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CHAPTER 1

Introduction1

a. Background

The notion of force is central to all of continuum mechanics. Classically, the
response of a body to deformation is described by standard (Newtonian) forces
consistent with balance laws for linear and angular momentum; these forces are
well understood. That additional configurational2 forces may be needed to describe
phenomena associated with the material itself is clear from the beautiful work of
Eshelby3 on lattice defects and is at least intimated by Gibbs4 in his discussion of
multiphase equilibria.

1I gratefully acknowledge many valuable discussions with P. Cermelli, E. Fried,
A. I. Murdoch, P. Podio-Guidugli, A. Struthers, and P. Voorhees; much of the research
discussed here was done with them. In particular, the insight afforded by the use of bulk
and interfacial Eshelby tensors was pointed out to me by P. Podio-Guidugli, a comment that
was central to my understanding of configurational forces. I would like to express my grat-
itude to the National Science Foundation, the Army Research Office, and the Department
of Energy for their support of the research on which much of this book is based.

2I use the adjective configurational to differentiate these forces from classical Newtonian
forces, which I refer to as standard. In the past I used the terms accretive and deformational
rather than configurational and standard.

3[1951, 1956, 1970, 1975]. Eshelby [1951] remarks that the idea of a force on a lattice
defect goes back to “an interesting paper” of Burton [1892], a work that I am unable
to comprehend. Cf. Peach and Koehler [1950], who discuss the configurational force on a
dislocation loop, and Maugin [1993], whose monograph presents a comprehensive treatment
of configurational forces (there called material forces) with a lengthy list of references.

Cf. also Nozieres [1989, p. 26], who uses the term chemical rather than configurational
and writes: “Such a concept of ‘chemical stresses,’ although somewhat misleading, is often
useful in assessing equilibrium shapes.”

4[1878, pp. 314–331].
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Gibb’s discussion is paraphrased by Cahn5 as follows: “Solid surfaces can have
their physical area changed in two ways, either by creating or destroying surface
without changing surface structure and properties per unit area, or by an elastic
strain . . . along the surface keeping the number of surface lattice sites constant . . . .”
The creation of surface involves configurational forces, while stretching the surface
involves standard forces.

The studies of Gibbs and Eshelby, and most related work, relegate configu-
rational forces to a subsidiary status, because the statical theories are based on
variational arguments and the generalizations to dynamics obtained by manipula-
tion of the standard momentum balances. I take a different point of view. While
I am not in favor of the capricious introduction of “fundamental physical laws,”
I do believe that configurational forces should be viewed as basic objects consis-
tent with their own force balance. To help explain my reasons for this point of
view, I sketch the typical treatment of a two-phase elastic solid within the formal
framework of the calculus of variations.6

b. Variational definition of configurational forces

Consider a two-phase elastic body7 B, neglecting thermal and compositional in-
fluences and interfacial energy. Suppose that the phases, α and β, occupy closed
complementary subregions Bα and Bβ of B, with the interface S � Bα ∩ Bβ
a smooth, oriented surface whose continuous unit normal field m points outward
fromBα (Figure 1.1). Then, granted coherency, a deformation ofB is a continuous
function y that assigns to each material X in B a point x � y(X) of space, has
deformation gradient

F � ∇y

smooth up to the interface from either side (but generally not across S ), has
det F > 0, and for this discussion, is prescribed on ∂B.

Consider constitutive equations given the bulk free energy8 � at any point X in
B when the deformation gradient F at X is known:

� � �α(F,X) in Bα, � � �β(F,X) in Bβ, (1–1)

5[1980].
6Cf. Eshelby [1970], Robin [1974], Larche and Cahn [1978], Grinfeld [1981], James

[1981], Gurtin [1983].
7The body is identified with the region B of Euclidean space it occupies in a fixed

reference configuration; to emphasize this, B is generally referred to as the reference
body. Stresses and body forces are measured per unit area and volume in the reference
configuration.

8I use the term free energy in a generic sense. The thermodynamic potential actually
involved depends on which thermodynamic theory this purely mechanical theory is meant
to approximate. The current theory is independent of such considerations.
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X

B

B

L x = y(X)

a

b

Undeformed Body Deformed Body

FIGURE 1.1. The regions Bα and Bβ occupied by the phases α and β in the undeformed
body; S is the interface and m is the unit normal to the interface.

with response functions �α(F,X) and �β(F,X) defined for all F with det F > 0
and all X in B. (The notation � � �α(F,X), say, is shorthand for �(X) �
�α(F(X),X).)

As is customary in variational treatments, the stress S is defined as the partial
derivative of the energy with respect to F,

S � ∂F�α(F,X) in Bα, S � ∂F�β(F,X) in Bβ. (1–2)

In conjunction with this, I define a body force g through

g � −∂X�α(F,X) in Bα, g � −∂X�β(F,X) in Bβ. (1–3)

The traditional definition of stable equilibrium requires that the deformation of
the body and the position of the interface minimize the total energy

E(S , y) � ∫
Bα

�dv + ∫
Bβ

�dv (1–4)

and hence result in a vanishing first variation, δE(S , y) � 0, a restriction that I
will use to deduce appropriate field equations and interface conditions.

The variation δE(S , y) is defined as follows: assume that y(X) and S are values
at ε � 0 of one-parameter families yε(X) and Sε, with ε a small parameter and
yε(X) � y(X) on ∂B for all ε; then

δE(S , y) � d

dε
E (Sε, yε)

∣∣
ε�0,

where E(Sε, yε) is defined by (1–4) with �(X) � �α(∇yε(X),X) in Bα � Bα(ε)
and similarly in Bβ � Bβ(ε).

To formally compute δE(S , y), define the variations δy(X) and δF(X) through

δy(X) � ∂

∂ε
yε(X)

∣∣
ε�0, δF (X) � ∂

∂ε
∇yε(X)

∣∣
ε�0,

so that

δy � 0 on ∂B, δF � ∇(δy). (1–5)
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Further, assume that Sε admits a parametrization X � X̂ε(σ ), σ � (σ1, σ2), and
define the normal variation δS (X) of S to be the scalar field

δS (X) � m(X) ·
(
∂

∂ε

)
X̂ε(σ )

∣∣
ε�0.

Finally, let [f ] denote the jump in a field f across the interface (the limit from β

minus that from α), and let 〈f 〉 designate the average of the interfacial limits of
f . The divergence theorem, the compatibility condition9

[δy] � −(δS )[F]m,
the identity [fg] � 〈f 〉[g] + 〈g〉[f ], and the conditions (1–5) then imply that

−δE(S , y) � − ∫
Bα

S · ∇(δy) dv − ∫
Bβ

S · ∇(δy) dv + ∫
S

[�]δS da

� ∫
Bα

Div S · δy dv + ∫
Bα

Div S · δy dv

+ ∫
S

[(Sm) · (δy)] da + ∫
S

[�]δS da

� ∫
Bα

Div S · δy dv + ∫
Bβ

Div S · δy dv

+ ∫
S

{[S]m · 〈δy〉 + ([�] − 〈Sm〉 · [Fm]) δS }da. (1–6)

Assume that δE(S , y) � 0 for all variations δy and δS . Then because δy can be
specified arbitrarily away from S , while 〈δy〉 and δS can be specified arbitrarily
on S , (1–6) yields the standard equilibrium equation

Div S � 0 in bulk (1–7)

(that is, in Bα and in Bβ), the standard force balance

[S]m � 0 on the interface, (1–8)

and an additional condition

[�] � [Fm · Sm] on the interface, (1–9)

often referred to as the Maxwell relation.
Since (1–9) cannot be derived from balance of forces alone, this leads to the

question of whether the Maxwell relation represents an additional “force balance.”
In fact it does. To see this, consider the “stress tensor”

C � �1 − F�S (1–10)

introduced by Eshelby in his discussion of defects. In terms of the Eshelby tensor,
the Maxwell relation has the simple form m · [C]m � 0. Further, the continuity of y

9Cf., e.g., Larché and Cahn [1978, eq. (6)]; if the parameter ε is viewed as “time,” then
this condition is the classical Hadamard condition for shocks (cf. Truesdell and Toupin
[1960, eq. (189.1)]).
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across the interface implies that [F]t � 0 for any vector t tangent to the interface,
so that (1–8) yields t · [C]m � 0. Thus

[C]m � 0 on the interface, (1–11)

implying continuity of the Eshelby traction across the interface.10 Further, a
computation based on (1–2), (1–3), and (1–7) yields the conclusion

DivC + g � 0 in bulk, (1–12)

so that Eshelby tensor C and the body force g satisfy a balance law; in fact, (1–11)
and (1–12) together imply the integral balance∫

∂P

Cn da + ∫
P

g dv � 0 (1–13)

for every subregion P of B,where n is the outward unit normal to ∂P . I will refer
to g as the internal configurational body force, where, for now, the term internal
can be thought of as arising from the fact that, by (1–3), g is a measure of material
inhomogeneity.

I henceforth use the term standard balance for balances such as (1–7) and (1–8)
involving the standard Piola stress11 S, as opposed to the term configurational
balance, which I reserve for balances of the form (1–13) involving the Eshelby
tensor C and the body force g.

This analysis leads to the questions:

• Is there a formulation in which C and g are primitive quantities, consistent with
a force balance of the type (1–13), and in which the Eshelby relation (1–10)
follows as a natural consequence?

• Aside from a possible better understanding of the underlying physics, does the
introduction of configurational forces lead to new results?

The chief purpose of this book is to answer these questions.

c. Interfacial energy. A further argument for a
configurational force balance

The argument in support of a configurational force balance is even more compelling
when the free energy of the interface is accounted for in the total energy (1–4) by
a term of the form ∫

S

ψ da. (1–14)

10Cf. Kaganova and Roitburd [1988].
11Called Piola-Kirchhoff stress in the terminology of Truesdell and Noll [1965] and

Gurtin [1981].
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Here ψ , assumed, for convenience, to be constant, represents the interfacial free
energy per unit referential area. The variation of (1–14) is

− ∫
S

ψKδS da, (1–15)

with K twice the mean curvature of S , and this term results in the following
generalization of the interface condition (1–9):

m · [C]m+ ψK � 0. (1–16)

Here C is the bulk Eshelby stress (1–10), and, granted the identification of surface
tension with surface free energy, (1–16) resembles a classical identity for fluids
equating the jump in pressure across an interface to the product of surface ten-
sion and twice the mean curvature. Here, however, this identity takes place in the
configurational system.

Further, (1–16), the argument in the paragraph containing (1–11), and well-
known differential-geometric identities yield the local balance

[C]m+ DivS C � 0, (1–17)

where DivS represents the surface divergence on S , while C is the tensor

C � ψP,

with P � 1 − m⊗ m the projection onto the interface; equivalently, relative to an
orthonormal basis {e1, e2, e3} with e3 � m,

C �
(
ψ 0 0
0 ψ 0
0 0 0

)
.

The identity (1–17) represents a local balance law relating the configurational bulk
stress C and the configurational surface stress C; in fact, given any subregion P of
B, if G , assumed nonempty, represents the portion of S in P , and if n, a vector
field tangent to S , denotes the outward unit normal to the boundary curve ∂G ,
then (1–12) and (1–17) yield the integral balance

∫
∂P

Cn da + ∫
P

g dv + ∫
∂G

ψn ds � 0, (1–18)

which relates the forces’ exerted by the traction Cn on ∂P and the body force g on
P to the tensile force ψn exerted on P across ∂G by surface tension.

Here it is important to note that the balances (1–16)–(1–18) concern config-
urational forces, not standard forces; the introduction of a constant interfacial
energyψ , measured per unit area in the reference configuration, leaves the standard
balance (1–8) unchanged.
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To allow for surface tension in the standard force system necessitates strain-
dependent surface energies.12 To quote Herring13 on crystalline materials: “The
principal cause of surface tension is the fact that surface atoms are bound by fewer
neighbors than internal atoms; surface tension is therefore mainly a measure of the
change in the number of atoms in the surface layer.” I interpret this as implying that
surface tension in crystalline materials is primarily configurational. Compare this to
fluids, where interfacial energy is a constant when measured in the deformed config-
uration and is hence dependent on F (through the surface Jacobian) when measured
with respect to a fixed reference; for that reason, interfacial energy in fluids gives
rise to surface tension in the standard force system.

d. Configurational forces as basic objects

It is difficult to imagine distinct force systems acting concurrently at each point of
a body, which is perhaps why configurational forces have never been considered
more than derived quantities. Unfortunately, the current entrenched, facile view of
force in terms of “pushes” and “pulls” has led to a sense of security in which force
is seen as a real quantity rather than as a mathematical concept. Such a feeling of
“understanding,” while a natural outgrowth of experience and an aid to pedagogy,
is a major drawback to the acceptance of new ideas, whose very youth generally
precludes a deep understanding of their physical nature.

In this book I will:

• present a framework in which configurational forces are treated as basic objects;
• give a discussion of configurational forces that provides at least an intuitive

understanding of their physical nature.

In the words of Pierce:14

[Force is] “the great conception which, developed in the early part of the seventeenth
century from the rude idea of a cause, and constantly improved upon since, has shown
us how to explain all the changes of motion which bodies experience, and how to
think about physical phenomena; which has given birth to modern science; and which
. . . has played a principal part in directing the course of modern thought . . . . It is,
therefore worth some pains to comprehend it.”

Those who believe the notion of force is obvious should read the scientific lit-
erature of the period following Newton. Truesdell15 notes that “D’Alembert spoke
of Newtonian forces as ‘obscure and metaphysical beings, capable of nothing but
spreading darkness over a science clear by itself,’ ” while Jammer16 paraphrases a

12Cf. Herring [1951], Gurtin and Struthers [1990], Gurtin [1995]; see also the sentence
following (21–17).

13[1951b].
14[1934, p. 262].
15[1966].
16[1957, pp. 209, 215].



8 1. Introduction

remark of Maupertuis, “we speak of forces only to conceal our ignorance,” and one
of Carnot, “an obscure metaphysical notion, that of force.”17

What I believe to be a major roadblock to the acceptance of a configurational
force balance lies in the fact that Gibbs’s18 masterpiece, so central to the subse-
quent development of materials science, is based on variational arguments; force is
not primitive. But arguments appropriate to the statical setting within which Gibbs
framed his theory seem inappropriate to dynamical situations involving dissipation.

Those reluctant to accept a separate balance for configurational forces should note
that a balance law for moments was not part of Newtonian mechanics. As remarked
by Truesdell and Toupin,19 “It should be, but unfortunately it is not, unnecessary
to comment that the laws of Newton are . . . [not] sufficiently general to serve as
a foundation for continuum mechanics,” Indeed, a balance law for moments—first
stated explicitly by Euler [1776] almost a century after the appearance of Newton’s
Principia [1687]—need join balance of forces as a basic axiom.

A framework that considers as fundamental both configurational and classical
forces requires a concept that unifies disparate notions of force. Here the unifying
concept is “the rate at which work is performed” or, more simply, “the work-
ing.” Roughly speaking, to each independent kinematical descriptor I assign an
associated system of forces, and to each density of force, whether it be a surface
traction or a body force, I associate a work-conjugate generalized velocity, the rate
of change of the kinematical descriptor, such that

density of working � {force density} · {generalized velocity}.
The paradigm I use requires an answer to the question: What makes a kinemat-

ical quantity independent? The answer is the need for an independent observer to
measure its generalized velocity. Such observers are essential to the development
of the theory, because invariance of the thermodynamics to changes in observer
yields the underlying mechanical balance laws. In variational treatments, indepen-
dent kinematical quantities may be independently varied, and each such variation
yields a corresponding Euler-Lagrange balance. In dynamics with general forms
of dissipation there is no encompassing variational principle; the use of indepen-
dent observers provides a dynamical theory with a rational basis for determining
mechanical balance laws.

There is a large literature that uses the principle of virtual work to derive balance
laws for force. I prefer to not consider such variational forms of balance as basic,
but rather as consequences of more classically formulated balances.20 My reasons
are the following:

• The principle of virtual work, which is variational in nature, is physically well-
grounded, as the test functions are virtual velocities, but the variational form

17Cf. the remarks of Maugin [1993, p. 4].
18[1878, pp. 55–371].
19[1960, §196].
20But one should bear in mind that the weaker variational balances are powerful tools of

analysis.
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of other balance laws such as that for energy seem devoid of meaning, chiefly
because the associated test functions have no readily identifiable physical inter-
pretation. I prefer a consistent presentation in which all of the relevant balances
have classical forms.

• The principle of virtual work requires an a priori notion of stress, while classi-
cally formulated balances may be based on the more fundamental notion of a
traction, with stress derived via Cauchy’s theorem.21

e. The nature of configurational forces

Configurational forces are related to the integrity of a body’s material structure
and perform work in the transfer of material and the evolution of material struc-
tures such as defects and phase interfaces. With this in mind, I introduce three
nonclassical kinematical notions used to capture physics related to the transfer of
material:

• control volumes P (t) that migrate through the reference body B;
• material observers that view the reference configuration and measure, e.g.,

velocities associated with migrating control volumes; these observers are used
independently of the classical spatial observers that view motions of B;

• time-dependent changes in reference configuration.

The net working of both standard and configurational forces plays a central
role in the underlying thermodynamics; since much of the theory is mechanical, a
thermodynamics based on work and energy is introduced, with energy represented
by a free energy density �.22 A standard precept of continuum mechanics is that
when writing basic laws for a control volume P , all that is external to P may be
accounted for by the action of forces onP . Consistent with this, I base the theory on
a nonclassical version of the second law requiring that, for each migrating control
volume P � P (t),

(d/dt){free energy of P (t)} ≤ {rate at which work is performed on P (t)};
in so doing I account for the working of both configurational forces and standard
forces, but only implicitly for a flow of free energy across ∂P (t) as it migrates.23

This form of the second law is central to the theory:

• the Eshelby relation (1–10) is derived as a consequence of the requirement that
the second law be independent of the choice of velocity field describing the
migration of ∂P ;

21But because this derivation is well known, I here assume the existence of stress.
22Also discussed is a more general formulation based on balance of energy and growth

of entropy.
23Gurtin [1995, §3c].
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• invariance of the working under changes in spatial observer results in the
standard force balance;

• invariance under changes in material observer yields an additional balance for
configurational forces.24

An important feature of the theory as presented here is that all basic equations and
thermodynamic inequalities are derived without recourse to constitutive equations,
a feature not present in variational treatments and one that renders the theory
applicable to the dynamics of a general class of dissipative materials.

f. Configurational stress and residual stress. Internal
configurational forces

Configurational stress is often confused with residual (standard) stress, which
is the stress in the reference configuration when the body is undeformed. In the
absence of deformationF � 1 and the Eshelby relation (1–10) yieldsC � �1−S;
in particular, C need not vanish when S vanishes, because then C � �1.

A major difference between the standard and configurational force systems is
the presence of internal configurational forces such as the body force g. These
forces are related to the material structure of the body B; to each configuration of
B there correspond a distribution of material and internal configurational forces
that act to hold the material in place in that configuration. Such forces characterize
the resistance of the material to structural changes and are basic when discussing
temporal changes associated with phenomena such as the breaking of atomic bonds
during fracture.

To better understand the role of internal forces, note the difference between the
body’s reference configuration and the deformed (actual) configurations assumed
by the body during a motion. In the latter the body is free to move about in a
manner dictated by the standard (Newtonian) forces acting on it, forces that result
from the interaction of separate parts of the body and from the interaction of the
body with its environment. There are no internal forces. But the body is not free to
move about in the reference, and a basic presumption of the theory is that there are
internal configurational forces that pin, in place, the material points of the body,
thereby maintaining its internal structure.25

24This derivation of the standard balance is due to Noll [1963] (cf. Green and Rivlin
[1964]), that of the configurational balance is due to Gurtin and Struthers [1990].

Pedagogically, I prefer to postulate force balances as consequences of invariance, chiefly
because of the nonintuitive nature of configurational forces and because of the opposition
I have encountered to the introduction of a configurational force balance.

25Internal configurational forces will be discussed in more detail in §5a.
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g. Configurational forces and indeterminacy

Indeterminate forces arise as a response to kinematic constraints and are essentially
irrelevant to the underlying thermodynamics because they are not generally found
in local forms of the second law. For that reason such forces are not specified
constitutively. Classical indeterminate forces are those associated with the pressure
in an incompressible fluid and the stress in a rigid body.26

Indeterminacy arises in the configurational system whenever there is no change
in material structure. For example, consider the equilibrium of a hyperelastic body
B that is free of defects. Within this classical framework, configurational forces
are indeterminant, in fact, superfluous; granted appropriate boundary data, if the
problem has a solution, then the stress S and the free energy� are known, and the
configurational stress C and internal body force g can be computed using (1–3)
and (1–10).

More illuminating, assume that ∂B is free of applied standard and configura-
tional tractions.27 Then, neglecting surface stresses within ∂B, Sn � 0, with n

the outward unit normal to ∂B. Hence, by the Eshelby relation, there is a config-
urational traction Cn � −�n exerted at the free surface by the bulk material. If
configurational forces are to be balanced, there must be an internal configurational
surface force g∂B distributed over ∂B that opposes this traction. The force g∂B is in-
determinate, because ∂B is fixed; g∂B is, in fact, trivially equal to�n. On the other
hand, were I to allow material to be (freely) added and removed at the boundary,
then ∂B would not be a material surface. In this case (the normal part of) g∂B would
not be indeterminate; in fact, its constitution would help to characterize temporal
changes of ∂B.

Similarly, the internal configurational force associated with an interface in a
composite material is indeterminate, since such interfaces do not migrate, but the
analogous force associated with a moving phase interface or grain boundary would
have a constitutive specification. As a general rule,

the bulk material and all material structures such as free surfaces and in-
terfaces have associated internal configurational forces, with such forces
indeterminate when and only when the associated structures are fixed in the
material.

Another example is furnished by a propagating crack: The tip migrates and hence
has an associated internal configurational force that characterizes its kinetics; the
crack faces behind the tip also have associated internal configurational forces, but
these are indeterminate because the faces are fixed in the material.

26Cf. Truesdell and Noll [1965, §30] and Gurtin and Podio-Guidugli [1973] for general
discussions of the classical theory of constraints.

27An example of null configurational tractions is furnished by an environment composed
of a fluid with vanishing enthalpy (cf. §6d).
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h. Scope of the book

The book begins with a discussion of configurational forces within a classical
context; this allows an acquaintance with their physical nature and provides the
derivation of several important relations.

As a first departure from a classical context, I consider migrating material struc-
tures such as phase interfaces; here, so as to not introduce too much new material
at once, I neglect configurational stresses, such as surface tension, that act within
the interface, and focus, instead, on the internal configurational forces that charac-
terize the exchange of material at the interface. In subsequence sections I consider
more general theories that include surface stress; here the underlying mathematical
structure is differential geometry, and to keep the book reasonably self-contained,
I discuss in some detail the main geometric concepts and results on which the
theory is based.

Configurational forces are also relevant in purely thermal situations, a central
example being solidification as described by the Stefan problem and its generaliza-
tions to include surface distributions of energy and entropy. I discuss such theories
in detail. A major and somewhat surprising consequence of the treatment of the
Stefan problem within the framework of configurational forces is that the classi-
cal free-boundary condition equating the temperature to the melting temperature
is not a constitutive assumption but instead a consequence of the configurational
force balance applied across the interface, at least in those situations for which the
energy and entropy of the interface are negligible.

The book closes with a discussion of fracture, concentrating on the configura-
tional forces most influential in the motion of the crack tip. Discussed at length
are the propagation of a running crack, crack initiation with and without kinking,
and crack curving. In particular, a criterion for determining the direction of a run-
ning crack is proposed; in contrast to previous criteria based on minimizing the
energy release rate, the criterion proposed here chooses directions that maximize
dissipation.

Most of the presentation is based on finite deformations, as the underlying con-
cepts are most transparent within a framework that distinguishes between reference
and deformed configurations. However, because many applications of configura-
tional forces presume infinitesimal deformations, I also discuss the theory within
that context.

i. On operational definitions and mathematics

Many of the concepts concerning configurational forces are nonstandard. For that
reason I have tried to give simple interpretations of these concepts, fully realizing
that such explanations are strongly prejudiced by my background. What is im-
portant is the mathematical framework, and that is what the reader should take
most seriously, supplying his or her own metaphysical “footnotes” whenever mine
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seem inappropriate. In this regard note that the early explanation of gravitational
forces in terms of transmission through an all-pervasive ether is no longer tenable
to most scientists; but even so, the mathematical (nonrelativistic) description of
these forces remains as set down by Newton more than three centuries ago.

j. General notation. Tensor analysis

j1. On direct notation

I generally use notation and terminology standard in continuum mechanics.28 In
particular, I use direct (coordinate-free) notation, and for two reasons:

• Direct notation makes the statement of physical laws transparent and, in so
doing, helps to underline their beauty.

• The physical sense of, say, stress seems most clearly conveyed when considered
as a linear transformation T that assigns to the normal n of a surface S the
force Tn transmitted across S .

j2. Vectors and tensors. Fields

Scalars are denoted by lightface letters, vectors (and points) by lowercase boldface
letters (although X, Y , and Z denote vectors). A dot, as in u ·v, designates the inner
product, irrespective of the space in question. Tensors are linear transformations of
vectors into vectors and are denoted by uppercase boldface letters. The unit tensor
1 is defined by 1u � u for every vector u; the tensor product a ⊗ b of vectors a
and b is the tensor defined by

(a⊗ b)u � (b · u)a for all vectors u;
A�, tr A, A−1, and det A, respectively, denote the transpose, trace, inverse, and
determinant of a tensor A; the inner product of tensors A and C is defined by
A · C � tr(A�C). In Cartesian components with summation over repeated indices
implied, (Aa)i � Aijaj , (a⊗b)ij � aibj , (A�)ij � Aji , trA � Aii ,A·C � AijCij .
The transpose is defined by the requirement that

u · Av � (A�u) · v for all vectors u and v.

An identity bearing formal similarity to this definition concerns the inner product
of tensors and has the form

U · (AV) � (A�U) · V for all tensors U and V;
this identity will be used repeatedly.

The term field signifies a function of position X (in this subsection) or, more
generally, a function of position X and time t . The symbols ∇ and Div denote the

28Cf., e.g., Truesdell and Noll [1965], Gurtin [1981].
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gradient and divergence. It is most convenient to define these operations abstractly,
as such definitions extend naturally to surfaces. For ϕ a smooth29 scalar field, the
gradient ∇ϕ, a vector field, is defined by the chain-rule: for any vector function
z(α) of a scalar variable α,

d

dα
ϕ(z(α)) � [∇ϕ(z(α))] · ż(α), (1–19)

or, more succinctly,

ϕ(z)· � ∇ϕ(z) · ż.
(Here and for the remainder of this subsection the superposed dot denotes ordi-
nary differentiation with respect to a scalar variable, but in the body of the text a
superposed dot denotes differentiation with respect to time holding material points
fixed.)

A sketch of the proof that, given any X, (1–19) defines a unique vector ∇ϕ(X)
proceeds as follows. One shows that, for z(α) � X + αa, ϕ(z)· at α � 0 is a linear
function of a; one then uses the fact that any such scalar-valued linear function can be
written as the inner product of a unique fixed vector, written ∇ϕ(X), with a. Similar
arguments apply to the gradients of vector and tensor fields, but there only linearity
need be shown.

For u a vector field, ∇u is the tensor field defined by

u(z)· � ∇u(z)ż

for all vector functions z(α), and Div u is the scalar field

Div u � tr∇u.

The divergence of a tensor field T is the vector field DivT defined by the
requirement that

a · DivT � Div(T�a)

for all constant vectors a. The Cartesian components of these fields are

(∇ϕ)i � ∂ϕ/∂Xi, (∇u)ij � ∂ui/∂Xj ,

Div u � ∂ui/∂Xi, (DivT)i � ∂Tij /∂Xj .

Classical identities, which will generally be used without mention, are

Div(ϕu) � ϕ Div u+ u · ∇ϕ, (1–20a)

Div(T�u) � u · DivT + T · ∇u, (1–20b)

Div(u⊗ v) � (Div v)u+ (∇u)v, (1–20c)

Div(∇u�) � ∇ Div u. (1–20d)

29Assumptions of smoothness and regularity are generally left as tacit, although precise
assumptions are specified for defects such as interfaces and crack tips, where they are
crucial.
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The verification of (1–20b) is an excellent example of direct tensor analysis.
Assume that T is constant. The definition of ∇u then yields

[T�u(z)]· � T�[u(z)·] � T�[∇u(z)ż] � [T�∇u(z)]ż;
thus, by definition, ∇(T�u) � T�∇u. Dropping the assumption that T be constant,
by the product rule for differentiation, which holds for all “products” involving
vectors and tensors, Div(T�u) is equal to the divergence ofT�u holdingT fixed plus
the divergence of T�u holding u fixed. For T fixed, ∇(T�u) � T�∇u; therefore
Div(T�u) � tr ∇(T�u) � tr(T�∇u) � T · ∇u. On the other hand, the definition
of DivT implies that, for u fixed, Div(T�u) � u · DivT.

Various consequences of the divergence theorem, for u and T smooth fields on
a sufficiently regular region P , take the form∫

∂P

u · n da � ∫
P

Div u dv, (1–21a)∫
∂P

Tn da � ∫
P

DivT dv, (1–21b)∫
∂P

Tn · u da � ∫
P

(u · DivT + T · ∇u) dv. (1–21c)

The identities (1–21bc) are consequences of the standard identity (1–21a). For
example, take the inner product of the left side of (1–21b) with an arbitrary constant
vector a and apply (1–21a) with u � T�a.

j3. Third-order tensors (3-tensors). The operation T:Λ

The tensors under consideration are generally of second order, and it would burden
the text to repeatedly use the term second-order tensor. Since third-order tensors
are occasionally needed, I adopt the convention that the term tensor by itself signify
a tensor of second order (i.e., a linear transformation of vectors into vectors), and
that third-order tensors always be referred to as 3-tensors.

Precisely a 3-tensor Λ is a linear transformation of vectors into (second-order)
tensors: for any fixed vector a, Λa is a linear transformation that assigns to each
vector b a vector (Λa)b. In components, (Λa)ij � 
ijkak . (This definition is most
convenient; third-order tensors could also be defined as trilinear forms or as linear
transformations of second-order tensors into vectors.)

An example of a 3-tensor is furnished by the values of the gradient ∇T of a
(second-order) tensor field T, where ∇T is defined by the chain rule:

T(z)· � [∇T(z)]ż (1–22)

for any vector function z(α). The following three identities, in which a and b are
constant vectors and F � ∇y, are useful:

[∇(T a)]b � [(∇T)b]a, (1–23a)

[(∇F)b]a � [(∇F)a]b, (1–23b)

(∇F)a � ∇(F a). (1–23c)
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In these identities the placement of parentheses and brackets is crucial.
To verify (1–23a), let ā(X) � T(X)a for all X. Fix a point X and a vector b,

and let β denote a scalar variable. Then the left side of (1–23a), at X, is given by
[∇ā(X)]b, and this, in turn, is equal to

∂

∂β
ā(X + βb)

∣∣
β�0 �

[
∂

∂β
T(X + βb)

∣∣
β�0

]
a � [(∇T(X))b]a,

which is the right side of (1–23a). Consider (1–23b). Fix a point X and let α and
β denote scalar variables. Then

∂2

∂β∂α
y(X + αa+ βb)

∣∣
α�β�0 �

[
∂

∂β
F(X + βb)

∣∣
β�0

]
a � [(∇F(X))b]a.

But (assuming that y is smooth) the order of the α and β differentiations is irrele-
vant, and this yields (1–23b). The result (1–23c) is the consequence of (1–23a) and
(1–23b), because these relations imply the identity [(∇F)a]b � [∇(F a)]b for all
vectors b. (In components, (∇F)ijk � ∂Fij /∂Xk , and the symmetry (1–23b) may
be established as follows: (∇F)ijk � ∂2yi/∂Xj∂Xk � ∂2yi/∂Xk∂Xj � (∇F)ikj .)

Let T be a tensor and Λ a 3-tensor; then ΛT, a 3-tensor, and T:Λ, a vector, are
defined by

(ΛT)a � Λ(T a), (1–24a)

(T:Λ) · a � T · (Λa) (1–24b)

for all vectors a. In components, (ΛT)ijk � 
ijmTmk , (T:Λ)k � Tij
ijk . The
following identities, for T a tensor field and F � ∇y, are useful:

(T:∇F) · a � T · ∇(F a) (1–25)

for all constant vectors a, and

Div(F�T) � F� DivT + T:∇F. (1–26)

Equation (1–25) is a consequence of (1–23c). To verify (1–26), choose a constant
vector a. Then, by (1–20b) (with u � F a) and (1–25),

a·Div(F�T) � Div(T�F a) � (F a)·DivT+T ·∇(F a) � a·F� DivT+(T:∇F)·a,
which implies (1–26), because a is arbitrary. Note that (T:∇F)k � Tij (∂Fij /∂Xk),
so that T:∇F is the gradient of T · F holding T fixed.

Finally, for G and T tensors and Λ a 3-tensor,

G(T:Λ) � T:(ΛG�). (1–27)

j4. Functions of tensors

The derivative of a scalar function �(T) of a tensor T is written ∂T�(T) and is
defined by the chain rule: For any tensor function T(α) of a scalar variable α,

d

dα
�(T(α)) � [∂T�(T(α))] · Ṫ(α),
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or, more succintly,

�(T). � ∂T�(T) · Ṫ. (1–28)

In components, (∂T�)ij � ∂�/∂Tij . A consequence of this definition is that, for
T � T(X),

∇�(T) � ∂T�(T):∇T (1–29)

(where the gradient on the left is the gradient of �(T(X)) with respect to X).
For functions �(a, b, . . .) of scalar, tensor, and vector variables, ∂a�(a, b, . . .),

say, will denote the partial derivative with respect to the variable a.



Part A

Configurational Forces
within a Classical Context

Much is to be gained by a discussion of configurational forces within a context
that neglects evolving material structures such as defects and phase interfaces,
even though within that context such forces are extraneous to the solution of actual
boundary-value problems.



CHAPTER 2

Kinematics

a. Reference body. Material points. Motions

I write E for three-dimensional Euclidean space and restrict attention to a given
open time interval. To avoid cumbersome statements I use the phrase “all t” to
mean “all t in that interval,” and so on.

I consider a body identified with the region B of Euclidean space E it occupies
in a fixed configuration; I refer to B as the reference body and to points X ∈ B
as material points.

A smooth mapping y that assigns to each t and each X ∈ B a point x � y(X, t)
in E represents a motion (of B) if y(X, t) is one-to-one as a function of X and if
the deformation gradient

F � ∇y (2–1)

satisfies det F > 0; x � y(X, t) is then the place occupied by X at time t ,

B̄(t) � y(B, t) (2–2)

is the deforming body at t , and1

ẏ(X, t) � ∂

∂t
y(X, t) (2–3)

is the motion velocity.

1It is convenient to denote by an overbar a quantity that has been transported, via the
motion, to the deformed configuration. In particular, this is done with sets, so that B̄(t) is
the deformed body and not the closure of B. The following notation is used throughout: ( )·
(a dot) denotes the derivative with respect to t holding X fixed; ∇ and Div are the gradient
and divergence with respect to X holding t fixed; when the place x and time t are used as
variables, ( )′ (a prime) denotes the derivative with respect to t holding x fixed.
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Since x � y(X, t) is invertible at each fixed t , the material point X may be
considered as a function,

X � Y(x, t), (2–4)

of the place x and time t . I will refer to the mapping (2–4) as the inverse motion.
Because y(Y(x, t), t) � x, it follows that

ẏ � −FY ′ (2–5)

with

Y ′(x, t) � ∂

∂t
Y(x, t) (2–6)

the inverse-motion velocity.

b. Material and spatial vectors. The sets Espace and Ematter

B̄(t) is the set actually observed during the motion of a body; the reference body
B serves only to be label material points; any other configuration could equally
well have been used as reference. That is why it is useful to differentiate between
Espace, the copy of E that represents the ambient space for B̄(t), and Ematter, the copy
that represents the ambient space for B. In accord with this, I use the following
terminology:

material vector: vector associated with Ematter;

spatial vector: vector associated with Espace.

The motion velocity ẏ(X, t) is then a spatial vector, while the deformation gradient
F(X, t) is a linear transformation of material vectors into spatial vectors.

For convenience I use a single symbol o for an arbitrary but fixed choice of
“origin” for Ematter and Espace, leaving it to the context to decide which space is
intended.

The presumption that B̄(t) andB do not belong to the same space seems natural. B̄(t)
represents the body during an actual motion, a motion that could, in principle, be seen
or felt by any of us. On the other hand, the set B, while essential to the mathematical
structure of continuum mechanics, is virtual; the body need never occupyB, although
it might. Here it is useful to consider, within the framework of particle mechanics,
a system consisting of, say, a red particle, and a blue particle. B is the counterpart
of the set of particle labels, which could be {1, 2}, or {red,blue}, or the initial partial
positions {x1(0), x2(0)}, and, with respect to these choices, Ematter is the analog of the
integers, or the set of primary colors, or three-dimensional Euclidean space.
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c. Material and spatial observers2

I consider two independent classes of observers: spatial observers that describe
Espace and material observers that describe Ematter. For each class I restrict attention
to changes in observer for which the observers, in motion relative to each other, are
coincident at some arbitrarily chosen time. The phrase invariant under a change
in observer then signifies invariance at the time of coincidence.

For a change in spatial observer the relative velocity at time of coincidence
has the form

velocity � w+ ω× (x− o) (w,ω � spatial vectors) (2–7)

and the motion velocity ẏ transforms according to

ẏ → ẏ+ w+ ω× (y− o). (2–8)

The discussion of material observers is delicate. I view the foregoing description
of Ematter in which the reference body and its material points are independent of
time as a description obtained by a rest observer. I consider changes in material
observer from this rest observer to a Galilean observer who views the rest observer
in motion with

velocity � a (a � material vector). (2–9)

Under such a change in observer the points observed as stationary by the moving
observer do not represent material points; material points as viewed by the moving
observer are seen to migrate with velocity a. Indeed, the Galilean observer views
the points

X̃ � X − (t − t0)a (t0 � time of coincidence) (2–10)

as stationary; but the X̃s do not represent material points, which continue to be
labeled by Xs. Thus material time derivatives measured by the moving observer
remain derivatives holding material points X fixed.

I could consider the more general case of a moving (non-Galilean) observer with

velocity � a+ γ × (X − o) (a,γ � material vectors) (2–11)

at the time of coincidence, but the additional generality would add nothing essential
to the discussion (cf. the paragraph containing (5–11)).

d. Consistency requirement. Objective fields

Because spatial observers view spatial vectors and are oblivious to material vectors,
and because the reverse is true for material observers, the following general rule
seems appropriate.

2Cf. the detailed discussion of Gurtin and Struthers [1990, §4].
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Consistency requirement for vector fields: Those spatial vector fields that
represent physical quantities should be invariant under changes in material
observer; material vector fields that represent physical quantities should be
invariant under changes in spatial observer.

For example, the motion velocity ẏ represents the time derivative of the motion
holding material points X fixed; because the transformation to X̃ does not affect
this computation,

ẏ is invariant under a change in material observer. (2–12)

Many of the fields of interest are objective in the sense that their transformation
at any given time t obeys the standard rules for the transformation of scalars,
vectors, and tensors under the observer change at t .3 Here the stipulation that
we restrict attention to the time of observer coincidence rules out the necessity of
considering orientational changes and, consequently, allows for a simple definition
of objectivity: A field � is objective if � is invariant (i.e., � → �) under both
spatial and material changes in observer.

3Cf., e.g., Truesdell and Noll [1965, §17].



CHAPTER 3

Standard Forces. Working

I begin with a discussion of the standard forces that form the basis for classical
continuum mechanics. I consider inertia as represented through an internal body
force.

a. Forces

Motions are accompanied by forces. Classically, forces in continuum mechanics
are described by body forces distributed over the volume and tractions distributed
over oriented surfaces. Such body forces and tractions may be measured per unit
volume and area in the reference body or per unit volume and area in the deformed
body; even so, the resulting forces are always spatial vectors. Here it is most
convenient to measure forces in the reference body, so that, in particular, stresses
are Piola stresses.1

Specifically, I restrict attention to a standard force system described by the fields:

S stress

b external body force

with b presumed to include inertia. The traction exerted across an oriented surface
S is represented by the action Sn of the stress S on the unit normal n to S ,
and both Sn and b perform work over spatial velocities; thus S(X, t) is a linear
transformation of material vectors into spatial vectors, while b(X, t) is a spatial

1Referred to as first Piola-Kirchhoff stresses by Truesdell and Noll [1965, §43A] and as
Piola-Kirchoff stresses by Gurtin [1981, §27].
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vector. I assume that

S and b are objective. (3–1)

There is, I believe, a basic misconception that inertial body forces are not objective.2

Consider an inertial observer, an inertial body force b � −ρÿ (ρ � reference den-
sity), and the noninertial observer change defined by the transformation x̃ � x+z(t).
Then relative to the new observer the motion is given by ỹ(X, t) � y(X, t)+ z(t) and
b̃ is defined by b̃ � −ρ( ˜̈y− z̈), so that b̃ � b; thus, trivially, b is invariant, although
it does not preserve its form, because b̃ is not −ρ times the acceleration ˜̈y measured
by the noninertial observer.

b. Working. Standard force and moment balances as
consequences of invariance under changes in spatial
observer3

Let P be a (referential) control volume (i.e., a bounded subregion of B with
smooth boundary ∂P ) and let n denote the outward unit normal to ∂P . I define the
working on P through the classical relation

W (P ) � ∫
∂P

Sn · ẏ da + ∫
P

b · ẏ dv (3–2)

and require that W (P ) be invariant under changes in spatial observer. Then, by
(2–8) and (3–1),∫

∂P

Sn · ẏ da + ∫
P

b · ẏ dv � ∫
∂P

Sn · [ẏ+ w+ ω× (y− o)] da

+ ∫
P

b · [ẏ+ w+ ω× (y− o)] dv; (3–3)

hence

0 �
{∫
∂P

Sn da + ∫
P

b dv

}
·w+

{∫
∂P

(y− o) × Sn da + ∫
P

(y− o) × b dv

}
·ω (3–4)

for all P and all vectors w and ω. Invariance of the working therefore yields the
standard force and moment balances∫

∂P

Sn da + ∫
P

b dv � 0, (3–5a)∫
∂P

(y− o) × Sn da + ∫
P

(y− o) × b dv � 0 (3–5b)

for all P ; or equivalently,4

Div S+ b � 0, (3–6a)

2Cf. the discussion of Noll [1995].
3Cf. Noll [1963].
4Cf., e.g., Gurtin [1981, §27].
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SF� � F S�. (3–6b)

The assertion (3–5a) ⇔ (3–6a) is a direct consequence of the divergence
theorem. To show that, granted (3–6a), (3–5b) ⇔ (3–6b), consider the tensor

M(P ) � ∫
∂P

(y− o) ⊗ Sn da + ∫
P

(y− o) ⊗ b dv.

Then (3–5b) is equivalent to the assertion that M(P ) be symmetric: M(P ) �
M(P )�. Since∫

∂P

(y− o) ⊗ Sn da � ∫
P

(y− o) ⊗ Div S dv + ∫
P

F S�dv,

(3–6a) yields the conclusion

M(P ) � ∫
P

F S� dv,

and M(P ) � M(P )� for all P if and only if (3–6b) is satisfied.
Given a control volume P , (3–6a) and the divergence theorem imply that∫

∂P

Sn · ẏ da + ∫
P

b · ẏ dv � ∫
P

S · Ḟ dv, (3–7)

and hence that, trivially,

W (P ) � ∫
P

S · Ḟ dv. (3–8)

This expression represents a power balance for P ; W (P ) as defined in (3–2)
represents the working of all forces external to P , and (3–8) relates this external
working to the internal working

∫
P
S·Ḟ dv. The integrandS·Ḟ is usually referred

to as the stress power; S · Ḟ represents internal working resulting from temporally
varying strains.

A rigid motion has F orthogonal, so that FF� � 1, which, when differentiated,
implies that ḞF� is skew. By (3–6b),SF� is symmetric. ThusS·Ḟ � SF�·ḞF� � 0
and the stress power vanishes when the motion is rigid, a result that justifies the
use of the term strains in the previous paragraph.

The tensor field

T � (det F)−1SF�, (3–9)

usually referred to as the Cauchy stress,5 represents the stress measured per unit
area in the deformed configuration. Similarly, b̄ � (det F)−1b represents the body
force measured per unit volume in the deformed configuration. Precisely, if S
with (unit) normal n is an oriented surface in B then, considering T � T(x, t) and
b̄ � b̄(X, t) functions of x � y(X, t) and t ,∫

S

Sn da � ∫
S̄

Tn̄ dā,
∫
P

b dv � ∫
P̄

b̄ dv̄ (3–10)

5Cf., e.g., Gurtin [1981, §14, §27].
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(using the notation discussed in the paragraph following (2–3), so that S̄ with
normal n̄ is the image of S under y, dā is the element of area on S̄ , and so on).
Then the balance (3–5a) takes the form∫

∂P̄

Tn̄ dā + ∫
P̄

b̄ dv̄ � 0

and, letting div and grad, respectively, denote the spatial divergence and spatial
gradient (with respect to x), this yields the local balance

div T + b̄ � 0. (3–11)

Similarly, the moment balance (3–5b) has an analogous counterpart involving T

and b̄ whose local form yields the symmetry of T, a result that also follows from
(3–6b). Finally, the working (3–2) has the equivalent forms

W (P ) � ∫
∂P̄

Tn̄ · ẏ dā + ∫
P̄

b̄ · ẏ dv̄ � ∫
P̄

T · grad ẏ dv̄,

so that T · grad ẏ is the stress power measured per unit deformed volume, and

S · Ḟ � (det F)T · grad ẏ � (det F)T ·D, D � 1

2
(grad ẏ+ grad ẏ�). (3–12)



CHAPTER 4

Migrating Control
Volumes. Stationary and
Time-Dependent Changes
in Reference Configuration

To characterize the manner in which configurational forces perform work, a means
of capturing the kinematics associated with the transfer of material is needed. I
accomplish this with the aid of three notions, none of which is a standard. The
first, that of material observers, has been examined in Chapter 2. The other two
notions are:

1. control volumes P (t) that migrate through B and thereby result in the transfer
of material to P (t) across ∂P (t);

2. time-dependent changes in reference configuration.

In continuum mechanics one often uses the term part for a fixed subregion P of
B; and the phrase evolution of P with time refers to the motion of the deformed
part P̄ (t) � y(P, t). Parts should not be confused with control volumes P (t), which
are not fixed subregions of the reference body B but rather migrate through B. The
phrase transfer of material to ∂P is meant in a general sense that allows for the
“transfer of material from ∂P ,” and similarly for the phrase addition of material to
∂P .

a. Migrating control volumes P � P (t). Velocity fields
for ∂P (t) and ∂P̄ (t)

Let P � P (t) be a (smoothly) migrating control volume with U the (scalar)
normal velocity of ∂P in the direction of the outward unit normal n. To describe
the working associated with the evolution of P , I introduce a field q interpreted
as the velocity with which an external agency adds material to ∂P . Compatibility
then requires that the normal component of q be U :

q · n � U ; (4–1)
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n(X,t)

X q(X,t)

P(t)

B

Undeformed Body Deformed Body

P(t)

y(X,t)

y (X,t)�

FIGURE 4.1. The time-dependent control volumeP (t), which deforms to P̄ (t), with q(X, t)
a velocity field for ∂P (t) and y◦ the corresponding motion velocity following ∂P (t).

q is otherwise arbitrary (Figure 4.1).
This discussion should motivate the following definition: An assignment, at each

t, of a material vector q(X, t) to each X ∈ ∂P (t) is a velocity field for ∂P if q is a
smooth field that satisfies q · n � U .

One might ask: Why not use, as velocity field, the vectorial normal velocity Un,
which is intrinsic? I have many reasons for not doing this:

1. If material is viewed as being transferred to ∂P via an external agency, then it
would seem unreasonable to restrict the corresponding velocity to normality.

2. Changes in material observer do not preserve normality of the velocity field.
3. In the study of basic issues a powerful tool is the requirement that a theory be

invariant under changes irrelevant to the physics; here invariance under changes
in velocity field yields important and unexpected consequences.

4. An important example of a migrating control volume is a ball P (t) of fixed radius
centered at a point Z(t) that is migrating through B; in this case the spatially
constant field q(t) � Ż(t) represents a velocity field for ∂P (t).

5. Granted smoothness, ∂P (t) may be parametrized locally in time by a function
of the form X � X̂(ζ, t), ζ � (ζ1, ζ2); the field q(X, t) � ∂X̂(ζ, t)/∂t then
represents a velocity field for ∂P (t).

Let P � P (t) be a migrating control volume. A velocity field q for ∂P may be
viewed as a velocity field for particles evolving on a migrating surface ∂P , with the
trajectory Z(τ ) of the particle that passes through X ∈ ∂P (t) at time t the unique
solution of

Ż(τ ) � q(Z(τ ), τ ), Z(t) � X. (4–2)

Given a field �(X, t), the time derivative of � following ∂P , as described by q,
is the time derivative along such trajectories:

�̊(X, t) � d

dτ
�(Z(τ ), τ )

∣∣
τ�t . (4–3)
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Let y be a motion. Then ẙ, which I refer to as the motion velocity following ∂P ,
satisfies

ẙ � ẏ+ Fq. (4–4)

Further, writing

P̄ (t) � y(P (t), t) (4–5)

for the deformed control volume, the pathZ(τ ) is mapped into a path y(Z(τ ), τ ) that
lies on ∂P̄ (τ ) at each τ . Because ẙ(X, t) is the derivative of y(Z(τ ), τ ) at τ � t , ẙ
represents a velocity field for ∂P̄ . (Alternatively, each parametrizationX � X̂(σ, t)
of ∂P (t) induces a corresponding parametrization x � x̂(σ, t) � y(X̂(σ, t), t) for
∂P̄ (t); if q � ∂X̂/∂t , then ẙ � ∂ x̂/∂t .) Note that ẙ accounts for the evolution of ∂P̄
through two terms; the motion velocity ẏ and the velocity Fq at which deformed
material is being transferred to ∂P̄ .

The fields q and ẙ transform according to

q → q+ a, ẙ → ẙ (4–6)

under the change in material observer defined by (2–9), and according to

ẙ → ẙ+ w+ ω× (y− o), q → q (4–7)

under the change in spatial observer defined by (2–7) (cf. the consistency
requirement as stated in Section 2d).

b. Change in reference configuration

b1. Stationary change in reference configuration

Let κ be a smooth mapping

*X � κ(X) (4–8)

of the reference body B onto a region

*B � κ(B)

of Ematter, and let

K � ∇κ, J � det K. (4–9)

Then κ is a stationary change in reference if κ is one-to-one with J > 0.
Each field �(X, t) associated with the body and hence defined over B will be

presumed to have a unique representation, relative to κ, as a field *�( *X, t) over
*B. In particular, given a motion y(X, t), *F( *X, t) denotes the deformation gradient
relative to the new reference; that is, the gradient of

*y( *X, t) � y(κ−1( *X), t) (4–10)
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with respect to *X. Hence

*F � FK−1. (4–11)

Let P � P (t) be a migrating control volume, q be a velocity field for ∂P , and
Z(τ ) be defined through (4–2). Then, under κ, P transforms to a control volume

*P (t) � κ(P (t)), (4–12)

while q transforms to the velocity field *q for ∂*P given by

*q( *X, t)
d

dτ
κ(Z(τ ))

∣∣
τ�t (4–13)

for *X � κ(X); thus

*q � Kq. (4–14)

b2. Time-dependent change in reference configuration

A time-dependent change in reference is a smooth mapping

*X � κ(X, t) (4–15)

with κ a stationary change in reference at each fixed time. The composition of the

material at each point *X in the range of κ will generally change with time; that is
why such points will be referred to as reference labels rather than material points.

More useful than κ itself is its fixed-time inverse

X � X̂( *X, t). (4–16)

This mapping describes the trajectories of fixed labels *X through the reference
body B, while

q(X, t) � ∂

∂t
X̂( *X, t)

∣∣ *
X�κ(X,t)

(4–17)

represents the velocity field along such trajectories. Given a fixed region *P in the

space of reference labels *X, consider the migrating control volume

P (t) � X̂( *P , t) (4–18)

and the corresponding deformed control volume P̄ (t) � y(P (t), t). Then q(X, t)
(restricted to ∂P (t) at each t) represents a velocity field for ∂P (t) with

ẙ � ẏ+ Fq (4–19)

the associated velocity field for ∂P̄ (t).
An important example of a time-dependent change in reference is the motion

x � y(X, t); here the inverse motion Y plays the role of X̂, x corresponds to *X,
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and the fixed region *P is the deformed control volume P̄ , which is necessarily
stationary. A consequence of (2–5), (4–17), and (4–19) is that, for this example,

q(X, t) � Y ′(x, t)
∣∣
x�y(X,t), ẙ � 0. (4–20)
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Configurational Forces

Configurational forces are related to the integrity of a body’s material structure;
they act within the reference configuration and perform work in the transfer of
material and in the evolution of structural defects.

Classically, body forces represent forces exerted on a bodyB by bodies exterior
to B; in contrast, configurational force systems also require body forces that are
internal to B.

a. Configurational forces

The configurational force system consists of three fields:

C stress

g internal body force

e external body force

As with standard forces, configurational tractions and body forces are measured
in the reference body, with Cn the traction across any oriented referential surface
G with unit normal n. Thus and because C, g, and e perform work over velocities
associated with the reference body, C(X, t) is a linear transformation of material
vectors into material vectors, while g(X, t) and e(X, t) are material vectors. I
assume that, as for the standard force system (cf. (3–1))

C, g, and e are objective. (5–1)

A chief difference between the standard and configurational force systems is the
presence of internal configurational forces. Such forces, being intimately connected
with the material structure of the body, are best discussed within a framework more
general than that discussed thus far. It is convenient, but somewhat misleading, to
identify a body B with a region of space it might occupy, because that may change



b. Working revisited 35

from time to time; a more encompassing view of a body is as a set B of material
pointsX together with a collection of possible configurations, where a configuration
ofB is a one-to-one mapping that assigns to each material pointX a pointX � µ(X)
of Euclidean space.1 To each configuration µ there is a corresponding distribution
of material and an associated system of configurational forces. I view g(X, t) as the
force needed to hold in place the material at X when the configuration is µ, or more
simply to hold X in place in the configuration µ. Such forces are then “internal” to
the complete system—material points plus region of space—that constitutes a body.

b. Working revisited

In discussing the working of the standard and configurational force systems, the
reader should bear in mind the basic premise that configurational forces perform
work over positional changes in the reference body, while standard forces perform
work over positional changes in space.

Consider the standard and configurational forces associated with a migrating
control volume P � P (t), with q a velocity field for ∂P and ẙ the corresponding
motion velocity following ∂P .

1. Working of the stresses

I view the traction Cn as a force that performs work in conjunction with the
migration of ∂P and therefore I choose q as an appropriate work-conjugate velocity
for Cn. Classically, control volumes do not migrate and the standard traction Sn

on ∂P is work-conjugate to the motion velocity ẏ, but ∂P when migrating has
no intrinsic material description, because material is continually being added and
removed, and it would seem appropriate to use as work-conjugate velocity for Sn
the motion velocity ẙ following ∂P , as ẙ represents a velocity field for the deformed
boundary ∂P̄ consistent with the choice of q as velocity field for ∂P . I therefore
write the working of the standard and configurational stresses in the form∫

∂P (t)
Cn · q da + ∫

∂P (t)
Sn · ẙ da. (5–2)

Note that when q � 0 the control volume P is stationary; in this case (4–4) yields
ẙ � ẏ and (5–2) reduces to the classical relation∫

∂P

Sn · ẏ da. (5–3)

2. Working of the internal configurational body force

Because g represents forces that hold in place the material (points) in the reference
configuration and the material is there immobile, g performs no work.

1Cf. Noll [1958].
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3. Working of the external body forces

The configurational force e performs no work, because the material points X are
fixed in the reference body, but the standard force b views the points X as evolving
in space via the mapping x � y(X, t) and hence performs work with ẏ its conjugate
velocity. The net working of the external forces e and b therefore has the classical
form ∫

P (t)
b · ẏ dv. (5–4)

Based on these remarks, I take the following expression as the appropriate
generalization of the working (3–2):

W (P (t)) � ∫
∂P (t)

Cn · q da + ∫
∂P (t)

Sn · ẙ da + ∫
P (t)

b · ẏ dv. (5–5)

c. Configurational force balance as a consequence of
invariance under changes in material observer2

By (2–8), (3–1), (4–7), and (5–1), invariance of (5–5) under changes in spatial
observer yields the standard force and moment balance (3–6a), but nothing else.

Consider a change in material observer from an observer at rest to one who views
the material in motion with velocity a. Then g and e, as observed by the moving
observer, perform work, since material points as viewed by the new observer
migrate with velocity a. The working W (P (t)) as recorded by the observer in
motion therefore has the form

W (P (t)) � ∫
∂P (t)

Cn·(q+a) da+ ∫
P (t)

(g+e)·a dv+ ∫
∂P (t)

Sn·ẙ da+ ∫
P (t)

b·ẏ dv (5–6)

(cf. (2–12), (3–1), (4–6), and (5–1)). The requirement that the working W (P (t))
be invariant under changes in material observer therefore leads to the conclusion

0 �
{∫
∂P

Cn da + ∫
P

(g+ e) dv

}
· a (5–7)

for all P and all vectors a. A consequence of (5–7) is the configurational force
balance ∫

∂P

Cn da + ∫
P

(g+ e) dv � 0, (5–8)

in which the individual terms∫
∂P

Cn da,
∫
P

g dv,
∫
P

e dv (5–9)

represent the (net configurational) contact force, internal force, and external force
on a control volume P . Finally, the requirement that (5–8) hold for all P yields

2Cf. Gurtin and Struthers [1990].
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the local force balance

DivC + g+ e � 0. (5–10)

To account for non-Galilean material observers as defined in (2–11), the working
(5–6) should have a replaced by a+ γ × (X − o) and should be augmented by the
term ∫

P

{m · γ + (g+ e) · [γ × (X − o)]} dv,

with m a material vector field that represents configurational body moments. (And
perhaps there should also be a term that represents configurational couple stresses.)
The configurational moment balance∫

∂P

(X − o) × Cn da + ∫
P

(X − o) × (g+ e) dv + ∫
P

m dv � 0 (5–11)

then follows from invariance of the working under changes in material observer. The
local form of (5–11), namely,

C − C� � −m×, (5–12)

establishes the need for the body moment m, as C need not be symmetric (cf. (6–9)).
Certain defect structures generate configurational, but not standard, moments;3

even so, for the situations discussed here there is sufficient indeterminacy in the
configurational system to render the configurational moment balance superfluous.

d. Invariance under changes in velocity field for ∂P (t).
Configurational stress relation

Let P � P (t) be a migrating control volume. I now require that the working
be independent of the manner in which the external agency transfers material to
∂P ; precisely, I require that W (P ), given by (5–5), be independent of the choice
of velocity field q corresponding to the prescribed motion of ∂P as described by
its normal velocity U . This requirement4 has a major consequence, which I now
derive.

By (4–4), (5–5) may be rewritten in the form

W (P ) � ∫
∂P

Sn · ẏ da + ∫
P

b · ẏ dv + ∫
∂P

(F�Sn+ Cn) · q da. (5–13)

Because of (4–1), changes in velocity field affect the tangential component of q
but leave the normal component unaltered. The invariance of W (P ) under such
changes is therefore equivalent to the requirement that∫

∂P

(F�Sn+ Cn) · t da � 0

3For example, a phase transition gives rise to configurational moments distributed over
the interface whenever the interfacial energy is anisotropic (cf., e.g., Gurtin and Struthers
[1990, §4]; Gurtin [1993, eqs. (6–2)–(6–4)]; see also the paragraph following (18–12)).

4Referred to by Gurtin and Struthers [1990] and Gurtin [1995] as invariance under
reparametrization, because it represents invariance under the choice of time-dependent
parametrization for ∂P (t).
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for all tangential vector fields t on ∂P . Thus, letting A � F�S+ C, t · An � 0
on ∂P for all tangential vector fields t. Thus, since ∂P and hence n are arbitrary,
An must be parallel to n for all n. Thus every vector must be an eigenvector of A;
hence there is a scalar field π such that

C + F�S � π1. (5–14)

By (4–1), the working has the intrinsic form

W (P ) � ∫
∂P

Sn · ẏ da + ∫
P

b · ẏ dv + ∫
∂P

πU da. (5–15)

The scalar field π therefore represents a bulk tension that works to increase the
volume of P through the addition of material at its boundary. Referring to the final
term in (5–15) as the net configurational working, (5–15) may be written more
suggestively as

{working} � {standard working} + {net configurational working}. (5–16)

Note that πU is not due solely to the working of the configurational stress C; the
standard stress contributes also through the term (Sn · Fn)U , which accounts for
the addition of deformed material to P .

Finally, (5–14) in the form

C � π1 − F�S (5–17)

will be referred to as the stress relation; this relation represents an expression
for the configurational stress reminiscent of—but more general than—the Eshelby
relation, because it is based only on notions of force and work and is therefore
valid whether or not thermal or compositional effects are taken into account.

e. Invariance under time-dependent changes in reference.
External and internal force relations

Consider a time-dependent change in reference configuration as discussed in

(4–15)–(4–18). Let *P be a fixed region in the space of reference labels with

P (t) � X̂( *P , t) the corresponding migrating control volume, and let q(X, t) and
ẙ(X, t) denote the velocity fields for ∂P (t) and ∂P̄ (t) defined in (4–17) and (4–19).
Then, continuing to measure forces in the space of material points X, the working
of the tractions Cn and Sn is again given by (5–2). Further, the working of the ex-
ternal forces e and b may be described in terms of the trajectories of the reference

labels *X, in which the fields q(X, t) and ẙ(X, t), which are defined for all X and t ,
represent appropriate work-conjugate velocities. Finally, the internal force g does
not perform work (cf. the passage following (5–3)).

The fact that the material composition at a fixed
*
X may change with time is irrelevant

to the working of e and b, just as the material composition of ∂P (t) does not affect
the manner in which the tractions perform work. In this regard, consider a particle
of massm(t) following a trajectory y(t) and acted on by an external force f (t). Here
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the particle is losing mass, but that does not affect the working fin · ẏ; and while the
inertial force fin � −(my)· depends on the rate at which mass is lost, the form fin · ẏ
of its working in no way reflects the loss. Both of these forces are external, and their
working is simply force times the time rate of change of the associated positional
parameter, irrespective of whether the material composition is varying or fixed.

Thus, in place of (5–5), the working takes the form

W (P (t)) � ∫
∂P (t)

Cn · q da + ∫
∂P (t

Sn · ẙ da + ∫
P (t)

e · q da + ∫
P (t)

y · ẙda. (5–18)

Because the working itself should be the same for both descriptions,∫
P

e · q da + ∫
P

b · ẙ da � ∫
P

b · ẏ dv, (5–19)

a relation that must be satisfied for all time-dependent changes in reference and

all migrating control volumes P (t) that are images of fixed regions *P in the space
of reference labels.

Given a time t0 and a vector q0, the time-dependent change in reference defined

by X̂( *X, t) � *X + (t − t0)q0 satisfies q(X, t0) � q0 for all X ∈ B; in addition, for
P0 a subregion of B and t sufficiently close to t0, the migrating control volume
P (t) � X̂(P0, t) satisfies P (t0) � P0. We now apply (5–19) to P (t) at t � t0;
since t0, q0, and P0 are arbitrary, while ẙ � ẏ + Fq, this yields the conclusion
(e + F�b) · q0 � 0 for all vectors q0. The standard force b therefore determines
the configurational force e through the external-force relation

e � −F�b. (5–20)

Further, (5–20) and the stress relation (5–17) yield, by virtue of (1–26) and the
force balances (3–6a) and (5–10), the internal force relation

g � −∇π + S:∇F, (5–21)

where S:∇F is the material vector discussed in the paragraph containing (1–26).
(In components (S:∇F)k � Sij (∂Fij /∂Xk).)

Note that when b is conservative with potential ϕ, so that b � − grad ϕ with “grad”
the spatial gradient (with respect to the place x in the deformed configuration), then,
by the chain rule, b � −F−�∇ϕ, and hence e � ∇ϕ.

f. Standard and configurational forms of the working.
Power balance

In view of the remarks leading to (5–3), when the undeformed control volume P
is stationary, the working is given by the classical expression

W (P ) � ∫
∂P

Sn · ẏ da + ∫
P

·bẏ dv (5–22)

involving only standard forces. On the other hand, when the deformed control
volume P̄ corresponding to P � P (t) is stationary, then (5–18) and the paragraph
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containing (4–20) imply that this working may be written in a form

W (P ) � ∫
∂P

Cn · Y ′ da + ∫
P

e · Y ′ dv (5–23)

involving only configurational forces.
Given a migrating control volume P � P (t), (5–15) and (3–7) (which also hold

when P migrates) yield a power balance

W (P ) � ∫
P

S · Ḟ dv + ∫
∂P

πU da (5–24)

relating the external working W (P ) to the internal working as represented by
the right side of (5–24).



CHAPTER 6

Thermodynamics. Relation
Between Bulk Tension and
Energy. Eshelby Identity

I now place the theory within a thermodynamical context. I consider a mechanical
version of the second law, which I show to be a special case of a formulation that
allows for thermal variations associated with the transfer of heat. The treatment is
nonclassical; it accounts for configurational working and heating associated with
the transfer of material to a migrating control volume.

a. Mechanical version of the second law

In the absence of thermal and compositional effects, classical continuum mechanics
may be based on a “second law” that uses stationary control volumes P and has
the form

d

dt

{∫
P

� dv

}
≤ ∫
∂P

Sn · ẏ da + ∫
P

b · ẏ dv (6–1)

with �(X, t) the free energy.1 For a migrating control volume P � P (t), with U
the normal velocity of ∂P , the standard generalization of (6–1) would include the
transport term

{inflow of free energy} � ∫
∂P

�U da (6–2)

on the right side, but would not account for configurational forces.
I base the theory on what I believe to be a more fundamental version of the

second law; specifically I write the second law for a migrating control volume

1This form of the second law follows from the laws of balance of energy and growth of
entropy under isothermal conditions. Cf. the remark following (6–14).
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P � P (t) in a form

d

dt
{free energy of P (t)}

≤ {rate at which work is performed on P (t)} (6–3)

that accounts for the working of both configurational forces and standard forces,
but not explicitly for the flow (6–2) of free energy across ∂P (t) as it migrates.2

(As we shall see, this inflow of free energy will be accounted for implicitly in the
working of the configurational forces.) Precisely, the second law is assumed to
have the form

d

dt

{ ∫
P (t)
� dv

}
≤ W (P (t)) (6–4)

with the workingW (P (t)) given by (5–5):

d

dt

{ ∫
P (t)
� dv

}
≤ ∫
∂P (t)

Cn · q da + ∫
∂P (t)

Sn · ẙ da + ∫
P (t)

b · ẏ dv. (6–5)

Here q is a velocity field for ∂P , with ẙ the corresponding motion velocity fol-
lowing ∂P , and

d

dt

{ ∫
P (t)
� dv

}
� d

dt

{ ∫
P (t)
�(X, t) dv(X)

}
.

b. Eshelby relation as a consequence of the second law

By a standard transport theorem,

d

dt

{ ∫
P (t)
� dv

}
� ∫
P (t)
�̇ dv + ∫

∂P (t)
�U da. (6–6)

Thus, appealing to (5–15),∫
P (t)
�̇ dv ≤ ∫

∂P (t)
Sn · ẏ da + ∫

P (t)
b · ẏ dv + ∫

∂P (t)
(π −�)U da. (6–7)

Given a fixed time τ , it is possible to find a second control volume P̃ (t) with
P̃ (τ ) � P (τ ), but with Ũ (X, τ ), the normal velocity of ∂P̃ (τ ), an arbitrary scalar
field on ∂P̃ (τ ); satisfaction of (6–7) for all such P̃ (and hence Ũ ) implies that

π � �. (6–8)

Bulk tension therefore coincides with bulk free-energy (a result analogous to the
coincidence of surface tension and surface free-energy); thus, in the notation of

2Cf. Gurtin [1995, eq. (3–12)]
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(5–16) and (6–2),

{net configurational working} � {inflow of free energy},
at least in this purely mechanical context, establishing consistency of the second
law (6–4) with the more standard inequality (6–1) modified by (6–2):

d

dt

{∫
P

� dv

}
≤ ∫
∂P

�U da + ∫
∂P

Sn · ẏ da + ∫
P

b · ẏ dv.

What is more important, (5–17), (5–21), and (6–8) yield the Eshelby relation

C � �1 − F�S (6–9)

and the internal-force relation

g � −∇� + S:∇F, (6–10)

with S:∇F defined in (1–24). The internal force g is therefore affected by material
variations in the free energy and deformation gradient via the terms ∇� and ∇F.

This derivation of the Eshelby and internal force-relations (and that of the external
force relation (5–20)) were accomplished without using constitutive equations or a
variational principle; the derivations were based on a version of the second law ap-
propriate to control volumes whose boundaries migrate with time.3 This observation
is not simply of pedagogical interest; it establishes these relations as appropriate
to theories, such as plasticity and viscoelasticity, for which memory effects render
variational derivations inappropriate.

The Eshelby relation (6–9), the external-force relation (5–20), and the configura-
tional balance (5–10) may be considered as defining relations for C, e, and g in terms
of the classical fields y,�, S, and b; configurational forces are therefore superfluous
within the framework of classical continuum mechanics.

The Eshelby and external-force relations have somewhat similar structures, i.e.,
C � �1 − F�S and e � −F�b, structures that differ markedly from that of the
internal force g as specified in (6–10).

Finally, restricting attention to stationary P yields, by virtue of (3–7) and (6–1),
the local dissipation inequality

�̇ ≤ S · Ḟ. (6–11)

c. Thermomechanical theory

I now consider a more general thermodynamics, one that allows for the flow of
heat. I write the first two laws for a migrating control volume P � P (t) as

d

dt
{internal energy} � {heating} + {working},

3Gurtin [1995]. Eshelby’s [1951] derivation is variational and presumes elasticity.
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d

dt
{internal entropy} ≥ {entropy flux induced by heating}

in which, paralleling (6–3), the right sides include an accounting of the work and
heat required to transfer material to P but make no explicit mention of flows of
internal energy and internal entropy across ∂P .

I consider the standard and configurational force systems supplemented by the
classical thermodynamical fields, namely, the internal energy ε, the entropy η, the
temperature T , the heat flux h, and the external heat supply r , and I define the free
energy � through

� � ε − T η. (6–12)

In addition, I allow for a scalar fieldQ, the configurational heating; forP � P (t)
a migrating control volume with U the normal velocity of ∂P ,∫

∂P

QU da and
∫
∂P

(Q/T )U da,

respectively, represent flows of heat and entropy intoP associated with the transfer
of material across ∂P .

The basic thermodynamical laws, for each migrating control volume P (t), are
balance of energy and growth of entropy:

d

dt

{ ∫
P (t)
ε dv

}
� − ∫

∂P (t)
h · n da + ∫

P (t)
r dv + ∫

∂P (t)
QU da +W (P (t)),

(6–13a)
d

dt

{ ∫
P (t)
η dv

}
≥ − ∫

∂P (t)
(h/T ) · n da + ∫

P (t)
(r/T ) dv + ∫

∂P (t)
(Q/T )U da

(6–13b)

withW (P (t)) given by (5–15). For P stationary (6–13), have the classical form

d

dt

{∫
P

ε dv

}
� − ∫

∂P

h · n da + ∫
P

r dv + ∫
∂P

Sn · ẏ da + ∫
P

b · ẏ dv, (6–14a)

d

dt

{∫
P

η dv

}
≥ − ∫

∂P

(h/T ) · n da + ∫
P

(r/T ) dv, (6–14b)

demonstrating consistency with classical ideas.

Remark. If T ≡ constant, then (6–13) combine to form (6–4), while (6–14)
reduces to (6–1).

Because the working W (P ) is as discussed in Chapter 5, invariance under
changes in material and spatial observers yields the standard force and moment
balances discussed in Chapter 3 and the configurational force balance discussed
in Chapter 5. Further, arguing as before, (5–15) and the identity (6–6) applied to
ε in (6–13a) and η in (6–13b) yield

ε � π +Q, η � Q/T, (6–15)
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relations that, when multiplied byU , express balance of energy and entropy across
∂P associated with the transfer of material to P . Further, the second of (6–15) has
a measure-theoretic interpretation: when material is added to a control volume
across its boundary, the entropy transferred, η da, induces a transfer of heat of
amountQda � T (η da); more simply, dQ � T dη, which is classical. Important
corollaries of these relations are that bulk tension and bulk free-energy coincide,

π � �, (6–16)

and that the configurational stress C and internal force g be again given by the
Eshelby and internal force relations (6–9) and (6–10).

By (3–6a), (6–14a) localize to

ε̇ � −Div h+ r + S · Ḟ, (6–17a)

η̇ ≥ −Div(h/T ) + r/T , (6–17b)

and yield the local free-energy inequality

�̇ − S · Ḟ + ηṪ + T −1h · ∇T ≤ 0. (6–18)

d. Fluids. Current configuration as reference

Most of the previous discussion was linked to solids, but the mathematical theory
itself is independent of the specific constitutive theory. Further, while a fixed ref-
erence configuration may be used to describe a fluid—and often is in the study
of shock waves—constitutive equations for a fluid are independent of the specific
choice of reference. That is why fluids are generally described using the current
(deformed) configuration as reference. For this choice of reference,

F � 1 (6–19)

and the Piola-Kirchhoff stress S(X, t) reduces to the Cauchy stress T(x, t) (cf.
(3–9)). Thus, letting �̄(x, t) denote the free energy per unit volume, measured
relative to the current configuration, the Eshelby relation (6–9) takes the form

C̄ � �̄1 − T, (6–20)

with C̄ the configurational stress taking the current configuration as reference.
This result is independent of the constitution of the material and, in particular, of
whether the material is solid or fluid.

For an ideal fluid or an elastic fluid the stress T is a pressure,

T � −p1, (6–21)

and the configurational stress is a uniform tension

C̄ � (�̄ + p)1; (6–22)

the term �̄+p represents the enthalpy per unit current volume. On the other hand,
by (6–20), configurational shearing stresses would generally accompany the flow
of a viscous fluid.
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Inertia and Kinetic Energy.
Alternative Versions
of the Second Law

a. Inertia and kinetic energy

If the external body force b is inertial, then, granted an inertial observer,

b � −ρÿ, (7–1)

with ρ(X) ≥ 0, assumed smooth, the mass density in the reference configuration.
(ρ � 0 characterizes quasi-static situations.) Then, by (5–20),

e � ρF�ÿ, (7–2)

and the equations of motion (3–6a) and (5–10) take the form

Div S � ρÿ, (7–3a)

DivC + g � −ρF�ÿ. (7–3b)

Let

p � ρẏ, k � 1

2
ρ|ẏ|2 (7–4)

denote the densities of momentum and kinetic energy. Then, by (2–5), (5–20),
and (7–1),

b · ẏ � e · Y ′ � −k̇. (7–5)

Thus, because b � −ṗ, (6–6) implies that, for P � P (t) a migrating control
volume,

d

dt

{∫
P

p dv

}
− ∫
∂P

pU da � − ∫
P

b dv, (7–6a)

d

dt

{∫
P

k dv

}
− ∫
∂P

kU da � − ∫
P

b · ẏ dv � − ∫
P

e · Y ′ dv. (7–6b)
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These identities assert the equivalence of:

• the production of momentum with the negative inertial body force;
• the production of kinetic energy with the negative working of the inertial body

force.1

These equivalences will form a basis for characterizing inertial forces when
discussing phase transitions and fracture.

b. Alternative forms of the second law

By (5–22), (5–23), (6–4), and (7–6a),

d

dt

{∫
P

(� + k) dv

}
≤ ∫
∂P

Sn · ẏ da for P stationary, (7–7a)

d

dt

{∫
P

(� + k) dv

}
≤ ∫
∂P

(C + k1)n · Y ′ da for P̄ stationary, (7–7b)

inequalities that represent standard and configurational versions of the second law.
The term

C + k1 � (� + k)1 − F�S (7–8)

represents a dynamical Eshelby tensor, because it is based on the total energy
density � + k (cf. (6–9)).

c. Pseudomomentum

The external body force (7–2) may be written in the form

e � −ṗ + ∇(−k) + 1

2
ẏ2∇ρ, (7–9)

with

p � −F�p � −ρF�ẏ (7–10)

a field generally referred to as the pseudomomentum. Trivially, (7–3a) may be
written as a momentum balance Div S � ṗ. Similarly, (7–9) yields, as an alternative

1Cf. Podio-Guidugli [1997].
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to (7–3b), the configurational momentum balance2

Div(C − k1) + g+ 1

2
ẏ2∇ρ � ṗ. (7–11)

Note that, by (6–9), the term

C � C − k1 � 
1 − F�S (7–12)

representing stress in (7–11) has the form of an Eshelby stress with the free energy
� replaced by the Lagrangian (cf. (7–8))


 � � − k. (7–13)

Next, by (6–6) and (7–9), for P � P (t) a migrating control volume,

d

dt

{∫
P

p dv

}
− ∫
P

pU da � − ∫
P

e dv − ∫
∂P

kn da + ∫
P

1

2
ẏ2∇ρ dv, (7–14)

showing that, in contrast to the identity (7–6a) for the momentum p, the produc-
tion of pseudomomentum requires, for its balance, not only the negative internal
configurational force on P , but also an inertial pressure k on ∂P and an inertial
body force

∫
P

1
2 ẏ

2∇ρ dv resulting from density variations within P .

Finally, the second law (6–5) is equivalent to the following inequality for
migrating control volumes P � P (t):3

d

dt

{∫
P

(
+ p · ẏ) dv

}
≤ ∫
∂P

Cn · q da+ ∫
∂P

Sn · ẙ da+ ∫
∂P

Up · q da+ ∫
∂P

Up · ẙ da.

d. Lyapunov relations

Assume thatB is bounded and the relevant fields are smooth up to ∂B, and consider
the following two types of boundary conditions:

(i) fixed boundary:

ẏ � 0 on ∂B for all time. (7–15)

(ii) constant dead loads: There is a constant tensor S0 such that

Sn � S0n on ∂B for all time. (7–16)

2Eshelby [1971], for an elastic body as a consequence of Div S � ρÿ. Within this
framework, Maugin [1993, 1995] gives a detailed discussion of pseudomomentum, a notion
with a large physical literature (cf., e.g., Nelson [1979], Peierls [1991]). Cermelli and Fried
[1997] give an alternative treatment of inertia that is independent of constitution and results
in a balance equivalent to (7–11). To these authors 1

2 ẏ
2∇ρ represents an internal force, a

view with which I disagree; to me 1
2 ẏ

2∇ρ represents a portion of an external force (inertia)
arising from variations in mass.

3Cermelli and Fried [1997].
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Then, by (7–7a), for a fixed boundary,

d

dt

{∫
B

(� + k) dv

}
≤ 0, (7–17)

and the total energy of the body cannot increase with time.
On the other hand, for a boundary under constant dead loads,

∫
∂B

Sn · ẏ da � ∫
∂B

S0n · ẏ da � ∫
B

S0 · Ḟ da � d

dt

{∫
B

S0 · F da
}

(7–18)

represents the stress power of the dead loads, and

d

dt

{∫
B

(� − S0 · F + k) dv

}
≤ 0; (7–19)

thus the energy of the body minus the stress power of the dead loads cannot increase
with time.

The relations (7–17) and (7–19) represent Lyapunov relations for the body; as
derived here they are independent of specific constitutive equations.



CHAPTER 8

Change in Reference
Configuration

Configurational forces are material and, consequently, they depend strongly on the
choice of reference. With this in mind, I now give a detailed discussion of the man-
ner in which the basic fields transform under changes in reference configuration
(cf. Subsection 4b1).

a. Transformation laws for free energy and standard force

The following rules for changing integration-variable from X to *X � κ(X) will
be useful: ∫

*
P

. . . d*v � ∫
P

. . . J dv, (8–1a)

∫
∂

*
P

. . . *n d *a � ∫
∂P

. . . J K−�n da, (8–1b)

where *n and d *a are the outward unit normal and element of area on ∂*P , d*v is the

element of volume on *P , K � ∇κ, J � det K, and K−� � (K−1)�.
The transformation laws for the free energy �, the stress S, and the body force

b are determined by the requirement that the net traction, body force, and free
energy associated with each control volume be invariant:

∫
∂P

Sn da � ∫
∂

*
P

*S*n d *a,
∫
P

b dv � ∫
*
P

*b d*v,
∫
P

� dv � ∫
*
P

*� d*v. (8–2)
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Thus, by (8–1a),

*S � J −1SK�, *b � J −1b, *� � J −1�. (8–3)

b. Transformation laws for configurational force

Consider a reference change *X � κ(X). The theory presented thus far must hold
for any choice of reference. This observation has two important consequences:
configurational forces in the new reference must be balanced,∫

∂
*
P

*C*n d *a + ∫
*
P

(*g+ *e) d*v � 0; (8–4)

and the configurational stress *C and external body *e must be given by the Eshelby
and external force relations (cf. (5–20), (6–9))

*C � *�1 − ( *F)�*S, *e � −( *F)�*b. (8–5)

Equations (4–11), (8–3), and (8–5) yield the transformation laws

*C � J −1K−�CK�, *e � J −1K−�e. (8–6)

Further, because (8–4) must hold for all *P ,

Div∗ *C + *g+ *e � 0, (8–7)

where Div∗ denotes the divergence with respect to *X in *B. By (8–1b) and (8–6),∫
∂P

Cn da � ∫
∂

*
P

K� *C*n d *a, (8–8)

so that, applying the divergence theorem to both sides of (8–8),

DivC � J Div∗(K� *C). (8–9)

Next, a straightforward calculation yields

Div∗(K� *C) � K� Div∗ *C + ( *CK−�):∇K,

where, forH � *CK−�, the vector fieldH:∇K is defined as in (5–21). Thus (5–10),
(8–6), (8–7), and (8–9) imply that

*g+ *e � J −1K−�{g+ e+ (K−�C):∇K}, (8–10)

and, appealing to the second part of (8–6),

*g � J −1K−�{g+ (K−�C):∇K}. (8–11)

The results (8–6) and (8–11) represent a complete set of transformation laws for
the configurational force system. Note that (8–11) involves the stress C through
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(K−�C):∇K, a term that is absent when the change in reference is homogeneous
(∇K ≡ 0).

By (8–8), the net configurational traction on control volumes is generally not
invariant under changes in reference. This is to be expected; the ambient space of

B and that of *B need not be identified, and hence the configurational forces∫
∂P

Cn da,
∫
∂

*
P

*C*n d *a

need bear no relation to one another. In fact, it is work rather than force that is
basic, and working is invariant under stationary changes in reference; that is∫

∂P

q · Cn da � ∫
∂

*
P

*q · *C*n d *a, (8–12)

a relation that follows from (4–14), (8–1b), and (8–6). Similarly, net forces on
control volumes by external and internal configurational body forces are generally
not invariant under changes in reference.

The preceding remarks vividly illustrate the nature of configurational forces.
Changes in reference configuration generally change the spatial arrangement of
the material in the reference and hence change the forces needed to hold this
material in place. Thus configurational forces are not generally invariant under
changes in reference. On the other hand, standard forces act on material in the
deformed configuration and are consequently invariant under such changes.



CHAPTER 9

Elastic and
Thermoelastic Materials

In this chapter I will develop the constitutive theories for elastic materials with and
without thermal influences. I do this for two reasons:

• to demonstrate, within a very simple context, the procedure I use to develop
constitutive theories. In future chapters I will apply this procedure in more
complicated situations involving moving interfaces.

• to derive explicit expressions for the internal configurational force, expressions
that help to better understand its physical nature.

My treatment of constitutive equations uses the Coleman-Noll procedure,1 a pro-
cedure based on the premise that the second law be satisfied in all conceivable
processes, irrespective of the difficulties involved in producing such processes in
the laboratory. The rational application of this procedure requires external forces
and supplies that may be assigned arbitrarily to ensure satisfaction of the underlying
balances in all processes. This may seem artificial, but it is no more artificial than
theories based on virtual work, a paradigm that requires arbitrary variations, which
are not guaranteed to be consistent with the resulting evolution equations, granted
a constitutive description. The Coleman-Noll procedure makes explicit the external
fields needed to support the “virtual processes” used, and in so doing ensures that
these external fields, whether virtual or not, enter the theory in a thermodynamically
consistent manner.

1Cf. Coleman and Noll [1963], who discuss single-phase thermoelastic materials.
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a. Mechanical theory

a1. Basic equations

The basic equations of the mechanical theory consist of the standard force and
moment balances

Div S+ b � 0, (9–1a)

SF� � FS�, (9–1b)

supplemented by a free-energy inequality

�̇ ≤ S · Ḟ (9–2)

that represents a local form of the second law. These are augmented by the
configurational balance

DivC + g+ e � 0 (9–3)

with C, g, and e given by the Eshelby relation

C � �1 − F�S (9–4)

and the internal and external force relations

g � −∇� + S:∇F, (9–5a)

e � −F�b. (9–5b)

By (9–4) and (9–5a), the configurational balance (9–3) is automatically satisfied
whenever the standard balance (9–1a) is satisfied; the configurational fields are
thus superfluous. This is to be expected, as the theory discussed thus far does not
account for migrating material structures such as defects, phase interfaces, and
grain boundaries.

a2. Constitutive theory

A homogeneous elastic body described relative to a homogeneous reference con-
figuration is defined by constitutive equations giving the free energy � and the
stress S when the deformation gradient F is known:

� � �̂(F), (9–6a)

S � Ŝ(F), (9–6b)

where � � �̂(F) signifies �(X, t) � �̂(F(X, t)), and so forth. The response
functions �̂ and Ŝ determine the particular body under consideration and are
defined on the set of all tensors F with det F > 0. I assume that Ŝ is restricted by
the requirement

Ŝ(F)F� � FŜ(F)�, (9–7)

which ensures satisfaction of the local moment balance (9–1b).
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Consider an arbitrary constitutive process; that is, a motion y(X, t) together
with fields�(X, t) and S(X, t) determined by that motion through the constitutive
equations (9–6a). The standard force balance (9–1a) then gives the external body
force b needed to support the process, granted the possibility of considering b as
virtual (and hence arbitrary); this balance in no way restricts the class of processes
possible for the material. On the other hand, unless the constitutive equations are
suitably restricted, not all constitutive processes will be compatible with the second
law in the form of the free-energy inequality (9–2). A basic hypothesis of the theory
is that all constitutive processes be consistent with (9–2).

Consistency of the constitutive equations with the free-energy inequality has
strong consequences. Granted (9–6), (9–2) is equivalent to{

∂F�̂(F) − Ŝ(F)
}
· Ḟ ≤ 0, (9–8)

an inequality that must hold for all motions of the body. It is possible to find a
motion in whichF and Ḟ have arbitrarily prescribed values at some point and time.
(Choose, arbitrarily, tensors A and B with det A > 0, choose a function δ(t) with
δ(0) � 0, δ̇(0) � 1, and |δ(t)| small enough that F(t) � A + δ(t)B has strictly
positive determinant for all t ; then y(X, t) � F(t)X is a motion with F(0) � A

and Ḟ(0) � B.) Thus, because (9–8) is linear in Ḟ, this inequality can be satisfied
for all motions only if the coefficient of Ḟ vanishes; (9–6a) must therefore have
the form

� � �̂(F), S � Ŝ(F) � ∂F�̂(F). (9–9)

Materials defined by (9–9), in which the stress is the derivative of the free energy
with respect to the deformation gradient, are generally referred to as hyper-
elastic; the basic equations of hyperelasticity are the balance law (9–1a) and
the restricted constitutive relations (9–9). For such materials (9–9) renders the
free-energy inequality (9–2) an identity

�̇ � S · Ḟ, (9–10)

there being no dissipation.
The relations (1–29), (9–5a), and (9–9) yield vanishing internal forces:

g � 0. (9–11)

This is a direct consequence of homogeneity; for an inhomogeneous body or
a homogeneous body described relative to an inhomogeneous reference, the
constitutive equations, derived using the same procedure, have the form

� � �̂(F,X), S � Ŝ(F,X) � ∂F�̂(F,X),

and yield

g � −∂X�̂, (9–12)

the derivative of �̂(F,X) with respect to X holding F fixed.
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As noted previously, g is interpreted as representing forces that pin the material in
place at X in the reference configuration. The formulas (9–11) and (9–12) reinforce
this view; no such forces are required when the points X label material arranged ho-
mogeneously, but material described relative to an inhomogeneous reference requires
the internal force g � −∂X�̂ to hold the material in place.

Invariance under changes in spatial observer places additional restrictions on the
constitutive equations (9–9); these are well known and will not be discussed here.2

An interesting relation for the configurational stress in a homogeneous elastic

body under a change in reference *X � κ(X) was derived by Epstein and Maugin.3

Let K � ∇κ and J � det K. By (8–3), the response function �̂K( *F) for the free
energy in the new reference is given by

�̂K( *F) � J −1�̂(F), F � *FK

and generates the configurational stress *C in the new reference, as defined in (8–5),
through

*C � −∂K�̂K( *F)K�.

b. Thermomechanical theory4

b1. Basic equations

The basic equations of the thermomechanical theory consist of the standard force
and moment balances (9–1), the configurational relations (9–3)–(9–5), and the
thermodynamical laws

ε̇ � −Div h+ r + S · Ḟ (9–13a)

η̇ ≥ −Div(h/T ) + r/T , (9–13b)

expressing balance of energy and growth of entropy. Together these yield the
free-energy inequality

�̇ − S · Ḟ + ηṪ + T −1h · ∇T ≤ 0, (9–14)

with free energy defined by

� � ε − T η. (9–15)

Granted, the balance laws (9–1a) and (9–13a) for standard forces and energy, the
inequalities (9–13b) and (9–14) are equivalent.

2Cf., e.g., Truesdell and Noll [1965, §84]; Gurtin [1981, §§25, 28].
3[1990] (cf. Maugin [1993, eq. (6–11)]).
4Cf. Coleman and Noll [1963], Coleman and Mizel [1964].
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b2. Constitutive theory

Temperature variations in a homogeneous elastic body described relative to a
homogeneous reference are accounted for by constitutive equations giving the
free energy, stress, entropy, and heat flux in terms of the deformation gradient, the
temperature, and the temperature gradient:

� � �̂(F, T ,∇T ), (9–16a)

S � Ŝ(F, T ,∇T ), (9–16b)

η � η̂(F, T ,∇T ), (9–16c)

h � ĥ(F, T ,∇T ). (9–16d)

Writing

p � ∇T , (9–17)

the common domain of the response functions is the set of all (F, T, p), with F a
tensor satisfying det F > 0, T > 0, and p a vector.

Consider an arbitrary constitutive process; that is, a motion y(X, t) and a tem-
perature field T (X, t) together with fields �(X, t), S(X, t), η(X, t), and h(X, t)
determined by the constitutive relations (9–16). The force and energy balances
(9–1a) and (9–13a) then give the external body force b and heat supply r needed
to support the process. To ensure that the second law is satisfied in all such pro-
cesses, I require that all constitutive processes be consistent with the free-energy
inequality (9–14). Equivalently,{

∂F�̂(F, T , p) − Ŝ(F, T , p)
}
· Ḟ +

{
∂T �̂(F, T , p) + η̂(F, T , p)

}
· Ṫ

+ ∂p�̂(F, T , p) · ṗ+ T −1ĥ(F, T , p) · p ≤ 0. (9–18)

It is always possible to find a motion and a temperature field in which F, T ,
p � ∇T , Ḟ, Ṫ , and ṗ have arbitrarily prescribed values at some point and time
(consistent with the constraints det F > 0, T > 0). Granted this, arguing as in
Subsection a2 leads to the conclusions:

Ŝ(F, T , p) � ∂F�̂(F, T , p),

η̂(F, T , p) � −∂T �̂(F, T , p),

∂p�̂(F, T , p) � 0.

The general constitutive equations (9–16) must therefore be consistent with the
following restrictions:

(i) the free energy �, the stress S, and the entropy η must be independent of
p � ∇T and related through

� � �̂(F, T ), S � ∂F�̂(F, T ), η � −∂T �̂(F, T ); (9–19)

(ii) the heat flux must obey the following inequality for all values of its arguments:

ĥ(F, T , p) · p ≤ 0. (9–20)
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If ĥ(F, T , p) is linear in p, the most general form of the constitutive equation for
ĥ consistent with (9–20) is

h � −K(F, T )∇T , (9–21)

with conductivity tensor K(F, T ) positive semidefinite.
The relations (9–19) and (9–21) are the most general constitutive equations of

the form (9–16) that are consistent with the free-energy inequality (9–14) and have
h linear in ∇T . The basic equations of the thermoelasticity consist of the balance
laws (9–1a) and (9–13a) for force and energy in conjunction with the restricted
constitutive equations.

An interesting feature of the Coleman-Noll procedure is that the local dissipation
inequality generally suggests which fields should be given constitutive descriptions,
a use of the second law that seems to lead—in all classical continuum theories—to
the correct set of constitutive variables. This contrasts the standard formalism of
studying balance laws to see where a lack of field equations may be compensated
for by the introduction of constitutive relations.

By (9–5a) and (9–19),

g � η∇T , (9–22)

and the internal configurational force vanishes if and only if the temperature is
materially uniform. (For an inhomogeneous body, g � η∇T − ∂X�̂.)

The most general smooth constitutive equation of the form (9–16d) consistent with
(9–20) is

h � −K(F, T ,∇T )∇T
with p ·K(F, T , p) p ≥ 0 for all values of F, T , and p. To verify this result, consider
the inequality

h(q, p) · p ≤ 0, (9–23)

with q ∈ Rm, p ∈ Rn, and h a smooth function from Rm × Rn into Rn that satisfies
(9–23) for all q ∈ Rm and p ∈ Rn. Because the variable q appears as a parameter,
it may, without loss in generality, be suppressed. Then, for λ > 0, h(λp) · λp ≤ 0;
hence h(λp) · p ≤ 0. Let λ→ 0. Then h(0) · p ≤ 0 for all p, so that h(0) � 0. Thus

h(p) �
{

1∫
0

∇h(sp) ds

}
p (9–24)

for all p. Let −K(p) denote the quantity {. . .}. Then h(p) � −K(p)p for all p. The
general solution h of (9–23) is therefore

h(q, p) � −K(q, p)p (9–25)

with K(q, p), for each (q, p), a linear transformation from Rn into Rn consistent with
the inequality

p · K(q, p)p ≥ 0. (9–26)

Because of the dependence of K(q, p) on p, the inequality (9–26) is weaker than
positive definiteness for K(q, p). However, when h is quasilinear, that is, when
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h(q, p) is linear in p for each q, then

h(q, p) � −K(q)p (9–27)

for all (q, p), with K(q) positive semidefinite.
More generally, the relation (9–27) holds to first order in p:

h(q, p) � −K(q)p+ o(|p|) as p → 0 (9–28)

with K(q) positive semidefinite; and, for q and p both small,

h(q, p) � −Kp+ o(|q| + |p|) as (q, p) → 0 (9–29)

with K constant and positive semidefinite.



Part B

The Use of Configurational
Forces to Characterize

Coherent Phase Interfaces

Configurational forces are central to the study of evolving material structures such
as defects and phase interfaces. In this part, I will discuss the dynamics of phase
interfaces modelled as smoothly evolving surfaces.1 I base the discussion on fun-
damental laws which—when restricted to control volumes that do not intersect
the interface—reduce to those introduced earlier; that is why the local results es-
tablished thus far2 will be valid in bulk (i.e., away from the interface). Here I
concentrate on deriving corresponding results for the interface.

1This part follows the presentation of Gurtin and Podio-Guidugli [1996a], although that
work does not use observer-invariance to characterize balance laws. Cf. the earlier work of
Gurtin [1995], but the treatment of inertia there is somewhat lacking.

2E.g., the Eshelby relation (6–9), the standard and configurational balances (3–6a) and
(5–10), and the dissipation inequality (6–11).



CHAPTER 10

Interface Kinematics

I consider a two-phase body whose phases α and β occupy closed complementary
subregions Bα(t) and Bβ(t) of the reference body B, with the interface S (t) �
Bα(t) ∩Bβ(t) a smoothly evolving surface whose unit normal field m(X, t) points
outward from Bα(t) (cf. Figure 1.1).

For �(X, t) a field that is continuous away from the interface and up to the
interface from either side, �± denote the interfacial limits of �,

�±(X, t) � �(X ± 0m(X, t), t) for X ∈ S (t),

while [�] and 〈�〉 designate the jump in � across the interface and the average
of the interfacial limits of �:

[�] � �+ −�−, 〈�〉 � 1

2
(�+ +�−), (10–1)

so that the jump is phase β minus phase α.
Motions y are defined as before, except that y is no longer presumed to be

smooth; precisely, y is continuous across the interface,1 smooth away from the
interface, and smooth up to the interface from either side. These assumptions yield
the compatibility conditions

[ẏ] � −V [F]m, (10–2a)

[F]P � 0, (10–2b)

where V is the (scalar) normal velocity of the interface in the direction m, while

P � 1 − m⊗ m (10–3)

1The interface is therefore coherent. Cf. Cermelli and Gurtin [1994a,b] for a discussion
of incoherent interfaces.
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is the projection onto the interface. The result (10–2b) asserts that F, restricted to
its action on tangent vectors, is continuous across the interface.

An assignment, at each t , of material vector v(X, t) to each X ∈ S (t) is a
velocity field for S if v is a smooth field that satisfies

v · m � V
(cf. Chapter 4). As with migrating control volumes, the velocity field v for S may
be viewed as a velocity field for evolving particles constrained to S , with the path
Z(τ ) traversed by the particle that passes through X ∈ S (t) at time t the unique
solution of (4–2). The motion velocity following S is then the time derivative
following such particles:

�
y(X, t) � d

dτ
y(Z(τ ), τ )|τ�t . (10–4)

By the chain rule and (10–1),
�
y � ẏ± + F±v � 〈ẏ〉 + 〈F〉v. (10–5)

Under y, S (t) deforms to a surface

S̄ (t) � y(S (t), t),

and
�
y represents a velocity field for S̄ .

The fields v and
�
y transform according to

v → v+ a,
�
y → �

y (10–6)

under the change in material observer defined by (2–9), and according to
�
y → �

y+w+ ω× (X − o), v → v (10–7)

under the change in spatial observer defined by (2–7) (cf. (4–6), (4–7)).
Basic to what follows are four integral identities. Let � be a scalar field, T a

tensor field, and w a vector field, with�, T, and w smooth away from the interface
and up to the interface from either side. Then, for P � P (t) a migrating control
volume,

d

dt

{∫
P

�dv

}
� ∫

P

�̇ dv − ∫
S ∩P

[�]V da + ∫
∂P

�U da, (10–8a)∫
∂P

�n da � ∫
P

∇�dv + ∫
S ∩P

[�]m da, (10–8b)∫
∂P

Tn da � ∫
P

DivT dv + ∫
S ∩P

[T]m da, (10–8c)∫
∂P

Tn · w da � ∫
P

(w · DivT + T · ∇w) dv + ∫
S ∩P

[Tm · w] da. (10–8d)

(Integrals such as
∫
P

�̇ dv,
∫
P

∇�dv, and
∫
P

DivT dv are treated as ordinary inte-

grals with piecewise continuous integrands; the jump discontinuities in � and T

are accounted for by the terms involving [�] and [T].)
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The transport identity (10–8a) is a direct consequence of (6–6). Indeed, let Pα
andPβ , respectively, denote the portions ofP inBα andBβ . Thenm andV represent
the outward normal and normal velocity of ∂Pα on S , while −m and −V represent
the analogous quantities for ∂Pβ on S . Thus applying (6–6) to each of Pα and Pβ
and then adding the resulting equations yields (10–8a). The proofs of (10–8a,b,c,d)
are similar. For example, to verify (10–8b) apply the divergence theorem to each
of
∫
∂Pα

�n da and
∫
∂Pβ

�n da and then add the resulting equations.

Also important is the following result in which � is continuous away from the
interface and up to the interface from either side, while ϕ is continuous on the
interface. Let

F (P ) � ∫
P

�dv + ∫
S ∩P

ϕ da (10–9)

for all control volumes P ; then

F (P ) � 0 for all P ⇒ ϕ � 0, (10–10a)

F (P ) ≥ 0 for all P ⇒ ϕ ≥ 0. (10–10b)

The verification of (10–10) follows upon shrinking P to the interface. Precisely,
let G be an arbitrary subsurface of S and choose a family Pδ (δ > 0) of control
volumes such that S ∩ Pδ � G for all δ but vol(Pδ) → 0. Then F (Pδ) →

∫
G

ϕ da

and, because G is arbitrary, the assertions (10–10) follow.



CHAPTER 11

Interface Forces. Second Law

To simplify the presentation, I do not allow for interfacial energy, nor for forces,
such as surface tension, that act within the interface. I do, however, consider
counterparts, for the interface, of the body forces b, e, and g.

a. Interface forces

To the standard and configurational force systems introduced earlier, with stresses
and body forces now presumed smooth away from the interface and up to the
interface from either side, I add three fields defined on the interface for all time:

bS external standard force

gS internal configurational force

eS external configurational force

Here bS (X, t) is a spatial vector, gS (X, t) and eS (X, t) are material vectors, and

bS , gS , and eS are objective. (11–1)

The interface forces bS , gS , and eS have physical interpretations identical to
the body forces b, g, and e, except that bS , gS , and eS are concentrated at the
interface. I associate gS with the rearrangement of material at the interface during
its evolution.
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b. Working

Assume that the material is viewed by a rest observer. The working W (P ) on a
migrating control volume P � P (t) then has two contributions: a contribution∫

∂P

(Cn · q+ Sn · ẙ) da + ∫
P

b · ẏ dv (11–2)

associated with the bulk material, where q is a velocity field for ∂P with ẙ the
corresponding motion velocity following ∂P (cf. (5–5)); and a contribution, which
I will now derive, that accounts for the interface S � S (t).

Assume that S is stationary. In view of the remark following (11–1), because g
and e perform no work, neither should gS and eS , and because b is work-conjugate
to ẏ, so also should bS . Therefore ∫

S ∩P
bS · ẏ da (11–3)

would seem the appropriate expression for the working associated with a stationary
interface.

If S is not stationary, then (11–3) must be modified. Let v be a velocity field for

S and
�
y be the corresponding motion velocity following S . I view eS as a force

that performs work in conjunction with the migration of S and therefore choose v
as an appropriate work-conjugate velocity for eS . Further, if S is not stationary,
then S̄ has no intrinsic material description, and it would seem appropriate to

use as work-conjugate velocity for bS the motion velocity
�
y following S , as

�
y

represents a velocity field for S̄ consistent with the choice of v as velocity field for
S . Finally, the field gS represents internal forces that pin, in place, those reference
points X that mark the current location of the interface. If the material observer is
at rest, the points X are viewed stationary and gS performs no work. I therefore
take

∫
S ∩P

(eS · v+ bS · �
y) da

as the working associated with a migrating interface. Note the similarity between

eS · v + bS · �
y and the integrand Cn · q + Sn · ẙ in (11–2):

�
y rather than ẏ is the

work-conjugate velocity for bS , just as ẙ rather than ẏ is the velocity for Sn, and
v is the work-conjugate velocity for eS , just as q is for Cn.

Summarizing, I write the working W (P ) on a migrating control volume P �
P (t) in the form

W (P ) � ∫
∂P

(
Cn · q+ Sn · ẙ) da + ∫

P

b · ẏ dv

+ ∫
S ∩P

(
eS · v+ bS · �

y
)
da. (11–4)

Administrator
ferret
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c. Standard and configurational force balances at the
interface

Consider the change in material and spatial observers defined in the paragraphs
containing (2–7) and (2–9). Then gS , as observed by the moving material observer,
performs work, because material points as viewed by that observer migrate with

velocity a. Thus and by the transformation laws for q, ẙ, ẏ, v, and
�
y specified in

(2–8), (2–12), (4–6), (4–7), (10–6), and (10–7), the workingW (P ) as recorded by
the new observers has the form

W (P ) � ∫
∂P

Cn · (q+ a) da + ∫
P

(g+ e) · a dv + ∫
S ∩P

(
gS · a+ eS · (v+ a)

)
da

+∫
∂P

Sn · (ẙ+ w+ ω× (y− o)
)
da � ∫

P

b · (ẏ+ w+ ω× (y− o)) dv

+ ∫
S ∩P

bS ·
(�
y+w+ ω× (y− o)

)
da. (11–5)

The requirement that the working be invariant under changes in material and spatial
observer requires the equivalence of (11–4) and (11–5) for all vectors a, w, and ω,
and hence yields the standard force and moment balances

∫
∂P

Sn da + ∫
P

b dv + ∫
S ∩P

bS da � 0, (11–6a)

∫
∂P

(y− o) × Sn da + ∫
P

(y− o) × b dv + ∫
S ∩P

(y− o) × bS da � 0 (11–6b)

and the configurational force balance

∫
∂P

Cn da + ∫
P

(g+ e) dv + ∫
S ∩P

(gS + eS ) da � 0. (11–7)

Since Div S � −b and DivC � −g− e in bulk, (11–6a), (11–7), and the identity
(10–8c) imply that

∫
S ∩P

([S]m+ bS
)
da � 0,

∫
S ∩P

([C]m+ gS + eS
)
da � 0;

thus, since S ∩P is an arbitrary (nice) subsurface of S , this yields the local force
balances

[S]m+ bS � 0, (11–8a)

[C]m+ gS + eS � 0 (11–8b)

at the interface. The moment balance (11–6b) localized to the interface yields no
additional results.
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d. Invariance under changes in velocity field for S (t).
Normal configurational balance

The requirement that the theory be independent of the choice of velocity field v for
S yields an important relation for the external forces bS and eS . Let t denote the
tangential component of v. By (10–5) and the constraint v · m � V , the integrand
in (11–4) associated with the integral over S ∩ P may be written in the form

bS · 〈ẏ〉 + {eS + 〈F〉�bS } · v � bS · {〈ẏ〉 + 〈F〉�mV }+ {eS + 〈F〉�bS } · t.
But because changes in v affect t but leave V unaltered, and because both P and
t are arbitrary, eS + 〈F〉�bS must be normal to S :

PeS � −P〈F〉�bS . (11–9)

Further, by (10–2b), FP is continuous across the interface, so that F±P � 〈F〉P;
hence (6–9), (11–8a), and (11–9) imply that

P[C]m � −[(FP)�S]m � −(〈F〉P)�[S]m � P〈F〉�bS � −PeS . (11–10)

This identity and the configurational balance (11–8b) yield the important result

PgS � 0,

and the internal force on the interface is necessarily normal:

gS � gS m. (11–11)

Conversely, granted the Eshelby relation (6–9), the compatibility condition
(10–2b), and the standard balance (11–8a), if gS is normal to the interface and
if PeS � −P〈F〉�bS , then the tangential component of the configurational bal-
ance (11–8b) is satisfied automatically; this allows one to restrict attention to the
normal configurational balance:

m · [C]m+ m · eS + gS � 0. (11–12)

Next, since eS + 〈F〉�bS is normal to S , the integral over S ∩ P in (11–4)
must have the form ∫

S ∩P
{bS · �

y+eS · mV }da,

where here and henceforth we take v � Vm, so that

�
y � ẏ± + VF±m � 〈ẏ〉 + V 〈F〉m; (11–13)

the steps leading to (5–15) therefore yield an intrinsic form for the working:

W (P ) � ∫
∂P

Sn · ẏ da+∫
P

b · ẏ dv+ ∫
∂P

πU da+ ∫
S ∩P

{bS · �
y+eS ·mV }da. (11–14)
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e. Power balance. Internal working

W (P ) represents the rate at which work is performed on P by forces external to
P . This external working is balanced by the working of forces acting internally to
P , and it is this internal working that best characterizes forces such as the internal
configurational force gS .

Since Div S � −b in bulk, the identity (10–8d) with T � S and w � ẏ yields∫
∂P

Sn · ẏ da + ∫
P

b · ẏ dv � ∫
P

S · Ḟ dv + ∫
S ∩P

[Sm · ẏ]da.

Further, using (10–2a), (10–5), (11–8a), and the identity [ϕψ] � 〈ϕ〉[ψ]+[ϕ]〈ψ〉,

[Sm · ẏ] � [Sm] · 〈ẏ〉 + 〈Sm〉 · [ẏ]
� −bS · 〈ẏ〉 + 〈Sm〉 · [ẏ]
� −bS · 〈ẏ〉 − 〈Sm〉 · [Fm]V
� −bS · 〈ẏ〉 − [Sm · Fm]V + [Sm] · 〈Fm〉V
� −bS · (〈ẏ〉 + 〈Fm〉V ) − [Sm · Fm]V
� −bS · �

y−m · [F�S]mV, (11–15)

a calculation that yields the following balances:∫
∂P

Sn · ẏ da + ∫
P

b · ẏ dv + ∫
S ∩P

bS · 〈ẏ〉da

� ∫
P

S · Ḟ dv + ∫
S ∩P

〈Sm〉 · [ẏ]da, (11–16a)

∫
∂P

Sn · ẏ da + ∫
P

b · ẏ dv + ∫
S ∩P

bS · �
y da

� ∫
P

S · Ḟ dv − ∫
S ∩P

m[F�S]mV da. (11–16b)

The identities (11–16a) represent power balances for P involving only standard
forces. Of the two, (11–16a) is the more classical, because the relevant kinematical
field is the motion velocity ẏ. In contrast, (11–16b) accounts explicitly for the

motion of the interface through the velocities V and
�
y, and the force conjugate

to V is the normal component of the standard part −F�S of the configurational
stress C � π1 − F�S.

Of more use is the result obtained when we take configurational forces into
account. Indeed, by (11–16b), the stress relation C � π1 − F�S, and the normal
configurational balance (11–12),

∫
∂P

Sn · ẏ da + ∫
P

b · ẏ dv + ∫
S ∩P

(
bS · �

y+(eS · m)V
)
da

� ∫
P

S · Ḟ dv − ∫
S ∩P

([π] + gS )V da, (11–17)
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or equivalently, adding
∫
∂P

πU da to both sides of this equation and appealing to

(11–14),

W (P ) � ∫
P

S · Ḟ dv + ∫
∂P

πU da − ∫
S ∩P

([π] + gS )V da. (11–18)

This identity is a power balance relating the external working W (P ), as given
by, say, (11–14), to the internal working represented by the right side of (11–18).
The terms with integrands S · Ḟ and πU are discussed in the paragraphs following
(3–8) and (5–24). Regarding the remaining terms:

• The term −[π]V � π−V − π+V represents working associated with the
exchange of bulk material between phases at the interface; its role is analogous
to that of

∫
∂P

πU da.

• The term −gS V represents working needed to maintain the internal integrity
of the material as the interface passes through it; the negative sign signifies
that gS performs positive work when and only when it opposes motion of the
interface.

f. Second law. Internal dissipation inequality for the
interface

The second law has the form (6–4) for each migrating control volume P � P (t),
with (bulk) free energy � assumed smooth away from the interface and up to the
interface from either side, and withW (P (t)) the working (11–4):

d

dt

{∫
P

� dv

}
≤ ∫
∂P

(Cn·q+Sn·ẙ) da+∫
P

b·ẏ dv+ ∫
S ∩P

(eS ·v+bS ·�
y) da. (11–19)

The right side of (11–19) may also be written in the intrinsic form (11–14); equiv-
alently, the power balance (11–18) may be used to replace the external working
by the internal working and hence to rewrite (11–19) as

d

dt

{∫
P

� dv

}
≤ ∫

P

S · Ḟ dv − ∫
S ∩P

([π] + gS )V da + ∫
∂P

πU da.

By (6–8), π � �; thus, using (10–8a), the dissipation D (P ), which is the right
side of (11–19) minus the left, has the form

D (P ) � − ∫
P

(�̇ − S · Ḟ) dv − ∫
S ∩P

gS V da ≥ 0, (11–20)

so that −gS V is the energy dissipated by the interface, per unit area. In fact,
shrinking P to the interface yields the interfacial dissipation inequality

gS V ≤ 0 (11–21)
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(cf. (10–10b)). This inequality, requiring that the normal internal force oppose
motion of the interface, is a central result of the theory.

g. Localizations using a pillbox argument

An alternative derivation of the local force balances (11–8) and the internal
dissipation inequality (11–21) involves a classical pillbox argument.

Let G (t) denote a smoothly evolving subsurface of S (t) and, for all sufficiently
small δ > 0, let Gδ(t) denote the δ-pillbox about G (t):

Gδ(t) � {X ∈ B : X � Y + εm(Y, t),Y ∈ G (t), |ε| ≤ δ}. (11–22)

Consider the migrating control volume P (t) � Gδ(t) with δ small. Then ∂Gδ(t) is
the union of surfaces

∂Gδ(t)
± � {X : X � Y ± δm(Y, t),Y ∈ G (t)} (11–23)

and a surface whose area isO(δ); and the outward unit normal n(X, t) and normal
velocity U (X, t) for ∂Gδ(t) satisfy

n(X, t) � ±m(Y, t) and U (X, t) � ±V (Y, t) for X ∈ ∂Gδ(t)±. (11–24)

Thus, as δ → 0, ∫
∂Gδ (t)

�U da → ∫
G (t)

[�]V da, (11–25a)

∫
∂Gδ (t)

�n da → ∫
G (t)

[�]m da, (11–25b)

d

dt

{ ∫
Gδ (t)

�dv

}
→ 0, (11–25c)

where (11–25c) follows from (10–8a) and (11–25a). Further, for

q � Un, ẙ � ẏ+ UFn, (11–26a)

v � Vm, �
y � ẏ± + VF±m � 〈ẏ〉 + V 〈F〉m, (11–26b)

the intrinsic velocity fields and corresponding motion velocities for ∂Gδ(t) and
S (t), (11–24) yields ∫

∂Gδ (t)
Cn · q da → ∫

G (t)
Vm · [C]m da, (11–27a)

∫
∂Gδ (t)

Sn · ẙ da → ∫
G (t)

[S]m · �
y da. (11–27b)

By (11–25b), the choice P (t) � Gδ(t) in (11–6a) and (11–7) yields the local
force balances (11–8a).

The localization of the second law is accomplished using (11–19) with velocity
fields given by (11–26). Let G (t) denote a smoothly evolving subsurface of S (t),
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and take P (t) � Gδ(t), the δ-pillbox about G (t). Then, by (11–25c), (11–27), and
the standard and configurational balances (11–8a) and (11–12),

0 ≤ ∫
G (t)

{(
m · [C]m+ eS · m)V + ([S]m+ bS

) · �
y
}
da � − ∫

G (t)
gS V da.

(11–28)
Since G (t) is arbitrary, the internal dissipation inequality (11–21) follows.



CHAPTER 12

Inertia. Basic Equations
for the Interface

I assume throughout this chapter that the underlying observer is inertial and the
external body forces b and (hence) e and the external interface forces bS and eS are
inertial. Then b has the form (7–1). I now characterize bS through the equivalence
of inertial force and temporal changes in momentum, and, knowing bS , eS is
determined through the equivalence of inertial working and temporal changes in
kinetic energy.1

a. Relative kinetic energy

Throughout this section
�
yhas the the intrinsic form

�
y � ẏ±+VF±m � 〈ẏ〉+V 〈F〉m

(cf. 11–13). The field k � 1
2 ρ|ẏ|2 represents the kinetic energy and the interfacial

fields

(krel)
± � 1

2
ρ|ẏ± − �

y |2

represent the kinetic energy at the two sides of the interface measured relative to

the interface. Because [ẏ− �
y] � −V [Fm] and 〈ẏ− �

y〉 � −V 〈Fm〉 the identity

[|ϕ|2] � 2[ϕ] · 〈ϕ〉

1Following a procedure of Podio-Guidugli [1997] as applied by Gurtin and Podio-
Guidugli [1996a,b, 1997].



12. Inertia. Basic Equations for the Interface 75

may be used to show that [|ẏ− �
y |2] � [|Fm|2]V 2. Further, by (10–2) and (10–3),

|FP|2 � |F|2 − |Fm|2 and [|FP|2] � 0. The jump in relative kinetic energy,

[krel] � 1

2
ρ[|ẏ− �

y |2], (12–1)

may therefore be written alternatively as

[krel] � 1

2
ρ[|Fm|2]V 2 � 1

2
ρ[|F|2]V 2. (12–2)

b. Determination of bS and eS

The production of momentum in migrating control volume P � P (t) is defined
by

P (P ) � d

dt

{∫
P

ρẏ dv

}
− ∫
∂P

ρẏU da (12–3)

and represents the temporal change in momentum of P (t) minus the inflow of
momentum due to the migration of ∂P (t). By (10–8a),

P (P ) � ∫
P

ρÿ dv − ∫
S ∩P

ρ[ẏ]V da.

A basic premise of the theory is that −P (P ) be equivalent to the total standard
force on P due to inertia (cf. (7–6a)):∫

P

b dv + ∫
S ∩P

bS da � −P (P ). (12–4)

Thus, since b � −ρÿ, ∫
S ∩P

(
bS − ρ[ẏ]V ) da � 0,

and since P is arbitrary,

bS � ρ[ẏ]V. (12–5)

Further, the kinetic energy k � 1
2 ρ|ẏ|2 satisfies [k] � 1

2 [|ẏ|2] � [ẏ] · 〈ẏ〉; hence

bS · 〈ẏ〉 � [k]V.
Thus bS and bS · 〈ẏ〉 represent rates at which momentum and kinetic energy are
released by the interface (per unit area).

Similarly, the production of kinetic energy in a control volume P � P (t) is
given by

T (P ) � d

dt

{∫
P

k dv

}
− ∫
∂P

kU da.
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By (10–8a),

T (P ) � ∫
P

ρẏ · ÿ dv − ∫
S ∩P

[k]V da;

hence ∫
P

b · ẏ dv + ∫
S ∩P

bS · 〈ẏ〉da � −T (P ). (12–6)

A second basic premise of the theory is that the inertial working be equal to
−T (P ); (12–6) therefore establishes the average interfacial velocity 〈ẏ〉 as the
appropriate work-conjugate velocity for the inertial force bS .

The results established thus far, that bS � ρ[ẏ]V and the appropriate work-conjugate
velocity forbS is 〈ẏ〉, depend only on the kinematical assumption that ybe continuous
across the interface, smooth away from the interface, and smooth up to the interface
from either side; these results are therefore also valid for shock waves.

Arguing as in Section 5e, the inertial working should also have the form
expressed in (11–14), so that∫

P

b · ẏ dv + ∫
S ∩P

(
bS · �

y+eS · mV
)
da � −T (P ), (12–7)

with
�
y given by (11–13). Thus, by (12–6),∫

S ∩P

(
bS · �

y+eS · mV − bS · 〈ẏ〉
)
da � 0,

and, because P is arbitrary,

bS · 〈ẏ〉 � bS · �
y+eS · mV, (12–8)

or equivalently, by (11–13),
(
bS · 〈F〉m+ eS · m)V � 0; hence

eS · m � −m · 〈F〉�bS ,
at least for V �� 0. On the other hand, (11–9) asserts that PeS � −P〈F〉�bS ;
therefore

eS � −〈F〉�bS , (12–9)

a result that should be compared to the bulk relation e � −F�b (cf. (5–20)).

The two equivalent forms, bS · 〈ẏ〉 and bS · �
y+eS · mV , for the inertial working,

underline the essential difference between the standard and configurational points of
view. In the former the relevant velocity for the working is the motion velocity ẏ, and
since ẏ suffers a jump discontinuity across the interface, it seems appropriate that its
average value 〈ẏ〉 represent the work-conjugate velocity for bS . On the other hand,
if the interface is viewed as having no intrinsic material identity, then the exchange
of material across the moving interface should be taken into account; this is the
configurational view. Here the appropriate work-conjugate velocities are Vm for eS

and
�
y for bS .
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Next, by (10–2), (12–2), and (12–5),

m · 〈F〉�bS � ρ〈F〉m · [ẏ]V � −ρ〈Fm〉 · [Fm]V 2

� −1

2
ρ[|Fm|2]V 2 � −[krel].

Thus, by (12–9),

eS · m � [krel]. (12–10)

The results established thus far assert the equivalence of:

(i) bS and the (interfacial) release rate for momentum;

(ii) the total inertial working bS · 〈ẏ〉 � bS · �
y+eS · mV and the release rate for

kinetic energy;
(iii) the configurational inertial working eS ·mV and the release rate for the kinetic

energy measured relative to the interface.

An alternative method of determining the inertial body force eS is to use, in place
of (12–6), a hypothesis analogous to (12–4) for the pseudomomentum p � −ρF�ẏ
(cf. (7–10)); guided by (7–14), such a hypothesis has the form

∫
P

e dv + ∫
S ∩P

eS da � − d

dt

{∫
P

p dv

}
+ ∫
∂P

pU da − ∫
∂P

kn da + ∫
P

1

2
ẏ2∇ρ dv

(12–11)
and yields, as in the derivation of (12–5), the identity2

eS � [p]V − [k]m. (12–12)

By (11–13), Vm · [F�ẏ] � [VFm · ẏ] � [ẏ · (
�
y−ẏ)], and the relation (12–10) for

eS ·m is a consequence of (12–12) (cf. the sentence following (12–6)). The relations
(12–9) and (12–12) are equivalent.

c. Standard and configurational balances with inertia

In view of (12–5), the standard force balance (11–8a) reduces to the momentum
balance

[S]m � −ρ[ẏ]V, (12–13)

while (6–9), (11–12), (12–2), and (12–10) yield the normal configurational
balance

m · [�1 − F�S]m+ 1

2
ρ[|Fm|2]V 2 + gS � 0. (12–14)

Further, by (11–8a) and (12–9), the term containing V 2, which is eS · m, may be
written as 〈F〉m · [S]m; thus the identity [ϕψ] � 〈ϕ〉[ψ] + [ϕ]〈ψ〉 applied to

2An essentially equivalent relation, stated without proof for homogeneous elastic
materials, is given by Maugin [1995, eq. (6–17a)].
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m · [F�S]m � [Fm · Sm] reduces (12–14) to

[�] − 〈S〉m · [F]m+ gS � 0. (12–15)

This balance, a counterpart of the bulk relation (6–10), shows the internal interface
force gS to be affected by material variations in the free energy and deformation
gradient across the interface via the terms [�] and [F].

d. Constitutive equation for the interface

The fields S and � would generally be given by constitutive equations defining
the material properties away from the interface. On the other hand, the quantities
gS and V , which characterize the mechanics and kinematics of the interface,
require consitutive specification, because without further restriction the internal
dissipation inequality (11–21) may be violated. The basic theory for the interface
is therefore closed by relating gS and V constitutively in a manner compatible
with this inequality.

I allow the interface force gS to depend on the kinetics and orientation of
the interface through dependencies on V and m, and on the deformation through
dependencies on the limiting values of F. I therefore consider constitutive
equations

gS � �(V,m,F+,F−), (12–16)

which reduce, via (11–21), to the specific form

gS � −bV (12–17)

with b � b(V,m,F+,F−) ≥ 0, the kinetic modulus, a constitutive quantity.

The relation (12–17) is the most general smooth constitutive equation of the form
(12–16) that is consistent with the dissipation inequality (11–21) (cf. (9–25)). One
might also consider a frictional-type constitutive assumption

V � 0 for |gS | < L, V � −λ sign(gS ) for |gS | ≥ L, (12–18)

with λ � λ(m,F+,F−) > 0. By (12–15) this allows for a dependence of λ on gS ,
granted bulk constitutive equations giving � and S when F is known.

For specificity, I supplement the constitutive relation (12–17) for the interface
with hyperelastic constitutive equations for the bulk phasesα andβ (cf. Section 9a):

� � �α(F), S � Sα(F) � ∂F�α(F) in phase α, (12–19a)

� � �β(F), S � Sβ(F) � ∂F�β(F) in phase β, (12–19b)

where the subscripts α and β rather than the symbol ˆ are used to designate the
associated constitutive functions. The local form of the second law in bulk is the
inequality (6–11), and its satisfaction is ensured by (12–19).
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e. Summary of basic equations

Assume that the underlying observer, the body force b, and the interface forces bS

and eS are inertial. The basic equations for the bulk material then consist of the
momentum balance

Div S � ρÿ (12–20)

supplemented by the constitutive equations (12–19a).
The basic equations for the interface are the compatibility conditions

[ẏ] � −V [F]m, (12–21a)

[F]P � 0, (12–21b)

the momentum balance

[S]m � −ρ[ẏ]V, (12–22)

and the normal configurational balance

m · [�1 − F�S]m+ [krel] � bV, (12–23)

with b � b(V,m,F+,F−) ≥ 0, and [krel] � 1
2 ρ[|Fm|2]V 2 the jump in relative

kinetic energy (cf. (12–10)). The balance (12–23) may be written in the alternative
form

[�] − 〈S〉m · [F]m � bV . (12–24)

(The relations (12–14), (12–15), and (12–17) are used in the derivation of (12–23)
and (12–24).)

Heidug and Lehner,3 Truskinovsky,4 and Abeyaratne and Knowles5 use the inequality
([�]−〈S〉m·[F]m)V ≥ 0, derived from the second law, to motivate a constitutive rela-
tion of the form (12–24) for the driving tractionf defined byf � −[�]+〈S〉m·[F]m.
Their argument does not involve a configurational force balance and is hence simpler
than that given here, which is due to Gurtin.6 It does, however, involve postulating
a constitutive relation for [�] − 〈S〉m · [F]m, which seems superfluous, since �
and S would typically be prescribed as functions of F through constitutive relations.
In the development described here the configurational force balance provides an
additional field gS with normal component available for constitutive prescription,
thereby allowing for (12–24).

Given tensors G and H,

HP � 0 ⇒ Gm ·Hm � G ·H.

3[1985].
4[1987, 1991].
5[1990, 1991].
6[1995] (cf. Gurtin and Struthers [1990]).
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Indeed, assume that HP � 0. Then G � GP+ G(m⊗ m), while H � H(m⊗ m),
so that, because (a⊗ b) · (c⊗ d) � a · c+ b · d and P(m⊗ m) � (Pm) ⊗ m � 0,

G ·H � (GP) · {H(m⊗ m)} + {G(m⊗ m)} · {H(m⊗ m)}
� {GP(m⊗ m)} ·H + {(Gm) ⊗ m} · {(Hm) ⊗ m} � Gm ·Hm.

Thus (12–24) may be written as

[�] − 〈S〉 · [F] � bV . (12–25)

f. Global energy inequality. Lyapunov relations

Assume that the body B is bounded, that S � S (t) is a closed surface contained
in the interior of B, and that the external forces are inertial. Then the second law
(11–19), with right side in the intrinsic form (11–14) and (12–7) used to replace
the inertial working by the production of kinetic energy, yields, for P � B,

d

dt

{∫
B

(� + k) dv

}
− ∫
∂B

Sn · ẏ da � −D (B) ≤ 0. (12–26)

Here, by (12–19a),

� � �α(F) in Bα, � � �β(F) in Bβ, (12–27)

where Bα � Bα(t) and Bβ � Bβ(t) are the bulk regions occupied by phases α and
β; and D (B) is the dissipation (11–20) modified by (9–10); viz.,

D (B) � − ∫
S

gS V da � ∫
S

bV 2da, (12–28)

with b � b(V,m,F+,F−) ≥ 0.
A consequence of (12–26) are Lyapunov relations of the form (7–17) (for a fixed

boundary) and (7–19) (for a boundary under constant dead loads); in either case
the inequality “≤ 0” may be replaced by the stronger assertion “� −D (B) ≤ 0.”



Part C

An Equivalent
Formulation of the Theory.
Infinitesimal Deformations

In theories involving infinitesimal deformations it is customary to take the displace-
ment u(X, t) � y(X, t)−X rather than the motion y(X, t) as the basic kinematical
field. With this in mind, I now reformulate the theory taking the displacement
as the basic kinematical variable associated with the standard force system. This
displacement-based formulation involves no approximations and is consistent with
the motion-based formulation discussed in Parts A and B; its importance lies in
its applicability to infinitesimal deformations. To simplify comparisons of the two
formulations, the following abbreviations are convenient:

mbf � motion-based formulation,

dbf � displacement-based formulation.

Because the discussion follows that of mbf, I will omit or simply sketch the most
arguments.



CHAPTER 13

Formulation within
a Classical Context

a. Background. Reasons for an alternative formulation in
terms of displacements

Given a motion y, the corresponding displacement field u is defined by

u(X, t) � y(X, t) − X (13–1)

and yields

u̇ � ẏ, (13–2a)

∇u � F − 1. (13–2b)

The problem with the application of mbf to small displacements arises from the
approximation of the gradient F � ∇y � 1 + ∇u, because this approximation
involves a term ofO(1) plus a term ofO(δ) (assuming that u and its derivatives are
O(δ), with δ small). That a theory based on u rather than y is more appropriate may
be seen when comparing the formulas for time derivatives following the evolution
of the boundary of a migrating control volume P � P (t):

ů � u̇+ (∇u)q, (13–3a)

ẙ � ẏ+ Fq. (13–3b)

Assuming that migrations of ∂P are associated with velocities q ofO(1), the terms
in ů are each O(δ); but

ẙ � q+ ů,

so that ẙ involves a term of O(1) plus a term of O(δ), with lowest-order
approximation ẙ � q yielding meaningless results.
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Here I reformulate the general theory using u rather than y as the field that
characterizes the kinematics of deformation.

b. Finite deformations. Modified Eshelby relation

Let P � P (t) be a migrating control volume with q a velocity field for ∂P and ů

the associated time derivative of u following the evolution of ∂P . I now consider ů
and u̇ as work-conjugate velocities for Sn and b, and therefore write the working
in the form

W (P ) � ∫
∂P

(Cn · q+ Sn · ů) da + ∫
P

b · u̇ dv. (13–4)

This expression should be compared with (5–5), the definition of W (P ) within
the mbf. As we shall see, these apparently contradictory definitions are, in fact,
consistent.

Consider the changes in spatial and material observer defined by (2–7) and
(2–9). Then u̇ and ů are invariant under material changes and transform according
to

u̇ → u̇+ w+ ω× (y− o), ů → ů+ w+ ω× (y− o) (13–5)

under spatial changes. Thus, allowing material and spatial observers to act con-
currently, a procedure that we shall henceforth follow, this yields the following
expression for the working recorded by the new observers:

W (P ) � ∫
∂P

Cn · (q+ a) da + ∫
P

(g+ e) · a dv (13–6)

+ ∫
∂P

Sn · (ů+ w+ ω× (y− o)
)
da

+ ∫
P

b · (u̇+ w+ ω× (y− o)) dv.

Invariance under changes in observer requires the coincidence of (13–4) and
(13–6); as before, this yields the standard force and moment balances (3–5) and
the configurational balance (5–8); or equivalently,

Div S+ b � 0, (13–7a)

S(1 + ∇u)� � (1 + ∇u)S�, (13–7b)

DivC + g+ e � 0. (13–7c)

Next, arguing as in Section 5d, the requirement that the working (13–4) be
independent of the choice of velocity field used to characterize the evolution of ∂P
yields the relation

C � π1 − ∇u�S (13–8)

with ∇u� � (∇u)�.
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Consider a time-dependent change in reference configuration as discussed in
(4–15)–(4–18), let P (t) be the migrating control volume defined in (4–18), let
q(X, t) denote the velocity field for ∂P (t) defined in (4–17), and let ů � u̇+(∇u)q.
The argument leading to (5–18) yields

W (P (t)) � ∫
∂P (t)

Cn · q da + ∫
∂P (t)

Sn · ů da + ∫
P (t)

e · q dv + ∫
P (t)

b · ů dv, (13–9)

and because this expression should coincide with (13–4),∫
P

e · q dv + ∫
P

b · ů dv � ∫
P

b · u̇ dv, (13–10)

which results in the external and internal force relations

e � −∇u�b, (13–11a)

g � −∇π + S:∇∇u. (13–11b)

The second law is presumed to be (6–4) withW (P ) given by (13–4):

d

dt

{∫
P

� dv

}
≤ ∫
∂P

(Cn · q+ Sn · ů) da + ∫
P

b · ů dv. (13–12)

The steps leading to (6–8) again yield π � �, and this leads to the modified
Eshelby relation

C � �1 − ∇u�S (13–13)

in conjunction with

g � −∇� + S:∇∇u, (13–14)

a relation not different from (5–21), as ∇∇u � ∇F.
A comparison of (13–13) and (6–9) shows that the configurational stress is

different in the two formulations. Specifically, if (13–11a), (13–13), and (13–14)
are compared with (5–20), (6–9), and (6–10), the following relationship between
mbf and dbf emerges:

C(mbf) � C(dbf) − S,

e(mbf) � e(dbf) − b,

g(mbf) � g(dbf).

A somewhat related result is that, under the transformation

C → C − S, e → e− b, g → g, (13–15)

the configurational force balance (5–10) is invariant, while the working transforms
according to∫
∂P

(Cn · q+ Sn · ẙ) da+ ∫
P

b · ẏ dv+ ∫
∂P

(Cn · q+ Sn · ů) da+ ∫
P

b · u̇ dv, (13–16)

a transformation that demonstrates the consistency of the two formulations.
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The termC−Smay, at first sight, seem incorrect because, at a point,C maps material
vectors into material vectors, while S maps material vectors into spatial vectors. This
inconsistency follows from the formula F � 1 + ∇u, because the identity 1 should
there be considered a mapping of material vectors into spatial vectors. Granted this,
C − S might more appropriately be written as C − 1�S.

Finally, let U(x, t) � Y(x, t) − x denote the displacement corresponding to the
inverse motion Y (cf. (2–4)), and let U′(x, t) � ∂U(x, t)/∂t � Y ′(x, t). Then,
when the deformed control volume P̄ corresponding to P � P (t) is stationary,

W (P ) � ∫
∂P

(C − S)n · U ′ da + ∫
P

(e− b) · U ′ dv,

which is a counterpart of (5–23).

c. Infinitesimal deformations

I formulate the theory within an invariant thermodynamic framework in which the
infinitesimal nature of the deformation is characterized by a restriction to infinites-
imal changes in spatial observer. The working and the inequality representing the
second law are then identical to their counterparts (13–4) and (13–12) in the finite
theory; no approximation is needed. This is the chief advantage of dbf.

Infinitesimal changes in spatial observer transform the displacement by an
additive infinitesimal rigid displacement at each time t and hence yield, at each t ,
transformation laws of the form

u̇(X, t) → u̇(X, t) + w+ ω× (X − o), (13–17a)

ů(X, t) → ů(X, t) + w+ ω× (X − o), (13–17b)

withw andω spatial vectors. These transformations differ from the transformations
(13–5) of the finite theory, as the relative spin is ω× (X−o) in (13–17) as opposed
to ω× (y− o) in (13–5).

Changes in material observer are, as in the finite theory, defined by (2–9).
In a theory of infinitesimal deformations the deformed and undeformed bodies

are essentially indistinguishable, and it is not customary to account separately for
material points and the places they occupy under a deformation. I shall follow this
convention, but I shall continue to distinguish between the underlying spaces Espace

and Ematter via separate classes of observers.
The working W (P ) is given by (13–4), but (13–6), which represents its form

under a change in observer, now hasω×(y−o) replaced byω×(X−o). Invariance
under observer changes thus yields no alteration in the balances for standard and
configurational forces, which remain (13–7a,c), but the relation (13–7b) for balance
of moments is now replaced by the classical relation expression the symmetry of
the standard stress. The basic balances are therefore

Div S+ b � 0, (13–18a)

S � S�, (13–18b)
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DivC + g+ e � 0. (13–18c)

Finally, the remaining arguments are unchanged, so that

C � �1 − ∇u�S, (13–19a)

e � −∇u�b, (13–19b)

g � −∇� + S:∇∇u. (13–19c)

The basic field equations of the finite theory and those of the infinitesimal theory
therefore differ only in the standard moment balance.



CHAPTER 14

Coherent Phase Interfaces

a. General theory

The ensuing discussion is valid for both finite and infinitesimal deformations. The
compatibility conditions (10–2) take the form

[u̇] � −V [∇u]m, (14–1a)

[∇u]P � 0, (14–1b)

when expressed in terms of displacement. The working now has the form

W (P ) � ∫
∂P

(Cn · q+ Sn · ů) da + ∫
P

b · u̇ dv + ∫
S ∩P

(eS · v+ bS · �
u) da (14–2)

with q and v velocity fields for ∂P and S , and with ů and
�
u, respectively, corre-

sponding time derivatives of u following the evolutions of ∂P and S . (The field
�
u is defined by (10–4) with y replaced by u and transforms in the same manner
as do u̇ and ů; cf. (10–4) and the paragraph containing (13–5).) The second law
remains (6–4), but withW (P ) given by (14–2).

The development follows that of the theory described in Part B. The final re-
sults, which represent basic equations for the interface, consist of the compatibility
conditions (14–1), the momentum balance

[S]m � −ρ[u̇]V, (14–3)

and the normal configurational balance

m · [�1 − ∇u�S]m+ gS � −1

2
ρ[|(∇u)m|2]V 2, (14–4)
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or equivalently,

[�] − 〈S〉m · [∇u]m+ gS � 0. (14–5)

There are supplemented by the internal dissipation inequality

gS V ≤ 0, (14–6)

which leads to constitutive equations of the form

gS � −bV (14–7)

with b � b(V,m,∇u+,∇u−) ≥ 0. Granted (14–7), (14–5) may be written as

[�] − 〈S〉m · [∇u]m � bV, (14–8)

or equivalently, arguing as in the verification of (12–25),

[�] − 〈S〉 · [∇u] � bV . (14–9)

b. Infinitesimal theory with linear stress-strain relations in
bulk

Of importance in the infinitesimal theory is the strain tensor

E � 1

2
(∇u+ ∇u�), (14–10)

which is unaffected by infinitesimal rigid displacements. Since S is symmetric,
〈S〉 · [∇u] � 〈S〉 · [E], and the interface condition (14–9) may be written in the
form

[�] − 〈S〉 · [E] � bV . (14–11)

Assume that the bulk material is elastic, and, consistent with the assumption of
infinitesimal deformations, consider constitutive equations of the form

� � 1

2
E · LαE, S � LαE in phase α, (14–12a)

� � 1

2
(E − E0) · Lβ(E − E0), S � Lβ(E − E0) in phase β, (14–12b)

with elasticity tensors Lα and Lβ symmetric linear transformations of symmetric
tensors into symmetric tensors, withE0 a symmetric tensor, and withLα ,Lβ , andE0

assumed constant. Underlying (14–12) is the tacit assumption that the stress-free
states of the two phases differ by the misfit strain E0.

The basic equations then consist of the standard balance

Div S � ρü, (14–13)

the constitutive equations (14–12), and the strain-displacement relation (14–10)
in bulk, and the standard and configurational balances (14–3) and (14–11) at the
interface.
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The driving force [�]− 〈S〉 · [E] simplifies considerably when the two phases
have the same elasticity tensor:

Lα � Lβ � :L . (14–14)

Granted this, since L is symmetric, A · L B � B · L A for all symmetric tensors
A and B. Thus, writing

Σ � L E,

it follows that

� � 1

2
Σ · E, S � Σ in phase α,

� � 1

2
Σ · E − E0 · L E + 1

2
E0 · L E0, S � Σ − L E0 in phase β,

and, because [ϕ] denotes the interfacial limit of ϕ from phase β minus that from α,

[�] � 1

2
[Σ · E] − E0 · L E+ + 1

2
E0 · L E0,

〈S〉 · [E] � 〈Σ〉 · [E] − 1

2
[E] · L E0.

Thus, appealing to the identity [Σ · E] � 〈Σ〉 · [E] + [Σ] · 〈E〉,

[�] − 〈S〉 · [E] � 1

2
[Σ] · 〈E〉 − 1

2
〈Σ〉 · [E] −

(
〈E〉 − 1

2
E0

)
· L E0.

But, by the symmetry of L , 〈Σ〉 ·[E] � (L 〈E〉) ·[E] � (L [E]) ·〈E〉 � [Σ] ·〈E〉.
Thus [�] − 〈S〉 · [E] � ( 1

2 E0 − 〈E〉) · S0, with

S0 � L E0

the misfit stress, and the interface condition (14–11) has the simple form(
1

2
E0 − 〈E〉

)
· S0 � bV . (14–15)

Note that the driving force vanishes when the average interfacial strain has a value
midway between the stress-free strains of the two phases.

For a cubic material the misfit strain is a dilation, while the misfit stress is a
pressure:

E0 � 1

3
e01, S0 � ke01,

with compressibility k a scalar constant. In this case, writing

e � trE,

the interface condition (14–15) becomes

k

(
1

2
e0 − 〈e〉

)
e0 � bV .



Part D

Evolving Interfaces
Neglecting Bulk Behavior

There are situations of physical interest in which the motion of a phase interface or
grain boundary may be considered independent of transport processes, inertia, and
deformation.1 Granted this, standard forces are irrelevant; the underlying balance
is a configurational force balance for the interface. I now consider behavior of this
type, beginning with a discussion of evolving surfaces. Because deformation is
neglected, all vectors are material; thus, without danger of confusion, the space
of material vectors is here identified with R3.

1Cf. the introduction of Taylor, Cahn, and Handwerker [1992].



CHAPTER 15

Evolving Surfaces

a. Surfaces

Let S be a smooth surface oriented by a choice of unit normal field m(X). The
space of all vectors perpendicular to m(X) is then the tangent space at X ∈ S
and a vector field t on S is tangential if t(X) lies in the tangent space at every
X ∈ S .

Given a subsurface G of S , the outward unit normal n to ∂G is the principle
normal to the curve ∂G, directed outward from G ; for any X ∈ ∂G , n(X) is normal
to ∂G but tangent to S .

a1. Background. Superficial stress

In continuum mechanics, tensors arise from the notion of stress. Let P be a subre-
gion of a stressed body, n � n(X) the outward unit normal to ∂P , and C � C(X)
the configurational stress at a point X on ∂P . Then the vector Cn represents the
force, per unit area, exerted on P across ∂P by the material outside of P . Thus
C maps vectors n into vectors Cn, and is hence a linear transformation from R3

into R3.
Stresses may also act within the surface S , a classical example being surface

tension described by a scalar field σ (X) onS . Suppose thatP intersects the surface
S , withG � P∩S the corresponding surface of intersection. Letn � n(X) denote
the outward unit normal to ∂G at X. The vector σn represents a force exerted on
G across ∂G by the portion of S that lies outside of G . Thus, as with the standard
notion of stress, surface stress at a point is a linear mapping that assigns a force,
here σn, to a unit normal, here n, which, rather than being a vector in R3, is
a tangent vector. The natural notion of stress for a surface is therefore a linear
transformation C � C(X) from the tangent space at X into R3; C maps tangent
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vectors n into (ordinary) vectors Cn in R3. (When C represents surface tension,
Cn is also a tangent vector, but there are more general situations in which Cn need
not be tangent.)

a2. Superficial tensor fields

As alluded to earlier, tensors are generally linear transformations from R3 into R3,
but of interest here are tensor fields T on S with the property that, at each X on
S , T(X) is a linear transformation from the tangent space at X into R3. These
two notions of a tensor field are reconciled by extending T(X) to all of R3 with
the requirement that T(X) annihilate vectors normal to S . Precisely, a superficial
tensor field on S is a tensor field T on S that satisfies

Tm � 0. (15–1)

An example of a superficial tensor field is the projection

P(X) � 1 − m(X) ⊗ m(X) (15–2)

onto the tangent space to S at X; given any vector a, P � P(X) maps a into its
component Pa � a− (a · m)m tangent to S .

Similarly, a superficial 3-tensor field is a 3-tensor field λ on S that satisfies
λm � 0 (cf. the first paragraph of Subsection 1j3).

We will refer to a superficial tensor field as tangential or normal according as,
given any vector a, the vector T(X)a is tangent or normal to S at each X. If T is
tangential, then 0 � m ·Ta � a ·T�m for all a, so that T�m � 0; if T is normal, then
PTa � 0 for all a, so that PT � 0. The projection P is an example of a tangential
tensor field. Given a tangential vector field t on S ,

T � m⊗ t (15–3)

is a normal tensor field (because Ta � (t · a)m for all a), and every normal
superficial tensor field may be written in this form. More generally, each superficial
tensor field T admits a unique decomposition into tangential and normal parts:

T � Ttan + m⊗ t; (15–4)

further, Ttan and t have the explicit forms

Ttan � PT, t � T�m. (15–5)

To verify these assertions, note first that Ttan � PT defines a tangential tensor, and
if we define t � T�m, then by (15–2),

Ttan � PT � T− (m⊗ m)T � T− m⊗ (T�m) � T− m⊗ t,

which is (15–4). Conversely, assume that (15–4) holds. Then premultiplying by P
shows that Ttan � PT, and operating with the transpose of (15–4) on m shows that
t � T�m. The decomposition (15–4) is therefore unique. The assertions regarding
(15–4) and (15–5) also follow, after noting that the matrices ofT,Ttan, andt relative
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to an orthonormal basis {e1, e2, e3} with e3 � m have the form

T �
(
T11 T12 0
T21 T22 0
T31 T32 0

)
Ttan �

(
T11 T12 0
T21 T22 0
0 0 0

)
t �

(
T31

T32

0

)
.

The following result is essential to what follows; if a superficial tensor field
T � T(X) satisfies

t · Ta � 0 (15–6)

for every pair of orthogonal vectors t and a tangent to S at X, then1

Ttan � σP (15–7)

at X, with σ a scalar. To verify this assertion, assume that (15–6) holds. Choose
an orthonormal basis {e1, e2, e3} at X with e3 � m. Then 0 � e1 · Te2 � e2 · Te1.
Take t � e1 − e2 and a � e1 + e2. Then 0 � t · Ta � e1 · Te1 − e2 · Te2, so that
e1 · Te1 � e2 · Te2. Thus, relative to this basis, the off-diagonal components of T
in the tangent space are zero, while the diagonal components are equal. Thus Ttan

has the form (15–7).
The surface gradient ∇S on S may be defined through the chain rule. Let ϕ, f ,

and T be smooth fields on S , with ϕ scalar-valued, f vector-valued, and T tensor-
valued. Then ∇S ϕ, a tangential vector field, ∇S f , a superficial tensor field, and
∇S T a superficial 3-tensor field, are defined as follows: Given any curve z � z(λ)
on S ,

ϕ(z)· � ∇S ϕ(z) · ż, f (z)· � (∇S f (z)
)
ż, T(z)· � (∇S T(z))ż

(where here, but not elsewhere, the dot denotes differentiation with respect to λ).
Note that, by definition,

m · ∇S ϕ � 0, (∇S f )m � 0, (∇S T)m � 0.

(Were these relations not required, then, since ż is tangential, ∇S f , for example,
would not be defined on vectors normal to S .) If ϕ, f , and T are smooth in a
(three-dimensional) neighborhood of S , then ∇S ϕ � P∇ϕ, ∇S f � (∇f )P, and
∇S T � (∇T)P; similar relations hold when ϕ, f , and T are smooth up to S from
either side, but then the limits �±(X) � �(X ± 0m(X)) are needed:

∇S ϕ
± � P(∇ϕ)±, (15–8a)

∇S f
± � (∇f )±P, (15–8b)

∇S T
± � (∇T)±P. (15–8c)

To verify (15–8a), confine ϕ to one side of S . Then by the chain rule and the
smoothness of ϕ up to S , ϕ(z)· � ∇ϕ(z) · ż. But because the curve z � z(λ) lies
on S , ż is tangent to S , so that ż � Pż and ϕ(z)· � ∇ϕ(z) ·Pż � (P∇ϕ(z)) · ż,
which establishesP∇ϕ as∇S ϕ, becauseP∇ϕ is tangential and the curvez � z(λ)
is arbitrary.

1Gurtin and Struthers [1990, eq. (7–4)].
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The surface divergence of a vector field f on S is defined by

DivS f � tr(∇S f ), (15–9)

while the surface divergence DivS T of a superficial tensor field is defined through
the identity

a · DivS T � DivS (T�a) (15–10)

for every constant vector a.
Let G denote a subsurface of S , and let n(X), a vector tangent to S at X ∈ ∂G ,

denote the outward unit normal to the boundary (curve) ∂G of G . The surface
divergence theorem then has the form∫

∂G

t · n ds � ∫
G

DivS t da, (15–11a)

∫
∂G

Tn ds � ∫
G

DivS T da (15–11b)

for t a tangential vector field and T a superficial tensor field. To verify (15–11b),
granted (15–11a), choose an arbitrary vector a. Then

a · ∫
∂G

Tn ds � ∫
∂G

(T�a) · n ds � ∫
G

DivS (T�a) da � a · ∫
G

DivS T da,

which implies (15–11b).
The curvature tensor L and total curvatureK (twice the mean curvature) are

defined by

L � −∇S m, (15–12a)

K � trL � 1 · L � P · L � −DivS m. (15–12b)

The curvature tensor is symmetric and (hence) tangential:

L � L�, (15–13a)

L�m � 0, (15–13b)

assertions that will be established at the end of this section.
The surfaces under consideration are smooth and may be represented near any

of its points z as the zero-level set of a scalar function �; i.e., as the set of points
X for which

�(X) � 0, (15–14)

where �, a smooth scalar function on a three-dimensional neighborhood N of z,
satisfies

� � |∇�| �� 0. (15–15)

In this case, modulo a change in the sign of �, the normal m is given by

m � ∇�/�, (15–16)
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so thatm andP are well defined onN (even at points ofN not on S ) and generate
the curvature tensor and total curvature through

L � −(∇m)P, K � trL � −Divm (15–17)

(with ∇ and Div the three-dimensional gradient and divergence). Consequences
of (15–14) and (15–15) are the identities

∇� � (∇∇�)m, �∇m � P∇∇�, (15–18)

and (hence) the relations

L � −�−1P(∇∇�)P, K � −�−1(��− m · (∇∇�)m), (15–19)

which, in particular, verify (15–13). Here �� � tr(∇∇�) is the Laplacian.
Two important identities in which t is a tangential vector field are:

DivS P � Km, (15–20a)

DivS (m⊗ t) � (DivS t)m− Lt. (15–20b)

b. Smoothly evolving surfaces

b1. Time derivative following S . Normal time derivative

Let S (t) depend smoothly on the time t with V (X, t) the normal velocity of S (t).
As in Chapter 10, an assignment of a vector v(X, t) to each X ∈ S (t) is a velocity
field for S if v is a smooth field that satisfies v·m � V (cf. Chapter 4). The velocity
field v for S may be viewed as a velocity field for evolving particles constrained
to S , with the path Z(τ ) traversed by the particle that passes through X ∈ S (t)
at time t the unique solution of (4–2). Then, given a scalar, vector, or tensor field
ϕ(X, t) defined for X ∈ S (t), the time derivative of ϕ following S , as described
by v is the time derivative along such paths:

�
ϕ(X, t) � d

dτ
ϕ(Z(τ ), τ )|τ�t . (15–21)

If ϕ(X, t) is a scalar field, f (X, t) a vector field, and T (X, t) a tensor field, each
smooth in a three-dimensional neighborhood of S (t) for all t , then, by the chain

rule
�
ϕ � ϕ̇+∇ϕ · v, and similar formulas apply to

�
f and

�
T. Similar relations hold

when ϕ, f and T are smooth up to S from either side, but then the appropriate
limits must be used:

�
ϕ ± � ϕ̇± + (∇ϕ)± · v, (15–22a)
�
f ± � ḟ± + (∇f )±v, (15–22b)
�
T

± � Ṫ± + (∇T)±v (15–22c)

(cf. (1–22)).
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The derivative (15–21) is not intrinsic, because it depends on the choice of the
velocity field v for S ; when v is normal,

v � Vm, (15–23)

then
�
ϕ is intrinsic and represents the normal time derivative of ϕ following S .

Granted this,
�
m � −∇S V, (15–24)

a result that will be used repeatedly; the verification of (15–24) follows from the
discussion of the next paragraph.

Near any of its points and in a neighborhood of any time,S (t) may be considered
as the set of (X, t) such that

�(X, t) � 0, (15–25)

where � is a smooth function consistent with (15–15). Then granted (15–16),

V � −�̇/� (15–26)

and the identities �̇ � m · ∇�̇ and �ṁ � P∇�̇ yield
�
m � −P∇V, (15–27)

which is (15–24).
I close this subsection by constructing an evolving surface such that, at X � 0

and t � 0, the fields m, V ,
�
m, and

�
V have arbitrarily prescribed values (consistent

with the constraint m · �
m � 0). This result will be useful in deriving thermomechan-

ical restrictions on constitutive relations. Consider the plane surface S � S (t)
defined by (15–25) with

�(X, t) � m(t) · (X − Z(t)). (15–28)

Then m(t) represents a choice of unit normal to S (t) and

V (X, t) � Ż(t) · m(t) − ṁ(t) · (X − Z(t))

is the corresponding normal velocity. Let Z(0) � 0 and define m0 � m(0); then

because
�
V � V̇ + Vm · ∇V and ∇V � −ṁ, it follows that

V (0, 0) � m0 · Ż(0),
�
V (0, 0) � m0 · Z̈(0) + 2ṁ(0) · Ż(0),

�
m(0) � ṁ(0).

Further, given any vector τ orthogonal to m0 and any function δ(t) with δ(0) � 0
and δ̇(0) � 1, if m(t) satisfies

m(t) � (m0 + δ(t)τ )/|m0 + δ(t)τ |,
then m(0) � m0, ṁ(0) � τ . Thus appropriate choices for Ż(0), Z̈(0), m0, and τ

allow for arbitrary specification of m, V ,
�
m, and

�
V at (0, 0).
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b2. Velocity fields for the boundary curve ∂G of a smoothly
evolving subsurface of S . Transport theorem

Let G (t) denote a smoothly evolving subsurface of S (t) with n(X, t) the outward
unit normal to the boundary curve ∂G (t). (Recall thatn is normal to ∂G but tangent
to S ; cf. the second paragraph of Section 15a.) The intrinsic motion of ∂G is in
the plane spanned by m and n and is characterized by a velocity field of the form

Vm+ V∂Gn, (15–29)

where V is the normal velocity S and V∂G , the velocity of ∂G in the direction of
n, is a uniquely defined field. More generally, an assignment of a vector w(X, t)
to each X ∈ ∂G (t) is a velocity field for ∂G if w is a smooth field that satisfies

w · m � V, w · n � V∂G , (15–30)

so that the component of w tangent to ∂G is arbitrary. If the curve ∂G (t) is
parametrized locally by functions X � r(u, t), then w(X, t) � ∂r(u, t)/∂t is a
velocity field for ∂G (t).

For ϕ a superficial scalar field,

d

dt

{∫
G

ϕ da

}
denotes

d

dt

{ ∫
G (t)
ϕ(X, t) da(X)

}
.

The following transport theorem, in which
�
ϕ is the normal time derivative of ϕ

following S , is basic to what follows:2

d

dt

{∫
G

ϕ da

}
� ∫

G

( �
ϕ−ϕKV

)
da + ∫

∂G

ϕV∂G ds. (15–31)

Given a migrating control volume P (t), let G (t) denote the intersection of the
interface with P , and let n(X, t) denote the outward unit normal to the boundary
curve ∂G (t) (Figure 15.1). Then, because ∂G (t) lies on ∂P (t) for all t , the inner
product of (15–29) with n must yield the normal velocity of ∂P :

U � V (m · n) + V∂G (n · n). (15–32)

Thus a vector field w(X, t) on ∂G (t) will be a velocity field for ∂G if and only if

w · m � V, w · n � U. (15–33)

Indeed, w · n � (w · m)(m · n) + (w · n)(n · n); hence, by (15–32), the conditions
(15–30) and (15–33) are equivalent.

2For the proof of (15–31), cf. Petryk and Mroz [1986], Gurtin, Struthers, and Williams
[1989], Estrada and Kanwal [1991].
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n

FIGURE 15.1. G , shown shaded, is the portion of the interface in the control volume P ; n,
the outward unit normal to ∂G , is the principle normal to the curve ∂G , directed outward
from G , and is hence normal to ∂G , but tangent to the interface; n is the outward unit normal
to ∂P ; m is the unit normal to the interface.

b3. Transformation laws

If v and w are velocity fields for S and ∂G , respectively, then v and w transform
according to

v → v+ a, w → w+ a (15–34)

under the change in material observer defined by (2–9).



CHAPTER 16

Configurational Force
System. Working

a. Configurational forces. Working

I consider two phase (or grains) separated by a smoothly evolving surface S (t)
and described by a configurational force system consisting of fields:

C bulk stress
g internal bulk force
C interfacial stress
gS internal interfacial force
eS external interfacial force

The fields C, g, gS , and eS are as discussed in Sections 5a and 11a, with all fields
objective, and with C and g smooth away from the interface and up to the interface
from either side. The interfacial stress C(X, t), which represents forces such as
surface tension that act within the interface, is a superficial tensor field on S (t).
Given a migrating control volume P � P (t), let G � G (t) denote the portion of
the interface in P ,

G � P ∩ S , (16–1)

and let n(X, t) denote the outward unit normal to ∂G (t) (Figure 15.1); then Cn
represents the configurational force, per unit length, exerted on G (and hence P )
across ∂G by the portion of S that lies outside of G .

The neglect of inertia renders the external bulk force e irrelevant. The same is not
true of eS , which represents a force exerted on the interface by the external world.
This force should be considered virtual, as it would seem difficult, if not impossible,
to produce in a laboratory. The need for such forces is discussed in the introduction
to Chapter 9.



102 16. Configurational Force System. Working

Let v be a velocity field for S . Consider a migrating control volume P � P (t),
with q a velocity field for ∂P and w a velocity field for ∂G . Based on the discussion
of Section 11b, the working on a migrating control volume P � P (t) should
have the form (11–4) with the terms involving S, b, and bS omitted but with an
accounting of the working of the interfacial stress. Because C acts on P across
∂G , it would seem appropriate to take as work-conjugate velocity for C the field
w, which describes the velocity of ∂G . I therefore write the working W (P ) on a
migrating control volume P � P (t) in the form

W (P ) � ∫
∂P

Cn · q da + ∫
G

eS · v da + ∫
∂G

Cn · w ds. (16–2)

b. Configurational force balance

An argument identical to that given in Section 11c yields, as a consequence of
invariance under changes in material observer (cf. (15–34)), the configurational
force balance∫

∂P

Cn da + ∫
P

g dv + ∫
G

(gS + eS ) da + ∫
∂G

Cn ds � 0. (16–3)

By the surface divergence theorem,∫
∂G

Cn ds � ∫
G

DivS C da;

the steps leading to (11–8b) therefore yield the interfacial force balance

[C]m+ gS + eS + DivS C � 0. (16–4)

On the other hand, restricting attention to P in (16–3) that do not intersect the
interface yields the bulk relation

DivC + g � 0.

c. Invariance under changes in velocity fields. Surface
tension. Surface shear

Let P � P (t) be a migrating control volume. I require that the workingW (P ) be
invariant under changes in the choice of velocity fields q, v, and w for ∂P , S , and
∂G , respectively. Because the tangential component of each of these velocity fields
may be chosen arbitrarily, and because there are no standard forces, the argument
leading to (5–17) reduces C to a bulk tension, while that leading to (11–9) renders
eS normal to the interface:

C � π1, (16–5a)

eS � eS m, (16–5b)
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with eS (X, t) a scalar field.
Thus we are left with the requirement that (16–2) be invariant under changes

in the velocity field w. Because the component of w tangent to ∂G is arbitrary,
this invariance is equivalent to the requirement that, given any migrating control
volume P � P (t), ∫

∂G

Cn · t ds � 0 (16–6)

for every vector field t tangential to ∂G . Bearing in mind that P and hence ∂G is
arbitrary, it follows1 that, at any t and any point X ∈ S (t),

t · Ca � 0

for every pair of orthogonal vectors t and a tangent to S at X, and (15–7) yields
the conclusion that the tangential part of C has the form

Ctan � σP, (16–7)

where σ (X, t), a scalar, represents surface tension. Thus, by (15–4),

C � σP+ m⊗ τ; (16–8)

the vector τ(X, t), although tangential, represents, via the term m ⊗ τ, forces
whose action is normal to S ; τ is referred to as the surface shear. Given a control
volume P with n the outward unit normal to ∂G , the force, per unit length, within
the interface applied to P across ∂G , is given by

Cn � σn+ (τ · n)m, (16–9)

with σn tangential—and (τ · n)m normal—to S . Thus, by (15–30) and (16–9),
the working of the interfacial stress can be written in the form∫

∂G

Cn · w ds � ∫
∂G

(σV∂G + Vτ · n) ds, (16–10)

showing that the work-conjugate velocities for the surface tension and surface
shear, respectively, are the velocity of ∂G in the direction of its normal n and the
normal velocity of S

The isotropy of Ctan as a mapping of tangent vector into tangent vectors is basic; in
no way is it related to material symmetry. As we shall see, material symmetry may
indeed affect both σ andτ through constitutive dependencies on m. Note that relative
to an orthonormal basis with e3 � m,

Ctan �
(
σ 0 0
0 σ 0
0 0 0

)
.

1Gurtin and Struthers [1990, eq. (7–4)].
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d. Normal force balance. Intrinsic form for the working

A computation based on (15–20a) results in the identity

DivS C � (σK + DivS τ)m+ ∇S σ − Lτ, (16–11)

thus, because ∇S σ and Lτ are tangential, (16–5a) may be used to conclude that
the normal and tangential components of the force balance (16–4) are

σK + DivS τ + [π] + gS + eS � 0, (16–12a)

∇S σ − Lτ + PgS � 0, (16–12b)

with

gS � gS · m (16–13)

the normal internal force. The normal interfacial force balance (16–12a) is a
basic ingredient of the theory.

For the remainder of Chapter 16 the velocity fields are assumed to have the
intrinsic forms (cf. (15–29))

q � Un, v � Vm, w � Vm+ V∂G n. (16–14)

Appealing to (16–5), the working (16–2) may be written intrinsically as

W (P ) � ∫
∂G

(
σV∂G + Vτ · n) ds + ∫

G

eS V da + ∫
∂P

πU da. (16–15)

e. Power balance. Internal working

By (15–24),

DivS (Vτ) � τ · ∇S V + V DivS τ � −τ · �
m+V DivS τ,

where (· · ·)� denotes the normal time-derivative following S . Thus, by (16–10)
and the surface divergence theorem (15–11a), the working of the interfacial stress
may be written in the form∫

∂G

Cn · w ds � ∫
∂G

(
σV∂G + Vτ · n) ds

� ∫
∂G

σV∂G ds +
∫
G

(−τ · �
m+V DivS τ) da, (16–16)

and, eliminating the term DivS τ in (16–16) using the normal force balance
(16–12a), the working (16–15) may be written as2

W (P ) � − ∫
G

{
σKV + τ · �

m+([π] + gS )V
}
da + ∫

∂G

σV∂G ds +
∫
∂P

πU da.

(16–17)

2Gurtin [1988], Gurtin and Struthers [1990].
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- sKV - τ

FIGURE 16.1. Contributions of the surface tension σ and surface shear τ to the working
at a phase interface.

The right side of (16–17) represents internal working on P , and the equivalence
of (16–15) and (16–17) represents a power balance for P . The significance of the
terms involving [π] and gS are discussed in the paragraph containing (11–18).
Regarding the remaining terms (Figure 16.1):

• The term −σKV represents working associated with temporal changes in
interfacial area due to the curvature of the interface.

• The term −τ · �
m represents working associated with temporal changes in the

orientation of the interface.
• The terms ∫

∂G

σV∂G ds,
∫
∂P

πU da (16–18)

represent working of the surface and bulk tensions within G andP at ∂G and ∂P
as material is transferred to P . The same terms are also present in the external
working (16–15), where they represent working by the agency exterior to P
that is transferring material to P .

There is no expenditure of work associated with “tangential motion” of the inter-
face. Consistent with constraint of this type, I leave as indeterminate the tangential
component PgS of the internal force, an assumption that renders the tangential bal-
ance (16–12b) unimportant and allows one to restrict attention to the normal balance
(16–12a).

In view of (15–12a) and (15–24), for v � Vm,

∇S v � m⊗∇S V + V∇S m � −(m⊗ �
m+VL) (16–19)

and therefore

C · ∇S v � −(σKV + τ · �
m). (16–20)

Thus the term −(σKV +τ · �
m) in (16–17) may be replaced by C ·∇S v, the internal

working of the interfacial stressC over superficial variations of the vectorial normal
velocity v. The termC·∇S v should be compared to the stress power S·Ḟ � S·(∇ ẏ)
that accompanies deformation (cf. (3–8)).

Equating (16–15) and (16–17) yields the identity∫
∂G

V (τ ·n) ds+∫
G

eS V da � − ∫
G

{
σKV + τ · �

m+([π] + gS )V
}
da, (16–21)
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which might be termed a reduced power balance, since the terms (16–18) are not
present. In particular, the external working of the interfacial stress is incomplete;
as it includes only the working

∫
∂G

V (τ · n) ds of the shear.

The stress in the form (16–8) and the balance (16–12a) are due to Gurtin and
Struthers3 and are independent of constitutive equations. For statical situations (with
C � �1, gS � eS � 0) related results were derived earlier using variational argu-
ments based on a constitutive equation ψ � ψ̂(m) for the interfacial energy, with σ
and c defined by σ � ψ and τ � −∂mψ̂(m). In particular, Herring4 derived the force
balance appropriate to triple junctions, while Cahn and Hoffman5 show variationally
that the vector

ξ � σm− τ
satisfies

DivS ξ � [�].
Since m · DivS C � −DivS ξ, this is consistent with (16–12a). The Cahn-Hoffman
vector ξ is widely used in materials science, which is not surprising, since it is only
the normal component of DivS C that generally appears in interface conditions. But
the use of ξ as basic (rather than derived) masks the tensorial nature of stress, which
is classical. In fact, ξ is apropos only when C has the specific form C � σP+m⊗τ;
but in situations that allow for a standard stress S within the interface, neither C nor
S have this form (cf. Chapter 21).

To further relate the Cahn-Hoffman vectorξ to the interfacial stressC, letG � G (t)
be a subsurface of the interface with n the outward unit normal to ∂G , and let
t � m× n, so that t is a unit tangent field on ∂G . Then6

Cn � t× ξ (16–22)

and the external working of the interfacial stress is given by∫
∂G

Cn · w ds � ∫
∂G

(t× ξ) · w ds. (16–23)

Further, the vectorial counterpart of (15–31) yields a transport theorem for the vector-
area measure m da,

d

dt

{∫
G

m da

}
� ∫

G

(�
m−KVm

)
da + ∫

∂G

mV∂G ds, (16–24)

which identifies the vector field
�
m−KVm as the rate at which the vector area is chang-

ing, measured per unit area. Using (16–25), the internal working of the interfacial
stress may be written in the simple form

− ∫
G

(σKV + τ · �
m) da � ∫

G

ξ · (
�
m−KVm) da, (16–25)

3[1990], eq. (7–5)] (cf. Gurtin [1988]).
4[1951b].
5[1972, 1974].
6Cahn ad Hoffman [1974, eq. (7)] note that t× ξ is the force, per unit length, exerted

across an interfacial curve.
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and hence represents working associated with temporal changes in the vector area
of the interface. The verification of (16–22) and (16–25) is as follows:

Cn � σn+ (τ · n)m � σ (t× m) +
(
τ · (t× m)

)
m

� t× (σm) −
(
m · (t× τ)

)
m � t× (σm) − t× τ � t× ξ,

−σKV − τ · �
m � (σm− τ) ·

(�
m−KVm

)
− ξ ·

(�
m−KVm

)
.



CHAPTER 17

Second Law

I now generalize the dissipation inequality to include interfacial energy. As before,
I allow for a bulk free energy �, but, in accord with the physical assumptions
underlying the current development, I assume that� is constant in each phase and
write

F � [�](� constant). (17–1)

In addition, I now allow for an interfacial free energy ψ(X, t), per unit area, and
write the second law in the form:

d

dt

{∫
P

� dv + ∫
G

ψ da

}
≤ W (P ) (17–2)

for every migrating control volume P � P (t), with G � G (t) � S (t) ∩ P (t).
The argument leading to the relation π � � (cf. (16–12a)) is valid here also,

so that, by (16–5a), the Eshelby relation takes the simple form

C � �1,

giving the configurational stress as a pure tension with value equal to the free
energy. Further, because � is constant in each phase, the balance DivC + g � 0
yields

g � 0. (17–3)

Next, because � is constant in each phase, (10–8a) yields

d

dt

{∫
P

� dv

}
� − ∫

G

[�]V da + ∫
∂P

�U da,
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so that using the transport theorem (15–31) and the power balance (16–17) with
π � �, (17–2) becomes

∫
G

(
�
ψ −ψKV

)
da + ∫

∂G

(ψ − σ )V∂G ds ≤ − ∫
G

{
σKV + τ · �

m+gS V
}
da.

(17–4)
Given a time τ , it is possible to find a second referential control volume P ′(t) with
P ′(τ ) � P (τ ), but with V∂G ′ (X, τ ), the velocity of ∂G ′(τ ) in the direction of its
normal, an arbitrary scalar field on ∂G ′(τ ); satisfaction of (17–4) for all such V∂G ′

implies that

σ � ψ (17–5)

and the surface tension and surface free energy coincide.1 Thus, because G is
arbitrary, (17–4) reduces to the interfacial dissipation inequality

�
ψ +τ · �

m+gS V ≤ 0, (17–6)

with (· · ·)� the normal time derivative following S .
It is worth noting the similarities between the bulk tension π and the surface

tension σ :

• Bulk tension works to increase the volume of bulk material, surface tension
works to increase the area of the interface.

• The configurational stressesC � π1 and Ctan � σP have isotropic forms; these
are not consequences of material symmetry, but are general results that follow
from invariance under changes in velocity fields describing the migrations of
∂P (t) and ∂G (t).

• Both π and σ are related to energy: π to bulk free energy, σ to interfacial free
energy.

A reversal of the steps leading to (17–6) shows that the dissipation, defined as
the right side of (17–2) minus the left, is given by

D (P ) � − ∫
G

(
�
ψ +τ · �

m+gS V
)
da ≥ 0. (17–7)

Assume that eS � 0. Then, by (16–15) with σ � ψ , the second law (17–2) for
a stationary control volume P takes a form

d

dt

{∫
P

� dv + ∫
G

ψ da

}
≤ ∫
∂G

ψV∂G ds +
∫
∂G

Vτ · n ds (17–8)

in which the working of the surface tension is replaced by an accounting of the
flow of interfacial energy across ∂G .

1Gurtin and Struthers [1990] (cf. Gurtin [1991]).



CHAPTER 18

Constitutive Equations.
Evolution Equation
for the Interface

Guided by the interfacial dissipation inequality, I allow the free energy (and hence
the surface tension), the shear, and the normal internal force to depend constitu-
tively on the orientation and kinetics of the interface through dependencies on the
interface normal and normal velocity. The second law in the form of the interfacial
dissipation inequality is then used to restrict these constitutive equations.

a. Functions of orientation

Let ϕ(m) be a scalar function and f(m) a vector function of the (unit) interface
normal m. The derivatives ∂mϕ(m) and ∂mf(m) are defined by the chain rule. Given
any curve m(λ) on the unit sphere,

ϕ(m)· � {∂mϕ(m)} · ṁ, f(m)· � {∂mf(m)
}
ṁ (18–1)

(with the dot here the derivative with respect to λ); ∂mϕ(m) is tangent to the unit
sphere, while ∂mf(m) is defined by (18–1) only on vectors perpendicular to m, but
is extended by requiring that

{
∂mf(m)

}
m � 0. Then for m(X, t) the unit normal

field on S (t), a calculation using the chain rule and (15–12a) yields the identities

∇S ϕ(m) � −L∂mϕ(m), (18–2a)

∇S f(m) � − {∂mf(m)
}
L , (18–2b)

DivS f(m) � − {∂mf(m)
} · L . (18–2c)
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b. Constitutive equations

I base the theory on constitutive equations of the form

ψ � ψ̂(m, V ), (18–3a)

τ � τ̂(m, V ), (18–3b)

gS � ĝS (m, V ). (18–3c)

Given an arbitrary constitutive process (i.e., an evolution of the interface con-
sistent with the constitutive equations (18–3a)), the force balances (16–12) give
the external force eS and the indeterminate internal force PgS needed to support
the process; these balances in no way restrict the class of processes possible for
the material. On the other hand, unless the constitutive equations are suitably re-
stricted, not all constitutive processes will be compatible with the second law in
the form (17–6). A basic hypothesis of the theory is that all constitutive processes
be consistent with the dissipation inequality (17–6).1

This hypothesis has strong consequences. Granted (18–3), (17–6) is equivalent
to the inequality

∂V ψ̂(m, V )
�
V +

{
∂mψ̂(m, V ) + τ̂(m, V )

}
· �
m+ĝS (m, V )V ≤ 0, (18–4)

with (· · ·)� the normal time derivative following S . Since one can always find an

evolution of the interface such that m, V ,
�
V , and

�
m have arbitrary values at some

given point and time (cf. the paragraph containing (15–28)), and since the left side

of (18–4) is linear in
�
V and

�
m, the coefficients of these two fields must vanish,

because otherwise
�
V and

�
m could be chosen to violate (18–4). Thus ∂V ψ̂ � 0,

so that ψ̂ is independent of V , and τ � ∂mψ̂ , so that τ is also. The constitutive
equations must therefore be consistent with the following restrictions:

(i) the free energy ψ and the shear τ must be independent V and related through

ψ � ψ̂(m), τ � −∂mψ̂(m); (18–5)

(ii) the normal internal force must obey the following inequality for all values of
its arguments:

ĝS (m, V )V ≤ 0. (18–6)

A consequence of (18–6) is that the constitutive equation gS � ĝS (m, V ), when
smooth in V , must have the form

gS � −b(m, V )V, b(m, V ) ≥ 0, (18–7)

with b(m, V ) a constitutive quantity called the kinetic modulus (cf. (9–25)).2

The reduced relations (18–5) and (18–7) are the most general smooth constitutive

1This extension of the procedure of Coleman and Noll [1963] to two-phase materials is
due to Gurtin [1988] (cf. Angenent and Gurtin [1989], Gurtin [1993b]).

2For b(m, V ) independent of V , b(m)−1 is referred to as the mobility of the interface.
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equations of the form (18–3a) that are consistent with the dissipation inequality
(17–6). A consequence of the reduced relations is that the constitution of the
material is determined by two functions: the interfacial free energy ψ̂(m) and the
kinetic modulus b(m, V ). I now add the assumption that, for all values of their
arguments,

ψ̂(m) > 0, b(m, V ) > 0. (18–8)

For an isotropic body the interfacial energy ψ̂(m) and the kinetic modulus
b(m, V ) are independent of the orientation m, so that, in particular,

ψ � constant, τ � 0. (18–9)

A standard assumption is linear kinetics for which b(m, V ) is independent of V :

gS � −b(m)V. (18–10)

By (18–5), the dissipation (17–7) takes the form

D (P ) � − ∫
G

gS V da � ∫
G

b(m, V )V 2 da ≥ 0, G � P ∩ S , (18–11)

and is quadratic in V when the kinetics is linear.
Anisotropy of the interface manifests itself in a nontrivial dependence of ψ̂(m) on

m. An interesting and important consequence of (18–5) is that for for an anisotropic
interface the surface shear cannot generally vanish.3 This demonstrates the non-
intuitive nature of configurational forces; the interface is infinitesimally thin, yet
it supports shear.

Note that, because σ � ψ , (18–2a) and (18–5) imply that ∇S σ � Lτ and
therefore that the tangential force balance (16–12b) is satisfied identically with

PgS � 0. (18–12)

The surface shear must be balanced by configurational couples exerted by the bulk
material, although such couples, being indeterminate, need not be made explicit. This
furnishes an additional argument in support of the separate treatment of configura-
tional forces when discussing deformation. If the variational treatment of Section 1b
(for an elastic body) is generalized to include an anisotropic interfacial energy, then
the resulting Euler-Lagrange equation in bulk remains (1–7) supplemented by (1–2).
As is well known, granted invariance of the energy under changes in spatial observer,
this classical equation supports neither bulk internal couples nor bulk couple stresses;
a configurational system is needed to balance the couples induced by surface shear.

3This is clear from the work of Herring [1951b], Hoffman and Cahn [1972], Cahn and
Hoffman [1974], who discuss the equilibrium theory within a variational framework.
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c. Evolution equation for the interface

Assume that the external force eS vanishes. By (18–2c) and the relations σ � ψ ,
τ � −∂mψ̂ , and K � 1 · L,

σK + DivS τ � ψ̂(m)K + (∂m∂mψ̂(m)
) · L

�
{
ψ̂(m)1 + ∂m∂mψ̂(m)

}
· L, (18–13)

and the evolution equation for the interface follows from the normal force balance
(16–12a) and the relations C � �1, F � [�], and gS � −b(m, V )V :

b(m, V )V �
{
ψ̂(m)1 + ∂m∂mψ̂(m)

}
· L+ F.4 (18–14)

Consider an isotropic body with linear kinetics, modulo a rescaling that yields
b � ψ � 1; and assume that there is no difference in free energy between the bulk
phases, so that F � 0. The evolution equation (18–14) then has the sample form5

V � K, (18–15)

a parabolic partial differential equation with a large literature.6

The linearity in (18–14) in L is a consequence of the geometry; this linearity is not
constitutive.

The derivatives in (18–14) must respect the constraint |m| � 1. A simpler form of
the equation follows if ψ̂(m) is extended from the unit sphere to all nonzero vectors
by defining ψ̂(z) � |z|ψ̂(z/|z|), because then the term {. . .} in (18–14) reduces to
∂z∂zψ̃(z) evaluated at z � m, the derivative ∂z being in R3.

For nonsmooth interfaces—which are possible when ψ̃(z) is nonconvex—the evo-
lution equation (18–14) is not, by itself, sufficient to describe the motion of the
interface; the weaker form (16–3) of the configurational force balance must be used.
For example, across a curve C defined by a jump in the interface normal m, (16–3)
leads to the balance [Cn] � 0, where [Cn] denotes the jump in superficial traction
across such a curve.

4Proposed by Uwaha [1987, eq. (2)] (in R2 with b � b(m)) and independently (in R3) by
Gurtin [1988, eq. (8–3)]. (Cf. also Angenent and Gurtin [1989] (inR2).) Evolution according
to (18–14) with b � b(m) is studied by Angenent [1991], Chen, Giga, and Goto [1991],
and Soner [1993]. The special case V � b(m)−1F was introduced by Frank [1958]. A
formulation of (18–14) using a variational definition of the curvature term (Taylor [1992])
is given by Taylor, Cahn, and Handwerker [1992], who give extensive references.

5Burke and Turnbull [1952] and Mullins [1956] introduced V � K to study the motion
of grain boundaries.

6Cf. Brakke [1978], Sethian [1985], Abresch and Langer [1986], Gage and Hamil-
ton [1986], Grayson [1987], Osher and Sethian [1988], Evans and Spruck [1991, 1992],
Chen, Giga and Goto [1991], Giga and Sato [1991], Taylor, Cahn, and Handwerker [1992],
Almgren, Taylor, and Wang [1993]).
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d. Lyapunov relations

Assume that the body B is bounded, that S � S (t) is a closed surface contained
in the interior of B, and that eS � 0. Let �α and �β denote the constant values
of the bulk free energy in the regions Bα � Bα(t) and Bβ � Bβ(t) occupied by
phases α and β, so that F � �β −�α . Then, by (17–1),

d

dt

{∫
B

� dv

}
� d

dt

{∫
B

(� −�β) dv

}
� − d

dt
{F vol(Bα)} ; (18–16)

hence (16–2) (with q � 0, G � S , and ∂S � ∅), (17–2), and (17–7) imply that
the total free energy decreases with time:

d

dt

{∫
S

ψ̂(m) da − F vol(Bα)

}
� − ∫

S

b(m, V )V 2 da ≤ 0. (18–17)

In particular, for an isotropic body with linear kinetics, (18–9) and (18–10) imply
that

d

dt
{ψ area(S ) − F vol(Bα)} � − ∫

S

bV 2 da ≤ 0. (18–18)

A consequence of (18–18) is that, for F � 0, the area of the interface decreases
with time. The inequality F > 0 occurs whenBα has a lower bulk energy thanBβ ;
in this instance (18–18) indicates a tendency for the more stable α-phase to grow,
at least in those situations where volume dominates area.



CHAPTER 19

Two-Dimensional Theory1

Because of its geometric simplicity, I shall develop the two-dimensional theory
from scratch, rather than as a special case of the three-dimensional theory.

Notation with a direct counterpart in the three-dimensional theory will be used
without explanation, and arguments that following directly from their analogs in
that theory will be left to the reader.

a. Kinematics

The interface between phases is presumed to be a smoothly evolving closed curve
C (t). Further, t(X, t) and m(X, t), respectively, denote tangent and normal fields
for C (t) such that, in components,

t � (cosϑ, sin ϑ), m � (− sin ϑ, cosϑ), (19–1)

with ϑ(X, t) the counterclockwise angle from the (1, 0) axis to t(X, t); ds denotes
the arc-length differential, with ds > 0 in the direction of t; and the subscript
s denotes partial differentiation with respect to arc length. Then (19–1) yield the
Frenet formulas

ts � Km, ms � −Kt, (19–2)

with

K � ϑs (19–3)

the curvature.

1Cf. Angenent and Gurtin [1989] and Gurtin [1993b] for a more complete discussion,
with proofs.
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The normal time derivative
�
ϑ and the arc-length derivative of the normal velocity

V of C are related through
�
ϑ � Vs, (19–4)

which represents a two-dimensional analog of (15–24).
Attention is restricted to migrating control volumes P (t) for which C (t) inter-

sects ∂P (t) at exactly two points. I will consistently use the following notation for
such control volumes: G (t) denotes the portion of the interface in P (t),

G (t) � C (t) ∩ P (t);
XA(t) and XB(t), respectively, denote the initial and terminal points of G (t) (in the
sense of arc length); for any function �(X, t),

�A(t) � �(XA(t), t), �B(t) � �(XB(t), t); (19–5)

uA(t) and uB(t) defined by

uA � tA · ẊA, uB � tB · ẊB (19–6)

are the tangential endpoint velocities of G (t). Then, because VA and VB are the
normal components of the velocities ẊA and ẊB (cf. (15–29)),

ẊA � uAtA + VAmA, ẊB � uBtB + VBmB. (19–7)

Given a smooth field ϕ(X, t) on C (t) and a smoothly evolving connected
subcurve G � G (t) of C (t),

d

dt

{∫
G

ϕ ds

}
� ∫

G

( �
ϕ−ϕKV

)
ds + ϕBuB − ϕAuA, (19–8)

with
�
ϕ the normal time derivative ofϕ; (19–8) is the analog of the transport theorem

(15–31).

b. Configurational forces. Working. Second law

The bulk stress C and the internal and external interfacial forces gC and eC are
direct counterparts of the corresponding fields introduced in Section 16a, and,
anticipating (17–3), I omit mention of the internal bulk force g from the outset.

Because the interface is a curve, interfacial stress is most simply described by
a vector stress C(X, t). Let S denote the arc length of a fixed point X ∈ C (t).
Then suppressing t , C(X) represents the force exerted across X by the portion of
the interface with s > S on the portion with s < S. The expansion

C � σt+ τm (19–9)

represents a counterpart of (16–8), with σ � C · t surface tension and τ � C · m
surface shear.
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Let P � P (t) be a migrating control volume. Because ẊA and ẊB represent the
velocities of the endpoints of the portion of the interface in P , C performs work
on P of amount CB · ẊB − CA · ẊA; by (19–7) and (19–9),

CB · ẊB − CA · ẊA � σBuB + τBVB − (σAuA + τAVA). (19–10)

Thus, for v a velocity field for C and q a velocity field for ∂P , the workingW (P )
has the form

W (P ) � ∫
∂P

Cn · q ds + ∫
G

eC · v ds + CB · ẊB − CA · ẊA. (19–11)

Under a change in material observer as defined by (2–9), ẊA transforms to
ẊA+a, and similarly for ẊB ; invariance of the working under such changes yields
the configurational force balance (cf. (16–3))∫

∂P

Cn ds + ∫
G

(gC + eS ) ds + CB − CA � 0. (19–12)

Consider the δ-pillbox Gδ(t) about an arbitrary connected subcurve G (t) of the
interface. Then (19–12) applied to Gδ(t) yields, in the limit δ → 0,∫

G

([C]m+ gC + eC ) ds + CB − CA � 0; (19–13)

dividing this relation by the length � of G and passing to the limit �→ 0 yields

Cs + [C]m+ gC + eC � 0. (19–14)

The argument leading to (16–5a) is valid here also; hence C � π1, eC � eC m.
Thus, by (19–9) and the Frenet formulas, the normal and tangential components
of (19–14) are

σK + τs + [π] + gC + eC � 0, (19–15a)

σs − τK + (gC · t)t � 0, (19–15b)

with gC � gC · m the normal internal force.
Next, by (19–4),

(V τ )s � V τs + τ
�
ϑ, (19–16)

and therefore, using (19–10),

CB · ẊB − CA · ẊA � σBuB − σAuA + ∫
G

(
V τs + τ

�
ϑ

)
ds.

Thus, eliminating the term τs using (19–15a), the working becomes (cf. (16–17))

W (P ) � − ∫
G

{
σKV − τ �

ϑ + ([π] + gC )V } ds + ∫
∂P

πU ds + σBuB − σAuA.
(19–17)

The second law has the form

d

dt

{∫
P

� da + ∫
G

ψ ds

}
≤ W (P ) (19–18)
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for every migrating control volume P � P (t), with ψ(X, t) the interfacial free
energy per unit length and � the bulk free energy per unit area. As before, � is
presumed to be constant in each phase.

The argument leading to the relations π � � and σ � ψ are as given in
Chapter 17 and make use of (19–17), (19–18), and the transport theorem (19–8);
these, in turn lead to the interfacial dissipation inequality (cf. (17–6))

�
ψ −τ �

ϑ +gC V ≤ 0. (19–19)

c. Constitutive theory

I consider constitutive equations of the form

ψ � ψ̂(ϑ, V ), (19–20a)

τ � τ̂ (ϑ, V ), (19–20b)

gC � ĝC (ϑ, V ), (19–20c)

and, as before, require that all constitutive processes be consistent with the dis-
sipation inequality (19–19); this yields the following restrictions (cf. (18–5) and
(18–6)):

(i) the free energy ψ and the shear τ are independent of V and related through

ψ � ψ̂(ϑ), τ � ψ̂ ′(ϑ); (19–21)

(ii) the normal internal force must obey the inequality

ĝC (ϑ, V )V ≤ 0. (19–22)

Granted smoothness, the most general form of the constitutive equation for gC

consistent with (19–22) is

gC � −b(ϑ, V )V, b(ϑ, V ) ≥ 0. (19–23)

I henceforth assume that

ψ̂(ϑ) > 0, b(ϑ, V ) > 0. (19–24)

Using (19–1), the tangent and normal may be considered functions t � t(ϑ)
and m � m(ϑ), which renders the stress vector (19–9) also a function of ϑ :

C � Ĉ(ϑ) � ψ̂(ϑ)t(ϑ) + ψ̂ ′(ϑ)m(ϑ). (19–25)

Further, by (19–1)

t′(ϑ) � m(ϑ), m′(ϑ) � −t(ϑ), (19–26)

and this yields

Ĉ′(ϑ) � a(ϑ)m(ϑ), (19–27)
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with a(ϑ) the stress-angle modulus

a(ϑ) � ψ̂(ϑ) + ψ̂ ′′(ϑ). (19–28)

d. Evolution equation for the interface

By (19–3) and (19–21), τs � ψ̂ ′′(ϑ)ϑs � ψ̂ ′′(ϑ)K; thus, assuming that eC

vanishes, (19–23), (19–28), and (19–15a) with π � �, σ � ψ , and

F � [�](� constant)

yield the evolution equation (cf. Footnote 4, Chapter 18)

b(ϑ, V )V � a(ϑ)K + F, (19–29)

or, granted linear kinetics,

b(ϑ)V � a(ϑ)K + F. (19–30)

For an isotropic body modulo a rescaling that yields b � ψ � 1, and for F � 0,
(19–30) reduces to the curve-shortening equation

V � K;
as shown by Gage and Hamilton2 and Grayson,3 a simple closed curve in R2 of
arbitrary initial shape with evolution governed by V � K shrinks to a point in
finite time, with its asymptotic shape a circle.

Locally, an evolving curve may be represented as the graph of a function y �
h(x, t), provided the x � x1 and y � x2 axes are chosen appropriately. Consider
a choice in which arc length increases with increasing x (Figure 19.1). Then,
denoting partial differentiation by a subscript,

hx � tan ϑ, V � ht cosϑ, K � hxx(1 + tan2 ϑ)−3/2, (19–31)

−π/2 < ϑ < π/2, and, assuming linear kinetics, the evolution equation (19–30)
takes the form

B(ϑ)ht � A(ϑ)hxx + F, (19–32)

where

B(ϑ) � b(ϑ) cosϑ, A(ϑ) � (1 + tan2 ϑ)−3/2a(ϑ). (19–33)

The equations (19–30) and (19–32) are equivalent for −π/2 < ϑ < π/2; for other
values of ϑ a different set of axes must be chosen.

By (19–24) and (19–33), B(ϑ) > 0, while sgn A(ϑ) � sgn a(ϑ) with A(ϑ) �
0 ⇔ a(ϑ) � 0. This yields the following important remark.

2[1986].
3[1987].
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=y   h(x,t)
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x

FIGURE 19.1. Sign conventions when the curve is a graph y � h(x, t).

Remark. The evolution equation (19–30) is:

(i) parabolic on any angle interval over which the stress-angle modulus a(ϑ) is
strictly positive;

(ii) backward parabolic on any angle interval over which a(ϑ) is strictly
negative;4

(iii) degenerate parabolic at any angle ϑ0 for which a(ϑ0) � 0, but a(ϑ) > 0 for
all ϑ �� ϑ0 sufficiently close to ϑ0.

e. Corners

If the interface has a corner Z, then ϑ has a jump discontinuity and the curvature
K � ϑs is undefined. The partial differential equation is then not meaningful, at
least in a classical sense, but the balance of (19–13) is, and passing to the limit as
G , with initial and terminal points on opposite sides of Z, shrinks to Z, yields the

requirement that Ĉ be continuous across Z, or equivalently, by (19–25), that

Ĉ(ϑ−) � Ĉ(ϑ+), (19–34)

where ϑ± denote the limits of the angle ϑ from the two sides Z. Thus the set of
corners consistent with balance of configurational forces is a constitutive property
of the material.

f. Angle-convexity. The Frank diagram

The parabolicity of the evolution equation (19–32) is related to the convexity of
the interfacial free energy ψ̂(ϑ). The definition of convexity for such a function
is not obvious; the usual definition is inapplicable because ψ̂(ϑ) is periodic. A

4Gjostein [1963] and Cahn and Hoffman [1974] give strong arguments in support of
interfacial energies that satisfy a(ϑ) < 0 for certain values of ϑ .
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natural notion of convexity for a scalar function of ϑ can be phrased in terms of
its Frank diagram.5 As this notion will play a major role in discussing the fracture
of anisotropic materials, the basic results concerning convexity are discussed for
an arbitrary smooth scalar function γ (ϑ).

The Frank diagram of γ (ϑ) is the curve defined in polar coordinates (r, ϑ) by

Frank(γ ) � {(r, ϑ) : r � γ (ϑ)−1, γ (ϑ) > 0
} ; (19–35)

Frank(γ ) is therefore the locus of γ (ϑ)−1t(ϑ) as ϑ , the angle to t(ϑ), traverses
the set of angles with γ (ϑ) > 0.

Assume that, as for the interfacial energy ψ̂(ϑ),

γ (ϑ) > 0 for all ϑ,

so that Frank(γ ) is a simple closed curve. Then γ (ϑ) will be termed angle convex
if the Frank diagram of γ (ϑ) is strictly convex; that is, if given any angle ϑ , the
tangent line L to Frank(γ ) at the point x with angle ϑ intersects Frank(γ ) only at
x. Here the angle ϑ of a point x �� 0 is defined by t(ϑ) � x/|x|.

More generally, a convexifying tangent L is defined to be a straight line L
tangent to Frank(γ ) at one or more points but disjoint from the region interior to
Frank(γ ). The angles of the points of intersection of L with Frank(γ ) will then
be referred to as tangency angles of L (Figure 19.2); γ will be termed regular if
each of its convexifying tangents has at most a finite number of tangency angles;
an arbitrary angle ϑ will be termed globally stable if ϑ is a tangency angle of
some convexifying tangent. (The set of globally stable angles is then the set of
all angles at which the boundary of the convex hull of Frank(γ ) coincides with
Frank(γ ).) Note that if γ is not angle convex, then Frank(γ ) has at least one
convexifying tangent L with two or more tangency angles.

The following remarks should underline the importance of angle convexity.6

An alternative but equivalent notion of convexity is phrased in terms of the function
γ̃ (x) defined for |x| �� 0 by

γ̃ (x) � |x|γ (ϑ), (19–36)

with ϑ the angle of x. Then the angle convexity of γ (ϑ) is equivalent to the
requirement that

γ̃ (x) − γ̃ (z) < (x− z) · ∇γ̃ (x) (19–37)

for all nonzero vectors x and zwhose angles are unequal. That angle convexity should
be related to the more standard convexity expressed by (19–37) becomes somewhat
more transparent upon recalling that the level sets of a convex function are convex,
and noting that, by (19–36), the level set γ̃ (x) ≡ 1 has the equation r � γ (ϑ)−1.

5Frank [1963]. Frank [1963], Angenent and Gurtin [1989], and Gurtin [1993b] define
the Frank diagram using the angle to m rather than the angle to t; this yields only minor
differences (e.g., Ĉ(ϑ) is normal to Frank(ψ̂) here, but tangent in Frank’s theory). The
tangent angle is used here because it is more natural in discussing fracture (Part G).

6Cf., e.g., Gurtin [1993], §7.
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FIGURE 19.2. Frank diagram [the curve Frank(γ )] of a function γ (ϑ) that is not angle-
convex. L is a convexifying tangent; ϑ1 and ϑ2 are tangency angles.

A result demonstrating the physical significance of angle convexity concerns the
energy ∫

G

ψ̂(ϑ(s)) ds

of an oriented curve G and is stated as follows: ψ̂(ϑ) is angle convex if and only
if, among all oriented curves from one arbitrarily prescribed point to another, the
straight line segment has (strictly) least energy.

The Wulff shape (or Wulff crystal) corresponding to ψ̂(ϑ) is the region W that
minimizes ∫

∂W

ψ̂(ϑ(s)) ds

over the set of all regions W of unit area. The set of globally stable angles of ψ̂(ϑ)
then consists of the angles of tangents to ∂W . (If ψ̂(ϑ) is not angle convex, then ∂W
will have corners, because some angles will be missing.)

Of importance is the Frank diagram of functions of the form

J (ϑ) � j · t(ϑ) (19–38)

where j �� 0 is a prescribed vector. The angle interval on which Frank(J ) is defined
consists of those anglesϑ for which J (ϑ) > 0 and hence is of the form (ϑ0, ϑ0+π);
not all angles are included.

Lemma 19.1.

(i) Frank(J ) is the straight line consisting of all x such that x · j � 1.
(ii) j is orthogonal to Frank(J ) and |j|−1 is the perpendicular distance from

Frank(J ) to the origin.
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(iii) Let j1 and j2 be nonzero vectors and define J1(ϑ) � j1 ·t(ϑ), J2(ϑ) � j2 ·t(ϑ).
Then

Frank(J1) � Frank(J2) ⇒ j1 � j2.

Proof. Because Frank(J ) is the curve

r � {t(ϑ) · j}−1, (19–39)

and because x � rt(ϑ), (i) follows. Next, j is the gradient of the function x · j− 1;
thus j is orthogonal to Frank(J ). Further x � |j|−2j ∈ Frank(J ); hence |j|−1 is the
perpendicular distance from Frank(J ) to the origin. To verify (iii), assume that the
Frank diagrams of J1 and J2 coincide. Then, by (ii), j1 � ±j2. But for j1 � −j2 the
two Frank diagrams would not coincide, since their angle intervals would differ
by the angle π . �
Lemma 19.2. Let γ (ϑ) be a smooth, strictly positive function and let j be a
nonzero vector. Then

(i) Given an angle ϕ with J (ϕ) > 0,

J (ϕ) � γ (ϕ) ⇔ Frank(γ ) intersects Frank(J )
at a point x with angle ϕ; (19–40a)

J (ϕ) < γ (ϕ) ⇔ the point x on Frank(γ ) with angle ϕ
lies strictly outside of Frank(γ ). (19–40b)

(ii) Frank(J ) is tangent to Frank(γ ) at the point x with angle ϕ if and only if

j � γ (ϕ)t(ϕ) + γ ′(ϕ)m(ϕ). (19–41)

Proof. Assertion (i) is a direct consequence of the definition of the Frank
diagram.

To verify (ii), assume that Frank(J ) intersects Frank(γ ) at a point x with angle
ϕ, or equivalently, by (19–40a), that

J (ϕ) � t(ϕ) · j � γ (ϕ). (19–42)

Then Frank(J ) and Frank(γ ) are tangent at x if and only if the derivatives, with
respect to ϑ , of the curves r � {t(ϑ) · j}−1 and r � γ (ϑ)−1 coincide at ϑ � ϕ.
Thus, since t′(ϑ) � m(ϑ), Frank(J ) and Frank(γ ) are tangent at x if and only if

m(ϕ) · j � γ ′(ϕ). (19–43)

Therefore, if Frank(J ) and Frank(γ ) are tangent at x, then (19–42) and (19–43),
and hence (19–41), hold. Conversely, (19–41) yields (19–42) and (19–43), and
these imply that the Frank diagrams are tangent at x. �
Lemma 19.3. Let γ (ϑ) be a smooth, strictly positive function.

(i) Given angles ϑ1 < ϑ2, Frank(γ ) is flat over the interval [ϑ1, ϑ2] if and only
if

γ (ϑ) + γ ′′(ϑ) � 0 for all ϑ ∈ [ϑ1, ϑ2]. (19–44)
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(ii) If γ (ϑ) is angle convex, then

γ (ϑ) + γ ′′(ϑ) ≥ 0 for all ϑ, (19–45)

with γ (ϑ) + γ ′′(ϑ) � 0 at isolated angles, if anywhere.
(iii) Assume that γ (ϑ) is regular. If γ (ϑ) is not angle convex, then

γ (ϑ) + γ ′′(ϑ) < 0 for some ϑ. (19–46)

Proof. Let

J̃(ϕ) � γ (ϕ)t(ϕ) + γ ′(ϕ)m(ϕ) (19–47)

for all ϕ. Then, because t′ � m and m′ � −t,

J̃′(ϕ) � [γ (ϕ) + γ ′′(ϕ)]m(ϕ). (19–48)

Further, Frank(γ ) is flat over [ϑ1, ϑ2] if and only if it has a single tangent line over
the entire interval, or, by Lemma 19.1(iii) and Lemma 19.2(ii), if and only if J̃(ϕ)
is constant on [ϑ1, ϑ2], or by (19–48), if and only if (19–44) is satisfied. Thus (i)
is valid.

Assume that γ (ϑ) is angle convex. Choose an arbitrary angle ϕ. Let j be given
by (19–41) and J by (19–38), so that, by Lemma 19.2(ii), Frank(J ) is tangent to
Frank(γ ) at the point with angle ϕ. Thus, by (19–40), �(ϕ) defined near ϑ � ϕ

by

�(ϑ) � J (ϑ) − γ (ϑ) � j · t(ϑ) − γ (ϑ)

has a maximum at ϑ � ϕ. Thus �′′(ϕ) ≤ 0. But, because t′ � m and m′ � −t,

�′′(ϑ) � −j · t(ϑ) − γ ′′(ϑ);
(19–38) and (19–40a) therefore imply that

�′′(ϕ) � −γ (ϕ) − γ ′′(ϕ) ≤ 0,

which is (19–45). Further, angle convexity requires that Frank(γ ) be strictly con-
vex. Thus Frank(γ ) can have no flat portions, which, by (i), implies the final
assertion of (ii).

Assume that γ (ϑ) is not angle convex. Then Frank(γ ) has a convexifying tangent
L with (at least two) tangency angles ϑ1 and ϑ2, ϑ1 < ϑ2. Let j1 � j̃(ϑ1),
j2 � j̃(ϑ2), with j̃ defined in (19–47), and let J1 and J2 denote J in (19–38) with
j � j1 and j � j2. Then, by Lemma 19.2, L � Frank(J1) � Frank(J2), so that,
by Lemma 19.1(iii), j1 � j2. Since ϑ2 < ϑ1 + π , it is always possible to find a
vector a such that �(ϕ): � a · m(ϕ) > 0 for all ϕ ∈ [ϑ1, ϑ2]. Then, by (19–48),
integrating a · j̃′(ϕ) from ϑ1 to ϑ2 yields

ϑ2∫
ϑ1

[
γ (ϕ) + γ ′′(ϕ)

]
�(ϕ) dϕ � 0,

so that either: (1) γ (ϑ)+γ ′′(ϑ) � 0 for all ϑ ∈ [ϑ1, ϑ2]; or (2) γ ′′(ϑ)+γ (ϑ) < 0
for some ϑ ∈ [ϑ1, ϑ2]. The assumption of regularity for γ rules out flat portions
on Frank(γ ); hence, by (i) of this lemma, regularity also rules out (1). �
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g. Convexity of the interfacial energy and evolution of the
interface

The results of the last section have important consequences regarding an evolving
interface.

Theorem on Convexity and Evolution

(i) Assume that ψ̂(ϑ) is angle convex. Then the evolution equation (19–30) is
parabolic at all but possibly an isolated set of angles; at these angles (19–30)
is degenerate parabolic.

(ii) Assume that ψ̂(ϑ) is regular, but not angle convex. Then there are angles ϑ
at which the evolution equation (19–30) is backward parabolic.

(iii) A corner between globally stable angles ϑ1 and ϑ2 is possible only if ψ̂(ϑ)
is not angle convex, and then only for ϑ1 and ϑ2 tangency angles of the same
convexifying tangent of Frank(ψ̂).

Proof. The results (i) and (ii) follow from the Remark at the end of Section 19d
and (ii) and (iii) of Lemma 19.3. To verify (iii), assume that a corner between
globally stable anglesϑ1 and andϑ2 exists, so that, by (19–34), Ĉ(ϑ1) � Ĉ(ϑ2) �: j.
Then, by (19–25) and Lemma 19.2(ii), Frank(J ) is tangent to Frank(ψ̂) at the point
with angle ϑ1 and with angle ϑ2, so that, by definition, Frank(J ) is a convexifying
tangent of Frank(γ ). Thus ϑ1 and ϑ2 are tangency angles of the same convexifying
tangent. �

The initial-value problem for the evolution equation (19–30) may be stated as
follows: given an initial interfacial curve C0, find an interfacial curve that evolves
according to (19–30) and satisfies the iniial condition C (0) � C0. When a(ϑ) > 0
for all ϑ , so that (19–30) is parabolic, this problem is locally well posed.7

When a(ϑ) < 0 on certain angle intervals, the problem is more difficult because
of the backward parabolicity of (19–30). A method of overcoming this difficulty
is to allow the interface to contain corners that exclude the backward-parabolic
ranges of ϑ .8 In the presence of a corner (19–30) does not by itself characterize
the motion of the interface; there is the additional condition (19–34) requiring that
the stress be continuous across each corner. If ϑ1 and ϑ2, each globally stable,
are the angles of such a corner, then ϑ1 and ϑ2 must be tangency angles of the
same convexifying tangent of Frank(ψ̂). Thus, restricting attention to evolutions
for which ϑ is globally stable, the possible corner angles are known in advance.9

7Angenent [1991], Chen, Giga, and Goto [1991], Barles, Soner, and Souganidis [1993],
Soner [1993].

8Angenent and Gurtin [1989].
9Local well-posedness of evolutions consistent with (19–30) and (19–34)—ensuing

from initial curves consisting of sections witha(ϑ) > 0 separated by appropriate corners—is
established by Angenent and Gurtin [1994].



Part E

Coherent Phase Interfaces
wtih Interfacial Energy

and Deformation

A more general theory that accounts for both deformation and interfacial energy
is complicated. For that reason, I begin with a simple theory that neglects stan-
dard stresses within the interface, an assumption tantamount to neglecting stresses
associated with stretching the interface.

The kinematics relevant to this chapter are as discussed in Chapter 10.



CHAPTER 20

Theory Neglecting
Standard Interfacial Stress

a. Standard and configurational forces. Working

The theory is based on a standard force system

S bulk stress
b external bulk force
bS external interfacial force

and a configurational force system

C bulk stress
g internal bulk force
e external bulk force
C interfacial stress
gS internal interfacial force
eS external interfacial force

The fields are assumed objective with bulk fields smooth away from the interface
and up to the interface from either side (cf. the discussion of Sections 4a, 5a, 11a,
and 16a).

The external forcesb,bS , e, and eS should be considered as having inertial and virtual
components, with the virtual components not specified constitutively, but instead
assignable in any way compatible with the basic laws (cf. the second paragraph of
Chapter 9).

Let v be a velocity field for S . Consider a migrating control volume P � P (t).
Let G � P ∩ S , choose velocity fields q for ∂P and w for ∂G , and let

ẙ � ẏ+ Fq,
�
y � 〈ẏ〉 + 〈F〉v, (20–1)
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respectively, denote motion velocities following ∂P and S as described by q and v.
Then, arguing as in Sections 5b, 11b, and 16a, the workingW (P ) on a migrating
control volume P � P (t) is written in the form (cf. (11–4), (16–2))

W (P ) � ∫
∂P

(Cn·q+Sn·ẙ) da+∫
P

b·ẏ dv+∫
G

(eS ·v+bS ·�y) da+∫
∂G

Cn·w ds. (20–2)

Invariance of the working under changes in material and spatial observer yields
the standard force and moment balances∫

∂P

Sn da + ∫
P

b dv + ∫
G

bS da � 0, (20–3a)

∫
∂P

(y− o) × Sn da + ∫
P

(y− o) × b dv + ∫
G

(y− o) × bS da � 0
¯
, (20–3b)

and the configurational force balance∫
∂P

Cn da + ∫
P

(g+ e) dv + ∫
∂G

Cn ds + ∫
G

(gS + eS ) da � 0; (20–4)

these lead to the bulk relations (3–6) and (5–10) and to the local force balances

[S]m+ bS � 0, (20–5a)

[C]m+ gS + eS + DivS C � 0, (20–5b)

for the interface (cf. (11–8), (16–4)).
Invariance of the working under changes in the choice of velocity fields for

∂P (t), S (t), and ∂G (t) yields (5–17), (11–9), and (16–7); viz.,

C � π1 − F�S, (20–6a)

Ctan � σP, (20–6b)

PeS � −P〈F〉�bS . (20–6c)

Thus, as before, the tangential part of the configurational interfacial stress is a
surface tension σ , so that, by (15–5) (cf. (16–8)),

C � σP+ m⊗ τ. (20–7)

Further, (20–5a), (20–6a,b) and the compatibility relation [F]P � 0 again
yield (11–10), and using this relation and (16–11), the normal and tangential
configurational force balances are given by

σK + DivS τ + m · [C]m+ gS + eS � 0, (20–8a)

∇S σ − Lτ + PgS � 0, (20–8b)

with

gS � gS · m, eS � eS · m, (20–9)

and differ from (16–12) in the form of the configurational stress C, which here
includes the deformational contribution −F�S.
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Choosing the intrinsic forms q � Un, v � Vm, and w � Vm + V∂G n for

the velocity fields, so that ẙ � ẏ + UFn and
�
y � 〈ẏ〉 + V 〈F〉m, and appealing

to (16–10), (20–9), and the stress relation C � π1 − F�S, the working may be
written in the intrinsic form (cf. (11–14), (16–15))

W (P ) � ∫
∂P

Sn · ẏ da + ∫
P

b · ẏ dv + ∫
∂P

πU da

+ ∫
G

{
bS · �

y+eS V
}
da + ∫

∂G

(
σV∂G + Vτ · n) ds. (20–10)

b. Power balance. Internal working

The identities (11–16b) and (16–16) remain valid within the current more general
theory; thus, since C � π1 − F�S,

∫
∂P

Sn · ẏ da + ∫
P

b · ẏ dv + ∫
G

bS · �
y da

� ∫
P

S · Ḟ dv + ∫
G

(m · [C]m− [π])V da, (20–11a)

∫
∂G

(
σV∂G + Vτ · n) ds � ∫

∂G

σV∂G ds +
∫
G

(−τ · �
m+V DivS τ) da. (20–11b)

Adding these relations and using the normal configurational force balance (20–8a)
to eliminate the term (m · [C]m+ DivS τ)V yields

W (P ) � ∫
P

S · Ḟ dv − ∫
G

{
σKV + τ · �

m+ ([π] + gS )V } da
+ ∫
∂G

σV∂G ds +
∫
∂P

πU da. (20–12)

The right side of (20–12) represents internal working on P , and the equivalence
of (20–10) and (20–12) represents a power balance for P . Equating (20–10) and
(20–12) yields, upon canceling the terms

∫
∂P

πU da and
∫
∂G

σV∂G ds, the reduced

power balance

∫
∂P

Sn · ẏ da + ∫
P

b · ẏ dv + ∫
G

{
bS · �

y+eS V
}
da + ∫

∂G

Vτ · n ds

� ∫
P

S · Ḟ dv − ∫
G

{
σKV + τ · �

m+ ([π] + gS )V } da. (20–13)

The balances (20–12) and (20–13) should be compared to (16–17) and (16–21).

The term bS · �
y+eS V in (20–10) and (20–13) may be replaced by bS · 〈ẏ〉 if the

external forces are inertial (cf. (12–8)).
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c. Second law

c1. Second law. Interfacial dissipation inequality

The second law takes the form

d

dt

{∫
P

� dv + ∫
G

ψ da

}
≤ W (P ) (20–14)

withW (P ) given by (20–2). Here ψ(X, t) is the interfacial free energy, assumed
smooth on S (t), while �(X, t) is the bulk free energy, assumed smooth away
from the interface and up to the interface from either side.

The theory in bulk is no different from that presented in Part A; in particular,
π � �; thus applying the transport theorems (10–8a) and (15–31) to the left side
of (20–14) and using the power balance (20–12),

∫
G

(
�
ψ −ψKV

)
da + ∫

∂G

(ψ − σ )V∂G ds +
∫
P

(
�̇ − S · Ḟ) dv

≤ − ∫
G

{
σKV + τ · �

m+gS V
}
da. (20–15)

The argument leading to (17–5) is also valid here and, as before, it implies that

σ � ψ.
Shrinking P to the interface therefore yields, with the aid of (10–10b), the
interfacial dissipation inequality (17–6); viz.

�
ψ +τ · �

m+gS V ≤ 0, (20–16)

with (. . .)� the normal time derivative following S .
Finally, the dissipation, defined as the right side of (20–14) minus the left, is

given by

D (P ) � − ∫
P

(
�̇ − S · Ḟ) dv − ∫

G

(
�
ψ +τ · �

m+gS V
)
da ≥ 0. (20–17)

c2. Derivation of the interfacial dissipation inequality using a
pillbox argument

LetG (t) denote a smoothly evolving subsurface ofS (t), and takeP (t) � Gδ(t), the
δ-pillbox about G (t). Then, granted (11–26), a consequence of (11–25c), (11–27),
the transport theorem (15–31),and the balance [S]m + bS � 0 is that the second
law (20–14) may be written in the form

∫
G

(
�
ψ −ψKV

)
da + ∫

∂G

ψV∂G ds

≤ ∫
G

{
(m · [C]m+ eS )V

}
da + ∫

∂G

Cn · w ds.
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On the other hand, using (20–8a) to eliminate the term DivS τ from (16–16),∫
∂G

Cn · w ds � ∫
∂G

σV∂G ds −
∫
G

{
τ · �

m+V (σK + m · [C]m+ gS + eS )
}
da,

and, arguing as above, we may use the last two relations to conclude that σ � ψ ,
and hence that the interfacial dissipation inequality (20–16) is satisfied.

d. Constitutive equations

The bulk phases α and β are presumed to be hyperelastic as defined by constitutive
equations (12–19).

Regarding the interface, I consider constitutive equations giving ψ , τ, and gS

when m, V , and the interfacial limits F± of the deformation gradient are known.
In view of the compatibility condition (10–2b), 0 � [F]P � [F](1 − m⊗ m), and
hence [F] � ([F]m)⊗m. The limits F± are therefore determined by m, the average

A: � 〈F〉 � 1

2
(F+ + F−),

and the jump

j: � [F]m
through the identity

F± � A± 1

2
j ⊗ m.

Therefore, replacing the variables (m, V ,F+,F−) by (m, V ,A, j ), I consider
constitutive equations of the form

ψ � ψ̂(m, V ,A, j), (20–18a)

τ � τ̂(m, V ,A, j), (20–18b)

gS � ĝS (m, V ,A, j). (20–18c)

Consider an arbitrary constitutive process; that is, an evolution S � S (t) of the
interface together with a motion y related to S through the constitutive equations
(12–19) and (20–18) and through the compatibility conditions (10–2). Then � and
S (and hence C) are determined in bulk, while σ � ψ , τ and (and hence C), and
gS are determined on the interface. Given these fields, the force balances and basic
identities can be satisfied using the external and indeterminate forces; that is, using
the bulk body forces b, e, and g and the interfacial forces bS , eS , and PgS , which
are arbitrarily assignable (since b, e, bS ,and eS have virtual components, while g

and PgS are indeterminate). The force balances consist of the bulk balances (3–6a)
and (5–10), the standard interfacial balance (20–5a), and the normal and tangential
configurational balances (20–8a) and (20–8b); the basic identities are the external
force relation (5–20) and the invariance requirement (20–6c). The relations (3–6a),
(5–10), and (5–20) give the body forces b, e, and g; (20–5a) gives bS ; (20–6c) and
(20–8a) give eS ; and (20–8b) gives PgS . Thus, all of the relevant balances and
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identities are satisfied, and all that remains to be satisfied is the second law in the
form of the interfacial dissipation inequality (20–16). (The local form of the second
law in bulk is (6–11), and its satisfaction is ensured by (12–19).)

Note that there are neither too many nor two few external and indeterminate forces
available to ensure satisfaction of the relevant balances and identities, an inflexibility
that demonstrates the lack of capriciousness in the use of external forces.

To ensure compatibility of all constitutive processes with the second law, all
constitutive processes are required to be consistent with the dissipation inequality
(20–16). Granted (20–18), (20–16) is equivalent to the inequality

∂V ψ̂(m, V ,A, j)
�
V +

{
∂Aψ̂(m, V ,A, j)

}
· �
A+

{
∂jψ̂(m, V ,A, j)

}
·

�
j

+
{
∂mψ̂(m, V ,A, j) + τ̂(m, V ,A, j)

}
· �
m+ĝS (m, V ,A, j)V ≤ 0, (20–19)

with (. . .)� the normal time derivative following S .
As will be shown in Section 20d, one can always find an evolution of the interface

together with a motion (consistent with (10–2)) such that m, V , A,
�
m,

�
V ,

�
A, and

�
j

have arbitrary values at some given point and time. Thus, because the left side of

(20–19) is linear in
�
m,

�
V ,

�
A, and

�
j, the coefficients of these fields must vanish:

∂V ψ̂(m, V ,A, j) � 0,

∂Aψ̂(m, V ,A, j) � 0,

∂jψ̂(m, V ,A, j) � 0,

τ̂(m, V ,A, j) � −∂mψ̂(m, V ,A, j).

The general constitutive equations (20–18) must therefore be consistent with the
following set of restrictions:

(i) the free energy ψ and the shear τ must be independent of V , A, and j (and
hence the limits F±) and must be related through

ψ � ψ̂(m), τ � −∂mψ̂(m); (20–20)

(ii) the normal internal force must obey the inequality

ĝS (m, V ,A, j)V ≤ 0; (20–21)

for ĝS smooth this inequality yields the constitutive equation (cf. (9–25))

gS � −b(m, V ,A, j)V, b(m, V ,A, j) ≥ 0. (20–22)

The relations (20–20) and (20–22) are the most general constitutive equations
of the form (20–18) that are smooth and consistent with the dissipation inequality
(20–16). Note that the kinetic modulus b(m, V ,A, j) may depend not only on m
and V , but also on the interfacial limits F±.

Note that the argument leading to (18–12) is also valid here; thus the tangential
force balance (20–8b) is satisfied identically with PgS � 0.
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e. Construction of the process used in restricting the
constitutive equations

The domain D of the constitutive equations (20–18) consists of all unit vectors m,
all scalars V , and all tensors A and vectors j such that the tensors F± � A± 1

2 j⊗m
have strictly positive determinant. Choose (m0, V0,A0, j0) ∈ D arbitrarily.

Consider the plane surface S � S (t) discussed in the paragraph containing
(15–28), which I will refer to as Paragraph C. For this choice of S , the fields m, V ,
�
m, and

�
V can be chosen to have arbitrarily prescribed values at X � 0 and t � 0.

Next, choose, arbitrarily, a tensor A1 and a vector j1, and let

A(t) � A0 + δ(t)A1, j(t) � j0 + δ(t)j1, (20–23)

where δ(t) is a scalar function such that

δ(0) � 0, δ̇(0) � 1, |δ(t)| ≤ ε for all t (20–24)

(which is consistent with, but more restrictive than, the conditions imposed on
δ(t) in Paragraph C). Because the set of all tensors with strictly positive determi-
nant is open in the set of all tensors, it is possible to choose ε small enough that(
m(t), V (t),A(t), j(t)

) ∈ D for all t . Let

F±(t) � A(t) ± 1

2
j(t) ⊗ m(t) (20–25)

and define y by

y(X, t) � F−(t)(X − Z(t)) for m(t) · (X − Z(t)) < 0, (20–26a)

y(X, t) � F+(t)(X − Z(t)) for m(t) · (X − Z(t)) > 0. (20–26b)

Then (20–25), (20–26), and the results of Paragraph C imply that

[ẏ] � (j̇ ⊗ m+ j ⊗ ṁ)(X − Z) − (j ⊗ m)Ż � −V j � −V [F]m;
hence y satisfies the compatibility conditions (10–2). Further,

A(0) � A0, j(0) � j0,
�
A(0, 0) � A1,

�
j(0, 0) � j1; (20–27)

thus, because A1 and j1 are arbitrary, these results and those of Paragraph C yield
an evolution S � S (t) of the interface and a motion y—with S and y related

through the compatibility conditions (10–2)—such that m, V , A, j,
�
m,

�
V ,

�
A, and

�
j

have arbitrary values at the point X � 0 and the time t � 0.

f. Basic equations with inertial external forces

f1. Standard and configurational balances

Assume that the underlying observer, the body force b, and the interface forces bS

and eS are inertial. The argument used to derive (12–13)–(12–15), here used in
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conjunction with (20–5a) and (20–8a), then yields the momentum balance (12–13)
and, because σ � ψ , the normal configurational balance

ψK + DivS τ + m · [�1 − F�S]m+ [krel] + gS � 0, (20–28)

with [krem] � 1
2ρ[|ẏ−

�
y |2] (cf. (12–1)), or equivalently,

ψK + DivS τ + [�] − 〈S〉m · [F]m+ gS � 0. (20–29)

These relations are independent of constitutive equations. (The indeterminacy of
the tangential component of gS renders the tangential configurational balance
superfluous.)

f2. Summary of basic equations

The basic equations for the bulk material, assumed elastic, consist of the
momentum balance (12–20) supplemented by the constitutive equations (12–19).

The basic equations for the interface are the compatibility conditions

[ẏ] � −V [F]m, (20–30a)

[F]P � 0, (20–30b)

the momentum balance

[S]m � −ρ[ẏ]V, (20–31)

and the normal configurational balance{
ψ̂(m)1 + ∂m∂mψ̂(m)

}
· L+ m · [�1 − F�S]m+ [krel] � bV (20–32)

or equivalently,{
ψ̂(m)1 + ∂m∂mψ̂(m)

}
· L+ [�] − 〈S〉m · [F]m � bV, (20–33)

with b � b(V,m,A, j) ≥ 0. The relations (20–32) and (20–33) follow from
(20–28) and (20–29) with ψ , τ, and gS specified by the constitutive relations

(20–20) and (20–22), using the identityψK+DivS τ �
{
ψ̂(m)1 + ∂m∂mψ̂(m)

}
·L

(cf. (18–13)).
If the interface is isotropic with linear kinetics, then both ψ and b are constant

and (20–32) reduces to

ψK + m · [�1 − F�S]m+ [krel] � bV, (20–34)

while (20–33) takes the form

ψK + [�] − 〈S〉m · [F]m � bV . (20–35)

The system of equations discussed in this section represents the simplest correction
to the system of Section 12e, which was derived neglecting interfacial energy; the
only difference between the two systems is the presence of the capillarity termψK
in the last two equations.
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g. Global energy inequality. Lyapunov relations

Assume that the body B is bounded, that S � S (t) is a closed surface contained
in the interior of B, and that the external forces are inertial. Then the second
law (20–14), with right side in the intrinsic form (20–10) and with (12–7) used to
replace the inertial working by the production of kinetic energy, yields, forP � B,

d

dt

{∫
B

(� + k) dv + ∫
S

ψ da

}
− ∫
∂B

Sn · ẏ da � −D (B) ≤ 0. (20–36)

Here the bulk free energy is given by (12–19) in the subregions ofB occupied by α
and β; the interfacial free energy is given by ψ � ψ̂(m); and the dissipation D (B)

is given by (20–17) subject to the restrictions �̇ � S · Ḟ and
�
ψ � −τ · �

m, so that

D (B) � − ∫
S

gS V da � ∫
S

bV 2da, (20–37)

with b � b(V,m,A, j) ≥ 0.
A consequence of (20–36) and the definitions (7–15) and (7–16) are the

following Lyapunov relations: for a fixed boundary

d

dt

{∫
B

(� + k) dv + ∫
S

ψ da

}
� −D (B) ≤ 0; (20–38)

for a boundary under constant dead loads

d

dt

{∫
B

(� − S0 · F + k) dv + ∫
S

ψ da

}
� −D (B) ≤ 0. (20–39)



CHAPTER 21

General Theory with
Standard and Configurational
Stress within the Interface1

I now generalize the theory to include standard stress within the interface. The basic
ingredients of the general theory are a superficial tensor field S that represents this
stress and a superficial tensor field F that represents the action of the deformation
gradient within the interface.

a. Kinematics. Tangential deformation gradient

The basic kinematics of motion in the presence of an evolving interface S � S (t)
is as presented in Chapter 10, and the discussion here begins where that chapter
ends. Let y be a motion of B. Because y is continuous across S and smooth up to
S from either side, the surface gradient ∇S y may be computed using the second
of (15–8) applied to y+ or y−; the result is the tangential deformation gradient

F � ∇S y � F+P+ F−P � 〈F〉P (21–1)

(cf. (10–2b)). The tensor F(X, t) maps vectors tangent to S (t) at X into vectors
tangent to the deformed interface at y(X, t).2 Indeed, 〈F〉−�m divided by its mag-
nitude is the unit normal to the deformed interface, and for t a vector field tangent
to S , (〈F〉−�m

) · Ft � (〈F〉−�m
) · 〈F〉Pt � m · t � 0.

1Cf. Gurtin and Struthers [1990] and Gurtin [1993a, 1995] for more complete
discussions.

2Gurtin and Murdoch [1975].
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An identity basic to the discussion of internal working concerns the surface

gradient of the normal time derivative
�
y � 〈ẏ〉 + V 〈F〉m following S .3

∇S

�
y � 〈F〉�P− 〈F〉

(
m⊗ �

m
)
− V 〈F〉L . (21–2)

To verify (21–2), consider y restricted to one side of the interface, so that
�
y � ẏ+Fv,

with v � Vm, where, for convenience, the plus and minus signs that signify
interfacial limits are suppressed. Then, by (15–8b), ∇S ẏ � ḞP. Further, by the
product rule, ∇S (Fv) equals ∇S applied to Fv holding F fixed plus ∇S applied
to Fv holding v fixed. By (16–19), the derivative holding F fixed is

F∇S v � −F(m⊗ �
m) − VFL .

On the other hand, by (1–23c) and (15–8b), for v fixed,

∇S (Fv) � (∇(Fv)
)
P � ((∇F)v

)
P.

Thus, since
�
F � Ḟ + (∇F)v (cf. (15–22c)),

∇S

�
y � (Ḟ+(∇F)v

)
P−F

(
m⊗ �

m
)
−VFL �

�
F P−F

(
m⊗ �

m
)
−VFL . (21–3)

Finally, because (21–3) holds with y (and hence F) restricted to either side of the
interface, (21–3) holds with y and F replaced by their averages; hence (21–2) is
satisfied.

LetG (t) denote a smoothly evolving subsurface ofS (t) withn(X, t) the outward
unit normal to ∂G (t). As noted in the paragraph containing (15–29), the motion of
∂G (t) is characterized intrinsically by the velocity field Vm+V∂G n, with V∂G , the
velocity of ∂G in the direction ofn. Further, a fieldw is referred to as a velocity field
for ∂G if w ·m � V and w ·n � V∂G , with no restriction placed on the component

of w tangent to ∂G . Given such a field w, the motion velocity
�
y following ∂G , as

described by w, is defined as in (4–3), and this results in the expression

�
y � 〈ẏ〉 + 〈F〉w. (21–4)

The transformation laws forw and
�
y under observer changes are analogous to those

specified for v and
�
y in (10–6) and (10–7).

The field
�
y depends on the choice ofw; when w � Vm+V∂G n then

�
y is intrinsic

and, since 〈F〉n � 〈F〉Pn � Fn, may be written in the form

�
y � �

y+V∂G Fn, (21–5)

with
�
y the normal velocity following S .

3Gurtin and Struthers [1990, eq. (3–29)].
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b. Standard and configurational forces. Working

The force systems are as discussed in Section 20a, the only change being the
addition of a superficial tensor field S(X, t) on S (t) that represents standard forces
within the interface. Let P � P (t) be a migrating control volume with G � G (t)
the portion of the interface in P and n(X, t) the outward unit normal to ∂G (t);
then Sn represents standard forces within the interface applied to P across ∂G .

Let P � P (t) be a migrating control volume, with q a velocity field for ∂P and
w a velocity field for ∂G , let v be a velocity field for S , and consider the motion
velocities

ẙ � ẏ+ Fq,
�
y � 〈ẏ〉 + 〈F〉v, �

y � 〈ẏ〉 + 〈F〉w
following ∂P , S , and ∂G . Then, arguing as in the paragraph containing (5–2), I

consider
�
y as the appropriate work-conjugate velocity for S and write the working

W (P ) on P � P (t) in the form

W (P ) � ∫
∂P

(Cn · q+ Sn · ẙ) da + ∫
P

b · ẏ dv

+ ∫
G

(eS · v+ bS · �
y) da + ∫

∂G

(Cn · w+ Sn · �
y) ds. (21–6)

The requirement that W (P ) be invariant under changes in material and spatial
observer yields the standard force and moment balances∫

∂P

Sn da + ∫
P

b dv + ∫
∂G

Sn ds + ∫
G

bS da � 0,

∫
∂P

(y− o) × Sn da + ∫
P

(y− o) × b dv + ∫
∂G

(y− o) × Sn ds (21–7a)

+ ∫
G

(y− o) × bS da � 0, (21–7b)

and the configurational force balance (20–4) and these yield, for the interface, the
local force balances

[S]m+ DivS S+ bS � 0, (21–8a)

[C]m+ DivS C+ gS + eS � 0, (21–8b)

and the moment balance

SF� � FS�. (21–9)

The derivation of (21–8) is identical to that of (16–4). The proof of (21–9)
follows that of the classical relation (3–6b). Thus, consider the tensorM(P ) defined
as the left side of (21–7b) with the operation “×” replaced by “⊗.” Then (21–7b)
is equivalent to the assertion that M(P ) be symmetric: M(P ) � M(P )�. Since
F � ∇S y, the surface divergence theorem implies that∫

∂G

(y− o) × Sn ds � ∫
G

(y− o) ⊗ DivS S da +
∫
G

FS� da.
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Thus, if P (t) is taken to be the δ-pillbox Gδ(t) about an arbitrary subsurface G (t)
of S (t), then by (11–25b),∫

∂Gδ

(y− o) ⊗ Sn da → ∫
G

(y− o) ⊗ [S]m da

as δ → 0, so that, by (21–8a), in this limit,

M(Gδ(t)) →
∫
G

FS� da.

Because M(Gδ(t)) is symmetric and G is arbitrary, (21–9) follows.
By (15–4), the configurational stress C may be decomposed into tangential and

normal parts,

C � Ctan + m⊗ τ;
thus, because m · DivS (m⊗ τ) � DivS τ and (Ctan)�m � C�Pm � 0,

m · DivS Ctan � DivS

{
(Ctan)�m

}− Ctan · ∇S m � Ctan · L,
and the normal component of the configurational force balance (21–8b) takes the
form

m · [C]m+ Ctan · L+ DivS τ + gS + eS � 0, (21–10a)

gS � m · gS , eS � m · eS . (21–10b)

As before, invariance of the working W (P ) under changes in the choice of
velocity fields for ∂P (t) and S (t) yields C � π1 −F�S and PeS � −P〈F〉�bS .
On the other hand, invariance under changes in the velocity fieldw for ∂G no longer
renders the tangential part of the configurational interfacial stress a surface tension.

To verify this, note that, because
�
y � 〈ẏ〉 + 〈F〉w and the tangential component

of w is arbitrary, invariance of (21–6) under the choice of w is equivalent to the
requirement that ∫

∂G

(Cn+ 〈F〉�Sn) · t ds � 0

for every vector field t tangent to the curve ∂G . Thus, arguing as in the proof of
(16–7), there is a scalar fieldσ , the surface tension, such that (C+〈F〉�S)tan � σP,
and, since P〈F〉� � 〈FP〉� � F�,

Ctan � σP− F�S. (21–11)

Thus, in the presence of standard stresses within the interface, the tangential part
of the configurational interfacial stress is no longer a surface tension; instead Ctan

has a form comparable to its bulk counterpart C � π1 − F�S.
Also important is the normal part d of the tensor C+ 〈F〉�S; by the second of

(15–5), d and the normal part τ of C are related through

τ � d− S�〈F〉m. (21–12)
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Note the similarity between this expression and the formula (21–11) for the surface
tension σ ; in fact,

C+ 〈F〉�S � σP+ m⊗ d,

an expansion that motivates our referring to d, rather than to τ, as the surface
shear.

Finally, choosing the intrinsic forms

q � Un, v � Vm, w � v+ V∂G n,
ẙ � ẏ+ Fq, ẙ � 〈ẏ〉 + 〈F〉v, �

y � �
y+V∂G Fn

for the velocity fields and using (21–4),

Cn · w+ Sn · �
y � Cn · v+ Cn · nV∂G + Sn · (

�
y+V∂G Fn)

� V∂G n · (C+ F�S)n+ Cn · v+ Sn · �
y

� σV∂G + Cn · v+ Sn · �
y .

Thus, arguing as in the derivation of (20–10), the working may be written in the
intrinsic form (cf. (11–14), (16–15))

W (P ) � ∫
∂P

Sn · ẏ da + ∫
P

b · ẏ dv + ∫
∂P

πU da

+ ∫
G

(bS · �
y+eS V ) da + ∫

∂G

(
σV∂G + Cn · v+ Sn · �

y
)
ds. (21–13)

Note that, since C+ 〈F〉�S � σP+m⊗d, the term Cn · v+Sn · �
y may be written

as Sn · 〈ẏ〉+ (d · n)V , and, granted inertial external forces, the term bS · �
y+eS V

may be replaced by bS · 〈ẏ〉 (cf. (12–8)).

c. Power balance. Internal working

Using the surface divergence theorem,

∫
∂G

Sn · �
y ds � ∫

G

{�
y ·DivS S+ S · ∇S

�
y
}
da, (21–14a)

∫
∂G

Cn · v ds � ∫
G

{
Vm · DivS C+ C · ∇S v

}
da. (21–14b)

In view of (21–8a), the calculation (11–15) remains valid provided bS is replaced
by bS + DivS S, and this yields

[Sm · ẏ] � −(bS + DivS S) · �
y−m · [F�S]mV



21. General Theory with Standard and Configurational Stress within the Interface 143

in place of (11–15), and hence∫
∂P

Sn · ẏ da + ∫
P

b · ẏ dv + ∫
G

bS · �
y da + ∫

G

�
y ·DivS S da

� ∫
P

S · Ḟ dv − ∫
G

m · [F�S]mV da

in place of (11–16b). Thus, by (21–14a),∫
∂P

Sn · ẏ da + ∫
P

b · ẏ dv + ∫
G

bS · �
y da + ∫

∂G

Sn · �
y ds

� ∫
P

S · Ḟ dv + ∫
G

S · ∇S

�
y da − ∫

G

m · [F�S]mV da. (21–15)

Next, C � Ctan + m⊗τ and ∇S v � −m⊗ �
m−VL (cf. (16–19)); thus, by (21–11)

and (21–12),

C · ∇S v � −VCtan · L− τ · �
m � −σKV + V (F�S) · L− d · �

m+(S�〈F〉m) · �
m .

On the other hand, since Sm � 0, it follows that SP� � SP � S, and since L is
tangential, PL � L and 〈F〉L � 〈F〉PL � FL; hence (21–2) yields

S · ∇S

�
y � S · (〈F〉�P) − (〈F〉m) · (S

�
m) − VS · (〈F〉L)

� S · 〈F〉� − (S�〈F〉m) · �
m−V (F�S) · L .

Adding the last two relations yields an expression for the stress power of the
configurational and standard forces within the interface,

C · ∇S v+ S · ∇S

�
y � −σKV − d · �

m+S · 〈F〉�; (21–16)

thus adding (21–14b) and (21–15) yields∫
∂P

Sn · ẏ da + ∫
P

b · ẏ dv + ∫
G

bS · �
y da + ∫

∂G

(Sn · �
y+Cn · v) ds

� ∫
P

S · Ḟ dv + ∫
G

{
S · 〈F〉� + (m · DivS C− m · [F�S]m)V − σKV − d · �

m
}
da.

Because C � π1 − F�S, the configurational force balance (21–8b) may be used
to eliminate the term m · DivS C− m · [F�S]m; the result is∫
∂P

Sn · ẏ da + ∫
P

b · ẏ dv + ∫
G

(
bS · �

y+eS V
)
da + ∫

∂G

(
Sn · �

y+Cn · v
)
ds

� ∫
P

S · Ḟ dv + ∫
G

{
S · 〈F〉� − (σK + [π] + gS )V − d · �

m
}
da, (21–17)

with gS � m · gS and eS � m · eS .
The identity (21–17) represents a reduced power balance forP , because its left

side differs fromW (P ) as given by (21–13) in the absence of the integrals
∫
∂P

πU da
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and
∫
∂G

σV∂G ds; adding these integrals to the right side of (21–17) yields the power

balance

W (P ) � ∫
P

S · Ḟ dv + ∫
G

{
S · 〈F〉� − σKV − d · �

m−([π] + gS )V
}
da

+ ∫
∂G

σV∂G ds +
∫
∂P

πU da. (21–18)

The right side of this balance represents internal working; this working differs in
two respects from its counterpart (20–12) (of the theory that neglects S):

The internal working includes a term, the interfacial stress power S · 〈F〉�,
that represents working associated with stretching of the interface.

The surface tension σ and the surface shear d no longer represent the
tangential and normal parts of the configurational stress C. But although
these fields are combinations of standard and configurational terms, they are,
in a sense, internally configurational, since they perform work, internally,
over temporal changes of interfacial area and orientation.

d. Second law. Interfacial dissipation inequality

The second law takes the form

d

dt

{∫
P

� dv + ∫
G

ψ da

}
≤ W (P ), (21–19)

where W (P ) is given by (21–6), while ψ and � are the interfacial and bulk free
energies as described following (20–14).

Using the power balance (21–18) forW (P ), an argument similar to that leading
to (20–15) yields (20–15) with the right side replaced by∫

G

{
S · 〈F〉� − (σK + gS )V − d · �

m
}
da,

and this leads to the identity

σ � ψ (21–20)

and the interfacial dissipation inequality

�
ψ −S · 〈F〉� + d · �

m+gS V ≤ 0, (21–21)

with (. . .)� the normal time derivative following S .
Here it is important to note that (21–11) and (21–20) yield an Eshelby relation

for the interface:

Ctan � ψP− F�S. (21–22)
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Finally, note that for a stationary control volume P and inertial external forces,
(12–6), (21–13) with σ � ψ , the sentence following (21–13), and (21–19) yield
the following version of the second law:

d

dt

{∫
P

(� + k) dv + ∫
G

ψ da

}
� ∫
∂G

ψV∂G ds +
∫
∂P

Sn · ẏ da

+ ∫
∂G

(
Sn · 〈ẏ〉 + (d · n)V

)
ds.

e. Constitutive equations

The bulk phases α and β are again presumed to be elastic as defined by (12–19).
Regarding the interface, I consider constitutive equations of the form (20–18),

with τ replaced by d and with an additional relation for S:

ψ � ψ̂(m, V ,A, j), (21–23a)

d � d̂(m, V ,A, j), (21–23b)

S � Ŝ(m, V ,A, j), (21–23c)

gS � ĝS (m, V ,A, j). (21–23d)

Here, as before, A � 〈F〉 and j � [F]m.
An argument similar to that following (20–18) shows that there are sufficient

external and indeterminate forces available to ensure satisfaction of all relevant
balances and identities.

The requirement that all constitutive processes be consistent with the dissipation
inequality (21–21) is equivalent to the inequality

∂V ψ̂(m, V ,A, j)
�
V

+
{
∂Aψ̂(m, V ,A, j) − Ŝ(m, V ,A, j)

}
· �
A+

{
∂jψ̂(m, V ,A, j)

}
·

�
j

+
{
∂mψ̂(m, V ,A, j) + d̂(m, V ,A, j)

}
· �
m+ĝS (m, V ,A, j)V ≤ 0,

(21–24)

with (. . .)� the normal time derivative following S . An argument identical to that
used to prove (20–20) and (20–21) then yields the following conclusions:

(i) the free energy ψ , the shear d, and the standard interfacial stress S must be
independent of V and j, and must be related through

ψ � ψ̂(m,A) (21–25a)

d � −∂mψ̂(m,A), (21–25b)

S � ∂Aψ̂(m,A); (21–25c)
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(ii) the normal internal force must obey the inequality

ĝS (m, V ,A, j)V ≤ 0, (21–26)

which, for ĝS smooth, results in the constitutive equation

gS � −b(m, V ,A, j)V, b(m, V ,A, j) ≥ 0. (21–27)

By (21–25c) and because ψ can depend on F± at most through A � 〈F〉, the
interfacial stress S vanishes if and only if the interfacial energy ψ is independent
of the deformation gradient.

Because S is a superficial tensor field, Sm � 0. Thus a second consequence of
the stress relation (21–25c) is that the response function ψ̂ satisfy(

∂Aψ̂(m,A)
)
m � 0. (21–28)

Further, since F � AP, the identity A � AP+ (Am)⊗ m yields the decomposition

A � F+ a⊗ m, a � Am;
this allows ψ̂(m,A) to be considered as a function

ψ̃(m,F, a) � ψ̂(m,A) � ψ̂(m,F+ a⊗ m).

Thus, by (21–28), ∂aψ̃ � (∂Aψ̂)m � 0, ψ̃(m,F, a) is therefore independent of a.
Further, ∂Fψ̃ � ∂Aψ̂ ; hence

ψ � ψ̃(m,F), S � ∂Fψ̃(m,F)

and the interfacial energy ψ and standard stress S depend on A � 〈F〉 through the
tangential deformation gradient F � 〈F〉P.

Remark. When deciding on possible energies ψ̂(m,A) for an admissible theory,
the condition (21–28) is crucial: granted (21–28), the relations (21–25b,c) may be
used as defining relations for S and d.

Finally, I sketch an argument showing that the tangential force balance (21–8b)
is satisfied identically with PgS � 0. The steps in the argument are as follows:4

1. Restrict F to one side of the interface. Then, for G a constant tensor,

a · DivS (F�G) � DivS (G�Fa) � tr {(∇(G�Fa)
)
P
} � tr {G�(∇(Fa)

)
P
}

� (GP) · (∇(Fa)
) � {(GP):∇F} · a,

so that

DivS (F�G) � (GP):∇F.

2. Let A � 〈F〉. Then using the result 1,

PDivS

{
C+ A�S

} � PDivS C+ PA� DivS S+ S:∇S A.

4A much simpler proof is possible in two space dimensions.
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3. The identity C+ 〈F〉�S � σP+ m⊗ d and the argument leading to (11–10),
imply that P[C]m � −PeS + PA� DivS S.

4. PDivS

{
C+ A�S

} � ∇S σ − Ld, which is an analog of (16–11).
5. Using the results 1–4, the tangential component of the force balance (21–8b)

may be expressed in the form

∇S σ − Ld− S:∇S A+ PgS � 0,

and, since σ � ψ , this result and (21–15) yield PgS � 0.

f. Basic equations with inertial external forces

Assume that the underlying observer, the body force b, and the interface forces bS

and eS are inertial.
The basic equations for the bulk material, assumed elastic, consist of the

momentum balance (12–20) supplemented by the constitutive equations (12–19).
The basic equations for the interface are then the compatibility conditions

(20–30a,b), the momentum balance

[S]m+ DivS S � −ρ[ẏ]V, (21–29)

and the normal configuration balance

m · [�1
¯
− F�S]m+ (ψP− F�S) · L+ DivS τ + [krel] � bV, (21–30)

with [krel] � 1
2 ρ[|ẏ−

�
y |2] (cf. (12–1)), τ � d−S�〈F〉m, and b � b(m, V ,A, j);5

these relations are supplemented by the constitutive equations

ψ � ψ̂(m,A), d � −∂mψ̂(m,A), S � ∂Aψ̂(m,A). (21–31)

Note that (21–30), which represents the normal configurational force balance, may
be written in the more suggestive form

m·[bulk Eshelby tensor]m+(interfacial Eshelby tensor)·L+DivS τ+[krel] � bV .
(21–32)

The relation (21–29) follows from (12–5) and (21–8a), while (21–30) makes use
of (12–10), (21–11), (21–22), and (21–27).

g. Lyapunov relations

If the body B is bounded, if S is a closed surface contained in the interior of B,
and if the external forces are inertial, then the global energy inequality (20–36)

5Gurtin and Struthers [1990], Gurtin [1993a, 1995]. See also Lusk [1994]. For statics
(21–29) was derived by Gurtin and Murdoch [1975] from a force balance, while (21–30)
was derived by Leo and Sekerka [1989] as a Euler-Lagrange equation for stable equilibria
(cf. Alexander and Johnson [1985], Johnson and Alexander [1986], and Fonseca [1989]).
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remains valid, but with ψ � ψ̂(m,A), and, granted this, the Lyapunov relations
(20–38) and (20–39) are valid without change.



CHAPTER 22

Two-Dimensional Theory with
Standard and Configurational
Stress within the Interface

The three-dimensional theory with both standard and configurational forces
within the interface is complicated; for that reason I now develop its simpler
two-dimensional counterpart.

a. Kinematics

The notation and terminology of Chapter 19 will be used throughout: the interface
is a smoothly evolving closed curve C (t); t(X, t) and m(X, t) are tangent and
normal fields for C (t) such that t � (cosϑ, sin ϑ) and m � (− sin ϑ, cosϑ);
ϑ(X, t) is the counterclockwise angle from the (1, 0) axis to t(X, t); and K � ϑs
is the curvature.

Let y be a motion. Within this two-dimensional framework the compatibility
condition (10–2) is unchanged; but, since P � t⊗ t, (10–2b) may be written as
[F]t � 0. Moreover,

ys � F±t � 〈F〉t (22–1)

and hence

F � 〈F〉t⊗ t � ys ⊗ t.

Because F is invertible, the interfacial stretch

λ � |ys |
is strictly positive; trivially,

ys � λt̄, t̄ � ys

|ys | , (22–2)
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with t̄ tangent to the deformed interface.
The basic identity (21–2) here has the simple form

(
�
y)s � (ys)

� −KV ys , (22–3)

where (. . .)� is the normal time derivative following the interface. The verification

of (22–3) proceeds as follows: Let v � Vm. Then, since Vs �
�
ϑ ,

�
t � �

ϑ m, and
ms � −Kt,

vs �
�
ϑ m−KVt � �

t−KVt. (22–4)

Thus, as
�
y � 〈ẏ〉 + 〈F〉v, 〈F〉� � 〈ẏ〉 + 〈∇F〉v, and, by (1–23b), (〈∇F〉t)v �

(〈∇F〉v)t,

(
�
y) � 〈ẏ〉s + 〈F〉sv+ 〈F〉vs � 〈Ḟ〉t+ (〈∇F〉t)v+ 〈F〉 �

t−KV 〈F〉t
� 〈F〉�t+ 〈F〉 �

t−KV ys � (〈F〉t)� −KV ys � (ys)
� −KV ys .

LetP (t) denote an (arbitrary) migrating control volume whose intersection with
the interface is a connected curve G (t); let XA(t) and XB(t), respectively, denote
the initial and terminal points of G (t); and let uA(t) and uB(t), defined by (19–6),
denote the tangential endpoint velocities of G (t). The corresponding endpoint
velocities ẊA and ẊB then obey (19–7), so that, by (21–4) with w replaced by ẊA,

the motion velocity
�
yA follow the initial point of ∂G is given by

�
yA � 〈ẏ〉A + 〈F〉AẊA � (〈ẏ〉 + V 〈F〉m)A + (ys)AuA � �

yA + (yS)AuA (22–5)

and similarly for
�
yB , where

�
y is the normal time derivative following C .

b. Forces. Working

The force systems are as discussed in Sections 20a and 21b, but the configurational
and standard forces within the interface are now described, respectively, by vector
stress fields c(X, t) and s(X, t). These fields represent forces exerted across X

by the material “into which t(X, t) points” on the material “from which t(X, t)
points” (cf. Section 19b).

LetP � P (t) be a migrating control volume. The rates at whichc ands perform

work on P are given by cB · ẊB − cA · ẊA and sB · �
yB − sA · �

yA. Thus, for v

a velocity field for C , q a velocity field for ∂P , and ẙ and
�
y, the corresponding

motion velocities following ∂P and C , the workingW (P ) has the form

W (P ) � ∫
∂P

(
Cn · q+ Sn · ẙ) ds + ∫

P

b · ẏ da + ∫
G

(
eC · v+ bC · �

y
)
ds

+ cB · ẊB − cA · ẊA + (s · �
y)B − (s · �

y)A. (22–6)
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The requirement that W (P ) be invariant under changes in material and spatial
observer yields the configurational force balance∫

∂P

Cn ds + ∫
P

g da + ∫
G

(gC + eC ) ds + cB − cA � 0 (22–7)

and the standard force and moment balances∫
∂P

Sn ds + ∫
P

b da + ∫
G

bC ds + sB − sA � 0, (22–8a)

∫
∂P

(y− o) × Sn ds + ∫
P

(y− o) × b da + ∫
G

(y− o) × bC ds

+ (yB − o) × sB − (yA − o) × sA � 0, (22–8b)

and these yield, for the interface, the local force balances

[S]m+ ss + bC � 0, (22–9a)

[C]m+ cs + gC + eC � 0, (22–9b)

and a moment balance

ys × s � 0 (22–10)

requiring that the standard stress s be tangent to the deformed interface.1

The derivation of (22–9) is no different than that of (19–14). To verify (22–10),
consider the δ-pillbox Gδ(t) about an arbitrary connected subcurve G (t) of the
interface. Then, because

(yB − o) × sB − (yA − o) × sA � ∫
G

{(y− o) × s}s ds,

(22–8b) applied to Gδ(t) yields, in the limit δ → 0,

0 � ∫
G

(y− o) × ([S]m+ ss � bC ) ds + ∫
G

ys × s ds.

Thus, by (22–9a),
∫
G

ys × s ds � 0; since G is arbitrary, this implies (22–10).

An important consequence of the moment balance (22–10) is the existence of a
scalar stress ζ such that

s � ζ t̄. (22–11)

Invariance of the working under changes in the choice of velocity fields for ∂P (t)
and C (t) yields C � π1 − F�S and PeC � −P〈F〉�bC , and, since P � t ⊗ t,
the latter may be rewritten as

t · eC � −ys · bC . (22–12)

1The symbol “×” here denotes the (scalar) two-dimensional cross product a × b �
a1b2 − a2b1.
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Further, by (19–7) and (22–5),

cA · ẊA + (s · �
y)A � cA · (uAtA + VAmA) + sA ·

{�
yA + (ys)AuA

}
� (c · t+ s · ys)AuA + (c · mV )A + (s · �

y)A.

and similarly for the terminal point of G . The surface tension σ and surface shear
τ are defined by

σ � c · t+ s · ys � (c+ 〈F〉�s) · t � c · t+ ζλ, (22–13a)

τ � c · m (22–13b)

(cf. (21–11), (21–12)), and thus

cA · ẊA + (s · �
y)A � σAuA + τAVA + (s · �

y)A.

The choice of τ as surface shear, which might seem inconsistent with its three-
dimensional counterpart defined through (21–12), will be discussed at the end of
the next subsection.

By (22–13) and the Frenet formulas (19–2), the normal component of (22–9b)
is

(σ − ζλ)K + τs + m · [C]m+ gC + eC � 0, (22–14a)

gC � m · gC , eC � m · eC . (22–14b)

c. Power balance. Internal working. Second law

Assume now that the velocity fields have the intrinsic forms

q � Un, v � Vm,

ẙ � ẏ+ Fq,
�
y � 〈ẏ〉 + 〈F〉v.

Then, arguing as in the derivation of (20–10), the working may be written
intrinsically as (cf. (21–13))

W (P ) � ∫
∂P

Sn · ẏ ds + ∫
P

b · ẏ da + ∫
∂P

πU ds + ∫
G

(bC · �
y+eC V ) ds

+ σBuB − σAuA + (τV )B − (τV )A + (s · �
y)B − (s · �

y)A. (22–15)

Next, by (22–4) and (22–13),

c · vS � −(c · t)KV + (c · m)
�
ϑ � −σKV + τ �

ϑ +KVs · ys . (22–16)

Thus, by (22–3),

c · vs + s · (
�
y)s � −σKV + τ �

ϑ +s · (ys)
�, (22–17)
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which represents the stress power of the standard and configurational forces within
the interface (cf. (21–16)). The counterparts of (21–14a,b) and (21–15) in the
current two-dimensional theory are

(s · �
y)B − (s · �

y)A � ∫
G

{�
y ·ss + s · (

�
y)s
}
ds, (22–18a)

(c · v)B − (c · v)A � ∫
G

{Vm · cs + c · vs} ds. (22–18b)

and ∫
∂P

Sn · ẏ ds + ∫
P

b · ẏ da + ∫
G

bC · �
y ds + (s · �

y)B − (s · �
y)A

� ∫
P

S · Ḟ da + ∫
G

s · (
�
y)sds −

∫
G

m · [F�S]mV ds. (22–19)

By (22–17), adding (22–18b) and (22–19) yields, after using the configurational
balance (22–9b) and the identity C � π1 − F�S to eliminate the term (m · cs −
m · [F�S]m),∫
∂P

Sn · ẏ ds + ∫
P

b · ẏ da + ∫
G

(bC · �
y+eC V ) ds

+ (s · �
y)B − (s · �

y)A + (c · v)B − (c · v)A

� ∫
P

S · Ḟ da + ∫
G

{
s · (ys)

� − σKV + τ �
ϑ −([π] + gC )V

}
ds. (22–20)

Thus, by (22–15), because c · v � τV ,

W (P ) � ∫
P

S · Ḟ da + ∫
C

{
s · (ys)

� − σKV + τ �
ϑ −([π] + gC )V

}
ds

+ ∫
∂P

πU ds + σBuB − σAuA. (22–21)

The relations (22–20) and (22–21) should be compared with their three-
dimensional analogs (21–17) and (21–18).

The second law has the form

d

dt

{∫
P

� da + ∫
G

ψ ds

}
≤ W (P ) (22–22)

for each migrating control volume P � P (t), with ψ(X, t) the interfacial free
energy per unit length and �(X, t) the bulk free energy per unit area, and with
W (P ) given by (22–6). Thus, appealing to (22–21),

d

dt

{∫
P

� da + ∫
G

ψ ds

}
≤ ∫

P

S · Ḟ dv

+ ∫
G

{
s · (ys)

� − σKV + τ �
ϑ −([π] + gC )V

}
ds
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+ ∫
∂P

πU ds + σBuB − σAuA.

The argument leading to the relations

π � �, σ � ψ, (22–23)

are as given in Chapter 17 and use (22–21) and the transport theorems (10–8a) and
(19–8); these, in turn, lead to the interfacial dissipation inequality (cf. (19–19),
(21–21))

�
ψ −s · (ys)

� − τ �
ϑ +gC V ≤ 0. (22–24)

Since λ � |ys |, (22–11) yields s · (ys)� � ζ t̄ · (
�
λ t̄ + λt̄�) � ζ

�
λ; (22–24) may

therefore be expressed equivalently as

�
ψ −ζ �

λ−τ
�
ϑ +gC V ≤ 0. (22–25)

Remark. Within the three-dimensional theory the surface shear is defined by
(21–12), whose analog here, namely,

c · m+ 〈F〉�s · m,
differs from the choice τ � c · m (cf. (22–13b)). The reason for this difference is
best explained in terms of the internal working. In the three-dimensional theory
the stress is a tensor s and its internal working is given by s · 〈F〉�; in the two-
dimensional theory the stress is a vector s with s · (ys)� its working. Within the
two-dimensional theory the tensorial stress s corresponding to s is defined by
S � s⊗ t, so that St � s and Sm � 0, and the terms S · 〈F〉� and s · (ys)� may

be easily related. Because
�
t � �

ϑ m,

(ys)
� � (〈F〉t)� � 〈F〉�t+ 〈F〉 �

t � 〈F〉�t+ 〈F〉(m · �
t)m � 〈F〉�t+ �

ϑ〈F〉m,
and

s · (ys)
� � St · 〈F〉�t+ �

ϑ s · 〈F〉m.
Further, for any tensor G, G � Gt⊗ t+ Gm⊗ m; hence

S · 〈F〉� � (St⊗ t) · (〈F〉�t⊗ t+ 〈F〉�m⊗ m) � St · 〈F〉�t.

Thus, because τ � c · m,

s · (ys)
� + τ �

ϑ � S · 〈F〉� + (c · m+ 〈F〉�s · m) �
ϑ . (22–26)

The surface shear is defined as that field whose working accompanies temporal
changes in orientation. The identity (22–26) shows this definition to be dependent
on whether the stress is represented as a vector or as a tensor: the shear is τ for a
vector stress and c · m+ 〈F〉�s · m for a tensor stress.
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d. Constitutive equations

Guided by (21–23a), I posit constitutive equations of the form

ψ � ψ̂(ϑ, V, ys , j), (22–27a)

τ � τ̂ (ϑ, V, ys , j), (22–27b)

ζ � ζ̂ (ϑ, V, ys , j), (22–27c)

gC � ĝC (ϑ, V, ys , j), (22–27d)

with j � [F]m. It is convenient to consider the dependence on ys as a dependence on
the interfacial stretch λ and the unit tangent t̄ to the deformed interface and, with
a minor abuse of notation, to write (. . .) for either (ϑ, V, ys , j) or (ϑ, V, λ, t̄, j).

The requirement that all consitutive processes be consistent with the dissipation
inequality (22–25) is equivalent to the requirement that{
∂ϑψ̂(. . .) − τ̂ (. . .)

} �
ϑ +

{
∂λψ̂(. . .) − ζ̂ (. . .)

} �
λ

+ ∂V ψ̂(. . .)
�
V +

{
∂t̄ψ̂(. . .)

}
· t̄� +

{
∂jψ̂(. . .)

}
·

�
j +ĝC (. . .)V ≤ 0 (22–28)

for all migrations of the interface and all motions of the body. Arguing as in the
proof of (20–20) and (20–21),2 this leads to the following conclusions:

(i) the free energy ψ , the shear τ , and the scalar stress ζ must be independent of
V , t̄, and j, and must be related through

ψ � ψ̂(ϑ, λ), (22–29a)

τ � ∂ϑψ̂(ϑ, λ), (22–29b)

ζ � ∂λψ̂(ϑ, λ); (22–29c)

(ii) the normal internal force must obey the inequality

ĝC (ϑ, V, ys , j)V ≤ 0, (22–30)

which, for ĝC smooth, results in the constitutive equation

gC � −b(ϑ, V, ys , j)V, b(ϑ, V, ys , j) ≥ 0. (22–31)

A consequence of the restriction (22–29c) is that

s � ∂ys ψ̂(ϑ, λ). (22–32)

Indeed, since λ � |ys |, the derivative of λ with respect to ys is ys/|ys | � t̄. Thus
∂ys ψ̂(ϑ, λ) � ∂λψ̂(ϑ, λ)t̄ and (22–32) follows from (22–11) and (22–29c).

A second consequence of the restrictions (22–29) is that, granted the standard
balance (22–9a), the tangential component of the configurational balance (22–9b)

2The requirement that t̄� be orthogonal to t̄ causes no problem as ∂t̄ψ̂(. . .) is also
orthogonal to t̄.
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is satisfied identically without the need for tangential internal forces:

t · gC � 0. (22–33)

To see this, let f � ys and note that, by (22–12) and the Eshelby relation,

t · cs � (ψ − s · f )s − τK � (∂ϑψ̂)K + (∂f ψ̂)fs − s · fs − ss · f − τK
� −f · ss � f · [S]m+ f · bC � 〈F〉t · [S]m− t · eC
� t · [F�S]m− [F]t · 〈S〉m− t · eC � t · [F�S]m− t · eC
� −t · [C]m− t · eC . (22–34)

Thus, granted (22–33), the tangential component of the balance (22–9b) is satisfied
identically, and conversely.

e. Evolution equations for the interface

Assume that the external forces are purely inertial. The basic equations for the
bulk material, assumed elastic, then consist of the momentum balance (12–20)
supplemented by the constitutive equations (12–19). The basic equations for the
interface are the compatibility conditions

[ẏ] � −V [F]m, [F]t � 0, (22–35)

the momentum balance

[S]m+ ss � −ρ[ẏ]V, (22–36)

and the normal configurational balance

m · [�1 − F�S]m+ [krel] + (ψ − ζλ)K + τs � bV, (22–37)

withs � ζ t̄,λ � |ys |, t̄ � ys/|ys |, [krel] � 1
2 ρ[|ẏ−

�
y |2] andb � b(ϑ, V, ys , j) (cf.

(12–5), (12–10)); these relations are supplemented by the constitutive equations

ψ � ψ̂(ϑ, λ), τ � ∂ϑψ̂(ϑ, λ), ζ � ∂λψ̂(ϑ, λ). (22–38)

The theory simplifies considerably when the free energy of the interface is
independent of the stretch λ and the kinetics linear in the sense that b � b(ϑ); then

ψ � ψ̂(ϑ), τ � ψ̂ ′(ϑ), ζ � 0, (22–39)

and the balances reduce to

[S]m � −ρ[ẏ]V, (22–40a)

m · [�1 − F�S]m+ [krel] + a(ϑ)K � b(ϑ)V, (22–40b)

with a(ϑ) � ψ̂(ϑ)+ ψ̂ ′′(ϑ); (22–40) are two-dimensional counterparts of (20–28)
and (20–31).



Part F

Solidification

To demonstrate the role of configurational forces in situations not purely
mechanical, I turn now to two-phase heat flow, neglecting deformation.



CHAPTER 23

Solidification. The
Stefan Condition as a
Consequence of the
Configurational Force Balance

a. Single-phase theory

I begin with a summary of the basic results of Section 6c, but with deformation
neglected. The basic thermodynamical laws, balance of energy and growth of
entropy, have the form

d

dt

{∫
P

ε dv

}
� − ∫

∂P

h · n da + ∫
P

r dv, (23–1a)

d

dt

{∫
P

η dv

}
≥ − ∫

∂P

(h/T ) · n da + ∫
P

(r/T )dv, (23–1b)

for P stationary. These are equivalent to the local equations

ε̇ � −Div h+ r, (23–2a)

η̇ ≥ −Div(h/T ) + r/T , (23–2b)

which combine to form the free-energy inequality

�̇ + ηṪ + T −1h · ∇T ≤ 0, (23–3)

with

� � ε − T η (23–4)

the free energy.
To the classical laws just described, I add the configurational force balance∫

∂P

Cn da + ∫
P

g dv � 0, (23–5)

which has the local form

DivC + g � 0. (23–6)
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(Since inertial forces are not considered, there is no need to introduce an external
force e.) The configurational stress C and internal configurational force have the
specific forms

C � �1, (23–7a)

g � −∇�, (23–7b)

which guarantee satisfaction of (23–6).
The constitutive equations (derived in Subsection 9b2) consist of a relation

between free energy and temperature, a relation giving the entropy as the negative
of the derivative of the free energy with respect to temperature, and a Fourier law
for heat conduction,

� � �̂(T ), (23–8a)

η � −�̂ ′(T ), (23–8b)

h � −K(T )∇T , (23–8c)

with conductivity tensor K(T ) assumed positive-definite. The relations (23–4)
and (23–8a) yield an auxiliary constitutive relation for the internal energy, viz.,

ε � ε̂(T ) � �̂(T ) − T �̂ ′(T ), (23–9)

whose derivative is the specific heat

c(T ) � ε̂′(T ). (23–10)

The partial differential equation of the theory, the heat equation, is balance of
energy supplemented by the constitutive equations (23–8c) and (23–10):

c(T )Ṫ � Div
(
K(T )∇T )+ r. (23–11)

Note that, by (23–7b) and (23–8b),

g � η∇T , (23–12)

which I take as a defining relation for g.

b. The classical two-phase theory revisited. The Stefan
condition as a consequence of the configurational balance

I now consider phases, α and β, with �α(T ) and �β(T ), Kα(T ) and Kβ(T ), εα(T )
and εβ(T ), and cα(T ) and cβ(T ), the corresponding free energies, conductivity
tensors, internal energies, and specific heats, with resulting constitutive relations
of the form (23–8)–(23–10). I also assume that there is a unique temperature,
the melting temperature TM , at which the free energies of the individual phases
coincide:

�α(TM ) � �β(TM ). (23–13)
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The classical theory neglects interfacial structure and therefore begins with basic
laws in the form (23–1) and (23–5). A further assumption is that the temperature
be continuous, so that

[T ] � 0, (23–14)

but all the other fields are allowed to suffer jump discontinuities across the interface.
Balance of energy then yields the interfacial balance

[ε]V � [h] · m, (23–15)

which is the first of the classical interface conditions for the Stefan problem. (This
condition is derived as a consequence of (23–1a) and (10–8a), with � � ε and P
stationary, by shrinking P to the interface.)

Next, the configurational balance (23–5) yields

[C]m � 0, (23–16)

which, by (23–7a), has the alternative form

[�] � 0, (23–17)

or, in view of the hypothesis ending in (23–13),

T � TM on the interface. (23–18)

Thus, granted (23–13), the classical Stefan condition equating the temperature at
the interface to the melting temperature is equivalent to the configurational force
balance applied across the interface.1

The Stefan problem consists of the bulk equations

cα(T )Ṫ � Div(Kα(T )∇T ) + r in phase α, (23–19a)

cβ(T )Ṫ � Div(Kβ(T )∇T ) + r in phase β, (23–19b)

and the interface conditions

[ε]V � [h] · m, (23–20a)

T � TM, (23–20b)

supplemented by suitable initial and boundary conditions. (In (23–20a), ε � εα(T )
and h � −Kα(T )∇T in phase α, and similarly in phase β.) By (23–4), (23–13),
and (23–18), the interfacial energy balance (23–20a) may be written equivalently
as

T [η]V � [h] · m . (23–21)

For solidification, in which one of the phases is solid and the other liquid, one
generally adds the restrictions

T ≥ TM in the liquid, T ≤ TM in the solid,

1Cf. Gurtin [1988].
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but these conditions are not a consequence of the hypotheses which the theory is
based. There are important physical situations with liquid at temperatures below
TM (supercooling) and situations in which the solid is at temperatures above TM
(superheating).

Not only does the configurational balance allow for a derivation of the classical
Stefan condition, it allows for a weak formulation of the Stefan problem by replacing
the condition T � TM on the interface (which, being local, is inappropriate to a
weak formulation) with a partial differential equation. In particular, (23–2) and the
configurational balance (23–6) with C given by (23–7a) and g by (23–12) yield, for
r � 0,

ε̇ � −Div h, (23–22a)

∇� � −η∇T , (23–22b)

η̇ ≤ −Div(h/T ), (23–22c)

to be interpreted in a weak sense, for example, in the sense of distributions. The
distribution form of (23–22a) gives that partial differential equation classically in
bulk and the balance (23–15) at the interface. The configurational balance (23–22b)
is satisfied automatically in bulk; its only contribution is at the interface, where
∇� is a distribution, because � suffers a jump discontinuity, while η∇T does not
contribute, because η and∇T are bounded. In fact, (23–22b) formally yields [�] � 0
and hence the Stefan condition (23–18). Finally, (23–22c) is satisfied automatically
in bulk and across the interface. To verify this latter assertion, note that (23–22c)
yields T [η]V ≤ [h] · m, or equivalently, by (23–4) and (23–15), [�]V ≥ 0, an
inequality satisfied by virtue of (23–17). It might therefore appear that the entropy
inequality (23–22c) is superfluous, which is true when the interface moves smoothly,
because the constitutive equations are compatible with the second law, but there are
situations involving large amounts of supercooling or superheating in which the
interface moves “infinitely fast” resulting in an instantaneous change in phase for
entire subregions of the body:2 the entropy inequality is then needed to ensure that
such instantaneous changes be consistent with the second law.3

2Sherman [1970], Fasano and Primicerio [1977], Götz and Zaltzman [1993], Gurtin
[1994].

3Gurtin [1994].



CHAPTER 24

Solidification with Interfacial
Energy and Entropy1

I now generalize the classical Stefan theory to include surface structure, retain-
ing the requirement that the temperature be continuous across the interface. The
resulting theory is complicated, and that is why I also develop, from the general
theory, well-known approximate theories that have been successful in applications.

a. General theory

I consider the basic laws for which migrating control volume P � P (t) in the
form (cf. (6–13))

d

dt

{∫
P

ε dv + ∫
G

ε̄ da

}
� − ∫

∂P

h · n da + ∫
P

r dv + ∫
G

rS da (24–1a)

+ ∫
∂P

QU da + ∫
∂G

Q̄V∂G ds +W (P ),

d

dt

{∫
P

η dv + ∫
G

η̄ da

}
≥ − ∫

∂P

(h/T ) · n da + ∫
P

(r/T )dv + ∫
G

(rS /T )da

+ ∫
∂P

(Q/T )U da + ∫
∂G

(Q̄/T )V∂G ds, (24–1b)

∫
∂P

Cn da + ∫
P

g dv + ∫
∂G

cn ds + ∫
G

(gS + eS )da � 0, (24–1c)

1This chapter, which represents major conceptual improvements of Gurtin [1988], is
based on ideas presented in Gurtin [1995].



164 24. Solidification with Interfacial Energy and Entropy

with G � G (t) the portion of the interface in P and n the outward unit normal to
∂G . HereW (P ) is given by (16–2) and, as such, yields all the results of Chapter 16,
including the configurational force balance (24–1c), the decomposition

c � σp+ m⊗ τ
(cf. (16–8)), and the normal force balance

σK + DivS τ + [π] + gS + eS � 0 (24–2)

(cf. (16–12a)). Further,Q is as discussed in Section 6c; ε̄ is the interfacial energy;
η̄ is the interfacial entropy; rS is the heat supplied directly to the interface; Q̄, a
configurational heating, is a superficial analog ofQ in the sense that∫

∂G

Q̄V∂G ds,
∫
∂G

(Q̄/T )V∂G ds

represent flows of heat and entropy into G induced by the motion of the boundary
curve ∂G .2

The power balance (16–17), the transport theorem (15–31) with ϕ � ε and with
ϕ � η, and the argument leading to (17–5) here yield the interface relations

η̄ � Q̄/T , σ � ψ,
with interfacial free energy ψ given by

ψ � ε̄ − T η̄. (24–3)

The interfacial forms of balance of energy and growth of entropy are more
complicated than before. The results η � Q/T and � � π remain valid (cf.
Section 6c), and, since η̄ � Q̄/T and σ � ψ , a pillbox argument applied to
(24–1a,b) using (11–25), (15–31), (16–17), and the continuity of T results in the
conditions

T [η]V � [h] · m+
�
ε̄−T η̄KV + τ · �

m+gS V − rS , (24–4a)

[η]V ≤ T −1[h] · m+
�
η̄−η̄KV − T −1rS . (24–4b)

These yield the interfacial dissipation inequality
�
ψ +η̄ �

T +τ · �
m+gS V ≤ 0, (24–5)

with (. . .)� the normal time derivative following S .
Guided by (24–5), I consider constitutive equations of the form (18–3), but with

(T ,m, V ) as independent variables and an additional constitutive equation, of the

2The paragraph containing (2–3) contains the phrase: “It is convenient to denote by an
overbar a quantity that has been transported, via the motion, to the deformed configuration.”
Here, instead, an overbar is used to designate certain interfacial fields; e.g., ε denotes the
internal energy, per unit volume, in bulk, while ε̄ denotes the internal energy of the interface,
per unit area. There should be no danger of confusion because motion of the body is not
considered.
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same type, for the interfacial entropy η̄. The most general constitutive equations
of this form consistent with the dissipation inequality (24–5) are

ψ � ψ̂(T ,m), (24–6a)

η̄ � −∂T ψ̂(T ,m), (24–6b)

τ � −∂mψ̂(T ,m), (24–6c)

gS � −b(T ,m, V )V, (24–6d)

with b(T ,m, V ) ≥ 0.
I omit the proof of (24–6), which is similar to that of (18–5)–(18–7), and I leave

it to the reader to verify that there are sufficient external and indeterminate forces
and supplies to satisfy all balances.

I henceforth restrict attention to linear kinetics, so that b � b(T ,m), and to
situations in which the external fields vanish:

r � eS � rS � 0.

The interface conditions consist of the energy balance (24–4a) and the configura-
tional balance (16–12a) with π � �, σ � ψ :

[�] � −ψK − DivS τ − gS . (24–7)

These interface conditions supplemented by the constitutive equations are the basic
free-boundary conditions of the theory; the condition (24–7) replaces the classical
Stefan condition. For an isotropic body, the interfacial free energy and the kinetic
modulus are independent of m, so that, in particular, τ ≡ 0; in this case (24–6a)
and (24–7) yield

�α(T ) −�β(T ) � ψ̂(T )K − b(T )V, (24–8)

where here and in what follows, m is assumed to point outward from the phase α
region.

As before, I assume that there is a unique temperatureTM that satisfies�α(TM ) �
�β(TM ); even so, it is clear from (24–8) that one should not expect T � TM at
the interface. Indeed, granted isotropy, generally T �� TM whenever the interface
is curved and/or moving. Thus curvature and motion of the interface generally
induce supercooling or superheating.

Consequences of the constitutive restrictions (24–6a) are the Gibbs relations
�
ψ � −η̄ �

T −τ · �
m,

�
ε̄ � T

�
η̄−τ · �

m .

Further, the energy balance (24–4a) is equivalent to the relation

T [η]V � [h] · m+ λ,
λ � −T

{
∂T ∂T ψ̂(T ,m)

�
T +∂m∂T ψ̂(T ,m)

�
m−∂T ψ̂(T ,m)KV

}
− b(T ,m, V )V 2.

The classical form of this balance is T [η]V � [h] · m (cf. (23–21)); the interfacial
term λ is generally neglected. The next section will address this issue.
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b. Approximate Theory. The Gibbs-Thomson condition as
a consequence of the configurational balance

The interface conditions (24–4a) and (24–7) are complicated. I now formally derive
an approximate theory for an interface whose free energy and kinetic modulus
have constitutive response functions which with their derivatives are small, say
O(δ) with δ small. This renders the corresponding response functions for the
interfacial entropy and shear also O(δ). In contrast, I assume that all bulk fields
are constitutively O(1).

Let

u � (T − TM )/TM, (24–9)

and define the latent heat �, assumed nonzero, by

� � εβ(TM ) − εα(TM ), (24–10)

or, in view of (23–13), by

� � TM
(
ηβ(TM ) − ηα(TM )

)
. (24–11)

Here and in what follows, εα(T ) and εβ(T ) and ηα(T ) and ηβ(T ) are the bulk
constitutive functions for the internal energy and entropy computed from the free
energies�α(T ) and�β(T ) using (23–8b) and (23–9). As before, phases are labeled
so that m is outward from the phase α region, so that jumps of bulk fields across
the interface are “β minus α.”

Let

F (T ) � �β(T ) −�α(T ), E(T ) � εβ(T ) − εα(T ), N (T ) � ηβ(T ) − ηα(T )

so that, by (23–4) and (23–13),

N (T ) � −F ′(T ), F (T ) � E(T ) − TN(T ), F (TM ) � 0, � � TMN (TM ).

Then, expanding F (T ) about T � TM yields F (T ) � F ′(TM )(T −TM )+O(u2) �
−�u+O(u2); similarly, E(T ) � TMN (TM ) +O(u) � �+O(u). Thus

�β(T ) −�α(T ) � −�u+O(u2), (24–12a)

εβ(T ) − εα(T ) � �+O(u), (24–12b)

T
(
ηβ(T ) − ηα(T )

) � �+O(u). (24–12c)

Assume that V and the derivatives of T and m are bounded; then, differentiating
the constitutive relation τ � τ̂(T ,m),

DivS τ � ∂T τ̂(T ,m) · ∇S T + ∂mτ̂(T ,m) · ∇S m � O(δ); (24–13)

thus, by (24–7) and (24–12a),

u � O(δ).

For any constitutive response function ϕ̂(T ,m) for the interface, define

ϕM (m) � ϕ̂(TM,m). (24–14)
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Then ϕ̂(T ,m) � ϕM (m) + O(u2) and, granted the additional assumption ∇S u �
O(δ), (24–13) yields the estimate

DivS τ � ∂mτM (m) · ∇S m+O(δ2) � DivS τM (m) +O(δ2).

Thus, by (24–12a,c), dropping terms of O(δ) in (24–4a) and terms of O(δ2) in
(24–7) yields the approximate interface conditions:

�u � ψM (m)K + DivS τM (m) − bM (m)V, (24–15a)

�V � [h] · m, (24–15b)

with

τM (m) � −∂mψM (m). (24–16)

Note that, by (15–12a), (15–17) and (24–15a) can be written alternatively as

�u � {ψM (m)1 + ∂m∂mψM (m)} · L− bM (m)V. (24–17)

Within this framework the Stefan problem consists of the bulk equations
(23–19) in conjunction with two interface conditions: the energy balance (24–15b),
which is classical, and the generalized Stefan condition (24–17), which includes
effects of curvature and kinetics. For an isotropic body, ψM and bM are constants,
which I write as ψ and b, and (24–17) reduces to3

�u � ψK − bV, (24–18)

which is the Gibbs-Thomson condition

�u � ψK (24–19)

augmented by the term bV , which accounts for interface kinetics.

c. Free-boundary problems for the approximate theory.
Growth theorems

c1. The quasilinear and quasistatic problems

I now consider free-boundary problems based on the approximate interface con-
ditions (24–15b) and (24–17) in conjunction with the bulk equations (23–19) with
r � 0, linearized about the melting temperature TM :

cαu̇ � Div(Kα∇u) in phase α, (24–20a)

cβu̇ � Div(Kβ∇u) in phase β, (24–20b)

3�u � −b(m)V was introduced by Frank [1958] and was used by Chernov [1963, 1964];
�u � ψK was introduced by Mullins [1960] (in the context of mass transport) and was
used by Mullins and Sekerka [1963, 1964]; �u � ψK − bV was used by Voronkov [1964].
Cf. also Seidensticker [1966], Tarshis and Tiller [1966], and the review articles by Sekerka
[1968, 1973, 1984], Chernov [1971, 1974], Delves [1974], and Langer [1980].
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with cα � cα(TM ) and Kα � Kα(TM ), and similarly for phase β. Assume without
loss in generality that at the melting temperature phase β has higher internal energy
than α:

� > 0. (24–21)

Further, to avoid an unnecessary constant, rescale by defining c̃α , c̃β , K̃α , K̃β , h̃,
ψ̃ , and b̃ via division by � of cα , cβ , Kα , Kβ , h, ψ , and b. Dropping the “wave,”
this yields the quasilinear system consisting of the bulk equations

cαu̇ � Div(Kα∇u) in phase α, (24–22a)

cβu̇ � Div(Kβ∇u) in phase β, (24–22b)

and the interface conditions

V � [h] · m, (24–23a)

u � B(m) · L− b(m)V, (24–23b)

with

B(m) � ψ(m)1 + ∂m∂mψ(m),

with h � −Kα∇u in phase α and h � −Kβ∇u in phase β, and with

b(m) ≥ 0, Kα and Kβ positive semidefinite. (24–24)

The quasilinear problem for a body B consists of (24–22) and (24–23) supple-
mented by initial conditions prescribing u(X, 0) and S (0) for all X ∈ B and by
boundary conditions giving u on a portion of ∂B and h · n on the remainder of ∂B
for all time (≥ 0).

Generally, one expects the interface to move slowly in comparison to the time
scale for heat conduction. With this in mind, consider the quasistatic system that
neglects the terms cαu̇ and cβu̇ in the bulk equations,

Div(Kα∇u) � 0 in phase α, (24–25a)

Div(Kβ∇u) � 0 in phase β, (24–25b)

but retains the interface conditions (24–23). The quasistatic problem consists of
this system supplemented by the boundary conditions of the quasilinear system in
conjunction with the initial specification of the interface.

c2. Growth theorems

I now establish Lyapunov functions for solutions of the quasilinear and quasistatic
systems. Consider a bounded bodyB, writeBα(t) andBβ(t) for the complementary
subregions of B occupied by phases α and β, assume that the interface S (t) is a
closed surface that never intersects ∂B, and restrict attention to the following two
types of boundary conditions:
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(i) isolated boundary

h · n � 0 on ∂B for all time; (24–26)

(ii) thermally uniform boundary

u � U on ∂B for all time. (24–27)

In (ii), U � U (t), a function of time alone, is the prescribed boundary tempera-
ture.

By (24–14),

F (S ) � ∫
S

ψ(m)da (24–28)

is the total interfacial free energy at the melting temperature, while

D (u) � ∫
Bα

∇u · Kα∇u dv +
∫
Bβ

∇u · Kβ∇u dv +
∫
S

b(m)V 2da (24–29)

is, to within the approximations inherent in the quasilinear system, proportional
to the total production of entropy.

Growth Theorem.4 Letu be a solution of the quasilinear system with cα � cβ � c.
(i) If the boundary is isolated,

d

dt

{
vol(Bα) − c ∫

B

u dv

}
� 0, (24–30a)

d

dt

{
F (S ) + 1

2
c
∫
B

u2dv

}
� −D (u) ≤ 0. (24–30b)

(ii) If the boundary is thermally uniform,

d

dt

{
F (S ) + 1

2
c
∫
B

(u− U )2dv

}
+U d

dt
vol(Bα) � −D (u) ≤ 0. (24–31)

Let u be a solution of the quasistatic system.
(iii) If the boundary is isolated,

d

dt
vol(Bα) � 0, (24–32a)

d

dt
F (S ) � −D (u) ≤ 0. (24–32b)

(iv) If the boundary is thermally uniform,

d

dt
F (S ) + U d

dt
vol(Bα) � −D (u) ≤ 0. (24–33)

4Gurtin [1988, p. 211]; vol(D) denotes the volume of a region D.
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Proof. The proof is based on three identities. The first,∫
Bα

Div h dv + ∫
Bβ

Div h dv � ∫
∂B

h · n da + ∫
S

[h] · m da, (24–34)

is a consequence of the divergence theorem and the fact that the heat flux h, here
defined in the sentence containing (24–24), is smooth away from the interface and
up to the interface from either side. The other identities are:∫

S

V da � d

dt
vol(Bα), (24–35a)

∫
S

uV da � − d

dt
F (S ) − ∫

S

b(m)V 2 da. (24–35b)

The result (24–35a) follows from (6–6) with � ≡ 1 and P � Bα , because S is
the only portion of ∂Bα that is migrating. The verification of (24–35b) is based on
the interface condition

u � ψ(m)K + ∂m∂mψ(m) · L− b(m)V. (24–36)

By (15–12a), (15–24), and (18–2c),

ψ(m)� � ∂mψ(m) · �
m � −∂mψ(m) · ∇S V

� −DivS {V ∂mψ(m)} − V ∂m∂mψ(m) · L ;
thus, since S is a closed surface, (15–31) yields

d

dt
F (S ) � ∫

S

(
ψ(m)� − ψ(m)KV

)
da

� − ∫
S

{∂m∂mψ(m) · L+ ψ(m)K)V da,

and (24–35b) follows from (24–36) .
Let u be a solution of the quasilinear system with cα � cβ � c. Because u is

continuous across the interface,

d

dt

∫
B

{
up dv

} � ∫
B

(up). dv (24–37)

for p � 1, 2. Assume that the boundary is isolated in the sense (24–26). Then
(24–30a) follows from (24–34) in conjunction with (24–22a), (24–23a), (24–35a),
and (24–37); while (24–30b) follows from (24–34) with h replaced by uh, using
the continuity of u in conjunction with (24–22a), (24–23a), (24–29), (24–35b),
and (24–37). Assume, on the other hand, that the boundary is thermally uniform.
Then, because U (t) is independent of position,∫

∂B

uh · n da � U ∫
∂B

h · n da,

and the proof of (24–31) follows using (24–34), both as is and with h replaced by
uh. The proof is left to the reader.

Finally, (24–32) and (24–33) follow from (24–30a) and (24–31) with c � 0.
�
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For a solid-liquid system, our agreement that phase β have higher internal energy
at TM renders α the solid phase. If ∂B is supercooled, then Uvol(Bα) < 0; (24–33)
would then indicate a tendency of the solid phase to grow, at least when bulk effects
dominate.

For an isotropic body h � −kα∇u in phase α and h � −kβ∇u in phase β with
kα and kβ scalar constants, while ψ and b are constant; in this case the quasistatic
system reduces to the Mullins-Sekerka system5 for which

�u � 0 (24–38)

in bulk and

u � ψK − bV, (24–39a)

V � [h] · m (24–39b)

on the interface, with� the Laplacian:�u � Div∇u. In this case (24–32) become

d

dt
vol(Bα) � 0, (24–40a)

ψ
d

dt
area(S ) � −D (u) ≤ 0, (24–40b)

while (24–33) take the form

ψ
d

dt
area(S ) + U d

dt
vol(Bα) � −D (u) ≤ 0. (24–41)

An analogous simplification holds for the quasilinear problem.

5Mullins and Sekerka [1963, 1964], although they take b � 0.



Part G

Fracture

The goal of this part1 is a framework for fracture that uses the notion of configu-
rational forces. Away from the crack the theory is as discussed previously;2 here
the emphasis is on deriving results for the crack and, especially, for the tip.

The following notation is used throughout:

v vector velocity of the tip,
V scalar velocity of the tip,
�� time derivative of a bulk field � following the tip.

In previous chapters, v and V designated vector and scalar velocity fields for an
evolving interface, while �� signified the time derivative following the interface.
This should not be a source of confusion, as the crack faces, although endowed
with structure similar to that of an interface, are immobile.

To avoid geometric complexities, the discussion is restricted to two space
dimensions. For convenience, I adopt the following conventions:

1. Even though the crack is a curve, I refer to its faces as crack surfaces.
2. The crack faces are treated in unison, so that a term such as surface tension

refers to the sum of the surface tensions of the individual faces.
3. The crack is considered internal to all control volumes,3 and hence such control

volumes account only implicitly for forces and working that result when the
crack faces are in contact.

1This chapter is taken from Gurtin and Podio-Guidugli [1996, 1997].
2E.g., the Eshelby relation (6–9), the standard and configurational balances (3–6) and

(5–10), and the dissipation inequality (6–11).
3I do not allow for external tractions applied to the crack faces. Because the theory

applies to an arbitrarily small neighborhood of the tip, this involves no essential loss in
generality.



CHAPTER 25

Cracked Bodies

The discussion begins with smooth cracks. In future sections the results will be
applied to crack kinking, an application that involves no inconsistency, as the
evolution of the tip is governed by local physical laws that apply away from—
although arbitrarily close to—points at which the crack kinks.

a. Smooth cracks. Control volumes

For each t in some open time interval, let C (t) be a smooth, connected, oriented
curve in B with one end, Z0, fixed at the boundary ∂B, with the remainder of
C (t)—including the other endpoint Z(t)—contained in the interior of B, and with
C (t1) ⊂ C (t2) for all t2 ≥ t1. B is viewed as a referential neighborhood of a
growing crack C (t) with Z(t) the crack tip. The phrase in bulk will be used to
signify away from the crack. Note that if at some time a subcurve G of the crack
does not contain the tip, then G is stationary at all subsequent times.

Arc length s is measured from Z0 with s(X) the arc length to a point X ∈ C (t).
Let t(X) denote the unit tangent to C (t) in the direction of increasing s. Because
t(Z(t)) represents the direction of (possible) propagation, the tip velocity

v(t) � dZ(t)

dt
(25–1)

may be written in the form

v(t) � V (t)t(Z(t)), V (t) ≥ 0, (25–2)

with V the tip speed.
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Throughout, m(X) denotes a continuous unit normal field for C (t). Note that,
because C (t) is smooth up to Z(t),

m(X) · v(t) → 0 as X → Z(t). (25–3)

The functions s(X), t(X), and m(X) actually depend on t , because their common
domain C (t) depends on t ; more precisely, one should write t(X, t), say, with the
understanding that t(X, t1) � t(X, t2) for all X ∈ C (t1) whenever t2 ≥ t1.

A migrating control volume P (t) is here (restricted to be) a closed subregion
ofB for which C (t) does not intersect ∂P (t) at more than two points and for which
Z(t) �∈ ∂P (t). Then P (t) must be one of the following:

(i) a bulk control volume (a control volume that does not intersect on the crack),
(ii) a crack control volume (a control volume that contains a portion of the

crack, but not the tip), or
(iii) a tip control volume (a control volume that contains the tip in its interior).

For bulk control volumes the basic laws as discussed in Section A; I therefore here
restrict attention to crack and tip control volumes.

As before, for P � P (t) a control volume, n designates the outward unit normal
to ∂P , while U is the (scalar) normal velocity of the curve ∂P in the direction n.

The following notation is convenient. Let ϕ(X, t) be defined on the crack. For
P (t) a tip control volume, C (t) intersects ∂P (t) at a single point, XA(t), and

ϕA(t) � ϕ(XA(t), t), ϕtip(t) � ϕ(Z(t), t).

For P (t) a crack control volume, C (t) intersects ∂P (t) at two points, XA(t) and
XB(t), and

ϕA(t) � ϕ(XA(t), t), ϕB(t) � ϕ(XB(t), t);
here, for definiteness,

s(XB(t)) > s(XA(t)). (25–4)

Further, uA(t), for a crack or tip control volume, and uB(t), for a crack control
volume, are the (scalar) velocities defined by

ẊA(t) � uA(t)tA(t), ẊB(t) � uB(t)tB(t). (25–5)

An important example of a tip control volume is a tip disc Dδ(t), which is a
disc of radius δ centered at the tip Z(t); here, for n(X, t) the outward unit normal
to ∂Dδ(t) and δ sufficiently small that tA · nA �� 0,

U � v · n, uA � U

tA · nA ; (25–6)

moreover, as δ → 0,

tA(t) → t(Z(t)), uA(t) → V (t). (25–7)

Let G (t) denote an arbitrary connected subcurve of the crack, with Z(t) �∈ G (t).
An example of a crack control volume is the δ-pillbox Gδ(t) about G (t) as defined
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in (11–22). Writing XA(t) and XB(t), s(XA(t)) < s(XB(t)), for the endpoints of
G (t), ∂Gδ � ∂Gδ(t) consists of:

(i) two curves, each parallel to—and a distance δ from—G ; on these curves the
normal velocity of ∂Gδ vanishes;

(ii) two end faces of length 2δ perpendicular to G , one at XA, the other at XB .

b. Derivatives following the tip. Tip integrals. Transport
theorems

A bulk field �(X, t) (i.e., a field defined away from the crack) is smooth away
from the tip if, away from Z(t), �(X, t) and its derivatives have limits up to the
crack from either side. (For X ∈ C (t), X �∈ Z(t), the jump [�](X, t) and the
interfacial limits �±(X, t) are then defined as in (10–1).)

Let �(X, t) be a bulk field that is smooth away from the tip. Consider the
corresponding field �̂(Y, t) in which Y represents the position of the material
point X relative to the tip Z(t):

�̂(Y, t) � �(X, t), Y � X − Z(t). (25–8)

The partial derivative

�
�(X, t) � ∂

∂t
�̂(Y, t)

∣∣∣
Y�X−Z(t)

(25–9)

with respect to t holding Y fixed, but considered as a function of (X, t), represents
the time derivative of �(X, t) following Z(t); by the chain rule,

�
� � �̇+ ∇� · v (25–10)

away from the crack.
Essential to the theory are limits such as limδ→0

∫
∂Dδ

�n ds. When meaningful,

such limits, termed tip integrals, will be written in the form∮
tip
�n ds � lim

δ→0

∫
∂Dδ

�n ds.

For � the bulk free energy and S the bulk stress,
∮

tip�(n · V)ds and
∮

tip Sn ds,
respectively, represent the flow of free energy in—and the net traction on—an
infinitesimal neighborhood of the tip.

Let P (t) be a control volume. The notation

Pδ(t) � P (t)\Dδ(t), (25–11a)

G (t) � C (t) ∩ P (t) (25–11b)

will be used consistently; in (25–11a), δ > 0 is presumed to be sufficiently small
that

∂Pδ(t) � ∂P (t) ∪ ∂Dδ(t).
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Let �(X, t) be smooth away from the tip, and let P � P (t) be a crack control
volume. Then, by (10–8a,b),

d

dt

{∫
P

�da

}
� ∫

P

�̇ da + ∫
∂P

�U ds, (25–12a)

∫
P

∇�da � ∫
∂P

�n ds − ∫
G

[�]m ds (25–12b)

(because the crack is stationary away from the tip).
Next, let P � P (t) be a tip control volume and consider the crack control

volume Pδ � Pδ(t), using the same letter n for the outward unit normal on both
∂P and ∂Dδ , so that the outward unit normal and normal velocity for ∂Pδ are −n

andU � −v ·n on that portion of ∂Pδ coincident with ∂Dδ; then (25–12) hold with
P � P (t) replaced by Pδ � Pδ(t), so that

d

dt

{∫
Pδ

� da

}
� ∫
Pδ

�̇ da + ∫
∂P

�U ds − ∫
∂Dδ

�(v · n)ds, (25–13a)

∫
Pδ

∇�da � ∫
∂P

�n ds − ∫
C ∩Pδ

[�]m ds − ∫
∂Dδ

�n ds. (25–13b)

Taking the inner product of (25–13b) with v and subtracting the resulting relation
from (25–13a) yields, by (25–10), an identity,

d

dt

{∫
Pδ

� da

}
� ∫
Pδ

�
� da +

∫
∂P

�(U − v · n)ds + ∫
C ∩Pδ

[�]m · v ds, (25–14)

that will form a basis for the derivation of relations appropriate to the limit δ → 0.
Let P � P (t) be a tip control volume. For�(X, t) smooth away from the tip the

behavior of �(X, t) at Z(t) is not specified and the integral
∫
P

�da may not exist.

Here it seems most convenient to define such an integral in terms of its Cauchy
principle value; i.e., as the limit of the integral over Pδ(t) as δ → 0.

The next definition allows for a succinct statement of hypotheses concerning
momenta and energies. A field�will be termed a regular bulk field if, in addition
to being smooth away from the tip:

(R1) for each tip control-volume P � P (t) the limits∫
P

�da � lim
δ→0

∫
Pδ

� da, (25–15a)

∫
P

�
� da � lim

δ→0

∫
Pδ

�
� da, (25–15b)

exist, with (25–15b) uniform in time;
(R2) [�]m · v is integrable on C , uniformly in time (cf. (25–3)).

In actual solutions of crack problems, the underlying fields are generally singular in
the distance r � |X − Z(t)| from Z(t); for that reason hypotheses seem best worded
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in terms of the derivative
�
�, which is taken holding r fixed. Indeed, typical estimates1

for a crack in a linearly elastic body are that the displacement u satisfy ∇u ∼ r−1/2

and u̇ ∼ r−1/2 as r → 0, which yield, for the energy �,

� ∼ r−1,
�
� ∼ r−1, (25–16a)

�̇ ∼ r−2, ∇� ∼ r−2, (25–16b)

Granted uniformity in t , (25–16a) would imply (R1) and (R2) (cf. (25–3)). On
the other hand, the estimate for �̇ would render the assumption

∫
P

�̇ da �
limδ→0

∫
Pδ

�̇ da of uncertain general value.

An important consequence of the assumption of regularity for a bulk field � is
that, given any migrating control volume P � P (t),∫

P (t)
�da is a differentiable function of t; (25–17)

a second and equally important consequence is the transport identity

d

dt

{ ∫
P (t)
�da

}
� ∫
P (t)

�
� da +

∫
∂P (t)

�(U − v · n)ds + ∫
G (t)

[�}m · v ds, (25–18)

valid for any migrating control volume P � P (t). This identity expresses

d/dt
∫
P

�da in terms of quantities—the temporal change
�
� and the inflows

�(U − n · v) and [�]m · v—measured in a frame moving with the tip.
To verify (25–17) and (25–18), let

ϕ(t) � ∫
P (t)
�da, ϕδ(t) �

∫
Pδ (t)

�da;

then (25–14) and properties (R1) and (R2) of regular fields yield the conclusion
that, as δ → 0, dϕδ/dt tends to the right side of (25–18) uniformly, while ϕδ → ϕ.
Thus ϕ(t) � ∫

P (t)
�da is a differentiable function of t and dϕδ/dt → dϕ/dt , or

equivalently,

d

dt

{∫
Pδ

� da

}
→ d

dt

{∫
P

�da

}
, (25–19)

and (25–18) holds.
The next result is central to the localization of the second law to crack tips.

Tip Transport Theorem for Bulk Fields. Let � be a regular bulk field. Then

d

dt

{∫
Dδ

� da

}
→ 0 as δ → 0, (25–20)

1Cf. Freund [1990, p. 43]. Even within the infinitesimal theory, this estimate is generally
not valid beyond linear elasticity (cf. Rice and Rosengren [1968], Hutchinson [1968]).
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uniformly in time.

Proof. The first step is to show that, for F an arbitrary field,

if
∫
P

F da � lim
δ→0

∫
Pδ

F da exists for some (and hence every)

control volume P , then lim
δ→0

∫
Dδ

F da � 0, with uniformity

in time in the second limit if in the first.

(25–21)

To verify (25–21), given λ > τ > 0, let Dλτ (t) denote the annulus

Dλτ (t) � Dλ(t)\Dτ (t).
Granted

∫
P

F da � limδ→0
∫
Pδ

F da for allP (∗), let
∫
Dρδ

F da � ∫
Dρε

F da− ∫
Dδε

F da,

ρ > δ > ε. Then, if we let ε → 0 and δ → 0, in that order, the result is
limδ→0

∫
Dδ

F da � 0, with this limit uniform if (∗) is uniform. Hence (25–21) is

valid.
Because U � v · n is the normal velocity of ∂Dδ , (25–18) with P � Dδ yields

d

dt

{∫
Dδ

� da

}
� ∫
Dδ

�
� da +

∫
C ∩Dδ

[�]m · v ds. (25–22)

Thus, by (25–15b) and (25–21)

lim
δ→0

∫
Dδ

�
� da � 0, (25–23)

uniformly. Also, by property (R2), the integral in (25–22) over C ∩ Dδ goes to
zero with δ, uniformly. Thus (25–20) is valid. �

Let� be regular. Then, as a consequence of (25–13a) and (25–19),
∮

tip�(v·n)ds

exists if and only if
∫
P

�̇ da � limδ→0
∫
Pδ

�̇ da exists for some (and hence every)

control volume P , and, granted either,

d

dt

{ ∫
P (t)
�da

}
� ∫
P (t)
�̇ da + ∫

∂P (t)
�U ds −

∮
tip
�(v · n) ds.

Further, for a δ-pillbox Gδ � Gδ(t), (25–12a) and (i) and (ii) of the paragraph
following (25–7) imply that

d

dt

{∫
Gδ

� da

}
→ 0, (25–24a)

∫
∂Gδ

�U ds → 0, (25–24b)

as δ → 0.
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Also important are transport relations for fields ϕ(X) (independent of t) that
are continuous on the crack, up to the tip. Let G (t), defined in (25–11b), be the
portion of the crack in a control volume P (t). Then, by (19–8),2 using the notation
specified in the paragraph containing (25–4),

d

dt

{ ∫
G (t)
ϕ ds

}
� ϕtipV − ϕAuA for a tip control volume, (25–25a)

d

dt

{ ∫
G (t)
ϕ ds

}
� ϕBuB − ϕAuA for a crack control volume. (25–25b)

Thus, (25–7) and (25–25a), as δ → 0

d

dt

{ ∫
C ∩Dδ

ϕ ds

}
→ 0 as δ → 0, (25–26)

which is an interfacial counterpart of (25–20).

2Bearing in mind that V in (19–8) is the normal velocity of the interface, while V here
is the scalar velocity of the tip.
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Motions

Motions y are defined as in Section 2a, except that y is not required to be continuous
across the crack. Precisely, y(X, t) is assumed to be smooth away from the tip, to
satisfy the impenetrability condition

[y] · m ≥ 0, (26–1)

and to have a limiting value y(Z(t), t) at the tip,

y(X, t) → y(Z(t), t) as X → Z(t) (26–2)

from bulk or from points of the crack, so that the deformed tip is well defined. The
deformation gradient F � ∇y and the material velocity ẏ are then smooth away
from the tip, although these fields are generally singular at the tip.

By (25–9), the motion velocity
�
y following the tip is the derivative

�
y(X, t) � ∂

∂t
y(Z(t) + Y, t)

∣∣
Y�X−X(t) (26–3)

holding the distance Y from the tip fixed; equivalently,

�
y � ẏ+ Fv (26–4)

in bulk. The field
�
y(X, t) is assumed to have a limiting value v̄(t) at the tip:

�
y(X, t) → v̄(t) as X → Z(t), (26–5)

(cf. the paragraph containing (25–16a)); if the limit is uniform in t , then, by (26–2),
y(Z(t), t) is differentiable in t and, as would be expected from (26–3),

v̄(t) � d

dt
(Z(t), t) (26–6)
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so that v̄ is the velocity of the deformed tip. The results (26–5) and (26–6) establish

the consistency of the current definition of
�
y (via (25–9)) and the definition (10–4)

for an evolving interface. A direct consequence of (26–4) and (26–5) is that

for v � 0, ẏ(X, t) → v̄(t) as X → Z(t). (26–7)

Let P � P (t) be a control volume. As before, q denotes an arbitrary velocity
field for the boundary curve ∂P , and ẙ, defined by (4–3), the motion velocity
following ∂P as described by q, so that

ẙ � ẏ+ Fq. (26–8)

The tip velocity v(t) is admissible as a velocity field for the boundary of the tip

discDδ(t); the motion velocity
�
y following the tip therefore coincides on ∂Dδ with

the motion velocity ẙ following ∂Dδ as described by v.
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Forces. Working

As in the treatment of coherent interfaces presented in Part B, the constitutive
theory for the tip involves a simple dissipation inequality of the form (11–21), and
that is why the introduction of (virtual) external forces to ensure satisfaction of the
balance laws in all processes would seem excessive. I therefore assume that (the
underlying observer and) all external body forces are inertial.

As before, I characterize inertia using inertial forces, with the momentum and
kinetic energy produced at the crack tip accounted for by concentrated forces
within the standard and configurational systems. As the crack produces neither
momentum nor kinetic energy away from the tip, there is no need to consider
inertial forces distributed over the crack.

a. Forces

To the standard forces S and b and configurational forces C, g, and e introduced
in Chapters 3 and 5, assumed here to be objective and smooth away from the tip,
with b, g, and e integrable (as Cauchy principal values), I add two fields distributed
over the crack:

gC internal configurational force
c surface stress

and three forces concentrated at the tip:

btip external standard force
gtip internal configurational force
etip external configurational force
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Precisely, btip(t) is a spatial vector; gC (X, t), c(X), gtip(t) are material vectors; all
five functions are objective; gC (X, t) is integrable over C (t); c(X) is smooth (up
to the tip). As the crack faces are treated in unison, c and gC represent forces
associated with the union of the crack faces.

In classical theories of fracture the strength of the tip singularity is insufficient to
induce a release of momentum and this, in turn, yields btip ≡ 0. But even within this
restricted framework etip, the configurational counterpart of btip, does not vanish; for
that reason, we consider the general theory with btip �� 0, because this leads to a
parallel treatment of inertia within the two force systems.

The configurational surface stress c(X), which acts within the free surfaces of
the crack, is the analog of the configurational surface stress (tensor) c(X, t) within
an interface (cf. Part E); the current two-dimensional treatment allows c(X) to be
identified with a vector (cf. Chapter 19). Fix X and t , and let C + � C +(t) denote
the portion of the crack with arc-length values greater than s(X), and C − � C −(t)
the portion with values less than s(X). The surface stress c � c(X) then represents
the force exerted across s by the material in C + on the material in C −, with c · t
a surface tension and c · m a surface shear

Neither c nor the surface energyψ (cf. Section 28a) are allowed to depend on t . Such
dependencies, while not difficult to accommodate, seem unimportant to the charac-
terization of real materials, for which c andψ typically depend constitutively on the
normal m to C , and m � m(X) is independent of t . As in Chapter 18, one generally
expects a configurational shear c · m whenever the surface energy is anisotropic.

The internal configurational force gtip is associated with the breaking of bonds
during crack growth or, more generally, to phenomena occurring at the tip at length
scales that are small compared to the gross length scales of the body;1 as such this
force is important in discussing the kinetics of crack growth. Of less importance is
the internal configurational force gC distributed over the crack surfaces. Because
the crack surfaces do not migrate, gC , like its bulk counterpart g, is indeterminate.2

I assume that the tip singularity is not too strong in the sense that∫
∂Dδ (t)

|Sn|ds is bounded as δ → 0.3 (27–1)

This assumption, (26–2), (26–5), and the definition of the tip integral yield two
useful results in which ytip(t) � y(Y(t), t):∮

tip
Sn · (

�
y−v̄)ds � 0, (27–2a)∮

tip
(y− ytip) × Sn ds � 0. (27–2b)

1Cf. the discussion of Freund [1990, pp. 10–11]. An example of such phenomena is
“small-scale yielding” associated with a crack-tip plastic zone (cf. Rice [1968]).

2The internal force g is discussed in the paragraph following (5–1).
3For a crack in a linearly elastic body, s ∼ r−1/2 as r → 0, which yields the vanishing

of the integral in (27–1).
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b. Working

The working of the bulk forces is as discussed in Part A. If P � P (t) is a tip
control volume, then c performs work on P of amount −cA · ẊA � −uAtA · cA,
while cB · ẊB − cA · ẊA � uBtB · cB − uAtA · cA represents the corresponding
work performed on a crack control volume (cf. the paragraph containing (25–4)).
The motion of the tip is accompanied by working of the inertial forces etip and btip,
with the tip velocities v and v̄ as appropriate conjugate velocities. Finally, internal
forces perform no work.

The working W (P ) on a migrating control volume P � P (t) therefore takes
the form

W (P ) � ∫
∂P

(Cn · q+ Sn · ẙ) ds + ∫
P

b · ẏ da +Wc(P ), (27–3)

where
∫
P

b · ẏ da denotes limδ→0
∫
Pδ

b · ẏ da, which is assumed to exist, and where

Wc(P (t)), the working associated with the crack, is given by

Wc(P ) � uBtB · cB − uAtA · cA (27–4)

for a crack control volume, and

Wc(P ) � btip · v̄+ etip · v− uAtA · cA (27–5)

for a tip control volume. Arguing as in the proof of (5–15),W (P ) may be written
intrinsically as

W (P ) � ∫
∂P

Sn · ẏ ds + ∫
P

b · ẏ da + ∫
∂P

πU ds +Wc(P ) (27–6)

with π given by (5–17).

c. Standard and configurational force balances

The velocities v, uAtA, uBtB , and v̄ transform according to

v → v+ a, uAtA → uAtA + a, uBtB → uBtB + a, v̄ → v̄

under the change in material observer defined by (2–9), and according to

v → v, uAtA → uAtA, uBtB → uBtB, v̄ → v̄+w+ω×(ytip−o)

under the change in spatial observer defined by (2–7) (cf. the consistency require-

ment as stated in Section 2d). Thus, by the transformation laws for q, ẙ, ẏ, v and
�
y

specified in (2–8), (2–12), (4–6), and (4–7), the workingW (P ) as recorded by the
new observers has the form

W (P ) � ∫
∂P

Cn · (q+ a)ds + ∫
P

(g+ e) · a da

+ ∫
∂P

Sn · (ẙ+ w+ ω× (y− o)
)
ds
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+ ∫
P

b · (ẏ+ w+ ω× (y− o))da +Wc(P ) (27–7)

with

Wc(P ) � (uBtB + a) · cB − (uAtA + a) · cA + ∫
P∩C

gC · a ds

for a crack control volume and

Wc(P ) � gtip · a+ etip · (v+ a) − (uAtA + a) · cA + btip
(
v̄+ w+ω× (ytip − o)

)
for a tip control volume.

The requirement that the working be invariant under changes in material and
spatial observer requires the equivalence of (27–3) and (27–7) for all a, w, and ω.
This yields:

(i) standard force and moment balances∫
∂P

Sn ds + ∫
P

b da � 0, (27–8a)∫
∂P

(y− o) × Sn ds + ∫
P

(y− o) × b da � 0 (27–8b)

for a (bulk or) crack control volume and∫
∂P

Sn ds + ∫
P

b da + btip � 0, (27–9a)∫
∂P

(y− o) × Sn ds + ∫
P

(y− o) × b da + (ytip − o) × btip � 0 (27–9b)

for a tip control volume;
(ii) configurational force balances∫

∂P

Cn ds + ∫
P

g da + ∫
G

gC ds + cB − cA � 0 (27–10)

for a crack control volume and∫
∂P

Cn ds + ∫
P

g da + ∫
G

gC ds + gtip + etip − cA � 0 (27–11)

for a tip control volume

Since b, g, and gC are integrable, (27–9a) and (27–11) applied to a tip discDδ(t)
yields, after passing to the limit δ → 0, the following balances at the tip:∮

tip
Sn ds + btip � 0, (27–12a)∮

tip
Cn ds + gtip + etip − ctip � 0. (27–12b)

(In view of (27–12a), (y − o) in (27–9b) may be replaced by (ytip − o); thus,
by (27–2b), the limit δ → 0 in the standard moment balance (27–9b) yields no
additional information.)



188 27. Forces. Working

To derive local relations for the crack, consider the δ-pillbox Gδ(t) about an
arbitrary subcurve G (t) of the crack, with Z(t) �∈ G (t). Then (27–8a) and (27–10)
applied to G (t) yield, in the limit δ → 0,

sB∫
sA

[S]m ds � 0,
sB∫
sA

([C]m+ gC )ds + cB − cA � 0 (27–13)

where sB > sA, are the arc-length values that mark the endpoints of G (t). Let
sB → sA after dividing by sB − sA; the result is

[Sm] � 0, (27–14a)

[Cm] + cs + gC � 0 (27–14b)

on the crack away from the tip.

d. Inertial forces. Kinetic energy

As before, let ρ(X) ≥ 0 denote the referential mass density, assumed smooth; let

p � ρẏ, k � 1

2
ρ|ẏ|2 (27–15)

denote the densities of momentum and kinetic energy; and define the productions
of momentum and kinetic energy in a migrating control volume P � P (t) by

P (P ) � d

dt

{∫
P

p da

}
− ∫
∂P

pU ds, (27–16a)

T (P ) � d

dt

{∫
P

k da

}
− ∫
∂P

kU ds. (27–16b)

To ensure that these definitions have meaning, k and p are assumed to be regular.
The bulk inertial force b has the form b � −ρÿ (cf. (7–1)). The inertial forces at

the tip, which are not so obvious, are characterized through the following two rela-
tions involving inertial forces, inertial working, and the productions of momentum
and kinetic energy for an arbitrary tip control volume P � P (t) (cf. (7–6)):∫

P

b da + btip � −P (P ); (27–17a)∫
P

b · ẏ da + btip · v̄+ etip · v � −T (P ). (27–17b)

Consequences of these balances are the relations

btip �
∮

tip
p(v · n)ds, (27–18a)

btip · v̄+ etip · v �
∮

tip
k(v · n)ds, (27–18b)

etip · v � v ·
∮

tip
kreln ds, krel � 1

2
ρ|ẏ− v̄|2; (27–18c)
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(27–18a) asserts the equivalence of btip and the release rate for momentum,
(27–18b) the equivalence of the total inertial working and the release rate for
kinetic energy, (27–18c) the equivalence of the configurational inertial working
and the release rate for the kinetic energy measured relative to the tip.

To establish (27–18a), note first that, by (25–21) and the integrability (in the
sense of a Cauchy principal value) of b and b · ẏ,∫

Dδ

b da → 0,
∫
Dδ

b · ẏ da → 0 (27–19)

as δ → 0. Bearing this in mind, the identities (27–18a,b) and the existence of∮
tip p(v ·n)ds and

∮
tip k(v ·n)ds follow from (27–16a,b), (27–17a,b), the regularity

of p and k, and (25–20) with� � p and� � k. The result (27–18c) follows from
(27–18a,b), the identity

k − p · v � 1

2
ρ|ẏ− v̄|2 − 1

2
ρ|v̄|2, (27–20)

the continuity of ρ, and the spatial independence of v̄.

An alternative method of determining etip is to use, in place of (27–17b), a hypothesis
analogous to (27–17a) for the pseudomomentum p � −ρF�ẏ (cf. (7–10), (12–11)):4

∫
P

e da + etip � − d

dt

{∫
P

p da

}
+ ∫
∂P

pU ds − ∫
∂P

kn ds + ∫
P

1

2
ẏ2∇ρ da. (27–21)

Then, as in the derivation of (27–18a), (27–21) applied to a tip disc Dδ(t) yields, in
the limit δ → 0, an identity of Dascalu and Maugin5

etip �
∮

tip
p(v · n)ds −

∮
tip
kn ds. (27–22)

Since v � Vt, p � −F�p, and v̄ � ẏ+ Fv,

t · {p(v · n) − kn} � −{t · (F�p)V + k}t · n � −{p · Fv+ k}t · n
� −{p · (v̄− ẏ) + k}t · n � −{p · v̄− k}t · n;

thus (27–20) and (27–22) imply that

etip · t � t ·
∮

tip
kreln ds, (27–23)

and hence that etip · v is given by (27–18c).

4Assume that p � −ρF�ẏ is regular,
∮

tip p(v · n)ds and
∮

tip kn ds exist, and ρ > 0,

which, with k regular, ensures the integrability of 1
2 ẏ

2∇ρ � k∇(ln ρ).
5[1993]; they formally derive an equivalent relation (their eq. (6)) for homogeneous

elastic materials. The hypothesis (27–21) has stronger consequences than (27–17b), as the
latter does not imply (27–22), nor does it yield (27–23) when V � 0.
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The Second Law

a. Statement of the second law

The free energy of the body is represented by a bulk free energy�(X, t) distributed
over B and a surface free energyψ(X) distributed over C (t), with�(X, t) regular,
ψ(X) smooth,

ψ > 0, (28–1)

and ψ independent of time (cf. the paragraph in petite type preceding (27–1)).
I write the second law for a control volume P � P (t) in the form

d

dt

{∫
P

� da + ∫
G

ψ ds

}
≤ W (P ), (28–2)

with workingW (P ) given by (27–3)–(27–5). The difference

�(P ) � W (P ) − d

dt

{∫
P

� da + ∫
G

ψ ds

}
≥ 0 (28–3)

then represents the energy dissipated in P , per unit time. Using (27–6) and the
identity π � � (cf. (6–8)), the second law may be written intrinsically as

d

dt

{∫
P

� da + ∫
G

ψ ds

}
≤ ∫
∂P

(Sn · ẏ+�U )ds + ∫
P

b · ẏ da +Wc(P ). (28–4)
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b. The second law applied to crack control volumes

Consider a δ-pillbox Gδ(t) about an arbitrary subsurface G (t) of the crack. Assume
that Z(t) �∈ G . Then, because ψ is independent of time, (11–25b), (25–24), and
(25–25b) imply that

d

dt

{∫
Gδ

� da + ∫
G

ψ ds

}
→ ψBuB − ψAuA,

∫
∂Gδ

(Sn · ẏ+�U )ds + ∫
Gδ

b · ẏ da → ∫
G

[Sm · ẏ]ds,

as δ → 0. Thus, by (27–4), (28–4) implies that

(ψB − tB · cB)uB − (ψA − tA · cA)uA ≤ ∫
G

[Sm · ẏ]ds,

and, because at any prescribed time uA and uB may be specified independently of
G and of each other, this yields the equivalence of surface tension and surface free
energy,

c · t � ψ. (28–5)

Further, because G is arbitrary, [Sm · ẏ] ≥ 0; therefore, as [S]m � 0,

S±m · [ẏ] ≥ 0.

If the crack faces are in contact, then

[y] · m � 0, (t · S±m)t · [ẏ] ≥ 0,

and at these faces the working of the bulk shears over the tangential slip must be
nonnegative. On the other hand, because external tractions on the crack faces are
not considered, the crack surfaces when not in contact are traction-free:

[y] · m > 0, S±m � 0.

c. The second law applied to tip control volumes.
Standard form of the second law

Consider (28–2) applied to the tip discDδ � Dδ(t) with v the velocity field for ∂Dδ

and (hence)
�
y the corresponding motion velocity following ∂Dδ (cf. the sentence

following (26–8)). By (25–20) and (25–26),

d

dt

{∫
Dδ

� da + ∫
C ∩Dδ

ψ ds

}
→ 0
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as δ → 0; thus (27–3) and (27–5) yield

∫
∂Dδ

(Sn · �
y+Cn · v)ds (28–6)

+ btip · v̄+ etip · v− uAtA · cA + o(1) � �(Dδ) ≥ 0

(where the symbol o(1) signifies a term that approaches zero with δ). Next, by
(27–2a) and (27–12a), as δ → 0,

∫
∂Dδ

Sn · �
y ds � v̄ · ∫

∂Dδ

Sn ds + o(1) → −btip · v̄, (28–7)

while (27–12b) yields∫
∂Dδ

Cn · v ds � v · ∫
∂Dδ

Cn ds → v · (ctip − gtip − etip). (28–8)

Thus, by (25–2) and (25–7), passing to the limit δ → 0 in (28–6) yields two
important results:

gtip · v ≤ 0, (28–9)

which represents an internal dissipation inequality for the crack tip; and

�tip � −gtip · v, �tip � lim
δ→0

�(Dδ), (28–10)

establishinggtip·v, and hence the breaking of bonds, as the sole source of dissipation
at the tip.

By (27–5), (27–16b), (27–17b), and (28–5), the second law (28–4) for a tip
control volume P � P (t) may be written in the form

d

dt

{∫
P

(� + k)da + ∫
G

ψ ds

}
≤ ∫
∂P

Sn · ẏ ds + ∫
∂P

(� + k)U ds −ψAuA (28–11)

and �(P ), defined by (28–3), may be expressed as the right side of (28–11) minus
the left. Since

∫
∂P

(�+k)U ds and −ψAuA, respectively, represent net flows of bulk

and surface energy into P across ∂P , (28–11) is consistent with more standard
views concerning the formulation of basic laws for control volumes. (For a crack
control volume there would be an additional termψBuB on the right side of (28–11).

By (28–11) with P � Dδ , (25–20) with� � � + k, which is regular, (25–25a)
with ϕ � ψ , and the sentence containing (28–11),∮

tip
{Sn · ẏ+ (� + k)(v · n)} ds − ψtipV � �tip, (28–12)

which represents an energy balance for the crack tip. (The tip integral in (28–12)
exists because the other limits resulting in (28–12) exist.)
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d. Tip traction. Energy release rate. Driving force

Let t(t) � ttip(t) � t(Z(t)). The following quantities are essential to our discus-
sion:

j �
∮

tip

{
(� + krel)1 − F�S

}
n ds tip traction, (28–13a)

J � t · j � t ·
∮

tip

{
(� + krel)1 − F�S

}
n ds energy release rate, (28–13b)

f � J − ψtip driving force. (28–13c)

I now discuss these definitions in more detail.
The vector j represents the configurational traction

∮
tip Cn ds on the material

in an infinitesimal neighborhood of the tip, augmented by the “inertial traction”∮
tip kreln ds.

With a view toward discussing f and J , assume for the remainder of this section
that the crack is growing:

v � Vt, V > 0. (28–14)

Since t · ctip � ψtip, (27–18c) divided by V , (28–5), and (28–13c) imply that

f � t ·
[∮

tip

{
�1 − F�S

}
n ds − ctip + etip

]
. (28–15)

The stress C � �1 − F�S, the surface stress c, and the inertial force etip give
rise to a net noninternal configurational force on the material in an infinitesimal
neighborhood of the tip; f represents the component of that force in the direc-
tion of propagation. Using the Eshelby relation (6–9), the configurational balance
(27–12b) may be written as∮

tip

{
�1 − F�S

}
n ds − ctip + gtip + etip � 0. (28–16)

The last two relations and (28–13c) yield the tangential configurational balance

J − ψtip + t · gtip � 0, (28–17)

or equivalently,

f � −t · gtip, (28–18)

a balance between the driving force f and −t ·gtip, the internal force that opposes
motion of the tip. By (28–9) and (28–10),

�tip � fV ≥ 0, (28–19)

and f is conjugate to the scalar velocity V .
By (28–12), (28–19), and (28–13c),

J � V −1
∮

tip
{Sn · ẏ+ (� + k)(v · n)} ds; (28–20)
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JV therefore represents the working on—and bulk energy flow into—an infinites-
imal neighborhood of the tip; J itself measures this quantity per unit crack length
rather than per unit time. Also, by (28–13b), J is the component of j in the direction
of propagation; for krel � 0, J is the limiting value of the Eshelby-Rice integral.1

Consequences of the tangential balance (28–18) and the second law, as man-
ifested by the internal dissipation inequality (28–9), are the following necessary
conditions for crack growth:

(i) the driving force must be non-negative,

f ≥ 0; (28–21)

(ii) the tip traction must form an acute angle with the direction of propagation,

t · j ≥ ψtip > 0. (28–22)

The Griffith criterion asserts that a crack will run when and only when t · j > ψtip

and hence whenever (28–21) is satisfied strictly. Within the current framework
(28–21) represents only a necessary condition for crack propagation; in fact for
the class of constitutive equations to be considered, (28–21) may be satisfied
strictly without motion of the tip. The results (28–21) and (28–22) are, however,
independent of constitutive assumptions.

Remark. For a straight crack (t � constant) in a homogeneous elastic body,
neglecting inertia, with the crack faces traction-free (S±m � 0), the energy release
rate may be computed via an integration along a path away from the tip. Let
Y � Y (t) denote any smooth, closed, nonintersecting path that begins and ends
on the crack and surrounds the tip; let n denote the outward unit normal to Y ; let

J (Y ) � t · ∫
Y

(�1 − F�S)n ds;

bear in mind that DivC � 0, because g � e � 0 (cf. (9–3), (9–11)), and that
t · [C]m � �t · m � 0. Apply the tensorial version of (25–13b) to DivC with P
the region Pδ between Y and ∂Dδ and then pass to the limit as δ → 0; the result
is:2

J � J (Y ) for any choice of path Y .

e. The standard momentum condition

The quantity btip � ∮tip p(v ·n)ds � [∮tip p⊗n ds]v represents the momentum flow
into an infinitesimal neighborhood of the crack tip. Theories of crack propagation

1The notion of an energy release rate was introduced by Atkinson and Eshelby [1968]
and justified by Freund [1972]; cf. Freund [1990, pp. 221–235]. Within the framework of
quasistatic elasticity the basic ideas are inherent in the work of Eshelby [1956] and Rice
[1968]; there the energy release rate coincides with the path-independent J -integral.

2Cf. Eshelby [1956], Rice [1968].
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for specific materials are generally consistent with the hypothesis3∮
tip
p⊗ n ds � 0, (28–23)

which I will refer to as the standard momentum condition. Granted (28–23),
btip � 0, so that, by (27–12a), ∮

tip
Sn ds � 0. (28–24)

Further, by (28–23),
∮

tip(p · v̄)n ds � 0; thus, since krel � 1
2 ρ|ẏ − v̄|2, (27–20)

yields ∮
tip
kreln ds �

∮
tip
kn ds. (28–25)

The importance of (28–25) is that it results in relations

j �
∮

tip

{
(� + k)1 − F�S

}
n ds, (28–26a)

J � t · j � t ·
∮

tip

{
(� + k)1 − F�S

}
n ds, (28–26b)

in which the tip traction j does not depend explicitly on the speed or direction of the
crack. (Without the standard momentum condition, j and hence J are dependent
on krel and hence, by (26–4) and (26–5), on v.)

It is important to bear in mind that the dependence of J on k actually represents
a dependence on krel, with the reduction of krel to k a consequence of the standard
momentum condition. Here (and throughout the literature) the energy release rate J
plays an essential role in the constitutive theory for the tip, and while krel is invariant
under Galilean changes in spatial observer, k is not.

By (26–7), for a stationary crack the standard momentum condition is satisfied
automatically; in fact,

∮
tip kn ds �

∮
tip kreln ds � 0, so that

j �
∮

tip

{
�1 − F�S

}
n ds, J � t ·

∮
tip

{
�1 − F�S

}
n ds. (28–27)

3This is satisfied when ẏ � O(r−p), p < 1. In linear elasticity, p � 1
2 (cf., e.g., Freund

[1990, §1.4.3, §4]).
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Basic Results for the Crack Tip

The basic equations for the crack tip consist of the standard force balance∮
tip
Sn ds + btip � 0 (29–1)

(or
∮

tip Sn ds � 0, granted the standard momentum condition) and the tangential
configurational balance

f + t · gtip � 0 (29–2)

(cf. (28–18)). These balances are supplemented by a relation

t · ctip � ψtip > 0 (29–3)

establishing the equivalence of surface tension and surface free energy, and an
internal dissipation inequality

t · gtip ≤ 0 for V > 0, (29–4)

which is the second law localized to the crack tip; in this regard,

�tip � −(t · gtip)V � fV (29–5)

represents the energy dissipated at the tip, per unit time.

The surface shear m ·c and the normal internal force m ·gtip perform no work, because
there is no motion of the crack normal to itself; and the internal configurational forces
g and gC perform no work, because structural changes in the material occur only
at the tip. That is why these forces are considered indeterminate and the balances
(5–10), (27–14b), and the normal part of (28–16) are viewed as equations for g, gC ,
and m · (ctip − gtip). (Contrast this to a phase interface, whose migration results in
the working of internal configurational forces distributed over it and surface stresses
acting within it (cf. Parts B and E).) On the other hand, the surface tension t · c
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and the tangential force t · gtip perform work, but only when the crack tip advances.
Configurational forces therefore play no role away from the tip,1 while at the tip the
sole operative forces are those involved in the tangential part of the balance (28–17),
namely, J , t · ctip � ψtip, and t · gtip. Bulk constitutive equations for � and S

yield, via (28–13b), an auxiliary constitutive specficiation for J ; the next chapter
will discuss constitutive equations for both ψtip and the internal force t · gtip.

It is important to differentiate among the roles played by the surface energy ψtip,
the energy release-rate J , and the tangential component t · gtip of the internal con-
figurational force. Throughout the literature one finds constitutive prescriptions for
J , but no configurational force balance. The view here2 is that t · gtip and ψtip are
constitutive, with J a defined quantity related tot·gtip andψtip through the tangential
configurational balance (28–17). J is typically represented by bulk quantities that al-
ready have constitutive prescriptions; to write an additional constitutive equation for
J would seem inappropriate. In the theory described here the configurational force
balance provides a quantity gtip with tangential component available for constitutive
prescription. The physical consistency of this view is underlined by the fact that the
second law yields the single inequality �tip � −Vt · gtip ≥ 0, involving the same
variable, whose satisfaction indicates the need for additional constitutive assump-
tions involving V and t · gtip. In short, the prescription of a constitutive equation for
J masks:

(i) the presence of a fundamental balance law, the configurational force balance;
(ii) the existence of a physically significant quantity, the internal configurational

force, which acts at the tip, with tangential component t · gtip a direct response
to the breaking of bonds during fracture.

1Maugin [1993, eq. (7–61)] prescribes a condition for the free surfaces of the crack that
in two dimensions takes the form m · [C]m � −σK (σ � constant surface tension, K �
curvature). I believe this condition to be erroneous; I believe that when written correctly
this condition represents the normal part of (27–14b), viz. m · [C]m+ σK � −m · gC , and
is satisfied trivially, because gC is indeterminate.

2Gurtin and Podio-Guidugli [1997].



CHAPTER 30

Constitutive Theory
for Growing Cracks

This chapter and the next are based on the assumption that the standard momentum
condition is satisfied.

a. Constitutive relations at the tip

It is convenient to characterize the direction of propagation t by its counterclock-
wise angle ϑ from the (1, 0) axis:

t � t(ϑ) � (cosϑ, sin ϑ), m � m(ϑ) � (− sin ϑ, cosϑ). (30–1)

Two constitutive relations are considered for the tip: the first gives the surface
energy ψtip as a smooth function of ϑ ,

ψtip � ψ̂(ϑ), (30–2)

with

ψ̂(ϑ) > 0; (30–3)

the second gives the speed V as a function of ϑ and the component −t · gtip of the
internal configurational force opposing propagation. The force −t ·gtip represents
a response to the breaking of bonds at the tip, and it seems reasonable to suppose
that propagation is possible only when this force is sufficiently large. For notational
convenience, the balance law (29–2) is used to write the constitutive equation for
V in terms of ϑ and the driving force f (� −t · gtip). I therefore consider, for V ,
a constitutive equation consisting of two parts: a fracture limit

V � 0 for f ≤ F (ϑ), (30–4)
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with

F (ϑ) > 0 (30–5)

the limit force; and a kinetic equation

V � V̂ (ϑ, f ) > 0 for f > F (ϑ), (30–6)

where limf→F (ϑ) V̂ (ϑ, f ) � 0, where V̂ (ϑ, f ) is smooth up to f � F (ϑ), and
where

∂f V̂ (f, ϑ) ≥ 0 for f > F. (30–7)

The constitutive assumptions (30–4)–(30–7) ensure that V ≥ 0, that V is a nonde-
creasing function of f , and, most important, that the dissipation inequality (29–4)
is satisfied.

Materials scientists often model grain boundaries, phase boundaries, and free
surfaces as sharp surfaces endowed with energy densities dependent on surface
orientation.1 Within the current framework, surface physics of this type is charac-
terized by the constitutive function ψ̂(ϑ) for the free energy. For a phase boundary,
an energy of the form ψ̂(ϑ) gives rise to a vector surface-stress c, which, as a result
of thermomechanical arguments (cf. (19–25)), has the form

c � ψ̂(ϑ)t(ϑ) + ψ̂ ′(ϑ)m(ϑ), (30–8)

with ψ̂(ϑ) the surface tension and ψ̂ ′(ϑ) the surface shear. Here, unlike phase
boundaries, the sole kinetics associated with the crack surfaces is that associated
with the tip, a “constraint” that allows for c ·t � ψ̂(ϑ) but renders the surface shear
c · m indeterminate (cf. the remark in petite type following (29–5)).

b. The Griffith-Irwin function

The energy release rate is henceforth considered as a function

J (j, ϑ) � t(ϑ) · j (30–9)

of the angle of propagation ϑ and the tip traction j. For a body characterized
by (30–2)–(30–7), crack propagation occurs when and only when f > F (ϑ), or
equivalently, by (28–13c),

J (j, ϑ) > γ (ϑ), (30–10)

with

γ (ϑ) � ψ̂(ϑ) + F (ϑ) > 0. (30–11)

The function γ (ϑ) will be referred to as the Griffith-Irwin function.

1Cf. Herring [1951a,b], Frank [1963], Gjostein [1963].
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The Griffith criterion, J (j, ϑ) > ψ̂(ϑ), represents only a conservative estimate for
propagation. That surface energy is not the sole limiting factor to crack initiation was
noted by Irwin,2 who proposed thatψ be augmented by a quantity γp representing the
“plastic work dissipated in the surrounding material per unit surface area created.”3

The role of γp is here played by F .

Crack propagation is related to the convexity of γ (ϑ). Note that, if ψ̂(ϑ)
and F (ϑ) are angle-convex, then so is γ (ϑ), an assertion that follows from the
equivalence of angle convexity and the condition expressed by (19–37).

c. Constitutively isotropic crack tips. Tips with constant
mobility

The crack tip will be referred to as constitutively isotropic if ψ̂(ϑ), V̂ (ϑ, f ), and
F (ϑ) are independent of the orientationϑ of the crack. Granted this, the constitutive
equations (30–2)–(30–7) become

ψtip � constant > 0, (30–12a)

V � 0 for f ≤ F, V � V̂ (f ) > 0 for f > F, (30–12b)

V̂ ′(f ) ≥ 0 for f > F, F � constant > 0, (30–12c)

so that γ is constant and hence angle-convex.
A simple constitutive assumption, but one that accounts for anisotropy in the

free energy and fracture limit, is that of a crack tip with constant mobility. Here
the constitutive equations are (30–2)–(30–7) with the kinetic relation (30–6) in the
specific form

V̂ (ϑ, f ) � M[f − F (ϑ)] for f > F (ϑ), (30–13)

where

M > 0 (30–14)

is a constitutive constant that represents the mobility of the tip.

2[1948].
3Cf. Freund [1990, pp. 8–10], from whom the quote is taken, and who gives a complete

discussion of these ideas with relevant references.



CHAPTER 31

Kinking and Curving
of Cracks. Maximum
Dissipation Criterion

The discussion of kinking will use local results derived for smooth cracks, but
these results will be applied only on the smooth portions of the crack.

Consider a stationary crack and a program of continuously increasing loads.
Let ϑ− denote the angle of the tangent t(ϑ−) at the tip.1 In certain circumstances
one might expect crack propagation to initiate at an angle ϑ+ different from ϑ−,
indicating an initial kink. Once the crack has begun to run, the surface energy
and speed V are given by (30–2) and (30–6) subject to (30–3), (30–5), and (30–7);
however an additional constitutive relation, specifying the direction of propagation,
is needed. This relation is derived under the assumption that the crack propagates
in a direction that maximizes the rate at which it dissipates energy.

The following terminology is useful: given a stationary crack, crack initiation
indicates the onset of a running crack, and to emphasize the possibility of kinking,
the term kink angle is used for the angle ϑ+ immediately after initiation, a phrase
not meant to rule out the case ϑ+ � θ−.

I assume that the standard momentum condition is satisfied and, without loss in
generality, that J (j, ϑ) > 0 (cf. (28–21)).

1This conflicts with the notation�± for the limiting values of a bulk field� at the crack.
Because ϑ is not a bulk field and the remainder of this chapter is restricted to the tip, this
ambiguity should not cause confusion.
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a. Criterion for crack initiation. Kink angle

By (30–2) and (30–9), the driving force (28–13c) may be considered a function of
ϑ and the tip traction j;

f � f (j, ϑ) � J (j, ϑ) − ψ̂(ϑ). (31–1)

Attention is henceforth restricted to situations in which j is a continuous function
of time at the instant of crack initiation, whether or not the crack develops an initial
kink.2 This stipulation renders the tip traction j a useful parameter for describing
the loading in an arbitrarily small neighborhood of the crack tip. Also, because
(30–4) and (30–6) are presumed to describe the dynamics of the crack, ϑ before
initiation must be consistent with J (j, ϑ) ≤ γ (ϑ), while ϑ after initiation must
satisfy J (j, ϑ) > γ (ϑ). With this in mind, the tip traction j (or, more simply, the
loading) is referred to as:

(i) subcritical if J (j, ϑ) < γ (ϑ) for all ϑ ;
(ii) critical if J (j, ϑ) ≤ γ (ϑ) for all ϑ , but J (j, ϑ) � γ (ϑ) for some ϑ (so that

the loading is not subcritical);
(iii) supercritical if, for some ϑ , J (j, ϑ) > γ (ϑ).

Subcritical loading is then a necessary condition for a crack to remain stationary;
supercritical loading is a necessary condition for crack propagation; and critical
loading is a necessary condition for crack initiation. The next theorem, a direct
consequence of (19–40) and the foregoing definitions, shows the intimate relation
between these conditions and the geometry of the Frank diagrams of J and γ . In
this regard, recall that, by Lemma 19.1(iii), there is a one-to-one correspondence
between j and Frank(J ).

Criticality Theorem. The tip traction j is:

(i) subcritical if and only if Frank(J ) does not intersect Frank(γ );
(ii) critical if and only if Frank(J ) is a convexifying tangent to Frank(γ );

(iii) supercritical if and only if Frank(J ) intersects the region interior to Frank(γ ).

If the loading is critical, then those angles ϑ+ that satisfy J (j, ϑ+) � γ (ϑ+)
will be referred to as possible kink angles, because, by (30–4) and (30–6), such
angles mark the transition between f < F (ϑ) and f > F (ϑ) and hence between
V � 0 and V > 0.

Initiation Theorem. Assume that the tip traction j is critical. Then ϑ+ is a possible
kink angle if and only if ϑ+ is a tangency angle of the convexifying tangent
Frank(J ) to Frank(γ ). Granted this, j is related to ϑ+ through

j � γ (ϑ+)t(ϑ+) + γ ′(ϑ+)m(ϑ+). (31–2)

2Continuity of j may preclude the possibility of a kink. I am unaware of any rigorous
result related to this important issue, even for isotropic, linearly elastic, antiplane shear,
where the underlying partial differential equation is Laplace’s equation.
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Conversely, if for some convexifying tangent L to γ (ϑ) and some tangency angle
ϑ+ of L , (31–2) is satisfied, then j is critical.

Proof. Assume that j is critical. Then, because the set of all possible kink angles
ϑ+ coincides with the set ofϑ+ that satisfy J (j, ϑ+) � γ (ϑ+), (ii) of the Criticality
Theorem and (19–40a) imply that ϑ+ is a possible kink angle if and only if ϑ+ is
a tangency angle of Frank(J ). Granted this, (31–2) follows from Lemma 19.2(ii).

Conversely, if for some convexifying tangent L to Frank(γ ) and some tangency
angle ϑ+ of L , (31–2) is satisfied, then Lemma 19.2(ii) (and the tacit smoothness
of γ ) imply that L � Frank(J ); the criticality of j then follows from (ii) of the
Criticality Theorem. �

Corollaries. Assume that j is critical.

(i) If γ (ϑ) is angle-convex, then there is at most one possible kink angle.
(ii) For a constitutively isotropic tip there is at most one kink angle ϑ+, and

t(ϑ+) � j/|j|, (31–3)

so that the direction of the kink coincides with the direction of j.
(iii) If the tip is constitutively anisotropic and ϑ+ is a possible kink angle, then

m(ϑ+) · j+ � γ ′(ϑ+), (31–4)

so that, for γ ′(ϑ) �� 0, the direction of propagation corresponding to ϑ+ is
not parallel to j.

Proof. The result (i) is a consequence of the Initiation Theorem and the fact that
for γ (ϑ) angle-convex, each tangent to Frank(γ ) intersects Frank(γ ) at exactly
one point. For an isotropic tip, γ is constant and hence angle-convex, so that the
kink angle is uniquely determined by j. Further, (31–2) with γ � constant implies
(31–3). For an anisotropic tip, (31–4) follows from (31–2). �

Interestingly, the formulas (30–8) for c and (31–2) for j are identical, granted the
replacements

c and ψ̂(ϑ) → j+ and γ (ϑ+). (31–5)

The right side of (31–2) thus has the form of a “surface stress,” with the Griffith-
Irwin function γ (ϑ) playing the role of the free energy; in particular, γ (ϑ) and γ ′(ϑ)
represent analogs of the surface tension and surface shear, and the relation (31–2)
represents a balance between this surface stress and the tip traction.

The results of this section give a geometric picture (Figure 31.1) of the qualitative
aspects of the fracture process. A stationary crack will remain stationary as long as
j is such that the line Frank(J ) remains strictly outside the closed curve Frank(γ ).
Initiation of a running crack begins at a time for which Frank(J ) passes across
Frank(γ ) with a portion of Frank(J ) entering the open region 
, say, interior to
Frank(γ ), and the crack will continue to run as long as a portion of Frank(J ) remains
within
. At the time of initiation, Frank(J ) touches Frank(γ ) but has no intersection
with
; hence Frank(J ) must be a convexifying tangent, and the possible kink angles
are those angles that mark the intersection of Frank(γ ) with Frank(J ).
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FIGURE 31.1. Frank diagrams of γ and J : (a) for a stationary crack; (b) for possible
initiation of a running crack (ϑ1 and ϑ2 are possible kink angles); (c) for a running crack
(the angle describing the direction of propagation lies between ϑ1 and ϑ2).

b. Maximum dissipation criterion for crack propagation

I now restrict attention to a running crack. Then, by (30–6) and (31–1), the dissi-
pation rate (29–5) may be considered a function of the tip traction j and the angle
ϑ at which the crack advances:

�tip � �tip(j, ϑ) � f V̂ (ϑ, f ), f � J (j, ϑ) − ψ̂(ϑ). (31–6)

A major hypothesis of the theory is that at each time t the angle ϑ � ϑ(t) satisfy
the maximum dissipation criterion:

�tip(j, ϑ) � max
α∈G (j)

�tip(j, α) , (31–7a)

G (j) � {set of angles ϑ such that J (j, ϑ) > γ (ϑ)} (31–7b)

Then, because

j is necessarily supercritical, (31–8)

the set G (j) is a nonempty open set whose boundary consists of angles ϑ that
satisfy J (j, ϑ) � γ (ϑ); furthermore,

�tip(j, α) > 0 for α ∈ G (j), �tip(j, α) � 0 for α ∈ ∂G (j). (31–9)
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Granted smoothness, the maximum problem (31–7a) has a solution, and any such
solution ϑ must satisfy

∂�tip(j, ϑ)/∂ϑ � 0. (31–10)

It is important to note that the maximum dissipation criterion may not define a
unique angle of propagation for a given value of j. The next lemma will be useful
in determining conditions under which this angle is unique.

Lemma 31.1.

(i) Assume that γ (ϑ) is angle-convex. Then G (j) is connected.
(ii) Assume that G (j) is connected. If

∂2�tip(j, ϑ)/∂ϑ2 < 0 for all solutions ϑ ∈ G (j) of (31–10), (31–11)

then (31–7a) has a unique solution.

Proof. Let J (ϑ) � J (j, ϑ) � j · t(ϑ). To establish (i) it suffices to show that
∂G (j) contains exactly two angles. ∂G (j) consists of angles ϑ such that γ (ϑ) �
J (ϑ); thus, by (19–40a) �: � Frank(γ ) ∩ Frank(J ) contains a point x for each
such angle. Since γ (ϑ) is angle-convex, Frank(γ ) is strictly convex; thus, because
Frank(J ) is a straight line, � contains at most two points, so that ∂G (j) contains
at most two angles. But G (j) is open; thus ∂G (j) contains exactly two angles.

Assume thatG (j) is connected. If�tip(j, ϑ) were to have more than one maximum
onG (j), then it would also have a minimum onG (j), and this would violate (31–11).
Thus (ii) is valid. �

It is possible to obtain specific results for the direction of a running crack when
the material is one of the specific types discussed in Section 30c.

Theorem on the Direction of a Running Crack.

(i) For a constitutively isotropic tip the crack will propagate in the direction of the
tip traction j:

t(ϑ) � j/|j|. (31–12)

(ii) For a tip with constant mobility there is at least one angle ϑ at which the crack
will propagate, and any such ϑ will satisfy the identity

{2f (j, ϑ) − F (ϑ)}{m(ϑ) · j − ψ̂ ′(ϑ)} � f (j, ϑ)F ′(ϑ). (31–13)

If γ is also angle-convex, then ϑ is unique.
(iii) For a tip with constant mobility and F � constant,

m(ϑ) · j � ψ̂ ′(ϑ). (31–14)

Proof. The proof begins with the identities:

f (j, ϑ) � t(ϑ) · j − ψ̂(ϑ) > F (ϑ) ≥ 0 for all ϑ ∈ G (j), (31–15a)

f ′(j, ϑ) � m(ϑ) · j − ψ̂ ′(ϑ), (31–15b)

f ′′(j, ϑ) � −t(ϑ) · j − ψ̂ ′′(ϑ), (31–15c)
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where f ′(j, ϑ) � ∂f (j, ϑ)/∂ϑ .
To establish (i) set the derivative of �tip(ϑ) � f (ϑ)V̂ (f (ϑ)) equal to zero; the

result is

f ′{V̂ ′(f )f + V̂ (f )} � 0. (31–16)

Thus, since the loading is supercritical, (31–15a) and (30–12b,c) imply that the
term {· · ·} > 0, so that f ′(ϑ) � 0, which, by (31–15b) and the fact that ψ̂(ϑ) is
constant, yields

m(ϑ) · j � 0. (31–17)

Also, since f � t(ϑ) · j − ψtip > 0, t(ϑ) · j > 0; thus (31–12) holds.
Consider (ii). Assume that the loading is supercritical. To establish the

uniqueness of the propagation angle, fix j, write f (ϑ) � f (j, ϑ), and let
�(ϑ) � �tip(j, ϑ)/M � f (ϑ)[f (ϑ) − F (ϑ)]; then

�′ � f ′(f − F ) + f (f ′ − F ′), (31–18a)

�′′ � f ′′(f − F ) + 2f ′(f ′ − F ′) + f (f ′′ − F ′′). (31–18b)

The formula (31–13) follows upon setting (31–18a) to zero, with the use of
(31–15b).

Assume that γ (ϑ) is angle-convex. Then (19–45), (30–11), and (30–15a,c) yield

f ′′ + f � −ψ̂ ′′ − ψ̂, f ′′ − F ′′ + f − F � −γ ′′ − γ ≤ 0.

Assume that �′ � 0 at some angle. Then, by (31–18b), at that angle,

�′′ � f ′′(f − F ) + f (f ′′ − F ′′) − 2(f ′)2(f − F )/f

≤ −2f (f − F ) − 2(f ′)2(f − F )/f ≤ 0.

Thus �′′(ϑ) ≤ 0 for any ϑ that satisfies �′(ϑ) � 0; in view of Lemma 31.1,
this yields a unique solution of (31–7) and hence results in a unique angle of
propagation.

Finally (iii) is a direct consequence of (31–13) and (31–15a). �
An alternative fracture criterion, due to Cotterell,3 asserts that the crack will
propagate in a direction ϑ that maximizes the energy release rate J (j, ϑ). Since
J (j, ϑ) � j · t(ϑ), this yields t(ϑ) � j/|j| and hence coincides with the prediction
(31–12) of the maximum dissipation criterion for a constitutively isotropic tip, but
not generally for one that is anisotropic (cf. (31–13), (31–14)). If for an anisotropic
tip the Cotterell criterion is interpreted to signify crack propagation in a direction
that maximizes the total energy release rate

J (j, ϑ) − ψ̂(ϑ), (31–19)

which includes the release of surface energy, then the predictions of the two criteria
coincide provided both the limit force F and the mobilityM are constant, but when
this is not so the predictions of the two criteria differ.

3[1965]. Cf. Hussain, Pu, and Underwood [1974], Palaniswamy and Kanuss [1978],
Cotterell and Rice [1980], Le [1989a,b], Stumpf and Le [1990, 1992].
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Of the two criteria, that of maximum dissipation seems more firmly rooted in
thermodynamics: under isothermal conditions the maximum dissipation criterion is
equivalent to the requirement that the crack propagate in a direction that maximizes
the entropy production at the tip. Further, for a conservatively loaded elastic body, the
maximum dissipation criterion ensures that the total energy decrease at a maximal
rate.

Regarding initiation, the kink angles predicted here are direct consequences of
the theory; no extraneous criterion is used. Again the prediction coincides with that
of the Cotterell criterion for a constitutively isotropic tip, and if the total energy
release rate (31–19) is used in the Cotterell criterion, also for an anisotropic tip with
F constant, but otherwise the predictions of the two theories differ.



CHAPTER 32

Fracture in Three Space
Dimensions (Results)1

The theory developed thus far may be extended to planar cracks in three-
dimensional bodies. Here the crack is a plane surface inB and the tip is a (smooth)
curve L (t). The chief ingredients of the configurational force system consist of
a bulk stress C � �1 − F�S, an internal force gtip distributed over the crack-tip
curve, a surface tension σ that acts within the free surfaces of the crack, and a
line tension λ that acts within the tip curve. (Inertia is neglected, as are surface
and line shears.) As in the two-dimensional theory, the force gtip is associated with
the breaking of bonds during crack growth. As a consequence of the second law
the tensions σ and λ, here taken to be constant and strictly positive, are shown to
coincide with the corresponding surface and line energies.

The central results of the theory are a balance

n ·
∮

tip
(�1 − F�S)n ds − σ − λK + n · gtip � 0 (32–1)

and an inequality

Vn · gtip ≤ 0 (32–2)

that follow from the limiting forms of the configurational force balance and the
second law at the crack tip. Here n is the unit normal to the tip curve in the plane
of the crack;

∮
tip(· · ·)n ds represents an integral around an infinitesimal circular

loop surrounding the tip and perpendicular to it, with n the outward unit normal

1Gurtin and Shvartsman [1997]. Equivalent results, but with σ � λ � 0, based on
configurational forces within a somewhat different framework, and without a discussion of
the constitutive behavior of the tip, were derived earlier by Dascalu and Maugin [1993]. Cf.
also Le [1989a,b], Stumpf and Le [1990, 1992].
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to the loop; K is the curvature and V the normal velocity of the tip curve L , with
K > 0 when L is a circle.

The results (32–1) and (32–2) are independent of constitution; when constitutive
assumptions involving V and n · gtip are prescribed in a manner consistent with
(32–2), then (32–1) represents an evolution equation for the crack tip.

Writing f � −n · gtip for the driving force, and arguing as in Chapter 30,
possible constitutive equations are

V � 0 for f ≤ F, V � V̂ (f ) > 0 for f > F, (32–3)

with F ≥ 0, as before, a limit force for crack propagation. As in the
two-dimensional theory, the Griffith-Irwin modulus is defined by

γ � σ + F. (32–4)

A consequence of (32–1) and (32–3) is then the generalized Griffith criterion

n ·
∮

tip
(�1 − F�S)n ds > γ + λK, (32–5)

a condition both necessary and sufficient for crack growth. What is interesting is
the appearance of the curvature of the tip curve through the term λK , a term that
provides an impediment to crack growth that increases with diminishing crack
size.

Consider a penny-shaped crack with tip curve L a circle of radius R, so that
K � 1/R > 0. Then for a body of prescribed constitution under prescribed
boundary conditions, if the asymptotics associated with the limit R → 0 yield

n ·
∮

tip
(�1 − F�S)n ds � o(R−1), (32–6)

then a penny-shaped crack of sufficiently small radius will not grow.



Part H

Two-Dimensional Theory
of Corners and Junctions

Neglecting Inertia1

Junctions are formed by the intersection of two or more interfaces. They, like crack
tips, are point singularities, and many of the concepts and results for junctions have
antecedents within the theory of fracture. To stress this commonality, the discussion
follows that of Part G on fracture, although here standard stress within the interface
is considered but inertia is neglected.

Junctions involving three or more interfaces are important in the study of grain
boundaries, but their evolution generally takes place on a time scale far longer than
that related to inertial effects. Inertial contributions at junctions could be of possible
importance when discussing dynamical twinning.

To avoid complicated topological considerations, the discussion is restricted to
two space dimensions, and, because the theory away from a junction is as presented
in Chapter 22, only the junction itself is treated in detail.

1Simha and Bhattacharya [1998].



CHAPTER 33

Preliminaries.
Transport Theorems

a. Terminology

Let R be a closed subregion of the body, and let C (t) denote the union,

C (t) �
N⋃
n�1

Cn(t), (33–1)

of smoothly evolving, connected, oriented, simple curves C1(t), C2(t), . . . , CN (t),
N ≥ 2, that intersect a at a single point Z(t). Assume that each curve Cn(t) has
one endpoint at Z(t) and crosses ∂R exactly once, and that arc length is measured
from Z(t). The following notation and terminology are useful: Z(t) is a junction,
with the special case N � 2, also referred to as a corner;

v(t) � Ż(t)

is the junction velocity; the curvesCn(t) are interfaces; the setC (t) is the interface
system; on C (t) away from Z(t), t(X, t) is the unit tangent in the direction of
increasing arc length, while m(X, t) is a continuous unit normal field.

Tip discs and tip integrals, basic to the discussion of fracture, have obvious
counterparts here: a junction disc Dδ(t) is a disc of radius δ centered at Z(t), and
when meaningful, limits such as limδ→0

∫
∂Dδ

�n ds, termed junction integrals, are

written in the form ∮
jun
�n ds � lim

δ→0

∫
∂Dδ

�n ds.

Consider a particular interface Cn(t) with n arbitrary but fixed, and let X �
X̂(s, t) denote the arc-length parametrization of Cn(t). For all sufficiently small
r , ∂Dr (t) intersects the curve Cn(t) exactly once, and this induces a one-to-one
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relation

r � r̂(s, t) � |X̂(s, t) − Z(t)|, s � ŝ(r, t), (33–2)

between arc length s on Cn(t) and the distance r from the junction to the point on
Cn(t) with arc length s. Further, by (33–2), ∂r̂(s, t)/∂s � 1 and ∂r̂(s, t)/∂t � 0
at s � 0. Because only a small neighborhood of the junction is relevant to the
subsequent analysis, I further restrict the region R to be small enough that on
each interface withinR this one-to-one relation between arc length and distance is
satisfied with ∂r̂(s, t)/∂s > 0, so that s � ŝ(r, t) is smooth. The mapping (33–2)
then allows for a distance parametrization

X � X̃(r, t) � X̂(ŝ(r, t), t)

of Cn(t) in terms of (r, t). The notation X � X̂n(s, t) and X � X̃n(r, t) will be used
for the arc length and distance parametrizations of Cn(t) when it is necessary to
distinguish between interfaces.

On Cn(t) both s and r are measured from Z(t); thus,

X̂n(0, t) � X̃n(0, t) � Z(t),

and, as each interface is smooth up to Z(t),

∂t X̂n(0, t) � ∂t X̃n(0, t) � v(t). (33–3)

The field vC (X, t) on C (t) defined on each interface Cn(t) by

vC (X, t) � ∂t X̂n(s, t), X � X̂n(s, t)

represents a velocity field for C (t), as it is a velocity field for each Cn(t). By
(33–3), vC (X, t) is continuous across the junction, with

vC (Z(t), t) � v(t). (33–4)

b. Transport theorems

A migrating control volume P (t) is (here restricted to be) a smoothly evolving,
closed subregion of R with the following properties: P (t) contains Z(t) in its
interior; each interface Cn(t) intersects ∂P (t) at a single point. As before, n(X, t)
designates the outward unit normal to ∂P � ∂P (t), while U is the normal velocity
of ∂P in the direction n.

b1. Bulk fields

The discussion parallels that of fracture. A bulk field�(X, t) is a field defined and
smooth away from C (t).

Given a bulk field �(X, t), the time derivative of �(X, t) following Z(t) is
defined by (25–9) and has the explicit form

�
� � �̇+ ∇� · v (33–5)
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away from C .
A bulk field � will be termed regular if, away from the junction, �(X, t) is

smooth up to each interface from either side, and if

(S1) for each migrating control volume P � P (t), the limits∫
P

�da � lim
δ→0

∫
Pδ

� da, (Pδ(t) � P (t)\Dδ(t)) (33–6a)

∫
P

�
� da � lim

δ→0

∫
Pδ

�
� da (33–6b)

exist, with (33–6b) uniform in time;
(S2) [�]m · (vC − v) is integrable on C , uniformly in time.

There is apparently little known about the singularity at a corner in an interface
between two materials, let alone at a junction of three or more interfaces, although
the singularity at a boundary corner of a linearly elastic body without surface structure
is, in all cases with which I am familiar, less severe than that of a crack in the same

body. In any case, it would seem that, for the bulk energy �, the time derivative
�
�

following the junction would have a singularity weaker than that of �̇ (cf. (25–16)).

The arguments given in the paragraphs containing (25–17)–(25–23) here yield
analogous results for junctions; namely, the temporal differentiability of

∫
P (t)
�da,

the transport identity

d

dt

{ ∫
P (t)
�da

}
� ∫
P (t)

�
� da +

∫
∂P (t)

�(U − v · n)ds + ∫
G (t)

[�]m · (v− vC )ds,

G � C ∩ P , and the following theorem.

Junction Transport Theorem for Bulk Fields. Let � be a regular bulk field.
Then

d

dt

{∫
Dδ

� da

}
→ 0 as δ → 0, (33–7)

uniformly in time.

b2. Interfacial fields

Central to the proof of the transport theorem, (33–7), is the field
�
�. To establish

an analogous theorem for (density) fields ϕ(X, t) on C (t) requires an interfacial

counterpart of
�
�. This is not straightforward, because for Y fixed and v �� 0 the set

of t at whichϕ(Z(t)+Y, t) is defined would generally be discrete. But close toZ(t),
ϕ can be considered as a function of t and the distance r from Z(t); this function,
when converted to a density ϕ̃ measured with respect to r and then differentiated

with respect to t , furnishes the desired counterpart of
�
�.
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Let ϕ(X, t) be smooth on Cn(t) away from the junction. Then, choosing the
distance parametrization X � X̃(r, t) for Cn(t), let

ϕ̃(r, t) � J (r, t)ϕ(X̃(r, t), t), J (r, t) � ∂ŝ(r, t)/∂r; (33–8)

ϕ̃(r, t) expresses ϕ(X, t) on Cn(t) in terms of its distance from the junction, with
ϕ̃(r, t) considered as a density measured per unit distance rather than per unit arc
length. The partial derivative

(∂t ϕ̃)(r, t) � ∂ϕ̃(r, t)/∂t (33–9)

holding the distance r fromZ fixed represents an interfacial counterpart of
�
�. When

it becomes necessary to make explicit the interface Cn(t) in question, ϕ̃(n)(r, t) will
be used in place of ϕ̃(r, t).

Let ϕ(X, t) be defined and smooth on C (t) away from the junction. For any
migrating control volume P (t) and δ sufficiently small, let Pδ(t) � P (t)\Dδ(t),
so that C (t) ∩ Pδ(t) represents the portion of C (t) that lies inside P (t) yet outside
Dδ(t). Define

∫
C ∩Pδ

ϕ̃ dr �
∑
n

{ ∫
Cn∩Pδ

ϕ̃(n)(r, t)dr

}
,

∫
C ∩Pδ

∂t ϕ̃ dr �
∑
n

{ ∫
Cn∩Pδ

∂t ϕ̃
(n)(r, t)dr

}
,

where
∑
n denotes the sum from n � 1 to n � N ; then∫

C ∩Pδ
ϕ̃ dr � ∫

C ∩Pδ
ϕ ds. (33–10)

Granted these definitions,ϕwill be termed a regular interfacial field if, in addition
to being smooth away from the junction, the limits∫

C ∩P
ϕ̃ dr � lim

δ→0

∫
C ∩Pδ

ϕ̃ dr, (33–11a)

∫
C ∩P

∂t ϕ̃ dr � lim
δ→0

∫
C ∩Pδ

∂t ϕ̃ dr (33–11b)

exist for each migrating control volume P � P (t), with (33–11b) uniform in time.
A consequence of (33–11a) is that

given any migrating control volume P � P (t),∫
C (t)∩P (t)

ϕ ds is a differentiable function of t. (33–12)

BecauseP (t) � Pλ(t)∪Dλ(t) and
∫
Pλ(t)

ϕ ds is differentiable, it suffices to establish

(33–12) for P (t) an arbitrary junction disc Dλ(t). In this case Pδ(t) (λ > δ > 0)
is the annulus Dλδ(t) � Dλ(t)\Dδ(t), so that

∫
C ∩Pδ

ϕ̃ dr �
∑
n

{
λ∫
δ

ϕ̃(n)(r, t)dr

}
(33–13)
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and therefore

d

dt

{ ∫
C ∩Pδ

ϕ̃ dr

}
� ∫

C ∩Pδ
∂t ϕ̃ dr. (33–14)

Thus, by (33–11b), passing to the limit δ → 0 yields two conclusions: that (33–12)
is valid for P (t) � Dλ(t) and hence for any migrating control volume; and that

d

dt

{ ∫
C ∩Dλ

ϕ̃ dr

}
� ∫

C ∩Dλ
∂t ϕ̃ dr. (33–15)

Finally, replacing λ by δ in (33–15) and passing to the limit δ → 0 using the
argument following (25–21) yields the following important result.

Junction Transport Theorem for Interfacial Fields. Letϕ be a regular interfacial
field. Then

d

dt

{ ∫
C ∩Dδ

ϕ ds

}
→ 0 as δ → 0, (33–16)

uniformly in time.



CHAPTER 34

Thermomechanical Theory
of Junctions and Corners

Throughout this chapter R, a closed subregion of the body, contains an interface
system C (t) with Z(t) its junction, as described in the previous chapter. Away
from this junction the basic fields and equations for the bulk material and for the
interface are as discussed in Chapter 22.

As for fracture, external forces are not considered.

a. Motions

Motions y(X, t) are assumed to be continuous on R, and, away from Z(t), are
assumed to be smooth up to each interface from either side. Then, in particular,

y(X, t) → y(Z(t), t) as X → Z(t), (34–1)

and the deformed junction is well defined.

As with fracture, the motion velocity
�
y following the junction satisfies

�
y � ẏ+ Fv (34–2)

in bulk (cf. (33–5)) and is assumed to have a junction limit
�
y(X, t) → v̄(t) as X → Z(t) (34–3)

from the bulk material. If this limit is uniform in t , then

v̄(t) � d

dt
y(Z(t), t);

v̄(t) represents the velocity of the junction in the deformed configuration.
Fix δ > 0 and consider the junction disc Dδ(t). Because Dδ(t) is transported

rigidly with Z(t), the junction velocity v(t) represents an admissible choice of
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velocity field for ∂Dδ(t), and, by (34–2), the motion velocity
�
y(X, t) following the

function coincides with the motion velocity following ∂Dδ(t) as described by v(t)
(cf. (4–4)).

Let C δ � C δ(t) � C ∩Dδ , so that

∂Cδ � C ∩ ∂Dδ consists of the endpoints of the subset of C in Dδ.

A velocity field for ∂Cδ is easily constructed. For each n, let X � X̃n(r, t) denote
the distance parametrization on the interface Cn(t) and consider the field on C (t)
defined by

w(X, t) � ∂t X̃n(r, t), X � X̃n(r, t).

Then, for any X in ∂C δ(t), w(X, t) represents a velocity field for ∂C δ(t) at X,
because X � X̃n(δ, t) for some n and w(X, t) � ∂t X̃n(δ, t); in addition, by (33–3),

w(X, t) → v(t) as X → Z(t). (34–4)

Further, in view of (21–4) (cf. (22–5)), the field
�
y defined on C (t) away from the

junction by
�
y � 〈ẏ〉 + 〈F〉w, (34–5)

when restricted to ∂C δ(t), represents the motion velocity following ∂C δ(t). By

(34–2),
�
y � 〈ẏ〉 + 〈F〉v; consistent with this and (34–3)–(34–5), I assume that

�
y(X, t) → v̄(t) as X → Z(t). (34–6)

b. Notation

Consider a field ϕ(X, t) defined on C (t) away from the junction. Suppressing the
argument t , let

ϕ|∂C δ �
∑
X∈∂C δ

ϕ(X); (34–7a)

∑
jun

ϕ � lim
δ→0

ϕ|∂C δ �
∑
n


 lim

X→Z

X∈Cn
ϕ(X)


 , (34–7b)

provided the limits exist. The junction sum
∑

jun ϕ represents the sum of limiting
values of ϕ at the junction, while ϕ|∂C δ represents the sum of values of ϕ over the
set ∂Cδ of endpoints of the subset of C in Dδ .

c. Forces. Working

The standard stress S, the configurational stress C, and the internal body force g

are as introduced in Chapters 3 and 5. Away from the junction, these fields are
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presumed to be smooth away from and up to each interface from either side, with
g integrable over R and∫

∂Dδ (t)
|Sn|ds bounded as δ → 0. (34–8)

In view of (34–1) and (34–3), (34–8) implies that∮
jun

Sn · (
�
y−v̄)ds � 0. (34–9)

In addition to these bulk fields, I consider three fields distributed over the
interface system C :

gC internal configurational force;
c configurational stress;
s standard stress;

and add one force concentrated at the junction:

gjun internal configurational force.

The basic hypotheses are that gC (X, t) is integrable over C (t), while c(X, t) and
s(X, t) are smooth away from and up to the junction from each interface (although
the corresponding limits will generally vary from interface to interface). The force
gjun(t), being concentrated at the junction, is a function of time alone; gjun is
associated with rearrangements of atoms at the junction or, more generally, to
phenomena occurring at the junction at length scales that are small compared to
the gross length scales of the body.

The goal of this chapter is a set of basic equations for the junction, so attention
is restricted to junction discs Dδ � Dδ(t). The working of the bulk forces on Dδ
is as discussed in Part A. The interfacial forces c and s perform work on Dδ at
points at which the interface system C intersection ∂Dδ . Because the velocity of
such points and their motion velocity are described, respectively, by the fields w

and
�
y, the rate at which c and s perform work onDδ is given by (c ·w+s · �

y)|∂C δ .
Thus, choosing v as the velocity field for ∂Dδ with

�
y the corresponding motion

velocity following ∂Dδ , the workingW (Dδ) has the form

W (Dδ) �
∫
∂Dδ

(Cn · v+ Sn · �
y)ds + (c · w+ s · �

y)|∂C δ . (34–10)

The requirement thatW (Dδ) be invariant under changes in material and spatial
observer yields the configurational force balance∫

∂Dδ

Cn ds + ∫
Dδ

g da + ∫
C ∩Dδ

gC ds + c|∂C δ + gjun � 0, (34–11)

the standard force balance ∫
∂Dδ

Sn ds + s|∂C δ � 0, (34–12)
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and a moment balance that is unimportant. Because the fields involved in the
integrals over Dδ and C ∩ Dδ are integrable, (34–11) and (34–12) yield, upon
passing to the limit δ → 0, the junction balances∑

jun

s+
∮

jun
Sn ds � 0, (34–13a)

∑
jun

c+
∮

jun
Cn ds + gjun � 0 (34–13b)

(cf. Subsection 27c).

d. Second law

The free energy of the body is represented by a regular bulk free energy �(X, t)
distributed over B and a regular interfacial free energy ψ(X, t) distributed over
C (t), and the second law for the junction disc Dδ � Dδ(t) has the form

d

dt

{∫
Dδ

� da + ∫
C ∩Dδ

ψ ds

}
≤ W (Dδ), (34–14)

with workingW (Dδ) given by (34–10). By (33–7) and (33–16),

d

dt

{∫
Dδ

� da + ∫
C ∩Dδ

ψ ds

}
→ 0 (34–15)

as δ → 0. On the other hand, note that, by (34–9), since w → v and
�
y → v̄,

W (Dδ) → v ·
∮

jun
Cn ds + v̄ ·

∮
jun

Sn ds +
∑
jun

(c · v+ s · v̄);

thus, appealing to (34–13a),

W (Dδ) → −gjun · v. (34–16)

The results (34–15) and (34–16), when combined with the imbalance (34–14),
result in an internal dissipation inequality for the junction:

gjun · v ≤ 0. (34–17)

e. Basic results for the junction

The basic results consist of the standard force balance∑
jun

s+
∮

jun
Sn ds � 0, (34–18)
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the configurational force balance∑
jun

c+
∮

jun
Cn ds + gjun � 0, (34–19)

and the internal dissipation inequality

gjun · v ≤ 0 (34–20)

representing the second law localized to the junction.

f. Weak singularity conditions. Nonexistence of corners

Consider the following hypothesis, which I will refer to as the standard weak
singularity condition: ∮

jun
Sn ds � 0. (34–21)

A consequence of (34–21) is that the standard interfacial stress be balanced at the
junction: ∑

jun

s � 0. (34–22)

Because a corner is a junction between two interfaces, the limiting values s1

and s2 of the standard stress vector at a corner must satisfy

s1 + s2 � 0.

On the other hand, in view of the sentence containing (22–10), the standard stress
is necessarily tangent to the deformed interface. Thus either s1 and s2 vanish, or
s1 and s2 are nonzero and parallel, a condition possible only when the deformed
interface has a continuously turning tangent. This proves the following theorem.

Smooth Corner Theorem. If the standard weak singularity condition holds, then
a (nontrivial) corner is possible only if one of the following two conditions is
satisfied:

(i) At the corner, the union of the deformed interfaces has a continuously turning
tangent.

(ii) The standard stress within each of the two interfaces vanishes at the corner.

A second possible restriction is the configurational weak singularity condi-
tion: ∮

jun
Cn ds � 0. (34–23)

A condition analogous to the standard weak singularity condition is satisfied at a
crack tip in a linearly elastic body, where

S ∼ r−1/2, C ∼ r−1, (34–24)
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(cf. (28–24) and the paragraph containing (25–16)). Further, violation of the stan-
dard weak singularity condition at a junction would require S ∼ r−p , p ≥ 1, and
since one would expect the singularity in C to be worse than that in S, as is the
case in (34–24), this could result in

∮
jun |Cn|ds � ∞1 and hence render the theory

of dubious value. For these reasons, I would expect the standard weak singularity
condition to be generally applicable. In fact, I would conjecture that in most cases of
interest the configurational weak singularity condition is also satisfied, even though
its counterpart is not satisfied at a crack tip.

Note that when both weak singularity conditions are satisfied,∑
jun

s � 0, (34–25a)

∑
jun

c + gjun � 0. (34–25b)

g. Constitutive equations

Away from the junction, the constitutive equations for C (t) are as derived in
Chapter 22; viz.

ψ � ψ̂(ϑ, λ), (34–26a)

s � ∂ys ψ̂(ϑ, λ), (34–26b)

c � (ψ − s · ys)t+ τm, (34–26c)

τ � ∂ϑψ̂(ϑ, λ) (34–26d)

where

λ � |ys |, (34–27)

while ϑ is defined in C , away from the junction, as the angle from the (1, 0) axis
to t (cf. (22–13), (22–23), (22–29), (22–32)).

I consider a constitutive relation for the junction giving the internal force gjun

when the junction velocity v and the list

ϑjun � (ϑ1, ϑ2, . . . , ϑN ), ϑn(t) � lim
X→Z(t)
X∈Cn(t)

ϑ(X, t) (34–28)

of limiting values of the tangent angle ϑ are known. Specifically,

gjun � −B(v,ϑjun)v, (34–29)

with kinetic tensorB(v,ϑjun) consistent with v·B(v,ϑjun)v ≥ 0 so that gjun ·v ≤ 0.
For B � B(ϑjun) (linear kinetics), this condition reduces to the requirement that

1But need not. For ds � r dγ with (r, γ ) polar coordinates at the junction, the γ -
dependence of C near the junction could render

∮
jun Cn ds finite; this occurs in the study of

dislocations (cf. e.g., Cermelli and Gurtin [1999]).
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B(ϑjun) be positive semidefinite. The field ys is not included as an independent
variable in (34–29), because it could be unbounded at the junction.

h. Final junction conditions

Accounting for the constitutive equation (34–29), the final junction conditions are∑
jun

s+
∮

jun
Sn ds � 0, (34–30a)

∑
jun

c+
∮

jun
Cn ds � B(v,ϑjun)v, (34–30b)

which simplify to ∑
jun

s � 0, (34–31a)

∑
jun

c � B(v,ϑjun)v (34–31b)

when both weak singularity conditions are satisfied.
For the theory discussed in Chapter 19, in which bulk behavior (and hence

deformation) was neglected, the appropriate junction condition would be (34–31b),
generalizing the usual balance2 ∑

jun

c � 0. (34–32)

A consequence of (34–32) is that a corner in an interface with constitution governed
by an angle-convex free-energy is not possible (cf. (iii) of the theorem on convexity
and evolution in Subsection 19g). Interestingly, the more general balance (34–31b)
allows for such corners, although they would disappear at equilibrium.

2Cf. Herring [1951b, eq. (19)].



Part I

Appendices on the
Principle of Virtual Work for
Coherent Phase Interfaces

Balance laws for force are often derived as consequences of a principle of virtual
work1 a paradigm I now use to discuss configurational forces.

I consider weak and strong versions of this principle. The weak principle is
based on a virtual kinematics that allows for virtual motions and virtual migrations
of the interface. In this principle the external and internal work expenditures are pre-
sumed balanced for all choices of the virtual kinematics. These work expenditures
are for the body as a whole; no use is made of control volumes.

The strong principle of virtual work allows also for virtually migrating control
volumes. In this principle the external and internal work expenditures—on and
within each such control volume—are presumed balanced for all virtual motions
and all virtual migrations of the interface.

For specificity, I limit the discussion to coherent phase interfaces, but the general
ideas are applicable to the study of other defects such as cracks. Throughout the
discussion the external forces tacitly account for inertia.

1Also called the principle of virtual power and the principal of virtual velocities. There
is a large literature on the application of this principle to continua: cf., e.g., Truesdell
and Toupin [1960, §232], Germain [1972, 1973a,b, 1976], Casal [1973], Breuneval [1973],
Antman and Osborne [1979], Maugin [1980], Antman [1995, §II.5, §XII.5], DiCarlo [1996].



A1. Weak Principle
of Virtual Work

a. Virtual kinematics

Consider a two-phase body at a prescribed time t , assumed fixed throughout this
discussion. At time t the phasesα and β are assumed to occupy closed complemen-
tary subregionsBα andBβ of the reference bodyB, with the interfaceS � Bα∩Bβ
a smooth closed1 surface whose unit normal m(X) points outward from Bα . The
deformation gradientF(X) at time t , considered as prescribed, is presumed smooth
away from S and up to S from either side, with

F+P � F−P � 〈F〉P � F on S , (A1–1)

a relation considered as defining for F (cf. (21–1)).
At time t the body is allowed to undergo a virtual kinematics K � (V, ẏ)

consisting of a virtual motion with velocity ẏ(X) in conjunction with a virtual
migration of the interface in which S has (scalar) normal velocity V (X); here ẏ

and V are arbitrary functions on B and S , respectively, with ẏ assumed smooth
away from S and up to S from either side, and with ẏ and V subject to the
compatibility condition

[ẏ] � −V [F]m on S (A1–2)

(cf. (10–2a)). Further, writing

v � Vm, (A1–3)

1∂S � ∅. I do not wish to discuss conditions at the intersection of S with ∂B.
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the fields Ḟ,
�
m,

�
y, and 〈F〉� are defined in terms of the velocity fields V and ẏ

through

Ḟ � ∇ ẏ (A1–4a)
�
m � −∇S V, (A1–4b)
�
y � 〈ẏ〉 + 〈F〉v, (A1–4c)

〈F〉� � 〈Ḟ〉 + 〈∇F〉v. (A1–4d)

It is important to emphasize that B, S , and F are prescribed, while V and ẏ are
arbitrary fields consistent with (A1–2). Further, as the time t is fixed, the only vari-

able under consideration is X; thus ẏ, Ḟ,
�
m,

�
y, and 〈F〉� do not explicitly represent

temporal derivatives of fields, although they are consistent with identities that would
be obtained were there an actual motion and an actual migration of the interface (cf.
(10–5), (15–22), (15–24)). The fields ẏ and Ḟ might be identified with the variations
δy and δF of the classical theory.

A consequence of (15–12a) and (A1–4) are the identities

∇S v � −m⊗ �
m−VL, (A1–5a)

∇S (
�
y) � 〈F〉�P− 〈F〉(m⊗ �

m) − V 〈F〉L, (A1–5b)

whose proofs are almost identical to those of (16–19) and (21–2).

b. Forces. Weak principle of virtual work

The standard and configurational force systems are represented by the following
fields:
standard force system

S bulk stress (tensor);
S surface stress (superficial tensor);
b external body force (vector);
bS external surface force (vector);

configurational force system

σ surface tension (scalar);
d surface shear (tangent vector);
hS effective internal interface force (scalar);
eS external interface force (scalar).

Here S and b are fields on B that are continuous away from S and up to S from
either side, while S, bS , σ , d, hS , and eS are continuous on S .
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Given a virtual kinematics K � (V, ẏ), the virtual external working Wext(K)
and the virtual internal workingWint(K) are defined by

Wext(K) � ∫
∂B

Sn · ẏ da + ∫
B

b · ẏ dv + ∫
S

(eS V + bS · �
y)da, (A1–6a)

Wint(K) � ∫
∂B

S · Ḟ dv + ∫
S

{
S · 〈F〉� − σKV − d · �

m−hS V
}
da (A1–6b)

(cf. the left and right sides of (21–17)), and the weak principle of virtual work
is the assertion that, for any choice of K,

Wext(K) � Wint(K). (A1–7)

Weak Theorem of Virtual Work. The weak principle of virtual work holds if and
only if the following force balances are satisfied:

(i) the standard bulk balance

Div S+ b � 0, (A1–8)

(ii) the standard interfacial balance

[S]m+ DivS S+ bS � 0, (A1–9)

(iii) the normal configurational balance

σK−(F�S)·L−m·[F�S]m+DivS (d−S�〈F〉m)+hS +eS � 0. (A1–10)

c. Proof of the weak theorem of virtual work

Assume that the weak principle of virtual work holds, so that∫
∂B

Sn · ẏ da + ∫
B

b · ẏ dv + ∫
S

(bS · �
y+eS V )da

� ∫
B

S · Ḟ dv + ∫
S

{
S · 〈F〉� − σKV − d · �

m−hS V
}
da (A1–11)

for all choices of the virtual kinematics (V, ẏ). Choose a virtual kinematics with
V ≡ 0 and ẏ smooth everywhere and consistent with ẏ � 0 in a neighborhood of
S (so that 〈F〉� � 〈Ḟ〉 � 0 on S ). Then, by (A1–11) with the divergence theorem
applied to the integral over ∂B,∫

B

(Div S+ b) · ẏ dv � 0;

because this must hold for all virtual velocities ẏ with the properties described
above, the standard bulk balance (A1–8) must be satisfied.

Consider next an arbitrary virtual kinematics (V, ẏ). By (A1–2), (A1–4c), and
an argument similar to (11–15),

[Sm · ẏ] � [Sm] · �
y−m · [F�S]mV.
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Thus, since Div S � −b, the identity (10–8d) with T � S and w � ẏ yields∫
∂B

Sn · y da + ∫
B

b · ẏ dv � ∫
B

S · Ḟ dv + ∫
S

([Sm] · �
y−m · [F�S]mV )da. (A1–12)

Further, since Sm � 0, it follows that SP � S, and, since L is tangential, PL � L
and 〈F〉L � 〈F〉PL � FL; hence (A1–5b) and the symmetry of P yield

S · ∇S (
�
y) � S · (〈F〉�P) − (〈F〉m) · (S

�
m) − VS · (〈F〉L)

� S · 〈F〉� − (S�〈F〉m) · �
m−V (F�S) · L . (A1–13)

Note, for future use, that given any smooth vector field k onS ,m·S�k � k·Sm � 0,
since Sm � 0; thus S�k is a tangential vector field and we may use the surface
divergence theorem and the fact that ∂S � ∅ to conclude that∫

S

DivS (S�k)da � 0,

a result that will be used repeatedly without mention. In particular, because

S · ∇S (
�
y) � DivS

{
S� �

y
}
− �

y ·DivS S, (A1–14)

(A1–13) yields∫
S

S · 〈F〉�da � ∫
S

{
(S�〈F〉m) · �

m+V (F�s) · L− �
y ·DivS S

}
da. (A1–15)

Also, since d · �
m � −d · ∇S V � −DivS (Vd) + V DivS d,∫

S

d · �
m da � ∫

S

V DivS d da. (A1–16)

Similarly, ∫
S

(S�〈F〉m) · �
m da � ∫

S

V DivS (S�〈F〉m)da. (A1–17)

Combining (A1–11), (A1–12), and (A1–15)–(A1–17),∫
S

{
σK − (F�S) · L− m · [F�S]m+ DivS (d− S�〈F〉m) + hS + eS }V da
+ ∫

S

(DivS S+ [Sm] + bS ) · �
y da � 0 (A1–18)

on S for any choice of the virtual kinematics. Take V ≡ 0 and let ẏ be an arbitrary
smooth vector field; (A1–18) then reduces to∫

S

(DivS S+ [Sm] + bS ) · ẏ da � 0

for all such ẏ, which implies (A1–9). Thus (A1–18) yields∫
S

{
σK − (F�S) · L− m · [F�S]m+ DivS (d− S�〈F〉m) + hS + eS }V da � 0
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for all smooth scalar fields V , and this implies (A1–10). The weak principle is
virtual work therefore implies the force balances (A1–8)–(A1–10). The converse
assertion, that (A1–8)–(A1–10) imply the weak principle of virtual work, is left to
the reader.



A2. Strong Principle
of Virtual Work

The interface, the deformation gradient, and the virtual kinematics are as described
in Appendix A1. Here, additional structure is introduced through the consideration
of arbitrary control volumes that undergo virtual migrations.

a. Virtually migrating control volumes

Let a virtual kinematics K � (V, ẏ) be given. A virtually migrating control volume
compatible with K is a triplet P � (P, q,w) consisting of a fixed subregion P of
B together with a virtual velocity field q for ∂P and a virtual velocity field w for
∂G , where

G � S ∩ P,
and q and w are consistent with the compatibility conditions

q · m � w · m � V, (A2–1a)

q · n � w · n, (n � outward unit normal to ∂P ) (A2–1b)

(cf. (15–33)). Note that the component of q tangent to ∂P is unconstrained, and
because the plane spanned by m and n is perpendicular to the curve ∂G , the compo-
nent of w tangent to ∂G is also unconstrained. Given a virtually migrating control

volume (P, q,w), the motion velocities ẙ and
�
y following ∂P and ∂G , respectively,

are defined by (cf. (4–4), (21–4))

ẙ � ẏ+ Fq,
�
y � 〈ẏ〉 + 〈F〉w. (A2–2)

Let n denote the outward unit normal to ∂G . When q and w have the explicit forms

q � Un, w � v+ V∂G n, (A2–3)
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withU arbitrary and V∂G defined byU � V (m ·n)+V∂G (n ·n), so that (A2–1) are
satisfied (cf. Subsection 15b2), then (A1–1) and (A1–4c), (A2–2) take the form

ẙ � ẏ+ UFn,
�
y � �

y+V∂G Fn . (A2–4)

The relations (A2–3) and (A2–4) are virtual counterparts of the intrinsic velocities
specified in the paragraphs containing (21–4) and (21–5).

b. Forces. Strong principle of virtual work

The standard and configurational force systems are represented by the fields S, b,
S, bS , σ , d and eS discussed in Appendix A1, but with the configurational system
supplemented by the following fields:

C bulk stress (scalar);
C surface stress (superficial tensor);
π bulk tension (scalar);
gS internal interface force (scalar).

Here C and π are fields on B that are continuous away from S and up to S from
either side, while C and gS are continuous on S . As before, Ctan and τ denote the
tangential and normal parts of C:

C � Ctan + m⊗ τ. (A2–5)

The virtual external working Wext(K,P) and the virtual internal working
Wint(K,P), corresponding to a virtual kinematics K � (V, ẏ) and a virtually
migrating control volume P � (P, q,w) compatible with K, are defined by

Wext(K,P) � ∫
∂P

(Cn · q+ Sn · ẙ)da + ∫
P

b · ẏ dv

+ ∫
G

(eS V + bS · �
y)da + ∫

∂G

(Cn · w+ Sn · �
y)ds, (A2–6a)

Wint(K,P) � ∫
P

S · Ḟ dv + ∫
G

{
S · 〈F〉� − σKV − d · �

m−([π] + gS )V
}
da

+ ∫
∂G

σ (w · n)ds + ∫
∂P

π(q · n)da, (A2–6b)

where G � S ∩P andn is the outward unit normal to ∂G (cf. (21–6) and (21–18)).
Note that the surface tensionσ and the surface sheard are simply fields that perform
work internally during virtual changes of interfacial area and orientation, while π
is a field that performs work during virtual changes in volume; at this point in the
discussion these fields bear no relation to the standard and configurational stresses
S, S, C, and C.

The strong principle of virtual work is the assertion that, for any choice of
virtual kinematics K � (V, ẏ), and any virtually migrating control volume P �
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(P, q,w) compatible with K,

Wext(K,P) � Wint(K,P). (A2–7)

Strong Theorem of Virtual Work. The strong principle of virtual work holds if
and only if the relations

C � π1 − F�S, (A2–8a)

Ctan � σP− F�S, (A2–8b)

τ � d− S�〈F〉m; (A2–8c)

the standard bulk balance

Div S+ b � 0; (A2–9)

the standard interfacial balance

[S]m+ DivS S+ bS � 0; (A2–10)

and the normal configuration balance

m · [C]m+ Ctan · L+ DivS τ + gS + eS � 0 (A2–11)

are satisfied.

c. Proof of the strong theorem of virtual work

Assume that the strong principle of virtual work holds. Then, because Wint(K,P)
depends on q and w at most through w · n and q · n, this must also be true for
Wext(K,P). By (A2–2), the portion ofWext(K,P) that depends on q and w is∫

∂P

q · (C + F�S)n da + ∫
∂G

w · (C+ 〈F〉�S)n ds, (A2–12)

and arguments identical to those used to verify (5–14) and (21–11) yield the ex-
istence of scalar fields ω and ξ such that C + F�S � ω1 and Ctan + F�S � ξP.
Thus (A2–12) reduces to ∫

∂P

ω(q · n)da + ∫
∂G

ξ (w · n)ds, (A2–13)

and (A2–13) must be equal to the portion of Wint(K,P) that depends on q and w,
viz. ∫

∂P

π(q · n)da + ∫
∂G

σ (w · n)ds. (A2–14)

Therefore, ω � π and ξ � σ ; this yields (A2–8a,b).
Next, taking the virtual fields q and w in the “intrinsic forms” (A2–3), so that

(A2–4) are satisfied, and appealing to (A2–8a,b), the balance (A2–7) may be
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written in the reduced form∫
∂P

Sn · ẏ da + ∫
P

b · ẏ dv + ∫
G

(bS · �
y+eS V )da + ∫

∂G

(Sn · �
y+Cn · v)ds

� ∫
P

S · Ḟ dv + ∫
G

{
S · 〈F〉� − σKV − d · �

m−([π] + gS )V
}
da (A2–15)

and is to be satisfied for any choice of the virtual kinematics (V, ẏ) and all fixed
control volumes P . By (A1–5a) and (A2–5),

C · ∇S v � −VCtan · L− τ · �
m;

hence, by (A1–13) and (A2–8b),

C · ∇S v+ S · ∇S (
�
y) � −V (Ctan + F�S) · L− (τ + S�〈F〉m) · �

m+S · 〈F〉�

� −σKV − (τ + S�〈F〉m) · �
m+S · 〈F〉�. (A2–16)

Further, as in (21–14),

∫
∂G

(Sn · �
y+Cn · v)ds � ∫

G

{�
y ·DivS S+ S · ∇S (

�
y) + v · DivS C+ C · ∇S v

}
da.

Thus, by (A2–15), (A2–14) takes the form

∫
∂P

Sn · ẏ da + ∫
P

b · ẏ dv + ∫
G

{
(DivS S+ bS ) · �

y+(m · DivS C+ eS )V
}
da

� ∫
P

S · Ḟ dv + ∫
G

{
(τ + S�〈F〉m− d) · �

m−([π] + gS )V
}
da. (A2–17)

Choosing a control volume that does not intersect the interface yields, after ap-
plying the divergence theorem to the integral over ∂P ,

∫
P

(Div S + b) · ẏ dv � 0;

because this must hold for all virtual velocities ẏ, the bulk relation (A2–9) must
be satisfied.

Next, the argument used to establish (A2–12) holds with B and S replaced by
P and G , respectively, and since (A2–8a) implies that m ·[F�S]m � [π]−m ·[C]m,
(A2–16) reduces to

∫
G

{
(DivS S+ [S]m+ bS ) · �

y+(m · DivS C+ m · [C]m+ gS + eS )V
}
da

� ∫
G

{
(τ + S�〈F〉m− d) · �

m
}
da. (A2–18)

Because G may be chosen arbitrarily,

(DivS S+ [S]m+ bS ) · �
y+(m · DivS C+ m · [C]m+ gS + eS )V

− (τ + S�〈F〉m− d) · �
m � 0 (A2–19)
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on S for any choice of the virtual kinematics. Take V ≡ 0 (so that
�
m ≡ 0) and let

ẏ be an arbitrary smooth vector field. Then, by (A1–4c), (A2–17) takes the form

(DivS S+ [S]m+ bS ) · ẏ � 0;
since ẏ is arbitrary, this yields (A2–10). Thus, by (A1–4b),

(m · DivS C+ m · [C]m+ gS + eS )V + (τ + S�〈F〉m− d) · ∇S V � 0.

Given any point X0 of S it is possible to choose a smooth field V such that V (X0)
and∇S V (X0) have arbitrarily prescribed values. This yields (A2–8c) and (A2–11).
(The vector∇S V (X0) is necessarily tangent toS atX0, but, in view of the sentence
following (A1–13), so is τ + S�〈F〉m− d.)

The converse assertion, that the relations (A2–8) and the force balances (A2–9)–
(A2–11) imply the strong principle of virtual work, is left to the reader.

d. Comparison of the strong and weak principles

The weak principle of virtual work is equivalent to the standard bulk and interfacial
balances

Div S+ b � 0, (A2–20a)

[S]m+ DivS S+ bS � 0, (A2–20b)

and the normal configurational balance

σK − (F�S) · L− m · [F�S]m+ DivS (d− S�〈F〉m) + hS + eS � 0. (A2–21)

Note that neither the principle nor the balances involve the configurational stresses
C and C or the bulk tension π , and hS is not the internal configurational force but
instead the sum of all fields internally work-conjugate to V .

The strong principle of virtual work makes use of the configurational stresses
C and C as well as the bulk tension π , and it delivers explicit relations for the
stresses:

C � π1 − F�S, (A2–22a)

Ctan � σP− F�S, (A2–22b)

τ � d− S�〈F〉m. (A2–22c)

In fact, the strong principle is equivalent to (A2–22) together with the standard
balances (A2–20) and the normal configurational balance

m · [C]m+ Ctan · L+ DivS τ + gS + eS � 0. (A2–23)

Granted (A2–22), the configurational balances (A2–21) and (A2–23) are equivalent
provided

hS � gS + [π]. (A2–24)
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A chief difference between the two principles is that the weak principle is written
for the body as a whole, while the strong principle is written for arbitrary control
volumes, which may undergo virtual migrations. The structure of the strong prin-
ciple is far more detailed than that of the weak principle and as such embodies
more physics. The strong principle may be combined with other physical laws
such as the second law in the form (21–19). On the other hand, the simplicity of
the weak principle makes it appropriate as a weak statement of the force balances,
and as such it may be useful for analysis, granted a knowledge of the more detailed
structure needed to formulate boundary- or initial-value problems.

The weak and strong principles of virtual work are equivalent to the set of force
balances not rendered irrelevant by the presence of indeterminate forces.2 That is
both the strength and the weakness of the principle of virtual work. Because it yields
only the relevant balances, it uses only those fields that enter those balances: no
more, no less. But this simplicity is at the expense of a physical framework in which
configurational forces obey a balance that is well defined at and away from defects, a
balance that has the classical form common to most basic laws of continuum physics.

One could enlarge the theory slightly and get all balances from the virtual form
of invariance under changes in observer. But then the theory would be essentially
the same as the theory in the main body of the book, where force balances follow
from invariance of the working. Moreover, within that theory, internal working is a
derived quantity, not an independent notion.

2E.g., for a coherent interface the only relevant configurational balance is the scalar
interfacial balance (A2–11).
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Angle-convexity, 120

Balance of energy, 43, 159
bulk free energy, 108
bulk stress

configurational, 101, 129
standard, 129

bulk tension, 38

Cauchy stress, 27
coherent phase interface, 61, 88, 127
Coleman-Noll procedure, 58
compatability conditions at interface, 63
conductivity tensor, 160
configurational force balance

fracture, 187
interface, 68
junctions, 220
single-phase, 36
solidification, 159
two-phase, 102, 117, 130, 151

configurational forces, 2, 11
configurational heating, 43
constitutively isotropic crack tip, 200
convexifying tangent, 121
corner, 213
crack initiation, 202
crack surfaces, 173
crack tip, 175
crack tip with constant mobility, 200

critical loading, 202
criticality theorem, 202
curvature, 115
curvature tensor, 96

Deformation gradient, 21
displacement field, 83
driving force, crack tip, 193

Elastic materials, 53
elasticity tensors, 89
energy release rate, 193
entropy, 43
Eshelby relation, 42
Eshelby relation, interface, 144
evolution equation, interface, 113, 119
evolving surfaces, 93
external body force

configurational, 34
standard, 25

external bulk force
configurational, 129
standard, 129

external configurational force
crack tip, 184
interface, 66

external-force relation, 39, 85
external heat supply, 43
external interfacial force

configurational, 101, 129
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external (continued)
standard, 129

external standard force
crack tip, 184
interface, 66

external working, 27

Finite deformations, 84
fluids, 44
fracture, 173
fracture limit, 198
fracture three space dimensions, 208
Frank diagram, 120
free energy, 40, 43, 159
Frenet formulas, 115
functions of orientation, 110

Generalized Griffith criterion, 209
generalized Stefan condition, 167
Gibbs-Thomson condition, 166, 167
globally stable, 121
Griffith criterion, 194
Griffith-Irwin function, 199
Griffith-Irwin modulus, 209
growing crack, 175
growth of entropy, 43, 159

Heat flux, 43

Indeterminacy, 11
inertia, 74
infinitesimal change in spatial observer,
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infinitesimal deformations, 81
initiation theorem, 202
interfacial

dissipation inequality, 71, 109, 132,
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energy, 164
entropy, 164
force balance, 103
free energy, 108, 132
stress, configurational, 101, 129
stress power, 144
stretch, 149

internal body force, configurational, 34
internal bulk force, configurational, 101,

129
internal configurational force, 10

crack, 184
crack tip, 184
interface, 66
junction, 220

internal dissipation inequality, crack tip,
192

internal energy, 43
internal force relation, 39, 42, 85
internal interfacial force,

configurational, 101, 129
internal working

bulk, 27
interface, 105
two-phase, 70, 144, 152

inverse motion, 22
inverse-motion velocity, 22

Junction, 213
junction integrals 213
junction transportation theorem, 215
junction velocity, 213

Kinetic energy, 46
kinetic modulus, 78, 111
kink angle, 202

Latent heat, 166
limit force, 209
linear kinetics, 112
Lyapunov relations

single-phase, 48
two-phase, 80, 114, 137, 147

Material observers, 23
material points, 21
material vector, 22
maximum dissipation criterion, 204
melting temperature, 160
migrating control volume, 29
misfit strain, 89
modified Eshelby relation, 84, 85
momentum, 46
momentum balance, interface, 136,

147
motion, 21
motion velocity, 21

following boundary, 31
following crack tip, 182
following interface, 64
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Normal configurational balance, 69, 79,
104, 136, 147, 156

normal internal force, 104, 117
normal velocity, interface, 63

Objective fields, 23
observer change, 23

Power balance, 27
production of kinetic energy, 75
production of momentum, 75
projection, 94
pseudomomentum, 47

Reduced power balance, 106, 143
reference body, 21
relative kinetic energy, 74
rest observer, 23

Second law
fracture, 190
junctions, 221
single-phase, 40, 47
two-phase, 116, 132, 152

smooth away from the tip, 177
smooth corner theorem, 222
solidification, 157
spatial observers, 23
spatial vector, 22
specific heat, 160
standard force balance, 26
standard force balance, interface, 68
standard moment balance, 26
standard momentum condition, 194
stationary change in reference, 31
Stefan condition, 160
Stefan problem, 161, 167
strain tensor, 89
stress

configurational, 34
standard, 25

stress power, 27

strong principle of virtual work, 233
strong theorem of virtual work, 234
subcritical loading, 202
supercritical loading, 202
superficial stress, 93
superficial tensor field, 94
surface divergence, 96
surface divergence theorem, 96
surface shear, 103, 152, 185
surface stress, crack, 184
surface tension, 103, 141, 152, 185

Tangential configurational balance,
crack tip, 193

tangential deformation gradient, 138
temperature, 43
thermoelastic materials, 53
time-dependent change in reference, 32
time derivative following

boundary, 31
crack tip, 177
interface, 97
junction, 214

tip control volume, crack, 176
tip speed, crack, 175
tip traction, 193
tip velocity, crack, 173, 175
total curvature, 96

Velocity field for boundary, 31
virtually migrating control volumes,

232

Weak principle of virtual work, 228
weak theorem of virtual work, 229
working

fracture, 186
junctions, 220
single-phase, 26
two-phase, 67, 140, 150

Wulff shape, 122




