | refer to B as the reference body and to points X € B
asmaterial points.

A smooth mapping y that assignsto each r and each X € B apointx = y(X, )
in & represents amotion (of B) if y(X, ) is one-to-one as a function of X and if
the defor mation gradient

F =Vy (2-1)
satisfiesdet F > 0; x = y(X, t) isthen the place occupied by X at time,
B(r) =y(B,1) (2-2)
is the defor ming body at ¢, and*
. ad
YE.1) = - y(X.1) (2-3)

isthe motion velocity.

LIt is convenient to denote by an overbar a quantity that has been transported, via the
motion, to the deformed configuration. In particular, thisis done with sets, so that B(¢) is
the deformed body and not the closure of B. The following notation is used throughout: ()’
(adot) denotes the derivative with respect to ¢ holding X fixed; V and Div are the gradient
and divergence with respect to X holding ¢ fixed; when the place x and time ¢ are used as
variables, ()’ (aprime) denotes the derivative with respect to ¢ holding x fixed.
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Sincex = y(X,t) isinvertible at each fixed ¢, the material point X may be
considered as a function,

X =Y(x, 1), (2-4)

of the placex and time¢. | will refer to the mapping (2—4) as the inver se motion.
Becausey(Y (x, 1), t) = x, it follows that

y=—-FY (2-5)
with
Y(x, 1) = % Y(x, 1) (2-6)

the inver se-motion velocity.

b. Material and spatial vectors. The sets ¢gpace aNd atter

B(t) isthe set actually observed during the motion of a body; the reference body
B serves only to be label material points; any other configuration could equally
well have been used asreference. That iswhy it is useful to differentiate between
dspace: the copy of ¢ that represents the ambient space for B(1), and &maer, the copy
that represents the ambient space for B. In accord with this, | use the following
terminology:

material vector: vector associated with &ater;
spatial vector: vector associated with égpace.

Themotionvelocity y(X, ) isthen aspatial vector, while the deformation gradient
F(X, 1) isalinear transformation of material vectorsinto spatial vectors.

For convenience | use a single symbol o for an arbitrary but fixed choice of
“origin” for ¢mater @Nd cqpace, l€AVING it to the context to decide which space is
intended.

The presumptionthat B(r) and B do not belong to the same space seems natural. B(r)
representsthe body during an actual motion, amotion that could, in principle, beseen
or felt by any of us. On the other hand, the set B, while essential to the mathematical
structure of continuum mechanics, isvirtual; thebody need never occupy B, athough
it might. Here it is useful to consider, within the framework of particle mechanics,
a system consisting of, say, ared particle, and a blue particle. B isthe counterpart
of the set of particle labels, which could be {1, 2}, or {red,blue}, or the initial partial
positions {x1(0), x»(0)}, and, with respect to these choices, “ater iSthe analog of the
integers, or the set of primary colors, or three-dimensional Euclidean space.
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c. Material and spatial observers’

| consider two independent classes of observers. spatial observers that describe
dspace 8Nd Material obser ver sthat describe ¢mater. FOr €ach class| restrict attention
to changesin observer for which the observers, in motion relative to each other, are
coincident at some arbitrarily chosen time. The phrase invariant under a change
in observer then signifiesinvariance at the time of coincidence.

For a change in spatial observer the relative velocity at time of coincidence
has the form

velocity =w + w x (x —0) (w, w = spatia vectors) (2-7)
and the motion velocity y transforms according to
y—=>y+w+wx(y—o). (2-8)

Thediscussion of material observersisdelicate. | view theforegoing description
of ¢matter iN Which the reference body and its material points are independent of
time as adescription obtained by arest observer. | consider changesin material
observer fromthisrest observer to aGalilean observer who viewstherest observer
in motion with

velocity = a (a = material vector). (2-9)

Under such a change in observer the points observed as stationary by the moving
observer do not represent material points, material pointsas viewed by the moving
observer are seen to migrate with velocity a. Indeed, the Galilean observer views
the points

X=X—-(—toa (to = time of coincidence) (2-10)

as stationary; but the X's do not represent material points, which continue to be
labeled by Xs. Thus material time derivatives measured by the moving observer
remain derivatives holding material points X fixed.

| could consider the more general case of a moving (non-Galilean) observer with
velocity =a + v x (X — o) (a, v = materia vectors) (2-11)
at the time of coincidence, but the additional generality would add nothing essential

to the discussion (cf. the paragraph containing (5-11)).
d. Consistency requirement. Objective fields
Because spatial observersview spatia vectorsand are obliviousto material vectors,

and because the reverse is true for material observers, the following general rule
seems appropriate.

2Cf. the detailed discussion of Gurtin and Struthers [1990, §4].
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Consistency requirement for vector fields: Those spatial vector fieldsthat
represent physical quantities should be invariant under changes in material
observer; material vector fields that represent physical quantities should be
invariant under changes in spatial observer.

For example, the motion velocity y represents the time derivative of the motion
holding material points X fixed; because the transformation to X does not affect
this computation,

y isinvariant under a change in material observer. (2-12)

Many of thefields of interest are objective in the sense that their transformation
at any given time ¢ obeys the standard rules for the transformation of scalars,
vectors, and tensors under the observer change at 7.2 Here the stipulation that
we restrict attention to the time of observer coincidence rules out the necessity of
considering orientational changesand, consequently, allowsfor asimpledefinition
of objectivity: A field @ isobjectiveif @ isinvariant (i.e, ® — &) under both
spatial and material changesin observer.

3Cf., e.g., Truesdell and Noll [1965, §17].



CHAPTER 3

Standard Forces. Working

| begin with a discussion of the standard forces that form the basis for classical
continuum mechanics. | consider inertia as represented through an internal body
force.

a. Forces

Motions are accompanied by forces. Classically, forces in continuum mechanics
are described by body forces distributed over the volume and tractions distributed
over oriented surfaces. Such body forces and tractions may be measured per unit
volume and areain the reference body or per unit volume and areain the deformed
body; even so, the resulting forces are always spatial vectors. Here it is most
convenient to measure forces in the reference body, so that, in particular, stresses
are Piola stresses.!

Specifically, | restrict attention to astandard force system described by thefields:

S stress

b external body force
with b presumed to include inertia. The traction exerted across an oriented surface
& is represented by the action Sn of the stress § on the unit normal n to .,

and both Sr and b perform work over spatial velocities; thus S(X, ) is a linear
transformation of material vectors into spatial vectors, while b(X, ¢) is a spatial

IReferred to asfirst Piola-Kirchhoff stresses by Truesdell and Noll [1965, §43A] and as
Piola-Kirchoff stresses by Gurtin [1981, §27].
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vector. | assume that
S and b are objective. (3-1)

Thereis, | believe, abasic misconception that inertial body forces are not objective.?
Consider an inertial observer, an inertia body forceb = —py (o = reference den-
sity), and the noninertial observer change defined by thetransformationx = x +z(t).
Then relative to the new observer the motionisgiven by y(X, ) = y(X, t) +z(¢) and
bisdefined by b = —p(j — %), sothat b = b; thus, trivialy, b isinvariant, although
it does not preserveits form, because b is not —p times the acceleration y measured
by the noninertial observer.

b. Working. Standard force and moment balances as
conseguences of invariance under changes in spatial
observers

Let P be a (referential) control volume (i.e., a bounded subregion of B with
smooth boundary dP) and let r denote the outward unit normal to aP. | definethe
working on P through the classical relation

W(P)= [Sn-yda+ [b-ydv (3-2
op P

and reguire that W(P) be invariant under changes in spatial observer. Then, by
(2-8) and (3-1),

[Sn-yda+ [b-ydv= [Sn-[y+w+wx (y—o0)]da
" } aifb-B’+W+wx(y—o)]dv; (3-3)
hence P
0= {fSnda+fbdv}-w+{f(y—o)xSnda+f(y—0)xbdv}~w (3-4)
op P op P

for al P and all vectorsw and w. Invariance of the working therefore yields the
standard force and moment balances

[ Snda+ [bdv=0, (3-59)
op P
S0 —0)xSnda+ [(y —0) xbdv=0 (3-5b)
op P
for all P; or equivalently,*
DivS +b =0, (3-63)

2Cf. the discussion of Noll [1995].
3Cf. Noll [1963].
4Cf., e.g., Gurtin [1981, §27].
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SFT=FS". (3-6b)
The assertion (3-53) < (3-6a) is a direct consequence of the divergence
theorem. To show that, granted (3—64), (3-5b) < (3-6b), consider the tensor

M(P)= [(y—0)®Snda+ [(y —0) ® bdv.
apP P

Then (3-5b) is equivalent to the assertion that M(P) be symmetric: M(P) =
M(P)". Since

[ —0)®Snda = [(y—0)®DivSdv + [FSdv,
oP P P

(3-64) yields the conclusion
M(P)= [FS'dv,
P

and M(P) = M(P)" for al P if and only if (3-6b) is satisfied.
Given a control volume P, (3—6a) and the divergence theorem imply that

fSn'jlda—i-fb'_)"dU:fS’FdU’ (37
aP P p

and hence that, trivially,
W(P)= [S-Fdv. (3-9)
P

This expression represents a power balance for P; W(P) as defined in (3-2)
represents the working of all forces external to P, and (3-8) relates this external
workingtotheinternal working [, S-F dv. Theintegrand S-F isusually referred
to asthe stresspower ; S - F representsinternal working resulting from temporally
varying strains.

A rigid motion has F orthogonal, sothat FF™ = 1, which, when differentiated,
impliesthat FF™ isskew. By (3-6b), SF™ issymmetric. ThusS-F = SF™-FF™ =0
and the stress power vanishes when the motion is rigid, a result that justifies the
use of the term strains in the previous paragraph.

The tensor field

T = (det F)"'SF", (3-9)

usually referred to as the Cauchy stress,® represents the stress measured per unit
areain the deformed configuration. Similarly, b = (det F)~'b represents the body
force measured per unit volume in the deformed configuration. Precisely, if .+
with (unit) normal n isan oriented surfacein B then, considering T = T'(x, ¢) and
b = b(X, t) functionsof x = y(X, r) and ¢,

[Snda = [Tnda,  [bdv= [bdi (3-10)
% & P p

5Cf., e.g., Gurtin [1981, §14, §27].
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(using the notation discussed in the paragraph following (2-3), so that 7 with
normal n isthe image of .»# under y, da is the element of areaon.¥, and so on).
Then the balance (3-54) takes the form

[Thda+ [bdv=0

aP P
and, letting div and grad, respectively, denote the spatial divergence and spatial
gradient (with respect to x), this yields the local balance

divT +b=0. (3-11)

Similarly, the moment balance (3-5b) has an analogous counterpart involving T
and b whose local form yields the symmetry of T, aresult that also follows from
(3-6b). Finally, the working (3-2) has the equivalent forms
W(P)= [Tia-yda+ [b-ydv= [T -gradyds,
P P P

sothat T - grady isthe stress power measured per unit deformed volume, and

. 1
S-F=(detF)T -grady = (detF)T - D, D= é(grady—kgradf). (3-12)



CHAPTER 4

Migrating Control
Volumes. Stationary and
Time-Dependent Changes
In Reference Configuration

To characterize the manner in which configurational forces perform work, ameans
of capturing the kinematics associated with the transfer of material is needed. |
accomplish this with the aid of three notions, none of which is a standard. The
first, that of material observers, has been examined in Chapter 2. The other two
notions are:

1. control volumes P(z) that migrate through B and thereby result in the transfer
of material to P(¢) across oP(t);
2. time-dependent changes in reference configuration.

In continuum mechanics one often uses the term part for a fixed subregion P of
B; and the phrase evolution of P with time refers to the motion of the deformed
part P(r) = y(P, 1). Parts should not be confused with control volumes P(¢), which
are not fixed subregions of the reference body B but rather migrate through B. The
phrase transfer of material to 9P is meant in a genera sense that allows for the
“transfer of material from oP,” and similarly for the phrase addition of material to
oP.

a. Migrating control volumes P = P(t). Velocity fields
for oP(t) and 0P (t)

Let P = P(¢) be a (smoothly) migrating control volume with U the (scalar)
normal velocity of dP in the direction of the outward unit normal n. To describe
the working associated with the evolution of P, | introduce afield ¢ interpreted
as the velocity with which an external agency adds material to aP. Compatibility
then requires that the normal component of ¢ be U:

q-n=U; (4-1)
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y(X,n

Undeformed Body Deformed Body

FIGURE 4.1. Thetime-dependent control volume P(r), which deformsto P(¢), withg(X , 1)
avelocity field for aP(r) and y° the corresponding motion velocity following oP(z).

g isotherwise arbitrary (Figure 4.1).

Thisdiscussion should motivatethefollowing definition: Anassignment, at each
t, of amaterial vector ¢(X, t) toeach X € oP(¢) isavelocity field for oP if gisa
smooth field that satisfiesq - n = U.

One might ask: Why not use, as velocity field, the vectorial normal velocity Un,
whichisintrinsic? | have many reasons for not doing this:

1. If materia is viewed as being transferred to 0P via an externa agency, then it
would seem unreasonable to restrict the corresponding velocity to normality.

2. Changesin material observer do not preserve normality of the velocity field.

3. Inthe study of basic issues a powerful tool is the requirement that a theory be
invariant under changesirrelevant to the physics; here invariance under changes
in velocity field yields important and unexpected consequences.

4. Animportant example of amigrating control volumeisaball P(r) of fixed radius
centered at a point Z(¢) that is migrating through B; in this case the spatially
constant field ¢(r) = Z(¢) represents a velocity field for aP ().

5. Granted smoothness, dP(r) may be parametrized locally in time by a function
of the form X = X(¢,1), ¢ = (&1, &2); the fidd ¢(X, £) = 3aX(¢,1)/dt then
represents a velocity field for aP ().

Let P = P(t) beamigrating control volume. A velocity field ¢ for P may be
viewed asavelocity field for particlesevolving on amigrating surface 9P, with the
trajectory Z(z) of the particle that passes through X € 9P (¢) at time ¢ the unique
solution of

Z(r) =q(Z(7), ), Z(t) =X. (4-2)

Given afield ®(X, r), the time derivative of ® following aP, as described by ¢,
is the time derivative along such trgjectories:

(X, 1) = % ®(Z(z), 7). (4-3)
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Lety beamotion. Theny, which | refer to asthe motion velocity following oP,
satisfies
y=y+Fq. (4-4)
Further, writing
P(t) = y(P(1),1) (4-5)

for thedeformed control volume, the path Z(t) ismappedinto apathy(Z(z), ) that
lieson 9P(r) at each 7. Becausey(X t) isthe derivative of y(Z(7), t) att = t,y
representsavelocity field for 9P. (Alternatively, each parametrization X = X(o, 1)
of dP(r) induces a corresponding parametrization x = x(c, 1) = y(X (o, 1), 1) for
oP(t); if ¢ = 0X/at, theny = 0%/dt.) Notethat y accountsfor the evolution of oP
through two terms; the motion velocity y and the velocity Fq at which deformed
materia isbeing transferred to oP.
Thefields g and y transform according to
q— q+a, y—y (4-6)
under the change in material observer defined by (2—9), and according to
y—=y+w+wx(y—o), qg—q 4-7

under the change in spatial observer defined by (2-7) (cf. the consistency
requirement as stated in Section 2d).
b. Change in reference configuration

bl. Sationary change in reference configuration
Let x be a smooth mapping

X = k(X) (4-9)
of the reference body B onto aregion
B = k(B)
of &matter, and let
K = Vk, 7 =detK. (4-9)

Then k isastationary changein referenceif « is one-to-onewith_# > 0.
Each field ®(X, ¢) associated with the body and hence defined over B will be

presumed to have a unique representation, relative to «, as afield 53()? , 1) over

B.n particular, given amotiony(X, ), I*?()*( , ) denotes the deformation gradient
relative to the new reference; that is, the gradient of

Y&, 1) =y %), 1) (4-10)
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with respect to X. Hence
F=FK. (4-11)

Let P = P(r) beamigrating control volume, ¢ be a velocity field for oP, and
Z(t) be defined through (4-2). Then, under «, P transformsto a control volume

@) = k(P()), (4-12)

while g transforms to the velocity field c}c for op given by

* * d

qX.1) K(Z(D)),_, (4-13)
for X = K(X); thus

q=Kgq. (4-149)

b2. Time-dependent change in reference configuration
A time-dependent change in reference is a smooth mapping
X =r(X.1) (4-15)

with k astationary change in reference at each fixed time. The composition of the

material at each point X inthe range of k will generally change with time; that is
why such pointswill bereferred to asreference labels rather than material points.
More useful than « itself isits fixed-time inverse

X=X, 1) (4-16)

This mapping describes the trajectories of fixed labels X through the reference
body B, while

q(X. 1) = %f((}’?, 1| (4-17)

X=r(X.1)
represents the velocity field along such trajectories. Given afixed region Pinthe
space of reference label sX , consider the migrating control volume

P(t) =X(P,1) (4-18)

and the corresponding deformed control volume P(r) = y(P(¢), r). Then ¢(X, 1)
(restricted to 0P(¢) at each 1) represents avelocity field for 9P () with
y=y+Fq (4-19)

the associated velocity field for aP(r).
An important example of a time-dependent change in reference is the motion

x = y(X, t); here the inverse motion Y plays the role of X, x corresponds to X ,
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and the fixed region P is the deformed control volume P, which is necessarily
stationary. A consequence of (2-5), (4-17), and (4-19) isthat, for this example,

4X.0)=Y @) _y, F=0 (4-20)
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Configurational Forces

Configurational forces are related to the integrity of a body’s material structure;
they act within the reference configuration and perform work in the transfer of
materia and in the evolution of structural defects.

Classically, body forces represent forces exerted on abody B by bodies exterior
to B; in contrast, configurational force systems also require body forces that are
internal to B.

a. Configurational forces

The configurational force system consists of three fields:

C stress
g internal body force
e external body force

As with standard forces, configurational tractions and body forces are measured
in the reference body, with Cn the traction across any oriented referential surface
<« with unit normal r. Thus and because C, g, and e perform work over velocities
associated with the reference body, C(X, ¢) is alinear transformation of material
vectors into material vectors, while g(X, ¢t) and e(X, ¢r) are material vectors. |
assume that, as for the standard force system (cf. (3-1))

C. g, and e are objective. (5-1)

A chief difference between the standard and configurational force systems is the
presence of internal configurational forces. Such forces, being intimately connected
with the material structure of the body, are best discussed within aframework more
general than that discussed thus far. It is convenient, but somewhat misleading, to
identify abody . with aregion of space it might occupy, because that may change
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from time to time; a more encompassing view of abody is as a set % of material
points X together with acollection of possible configurations, where aconfiguration
of . isaone-to-one mapping that assignsto each materia point X apointX = p(X)
of Euclidean space.! To each configuration p there is a corresponding distribution
of material and an associated system of configurational forces. | view g(X, r) asthe
force needed to hold in place the material at X when the configuration is p, or more
simply to hold X in place in the configuration p. Such forces are then “internal” to
the complete system—material points plus region of space—that constitutes a body.

b. Working revisited

In discussing the working of the standard and configurational force systems, the
reader should bear in mind the basic premise that configurational forces perform
work over positional changesin the reference body, while standard forces perform
work over positional changesin space.

Consider the standard and configurational forces associated with a migrating
control volume P = P(t), with g avelocity field for 9P and y the corresponding
motion velocity following oP.

1. Working of the stresses

| view the traction Cn as a force that performs work in conjunction with the
migration of 9P and thereforel choose ¢ asan appropriate work-conjugate velocity
for Cn. Classically, control volumes do not migrate and the standard traction Sn
on 9P is work-conjugate to the motion velocity y, but 9P when migrating has
no intrinsic material description, because material is continually being added and
removed, and it would seem appropriate to use as work-conjugate velocity for Sr
the motion velocity y following aP, asy representsavel ocity field for thedeformed
boundary 9P consistent with the choice of ¢ as velocity field for 9P. | therefore
write the working of the standard and configurationa stressesin the form

[ Cn-qda+ [ Sn-yda. (5-2)
aP(r) aP(t)

Note that when ¢ = 0 the control volume P is stationary; in this case (4-4) yields
y =y and (5-2) reducesto the classical relation

[ Sn-yda. (5-3)
P

2. Working of the internal configurational body force

Because g representsforcesthat hold in place the material (points) in the reference
configuration and the material is there immobile, g performs no work.

1Cf. Noll [1958].
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3. Working of the external body forces

The configurational force e performs no work, because the material points X are
fixed in the reference body, but the standard force b viewsthe points X asevolving
in spaceviathemappingx = y(X, ) and hence performswork withy itsconjugate
velocity. The net working of the external forcese and b therefore has the classical
form
[ b-ydv. (54
P(1)
Based on these remarks, | take the following expression as the appropriate
generalization of the working (3-2):

W(P@E)= [ Cn-qda+ [ Sn-yda+ [ b-ydv. (5-5)
oP(t) aP(1) P(1)

c. Configurational force balance as a consequence of
invariance under changes in material observer?

By (2-8), (3-1), (4-7), and (5-1), invariance of (5-5) under changes in spatial
observer yields the standard force and moment balance (3—-6a), but nothing else.
Consider achangeinmaterial observer from an observer at rest to onewho views
the material in motion with velocity a. Then g and e, as observed by the moving
observer, perform work, since material points as viewed by the new observer
migrate with velocity a. The working W (P(t)) as recorded by the observer in
motion therefore has the form
W(P@) = [ Cn-(g+a)da+ [ (g+e)-adv+ [ Sn-yda+ [ b-ydv (56)
aP(r) P(1r) aP(r) P(r)
(cf. (2-12), (3-1), (4-6), and (5-1)). The requirement that the working W (P (¢))
beinvariant under changesin material observer therefore leads to the conclusion

0:{]Cnda+f(g+e)dv}-a (5-7)
apP P
for al P and all vectorsa. A conseguence of (5-7) is the configurational force

balance
[Cnda+ [(g+e)dv=0, (5-8)
P P

in which the individual terms

[ Cnda, [gdv, [edv (59
op P P

represent the (net configurational) contact force, internal force, and external force
on a control volume P. Finaly, the requirement that (5-8) hold for al P yields

2Cf. Gurtin and Struthers [1990].
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the local force balance
DivC+g+e=0. (5-10)

To account for non-Galilean material observers as defined in (2-11), the working
(5-6) should have a replaced by a + « x (X — o) and should be augmented by the
term

Jim-y+(g+e) [vx (X —o)}dv,

P
with m a material vector field that represents configurational body moments. (And
perhaps there should also be a term that represents configurational couple stresses.)
The configurational moment balance

J(X—0)xCnda+ [(X—0)x(g+e)dv+ [mdv=0 (5-11)
ap P P

then follows from invariance of the working under changesin material observer. The
local form of (5-11), namely,

C-C" =-mx, (5-12)

establishes the need for the body moment m, as C need not be symmetric (cf. (6-9)).
Certain defect structures generate configurational, but not standard, moments;3
even so, for the situations discussed here there is sufficient indeterminacy in the
configurational system to render the configurational moment balance superfluous.

d. Invariance under changes in velocity field for P (z).
Configurational stressrelation

Let P = P(¢) be a migrating control volume. | now require that the working
be independent of the manner in which the external agency transfers material to
oP; precisely, | require that W(P), given by (5-5), be independent of the choice
of velocity field ¢ corresponding to the prescribed motion of 9P as described by
its normal velocity U. This requirement* has a major consequence, which | now
derive.

By (4-4), (5-5) may be rewritten in the form

W(P)= [Sn-yda+ [b-ydv+ [(F'Sn+Cn)-qda. (5-13)
ap P P

Because of (4-1), changes in velocity field affect the tangential component of ¢
but leave the normal component unaltered. The invariance of W(P) under such
changesis therefore equivalent to the requirement that

[(F'Sn+Cn)-tda =0
op

3For example, a phase transition gives rise to configurational moments distributed over
the interface whenever the interfacial energy is anisotropic (cf., e.g., Gurtin and Struthers
[1990, 84]; Gurtin [1993, egs. (6-2)—(6-4)]; see aso the paragraph following (18-12)).

“Referred to by Gurtin and Struthers [1990] and Gurtin [1995] as invariance under
reparametrization, because it represents invariance under the choice of time-dependent
parametrization for 9P (z).



38 5. Configurational Forces

for al tangential vector fields ¢ on dP. Thus, lettingA =F'S+C, ¢t -An =0
on dP for al tangentia vector fields¢. Thus, since aP and hence n are arbitrary,
An must be parallel to n for all n. Thus every vector must be an eigenvector of A;
hencethereisascaar field = such that

C+F'S=mnl (5-14)
By (4-1), the working has the intrinsic form
W(P)= [Sn-yda+ [b-ydv+ [nUda. (5-15)
oP P oP

The scalar field v therefore represents a bulk tension that works to increase the
volume of P through the addition of material at its boundary. Referring to the final
term in (5-15) as the net configurational working, (5-15) may be written more
suggestively as

{working} = {standard working} + {net configurational working}.  (5-16)

Note that 77 U is not due solely to the working of the configurational stress C; the
standard stress contributes also through the term (Sr - Fr)U, which accounts for
the addition of deformed material to P.

Finally, (5-14) in theform

C=nl1-F'S (5-17)

will be referred to as the stress relation; this relation represents an expression
for the configurational stress reminiscent of—but more general than—the Eshelby
relation, because it is based only on notions of force and work and is therefore
valid whether or not thermal or compositional effects are taken into account.

e. Invariance under time-dependent changes in reference.
External and internal force relations

Consider a time-dependent change in reference configuration as discussed in
(4-15)—(4-18). Let P be a fixed region in the space of reference labels with
PGt)=X (1*9, t) the corresponding migrating control volume, and let ¢(X, ¢) and
y(X, 1) denote the velocity fields for 9P (¢) and 9P (¢) defined in (4-17) and (4-19).
Then, continuing to measure forcesin the space of material points X, the working
of thetractions Cr and Sr is again given by (5-2). Further, the working of the ex-
ternal forcese and b may be described in terms of the trgjectories of the reference
Iabels)*(, inwhichthefields¢(X, r) and y(X, ), which are defined for all X and ¢,
represent appropriate work-conjugate velocities. Finally, theinternal force g does
not perform work (cf. the passage following (5-3)).

Thefact that the material composition at afixed X may changewithtimeisirrelevant
to the working of e and b, just as the material composition of dP(¢) does not affect
the manner in which the tractions perform work. In this regard, consider a particle
of massm(¢) following atrajectory y(¢) and acted on by an external forcef(¢). Here
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the particleis losing mass, but that does not affect the working fi, - y; and while the
inertial forcef;, = —(my)" depends on therate at which massislost, the formfi, - y
of itsworking in no way reflectsthe loss. Both of these forces are external, and their
working is simply force times the time rate of change of the associated positional
parameter, irrespective of whether the material composition is varying or fixed.

Thus, in place of (5-5), the working takes the form
W(P@E)= [ Cn-qda+ [ Sn-yda+ [ e-qda+ [ y-yda (5-18)
P (r) aP(r P(r) P(r)

Because the working itself should be the same for both descriptions,
[e-qda+ [b-yda= [b-ydv, (5-19)
P P 4

arelation that must be satisfied for al time-dependent changes in reference and

all migrating control volumes P(¢) that are images of fixed regions Pinthe Space
of reference labels.

Given atime ro and avector ¢o, the time-dependent change in reference defined
byf(()?, t) = X + (¢ — to)qo setisfiesq(X, 1) = qo for @l X € B; in addition, for
Py a subregion of B and ¢ sufficiently close to 7, the migrating control volume
P(1) = X(Po, 1) satisfies P(t0) = Po. We now apply (5-19) to P(t) at 1 = 1,
since to, qo, and Py are arbitrary, whiley = y + Fgq, this yields the conclusion
(e + F'b) - go = O for all vectors go. The standard force b therefore determines
the configurational force e through the external-forcerelation

e=—Fb. (5-20)

Further, (5-20) and the stress relation (5-17) yield, by virtue of (1-26) and the
force balances (3—6a) and (5-10), theinternal force relation

g= -V +S:VF, (5-21)

where S:VF isthe material vector discussed in the paragraph containing (1-26).
(In components (S:VF), = S;;(0F;; /9 X¢).)

Note that when b is conservative with potential ¢, so that b = — grad ¢ with “grad”
the spatial gradient (with respect to the place x in the deformed configuration), then,
by thechainrule,b = —F"Vg, and hencee = V.

f. Standard and configurational forms of the working.
Power balance

In view of the remarks leading to (5-3), when the undeformed control volume P
is stationary, the working is given by the classical expression

W(P)= [ Sn-yda+ [ -bydv (5-22)
oP P

involving only standard forces. On the other hand, when the deformed control
volume P correspondingto P = P(¢) isstationary, then (5-18) and the paragraph
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containing (4—20) imply that this working may be written in aform
W(P)= [Cn-Y'da+ [e-Y dv (5-23)
oP P
involving only configurational forces.

Given amigrating control volume P = P(t), (5-15) and (3—7) (which also hold
when P migrates) yield apower balance

W(P)=[S-Fdv+ [nUda (5-24)
P P

relating the external working W(P) to the internal working as represented by
theright side of (5-24).



CHAPTER 6

Thermodynamics. Relation
Between Bulk Tension and
Energy. Eshelby ldentity

I now placethe theory within athermodynamical context. | consider amechanical
version of the second law, which | show to be a specia case of aformulation that
allowsfor thermal variations associated with the transfer of heat. The treatment is
nonclassical; it accounts for configurational working and heating associated with
the transfer of material to a migrating control volume.

a. Mechanical version of the second law

Intheabsenceof thermal and compositional effects, classical continuum mechanics
may be based on a“second law” that uses stationary control volumes P and has
the form
d . .
—{f\IJdv}ijn~yda+fb-ydv (6-1)
dt ' P P
with W(X, ¢) the free energy.* For amigrating control volume P = P(z), with U
the normal velocity of aP, the standard generalization of (6-1) would include the
transport term

{inflow of free energy} = [ WU da (6-2)
aP
on the right side, but would not account for configurational forces.

| base the theory on what | believe to be a more fundamental version of the
second law; specifically | write the second law for a migrating control volume

1This form of the second law follows from the laws of balance of energy and growth of
entropy under isothermal conditions. Cf. the remark following (6-14).
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P = P(t) inaform

%{free energy of P(¢)}
< {rate at which work is performed on P(¢)} (6-3)

that accounts for the working of both configurational forces and standard forces,
but not explicitly for the flow (6-2) of free energy across dP(¢) as it migrates.?
(Aswe shall see, thisinflow of free energy will be accounted for implicitly in the
working of the configurational forces.) Precisaly, the second law is assumed to
have the form

4 { / lIldv} < W(P() (6-4)
dt | oy

with the working W (P (t)) given by (5-5):

d o .
— 1 [ WVdvy < [ Cn-qda+ [ Sn-yda+ [ b-ydv. (6-5)
dt | g aP(r) aP(r) P()

Here q is a velocity field for P, with y the corresponding motion velocity fol-
lowing aP, and

%{f \de} :%{f ‘I’(X,t)dU(X)}~

P(1) P(r)

b. Eshelby relation as a consequence of the second law

By astandard transport theorem,

d .
— 1 [ Vdvy= [ Wdv+ [ WUda. (6-6)
dt | p P() aP(r)
Thus, appealing to (5-15),
[ Vdv< [ Sn-yda+ [b-ydv+ [ (v —W¥)Uda. (6-7)
P(1r) P (1) P(r) oP(r)

Given a fixed time 7, it is possible to find a second control volume P(¢) with
P(t) = P(r), but with U(X, 7), the normal velocity of 9P (), an arbitrary scalar
field on aP(7); satisfaction of (6—7) for al such P (and hence U) implies that

T =WV (6-8)

Bulk tension therefore coincides with bulk free-energy (a result analogous to the
coincidence of surface tension and surface free-energy); thus, in the notation of

2Cf. Gurtin [1995, eq. (3-12)]
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(5-16) and (6-2),
{net configurational working} = {inflow of free energy},

at least in this purely mechanical context, establishing consistency of the second
law (6-4) with the more standard inequality (6—1) modified by (6-2):

d

—{f‘l’dv} < [WUda+ [Sn-yda+ [b-ydv.
dr [p P P P

What is more important, (5-17), (5-21), and (6-8) yield the Eshelby relation
C=V1-F'§ (6-9)

and the internal-for ce relation
g=—-VV +S:VF, (6-10)

with §:VF defined in (1-24). Theinternal force g istherefore affected by material
variationsin the free energy and deformation gradient viathe terms VW and VF.

This derivation of the Eshelby and internal force-relations (and that of the external
force relation (5-20)) were accomplished without using constitutive equations or a
variational principle; the derivations were based on a version of the second law ap-
propriate to control volumes whose boundaries migrate with time.3 This observation
is not simply of pedagogical interest; it establishes these relations as appropriate
to theories, such as plasticity and viscoelasticity, for which memory effects render
variational derivations inappropriate.

The Eshelby relation (6-9), the external-force relation (5-20), and the configura-
tional balance (5-10) may be considered as defining relationsfor C, e, and g interms
of theclassical fieldsy, W, S, and b; configurational forces are therefore superfluous
within the framework of classical continuum mechanics.

The Eshelby and external-force relations have somewhat similar structures, i.e.,
C =V1l-F'Sande = —FTbh, structures that differ markedly from that of the
internal force g as specified in (6-10).

Finally, restricting attention to stationary P yields, by virtue of (3—7) and (6-1),
the local dissipation inequality

U<S.F. (6-11)

c. Thermomechanical theory

| now consider a more general thermodynamics, one that allows for the flow of
heat. | write the first two laws for amigrating control volume P = P(¢) as

%{internal energy} = {heating} + {working},

3Gurtin [1995]. Eshelby’s [1951] derivation is variational and presumes el asticity.
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%{internal entropy} > {entropy flux induced by heating}

in which, paraleling (6-3), the right sides include an accounting of the work and
heat required to transfer material to P but make no explicit mention of flows of
internal energy and internal entropy across oP.

| consider the standard and configurational force systems supplemented by the
classical thermodynamical fields, namely, theinternal energy ¢, the entropy n, the
temperature T, the heat flux k, and the external heat supply r, and | define the free
energy ¥ through

U=g—Tn. (6-12)

Inaddition, | allow for ascalar field Q, theconfigurational heating; for P = P(r)
amigrating control volume with U the normal velocity of dP,

[QUda and  [(Q/T)U da,
oP oP

respectively, represent flows of heat and entropy into P associated with thetransfer
of material across oP.

The basic thermodynamical laws, for each migrating control volume P(t), are
balance of energy and growth of entropy:

< Jedvi=— [ h-nda+ [ rdv+ [ QUda+ W(P(1)),
dt | p( P (r) P() aP(r)
(6-13a)
4 [ ndvy>— [ (h/T)-nda+ [ (r/T)dv+ [ (Q/T)Uda
dr | p ) A1) aP(r)
(6-13b)

with W(P(z)) given by (5-15). For P stationary (6-13), have the classical form

d
—{fsdv}:—fh-nda+frdv+fSn-yda—i-fb-ydv, (6-14a)
dt \'p P P P P

i{fndv}z—f(h/T)-nda—}-f(r/T)dv, (6-14b)
dr [p P P

demonstrating consistency with classical idess.

Remark. If T = constant, then (6-13) combine to form (6-4), while (6-14)
reducesto (6-1).

Because the working W(P) is as discussed in Chapter 5, invariance under
changes in material and spatial observers yields the standard force and moment
balances discussed in Chapter 3 and the configurational force balance discussed
in Chapter 5. Further, arguing as before, (5-15) and the identity (6-6) applied to
¢ in (6-13a) and n in (6-13b) yield

e=m+ 0, n=Q/T, (6-15)
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relationsthat, when multiplied by U, express balance of energy and entropy across
oP associated with the transfer of material to P. Further, the second of (6-15) has
a measure-theoretic interpretation: when material is added to a control volume
across its boundary, the entropy transferred, n da, induces a transfer of heat of
amount Q da = T (nda); moresimply,dQ = T dn, whichisclassical. Important
corollaries of these relations are that bulk tension and bulk free-energy coincide,

and that the configurational stress C and internal force g be again given by the
Eshelby and internal force relations (6-9) and (6-10).
By (3-6a), (6-144) locdizeto

¢ =—DiVh+r+8-F, (6-17a)
n>—Div(h/T)+r/T, (6-17b)

and yield the local free-energy inequality
S F4nT+Th VT <0. (6-18)

d. Fluids. Current configuration as reference

Most of the previous discussion was linked to solids, but the mathematical theory
itself isindependent of the specific constitutive theory. Further, while a fixed ref-
erence configuration may be used to describe a fluid—and often is in the study
of shock waves—constitutive equations for afluid are independent of the specific
choice of reference. That is why fluids are generally described using the current
(deformed) configuration as reference. For this choice of reference,

F=1 (6-19)

and the Piola-Kirchhoff stress S(X, ) reduces to the Cauchy stress T'(x, t) (cf.
(3-9)). Thus, letting ¥ (x, ¢) denote the free energy per unit volume, measured
relative to the current configuration, the Eshelby relation (6-9) takes the form

C=V1-T, (6-20)

with C the configurational stress taking the current configuration as reference.
This result isindependent of the constitution of the material and, in particular, of
whether the material is solid or fluid.

For an ideal fluid or an elastic fluid the stress T is a pressure,

T =—pl, (6-21)
and the configurational stressisauniform tension
C=+pL (6-22)

theterm W + p represents the enthal py per unit current volume. On the other hand,
by (6-20), configurational shearing stresses would generally accompany the flow
of aviscousfluid.



CHAPTER 7

Inertia and Kinetic Energy.
Alternative Versions
of the Second Law

a. Inertia and kinetic energy

If the external body force b isinertial, then, granted an inertial observer,

with p(X) > 0, assumed smooth, the mass density in the reference configuration.
(p = 0 characterizes quasi-static situations.) Then, by (5-20),

e=pF'y, (7-2)
and the equations of motion (3—6a) and (5-10) take the form
DivS = py, (7-3a)
DivC +g = —pF'§. (7-3b)
Let
. 1 5
P =0y, k=3 ol (7-4)

denote the densities of momentum and Kinetic energy. Then, by (2-5), (5-20),
and (7-1),

b-y=e-Y = —k. (7-5)
Thus, because b = —p, (6-6) implies that, for P = P(¢) a migrating control
volume,

d
—{fpdv}—prda:—fbdv, (7-64q)
dr [p P P

d
—{fkdv}—kada:—fb~ydv=—fe~Y’dv. (7—6b)
dt (’p P P P
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These identities assert the equivalence of:

o the production of momentum with the negative inertial body force;

o theproduction of kinetic energy with the negative working of the inertial body
force!

These equivalences will form a basis for characterizing inertial forces when
discussing phase transitions and fracture.

b. Alternative forms of the second law

By (5-22), (5-23), (6-4), and (7-6a),
4 {](\It + k)dv} < [Sn-yda for P stationary, (7-7a)
dt \'p P

d _
7 {f(\ll + k)dv} < [(C+kDn Y da for P stationary, (7-7b)
P apP

inequalitiesthat represent standard and configurational versions of the second law.
Theterm

C+kl=(WW+k1-F'S (7-8)

represents a dynamical Eshelby tensor, because it is based on the total energy
density W + k (cf. (6-9)).

c. Pseudomomentum
The external body force (7—2) may be written in the form
e=—p+ V(—k)+ %y‘zw, (7-9)
with
p=—F'p=—pF'y (7-10)

afield generaly referred to as the pseudomomentum. Trivialy, (7—3a) may be
written asamomentum balance Div S = p. Similarly, (7-9) yields, asan alternative

1Cf. Podio-Guidugli [1997].
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to (7-3b), the configur ational momentum balance?
1 .
Div(C — k1) +g + > y2Vp = p. (7-12)
Note that, by (6-9), the term
C=C—kl=A1-F'S (7-12)

representing stressin (7—11) hasthe form of an Eshelby stresswith the free energy
W replaced by the Lagrangian (cf. (7-8))

A=WV —k. (7-13)
Next, by (6-6) and (7-9), for P = P(r) amigrating control volume,

d 1
—{fpdv}—prda:—fedv—fknda+f—y2Vpdv, (7-14)
dr 'p P P P P2

showing that, in contrast to the identity (7—6a) for the momentum p, the produc-
tion of pseudomomentum requires, for its balance, not only the negative internal
configurational force on P, but also an inertial pressure k on 9P and an inertial
body force | %yZVp dv resulting from density variations within P.

P
Finaly, the second law (6-5) is equivalent to the following inequality for
migrating control volumes P = P(t):3

d o o
—{f(A+p-y)dv} < [€n-qda+ [Sn-yda+ [ Up-qda+ [ Up-yda.
dr (’p P ap P P

d. Lyapunov relations

Assumethat B isbounded and therelevant fieldsare smooth up to 9B, and consider
the following two types of boundary conditions:

(i) fixed boundary:
y = 0o0naB for al time. (7-15)
(if) constant dead loads: There is a constant tensor S such that

Sn = Son on 9B for al time. (7-16)

2Eshelby [1971], for an elastic body as a consequence of DivS = py. Within this
framework, Maugin [1993, 1995] gives adetailed discussion of pseudomomentum, anotion
with alarge physical literature (cf., e.g., Nelson [1979], Peierls[1991]). Cermelli and Fried
[1997] give an alternative treatment of inertiathat isindependent of constitution and results
in a balance equivalent to (7—11). To these authors % y?V p represents an internal force, a
view with which | disagree; to me %yZVp represents a portion of an external force (inertia)
arising from variations in mass.

3Cermelli and Fried [1997].
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Then, by (7—7a), for a fixed boundary,

% { Jw+ k)dv} <0, (7-17)

and the total energy of the body cannot increase with time.
On the other hand, for a boundary under constant dead loads,

. d
fSn-yda:fSon-yda:fSo-Fda:—{fSo-Fda} (7-18)
B B B dt 3
represents the stress power of the dead loads, and
d
—{f(\II—So~F~|—k)dv}§0; (7-19)
dt |z
thusthe energy of the body minusthe stress power of thedead |oadscannot increase
with time.

The relations (7-17) and (7—19) represent Lyapunov relations for the body; as
derived here they are independent of specific constitutive equations.



CHAPTER 8

Change in Reference
Configuration

Configurational forcesare material and, consequently, they depend strongly on the
choice of reference. With thisin mind, | now give adetailed discussion of the man-
ner in which the basic fields transform under changes in reference configuration
(cf. Subsection 4b1).

a. Transformation laws for free energy and standard force

The following rules for changing integration-variable from X toX = K(X) will
be useful:

[..dv=[.. 7dv, (8-1a)
* P
P
[..nda= [.. 7K "nda, (8-1b)
* P

oP

Wherer*z and dZ are the outward unit normal and element of areaon 815, d; isthe

element of volumeon P, K = Vk, 7 =detK, and K- T = (K™ )T.

The transformation laws for the free energy W, the stress S, and the body force
b are determined by the requirement that the net traction, body force, and free
energy associated with each control volume be invariant:

[Snda= [Snda,  [bdv= [bdv, [Wdv=[Vdv. (82
P * P * P *

P P P
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Thus, by (8-1a),
S=s7K", b=y  b=y'w (8-3)

b. Transformation laws for configurational force

Consider areference change)*( = k(X). The theory presented thus far must hold
for any choice of reference. This observation has two important consequences:
configurational forcesin the new reference must be balanced,

[ Cnda+ [(g+e)dv = 0; (8-4)
P P

and the configurational stress € and externd body ¢ must be given by the Eshelby
and external force relations (cf. (5-20), (6-9))

C=91-(F)T8, e=—@)Th. (8-5)
Equations (4-11), (8-3), and (8-5) yield the transformation laws
C=7KTCK", e=yK e (8-6)
Further, because (8—4) must hold for all 15,
Div' € +g+e=0, (8-7)
where Div* denotes the divergence with respect to XinB. By (8-1b) and (8-6),
[ Cnda= [ K Cnda, (8-8)
aP *
aP
so that, applying the divergence theorem to both sides of (8-8),
DivC = 7 Div*(K " C). (8-9)
Next, a straightforward calculation yields
Div(KT¢) = KT Div* € + (CK~7): VK,
where, forH = f‘K‘T, thevector field H: VK isdefined asin (5-21). Thus (5-10),
(8-6), (8-7), and (8-9) imply that
gt+e=s"K Tig+e+ (K TC)VK}, (8-10)
and, appealing to the second part of (8-6),
g= 7K T{g+ (K TC):VK}. (8-11)

The results (8-6) and (8-11) represent a complete set of transformation laws for
the configurational force system. Note that (8-11) involves the stress C through
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(K~ TC):VK, aterm that is absent when the change in reference is homogeneous
(VK = 0).

By (8-8), the net configurational traction on control volumes is generally not
invariant under changes in reference. Thisisto be expected; the ambient space of

B and that of B need not be identified, and hence the configurational forces
[ Cnda, [ Cnda
P *
aP

need bear no relation to one another. In fact, it is work rather than force that is
basic, and working isinvariant under stationary changesin reference; that is

[q-Cnda= [q-Cnda, (8-12)
P *
P

arelation that follows from (4-14), (8-1b), and (8-6). Similarly, net forces on
control volumes by external and internal configurational body forces are generally
not invariant under changes in reference.

The preceding remarks vividly illustrate the nature of configurational forces.
Changes in reference configuration generally change the spatial arrangement of
the material in the reference and hence change the forces needed to hold this
materia in place. Thus configurational forces are not generally invariant under
changes in reference. On the other hand, standard forces act on materia in the
deformed configuration and are consequently invariant under such changes.



CHAPTER 9

Elastic and
Thermoelastic Materials

Inthischapter | will develop the constitutive theoriesfor elastic materialswith and
without thermal influences. | do this for two reasons:

o to demonstrate, within a very simple context, the procedure | use to develop
congtitutive theories. In future chapters | will apply this procedure in more
complicated situations involving moving interfaces.

o toderiveexplicit expressionsfor theinternal configurational force, expressions
that help to better understand its physical nature.

My treatment of constitutive equations uses the Coleman-Noll procedure,® a pro-
cedure based on the premise that the second law be satisfied in al conceivable
processes, irrespective of the difficulties involved in producing such processes in
the laboratory. The rational application of this procedure requires external forces
and supplies that may be assigned arbitrarily to ensure satisfaction of the underlying
balances in all processes. This may seem artificial, but it is no more artificial than
theories based on virtual work, a paradigm that requires arbitrary variations, which
are not guaranteed to be consistent with the resulting evolution eguations, granted
a congtitutive description. The Coleman-Noll procedure makes explicit the external
fields needed to support the “virtual processes’ used, and in so doing ensures that
these external fields, whether virtual or not, enter the theory in athermodynamically
consistent manner.

1Cf. Coleman and Noll [1963], who discuss single-phase thermoel astic materials.
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a. Mechanical theory

al. Basic equations

The basic equations of the mechanical theory consist of the standard force and
moment balances

DivS +b =0, (9-19)
SFT =FS", (9-1b)
supplemented by afree-energy inequality
U<S F (9-2)

that represents a local form of the second law. These are augmented by the
configurational balance

DivC+g+e=0 (9-3)
with C, g, and e given by the Eshelby relation
C=V1-F'S (9-49)
and the internal and external force relations
g=—VV 4 S:VF, (9-5a)
e=—F'b. (9-5b)

By (9-4) and (9-5a), the configurational balance (9-3) is automatically satisfied
whenever the standard balance (9-14a) is satisfied; the configurational fields are
thus superfluous. Thisis to be expected, as the theory discussed thus far does not
account for migrating material structures such as defects, phase interfaces, and
grain boundaries.

a2. Congtitutive theory

A homogeneous €elastic body described relative to a homogeneous reference con-
figuration is defined by constitutive equations giving the free energy W and the
stress § when the deformation gradient F is known:
v = U(F), (9-6a)
S = S(F), (9-6b)
where & = W(F) Signifies W(X, 1) = U(F(X, 1)), and so forth. The response
functions ¥ and S determine the particular body under consideration and are
defined on the set of all tensors F with det F > 0. | assumethat S is restricted by
the requirement
S(F)FT = FS(F)", (9-7)

which ensures satisfaction of the local moment balance (9-1b).
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Consider an arbitrary congtitutive process; that is, a motion y(X, #) together
withfields W (X, t) and S(X, ¢) determined by that motion through the constitutive
equations (9-6a). The standard force balance (9-1a) then gives the external body
force b needed to support the process, granted the possibility of considering b as
virtual (and hence arbitrary); this balance in no way restrictsthe class of processes
possible for the material. On the other hand, unless the congtitutive equations are
suitably restricted, not all constitutive processeswill be compatiblewith the second
law intheform of thefree-energy inequality (9-2). A basic hypothesisof thetheory
isthat all constitutive processes be consistent with (9-2).

Consistency of the constitutive equations with the free-energy inequality has
strong consequences. Granted (9-6), (9-2) is equivalent to

[BF\iI(F) _ S(F)] F <0, (9-9)

an inequality that must hold for al motions of the body. It is possible to find a
motioninwhich F and F have arbitrarily prescribed val ues at some point and time.
(Choose, arbitrarily, tensors A and B with detA > 0O, choose afunction §(z) with
8(0) = 0, 5(0) = 1, and |5()| small enough that F(r) = A + §(t)B has strictly
positive determinant for al ¢; then y(X, ) = F(¢:)X isamotion with F(0) = A
and F(0) = B.) Thus, because (9-8) islinear in F, thisinequality can be satisfied
for all motions only if the coefficient of F vanishes; (9-6a) must therefore have
the form

U ="UF), S=8F)=pVF). (9-9)

Materials defined by (9-9), in which the stress is the derivative of the free energy
with respect to the deformation gradient, are generally referred to as hyper-
elastic; the basic eguations of hyperelagticity are the balance law (9-1a) and
the restricted constitutive relations (9-9). For such materials (9-9) renders the
free-energy inequality (9-2) an identity

U=5F, (9-10)

there being no dissipation.
Therelations (1-29), (9-54a), and (9-9) yield vanishing internal forces:

g=0. (9-11)

This is a direct consequence of homogeneity; for an inhomogeneous body or
a homogeneous body described relative to an inhomogeneous reference, the
constitutive equations, derived using the same procedure, have the form

v =U(F,X), S=S8F, X)=0V(F,X),
andyield
g=—oxV, (9-12)
the derivative of W (F, X) with respect to X holding F fixed.
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As noted previoudly, g is interpreted as representing forces that pin the material in
place at X in the reference configuration. The formulas (9-11) and (9-12) reinforce
this view; no such forces are required when the points X |abel material arranged ho-
mogeneously, but material described relativeto aninhomogeneousreferencerequires
theinternal forceg = —ay ¥ to hold the material in place.

Invariance under changesin spatial observer places additional restrictions on the
congtitutive equations (9-9); these are well known and will not be discussed here.?

An interesting relation for the configurational stress in a homogeneous elastic
body under achangein reference X = ~(X) was derived by Epstein and Maugin.?

Let K = Vk and_# = det K. By (8-3), the response function \i/K(If“) for the free
energy in the new reference is given by

bx(F) =7 "0(F), F=FK

and generatesthe configurational stressC inthenew reference, asdefined in (8-5),
through

* A~ *
C=—dgVg(F)K'.

b. Thermomechanical theory*

bl. Basic equations

The basic equations of the thermomechanical theory consist of the standard force
and moment balances (9-1), the configurational relations (9-3)—«9-5), and the
thermodynamical laws

¢=-Divh+r+S-F (9-134)
n>—Div(h/T)+r/T, (9-13b)

expressing balance of energy and growth of entropy. Together these yield the
free-energy inequality

U —S-F+nT+Th-VT <0, (9-14)
with free energy defined by
W=g—Tn. (9-15)

Granted, the balance laws (9-1a) and (9-13a) for standard forces and energy, the
inequalities (9-13b) and (9-14) are equivalent.

2Cf., e.g., Truesdell and Noll [1965, §84]; Gurtin [1981, §825, 28].
3[1990] (cf. Maugin [1993, eg. (6-11)]).
4Cf. Coleman and Noll [1963], Coleman and Mizel [1964].
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b2. Constitutive theory

Temperature variations in a homogeneous elastic body described relative to a
homogeneous reference are accounted for by congtitutive equations giving the
free energy, stress, entropy, and heat flux in terms of the deformation gradient, the
temperature, and the temperature gradient:

v =\U(F,T,VT), (9-164)

S=8(F,T,VT), (9-16b)

n=nF,T,VT), (9-160)

h=h(F,T,VT). (9-16d)
Writing

the common domain of the response functions is the set of all (F, T, p), with F a
tensor satisfying det F > 0, T > 0, and p avector.

Consider an arbitrary constitutive process; that is, a motion y(X, ¢) and atem-
perature field T(X, ¢) together with fields ¥ (X, ¢), S(X, ), n(X, t), and h(X, ¢)
determined by the constitutive relations (9-16). The force and energy balances
(9-18) and (9-134) then give the external body force b and heat supply r needed
to support the process. To ensure that the second law is satisfied in all such pro-
cesses, | require that all constitutive processes be consistent with the free-energy
inequality (9-14). Equivalently,

{orb (. 7.0) = SF. T.0)} - F + |0r b 7.p) +iF. T.p)| - T
+ 8 U(F, T,p)-p+ T h(F,T,p)-p <O0. (9-18)

It is always possible to find a motion and a temperature field in which F, T,
p = VT, F, T, and p have arbitrarily prescribed values at some point and time
(consistent with the constraints det F > 0, T > 0). Granted this, arguing asin
Subsection a2 |eads to the conclusions:

S(F,T,p) = opWU(F, T,p),
A(F.T,p)=—dr¥(F,T,p),
3 W (F, T,p)=0.

The general congtitutive equations (9-16) must therefore be consistent with the
following restrictions:

(i) the free energy W, the stress S, and the entropy n must be independent of
p = VT and related through

v = U(F,T), S =0pU(F,T), n=—orW(F,T): (9-19)
(ii) theheat flux must obey thefollowinginequality for all valuesof itsarguments:
h(F,T,p)-p <0. (9-20)
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If iz(F, T,p) islinear in p, the most general form of the constitutive equation for
h consistent with (9-20) is

h=—K(F,T)VT, (9-21)

with conductivity tensor K(F, T') positive semidefinite.

The relations (9-19) and (9-21) are the most general constitutive equations of
theform (9-16) that are consistent with the free-energy inequality (9—14) and have
h linear in VT . The basic equations of the thermoelasticity consist of the balance
laws (9-1a) and (9-133a) for force and energy in conjunction with the restricted
constitutive equations.

An interesting feature of the Coleman-Noll procedure is that the local dissipation
inequality generally suggests which fields should be given constitutive descriptions,
ause of the second law that seems to lead—in all classical continuum theories—to
the correct set of constitutive variables. This contrasts the standard formalism of
studying balance laws to see where a lack of field equations may be compensated
for by the introduction of constitutive relations.

By (9-5a) and (9-19),
g =nVT, (922
and the internal configurational force vanishes if and only if the temperature is
materially uniform. (For an inhomogeneous body, g = nVT — dxW.)

The most general smooth constitutive equation of the form (9-16d) consistent with
(9-20) is

h=—K(F,T,VT)VT

withp -K(F, T,p)p > Ofor al valuesof F, T, and p. To verify thisresult, consider
the inequality

h(g.p) -p <0, (9-23)

withg € R, p € R", and h a smooth function from R" x R" into R” that satisfies
(9-23) for all ¢ € R™ andp € R". Because the variable g appears as a parameter,
it may, without loss in generality, be suppressed. Then, for A > 0, k(Ap) - Ap < O;
hence h(Ap) -p < 0.Let 2 — 0. Then2(0) - p < Ofor dl p, so that £(0) = 0. Thus

1
h(p) = {{ Vh(sp) ds}p (9-24)

for al p. Let —K(p) denote the quantity {...}. Then h(p) = —K(p)p for al p. The
genera solution k of (9-23) istherefore

h(q.p) = —K(q.p)p (9-25)

with K(q, p), for each (g, p), alinear transformation from R" into R" consistent with
the inequality

p-K(g.p)p > 0. (9-26)

Because of the dependence of K(q, p) on p, the inequality (9-26) is weaker than
positive definiteness for K(q, p). However, when h is quasilinear, that is, when
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h(q, p) islinear in p for each ¢, then

h(q.p) = —K(q)p

for al (g, p), with K(q) positive semidefinite.
More generally, the relation (9-27) holdsto first order in p:

h(g.p) = —K(g)p +o(lp]) asp—0
with K(g) positive semidefinite; and, for ¢ and p both small,

h(g.p) = —Kp +o(lql +Ip])  as(g.p) > 0
with K constant and positive semidefinite.

(9-27)

(9-28)

(9-29)
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Part B

The Use of Configurational
Forces to Characterize
Coherent Phase Interfaces

Configurational forces are central to the study of evolving material structures such
as defects and phase interfaces. In this part, | will discuss the dynamics of phase
interfaces modelled as smoothly evolving surfaces. | base the discussion on fun-
damental laws which—when restricted to control volumes that do not intersect
the interface—reduce to those introduced earlier; that is why the local results es-
tablished thus far? will be vaid in bulk (i.e., avay from the interface). Here |
concentrate on deriving corresponding results for the interface.

1This part follows the presentation of Gurtin and Podio-Guidugli [19964d], although that
work does not use observer-invariance to characterize balance laws. Cf. the earlier work of
Gurtin [1995], but the treatment of inertia there is somewhat lacking.

2E.g., the Eshelby relation (6-9), the standard and configurational balances (3-6a) and
(5-10), and the dissipation inequality (6-11).



CHAPTER 10

Interface Kinematics

| consider atwo-phase body whose phases « and 8 occupy closed complementary
subregions B, (r) and Bg(z) of the reference body B, with the interface .7 (¢) =
B, (t) N Bg(r) asmoothly evolving surface whose unit normal field m(X, ) points
outward from B,(¢) (cf. Figure 1.1).

For (X, r) afield that is continuous away from the interface and up to the
interface from either side, ®* denote the interfacial limits of @,

dE(X, 1) = d(X £0m(X,1),1)  forX e .7(1),
while [®] and (®) designate thejump in ® across the interface and the aver age
of the interfacial limits of ®:
1
[®] =0T — @, (®) = 5(¢7 + 7). (10-2)

so that the jJump is phase 8 minus phase «.

Motions y are defined as before, except that y is no longer presumed to be
smooth; precisely, y is continuous across the interface,® smooth away from the
interface, and smooth up to theinterface from either side. These assumptionsyield
the compatibility conditions

vl =—VIF]m, (10-2a)
[FIP =0, (10-2b)

where V isthe (scalar) normal velocity of the interface in the direction m, while
P=1-m®m (10-3)

Theinterface is therefore coherent. Cf. Cermelli and Gurtin [1994a,b] for adiscussion
of incoherent interfaces.
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isthe projection onto the interface. Theresult (10-2b) assertsthat F, restricted to
its action on tangent vectors, is continuous across the interface.

An assignment, at each ¢, of material vector v(X, ) to each X € () isa
velocity field for .7 if v isasmooth field that satisfies

yv-m=YV

(cf. Chapter 4). Aswith migrating control volumes, the velocity field v for . may
be viewed asavelocity field for evolving particles constrained to ., with the path
Z(7) traversed by the particle that passes through X € .7(¢) at time ¢ the unique
solution of (4-2). The motion velocity following .7 is then the time derivative
following such particles:

D d

YX. 1) =y (&), Dler- (10-4)
By the chain rule and (10-1),

Y = 5= + F*v = (§) + (F)». (10-5)

Under y, .7 (¢) deformsto a surface
F(t) = y(7 (1), 1),

andy represents a velocity field for ..
Thefieldsv andy transform according to

v —>v+a, ;—>; (10-6)

under the change in material observer defined by (2—9), and according to

;—>;+w+wx(X—o), vy —>v (210-7)

under the change in spatial observer defined by (2—-7) (cf. (4-6), (4-7)).

Basic to what follows are four integral identities. Let ® be a scalar field, T a
tensor field, and w avector field, with @, T', and w smooth away from theinterface
and up to the interface from either side. Then, for P = P(¢) a migrating control
volume,

i{fcbdv} fcbdu— f [CID]Vda+f<DUda (10-8a)
dt 7nP

f@nda _fVCde+ [ [®Imda, (10-8b)

7np
anda —]Dldev—i— [ [TImda, (10-8c)
snp
an wda_f(w DiVT +T-Vw)dv+ [ [Tm-w]da. (10-8d)
snp

(Integralssuch as [ @ dv, [ V@ dv, and [ Div T dv are treated as ordinary inte-

P P P
grals with piecewise continuous integrands; the jump discontinuitiesin ® and T
are accounted for by thetermsinvolving [®] and [T].)
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The transport identity (10-8a) is a direct consequence of (6-6). Indeed, let P,
and Py, respectively, denotetheportionsof P in B, and Bg. Thenmand V represent
the outward normal and normal velacity of dP, on.7, while —m and —V represent
the analogous quantities for 3P on.&. Thus applying (6-6) to each of P, and Pg
and then adding the resulting equationsyiel ds (10-8a). The proofsof (10-8a,b,c,d)
are similar. For example, to verify (10-8b) apply the divergence theorem to each
of [ ®nda and [ ®nda and then add the resulting equations.

Py aP,

Also important igthefoIIaNing result in which & is continuous away from the
interface and up to the interface from either side, while ¢ is continuous on the
interface. Let

F(P)= [®dv+ [ ¢da (10-9)
P NP
for al control volumes P; then
F(P)=0 fordl P = =0, (10-10a)
F(P)>0 foral P = ¢ > 0. (10-10b)

The verification of (10-10) follows upon shrinking P to theinterface. Precisely,
let < be an arbitrary subsurface of . and choose afamily Ps (§ > 0) of control
volumes such that . N Ps = ¢ for al & but vol(P;) — 0. Then F(P;) — [¢da

7

and, because ¢ is arbitrary, the assertions (10-10) follow.



CHAPTER 11

Interface Forces. Second Law

To simplify the presentation, | do not allow for interfacial energy, nor for forces,
such as surface tension, that act within the interface. |1 do, however, consider
counterparts, for the interface, of the body forcesb, e, and g.

a. Interface forces

To the standard and configurational force systemsintroduced earlier, with stresses
and body forces now presumed smooth away from the interface and up to the
interface from either side, | add three fields defined on the interface for al time:

b’ external standard force
g’ internal configurational force
e’ external configurational force

Hereb” (X, t) isaspatial vector, g7 (X, t) and e” (X, ¢) are material vectors, and
b”,g”, ande” areobjective. (11-1)

The interface forcesb”, g7, and e” have physica interpretations identical to
the body forces b, g, and e, except that b, g7, and ¢” are concentrated at the
interface. | associateg”” with the rearrangement of material at the interface during
its evolution.
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b. Working

Assume that the material is viewed by a rest observer. The working W(P) on a
migrating control volume P = P(¢) then has two contributions: a contribution

J(Cn-q+Sn-y)da+ [b-ydv (11-2)
P P

associated with the bulk material, where ¢q is a velocity field for 9P with y the
corresponding motion velocity following aP (cf. (5-5)); and acontribution, which
I will now derive, that accounts for the interface . = .7(¢).

Assumethat .7 isstationary. In view of the remark following (11-1), becauseg
and e perform nowork, neither shouldg” and e, and becauseb iswork-conjugate
toy, so also should . Therefore

[ b -yda (11-3)

NP

would seem the appropriate expression for theworking associated with astationary
interface.
If .# isnot stationary, then (11-3) must be modified. Let v beavelocity field for

% and; be the corresponding motion velocity following 7. | view e~ asaforce
that performswork in conjunction with the migration of . and therefore choose v
as an appropriate work-conjugate velocity for e . Further, if .7 is not stationary,
then .7 has no intrinsic material description, and it would seem appropriate to

use as work-conjugate velocity for b~ the motion velocity ; following .7, as§
representsavelocity field for .7 consistent with the choice of v asvelocity field for
. Finally, thefield g representsinternal forcesthat pin, in place, thosereference
points X that mark the current location of the interface. If the material observer is
at rest, the points X are viewed stationary and g~ performs no work. | therefore
take

[ (e -v+b” -J:’)da
NP

as the working associated with a migrating interface. Note the similarity between
e’ . v+b” ; and the integrand Cn - ¢ + Sn -y in (11-2): ; rather than y isthe
work-conjugate velocity for b7, just asy rather than y isthe velocity for Sr, and
v isthe work-conjugate velocity for e”, just asq isfor Cn.

Summarizing, | write the working W (P) on a migrating control volume P =
P(t) intheform

W(P)= [(Cn-q+Sn-y)da+ [b-ydv
oP P

+ [ (¢ v+b”¥) da, (11-4)
snP

Y


Administrator
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c. Standard and configurational force balances at the
interface

Consider the change in material and spatial observers defined in the paragraphs
containing (2—7) and (2-9). Theng”, asobserved by the moving material observer,
performs work, because material points as viewed by that observer migrate with
velocity a. Thus and by the transformation laws for ¢, y, y, v, and; specified in
(2-8), (2-12), (4-6), (4-7), (10-6), and (10-7), the working W (P) asrecorded by
the new observers has the form

W(P) = an (q+a)da+f(g+e) adv+ [ (g7 -a+e’ -(v+a))da

NP

+fSn (v +w+wx(y—o))da_fb G+w+wx(y—o0)dv

+ [ b (y Wt wx —o)) da. (11-5)

NP

Therequirement that theworking beinvariant under changesin material and spatial
observer requires the equivalence of (11-4) and (11-5) for all vectorsa, w, and w,
and henceyields the standar d for ce and moment balances

fSnda+fbdv+ [ b"da =0, (11-6a)

NP

f(y—o)xSnda—i—f(v—o)xbdv—i— f(y—o)xb/da—O (11-6b)

NP

and the configurational for ce balance

anda+f(g+e)dv+ [ (g +e”")da=0. (11-7)

NP

Since DivS = —b and DivC = —g — e in bulk, (11-64d), (11-7), and the identity
(10-8c) imply that

[ ((SIm+5") da =0, [ ([CIm+g” +e”) da=0;

NP NP

thus, since.” N P isan arbitrary (nice) subsurface of .#, thisyieldsthelocal force
balances

[SIm+5”" =0, (11-8a)
[CIm+g” +e¢” =0 (11-8b)

at the interface. The moment balance (11-6b) localized to the interface yields no
additional results.
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d. Invariance under changesin velocity field for .7 (¢).
Normal configurational balance

The requirement that the theory be independent of the choice of velocity field v for
7 yields an important relation for the external forcesb” ande”. Let t denotethe
tangential component of v. By (10-5) and the constraint v - m = V, the integrand
in (11-4) associated with the integral over . N P may be written in the form

b7 - 0) +{e” +(F)Tb7 ) v =b7 {G) +(F)'mV] +{e” +(F)b7} -t

But because changesin v affect t but leave V unaltered, and because both P and
t arearbitrary, e” + (F) Tb” must be normal to .¥:

Pe” = —P(F)"b”. (11-9)

Further, by (10-2b), FP is continuous across the interface, so that F*P = (F)P;
hence (6-9), (11-8a), and (11-9) imply that

P[CIm = —[(FP)"SIm = —((F)P)"[SIm = P(F) s = —Pe”.  (11-10)
Thisidentity and the configurational balance (11-8b) yield the important result
Pg” =0,
and the internal force on the interface is necessarily normal:
g/ =g’m (11-11)

Conversely, granted the Eshelby relation (6-9), the compatibility condition
(10-2b), and the standard balance (11-8a), if g” is normal to the interface and
if Pe” = —P(F)Tb”, then the tangential component of the configurational bal-
ance (11-8b) is satisfied automatically; this allows one to restrict attention to the
normal configurational balance:

m-[CIm+m-e” +g” =0. (11-12)

Next, sincee” + (F) b7 isnormal to .7, the integral over . N P in (11-4)
must have the form

[ {67 -y+e” -mV}da,
NP

where here and henceforth wetakev = Vm, so that

O

Yy =y* + VFim = () + V(F)m; (11-13)
the steps leading to (5-15) therefore yield an intrinsic form for the working:

W(P)= [Sn-yda+ [b-ydv+ [wUda+ [ {b” Yte” -mVida. (11-14)
oP P oP

NP
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e. Power balance. Internal working

W (P) represents the rate at which work is performed on P by forces external to
P. Thisexternal working is balanced by the working of forces acting internally to
P, anditisthisinternal working that best characterizesforces such asthe internal
configurational forceg”.

Since Div S = —b in bulk, theidentity (10-8d) withT = S andw =y yields

[Sn-yda+ [b-ydv=[S-Fdv+ [ [Sm-ylda.
aP P

P NP

Further, using (10-2a), (10-5), (11-8a), and theidentity [py] = (@) [V ]1+[01{¥'),

[Sm - y] = [Sm] - () + (Sm) - [¥]
=—b" - (y) + (Sm) - [y]
=—b" - () — (Sm) - [Fm]V
=—b" - (y) — [Sm-Fm]V 4 [Sm] - (Fm)V
=—b" - () + (FM)V) — [Sm - Fm]V

— b7 .y—m-[F'SImV, (11-15)
acalculation that yields the following balances:

fSn yda—l—fb ydv+ [ b7 - (p)da

NP

= fs Fdv+ [ (Sm)-[ylda, (11-16a)

NP

Sn-yda+ [b-ydv+ b’ yda
f -y f -y /

NP
=[S-Fdv— [ m[F'SImVda. (11-16b)
4 NP
The identities (11-16a) represent power balances for P involving only standard
forces. Of thetwo, (11-16a) isthe more classical, because the relevant kinematical
field is the motion velocity y. In contrast, (11-16b) accounts explicitly for the

motion of the interface through the velocities V and ; and the force conjugate
to V isthe normal component of the standard part —F TS of the configurational
stressC =71 F'S.

Of more use is the result obtained when we take configurational forces into
account. Indeed, by (11-16b), the stressrelation C = w1 — F 'S, and the normal
configurational balance (11-12),

fSn ych—fb ydv+ [ (b"".§+(e" .m)V> da

NP

:fs-de— [ (Im1+¢”) Vda, (11-17)
A

NP
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or equivalently, adding [ 7 U da to both sides of this equation and appealing to
aP
(11-14),
W(P)=[S -Fdv+ [nUda— [ ([x1+g”)V da. (11-18)
aP

P SNP
This identity is a power balance relating the external working W(P), as given
by, say, (11-14), to theinter nal wor king represented by theright side of (11-18).
Thetermswith integrands S - F and 7 U are discussed in the paragraphs following
(3-8) and (5-24). Regarding the remaining terms:

e Theterm —[7]V = m~V — 'tV represents working associated with the
exchange of bulk material between phases at the interface; itsroleis anal ogous

tothat of [ 7 U da.
oP

e Theterm —g” V represents working needed to maintain the internal integrity
of the material as the interface passes through it; the negative sign signifies
that g7 performs positive work when and only when it opposes motion of the
interface.

f. Second law. Internal dissipation inequality for the
interface

The second law has the form (6-4) for each migrating control volume P = P(z),
with (bulk) free energy ¥ assumed smooth away from the interface and up to the
interface from either side, and with W (P (¢)) the working (11-4):

d o . @ o 0

— {f\lldv} < [(Cn-q+Sn-y)da+ [b-ydv+ [ (¢”-v+b”-¥)da. (11-19)

dr [p ap P S0P
Theright side of (11-19) may a so be written in the intrinsic form (11-14); equiv-
aently, the power balance (11-18) may be used to replace the external working
by the internal working and hence to rewrite (11-19) as

i{fwdv} <[S Fdv— [ (Ixrl+g”)Vda+ [nUda.
dr (p P S0P ap

By (6-8), ¥ = ¥; thus, using (10-8a), the dissipation 7 (P), which is the right
side of (11-19) minus the l€eft, has the form

9(P)=—[(¥—S§-F)dv— [ g’Vda=>0, (11-20)
P

NP

so that —g”'V is the energy dissipated by the interface, per unit area. In fact,
shrinking P to theinterface yields the interfacial dissipation inequality

g’V <=0 (11-21)
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(cf. (10-10b)). This inequality, requiring that the normal internal force oppose
motion of the interface, is a central result of the theory.

g. Localizations using a pillbox argument

An dternative derivation of the local force balances (11-8) and the internal
dissipation inequality (11-21) involves aclassical pillbox argument.

Let < (r) denote asmoothly evolving subsurface of .%(r) and, for al sufficiently
small § > 0, let ‘%(r) denote the §-pillbox about < (z):

G(t)={XeB : X=Y+emY,1),Y € 4(z), le| <3}. (11-22)

Consider the migrating control volume P(r) = ¢(¢) with § small. Then 95(z) is
the union of surfaces

G =(X : X=Y+mY,1),Y €4(r)} (11-23)

and asurfacewhose areais O(8); and the outward unit normal n(X, ¢) and normal
velocity U (X, ) for 96;(r) satisfy

n(X,t)=4mY,r) and U(X,r)==xV(Y,r) for X e d4()*. (11-24)

Thus, as§ — 0,
f dU da — f [®]1V da, (11-25a)
895(1) G0
f dnda — ] [®Imda, (11-25b)
895(1) $40]
d
— f ddvi — 0, (11-25¢c)
dt G

where (11-25c) follows from (10-8a) and (11-25a). Further, for
qg=Un, y=y+ UFn, (11-26a)
y=vm, Y=yt + VFEm= () + V{F)m, (11-26b)

the intrinsic velocity fields and corresponding motion velocities for 9<;(r) and
Z(t), (11-24) yields

[ Cn-qda— [ Vm-[Clmda, (11-274)
aGs(t) G(t)

[ Sn-3da— [ [SIm-Y da. (11-27h)
90 20

By (11-25b), the choice P(r) = ¥;() in (11-68) and (11-7) yields the local
force balances (11-84).

Thelocalization of the second law is accomplished using (11-19) with velocity
fields given by (11-26). Let ¢(¢) denote a smoothly evolving subsurface of .7 (¢),
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and take P(t) = 3(t), the §-pillbox about ¢ (¢). Then, by (11-25c), (11-27), and
the standard and configurational balances (11-8a) and (11-12),

o< f [(m~ [CIm+e” -m)V + ([SIm+b") .;}da =— [ g'Vda.
G(1) 0]
(11-28)
Since ¢(t) is arbitrary, the internal dissipation inequality (11-21) follows.



CHAPTER 12

Inertia. Basic Equations
for the Interface

| assume throughout this chapter that the underlying observer is inertial and the
external body forcesb and (hence) e and the external interfaceforcesh” ande” are
inertial. Then b hastheform (7—1). | now characterizeb” through the equivalence
of inertial force and temporal changes in momentum, and, knowing b7, e” is
determined through the equivalence of inertial working and temporal changesin
kinetic energy.*

a. Relative kinetic energy

Throughoutthissection; hasthetheintrinsicform§ =yT+VFEm = (y)+V(F)m
(cf. 11-13). Thefidd k = % p|y|? represents the kinetic energy and the interfacial
fields

1 O
(kre)™ = > Py =y

represent the kinetic energy at the two sides of the interface measured relative to
the interface. Because [j — Y] = — VIFm] and (y —¥) = — V (Fm) the identity

[el?]1 = 2l¢] - (@)

Following a procedure of Podio-Guidugli [1997] as applied by Gurtin and Podio-
Guidugli [1996a,b, 1997].
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may be used to show that [|y —¥ 2] = [|Fm[2]V2. Further, by (10-2) and (10-3),
|[FP|? = |F|? — |[Fm|? and [|[FP|?] = 0. Thejump in relative kinetic ener gy,

1 . o
[kiel = 5 plly =¥ ], (12-1)
may therefore be written aternatively as

1 1
lhial = 5 pl|Fm[Av2 = > plIFI?1V2. (12-2)

b. Determination of b and e”

The production of momentum in migrating control volume P = P(¢) isdefined
by

d
Gl

and represents the tempora change in momentum of P(¢) minus the inflow of
momentum due to the migration of aP(¢). By (10-8a),

7(P)= [ pydv— [ plylVda.
P

NP

A basic premise of the theory is that —.o7(P) be equivalent to the total standard
force on P dueto inertia (cf. (7—6a)):

[bdv+ [ b”da=—7(P). (12-4)
A

NP

Thus, sinceb = —py,

i (b'f — p[)'l]V) da =0,

NP
and since P isarhitrary,
b” = p[y]V. (12-5)
Further, the kinetic energy k = 3 p|y|? satisfies [k] = 3[1y|?] = [¥] - (¥); hence
b’ - (y) = [k]V.

Thusbd” and b” - (y) represent rates at which momentum and kinetic energy are
released by the interface (per unit area).

Similarly, the production of kinetic energy in a control volume P = P(¢) is
given by

T(P)= 4 {fkdv} — [ kU da.
dr (’p P
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By (10-8a),
T(P)=[py-ydv— [ [kIVda;
P NP
hence
[b-ydv+ [ b -(y)da=—7(P). (12-6)
P NP

A second basic premise of the theory is that the inertial working be equal to
—.7 (P); (12-6) therefore establishes the average interfacial velocity (y) as the
appropriate work-conjugate velocity for the inertial forced”.

Theresultsestablished thusfar, thatb” = p[y]V and the appropriate work-conjugate
velocity forb” is(y), depend only on thekinematical assumptionthaty be continuous
across the interface, smooth away from the interface, and smooth up to the interface
from either side; these results are therefore also valid for shock waves.

Arguing as in Section 5e, the inertial working should also have the form
expressed in (11-14), so that

[b-ydv+ [ (b" yte’ - mv) da = —.7(P), (12-7)
A

NP

withy given by (11-13). Thus, by (12-6),

I (b‘/’ ye’ .mV —b @)) da =0,
NP

and, because P isarbitrary,
b’ ) =b" -y +e’ -mV, (12-9)
or equivalently, by (11-13), (5" - (F)m+¢” -m) V = 0; hence
e/ -m=—-m-(F)'b”,

at least for V # 0. On the other hand, (11-9) asserts that Pe” = —P(F) "
therefore

e’ =—(F)'b”, (12-9)
aresult that should be compared to the bulk relation e = —F " b (cf. (5-20)).

The two equivalent forms, b7 - {y) and b -?—ke‘/ -mV, for the inertial working,
underlinethe essential difference between the standard and configurational points of
view. Intheformer the relevant velocity for the working isthe motion velocity y, and
sincey suffersajump discontinuity acrossthe interface, it seems appropriate that its
average value (y) represent the work-conjugate velocity for . On the other hand,
if the interface is viewed as having no intrinsic material identity, then the exchange
of material across the moving interface should be taken into account; this is the
configurational view. Here the appropriate work-conjugate velocities are Vm for e”

and? forb”.
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Next, by (10-2), (12-2), and (12-5),
m-(F)'b” = p(F)m - [y]V = —p(Fm) - [Fm]V?
1 2 2
=73 plIFm|1VE = —[kal.
Thus, by (12-9),
e’ -m= [kgl. (12-10)
The results established thus far assert the equivalence of:

(i) 7 and the (interfacial) release rate for momentum;

(i) thetotal inertial workingd” - (y) = b ; +e” -mV and the release rate for
Kinetic energy;

(iii) theconfigurational inertial workinge” -mV andthereleaseratefor thekinetic
energy measured relative to the interface.

An aternative method of determining the inertial body force e” isto use, in place
of (12-6), a hypothesis analogous to (12—4) for the pseudomomentum p = —pF Ty
(cf. (7-10)); guided by (7-14), such a hypothesis has the form
d 1
fedv+ [ e da=—— {fpdv} + [pUda— [knda+ [ Zy*Vpdv
P 70P dt |'p 2

P P P
(12-11)
and yields, asin the derivation of (12-5), the identity?

e’ = [p]V — [kIm. (12-12)

By (11-13), Vim - [FTy] = [VFm -y] = [y - (yD —y)1, and the relation (12-10) for
e” -misaconsequence of (12-12) (cf. the sentence following (12-6)). Therelations
(12-9) and (12-12) are equivalent.

c. Standard and configurational balances with inertia
In view of (12-5), the standard force balance (11-8a) reduces to the momentum
balance

[SIm = —p[31V, (12-13)

while (6-9), (11-12), (12-2), and (12-10) yield the normal configurational
balance

1 ,
m-[¥1—F'SIm+ > o[IFm|?1V2 + g7 =0. (12-14)

Further, by (11-8a) and (12-9), the term containing V2, whichise” - m, may be
written as (F)m - [S]m; thus the identity [o¥] = (@)[¥] + [¢]l{v) applied to

2An essentially equivalent relation, stated without proof for homogeneous €astic
materials, is given by Maugin [1995, eg. (6-173)].
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m- [F7SIm = [Fm - Sm] reduces (12-14) to
[W] —(S)m-[Flm+ g~ = 0. (12-15)

Thisbalance, acounterpart of the bulk relation (6-10), showstheinternal interface
force g7 to be affected by materia variations in the free energy and deformation
gradient across the interface viathe terms [W] and [F].

d. Constitutive equation for the interface

The fields § and ¥ would generally be given by constitutive equations defining
the material properties away from the interface. On the other hand, the quantities
g” and V, which characterize the mechanics and kinematics of the interface,
require consitutive specification, because without further restriction the internal
dissipation inequality (11-21) may be violated. The basic theory for the interface
is therefore closed by relating g and V constitutively in a manner compatible
with this inequality.

| alow the interface force g to depend on the kinetics and orientation of
the interface through dependencies on V and m, and on the deformation through
dependencies on the limiting values of F. | therefore consider constitutive
equations

g/ =o(V,m F" F), (12-16)
which reduce, via (11-21), to the specific form
g/ =—bV (12-17)
withb = b(V,m, F*, F~) > 0, thekinetic modulus, a constitutive quantity.

The relation (12-17) is the most general smooth constitutive equation of the form
(12-16) that is consistent with the dissipation inequality (11-21) (cf. (9-25)). One
might also consider a frictional-type constitutive assumption

vV =0for|g”| < L, V = —asign(g”) for|g”| > L, (12-18)

with A = A(m, F*, F~) > 0. By (12-15) this allows for a dependence of A on g7,
granted bulk constitutive equations giving ¥ and S when F is known.

For specificity, | supplement the constitutive relation (12-17) for the interface
with hyperelastic constitutive equationsfor thebulk phaseso and 8 (cf. Section 9a):
v = Y, (F), S =S, (F) = 0p W, (F) inphasea, (12-19a)

U = Wg(F), S =Sp(F) = dpWg(F) inphase 8, (12-19b)

where the subscripts « and g8 rather than the symbol ~ are used to designate the

associated constitutive functions. The local form of the second law in bulk is the
inequality (6-11), and its satisfaction is ensured by (12-19).
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e. Summary of basic equations

Assume that the underlying observer, the body force b, and theinterface forcesb”
and e” areinertial. The basic equations for the bulk material then consist of the
momentum balance

DivS = pj (12-20)

supplemented by the constitutive equations (12-19a).
The basic equations for the interface are the compatibility conditions

] = —VIF]m, (12-21a)
[FIP =0, (12-21b)

the momentum balance
[SIm = —p[y]V, (12-22)

and the normal configurational balance
m-[Wl—F'SIm+ [kg]l = bV, (12-23)

withb = b(V,m,F*,F~) > 0, and [ke] = 3 p[|[Fm|?]V? the jump in relative
kinetic energy (cf. (12-10)). The balance (12—23) may bewritten in the alternative
form

[W] — (S)m - [Flm = bV. (12-24)

(Therelations (12-14), (12-15), and (12-17) are used in the derivation of (12-23)
and (12-24).)

Heidug and L ehner,® Truskinovsky,* and Abeyaratneand K nowles® usetheinequality
([w]—(S)m-[FIm)V > O, derived fromthesecond law, to motivateaconstitutiverela-
tion of theform (12-24) for thedriving traction f definedby f = —[W]+(S)m-[F]m.
Their argument does not involve aconfigurational force balance andishencesimpler
than that given here, which is due to Gurtin.® It does, however, involve postulating
a congtitutive relation for [W] — (S)m - [F]m, which seems superfluous, since ¥
and S would typically be prescribed as functions of F through constitutive relations.
In the development described here the configurational force balance provides an
additional field g with normal component available for constitutive prescription,
thereby allowing for (12-24).

Given tensors G and H,

HP=0 = Gm-Hm=G-H.

3[1985).

411987, 1991].

5[1990, 1991].

6[1995] (cf. Gurtin and Struthers [1990]).
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Indeed, assumethat HP = 0. Then G = GP 4+ G(m @ m), while H = H(m ® m),
sothat, because (@ ® b) - (c ®d) =a-c+b-dandPm®@m) = (Pm) @m =0,
G-H = (GP)- {Hm®m)} + {G(m @ m)} - {H(m @ m)}
={GP(m®m)} - H + {(Gm) @ m} - {(Hm) @ m} = Gm - Hm.
Thus (12—24) may be written as
[W]—(S) -[F1=0bV. (12-25)

f. Global energy inequality. Lyapunov relations

Assume that the body B isbounded, that ¥ = .%(¢) is aclosed surface contained
inthe interior of B, and that the external forces are inertial. Then the second law
(11-19), with right side in the intrinsic form (11-14) and (12-7) used to replace
theinertial working by the production of kinetic energy, yields, for P = B,
d
dt
Here, by (12-19a),

W=, (F)inB,, W =W(F)in By, (12-27)

{ [+ k)dv} — [Sn-jyda=—9(B) <O0. (12-26)
B B

where B, = B,(t) and Bg = Bp(t) arethe bulk regions occupied by phases oz and
B; and & (B) isthe dissipation (11-20) modified by (9-10); viz.,

9(B) = — { ¢’ Vda= jbvzda, (12-28)
7

withb =b(V,m,F*,F~) > 0.

A consequence of (12—26) are Lyapunov relations of theform (7—17) (for afixed
boundary) and (7-19) (for a boundary under constant dead loads); in either case
theinequality “ < 0" may be replaced by the stronger assertion “= —%(B) < 0.



Part C

An Equivalent
Formulation of the Theory.
Infinitesimal Deformations

Intheoriesinvolvinginfinitesimal deformationsit iscustomary to takethedisplace-
ment u(X, t) = y(X, t) — X rather than the motion y(X, ) asthe basic kinematical
field. With this in mind, | now reformulate the theory taking the displacement
as the basic kinematical variable associated with the standard force system. This
displacement-based for mul ation involves no approximationsand isconsi stent with
the motion-based formulation discussed in Parts A and B; its importance liesin
its applicability to infinitesimal deformations. To simplify comparisons of the two
formulations, the following abbreviations are convenient:

mbf = motion-based formulation,
dbf = displacement-based formulation.

Because the discussion follows that of mbf, | will omit or simply sketch the most
arguments.



CHAPTER 13

Formulation within
a Classical Context

a. Background. Reasons for an aternative formulation in
terms of displacements

Given amoation y, the corresponding displacement field u is defined by

ulX, 1) =y(X,1) — X (13-1)

and yields
u=y, (13-23)
Vu=F -1 (13-2b)

The problem with the application of mbf to small displacements arises from the
approximation of the gradient F = Vy = 1 + Vu, because this approximation
involvesaterm of O(1) plusaterm of O(8) (assuming that u and itsderivativesare
0(8), with § small). That atheory based on u rather thany is more appropriate may
be seen when comparing the formulas for time derivatives foll owing the evolution
of the boundary of a migrating control volume P = P(¢):

u=u+ (Vu), (13-39)
$=j+Fq. (13-3b)

Assuming that migrations of aP are associated with velocitiesg of O(1), theterms
inu are each O(8); but

y=q+u,

so that y involves a term of O(1) plus a term of O(8), with lowest-order
approximation y = ¢ yielding meaningless results.
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Here | reformulate the general theory using u rather than y as the field that
characterizes the kinematics of deformation.

b. Finite deformations. Modified Eshelby relation

Let P = P(r) be amigrating control volume with g a velocity field for 9P and &
the associated time derivative of u following the evolution of dP. | now consider &
and . as work-conjugate velocities for Sr and b, and therefore write the wor king
intheform

W(P)= [(Cn-q+Sn-u)da+ [b-udv. (13-4)
ap P

This expression should be compared with (5-5), the definition of W (P) within
the mbf. As we shall see, these apparently contradictory definitions are, in fact,
consistent.

Consider the changes in spatial and material observer defined by (2-7) and
(2-9). Then# and & areinvariant under material changes and transform according
to

U= u+wt+wx(@y—o), w—u+w+wx(@y—o) (13-5)

under spatial changes. Thus, alowing material and spatial observers to act con-
currently, a procedure that we shall henceforth follow, this yields the following
expression for the working recorded by the new observers:

W(P):Z{JCn~(q+a)da+£(g+e)~adv (13-6)
+ [Sn-(a+w+wx (y—0))da
+}Pb~(it+w+w><(y—o))dv.
P
Invariance under changes in observer requires the coincidence of (13-4) and

(13-6); as before, this yields the standard force and moment balances (3-5) and
the configurational balance (5-8); or equivalently,

DivS +b = 0, (13-7a)
S1+Vu)' =1+ Vu)ST, (13-7b)
DivC+g+e=0. (13-7c)

Next, arguing as in Section 5d, the requirement that the working (13-4) be
independent of the choice of velocity field used to characterize the evol ution of dP
yieldsthe relation

C=n1-Vu'S (13-9)
with Vu™ = (Vu) .
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Consider a time-dependent change in reference configuration as discussed in
(4-15)—4-18), let P(r) be the migrating control volume defined in (4-18), let
q(X, t) denotethevelocity field for 9P (z) definedin (4-17), and let &t = 1+ (Vu)gq.
The argument leading to (5-18) yields

W(P@)= [ Cn-qda+ [ Sn-uda+ [ e-qdv+ [ b-udv, (13-9)
aP(r) aP(r) P(r) P(r)

and because this expression should coincide with (13-4),

Je-qdv+ [b-udv= [b-udv, (13-10)
P P P
which resultsin the external and internal force relations
e=—Vu'b, (13-11a)
g=-Vr +8S:VVu. (13-11b)
The second law is presumed to be (6-4) with W (P) given by (13-4):
d o o
—{fllldv}5[(Cn~q+Sn-u)da+fb~udv. (13-12)
dt |'p ap P

The steps leading to (6-8) again yield # = W, and this leads to the modified
Eshelby relation

C=v1-Vu's (13-13)
in conjunction with
g=-VV¥ 4+8:VVu, (13-14)

arelation not different from (5-21), as VVu = VF.

A comparison of (13-13) and (6-9) shows that the configurational stress is
different in the two formulations. Specifically, if (13-11a), (13-13), and (13-14)
are compared with (5-20), (6-9), and (6-10), the following relationship between
mbf and dbf emerges:

C(mbf) = C(dbf) — S,
e(mbf) = e(dbf) — b,
g(mbf) = g(dbf).
A somewhat related result is that, under the transformation
C—->C-8, e—>e—b, g— g, (13-15)

the configurational force balance (5-10) isinvariant, while the working transforms
according to

[(Cn-q+Sn-y)da+ [b-ydv+ [(Cn-q+Sn-u)da+ [b-idv, (13-16)
opP P opP P

atransformation that demonstrates the consistency of the two formulations.
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Theterm C — S may, at first sight, seemincorrect because, at apoint, C maps material
vectorsinto material vectors, while S maps material vectorsinto spatial vectors. This
inconsistency follows from the formulaF = 1 + Vu, because the identity 1 should
there be considered a mapping of material vectorsinto spatial vectors. Granted this,
C — S might more appropriately be writtenasC — 178S.

Finally, let U(x, t) = Y (x, t) — x denote the displacement corresponding to the
inverse motion Y (cf. (2-4)), and let U'(x, ) = dU(x,t)/dt = Y'(x, ). Then,
when the deformed control volume P corresponding to P = P(z) is stationary,

W(P)= [(C—S)n-U'da+ [(e—b) U'dv,
oP P

which is a counterpart of (5-23).

c. Infinitessmal deformations

| formulate the theory within an invariant thermodynamic framework in which the
infinitesimal nature of the deformation is characterized by arestriction toinfinites-
imal changesin spatial observer. The working and the inequality representing the
second law arethen identical to their counterparts (13—4) and (13-12) in thefinite
theory; no approximation is needed. Thisis the chief advantage of dbf.

Infinitesimal changes in spatial observer transform the displacement by an
additiveinfinitesimal rigid displacement at each time and henceyield, at each r,
transformation laws of the form

X, t) > aX,t)+w+wx X —o), (13-173)
u(X,t) > aX, ) +w+wx (X —o), (13-17b)

withw and w spatial vectors. Thesetransformationsdiffer fromthetransformations
(13-5) of thefinitetheory, astherelative spinisw x (X — o) in (13-17) asopposed
tow x (y —0) in (13-5).

Changes in material observer are, asin the finite theory, defined by (2-9).

In atheory of infinitesimal deformations the deformed and undeformed bodies
are essentially indistinguishable, and it is not customary to account separately for
material points and the placesthey occupy under adeformation. | shall follow this
convention, but | shall continue to distinguish between the underlying spaces ¢gace
and ¢mater Via separate classes of observers.

The working W(P) is given by (13-4), but (13-6), which represents its form
under achangein observer, now hasw x (y —o) replaced by w x (X —o). Invariance
under observer changes thus yields no alteration in the balances for standard and
configurational forces, whichremain (13-7a,c), but therelation (13-7b) for balance
of momentsis now replaced by the classical relation expression the symmetry of
the standard stress. The basic balances are therefore

DivS +b =0, (13-184)
S=ST, (13-18b)



13. Formulation within a Classical Context 87

DivC+g+e=0. (13-18c)
Finally, the remaining arguments are unchanged, so that

C=v1-Vu's, (13-19a)

e=—Vu'b, (13-19b)

g=-VV +S:VVu. (13-19¢)

The basic field equations of the finite theory and those of the infinitesimal theory
therefore differ only in the standard moment balance.



CHAPTER 14

Coherent Phase Interfaces

a. General theory

The ensuing discussion isvalid for both finite and infinitesimal deformations. The
compatibility conditions (10-2) take the form

[i] = —V[Vulm, (14-1a)
[VulP =0, (14-1b)

when expressed in terms of displacement. The working now has the form

W(P)= [(Cn-q+Sn-t)da+ [b-uidv+ [ (¢/ -v+b" -u)da (14-2)
op P

NP

with ¢ and v velocity fields for 9P and .7, and with & and u, respectively, corre-
sponding time derivatives of u following the evolutions of 9P and .7 (The field
u is defined by (10-4) with y replaced by u and transforms in the same manner
as do iz and u; cf. (10-4) and the paragraph containing (13-5).) The second law
remains (6-4), but with W(P) given by (14-2).

The development follows that of the theory described in Part B. The final re-
sults, which represent basic equationsfor theinterface, consist of the compatibility
conditions (14-1), the momentum balance

[SIm = —pla]V, (14-3)

and the normal configurational balance

m-[U1—Vu'SIm+g” = —% oll(Vu)m|?]v2, (14-4)
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or equivalently,
[W] —(S)m-[Vulm+ g~ =0. (14-5)
There are supplemented by the internal dissipation inequality
g’V <0 (14-6)
which leads to constitutive equations of the form
¢’ =-bV (14-7)
withb = b(V,m, Vu™, Vu~) > 0. Granted (14-7), (14-5) may be written as
[¥] — (S)m - [Vulm = bV, (14-8)
or equivalently, arguing asin the verification of (12-25),
[W] — (S) - [Vul = bV. (14-9)

b. Infinitesimal theory with linear stress-strain relationsin
bulk

Of importance in the infinitesimal theory is the strain tensor

1
E = > (Vu+Vu'), (14-10)

which is unaffected by infinitesimal rigid displacements. Since S is symmetric,
{S) - [Vu] = (S) - [E], and the interface condition (14—9) may be written in the
form

[W] —(S) - [E] = bV. (14-11)

Assume that the bulk material is elastic, and, consistent with the assumption of
infinitesimal deformations, consider constitutive equations of the form

1
v = EE - Yo E, S =%E inphase«, (14-12a)

1
V= (B —Eo) %(E~Eo). S=7(E—Eo) inphasep, (14-12b)

with elasticity tensors %, and #z symmetric linear transformations of symmetric
tensorsinto symmetric tensors, with Eqo asymmetrictensor, and with %, 73, and Eg
assumed constant. Underlying (14-12) is the tacit assumption that the stress-free
states of the two phases differ by the misfit strain Eo.

The basic equations then consist of the standard balance

DivS = pii, (14-13)

the constitutive equations (14-12), and the strain-displacement relation (14-10)
in bulk, and the standard and configurational balances (14-3) and (14-11) at the
interface.
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Thedriving force [V] — (S) - [E] simplifies considerably when the two phases
have the same elagticity tensor:
Ya=9p=7. (14-14)

Granted this, since . is symmetric, A - ¥’B = B - /¥ A for al symmetric tensors
A and B. Thus, writing

Y =YE,
it follows that
1 .
\IJ:EZ‘-E, S=X in phase «,

U = %Z-E —Eo-YE + %Eo-u’f‘Eo, S =X - YEy inphasep,
and, because [¢] denotestheinterfacial limit of ¢ from phase 8 minusthat from «,
(V] = % [¥ - El—Eo VE* + %Eo - VEq,
(S) - [E]1=(X)-[E] - :—2L [E]- ~Eo.
Thus, appealing to theidentity [ X - E] = (X)) - [E] + [X] - (E),
(W1~ () - [E] = 0571 (B) — () -[E] - <(E) - %Eo) . /E.

But, by the symmetry of ., (X)-[E] = (V' (E))-[E] = (V[E])-(E) = [X]-(E).
Thus[¥] — (S) - [E] = (% Eo — (E)) - So, with

So = 7Eg
the misfit stress, and the interface condition (14-11) has the simple form
1
(EEO —~ (E)) -So=bV. (14-15)

Note that the driving force vanishes when the average interfacial strain hasavalue
midway between the stress-free strains of the two phases.

For a cubic material the misfit strain is a dilation, while the misfit stress is a
pressure:

1
Eo = é eol, So = keol,
with compressibility & a scalar constant. In this case, writing
e =1{rE,

the interface condition (14-15) becomes

k 1 =bV
(E eg — (e)) eg=DbV.



Part D

Evolving Interfaces
Neglecting Bulk Behavior

Thereare situations of physical interest in which the motion of aphaseinterface or
grain boundary may be considered independent of transport processes, inertia, and
deformation.® Granted this, standard forces are irrelevant; the underlying balance
isaconfigurational force balance for theinterface. | now consider behavior of this
type, beginning with a discussion of evolving surfaces. Because deformation is
neglected, all vectors are material; thus, without danger of confusion, the space
of material vectors is here identified with R3.

1Cf. the introduction of Taylor, Cahn, and Handwerker [1992].



CHAPTER 15

Evolving Surfaces

a. Surfaces

Let . be a smooth surface oriented by a choice of unit normal field m(X). The
space of all vectors perpendicular to m(X) is then the tangent spaceat X € .&
and a vector field t on . istangential if t(X) liesin the tangent space at every
X e

Given a subsurface ¢ of .7, the outward unit normal n to 3% isthe principle
normal to thecurve G, directed outward from «; for any X € 9%, n(X) isnormal
to 9¢’ but tangent to ..

al. Background. Superficial stress

In continuum mechanics, tensors arise from the notion of stress. Let P be asubre-
gion of astressed body, r = n(X) the outward unit normal to oP, and C = C(X)
the configurational stress at a point X on dP. Then the vector Cn represents the
force, per unit area, exerted on P across oP by the materia outside of P. Thus
C maps vectors n into vectors Cn, and is hence a linear transformation from R3
into R3,

Stresses may also act within the surface .7, a classical example being surface
tension described by ascalar field o (X) on.”. Supposethat P intersectsthe surface
Z,with = PN.¥ thecorresponding surfaceof intersection. Leth = n(X) denote
the outward unit normal to 3 at X. The vector o h represents a force exerted on
¢ across 3% by the portion of .7 that lies outside of & Thus, as with the standard
notion of stress, surface stress at a point is a linear mapping that assigns a force,
here on, to a unit normal, here n, which, rather than being a vector in R3, is
a tangent vector. The natural notion of stress for a surface is therefore a linear
transformation C = C(X) from the tangent space at X into R®; C maps tangent
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vectors n into (ordinary) vectors Cn in R3. (When C represents surface tension,
Cn isalso atangent vector, but there are more general situationsin which Cn need
not be tangent.)

a2. Superficial tensor fields

As aluded to earlier, tensors are generally linear transformations from R® into R®,
but of interest here are tensor fields T on . with the property that, at each X on
%, T(X) is alinear transformation from the tangent space at X into R3. These
two notions of a tensor field are reconciled by extending T(X) to all of R® with
the requirement that T(X) annihilate vectors normal to .. Precisely, asuperficial
tensor field on . isatensor field T on .7 that satisfies

Tm=0. (15-1)
An example of a superficia tensor field isthe projection
P(X) =1—m(X) ® m(X) (15-2)

onto the tangent space to . at X; given any vector a, P = P(X) mapsa into its
component Pa = a — (a - m)m tangent to ..

Similarly, a superficial 3-tensor field is a 3-tensor field A on . that satisfies
Am = O (cf. thefirst paragraph of Subsection 1j3).

We will refer to asuperficial tensor field astangential or normal according as,
given any vector a, the vector T(X)a is tangent or normal to . at each X. If T is
tangential, then0 =m-Ta = a-T ' mforal a, sothat T'm = O; if Tisnormal, then
PTa = Ofor dl a, sothat PT = 0. The projection P is an example of atangential
tensor field. Given atangentia vector field t on.7,

T=mat (15-3)

is a normal tensor field (because Ta = (t - a)m for al a), and every normal
superficial tensor field may bewritteninthisform. More generally, each superficial
tensor field T admits a unique decomposition into tangential and normal parts:

T=Tam+mRt; (154)
further, Ti;n and t have the explicit forms
T = PT, t=T'm. (15-5)

To verify these assertions, notefirst that Tiy, = PT defines atangentia tensor, and
if we define t = T m, then by (15-2),

Tan=PT=T-memT=T-n(Tm=T-nxt,

which is (15-4). Conversely, assume that (15-4) holds. Then premultiplying by P
showsthat Ti;n = PT, and operating with the transpose of (15-4) on m shows that
t = T"m. The decomposition (15-4) istherefore unique. The assertions regarding
(154) and (15-5) alsofollow, after noting that thematricesof T, Tiay, and t relative
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to an orthonormal basis {e1, e, e3} with e3 = m have the form
Tin T, O Tin T, O Tz
T=|Tn T O Tan=|Tn T»» O t=|Tn].
T1 T O 0O 0 O 0

The following result is essential to what follows; if a superficial tensor field
T = T(X) satisfies

t-Ta=0 (15-6)
for every pair of orthogonal vectors t and a tangent to . at X, then®
Tion = 0P (15-7)

at X, with o a scalar. To verify this assertion, assume that (15-6) holds. Choose
an orthonormal basis {eq, e,, e3} at X withes =m. Then0 =e; - Te, = e, - Tey.
Toaket =e1—e;anda=e;+e>. Then0O=t -Ta =e; - Te; — e, - Tey, SO that
e1 - Teyx = es - Tey. Thus, relative to this basis, the off-diagonal components of T
in the tangent space are zero, while the diagonal components are equal. Thus Ty,
has the form (15-7).

The surface gradient V- on . may be defined through the chainrule. Let ¢, f,
and T be smooth fields on .7, with ¢ scalar-valued, f vector-valued, and T tensor-
valued. Then V¢, atangentia vector field, V.f, a superficial tensor field, and
VT asuperficial 3-tensor field, are defined asfollows: Givenany curvez = z(A)
on.7,

@) =Vs9(@)-2, f2) = (VD)2 I(z) = (V,T(2)z

(where here, but not elsewhere, the dot denotes differentiation with respect to 1).
Note that, by definition,

m- Vj/(p = 0, (Vyf)m = 0, (V,T)m =0.

(Were these relations not required, then, since z istangential, V ..f, for example,
would not be defined on vectors normal to .#.) If ¢, f, and T are smooth in a
(three-dimensional) neighborhood of ., then V¢ = PV, V.f = (Vf)P, and
V4T = (VT)P; similar relations hold when ¢, f, and T are smooth up to . from
either side, but then the limits ®*(X) = ®(X 4 Om(X)) are needed:

VT = P(Ve)F, (15-89)
Vof* = (Vf)*P, (15-80)
V,T* = (VT)*P. (15-8¢)

To verify (15-84), confine ¢ to one side of .. Then by the chain rule and the
smoothnessof ¢ upto.7, p(z)° = Ve(z) - z. But becausethecurvez = z()) lies
on.#, zistangentto.”, sothat z = Pz and ¢(z)" = V¢(z) - Pz = (PV¢(2)) -z,
which establishesPVg asV ¢, because PV istangential andthecurvez = z())
isarbitrary.

1Gurtin and Struthers [1990, eq. (7-4)].
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The surface diver gence of avector field f on . is defined by
Div f = tr(V.f), (15-9)

whilethe surface divergence Div T of asuperficia tensor field is defined through
the identity

a-Div, T = Div,(T a) (15-10)

for every constant vector a.

Let ¢ denote asubsurface of .7, and let n(X), avector tangentto . at X € 3¢,
denote the outward unit normal to the boundary (curve) 3% of . The surface
diver gence theorem then has the form

[ t-nds = [Div,tda, (1511a)
iy G
J Tnds = [Div,Tda (15-11b)
52 42

for t atangential vector field and T a superficial tensor field. To verify (15-11b),
granted (15-114), choose an arbitrary vector a. Then
a- [Tnds= [(T'a)-nds = [Div,(T'a)da =a- [Div,Tda,
¥ a7 4 4
which implies (15-11b).
The curvaturetensor L and total curvature K (twice the mean curvature) are
defined by

L=-V,m, (15-12a)
K=trL=1-L=P-L=—-Divym. (15-12b)

The curvature tensor is symmetric and (hence) tangential:
L=L"T, (15-13a)
L'm=0, (15-13b)

assertions that will be established at the end of this section.

The surfaces under consideration are smooth and may be represented near any
of its points z as the zero-level set of ascalar function @; i.e., as the set of points
X for which

d(X) =0, (15-14)
where ®, a smooth scalar function on athree-dimensional neighborhood ./ of z,
satisfies

¢ =|V®|+£0. (15-15)
In this case, modulo a change in the sign of @, the normal m is given by

m=vao/e, (15-16)
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sothatmand P arewell definedon./~ (even at pointsof .#~ not on.%’) and generate
the curvature tensor and total curvature through

L =—(Vm)P, K =trL = —Divm (15-17)

(with V and Div the three-dimensiona gradient and divergence). Consequences
of (15-14) and (15-15) are the identities

Ve = (VVO)m, Vm=PVV®, (15-18)
and (hence) the relations
L=—¢"P(VVOD)P, K=—YA®d —m-(VVO)m), (15-19)
which, in particular, verify (15-13). Here A® = tr(VV ®) isthe Laplacian.
Two important identitiesin which t isatangential vector field are;
DivyP = Km, (15-20a)
Div,(m ® t) = (Div,t)m — Lt. (15-20b)

b. Smoothly evolving surfaces

bl. Time derivative following .. Normal time derivative

Let.#(¢) depend smoothly onthetimet with V (X, #) the normal velocity of . (¢).
Asin Chapter 10, an assignment of avector v(X, r) toeach X € .#(¢) isavelocity
field for .7 if visasmoothfield that satisfiesv-m = V (cf. Chapter 4). Thevelocity
field v for .~ may be viewed as a velocity field for evolving particles constrained
to ., with the path Z(7) traversed by the particle that passes through X € ()
at time ¢ the unique solution of (4-2). Then, given a scalar, vector, or tensor field
o(X, t) defined for X € .7 (¢), thetime derivative of ¢ following .7, as described
by v isthe time derivative along such paths:

o d
(X, 1) = —— 9(Z(). Dleer. (15-21)
If (X, 1) isascdar field, f(X, r) avector field, and T'(X, ¢) atensor field, each

smooth in a three-dimensional neighborhood of 5”@) for al ¢, then, by the chain

rulec% = ¢+ Vg v, and similar formulas apply to f and 13" Similar relations hold
when ¢, f and T are smooth up to .7 from either side, but then the appropriate
limits must be used:

0F = o + (Vo) v, (15-222)
£ =FE+ ), (15-22h)
T =T* + (VI)*y (15-22¢)

(cf. (1-22)).



98 15. Evolving Surfaces

The derivative (15-21) is not intrinsic, because it depends on the choice of the
velocity field v for.#; when v is normal,

y=Vvm, (15-23)

then ¢ isintrinsic and represents the normal time derivative of ¢ following .&.
Granted this,

m=—V,V, (15-24)

aresult that will be used repeatedly; the verification of (15-24) follows from the
discussion of the next paragraph.

Near any of itspointsandin aneighborhood of any time, .7 (¢) may beconsidered
asthe set of (X, ¢) such that

®(X,1) =0, (15-25)
where @ isasmooth function consistent with (15-15). Then granted (15-16),
V=—o/t (15-26)

and the identities¢ =m - V& and ¢m = PV ® yield
m=—PVV, (15-27)

which is (15-24).
| close this subsection by constructing an evolving surface such that, at X = 0

and ¢t = O, thefieldsm, V, 1?1, and \3 have arbitrarily prescribed values (consistent

with the constraint m-m = 0). Thisresult will be useful in deriving thermomechan-
ical restrictions on congtitutive relations. Consider the plane surface . = .#(¢)
defined by (15-25) with

(X, 1) =m(r) - (X — Z(¢)). (15-28)
Then m(¢) represents a choice of unit normal to.#(¢) and
V(X, 1) = Z(r) - m(r) — () - (X — Z(r))
is the corresponding normal velocity. Let Z(0) = 0 and define mg = m(0); then
because V = V + Vm - VV and VV = —n, it follows that
V(0,0) = mo - Z(0),
V(0,0) = mo - Z(0) + 21(0) - Z(0),
m(0) = m(0).

Further, given any vector T orthogonal to mo and any function §(s) with 5(0) = 0
and §(0) = 1, if m(¢r) satisfies

m(z) = (mo + 8(z)7)/Imo + &(r) 1,
then m(0) = mo, m(0) = . Thus appropriate choices for Z(0), Z(0), mo, and
allow for arbitrary specification of m, V, I%, and \3 at (0, 0).
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b2. Velocity fields for the boundary curve 9 of a smoothly
evolving subsurface of .. Transport theorem

Let (¢) denote a smoothly evolving subsurface of .7 (¢) with n(X, ¢) the outward
unit normal to theboundary curve 3 (r). (Recall that n isnormal to 3¢’ but tangent
to .&; cf. the second paragraph of Section 15a.) The intrinsic motion of 3¢ isin
the plane spanned by m and n and is characterized by a velocity field of the form

Vm+ Vygh, (15—29)

where V isthe normal velocity . and V., the velocity of 9 in the direction of
n, isauniquely defined field. More generally, an assignment of a vector w(X, ¢)
toeach X € 0(t) isavelocity field for % if w isasmooth field that satisfies

w-m=1YV, w-n= "V, (15-30)

so that the component of w tangent to 9% is arbitrary. If the curve 04(¢) is
parametrized locally by functions X = r(u, t), then w(X, t) = or(u,t)/0t isa
velocity field for 3¢(z).

For ¢ asuperficial scalar field,

%{{(pda} denotes %{fgp(x,t)da()()}_

%)

The following transport theorem, in which ¢ isthe normal time derivative of ¢
following .7, is basic to what follows:?

d
i iffpda} = f (‘5 —(pKV) da + f ©Vyg ds. (1531
G G ¢

Given amigrating control volume P(z), let ¢(¢) denote the intersection of the
interface with P, and let n(X, ) denote the outward unit normal to the boundary
curve 9% (t) (Figure 15.1). Then, because a¢(t) lies on dP(¢) for all ¢, the inner
product of (15-29) with n must yield the normal velocity of aP:

U=V(m-n)+ Vy.(n-n). (15-32)
Thus a vector field w(X, ¢) on 9 (¢) will be avelocity field for 9 if and only if
w-m=1V, w-n="U. (15-33)

Indeed, w - n = (w - m)(m - r) + (w - n)(n - n); hence, by (15-32), the conditions
(15-30) and (15-33) are equivalent.

2For the proof of (15-31), cf. Petryk and Mroz [1986], Gurtin, Struthers, and Williams
[1989], Estrada and Kanwal [1991].
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FIGURE 15.1. ¢, shown shaded, isthe portion of the interface in the control volume P; n,
the outward unit normal to 9, is the principle normal to the curve 9¢, directed outward
from<, and ishence normal to 3¢, but tangent to theinterface; n isthe outward unit normal
to 0P; m isthe unit normal to the interface.

b3. Transformation laws

If v and w are velocity fields for . and 8¢, respectively, then v and w transform
according to

v —>v+a, w—w+ta (15-34)
under the change in material observer defined by (2-9).



CHAPTER 16

Configurational Force
System. Working

a. Configurational forces. Working

| consider two phase (or grains) separated by a smoothly evolving surface . (¢)
and described by a configurational force system consisting of fields:

C bulk stress

internal bulk force
interfacial stress
internal interfacial force

7 external interfacial force

® R AR
Q

ThefieldsC, g,g”, ande” are asdiscussed in Sections 5aand 11a, with al fields
objective, and with C and g smooth away from the interface and up to theinterface
from either side. The interfacial stress C(X, ¢), which represents forces such as
surface tension that act within the interface, is a superficia tensor field on . (r).
Given amigrating control volume P = P(t), let ¥ = ¥(¢) denote the portion of
theinterfacein P,

¢=PNY, (16-1)

and let n(X, r) denote the outward unit normal to 3% (¢) (Figure 15.1); then Cn
represents the configurational force, per unit length, exerted on < (and hence P)
across 3¢’ by the portion of .7 that lies outside of 4.

The neglect of inertia renders the external bulk force e irrelevant. The same is not
true of e, which represents a force exerted on the interface by the externa world.
Thisforce should be considered virtual, asit would seem difficult, if not impossible,
to produce in alaboratory. The need for such forcesis discussed in the introduction
to Chapter 9.
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Let v beavelocity field for .. Consider amigrating control volume P = P(¢),
with g avelocity field for 9P and w avelocity field for 3. Based on the discussion
of Section 11b, the working on a migrating control volume P = P(t) should
have the form (11-4) with the terms involving S, b, and b omitted but with an
accounting of the working of the interfacial stress. Because C acts on P across
9, it would seem appropriate to take as work-conjugate velocity for C the field
w, which describes the velocity of 9¢. | therefore write the working W(P) on a
migrating control volume P = P(r) intheform

W(P)= [Cn-qda+ [e” -vda+ [ Cn-wds. (16-2)
P 7

g 53

b. Configurational force balance

An argument identical to that given in Section 11c yields, as a conseguence of
invariance under changes in materia observer (cf. (15-34)), the configurational
force balance

[Cnda+ [gdv+ [(g” +e”")da+ [Cnds =0. (16-3)
op P s

17 G
By the surface divergence theorem,

J/ Cnds = [ Div, Cda;

G 2
the steps leading to (11-8b) therefore yield the interfacial force balance
[CIm+g” +¢” +Div,C=0. (16-4)

On the other hand, restricting attention to P in (16-3) that do not intersect the
interface yields the bulk relation

DivC +g=0.

c. Invariance under changesin velocity fields. Surface
tension. Surface shear

Let P = P(r) beamigrating control volume. | require that the working W (P) be
invariant under changes in the choice of velocity fields ¢, v, and w for 0P, .7, and
97, respectively. Because thetangential component of each of thesevel ocity fields
may be chosen arbitrarily, and because there are no standard forces, the argument
leading to (5-17) reduces C to abulk tension, while that leading to (11-9) renders
e” normal to the interface:

C=nl, (16-5a)
e’ =e’m, (16-5h)
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with e” (X, t) ascdar field.

Thus we are |eft with the requirement that (16-2) be invariant under changes
in the velocity field w. Because the component of w tangent to 3% is arbitrary,
this invariance is equivalent to the requirement that, given any migrating control
volume P = P(t),

JCn-tds=0 (16-6)
8%
for every vector field t tangential to 9. Bearing in mind that P and hence 9% is
arbitrary, it follows that, at any ¢ and any point X € .#(t),

t-Ca=0

for every pair of orthogonal vectors t and a tangent to . at X, and (15-7) yields
the conclusion that the tangential part of C has the form

Cian = 0P, (16-7)
where o (X, t), ascalar, represents surfacetension. Thus, by (15-4),
C=0P+merT,; (16-8)

the vector T(X, t), although tangential, represents, via the term m ® T, forces
whose actionisnormal to .#; T isreferred to asthe surface shear . Given acontrol
volume P with n the outward unit normal to 97, the force, per unit length, within
theinterface applied to P across 9%, is given by

Ch=on+ (T -n)m, (16-9)

with o n tangentia—and (T - h)m norma—to .#. Thus, by (15-30) and (16-9),
the working of the interfacial stress can be written in the form

JCn-wds= [(ocVy, + VT -n)ds, (16-10)
0

I

showing that the work-conjugate velocities for the surface tension and surface
shear, respectively, are the velocity of 9% in the direction of its normal n and the
normal velocity of .

Theisotropy of Cay @ amapping of tangent vector into tangent vectorsisbasic; in
no way isit related to material symmetry. Aswe shall see, material symmetry may
indeed affect both o and T through constitutive dependenciesonm. Notethat relative
to an orthonormal basiswith ez = m,

c 0 O
Cta’]:<o o O)
0 0 O

1Gurtin and Struthers [1990, eq. (7-4)].
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d. Normal force balance. Intrinsic form for the working

A computation based on (15-20a) resultsin the identity
Div,C= (0K + Divy T)m+ V.0 — LT, (16-11)

thus, because Vo and LT are tangential, (16-5a) may be used to conclude that
the normal and tangential components of the force balance (16-4) are

oK +Div,T+[r]l+g” +e” =0, (16-12a)
V,o —LT+Pg” =0, (16-12b)

with
¢ =g"-m (16-13)

the normal internal force. The normal interfacial force balance (16-12a) isa
basic ingredient of the theory.

For the remainder of Chapter 16 the velocity fields are assumed to have the
intrinsic forms (cf. (15-29))

q="Un, v=1vm, w=Vm+ Vyn. (16-14)
Appedling to (16-5), the working (16-2) may be written intrinsically as
W(P)= [ (oVy; + VT -N)ds+ [e'Vda+ [nUda. (16-15)
G oP

¢

e. Power balance. Internal working

By (15-24),

Divy(VT)=T-V4oV+VDivyT=-T- m +V Divy T,

where (- - -)? denotes the normal time-derivative following .. Thus, by (16-10)
and the surface divergence theorem (15-114), the working of the interfacial stress
may be written in the form

JCn-wds= [ (cVy, + VT -n)ds

3y 3%
= [oVy,ds+ [(—T -m+VDiv,T)da, (16-16)
a5 ¢

and, eliminating the term Div. T in (16-16) using the normal force balance
(16-12a), the working (16-15) may be written as?

wP)=-/ {GKV +T-m+([r] +g'/)V] da+ [oVy,ds+ [nUda.
G ¢ op
(16-17)

2Gurtin [1988], Gurtin and Struthers [1990].
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- oKV

FIGURE 16.1. Contributions of the surface tension o and surface shear T to the working
at a phase interface.

The right side of (16-17) representsinternal working on P, and the equivalence
of (16-15) and (16-17) representsapower balancefor P. The significance of the
terms involving [] and g are discussed in the paragraph containing (11-18).
Regarding the remaining terms (Figure 16.1):

e The term —o KV represents working associated with tempora changes in
interfacial area gue to the curvature of the interface.

e Theterm —T - m represents working associated with temporal changesin the
orientation of the interface.

e Theterms

[ o Vs ds, [mUda (16-18)
¢ aP

represent working of the surface and bulk tensionswithin ¢ and P at 3¢’ and P
as materia istransferred to P. The same terms are also present in the external

working (16-15), where they represent working by the agency exterior to P
that istransferring material to P.

There is no expenditure of work associated with “tangential motion” of the inter-
face. Consistent with constraint of thistype, | leave as indeterminate the tangential
component Pg” of theinternal force, an assumption that renders the tangential bal-
ance (16—12b) unimportant and allows one to restrict attention to the normal balance
(16-12a).

Inview of (15-12a) and (15-24), forv = Vm,

Voy=m®V,V+VV,m=—mem+VL) (16-19)
and therefore
C-Vov=—(cKV +T-m). (16-20)

Thustheterm —(c KV + T - r%) in (16-17) may bereplaced by C- Vv, theinternal
working of theinterfacial stressC over superficial variationsof thevectorial normal
velocity v. Theterm C- Vv should be compared to the stresspower §-F = S-(Vy)
that accompanies deformation (cf. (3-8)).

Equating (16-15) and (16-17) yields the identity

[V(Tnyds+[e’ Vda=— [ {aKV +Tom([r] +g—")v] da, (16-21)

K7 g g
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which might betermed areduced power balance, since theterms (16-18) are not
present. In particular, the external working of the interfacial stressisincomplete;
asitincludesonly theworking | V(T - n)ds of the shear.
G
The stress in the form (16-8) and the balance (16-12a) are due to Gurtin and
Struthers® and are independent of constitutive equations. For statical situations (with
C =V1l, g7 =e¢” = 0) related results were derived earlier using variational argu-
ments based on a constitutive equation ¥ = v (m) for the interfacial energy, with o
and c defined by o = ¥ and T = —dw(m). In particular, Herring* derived the force
bal ance appropriate to triple junctions, while Cahn and Hoffman® show variationally
that the vector

E=om—T
satisfies
Div, & = [V].

Sincem - Div,C = — Div £, thisis consistent with (16-12a). The Cahn-Hoffman
vector £ iswidely used in materials science, which isnot surprising, sinceitisonly
the normal component of Div.,.C that generally appears in interface conditions. But
the use of € asbasic (rather than derived) masks the tensorial nature of stress, which
isclassical. Infact, ¢ isapropos only when C hasthe specificformC=ocP+mQ T;
but in situations that allow for a standard stress S within the interface, neither C nor
S have this form (cf. Chapter 21).

Tofurther relatethe Cahn-Hoffman vector & totheinterfacial stressC, let ¢ = <(r)
be a subsurface of the interface with n the outward unit normal to 9%, and let
t =m x n, sothat t isaunit tangent field on 9. Then®

Ch=tx¢ (16-22)
and the external working of the interfacial stressis given by
[Cn-wds= [(txE&)- wds. (16-23)
¥ 3G

Further, thevectorial counterpart of (15-31) yieldsatransport theorem for the vector-
areameasuremda,

d 0

£ {fmda} = [ (m—KVm) da+ [ mVi, ds, (16-24)

di 47 17 3G
whichidentifiesthevector fieldm — K Vm astherateat which thevector areaischang-

ing, measured per unit area. Using (16-25), the internal working of the interfacial
stress may be written in the simple form

— [oKV +T- m)da = [ £ (m—KVm)da, (16-25)

7 7

3[1990], eq. (7-5)] (cf. Gurtin [1988]).

4[1951bh).

5[1972, 1974).

6Cahn ad Hoffman [1974, eq. (7)] note that t x & isthe force, per unit length, exerted
across an interfacial curve.
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and hence represents working associated with temporal changes in the vector area
of the interface. The verification of (16-22) and (16-25) isasfollows:

Cn:an+('r-n)m:a(txm)+<'r-(t><m)>m

:tx(om)—(m-(th))m:tx(am)—t><T:t><£,

—aKV—Tﬁz(am—T)-(ﬁ—KVm)—g-(E]—KVm).



CHAPTER 17

Second Law

I now generalizethe dissipation inequality toincludeinterfacial energy. Asbefore,
| alow for abulk free energy W, but, in accord with the physical assumptions
underlying the current development, | assumethat ¥ isconstant in each phase and
write

F = [V](= constant). (17-1)

In addition, | now alow for aninterfacial free energy v (X, t), per unit area, and
write the second law in the form:

i{f\ydwfwda}fW(P) (17-2)
dt J2 @

7

for every migrating control volume P = P(t), with ¢ = ¢(t) = .#(t) N P(t).
The argument leading to the relation 7 = W (cf. (16-124a)) is valid here also,
so that, by (16-5a), the Eshelby relation takes the simple form

C =Vl

giving the configurational stress as a pure tension with value egual to the free
energy. Further, because W is constant in each phase, the balance DivC + g = 0
yields

g=0. (17-3)

Next, because W is constant in each phase, (10-8a) yields

i{f\lldv} =— [[¥1Vda+ [ VUda,
dr [p ¢ P

7
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so that using the transport theorem (15-31) and the power balance (16-17) with
=W, (17-2) becomes

f(l; —¢1<V> da+ [(f —o)Vy, ds < —f[aKV+T.r?1+g”V]da.

G ¥y G

(17-4)
Givenatime, itispossibleto find asecond referential control volume P’(¢) with
P'(r) = P(r), but with V(X 1), the velocity of 9"() in the direction of its
normal, an arbitrary scalar field on 9«"(r); satisfaction of (17-4) for all such V.-
implies that

o= (17-5)

and the surface tension and surface free energy coincide.! Thus, because ¢ is
arbitrary, (17-4) reduces to the interfacial dissipation inequality

] ,,,
VAT -m4g” V <0, (17-6)

with (- - -)” the normal time derivative following.#.
It is worth noting the similarities between the bulk tension = and the surface
tensiono:

e Bulk tension works to increase the volume of bulk material, surface tension
works to increase the area of the interface.

e Theconfigurational stressesC = w1 and Cia, = o P haveisotropic forms; these
are not consequences of material symmetry, but are general results that follow
from invariance under changes in velocity fields describing the migrations of
oP(t) and 94 (t).

e Both 7 and o are related to energy: 7 to bulk free energy, o to interfacial free
energy.

A reversal of the steps leading to (17—6) shows that the dissipation, defined as
theright side of (17-2) minus the left, is given by

g9P)=~—/[ (w T -m+g” V) da > 0. (17-7)

Assumethat e” = 0. Then, by (16-15) with o = v, the second law (17-2) for
astationary control volume P takes aform

%{fﬂldv—i-ft/fda} < [Y¥Vosds+ [ VT-nds (17-8)
P ’ ay

g 37

in which the working of the surface tension is replaced by an accounting of the
flow of interfacial energy across 9.

1Gurtin and Struthers [1990] (cf. Gurtin [1991]).



CHAPTER 18

Constitutive Equations.
Evolution Equation
for the Interface

Guided by theinterfacial dissipation inequality, | allow the free energy (and hence
the surface tension), the shear, and the normal internal force to depend constitu-
tively on the orientation and kinetics of the interface through dependencies on the
interface normal and normal velocity. The second law in theform of theinterfacial
dissipation inequality is then used to restrict these constitutive equations.

a. Functions of orientation

Let o(m) be a scalar function and f(m) a vector function of the (unit) interface
normal m. The derivatives g (m) and 3, f(m) are defined by the chain rule. Given
any curve m(1) on the unit sphere,

p(m) = lomp(m)} -1, (m) = {ouF(m)} o (18-1)

(with the dot here the derivative with respect to 1); dne(m) is tangent to the unit
sphere, while 9, f(m) is defined by (18-1) only on vectors perpendicular to m, but
is extended by requiring that {9, f(m)} m = 0. Then for m(X, ¢) the unit normal
field on .7 (¢), a calculation using the chain rule and (15-124) yields the identities

Vo e(m) = —Long(m), (18-29)
V. fm) = — {Bmf(m)} L, (18-2b)
Div, f(m) = — {onf(m)} - L. (18—2¢)
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b. Constitutive equations

| base the theory on constitutive equations of the form

v =ym, V), (18-3a)
T="1(m,V), (18-3h)
g/ =g (mV). (18-3c)

Given an arbitrary constitutive process (i.e., an evolution of the interface con-
sistent with the constitutive equations (18-3a)), the force balances (16-12) give
the external force ¢’ and the indeterminate internal force Pg” needed to support
the process; these balances in no way restrict the class of processes possible for
the material. On the other hand, unless the constitutive equations are suitably re-
stricted, not all constitutive processes will be compatible with the second law in
theform (17-6). A basic hypothesis of the theory isthat all constitutive processes
be consistent with the dissipation inequality (17-6).

This hypothesis has strong consequences. Granted (18-3), (17-6) is equivalent
to the inequality

v i(m, V)V + |3m&(m, V) + (m, V)] M43’ m V)V <0,  (18-4)

with (- - -)” the normal time derivative fol Iqwi ng .7 . Since one can always find an

evolution of the interface such that m, V, v, and m have arbitrary values at some
given point and time (cf. the paragraph containing (15-28)), and since the left side

of (18-4) islinear in \; and EL the coefficients of these two fields must vanish,

because otherwise \5 and m could be chosen to violate (18-4). Thus vy =0,
so that ¢ isindependent of V, and T = dpyr, S0 that T is also. The constitutive
equations must therefore be consistent with the following restrictions:

(i) thefree energy ¥ and the shear T must be independent V and related through
Y=9m),  T=—dui(m); (18-5)

(i) the normal internal force must obey the following inequality for all values of
its arguments:

g7 (m, V)V <o0. (18-6)

A consequence of (18-6) isthat the constitutive equation g7 = g7 (m, V), when
smooth in V, must have the form

¢’ =—bm, V)V,  bm V)=>0, (18-7)

with b(m, V) a congtitutive quantity called the kinetic modulus (cf. (9-25)).2
The reduced relations (18-5) and (18-7) are the most general smooth constitutive

1This extension of the procedure of Coleman and Noll [1963] to two-phase materialsis
dueto Gurtin [1988] (cf. Angenent and Gurtin [1989], Gurtin [1993b]).
2For b(m, V) independent of V, b(m)~* is referred to as the mobility of the interface.
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equations of the form (18-3a) that are consistent with the dissipation inequality
(17-6). A consequence of the reduced relations is that the constitution of the
material is determined by two functions: the interfacial free energy v/(m) and the
kinetic modulus b(m, V). | now add the assumption that, for all values of their
arguments,

¥ (m) > 0, b(m, V) > 0. (18-8)

For an isotropic body the interfacial energy v(m) and the kinetic modulus
b(m, V) areindependent of the orientation m, so that, in particular,

Y = constant, T=0. (18-9)
A standard assumption islinear kineticsfor which b(m, V) isindependent of V:
g’ = —bm)V. (18-10)

By (18-5), the dissipation (17-7) takes the form

9(P)=—[g"Vda= [b(m,V)V?da >0, ¢ =PNy, (18-11)

2 g

and isquadratic in V when the kineticsiis linear.

Anisotropy of theinterface manifestsitself in anontrivial dependenceof v(m) on
m. Aninteresting and important consequence of (18-5) isthat for for an anisotropic
interface the surface shear cannot generally vanish.® This demonstrates the non-
intuitive nature of configurational forces; the interface is infinitesimally thin, yet
it supports shear.

Note that, because o = , (18-2a) and (18-5) imply that V.o = LT and
therefore that the tangential force balance (16-12b) is satisfied identically with

Pg” = 0. (18-12)

The surface shear must be balanced by configurational couples exerted by the bulk
material, although such couples, beingindeterminate, need not be made explicit. This
furnishes an additional argument in support of the separate treatment of configura-
tional forceswhen discussing deformation. If the variational treatment of Section 1b
(for an elastic body) is generalized to include an anisotropic interfacial energy, then
the resulting Euler-Lagrange equation in bulk remains (1-7) supplemented by (1-2).
Asiswell known, granted invariance of the energy under changesin spatial observer,
thisclassical equation supportsneither bulk internal couplesnor bulk couple stresses;
a configurational system is needed to balance the couples induced by surface shear.

3Thisis clear from the work of Herring [1951b], Hoffman and Cahn [1972], Cahn and
Hoffman [1974], who discuss the equilibrium theory within avariational framework.
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c. Evolution equation for the interface

Assume that the external force e” vanishes. By (18-2c) and therelations o = v,
T=—0py,and K =1L,

oK +Div, T = (MK + (dndm¥r(m)) - L
- |1/}(m)1+ a.,,aml/}(m)} L (18-13)

and the evolution equation for the interface follows from the normal force balance
(16-124) and therelationsC = W1, F = [V],and g~ = —b(m, V)V

b(m, V)V = {&(m)l + amamlif(m)} L4 F4 (18-14)

Consider an isotropic body with linear kinetics, modulo a rescaling that yields
b = ¥ = 1; and assumethat thereisno differencein free energy between the bulk
phases, so that F = 0. The evolution equation (18-14) then has the sample form®

V=K, (18-15)
aparabolic partial differential equation with alarge literature.®

The linearity in (18-14) in L is a consegquence of the geometry; this linearity is not
congtitutive.

The derivativesin (18-14) must respect the constraint [m| = 1. A simpler form of
the equation follows if 4 (m) is extended from the unit sphere to al nonzero vectors
by defining V/(z) = |z|v(z/|z]), because then the term {. ..} in (18-14) reduces to
3.0,V (z) evaluated at z = m, the derivative 9, being in R3.

For nonsmooth interfaces—which are possiblewhen v/ (z) is nonconvex—the evo-
lution equation (18-14) is not, by itself, sufficient to describe the motion of the
interface; the weaker form (16-3) of the configurational force balance must be used.
For example, across a curve ¢ defined by ajump in the interface normal m, (16-3)
leads to the balance [Cn] = O, where [Cn] denotes the jump in superficial traction
across such acurve.

“Proposed by Uwaha[1987, eqg. (2)] (in R? with b = b(m)) and independently (in R3) by
Gurtin[1988, eg. (8-3)]. (Cf. also Angenent and Gurtin [1989] (in R?).) Evolution according
to (18-14) with b = b(m) is studied by Angenent [1991], Chen, Giga, and Goto [1991],
and Soner [1993]. The specia case V = b(m)~'F was introduced by Frank [1958]. A
formulation of (18-14) using a variational definition of the curvature term (Taylor [1992])
is given by Taylor, Cahn, and Handwerker [1992], who give extensive references.

5Burke and Turnbull [1952] and Mullins[1956] introduced V = K to study the motion
of grain boundaries.

6Cf. Brakke [1978], Sethian [1985], Abresch and Langer [1986], Gage and Hamil-
ton [1986], Grayson [1987], Osher and Sethian [1988], Evans and Spruck [1991, 1992],
Chen, Gigaand Goto [1991], Gigaand Sato [1991], Taylor, Cahn, and Handwerker [1992],
Almgren, Taylor, and Wang [1993]).
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d. Lyapunov relations

Assume that the body B is bounded, that . = .%(¢) is a closed surface contained
in the interior of B, and that e” = 0. Let ¥, and W4 denote the constant values
of the bulk free energy in the regions B, = B,(t) and Bg = Bg(t) occupied by
phases o and B, so that F = Wz — W,. Then, by (17-1),

d d d
E{g\lldv} :E{/(\D—\Ifﬁ)dv} :—d—t{FVOKBa)}, (18—16)

hence (16-2) (withg = 0, ¢ = .7, and 8. = @), (17-2), and (17-7) imply that
the total free energy decreases with time:

- {f y(m)da — F voI(Ba)} = — [b(m, V)V3da < 0. (18-17)

In particular, for an isotropic body with linear kinetics, (18-9) and (18-10) imply
that

1y aea )~ Fol(B,) = — [ bV2da <0 (18-18)
S

A consequence of (18-18) isthat, for F = 0, the area of the interface decreases
with time. Theinequality F > 0 occurswhen B,, has alower bulk energy than Bg;
in this instance (18-18) indicates atendency for the more stable «-phase to grow,
at least in those situations where volume dominates area.



CHAPTER 19

Two-Dimensional Theory*

Because of its geometric simplicity, | shall develop the two-dimensional theory
from scratch, rather than as a specia case of the three-dimensional theory.

Notation with a direct counterpart in the three-dimensional theory will be used
without explanation, and arguments that following directly from their analogs in
that theory will be Ieft to the reader.

a. Kinematics

The interface between phases is presumed to be a smoothly evolving closed curve
< (t). Further, t(X, t) and m(X, 1), respectively, denote tangent and normal fields
for ¢ (¢) such that, in components,

t = (cosv, Sinv), m = (—sind, cos?), (191)

with ¢ (X, t) the counterclockwise anglefrom the (1, 0) axisto t(X, ¢); ds denotes
the arc-length differential, with ds > 0 in the direction of t; and the subscript
s denotes partial differentiation with respect to arc length. Then (19-1) yield the
Frenet formulas

t, = Km, m, =—Kt, (19-2)
with
K =, (19-3)
the curvature.

1Cf. Angenent and Gurtin [1989] and Gurtin [1993b] for a more complete discussion,
with proofs.
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Thenormal time derivatives andthearc-length derivative of thenormal vel ocity
V of ¢ arerelated through

9=V, (19-4)

which represents atwo-dimensiona analog of (15-24).

Attention is restricted to migrating control volumes P(z) for which < (¢) inter-
sects dP(¢) at exactly two points. | will consistently use the following notation for
such control volumes: (¢) denotes the portion of the interfacein P(t),

G(1) =c(0) N P();

X4(r) and X(t), respectively, denote theinitial and terminal points of () (in the
sense of arc length); for any function ®(X, ¢),

Q4(t) = ©(Xa(2), 1), (1) = P(Xp(7), 1); (19-5)
u(t) and uz(¢) defined by
us =ty Xa, ug =ty -Xp (19-6)

are the tangential endpoint velocities of ‘(). Then, because V4 and V are the
normal components of the velocities X, and X (cf. (15-29)),

X4 =usty+ Vymy, X =upts + Vgmg. (19-7)

Given a smooth field ¢(X, t) on ¢ (¢) and a smoothly evolving connected
subcurve ¢ = ¢(t) of € (t),

d
E{f(pd?}:f(é—(pKV) ds+(pBuB—(pAuA, (19—8)

with 5 thenormal timederivative of ¢; (19-8) istheanal og of thetransport theorem
(15-31).

b. Configurational forces. Working. Second law

The bulk stress C and the internal and external interfacial forces g and e are
direct counterparts of the corresponding fields introduced in Section 16a, and,
anticipating (17-3), | omit mention of the interna bulk force g from the outset.

Because the interface is a curve, interfacial stressis most smply described by
avector stress C(X, 1). Let S denote the arc length of a fixed point X € < (¢).
Then suppressing ¢, C(X) represents the force exerted across X by the portion of
theinterface with s > § on the portion with s < S. The expansion

C=ot+m (19-9)

represents a counterpart of (16-8), witho = C- t surfacetensionandt =C-m
surface shear.
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Let P = P(r) beamigrating control volume. Because X, and X z represent the
velocities of the endpoints of the portion of the interface in P, C performs work
on P of amount Cp - X3 — C, - Xy4; by (19-7) and (19-9),

CB-XB—CA~XA:O'BMB+TBVB—(GAMA+TAVA). (19—10)
Thus, for v avelocity field for ¢ and ¢ avelocity field for aP, theworking W(P)
has the form

W(P)= [Cn-qds+ [e” -vds+Cg-Xp—Cy-X,. (19-11)
oP G

~ Under a change in material observer as defined by (2-9), X, transforms to
X4 +a,and similarly for X ; invariance of the working under such changesyields
the configurational force balance (cf. (16-3))

[Cnds+ [(g° +e")ds+Cz —Cy =0. (19-12)
ap v

Consider the §-pillbox () about an arbitrary connected subcurve ¢ (¢) of the
interface. Then (19-12) applied to ‘%;(¢) yields, in thelimit § — 0,

[(CIm+g“ +e“)ds +Cs —Cy =0; (19-13)
dividing this relation by the length £ of 4 and passing to the limit £ — O yields
C+I[CIm+g” +e” =0. (19-14)
The argument leading to (16-5a) is valid here also; hence C = 71, e = e“m.
Thus, by (19-9) and the Frenet formulas, the normal and tangential components
of (19-14) are

oK+ 1, +[r]+g  +e” =0, (19-15a)
o, —tK+(g” - t)t =0, (19-15b)
with g = g - mthe normal internal force.
Next, by (19-4),
(Vo) = Ve, + 10, (19-16)

and therefore, using (19-10),
CB -XB —CA -XA = OpUpB — OplU A +f<V'L’Y +‘L’5) ds.
Thus, eiminating the term t; using (19-15a), the working becomes (cf. (16-17))

W(P)=—[ {aKV o+ (Ir1+g°) v} ds+ [nUds + opup — oatiy.
2 oP

(1917)
The second law has the form

i{f\llda—i—fwds}SW(P) (19-18)
dr |4 J
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for every migrating control volume P = P(z), with ¥/(X, ) the interfacial free
energy per unit length and W the bulk free energy per unit area. As before, ¥ is
presumed to be constant in each phase.

The argument leading to the relations 7 = W and 0 =  are as given in
Chapter 17 and make use of (19-17), (19-18), and the transport theorem (19-8);
these, in turn lead to the interfacial dissipation inequality (cf. (17-6))

R ) (19-19)

c. Constitutive theory

| consider constitutive equations of the form

v =9, V), (19-20a)
T =0, V), (19-20b)
g =8".V), (19-200)

and, as before, require that all constitutive processes be consistent with the dis-
sipation inequality (19-19); this yields the following restrictions (cf. (18-5) and
(18-6)):

(i) thefree energy v and the shear T are independent of V and related through

v=9@). Tt=9'O) (19-21)
(if) the normal internal force must obey the inequality
g V)V <o. (19-22)

Granted smoothness, the most general form of the constitutive equation for g©
consistent with (19-22) is

g" =—-b®, V)V, b(®, V) =0. (19-23)
| henceforth assume that
U(@) >0, b V)>0. (19-24)

Using (19-1), the tangent and normal may be considered functions t = t(#)
and m = m(¢%), which renders the stress vector (19-9) also afunction of

C = C®) = ¥ ()t®) + ¥'()m). (19-25)
Further, by (19-1)
t@) =m@), m@)=—t®), (19-26)
and thisyields
() = a(®)m(®), (19-27)
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with a(¥) the stress-angle modulus

a(®) = ¥ () + ¥ (). (19-28)

d. Evolution equation for the interface
By (19-3) and (19-21), 7, = ¥"(8)d, = ¥’ ($)K; thus, assuming that e
vanishes, (19-23), (19-28), and (19-15a) withw = ¥, o = ¢, and

F = [W](= constant)
yield the evolution equation (cf. Footnote 4, Chapter 18)

b(®, V)V = a(®)K + F, (19-29)

or, granted linear kinetics,

b))V = a(?)K + F. (19-30)

For an isotropic body modulo arescaling that yieldsb = ¢ = 1, and for F = 0,
(19-30) reduces to the curve-shortening equation

V =K,

as shown by Gage and Hamilton? and Grayson,® a simple closed curve in R? of
arbitrary initial shape with evolution governed by V = K shrinks to a point in
finite time, with its asymptotic shape acircle.

Locally, an evolving curve may be represented as the graph of afunction y =
h(x,t), provided the x = x; and y = x, axes are chosen appropriately. Consider
a choice in which arc length increases with increasing x (Figure 19.1). Then,
denoting partia differentiation by a subscript,

hy = tan, V = h, coSV, K = h (14 tan?9) =32, (19-31)

—m/2 < ¥ < /2, and, assuming linear kinetics, the evolution equation (19-30)
takes the form

B(®)h, = A(®)h.x + F, (19-32)
where
B(9) = b(¥) cos?, A®) = (1 + tan® 9)"¥2a(v). (19-33)

Theequations (19-30) and (19-32) areequivalent for — /2 < 9 < 7 /2; for other
values of ¢ adifferent set of axes must be chosen.

By (19-24) and (19-33), B(¥) > 0, while sgn A(¢) = sgn a(¢) with A(®) =
0 & a(¥) = 0. Thisyields the following important remark.

2[1986].
3[1987).
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Vi

y=nh(x,t)

»

X

FIGURE 19.1. Sign conventions when the curveisagraph y = a(x, 1).

Remark. The evolution equation (19-30) is:

(i) parabolic on any angleinterval over which the stress-angle modulus a(¥¢) is
strictly positive;
(if) backward parabolic on any angle interval over which a(®#) is dtrictly
negative;*
(iii) degenerate parabolic at any angle ¢ for which a(9) = 0, but a(¢#) > 0 for
al v # v sufficiently closeto 9.

e. Corners

If the interface has a corner Z, then ¥ has a jump discontinuity and the curvature
K = 9 isundefined. The partia differential equation is then not meaningful, at
least in aclassical sense, but the balance of (19-13) is, and passing to the limit as
¢, with initial and terminal points on opposite sides of Z, shrinksto Z, yields the

requirement that C be continuous across Z, or equivalently, by (19-25), that
Cw) =€), (19-34)

where 9% denote the limits of the angle ¢ from the two sides Z. Thus the set of
corners consistent with balance of configurational forcesisa constitutive property
of the material.

f. Angle-convexity. The Frank diagram

The parabolicity of the evolution equation (19-32) is related to the convexity of
the interfacial free energy v(¢%). The definition of convexity for such a function
is not obvious; the usual definition is inapplicable because v (¢#) is periodic. A

4Gjostein [1963] and Cahn and Hoffman [1974] give strong arguments in support of
interfacial energiesthat satisfy a(¢#) < O for certain values of .
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natural notion of convexity for a scalar function of ¢ can be phrased in terms of
its Frank diagram.® Asthis notion will play amajor rolein discussing the fracture
of anisotropic materials, the basic results concerning convexity are discussed for
an arbitrary smooth scalar function y (¢).

The Frank diagram of y (&) isthe curve defined in polar coordinates (r, ©) by

Frank(y) = {(r, ®) :r = (@)1, y(®) > 0} ; (19-35)

Frank(y) is therefore the locus of y (8)~1t(9) as ¢, the angle to t(), traverses
the set of angleswith y (¢) > 0. A
Assume that, as for the interfacial energy ¥ (1),

y() >0 for al 9,

so that Frank(y) isasimple closed curve. Then y (¢) will be termed angle convex
if the Frank diagram of y () is strictly convex; that is, if given any angle ¢, the
tangent line ¥ to Frank(y) at the point x with angle ¢ intersects Frank(y) only at
x. Heretheangle  of a point x # Oisdefined by t(9) = x/|x|.

More generally, a convexifying tangent # is defined to be a straight line
tangent to Frank(y) at one or more points but digjoint from the region interior to
Frank(y). The angles of the points of intersection of *# with Frank(y) will then
bereferred to astangency angles of #” (Figure 19.2); v will betermed regular if
each of its convexifying tangents has at most a finite number of tangency angles;
an arbitrary angle 9 will be termed globally stable if ¢ is a tangency angle of
some convexifying tangent. (The set of globally stable angles is then the set of
al angles at which the boundary of the convex hull of Frank(y) coincides with
Frank(y).) Note that if y is not angle convex, then Frank(y) has at least one
convexifying tangent ¥ with two or more tangency angles.

The following remarks should underline the importance of angle convexity.®
An aternative but equivalent notion of convexity isphrasedintermsof thefunction
7 (x) defined for |x| # O by

Y @) = x|y (), (19-36)

with ¢ the angle of x. Then the angle convexity of y(¢#) is equivalent to the
requirement that

y(®) —7(R) < (x—2)- Vy(x) (19-37)

for al nonzero vectorsx andz whose anglesareunequal . That angle convexity should
be related to the more standard convexity expressed by (19-37) becomes somewhat
more transparent upon recalling that the level sets of a convex function are convex,
and noting that, by (19-36), the level set 7 (x) = 1 hasthe equation » = y ().

SFrank [1963]. Frank [1963], Angenent and Gurtin [1989], and Gurtin [1993b] define
the Frank diagram using the angle to m rather than the angle to t; this yields only minor
differences (e.g., C(ﬁ) is normal to Frank(v) here, but tangent in Frank’s theory). The
tangent angle is used here because it is more natural in discussing fracture (Part G).

6Cf., e.g., Gurtin [1993], §7.
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FIGURE 19.2. Frank diagram [the curve Frank(y)] of a function y (¢%) that is not angle-
convex. ¥’ isaconvexifying tangent; ¢, and ¢, are tangency angles.

A result demonstrating the physical significance of angle convexity concerns the
energy

[ V(S (s)) ds

of an oriented curve ¢ and is stated as follows: ¥ () is angle convex if and only
if, among al oriented curves from one arbitrarily prescribed point to another, the
straight line segment has (strictly) least energy.

The WLIff shape (or Wulff crystal) corresponding to /(s is the region W that
minimizes

IRACIOE
oW
over the set of all regions W of unit area. The set of globally stable angles of v ()

then consists of the angles of tangentsto 3 W. (If y(:%) isnot angle convex, then 9 W
will have corners, because some angles will be missing.)

Of importance is the Frank diagram of functions of the form
J@)=j- t®) (19-398)

wherej # Oisaprescribed vector. Theangleinterval onwhich Frank(J) isdefined
consistsof thoseangles# for which J(¢#) > 0andhenceisof theform (&g, $o+);
not all angles are included.

Lemma 19.1.

(i) Frank(J) isthe straight line consisting of all x suchthatx -j = 1.
(ii) j is orthogonal to Frank(J) and |j|~* is the perpendicular distance from
Frank(J) to the origin.
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(iii) Letj, andj, benonzerovectorsanddefine J1(9) = j1-t(9), J2(9) =j2- (D).
Then
Frank(J1) = Frank(J2) = j1=Jjo.
ProOOF. Because Frank(J) isthe curve
r={t)-Jy (19-39)

and becausex = rt(9), (i) follows. Next, j isthe gradient of thefunctionx -j — 1;
thusj is orthogonal to Frank(J). Further x = |j|~2%j e Frank(J); hence |j|~* isthe
perpendicular distance from Frank(J) to the origin. To verify (iii), assumethat the
Frank diagrams of J; and J, coincide. Then, by (ii),j1 = 4. Butforj; = —j» the
two Frank diagrams would not coincide, since their angle intervals would differ
by theangle r. O

Lemma 19.2. Let y(¥) be a smooth, strictly positive function and let j be a
nonzero vector. Then

(i) Givenanangle ¢ with J(¢) > O,

J(@)=v(p) <& Frank(y) intersects Frank(J)
at a point x with angle ¢; (19-40a)

J(p) < y(p) <« thepointx on Frank(y) with angle ¢
lies strictly outside of Frank(y). (19-40b)

(if) Frank(J) istangent to Frank(y) at the point x with angle ¢ if and only if

J=v(@)te) + v (¢)m(p). (19-41)
Proor. Assertion (i) is a direct consequence of the definition of the Frank
diagram.
To verify (ii), assume that Frank(J) intersects Frank(y ) at a point x with angle
@, or equivaently, by (19-40a), that
J(p) = t(p) -j = v(9). (19-42)

Then Frank(J) and Frank(y) are tangent at x if and only if the derivatives, with

respect to ¢, of the curvesr = {t(9) - j}"* andr = y(9)~! coincide at © = ¢.

Thus, since t'(¢) = m(¢), Frank(J) and Frank(y) are tangent at x if and only if
m(e) -j = v'()- (19-43)

Therefore, if Frank(J) and Frank(y) are tangent at x, then (19-42) and (19-43),
and hence (19-41), hold. Conversely, (19-41) yields (19-42) and (19-43), and
these imply that the Frank diagrams are tangent at x. O

Lemma 19.3. Let y(¥) be a smooth, strictly positive function.
(i) Givenangles®; < ,, Frank(y) isflat over theinterval [¢1, 9] if and only
if
@) +y"(®)=0 for all ¥ € [v1, 92]. (1944)
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(i) If y(2) isangle convex, then
y@)+y"(®)=0  forallv, (19-45)

with y () 4+ y”(¢) = O at isolated angles, if anywhere.
(iii) Assumethat y () isregular. If y (¢) is not angle convex, then

y(@)+y"(®) <0  for some. (19-46)
ProOOF. Let

T(p) = (@) t(®) + v/ (9)m(p) (19-47)
for al ¢. Then, becauset’ = mandm’ = —t,

T'(9) = [y(e) + 7" (@)]m(y). (19-48)

Further, Frank(y) isflat over [¢,, ¥,] if and only if it hasasingletangent line over
the entireinterval, or, by Lemma 19.1(iii) and Lemma 19.2(ii), if and only if J(¢)
is constant on [, 9], or by (19-48), if and only if (19-44) is satisfied. Thus (i)
isvalid.

Assume that y (1) is angle convex. Choose an arbitrary angle ¢. Letj be given
by (1941) and J by (19-38), so that, by Lemma 19.2(ii), Frank(J/) is tangent to
Frank(y) at the point with angle ¢. Thus, by (19-40), ®(¢) defined near ¥ = ¢
by

W) =J(@) - y@)=j- @) —r@®)
hasamaximum at ¢ = ¢. Thus ®”(p) < 0. But, becauset’ = mandm’ = —t,

(W) = —j - @) — ¥y )
(19-38) and (19-40a) therefore imply that

®"(p) = —y(p) —v"(¢) <0,

which is (19-45). Further, angle convexity requires that Frank(y) be strictly con-
vex. Thus Frank(y) can have no flat portions, which, by (i), implies the final
assertion of (ii).

Assumethat y (1) isnot angle convex. Then Frank(y ) hasaconvexifying tangent
 with (at least two) tangency angles ¥, and ¥, 91 < 0. Letji = j(9),
Jj2 = Jj(92), withj defined in (19-47), and let J; and J, denote J in (19-38) with
J =Jjiandj = j,. Then, by Lemma 19.2, /¥ = Frank(J1) = Frank(J;), so that,
by Lemma 19.1(iii), j1 = j». Since ¥, < 1 + m, it is aways possible to find a
vector a such that ®(¢): = a - m(¢) > 0 for al ¢ € [, ¥2]. Then, by (19-48),
integrating a - j'(¢) from v, to ¥, yields

7]
[ r(e) +v"(9)] @(p)dp = 0,

91
sothat either: (1) y(¢) + y”(¢) = Oforal & € [, ¥2];0r (2) y" () +y(¥) <O
for some ¥ € [¥1, ¥,]. The assumption of regularity for y rules out flat portions
on Frank(y); hence, by (i) of thislemma, regularity also rulesout (1). O
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g. Convexity of the interfacial energy and evolution of the
interface

Theresults of the last section have important consequences regarding an evolving
interface.

Theorem on Convexity and Evolution

(i) Assume that /() is angle convex. Then the evolution equation (19-30) is
parabolic at all but possibly anisolated set of angles; at these angles (19-30)
is degenerate parabolic.

(i) Assume that /() is regular, but not angle convex. Then there are angles ¢
at which the evolution equation (19-30) is backward parabolic.

(iii) A corner between globally stable angles ¥, and ¥ is possible only if /()
isnot angle convex, and then only for #; and ¥, tangency angles of the same
convexifying tangent of Frank(+).

Proor. Theresults (i) and (ii) follow from the Remark at the end of Section 19d
and (ii) and (iii) of Lemma 19.3. To verify (iii), assume that a corner between
globally stableangles®, and and ¥, exists, sothat, by (19-34), C(¢#) = C(92) =: j.
Then, by (19-25) and Lemma 19.2(ii), Frank(JJ) istangent to Frank(/) at the point
with angle 1, and with angle ¥, so that, by definition, Frank(J) isaconvexifying
tangent of Frank(y). Thus ¥, and ¥, aretangency angles of the same convexifying
tangent. O

The initial-value problem for the evolution equation (19-30) may be stated as
follows: given an initial interfacial curve ¢, find an interfacial curve that evolves
according to (19-30) and satisfiestheiniial condition ¢ (0) = ©%. Whena(?) > 0
for al ¥, so that (19-30) is parabolic, this problem is locally well posed.”

Whena(®}) < 0on certain angleintervals, the problem is more difficult because
of the backward parabalicity of (19-30). A method of overcoming this difficulty
is to alow the interface to contain corners that exclude the backward-parabolic
ranges of ©.2 In the presence of a corner (19-30) does not by itself characterize
the motion of the interface; thereisthe additional condition (19-34) requiring that
the stress be continuous across each corner. If ¥, and ,, each globally stable,
are the angles of such a corner, then #; and ¥, must be tangency angles of the
same convexifying tangent of Frank(v). Thus, restricting attention to evolutions
for which ¢ is globally stable, the possible corner angles are known in advance.®

“Angenent [1991], Chen, Giga, and Goto [1991], Barles, Soner, and Souganidis[1993],
Soner [1993].

8Angenent and Gurtin [1989].

9Local well-posedness of evolutions consistent with (19-30) and (19-34)—ensuing
frominitial curvesconsisting of sectionswitha () > 0separated by appropriatecorners—is
established by Angenent and Gurtin [1994].



Part E

Coherent Phase Interfaces
wtih Interfacial Energy
and Deformation

A more general theory that accounts for both deformation and interfacial energy
is complicated. For that reason, | begin with a simple theory that neglects stan-
dard stresses within the interface, an assumption tantamount to neglecting stresses
associated with stretching the interface.

The kinematics relevant to this chapter are as discussed in Chapter 10.



CHAPTER 20

Theory Neglecting
Standard Interfacial Stress

a. Standard and configurational forces. Working

The theory is based on a standard for ce system

S bulk stress
b external bulk force
b’ external interfacial force

and a configurational force system

C bulk stress

internal bulk force
external bulk force
interfacial stress
internal interfacial force
external interfacial force

SR AR
RN

The fields are assumed objective with bulk fields smooth away from the interface
and up to the interface from either side (cf. the discussion of Sections 4a, 5a, 113,
and 16a).

Theexternal forcesb,b” , e, ande” should beconsidered ashavinginertial and virtual
components, with the virtual components not specified constitutively, but instead
assignable in any way compatible with the basic laws (cf. the second paragraph of
Chapter 9).

Let v beavelocity field for .. Consider amigrating control volume P = P(¢).
Let ¢ = P N .7, choose velocity fields ¢ for 9P and w for 8¢, and let

S=y+Fq  Y=)+ (F, (20-1)
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respectively, denote motion velocitiesfollowing 9P and.¥” asdescribed by g and v.
Then, arguing asin Sections 5b, 11b, and 16a, the working W (P) on amigrating
control volume P = P(¢) iswritten in the form (cf. (11-4), (16-2))

W(P) = [(Cn-q+Sn-y)da+[bydv+[ (¢ v+b” ¥)da+ [ Cnwds. (20-2)
P P ¢ 8¢
Invariance of the working under changesin material and spatial observer yields
the standard for ce and moment balances

[ Snda+ [bdv+ [b” da =0, (20-33)
P P 7

7

[ —o0)xSnda+ [(y—0) xbdv+ [(y—0) xb” da=0, (20-3b)
op P s

7

and the configur ational for ce balance

[Cnda+ [(g+e)dv+ [ Cnds+ [(g” +e”)da = 0; (204)
P P 7 ¢
these lead to the bulk relations (3-6) and (5-10) and to the local force balances
[SIm+b" =0, (20-53)
[CIm+g” +e” +Div,C=0, (20-5b)

for the interface (cf. (11-8), (16-4)).
Invariance of the working under changes in the choice of velocity fields for
aP(t), 7 (t), and 34(r) yields (5-17), (11-9), and (16-7); viz.,

C=n1-F'S, (20-6a)
Cin = 0P, (20-6b)
Pe” = —P(F)"b”. (20-6¢)

Thus, as before, the tangential part of the configurational interfacial stress is a
surface tension o, so that, by (15-5) (cf. (16-8)),

C=0P+m@rT. (20-7)

Further, (20-5a), (20-6a,b) and the compatibility relation [F]IP = 0 again
yield (11-10), and using this relation and (16-11), the normal and tangential
configurational force balances are given by

oK +DivyT+m-[Clm+ g7 +e¢” =0, (20-8a)
V,0 —LT+Pg” =0, (20-8b)

with
g =g’ -m, e’ =e’ -m, (20-9)

and differ from (16-12) in the form of the configurational stress C, which here
includes the deformational contribution —F T S.
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Choosing the intrinsic forms g = Un,v = Vm, andw = Vm 4 Vy.n for

the velocity fields, so thaty = y + UFn andy = (y) + V(F)m, and appealing
to (16-10), (20-9), and the stress relation C = 71 — FT S, the working may be
written in the intrinsic form (cf. (11-14), (16-15))

W(P)= [Sn-yda+ [b-ydv+ [7Uda
apP P apP

+[{b/ -;—FE‘//V}da +a/; (O—VBV' +VT- n) ds. (20-10)

b. Power balance. Internal working

Theidentities (11-16b) and (16-16) remain valid within the current more general
theory; thus, sinceC =71 —F'S,

[Sn-yda+ [b-ydv+ [b” Y da
aP P G
=[S-Fdv+ [(m-[Clm—[x])V da, (20-11a)
P G
[ (UVM +VT- n) ds= [oVyyds+ [(-T- m+Vv Div,T)da. (20-11b)
9% 9% G
Adding theserelations and using the normal configurational force balance (20-8a)
to eliminate the term (m - [C]lm + Div,T)V yields

47

W(P)=[S - Fdv—[|oKV+T-m+(x1+¢") V] da
) ,

+ [oVyyds+ [nUda. (20-12)
G oP
The right side of (20-12) representsinternal working on P, and the equivalence
of (20-10) and (20-12) represents a power balance for P. Equating (20-10) and
(20-12) yields, upon canceling theterms [ 7U da and [ oV, ds, the reduced
opP 0%

power balance
[Sn-yda+ [bydv+[{b" y+e’V]da+ [ VT onas
oP P G 317

:fS.de—f{aKV+T~|?1+([n]+g'/)V}da. (20-13)
P

4

The balances (20-12) and (20-13) should be compared to (16-17) and (16-21).

Thetermb” -y +¢” V in (20-10) and (20-13) may be replaced by b~ - () if the
external forces areinertia (cf. (12-8)).
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c. Second law

cl. Second law. Interfacial dissipation inequality

The second law takes the form

i{fqzvarfwda}gW(P) (20-14)
dt P ©

with W(P) given by (20-2). Here ¥ (X, ¢) istheinterfacial free energy, assumed
smooth on .#(¢), while W (X, ¢) is the bulk free energy, assumed smooth away
from the interface and up to the interface from either side.

The theory in bulk is no different from that presented in Part A; in particular,
7 = W, thus applying the transport theorems (10-8a) and (15-31) to the left side
of (20-14) and using the power balance (20-12),

f(l/uf—l/fKV) da+ [(¥ —U)ng—ds—i—f(\il—S-F) dv
g ik P

S—J{JKV+T~I?1+g‘(/V}da. (20-15)

The argument leading to (17-5) isaso valid here and, as before, it implies that

o =1.

Shrinking P to the interface therefore yields, with the aid of (10-10b), the
interfacial dissipation inequality (17-6); viz.

Y4+T -m+g”’V <0, (20-16)
with (.. .)"” the normal time derivative following.”.

Finaly, the dissipation, defined as the right side of (20—14) minus the left, is
given by

GP)=—[(¥V =S -F)dv— [ <$ +-r-r?1+g-/’v> da>0. (20-17)

P G

c2. Derivation of the interfacial dissipation inequality using a
pillbox argument

Let ¢ (r) denoteasmoothly evolving subsurfaceof .7(r), andtake P(t) = 4;(t), the
5-pillbox about (). Then, granted (11-26), a consequence of (11-25c), (11-27),
the transport theorem (15-31),and the balance [S]m + b~ = 0O is that the second
law (20-14) may be written in the form

J (@ —WKV) da+ [ ¥V, ds
s iy

< [{m - [CIm+e")V}da+ [Cn-wds.
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On the other hand, using (20-8a) to eliminate the term Div ;T from (16-16),
[Cnwds = [oViyds—[{T-m+V(eK +m-[CIm+ g +e")] da,
g 9% G

and, arguing as above, we may use the last two relationsto conclude that o = v,

and hence that the interfacial dissipation inequality (20-16) is satisfied.

d. Constitutive equations

Thebulk phases« and 8 are presumed to be hyperel astic as defined by constitutive
equations (12-19).

Regarding the interface, | consider constitutive equations giving v, T, and g”
when m, V, and the interfacial limits F* of the deformation gradient are known.
In view of the compatibility condition (10-2b), 0 = [F]P = [F](1 — m ® m), and
hence [F] = ([FIm) ® m. Thelimits F* aretherefore determined by m, the average

1
Ai=(F) =3 (F*+F"),
and the jump
Jj:=1[F]m
through the identity
+ 1.
Fr=A+Zjom

Therefore, replacing the variables (m, V., F*,F~) by (m, V,A, j), | consider
constitutive equations of the form

¥ =9(m, V,A.j), (20-18a)
T=1(m V.A,j). (20-18b)
g7 =8"(m V. .Aj). (20-18c)

Consider an arbitrary constitutive process; that is, an evolution . = .7 (¢) of the
interface together with a motion y related to . through the constitutive equations
(12-19) and (20-18) and through the compatibility conditions (10-2). Then ¥ and
S (and hence C) are determined in bulk, while o = ¢, T and (and hence C), and
g7 are determined on the interface. Given these fields, the force balances and basic
identities can be satisfied using the external and indeterminate forces; that is, using
the bulk body forces b, e, and g and the interfacial forcesb”, e, and Pg”, which
are arbitrarily assignable (since b, e, b ,and e¢” have virtual components, while g
and Pg” areindeterminate). The force balances consist of the bulk balances (3-6a)
and (5-10), the standard interfacial balance (20-5a), and the normal and tangential
configurational balances (20-8a) and (20-8b); the basic identities are the external
force relation (5-20) and the invariance requirement (20-6c). The relations (3-6a),
(5-10), and (5-20) give the body forces b, e, and g; (20-5a) givesb”; (20-6¢) and
(20-8a) give e¢”; and (20-8b) gives Pg”. Thus, al of the relevant balances and
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identities are satisfied, and all that remains to be satisfied is the second law in the
form of theinterfacial dissipation inequality (20-16). (Thelocal form of the second
law in bulk is (6-11), and its satisfaction is ensured by (12-19).)

Notethat there are neither too many nor two few external and indeterminate forces
availableto ensure satisfaction of the relevant balances and identities, an inflexibility
that demonstrates the lack of capriciousness in the use of external forces.

To ensure compatibility of all constitutive processes with the second law, all
constitutive processes are required to be consistent with the dissipation inequality
(20-16). Granted (20-18), (20-16) is equivaent to the inequality

A~ m] A o A~ o
o V. AV +{oadm v A} A+ g v.ag)
+ {am@(m, V.A.j) + T(m, V,A,j)] m447(m, V,A,j)V <0, (20-19)
with (.. .)" the normal time derivative following .~ .

Aswill beshownin Section 20d, one can alwaysfind an evolution of theinterface

together with a motion (consistent with (10-2)) such that m, V, A, m, V, A, and j
have arbitrary values at some given point and time. Thus, because the left side of

o O O ]
(20-19) islinear inm, V, A, andj, the coefficients of these fields must vanish:
dvr(m, V.A.j) =0,
aA&(m» VvA’.]) = 07
dvr(m, V,A,j) =0,
T(m, V,A,j) = —dnr(m, V,A,j).

The general constitutive equations (20-18) must therefore be consistent with the
following set of restrictions:

(i) the free energy v and the shear T must be independent of V, A, andj (and
hence the limits F*) and must be related through

y=vm),  T=—omym); (20-20)
(ii) the normal internal force must obey the inequality
&7 (m V,A,j)V <0 (20-21)
for 7 smooth this inequality yields the constitutive equation (cf. (9-25))
g’ =—bm V,Aj)V,  bmV,A,j) > 0. (20-22)

The relations (20-20) and (20-22) are the most general constitutive equations
of the form (20-18) that are smooth and consistent with the dissipation inequality
(20-16). Note that the kinetic modulus b(m, V, A, j) may depend not only on m
and V, but also on the interfacial limits F*.

Note that the argument leading to (18-12) is also valid here; thus the tangential
force balance (20-8b) is satisfied identically with Pg” = 0.
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e. Construction of the process used in restricting the
constitutive equations

The domain & of the constitutive equations (20—18) consists of all unit vectorsm,
al scalars V, and all tensorsA and vectors;j such that thetensors F* = A + %j Xm
have strictly positive determinant. Choose (mg, Vo, Ao, jo) € & arbitrarily.
Consider the plane surface .¥ = .#(¢) discussed in the paragraph containing
(15-28), which | will refer to as Paragraph C. For thischoice of .7, thefieldsm, V,

r?l, and 5 can be chosen to have arbitrarily prescribed valuesat X = 0and ¢ = 0.
Next, choose, arbitrarily, atensor A; and avector j;, and let

A(t) =Ao+8(A1,  j(t) =jo+ 8(tY, (20-23)
where §(¢) isascaar function such that
8(0) =0, 5(0) =1, 18(t) <& foralt (20-24)

(which is consistent with, but more restrictive than, the conditions imposed on
8(z) in Paragraph C). Because the set of all tensors with strictly positive determi-
nant is open in the set of all tensors, it is possible to choose ¢ small enough that
(m(r), V(1) A(t), j(t)) € & foral t. Let
1
FE(t) =A@t) + Ej(t) ® m(r) (20-25)

and definey by

y X, 1) =F ()X — Z(1)) for m(r) - (X —Z(t)) <0, (20-264)

y(X,t) =F ()X — Z(t)) for m(r) - (X —Z(t)) > 0. (20-26b)
Then (20-25), (20-26), and the results of Paragraph C imply that

Dl=(em+jemX —2)—(emZ=—Vj=—V[Fm

hencey satisfies the compatibility conditions (10-2). Further,

AQ) =40, jO) =jo. A0.0)=A1  j0.0)=ji (20-27)

thus, because A; andj; are arbitrary, these results and those of Paragraph C yield
an evolution . = #(¢) of the interface and a motion y—with . and y related

through the compatibility conditions (10-2)—such that m, V, A, j, r?l 15 /Dl andj
have arbitrary values at the point X = 0 and thetime ¢ = 0.

f. Basic equations with inertial external forces

f1. Sandard and configurational balances

Assumethat the underlying observer, the body forceb, and theinterface forcesb”
and e” areinertial. The argument used to derive (12-13)—(12-15), here used in
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conjunction with (20-5a) and (20-8a), then yields the momentum balance (12-13)
and, because o = ¥, the normal configurational balance
VK +Div,T4+m-[W1—F'SIm+ [kgl +g” =0, (20-28)
With [krem] = 20l — ¥ [2] (cf. (12-1)), or equivalently,
YK +Div, T+ [V] — (S)m- [Flm+ g~ = 0. (20-29)

These relations are independent of constitutive equations. (The indeterminacy of
the tangential component of g renders the tangential configurational balance
superfluous.)

f2. Summary of basic equations

The basic equations for the bulk material, assumed elastic, consist of the
momentum balance (12—20) supplemented by the constitutive equations (12-19).
The basic equations for the interface are the compatibility conditions

] =—VIF]Im, (20-30a)
[FIP =0, (20-30b)

the momentum balance
[SIm = —p[y]V, (20-31)

and the normal configurational balance
{&(m)l + a..,am&(m)} L4m [W1—F'SIm+[kal =bV  (20-32)
or equivalently,
{71+ ondnd (]} - L+ (91— (S)m- [FIm = bV, (20-33)

with b = b(V,m,A,j) > 0. The relations (20-32) and (20-33) follow from
(20-28) and (20-29) with v, T, and g specified by the constitutive relations
(20-20) and (20-22), using theiidentity v K + Div,, T = {&(m)l + amam&(m)} L
(cf. (18-13)).

If the interface isisotropic with linear kinetics, then both v and » are constant
and (20-32) reducesto

YK 4+m-[W1—F'SIm+ [kal =DV, (20-34)
while (20-33) takes the form
VK 4+ [¥]— (S)m- [Flm = bV. (20-35)

The system of equationsdiscussed in this section representsthe simplest correction
to the system of Section 12e, which was derived neglecting interfacial energy; the
only difference between the two systemsisthe presence of the capillarity term K
in the last two equations.



20. Theory Neglecting Standard Interfacial Stress 137

g. Global energy inequality. Lyapunov relations

Assume that the body B is bounded, that . = .%(¢) is a closed surface contained
in the interior of B, and that the external forces are inertial. Then the second
law (20-14), with right sidein the intrinsic form (20—10) and with (12—7) used to
replacetheinertial working by the production of kinetic energy, yields, for P = B,

i{f(\ll+k)dv+f1//da}—fSnjda:—ﬂ(B)fO. (20-36)

dr |’ v B

Herethebulk free energy isgiven by (12-19) inthe subregions of B occupied by o

and g; theinterfacial free energy isgiven by v = +(m); and the dissipation & (B)

is given by (20-17) subject to the restrictions W = § - F and = —T - m, so that
9(B)=—[g"Vda= [bV3a, (20-37)

7 S
withb = b(V,m,A,j) > 0.

A consequence of (20-36) and the definitions (7-15) and (7-16) are the
following Lyapunov relations: for afixed boundary

d
dt

for aboundary under constant dead loads

{f(\v +k)dv+ [ da} = —9(B) <0; (20-38)
B 5

%{f(\l/—So-F—i-k)dv—i—IWda}=—9«>(B)§O. (20-39)
B 7



CHAPTER 21

General Theory with
Standard and Configurational
Stress within the Interface’

I now generalizethetheory toincludestandard stresswithin theinterface. Thebasic
ingredients of the general theory are asuperficial tensor field S that representsthis
stress and a superficial tensor field F that represents the action of the deformation
gradient within the interface.

a. Kinematics. Tangential deformation gradient

The basic kinematics of motion in the presence of an evolvinginterface.”” = .7 ()
is as presented in Chapter 10, and the discussion here begins where that chapter
ends. Let y beamotion of B. Becausey is continuous across.¥ and smooth up to
7 from either side, the surface gradient V.y may be computed using the second
of (15-8) applied toy™ or y~; the result is the tangential defor mation gradient

F=V,y=F"P+F P=(F)P (21-1)

(cf. (10-2b)). The tensor F(X, ) maps vectors tangent to .»/(¢) at X into vectors
tangent to the deformed interface at y(X, ¢).2 Indeed, (F)~"m divided by its mag-
nitude isthe unit normal to the deformed interface, and for t avector field tangent
to.7,

((F)"Tm) . Ft = ((F)""m) . (F)Pt =m-t =0.

1Cf. Gurtin and Struthers [1990] and Gurtin [1993a, 1995] for more complete
discussions.
2Gurtin and Murdoch [1975].
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An identity basic to the discussion of internal working concerns the surface
gradient of the normal time derivative; = (y) + V(F)m following.~ 3

V., ¥ = (F)°P — (F) (m ® ﬁu) _ V(F)L. (21-2)

Toverify (21-2), consider y restricted to onesideof theinterface, sothat; =y+Fv,
with v = Vm, where, for convenience, the plus and minus signs that signify
interfacial limits are suppressed. Then, by (15-8b), V.,y = FP. Further, by the
product rule, V. (Fv) equals V- applied to Fv holding F fixed plus V- applied
to Fv holding v fixed. By (16-19), the derivative holding F fixed is

FV,v=—-Fm®m) — VFL.
On the other hand, by (1-23c) and (15-8b), for v fixed,
V. (Fv) = (V(Fv))P = ((VF)v)P.

Thus, since F = F + (VF)y (cf. (15-220)),
V., ¥ = (F+(VF))P—F (m ® r?]) _VFL=FP-F (m ® rﬁ) —VFL. (21-3)

Finally, because (21-3) holds with y (and hence F) restricted to either side of the
interface, (21-3) holds with y and F replaced by their averages,; hence (21-2) is
satisfied.

Let ¢ (r) denoteasmoothly evolving subsurfaceof .7 (r) withn(X, ) theoutward
unit normal to 94(¢). Asnoted in the paragraph contai ning (15-29), the motion of
0¢(t) ischaracterized intrinsically by the velocity field Vm + V. n, with V., the
velocity of 9% inthedirection of n. Further, afieldw isreferredtoasavelocity field
for 3¢ ifw-m=V andw-n = V;,, with no restriction placed on the component

of w tangent to 9«. Given such afield w, the motion velocity§ following 8¢, as
described by w, is defined asin (4-3), and this results in the expression

Y= @) + (Fyw. (21-4)

Thetransformati onJ awsforw andJA7 under observer changes are anal ogousto those
specified for v andy in (10-6) and (10-7).

Thefield§ depends on thechoiceof w; whenw = Vim+ V,.n then§ isintrinsic
and, since (F)n = (F)Pn = Fn, may be written in the form

y=Y+Vy,Fn, (21-5)

with; the normal velocity following .7.

3Gurtin and Struthers [1990, eg. (3-29)].
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b. Standard and configurational forces. Working

The force systems are as discussed in Section 20a, the only change being the
addition of asuperficial tensor field S(X, ¢) on.7(¢) that represents standard forces
within the interface. Let P = P(¢) be amigrating control volume with ¢ = <(t)
the portion of the interface in P and n(X, ¢) the outward unit normal to 97 (¢);
then Sn represents standard forces within the interface applied to P across 3.

Let P = P(r) beamigrating control volume, with g avelocity field for 9P and
w avelocity field for 9, let v be avelocity field for ., and consider the motion
velocities

y=y+Fq. y=0)+(Fy, Y=0)+(Fw
following 0P, ., and 9% . Then, arguing as in the paragraph containing (5-2), |
consi derJA’ asthe appropriate work-conjugate velocity for S and write the working
W(P)on P = P(z) intheform
W(P)= [(Cn-q+Sn-y)da+ [b-ydv
aP P
+ [ -v+b” -¥yda+ [(Cn-w+Sn-Y)ds. (21-6)
¢ 8%
The requirement that W (P) be invariant under changes in material and spatial
observer yields the standar d for ce and moment balances
[Snda+ [bdv+ [Snds+ [b” da =0,
oP P 57 G
[y —0)xSnda+ [(y—0)xbdv+ [(y—0) xSnds (21-7a)
oP P 9y
+ [y —0) xb” da =0, (21-7b)
and the configurational force balance (20—4) and these yield, for the interface, the
local force balances

[SIm + Div,S+b” =0, (21-8a)
[CIm+Div,C+g” +e” =0, (21-8b)

and the moment balance
SF" =FS'. (21-9)

The derivation of (21-8) is identical to that of (16-4). The proof of (21-9)
followsthat of theclassical relation (3-6b). Thus, consider thetensor M (P) defined
asthe left side of (21-7b) with the operation “ x” replaced by “®.” Then (21-7b)
is equivalent to the assertion that M(P) be symmetric: M(P) = M(P)". Since
F = V.y, the surface divergence theorem implies that

[(y—0) xSnds = [(y —0) ® Div,Sda + [FS' da.

K7 & g
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Thus, if P(z) istaken to be the §-pillbox ‘() about an arbitrary subsurface ()
of .7 (t), then by (11-25b),

[ —0)®Snda — [(y —0)®[SImda
9% ¢
asé — 0, sothat, by (21-84), in thislimit,
M((1)) — [FS' da.

Because M (%;(t)) issymmetric and ¢ is arbitrary, (21-9) follows.
By (15-4), the configurational stress C may be decomposed into tangential and
normal parts,

C = Ctan +mQ T;
thus, becausem - Div-(m ® T) = Div, T and (Cian) 'm = C"Pm = 0,
m - Divy Cian = Divy, {(Ctan)Tm} —Cian - Vom =G - L,

and the normal component of the configurational force balance (21-8b) takes the
form

m-[CIm+Cq-L+Div,T+g  +¢” =0, (21-10a)
g =m-g”, e’ =m-e’. (21-10b)

As before, invariance of the working W(P) under changes in the choice of
velocity fieldsfor 9P (r) and ./ (¢) yieldsC = 71 — F'S and Pe” = —P(F)Tb” .
Ontheother hand, invariance under changesin thevel ocity fieldw for 34 nolonger
rendersthetangential part of the configurational interfacial stressasurfacetension.

To verify this, note that, because§ = (y) + (F)w and the tangential component
of w is arbitrary, invariance of (21-6) under the choice of w is equivalent to the
requirement that

S(Cn+(F)'Sn) - tds =0

9%
for every vector field t tangent to the curve 3. Thus, arguing as in the proof of
(16-7), thereisascalar field o, thesurfacetension, suchthat (C+(F) " S)an = o P,
and, sinceP(F)" = (FP)T =FT,

Cian =0P —F'S. (21-11)

Thus, in the presence of standard stresses within the interface, the tangential part
of the configurational interfacial stressisno longer a surfacetension; instead Cia,
has a form comparable to its bulk counterpart C = 71 — F'S.

Also important is the normal part d of the tensor C + (F) 'S; by the second of
(15-5), d and the normal part T of C are related through

T=d-ST(F)m. (21-12)
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Notethesimilarity between thisexpression and theformula(21-11) for the surface
tension o; in fact,

C+(F)'S=0cP+m®d,

an expansion that motivates our referring to d, rather than to T, as the surface
shear.
Finally, choosing the intrinsic forms

q=Un, y=Vm, w=v+ Vy.n,
=y+Fq.  5=0)+(Fw, Y=Y+VyFn
for the velocity fields and using (21-4),
Ch-w+Sn JA’ =Ch-v+Cn-nVy, +Sn- (;+Va<¢Fn)
= Vyun - C+F'S)n+Cn-v+Sn.y
=0V +Cn-v+Sn-y.

Thus, arguing as in the derivation of (20-10), the working may be written in the
intrinsic form (cf. (11-14), (16-15))

W(P)= [Sn-yda+ [b-ydv+ [nwUda
opP P opP

+ (7 -y+e' V)da+ [ (a Vas +Cn-v+Sn -5) ds. (21-13)
)

G

Notethat, sinceC+ (F) 'S = oP+m®d, thetermCn -v 4+ Sn ; may be written

asSn - (y) + (d-n)V, and, granted inertial externa forces, theterm b~ Y4’V
may be replaced by b - (y) (cf. (12-8)).

c. Power balance. Internal working

Using the surface divergence theorem,

[Sn.yds=[ {i Div,S+S- vﬂ} da, (21-144)
J, /
[ Cn-vds = [ {Vm-Div,C+C-V,v} da. (21-14b)
J, /

Inview of (21-8a), the calculation (11-15) remains valid provided »” isreplaced
by b~ + Div.S, and thisyields

[Sm-j] = —(b” + Div,S)-y —m - [FTSImV
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in place of (11-15), and hence

[Sn-yda+ [b-ydv+ [b” .Y da+ [¥-Div,Sda
op P 7 G

7

= [S-Fdv— [m-[F'SImV da
P G

7

in place of (11-16b). Thus, by (21-14a),

[Sn-yda+ [b-ydv+ [b”-Yda+ [Sn-¥ ds
P j2 @

g 0

=[S Fdv+ [S-V,Yda— [m-[F'SImVda. (21-15)
P @ @

7 7

Next,C=Cap+m@Tand Vyv = —m® m-VL (cf. (16-19)); thus, by (21-11)
and (21-12),

C-Vv=—-VC-L—T-m=—0KV+VF'S)-L—d-m+(S"(F)m) -m.

On the other hand, since Sm = 0, it follows that SPT = SP = S, and since L is
tangential, PL = L and (F)L = (F)PL = FL; hence (21-2) yields

S.V,y=S-((F)°P) — (Fym)-(Sm) — VS - (F)L)
—S.(F)° — (ST(F)m) -m—V(F'S)-L.

Adding the last two relations yields an expression for the stress power of the
configurational and standard forces within the interface,

C.-Vov+S-V,¥y=—cKV —d-m+S . (F); (21-16)
thus adding (21-14b) and (21-15) yields

[Sn-yda+ [b-jdv+ [b”-Yda+ [(Sn-Y+Cn v)ds
ap 2 ¢

a7

=[S Fdv+ [ {S (F)*+ (m-Div,C—m-[F'SIm)V — oKV —d- ﬁ} da.
P 2

Because C = w1 — F'S, the configurational force balance (21-8b) may be used

to eliminate the termm - Div,C — m - [F T S]m; the result is

[Sn-yda+ [b-ydv+ [(b”-y+e’V)da+ [ (Sn-y+Cn-v)ds
oP P G ¥
= fS~de+f{S'(F)D — (0K +Ir]l+g")V —d.r?n] da, (21-17)
P G

withg” =m-.g”7 ande” =m-e”.
Theidentity (21-17) representsareduced power balancefor P, becauseitsleft
sidediffersfrom W(P) asgiven by (21-13) intheabsenceof theintegrals [ 7 U da
oP
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and [ oV, ds; adding theseintegralsto theright side of (21-17) yieldsthe power
¢

balance

W(P) =[S Fdv+ [[S-(F) = oKV —d-m—(Ir] +g")V}da
P g
+ [oVysds+ [ 7nUda. (21-18)
57 P

Theright side of this balance representsinter nal working; thisworking differsin
two respects from its counterpart (20-12) (of the theory that neglects S):

Theinternal working includesaterm, theinterfacial stresspower S - (F)°,
that represents working associated with stretching of the interface.

The surface tension o and the surface shear d no longer represent the
tangential and normal parts of the configurational stress C. But although
thesefieldsare combinations of standard and configurational terms, they are,
in a sense, internally configurational, since they perform work, internaly,
over temporal changes of interfacial area and orientation.

d. Second law. Interfacial dissipation inequality

The second law takes the form
d
o {f\l/dv + ft//da} < W(P), (21-19)
P 7

where W(P) is given by (21-6), while ¢+ and W are the interfacial and bulk free
energies as described following (20-14).

Using the power balance (21-18) for W (P), an argument similar to that leading
to (20-15) yields (20-15) with the right side replaced by

i {S- (F)" — (0K +¢”)V —d.H} da,

and this leads to the identity

and the interfacial dissipation inequality

Y-S (F)°'+d-m+g’V <0, (21-21)

with (.. .)"” the normal time derivative following ..
Hereit isimportant to note that (21-11) and (21-20) yield an Eshelby relation
for theinterface:

Cean = vP —F'S. (21-22)
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Finally, note that for a stationary control volume P and inertial external forces,
(12-6), (21-13) with o = v, the sentence following (21-13), and (21-19) yield
the following version of the second law:

dt 2 i

7

a S +k)dv+f1pda} = [YVsyds+ [Sn-yda
P 2 P
+ [ (Sn- @)+ (d-n)V) ds.
o7
e. Constitutive equations
The bulk phases  and 8 are again presumed to be elastic as defined by (12-19).

Regarding the interface, | consider constitutive equations of the form (20-18),
with T replaced by d and with an additional relation for S:

¥ = y(m, V. A.j), (21-234)
d=d(m, Vv.A.j), (21-23b)
S=Sm, V. A,j). (21-23¢)
g7 =87 (m V.A,j). (21-23d)

Here, asbefore, A = (F) andj = [F]m.

An argument similar to that following (20-18) shows that there are sufficient
externa and indeterminate forces available to ensure satisfaction of al relevant
balances and identities.

Therequirement that all constitutive processes be consistent with the dissipation
inequality (21-21) is equivalent to the inequality

di(m. V. Aj)V
+ {Em@(m, V,A.j)— S, v,A,j)} A+ {ajg&(m, v,A,j)} .
+ {am@(m, V,A,j)+d(m, V,A,j)} m+87(m, V,A,j)V <0,
(21-24)

with (.. .)” the normal time derivative following .. An argument identical to that
used to prove (20-20) and (20-21) then yields the following conclusions:

(i) the free energy v, the shear d, and the standard interfacial stress S must be
independent of V andj, and must be related through

¥ = y(mA) (21-258)

d = —9n 9/ (m, A), (21-25b)

S = 9,y (m, A); (21-25c)
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(if) the normal internal force must obey the inequality
g (m V,A,j)V <0, (21-26)
which, for ¢~ smooth, resultsin the constitutive equation
g’ =—bm V,Aj)V,  bmV,A,j) > 0. (21-27)

By (21-25c) and because v can depend on F* at most through A = (F), the
interfacial stress S vanishesif and only if the interfacial energy v isindependent
of the deformation gradient.

Because S is a superficial tensor field, Sm = 0. Thus a second consequence of
the stress relation (21-25¢) is that the response function v satisfy

<8A1}(m, A)) m= 0. (21-28)
Further, since F = AP, theidentity A = AP + (Am) ® m yields the decomposition
A=F+a®mn, a=Am;
this allows (m, A) to be considered as a function
y(m F,a) = y(m A) = ymF+axm).

Thus, by (21-28), 3, = (3av/)m = O, ¥(m, F, a) is therefore independent of a.
Further, 9gyr = 94 ; hence

Y =vmF), S=0dymF)

and theinterfacial energy v and standard stress S depend onA = (F) through the
tangential deformation gradient F = (F)P.

Remark. When deciding on possible energies v (m, A) for an admissible theory,
the condition (21-28) is crucial: granted (21-28), the relations (21-25b,c) may be
used as defining relations for S and d.

Finally, | sketch an argument showing that the tangential force balance (21-8b)
is satisfied identically with Pg” = 0. The stepsin the argument are as follows:*

1. Restrict F to one side of the interface. Then, for G a constant tensor,

a-Div,(F'G) = Div,(G'Fa) = tr {(V(G"Fa)) P} = tr {G" (V(Fa))P}
= (GP) - (V(Fa)) = {(GP):VF} - a,
so that
Div,(F'G) = (GP):VF.
2. LetA = (F). Then using theresult 1,
PDiv, {C+A"S} =PDiv, C+PA" Div, S+ S:V/A.

4A much simpler proof is possible in two space dimensions.
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3. Theidentity C+ (F)'S = oP + m ® d and the argument leading to (11-10),
imply that P[Clm = —Pe” + PAT Div.. S.

4. PDiv, {C+A"S} = V,0 — Ld, whichisan analog of (16-11).

5. Using the results 14, the tangential component of the force balance (21-8b)
may be expressed in the form

V‘/O' - Ld — SVA/A + ng = 0,
and, since o = v, thisresult and (21-15) yield Pg” = 0.

f. Basic equations with inertial external forces

Assume that the underlying observer, the body force b, and theinterface forces b~
ande” areinertial.
The basic eguations for the bulk material, assumed elastic, consist of the
momentum balance (12—20) supplemented by the constitutive equations (12—19).
The basic equations for the interface are then the compatibility conditions
(20-30a,b), the momentum balance

[SIm + Div, S = —p[y1V, (21-29)
and the normal configuration balance
m-[W1—F'SIm+ (P —F'S)-L+Div, T+ [ka]l = bV, (21-30)
with [ka] = 2 plly —¥ 121 (cf. (12-1)), T = d — ST(F)m, and b = b(m, V, A, j);5
these relations are supplemented by the constitutive equations
v =ymA), d=—dyy(mA), S=3as(mA). (21-31)

Notethat (21-30), which representsthe normal configurational force balance, may
be written in the more suggestive form

m-[bulk Eshelby tensor]m-+(interfacial Eshelby tensor)-L+Div, T+[k] = bV.

(21-32)
The relation (21-29) follows from (12-5) and (21-8a), while (21-30) makes use
of (12-10), (21-11), (21-22), and (21-27).

g. Lyapunov relations

If the body B isbounded, if .~ is aclosed surface contained in the interior of B,
and if the external forces are inertial, then the global energy inequality (20-36)

S5Gurtin and Struthers [1990], Gurtin [1993a, 1995]. See also Lusk [1994]. For statics
(21-29) was derived by Gurtin and Murdoch [1975] from a force balance, while (21-30)
was derived by Leo and Sekerka [1989] as a Euler-Lagrange equation for stable equilibria
(cf. Alexander and Johnson [1985], Johnson and Alexander [1986], and Fonseca [1989]).
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remains valid, but with ¢ = /(m, A), and, granted this, the Lyapunov relations
(20-38) and (20-39) are valid without change.



CHAPTER 22

Two-Dimensional Theory with
Standard and Configurational
Stress within the Interface

The three-dimensiona theory with both standard and configurational forces
within the interface is complicated; for that reason | now develop its simpler
two-dimensional counterpart.

a. Kinematics

The notation and terminology of Chapter 19 will be used throughout: the interface
is a smoothly evolving closed curve <(¢); t(X, t) and m(X, ¢) are tangent and
normal fields for «(¢) such that t = (cos®, sin®) and m = (—sind, cos®);
¥ (X, t) isthe counterclockwise angle from the (1, 0) axisto t(X, ¢); and K = 9
isthe curvature.

Let y be a maotion. Within this two-dimensional framework the compatibility
condition (10-2) is unchanged; but, since P = t ® t, (10-2b) may be written as
[F]t = 0. Moreover,

ys =F t = (F)t (22-1)
and hence
F=(F)tet=y,®t.
Because F isinvertible, the interfacial stretch
A= lys
is strictly positive; trivialy,

ys = At t Js

Tyl

(22-2)
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with t tangent to the deformed interface.
The basic identity (21-2) here has the ssimple form

[m]

(y)s = (yJ)D - KVys, (22—3)
where(. . .)" isthe normal time derivative following the interface. The verification
of (22-3) proceeds as follows. Let v = Vm. Then, since V, = 5 1D: = gm, and
m, = —Kt,

yo=9m—KVt=t—KVt. (22-4)

Thus, as¥ = () + (F)v, (F)° = () + (VF)v, and, by (1-23b), ((VF)t)y =
(VFW)t,

0) = G + (F)ov + (F)v, = (FYt + ((VE)t + (F) t KV (F)t
= (F)°t + (F) t =K Vy, = (F)t)° = KVy, = (0,)° — K V.
Let P(r) denotean (arbitrary) migrating control volume whoseintersection with
the interface is a connected curve < (¢); let X4(¢) and X(z), respectively, denote
theinitial and terminal points of «(¢); and let u 4 () and u 3(¢), defined by (19-6),

denote the tangential endpoint velocities of (¢). The corresponding endpoint
velocities X4, and Xz then obey (19-7), so that, by (21-4) withw replaced by X4,

the motion velocity § 4 follow theinitial point of 9 is given by

Ya=ha+ (F)aXa = () + VIF)M)A + ) aten =Ya + 0s)aa (22-5)

and similarly for f’B, Where; isthe normal time derivative following .

b. Forces. Working

Theforce systemsare asdiscussed in Sections 20aand 21b, but the configurational
and standard forces within the interface are now described, respectively, by vector
stress fields c(X, ¢) and s(X, 7). These fields represent forces exerted across X
by the materia “into which t(X, ¢) points’ on the material “from which t(X, ¢)
points’ (cf. Section 19b).

Let P = P(r) beamigrating control volume. Theratesat which c and s perform

work on P are given by €z - Xz — C4 - X4 and S5 - ¥ — S - ¥a. Thus, for v

avelocity field for @, ¢ a velocity field for 9P, and y and;, the corresponding
motion velocities following 9P and ¢, the working W (P) has the form

W(P)= [ (Cn-q+Sn-y) ds—l—fb-yda—i-f(e(-v—i-b(-;) ds
P v

aP

tC - Xg—Co-Xat(s-¥)p—(s-Ma (22-6)
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The requirement that W (P) be invariant under changes in material and spatial
observer yields the configur ational force balance

[Cnds+ [gda+ [(g° +e")ds+cy—C4 =0 (22-7)
aP P 07

and the standard for ce and moment balances
[Snds+ [bda+ [bds+Sg—S4=0, (22-84)
oP P 7

7

[y —0)xSnds+ [(y—0)xbda+ [(y —0) xb" ds
op P %

+(@p—0)xSg—(ya—0)xs, =0, (22-8b)
and these yield, for the interface, the local force balances
[SIm+s, +b" =0, (22-9a)
[CIm+c,+g" +e” =0, (22-9b)
and amoment balance
ysxs=0 (22-10)

requiring that the standard stress s be tangent to the deformed interface.*

The derivation of (22-9) is no different than that of (19-14). To verify (22-10),
consider the §-pillbox %;(r) about an arbitrary connected subcurve <(r) of the
interface. Then, because

(yB—o)xSB—(yA—o)st:Lf{(y—o)xs}sds,

(22—-8b) applied to ‘G;(¢) yields, in thelimit § — O,
0=/[(y—0) x ([SIm+s, =b")ds + [y, x Sds.

Thus, by (22-93), [y, x sds = 0; since ¢ isarbitrary, thisimplies (22-10).

g
An important consequence of the moment balance (22-10) isthe existence of a
scalar stress ¢ such that

s=¢t. (22-11)

Invariance of theworking under changesinthe choiceof velocity fieldsfor P ()
and ¢ (t) yieldsC = 71— F'S and Pe” = —P(F)"b", and, sinceP = t ® t,
the latter may be rewritten as

t-e" =—y,-b°. (22-12)

1The symbol “x” here denotes the (scalar) two-dimensional cross product a x b =
albz - (lzbl.



152 22. Two-Dimensiona Theory with Standard and Configurational Stress
Further, by (19-7) and (22-5),
. A m)
Ca-Xa+(S-Y)a=Ca-(uats+ Vamy)+5Sy- {YA + (ys)AMA}

(m]
=(c-t+s-y)aua+(c-mV)s+(s-¥)a.

andsimilarly for theterminal point of <. The surfacetension o and surface shear
7 are defined by

o=cC-t+s.y,=(C+(F)'s)- t=c-t+¢A, (22-13a)
IT=C-m (22-13b)

(cf. (21-11), (21-12)), and thus

. A O
Cao-Xa+(S-Y)a=04us + 14V +(S-Y)a.

The choice of t as surface shear, which might seem inconsistent with its three-
dimensional counterpart defined through (21-12), will be discussed at the end of
the next subsection.
By (22-13) and the Frenet formulas (19-2), the normal component of (22-9b)
is
(0 —¢MDK+1,4+4m-[Cim+g° +e” =0, (22-144a)
g =m-g°, e"=m-e’. (22-14b)

c. Power balance. Internal working. Second law
Assume now that the velocity fields have theintrinsic forms

q = Un, V = Vm,

y=j+Fq Y= ()+(F)y

Then, arguing as in the derivation of (20-10), the working may be written
intrinsically as (cf. (21-13))

W(P)= [Sn-yds+ [b-yda+ [nUds+ [ -Y+e V)ds
P P P G
togup —ontia+ (TV)s — (tV)a +(S-Y)5 — (S -Y)a. (22-15)
Next, by (22-4) and (22-13),

Covs=—(C- KV +(C-m)p=—0KV+10+KVs-y,. (22-16)
Thus, by (22-3),

Covit5-0) = —0KV+10+S- 1), (22-17)
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which representsthe stress power of the standard and configurational forceswithin
the interface (cf. (21-16)). The counterparts of (21-14a,b) and (21-15) in the
current two-dimensional theory are

(s-Ms—(s-Ma=/{rs +s-0)] ds, (22-184)
G

(c-v)g—(c-v)a=[{Vm-c,+cC-v}ds. (22—-18b)
G

and

[Sn-yds+ [b-yda+ [b-Vds+(s-Y)s—(S Y
ap P v

7

=[S -Fda+ [s-()ds— [m-[FTSImV ds. (22-19)
P ¢ ©

7 7

By (22-17), adding (22-18b) and (22-19) yields, after using the configurational
balance (22-9b) and the identity C = w1 — F TS to eliminate the term (m - ¢, —
m-[FTS]m),

[Sn-yds+ [b-yda+ [(b°-¥+e V)ds
op P (

g

H(5-Y)5—(S-M)a+(Cv)5—(C-¥)a
:fs.Fda+f{s-(ys)ﬂ_aKv+15—([n]+g”)v} ds.  (22-20)
P ‘G
Thus, by (22-15), becausec -v = tV,
w(P) :fS~Fda+f{s-(yx): —oKV+r5—([n]+g“)v} ds
P €
+ [nUds +ogup — oaun. (22-21)

P

The relations (22-20) and (22-21) should be compared with their three-
dimensional analogs (21-17) and (21-18).
The second law has the form

4 {f\llda +fwds} < W(P) (22-22)
dt |'p G

for each migrating control volume P = P(z), with ¥ (X, ¢) the interfacial free
energy per unit length and W(X, ¢) the bulk free energy per unit area, and with
W (P) given by (22—6). Thus, appealing to (22-21),

d .
—{f‘llda+f1pds} < [S Fdv
dr | s P

—i—f{s.(ys)D —aKV—{-rzg—([n]—i—g/’)V] ds
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+ fﬂ'UdS + opUp — O lUL.
P

The argument leading to the relations
7=\, o =1, (22-23)

areasgivenin Chapter 17 and use (22—21) and the transport theorems (10-8a) and
(19-8); these, in turn, lead to the interfacial dissipation inequality (cf. (19-19),
(21-21))

V—s-() —t+g"V <0. (22-24)

Since & = lys|, (22-11) yields's - ()" = ¢t - (L + A7) = ¢ 2; (22-24) may
therefore be expressed equivaently as
V—ti—to4g V<O, (22-25)

Remark. Within the three-dimensional theory the surface shear is defined by
(21-12), whose analog here, namely,

c-m+(F)'s-m,

differs from the choice t = ¢ - m (cf. (22-13b)). The reason for this differenceis
best explained in terms of the internal working. In the three-dimensional theory
the stressis atensor s and its internal working is given by s - (F)“; in the two-
dimensiona theory the stressis a vector s with s - (y,)” its working. Within the
two-dimensional theory the tensorial stress s corresponding to s is defined by
S=s®t,sotha St =s andSm =0, and thetermsS - (F)” and s - (y;)” may

be easily related. Because t = ¢ m,
3:)° = (FYY)” = (F)°t + (F) t = (F)"t + (F)(m - t)m = (F)°t + 9 (F)m,
and
S ()" =St (F)'t+os- (F)m.
Further, for any tensor G, G = Gt ® t + Gm ® m; hence
S (F)° = (St®t) (F)°’t® t + (F)’m@m) = St - (F)°t.

Thus, becauset = C - m,

S () +10 =S (F)°+(c.-m+ (F)Ts-m)y. (22-26)

The surface shear is defined as that field whose working accompanies temporal
changesin orientation. The identity (22—26) shows this definition to be dependent
on whether the stress is represented as a vector or as atensor: the shear is T for a
vector stressand € - m + (F)'s - m for atensor stress.
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d. Constitutive equations

Guided by (21-23a), | posit constitutive equations of the form

¥ =P, V. y.d). (22-273)
T =1(9, V,y5.J), (22-27D)
¢ =2 V. ys.)), (22-270)
g =87 V.y.j), (22-27d)

withj = [F]m. Itisconvenient to consider the dependenceony, asadependenceon
the interfacial stretch A and the unit tangent t to the deformed interface and, with
aminor abuse of notation, to write (. ..) for either (9, V, y,,j) or (9, V, A, t.j).

The requirement that all consitutive processes be consistent with the dissipation
inequality (22-25) is equivalent to the requirement that

[aw}(. ) =%, .)} 9+ {au/}(. )=EC. .)}i

i)V +H () B i) J487(..)V <0 (22-28)

for al migrations of the interface and all motions of the body. Arguing asin the
proof of (20-20) and (20-21),? this leads to the following conclusions:

(i) thefree energy v, the shear t, and the scalar stress ¢ must be independent of
V, t, andj, and must be related through

¥ =Y. 1), (22-29a)
T = dpr (9, ), (22-29b)
¢ =P A) (22-29¢)

(i) the normal internal force must obey the inequality
§°(0,V,y.J)V <0, (22-30)
which, for ¢ smooth, resultsin the constitutive equation
g" =—b(®, V,y. )V, b(®, V,ys.j) > 0. (22-31)
A consequence of the restriction (22—29c) is that
s = 3, ¥ (9, 1). (22-32)

Indeed, since » = ly,|, the derivative of A with respect toy, isy,/lys| = t. Thus
3y, (9, 1) = 8,9 (9, 1)t and (22-32) follows from (22-11) and (22-29c¢).

A second consequence of the restrictions (22-29) is that, granted the standard
balance (22—-9a), the tangential component of the configurational balance (22—9b)

2The requirement that t° be orthogonal to t causes no problem as 3z /(. . .) is aso
orthogonal to t.
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is satisfied identically without the need for tangential internal forces:
t.g" =0 (22-33)
To seethis, let f =y, and note that, by (22—-12) and the Eshelby relation,
t-Co = —s-f)— K=K+ @) —s-fi—s,-f —1K
=—f-s;=f-[SIm+f-b" =(F)t-[SIm—t.-e"
=t - [F'SIm—[F1t-(S\m—t-e =t -[F'SIn—t-e°
=—t-[CiIm—t-e’. (22-34)

Thus, granted (22—-33), thetangential component of the balance (22—9b) is satisfied
identically, and conversely.

e. Evolution equations for the interface

Assume that the external forces are purely inertial. The basic equations for the
bulk material, assumed elastic, then consist of the momentum balance (12—-20)
supplemented by the constitutive equations (12—19). The basic equations for the
interface are the compatibility conditions

[y] = —V[F]m, [F1t =0, (22-35)
the momentum balance
[SIm+ s, = —p[y]V, (22-36)
and the normal configurational balance
m-[U1—F'SIm+ kgl + (¥ — A)K + 1, = bV, (22-37)

withs = ¢ t,4 = ly,|, t =y,/ly; . [kal = § plly—Y |21andb = b(D, V, y,.j) (cf.
(12-5), (12-10)); these relations are supplemented by the constitutive equations
V= U(0, 1), T =39, 1), ¢ =09, 1). (22-38)

The theory simplifies considerably when the free energy of the interface is
independent of the stretch A and the kineticslinear inthe sensethat b = b(); then

v=v0@), =¥, (=0 (22-39)

and the balances reduce to
[SIm = —p[y]V, (22—-40a)
m-[W1—F'SIm+ [kal +a(®)K = b®)V, (22-40b)

witha() = ¥ (9)+ 4" (9); (22—40) are two-dimensional counterpartsof (20-28)
and (20-31).



Part F

Solidification

To demonstrate the role of configurational forces in situations not purely
mechanical, | turn now to two-phase heat flow, neglecting deformation.



CHAPTER 23

Solidification. The

Stefan Condition as a
Conseguence of the
Configurational Force Balance

a. Single-phase theory

| begin with a summary of the basic results of Section 6c¢, but with deformation
neglected. The basic thermodynamical laws, balance of energy and growth of
entropy, have the form

i{fedv}:—fh~nda—i—frdv, (23-14)
dt [p P P
i{fndv} >— [(h/T) -nda+ [(r/T)dv, (23-1b)
dr [p op P
for P stationary. These are equivalent to the local equations
&= —Divh +r, (23-2a)
n>—Div(h/T)+r/T, (23-2b)
which combine to form the free-energy inequality
V49T +Th-VT <0, (23-3)
with
V=¢g—Tn (234)
the free energy.
To the classical laws just described, | add the configur ational force balance
[Cnda+ [gdv=0, (23-5)
aP P

which has the local form
DivC +g =0. (23-6)
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(Sinceinertial forces are not considered, there is no need to introduce an external
force e.) The configurational stress C and internal configurational force have the
specific forms

C =Vl (23-73a)
g=-VVY, (23-7h)

which guarantee satisfaction of (23-6).

The congtitutive equations (derived in Subsection 9b2) consist of a relation
between free energy and temperature, arelation giving the entropy as the negative
of the derivative of the free energy with respect to temperature, and a Fourier law
for heat conduction,

v = (T), (23-89)
n=—W(T), (23-8b)
h = —K(T)VT, (23-8¢)

with conductivity tensor K(7') assumed positive-definite. The relations (23-4)
and (23-8a) yield an auxiliary constitutive relation for the internal energy, viz.,

e =&(T)=W(T) - TV (T), (23-9)
whose derivative is the specific heat
c(T) = &(T). (23-10)

The partia differential equation of the theory, the heat equation, is balance of
energy supplemented by the constitutive equations (23-8c) and (23-10):

o(T)T = Div(K(T)VT) +r. (23-11)
Note that, by (23—7b) and (23-8b),
g=nVT, (23-12)

which | take as a defining relation for g.

b. The classical two-phase theory revisited. The Stefan
condition as a consequence of the configurational balance

I now consider phases, o and g, with W, (T) and Ws(T'), Ko (T) and Kg(T'), e.(T)
and e4(T), and ¢,(T) and c4(T), the corresponding free energies, conductivity
tensors, internal energies, and specific heats, with resulting constitutive relations
of the form (23-8)—(23-10). | also assume that there is a unique temperature,
the melting temper ature Ty, a which the free energies of the individual phases
coincide:

Wy (Ty) = We(Ty). (23-13)
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Theclassical theory neglectsinterfacial structureand thereforebeginswith basic
lawsin the form (23-1) and (23-5). A further assumption is that the temperature
be continuous, so that

[T]=0, (23-14)

but all the other fiel dsareall owed to suffer jump discontinuitiesacrosstheinterface.
Balance of energy then yields the interfacial balance

[e]V =[h] - m, (23-15)

whichisthefirst of the classical interface conditionsfor the Stefan problem. (This
condition is derived as a consequence of (23-1a) and (10-8a), with & = ¢ and P
stationary, by shrinking P to the interface.)

Next, the configurational balance (23-5) yields

[Clm =0, (23-16)
which, by (23-74), has the alternative form
[¥] =0, (23-17)

or, in view of the hypothesis ending in (23-13),
T =Ty on the interface. (23-18)

Thus, granted (23-13), the classical Stefan condition equating the temperature at
the interface to the melting temperature is equivalent to the configurational force
balance applied across the interface.

The Stefan problem consists of the bulk equations

co(T)T = DiV(K,(T)VT)+r  inphasea, (23-19a)
cg(T)T = DiV(Kg(T)VT) +r in phase g, (23-19b)
and the interface conditions
[e]lV = [h] - m, (23-20a)
T =Ty, (23-20b)

supplemented by suitableinitial and boundary conditions. (In(23-204a), ¢ = &,(T)
andh = —K,(T)VT in phase «, and similarly in phase 8.) By (23-4), (23-13),
and (23-18), the interfacial energy balance (23-20a) may be written equivalently
as

TV = [h]-m. (23-21)

For solidification, in which one of the phases is solid and the other liquid, one
generally adds the restrictions

T > Ty intheliquid, T < Ty in the solid,

1Cf. Gurtin [1988].



162 23. Solidification. The Stefan Condition

but these conditions are not a consequence of the hypotheses which the theory is
based. There are important physical situations with liquid at temperatures below
Ty (supercooling) and situations in which the solid is at temperatures above Ty,
(superheating).

Not only does the configurational balance allow for a derivation of the classical
Stefan condition, it allowsfor aweak formulation of the Stefan problem by replacing
the condition T = T, on the interface (which, being local, is inappropriate to a
weak formulation) with a partial differential equation. In particular, (23-2) and the
configurational balance (23-6) with C given by (23-73) and g by (23-12) yield, for
r=0,

¢ = —Divh, (23-22a)
VU = —VT, (23-22b)
n < —Div(h/T), (23-22c)

to be interpreted in a weak sense, for example, in the sense of distributions. The
distribution form of (23-22a) gives that partial differential equation classically in
bulk and the balance (23-15) at the interface. The configurational balance (23-22b)
is satisfied automatically in bulk; its only contribution is at the interface, where
VW isadistribution, because ¥ suffers a jump discontinuity, while n VT does not
contribute, becausen and VT arebounded. Infact, (23-22b) formally yields[W] = 0
and hence the Stefan condition (23-18). Finally, (23-22c) is satisfied automatically
in bulk and across the interface. To verify this latter assertion, note that (23-22c)
yields T[n]V < [k] - m, or equivalently, by (23-4) and (23-15), [V]V > O, an
inequality satisfied by virtue of (23-17). It might therefore appear that the entropy
inequality (23—-22c) is superfluous, which istrue when the interface moves smoothly,
because the constitutive equations are compatible with the second law, but there are
situations involving large amounts of supercooling or superheating in which the
interface moves “infinitely fast” resulting in an instantaneous change in phase for
entire subregions of the body:? the entropy inequality is then needed to ensure that
such instantaneous changes be consistent with the second law.3

2Sherman [1970], Fasano and Primicerio [1977], Gotz and Zaltzman [1993], Gurtin
[1994].
3Gurtin [1994].



CHAPTER 24

Solidification with Interfacial
Energy and Entropy’

| now generalize the classical Stefan theory to include surface structure, retain-
ing the requirement that the temperature be continuous across the interface. The
resulting theory is complicated, and that is why | aso develop, from the general
theory, well-known approximate theoriesthat have been successful in applications.

a. General theory

| consider the basic laws for which migrating control volume P = P(¢) in the
form (cf. (6-13))

d .
E{fedv—l—féda}:—fh~nda+frdv+fr'/da (24-19)
P s op P s

7

+ [ QUda+ [ QVy,ds + W(P),
oP

G

4 {fndv—i—fﬁda} >— [(h/T)-nda+ [(r/T)dv+ [(r”/T)da
@ P <

dr |p ; op ;
+ [(Q/TYUda+ [(Q/T)Vssds, (24-1b)
P ¢
[Cnda+ [gdv+ [cnds+ [(g” +e”)da =0, (24-1c)
P P

8% G

1This chapter, which represents major conceptua improvements of Gurtin [1988], is
based on ideas presented in Gurtin [1995].
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with ¢ = 4(¢) the portion of the interface in P and n the outward unit normal to
0. Here W(P) isgiven by (16-2) and, assuch, yieldsall theresults of Chapter 16,
including the configurational force balance (24-1c), the decomposition

C=0op+meT
(cf. (16-8)), and the normal force balance
oK +Div,T+[rl+g” +e¢” =0 (24-2)
(cf. (16-124)). Further, Q isasdiscussed in Section 6c; ¢ istheinterfacial energy;

77 isthe interfacial entropy; r is the heat supplied directly to the interface; Q, a
configurational heating, is asuperficial analog of Q in the sense that

[ OQVagds,  [(Q/T)Vy,ds

3¢ ¢
represent flows of heat and entropy into ¢ induced by the motion of the boundary
curve 3¢

The power balance (16-17), the transport theorem (15-31) with ¢ = ¢ and with

¢ = n, and the argument leading to (17-5) here yield the interface relations

7_’ = Q/T’ o = wv
with interfacial free energy ¢ given by
v =8—Ti. (24-3)

The interfacial forms of balance of energy and growth of entropy are more
complicated than before. The results n = Q/T and ¥ = 7 remain valid (cf.
Section 6¢), and, since ij = Q/T and ¢ = v, a pillbox argument applied to
(24-1ab) using (11-25), (15-31), (16-17), and the continuity of 7 resultsin the
conditions

TV = [h]-m+5—TiKV +T -m+g”V —r”’,  (24-4a)
IV < T-YR]-m+ 7 —7KV — T4 (24-4b)
Theseyield theinterfacial dissipation inequality

L .
Y+ T+T -m+g” V <0, (24-5)

with (. ..)" the normal time derivative following ..
Guided by (24-5), | consider constitutive equations of the form (18-3), but with
(T, m, V) asindependent variables and an additional constitutive equation, of the

2The paragraph containing (2-3) contains the phrase: “1t is convenient to denote by an
overbar aquantity that has been transported, viathe motion, to the deformed configuration.”
Here, instead, an overbar is used to designate certain interfacial fields; e.g., ¢ denotes the
internal energy, per unit volume, in bulk, while z denotestheinternal energy of theinterface,
per unit area. There should be no danger of confusion because motion of the body is not
considered.
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same type, for the interfacial entropy 7. The most general constitutive equations
of thisform consistent with the dissipation inequality (24-5) are

¥ = (T, m), (24-69)
7=~y (T, m), (24-6b)
T = —0ny (T, m), (24—6c)
¢/ = —b(T,m, V)V, (24-6d)

with 5(T, m, V) > 0.

| omit the proof of (24-6), which issimilar to that of (18-5)—(18-7), and | leave
it to the reader to verify that there are sufficient external and indeterminate forces
and suppliesto satisfy all balances.

| henceforth restrict attention to linear kinetics, so that b = b(T, m), and to
situations in which the externa fields vanish:

r=e¢’ =r" =0.
Theinterface conditions consist of the energy balance (24-4a) and the configura-
tional balance (16-12a) withw = ¥, 0 = :
[V]=—¢K —Div,T—g”. (24-7)

Theseinterface conditions supplemented by the constitutive equationsarethebasic
free-boundary conditions of the theory; the condition (24-7) replacesthe classical
Stefan condition. For an isotropic body, the interfacial free energy and the kinetic
modulus are independent of m, so that, in particular, T = 0; in this case (24-6a)
and (24-7) yield

W, (T) — Wg(T) = ¥(T)K — b(T)V, (24-8)

where here and in what follows, m is assumed to point outward from the phase «
region.

Asbefore, | assumethat thereisauniquetemperature T), that satisfies W, (Ty) =
Wg(Tum); even o, it is clear from (24-8) that one should not expect T = Ty, at
the interface. Indeed, granted isotropy, generally T # T, whenever the interface
is curved and/or moving. Thus curvature and motion of the interface generally
induce supercooling or superheating.

Consequences of the constitutive restrictions (24—6a) are the Gibbs relations

Y=—iT-T-m. E=Tj-T-m
Further, the energy balance (24—4a) is equivalent to the relation
TnlV =[h] -m+ A,
a= =T {oror i (T m) T+ (T, mym =07 :(T, MKV |
—b(T,m, V)V2.

Theclassical form of thisbalanceis T[]V = [k] - m (cf. (23-21)); the interfacial
term A is generally neglected. The next section will address thisissue.
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b. Approximate Theory. The Gibbs-Thomson condition as
a consequence of the configurational balance

Theinterface conditions (24—4a) and (24—7) are complicated. | now formally derive
an approximate theory for an interface whose free energy and kinetic modulus
have constitutive response functions which with their derivatives are small, say
0(8) with § small. This renders the corresponding response functions for the
interfacial entropy and shear also O(8). In contrast, | assume that al bulk fields
are constitutively O(1).

Let
u=(T—"Ty)/Tu, (24-9)
and define the latent heat ¢, assumed nonzero, by
€= ¢ep(Tu) — €a(Tm), (24-10)

or, inview of (23-13), by
€= Ty (ns(Tw) — na(Tur)). (24-11)

Here and in what follows, &,(7T) and e4(T) and 1, (T) and ng(T) are the bulk
constitutive functions for the internal energy and entropy computed from the free
energies W, (T') and W4 (T') using (23-8b) and (23-9). Asbefore, phasesarelabeled
so that m is outward from the phase « region, so that jumps of bulk fields across
theinterfaceare“ 8 minus .

Let

F(T) = Wp(T) = Wo(T).,  E(T)=¢p(T) — £a(T), N(T)=np(T) = na(T)
so that, by (23-4) and (23-13),
N(T) = —F'(T), F(T)=E(T)—TN(T), F(Ty)=0, £=TyN(Ty).

Then, expanding F(T) about T = T, yields F(T) = F'(Ty)(T — Ty) + O (u?) =
—Cu + O(u?); similarly, E(T) = Ty N(Ty) + O(u) = £ + O(u). Thus

Wy(T) — Wo(T) = —lu + O(u?), (24-12a)
eg(T) — eo(T) = €+ O(u), (24-12b)
T (np(T) — no(T)) = € + O(u). (24-12c)

Assumethat V and the derivatives of 7' and m are bounded; then, differentiating
the constitutive relation T = T(7', m),

Div,T = 37T(T,m) - Vo, T + 0 T(T, m) - V,m = O(5); (24-13)
thus, by (24-7) and (24-12a),
u = 0(9).
For any constitutive response function ¢(7, m) for the interface, define
@y (m) = @(Tyy, m). (24-14)
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Then ¢(T, m) = ¢y (m) + O(«?) and, granted the additional assumption V,u =
0(8), (24-13) yields the estimate
DiVy T = 9nTy(m) - Vom + O(82) = Div., Ty (m) + O(8?).

Thus, by (24-12a,c), dropping terms of O(8) in (24-4a) and terms of 0(82) in
(24-7) yields the approximate interface conditions:

Cu = Yy (M)K + Div, Ty (m) — by (m)V, (24-159)
LV = [h] - m, (24-15b)
with
Ty (M) = —Onypr (). (24-16)
Note that, by (15-12a), (15-17) and (24—15a) can be written aternatively as
Lu = {Ypy (M) + dndmyar(m)} - L — Dy (m)V. (24-17)

Within this framework the Stefan problem consists of the bulk eguations
(23-19) in conjunction with two interface conditions: the energy balance (24—-15b),
whichisclassical, and the gener alized Stefan condition (24—-17), which includes
effects of curvature and kinetics. For an isotropic body, ), and b,, are constants,
which | write as v and b, and (24-17) reduces to®

lu=yK—>bV, (24-18)
which isthe Gibbs-Thomson condition
bu=vyK (24-19)

augmented by the term bV, which accounts for interface kinetics.

c. Free-boundary problems for the approximate theory.
Growth theorems

cl. The quasilinear and quasistatic problems

I now consider free-boundary problems based on the approximate interface con-
ditions (24-15b) and (24—-17) in conjunction with the bulk equations (23-19) with
r = 0, linearized about the melting temperature T),;:

cqtt = Div(K, Vu) in phase «, (24-208)
cpit = Div(KgVu) in phase g, (24-20b)

3¢u = —b(m)V wasintroduced by Frank [1958] and was used by Chernov [1963, 1964];
Lu = Y K was introduced by Mullins [1960] (in the context of mass transport) and was
used by Mullins and Sekerka[1963, 1964]; ¢u = v K — bV was used by Voronkov [1964].
Cf. also Seidensticker [1966], Tarshis and Tiller [1966], and the review articles by Sekerka
[1968, 1973, 1984], Chernov [1971, 1974], Delves [1974], and Langer [1980].
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with ¢, = ¢o(Ty) and K, = K,,(Ty,), and similarly for phase 8. Assume without
lossingenerality that at the melting temperature phase 8 has higher internal energy
than o

¢>0. (24-21)

Further, to avoid an unnecessary constant, rescale by defining &,, s, Ky, K, h,
¥, and b viadivision by ¢ of ¢, cp, Ky, Kg, h, , and b. Dropping the “wave,”
thisyields the quasilinear system consisting of the bulk equations

cqtt = Div(K, Vu) in phase «, (24-223)
cptt = Div(KgVu) in phase g, (24-22b)
and the interface conditions
V = [h] - m, (24-23a)
u=B(m)-L—bpmV, (24-23Db)

with
B(m) = ¢/ (m)1 + Oty (m),
withh = —K,Vu in phasea and h = —KgVu in phase 8, and with
b(m) > 0, K, and K positive semidefinite. (24-24)

The quasilinear problem for a body B consists of (24-22) and (24-23) supple-
mented by initial conditions prescribing u(X, 0) and .(0) for al X € B and by
boundary conditions giving u on aportion of 9B and h - n on the remainder of 9B
for al time (> 0).

Generally, one expects the interface to move slowly in comparison to the time
scale for heat conduction. With thisin mind, consider the quasistatic system that
neglects the terms ¢, 1t and cgu in the bulk equations,

Div(K,Vu) =0 in phase a, (24-25a)
Div(KgVu) =0 in phase g, (24-25b)

but retains the interface conditions (24-23). The quasistatic problem consists of
this system supplemented by the boundary conditions of the quasilinear systemin
conjunction with the initial specification of the interface.

c2. Growth theorems

| now establish Lyapunov functionsfor solutions of the quasilinear and quasi static
systems. Consider abounded body B, write B, (t) and Bg(t) for the complementary
subregions of B occupied by phases « and 8, assume that the interface . (¢) isa
closed surface that never intersects aB, and restrict attention to the following two
types of boundary conditions:
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(i) isolated boundary
h-n=0 on dB for all time; (24-26)
(if) thermally uniform boundary
u=U on 9B for al time. (24-27)

In (i), U = U(z), afunction of time aone, isthe prescribed boundary tempera-
ture.
By (24-14),

F(F) = [ y(m)da (24-28)
S

isthetotal interfacial free energy at the melting temperature, while

9(u) = [ Vu-K,Vudv+ [ Vu-KgVudv+ [b(m)V3da (24-29)
M

By By

is, to within the approximations inherent in the quasilinear system, proportional
to the total production of entropy.

Growth Theorem.* Letu beasolution of thequasilinear systemwithc, = ¢5 = c.

(i) If the boundary isisolated,

4 {VOI(BO,) —cfu dv} —0, (24-302)
dt B

df .. 1 .

= {y (£) + 3¢ élﬂdv} — —9u) <O0. (24-30b)

(i) If the boundary isthermally uniform,

% {Xf(ff) + %c{;(u - U)Zdv}—i—U%voI(Ba) =—9(u) < 0. (24-31)

Let u be asolution of the quasistatic system.
(iii) If the boundary isisolated,

%VOI(BO,) 0, (24-329)
%,7(;7) = —9(u) < 0. (24-32b)

(iv) If the boundary isthermally uniform,

d d
— () +U —vol(B,) = —2(u) <0. 24-33
S () + U - Vol(BL) = =7 () < (24-39)

4Gurtin [1988, p. 211]; vol(D) denotes the volume of aregion D.
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Proor. The proof is based on three identities. Thefirst,
[ Divhdv+ [ Divhdv= [h-nda+ [[h] -mda, (24-34)
By 9B 7

By

is a conseguence of the divergence theorem and the fact that the heat flux k, here
defined in the sentence containing (24-24), is smooth away from the interface and
up to the interface from either side. The other identities are:

d
[Vda= EVOKBQ), (24-35a)
<

d
[uVda= —57({%) — [b(m)VZ3da. (24-35h)
7 S

The result (24-354) follows from (6-6) with ¥ = 1 and P = B,, because.¥ is
the only portion of dB,, that is migrating. The verification of (24-35b) is based on
the interface condition

u = Y(M)K + dmdmw(m) - L — b(m)V. (24-36)
By (15-12a), (15-24), and (18-2c),

Y (M) = dpy(m) - m = —dpyr(m) - V.,V
= —DiV, {V iy (M)} — Vondmyr(m) - L;

thus, since.¥ isaclosed surface, (15-31) yields

£ AN = [ (Y~ y@KV)da
/

— — [ (M) - L+ Y (m)K) V da,
S

and (24-35b) follows from (24-36) .
Let u be a solution of the quasilinear system with ¢, = ¢g = ¢. Because u is
continuous across the interface,

if{up dv} = [(”) dv (24-37)
dt g 8

for p = 1, 2. Assume that the boundary is isolated in the sense (24-26). Then
(24-30a) followsfrom (24—34) in conjunction with (24-22a), (24-23a), (24-353),
and (24-37); while (24-30b) follows from (24-34) with k replaced by uh, using
the continuity of « in conjunction with (24-22a), (24-233), (24—-29), (24—-35b),
and (24-37). Assume, on the other hand, that the boundary is thermally uniform.
Then, because U (¢) isindependent of position,

fuh-nda=U [h-nda,
B B

and the proof of (24-31) follows using (24-34), both asis and with k replaced by

uh. The proof isleft to the reader.
Finaly, (24-32) and (24-33) follow from (24-30a) and (24-31) with ¢ = 0.
O
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For a solid-liquid system, our agreement that phase 8 have higher internal energy
at Ty, renders o the solid phase. If 9B is supercooled, then Uvol(B,) < 0; (24-33)
would then indicate atendency of the solid phase to grow, at least when bulk effects
dominate.

For an isotropic body h = —k, Vu inphase« andk = —kgVu in phase g with
ko and kg scalar constants, while ¢ and b are constant; in this case the quasi static
system reduces to the M ullins-Sekerka system® for which

Au=0 (24-38)
inbulk and
u=yK—->bV, (24-393)
V=[h]m (24-39b)
ontheinterface, with A the Laplacian: Au = Div Vu. Inthiscase (24-32) become
d
Evol(Ba) =0, (24-40a)
d
waarea(&//‘) =—-9@) <0, (24-40b)

while (24-33) take the form
d d
‘”E area(¥)+ U 7 vol(B,) = —9(u) < 0. (24-41)

An analogous simplification holds for the quasilinear problem.

SMullins and Sekerka [1963, 1964], although they take b = 0.



Part G

Fracture

The goal of this part! is aframework for fracture that uses the notion of configu-
rational forces. Away from the crack the theory is as discussed previously;? here
the emphasis is on deriving results for the crack and, especialy, for the tip.

The following notation is used throughout:

y vector velocity of thetip,
VvV scalar velocity of thetip,
®” timederivative of a bulk field ® following thetip.

In previous chapters, v and V designated vector and scalar velocity fields for an
evolving interface, while ®" signified the time derivative following the interface.
This should not be a source of confusion, as the crack faces, although endowed
with structure similar to that of an interface, are immobile.

To avoid geometric complexities, the discussion is restricted to two space
dimensions. For convenience, | adopt the following conventions:

1. Eventhough the crack isacurve, | refer to its faces as crack surfaces.

2. The crack faces are treated in unison, so that a term such as surface tension
refers to the sum of the surface tensions of the individual faces.

3. Thecrack isconsidered internal to all control volumes,® and hence such control
volumes account only implicitly for forces and working that result when the
crack faces are in contact.

1This chapter is taken from Gurtin and Podio-Guidugli [1996, 1997].

2E.g., the Eshelby relation (6-9), the standard and configurational balances (3-6) and
(5-10), and the dissipation inequality (6-11).

3] do not allow for external tractions applied to the crack faces. Because the theory
applies to an arbitrarily small neighborhood of the tip, this involves no essential loss in
generality.



CHAPTER 25

Cracked Bodies

The discussion begins with smooth cracks. In future sections the results will be
applied to crack kinking, an application that involves no inconsistency, as the
evolution of the tip is governed by local physical laws that apply away from—
athough arbitrarily close to—points at which the crack kinks.

a. Smooth cracks. Control volumes

For each ¢ in some open time interval, let < (¢) be a smooth, connected, oriented
curve in B with one end, Z, fixed at the boundary 9B, with the remainder of
¢ (t)—including the other endpoint Z(r)—contained in theinterior of B, and with
“(t) C €(r) for dl 1, > t;. B is viewed as a referential neighborhood of a
growing crack ¢ (t) with Z(¢) the crack tip. The phrase in bulk will be used to
signify away from the crack. Note that if at some time a subcurve ¢ of the crack
does not contain the tip, then « is stationary at all subsequent times.

Arc length s is measured from Zy with s(X) the arc lengthto apoint X € < (¢).
Let t(X) denote the unit tangent to < (¢) in the direction of increasing s. Because
t(Z(r)) represents the direction of (possible) propagation, the tip velocity

_ a2

v(t) 7 (25-1)
may be written in the form
V(1) = V()t(Z()), V() =0, (25-2)

with V thetip speed.
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Throughout, m(X) denotes a continuous unit normal field for < (¢). Note that,
because ¢(t) is smooth up to Z(z),

mX)-v(t) > 0 asX — Z(1). (25-3)

The functions s(X), t(X), and m(X) actually depend on ¢, because their common
domain «©(¢) depends on ¢; more precisely, one should write t(X, ¢), say, with the
understanding that t(X, ;) = t(X, p) for all X € (1) whenever ¢, > 1;.

A migrating control volume P(¢) is here (restricted to be) a closed subregion
of B for which () doesnot intersect 9P (¢) at more than two pointsand for which
Z(t) & oP(t). Then P(¢) must be one of the following:

(i) abulk control volume (acontrol volumethat doesnot intersect on the crack),
(if) a crack control volume (a control volume that contains a portion of the
crack, but not thetip), or
(iii) atip control volume (acontrol volumethat containsthetip in itsinterior).

For bulk control volumesthe basic laws as discussed in Section A; | therefore here
restrict attention to crack and tip control volumes.
Asbefore, for P = P(¢) acontrol volume, r designatesthe outward unit normal
to oP, while U isthe (scalar) normal velocity of the curve 9P in the direction n.
The following notation is convenient. Let ¢(X, r) be defined on the crack. For
P(t) atip control volume, € (¢) intersects 9P (¢) at asingle point, X 4(z), and

pat) = p(Xa(2), 1), enip(t) = 0(Z(2), 1).
For P(¢) a crack control volume, ¢ (¢) intersects 9P (¢) at two points, X 4(z) and
X3(2), and
@alt) = o(Xa(2), 1), e5(1) = o(X5(1), 1);
here, for definiteness,
s(Xp(1)) > s(X4(2)). (25-4)

Further, u4(¢), for a crack or tip control volume, and uz(z), for a crack control
volume, are the (scalar) velocities defined by

Xa(t) = ua(tat),  Xp(r) = up()ts(). (25-5)

An important example of atip control volume is atip disc Ds(r), which is a
disc of radius § centered at thetip Z(¢); here, for n(X, ¢) the outward unit normal
to aDs(¢) and & sufficiently small that t, - n4 # 0,

U

= ; 25-6
o (25-6)

U=v-n, Up

moreover, asé — 0,
ta(t) > t(Z(@)), us(t) - V(). (25-7)

Let (r) denote an arbitrary connected subcurve of the crack, withZ(r) ¢ <(t).
An example of acrack control volumeisthe §-pillbox ;(¢) about ¢ (¢) as defined
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in (11-22). Writing X 4(¢) and Xp(z), s(Xa(t)) < s(Xg(?)), for the endpoints of
(1), 0% = 0%;(t) consists of:
(i) two curves, each pardllel to—and a distance § from—¢; on these curves the

normal velocity of 9% vanishes;
(i) two end faces of length 25 perpendicular to ¢, one at X4, the other at X .

b. Derivatives following the tip. Tip integrals. Transport
theorems

A bulk field (X, t) (i.e., afield defined away from the crack) is smooth away
from thetip if, away from Z(z), ®(X, r) and its derivatives have limits up to the
crack from either side. (For X € ¢(t), X ¢ Z(t), the jump [®](X, 7) and the
interfacial limits ®* (X, ¢) are then defined asin (10-1).)

Let ®(X,r) be a bulk field that is smooth away from the tip. Consider the
corresponding field (Y, r) in which ¥ represents the position of the material
point X relative to thetip Z(z):

d(Y, 1) = (X, 1), Y =X — Z(1). (25-8)
The partial derivative
o 0 A
DX, 1) = — (Y, 1) (25-9)
at Y=X—Z(1)

with respect to ¢ holding Y fixed, but considered as afunction of (X, ¢), represents
thetimederivative of ®(X, r) following Z(z); by the chain rule,

®=b+ VD (25-10)

away from the crack.

Essential to the theory are limits such aslim;_.o | ®nr ds. When meaningful,
aD;
such limits, termed tip integrals, will be written in the form

?{ ®nds = lim [ ®nds.
tip §=0;p,

For W the bulk free energy and S the bulk stress, f;, W(n - V)ds and ¢, Sn ds,
respectively, represent the flow of free energy in—and the net traction on—an
infinitesimal neighborhood of the tip.
Let P(¢) be acontrol volume. The notation
Py(r) = P(t)\Ds (1), (25-11a)
G(t)=¢@)NP() (25-11b)
will be used consistently; in (25-11a), § > 0 is presumed to be sufficiently small
that

0Ps(t) = 0P (t) U 0Ds(t).
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Let ®(X, r) be smooth away from the tip, and let P = P(¢) be a crack control
volume. Then, by (10-8a,b),

d .
CDda = [ dda+ [ dU ds, 25-12a)
dt
P P
fVCD da = [ ®nds — [[®Imds (25-12b)
P P %

(because the crack is stationary away from thetip).

Next, let P = P(t) be atip control volume and consider the crack control
volume P; = Ps(t), using the same letter n for the outward unit normal on both
oP and Dy, so that the outward unit normal and normal velocity for aPs are —n
and U = —v-n onthat portion of 9Ps coincident with dDs; then (25-12) hold with
P = P(¢) replaced by Ps = Ps(t), so that

%{fd)da} [bda+ [ OUds— [ O-mds. (25130

P, Ps aDs
[Vdda= f Onds — [ [®@Imds — [ Pnds. (25-13b)
Py enps aDs

Taking the inner product of (25-13b) with v and subtracting the resulting relation
from (25-13a) yields, by (25-10), an identity,

d
S/ odal = [&da+ f QU —v-n)ds+ [ [®Im-vds, (25-14)
dr | Py NPy
that will form abasisfor the derivation of relations appropriateto thelimit § — 0.

Let P = P(t) beatip control volume. For ®(X, ¢) smooth away from thetip the
behavior of ®(X, 1) at Z(r) isnot specified and theintegral | ® da may not exist.

P
Here it seems most convenient to define such an integral in terms of its Cauchy
principlevalue; i.e, asthe limit of the integral over Ps(¢) asé — O.

The next definition allows for a succinct statement of hypotheses concerning
momentaand energies. A field ® will betermed aregular bulk field if, in addition
to being smooth away from the tip:

(R1) for eachtip control-volume P = P(t) thelimits

[ ®da=Ilim [ ®da, (25-15q)
P 5_)0P5
[ & da=1lim [ ® da, (25-15h)
P 6_)01’5

exist, with (25—-15b) uniform in time;
(R2) [®]m - v isintegrable on ¢, uniformly in time (cf. (25-3)).

In actual solutions of crack problems, the underlying fields are generally singular in
thedistancer = |X — Z(¢)| from Z(t); for that reason hypotheses seem best worded



25. Cracked Bodies 179

intermsof thederivative C% whichistaken holding r fixed. Indeed, typical estimates
for acrack in alinearly elastic body are that the displacement u satisfy Vu ~ r~1/2
and i ~ r~Y? asr — 0, which yield, for the energy ¥,

]

v~ o ~rt, (25-16a)
W~ 2, Vo ~ r2, (25-16b)

Granted uniformity in ¢, (25-16a) would imply (R1) and (R2) (cf. (25—3)) On
the other hand, the estimate for ¥ would render the assumption f Vda =

lims_o [ W da of uncertain general value.
Ps
An important consequence of the assumption of regularity for abulk field @ is
that, given any migrating control volume P = P(z),

[ ®daisadifferentiable function of 7; (25-17)
P(r)

a second and equally important consequence is the transport identity

P(1) P(1) oP(r) %)
valid for any migrating control volume P = P(t). This identity expresses

d/dt [ ®da in terms of quantities—the temporal change c?) and the inflows
P
(U — n - v) and [@]m - v—measured in aframe moving with thetip.

To verify (25-17) and (25-18), let

o(t)= [ ®da, ps(t) = [ Pda;
P(t) Ps(1)
then (25-14) and properties (R1) and (R2) of regular fields yield the conclusion
that, asé — 0, dg;/dt tendsto theright side of (25-18) uniformly, while p; — ¢.

Thus¢(r) = [ ®da isadifferentiable function of r and dg;s/dt — dg/dt, or
P(r)

equivalently,

jt{f CDda}: f ® da + [ ®U —v-n)ds+ [[®m-vds, (25-18)

d d
= {f@da}—)d—{fcbda} (25-19)
and (25-18) holds.
The next result is central to the localization of the second law to crack tips.
Tip Transport Theorem for Bulk Fields. Let ® be aregular bulk field. Then

d

dl{f@du}—)O ass — 0, (25-20)

1Cf. Freund [1990, p. 43]. Evenwithin theinfinitesimal theory, thisestimateis generally
not valid beyond linear elasticity (cf. Rice and Rosengren [1968], Hutchinson [1968]).
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uniformly intime.
ProoOF. Thefirst step isto show that, for F an arbitrary field,

if [ Fda= (ISir%f F da exists for some (and hence every)
P —Ups
control volume P, then (Ising) | Fda = 0, with uniformity (25-21)
— Ds
intimein the second limit if in the first.

To verify (25-21), given A > t > 0, let D, .(¢) denote the annulus
D;(t) = Di(t)\D: (7).
Granteddea —IImgﬁodeaforallP(*) let [ Fda= [ Fda— [ Fda,

D s Dps D&s
p > & > ¢. Then, |fwelets — O0and § — 0, in that order, the result is
lims_o [ F da = 0, with this limit uniform if (x) is uniform. Hence (25-21) is

Ds
valid.
Because U = v - n isthe normal velocity of aD;, (25-18) with P = D; yields
d
f dda f <I> da+ [ [®Im-vds. (25-22)
dt ‘“NDg
Thus, by (25-15b) and (25-21)
lim [ & da =0, (25-23)
§—0 Ds

uniformly. Also, by property (R2), the integral in (25-22) over ¢ N Ds goes to
zero with &, uniformly. Thus (25-20) isvalid. O

Let ® beregular. Then, asaconsequence of (25-13a) and (25-19), ﬁlp ®(v-n)ds

exists if and only if f dda = lims_o [ ® da exists for some (and hence every)
Ps
control volume P, and granted either,

jt{f CDda}: [ dda+ [ chds—?gpop(v.n)ds.

P(r) P(t) aP(t)

Further, for a s-pillbox 4 = %(r), (25-12a) and (i) and (ii) of the paragraph
following (25-7) imply that

d
" { o da} -0, (25-244)
[ ®Uds — 0, (25-24b)

05

ass — 0.
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Also important are transport relations for fields ¢(X) (independent of ¢) that
are continuous on the crack, up to the tip. Let <(z), defined in (25-11b), be the
portion of the crack in acontrol volume P(z). Then, by (19-8),? using the notation
specified in the paragraph containing (25-4),

d

I { f gods} = @tipV — paua for atip control volume, (25-253)
G

d
— { [ e ds} = QpUp — Pallp for acrack control volume. (25-25b)

dt |2
Thus, (25-7) and (25-254d), as§ — 0
d
—1{ [ @dst -0 ass— 0, (25-26)
dt | fp,

which isan interfacial counterpart of (25-20).

2Bearing in mind that V in (19-8) isthe normal velocity of the interface, while V here
isthe scalar velocity of the tip.



CHAPTER 26

Motions

M otionsy are defined asin Section 2a, except that y isnot required to be continuous
across the crack. Precisaly, y(X, t) is assumed to be smooth away from thetip, to
satisfy the impenetr ability condition

[yl-m>0, (26-1)
and to have alimiting valuey(Z(z), t) at the tip,
y(X, 1) = y(Z(@), 1) asX — Z() (26-2)

from bulk or from points of the crack, so that the deformed tip iswell defined. The
deformation gradient F = Vy and the material velocity y are then smooth away
from the tip, although these fields are generally singular at the tip.

By (25-9), the motion vel ocity; following thetip is the derivative
o 0
YE.1) = @O+ Y0y (26-3)
holding the distance Y from the tip fixed; equivalently,
Yy=j+Fv (26-4)
in bulk. Thefield;(X, t) is assumed to have alimiting value v(¢) at the tip:

YX. 1) > #(1)  asX — Z(r), (26-5)

(cf. the paragraph containing (25—-16a)); if thelimitisuniforminz, then, by (26-2),
¥(Z(¢), r) isdifferentiablein ¢ and, as would be expected from (26-3),

5(0) = (20, 1) (26-6)
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sothat v isthevelocity of the deformed tip. Theresults (26-5) and (26-6) establish

the consistency of the current definition of ; (via(25-9)) and the definition (10-4)
for an evolving interface. A direct consequence of (26—4) and (26-5) isthat

forv=0, yX,t)— v(t)asX — Z(t). (26-7)

Let P = P(t) be acontrol volume. As before, ¢ denotes an arbitrary velocity
field for the boundary curve dP, and y, defined by (4-3), the motion velocity
following aP as described by ¢, so that

y=y+Fq. (26-8)
The tip velocity v(¢) is admissible as a velocity field for the boundary of the tip

disc Ds(t); the motion vel ocity; following the tip therefore coincides on aD; with
the motion velocity y following dD; as described by v.
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Forces. Working

As in the treatment of coherent interfaces presented in Part B, the constitutive
theory for the tip involves asimple dissipation inequality of theform (11-21), and
that iswhy theintroduction of (virtual) external forcesto ensure satisfaction of the
balance laws in @l processes would seem excessive. | therefore assume that (the
underlying observer and) all external body forces are inertial.

Asbefore, | characterize inertia using inertial forces, with the momentum and
kinetic energy produced at the crack tip accounted for by concentrated forces
within the standard and configurational systems. As the crack produces neither
momentum nor kinetic energy away from the tip, there is no need to consider
inertial forces distributed over the crack.

a. Forces

To the standard forces S and b and configurational forces C, g, and e introduced
in Chapters 3 and 5, assumed here to be objective and smooth away from the tip,
withb, g, and e integrable (as Cauchy principal values), | add two fields distributed
over the crack:

g’ internal configurational force

C surface stress
and three forces concentrated at the tip:

biip external standard force
8tip internal configurational force
€iip external configurational force
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Precisely, biip(¢) isaspatial vector; g“ (X, 1), €(X), giip(r) are material vectors; all
five functions are objective; g (X, t) isintegrable over #(¢); ¢(X) is smooth (up
to the tip). As the crack faces are treated in unison, ¢ and g“ represent forces
associated with the union of the crack faces.

In classical theories of fracture the strength of the tip singularity is insufficient to
induce arelease of momentum and this, in turn, yields by, = 0. But even within this
restricted framework ey, the configurational counterpart of by, does not vanish; for
that reason, we consider the general theory with by, # 0, because this leads to a
parallel treatment of inertia within the two force systems.

The configurational surface stress c(X), which acts within the free surfaces of
the crack, isthe analog of the configurational surface stress (tensor) (X, ¢) within
an interface (cf. Part E); the current two-dimensional treatment allows c(X) to be
identified with avector (cf. Chapter 19). Fix X and ¢, and let ¢+ = ¢ *(¢) denote
the portion of the crack with arc-length values greater than s (X), and ¢~ = ¢~ (¢)
the portion with valueslessthan s(X). The surface stressc = ¢(X) then represents
the force exerted across s by the material in ¢+ on the material in ¢—, withc - t
asurfacetension and c - m asurface shear

Neither ¢ nor the surface energy v (cf. Section 28a) are allowed to depend on ¢. Such
dependencies, while not difficult to accommodate, seem unimportant to the charac-
terization of real materials, for which ¢ and v typically depend constitutively on the
normal m to ¢, and m = m(X) is independent of . Asin Chapter 18, one generally
expects a configurational shear ¢ - m whenever the surface energy is anisotropic.

Theinternal configurational force gy is associated with the bresking of bonds
during crack growth or, more generally, to phenomenaoccurring at thetip at length
scales that are small compared to the gross length scales of the body;* as such this
forceisimportant in discussing the kinetics of crack growth. Of lessimportanceis
the interna configurational force g distributed over the crack surfaces. Because
the crack surfacesdo not migrate, g©, likeitsbulk counterpart g, isindeterminate.?

| assume that the tip singularity is not too strong in the sense that

[ ISnlds  isbounded as$§ — 0.3 (27-1)
aD;(t)
This assumption, (26-2), (26-5), and the definition of the tip integral yield two
useful results in which yiip(r) = y(Y(¢), 1):

% Sn -y —7)ds = O, (27-24)
tip

(v — yip) x Snds = 0. (27-2b)
tip

1Cf. the discussion of Freund [1990, pp. 10-11]. An example of such phenomena is
“small-scaleyielding” associated with a crack-tip plastic zone (cf. Rice [1968]).

2Theinternal forceg is discussed in the paragraph following (5-1).

3For acrack in alinearly elastic body, s ~ r~%/? asr — 0, which yields the vanishing
of theintegral in (27-1).
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b. Working

The working of the bulk forces is as discussed in Part A. If P = P(¢) isatip
control volume, then ¢ performswork on P of amount —C, - X4 = —uat, - C4,
whilecp - X5 — €4 - X4 = uptp - €z —usty - €4 representsthe corresponding
work performed on a crack control volume (cf. the paragraph containing (25-4)).
Themotion of thetip is accompanied by working of theinertial forcesey, and bip,
with the tip velocitiesv and v as appropriate conjugate velocities. Finally, internal
forces perform no work.

The working W(P) on amigrating control volume P = P(¢) therefore takes
the form

W(P)= [(Cn-q+Sn-y)ds+ [b-yda+ W.(P), (27-3)
op P

where ['b - y da denotes lim;_o [ b - y da, which is assumed to exist, and where

P Ps
W.(P(t)), the working associated with the crack, is given by

We(P)=uptp-Cp—usty-Cy (27-4)
for acrack control volume, and
We(P) =bip-v+eip-v—usty-cy (27-5)

for atip control volume. Arguing asin the proof of (5-15), W(P) may be written
intrinsically as

W(P)= [Sn-yds+ [b-yda+ [ 7nUds+ W.(P) (27-6)
oP P P

with = given by (5-17).

c. Standard and configurational force balances

Thevelocitiesv, usta, ugty, and v transform according to

v —>v+a, usats > usty +a, ugtpy — uptp +a, Vo>
under the change in material observer defined by (2—9), and according to
v —, ustsy = uaty, ugty — uptp, V= v+wtwx (yip—0)
under the change in spatial observer defined by (2—7) (cf. the consistency require-

ment as stated in Section 2d). Thus, by the transformation lawsfor ¢, y, y, v and§
specified in (2-8), (2-12), (4-6), and (4-7), the working W (P) as recorded by the
new observers has the form

W(P)= [Cn-(q+a)ds+ [(g+e)-ada
P P

+ [Sn-(y+w+wx(y—o))ds
op
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+[b-(+w+wx(y—o0))da+ W(P) (27-7)
P

with

W.(P) = (uptp +a)-€p — (usts +a) -c4+ f g( -ads
PNe

for acrack control volume and
W(P) = giip-a+egip- (v +a) — (uaty +a) - €y +biip(v +w + w x (yijp — 0))

for atip control volume.

The requirement that the working be invariant under changes in material and
spatial observer requires the equivalence of (27-3) and (27-7) for al a, w, and w.
Thisyields:

(i) standard force and moment balances
[ Snds+ [bda =0, (27-849)
oP P

f(y—0)xSnds+ [(y—0)xbda=0 (27-8b)
P P

for a (bulk or) crack control volume and

[ Snds+ [bda +bgy =0, (27-93)
op P

[y —0)xSnds+ [(y —0) x bda + (yiip — 0) X bip =0  (27-9b)
op P

for atip control volume;
(ii) configurational force balances

[Cnds+ [gda+ [g'ds+cp—cy=0 (27-10)
op P ¥

7

for acrack control volume and

[Cnds+ [gda+ [g° ds+ gip+ etip—Ca =0 (27-11)
oP P G

7

for atip control volume

Sinceb, g, andg” areintegrable, (27-9a) and (27-11) applied to atip disc Ds(t)
yields, after passing to the limit § — 0, the following balances at the tip:

j£ Snds + byp =0, (27-123)
tip
% Cn ds +gtip + etip - C’[ip - O (27_12b)
tip
(In view of (27-12a), (y — o) in (27-9b) may be replaced by (yip — 0); thus,

by (27-2b), the limit § — 0 in the standard moment balance (27-9b) yields no
additional information.)
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To derive local relations for the crack, consider the §-pillbox () about an
arbitrary subcurve ¢ (r) of the crack, with Z(r) & % (¢). Then (27-8a) and (27-10)
applied to ‘¢(r) yield, in the limit § — 0,

XfB[S]m ds =0, Sf([C]m +g)ds +C5—cCy=0 (27-13)

where sp > s4, are the arc-length values that mark the endpoints of ‘(). Let
sp — s after dividing by sg — s4; theresultis

[Sm] =0, (27-144)
[Cm]+c,+g" =0 (27-14b)

on the crack away from thetip.

d. Inertial forces. Kinetic energy
Asbefore, let p(X) > 0 denote the referential mass density, assumed smooth; let

. 1 .
p=ry, k=3 olyl? (27-15)

denote the densities of momentum and kinetic energy; and define the productions
of momentum and kinetic energy in a migrating control volume P = P(z) by

py= L _ ¢ _
2(P)= = {{)pda} é{DpU ds, (27-164)
7 (P) = % { {kda} - é{) kU ds. (27-16b)

To ensure that these definitions have meaning, k and p are assumed to be regular.

Thebulk inertial forceb hastheformb = —py (cf. (7-1)). Theinertial forcesat
thetip, which are not so obvious, are characterized through the following two rela
tionsinvolving inertial forces, inertial working, and the productions of momentum
and kinetic energy for an arbitrary tip control volume P = P(¢) (cf. (7-6)):

[bda + b, = —7(P); (27-174)
P
[b-yda+bip- v+ eip-v=—7(P). (27-17b)
P
Consequences of these balances are the relations
biip = f p(v - n)ds, (27-18a)
tip
bip-v+eip-v= 74 k(v - n)ds, (27-18b)
tip

1
cwp v =ve§ kands.  ka=Zpli-i (@189
tip
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(27-184) asserts the equivalence of byp and the release rate for momentum,
(27-18b) the equivalence of the total inertial working and the release rate for
kinetic energy, (27-18c) the equivalence of the configurational inertial working
and the release rate for the kinetic energy measured relative to the tip.

To establish (27-18a), note first that, by (25-21) and the integrability (in the
sense of a Cauchy principal value) of b and b - y,

[bda—0, [b-yda—0 (27-19)
Ds Ds

as§ — 0. Bearing this in mind, the identities (27—18a,b) and the existence of
ftip p(v-n)ds and ftipk(v -n)ds follow from (27-16a,b), (27-17a,b), the regularity
of p and k, and (25-20) with ® = p and ® = k. Theresult (27-18c) followsfrom
(27-18a,b), the identity

1 . 1
k=p-v=3pl -2 = §p|v|2, (27-20)

the continuity of p, and the spatial independence of v.
An alternative method of determining ey, isto use, in place of (27-17b), ahypothesis
analogousto (27—17a) for the pseudomomentump = —pF Ty (cf. (7-10), (12-11)):*
d 1
Jeda+ejp=—— {fpda} + [pUds — [knds + [ Zy*°Vpda. (27-21)
P dr |'p op P P2

Then, asin the derivation of (27-184), (27-21) applied to atip disc Ds(z) yields, in
the limit § — 0, an identity of Dascalu and Maugin®

eiip = yg p(v-n)ds — % knds. (27-22)
tip tip

Sincev =Vt,p=—F'p,andv =y + Fv,
t-{(pv-n)—kn)=—{t-F'p)V+kit-n=—{p-Fv+kjt-n
=—{p-(v-y)+kit-n=—{p-v-kit-m
thus (27-20) and (27-22) imply that

eqp-t=1t- ?g kean ds, (27-23)
ip

and hence that e, - v is given by (27-18c).

‘Assumethat p = —pF 'y isregular, §, p(v - n)ds and §; knds exist, and p > 0,
which, with & regular, ensures the integrability of %yZVp =kV(Inp).

5[1993]; they formally derive an equivalent relation (their eg. (6)) for homogeneous
elastic materials. The hypothesis (27-21) has stronger consequences than (27-17b), as the
latter does not imply (27-22), nor doesiit yield (27-23) when V = 0.
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The Second Law

a. Statement of the second law

Thefree energy of the body isrepresented by abulk freeenergy W (X, ¢) distributed
over B and asurface free energy v (X) distributed over <(¢), with W (X, ) regular,
¥ (X) smooth,

¥ >0, (28-1)

and ¢ independent of time (cf. the paragraph in petite type preceding (27-1)).
| write the second law for a control volume P = P(¢) inthe form

i{f\ydaJrfwdS}SW(P), 28-2
dt J2 %

7

with working W (P) given by (27-3)—(27-5). The difference

F(P):W(P)—%{f\lfda—i—fwds}zo (28-3)
P ‘G

then represents the energy dissipated in P, per unit time. Using (27—6) and the
identity # = W (cf. (6-8)), the second law may be written intrinsically as

i{f\Ilclcz—i—f1pcis}5f(Sn-y—i—‘~IlU)ds—i—fb-yda—}—WC(P). (28-4)
dt |'p ¢ P P

7
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b. The second law applied to crack control volumes

Consider as-pillbox (¢) about an arbitrary subsurface < (¢) of the crack. Assume
that Z(¢) ¢ . Then, because v is independent of time, (11-25b), (25-24), and
(25-25b) imply that

o {f\llda+f1ﬂdS} — Y — Yaly,

(Sn - y—i—\IJU)ds—i—fb yda—>f[Sm -ylds,

s b7

asd — 0. Thus, by (27-4), (28-4) implies that

(Vg —tp-Cplug — (Ya —ta-Calus < [[SM-ylds,

52

0%G;

N

and, because at any prescribed time u 4 and u g may be specified independently of
¢ and of each other, thisyields the equivalence of surface tension and surface free
energy,

c-t=v. (28-5)
Further, because ¢ is arbitrary, [Sm - y] > O; therefore, as [SIm = O,
S*m-[y] > 0.
If the crack faces arein contact, then
bl-m=0 (t-S*mt-[]1=0,

and at these faces the working of the bulk shears over the tangential slip must be
nonnegative. On the other hand, because external tractions on the crack faces are
not considered, the crack surfaces when not in contact are traction-free:

y]-m>0, Stm = 0.

c. The second law applied to tip control volumes.
Standard form of the second law

Consider (28-2) appliedtothetipdisc D; = Ds(t) withv thevelocity field for dDs

and (hence); the corresponding motion velocity following aDjs (cf. the sentence
following (26-8)). By (25-20) and (25-26),

dt ND;

d{f\bda—i— f wds]—>0
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asé — 0; thus (27-3) and (27-5) yield

[ (Sn-y+Cn - v)ds (28-6)
dDs

+btip'l_’+etip'V—MAtA'CA+0(1):F(D5) ZO

(where the symboal o(1) signifies a term that approaches zero with §). Next, by
(27-2a) and (27-12q), as§ — 0O,

fSn-;dSZ‘_" [ Snds +o(1) - —bip - v, (28-7)
aD; aDs

while (27-12b) yields
[ Cn-vds=v- [ Cnds — v (Cip — &tip — €iip)- (28-8)
3D5 3D5
Thus, by (25-2) and (25-7), passing to the limit § — 0 in (28-6) yields two
important results:
giip-v <0, (28-9)

which represents an internal dissipation inequality for the crack tip; and

Pip = —gip-v,  Tip = lIM (D), (28-10)

establishing gip-v, and hencethe breaking of bonds, asthe solesourceof dissipation
at thetip.

By (27-5), (27-16b), (27-17b), and (28-5), the second law (28-4) for a tip
control volume P = P(t) may be written in the form

J(W+k)da+ [ydsg < [Sn-yds+ [(V+k)Uds —paus (28-11)
P oP oP

7

dr

and I"'(P), defined by (28-3), may be expressed asthe right side of (28-11) minus
theleft. Smcef(\IJ +k)U ds and —yru 4, respectively, represent net flows of bulk

and surface energy into P across oP, (28-11) is consistent with more standard
views concerning the formulation of basic laws for control volumes. (For a crack
control volumetherewoul d bean additional term ¢z u 3 ontheright sideof (28-11).

By (28-11) with P = Ds, (25-20) with ® = W + k, which isregular, (25-25a)
with ¢ = v, and the sentence containing (28-11),

f {Sn-y+(V+k)V-n)ds — YipV = Typ, (28-12)
tip

which represents an energy balance for the crack tip. (Thetip integral in (28-12)
exists because the other limits resulting in (28-12) exist.)
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d. Tip traction. Energy release rate. Driving force

Let t(r) = tip(r) = t(Z(r)). The following quantities are essential to our discus-
sion:

j= f {(V +ke)l— F'S}nds tip traction, (28-133a)
tip

J=t.j=t 7§ {(\IJ +kre|)l—FTS}nds energy releaserate, (28-13b)
tip

f=J— vp driving force. (28-13c)

I now discuss these definitions in more detail.

The vector j represents the configurational traction g§ﬂp Cn ds on the material
in an infinitesimal neighborhood of the tip, augmented by the “inertial traction”
ftip kreln ds.

With aview toward discussing f and J, assumefor the remainder of this section
that the crack is growing:

v=Vt, vV >0. (28-14)
Since t - Ciip = Viip, (27-18c) divided by V, (28-5), and (28-13c) imply that

f= t[f [W1—F'S}nds —ctip+eﬁp] (28-15)
tip

The stress C = W1 — FTS, the surface stress ¢, and the inertial force eip give
rise to a net noninternal configurational force on the material in an infinitesimal
neighborhood of the tip; f represents the component of that force in the direc-
tion of propagation. Using the Eshelby relation (6-9), the configurational balance
(27-12b) may be written as

f {\Ill—FTS}nds — Ciip + &tip + €ip = 0. (28-16)
tip
Thelast two relations and (28—13c) yield the tangential configurational balance
J—Yrip+t-gip=0, (28-17)
or equivalently,
f=-tgip. (28-18)

abalance between the driving force f and —t - gyjp, the internal force that opposes
motion of thetip. By (28-9) and (28-10),

Fip = fV =0, (28-19)

and f is conjugate to the scalar velocity V.
By (28-12), (28-19), and (28-13c),

J = V*lyg {Sn-y+ (¥ +k)v-n)}ds; (28-20)
tip
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JV therefore represents the working on—and bulk energy flow into—an infinites-
imal neighborhood of thetip; J itself measures this quantity per unit crack length
rather than per unit time. Also, by (28-13b), J isthe component of j inthedirection
of propagation; for kg = 0, J isthe limiting value of the Eshelby-Rice integral .

Consequences of the tangential balance (28-18) and the second law, as man-
ifested by the internal dissipation inequality (28-9), are the following necessary
conditions for crack growth:

(i) thedriving force must be non-negative,
f=0; (28-21)
(i) thetip traction must form an acute angle with the direction of propagation,
t.j=> ¥iip>0. (28-22)

The Griffith criterion asserts that a crack will runwhen and only whent -j > ip
and hence whenever (28-21) is satisfied strictly. Within the current framework
(28-21) represents only a necessary condition for crack propagation; in fact for
the class of congtitutive equations to be considered, (28-21) may be satisfied
strictly without motion of the tip. The results (28-21) and (28-22) are, however,
independent of constitutive assumptions.

Remark. For a straight crack (t = constant) in a homogeneous elastic body,
neglecting inertia, with the crack facestraction-free (S*m = 0), the energy release
rate may be computed via an integration along a path away from the tip. Let
7 = 7(t) denote any smooth, closed, nonintersecting path that begins and ends
on the crack and surrounds the tip; let n denote the outward unit normal to 7; let

A7) =t [(WV1-F'S)nds;
7

bear in mind that DivC = 0, because g = e = 0 (cf. (9-3), (9-11)), and that
t-[Clm= V¥t -m= 0. Apply thetensoria version of (25-13b) to Div C with P
the region P; between % and dD;s and then pass to the limit as § — 0; the result
is:2

J=_7(%) for any choice of path 7.

e. The standard momentum condition

The quantity bip = anp pv-n)ds = [ ftip p ®n ds]v representsthe momentum flow
into an infinitesimal neighborhood of the crack tip. Theories of crack propagation

1The notion of an energy release rate was introduced by Atkinson and Eshelby [1968]
and justified by Freund [1972]; cf. Freund [1990, pp. 221-235]. Within the framework of
quasistatic elasticity the basic ideas are inherent in the work of Eshelby [1956] and Rice
[1968]; there the energy release rate coincides with the path-independent J-integral.

2Cf. Eshelby [1956], Rice [1968].
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for specific materials are generally consistent with the hypothesis®
7§ pRnds =0, (28-23)
tip

which | will refer to as the standard momentum condition. Granted (28-23),
bip = 0, so that, by (27-12a),

Snds = 0. (28-24)
tip
Further, by (28-23), f;;,(p - ¥)nds = O; thus, since ks = 3 ply — ¥|?, (27-20)
yields

% krgnds :f knds. (28-25)
tip tip
The importance of (28-25) isthat it resultsin relations
J :% {(w ~|—k)1—FTS}nds, (28-26a)
tip
J:t~j:t~7§ {(W+k)1-F'S}nds, (28-26b)
tip

inwhichthetip tractionj does not depend explicitly on the speed or direction of the
crack. (Without the standard momentum condition, j and hence J are dependent
on krg and hence, by (26-4) and (26-5), onv.)

It is important to bear in mind that the dependence of J on k actually represents
a dependence on k.4, With the reduction of k.4 to k a consequence of the standard
momentum condition. Here (and throughout the literature) the energy releaserate J
playsan essential rolein the constitutive theory for thetip, and while kg isinvariant
under Galilean changesin spatial observer, k is not.

By (26-7), for a stationary crack the standard momentum condition is satisfied
automatically; in fact, ftipkn ds = fﬁp kran ds = 0, s0 that

j:_(f {\I/l—FTS}nds, J:t-% {\lll—FTS}nds. (28-27)
tip tip

SThisis satisfied wheny = O(r="), p < 1. Inlinear asticity, p = % (cf., e.g., Freund
[1990, §1.4.3, &4]).
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Basic Results for the Crack Tip

The basic equations for the crack tip consist of the standard force balance
% Snds + by, =0 (29-1)
tip

(or fnp Sn ds = 0, granted the standard momentum condition) and the tangential
configurational balance

f+t-gyp=0 (29-2)
(cf. (28-18)). These balances are supplemented by arelation
t - Cip = Yip > 0 (29-3)

establishing the equivalence of surface tension and surface free energy, and an
internal dissipation inequality

t-gip<0 forv > 0, (294)
which isthe second law localized to the crack tip; in thisregard,

Tip=—(t - gap)V = [V (29-5)
represents the energy dissipated at the tip, per unit time.

The surface shear m- ¢ and the normal internal forcem- gy, perform no work, because
thereisno motion of the crack normal toitself; and theinternal configurational forces
g and g perform no work, because structural changes in the material occur only
at the tip. That is why these forces are considered indeterminate and the balances
(5-10), (27-14b), and the normal part of (28-16) are viewed as equationsfor g, g7,
and m - (Cip — giip). (Contrast this to a phase interface, whose migration results in
theworking of internal configurational forces distributed over it and surface stresses
acting within it (cf. Parts B and E).) On the other hand, the surface tension t - €
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and the tangential force t - g, perform work, but only when the crack tip advances.
Configurational forces therefore play no role away from the tip,* while at the tip the
sole operative forces are those involved in the tangential part of the balance (28-17),
namely, J, t - Cijp = Y, and t - gyp. Bulk constitutive equations for W and S
yield, via (28-13b), an auxiliary constitutive specficiation for J; the next chapter
will discuss constitutive equations for both v, and the internal force t - gip.

It isimportant to differentiate among the roles played by the surface energy yrip,
the energy release-rate J, and the tangential component t - g, of the internal con-
figurational force. Throughout the literature one finds constitutive prescriptions for
J, but no configurational force balance. The view here? isthat t - gip and Y, are
constitutive, with J adefined quantity related to t - g, and ¥, through the tangential
configurational balance (28-17). J istypically represented by bulk quantitiesthat al-
ready have constitutive prescriptions; to write an additional constitutive equation for
J would seem inappropriate. In the theory described here the configurational force
balance provides a quantity g, with tangential component available for constitutive
prescription. The physical consistency of thisview is underlined by the fact that the
second law yields the single inequality I'j, = —Vt - giip > 0, involving the same
variable, whose satisfaction indicates the need for additional constitutive assump-
tionsinvolving V and t - gp. In short, the prescription of aconstitutive equation for
J masks:

(i) the presence of afundamental balance law, the configurational force balance;

(i) the existence of a physically significant quantity, the internal configurational
force, which acts at the tip, with tangential component t - g, a direct response
to the breaking of bonds during fracture.

IMaugin [1993, eq. (7-61)] prescribes acondition for the free surfaces of the crack that
in two dimensions takes the formm - [Clm = —o K (0 = constant surface tension, K =
curvature). | believe this condition to be erroneous; | believe that when written correctly
this condition represents the normal part of (27-14b), viz.m - [CIm + oK = —m - g, and
issatisfied trivially, becauseg” isindeterminate.

2Gurtin and Podio-Guidugli [1997].



CHAPTER 30

Constitutive Theory
for Growing Cracks

Thischapter and the next are based on the assumption that the standard momentum
condition is satisfied.

a. Congtitutive relations at the tip
It is convenient to characterize the direction of propagation t by its counterclock-
wise angle © from the (1, 0) axis:

t = t(¥) = (cosv, sin®), m=m(?) = (— sin?, cos®). (30-1)

Two constitutive relations are considered for the tip: the first gives the surface
energy vrip as asmooth function of ¢,

Yip = Y (D), (30-2)
with
V() > 0; (30-3)

the second gives the speed V asafunction of ¢ and the component —t - gy, of the
internal configurational force opposing propagation. Theforce —t - gyip represents
aresponse to the breaking of bonds at the tip, and it seems reasonable to suppose
that propagationispossibleonly when thisforceissufficiently large. For notational
convenience, the balance law (29-2) is used to write the constitutive equation for
V interms of ¢ and the driving force f(= —t - gp). | therefore consider, for V,
a constitutive equation consisting of two parts: afracture limit

V=0 for f<F(®®), (30-4)
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with
F@®)>0 (30-5)
the limit force; and akinetic equation
V=V@® f)>0 forf> F(@®), (30-6)

where lim_, z9) V(9, f) = 0, where V (s, f) is smooth up to f = F(¥), and
where

3 V(f,0)=0 forf>F. (30-7)

The constitutive assumptions (30—4)—30-7) ensurethat V > 0, that V isanonde-
creasing function of f, and, most important, that the dissipation inequality (29-4)
is satisfied.
Materials scientists often model grain boundaries, phase boundaries, and free
surfaces as sharp surfaces endowed with energy densities dependent on surface
orientation.> Within the current framework, surface physics of this type is charac-
terized by the constitutive function v () for the free energy. For a phase boundary,
an energy of the form () givesriseto avector surface-stress ¢, which, as aresult
of thermomechanical arguments (cf. (19-25)), has the form

c = Y(@)t®) + ¥'(9)m@®), (30-9)

with ¥ (9) the surface tension and ¥/'(9) the surface shear. Here, unlike phase
boundaries, the sole kinetics associated with the crack surfaces is that associated
withthetip, a“constraint” that allowsfor ¢ - t = V() but renders the surface shear
C - m indeterminate (cf. the remark in petite type following (29-5)).

b. The Griffith-Irwin function

The energy release rate is henceforth considered as a function
JG. ) =t(D)j (30-9)

of the angle of propagation ¢ and the tip traction j. For a body characterized
by (30—2)—(30-7), crack propagation occurs when and only when f > F (&), or
equivalently, by (28-13c),

J(G, ) > y(¥), (30-10)
with
y(9) = () + F(®) > 0. (30-11)
The function y (%) will be referred to as the Griffith-Irwin function.

1Cf. Herring [1951a,b], Frank [1963], Gjostein [1963].
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The Griffith criterion, J(j, 9) > (1%, represents only a conservative estimate for
propagation. That surface energy isnot the solelimiting factor to crack initiation was
noted by Irwin,? who proposed that v+ be augmented by aquantity y, representing the
“plastic work dissipated in the surrounding material per unit surface area created.”3
Theroleof y, ishere played by F.

Crack propagation is related to the convexity of y (). Note that, if /()
and F(¥) are angle-convex, then so is y (1), an assertion that follows from the
equivalence of angle convexity and the condition expressed by (19-37).

c. Constitutively isotropic crack tips. Tips with constant
mobility

The crack tip will be referred to as constitutively isotropicif ¥ (), V (9, f), and
F () areindependent of the orientation ¢ of the crack. Granted this, the constitutive
equations (30-2)—30-7) become

Y1ip = constant > 0, (30-12a)
V=0 forf<F, V=V(f)>0 for f>F, (30-12b)
V'(f)>0 for f>F, F = constant > 0, (30-12¢)

so that y is constant and hence angle-convex.

A simple congtitutive assumption, but one that accounts for anisotropy in the
free energy and fracture limit, isthat of acrack tip with constant mobility. Here
the constitutive equations are (30-2)—(30-7) with the kinetic relation (30-6) in the
specific form

V@, f)=MLf - F@®)]  for f > F(©), (30-13)
where
M>0 (30-14)

is a constitutive constant that represents the mobility of the tip.

2[1948].
SCf. Freund [1990, pp. 8-10], from whom the quote is taken, and who gives acomplete
discussion of these ideas with relevant references.



CHAPTER 31

Kinking and Curving
of Cracks. Maximum
Dissipation Criterion

The discussion of kinking will use local results derived for smooth cracks, but
these results will be applied only on the smooth portions of the crack.

Consider a stationary crack and a program of continuously increasing loads.
Let 9~ denote the angle of the tangent t(s ~) at thetip.® In certain circumstances
one might expect crack propagation to initiate at an angle 9+ different from ¢ —,
indicating an initial kink. Once the crack has begun to run, the surface energy
and speed V are given by (30-2) and (30-6) subject to (30-3), (30-5), and (30-7);
however an additional constitutiverelation, specifying thedirection of propagation,
is needed. Thisrelation is derived under the assumption that the crack propagates
in adirection that maximizes the rate at which it dissipates energy.

The following terminology is useful: given a stationary crack, crack initiation
indicatesthe onset of arunning crack, and to emphasize the possibility of kinking,
theterm kink angleis used for the angle ¥ immediately after initiation, a phrase
not meant to rule out the case 9+ = 6~

| assume that the standard momentum condition is satisfied and, without lossin
generality, that J(j, ©) > 0 (cf. (28-21)).

1Thisconflictswith the notation ®* for the limiting values of abulk field ® at the crack.
Because ¢ is not a bulk field and the remainder of this chapter is restricted to the tip, this
ambiguity should not cause confusion.
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a. Criterion for crack initiation. Kink angle

By (30-2) and (30-9), the driving force (28—13c) may be considered a function of
¢ and the tip tractionj;

f=r1G.9)=JG0)— ¥ (@®). (31-1)

Attention is henceforth restricted to situationsin whichj is a continuous function
of timeat theinstant of crackinitiation, whether or not the crack developsaninitial
kink.2 This stipulation renders the tip tractionj a useful parameter for describing
the loading in an arbitrarily small neighborhood of the crack tip. Also, because
(304) and (30-6) are presumed to describe the dynamics of the crack, ¢+ before
initiation must be consistent with J(j, ©) < y (&), while ¢ after initiation must
satisfy J(j, #) > y(¥). With thisin mind, the tip tractionj (or, more ssimply, the
loading) isreferred to as:

(i) subcritical if J(j, ®) < y(¢) for dl ¥;
(if) critical if J(j, 9) < y(v) for al o, but J(j, ©) = y () for some ¥ (so that
the loading is not subcritical);
(iii) supercritical if, for some ¢, J(j, 9) > y(9).

Subcritical loading isthen anecessary condition for a crack to remain stationary;
supercritical loading is a necessary condition for crack propagation; and critical
loading is a necessary condition for crack initiation. The next theorem, a direct
conseguence of (19-40) and the foregoing definitions, showsthe intimate relation
between these conditions and the geometry of the Frank diagramsof J and y. In
thisregard, recall that, by Lemma 19.1(iii), there is a one-to-one correspondence
betweenj and Frank(J).

Criticality Theorem. Thetip tractionj is.

(i) subcritical if and only if Frank(J) does not intersect Frank(y);
(ii) critical if and only if Frank(J) is a convexifying tangent to Frank(y);
(iii) supercritical if and only if Frank(J) intersectstheregion interior to Frank(y).

If the loading is critical, then those angles ¢+ that satisfy J(j, 97) = y (¥ ™)
will be referred to as possible kink angles, because, by (30—4) and (30-6), such
angles mark the transition between f < F(¢#) and f > F(¢%) and hence between
V=0andV > 0.

I nitiation Theorem. Assumethat thetiptractionj iscritical. Then 9+ isapossible
kink angle if and only if ¥+ is a tangency angle of the convexifying tangent
Frank(J) to Frank(y). Granted this, j isrelated to ¢+ through

J=r@HO) +y' @ )m@"). (31-2)
2Continuity of j may preclude the possibility of akink. | am unaware of any rigorous

result related to this important issue, even for isotropic, linearly elastic, antiplane shear,
where the underlying partial differential equation is Laplace’s equation.
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Conversely, if for some convexifying tangent .~ to y (¢#) and some tangency angle
9t of 7, (31-2) is satisfied, thenj iscritical.

Proor. Assumethatjiscritical. Then, becausethe set of al possible kink angles
¥+ coincideswiththeset of 9 that satisfy J (7, 9 ) = y (¥ 1), (ii) of the Criticality
Theorem and (19-40a) imply that 9+ isa possible kink angleif and only if 9" is
atangency angle of Frank(J). Granted this, (31-2) follows from Lemma 19.2(ii).

Conversely, if for some convexifying tangent -~ to Frank(y) and sometangency
angle®* of ., (31-2) is satisfied, then Lemma 19.2(ii) (and the tacit smoothness
of y) imply that ¥ = Frank(J); the criticality of j then follows from (ii) of the
Criticality Theorem. O

Corollaries. Assumethatj is critical.

(i) If y(¥) isangle-convex, then there is at most one possible kink angle.
(ii) For aconstitutively isotropic tip thereis at most one kink angle ¢+, and

t@*) =j/ll, (31-3)

so that the direction of the kink coincides with the direction of j.
(iii) If thetip is congtitutively anisotropic and ¢+ is a possible kink angle, then

m@ ") -j" = y'@"), (31-4)

so that, for y/(8) # 0, the direction of propagation corresponding to ¢ is
not paralle toj.

Proor. Theresult (i) isaconsequence of the Initiation Theorem and the fact that
for y(v) angle-convex, each tangent to Frank(y) intersects Frank(y) at exactly
one point. For an isotropic tip, y is constant and hence angle-convex, so that the
kink angleisuniquely determined by j. Further, (31-2) with y = constant implies
(31-3). For an anisotropic tip, (31-4) follows from (31-2). d

Interestingly, the formulas (30-8) for ¢ and (31-2) for j are identical, granted the
replacements

cand () — jt and y(8). (31-5)

The right side of (31-2) thus has the form of a “surface stress,” with the Griffith-
Irwin function y (¢) playing therole of thefreeenergy; in particular, y (¢#) and y'(¢%)
represent analogs of the surface tension and surface shear, and the relation (31-2)
represents a balance between this surface stress and the tip traction.
Theresults of this section give ageometric picture (Figure 31.1) of the qualitative
aspects of the fracture process. A stationary crack will remain stationary as long as
J issuch that the line Frank(J) remains strictly outside the closed curve Frank(y).
Initiation of a running crack begins at a time for which Frank(J) passes across
Frank(y) with a portion of Frank(J) entering the open region A, say, interior to
Frank(y ), and the crack will continueto run aslong asaportion of Frank(J) remains
within A. Atthetimeof initiation, Frank(J) touches Frank(y) but hasno intersection
with A ; hence Frank(J) must be aconvexifying tangent, and the possiblekink angles
are those angles that mark the intersection of Frank(y) with Frank(J).
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Frank(J)

T A

@ h'\ (b)

©

FIGURE 31.1. Frank diagrams of y and J: (a) for a stationary crack; (b) for possible
initiation of a running crack (¢#; and ¥, are possible kink angles); (c) for a running crack
(the angle describing the direction of propagation lies between ¢, and 7).

b. Maximum dissipation criterion for crack propagation

| now restrict attention to a running crack. Then, by (30-6) and (31-1), the dissi-
pation rate (29-5) may be considered afunction of thetip tractionj and the angle
¥ at which the crack advances:

Tip = Dipl, 9) = fV@, f),  f=JG0)—¢(©). (31-6)

A major hypothesis of the theory isthat at each time the angle ¢ = ¥(¢) satisfy
the maximum dissipation criterion:

Ciip(f, ) = Jmax Tiip(f, ) , (31-7a)
“(j) = {set of angles v such that J(j, ¥) > y(9)} (31-7b)

Then, because
J isnecessarily supercritical, (31-8)

the set ‘(j) is a nonempty open set whose boundary consists of angles ¢ that
satisfy J(j, #) = y(2); furthermore,

Tl a) >0 fora e ¢(),  Typli.e) =0 foreeds(). (31-9)
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Granted smoothness, the maximum problem (31—7a) has a solution, and any such
solution ¢ must satisfy

AT, 9)/09 = 0. (31-10)

It isimportant to note that the maximum dissipation criterion may not define a
unigue angle of propagation for a given value of j. The next lemmawill be useful
in determining conditions under which this angle is unique.

Lemma31.1.

(i) Assumethat y () isangle-convex. Then () is connected.
(i) Assume that «¢(j) is connected. If
3°Typ(j, 9)/80% <0 for all solutions © € 4(j) of (31-10), (31-11)
then (31-7a) has a unique solution.
PrOOF. Let J(®) = J(j, ?) =j - t(¥). To establish (i) it suffices to show that
97 (j) contains exactly two angles. 9 (j) consists of angles ¢ such that y () =
J(¥); thus, by (1940a) : = Frank(y) N Frank(J) contains a point x for each
such angle. Since y (¢#) isangle-convex, Frank(y) is strictly convex; thus, because
Frank(J) is astraight line, € contains at most two points, so that 3 (f) contains
at most two angles. But (j) is open; thus a¢(j) contains exactly two angles.
Assumethat () isconnected. If T'p(j, ©) wereto havemorethan onemaximum
on(j), thenit would a so haveaminimumon (), and thiswoul d viol ate (31-11).
Thus (ii) isvalid. O

It is possible to abtain specific results for the direction of arunning crack when
the material is one of the specific types discussed in Section 30c.

Theorem on the Direction of a Running Crack.

(i) For aconstitutively isotropictip the crack will propagate in the direction of the
tip tractionj:

(@) =j/lil. (31-12)

(ii) For atipwith constant mobility thereisat least oneangle ¢ at which the crack
will propagate, and any such ¢ will satisfy the identity

2f(, ) — FOHmE@) -j — ' (9)} = fG, 9)F'(?). (31-13)

If y isaso angle-convex, then ¢ is unique.
(iii) For atip with constant mobility and F = constant,

m(®) -j = ¥’ (9). (31-14)

Proor. The proof begins with the identities:
fG.9)=t@)j—¥@®)>F®)=0 foradly e%(), (31-15a)
G, 0) =m(@)-j = ¥'@), (31-15b)
f1G.0)=—t®)-j—v" (), (31-15¢)
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where f'(j, 9) = af(j, ©)/00. A
To establish (i) set the derivative of I'ip(9) = f(2)V(f(¥)) equal to zero; the
resultis

SV N+ V=0 (31-16)
Thus, since the loading is supercritical, (31-15a) and (30—12b,c) imply that the

term {---} > 0, sothat /(%) = 0, which, by (31-15b) and the fact that /() is
constant, yields

m(3) -j = 0. (31-17)

Also, since f = t(¥) -j — Yip > O, £(¥) -j > O; thus (31-12) holds.

Consider (ii). Assume that the loading is supercritical. To establish the
uniqueness of the propagation angle, fix j, write f(¢#) = f(,?), and let
®®) =Tip(, 9)/M = fF()f(@) — F)]; then

' =f(f-F)+f(f - F) (31-183)
"= f'(f = F)+2f'(f = F)+ f(f" = F"). (31-18b)

The formula (31-13) follows upon setting (31-18a) to zero, with the use of
(31-15h).
Assumethat y (¢) isangle-convex. Then (19-45), (30-11), and (30-15a,c) yield

f//+f:_1/;//—l&, f//_FN‘i‘f_F:_VN_)/SO.
Assume that &' = 0 at some angle. Then, by (31-18b), at that angle,

"= f'(f - F)+ f(f" = F") = 2(f)*(f — F)/f
< =2f(f - F)—2(f)Af - F)/f <0.

Thus ®”(¢#) < 0 for any ¢ that satisfies ®'(¢%) = 0; in view of Lemma 31.1,
this yields a unique solution of (31-7) and hence results in a unique angle of
propagation.

Finally (iii) isadirect consequence of (31-13) and (31-15a). O

An aternative fracture criterion, due to Cotterell,® asserts that the crack will
propagate in a direction ¢ that maximizes the energy release rate J(j, ©#). Since
J(,9) =j - t(v), thisyields () = j/|j| and hence coincides with the prediction
(31-12) of the maximum dissipation criterion for a constitutively isotropic tip, but
not generally for onethat is anisotropic (cf. (31-13), (31-14)). If for an anisotropic
tip the Cotterell criterion is interpreted to signify crack propagation in a direction
that maximizes the total energy release rate

JG,9) — (), (31-19)

which includes the release of surface energy, then the predictions of the two criteria
coincide provided both the limit force F and the mobility M are constant, but when
thisis not so the predictions of the two criteria differ.

3[1965]. Cf. Hussain, Pu, and Underwood [1974], Palaniswamy and Kanuss [1978],
Cotterell and Rice [1980], Le [1989a,b], Stumpf and Le [1990, 1992].
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Of the two criteria, that of maximum dissipation seems more firmly rooted in
thermodynamics. under isothermal conditions the maximum dissipation criterion is
equivalent to the requirement that the crack propagate in adirection that maximizes
theentropy production at thetip. Further, for aconservatively |oaded el astic body, the
maximum dissipation criterion ensures that the total energy decrease at a maximal
rate.

Regarding initiation, the kink angles predicted here are direct consequences of
the theory; no extraneous criterion is used. Again the prediction coincides with that
of the Cotterell criterion for a constitutively isotropic tip, and if the total energy
release rate (31-19) isused in the Cotterell criterion, also for an anisotropic tip with
F constant, but otherwise the predictions of the two theories differ.



CHAPTER 32

Fracture in Three Space
Dimensions (Results)*

The theory developed thus far may be extended to planar cracks in three-
dimensional bodies. Herethe crack isaplane surfacein B and thetip isa(smooth)
curve ~(¢). The chief ingredients of the configurational force system consist of
abulk stressC = W1 — FTS, an interna force giip distributed over the crack-tip
curve, a surface tension o that acts within the free surfaces of the crack, and a
line tension A that acts within the tip curve. (Inertia is neglected, as are surface
and line shears.) Asin the two-dimensional theory, theforce gy, is associated with
the breaking of bonds during crack growth. As a consequence of the second law
the tensions o and A, here taken to be constant and strictly positive, are shown to
coincide with the corresponding surface and line energies.
The central results of the theory are a balance

n-¢ (W1—F'S)nds —o — 1K +n-gip=0 (32-1)
tip

and an inequality
Vn.gip <0 (32-2)

that follow from the limiting forms of the configurational force balance and the
second law at the crack tip. Here n is the unit normal to the tip curve in the plane
of the crack; ggﬁp(- -)Jnds represents an integral around an infinitesimal circular
loop surrounding the tip and perpendicular to it, with r the outward unit normal

1Gurtin and Shvartsman [1997]. Equivalent results, but with o = A = 0, based on
configurational forces within asomewhat different framework, and without a discussion of
the congtitutive behavior of thetip, were derived earlier by Dascalu and Maugin [1993]. Cf.
also Le[1989a,b], Stumpf and Le [1990, 1992].
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to theloop; K isthe curvature and V' the normal velocity of thetip curve #, with
K > Owhen 7 isacircle.

Theresults (32—1) and (32—2) areindependent of constitution; when constitutive
assumptions involving V and n - g, are prescribed in a manner consistent with
(32-2), then (32-1) represents an evolution equation for the crack tip.

Writing f = —n - giip for the driving force, and arguing as in Chapter 30,
possible constitutive equations are

V=0 forf<F, V=V()>0 forf>F, (32-3)

with F > 0, as before, a limit force for crack propagation. As in the
two-dimensional theory, the Griffith-1rwin modulusis defined by

y =0+ F. (324)
A consequence of (32—1) and (32-3) isthen the generalized Griffith criterion

n-® (W1—F'S)nds >y + AK, (32-5)
tip
a condition both necessary and sufficient for crack growth. What is interesting is
the appearance of the curvature of the tip curve through the term A K, aterm that
provides an impediment to crack growth that increases with diminishing crack
size.
Consider a penny-shaped crack with tip curve " acircle of radius R, so that
K = 1/R > 0. Then for a body of prescribed constitution under prescribed
boundary conditions, if the asymptotics associated with the limit R — 0yield

n-¢ (W1—F'S)nds =o(R™Y), (32-6)
tip
then a penny-shaped crack of sufficiently small radius will not grow.



Part H

Two-Dimensional Theory
of Corners and Junctions
Neglecting Inertia’

Junctionsareformed by theintersection of two or moreinterfaces. They, like crack
tips, are point singularities, and many of the concepts and resultsfor junctions have
antecedentswithinthetheory of fracture. To stressthiscommonality, thediscussion
followsthat of Part G on fracture, although here standard stresswithin theinterface
is considered but inertiais neglected.

Junctions involving three or more interfaces are important in the study of grain
boundaries, but their evolution generally takes place on atime scale far longer than
that related to inertial effects. Inertial contributions at junctions could be of possible
importance when discussing dynamical twinning.

To avoid complicated topological considerations, the discussion isrestricted to
two space dimensions, and, because thetheory away fromajunctionisas presented
in Chapter 22, only the junction itself istreated in detail.

1Simha and Bhattacharya [1998].



CHAPTER 33

Preliminaries.
Transport Theorems

a. Terminology

Let R be aclosed subregion of the body, and let ' (¢) denote the union,

N
) =Jao, (33-1)
n=1
of smoothly evolving, connected, oriented, simple curves ¢(z), “(t), . . ., en(t),

N > 2, that intersect a at a single point Z(¢). Assume that each curve ¢, (¢) has
one endpoint at Z(¢) and crosses dR exactly once, and that arc length is measured
from Z(z). The following notation and terminology are useful: Z(¢) isajunction,
with the special case N = 2, also referred to as a corner;

v(t) = Z()

isthejunction velocity; thecurves<, (r) areinter faces; theset ¢ (¢) istheinterface
system; on «(¢t) away from Z(z), t(X, ¢) is the unit tangent in the direction of
increasing arc length, whilem(X, ¢) is a continuous unit normal field.

Tip discs and tip integrals, basic to the discussion of fracture, have obvious
counterparts here: ajunction disc Ds(t) isadisc of radius § centered at Z(t¢), and

when meaningful, limitssuch aslim;_.o | ®nr ds, termedjunction integrals, are
aD;
written in the form

% ®nds =lim [ ®nds.

jun §—0 aDs

_ Consider a particular interface ¢, () with n arbitrary but fixed, and let X =
X(s, t) denote the arc-length parametrization of «,(¢). For all sufficiently small
r, aD,(t) intersects the curve ¢, (t) exactly once, and this induces a one-to-one
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relation
r="#(s, 1) = |X(@s, 1) — Z(@1)], s = §(r, 1), (33-2)

between arc length s on ¢, (¢) and the distance r from the junction to the point on
¢,(¢) with arc length s. Further, by (33-2), 97(s, t)/ds = 1and 97 (s, 1)/t = 0
at s = 0. Because only a small neighborhood of the junction is relevant to the
subsequent analysis, | further restrict the region R to be small enough that on
each interface within R this one-to-one relation between arc length and distanceis
satisfied with 37 (s, r)/ds > 0, so that s = §(r, ¢) is smooth. The mapping (33-2)
then allows for a distance parametrization

X=X(r1)=XGE( 1), 1)

of ¢,(¢) intermsof (r, ). Thenotation X = X, (s, 1) and X = X, (r, ) will be used
for the arc length and distance parametrizations of «,(¢) when it is necessary to
distinguish between interfaces.

On ¢,(¢) both s and r are measured from Z(t); thus,

X,(0.1) = X,(0.1) = Z(1),
and, as each interface is smooth up to Z(r),
3,X,(0, 1) = 8,X,,(0, 1) = v(t). (33-3)
Thefield v (X, t) on ¢(¢) defined on each interface ¢, (¢) by
vo (X, 1) = 9, Xu(s, 1), X =Xu(s,1)

represents a velocity field for «(¢), as it is a velocity field for each «,(¢). By
(33-3), v~(X, 1) is continuous across the junction, with

v (Z(1), 1) = v(2). (33-4)

b. Transport theorems

A migrating control volume P(z) is (here restricted to be) a smoothly evolving,
closed subregion of R with the following properties. P(¢) contains Z(¢) in its
interior; each interface ¢, (¢) intersects 0P (¢) at asingle point. As before, n(X, )
designates the outward unit normal to 9P = dP(¢), while U isthe normal velocity
of 9P in the direction n.

bl. Bulk fields

Thediscussion parallelsthat of fracture. A bulk field (X, ) isafield defined and
smooth away from < (¢).

Given a bulk field ®(X, ¢), the time derivative of ®(X, ¢) following Z(z) is
defined by (25-9) and has the explicit form

O=b VD (33-5)
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away from <.
A bulk field ® will be termed regular if, away from the junction, ®(X, ¢t) is
smooth up to each interface from either side, and if

(S1) for each migrating control volume P = P(t), the limits

[ ®da=Ilim [ ®da, (Ps(t) = P()\Ds(2)) (33-6a)
P §—0 Py

u] ) u]
[®da=1lim[®da (33-6b)
P §—0 Py
exist, with (33-6b) uniformin time;
(S2) [@]Im - (v~ — v) isintegrable on ¢, uniformly in time.
There is apparently little known about the singularity at a corner in an interface
between two materials, let alone at a junction of three or more interfaces, although
thesingularity at aboundary corner of alinearly elastic body without surfacestructure
is, in all cases with which | am familiar, less severe than that of acrack in the same

body. In any case, it would seem that, for the bulk energy W, the time derivative \5
following the junction would have a singularity weaker than that of ¥ (cf. (25-16)).

The arguments given in the paragraphs containing (25-17)—25-23) hereyield

analogous resultsfor junctions; namely, the temporal differentiability of [ @ da,
P(r)
the transport identity

d .
— 1 [ ®Pday= [ dda+ [ (U —v-n)ds+ [[PIm-(v—v.)ds,
dt | p) () oP(1) ()

% = ¢ N P, and the following theorem.

Junction Transport Theorem for Bulk Fields. Let ® be a regular bulk field.
Then

d
— 1 [®dag—-0 ass—0, (33-7)
dt | p,

uniformly in time.

b2. Interfacial fields

Central to the proof of the transport theorem, (33-7), is the field . To establish
an analogous theorem for (density) fields ¢(X, ¢) on «(¢) requires an interfacial
counterpart of c?). Thisisnot straightforward, becausefor Y fixed andv # 0theset
of r atwhich p(Z(¢)+Y, t) isdefined would generally bediscrete. But closeto Z(r),
¢ can be considered as afunction of ¢ and the distance » from Z(¢); this function,
when converted to a density ¢ measured with respect to » and then differentiated

with respect to ¢, furnishes the desired counterpart of qD>.
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Let ¢(X, 1) be smooth on () away from the junction. Then, choosing the
distance parametrization X = X(r, t) for ,(z), let

o(r,1) = 7 (r, p(X(r, 1), 1), 7 (r,1) = 83(r, 1)/dr; (33-9)

@(r, t) expresses ¢(X, t) on ¢,(¢) in terms of its distance from the junction, with
¢(r, t) considered as a density measured per unit distance rather than per unit arc
length. The partial derivative

(9:9)(r. 1) = 9¢(r, 1)/t (33-9)

holding thedistancer fromZ fixed representsaninterfacial counterpart of c%. When
it becomes necessary to make explicit theinterface ¢, (r) in question, % (r, ¢) will
be used in place of ¢(r, 1).

Let (X, 1) be defined and smooth on «(¢) away from the junction. For any
migrating control volume P(r) and § sufficiently small, let Ps(t) = P(¢)\Ds(t),
so that () N Ps(t) represents the portion of «(¢) that liesinside P(¢) yet outside
Ds(t). Define

J ¢dr=Z{ / ¢("’(r,t)dr},

NPy n CuNPs
[ %¢gdr= Z [ 8¢, 0)dry,
NPy n C,NPs

where )" denotesthe sum fromn = 1ton = N; then
[ ¢dr= [ ¢ds. (33-10)

‘“NPs NP
Granted these definitions, ¢ will betermedaregular interfacial field if, inaddition
to being smooth away from the junction, the limits

f ¢dr = lim f ¢dr, (33-11a)
np §=0,np,

f 0;,¢dr = lim f o,¢dr (33-11b)
NP 5=0,np,

exist for each migrating control volume P = P(t), with (33-11b) uniformintime.
A consequence of (33—-11a) isthat

given any migrating control volume P = P(¢),

| ¢dsisadifferentiable function of 7. (33-12)
E(NP(r)
Because P (1) = Pi(r)UD;(t)and [ ¢ dsisdifferentiable, it sufficesto establish

Pi(t)
(33-12) for P(t) an arbitrary junction disc D, (¢). Inthiscase Ps(t) (A > § > Q)

isthe annulus D, 5(t) = D, (¢)\ Ds(t), so that

[ gdr=>" {} " (r, t)dr} (33-13)

¢NPs n 8
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and therefore
d - ~
—1{ [ ¢dry= [ 9@dr. (33-14)
dt | snp, enPps

Thus, by (33—-11b), passingtothelimit§ — Oyieldstwo conclusions: that (33-12)
isvaidfor P(¢) = D, (t) and hence for any migrating control volume; and that

d
—1 [ @dry= [ 8¢dr. (33-15)
dt | +fp, D
Finally, replacing A by & in (33-15) and passing to the limit § — 0 using the
argument following (25-21) yields the following important result.
Junction Transport Theorem for Interfacial Fields. Let ¢ bearegularinterfacial
field. Then

d
—{ f (pds}—>0 ass — 0, (33-16)

dl ¢NDg

uniformly intime.



CHAPTER 34

Thermomechanical Theory
of Junctions and Corners

Throughout this chapter R, a closed subregion of the body, contains an interface
system ¢(¢t) with Z(¢) its junction, as described in the previous chapter. Away
from this junction the basic fields and equations for the bulk material and for the
interface are as discussed in Chapter 22.

Asfor fracture, external forces are not considered.

a. Motions
Motions y(X, r) are assumed to be continuous on R, and, away from Z(z), are
assumed to be smooth up to each interface from either side. Then, in particular,
y(X,1) = y(Z(¢), 1) asX — Z(1), (34-1)
and the deformed junction is well defined.
Aswith fracture, the motion veloci ty; following the junction satisfies
Yy=y+Fv (34-2)
in bulk (cf. (33-5)) and is assumed to have ajunction limit
YX,1) = #(t)  asX — Z() (34-3)

from the bulk material. If thislimit isuniforminz, then

50) = 5 y(2(0). 1)

v(t) represents the velocity of the junction in the deformed configuration.
Fix § > 0 and consider the junction disc Ds(¢). Because Djs(¢) is transported
rigidly with Z(r), the junction velocity v(¢) represents an admissible choice of
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velocity field for aD;(¢), and, by (34-2), the motion vel ocity;(X, t) following the
function coincides with the motion velocity following aDs () as described by v(¢)
(cf. (4-4)).

Let¢? = ¢%(t) = ¢ N Ds, so that

9C% = v NaD; consistsof the endpoints of the subset of < in Ds.

A velocity field for 9C? is easily constructed. For each n, let X = X,,(r, 1) denote
the distance parametrization on the interface ¢, (¢) and consider the field on ()
defined by

wX, 1) = 3,X,(r, 1), X =X,(r,1).

Then, for any X in 9¢*(r), w(X, r) represents a velocity field for 9¢*(¢) at X,
because X = X,, (6, ¢) for somen andw(X, t) = 9,X,(8, t); inaddition, by (33-3),

w(X, 1) = v(t) as X — Z(1). (344)
Further, in view of (21-4) (cf. (22-5)), the field)A’ defined on ¢ (¢t) away from the
junction by
Y= () + (Fw, (34-5)
when restricted to 3¢ (¢), represents the motion velocity following 3¢?(z). By
(34—2),; = (y) + (F)v; consistent with this and (34-3)—(34-5), | assume that

YX.1) = 5()  as X — Z(r). (34-6)

b. Notation

Consider afield ¢(X, r) defined on ¢ (¢) away from the junction. Suppressing the
argument ¢, let

Placs = Y o(X): (34-72)

Xed et
> ¢ =limely 22{[;3; ¢(X)}a (34-7b)
jun n Xed,

provided the limits exist. Thejunction sum Zjun @ represents the sum of limiting
values of ¢ at the junction, while ¢ |, represents the sum of values of ¢ over the
set 9¢; of endpoints of the subset of ¢ in Ds.

c. Forces. Working

The standard stress S, the configurational stress C, and the internal body force g
are as introduced in Chapters 3 and 5. Away from the junction, these fields are
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presumed to be smooth away from and up to each interface from either side, with
g integrable over R and

[ ISn|ds bounded as § — 0. (34-8)
oD (t)

Inview of (34-1) and (34-3), (34-8) implies that
f Sn - (y —9)ds = 0. (34-9)
jun

In addition to these bulk fields, | consider three fields distributed over the
interface system¢’:

g”  internal configurational force;
C configurational stress,
s standard stress;

and add one force concentrated at the junction:
8jun internal configurational force.

The basic hypotheses are that g (X, 1) is integrable over < (¢), while c(X, ¢) and
s(X, t) aresmooth away from and up to the junction from each interface (although
the corresponding limitswill generally vary from interface to interface). Theforce
giun(t), being concentrated at the junction, is a function of time alone; gjun IS
associated with rearrangements of atoms at the junction or, more generaly, to
phenomena occurring at the junction at length scales that are small compared to
the gross length scales of the body.

The godl of this chapter isa set of basic equations for the junction, so attention
isrestricted to junction discs Ds = Djs(t). The working of the bulk forces on Dj
isas discussed in Part A. The interfacial forces ¢ and s perform work on D; at
points at which the interface system ¢ intersection aD;s. Because the velocity of
such points and their motion velocity are described, respectively, by the fields w

andﬁ, therate at which ¢ and s performwork on D; isgivenby (C-w+ s -ﬁ)la oo

Thus, choosing v as the velocity field for aD; With; the corresponding motion
velocity following aDjs, the working W (Ds) has the form

W(Ds)= [(Cn-v+Sn-Y)ds+(C-w+S-¥)y. (34-10)
oD

The requirement that W (D;) be invariant under changesin material and spatial
observer yields the configurational force balance

[ Cnds+ [gda+ [ g“ds+Clyss +gun=0, (34-11)

dDs D; “ND;
the standar d force balance

[ Snds + S|y =0, (34-12)
aDs
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and a moment balance that is unimportant. Because the fields involved in the
integrals over Ds and ¢ N Dy are integrable, (34-11) and (34-12) yield, upon
passing to thelimit § — 0, the junction balances

s+ ?§ Snds =0, (34-13a)
jun jun
> e+ 7§ Cnds +gun=0 (34-13b)
jun jun

(cf. Subsection 27c).

d. Second law

The free energy of the body is represented by aregular bulk free energy W (X, ¢)
distributed over B and a regular interfacial free energy v (X, t) distributed over
¢(t), and the second law for the junction disc Ds = Djs(¢) hasthe form

i{fwm+‘[ww}§wwg (34-14)
dt | p, “NDs

with working W (D;) given by (34-10). By (33-7) and (33-16),

i:f\llda—i— f wds]—>0 (34-15)

dt Ds ¢NDs
asé — 0. On the other hand, note that, by (34-9), sincew — v and§ — 7,

W(Ds)—>v~% Cnds+17-¢ Snds+2(c.v+s.,-,);
jun jun m
thus, appealing to (34-13a),
W(Ds) — —&jun - V. (34-16)

The results (34-15) and (34-16), when combined with the imbalance (34-14),
result in an internal dissipation inequality for the junction:

8jun v <0. (34-17)

e. Basic results for the junction
The basic results consist of the standard force balance

s+ yf Snds =0, (34-18)
jun

jun
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the configurational force balance
St Cndstgun=0 (34-19)
jun jun
and the internal dissipation inequality
&un-v =<0 (34-20)

representing the second law localized to the junction.

f. Weak singularity conditions. Nonexistence of corners

Consider the following hypothesis, which | will refer to as the standard weak
singularity condition:

f Snds = 0. (34-21)
jun

A consequence of (34-21) isthat the standard interfacial stress be balanced at the
junction:

Y s=o. (34-22)
jun
Because a corner is a junction between two interfaces, the limiting values s1
and s, of the standard stress vector at a corner must satisfy
s1+s,=0.

On the other hand, in view of the sentence containing (22-10), the standard stress
is necessarily tangent to the deformed interface. Thus either s; and s, vanish, or
s; and s, are nonzero and parallel, a condition possible only when the deformed
interface has a continuously turning tangent. This proves the following theorem.

Smooth Corner Theorem. If the standard weak singularity condition holds, then
a (nontrivial) corner is possible only if one of the following two conditions is
satisfied:

(i) At the corner, the union of the deformed interfaces has a continuously turning

tangent.
(ii) The standard stress within each of the two interfaces vanishes at the corner.

A second possible restriction is the configurational weak singularity condi-
tion:
7§ Cnds =0. (34-23)
jun

A condition analogous to the standard weak singularity condition is satisfied at a
crack tip in alinearly elastic body, where

S~r 2 C~rt (34-24)
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(cf. (28-24) and the paragraph containing (25-16)). Further, violation of the stan-
dard weak singularity condition at a junction would require S ~ r=?, p > 1, and
since one would expect the singularity in C to be worse than that in S, as is the
casein (34-24), this could result in 56Jun |Cn|ds = oot and hence render the theory
of dubious value. For these reasons, | would expect the standard weak singularity
condition to be generally applicable. In fact, | would conjecture that in most cases of
interest the configurational weak singularity condition is also satisfied, even though
its counterpart is not satisfied at a crack tip.

Note that when both weak singularity conditions are satisfied,
Z s=0, (34-253)

jun

Y c+gum=0. (34-25b)
jun
g. Constitutive equations

Away from the junction, the constitutive equations for ' (z) are as derived in
Chapter 22; viz.

v =y, 1), (34-263)
s =3, ¥ (9, 1), (34-26b)
cC=(—s-y)t+wm, (34-260)
T = P (9, 1) (34-26d)
where
A= lysl, (34-27)

while ¢ is defined in ¢, away from the junction, as the angle from the (1, 0) axis
to t (cf. (22-13), (22-23), (22-29), (22-32)).
| consider a constitutive relation for the junction giving the internal force gjun
when the junction velocity v and the list
Gjun = (D1, U2, ..., D), 9,(1) = lim 9(X, 1) (34-298)

X—Z(t)
Xee6, (1)

of limiting values of the tangent angle ¢ are known. Specifically,
8jun = —B(v, 19jun)v, (34-29)

withkinetictensor B(v, ¥jun) consistent withv-B(v, ¥jun)v > 0sothat gjyn-v < 0.
For B = B(9jun) (linear kinetics), this condition reduces to the requirement that

1But need not. For ds = rdy with (r, y) polar coordinates at the junction, the y-
dependence of C near the junction could render fjun Cn ds finite; this occursin the study of

dislocations (cf. e.g., Cermelli and Gurtin [1999]).
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B(Yjun) be positive semidefinite. The field y, is not included as an independent
variable in (34-29), because it could be unbounded at the junction.

h. Final junction conditions

Accounting for the constitutive equation (34-29), the final junction conditions are

s+ f Snds =0, (34-30a)
jun jun
> e+ ?§ Cnds = B, Ojun)v, (34-30b)
jun jun
which simplify to
Y s=o0. (34-31a)
jun
> € =B@. %) (34-31b)

jun
when both weak singularity conditions are satisfied.
For the theory discussed in Chapter 19, in which bulk behavior (and hence

deformation) wasneglected, the appropriatejunction condition would be (34-31b),
generalizing the usual balance?

Y c=o. (34-32)
jun
A consequenceof (34-32) isthat acorner in aninterfacewith constitution governed
by an angle-convex free-energy isnot possible (cf. (iii) of thetheorem on convexity

and evolution in Subsection 19g). Interestingly, the more general balance (34—-31b)
allows for such corners, athough they would disappear at equilibrium.

2Cf. Herring [1951b, eqg. (19)].



Part |

Appendices on the
Principle of Virtual Work for
Coherent Phase Interfaces

Balance laws for force are often derived as consequences of a principle of virtual
work?! aparadigm | now use to discuss configurational forces.

| consider weak and strong versions of this principle. The weak principle is
based on avirtual kinematicsthat allowsfor virtual motionsand virtual migrations
of theinterface. Inthisprincipletheexternal andinternal work expendituresarepre-
sumed balanced for all choices of the virtual kinematics. These work expenditures
are for the body as awhole; no useis made of control volumes.

The strong principle of virtual work allows aso for virtually migrating control
volumes. In this principle the external and internal work expenditures—on and
within each such control volume—are presumed balanced for al virtual motions
and all virtual migrations of the interface.

For specificity, | limit the discussion to coherent phaseinterfaces, but the general
ideas are applicable to the study of other defects such as cracks. Throughout the
discussion the external forces tacitly account for inertia.

Also called the principle of virtual power and the principal of virtual velocities. There
is a large literature on the application of this principle to continua: cf., e.g., Truesdell
and Toupin [1960, §232], Germain [1972, 1973a,b, 1976], Casal [1973], Breuneval [1973],
Antmanand Osborne[1979], Maugin[1980], Antman[1995, 8l1.5, 8X11.5], DiCarlo[1996].



Al. Weak Principle
of Virtual Work

a Virtual kinematics

Consider atwo-phase body at a prescribed time ¢, assumed fixed throughout this
discussion. Attimer the phases« and 8 are assumed to occupy closed complemen-
tary subregions B,, and B; of thereferencebody B, withtheinterface.” = B, N Bg
asmooth closed! surface whose unit normal m(X) points outward from B,. The
deformation gradient F(X) at timet, considered as prescribed, ispresumed smooth
away from . and up to . from either side, with

F'P=FP=(F)P=F onv, (A1-1)

arelation considered as defining for F (cf. (21-1)).

At time ¢ the body is allowed to undergo a virtual kinematics K = (V,y)
consisting of a virtual motion with velocity y(X) in conjunction with a virtual
migration of the interface in which .7 has (scalar) normal velocity V (X); herey
and V are arbitrary functions on B and .#, respectively, with y assumed smooth
away from . and up to . from either side, and with y and V subject to the
compatibility condition

] = —VI[FIm on.7 (A1-2)
(cf. (10-24d)). Further, writing

y=Vvm, (A1-3)

19.7 = @. | do not wish to discuss conditions at the intersection of . with 9B.
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the fields F, |$1 337 and (F)" are defined in terms of the velocity fields V and y
through

F=vVy (A1-4a)
m=—V,V, (A1-4b)
Y= ) + (Fy, (Al-4c)
(F)° = (F) 4+ (VF)v. (A1-4d)

It is important to emphasize that B, .#, and F are prescribed, while V and y are
arbitrary fields consistent with (A1-2). Further, asthe time ¢ isfixed, the only vari-

able under consideration is X; thus y, F, El, 5 and (F)" do not explicitly represent
temporal derivatives of fields, although they are consistent with identitiesthat would
be obtained were there an actual motion and an actual migration of the interface (cf.
(10-5), (15-22), (15-24)). Thefieldsy and F might be identified with the variations
8y and §F of the classical theory.

A consequence of (15-12a) and (A1-4) are the identities
V,y=-m@m—VL, (A1-53)
V. () = (F)°P — (F)(m®m) — V(F)L, (A1-5b)

whose proofs are almost identical to those of (16-19) and (21-2).

b. Forces. Weak principle of virtual work

The standard and configurational force systems are represented by the following
fields:
standard force system

S bulk stress (tensor);
S surface stress (superficial tensor);
b external body force (vector);

b’ external surface force (vector);
configurational force system

o surfacetension (scalar);

d surface shear (tangent vector);

h” effective internal interface for ce (scalar);
e’ external interface force (scaar).

Here S and b arefields on B that are continuous away from . and up to . from
either side, while S, »”, o, d, k", and ¢” are continuous on ..
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Given avirtual kinematics K = (V, y), the virtual external working Weq(K)
and the virtual internal working W (K) are defined by

Wea(K) = [ Sn-jda+ [b-ydv+ [(€V+b" -Y)da, (A1-6a)
B B S
Win(K) = [S-Fdv+ [ {s. (F)" — oKV —d .rﬁ—h“v} da (A1-6b)
B S
(cf. the left and right sides of (21-17)), and the weak principle of virtual work
is the assertion that, for any choice of K,
Wet(K) = Wint(K). (AL1-7)

Weak Theorem of Virtual Work. Theweak principle of virtual work holdsif and
only if the following force balances are satisfied:

(i) the standard bulk balance

DivS+b =0, (A1-8)
(ii) the standard interfacial balance
[SIm + Div,S +b" =0, (A1-9)

(iii) the normal configurational balance
oK—(F'S)-L—m-[F"SIm+Div,(d—ST(F)ym)+h” +¢” = 0. (A1-10)

c. Proof of the weak theorem of virtual work
Assume that the weak principle of virtual work holds, so that
[Sn-jda+ [b-ydv+ [ -Y+e’ V)da
oB B S
=[S Fdv+ [ {S (F)Y —6KV —d- r?l—hfv} da  (A1-11)
B e

for al choices of the virtual kinematics (V, y). Choose a virtual kinematics with
V = 0 and y smooth everywhere and consistent with y = 0 in a neighborhood of
% (sothat (F)" = (F) = 0on.¥). Then, by (A1-11) with the divergence theorem
applied to the integral over 9B,

[(DivS +b)-ydv =0,

B
because this must hold for all virtual velocities y with the properties described
above, the standard bulk balance (A1-8) must be satisfied.

Consider next an arbitrary virtual kinematics (V, y). By (A1-2), (A1-4c), and
an argument similar to (11-15),

[Sm-y] = [Sm]-Y —m - [FTSImV.
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Thus, since DivS = —b, theidentity (10-8d) withT = S and w =y yields
[Sn-yda+[b-ydv=[S-Fdv+ [([Sm]-Y—m-[FTSImV)da. (A1-12)
B B B 2

Further, since Sm = 0, it follows that SP = S, and, since L istangential, PL = L

and (F)L = (F)PL = FL; hence (A1-5b) and the symmetry of P yield

(m) (]
S-V,0)=S-({(F)'P) — ((F)m) - (Sm) — VS - ((F)L)
=S . (F)" — (ST(Fym) - m—V(F'S) L. (A1-13)

Note, for future use, that given any smoothvector fieldk on.#,m-STk = k-Sm = 0,
since Sm = 0; thus STk is a tangential vector field and we may use the surface
divergence theorem and the fact that 9.7 = @ to conclude that

[ Div,(S'k)da =0,
S
aresult that will be used repeatedly without mention. In particular, because
(m] (m] [m]
S.V,() = Div,, [sTy} _y.Div,S, (A1-14)
(A1-13) yields

/'S (FYda =f{(sT<F)m).|%+V(FTs).L—?-Div,,s}da. (A1-15)
7 X2

Also, sinced -m = —d - V.,V = — Div(Vd) + V Div..d,

/d-mda=[VDiv,dda. (A1-16)
S S

Similarly,

[(ST(F)m)-m da = [ V Div,(ST (F)m)da. (A1-17)
7

7
Combining (A1-11), (A1-12), and (A1-15)—«(A1-17),
f{oK —(F'S)-L—m-[F"SIm+ Div,(d—S"(F)m)+ h” +¢”} Vda

+ [(Div,S+[Sm]+57) Y da = 0 (A1-18)
on.¥ for any choiceof thevirtual kinematics. Take V = O and lety be an arbitrary
smooth vector field; (A1-18) then reducesto

[(Div,S+[Sm]+b”) -yda=0
7

for all such y, which implies (A1-9). Thus (A1-18) yields
f{oK —(F'S)-L—m-[F"SIm+ Div,(d —ST(F)m)+ 1" +¢"}Vda=0

7
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for all smooth scalar fields V, and this implies (A1-10). The weak principle is
virtual work therefore implies the force balances (A1-8)—A1-10). The converse
assertion, that (A1-8)—(A1-10) imply theweak principle of virtual work, isleft to
the reader.



A2. Strong Principle
of Virtual Work

Theinterface, the deformation gradient, and the virtual kinematics are as described
in Appendix Al. Here, additional structureisintroduced through the consideration
of arbitrary control volumes that undergo virtual migrations.

a. Virtually migrating control volumes

Letavirtual kinematicsK = (V, y) begiven. A virtually migrating control volume
compatible with K isatriplet P = (P, g, w) consisting of afixed subregion P of
B together with avirtual velocity field ¢ for 9P and a virtual velocity field w for
3¢, where

¢ =97NP,

and ¢ and w are consistent with the compatibility conditions
g-m=w-m=1V, (A2-1a)
q-n=w-n, (n = outward unit normal to aP) (A2-1b)

(cf. (15-33)). Note that the component of ¢ tangent to P is unconstrained, and
because the plane spanned by m and » is perpendicul ar to the curve 9, the compo-
nent of w tangent to 9 is aso unconstrained. Given avirtually migrating control

volume (P, g, w), themotion velocitiesy andyA following 9P and 3¢, respectively,
are defined by (cf. (4-4), (21-4))

J=y+Fq.  ¥=0)+ (Fw. (A2-2)

L et n denote the outward unit normal to 9. When g and w have the explicit forms

q=Un, w=v+ Vyeh, (A2-3)
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with U arbitrary and V. definedby U = V(m-n)+ Vi (n-n), sothat (A2-1) are
satisfied (cf. Subsection 15b2), then (A1-1) and (A1-4c), (A2-2) take the form

§=y+UFn,  ¥y=y+VyFn. (A2-4)

Therelations (A2-3) and (A2—4) arevirtual counterparts of theintrinsic velocities
specified in the paragraphs containing (21-4) and (21-5).

b. Forces. Strong principle of virtual work

The standard and configurational force systems are represented by the fields S, b,
S,b”,0,dande” discussed in Appendix A1, but with the configurational system
supplemented by the following fields:

C bulk stress (scalar);

C surface stress (superficia tensor);
b5 bulk tension (scalar);
g’ internal interface force (scalar).

Here C and = arefields on B that are continuous away from . and up to.# from
either side, while C and g are continuous on.#. Asbefore, Cia, and T denote the
tangential and normal parts of C:

C=Cant+tmT. (A2-5)

The virtual external working We«(K, P) and the virtual internal working
Wint(K, P), corresponding to a virtual kinematics K = (V,y) and a virtually
migrating control volume P = (P, ¢, w) compatible with K, are defined by

Wei(K,P) = [(Cn-q+Sn-y)da+ [b-ydv
P P

+ [’V +b” -Y)da+ [(Cn-w+Sn-Y)ds, (A2-6a)

iZ 9

WialK.P)=[$ Fdv+ [ [S-(FY' — oKV —d-m—(ix]+g")V | da
P G

+ [ow-n)ds+ [ 7(q-n)da, (A2-6b)
¢ oP

where¥ = .’N P and nistheoutward unit normal to 94 (cf. (21-6) and (21-18)).
Notethat thesurfacetension o andthesurfaceshear d aresimply fieldsthat perform
work internally during virtual changes of interfacial areaand orientation, while =
isafield that performswork during virtual changesin volume; at this point in the
discussion these fiel ds bear no relation to the standard and configurational stresses
S,S,C,andC.

The strong principle of virtual work is the assertion that, for any choice of
virtual kinematics K = (V,y), and any virtually migrating control volume P =
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(P, g, w) compatible with K,
Wext(KvP) = Wint(K’ P)~ (A2_7)

Strong Theorem of Virtual Work. The strong principle of virtual work holds if
and only if the relations

C=n1-F'S, (A2-83)
Can =P —F'S, (A2-8b)
T=d—-S"(F)m; (A2-8¢)
the standard bulk balance
DivS +b = 0; (A2-9)
the standard interfacial balance
[SIm + Div,S+b” = 0; (A2-10)

and the normal configuration balance
m-[CIm+Cq-L+Div, T+g”  +e¢” =0 (A2-11)
are satisfied.

c. Proof of the strong theorem of virtual work

Assume that the strong principle of virtual work holds. Then, because Wi (K, P)
depends on ¢ and w at most through w - n and ¢ - n, this must also be true for
Wext(K, P). By (A2-2), the portion of We« (K, P) that dependson g and w is

[q-(C+F"Snda+ [w-(C+ (F) S)nds, (A2-12)
oP ¢

and arguments identical to those used to verify (5-14) and (21-11) yield the ex-

istence of scalar fields w and £ suchthat C + F'S = w1l and Gy + F'S = £P.

Thus (A2-12) reducesto

[ w(g-n)da+ [ &w-n)ds, (A2-13)
opP a¢
and (A2-13) must be equal to the portion of Wi (K, P) that depends on ¢ and w,
viz.

[ 7(g-n)da+ [ o(w-n)ds. (A2-14)
op 9%

Therefore, w = 7w and § = o; thisyields (A2-8a,b).

Next, taking the virtual fields ¢ and w in the “intrinsic forms” (A2-3), so that
(A2-4) are satisfied, and appealing to (A2-8a,b), the balance (A2-7) may be
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written in the reduced form

[Sn-jda+ [b-ydv+ (b -Y+e” V)da+ [(Sn-Y+Cn-v)ds
oP P G

3¢

=[S Fdv+ [{S-(F)' oKV —d-m—([x]+¢")V}da (A2-15)
) |

7

and is to be satisfied for any choice of the virtual kinematics (V, y) and al fixed
control volumes P. By (A1-53) and (A2-5),

O

C.Vov=—VCa-L—T -m;
hence, by (A1-13) and (A2-8b),

C-Vor+S-V,0) = —V(Can + F'S) - L— (T + ST(F)m) -m+S - (F)"
— 6KV — (T+ST(F)m)-m+S - (F)".  (A2-16)
Further, asin (21-14),

[(Sn-y+Cn-v)ds = [ [5 -Div,S+S-V, (¥ +v-Div,C+C- V,/fv] da.

¢ G

Thus, by (A2-15), (A2-14) takes the form

[ Sn -yda—}-fb~ydv+f{(DiVLyS—}-b‘y);—i—(m-Div(//C+e'7)V}da
oP P %
:/S-qu+f{(T+ST(F)m—d)-ﬁ—([nug’)v}da. (A2-17)
P 57

Choosing a control volume that does not intersect the interface yields, after ap-
plying the divergence theorem to the integral over oP, [(DivS + &) - ydv = 0;

P
because this must hold for all virtual velocities y, the bulk relation (A2—9) must
be satisfied.
Next, the argument used to establish (A2-12) holdswith B and .¥ replaced by
P and ¢, respectively, and since (A2-8a) impliesthat m-[F " STm = [x]—m-[C]m,
(A2-16) reducesto

i {(Div,s FISIM+57) -y +(m-Div,C+m-[Clm+ ¢’ + ev—")v] da

i

:f{(T+ST(F)m—d).r?1}da. (A2-18)
Because % may be chosen arbitrarily,

DIV, S+ [SIm+b") -y +(m-Div,C+m-[CIm+g” +e”)V
—(T+S"(Fym—d)-m=0 (A2-19)
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on .7 for any choice of the virtual kinematics. Take V = 0 (so that m= 0) and let
y be an arbitrary smooth vector field. Then, by (A1-4c), (A2-17) takes the form

(Div,S+[SIm+b") -y =0;
sincey isarbitrary, thisyields (A2-10). Thus, by (A1-4b),
(m-Div,C+m-[CiIm+g” +e” )W+ (T+S(Fym—d)-V,V =0.

Given any point Xy of . it is possible to choose a smooth field V such that V (Xo)
and V.V (Xo) havearbitrarily prescribed values. Thisyields(A2-8c) and (A2-11).
(Thevector V.-V (X) ishecessarily tangent to.# at Xo, but, inview of the sentence
following (A1-13), s0isT + ST (F)m — d.)

The converseassertion, that the rel ations (A2-8) and the force balances (A2-9)—
(A2-11) imply the strong principle of virtual work, isleft to the reader.

d. Comparison of the strong and weak principles

Thewesak principleof virtual work isequivalent to the standard bulk and interfacial
balances

DivS +b =0, (A2-20a)
[SIm + Div,S+b”" =0, (A2-20b)

and the normal configurational balance
oK —(F'S)-L—m-[F'SIm+Div,(d—S"(Fym)+h” +e¢” =0. (A2-21)

Notethat neither the principle nor the balancesinvolve the configurational stresses
C and C or the bulk tension 7, and 2~ is not the internal configurational force but
instead the sum of all fields internally work-conjugateto V.

The strong principle of virtual work makes use of the configurational stresses
C and C as well as the bulk tension 7, and it delivers explicit relations for the
stresses:

C=nl1-F'S, (A2-223)
Can =0P—F'S, (A2-22D)
T=d-S"(F)m. (A2-22c)

In fact, the strong principle is equivalent to (A2—22) together with the standard
balances (A2-20) and the normal configurational balance

m-[Clm+ Cgn - L+ Div,T+g” +¢” =0. (A2-23)

Granted (A2-22), the configurational balances(A2-21) and (A2-23) areequivalent
provided

h =g’ +Irnl (A2-24)
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A chief difference between the two principlesis that the weak principleiswritten
for the body as a whole, while the strong principle is written for arbitrary control
volumes, which may undergo virtual migrations. The structure of the strong prin-
ciple is far more detailed than that of the weak principle and as such embodies
more physics. The strong principle may be combined with other physical laws
such as the second law in the form (21-19). On the other hand, the simplicity of
the weak principle makes it appropriate as aweak statement of the force balances,
and assuch it may be useful for analysis, granted aknowledge of the more detailed
structure needed to formulate boundary- or initial-value problems.

The weak and strong principles of virtual work are equivalent to the set of force
balances not rendered irrelevant by the presence of indeterminate forces.? That is
both the strength and the weakness of the principle of virtual work. Becauseit yields
only the relevant balances, it uses only those fields that enter those balances: no
more, no less. But thissimplicity is at the expense of aphysical framework in which
configurational forcesobey abalancethat iswell defined at and away from defects, a
balancethat hasthe classical form common to most basic laws of continuum physics.

One could enlarge the theory dlightly and get all balances from the virtual form
of invariance under changes in observer. But then the theory would be essentially
the same as the theory in the main body of the book, where force balances follow
from invariance of the working. Moreover, within that theory, internal working is a
derived quantity, not an independent notion.

2E.g., for a coherent interface the only relevant configurational balance is the scalar
interfacial balance (A2-11).
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Index

Angle-convexity, 120

Balance of energy, 43, 159
bulk free energy, 108
bulk stress
configurational, 101, 129
standard, 129
bulk tension, 38

Cauchy stress, 27
coherent phase interface, 61, 88, 127
Coleman-Noll procedure, 58
compatability conditions at interface, 63
conductivity tensor, 160
configurational force balance

fracture, 187

interface, 68

junctions, 220

single-phase, 36

solidification, 159

two-phase, 102, 117, 130, 151
configurational forces, 2, 11
configurational heating, 43
constitutively isotropic crack tip, 200
convexifying tangent, 121
corner, 213
crack initiation, 202
crack surfaces, 173
crack tip, 175
crack tip with constant mohility, 200

critical loading, 202
criticality theorem, 202
curvature, 115
curvature tensor, 96

Deformation gradient, 21
displacement field, 83
driving force, crack tip, 193

Elastic materials, 53

eladticity tensors, 89

energy release rate, 193

entropy, 43

Eshelby relation, 42

Eshelby relation, interface, 144

evolution equation, interface, 113, 119

evolving surfaces, 93

external body force
configurational, 34
standard, 25

external bulk force
configurational, 129
standard, 129

external configurational force
crack tip, 184
interface, 66

external-force relation, 39, 85

external heat supply, 43

external interfacial force
configurational, 101, 129
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external (continued)
standard, 129

external standard force
crack tip, 184
interface, 66

external working, 27

Finite deformations, 84

fluids, 44

fracture, 173

fracture limit, 198

fracture three space dimensions, 208
Frank diagram, 120

free energy, 40, 43, 159

Frenet formulas, 115

functions of orientation, 110

Generadlized Griffith criterion, 209
generalized Stefan condition, 167
Gibbs-Thomson condition, 166, 167
globally stable, 121

Griffith criterion, 194

Griffith-Irwin function, 199
Griffith-Irwin modulus, 209
growing crack, 175

growth of entropy, 43, 159

Heat flux, 43

I ndeterminacy, 11
inertia, 74
infinitesimal change in spatial observer,
86
infinitesimal deformations, 81
initiation theorem, 202
interfacial
dissipation inequality, 71, 109, 132,
164
energy, 164
entropy, 164
force balance, 103
free energy, 108, 132
stress, configurational, 101, 129
stress power, 144
stretch, 149
internal body force, configurational, 34
internal bulk force, configurational, 101,
129
internal configurational force, 10

crack, 184
crack tip, 184
interface, 66
junction, 220
internal dissipation inequality, crack tip,
192
internal energy, 43
internal forcerelation, 39, 42, 85
internal interfacial force,
configurational, 101, 129
internal working
bulk, 27
interface, 105
two-phase, 70, 144, 152
inverse motion, 22
inverse-motion velocity, 22

Junction, 213

junction integrals 213

junction transportation theorem, 215
junction velocity, 213

Kinetic energy, 46
kinetic modulus, 78, 111
kink angle, 202

L atent heat, 166

limit force, 209

linear kinetics, 112

Lyapunov relations
single-phase, 48
two-phase, 80, 114, 137, 147

M aterial observers, 23

material points, 21

material vector, 22

maximum dissipation criterion, 204

melting temperature, 160

migrating control volume, 29

misfit strain, 89

modified Eshelby relation, 84, 85

momentum, 46

momentum balance, interface, 136,

147

motion, 21

motion velocity, 21
following boundary, 31
following crack tip, 182
following interface, 64



Normal configurational balance, 69, 79,
104, 136, 147, 156

normal internal force, 104, 117

normal velocity, interface, 63

Objectivefields, 23
observer change, 23

Power balance, 27

production of kinetic energy, 75
production of momentum, 75
projection, 94
pseudomomentum, 47

Reduced power balance, 106, 143
reference body, 21

relative kinetic energy, 74

rest observer, 23

Second law

fracture, 190

junctions, 221

single-phase, 40, 47

two-phase, 116, 132, 152
smooth away from the tip, 177
smooth corner theorem, 222
solidification, 157
spatial observers, 23
spatial vector, 22
specific heat, 160
standard force balance, 26
standard force balance, interface, 68
standard moment balance, 26
standard momentum condition, 194
stationary change in reference, 31
Stefan condition, 160
Stefan problem, 161, 167
strain tensor, 89
stress

configurational, 34

standard, 25
stress power, 27
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strong principle of virtual work, 233
strong theorem of virtual work, 234
subcritical loading, 202
supercritical loading, 202
superficial stress, 93

superficial tensor field, 94

surface divergence, 96

surface divergence theorem, 96
surface shear, 103, 152, 185
surface stress, crack, 184

surface tension, 103, 141, 152, 185

Tangential configurational balance,
crack tip, 193
tangential deformation gradient, 138
temperature, 43
thermoelastic materials, 53
time-dependent change in reference, 32
time derivative following
boundary, 31
crack tip, 177
interface, 97
junction, 214
tip control volume, crack, 176
tip speed, crack, 175
tip traction, 193
tip velocity, crack, 173, 175
total curvature, 96

Velocity field for boundary, 31
virtually migrating control volumes,
232

Weak principle of virtual work, 228
weak theorem of virtual work, 229
working

fracture, 186

junctions, 220

single-phase, 26

two-phase, 67, 140, 150
Wulff shape, 122





