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Preface

I am inclined to believe that engineers and engineering schools will play an important part
in restoring unity and central viewpoint in the natural sciences. This is because modern
engineering, by its very nature, must be synthetic. Specialization, carried to extreme, is a
form of death and decay. M.A. Biot1

We define Poromechanics as the study of porous materials whose mechanical behaviour
is significantly influenced by the pore fluid. By this definition, poromechanics involves
a broad range of materials, from the rocks and soils that were the subject of the theory
of poroelasticity developed by Maurice Biot more than half a century ago, to gels and
biological tissues. Poromechanics is then relevant to disciplines as varied as geophysics,
geotechnics, biomechanics, physical chemistry, agricultural engineering or materials sci-
ence. If the porous materials and the fields concerned are many, their unity lies in the fact
that they are all subject to the same coupled processes: hydro-diffusion and subsidence,
hydration and swelling, drying and shrinkage, heating and build-up of pore pressure, freez-
ing and spalling, capillarity and cracking. Accordingly, the main purpose of this book is
to provide a unified and systematic continuum approach to poromechanics for engineers
and applied physicists. The key concepts to reconcile continuum mechanics with the
microscopic discontinuities inherent in porous media constituted by solid and fluid phases
are twofold. The first concept is to consider the porous medium as the superposition of
several continua that move with distinct kinematics, while mechanically interacting and
exchanging energy and matter. Since the formulation of the constitutive equations of any
solid requires its deformation to be referred to an initial configuration, the second con-
cept is to transport the equations governing the physics of the superposed fluid and solid
continua from their common current configuration to an initial reference configuration
related to the solid skeleton. Based upon the pioneering work of M.A. Biot, these two
concepts allow us to extend all significant achievements of the continuum mechanics of
solids to poromechanics. Within the energy context of thermodynamics of open continua
these two concepts also open up the way to explore new frontiers related to various
thermo/hydro/chemo/mechanical couplings.

The book is intended to be self-contained. It only presupposes some basic mathemat-
ical knowledge of tensorial analysis and differential geometry. Starting from the basics
it progressively extends the fundamental concepts of continuum mechanics to contin-
uum poromechanics, by focusing attention on the coupling of the deformation of porous
continua with various other physical processes. The book can possibly be divided in to

1Biot M.A. (1962), ‘Science and the Engineer’, acceptance talk for the Timoshenko Award Medal.
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two main parts. The first part comprises Chapter 1 to 5, starting from the description
of deformation and stress, going on to the thermodynamics of porous continua consid-
ered as open systems, and ending in poroelasticity, including the solution of evolution
problems. The second part comprises Chapter 6 to 9 and explores various independent
extensions of the first part. Chapter 6 extends the analysis to unsaturated poroelastic media
by addressing the effects of the capillary pressure and that of the surface energy between
the components. Chapter 7 offers a unified approach to the analysis of various fronts that
can penetrate a porous medium. Finally, Chapters 8 and 9 extend the picture to inelastic
behaviour, dealing first with poroplasticity and ending with hereditary behaviour.

The book can serve as a support for both graduate and advanced courses on continuum
poromechanics, revisiting and completing an initial treatment of continuum mechanics.
Indeed, there are essentially two volumes in one. Volume 1 is formed by the succes-
sion of all chapters in the first part and is intended for graduate students. Volume 2 is
formed by gathering all the ‘Advanced Analysis’ sections of each chapter. It is intended
for more advanced courses in order to provide sources of information and inspiration
to future scientists in the field of poromechanics, whatever the particular discipline or
application in mind. These developments include microporomechanics, deal with surfaces
of discontinuity and wave propagation, provide some solutions to non-linear problems of
poroelasticity, analyse the drying of weakly permeable materials, consider the localiza-
tion of deformation, explore the frontiers between poromechanics and chemomechanics,
poromechanics and mechanics of colloidal mixtures, etc.
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Chapter 1

Deformation and Kinematics.
Mass Balance

The aim of this chapter is to describe the deformation and the kinematics of a porous
medium formed from a deformable skeleton and a fluid saturating the porous space.
The underlying idea consists in approaching the porous medium as the superimposition
of two continua, the skeleton continuum and the fluid continuum. The description of
the deformation and of the kinematics of each continuum considered separately differs
in no way from that of a monophasic continuous medium. Nevertheless, the skeleton
deformation is eventually the one that can actually be observed so it is the one discussed
in the following.

The laws of physics governing the evolution of a porous continuum involve the time
rate of the physical quantities attached either to the skeleton or to the fluid whatever their
further distinct movement. Accordingly the particle derivative is therefore introduced,
allowing us to follow separately the motions of the skeleton and the fluid. A first illus-
tration of its use is given at the end of this chapter by expressing the mass balance for
the two superimposed continua.

1.1 The Porous Medium and the Continuum Approach

1.1.1 Connected and Occluded Porosity. The Matrix

A saturated porous medium is composed of a matrix and a porous space, the latter being
filled by a fluid. The connected porous space is the space through which the fluid actually
flows and whose two points can be joined by a path lying entirely within it so that the
fluid phase remains continuous there. The matrix is composed of both a solid part and
a possible occluded porosity, whether saturated or not, but through which no filtration
occurs. The connected porosity is the ratio of the volume of the connected porous space to
the total volume. In what follows the term ‘porosity’, used without further specification,
refers to the entire connected porosity.
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Figure 1.1: The porous medium as the superimposition of two continuous media: a skeleton particle
and a fluid particle coincide with the same geometrical infinitesimal volume.

1.1.2 Skeleton and Fluid Particles. Continuity Hypothesis

A porous medium can be treated as the superimposition of two continua, the skeleton
continuum and the fluid continuum. Accordingly, as illustrated in Fig. 1.1, any infinites-
imal volume can be treated as the superimposition of two material particles. The first
is the skeleton particle formed from the matrix and the connected porous space emptied
of fluid. The second is the fluid particle formed from the fluid saturating the connected
porous space and from the remaining space without the matrix.

A continuous description of a medium, which is heterogeneous at the microscopic
scale, requires the choice of a macroscopic scale at which the inner constitution of mat-
ter is ignored in the analysis of the macroscopic physical phenomena. For instance, the
porosity is associated with an elementary volume including sufficient material to be rep-
resentative of the filtration process. More generally the hypothesis of continuity assumes
the existence of a representative elementary volume which is relevant at the macroscopic
scale for all the physical phenomena involved in the intended application. The physics
is supposed to vary continuously from one to another of those juxtaposed infinitesimal
volumes whose junction constitutes the porous medium. In addition, continuous deforma-
tion of the skeleton assumes that two skeleton particles, juxtaposed at a given time, were
always so and will remain so.

1.2 The Skeleton Deformation

When subjected to external forces and to variations in pressure of the saturating fluid, the
skeleton deforms. The description of this deformation differs in no way from that of a
standard solid continuum and is succinctly developed below.

1.2.1 Deformation Gradient and Transport Formulae

At time t = 0 consider an initial configuration for the skeleton. In this configuration a
skeleton particle is located by its position vector X of components Xi , in a Cartesian
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coordinate frame of orthonormal basis (e1, e2, e3). At time t the skeleton has deformed
and lies in the current configuration. In this configuration the particle whose initial position
vector was X is now located by its current position vector x of components xi(Xj , t). We
write:

X = Xiei; x = xi(Xj , t)ei (1.1)

with a summation on the repeated subscript i. In what follows this convention is adopted
and, provided that no further indication is given, the index notation refers to a Cartesian
coordinate system.

Deformation gradient and transport of a vector. In the initial configuration consider an
infinitesimal material vector dX joining the skeleton particle located at X to the juxtaposed
particle located at X + dX. After deformation dX becomes dx joining the same skeleton
particles in their new positions, x and x + dx (see Fig. 1.2). The vector dx can be obtained
from dX by differentiating (1.1):

dx = ∂xi

∂Xj

dXjei (1.2)

or, equivalently:

dx = F · dX (1.3)

where:

F = ∇Xx; Fij = ∂xi

∂Xj

(1.4)

In (1.4) ∇X stands for the nabla operator relative to the initial configuration. F is called
the deformation gradient. It transports any material vector dX onto its deformed dx. Its
inverse F−1 and its transpose tF are respectively defined by:

dX = F−1 · dx; dx = dX · tF (1.5)

e2

e3

e1

x = x(X, t)X
dX

dx = F . dX

Initial configuration Current configuration

X + dX

x + dx

Figure 1.2: Deformation gradient F and transport of a material vector dX.
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and satisfy:

(tF)ij = Fji; (F−1)ij =
∂Xi

∂xj
(1.6)

Deformation gradient and displacement. Let ξ (X, t) be the displacement vector of the
particle whose initial and current positions are X and x. We write:

x = X + ξ (1.7)

From definitions (1.4) and (1.7) deformation gradient F can be expressed as a function
of displacement vector ξ according to:

F = 1 +∇Xξ ; Fij = δij + ∂ξi

∂Xj

(1.8)

where δij is the Kronecker delta, that is δij = 1 if i = j and δij = 0 if i �= j .
Volume transport. The current infinitesimal volume d�t = dx1 dx2 dx3 is equal to the

composed product:

d�t = (dx1, dx2, dx3) = dx1 · (dx2 × dx3) (1.9)

where dxi = dxi ei (with no summation). The linearity of the composed product with
respect to the vectors it combines allows us to write:

d�t = (F · dX1,F · dX2,F · dX3) = det F (dX1, dX2, dX3) (1.10)

As a consequence any initial material volume d�0 transforms into the material volume
d�t through the relation:

d�t = Jd�0 (1.11)

where J = det F is the Jacobian of the deformation.
Surface transport. Consider a material surface dA, oriented by the unit normal N.

Throughout the deformation dA transforms into the material surface da, oriented by the
unit normal n. Since vectors N and n are not material vectors, they do not match in the
deformation. Let U be any material vector in the initial configuration. The material cylinder
of initial volume N · U dA transforms into the material cylinder of volume n · F · U da

(see Fig. 1.3). According to (1.11) we write:

n · F · U da = J N · U dA (1.12)

Since (1.12) holds whatever the vector U, we derive:

n da = J tF−1 · N dA; ni da = J
∂Xj

∂xi
Nj dA (1.13)
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U

dA

u = F . U

da

N

n

nda = JtF−1 . NdA

Figure 1.3: Transport of the oriented material surface N dA onto its deformed n da.

Let v be any vector attached to the current configuration and let V be the associated
vector attached to the initial configuration and defined in such a way that the flow of v
through da coincides with the flow of V through dA. We write:

v · n da = V · N dA; vini da = JVi

∂Xj

∂xi
Nj dA (1.14)

From (1.13) and (1.14) we derive:

V = JF−1 · v; Vi = J
∂Xi

∂xj
vj (1.15)

Integration of (1.14) over the volumes �0 and �t matching in the deformation, followed
by use of the divergence theorem and relation (1.11), gives the useful identity:

∇x · v d�t = ∇X · V d�0; J
∂vi

∂xi
= ∂Vi

∂Xi

(1.16)

1.2.2 Eulerian and Lagrangian Porosities. Void Ratio
Let n be the Eulerian porosity, so that the fluid occupies the volume n d�t in the current
configuration. Since the skeleton material volume d�t changes throughout the deforma-
tion, porosity n does not properly quantify the volume change undergone by the porous
space attached to the initial material volume d�0. In contrast to the Eulerian porosity
n, which refers to the current volume d�t , the change in the porous space is eventually
better captured by the Lagrangian porosity φ, which refers the current porous volume to
the initial volume d�0 according to:

φ d�0 = n d�t ; φ = Jn (1.17)

For its part the current degree of compactness of a porous material is well captured by
the void ratio e defined as the ratio of the current porous volume to the current volume
of the matrix. Owing to its definition the void ratio e is a Eulerian variable, with no
Lagrangian counterpart, and is expressed as a function of n in the form:

e = n

1 − n
(1.18)
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1.2.3 Strain Tensor

Deformation induces changes in both the lengths of the material vectors and the angles
between them. The Green–Lagrange strain tensor � measures these changes by quanti-
fying the variation of the scalar product of two material vectors dX and dY transforming
the deformation throughout into dx and dy. We write:

dx = F · dX; dy = F · dY : dx · dy − dX · dY = 2dX ·� · dY (1.19)

With the help of (1.5) � can be written as a function of deformation gradient F
according to:

� = 1

2
(tF · F − 1) (1.20)

Being symmetric, tensor � admits three real eigenvalues �J (J = I, II, III ). The latter
are the principal strains and are associated with the eigenvectors eJ (J = I, II, III ),
which are the principal directions of the deformation such as � · eJ = �J eJ . The orthog-
onality of the principal directions, writing eI · eJ = 0, is preserved in the deformation.
Indeed: (

eI · tF
) · (F · eJ ) = 2eI ·� · eJ = 2�I or J eI · eJ = 0 (1.21)

The gradient R of the rotation that rigidly transports the set of orthogonal principal
directions eJ to their final directions is an isometry so that the related strain tensor
is zero, resulting in tR = R−1. Therefore the gradient F of any transformation decom-
poses as:

F = D · R (1.22)

that is the rotation R followed by the actual deformation D, the latter involving no rota-
tion and matching the dilation of the principal directions of deformation. Equivalently,
the gradient F can also decompose as the actual deformation D′ matching the dilation,
followed by the rotation R′ relative to that of the eigenvectors. Accordingly, the strain
tensor � accounts entirely for the actual deformation since:

� = 1

2
(D2 − 1) (1.23)

By means of (1.8) � can finally be expressed as a function of the displacement vector ξ

according to:

� = 1

2

(∇Xξ + t∇Xξ + t∇Xξ · ∇Xξ
)

(1.24a)

�ij = 1

2

(
∂ξi

∂Xj

+ ∂ξj

∂Xi

+ ∂ξk

∂Xi

∂ξk

∂Xj

)
(1.24b)
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1.2.4 Infinitesimal Transformation and the Linearized Strain Tensor
In many problems a first-order approximation to the finite theory can be carried out under
the condition of infinitesimal transformation, that is

‖∇ξ‖ � 1 (1.25)

where the norm ‖(·)‖ of (·) has not been specified because of the equivalence of all the
norms in a vectorial space of finite three dimensions. Moreover, as far as only spatial
derivations are concerned, in the limit of infinitesimal transformation the current and the
initial configurations merge, so the nabla operator ∇ can be used with no need for a
subscript referring to a particular configuration, that is ∇ = ∇X ≡ ∇x .

Under condition (1.25) the Green–Lagrange strain tensor � reduces to the linearized
strain tensor ε:

� � ε = 1

2
(∇ξ + t∇ξ); εij = 1

2

(
∂ξi

∂xj
+ ∂ξj

∂xi

)
(1.26)

Since � has the same order of magnitude as ∇Xξ , infinitesimal transformation implies
infinitesimal deformation, that is ‖�‖ � 1. In contrast, the deformation may be infinites-
imal whereas the transformation is not. For instance, in a rigid body motion � is zero
whereas ∇Xξ can have any order of magnitude.

Under the approximation of infinitesimal transformation, (1.8) gives:

(J = det F) �
(

1 + ∇ · ξ = 1 + ∂ξi

∂xi
= 1 + εii

)
(1.27)

From now on let ε be the linearized volume dilation of the skeleton, that is:

ε = εii = ∇ · ξ (1.28)

so that (1.11) takes the form:

d�t � (1 + ε) d�0 (1.29)

The observable macroscopic volume dilation undergone by the skeleton is due both
to the change in porosity and to the volume dilation εs undergone by the solid matrix,
although the latter is not accessible from purely macroscopic experiments. Analogously
to (1.29) the definition of εs allows us to write:

d�s
t = (1 + εs) d�

s
0 (1.30)

Owing to the respective definition of Eulerian and Lagrangian porosities, n and φ (see
§1.2.2), the volume occupied by the matrix is linked to the overall volume through the
relations:

d�s
t = (1 − n) d�t = d�t − φ d�0; d�s

0 = (1 − φ0) d�0 (1.31)
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Combining the above equations, we finally derive the volume balance:

ε = (1 − φ0)εs + φ − φ0 (1.32)

In the absence of any occluded porosity, the solid grains forming the matrix generally
undergo negligible volume changes so that the matrix can be considered as incompressible.
Accordingly we let εs = 0 in (1.32), giving:

ε = φ − φ0 (1.33)

As is usually done in soil mechanics, it can be more convenient to use the void ratio e

instead of the volumetric dilation ε. Combining (1.17), (1.18) and (1.33), we obtain:

ε = e − e0

1 + e0
(1.34)

Under the approximation of infinitesimal transformation, the diagonal term εii (with no
summation) is equal to the linear dilation in the ei direction, while twice the non-diagonal
term, γij = 2εij (i �= j ), is equal to the distortion related to directions ei and ej , that is
the change undergone by the angle made between the material vectors ei and ej that were
normal prior to the deformation.

1.3 Kinematics

The description of the skeleton deformation by means of the deformation gradient F is by
nature a Lagrangian description. The fields are functions of time t and of position vector
X locating the skeleton particle in the initial configuration. The latter does not vary with
time and the kinematics of the skeleton results from a simple time derivation.

In contrast to the Lagrangian approach, the Eulerian approach involves only the current
configuration, with no reference to any initial configuration. The approach is carried out
by using the velocity field Vπ(x, t) of the particle coinciding at time t with the geometrical
point located at x. The particle can be either a skeleton particle, π = s, or a fluid particle,
π = f .1 At time t , the same Eulerian approach applies to both particles since the skeleton
continuum and the fluid continuum merge in the same current configuration.

1.3.1 Particle Derivative

Definition

The particle derivative dπG/dt with respect to particle π (= s or f ) of some field G is the
time derivative of G that an observer attached to the particle would derive. This observer
records the variation dπG of quantity G between times t and t + dt . For instance, the

1It would have been more rigorous to make a distinction between the index referring to the matter at the
macroscopic scale (for instance, sk for the skeleton particle and f l for the fluid particle) and the index referring
to the matter at the mesoscopic scale (for instance, s for the solid matrix, as in (1.32), and f for the fluid).
However, for the sake of simplicity of notation, we chose not to make this distinction.



KINEMATICS 9

origin of the coordinate being fixed, the velocity field Vπ (x, t) of particle π located at x
reads:

dπx
dt

= Vπ(x, t); π = s or f (1.35)

Particle derivative of a material vector

Definition (1.35) allows us to write the particle derivative of the material vector dx in the
form:

dπ

dt
(dx) = dπ

dt
[(x+dx)− x] = Vπ (x+dx, t)− Vπ (x, t) (1.36)

so that:

dπ

dt
(dx) = ∇xVπ · dx; (∇xVπ

)
ij
= ∂V π

i

∂xj
; π = s or f (1.37)

Particle derivative of a material volume

Starting from (1.9), we express the particle derivative of the material volume d�t in the
form:

dπ

dt
(d�t ) = dπ

dt
(dx1, dx2, dx3) = dπ

dt
(dx1 · (dx2 × dx3)) (1.38)

The linearity of the composed product (v1, v2, v3) with regard to vectors vi=1,2,3 allows
us to write:

dπ

dt
(d�t ) =

(
dπ

dt
(dx1), dx2, dx3

)
+
(
dx1,

dπ

dt
(dx2), dx3

)
+
(
dx1, dx2,

dπ

dt
(dx3)

)
(1.39)

Use of (1.37) gives:

dπ

dt
(d�t ) =

(
∂V π

i

∂x1
ei dx1, dx2, dx3

)
+
(
dx1,

∂V π
i

∂x2
ei dx2, dx3

)
+
(
dx1, dx2,

∂V π
i

∂x3
ei dx3

)
(1.40)

The product (v1, v2, v3) is zero as soon as two vectors among vectors vi=1,2,3 are colin-
ear. Thus:

dπ

dt
(d�t ) =

(
∂V π

1

∂x1
+ ∂V π

2

∂x2
+ ∂V π

3

∂x3

)
(dx1, dx2, dx3) (1.41)

or equivalently:

dπ

dt
(d�t ) =

(∇x · Vπ
)
d�t ; π = s or f (1.42)
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Particle derivative of a field

The particle derivative dπG/dt with respect to particle π (= s or f ) of field G (x, t) turns
out to be the time derivative of G when letting x match the successive positions xπ (t)

occupied by the particle. We write:

dπG
dt

= ∂G
∂t

+ (∇xG) · Vπ (1.43)

For instance, the acceleration γ π of particle π is the particle derivative of velocity
Vπ (x, t):

γ π = dπVπ

dt
= ∂Vπ

∂t
+ (∇xVπ

) · Vπ ; γ π
i = ∂V π

i

∂t
+ ∂V π

i

∂xj
V π
j (1.44)

Particle derivative of a volume integral

The particle derivative applies to the volume integral of any quantity G according to:

dπ

dt

∫
�t

Gd�t =
∫
�t

dπ

dt
(Gd�t) (1.45)

Use of (1.42) and (1.43) allows us to rewrite (1.45) in the form:

dπ

dt

∫
�t

Gd�t =
∫
�t

(
dπG
dt

+ G∇x · Vπ

)
d�t (1.46)

or, equivalently:

dπ

dt

∫
�t

Gd�t =
∫
�t

(
∂G
∂t

+ ∇x · (GVπ)

)
d�t (1.47)

Use of the divergence theorem finally provides the alternative expression:

dπ

dt

∫
�t

Gd�t =
∫
�t

∂G
∂t

d�t +
∫
∂�t

GVπ · n da (1.48)

where ∂�t stands for the border of volume �t , while n is the outward unit normal to
surface da.

1.3.2 Strain Rates

The particle derivative allows the Eulerian description of the kinematics of the deformation
that refers only to the current configuration. The Eulerian strain rate tensor dπ is defined
by the relation:

dπ

dt
(dx · dy) = 2dx · dπ · dy (1.49)
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where dx and dy are any infinitesimal skeleton (π = s) or fluid (π = f ) material vectors.
Use of (1.37) into (1.49) gives:

dπ = 1

2

(∇xVπ + t∇xVπ
); dπ

ij =
1

2

(
∂V π

i

∂xj
+

∂V π
j

∂xi

)
(1.50)

Definition (1.50) of dπ allows us to decompose the deformation kinematics of material
vector dx in the form:

dπ

dt
(dx) = �π · dx + dπ · dx (1.51)

where �π is the rotation rate tensor attached to the antisymmetric part of ∇xVπ :

�π = 1

2

(∇xVπ − t∇xVπ
); �π

ij =
1

2

(
∂V π

i

∂xj
−

∂V π
j

∂xi

)
(1.52)

The term �π · dx in (1.51) induces no strain rate since it accounts for the infinitesimal
rotation of material vector dx according to:

�π · dx = 2ωπ × dx (1.53)

where ωπ is the vorticity vector:

ωπ = ∇x × Vπ (1.54)

The Eulerian decomposition (1.51) of the kinematics of deformation is to be compared
with the Lagrangian decomposition (1.22) of the deformation.

In contrast to the Eulerian approach to the kinematics of the skeleton deformation, the
Lagrangian approach consists in deriving (1.19) with respect to time:2

ds

dt
(dx · dy) = 2dX · d�

dt
· dY (1.55)

Using transport formulae dx = F · dX and dy = F · dY, the comparison between (1.49)
for π = s and (1.55) leads to the transport formula:

ds = tF−1 · d�

dt
· F−1; ds

ij =
∂Xk

∂xi

d�kl

dt

∂Xl

∂xj
(1.56)

According to (1.26) and (1.56), the infinitesimal transformation approximation turns out
to consider ds � dε/dt .

2When taking the skeleton particle derivative of Lagrangian quantities, as for instance ds�/dt , we will
adopt a standard time derivative notation, such as for instance d�/dt in (1.55). Indeed, there is no ambiguity
since � = � (X, t). Furthermore, the particle derivative with respect to the fluid of a Lagrangian quantity does
not generally present any physical interest.
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1.4 Mass Balance

1.4.1 Equation of Continuity

Let ρs and ρf be the mesoscopic or intrinsic matrix and fluid mass densities so that
ρs (1 − n) d�t and ρf n d�t are respectively the skeleton mass and the fluid mass cur-
rently contained in the material volume d�t . Accordingly the macroscopic or apparent
skeleton and fluid mass densities are respectively ρs (1 − n) and ρf n. When no mass
change occurs, neither for the skeleton nor the fluid contained in the volume �t , the mass
balance can be expressed in the form:

ds

dt

∫
�t

ρs (1 − n) d�t = 0 (1.57a)

df

dt

∫
�t

ρf n d�t = 0 (1.57b)

Applying (1.45) and (1.47) to (1.57) we get:

ds

dt
(ρs (1 − n) d�t) = 0 (1.58a)

df

dt
(ρf n d�t) = 0 (1.58b)

and the Eulerian continuity equations:

∂(ρs (1 − n))

∂t
+ ∇x ·

(
ρs (1 − n)Vs

) = 0 (1.59a)

∂(ρf n)

∂t
+∇x ·

(
ρf nVf

) = 0 (1.59b)

1.4.2 The Relative Flow Vector of a Fluid Mass. Filtration Vector.
Fluid Mass Content

The appropriate formulation of the constitutive equations for the skeleton accounting for
the skeleton–fluid couplings will require referring the motion of the fluid to the initial
configuration of the skeleton. With that purpose in mind let Jf da be the fluid mass
flowing between time t and t + dt through the infinitesimal skeleton material surface da

oriented by the unit normal n. We write:

Jf da = w · n da (1.60)

where w (x, t) is the Eulerian relative flow vector of fluid mass. Since the quantity n(Vf −
Vs) · n dadt is the infinitesimal fluid volume flowing through the skeleton surface da

during the infinitesimal time dt (see Fig. 1.4), the relative vector of fluid mass w is
consistently defined by:

w = ρfV; V = n(Vf − Vs) (1.61)
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(Vf  − Vs) dt

n (Vf  − Vs) . n dadt

nda

Figure 1.4: The infinitesimal fluid volume flowing through the skeleton surface da during the
infinitesimal time dt . Eulerian porosity n is still to be associated with the infinitesimal fluid volume(
Vf − Vs

) · n dadt , and not with the skeleton infinitesimal surface da through which the fluid
flows.

where V is the filtration vector. Use of definition (1.61) allows us to refer the fluid mass
balance to the skeleton motion by rearranging the fluid continuity equation (1.59b) in the
form:

ds(ρf n)

dt
+ ρf n∇x · Vs+∇x · w = 0 (1.62)

The Lagrangian approach to the fluid mass balance can be carried out by introducing
the current Lagrangian fluid mass content mf per unit of initial volume d�0. The latter
relates to the current Eulerian fluid mass content ρf n per unit of current volume d�t

according to:

ρf n d�t = mf d�0 (1.63)

Use of (1.17) and (1.63) gives the useful relation:

mf = ρf φ (1.64)

where φ stands for the Lagrangian porosity (see §1.2.2). Furthermore, let M (X, t) be the
Lagrangian vector attached to the initial configuration and linked to vector w through the
relation:

w · n da = M · N dA (1.65)

where surfaces da and dA correspond in the skeleton deformation. Accordingly, letting
w = v and M = V in (1.14), Eqs. (1.15) and (1.16) provide the transport formulae:

M = JF−1 · w; ∇x · w d�t = ∇X · M d�0 (1.66a)

Mi = J
∂Xi

∂xj
wj ; J

∂wi

∂xi
= ∂Mi

∂Xi

(1.66b)
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Substitution of (1.63) and (1.66) into (1.62) premultiplied by d�t , and use of (1.42) with
π = s, provide the Lagrangian fluid continuity equation in the form:

dmf

dt
+ ∇X · M = 0; ∂mf (X, t)

∂t
+ ∂Mi

∂Xi

= 0 (1.67)

Analogously, the Lagrangian approach to the mass balance of the skeleton turns out to
integrate (1.58a) in the form:

ρs (1 − n) d�t = ρ0
s (1 − n0)d�0 (1.68)

where ρ0
s and n0 = φ0 stand respectively for the initial matrix mass density and for the

initial porosity. Use of (1.11) allows us to write:

ms = m0
s = ρ0

s (1 − φ0) (1.69)

where ms = Jρs (1 − n) denotes the skeleton mass content per unit of initial volume d�0
and remains constantly equal to its initial value m0

s representing the skeleton mass density
ρ0
s (1 − φ0). Equations (1.67) and (1.69) constitute the skeleton Lagrangian alternative to

the Eulerian continuity equations (1.59).

1.5 Advanced Analysis

1.5.1 Particle Derivative with a Surface of Discontinuity

Some applications involve propagation fronts across which discontinuities occur. In order
to derive the particle derivative of an integral accounting for these discontinuities, let �
be a surface of discontinuity travelling within the material volume �t and subdividing
the latter into two subvolumes �1 and �2. Let n be the unit normal to � oriented in the
direction of travel towards the downstream subvolume �2. Finally, let [[G]] denote the
jump across � in the direction of n of the discontinuous quantity G (see Fig. 1.5):

[[G]] = G2 − G1 (1.70)

The normal speed of displacement c = c n of the surface of discontinuity � is the
velocity at which a geometrical point belonging to � moves along the normal n. During the
time duration dt the infinitesimal surface da belonging to � sweeps out the infinitesimal
volume c · n da dt . During the infinitesimal time dt the volumetric density G related to
the latter undergoes the variation − [[G]]. In order to account for this sudden variation,
the particle derivative of a volume integral (1.48) has to be modified according to:

dπ

dt

∫
�α

Gd�t =
∫
�t

∂G
∂t

d�t +
∫
∂�t

GVπ · n da −
∫
�

[[G]] c · n da (1.71)
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2

1Ω1

Σ
da

cn dt

Ω2

Ωt

∂Ωt

[[   ]] = 2 − 1

Figure 1.5: Infinitesimal volume swept out during the infinitesimal time dt by an infinitesimal
surface da belonging to a surface of discontinuity � moving at the normal velocity of displacement
c = c n.

Separate application of the divergence theorem to subdomains �α , α = 1 or 2, gives:∫
�α

∇x · (GVπ)d�t

=
∫
∂�α∩∂�t

GVπ · n da +
∫
�

GVπ · να da; ν1 = −ν2 = n (1.72)

Since �t = �1 ∪�2 and ∂�t = (∂�1 ∩ ∂�t) ∪ (∂�2 ∩ ∂�t), the two previous equations
lead to:

dπ

dt

∫
�t

Gd�t =
∫
�t

(
∂G
∂t

+∇x.(GVπ)

)
d�t +

∫
�

[[
G(Vπ − c)

]] · n da (1.73)

1.5.2 Mass Balance with a Surface of Discontinuity.
The Rankine–Hugoniot Jump Condition

Use of (1.73) in (1.57) provides the mass balance equations accounting for a surface of
discontinuity. We write:∫

�t

(
∂(ρs (1 − n))

∂t
+ ∇x ·

(
ρs (1 − n)Vs

))
d�t

+
∫
�

[[
ρs (1 − n) (Vs − c)

]] · n da = 0 (1.74a)∫
�t

(
∂(ρf n)

∂t
+ ∇x ·

(
ρf nVf

))
d�t +

∫
�

[[
ρf n(Vf − c)

]] · n da = 0 (1.74b)
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The first term in the above equations allows us to recover continuity equations (1.59),
whereas the second term provides the jump or Rankine–Hugoniot conditions:[[

ρs (1 − n) (Vs − c)
]] · n = 0 (1.75a)[[

ρf n(Vf − c)
]] · n = 0 (1.75b)

The jump condition means that the particles passing across the surface of discontinuity
� do not undergo any mass change. Referring to the skeleton motion, the jump condition
(1.75b) relative to the fluid is conveniently rewritten in the form:[[

w − ρf n(c − Vs)
]] · n = 0 (1.76)

Let us apply the jump condition to the special case of a surface of discontinuity �

constituted by the interface between two different porous media. Assuming that the two
media are perfectly bonded, Vs remains continuous across their interface so that the
displacement speed c = c · n equals the normal skeleton velocity Vs · n. Consequently, at
the interface � of two bonded porous media, the jump condition (1.76), which eventually
ensures that no liquid filtration occurs along the interface, reduces to:

[[w]] · n = 0 (1.77)

During time dt the infinitesimal surface da belonging to the surface of discontinuity �

sweeps out, in the current configuration, the skeleton material volume (c − Vs) · n da dt .
In the meantime the infinitesimal surface dA associated with da through transport for-
mula (1.13) sweeps out, in the initial configuration, the skeleton volume C · N dA dt .
Lagrangian normal speed C is the speed at which a geometrical point belonging to the
surface of discontinuity moves between times t and t + dt in the reference configuration
along the normal N. By using (1.64) and (1.65), the Eulerian jump condition (1.76) can
be transported to the initial configuration to furnish the Lagrangian jump condition:[[

M −mf C
]] · N = 0 (1.78)

With the aim of giving a first illustration of the above Lagrangian approach to the
Rankine–Hugoniot jump condition (see §5.4.4 for a second illustration), let us consider
a porous material subjected to a dissolution process (e.g. of leaching type, see §7.1), in
which the solid matrix (e.g. calcium) progressively dissolves into the interstitial solution
filling the porous space. At the microscopic scale of the latter, the problem at hand involves
the propagation of a surface of discontinuity in the initial configuration, even though the
dissolution front representing the surface of discontinuity in the current configuration
remains constantly identified with the current internal walls of the porous space. At the
microscopic scale we apply (1.78) in the form:

{(M −mC) · N}intact = {(M −mC) · N}solute (1.79)

where, for the sake of simplicity, we retain the same notation as that used at the macro-
scopic scale: M represents the Lagrangian relative flux vector with respect to the solid
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matrix; m is the total mass per unit of initial volume of the species subjected to disso-
lution; C = C · N is the Lagrangian speed of propagation front �, which separates, in
the initial configuration the still intact zone from the already dissolved one. The above
equation eventually expresses the mass conservation related to the thin layer of solid
matrix currently passing from the intact state, as part of the solid matrix, to the dissolved
state, as contributing to the solute. On the intact side we write M = 0 and m = m0 since
the still intact material, that is the current solid matrix, has no relative motion with respect
to itself. Returning to the macroscopic scale, let dφch/dt be the chemical contribution to
the total rate dφ/dt of Lagrangian porosity, that is the one due only to the dissolution
process irrespective of strain effects. According to the above analysis, dφch/dt can be
expressed in the form:

dφch

dt
= 1

d�0

∫
�

CdA (1.80)

1.5.3 Mass Balance and the Double Porosity Network

Some materials such as rocks or concrete sometimes exhibit two very distinct porous
networks. Roughly speaking, the first is formed of rounded pores, while the second is
formed of penny-shaped cracks. Although these two networks can exchange fluid mass
between them, their quite different geometries result in distinct evolution laws of their
pore pressure and require a separate analysis. To this end let subscript 1 refer to the
porous network formed of cracks and subscript 2 to the one formed of pores. While the
continuity equation related to the skeleton remains unchanged, the fluid mass balance
now reads:

df1

dt

∫
�t

ρf1n1 d�t =
∫
�t

◦
r2→1 d�t (1.81a)

df2

dt

∫
�t

ρf2n2 d�t =
∫
�t

◦
r1→2 d�t (1.81b)

where
◦
rα→β stands for the rate of fluid mass flowing from network α into network β,

while nα is the porosity associated with network α so that n = n1 + n2.
Mass conservation requires

◦
rα→β = −◦

rβ→α and application of (1.45) to (1.81) gives:

df1

dt
(ρf1n1 d�t) = −◦

r1→2 d�t ; df2

dt
(ρf2n2 d�t) = ◦

r1→2 d�t (1.82)

Using (1.46), we obtain two separate continuity equations for the fluid flowing through
the crack network and for the one flowing through the pore network:

∂(ρf1n1)

∂t
+∇x ·

(
ρf1n1Vf1

) = −◦
r1→2 (1.83a)

∂(ρf2n2)

∂t
+ ∇x ·

(
ρf2n2Vf2

) = ◦
r1→2 (1.83b)
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The Lagrangian alternative to the previous Eulerian fluid continuity equations can be
written as:

dsm1

dt
+ ∇X · M(1) = − ◦

m1→2 (1.84a)

dsm2

dt
+∇X · M(2) = ◦

m1→2 (1.84b)

with:

mα = Jρfαnα = ρfαφα; ◦
m1→2 = J

◦
r1→2 (1.85)

The approach can be adapted in order to account for possible long-term exchanges
of fluid mass between the occluded porosity, through which no fluid flow significantly
occurs in the short-term range, and the connected porous network, through which the fluid
flows at any time. This fluid exchange can be viewed as an exchange of mass between
the skeleton, including the occluded porosity and its fluid, and still referred to by s, and
the fluid saturating the porous network referred to by f . Analogously to (1.83) and (1.84)
the Eulerian and Lagrangian approaches to the continuity equation respectively read:

∂(ρs (1 − n))

∂t
+ ∇x ·

(
ρs (1 − n)Vs

) = −◦
rs→f (1.86a)

∂(ρf n)

∂t
+ ∇x ·

(
ρf nVf

) = ◦
rs→f (1.86b)

and:

dsms

dt
= − ◦

ms→f (1.87a)

dsmf

dt
+ ∇X · M = ◦

ms→f (1.87b)

Similarly, consider a material subjected to a dissolution process. Let
◦
ms→sol be the rate

of solid mass (index s) which currently dissolves per unit of initial volume d�0 in solute
form (index sol), so that the mass conservation of the solid matrix, the solute and the
solvent (index w for liquid water) can be expressed in the form:

dsms

dt
= − ◦

ms→sol (1.88a)

dsmsol

dt
+ ∇X · Msol = ◦

ms→sol (1.88b)

dsmw

dt
+∇X · Mw = 0 (1.88c)

In addition, from the analysis of §1.5.2 and from (1.80) we derive:

◦
ms→sol = ρ0

s

dφch

dt
(1.89)



Chapter 2

Momentum Balance. Stress Tensor

This chapter is devoted to the formulation of the momentum balance for a porous con-
tinuum viewed as the superimposition of two continua in mechanical interaction. As
in standard continuum mechanics, the existence of a symmetric total stress tensor and
the local momentum equation relative to the porous continuum viewed as a whole can
be derived from the overall momentum balance. Nevertheless, the derivation of separate
momentum balance equations for the skeleton and for the fluid cannot be carried out from
a strictly macroscopic approach. A first step towards the missing momentum equation and
an understanding of the balance of mechanical energy involved in the kinetic energy the-
orem consist in involving the mesoscopic scale through the introduction of partial stress
related to each continuum.

2.1 Momentum Balance

2.1.1 The Hypothesis of Local Forces
In continuum mechanics any material domain �t is subjected to two kinds of external
forces, namely the external body forces and the external surface forces, as sketched in
Fig. 2.1. In most applications, the external body forces, such as the ones due to gravity,
are the same for the skeleton and for the fluid. The infinitesimal body force δf acting on
the elementary material volume d�t is defined through a body force density per mass
unit f:

δf = ρf (x, t) d�t (2.1)

where ρ denotes the current mass density of the material volume d�t , here including
both the skeleton and the fluid:

ρ = ρs (1 − n)+ ρf n (2.2)

The body force density f is assumed to depend only on position vector x and time t .
Accordingly the external body forces applying on the infinitesimal material volume d�t

Poromechanics O. Coussy
c© 2004 John Wiley & Sons, Ltd ISBN 0-470-84920-7
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n T(x, t, n)

Ωt

dΩt

∂Ωt

rf(x, t)

Figure 2.1: Definition of external forces: body forces and surface forces. (from Coussy 2004,
reprinted by permission of Pearson Education, Inc.).

express the same thing irrespective of the domain �t the infinitesimal volume d�t belongs
to. In other words, the body forces considered are local forces. Non-local forces such as
the forces depending on the distance between particles will not be considered.

The surface forces act on the border ∂�t of �t . The infinitesimal surface force δT
acting on the infinitesimal material surface da is defined through a surface force density T:

δT = T (x, t, n) da (2.3)

As with the body force density, the surface force density T is assumed to depend only
on position vector x and time t and the outward unit normal n to da. This turns out
to assuming that the surface forces result only from local contact forces exerted by the
immediately adjacent material points. The action of more distant points, which would at
least involve the local curvature of ∂�t and consequently ∇xn, is excluded here. This
hypothesis of ‘local contact forces’, known as Cauchy’s hypothesis, will turn out to be
essential to define the stress tensor.

2.1.2 The Momentum Balance

In a Galilean referential frame, the instantaneous momentum balance, with respect to all
matter included in any porous domain �t , is:

ds

dt

∫
�t

ρs (1 − n)Vsd�t + df

dt

∫
�t

ρf nVf d�t

=
∫
�t

ρf (x, t) d�t +
∫
∂�t

T (x, t, n) da (2.4)

ds

dt

∫
�t

x × ρs (1 − n)Vsd�t + df

dt

∫
�t

x × ρf nVf d�t

=
∫
�t

x × ρf (x, t) d�t +
∫
∂�t

x × T (x, t,n) da (2.5)

where ρs (1 − n)Vsd�t and ρsnVf d�t represent the linear momentum related respec-
tively to the skeleton particle and to the fluid particle, both particles coinciding with d�t .
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Since body and surface forces refer to the whole matter, with no distinction made
between the skeleton and the fluid, Eq. (2.4) means that the time derivative of the
momentum of the whole matter currently contained in �t is equal to the creation rate
of momentum due to the external forces acting on this matter. Equation (2.5) expresses
the same thing as it concerns the angular momentum. The use of the particle deriva-
tive dπ/dt , with π = s or f , accounts for the distinct motion of the solid and the fluid
particles forming the volume �t when deriving their change in momentum.

2.1.3 The Dynamic Theorem
Taking the particle derivative of the integrand in (2.4) and (2.5) and using (1.35), (1.44)
and (1.58), we get:∫

�t

(ρs (1 − n) γ s + ρf nγ f )d�t

=
∫
�t

ρf (x, t) d�t +
∫
∂�t

T (x, t, n) da (2.6)∫
�t

x × (ρs (1 − n) γ s + ρf nγ f )d�t

=
∫
�t

x × ρf (x, t) d�t +
∫
∂�t

x × T (x, t,n) da (2.7)

where
(
ρs (1 − n) γ s + ρf nγ f

)
d�t and x × (ρs (1 − n) γ s + ρf nγ f

)
d�t represent res-

pectively the dynamic force and the dynamic moment related to the matter currently
contained within d�t .

Equation (2.6) represents the theorem of the dynamic resultant, stating that the resultant
of the dynamic forces related to the matter contained within �t is equal to the resultant
of the forces being exerted on this matter, whereas (2.7) expresses the analogous equality
for the dynamic moment.

2.2 The Stress Tensor

2.2.1 Action–Reaction Law
The dynamic resultant theorem (2.6) must hold for any domain �t , whereas the hypothesis
of local forces ensures that the body force f (x, t) acting on the volume d�t is independent
of the choice of domain �t to which the volume d�t belongs. Consider the cylinder shown
in Fig. 2.2a. The surface ∂�t is formed by the cylinder wall of surface � oriented by the
unit outward normal n� and by the two end sections, a+ and a−, oriented by the unit
outward normal vectors n and −n. The dynamic resultant theorem (2.6) applied to this
cylinder leads to: ∫

�t

(ρs (1 − n) γ s + ρf nγ f − ρf) d�t

=
∫
a+

T(n) da +
∫
a−

T(−n) da +
∫
�

T(n�) da (2.8)
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(a) (b)

−n

+n

T(n)

T(−n)

h → 0

Σ

a+a− −n +n

T(n)

T(−n)

Figure 2.2: Action–reaction law. (from Coussy 2004, reprinted by permission of Pearson Educa-
tion, Inc.).

Letting the thickness h of the cylinder in the direction normal to a+ and a− tend to zero,
both the contributions of the surface � and volume �t to (2.8) vanish. We write:

h → 0 :
∫
a+

T(n) da +
∫
a−

T(−n) da = 0 (2.9)

Since this identity must hold whatever the value of da, we obtain the ‘action–reaction
law’ sketched in Fig. 2.2b, reading:

T(−n) = −T(n) (2.10)

2.2.2 The Tetrahedron Lemma and the Cauchy Stress Tensor

In addition to the action–reaction law let us apply the dynamic resultant theorem to the
infinitesimally small tetrahedron whose three facets Sj are parallel to the coordinate planes
and oriented by −ej (see Fig. 2.3). Surfaces Sj are linked to the base surface S oriented
by unit normal n according to the relation:

Sj = Sn · ej = Snj (2.11)

Applying the dynamic resultant theorem (2.6) to this infinitesimally small tetrahe-
dron gives:

hS

3
O(ρs (1 − n) γ s + ρf nγ f − ρf) � T(n)S +

∑
i=1,2,3

T(−ej )Sj (2.12)

where h is the height of the tetrahedron, so that hS/3 is its volume, and where O(G)
scales as the order of magnitude of quantity G. Substitution of (2.11) into (2.12), together
with the use of the action–reaction law (2.10), leads to:

h

3
O(ρs (1 − n) γ s + ρf nγ f − ρf) � T(n)−

∑
j=1,2,3

T(ej ) nj (2.13)
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n

T(n)

dS

−e1

−e2

e1

−e3

e3

e2

dS1 = n1 dS

dS2 = n2 dS

dS3 = n3 dS

Figure 2.3: Tetrahedron lemma applied to the momentum balance for the existence of the stress as
a tensor quantity. (from Coussy 2004, reprinted by permission of Pearson Education, Inc.).

Letting h → 0, that is degenerating the tetrahedron to a point, the left hand side of (2.13)
tends to zero, yielding:

T(n = njej ) =
∑

j=1,2,3

T(ej ) nj (2.14)

This is known as the tetrahedron lemma,1 here applied to the momentum balance (2.6).
Equation (2.14) defines a linear operator relating the vector T(x, t, n) to n. This operator
is known as the Cauchy (or Euler) stress tensor σ = σ (x,t) with components σij , while
vector T(x, t, n) is called the stress vector:

T(x, t, n = njej ) = σ · n = σijnj ei (2.15)

The definition (2.15) of stress σ as a tensorial quantity is the direct consequence of the
hypothesis of local contact forces, that is T = T(x, t, n). Figures 2.4a and 2.4b illustrate

1For the purposes of completeness, the tetrahedron lemma states that if a relation of the form∫
�t

h(x, t) d�t +
∫
∂�t

f (x, t,n) da = 0

holds for any volume �t , then f can be written as a linear function of the ni components of normal n:

f (x, t,n) = fi(x, t) ni

For instance, if f denotes the relative flow Jf of fluid mass with respect to the skeleton motion, the tetrahedron
lemma applied to the fluid mass balance requires Jf to have the form of a vector flux, that is Jf = w · n da,
as heuristically stated in (1.60).
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sij ei
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Figure 2.4: Physical significance of the Cauchy stress tensor σ relative to the stress vector T. (from
Coussy 2004, reprinted by permission of Pearson Education, Inc.).

the physical significance of the Cauchy stress tensor σ relative to the stress vector: σij (i =
1, 2, 3) are the components in the orthonormal basis ei (i = 1, 2, 3) of the surface force
density T(x, t,n = ej ) = σijei acting per unit of surface area on the material surface
oriented by unit normal n = ej .

2.3 Equation of Motion

2.3.1 The Local Dynamic Resultant Theorem

Use of (2.15) in the global dynamic resultant theorem (2.6) gives:∫
�t

(ρf − ρs (1 − n) γ s − ρf nγ f )d�t +
∫
∂�t

σ · n da = 0 (2.16)

Applying the divergence theorem to the surface integral of (2.16), namely:∫
∂�t

σ · n da =
∫
�t

∇x · σ d�t ;
∫
∂�t

σij nj da =
∫
�t

∂σij

∂xj
d�t (2.17)

we can rewrite the dynamic resultant theorem in the form:∫
�t

[∇x · σ + ρf − ρs (1 − n) γ s − ρf nγ f ] d�t = 0 (2.18)

The dynamic theorem (2.18) must hold irrespective of any particular choice of domain
�t . It finally leads to the local equation of motion or equilibrium of the elementary
volume d�t :

∇x · σ + ρs (1 − n) (f − γ s)+ ρf n(f − γ f ) = 0 (2.19)
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or in index notation:

∂σij

∂xj
+ ρs (1 − n)

(
fi − γ s

i

)+ ρf n(fi − γ
f
i ) = 0 (2.20)

Equation (2.19) expresses the dynamic resultant theorem applied locally to the matter
which constitutes, at time t , any elementary volume d�t , located at material point x. It
states that the sum of the elementary body forces ρfd�t and of the surface forces Tda

acting on the facets of d�t is equal to the dynamic force
(
ρs (1 − n) γ s + ρf nγ f

)
d�t .

For instance, (2.20) applied for i = 2 states that the sum of all forces acting on the
material volume d�t = dx1dx2dx3 in the e2 direction is zero.

2.3.2 The Dynamic Moment Theorem and the Symmetry
of the Stress Tensor

With the help of (2.15), we can rewrite (2.7) in the form:∫
�t

x × (ρf − ρs (1 − n) γ s − ρf nγ f ) d�t +
∫
∂�t

x × σ · n da = 0 (2.21)

The divergence theorem applied to the last term of (2.21) yields:∫
∂�t

x × σ · n da =
∫
�t

(x × ∇x · σ + 2σ as) d�t (2.22)

where σ as in Cartesian coordinates is the vector defined by:

2σ as = (σ23 − σ32) e1 + (σ13 − σ31) e2 + (σ12 − σ21) e3 (2.23)

Substitution of (2.22) into (2.21) gives:∫
�t

[
x × (ρf − ρs (1 − n) γ s − ρf nγ f +∇x · σ )+ 2	as

]
d�t = 0 (2.24)

Using the local dynamic equation (2.19) in (2.24), the dynamic moment theorem finally
gives: ∫

�t

σ asd�t = 0 (2.25)

Since (2.25) must hold for any volume �t , it follows that σ as = 0 and, from expression
(2.23) of �as , this eventually implies the symmetry of the strain tensor σ :

σ = tσ ; σij = σji (2.26)

The symmetry of the stress tensor results from the absence of external moment couples,
whether volume or surface related. Indeed, in the absence of external couples, symmetry
(2.26) means that the sum of the moments of the surface forces Tda acting on the facets of
d�t is zero. For instance, the symmetry σ12 = σ21 expresses the nullity of the dynamic
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moment in the e3 direction. The symmetry of the stress tensor eventually ensures the
realness of its eigenvalues σJ=1,2,3:

σ · uJ = σJ uJ (2.27)

These eigenvalues are called the principal stresses, and the associated eigenvectors uJ are
the principal stress directions. The equation of motion is finally derived by the combination
of local equations (2.19) and (2.26).

2.3.3 Partial Stress Tensor

The stress tensor σ does not account separately for the stress related to the skeleton and
the one related to the fluid. In order to identify their respective contributions it is tempting
to extend the contact force hypothesis (2.3) in the form:

δTs = Ts (x, t, n) da; δTf = Tf (x, t, n) da (2.28)

where δTs and δTf are the surface forces related respectively to the skeleton continuum
and to the fluid continuum. Applying the momentum balance separately to the skeleton
and to the fluid, the same analysis as above leads to the separate existence of a partial
volumetric stress tensor σ s related to the skeleton and a partial volumetric stress tensor
σ f related to the fluid, such as:

Ts (x, t,n) = (1 − n) σ s · n; Tf (x, t,n) = nσ f · n (2.29)

In addition, partial stresses σ s and σ f must be symmetric, that is σ s = tσ s and σ f =
tσ f , and satisfy the local equations of motion:

∇x ·
[
(1 − n) σ s

]+ ρs (1 − n) (f − γ s)+ f→s
int = 0 (2.30a)

∇x · (nσ f )+ ρf n(f − γ f )+ f→f

int = 0 (2.30b)

where the volume force f→π
int accounts for the macroscopic interaction force exerted by

the other continuum. By virtue of the action–reaction law, each continuum exerts on the
other continuum the opposite interaction force, that is:

f→s
int + f→f

int = 0 (2.31)

so that the sum of (2.30) returns (2.19), with:

T = Ts + Tf ; σ = (1 − n) σ s + nσ f (2.32)

Invoking the mesoscopic scale, σ s and σ f can heuristically be identified with the
intrinsic averaged stress within the matrix and within the fluid. In a first approach the
intrinsic averaged stress within the fluid can be addressed through a spherical tensor:

σ f = −p1 (2.33)
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so that the stress partition (2.32) specializes according to:

σ = (1 − n) σ s − np1 (2.34)

Accordingly, (2.30b) is rewritten in the form:

−∇x (np)+ ρf n(f − γ f )+ f→f
int = 0 (2.35)

The identification of σ s and σ f as the intrinsic averaged stress cannot be proved using
only the macroscopic approach. It requires a micro–macro approach, which is left to
the advanced analysis section of this chapter (see §2.5.1). Assumption (2.33) involves
the fluid constitutive equation and disregards any shear contribution to the partial stress
tensor related to the fluid. The role of the shear stress due to the fluid viscosity will be
clarified in the next chapter (see §3.3.1).

2.4 Kinetic Energy Theorem

2.4.1 Strain Work Rates

The strain work rate associated with a velocity field V is the sum of the work rates
developed in this field, both by body and surface forces and by inertia forces, the latter
being the opposite of the dynamic forces. Indeed, owing to the dynamic theorem (2.6) this
sum is zero for a velocity field related to any rigid body motion of the material domain,
which assigns the same velocities to the skeleton and to the fluid. Accordingly, let V
be any velocity field, but let it be the same for the skeleton and the fluid. By the above
definition, the strain work rate Pdef (V) is:

Pdef (V) =
∫
�t

ρf · V d�t +
∫
∂�t

T · V da

−
∫
�t

(
ρs (1 − n) γ s + ρf nγ f

)
· V d�t (2.36)

The divergence theorem and the symmetry of the stress tensor σ yield the identity:∫
∂�t

n·σ · V da =
∫
�t

(σ : d + V· (∇x · σ )) d�t (2.37)

In (2.37) d is the strain rate associated with V (see §1.3.2):

d = 1

2

(∇xV+t∇xV
) ; dij = 1

2

(
∂Vi

∂xj
+ ∂Vj

∂xi

)
(2.38)

whereas σ : d stands for:
σ : d = σijdij (2.39)
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so that identity (2.37) can be rewritten in the form:∫
∂�t

Viσijnj da =
∫
�t

(
σijdij + Vi

∂σij

∂xj

)
d�t (2.40)

Using T =σ · n, together with identity (2.37), and local momentum balance equa-
tion (2.19), the strain work rate Pdef (V) (2.36) is finally expressed in the form:

Pdef (V) =
∫
�t

σ : d d�t =
∫
�t

σij dij d�t (2.41)

Choosing for V the actual velocity Vπ of particle π , (2.41) gives:

Pdef
(
Vπ
) = ∫

�t

σ : dπ d�t =
∫
�t

σij d
π
ij d�t (2.42)

Since the skeleton particles and the fluid particles have distinct velocity fields, the strain
work rate, as defined in (2.42) from a unique velocity field, cannot account for the strain
work rate in the actual motion of the porous medium. Addressing the skeleton motion
and the fluid motion, separately as we did for the stress in §2.3.3, the definition (2.36)
can be expanded in the form:

Pdef

(
Vs,Vf

)
=
∫
�t

(ρs (1 − n) f · Vs + ρf nf · Vf )d�t

+
∫
∂�t

(Ts · Vs + Tf · Vf )da

−
∫
�t

(ρs (1 − n) γ s .Vs + ρf nγ f .Vf )d�t (2.43)

Using the separate local momentum balance equations (2.30), we now derive:

Pdef(Vs ,Vf l) =
∫
�t

(1 − n) σ s : dsd�t +
∫
�t

nσ f : df d�t

+
∫
�t

f→f
int · (Vs − Vf )d�t (2.44)

The total strain work rate Pdef
(
Vs,Vf

)
accounts not only for the strain work rate of

the skeleton and the fluid continua considered separately (i.e. the two first terms on the
right hand side of (2.44)), but also for the strain work rate associated with the internal
interaction force and their relative velocity which acts as a relative strain (i.e. the last term
on the right hand side of (2.44)). In view of the forthcoming developments it is, however,
more suitable to express the total strain work rate by favouring the skeleton motion and
get rid of the unknown interaction force f→f

int to the benefit of the fluid pressure p. Use
of (2.32)–(2.35) in (2.44) provides the expression:

Pdef(Vs,Vf ) =
∫
�t

(
σ : ds − ∇x

(
p

ρf
w
)
+
(

f − γ f
)
· w
)
d�t (2.45)

where w is the relative flow vector of fluid mass (see (1.60)).
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2.4.2 Piola–Kirchhoff Stress Tensor

The Eulerian expression of strain work rates derived in the previous section does not
refer to any initial configuration. However, as soon as the skeleton is involved, it is more
convenient to relate the quantities to an initial configuration; that is, to adopt a Lagrangian
description. Concerning the stress, this is achieved by referring the strain work rate to the
initial volume and so introducing the total Piola–Kirchhoff stress tensor π according to:

σ : dsd�t = π :
d�

dt
d�0 (2.46)

Using transport formulae (1.11) and (1.56), the transport formula linking the Piola–
Kirchhoff stress tensor π to the Cauchy stress tensor is:

π = J F−1 · σ · tF−1; πij = J
∂Xi

∂xk
σkl

∂Xj

∂xl
(2.47)

In the limit of infinitesimal transformations J � 1 and F � 1 and the Piola–Kirchhoff
stress tensor reduces to the Cauchy stress tensor, namely π � σ .

Using (2.47) and surface transport formula (1.13) we derive:

F · π ·N dA = σ · n da (2.48)

so that (1.16) applies, resulting in:

∇X · (F · π) d�0 = ∇x · σd�t (2.49)

Using (2.49), together with Lagrangian continuity equations (1.63) and (1.69), the local
equation of motion (2.19) is transported from the current configuration to the initial
configuration according to:

∇X · (F · π)+m0
s

(
f − γ s

)+mf (f − γ f ) = 0 (2.50)

or in index notation:

∂

∂Xj

(
∂xi

∂Xk

πkj

)
+m0

s

(
fi − γ s

i

)+mf

(
fi − γ

f
i

) = 0 (2.51)

2.4.3 Kinetic Energy Theorem

Let Kπ be the kinetic energy associated with particles π = s and f contained in �t :

Ks = 1

2

∫
�t

ρs (1 − n)
(
Vs
)2

d�t ; Kf = 1

2

∫
�t

ρf n(Vf )2d�t (2.52)

Use of (1.44) and (1.58) leads to the relation:

dsKs

dt
+ dfKf

dt
=
∫
�t

(ρs (1 − n) γ s · Vs + ρf nγ f · Vf )d�t (2.53)
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Accordingly (2.43) can be rewritten in the form:

Pf,T(Vs,Vf ) = Pdef(Vs,Vf )+ dsKs

dt
+ dfKf

dt
(2.54)

where Pf,T(Vs,Vf ) stands for the work rate of the external body and surface forces:

Pf,T(Vs,Vf ) =
∫
�t

(ρs (1 − n) f · Vs + ρf nf · Vf )d�t

+
∫
∂�t

(Ts · Vs + Tf · Vf )da (2.55)

Equation (2.54) is known as the kinetic energy theorem. It states that the work rate
supplied by the external forces to any material domain �t is equal to the sum of the total
strain work rate and the particle derivative of the kinetic energy related to both continua
contained in �t . The strain work rate Pdef(Vs,Vf ) is not a particle derivative and so
the kinetic energy theorem cannot be interpreted as a conservation law. This theorem
only expresses a balance of all the mechanical energies involved, without specifying the
physical transformations which may affect them. The study of these transformations is
the main subject of the next chapter, devoted to the thermodynamics of porous continua.

2.5 Advanced Analysis

2.5.1 The Stress Partition Theorem

In §2.3.3 the stress partition (2.32) has been derived by extending the hypothesis of surface
contact forces in a separate way to both the skeleton continuum and the fluid continuum
(see (2.28)). The partition of stress can receive better support by using the procedure of
micro–macro averaging.2

To this end we first introduce the ‘sliding’ average operator. In the current configuration
let d�0

t = ω0 be an elementary representative volume centred at the origin of coordinates
x = 0. Furthermore let f (z) be a weighting function having as argument the position
vector z of points lying in ω0. We require f (z) to admit continuous derivatives and
to satisfy:

f (z) = 0 for z ∈ ∂ω0; 1

ω0

∫
ω0

f (z) dω0 = 1 (2.56)

where ∂ω0 stands for the border of ω0. In practice f (z) can be chosen arbitrarily close
to the characteristic function fω0 (z) of ω0. The characteristic function fv (z) of a volume
v is defined by:

fv (z) = 1 for z ∈ v; fv (z) = 0 for z /∈ v (2.57)

2For a general presentation of averaging techniques see Bear J., Bachmat Y. (1990), Introduction to Modeling
of Transport in Porous Media, Kluwer, Amsterdam.
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Any elementary representative volume d�t = ω centred at x can be obtained by the
translation of volume ω0 along vector x. The ‘sliding’ average 〈G〉 (x) related to volume
ω centred at point x is defined by:

〈G〉 (x) = 1

ω

∫
ω

G (z) f (z − x) dω (2.58)

For instance, letting ρ�, with � = S and F , be the macroscopic or apparent skeleton and
fluid mass densities, we write:

ρS = ρs (1 − n) = 〈fωs (z) ρs (z)
〉 ; ρF = ρf n = 〈fωf

(z) ρf (z)
〉

(2.59)

In (2.59) ωπ stands for the volume physically occupied by the matrix within ω, π = s, or
by the fluid, π = f, so that ω = ωs ∪ ωf , while ρπ (z) is the actual mass density within
ωπ . Analogously, we define a macroscopic partial stress σ� related to the skeleton particle,
� = S, and to the fluid particle, � = F, and also an intrinsic partial stress σπ related to
the solid matrix, π = s, and to the fluid, π = f. We write:

σ S = (1 − n) σ s = 〈fωs (z) σ s (z)
〉 ; σF = nσ f =

〈
fωf

(z) σ f (z)
〉

(2.60)

where σ s (z) and σ f (z) are the actual matrix and fluid stress fields within ω. The stress
field σπ (z) within volume ωπ must satisfy the equilibrium equation:

∇z · σπ (z)+ ρπ (z) f = 0;
∂σπ

ij (z)

∂zj
+ ρπ (z) fi = 0 (2.61)

where, for the sake of simplicity, we have not considered inertia effects. In addition,
on the matrix–fluid interface ∂ωs,f = ∂ωs ∩ ∂ωf the stress vector, by virtue of the
action–reaction law, is subjected to the continuity condition:

σ s (z) · ns + σ f (z) · nf = 0; ns + nf = 0 (2.62)

where nπ stands for the unit normal to ∂ωs,f outwardly oriented relative to ωπ .
With the aim of deriving the macroscopic equilibrium equation from the microscopic

one (2.61), we first remark that definitions (2.58) and (2.60) lead to:

∂σ�
ij

∂xj
(x) = − 1

ω

∫
ω

fωπ (z) σπ
ij (z)

∂f

∂zj
(z − x) dω (2.63)

Integration by parts of the latter gives:

∂σ�
ij

∂xj
(x) = 1

ω

∫
ωπ

[
∂σπ

ij (z)

∂zj
f (z − x)− ∂

∂zj

(
σπ
ij (z) f (z − x)

)]
dω (2.64)
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Since f is zero on the border ∂ω of ω and ∂ωπ = ∂ωs,f ∪ (∂ωπ ∩ ∂ω), the divergence
theorem applied to the last term allows us to rearrange (2.64) in the form:

∂σ�
ij

∂xj
(x) = 1

ω

∫
ω

fωπ (z)
∂σπ

ij (z)

∂zj
f (z − x) dω

− 1

ω

∫
∂ωs,f

σπ
ij (z) n

π
j f (z − x) daω (2.65)

that is:

∂σ�
ij

∂xj
(x) =

〈
fωπ (z)

∂σπ
ij (z)

∂zj

〉
− 1

ω

∫
∂ωs,f

σπ
ij (z) n

π
j f (z − x) daω (2.66)

Applying the sliding average operator 〈 〉 to (2.61) and using (2.59) and (2.66), we
now get:

∇x · σ� + ρ�f + 1

ω

∫
∂ωs,f

σπ (z) · nπf (z − x) daω = 0 (2.67)

Equation (2.67) finally allows us to retrieve the momentum equation (2.30) relative to the
π-continuum whereas the interaction force f→π

int is now identified in the form:

f→π
int = 1

ω

∫
∂ωs,f

σπ (z) · nπdaω (2.68)

where we selected the sliding average operator associated with the weighting function f =
fω0 (see (2.57)). In addition, as required by (2.62), the continuity required for the microscopic
stress vector σπ (z) · nπ , together with (2.68), allows us to recover the action–reaction law
in its macroscopic form (2.31). Taking into account the action–reaction law and summing
the equations obtained by successively letting � = S and F in (2.67), the macroscopic
momentum equation (2.19) is recovered, provided that the total stress σ is identified as the
sum of macroscopic partial stresses σ S = (1 − n)σ s and σF = nσ f resulting in the stress
partition theorem (2.32).

2.5.2 Momentum Balance and the Double Porosity Network

The approach to the momentum balance developed throughout this chapter extends to the
case of the double porosity network examined in §1.5.3. Using (1.82), the variation of
the linear momentum can now be extended in the form:

ds

dt

∫
�t

ρs (1 − n)Vsd�t +
∑
α=1,2

dfα

dt

∫
�t

ρfαnαVfαd�t

=
∫
�t

ρs (1 − n) γ s +
∑
α=1,2

ρfαnαγ fα

 d�t +
∫
�t

◦
r1→2(Vf2 − Vf1)d�t

(2.69)
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where the term
◦
r1→2
(
Vf2 − Vf1

)
accounts for the variation in linear momentum related

to the mass rate exchanged between the two porous networks. Accordingly, the local
equation of motion now reads:

∇x · σ + ρs (1 − n) γ s +
∑
α=1,2

ρfαnα(f − γ fα )− ◦
r1→2(Vf2 − Vf1) = 0 (2.70)

Favouring the motion of the skeleton by introducing the relative flow vector of fluid mass,
w(α) = ρfαnα

(
Vfα − Vs

)
, and the fluid pressure pα related to network α, we express the

work rate of the external body and surface forces in the form:

Pf,T(Vs,Vfα ) =
∫
�t

ρf · Vs + f·
∑
α=1,2

w(α)

 d�t

+
∫
∂�t

(
T · Vs − pα

ρfα
w(α) · n

)
da (2.71)

where ρ stands for the total apparent mass density, namely ρ = ρs (1 − n)+∑α=1,2 ρfαnα .
It is instructive to remark that the last integrand of the right hand side integral in (2.71),
when multiplied by dt , that is −(pα/ρfα )w

(α) · n dadt = −pαnα
(
Vf α − Vs

) · n dadt ,
represents the work supplied by the pressure pα in the extraction of the fluid volume
nα
(
Vf α − Vs

) · n dadt from the domain occupied by the skeleton. In addition, taking
into account (1.82) and still favouring the motion of the skeleton, the particle derivative of
the kinetic energy reads:

dsKs

dt
+
∑
α=1,2

dfαKfα

dt
=
∫
�t

ρs (1 − n) γ s +
∑
α=1,2

ρfαnαγ fα

 · Vs d�t

+
∫
�t

∑
α=1,2

γ fα · w(α)d�t

+
∫
�t

1

2
◦
r1→2

[
(Vf2)2 − (Vf1)2

]
d�t (2.72)

Multiplying (2.70) by Vs and integrating over the volume �t while using (2.72), we
finally extend the kinetic energy theorem in the form:

Pf,T(Vs,Vfα ) = Pdef(Vs ,Vfα )+ dsKs

dt
+
∑
α=1,2

dfαKfα

dt

+
∫
�t

1

2
◦
r1→2
[
(Vf2 − Vs)2 − (Vf1 − Vs)2]d�t (2.73)
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where Pdef
(
Vs ,Vfα

)
can be expanded in the form:

Pdef (Vs,Vfα ) =
∫
�t

σ : dsd�t

−
∫
�t

∑
α=1,2

[
∇x

(
pα

ρα
w(α)

)
+
(

f − γ fα
)
· w(α)

]
d�t (2.74)

Expression (2.74) extends expression (2.45) to the case of the double porous network.
The approach here used to derive the kinetic energy theorem constitutes an alternative
to the approach we used in §2.4. Indeed, to derive (2.73) and (2.74) we did not involve
interaction forces such as f→π

int . In fact, with regard to the macroscopic approach, the
kinetic energy theorem is based only on the expression retained for the work rate of the
surface forces, that is the surface integral on the right hand side of (2.71).

2.5.3 The Tortuosity Effect

Expression (2.52) of the kinetic energy does not account for the ‘tortuosity’ effect.3 This
effect cannot be captured by the macroscopic approach. Indeed, the actual fluid kinetic
energy reads:

Kf = 1

2

∫
�t

〈
fωf

(z) ρf (z) (vf (z))2
〉
d�t (2.75)

where we adopt the notation of §2.5.1, vf (z) being the velocity field of the fluid particles
within the elementary volume ωf . When identifying the macroscopic fluid velocity Vf

as the barycentric average of vf (z), that is:

ρf nVf =
〈
fωf

(z) ρf (z) vf (z)
〉

(2.76)

some calculations allow us to rewrite (2.75) in the form:

Kf = 1

2

∫
�t

ρf n(Vf )2d�t

+ 1

2

∫
�t

〈
fωf

(z) ρf (z)
(
(vf (z)− Vs)2 − (Vf − Vs)2)〉 d�t (2.77)

In order to evaluate the second term we firstly note that:〈
fωf

(z) ρf (z) (vf (z)− Vs)2
〉
≥ ρf n(Vf − Vs)2 (2.78)

3The tortuosity effect, related to the dynamics of porous media, was introduced in Biot M.A. (1956), ‘Theory
of propagation of elastic waves in a fluid-saturated porous solid’, Journal of the Acoustic Society of America, 28,
168–178. See also Biot M.A. (1962), ‘Mechanics of deformation and acoustic propagation in porous media’,
Journal of Applied Physics, 27, 459–467.
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Strict tortuosity effect

Viscosity effects inducingapparent tortuosity(a) (b)F i g u r e 2 2 5 : T o r t u o s i t y e f f e c t . T h e a b o v e i n e q u a l i t y h o l d s f o r t w o r e a s o n s . T h e fi r s t r e a s o n i s t h a t t h e d i r e c t i o n o f
t h e m i c r o s c o p i c r e l a t i v e v e l o c i t y

v f (

z )

�

V s doesnotremainconstantwithinvolume
� f . I t i s t h e s t r i c t t o r t u o s i t y e f f e c t a s s k e t c h e d i n F i g . 2 2 5 a . T h e s e c o n d r e a s o n i s t h a t

t h e m o d u l u s o f v f (

z )

�

V s doesnotremainconstanttoo.Owingtothefluidviscosity,
t h e m o d u l u s o f

v f (

z )

�

V s iszeroontheinternalwallsoftheskeletondelimitingthe
p o r o u s n e t w o r k t h r o u g h w h i c h t h e fl u i d fl o w s . I t r e a c h e s i t s m a x i m a l v a l u e f a r f r o m t h i s
m a t r i x – fl u i d i n t e r f a c e ( F i g . 2 2 5 b ) . I n t h e i s o t r o p i c c a s e t h e s e e f f e c t s a r e u s u a l l y c a p t u r e d
t h r o u g h a d y n a m i c t o r t u o s i t y f a c t o r a,dependingonboththecurrentgeometryofthe

p o r o u s n e t w o r k a n d t h e fl u i d v i s c o s i t y , s u c h a s : 4a

=

�
f � f (

z )

� f (

z )
� v f (

z )

�

V s � 2 �

ρ f n

∂ V f �

V s δ 2 ω 1 ( 2 2 7 9 )

S u b s t i t u t i n g ( 2 2 7 9 ) i n t o ( 2 2 7 7 ) , t h e e x p r e s s i o n o f t h e k i n e t i c e n e r g y t a k i n g a c c o u n t i n t o

t h e t o r t u o s i t y e f f e c t r e a d s : Kf=
1

2

� � t � f n
� (

V f ) 2 +

(

a

� 1 ) ( V f �

V s ) 2 �
d � t ( 2 2 8 0 )

A c c o r d i n g l y w e n o w o b t a i n :

d f K f

d t

=

φ � t ρ f n ∂ � f · V f +

(

V f �

V s )

· a

δ d � t ( 2 2 8 1 )

4 T h e t o r t u o s i t y f a c t o r aadmitsthelimita

� 1 a s n

� 1,thatisforafluid,andthelimita

� � a s n

� 0,thatisforasolid.Inthelattercase,asn

� 0therelativevelocity

V f � V s t e n d s t o z e r o w i t h r e g a r dt o i m p o r t a n t v i s c o s i t y e f f e c t s . F o r a m a t r i x f o r m e d o f s p h e r i c a l s o l i d g r a i n s , t h e e x p r e s s i o n a

= 1

2 
1

+ 1

n β
iss o m e t i m e s p r o p o s e d . A l t h o u g h � t t i n g t h e l i m i t i n g v a l u e s , t h i s e x p r e s s i o n d o e s n o t i n v o l v e t h e � u i d v i s c o s i t y a n d c a n o n l y a c c o u n t f o r t h e s t r i c t � t o r t u o s i t y � e f f e c t ( F i g . 2 2 5 a ) .
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where a is the dynamic tortuosity vector. When assuming that the dynamic tortuosity
factor a is constant with respect to both space and time, a can be expressed as:

a = (a − 1)
(
γ f − γ s −∇xVs · (Vf − Vs)

)
(2.82)

The tortuosity adds a coupling inertia force −ρf n a between the two superimposed con-
tinua. As an interaction force, eventually included in f→f

int , this coupling force does not
figure in the overall equation of motion (2.19) and is not associated with any kind of
strain. Indeed the kinetic energy theorem (2.54) remains formally unchanged provided
that (2.44) and (2.45) are replaced by:

Pdef

(
Vs,Vf

)
=
∫
�t

(1 − n) σ s : dsd�t +
∫
�t

nσ f : df d�t

+
∫
�t

(
f→f
int − a

) · (Vs − Vf )d�t (2.83)

and:

Pdef(Vs,Vf ) =
∫
�t

(
σ : ds − ∇x

(
p

ρf
w
))

d�t

+
∫
�t

(f − γ f − a) · wd�t (2.84)



Chapter 3

Thermodynamics

Thermodynamics analyses the transformations affecting all the forms of energy involved
in the evolution of a system. Thermodynamics constitutes the natural extension of ther-
mostatics. Thermostatics is restricted to reversible and infinitely slow evolutions between
successive states of equilibrium of homogeneous systems. Based upon the postulate of the
local state, thermodynamics extends thermostatics to any system, discrete or continuous,
and to any evolution, reversible or irreversible, irrespective of its time scale. Thermody-
namics is based upon two laws. The first law expresses the conservation of energy when
considering all its possible forms. The second law is of a quite different kind. It expresses
that the quality of energy can only deteriorate in what concerns its transformability into
efficient mechanical work. Applied to a particular system, these laws involve the vari-
ables characterizing its state of internal energy and eventually provide the appropriate
framework to formulate the constitutive equations governing its evolution. This chapter
applies the laws of thermodynamics to a porous continuum with the aim of capturing the
various possible couplings in the formulation of its constitutive equations.1

3.1 Thermostatics of Homogeneous Fluids

We start by recalling the two fundamental laws of thermostatics and their application to
homogeneous fluids.

3.1.1 Energy Conservation and Entropy Balance
The first law expresses the conservation of energy when considering all its possible forms.
Restricting consideration here to mechanical work and to heat as forms of energy, the
first law of thermostatics can be stated as follows.

1A founding paper on the energy approach to poromechanics is Biot M.A. (1972), ‘Theory of finite defor-
mation of porous solids’, Indiana University Mathematical Journal, 21, 579–620. See also Biot M.A. (1977),
‘Variational Lagrangian-thermodynamics of non isothermal finite strain. Mechanics of porous solid and ther-
momolecular diffusion’, International Journal of Solids and Structures, 13, 579–597.

Poromechanics O. Coussy
c© 2004 John Wiley & Sons, Ltd ISBN 0-470-84920-7
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First law. In any infinitely slow evolution from one homogeneous equilibrium state of
a material system to another, the variation of the internal energy of the latter is the sum
of the mechanical work performed by the external forces on the system and the external
heat supply.

The first law applied to a fluid between two infinitely close homogeneous equilibrium
states can be expressed in the form:

def = −p d

(
1

ρf

)
+ δQ (3.1)

In (3.1) ef is the fluid-specific (i.e. per mass unit) internal energy; −p d(1/ρf ) repre-
sents the infinitesimal mechanical work supplied to the fluid by the pressure p in the
infinitesimal volume change d(1/ρf ) of its specific material volume 1/ρf , while δQ is
the infinitesimal heat supply.

The second law of thermostatics, takes that the quality of thermal energy can only
deteriorate with regard to its ulterior transformation into efficient mechanical work. In
its explicit formulation the second law introduces two new conjugate quantities, the
entropy and the absolute temperature. An amount of heat supplied at high tempera-
ture has a ‘mechanical quality’ superior to the same amount of heat supplied at a
lower temperature. Indeed it will be easier eventually to extract efficient mechanical
work from the former than from the latter by finding a cold source. Hence, if the
entropy somehow has to be a measure of the deterioration of the ‘mechanical quality’
of heat given the same heat supply, the higher the temperature, the lower the related
supply of entropy. More formally the second law of thermostatics can be stated as
follows.

Second law. There exists an additive function called entropy such that the variation of
entropy of a material system in any infinitely slow evolution from one of its homogeneous
equilibrium states to another, is equal to the external supply of entropy. It exists on a
universal scale of positive absolute temperature so that the external infinitesimal supply
of entropy is defined as the external infinitesimal supply of heat divided by the absolute
temperature.

Excluding irreversible transformations, the second law of thermostatics applied to the
fluid-specific material volume 1/ρf between two infinitely close homogeneous equilib-
rium states can be expressed in the form:

dsf = δQ

T
(3.2)

where sf is the fluid-specific entropy and T the absolute temperature.2

2Such as defined here, temperature T is actually only relative. Indeed T relates to the association of two
specific systems, the material volume under consideration and the exterior. The definition of the absolute
temperature requires the addition of the so-called zero law stating that two systems in thermal equilibrium
with the same third system (no heat exchange between the systems) are themselves in thermal equilibrium. A
temperature scale T being then defined, any other scale of temperature � now becomes linked to the former
by a relation of the form � = ϑ (T ) irrespective of the systems considered.



THERMOSTATICS OF HOMOGENEOUS FLUIDS 39

3.1.2 Fluid State Equations. Gibbs Potential

Eliminating the infinitesimal heat supply, (3.1) and (3.2) combine to give the following
energy balance:

def = −p d

(
1

ρf

)
+ T dsf (3.3)

Equation (3.3) must hold for any infinitely slow evolution of the fluid from one of its
homogeneous equilibrium states to another. As a consequence 1/ρf and sf constitute a
complete set of independent thermodynamical state variables such as:

ef = ef

(
1

ρf
, sf

)
: p = − ∂ef

∂
(

1
ρf

) ; T = ∂ef

∂sf
(3.4)

Equations (3.4) are the fluid state equations where the internal energy ef acts as a potential
which links the set of thermodynamical state variables (1/ρf , T ) to the conjugate set
(−p, sf ).

The state equations can be partially inverted with respect to the couple of conjugate
variables (1/ρf ,−p) by introducing the fluid-specific enthalpy hf :

hf = ef + p

ρf
(3.5)

so that the state equations take the alternative form:

hf = hf (p, sf ) :
1

ρf
= ∂hf

∂p
; T = ∂hf

∂sf
(3.6)

Equations (3.4) can also be partially inverted with respect to the couple of conjugate
variables (sf , T ). Introducing the fluid-specific Helmholtz free energy ψf :

ψf = ef − T sf (3.7)

we get:

ψf = ψf

(
1

ρf
, T

)
: p = − ∂ψf

∂
(

1
ρf

) ; sf = −∂ψf

∂T
(3.8)

Equation (3.4) can finally be totally inverted. Introducing the fluid-specific free enthalpy
gf :

gf = ψf + p

ρf
= hf − T sf (3.9)

we obtain:

gf = gf (p, T ) :
1

ρf
= ∂gf

∂p
; sf = −∂gf

∂T
(3.10)
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The specific free enthalpy gf is also called the Gibbs potential. The work δW required
to make the infinitesimal fluid mass δmf enter a given fluid volume is the work needed
to make room for the new volume δmf /ρf , which is:

δW = p

ρf
δmf (3.11)

Consequently, the free energy supplied to the fluid volume considered as an open thermo-
dynamic system is not ψf δmf , but gf δmf = (ψf + p/ρf )δmf , indicating the actual
meaning of the Gibbs potential.

3.2 Thermodynamics of Porous Continua

3.2.1 Postulate of Local State

The extension of thermostatics to thermodynamics of continua is based upon the postulate
of local state with regard to both time and space.

With regard to time, the postulate of local state stipulates that the current state of
internal energy of a homogeneous system in any evolution is irrespective of the rate of
evolution and can be characterized by the same state variables as the ones characterizing
equilibrium states. For instance, the postulate of local state applied to the fluid of the
previous section eventually comes down to considering that Eq. (3.3) holds irrespective
of the evolution rate, so that it can be divided by the infinitesimal time dt and consequently
can be written in terms of time rates.

With regard to space, the postulate of local state addresses the thermodynamics of the
continuum by considering that the thermodynamics of any material volume �t results
from the thermodynamics of the juxtaposed material elementary volumes d�t forming
�t and exchanging heat and mechanical work between them. As a consequence the laws
of thermodynamics can be applied in an integral form to additive quantities such as the
energy and the entropy.

The postulate of local state is extended to a porous continuum by considering that the
thermodynamics of such a continuum results from those of the superimposed interacting
continua forming it, that is the skeleton continuum and the fluid continuum.

3.2.2 The First Law

Energy conservation

Based on the postulate of local state, the first law of thermodynamics, when applied to
any material volume �t of a porous continuum, expresses the energy conservation in the
form:

ds

dt

∫
�t

ρs (1 − n)

(
es + 1

2
(Vs)2
)
d�t + df

dt

∫
�t

ρf n

(
ef + 1

2
(Vf )2
)
d�t

= Pf,T(Vs,Vf )+
◦
Q (3.12)
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In (3.12) es stands for the specific internal energy of the matrix (or equivalently the
intrinsic specific energy of the skeleton). Accordingly the left hand term accounts for the
time rate of the energy attached to the whole matter currently contained within the volume
�t , including its kinetic form. This energy time rate is produced by the right hand side
term, which accounts for the total rate of energy externally supplied to the matter currently
contained within the volume �t : Pf,T(Vs,Vf ) accounts for the mechanical work rate of

the external forces (see §2.4.3), while
◦
Q accounts for the rate of heat externally supplied.

As it concerns the thermal term, we write:3

◦
Q =
∫
∂�t

JQ (x,n, t) da (3.13)

where JQ is the surface rate of heat supplied by conduction. This heat supply is due to
contact effects and therefore, as it concerns space, depends only on the position vector x
and on the outward unit normal n to surface da.

The energy equation

Use of the kinetic energy theorem (see §2.4.3) allows us to rewrite (3.12) in the form:

ds

dt

∫
�t

ρs (1 − n) es d�t + df

dt

∫
�t

ρf nef d�t = Pdef (Vs ,Vf )+
◦
Q (3.14)

Use of expression (1.46) or (1.47) for the particle derivative of an integral and of definition
(1.61) for the relative flow vector of fluid mass furnishes:

ds

dt

∫
�t

ρs (1 − n) es d�t + df

dt

∫
�t

ρf nef d�t

=
∫
�t

(
dse

dt
+ e∇x · Vs +∇x · (ef w)

)
d�t (3.15)

where e is the overall density of internal energy per unit of volume d�t , that is:

e = ρs (1 − n) es + ρf nef (3.16)

Expression (2.45) for the strain work rate Pdef (Vs,Vf ), together with equations
(3.13)–(3.15), yields:∫

�t

(
dse

dt
+ e∇x · Vs +∇x · (hf w)− σ : ds − (f − γ f ) · w

)
d�t

=
∫
∂�t

JQ (x, n, t) da (3.17)

3We do not consider here possible volume sources of heat which would add a volume integral term.



42 THERMODYNAMICS

The tetrahedron lemma (see §2.2.2, including the footnote) applied to (3.17) shows the
existence of an outgoing heat flow vector q, such that the surface rate JQ relies linearly
on n and reads:

JQ = −q · n (3.18)

Substitution of (3.18) into (3.17) provides the Euler energy equation:

dse

dt
+ e∇x · Vs = σ : ds − ∇x · (hf w + q)+ (f − γ f ) · w (3.19)

eventually expressing the first law applied to the infinitesimal volume d�t . With the aim
of transporting energy equation (3.19) to the skeleton initial configuration let E and Q be
respectively the overall Lagrangian density of internal energy per unit of initial volume
d�0 and the Lagrangian heat flow vector such that:

E d�0 = e d�t ; Q · N dA= q · n da (3.20)

Use of (1.42), (3.20) and the transport formulae derived in the previous chapters (see
§1.2.1, §1.4 and §2.4.2) finally delivers the Lagrangian energy equation:

dE

dt
= π :

d�

dt
−∇X · (hf M + Q)+ (f − γ f ) · F · M (3.21)

3.2.3 The Second Law

The balance of entropy

Based on the postulate of local state, the second law of thermodynamics expresses the
entropy balance of any material volume �t of a porous continuum in the form:

ds

dt

∫
�t

ρs (1 − n) ss d�t + df

dt

∫
�t

ρf n sf d�t ≥
∫
∂�t

−q · n
T

da (3.22)

where ss stands for the specific entropy of the matrix (or equivalently the intrinsic specific
entropy of the skeleton). As formulated in (3.22) the second law assumes that the fluid and
the matrix included in d�t are in thermal equilibrium, that is at the same temperature T .

Compared with thermostatics, the second law of thermodynamics states that the time
rate of the entropy associated with the matter contained in �t (left hand side of (3.22))
cannot be less than the rate of entropy externally supplied (right hand side of (3.22)).
In contrast to the conservation laws which involve equalities, the second law of ther-
modynamics breaks the time symmetry; the flow of time cannot be reversed since a
time inversion t →−t would change (3.22) into its opposite. Indeed, the ≥ sign in
(3.22), instead of the = sign in (3.2), accounts for the spontaneous production of entropy
associated with the irreversible processes at work.

Starting from (3.22), similar calculations to those which led to (3.21) yield the local
Lagrangian equation of entropy balance:

dS

dt
≥ −∇X ·

(
sf M + Q

T

)
(3.23)
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where S stands for the overall Lagrangian density of entropy per unit of initial volume
d�0:

Sd�0 = (ρs (1 − n) ss + ρf n sf )d�t (3.24)

Identification of dissipation. Thermal equation

Let � denote the overall Lagrangian density of Helmholtz free energy:

� = E − T S (3.25)

Getting rid of E, Q and sf from (3.21), (3.23), (3.25) and using (3.9) and (3.10), we
derive the Clausius–Duhem inequality related to deformable porous continua:

� = �s +�f +�th ≥ 0 (3.26)

with:

�s = π :
d�

dt
− gf (∇X · M)− S

dT

dt
− d�

dt
(3.27a)

�f = [−(∇Xgf )T + (f − γ f ) · F
] · M (3.27b)

�th = −Q
T
· ∇XT (3.27c)

where (∇Xgf )T stands for the gradient of gf taken at temperature T held constant.
According to (3.26) the overall dissipation � (or the spontaneous production of entropy

�/T ) results from three distinct sources of dissipation.
Skeleton dissipation. The first source of dissipation, �s , eventually accounts for the

dissipation related to the sole skeleton. In order to achieve this identification, the use of
mass balance equation (1.67) firstly allows us to rewrite �s in the form:

�s = π :
d�

dt
+ gf

dmf

dt
− S

dT

dt
− d�

dt
(3.28)

where mf is the Lagrangian fluid mass content (see §1.4). Owing to the additive character
of energy and entropy, the skeleton Lagrangian densities �s and Ss of free energy and
entropy per unit of initial volume d�0 are given by:

�s = � −mfψf ; Ss = S −mf sf (3.29)

The fluid state equations recalled in §3.1.2, when combined with the above definitions,
together with relation (1.64), that is mf = ρf φ, allow us to express �s in the form:

�s = π :
d�

dt
+ p

dφ

dt
− Ss

dT

dt
− d�s

dt
(3.30)

Dissipation �s such as given by (3.30) matches the standard expression of the dissipation
for a solid, here the skeleton. Indeed, the strain work rate for an ordinary solid would
reduce to the term π : d�/dt . In the case of a porous solid, the strain work rate related to
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the skeleton is obtained by adding pdφ/dt to π : d�/dt in order to account for the action
of the pore pressure on the skeleton through the internal walls of the porous network.

Fluid dissipation. The second source of dissipation, �f , involves a gradient related to
the fluid,

(∇Xgf
)
T

, and consequently the state of energy of the fluid particles contiguous to
d�t . Hence, as debated more lengthily in §3.3.1, �f accounts for the viscous dissipation
due to the relative motion of the fluid with respect to the skeleton. It can be expressed
more conveniently in the Eulerian form:

ϕf = (−∇xp + ρf (f − γ f )) · V (3.31)

where we let ϕf d�t = �f d�0 and where we used fluid state equations (3.10), while V
is the filtration vector defined by (1.61).

Thermal dissipation. The third and last source of dissipation, �th, involves the temper-
ature gradient ∇XT and therefore the thermal state of the elementary systems contiguous
to d�t . It is related to the dissipation due to heat conduction and can be written more
naturally in the Eulerian form:

ϕth = − q
T
· ∇xT (3.32)

where we let ϕth d�t = �th d�0.
Owing to the very distinct nature of the dissipations so identified, the decoupling

hypothesis consists of substituting the unique inequality (3.26) by the three separate
inequalities:

�s = π :
d�

dt
+ p

dφ

dt
− Ss

dT

dt
− d�s

dt
≥ 0 (3.33)

ϕf = (−∇xp + ρf (f − γ f )) · V ≥ 0 (3.34)

ϕth = − q
T
· ∇xT ≥ 0 (3.35)

Inequality (3.33) states that only the part d�s of the infinitesimal strain work supplied
to the skeleton, that is πij d�ij + p dφ minus the corrective thermal term Ss dT , can be
stored by the skeleton in the form of free energy, that is in a form eventually recoverable
into efficient mechanical work. Indeed, owing to possible irreversible sliding of the matter
forming the matrix, the non-stored part of the strain work is spontaneously transformed
into the form of heat. Equation (3.34) states the same for the fluid. In addition, (3.35)
stipulates that heat spontaneously flows from high temperatures to low temperatures.
The associated spontaneous increase of entropy, ϕth/T ≥ 0, expresses the harder task of
extracting efficient mechanical work from the heat after its flow (i.e. by finding a cold
source).

Once the spontaneous production of entropy �/T is identified, inequality (3.23) finally
provides the entropy balance in the form of the Lagrangian thermal equation:

T

(
dS

dt
+ ∇X · (sf M)

)
= −∇X · Q +�M (3.36)

where �M = �s +�f stands for the Lagrangian mechanical dissipation density and acts
as a spontaneous heat source term.
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3.3 Conduction Laws

3.3.1 Darcy’s Law

Formulation of the law. Expression (3.34) for dissipation ϕf associated with the viscous
flow of the fluid through the porous continuum can be written in the form:

ϕf = L · V ≥ 0 (3.37)

where:

V = n(Vf − Vs); L =−∇xp + ρf (f − γ f ) (3.38)

Dissipation ϕf is the product of the filtration vector V = n(Vf − Vs) and the force L
producing the filtration. The law governing the fluid conduction or filtration has therefore
to relate V to L. Its simplest form is Darcy’s law, which linearly links the flux V to the
force L. In the isotropic case Darcy’s law reads:4

V = kL : n(Vf − Vs) = k(−∇xp + ρf (f − γ f )) (3.39)

where k is the permeability of the fluid. It has to be positive in order to ensure the
positiveness of the dissipation associated with the fluid flow:

ϕf = n2

k
(Vf − Vs)2 = V2

k
≥ 0 (3.40)

Fluid viscosity and the intrinsic permeability. When the macroscopic law of fluid conduc-
tion results from the microscopic viscous flow of the fluid through the porous network,
Darcy’s law can receive some support from a straightforward dimensional analysis. Force
L already includes the pressure effect through the term −∇xp, as does the dynamic iner-
tia and body forces through the term ρf (f − γ f ). In order to account for the missing
effect of the viscous force resisting the flow, the isotropic fluid conduction law relating
component Vi of V to component Li of L can be formally written:

Vi = f (Li ,ηf , �, n) (3.41)

where ηf is the dynamic fluid (shear) viscosity and � the characteristic length of the porous
network through which the fluid flow occurs. The previous relation will be physically
relevant only if the relation is dimensionally consistent, that is if Vi and f have the
same physical dimension, namely the dimension LT −1 of a velocity in the LMT base

4The more general form of Darcy’s law is:

n
(
Vf − Vs

) = k · (−∇xp + ρf
(
f − γ f − a

))
where k stands for the anisotropic permeability tensor and where a accounts for the tortuosity effect (see
§2.5.3).
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dimension, with L for length, M for mass and T for time. In this base any physical
quantity Q can be expressed through its dimension function [Q] = LαMβT γ , which is a
power function of the fundamental dimensions. For instance, since viscosity ηf linearly
links a (shear) stress to a strain rate, its dimension function is

[
ηf
] = L−1MT −1. The

physical dimension of function f results from the physical dimensions of its arguments,
Li , ηf , � and n. The dimension functions are conveniently summarized in the form of an
exponent matrix of dimensions, in which exponents α, β and γ form the columns:

Vi Li ηf � n

L 1 −2 −1 1 0
M 0 1 1 0 0
T −1 −2 −1 0 0

(3.42)

The number of dimensionally independent quantities among Vi , Li , ηf , � and n is three,
which turns out to be the rank of their exponent matrix of dimensions, that is the maximum
number of linearly independent columns in (3.42). Excluding the porosity n which is
dimensionless, only one dimensionless quantity � based on the independent set Li , ηf
and � remains to be formed from Vi :

� = ηfVi

�2Li

(3.43)

Consequently, dimensional analysis requires the relation linking Vi to Li , ηf , � and n to
be in the form:

� = �(n) (3.44)

resulting in:

Vi = κ

ηf
Li; κ = �2δ (n) (3.45)

and providing isotropic Darcy’s law in the form:

n(Vf − Vs) = κ

ηf
(−∇xp + ρf (f − γ f )) (3.46)

where permeability k is now identified as:

k = κ

ηf
= �2

ηf
δ (n) (3.47)

Expression (3.47) for k lies essentially on the physical dimension of ηf and eventually
on the assumed linear viscous or Newtonian behaviour of the fluid. The material property
κ = �2δ (n) represents the square of a length scaling the geometry of the flow and is
called the intrinsic permeability of the skeleton since it depends only on the geometry
of the porous network irrespective of the fluid. In addition to porosity n, a unique length
� is here supposed to characterize the porous network geometry as far as only the fluid
flow is concerned. This assumption holds only for simple geometries for which various
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Table 3.1: Order of magnitude of intrinsic permeability for dif-
ferent materials (after de Marsily (1986) and Cowin (1998), see
footnote for references).

Material κ [m2(= 1012 Darcy)]

Concrete 10−16 –10−21

Clays 10−16 –10−20

Bone 10−20

Granites, gneiss, compact basalts 10−16 –10−20

Marble 10−19

Sandstones 10−11 –10−17

Limestone 10−12 –10−16

Fine sands, silts and loess 10−12 –10−16

Gravels and sands 10−9 –10−12

expressions of δ (n) have been derived in the literature. An expression often referred to
is Kozeny–Carman’s formula, which relates to a solid matrix formed by the packing of
regular spheres. It reads:

δ (n) = n3

1 − n2
(3.48)

For more complex geometries, or when the filtration process does not result from a viscous
flow (see §3.6.3), an experimental determination of intrinsic permeability κ must be
preferred. Typical values of κ are given in Table 3.1.5 Finally, through the dependence of
ηf upon temperature T , expression (3.47) identifies the possible temperature dependence
of permeability k.

The combination of (2.35) and Darcy’s law (3.39) eventually allows us to identify the
macroscopic interaction force f→f

int exerted by the skeleton on the fluid in the form:

f→f
int = p∇xn− n2

k
(Vf − Vs) (3.49)

The first term, p∇xn, accounts for the pressure effect resulting from the variation of the
section offered to the fluid flow; the second term, −n2

k
(Vf − Vs), accounts for the viscous

resistance opposed by the shear stress to the fluid flow from the drag at the internal walls
of the porous network.6

Deviations from Darcy’s law. Darcy’s law (3.46) assumes laminar flows where, by
opposing turbulent flows, the viscous forces opposing the flow prevail over the forces
related to the fluid acceleration. Neglecting the skeleton velocity, the strength of the fluid

5See de Marsily J. (1986), Quantitative Hydrogeology. Groundwater Hydrology for Engineers, Academic
Press, New York, and Cowin S.C. (1998), ‘Bone fluid poroelasticity’, Poromechanics, A tribute to M.A. Biot,
Proceedings of the Biot Conference on Poromechanics, ed. J.F. Thymus et al., Balkema, Rotterdam. For concrete
see Černy R., Rovnanikova P. (2002), Transport Processes in Concrete, Spon Press, London.

6Substitution of (3.49) into (2.68) for π = f allows us to rewrite (2.67) for � = F in the form:

−∇x · (np)+∇x · τf + ρf nf − n2

k

(
Vf − Vs

) = 0
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acceleration forces is comparable with that of the viscous forces through the Reynolds
number, which we express in the form:

Re = ρfV∞
√

κ

ηf
(3.50)

where V∞ quantifies the strength of the upstream flow. Owing to the low values of the
characteristic length

√
κ of the usual porous materials (see Table 3.1), the Reynolds

number is generally low enough for the usual flows to be laminar.7

Although the intrinsic permeability κ would have to depend only on the current
porous network geometry, the experimental values of κ estimated from gaseous flows
are generally found to be higher than those estimated from liquid flows. This difference is
commonly attributed to the possible sliding of the gas molecules along the internal walls
of the porous network. The sliding occurs when the mean free path λ of a molecule has
the same order of magnitude as the diameter d of the pore. The kinetic theory of ideal
gases gives the expression for λ:

λ = 2ηg
ρg 〈v〉 (3.51)

where the index g refers to the gas and where 〈v〉 is the mean thermal molecular velocity:

〈v〉 =
√

8RT

πMg

(3.52)

where τ f (x) stands for the averaged fluid viscous stress, that is τ f (x) = 〈fωf
(z) τ f (z)

〉
, when adopting the

notations of §2.5.1 and §2.5.3. τf (z) is the microscopic viscous stress, namely:

τf (z) = 2ηf df (z) = ηf

(
∇zvf (z)+ t∇zvf (z)

)
Let Lc be a characteristic length scaling the macroscopic position vector x as far as the macroscopic flow is
concerned. The microscopic fluid velocity has to satisfy the fluid–matrix adherence condition vf (z) = Vs (x)
on the internal walls of the porous network. Consequently, length � ≡ ‖z − x‖ appropriately scales as the
microscopic position vector z as far as the microscopic flow is concerned. The order of magnitude of

∥∥∇x · τ f
∥∥

can eventually be evaluated according to:∥∥∥∇x · τ f
∥∥∥ ≡ nηf

�Lc

∥∥∥Vf − Vs
∥∥∥

Using (3.47) the latter can be compared with the order of magnitude of
∥∥∥ n2

k

(
Vf − Vs

)∥∥∥ according to:

∥∥∥∇x · τ f
∥∥∥ / ∥∥∥∥n2

k

(
Vf − Vs

)∥∥∥∥ ≡ �

nLc

In more general cases �/nLc � 1 and the averaged viscous fluid shear stress τf (x) can be neglected. Accord-
ingly the macroscopic partial stress related to the fluid can be approximated by nσ f ≡ −np1, as we assumed
from the outset (see §2.3.3).

7The order of magnitude for the Reynolds number below which there is no doubt that the flow is mainly
governed by the viscous forces and is therefore laminar is about 100, the possibility of a turbulent flow generally
appearing for an order of magnitude 10 times greater.



CONDUCTION LAWS 49

where R (= 8.314 J/(mol K)) and Mg are respectively the universal constant of ideal
gases and the molar mass of the gas considered. For ideal gases the fluid pressure p is:

p = RT

Mg

ρg (3.53)

so that the mean free path λ can be rewritten in the form:

λ = ηg

p

√
πRT

2Mg

(3.54)

The lower the gas pressure p, the more rarefied the gas and the higher the mean free
path λ as, consequently, the filtration vector. The sliding phenomenon becomes significant
when the value of the Knudsen number Kn = λ/d is close to unity. Provided that the
macroscopic fluid acceleration γ f can be neglected in (3.39), the resulting ‘slip flow’ can
be captured by considering in (3.39) a permeability k of the gas modified according to
the expression:

k = κ

ηg
+ 4

3
l
〈v〉
p

(3.55)

where l is a characteristic length depending only on the geometry of the porous network.
Expression (3.55) is conveniently rewritten according to Klinkenberg’s formula:8

k = κ

ηg

(
1 + �

p

)
(3.56)

where � is a characteristic pressure depending on both the gas and the porous network
geometry. The actual permeability κ/ηg and, consequently, the intrinsic permeability κ

are then obtained by looking in the plane (1/p, k) for the value of k at 1/p = 0 along
the line extrapolating the experimental results obtained for different values of 1/p. For
Kn � 1 the viscosity vanishes: the flow reduces to free molecular diffusion (‘Knudsen
flow’) and the first term in (3.55) does not even have to be considered.9

3.3.2 Fourier’s Law

Expression (3.35) for thermal dissipation ϕth can be written as the product of the entropy
efflux vector q/T multiplied by the force −∇xT producing the heat conduction. The law
of heat conduction has therefore to relate q to −∇xT . Its simplest form is Fourier’s law,
which linearly links q to −∇xT . In the isotropic case Fourier’s Law reads:

q = −κ∇xT (3.57)

8See Klinkenberg L.J. (1941), ‘The permeability of porous media to liquids and gases’, Drilling and pro-
duction practices, American Petroleum Institute, New York, 200–214.

9For a comprehensive presentation see Dullien F.A.L. (1979), Porous media: fluid transport and pore struc-
ture, Academic Press, New York. See also Carman P.C. (1956), Flow of gases through porous media, Butterworth
Scientific London.
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Table 3.2: Order of magnitude of thermal
conductivities (see references in the footnote
related to the permeability).

Material κ(W/(m K))

Concrete 1.5–2.1
Rock 3
Dry sand 0.4–0.8
Wet sand 2.5–3.5
Dry clay 0.8–2
Wet clay 1.2–1.7
Granite 2.5–3.8
Sandstone 1.5–4.3
Water (0◦C) 0.598
Air 0.026

where κ is the thermal conductivity and has to be replaced by a tensor of thermal con-
ductivities in the general anisotropic case. Thermal conductivity κ has to be positive in
order to ensure the positiveness of the dissipation associated with heat conduction:

ϕth = q2

κT
≥ 0 (3.58)

Typical values of κ are given in Table 3.2.
Fourier’s law (3.57) looks the same at the macroscopic scale and the microscopic

scale and the overall thermal conductivity κ mainly depends on the matrix and fluid ther-
mal conductivities, κs and κf , and on porosity n. Explicit expressions can be derived
for simple geometries. For instance, consider the porous material made up of the pro-
gressive filling of volume d�t by fluid-saturated hollow spheres formed by the matrix
material. In addition, for any sphere let the ratio of its internal volume ωf to its overall
volume ω be equal to the porosity, that is ωf /ω = n, irrespective of the sphere’s outer
radius. The overall thermal conductivity κ

f⊂s
sph of such a material can be shown to be

equal to:

κ
f⊂s

sph = κs
2 + λ− 2n (1 − λ)

2 + λ+ n (1 − λ)
; λ = κf

κs
(3.59)

The thermal conductivity κ
s⊂f
sph of the porous material, which is obtained by reversing the

role of the matrix and the fluid in the filling process, reads:

κ
s⊂f
sph = κf

2λ+ 1 + 2 (1 − n) (1 − λ)

2λ+ 1 − (1 − n) (1 − λ)
(3.60)

Conductivities κs⊂f
sph and κ

s⊂f
sph are associated with the most ideal isotropic porous material

which can ever be encountered. As a consequence, they can be shown to constitute the
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Hashin–Shtrikman10 lower and upper bounds for conductivity κ , and for any isotropic
material we write:

κf ≤ κs : κ
s⊂f
sph ≤ κ ≤ κ

s⊂f
sph (3.61)

3.4 Constitutive Equations of the Skeleton

3.4.1 State Equations of the Skeleton

State variables and state equations

Skeleton free energy �s admits �ij , φ and T as natural arguments since the rates of
the latter three explicitly appear in expression (3.33) for the dissipation �s related to the
skeleton. In addition, on account of the postulate of local state, the free energy of the
skeleton is rate independent and can finally be expressed in the form:

�s = �s(�ij , φ, T ; χJ ) (3.62)

Variables �ij , φ, T and χJ (J = 1 to N ) form a set of state variables for the skeleton.
Indeed, when given their values, the state of free energy of the skeleton is known irre-
spective of its past evolution. The variables �ij , φ and T form a subset of external state
variables since their variations can be externally controlled. By contrast, variables χJ ,
which cannot be externally controlled, form the subset of internal state variables.

Considering evolutions where the internal variables do not vary:

dχJ

dt
= 0 (3.63)

and using (3.62) in (3.33), we get:(
πij − ∂�s

∂�ij

)
d�ij

dt
+
(
p − ∂�s

∂φ

)
dφ

dt
−
(
Ss + ∂�s

∂T

)
dT

dt
≥ 0 (3.64)

Variations of any variable among the set of external variables �ij , φ and T can actually
occur irrespective of the variations of the other variables. In addition inequality (3.64)
must hold whatever the sign of time variations d�ij , dφ and dT . Assuming also that πij ,
p and Ss are rate independent, we conclude that:

πij = ∂�s

∂�ij

; p = ∂�s

∂φ
; Ss = −∂�s

∂T
(3.65)

Equations (3.65) associate the state variables �ij , φ and T to their conjugate thermody-
namic state variables πij , p and −S. They are the state equations relative to the skeleton.
According to the postulate of local state, since they hold at equilibrium, they still hold in
any evolution occurring at any rate, in particular in evolutions where d χJ /dt �= 0.

10Hashin Z. (1983), ‘Analysis of composite materials—A survey’, Journal of Applied Mechanics, 50,
481–504.
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State equations (3.65) can be inverted, partially or totally, following the same procedure
as in §3.1.2. For instance, defining Gs as:

Gs = �s − p φ (3.66)

we obtain:

πij = ∂Gs

∂�ij

; φ = −∂Gs

∂p
; Ss = −∂Gs

∂T
(3.67)

Finally, let us stress the important role played by an approach to the physical laws
governing the evolution of a medium which is both tensorial and Lagrangian. The tensorial
character ensures the spatial objectivity of these laws, that is their independence with
regard to any particular reference frame adopted to express them by means of vector and
tensor components. For its part, the Lagrangian formulation (i.e. referring to a fixed initial
configuration both in (3.65) and in (3.67)), without being the only way to do so, ensures
the time objectivity of these laws, that is their independence with respect to movement of
the observer. This twofold objectivity, with regard to both space and time, is often called
the law of material indifference.

State equations of the skeleton and porous material

When expressing the skeleton dissipation, we can also start from (3.28) instead of (3.30).
Accordingly we write:

� = �
(
�ij ,mf , T ; χJ

)
(3.68)

Instead of (3.65) we derive the alternative state equations:

πij = ∂�

∂�ij

; gf = ∂�

∂mf

; S = −∂�

∂T
(3.69)

Equations (3.69) are the state equations relative to the porous material formed by the open
system d�0 which is followed in the motion of the skeleton and exchanges fluid mass
with the outside. Indeed, for this open system gf dmf = (ψf + p/ρf ) dmf accounts
for the free energy supplied by the entering fluid, so that gf and mf become conjugate
thermodynamic state variables. The consideration of the open system d�0, instead of the
skeleton system, is the starting point to introduce the chemical potential and to address
chemically active porous materials (see §3.6.3). When addressing ordinary porous mate-
rials, the point of view as developed in the previous section is more convenient and there
is eventually no need to consider explicitly the fluid Gibbs potential gf . Indeed the fluid
mass content mf can be reintroduced in (3.67) by combining the saturation condition,
φ = mf /ρf , together with the fluid state equations expressed in the form ρf = ρf (p, T ),
sf = sf (p, T ), in order finally to produce:

πij = ∂Gs

∂�ij

; mf

ρf (p, T )
= −∂Gs

∂p
; S = −∂Gs

∂T
+ sf (p, T )mf (3.70)
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Matrix incompressibility and the effective stress

In the absence of any occluded porosity, the solid grains forming the matrix generally
undergo negligible volume changes and the matrix can be assumed to be incompressible
as is commonly done in soil mechanics. The matrix volume remains unchanged in the
deformation and we write:

(1 − n) d�t = (1 − n0) d�0 (3.71)

Use of transport formulae (1.11) and (1.17) gives:

J = 1 + φ − φ0 = 1 − n0

1 − n
(3.72)

Using identity:11

dJ

dt
= J (F−1 · tF−1) :

d�

dt
(3.73)

together with (3.72), we rewrite (3.33) in the form:

�s = (π + pJ(F−1 · tF−1)) :
d�

dt
− Ss

dT

dt
− d�s

dt
≥ 0 (3.74)

Using the same procedure as the one we used to derive state equations (3.65), we now
obtain:

π ′
ij =

∂�s

∂�ij

; Ss = −∂�s

∂T
(3.75)

where we note:

π ′
ij = πij + pJ

∂Xi

∂xk

∂Xj

∂xk
(3.76)

The stress tensor π ′ of components π ′
ij is therefore defined by:

π ′ = π + pJ(F−1 · tF−1) (3.77)

11Starting from:

J =
∏

J=I,II,III

(1 + 2�J )
1/2

where �J=I,II,III stands for the principal strains, we derive:

1

J

dJ

dt
=
∑

J=I,II,III

(1 + 2�J )
−1 d�J

dt

which results in (3.73) when returning to the definition of � as a function of the gradient of the deformation
F (see §1.2.3).
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and is called the effective stress tensor. Indeed, irrespective of the pore pressure p, the
state equations of an ordinary solid subjected to the stress π ′ would read the same as
(3.75) with regard to the strain tensor �. Use of (2.47) to transport π ′ to the current
configuration allows to us recover the Eulerian form of Terzaghi’s effective stress widely
used in soil mechanics, that is:

σ = 1

J
F · π ′ · tF = σ + p 1; σ ′

ij = σij + p δij (3.78)

A standard problem in soil mechanics and in geophysics is the unidimensional consolida-
tion or sedimentation of a layer, where body and surface forces (the gravity forces and the
applied consolidation pressure) act only in the e3 direction. As soon as the layer is transver-
sally homogeneous, the displacement is non-zero only in the e3 direction, resulting in:

F33 = J = ∂x3

∂X3
; �33 = 1

2

[
J 2 − 1

]; other �ij = 0 (3.79)

In isothermal evolutions and in the absence of internal variables χJ , the free energy
and consequence the effective stress π ′ depend only on J and therefore on the change
in porosity due to (3.72). Owing to (3.78) and (3.79) it allows us to recover the state
equation widely use in unidimensional problems in the geosciences, reading:

σ ′
33 = σ ′

33 (n) (3.80)

3.4.2 Complementary Evolution Laws

Internal variables and dissipation

Substitution of state equations (3.65) into (3.33) leads to an expression of the skeleton
dissipation in the form:

�s = Lχ̇ · .
χ ≥ 0 (3.81)

where we note:

Lχ̇ = −∂�s

∂χ
; .

χ = dχ

dt
(3.82)

Skeleton dissipation �s involves only the set of yet unspecified internal state variables
χ = (χJ ). Variables χJ are associated with irreversible relative material movements
occurring within the skeleton and eventually the matrix, each variable χJ being associated
with a particular dissipative mechanism. Unlike external variables, �ij , φ and T , internal
variables χJ are not accessible to direct observation; they do not explicitly appear in the
balance equations and thus in the Clausius–Duhem inequality �s ≥ 0. When addressing
irreversible material behaviour, state equations must be completed by laws governing the
evolution of hidden variables χJ and the associated dissipative mechanisms, that is the
laws linking the components of the thermodynamic force Lχ̇ to the rate

.
χ = ( .χJ

)
that

the force produces. These laws are called the complementary evolution laws.
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Normal dissipative mechanisms

The complementary evolution laws are only required to satisfy the positiveness of dis-
sipation (3.81). With the final aim of formulating the latter let D

( .
χ
)

be a non-negative
convex function of its arguments

.
χJ (J = 1 to N ) with:

D
( .
χ
) ≥ D (0) = 0 (3.83)

Let us briefly recall the general properties of a convex function. A scalar function f (x) is
convex if the tangent to the curve y = f (x) at any point M of coordinates (x, y = f (x))

is always below the secant connecting M to another point M ′ of coordinates (x′, y =
f (x′)). It results in the inequality:

df

dx
|x (x′ − x) ≤ f (x′)− f (x) (3.84)

In addition, for a twice differentiable function, the previous convexity condition equiva-
lently reads (see Fig. 3.1):

df 2

dx2 ≥ 0 (3.85)

The convexity property extends to a vectorial function D
( .
χ
)

in the form:

∂D
∂

.
χ

|χ̇ ·( .
χ
′ − .

χ) ≤ D(
.
χ
′
)−D

( .
χ
)

(3.86a)

.
χJ

∂2D
∂

.
χJ ∂

.
χK

.
χK ≥ 0 (3.86b)

y =  f (x)

(x′ − x)

x

x

x′

dx
df

f (x) +

f (x)

f (x)

y

dx2 ≥ 0
d2f

Figure 3.1: Properties of a convex function.
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Returning now to the formulation of the complementary evolution laws, the dissipative
mechanism associated with internal variables χJ is said to be ‘normal’ if there exists a
convex function D, called the dissipation potential, such that the complementary evolution
laws can be expressed in the form:

Lχ̇ = ∂D
∂

.
χ

↔ L χ̇J
= ∂D

∂
.
χJ

(3.87)

The terminology of ‘normal’ dissipative mechanism refers to the normality of the ther-
modynamic force Lχ̇ to surfaces defined by isovalues of D in the

.
χJ space. Use of (3.87)

in (3.86a) gives:

Lχ̇ · ( .
χ
′ − .

χ) ≤ D(
.
χ
′
)−D

( .
χ
)

(3.88)

A useful inequality is provided by reversing the role of
.
χ and

.
χ
′

in (3.88) and adding
the resulting inequality to (3.88). The procedure eventually gives:(

Lχ̇ ′ − Lχ̇

) · ( .
χ
′ − .

χ) ≥ 0 (3.89)

Moreover, use of (3.87) provides the symmetry relation:

∂L χ̇J

∂
.
χK

= ∂Lχ̇K

∂
.
χJ

(3.90)

When in addition D is a quadratic form of its arguments, it follows that �s = 2D, while
the relation linking Lχ̇ and

.
χ is linear. Accordingly the irreversible process is said to

be linear and (3.90) reduces to the celebrated Onsager symmetry relations between the
coefficients of the quadratic form D.

Darcy’s law (3.39) and Fourier’s law (3.57) constitute examples of such normal linear
irreversible processes with:

DDarcy (V) = 1

2k
V2; DFourier

( q
T

)
= T

2κ

( q
T

)2
(3.91)

where the positiveness of permeability k and of thermal conductivity κ ensures the fulfil-
ment of condition (3.86b). As a first example of a normal non-linear irreversible process,
a filtration law possibly accounting for the flow of a non-linear viscous fluid can be
obtained by extending the potential DDarcy (V) in the form:

D (V) = 1

2nk
(V2)n; k > 0; 1

2
≤ n ≤ 1 (3.92)

Letting
.
χ ≡ V and Lχ̇ ≡ −∇xp, that is not considering body nor dynamic forces in

(3.38), the non-linear filtration law is derived from (3.87) and (3.92) in the form:

(V2)n−1V =− k∇xp (3.93)
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so that:

‖∇xp‖ = 1

k
‖V‖2n−1 (3.94)

where ‖ ‖ is the norm
√
()2. It is worthwhile to note that according to the filtration law

relative to the limit case n → 1/2, the fluid is actually set in motion if only the strength
‖∇xp‖ of the fluid pressure gradient reaches the threshold value 1/k. The resulting flow
then occurs along the same direction as −∇xp at a rate remaining undetermined (pseudo
plastic flow, see §8.2).

Substitution of (3.87) into (3.81) leads to an expression for the dissipation �s in the
form:

�s = �s

( .
χJ

) = ∂D
∂

.
χ
· .
χ (3.95)

Applying (3.86a) for
.
χ
′ = 0 and using (3.83), we derive:

∂D
∂

.
χ
· .
χ ≥ 0 (3.96)

Comparison of (3.95) and (3.96) shows that the normality of the dissipation mechanism
allows us automatically to satisfy the positiveness of the dissipation as stated by the
second law of thermodynamics. This does not mean that the positiveness of the dissipation
requires any dissipation mechanism to be normal. When the dissipation mechanism is not
normal, the positiveness condition (3.81) only requires the material properties involved
in the complementary evolution laws to satisfy some specific conditions (e.g. (8.64)).

3.5 Recapitulating the Laws

The equations introduced up to now represent a closed set of equations: The number
of equations in the set is equal to the number of unknown functions which have to
be determined. A detailed account of unknown functions and equations is given below
when using the Lagrangian formulation, so that the unknown functions admit X and t

as arguments (see Table 3.3). It can be checked that the number of governing equations
equals the number of unknown functions (see Table 3.4).

In addition to these equations the boundary conditions fix the values of the variables
on the border of the porous media. These boundary conditions concern the stress vector,
T = σ · n, and, consequently, vector F · π · N, since F · π · NdA = Tda, or alternatively
the components of the skeleton displacement vector ξ . The boundary conditions also fix
the values of the fluid pressure p, or alternatively the fluid flow M · N, together with the
absolute temperature T , or alternatively the heat flow Q · N. The system of equations is
then complete, once the expressions of both the skeleton free energy and the specific fluid
enthalpy, �s and gf , have been specified and once the complementary evolution laws
governing the evolution of internal variables χ have been given. This is the aim of the
next chapter, devoted to poroelasticity, and Chapters 8 and 9, devoted to poroplasticity
and poroviscoelasticity, respectively.
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Table 3.3: Recapitulating the unknown functions.

Unknown Notation Number

Skeleton displacement ξ 3
Strain tensor � 6
Fluid mass content mf 1
Lagrangian porosity φ 1
Stress tensor π 6
Temperature T 1
Skeleton entropy Ss 1
Internal variables χJ N

Fluid pressure p 1
Fluid-specific density ρf 1
Fluid-specific entropy sf 1
Fluid mass flow vector M 3
Heat flow vector Q 3
Total — 28 +N

Table 3.4: Recapitulating the governing equations.

Nature Equation

Strain and displacement, (1.24a) � = 1
2

(∇Xξ +t ∇Xξ +t ∇Xξ · ∇Xξ
)

Fluid continuity, (1.67)
dmf

dt
+ ∇x · M = 0

Filling condition, (1.64) mf = ρf φ

Motion equation, (2.50) ∇X · (F · π)+m0
s (f − γ s )+mf

(
f − γ f

) = 0

Thermal equation, (3.36) T
d
(
Ss +mf sf

)
dt

= −T∇X · (sf M + Q
)+�M

Skeleton state equations, (3.67) πij = ∂�s

∂�ij

; p = ∂�s

∂φ
; Ss = −∂�s

∂T

Complementary equations, (3.87) Lχ = ∂D
∂

.
χ

Darcy’s law, (3.39)
F · M
ρf

= JktF−1(−∇Xp + ρf
tF · (f − γ f

))
Fourier’s law, (3.57) F · Q = JκtF−1∇XT

Fluid state equations, (3.10)
1

ρf
= ∂gf

∂p
; sf = −∂gf

∂T

Number of equations 28 +N
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3.6 Advanced Analysis

3.6.1 Fluid Particle Head. Bernoulli Theorem

In the usual applications the body forces are the gravity forces. Denoting by z the vertical
ascendant coordinate, we write:

f = −∇x (gz) (3.97)

where g stands for the gravity intensity. Considering quasistatic fluid flows, that is γ f ∼ 0,
(3.97) allows us to recover Darcy’s law (3.46) in the form commonly used in hydrology
and soil mechanics:

n(Vf − Vs) = −λ∇xH ; λ = ρfgκ

ηf
(3.98)

where H is the fluid particle head as defined in soil mechanics:

H = p

ρf g
+ z (3.99)

At zero pressure H is the height of the liquid whose field determination can be achieved
by means of piezometric measurements. Property λ is a characteristic filtration velocity
and is the (‘hydraulic’) permeability commonly defined in soil mechanics.12 It is the
vertical filtration velocity which would result from gravity forces in the absence of any
pressure gradient whatever its origin.

Consider now steady state flows such as:

∂G
∂t

= 0; df G
dt

= ∇xG · Vf (3.100)

for any quantity G. Let us assume in addition that the skeleton is at rest, reading Vs = 0.
Multiplying (3.39) by Vf dt and using (3.40), (3.97) and (3.100), we get:

df p

ρf
+ df

(
gz+ 1

2
(Vf )2
)
= − ϕf

ρf n
dt (3.101)

In the absence of an external heat supply, the usual flows are sufficiently slow to be
considered as isothermal. Using (3.10), (3.101) can be rewritten in the form:

ρf n
dfH
dt

= −ϕf ≤ 0 (3.102)

12For liquid water ηf = 1 × 10−3 kg/ (ms) and a useful numerical relation between κ and λ is found to be:

κ

(
m2
)
� 10−7λ (m/s)

while the usual unit used for intrinsic permeability κ is the Darcy, which is equal to 10−12 m2 (see Table 3.1
for the usual values).
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where H is the specific fluid head as defined in fluid mechanics:

H =gf + gz+ 1

2
(Vf )2 (3.103)

Equation (3.102) constitutes an extension to poromechanics of the usual Bernoulli theorem
of fluid mechanics. It means that the fluid flow along a flow line necessarily occurs in
the direction of the head loss due to viscous dissipation.

3.6.2 Thermodynamics and the Double Porosity Network

Let us consider a porous continuum with a double porosity network such as examined in
§1.5.3 and §2.5.2. Using the kinetic energy theorem as expressed by (2.73), together with
(1.85) and (2.74), we extend (3.26) in the form:

� = π :
d�

dt
−
∑
α=1,2

gfα (∇X · M(α))− S
dT

dt
− d�

dt

+ 1

2
◦
m1→2((Vf1 − Vs)2 − (Vf2 − Vs)2)

+
∑
α=1,2

[−(∇Xgfα)T + (f − γ f ) · F
] · M(α)

− Q
T
· ∇XT ≥ 0 (3.104)

Mass balance equation (1.84) relative to the double porosity network allows us to split
the overall dissipation into the form:

� = �s +�1→2 +
∑
α=1,2

�fα +�th ≥ 0 (3.105)

Using (3.29), the skeleton dissipation �s can now be written:

�s = π :
d�

dt
+
∑
α=1,2

pα

dφα

dt
− Ss

dT

dt
− d�s

dt
≥ 0 (3.106)

which leads to the state equations:

π = ∂�s

∂�
; pα = ∂�s

∂φα

; Ss = −∂�s

∂T
(3.107)

The Eulerian form ϕfα of the fluid dissipation �fα is:

ϕfα =
[−∇xpα + ρfα (f − γ fα )

] · Vα ≥ 0 (3.108)

where Vα = nα
(
Vfα − Vs

)
is the filtration vector related to the porous network α and

which leads us to formulate Darcy’s law separately for each network. The thermal dissi-
pation �th is still given by (3.27c) and Fourier’s law remains unchanged.
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Dissipation �1→2 is the dissipation related to the fluid mass exchange between the
two networks. Its Eulerian expression is:

ϕ1→2 = ◦
r1→2�H ≥ 0 (3.109)

where �H is:

�H =
(
gf1 +

1

2
(Vf1 − Vs)2

)
−
(
gf2 +

1

2
(Vf2 − Vs)2

)
(3.110)

Comparing (3.109) and (3.110) with (3.102) and (3.103), �H is identified as the specific
head loss undergone by the fluid mass flowing from network 2 to network 1.

Assuming quasistatic incompressible fluid flow, the kinetic energy can be neglected,
while ρfα = ρf remains constant and gf1 − gf2 = p1/pf − p2/ρf , so that ϕ1→2
reduces to:

ϕ1→2 =
◦
r1→2

ρf
(p1 − p2) ≥ 0 (3.111)

In order to identify the relation linking
◦
r1→2/ρf and p1 − p2 we can proceed in the same

way as we did in §3.3.1 when introducing the intrinsic permeability κ. Among the set of
the three relevant quantities involved here, that is

◦
r1→2/ρf , p1 − p2 and ηf , only two

are dimensionally independent. Dimensional analysis requires that the unique dimension-
less quantity which can be formed from the set, namely (

◦
r1→2/ρf )(ηf /(p1 − p2)), is a

dimensionless constant υ so that:

◦
r1→2 = υ

ρf

ηf
(p1 − p2) (3.112)

3.6.3 Chemically Active Porous Continua

Chemical potential and activity. Effective porosity and permeability

In the absence of skeleton dissipation, that is in thermoporoelasticity (see Chapter 4),
(3.28) yields:

�s = π :
d�

dt
+ gf

dmf

dt
− S

dT

dt
− d�

dt
= 0 (3.113)

In (3.113), gf dmf = (ψf + p/ρf )dmf accounts for the free energy supplied to the
open thermodynamic elementary system volume d�0 followed in the skeleton deforma-
tion. However, the energy required to make the fluid mass dmf enter the volume d�t

does not always reduce to the mechanical work pdmf /ρf required against the internal
fluid pressure p to make room for the entering volume dmf /ρf . For instance, non-local
interaction forces can exist between the saturating solution and the solid internal walls of
the porous space. Let µf be the specific chemical potential of the saturating solution so
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that µf dmf accounts for the free energy supply associated with the introduction of mass
dmf , whatever the non-local interaction forces at work. Instead of (3.113) we now write:

�s = π :
d�

dt
+ µf

dmf

dt
− S

dT

dt
− d�

dt
= 0 (3.114)

resulting in state equations:

π = ∂�

∂�
; µf = ∂�

∂mf

; S = −∂�

∂T
(3.115)

Consider now an effective solution, possibly fictitious and usually referred to as the
bulk solution, which is defined as the solution formed from the same components as those
of the actual solution saturating volume d�t , which is in thermodynamic equilibrium with
the latter. As a consequence of this equilibrium the immersion of material volume d�t

into the effective solution would not produce any effect. Denoting g
eff
f as the specific

Gibbs potential of the effective solution, we write:

µf = g
eff
f (p, T ) (3.116)

The effective solution serves as a ‘chemical thermometer’ to determine the thermodynamic
pressure p of the actual solution. However, owing to the interaction energy �int of the
forces of non-local type acting between the actual solution and the matrix, the strength
µf = g

eff
f for the chemical potentials is achieved for a density ρf of the actual solution

lower than the density ρ
eff
f of the effective solution. The chemical activity A of the

saturating solution is then defined as the ratio of the two densities according to:

ρ
eff
f = Aρf ; A ≥ 1 (3.117)

Use of fluid state equations (3.10) where gf = g
eff
f (p, T ), together with (3.116) and

(3.117), yields:

∂µf

∂p
= 1

Aρf
; sf = −∂µf

∂T
(3.118)

In addition, since the interaction energy �int represents the work required for the mass
mf to change from the specific volume of the effective solution to that of the saturating
solution, we write:

�int = p

mf

ρf
− mf

ρ
eff
f

 = mf

(
ψ

eff
f − ψf

)
(3.119)

where ψf and ψ
eff
f stand for the actual and effective specific free energies, respectively.

Including the interaction energy �int in the free energy �s of the skeleton, we extend
(3.29) in the form:

�s = � −mfψ
eff
f (3.120)
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Use of (3.116)–(3.120) allows us to rewrite (3.114) in the form:

�s = π :
d�

dt
+ p

d

dt

(
φ

A

)
− Ss

dT

dt
− d�s

dt
= 0 (3.121)

With regard to the skeleton, the chemical activity of the saturating solution eventually
acts the same as if the effective porosity φ/A were substituted for the actual porosity φ

according to:

π = ∂�s

∂�
; p = ∂�s

∂
(
φ
A

) ; Ss = −∂�s

∂T
(3.122)

Accordingly, substitution of the chemical potential µf instead of gf into (3.27b) leads
us to extend expression (3.34) for the dissipation ϕf associated with the filtration process
in the form:

ϕf =
[
− 1

A
∇xp + ρf (f − γ f )

]
· V ≥ 0 (3.123)

Assuming that the fluid filtration is a linear irreversible process and neglecting body and
inertia forces, we write:

V = n(Vf − Vs) = − keff∇xp (3.124)

In comparison with the original formulation (3.39) of Darcy’s law, keff now includes the
activity effect and plays the role of an effective permeability, even though the filtration
process through the porous medium does not result from a viscous flow owing to the
interaction forces existing between the solution and the matrix. By analogy to (3.47) keff

can be set in the form:

keff = κ
eff

ηf
(3.125)

where the effective intrinsic permeability κ
eff is conveniently expressed in m2 for com-

parison with the usual values.

From poromechanics to chemomechanics

Reactive saturating mixture. Consider now the case where the saturating fluid is a mixture
formed of M components referred to by index α (α = 1 to M). In addition a chemical
reaction occurs between these components. Analogously to the case of the double poros-
ity network examined in §1.5.3, the mass conservation related to the αth component is
expressed in the form:

dmα

dt
= −∇X · M(α) + ◦

m→α (3.126)
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where
◦
m→α is the rate of mass formation (> 0) or consumption (< 0) of the αth compo-

nent during the chemical reaction. Expression (3.26) then extends to:

�s,→ +
α=M∑
α=1

�α +�th ≥ 0 (3.127)

where:13

�s,→ = π :
d�

dt
−

α=M∑
α=1

µα

(∇X · M(α)
)− S

dT

dt
− d�

dt
(3.128)

Owing to activity effects the use of the chemical potential µα is now preferred to that of
the Gibbs potential gα (see previous section). In (3.127), �th and �α stand respectively
for the thermal dissipation and for the dissipation associated with the transport of the αth

component. They do not need further analysis. The mass balance equation (3.126) allows
us to split dissipation �s,→ according to:

�s,→ = �s +�→ ≥ 0 (3.129)

Dissipation �s is the skeleton dissipation:

�s = π :
d�

dt
+

α=M∑
α=1

µα

dmα

dt
− S

dT

dt
− d�

dt
≥ 0 (3.130)

while �→ is the dissipation associated with the reaction and expressed in the form:

�→ = −
α=M∑
α=1

µα
◦
m→α ≥ 0 (3.131)

Analogously to (3.68) we write:

� = �
(
�ij ,mα, T ;χ

)
(3.132)

resulting in the state equations:

π = ∂�

∂�
; µα = ∂�

∂mα

; S = −∂�

∂T
(3.133)

so that the skeleton dissipation �s can still be expressed in the form:

�s = −∂�

∂χ
· dχ

dt
(3.134)

13We did not consider the kinetic energy term associated with
◦
m→α such as the one associated with

◦
m→α

in (3.104).
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Equations (3.133) extend the standard state equations of physical chemistry14 to a mixture
saturating a deformable porous material.

Chemical affinity and reaction rate. Since there is no overall mass creation, mass
formation rates

◦
m→α satisfy:

α=M∑
α=1

◦
m→α = 0 (3.135)

In addition, rates
◦
m→α are subjected to match the molar ratios according to the way in

which the components are involved in the chemical reaction. More precisely, a reaction
can be written in the general form:

α=L∑
α=1

rαRα →
α=M∑

α=L+1

pαPα (3.136)

where Rα are the L reacting moles, while Pα are the M − L produced moles. The above
equation indicates that rα moles of reactant Rα are needed to form pα moles of product
Pα . Let να be the stoichiometric coefficient relative to Pα or Rα , with the convention
να = pα > 0 for a produced mole, and να = −rα < 0 for a reacting mole. If Mα denotes
the molar mass of component Rα or Pα , the stoichiometry of reaction (3.136) requires that:

◦
m→1

ν1M1
=

◦
m→2

ν2M2
= · · · =

◦
m→M

νMMM

(3.137)

while (3.135) implies in addition:

α=M∑
α=1

ναMα = 0 (3.138)

The reaction rate
◦
ξ is defined as the common value of ratios involved in (3.137):

◦
ξ =

◦
m→α

ναMα

(3.139)

Use of (3.139) in (3.131) allows us to express �→ in the form:

�→ = A
◦
ξ ≥ 0 (3.140)

where A is de Donder’s chemical affinity relative to the reaction, that is:

A = −
α=M∑
α=1

ναMαµα (3.141)

14See for instance Atkins P.W. (1990), Physical Chemistry, Fourth Edition, Oxford University Press.
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Kinetics of reaction. According to (3.141), the law governing the reaction kinetics

is the law linking the reaction rate
◦
ξ to the chemical affinity A, that is the potential

difference or thermodynamic force producing the reaction. In a diffusion-controlled reac-
tion the macroscopic rate results from the velocity at which the reactants diffuse at the
microscopic scale through the mixture. When they meet, they instantaneously combine to
form the products without dissipation. Since diffusion can be often considered as a linear
irreversible process, a first approximation consists in adopting the linear law:

A = η
◦
ξ exp

(
Ea

RT

)
(3.142)

By analogy to the Arrhenius law, the factor Ea/RT accounts for the final formation of
the products obeying an activation-controlled reaction; Ea stands for the activation energy
and R is the universal constant for an ideal gas.

Thermodynamic equilibrium is achieved at a zero reaction rate obtained when the
potential difference between the reactants and the products, as captured by affinity A,
vanishes. Using state equations (3.133), the equilibrium condition can be expressed in the
form:

A = −
α=M∑
α=1

ναMα

∂�

∂mα

= 0 (3.143)

The characteristic time τη associated with (3.142) is:

τη ≡ η

A0
(3.144)

where A0 scales as the order of magnitude of the chemical affinity. When τη is much
smaller than the characteristic time of the other processes, the equilibrium condition
(3.143) can be conveniently used instead of kinetics law (3.142), so that the number of
independent state variables relative to the mixture decreases from M to M − 1.

Closed systems. The extent of the reaction as an internal variable. For closed systems,
there is no matter supplied by an external flow, that is −∇X · M(α) = 0, and (3.126) and
(3.139) give:

dmα

dt
= ◦

m→α = ναMα

◦
ξ (3.145)

Since dmα/dt is an actual time derivative, the chemical reaction rate
◦
ξ turns out to be a

time derivative too. We write:
◦
ξ = dξ

dt
(3.146)

The variable ξ so introduced is a measure of the degree of advancement of the reaction
and is called the extent of the reaction.

Using (3.134), (3.140) and (3.146), the dissipation associated with a closed porous
material, where an internal chemical reaction occurs, can be identified as:

� = �s +�→ +�th = −∂�

∂χ
· dχ

dt
+Adξ

dt
+�th ≥ 0 (3.147)
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Let ψ = ψ
(
�ij , T ;χ, ξ

)
be the free energy of any closed system, where ξ is a yet

unspecified internal variable, and let �clo be the dissipation relative to this system not
including the thermal dissipation. The first and second laws of thermodynamics applied
to any closed system yield:

� = �clo +�th = −∂ψ

∂χ
· dχ

dt
− ∂ψ

∂ξ

dξ

dt
+�th ≥ 0 (3.148)

A chemical reaction occurring in a closed system is an internal process, so that its extent
ξ eventually is the internal state variable characterizing its progress. Expressions (3.147)
and (3.148) of dissipation � must coincide and we get:

ψ
(
�ij , T ;χ , ξ

) = �
(
�ij ,mα = ναMαξ, T ;χ

) ; −∂ψ

∂ξ
= A = −ναMαµα (3.149)

The above sequence of identification is quite general:

• First, consider an open system and identify the explicit expression of the intensive
thermodynamic force (as here chemical affinity A = −ναMαµα) to be linked to a

given rate (such as chemical reaction rate
◦
ξ here).

• Second, apply the closure conditions (such as M(α) = 0 here resulting in (3.146)).
• Last, provided that the complementary evolution law (or equilibrium condition) of

the irreversible process at work is known irrespective of the porous medium, use it
without further investigation.

For instance, if the kinetics of the reaction obeys (3.142), the laws governing the
evolution of a closed solid system subjected to an internal chemical reaction are the state
equations:

ψ = ψ
(
�ij , T ;χ, ξ

) ; π = ∂ψ

∂�
; S = −∂ψ

∂T
; Lχ = −∂ψ

∂χ
; A = −∂ψ

∂ξ
(3.150)

and the complementary evolution laws:

Lχ = ∂D
∂

.
χ
; A = η

dξ

dt
exp

(
Ea

RT

)
(3.151)

where we assumed that the internal variables χ are associated with a normal dissipa-
tive mechanism (see §3.4.2). Equations (3.150) and (3.151) achieve the transition from
poromechanics to chemomechanics.

Thermodynamics of a poroelastic material subjected to dissolution. Consider a material
whose solid matrix can dissolve in solute form (index sol) within a solvent, for example
liquid water (index w), forming the solution saturating the porous space. For isothermal
evolutions expression (3.128) of the dissipation �s,→ attached to both the skeleton and
the dissolution process is specified in the form:

�s,→ = π :
d�

dt
− µw

(∇X · Mw
)− µsol

(
∇X · Msol

)
− d�

dt
≥ 0 (3.152)
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Use of continuity equations (1.88) allows us to express �s,→ in the alternative form:

�s,→ = π :
d�

dt
+ µw

dmw

dt
+ µsol

dmsol

dt
− µsol

◦
ms→sol − d�

dt
≥ 0 (3.153)

Similarly to (3.29), let �s be the free energy of the skeleton:

�s = � −mwψw −msolψsol (3.154)

Substitution of (3.154) into (3.153) and using a similar procedure to the one that led from
(3.28) to (3.30) give:

�s,→ = π :
d�

dt
+ p

dφ

dt
− µsol

◦
ms→sol − d�s

dt
≥ 0 (3.155)

where p = pw + psol is the solution pressure. Considering an elastic matrix, the only
source of dissipation is the dissolution process so that �s,→ must be zero when the

dissolution process is not active, that is for
◦
ms→sol = 0. We conclude that state equations

(3.65) still remain valid and that the chemical porosity φch defined by (1.89) is the relevant
internal state variable related to the dissipative dissolution process. We write:

�s = �s

(
�ij , φ, φch

)
: πij = ∂�s

∂�ij

; p = ∂�s

∂φ
(3.156)

A combination of (1.89), (3.155) and (3.156) finally gives the dissipation �→ = �s,→
occurring in the dissolution process in the form:

�→ =
(
− ∂�s

∂φch

− ρ0
s µsol

)
dφch

dt
≥ 0 (3.157)

A further identification requires an analysis of the dissipation at the microscopic scale
where the dissolution process does occur. The dissipation is the one attached to the thin
layer of the solid matrix currently dissolving in solute form. Let

◦
rs→sol be the Eulerian

rate of mass dissolving per unit of microscopic surface of the current internal walls of the
porous space. According to the analysis we performed in §1.5.2,

◦
rs→sol can be expressed

in the form:

◦
rs→sol = ρs(c − Vs) · n = ρsol(c − Vsol) · n (3.158)

where, for the sake of simplicity, we maintain the same notation as that used at the
macroscopic scale: c is the Eulerian speed of displacement of the dissolution front, which
coincides at any time with the current internal walls of the porous space; n is the outward
unit normal to the surface enclosing the porous volume. The momentum balance along
the direction n related to the mass dissolving between times t and t + dt is:

◦
rs→sol (vsol − vs) = ps − psol (3.159)

where vα = V(α) · n. Along the direction normal to n there is no shear stress at the contact
between the solution and the internal solid walls of the porous space. Accordingly the
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momentum balance implies that the tangential velocities of the solid and the solute are the
same. Letting

◦
q be the heat supply rate and eα the specific energy of constituent α = sol

or s, the first law of thermodynamics applied to the thin layer dissolving between times
t and t + dt gives:

◦
rs→sol

(
esol + 1

2
v2

sol − es − 1

2
v2
s

)
= psvs − psolvsol + ◦

q (3.160)

Combining (3.158)–(3.160), we get:

◦
rs→sol

(
hsol + 1

2
(vsol − c)2 − hs − 1

2
(vs − c)2

)
= ◦

q (3.161)

where hα = eα + pα/ρα is the specific enthalpy. In addition, letting sα be the specific
entropy, the second law of thermodynamics provides the inequality:

◦
rs→sol (ssol − ss) ≥

◦
q

T
(3.162)

The dissolution process is a slow process so that the evolutions can be considered as
isothermal while the kinetic energy terms 1

2 (vα − c)2 can be neglected as we actually did
in deriving (3.157). Combining (3.161) and (3.162), we obtain:

µα = hα − T sα :
◦
rs→sol (µs − µsol) ≥ 0 (3.163)

The mass
◦
rs→soldadt which dissolves between time t and t + dt refers to the current

surface da across which the dissolution physically takes place. It can be alternatively
expressed in the Lagrangian form according to:

◦
rs→soldadt = ρ0

s CdAdt (3.164)

where dA is the initial material surface corresponding to da in the initial non-deformed
reference configuration, whereas C stands for the Lagrangian normal speed as defined
in §1.5.2. Substituting (3.164) into (3.163) and integrating over the dissolution front �

formed by the internal walls dA of the porous network, we finally derive:

�→ = 1

d�0

∫
�

ρ0
s C (µs − µsol) dA ≥ 0 (3.165)

Except in the particular case of the pressure-dissolution process (see §4.4.4), chemical
potential µs can be assumed to be almost the same along the dissolution front so that
(1.80) and (3.165) give:

�→ = ρ0
s (µs − µsol)

dφch

dt
≥ 0 (3.166)
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A comparison of (3.157) and (3.166) finally leads to the identification:

− ∂�s

∂φch

= ρ0
s µs (3.167)

The chemical potential µs can be expressed in the form:

µs = µ0
s +�µs (3.168)

where µ0
s stands for the chemical energy associated with the chemical bonds in the

non-deformed state, while �µs accounts for the elastic energy stored during the solid
deformation. Dissolution is a sufficiently slow process so that the solid and the solute
can be assumed to remain constantly in thermodynamic equilibrium, resulting in a zero
dissipation, �→ = 0, so that µsol = µs at any time. With �µs � µ0

s (see §4.4.4) and
µsol = µsol (ρsol), the solid–solute equilibrium eventually requires the solute mass density
ρsol to remain constantly equal to some equilibrium value ρEq .



Chapter 4

Thermoporoelasticity

Thermoporoelasticity extends the theory of thermoelasticity to porous continua. This
extension is achieved by considering an underlying thermoelastic skeleton. The dissi-
pation related to the skeleton is zero and there are no internal variables. The constitutive
equations reduce to state equations (see §3.4.1). Their operational formulation needs an
explicit expression for the skeleton free energy �s . Except for the stability conditions
examined later on (see §5.4.1), this expression is not restricted by any particular con-
straint and the determination of the thermoporoelastic properties involved by the state
equations is finally left to experiments. Nevertheless these macroscopic properties depend
on the microscopic properties and the compatibility relations between both properties can
be derived. This chapter progressively explores these different issues.1

4.1 Non-linear Thermoporoelastic Skeleton

4.1.1 Infinitesimal Transformation and State Equations

The dissipation related to a thermoelastic skeleton is zero, that is:

πij d�ij + p dφ − Ss dT − d�s = 0 (4.1)

The transformation will be infinitesimal as soon as condition (1.25) is satisfied. The
fulfilment of condition (1.25) depends on the strength of the applied stress compared
with the material stiffness and can only be checked a posteriori. Indeed, the order of
magnitude of the displacement gradient ∇ξ can be compared with one only when the
material properties are known and the field displacement ξ derived for the problem at
hand (see Chapter 5).

When condition (1.25) is fulfilled, Green strain components �ij and Piola–Kirchhoff
stress components πij can be replaced by linearized strain components εij and Cauchy

1A founding paper on poroelasticity, although not the first on the topic, is without doubt, Biot M. A. (1941),
‘General theory of three dimensional consolidation’, Journal of Applied Physics, 12, 155–164.

Poromechanics O. Coussy
c© 2004 John Wiley & Sons, Ltd ISBN 0-470-84920-7
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stress components σij . We write:

σij dεij + p dφ − Ss dT − d�s = 0 (4.2)

Alternatively, use of energy Gs defined by:

Gs = �s − p φ (4.3)

leads to:

σij dεij − φ dp − Ss dT − dGs = 0 (4.4)

From (4.4) we finally derive the state equations in the form:

Gs = Gs(εij , p, T ) : σij = ∂Gs

∂εij
; φ = −∂Gs

∂p
; Ss = −∂Gs

∂T
(4.5)

Owing to (4.5) it is worthwhile to note Maxwell’s symmetry relations:

∂σij

∂εkl
= ∂σkl

∂εij
; ∂σij

∂p
= − ∂φ

∂εij
; ∂σij

∂T
= − ∂Ss

∂εij
; ∂φ

∂T
= ∂Ss

∂p
(4.6)

Let σ and sij be the hydrostatic and deviatoric components of the stress tensor, and let
ε and eij be the volumetric dilation and the deviatoric components of the strain tensor:

σ = 1

3
σii; sij = σij − σ δij (4.7a)

ε = εii; eij = εij − 1

3
ε δij (4.7b)

Use of (4.7) allows us to rewrite (4.4) in the form:

σ dε + sij deij − φ dp − Ss dT − dGs = 0 (4.8)

so that (4.5) can be written equivalently:

Gs = Gs(ε, eij , p, T ) :

σ = ∂Gs

∂ε
; sij = ∂Gs

∂eij
; φ = −∂Gs

∂p
; Ss = −∂Gs

∂T
(4.9)

In addition, let Hs be defined by:

Hs = σε + sij eij −Gs (4.10)

We get:

ε dσ + eij dsij + φ dp + Ss dT − dHs = 0 (4.11)
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providing the inversion of state equations in the form:

Hs = Hs(σ, sij , p, T ) :

ε = ∂Hs

∂σ
; eij = ∂Hs

∂sij
; φ = ∂Hs

∂p
; Ss = ∂Hs

∂T
(4.12)

4.1.2 Tangent Thermoporoelastic Properties

Differentiating state equations (4.5) and taking into account Maxwell’s symmetry relations
(4.6), we obtain:

dσij = Cijkl dεkl − bij dp − Cijklαkl dT (4.13a)

dφ = bij dεij + dp

N
− 3αφ dT (4.13b)

dSs = Cijklαkl dεij − 3αφ dp + C
dT

T
(4.13c)

In (4.13) Cijkl , bij , Cijklαkl , 1/N , 3αφ and C are the thermoporoelastic tangent properties.
They are functions of state variables εij , p and T and must satisfy the relations expressing
the integrability of (4.13). For instance, the relation expressing the integrability of (4.13a)
is:2

∂Cijkl

∂εmn

= ∂Cijmn

∂εkl
; ∂Cijkl

∂p
= −∂bij

∂εkl
; ∂Cijkl

∂T
= −∂(Cijmnαmn)

∂εkl
(4.14)

Letting dp = 0 in (4.13a) and (4.13c), we recover the standard equations of incremental
thermoelasticity:

• Cijkl = ∂2Gs/∂εij ∂εkl is the ijklth component of the tensor of skeleton tangent
elastic stiffness moduli. Owing to Maxwell’s symmetry relations (4.6) and to sym-
metry conditions σij = σji and εkl = εlk , the tangent elastic moduli Cijkl admit the
following symmetries:

Cijkl = Cklij ; Cijkl = Cijlk; Cijkl = Cjikl (4.15)

Owing to symmetries (4.15), among the 81 components of Cijkl only 21 are even-
tually independent.

• αkl is the klth component of the tensor of skeleton tangent thermal dilation coeffi-
cients, with symmetry αkl = αlk . Owing to Maxwell’s symmetry relations (4.6), the
term T Cijklαkl = −T ∂2Gs/∂T ∂εij also represents the skeleton tangent strain latent
heat, that is the heat per unit of strain that the skeleton exchanges with the outside in
an evolution when both temperature and pressure are held constant (dT = dp = 0).

2The other relations are:
∂Bij

∂p
= ∂(1/N)

∂εij
; ∂Bij

∂T
= −3 ∂αφ

∂εij
; ∂(1/N)

∂T
= −3 ∂αφ

∂p
; ∂(C/T )

∂p
= −3 ∂αφ

∂T
; ∂(C/T )

∂εij
=

∂
(
Cijklαkl

)
∂T

; −3 ∂αφ
∂εij

= ∂
(
Cijklαkl

)
∂p

.
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• C = −T ∂2Gs/∂T
2 is the skeleton tangent volumetric heat capacity, when strain εij

and pressure p are held constant (dεij = dp = 0).

With regard to thermoelasticity, thermoporoelasticity includes the incremental state
equation (4.13b) related to the change in porosity involving new thermoporoelastic
properties:

• bij = −∂2Gs/∂εij ∂p is the ij th component of Biot’s tangent tensor with symmetry
bij = bji . It linearly relates the change in porosity to the strain variation when both
pressure and temperature are held constant (dp = dT = 0). Owing to Maxwell’s
symmetry relations (4.6), −bij also linearly relates the stress increment to the pres-
sure increment in an evolution when both strain and temperature are held constant
(dεij = dT = 0).

• 1/N = −∂2Gs/∂p
2 is the inverse of Biot’s tangent modulus linking the pressure

variation dp and the porosity variation dφ in an evolution when both strain and
temperature are held constant (dεij = dT = 0).

• 3αφ = ∂2Gs/∂p∂T stands for a volumetric thermal dilation coefficient related to
the porosity. Owing to Maxwell’s symmetry relations (4.6), the term −3T αφ also
represents the skeleton tangent pressure latent heat, that is the heat per unit of
pressure p that the skeleton exchanges with the outside in an evolution when both
temperature and strain are held constant (dεij = dT = 0).

4.1.3 The Incompressible Matrix and the Effective Stress

In the absence of any occluded porosity, the solid grains forming the matrix generally
undergo negligible volume changes so that the overall skeleton volumetric change ε = εii
reduces to the change in porosity φ. Differentiation of (1.33) finally gives:

dφ = dε (4.16)

State equation (4.13b) must reduce to the incompressibility condition (4.16) whatever the
values of increments dp and dT , yielding:

bij = δij ; 1

N
= αφ = 0 (4.17)

In the case of an incompressible matrix, incremental state equations (4.13) eventually
simplify according to:

d(σij + p δij ) = Cijkl dεkl − Cijklαkl dT (4.18a)

dφ = dεii (4.18b)

dSs = C
dT

T
+ Cijklαkl dεij (4.18c)

In agreement with (3.78) we determine that σ ′
ij = σij + p δij plays the role of an effective

stress for the skeleton: irrespective of pore pressure p, the state equations of an ordinary
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solid subjected to stress σ ′
ij would be written in the same form as (4.18a) and (4.18c)

with regard to the linearized strain εij .

4.2 Linear Thermoporoelastic Skeleton

4.2.1 Linear Thermoporoelasticity

Linear thermoporoelasticity consists in setting the tangent properties constant. Constitutive
equations (4.13) can be integrated in the form:

σij − σ 0
ij = Cijkl εkl − bij (p − p0)− Cijklαkl(T − T0) (4.19a)

φ − φ0 = bij εij + p − p0

N
− 3αφ(T − T0) (4.19b)

Ss − S0
s = Cijklαkl εij − 3αφ(p − p0)+ C

T0
(T − T0) (4.19c)

where σ 0
ij , p0 and T0 stand respectively for the initial stress, pressure and temperature,

whereas (4.19c) assumes small variations of temperature, that is (T − T0)/T0 � 1.

4.2.2 Isotropic Linear Thermoporoelasticity

A material is isotropic when no material frame is preferred to formulate its constitutive
equations. As a consequence energy functions can depend only on the scalar invariants of
the involved tensors. Linear thermoporoelasticity consists in choosing a quadratic expres-
sion with regard to those invariants for the energy functions. Accordingly, for an isotropic
linear thermoporoelastic material, only the first invariant of the strain tensor, namely
ε = εii , and the second invariant of its deviator, namely eij eji , are to be considered in
the expression of the energy function Gs involved in (4.5), that is:

Gs = σ0ε + s0
ij eij − φ0 p − S0

s T

+ 1

2
Kε2 − b(p − p0)ε − 3αK(T − T0)ε

+ 3αφ(p − p0)(T − T0)− 1

2

(p − p0)
2

N
− 1

2

C

T0
(T − T0)

2 + µeij eji (4.20)

Isotropic state equations are derived from (4.9) and (4.20) in the form:

σ − σ0 = Kε − b(p − p0)− 3αK(T − T0) (4.21a)

sij − s0
ij = 2µeij (4.21b)

φ − φ0 = bε + p − p0

N
− 3αφ(T − T0) (4.21c)

Ss − S0
s = 3αKε − 3αφ(p − p0)+ C

T0
(T − T0) (4.21d)
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In (4.21) K and µ are the skeleton bulk and shear moduli while 3α is the volumetric
skeleton thermal dilation coefficient. Equations (4.21a) and (4.21b) can be conveniently
condensed according to:

σij − σ 0
ij =
(
K − 2

3
µ

)
ε δij + 2µεij − b(p − p0)δij − 3αK(T − T0)δij (4.22)

Owing to the form (4.22) of the constitutive equations, it can sometimes be more conve-
nient to consider the couple of Lamé coefficients, that is λ = K − 2

3µ and µ, instead of
the couple of properties K and µ.

Conditions that are often encountered in the geosciences (see §3.4.1 and §5.4.4) are the
‘oedometric’ conditions where the only non-zero strain component is εzz in the vertical
direction 0z. Accordingly constitutive equation (4.22) gives:

σzz − σ 0
zz =
(
K + 4

3
µ

)
εzz − b(p − p0)− 3αK(T − T0) (4.23)

Referring to the strain conditions that led to (4.23), the modulus K + 4
3µ is called the

oedometric modulus. Thermoelastic properties K (or K + 4
3µ), µ and 3α can eventually

be determined by the same experiments as for a standard solid, provided that the pressure
p is maintained at its initial value p0. Indeed these properties are those of the ‘dry’ porous
material.

Coefficient b is Biot’s coefficient. According to (4.21c) it quantifies the part bε of the
volumetric strain ε caused by the change in porosity, when both pressure and temperature
are held constant (dp = dT = 0). In the context of linear thermoporoelasticity Biot’s
coefficient allows us to extend Terzaghi’s effective stress to the case of a compressible
matrix. Indeed (4.21a) can be rewritten in the form:

σ ′′ − σ ′′
0 = Kε − 3αK(T − T0) (4.24)

and (4.22) inverted in the form:

εij = 1 + ν

E
(σ ′′

ij − σ ′′0
ij )− ν

E
(σ ′′

kk − σ ′′0
kk )δij − α(T − T0)δij (4.25)

where σ ′′
ij denotes Biot’s effective stress defined by:

σ ′′
ij = σij + bp δij ; σ ′′ = 1

3
σ ′′
kk (4.26)

and where E and ν are the skeleton Young modulus and the skeleton Poisson coefficient
with:

E = µ
9K

3K + µ
; ν = 3K − 2µ

2 (3K + µ)
(4.27)

According to (4.24), a variation dσ ′′ of the mean effective stress results in the same
variation dε of the volumetric strain, whether the variation dσ ′′ is achieved through a
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mean stress variation, namely dσ ′′ = dσ , or through a pressure variation, namely dσ ′′ =
b dp. This remark provides the experimental means to determine Biot’s coefficient b

through a loading path constituted by successive two-step incremental loadings—a stress
loading (dσ = dω, dp = 0) followed by a pore pressure loading (dσ = 0, dp = dω),
and so on (see Fig. 4.1a). The ratio between the successive strain responses is identified
as coefficient b. With b so determined between two successive incremental loadings,
Biot’s effective mean pressure −(σ ′′ − σ ′′

0 ) = −(σ − σ0 + b(p − p0)) plotted against the
volumetric contraction ε = −ε must be a straight line. Figure 4.1b represents such a plot
for a limestone sample.

A comparison between (4.19) and (4.21) shows that Biot’s modulus N , coefficient
αφ and heat capacity C have the same meaning whether the material is isotropic or not.
Equations (4.21c) and (4.21d) indicate that their measurement requires experiments where
the strain is held constant. Experiments where the stress is held constant (at atmospheric
pressure) are obviously easier to carry out. The combination of (4.21a) and (4.21d) allows
us to express the entropy variation as a function of the volumetric stress σ instead of the
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Figure 4.1: Determination of Biot’s coefficient b and skeleton bulk modulus K for a limestone
sample. (a) Loading path, (b) −σ ′′ = − (σ + bp) plotted against ε = −ε. Use of Biot’s relation,
that is the first relation in (4.35), gives the value Ks = 52700 MPa for the solid matrix bulk modulus
(from Bouteca, Sarda (1995) c© Sweets & Zeitlinger, see footnote).
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Table 4.1: Order of magnitude of thermoporoelastic properties for different materials (after
Heukamp, Ulm (2002), Bouteca, Sarda (1995) and Cowin (1998), see footnote)

Material φ (%) K (MPa × 103) b (–) N (MPa × 103)

Cement paste 40–63 15–2 0.07–0.37 1170–20
Mortar 27–40 15–3 0.04–0.35 2340–40
Bone 5 12 0.14 160
Granites 1–2 25–35 0.22–0.44 280–370
Marble 2 40 0.20 280
Sandstones 2–26 4.6–13 0.69–0.85 ∼17
Limestones 4–29 5–39 0.34–0.88 100–400

volumetric strain ε:

Ss − S0
s = 3α(σ − σ0)+ 3(αb − αφ)(p − p0)+ Cσ

T0
(T − T0) (4.28)

In (4.28) Cσ = C + 9T0α
2K is the volumetric heat capacity at constant stress and is

eventually the heat capacity measured in practice, although in most cases the difference
Cσ − C = 9T0α

2K turns out to be negligible.
Let us finally recall that the thermodynamic stability of the skeleton requires the ful-

filment of conditions K > 0, µ > 0 or equivalently E > 0 and −1 < ν < 1
2 , and C > 0,

ensuring that unavoidable fluctuations in strain and temperature within the material will
not spontaneously amplify (see §5.4.1). Coupling coefficients b and α are a priori not
subjected to any particular condition. Typical values of poroelastic properties are given
in Table 4.1.3

4.2.3 Relations Between Skeleton and Matrix Properties

So far the skeleton properties have been introduced without reference to the matrix
properties. Nevertheless compatibility relations do exist between them, since the for-
mer necessarily result from the latter and from the geometry of the porous space. We
will start first by addressing the compatibility relations between the elastic properties, not
considering the thermal properties for a while.

Let us first recall the strain partition:

ε = (1 − φ0) εs + φ − φ0 (4.29)

3For data related to cement-based materials see Heukamp F., Ulm F.-J. (2002), ‘Chemomechanics of Calcium
Leaching of Cement-Based Materials at Different Scales: the Role of CH-Dissolution and C-S-H-Degradation
on Strength and Durability Performance of Materials and Structures’, MIT-CEE Report, R002-03 (PhD Thesis,
Massachusetts Institute of Technology). The range of values relates from an intact material to a material whose
calcium has been completely leached out (see Fig. 7.1). For data related to rocks see Bouteca M., Sarda
J.-P. (1995), ‘Experimental measurements of thermoporoelastic coefficients’, in Mechanics of Porous Media,
ed. Charlez, P., Balkema, Rotterdam. For rocks see also Carmichäel R.S. (1982), CRC Handbook of Physical
Properties of Rocks, volume II, CRC Press, Boca Raton, FL. For data related to bone see Cowin S.C. (1998),
‘Bone fluid poroelasticity’, Poromechanics, A tribute to M.A. Biot, Proceedings of the Biot Conference on
Poromechanics, ed. J.-F. Thymus et al., Balkema, Rotterdam.
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and the stress partition (2.34), which, under the assumption of infinitesimal transforma-
tions, gives:

σ − σ 0 = (1 − φ0)
(
σs − σ 0

s

)− φ0(p − p0) (4.30)

where σs stands for the mean stress related to the matrix at the mesoscale. We assume
now that the matrix is homogeneous and linearly elastic, that is:

σs − σ 0
s = Ksεs (4.31)

where Ks is the matrix bulk modulus. Under isothermal conditions (4.21a) reduces to:

σ − σ 0 = Kε − b(p − p0) (4.32)

φ − φ0 = bε + p − p0

N
(4.33)

A combination of (4.29)–(4.33) gives:

(σ − σ 0)

[
1 − b

K
− 1

Ks

]
= (p − p0)

[
1

N
+ φ0

Ks

− b (1 − b)

K

]
(4.34)

The loading variables σ − σ 0 and p − p0 are independent state variables. Consequently
both factors affecting σ − σ 0 and p − p0 in (4.34) must be zero, yielding the compatibility
relations:4

b = 1 − K

Ks

; 1

N
= b − φ0

Ks

(4.35)

In turn, since the bulk modulus K and Biot’s coefficient b can be measured at the macro-
scopic level, the first of relations (4.35) provides the means to assess the value of matrix
bulk modulus Ks (see Fig. 4.1). Alternatively, we can also perform an experiment where
the mean stress is compressive and has a strength equal to the pore pressure intensity, that
is an experiment where −(σ − σ0) = p − p0. For such an isothermal experiment, using
(4.29)–(4.33) and the first of relations (4.35), we derive:

−(σ − σ 0) = p − p0 : ε = εs; σ − σ0 = Ksε (4.36)

Matrix modulus Ks can be determined as the coefficient linearly linking the volumetric
dilation ε and the applied stress −(σ − σ 0) = p − p0. It is worthwhile to note that a
departure of Ks from the bulk modulus of the solid grains forming the matrix will infer
the existence of an occluded porosity.

4These relations were originally derived in Biot M.A., Willis D.G. (1957), ‘The elastic coefficients of theory
of consolidation’, Journal of Applied Mechanics, 24, 594–601.
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In addition to compatibility relations (4.35), K and µ admit upper bounds as a function
of bulk and shear moduli Ks and µs of the matrix and initial porosity φ0:

0 ≤ K ≤ (1 − φ0)Ks

4µs

4µs + 3φ0Ks

(4.37a)

0 ≤ µs ≤ (1 − φ0)µs

9Ks + 8µs

9Ks + 8µs + 6φ0(Ks + 2µs)
(4.37b)

There can be no question here of entering the details of the theories based on variational
energy approaches carried out at the matrix scale leading to the above bounds.5 However,
the upper bound for K can be qualitatively explained. To this end consider a hollow
sphere of external radius Re and internal radius Ri . The constitutive material is linearly
elastic with Ks and µs as the bulk and shear moduli. Starting from a free-stress state,
this spherical envelope is submitted to a traction of strength σ on the external spherical
envelop. Noting that φ0 = R3

i /R
3
e , the void volume ratio with respect to the whole sphere,

the radial displacement ξ of the external envelope is given by the standard elastic solution:

ξ = σRe

1 − φ0

(
1

3Ks

+ φ0

4µs

)
(4.38)

Since the apparent volumetric dilation ε of the external envelop is:

ε = (Re + ξ)3 − R3
e

R3
e

� 3ξ

Re

(4.39)

we write:

σ = (1 − φ0)Ks

4µs

4µs + 3φ0Ks

ε (4.40)

This relation finally applies to the overall behaviour of the porous material made up
by the progressive filling of the space by hollow spheres whose radii are required to
satisfyR3

i /R
3
e = φ0. According to (4.37a) and (4.40), the bulk modulus of such a material,

as the most ideally isotropic porous material, eventually is an upper bound for all the
possible values of the bulk modulus.

In order to state the compatibility relations concerning the thermal properties, analo-
gously to (4.28), we write:

Ss − S0
s = 3αs

(
σs − σ 0

s

)+ Cσs

T0
(T − T0) (4.41)

where Ss is the solid matrix entropy while Cσs is the solid matrix volumetric heat capacity
at constant stress. Since entropy is an extensive quantity, we also write:

Ss − S0
s = (1 − φ0)

(
Ss − S0

s

)
(4.42)

5See Hashin Z. (1983), ‘Analysis of composite materials—A survey’, Journal of Applied Mechanics, 50,
481–504.
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Combining (4.30), (4.41) and (4.42) we derive:

Ss − S0
s = 3αs(σ − σ 0)+ 3αsφ0(p − p0)+ (1 − φ0)Cσs

T0
(T − T0) (4.43)

A comparison between (4.28) and (4.43) provides the relations:

α = αs; αφ = αs(b − φ0); Cσ = (1 − φ0)Cσs (4.44)

It is instructive to note that, when deriving compatibility relations (4.44), no use has been
made of skeleton state equations (4.21a) and (4.21c), nor the matrix constitutive equation:

σs − σ 0
s = Ksεs − 3αsKs(T − T0) (4.45)

However, Maxwell’s symmetry relations ensure that the first two relations in (4.44) can
be used in (4.21a) and (4.21c).

4.2.4 Anisotropic Poroelasticity

In many common applications the porous material is anisotropic in the initial reference
configuration. The origin of anisotropy may be twofold. In the first place the anisotropy
may be due to the anisotropy of both the matrix and the porous geometry. In the second
place it may also be due to an anisotropic pre-loading, as for instance gravity, which
has induced a prestressed anisotropic reference state with regard to the original stress-
free state. Two main kinds of linear anisotropy are presented below, namely orthotropy
and transverse isotropy. We restrict ourselves to linear anisotropic poroelasticity. The
extension to anisotropic thermoporoelasticity can be achieved by letting the temperature
T play an analogous role to that of the pore pressure p.

Orthotropic poroelastic material

An orthotropic material admits three planes of material symmetry orthogonal to each
other, as sketched in Fig. 4.2a. Let us adopt the orthonormal basis formed from the unit
vectors e1, e2 and e3 parallel to the three intersection lines between a set of three material

Planes of material
symmetry e3

e2

e1

e2

e3

e1

(a) Orthotropic anisotropy (b) Transverse isotropy

Figure 4.2: Different types of anisotropic materials.
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symmetry planes. Since the constitutive equations of an orthotropic material must be
irrespective of any change in orientation of vectors ei , in linear poroelasticity we write:

σ11 − σ 0
11 = c11ε11 + c12ε22 + c13ε33 − b1(p − p0) (4.46a)

σ22 − σ 0
22 = c12ε11 + c22ε22 + c23ε33 − b2(p − p0) (4.46b)

σ33 − σ 0
33 = c13ε11 + c23ε22 + c33ε33 − b3(p − p0) (4.46c)

σ12 − σ 0
12 = c66ε12 (4.46d)

σ13 − σ 0
13 = c55ε13 (4.46e)

σ23 − σ 0
23 = c44ε23 (4.46f)

φ − φ0 = b1ε11 + b2ε22 + b3ε33 + p − p0

N
(4.46g)

where the components Cijkl of the stiffness tensor and the moduli cab relate to each other
according to the index correspondence:

ii = 11 → a = 1; ii = 22 → a = 2; ii = 33 → a = 3

ij = 23 or 32 → a = 2 ; ij = 13 or 31 → 5; ij = 12 or 21 → 6

By analogy to the isotropic case we can invert (4.46a)–(4.46f) in the form:

ε11 = 1

E1

(
σ ′′

11 − σ ′′0
11

)− ν21

E2

(
σ ′′

22 − σ ′′0
22

)− ν31

E3

(
σ ′′

33 − σ ′′0
33

)
(4.47a)

ε22 = 1

E2

(
σ ′′

22 − σ ′′0
22

)− ν12

E1

(
σ ′′

11 − σ ′′0
11

)− ν32

E3

(
σ ′′

33 − σ ′′0
33

)
(4.47b)

ε33 = 1

E3

(
σ ′′

33 − σ ′′0
33

)− ν13

E1

(
σ ′′

11 − σ ′′0
11

)− ν23

E2

(
σ ′′

22 − σ ′′0
22

)
(4.47c)

ε12 = 1

2µ12

(
σ ′′

12 − σ ′′0
12

)
(4.47d)

ε13 = 1

2µ13

(
σ ′′

13 − σ ′′0
13

)
(4.47e)

ε23 = 1

2µ23

(
σ ′′

23 − σ ′′0
23

)
(4.47f)

where σ ′′
ij is Biot’s effective stress, namely:

σ ′′
ij = σij + bi p δij (no summation on repeated index) (4.48)

and where Ei and νij are the skeleton Young moduli and the Poisson coefficients
satisfying:

νijEj = Eiνji (4.49)
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Transversely isotropic material

A transversely isotropic (or axisymmetric orthotropic) material admits a rotational material
symmetry around an axis and the material planes of symmetry formed by the set of planes
either orthogonal to the axis or including it. Let us adopt the orthonormal basis formed
from the unit vectors e1, e2 and e3, so that e1 and e2 lie in the plane orthogonal to
the axis of symmetry whereas e3 belongs to the latter, as sketched in Fig. 4.2b. Since
the constitutive equations of a transversely isotropic material must be irrespective of any
change in orientation of vectors ei or any rotation around the axis of symmetry, in linear
poroelasticity we write:

σ11 − σ 0
11 = c11ε11 + c12ε22 + c13ε33 − b(p − p0) (4.50a)

σ22 − σ 0
22 = c12ε11 + c11ε22 + c13ε33 − b(p − p0) (4.50b)

σ33 − σ 0
33 = c13ε11 + c13ε22 + c33ε33 − b3(p − p0) (4.50c)

σ12 − σ 0
12 = (c11 − c22)ε12 (4.50d)

σ13 − σ 0
13 = c44ε13 (4.50e)

σ23 − σ 0
23 = c44ε23 (4.50f)

φ − φ0 = b(ε11 + ε22)+ b3ε33 + p − p0

N
(4.50g)

By analogy to the isotropic case we can invert (4.50a)–(4.50f) in the form:

ε11 = 1

E

(
σ ′′

11 − σ ′′0
11

)− ν

E

(
σ ′′

22 − σ ′′0
22

)− ν3

E

(
σ ′′

33 − σ ′′0
33

)
(4.51a)

ε22 = 1

E

(
σ ′′

22 − σ ′′0
22

)− ν

E
(σ ′′

11 − σ ′′0
11 )−

ν3

E3

(
σ ′′

33 − σ ′′0
33

)
(4.51b)

ε33 = 1

E3

(
σ ′′

33 − σ ′′0
33

)− ν

E

(
σ ′′

11 − σ ′′0
11

)− ν

E
(σ ′′

22 − σ ′′0
22 ) (4.51c)

ε12 = 1 + ν

2E

(
σ ′′

12 − σ ′′0
12

)
(4.51d)

ε13 = 1 + ν

2E

(
σ ′′

13 − σ ′′0
13

)
(4.51e)

ε23 = 1 + ν3

2E3

(
σ ′′

23 − σ ′′0
23

)
(4.51f)

where σ ′′
ij is Biot’s effective stress, namely:

σ ′′
ij = σij + bi p δij (b1 = b2 = b, no summation on repeated index) (4.52)
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4.3 Thermoporoelastic Porous Material

4.3.1 Constitutive Equations of the Saturating Fluid

The skeleton constitutive equations are irrespective of the nature and of the constitutive
equations of the saturating fluid, as far as only contact forces are considered between
the skeleton and the fluid so that the latter exerts a pore pressure p on the internal
walls forming the porous network. Conversely the constitutive equations of the fluid are
irrespective of the skeleton ones. Their explicit expressions can be obtained by proceeding
as for the skeleton. Indeed, differentiating fluid state equations (3.10), we write:

dρf

ρf
= dp

Kf

− 3αf dT ; dsf = −3αf

dp

ρf
+ Cp

dT

T
(4.53)

Kf is the fluid tangent bulk modulus, 3αf the fluid tangent coefficient of volumetric
thermal dilation, while Cp is the fluid tangent volumetric specific heat capacity at constant
pressure. The limit case of an incompressible fluid is obtained by letting Kf → ∞ and
αf = 0 in (4.53), yielding:

ρf = ρ0
f ; sf = s0

f + Cp ln
T

T0
(4.54)

where index 0 relates to reference values.
If the saturating fluid is an ideal gas, we write:

p = RT

Mf

ρf (4.55)

where Mf is the molar mass of the gas considered. Differentiation of (4.55) and a com-
parison of the resulting equation with the first equation in (4.53) provide the identification:

Kf = p; 3αf = 1

T
(4.56)

Assuming in addition that Cp is a constant, we can integrate the second equation of (4.53)
to get:

sf − s0
f = − R

Mf

ln
p

p0
+ Cp ln

T

T0
(4.57)

4.3.2 Constitutive Equations of the Porous Material

Constitutive equations (3.69) and (3.70) of the porous material viewed as an open ther-
modynamic system involve the current fluid mass content mf . We can get rid of porosity
φ to the benefit of mf by using both the condition (1.64) of complete saturation and
the fluid state equations when the latter are explicitly known over the whole range of
variations of state variables p and T (e.g. (4.55) and (4.57)b in the case of an ideal gas).
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Otherwise, since condition (1.64) for complete saturation remains constantly fulfilled, we
differentiate the latter to get:

dmf

ρf
= dφ + φ

dρf

ρf
(4.58)

Combining (4.53) and (4.58) yields:

dφ = dmf

ρf
− φ

dp

Kf

+ 3φ αf dT (4.59a)

d(mf sf ) = sf dmf − 3φ αf dp +mfCp

dT

T
(4.59b)

The latter can be substituted into (4.13) to eliminate the porosity variation dφ to the
benefit of the variation in fluid mass content dmf , yielding:

dσij = Cijkldεkl − bij dp − CijklαkldT (4.60a)

dmf

ρf
= bij dεij + 1

M
dp − 3αmdT (4.60b)

dS = sf dmf + Cijklαkldεij − 3αmdp + Cd

dT

T
(4.60c)

where S = Ss +mf sf and where we note:

1

M
= 1

N
+ φ

Kf

; αm = αφ + φαf ; Cd = C +mfCp (4.61)

Accordingly, for a linear isotropic poroelastic skeleton, we write:

dσ = Kdε − b dp − 3αKdT ; dsij = 2µdeij (4.62a)

dmf

ρf
= b dε + dp

M
− 3αm dT (4.62b)

dS = sf dmf + 3αKdε − 3αmdp + Cd

dT

T
(4.62c)

With respect to the tangent properties of the porous material, the skeleton properties K ,
α and µ appear to be the ‘drained’ properties, that is the properties which can be measured
in tests where the fluid pressure is held constant (dp = 0). In addition the drained tangent
heat capacity Cd takes into account the fluid mass content through the term mfCp. In the
case of a linear skeleton, the tangent drained properties K , α, µ and b are constant so
that (4.62a) can be integrated, while incremental equations (4.62b) and (4.62c) can still
be used when considering non-linear fluids. For this reason the incremental formulation
is preserved in the forthcoming developments.
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Alternatively, (4.60) combine to produce:

dσij = Cu
ijkldεkl − bijM

dmf

ρf
− Cu

ijklα
u
kldT (4.63a)

dS = sf dmf + Cu
ijklα

u
kldεij − 3αmM

dmf

ρf
+ Cu

dT

T
(4.63b)

where we note:

Cu
ijkl = Cijkl +Mbijbkl

Cu
ijklα

u
kl = Cijklαkl + 3αmbijM; Cu = Cd − 9T α2

mM (4.64)

Index u refers to ‘undrained’ tangent properties of the porous material, which are to
be measured in tests where fluid mass changes are prevented (dmf = 0). For a linear
isotropic poroelastic skeleton, we write:

dσ = Kudε − bM
dmf

ρf
− 3αuKudT ; dsij = 2µdeij (4.65a)

dS = sf dmf + 3αuKudε − 3αmM
dmf

ρf
+ Cu

dT

T
(4.65b)

where Ku and 3αu are the undrained bulk modulus and the undrained thermal volumetric
dilation coefficient, respectively, namely:

Ku = K + b2M; 3αuKu = 3αK + 3αmMb (4.66)

According to (4.61), M > 0, since Kf > 0 and N > 0 (owing to b > φ0 in (4.35)),
resulting in Ku > K . Indeed the bulk porous material is stiffer for undrained conditions
where, in contrast to drained conditions, the fluid participates in the overall response.

The constitutive equations (4.65) can be inverted in an analogous form to (4.25) to give:

dεij = 1 + νu

Eu

dσij − νu

Eu

(dσkk)δij + 1

3
B
dmf

ρf
δij − αdT δij (4.67)

where Eu and νu stand for the undrained Young modulus and the undrained Poisson
coefficient, respectively, while B is the Skempton coefficient whose expression is:

B = bM

Ku

(4.68)

For an undrained isothermal experiment we let dmf = dT = 0 in (4.65a), resulting in
dε = dσ/Ku so that (4.62b) gives:

dp = −Bdσ |dmf=dT=0 (4.69)
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which provides the actual definition of B and allows us to derive a useful relation between
coefficients B, b, νu and ν. Indeed (4.67) yields the actual definition of the undrained
Poisson ratio:

i �= j : νu = −
(
dεjj

dεii

)
|dmf=dT=dσii=0 (4.70)

Substitution of (4.69) into (4.25) allows us to express the strain ratio appearing in the
right hand member of (4.70) as a function of B, b and ν. Putting the resulting expression
equal to νu, we finally derive the relation:

bB (1 − 2ν)

3
= νu − ν

1 + νu
(4.71)

4.4 Advanced Analysis

4.4.1 Non-linear Isotropic Poroelasticity
A material is isotropic when no material frame is preferred to formulate its constitutive
equations. Consequently, energy functions depend only on the first three invariants of the
stress and strain tensors. In practice it is generally sufficient to consider only the two first
invariants. This is then equivalent to considering the first invariants σ and ε defined in
(4.7), together with the second invariant of the stress and strain deviators, namely:

τ =
√

1
2 sij sji; γ =

√
1
2eij eji; (4.72)

Accordingly, when restricting consideration to isothermal evolutions and isotropic mate-
rials, the arguments of potential Hs defined by (4.10) reduce to σ , τ and p. Conveniently
we write:

Hs = Hs (σ, τ, p) (4.73)

In the next two subsections we explore the consequences of (4.73) in the non-linear case.

Secant and tangent poroelastic properties and the effective stress

We now assume that energy Hs can be split into a volumetric part and a deviator part
according to:

Hs (σ, τ, p) = φ0p +Hvol
s (σ, p)+Hdev

s (τ 2) (4.74)

where the reference state is taken free of pore pressure and stress. Use of (4.74) in (4.12)
yields the non-linear poroelastic constitutive equations in the form:

ε = 1

K (σ, p)
σ + β (σ, p)

K (σ, p)
p (4.75a)

φ − φ0 = 1

P (σ, p)
p + β (σ, p)

K (σ, p)
σ (4.75b)

eij = 1

2µ (τ)
sij (4.75c)
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where, in contrast to the tangent properties (see §4.1.2), K (σ, p), µ (τ) and P (σ, p) are
secant moduli while β (σ, p) is the secant Biot coefficient.6

Consider now a porous material whose matrix is both homogeneous and linearly elastic
so that the volumetric strain εs and the mean stress σs related to the matrix are linearly
linked according to:

εs = σs

Ks

(4.76)

The volumetric loading applying on the skeleton is formed from the overall current volu-
metric mean stress σ and the current pore pressure p. It can be eventually achieved through
two successive loading phases according to the decomposition (σ, p) = (σ + p, 0)+
(−p,p):

1. In phase I the loading (σ + p, 0) is applied on the skeleton. According to (4.75a)
and (4.75b), the loading phase I generates the volumetric strain εI and the porosity
variation (φ − φ0)I such as:

εI = 1

K (σ + p, 0)
(σ + p) ; (φ − φ0)I =

β (σ + p, 0)

K (σ + p, 0)
(σ + p) (4.77)

2. In phase II the loading (−p,p) is superimposed on the previous loading in order
to carry out the current loading (σ, p). The loading phase II results in subjecting
the matrix border to the pressure p. Since the matrix is homogeneous, this pressure
generates within the latter the uniform volumetric strain εs whose expression is
given by letting σs = −p in (4.76) and which can be uniformly extended to the
porous space. Accordingly, the macroscopic volumetric strain εII and the porosity
variation (φ − φ0)II caused by the second loading step are given by:

εII = − p

Ks

; (φ − φ0)II = −φ0
p

Ks

(4.78)

Since the matrix is linearly elastic the bulk modulus Ks does not depend on the stress
state. Hence, prior application of the non-linear phase I does not affect the volumetric
strain and the porosity variation (4.78) generated by the loading phase II . Consequently,
provided that the non-linear response (ε, φ − φ0) to the loading (σ, p), is unique, the
current volumetric strain and porosity variation are those resulting from the successive
loading phases I and II whatever the actual order in which they are performed. Adding
volumetric strains and porosity variations (4.77) and (4.78), we get:

ε = 1

K (σ + p, 0)
σ +
(

1

K (σ + p, 0)
− 1

Ks

)
p (4.79a)

φ − φ0 =
(
β (σ + p, 0)

K (σ + p, 0)
− φ0

Ks

)
p + β (σ + p, 0)

K (σ + p, 0)
σ (4.79b)

6Consistent triplets
[K (σ, p) , β (σ, p) ,P (σ, p)

]
of poroelastic secant properties are provided by letting

Hvol
s (σ, p) = hvols

(
1
2σ

2, σp, 1
2p

2
)
. The secant moduli are then interrelated to hvols through the following rela-

tions: 1/K(σ, p) = ∂hvols /∂( 1
2σ

2); β(σ, p)/K(σ, p) = ∂hvols /∂(σp); 1/P(σ, p) = ∂hvols /∂( 1
2p

2); G(τ) =
∂hdevs /∂(τ 2). However, the non-uniqueness of function hvols results in the non-uniqueness of consistent triplets
of secant properties.
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A comparison between (4.75) and (4.79) allows the identification:

K (σ, p) = K (σ + p, 0) ; 1

P (σ, p)
= β (σ + p, 0)

K (σ + p, 0)
− φ0

Ks

(4.80a)

β (σ, p) = β (σ + p, 0) = 1 − K (σ + p, 0)

Ks

(4.80b)

It is instructive to note that any identification could not have been achieved in the case
of a non-linear elastic matrix where matrix modulus Ks would have depended on mean
stress σs in (4.76). The dependence of Ks on p on the right hand side of (4.80b) would
have then not allowed for function β to depend only on σ + p, although it would have
been required by the left hand side of (4.80b). Indeed, in the case of a non-linear elastic
matrix the loading phase I would definitively affect the volumetric strain and the porosity
variation resulting from the loading phase II .

Reorganization of (4.79) provides:

σ = KSEC(σ
′)ε − bSEC(σ

′)p (4.81a)

φ − φ0 = p

NSEC(σ ′)
+ bSEC(σ

′)ε (4.81b)

where KSEC(σ
′ = σ + p) = K (σ + p, 0) and bSEC(σ

′ = σ + p) = B (σ + p, 0) are
the secant bulk modulus and secant Biot’s coefficient with:

bSEC(σ
′) = 1 − KSEC(σ

′)
Ks

; 1

NSEC(σ ′)
= bSEC(σ

′)− φ0

Ks

(4.82)

Using (4.81) and (4.82) we can alternatively write:

dσ = K(σ ′) dε − b(σ ′) dp (4.83a)

dφ = dp

N(σ ′)
+ b(σ ′)dε (4.83b)

where K(σ ′) and b(σ ′) are the tangent bulk modulus and tangent Biot’s coefficient with:

K(σ ′) = KSEC(σ
′)

1 − σ ′
KSEC

dKSEC

dσ ′
; b(σ ′) = 1 − K(σ ′)

Ks

; 1

N(σ ′)
= b(σ ′)− φ0

Ks

(4.84)

Based solely on the assumption of a linearly elastic homogeneous matrix, (4.81)–(4.84)
constitute a non-linear extension of linear isotropic poroelasticity.7 It is noteworthy that
the secant and the tangent properties depend on Terzaghi’s effective stress σ ′ = σ + p, in
spite of the matrix compressibility resulting in a value of Biot’s coefficient different from
unity. Such a non-linear extension of poroelasticity can adequately capture the non-linear
behaviour of porous materials such as rocks whose porous network is often formed of

7The derivation of the non-linear results developed in this section is adapted from Dormieux L., Molinari
A., Kondo D. (2002), ‘Micromechanical approach to the behavior of poroelastic materials’, Journal of the
Mechanics and Physics of Solids, 50, 2203–2231.
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Figure 4.3: Experimental confirmation of non-linear constitutive equations (4.81)–(4.84) for a
sandstone specimen: (a) confirmation of the linearity of the elastic behaviour of the matrix;
(b) confirmation of the dependence of the drained tangent bulk modulus on Terzaghi’s effective
stress σ ′ = σ + p (data from Bemer et al. (2001) reprinted by permission of Institut Français du
Petrole, see footnote).

connected pores and cracks. The source of non-linearities is then due to the progressive
opening of cracks under the pressurization of the saturating fluid. As illustrated in Fig. 4.3,
the non-linear constitutive equations (4.81)–(4.84) are experimentally confirmed for a
sandstone specimen.8 An experiment where the loading varies according to phase II ,
that is (σ, p) = (−p,p), first allows us to check the linear elastic behaviour of the
matrix of the sandstone specimen by recording a value for the matrix modulus Ks =
−dp/dε insensitive to p (see Fig. 4.3a). The tangent moduli K(σ ′) is then plotted against
Terzaghi’s effective stress σ ′ = σ + p from experiments where the overall volumetric
strain ε is measured as a function of σ , whereas the pore pressure p is held constant
and takes different values. The two functions K(σ ′) obtained for two distinct values
1 MPa and 51 MPa of the pore pressure p match in the limit of experimental accuracy
as indicated in Fig. 4.3b, confirming the validity of the non-linear constitutive equations
(4.81)–(4.84).

A non-linear isotropic model for clays

The approach to non-linear poroelastic behaviour of the previous section is not appropriate
for poorly cohesive materials like soils. The non-linear behaviour of clay-like soils is
generally well accounted for in the elastic range through the model originally developed
to capture the elastic behaviour of the clay of the Cam river (see §8.4.4 for the plastic
side of the model). The so-called Cam–Clay model is discussed below in order to ensure
its thermodynamic consistency.9

8The experiments reported in Fig. 4.3 are due to Bemer E., Boutéca M., Vincké O., Hoteit N., Ozanam O.
(2001), ‘Poromechanics: from linear poroelasticity to non-linear poroelasticity and poroviscoelasticity’, Oil &
Gaz Science and Technology, Rev. IFP, 56, (6), 531–544, where a theory of second-order poroelasticity is also
presented in order to approach the non-linear constitutive equations.

9The approach to the model follows that of Bourgeois E. (1997), ‘Mécanique des milieux poreux en
transformation finie: position des problèmes et méthodes de résolution’, PhD Thesis, Ecole Nationale des Ponts
et Chaussées.
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The solid grains forming the matrix of soils generally undergo negligible volume
changes so that the constitutive equations can be expressed by means of Terzaghi’s effec-
tive stress. Moreover, soils cannot sustain significant tensile stress, nor undergo significant
dilation volumetric strain, so that we conveniently let:

p′ = −σ ′ = − (σ + p) ; ε = −ε (4.85)

in order to deal with positive values, that is p′ ≥ 0 and ε ≥ 0.
In the triaxial test the sample is submitted to an axial pressure −σI in direction I and to

a uniform pressure −σII = −σIII in the other directions. Since the material is isotropic
the principal directions of the stress and strain tensors coincide, so that components sij
and eij of their respective deviators are given by:

(sij ) = 1

3

 2(σI − σIII ) 0 0
0 −(σI − σIII ) 0
0 0 −(σI − σIII )

 (4.86a)

(eij ) = 1

3

 2(εI − εIII ) 0 0
0 −(εI − εIII ) 0
0 0 −(εI − εIII )

 (4.86b)

Substitution of (4.85) and (4.86) into (4.11), while letting dφ = dε (matrix incompress-
ibility) and dT = 0, gives for the triaxial test:

ε dp′ + η dq − dHs = 0 (4.87)

where η and q rely on the strain and the stress through:

η = −2

3
(εI − εIII ); q = −(σI − σIII ) (4.88)

From (4.87) we derive:

Hs = Hs(p
′, q); ε = ∂Hs

∂p′ ; η = ∂Hs

∂q
(4.89)

so that:

dε = dp′

K(p′, q)
+ dq

H(p′, q)
; dη = dp′

H(p′, q)
+ dq

3µ(p′, q)
(4.90)

where the tangent properties 1/K , 1/H and 1/3µ satisfy:

∂

∂q

(
1

K

)
= ∂

∂p′

(
1

H

)
; ∂

∂p′

(
1

3µ

)
= ∂

∂q

(
1

H

)
(4.91)

In experiments performed on clays, where the confining effective mean pressure p′ is pro-
gressively increased while the deviator q is maintained at zero, the void ratio e (see (1.18))
is found to decrease linearly with respect to the logarithm of the mean effective pressure
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p′, while no significant variation of the strain deviator η is recorded (for experimental
evidence see Fig. 6.7a). Accordingly we write:

q = 0 : de = −κ
dp′

p′ ; η = 0 (4.92)

Combining (1.34), (4.85), (4.90) and (4.92), we derive:

K(p′, q = 0) = p′

k
; H(p′, q = 0) →∞ (4.93)

where we note k = κ/(1 + e0). In addition, for small values of q/p′ the ratio 3µ/K is
experimentally found to be a material constant property:

q/p′ � 1 : 3µ(p′, q) = p′

g
(4.94)

In the Cam–Clay elastic model 1/H terms in (4.90) are usually omitted, in contradiction
with (4.91) and (4.94). In order to derive a model which is consistent with both ther-
modynamics and experimental observations (4.93) and (4.94), we first express tangent
properties K , µ and H in the form:

K = p′

k + l (θ)
; 3µ = p′

g
; H = p′

h (θ)
(4.95)

where θ denotes the stress inclination:
q

p′ = θ (4.96)

Substitution of (4.95) into (4.91) and (4.93) provides:

− d

dθ
(θh (θ)) = dl (θ)

dθ
; −g = dh (θ)

dθ
; l (0) = h (0) = 0 (4.97)

whose solution substituted into (4.90) gives:

dε =
(
k + g

q2

p′2

)
dp′

p′ − g
q

p′
dq

p′ (4.98a)

dη = −g
q

p′
dp′

p′ + g
dq

p′ (4.98b)

Integration of (4.98) yields:

ε = k ln
p′

p′
0
− g

q2

2p′2 ; η = g
q

p′ (4.99)

Hs(p
′, q) = kp′

(
ln

p′

p′
0
− 1

)
+ g

q2

2p′ (4.100)

where p′
0 is a reference value for the effective confining pressure p′. In order to invert

relations (4.99), free energy �s (ε, η) can be computed from Hs according to:

�s = �s (ε, η) : �s = p′ε + qη −Hs (4.101)
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yielding:

�s (ε, η) = kp′
0 exp

1

k

(
ε + η2

2g

)
; p′ = ∂�s

∂ε
; q = ∂�s

∂η
(4.102)

so that:

p′ = p′
0 exp

1

k

(
ε + η2

2g

)
; q = p′

0
η

g
exp

1

k

(
ε + η2

2g

)
(4.103)

Under triaxial stress conditions (4.86a), stress and strain invariants τ and γ defined in
(4.72) can be expressed as a function of q and η according to:

τ 2 = 1

6
q2; γ 2 = 3

8
η2 (4.104)

By expressing q and η as a function of τ and γ in the whole sequence above, potentials
Hs and �s can be used to derive the constitutive equations for any state of stress.

4.4.2 Brittle Fracture of Fluid-infiltrated Materials
Brittle materials cannot store elastic or free energy beyond some critical threshold �cr .
When the threshold is reached, brittle fracture occurs through the abrupt irreversible
release of the whole stored energy. For a brittle porous material the limit in energy
storage applies to the sole skeleton so that the failure criterion is:

�s = �cr (4.105)

The elastic energy of a dry isotropic porous material (p = 0), subjected to the mean stress
σ and undergoing the volumetric dilation ε, can be written:

�s = 1

2
σε = 1

2

σ 2

K
(4.106)

Combining (4.105) and (4.106), an intrinsic dry or skeleton compressive strength �cr can
be defined:

�cr =
√

2K�cr (4.107)

Experiments performed on brittle fluid-infiltrated materials, such as shales or con-
cretes,10 have shown that the loading at failure depended on the loading rate. Let −σ

be the strength of the mean compressive stress applied to the geomaterial sample and
increasing at constant rate

◦
σ :

−σ = ◦
σ t; ◦

σ > 0 (4.108)

In addition let �fr be the strength of the compressive stress −σ = �fr provoking

fracture. Its dependence on the loading rate
◦
σ is formally written:

�fr = f
( ◦
σ
)

(4.109)

10See for instance Rossi P., Van Mier J.G.M., Toutlemonde F., Le Maou F., Boulay C. (1994), ‘Effect of
loading rate on the strength of concrete subjected to uniaxial tension’, Materials and Structures, 27, 260–264.
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However, the dimensional consistency of the above relation requires us also to involve at
least both a characteristic time and a characteristic strength both intrinsic to the material.
The characteristic time is linked to some internal dissipative viscous process. For porous
materials a good candidate is the squirt viscous flow mechanism. According to this mech-
anism the compression of the solid grains forming the matrix generates local gradients of
the fluid pressure which in turn set the fluid in motion. The characteristic time τη scaling
the process depends on the skeleton compressibility K and on the fluid viscosity ηf , as
it concerns respectively the strength of the local gradients and the velocity of the fluid
flow. Properties K and ηf eventually combine to form the characteristic time:

τη ∝ ηf

K
(4.110)

The intrinsic strength is the skeleton compressive strength �cr defined by (4.107) so that
the characteristic time conveniently scaling the loading rate τσ is provided by:

τσ = �cr

◦
σ

(4.111)

Since ηf ,K and �cr must enter the picture, dimensional analysis (see §3.3.1) shows that
a dimensionally consistent form of (4.109) is:

�fr = �fr

�cr

= g

(
τη

τσ

)
(4.112)

In a first approach the squirt flow can be captured by considering a porous material
exhibiting a double porosity network. Considering isothermal evolutions and zero initial
conditions for the stress and the fluid pressure, constitutive poroelastic equations (4.21a)
and (4.21c) can be extended to materials exhibiting a double porosity network in the
following form:

σ = Kε − b1p1 − b2p2 (4.113a)

φ1 − φ01 = b1ε + p1

N11
+ p2

N12
(4.113b)

φ2 − φ02 = b2ε + p1

N12
+ p2

N22
(4.113c)

where we anticipated N12 = N21 owing to Maxwell’s symmetry relations. Indeed, owing
to the linear elasticity of the skeleton, its elastic or isothermal free energy can be written:

�s = 1

2
σε +

∑
α=1,2

1

2
pα(φα − φ0α)

= 1

2

(σ + b1p1 + b2p2)
2

K
+ 1

2

p2
1

N11
+ p2p1

N12
+ 1

2

p2
2

N22
(4.114)

According to the failure criterion (4.105) and (4.107) brittle fracture of the porous material
occurs when the volumetric strain and the fluid pressures fulfil the relation:

(σ + b1p1 + b2p2)
2

K
+ p2

1

N11
+ 2p2p1

N12
+ p2

2

N22
= � 2

cr

K
(4.115)
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Moreover, remarking that φ = φ1 + φ2 and taking into account the fluid pressures p1 and
p2 in the appropriate form in the stress partition theorem (4.30), the same procedure we
used in §4.2.3 allows us to extend the relations (4.35) in the form:

b1 + b2 = b = 1 − K

Ks

; 1

N12
+ 1

Nαα

= bα − φ0α

Ks

(4.116)

In §6.4.3 it will be more precisely shown that:

bα = bSα (4.117)

where Sα is the degree of saturation of the fluid associated with porous network α, that is:

Sα = φ0α

φ0
(4.118)

Finally, since the porous space is filled by the same fluid, we write:

m1 −m01

ρf
= b1ε + p1

M11
+ p2

N12
(4.119a)

m2 −m02

ρf
= b2ε + p1

N12
+ p2

M22
(4.119b)

where mα = ρf φα is the fluid mass content related to network α, ρf being the reference
fluid density. In addition we note:

1

Mαa

= 1

Nαa

+ φ0α

Kf

(4.120)

The evolutions considered here are externally undrained so that the fluid motion within
the porous material results only from an exchange of fluid mass between the two porous
networks. Fluid mass conservation then implies:

m1 +m2 = m01 +m02 (4.121)

and we write:

dm1

dt
= −dm2

dt
= −◦

r1→2 = ρf
dζ

dt
(4.122)

Combining (3.112) and (4.122) the rate dζ/dt of fluid volume exchange between the two
networks is finally governed by:

dζ

dt
= −1

η
(p1 − p2) (4.123)

where η was found in §3.6.2 to be a viscosity coefficient proportional to the fluid viscos-
ity ηf .

Prior to determining the normalized compressive stress strength at failure �fr as a
function of the loading rate parameter τη/τσ , that is the function g in (4.112), we can
determine its asymptotic values. For the sake of simplicity we assume from now on that
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the fluid flow is incompressible and that there is no coupling between the two porous
networks, resulting in:11

1

Mαa

= 1

Nαa

; 1

N12
= 0 (4.124)

• In the regime of slow loadings, that is τη/τσ � 1, the fluid exchange, which tends to
decrease the pressure difference between the two porous networks, occurs infinitely
rapidly when compared with the loading rate. As a consequence, in the limit of
infinitely slow loading τη/τσ → 0, the two pressures remain constantly equal, that
is p1 = p2. Combining the latter equality with (4.113a), (4.116)–(4.120) and (4.124),
we obtain:

σ = Kuε; p1 = p2 = −bMuε (4.125)

where:
Ku = K + b2Mu; 1

Mu

= 1

M11
+ 1

M22
(4.126)

Moduli Ku and Mu are eventually the undrained bulk modulus and the Biot modulus
as if the porous networks were forming the same and unique porous network. Brittle
fracture occurs when the criterion (4.115) is fulfilled, yielding:

�slow
f r =

√
Ku

K
(4.127)

where �slow
f r denotes the normalized compressive stress intensity provoking the

fracture in the limit of infinitely slow loading.
• In the regime of fast loadings, that is τη/τσ � 1, the fluid exchange between the two

porous networks occurs infinitely slowly when compared with the loading rate. As
a consequence, in the limit of infinitely fast loading τη/τσ →∞, there is no fluid
exchange between the two porous networks and the fluid mass content remains con-
stant in each network, that is mα = m0

α . Combining the latter equality with (4.113a),
(4.117), (4.119) and (4.124), we obtain:

σ = KU ε; pα = −bαMαaε (4.128)

where:
KU = K + b2MU ; MU = S2

1M11 + S2
2M22 (4.129)

Modulus KU is eventually the bulk modulus under conditions that are undrained
both externally and internally. Brittle fracture occurs when the criterion (4.115) is

11Consider separately two elements of porous material, each of them embedding one of the two porous
networks. The constitutive equations can be written separately:

φα − φ0α = bαεα + pα

Nαa

The assumption 1/N12 = 0 turns out to set the two porous elements in parallel so that the two elements undergo
the same volumetric dilation εα = ε1 = ε2.



ADVANCED ANALYSIS 97

fulfilled, yielding:

�
fast
f r =

√
KU

K
(4.130)

where �
fast
f r denotes the normalized compressive stress strength provoking the frac-

ture in the limit of infinitely fast loading.

Since MU > Mu it is instructive to note that �
fast

f r � �slow
f r , as is experimentally

observed. Indeed, owing to the different internal conditions of drainage, the faster the
loading regime the greater the apparent stiffness of the porous material and, consequently,
the greater the compressive stress intensity at failure supplying the same critical energy
to the skeleton.12

The determination of �fr over the whole range of loading rates, that is for any
value of τσ /τη, requires knowledge of the strain history in response to the stress history
(4.108). From (4.113a), (4.119), (4.121)–(4.124), (4.126) and (4.129), eliminating the fluid
pressures p1 and p2 to the benefit of ε and σ , we finally derive:

ε + τη
dε

dt
= σ

Ku

+ τη

KU

dσ

dt
(4.131)

where the characteristic time τη is eventually identified as:

τη = η

M11 +M22
× KU

Ku

(4.132)

Also eliminating the fluid pressures in the failure criterion (4.115), some added calcu-
lations carried out with (4.113a), (4.116)–(4.119), (4.121), (4.124), (4.126) and (4.129)
provide the failure criterion in the form:

1

KU −Ku

(
1

2
KuKUε

2 −Kuεσ + 1

2
σ 2
)
= 1

2

� 2
cr

K
(4.133)

Substitution of (4.108) into (4.131) leads to the differential equation:

ε + τη

τσ

dε

dt
= K

Ku

t + K

KU

τη

τσ
(4.134)

where we let:
ε = − Kε

�cr

; t = t

τσ
(4.135)

With zero initial conditions the solution of (4.134) is:

ε = K

Ku

t − τη

τσ

(
K

Ku

− K

KU

)[
1 − exp

(
−τσ

τη
t

)]
(4.136)

12This phenomenon can also be encountered at the scale of the structure as for instance in the analysis
of the borehole breakdown. See Garagash D., Detournay E. (1997), ‘An analysis of the influence of the
pressurization rate on the borehole breakdown pressure’, Journal of Solids and Structures, 34, (24), 3099–3118,
which constituted the starting point of the analysis presented in this section.
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Substitution of (4.108) into (4.133) and use of (4.135) give the failure criterion for the
problem at hand in the form:

ε2 − 2
K

KU

εt + K2

KuKU

t
2 = K

Ku

− K

KU

(4.137)

The dimensionless compressive stress intensity �fr provoking the fracture satisfies
�fr = tf r where tf r is the dimensionless time at which fracture occurs. The latter
has to satisfy (4.136) and (4.137) simultaneously so that �fr is eventually given by the
non-linear equation:

� 2
f r −
(
�slow

f r

)2(
�

fast
f r

)2 − (�slow
f r

)2
= 1 −

(
�fr

�slow
f r

)2 {
1 − 1

�fr

τη

τσ

[
1 − exp

(
−τσ

τη
�f r

)]}2

(4.138)

whose numerical solution is illustrated in Fig. 4.4.

4.4.3 From Poroelasticity to the Swelling of Colloidal Mixtures

Colloidal mixtures can be roughly defined as the mixtures resulting from the dispersion
of interacting particles in a dispersive medium, the latter often reducing to an electrolytic
solution. In most colloidal mixtures the particle surface carries an electric charge so that
the particles interact with the electrolyte. Colloidal mixtures such as saturated clays are
known to swell dramatically when they are immersed in pure water, while the overall pore
pressure is kept constant. Such a spontaneous swelling can turn out to be detrimental. For

fast

slow
vfr − vfr

slow
vfr − vfr
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Figure 4.4: Influence of the loading rate on the stress at failure: normalized stress at failure (�f r −
�slow

f r )/(�
fast

f r −�slow
f r ) plotted against the ratio of the microdiffusion characteristic time τη and

the loading characteristic time τσ , for �slow
f r = √

2 and �
fast
f r = 2.
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instance, in petroleum or civil engineering, a hole or a tunnel bored in a clay layer can
be seriously damaged when the clay comes into contact with the drilling fluid whose salt
concentration is much lower than that of the interstitial solution. We show below how
non-linear poroelasticity can be used to represent such a swelling process caused by the
chemical activity induced by the electrostatic interaction between the charged particles of
the colloid and the electrolyte.13

The swelling pressure

At the macroscopic scale the current elementary volume d�t can be viewed as the super-
imposition of three particles: (i) the skeleton particle (s); (ii) the liquid water acting as
a solvent (w); (iii) the salt acting as a solute. The salt is an electrolyte (e) formed from
a cationic component (+) and an anionic component (−). The surface of the particles
forming the internal solid walls of the porous network is electrically charged so that the
electroneutrality holds only at the scale of the elementary volume d�t , the excess of
charge of the electrolyte counterbalancing the charge of the particles. The inner solution
is chemically active owing to the electrical interaction occurring between the electrolyte
and the charged particle surface. Neglecting the activity of the liquid water in compar-
ison with the electrolyte that of and restricting consideration to isothermal infinitesimal
volumetric transformations, we apply (3.121) in the form:

σ dε + pw dφ + pe d

(
φ

A

)
− d�s = 0 (4.139)

In (4.139), A > 1 stands for the electrolytic activity (see (3.117)) capturing the above-
mentioned electrical long-range interaction whose energy is included in the skeleton free
energy �s (see §3.6.3 for more details). Assuming in addition that the solid matrix does
not undergo volumetric changes, as is actually the case for the platelets forming the clay
particles, we substitute dφ = dε in (4.139), yielding:

(σ + pw) dε + pe d

(
φ

A

)
− d�s = 0 (4.140)

Alternatively, letting Gs = �s − pe(φ/A), we write:

(σ + pw) dε − φ

A
dpe − dGs = 0 (4.141)

providing the state equations in the form:

Gs = Gs(ε, pe) : σ + pw = ∂Gs

∂ε
; φ

A
= −∂Gs

∂pe

(4.142)

Differentiating the latter, we finally get:

d(σ + pw) = K dε − be dpe (4.143a)

d

(
φ

A

)
= be dε + dpe

N
(4.143b)

13The approach is originally due to Dormieux L., Barboux P., Coussy O., Dangla P. (1995), ‘A macroscopic
modelling for the swelling phenomenon of a saturated clay’, European Journal of Mechanics A/Solids, 14, (6),
981–1004.
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Since dφ = dε, from (4.143b) we infer the instructive relations:

be = ∂ (φ/A)

∂φ
|pe;

1

N
= φ

∂ (1/A)

∂pe

|φ (4.144)

According to (4.143a), in the absence of activity, that is A = 1, we recover the value
be = 1 associated with an incompressible matrix. Hence the departure from one of tangent
Biot’s coefficient be captures the departure from ideality of the chemically active solution.

Equation (4.143a) can be rewritten in the form:

d (σ + p) = K dε − dpsw (4.145)

where p = pw + pe is the pressure solution, while psw is the swelling pressure defined by:

psw = −
∫ pe

0
(1 − be) dpe (4.146)

resulting in the independent and alternative expression for be:

be = ∂psw

∂pe

|φ +1 (4.147)

In fact, the simultaneous validity of expressions (4.144) and (4.147) lies in Maxwell’s
symmetry relations attached to state equations (4.142). When the interstitial solution of
a porous material such as a clay comes into contact with an external solution at the
same overall pressure p but at a lower salt concentration, the electrolytic thermodynamic
pressure varies negatively, that is dpe < 0, so that the swelling pressure increases, that is
dpsw |φ> 0, provided that Biot’s coefficient be is less than one as will soon be recognized,
but as can already be expected from (4.144) with A > 1 and φ < 1. If in addition the
total mean stress σ is held constant, the porous material swells, with dε = dpsw/K . On
the contrary, the application of a compressive stress increment dσ = −dpsw is required
for preventing any strain.

Chemical activity and tangent Biot’s coefficient

In order to be actually operational, expression (4.144) of Biot’s coefficient requires the
explicit expression of the electrolytic activity A. The definition (3.117) of the latter can
be specified here in the form:

1

A
= ρe

ρ
eff
e

= ρ+ + ρ−
ρ
eff
+ + ρ

eff
−

(4.148)

where the subscript eff refers to the effective solution. Let us recall that the effective
solution is defined such that the chemical potential of the actual electrolyte viewed as
a whole, or the chemical potential of its cationic and anionic components considered
separately, is equal to that of the effective solution (see §3.6.3). The question now arises
of how the overall electrolytic activity A is related to the partial activities, A+ and A−,
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of respectively the cationic component and the anionic component, that is:

1

A+
= ρ+

ρ
eff
+

; 1

A−
= ρ−

ρ
eff
−

(4.149)

The decomposition of A in terms of partial activities A+ and A− requires the analysis of
the electrostatic interaction of the anionic and cationic components with the charge carried
by the particle surface. The analysis is more conveniently carried out by introducing the
molar concentrations c+ and c− of the ionic components + or −. The latter are linked to
the mass density ρ+ or − and to the molar mass M+ or − through the relations:

c+ = ρ+
M+

; c− = ρ−
M−

(4.150)

In view of (4.149) and (4.150) partial activities A+ and A− can be equivalently expressed
in terms of molar concentrations according to:

1

A+
= c+

c
eff
+

; 1

A−
= c−

c
eff
−

(4.151)

Let s be the constant overall particle surface per unit of macroscopic initial volume
d�0;14 let q be the electric charge carried per unit of surface of the internal walls of
the porous network, and let z+ or − be the valency of the ions forming the solute. The
electroneutrality of the porous material as a whole is:

φF(z+c+ − z−c−)+ sq = 0 (4.152)

where F is the Faraday constant (9.6486 ×104 C/mol), recalling that F = N e where
N = 6.022 × 1023 is the Avogadro number and e = 1.6 × 10−19C the elementary (pro-
tonic) charge. By contrast the electroneutrality of the effective solution requires:

z+c
eff
+ − z−c

eff
− = 0 (4.153)

Combining (4.148)–(4.153) gives the decomposition:

1

A
= 1

z−M+ + z+M−

(
z−M+
A+

+ z+M−
A−

)
(4.154)

while (4.151)–(4.153) provide the relation:

φ

A+
− φ

A−
= − sq

F
× z+ + z−

z+z−
× 1

c
eff
+ + c

eff
−

(4.155)

The thermodynamic pressure pe of the electrolyte is the pressure of the electrolyte in the
effective solution, namely:

pe = RT
(
c
eff
+ + c

eff
−
)

(4.156)

14So that s/ρs(1 − φ0) is the specific surface, that is the surface per mass unit of the dry material.
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where R is the ideal gas constant (8.314 J/(mol K)). As a consequence of (4.144),
(4.154)–(4.156), the tangent Biot’s coefficient be related to the electrolyte can be similarly
obtained from the total or the partial cationic or anionic activities according to:

be = ∂ (φ/A)

∂φ
|pe=

∂(φ/A+)
∂φ

|pe=
∂(φ/A−)

∂φ
|pe (4.157)

Tangent Biot’s coefficient and the electrical double layer theory

The explicit determination of be requires us to express partial activities A+ and A− and,
consequently, the cationic and anionic concentrations c+ and c− as functions of φ, ceff+
and c

eff
− . This can be achieved by using the standard electrical double layer theory.15 To

this end we first recall that c+ and c− are averaged macroscopic concentrations. Adopting
the notation of §2.5.1, we write:

c+ = 〈fωf
(z) c+ (z)

〉 ; c− = 〈fωf
(z) c− (z)

〉
(4.158)

where c+ (z) and c− (z) are the ionic microscopic concentrations at points located at z in
the actual solution saturating the porous space ωf . From now on, for the sake of simplicity
we restrict ourselves to a 1:1 electrolyte, that is z+ = z− = 1, typically a sodium chloride
salt Na+Cl−. The molar electrochemical potential, µ̃+ or − = µ+ or −/M+ or −, of the
ionic components can be expressed in the form:

µ̃+ = RT ln c+ (z)+ FU (z) ; µ̃− = RT ln c− (z)− FU (z) (4.159)

where the first term accounts for the molecular entropy agitation while the second term
accounts for the electrostatic energy, U (z) being the local electric potential. In con-
trast to the actual solution, the effective solution is locally electroneutral and there is no
electrostatic energy contribution to the molar effective electrochemical potential µ̃eff

+ or −,

the latter reducing to the standard molar Gibbs potential g̃eff . Since ceff = c
eff
+ = c

eff
−

because of the hypothesis z+ = z− = 1 and the electroneutrality condition (4.153) of the
effective solution, we write:

µ̃
eff
+ or − = g̃

eff
+ = g̃

eff
− = g̃eff = RT ln ceff (4.160)

From the actual definition of the effective solution, we have µ̃+ or − = µ̃
eff
+ or − so that a

combination of (4.159) and (4.160) gives:

c+ (z) = ceff exp

(
−FU (z)

RT

)
; c− (z) = ceff exp

(
+FU (z)

RT

)
(4.161)

Electroneutrality condition (4.152) can now be expressed in the form:

2φFceff
〈
fωf

(z) sinh
FU (z)
RT

〉
= sq (4.162)

15See in particular Israelachvili J. (1991), Intermolecular and Surface Forces, Second Edition, Academic
Press, London.
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The determination of the macroscopic concentrations c+ and c− as a function of φ

and ceff eventually turns out to be equivalent to the determination of the electric potential
field U (z). To this end we introduce the local electric field E (z) which is derived from
U (z) according to:

E = −∇zU (4.163)

and which has to satisfy the Poisson electrostatic equation:

∇z · (εε0E) = q (4.164)

The electric potential field U (z) must therefore satisfy the field equation:

∇2
zU = − q

εε0
(4.165)

where εε0 stands for the permittivity of the medium, ε0 being the permittivity of free space
(ε0 = 8.854 × 10−12 C2 J/m) and ε, the assumed constant relative permittivity (ε = 80
at 293 K in an aqueous solution), while q is the local excess of charge, that is:

q (z) = F(c+ (z)− c− (z)) (4.166)

Taking into account the electroneutrality condition (4.152), integration of (4.165) over the
porous volume ωf and the use of the divergence theorem produce the useful relation:

φ

∫
∂ωf

(∇z · U) · nf daω = sqωf

εε0
(4.167)

Equations (4.161), (4.165) and (4.166) finally produce the celebrated Poisson–Boltzmann
equation governing the electric potential U(z):

∇2
z

(
FU (z)
RT

)
= 1

�2 sinh

(
FU (z)
RT

)
(4.168)

where � is the Debye length whose expression is:

� =
√

εε0RT

2F 2ceff
(4.169)

The Debye length scales the ‘thickness’ of the electrical double layer, that is the charged
layer close to the charged internal walls of the porous network and within which the
electric potential U (z) significantly varies (see Table 4.2 below for typical values of �).

Once the morphology of the porous space is, specified the non-linear Poisson–
Boltzmann equation (4.168) has to be solved. To this end let d be the length scaling
the current porous volume defined according to:

s × d

2
= φ (4.170)
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Table 4.2: Typical values of the parameters involved in the electric dou-
ble layer theory, in an aqueous solution at T = 293 K, for strength |q|
of the electric charge ranging from 0.01 to 0.2 C/m2

ceff (mol/l−1) � (nm) 2F�ceff (C/m−2) q (–)

10−4 30.4 5.9 × 10−4 17 − 340
10−3 9.7 1.9 × 10−3 5.4 − 107.6
10−2 3.0 5.9 × 10−3 1.70 − 34
10−1 0.96 1.9 × 10−2 0.54 − 10.8

In the case of colloidal mixtures whose solid particles are formed from platelets as
for clays, d eventually scales the averaged current distance between the particles. Indeed,
if N stands for the number of particles per unit of initial volume d�0, φ/N represents
the averaged porous volume attached to a single particle. The latter can be alternatively
assessed as s/N × d/2, since s/N represents the averaged surface of a single particle.
Let us then examine the 1D geometry where ωf reduces to the gap d lying between two
infinite planes (see Fig. 4.5), so that (4.168) is specified in the 1D form:

d2

dz2

(
FU (z)

RT

)
= sinh

(
FU (z)

RT

)
(4.171)

where:
z = z

�
: − d

2�
< z <

d

2�
(4.172)

Since the unit of surface of the two planes carries the same charge q, the problem at hand
is symmetric with respect to the midplane z = 0 where the electric field must be zero,
resulting in:

d

dz

(
FU

RT

)
|z=0= 0 (4.173)

q

2
d

2
d−

2
d

+
z

q

(a) (b)

f = s ×

s, f

Figure 4.5: Colloidal mixture with porosity φ, whose solid particles are formed from platelets
carrying the electric charge q per unit of surface and having s as overall particle surface per unit
of macroscopic volume (a), idealized by two infinitely charged plates delimiting a gap of width d

filled by the same solution (b).
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whereas relation (4.167) is specialized in the form:

d

dz

(
FU

RT

)
|z=±d/2�= ±sgn (q) q (4.174)

where sgn (q) stands for the sign of the electric charge q, while q is the normalized
strength of the latter:

q = |q|
2F �ceff

(4.175)

The operational approach to expression (4.157) of tangent Biot’s coefficient be is
required to solve the Poisson–Boltzmann equation (4.171). For this purpose, we first
introduce the notation:

ud/2 =
FU
(
d
2�

)
RT

; u0 = FU (0)

RT
(4.176)

Taking into account symmetry condition (4.173), together with (4.174) for the sign of
dU/dz, an integration of (4.171) premultiplied by d/dz(FU/RT ) gives:

z = sgn (q)

∫ FU
RT

u0

du√
2 (coshu− coshu0)

(4.177)

Expressing boundary condition (4.174) with the help of (4.177), we require u0 and ud/2
to satisfy: √

cosh2 ud/2

2
− cosh2 u0

2
= 1

2
q (4.178)

The latter relation suggests the change of variable:

v =
√

cosh2 u

2
− cosh2 u0

2
(4.179)

Letting z = d/2� in (4.177), Eqs. (4.177)–(4.180) yield the relation leading to the deter-
mination of u0:

d

2�
≡ φ

s�
=
∫ 1

2 q

0

dv√
v2 + cosh2 u0

2 ×
√
v2 + sinh2 u0

2

(4.180)

The inverses 1/A+ and 1/A− of the ionic activities are now specified in the form:

1

A+
=

∫ + d
2�

− d
2�

c+ (z) dz

d
�
ceff

; 1

A−
=

∫ + d
2�

− d
2�

c− (z) dz

d
�
ceff

(4.181)
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By switching the integration variable from z to u = FU/RT , a combination of (4.161),
(4.170) and (4.177)–(4.181) provides the following expressions:

1

A+
= 1 − sgn (q)

s�

φ
× q + 2

s�

φ
×
∫ 1

2 q

0

√√√√ v2 + sinh2 u0
2

v2 + cosh2 u0
2

dv (4.182a)

1

A−
= 1 + sgn (q)

s�

φ
× q + 2

s�

φ
×
∫ 1

2 q

0

√√√√ v2 + sinh2 u0
2

v2 + cosh2 u0
2

dv (4.182b)

From the definition (4.175) of q, the upper limit of integration in the integrals involved
in (4.180) and (4.182) does not depend on φ. Use of (4.157), where we let pe = RT ceff ,
together with (4.180) and (4.182) in order to obtain the derivatives of u0 with respect to
φ, finally allows us to express Biot’s coefficient be in the semi-explicit form:

be = 1 −

∫ 1
2q

0

[
v2 + sinh2 u0

2

]− 1
2
[
v2 + cosh2 u0

2

]− 3
2
dv∫ 1

2 q

0

[
v2 + 1

2
cosh u0

] [
v2 + sinh2 u0

2

]− 3
2
[
v2 + cosh2 u0

2

]− 3
2
dv

(4.183)

The linearized approach to be consists in assuming F |U | /RT � 1 (in practice requiring
|U | to be less than 0.01 V), so that the differential system (4.171)–(4.174) approximately
integrates in the form:

FU

RT
� u0 cosh z; u0 = sgn (q)

q

sinh d
2�

(4.184)

which allows us to derive explicit expressions for c+ (z) and c− (z), and, consequently,
for 1/A+ and 1/A−. In the limit F |U |/RT � 1 it can be finally shown that the last term
in expressions (4.182) of 1/A+ or 1/A− is approximated in the form:

2
s�

φ
×
∫ 1

2 q

0

√√√√ v2 + sinh2 u0
2

v2 + cosh2 u0
2

dv �
(

1 + s�

2φ
sinh

2φ

s�

)
×
(

q

2 sinh φ
s�

)2

(4.185)

Again using (4.157) with pe = RT ceff , (4.182) and the linearized approximation give:

q

tanh φ
s�

� 1 : be � 1 − φ

2s�

cosh φ
s�

sinh3 φ
s�

× q2 (4.186)

From Maxwell’s symmetry relations the derivation of the semi-analytic expression
(4.183) or the expression (4.186) for be can be independently and alternatively carried
out from (4.147) provided that the expression of the swelling pressure psw is known.
With the aim of determining the latter, let us first notice that, since the electric field is
zero at the midplane z = 0, the upper half-layer 0 < z < d/2 does not exert long-range
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electrostatic forces upon the lower half-layer 0 > z > −d/2, and vice versa. As a con-
sequence the interaction force between the two half-layers reduces to contact forces at
z = 0. Accordingly the swelling pressure psw is the excess of pressure exerted at the mid-
plane z = 0 by the cationic and the anionic components with respect to the thermodynamic
pressure pe = 2RT ceff , resulting in:

psw = RT c+ (0)+ RT c− (0)− 2RT ceff (4.187)

yielding:

psw = [coshu0 − 1
]× pe (4.188)

Using pe = 2RT ceff , (4.169), (4.175), (4.180) or (4.184) in order to provide the deriva-
tives of u0 with respect to pe, expressions (4.183) or (4.186) can be independently
retrieved from (4.147) and (4.188), although such a procedure turns out to be quite
lengthy for the derivation of expression (4.183).

The values of u0 and be, as functions of both d/2� = φ/s� and q, can be successively
computed from (4.180) and (4.183). Typical values for the set of parameters involved in
the electrical double layer theory are given in Table 4.2. In addition, for small values of
q, (4.184) provides a convenient starting guess for u0 when carrying out the numerical
iterative procedure required to solve (4.180) with respect to u0 for given values of φ/s�

and q. In Fig. 4.6 we plotted tangent Biot’s coefficient be against the normalized electric
charge q for various values of φ/s�, the dashed lines representing the linearized approx-
imation (4.186). As the effective concentration ceff decreases, the molecular agitation
and, consequently, the electrolyte thermodynamic pressure pe = 2RT ceff decrease too.
In the meantime, the electrostatic interactions become stronger in comparison with the
effects of molecular agitation, and the normalized electric charge q increases, resulting
in an increasing ratio of the swelling pressure psw versus the electrolyte thermodynamic
pressure pe (see (4.146)). As a result, tangent Biot’s coefficient be decreases from one.

10−2 10−1 100 101
0

0.2

0.4

0.6

0.8

1

0.1 1.5

b e

0.5 1.s
f =

q
q =

2F ceff

Figure 4.6: Tangent Biot’s coefficient be plotted against the normalized electric charge q for various
values of φ/s�. The dashed lines correspond to the linearized approximation (4.186).
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At the same values of the normalized electric charge q, the smaller the value of φ/s�, the
larger the relative range of the electrostatic interactions and the smaller the value of be.

4.4.4 From Poroelasticity to Chemoelasticity and Ageing Materials

Poroelastic material subjected to a chemical reaction

Let us now address the case of a porous material within which a chemical reaction occurs,
with no mass exchange with the outside (closed system). When considering infinitesimal
elastic transformations, with no other internal variables than the extent of the reaction,
state equations (3.150) associated with such a material reduce to:

ψ = ψ(εij , T ; ξ); σij = ∂ψ

∂εij
; S = −∂ψ

∂T
; A = −∂ψ

∂ξ
(4.189)

while the kinetics of the reaction is governed by (see (3.151)):

A = η
dξ

dt
exp

(
Ea

RT

)
(4.190)

Alternatively, we can use energy G defined by:

G = σij εij − ψ (4.191)

and rewrite the state equations in the form:

G = G(σij , T ; ξ); εij = ∂G
∂σij

; S = ∂G
∂T

; A = ∂G
∂ξ

(4.192)

Differentiating (4.192) we can write:

dεij = Sijkl dσkl + αij dT + βij dξ (4.193a)

dS = αij dσij + C
dT

T
− L

dξ

T
(4.193b)

dA = βij dσij − L
dT

T
− a dξ (4.193c)

In addition to the standard thermoelastic properties, Sijkl = C−1
ijkl , αij and C, three new

properties, βij , L and a, are included. In (4.193a), βij is the ij th component of the tensor of
chemical dilation coefficients with symmetry βij = βji . As the chemical extent increases
by quantity dξ , the chemical reaction produces the strain βij dξ . The associated volumetric
strain βii dξ can be either a chemical dilation, that is βii > 0, or a chemical shrinkage,
that is βii < 0. The latter case is illustrated in Fig. 4.7 by the shrinkage undergone by
a concrete sample during its setting. In (4.193b), L is the latent heat associated with
the reaction so that the reaction in progress produces the heat Ldξ and can be either
exothermic, that is L > 0, or endothermic, that is L < 0. Finally, in (4.193c), a accounts
for the decrease in the chemical affinity per unit of reaction extent in an isostress and
isothermal experiment.
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Figure 4.7: Young’s modulus related to a concrete sample at early ages during the setting process
and plotted against the hydration degree. The hydration degree of a concrete sample ξ is the ratio
of the water mass currently bound to the hydrates to the maximal one which can be expected as
time goes to infinity. Below some percolation threshold with regard to the hydration degree, here
close to 0.1, Young’s modulus is still zero because the hydrated cement grains have not yet come
into contact to form the solid skeleton. During the setting process concrete undergoes a chemical
shrinkage due both to the capillary forces arising during the process and to Le Châtelier contraction
resulting from the difference in volume between the products (here the hydrates) and the reactants
(here the liquid water and the anhydrous cement particles). The data are from Ulm, Coussy (1998),
see footnote 17.

Poroelastic material subjected to a dissolution process

Returning to open systems, consider now a poroelastic material subjected to a dissolution
process whose thermodynamics has been examined in §3.6.3. Restricting consideration
to isothermal evolutions and isotropic materials, and accounting for the existence of the
irreversible porosity φch produced by the dissolution process, state equations (4.21) can
be extended in the form:

σ − σ0 = Kuε − bN(φ − φ0 − φch) (4.194a)

sij − s0
ij = 2µeij (4.194b)

p − p0 = N(−bε + φ − φ0 − φch) (4.194c)

where Ku = K + b2N . Skeleton poroelastic properties K, b, µ,N now depend on φch

(see for instance, in Table 4.1, the values of poroelastic properties related to intact and
asymptotically leached cement-based materials) so that relations (4.35) can be extended
in the form:

b = 1 − K(φch)

Ks

; 1

N
= b(φch)− φ0 − φch

Ks

(4.195)
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In the approximation of infinitesimal transformations, state equations (3.156) are:

�s = �s(εij , φ − φch) : σij = ∂�s

∂εij
; p = ∂�s

∂φ
(4.196)

Using (4.194), state equations (4.196) can be integrated in the form:

�s = Ws(εij , φ − φch, φch) = σ0ε + s0
ij eij + p0φ − ρ0

s µ
0
s φch

+ 1

2
Ku (φch)ε

2 − (bN) (φch)ε (φ − φ0 − φch)

+ 1

2
N(φch)(φ − φ0 − φch)

2 + µ (φch)eij eji (4.197)

From (4.197) we derive:

− ∂�s

∂φch

= ρ0
s

(
µ0
s +�µs

)
(4.198)

where ρ0
s �µs is expressed in the form:

ρ0
s �µs = p − p0 − 1

2

∂Ku

∂φch

ε2 − ∂ (bN)

∂φch

ε (φ − φ0 − φch)

−1

2

∂N

∂φch

(φ − φ0 − φch)
2 − ∂µ

∂φch

eij eji (4.199)

Comparing (4.198)–(4.199) and (3.167)–(3.168), �µs identifies the increase of the ini-
tial chemical potential µ0

s of the solid matrix due to the elastic energy stored during
the solid deformation. In the dissolution process the material releases this elastic energy
and softens so that the derivatives of poroelastic properties Ku, bN,µ with respect to
chemical porosity φch are negative. In fact �µs represents an averaged value within the
solid matrix. Such a use of an averaged value is relevant with regard to the analysis
of the dissolution process as long as there is no significant stress concentration, nei-
ther around possible sharply shaped faults nor along the bonds between grains as in the
pressure-dissolution context examined in the next section. Indeed, in the approximation
of infinitesimal transformations �µs turns out to be quite negligible with respect to the
initial chemical potential µ0

s of the solid matrix.

Pressure-dissolution process

According to (4.193c), the driving force of the reaction, that is the chemical affinity A,
a priori depends on the applied stress σij . Roughly speaking, A stands for the differ-
ence between the overall chemical potential of the reactants and that of the products (see
§3.6.3). In the pressure-dissolution process for instance, according to the analysis of §3.6.3
and as recalled in the previous section, A represents the difference between the chemical
potential of the solid matrix constituent subjected to the dissolution process, and the chem-
ical potential of the same constituent in solute form within the interstitial solution. When
subjected to the macroscopic external loading σij , stress locally concentrates along the
bonds between the solid grains forming the matrix. Accordingly, for closed systems sub-
jected to a pressure-dissolution process, the term βij (σkl, T , ξ)dσij in (4.193c) accounts
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for the effect of the stress concentration on the chemical potential of the matrix compo-
nent which dissolves along these bonds. In the pressure-dissolution process the kinetics
of dissolution is eventually controlled by the diffusion of the solute towards regions of
the porous space where the solid in contact is poorly stressed. Equation (4.190), where
dξ/dt can eventually be identified as the rate dφch/dt of solid volume dissolving per unit
of initial volume, can be interpreted this way. Assuming for the sake of simplicity that
tangent chemoelastic properties are constant (linear approach) and disregarding thermal
effects, we combine (4.190), (4.193a) and (4.193c) in the form:

σij = Cijkl(εkl − εvkl); σij − Cijklεvkl = ηijkl
dεvkl

dt
(4.200)

where we assumed that the reference state is stress-free and associated with a zero
affinity. In addition we note:

εvij = βij ξ ; Cijkl = S−1
ijkl

C−1
ijkl = aβijβkl; η−1

ijkl = ηβijβkl (4.201)

It is worthwhile to note that constitutive equations (4.200) are those of a material exhibit-
ing a linear viscoelastic behaviour, εvkl being the viscous strain (see Chapter 9). Based
on experimental evidence, a Nabarro–Herring-type creep16 is often assumed for the vol-
umetric strain rate, namely:

σii = k
dεii

dt
; k ∝ Ks

d2

D
(4.202)

where d is the grain diameter and D the diffusion coefficient of the solute in the interstitial
solution. Creep law (4.202) substitutes for (4.190). It finally turns out to neglect the elastic
contribution to the strain, that is to let εii � εvii , and to express affinity A as a linear
function of σii .

Chemoelastic ageing materials

The pressure-dissolution process concerns high levels of stress. In most cases the contri-
bution of the applied stress and that of the temperature to the chemical potentials can be
neglected in comparison with the energy of the chemical bonds. Accordingly we integrate
(4.193c) in the form:

A = A0 − f (ξ) (4.203)

where A0 stands for the initial affinity provoking the reaction. Substituting (4.203) into
(4.190) we derive:

M =
∫ ξ

0

η dx

A0 − f (x)
=
∫ t

0
exp

(
− Ea

RT

)
dτ (4.204)

16Nabarro F.N. (1948), ‘Report of a Conference on Strength of Solids’, Physical Society, London, 75.
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Since the mechanical tangent properties depend on ξ , the material will exhibit apparent
ageing due to the internal chemical reaction. Figure 4.7 illustrates such an apparent ageing
as it concerns the Young modulus at early ages of a concrete sample during the setting.
Owing to (4.204), instead of reaction extent ξ , the defined maturity M can conveniently
play the role of the ageing variable. Indeed, when using the right hand member of (4.204)
for its measurement, the form of M can be achieved by following the temperature history.
Two material samples having the same maturity M will exhibit the same mechanical
behaviour, irrespective of their specific temperature history.17

17The chemomechanics approach developed in this section is particularly well suited to the approach of
the ageing of concrete during the hydration process producing its setting. See Ulm F.-J., Coussy O. (1998),
‘Couplings in early-age concrete: from material modelling to structural design’, Journal of Solids and Structures,
35, (31–32), 4295–4311.



Chapter 5

Problems of Poroelasticity

This chapter is devoted to quasistatic problems of poroelasticity when the dynamic terms
are not considered. The attention mainly focuses on the linearized problems of poroe-
lasticity under the assumption of small perturbations. By choosing the displacement and
the fluid pressure as principal unknowns, the general set of field equations to be solved
irrespective of any specific problem can be firstly derived. The fluid diffusion process
is then analyzed in order to highlight the short- and long-term approximations. Finally,
standard and instructive problems of poroelasticity are solved.1

5.1 Linearized Poroelasticity Problems

5.1.1 The Hypothesis of Small Perturbations
The hypothesis of small perturbations consists in the whole set of hypotheses guaranteeing
the linearity of the problem, as far as the constitutive equations of the constituents are
not concerned. The small perturbation hypothesis mainly includes:

• The hypothesis of infinitesimal transformations:

‖∇ξ‖ � 1 (5.1)

Under this hypothesis the Lagrangian and Eulerian approaches coincide up to a first-
order approximation. In particular the linearized strain tensor ε can be substituted
for the Lagrange strain tensor � (see (1.26)).

• The hypothesis of small displacements ξ for the skeleton particles, which is:

‖ξ/L‖ � 1 (5.2)

where L is the length scaling the dimensions of the porous structure. The hypoth-
esis of small displacements allows us to merge the initial configuration and the

1For an exhaustive presentation of solved problems in linear poroelasticity see Wang H.F. (2000), Theory
of Linear Poroelasticity, Princeton Series in Geophysics, Princeton University Press.

Poromechanics O. Coussy
c© 2004 John Wiley & Sons, Ltd ISBN 0-470-84920-7
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current configuration as far as the space argument of the unknown fields is con-
cerned. This is equivalent to writing any unknown field f as a function of the
initial location X or the current location of the skeleton particle x, that is X � x,
f (X) � f (x). Similarly we note that � = �0 ≡ �t and also for the border, ∂� ≡
∂�0 ≡ ∂�t .

• The hypothesis of small variations of Lagrangian porosity, which is:∣∣∣∣φ − φ0

φ0

∣∣∣∣� 1 (5.3)

where, as in what follows, the index 0 refers to the initial value.
• The hypothesis of small variations of the fluid mass density ρf , which is:∣∣∣∣∣ρf − ρ0

f

ρ0
f

∣∣∣∣∣� 1 (5.4)

This hypothesis allows us to replace ρf by ρ0
f whenever required.

When adopting the small perturbation hypothesis and letting the body forces F be the
gravity forces g, the momentum balance is:

in � : ∇ · σ + ρg = 0 (5.5)

where ρ = ρ0
s (1 − φ0)+ ρ0

f φ0. Indeed the overall initial mass density is ρ0 = ρ0
s (1 − φ0)

+ ρ0
f φ0, while the overall current mass density per unit of initial volume d�0 is ρ =

ρ0
s (1 − φ0)+ ρf φ. Assumptions (5.3) and (5.4) allow us to set ρ = ρ0.

In the quasistatic limit Darcy’s law (3.39) requires:

V = w

ρ0
f

= k
(−∇p + ρ0

f g
)

(5.6)

Furthermore, in the limit of small perturbations the fluid continuity equation (1.67)
becomes:

∂mf

∂t
= −∇ · w (5.7)

where, as in the following, we adopted the notation ∂ (·) /∂t = (d (·) /dt) (X, t). Substi-
tution of Darcy’s law into the fluid continuity equation leads to:

∂

∂t

(
mf

ρ0
f

)
= k∇2p (5.8)

where the initial fluid mass density ρ0
f is assumed to be uniform.

Except in regard to special points of fluid injection or application of concentrated
loads, the fluid pressure is a regular function of space and ∇2p remains finite everywhere.
Equation (5.8) then shows that the derivative ∂mf /∂t has to remain finite too, so that fluid
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mass content mf cannot undergo discontinuities with respect to time. Indeed, the resistant
viscous forces associated with the fluid prevent any instantaneous displacements of the
latter. The result is that, irrespective of specific constitutive equations, the instantaneous
response of the porous medium to any external loading is undrained. We write:

mf (t = 0+) = m0
f (5.9)

where m0
f stands for the initial fluid mass content prior to the application of the loading.

5.1.2 Field Equations and Boundary Conditions

The complete linearization requires the constitutive equations of the constituents to be
linear and we add two hypotheses:

• The hypothesis of linear poroelasticity for the skeleton. With zero initial stress and
fluid pressure, we write:

σij =
(
K − 2

3
µ

)
ε δij + 2µεij − b p δij (5.10)

• The hypothesis of a linear behaviour for the fluid, which means to consider the
tangent fluid bulk modulus Kf in (4.53) as a constant.

It is instructive to note that the hypothesis of small perturbations and the hypothesis of
a linear behaviour for the constituents are not actually independent. For instance, there is
always some range of strain and pressure such as the constitutive equations of a poroelastic
skeleton that can be linearized in the form (5.10). Similarly there is always some range of
the fluid mass density variation, that is (ρf − ρ0

f )/ρ
0
f , such that Kf may be considered as

nearly constant in (4.53). However, the validity of such ranges depends upon the skeleton
and the fluid forming the porous material. For instance, this range will not be the same for
a liquid or for a gas. In addition the range of validity of the hypothesis of small variations
of any quantity can eventually be proven a posteriori, only when the linear solution has
been derived for the problem at hand.

Using (1.26) and (1.27) and substituting (5.10) into (5.5), we derive:(
K + 4

3
µ

)
∇ (∇ · ξ)− µ∇ × (∇ × ξ)− b∇p + ρg = 0 (5.11)

which is known as Navier’s equation. Under the assumption of small isothermal pertur-
bations and zero initial fluid pressure, we can integrate (4.62b) in the form:

vf = bε + p

M
(5.12)

where vf d� is the current change in fluid volume content, that is:

vf =
mf −m0

f

ρ0
f

(5.13)
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while M is the modulus defined by:

1

M
= 1

N
+ φ0

Kf

(5.14)

Substitution of (5.12) into (5.8) yields:

b
∂ε

∂t
+ 1

M

∂p

∂t
= k∇2p (5.15)

which governs the fluid diffusion through the porous medium. According to (5.9), (5.12)
and (5.13), the instantaneous undrained response can be expressed in the form:

ε(t = 0+) = − 1

bM
p(t = 0+) (5.16)

Field equations (5.11) and (5.15) have to be completed by boundary conditions on the
border ∂� of the porous structure:

• The mechanical conditions concern either the displacement field or the stress vector.
We write:

on ∂T � : σijnj = T d
i ; on ∂ξ� : ξk = ξdk (i �= k, ∂� = ∂T � ∪ ∂ξ�) (5.17)

• The hydraulic conditions concern either the fluid pressure or the fluid flow. We write:

on ∂p� : p = pd ; on ∂w� : V · n = Vd (∂� = ∂p� ∪ ∂w�) (5.18)

where T d
i and ξdk , pd and Vd , stand for the components of, respectively, the stress

vector and the displacement vector, the fluid pressure and the flow of fluid volume,
all of them being imposed on the specified part of the border ∂� of the porous
domain.

5.1.3 The Diffusion Equation
Recalling that ∇ · ξ = ε and applying the divergence operator ∇ to (5.11), we derive:(

K + 4

3
µ

)
∇2 ε − b∇2p = 0 (5.19)

which relates the volumetric dilation ε to the fluid pressure p and is known as the dilation
equation. Furthermore, the application of the Laplace operator ∇2 to (5.12) gives:

∇2vf = b∇2ε + 1

M
∇2p (5.20)

With Ku = K + b2M , (5.8), (5.19) and (5.20) combine to give the diffusion equation:

∂vf

∂t
= cf ∇2vf (5.21)
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where cf is the fluid diffusivity coefficient:

cf = kM
K + 4

3µ

Ku + 4
3µ

(5.22)

where K + 4
3µ and Ku + 4

3µ are respectively the drained and the undrained and oedo-
metric moduli (see (4.23)).

It is of interest to note that, whatever the problem considered, the same uncoupled
diffusion equation (5.21) governs the evolution of the fluid content. By contrast, the
diffusion equation (5.15) governing the fluid pressure remains generally coupled, owing
to the presence of term ∂ε/∂t . However, there is a special case of interest where the
diffusion equation for the fluid pressure p becomes uncoupled too. This is the case where
the displacement is irrotational.2 Indeed, when letting ∇ × ξ = 0 in (5.11), the latter
integrates in the form:

ε = b

K + 4
3µ

p + f (t) (5.23)

where f (t) is an integration function and where for the sake of simplicity we did not
consider the gravity forces. When the extent of the domain is infinite, both ε and p must
vanish at infinity and the integration function f (t) turns out to be zero so that:

ε = b

K + 4
3µ

p (5.24)

Substitution of (5.24) into (5.12) gives:

p = M
K + 4

3µ

Ku + 4
3µ

vf ; ε = bM

Ku + 4
3µ

vf (5.25)

Use of the first relation of (5.25) in (5.21) eventually provides the uncoupled pressure
diffusion equation:

∂p

∂t
= cf ∇2p (5.26)

5.2 Solved Problems of Poroelasticity

5.2.1 Injection of a Fluid

Point injection of fluid mass

The injection of liquid and its progressive diffusion is a problem of considerable interest
in biomechanics or environmental geotechnics. This motivates us to consider the instan-
taneous injection at time t = 0 of a fluid mass Mf or, equivalently, of a fluid volume

2See in particular Detournay E., Cheng A. H.-D. (1993), ‘Fundamentals of poroelasticity’, Comprehensive
Rock Engineering, Vol. II, ed. Hudson J., Pergamon Press, Oxford and New York.
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Vf = Mf /ρ
0
f at the origin of coordinates of a porous medium of infinite extent. Owing

to the spherical symmetry we adopt spherical coordinates (r, θ, ϕ) (see §A.3) and write
vf = vf (r, t) so that diffusion equation (5.21) is specialized in the form:

∂(rvf )

∂t
= cf

∂2(rvf )

∂r2
(5.27)

whose solution must satisfy the instantaneous injection condition:

∀r :
∫ r

0
vf (r, t) 4πr2 dr |t→0= Vf (5.28)

and can be looked for in the form:

vf = f (r, t, Vf , cf ) (5.29)

Since vf has no dimension, arguments (r, t, Vf , cf ) of f must combine to form indepen-
dent dimensionless quantities, yielding:

vf = v

(
Vf

(cf t)
3/2

,
r√
cf t

)
(5.30)

According to (5.27) and (5.28) vf depends linearly on Vf so that (5.30) is specialized in
the form:

vf = Vf

(cf t)
3/2

υ (u) ; u = r√
cf t

(5.31)

Substitution of (5.31) into (5.27) and some further calculations lead to the ordinary dif-
ferential equation:

d

du

(
u2 dυ

du
+ 1

2
u3υ

)
= 0 (5.32)

Imposing υ → 0 as u → 0, a first integration provides:

dυ

υ
= −1

2
u (5.33)

Integrating the previous equation and taking into account the instantaneous injection con-
dition (5.28)3 give

vf = Vf

(4πcf t)
3/2

exp

(
− r2

4cf t

)
(5.34)

3Using also the relation
∫∞

0 u2 exp
(
− u2

4

)
du = 2

√
π .
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In the problem at hand, the displacement field is radial and thus irrotational. Use of (5.25)
and (5.34) then yields:

p = M
K + 4

3µ

Ku + 4
3µ

× Vf

8(πcf t)
3/2

exp

(
− r2

4cf t

)
(5.35)

Letting ξ = ξ (r, t) er , the strain components can be expressed in the form (see §A.3):

εrr = ∂ξ

∂r
; εθθ = εϕϕ = ξ

r
; εij = 0 if i �= j (5.36)

Equations (5.25), (5.34) and (5.36) give:

ε = 1

r2

∂(r2ξ)

∂r
= bM

Ku + 4
3µ

× Vf

(4πcf t)
3/2

exp

(
− r2

4cf t

)
(5.37)

Owing to the symmetry, we require the displacement to vanish as r goes to zero (or
equivalently, as time goes to infinity) and we integrate (5.37) in the form:

ξ = bM

Ku + 4
3µ

× Vf

4πr2

[
erf

(
r

2
√
cf t

)
− r√

πcf t
exp

(
− r2

4cf t

)]
(5.38)

where erf (u) is the error function:

erf (u) = 2√
π

∫ u

0
exp(−λ2)dλ (5.39)

Finally the set of equations (5.35)–(5.38), together with (5.10), lead to the stress solution:

σrr = − bMµ

Ku + 4
3µ

× Vf

πr3

[
erf

(
r

2
√
cf t

)
− r√

πcf t
exp

(
− r2

4cf t

)]
(5.40)

σθθ = σϕϕ = bMµ

Ku + 4
3µ

× Vf

2πr3

×
[

erf

(
r

2
√
cf t

)
− r√

πcf t

(
1 + r2

2cf t

)
exp

(
− r2

4cf t

)]
(5.41)

In Fig. 5.1 we represent the dimensionless functions ξ(r/
√
cf t), p(r/

√
cf t), σ rr

(r/
√
cf t) and σθθ (r/

√
cf t) such as defined by:

ξ = bM

Ku + 4
3µ

× Vf

4πr2 ξ

(
r√
cf t

)
(5.42a)

p = M
K + 4

3µ

Ku + 4
3µ

× Vf

8(πcf t)
3/2

p

(
r√
cf t

)
(5.42b)
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Figure 5.1: Normalized radial displacement ξ , fluid pressure p and stresses σ rr and σθθ = σϕϕ

plotted against r/
√
cf t for the point injection problem.

σrr = bMµ

Ku + 4
3µ

× Vf

6(πcf t)
3/2

σ rr

(
r√
cf t

)
(5.42c)

σθθ = σϕϕ = bMµ

Ku + 4
3µ

× Vf

6(πcf t)
3/2

σθθ

(
r√
cf t

)
(5.42d)

Line injection of fluid mass

In petroleum engineering liquid water is often injected into a reservoir from a primary
well in order to recover the oil from a secondary well. This motivates us to consider
the injection from a cylindrical well having negligible dimensions in comparison with
those of the reservoir, so that the latter can be assimilated in a porous continuum of
infinite extent.

The injection of the fluid is uniformly performed in all directions orthogonal to the
well axis forming the Oz axis of coordinates. Owing to the cylindrical symmetry we
adopt cylindrical coordinates (r, θ, z), each quantity spatially depending on r only. There
is no fluid mass supply other than the rate provided by the injection from the well. In
addition, we require the fluid flow to reduce to zero infinitely far from the well. This is
expressed by the radiation condition rwr → 0 as r → ∞, where wr stands for the radial
component of the relative flow vector of the fluid mass. Under these conditions, applying
the fluid mass balance in integral form to a cylinder of infinite radius, we can write:∫ ∞

0
v̇f 2πr dr = q (5.43)

where v̇f stands for the time derivative of vf , while q represents the constant flow rate of
fluid injected per unit of vertical well length and per unit of initial fluid mass density ρ0

f .
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The time derivative v̇f of vf is governed by the time derivative of diffusion equation
(5.21), here written in the form (see §A.2):

∂v̇f

∂t
= cf

1

r

∂

∂r

(
r
∂v̇f

∂r

)
(r �= 0) (5.44)

We look for the solution by determining the conditions for which the differential system
formed by (5.43) and (5.44) remains invariant in the linear transformation:

v̇f = V v̇′f ; q = Qq ′; r = Rr ′; t = T t ′; cf = Cc′f (5.45)

Substitution of (5.45) into (5.43) and (5.44) leads to:

VR2

Q

∫ ∞

0
v̇′f 2πr ′ dr ′ = q ′; R2

CT

∂
(
r ′v̇′f
)

∂t ′
= c′f

∂2
(
r ′v̇′f
)

∂r ′2
(5.46)

Inspecting (5.46), we conclude that system (5.43) and (5.44) will remain invariant through
the transformation (5.45) provided that:

VR2

Q
= 1; R2

CT
= 1 (5.47)

or, equivalently:

υ = v̇f r2

q
=

v̇′f r ′2

q ′
; ς = r2

cf t
= r ′2

c′f t ′
(5.48)

so that the solution can be looked for in the form of a relation linking the two invariants
υ and ς , that is:

v̇f = q

cf t
υ (ς) (5.49)

In contrast to a sole dimensional analysis such as the one performed in the previous
section, the search for the invariants has been carried out by the direct analysis of the
governing equations. Therefore the procedure not only ensures the dimensional consis-
tency of the solution, but also explores the linear or non-linear properties of the problem
at hand. The method is quite general. For instance, if q is replaced by qtn in (5.43), t
must be replaced by t1−n in (5.49).

Substitution of (5.49) into (5.44) leads to the ordinary differential equation:

d

dς

[
ς

(
υ + 4

dυ

dς

)]
= 0 (5.50)

Requiring the order of magnitude of υ to be less than ς−1 as ς → 0 (i.e. as t →∞), a
repeated integration provides:

v̇f = q

4πcf t
exp

(
− r2

4cf t

)
(5.51)
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where the integration constant has been chosen in order to fulfil the injection condition
(5.43). Integration of (5.51) with respect to time, with the initial condition vf (r, t = 0) =
0, finally gives:

vf = q

4πcf t
E1

(
− r2

4cf t

)
; E1 (z) =

∫ ∞

z

exp (−x)

x
dx (5.52)

The integral function E1 (z) can be approximated according to:

E1 (z) � −γ − ln z; 0 < z � 1 (5.53)

where γ � 0.5772 is the Euler constant. Substitution of (5.53) into (5.52) produces the
approximation:

vf � q

2πcf t
ln

R (t)

r
; 0 <

r2

4cf t
� 1 (5.54)

where:

R (t) = 2
√

exp (−γ ) cf t (5.55)

According to approximation (5.54), R (t) represents an assessment of the current action
radius of the injection process, that is the radius beyond which no significant injection
has yet occurred.

The previous solution determines the history of the increase vf of the fluid volume
content consecutive to an injection performed at constant rate q, which starts at time
t = 0 and is carried out indefinitely. Owing to the linearity of the problem at hand, the
sudden interruption of the injection can be represented by imposing a counter-injection
of opposite intensity −q at the time T when the injection stops, yielding:

t > T vf = q

4πcf t

[
E1

(
− r2

4cf t

)
− E1

(
− r2

4cf (t − T )

)]
(5.56)

The solution to the instantaneous line injection of a finite amount of fluid mass Mf or,
equivalently, of the fluid volume Vf = Mf /ρ

0
f , is obtained by letting in (5.56):

T × q → Vf as
T
t
→ 0 (5.57)

The procedure eventually gives:

vf = Vf

4πcf t
exp

(
− r2

4cf t

)
(5.58)

which should be compared with the instantaneous point injection solution (5.34).
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The radial displacement field is irrotational and we can proceed as in the previous
section to achieve determination of the whole solution. For the instantaneous injection,
(5.25) and (5.58) combine to give the pressure solution:

p = M
K + 4

3µ

Ku + 4
3µ

× Vf

4πcf t
exp

(
− r2

4cf t

)
(5.59)

Letting ξ = ξ (r, t) er , the strain components can be expressed in the form (see §A.2):

εrr = ∂ξ

∂r
; εθθ = ξ

r
; εij = 0 if i �= j (5.60)

Equations (5.25), (5.58) and (5.60) yield:

ε = 1

r

∂ (rξ)

∂r
= bM

Ku + 4
3µ

× Vf

4πcf t
exp

(
− r2

4cf t

)
(5.61)

Owing to the symmetry we require the displacement to vanish as r goes to zero (or
equivalently, as time goes to infinity) and we integrate (5.61) in the form:

ξ = bM

Ku + 4
3µ

× Vf

2πr

[
1 − exp

(
− r2

4cf t

)]
(5.62)

Finally the set of equations (5.59)–(5.62), together with (5.10), yield:

σrr = − bMµ

Ku + 4
3µ

× Vf

πr2

[
1 − exp

(
− r2

4cf t

)]
(5.63a)

σθθ = bMµ

Ku + 4
3µ

× Vf

πr2

[
1 −
(

1 + r2

2cf t

)
exp

(
− r2

4cf t

)]
(5.63b)

σzz = − bMµ

Ku + 4
3µ

× Vf

2πcf t
exp

(
− r2

4cf t

)
(5.63c)

In Fig. 5.2 we represent the dimensionless functions ξ(r/
√
cf t), p(r/

√
cf t), σ rr

(r/
√
cf t) and σθθ (r/

√
cf t) such as defined by:

ξ = bM

Ku + 4
3µ

× Vf

2πr
ξ

(
r√
cf t

)
(5.64a)

p = M
K + 4

3µ

Ku + 4
3µ

× Vf

4πcf t
p

(
r√
cf t

)
(5.64b)

σrr = bMµ

Ku + 4
3µ

× Vf

4πcf t
σ rr

(
r√
cf t

)
(5.64c)
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Figure 5.2: Normalized radial displacement ξ, fluid pressure p and stresses σ rr , σθθ and σzz

plotted against r/
√
cf t for the line injection problem.

σθθ = bMµ

Ku + 4
3µ

× Vf

4πcf t
σ θθ

(
r√
cf t

)
(5.64d)

σzz = − bMµ

Ku + 4
3µ

× Vf

4πcf t
σ zz

(
r√
cf t

)
(5.64e)

The determination of the solution for the instantaneous injection proves to be of special
interest since it allows the determination of the solution whatever the injection conditions.
Indeed, let s (r, t) be the solution obtained by letting Vf = 1 in the instantaneous injection
solution. The solution S (r, t), in response to any injection history Vf (t), is obtained by
superposition of the infinitesimal responses dS on the successive infinitesimal injections
dVf , giving:

S (r, t) =
∫ t

0
s (r, t − u) dVf (u) (5.65)

Now, if N injection lines are present, let (rJ , θJ ) be the polar coordinates of line J , and
V

(J )
f (t) its history of injection. The solution is then given by:

S (r, t) =
J=N∑
J=1

∫ t

0
sJ (r, t − u) dV

(J )
f (u) (5.66)

where sJ (r, t) = s(ρJ (r) , t), ρJ (r) being the distance from the observed point (r, θ) to
the source (rJ , θJ ), that is:

ρJ (r) =
√
r2 + r2

J − 2rrJ cos(θ − θJ ) (5.67)

From a more mathematical point of view, the instantaneous localized injection, with
Vf = 1, turns out to solve the generalized diffusion equation:

∂vf

∂t
= cf ∇2vf + 1

2nπrn
δr=0 δt=0 (5.68)
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where δ stands for the Dirac δ-function (or delta distribution) and where n = 2 for the
point injection (previous section) and n = 1 for the line injection (this section).

5.2.2 Consolidation of a Soil Layer
When a soil layer is subjected to an extra loading, the saturating fluid undergoes an
overpressurization. Subsequently this overpressure progressively vanishes, owing to the
diffusion process of the fluid towards the boundary of the soil layer which remains drained.
In turn, the skeleton has progressively to sustain alone the extra loading and a delayed
settlement of the soil layer occurs. The whole process is the celebrated consolidation prob-
lem, principally attached to the name of Terzaghi.4 It is a key problem in soil mechanics
since an unexpected consolidation can endanger the underlying construction. A similar
problem in petroleum geophysics is the sudden release of an abnormal fluid overpressure
following the breakthrough of a reservoir layer by a drilling tool.

Consider a soil layer resting on a rigid impervious base at depth z = h, while its
upper surface at z = 0 remains drained; that is, at zero pressure if we take the hydrostatic
pressure induced by the atmospheric pressure and the gravity forces as the reference
pressure. The hydraulic boundary conditions are:

z = 0 : p = 0; z = h :
∂p

∂z
= 0 (5.69)

Beyond the instantaneous application of a vertical constant load σzz = −� at the upper
surface z = 0, the equilibrium in the vertical direction requires:

σzz = −� (5.70)

Furthermore the displacement in the soil layer is vertical, namely ξ = ξ (z, t) ez, so that
the only non-zero strain component is εzz. We write:

εzz = ε = ∂ξ

∂z
(5.71)

Constitutive equations (5.10) for σzz and the two above equations provide:

∂ξ

∂z
= ε = bp −�

K + 4
3µ

(5.72)

Combining (5.16) and (5.72) gives the instantaneous response of the soil layer:

p(z, t = 0+) = bM�

Ku + 4
3µ

; ∂ξ

∂z
(z, t = 0+) = − �

Ku + 4
3µ

(5.73)

Substitution of (5.72) into (5.15) gives:

∂p

∂t
= cf

∂2p

∂z2
(5.74)

4Terzaghi K. (1923), ‘Die Berechnung der Durchlassigkeitsziffer des Tones aus dem Verlauf der hydro-
dynamischen Spannungsercheinungen’, Sitzungsberichte Akademie der Wissenschatten, Wien Mathematisch-
Naturwisseuschaftliche Klasse, Abteilung IIa 132, 105–124.
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where cf is the diffusion coefficient (5.22). Indeed, for the problem at hand the displace-
ment field is irrotational so that (5.23) applies. The integration function f (t) in (5.23)
eventually turns out to be zero so that (5.26) is recovered.

The fluid pressure p is appropriately scaled by the initial pressure (5.73) induced by
the instantaneous loading. The depth z is scaled by the finite thickness h of the soil layer,
the latter being the relevant length required to define an overall diffusion characteristic
time τ . We write:

p = bM�

Ku + 4
3µ

p; z = hz; t = τ t; τ = h2

cf
(5.75)

Accordingly we rewrite (5.74) in the dimensionless form:

∂p

∂t
= ∂2p

∂z2
(5.76)

with the boundary and initial conditions (5.69) and (5.73) now reading:

z = 0 : p = 0; z = 1 :
∂p

∂z
= 0; t = 0 : p = 1 (5.77)

Substituting (5.75) into (5.72) and integrating over the layer thickness, while taking into
account the boundary condition ξ(z = h, t) = 0, we derive the settlement s (t) = ξ(z =
0, t) in the form:

s (t) = s∞ + (s0 − s∞)

∫ 1

0
p
(
z, t
)
dz (5.78)

In the above equation s0 stands for the instantaneous undrained settlement (p = 1), while
s∞ stands for the drained settlement achieved as time goes to infinity so that the initial
fluid overpressure has vanished (p = 0). They are expressed in the form:

s0 = �h

Ku + 4
3µ

; s∞ = �h

K + 4
3µ

(5.79)

Early time solution. The early time solution can be determined by exploring times
much smaller than the overall characteristic diffusion time τ in letting:

ϑ � 1 : t = ϑt∗; z =
√
ϑ z∗ (5.80)

so that (5.76) and (5.77) can be rewritten in the form:

∂p

∂ t∗
= ∂2p

∂z∗2
(5.81)

z∗ = 0 : p = 0; z∗ = 1√
ϑ
� 1 :

∂p

∂z∗
= 0; t∗ = 0 : p = 1 (5.82)
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For early times such as
√
ϑ � 1, (5.82) shows that the impermeability condition of the

rigid base is repelled at z∗ → ∞. At early times the diffusion process involves only the
region close to the drained upper surface where it tends to restore a zero fluid pressure.
Indeed the early time solution behaves the same as if the soil layer was semi-infinite. The
search for invariants of (5.81) and (5.82), like the one carried out in the line injection
problem, shows that the early time solution can be looked for in the form p = p(z∗/

√
t∗ =

z/
√
t), which, when substituted into (5.81) and (5.82), leads to an ordinary differential

equation whose standard solution is:

t � 1 : p = erf

(
z

2
√
t

)
(5.83)

where erf stands for the error function (5.39).
Any time solution. A general solution to (5.76) and (5.77) can be investigated in the

form of the infinite series:

p
(
z, t
) = n=∞∑

n=0

pn sin

(
(2n+ 1) π

2
z

)
× exp

(
− (2n+ 1)2 π2

4
t

)
(5.84)

where each term of the series satisfies the diffusion equation (5.76) and the boundary
conditions (5.77) at z = 0 and z = 1. The initial condition requires p (z, 0) = 1, that is:

n=∞∑
n=0

pn sin

(
(2n+ 1) π

2
z

)
= 1 (5.85)

When multiplying (5.85) by sin
(

1
2 (2m+ 1)πz

)
and integrating from 0 to 1, the left hand

side member of the resulting equation is non-zero only for n = m, giving:

pn =
4

π (2n+ 1)
(5.86)

so that:

p
(
z, t
) = n=∞∑

n=0

4

π (2n+ 1)
sin

(
(2n+ 1) π

2
z

)
× exp

(
− (2n+ 1)2 π2

4
t

)
(5.87)

In Fig. 5.3 the normalized fluid pressure p is plotted against the location z for various
normalized times t .

Substitution of (5.87) into (5.78) gives:

s (t) = s∞ + (s0 − s∞)

n=∞∑
n=0

8

π2 (2n+ 1)2
× exp

(
− (2n+ 1)2 π2

4

t

τ

)
(5.88)

providing the slope at the origin of the consolidation process in the form:

ds

dt
(t = 0+) = 2(s∞ − s0)

cf

h2
(5.89)

which can be used when aiming at the experimental assessment of the diffusivity coeffi-
cient cf .
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Figure 5.3: Normalized overpressure p during the consolidation process plotted against normalized
depth z = z/h for various normalized times t = cf t/h

2. For t = 0.1, 0.25 the dashed lines represent
the early time solution that cannot be distinguished from the exact solution for t = 0.001, 0.01.

At the layer scale the consolidation process appears as a creep process under constant
load. Invoking the linearity of the whole set of equations governing the consolidation
process, we derive the settlement due to any history � (t) of the overload in the form:

s (t) =
∫ t

0
s�=1 (t − u) d�(u) (5.90)

where s�=1 (t) is the settlement history obtained by letting � = 1 in (5.88).
At the material scale the consolidation process is due to the progressive dissipation

through fluid diffusion of the overpressure induced by the instantaneous applied load.
Under constant load � , the energy required for the fluid to diffuse against the resistant
viscous forces is supplied by a part of the elastic free energy instantaneously stored in the
skeleton and the compressible fluid. Indeed, the energy Df = ∫∞0 dt

∫
�
ϕf d�, which

is dissipated through the fluid conduction throughout the whole consolidation process, is
specialized in the form (see §3.3.1 for the expression of ϕf ):

Df =
(

3bM�

3Ku + 4µ

)2
kτ

h
× I; I =

∫ ∞

0
dt

∫ 1

0

(
∂p

∂z

)2

dz (5.91)

Integrating by parts with respect to space, making use of (5.76) and (5.77) and reversing
the integration order, we successively derive:

I =
∫ ∞

0
dt

([
∂p

∂z
p

]1
0
−
∫ 1

0

∂2p

∂z2
p dz

)
= −
∫ ∞

0
dt

∫ 1

0

∂p

∂t
p dz = 1

2
(5.92)
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Figure 5.4: Analysis of the dissipated energy in the consolidation process. The path with an arrow
represents a drained unloading process that would be performed infinitely slowly in order to keep
the fluid at zero pressure and so that no dissipation occurs. The energy picture as sketched is
analogous to the one relative to the creep process (see Fig. 9.1).

With the help of (5.79) the factor affecting I in expression (5.91) for Df can be identified
as �s∞ −�s0. Collecting the above results, we finally write:

Df = 1

2
�s∞ − 1

2
�s0 (5.93)

The interpretation of dissipation Df can be more easily grasped through the decomposition
Df = 1

2�s0 + (�s∞ −�s0)− 1
2�s∞. The first term 1

2�s0 accounts for the elastic
energy stored by both the skeleton and the compressible fluid during the instantaneous
application of the load, that is between t = 0− and t = 0+. The second term �s∞ −�s0
accounts for the external mechanical work supplied to the layer from t = 0+ to t →∞.

The expression for the dissipation is eventually obtained by subtracting the last term
1
2�s∞ which represents the (elastic) free energy finally stored by the sole skeleton at
the end of the consolidation process. This is sketched in Fig. 5.4 where the path with an
arrow represents a drained unloading process that would be performed infinitely slowly
in order to keep the fluid at zero pressure and avoid any dissipation.

5.2.3 Drilling of a Borehole

Another problem of special interest in petroleum engineering is the drilling of a vertical
borehole in a porous layer subjected to the weight of the upper layers. In a first approach
the drilling can be considered as instantaneous, while the effect of the upper layers is
accounted for through a hydrostatic initial stress field.

Owing to the cylindrical symmetry we adopt cylindrical coordinates (r, θ, z), each
quantity spatially depending only on r. Since the domain is infinite and the displacement
is radial and thus irrotational, diffusion equation (5.26) applies to the difference of fluid
pressure p − p0 induced by the drilling of the borehole with respect to the initial pressure
p0. We write:

∂(p − p0)

∂t
= cf

1

r

∂

∂r

(
r
∂(p − p0)

∂r

)
(5.94)
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to which we add the initial and boundary conditions:

p (r, t = 0)− p0 = 0; p (r = a, t)− p0 = p1 − p0 (5.95)

where a is the borehole radius and p1 is the fluid pressure on the wall of the borehole
after drilling.

Let f ∗ (r, s) be the Laplace transform with respect to time of the function f (r, t)

according to:

f ∗ (r, s) =
∫ ∞

0
f (r, t) exp (−st) dt (5.96)

Applying the Laplace transform to (5.94) and (5.95) yields:

1

r

∂

∂r

(
r
∂(p − p0)

∗

∂r

)
− s

cf
(p − p0)

∗ = 0; p∗ (r = a, s)− p0 = p1 − p0

s
(5.97)

whose solution, which is bounded at infinity, is:

(p − p0)
∗ = (p1 − p0)

K0(r
√
s/cf )

s K0(a
√
s/cf )

(5.98)

where Kn is the modified Bessel function of the second kind and order n, while
√
s stands

for the square root of s having a positive real part. Returning to the time domain, we
derive:

p (r, t) = p0 + (p1 − p0) p (r, t) (5.99)

where p (r, t) is the inverse Laplace transform of the following function p∗ (s, t):

p∗ (s, t) = K0(r
√
s/cf )

s K0(a
√
s/cf )

(5.100)

Based on standard inversion techniques of the Laplace transform, further calculations
allow us to express p (r, t) in the form:

p (r, t) = 1 − 2

π

∫ ∞

0

J0 (ν)Y0
(
ν r
a

)− J0
(
ν r
a

)
Y0 (ν)

J2
0 (ν)+ Y2

0 (ν)
exp

(
−cf t

ν2

a2

)
dν

ν
(5.101)

where Jn and Yn stand for the Bessel functions of order n, respectively, of the first and
second kind.

The only non-zero component is the radial one, namely ξ = ξ (r, t) er , so that the
displacement is irrotational and (5.24) applies. Combining of the latter with (5.60) and
(5.98) gives:

ε∗ = 1

r

d(rξ∗)
dr

= b(p1 − p0)

K + 4
3µ

× K0(r
√
s/cf )

s K0(a
√
s/cf )

(5.102)
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Using the relation:

1

x

d(xK1)

dx
= −K0 (x) (5.103)

we integrate (5.102) in the form:

ξ∗ = b(p1 − p0)

K + 4
3µ

×
√
cf

s
√
sK0(a
√
s/cf )

(a
r
v (s)− K1(r

√
s/cf )
)

(5.104)

where v (s) is a yet unknown function.
Let � be the strength of the hydrostatic stress due to the weight of the upper layers,

so that the initial stress prior to drilling can be expressed in the form:

σij (r, t = 0) = −� δij ; � > 0 (5.105)

After the drilling, the fluid pressure p1 applies to the wall newly created of the borehole.
The boundary condition related to the stress and its Laplace transform are:

σrr (r = a, t) = −p1; σ ∗
rr (r = a, s) = −p1

s
(5.106)

Taking into account the non-zero initial conditions (5.105), the Laplace transform of (5.10)
where we use (5.60) gives for the radial stress:

σ ∗
rr (r, s) = −�

s
− 2µ

ξ∗

r
(5.107)

Equations (5.104), (5.106) and (5.107) allow us to determine the unknown function v (s),
resulting in:

ξ∗ = p1 −�

2µs

a2

r
+ b(p1 − p0)

K + 4
3µ

× a
√
cf

s
√
s K0(a

√
s/cf )

×
(

1

r
K1(a
√
s/cf )− 1

a
K1(r
√
s/cf )

)
(5.108)

Returning to the time domain, we derive:

ξ (r, t) = p1 −�

2µ

a2

r
+ a

b(p1 − p0)

K + 4
3µ

ξ (r, t) (5.109)

with ξ (r, t) the inverse Laplace transform of function ξ
∗
(s, t):

ξ
∗
(s, t) =

√
cf

s
√
s K0(a

√
s/cf )

(
1

r
K1(a
√
s/cf )− 1

a
K1(r
√
s/cf )

)
(5.110)
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Based on standard inversion techniques of Laplace transforms and on the asymptotic
properties of Bessel functions,5 further calculations allow us to express ξ (r, t) in the form:

ξ (r, t) = 1

2

( r
a
− a

r

)
+ 2

π

∫ ∞

0

[
J1
(
r
a

)− r
a

J1 (ν)
]

Y0 (ν)−
[
Y1
(
r
a

)− r
a

Y1 (ν)
]

J0 (ν)

J2
0 (ν)+ Y2

0 (ν)

× exp

(
−cf t

ν2

a2

)
dν

ν2
(5.111)

Finally, with the help of (5.10), (5.24) and (5.60), the stresses can be expressed in the
form:

σrr = −� − 2µ
ξ

r
(5.112a)

σθθ = −� − 2bµ

K + 4
3µ

(p − p0)+ 2µ
ξ

r
(5.112b)

σzz = −� − 2bµ

K + 4
3µ

(p − p0) (5.112c)

The near-field/long-term solution is:

cf t

(r − a)2 � 1 : p (r, t) � 1; ξ (r, t) � 1

2

( r
a
− a

r

)
(5.113)

The early time solution can be obtained by using the equivalence cf t/a
2 → 0 ⇐⇒

a2s/cf →∞. An expansion of expressions (5.100) and (5.110) for p∗ (s, t) and ξ
∗
(s, t)

with respect to a2s/cf →∞ can be obtained by using standard asymptotic expansions
of Bessel functions. Returning to the time domain, we eventually obtain the early time
solution in the form:

t � τ = a2

cf
:

p (r, t) =
√

a

r

[
1 − erf

(
r − a

2
√
cf t

)]
− 1

8

√
a

r

r − a

2r

×
{

2√
π

√
cf t

a
exp

(
− (r − a)2

4cf t

)
− r − a

a

[
1 − erf

(
r − a

2
√
cf t

)]}
(5.114)

ξ (r, t) = 2√
π

√
cf t

r
+
√

a

r

×
{
r − a

a

[
1 − erf

(
r − a

2
√
cf t

)]
− 2√

π

√
cf t

a
exp

(
− (r − a)2

4cf t

)}
(5.115)

5See for instance Handbook of mathematical functions (1964), ed. Abramowitz M. and Stegun I.A., Dover,
New York.
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Figure 5.5: Normalized variations of fluid pressure p and radial displacement ξ as functions of the
normalized radius r/a for increasing normalized times cf t/a

2.

where erf stands for the error function (5.39). For t = 0 we found that p (r, t) and
ξ (r, t) are zero. In fact, the instantaneous drilling of the borehole does not induce any
instantaneous variation of the fluid pressure, nor volumetric change, since ε is proportional
to the variation of the fluid pressure. Indeed the instantaneous response of the surrounding
porous medium to the drilling of the borehole is undrained and corresponds to the standard
elastic solution, that is:

ξ(r, t = 0+) = p1 −�

2µ

a2

r
(5.116)

As a consequence, according to (5.99) and (5.109), functions p (r, t) and ξ (r, t) capture
the evolution of the fluid pressure and of the displacement beyond the instantaneous
undrained response. In Fig. 5.5 we plot the early time variations of p (r, t) and ξ (r, t)

against the dimensionless radius r/a, for increasing values of time normalized by the
characteristic diffusion time a2/cf .

5.3 Thermoporoelasticity Problems

5.3.1 Field Equations

The previous linear analysis can be extended in order to include thermal effects. Under
the assumption of small perturbations we first rewrite the thermal equation (3.36) in the
form:

T

(
∂S

∂t
+ ∇ · (sf w)

)
= −∇ · q +�M (5.117)

We now assume small variations of temperature such as |T − T0| /T0 � 1, in order to
replace T by T0 whenever required. Dissipation �M of mechanical energy occurs only
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through fluid flow so that �M � ϕf = V2/k (see (3.40)). Use of continuity equation (5.7),
together with substitution of Fourier’s law (3.57) into (5.117), gives:

T

(
∂S

∂t
− sf

∂mf

∂t

)
= κ∇2T − ρf T0V · ∇sf + V2

k
(5.118)

A complete linearization requires us to integrate the second of fluid state equations (4.53)
in the form:

sf − s0
f = −3αf

p − p0

ρ0
f

+ Cp

T0
(T − T0) (5.119)

which, substituted into (5.118), yields:

T

(
∂S

∂t
− sf

∂mf

∂t

)
= κ∇2T − ρf CpV · ∇T + 1

k
(1 − 3αf T0)V2 (5.120)

The complete linearization can eventually be performed provided that the last two terms
on the right hand side of (5.120) can be neglected with respect to the first term. This can
be achieved under the twofold assumption:

Pe = ρf CpLVd

κ
� 1; Br = 1 − 3αf T0

κkθd
(LVd)2 � 1 (5.121)

where L, Vd and θd stand for a characteristic length, a characteristic fluid flow and a
characteristic difference of temperature associated with the problem at hand, respectively.
Pe is the Péclet number and quantifies the order of magnitude of the heat convectively
transported by the fluid in comparison with the heat supplied by diffusion through the
porous medium. Br is the Brinkman number and quantifies the order of magnitude of
the heat source due to the viscous dissipation in comparison with the heat supplied by
conduction. When both numbers are much less than one, the heat is mainly supplied by
diffusion and (5.120) reduces to:

T

(
∂S

∂t
− sf

∂mf

∂t

)
= κ∇2θ (5.122)

where θ = T − T0 represents the temperature variation, the initial temperature T0 being
assumed constant within the medium.

Linear (isotropic) thermoporoelastic constitutive equations are obtained by integrating
(4.62a) and (4.62b) in the form:

σij =
(
K − 2

3
µ

)
εδij + 2µεij − bpδij − 3αKθδij (5.123a)

vf = bε + p

M
− 3αmθ (5.123b)

Using (1.26) and (1.27) and substituting (5.123a) into (5.5), we derive:(
K + 4

3
µ

)
∇ (∇ · ξ)− µ∇ × (∇ × ξ)− b∇p − 3αK∇θ + ρg = 0 (5.124)
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Use of definition (5.13) and substitution of (5.123b) into (5.8) furnish:

b
∂ε

∂t
+ 1

M

∂p

∂t
− 3αm

∂θ

∂t
= k∇2p (5.125)

Finally substitution of constitutive equation (4.62c), that is:

dS = sf dmf + 3αKdε − 3αm dp + Cd

dT

T
(5.126)

into (5.122) gives:

3αT0K
∂ε

∂t
− 3αmT0

∂p

∂t
+ Cd

∂θ

∂t
= κ∇2θ (5.127)

The mechanical and hydraulic boundary conditions (5.17) and (5.18) have then to be
completed by the thermal boundary conditions:

on ∂θ� : θ = θd; on ∂q� : q · n = qd (∂� = ∂θ� ∪ ∂q�) (5.128)

5.3.2 Half-space Subjected to a Change in Temperature

Let us illustrate the thermo/hydro/mechanical couplings which can be encountered by
considering the following instructive problem.6 At time t = 0 a temperature variation θd

is suddenly applied at the border x = 0 of a semi-infinite porous medium lying in the
region x ≥ 0, the border remaining drained and free of stress. The initial and boundary
conditions read:

t = 0 : σxx = p = θ = 0; x = 0 : σxx = p = 0, θ = θd (5.129)

The mechanical equilibrium requires:

σxx = 0 (5.130)

Moreover, the displacement is unidimensional, namely ξ = ξ (z, t) ex , so that the only
non-zero strain component is εxx . We write:

εxx = ε = ∂ξ

∂x
(5.131)

Use of (5.123a) and the two equations above yield:

∂ξ

∂x
= ε = bp + 3αKθ

K + 4
3µ

(5.132)

6For thermoporoelastic problems see in particular McTigue D.F. (1986), ‘Thermoelastic response of fluid-
saturated porous rock’, Journal of Geophysical Research, 91, 9533–9542.
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Substituting (5.132) into the 1D forms of (5.125) and (5.127), we derive:7

1

cf

∂p

∂t
+ d

k

∂θ

∂t
= ∂2p

∂x2 (5.133)

dT0

κ

∂p

∂t
+ 1

cθ

∂θ

∂t
= ∂2θ

∂x2
(5.134)

where cf is the diffusion coefficient given by (5.22) and where we note:

d

k
= 3αKθ

K + 4
3µ

− 3αm; 1

cθ
= 1

κ

(
Cd + 9α2K2T0

K + 4
3µ

)
� Cd

κ
(5.135)

Letting p = pd p where:

pd = cf d

k
θd (5.136)

and θ = θd θ , we can rewrite (5.133) and (5.134) in the form:

∂p

∂t
+ ∂θ

∂t
= cf

∂2p

∂x2
(5.137)

cf cθ
d2T0

kκ

∂p

∂t
+ ∂θ

∂t
= cθ

∂2θ

∂x2
(5.138)

The first term on the left hand side of (5.138) accounts for the latent heat associated
with the skeleton and the fluid volumetric expansions. It turns out be negligible under
the condition cf cθ (d

2T0/kκ) � 1, the latter being generally fulfilled for the usual porous
materials. Neglecting the first term in (5.138), the latter reduces to the standard uncoupled
thermal diffusion equation whose solution meeting the initial and boundary conditions
(5.129) is:

θ = 1 − erf

(
x

2
√
cθ t

)
(5.139)

where erf stands for the error function (5.39). Substituting (5.139) into (5.137) and solving
the resulting equation with initial and boundary conditions (5.129), we finally derive:

p =
(

1 − cf

cθ

)−1 [
erf

(
x

2
√
cf t

)
− erf

(
x

2
√
cθ t

)]
(5.140)

7Whatever the problem at hand, by extending the analysis of §5.1.3 to account for thermal effects, it can
be shown more generally that:

(
1
c

dT0
κ

d
k

1
cθ

) ∂vf
∂t

∂
(
S−s0

f mf

)
∂t

 =
( ∇2vf

∇2
(
S − s0

f mf

) )
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Figure 5.6: Normalized fluid pressure induced by a thermal loading applied on the border of a
half-space. The profiles p are plotted against x/

√
cθ t for different values of the ratio cf /cθ of

the hydraulic and the thermal diffusivities. The dashed curve represents the peak of fluid pressure
obtained when varying the ratio cf /cθ .

For cf /cθ → 0, no fluid diffusion occurs and, consequently, no time lag occurs between
the change in temperature and the change in fluid pressure. The mechanical response is
undrained and p = θ everywhere. In contrast, for cf /cθ → ∞, the fluid diffusion occurs
infinitely rapidly in comparison with the thermal diffusion. The response is drained and
p = 0 everywhere. For intermediate values of cf /cθ a peak of fluid pressure propagates
within the porous medium, whose location xmax (t) nullifies the derivative of p with
respect to x, yielding:

xmax (t) = 2
√
χt where χ = cf cθ

cf − cθ
ln
√
cf /cθ (5.141)

In Fig. 5.6 we present the normalized fluid pressure profiles p(x/
√
cθ t) and the curve

pmax = p(xmax/
√
cθ t) of the peak of fluid pressure obtained when varying the diffusivity

ratio cf /cθ .

5.4 Advanced Analysis

5.4.1 Uniqueness of Solution
Theorem of virtual work with two fields

Let V∗ be any virtual velocity field of the skeleton particles and let ε̇∗ be the associate
virtual strain rate according to:

ε̇∗ = 1

2

[∇V∗ + t∇V∗] (5.142)
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Multiplication of momentum equation (5.5) by V∗ and integration of the resulting equation
over volume � give:∫

�

σ : ε̇∗ d� =
∫
∂�

T · V∗ da (σ · n = T) (5.143)

where, for the sake of simplicity, we did not consider body forces.
Similarly let V∗ = w∗/ρ0

f be any virtual filtration vector and let v̇∗f = ṁ∗
f /ρ

0
f be the

virtual rate of change in fluid volume content associated with V∗ through the continuity
equation (5.7) according to:

v̇∗f = −∇ · V∗ (5.144)

Multiplication of (5.144) by fluid pressure p and integration over volume � give:∫
�

p v̇∗f d�−
∫
�

∇p · V∗ d� =
∫
∂�

−pV∗ · n da (5.145)

Finally, adding (5.143) and (5.145) we derive:∫
�

(
σ : ε̇∗ + p v̇∗f − ∇p · V∗)d� =

∫
∂�

(T · V∗ − pV∗ · n) da (5.146)

Equation (5.146) represents the theorem of virtual work with two fields, V∗ and V∗,
stating that the balance of mechanical work rates extends to virtual velocity fields.

Conditions of material stability

Consider a material volume �, with no loading or fluid pressure on its border ∂�. The
conditions of material stability are the conditions ensuring that material volume � cannot
spontaneously and inexorably amplify unavoidable internal fluctuations occurring within
�. To determine these conditions, let us apply the theorem of virtual work (5.146) to
actual fluctuations ε̇∗ = ε̇ and v̇∗f = v̇f which can occur under zero boundary conditions,
that is T = p = 0. We write:∫

�

(σ : ε̇ + p v̇f )d� =
∫
�

∇p · V d� (5.147)

The right-hand member of (5.147) is negative, since it represents the integral over � of
the opposite of the positive viscous dissipation ϕf associated with the actual fluid flow
(see (3.37)). We get: ∫

�

(σ : ε̇ + p v̇f )d� ≤ 0 (5.148)

The constitutive equations of linear poroelasticity (4.60), where tangent properties are
held constant, allow us to write:

σij = ∂W

∂εij
; p = ∂W

∂vf
(5.149)
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where W(εij , vf ) is the reduced potential defined by:

W(εij , vf ) = 1

2
εijCijklεkl + 1

2
M(bij εij − vf )

2 (5.150)

so that:
σ : ε̇ + p v̇f = dW

dt
(5.151)

The reduced potential W(εij , vf ) turns out to be the elastic energy per unit of initial
volume of the mass-closed system formed from the skeleton and from the same fluid
mass as the one initially contained in volume d�0, whatever the actual fluid particles
currently contained in d�t are. Combining (5.148) and (5.151) we derive:

d

dt

∫
�

W (εij , vf )d� ≤ 0 (5.152)

The sufficient conditions of material stability are therefore:

1

2
εijCijklεkl > 0; M > 0 (5.153)

Indeed, under conditions (5.153), W(εij , vf ) has a zero lower bound, whereas it cannot
increase according to (5.152). Consequently, if fluctuations in strain and fluid content,
εij and vf , actually occur within volume �, the latter cannot, at least, spontaneously
amplify. It is noteworthy that stability conditions (5.153) do not involve the coupling
properties bij .8 For an isotropic material the stability conditions (5.153) are specialized
in the form:

K > 0, µ > 0 ⇐⇒ E > 0, −1 < ν <
1

2
; M > 0 (5.154)

As expected, they are automatically satisfied as soon as the solid matrix and the fluid
properties fulfil the material stability conditions Ks > 0, µs > 0 and Kf > 0.

Uniqueness of solution

Let (σ (t) , p (t)) and (σ ′ (t) , p′ (t)) be two possible solutions for the stress and fluid pres-
sure. Since these solutions are associated with the same boundary conditions and since the
field equations they have to satisfy are linear, the difference (σ ′ (t)− σ (t) , p′ (t)− p (t))

meets all the requirements for a solution associated with zero boundary conditions
for the stress vector and fluid pressure. Similarly, if (V (t) ,V (t)) and (V′ (t) ,V ′ (t))
denote the solution associated with (σ (t) , p (t)) and (σ ′ (t) , p′ (t)), the difference
(V′ (t)− V (t) ,V ′ (t)− V (t)) meets all the requirements for a solution associated with

8Analogously, the conditions of material stability with regard to fluctuations in temperature do not involve
the thermal dilation coefficients. They only require the positiveness of drained volumetric heat capacity Cσ

such as defined in (4.28).
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zero boundary conditions. Applying the theorem of virtual work rate (5.146) to fields
(σ ′ − σ , p′ − p) and (V′ − V,V ′ − V) leads to:∫

�

(
(σ ′ − σ ) : (ε̇′ − ε̇) + (p′ − p)

(
v̇′f − v̇f

))
d�

=
∫
∂�

(∇p′ − ∇p) · (V ′ − V) da (5.155)

Letting Lχ̇ = −∇p and χ̇ = V in (3.89) gives:

(∇p′ − ∇p) · (V ′ − V) ≤ 0 (5.156a)

so that the right hand member of (5.155) is negative. Irrespective of specific skeleton
constitutive equations, we derive:∫

�

(
(σ ′ − σ ) : (ε̇′ − ε̇) + (p′ − p)

(
v̇′f − v̇f

))
d� ≤ 0 (5.157)

Proceeding as in the previous section, from (5.157) we conclude:

d

dt

∫
�

W
(
ε′ij − εij , v

′
f − vf

)
d� ≤ 0 (5.158)

where W is still defined by (5.150). According to stability conditions (5.153), energy
W
(
ε′ij − εij , v

′
f − vf

)
is always positive as soon as ε′ �= ε and v′f �= vf . Indeed, W

can be used to express the distance between two solutions. Inequality (5.158) then shows
that the distance with regard to energy between two possible solutions can only decrease.
Consequently, since both of them must meet the same initial conditions, their distance
being zero at t = 0 remains so: the solution is unique.

5.4.2 The Beltrami–Michell Equations

The solution to poroelasticity problems can be looked for by adopting the stress com-
ponents instead of the displacement components in the set of principal unknowns. The
solution σ to choose among the stress fields satisfying the momentum equation (5.5) has
to be associated with a strain field ε through the constitutive equation according to:

εij = 1 + ν

E
(σij + bp δij )− ν

E
(σ + bp) δij (5.159)

In (5.159) the six components εij defining the symmetric strain tensor field ε are required
to respect the continuity of matter by being derived from the three components of the
displacement field ξ according to:
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εij = 1

2

(
∂ξi

∂xj
+ ∂ξj

∂xi

)
(5.160)

Successive derivations of (5.160) give:

∂2εkl

∂xi∂xj
+ ∂2εij

∂xk∂xl
= ∂2εjl

∂xi∂xk
+ ∂2εik

∂xj ∂xl
(5.161)

Conversely, successive integrations of (5.161) lead to the existence of a displacement
field ξ fulfilling (5.160). More precisely, through partial integrations it can be shown
that only three among the six relations (5.161) are actually independent provided that the
other three are satisfied on the boundary of the considered domain. Conditions (5.161)
are therefore the necessary and sufficient conditions ensuring that components εij of any
symmetric tensor field ε are actually those of a strain tensor field. Conditions (5.161) are
called the kinematical compatibility relations.

Substitution of constitutive equations (5.159) into (5.161) and use of momentum
equation (5.5) give:

∇2[(1 + ν) σij − 3σ δij
]+ 3

∂2σ

∂xi∂xj
+ b (1 − 2ν)

[
∇2p + ∂2p

∂xi∂xj

]
= 0 (5.162)

The above six equations are known as the Beltrami–Michell equations. If and only if they
are satisfied by the stress field σ , the latter being in addition the solution to momentum
equation (5.5), the kinematical compatibility of the strain field ε associated with σ through
(5.159) is automatically ensured. In many problems it can be convenient to consider the
equation resulting from the tensorial contraction of (5.162) by letting i = j . We get:

∇2σkk + 2b
1 − 2ν

1 − ν
∇2p = 0 (5.163)

Combining now constitutive equations (5.10) and (5.12), while using relation Ku =
K + b2M , we derive:

vf = b

K

(
1

3
σkk + p

B

)
(5.164)

where B is the Skempton coefficient defined by (4.68). Substitution of (5.164) into (5.21)
finally provides the diffusion equation in the form:

∂

∂t

[
1

3
σkk + p

B

]
= cf ∇2

[
1

3
σkk + p

B

]
(5.165)

Equations (5.5), (5.162) and (5.165) eventually constitute the set of field equations to be
satisfied by the stress and the fluid pressure solutions with no further reference to the
displacement field.
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5.4.3 Mandel’s Problem

In order to illustrate the stress approach to problems of linear poroelasticity developed
in the previous section, let us consider Mandel’s problem.9 A slab, of extent 2a in the x

direction and infinitely long in the z direction, is sandwiched between two rigid imper-
meable plates (see Fig. 5.7). The slab edges x = ±a are stress-free and drained. By the
intermediary of the plates a compressive force, normal to the plates in the y direction and
of intensity 2a� per unit length in the z direction, is suddenly applied to the slab and is
eventually held constant.

Owing to the problem symmetry the fields depend only on x and t . Assuming no friction
at the slab–plate interface, there is no shear so that σxy = 0 everywhere. Moreover, since
the slab edges are stress-free, equilibrium in the x direction eventually requires σxx = 0.
Furthermore, the strain is zero in the infinite z direction. Using εzz = 0 and σxx = 0 in
constitutive equations (4.25)–(4.26), we derive:

σkk = (1 + ν) σyy − (1 − 2ν) bp (5.166)

The instantaneous response of the slab is undrained everywhere so that the initial stress
is uniform. Use of (5.164) and (5.166), where we let σyy = −� and vf = 0, gives the
fluid overpressure immediately after the application of the loading. Using (4.71), the
instantaneous undrained fluid pressure p(x, t = 0+) can be expressed in the form:

p(x, t = 0+) = 1

3
B(1 + νu)� (5.167)

2a

x

y

−2va

Figure 5.7: Mandel’s problem.

9See Mandel J. (1953), ‘Consolidation des sols (étude mathématique)’, Géotechnique 3, 287–299. See
also Cheng A.H.-D., Detournay E. (1988), ‘A direct boundary element method for plane strain poroelasticity’,
International Journal of Numerical and Analytical Methods in Geomechanics, 12, 551–572, and Abousleiman
Y., Cheng A H.-D., Cui L., Detournay E., Roegiers J.-C. (1996), ‘Mandel’s problem revisited’, Géotechnique,
46, 187–195.
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The stress and the fluid overpressure are appropriately scaled by the loading strength and
the instantaneous undrained response, respectively. We note:

σ ij = σij

�
; p = p

1
3B(1 + νu)�

(5.168)

Substitution of (5.166) into (5.163) and use of (4.71) give:

∂2

∂x2

(
σyy + νu − ν

1 − ν
p

)
= 0 (5.169)

The previous equation can be integrated in the form:

σyy = σyy

(
1, t
)− νu − ν

1 − ν
p (5.170)

where the integration function σyy

(
1, t
)

has been chosen to depend only on time, since a
change from x to −x does not affect the field value. In addition, the integration function
is recognized to be σyy

(
1, t
)

in order to match the boundary condition p
(
1, t
) = 0 at

the drained edges. Substitution of (5.170) into (5.166) allows us to express σkk as a
function of σyy

(
1, t
)

and p. Substitution of the resulting expression into (5.165) while
using (4.71) and (5.167) finally provides the diffusion equation in the form:

∂

∂t

[
σyy

(
1, t
)+ 1 − νu

1 − ν
p

]
= ∂2

∂x2

[
σyy

(
1, t
)+ 1 − νu

1 − ν
p

]
(5.171)

where we note:

x = x

a
; t = cf t

a2
(5.172)

A general solution to (5.171) can be investigated in the form of the infinite series:

σyy

(
1, t
)+ 1 − νu

1 − ν
p = A0 +

n=∞∑
n=1

An cos(αnx) exp
(−α2

n t
)

(5.173)

where each term of the series satisfies the diffusion equation (5.171) and the invariance of
the solution with regard to a change from x to −x. The boundary condition p

(
1, t
) = 0

at the drained edges requires:

σyy

(
1, t
) = A0 +

n=∞∑
n=1

An cosαn exp
(−α2

nt
)

(5.174)

The set of equations (5.170), (5.173) and (5.174) allows us to express the normalized
stress in the form:

σyy

(
x, t
)

= A0 + νu − ν

1 − νu

n=∞∑
n=1

An

[
1 − ν

νu − ν
cosαn − cos(αnx)

]
exp
(−α2

n t
)

(5.175)
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Equilibrium of the slab in the y direction requires:∫ +1

0
σyy

(
x, t ≥ 0

)
dx = −1 (5.176)

Substitution of (5.175) into (5.176) gives:

A0 + νu − ν

1 − νu

n=∞∑
n=1

An

[
1 − ν

νu − ν
− tanαn

αn

]
cosαn exp

(−α2
n t
) = −1 (5.177)

This equation must hold irrespective of time values, yielding:

A0 = −1; tanαn

αn

= 1 − ν

νu − ν
(5.178)

With the help of (5.173) and (5.174), the instantaneous overpressure condition, that is
p(x, t = 0+) = 1, can be expressed in the form:

n=∞∑
n=1

An

[
cos(αnx)− cosαn

] = 1 − νu

1 − ν
(5.179)

When multiplying (5.179) by cos(αmx) and integrating, the left hand side of the resulting
equation is non-zero only for n = m, giving:

An = 2
1 − νu

1 − ν
× sinαn

αn − sinαn cosαn

(5.180)

Collecting the results, we eventually express the fluid pressure in the form:

p
(
x, t
) = 2

n=∞∑
n=1

cos(αnx)− cosαn

αn − sinαn cosαn

sinαn × exp
(−α2

n t
)

(5.181)

In Fig. 5.8 we plot the dimensionless pressure profiles p for incompressible constituents,
that is for νu = 0.5, and for two different values of the drained Poisson coefficient ν. For
small times the fluid pressure rises above the initial undrained value in the central region
of the slab. This unexpected non-monotonic behaviour can be explained by inspecting the
diffusion equation governing the fluid pressure. Using (5.171), (5.174) and (5.180), we
obtain:

∂p

∂t
− ∂2p

∂x2
= 2

n=∞∑
n=1

α2
n sinαn cosαn

αn − sinαn cosαn

exp
(−α2

n t
)

(5.182)

The right hand side of (5.182) arises from the stress application and the strain compatibility
of the slab with regard to the rigid plates. This term acts as a uniform source term in the
diffusion equation governing the fluid pressure. Close to the edges the drainage operates
immediately and, in spite of the source term, the fluid pressure is monotonically decreasing
with time. By contrast, at early times the central region is poorly drained and the source
term is the most intense. As a consequence, the fluid pressure in the central region of
the slab rises above the initial undrained value for small times. This pressure buildup is
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Figure 5.8: Pressure profiles across the slab in Mandel’s problem for incompressible constituents
and two different values of drained Poisson’s coefficient ν. At early times the fluid pressure increases
in the central region owing to the source term in the diffusion equation arising from the strain
compatibility of the slab with regard to the rigid plates.

enhanced by higher values of the drained Poisson’s coefficient ν, allowing less extension
in the x direction at the drained edges of the slab. As time passes the middle zone is
subjected to a gradient of fluid pressure increasing with time while the source term is
exponentially decreasing with time, so that the fluid pressure finally decreases everywhere.

5.4.4 Non-linear Sedimentation

Under the effect of gravity the solid particles of a suspension precipitate and progressively
accumulate on the impermeable base to constitute eventually the successive solid layers
of a porous medium. Under the weight of the overlying layers the skeleton so formed
consolidates. It results in a porosity decreasing with depth, whereas the trapped fluid,
which is subjected to a vertical gradient of pressure, flows upwards. In the meantime
the skeleton settles and the extent of the region of particles still precipitating decreases.
Finally the precipitation zone disappears and a pure self-weighted consolidation process
takes place. This roughly depicts the sedimentation process, as sketched in Fig. 5.9. The
process is central to the sedimentation of successive layers accumulating on the seafloor. It
is also often invoked to explain the non-uniformity in porosity of a concrete block resulting
from the setting of the cement particles.We will give below a non-linear unidimensional
approach to the sedimentation process. The approach is non-linear with regard to four
aspects: (i) the displacements and the strain are finite;10 (ii) the stress–strain relationship

10The approach to the consolidation in the finite transformation of the layers having already sedimented
is adapted from Bourgeois E., Dormieux L. (1996), ‘Consolidation of a non-linear poroelastic layer in finite
deformations’, European Journal of Mechanics, A/Solids, 15, (4) 575–598.
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is non-linear; (iii) the permeability depends on the current porosity; (iv) there is a moving
discontinuity between the region formed of particles still precipitating and the layers of
sediments currently consolidating.

Consider a vertical porous layer of initial thickness h0, resting on a rigid impervious
base taken as the origin of coordinates z = 0. Equilibrium in the vertical direction requires:

∂σzz

∂z
− ((1 − n) ρs + nρf )g = 0 (5.183)

while Darcy’s law is written in the form:

wz

ρf
= n
(
V

f
z − V s

z

) = k0 δ (n)

(
−∂p

∂z
− ρf g

)
(5.184)

where k0 is a reference permeability while function δ (n) accounts for the dependence
of the permeability on the Eulerian porosity (see (3.47)). We assume now that the solid
particles forming the skeleton undergo negligible volume changes so that the results
derived in §3.4.1 for the vertical effective stress σ ′

zz apply. Adopting for the e3 direction
as the vertical direction, that is z = x3, we write (3.80) in the form:

σ ′
zz = σzz + p = −E� (n) (5.185)

where E is a reference oedometric modulus (see (4.23)). Getting rid of σzz and p from
the three equations above, we derive:

wz

ρf
= k0 δ (n)

(
E
∂�

∂z
(n)+ (1 − n) (ρs − ρf )g

)
(5.186)

A skeleton particle, which was located at Z at time t = 0 (Lagrangian coordinate), is
located at z = z (Z, t) at current time t (Eulerian coordinate) (see Fig. 5.9). Letting Z =
X3, from (3.72) and (3.79) we get:

J = ∂z

∂Z
= 1 + φ − φ0 = 1 − n0

1 − n
(5.187)

Since the skeleton surface normal to the fluid flow does not undergo any change, (1.65)
reduces to wz = MZ . Combining (5.186) and (5.187) then gives:

MZ

ρf
= k0

1 − n

1 − n0
δ (n)

(
E
∂�

∂Z
(n)+ (1 − n0)(ρs − ρf )g

)
(5.188)

As the fluid flow is assumed to be incompressible, (1.64) and (1.67) allow us to write the
fluid mass conservation in the form:

ρf
∂φ

∂t
= −∂MZ

∂Z
(5.189)
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Figure 5.9: Sedimentation in dimensionless coordinates: (a) Lagrangian initial configuration;
(b) Eulerian current configuration at a time when the precipitation and the consolidation processes
are still both active; (c) Eulerian current configuration at a later time when the precipitation has
stopped and only the consolidation remains active. The solid line delimits the current height of the
column of particles already sedimented and consolidating.

In addition, since both constituents are assumed to be incompressible, the mass conser-
vation implies that the volume of skeleton particles flowing downwards is opposite to the
volume of fluid flowing upwards, that is:

V s
z = −MZ

ρf
(5.190)

Substitution of (5.188) into (5.189) and use of (5.187) eventually give:

∂

∂t

(
1

1 − n

)
+ ∂

∂Z

[
(1 − n) δ (n)

(
∂�

∂Z
(n)+ α

)]
= 0 (5.191)

where we let:

t = t

τ
; Z = Z

h0
; τ = h2

0(1 − n0)
2

k0E
; α = (1 − n0)(ρs − ρf )

gh0

E
(5.192)

During the whole process the upper skeleton particles of the sedimenting column remain
subjected to the fluid pressure exerted by the overlying fluid so that the effective stress σ ′

zz

is equal to zero at the top of the column of the skeleton particles. Assuming in addition
a uniform initial porosity, the initial and boundary conditions to be added to (5.191) are:

n | t=0 = n0; � | Z=1 = 0 (5.193)

which have to be completed by the condition expressing the impermeability of the base:(
∂�

∂Z
(n)+ α

)
| Z=0 = 0 (5.194)
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For porosities larger than some threshold ncr , the skeleton is formed of isolated particles
or isolated sets of particles subjected to the fluid pressure p, so that the intrinsic partial
stress related to both the matrix and the fluid reduces to the same hydrostatic pressure:

n ≥ ncr : σ s = σ f = −p1 (5.195)

Accordingly, (2.34) results in σzz = (1 − n) σ s
zz + nσ

f
zz = −p so that (5.185) entails

�(n ≥ ncr) = 0. For porosities lower than the above-mentioned threshold ncr , the skele-
ton is formed of jointed particles able to support stresses of their own. We finally write:

�(n ≥ ncr) = 0; �(n < ncr) > 0 (5.196)

Constitutive equation (5.196) leads us to consider a first stage where an upper zone exists
in which the particles still precipitate and the porosity remains constantly equal to the
initial uniform value n0 in order that (5.191) remains satisfied. Note that n0 cannot be
less than ncr , since otherwise the boundary condition at Z = 0 could not be initially met.
Indeed ncr is expected to be the surface porosity at the end of the sedimentation process.
Therefore we write:

1 ≥ Z > ζ
(
t
)

: n = n0 (5.197)

while (5.188) and (5.190) provide the related solid particle velocity in the form:

1 ≥ Z > ζ
(
t
)

: V s
z = −MZ

ρf
= −k0δ(n0)(1 − n0)(ρs − ρf )g (5.198)

The remaining zone ζ (t) ≥ Z ≥ 0 is governed by a consolidation process with:

n
(
Z = ζ

(
t
)
, t
) = ncr (5.199)

The surface Z = ζ (t) is therefore a surface of discontinuity with regard to the porosity.
Owing to the fluid incompressibility, the jump condition (1.78) here is specialized in the
form: [[

τ

h0

MZ

ρf
− φ

dζ

dt

]]
= 0 (5.200)

The surface of discontinuity is initially located on the base, that is ζ (0) = 0. Combining
(5.187)–(5.188) and (5.196)–(5.200) allows us to determine the condition governing the
current location ζ

(
t
)

of the moving surface of discontinuity in the initial Z configuration:(
1

1 − ncr
− 1

1 − n0

)
dζ

dt
+ (1 − ncr)δ(ncr )

∂�

∂Z
|Z=ζ−

+ α
[
(1 − ncr)δ(ncr )− (1 − n0)δ(n0)

] = 0 (5.201)

The consolidation process in the zone 0 ≤ Z ≤ ζ (t) is eventually governed by the non-
linear diffusion equation (5.191) with boundary conditions (5.194), (5.199) and (5.201).
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Once the Lagrangian porosity field n
(
Z, t
)

is known, the observable Eulerian current
porosity field n(z = z/h0, t) is determined by noting that the associated current dimen-
sionless height z

(
Z, t
)

(Eulerian coordinate) formed by the solid particles which were
initially at height Z, is provided by integrating (5.187) according to:

z
(
Z, t
) = ∫ Z

0

1 − n0

1 − n
(
Z, t
) dZ (5.202)

A quantity of interest is the dimensionless current height of solid particles, which is the
ratio h = h/h0 between the current height h and the initial height h0. The dimensionless
height history is derived from the previous equation in the form:

h
(
t
) = 1 − ζ

(
t
)+ hsed

(
t
) ; hsed

(
t
) = ∫ ζ(t)

0

1 − n0

1 − n
(
Z, t
) dZ (5.203)

where hsed
(
t
)

is the dimensionless current sedimentation height. Noting that dh/dt =
V s
z (Z = 1, t) and using (5.198), we also derive:

ζ
(
t
)
< 1 :

dh

dt
= −αδ(n0)(1 − n0)

2 (5.204)

It is therefore worthwhile to remark that the rate of decrease of the overall height of
solid particles is constant as long as a precipitation zone still exists. In addition, since at
the end of the sedimentation process the time derivative must vanish in (5.191) and the
fluid flow is zero, the asymptotic porosity field n∞

(
Z
) = n
(
Z, t →∞) can be directly

determined by solving:

∂�

∂Z
(n∞
(
Z
)
)+ α = 0; n∞

(
Z = 1

) = ncr (5.205)

The asymptotic field n∞ (Z) substituted for n
(
Z, t
)

in (5.203) leads to the determina-
tion of the asymptotic height h∞ = h

(
t →∞) irrespective of the previous height history

h
(
t < ∞). Conversely, the experimental determination of the observable Eulerian asymp-

totic porosity field n∞ (z) permits the experimental determination of the possibly unknown
function � (n). Indeed, the combination of (5.187) and (5.205) furnishes:

� (n) = −α

∫ n

ncr

1 − n∞
1 − n0

dz

dn∞
dn∞ (5.206)

For spherical particles the still unspecified functions δ (n) and � (n) can be written in
the form:

δ (n) = n3

1 − n2
; � (n) = 〈ncr − n〉3/2 (5.207)

The first relation is Kozeny–Carman’s formula (see (3.48)). The second relation, where
〈ncr − n〉 = 1

2 (|ncr − n| + ncr − n) stands for the positive part of quantity ncr − n, is
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Figure 5.10: Dimensionless overall and sedimentation heights, h and hsed , plotted against dimen-
sionless time t for different values of the ratio α of characteristic times of precipitation and
consolidation, both referring to the initial height h0. The initial porosity is n0 = 0.55 and the
critical porosity ncr = 0.5 (see (5.207)). The arrow indicates the end of the precipitation process.
The asymptotic dimensionless height h∞ is numerically found to be equal to 0.78, 0.72 and 0.65
for α = 0.05, 0.1 and 0.2 respectively.

based on Hertz’s solution to the contact between two elastic spheres subjected to a vertical
loading. Substituting (5.207) into (5.205) we derive:

ncr − n∞
(
Z
) = [α (1 − Z

)]2/3
(5.208)

In Fig. 5.10, adopting (5.207) and numerically solving the resulting sedimentation equation
(5.191), we plot the dimensionless overall and sedimentation heights h and hsed against
the dimensionless time t for various values of parameter α. Inspection of (5.191) with
definitions (5.192) reveals that parameter α is eventually the ratio of the characteristic
time associated with a pure precipitation process to the characteristic time associated with
a pure consolidation process, both times referring to the same height h0.



Chapter 6

Unsaturated Thermoporoelasticity

In many processes, such as the drying, the drainage or the imbibition of materials, the
porous space becomes filled by several fluids so that the porous material is said to be
unsaturated with regard to a reference fluid of principal concern, generally chosen in
liquid form. In most cases two fluids coexist within the porous space, either two liquids,
for instance oil and water in petroleum engineering, or a liquid and a gas, for instance
liquid water and wet air in the drying of materials. The unsaturated context introduces
new thermo/hydro/mechanical couplings mainly associated with the surface tension or the
energy related to each fluid–fluid or fluid–solid interface. They cause macroscopic effects
such as the drying shrinkage of materials that can occur at zero overall stress. The aim
of this chapter is to explore these new couplings by extending the macroscopic energy
approach to the unsaturated situation.1

6.1 Mass and Momentum Balance

6.1.1 Partial Porosities and Degree of Saturation
When the porous space is filled by several fluids referred to by index α = 1, 2, . . . Eulerian
and Lagrangian porosities n and φ can be split into partial porosities nα and φα , so that
the volume occupied by fluid α is nαd�t = φαd�0. We write:

n =
∑
α

nα; φ =
∑
α

φα (6.1)

The degree of saturation Sα relative to fluid α is defined by:

Sα = nα

n
= φα

φ
;
∑
α

Sα = 1 (6.2)

1The approach developed in this chapter is the result of a collaboration with P. Dangla. See in particular
Coussy O., Dangla P. (2002), ‘Approche énergétique du comportement des sols non saturés’, Mécanique des
Sols Non Saturés, ed. Coussy O. and Fleureau J.-M., Hermès, Paris. See also the references given in the general
bibliography.

Poromechanics O. Coussy
c© 2004 John Wiley & Sons, Ltd ISBN 0-470-84920-7



152 UNSATURATED THERMOPOROELASTICITY

Let ρα and mα be respectively the intrinsic mass density and the Lagrangian fluid mass
content related to fluid α. We write:

ραnα = ραnSα (6.3)

mα = ραφα = ραφSα (6.4)

6.1.2 Mass and Momentum Balance

Extending the notation and the results of Chapter 1, the Eulerian continuity equation
relative to fluid α is:

∂(ραnSα)

∂t
+∇x ·

(
ραnSαVα

) = 0 (6.5)

while its Lagrangian counterpart is:

dmα

dt
+ ∇X · Mα = 0 (6.6)

Adopting in the following the hypothesis of infinitesimal transformations (see Chapter 1),
the previous equation can be rewritten in the form:

dmα

dt
+∇ · wα = 0 (6.7)

where wα = ραnα(Vα − Vs) is the Eulerian relative flow vector of fluid mass related to
fluid α.

Still denoting the total stress by σ and disregarding dynamic terms (quasistatic approx-
imation), the overall momentum balance is still:

∇ · σ + ρf = 0 (6.8)

where ρ stands for the overall mass density of the porous material. With regard to the
saturated situation, in addition to the partial stresses related to the solid and the fluids, the
membrane stresses, which act along all the interfaces separating each component from
the other, will contribute to the total stress σ (see §6.6 of this chapter for further details).

6.1.3 Mass and Momentum Balance with Phase Change

We now consider the case where the fluid components are formed from a liquid (index
l), its vapour (index v) and the (dry) air (index a). Since the vapour and the air occupy
the same porous space and form the gas phase (index g), we write:

φv = φa = φg; φl + φg = φ; Sg = φg

φ
; Sl = φl

φ
(6.9)
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Owing to the possible change of the liquid into its vapour the mass balance equation
relative to each component can be written:

dml

dt
+∇ · w l = − ◦

ml→v (6.10a)

dmv

dt
+∇ · wv = ◦

ml→v (6.10b)

dma

dt
+∇ · wa = 0 (6.10c)

where
◦
ml→v stands for the rate of liquid mass changing into vapour per unit of initial

volume d�0. In addition, still excluding dynamic effects, the momentum balance equation
is written in the same way as (6.8).2

6.2 Thermodynamics

6.2.1 Energy and Entropy Balance for the Porous Material

In the context of infinitesimal and quasistatic transformations, the energy balance equation
(3.21) can be extended in the form:

dE

dt
= σ :

dε

dt
−∇ ·
(∑

α

hαwα+q

)
+ f · w (6.11)

where E is the overall density of internal energy per unit of volume, q is the overall heat
flow vector, while hα is the specific enthalpy related to fluid α.

The second law applied to the unsaturated situation turns out to extend the entropy
balance (3.23) in the form:

dS

dt
≥ −∇ ·

(∑
α

sαwα+ q
T

)
(6.12)

where S is the overall density of entropy per unit of volume, while sα is the specific
entropy related to fluid α. The first law (6.11) and second law (6.12) combine to give the
following form of the fundamental inequality:

� = �int + ϕf + ϕth ≥ 0 (6.13)

2There is an analogy between the present case, where one of the fluid components is a liquid which can
transform into its vapour, and the double porous network case where the fluid component of one network
can transform into the fluid component of the other network. The derivation of balance equations can then be
extended from the double porous network case to the phase change case. For the mass and momentum balance
see for instance §1.5.3 and §2.5.2. In particular, (2.70) can be applied in order to include dynamic effects in the
phase change case. The same remark holds for the laws of thermodynamics as developed in the next section.
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where:

�int = σ :
dε

dt
−
∑
α

gα(∇ · wα)− S
dT

dt
− d�

dt
(6.14a)

ϕth = − q
T
· ∇T (6.14b)

ϕf =
∑
α

(−(∇gα)T + f) · wα (6.14c)

where (∇gα)T stands for the gradient, taken at constant temperature, of the specific Gibbs
potential gα related to fluid α, while � = E − T is the free energy. Extending the analysis
of §3.2.3, �int is anticipated to be the dissipation related to the skeleton, while ϕf and
ϕth are the dissipations related to fluid mass and heat transfer respectively. The entropy
balance is finally expressed in the form of the thermal equation:

T

(
dS

dt
+ ∇ ·
(∑

α

sαwα

))
= −∇ · q +�M (6.15)

where �M = �int + ϕf stands for the mechanical dissipation and acts as a spontaneous
heat source term.

6.2.2 Skeleton State Equations. Averaged Fluid Pressure
and Capillary Pressure

Use of mass balance equation (6.7) allows us to rewrite �int given by (6.14a) in the form:

�int ≡ �s = σ :
dε

dt
+
∑
α

gα
dmα

dt
− S

dT

dt
− d�

dt
(6.16)

Now let �s and Ss be the skeleton free energy and entropy defined by:

�s = � −mαψα; Ss = S −mαsα (6.17)

Definitions (6.4) and (6.17), together with the fluid state equations (see §3.1.2) applied to
each fluid α, allow us to express �s in the form:

�s = σ :
dε

dt
+
∑
α

pα

dφα

dt
− Ss

dT

dt
− d�s

dt
(6.18)

The same analysis as the one performed in §3.2.3 eventually allows us to identify �s

as the mechanical dissipation associated with the skeleton. In thermoporoelasticity this
dissipation is zero and we write:

σij dεij +
∑
α

pαdφα − SsdT − d�s = 0 (6.19)
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so that the skeleton state equations of unsaturated thermoporoelasticity are:

σ = ∂�s

∂ε
; pα = ∂�s

∂φα

; Ss = −∂�s

∂T
(6.20)

Since �d�0 and Sd�0 stand respectively for the free energy and for the entropy
of the whole matter contained in volume d�t , �s and Ss are the free energy and the
entropy of the skeleton, provided that the latter, in addition to the solid matrix, includes
the interfaces between the different components. Indeed the fluid–fluid interfaces and the
solid–fluid interfaces possess their own proper interfacial energy and entropy. Consider
the usual case where the porous space is filled by two fluids, one being the wetting fluid,
α = w, and the other the non-wetting fluid, α = nw. The wetting fluid is the fluid showing
a preponderant affinity for the solid, with a contact angle θ less than 90◦ (see Fig. 6.1).
Perfect wettability corresponds to θ = 0◦ and is often met for clean porous materials
(rock, glass, etc.) and a liquid/gas saturating mixture where the gas is the non-wetting
fluid. Let γs,α be the free energy per unit of surface of the interface As,α between the
solid matrix and either the wetting fluid, that is α = w, or the non-wetting fluid, that is
α = nw. The surface entropy of the interface As,α is Ss,α = −dγs,α/dT . Similarly let
γw,nw be the free energy related to the interface Aw,nw between the wetting fluid and
the non-wetting fluid, and whose entropy is Sw,nw = −dγw,nw/dT . When the surface
free energy of an interface depends only on temperature, it is eventually identified with
the surface tension exerted along the interface. Owing to the above remarks and to the
additive character of energy, we now write:

�s = ψs + φU (6.21)

where ψs represents the free energy of the solid matrix per unit of macroscopic volume
d�0, while φU represents the overall interfacial energy per unit of porous volume d�0,
that is:

φU = γs,w as,w + γs,nw as,nw + γw,nw aw,nw − γs,was (6.22)

Non-wetting fluid (nw)Wetting fluid (w)

As, nw

As,w

Aw,nw

Aw,nw

As,nw

As,w

L

fs on L

L

Solid matrix (s)

−gw, nw nw, nw

−gs, w ns, w

−gs, nw ns, nw

∂wsq

Figure 6.1: Contact angle θ between the wetting fluid (α = w) and the non-wetting fluid (α = nw)
and surface tensions γα,β . Forces −γα,βν

α,β and force fs on L are the forces exerted conjointly by
the interfaces and the solid matrix on the triple junction line L.



156 UNSATURATED THERMOPOROELASTICITY

In (6.22), as,α or aw,nw denotes the current aera of interfaces As,α or Aw,nw while as =
as,w + aw,nw is the total aera of the solid internal walls of the porous network per unit of
volume d�0. According to expression (6.22), the complete saturation with respect to the
wetting fluid is conventionally adopted as a zero reference state for the overall interfacial
energy so that U(Sw = 1) = 0.

Since the porous space is filled only by a wetting fluid and a non-wetting fluid, that
is α = w, nw, definition (6.2) of saturation degree Sα allows us to rewrite (6.19) in the
equivalent form:

σij dεij + p∗dφ − φpcdSw − SsdT − d�s = 0 (6.23)

where p∗ is the averaged fluid pressure defined by:

p∗ = Sw pw + Snw pnw (6.24)

while pc stands for the macroscopic capillary pressure exerted on the interface between
the two fluids, that is:

pc = pnw − pw (6.25)

The state equations can be now written in the form:

σ = ∂�s

∂ε
; p∗ = ∂�s

∂φ
; φpc = −∂�s

∂Sw
; Ss = −∂�s

∂T
(6.26)

6.2.3 Thermodynamics of Porous Media with Phase Change

Consider now the case examined in §6.1.3, where a liquid–vapour phase change can
occur. Substitution of (6.10) into expression (6.14a) of dissipation �int yields:

�int = �s +�→ (6.27)

where �s is still identified from (6.18), while �→ accounts for the possible dissipation
related to the phase change:

�→ = (gl − gv)
◦
ml→v (6.28)

Since the air and the vapour occupy the same porosity φg , (6.19) reduces to:

σij dεij + pldφl + pgdφg − SsdT − d�s = 0 (6.29)

where pg is the gas pressure, that is the pressure of the vapour–air mixture:

pg = pv + pa (6.30)

Once the wetting fluid (e.g. the liquid water, w = l) and the non-wetting fluid (e.g. the wet
air, nw = g) are identified state equations (6.26), which are relative to the sole skeleton,
apply.
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The local thermodynamic equilibrium between the liquid and its vapour requires the
dissipation �→ to be zero. We write:

gl(pl, T ) = gv(pv, T ) (6.31)

Assuming that the liquid–vapour equilibrium is maintained throughout the evolution and
taking into account the fluid state equations (see §3.1.2), we differentiate (6.31), yielding:

dpl

ρl
− dpv

ρv
= (sl − sv) dT (6.32)

Let us assume that the liquid undergoes incompressible transformations and that the vapour
is an ideal gas, so that (4.54) applies with f = l, as do (4.55) and (4.57) when identifying
in the latter index f as v and pressure p as pv . Accordingly, the integration of (6.32)
gives the celebrated Kelvin’s law:

pl − patm = ρlRT

Mv

ln
pv

pvs (T )
(6.33)

where pvs (T ) is the pressure of the saturating vapour at temperature T and for the liquid
at atmospheric pressure patm, and whose expression is:

pvs (T )

pvs(T0)
= exp

{Mv

RT

[L0

T0
(T − T0)+

(
Cl
p − Cv

p

) (
T − T0 − T ln

T

T0

)]}
(6.34)

where:

L0 = T0(sv0 − sl0) (6.35)

stands for the latent heat of the phase change at temperature T0 and pl = patm (for water
and T0 = 373◦K, L0 = 2.26 106 J/K while pvs = patm). If the liquid is water, the ratio
pv/pvs (T ) is eventually identified with the relative humidity hr :

hr = pv

pvs (T )
(6.36)

6.3 Capillary Pressure Curve

6.3.1 Energy Approach to the Capillary Pressure Curve

In the non-deformable and isothermal case where εij = 0, φ = φ0 and T = T0, state
equations (6.26) reduce to:

φ0pc = −d�s

dSw
(6.37)

so that the capillary pressure depends on saturation degree only, that is:

pc = pc(Sw) (6.38)
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Figure 6.2: Typical aspect of a capillary curve when taking the capillary modulus M as the unit
for the capillary pressure. The lower curve is obtained by letting m = 0.85 in (6.40) and adopting
a zero value for the entry pressure pe, that is the pressure threshold required to make the non-
wetting fluid actually enter the porous material when starting the drainage process from complete
saturation. The hashed zone corresponds to the interface energy. The upper curve is obtained by
letting p = 1 −m in (6.41) with the same value of for m, while adopting a value of pe = 1.5M
for the entry pressure. With the same entry pressures both curves would have practically coincided.
Division of the capillary pressure values by ρwg gives the saturation profile z = z

(
Sw
)

resulting
from natural imbibition (see (6.49)).

The curve pc as a function of Sw is called the capillary pressure curve. Its general aspect
is given in Fig. 6.2. The capillary pressure decreases from a maximum value, which can
turn out to be infinite for the zero saturation Sw = 0, to a possible threshold value, the
‘entry pressure’ pe, which is the pressure required for the saturation degree Sw actually
to decrease from the complete saturation value Sw = 1. In a drainage process the entry
pressure is the minimum pressure required for the non-wetting fluid actually to enter the
material and, in fact, within the pores having the largest access radius according to the
Laplace equation (for further details see §6.6). In order to account for a possible non-zero
entry pressure pe we rewrite (6.38) in the form:

〈pc − pe〉 = Mπc(Sw); πc (1) = 0 (6.39)

where 〈pc − pe〉 stands for the positive part of pc − pe and M for a capillary modulus
or a reference pressure. Various expressions have been proposed for capturing the dimen-
sionless function πc(Sw). When the wetting fluid is water and the non-wetting fluid is
wet air, an expression often used is:3

πc(Sw) =
(
S
− 1

m
w − 1

)1−m

0 < m < 1 (6.40)

3See van Genuchten M.Th. (1980), ‘A closed-form equation for predicting the hydraulic conductivity of
unsaturated soils’, Soil Science Society of America Journal, 44, 892–898.
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or, alternatively:

πc(Sw) =
(
S−1
w − 1

)p
(6.41)

For a value of m close to one, the latter expression conveniently approaches (6.40) by
letting p = 1 −m (see Fig. 6.2).

In the non-deformable and isothermal case, the skeleton energy �s reduces to the
interfacial energy φ0U , and we rewrite (6.37) in the form:

pc = − dU

dSw
(6.42)

As sketched in Fig. 6.2, the interfacial energy U as a function of saturation Sw is deter-
mined from the capillary curve according to:

U(Sw) =
∫ 1

Sw

pc (S) dS (6.43)

In the still non-deformable, but non-isothermal, case, state equations (6.26) entail:

φ0pc = −∂�s

∂Sw
; Ss = −∂�s

∂T
(6.44)

Since the solid matrix is non-deformable we let φ = φ0 in (6.21) so that (6.44) gives:

pc = − ∂U

∂Sw
(6.45a)

Ss = −∂ψs

∂T
− φ0

∂U

∂T
= S0

s + (1 − φ0)Cs ln
T

T0
− φ0

∂U

∂T
(6.45b)

where Cs is the volumetric heat capacity of the solid matrix.4 The capillary pressure now
depends on both Sw and T , that is:

pc = pc(Sw, T ) (6.46)

with the experimental identification:

U(Sw, T ) =
∫ 1

Sw

pc (S, T ) dS (6.47)

The usual expressions of the capillary pressure curve, for example (6.40)–(6.41), can be
conveniently extended by letting:

pc = M (T ) πc(Sw)

4Since we conventionally adopted U
(
Sw = 1

) = 0 (see (6.22)) a more accurate expression than (6.45b)
would have to include the term −(dγs,w/dT )as .
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6.3.2 Capillary Pressure, Natural Imbibition and Isotherm
of Sorption

For sufficiently permeable materials, such as rocks and sands, the capillary pressure curve
can be directly determined in a drainage experiment where, starting from complete sat-
uration, the capillary pressure is increased to make the non-wetting fluid progressively
invade the porous space. Alternatively, the capillary pressure curve can be captured from
a natural imbibition experiment. In natural imbibition a dry sample lying in the upper
half-space z > 0 comes into contact with the wetting fluid along the plane z = 0, the
latter remaining at atmospheric pressure. The capillary pressure acts upwards against the
vertical gravity forces, resulting in an equilibrium imbibition profile that matches the cap-
illary pressure curve. More precisely, the vertical equilibrium of the wetting fluid in the
z direction requires:5

−∂pw

∂z
− ρwg = 0 (6.48)

At equilibrium the pressure of the non-wetting fluid, assumed to be the air, is equal to
atmospheric pressure everywhere. The height h of the saturated zone is then determined by
the integration of (6.48) with boundary conditions pw = patm at z = 0 and pw = −pe +
patm at z = h, where pe is the entry pressure involved in (6.39). For z > h the remaining
capillary fringe of imbibition is determined by the integration of (6.48), when letting
in the latter pw = −pc(Sw)+ patm and requiring the solution to match the condition
pw = −pe + patm at z = h. The procedure eventually gives:

0 < z < h = pe

ρwg
: Sw = 1

h = pe

ρwg
< z : pc(Sw)− pe = ρwg (z− h) (6.49)

According to (6.49), the saturation profile of natural imbibition z = z(Sw) is identified
with that of the capillary pressure pc = pc(Sw) represented in Fig. 6.2, provided that the
capillary pressure values are divided by ρwg. For z > h the capillary fringe of imbibition
is scaled by the characteristic length �c = M/ρwg where M is the capillary modulus (see
(6.39)). Characteristic length �c quantifies the strength of capillary effects with regard to
gravity forces.

For weakly permeable materials, such as cement-based materials and clays, the capillary
pressure that is required in the drainage experiment actually to decrease the saturation
rapidly turns out to be too important. In practice it is difficult to reach values of saturation
degree lower than 90% and, for a water liquid–wet air mixture, the capillary pressure curve
is then indirectly determined through the sorption isotherm. In a sorption experiment the
sample is maintained at thermodynamic equilibrium with the outer atmosphere whose
relative humidity hr is controlled by way of saturated salt solutions. Varying the latter
turns out to vary the vapour pressure of the outer atmosphere in equilibrium with the liquid
water forming the solutions. Between two successive values of the relative humidity, the

5Equilibrium equation (6.48) can be recovered by letting Vw = 0 and f = −gez in Darcy’s law (6.70a). It
is worthwhile to note that the equilibrium condition is the same in the saturated and the unsaturated situations.
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change in liquid water saturation is recorded by weighing the sample so that the relative
humidity can eventually be plotted as a function of the liquid water saturation Sl , yielding
the so-called sorption isotherm:

hr = hr(Sl) (6.50)

Since the wet air forming the inner gas mixture is constantly maintained at equilibrium
with the outer atmosphere, its pressure pg remains equal to the atmospheric pressure
patm. The capillary pressure pc is eventually identified with patm − pl , where pressure
pl stands for the liquid water pressure, so that (6.33) and (6.36) allow us to write:

pc = −ρlRT

Mv

lnhr (6.51)

Use of (6.50) and (6.51) finally leads to the indirect determination of the capillary pres-
sure curve pc = pc(Sl). Figure 6.3 illustrates the resulting curves when proceeding in
such a way for a cement paste. Letting patm � 0.1 MPa, the experimental data reported in
Fig. 6.3 show that the liquid water pressure pl = patm − pc within cement-based materials
becomes negative for a saturation degree still close to 100%. Since the liquid water pres-
sure in the sorption experiment is indirectly controlled via the liquid–vapour equilibrium
by Kelvin’s law (6.33), such a negative pressure has to be interpreted as a thermodynamic
effective pressure accounting for the chemical and physical interactions existing between
the liquid water and the internal walls of the cement matrix delimiting the porous space
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Figure 6.3: Capillary curve relative to a cement paste as obtained from a desorption experiment.
The solid line results from the fitting of the experimental data by using (6.40) with m = 0.46,
M = 37.55 MPa and adopting a zero entry pressure (from Mainguy M., Coussy O., Baroghel-
Bouny V. (2001), ‘The role of air pressure in the drying of weakly permeable materials’, Journal
of Engineering Mechanics, ASCE, 127, (6), 582–592). See also Černy R., Rovnanikova P. (2002),
Transport Processes in Concrete, Spon Press, for data relative to sorption isotherms of cement-based
materials.
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Figure 6.4: Capillary curve relative to a compacted artificial clay as determined from the sorption
isotherm for two different values of the temperature. The solid line results from the fitting of the
experimental data by using (6.41) with p = 1.92, M

(
20◦C
) = 950 MPa, M

(
80◦C
) = 350 MPa and

a zero entry pressure (from Dangla P., Coussy O., Olchitzky E., Imbert C. (2000), ‘Non-linear
thermo-mechanical couplings in unsaturated clay barriers’, in Proceedings of IUTAM Symposium
on Theoretical and Numerical Methods in Continuum Mechanics of Porous Materials, ed. Ehlers
W., Kluwer Academic, Dordrecht).

(see §3.6.3 for the general meaning of a thermodynamic effective pressure). In addition,
the dependence on temperature T of the capillary curve can be obtained when varying
the temperature at which the sorption experiment is performed. Figure 6.4 illustrates the
resulting curves for a compacted artificial clay. Note that the pressure pl of the liquid
water again becomes negative for a saturation degree still close to 100%. In the context of
unsaturated soils, owing to this negativeness, the capillary pressure is also called suction.

6.4 Unsaturated Thermoporoelastic Constitutive Equations

6.4.1 Energy Separation and the Equivalent Pore Pressure Concept
In the general deformable case state equations (6.26) show that the total stress σij , the
averaged fluid pressure p∗ and the capillary pressure pc act as independent state variables
with regard to the state equations of the skeleton. Nevertheless, as analysed in the previous
section, we saw in the non-deformable case that the capillary curve depended only on the
saturation degree Sw and possibly on temperature T according to (6.46). A first approach
to unsaturated thermoporoelasticity consists in extending (6.46) to the deformable case.
Accordingly, the substitution of (6.46) into the third of the state equations (6.26), followed
by integration, allows us to express �s(εij , Sw, T ) in the form:

�s(εij , Sw, T ) = ψs(εij , φ, T )+ φU(Sw, T ) (6.52)

Assuming that (6.46) still holds in the deformable case, this turns out to be equivalent
to a hypothesis of energy separation. Indeed, according to (6.52), the solid matrix energy
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ψs is expressed separately from the interfacial energy U whose expression involves state
variables εij , φ and T only and not saturation degree Sw.

Substitution of (6.52) into (6.23) and use of the third of the state equations (6.26) give:

σijdεij + πdφ − SsdT − dψs = 0 (6.53)

where the entropy Ss is defined by:

Ss = Ss + φ
∂U

∂T
(6.54)

so that the latter stands for the entropy of the solid matrix since the interface entropy
−φ∂U/∂T has been removed from Ss . Furthermore the pressure π in (6.53) is defined by:

π = p∗ − U (6.55)

Alternatively, use of (6.24) and (6.47) provides a differential definition of π :

dπ = Sw dpw + Snw dpnw = −Swdpc + dpnw (6.56)

Comparing (4.2) and (6.53), we conclude that the pressure π , with regard to the solid
matrix, acts the same as the pressure p does in the saturated situation. For this reason
π is called the equivalent pore pressure.6 Note that the minus sign affecting U in the
expression (6.55) of π accounts for the tensile character of the surface stresses acting
along the interfaces.

6.4.2 Equivalent Pore Pressure and Averaged Fluid Pressure
The averaged fluid pressure p∗ defined by (6.24) is often invoked to play the role of an
overall equivalent pore pressure instead of π . Comparing (6.24) and (6.55), we conclude
that letting p∗ play the role of an equivalent pore pressure instead of π turns out to ignore
the tensile surface stresses acting along the interfaces and their subsequent effects upon the
deformation of the solid matrix. For instance, p∗ can be conveniently used to approach the
constitutive equations of porous materials exhibiting a double porous network. As more
lengthily analysed in the advanced analysis sections of the first four chapters, the double
porous network concept is aimed at capturing the effects of the two very distinct porous
networks exhibited by some materials as rocks or concrete materials. Roughly speaking,
the first is formed of rounded pores, while the second is formed of penny-shaped cracks.
Although both networks are saturated by the same and unique wetting fluid, their quite
different geometries lead us to distinguish the fluid pressure pα and the saturation degree
Sα attached to each network referred to by index α = 1 or 2. However, with regard to
the wetting fluid viewed as a whole, the porous material remains saturated. Accordingly,
we let Sw = S1 + S2 = 1 in (6.47), resulting in U = 0, so that (6.55) leads us to identify
the averaged pressure p∗ with the equivalent pore pressure π .

6The equivalent pore pressure concept was initially introduced in the differential form (6.56) in Coussy
O. (1995), Mechanics of Porous Continua, John Wiley & Sons, Chichester. See also Coussy O., Eymard
R., Lassabatère T. (1998), ‘Constitutive modelling of unsaturated drying deformable materials’, Journal of
Engineering Mechanics, 124, (6), 658–667.
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Figure 6.5: Respective contributions of Slpc = −(p∗ − pg

)
and surface energy U to −(π − pg
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for the cement paste whose capillary pressure has been reported in Fig. 6.3. In practice the gas pres-
sure pg remains close to atmospheric pressure patm � 0.1 MPa so that Slpc can be identified with
a good accuracy to −p∗ and −(π − pg

)
to −π � −p∗ + U . (Coussy O., Dangla T., Lassabatère

V., Baroghel-Bouny (2003)).

Extending the analysis, the averaged pore pressure p∗ can possibly be used as an
equivalent pore pressure provided that the wetting fluid and the non-wetting fluid occupy
well-separated pores so that the contact area between them turns out to be negligible. This
assumption is generally not supported by experimental evidence for porous materials such
as cement-based materials or clays. According to definitions (6.24) and (6.55) of p∗ and
π , we write:

π − pg = p∗ − pg − U = −Swpc − U (6.57)

In most cases the wetting fluid is liquid water, w = l, while the non-wetting fluid is
wet air, nw = g. The pressure pg of the latter remains generally close to atmospheric
pressure patm and can be neglected with respect to the terms appearing on the right
hand side of (6.57). This results in a negative equivalent pressure π , that is a suction,
which can provoke significant shrinkage. As illustrated in Fig. 6.5 for the cement paste
whose capillary pressure has been reported in Fig. 6.3, the respective contributions of
the averaged pore pressure p∗ � −Slpc and of the opposite of interfacial energy −U to
the equivalent pore pressure π can be separately assessed from the capillary curve (6.46)
and from the relation (6.47). As soon as the liquid water saturation degree Sl departs
significantly from 100%, the contribution U of the interfacial energy can no longer be
neglected with respect to the contribution of the averaged pore pressure p∗ to π .

6.4.3 Equivalent Pore Pressure and Thermoporoelastic
Constitutive Equations

Letting Gs be defined by:
Gs = ψs − π φ (6.58)
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from (6.53) we derive the alternative energy balance:

σij dεij − φ dπ − Ss dT − dGs = 0 (6.59)

From (6.59) we finally derive the state equations of unsaturated thermoporoelasticity in
the form:

Gs = Gs(εij , π, T ) : σij = ∂Gs

∂εij
; φ = −∂Gs

∂π
; Ss = −∂Gs

∂T
(6.60)

which are written exactly the same as state equations (4.5) of saturated thermoporoelas-
ticity, provided that the pressure p in the latter is replaced by the equivalent pore pressure
π . As a consequence all the developments of Chapter 4 apply. For instance, constitutive
equations (4.32)–(4.33) are extended in the form:

σ − σ 0 = Kε − b(π − π0) (6.61)

φ − φ0 = bε + π − π0

N
(6.62)

where b and N still stand for Biot’s coefficient and Biot’s modulus satisfying (4.35). In
the very special case of the double porous network, we saw in the previous section that
π = p∗. Substitution of π = p∗ into (6.61) and use of definition (6.24) of p∗ allow us
eventually to recover (4.113a) by letting bα = bSα .

6.4.4 Equivalent Pore Pressure, Wetting and Free Swelling
of Materials

Consider a stress-free porous material subjected to an outer relative humidity higher
than its inner relative humidity. In response the porous material absorbs water vapour
from the outer atmosphere so that the higher outer relative humidity is progressively
established within the inner layers. Simultaneously the liquid water condenses within
the latter in order to maintain the internal liquid–vapour equilibrium. Accordingly the
liquid pressure increases, while the capillary pressure and, consequently, the equivalent
pore pressure decrease so that the porous material eventually swells according to (6.61).
While the wetting kinetics (or conversely, the drying kinetics) is governed by the transport
phenomena (see §6.6.4), the asymptotic state is governed by the outer relative humidity
only, since, asymptotically, the air pressure recovers the atmospheric pressure value.
Accordingly, we combine (6.50), (6.51), (6.56) and (6.61) to get the asymptotic free
swelling due to wetting in the form:

ε = b

nK
× RT

Mv

∫ hr

h0
r

w (h)

h
dh (6.63)

where h0
r denotes the initial relative humidity to which the swelling due to wetting is

referred, while w = ρlnSl is the liquid water mass content and is expressed as a function
of the relative humidity hr by inverting the relation (6.50) provided by the sorption
experiment.
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Figure 6.6: Checking of the energy separation hypothesis (6.52): (i) the water mass content w =
ρlnSl is plotted against relative humidity hr by means of an adsorption experiment (a); (ii) the
predicted values of the axial swelling ε/3 of the sample due to hydration through the use of
(6.63) are compared with the observed ones (b). The experimental data are related to a cellulose
fibre cement composite with K = 8.25 × 103 MPa while the value of Biot’s coefficient is assessed
to b = 0.79 (from Carmeliet (1999), with kind permission of Kluwer Academic Publishers, see
footnote).

Expression (6.63) of the swelling due to wetting has been derived by using the equiv-
alent pore pressure concept and, consequently, by assuming the separation of energies
according to (6.52). Conversely, as illustrated7 in Fig. 6.6, the relevance of the latter can
be experimentally checked by determining w(hr) from a sorption experiment (Fig. 6.6a),
and comparing the predicted values (6.63) for the free swelling ε due to wetting to the
observed ones (Fig. 6.6b).

For materials such as clays whose solid grains undergo negligible changes, the swelling
strain is equivalently captured by the increase of the void ratio e. In the saturated case
the constitutive equation linking the void ratio to Terzaghi’s effective stress σ + p is well
approached through a relation of the form (see Fig. 6.7a):

de = −κ
d (σ + p)

σ + p
(6.64)

where p is the pore pressure. According to (6.64) and to the equivalent pore pressure
concept, the changes in void ratio e in the free swelling test must be governed by:

de = −κ
dπ

π
(6.65)

As illustrated in Fig. 6.7, the comparison between the value of the coefficient κ mea-
sured in an experiment performed on a saturated sample (i.e. (6.64) and Fig. 6.7a) and

7The checking of the energy separation hypothesis reported in Fig. 6.6 is from Carmeliet J. (1999), ‘Cou-
pling of damage and fluid-solid interactions in quasi-brittle nonsaturated porous materials’, in Proceedings of
the IUTAM Symposium on Theoretical and Numerical Methods in Continuum Mechanics of Porous Materials,
307–312, ed. Ehlers W., Kluwer Academic, Dordrecht. The checking procedure is based upon the earlier work
of Coussy O., Eymard R., Lassabatère T. (1998), ‘Constitutive modelling of unsaturated drying deformable
materials’, Journal of Engineering Mechanics, 124, (6), 658–667.
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Figure 6.7: Checking the validity of the equivalent pore pressure concept: (i) the coefficient κ

involved in constitutive equation (6.64) is measured in a test performed on a saturated sample
along the elastic unloading path bc (a); (ii) the validity of the equivalent pore pressure concept
requires the value of coefficient κ so measured to be the same as the one delivered by the free
swelling test (b). The experimental data are related to the compacted artificial clay whose capillary
pressure curve leading to the determination of π has been reported in Fig. 6.4. The validity of the
equivalent pore pressure concept is confirmed here since the two values of κ so determined are
both found to be close to 0.1. This value is even found to be irrespective of the temperature 20◦C
or 80◦C at which the free swelling test is determined, showing that the thermal dilation of the solid
grains forming the matrix is actually negligible (see Fig. 8.11 and §8.4.4 for the analysis of the
plastic loading path ab).

the value of the same coefficient κ measured in a free swelling test (i.e. (6.65) and
Fig. 6.7b) eventually provides the means to check the validity of the equivalent pore
pressure concept.

6.5 Heat and Mass Conduction

6.5.1 Fourier’s Law, Thermal Equation and Phase Change
Dissipation ϕth associated with the heat transfer and given by (6.14b) is expressed in the
same way as in the saturated case so that Fourier’s law can be formulated as in (3.57).
Making the same assumptions as there made in §5.3.1, but starting now from (6.15)
instead of (5.117), we derive:

T

(
∂S

∂t
+
∑
α

sα∇ · wα

)
= κ∇2θ (6.66)

Considering a possible phase change by letting α = l, v or g, substitution of (6.17) and
(6.10) into (6.66) leads us to rewrite the thermal equation in the form:

T

∂Ss

∂t
+
∑

α=l,v,g

mα

∂sα

∂t
+ (sv − sl)

◦
ml→v

 = κ∇2θ (6.67)
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6.5.2 Darcy’s Law
Considering the case where the porous space is filled by a wetting fluid and a non-wetting
fluid, we let α = w, nw. Use of fluid state equations (3.10) then allows us to write the
positiveness of dissipation (6.14c) associated with the fluid transport in the form:

ϕf = (−∇pw + ρwf) · Vw + (−∇pnw + ρnwf) · Vnw ≥ 0 (6.68)

where Vα is the filtration vector associated with fluid α:

Vα = wα

ρα
= nSα(Vα − Vs) (6.69)

Accordingly, Darcy’s law (3.46) extends to the unsaturated case in the form:

Vw = κkrw(Sw)

ηw
(−∇pw + ρwf) (6.70a)

Vnw = κkrnw(Snw)

ηnw
(−∇pnw + ρnwf) (6.70b)

where krw(Sw) and krw(Snw) are the relative permeabilities related to, respectively, the
wetting fluid and the non-wetting fluid and satisfying:

krα (0) = 0 ≤ krα(Sα) ≤ krα (1) = 1 (6.71)

When the wetting fluid and the non-wetting fluid are liquid water and wet air, respectively,
expressions commonly used in association with expression (6.40) for the capillary curve,
that is referring to the same m, are8:

krw(Sw) =
√
Sw

(
1 −
(

1 − S
1
m
w

)m)2

(6.72a)

krnw(1 − Sw) =
√

1 − Sw

(
1 − S

1
m
w

)2m

(6.72b)

In Fig. 6.8 we plot krw and krnw against Sw for various values of m.

6.5.3 Fick’s Law
When the fluid is a vapour–air mixture, the vapour is transported both by advection, as
a component of the mixture, and by molecular diffusion through the gas. The former is
governed by Darcy’s law (6.70b) applied to the filtration vector Vg related to the mixture,
while the latter is governed by Fick’s law. Their explicit formulation requires us to express
the filtration vector Vg related to the vapour–air gaseous mixture considered as a whole
as a function of the filtration vectors Vv and Va related to the vapour and to the air
considered separately.

8See Luckner L., van Genutchen M.Th., Nielsen D.R. (1989), ‘A consistent set of parametric models for
the two-phase flow of immiscible fluids in the subsurface’, Water Resources Research, 25, (10), 2187–2193.
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Figure 6.8: Relative permeabilities krw and krnw plotted against Sw when varying m from 0.1 to 1
in (6.72).

Let then xv and xa be the mole fractions related to the vapour and to the air, that is
the ratio of their molar concentration cv or a to the total concentration c = cv + ca:

xv = cv

c
; xa = ca

c
with xv + xa = 1 (6.73)

The filtration vector Vg is conveniently defined as the molar average:

Vg = xvVv + xaVα (6.74)

so that:

Vv = Vg + xa(Vv − Va) (6.75a)

Va = Vg − xv(Vv − Va) (6.75b)

Recalling that (∇gα)T = (1/ρα)∇pα and pα = xαpg for an ideal mixture formed of ideal
gases while using (6.30), (6.69), (6.73)–(6.75), the positiveness (6.14c) of the dissipation
ϕf associated with the transport of the vapour and of the air can be expressed in the form:

−∇pg · Vg −∇xv · (Vv − Va) ≥ 0 (6.76)

where, for the sake of simplicity, we did not consider body forces f. The first term in
(6.76) is similar to (6.68). It accounts for the dissipation related to the advective transport
of the vapour–air mixture considered as a whole. The latter is governed by Darcy’s law
by letting nw = g in (6.70b). The second term is the dissipation related to the molar
diffusion of the vapour through the air: it is the product of the driving force −∇xv by
the relative filtration vector Vv − Va it produces. Consequently the law governing the
diffusion of vapour through the air has to relate Vv − Va to −∇xv .
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According to the kinetic theory of gases, the molar diffusion of the vapour in the air
occurring in free space is governed by Fick’s law, that is:

xaxv(Vv − Va) = −Dva∇xv (6.77)

In most cases the vapour is the water vapour. Combining the kinetic theory of gases and
experiments, it can be experimentally shown that the diffusion coefficient Dva involved
in Fick’s law (6.77) can be well accounted for through the following expression:9

Dva = D0
patm

pg

; D0 = δ0

(
T

T0

)1.88

(6.78)

where δ0 = 2.17 × 10−5 m2s, T0 = 273 K and patm = 101325 Pa.
The law governing the molar diffusion of the vapour through the air, but now within

a porous material, and guaranteeing the positiveness of the associated dissipation, can be
consistently extended from (6.77) in the form:

xaxv(Vv − Va) = −D∇xv; D = (ng × τ)Dva (6.79)

With respect to the formulation (6.77) of Fick’s law in free space, the diffusion coefficient
Dva is now affected by the factor ng × τ . The latter firstly accounts for the reduction of
the volume offered to the diffusion by means of the gas porosity ng. It secondly accounts
for the actual length of the diffusion path of molecules through the porous space by means
of the so-called tortuosity τ . The usual expression for τ , which at the least has to depend
on the overall porosity n and on the gas saturation degree Sg , is:10

τ(n, Sg) = n1/3S
7/3
g (6.80)

Combining Darcy’s and Fick’s laws and using (6.75), we eventually have:

Vv = −κkrg

ηg
∇pg −D∇ ln xv (6.81a)

Va = −κkrg

ηa
∇pg −D∇ ln xa (6.81b)

Using xv = pv/pg and (6.78)–(6.79), we finally write (6.81) in the more operationally
explicit form:

Vv = −κkrg

ηg
∇pg − (nSgτ)D0

patm

pv

∇
(
pv

pg

)
(6.82a)

Va = −κkrg

ηg
∇pg + (nSgτ)D0

patm

pa

∇
(
pv

pg

)
(6.82b)

9See de Vries D.A., Kruger A.J. (1966), ‘On the value of the diffusion coefficient of water vapour in air’,
Phénomènes de transport avec changement de phase dans les milieux poreux ou colloı̈daux, éd. CNRS, 561–572.

10See Millington R.J. (1959), ‘Gas diffusion in porous media’, Science, 130, 100–102.
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6.6 Advanced Analysis

6.6.1 The Stress Partition Theorem in the Unsaturated Case

For the sake of clarity we consider here a porous material whose porous space is filled by
only two fluids, referred to by index 1 or 2. Similar to the saturated case (see §2.5.1 for
the notation), we define a macroscopic partial stress σ� related to the skeleton particle,
� = S, and to the fluid particles, � = Fα , α = 1, 2, and an intrinsic partial stress σπ

related to the solid matrix, π = s, and to the fluids, π = fα:

σ S = 〈fωs (z) σ s (z)
〉 = (1 − n) σ s (6.83a)

σFα =
〈
fωfα

(z) σ fα (z)
〉
= nSασ fα (6.83b)

where σ s (z) and σfα (z) are the actual stress fields related to the matrix and to the
fluids at the microscopic point located at z within the volume ω. The equilibrium of each
continuum � = S, Fα considered separately is (see (2.30)):

∇ · σ� + ρ�f + f→�
int = 0 (6.84)

where the volume force f→�
int accounts for the macroscopic mechanical interaction exerted

on the � continuum. The same developments as those treated in §2.5.1 allow us to express
(6.84) in the form (see (2.67)):

∇x · σ� + ρ�f+ 1

ω

∫
∂ωπ

σπ (z) · nπf (z − x) daω = 0 (6.85)

where nπ is the outward unit normal to surface ∂ωπ delimiting the volume actually
occupied by the particle � = S or Fα and separating the latter from the volume occupied
by the other two particles.

Along the interface Aα,β between two components α and β, either fluid-fluid (α = 1,
β = 2) or solid–fluid (α = s, β = 1 or 2), surface tension exerts a strength γα,β per unit
of surface (see Fig. 6.1). The union of all these interfaces can be viewed as forming the
‘fourth component’. The local intrinsic partial stress γ α,β (z) related to interface Aα,β can
be expressed in the form:

γ α,β (z) = γα,βδabt(a) ⊗ t(b) (6.86)

In (6.86), t(1) and t(2) are the vectors forming a curvilinear orthonormal basis in the plane
tangent to Aα,β such as:

t(a) = ∂zi(s1, s2)

∂sa
ei;

a=2∑
a=1

ds2
a =

i=3∑
i=1

dz2
i (6.87)

where ei=1,2,3 forms a fixed orthonormal basis, while sa is the curvilinear absciss a related
to the t(a) direction. Recall then that:

dt(a)

dsa
= nα,β

Ra

; nα,β= t(1) × t(2) (6.88)
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where nα,β is the unit normal to interface Aα,β , while Ra is its radius of curvature in
the t(a) direction. Now let σ IV be the macroscopic partial stress related to the fourth
component. It can be defined as:

σ IV = 〈δ∪Aα,β
γ α,β (z)

〉 = 1

ω

∫
∪Aα,β

γ α,β (z) f (z − x) daω (6.89)

where δ∪Aα,β
stands for the characteristic or Dirac δ-function attached to the fourth com-

ponent in so far as a surface immersed in the volume ω is concerned. Partial stress σ IV

can be split into the contributions related to each interface Aα,β according to:

σ IV = s,f1 + s,f2 + f1,f2 (6.90)

where:

α,β = 1

ω

∫
Aα,β

γα,βδabt(a) ⊗ t(b)f (z − x) ds1ds2 (6.91)

Using (6.87), Cartesian components %
α,β

ij of α,β can be expressed in the form:

%
α,β

ij = 1

ω

∫
Aα,β

γα,βδab
∂zi

∂sa

∂zj

∂sb
f (z − x) ds1ds2 (6.92)

so that:

∂%
α,β

ij

∂xj
= − 1

ω

∫
Aα,β

γα,βδab
∂zi

∂sa

∂f

∂sb
(z − x) ds1ds2 (6.93)

or, equivalently:

∇x · α,β = − 1

ω

∫
Aα,β

γα,βδabt(a)
∂f

∂sb
(z − x) ds1ds2 (6.94)

Use of (6.88) allows us to rewrite the previous equation in the form:

∇x · α,β = 1

ω

∫
Aα,β

2γα,β
R

nα,βf (z − x) ds1ds2

− 1

ω

∫
Aα,β

∂

∂sb

[
γα,βδabt(a)f (z − x)

]
ds1ds2 (6.95)

where 2/R = 1/R1 + 1/R2 is the mean curvature of the interface. The integrand in the
second integral is eventually identified as:

∂

∂sb

[
γα,βδabt(a)f (z − x)

] = ∇s ·
[
γ α,βf (z − x)

]
(6.96)
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where ∇s stands for the surface divergence operator related to surface Aα,β . Applying
the divergence theorem to (6.95) and summing over all interfaces Aα,β , we derive the
averaged macroscopic momentum balance equation relative to the fourth component, that
at is:

∇x · σ IV + f→IV
int = 0 (6.97)

where the interaction force f→IV
int exerted on the fourth component can be expressed in

the form:

f→IV
int = −

∑
Aα,β

1

ω

∫
Aα,β

2γα,β
R

nα,βf (z − x) daω

+
∑
Aα,β

1

ω

∫
L

γα,βνα,βf (z − x) dL (6.98)

In (6.98), να,β denotes the unit vector lying in the tangent plane to interface Aα,β and
normal to its border. The latter is eventually the triple junction line L, that is the line
shared by all the interfaces (see the detail in Fig. 6.1).

The overall equilibrium of interfaces Aα,β and of triple junction line L requires that:

− 1

ω

∑
p=s,f1,f2

∫
∂ωπ

σπ (z) · nπf (z − x) daω

+
∑
Aα,β

1

ω

∫
Aα,β

2γα,β
R

nα,βf (z − x) daω

−
∑
Aα,β

1

ω

∫
L

γα,βνα,βf (z − x) dL = 0 (6.99)

Indeed, the last term on the left hand side of (6.99) represents the resulting force exerted
by all the interfaces Aα,β on the tripple junction line L. Besides, on the surface shared
by ∂ωπ and Aα,β the membrane equilibrium of the interface Aα,β can be expressed by
means of the Laplace equation according to:

σπI (z) · nπI + σπJ (z) · nπJ = 2γα,β
R

nα,β; nπI = −nπJ = −nα,β (6.100)

Once (6.100) is substituted into (6.99), the remaining non-zero contribution of the first
two integrals in (6.99) represents the force fs on L which is exerted by the solid matrix on
the triple junction line L (see Fig. 6.1). Therefore the left hand side of (6.99) represents
the overall force exerted on L, whose equilibrium is required to be zero. Equation (6.99)
eventually turns out to be the explicit formulation of the action–reaction law stating the
equilibrium of the ‘interface’ L shared by the four components, that is:

f→S
int +

∑
α

f→Fα

int + f→IV
int = 0 (6.101)
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Indeed, summing (6.85) for � = S, F1, F2 and taking into account (6.99), we finally
retrieve the macroscopic momentum equation (6.8), provided that the total stress σ is
identified with the sum of the macroscopic partial stresses:

σ = σ S +
∑
α

σFα + σ IV (6.102)

Selecting the sliding average operator associated with the weighting function f = fω0

(see (2.57)), we finally obtain:

σ = (1 − n) σ s −
∑
α

nSαpα1 + 1

ω

∫
∪Aα,β

γα,βδabt(a) ⊗ t(b) ds1ds2 (6.103)

which extends the partition theorem to the unsaturated case.11

6.6.2 Capillary Hysteresis. Porosimetry

When a sample of porous material is subjected to a drainage–imbibition cycle, a hysteresis
loop is generally observed in the (Sw × pc) plane so that the link between the capillary
pressure and the saturation degree cannot reduce to a one-to-one relation between pc and
Sw as in (6.38). More precisely, when starting from a complete saturation and progres-
sively increasing the capillary pressure, the saturation degree Sw progressively decreases
and the corresponding point (Sw, pc) follows the drainage curve defined by:

pc = pDR
c (Sw) (6.104)

At the end of the previous drainage process, when again decreasing the capillary pressure,
saturation Sw recovers higher values and the point (Sw, pc) follows the imbibition curve
defined by:

pc = pIM
c (Sw) (6.105)

The latter differs from the former in such a way that the saturation Sw related to the same
capillary pressure is lower in the imbibition process than in the drainage process. Both
curves conjointly form a reproducible hysteresis loop: when the direction of variation of
the capillary pressure is inverted during a drainage process, the point (Sw, pc) leaves the
drainage curve to rejoin the imbibition curve at nearly the same saturation Sw; conversely,
when the direction of variation of the capillary pressure is inverted during an imbibition
process, the point (Sw, pc) leaves the imbibition curve to rejoin the drainage curve at
nearly the same saturation Sw . This rough description of capillary hysteresis is sketched
in Fig. 6.9.

The existence of an hysteresis implies a dissipative process so that (6.23) has to become
an inequality, that is:

σij dεij + (Swpw + Snwpnw)dφ − φpcdSw − SsdT − d�s ≥ 0 (6.106)

11The partition stress theorem can be alternatively derived by carrying out an energy approach based on the
principle of virtual work (see Chateau X, Dormieux L. (1995), ‘Homogénéisation d’un milieux poreux non
saturé: lemme de Hill et applications’, Comptes Rendus de l’Academie des Sciences, 320, Série II b, 627–634).
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Figure 6.9: Hysteresis loop formed by the drainage curve and the imbibition curve in the
(
Sw × pc

)
plane. Curve −∂U/∂Sw necessarily lies within the loop. Along the drainage path ab the dissipated
energy equals the area abef , whereas along the imbibition path cd it equals the area cdfe.

Taking into account the energy separation hypothesis (6.52) in (6.106) allows us to obtain
the positiveness of the dissipation associated with capillary hysteresis in the form:

−φ

(
pc + ∂U

∂Sw

)
dSw ≥ 0 (6.107)

where we used (6.53) stating the nullity of the dissipation associated with the deforma-
tion of the solid elastic matrix. The above definitions of the drainage-imbibition curves
combined with (6.107) result in the inequality:

pIM
c ≤ − ∂U

∂Sw
≤ pDR

c (6.108)

so that pc necessarily differs from −∂U/∂Sw. Accordingly, the point (Sw,−∂U/∂Sw)

follows in the (Sw × pc) plane a curve lying between the drainage curve and the imbibition
curve. During a capillary pressure cycle such as abfcdea as sketched in Fig. 6.9, the energy
dissipated through capillary hysteresis can now be identified. Along the drainage path ab

the dissipated energy per unit of porous volume is the area between ab and the path ef

followed by the point (Sw,−∂U/∂Sw) during the drainage. It corresponds to the part of
the mechanical work −pcdSw, where dSw < 0, which is not stored in interfacial energy
form dU (per unit of porous volume) but is dissipated in heat form. Conversely, along
the imbibition path cd the dissipated energy is the area between the path cd and the
path f e followed by point (Sw,−∂U/∂Sw) during the imbibition. It corresponds to the
part of the interfacial energy −dU (per unit of porous volume) which is not returned
to the outer system in the form of mechanical work −pcdSw, where dSw > 0, but is
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dissipated in heat form. During the whole cycle abfcdea the dissipated energy is finally
the area between the part ab and the part cd of respectively the drainage curve and the
imbibition curve. Nevertheless, the above macroscopic approach does not allow us to
identify either the interfacial energy U(Sw), or the origin of the capillary hysteresis. This
requires specification of the microstructure of the porous space.

Indeed a standard interpretation12 of the capillary hysteresis turns out to consider the
imbibition process − or the drainage process − as the filling up − or the pouring out − of
spheroid-shaped microscopic pores with distinct radii. The pores are linked to each other
by fine capillary tubes of negligible volume so that the latter do not significantly contribute
to the saturation level but play a key role in the hysteresis analysis. Consider for instance
the current imbibition state c of Fig. 6.9 and let R be the upper radius bounding the radius
of pores which are already filled up and contribute to the current saturation degree Sw.
The value of radius R is given by Laplace’s law for the membrane interface equilibrium.
Indeed, assuming a zero contact angle between the wetting fluid and the solid matrix,
R identifies the curvature of the interface between the wetting fluid and the non-wetting
fluid (see Fig. 6.10). Accordingly, we write:

pIM
c = 2γw,nw

R
(6.109)

Laplace’s law eventually guarantees the very existence of R since, at given capillary
pressure pIM

c , according to (6.109) there is no possible membrane equilibrium between
the wetting fluid and the non-wetting fluid within pores having a radius less than R or
greater than R. This latter remark is at the origin of the methods of porosimetry aimed at
determining the pore radius distribution through the fraction ϕ (R) of the porous volume
consisting of pores with a radius greater than R. Indeed, we may write:

ϕ (R) = 1 − Sw (6.110)

c d

R

Imbibition

R
pc =

2gw, nw

−

Figure 6.10: The filling up of a given pore occurs when capillary pressure pc fits the radius R of
the pore according to Laplace’s law.

12For a comprehensive presentation see Dullien F.A.L. (1979), Porous media: fluid transport and pore struc-
ture, Academic Press, New York.
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Figure 6.11: Pore distribution function ϕ (R) as determined from the imbibition capillary pressure
curve (6.105), the definition (6.110) of ϕ (R) and Laplace’s law (6.109). The curve relates to the
experimental data reported in Fig. 6.3, while adopting the surface energy of a liquid water–air
interface, that is γw,nw = 73 mJ/m.

The pore distribution function ϕ (R) is then determined from the imbibition capillary
pressure curve (6.105), the definition (6.110) of ϕ (R) and Laplace’s law (6.109) (see
Fig. 6.11).

Consider now an infinitesimal decrease in capillary pressure. This decrease can be
carried out either by releasing the external pressure of the non-wetting fluid as in the
imbibition experiment, or by increasing the outer relative humidity as in the adsorption
experiment (see §6.3.2). The greatest value R + dR of the pores filled up consecutively
to the drop in capillary pressure has to fit the new capillary pressure according to (6.109),
resulting in the saturation increase dSw. In the actual imbibition experiment the filling up is
achieved by invasion of the wetting fluid. In the adsorption experiment, when the wetting
fluid is water, the filling up is eventually achieved by condensation of the water vapour
of the wetted air, according to both Kelvin’s law (6.33) and Laplace’s law (6.109), the
left hand member of the former identifying the opposite of the current capillary pressure.
Denoting dVw as the infinitesimal volume per unit of volume which is newly filled up and
neglecting the volume of the capillary tubes linking the pores between them, we write:

dVw = −φ
dϕ

dR
dR (6.111)

Let das,w be the newly wetted surface per unit of volume relative to dVw. Since the pores
are assumed to be spheroids, das,w can be expressed in the form:

das,w = 3

R
dVw = 3

R
φdSw (6.112)

In the infinitesimal filling process variation daw,nw of the interface between the wetting
and the non-wetting fluid is a second-order term when compared with das,w. In addition
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das,nw = −das,w so that (6.22) gives:

φdU = (γs,w − γs,nw) das,w (6.113)

Besides, owing to the nullity of the contact angle, the equilibrium of triple junction line
L (see Fig. 6.1) requires that γs,nw = γs,w + γw,nw . Combining (6.109), (6.112) and
(6.113) finally leads to the following identification of −∂U/∂Sw:

− ∂U

∂Sw
= 3

2
pIM
c (Sw) (6.114)

so that U can be obtained by a simple integration. However, it must be pointed out that
such an identification of the interfacial energy relies deeply on the initial assumption of
spheroid-shaped microscopic pores.

If the capillary pressure is now again increased from state d of Fig. 6.10, the drainage
of the pore of radius R can start only for a capillary pressure equal to the radius r of the
fine capillary tube allowing access to the pore (see Fig. 6.12). Consequently, as actually
observed, the saturation Sw remains constant along path da, while Laplace’s law gives
the value of the capillary pressure at which the drainage actually starts, that is:

pDR
c (Sw) = 2γw,nw

r
(6.115)

6.6.3 Capillary Pressure Curve, Deformation and Equivalent
Pore Pressure

An hypothesis less restrictive than the energy separation assumption (6.52) consists in
assuming that the interfacial energy U per unit of porous volume also depends on the
current porous volume. Instead of (6.52) we now write:

�s(εij , Sw, T ) = ψs(εij , φ, T )+ φU(Sw, φ, T ) (6.116)

b a

r

Drainage

r
pc =

2gw, nw

Figure 6.12: The pouring out of a given pore occurs when capillary pressure pc equals the access
radius r according to Laplace’s law.
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In order to identify a possible candidate for U(Sw, φ, T ) we first introduce the length �

scaling the current porous volume material according to:

φd�0 = �3 (6.117)

so that:

dφ

φ
= 3

d�

�
(6.118)

Besides, dimensional analysis gives:

U = γw,nw

�
f

(
�i

�

)
(6.119)

where we have omitted other variables than those relative to the current geometry, �i stand-
ing for all the relevant characteristic lengths, i = 1, . . . required for the fine description
of the geometry of the porous network. Differentiation of (6.119) gives:

dU

U
= −d�

�
(6.120)

which is where we let d(�i/�) = 0, equivalent to assuming that the porous space undergoes
a homothetic transformation. Getting rid of � between (6.118) and (6.120) and integrating
the resulting equation, we derive:

U = φ−1/3%(Sw, T ) (6.121)

so that (6.116) gives:

�s(εij , Sw, T ) = ψs(εij , φ, T )+ φ2/3%(Sw, T ) (6.122)

A combination of (6.23), the third of the state equations (6.26) and (6.122) allows us
to recover (6.53) provided that the definition (6.55) of the equivalent pore pressure π is
replaced by:

π = Swpw + Snwpnw − 2

3
U (6.123)

whereas a substitution of (6.122) into the third of the state equations (6.26) leads us to
express the capillary pressure pc in the form:

pc = −φ−1/3 ∂%

∂Sw
(6.124)

The factor 2/3 affecting U in (6.123) accounts for the two-dimensional nature of the
interfaces compared with the three-dimensional nature of the porous material volume in
which the former are immersed. Similarly, the exponent −1/3 applying to φ in (6.124)
accounts for the 1D nature of the curvature of the interface, while the minus sign relates
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to the one that arises from Laplace’s law (6.100) governing the membrane equilibrium of
interfaces. This can be more rigorously inferred by inspecting the stress partition theorem
(6.103) related to the unsaturated case. The very concept of an equivalent pore pressure
representing the overall effects of both the fluid pressure and the surface tension implies
that the partial stress σ IV related to the fourth phase formed by all the interfaces and
corresponding to the last term on the right hand side of (6.103) must be a spherical tensor
whose diagonal components are equal to a third of its trace. Restricting consideration here
to the case of a wetting fluid and a non-wetting fluid, we write:

1

ω

∫
∪Aα,β

γα,βδabt(a) ⊗ t(b) ds1ds2

= 2

3
(γs,w as,w + γs,nw as,nw + γw,nw aw,nw)1 (6.125)

Combining (6.22), (6.103) and (6.125) gives:

σ = (1 − n) σ s − n

(
Swpw + Snwpnw + γs,was − 2

3
U

)
1 (6.126)

In the saturated case Sw = 1 and Snw = 0 so that (6.126) reduces to:

σ = (1 − n) σ s − n(pw + γs,was)1 (6.127)

Expression (6.123) is again retrieved if we require the equivalent pore pressure π to play
in (6.126) the same role as the one played by pw in (6.127). It is eventually worthwhile
to note that the hypothesis of an homothetic transformation for the porous space in the
former simple approach turns out in the latter refined approach to assume the sphericity
of the stress tensor attached to the surface tension.

6.6.4 Isothermal Drying of Weakly Permeable Materials

The drying of materials is a field of investigation in itself and this section is limited to give
a very first insight into the continuum approach to the modelling of such a process when
the temperature T can be assumed to remain constant.13 In addition, the analysis will
be restricted to the drying of weakly permeable materials. For these weakly permeable
materials the molecular diffusion that allows the dry air to enter the porous material
preponderates when compared with the opposite process, that is the advective transport
which, in response to any gas pressure increase, would enforce the vapour–air mixture
considered as a whole to leave the porous material. The condition ensuring Vg � 0, and,

13The assumption of isothermal conditions is relevant provided that (i) the same temperature as the initial
one is imposed on the external surface of the material; (ii) the characteristic time related to thermal diffusion
is much smaller than the ones associated with fluid transport (for further details see for instance Coussy O.,
Eymard R., Lassabatère T. (1998), ‘Constitutive modelling of unsaturated drying deformable materials’, Journal
of Engineering Mechanics, 124, (6), 658–667.
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consequently, allowing us to neglect the first term in regard to the second term on the
right hand side of (6.82b), is roughly expressed in the form:

κ

ηg
× pg

τD0
� 1 (6.128)

Letting ηg = 1.8 × 10−5 kg/(m/s), pg ≤ 106 Pa, τD0 ∼ 10−8 m2/s1, condition (6.128)
leads us to require:

κ � 10−19 m2 (6.129)

The permeability and the capillary curve are macroscopic properties that both result from
the detailed geometry of the porous space. As a consequence, weakly permeable materials
such that condition (6.129) is met are equally porous materials such that the capillary
pressure rapidly reaches values much greater than atmospheric pressure. The cement paste
and the artificial clay of Figs. 6.3 and 6.4 constitute such examples of porous materials.
Besides, within a drying material the gas pressure of the vapour–air mixture cannot be
much greater than several times atmospheric pressure. For weakly permeable materials,
in addition to Vg � 0, we can therefore conclude that

∥∥∇pg

∥∥� ‖∇pc‖, yielding:

∇pl � −∇pc (6.130)

Consider now a 1D drying experiment. A sample of porous material, lying between
x = −L and x = L, is in uniform thermodynamic equilibrium and its initial liquid sat-
uration degree is denoted S0

l . At time t = 0 the sample end surfaces x = ±L come
into contact with the outer atmosphere which imposes there its relative humidity houtr =
pout
v /pvs (T ) and provokes a thermodynamic imbalance due to the higher relative humid-

ity, say h0
r , initially prevailing within the porous material. As a consequence the porous

material exchanges water vapour with the outer atmosphere in order to install progres-
sively the outer relative humidity within the layers close to the surface. In turn the liquid
water of the latter simultaneously evaporates in order to maintain the vapour–liquid equi-
librium. The vapour so supplied by the evaporation of the skin layers leads to a decrease
in the liquid pressure. As a result, the gradient in liquid pressure progressively builds up
and forces the liquid of the inner layers to move towards the surface and, eventually,
to evaporate when coming into contact with the outer atmosphere. Consequently the sat-
uration degree of the liquid progressively decreases within the material and the whole
process stops when the equilibrium saturation associated with the outer relative humidity
is reached.

So depicted, the drying process involves mainly the motion of the water in liquid
form and its subsequent evaporation within the layer close to the surface so that, by
comparison, the inner evaporation is assumed to be negligible. This actually holds for
weakly permeable materials satisfying conditions (6.128)–(6.129) and allowing the dry
air actually to enter the porous material in order to replace progressively the water leaving
the inner layers of the porous material in both vapour and liquid form. Therefore the
some what paradoxical conclusion is that the drying of such weakly permeable materials
is eventually achieved through Darcean advective transport of the water in liquid form,
from the inner layers to the skin layers where it finally evaporates on contact with the
outer atmosphere.
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Neglecting the velocity and the deformation of the skeleton,14 so that mα � nSαρ
α

where n � φ0, the mass balance for the liquid water (index l), the vapour (index v) and
the dry air (index a) are:

∂(nSlρl)

∂t
+ ∇ · (ρlV l

) = − ◦
ml→v (6.131a)

∂(n(1 − Sl)ρv)

∂t
+∇ · (ρvVv

) = ◦
ml→v (6.131b)

∂(n(1 − Sl)ρa)

∂t
+ ∇ · (ρaVa

) = 0 (6.131c)

Using Darcy’s law (6.70a) with w = l and neglecting body forces, (6.131a) can be spec-
ified in the 1D form:

∂(nSlρl)

∂t
+ Mρlκ

ηl

∂

∂x

(
krl (Sl)

∂πc(Sl)

∂x

)
= − ◦

ml→v (6.132)

To derive (6.132) we assumed incompressibility of the liquid flow and we used assumption
(6.130), while letting pc = Mπc, where M stands for the capillary modulus (see (6.39)
with pe = 0). Furthermore, under assumption (6.129) there is no significant Darcean
advective transport of the vapour–air mixture considered as a whole. Neglecting the first
term of the right hand member in (6.82), we substitute the resulting simplified transport
laws into (6.131b) and (6.131c) and, subsequently, we add (6.131b) and (6.132). The
procedure gives:

∂Sl

∂t
+ Mv

ρlRT

∂
[
(1 − Sl)pv

]
∂t

− Mv

ρlRT
D0patm

∂

∂x

×
[
(1 − Sl)τ (n, Sl)

∂

∂x

(
pv

pg

)]
− Mκ

ηl

∂

∂x

(
Dl(Sl)

∂Sl

∂x

)
= 0 (6.133a)

× ∂
[
(1 − Sl)(pg − pv)

]
∂t

+D0patm

∂

∂x

[
(1 − Sl)τ

∂

∂x

(
pv

pg

)]
= 0 (6.133b)

where the (dry) air and the vapour have both been assumed to be ideal gases and where
we note:

Dl(Sl) = −1

n
krl (Sl)

dπc

dSl
(6.134)

Equation (6.133a) accounts for the transport of water, in both liquid and vapour form,
while (6.133b) accounts for the transport of dry air. Among the three thermodynamic
variables pv, Sl and pg, only two are actually independent. Indeed, the differential system
(6.133) must be solved when ensuring in addition the thermodynamic equilibrium between

14The effect of the kinematics and the deformation of the skeleton on the drying and the associated desatura-
tion process of a porous material generally turns out to be negligible. Indeed, the only possible effect concerns
the variation of the intrinsic permeability due to the change in porosity. By contrast, the effect of the drying
or wetting on the skeleton deformation cannot generally be neglected (see §6.4.4).
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the liquid water and its vapour. The latter is accounted for through Kelvin’s law (6.33),
which we write in the form:

−Mπc(Sl)+ pg − patm = ρlRT

Mv

ln
pv

pvs (T )
(6.135)

Finally, considering half the sample, we add the boundary and symmetry conditions:

x = L : pg = patm; pv = pout
v ; x = 0 :

∂Sl

∂x
= ∂

∂x

(
pv

pg

)
= 0 (6.136)

while the initial conditions are expressed in the form:

t = 0 : pg = patm; pv = p0
v (6.137)

Owing to the thermodynamic equilibrium between the vapour and the liquid water,
Kelvin’s law (6.135) and initial conditions (6.137) provide the uniform initial saturation
S0
l as the saturation satisfying:

−Mπc

(
S0
l

) = ρlRT

Mv

ln
p0
v

pvs (T )
(6.138)

Inspection of the set of equations (6.133)–(6.136) leads us to identify two characteristic
times τF and τD, respectively defined by:

τF = ρlRT

Mvpatm

× L2

D0
; τD = ηlL

2

Mκ

(6.139)

The characteristic time τF scales the rate at which the vapour and the dry air are trans-
ported within the porous material through the molecular (or Fickean) diffusion, while the
characteristic time τD scales the overall rate at which the advective (or Darcean) transport
of the liquid water takes place. The two transport phenomena will occur at well-separated
time scales provided that the ratio of their characteristic times satisfies:

ε = τF

τD
= ρlRT

Mvpatm

× Mκ

ηlD0
� 1 (6.140)

Letting ρl = 1000 kg/m3, R = 8.314 J/(molK), T = 293 K, Mv = 18 g, patm =
101325 Pa, ηl = 1 × 10−3 kg/ (ms), D0 = 2.17 × 10−5 m2/s1 and adopting M =
37.55 MPa (see Fig. 6.3), condition (6.140) of time scale separation requires the intrinsic
permeability κ to fall in the same range as the one imposed by condition (6.129).

The time scale separation condition (6.140) leads to a two-step drying process. The
first step involves mainly a transient molecular diffusion process while, in the second sub-
sequent step, the water is mainly transported in liquid form through a Darcean advection
process. In order to explore the first step of the drying process, we let:

x = x

L
; t = t

τF
(6.141)
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Substituting (6.141) into (6.133) and disregarding the ε-order term in (6.133a) we derive:

Mv

ρlRT

∂
[
(1 − Sl)pv

]
∂t

− ∂

∂x

[
(1 − Sl)τ (n, Sl)

∂

∂x

(
pv

pg

)]
= −∂Sl

∂t
(6.142a)

∂
[
(1 − Sl)pg

]
∂t

= −ρlRT

Mv

∂Sl

∂t
(6.142b)

Taking into account (6.137) and (6.138), (6.142b) can be integrated in the form:

pg

patm

= 1 + (γ − 1)
S0
l − Sl

1 − Sl
where γ = ρlRT

patmMv

(6.143)

The steady state related to the molecular diffusion is obtained by integrating (6.142a)
after nullifying the time derivatives. In addition, taking into account boundary conditions
(6.136), we finally obtain:

t � 1 : xv = pv

pg

= pout
v

patm

(6.144)

Asymptotic values S∞l and p∞
g related to the first step of the drying process must simulta-

neously satisfy (6.135), (6.143) and (6.144), providing S∞l as the solution of the non-linear
equation:

− M
patm

πc

(
S∞l
)+ (γ − 1)

S0
l − S∞l

1 − S∞l

= γ ln

[
pout
v

pvs (T )

(
1 + (γ − 1)

S0
l − S∞l

1 − S∞l

)]
(6.145)

In order to assess the drop in liquid water saturation and the maximum excess of gas
pressure to be expected at the end of the first drying step, we adopt the sorption isotherm
of Fig. 6.3. We set T = 293 K, with pvs (T ) = 2333 Pa, and h0

r = p0
v/pvs (T ) = 87%,

while, for the outer relative humidity, we choose houtr = pout
v /pvs (T ) = 50%. Using

successively (6.138), (6.145) and (6.142), we numerically obtain:

S0
l = 0.892975; S∞l = 0.892915; p∞

g

patm

= 1.741 (6.146)

Although the difference between the initial saturation S0
l and the asymptotic saturation S∞l

turns out to be quite negligible, it is worthwhile to note that the asymptotic gas pressure
is nearly twice the initial atmospheric pressure. This is mainly due to the high contrast
existing between the mass density of the liquid water and the mass density of the amount of
vapour produced by the slight evaporation of the former (see (6.143) where γ � 1330).15

15For a numerical investigation of the differential system (6.133) supporting the above asymptotic analysis
of the drying process of weakly permeable materials, see Mainguy M., Coussy O., Baroghel-Bouny V. (2001),
‘The role of air pressure in the drying of weakly permeable materials’, Journal of Engineering Mechanics,
ASCE, 127, (6), 582–592.
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Kelvin’s law (6.135) and the first two boundary conditions of (6.136) provide the value
SL
l of the liquid saturation prevailing on the border x = ±L of the sample that is:

−Mπc

(
SL
l

) = ρlRT

Mv

ln
pout
v

pvs (T )
(6.147)

Obviously, owing to a boundary layer effect not yet accounted for the value of the
asymptotic liquid water saturation S∞l of the first drying step given by (6.146) does not
match the value of the saturation at the border SL

l . For instance, when using the same
experimental data as the ones which led to the assessment (6.146) of S∞l , assessment
(6.147) of SL

l furnishes:

SL
l = 0.4243 (6.148)

In fact, the boundary condition at x = ±L is eventually met with the help of the second
step of the drying process. The latter starts immediately in the skin layer close to the
end surfaces at x = ±L where the capillary pressure gradient concentrates at very early
times. In order to explore the second drying step involving the inner layers we now let:

x = x

L
; t̃ = t

τD
= t

ε
(6.149)

which, substituted into (6.133a), give:

∂Sl

∂ t̃
+ Mv

ρlRT

∂
[
(1 − Sl)pv

]
∂t̃

− 1

ε

∂

∂x

[
(1 − Sl)τ (Sl)

∂

∂x

(
pv

pg

)]
− ∂

∂x

(
Dl(Sl)

∂Sl

∂x

)
= 0 (6.150)

When the leading ε−1-order term is equal to zero, the asymptotic regime (6.144) of the
early drying step is recovered. Indeed, the molecular Fickean diffusion acts at a time scale
much shorter than the one related to the advective Darcean transport. Therefore, when
the second step of the drying process becomes significantly active within the material,
the molecular diffusion has already made the vapour fraction xv = pv/pg uniform within
the porous material down to the outer value pout

v /patm. The diffusion equation governing
the second step of the drying process is finally obtained by nullifying the ε0-order term
in (6.150). Combining (6.135) and (6.144) gives:

−Mπc(Sl)+ patm

(
pv

pout
v

− 1

)
= ρlRT

Mv

ln
pv

pvs (T )
(6.151)

so that the second term on the left hand side of (6.150) turns out to be negligible with
regard to the first term. We finally obtain:

∂Sl

∂ t̃
− ∂

∂x

(
Dl(Sl)

∂Sl

∂x

)
= 0 (6.152)
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to which we add the boundary and initial conditions:

x = 1 : Sl = SL
l ; x = 0 :

∂Sl

∂x
= 0; t̃ = 0 : Sl = S∞l � S0

l (6.153)

Since the mass loss is mainly due to the change in water content in liquid form,
the relative mass loss history �M (t) during the drying process of the sample can be
expressed in the form:

�M (t) = nρl�

∫ +L

−L

(
S0
l − Sl (x, t)

)
dx (6.154)

where � is the cross section of the sample. Owing to the symmetry to the problem and
to boundary conditions (6.153), integration of (6.152) allows us to rewrite �M (t) in the
form:

�M (t) = −2nρl�LDl

(
SL
l

) ∫ t̃

0

∂Sl

∂x
(x = 1, s) ds (6.155)

Proceeding as in §5.2.2, the early time solution for t � τD is determined by letting:

Sl = f

(
η = 1 − x√̃

t

)
(6.156)

which, when substituted into (6.152)–(6.153) with t̃ � 1, leads to the ordinary differential
equation:

η
df

dη
+ 2

d

dη

(
Dl (f )

df

dη

)
= 0 (6.157)

and to boundary conditions:

f (0) = SL
l ; f (η →∞) = S0

l (6.158)

Collecting the above results, the early time mass loss is finally found to depend on the
square root of time according to:

�M (t) = α ×√
t; α = 4

√
Mκ

ηl
ρl�Dl

(
SL
l

)df
dη

|η=0 (6.159)

The previous result can be used to assess the value of the intrinsic permeability κ of
weakly permeable materials from the experimental early mass loss history. This requires
numerically solving the non-linear differential system (6.157)–(6.158) in order to derive
df/dη |η=0, whose value eventually depends on function Dl(Sl) (see (6.134)) and the
values of the liquid saturation degree S0

l and SL
l . An example of such a determination is

given in Fig. 6.13 for a cement paste. Such a low value found for the intrinsic permeability,
κ = 0.98 × 10−21 m2, leads us to conclude that the transported liquid water in the drying
process is the water creeping along the solid internal walls of the porous network. In
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Figure 6.13: Assessment of the intrinsic permeability κ from the early time history of the mass loss
due to drying. The triangles correspond to the mass loss recorded during the drying of a cylindrical
sample (diameter ∅ = 16 cm, length 2L = 10 cm, initial mass M0 = 41954 g) formed from the
cement paste whose capillary curve is given in Fig. 6.3 and subjected to initial and boundary
conditions (6.146) and (6.148). The solid line corresponds to the numerical solution of (6.152)–
(6.153), when letting κ = 0.98 × 10−21 m2, the latter value being assessed from a linear regression
applied to the early time experimental points and from the resulting value found for coefficient α
involved in (6.159) (after Mainguy et al. (2001), see footnote 15).

turn the question arises about the actual relevance of Darcy’s law for describing such
a transport since the law implicitly assumes a viscous flow at the scale of the porous
network. However, a careful analysis shows that Darcy’s law is only apparent. Indeed, the
driving force of the liquid water motion is eventually the gradient of its chemical potential
involving the complex tensile forces exerted by the solid internal walls on the creeping
water (see Fig. 6.3 for the order of magnitude of these tensile stresses). The resulting
transport law can only be written in the form of a Darcy-like law involving an effective,
apparent, intrinsic permeability κ

eff conveniently expressed in m2 for comparison with
the usual values (see §3.6.3 and (3.124)–(3.125)).





Chapter 7

Penetration Fronts

An analysis of the durability performance of porous materials requires in addition an
analysis of the penetration of aggressive agents through the pore solution and of the way
in which this penetration affects the mechanical properties. For instance, the kinetics of the
decrease in elastic properties and strength of geomaterials subjected to leaching mainly
depends on the underlying diffusion–dissolution process. Another example is provided
by the penetration of chloride ions in concrete structures inducing a high risk of steel
corrosion. The decontamination of concrete in energy facilities or the remediation of soils
is another major concern in environmental engineering.

In this chapter, motivated by such durability issues, we focus attention on the kinetics
of penetration fronts. Whatever the special physics at work, the latter is mainly governed
by the same vanishing diffusion process operating at the penetration front. This allows
a general unified analysis of the penetration of fronts associated with apparently quite
distinct phenomena, for example dissolution, ionic diffusion and migration, forced imbi-
bition, etc. If the physico-chemical mechanisms have a strong influence on the mechanical
behaviour of porous materials, the influence of the material deformation on physico-
chemical mechanisms generally turns out to be negligible. Accordingly, in the analysis of
the kinetics of penetration fronts the deformation of the porous medium can be ignored
so that the Lagrangian approach and the Eulerian approach merge. Penetration fronts
constitute propagating surfaces of discontinuity and we conclude this chapter by giving a
general approach to the propagation of surfaces of discontinuity, extending the analysis
to the propagation of poroelastic waves.

7.1 Dissolution Fronts

The leaching of geomaterials that are partly formed by calcium-based constituents form
a good example of the deterioration governed by the penetration of dissolution fronts.
When the geomaterials are naturally wetted by deionized streaming water, the gradient of
concentration causes the diffusion of the calcium ions from the inner solution towards the
fresh water at the geomaterial surface. This leads to a decrease in the initial concentration

Poromechanics O. Coussy
c© 2004 John Wiley & Sons, Ltd ISBN 0-470-84920-7
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Figure 7.1: Successive dissolution fronts during the leaching process of a cement paste associated
with the various calcium-based constituents. C-S-H stands for Calcium Silicate Hydrates with vari-
able composition (from Adenot F. (1992), ‘Durabilité du Béton: Caractérisation et Modélisation des
Processus Physiques et Chimiques de Dégradation du Ciment’, PhD Thesis, Université d’Orléans,
France).

that breaks the initial equilibrium prevailing between the calcium ions belonging to the
inner solution and the calcium ions bound to the constituents of the solid matrix. The
restoration of the initial equilibrium is obtained through the dissolution of the calcium-
based constituents, resulting in the progressive penetration of a dissolution front within
the geomaterial, as shown in Fig. 7.1 in the particular case of a cement-based material. We
analyse below the kinetics of the penetration front resulting from the coupling between
the diffusion and the dissolution processes.

7.1.1 Mass Balance and Fick’s Law for the Solute
The mass balance equation relative to the solid mineral bound to the matrix and the one
relative to the mineral that diffuses in solute form through the porous space are expressed
respectively in the form:

∂ [(1 − n) ρb]

∂t
+ r→ = 0 (7.1a)

∂ (nρ)

∂t
+ ∇ · w − r→ = 0 (7.1b)

where n is the material porosity whose variations induced by dissolution are assumed to
be negligible in the following; ρb is the mass density per unit of matrix volume of the
solid mineral bound to the matrix, while ρ is the mass density of solute per unit of porous
volume; and w is the mass flux of solute diffusing through the porous medium. Finally
r→ is the rate of the solid constituent dissolving between time t and t + dt . It acts as a
sink in the skeleton continuity equation (7.1a), and as a source in the solute continuity
equation (7.1b). The continuity equation for the mineral viewed as a whole, that is in
both solid and solute forms, is obtained by adding (7.1a) and (7.1b), giving:

∂ (nρ)

∂t
+ ∂
[
(1 − n) ρb

]
∂t

+∇ · w = 0 (7.2)
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or, equivalently:
∂m

∂t
+∇ · w = 0 (7.3)

where m denotes the mineral total mass density:

m = (1 − n) ρb + nρ (7.4)

The continuity equations have to be completed by the law governing the diffusion of
the solute through the solution. Disregarding here any electrical activity or multi-species
effects, the diffusion law reduces to Fick’s first law applied to the solute:

w = −D∇ρ (7.5)

where D is the effective diffusion coefficient. In the general formulation of Fick’s law,
w must be replaced by the mass flux of solute with respect to the solution. Substitution
of (7.5) into (7.2) gives:

∂ (nρ)

∂t
+ ∂ [(1 − n) ρb]

∂t
−∇ · (D∇ρ) = 0 (7.6)

or, equivalently:

∂m

∂t
−∇ · (D∇ρ) = 0 (7.7)

7.1.2 Instantaneous Dissolution and the Formation
of a Penetration Front

The solid–solute equilibrium requires the chemical potential µsol (ρ) of the mineral in
solute form to be equal to the chemical potential µs of the solid mineral bound to the
matrix. Letting ρEq be the equilibrium value of the solute mass density accounting for
such a solid–solute equilibrium condition (for further details see §3.6.3), the kinetics law
ruling the dissolution process can be expressed in the form of Kuhn–Tucker conditions:

ρb ≥ 0; ρ − ρEq ≤ 0; ρb(ρ
Eq − ρ) = 0 (7.8)

When the mineral involved in the dissolution process belongs to several distinct con-
stituents of the solid matrix, for instance in the dissolution pattern reproduced in Fig. 7.1,
equilibrium equation (7.8) must be replaced by a relation having the form ρb = f (ρ), in
order to account for the equilibrium of the solute with the solid mineral of the constituents
successively dissolving. Nevertheless the approach will remain mainly the same.1

Equation (7.8) allows us to express the solute mass density ρ as a non-decreasing
function of the total mass density m with:

ρ = f (m)

{
0 ≤ m ≤ nρEq : f (m) = m

nρEq ≤ m : f (m) = nρEq (7.9)

1See Mainguy M., Coussy O. (2000), ‘Propagation fronts during calcium leaching and chloride penetration’,
Journal of Engineering Mechanics, 126, (3), 250–257.
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Substitution of (7.9) into (7.7) leads to:

∂m

∂t
− ∇ · (Dm (m) ∇m) = 0 (7.10)

where the overall diffusion coefficient Dm (m) is expressed in the form:

Dm(0 ≤ m < nρEq) = D; Dm(m > nρEq) = 0 (7.11)

When m becomes greater than nρEq , the diffusion coefficient Dm vanishes so that the
diffusion process stops. This results in the formation of a front penetrating at finite speed
within the material and separating a zone where the mineral bound to the matrix in solid
form is entirely dissolved from a zone where the matrix is still unaltered with constant
mass density ρb = ρ0

b . When passing across the front, m and w are discontinuous. With the
notation of §1.5.2 the discontinuities undergone by the latter can be expressed respectively
in the form:

[[m]] = (1 − n) ρ0
b ; [[w]] = D ∇ρ (7.12)

The jump condition associated with continuity equation (7.3) which has to be satisfied
across the front can be derived from (1.78), that is:

[[w −mV]] · n = 0 (7.13)

where n is the unit normal to the front while V is the front speed. Substitution of (7.12)
into (7.13) finally provides the condition governing the motion of the penetration front in
the form:

D∇ρ · n = (1 − n) ρ0
bV · n (7.14)

7.1.3 Stefan-like Problem
Consider a semi-infinite porous medium lying in the region x ≥ 0, the solute and the
solid constituent being in an equilibrium state. At time t = 0 the border x = 0 is sud-
denly subjected to renewed fresh water at zero solute concentration so that a dissolution
front progressively penetrates the semi-infinite porous medium. This diffusion–dissolution
problem is similar to the diffusion–melting problem of a semi-infinite solid space sub-
jected on its border to a temperature higher than the melting temperature. In 1891 Stefan
obtained the solution to this problem that can be adapted to the dissolution problem.

The initial and boundary conditions for the solute mass density ρ are expressed in
the form:

ρ (x, t = 0) = ρEq; ρ (x = 0, t) = 0 (7.15)

In the entirely degraded zone the dissolution rate r→ is zero so that (7.1b) and (7.5)
combine to give the unidimensional diffusion equation:

∂ (nρ)

∂t
−D

∂2ρ

∂x2
= 0 (7.16)
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At time t the entirely degraded zone extends from the border x = 0 to the location xd (t)

of the dissolution front where:

ρ (x = xd, t) = ρEq (7.17)

Noting:

ρ = ρ

ρEq
; ξ = x

2
√
(D/n) t

(7.18)

the standard solution of (7.15)–(7.17) is written:

ρ = erf (ξ)

erf (ξd)
(7.19)

where erf stands for the error function (see (5.39)) and where ξd is linked to the location
xd (t) of the dissolution front according to:

xd (t) = 2ξd
√
(D/n) t (7.20)

Jump condition (7.14) here is specified in the form:

D
∂ρ

∂x
|x=xd= (1 − n) ρ0

b

dxd

dt
(7.21)

Using (7.17)–(7.21) and definition (5.39) of the error function, the dimensionless location
ξd of the dissolution front is finally determined by solving the implicit equation:

ε exp
(−ξ 2

d

) = √
πξd erf (ξd) (7.22)

where ε is the mass density ratio defined by:

ε = nρEq

(1 − n) ρ0
b

(7.23)

In most cases the solid mass to dissolve is much greater than the solute mass present in
the inner solution at equilibrium. This large mass density ratio approximation turns out
to let ε � 1. Accordingly, (7.22) gives ξd � 1 so that the approximation erf (ξd � 1) �
2ξd/

√
π +O

(
ξ 3
d

)
substituted into (7.22) finally provides:

ε � 1 : ξd �
√

ε

2 + ε
(7.24)

In Fig. 7.2 we plot ρ against ξ for various values of ε. For large values of mass density
ratio ε, the dissolution front penetrates so slowly within the porous material that the
diffusion regime in regions x < 2ξd

√
(D/n) t eventually reduces to a succession of steady

state diffusion processes represented by straight lines in Fig. 7.2.
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Figure 7.2: Normalized solute mass density ρ = ρ/ρEq plotted against ξ = x/2
√
(D/n)t for the

Stefan-like dissolution problem and for various values of mass density ratio ε = nρEq/ (1 − n) ρb.

The dashed lines represent the large mass density ratio approximation (7.24). For ε = 0.01, 0.1
they cannot be distinguished from the exact (numerical) solution.

7.2 Solute Penetration with Non-linear Binding

In the previous section we analysed the penetration of a dissolution front resulting from
the extraction of the solute from the interstitial pore solution achieved by contact with
an outer solution at lower concentration. Conversely, here we analyse the penetration of
a solute within a porous material with the simultaneous binding of the diffusing particles
onto the solid matrix. The resulting diffusion–binding process of aggressive particles
can significantly impair the durability of materials and the structures they constitute. For
instance, reinforced concrete structures exposed to seawater or deicing salt exhibit a high
risk of steel corrosion and the structural performance relies strongly on the position of the
penetration front of the chloride ions with respect to the structure reinforcement. We give
below a general analysis of the penetration of a solute in a porous material, associated
with a non-linear binding process.2

7.2.1 The Binding Process and the Formation of a Penetration Front

The penetration of a solute through a porous material, associated with the binding of the
latter onto the solid matrix, is still governed by (7.6), where now ρ stands for the mass
density of the free particles forming the solute, while ρb refers to the bound particles of
the same constituent. The underlying complex chemical–physical sorption processes at the
origin of binding are generally not well identified. However, in comparison with diffusion,
the particle binding generally occurs so fast that the solute can be considered as remaining
constantly in equilibrium with the particles that fix onto the solid matrix. As a result,
the local kinetics law can be fortunately and appropriately replaced by an equilibrium
condition linking the mass density of the free particles to that of the bound ones:

2The main results are taken from Coussy O., Eymard R. (2003), ‘Non-linear binding and the diffusion-
migration test’, Transport in Porous Media, 1770, 1–24.
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ρb = f (ρ) (7.25)

Several laws are commonly used:3

Linear (lin) f (ρ) = Kρ K > 0

Langmuir (Lan) f (ρ) = C
ρ

1 + αρ
C > 0, α > 0

Freundlich (Fre) f (ρ) = µργ µ > 0, 0 < γ < 1

(7.26)

Use of (7.25) in (7.4)–(7.7) leads again to the non-linear diffusion equation (7.10) provided
that the overall diffusion coefficient Dm (m) is now expressed in the form:

Dm (m) = D

n+ (1 − n)
df
dρ

(7.27)

The solute diffusion is slowed down by the binding of the particles onto the solid
matrix, resulting in the division of the diffusion coefficient D by the factor 1 + ((1 −
n)/n))(df/dρ). Since (d2f/dρ2) ≤ 0, the lower the solute concentration, the slower the
diffusion process. Provided that the overall diffusion coefficient Dm never vanishes, as in
the case of linear interaction (7.26)lin or in the case of a non-linear interaction governed
by Langmuir’s isotherm (7.26)Lan, the diffusion–binding process eventually reduces to
a standard diffusion process. By contrast, for sufficiently strong non-linear interactions,
such as those captured by Freundlich’s interaction isotherm (7.26)Fre, we get:

ρ → 0 :
df

dρ
→∞; Dm → 0 (7.28)

Therefore, in the limit of a zero concentration the interaction is so intense that the ratio
df/dρ = (∂ρb/∂t)/(∂ρ/∂t) of the rate of particles binding to the solid matrix to the rate
of particles diffusing through the porous space becomes infinite. The overall diffusion
coefficient Dm vanishes and the diffusion stops. Accordingly, for a zero initial concen-
tration of solute in the pore solution, a penetration front propagates at finite speed in the
material bulk.

To analyse the propagation of the penetration front let us consider a semi-infinite half-
space x ≥ 0 at inner zero initial concentration, which is suddenly subjected to an outer
solution at concentration ρ0 maintained constant on the border x = 0. We write:

ρ (x, t = 0) = 0; ρ (x = 0, t) = ρ0 (7.29)

For the 1D problem at hand, when adopting Freundlich’s isotherm (7.26)Fre, diffusion
equation (7.6) can be specialized in the form:

∂

∂t

[
ρ + 1 − n

n
µργ

]
− (D/n)

∂2ρ

∂x2
= 0 (7.30)

3Other laws are the quadratic law, f (ρ) = k1ρ − k2ρ
2, generalized Langmuir’s law, f (ρ) = C(ρm/(1 +

αρm)), and the exponential law, f (ρ) = C exp (−α/ρ).
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By letting:
ρ = ρ

ρ0
; ξ = x√

(D/n) t
; (7.31)

the previous problem reduces to finding the solution ρ (ξ) of the ordinary differential
equation:

ξ
d

dξ

[
ρ + rργ

]+ 2
d2ρ

dξ 2
= 0 (7.32)

with boundary conditions:

ρ (ξ = 0) = 1; ρ (ξ →∞) = 0 (7.33)

In (7.32) r is the parameter defined by:

r = 1 − n

n

µ

ρ
1−γ

0

(7.34)

As time flows, the ions diffuse within the semi-infinite half-space with a penetration front
located at:

x0 (t) = ξ0 (γ, r)
√
(D/n) t (7.35)

where ξ0 (γ, r) is the solution of ρ (ξ0) = 0 and depends on r and γ . As ξ tends towards
ξ0 the asymptotic profile for ρ can be looked for in the form:

ξ → ξ0; ρ � A(ξ0 − ξ)β (7.36)

Substitution of (7.36) into (7.32) gives:

−ξ0rγA
γ−1 (ξ0 − ξ)1−β(1−γ ) + 2 (β − 1) � 0 (7.37)

Equation (7.37) allows the identification of β and A, resulting in:

ρ (ξ → ξ0) �
[

1

2
rξ0 (1 − γ ) (ξ0 − ξ)

] 1
1−γ

(7.38)

A crude assessment of ξ0 (γ, r) can be achieved by imposing boundary condition ρ = 1
for ξ = 0, yielding:

ξ0 �
√

2

r (1 − γ )
(7.39)

We find that ξ0 →∞ as r → 0 (no binding) or γ → 1 (linear binding). The closer the
coefficient γ is to 1

2 , the closer the exact solution is to the approximate solution defined
by (7.38) and (7.39) (see Fig. 7.3).
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Figure 7.3: Normalized penetration profiles of the free solute mass density ρ = ρ/ρ0 numerically
obtained and plotted against ξ = x/

√
(D/n)t , for r = 1 and three values of coefficient γ defining

Freundlich’s binding isotherm (7.26)Fre. The dashed line is the approximate solution defined by
(7.38) and (7.39) when adopting γ = 1

2 .

7.2.2 The Time Lag and the Diffusion Test

Material properties γ and µ are key durability properties with respect to the intru-
sion of an aggressive solute. Using (7.39), it is tempting to assess their values from
the experimental determination of ξ0, that is from the location of the penetration front.
Unfortunately, asymptotic solution (7.38) reveals that ∂ρ/dx � 0 while ∂ρb/∂x behaves
as (x0 − x)(2γ−1)/(1−γ ) as x → x0. Hence, an accurate assessment of the location of the
penetration front can be carried out only from the profiles of bound particles, especially
for 0 < γ < 1

2 . This would require the crushing of the sample.
An alternative method to determine the binding isotherm is afforded by the diffusion

test. In the diffusion test sketched out in Fig.7.4 a sample of length L, with zero initial
concentration, is placed between two compartments: an upstream compartment where
various concentrations of diffusing ions can be imposed; and a downstream compartment
where the cumulative mass Q of arriving ions per unit of sample section is measured
as a function of time t by means of regular samplings. At large times the corresponding
function Q(t) becomes a straight line whose abscissa at the origin defines the so-called
time lag τ (see Fig. 7.4). The time lag τ , as a function of upstream concentration ρ0,
quantifies the slowdown of the diffusion process due to particle binding. Therefore a key
to determine the binding isotherm f (ρ) is to derive an expression linking τ, f (ρ) and ρ0.

The downstream compartment volume is always large compared with the volume sam-
ple so that the concentration imposed downstream can be assumed to be zero. We write:

ρ (x = 0, t) = ρ0; ρ (x = L, t) = 0 (7.40)

According to Fick’s first law (7.5), Q(t) is:

Q(t) = −D

∫ t

0

∂ρ

∂x
(x = L, t) dt (7.41)
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Figure 7.4: In the diffusion test the cumulative mass Q of particles arriving in the downstream
compartment is measured as a function of time t, for various upstream concentrations ρ0. At large
times the corresponding function Q(t) becomes a straight line whose abscissa τ at the origin is
the time lag which quantifies the slowdown of the diffusion process due to particle binding. The
experimental results, reported here in dimensionless form, are relative to a cement mortar, while
the particles are chloride ions. The porosity of the samples is n � 0.14. The experimental data
are from Bigas J.-P. (1994), ‘Diffusion des ions chlorures dans les mortiers’, PhD Thesis, Génie
civil—INSA Toulouse.

We multiply (7.30) by x and integrate by parts the resulting equation between x = 0 and
x = L, while using boundary conditions (7.40) We obtain:

−DL
∂ρ

∂x
(x = L, t)−Dρ0 = − ∂

∂t

∫ L

0
x
[
n ρ + (1 − n) f (ρ)

]
dx (7.42)

The time integration of (7.42) with a zero initial condition for ρ finally yields:

Q(t) = ρ0D

L
t − 1

L

∫ L

0
x
[
n ρ + (1 − n) f (ρ)

]
dx (7.43)

At large times the time derivatives can be neglected in (7.30). The space integration of
the resulting equation, together with boundary conditions (7.40) provides the asymptotic
concentration profile ρ∞ (x) in the form:

ρ∞ (x) = ρ0

(
1 − x

L

)
(7.44)

Substitution of (7.44) into (7.43) furnishes the cumulative mass of particles arriving in
the asymptotic regime in the downstream compartment:

Q(t → ∞) = ρ0D

L
(t − τ) (7.45)

or, in dimensionless form:
Q
(
t → ∞) � t − τ (7.46)

where we note:

Q = Q

ρ0L
; t = t

t0
; t0 = L2

D
(7.47)
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whereas τ = τ/t0 is the dimensionless time lag defined by:

τ = n

6
+ 1 − n

ρ0

∫ 1

0
x f (ρ0 (1 − x)) dx (7.48)

Equation (7.48) constitutes the new key to determine the non-linear binding isotherm
from the time lag. Indeed, by progressively increasing upstream concentration ρ0 from
zero, diffusion coefficient D can firstly be measured from the successive slopes ρ0D/L

of Q(t → ∞). Once D is determined, the determination of the successive dimensionless
time lags τ provides an assessment of the unknown interaction isotherm f (ρ) with
prerequisite knowledge only of the porosity.

Adopting Freundlich’s isotherm (7.26)Fre we derive:

ln
(
τ − n

6

)
= ln

(1 − n)µ

(γ + 1) (γ + 2)
− (1 − γ ) ln ρ0 (7.49)

Accordingly, the quantity ln
(
τ − n

6

)
plotted against ln ρ0 must be a straight line. The

measurement of both the slope of the latter and its abscissa at the origin provides the
identification of exponent γ and constant µ (see Fig. 7.5). Another time of interest is the
breakthrough time, τb, matching the first arrival of particles in the downstream compart-
ment. It differs from zero as soon as a penetration front exists, that is when condition
(7.28) is fulfilled. An assessment of time τb is provided by (7.35), when letting the loca-
tion x0 of the penetration front be equal to L and adopting expression (7.39) for ξ0. The
procedure gives:

τb = τb

t0
� 1

2
(1 − n) (1 − γ )

µ

ρ
1−γ

0

(7.50)
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Figure 7.5: Identification of Freundlich’s binding isotherm ρb = µργ from the successive mea-
surements of the time lag and its theoretical expression (7.49). The experimental data represented
by crosses match the results reported in Fig. 7.4 with n � 0.14.
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The relevance of the values of γ and µ previously obtained by exploiting (7.49) can
then be independently checked. We can compare the predicted values of the dimension-
less breakthrough time τb they deliver by using (7.50) with the experimental order of
magnitude of τb that the diffusion test can provide (see Fig. 7.4).

7.3 Ionic Migration with Non-linear Binding

7.3.1 Ionic Migration in the Advection Approximation

In most cases the solute is formed of ions. The solute transport is sensitive to the local
electrical field E and Fick’s law (7.5) must be modified according to the Nernst–Planck–
Einstein relation:

w = −D ∇ρ −Dρ
F

RT
zE (7.51)

where z stands for the valency of the ions forming the solute while F is Faraday’s constant,
R is the ideal gas constant4 and T is the absolute temperature. To analyse the effects of
an external electrical field on the propagation of the penetration front let us again consider
a semi-infinite half-space x ≥ 0 subjected to initial and boundary conditions (7.29). The
pre-established external electrical field before the migration process starts is assumed to
be sufficiently intense in order that the migrating ions do not significantly affect it. Letting
E = E0ex , where the constant E0 is the algebraic strength of the external electrical field
in the ex direction, (7.51) can be specified in the form:

w = wxex : wx = −D
∂ρ

∂x
− sgn (zE0)D

ρ

�
(7.52)

where sgn (·) stands for the sign of the quantity in parentheses. In (7.52) � is the length
defined by:

� = RT

F |zE0| (7.53)

and scales the range of the diffusion strength compared with that of the advection caused
by the external electrical field. In the following we assume sgn (zE0) = −1 in order that
the externally applied electrical field contributes positively to the ionic transport in the ex
direction. Substitution of (7.52) into (7.2) and use of equilibrium condition (7.25) give
the advection–diffusion equation governing the migration of the ionic solute:

∂

∂t

[
n ρ + (1 − n) f (ρ)

] −D
∂

∂x

(
∂ρ

∂x
− ρ

�

)
= 0 (7.54)

Let us scale x and t according to:

x = x

X
; t = t

�
(7.55)

4F = 9.6486 104 J/ (mol V), R = 8.31 J/ (mol K).
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so that the advection–diffusion equation (7.54) can be rewritten in the form:

∂

∂t

[
n ρ + (1 − n) f (ρ)

] − (D�

X2

)
∂2ρ

∂x2
+
(
D�

X�

)
∂ρ

∂x
= 0 (7.56)

Consider now times t and locations x of respective order of magnitude � = O (t) and
X = O (x) such as:

O

(
Dt

x�

)
= D�

X�
= O (1) (7.57)

Under assumption (7.57), the advection approximation consists in exploring the region of
space and time such as:5

D�

X2
�
(
D�

X�

)
; D�

X2
� 1 ⇒ x � �; t � �2

D
(7.58)

In the advection approximation, when returning to the original variables, the advection–
diffusion equation (7.56) reduces to the advection equation:

∂

∂t

[
n ρ + (1 − n) f (ρ)

] + D

�

∂ρ

∂x
= 0 (7.59)

With boundary and initial conditions (7.29) a solution of the advection equation (7.59) is:

ρ (x, t) = ρ0 [1 −H (x − ct)] (7.60)

where H is the Heaviside function, with H(x − ct > 0) = 1 and H(x − ct < 0) = 0, and
where c is defined by:

c = c0

λ
with λ = 1 + 1 − n

n

f (ρ0)

ρ0
and c0 = D/n

�
(7.61)

Solution (7.60) is a step function of intensity ρ0 which propagates at speed c. Hence,
at x = ct the total ionic mass density, that is m = (1 − n) ρb + nρ, and the mass flux w
undergo the respective jumps:

[[m]] = − [nρ0 + (1 − n) f (ρ0)
] ; [[w]] = −D

ρ0

�
(7.62)

and expression (7.61) of speed c satisfies the Rankine–Hugoniot jump condition (7.13).
For the usual binding isotherms (see (7.26)), the explicit expressions of λ = c0/c are:

lin λ = c0/c = 1 + 1 − n

n
K

Lan λ = c0/c = 1 + 1 − n

n

C

1 + αρ0

Fre λ = c0/c = 1 + 1 − n

n

µ

ρ
1−γ

0

(7.63)

5The diffusion approximation would consist in exploring the region of spacetime x � � and t � �2/D, and
neglecting the advection term −(D/�)(∂ρ/∂x) in (7.54) so that the penetration profiles would match those of
Fig. 7.3.
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7.3.2 The Travelling Wave Solution
The step function solution derived in the advection approximation can only be viewed as
the limit solution as � → 0. Indeed, when passing across the head of a migration front
accounted for by a step function, the mass density gradient ∇ρ becomes infinite and
diffusion effects will inexorably spread out the migration front profile. In order to capture
the structure of the transition layer we note:

χ = x − ct

�
(7.64)

where the speed c does not need to be specified at this step of analysis.
Considering first a linear binding process, we substitute (7.26)lin and (7.64) into (7.54)

and we get:

�

(
1 + 1 − n

n
K

)
∂ρ

∂t
+
[
c0 −
(

1 + 1 − n

n
K

)
c

]
∂ρ

∂χ
− c0

∂2ρ

∂χ2
= 0 (7.65)

Adopting for c the expression (7.63)lin we found in the advection approximation, the
second term in (7.65) vanishes. Adding the boundary conditions:

ρ (χ →−∞) = ρ0; ρ (χ →+∞) = 0 (7.66)

the solution of (7.65) is shown to be:

ρ (x, t) = ρ0

2

(
1 − erf

x − ct

4
√{D/ [n+ (1 − n)K]} t

)
(7.67)

Accordingly, the current ‘thickness’ e (t) of the transition layer can be assessed in the form:

e (t) = 4
√
{D/ [n+ (1 − n)K]} t (7.68)

In the case of linear binding, as time flows, according to (7.67) the diffusion effects
inexorably spread out the transition layer so that the migration front eventually cannot
propagate without deforming.

For more intense non-linear binding effects, in particular those captured by Freundlich’s
isotherm, we showed in §7.2.1 that, in the absence of any external electrical field, the
interaction of the ions with the solid matrix could result in a front propagating at a finite
speed. Hence, in the presence of an external electrical field and of non-linear binding
effects, the propagation of a steady migration front can also be expected in spite of the
diffusion process. In order to explore such an issue we substitute (7.64) into (7.54) while
using definitions (7.61):

�
∂

∂t

[
ρ + 1 − n

n
f (ρ)

]
+ (c0 − c)

∂ρ

∂χ
− c

1 − n

n

∂f (ρ)

∂χ
− c0

∂2ρ

∂χ2
= 0 (7.69)

A time-independent advection–diffusion profile has to match (7.69) when setting the time
derivative to zero. Integration of the resulting equation with respect to χ gives:

(c0 − c) ρ − c
1 − n

n
f (ρ)− c0

dρ

dχ
= C (7.70)
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where C is an integration constant so that the continuity of ρ and f (ρ) requires continuity
of dρ/dχ . According to the second boundary condition (7.66), ρ and dρ/dχ have to
vanish as χ goes to infinity so that the integration constant C turns out to be zero. Using
in addition the first boundary condition (7.66) and noting that (dρ/dχ) (χ →−∞) =
0, we retrieve for c the expression (7.61) we found in the advection approximation.6

Accordingly, substitution of (7.61) into (7.70), where we now let C = 0, leads to:

ρ

ρ0
− f (ρ)

f (ρ0)
− λ

λ− 1

1

ρ0

dρ

dχ
= 0 (7.71)

Returning to the initial space and time variables, the solution of (7.71) is then found to
be:

−
∫ ρ

ρ0/2

dρ̃/ρ0

f (ρ̃) /f (ρ0)− ρ̃/ρ0
= λ− 1

λ

x − ct

�
(7.72)

where the origin χ = 0 has been chosen where the concentration is half the upstream
concentration. A steady migration front can actually form provided that the previous
equation can be inverted in order to give ρ as a function of x − ct , requiring dχ/dρ to
be non zero everywhere and consequently ρ to be a decreasing function of χ . Inspecting
(7.71), we finally require the binding function f (ρ) to be strictly concave as the usual
binding functions are and therefore to satisfy:

∀ρ0: 0 < ρ < ρ0:
f (ρ)

ρ
>

f (ρ0)

ρ0
(7.73)

According to (7.72), non-linear binding effects then allow the formation of a so-called
‘travelling wave’ whose ‘thickness’ e is now independent of time and is given by:

e = λ

1 − λ
� (7.74)

Condition ρ (χ →−∞) = ρ0 in (7.66) eventually means that ρ (x − ct � −�) = ρ0 so
that the travelling wave solution will be physically relevant as soon as the characteristic
length � is small compared with the extent of the porous medium.7

Owing to the strength of the binding effects two situations can eventually be met,
depending on the behaviour of the binding function as the concentration goes to zero. Let
us first consider:

f (ρ)

ρ
|ρ→0< +∞ (7.75)

The integral in (7.72) then diverges as ρ goes to zero. As a result the binding effects are
too weak to prevent the diffusion process from spreading out the travelling wave over the
whole x axis so that no wavefront where ρ = 0 can actually be observed. For instance,

6Indeed, step function (7.60), where c is given by (7.61), is the standard ‘entropy weak solution’ towards
which the solution of (7.54) converges when the diffusion term vanishes.

7At room temperature T = 293 K, the order of magnitude of � is 1/(40 |zE0|), where the strength E0 of
the electrical field is expressed in volts per length unit.
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the case of Langmuir’s binding isotherm we substitute (7.26)Lan into (7.72) to obtain
finally:

2

(
1 − ρ

ρ0

) 1
αρ0

+1 (
ρ

ρ0

)− 1
αρ0 = exp

(
x − ct

e

)
(7.76)

Instead of (7.75) we now explore stronger binding effects by considering:

f (ρ)

ρ
|ρ→0= +∞ (7.77)

The integral in (7.72) then converges as ρ goes to zero. The binding effects are strong
enough to counterbalance the diffusion process so that an actual wavefront where ρ =
0 can be observed at a finite distance along the x-axis. For instance, in the case of
Freundlich’s binding isotherm we substitute (7.26)Fre into (7.72), resulting in:

−
∫ ρ/ρ0

1/2

dρ

ργ − ρ
= x − ct

e
(7.78)

For the usual value γ = 1
2 the previous solution can be written explicitly as:

ρ

ρ0
=
[

1 − exp

(
x − ct

2e
− ln
(√

2 + 2
))]2

(7.79)

In Fig. 7.6 we compare the travelling wave profile (7.79) with (7.76) when letting αρ0 = 1.
The travelling waves significantly depart from each other only close to the actual front
x − ct = 2e ln

(√
2 + 2
)

of the travelling wave relative to Freundlich’s isotherm.
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Figure 7.6: Comparison of the travelling wave profiles (7.76) and (7.79), related respectively to
Langmuir’s binding isotherm (7.26)Lan when letting αρ0 = 1 and Freundlich’s binding isotherm
(7.26)Fre when letting γ = 1

2 . The profiles are adjusted by imposing the value ρ = ρ0/2 at x = ct

for both travelling waves and by adopting for both binding isotherms the same value for λ defined
in (7.61).
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7.3.3 The Time Lag and the Migration Test

The duration of the diffusion test is scaled at the lower end by the time lag t0 = nL2/6D
that would be recorded in the absence of binding (see (7.47) and (7.48)). The order of
magnitude of the diffusion coefficient D in porous materials such as the cement mor-
tar corresponding to the experimental results reported in Fig. 7.4 is about 10−12 m2/s.
A standard thickness sample is L � 1cm. Adopting in addition n � 0.15, the order of
magnitude of t0 is found to be about 30 days. It becomes prohibitive for routine tests
aiming at the determination of D from the asymptotic slope of Q(t → ∞). Furthermore,
when the solute is formed of ions, the electrical interactions existing between all the ionic
species present in the material cannot be neglected in the absence of an applied external
electrical field. Indeed, owing to these multi-species electrical interactions, the diffusion
coefficient D, as measured from the asymptotic slope of Q(t → ∞), is generally found
to depend apparently on the upstream concentration ρ0. In order to overcome these dif-
ficulties, the migration experiment consists in applying an external electric potential of
high intensity to the sample, in order to decrease drastically both the test duration and
the multi-species effects. In addition the migration experiment can also provide a very
convenient assessment of the binding isotherm.

More precisely the migration experiment consists in applying a difference U0 of the
electrical potential between the two sample ends, between the cathode (−) and the anode
(+) (see Fig. 7.7) and in constantly renewing the solution of the upstream and the down-
stream compartments until the steady state electrical regime is established. In the steady
state regime the local electroneutrality is restored and the electrical potential is a linear
function of x:

U = E0x; E0 = U0

L
(7.80)
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Figure 7.7: Cumulative mass of (chloride) ions leaving the upstream compartment (Upstream)

and arriving in the downstream compartment (Downstream) in the migration test for two concrete
samples of different mixes (32 and 32PM) (from Truc O., Ollivier J.-P., Carcassès L. M. (2000), ‘A
new way for determining the chloride diffusion coefficient in concrete from steady state migration
test’, Cement and Concrete Research, 30, 217–226 with permission from Elsevier).
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where E0 is the (constant) strength of the electrical field. Substituting (7.80) into (7.53),
we note:

η = RT

F |zU0| =
�

L
(7.81)

In the migration test the sample length L scales the x coordinate so that, letting X = L

in (7.56) and using (7.81), the time is found to be appropriately scaled according to the
characteristic time � defined by:

� = ηt0 = η
L2

D
(7.82)

so that the duration of the migration experiment is actually reduced by the factor η with
respect to the duration of the diffusion experiment.

Using the unidimensional form of the Nernst–Planck–Einstein equation (7.52), the
cumulative mass Q(t) of arriving ions in the downstream compartment can now be
written:

Q(t) = −D

∫ t

0

(
∂ρ

∂x
− ρ

�

)
(x = L, t) dt (7.83)

We multiply (7.54) by the yet unknown test function ψ (x) and integrate twice by parts
between x = 0 and x = L. We obtain:[

−ψD

(
∂ρ

∂x
− ρ

�

)]L
0
= − [ψ ′Dρ

]L
0 +
∫ L

0
Dρ

[
ψ ′′ + ψ ′

�

]
dx

− ∂

∂t

∫ L

0
ψ
[
n ρ + (1 − n) f (ρ)

]
dx (7.84)

where ψ ′ and ψ ′′ stand respectively for the first and the second derivative of ψ . For the
test function ψ we finally choose the one satisfying:

ψ ′′ + ψ ′

�
= 0; ψ (0) = 0; ψ (L) = 1 (7.85)

resulting in:

ψ (x) = 1 − exp
(− x

�

)
1 − exp

(
− 1

�

) (7.86)

Substituting (7.85) into (7.84) and using boundary conditions (7.40), the subsequent inte-
gration with respect to time with zero initial condition provides an expression for Q(t)

in the form:

Q(t) = ρ0D

�
(

1 − exp
(
− 1

η

)) t − ∫ L

0
ψ
[
n ρ + (1 − n) f (ρ)

]
dx (7.87)
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The steady state profile that establishes as time goes to infinity matches the equation
obtained by setting the time derivative to zero in (7.54), that is:

t →∞:
d

dx

(
dρ

dx
− ρ

�

)
= 0 (7.88)

whose solution ρ∞ (x), satisfying boundary condition (7.40), is:

ρ∞ (x) = ρ0

exp
(

1
η

)
− exp

(
x
�

)
exp
(

1
η

)
− 1

(7.89)

As time goes to infinity, the mass of ions arriving in the downstream compartment is
finally expressed in the form:

Q(t →∞) = ρ0D

�
(

1 − exp
(
− 1

η

)) t
−
∫ L

0
ψ (x)

[
n ρ∞ (x)+ (1 − n) f (ρ∞ (x))

]
dx (7.90)

The previous equation allows us to obtain an explicit expression for the time lag related to
any binding isotherm f (ρ). In order to limit the duration of the migration test, parameter
η is chosen as the smallest possible, that is such that η � 1, and functions ψ (x) and
ρ∞ (x) can be approximated according to:

η � 1: ψ (x) � 1 − exp
(
−x

�

)
; ρ∞ (x) � ρ0 (7.91)

Substitution of (7.91) into (7.90) gives Q(t →∞) in the form:

η � 1: Q(t → ∞) � cD

�
[t − τm (1 − η)] (7.92)

where τm defined by:

τm = L

c
= nληt0 (7.93)

is the travel time through the sample of the transient solution (7.60)–(7.61) in the advec-
tion approximation. Indeed, according to (7.58) the advection approximation is relevant
provided that x � � and t � η2t0. Accordingly, in the range η = �/L � 1 the step func-
tion profile (7.60) is established at early times within the sample long before it reaches the
sample end x = L. In addition, since τm � t0, the diffusion effects cannot significantly
develop at the head of the penetration front, even though no travelling wave can actually
form, such as in the case of a linear binding process. When the step function profile
reaches the sample end, owing to diffusion effects it progressively transforms into the
asymptotic profile (7.89). Using the unidimensional form of the Nernst–Planck–Einstein
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equation (7.52) together with (7.89), the constant flux of ion mass associated with the
asymptotic profile is:

w∞
x = −D

∂ρ∞ (x)

∂x
ρ∞ (x)

D

�
= ρ0D

�

1

1 − exp
(
− 1

η

) � ρ0D

�
(7.94)

In the steady state regime the migration of ions is eventually achieved by means of
the electrical contribution within almost the whole sample corresponding to the second
term in expression (7.94) for w∞

x . It is only very close to the end that the electrical
contribution vanishes and that the transport is finally achieved through pure diffusion
corresponding to the first term in expression (7.94) for w∞

x . According to (7.92), the time
lag in the migration test is expressed in the form τm (1 − η) so that the diffusion effects
involved in the whole process are accounted for through the factor (1 − η) affecting the
travelling time τm.

According to (7.92), the diffusion coefficient D can be determined from the slope
(ρ0D/�)S relative to the mass of ions SQ (t →∞) arriving in the downstream compart-
ment (S stands for the sample section). From the experimental data reported in Fig. 7.7
and performed at U0 = 12V for discs (thickness L = 3 cm, diameter ∅ = 11 cm), so
that η � 0.0021 � 1, the values for the diffusion coefficient and for ηt0 = ηL2/D as
determined from the above procedure are:

0.32:D = 9.12 × 10−13m2/s; ηt0 = 576.46 h

0.32PM:D = 1.30 × 10−12m2/s; ηt0 = 404.4 h (7.95)

In addition the time lag τ � τm can be extracted from the same experimental data. Accord-
ingly, (7.93) and (7.95) can combine to deliver a first assessment nλ1 = τm/ηt0 of nλ.
We get:

0.32:τm = 153.13 h, nλ1 = 0.2656

0.32PM:τm = 67.2 h, nλ1 = 0.1661 (7.96)

According to definition (7.61) of λ, the mass M∞ of ions, in both bound form and
solute form, remaining trapped within the sample as time goes to infinity is expressed in
the form:

M∞ = ρ0LSλ (7.97)

so that the measurement of M∞ provides another independent assessment nλ2 of nλ. In
Fig. 7.7 the curves which are labelled Upstream represents the cumulative mass of ions
leaving the upstream compartment. Therefore M∞ can be assessed from the difference
between the Upstream curve and the Downstream curve as time goes to infinity. For the
0.32 sample M∞ is approximately equal to 1.245 g, and to 1 g for the 0.32PM sample,
leading to:

0.32: nλ2 = 0.2181; 0.32PM: nλ2 = 0.1752 (7.98)

which match to good accuracy the first assessment (7.96) obtained for nλ.
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7.4 Advanced Analysis

7.4.1 Stefan-like Problem with Non-instantaneous Dissolution

When the mass of extracted solute is experimentally found not to depend linearly on
the square root of time, the dissolution process involves its proper kinetics. In order to
explore the possible influence of a non-instantaneous dissolution process in the Stefan-like
problem (see §7.1.3), we now assume that the kinetics of dissolution obeys a first-order
law such as:

r→ = n
ρEq − ρ

td
(7.99)

In (7.99) the characteristic time td of dissolution can be interpreted as the time td = �2/d

scaling the microdiffusion effects involving the internal mesoscopic diffusion length �

and the microdiffusion coefficient d .
Substituting (7.99) into (7.1a) and adopting the notation of §7.1.3 with ρb = ρb/ρ

0
b ,

the kinetics of dissolution of the solid mineral bound to the matrix is now governed by:

∂ρb

∂t
= ρ − 1 (7.100)

where the dimensionless time t is defined by:

t = ε
t

td
(7.101)

In (7.101), ε is the mass density ratio as defined in (7.23), so that td/ε is the time eventually
scaling the dissolution process of the solid matrix at the macroscopic level. Indeed, when
suddenly imposing a zero solute concentration at the border of a semi-infinite porous
medium, (7.100) shows that the solid skin layer at x = 0 dissolves according to:

ρ
(
x = 0, t

) = 0: ρb

(
x = 0, t < 1

) = 1 − t (7.102)

Substituting (7.99) into (7.1b) and letting:

x = x√
(D/n) td

(7.103)

we obtain the unidimensional diffusion–dissolution equation:

ε
∂ρ

∂t
− ∂2ρ

∂x2
= − (ρ − 1) (7.104)

governing the solute mass density in the inner solution as long as the dissolving solid
mineral bound to the matrix exists.

The skin layer at x = 0 finishes dissolving at the dimensionless time t = 1. For t = 1
the first term in (7.104) can be neglected in the large mass density ratio approximation
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we adopt from now on, consisting in ε � 1. Solving the resulting equation together with
(7.100) and (7.102), we eventually derive:

ρ
(
x, t = 1

) = ρb

(
x, t = 1

) = 1 − exp (−x) (7.105)

Beyond the dissolution of the skin layer, that is for t > 1, a front located at x = xd
(
t
)

penetrates at finite speed within the material and separates a zone x < xd
(
t
)
, where the

solid mineral bound to the matrix is entirely dissolved, from a zone x > xd
(
t
)
, where

the dissolution of the matrix is still in progress. In the entirely degraded zone there is no
longer a source term in the diffusion equation governing the free solute concentration so
that the term on the right hand side of (7.104) disappears, yielding:

t > 1; 0 < x < xd
(
t
)

: ε
∂ρ

∂t
− ∂2ρ

∂x2
= 0 (7.106)

Analysing (7.106) in the same way as we did for (7.54) to derive the advection approxi-
mation, we obtain:

ε
x2
d

(
t
)

t
� 1 ⇒ ε

∂ρ

∂t
� ∂2ρ

∂x2
(7.107)

Accordingly, we neglect the first term in (7.106) and we solve (7.106) with ρ
(
x = 0, t

)
= 0:

t > 1; 0 < x < xd
(
t
)

:
ρ
(
x, t
)

ρ
(
xd
(
t
)
, t
) = x

xd
(
t
) ; ρb

(
x, t
) = 0 (7.108)

The evolution of ρ
(
x > xd

(
t
)
, t > 1

)
is again governed by (7.104). In the large mass

density ratio approximation the dissolution kinetics is slow enough that the diffusion term
(second term on the left hand side of (7.104)) efficiently ensures the transport of matter
resulting from the dissolution process (right hand side of (7.104)), so that the possible
local accumulation of the solute can be neglected (first term in (7.104)). In doing so, the
solution of (7.104) with ρ

(
x →∞, t

) = 0 is:

t > 1; x > xd
(
t
)

: ρ
(
x, t
) = (ρ (xd (t) , t)− 1

)
exp
[− (x − xd

(
t
))]+ 1 (7.109)

The requirement of the continuity of ∂ρ/∂x at x = xd for solutions (7.108) and (7.109)
gives ρ

(
xd
(
t
)
, t
)

in the form:

ρ
(
xd
(
t
)
, t
) = xd

(
t
)

1 + xd
(
t
) (7.110)

Substitution of (7.110) into (7.109) furnishes an expression for ρ
(
x, t
)

that, in turn, can
be substituted into (7.100). The procedure gives an equation governing ρb for x > xd

(
t
)

and t > 1 which, once integrated, leads to:

t > 1; x > xd
(
t
)

: ρb

(
x, t
) = 1 − exp (−x)−

∫ t

1

exp [− (x − xd (τ ))]

1 + xd (τ )
dτ (7.111)
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The remaining unknown function xd
(
t
)

must satisfy:

ρb

(
xd
(
t
)
, t
) = 0; dρb

(
xd
(
t
)
, t
)

dt
= 0 (7.112)

which means that an observer moving at speed dxd/dt will constantly record a zero
concentration of bound ions.8 Equation (7.112) gives the differential equation:(

1 + xd
(
t
)) dxd (t)

dt
= 1 (7.113)

Integrating the previous equation and imposing xd
(
t = 1
) = 0, we obtain:

xd
(
t
) = √2t − 1 − 1 (7.114)

which a posteriori ensures the fulfilment of condition (7.107) for t > 1. Collecting the
above results, for 0 < x < xd

(
t
)

we derive:

ρ
(
x, t
) = x√

2t − 1
; ρb

(
x, t
) = 0 (7.115)

and for x > xd
(
t
)
:

ρ
(
x, t
) = 1 − exp

[− (x − xd
(
t
))]

√
2t − 1

; ρb

(
x, t
) = 1 − exp

[− (x − xd
(
t
))]

(7.116)

In Fig. 7.8 we present the mass density profiles ρ
(
x, t
)

and ρb

(
x, t
)

for various values
of the dimensionless time t . When compared with experimental data, these profiles can
be used to assess the order of magnitude of the characteristic time td of the possible
non-instantaneous dissolution process.
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Figure 7.8: Normalized mass density profiles of solute and bound particles plotted against x =√
(D/n) t for various values of the normalized time t = εt/td in the case of a non-instantaneous

dissolution scaled by characteristic time td . The profiles correspond to the large mass density ratio
approximation consisting in ε = nρEq/ (1 − n) ρ0

b � 1. They cannot be distinguished from the
exact (numerical) solution (not represented here) for values of ε < 0.1.

8Condition (7.112) can be replaced in the general framework of the kinematics of discontinuities (see §7.4.3).
Indeed it is identical to (7.148) when letting G = ρb and c = dxd/dt .
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7.4.2 Imbibition Front

In the imbibition process a wetting fluid is injected in a porous medium and displaces
a non-wetting fluid which initially saturates the porous medium. An example of great
importance is the recovery of a rock reservoir of oil by means of flooding with water.
With regard to durability issues, another example of concern is furnished by the imbibition
of cement-based materials, initially saturated by air and invaded by seawater supplying
aggressive agents such as chloride ions. In forced imbibition the volume injection rate Q

of the wetting phase is imposed and leads to an advection–diffusion process that eventually
relies on the same mathematical analysis we carried out for the ionic migration in §7.3.

Let us consider a semi-infinite horizontal layer x ≥ 0 initially saturated by a non-
wetting fluid (subscript nw). At time t = 0 a volume of wetting fluid (subscript w)
is suddenly injected at constant rate Q onto the border x = 0. Incompressible flow is
assumed for both fluids. Let Sα and Vα be respectively the saturation degree and the
component in the ex direction of the filtration vector relative to fluid α = w or nw, so
that the initial and the boundary conditions can be expressed in the form:

Sw (x, t = 0) = 0 (7.117a)

Vw (x = 0, t) = Q; Vnw (x = 0, t) = 0 (7.117b)

Assuming incompressible flow, the unidimensional continuity equations related to both
fluids are:

∂ (nSw)

∂t
+ ∂Vw

∂x
= 0; ∂ (nSnw)

∂t
+ ∂Vnw

∂x
= 0 (7.118)

Use of relation Sw + Snw = 1 and integration of the unique equation resulting from the
addition of continuity equations (7.118) give:

Vw + Vnw = Q (7.119)

where boundary conditions (7.117b) have been used in order to identify the integration
constant. Owing to the horizontal character of the flow in the ex direction, we write
Darcy’s law relative to each fluid in the form (see §6.5.2):

Vw = −κkrw (Sw)

ηw

∂pw

∂x
; Vnw = −κkrnw (Snw)

ηnw

∂pnw

∂x
(7.120)

where relative permeability krα (Sα) satisfies:

krα (0) = 0 ≤ krα (Sα) ≤ krα (1) = 1 (7.121)

In addition the capillary pressure as a function of the saturation degree of the wetting
fluid is written in the form:

pc = pnw − pw = Mπc (Sw) (7.122)

where M stands for a capillary modulus so that πc (Sw) is a dimensionless capillary
pressure. Getting rid of the different unknown fields from (7.118)–(7.120) and (7.122) to
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the sole benefit of Sw leads us to write the continuity equation relative to the wetting
fluid in the form:

∂ (n Sw)

∂t
−D

∂

∂x

(
δ (Sw)

∂Sw

∂x
− µ (Sw)

�

)
= 0 (7.123)

where δ (Sw) and µ (Sw) are the following diffusion and advection dimensionless func-
tions:

δ (Sw) = −dπc (Sw)

dSw

ηwkrw (Sw) krnw (1 − Sw)

ηnwkrw (Sw)+ ηwkrnw (1 − Sw)
(7.124a)

µ (Sw) = ηnwkrw (Sw)

ηnwkrw (Sw)+ ηwkrnw (1 − Sw)
(7.124b)

whereas D and � are respectively the diffusion coefficient and the advection–diffusion
length defined by:

D = κM
ηw

; � = D

Q
(7.125)

According to (7.123), the imbibition is governed by an advection–diffusion equation.
The profile of the imbibition front engendered by the injection is shaped by the balance
between the driving capillary pressure and the resistant viscous forces that slow down the
process, so that the diffusion coefficient D results from the balance between both forces.
Length � = D/Q finally scales the range of the diffusion strength when compared with
the advection one quantified by the injection rate Q: the smaller the length �, the steeper
the front.

In the limit of the advection approximation (7.58), (7.123) reduces to the celebrated
Buckley–Leverett equation:9

∂ Sw

∂t
+ D/n

�

∂µ (Sw)

∂x
= 0 (7.126)

The advection approximation turns out to ignore the capillary effects. Accordingly, letting
∂pw/∂x = ∂pnw/∂x, (7.119), (7.120) and (7.124b) together provide:

Vw = −µ (Sw)Q; Vnw = −µ (Sw)
ηw

ηnw

krnw (1 − Sw)

krw (Sw)
Q (7.127)

so that boundary conditions (7.117b) when considering (7.121) can be conveniently
replaced by:

Sw (x = 0, t) = 1 (7.128)

9See for instance Bear J. (1988), Dynamics of Fluids in Porous Media, Dover, New York (reprint of 1972
edition published by Elsevier, New York).
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A possible solution of (7.126) satisfying initial condition (7.117a) is:

Sw = Sup
w H
(
x − υ
(
Sup
w

)
t
); υ
(
Sup
w

) = c0µ
′(Sup

w

); c0 = D/n

�
= Q/n (7.129)

where µ′ stands for the derivative of µ. Solution (7.129) represents a step function moving
at speed υ

(
S
up
w

)
and admitting S

up
w for upstream saturation. Nevertheless, any discontinu-

ous imbibition front moving at speed c is required to fulfil the Rankine–Hugoniot condition
(7.13), specialized here in the form:[[

Vw − ncSw
]] = 0 (7.130)

Owing to the initial downstream condition (7.117a), the height
[[
Sw
]]

of the imbibition front
reduces to the upstream saturation S

up
w so that (7.127) and (7.130) produce the relation:

c = c0
µ
(
S
up
w

)
S
up
w

(7.131)

Equating both expressions furnished by (7.129) and (7.131) for the speed, we conclude that
solution (7.129) can actually develop provided only that the upstream saturation satisfies:

µ′(Sup
w

) = µ
(
S
up
w

)
S
up
w

(7.132)

However, even though a steep imbibition front such as (7.129) could actually propagate,
it will be inexorably spread out owing to diffusion effects so that a transition layer will
eventually form. With the aim of possibly confirming (7.132) and exploring the possibility
of the formation of an autonomous transition layer, we proceed as in §7.3.2. Adopting
notation (7.64), we rewrite the advection–diffusion equation (7.123) in the form:

�
∂Sw

∂t
+ ∂(c0µ(Sw)− cSw)

∂χ
− c0

∂

∂χ

(
δ(Sw)

∂Sw

∂χ

)
= 0 (7.133)

Once formed, a time-independent steady imbibition profile will have to match the equation
obtained by nullifying the time derivative in (7.133), that is:

d(c0µ(Sw)− cSw)

dχ
− c0

d

dχ

(
δ(Sw)

dSw

dχ

)
= 0 (7.134)

A first integration of (7.134) gives:

c0 µ(Sw)− cSw − c0δ(Sw)
dSw

dχ
= C (7.135)

where C is an integration constant so that the continuity of Sw,µ(Sw) and δ(Sw) requires
continuity of dSw/dχ . We now add the boundary conditions:

Sw (χ → −∞) = Sup
w ; Sw (χ →+∞) = 0 (7.136)

In addition, (7.121) and (7.124b) give:

µ(Sw = 0) = 0 (7.137)
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According to the second of the boundary conditions in (7.136) and (7.137), Sw and
dSw/dχ have to vanish as χ goes to infinity so that the integration constant C turns out
to be zero. Using in addition the first of the boundary conditions in (7.136) and noting
that ∂Sw/∂χ (χ →−∞) = 0, we retrieve for c the expression (7.131) we found in the
advection approximation. Accordingly, substitution of (7.131) into (7.135), where we now
let C = 0, leads to:

µ(Sw)−
µ
(
S
up
w

)
S
up
w

Sw − δ(Sw)
dSw

dχ
= 0 (7.138)

Returning to the initial variables, the solution of (7.138) is:∫ Sw

0

δ (S)

µ (S)− µ(Sup
w )

S
up
w

S

dS = x − ct

�
(7.139)

where the origin χ = 0 has been chosen at the front head where Sw = 0. According to
(7.139), length � eventually scales the ‘thickness’ of the imbibition front. The boundary
condition Sw (χ →∞) = S

up
w eventually means that Sw (x − ct � −�) = S

up
w so that

the travelling wave solution (7.139) will be physically relevant provided that � is small
compared with the extent of the porous medium.10

An imbibition front governed by the travelling wave solution (7.139) can actually form
provided that the integral converges. In order to derive the corresponding condition we
first remark that (7.121) and (7.124) lead to:

δ (Sw → 0) = −krw (Sw)
dπc (Sw)

dSw
; µ (Sw → 0) = ηnw

ηw
krw (Sw) (7.140)

The relative permeability function usually satisfies krw (Sw) /Sw → 0 as Sw → 0 so that
we require krw (Sw) to satisfy:

Sw → 0: krw (Sw)
dπc (Sw)

dSw
� aSγ

w; γ, a > 0 (7.141)

in order that the singularity for Sw = 0 of the integrand in (7.139) does not prevent
convergence of the integral. When condition (7.141) is not fulfilled the driving capillary
force is so intense that the diffusion effects spread out the imbibition profile over the
whole x axis and (7.139) must be replaced by:∫ Sw

S
up
w /2

δ (S)

µ (S)− µ
(
S
up
w

)
S
up
w

S

dS = x − ct

�
(7.142)

where the origin χ = 0 has now been chosen where the saturation is half the upstream
saturation. By contrast, when condition (7.141) is fulfilled the resistant viscous forces are
strong enough to counterbalance the driving capillary force as the saturation goes to zero,
resulting in the actual imbibition front (7.139) such that Sw = 0 can be observed at a

10Adopting k = 1 µm2 and Q = 1 m/s, and considering that the wetting fluid is water, that is ηw �
10−3kg/ (ms), the order of magnitude of length � (m) is 10−3M where the capillary modulus M is
expressed in MPa.
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finite distance along the x axis. With order of magnitudes of krw (Sw → 0) � O
(
Sα
w

)
and

πc (Sw → 0) � O
(
S
−β
w

)
condition (7.141) reduces to:

γ = α − β − 1 ≥ 0 (7.143)

The latter condition is for instance fulfilled whatever the value of m, when adopting
expressions (6.40) and (6.72) for functions πc (Sw), krw (Sw) and krnw (Sw).

In addition an autonomous imbibition front can actually form provided that (7.139) can
be inverted in order to obtain Sw as a function of x − ct , requiring dχ/dSw to be non-
zero everywhere and consequently for Sw to be a decreasing function of χ . Accordingly
(7.138) requires:11

0 ≤ Sw < Sup
w :

µ (Sw)

Sw
<

µ
(
S
up
w

)
S
up
w

(7.144)

If no such interval
[
0, Sup

w

]
actually exists, no autonomous imbibition front can finally

form, even though condition (7.141) is fulfilled. This corresponds to the limit case of
viscosity ratio ηw/ηnw going to zero so that function µ (Sw) reduces to the step function
H (Sw). Conversely, as viscosity ratio ηw/ηnw goes to infinity, function µ (Sw) reduces to
the step function H (Sw − 1) so that the couple

(
S
up
w = 1, c = c0

)
becomes suitable with

regard to condition (7.144). Accordingly, the autonomous imbibition profile (7.139) can
fully develop since it meets the upstream boundary condition (7.128). For intermediary
viscosity ratios ηw/ηnw ranging from zero to infinity, the largest value of S

up
w that is

consistent with (7.144) is obtained by solving (7.132). This is illustrated in Fig. 7.9 for
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Figure 7.9: Function µ (Sw) for various values of the viscosity ratio ηw/ηnw resulting from expres-
sions (6.72) for the relative permeabilities krw and krnw with m = 0.85. The determination of the
largest upstream saturation S

up
w consistent with (7.144) is illustrated for ηw/ηnw = 1. The values

of S
up
w and of the associated normalized speed µ′ (Sup

w

)
respectively increase and decrease for an

increasing viscosity ratio ηw/ηnw.

11Indeed, condition (7.144) turns out to be the ‘entropy criterion’ for admissible shocks in the mathematical
sense while step function (7.129), where c is given by (7.131), is the standard ‘entropy weak solution’ towards
which the solution of (7.133) converges when the diffusion term vanishes.
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various values of the viscosity ratio ηw/ηnw and for the function µ (Sw) relative to expres-
sions (6.40) and (6.72) of πc (Sw), krw (Sw) and krnw (Sw) when letting m = 0.85. The
values of the largest suitable upstream saturation S

up
w and the associated normalized speed

µ′ (Sup
w

)
respectively increase and decrease for increasing viscosity ratio ηw/ηnw . Indeed,

the lower the viscosity ratio, the more difficult the penetration of the non-wetting fluid
and, consequently, the lower the possible maximum upstream height of penetration S

up
w .

At early times in a region close to x = 0, that is for t � �2/D and x < �, when
condition (7.141) is fulfilled diffusion effects spread out the profile of saturation degree Sw
from one down to zero within a layer of finite extent. Subsequently the higher saturation
degree contributions to the profile overtake the lower saturation degree contributions,
provided that the latter belong to a range moving slower than the former owing to a
lower value of related slope µ′ and, consequently, associated speed c0µ

′. The process
progressively steepens the imbibition profile to form eventually an autonomous travelling
transition layer when condition (7.132) is finally met. However, when Sw reaches the
largest possible upstream height Sup

w for the autonomous transition layer, the integral in
(7.139) no longer converges for higher values of the saturation degree. In fact, a travelling
wave solution that meets boundary condition (7.128) eventually cannot fully develop: a
transient regime will always occur, allowing the autonomous travelling transition layer
to be matched to the upstream boundary condition (7.128). An alternative conclusion is
that boundary condition (7.128) is in practice tough to carry out, the saturation degree
S
up
w representing a threshold that is difficult to passover. All these remarks agree with the

experimental observations reported in Fig. 7.10 where viscosity ratio ηw/ηnw is equal to
unity whereas the experimental value of S

up
w is found to be close to 1

2 .
As has been recognized, the analysis of the forced imbibition process is similar to

that of the migration process carried out in §7.3. Analogously the analysis of the free
imbibition process turns out to be similar to that of the solute penetration process with
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Figure 7.10: Imbibition profiles for a porous medium made of quartzite grains of radii 100 µm,
packed in a cylindrical glass column. The injection rate Q is about 4 m/s. The values of the porosity
and the absolute permeability are n = 35% and k = 10 µm2 respectively. The wetting fluid is water
while the non-wetting fluid is pure n-decane with approximately the same viscosity for both fluids
ηw = ηnw � 10−3 kg/ (ms). The apparent saturation threshold occurring at the inlet x = 0 is equal
to 1

2 and can be interpreted as the largest possible upstream saturation S
up
w satisfying (7.144). The

experimental data are from Melean Y., Broseta D., Hasmy A., Blossey R. (2003), ‘Dispersion of
imbibition fronts’, European Physics Letters, 62, (4), 505–511.
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strong non-linear binding (see §7.2). In the present context free imbibition consists in sud-
denly imposing a complete saturation of the wetting fluid on the border of a semi-infinite
medium initially saturated by the non-wetting fluid. The vanishing character of the diffu-
sion coefficient related to the fluid invasion causes the formation of a penetration front at
finite speed. Letting L (t) be the imbibition length at time t , a dimensional analysis such
as the one we performed in §3.3.1, applied here to the set of variables L,κ/ηw,M and
t , reveals that:

L (t) = α

√
Mκ

ηw
t (7.145)

where α is a constant coefficient whose determination requires the solution of the diffusion
equation governing the saturation degree Sw (x, t) of the wetting fluid (as we did in §7.2.1
for the chloride concentration). Accordingly, α depends on the viscosity ratio ηw/ηnw,
on the relative permeability and on capillary functions krw (Sw), krnw (Sw) and πc (Sw).

7.4.3 Surfaces of Discontinuity and Wave Propagation

Kinematics of discontinuities

Let G (xi, t) be any function remaining continuous across a front � propagating at the
normal speed of displacement c = c · n in an Eulerian description (see Fig. 1.5). Owing
to kinematical compatibility, the spatial discontinuities

[[
∂G/∂xi

]]
and
[[
∂G/∂t

]]
which

may affect derivatives ∂G/∂xi and ∂g/∂t when passing across � are not independent of
each other. Indeed, consider two points infinitely close to the same geometrical point x
of front �, but each of them lying on a distinct side of the latter. Since G is assumed to
remain continuous across �, the infinitesimal spatial variation dG undergone by G is the
same along each side of �. We write:

[[dG]] =
[[

∂G
∂xi

]]
dxi +

[[
∂G
∂t

]]
dt = 0 (7.146)

for any set of values of dxi satisfying:

nidxi − cdt = 0 (7.147)

The system formed by the two previous equations has to remain undetermined with regard
to dxi and dt and results in:

c

[[
∂G
∂xi

]]
+
[[

∂G
∂t

]]
ni = 0 (7.148)

which constitutes Hadamard’s kinematical compatibility relation. Combining definition
(1.43) of the particle derivative and (7.148) gives the alternative form:

C

[[
∂G
∂xi

]]
+
[[

dG
dt

]]
ni = 0; C = c − Vini (7.149)
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which can be interpreted as the Lagrangian form of Hadamard’s compatibility relation
(7.148) when adopting the current configuration as the reference configuration by letting
xi = Xi (see (1.1)).

Consider now a quantity g whose first derivatives are continuous but whose second-
order derivatives are discontinuous. Applying kinematical compatibility condition (7.148)
successively to G = ∂g/∂t and G = ∂g/∂xi gives the relations:

c

[[
∂2g

∂xi∂t

]]
+
[[

∂2g

∂t2

]]
ni = 0; c

[[
∂2g

∂xi∂xj

]]
+
[[

∂2g

∂t∂xi

]]
nj = 0 (7.150)

so that:

c 2
[[

∂2g

∂xi∂xj

]]
−
[[

∂2g

∂t2

]]
ninj = 0 (7.151)

Applying the above relations to the components of a vector field g gives:

c2 [[∇ (∇ · g)
]]− [[n · ∂

2g
∂t2

]]
n = 0 (7.152a)

c2 [[∇ × ∇ × g
]]− n ×

[[
n × ∂2g

∂t2

]]
= 0 (7.152b)

c2
[[
∇ ·
(
∂g
∂t

)]]
+
[[

n · ∂
2g

∂t2

]]
= 0 (7.152c)

c2
[[
∇
(
∂g
∂t

)]]
+
[[

∂2g
∂t2

]]
⊗ n = 0 (7.152d)

Acceleration waves

The analysis of the propagation of acceleration waves turns out to be equivalent to the
analysis of the propagation of discontinuities of the second-order time derivatives and can
be carried out in the framework of the hypothesis of small movements. The latter extends
the hypothesis of small perturbations (see §5.1.1) to the displacements, the velocities and
their gradients, for both the skeleton and the fluid particles. Under the hypothesis of small
movements, (1.61) is rewritten in the form:

w = ρ0
f V = ρ0

f φ0

(
Vf − Vs

)
(7.153)

Assuming uniformity of the initial porosity and of the fluid mass density through the
porous medium, substitution of (7.153) into the fluid mass conservation equation (5.7)
gives the relation:

v̇f = −φ0∇ ·
(
ξ̇
f − ξ̇
)

(7.154)



220 PENETRATION FRONTS

where an overdot refers to the particle time derivative of the involved quantity and where
we used definition (5.13) for vf . Time integration of (7.154) leads to:

vf = −φ0∇ · (ξf − ξ) (7.155)

Momentum equation (2.19) and Darcy’s law (3.39) are expressed in the form:

∇ · σ − ρs(1 − φ0)ξ̈ − ρf φ0ξ̈
f = 0 (7.156)

and:

φ0(ξ̇
f − ξ̇) = −k

(∇p + ρf ξ̈
f )

(7.157)

Using (1.26) and (1.28), constitutive equations (5.10) and (5.12) can be written in the form:

σ = (λ+ b2M)∇ · ξ 1 + µ(∇ξ + t∇ξ)− bMvf 1; vf = b∇ · ξ + p

M
(7.158)

where λ = K − 2
3µ is the drained Lamé coefficient. A combination of (7.155)–(7.158)

provides the equations governing the small movements of the skeleton particle and the
fluid particle in the form:

(λ+ 2µ+ (b − φ0)
2M)∇ (∇ · ξ)+ φ0(b − φ0)M∇(∇ · ξf )− µ∇ × (∇ × ξ)

+φ2
0

k
(ξ̇

f − ξ̇)− ρs(1 − φ0)ξ̈ = 0 (7.159a)

φ0(b − φ0)M∇ (∇ · ξ)+ φ2
0M∇(∇ · ξf )

−φ2
0

k
(ξ̇

f − ξ̇)− ρf φ0ξ̈
f = 0 (7.159b)

For acceleration waves the velocities ξ̇ and ξ̇
f

remain continuous across the wavefront.
Applying the jump operator [[ ]] to (7.159) and using relations (7.152), we conclude that

discontinuities [[ξ̈ ]] and [[ξ̈
f

]] must satisfy the dynamic relations:

(
λ+ µ+ (b − φ0)

2 M
) [[

n · ξ̈]]n + φ0(b − φ0)M
[[

n · ξ̈f ]]n(
µ− c2ρs(1 − φ0)

) [[
ξ̈
]] = 0 (7.160a)

φ0(b − φ0)M
[[

n · ξ̈]] n + φ2
0M
[[

n · ξ̈f ]]n − c2ρf φ0
[[

ξ̈
f ]] = 0 (7.160b)

Discontinuities [[ξ̈ ]] and [[ξ̈
f

]] decompose in the form:

[[
ξ̈
]] = ξ̈nn + ξ̈t t;

[[
ξ̈
f ]] = ξ̈

f
n n + ξ̈

f
t t (7.161)
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where t lies in the plane tangent to the wavefront. Substituting (7.161) into (7.160a) and
(7.160b) and multiplying by t, we derive:

c = cS =
√

µ

ρs(1 − φ0)
; ξ̈

f
t = 0 (7.162)

Indeed, only the skeleton particle can undergo a discontinuity of acceleration in the
plane tangent to the wavefront. It corresponds to a transverse wave that propagates at
wavespeed cS . Substituting (7.161) into (7.160a) and (7.160b) and multiplying by n, we
alternatively derive:

(K− c2M)

(
ξ̈n

ξ̈
f
n

)
= 0 (7.163)

where the stiffness and mass matrices K and M are defined by:

K =
(

λ+ 2µ+ (b − φ0)
2M φ0(b − φ0)M

φ0(b − φ0)M φ2
0M

)
(7.164a)

M =
(

ρs(1 − φ0) 0
0 ρf φ0

)
(7.164b)

According to (7.163) two different compressional waves relative to discontinuities of
acceleration along the normal to the wavefront can propagate within a saturated porous
medium. Their wavespeeds cP1 and cP2 are solutions of:

det(K − c2M) = 0 (7.165)

while the eigenmovement XJ associated with cPJ
satisfies:(

K − c2
PJ
M
)
XJ = 0 (7.166)

It can be shown that the eigenmovement associated with the fastest longitudinal wave
corresponds to movements of the skeleton and the fluid which are in phase, while the
movements of the skeleton and the fluid are out of phase for the other longitudinal wave. In
practice the latter turns out to be much slower than the former with wavespeed cP2 � cP1

and is often called the slow compressional wave.12

Adding (7.160a) and (7.160b) we now derive:

(λu + 2µ)∇ (∇ · ξ)+ φ0bM∇(∇ · (ξf − ξ)
)− µ∇ × (∇ × ξ)

−ρs(1 − φ0)ξ̈ − ρf φ0ξ̈
f = 0 (7.167)

where λu = λ+ b2M is the undrained Lamé coefficient. As retrieved by letting k go to
zero in (7.159b), in the limit of a zero permeability there is no relative movement, that is
ξf = ξ . Letting ξf = ξ in (7.167) and proceeding as above to analyze the propagation

12The existence of the second compressional wave was first noticed by Y.I. Frenkel and subsequently fully
investigated by M.A. Biot (see Biot M.A. (1956), ‘The theory of propagation of elastic waves in a fluid-saturated
porous solid, I lower frequency range’, Journal of the Acoustical Society of America, 28, 168–178).
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of a discontinuity of acceleration along the normal to the wavefront, we find that the
undrained compressional wave propagates at wavespeed cp given by:

cP =
√

λu + 2µ

ρ
(7.168)

where ρ = ρs (1 − φ0)+ρf φ0 denotes the total mass density.
Permeability k is not involved in the expressions of wavespeeds cP1 and cP2 obtained

by solving (7.165), so that passing continuously from a zero permeability to a very low
permeability leads to a paradox. Indeed, this requires passing abruptly from the existence
of only one compressional wave, with wavespeed cP , to two compressional waves, with
wavespeeds cP1 and cP2 . In fact the analysis of the propagation of just the discontinuities
turns out to be insufficient to understand the propagation of acceleration waves in porous
media. To overcome the paradox, let us consider the propagation of harmonic longitudinal
waves in the ex direction in the form:

ξ = ξ0Re exp (sx + iωt) ex; ξf = ξ
f

0 Re exp (sx + iωt) ex (7.169)

Substitution of (7.169) into (7.159) yields:

(Ks2 + iωN + ω2M)

(
ξ0

ξ
f

0

)
= 0 (7.170)

where the damping matrix N is expressed in the form:

N =


−φ2

k

φ2

k

φ2

k
−φ2

k

 (7.171)

Non-zero values obtained for ξ0 and ξ
f

0 by solving (7.170) requires s to be a solution of:

det(Ks2 + iωN + ω2M) = 0 (7.172)

yielding: (
s2 + ω2

c2
P1

)(
s2 + ω2

c2
P2

)
− i

ωωc

c2
P

(
s2 + ω2

c2
P

)
= 0 (7.173)

where ωc is a characteristic circular frequency attached to the porous medium and whose
expression is:

ωc =
c2
P

cf
(7.174)

where cf is the fluid diffusivity as given by (5.22). Approximate solutions of (7.173) are:

ω � ωc: s2 � −ω2

c2
P

s2 � 0 (7.175)
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and:

ω � ωc


s2 � − ω2

c2
P1

+ i
ωωc

c2
P

1/c2
P − 1/c2

P1

1/c2
P2
− 1/c2

P1

s2 � − ω2

c2
P2

+ i
ωωc

c2
P

1/c2
P2
− 1/c2

P

1/c2
P2
− 1/c2

P1

(7.176)

In the low-frequency range ω � ωc the undrained situation is recovered with only one
longitudinal wave with wavespeed cP . Conversely, in the high-frequency range ω � ωc

we encounter the existence of two highly attenuated longitudinal waves, the previous
wavespeeds cP1 and cP2 being recovered only in the limit of ratio ω/ωc going to infin-
ity. In the high-frequency range it could have been thought that no significant relative
movement can actually occur between the skeleton and the fluid, resulting in undrained
evolutions and the existence of only one longitudinal wave with wavespeed cP . The above
analysis reveals that the opposite does occur. Indeed, the higher the frequency, the higher
the fluid pressure gradient, the latter being the driving force of the relative movement
between the fluid and the skeleton. However, the intense relative movement conjointly
implies an intense viscous dissipation of energy. The latter is actually at the origin of the
wave attenuation that the analysis restricted to the sole propagation of discontinuities can-
not account for. This wave attenuation provokes the wave dispersion, the wavespeed then
depending on the circular frequency. Consequently, a signal with a steep front deforms
when propagating, the high-frequency components of the longitudinal waves being rapidly
attenuated. The slowest longitudinal wave which is the most attenuated progressively dis-
appears, while the other is absorbed in a longitudinal wave associated with undrained
evolutions with wavespeed cP . Nevertheless, intrinsic circular frequency ωc is very high
for the usual porous materials so that any coherent excitation generally falls in the range
ω � ωc. Indeed, according to (7.174) the order of magnitude of the characteristic cir-
cular frequency ωc is mainly governed by the factor ηf /ρκ. For liquid water where
ηf = 1 × 10−3kg/ (ms), this order of magnitude turns out to be 500 MHz when adopting
ρ = 2 × 103 kg/m3 and κ = 10−15/m2 (see Table 3.1). The second compressional wave
can actually be observed provided only that the porous medium is sufficiently permeable.13

The dynamic phenomena of attenuation due to the second compressional wave have even-
tually to be considered when high gradients are engendered by physical discontinuities,
such as wave reflection at the interface between two porous media.14

Acoustic tensor

From the above analysis developed for isotropic materials it turns out that wave propa-
gation in porous media involves undrained evolutions. An alternative approach to wave
propagation extended to non-isotropic and non-linear materials can be carried out as fol-
lows. Constitutive equations for undrained evolutions can be expressed in the general

13Such as sintered glass, for which the order of magnitude of κ is 10−12/m2, see Plona T.J., Johnson D.L.
(1980), ‘Experimental study of two bulk compressional modes in water-saturated porous structures’, Ultrasonics
Symporium, IEEE, 868–872.

14For further details see Bourbié T., Coussy O., Zinszner B. (1987), Acoustics of Porous Media, Gulf Pub-
lishing Company/Editions Technip, Paris.
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non-linear form:

σ̇ = Cu:ε̇; σ̇ij = Cu
ijkl ε̇kl (7.177)

where the fourth-order tensor Cu of components Cu
ijkl stands for the tangent undrained

stiffness tensor which possibly depends on σij . Owing to expression (1.26) for strain
tensor ε, strain rate ε̇ is expressed in the form:

ε̇ = 1

2
(∇ ξ̇ + t∇ ξ̇); ε̇ij = 1

2

(
∂ξ̇i

∂xj
+ ∂ξ̇j

∂xi

)
(7.178)

The use of (7.152d) with g = ξ and the application of the jump operator [[ ]] to (7.178)
give:

c [[ε̇]] = −1

2

([[
ξ̈
]]⊗ n + n ⊗ [[ξ̈]]) (7.179a)

c
[[
ε̇ij
]] = −1

2

([[
ξ̈ i
]]

nj +
[[

ξ̈ j
]]

ni
)

(7.179b)

Owing to the continuity and the symmetry Cu
ijkl = Cu

ijlk of Cu, (7.177) and (7.179)
combine to give the following relations:

[[σ̇ ]] = −1

c

(
Cu · n
) · [[ξ̈]] ; [[σ̇ij ]] = −1

c
Cu
ijklnk
[[

ξ̈ l
]]

(7.180)

Furthermore, applying (7.148) to ∂σij /∂xj and summing the resulting equations for i = 1
to 3, we also derive:

c

[[
∂σij

∂xj

]]
+ [[σ̇ij ]] nj = 0; c [[∇ · σ ]] + [[σ̇ ]] · n = 0 (7.181)

Considering undrained evolutions such as ξf = ξ , the combination of (7.156) and (7.181)
gives the dynamic relation:

n · [[σ̇ ]] − cρ
[[

ξ̈
]] = 0 (7.182)

Use of the latter in (7.180) finally yields:

A · [[ξ̈]] = c2 [[ξ̈]] ; A = 1

ρ
n · C · n; Ajk = 1

ρ
niCijklnl (7.183)

Owing to property (7.183), the second-order tensor A is called the (undrained) acoustic
tensor. Indeed, its eigenvalues and the related eigenvectors turn out to be the squares of
the wavespeeds and the related eigenmovements.



Chapter 8

Poroplasticity

Poroplasticity is the ability of porous materials to undergo permanent strains and perma-
nent changes in porosity and, as a consequence, permanent changes in fluid mass content.
Still setting the viscosity effects aside (see Chapter 9), this chapter is devoted to the
modelling of such behaviour, including hardening effects.

8.1 Poroplastic Behaviour

8.1.1 Plastic Strain and Plastic Porosity

Owing to the permanent strains and to the permanent changes in porosity, poroplastic evo-
lutions are irreversible and, in contrast to poroelasticity, the strains εij and the Lagrangian
porosity φ do not suffice to characterize the current skeleton energy �s . Internal or hid-
den variables (see §3.4.2) must be added to capture the irreversible character of plasticity.
These internal variables are the plastic strains ε

p
ij and the plastic porosity φp.

Since viscous effects related to the skeleton behaviour are not considered here, the
physical time is actually involved only through heat and fluid mass transfers occurring
between juxtaposed infinitesimal volumes. There is no intrinsic time attached to the skele-
ton plastic behaviour so that the plastic deformation occurs instantaneously in response to
the stress and the fluid pressure increments whatever the actual time rate of the latter. The
poroplastic evolution can be viewed as a succession of thermodynamic equilibrium states
and depends only on the loading chronology. Accordingly, the constitutive equations link-
ing the stress–fluid pressure history to the plastic strain–porosity history are appropriately
formulated in incremental form.

Consider a porous material sample subjected to current stress σij and current fluid
pressure p. From this current state, let dσij and dp be an incremental loading in stress
and fluid pressure and let dεij and dφ be the incremental strain and the incremental
porosity they produce. The unloading process defined by the opposite increments −dσij
and −dp allow us to record the reversible or elastic increments −dεelij and −dφel . The

Poromechanics O. Coussy
c© 2004 John Wiley & Sons, Ltd ISBN 0-470-84920-7
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irreversible or plastic increments, dεpij and dφp, are defined through the relations:

dεij = dεelij + dε
p
ij ; dφ = dφel + dφp (8.1)

Plastic strain ε
p
ij and plastic (Lagrangian) porosity φp are defined as the integrals of the

increments recorded along the loading path from an initial reference state in stress and
fluid pressure to the current one. We write:

εij = εelij + ε
p
ij ; φ − φ0 = φel + φp (8.2)

so that φp is eventually defined as the irreversible change of the porous volume per unit of
initial volume d�0. The observable macroscopic volume plastic dilation εp undergone by
the skeleton is due to both the plastic change in porosity and the volume plastic dilation
ε
p
s undergone by the solid matrix. Applying (1.32), we obtain:

εp = (1 − φ0)ε
p
s + φp (8.3)

In soil and rock mechanics the plastic evolutions are caused by the irreversible relative
sliding of the solid grains forming the matrix, so that the volume change of the matrix due
uniquely to plasticity turns out to be negligible in the absence of any occluded porosity,
resulting in ε

p
s = 0 and entailing (see Fig. 8.1 below):

φp = εp (8.4)

In order to capture the departure from matrix plastic incompressibility an heuristic assump-
tion consists in postulating:1

φp = βεp (8.5)

In contrast to the value β = 1 corresponding to a plastically incompressible matrix, that is
(8.4), according to (8.3) the value β = φ0 corresponds to εp = ε

p
s , that is to a volumetric

plastic strain of the skeleton due only to that of the solid matrix. It is then consistent to
require β to satisfy inequalities φ0 ≤ β ≤ 1.

8.1.2 Poroplastic State Equations for the Skeleton

In the context of infinitesimal isothermal transformations and saturated porous materials,
inequality (3.33) expressing the positiveness of the dissipation attached to the irreversible
evolutions of the skeleton can be specialized in the form:

σij dεij + p dφ − d�s ≥ 0 (8.6)

From the current state, when considering reversible or poroelastic evolutions, the values
of internal plastic variables ε

p
ij and φp remain the same and there is no dissipation. For

1An even more general anisotropic assumption would have consisted in setting φp = βij ε
p
ij .
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such evolutions inequality (8.6) becomes an equality, leading to state equations:

σij = ∂�s

∂εij
; p = ∂�s

∂φ
(8.7)

State equations (8.7) have been derived for elastic evolutions. They apply to any evolution
as soon as free energy �s is continuously differentiable with regard to the whole set of
state variables.

Free energy �s of the skeleton accounts for the energy which can be eventually recov-
ered in mechanical form. Accordingly we let �s depend only on the reversible strain and
the reversible change in porosity, that is:

�s = �s

(
εij − ε

p
ij , φ − φp

)
(8.8)

In (8.8) we did not consider the internal variables characterizing the possible harden-
ing (or softening) state. This will be detailed in the specific sections of this chapter
devoted to materials whose poroelasticity domain changes throughout plastic evolutions.
Proceeding as in Chapter 4, from (8.7) and (8.8) we derive the state equations of linear
poroelastoplasticity in the form:

σij = Cijkl

(
εij − ε

p
ij

)− bijp (8.9a)

φ − φp − φ0 = bij
(
εij − ε

p

ij

)+ p

N
(8.9b)

In the isotropic case they are specialized in the form:

σ = K(ε − εp)− bp (8.10a)

sij = 2µ
(
eij − e

p
ij

)
(8.10b)

φ − φp − φ0 = b(ε − εp)+ p

N
(8.10c)

8.1.3 Poroplastic State Equations for the Porous Material

Combining (4.59a) and (8.10c), we can get rid of the porosity variation dφ to the benefit
of the variation in fluid mass content dmf , resulting in:

dmf

ρf
= dφp + b(dε − dεp)+ dp

M
(8.11)

where M is still defined by (4.61). Under the assumption of small perturbations (see
§5.1.1), the integration of (8.11) gives:

p = M(−b(ε − εp)+ vf − φp) (8.12)

where vf is the current change in fluid volume content per unit of initial volume (see
(5.13)). For poroplastic materials vf can be split into its reversible or elastic part and its
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irreversible or plastic part according to:

vf =
mf −m0

f

ρ0
f

= velf + v
p
f (8.13)

where we let:

velf = φel +
ρf − ρ0

f

ρ0
f

; v
p
f = φp (8.14)

According to (8.14), the irreversible or plastic part v
p
f of vf identifies with the plastic

porosity φp so that the experimental determination of the former provides the means to
determine the latter. The linear poroelastoplastic behaviour as captured by state equa-
tions (8.10)–(8.12) is experimentally illustrated for a limestone in Fig. 8.1.
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Figure 8.1: Experimental evidence of the poroplastic behaviour of a limestone. A limestone sample
is subjected to loading–unloading cycles of confining pressure −σ in drained conditions such that
the fluid pressure remains equal to its initial value. Up to −σ � 20 MPa the behaviour remains
poroelastic since the same strain −ε and the same change in fluid volume content −vf are recorded
along the loading and the unloading paths Oa and aO. Beyond this initial threshold the behaviour
becomes poroplastic along the loading paths ab and bb′ since irreversible or plastic strains and
changes in fluid volume content are recorded along the unloading paths bc and b′c′. By letting
p = φp = εp = 0 in (8.12), Biot’s coefficient b is assessed by the ratio vf /ε recorded along the
poroelastic unloading paths aO, bc or b′c′ and is found here to be close to 0.9. Along the poroplastic
loading paths ab and bb′ the values of −ε and −vf are the sum of the poroelastic contributions
−εel and −φel (with ρf = ρ0

f in (8.14)), and the poroplastic contributions −εp and −φp. Since
the values of −ε and −vf nearly coincide and the elastic contributions were found to be nearly
the same (b � 0.9), it can be concluded that εp = φp and, consequently, that the solid matrix is
plastically incompressible. In addition, the limestone exhibits a hardening behaviour since along the
poroplastic loadings ab and bb′ the elastic limit in confining pressure −σ increases (by courtesy
of F. Skozylas).
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8.1.4 Domain of Poroelasticity and the Loading Function.
Ideal and Hardening Poroplastic Material

Any loading is characterized by the stress components σij and the fluid pressure p.
Owing to symmetry σij = σji , the current loading (σij , p) can be represented in the
R6+1 loading space

{
σij × p

}
relative to the six independent stress components σij and

to the fluid pressure p. In the loading space there exists an initial domain of poroelasticity
including the zero loading point (σij = 0, p = 0) for a material devoid of any loading
history. The poroelasticity domain CE is such that the strain and the change in porosity
remain reversible along any loading path starting from the origin and lying entirely within
the domain (Fig. 8.2a, paths such as Oa). For an ideal poroplastic material, as sketched
in Fig. 8.2a, the initial domain of poroelasticity is not altered by the plastic evolutions
occurring along the loading paths such as ab. By contrast, for a hardening poroplastic
material, as sketched in Fig. 8.2b, the initial domain of poroelasticity is altered by the
plastic evolutions occurring along the loading paths such as ab. For an ideal poroplastic
material the interior of poroelasticity domain CE can be defined by means of the loading
function f (σij , p) such as:

f (σij , p) < 0 for (σij , p) belonging to the interior of CE

f (σij , p) = 0 for (σij , p) belonging to the border of CE (8.15)

f (σij , p) > 0 for (σij , p) belonging to the exterior of CE

The elasticity criterion is the condition f (σij , p) < 0. The plasticity criterion is the condi-
tion f (σij , p) = 0 while the yield surface is the border of CE , that is the surface defined

(a) Ideal poroplasticity (b) Hardening poroplasticity

p
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f (sij, p, ζ J) < 0
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Current
poroelasticity

domain

Initial
poroelasticity
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sij

Figure 8.2: (a) The initial domain of poroelasticity defined by f (σ , p) < 0 in the R6+1 loading
space {σ × p} so that the strain and the change in porosity recorded along the loading paths such
as Oa remain reversible. For an ideal poroplastic material, as sketched in (a), the initial domain of
poroelasticity is not altered by plastic evolutions occurring along the loading paths such as ab. By
contrast, for a hardening poroplastic material, as sketched in (b) and experimentally observed in
Fig. 8.1, the initial domain of poroelasticity is altered by the plastic evolutions occurring along the
loading paths such as ab. In order to account for the alteration the loading function must involve
evolutionary hardening forces ζJ so that the interior of the current domain of elasticity is defined
by the condition f

(
σij , p, ζJ

)
< 0.
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by f (σij , p) = 0. A plastically admissible loading (σij , p) satisfies f (σij , p) ≤ 0. In the
case of a hardening poroplastic material, the previous definitions apply to the current
domain of elasticity, provided that the current loading function f (σij , p, ζJ ) involves in
addition hardening forces ζJ accounting for the current hardening state.

The domain of elasticity of most plastic materials is convex and this property can
be extended to porous materials whose poroplastic behaviour is due to that of the solid
matrix. The fundamental property of a convex domain is that all points of a segment that
joins any couple of points belonging to the border of the domain lie inside the domain.
If loading function f (σij , p) is continuously differentiable with respect to both σij and
p the fundamental property is equivalent to the condition:

∀(σij , p) and ∀(σ̃ij , p̃) �= (σij , p) with f (σij , p) = f (σ̃ij , p̃) = 0 :

(σij − σ̃ij )
∂f

∂σij
+ (p − p̃)

∂f

∂p
≥ 0 (8.16)

The plasticity criterion f (σij , p) = 0 or f (σij , p, ζJ ) = 0 indicates when plastic evo-
lutions may occur. The (plastic) flow rule specifies how they occur and its formulation
is the objective of the two subsequent sections, separately addressing the ideal and the
hardening poroplastic material.

8.2 Ideal Poroplasticity

8.2.1 The Flow Rule and the Plastic Work

Owing to the definition of the plasticity criterion, if the loading point (σij , p) lies within
the poroelasticity domain CE , that is if f (σij , p) < 0 (point c in Fig. 8.2a), the evolutions
are poroelastic. If the loading point (σij , p) is on the border of CE but subsequently leaves
it (point b in Fig. 8.2a), the evolutions are also poroelastic (elastic unloading). Since the
value of loading function f becomes negative for a loading point (σij , p) re-entering the
poroelasticity domain CE , the elastic unloading condition is f = 0 and df < 0, with:

df = ∂f

∂σij
dσij + ∂f

∂p
dp (8.17)

Furthermore, if the loading point (σij , p) is and subsequently remains on the border of
CE (point a in Fig. 8.2b) plasticity evolutions may occur. The corresponding loading now
satisfies f = df = 0 and is said to be neutral with respect to the plasticity criterion.

Taking into account all the above remarks, the flow rule can now be more precisely
expressed in the form:

dε
p
ij = dλ hεij (σij , p); dφp = dλ hφ(σij , p) (8.18)

In (8.18), dλ is the so-called plastic multiplier that scales the intensity of plastic strain
increments (dε

p
ij , dφ

p) and satisfies the Kuhn–Tucker relations:

dλ ≥ 0; f ≤ 0; dλ · f = 0; dλ · df = 0 (8.19)
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The couple
(
hεij , hφ

)
defines the directions of the plastic strain increments

(
dε

p
ij , dφ

p
)

in
the loading space

{
σij × p

}
and depends on the current loading (σij , p).

For an ideal plastic material, the plastic multiplier dλ remains undetermined by the
material constitutive equations but does depend on the poroelastoplastic evolution of the
whole structure formed by the porous material. In contrast, directions

(
hεij , hφ

)
depend

on the material constitutive equations and require a further analysis. Substitution of (8.8)
into (8.6) and use of state equations (8.7) give:

δWp = σij dε
p
ij + pdφp ≥ 0 (8.20)

In the absence of any other state variable than εij − ε
p
ij and φ − φp as arguments of �s ,

the dissipated energy related to the skeleton plastic evolution reduces to the infinitesimal
plastic work δWp, while the positiveness of the associated infinitesimal production of
entropy is:

δSp = δWp

T
≥ 0 (8.21)

Owing to the (conventional) positiveness of plastic multiplier dλ, the positiveness (8.20)
of the plastic work finally requires

(
hεij , hφ

)
to satisfy:

σijh
ε
ij + phφ ≥ 0 (8.22)

8.2.2 Principle of Maximal Plastic Work and the Flow Rule.
Standard and Non-standard Materials

In order to derive the flow rule the principle of maximal plastic work is now invoked.2 The
principle of maximal plastic work requires the actual plastic strain increment

(
dε

p
ij , dφ

p
)

associated with the current loading (σij , p) to maximize the plastic work over all plasti-
cally admissible loadings (σ̃ij , p̃). It is written:

∀(σ̃ij , p̃), f (σ̃ij , p̃) ≤ 0 :

(σij − σ̃ij )dε
p
ij + (p − p̃) dφp ≥ 0 (δWp ≥ δW̃p) (8.23)

In fact, according to (8.21) the principle of maximal plastic work relies on the more general
principle of maximal production of entropy as often encountered in physics. Since the
zero loading (σ̃ij = 0, p̃ = 0) is plastically admissible, the principle of maximal plastic
work ensures the fulfilment of condition (8.22).

In order to explore the consequences of the principle of maximal plastic work we
rewrite (8.23) in the condensed form:

∀	̃, f
(
	̃
)
≤ 0 :

(
	 − 	̃

)
· dEp ≥ 0 (8.24)

2The formulation of the principle of maximal plastic work is originally due to R. Hill (see Hill R. (1950),
The Mathematical Theory of Plasticity, Clarendon Press, Oxford).
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Figure 8.3: Principle of maximal plastic work and the normality of the flow rule. See the main text
for an explanation of the different situations (a), (b) and (c) sketched in the figure.

where we denote 	 = (σij , p) and Ep = (ε
p
ij , φ

p). If 	 lies inside the poroelasticity

domain CE , vector 	 − 	̃ can take any orientation so that, in order to fulfil condition
(8.24), dEp must be zero in conformity with the actual definition of the poroelasticity
domain (case (a) of Fig. 8.3). Now let 	 be on the border of poroelasticity domain CE .
Since 	̃ cannot lie in the exterior of the domain of elasticity, vector 	̃ −	, for stress
states 	̃ close to 	, can only point towards the interior of CE lying in the immediate
vicinity of 	. In order to fulfil (8.24), vector dEp has to belong to the cone of outward
normals to the border of CE , resulting in the so-called normality of the flow rule (case
(b) of Fig. 8.3). In any regular point of the border of CE this cone reduces to the normal
(case (c) of Fig. 8.3) and the normality of the flow rule is expressed in the form:

dε
p
ij = dλ

∂f

∂σij
; dφp = dλ

∂f

∂p
; dλ ≥ 0 (8.25)

Substitution of (8.25) into (8.23) yields:

(σij − σ̃ij )
∂f

∂σij
+ (p − p̃)

∂f

∂p
≥ 0 (8.26)

Comparing (8.16) and (8.26), we conclude that the principle of maximal plastic work also
implies the convexity of the poroelasticity domain CE in addition to the normality of the
flow rule. Finally, let us consider the case of elastic unloading where 	, in addition to
being on the border of poroelasticity domain CE , subsequently leaves it so that:

∂f

∂σij
dσij + ∂f

∂p
dp < 0 (8.27)

Inequality (8.24) requires increment d	 = (dσij , dp) to satisfy inequality d	 · dEp =
dσij dε

p
ij + dpdφp ≥ 0. Combining the latter with (8.25) and (8.27) gives dλ = 0, that is

dEp = 0 in agreement with the definition of elastic unloading.
Collecting the above results, we conclude that the principle of maximal plastic work

again requires the plastic multiplier to satisfy the Kuhn–Tucker conditions (8.19), but also
requires the yield surface to be convex and the directions of the plastic strain increments
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dε

p
ij , dφ

p
)

to be normal to the latter.3 Potential f is then said to be associated and the
material is said to be standard. In the case of a non-associated potential, g �= f , the flow
rule of the related non-standard material can be written in the form:

dε
p
ij = dλ

∂g

∂σij
; dφp = dλ

∂g

∂p
(8.28)

where dλ is still required to satisfy (8.19). Owing to the positiveness condition (8.22)
that is now not automatically satisfied, g is required to satisfy:

σij
∂g

∂σij
+ p

∂g

∂p
≥ 0 (8.29)

8.3 Hardening Poroplasticity

8.3.1 Hardening Variables and Trapped Energy

As ascertained for the limestone related to the experimental data reported in Fig. 8.1 and
as sketched in Fig. 8.2b, the domain of elasticity of actual materials is generally altered
by the occurrence of plastic evolutions. This alteration is accounted for by introducing
hardening forces ζJ=1,N whose strength changes during the plastic evolutions and modifies
the current value of the loading function f (σij , p, ζJ ).

To understand the energy side of hardening plasticity let us consider an ideal poro-
plastic material undergoing undrained plastic evolutions. In such undrained evolutions
the poroplastic material apparently behaves as a plastic solid whose loading function
f (σij , p) depends on hardening force ζ = p. In the case of linear poroelasticity the free
or elastic energy associated with this internal hardening force is 1

2pv
el
f . In undrained

evolutions the fluid mass content does not change. Substituting vf = 0 into (8.13) and
(8.14) we infer that velf = −φp. At the end of the loading–unloading process, the strain
reduces to the plastic contribution. Putting vf = 0 and ε = εp into (8.12) we derive
p = Mvelf = −Mφp. Accordingly, we conclude that a part U of the overall free energy
stored by the undrained porous material during the loading process is not recovered at
the end of the unloading process. This ‘trapped’ energy can be expressed in the form:

U = 1

2
M(φp)2 (8.30)

U is the free energy associated with the elastic fluid volume change velf counterbalancing
the plastic change in porosity φp in order that the internal plastic evolution remains
compatible with the saturation condition of the porous space under undrained conditions.

For the hardening poroplastic material the same phenomenon of energy trapping occurs
on account of the kinematical compatibility conditions of the deformation at the micro-
scopic scale of the grains forming the solid matrix. After a complete unloading process

3Indeed, the principle of maximal plastic work turns out to require the plastic dissipation mechanism to be
normal in the sense defined in §3.4.2 (see in particular Coussy O. (1995), Mechanics of Porous Continua, John
Wiley & Sons, Chichester).
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the mesoscopic permanent volumetric dilation ε
p
s in (8.3) does not generally result from

a homogeneous microscopic state of plasticization of the solid grains. Indeed, whatever
the scale considered, only the total strain eventually derives from a displacement field
so that an elastic contribution is required to ensure the kinematic compatibility of the
total microscopic strain of the solid grains. The free energy represented by the elastic
energy relative to this microscopic contribution is therefore trapped, even after complete
unloading. In order to capture the current trapped energy U , we replace (8.8) by:

�s = Ws

(
εij − ε

p
ij , φ − φp

)+ U(χJ ) (8.31)

In (8.31), hardening state variables χJ are introduced in order to account for the current
state of hardening resulting in the trapping of energy U(χJ ). For instance, in the case of
an ideal poroplastic material subjected to undrained evolutions, (8.30) leads us to identify
hardening variable χ with plastic porosity φp. Experimental evidence (e.g. the experiments
reported in Fig. 8.1) shows that hardening effects do not significantly affect state equations
(8.10). As anticipated by (8.31), this results in expressing overall free energy �s as
the sum4 of an energy Ws

(
εij − ε

p
ij , φ − φp

)
depending only on reversible variations

and of the trapped energy U(χJ ) depending only on hardening state variables χJ . The
actual meaning of trapped energy U is finally obtained by expressing the positiveness
of the dissipated energy. Substitution of (8.31) into (8.6) and use of state equations
(8.7) give:

δWp − dU ≥ 0 (8.32)

During an infinitesimal poroplastic evolution, the amount dU of free energy is actually
trapped but, not being dissipated in heat form, it has to be removed from the infinitesimal
plastic work δWp. Accordingly, the trapped energy U can only be determined by the
difference between the plastic work, as defined by (8.20), and the energy dissipated into
heat. This imperatively requires calorimetric measurements.

8.3.2 Flow Rule for the Hardening Material. Hardening Modulus

The positiveness (8.32) of dissipated energy can be written explicitly:

σij dε
p
ij + pdφp + ζJ dχJ ≥ 0 (8.33)

where the hardening force ζJ is consistently recognized as the force associated with the
hardening variable χJ according to the state equation:

ζJ = − ∂U

∂χJ

(8.34)

4This energy separation is irrelevant for the ideal poroplastic material subjected to undrained evolutions
as previously analysed. Indeed ‘hardening force’ p appears explicitly in state equation (8.10a) whereas its
expression derived from (8.10c) involves reversible variations of the state variables.
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Variations dχJ of hardening variables occur only during a (plastic) loading which produces
plastic increments

(
dε

p
ij , dφ

p
)
. Accordingly, flow rule (8.18) of ideal poroplasticity is

extended in the form:

dε
p
ij = dλ hεij (σij , p, ζJ ) (8.35a)

dφp = dλ hφ(σij , p, ζJ ) (8.35b)

dχJ = dλ hJ (σij , p, ζJ ) (8.35c)

Plastic multiplier dλ still obeys (8.19) provided that the arguments of the loading function
f now include the hardening forces ζJ . Owing to the positiveness of plastic multiplier
dλ, the positiveness (8.33) of dissipated energy requires

(
hεij , hφ, hJ

)
to satisfy:

σijh
ε
ij + phφ + ζJ hJ ≥ 0 (8.36)

The principle of maximal plastic work can again be invoked to specify the directions(
hεij , hφ

)
of the plastic increments

(
dε

p
ij , dφ

p
)
. This principle can possibly be extended

to the hardening work −dU = ζJ dχJ so that, in addition to (8.25), we can write:

dχJ = dλ
∂f

∂ζJ
(8.37)

while the convexity of f (σij , p, ζJ ) extends to hardening forces ζJ so that (8.36) is
automatically satisfied. Alternatively, in the case of a non-associated potential, g �= f ,
the flow rule concerning the hardening variables is written in the form:

dχJ = dλ
∂g

∂ζJ
(8.38)

In any case, as soon as a non-associated potential g is involved, condition (8.36) must be
written accordingly.

Since f now includes hardening forces ζJ , the consistency condition df = 0 of plastic
loading must be reconsidered. To this end let dζ f be defined according to:

dζ f = ∂f

∂σij
dσij + ∂f

∂p
dp (8.39)

so that:

df = dζ f + ∂f

∂ζJ
dζJ (8.40)

Use of (8.34) and (8.38), together with the consistency condition df = 0, allows us to
identify the expression of the plastic multiplier dλ in the form:

dλ = dζ f

H
(8.41)
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where H is the hardening modulus defined by:

H = − ∂f

∂ζJ

∂ζJ

∂χJ

dχJ

dλ
= ∂f

∂ζJ

∂2U

∂χ2
J

∂g

∂ζJ
(8.42)

Plastic evolution involves positive values for the plastic multiplier dλ. Expression
(8.41) of the latter leads us to distinguish actual hardening, where H > 0, from softening,
where H < 0. Again using the incremental loading vector d	 = (dσij , dp), we first
express dζ f in the condensed form:

dζ f = ν · d	 (8.43)

where ν = (∂f /∂σij , ∂f /∂p) stands for the outward normal to the yield surface f = 0
in loading space

{
σij × p

}
. For a hardening material such as H > 0, condition dλ > 0

implies that plastic evolutions actually do occur if and only if dζ f > 0; that is, if and
only if loading increment d	 is oriented outwards with regard to the current poroelasticity
domain (see Fig. 8.4a). In other words, the new loading 	 + d	 escapes from the current
poroelasticity domain while carrying it along. By contrast, for a softening material such
as H < 0 (negative hardening), condition dλ > 0 implies that plastic evolutions actually
do occur if and only if dζ f < 0; that is, if and only if loading increment d	 is oriented
inwards with regard to the current poroelasticity domain (see Fig. 8.4b). In other words,
the new loading 	 + d	 enters the current poroelasticity domain while carrying it along.
Accordingly, in the softening case plastic loading cannot be distinguished from elastic
loading for an experiment carried out by imposing the incremental loading d	. In both
cases the new loading enters the current poroelasticity domain and the material response
is not unique (see details in Fig. 8.4b). Only an experiment carried out by monitoring the
strain increment dE produces the experimental evidence of softening. Finally, contrary
to ideal plasticity, for both hardening and softening materials no plastic evolutions occur

(a) Hardening: ν.dΣ > 0

Ε

Σ + dΣ
Σ

Σ
Σ + dΣ

ν

Current
elasticity
domain

(b) Softening: ν.dΣ < 0

Σ
Σ + dΣ

Ε

?

Σ + dΣ

Current

Σ

νdomain
elasticity

Figure 8.4: Hardening and softening materials. (a) Hardening material: the new loading point 	 +
d	 escapes from the current domain of elasticity. (b) Softening material: the new loading point
enters the current domain of elasticity so that plastic loading cannot be distinguished from elastic
loading for experiments carried out by imposing the loading increment d	.
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in the case of a neutral incremental loading such as dζ f = 0 so that the new loading
	 + d	 remains on the border of the current poroelasticity domain.

8.4 Usual Models of Poroplasticity

8.4.1 Poroplastic Effective Stress

In the case of matrix plastic incompressibility, substitution of (8.4) into (8.20) gives:

δWp = σ ′
ij dε

p
ij (8.44)

so that Terzaghi’s effective stress defined by:

σ ′
ij = σij + p δij (8.45)

is found to be the driving force of plastic strains. If the heuristic assumption (8.5)
is adopted in order to explore the consequences of the departure from matrix plastic
incompressibility, the driving force of the plastic strain can be written more generally as
σ ′
ij = σij + βp δij . By contrast, the driving force of elastic strains is Biot’s effective stress

σ ′′
ij = σij + bp δij (see (4.26)). Recalling Biot’s relation b = 1 −K/Ks , it is only in the

case of elastic incompressibility (Ks → ∞, b = 1) and plastic incompressibility (β = 1)
of the matrix that both driving forces coincide. Furthermore, when the material also obeys
the principle of maximal plastic work, a combination of (8.5) and (8.25) requires the load-
ing function f to depend only upon σ ′

ij . Accordingly, the plasticity criterion is expressed

in the form f (σ ′
ij ) = 0, which can be confirmed by experiment as illustrated in Figs. 8.55

and 8.8. By extension, in the more general context of a non-associated flow rule both
loading function f and non-associated potential g are generally expressed as a function
only of σ ′

ij so that non-associated flow rule (8.28) is written in the form:

dε
p
ij = dλ

∂g

∂σ ′
ij

; dφp = dεp (8.46)

8.4.2 Isotropic and Kinematic Hardening

Two main hardening modes are generally invoked to capture the transformations of the
poroelasticity domain through plastic loadings:

• Isotropic hardening. In isotropic hardening the poroelasticity domain dilates (hard-
ening) or contracts (softening) in an isotropic way around the origin of the effective
loading space

{
σ ′
ij

}
. A single hardening scalar force ζ is required to define the

homothetical transformation of the initial reference hardening state into the current
one (see Fig. 8.6a).

5See Kerbouche R., Shao J.-F., Skozylas F., Henry J.-P. (1995), ‘On the poroplastic behavior of porous
rocks’, European Journal of Mechanics, A/Solids, 14, (4), 3577–3587.
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Figure 8.5: Checking the validity of the plasticity criterion in the form f
(
σ ′
ij = σij + pδij

) = 0.
Path ab corresponds to a plastic shear loading by increasing the axial pressure −σI (from 28 MPa
to 32 MPa), while holding constant both the confining pressure −σIII = −σII (= 20 MPa) and the
pore pressure p (= 10 MPa). Path bc corresponds to the exact opposite elastic shear unloading. Path
cd corresponds to a new elastic shear loading, but now by holding constant the axial pressure −σI
(= 28 MPa) and decreasing both the confining pressure −σIII = −σII (from 20 MPa to 16 MPa)
and the pore pressure p (from 10 MPa to 16 MPa) in order to restore the same effective volumetric
stress − 1

3σ
′
kk (i.e. 42 MPa) as in the previous loading point b, but now achieved for distinct stresses

and pore pressure. Subsequent loading path de corresponds to a new plastic loading, so that it can
be concluded that the plasticity criterion is expressed as a function only of the effective stress σ ′

ij .
This can be confirmed by repeating the procedure (new loading path a′b′c′d ′e′). The experimental
data correspond to the same limestone as that in Fig. 8.1, which was reported to be plastically
incompressible, that is φp = εp (after Kerbouche et al. (1995), see footnote).

• Kinematic hardening. In kinematic hardening the poroelasticity domain moves in
a rigid way in the effective loading space

{
σ ′
ij

}
(see Fig. 8.6b). A second-order

tensor of components ζij is required to define the translation transporting the initial
reference yield surface to the current one (see Fig. 8.6b).

The two previous hardening models can be appropriately combined to yield an
isotropic–kinematic hardening model.

8.4.3 The Usual Cohesive–Frictional Poroplastic Model

The Drucker–Prager criterion

For an isotropic material all the directions are equivalent so that the loading function f

involves only the fluid pressure and the eigenvalues of the stress tensor, that is the principal
stresses σJ=I,II,III. The latter are expressed as a function of the three first invariants of
stress tensor σ . Let s be the deviator of σ , reading:

s = σ − σ1; sij = σij − 1

3
σkkδij (8.47)
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(b) Kinematic hardening
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Figure 8.6: Usual hardening models: (a) isotropic hardening; (b) kinematic hardening.

The second invariant of σ equals the (positive) second invariant τ of s, that is:

τ =
√

1

2
sij sji =

√
1

6

[
(σI − σII)

2 + (σI − σII)
2 + (σI − σII)

2] (8.48)

The loading function of the usual isotropic poroplastic materials is generally well captured
by involving only the first two stress invariants. In the case of ideal plasticity we write:

f = f (σ ′, τ ) (8.49)

where σ ′ = σ + p, assuming that Terzaghi’s effective stress concept is relevant (see
§8.4.1).

Let n(�) be the vector orienting trisector (�) of the effective loading space {σ ′
I × σ ′

II×
σ ′

III}:

n(�) = 1√
3
(eI + eII + eIII) (8.50)

where eJ=I,II,III stand for the principal stress directions. In the effective loading
space

{
σ ′
I × σ ′

II × σ ′
III

}
where the origin is O, the projection Q of the loading point

P
(
σ ′
I , σ

′
II, σ

′
III

)
onto trisector (�) is such that OQ = σ

√
3, PQ = τ

√
2. Consequently,

as sketched in Fig. 8.7, the yield surface of isotropic materials defined by f = 0 is
an axisymmetric surface around (�). Furthermore, noting that σ ′ = n(�) · σ ′ · n(�) and
(σ ′ · n(�))

2 = σ ′2 + 2
3τ

2, the plasticity criterion f (σ ′, τ ) = 0 turns out to be a relation

which links the effective normal stress σ ′ and the shear stress τ
√

2
3 exerted on the material

facet oriented by n(�). Plastic yielding relates to the irreversible sliding between the solid
material planes facing each other and the ones oriented by n(�). Owing to the physical
interpretation of σ ′ and τ , the loading function is consistently sought in the form (see
Fig. 8.8 for experimental evidence6):

f (σ ′, τ ) = τ + fσ ′ − c (8.51)

6The data reported in Fig. 8.8 are from Vincké O., Boutéca M., Piau J.-M., Fourmaintraux D. (1998),
‘Study of the effective stress at failure’, Poromechanics, A tribute to M.A. Biot, Proceedings of the First Biot
Conference, ed. Thymus et al., Balkema J.-F., Rotterdam.
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Figure 8.7: For isotropic poroplastic materials the yield surface defined by f
(
σ ′, τ
) = 0 is an

axisymmetric surface around the trisector (�), specified as a cone for the Drucker–Prager crite-
rion (8.51).
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Figure 8.8: Investigation of the plasticity criterion of a limestone and checking the validity of
Terzaghi’s plastic effective stress (8.45) through a deviatoric experiment. This experiment consists
of subjecting the sample to a shear force by progressively increasing the axial effective pressure
−σ ′

I beyond a constant confining effective pressure −σ ′
II = −σ ′

III, so that
√

3τ = ∣∣σ ′
I − σ ′

III

∣∣. The
limestone is the one whose Biot’s coefficient was equal to 0.63 in Fig. 4.1. It is instructive here
to note that Terzaghi’s plastic effective stress (8.45) does not coincide with Biot’s elastic effective
stress (4.26) (after Vincké et al. (1998) c© Sweets & Zeitlinger, see footnote).

where f is a friction coefficient, while c is a cohesion property. The plasticity criterion
f (σ ′, τ ) = 0 is the Drucker–Prager criterion, reducing to the von Mises criterion for a
frictionless material such as f = 0. In the effective loading space

{
σ ′
I × σ ′

II × σ ′
III

}
the

related yield surface is an axisymmetric cone whose vertex V lies on (�) at a distance√
3c/f from origin O (see Fig. 8.7).
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Flow rule

In §8.2.2 we saw that the flow rule could be derived from a potential g according to (8.46),
the flow rule being either associated, g = f , or not, g �= f . For isotropic materials, similar
to f in (8.49) g is expressed in the form:

g = g(σ ′, τ ) (8.52)

In order to derive the flow rule explicitly, using definitions (8.47) and (8.48) we first get
the instructive relation:

∂g(σ ′, τ )
∂σij

= 1

3

∂g

∂σ ′ δij +
∂g

∂τ

sij

2τ
(8.53)

With the help of (8.53) the flow rule (8.46) is specialized for isotropic materials in the
form:

dε
p
ij = dλ

(
1

3

∂g

∂σ ′ δij +
∂g

∂τ

sij

2τ

)(
⇒ dφp = dεp = dλ

∂g

∂σ ′

)
(8.54)

The dilatancy factor quantifies the magnitude of the distortion compared with the
volumetric strain and turns out to be useful to account for experimental results by way of
potential g. Consider an experiment where the porous material sample is subjected to the
hydrostatic effective loading σ ′

ij = σ ′δij , whereas a deviatoric loading is simultaneously
superimposed and is such that only one component sij = s12 = s21 is non-zero. The
material isotropy implies that only the volumetric strain ε = εkk and the distortion γ =
2ε12 = 2ε21 are non-zero. The plastic dilatancy factor we denote d is then defined by:

dεp = d dγ p (8.55)

where γ p = 2
∣∣εp12

∣∣ = 2
∣∣εp21

∣∣ is the (positive) plastic distortion accounting for the strength
of the irreversible change undergone by the angle between material directions ei and
ej . Dilatancy factor d is a priori not constant and can be either positive or negative,
the poroplastic material exhibiting either plastic dilation (d > 0) or plastic contraction
(d < 0). As roughly sketched in Fig. 8.9 the macroscopic dilatancy results from the
microscopic rugosity of the contact planes along which the relative irreversible sliding of
the solid grains actually occurs. Definition (8.55) is extended to any evolution by letting:

dγ p =
√

1

2
dγ

p

ij dγ
p

ji; γ
p

ij = 2epij ; e
p

ij = ε
p

ij −
1

3
εpδij (8.56)

so that (8.54) can be rewritten in the form:

de
p

ij = dλ
∂g

∂τ

sij

2τ
; dφp = dεp = dλ

∂g

∂σ ′ (8.57)

yielding:

dγ p = dλ
∂g

∂τ
(8.58)
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When dilatancy factor d is constant with regard to σ ′ and τ , a combination of (8.55),
(8.57) and (8.58) requires g(σ ′, τ ) to be specialized as a function of τ + dσ ′only. In
addition, whatever the final choice of g (.), the derivative dg (.)/d (.) can be included
in the expression of the plastic multiplier dλ, whereas g is defined irrespective of any
constant with regard to σ ′ and τ . Function g is eventually chosen in the form:

g(σ ′, τ ) = τ + dσ ′ − c (8.59)

so that (8.57) reduces to:

dε
p
ij = dλ

(
sij

2τ
+ 1

3
dδij

)
(8.60)

yielding:

dεp = dλd; dγ p = dλ (8.61)

Use of (8.56) in (8.44) gives:

δWp = σ ′dεp + τdγ p (8.62)

In the case of an ideal plastic material, the dissipated energy reduces to the plastic work.
Substitution of (8.61) into (8.62) then leads us to express the positiveness of the latter in
the form:

δWp =
[
d

f
c+
(

1 − d

f

)
τ

]
dγ p ≥ 0 (8.63)

where we used the Drucker–Prager plasticity criterion, that is τ + fσ ′ − c = 0. Since
the plasticity criterion allows τ to take positive infinite values, whereas it has a lower
bound of zero (see Fig. 8.9), the previous inequality requires the dilatancy factor to be
positive and have an upper bound provided by the friction coefficient, irrespective of the
value of the cohesion. Regardless of the positiveness of the dissipated energy, it is also
usually required that no tensile stress is tolerated within the material in the absence of any
cohesion. This means the poroelasticity domain has to lie entirely in the octant defined
by σ ′

J=I,I I,I I ≤ c/f and it eventually restricts possible values of the friction coefficient

to f ≤
√

3
2 . Accordingly we can eventually write:

0 ≤ d ≤ f ≤
√

3

2
(8.64)

When the poroplastic material satisfies the principle of maximal plastic work, g = f and
d = f so that (8.63) gives:

δWp = cdγ p (8.65)

and we recover that δWp ≥ 0 since the material satisfies the principle of maximal plastic
work. More generally, irrespective of any specific poroplastic model it can be shown that
the plastic work can be expressed as a function of the plastic strain increments only as
soon as the material satisfies the principle of maximal plastic work.
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Figure 8.9: The macroscopic dilatancy results from the microscopic rugosity constituted by the
contact planes along which the irreversible sliding of the solid grains occurs and orienting the
direction of the plastic strain increment vector

(
dεp, dγ p

)
. The positiveness of the plastic work

requires the product of the stress vector of components (σ ′, τ ) with the plastic strain increment
vector

(
dεp, dγ p

)
to be positive. Accordingly, the dilatancy factor d must be positive and have an

upper bound provided by the friction coefficient f.

Hardening laws

A Drucker–Prager material exhibiting isotropic hardening is obtained by extending (8.51)
and (8.59) in the form:

f (σ ′, τ, ζ ) = τ + fσ ′ − c+ ζ ; g(σ ′, τ, ζ ) = τ + dσ ′ − c+ ζ (8.66)

When adopting (8.66), the flow rule (8.60) related to the plastic strain still holds, whereas
the flow rule (8.38) related to the hardening variable χ and the expression (8.41) for the
plastic multiplier are specialized in the form:

dχ = dλ = dτ + fdσ ′

H
(8.67)

Comparing (8.61) and (8.67) eventually identifies the hardening variable χ with the plastic
distortion γ p. The positiveness of dissipated energy �1dt , now:

�1dt = σ ′dεp + τdγ p + ζdγ p ≥ 0 (8.68)

The plasticity criterion f = 0, where f is given by (8.66), provides ζ as a function of τ

and σ ′. Substitution of the latter into (8.68) leads to identify �1dt with the plastic work
(8.63) of the underlying ideal poroplastic material. As a consequence, its positiveness
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requires the same condition, that is 0 ≤ d ≤ f. Use of (8.66) allows us to specialize the
general expression (8.42) of the hardening modulus H in the form:

H(γ p) = ∂2U

∂γ p2
(8.69)

where U(γ p) is the trapped energy as a function of the hardening variable χ = γ p. In
practice it is eventually H instead of U that is experimentally determined through the
measured incremental history (8.67) of γ p .

A Drucker–Prager material exhibiting kinematic hardening is obtained by extending
(8.51) and (8.59) in the form:

f
(
σ ′, sij , ζij

) = √1

2
(sij + ωij )(sij + ωij )+ f(σ ′ + ζ )− c (8.70a)

g
(
σ ′, sij , ζij

) = √1

2
(sij + ωij )(sij + ωij )+ d(σ ′ + ζ )σ ′ − c (8.70b)

where we let:

ζ = 1

3
ζkk; ωij = ζij − ζδij (8.71)

so that the current yield surface f
(
σ ′, sij , ζij

) = 0 is obtained by transporting the reference
yield surface f

(
σ ′, sij , 0

) = 0 through the translation of strength ζ . Based on expressions
(8.70) for potentials f and g, the flow rule and the plastic multiplier can be derived from
(8.28) and (8.41). Since σ ′

ij and ζij are involved in the same algebraic way in flow rules
(8.28) and (8.38), and also in expressions (8.70) for f and g, the hardening variables χij

associated with ζij are identified with ε
p
ij , whereas the hardening variable χ associated

with ζ is identified with εp = φp. Moreover, the dissipated energy �1dt is again identified
with the plastic work (8.63) of the underlying ideal poroplastic material.

8.4.4 The Cam–Clay Model

The Cam–Clay criterion

The usual model as detailed in the previous section covers a large class of cohesive–
frictional materials but it turns out to be irrelevant for capturing the plastic behaviour
of soils such as clays. Indeed, soils cannot sustain tensile stress, nor infinite confining
pressure, whereas the observed dilatancy can be either positive (dilation) or negative
(contraction), depending on the ratio between the shear τ and the confining effective
pressure −σ ′. The mechanical behaviour of soils and rocks is largely explored through the
deviatoric experiment consisting of subjecting the sample to an increasing axial pressure
−σI beyond the confining pressure −σII = −σIII so that τ

√
3 = |σI − σIII| (see Fig. 8.8).

As is common in soil and rock mechanics, it is convenient to note:

p′ = −σ ′; q = τ
√

3 (8.72)
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in order to consider positive values, that is p′ ≥ 0, and to investigate the plastic loading
function in the form f (p′, q).

In investigating the behaviour of clays, in particular the clay of the River Cam, the Cam-
bridge School7 designed the so-called ‘Cam–Clay’ model originally intended to account
for the plastic behaviour of saturated clays. This model, now widely used and extended to
other materials and to unsaturated situations,8 is particularly attractive since it covers the
whole range of behaviours expected for plastic materials: ideal, hardening and softening
plasticity. Adopting the notation in (8.72), the loading function finally retained to account
for the yield surface of clays is expressed in the form:

2f
(
p′, q, pco

) = (p′ − 1

2
pco

)2

+ q2

M 2
− 1

4
p2
co (8.73)

where M is a material constant, while pco is the effective consolidation pressure. Con-
solidation pressure pco is the upper bound of the admissible current effective pressure
p′ and turns out to be the maximum effective pressure to which the material has been
subjected during the past plastic loadings. Indeed, the loading surface is an ellipse cen-
tred at p′ = 1

2pco and having 1
2pco and 1

2 Mpco as half-axes respectively along the p′
direction and the q direction. As hardening force pco varies, the ellipse transforms homo-
thetically and the hardening/softening mode is isotropic (see Fig. 8.10).

(dp′, dq)

(dp′, dq)

dhp
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q = Mp
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Figure 8.10: Poroplastic Cam–Clay model. The loading surface is an ellipse. The material exhibits
plastic contraction for p′ > 1

2pco and plastic dilatancy for p′ < 1
2pco, whereas for p′ = 1

2pco

the plastic evolution occurs at constant volume. For p′ �= 1
2pco the material exhibits isotropic

hardening. By contrast, for p′ = 1
2pco and therefore for q ′ = 1

2 Mpco, plastic flow occurs indefinitely
at constant loading (ideal plastic material) so that the line defined by q = Mp′ is commonly said
to be the locus of critical states.

7A founding paper is Roscoe K.H., Schofield A.N., Wroth C.P. (1958), ‘On the yielding of soils’, Geotech-
nique, 8, 22–53.

8See Alonzo E.E., Gens A., Josa A. (1990), ‘A constitutive model for partially saturated soils’, Geotechnique,
40, 405–430.
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Flow rule

In addition to (8.72), it is convenient to let:

εp = −εp; ηp = 1√
3
γ p (8.74)

so that εp is the contraction and ηp is equal to 2
3 |εI − εIII| in the deviatoric experiment.

Revisiting (8.62) we can alternatively write:

δWp = p′dεp + qdηp (8.75)

The Cam–Clay model assumes the validity of the principle of maximal plastic work so
that the potential is associated and the flow rule can be expressed in the form:

dεp = dλ
∂f

∂p′ = dλ

(
p′ − 1

2
pco

)
; dηp = dλ

∂f

∂q
= dλ

q

M 2
(8.76)

where:

dλ = 1

H

[(
p′ − 1

2
pco

)
dp′ + q dq

M 2

]
(8.77)

According to (8.76), the material undergoes plastic dilation (dεp < 0) for effective pres-
sures lower than half the consolidation pressure (p′ < 1

2pco), whereas it undergoes plastic
contraction (dεp > 0) in the inverse case (p′ > 1

2pco). For p′ > 1
2pco the plastic evolution

occurs without any change in volumetric plastic strain (dεp = 0) (see Fig. 8.10).

Hardening law. Critical state

The solid matrix of clays is formed of subparticles or platelets. The hardening state
of clays relates to the strength of the interactions between the latter and therefore to
their irreversible densification degree. Since the subparticles do not undergo any volume
change, their current densification degree is well captured by the current plastic contraction
εp which is identified as the appropriate hardening variable χ of the argument of the
trapped energy U = U(χ = εp). Since the trapped energy must increases with both εp

and the current consolidation pressure pco, it is consistent to write:

pco = ∂U

∂εp
(8.78)

According to (8.34), it is ζ = −pco that is eventually identified as the hardening force
associated with plastic contraction χ = εp. The condition (8.33) of positiveness of the
dissipated energy can be written:

f = 0 : p′dεp + qdηp − pcodε
p ≥ 0 (8.79)
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which is actually satisfied over the whole range of admissible effective pressure p′ since
it can be shown that:

f = 0 : p′dεp + qdηp − pcodε
p = dλ× 1

2
pco

(
pco − p′) (8.80)

Substitution of ζ = −pco and χ = εp into (8.42) and use of (8.73) allow us to express
the hardening modulus in the form:

H = 1

2
p′
(
p′ − 1

2
pco

)
dpco

dεp
(8.81)

The determination of H requires knowledge of the state equation linking εp to pco. The
latter can be obtained from an experiment performed at q = 0 and where the total void
ratio e is plotted against the effective pressure p′. The resulting experimental data such
as those reported in Fig. 8.11 are well captured according to the law:

pco = p0
co exp
[− (λ− κ) ep

]; λ > κ (8.82)

Besides, use of (1.34) provides the relation linking the plastic contraction εp to the plastic
void ratio ep:

ep = −(1 + e0)ε
p (8.83)
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Figure 8.11: Poroplastic behaviour of an artificial compacted clay in a experiment where q = 0
and where the total void ratio e is plotted against the effective pressure p′. The clay behaves
elastically up to some effective pressure threshold representing the maximum effective pressure to
which the material has been subjected in all the past plastic loadings (point a in Figs. 8.10–8.11).
Along a poroplastic loading path de = −λdp′/p′ (path ab in Figs. 8.10–8.11), while de− dep =
−κdp′/p′ along an elastic unloading path (path bc in Figs. 8.10–8.11). This results in dep =
− (λ− κ) dpco/pco since p′ = pco along the plastic loading path followed at q = 0.
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Equations (8.73), (8.78), (8.81)–(8.83) combine to give the following expressions of the
trapped energy U :

U(εp) = p0
co

(λ− κ) (1 + e0)
exp
[
(λ− κ) (1 + e0)ε

p
]

(8.84)

and the hardening modulus H :

H = 1

2
(λ− κ) (1 + e0)pcop

′
(
p′ − 1

2
pco

)
(8.85)

When p′ > 1
2pco, the plastic contraction (dεp > 0) causes hardening (H > 0). Con-

versely, when p′ < 1
2pco, the plastic dilation (dεp < 0) causes softening (H < 0). For

p′ = 1
2pco and therefore for q = 1

2 Mpco plastic flow occurs indefinitely at constant load-
ing (H = 0, ideal plasticity). For this reason line q = Mp′ is commonly said to be the
locus of critical states and 1

2pco the critical effective consolidation pressure (see Fig. 8.10).

8.5 Advanced Analysis

8.5.1 Uniqueness of Solution

Analogously to (5.149), the state equations of linear poroplasticity (8.9) can be written in
the form:

σij = ∂W

∂εelij

; p = ∂W

∂velf

(8.86)

where W
(
εelij , v

el
f

)
is the reduced potential defined by (5.150). Let W ∗(σij , p) be the

Legendre–Fenchel transform of W
(
εelij , v

el
f

)
:9

W ∗(σij , p) = σij ε
el
ij + pνelf −W

(
εelij , v

el
f

)
(8.87)

so that (8.86) can be inverted according to:

εelij =
∂W ∗

∂σij
; velf = ∂W

∂p

∗
(8.88)

The linearity of state equations (8.9) linking (σij , p) to
(
εelij , v

el
f

)
gives the useful relation:

W ∗(σij , p) = W
(
εelij , v

el
f

) = 1

2

(
σ : εel + p velf

)
(8.89)

9The general explicit expression of W ∗ is:

W ∗(σij , p) = 1

2
σijC

−1
ijklσkl + σijC

−1
ijklbklp + 1

2M

(
1 +MbijC

−1
ijklbkl
)
p2
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According to stability conditions (5.153), energy W ∗(σij , p) is always positive as soon
as σij and p are non-zero. In addition, use of (8.86) and (8.89) leads to:

σ : ε̇el + p v̇elf = dW ∗

dt
(8.90)

Now consider two possible solutions (σij , p) and
(
σ ′
ij , p

′) for the poroplastic prob-
lem under consideration. Inequality (5.157) holds irrespective of the specific skeleton
constitutive equations so that the combination of the latter with (8.90) gives:

d

dt

∫
�

W ∗ (σ ′
ij − σij , p

′ − p
)
d�

≤ −
∫
�

[(
σ ′
ij − σij

)(
ε̇
p′
ij − ε̇

p
ij

)+ (p′ − p
)(
v̇
p′
f − v̇

p
f

)]
d� (8.91)

For an ideal poroplastic material both possible solutions (σij , p) and
(
σ ′
ij , p

′) are required
to lie within the invariant domain of poroelasticity CE . If in addition the material obeys
the principle of maximal plastic work, applying inequality (8.23) successively to both
possible solutions furnishes:(

σ ′
ij − σij

)
dε

p′
ij + (p′ − p)dvp′ ≥ 0; (σij − σ ′

ij

)
dε

p
ij + (p − p′)dνp ≥ 0 (8.92)

so that the right hand side of inequality (8.91) turns out to be negative, yielding:

d

dt

∫
�

W ∗(σ ′
ij − σij , p

′ − p
)
d� ≤ 0 (8.93)

Energy W ∗(σ ′
ij − σij , p

′ − p
)

is always positive as soon as σ ′ �= σ and p′ �= p and can
be used to express the distance between two solutions. Accordingly inequality (8.93)
expresses that the distance with regard to energy between two possible solutions can
only decrease. Consequently, since both of them are required to meet the same initial
conditions, the distance equal to zero at t = 0 remains so − the solution is unique.

The uniqueness of the solution with regard to the stress and the fluid pressure does
not a priori ensure the uniqueness with regard to the skeleton velocity nor to the rate in
fluid volume content. Substitution of (8.13)–(8.14) and of the second term in (8.88) into
diffusion equation (5.8) gives:

φ̇p = − d

dt

(
∂W ∗

∂p

)
− k∇2p (8.94)

Substitution of flow rule (8.25) into (8.94) allows us to express the rate dλ/dt in the form:

dλ

dt
= 1

∂f/∂p

[
− d

dt

(
∂W ∗

∂p

)
− k∇2p

]
(8.95)

The above expression ensures the uniqueness of the plastic multiplier history and, con-
sequently, the uniqueness of the rates of both the strain and the fluid volume content. It
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is worth noting that the uniqueness of the plastic multiplier history is achieved by the
regularization afforded by the diffusion equation and therefore by the viscous effects asso-
ciated with the fluid flow. Indeed, the uniqueness of the plastic multiplier history could
not have been proven for a monophasic ideal plastic material. By contrast, if the principle
of maximal plastic work is extended to the hardening work with no possibility of soft-
ening, the uniqueness of the solution extends to the hardening variables and is achieved
irrespective of the regularization effects associated with the viscous flow of the fluid.

8.5.2 Limit Analysis

The kinematical theorem

Limit analysis aims at determining the critical loading provoking the collapse of structures
without having to determine the behaviour prior to failure. In the framework of ideal plas-
ticity this determination can be carried out by analysing the maximum rate of dissipated
energy that the structure can oppose in relation to the work rate of external forces in the
likely modes of plastic collapse.

Under the hypothesis of small quasistatic perturbations, when considering only gravity
forces, namely f = g, momentum equation (2.19) simplifies to the form:

∇ · σ ′ − ∇p + (ρs(1 − φ0
)+ ρf φ0

)
g = 0 (8.96)

where σ ′ = σ + p1 stands for Terzaghi’s effective stress (8.45). Use of Darcy’s law (3.39)
allows us to rewrite (8.96) in the form

∇ · σ ′ + f ′ = 0 (8.97)

where we note:

f ′ = 1

k
V + ρ′g; ρ′ = (1 − φ0)(ρs − ρf ) (8.98)

Provided that Terzaghi’s effective stress concept applies to the constitutive porous mate-
rial, (8.97) can be roughly interpreted as an effective momentum equation related to the
skeleton. Effective volumetric forces f ′ result from viscous drag forces through the term
1
k
V and from gravity forces through the term ρ′g, where the effective density ρ′ is consid-

ered in order to remove the Archimedes vertical lifting force. We multiply (8.97) by any
possible candidate V describing the plastic collapse and we integrate over the volume �

occupied by the structure. Using the divergence theorem in addition, the procedure gives
the following balance of work rates:

P ′
def = P ′ (8.99)

where we note:

P ′
def =
∫
�

σ ′
ij dij d�; P ′ =

∫
∂�

T′ · Vda +
∫
�

f ′ · Vd�; (8.100)
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In (8.100), dij is the rate of deformation:

dij = 1

2

(
∂Vi

∂xj
+ ∂Vj

∂xi

)
(8.101)

while T′ = σ ′ · n is the effective stress vector, n being the outward unit normal to the
border ∂�. Balance equation (8.99) states that the effective strain work rate is equal to
the effective work rate of the external forces whatever the velocity field V considered.

Assuming the validity of the effective stress concept, let f
(
σ ′
ij

)
be the loading function

of the ideal poroplastic material constituting the structure. The collapse of the structure
will unavoidably occur if one velocity field does exist such that the associated work rate
of the external forces exceeds the rate of dissipated energy that the structure can offer
in the same field, so that (8.99) definitively cannot be fulfilled. This statement can be
expressed in the form of the kinematical theorem of limit analysis:

∃V : �(V) = sup
f (σ ′ij )≤0

P ′
def < P ′ "⇒ Collapse (8.102)

According to the principle of maximal plastic work (see §8.2.2 and Fig. 8.3), whatever
the velocity field V under consideration the maximum value of σ ′

ij dij , and consequently
of P ′

def , is achieved for the effective stress σ ′
ij located on the yield surface f

(
σ ′
ij

) = 0
where dij is normal. The infinitesimal strain work rate σ ′

ij dij is eventually identified with
the plastic work rate. For instance, for the usual cohesive–frictional model studied in
§8.4.3, (8.65) gives:

�(V) =
∫
�

cγ̇ d�; γ̇ =
√

1

2
γ̇ij γ̇j i (8.103)

where:

γ̇ =
√

1

2
γ̇ij γ̇j i; γ̇ij = 2

(
dij − 1

3
dkkδij

)
(8.104)

Limit analysis and the stability of slopes

In order to illustrate (8.102) let us consider a soil layer of uniform thickness h in the
e1 direction resting on a impervious rigid bedrock inclined at angle α to the horizontal.
The layer is subjected both to the vertical gravity body force gez and to a steady fluid
flow parallel to the direction of the layer of strength V1 (see Fig. 8.12). The layer consists
of an ideal poroplastic material obeying the usual cohesive–frictional model studied in
§8.4.3 so that (8.102) and (8.103) apply.

In order to determine the critical flow provoking the collapse of the layer, we consider
the following possible candidate of mode of plastic collapse:

V = V
x2

h
e1; γ12 = γ21 = V

h
; (other γij = 0) (8.105)
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Figure 8.12: The kinematical theorem of limit analysis applied to the analysis of the poroplastic
collapse of a soil layer subjected to vertical gravity forces and a steady state fluid flow.

Using (8.103), the maximal rate �(V) of dissipated energy that the layer can provide per
length unit in the e1 direction to resist the possible collapse mode (8.105) is:

�(V) = cV (8.106)

which is to be compared with the external work rate P ′ provided in the velocity field V
by the effective force f′ = 1

k
V1e1 + ρ′geZ , that is:

P ′
def =
(

1

k
V1 + ρ′g sinα

)
V h

2
(8.107)

Applying the kinematical theorem (8.102) of limit analysis, the critical strength V1 = Vcr
provoking the collapse of the layer has an upper bound according to:

Vcr

kρ′g sinα
<

2c

ρ′gh sinα
− 1 (8.108)

8.5.3 Thermal and Chemical Hardening

Thermal hardening

As illustrated in Fig. 8.13 for a clay,10 poroplastic geomaterials are often observed to
exhibit thermal hardening, such that the stress threshold causing the plastic yielding of

10The experimental data are from Sultan N., Delage P., Cui Y.J. (2002), ‘Temperature effects on the volume
change behaviour of Boom clay’, Engineering Geology 64, (2–3), 135–145.
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Figure 8.13: Experimental evidence of thermal hardening. The effective (consolidation) pressure
causing irreversible plastic changes in the void ratio decreases with temperature for clay samples
previously subjected to T = 20◦C (from Sultan et al. (2002), see footnote 10).

the material depends on temperature. In order to include this thermoplastic coupling,
(8.31) is extended in the form:

�s = Ws

(
εij − ε

p
ij , φ − φp, T

)+ U(χJ , T ) (8.109)

Accordingly, the state equations are now written:

σij = ∂Ws

∂εij
; p = ∂Ws

∂φ
; Ss = −∂Ws

∂T
− ∂U

∂T
; ζJ = − ∂U

∂χJ

(8.110)

so that (8.33) expressing the dissipation positiveness remains unchanged while flow rules
(8.25) or (8.28), (8.37) or (8.38) still apply. Nevertheless, since hardening forces ζJ now
depend on both temperature and hardening state variables χJ , the expression for the
plastic multiplier dλ must be reconsidered. To this end let dχf be defined by:

dχf = ∂f

∂σij
dσij + ∂f

∂p
dp + ∂f

∂ζ

∂ζJ

∂T
dT (8.111)

so that:

df = dχf + ∂f

∂ζJ

∂ζJ

∂χJ

dχJ (8.112)
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Use of (8.38) and of the last of state equations (8.110), together with consistency condition
df = 0, allows us to identify the expression of the plastic multiplier dλ in the form:

dλ = dχf

H
(8.113)

where H is the hardening modulus whose expression is still given by (8.42).
For instance, the Cam–Clay model presented in §8.4.4 can be extended in order to

account for thermal hardening. The experimental results reported in Fig. 8.13 are well
captured according to:

pco = p0
co (T ) exp

[− (λ− κ) ep
]; λ > κ (8.114)

where coefficients λ and κ have the same definition as in Fig. 8.11. The remaining
equations related to the Cam–Clay model are unchanged provided that, instead of (8.77)
and according to (8.113), the plastic multiplier is expressed in the form:

dλ = 1

H

[(
p′ − 1

2
pco

)
dp′ + qdq

M 2
− 1

2
p′pco

p0
co

dp0
co

dT
dT

]
(8.115)

Chemical softening/hardening

The dissolution process affects the poroelastic properties of a porous material (see for
instance Table 4.1), but also reduces the strength properties (see Table 8.111), leading to
chemical softening when strength properties are addressed in the context of poroelasticicty.
In order to include this chemoplastic coupling, (8.31) is extended in the form:

�s = Ws

(
εij − ε

p
ij , φ − φch − φp, φch

)+ U(χJ , φch) (8.116)

where the expression of Ws is given by (4.197) so that the state equations can be derived
accordingly, leading us to replace εij and φ in (3.167) and (4.194) by εij − ε

p
ij and

φ − φp, respectively. Inequality (8.33) expressing the positiveness of the plastic contri-
bution to the overall dissipation turns out to be unchanged so that flow rules (8.25) or
(8.28), (8.37) or (8.38) still apply. Nevertheless, since hardening forces ζJ now depend
both on φch and on hardening state variables χJ , the expression for the plastic mul-
tiplier dλ must be reconsidered. Proceeding as in the previous section, the expression
for the plastic multiplier dλ can be written in the form (8.113) provided that (8.111) is
replaced by:

dχf = ∂f

∂σij
dσij + ∂f

∂p
dp + ∂f

∂ζ

∂ζJ

∂φch

dφch (8.117)

As reported in Table 8.1, for materials obeying the Drucker criterion (8.51) the cohesion
is generally more affected by the dissolution process than the friction coefficient is. Such a

11For the experimental data reported in Table 8.1 see Heukamp F.H., Ulm F.-J., Germaine J.T. (2002),
‘Residual design strength of cement-based materials for nuclear waste storage systems’, Nuclear Engineering
Design, 211, (1), 51–60.
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Table 8.1: Reduction of cohesion and friction strength properties
related to Drucker criterion (8.51) of cement-based materials due to
leaching (from Heukamp et al. (2001), see footnote 11).

Cohesion Friction coefficient

Unleached cement paste c = 17.1 MPa f = 0.82
Leached cement paste c = 1.1 MPa f = 0.56
Unleached mortar c = 9.8 MPa f = 1.1
Leached mortar c = 0.96 MPa f = 0.81

reduction of cohesion c for a material exhibiting isotropic hardening such as that captured
by (8.66) can be accounted for by letting:

U
(
χ = γ p, φch

) = −γ pczch(φch)+ zmk(φch)U0(γ
p)
(
z′mk(φch) < 0

)
(8.118)

so that:

ζ = − ∂U

∂γ p
= czch(φch)− zmk(φch)

∂U0

∂γ p
(8.119)

The first term in (8.119) accounts for the chemical softening that would occur in the
absence any loading. Indeed, substitution of (8.119) into (8.66) results in the current
cohesion c(1 − zch(φch)) irrespective of the term associated with U0. The latter term
relates to the usual mechanical hardening associated with plastic deformation, which is
now affected by the dissolution process through the factor zmk(φch). The latter accounts
for the dissolution effect in such a way that energy U0(γ

p) which would be trapped
during a plastic deformation in the absence of dissolution, that is for zmk(φch = 0) = 1,
is reduced by the factor zmk(φch). As a consequence, the same factor zmk(φch) affects the
hardening modulus. Indeed, substitution of (8.118) into (8.69) gives:

H = zmk(φch)H0; H0 = ∂2U0

∂γ p2
(8.120)

The previous modelling was relative to the chemical softening following to a dissolution
process. It similarly applies to the chemical hardening following to a chemical reaction
that strengthens the material. Indeed, denoting ξ as the reaction extent (see §3.6.3 and
§4.4.4), (8.118) is appropriately replaced by:12

U(χ = γ p, ξ) = γ pczch (ξ)+ zmk (ξ)U0(γ
p) (z′mk (ξ) > 0) (8.121)

12For chemical hardening induced by the setting of concrete the theory is fully developed in Ulm F.-J.,
Coussy O. (1998), ‘Couplings in early-age concrete: from material modeling to structural design’, Journal of
Solids and Structures, 35, (31–32), 4295–4311.
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8.5.4 Localization of Deformation

As illustrated in Fig. 8.1413 a band of intense deformation and negligible thickness is
often observed in triaxial tests performed on geomaterials. The search for the conditions
of formation of such a band can be carried out through a two-step analysis: the first step
consists in deriving the incremental constitutive equations of plasticity while the second
step analyses the conditions required for the formation of discontinuities related to such
a narrow band.

Incremental constitutive equations of poroplasticity

The state equations of poroplasticity (8.9) can be written in the general incremental form:

dσij = Cijkl

(
dεkl − dε

p
kl

)− bij dp (8.122a)

dφ − dφp = bij
(
dεij − dε

p
ij

)+ dp

N
(8.122b)

Use of (8.122) in (8.39) gives:

dζ f = ∂f

∂σij
Cijkl

(
dεkl − dε

p
kl

)+ (∂f
∂p

− bij
∂f

∂σij

)
dp (8.123)

Figure 8.14: Formation of a band of intense deformation in an axisymmetric triaxial test performed
on a Hostunsand (from Desrues (1988), see footnote).

13The illustration is by courtesy of Desrues J. (1984), ‘La localisation de la déformation dans les milieux
granulaires’, Thèse de Doctorat d’Etat, Université de Grenoble.
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Substitution of flow rule (8.28) into (8.123) and of the resulting expression in (8.41)
allows us to express the plastic multiplier in the alternative form:

dλ =
∂f
∂σij

Cijkldεkl +
(
∂f
∂p

− bij
∂f
∂σij

)
dp

H + ∂f
∂σij

Cijkl
∂g
∂σkl

(8.124)

In turn, substitution of (8.124) into flow rule (8.28) provides expressions for dεpkl and dφp

that combine with incremental state equations (8.122) to give the following incremental
constitutive equations of poroplasticity:

dσij = CT
ijkldεkl − bTij dp (8.125a)

dφ = βT
ij dεij +

dp

NT
(8.125b)

where tangent properties CT
ijkl , b

T
ij , βT

ij and NT are expressed in the form:

CT
ijkl = Cijkl −

Cijmn
∂g

∂σmn

∂f
∂σpq

Cpqkl

H + ∂f
∂σmn

Cmnpq
∂g

∂σpq

(8.126a)

bTij = bij +
∂f
∂p

− bmn
∂f

∂σmn

H + ∂f
∂σmn

Cmnpq
∂g

∂σpq

Cijkl

∂g

∂σkl
(8.126b)

βT
ij = bij +

∂g
∂p

− bmn
∂g

∂σmn

H + ∂f
∂σmn

Cmnpq
∂g

∂σpq

Cijkl

∂f

∂σkl
(8.126c)

1

NT
= 1

N
+
(
∂f
∂p

− bmn
∂f

∂σmn

) (
∂g
∂p

− bmn
∂g

∂σmn

)
H + ∂f

∂σmn
Cmnpq

∂g
∂σpq

(8.126d)

so that the standard poroelastic symmetries CT
ijkl = CT

klij and bTij = βT
ij are recovered only

for an associated flow rule such as f = g. In the case of an isotropic material, Cijkl and
bij are specialized in the form:

Cijkl =
(
K − 2

3
µ

)
δij δkl + µ(δikδjl + δilδjk); bij = bδij (8.127)

Combining (4.58) and (8.125b) provides the incremental constitutive equation relative to
the porous material:

dmf

ρf
= βT

ij dεij +
dp

MT
; 1

MT
= 1

NT
+ φ

Kf

(8.128)
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so that:

dσij = CuT
ijkldεkl − bTijM

T dmf

ρf
; CuT

ijkl = CT
ijkl + bTijβ

T
klM

T (8.129)

Adopting the usual isotropic cohesion–frictional model developed in §8.4.3, (8.51) and
(8.59) give:

∂f

∂σij
= sij

2τ
+ 1

3
fδij ; ∂f

∂p
= f (8.130a)

∂g

∂σij
= sij

2τ
+ 1

3
dδij ; ∂g

∂p
= d (8.130b)

so that:

Cijkl

∂f

∂σkl
= ∂f

∂σkl
Cklij = fKδij + µ

sij

τ
; bij

∂f

∂σij
= bf (8.131a)

Cijkl

∂g

∂σkl
= ∂g

∂σkl
Cklij = dKδij + µ

sij

τ
; bij

∂g

∂σij
= bd (8.131b)

Use of (8.127) and (8.131) in (8.126) finally produces:

CT
ijkl =

(
K − 2

3
µ

)
δij δkl + µ(δikδjl + δilδjk)

−
(
dKδij + µ

sij
τ

) (
fKδkl + µ

skl
τ

)
H + µ+ fdK

(8.132a)

bTij = bδij + f (1 − b)

H + µ+ fdK

(
dKδij + µ

sij

τ

)
(8.132b)

βT
ij = bδij + d (1 − b)

H + µ+ fdK

(
fKδij + µ

sij

τ

)
(8.132c)

1

NT
= 1

N
+ fd (1 − b)2

H + µ+ fdK
(8.132d)

Critical hardening modulus

No scalar remains undetermined in the formulation of the constitutive equations of plastic
hardening materials so that discontinuities of velocity cannot occur within such materials.
Therefore the discontinuities attached to the localization of deformation does not concern
the skeleton velocity, V = ξ̇ , but its gradient. Adopting the notation of §7.4.3 and (7.178),
we let:

[[∇V]] = υ ⊗ n; [[ε̇]] = 1

2
(υ ⊗ n + n ⊗ υ) (8.133)
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where n stands for the unit vector normal to the plane of localization while υ is the
polarization vector quantifying the direction and the strength of the discontinuity.

During the process of localization of the deformation, owing to diffusion effects asso-
ciated with Darcy’s law the fluid cannot sustain a discontinuity relative to the pressure
gradient ∇p. Indeed, substitution of (8.128) into (5.8) and application of the jump operator
[[ ]] to the resulting equation lead to:

βT
ij ε̇ij +

1

MT
ṗ = k∇2p (8.134)

If the strength of the discontinuity relative to the pressure gradient ∇p were to differ
both from zero and from infinity, reading

[[∇p
]] �= 0 and

[[∇p
]] �= ∞, ∇2p would

be infinite. Since [[ε̇]] remains finite, diffusion equation (8.134) would require ṗ to be
infinite too. This is not allowed by the kinematical compatibility condition (7.149), which
requires

[[
ṗ
]]

to be proportional to
[[∇p
]] · n and therefore to remain finite as

[[∇p
]]

is.
From the analysis of (8.134) we eventually conclude:14[[

ṗ
]] = 0 (8.135)

whose substitution into (8.125a) leads to:[[
σ̇ij
]] = CT

ijkl

[[
ε̇ij
]]

(8.136)

In quasistatics, (7.182) gives:

n. [[σ̇ ]] = 0 (8.137)

so that (8.133), (8.136) and (8.137) require the polarization vector υ to satisfy:

(n · CT · n) · υ = 0 (8.138)

The localization of deformation becomes possible when the previous equation admits a
non-zero solution for υ, yielding:

det(n · CT · n) = 0 (8.139)

According to (7.183), n · CT · n is proportional to the acoustic tensor related to the sole
skeleton. Condition (8.139) shows that the localization of deformation can occur when
one of the acceleration wavespeeds relative to the skeleton becomes zero. Indeed, as soon
as one wavespeed becomes zero, any localization of the strain energy cannot be followed
by its spontaneous redistribution within the material through wave transport.

Substitution of expression (8.132a) for CT related to the usual cohesion–frictional
model into the localization condition (8.139) produces:

H

µ
=
(
dK + µ

s11
τ

) (
fK + µ

s11
τ

)
µ
(
K + 4

3µ
) +

(
s2

12

τ
+ s2

13

τ

)
− dfK + µ

µ
(8.140)

14Analogously, owing to thermal diffusion effects, the material cannot sustain a discontinuity in temperature
gradient ∇T and a similar analysis would lead to

[[
Ṫ
]] = 0.
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where we introduced the coordinate reference system such as e1 = n. The hardening
modulus H generally decreases with the hardening process so that the search for the
early localization turns out to the search for the greatest value Hcr of the hardening
modulus H given by (8.140) over all the possible stress states. Detailed calculations
show that the greatest value is achieved when the direction of intermediary principal
stress σII (σI ≥ σII ≥ σIII) belongs to the localization plane and when the strength sII of
its deviatoric part is given by:

sII

τ
= −1

3
(d+ f) (8.141)

The associated critical modulus is then shown to be in the form:15

Hcr

µ
= 1

9
(d− f)2 1 + ν

1 − ν
(8.142)

where ν is the drained Poisson coefficient. The above expression is consistent with the fact
that localization of the deformation will never occur for a hardening material satisfying
the principle of maximal plastic work, that is for d = f.

15The determination of the critical hardening modulus associated with the localization of deformation was
originally derived in the founding paper Rudnicki J.W., Rice J.R. (1975), ‘Conditions of the localization of
deformation in pressure-sensitive materials’, Journal of Mechanics and Physics of Solids, 23, 371–394.



Chapter 9

Poroviscoelasticity

As long as viscous effects are not considered the skeleton behaviour does not depend
on the loading rates and any evolution of the system can be considered as a sequence
of equilibrium states. The skeleton response occurs in totality and simultaneously to
an infinitesimal loading, while there is no further evolution under constant loading. By
contrast, when viscous phenomena are involved, the response is partially delayed. The
modelling of such a hereditary behaviour is the aim of this chapter.

9.1 Poroviscoelastic Behaviour

9.1.1 Viscous Strain and Viscous Porosity
Consider a sample of porous material subjected to the current stress σij and the current
pore pressure p and perform an instantaneous unloading process restoring a zero stress
and a zero pore pressure. Only the reversible or elastic parts εelij and φel of the strain and
the porosity, respectively, are immediately recovered. The viscoelastic parts εvij and φv

are defined through the relations:

εij = εelij + εvij ; φ − φ0 = φel + φp (9.1)

The viscous volumetric dilation εv undergone by the skeleton is due to the viscous change
in porosity and to the viscous volumetric dilation εvs undergone by the solid matrix.
Applying (1.32), we obtain:

εv = (1 − φ0) ε
v
s + φv (9.2)

In soil and rock mechanics the viscoelastic evolutions are caused by the viscous relative
sliding occurring between the solid grains forming the matrix and generally due to the
adsorbed water, so that the volume change of the matrix due uniquely to viscosity turns
out to be negligible in the absence of any occluded porosity, resulting in εvs = 0 and
entailing:

φv = εv (9.3)

Poromechanics O. Coussy
c© 2004 John Wiley & Sons, Ltd ISBN 0-470-84920-7
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In order to capture the departure from matrix viscous incompressibility an heuristic
assumption consists in setting:

φv = βεv (9.4)

By contrast to the value β = 1 corresponding to a viscous incompressible matrix, that is
(9.3), according to (9.2) the value β = φ0 corresponds to εv = εvs ; that is, to a volumetric
viscous strain of the skeleton due only to that of the solid matrix. It is then consistent to
require β to satisfy inequalities φ0 ≤ β ≤ 1.

9.1.2 Poroviscoelastic State Equations for the Skeleton

In the context of infinitesimal isothermal transformations and saturated porous materials,
inequality (3.33) expressing the positiveness of the dissipation attached to the irreversible
evolutions of the skeleton is specialized in the form:

σ dε + sij deij + p dφ − d�s ≥ 0 (9.5)

From the current state, when considering reversible or instantaneous poroelastic evolu-
tions, the values of internal viscous variables εvij and φv remain the same and there is no
dissipation. For such evolutions inequality (9.5) becomes an equality, leading to the state
equations:

σ = ∂�s

∂ε
; sij = ∂�s

∂eij
; p = ∂�s

∂φ
(9.6)

State equations (9.6) have been derived for poroelastic evolutions. They apply to any
evolution as soon as free energy �s is continuously differentiable with regard to the
whole set of state variables.

For the same physical reasons as the ones developed in hardening plasticity (see §8.3.1)
we infer the existence of a trapped energy, that is an energy that is not recovered but
not dissipated in the instantaneous elastic unloading process. Anticipating the validity of
assumption (9.4), the trapped energy has to depend on the viscous strain only. We finally
write:

�s = Ws

(
ε − εv, eij − evij , φ − βεv

)+ U
(
εv, evij

)
(9.7)

Restricting consideration to linear isotropic porous materials, we adopt for Ws and U the
following expressions:

Ws

(
ε − εv, eij − evij , φ − βεv

) = 1

2
K0
(
ε − εv

)2 + µ0
(
eij − evij

)2
+ 1

2
N0
[
b(ε − εv)− φ − βεv − φ0

]2
(9.8a)

U
(
εv, evij

) = 1

2
Kεv2 + Gev2

ij (9.8b)
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Substitution of the latter into (9.6) gives the state equations in the form:

σ = K0(ε − εv)− b0p (9.9a)

sij = 2µ0
(
eij − evij

)
(9.9b)

p = N0
[−b0(ε − εv)+ φ − βεv − φ0

]
(9.9c)

Returning finally to the porous material and introducing the change in fluid volume content
vf (see (5.13)), the latter relation is replaced by:

vf =
mf −m0

f

ρ0
f

= b0ε + (β − b0) ε
v + p

M0
; 1

M0
= 1

N0
+ φ0

Kf

(9.10)

9.1.3 Complementary Evolution Laws

Substitution of (9.7)–(9.9) into (9.5) gives:

(σ + βp − Kεv) ε̇v + (sij − 2Gevij
)
ėvij ≥ 0 (9.11)

Assuming that the viscous dissipative mechanism is normal (see §3.4.2) we introduce the
convex dissipation potential D

(
ε̇v, ėvij

)
such that:

σ + βp − Kεv = ∂D
∂ε̇v

; sij − 2Gevij =
∂D
∂ėvij

(9.12)

In the isotropic case D is expressed in the form:

D
(
ε̇v, ėvij

) = 1

2
ςε̇v2 + ηėv2

ij ; ς ≥ 0, η ≥ 0 (9.13)

where the positiveness of ς and η guarantees the convexity of D. Substitution of (9.13)
into (9.12) furnishes the explicit form of the complementary evolution laws:

σ + βp = Kεv + ςε̇v; sij = 2Gevij + 2ηėvij (9.14)

so that ς and η are identified respectively as the volumetric viscous coefficient and the
shear viscous coefficient.

9.2 Functional Approach to Linear Poroviscoelasticity

9.2.1 Creep Test. Instantaneous and Relaxed Properties.
The Trapped Energy

The creep test consists in subjecting the porous material sample to a time step in stress and
pore pressure and in recording the resulting delayed strain history. The loading history is
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expressed in the mathematical form:

σij (t) = �σijH (t) ; p (t) = �pH (t) (9.15)

where H (t) is the Heaviside step function, H (t < 0) = 0, H (t > 0) = 1. In response to
the loading history (9.15) the response in viscous strain cannot be discontinuous. Indeed,
a discontinuous viscous strain would require the viscous strain rate to be infinite, which
is not allowed on account of the finite character of the stress and of the fluid pressure
imposed by the complementary evolution laws (9.14). As a consequence, the instantaneous
response ε0+ , e0+

ij and φ0+ in strain and porosity to the loading (9.15) is poroelastic,

resulting in εv0+ = ev0+
ij = 0 and corresponding to point a0 in Fig. 9.1. According to (9.9),

the instantaneous response satisfies:

�σ = K0ε0+ − b0p (9.16a)

�sij = 2µ0 e
0+
ij (9.16b)

�p = N0
[−b0ε0+ + φ0+ − φ0

]
(9.16c)

so that K0, b0, µ0 and N0 are interpreted as the instantaneous poroelastic properties of
the skeleton.

As time flows, the porous material creeps: at constant stress and fluid pressure, it
undergoes a delayed strain history corresponding to path a0a∞ in Fig. 9.1. The long
time response obtained as time goes to infinity and corresponding to point a∞ in Fig.
9.1 is achieved at zero rates of the viscous strain. Letting ε̇v = ėvij = 0 in (9.14), the
resulting equation combines with (9.9) to give the long time response ε∞, e∞ij and φ∞
corresponding to point a∞ in Fig. 9.1:

�σ = K∞ε∞ − b∞p (9.17a)

�sij = 2µ∞ e∞ij (9.17b)

�p = N∞ [−b∞ε∞ + φ∞ − φ0] (9.17c)

where the delayed or relaxed poroelastic properties K∞, b∞, µ∞ and N∞ are given by:

1

K∞
= 1

K0
+ 1

K ; 1

µ∞
= 1

µ0
+ 1

G (9.18a)

b∞
K∞

= b0

K0
+ β

K ; 1

N∞
= 1

N0
+ (β − b∞) (β − b0)

K (9.18b)

Returning to the energy side, from (9.7)–(9.9) and (9.14)–(9.18) we derive:

�s (t →∞) = �s

(
t = 0+

)+ U
(
εv∞, ev∞ij

)
(9.19)

Once the long time response is established, we consider an instantaneous unloading pro-
cess that restores the initial zero stress and fluid pressure state. The viscous contribution
to the strain cannot undergo any instantaneous change so that only the elastic part of
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the strain is recovered in the unloading process. As a consequence, the strain recorded
at the end of the instantaneous unloading process (path a∞εv∞ in Fig. 9.1) is the vis-
cous strain εvij corresponding to point ε∞v in Fig. 9.1. In addition, the porous material
instantaneously releases only the part �s(t = 0+) (area of triangle Oa0ε0 or εv∞a∞ε∞ in
Fig. 9.1) of the asymptotic free energy �s(t → ∞) (area Oa0a∞ε∞ in Fig. 9.1), whereas
the part U

(
εv∞, ev∞ij

)
remains trapped (aera of parallelogram ε0a0a∞ε∞ or Oa0a∞εv∞ in

Fig. 9.1). Eventually, although now being unloaded, the poroviscoelastic material still
deforms until the zero strain state is reached (path εv∞O in Fig. 9.1). In the meantime the
whole trapped energy U

(
εv∞, ev∞ij

)
is eventually dissipated in heat form through viscous

effects, in opposition to the trapped energy of hardening plasticity. The energy picture
so sketched for the creep test, and also the definition of the instantaneous and relaxed
properties, are quite general. Only the actual time history of the delayed straining effects,
that is the rate at which the related point moves along path a0a∞, is specific to the
poroviscoelastic material under consideration. This time history can be more generally
addressed through the functional approach developed in the next section.

9.2.2 Creep and Relaxation Functions

For loading history (9.15), time integration of (9.14) gives:

εv (t) = (�σ + β�p)
1

K

[
1 − exp

(
− t

τc

)]
(9.20a)

evij (t) =
�sij

2G

[
1 − exp

(
− t

ϑc

)]
(9.20b)

sij, p

O

eij, f

e∞e∞e0

a∞a0

Figure 9.1: Creep test and trapped energy. After being instantaneously deformed (path Oa0) the
poroviscoelastic material creeps, undergoing a delayed deformation history at subsequently constant
loading (path a0a∞). In a later unloading process the porous material instantaneously releases only
that part of the asymptotic free energy corresponding to the instantaneous elastic strain (triangle
Oa0ε0 or εv∞a∞ε∞), so that the part corresponding to the viscoelastic strain remains trapped
(parallelogram ε0a0a∞ε∞ or Oa0a∞εv∞). The latter is eventually dissipated in heat form during
the creep process, restoring a zero deformation (path εv∞O). Path a∞O corresponds to an unloading
process performed infinitely slowly so that no dissipation occurs. The energy picture so sketched
is analogous to the one relative to the consolidation process (see Fig. 5.4).
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where τc and ϑc are the creep characteristic times defined by:

τc = ς

K ; ϑc = η

G (9.21)

Substitution of (9.20) into (9.9a)–(9.9b) provides the strain history relative to the creep
test in the form:

ε (t) = K−1 (t)�σ − B (t)�p (9.22a)

eij (t) = 1

2
µ−1 (t) �sij (9.22b)

where K−1 (t) , B (t) and µ−1 (t) stand for the creep functions:

K−1 (t) =
[

1

K∞
+
(

1

K∞
− 1

K0

)
exp

(
− t

τc

)]
H (t) (9.23a)

B (t) =
[
b∞
K∞

+
(
b∞
K∞

− b0

K0

)
exp

(
− t

τc

)]
H (t) (9.23b)

µ−1 (t) =
[

1

µ∞
+
(

1

µ∞
− 1

µ0

)
exp

(
− t

ϑc

)]
H (t) (9.23c)

Since the behaviour is linear, the strain history resulting from any history in stress
σij (t) and fluid pressure p (t) is derived by summing the infinitesimal creep responses
to the successive infinitesimal loadings dσij (t) and dp(t). We write:

ε = K−1 # σ + B # p (9.24a)

eij = 1

2
µ−1 # sij (9.24b)

In (9.24), f # g stands for the Stieltjes convolution product of functions f (t) and g (t).
Restricting consideration here to functions of zero value for negative time and considering
possible discontinuities of function g at time ti , including the one occurring at the origin
of time caused by the possible discontinuity in loading, the Stieltjes convolution product
f # g can be expressed in the form:

f # g =
∫ t

0
f (t − u)dg(u)+

∑
i

f (t − ti )
[
g
(
t+i
)− g
(
t−i
)]

(9.25)

The convolution product has the same properties as the ordinary product: commutativity,
associativity and distributivity with regard to addition, and the existence of an inverse f−1

satisfying f−1 # g = H , where the Heaviside function H plays the role of the neutral
element. Accordingly, we anticipated in (9.24) that K−1 and µ−1 were the inverses with
respect to the convolution product of the relaxation functions K and µ, that is:

K(t) =
[
K∞ + (K∞ −K0) exp

(
− t

τr

)]
H (t) (9.26a)

µ (t) = [µ∞ + (µ∞ − µ0) exp

(
− t

ϑr

)]
H (t) (9.26b)
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where τr and ϑr are the relaxation characteristic times defined by:

τr = K∞
K0

τc; ϑr = µ∞
µ0

ϑc (9.27)

Some further calculations also give B = K−1 # b where b (t) is the function:

b (t) =
[
b∞ + (b∞ − b0) exp

(
− t

τr

)]
H (t) (9.28)

so that (9.24) can be rewritten in the form:

σ = K # ε − b # p; sij = 2µ# eij (9.29)

It is then worthwhile to note that Biot’s poroelastic effective stress σ ′′ = σ + bp is
extended in the poroviscoelastic form σ ′′ = σ + b # p.

In order to derive the missing equation related to the change in porosity, rather than
further exploring the previous creep test, we consider a mixed relaxation–creep test. The
latter consists in subjecting the porous material sample to time steps in volumetric strain
and in pore pressure:

ε (t) = �εH (t) ; p (t) = �pH (t) (9.30)

and in recording the resulting delayed stress history. Substitution of (9.30) into the first
equation of (9.29) gives the related stress history:

σ (t) = K (t)�ε − b (t)�p (9.31)

Combining the latter with (9.9a) and (9.30) we obtain the following expression for εv:

εv (t) =
(

1 − K (t)

K0

)
�ε + b (t)− b0

K0
�p (9.32)

Substitution of (9.30) and (9.32) into (9.9c) and use of (9.18) and (9.26a) give the porosity
history in the form:

φ − φ0 = b (t)�ε +N−1 (t)�p (9.33)

where we note:

N−1 (t) =
[

1

N∞
+
(

1

N∞
− 1

N0

)
exp

(
− t

τr

)]
H (t) (9.34a)

N (t) =
[
N∞ + (N∞ −N0) exp

(
− N0t

N∞τr

)]
H (t) (9.34b)

Surprisingly, the function N−1 (t) involves the characteristic relaxation time τr , although
N−1 (t) appears to play the role of a creep function since it governs the history in porosity
in response to a loading in pore pressure. However, the creep is only apparent since in the
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meantime the skeleton has to relax in response to the imposed volumetric strain defined
in (9.30). Finally, invoking the linearity, from (9.33) we derive the missing constitutive
equation in the form:

φ − φ0 = b # ε +N−1 # p (9.35)

Returning to the porous material and introducing the change in fluid volume content vf
(see (5.13)), the latter relation has to be replaced by:

vf = b # ε +M−1 # p; M−1 (t) = N−1 (t)+ φ0

Kf

H (t) (9.36)

Up to now the poroviscoelastic behaviour has been captured through a single vis-
cous strain tensor εvij . More general constitutive equations of poroviscoelasticity can be
obtained by increasing the number of independent internal variables in accordance with
the number of characteristic times required to account for the actual creep and relaxation
functions. Indeed, still invoking the linearity, constitutive equations (9.29) and (9.35) can
be extended to any linear poroviscoelastic material whatever the experimental creep and
relaxation functions are. More generally, invoking the underlying superposition principle,
the functional approach gives the constitutive equations of linear poroviscoelasticity in
the form:

σij = Cijkl # εkl − bij # p; φ − φ0 = bij # εij +N−1 # p (9.37)

Nevertheless, the functional approach based on the sole superposition principle fails to
capture the usual symmetry properties, that is the symmetry relations Cijkl = Cklij and
the one implying that function b or functions bij have to be the same in (9.29) and
(9.35), or in both equations (9.37). These symmetry properties are based on the existence
of potentials �s and D whose general determination, whatever the creep and relaxation
functions are in functional constitutive equations (9.29) and (9.35), is left to §9.4.

9.2.3 Poroviscoelastic Properties and Constituent Properties

Since the convolution product has the same properties as the normal product, the poroe-
lastic compatibility relations (4.35) can be extended in the form:

b = 1 −K #K−1
s ; N−1 = (b − φ0)#K−1

s (9.38)

where 1 stands for H (t) and K−1
s for the creep function of the solid matrix. For instance,

the following expression:

K−1
s (t) =

[
1

Ks∞
+
(

1

Ks∞
− 1

Ks0

)
exp

(
− t

τsc

)]
H (t) (9.39)

where:

τsc = ςs

Ks

= ςs

(
1

Ks∞
− 1

Ks0

)
(9.40)
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leads us to identify the poroviscoelastic material as the one we analyzed extensively in
the previous sections with the set of relations:

b0 or ∞ = 1 − K0 or ∞
Ks0 or ∞

; 1

N0 or ∞
= b0 or ∞ − φ0

Ks0 or ∞
; ς

K = ςs

Ks

(9.41)

In addition, (9.18) and the above relations combine to deliver the particular relations:

β = φ0 = 1 − K
Ks

; ς = (1 − φ0) ςs (9.42)

The latter relations indicate that relations (9.38) are based on the assumption of an homo-
geneous matrix leading us to identify εv = εvs as recovered by the combination of (9.2),
(9.4) and (9.42).

9.3 Primary and Secondary Consolidation

In this section we extend to the poroviscoelastic material the analysis of the consolidation
of a poroelastic layer we performed in §5.2.2. Indeed the actual consolidation of a clay
layer results from the combination of two processes. The primary consolidation of the
layer is the process we analysed in §5.2.2. It is mainly due to the progressive transfer of
the loading from the saturating fluid to the solid matrix on account of the diffusion of
the fluid pressure. By contrast, the secondary consolidation process involves the delayed
creep of the layer due to the relative viscous micro-slidings of the platelets forming the
solid matrix of the clay. These viscous slidings result from the lubrication induced at
the contact between the platelets by the water film electrically bound to the platelets and
not contributing to the fluid flow. The two consolidation processes are generally well
separated in time, the secondary consolidation occurring much later than the primary one.

To examine this two-step consolidation process, the poroviscoelastic behaviour of the
clay can be roughly captured through the model we developed in §9.1. A justification for
such a choice is given in §9.4.2 (see comments following (9.75)). Since the platelets do
not undergo any volume change, both the elastic and the viscous volumetric strains are due
only to the change in porosity. In addition, the fluid flow is assumed to be incompressible.
These incompressibility assumptions result in:

b0 = β = 1; 1

M0
= 0 (9.43)

so that (9.10) reduces to the volume conservation condition:

vf =
mf −m0

f

ρ0
f

= ε (9.44)

Substitution of the latter into (5.8) gives the 1D diffusion equation:

∂ε

∂t
= k

∂2p

∂z2
(9.45)



270 POROVISCOELASTICITY

Beyond the instantaneous application of the vertical constant loading σzz = −� at the
upper surface z = 0, the vertical equilibrium requires σzz = −� , while the displacement
in the soil layer reduces to the vertical one, namely ξ = ξ (z, t) ez. Use of (9.43) in state
equations (9.9) and in the complementary evolution laws (9.14) gives:

εzz = ∂ξ

∂z
= ε = εv + p −�

E0
; E0 = K0 + 4

3
µ0 (9.46)

and:
p −� = Eεv + &ε̇v; E = K+4

3
G; & = ς + 4

3
η (9.47)

Owing to the undrained character of the instantaneous response (see §5.1.2) and to
the assumed incompressibility of the constituents, the overall volumetric strain ε can-
not undergo any time discontinuity. From the analysis carried out in §9.2.1 the viscous
strain εv also cannot undergo any time discontinuity. Accordingly, (9.46) and (9.47) give
the instantaneous response of the soil layer, that is:

p
(
z, t = 0+

) = � ; ∂ξ

∂z

(
z, t = 0+

) = 0 (9.48)

Getting rid of εv between (9.46) and (9.47), we obtain the following differential equation:

ε + τv
∂ε

∂t
= p −�

E∞
+ τv

E0

∂p

∂t
(9.49)

where we note:1

τv = &

E ;
1

E∞
= 1

E0
+ 1

E (9.50)

As in §5.2.2 we consider a soil layer of thickness h subjected to the hydraulic boundary
conditions:

z = 0 : p = 0; z = h :
∂p

∂z
= 0 (9.51)

The problem at hand eventually results in solving (9.45) and (9.49) with initial and
boundary conditions (9.48) and (9.51).

The condition of time scale separation of the primary consolidation and the secondary
consolidation is expressed in the form:

τ = k
E0

h2
; ϑ = τ

τv
� 1 (9.52)

where τ is the characteristic time associated with the primary consolidation process and
involving the instantaneous oedometric modulus E0. In order to explore the primary con-
solidation we let:

t = t

τ
; p = p

�
(9.53)

1It is worthwhile to note that the relaxed oedometric modulus 1/E∞ differs from 1/(K∞ + 4
3µ∞).
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Substitution of (9.53) into (9.49) gives:

ε + 1

ϑ

∂ε

∂t
= �

E∞
(p − 1)+ �

E0

1

ϑ

∂p

∂t
(9.54)

Use of the time scale separation condition (9.52) leads us to neglect the first term with
respect to the second one in both members of (9.54). Accordingly, time integration and
the use of initial conditions (9.48) give:

ε
(
z, t
) = �

E0

(
p
(
z, t
)− 1
)

(9.55)

Substituting the latter into (9.45), we recover the diffusion equation (5.76) governing
the poroelastic consolidation to be solved with the same boundary conditions (9.51), so
that poroelastic solutions (5.87)–(5.88) apply to the primary consolidation under the time
scale separation condition (9.52). From (5.79), where we put Ku →∞ and K = K0, we
derive s0 = 0 and s∞ = �h/E0. Substituting these expressions into (5.88), the settlement
s
(
t
) = ξ(z = 0, t) related to the primary consolidation can be expressed in the form:

s
(
t
) = �h

E0

[
1 −

n=∞∑
n=0

8

π2 (2n+ 1)2
× exp

(
− (2n+ 1)2 π2

4
t

)]
(9.56)

In order to explore the secondary consolidation we now let:

t̃ = t

τv
; z = z

h
(9.57)

Substitution of (9.57) into (9.45) gives:

∂ε

∂t̃
= �

E0

1

ϑ

∂2p

∂z2
(9.58)

Use of the time scale separation condition (9.52) leads us to neglect the term on the left
hand side of (9.58) so that space integration and the use of boundary conditions (9.48)
give p = 0. Accordingly, (9.49) and (9.55) give:

ε
(
z, t̃ → 0

) = −�

E0
; ε + ∂ε

∂t̃
= − �

E∞
(9.59)

whose solution is:

ε
(
z, t̃
) = − �

E∞
+
(

�

E∞
− �

E0

)
exp
(−t̃
)

(9.60)

Substituting (9.60) into (9.46) and integrating over the layer thickness, and taking into
account the boundary condition ξ(z = h, t̃) = 0, we derive the settlement s

(
t̃
) = ξ(z =

0, t̃ ) related to the secondary consolidation in the form:

s
(
t̃
) = �h

E∞
+
(
�h

E0
− �h

E∞

)
exp
(−t̃
)

(9.61)
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Figure 9.2: The two-step consolidation process: (a) the consolidation curve as predicted by (9.62)
using the condition (9.52) of time scale separation of the primary and secondary consolidation
processes; (b) the actual consolidation curve obtained for a consolidation overpressure of � =
2MPa for an artificially compacted clay (by courtesy of Y.-J. Cui).

The mixed solution accounting for both the primary and the secondary conditions is
obtained by adding solutions (9.56) and (9.61) and removing the shared limit �h/E0 as
t and t̃ go respectively to infinity and to zero. We finally obtain:

s (t) = �h

E∞

[
1 − exp

(
− t

τv

)]

+ �h

E0

[
exp

(
− t

τv

)
−

n=∞∑
n=0

8

π2 (2n+ 1)2
exp

(
− (2n+ 1)2 π2

4

t

τ

)]
(9.62)

The predicted consolidation curve (9.62) is illustrated in Fig. 9.2a. Its shape compares well
with the shape of the experimental consolidation curve found for an artificially compacted
clay and reported in Fig. 9.2b.

9.4 Advanced Analysis

9.4.1 Poroviscoplasticity

Poroviscoelasticity imposes no limitation on stress and pore pressure. On the other hand,
poroplasticity does not account for any viscous effects so that the deformation occurs in
totality and simultaneously with the loading variation. Poroviscoplasticity aims at account-
ing for both the delayed character of the deformation and the existence of a current stress
threshold beyond which irreversible strains are recorded. For instance, the delayed char-
acter of the deformation can be due to the viscous contacts existing between the solid
grains composing the matrix and can be possibly enhanced by a thin film of absorbed
water. On the other hand, the irreversible slidings occur only when the forces between
the grains exceed some current threshold.
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p

sij

O

b

a

Figure 9.3: Poroviscoplastic behaviour. As long as the loading point remains within the current
domain of elasticity the deformation is elastic (point a). In contrast to poroplasticity, the loading
point may instantaneously leave the current elastic domain (point b). Owing to the combined action
of viscous and hardening effects the current elastic domain can evolve under constant loading
(successive domains of elasticity–dashed lines). Creep ends when the current loading point is on
the boundary of the current elasticity domain (point b).

More precisely, poroviscoplasticity aims at accounting for the following behaviour: as
long as the loading in stress and pore pressure is below some current threshold, the porous
material deforms instantaneously and elastically (point a in Fig. 9.3). When the loading
point leaves the current elastic domain, in addition to the elastic strains irreversible strains
occur in a delayed manner with possible hardening effects resulting in a change in the cur-
rent elastic domain. In contrast with poroplasticity, the loading point may instantaneously
leave the current elasticity domain to be situated at its exterior (point b in Fig. 9.3). Creep
under constant loading (viscous effect) can only occur beyond a loading threshold (plas-
tic effect). Owing to the combined action of viscous and hardening effects, creep may
also concern the current elastic domain so that the latter, in contrast to poroplasticity,
still evolves under constant loading. Creep ends when the current loading point is on
the boundary of the current elasticity domain. The positiveness of the dissipation (8.33)
extends to poroviscoplasticity in the form:

σij ε̇
vp
ij + pφ̇vp + ζJ χ̇J ≥ 0 (9.63)

where the term ζJ χ̇J does not have to be considered in the case of ideal poroviscoplas-
ticity. We restrict ourselves to the case of an incompressible viscoplastic matrix, resulting
in φvp = εvp so that (9.63) can be rewritten in the form:

σ ′
ij ε̇

vp
ij + ζJ χ̇J ≥ 0 (9.64)

where σ ′
ij = σij + pδij is Terzaghi’s effective stress. According to the general approach

to complementary laws developed in §3.4.2, the viscoplastic flow rule can be formulated
with the help of a convex dissipation potential D∗(σ ′

ij

)
such that:

ε̇
vp

ij = ∂D∗

∂σ ′
ij

(9.65)
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In order to account for the existence of a current domain of elasticity and for the main
features of the poroviscoplastic behaviour, the usual models of viscoporoplasticity consist
in adopting the following expression for D∗:

D∗(σ ′
ij

) = 1

2η

〈
f
(
σ ′
ij , ζJ
)〉2

(9.66)

where η is a viscosity coefficient and where 〈f 〉 = 1
2 (|f | + f ) stands for the positive

part of the loading function f . A more general expression for D∗ consists in replacing
the exponent 2 in (9.66) by the exponent n+ 1 where n is not necessarily an integer, but
has to be positive in order for the potential D∗ to remain convex. Substitution of (9.66)
into (9.65) gives:

ε̇
vp
ij = 1

η
〈f 〉 ∂f

∂σ ′
ij

(9.67)

so that f ≤ 0 defines the current domain of elasticity in the effective stress space. By
analogy with plasticity, a non-associated flow rule consists in adopting a potential h �= f

such that:

ε̇
vp
ij = 1

η
〈f 〉 ∂h

∂σ ′
ij

(9.68)

If the viscosity η tends to zero in (9.67) or (9.68), 〈f 〉 has to tend to zero too and 〈f 〉 /η
becomes undetermined so that ideal plastic behaviour is recovered. On the contrary, if
the function f cannot take negative values the behaviour is viscoelastic. For instance, the
poroviscoelastic domain developed in §9.1 is derived from the potential:

D∗(σ ′
ij

) = 1

2ς

(
σ ′ − Kεv

)2 + 1

4η

(
sij − 2Gevij

)2 (9.69)

Finally, by analogy with plasticity, the flow rule related to the hardening variables is:

χ̇J = 1

η
〈f 〉 ∂f

∂ζJ
or χ̇J = 1

η
〈f 〉 ∂h

∂ζJ
(9.70)

9.4.2 Functional Approach to the Thermodynamics
of Poroviscoelasticity

Based on (9.36) and (9.37) the functional approach to poroviscoelasticity consists in
expressing the constitutive equations of the porous material in the form:

σij = Cijkl # εkl − bij #M # vf ; p = −M # bij # εij +M # vf (9.71)

When the porous material behaviour obeys the general model extending the isotropic
one we analysed in §9.1 and §9.2.2, the constitutive equations (9.71) are equivalent to:
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σij = ∂W

∂εij
; p = ∂W

∂vf
(9.72a)

σij + βijp = Cijklεvij + ηijkl ε̇
v
kl (9.72b)

where, similar to (5.150), W is the elastic energy per unit of initial volume of the closed
system formed from the skeleton and the fluid mass initially contained in volume d�0.
It is expressed in the form:

W = 1

2

(
εij − εvij

)
Cijkl

(
εkl − εvkl

)
+ 1

2
M
(
bij
(
εij − εvij

)− (vf − βij ε
v
ij

))2 + 1

2
εvijCijklεvkl (9.73)

In addition, similar to (9.11) the positiveness of the viscous dissipation � can be written:

� = (σij + βijp − Cijklεvij
)
ε̇vkl = ηijkl ε̇

v
ij ε̇

v
kl ≥ 0 (9.74)

This section aims to express the elastic energy W and the dissipation � associated with
such a formulation by means of just the relaxation functions Cijkl , bij and M involved
in (9.71).

As a preliminary problem let us consider the constitutive equation:

σ = K # ε (9.75)

where K is given by (9.26a). For instance, the undrained evolutions of a material exhibit-
ing a double porous network are governed by (9.75). Indeed, the general solution of
(4.131) is expressed in the form (9.75) provided that K0 and K∞ in (9.26a) are identified
respectively with KU (see (4.129)) and Ku (see (4.126)), while the characteristic creep
time τc in (9.27) is identified with time τη (see (4.132)). To some extent this remark
justifies a posteriori the choice of the poroviscoelastic model retained in §9.3 to account
for the secondary consolidation process due to the relative viscous micro-slidings of the
platelets forming the solid matrix of the clay, provided that the latter are eventually caused
by fluid microdiffusion effects as in squirt flow.

Adopting the notation of §9.1 and §9.2.2, the constitutive equation (9.75) is equivalent
to the combined equations:

σ = K0(ε − εv); σ = Kεv + ηε̇v (9.76)

so that:

w = 1

2
K0(ε − εv)2 + 1

2
Kεv2 : σ = ∂w

∂ε
(9.77)

For such a viscous model the dissipated energy rate is:

ϕ = (σ −Kεv)ε̇v = ηε̇v2 ≥ 0 (9.78)
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In order to express w and ϕ as a function solely of K , use of the identity:

2w (t) = [K0(ε (2t − u)− εv (2t − u))
(
ε (u)− εv (u)

)]u=t

u=0

+ [Kεv (2t − u) εv (u)
]u=t

u=0 (9.79)

first provides:

2w (t) =
∫ t

0
K0
(
ε (2t − u)− εv (2t − u)

) (
ε̇ (u)− ε̇v (u)

)
du

−
∫ t

0
K0
(
ε (u)− εv (u)

) (
ε̇ (2t − u)− ε̇v (2t − u)

)
du

+
∫ t

0
K
[
εv (2t − u) ε̇v (u)− εv (u) ε̇v (2t − u)

]
du

+
∫ t

0
η
[
ε̇v (2t − u) ε̇v (u)− ε̇v (u) ε̇v (2t − u)

]
du (9.80)

The latter and (9.76) combine to give the following relation:

w (t) = 1

2

(∫ t

0
−
∫ 2t

t

)
σ (2t − u) ε̇ (u) du (9.81)

Use of (9.75) together with definition (9.25) of the convolution product allows us to
rewrite the previous equation in the form:

w (t) = 1

2

∫ t

0
ε̇ (u) du

∫ 2t−u

0
K (2t − u− v) ε̇ (v) dv

− 1

2

∫ 2t

t

ε̇ (u) du

∫ 2t−u

0
K (2t − u− v) ε̇ (v) dv (9.82)

Permutation of the integration order in the second integral gives:∫ 2t

t

ε̇ (u) du

∫ 2t−u

0
K (2t − u− v) ε̇ (v) dv

=
∫ t

0
ε̇ (v) dv

∫ 2t−v

0
K (2t − v − u) ε̇ (u) du (9.83)

Exchanging the role of u and v on the right hand side of the previous equation and
substituting the resulting equation into (9.82) give:

w (t) = 1

2

∫ t

0

∫ t

0
K (2t − u− v) ε̇ (u) ε̇ (v) du dv (9.84)
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A similar procedure applied to expression (9.78) for the viscous dissipation ϕ gives:

ϕ (t) = −
∫ t

0

∫ t

0
K̇ (2t − u− v) ε̇ (u) ε̇ (v) du dv (9.85)

Functional formulae (9.84)–(9.85) are known as the Staverman and Schwarzl formulae.2

Returning to the porous material, the Staverman and Schwarzl formulae can be extended
according to:

W (t) = 1

2

∫ t

0

∫ t

0
Cijkl (2t − u− v) ε̇ij (u) ε̇kl (v) du dv

−
∫ t

0

∫ t

0
(M # bij ) (2t − u− v) ε̇ij (u) v̇f (v) du dv

+ 1

2

∫ t

0

∫ t

0
M (2t − u− v) v̇f (u) v̇f (v) du dv (9.86)

and:

�(t) = −
∫ t

0

∫ t

0
Ċijkl (2t − u− v) ε̇ij (u) ε̇kl (v) du dv

2
∫ t

0

∫ t

0

.︷ ︸︸ ︷
(M # bij ) (2t − u− v) ε̇ij (u) v̇f (v) du dv

−
∫ t

0

∫ t

0
Ṁ (2t − u− v) v̇f (u) v̇f (v) du dv (9.87)

Apparently the determination of the energy history between times 0 and t requires knowl-
edge of the relaxation functions between times 0 and 2t . Nevertheless, owing to their
analytical character the relaxation functions are the sum of their expansions as Taylor
series so that knowledge on any interval of time suffices for their determination over the
whole range of positive time. From a more physical standpoint, owing to the non-ageing
character of the behaviour depicted by (9.71), from the very first relaxation experiment
undergone in the past the material acquires knowledge of how to relax in the future.

2Staverman A.J., Schwarzl F. (1952), ‘Thermodynamics of viscoelastic behaviour’, Proceedings of the
Koninklijke Nederlandse Akademie van Wettenshappen, Series B, Vol. 55.





Appendix A

Differential Operators

A.1 Orthonormal Cartesian Coordinates

A point M has coordinates xi (i = 1, 2, 3), respectively x, y, z, in a vector base ei (i =
1, 2, 3), respectively (ex, ey, ez). The position vector OM is:

OM = xiei = xex + yey + zez

Scalar Field a(x, t)

∇a (= grad a) = ∂a

∂xi
ei

Vector Field b(x, t)

b(x, t) = bi(x, t)ei

∇ · b (= div b) = ∂bi

∂xi

∇ × b (= curl b) =



∂

∂x

∂

∂y

∂

∂z

×
 bx

by
bz



=
(
∂bz

∂x
− ∂by

∂z

)
ex +
(
∂bx

∂z
− ∂bz

∂x

)
ey +
(
∂by

∂x
− ∂bx

∂y

)
ez
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∇b (= grad b) = ∂bi

∂xj
ei ⊗ ej =



∂bx

∂x

∂bx

∂y

∂bx

∂z

∂by

∂x

∂by

∂y

∂by

∂z

∂bz

∂x

∂bz

∂y

∂bz

∂z


where ⊗ stands for the tensorial product.

Second-order Tensor Field c(x, t)

c(x, t) = cijei ⊗ ej

∇ · c (= div c) = ∂cij

∂xj
ei

A.2 Cylindrical Coordinates

A point M is defined by the cylindrical coordinates r, θ, z in a local orthonormal basis
(er , eθ , ez). This is shown in Fig. A.1a. Within a Cartesian coordinate system the position
vector OM is:

OM = r cos θex + r sin θey + zez

Derivation of OM with regard to the cylindrical coordinates gives:

∂OM
∂r

= cos θex + sin θey = er

∂OM
∂θ

= r(− sin θex + cos θey) = reθ

∂OM
∂z

= ez

Thus:
∂er
∂θ

= eθ ; ∂eθ
∂r

= −er

These derivatives of the base vectors need to be considered in the differential operators.

Scalar Field a(r, θ, z, t)

∇a (= grad a) = ∂a

∂r
er + 1

r

∂a

∂θ
eθ + ∂a

∂z
ez
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Vector Field b(r, θ, z, t)

b(r, θ, z, t) = br(r, θ, z, t)er + bθ (r, θ, z, t)eθ + bz(r, θ, z, t)ez

∇ · b (= div b) = 1

r

∂

∂r
(rbr )+ 1

r

∂bθ

∂θ
+ ∂bz

∂z

∇ × b (=curl b) =
(

1

r

∂bz

∂θ
− ∂bθ

∂z

)
er +
(

1

r

∂br

∂z
− ∂bz

∂r

)
eθ

+
(

1

r

∂(rbθ )

∂r
− 1

r

∂br

∂θ

)
ez

∇b (= grad b) =



∂br

∂r

1

r

(
∂br

∂θ
− bθ

)
∂br

∂z

∂bθ

∂r

1

r

(
∂bθ

∂θ
+ br

)
∂bθ

∂z

∂bz

∂r

1

r

∂bz

∂θ

∂bz

∂z


We verify that ∇ · b (=div b) = (∇b)ii (= tr (grad b)).

Second-order Symmetric Tensor Field c(r, θ, z, t)

c(x, t) = cij (r, θ, z, t)ei ⊗ ej

∇ · c (div c) =
(
∂crr

∂r
+ 1

r

∂crθ

∂θ
+ ∂crz

∂z
+ crr − cθθ

r

)
er

+
(
∂cθr

∂r
+ 1

r

∂cθθ

∂θ
+ ∂cθz

∂z
+ 2

crθ

r

)
eθ

+
(
∂czr

∂r
+ 1

r

∂czθ

∂θ
+ ∂czz

∂z
+ czr

r

)
ez

A.3 Spherical Coordinates

A point M is defined by the spherical coordinates r, θ, ϕ in a local orthonormal basis
(er , eθ , eϕ). This is shown in Fig. A.1b. Within a Cartesian coordinate system the position
vector OM is:

OM = r sin θ cosϕex + r sin θ sin ϕey + r cos θez

Derivation with respect to spherical coordinates:

∂OM
∂r

= sin θ cosϕex + sin θ sin ϕey + cos θez = er
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Figure A.1: Coordinate systems: (a) cylindrical coordinates; (b) spherical coordinates. (from
Coussy 2004, reprinted by permission of Pearson Education, Inc.).

∂OM
∂θ

= r(cos θ cosϕex + cos θ sin ϕey − sin θez) = reθ

∂OM
∂ϕ

= r sin θ(− sin ϕex + cosϕey) = r sin θeϕ

Thus:

er,r = 0 er,θ = eθ er,ϕ = sin θeϕ
eθ,r = 0 eθ,θ = −er eθ,ϕ = cos θeϕ
eϕ,r = 0 eϕ,r = 0 eϕ,ϕ = − sin θer − cos θeθ

where eα,β = ∂eα/∂β.

Scalar Field a(r, θ, ϕ, t)

∇a (= grad a) = ∂a

∂r
er + 1

r

∂a

∂θ
eθ + 1

r sin θ

∂a

∂ϕ
eϕ

Vector Field b(r, θ, ϕ, t)

b(r, θ, ϕ, t) = br(r, θ, ϕ, t)er + bθ (r, θ, ϕ, t)eθ + bϕ(r, θ, ϕ, t)ez

∇ · b (= div b) = 1

r2

∂

∂r
(r2br )+ 1

r sin θ

∂

∂θ
(sin θ bθ )+ 1

r sin θ

∂bϕ

∂ϕ
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∇ × b (= curl b) = 1

r sin θ

(
∂

∂θ
(sin θ bϕ)− ∂bθ

∂ϕ

)
er + 1

r

(
1

sin θ

∂br

∂ϕ
− ∂

∂r
(rbϕ)

)
eθ

+ 1

r

(
∂(rbθ )

∂r
− ∂br

∂θ

)
ez

∇b (= grad b) =



∂br

∂r

1

r

(
∂br

∂θ
− bθ

)
1

r

(
sin θ

∂br

∂ϕ
− bϕ

)
∂bθ

∂r

1

r

(
∂bθ

∂θ
+ br

)
1

r

(
1

sin θ

∂bθ

∂ϕ
− cot θ bϕ

)
∂bϕ

∂r

1

r

∂bϕ

∂θ

1

r

(
1

sin θ

∂bϕ

∂ϕ
− cot θ bθ + br

)


Second-order Symmetric Tensor Field c(r, θ, ϕ, t)

c(x, t) = cij (r, θ, ϕ, t)ei ⊗ ej

∇ · c (= div c) =
(
∂crr

∂r
+ 1

r

∂crθ

∂θ
+ 1

r sin θ

∂crϕ

∂ϕ
+ 1

r
(2crr − cθθ − cϕϕ + crθ cot θ)

)
er

+
(
∂cθr

∂r
+ 1

r

∂cθθ

∂θ
+ 1

r sin θ

∂cθϕ

∂ϕ
+ 1

r
[(cθθ − cϕϕ) cot θ + 3crθ ]

)
eθ

+
(
∂czr

∂r
+ 1

r

∂cϕθ

∂θ
+ 1

r sin θ

∂cϕϕ

∂ϕ
+ 1

r
(3crϕ + 2 cot θ cθϕ)

)
eϕ
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30. Mandel J. (1966), Cours de Mécanique des Milieux Continus, Gauthiers Villars,
Paris.
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